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SUMMARY

Findings from a project involving rotating equipment defect detection using the Al-

gorithm of Mode Isolation (AMI) are presented. The prototypical system evaluated is a

rotating shaft, supported by hydrodynamic bearings at both ends, with one disk mounted

to the shaft. Shaft cracks and bearing wear are the two equipment defects considered.

An existing model of the prototypical system from the literature, termed the “simplified

model.” is modified to simulate the presence of a transverse shaft crack at mid-span. This

modified model is termed the “standard model.” Ritz series analysis, in conjunction with a

previously published description of the compliance related to the presence of a transverse

shaft crack, is used to describe the decrease in shaft stiffness associated with the crack.

The directional frequency response function (dFRF) is shown in the literature to provide

benefits over the standard frequency response function (FRF) in both system identification

and shaft crack detection for rotating equipment. The existing version of AMI is modified

to process dFRFs and termed Two-Sided AMI. The performance of Two-Sided AMI is

verified through system identification work using both the simplified model and a rigid

rotor model from the literature. The results confirm the benefits of using the dFRF for

system identification of isotropic systems. AMI and Two-Sided AMI are experimental modal

analysis (EMA) routines, which estimate modal properties based on a frequency domain

expression of system response. Eigenvalues and associated modal residues are the modal

properties considered in the present work.

Three defect detection studies are fully described. In the first, the simplified model is

used to investigate bearing wear detection. Various damage metrics related to the eigenvalue

and the residue are evaluated. The results show that residue-based metrics are sensitive

to bearing wear. Next, the standard model is used in an in-depth investigation of shaft

crack detection. When a shaft crack is present, the standard model is time-varying in both

the fixed and moving coordinate systems. Therefore, this analysis is also used to evaluate

performing EMA on non-modal data. In addition to continuing the evaluation of various

xiv



damage metrics, the shaft crack study also investigates the effects of noise and coordinate

system choice (fixed or moving) on shaft crack detection. Crack detection through EMA

processing of noisy, non-modal data is found to be feasible. The eigenvalue-based damage

metrics show promise. Finally, the standard model is used in a dual-defect study. The

system is configured with both a shaft crack and a worn bearing. One defect is held

constant while the magnitude of the other is increased. The results suggest that AMI is

usable for defect detection of rotating machinery in the presence of multiple system defects,

even though the response data is not that of a time-invariant system. The relative merits

of both input data types, the FRF and the dFRF, are evaluated in each study.
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CHAPTER I

INTRODUCTION

1.1 Motivation

Predictive maintenance techniques that allow for continuous data collection during normal

machinery operation without any additional instrumentation would be economically ben-

eficial for any industry using rotating equipment. Critical pieces of rotating equipment

in most industrial and aerospace applications have some form of transducer to monitor

displacement, velocity, or acceleration at the bearings. The commonly used mechanical

equipment standard API 670 [6] requires the use of two permanently-mounted radial prox-

imity probes per bearing to monitor shaft motion. The similar use of accelerometers is

also common. The availability of such dynamical measurements suggests their use for

monitoring concepts that make use of recent advances in vibration technology.

Each mode of a system’s vibration has a natural frequency and an associated damping

ratio, which describes the system’s ability to dissipate energy while vibrating in that partic-

ular mode. Both quantities depend on the stiffness, damping and inertia properties of the

system, as well as the shaft rotation rate and the behavior of the bearings. Changes in the

system’s physical properties will therefore lead to changes in the system natural frequencies

and the associated damping ratios. Additionally, special properties of rotating structures,

as compared with nonrotating structures, lead to equal or closely spaced pairs of modes

[10].

If conditions are acceptable, the natural frequencies and modal damping ratios can be

extracted from the output signal of industry standard instrumentation. However, external

flow noise is present during normal operation of aerospace rotating equipment. Industrial

rotating equipment is usually installed in close proximity to other operating equipment.

Both situations decrease the signal-to-noise ratio of the vibration monitoring transducer’s

output.
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Aerospace gas turbine engines are operated over a wide range of speed and power settings

during a single aircraft flight. Some industrial rotating equipment is operated over a speed

range corresponding to process conditions. For example, the speed of a boiler’s steam

turbine-driven induced-draft fan needs to be varied with boiler load. Other industrial

equipment, such as a centrifugal pump driven by an electric motor without a variable

frequency drive, operates continually at one speed. Thus, while “normal” operation is

almost always assumed to be continuous operation, it can mean fixed- or variable-speed

operation. This is significant because the natural frequencies and damping ratios are

rotation rate dependent.

These facts suggest that a method to extract modal parameters would be quite useful

for machinery health monitoring, but the method will need to work in a noisy environment,

have high accuracy, and account for the unique properties of rotordynamic systems.

1.2 Hypothesis

The natural frequencies and associated damping ratios of a rotating structure can be calcu-

lated from system eigenvalues, which are directly related to a system’s physical properties.

Hence, changes in physical properties lead to changes in eigenvalues. Bearing wear or a

cracked shaft will each change the system’s physical properties. The Algorithm of Mode

Identification (AMI) has successfully detected small changes in system eigenvalues in high-

noise environments. In addition to the eigenvalue, AMI uses the modal residue to describe

a system’s response. It is hypothesized that AMI can be used to process low signal-to-noise

ratio vibration data, in order to provide early, reliable detection of bearing defects and shaft

cracks through tracking changes to eigenvalues and associated residues.

1.3 Objectives

The first objective of the research program was to develop an analytical model of a simple

rotating system. The model was to simulate the effects of bearing wear and shaft cracks

separately, and in combination. The magnitude of the defects was to be adjustable by

the user. An analytical model was used in order to avoid the uncertainties regarding the
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nominal properties associated with experimental work. The analytical model would provide

an unambiguous representation of the defects investigated.

The second objective was to determine the threshold of detectability of each type of de-

fect alone, and in the presence of other defects during constant-speed operation. Industrial

standards and guidelines were to be used to quantify normal operating range for bearing

clearance. The work was to explore whether AMI is capable of detecting changes in bearing

clearance in the normal range of operation. The analytical model was to provide the data

for this analysis. The research program was also to investigate whether AMI could improve

the current crack detection state-of-the-art.

The third objective was to continue to evaluate AMI’s robustness in dealing with noisy

data. The effects of the white noise content of the time-domain signal on the threshold of

detectability of single and multiple defects were to be quantified.
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CHAPTER II

BACKGROUND AND LITERATURE REVIEW

2.1 Modal Parameter Identification Methods

Experimental Modal Analysis (EMA) is a method that allows one to determine a system’s

modal properties (natural frequencies, associated damping ratios, and mode shapes) by

inspection of measured response data. A known input force is used to excite the system, and

measured response is fit to a known analytical form in order to identify modal parameters.

System eigenvalues describe two of the three modal properties. The real part of an

eigenvalue is proportional to the damping ratio for that mode, while the magnitude of an

eigenvalue corresponds to the natural frequency of that mode. The third modal property,

the system mode shapes, is given by the associated eigenvectors. (Note that the terms

“complete modal solution” and “complete modal definition” indicate that both eigenvalues

and eigenvectors are defined.) Since modal parameters are directly related to system

physical parameters (mass, stiffness, and damping), changes in modal parameters indicate

changes in system physical parameters. With constant operating conditions, changes in

system physical parameters typically point to some form of equipment defect.

EMA is less used for rotating structures than it is for non-rotating structures. Sym-

metry in the system coefficient matrices of non-rotating structures decreases the number of

combinations of excitation and measurement points required to provide a complete modal

solution. In contrast, the system matrices for rotating systems are not all symmetric. Fur-

thermore, typical rotating equipment has most of the structure of interest for EMA testing,

the rotating shaft, sealed inside the machine housing, so it is not readily accessible for mea-

surements. A small portion of the shaft is usually available for excitation or measurement.

Using a limited number of measurement points greatly decreases the overall accuracy of any

modal estimation, and leads to spatial aliasing.
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2.1.1 Analytical Concepts

Calculation of the Frequency Response Function (FRF) is central to frequency domain

EMA. The FRF for an isotropic rotating system is briefly developed below following Gins-

berg [23]. Let [M ] denote the inertia matrix, [K] the stiffness matrix, [C] the damping

matrix, [G] the gyroscopic matrix, {q} the N -length generalized coordinate vector, and

{Q} the corresponding generalized force vector. The system matrices are functions of shaft
speed, Ω, and time, t, so

[M(Ω, t)] {q̈}+ [[C(Ω, t)] + [G] (Ω, t)] {q̇}+ [K(Ω, t)] {q} = {Q} (1)

Analysis in an inertial frame for the case of a rotor having axisymmetry simplifies this to

[M ] {q̈}+ [[C(Ω)] + [G(Ω)]] {q̇}+ [K(Ω)] {q} = {Q} (2)

The inertia matrix, [M ], is symmetric, and is not speed dependent. Symmetry of the stiff-

ness matrix, [K], and the damping matrix, [C], depends on the properties of the bearings.

Depending on the definition of the variables contained in {q}, internal or external damping
can also be manifested as nonsymmetric terms in the stiffness matrix [K]. External damp-

ing of the rotating shaft, provided only by bearings for a simple system, is beneficial from

a stability standpoint, however the follower force portion of the internal damping of the

rotating shaft, provided by the shaft material, can decrease stability [23]. The gyroscopic

matrix, [G], is skew-symmetric and does not lead to dissipative forces. Note that the stiff-

ness and damping matrices include the forces the bearings exert on the rotor. It is implicit

to the development that the selection and number of generalized coordinates is sufficient to

accurately describe the frequency domain response of the system in the frequency interval

of interest.

Consider two coordinate systems. The origin of the moving xyz coordinate system is

attached to the center of the rotating shaft and the x axis is coincident with the shaft’s axial

direction. The origin of the inertial XY Z coordinate system is located at the center of the

shaft in the shaft’s stationary position, and the X axis is coincident with the axis of the

shaft when it is not rotating. A local stiffness asymmetry is a basic representation of a shaft
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crack. In a simple model, the crack is assumed to be of constant depth and opening. In

a more complicated model, the depth and size of crack opening could be functions of time.

It is less troublesome to describe the behavior of either type of crack model in the moving

coordinate system than in the fixed coordinate system. Thus the moving xyz coordinate

system is appropriate for defect detection work searching for shaft cracks [23], [26]. Bearing

stiffness and damping may be orthotropic in the fixed XY Z coordinate system, depending

on the type of bearing. In contrast, the bearing stiffness and damping are functions of

shaft speed only, so the fixed XY Z coordinate system is appropriate for analyses that are

intended to be used to detect bearing defects.

When {Q} is harmonic at frequency ω, with arbitrary complex amplitudes described by
{F} , then the steady state response is

{q} = Re[{Υ} exp {iωt}] (3)

Substitution into Eq. 2 leads to an equation for the complex amplitudes of the generalized

coordinates,

{Υ} = [[K] + iω [[C] + [G]]− ω2[M ]]−1 {F} (4)

The generalized coordinates are not necessarily the response variables one measures in

experimental modal analysis. Let {q̂} denote the set of measured physical displacement
variables, and

n
Q̂
o
denote the corresponding physical excitations. For a linear structure,

these quantities may be evaluated by a condensation of the generalized coordinates and

forces. The result is that the physical displacements {q̂} and their complex steady-state
amplitudes

n
Υ̂
o
are obtained from the corresponding mathematical variables by

{q̂} = [B] {q} ,
n
Υ̂
o
= [B] {Υ} (5)

where [B] is a set of constants having fewer rows than columns, corresponding to a coordi-

nate reduction. The virtual work done by the physical forces and by the generalized forces

must be the same, which leads to

{Q} = [B]T
n
Q̂
o
, {F} = [B]T

n
F̂
o

(6)
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The result of substituting Eqs. 5 and 6 into Eq. 4 is a frequency domain transfer matrix

[H (ω)], defined such that n
Υ̂
o
= [H (ω)]

n
F̂
o

[H (ω)] = [B] [[K] + iω [[C] + [G]]− ω2[M ]]−1 [B]T
(7)

The elements of [H(ω)] are the individual FRFs for each displacement-force pair. Note

that the eigenvalues of the dynamic stiffness [[K]+ iω [[C] + [G]]−ω2[M ]] correspond to the

resonances. Thus, although fewer displacements than the number of degrees of freedom

might be processed, all of the natural frequencies lying in any frequency band should be

exhibited by each FRF, assuming that neither the excitation nor measurement locations

are nodal points for a mode.

One consequence of the skew-symmetry of [G] and the possible asymmetry of the bearing

coefficients is that [H (ω)] is not symmetric. Another important property is that it is

conjugate-even,

Hjn (ω) = Hjn (−ω)∗ (8)

Standard frequency domain EMA techniques process conjugate-even FRF data over a fre-

quency range from a low limit up to ωmax.

One way in which the FRFs can be obtained experimentally is through application

of an impulsive excitation. The corresponding impulse response may be computed as a

convolution of [H (ω)] and the Fourier transform of the physical forces
n
Q̂
o
. Analytically,

one can generate an FRF by direct frequency domain analysis, as described by Eq. 7. An

alternative is to perform a modal analysis using a state-space formulation, as described by

Ginsberg [23], − [K] [0]

[0] [M ]

 d

dt

 {q}
{q̇}

+
 [0] [K]

[K] [C +G]


 {q}
{q̇}

 =

 {0}
{Q}

 (9)

Ewins [19] gives an alternate state-space form, in which the equations of motion are stacked

above the derivative identity, but the modal properties of the alternative formulations are

identical to those obtained from the preceding.
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The homogeneous solution of the state-space equations is described by a non-self-adjoint

linear eigenvalue problem. Defining [R] and [S] in the following manner,

[R] = −

 [0] [K]

[K] [G] + [C]

 ; [S] =
 − [K] 0

0 [M ]

 (10)

the problem can be expressed as right and left eigenvalue problems.

£
[R]− λR [S]

¤ ©
ψR
ª
= {0} (11)

©
ψL
ªT £

[R]− λL [S]
¤
= {0} (12)

Here λR is the right eigenvalue, λL is the left eigenvalue,
©
ψR
ª
is the right eigenvector, and©

ψL
ª
is the left eigenvector. The right eigenvalues are equal to the left eigenvalues,

λR = λL (13)

but the right eigenvectors are not equal to the left eigenvectors.

©
ψR
ª 6= ©ψL

ª
(14)

The eigenvalues describe the temporal properties of a free modal vibration. Underdamped

modes occur as complex conjugate pairs, in which the real part of an eigenvalue is propor-

tional to the mode’s damping ratio, ζk, while the magnitude of each eigenvalue is analogous

to the mode’s undamped natural frequency, Ωk,

Ωk = |λk| , ζk = −Re (λk) / |λk| (15)

The associated complex eigenvectors describe the relative amplitude and phase of the gener-

alized coordinates, all of which are modulated by exp (Re(λkt)) as they oscillate at frequency

Im(λk) in a modal free vibration.

The impulse response of each generalized coordinate, and hence, of each physical dis-

placement, can be represented as a superposition of modal responses in which the time

dependence has an exponential behavior, exp (λkt) . The frequency domain transfer matrix

may be extracted by deconvolving the Fourier transform of the response from the transform

of the excitation. If all of the modes are underdamped, which is usually true, the result is
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that an FRF is representable as a superposition of poles λk and λ∗k, and associated residues

Ajn,k and A∗jn,k, such that

Hjn(ω) =
NX
k=1

·
Ajn,k

iω − λk
+

A∗jn,k
iω − λ∗k

¸
(16)

The residues may be expressed as products of the physical displacements in each of the N

pairs of complex conjugate modes.

2.1.2 Literature Review

In a lengthy survey of the state of the art of EMA applied to rotating equipment, Bucher

and Ewins [10] discussed assumptions and simplifications that could be employed with EMA

to get a complete modal solution (all eigenvalues and all eigenvectors) for a rotating shaft in

five general configurations. The least complex case discussed was a perfectly axisymmetric

shaft with isotropic (equal stiffness in all directions) bearings and no damping. The authors

showed that a complete modal solution could be obtained with one excitation point and

n = N/2 measured FRFs in one direction. Here, n is the number of measurement locations,

and N is the number of modes taken into account. For the more realistic case of a system

with general anisotropic bearings and some damping, the authors reported that data for one

complete column and one complete row of the FRF matrix have to be taken in order to get

a complete modal solution (eigenvalues and eigenvectors). More complex configurations

lead to greater excitation and measurement requirements.

In a separate work, Ewins [20] developed a method based on the symmetry of the mass,

stiffness, and damping matrices, to extract complete modal properties from response data

with a limited number of excitation locations. Right eigenvectors and complex natural

frequencies were used to calculate left eigenvectors. As asymmetry of the stiffness or

damping matrix increased, a larger number of columns of the transfer function matrix had to

be measured. Even though the method minimized the amount of work for a complete modal

solution, in rotating equipment the stiffness and damping matrices are rarely symmetric.

Therefore, for the vast majority of systems, at least one column and one row of the transfer

function matrix is always required for eigenvector information.
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The excitation and measurement location requirements published by Bucher and Ewins,

in combination with the limited access to the shaft in operating rotating equipment, make

it unlikely that a complete modal solution is attainable for installed equipment operating

under normal conditions. However, a number of researchers have reported laboratory

methods based on access to many points along the shaft [46], [36], and [37]. In fact, most

of the literature details work aimed at producing a complete modal solution.

Marscher [42] proposed a practical method to use the principles of EMA to determine

some modal parameters while a piece of rotating equipment is operating normally. An

impulse force would be used to excite the shaft and standard accelerometers capture the

vibration data. Cumulative time averaging would be used to determine the response due to

the impulse force, and the FRF is calculated by dividing the response caused by the impulse

force by the cumulative time average of the (input) impulse force spectrum. Marcher

specified the use of “standard EMA curve fit / modal synthesis methods” to calculate

natural frequencies and associated damping ratios from the FRF. Operational Deflection

Shape testing of a boiler feedwater pump was documented in [42], but there is no indication

that Marscher’s proposed method was used experimentally.

Redmond [52] analytically investigated methods to quantify hydrodynamic bearing stiff-

ness and damping coefficients. The first method required external excitation of the shaft

at several discrete frequencies across the operating speed range of the machine and full

knowledge of all shaft displacements and cross-sectional rotations at each bearing. Since

this method of excitation and measurement was impractical, Redmond then evaluated the

efficacy of unbalance excitation. The method gave acceptable results, but the require-

ment of knowing the cross-sectional flexural rotations of the shaft at each bearing made the

method impractical. Redmond finally focused on a method that used unbalance excitation,

ignored the cross-sectional rotations, and only quantified changes in the bearing coefficients.

Redmond stated that the method produced accurate results if four proximity probes (two

more than industry standard) were installed in each bearing. Additionally, evaluation of

the method in a high-noise environment was listed as future work.

Santiago and San Andres [56] cited the works of Marscher [42] and Nordmann and
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Shollhorn [47] as background for their research on determination of bearing stiffness and

damping coefficients through impact testing. The method was developed for nearly rigid

shafts and required a special exciter to deliver the impulse to a disk on the rotating shaft.

The authors stated that future work would focus on the machine casing as a more practical

choice for excitation location. This would remove the requirement for a special exciter, but

the analysis would then depend on an accurate model of the support structure.

In 2002, Aenis, Knopf, and Nordmann [1] discussed the use of active magnetic bearings

(AMB) for defect identification in rotating equipment. The authors proposed using the

AMBs to deliver and measure the excitation force required for modal analysis in machinery

so equipped. Existing, standard transducers would be used to collect the response data.

This multi-purpose use of AMBs would lead to an accurate measurement of the excitation

force, a reduction in the level of equipment required for modal analysis, and potential for

continuous monitoring. The authors reported acceptable accuracy in analytical testing of

model-based fault detection. Experimental work had not been completed.

Bucher and Ewins [10] stated that although AMBs can provide a true multiple-input

experimental system, an individual with “considerable” experience is required to run the

experiment. Additionally Bucher and Ewins commented that while applying standard

excitation methods to a machine’s foundation is simple, extracting meaningful information

from the response data is often very difficult.

Bucher and Ewins [10] and Joh and Lee [33] commented on the presence of closely spaced

natural frequencies in the frequency response data for rotating structures. Axisymmetry

leads to the phenomenon of forward and backward modes. In a forward whirl mode,

the rotation of the deflected shaft is in the same direction as shaft rotation, when viewed

along the axis of the shaft. In a backward whirl mode, the rotation of the deflected

shaft is opposite the shaft rotation. (For both types of modes, shaft deflection is due to

transverse vibration.) Typically forward and backward whirl modes appear in pairs, with

almost identical natural frequencies. These close natural frequencies usually diverge with

increasing rotation rate. Although the motions associated with the modes are unique, the

frequency response data for the modes is at least partially overlapped due to the closely
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spaced frequencies. Both sets of authors indicated that special techniques are required for

accurate discrimination of modes in rotating equipment due to this property. A technique

suggested by Joh and Lee is discussed below.

2.1.3 Complex Modal Analysis

Lee, Joh, and Kwon developed the directional frequency response function (dFRF) to ad-

dress this problem [33], [34], and [39]. In this development, displacement and force are

broken into two partitions describing motion in two orthogonal planes, xy and xz contain-

ing the bearing axis x. The physical transverse displacements and forces are partitioned in

the same manner, according to

{q̂} =

 {y}
{z}

 ,
n
Q̂
o
=

 {Qy}
{Qz}

 (17)

The individual partitions are used to define complex time-dependent vectors whose length

is half the total number of measured displacements,

{p (t)} = {y (t)}+ i {z (t)} , {g} = {Qy}+ i {Qz} (18)

A response in which like elements of {y} and {z} oscillate at the same frequency, but with
arbitrary amplitude and phase, leads to the elements of {p} being the sum of two phasors

of constant length rotating counter-clockwise and clockwise in the complex plane. These

phasors correspond to forward and backward whirl at an angular speed that is the oscillation

frequency. One of these phasors vanishes if the orbital motion is a synchronous whirl.

The Fourier transform of the complex displacement {p} is denoted as {P (ω)}, and the
Fourier transforms of {g} and {g}∗ are denoted as {G (ω)} and

n
Ĝ (ω)

o
, respectively, where

a caret is used for the latter for the sake of notational convenience. Unlike Fourier transforms

of real quantities, these transformed variables are neither conjugate-even nor conjugate-odd,

meaning that knowledge of their values for positive frequencies is not sufficient to determine

their behavior for negative frequencies. The two-sided directional FRFs are the elements

of a transfer function that gives {P (ω)} in terms of the transformed complex force inputs
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{G (ω)} , specifically,

{P (ω)} = £[HPG(ω)]
£
HPĜ(ω)

¤¤ {G(ω)}n
Ĝ(ω)

o
 (19)

The elements of [HPG] are termed the “normal” dFRF, while
£
HPĜ

¤
elements are called

the “reverse” dFRF.

Directional FRFs can be expressed in terms of the transfer function for the physical

variables. The partitioned form of the definition of [H (ω)] is {Y (ω)}
{Z (ω)}

 =

 [HY Y (ω)] [HY Z (ω)]

[HZY (ω)] [HZZ (ω)]


 {FY (ω)}
{FZ (ω)}

 (20)

where {Y (ω)} and {Z (ω)} are the transforms of {y (t)} and {z (t)} , respectively. Lee [38]
showed that the dFRFs may be evaluated from known regular FRFs according to

2HPG = HY Y +HZZ + i(HZY −HY Z)

2HPĜ = HY Y −HZZ + i(HZY +HY Z)
(21)

As was mentioned previously, the directional FRFs are not conjugate-even. Conse-

quently, they are considered to be functions covering a range of positive and negative

frequencies extending from −ωmax to ωmax. The loss of conjugate evenness causes the

pole-residue form of a dFRF to have a somewhat different representation from that of a

regular FRF. Specifically, the consequence of applying Eqs. 21 to Eq. 16 is manifested

in a pole-residue form of a directional FRF in which the residue associated with a pole at

iω = λ∗k is not the complex conjugate of the residue associated with the pole at iω = λk.

Correspondingly, the conjugate poles are regarded as distinct from their mates, resulting in

directional FRFs that are a sum of the contribution of 2N poles and associated residues,

dFRFjn(ω) =
2NX
k=1

·
Cjn,k

iω − λk

¸
(22)

Like the residues for the standard FRFs, the directional residues Ck depend solely on the

physical displacements in eigensolution k.

Lee [38] and Joh and Lee [34] discussed the behavior of the normal and reverse dFRFs

relative to system isotropy. For an isotropic system, the closely-spaced backward and for-

ward modes commonly associated with rotating structures are completely separated and lie
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in the negative and positive frequency ranges, respectively, in the normal dFRF, HPG. The

reverse dFRF, HPĜ, approaches zero as a slightly anisotropic system approaches isotropy.

In an anisotropic system, forward and backward modes are present in both the positive and

negative frequency range components of HPG and HPĜ.

Mesquita, Dias, and Miranda [44] reviewed FRF and dFRF theory for rotating struc-

tures. The researchers employed a finite element representation of a flexible rotor, which

was used to evaluate natural frequencies and mode shapes (and directions), as well as FRFs,

from which dFRFs were generated. Visual inspection of FRF and dFRF response data

was used to illustrate the separation and/or overlapping of backward and forward modes in

dFRFs and FRFs of both isotropic and anisotropic systems. EMA algorithm processing of

response data was not conducted.

2.2 Bearing Faults and Bearing Fault Detection
2.2.1 Hydrodynamic Bearings

Hydrodynamic bearings are widely used in rotating equipment such as steam turbines and

large centrifugal pumps. Properly designed, installed, and maintained hydrodynamic bear-

ings offer several advantages over rolling element bearings, including no appreciable fatigue

concerns and lower radial space requirements.

The stiffness and damping of hydrodynamic bearings are speed-dependent, and the

methods used to calculate stiffness and damping coefficients are well-known [13]. The

bearing stiffness and damping also depend on the bearing geometry and the lubricant phys-

ical properties. Hydrodynamic bearings are subject to abrasive and/or adhesive wear. The

overall geometry of the bearing changes long before catastrophic failure [68], so significant

changes in the stiffness and damping matrices are present for a relatively long period prior

to catastrophic failure of the bearing.

There is limited work on the effects of wear on the stiffness and damping of hydrodynamic

bearings. Wu [69] experimentally studied the effects of bearing wear on the performance

of a class of reciprocating air compressor with plain journal bearings. New bearings were

symmetrically over-bored to simulate bearing wear. A test compressor fitted with bearings
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with simulated wear exhibited the same behavior as compressors in the field with actual

worn bearings.

As previously mentioned, Redmond [52] performed an analytical evaluation of a method

to detect changes in bearing stiffness and damping coefficients due to hydrodynamic bearing

wear. Redmond simulated bearing wear by symmetrically increasing the bearing clearance

67% from original in one of two bearings in a mathematical model of an electric motor.

Hashimoto [28], [29] began a detailed analysis by inspecting a number of sets of worn

bearings from steam turbines and verified that the bearing wears more directly under the

journal’s rest position, rather than symmetrically around the entire bearing inner diameter.

Hashimoto then developed a mathematical representation of the wear pattern, used finite

element analysis to solve for the pressure distribution in the worn bearing, and analytically

evaluated the changes in bearing stiffness and damping due to wear. The analytical model

was validated by experimental work using bearings CNC-machined to the same wear profile

used in the analytical work. Scharrer [59] analytically studied the effects of wear on the

stiffness and damping of a hydrostatic journal bearing, using a non-symmetric wear pattern

similar to that used by Hashimoto.

Eisenmann [17] defines bearing clearance ratio (BCR) as diametral clearance [mills]

divided by journal diameter [in]. For properly designed, installed, and maintained horizontal

machinery, BCR is typically between 1.0 and 2.0. Shigley [62] gives guidelines for minimum,

average, and maximum bearing clearances in terms of radial bearing clearances. For the

prototypical system in the present work, the guidelines are minimum BCR = 0.66, average

BCR = 1.5, and maximum BCR = 2.23.

Muszynska [45] conducted analytical and experimental evaluations of the performance

of a worn journal bearing in a horizontal machine. In the experimental work, the bearing

wear was simulated by symmetrically over-boring the inner diameter of a new bearing. In

the analytical work, Muszynska used a simple mathematical model of the rotating shaft

based on the first rotor lateral bending mode. The “good” bearing had BCR = 13, and

the “worn” bearing had BCR = 133. The main thrust of the study was to evaluate the

effects of “dead band” (where the journal looses contact with the oil wedge and bearing).
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2.2.2 Hydrodynamic Bearing Fault Detection

Oil analysis is a common method for detecting journal bearing wear. The presence of

bearing materiel in the lubricating oil indicates wear. Although on-line oil analysis equip-

ment is available, the most widely-used method to conduct oil analysis is to sample the

lubricant, send it to a lab for identification of all solids present, and then evaluate the need

for corrective action [9].

Worn hydrodynamic bearings produce a once per revolution (1X) vibration signal. Mass

imbalance is the most likely cause of 1X vibration, and another common machinery fault,

misalignment, can also produce 1X signals. During diagnosis, orbit analysis (creating

a Lissajous pattern by plotting signals from two proximity probes mounted 90 degrees

apart in the bearing against one another) is often used to distinguish between imbalance

and misalignment. Imbalance typically produces an elliptical orbit, while misalignment

produces an orbit that either has a flattened shape or is double-looped. When orbit

analysis rules out misalignment, and balance correction does not reduce the 1X vibration,

bearing wear is the diagnosis [16].

2.2.3 Rolling Element Bearings

Rolling element bearings are widely used in many types of rotating equipment such as

aerospace gas turbine engines and ANSI-specification centrifugal pumps in the power and

process industries. Properly installed and maintained rolling element bearings offer lower

starting friction, lower axial space requirements, lower sensitivity to lubricant properties,

and the ability to carry both radial and thrust loads, when compared with hydrodynamic

bearings.

Rolling element bearings have stiffness and damping characteristics considerably dif-

ferent from those of hydrodynamic bearings. Rolling element bearing stiffness depends

on bearing preload, geometry and material of construction, and is not speed-dependent.

Rolling element bearings have extremely low levels of damping. In fact, analytical rotordy-

namic models for equipment design and evaluation generally have rolling element bearing

damping set equal to zero [16], [13].
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The four components of a rolling element bearing are the inner race, the outer race, the

rolling elements, and the cage. A defect in any one of the components produces vibration

with a unique frequency related to the geometry of the bearing and the operating speed.

These fault frequencies are well-known. Damage to the outer race of a bearing is indicated

by the “ball pass frequency outer” or BPFO, and damage to the inner race of a bearing is

indicated by the “ball pass frequency inner,” or BPFI. The “ball spin frequency” or BSF

indicates damage to a rolling element, and the “fundamental train frequency” is associated

with damage to the bearing cage. These fault frequencies are much higher than shaft speed

[9].

Lee [38], Loparo [41], and many others have published models of rolling element bearing

faults as time domain excitation of the system, instead of a change in overall system para-

meters, as was the case with models for hydrodynamic bearing wear. The bearing stiffness

and damping (if included) are assumed to remain constant even though there is a defect on

a bearing component. That assumption is valid because of the differences in the types of

wear experienced by rolling element bearings and hydrodynamic bearings. Rolling element

bearings are subject to fatigue wear where minor surface defects are associated with major

subsurface damage. There is almost no change in the overall geometry of the components

(and thus the stiffness of the bearing) until there is catastrophic failure.

2.2.4 Rolling Element Bearing Fault Detection

Diagnostic work on rolling element bearings is most commonly conducted using frequency

domain analysis of a vibration signal taken at the bearing. The technology to perform this

work is quite mature. Many vendors offer sophisticated software packages that calculate

the four fault frequencies for the specific bearings in use, lay them over vibration data taken

in the field, and automatically recognize failing bearings.

2.2.5 Comment on the Use of Rolling Element Bearings in the Proposed Work

The present work does not address fault detection of rolling element bearings. The basic

principle of AMI is identifying and detecting changes in system parameters through analysis

of system eigenvalues. Rolling element bearing defects manifest themselves as additional
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excitations of the system, not as changes in the overall system parameters. An additional

excitement produces a system response at the excitation frequency, but system eigenvalues

are not modified. The presence of rolling element bearing fault frequencies does not degrade

the performance of AMI, so the absence of this type of machine component from proof of

concept testing does not rule out the use of AMI on equipment containing rolling element

bearings.

2.3 Shaft Cracks and Shaft Crack Detection

Loaded rotating shafts are susceptible to fatigue cracking, and this susceptibility increases

with increasing geometrical complexity and increasing load. Shaft cracking is an ever-

present danger to high performance turbomachinery, so there has been significant work

done in the areas of analytical modeling of cracks in rotating shafts and development of

shaft crack detection methods. Dimarogonas [14] and Wauer [66] both present detailed

compilations of this type of work.

2.3.1 Breathing Cracks

The surface of a horizontal rotating shaft is subject to alternating tension and compression

due to the weight of the shaft. It is easy to visualize that the effect of this alternating

tension and compression on a surface crack is cyclical opening (such that the crack faces are

not in contact) and closing (such that the crack faces are in contact) of the crack. A crack

exhibiting this behavior is called a breathing crack. As summarized by Casey [12], there

are two common methods to analytically model breathing cracks. Either the breathing is

defined as a function of displacement perpendicular to the crack edge and the moving xyz

coordinate system is used, or the breathing is defined as a function of the angle of rotation

of the shaft and the inertial XY Z coordinate system is used. Both methods of defining a

breathing crack result in elaborate nonlinear analytical models requiring numerical approx-

imation or labor-intensive methods for exact solutions [26]. The response of a breathing

crack model consists of the response of a local shaft stiffness asymmetry (1X and 2X effects)

plus sub- and/or higher harmonics [15].
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2.3.2 Gaping Cracks

A gaping crack differs from a breathing crack in that it is always open (the crack faces are

never in contact). Therefore, a gaping crack is equivalent to a local stiffness asymmetry in

the rotating shaft. This asymmetry is not a function of time when described in the moving

xyz coordinate system. A gaping crack model will accurately describe the response of a

cracked shaft if the system vibration amplitudes and static displacements are small [26].

The response of a gaping crack model is equivalent to the response of a local shaft stiffness

asymmetry (1X and 2X effects).

2.3.3 Stiffness and Damping Effects

In the gaping crack model, the effective cross-sectional area of the shaft is reduced, but

there is no contact between the material on either side of the slot. In the breathing crack

model, the effective cross-sectional area of the shaft is reduced by the same amount as with

a corresponding gaping crack. Additionally, the cyclic loading of the crack causes the rough

material on either side of the crack to continually move in and out of contact. Published

works [67], [31], [48], discuss the importance to the overall behavior of a crack of the energy

loss of this relative motion of rough material during cyclic loading. Neither an analytical

gaping crack model, nor a saw-cut slot in an experimental system accounts for the energy

loss.

Most researchers have modeled shaft cracks using only stiffness or flexibility. Gasch

[22] and Mayes and Davies [43] are examples from the 1970’s that use the displacement-

based breathing crack model. Both works describe the cracks in terms of additional shaft

flexibility (reduced stiffness). In 1998, Wu [70] modeled the behavior of a cracked shaft

supported by hydrodynamic bearings. The speed-dependent stiffness and damping of the

bearings were taken into account, but the popular stiffness-only breathing crack model was

still in use. Dimarogonas [14] lists a large number of crack modeling works based only on

flexibility (stiffness).

Relatively few researchers have incorporated both stiffness and damping into shaft crack

models. Wauer [67] included the effects of damping in an analytical crack model through
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the use of proportional damping. The energy method was used to calculate a stiffness

matrix for the continuous prototypical system, and a damping matrix was then created by

multiplying the stiffness matrix by the loss factor for the shaft material. Imregun and

Sanliturk [31], [58] used a two-part method to develop an analytical model to calculate the

equivalent loss factor due to the rubbing action of the two faces of a breathing crack. The

first part of the method was to experimentally determine a coefficient of friction across a

crack in a sample made from the material of interest. The second part of the method

involved an analytical model relating the experimentally determined coefficient of friction,

the stress at the crack, the shaft geometry, the crack geometry, the shaft displacement and

the increase in damping (loss factor) due to the crack, on a per-mode basis. The crack

damping was modeled as Coulomb friction. In comparison with experimental data, the

model successfully predicted the effects of changing the crack position and crack depth.

In 2001 Panteliou [48] related crack depth, modal damping factor, and thermodynamic

damping in an analytical model derived from first principles. An important result of the

analytical work was the determination that modal damping factor increases with increasing

crack length.

Zhang [72] conducted experimental work on closure effects on fatigue crack detection

using a non-rotating tee section. Closure describes the state where the material on either

side of a crack is in contact. Loading may promote closure or prevent closure. Cyclical

loading can move the crack in and out of closure during each cycle of motion. Zhang

showed that crack closure can obscure the natural frequency changes normally associated

with cracked structures (without closure), and that crack closure can accentuate the amount

of damping introduced by a crack, when compared to a crack without closure. Zhang also

investigated the parametric influence of crack geometry. Zhang defined the frequency

range as the original natural frequency minus the new (lower) natural frequency of the

cracked structure. The damping ratio and the frequency range increased with increasing

crack depth, but the increase was not linear. Also, for increasing load on a structure

with a crack of a given size, the frequency range and the damping ratio varied nonlinearly.

Zhang concluded from experimental results that analytical crack models need to include
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damping effects to accurately approximate physical systems. Furthermore, Zhang agreed

with Panteliou’s assertion that damping increases with increasing crack depth.

2.3.4 Shaft Crack Detection

Crack detection methods can be described as on-line or off-line. In an on-line method,

the required excitation and measurement is done with the machine in its normal operating

state. Conversely, for an off-line method, the machine is in some state other than normal

operation for the excitation and measurement.

Numerous sources discuss analysis of frequency domain vibration data for shaft crack

detection. Most researchers point out the importance of the twice per revolution (2X)

component in the identification process. The decreased stiffness of the shaft in one direction

due to a crack effectively makes the shaft asymmetric. A balanced rotating asymmetric

shaft will produce a 2X component [16]. Ehrich [16] went on to say that the 2X component

of vibration is often accompanied by “unexplained” high 1X vibration when a cracked shaft

is in operation. Huang [30] agreed that the combination of high amplitude 1X and 2X

vibration can be an indicator of a cracked shaft. Huang also stated that operating the

shaft at one half of the first critical speed optimizes the detection of a cracked shaft using

frequency domain data. Green [26] also stressed the importance of the magnitude of the

2X vibration in cracked shaft identification. Green demonstrated that the shaft speed

at which the 2X vibration is maximum decreases with increasing crack depth. Lee [39]

provided a good summary, in which he stated that it can be difficult to detect cracks with

frequency domain techniques because other common machinery faults (misalignment and

support nonlinearity) produce similar effects in the vibration frequency spectrum.

Bucher and Shomer [11] developed an on-line method to detect shaft cracks in rotating

machinery supported by active magnetic bearings (AMBs). Asynchronous excitation from

the AMBs was used to excite the shaft. A peak occurred in the frequency domain response

data at a frequency related to both the shaft speed and the frequency of the asynchronous

excitation when an asymmetry (a shaft crack) was present. The results showed that the

method is reliable for clean (no-noise) signals.
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In two related works Garrett et al. [7] and Beiryla et al. [21] explored the use of on-

line torsional vibration analysis to detect shaft cracks. Change in natural frequency was

used as the indicator of a crack. Visual inspection of the frequency domain response data

was employed to determine natural frequencies. No torsional excitation, other than the

machine’s own loading, was used. The authors stated that it was possible that a mode

sensitive to a crack could not be excited. The smallest crack detected in the study was

37% relative depth.

Goldman et al. [25] presented an on-line method based on lateral and torsional vibration

response. Two special pieces of equipment, lateral and torsional nonsynchronous exciters,

were used in the perturbation study. Experimental data showed that a crack of 10% relative

depth was detectable in a laboratory environment.

Coast down testing is a common off-line method of crack detection [50]. “Coast down”

refers to the time while a machine is slowing from normal run speed to a stop after the

power source has been removed. The analyst looks for changes in response relative to

the previously recorded response of the nominal system. A number of different measures

have been presented to quantify the change in response. The magnitude of the vibration,

changes in critical speed(s), and changes in the Q factor [60] are examples.

Often, the vibration data taken during coast down testing is used in conjunction with

other data to detect a crack. Sanderson [57] described a typical situation. A propagating

crack in a 935 MW turbine-generator set was discovered. The main vibration signature

element used in the diagnosis was a large and increasing 1X component. The unit was

started and stopped a number of times, and changes in critical speeds of the generator and

turbine were also used in the analysis process. Additionally, rotor temperature gradient

data was used in the analysis. (The gradient was not normal, indicating the presence of a

crack.) Even with all of the available data, and permission to start and stop the machine,

the crack reached a relative depth of 25% prior to detection.

Model-based methods have been used for shaft crack detection. The major difficulty

with this method is developing an accurate mathematical model for a complex rotating shaft

[39]. The rotating shaft is supported by bearings whose stiffness and damping can vary
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with speed. Additionally, the interaction of the rotating equipment with the foundation or

support on which it rests is important to the overall system dynamics. This interaction is

quite difficult to model without extensive field testing of the actual piece of equipment in

question [40].

Lee and Kwon [39] and Joh and Lee [34] applied the work on complex modal analysis by

Joh and Lee [33], discussed previously, to crack detection. Joh and Lee began to refer to

the two-sided FRF as the Directional Frequency Response Function (dFRF). In Equation

19, the HPG(ω) term was termed the normal dFRF, and the HP bG(ω) term was called

the reverse dFRF. The authors used the dFRF to test for anisotropy and asymmetry in

rotating systems. Anisotropy referred to nonaxisymmetric properties of the nonrotating

elements (bearings, seals, etc.) and asymmetry referred to nonaxisymmetric properties of

the rotating shaft (due to cracks, geometry, etc.). The main premise of the method was

to compare a fixed reference frame dFRF to the same dFRF in a moving reference frame.

Joh and Lee showed experimentally that the method detects the presence of anisotropy and

asymmetry, but that a fairly accurate analytical or experimental system model is required

to determine the degree of anisotropy or asymmetry.

Lee and Kwon [39] expanded the work on complex modal analysis. By visual inspection

of response data generated with an analytical model, the authors demonstrated that the

magnitude of the reverse dFRF increased proportional to crack growth and that the phase

is shifted by twice the crack opening angular position (relative to some angular reference).

Sabnavis et al. [54] compiled a comprehensive list of post-1990 works on the subject of

shaft crack detection. The methods were categorized as vibration-based, modal, or other,

and off-line methods were differentiated from on-line methods.

2.4 Algorithm of Mode Isolation

The Algorithm of Mode Isolation (AMI) is a two-phase, frequency domain technique that

extracts the modal parameters of identified modes from an FRF in an iterative search.

Application of the procedure to several test problems has indicated that the method is

accurate, robust in the treatment of noisy data, and does not require an initial guess of the
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number of significant modes present. A full explanation of the algorithm and its application

is provided by Ginsberg and Allen [24] and Allen and Ginsberg [2].

In the Subtraction Phase of AMI, the most dominant peak in the FRF is identified. In

the vicinity of this peak, the FRF is taken to be

H(ω) ≈ Ak

iω − λk
+

A∗k
iω − λ∗k

. (23)

Single degree of freedom (SDOF) estimates of the corresponding mode’s eigenvalue, λk, and

residue, Ak, are obtained through a curve-fitting process. These modal parameters are used

to subtract that modal contribution from the FRF, which brings the next most dominant

peak in the original FRF into prominence. This process is continued until no significant

modal content remains in the FRF. In the Isolation Phase, the current estimates of all modal

properties, other than the one in focus, are used to subtract the contributions of those modes

from the FRF. This leaves the mode in focus as the dominant contributor to the residual

FRF. An updated SDOF estimate for that mode is then calculated, using the residual

FRF. Each mode identified in the Subtraction Phase is processed sequentially in the same

manner. The procedure continues until convergence criteria are met. At the conclusion of

Isolation, each mode identified in the FRF is quantified by an eigenvalue - residue pair. The

undamped natural frequency, Ωk, modal damping ratio, ζk, and mode shape, ψk, can be

extracted from the eigenvalue and corresponding residue using the following relationships.

Ωk = |λk| , ζk = −Re (λk) / |λk| (24)

Ajk = λkΨ
R
jkΨ

L
Pk (25)

2.4.1 Comment on the Use of AMI

For nonrotating (conservative) systems, AMI determines system eigenvalues and eigenvec-

tors by fitting input FRF data to the relationship defined in Eq. 23. The key to getting

accurate eigenvector information is the ability to either excite the system or measure sys-

tem response at a number of points on the system. As discussed previously, access to the

rotating shaft on installed equipment for data collection during normal operation is limited
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to axial positions corresponding to bearing housings. The same limitation is placed on the

analytical models of the prototypical system used in the present work. Consequently, few

FRFs are available for processing by AMI. Past experience showed that although AMI’s

eigenvalue identification performance degraded somewhat as the number of available FRFs

decreases, the algorithm identified eigenvalues with acceptable accuracy. However, the

same was not true for eigenvectors. The low number of available FRFs resulted in an

undersampled eigenvector estimation. Therefore, in the work presented here, AMI is used

only to determine system eigenvalues. Eigenvectors are not considered.

Additionally, it is understood that the possibility of missing a mode increases as the

number of measurement locations decreases. If a mode’s contribution to an FRF is below

the noise level, AMI is not able to detect it. The work presented here relies on the

assumption that a given defect affects at least one mode that has a nonzero response at one

or more of the measurement locations, and that some of these eigenvalues are sensitive to

defects.
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CHAPTER III

PROTOTYPICAL SYSTEM

3.1 Introduction

The majority of the analyses presented in this thesis are conducted on a specific rotordy-

namic system, consisting of a shaft, attached disk, and supporting bearings. Two mathe-

matical models are used to represent this prototypical system. The first model, termed the

simplified model, is taken directly from the literature [73]. The chapter opens with a sum-

mary of this model. The second model, termed the standard model, is a new version of the

simplified model, modified to include a shaft crack. The development of the representation

of the shaft crack is discussed in the following. Both models of the prototypical system

incorporate the short-bearing approximation, and one section of the chapter is devoted to

this subject. A representation of bearing wear, applicable to the bearings in both the

simplified and standard models, is also developed. Additionally, the conversion between

fixed coordinate system data and moving coordinate system data is discussed.

3.2 System Parameters

The prototypical system is a circular shaft, supported by plain journal bearings at its

ends, with a transversely mounted disk. The system’s circular steel shaft has a span

between bearings of 1 meter and is 80 mm in diameter. The 45 kg disk is mounted 433

mm from Bearing 1. The disk has a polar moment of inertia Ixx = 0.298 kg·m2, and a
transverse moment of inertia Iyy = 0.245 kg·m2. Identical journal bearings, with length

to diameter ratio Lb/Db = 1/4, nominal clearance ratio cb/Rb = 1.25 × 10−3, and fluid
viscosity ν = 7 × 10−3 N·s/m2, support the shaft at each end. The system’s first two

critical speeds are 73 rad/s and 230 rad/s, respectively.

The system parameters were taken from [73] and used without modification. In both

analytical models of the system, the connection of the disk to the shaft is modeled as a
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point attachment. Although the polar and transverse moments of inertia suggest a thick

disk, point attachment of the disk to the shaft could be accommodated through the use of

a thin web.

3.3 Brief Description of Models

The simplified model of the prototypical system and the standard model of the prototypical

system are both based on the system parameters described in the previous section. These

linear models are used to reproduce physical phenomena, but they are not intended to be

faithful to any specific system. The following statements apply to both models. Orthogonal

shaft flexural displacements and the associated shaft cross-sectional rotations describe the

system’s response. The shaft and disk are perfectly aligned and balanced, and the disk

is rigid. The deformation of the shaft is represented by Ritz series in conjunction with

Timoshenko beam theory, generalized to include gyroscopic effects. (Both the transverse

shear and the rotary inertia of the shaft are considered.) The disk’s connection to the

shaft is modeled as a point attachment. Plain hydrodynamic bearings (modeled with the

short-bearing approximation) support the shaft.

The simplified model represents the prototypical system with an uncracked shaft. The

simplified model uses one Ritz series, defined along the entire length of the shaft, to describe

each response variable.

The standard model represents the prototypical system with a gaping (always open)

shaft crack at midspan. Translational and torsional springs, representing the reduced

shaft stiffness associated with the crack, join two undamaged shaft sections. Each response

variable is described by two Ritz series, one for each undamaged shaft section. No continuity

conditions for any response variable are specified across the crack. Crack damping is not

considered.

The effects of bearing wear are investigated using both models. Wear of the plain hydro-

dynamic bearing is modeled as a symmetric increase in bearing inner diameter. Changes

in lubricant temperature and viscosity due to increased clearance are assumed negligible.

27



3.4 Simplified Model of Prototypical System (Uncracked Shaft)
3.4.1 Description

Zirkelback and Ginsberg originally presented this model [73]. The shaft and disk are

perfectly aligned and balanced, and disk flexibility is considered negligible. The deformation

of the shaft is represented by Ritz series in conjunction with Timoshenko beam theory,

generalized to include gyroscopic effects. The disk’s displacement and rotation are related

to the motion of the shaft’s cross-section at the attachment point. Vance [65] and Lee [38]

presented the stiffness and damping coefficients of plain hydrodynamic bearings using the

short-bearing approximation, and these are used as given.

The system is shown in Figure 1. The shaft executes general motion within a fixed

reference frame XY Z. The x-axis of the moving reference frame Oxyz coincides with the

deformed centroidal axis of the shaft, as shown in Figure 2. Shaft flexural displacements v

and w are in the Y and Z directions. Rotations α and β are the Eulerian angles relative

to the Y and Z directions. The following vector of displacements and rotations is used

{η} = [v, α,w, β]T . (26)

3.4.2 Ritz Series Analysis

The shaft displacements and rotations are represented by the following Ritz series,

v =
NX
j=1

ψ
(disp)
j (x) q

(v)
j (t) , w =

NX
j=1

ψ
(disp)
j (x) q

(w)
j (t)

α =
NX
j=1

ψ
(rot)
j (x) q

(α)
j (t) , β =

NX
j=1

ψ
(rot)
j (x) q

(β)
j (t)

(27)

Zirkelback and Ginsberg developed expressions for the kinetic and potential energies of the

prototypical system, as well as an expression for the virtual work done by the bearings.

(This virtual work incorporated the bearing effects through the use of the bearing stiffness

and damping coefficients.) All energy and work relationships were written in terms of the

shaft displacements and rotations. The Ritz series representations of v, α, w, and β in

Eq. 27 were substituted into the kinetic energy expression. The resulting quadratic sum

contained system inertia matrix coefficients accounting for both displacement and rotation
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effects. This quadratic sum also contained system gyroscopic matrix coefficients. Next,

the Ritz series representations of the variables were substituted into the potential energy

expression. The resulting quadratic sum provided the system stiffness matrix coefficients

describing the shaft stiffness effects. Finally, the Ritz series were used to represent the

displacements and rotations in the virtual work expression. The result was a set of gen-

eralized forces that depended linearly on the various Ritz series coefficients and their time

derivatives. The elements of the system stiffness and damping matrices, related to bear-

ing stiffness and damping, were taken from this. A detailed discussion of the Ritz series

analysis of Zirkelback and Ginsberg’s model is contained in [73].

The simplified model was dimensionless in the original definition, and the same nondi-

mensionalization is retained in the present work. The shaft length L is the length scaling

factor. Time is scaled by τ =
¡
ρAL4/EI

¢1/2. Here, ρ is the density of the shaft mate-

rial, A is shaft cross-sectional area, E is the shaft material modulus of elasticity, and I is

the shaft area moment of inertia. The factor EI/L scales the energies. In the present

work, the time scale is applied to frequency to give nondimensional frequency units. All

frequency domain response data generated with the simplified and standard models of the

prototypical system is plotted against nondimensional frequency units. In other words, if

Ω is a nondimensional frequency, the dimensional value is (EI/ρAL4)1/2Ω.

3.4.3 Equations of Motion

The inertial (XY Z) equations of motion for a general axisymmetric rotor are given in Eq. 2.

Applying these equations to the prototypical system operating in its nominal (undamaged)

condition in the XY Z reference frame yields

[M ] {q̈}+ [[CB(Ω)] + [G] (Ω)] {q̇}+ [KB(Ω) +KS] {q} = {Q} . (28)

Here, [CB] is the bearing damping matrix, [KB] is the bearing stiffness matrix, and [KS]

is the shaft stiffness matrix. The bearing stiffness and damping matrices are nonsymmet-

ric, due to the characteristics of the journal bearings and are functions of shaft speed, Ω.

The shaft is isotropic when the system is in the nominal condition, so the shaft stiffness

is constant in the XY Z frame. The damping of the shaft material is negligible in the
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Figure 1: Prototypical System.

prototypical system, so there is no [CS] matrix. When bearing wear is introduced, the

form of the equations of motion remains unchanged, although elements of the [CB] and

[KB] matrices assume different values.

3.4.4 Model Use

Preliminary studies detailed in the next two chapters were conducted to evaluate the per-

formance of a new version of AMI and to investigate new bearing wear detection methods.

No crack was introduced to the prototypical system’s shaft in those studies, which directly

used the simplified model.

3.5 Use of Short-Bearing Model

The short-bearing approximation is used to calculate the coefficients for the plain journal

bearings supporting the prototypical system. These well-known values are presented in

many references. (See Appendix A.) In the short-bearing approximation, it is assumed that

couples induced by cross-sectional rotation of the shaft in the bearing are negligible. Shaft
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Figure 2: Relationships between axes and rotations for a differential shaft element.

cross-sectional rotations α and β are two of the four response variables of the prototypical

system.

An analysis was conducted to determine if the short-bearing approximation was ap-

propriate for the present work. The short-bearing approximation provides the standard

8-coefficient bearing model, which relates transverse forces to translational displacements.

For the displacement vector {η} = [v, α,w, β]T , the stiffness coefficients for the 8-coefficient
bearing model are

K8 =



KV V 0 KVW 0

0 0 0 0

KWV 0 KWW 0

0 0 0 0


. (29)

These coefficients, plus the four corresponding damping coefficients, lead to the term “8-

coefficient model.” The 16-coefficient model provides the next level of detail. Kikuchi

[35] used the short-bearing approximation to develop this model to simulate a flexible shaft

supported by plain journal bearings. The model adds rotation-rotation effects to the
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displacement-displacement effects in the 8-coefficient model. The stiffness coefficients are

K16 =



KV V 0 KVW 0

0 Kαα 0 Kαβ

KWV 0 KWW 0

0 Kβα 0 Kββ


. (30)

Kikuchi analyzed a system over a range of decreasing bearing clearances. The results

showed that using the 16-coefficient model produced a decrease in maximum whirl am-

plitude, compared with using the 8-coefficient model. (Note that the study addressed

displacement of the disk mounted near midspan of the shaft, not shaft displacement in or

near a bearing.) Although not stated explicitly, the reduction in amplitude is approxi-

mately 35% for a bearing with cb/Rb = 1.0×10−3. The amplitude differences decreased as
bearing clearance increased. No effects on resonant frequency, due to bearing model choice,

were reported. The bearing used in Kikuchi’s work had Lb/Db = 0.6, as opposed to the

Lb/Db = 0.25 bearings in the prototypical system.

Zachariadis [71] surveyed existing work on short bearings used to support flexible shafts

in the introduction to his paper detailing the 32-coefficient model for a step bearing in-

corporating an annular ring. The 32-coefficient model included rotation-displacement and

displacement-rotation effects, such that all terms in the stiffness and damping matrices were

nonzero. Other than the Zachariadis study and papers by Jakeman [32], and San Andres

[55], there are very few examples of 32-coefficient models in the literature. Zachariadis

showed that critical speeds were influenced very little when evaluated with the 8-coefficient

model, the 16-coefficient model, and the 32-coefficient model. Rao [51] stated that includ-

ing rotation-rotation effects through the use of moment coefficients had a negligible effect

on system properties. Subbiah [63] compared his 16-coefficient model of a finite bearing

with Kikuchi’s 16-coefficient model of a short bearing and the standard 8-coefficient model

of a short bearing. Subbiah found less than 8% difference in critical speeds and concluded

that the 8-coefficient model was a good approximation. He went on to state that “it is

generally noted that the effects of rotational fluid film coefficients have very little influence

on the response of simple rotor systems.”
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The prototypical system was analyzed in the frequency domain with the 8-coefficient

short-bearing model and with the Kikuchi 16-coefficient short-bearing model coefficients at

a shaft speed of 1.35 nondimensional frequency units. The eigenvalues in the frequency

range of interest for the two cases are shown in Table 1. For the underdamped modes,

the eigenvalues calculated with the 16-coefficient model and the corresponding eigenvalues

calculated with the 8-coefficient model differed by less than 1%. The −0.16891 + i5.4845

and −0.6070 + i33.1100 modes dominated the system response. The eigenvectors of these

two modes calculated with the 16-coefficient model both differed by less than 5% with the

corresponding eigenvectors calculated from the 8-coefficient model. The relatively small

change resulting from incorporating a bearing model more complex than the 8-coefficient

short-bearing model does not justify the time required to implement such a model.

Table 1: Comparison of prototypical system eigenvalues for the 8-coefficient and 16-
coefficient short bearing models.

16-coefficient
Model

8-coefficient
Model

Mode Re(λ) Im(λ) Re(λ) Im(λ)

overdamped -218.1 2.45E-13 -218.12 5.86E-13
overdamped -3148.6 1.19E-11 -3572 4.86E-12
1 -1.4226 1.1098 -1.4225 1.1097
2 -1.4755 1.2591 -1.4755 1.2591
3 -1.186 5.0535 -1.1856 5.0518
4 -0.16891 5.4845 -0.11025 5.4871
5 -0.60696 33.11 -0.46183 33.114
6 -4.5651 33.689 -4.5685 33.686
7 -1.1952 65.656 -0.8387 65.68
8 -8.3431 67.89 -8.3494 67.882
9 -1.6203 110.03 -1.2695 110.04
10 -11.866 114.48 -11.874 114.48

3.6 Bearing Wear Description

Hydrodynamic bearing wear is modeled with a symmetric increase in the bearing inner

diameter, in the same manner as Wu [69], Redmond [52], and Muszynska [45]. The states

of bearing wear analyzed are within the BCR guidelines given by Shigley [62]. The methods

used by Hashimoto [28], [29] and Scharrer [59], which incorporate the asymmetric nature of
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bearing wear, are more accurate, but add a level of complexity not required in this study.

(The referenced methods are discussed in Section 2 of Chapter II.) Modeling bearing

wear as a symmetric increase in the inner diameter leads to changes in bearing properties

that approximate (in magnitude and sign) the property changes calculated with the more

complex, non-symmetric models. The present work focuses on the use of AMI in a new

application: detection of defects in rotating equipment. An elementary bearing wear model,

proven to provide a reasonable simulation of the phenomenon, is sufficient for this proof of

concept testing.

3.7 Conversion Between Fixed And Moving Coordinate Sys-
tems

The overwhelming majority of sensors used to monitor installed industrial or aerospace ro-

tating equipment for changes in vibration signature are either permanently or temporarily

mounted on a nonrotating part, and return displacement, velocity, or acceleration data rel-

ative to the fixed XY Z coordinate system. Consequently, the time domain response data

generated by the mathematical models of the prototypical system in the present work are

also expressed in the fixed coordinate system. As discussed previously, the fixed XY Z

coordinate system is appropriate for the detection of bearing defects, but the moving xyz

coordinate system has benefits in the detection of shaft cracks [23], [26], and [34]. Con-

verting response data from the fixed reference frame to the moving reference frame is done

by a coordinate transformation, vmoving

wmoving

 =

 cos(Ωt) sin(Ωt)

− sin(Ωt) cos(Ωt)


 vfixed

wfixed

 (31)

where, Ω is the shaft speed. A similar transformation applies to the Eulerian angles

describing the cross-sectional rotations.

The frequency domain responses of a simple system in the fixed and moving coordinate

systems are compared to develop an understanding of the effects of converting to the moving

coordinate system. A rigid rotor supported by identical isotropic bearings, presented in

[38], is used in this simple analysis. The model, defined in the fixed XY Z coordinate
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system, is solved in the time domain at constant speed. The moving coordinate system

frequency response at that rotation rate is calculated from the fixed coordinate data, and

the two data sets are compared visually. (Note that this rigid rotor model is completely

described in Chapter IV, where it is used in a detailed study comparing the FRF and the

dFRF.)

The system model has four response variables, and the behavior of each variable, with

respect to the conversion from the fixed coordinate system to the moving coordinate system,

is similar. The relationship between the frequencies at resonant peaks for both the FRF

and dFRF data formats is shown in Table 2.

For the FRF data format, a single peak in the fixed coordinate system frequency response

plot produces two peaks in the moving coordinate system frequency response plot. Assume

vfixed and wfixed in Eq. 31 are harmonic at frequency ω, and express them in complex

exponential notation.

vfixed =
1
2

¡
Aeiωt +A∗e−iωt

¢
wfixed =

1
2

¡
Beiωt +B∗e−iωt

¢ . (32)

Here, A and B are amplitudes, and the ∗ represents complex conjugate. The corresponding
representations of cos(Ωt) and sin(Ωt) are

cos(Ωt) = 1
2

¡
eiΩt + e−iΩt

¢
sin(Ωt) = 1

2i

¡
eiΩt − e−iΩt

¢ . (33)

Substitute vfixed and wfixed in Eq. 32 and cos(Ωt) and sin(Ωt) in Eq. 33 into Eq. 31.

The characteristics of vmoving and wmoving are similar, so only one will be presented. The

resulting expression for vmoving is

vmoving =
1
4

£¡
eiΩt + e−iΩt

¢ ¡
Aeiωt +A∗e−iωt

¢
+

1
i

¡
eiΩt − e−iΩt

¢ ¡
Beiωt +B∗e−iωt

¢¤ . (34)

Perform the multiplication and combine like terms. The simplified expression for vmoving

is

vmoving =
1

2

³
(A− iB)ei(Ω+ω)t + (A+ iB)ei(−Ω+ω)t

´
(35)

The complex exponents describe how the frequencies of the two new moving coordinate

system peaks are related to the frequency of the original fixed coordinate system peak, ωi,
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and the shaft speed, Ω. The results of processing the data obtained from the rigid rotor

model agreed with Eq. 35.

Lee and Joh developed the corresponding theory for the dFRF in [34]. For both the

normal dFRF and the reverse dFRF, the same number of peaks is present in response data

for both coordinate systems, but the frequency of the new moving coordinate system data

peak is shifted from the frequency of the original fixed coordinate system data peak by shaft

speed, as shown in Table 2. The results of the analysis using the rigid rotor model agreed

with the theory published in [34] for both types of dFRFs.

Table 2: Frequency domain comparison: effects of converting FRF and dFRF data from
fixed to moving coordinate system.

Coordinate System Approximate Frequency for Peak
FRF (eg. HZZ)
Fixed ωi
Moving |−Ω+ ωi| and Ω+ ωi
Normal dFRF (HPG)
Fixed ωi
Moving ωi − Ω
Reverse dFRF (HP bG)
Fixed ωi
Moving ωi +Ω

3.8 Standard Model of Prototypical System (Cracked Shaft)

The simplified model of the prototypical system is the starting point in the development

of the standard model. The shaft and disk are still assumed to be perfectly aligned and

balanced, and disk flexibility is again ignored. The simplified model’s method of nondi-

mensionalization is used. Orthogonal shaft flexural displacements and the associated cross-

sectional rotations are again used as response variables.

3.8.1 Type of Crack Model

The gaping crack model is used to account for the decreased shaft stiffness due to a crack.

The incremental increased faithfulness of the analytical response data that would result

from inclusion of the crack breathing phenomenon is not warranted for this proof of concept
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analysis. Furthermore, modal analysis of nonlinear systems can be problematic. It has

been shown that a gaping crack model produces acceptably accurate results while requiring

considerably less computational effort than a breathing crack model [26].

3.8.2 Modification of Shaft Model

The reduced stiffness associated with a gaping crack is modeled in the same manner as

Wauer [67]. The shaft is considered to be made up of two undamaged shaft sections joined

by translational and torsional springs, representing the crack. Each displacement variable is

described by two Ritz series, one for each undamaged section, and no continuity conditions

for either the flexural displacement variables (v and w) or the rotational variables (α and

β) are defined across the crack. The superscripts r and l are used to denote which shaft

section a response variable describes. The “left” section runs from Bearing 1, past the disk,

to the crack. The “right” section runs from the crack to Bearing 2. Bearing 1 is the only

bearing in which wear occurs.

The potential energy expression (in nondimensional form) for the two undamaged sec-

tions of the shaft has the same form as the strain energy used in the simplified model

[73].

Vk =
1

2

Z 1

0

(µ
∂α

∂s

¶2
+

µ
∂β

∂s

¶2
+ κ

0
"µ

∂v

∂s
− α

¶2
+

µ
∂w

∂s
+ β

¶2#)
ds (36)

The kinetic energy expression from the simplified model is also used. (Note that only the

left segment of the shaft has an attached disk.) The following response vectors (in the

fixed XY Z coordinate system) are used in the development of the standard model of the

prototypical system. ©
ηl
ª
=
£
vl, αl, wl, βl

¤T
{ηr} = [vr, αr, wr, βr]T

(37)

The flexural displacement and rotational variables contained in the vectors {ηl} and {ηr}
describe the response of the left and right shaft sections. Unsubscripted response variables

shall correspond to the fixed coordinate system. Taking into account the left and right

sections of the shaft, the complete response vector becomes

{η} =
h
{ηl}, {ηr}

iT
=
h
vl, αl, wl, βl, vr, αr, wr, βr

iT
(38)
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To simplify notation in the development of the crack model, {ηC}, the difference of the
left response vector and the right response vector, both evaluated at the location of the

shaft crack, is defined.

{ηC} =
h
{ηl} |x=crack − {ηr} |x=crack

i
(39)

Following Wauer, the potential energy expression for the cracked section, in the moving

xyz coordinate, system is

(Vcrack) =
1

2
{ηC}Tm [Kcrack,moving] {ηC}m (40)

Here [Kcrack,moving] is a symmetric 4×4 stiffness matrix incorporating the reduction in shaft
stiffness due to the presence of the crack, and the m subscript on {ηC} denotes the moving
coordinate system. (In the remainder of the discussion, [Kcrack] is the fixed coordinate

system representation of the matrix and [Kcrack,moving] is the moving coordinate system

representation.)

Wauer defined the form of the [Kcrack,moving] matrix in [67]. Papadopoulos and Di-

marogonas [49] originally developed a 6 × 6 compliance matrix for a cracked shaft by in-
cluding axial displacement and torsion in addition to vm, αm, wm, and βm. Wauer only

considered the four variables used in the present analysis. Furthermore, Wauer assumed

that the crack edge was parallel to the k axis in Fig 2. The symmetry associated with this

assumption decouples the bending described by vm and αm from the bending described by

wm and βm [67] and [27]. The resulting form of the matrix is

Kcrack,moving =



K22 0 0 0

0 K44 0 0

0 0 K33 0

0 0 0 K55


. (41)

The elements of this matrix (in the form of dimensionless compliance) were reported by

Papadopoulos and Dimarogonas [49]. The subscripts in Eq. 41 follow the convention

defined in [49]. The potential energy expression for the crack is used to derive the expression

for [Kcrack]. For the {ηC} vector in Eq. 39, the inverse form of Eq. 31 is
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{ηC} =



cos(Ωt) 0 − sin(Ωt) 0

0 cos(Ωt) 0 − sin(Ωt)
sin(Ωt) 0 cos(Ωt) 0

0 sin(Ωt) 0 cos(Ωt)


{ηC}m . (42)

Defining the matrix [R] as

[R] =



cos(Ωt) 0 − sin(Ωt) 0

0 cos(Ωt) 0 − sin(Ωt)
sin(Ωt) 0 cos(Ωt) 0

0 sin(Ωt) 0 cos(Ωt)


(43)

simplifies Eq. 42 to

{ηC} = [R] {ηC}m . (44)

The expression for the moving coordinate system vector is

{ηC}m = [R]T {ηC} . (45)

Substituting the right side of Eq. 45 in for {ηC}m in Eq. 40 gives another form of the crack
potential energy expression.

(Vcrack) =
1

2

n
[R]T {ηC}

oT
[Kcrack,moving]

n
[R]T {ηC}

o
. (46)

Expanding this equation leads to the fixed coordinate system expression for Vcrack,

(Vcrack) =
1

2
{ηC}T [Kcrack] {ηC}. (47)

Here, [Kcrack] is the product of [R], [Kcrack,moving], and the transpose of [R].

[Kcrack] = [R] [Kcrack,moving] [R]
T (48)

The [Kcrack] matrix is calculated by substituting the expressions for [R] (Eq. 43) and

[Kcrack,moving] (Eq. 41) into Eq. 48. The form of [Kcrack] is
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Kcrack =



a 0 b 0

0 c 0 d

b 0 f 0

0 d 0 h


, (49)

and the elements of the matrix are

a = K22 cos
2(Ωt) +K33 sin

2(Ωt)

b = K22 cos(Ωt) sin(Ωt)−K33 cos(Ωt) sin(Ωt)

c = K44 cos
2(Ωt) +K55 sin

2(Ωt)

d = K44 cos(Ωt) sin(Ωt)−K55 cos(Ωt) sin(Ωt)

f = K22 cos
2(Ωt) +K33 sin

2(Ωt)

h = K44 sin
2(Ωt) +K55 cos

2(Ωt).

(50)

With respect to the fixed XY Z coordinate system, the stiffness of a cracked, rotating

shaft is a function of time. If the moving xyz coordinate system is chosen for use, the shaft

stiffness is time-invariant. When there are no other factors to consider, it is preferable to

model a cracked shaft system in the moving coordinate system to simplify the analysis. The

bearings of the prototypical system have stiffness and damping that is time-invariant with

respect to the fixed coordinate system. Therefore, the standard model (cracked shaft) of

the prototypical system is time-varying in both coordinate systems. To align the research

with current industrial and aerospace vibration sensor technology, and to make use of an

existing system model, the crack model is developed for use in the XY Z coordinate system.

The time-varying nature of the standard model of the prototypical system is fully addressed

in Section 1 of Chapter II.

3.8.3 Ritz Series Analysis

Ritz series analysis is conducted to calculate the elements of the [KC ] matrix, which de-

scribes the effect of the shaft crack on the overall system stiffness matrix, [K]. A Ritz series

expansion consists of a sum of products of time-dependent generalized coordinates qj and

kinematically admissible basis functions ψj . The orthogonal displacement fields (v,w) and
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the rotation angles (α,β) of the differential shaft element are described individually by Ritz

series expansions of the form

vl =
NX
j=1

ψ
(displ)
j

µ
x

Ll

¶
q
(vl)
j (t) , wl =

NX
j=1

ψ
(displ)
j

µ
x

Ll

¶
q
(wl)
j (t)

αl =
NX
j=1

ψ
(rotl)
j

µ
x

Ll

¶
q
(αl)
j (t) , βl =

NX
j=1

ψ
(rotl)
j

µ
x

Ll

¶
q
(βl)
j (t) .

(51)

Basis functions associated with a free-free beam are employed because there are no geo-

metric boundary conditions to satisfy for hydrodynamic bearings. These forms describe

the segment to the left of the crack. Replacing each l with an r generates the similar forms

that apply to the segment to the right of the crack. The series for each variable is taken

to be the same length N as a matter of convenience.

The left and right segment response vectors (Eq. 37) and the fixed coordinate system

form of [Kcrack] (Eq. 49) are substituted into the potential energy expression for the cracked

section (Eq. 40). Expansion of the resulting equation leads to

Vcrack =
1
2

h
a
³¡
vl
¢2 − 2vrvl + (vr)2´+ b

¡
wlvl − wlvr − wrvl +wrvr

¢
+c
³¡
αl
¢2 − 2αrαl + (αr)2´+ d

¡
βlαl − βlαr − βrαl + βrαr

¢
+f

³¡
wl
¢2 − 2wrwl + (wr)2

´
+ b

¡
wlvl − wlvr −wrvl +wrvr

¢
+h

³¡
βl
¢2 − 2βrβl + (βr)2´+ d

¡
βlαl − βlαr − βrαl + βrαr

¢i
(52)

The Ritz series representations of the response variables (the left segment forms are shown

in Eq. 51) are then substituted into Eq. 52.

Vcrack =
1
2a

 NX
j=1

ψ
(displ)
j q

(vl)
j

Ã NX
n=1

ψ
(displ)
n q

(vl)
n

!
− 2

NX
j=1

ψ
(dispr)
j q

(vr)
j

NX
n=1

ψ
(displ)
n q

(vl)
n

+

 NX
j=1

ψ
(dispr)
j q

(vr)
j

Ã NX
n=1

ψ
(dispr)
n q

(vr)
n

!
+1
2b

 NX
j=1

ψ
(displ)
j q

(wl)
j

NX
n=1

ψ
(displ)
n q

(vl)
n −

NX
j=1

ψ
(displ)
j q

(wl)
j

NX
n=1

ψ
(dispr)
n q

(vr)
n

−
NX
j=1

ψ
(dispr)
j q

(wr)
j

NX
n=1

ψ
(displ)
n q

(vl)
n +

NX
j=1

ψ
(dispr)
j q

(wr)
j

NX
n=1

ψ
(dispr)
n q

(vr)
n

+ ...

(53)

Due to the number of terms in the full expansion, only the first line of Eq. 52 (the a and

b terms) is shown in Eq. 53. The expansions of the other three lines in Eq. 52 (the c and
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d terms, the f and b terms, and the h and d terms) follow the same form. Only the a

and b terms will be shown explicitly in the intermediate portion of the development. In

order to facilitate presentation, the (x/Ll) notation, indicating that the basis function is

a function of space, and the (t) notation, indicating that the generalized coordinate is a

function of time, are not shown in this and subsequent equations in this section. Expanding

the squared terms in Eq. 53 and bringing the summations outside the expression yields

Vcrack =
1

2

NX
j=1

NX
n=1



a

·
ψ
(displ)
j ψ

(displ)
n q

(vl)
j q

(vl)
n − 2ψ(dispr)j ψ

(displ)
n q

(vr)
j q

(vl)
n

+ψ
(dispr)
j ψ

(dispr)
n q

(vr)
j q

(vr)
n

i
+b

·
ψ
(displ)
j ψ

(displ)
n q

(wl)
j q

(vl)
n − ψ

(displ)
j ψ

(dispr)
n q

(wl)
j q

(vr)
n

−ψ(dispr)j ψ
(displ)
n q

(wr)
j q

(vl)
n + ψ

(dispr)
j ψ

(dispr)
n q

(wr)
j q

(vr)
n

¸


(54)

The general definition for potential energy in the Ritz formulation [23] is

V =
1

2

NX
j=1

NX
n=1

Kjnqjqn. (55)

Equation 54 and the similarly expanded third line of Eq. 52 (f and b terms) are combined.

To identify the stiffness coefficients in the KC matrix, the terms in this combined quadratic

sum are individually set equal to the right hand side of Eq. 55, with the appropriate

generalized coordinates in place. For example,

1

2

NX
j=1

NX
n=1

KCjnq
(vl)
j q

(vl)
n =

1

2
a

NX
j=1

NX
n=1

ψ
(displ)
j ψ(disp

l)
n q

(vl)
j q

(vl)
n (56)

results in the definition of the stiffness coefficient for the v displacement in the left segment

of the shaft,

K
(vlvl)
Cjn = aψ

(displ)
j ψ(disp

l)
n . (57)

This is repeated to account for the contributions of all displacements. The second (c and

d) and fourth (h and d) lines of Eq. 52 are also expanded and combined, and the rotational
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stiffness coefficients in the KC matrix are determined in the manner previously described.·
K
(vlvl)
Cjn

¸
= aψ

(displ)
j ψ

(displ)
n·

K
(wlwl)
Cjn

¸
= fψ

(displ)
j ψ

(displ)
n·

K
(αlαl)
Cjn

¸
= cψ

(rotl)
j ψ

(rotl)
n·

K
(βlβl)
Cjn

¸
= hψ

(rotl)
j ψ

(rotl)
n·

K
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Cjn

¸
= bψ

(displ)
j ψ
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n·

K
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Cjn

¸
= dψ

(rotl)
j ψ

(rotl)
n·

K
(vlvr)
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¸
= −aψ(displ)j ψ

(dispr)
n·

K
(wlwr)
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¸
= −fψ(displ)j ψ

(dispr)
n·

K
(αlαr)
Cjn

¸
= −cψ(rotl)j ψ

(rotr)
n·

K
(βlβr)
Cjn

¸
= −hψ(rotl)j ψ

(rotr)
n·

K
(wrvl)
Cjn

¸
= −bψ(dispr)j ψ

(displ)
n·

K
(βrαl)
Cjn

¸
= −dψ(rotr)j ψ

(rotl)
n

(58)

(Coefficients a, b, c, d, f , and h are defined in Eq. 50.) The terms for the right section can

be obtained be replacing l with r in the first six equations. Regarding the basis functions,

the most general form of the equations would have two translational basis functions, ψ(v)j

and ψ
(w)
j , and two rotational basis functions, ψ(α)j and ψ

(β)
j . However, ψ(v)j = ψ

(w)
j and

ψ
(α)
j = ψ

(β)
j for the present work, so one translational basis function, ψ(disp)j , and one

rotational basis function, ψ(rot)j , are used.

The resulting general form of the [KC ] matrix is

KC =

 [Kcl] [Kclr]

[Kclr]
T [Kcr]

 , (59)

where [Kcl] represents stiffness associated with the left section, [Kcr] represents the right

section, and [Kclr] accounts for coupling effects.
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3.8.4 Equations of Motion

The introduction of a shaft crack changes the form of the equations shown for the simplified

model in Eq. 28. In the XY Z frame, the equations of motion of the prototypical system

with a cracked shaft are

[M ] {q̈}+ [[CB(Ω)] + [G(Ω)]] {q̇}+ [K(Ω, t)] {q} = {Q} . (60)

The stiffness matrix is written as

[K(Ω, t)] = [[KS ] + [KB (Ω)] + [KC (t)]] . (61)

The S, B, and C subscripts denote shaft, bearings, and crack, respectively. Consistent

with the definition of the response vector in Eq. 38, the vector of generalized coordinates

is defined in terms of subvectors to be

{q} =
·n

q(v
l)
oT n

q(α
l)
oT n

q(w
l)
oT n

q(β
l)
oT n

q(v
r)
oT n

q(α
r)
oT n

q(w
r)
oT n

q(β
r)
oT¸T

.

(62)

The [Kcl] and [Kclr] submatrices in Eq. 59 can be written as

Kcl =



h
K
(vlvl)
C

i
[0]

h
K
(wlvl)
C

iT
[0]

[0]
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Kclr =



h
K
(vlvr)
C

i
[0]

h
K
(vlwr)
C

i
[0]

[0]
h
K
(αlαr)
C

i
[0]

h
K
(αlβr)
C

i
h
K
(vlwr)
C

iT
[0]

h
K
(wlwr)
C

i
[0]

[0]
h
K
(αlβr)
C

iT
[0]

h
K
(βlβr)
C

i


(64)

The expression for [Kcr] is obtained by substituting an r for each l in Eq. 63. Substituting

the stiffness coefficients in Eq. 58 into these expressions for [Kcl], [Kcr], and [Kclr] fully

defines the 8N × 8N [KC ] matrix in Eq. 59.

The submatrices making up the inertia, gyroscopic, and damping matrices in the equa-

tions of motion (Eq. 60) are calculated using the same logic used in the development of the
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simplified model. Based on the defined vector of generalized coordinates, these matrices

are 8N × 8N in the standard model of the prototypical system, instead of 4N × 4N , as in
the simplified model. The inertia matrix is used to illustrate the general process. The

inertia matrix for the standard model can be written

[M ] =

 £M l
¤

[0]

[0] [Mr]

 (65)

Here, the
£
M l
¤
submatrix is a 4N ×4N matrix representing the left shaft segment, and the

[Mr] submatrix is another 4N × 4N matrix for the right shaft segment. The elements of

the
£
M l
¤
and [Mr] come from a Ritz series analysis of the form discussed in the the section

on the simplified model and in [73]. The
£
M l
¤
submatrix is
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3.8.5 Crack Damping

Initially the crack model was to incorporate damping effects, as well as stiffness effects.

The relatively sparse coverage of the subject in published literature suggested this might

be a significant, yet overlooked, effect. In combination with AMI’s demonstrated ability

to accurately detect changes in the real part of the eigenvalue for non-rotating structures,

exploration of the idea seemed appealing. Wauer’s [67] method of representing the crack’s

damping through the use of proportional damping was employed. In this method, the crack

damping matrix, [Ccrack], is calculated as follows (see Eq. 49).

[Ccrack] = di [Kcrack] (67)

While there are other acceptable methods to determine the proportionality constant, Wauer

set di equal to the loss factor of the shaft material. The application of the [Ccrack] matrix

to the model of the prototypical system involves the results of the Ritz series analysis

described above. Using the scale factors required by the model’s nondimensionalization
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and the proper di for the shaft material, a [CC ] matrix of the form of the [KC ] matrix (Eq.

59) is calculated. The overall system damping matrix incorporates the damping of the

bearings and the crack

[C] = [CB] + [CC ] (68)

The form of the [CC ] matrix led to numerical difficulties for the integrators of the MATLAB

ODE Suite. (See Section 6.5 of Chapter VI for a more detailed description of the solution

method.) Increases in the time required for computation of at least a factor of 100 were seen.

Several integrators in the ODE Suite were used in trials, and testing was conducted to find

the optimum values of many of the internal parameters governing integrator performance.

No measure appreciably sped up the integration. To identify the source of the difficulty, all

nonzero elements of the crack damping matrix were set to a value of 10−10, yet no decrease

in required processing time was evident. It was concluded that the form of the crack

damping matrix, not the magnitude of its elements, was the source of the problem. Due to

the number of system responses required for the crack detection study, it was decided that

it would not be feasible to include the effects of crack damping and complete this project in

a timely manner. Therefore, the effects of crack damping are not included in the response

of any system configuration involving a shaft crack. This follows the majority of the works

cited in the shaft crack modeling literature review.

3.8.6 Model Use

The studies described in Chapters VI and VII were conducted to investigate a new shaft

crack detection method. In these studies, the prototypical system was operated in the

cracked configuration, and the standard model of the prototypical system was used in each

case. The standard model is suitable for the time domain solutions employed in these

studies.
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CHAPTER IV

EVALUATION OF THE DIRECTIONAL FREQUENCY

RESPONSE FUNCTION (DFRF)

4.1 Introduction

In the course of its development, AMI had been applied to identify the modes of systems

whose generalized coordinates are measured relative to a static equilibrium position. The

conjugate-even property of the FRFs for such systems made it possible to fit simultane-

ously a pole and its complex conjugate to the data at each stage where an SDOF estimate

was sought. Thus, the standard version of AMI could be applied to the normal FRFs of

rotordynamic system, but not the dFRFs.

This chapter opens with a description of the conversion of standard AMI into Two-

Sided AMI, which can process dFRFs. Three analyses are then conducted to verify the

performance of the new algorithm. First, response data from a simple isotropic rigid rotor

system is processed. Second, anisotropy is introduced into the rigid rotor system, and the

analysis is repeated. Finally, response data of the simplified model of the prototypical

system (in nominal condition) is processed. In addition to demonstrating that Two-Sided

AMI functions properly, the studies of the rigid anisotropic system and the prototypical

system explore the effects of system anisotropy on the dFRF.

4.2 Development of Two-Sided AMI to Process dFRFs

Two-Sided AMI retains the basic structure of the original AMI. The general concepts of

the Subtraction and Isolation phases are unchanged. During FRF processing, the original

version of AMI takes advantage of the conjugate evenness of the FRF by only processing

data in the positive frequency range. Since the dFRF is not conjugate-even, Two-Sided

AMI must employ different logic. The iterative search for dominant peaks in the dFRF

during the Subtraction Phase is conducted over the entire −ωmax to ωmax frequency range.
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In both the Subtraction and Isolation Phases of the original version of AMI, the FRF

data is fit to an analytical representation associated with a single index in Eq. 16,

H ≈ Ak

iω − λk
+

A∗k
iω − λ∗k

(69)

In Two-Sided AMI, the dFRF data is fit to the single term pole-residue form associated with

a single index in Eq. 22. In the vicinity of an identified peak, the dFRF is approximated

as

H ≈ Ck

iω − λk
(70)

Cross multiplying and arranging terms gives

iωH − λkH = Ck (71)

Further manipulation of the variables leads to a form suitable for a linear least squares

implementation. ·
{1} {H}

¸ Ck

λk

 = {iωH} (72)

In these equations, the {1}, {H}, and {iωH} column vectors have length corresponding to
the length of the frequency vector {ω} defining the frequency range to be analyzed around
an identified peak. The number of such points must exceed two, so Eq. 72 represents an

overdetermined set of equations for the two coefficients, Ck and λk. The data for this fit

are selected based on the criterion that

|H(ωi)| ≥ 1
2
|Hpeak| , (73)

which corresponds to points inside the quarter-power points for a lightly damped resonance.

Two-Sided AMI’s curve fitter uses a linear least squares complex variable routine to identify

the values of λk and Ck that best fit Eq. 72 at the frequencies satisfying Eq. 73.

In the Subtraction Phase of the original AMI, the residual FRF is set to zero inside

the bandwidth of each identified eigenvalue before the next mode is considered. This is

done because subtraction of the identified mode’s contribution from the FRF data gives

the residual FRF the appearance of an anti-resonance, the shoulders of which would appear
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to be peaks that AMI would try to fit. Similarly, in Two-Sided AMI, the portion of the

residual dFRF inside the bandwidth of the identified eigenvalue is set to zero. However,

Two-Sided AMI does not zero the portion of the residual dFRF inside the bandwidth of

the complex conjugate of the identified eigenvalue, because the complex conjugate value is

considered to be a distinct eigenvalue.

4.3 Two-Sided AMI Testing with Rigid Rotor System
4.3.1 Analytical Model Description

Two versions of an analytical model of a simple system are used to begin the assessment of

the performance of Two-Sided AMI. In the first analysis, the isotropic system defined by Lee

[38] is used without modification, whereas the second analysis modifies the system to feature

anisotropy. The system consists of a rigid rotor supported by two identical bearings, as

shown in Figure 3. The total mass of the system ism = 7.0 kg. Each bearing has identical

properties, consisting of damping coefficients cyy = czz = 330 N·s/m, and cyz = czy = 20

N·s/m, and stiffness coefficients kyy = kzz = 4×106 N/m and kyz = kzy = 7×104 N/m. The
dimensionless bearing locations (defined as li = Li/L) are l1 = l2 = 0.5. The overall length

of the shaft, L, factors out of the equations of motion, and is not defined in the reference.

The dimensionless polar and transverse mass moments of inertia are it = 0.6 and ip = 0.15,

respectively. The shaft speed is held constant at Ω = 1× 104 RPM. The four generalized
coordinates for this system are the Y−direction and Z−direction displacements at Bearings
1 and 2. This definition of generalized coordinates matches the physical displacements, so

that {bq} = {q} (see Eq. 5). For the second analysis, system anisotropy is included in

the analytical model by changing the relationships between bearing stiffness and damping

coefficients to be kyy = 0.8kzz = 3.2× 106 N/m and cyy = 0.8czz = 264 N·s/m. No other

parameters are changed.

Eq. 4 is solved in the frequency domain to obtain the FRFs HY Y , HZZ , HZY , and

HY Z at Bearing 1. Eqs. 21 are used to calculate the dFRFs HPG and HP bG. The

maximum frequency, ωmax, for the calculations is 3000 rad/s. Standard one-sided FRFs

are processed by the original version of AMI. Two-sided FRFs (a standard FRF with the
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Figure 3: Rigid rotor system [38].

complex conjugate in the negative frequency range) and dFRFs are processed by Two-

Sided AMI. Although such processing yields modal displacements at the bearings, only

the eigenvalues are examined here. Lee [38] and Joh and Lee [34] showed that the reverse

dFRF, HPĜ, approaches zero as a system approaches isotropy. For the isotropic system

used in the first analysis, the amplitude of HPĜ is on the order of 10
−22. Therefore, only

the normal dFRF, HPG, is processed in the first analysis.

4.3.2 Results

4.3.2.1 Isotropic System

The FRFs HY Y and HZY and the dFRF HPG, all at Bearing 1, are shown in Figures 4,

5, and 6. The actual eigenvalues are known from solution of the state-space equations at

the specified operating condition. The solution consists of four underdamped modes whose

eigenvalues are shown in Tables 3 and 4. Modal damping ratios (Eq. 15) increase from

4% to 8% with increasing mode number. The exact eigenvalues, the eigenvalues obtained

from original and Two-Sided AMI processing of HY Y , and the eigenvalues obtained from

Two-Sided AMI processing of HPG are shown in Tables 3 and 4, along with associated

error values. (Percent error is calculated in the standard manner relative to the exact

solution for the mode’s eigenvalue.) Values marked as “n/a” correspond to modes that
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were not identified. In Tables 1 through 4, a designator precedes each value of Im(λi)

estimated by Two-Sided AMI. A (+) indicates that the mode was detected in the positive

frequency range, a (−) indicates that the mode was detected in the negative frequency
range, and a (±) indicates that an average value is reported because the mode was detected
in both frequency ranges. Two-Sided AMI processing of the dFRF data produced an

estimate for the eigenvalue of each of the four modes in the exact solution, while processing

standard FRF data with both the original AMI and Two-Sided AMI yielded estimates for

two modes. The bandwidth of a resonance is approximately −2Re(λn). Thus the modes
that were missed overlap substantially with the ones that were identified. The absolute

value of the percent error of the eigenvalues estimated by Two-Sided AMI processing of the

dFRF ranged from 0% to 17% for the real part, and from 0.5% to 8% for the imaginary

part. The absolute value of the error of the eigenvalues estimated by AMI processing of

the FRF ranged from 23% to 74% for the real part, and from 0.1% to 1% for the imaginary

part. The corresponding errors when Two-Sided AMI processed the FRF data ranged from

24% to 85% for the real part, and from 0.03% to 2% for the imaginary part.

Table 3: Rigid rotor system; isotropic case. Analytical eigenvalues, Two-Sided AMI es-
timated eigenvalues, AMI estimated eigenvalues, and percent error for modes 1 and 2 of
isotropic system. (+) = detected in positive frequency range, (-) = detected in negative
frequency range, and (+/-) = detected in both ranges with average value reported.

Re(λ1) Im(λ1) Re(λ2) Im(λ2)

Analytical Sol. -37.9061 1065.1916 -56.3796 1070.9059
2—Sided AMI HPG. -37.9061 (+)1070.9059 -56.3796 (-)1065.1917
% Error 0.00 0.54 0.00 -0.53
AMI HY Y n/a n/a -43.3660 1070.1474
% Error n/a n/a -23.08 -0.07
2-Sided AMI HY Y n/a n/a -43.0623 (±)1070.5418
% Error n/a n/a -23.62 -0.03

4.3.2.2 Anisotropic System

The FRFs HY Y and HZY for the response in the anisotropic case at Bearing 1 are shown

in Figures 7 and 8. The dFRFs HPG and HPĜ for this case are shown in Figure 9. The

actual eigenvalues, corresponding to four underdamped modes, are listed in Tables 5 and

6. Modal damping ratios are comparable to those for the isotropic system. The exact
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Figure 4: Rigid rotor system; isotropic case. FRF HY Y at bearing 1.

Figure 5: Rigid rotor system; isotropic case. FRF HZY at bearing 1.
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Table 4: Rigid rotor system; isotropic case. Analytical eigenvalues, Two-Sided AMI es-
timated eigenvalues, AMI estimated eigenvalues, and percent error for modes 3 and 4 of
isotropic system. (+) = detected in positive frequency range, (-) = detected in negative
frequency range, and (+/-) = detected in both ranges with average value reported.

Re(λ3) Im(λ3) Re(λ4) Im(λ4)

Analytical Sol. -122.0999 1812.4321 -152.9000 1828.8487
2—Sided AMI HPG. -142.9889 (-)1686.6485 -132.0110 (+)1965.1144
% Error 17.11 -6.94 -13.66 7.45
AMI HY Y n/a n/a -267.2982 1852.9996
% Error n/a n/a 74.81 1.32
2-Sided AMI HY Y n/a n/a -282.8052 (±)1868.2299
% Error n/a n/a 84.96 2.15

eigenvalues, the eigenvalues obtained from original and Two-Sided AMI processing of HY Y ,

and the eigenvalues obtained from Two-Sided AMI processing of HPG and HPĜ are shown

in Tables 5 and 6, along with associated error values. Two-Sided AMI yielded estimates of

four modes for HPG data, and of three modes for HPĜ data. Original and Two-Sided AMI

processing of HY Y both yielded estimates for three modes. The absolute value of the error

of the eigenvalues identified by Two-Sided AMI from the dFRFs ranged from 0.4% to 11%

for the real part, and from 0.04% to 5% for the imaginary part. These are essentially the

same as the errors when Two-Sided AMI processed the FRF data, which ranged from 0.4%

to 8% for the real part, and from 0.01% to 4% for the imaginary part. Furthermore, the

errors in the eigenvalues extracted from the FRFs, which ranged from 0.5% to 8% for the

real part, and from 0.1% to 4% for the imaginary part, differ little from those associated

with using Two-Sided AMI.

4.3.3 Discussion

4.3.3.1 Isotropic System

For the isotropic analytical model, Two-Sided AMI processing of dFRF data generated

estimates of the eigenvalues for every mode in the analytical solution, while original and

Two-Sided AMI processing of standard FRF data both yielded estimates for only half the

modes. Lee [38] showed that the closely-spaced backward and forward modes commonly

associated with rotating structures are completely separated and put into the negative and

positive frequency ranges, respectively, of the normal dFRF, HPG, for an isotropic system.
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Figure 6: Rigid rotor system; isotropic case. dFRF HPG at bearing 1.

Figure 7: Rigid rotor system; anisotropic case. FRF HY Y at bearing 1.
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Figure 8: Rigid rotor system; anisotropic case. FRF HZY at bearing 1.

Figure 9: Rigid rotor system; anisotropic case. dFRFs HPG (solid) and HP bG (dashed) at
bearing 1.
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Table 5: Rigid rotor system; anisotropic case. Analytical eigenvalues, Two-Sided AMI
estimated eigenvalues, AMI estimated eigenvalues, and percent error for modes 1 and 2 of
anisotropic System. (+) = detected in positive frequency range, (-) = detected in negative
frequency range, and (+/-) = detected in both ranges with average value reported.

Re(λ1) Im(λ1) Re(λ2) Im(λ2)

Analytical Sol. -38.1479 956.3078 -46.7091 1067.2385
2-Sided AMI HPG. -38.9109 (±)955.8842 -45.9612 (±)1066.2020
% Error 2.00 -0.04 -1.60 -0.10
2-Sided AMI HPĜ -42.0632 (±)956.7178 -50.3972 (±)1065.7674
% Error 10.26 0.04 7.90 -0.14
AMI HY Y n/a n/a -46.4710 1066.6758
% Error n/a n/a -0.51 -0.05
2-Sided AMI HY Y n/a n/a -46.5064 (±)1067.0891
% Error n/a n/a -0.43 -0.01

Table 6: Rigid rotor system; anisotropic case. Analytical eigenvalues, Two-Sided AMI
estimated eigenvalues, AMI estimated eigenvalues, and percent error for modes 3 and 4 of
anisotropic system. (+) = detected in positive frequency range, (-) = detected in negative
frequency range, and (+/-) = detected in both ranges with average value reported.

Re(λ3) Im(λ3) Re(λ4) Im(λ4)

Analytical Sol. -111.2414 1630.6042 -136.2585 1819.4306
2-Sided AMI HPG. -123.0010 (-)1557.3899 -130.6804 (+)1902.6735
% Error 10.57 -4.49 -4.09 4.58
2-Sided AMI HPĜ -111.6492 (±)1687.8668 n/a n/a
% Error 0.37 3.51 n/a n/a
AMI HY Y -120.2780 1561.4463 -125.6849 1898.6377
% Error 8.12 -4.24 -7.76 4.35
2-Sided AMI HY Y -120.4768 (±)1561.9604 -125.6941 (±)1898.9813
% Error 8.30 -4.21 -7.75 4.37

The present analysis confirms this assertion, and points to the benefit of processing dFRF

data for isotropic systems. Original and Two-Sided AMI processing of the regular FRF,

HY Y , yielded only two modes due to the overlapping of forward and backward modes in

the standard FRF.

Overall, the estimates for the imaginary parts of the eigenvalues of the isotropic system

were more accurate than the estimates for the real parts for both FRF and dFRF data.

However, the error of the estimates of the real parts of mode 1 (−37.9061 + i1065.1916)

and mode 2 (−56.3796 + i1070.9059) for the dFRF data were extremely small. The Two-

Sided AMI estimates for the real parts of the eigenvalues extracted from dFRF data were
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considerably more accurate than the estimates obtained when the original AMI and Two-

Sided AMI were applied to standard FRF data. The overlapping of the backward and

forward modes in an FRF was the cause.

4.3.3.2 Anisotropic System

For the anisotropic analytical model, Two-Sided AMI processing of the normal dFRF still

identified four modes, but both original and Two-Sided AMI processing of standard FRFs

yielded three modes. Two-Sided AMI processing of a reverse dFRF also returned three

modes. Unlike the behavior of the dFRFs in the case of an isotropic system, forward

and backward modes appeared in both frequency ranges of the normal and reverse dFRF.

Because the backward and forward modes were not completely split into the negative and

positive frequency ranges, the standard FRF and both dFRFs were subject to overlapping

of forward and backward modes for anisotropic systems.

Processing of both FRF and dFRF data for the anisotropic system yielded estimates

of the imaginary parts of the eigenvalues that were more accurate than the estimated real

parts. Although the Two-Sided AMI estimates of the real parts of the eigenvalues obtained

from dFRF data were still slightly more accurate than the corresponding original AMI and

Two-Sided AMI estimates from FRF data, none of the estimates for the real part of the

eigenvalues in the anisotropic case featured the accuracy sometimes attained in the isotropic

case. The overlapping of forward and backward modes in both the dFRF and the FRF for

an anisotropic system was the cause.

4.3.3.3 General

Increased damping typically raises the difficulty of mode estimation in EMA. This was the

situation in the present analysis. Errors in estimates of the real and imaginary parts of the

eigenvalues for both systems typically increased with increasing damping.

Finally, it was observed that processing a specific standard FRF data set with original

AMI and Two-Sided AMI yielded estimates of eigenvalues that followed the same trends,

and were comparable in accuracy. For the systems investigated here, there was no benefit,

in either number of modes detected or accuracy, in choosing one algorithm over the other
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for processing standard FRF data.

4.4 Two-Sided AMI Testing with Prototypical System (Sim-
plified Model)

The simplified model of the prototypical system (Chapter III) is used to continue the as-

sessment of the performance of Two-Sided AMI. In independent tests, the system, in its

nominal configuration, is excited harmonically with unit amplitude forces (Y -direction force

in the first test and Z-direction force in the second test) acting at the bearing closer to the

disk (Bearing 1). FRFs in the Y -direction and Z-direction are calculated at Bearing 1

and Bearing 2 by a direct frequency domain solution of the equations for the Ritz series

coefficients. The FRFs are then used to calculate the corresponding dFRFs at both bear-

ings. Two-sided FRFs, composed of the standard FRF in the positive frequency range and

the conjugate of the standard FRF in the negative frequency range, are also constructed.

The maximum frequency, ωmax, for the FRF and dFRF calculations is 120 nondimensional

frequency units. The FRF and dFRF data sets are processed independently by AMI and

Two-Sided AMI. Although such processing yielded modal displacements at the bearings,

only the eigenvalues are examined here.

4.4.1 Results

Four representative data sets processed by AMI, the FRFs HY Y and HZY and the dFRFs

HPG and H
P bG at Bearing 1, are shown in Figures 10, 11, 12 and 13, respectively. It

is evident that modes become less responsive as their natural frequency increases. The

actual eigenvalues are known from solution of the state-space equations at the specified

operating conditions. There are ten underdamped modes whose natural frequency lies in

the frequency interval for processing, ω < ωmax. (The graphs are cut off at frequency ω = 80

nondimensional frequency units to increase visual resolution, because analysis showed very

little response between ω = 80 and ω = 120 nondimensional frequency units.) The system

also has four overdamped modes, λ = −218.12 + 0i, λ = −223.27 + 0i, λ = −3148.2 + 0i,
and λ = −3572.1 + 0i.

The analytical eigenvalues and damping ratios for the underdamped modes are shown in
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Table 7. The combination of processing the FRF and dFRF data led to the identification

of four modes. The real and imaginary parts of the eigenvalues obtained from AMI and

Two-Sided AMI processing of the FRFs are shown in Tables 8 and 9, and the eigenvalues

from Two-Sided AMI processing of the dFRFs are shown in Tables 10 and 11. In Tables

2 through 5, values marked as “n/a” correspond to modes that were not identified. A

designator precedes each value of Im(λi) estimated by Two-Sided AMI: a (+) indicates

that the mode was detected in the positive frequency range, a (−) indicates that the mode
was detected in the negative frequency range, and a (±) indicates that an average value
is reported because the mode was detected in both frequency ranges. Percent error is

calculated in the standard manner relative to the exact solution.

The modes λ = −1.2569 + 5.4871i and λ = −1.2695 + 33.1138i were detected in each
FRF and dFRF. Processing FRFs with the original AMI, and dFRFs with Two-Sided

AMI, yielded acceptable estimates for the detected mode having the lowest frequency,

λ = −0.8387 + 1.1097i. However, Two-Sided AMI processing of the FRF data led to

estimates of this mode in which the imaginary part of the eigenvalue converged to zero.

The high damping of this mode (60%), coupled with the low frequency and the conjugate-

even property of the FRF, caused Two-Sided AMI to behave as though the two wide peaks,

which are symmetrically placed close to zero frequency as a consequence of the conjugate-

even property, represented one peak centered at zero. The mode λ = −1.4755 + 65.6800i
was only detected when HY Y was processed by AMI and Two-Sided AMI. Processing HY Y

at Bearings 1 and 2 yielded four detected modes, while the other FRFs each yielded two

detected modes. Each dFRF yielded estimates of either two or three modes.

4.4.2 Discussion

The analytical solution gives ten underdamped modes below ωmax, but the most modes

detected by AMI processing of any one data set was four. Two major factors contribute

to this. First, in order to emulate an actual piece of rotating equipment, the excitation

and measurement locations were limited to the bearings. Most modes present in the

analytical solution give extremely small responses with these excitation-measurement point
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Figure 10: Prototypical system (simplified model); nominal condition. Magnitude, real
part, and imaginary part of FRF HY Y at bearing 1.

pairs. Second, the high level of damping associated with the system’s hydrodynamic

bearings makes mode identification difficult. The modal damping ratios for the identified

modes are quite large, ranging from 2% to 60%. (In addition, four modes are overdamped.)

In the Subtraction Phase of AMI, an estimate for the identified mode is subtracted from

the FRF (or dFRF) to bring the next largest peak into prominence. Since the estimate

is not an exact representation of the mode, some modal content near the most dominant

peak may be inadvertently subtracted from the FRF. This phenomenon is more likely with

highly damped modes, because the estimate of the mode subtracted from the FRF covers

a wider frequency range. The closely-spaced forward and backward modes associated with

rotating structures overlap in the FRF, further compounding the problem. Furthermore,

a dFRF is not immune to the difficulties resulting from overlapping of highly damped

forward and backward modes, because dependence on the direction of the dead load makes

the bearing behave anisotropically. Consequently, the forward and backward modes were
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Figure 11: Prototypical system (simplified model); nominal condition. Magnitude, real
part, and imaginary part of FRF HZY at bearing 1.

not completely separated into the positive and negative frequency ranges in the dFRFs.

Two-Sided AMI processing of FRF data was as accurate as AMI processing of FRF

data for the two dominant modes (λ = −1.2569 + 5.4871i and λ = −1.2695 + 33.1138i).
For the highest frequency mode that was detected (λ = −1.4755 + 65.6800i), the Two-
Sided AMI estimates of the real part of the eigenvalue were only half as accurate as the

corresponding AMI estimates, although both algorithms’ estimates for the imaginary part

of that eigenvalue had equal accuracy. Two-Sided AMI yielded poor estimates for the

eigenvalue associated with the lowest frequency mode that was detected (λ = −0.8387 +
1.1097i). This is a consequence of the conjugate-even property of a low-frequency, low Q

mode, as explained in the preceding section. Overall, for the system in question, AMI

delivered performance superior to that of Two-Sided AMI when applied to FRF data.

Approximately the same number of modes was detected from the FRFs and the dFRFs.

However, half of the standard FRF data sets processed by AMI yielded the maximum

number of detected modes (four), while the best performing dFRF and two-sided FRF data
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Figure 12: Prototypical system (simplified model); nominal condition. Magnitude, real
part, and imaginary part of dFRF HPG at bearing 1.

Figure 13: Prototypical system (simplified model); nominal condition. Magnitude, real
part, and imaginary part of dFRF HP bG at bearing 1.
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Table 7: Prototypical system; nominal condition. Analytical eigenvalues and damping
ratios for all underdamped modes below 120 nondimensional frequency units.

Mode Re(λk) Im(λk)
Damping
Ratio

1 -0.8387 1.1097 0.6030
2 -0.8740 1.2591 0.5702
3 -1.1856 5.0518 0.2285
4 -1.2569 5.4871 0.2233
5 -1.2695 33.1138 0.0383
6 -1.4225 33.6863 0.0422
7 -1.4755 65.6800 0.0225
8 -1.9183 67.8824 0.0282
9 -2.0419 110.0420 0.0186
10 -2.7791 114.4801 0.0243

sets yielded only three modes. Furthermore, the highest frequency detected mode was only

found by processing FRF data. The estimates for the imaginary part of the eigenvalues

were considerably more accurate than the estimates for the real part of the eigenvalues for

both FRF and dFRF data. Also, the estimates of the imaginary part of the eigenvalue

extracted from the FRF data were more accurate than their dFRF counterparts. For the

two dominant modes, the estimates of the real part of the eigenvalues from dFRF data were

only slightly more accurate than those from FRF data.

For the highly damped, anisotropic system investigated here, there was no benefit to

processing dFRF data in addition to FRF data. It is conjectured, however, that the best

approach in the analysis of a rotordynamic system of unknown characteristics is to capture

response data in the FRF format, construct the corresponding dFRFs, separately process

the FRFs with AMI and the dFRFs with Two-Sided AMI, and then merge both resulting

sets of modal properties.

63



Table 8: Prototypical system (simplified model); nominal condition. Analytical eigenvalues,
eigenvalues estimated by AMI processing of FRF, and eigenvalues estimated by Two-Sided
AMI processing of FRF for two lower-frequency detected modes. (+) = detected in positive
frequency range, (-) = detected in negative frequency range, and (+/-) = detected in both
ranges with average value reported.

Re(λ) Im(λ) Re(λ) Im(λ)

Analytical Solution -0.8387 1.1097 -1.2569 5.4871
AMI HY Y@1 -1.5585 1.1198 -0.1110 5.4883
% Error 85.83 0.91 -91.17 0.02
AMI HY Y@2 -1.8332 1.3230 -0.1109 5.4884
% Error 118.58 19.22 -91.18 0.02
AMI HZY@1 n/a n/a -.0800 5.4836
% Error n/a n/a -93.64 -0.06
AMI HZY@2 n/a n/a -0.0872 5.4804
% Error n/a n/a -93.06 -0.12
2-Sided AMI HY Y@1 -2.1598 0.0000 -0.1105 (±)5.4887
% Error -357.52 -100 -91.20 0.03
2-Sided AMI HY Y@2 -2.3105 (-)0.0029 -0.1106 (±)5.4885
% Error -375.50 -100.27 -91.20 0.03
2-Sided AMI HZY@1 n/a n/a -0.0857 (±)5.4838
% Error n/a n/a -93.18 -0.06
2-Sided AMI HZY@2 n/a n/a -0.0916 (±)5.4813
% Error n/a n/a -92.71 -0.11
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Table 9: Prototypical system (simplified model); nominal condition. Analytical eigenvalues,
eigenvalues estimated by AMI processing of FRF, and eigenvalues estimated by Two-Sided
AMI processing of FRF for two higher-frequency detected modes. (+) = detected in positive
frequency range, (-) = detected in negative frequency range, and (+/-) = detected in both
ranges with average value reported.

Re(λ) Im(λ) Re(λ) Im(λ)

Analytical Solution -1.2695 33.1138 -1.4755 65.6800
AMI HY Y@1 -0.4636 33.1186 -0.8005 65.6635
% Error -63.48 0.01 -45.75 -0.03
AMI HY Y@2 -0.4641 33.1165 -0.8119 65.6680
% Error -63.44 0.01 -44.97 -0.02
AMI HZY@1 -0.3911 33.0664 n/a n/a
% Error -69.19 -0.14 n/a n/a
AMI HZY@2 -0.3929 33.0832 n/a n/a
% Error -69.05 -0.09 n/a n/a
2-Sided AMI HY Y@1 -0.4620 (±)33.1182 -0.7804 (±)65.6672
% Error -63.61 0.01 -152.87 -0.02
2-Sided AMI HY Y@2 -0.4625 (±)33.1164 -0.7995 (±)65.6711
% Error -63.57 0.01 -154.18 -0.01
2-Sided AMI HZY@1 -0.4024 (±)33.0723 n/a n/a
% Error -68.30 -0.13 n/a n/a
2-Sided AMI HZY@2 -0.4018 (±)33.0887 n/a n/a
% Error -68.35 -0.08 n/a n/a

Table 10: Prototypical system (simplified model); nominal condition. Analytical eigen-
values and eigenvalues estimated by Two-Sided AMI processing of dFRF for two lower-
frequency detected modes. (+) = detected in positive frequency range, (-) = detected in
negative frequency range, and (+/-) = detected in both ranges with average value reported.

Re(λ) Im(λ) Re(λ) Im(λ)

Analytical Solution -0.8387 1.1097 -1.2569 5.4871
2-Sided AMI HPG@1 -1.9748 (+)1.3534 -0.1200 (±)5.4944
% Error -335.46 21.97 -90.46 0.13
2-Sided AMI HPG@2 n/a n/a -0.1303 (±)5.4938
% Error n/a n/a -89.63 0.04
2-Sided AMI HP bG@1 -2.9134 (-)1.1479 -0.1051 (±)5.4742
% Error -447.37 3.45 -91.64 -0.24
2-Sided AMI HP bG@2 -3.3726 (-)0.8660 -0.1061 (±)5.4733
% Error -502.12 -21.96 -91.56 -0.25
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Table 11: Prototypical system (simplified model); nominal condition. Analytical eigen-
values and eigenvalues estimated by Two-Sided AMI processing of dFRF for two higher-
frequency modes. (+) = detected in positive frequency range, (-) = detected in negative
frequency range, and (+/-) = detected in both ranges with average value reported.

Re(λ) Im(λ) Re(λ) Im(λ)

Analytical Solution -1.2695 33.1138 -1.4755 65.6800
2-Sided AMI HPG@1 -0.496 (±)33.1551 n/a n/a
% Error -60.93 0.12 n/a n/a
2-Sided AMI HPG@2 -0.5251 (±)33.1344 n/a n/a
% Error -58.64 0.06 n/a n/a
2-Sided AMI H

P bG@1 -0.4552 (±)33.0590 n/a n/a
% Error -64.14 -0.17 n/a n/a
2-Sided AMI H

P bG@2 -0.4503 (±)33.0761 n/a n/a
% Error -64.53 -0.11 n/a n/a

66



CHAPTER V

EVALUATION OF EIGENVALUES AND RESIDUES FOR

USE IN DETECTION OF A WORN BEARING

This chapter continues the analysis of the prototypical system. One worn bearing is the

defect investigated. The shaft remains intact, so the simplified model of the prototypical

system (Chapter III) is employed. As in the previous chapter, the standard frequency re-

sponse function (FRF) form of the response data is processed with AMI, and the directional

frequency response functions (dFRF) data is processed with Two-Sided AMI. Both analy-

ses return estimates for system modal properties represented by poles (system eigenvalues)

and associated residues, which depend on the modal displacements at the excitation and

measurement locations. Four metrics are evaluated for both the eigenvalue and the residue:

percent change in the real part, percent change in the imaginary part, percent change in the

magnitude, and change in the phase. FRF and dFRF response data for a range of bearing

clearances are processed, the proposed damage metrics are calculated, and a comparison

with analytical data is used to determine if the metrics detect the known defect.

5.1 Potential Damage Metrics

The frequency domain responses extracted from the analytical model are the horizontal

Y and vertical Z FRFs at both bearings resulting from separate, independent Y - and Z-

direction excitations at the bearing whose clearance is varied. Forward and reverse dFRFs

for each bearing are computed from this data. In the terminology of EMA the eigenvalues

and residues are obtained by following a SISO (single input-single output) protocol. Each

of the four FRFs are individually processed by the original AMI, while the four dFRFs

are processed by Two-Sided AMI. Processing of each FRF yields a set of eigenvalues λk,

and residues Ak. The former are system properties. Thus, if a specific mode is identified

from more than one FRF, the overlapping values are averaged. Processing of each dFRF
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leads to another set of eigenvalues, as well as residues Ck. The eigenvalues obtained from

the dFRFs also are averaged, but they are not combined with the values obtained from

the FRFs in order to track the merits of using each type of response function. Because

the residues depend on the modal response at the drive and measurement locations, the

residues associated with each FRF or dFRF are independent values.

The frequency response functions are evaluated for a sequence of bearing clearances.

This yields a set of eigenvalues and residues as a function of frequency. Because overlapping

eigenvalues are averaged, the number of eigenvalues that are tracked in this manner is the

ensemble of the number of modes identified from the full set of four FRFs or dFRFs. In

contrast, because the residues are distinct, the maximum number of residues that could

be tracked is the total number of times modes are extracted from the FRFs or dFRFs.

However, because each mode is not identified from each FRF or dFRF, the number of

residues is less than four times the number of modes.

Damage metrics are obtained from each eigenvalue and residue that is extracted by AMI.

The first four metrics are drawn from the eigenvalues, whose magnitude is analogous to the

natural frequency of a single degree of freedom system, and whose real part is analogous to

the free vibration decay rate of such a system. These metrics are percent change in the

real part of the eigenvalue (Re(λk)), percent change in the imaginary part of the eigenvalue

(Im(λk)), percent change in the magnitude of the eigenvalue (|λk|), and change in the phase
of the eigenvalue (arg(λk)). The remaining metrics are the corresponding types of quantities

drawn from each residue.

5.1.1 Detectability

For a system defect to be detectable with a specific damage metric, the introduction of the

defect into the system must result in a measurable change in that metric. Specifically, to be

useful, a metric must have an uncertainty in its value that is less than the change in its value

due to a system defect. In the present work this translates to a criterion that the increased

bearing clearance is “detectable” with a specified metric if the change in that metric relative

to its nominal value is greater than the error in the AMI estimate of that parameter at the
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increased clearance. Because an analytical model is used to generate response data, the

actual eigenvalues and residues are known from solution of the state-space equations at the

specified operating condition. (The analytical eigenvalues and damping ratios for the first

ten underdamped modes of the prototypical system in the nominal condition are shown in

Table 7.) Hence, the errors in the AMI estimates of the modal properties are calculable.

The detectability determination is done graphically. For each eigenvalue or residue

metric, two data sets are compiled and plotted as a function of bearing clearance: the

change in the value relative to its value at the nominal clearance, and the error in the

AMI estimation of that metric. The change in the metric is obviously zero at the reference

state. If the metric is sufficiently sensitive, the amount by which it changes will exceed the

estimation error at some bearing clearance within the range of interest. If only one such

intersection exists, so that the change in the metric exceeds the error for bearing clearance

beyond the intersection, then the intersection indicates the minimum bearing clearance at

which bearing wear is detectable with the specific metric for the mode in question. This

is the threshold of detectability. As will be seen, such an intersection does not necessarily

occur. It also is possible that increase of the clearance beyond the intersection leads to an

error that again exceeds the change in the metric, although that behavior was not observed.

In either event, the metric would not serve as an indicator of wear.

5.2 Analysis Method

The system is operated at a constant rotation rate of 1.35 nondimensional frequency units,

which is between the first two critical speeds, 0.73 and 2.30 nondimensional frequency units.

The system is excited in separate, independent tests with Y -direction and Z-direction unit

amplitude harmonic forces at the bearing closer to the disk (Bearing 1). FRFs in the

Y -direction and Z-direction are calculated at Bearing 1 and Bearing 2, and are then used

to calculate the corresponding dFRFs at both bearings. The maximum frequency, ωmax,

for the calculations is 120 nondimensional frequency units. The FRF and dFRF data sets

are processed independently by AMI and Two-Sided AMI.

The nominal radial clearance in the bearings is 5 × 10−5m. The radial clearance of
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Bearing 1 is increased to simulate bearing wear, while the clearance of Bearing 2 is held

constant. At each clearance value, the complex frequency response is generated with

the analytical model, and the damage metrics are calculated from the modal parameters

estimated by AMI and Two-Sided AMI. The bearing clearances used in the investigation

are shown in Table 12. The intent of this work is to develop metrics sensitive enough to

detect small defects while the system is still operating normally. Thus, bearing clearances

outside the close-running H8 fit class are not investigated.

Table 12: Bearing radial clearances used to simulate wear of Bearing 1.
Description Clearance (µm)
nominal 50

10% increase 55

20% increase 60

30% increase 65

40% increase 70

60% increase 80

79% increase (Max H8) 89.5

5.3 Results

Over the course of the entire analysis, many FRFs and dFRFs are processed with original

AMI and Two-Sided AMI, respectively. In every case, Two-Sided AMI identified three

modes (λ = −0.8387 + 1.1097i, λ = −1.2569 + 5.4871i, and λ = −1.2695 + 33.1138i) from
the dFRF data, and original AMI identified four system modes (λ = −1.4755 + 65.6800i,
and the three modes listed above) from the FRF data. Note that the maximum possible

number of identified modes is ten, since there are ten analytical modes in the frequency

range of interest, as shown in Table 7.

Eigenvalues are global system quantities, and, as such, eigenvalues that are identified in

separate FRFs, but represent the same mode, can be averaged. The residues associated

with eigenvalues, on the other hand, are local quantities, because they depend on the modal

displacements at the location the FRF is measured. As a result, a residue identified in one

FRF can not be averaged with a residue identified in another FRF.

At a specific bearing clearance, a set of four FRFs (HY Y and HZY at Bearings 1 and 2)
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is processed by original AMI. A set of four dFRFs (HPG and H
P bG at Bearings 1 and 2) is

calculated from FRFs and processed by Two-Sided AMI. Representative data for response

of the nominal system at Bearing 1 are shown in the previously discussed Fig. 10 through

Fig. 13. For each identified mode, the four eigenvalue-based damage metrics are calculated

using the average of the mode’s eigenvalues from the data set. For each identified mode,

the four residue-based metrics are calculated for each residue returned from the data set.

This process is repeated for each clearance value in Table 12.

The detectability evaluation is then conducted graphically. For each mode identified by

original AMI (or Two-Sided AMI), the four eigenvalue-based metrics are plotted as functions

of bearing clearance. Figure 14 illustrates this assessment regarding the eigenvalue-based

metrics percent change in Re(λk) and percent change in Im(λk). The eigenvalue for this

figure is λ = −1.2695 + 33.1138i in the nominal state. Figure 14 shows that the error in

the AMI estimation of Re(λk) and Im(λk) is greater than the changes in these metrics for

each increased clearance. Thus no amount of increased bearing wear can be detected by

monitoring Re(λk) and Im(λk) for this mode.

The four residue-based metrics are also plotted as functions of bearing clearance for every

residue identified from the input data. Figure 15 shows the data used in the evaluation

of the metrics percent change in Re(Ak) and percent change in Im(Ak) for the residue

identified by original AMI from HY Y at Bearing 1 corresponding to the nominal system

mode λ = −1.2695 + 33.1138i. At a sufficiently large bearing clearance, percent change in
Re(Ak) and percent change in Im(Ak) exceed the error in their estimation. The thresholds

of detectability are a 30% clearance increase for percent change in Re(Ak) and a 10%

clearance increase for percent change in Im(Ak).

5.3.1 Detectability Using Eigenvalues

The performance of the eigenvalue-based metrics is presented in Table 13. The results ob-

tained by identifying modes from FRFs are followed by the comparable information derived

from dFRFs. The row header for each type of data indicates the total number of modes

71



5 6 7 8

x 10-5

-150

-100

-50

0

50

Pe
rc

en
t C

ha
ng

e
% chng real(analy lambda)
% error real(AMI lambda) 

5 6 7 8

x 10-5

-5

0

5

10

15
x 10-3

Bearing Radial Clearance [m]

Pe
rc

en
t C

ha
ng

e

% chng imag(analy lambda)
% error imag(AMI lambda) 

Figure 14: Detectability of eigenvalue properties using percent change Re(λ) and percent
change Im(λ) for the nominal λ = −1.2695 + 33.1138i mode.

that were identified. Below that, the first entry, “Number/% of Modes Meeting Detectabil-

ity Criterion,” quantifies how many times the type of metric indicated at the top of the

column met the detectability criterion described previously. The second entry, “Average

Clearance Change for Detectable Wear,” is derived only from the modes listed as meeting

the detectability criterion. This number is the average of the bearing clearances at which

the change in the associated metric exceeded the error in the identification of that metric.

No value of increased bearing clearance was detectable with the metrics percent change

in Re(λk), percent change in |λk|, and change in arg(λk) for FRF data. The percent

change in Im(λk) metric detected increased bearing clearance in the nominal system modes

λ = −1.2569+5.4871i at 10% increase from nominal clearance, and λ = −0.8387+1.1097i at
60% clearance increase. Thus, the average clearance increase required for detectable wear
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Figure 15: Detectability of residue properties using percent change Re(A) and percent
change Im(A) with the nominal λ = −1.2695 + 33.1138i mode identified from HY Y at
bearing 1.

with this metric was 35%. For dFRF data, no value of increased bearing clearance was

detectable with the metrics percent change in Re(λk), percent change in |λk|, and change
in arg(λk). The percent change in Im(λk) metric detected increased bearing clearance in

the nominal system mode λ = −1.2569 + 5.4871i at 20% increase from nominal.

5.3.2 Detectability Using Residues

Table 14 displays the performance of the four residue-based damage metrics. As was done

for the eigenvalues, the performance of metrics extracted from the FRFs is followed by the

same information for dFRFs. The row header for each type of data gives how many residues

were obtained from the full set of response functions. This is the sum of the number of

times any mode is identified from each FRF. The maximum possible value of this quantity
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Table 13: Performance of eigenvalue-based damage metrics for FRF and dFRF data.

Damage Metric
%Chng
Re(λk)

%Chng
Im(λk)

%Chng
|λk|

Chng
arg(λk)

FRF Processing
(4 identified modes)

Number/% of Modes Meeting
Detectability Criterion

0 2/50% 0 0

Ave. Clearance Change
for Detectable Wear

n/a 35% n/a n/a

dFRF Processing
(3 identified modes)

Number/% of Modes Meeting
Detectability Criterion

0 1/33% 0 0

Ave. Clearance Change
for Detectable Wear

n/a 20% n/a n/a

is forty, which is the ten underdamped modes in the analytical solution times the four FRFs

or dFRFs in one complete data set. (This represents the situation in which every mode in

the analytical situation is identified by AMI from each of the four FRFs.) The first entry

below the row header, “Number/% of Modes Meeting Detectability Criterion,” is analogous

to the first entry in Table 13 for the eigenvalue-based metrics, as described above. The

second entry, “Number/% of Modes Meeting Detectability Criterion” refers to the number

of residues identified from the full set of response functions for which the metric at the

top of the column meets the detectability criterion. The third entry, “Average Clearance

Change for Detectable Wear,” is analogous to the corresponding entry in the table giving

results for the eigenvalue-based metrics. Each average is taken over the threshold values

obtained from all residues that met the detectability criterion.

In addition to the fact that a different number of modes is identified from the FRFs

and dFRFs, the nature of a dFRF and features of the analytical model make the number

of residues obtained from the dFRF data different from that for FRF data. The dFRF has

meaningful, non-repetitive data over the whole −ωmax to ωmax frequency range. For an

isotropic system, forward and backward modes are separated into the positive and negative

frequency ranges, respectively, of the dFRF. Lee [38] and Joh and Lee [34] showed that for
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Table 14: Performance of residue-based damage metrics for FRF and dFRF data.

Damage Metric
%Chng
Re(Ak)

%Chng
Im(Ak)

%Chng
|Ak|

Chng
arg(Ak)

FRF Processing (12 identified
residues for 4 modes)

Number/% of Modes Meeting
Detectability Criterion

4/100% 2/50% 3/75% 2/50%

Number/% of Metrics Meeting
Detectability Criterion

6/50% 7/58% 8/67% 5/42%

Ave. Clearance Change
for Detectable Wear

39% 37% 27% 48%

dFRF Processing (19 identified
residues for 3 modes)

Number/% of Modes Meeting
Detectability Criterion

1/33% 3/100% 2/67% 2/67%

Number/% of Metrics Meeting
Detectability Criterion

5/26% 7/37% 4/21% 4/21%

Ave. Clearance Change
for Detectable Wear

52% 46% 39% 61%

an anisotropic system, forward and backward modes make evident contributions in both the

positive and negative frequency range of dFRFs. The system studied here is anisotropic due

to the characteristics of the bearings. Modes that appear only once in the FRF are present

twice in the dFRF, once each in the positive and negative frequency ranges. Consequently,

the number of residues obtained from a complete set of input data will be greater for dFRF

data than for the corresponding FRF data, even though the total number of discrete system

modes identified is fewer for the dFRF data in this study.

For FRF data, the percent change in Re(Ak) metric detected increased clearance with

each of the four modes identified by AMI. The metric detected increased bearing clearance

with six of the twelve total residues identified. The average increase in bearing clearance

required for detection was 39%. For dFRF data, the metric detected increased clearance

only with the nominal system mode λ = −1.2569 + 5.4871i. Five of the nineteen sepa-

rate residues estimated by AMI exhibited detectable wear. The average value of clearance

increase from nominal for detection was 52%.

The percent change in Im(Ak) metric for FRF data detected wear with two of the four
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modes identified by AMI. Seven of the twelve AMI-estimated residues showed detectable

wear. A 37% increase in bearing clearance was the average required for detection. The

same metric for dFRF data detected wear with all three of the modes detected by Two-

Sided AMI processing, and there were seven occurrences of detectable wear in the nineteen

identified residues. The average value of clearance increase required for detection was 46%.

With FRF data, the percent change in |Ak| metric detected wear with three of the four
modes AMI processing of the FRF data returned. An average increase in clearance of

27% was required for detection. Eight of the twelve residues identified by AMI showed

detectable wear. The corresponding dFRF data results for this metric indicated wear with

two of the three modes found by Two-Sided AMI, at a 39% average increase in clearance.

There were only four occurrences of detectable wear from the 19 total residues identified.

The fourth metric, change in arg(Ak), detected wear with two of the four AMI modes

returned from FRF data. Five of the twelve AMI-identified residues exhibited detectable

wear. For dFRF data, this metric detected wear with two of three modes, and four of the

nineteen total residues showed detectable wear. The average increases in bearing clearance

required for defect detection with the metric were 48% for FRF data and 61% for dFRF

data.

5.4 Discussion

The frequency domain response, in the forms of both standard frequency response functions

(FRFs) and directional frequency response functions (dFRFs), was used to investigate the

performance of eight damage metrics. The response described a mathematical model

of a rotordynamic system comprised of one disk on a flexible shaft supported by plain

journal bearings. Experimental modal analysis of the response data using the Algorithm

of Mode Isolation (AMI) for FRF data and Two-Sided AMI for dFRF data yielded system

modal parameters in terms of eigenvalues and associated residues. Four metrics described

the behavior of the modal eigenvalues: percent change in the real part of the eigenvalue

(Reλk), percent change in the imaginary part of the eigenvalue (Im(λk)), percent change in

the magnitude of the eigenvalue (|λk|), and change in the phase of the eigenvalue (arg(λk)).
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The other metrics were the corresponding quantities based on modal residue factors (Ak).

These depend on the modal properties of the drive and measurement locations, so each

mode might have several residue factors that indicate bearing wear. A system defect was

said to be detectable with a metric if the change in the metric due to the presence of

the defect was greater than the error in the AMI estimate of the metric. Bearing wear,

modeled by axisymmetric clearance increase, was the defect examined, and the complete

analysis was conducted at seven clearance values within the H8 close-running fit class. For

each clearance value, a set of four FRFs and a set of four dFRFs were processed by AMI and

Two-Sided AMI, respectively. Eigenvalues estimated from different FRFs in a data set for

one clearance level, but describing the same mode, were averaged. Residues associated with

each mode obtained from the various FRFs and dFRFs were tracked individually because

their values for different drive / measurement locations are not the same.

The analytical solution of the model gave ten underdamped modes in the frequency

range of interest. Application of original AMI or Two-Sided AMI to a specific FRF or

dFRF data set led to identification of four or less modes, with the result that processing

all data sets only indicated the presence of four modes. The high damping provided by

the hydrodynamic bearings and the use of the bearing locations, at which many modes are

unresponsive, as the only excitation and measurement points made it difficult to identify

the other modes. The eigenvalue-based metrics performed poorly with the small set of

identified modes. The maximum bearing clearance change was not detectable with three of

the four eigenvalue-based metrics for both FRF and dFRF data. For the percent change in

Im(λk) metric, increased clearance was detectable with two modes using FRF data. The

same metric only detected increased clearance with the one mode that dominated system

response, using dFRF data. In comparison, increased bearing clearance was detectable

with all four of the residue-based metrics. These metrics detected wear from a greater

number of modes than the eigenvalue-based metrics. For highly damped rotordynamic

systems, such as the one investigated here, the residue-based metrics show promise due to

the consistency with which the whole group of metrics detects bearing wear. This counters

the slightly lower sensitivity of these metrics, as compared to the percent change in Im(λk)
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metric.

The residue-based metrics constructed with modal parameters estimated by AMI process-

ing of FRF data were more sensitive, overall, than the corresponding metrics based on dFRF

data. For the prototypical system, when bearing clearance was increased to a value 48%

greater than nominal, all residue-based metrics detected the wear with FRF data. How-

ever, when processing dFRF data, the bearing clearance had to be increased to 60% greater

than nominal for all metrics to detect the change. Furthermore, the most sensitive residue-

based metric, percent change in |Ak|, detected the clearance change at 26% increase in

clearance with FRF data and at 39% increase with dFRF data. In this analysis no advan-

tage was gained by using the dFRF-derived, residue-based damage metrics in addition to

those residue-based metrics constructed from FRF data.
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CHAPTER VI

EVALUATION OF EIGENVALUES AND RESIDUES FOR

USE IN DETECTION OF A SHAFT CRACK

6.1 Introduction

EMA is a procedure that estimates modal parameters by processing experimentally mea-

sured response data of a time-invariant system. An idea central to EMA is that a system’s

response can be represented as a summation of the actions of the system’s individual modes

of vibration. Time-invariant systems have discrete modes, which are expressed in terms of

eigenvalues and eigenvectors, so their responses can be represented in the form on which

EMA routines are based. Conversely, eigenvalues and eigenvectors do not exist for the

direct response of a time-varying system, although Floquet theory [53] indicates that there

is an underlying mathematical structure that has a modal component. Response data from

a properly-excited time-invariant system will be termed “modal” data, and response data

from a time-varying system will be termed “non-modal.”

This chapter explores the usage of EMA concepts for fault detection when the data that

is processed is non-modal, taken from the prototypical system. Chapter IV employed EMA

to identify the prototypical system, while Chapter V evaluated a scheme for bearing wear

detection. In both cases, system response was measured in such a way as to ensure that

the system was time-invariant, thereby providing valid data to the EMA routine AMI. The

bearings supporting the rotor of the prototypical system are anisotropic, and the undam-

aged shaft is isotropic. Thus, the bearing stiffness and damping are constant, relative to

the fixed (XY Z) coordinate system, and the shaft stiffness is constant relative to both the

fixed and the moving (xyz) coordinate systems. Therefore, modal data, relative to the

fixed coordinate system, was the only type of data processed in the studies. The presence

of a shaft crack changes the characteristics of the prototypical system. The hydrodynamic
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bearings remain anisotropic, and the cracked shaft becomes so. Relative to the fixed coor-

dinate system, the shaft stiffness is a function of time. Relative to the moving coordinate

system, the bearing stiffness and damping are functions of time. Consequently, the sys-

tem properties are inherently time-dependent, so non-modal response data results from the

choice of either coordinate system to measure response data.

Although it is recognized that the data are non-modal, the analysis proceeds in es-

sentially the same fashion as those in the previous chapters. This means that EMA is

performed on the non-modal response data of a time-varying system, in order to ascertain

whether performing EMA on non-modal response data provides any worthwhile information

for shaft crack detection. Extension of EMA to this type of data can be justified. Consider

a system with an infinitesimally small shaft crack. Its response should be quite similar to

that of the system in the uncracked configuration, for which the system is time-invariant

from the perspective of the fixed coordinate system. As the shaft crack grows, the nature

of the system is altered. The goal of the work is to develop a method for early detection

of small cracks. It is reasonable to expect that the response data of a system with a small,

but detectable, crack will have similar characteristics to the response data of an uncracked

system.

Further justification of the work in this chapter comes from consideration of the oper-

ation of installed equipment. With a piece of equipment in its nominal condition, EMA

processing of fixed coordinate system response data provides useful information and does

not violate the requirements of the analysis method. If some counterpart to EMA, designed

to process non-modal data, was available, the analyst monitoring the equipment would need

to know when to swap algorithms. The introduction of the crack would, of course, signal

the need to swap. The only way to know when the crack appears in the system would be

to understand the effects the crack has on the response data and AMI output. Finally, it

is useful to consider the actions that would be taken by most equipment operators if EMA

processing of response data of a time-varying system were to become abnormal because the

rotating shaft was cracked. Even if some non-modal analog of EMA existed, most equip-

ment would be shut down for repair, due to the catastrophic potential of a shaft failure.
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It is unlikely that equipment operators would swap to a different data processing method,

continue to run the equipment, and monitor the size of the crack, once a shaft crack had

been detected.

6.2 Method Overview

As a consequence of the time-varying nature of the system in the cracked shaft configuration,

peaks in a frequency domain plot of the system’s response do not represent modes. However,

AMI and Two-Sided AMI process all frequency domain data in the same manner, regardless

of whether the data are modal or non-modal. In the following work, when EMA is conducted

on non-modal data, care is taken to refer to prominent segments of a frequency response plot

to which AMI fits data as “identified peaks” instead of “modes.” Note that the results of

AMI and Two-Sided AMI processing of non-modal data are still referred to as “eigenvalues”

and “residues” because that is what the algorithm addresses. The use of other terms would

further complicate the presentation.

Six of the eight quantities used to construct damage metrics in Chapter V are also used

in this analysis. The magnitude of the eigenvalue (|λk|) and the phase of the eigenvalue
(arg(λk)) are not used. The real and imaginary parts of the eigenvalue are most strongly

affected by two unrelated properties: the relative size of stiffness and mass for the latter, and

energy dissipation for the former. The quantities |λk| and arg(λk) combine the independent
effects of changes in Re(λk) and Im(λk), and therefore may mask small changes in one

quantity and add unnecessary complexity to the analysis. The real and imaginary parts of

the residue, on the other hand, are not proportional to any system properties. New insight

may be gained through the study of changes in |Ak| and arg(Ak) in addition to changes in

Re(Ak) and Im(Ak).

The prototypical system is configured with a single shaft crack at midspan. The time

domain response due to impulse excitation at one bearing is used to generate FRF and

dFRF response data sets. These data sets are processed with AMI and Two-Sided AMI,

respectively. A determination of detectability of the crack is made by comparing AMI’s

output from processing the nominal condition data set and the cracked condition data set.

81



An important difference between the work in this chapter and the work presented in

the previous chapters lies in this comparison of results for nominal and damaged cases.

Previously, the prototypical system in the nominal condition was time-invariant in the

fixed (XY Z) coordinate system. AMI was used to process the response of the nominal

system and provide estimates of the system eigenvalues and associated residues. To gain

a measure of AMI’s accuracy, the AMI-estimated eigenvalues and residues were compared

with the analytical values of these quantities, available from the solution of the state space

eigenvalue problem. In contrast, because the prototypical system in a cracked configuration

is time-varying in both the fixed and moving (xyz) coordinate systems, no analytical modal

properties are available for comparison. This requires that the detectability analysis be

altered.

The modification assumes that the accuracy of AMI remains constant throughout the

analysis of a certain data type (clean, fixed coordinate system data, for example). AMI’s

accuracy for each damage metric is quantified from the response data of the system in the

nominal condition. This yields estimates for eigenvalues and residues, according to AMI,

for the uncracked case of the model. Because the model in the uncracked condition is time-

invariant (in terms of body-fixed displacements), the analytical eigenvalues and residues of

the nominal system can be computed. The absolute AMI estimation error for each damage

metric (the difference between the quantity calculated with the analytical value and the

quantity calculated with the AMI-estimated value) is averaged over all identified modes.

The average estimation error is used to bound a range of absolute change in the quantity.

If the presence of a defect produces a change in the quantity outside the area bounded by

the average estimation error, the defect is termed detectable with that particular damage

metric. If the resulting change in the quantity is inside the bounded area, the defect is not

detectable with that metric. The Detectability Concepts section below explains this idea in

greater detail. The four data types used in testing are: clean, fixed coordinate system data;

noisy, fixed coordinate system data; and both clean and noisy moving coordinate system

data. The specific calculations required to convert the clean, fixed coordinate system data

analytical eigenvalues and residues to those associated with another data type are also
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detailed in the Detectability Concepts section.

Analysis is conducted with clean data over a range of relative crack depths. The analysis

is repeated with noisy data. Both FRF and dFRF data are evaluated.

6.3 Detectability Concepts

Graphical detectability analysis, like the procedure used in the bearing wear study with the

simplified version of the prototypical system, is employed here also. A sample detectability

plot is shown in Figure 16. The “quantity” (Im(λk), for example) and the metric (change

in the “quantity”) are plotted against relative crack depth in the same figure with different

vertical axes. A “detectability band,” representing the uncertainty in the AMI estimate of

the metric, is overlaid on the plot. For a defect to be “detectable,” the absolute change

in the quantity due to the presence of a defect must be greater than the uncertainty in the

AMI estimate of the quantity, as represented by the detectability band. The point at which

the change exceeds the uncertainty is the threshold of detectability. A further condition

of detectability enforced in the present work is that the plot of the change in the quantity

must remain outside of, and trend away from, the detectability band as the magnitude of

the defect increases.

6.3.1 Calculation of Detectability Bands

6.3.1.1 Clean Data

In order to provide a measure of defect detectability for the investigation of the effects of

a shaft crack, the performance of AMI in the estimation of eigenvalues and residues for

the prototypical system in the nominal condition is considered. The error in the AMI

estimation of the quantities associated with the six damage metrics evaluated in the study

is quantified as follows. AMI is used to extract eigenvalues and residues from the clean,

fixed coordinate system response data of the nominal system. The absolute difference

between an AMI-derived value and the corresponding analytical value is calculated for each

quantity. (For example, the phase of the analytical residue is compared with the phase of

the AMI-estimated residue.) These absolute differences are averaged over the number of

identified modes, and the average values are used to bound the detectability bands. The
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Figure 16: Sample detectability plot.

clean, fixed coordinate system values are shown in Table 15. The detectability bands for

the damage metric related to a specific quantity appear as horizontal lines plotted on the

“change in quantity” axis, at the values of + and − the average absolute estimation error
values, as illustrated in Figure 16. For the analysis of shaft cracks of all relative depths, it

is assumed that the accuracy of AMI is independent of crack depth.

The AMI estimation error for moving reference frame xyz data is calculated in the same

manner, but the moving reference frame analytical eigenvalues and residues are used. To

generate these moving reference frame analytical quantities, Bengisu’s [8] frequency domain

mathematical relationship between the fixed reference frame FRFs and the moving reference

frame FRFs is used.

 Hzz (ω)

Hyz (ω)


move

= 1/2

 1 1 −i i

1 1 i −i




HZZ(ω − Ω)
HZZ(ω +Ω)

HY Z(ω − Ω)
HY Z(ω +Ω)


fix

(74)
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The shaft speed is represented by Ω. The fixed reference frame analytical frequency domain

expression for the FRF (Eq. 16) is substituted into Eq. 74 to calculate the moving reference

frame expressions for the FRF. The two-sided moving reference frame expression for the

contribution of a single eigensolution to Hzz is given below for illustration.

Hzz,move = 1/2

·
AZZ − iAY Z

i(ω − Ω)− λ
+

A∗ZZ − iA∗Y Z
i(ω − Ω)− λ∗

+
AZZ + iAY Z

i(ω +Ω)− λ
+

A∗ZZ − iA∗Y Z
i(ω +Ω)− λ∗

¸
(75)

Substituting the known fixed reference frame analytical eigenvalues and residues into the

right side of Eq. 75 yields the moving reference frame poles and residues. (Note that

because Ω is real, the poles are seen to shift by ±Ω parallel to the real axis.)
The moving reference frame analytical poles and residues for the dFRFs are calculated

in a similar manner. Equation 21 demonstrates that the frequency domain expressions for

the dFRFs can be calculated directly from the frequency domain expressions for the FRFs.

This equation applies equally to fixed and moving reference frame values. Substituting the

right side of Eq. 74 into Eq. 21 to represent the moving reference frame FRFs yields this

equation for the moving reference frame dFRFs

 HPG (ω)

HP bG (ω)


move

= 1/4 [T ]



HZZ(ω − Ω)
HZZ(ω +Ω)

HY Z(ω − Ω)
HY Z(ω +Ω)

HZY (ω − Ω)
HZY (ω +Ω)

HY Y (ω − Ω)
HY Y (ω +Ω)


move

(76)

The matrix T is given by

T =

 1− i 1− i 1− i −1 + i 1 + i 1 + i 1 + i −1− i

−1 + i −1 + i −1 + i 1− i 1 + i 1 + i 1 + i −1− i

 . (77)

Two manipulations of Eq. 76 are now required. First, substitute the pole-residue form of

the FRF (Eq. 16), constructed with the moving reference frame analytical eigenvalues and
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residues, for the FRFs on the right side of Eq. 76. Then, substitute the pole-residue form

of the dFRF (Eq. 22) for HPG and HP bG on the left side of Eq. 76 to calculate the moving
reference frame expressions for the dFRFs. The expression for HPG is given below.

HPG,move =

1
4

·
1

i(ω − Ω)− λ
((1− i) (AZZ +AY Z) + (1 + i) (AZY +AY Y ))

+
1

i(ω − Ω)− λ∗
((1− i) (A∗ZZ +A∗Y Z) + (1 + i) (A∗ZY +A∗Y Y ))

+
1

i(ω +Ω)− λ
((1− i)AZZ + (−1 + i)AY Z + (1 + i)AZY + (−1− i)AY Y )

+
1

i(ω +Ω)− λ∗
((1− i)A∗ZZ + (−1 + i)A∗Y Z + (1 + i)A∗ZY + (−1− i)A∗Y Y )

¸
(78)

The known fixed reference frame analytical eigenvalues and residues are substituted into

Eq. 78 to determine the moving reference frame poles and residues in the manner described

previously for the FRF.

For each peak identified in AMI processing, the analytical eigenvalues and residues are

compared with the AMI-estimated eigenvalues and residues for moving reference frame

FRF and dFRF response data from the nominal system. The detectability band values

(average absolute AMI estimation errors in the six damage metrics), for clean data signals

in the moving xyz reference frame, are shown in Table 15. To indicate the magnitude

of the quantity used in each damage metric, the absolute value of the analytical value of

the quantity is averaged over the identified peaks and displayed in the “Mean of Absolute

Analytical Value” columns.

6.3.1.2 Noisy Data

The same logic described above is used in the calculation of the detectability bands for noisy

data. For the nominal system, the corresponding analytical and AMI-estimated values of

the quantities associated with each of the six damage metrics are compared to develop

a measure of the AMI estimation error. The fixed frame and moving frame analytical

eigenvalues and residues, used in the clean data calculations, are also valid for the noisy

data calculations. The AMI-estimated eigenvalues and residues come from processing

frequency response data generated from nominal system time response data contaminated

with Gaussian white noise. As before, the absolute AMI estimation errors are averaged

86



Table 15: Clean data detectability band values (estimation error of AMI and Two-Sided
AMI for prototypical system in uncracked condition). Error values and absolute values of
analytical quantities averaged over the identified peaks.

Clean Data Fixed XY Z Moving xyz

Quantity
Detectability

Band
Values

Mean of
Absolute
Analytical
Value

Detectability
Band
Values

Mean of
Absolute
Analytical
Value

AMI
Re(λk) 0.9 0.67 2.39 0.60
Im(λk) 0.38 19.78 0.95 14.57
Re(Ak) 0.17 0.12 0.19 0.06
Im(Ak) 0.15 0.05 0.32 0.05
|Ak| 0.19 0.13 0.27 0.08
arg(Ak) 1.4 1.5 1.32 2.1
Two-Sided AMI
Re(λk) 3.1 0.67 2.8 0.67
Im(λk) 0.8 19.77 0.58 19.77
Re(Ck) 1.1 0.80 1.23 0.42
Im(Ck) 0.41 0.34 0.69 0.35
|Ck| 0.43 0.88 0.56 0.52
arg(Ck) 1.6 1.63 1.6 1.5

over all the identified modes in the frequency range of valid model performance.

Note that the presence of noise could lead to an individual estimate that is closer to

the analytical value. To decrease the likelihood of the results being specific to the noise

signature used, a noise confidence interval was calculated. With the prototypical system

configured with a crack of 0.3 relative depth, the time domain response for an impulse was

separately contaminated with two independent white noise signatures (termed noise 1 and

noise 2) to produce two sets of noisy response data. The resulting FRFs were independently

processed with AMI, and the two associated sets of dFRFs were independently processed

with Two-Sided AMI. The estimates for eigenvalues and residues were used to calculate two

sets of the quantities associated with the damage metrics. The differences in the two sets of

these quantities were then only related to the noise signature used to contaminate the time

domain data. These absolute differences were averaged over the identified peaks and termed

the noise confidence interval. The noise confidence interval is added to the average absolute

estimation error calculated using the nominal system analytical eigenvalues and residues and
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the noisy-signal AMI estimates of the nominal system eigenvalues and residues.

Due to the time consuming nature of the computations, only one additional noise sig-

nature, noise 2, was evaluated. Properly, these operations should have to be repeated for

a statistically-significant number of noise signatures for one to be certain that the results

are not related to the characteristics of a specific noise signature. It is possible that this

simple method is greatly overestimating the effects of noise. The worst-case overestima-

tion of the effects of noise is illustrated by the following non-rigorous example. The noise

profiles have an average, x, and a standard deviation, σ. If noise 1 is represented by

x+σ, the estimation error due to the presence of noise 1 is x+σ. If noise 2 is represented

by x − σ, the difference in estimation error due to the differences in the noise profiles is

(x+σ)−(x−σ) = 2σ. The detectability band resulting from the addition of the estimation
error due to the presence of noise 1 (x+σ) to the noise confidence interval (2σ) would then

be x+ 3σ.

In summary, the steps performed to reduce the chances that the results are specific to

a particular noise profile were

• Calculate the average absolute estimation error for each metric.

• Calculate the noise confidence interval for each metric.

• Add the two to get the detectability band values for each metric.

These resulting detectability band values for noisy data signals in the fixed XY Z and

moving xyz reference frames are presented in Table 16.

6.4 Measurement Noise Model

Ericsson [18] developed a technique for automatic detection of defects in rolling element

bearings. Simulation of noise added to the accelerometer signal to account for the proximity

of other equipment was critical to validating the technique. Ericsson proved that Gaussian

white noise is an acceptable model for this application. Additionally, measurement noise

generated by a typical accelerometer is also Gaussian white noise [5], although the level

is considerably lower than the noise level associated with an industrial setting. Following
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Table 16: Noisy data detectability band values (estimation error of AMI and Two-Sided
AMI, adjusted with noise confidence interval, for prototypical system in uncracked condi-
tion). Error values and absolute values of analytical quantities averaged over the identified
peaks.

Noisy Data Fixed XY Z Moving xyz

Quantity
Detectability

Band
Values

Mean of
Absolute
Analytical
Value

Detectability
Band
Values

Mean of
Absolute
Analytical
Value

AMI
Re(λk) 1.55 0.67 2.7 0.60
Im(λk) 0.62 19.78 1.4 14.57
Re(Ak) 0.20 0.12 0.21 0.06
Im(Ak) 0.17 0.05 0.35 0.05
|Ak| 0.21 0.13 0.32 0.08
arg(Ak) 1.5 1.5 1.3 2.1
Two-Sided AMI
Re(λk) 3.8 0.67 3.4 0.67
Im(λk) 1.5 19.77 1.24 19.77
Re(Ck) 1.23 0.80 1.33 0.42
Im(Ck) 0.54 0.34 0.84 0.35
|Ck| 0.71 0.88 0.89 0.52
arg(Ck) 1.2 1.63 1.4 1.5

Allen and Ginsberg [3], Gaussian white noise is added to the time domain response for noisy

data analysis. The noise is scaled to have a standard deviation equal to 4% of the average

of the maximum Z and Y direction displacements due to Z-direction impulse excitation of

the prototypical system in its nominal condition. The same noise profile, defined as noise

1 in the previous section, is used in every analysis.

6.5 Time Domain Solution Procedure

The prototypical system in the cracked configuration is described by linear ordinary differ-

ential equations of motion with periodically time-varying coefficients. A frequency domain

solution is not appropriate, so numerical integration in the time domain was performed.

Numerical integration is accomplished with the MATLAB ODE solver ode15s. The

MATLAB [64] documentation and a reference text by Shampine et al. [61] provide detailed

information on the use of ode15s. The recommended process for determining which MAT-

LAB ODE solver to use calls for starting with ode45, which uses an explicit Runge-Kutta
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method. If a trial run of the code shows that ode45 can not perform the required integra-

tion efficiently, or at all, the next recommended step is to assume the problem is stiff and

employ ode15s. This function is a variable order solver based on the Klopfenstein-Shampine

family of numerical differentiation formulas. Most MATLAB ODE solvers accept ODEs

expressed in the general form

M(t, y)ẏ = F (t, y). (79)

Here,M(t, y) is a nonsingular matrix termed the mass matrix. The impulse response of the

prototypical system is calculated as free vibration due to initial conditions, so there is no

forcing function. The resulting expression of the state space formulation of the equations

of motion for the prototypical system for use by ode15s is

[S(t)] {ẋ} = [R(t)] {x} . (80)

See Eqs. 9 and 10 for the state space formulation and the R and S matrices.

Trial and error testing of the various MATLAB ODE solvers which were able to correctly

integrate the problem without generating an error code showed that the ode15s function

was the best choice, in terms of required processing time, for solution of the equations

describing the prototypical system. The MaxOrder property of ode15s was set to 1. This

limited the implicit solver to first order numerical differentiation. Initial testing showed

that derivatives of second and higher orders often led to numerical instabilities in the time

domain solution of the prototypical system.

With the numerical integration method of solution operating properly, but quite slowly

for some test cases, a Floquet theory solution [53], [4] was investigated. Solving for the

prototypical system’s time response using Floquet theory was attractive in some respects.

The computational time for the required matrix exponentiation would be less than the

computational time required for numerical integration over the entire time record. However,

formulating the Floquet theory solution was beyond the scope of the project and was not

done.
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6.6 Exponential Window for Time Response

The computer processing time required to generate prototypical system time domain data

with a time record long enough to let the response decay to zero was found to be prohibitively

long in many system configurations. Because it was desired to investigate a large number

of configurations, an exponential window [23] was employed to decrease the total processing

time required to obtain a simulation that could be properly transformed to the frequency

domain. The computed time domain response of the prototypical system, {q(t)}, was
modified in the following manner,

{qexp(t)} = exp
µ
−β t

T

¶
{q(t)} (81)

where T is the length of the time window, and β is the exponential window coefficient. The

selection of β is critical to the effectiveness of the exponential window. If β is too small,

leakage in the FFT processing of the time domain data will lead to poor estimates of the

modal properties from AMI processing. If the value of β is too large, valuable modal data

may be unduly suppressed, making it impossible for AMI to extract. This is especially

likely in the presence of a persistent noise signature.

AMI processing of the frequency domain representation of windowed response data is

identical to that of non-windowed data. AMI returns estimates of the eigenvalues and

associated residues. The residue estimates are unaffected by the use of the exponential

window. As long as β is real, as it is in the present work, the AMI estimates for Im (λ) are

also unaffected by the exponential window. The relationship between the AMI estimate

for the eigenvalue, estimated by processing windowed experimental data, and the analytical

eigenvalue shows that

λwindowed = λanalytical − β

T
(82)

If one wishes to evaluate the results in terms of natural frequencies and damping ratios,

instead of the eigenvalues and residues, then the calculation of the natural frequency is done

as shown in Eq. 24 and the damping ratio is calculated using Eq. 83. The damping ratio

calculated from the estimate of the eigenvalue from AMI processing of the windowed data
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Figure 17: Percent error in AMI-estimated Re(λ) versus exponential window coefficient β.
Solid = −1.2568 + i5.4879 mode. Dashed = −1.2695 + i33.1281 mode.

is represented by ζ 0, while the actual damping ratio is represented by ζ.

ζ = ζ 0 −
µ

β

ωnT

¶
(83)

The time domain response of the prototypical system in the nominal configuration was

used to determine the optimum value of β for the analysis. The impulse response was

calculated for a nondimensional time unit record of length T = 8, and windowed response

data was calculated with values of β ranging from 0.5 to 8. Each set of windowed response

data was converted to the frequency domain and processed with AMI. The AMI estimates

for Re(λk) and Im(λk) for the −1.2568 + i5.4879 mode and the −1.2695 + i33.1281 mode

were compared with the corresponding analytical values for each value of β. (These two

modes were the most dominant modes in the response.) The percent error of the estimates

is plotted against β in Figures 17 and 18. The value β = 3 provided the best combination

of error in Re(λk) and Im(λk) for both modes. Although different values of β may provide

better performance at different damage states, β = 3 is used throughout.
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Figure 18: Percent error in AMI-estimated Im(λ) versus exponential window coefficient β.
Solid = −1.2568 + i5.4879 mode. Dashed = −1.2695 + i33.1281 mode.

6.7 Valid Frequency Range of Prototypical System Model

When the crack depth is very small, the standard model describing a cracked shaft should

have the same frequency response characteristics as the simplified model of the uncracked

shaft. Testing this statement revealed an anomaly. The simplified model was solved in

both the time domain and the frequency domain for the response to an impulse at the

bearing closer to the disk, and the responses were identical. The frequency response from

the time domain solution of the simplified model is presented in Figure 19. The uncracked

standard model was solved in the time domain for the response to the same impulse. The

frequency domain representation of the response is shown in Figure 20. The response of the

uncracked standard model matched the response of the simplified model with respect to the

location of poles over the 0 to 200 nondimensional frequency unit range. For frequencies

below 40 nondimensional frequency units, the shapes of local minima and maxima in the

two responses generally matched. The region between 40 and 60 nondimensional frequency
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units was dominated by a local minimum, and there was poor agreement between the two

responses. For frequencies above 60 nondimensional frequency units, the shapes of both

the local minima and local maxima in the standard model response showed poor agreement

with the shapes of the corresponding minima and maxima in the response of the simplified

model.

The nature of a local minimum decreases the likelihood of an exact match between

the responses of the standard and simplified models. Slight differences between the models

could impact the cancellation required to form a minimum enough to produce corresponding

local minima with significantly different shapes. Conversely, the summation required to

form a maximum is not as sensitive to slight differences between the models. The differences

between corresponding local maxima should not be as visually apparent as the potential

differences in corresponding local minima.

The magnitudes of the local maxima were of the same order of magnitude for frequencies

from 0 to approximately 60 nondimensional frequency units. Above 60 nondimensional

frequency units, the magnitude of the response of the standard model of the prototypical

system in the uncracked configuration was considerably greater than the magnitude of

the response of the simplified model. The additional stiffness terms introduced into the

model of the prototypical system to represent the shaft crack lose their effectiveness with

increasing frequency. (This phenomenon is exhibited by the natural frequencies of a beam

supported by a spring at one end. The higher-frequency modes in that case look like those

of a free end.) For this reason, the standard model does not accurately represent the

behavior of the uncracked system at higher frequencies. Consequently, the usable range of

frequency response for the standard model of the prototypical system is restricted to 0 to

60 nondimensional frequency units.

In Chapter IV , AMI and Two-Sided AMI were used to identify the simplified model

of the prototypical system. Of the four modes identified in this clean data testing, only

one (λ = −1.4755 + 65.6800i) was above the 60 nondimensional frequency unit limitation
imposed on the standard model. In Chapter V , which also used the simplified model,

very few instances of detectable bearing wear involved the (λ = −1.4755+ 65.6800i) mode.
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Figure 19: FRF HZZ of nominal system calculated from time domain response of simplified
model of prototypical system.

The standard model of the prototypical system exhibits the characteristics of a cracked

shaft through the use of a technique from the literature. The fact that the responses of

the standard and simplified models do not match at higher frequencies does not detract

significantly from the defect detection work presented here. The agreement between the

responses in the lower-frequency range, where the majority of identifiable system modes is

located, supports this. The goal of the development work was to create a cracked shaft

model that would exhibit the relevant phenomena. Once this goal was met, an exhaustive

numerical methods study to ensure better high-frequency agreement was not undertaken.

6.8 Analysis Method

The system is operated at a constant rotation rate of 1.35 nondimensional frequency units,

which is between the first two critical speeds, 0.73 and 2.3 nondimensional frequency units.

For each crack depth, system responses to both Y -direction and Z-direction impulses are

required. The impulse excitation occurs at the bearing closer to the disk (Bearing 1), and
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Figure 20: FRF HZZ of nominal system calculated from time domain response of standard
model of prototypical system.

the equations, defined in the fixed coordinate system, are solved in the time domain. The

moving coordinate system time domain response is calculated from the fixed coordinate

system response as previously discussed. The responses to a given impulse are converted

to the frequency domain, yielding FRFs for Y -direction and Z-direction response for fixed

coordinate system data and FRFs for y-direction and z-direction response for moving co-

ordinate system data. The parameters for the FFT calculations are T = 8 nondimensional

time units and N = 512 sampling intervals. In order to avoid leakage, the previously

described exponential window is used to increase the rate of decay of the response. The

corresponding dFRFs are calculated from the FRFs. The FRF and dFRF data sets are

processed independently by AMI and Two-Sided AMI.

After the response of the nominal system is calculated, the system is configured with

one transverse crack located at midspan. The relative depth of this crack is increased in

each successive analysis. The crack depths used in the investigation are shown in Table 17.

The complete analysis is conducted first with clean time domain data and then repeated
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with noise-contaminated data.

It is shown in the Results section that some peaks identified at one damage state are

identified at some, but not all, following damage states. Other identified peaks are present

in the response at each damage state. Due to these characteristics and the fact that no

AMI data processing operation depends on previous work, each identified peak is tracked

independently in these analyses.

Table 17: Shaft cracks used in analysis.
Relative Depth Depth (m)
10% 0.008

20% 0.016

30% 0.024

40% 0.032

6.9 Results
6.9.1 Time Domain Response

Representative time domain responses are presented in this section. In each example,

nondimensional displacement is plotted against nondimensional time. Time domain Z-

direction response at Bearing 1 to a Z-direction impulse at Bearing 1 is shown in Figure

21. The prototypical system was in the nominal condition, and clean, unwindowed, fixed

XY Z data is presented here. The corresponding Y -direction response at Bearing 1 to the

same impulse excitation is shown in Figure 22.

The effect of noise on the time domain response is shown in Figure 23. The clean data

shown in Figure 21 was contaminated with the previously defined noise profile.

The unwindowed responses in Figures 21 through 23 are nonzero at the end of the nondi-

mensional time window shown. Computation time required for a decay to zero response

was high for many system configurations investigated. The exponential window described

in Section 6 was applied to the response so that leakage did not negatively impact the con-

version to the frequency domain. A representative result is shown in Figure 24. Here, the

exponential window was applied to the noisy fixed XY Z coordinate system time response

shown in Figure 23, in preparation for conversion to frequency domain.
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Figure 21: Z-direction response of nominal system at Bearing 1 due to Z-direction impulse
at Bearing 1. Clean, unwindowed, fixed XY Z data.
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Figure 22: Y -direction response of nominal system at Bearing 1 due to Z-direction impulse
at Bearing 1. Clean, unwindowed, fixed XY Z data.
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Figure 23: Z-direction response of nominal system at Bearing 1 due to Z-direction impulse
at Bearing 1. Noisy, unwindowed, fixed XY Z data.
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Figure 24: Z-direction response of nominal system at Bearing 1 due to Z-direction impulse
at Bearing 1. Noisy, windowed, fixed XY Z data.
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Figure 25: z-direction response of nominal system at Bearing 1 due to Z-direction impulse
at Bearing 1. Noisy, windowed, moving xyz data.

The effect of using the moving xyz coordinate system is shown in Figure 25. The win-

dowed, noisy, fixed XY Z data shown in Figure 24 was converted to the moving coordinate

system. Changes in the response resulting from a conversion to the moving coordinate

system are more evident in the frequency spectrum than in the time response.

The work in this chapter is based on processing response data of the prototypical system

configured with a transverse shaft crack. The fixed XY Z coordinate system, noisy, expo-

nentially windowed, Z-direction displacement at Bearing 1, due to a Z-direction impulse at

Bearing 1, for the prototypical system with a crack of 0.4 relative depth is shown in Figure

26. The corresponding moving xzy coordinate system time response is shown in Figure 27.

6.9.2 Frequency Domain Response

Representative FRFs and dFRFs are presented in this section. Clean, windowed, fixed

XY Z coordinate system response data for the nominal system is shown in the frequency

domain as the HZZ FRF in Figure 28. The Z-direction response at Bearing 1 was due to
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Figure 26: Z-direction response at Bearing 1, due to Z-direction impulse at Bearing 1, of
system with crack of 0.4 relative depth. Noisy, windowed, fixed XY Z data.

0 1 2 3 4 5 6 7 8
-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

Nondimensional Time

Z-
D

ire
ct

io
n 

D
is

pl
ac

em
en

t

Figure 27: z-direction response at Bearing 1, due to Z-direction impulse at Bearing 1, of
system with crack of 0.4 relative depth. Noisy, windowed, moving xyz data.
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Figure 28: FRF HZZ of nominal system at Bearing 1, due to impulse at Bearing 1. Clean,
windowed, fixed XY Z data

a Z-direction impulse at Bearing 1. The top plot in the figure is the magnitude of HZZ

versus nondimensional frequency. The real and imaginary parts of HZZ are plotted versus

nondimensional frequency in the middle and bottom plots in the figure. This format is used

for all figures in this section. Note that the plots only display data inside the frequency

range where the model is estimated to be valid (0 to 60 nondimensional frequency units),

as defined previously.

The clean data, fixed coordinate system, normal dFRF, HPG, and reverse dFRF, HP bG,
for the nominal system with excitation and response at Bearing 1 are shown in Figures 29

and 30.

The effects on the FRF and dFRF of converting from the fixed XY Z coordinate system

to the moving xyz coordinate system are illustrated next. The clean, fixed coordinate FRF

and dFRFs in Figures 28 through 30 were converted to the moving coordinate system. The

moving coordinate system HZZ , HPG, and HP bG are in Figures 31, 32, and 33, respectively.
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Figure 29: dFRFHPG of nominal system at Bearing 1, due to impulse at Bearing 1. Clean,
windowed, fixed XY Z data
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Figure 30: dFRFHP bG of nominal system at Bearing 1, due to impulse at Bearing 1. Clean,
windowed, fixed XY Z data
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Figure 31: FRF HZZ of nominal system at Bearing 1, due to impulse at Bearing 1. Clean,
windowed, moving xyz data

The shaft speed (1.35 nondimensional frequency units) is low compared to most nondimen-

sional excitation frequency values at which peaks exist. A consequence of this, and of

the high levels of system damping, is that the two distinct peaks in the moving coordinate

system associated with one peak in the fixed coordinate system (see Table 2) appear as one

peak with a width greater than that of its fixed coordinate system counterpart.

The contamination of time domain response data with noise produced changes in the

FRF and dFRFs. The noisy data FRF and dFRF companions to the clean data, fixed

XY Z coordinate system response data for the nominal system shown in Figures 28 through

30 are presented in Figures 34 through 36. The visual changes to the frequency response

were similar for all data sets. The effects of noise on AMI and Two-Sided AMI processing

of FRFs and dFRFs are quantified later in this section.

The transverse shaft crack introduced changes to the FRF and dFRF that were evident

not only in AMI processing, but also during visual inspection in some cases. The most

notable effects in one or more of the three subplots (magnitude, real part, and imaginary
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Figure 32: dFRFHPG of nominal system at Bearing 1, due to impulse at Bearing 1. Clean,
windowed, moving xyz data
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Figure 33: dFRFHP bG of nominal system at Bearing 1, due to impulse at Bearing 1. Clean,
windowed, moving xyz data
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Figure 34: FRF HZZ of nominal system at Bearing 1, due to impulse at Bearing 1. Noisy,
windowed, fixed XY Z data
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Figure 35: dFRF HPG of nominal system at Bearing 1, due to impulse at Bearing 1. Noisy,
windowed, fixed XY Z data
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Figure 36: dFRF HP bG of nominal system at Bearing 1, due to impulse at Bearing 1. Noisy,
windowed, fixed XY Z data

part) are illustrated with the following examples. Figures 37, 38, and 39 show noisy data

HZZ , HPG, andHP bG in the fixedXY Z coordinate system for the prototypical system with a

crack of 0.2 relative depth. The corresponding plots for the nominal system were previously

introduced in Figures 34, 35, and 36. Figures 40, 41, and 42, show the same quantities for

the prototypical system with a 0.4 relative depth crack. The only change visually evident in

the subplots associated with the FRFHZZ was a slight increase in both |HZZ | and Re(HZZ),

in the region above 30 nondimensional frequency units, with increasing crack depth. In

the |HPG| subplot, the heights of the peaks at approximately ±5 and ±33 nondimensional
frequency units increased, relative to the peak at approximately 1 nondimensional frequency

unit, with increasing crack depth. The same effect was seen in the
¯̄
HP bG¯̄ subplot with

increasing crack depth.

6.9.3 Detectability Plots

Representative detectability plots are presented in this section. Figure 43 shows the damage

metric change in Re(Ak) plotted versus relative crack depth for the FRF HZZ estimated
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Figure 37: FRF HZZ at Bearing 1, due to impulse at Bearing 1, for system with crack of
0.2 relative depth. Noisy, windowed, fixed XY Z data.
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Figure 38: dFRF HPG at Bearing 1, due to impulse at Bearing 1, for system with crack of
0.2 relative depth. Noisy, windowed, fixed XY Z data.

108



-60 -40 -20 0 20 40 60
10-1

100

|H
PG

|

-60 -40 -20 0 20 40 60
-0.5

0

0.5

R
e(

H
PG

)

<

<

<

-60 -40 -20 0 20 40 60
-0.5

0

0.5

Nondimensional Excitation Frequency

Im
(H

PG
)

Figure 39: dFRF H
P bG at Bearing 1, due to impulse at Bearing 1, for system with crack of

0.2 relative depth. Noisy, windowed, fixed XY Z data.
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Figure 40: FRF HZZ at Bearing 1, due to impulse at Bearing 1, for system with crack of
0.4 relative depth. Noisy, windowed, fixed XY Z data.
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Figure 41: dFRF HPG at Bearing 1, due to impulse at Bearing 1, for system with crack of
0.4 relative depth. Noisy, windowed, fixed XY Z data.
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Figure 42: dFRF HP bG at Bearing 1, due to impulse at Bearing 1, for system with crack of
0.4 relative depth. Noisy, windowed, fixed XY Z data.
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Figure 43: Detectability chart for Re(A). FRF HZZ constructed with clean, fixed XY Z
coordinate system data. Horizontal dashed lines are detectability band limits.

by AMI with clean, fixed XY Z coordinate system data. For this metric, the crack was

detectable with identified peak 2 (Im(λ) ≈ 33). The plot for peak 2 crossed the detectabil-
ity band at 0.3 relative crack depth and trended away from the detectability band with

increasing crack depth. The plot for peak 1 (Im(λ) ≈ 5) did not cross the detectability
band.

Figure 44 illustrates an instance where application of a metric would not lead to detection

of a crack. The change in the imaginary part of the eigenvalue for (negative frequency

range) peaks identified by Two-Sided AMI processing of dFRF HPG remained inside the

detectability band for all crack depths investigated.

The change in Im(λk) (for negative frequency range peaks) is shown for the fixed

coordinate system dFRF HP bG for clean and noisy data in Figures 45 and 46, respectively,
to illustrate the effect of time domain noise on detectability. With the introduction of

noise, the overall number of identified peaks dropped from 4 to 3 and the number of peaks

for which the crack is detectable dropped from 2 to 1. Many, but not all, combinations of
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Figure 44: Detectability chart for Im(λ). Negative frequency range dFRFHPG constructed
with clean, fixed XY Z coordinate system data. Horizontal dashed lines are detectability
band limits.

data format and damage metric exhibited this behavior. Note that in Figure 45, while the

curve for λ3 remained outside the detectability band at the largest crack depth investigated,

the trend was toward the detectability band. This violates the previously given definition

of detectability, so the crack was detectable with the metric for only two identified peaks

(λ1 and λ4).

6.9.4 Detectability Summary

The complete results of the crack detectability study are presented in this section. One

hundred and twenty detectability charts, like those shown in Figures 43 through 46, were

required to analyze all the combinations of the 6 damage metrics, the 5 data types (HZZ ,

positive frequency range HPG, negative frequency range HPG, and positive and negative

frequency range HP bG) and the 4 conditions (clean, fixed XY Z coordinate system; noisy,

fixed XY Z coordinate system; and clean and noisy moving xyz coordinate system) in the
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Figure 45: Detectability chart for Im(λ). Negative frequency range dFRFH
P bG constructed

with clean, fixed XY Z coordinate system data. Horizontal dashed lines are detectability
band limits.

study. (Note that the data estimated from the normal and reverse dFRFs were broken

into positive and negative frequency ranges for the analysis simply to facilitate visual de-

tectability analysis be reducing the number of curves on the plot.) The detectability data

are presented in tabular form.

The following discussion (specifically based on Table 20) describes the format used by

all tables referred to in this section. (Table 20 is the subject of the discussion solely as

a matter of convenience. It is the first table of its type to have non-zero elements in the

top three data rows.) The top row of the table identifies which damage metrics are being

discussed. A four-row group follows for each data type. The first row of the group tells

what kind of data is processed, and gives the number of discrete frequency domain peaks

identified by AMI. Thus, the first four-row group in Table 20 presents detectability data for

the FRF HZZ . A total of 3 discrete peaks were identified by AMI during the processing

of the FRFs for the given conditions (clean, moving xyz reference frame data) over the

complete range of relative crack depths in the study. The second row in the four-row group,
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Figure 46: Detectability chart for Im(λ). Negative frequency range dFRFHP bG constructed
with noisy, fixed XY Z coordinate system data. Horizontal dashed lines are detectability
band limits.

“Number/% of Peaks Meeting Detectability Criterion,” presents the number of identified

peaks that meet the detectability criteria discussed previously. (For example, in the case of

change in Im(λk), 1 of the 3 peaks identified by AMI met the detectability criteria.) The

performance is also presented in percent format in the same cell (1/3 = 33%). The next

row in the group, “Minimum Depth for Detectable Crack,” lists the minimum threshold of

detectability. If there is only a single peak for which the crack is detectable, the threshold of

detectability (the relative crack depth at which the plot of the damage metric first exceeds

the detectability band) for that peak is given. If there are multiple peaks for which the

crack is detectable, the minimum threshold of detectability for all cases is presented. (For

change in Im(λk), the threshold of detectability of the one peak for which the crack was

detectable was 0.3 relative crack depth.) The fourth row of the group, “Average Depth for

Detectable Crack,” gives the average threshold of detectability.
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6.9.4.1 Clean Data

The detectability data for the two eigenvalue-based metrics are shown in Table 18. These

results are derived from clean, fixed XY Z coordinate system response data. The change

in Im(λk) metric performed better than the change in Re(λk) metric. No crack of any

depth was detectable with change in Re(λk) for the FRF HZZ or the dFRF HPG. A crack

was detectable with change in Re(λk) for one of the four identified peaks in the negative

frequency range data for dFRF HP bG, and the threshold of detectability was a relative crack
depth of 0.4. The change in Im(λk) metric detected the presence of the crack with reverse

dFRF HP bG for both positive and negative frequency range data. The metric was more

sensitive in the positive frequency range, where a crack of 0.1 relative depth was detected.

The crack was detectable with two of four identified peaks in the negative frequency range,

with an average relative crack depth for detection of 0.35.

Results for the four residue-based metrics derived from clean XY Z response data are

described in Table 19. With HZZ data, both change in Re(Ak) and change in |Ak| detected
the crack. Both metrics detected the crack with one of the two identified peaks, at 0.3

relative crack depth. The change in Re(Ak) and change in |Ak| metrics also detected
the crack with HPG data. In the positive frequency range, change in |Ak| detected a
crack of 0.4 relative depth. In the negative frequency range, change in Re(Ak) and change

in |Ak| detected cracks of 0.4 and 0.2 relative depth, respectively. With HP bG data, no

metric detected the crack with positive frequency range data, but all four metrics detected

the crack with negative frequency range data. Change in Im(Ak) demonstrated the best

performance by detecting the crack with two of four identified peaks at an average relative

depth of 0.35.

The results for the two eigenvalue-based metrics derived from clean, moving frame xyz

data are shown in Table 20. For HZZ data, a crack was detectable with one of three

identified peaks at a relative depth of 0.3 using the change in Im(λk) metric, but the crack

was not detectable using the change in Re(λk) metric. With HPG data, the crack was not

detectable with either metric. With HP bG data, the crack was detectable in the positive
frequency range with change in Im(λk) at a relative depth of 0.1. Both change in Im(λk)
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and change in Re(λk) detected the crack with negative frequency data with one of three

identified peaks at a relative depth of 0.4.

The performance of the four residue-based metrics using clean xyz data is given in

Table 21. For HZZ data, only change in Im(Ak) did not detect the crack. Change in

|Ak| and change in Re(Ak) were the most sensitive. Both metrics detected the crack at

a relative depth of 0.3. For HPG data, the crack was not detectable at any depth with

any metric in the positive frequency range. The metric change in |Ak| detected the crack
at a relative depth of 0.4 with negative frequency range data. With the HP bG data, the

crack was detectable with all metrics except change in Im(Ak) in the negative frequency

range. A crack of 0.1 relative depth was detectable with one of the three identified peaks

using change in arg(Ak). The crack was not detectable at any depth with any metric using

positive frequency range data.

6.9.4.2 Noisy Data

The results for the two eigenvalue-based metrics derived from noisy, fixed XY Z response

data are shown in Table 22. Both change in Re(λk) and change in Im(λk) demonstrated

identically poor performance with HZZ and HPG data. The crack was not detectable

at any depth with either metric. With HP bG data, neither metric was able to detect the
presence of the crack in the positive frequency range. However, both metrics detected the

crack with one of three identified peaks in the negative frequency range. The change in

Im(λk) metric demonstrated better sensitivity by detecting the crack at 0.3 relative depth,

compared to 0.4 relative depth for change in Re(λk).

The performance of the four residue-based damage metrics with noisy, fixed coordinate

system data is shown in Table 23. The metrics change in Re(Ak) and change in |Ak| both
detected a crack of 0.3 relative depth using HZZ data. With HPG data, the crack was not

detectable using negative frequency range data. The change in |Ak| metric detected the
crack at 0.4 relative depth using positive frequency HPG data. No metrics detected the

crack using positive frequency range HP bG data, and only change in |Ak| detected the crack
with negative frequency range HP bG data.

116



The performance of the two eigenvalue-based metrics, derived from noisy, moving xyz

coordinate system response data, is shown in Table 24. For HZZ data, only change in

Re(λk) gave a positive result. A crack of 0.4 relative depth was detectable with one of

the three identified peaks. With HPG data, neither metric was able to detect a crack.

For HP bG data, change in Re(λk) did not detect the crack at any depth in either frequency
range. Change in Im(λk) detected a crack of 0.4 relative depth in the negative frequency

range.

The final set of results, describing the performance of the residue-based metrics con-

structed from noisy xyz system response data, is presented in Table 25. For HZZ data,

the metrics change in Re(Ak) and change in |Ak| detected cracks of 0.3 and 0.4 relative
depth, respectively. No metric detected the crack with negative frequency range HPG data,

however, in the positive frequency range, change in |Ak| detected a 0.4 relative depth crack.
In the HP bG data, the only metric to detect any crack was change in arg(Ak). With the

negative frequency range data, this metric detected a crack of 0.4 relative depth, with one

of three identified peaks. There was no crack detection using positive frequency range

data.

6.10 Discussion

Performing experimental modal analysis (EMA) on non-modal data, for the purpose of shaft

crack detection, was explored through the use of the standard model of the prototypical

system. Since the cracked configuration of the prototypical system is time-varying with

respect to both the fixed and moving coordinate systems, only non-modal response data

were available. The time domain response of the prototypical system was calculated and

converted to the frequency domain. This frequency domain response, in the forms of both

standard frequency response functions (FRFs) and directional frequency response functions

(dFRFs), was used to investigate the performance of six damage metrics. Experimental

modal analysis of the response data using the Algorithm of Mode Isolation (AMI) for FRF

data and Two-Sided AMI for dFRF data yielded estimates of “eigenvalues” and associated

“residues.” The non-modal data was processed by AMI and Two-Sided AMI in the same
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manner as modal data. The algorithms’ outputs were still referred to as eigenvalues and

residues, even though the time-varying system that produced the response data had no

eigenvalues. Two metrics described the behavior of the eigenvalues: change in the real part

of the eigenvalue (Reλk) and change in the imaginary part of the eigenvalue (Im(λk)). Four

metrics were based on residues: change in the real part of the residue (Re(Ak)), change in the

imaginary part of the residue (Im(Ak)), change in the phase of the residue (arg(Ak)), and

change in the magnitude of the residue (|Ak|). A system defect was said to be detectable

with a metric if the change in the metric due to the presence of the defect was greater

than the level of estimation accuracy AMI demonstrated with the type of response data in

question in an analysis of the standard model in the nominal condition. A single transverse

shaft crack, located at mid-span, was the defect examined, and the analysis was conducted

with the system in five different configurations: nominal (uncracked) and relative crack

depths of 0.1, 0.2, 0.3, and 0.4. For each system configuration, the HZZ FRF and the HPG

and H
P bG dFRFs were processed by AMI and Two-Sided AMI, respectively. All excitation

and measurement was conducted at the bearing closer to the disk. The complete analysis

was performed with clean time domain response data, and then repeated with time domain

response data contaminated with white noise.

For the purposes of the following discussion, “consistency” is related to the number of

data types a particular metric was able to detect a crack with. For instance, if a crack

was detectable with change in Im(λk) for HZZ and HP bG data, and the same crack was

detectable with change in arg(Ak) for HZZ data only, then the change in Im(λk) metric

would have demonstrated greater consistency. The term “sensitivity” is related to the

threshold of detection. If one metric detected the crack at a relative depth of 0.3 and

another metric detected the crack at a relative depth of 0.1, then the second metric would

have demonstrated greater sensitivity.

The three metrics delivering the best performance with clean, fixed XY Z coordinate

system data were change in Im(λk), change in Re(Ak), and change in |Ak|. As discussed
previously, with the normal and reverse dFRFs each broken into positive and negative

frequency ranges for the detectability analysis, there are five data types: HZZ , positive
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and negative frequency range HPG, and positive and negative frequency range versions of

HP bG. Regarding consistency, the crack was detectable with four of the five data types using
change in |Ak|, three data types using change in Re(Ak), and two data types using change

in Im(λk). Addressing sensitivity, change in Im(λk) detected a 0.1 relative depth crack

with positive frequency range HP bG data, change in |Ak| detected a 0.2 relative depth crack
with negative frequency range HPG data, and change in Re(Ak) detected a 0.3 relative

depth crack with HZZ data.

The inclusion of noise in the fixed XY Z time responses negatively impacted the per-

formance of almost all metrics. The noise made crack detection impossible with change

in Im(Ak) and change in arg(Ak), and the noise decreased the sensitivity of the change in

|Ak| metric (0.2 relative depth crack detected with clean data and 0.3 relative depth crack
detected with noisy data). The noise decreased to one (negative frequency range HP bG )
the type of data for which the crack was detectable with change in Im(λk). The change

in Re(λk) metric, which was not one of the best metrics with clean data, was the metric

least impacted by the presence of noise. Neither the consistency nor the sensitivity of the

metric was affected. Change in Re(λk) was able to detect a crack of 0.4 relative depth

using both clean and noisy negative frequency range H
P bG data. The sensitivity (but not

the consistency) of change in Re(Ak) was also unaffected by the noise. For crack detection

work in the fixed XY Z coordinate system, the damage metrics change in Im(λk), change in

Re(Ak), and change in |Ak| exhibited low sensitivity to the effects of noise in the vibration
signal and detected cracks of 0.3 relative depth with noisy data. Negative frequency range

HP bG data proved to be the most robust data type with respect to noise for eigenvalue-based
metrics. For residue-based metrics, HZZ and positive frequency range HPG data were the

most robust types with respect to noise.

The metrics change in Im(λk), change in |Ak|, and change in Re(Ak) gave the best

performance with both clean and noisy moving xyz coordinate system data. With clean

data, the crack was detectable with change in Im(λk), change in |Ak|, and change in Re(Ak)

with three of five data types, three data types, and two data types, respectively. Clean data

sensitivity showed that change in Im(λk) detected a crack of 0.1 relative depth, while both
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residue-based metrics detected a crack of 0.3 relative depth. For change in Im(λk), noise

decreased to one the number of data types that the crack was detectable with, and increased

the minimum detectable crack to 0.4 relative depth. Noise decreased the consistency of

both residue-based metrics, but only negatively impacted the sensitivity of change in |Ak|
(0.3 relative depth crack detected with clean data and 0.4 relative depth crack detected

with noisy data). With clean and noisy data, the metric change in Im(Ak) gave the worst

performance, detecting no crack with any type of data. The change in Re(λk) metric

was, as with fixed XY Z coordinate system results, the least impacted by noise, in terms

of consistency and sensitivity. The metric detected a crack of 0.4 relative depth with both

clean and noisy data. The damage metrics change in Im(λk), change in Re(λk), change

in |Ak|, and change in Re(Ak) are the best choices for future crack detection work in the

moving coordinate system. They were relatively robust in the presence of noise and were

capable of detecting the crack.

The results for both fixed coordinate system data and moving coordinate system data

showed that the presence of noise in the time domain response had, as expected, a negative

effect on most metrics. The noise typically reduced the number of peaks identified by

AMI. In some instances, the noise had a negligible effect on the size of the detectable crack

(change in Im(λk) for XY Z negative frequency range H
P bG data), while in other instances

the introduction of noise completely negated the metric (change in |Ak| for XY Z negative

frequency range HPG data). A reasonable level of measurement noise did not prevent the

detection of a shaft crack through tracking a number of metrics.

Comparing the performance of the metrics change in Im(λk), change in |Ak|, and change
in Re(Ak) with noisy, fixed coordinate system data and noisy, moving coordinate system

data shows that there is a benefit to choosing fixed coordinates over moving coordinates.

The crack was detectable with all three metrics in both coordinate systems. The sensitivity

of the metrics was greater in the fixed coordinate system (crack detected at average relative

depth of 0.3) than in the moving coordinate system (crack detected at an average relative

depth of 0.36). The results show that the reverse dFRF was by far the best data type

for crack detection work with eigenvalue-based metrics, regardless of noise and choice of
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coordinate system. The residue-based metrics had some degree of success with all three

data types.

Although processing frequency response data of a time-varying system is not the in-

tended use of any version of AMI, the results presented in this chapter show that the concept

has potential for crack detection. The metrics change in Im(λk), change in Re(λk), change

in |Ak|, and change in Re(Ak) demonstrated good clean-signal sensitivity and sufficient

resistance to the detrimental effects of noise.

Furthermore, the concept demonstrated a promising level of reliability. For instance,

with noisy, fixed coordinate data, the crack was detectable with four of the six metrics.

These four metrics included both eigenvalue-based metrics and residue-based metrics. One

of these metrics, change in |Ak|, detected the crack with HZZ , HPG, and H
P bG data. The

results showed that crack detection through AMI processing of non-modal data is not solely

dependent on one metric, one data type, or one modal property for success.

For installed equipment, it is most likely that fixed coordinate system response will be

measured using existing probes. The easiest input to deliver to the system to induce the

response is a fixed coordinate, unidirectional excitation. The result of this combination

would be a standard, fixed coordinate system, FRF. The results suggest that the least

complex diagnostic scheme with the best chance of detecting a shaft crack would track

Re(λk) and Im(λk) from the FRFs and reverse dFRFs and Re(Ak) and |Ak| from all three

data types. Since the dFRF data can be calculated from FRF data, no additional hardware

(such as an exciter capable of delivering a complex impulse) would be required. Analyzing

moving coordinate data would not require additional equipment either, since the moving

coordinate system data can be calculated directly from the fixed coordinate system data.
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Table 18: Crack detection performance of eigenvalue-based damage metrics for clean fixed
reference frame FRF and dFRF data.

Damage Metric
Chng
Re(λk)

Chng
Im(λk)

FRF Processing (2 peaks
identified)

Number/% of Peaks Meeting
Detectability Criterion

0/0% 0/0%

Minimum Depth for
Detectable Crack

n/a n/a

Average Depth for
Detectable Crack

n/a n/a

Normal dFRF Processing
Positive Frequency Range
(3 peaks identified)

Number/% of Peaks Meeting
Detectability Criterion

0/0% 0/0%

Minimum Depth for
Detectable Crack

n/a n/a

Average Depth for
Detectable Crack

n/a n/a

Negative Frequency Range
(2 peaks identified)

Number/% of Peaks Meeting
Detectability Criterion

0/0% 0/0%

Minimum Depth for
Detectable Crack

n/a n/a

Average Depth for
Detectable Crack

n/a n/a

Reverse dFRF Processing
Positive Frequency Range
(2 peaks identified)

Number/% of Peaks Meeting
Detectability Criterion

0/0% 1/50%

Minimum Depth for
Detectable Crack

n/a 0.1

Average Depth for
Detectable Crack

n/a 0.1

Negative Frequency Range
(4 peaks identified)

Number/% of Peaks Meeting
Detectability Criterion

1/25% 2/50%

Minimum Depth for
Detectable Crack

0.4 0.3

Average Depth for
Detectable Crack

0.4 0.35
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Table 19: Crack detection performance of residue-based damage metrics for clean fixed
reference frame FRF and dFRF data.

Damage Metric
Chng
Re(Ak)

Chng
Im(Ak)

Chng
|Ak|

Chng
arg(Ak)

FRF Processing (2 peaks
identified)

Number/% of Peaks Meeting
Detectability Criterion

1/50% 0/0% 1/50% 0/0%

Minimum Depth for
Detectable Crack

0.3 n/a 0.3 n/a

Average Depth for
Detectable Crack

0.3 n/a 0.3 n/a

Normal dFRF Processing
Positive Frequency Range
(3 peaks identified)

Number/% of Peaks Meeting
Detectability Criterion

0/0% 0/0% 1/33% 0/0%

Minimum Depth for
Detectable Crack

n/a n/a 0.4 n/a

Average Depth for
Detectable Crack

n/a n/a 0.4 n/a

Negative Frequency Range
(2 peaks identified)

Number/% of Peaks Meeting
Detectability Criterion

1/50% 0/0% 1/50% 0/0%

Minimum Depth for
Detectable Crack

0.4 n/a 0.2 n/a

Average Depth for
Detectable Crack

0.4 n/a 0.2 n/a

Reverse dFRF Processing
Positive Frequency Range
(2 peaks identified)

Number/% of Peaks Meeting
Detectability Criterion

0/0% 0/0% 0/0% 0/0%

Minimum Depth for
Detectable Crack

n/a n/a n/a n/a

Average Depth for
Detectable Crack

n/a n/a n/a n/a

Negative Frequency Range
(4 peaks identified)

Number/% of Peaks Meeting
Detectability Criterion

1/25% 2/50% 1/25% 1/25%

Minimum Depth for
Detectable Crack

0.4 0.3 0.4 0.4

Average Depth for
Detectable Crack

0.4 0.35 0.4 0.4
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Table 20: Crack detection performance of eigenvalue-based damage metrics for clean mov-
ing reference frame FRF and dFRF data.

Damage Metric
Chng
Re(λk)

Chng
Im(λk)

FRF Processing (3 peaks
identified)

Number/% of Peaks Meeting
Detectability Criterion

0/0% 1/33%

Minimum Depth for
Detectable Crack

n/a 0.3

Average Depth for
Detectable Crack

n/a 0.3

Normal dFRF Processing
Positive Frequency Range
(2 peaks identified)

Number/% of Peaks Meeting
Detectability Criterion

0/0% 0/0%

Minimum Depth for
Detectable Crack

n/a n/a

Average Depth for
Detectable Crack

n/a n/a

Negative Frequency Range
(3 peaks identified)

Number/% of Peaks Meeting
Detectability Criterion

0/0% 0/0%

Minimum Depth for
Detectable Crack

n/a n/a

Average Depth for
Detectable Crack

n/a n/a

Reverse dFRF Processing
Positive Frequency Range
(3 peaks identified)

Number/% of Peaks Meeting
Detectability Criterion

0/0% 1/33%

Minimum Depth for
Detectable Crack

n/a 0.1

Average Depth for
Detectable Crack

n/a 0.1

Negative Frequency Range
(3 peaks identified)

Number/% of Peaks Meeting
Detectability Criterion

1/33% 1/33%

Minimum Depth for
Detectable Crack

0.4 0.4

Average Depth for
Detectable Crack

0.4 0.4
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Table 21: Crack detection performance of residue-based damage metrics for clean moving
reference frame FRF and dFRF data.

Damage Metric
Chng
Re(Ak)

Chng
Im(Ak)

Chng
|Ak|

Chng
arg(Ak)

FRF Processing (3 peaks
identified)

Number/% of Peaks Meeting
Detectability Criterion

3/100% 0/0% 1/33% 2/66%

Minimum Depth for
Detectable Crack

0.3 n/a 0.3 0.4

Average Depth for
Detectable Crack

0.33 n/a 0.3 0.4

Normal dFRF Processing
Positive Frequency Range
(2 peaks identified)

Number/% of Peaks Meeting
Detectability Criterion

0/0% 0/0% 0/0% 0/0%

Minimum Depth for
Detectable Crack

n/a n/a n/a n/a

Average Depth for
Detectable Crack

n/a n/a n/a n/a

Negative Frequency Range
(3 peaks identified)

Number/% of Peaks Meeting
Detectability Criterion

0/0% 0/0% 1/33% 0/0%

Minimum Depth for
Detectable Crack

n/a n/a 0.4 n/a

Average Depth for
Detectable Crack

n/a n/a 0.4 n/a

Reverse dFRF Processing
Positive Frequency Range
(3 peaks identified)

Number/% of Peaks Meeting
Detectability Criterion

0/0% 0/0% 0/0% 0/0%

Minimum Depth for
Detectable Crack

n/a n/a n/a n/a

Average Depth for
Detectable Crack

n/a n/a n/a n/a

Negative Frequency Range
(3 peaks identified)

Number/% of Peaks Meeting
Detectability Criterion

1/33% 0/0% 1/33% 1/33%

Minimum Depth for
Detectable Crack

0.4 n/a 0.4 0.1

Average Depth for
Detectable Crack

0.4 n/a 0.4 0.1
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Table 22: Crack detection performance of eigenvalue-based damage metrics for noisy fixed
reference frame FRF and dFRF data.

Damage Metric
Chng
Re(λk)

Chng
Im(λk)

FRF Processing (2 peaks
identified)

Number/% of Peaks Meeting
Detectability Criterion

0/0% 0/0%

Minimum Depth for
Detectable Crack

n/a n/a

Average Depth for
Detectable Crack

n/a n/a

Normal dFRF Processing
Positive Frequency Range
(2 peaks identified)

Number/% of Peaks Meeting
Detectability Criterion

0/0% 0/0%

Minimum Depth for
Detectable Crack

n/a n/a

Average Depth for
Detectable Crack

n/a n/a

Negative Frequency Range
(3 peaks identified)

Number/% of Peaks Meeting
Detectability Criterion

0/0% 0/0%

Minimum Depth for
Detectable Crack

n/a n/a

Average Depth for
Detectable Crack

n/a n/a

Reverse dFRF Processing
Positive Frequency Range
(2 peaks identified)

Number/% of Peaks Meeting
Detectability Criterion

0/0% 0/0%

Minimum Depth for
Detectable Crack

n/a n/a

Average Depth for
Detectable Crack

n/a n/a

Negative Frequency Range
(3 peaks identified)

Number/% of Peaks Meeting
Detectability Criterion

1/33% 1/33%

Minimum Depth for
Detectable Crack

0.4 0.3

Average Depth for
Detectable Crack

0.4 0.3
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Table 23: Crack detection performance of residue-based damage metrics for noisy fixed
reference frame FRF and dFRF data.

Damage Metric
Chng
Re(Ak)

Chng
Im(Ak)

Chng
|Ak|

Chng
arg(Ak)

FRF Processing (2 peaks
identified)

Number/% of Peaks Meeting
Detectability Criterion

1/50% 0/0% 1/50% 0/0%

Minimum Depth for
Detectable Crack

0.3 n/a 0.3 n/a

Average Depth for
Detectable Crack

0.3 n/a 0.3 n/a

Normal dFRF Processing
Positive Frequency Range
(2 peaks identified)

Number/% of Peaks Meeting
Detectability Criterion

0/0% 0/0% 1/33% 0/0%

Minimum Depth for
Detectable Crack

n/a n/a 0.4 n/a

Average Depth for
Detectable Crack

n/a n/a 0.4 n/a

Negative Frequency Range
(3 peaks identified)

Number/% of Peaks Meeting
Detectability Criterion

0/0% 0/0% 0/0% 0/0%

Minimum Depth for
Detectable Crack

n/a n/a n/a n/a

Average Depth for
Detectable Crack

n/a n/a n/a n/a

Reverse dFRF Processing
Positive Frequency Range
(2 peaks identified)

Number/% of Peaks Meeting
Detectability Criterion

0/0% 0/0% 0/0% 0/0%

Minimum Depth for
Detectable Crack

n/a n/a n/a n/a

Average Depth for
Detectable Crack

n/a n/a n/a n/a

Negative Frequency Range
(3 peaks identified)

Number/% of Peaks Meeting
Detectability Criterion

0/0% 0/0% 1/33% 0/0%

Minimum Depth for
Detectable Crack

n/a n/a 0.4 n/a

Average Depth for
Detectable Crack

n/a n/a 0.4 n/a
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Table 24: Crack detection performance of eigenvalue-based damage metrics for noisy mov-
ing reference frame FRF and dFRF data.

Damage Metric
Chng
Re(λk)

Chng
Im(λk)

FRF Processing (3 peaks
identified)

Number/% of Peaks Meeting
Detectability Criterion

1/33% 0/0%

Minimum Depth for
Detectable Crack

0.4 n/a

Average Depth for
Detectable Crack

0.4 n/a

Normal dFRF Processing
Positive Frequency Range
(2 peaks identified)

Number/% of Peaks Meeting
Detectability Criterion

0/0% 0/0%

Minimum Depth for
Detectable Crack

n/a n/a

Average Depth for
Detectable Crack

n/a n/a

Negative Frequency Range
(3 peaks identified)

Number/% of Peaks Meeting
Detectability Criterion

0/0% 0/0%

Minimum Depth for
Detectable Crack

n/a n/a

Average Depth for
Detectable Crack

n/a n/a

Reverse dFRF Processing
Positive Frequency Range
(3 peaks identified)

Number/% of Peaks Meeting
Detectability Criterion

0/0% 0/0%

Minimum Depth for
Detectable Crack

n/a n/a

Average Depth for
Detectable Crack

n/a n/a

Negative Frequency Range
(3 peaks identified)

Number/% of Peaks Meeting
Detectability Criterion

0/0% 1/33%

Minimum Depth for
Detectable Crack

n/a 0.4

Average Depth for
Detectable Crack

n/a 0.4
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Table 25: Crack detection performance of residue-based damage metrics for noisy moving
reference frame FRF and dFRF data.

Damage Metric
Chng
Re(Ak)

Chng
Im(Ak)

Chng
|Ak|

Chng
arg(Ak)

FRF Processing (3 peaks
identified)

Number/% of Peaks Meeting
Detectability Criterion

1/33% 0/0% 1/33% 0/0%

Minimum Depth for
Detectable Crack

0.3 n/a 0.4 n/a

Average Depth for
Detectable Crack

0.3 n/a 0.4 n/a

Normal dFRF Processing
Positive Frequency Range
(2 peaks identified)

Number/% of Peaks Meeting
Detectability Criterion

0/0% 0/0% 1/50% 0/0%

Minimum Depth for
Detectable Crack

n/a n/a 0.4 n/a

Average Depth for
Detectable Crack

n/a n/a 0.4 n/a

Negative Frequency Range
(3 peaks identified)

Number/% of Peaks Meeting
Detectability Criterion

0/0% 0/0% 0/0% 0/0%

Minimum Depth for
Detectable Crack

n/a n/a n/a n/a

Average Depth for
Detectable Crack

n/a n/a n/a n/a

Reverse dFRF Processing
Positive Frequency Range
(3 peaks identified)

Number/% of Peaks Meeting
Detectability Criterion

0/0% 0/0% 0/0% 0/0%

Minimum Depth for
Detectable Crack

n/a n/a n/a n/a

Average Depth for
Detectable Crack

n/a n/a n/a n/a

Negative Frequency Range
(3 peaks identified)

Number/% of Peaks Meeting
Detectability Criterion

0/0% 0/0% 0/0% 1/33%

Minimum Depth for
Detectable Crack

n/a n/a n/a 0.4

Average Depth for
Detectable Crack

n/a n/a n/a 0.4
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CHAPTER VII

DEFECT DETECTION WITH MULTIPLE DEFECTS

PRESENT

7.1 Introduction

This chapter extends the study of the use of EMA concepts for defect detection when the

processed response data are non-modal, by considering the presence of multiple system

defects. Because one of the defects investigated is the shaft crack, the response data are

non-modal, regardless of the coordinate system chosen. A detailed discussion of how the

presence of a shaft crack creates a time-varying system, and thereby non-modal response

data, was presented in Chapter V I.

7.2 Method Overview

A single shaft crack at midspan and wear of Bearing 1 are simultaneously simulated with the

standard model of the prototypical system. Both defects are introduced at levels previously

proven to be detectable with at least one metric. One defect is held constant while the

magnitude of the other defect is increased. FRF and dFRF response data sets, calculated

from time domain response data, for a range of increasing defect magnitudes are processed

by AMI. A determination of detectability is made through a comparison of the AMI-

estimated properties for the nominal and damaged cases. The analysis is repeated with

the opposite combination of constant and increasing defects. Although it is unlikely that

two detectable defects will exist in a machine at one time, it is worthwhile to investigate

their possible interaction when one defect is small enough that equipment failure is not

imminent. The chance that two detectable defects will be present at the same time, and

increasing at approximately the same rate, is so remote that the scenario is not addressed.

This multiple defect study is a preliminary analysis which is limited in resolution and

focused on certain damage metrics that have been shown to give good results in previous
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chapters. The full ranges of shaft crack depth and increased bearing clearance used in

previous studies are investigated here, but not every intermediate value of crack depth

or bearing clearance is simulated. In the shaft crack study presented in Chapter V I,

it was shown that fixed coordinate system XY Z data delivered better performance than

moving coordinate system data and that the metric change in Im(λk) detected the smallest

crack. In the bearing wear study presented in Chapter V , percent change in Im(λk)

demonstrated the greatest sensitivity of any metric. (Refer to the definitions of “sensitivity”

and “consistency” in the Discussion section of Chapter V I.) The metric percent change

in |Ak| was the next most sensitive metric in the bearing wear study, and it also delivered
greater consistency than the percent change in Im(λk) metric. (The related change in |Ak|
metric also performed well in the shaft crack study.) Therefore, in the multiple-defect

study, only the two promising damage metrics change in Im(λk) and change in |Ak| are
evaluated. Moving coordinate system data is not considered. In an effort to concentrate

on generating the most useful results, only noisy data, constructed in the same manner as

in the shaft crack study, is processed.

The time domain solution procedure used for the standard model of the prototypical

system in Chapter V I is used in this study also. The valid frequency range of the standard

model remains 0 to 60 nondimensional frequency units. The same type of graphical de-

tectability analysis used in the shaft crack study for non-modal data is employed here (see

Figure 16). The noisy data, fixed coordinate system detectability band values for Im(λk)

and |Ak|, presented in the shaft crack study (see Table 16), are also valid for this study.
The conventions associated with performing EMA on non-modal data, which were de-

fined in the shaft crack study, are used here as well. The results of AMI and Two-Sided

AMI processing of non-modal data are referred to as “eigenvalues” and “residues” to avoid

the introduction of unnecessary complexity in the discussion. Prominent sections of a

frequency response plot to which data is fit are called “identified peaks,” not “modes.”
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7.3 Analysis Method

The system is operated at a constant rotation rate of 1.35 nondimensional frequency units.

For each operating condition, system responses to both Y -direction and Z-direction impulses

are required. The impulse excitation occurs at Bearing 1, and the equations of motion,

defined in the fixed coordinate system, are solved in the time domain. The fixed coordinate

system time domain responses to a given impulse are contaminated with noise and indepen-

dently converted to frequency domain. The parameters for the FFT calculations are T = 8

nondimensional time units and N = 512 sampling intervals. The same exponential window

described previously in the shaft crack study is used here. The corresponding dFRFs are

calculated from the FRFs. The FRF and dFRF data sets are processed separately by

AMI and Two-Sided AMI. The response of the nominal system is available from the shaft

crack study. The four different operating conditions (nominal plus three levels of defect)

for each analysis (increasing bearing clearance with constant crack, and increasing crack

depth with constant bearing clearance) are shown in Table 26. “Relative Crack Depth”

is a percentage of the diameter of the prototypical system’s shaft. Note that all increased

clearance values investigated are still within the range of normal operations (H8 fit class),

as defined in the bearing wear study. As in the shaft crack study, each identified peak is

tracked independently as the defect magnitude increases.

Table 26: Operating conditions for standard model of prototypical system in dual defect
study.

Operating Condition
Bearing

Clearance (µm)
Brg Clearance
Increase

Relative
Crack Depth

Increasing Bearing
Clearance Analysis
1 (nominal) 50 0 0
2 60 20% 0.3
3 70 40% 0.3
4 89 79% 0.3
Increasing Relative
Crack Depth Analysis
1 (nominal) 50 0% 0
2 60 20% 0.3
3 60 20% 0.35
4 60 20% 0.4

132



7.4 Results

The multiple-defect time domain response plots are similar, at the resolution of visual

inspection, to the time domain responses generated in the shaft crack study. Refer to the

figures presented previously, including Figure 23, to see the form of the response.

The qualitative effects of multiple defects on the system frequency response are illus-

trated below in two cases. In the first case, a constant-magnitude, detectable shaft crack of

relative depth 0.3 was present as the clearance in Bearing 1 was increased from nominal to

the maximum for the H8 fit class. Figures 47, 48, and 49 show noisy data HZZ , HPG, and

HP bG in the fixed XY Z coordinate system for the prototypical system with a crack of 0.3

relative depth. In each figure, the dotted line represents response with nominal bearings,

and the solid line represents response with Bearing 1 worn to a 79% clearance increase.

These curves represent the minimum and maximum clearances investigated, and, therefore,

serve to illustrate the range of system responses encountered in the analysis. For the stan-

dard FRF, the general shape and amplitude of the curves were similar for both operating

conditions. For the normal dFRF data, increased bearing clearance resulted in increased

|HPG| over the entire frequency range. The same effect was evident with
¯̄
HP bG¯̄. Addi-

tionally, a prominent peak in the low frequency response of the cracked shaft system with

nominal bearings broadened with the addition of bearing wear, so as to became visually

insignificant in the reverse dFRF data format.

In the second case, the clearance in Bearing 1 was held constant at a worn value while a

shaft crack was introduced. Refer to Figures 50, 51, and 52. In each figure, the response

of the system with an intact shaft and bearing clearance increased 20% from nominal is

represented by the dotted line, and the response for the system at the same bearing clearance

with a 0.4 relative depth shaft crack is represented by the solid line. These curves bound

the system responses encountered in the analysis because they are associated with the

smallest and largest cracks evaluated. Slight amplitude differences were evident in both

the Re(HZZ) and Im(HZZ) subplots due to the presence of a shaft crack (see Figure 50).

Also, the magnitude of HZZ was greater in the cracked shaft case for all nondimensional

frequency units greater than 5. The difference was most obvious above 35 nondimensional
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Figure 47: FRF HZZ at Bearing 1, due to impulse at Bearing 1, for system with crack
of 0.3 relative depth. Nominal bearing clearance: dotted line. 79% increase in bearing
clearance: solid line. Noisy, windowed, fixed XY Z data.

frequency units. Slight increases in both |HPG| (Figure 51) and
¯̄
H
P bG¯̄ (Figure 52) over

most of the frequency range, due to the inclusion of the shaft crack, were visible. Note

that the inclusion of the crack had the opposite effect in the very low frequency range (−2
to 2 nondimensional frequency units) of both plots.

Ten detectability charts were required to analyze all the combinations of the 2 damage

metrics and the 5 data types (HZZ , positive and negative frequency rangeHPG, and positive

and negative frequency range HP bG). Only noisy, fixed XY Z coordinate system data was

used in the study. Note that, as in the shaft crack study, the properties estimated from the

normal and reverse dFRFs were separated based on the frequency range of the processed

response data (positive or negative) simply to facilitate visual detectability analysis by

reducing the number of curves on the plot. The complete set of detectability data is

presented in tabular form and discussed below.
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Figure 48: dFRF HPG at Bearing 1, due to impulse at Bearing 1, for system with crack
of 0.3 relative depth. Nominal bearing clearance: dotted line. 79% increase in bearing
clearance: solid line. Noisy, windowed, fixed XY Z data.

7.4.1 Constant Shaft Crack and Increasing Bearing Wear

The outcome of this analysis is presented in Table 27. (Refer to the explanation of the

format of the results tables in Chapter V I.) With standard FRF data, bearing wear was not

detectable with either change in Im(λk) or change in |Ak|. Bearing wear was detectable

with both metrics for normal dFRF data. The metric change in Im(λk) detected the

defect with both positive and negative frequency range data, but only at the most advanced

wear state (79% clearance increase). Change in |Ak| demonstrated greater sensitivity by
detecting wear at 20% clearance increase in both frequency ranges. No level of bearing

wear was detectable by the change in Im(λk) metric with reverse dFRF data, but the

change in |Ak| metric detected wear in both frequency ranges using reverse dFRF data.
With negative frequency range data, wear was detectable at 20% clearance increase. The

best combination of metric and data type was change in |Ak| and positive and negative
frequency range normal dFRF data. Here, bearing wear was detectable with four of five
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Figure 49: dFRF HP bG at Bearing 1, due to impulse at Bearing 1, for system with crack
of 0.3 relative depth. Nominal bearing clearance: dotted line. 79% increase in bearing
clearance: solid line. Noisy, windowed, fixed XY Z data.

identified peaks. The average level of detectable wear was a 30% increase in clearance, and

the minimum amount of detectable wear was a 20% clearance increase.

7.4.2 Constant Bearing Wear and Increasing Shaft Crack

The detectability data for this case is presented in Table 28. Change in Im(λk) was not

able to detect a crack of any depth with either standard FRF data or normal dFRF data.

With reverse dFRF data, change in Im(λk) detected the crack with one of two identified

peaks in both the positive and negative frequency ranges. The minimum relative crack

depth required for detection was 0.3 in both cases. Change in |Ak| was able to detect a 0.4
relative depth crack with FRF data and a 0.3 relative depth crack with negative frequency

range normal dFRF data. Crack detection with this metric was not possible with reverse

dFRF data.
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Figure 50: FRF HZZ at Bearing 1, due to impulse at Bearing 1, for system with 20%
increase in bearing clearance. Intact shaft: dotted line. Shaft with crack of 0.4 relative
depth: solid line Noisy, windowed, fixed XY Z data.

7.5 Discussion

The study of defect detection through the use of EMA techniques on non-modal data was

continued using the standard model of the prototypical system configured with multiple

defects. The time domain response of the system was calculated and converted to the fre-

quency domain. This frequency domain response, in the forms of both standard frequency

response functions (FRFs) and directional frequency response functions (dFRFs), was used

to investigate the performance of the damage metrics change in the imaginary part of the

eigenvalue (Im(λk)) and change in the magnitude of the residue (|Ak|). Both metrics had
performed well in previous single-defect testing. Experimental modal analysis of the re-

sponse data using the Algorithm of Mode Isolation (AMI) for FRF data and Two-Sided

AMI for dFRF data yielded system parameters in terms of “eigenvalues” and associated

“residues.” The non-modal data were processed by AMI and Two-Sided AMI as if it were

modal data. A system defect was said to be detectable with a metric if the change in the
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Figure 51: dFRF HPG at Bearing 1, due to impulse at Bearing 1, for system with 20%
increase in bearing clearance. Intact shaft: dotted line. Shaft with crack of 0.4 relative
depth: solid line Noisy, windowed, fixed XY Z data.

metric due to the presence of the defect was greater than AMI’s estimation error in the

processing of response data generated by the standard model of the prototypical system

in nominal condition. A single transverse shaft crack, located at mid-span, and bearing

wear, simulated with increased clearance in one bearing, were the defects examined. The

time-varying nature of the cracked system prevented an analytical model analysis to gener-

ate comparison properties of modal data. Two simulations were conducted. In the first,

a crack of detectable magnitude was put in the system and held at a constant size while

bearing clearance was increased. In the second, the opposite combination of constant- and

increasing-magnitude defects was used. For each system configuration tested, the HZZ

FRF and the HPG and H
P bG dFRFs were processed by AMI and Two-Sided AMI, respec-

tively. All excitation and measurement was conducted at the bearing closer to the disk.

All testing was done with fixed coordinate system data contaminated with white noise in

the time domain. The specific objective of this work was to determine what effect the
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Figure 52: dFRF H
P bG at Bearing 1, due to impulse at Bearing 1, for system with 20%

increase in bearing clearance. Intact shaft: dotted line. Shaft with crack of 0.4 relative
depth: solid line Noisy, windowed, fixed XY Z data.

presence of a constant-magnitude, detectable defect would have on detectability of another

defect of increasing magnitude. The broader objective was to more fully understand the

practice of conducting EMA on non-modal data.

7.5.1 Constant Shaft Crack and Increasing Bearing Wear

Tables 13 and 14 show bearing wear detection performance of eigenvalue- and residue-based

damage metrics for single-defect operating conditions. The multiple-defect data is in Table

27. Comparison of the performance of the eigenvalue-based metrics with single-defect data

and multiple-defect data reveals the expected trends. The sensitivity of the metric based

on Im(λk) is reduced, due to the presence of the crack. For example, with FRF data,

bearing wear was detectable, at an average increase in bearing clearance of 35%, in the

single-defect case, but no level of wear was detectable in the multiple-defect study. With

dFRF data, a 20% increase in bearing clearance was detected in the single-defect study. In

the multiple-defect study, no wear was detected with reverse dFRF data, and the lowest
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level of bearing wear detectable with normal dFRF data was a 79% clearance increase. A

similar trend was apparent in the performance of the metrics based on |Ak|. In general,

the presence of an additional detectable defect reduced, but did not totally eliminate, the

metrics’ ability to detect bearing wear.

It is important to keep in mind that for bearing wear, the comparisons between single-

defect data and multiple-defect data are not direct. The single-defect testing was done with

clean data generated through the frequency domain solution of the simplified model of the

prototypical system. The multiple-defect testing was done with noisy data generated from

the time domain solution of the standard model of the prototypical system. Furthermore,

slightly different metrics (percent changes versus changes) were used in the two studies.

Even with all the differences between the single-defect testing and the multiple-defect testing

considered, the results confirm a conclusion drawn in the bearing wear study of Chapter V .

Residue-based metrics show potential for hydrodynamic bearing wear detection.

An important observation that can be made from a review of only the data in Table

27 is that the presence of a detectable shaft crack did not prevent the detection of bearing

wear in the range of normal operating clearances by both change in Im(λk) and change in

|Ak|.

7.5.2 Constant Bearing Wear and Increasing Shaft Crack

Tables 22 and 23 show shaft crack detection performance of eigenvalue- and residue-based

damage metrics for single-defect operating conditions, and the multiple-defect study data is

in Table 28. Unlike the constant crack / increasing wear analysis, the comparison between

single-defect and multiple-defect data for this analysis is direct because both noisy data

and the same metrics were used in each study. The sensitivity of the change in Im(λk)

metric with reverse dFRF data was not impacted by the presence of bearing wear. The

minimum relative depth for a detectable crack was 0.3 for both single- and multiple-defect

data. Changes in the metric’s sensitivity with standard FRF data and normal dFRF data

could not be evaluated because no crack was detectable with the metric using either data

type in either the single-defect study or the multiple-defect study.
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The sensitivity of the change in |Ak|metric was lower in the multiple-defect study (crack
detected at 0.4 relative depth) than in the single-defect study (crack detected at 0.3 relative

depth) with standard FRF data. With normal dFRF data, the metric’s sensitivity actually

improved slightly in the multiple-defect study, relative to the single-defect study. The

introduction of multiple defects caused the metric to be unable to detect the crack with

reverse dFRF data. However, in the single-defect study, change in |Ak| detected a 0.4
relative depth crack with reverse dFRF data. Note that for each data type presented in

Tables 23 and 28 and discussed here, the crack was detected by change in |Ak| with only
one identified peak.

7.5.3 General

The performance of the metrics change in Im(λk) and change in |Ak| supports one con-
clusion drawn in the shaft crack study in Chapter V I. Although AMI is structured to

work with modal data, it was still possible to successfully perform defect detection using

non-modal response data. Furthermore, the presence of one constant-magnitude detectable

defect did not prevent the detection of a second defect of increasing magnitude through AMI

processing of non-modal data.
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Table 27: Defect detection performance of damage metrics with two defects present. Crack
held constant at 0.3 relative depth while bearing clearance increased. Noisy, fixed reference
frame data.

Damage Metric
Chng
Im(λk)

Chng
|Ak|

FRF Processing (2 peaks
identified)

Number/% of Peaks Meeting
Detectability Criterion

0/0% 0/0%

Minimum Clearance Increase
for Detectable Wear

n/a n/a

Average Clearance Increase
for Detectable Wear

n/a n/a

Normal dFRF Processing
Positive Frequency Range
(3 peaks identified)

Number/% of Peaks Meeting
Detectability Criterion

1/33% 2/66%

Minimum Clearance Increase
for Detectable Wear

79% 20%

Average Clearance Increase
for Detectable Wear

79% 30%

Negative Frequency Range
(2 peaks identified)

Number/% of Peaks Meeting
Detectability Criterion

1/50% 2/100%

Minimum Clearance Increase
for Detectable Wear

79% 20%

Average Clearance Increase
for Detectable Wear

79% 30%

Reverse dFRF Processing
Positive Frequency Range
(2 peaks identified)

Number/% of Peaks Meeting
Detectability Criterion

0/0% 1/50%

Minimum Clearance Increase
for Detectable Wear

n/a 79%

Average Clearance Increase
for Detectable Wear

n/a 79%

Negative Frequency Range
(2 peaks identified)

Number/% of Peaks Meeting
Detectability Criterion

0/0% 1/50%

Minimum Clearance Increase
for Detectable Wear

n/a 20%

Average Clearance Increase
for Detectable Wear

n/a 20%
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Table 28: Defect detection performance of damage metrics with two defects present. Bear-
ing clearance held constant at 20 percent increase from nominal while crack depth increased.
Noisy, fixed reference frame data.

Damage Metric
Chng
Im(λk)

Chng
|Ak|

FRF Processing (2 peaks
identified)

Number/% of Peaks Meeting
Detectability Criterion

0/0% 1/50%

Minimum Depth for
Detectable Crack

n/a 0.4

Average Depth for
Detectable Crack

n/a 0.4

Normal dFRF Processing
Positive Frequency Range
(3 peaks identified)

Number/% of Peaks Meeting
Detectability Criterion

0/0% 0/0%

Minimum Depth for
Detectable Crack

n/a n/a

Average Depth for
Detectable Crack

n/a n/a

Negative Frequency Range
(2 peaks identified)

Number/% of Peaks Meeting
Detectability Criterion

0/0% 1/50%

Minimum Depth for
Detectable Crack

n/a 0.3

Average Depth for
Detectable Crack

n/a 0.3

Reverse dFRF Processing
Positive Frequency Range
(2 peaks identified)

Number/% of Peaks Meeting
Detectability Criterion

1/50% 0/0%

Minimum Depth for
Detectable Crack

0.3 n/a

Average Depth for
Detectable Crack

0.3 n/a

Negative Frequency Range
(2 peaks identified)

Number/% of Peaks Meeting
Detectability Criterion

1/50% 0/0%

Minimum Depth for
Detectable Crack

0.3 n/a

Average Depth for
Detectable Crack

0.3 n/a
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CHAPTER VIII

SUMMARY AND CONCLUSIONS

Hydrodynamic bearing wear detection technology is not very reliable. Most oil analysis

methods are not instantaneous, and the vibration signature methods rely on ruling out other

defects to arrive at the diagnosis of bearing wear. Many shaft crack detection methods

depend on transient operation of the equipment and/or very accurate analytical models of

the equipment. Both bearing wear and shaft cracks change the physical characteristics, and

therefore the modal properties, of the system. With the proper method, identifying changes

in the modal properties could be equivalent to identifying equipment defects. Across the

business spectrum, owners typically demand that their equipment operates for long periods

of time at the design point. Taking these facts into account, there is a need for a method to

extract modal parameters from a noisy signal taken with existing instrumentation during

normal operation of rotating equipment.

In Chapter III, an analytical model of a simple rotordynamic system from the literature

was modified so that it could simulate the effects of a worn hydrodynamic bearing and a

transverse shaft crack. The existing model was termed the “simplified” model, and the

modified model was called the “standard” model. Excitation and measurement points for

both models were limited to the bearing locations to accurately simulate installed equip-

ment. The bearing wear was modeled as a uniform increase in clearance. Per published

works, this type of wear simulation provides changes in stiffness and damping of the correct

sign and order of magnitude. The shaft crack was modeled as an undamped, gaping crack,

following a well-known method from the literature. A gaping crack model exhibits most

of the effects associated with a crack, while being simpler to implement than a breathing

crack model. The simplified model was solved in the frequency domain in the bearing wear

study and in the testing of a new EMA routine. The standard model was solved in the

time domain in studies involving shaft crack detection.
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Although development and testing of the directional frequency response function (dFRF)

is chronicled in the literature, the author was unable to find any published reports of the

use of dFRFs in experimental modal analysis. In Chapter IV , the existing experimental

modal analysis routine, Algorithm of Mode Isolation (AMI) was modified to process dFRFs,

and named Two-Sided AMI. This was done to take advantage of the reported benefits of

the dFRF: completely separating the backward and forward modes for an isotropic system,

and indicating the presence of system asymmetry through changes in the magnitude of

the reverse dFRF. The analysis frequency range was increased to cover both positive and

negative values to account for the properties of the dFRF, standard AMI’s reliance on

the conjugate-even property of the FRF was removed, and a new complex least squares

curve-fitting routine was developed.

Analysis of two simple systems was conducted with both standard and Two-Sided AMI.

The testing showed that, for an isotropic system, processing the dFRF lead to the iden-

tification of more modes than the processing of the FRF, due to forward and backward

modes being split into the positive and negative frequency ranges of the dFRF. The testing

also proved that the presence of system anisotropy negated the advantage that processing

the dFRF held over processing the FRF, because both forward and backward modes gave

significant contributions in both positive and negative frequency ranges. Additionally, the

results showed that standard and Two-Sided AMI offer comparable levels of performance

when processing standard FRFs. Increased damping levels were shown to decrease the total

number of modes identified (relative to the number of modes in the analytical solution), as

well as to decrease the accuracy of estimates for Re(λk).

Work using the simplified model of the prototypical system to determine if hydrodynamic

bearing wear could be detected before the bearing clearance level exceeded normal operating

limits was discussed in Chapter V . Both the FRF and the dFRF data formats were

used in the testing. Four eigenvalue-based metrics and four modal residue-based metrics

for bearing wear were evaluated. The deleterious effects of damping on the number of

modes detected and on the accuracy of the estimates for Re(λk), as seen in Chapter IV ,

were demonstrated again. The most sensitive eigenvalue-based metric was percent change

145



in Im(λk); however, all four residue-based metrics exhibited better consistency in mode

detection than the eigenvalue-based metrics. The most promising residue-based metric,

percent change in |Ak| detected a 26% average increase in bearing clearance. Processing

FRF data gave better results than processing dFRF data. This preliminary study indicated

that detection of wear, while the bearing is still operating in the normal range of clearances,

is possible with AMI. This could lead to an improvement in the current state of the art,

since bearing wear could become a primary diagnosis.

Performing experimental modal analysis (EMA) on non-modal data, for the purpose of

shaft crack detection, was explored in Chapter V I through the use of the standard model

of the prototypical system. Since the cracked configuration of the prototypical system is

time-varying with respect to both the fixed and moving coordinate systems, only non-modal

response data was available. AMI and Two-Sided AMI processed this non-modal data as

if it were modal data. Six metrics were evaluated.

The metrics change in Im(λk), change in |Ak|, and change in Re(Ak) delivered the three

best combinations of sensitivity (measure of how small a defect is detectable) and consistency

(measure of how many data types the defect is detectable with) in both the moving and

fixed coordinate systems with clean data. (In the moving coordinate system with clean

data, change in arg(Ak) demonstrated sensitivity at the level of change in Im(λk) with

lower consistency.) The inclusion of time domain noise led to decreases in consistency and

sensitivity for each metric. Shaft cracks of 0.1 and 0.3 relative depths were detected using

the change in Im(λk)metric with clean and noisy fixed coordinate system data, respectively.

For noisy data, the results showed that this metric had better crack detection sensitivity

with fixed coordinate system data (0.3 relative depth crack detected), as compared with

moving coordinate system data (0.4 relative depth crack detected). The metric change

in Re(λk) demonstrated below average sensitivity and excellent resistance to the effects of

noise for both fixed and moving coordinate data. Change in Re(λk) detected a 0.4 relative

depth crack regardless of noise state or coordinate system. For noisy data, the sensitivity of

the residue-based metrics with data from the fixed coordinate system data was better than

the sensitivity with moving coordinate system data. With noisy, fixed coordinate system

146



data, both change in |Ak|, and change in Re(Ak) detected a 0.3 relative depth crack.

Crack detection through EMA processing of noisy, non-modal data was found to be

feasible. The results suggested that the least complex diagnostic scheme with the best

chance of detecting a shaft crack would track Re(λk), Im(λk), Re(Ak), and |Ak| from fixed

coordinate system FRF and dFRF data. Implementation of this technique could lead

to improved shaft crack detection methods in industry. A change in operating condition

and/or a detailed analytical model of the system might no longer be required, as they

currently are with many existing methods. There is a need for additional study in this

area.

AMI processing of non-modal data for crack detection demonstrated a promising level

of reliability. For instance, with noisy, fixed coordinate data, the crack was detectable with

four of the six metrics. Both types of metrics (eigenvalue-based and residue-based) were

included in the group of four. One of these four metrics, change in |Ak|, detected the
crack with HZZ , HPG, and H

P bG data. The results showed that the concept is not solely

dependent on one metric, one data type, or one modal property for success.

A well-known indicator of a shaft crack, the peak in the system frequency response

at two times the shaft run speed (2X), was not addressed in this work. The particular

combination of shaft speed used in the analysis and the properties of the system model led

to the 2X peak being very close to a mode of the nominal system. Zooming into the FRF

in the low-frequency range showed that the 2X peak did indeed appear when the crack

was introduced into the system model. The magnitude of the adjacent system peak was

considerably larger than that of the 2X peak, however. This amplitude difference, coupled

with the width of the system peak resulting from high levels of system damping, made the

identification of the 2X peak by AMI and Two-Sided AMI essentially impossible. Since

identifying the 2X peak and tracking changes in it as the crack progressed were not goals

of the study, the proximity of the 2X peak to a nominal system mode did not impact the

results. It is important to note that an investigator should be aware of the implications

of the appearance of a 2X peak while analyzing rotating equipment with AMI. If the

combination of nominal system modes and shaft run speed is favorable, a new 2X peak,
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resulting from a shaft crack, would be identified by AMI. Furthermore, if the investigator

suspects a shaft crack, the residual FRF, which is the original FRF minus all modal content

identified by AMI, could be enlarged and scanned visually in the appropriate frequency

range.

In Chapter V II, the investigation of defect detection by conducting EMA on non-modal

data was continued in a multiple-defect study using the standard model of the prototypical

system. The metrics change in Im(λk) and change in |Ak|, which delivered the best
performance in the two single-defect studies involving bearing wear and a shaft crack, were

evaluated. Only noisy, fixed coordinate system data were used.

Shaft cracks of 0.3 relative depth and bearing wear as light as a 20% increase in clear-

ance were detected in the presence of another defect. The metrics change in Im(λk) and

change in |Ak| were proven to be effective at detecting bearing wear in a multiple-defect
environment. The normal dFRF, HPG, was the best data type for bearing wear detection,

and the HZZ FRF was the worst. Both metrics were able to detect a shaft crack in the

multiple-defect study, and crack detection was possible all three data types. For the case

of constant bearing wear and increasing shaft crack depth, it was shown that the crack

detection performance of both metrics was robust regarding the presence of multiple types

of defects. The constant-depth crack with increasing bearing wear analysis showed that

the sensitivity to bearing wear of the change in Im(λk) and the change in |Ak| metrics was
reduced, but not eliminated, by the presence of the crack. (Note that the performance

of change in |Ak| supports conclusions about residue-based metrics drawn in Chapter V .)
Bearing wear in the range of normal operating clearances was detectable with both metrics

in the multiple-defect study. The results suggest that AMI would be usable for defect

detection of rotating machinery in the presence of multiple system defects, even though the

response data are not that of a time-invariant system.
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CHAPTER IX

FUTURE WORK

A number of areas for future research have been identified during the course of this project.

It has been demonstrated that it is possible to detect hydrodynamic bearing wear and a

shaft crack in a simple rotordynamic system by analyzing eigenvalues and modal residues

estimated by different versions of AMI. Since there are documented needs for improved, on-

line methods to detect these defects, more detailed analysis should be done. The concepts

developed here should be evaluated in greater depth, with both physical equipment and

more complex analytical models.

Introductory experimental work with physical equipment should employ systems of the

same level of complexity as the prototypical system investigated here. That is, the system

should have a single shaft with one disk and plain journal bearings. The analytical model

could easily be modified to account for the physical system’s geometry. The analyses

described in Chapters V , V I, and V II of the present work could be repeated with the

physical system. The updated analytical model could provide comparison data to further

evaluate the defect detection techniques described here. If any damage metrics still show

promise after this introductory experimental work, a more complicated physical system (and

corresponding analytical model) should be developed and tested. Some obvious extensions

in the move to a more complicated physical system are fluid-loaded rotors, shaft seals, and

more advanced hydrodynamic bearings.

The crack detection work should be extended to machinery supported by rolling element

bearings. The hydrodynamic bearings in the prototypical system provide significant damp-

ing compared to rolling element bearings. The new investigation would reveal whether this

damping helps or hinders crack detection. A large segment of installed equipment is sup-

ported on rolling element bearings, and the knowledge from this additional study would

help determine which classes of equipment would be best suited to crack detection using
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AMI. The goal of the additional work would not be to detect defects in the rolling element

bearing, since there is mature, available technology to do so.

In the studies presented here, AMI and Two-Sided AMI processed frequency response

data over the complete frequency range of a given data set. When the profile of the data

made it impossible for AMI to extract additional modes (or peaks), the Subtraction phase

ended. The author did not manually “zoom in” to a smaller frequency range and allow

AMI to continue mode identification. This was done to evaluate the hypothesis under

the harshest condition: the situation in which the technician in the field has no previous

knowledge of the machine’s vibratory characteristics. Two opportunities for future work

present themselves. First, a determination of whether there is improved defect detection

performance when the user manually limits the frequency range of AMI operation in order

to concentrate on modes of the nominal system or identified peaks resulting from previous

damage states is in order. Second, if this leads to improved performance, development of

an automated method to “zoom in” to the appropriate frequency ranges would be of great

benefit.

Allen and Ginsberg have developed a multi-input-multi-output (MIMO) version of AMI

to improve standard AMI’s performance in the detection of close modes [3]. Performance

of the modified algorithm, relative to other existing EMA methods, with response data

from an actual structure is discussed in [3]. In the literature, the dFRF has been shown to

effectively separate the closely spaced forward and backward modes of rotating equipment,

and the present work demonstrated that this is a great aid in EMA. However, this benefit

only occurs with isotropic systems. Processing standard FRFs with Allen and Ginsberg’s

MIMO version of AMI may lead to an identification method for backward and forward

modes that is not subject to the effects of system anisotropy.

A major limitation on the work presented here was the time required for time domain

solutions of the standard model of the prototypical system. If further work is to be done

using response data generated by an analytical model, increasing the speed of solution is

a good topic for exploration. Investigating Floquet theory appears to be a logical initial

activity.
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Variable-speed testing would yield a large amount of diagnostic information for ma-

chinery that operates in such a manner. Since system stiffness and damping vary with

speed in rotating structures, system natural frequencies and damping ratios also vary with

speed. The basic premise of the constant-speed analysis was to detect changes in system

physical parameters by detecting changes in AMI estimates of eigenvalues and residues.

Since measurement and excitation was only at the bearing locations, there was a chance

to miss modes in the analysis if they had very low response at the measurement locations.

Variable-speed testing would give an improved opportunity to detect system physical pa-

rameter changes because the number of data sets (the number of shaft speeds analyzed)

would be much greater. Testing over a range of shaft speeds would increase the probability

of having modes with non-zero response at the measurement locations.

151



APPENDIX A

BEARING COEFFICIENTS

Vance [65] and Lee [38] presented the stiffness and damping coefficients of plain hydrody-

namic bearings using the short-bearing approximation. An overview of the derivation of

the coefficients is given in this Appendix, and the equation for each stiffness and damping

coefficient is presented. The method used to calculate specific values of the coefficients,

based on operating conditions and the physical characteristics of the prototypical system,

is discussed.

A.1 Derivation

Considering linearized stiffness and damping coefficients and assuming small displacements

and velocities relative to a steady state equilibrium position yields the equilibrium equation

in terms of bearing coefficients. FY

FZ

 = −

 kY Y kY Z

kZY kZZ


 Y

Z

−
 cY Y cY Z

cZY cZZ


 Ẏ

Ż

 (84)

Here, kij and cij are the dimensional stiffness and damping coefficients, and Y and Z

are displacements in the Y and Z directions of the fixed XY Z coordinate system used in

the thesis. Forces are represented by F . Solution of Reynolds’ equation is required to

determine the nonlinear forces generated by the bearing’s fluid film. The general two-

dimensional Reynolds’ equation, ignoring the squeeze-film term and expressed in stationary

cylindrical coordinates (r, θ,X), is

∂

∂X

·
h3

6µ

∂P

∂X

¸
+
1

R2
∂

∂θ

·
h3

6µ

∂P

∂θ

¸
= Ω

∂h

∂θ
. (85)

Here, h is the film thickness, P is the pressure in the film, R is the journal radius, µ

is fluid viscosity, and Ω = 2πN rad/s. (N is the shaft speed in RPM.) The short-

bearing approximation is valid for bearings with length-to-diameter ratios less than 0.3,
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or L/D < 0.3. The approximation states that since the pressure gradient in the axial

(X) direction is much greater than the pressure gradient in the angular (θ) direction, the

pressure gradient in the angular direction can be set to zero.

∂P

∂X
À ∂P

∂θ

∂P

∂θ
≡ 0

(86)

Substituting this approximation into Eq. 85 leads to a simplified version of Reynold’s

equation.
∂

∂X

·
h3

6µ

∂P

∂X

¸
= Ω

∂h

∂θ
. (87)

The Half Sommerfeld (or π-film) boundary condition is imposed on the pressure distribution

of the lubricant inside the bearing. Pressure is positive in the region of the bearing where

the fluid film generates load support. The pressure is set to 0 to in the region where the

film ruptures and does not provide load support.

P (θ,X) > 0 for 0 < θ < π

P (θ,X) = 0 for π ≤ θ ≤ 2π
(88)

Using these boundary conditions, the forces generated by the fluid film are determined by

integrating the pressure distribution P (θ,X) over the area of positive pressure under steady

state operating conditions. The bearing stiffness and damping coefficients are related to

the fluid film forces by Eq. 84. The resulting coefficients are nondimensionalized in both

[65] and [38] in the following manner.

Kij =
kijC

W

Cij =
cijC

W

(89)

Here, Kij and Cij are nondimensional stiffness and damping coefficients, kij and cij are the

dimensional stiffness and damping coefficients in Eq. 84, C is the bearing’s radial clearance,

and W is the load on the bearing.
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The nondimensional stiffness coefficients are
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The nondimensional damping coefficients are
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2π
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In Eqs. 90 and 91, is the bearing’s eccentricity ratio. This quantity is defined as the ratio

of eccentricity (e) to radial clearance (C).

=
e

C
(92)

The eccentricity function, Q ( ) is

Q ( ) =
1

[π2 (1− 2) + 16 2]1.5
(93)

A.2 Coefficient Calculation

The nondimensional Sommerfeld number is used in the calculation of the proper values of

the stiffness and damping coefficients for a specific operating condition. The Sommerfeld

number, S, can be written in terms of the geometry of the bearing, the fluid viscosity, and

the load on the bearing.

S =
µN

W

µ
R

C

¶2 L3
D

. (94)
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The Sommerfeld number can also be expressed in terms of eccentricity ratio.

S =

¡
1− 2

¢2
π
p
π2 (1− 2) + 16 2

. (95)

In the thesis, the load on each bearing, W , is taken to be half of the weight of the

system (shaft plus attached disk), expressed in Newtons. For a given lubricant, operating

speed, bearing geometry, and system weight, the right-hand side of Eq. 94 is fully defined.

The resulting value of the Sommerfeld number, S, is then substituted into the left-hand

side of Eq. 95. Standard root-finding techniques are used to solve for the corresponding

eccentricity ratio, . The eccentricity ratio is then substituted into Eqs. 93, 90 and 91

to calculate the corresponding nondimensional stiffness and damping coefficients of the

bearing.
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