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SUMMARY 

The scenario for the interrupted time series quasi experiment 

(ITSQE) is a set of n - n^ + ^ observations recorded at equispaced 

epochs of time, with an intervention or treatment introduced after the 

vij^ observation. Since the observations are correlated, autoregressive-

moving average models have been used to describe the behavior of obser­

vations obtained from the ITSQE. However, in order to take into account 

that the intervention has the potential to affect the post-intervention 

level of the time series, an additive shift parameter is included in the 

post-intervention model. In this dissertation, the models for the 

ITSQE were made even more flexible by taking into account that the 

intervention also has the potential to affect the variability-

covariability of the process. These models were designated the multi-

consequence intervention models. 

Two methods of parameter estimation were investigated for the 

multi-consequence intervention model with particular emphasis directed 

towards the first and second order multi-consequence intervention model. 

The first method was designated "iterative conditional least squares 

estimation," and the basic idea is to transform the n original obser­

vations to another set of observations amenable to statistical linear 

model analysis. A search is conducted over the permissible parameter 

space of the moving average parameters until those values are found 

which minimize the sum of squared residuals of the transformed obser­

vations. The method of maximum likelihood was the second method. 
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While closed form expressions were obtained for the level and shift 

parameters, no such expressions could be obtained for the moving average 

parameters. However, an algorithm was presented for efficiently calcu­

lating the likelihood function. One advantage of using the maximum 

likelihood method is that an asymptotic likelihood ratio test can be 

employed to test whether the pre-intervention moving average parameters 

are equal to the post-intervention moving average parameters. The 

Appendices contain computer programs for both methods of estimation. 

The detection of a shift in the level of an underlying process 

is also a problem of utmost importance in the area of quality control. 

Since the quality control scenario involves repeated samples of size n, 

the monitoring of the process level is usually recorded on a control 

chart. Whether there be one or multiple quality characteristics, the 

control chart scenario had previously assumed independent observations. 

This research has extended that to include correlated observations. 

Furthermore, the properties of the statistics used to monitor the 

process were also investigated. 

For the quality control scenario, this research has also deter­

mined the economic parameters of sample size and control chart constant 

by using the scheme of minimizing the average run length of an out of 

control process for a large fixed value of the average run length of an 

in control process. This was done for two cases: multiple (2 and 3) 

quality characteristics for independent obse-vations; and, one quality 

characteristic for first-order serially correlated observations. 

Finally, the concept of a multivariate, multiconsequence inter­

vention model was introduced, and its properties were presented. 
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CHAPTER I 

INTRODUCTION 

In recent years , there has been increasing demand by consumers 

for qua l i ty products , and there i s no sign of abatement. In order to 

be responsive to th is demand, manufacturers have inc reas ing ly adopted 

var ious techniques of s t a t i s t i c a l qua l i ty c o n t r o l . One technique that 

has been very success fu l in monitoring a process i s the con t ro l char t . 

Shewhart [59] i s genera l ly c red i t ed with the development of the 

c o n t r o l chart in 1924. The bas ic idea behind the c o n t r o l chart i s that 

there are two sources o f va r i a t ion in the qua l i ty of a product : chance 

causes and ass ignable causes . While the chance cause va r i a t ion cannot 

be c o n t r o l l e d , i t i s assumed that th is va r i a t i on fo l l ows a ce r ta in 

s t a t i s t i c a l pattern such as the normal d i s t r i b u t i o n . When the va r i a t ions 

do not conform to th i s assumption, a search i s undertaken for one or 

more ass ignable causes such as a d i f f e r ence among raw mater ia l s . Addi­

t i ona l d i scuss ion of th i s can be found in Duncan [24] and Grant and 

Leavenworth [ 3 0 ] . 

There are two d i s t i n c t phases of c o n t r o l chart p r a c t i c e . The 

d i s t i n c t i o n being that in Phase I the c o n t r o l chart i s used for 

analyzing past data fo r a l ack of c o n t r o l and to a s s i s t in es tab l i sh ing 

c o n t r o l charts when no standards are given while in Phase I I the chart 

i s used to de tec t any departure of the underlying process from standard 

va lues . This d i s s e r t a t i o n i s pr imari ly concerned with Phase I I . 
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F U R T H E R M O R E , A L T H O U G H C O N T R O L C H A R T S A R E U S E D T O M O N I T O R B O T H T H E P R O C E S S 

M E A N A N D V A R I A B I L I T Y , T H I S D I S S E R T A T I O N C O N C E N T R A T E S O N T H O S E U S E D F O R 

T H E M E A N . T H U S , P R I M A R Y A T T E N T I O N I S D I R E C T E D T O W A R D S P H A S E I I C O N T R O L 

C H A R T S F O R T H E M E A N . 

I N O R D E R T O I M P L E M E N T A S H E W H A R T C H A R T , A S A M P L E O F N I N D E P E N D E N T 

O B S E R V A T I O N S I S O B T A I N E D F R O M T H E P R O C E S S A T T I M E T , A N D T H E V A L U E O F A 

S T A T I S T I C ( W ^ ) I S C A L C U L A T E D A N D P L O T T E D O N A C O N T R O L C H A R T . T H E C H A R T 

U S U A L L Y H A S A C E N T R A L L I N E A N D U P P E R A N D L O W E R C O N T R O L L I M I T S , W H I C H 

A R E T A K E N T O B E E ( W ) ± 3 / V A R ( W ) . I F T H E V A L U E O F T H E S T A T I S T I C F A L L S 

W I T H I N E ( W ) ± 3 / V A R ( W ) > T H E D E C I S I O N M A K E R C A N S A F E L Y C O N C L U D E T H A T 

T H E P R O C E S S I S U N D E R C O N T R O L . I F W F C F A L L S O U T S I D E T H E C O N T R O L L I M I T S , 

A S S I G N A B L E C A U S E S O F V A R I A T I O N A R E S O U G H T . W I T H R E S P E C T T O M O N I T O R I N G 

T H E P R O C E S S M E A N , W I S U S U A L L Y T A K E N T O B E X ( T H E S A M P L E M E A N ) . F U R T H E R ­

M O R E , I F I T C A N B E A S S U M E D T H A T T H E P R O C E S S I S N O R M A L L Y D I S T R I B U T E D W I T H 

T H E N O M I N A L V A L U E S O F T H E P R O C E S S M E A N A N D S T A N D A R D D E V I A T I O N D E N O T E D B Y 

Y ^ A N D CJQ> R E S P E C T I V E L Y , T H E N U P P E R A N D L O W E R C O N T R O L L I M I T S A R E G I V E N 

B Y u Q ± 3(cr0//r7). 

T W O U N D E R L Y I N G A S S U M P T I O N S I N T H E M E T H O D O L O G I C A L D E V E L O P M E N T O F 

C O N T R O L C H A R T S A R E T H A T T H E P R O C E S S I S N O R M A L L Y D I S T R I B U T E D A N D T H E 

O B S E R V A T I O N S W I T H I N A S A M P L E A R E I N D E P E N D E N T A S W E L L A S T H E B E T W E E N 

S A M P L E V A L U E S O F X . Q U I T E F R E Q U E N T L Y , T H E S E A S S U M P T I O N S A R E N O T 

W A R R A N T E D . T H E N O R M A L I T Y A S S U M P T I O N I S F R E Q U E N T L Y J U S T I F I E D B Y T H E 

C E N T R A L L I M I T T H E O R E M . M O R E O V E R , A R E C E N T P A P E R B Y S C H I L L I N G A N D 

N E L S O N [ 5 7 ] P R O V I D E S T A B L E S W H I C H S H O W T H E R A T E O F A P P R O A C H O F T H E 

D I S T R I B U T I O N O F S A M P L E M E A N S T O N O R M A L I T Y F O R V A R I O U S U N D E R L Y I N G 

D I S T R I B U T I O N S A N D S A M P L E S I Z E S . O N E O F T H E I R F I N D I N G S I S T H A T T H I S 
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rate of approach is particularly slow for exponential and contaminated 

distributions. 

Although a failure to satisfy the normality assumption is a 

serious error, a failure to satisfy the independence assumption is by 

far the more serious type of error. This has been demonstrated by 

Daniel [16], Scheffe [56], and Padia [ 4 7 ] . Actually, their investiga­

tions were performed for significance tests for the mean of a normal 

population. However, most of their results are applicable to control 

charts for the mean because of the one-to-one correspondence between 

control charts and significance tests. Walsh [ 6 7 ] has investigated 

the effect of intraclass correlation (the correlation between each 

two sample values is the same) on the significance level of the test 

for a single mean of a univariate normal population, and this has been 

extended by Basu, Odell, and Lewis [12] to samples drawn from a multi­

variate normal population. However, intraclass correlation appears to 

be a rare phenomenon in quality control for one is far more likely to 

encounter serial correlation such as was investigated by Scheffe and 

Padia. Although research into the effect of serial correlation on 

specific quality control techniques appears to be scarce, Johnson and 

Bagshaw [39][40] have investigated its effect on the CUSUM chart. Their 

primary conclusion is that the cusum chart is not robust to departures 

from independence. 

Chapter II of this dissertation is an attempt to partially fill 

the existing gap concerning the effect of correlated observations on 

Shewhart control charts for the mean. The adaptation and development 

of control charts for the mean in the presence of correlated sample 
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values w i l l be inves t iga ted for both univar ia te and mul t ivar ia te 

c h a r a c t e r i s t i c s . In the l a t t e r case , the qua l i ty o f each item i s 

dependent upon severa l c h a r a c t e r i s t i c s . Thus, there i s c o r r e l a t i o n 

within each vec to r o f measurements as we l l as across the v e c t o r s of 

measurements fo r a given sample. However, there i s no c o r r e l a t i o n 

among the v e c t o r s of d i f f e r en t samples. The r i s k p roper t i e s o f the 

s t a t i s t i c s developed fo r cor re la ted observat ions w i l l be explored , as 

we l l as the power of the c o n t r o l char t . Examples w i l l be provided. 

While Chapter I I develops the s t a t i s t i c s to be used in the 

presence of cor re la ted obse rva t ions , i t leaves unanswered the quest ions 

of how la rge a sample to s e l e c t and at what value should the con t ro l 

chart constant be s e t . The answers to these quest ions are inves t iga ted 

in Chapter IV in accordance with the scheme of minimizing the average 

run length of an out of c o n t r o l process for a l a rge f ixed value of the 

average run length of an in con t ro l p roces s . This scheme was o r i g i n a l l y 

used by Page [48] for one qua l i ty c h a r a c t e r i s t i c and uncorrelated 

obse rva t ions . By comparing our newly developed r e su l t s with those of 

Page, the e f f e c t o f co r re la ted observat ions and mul t ip le qua l i ty charac­

t e r i s t i c s can be determined. Although the extension of Page 's scheme 

does not answer the quest ion of when to sample, i t i s f e l t that h i s 

scheme i s the most e a s i l y understood and implemented. 

A very useful representat ion of cor re la ted observat ions i s 

provided by the au to regress ive , moving average models of order ( p , q ) : 

where p represents the order of the autoregress ive component and q that 

of the moving average component. Although these models have ex is ted 

fo r qui te some time, i t i s only within the l a s t few years that they 
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been widely adopted to model var ious temporal occur rences . One reason 

for t h i s popular i ty i s the pub l i ca t ion of Box and Jenkins [ 1 3 ] . They 

have increased the f l e x i b i l i t y of these models to a l low fo r processes 

which exh ib i t a nonstat ionary l e v e l and a seasona l i ty component. For 

th i s reason, the most general of these models are denoted as Box-

Jenkins m u l t i p l i c a t i v e empir ical s t ochas t i c models of order ( p , d , q ) x 

(P,D,Q) where d denotes the degree of d i f f e renc ing needed to achieve 

s 
s t a t i ona r i t y and the upper case l e t t e r s r e fe r to the order of the 

seasona l i ty component. The popular i ty and success of Box-Jenkins 

models i s evident by the increas ing number o f textbooks and journal 

a r t i c l e s in d ive rse areas devoted to th i s sub j ec t . 

Some of the more recent textbooks are those of Nelson [ 4 6 ] , 

T. W. Anderson [ 9 ] , Ful le r [ 2 6 ] , and 0. D. Anderson [ 8 ] . Although 

the number of journal a r t i c l e s i s too exhaustive too l i s t , the 

fo l lowing represents a few of the var ied a p p l i c a t i o n s : Saboia [54] 

improved present methods of fo recas t ing b i r ths by using these models, 

Leuthold et a l [45] used these models to fo recas t d a i l y hog p r i c e s ; 

Thompson and Tiao [63] analyzed telephone data with these models , 

and the l i s t goes on. One of the most success fu l modeling app l i ca t i ons 

has been by Deutsch [ 1 9 ] , [20] and Deutsch and Rardin [ 2 2 ] , [ 2 3 ] , who 

employed these models in descr ib ing monthly crime occur rences . They 

have shown that each of the seven index crimes across ten d i f f e r en t 

c i t i e s was represented by the same form of model. 

In d iscuss ing the est imation of the model parameters, Box and 

Jenkins [13] given primary emphasis to the est imation of the au tore-
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g ress ive and moving average parameters with only a passing in t e re s t in 

estimating the l e v e l of the s e r i e s . The need fo r a reversa l of t h i s 

emphasis arose with the in t roduct ion of the interrupted t ime-ser ies 

quasi-experiemnt (ITSQE) by Campbell and Stanley [15] in 1963. In the 

ITSQE, n^ equal ly spaced observat ions are ava i l ab le p r i o r to the 

implementation or occurrence of some treatment. After the in te rvent ion 

o c c u r s , a set of n observat ions becomes a v a i l a b l e . For example, the 

observat ions might be the monthly occurrences of homicide for the c i t y 

of Boston and i t i s suspected that a change in the l e v e l could occur 

because of the in t roduc t ion of a gun c o n t r o l law. 

In fe ren t i a l s t a t i s t i c a l methods fo r the ITSQE were f i r s t 

developed by Box and Tiao [14] for the integrated f i r s t - o r d e r moving 

average p r o c e s s . Although the i r r e su l t s were app l i cab le to only th is 

model, i t enabled improved data analyses to be performed for many 

d ive rse areas . For example, Glass [27] used the Box and Tiao r e su l t s 

to analyze the Connecticut speeding crackdown, while Deutsch and 

Al t [21] used i t to inves t iga te Massachusetts ' gun con t ro l law. Glass , 

Wilson, and Gottman [28] extended the Box and Tiao r e su l t s to include 

other types of models. However, the i r model formulations assume that 

the au to regress ive , moving average parameters (which desc r ibe the 

process covar iance) before the in tervent ion are the same as those 

afterwards. In Chapter I I I , these models are made more f l e x i b l e to 

a l low for the consequences o f the in te rvent ion a f f e c t i n g these para­

meters as we l l as the process l e v e l . For th is reason, the extended 

models are c a l l e d multi-consequence in te rvent ion models. 
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After formulating the multi-consequence intervention model, 

Chapter III then considers the estimation of the model parameters via 

least squares and maximum likelihood. The least squares procedure 

consists of transforming the original n^ + observations to another 

set of variables amenable to statistical linear model analysis. In 

the maximum likelihood estimation procedure, explicit expressions can 

be obtained for the estimates of the level and shift parameters for 

fixed values of the moving average parameters. While such closed form 

expressions do not exist for the maximum likelihood estimates of the 

moving average and autoregressive parameters, an algorithm is presented 

for the numerical computation of these estimates. Chapter III also 

demonstrates how the least squares estimates differ from the maximum 

likelihood estimates. 

In investigating the effect of an intervention on a temporal 

sequence of occurrences, it quite frequently occurs that the interven­

tion has also affected another temporal sequence of occurrences. For 

example, when a municipality introduces a gun control law, it may not 

only affect the level of its own monthly occurrences of homicide, but 

also the levels of surrounding municipalities. In order to study the 

simultaneous effect of an intervention on two or more temporal sequences 

of occurrences, Chapter V introduces the multivariate multi-consequence 

intervention model. Chapter V also considers the least squares esti­

mation of the model parameters. 

Lastly, Chapter VI discusses conclusions and directions for 

future research. 
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CHAPTER II 

CONTROL CHARTS FOR CORRELATED OBSERVATIONS 

In Chapter I, a brief introduction to the concept of statistical 

quality control was presented. The first section of this chapter 

elaborates upon that introduction by reviewing the statistical basis 

of the traditional control chart used to maintain surveillance over the 

process mean when there is only one quality characteristic and the 

sample is random. It is shown that the statistic used to monitor this 

control has favorable risk properties both in the traditional sense as 

well as in the Bayesian and minimax interpretations. Section 2.1.2 

extends the work of the first section by allowing the sample elements 

to possess any type of known autocorrelative structure. The statistic 

used here to monitor control also enjoys favorable risk characteristics, 

and this statistic reduces to that used in the first section when there 

is no autocorrelation. Section 2.2.1 continues to elaborate upon the 

first section by assuming that the quality of process output is 

governed by several characteristics. Thus, each sample element is a 

vector of correlated observations. However, as in Section 2.2.1, it 

is assumed that the sample elements are uncorrelated. Again, we explore 

the risk properties of the statistic used. Section 2.2.2 treats the 

most general problem: the quality of process output is governed by 

several characteristics and there is correlation across the vectors of 

observations. After exploring the risk properties of the statistic 
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used, we formulate a decision rule for maintaining control over the 

process mean vector. To illustrate the foregoing concepts, several 

examples are presented. Selected portions of this chapter appear in 

a paper by Alt, Deutsch, and Walker [ 5 ] . 

2 . 1 One Quality Characteristic 

2 . 1 . 1 Independent Observations 

When there is only one characteristic determining the quality of 

output from a process, measurements denoted by x^, X 2 > . . . , X q are 

obtained from a sample output of size n, and these measurements are 

used to make inferences about the process quality. If the process has 

been refined to the extent that assignable causes are not affecting the 

variation in the measurements, then any remaining variation can be 

attributed solely to chance causes, which are inherent in the process. 

Thus, in the absence of assignable causes of variation, the measurements 

should behave as a sample coming from a probability distribution which 

has a certain mean and variance. If this is indeed the case, then the 

process is said to be in a state of statistical control. To maintain 

surveillance over the state of control, successive samples of size n 

are obtained, a summary statistic is calculated from each sample's 

measurements, and this statistic is plotted on a control chart. If 

this statistic falls within certain limits on the control chart, the 

process is judged to be in control. 

This chapter will consider the use of control charts for watch­

ing over the mean of a process, when the process is already in an 

existing state of control. That is, the process has been refined and 
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has evolved to an in-control state where the underlying probability 

distribution is completely known, and the parameters of the distribution 

have stabilized to fixed values with interest centered on the mean of 

the probability distribution. Guttman, Wilks, and Hunter [35] state 

that control charts used for this purpose are essentially devices for 

detecting important departures from an existing known state of statis­

tical control and are called "theoretical control charts." Duncan [24] 

refers to these charts as "charts for attaining current control." Quite 

frequently, they are also called "charts based on standard values" 

because parameter values are specified at which the process can hope­

fully be controlled. 

Let X be the random variable associated with the underlying 

probability distribution of the measurements. It is not unreasonable 

to assume that X is normally distributed, denoted X ^ N . Let U Q and 
2 

cjj denote the standard or nominal values of the process mean and 
2 

variance, respectively. The values of and may be derived from 
2 

past data (where the data base is sufficiently large so that UQ and 

may be treated as parameter values and not their estimates), determined 

from experience with similar past processes, or selected to attain 

certain objectives. 

In a single sample of size n from X , let X ^ , X 2 , . . . , X N denote 

the elements of the sample and assume that X ^ , X ^ , . . . , X N constitute a 

random sample. That is, X ^ , X 2 » * * * » X ^ are independent random variables 

such that 
n 

x ( x r x; 2 » •.., a y ... n 
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where 

f x (x ±) = U T T O ^ 2 ) - 1 7 2 exp {-(x± - y) 2/(2a I
2)} (2) 

Using equations (1) and (2), it is easily shown (see, for example, Hoel, 

Port, and Stone [37]) that the maximum likelihood estimator of y is 

given by X and that X is a sufficient, unbiased estimator of y with 
2 -

variance given by /n. Although X has very many other desirable sta­

tistical properties, only those relating to its risk will be stated. 

Let VQ denote the class of all unbiased estimators of y. Then, in VQ , 

(i) X is the uniformly minimum variance unbiased estimator of 

y, frequently denoted UMVUE; 

(ii) X is a Bayesian estimator with respect to every prior when 

the loss function is quadratic; and, 

(iii) X is a minimax estimator when the loss function is quadratic. 

It will be shown that (i) implies (ii) and (iii). 

Property (i) is a direct result of the Cramer-Rao inequality and 

is demonstrated in numerous textbooks (see [37 ] 9 [65]). If X = 

(X.., X 0,..., X )*" and d(X) is any other estimator belongton to V then 
J. z n f\, u 

2 — 2 2 2 property (i) can be stated as o- • ~ - E x(d(X) - y) = 

for all y where the subscript X on the expected value operator indicates 

that the expectation is over the sample result space of the X / s . 

Property (i) can also be restated in terms of loss and risk. Let 

L(y, d(X)) be the loss associated with using the estimator d when y is 

the true process mean. Only quadratic loss functions will be con-
2 

sidered whereby L(y, d(X)) =» (d(X) - y) . Let R(y, d) denote the risk 
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incurred when u is the true mean and the estimator d(X) is used. 

Intuitively, it seems reasonable to minimize the average quadratic 

loss and this is generally defined to be the risk. Specifically, 

R(U, d) = L ( u , d(X)) = E^CdCX) - u ) 2 = ci d
2. 

f\j r\j 
Thus the mean square error reduces to the variance in V^. Note that the 

risk is usually a function of u . Thus, to say that X is a minimum 

variance estimator in VQ is equivalent to saying that X is a minimum 

risk estimator for all u when quadratic loss is used, and then R ( u , X) = 
2, 

CTJ /n. 

In order to demonstrate property (ii), recall that the mean risk 

denoted by r(ir, d(X)), for a given prior distribution tf(u) and estimator 

d(X) is defined to be 

r(IR, d(X)) = E R(u , d) = E i[E Y i(d(X) - u ) 2 ] , 

when quadratic loss is used. The estimator d Q is called a Bayesf rule 

if it minimizes the mean risk when the prior is ir (u) , and r(ir, d n(X)) is 

called the Bayes* risk. When the loss function is quadratic, Hoel, Port, 

and Stone [37] show that the Bayes1 rule is the mean of the posterior 

distribution of u. To show that X is a Bayesf rule with respect to 

every prior for a quadratic loss in the class VQ of unbiased estimators, 

let d(X) be any other estimator in VN. Then, from property (i), 

r\j U 

r(7R, d(X)) - E y[E x| u(d(X) - u ) 2 ] 

> a- 2 = E u[E x| u(X - u ) 2 ] = r(7R, X) , (3) 
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2 2 where a- = a /n. However, in general, when a quadratic loss function 
A 

is used, there will be biased estimators which have less mean risk 

relative to a given prior than any unbiased estimator. In order to 

demonstrate this, consider the following example from Hoel, Port, and 

Stone. Let X^, X2»***» X R denote a random sample from X, where 
2 2 X ^ N(y, ) with y unknown and known; and, let the prior density 

2 

also be normal with mean 3 and variance a , both of which are specified. 

Then the Bayes1 rule is given by 

d Q(X) = (aT

2 6 + a 2 nX)/(a].2 + a 2n) 

with a Bayes1 risk equal to 

r ( I R , d Q(X)) = ( A 2 a + ( A ) . 

Thus, 

r ( I R , d0(X))/r(ir, X) - [l + (a^/n a 2 ) ] ' 1 . 

Since (a^ 2/ n a 2) > 0, [l + (a^/n a 2 ) ] " 1 < 1, and r ( 7 R , d Q(X)) 1 r ( 7 R , X). 

Thus the mean risk for the biased Bayes1 estimator is less than the mean 

risk for the unbiased Bayes1 estimator. 

In order to show property (iii), recall that an estimator D^ is 

said to be a minimax estimator in the class V of estimators if 

max R(y, D^) = min max K(y, d) . 
y DEV y 

Since V is restricted to Z?Q, the class of unbiased estimators, and a 
2 

quadratic loss function is being used, R(y, d) = a, . By property (i), 
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2 2 2 2 a- 1 aA for every y and for all det^, or sup a- 1 sup for all 
' X - d 

0' 
2 2 

deI?Q. That is, sup a - - min sup , and property (iii) is estab-
U d e P Q y 

lished. 
Properties (i), (ii), and (iii) essentially state that, in the 

class P Q , X is an estimator with uniformly best risk for all u and thus 

this estimator is a minimax estimator as well as a Bayes' rule, regard­

less of the chosen prior. As stated by Walker [66], X would "be 

eminently satisfactory from a minimal risk point of view." 

Additional rationale for using X as the estimator for y is pro­

vided by thinking of the elements in the sample as being generated from 

the following linear model: 

1 " a l " 
x 2 1 + a2 
• 
• 
• 

• 
• 
• • 

• 

X 
n 

1 
- _ 

a 
n 

(4) 

where the disturbances a^ are such that 

E(U) = 0 , E(U U*) - a 2 I 

a, n , <\i f\j a n 

(5) 

The assumptions stated in equations (4) and (5) specify what is known 
2 

as the classical linear regression model with the exception that a is 

known. Under these conditions, the Gauss-Markov theorem states that 

the best linear unbiased estimator of y is given by the least-squares 
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estimator (A*" A) ^ A C X, which reduces to X, and the variance of this 
2 t - 1 2 least-squares estimator is given by a (A A) , which reduces to a /n. a a 

A proof of the Gauss-Markov least squares theorem is given in Goldberger 

[ 2 9 ] . Thus, even though the least-squares estimator is identical with 

the maximum likelihood estimator, it was derived under different assump­

tions, the most important of which is the absence of any distributional 

assumptions concerning the a^s and equivalently of the X i
t s . In this 

absence, one cannot say X is normally distributed without reverting to 

the Central Limit Theorem. Note that, when the linear model is assumed 

as a process generator, the variance of the a^'s is identical with the 
2 2 variance of the X.'s, or a = a T . l • a I 

Now that justification has been given for using X as an esti­

mator for u, it will be shown how X is used in maintaining statistical 

control of U Q . 

When there is only one quality characteristic, which is normally 

distributed, with standard values specified for the process mean and 

variance and successive random samples of size n are generated from 

this process. Shewhart [ 5 9 ] proposed that in order to maintain surveil­

lance over UQ one should plot the successive values of X on a chart 

which has a central line (CL) and upper (UCL) and lower (LCL) control 

limits of the form: 

UCL = u 0 + z a / 2 (a x/^) 

CL = y Q 

LCL - U 0 - z a /, 2 (a]./yn) . J 

(6) 
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The quantity z A / 2 denotes the upper a / 2 percentage point of the 

standard normal random variable. Usually, z A / 2 =3.0. A typical X-

chart is shown in Figure 1. If any x fs plot above UCL or below LCL, 

UQ + 3(aI/-/5) 

Sample no 

Figure 1. An X-chart when n = 5 

then a search is undertaken for any assignable causes. 

The rationale behind the limits presented in equation (6) is that 
2 

since X *v» N ( U Q, ) when the process mean equals the nominal value U Q 
~ 2 

and X^, X 2 , . . . , X n is a random sample from X, then X *v» N(UQ, /n) and 

P [ u 0 - Z

A / 2 ^ A I / ^ ) " X " " o + ' A / 2 { A L / / S > I = 1 " ° * 
(7) 

Thus, the center line (CL) is set equal to E(X) while the upper and 

lower control limits equal E(X) ± ka-, where k > 0. Here k = Z

A / 2 * 

For a single sample of size n, the control chart technique can 

also be viewed as a hypothesis testing problem. Namely, one is testing 
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HQ.U = UQ V S . H^:y -r UQ with, known â .. The likelihood ratio test, 

details of which are given in Freund [ 2 5 ] , yields the following critical 

region: 

cu • {(x 1, x 2,... x Q):x < y Q -
 z

a/2^Gi^^ 
(8) 

U {(x 1, x 2,..., x Q):x > y Q +
 z

a/2^ax^^ » 
when y = yQ. Note that there is a one-to-one correspondence between 

the out-of-control region of the X-chart and the critical region of the 

likelihood ratio test, given in equation (8). Thus, the control chart 

has associated with it the probability of Type I error, denoted by a, 

which is the probability of saying that the process mean has shifted 

from UQ when, in fact, it has not. In this instance, a search would be 

made for an assignable cause when none exists. When the control chart 

constant i s s e t equal to 3.0, a = 0.0027 and only rarely would a 

search be made for a nonexistent assignable cause. Also inherent in 

the hypothesis testing viewpoint is the concept of the power of the 

control chart, denoted by ir(y^), which is the probability of detecting 

that the process mean has shifted from to a value y^. It is easily 

shown that 

where 6 • y^ - y^ and $ denotes the cumulative distribution function of 

the standard normal random variable. When the hypothesis testing view­

point is adopted for successive samples of size n, the X-control chart 

technique can be viewed as repeated tests of significance. That is, the 

decision maker is successively testing Hg:y = V S . H^:y f yQ. 
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Inherent in the development of the likelihood ratio test 

critical region were the assumptions of process normality and independ­

ence of the sample elements, which again stresses the importance of 

these assumptions. In the next section, departures from the independence 

assumption will be investigated. 

2.1.2 Dependent Observations 

The development of the control limits, presented in equation (6), 
2 

was based on the assumptions that X ^ N ( U Q , ) and X^, ^ n
 w a s 

a random sample from X. This current section covers the development of 

control charts for the mean when the sampled elements are correlated. 

As a first step in this direction, we will consider what the effects 

are when one uses the control limits given in equation (6) when, in 

fact, the observations have a first-order serial correlation with the 

serial correlation coefficient donated by p. Many authors, starting at 

least as far back as Student [62] have reported the presence of such 

correlation in their successive measurements. 

To investigate the effect of serial correlation, assume that the 
2 

n sampled elements are jointly normal with E(X^) = U Q , var(X^) = , 2 t and Cov(X., X. .) - pa for j • 1 and 0 otherwise. If we let X = 

1 1 T J C f\j 
[X^, X2»***» X n ] , then the joint density of X^'s is given by 

where u denotes E(X) and Z denotes the (nxn) covariance matrix of <v <v n 
the X. fs. Here 

exp {-(1/2) (x - u) 1" z"X(x - u} , (10) 

i 
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u = U 0 = U y 0 a n d E = 

2 2 a pa c c 

(11) 

If P is the correlation matrix, then P = D(l/a ) £ D(l/a ) where D(l/cr ) is n " c n c c 
the (nxn) diagonal matrix with entries (1/a ). Grenander and Rosenblatt 

c 

[34] have shown that a necessary and sufficient condition for P n to be 

positive definite is that |p| < (2 cos["r/(n +1)]) \ Thus, all values 

of p in the interval (-1, 1) are not possible. However, as noted by 

Scheffe [56], it follows that all values in (-1/2, 1/2) are possible 

for all n. Scheffe has also shown that, under the conditions in 

equations (10) and (11), 

X * N(Uq, (a c
2/n)[l + 2p(l - n" 1)]). (12) 

Thus, serial correlation affects only the dispersion of X and not its 

location. Equation (12) can be used to determine the true probability 

of Type I error, denoted by CLQ, when one uses the control limits given 

by equation (6) assuming a nominal probability of Type I error denoted 

by a. Specifically, if B = [1 + 2p(l - n" 1)], then 

ccQ - P[|(X - U0)v^/crc| > z a / 2 ] - P[|(X - U Q)^/Ba c| > z a / 2/B] 

= P U Z | > z a / 2 / B ] » 

where Z denotes the standard normal random variable. For a = .05, 

Scheffe has prepared a table giving the effect of p = (-0.4)(0.1)(+0.4) 
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on G i g . The table indicates that for p < 0 , CXQ < a = 0.05, while for 

p > 0 , O.Q > a = 0.05. Obviously for p= 0, (XQ = a. Since Scheffe^s 

table was prepared exclusively for a = 0.05, and large n, Table 1 was 

prepared to indicate the effect of p on ct̂  when the nominal level of 

significance is 0.0027 and n = 4 and 5, values frequently used by 

quality control decision makers. This table was prepared using Univac's 

PNORM subroutine in the MSFLIB Library. These results agree with those 

of Scheffe^s in that, for p < 0, the true probability of Type I error 

(CIQ) is less than the nominal value of .0027 while, for p > 0, the true 

probability is greater than the nominal value. Inspection of Table 1 

also reveals that, for p < 0, <XQ decreases as n increases from 4 to 5, 

while, for p > 0, a n increases as n increases from 4 to 5. 

Table 1. Values of Actual Significance Level (CXQ) 

when Nominal Level is 0.0027 

p -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 

n=4 .21*10" •5 .52*10" •4 .34*10" •3 0.0011 0.0027 0.0052 0.0085 0.0127 0.0177 

n=5 .57*10" •6 .32*10" •4 .27-10" •3 0.0011 0.0027 0.0053 0.0090 0.0137 0.0192 

Equation (12) can also be used to derive a revised set of control 

limits when p is known from a large amount of past data or determined 

from experience with similar past processes. It immediately follows 

that 
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UCL = y Q + za/2(crc/v>n")[l + 2 P ( )(1 - n _ 1 ) ] 1 / 2 

CL = UQ f (13) 

LCL = UQ - za/2(crc/v/n')[l + 2 PQ(1 - n " 1 ) ] 1 7 2 , 

where pQ denotes the standard value of the serial correlation coeffi­

cient. The limits given by equation (13) differ from those derived 
-1 1/2 

under the assumption of independence by the factor B a s[l+2pQ(l-n )] , 

where B = 1 for pQ = 0. Thus, if PQ = 0, the control limits given by 

equation (13) are identical with those of equation (6) provided (the 

standard deviation of the correlated observations) equals cr̂  (the 

standard deviation of the uncorrelated observations). Additional 

explanation of the relationship between O Q and will be provided later 

in this section. 

Padia [47] extended Scheffe*s work by investigating samples which 

have a k*-*1 order autocorrelative structure. If p^ denotes the last non­

zero lag autocorrelation, then he has shown that 

Var (X) = (c c
2/n)[l + 2( P ; L + P 2 + ... + P k) ] (14) 

to order (1/n). Using equation (14), he determined the effect of 

various autocorrelative structures on the true probability of Type I 

error when testing HQ : y - yQ vs. : y ^ \1Q» Although one could use 

Padia 1s results in establishing new control limits, it would be prefer­

able to have a more general approach. The approach that will be taken 

is to find the maximum likelihood estimator of y, when there is any 

type of known correlative structure. Since a geometrical approach will 
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be adopted, a few basic properties of n-dimensional Euclidean space, 

denoted by R n, will be reviewed. 

One of the most frequently occurring examples of a real vector 

space is R n = {(x-, x«,..., x ) : x, is real}. Let e. denote the (nxl) x z n 1 'oj 
vector with a 1 in the j*-*1 position and O's elsewhere. Then, every 

n 
vector xeR is such that x - T x.e. and { e . e } is called the 

* ^ 3^3 ^1 ^ 
standard basis for R n. Another operation that is frequently defined on 

R n is the inner product of two vectors, denoted by <•, •> , where for 
n t n 

x, veR , <x, ^> is defined to be x ^ - £ x i ^i* Since the inner 

product defined on R n is nonnegative (<x, x> £ 0 with<x, x> = 0 if and 

only if x = 0), commutative (<x, y> = <y, x>), and linear 
'XI 'VI >\J 'X, 'V* F\J 

(<xn, A X « + x 0> = a<x,, x«> + <x,, x~>), the ordered pair (Rn, <•, •>) 
O I L 7 a.2 ^3 ^1* %2 ^1' <\,3 r 

is said to be an inner product space. In an inner product space, two 

vectors x, yeR are said to be orthogonal is <x, y> = 0. Thus, the 
'v* 'u n F\J I\J 

basis vectors e^ are mutually orthogonal. For xeR n, define the norm of 
^ 2 1/2 t 1/2 x, denoted by | |x| |, to be ||x|| = ( £ x. ) = (x x) . Since the 

R\J I\J 'X) i=l *x< *x< 

norm defined on R n satisfies the properties (i) ||x|| = 0 if and only 

if x = 0, (ii) I |coc| | = | O T| | |x| I , where A is a member of the reals, and 
'XI 'XI 'XI *\J 

(iii) I 1̂  + x 2| I * I I X J I + I |x2| I , the ordered pair (Rn, | | • | |) is 

called a normed vector space. The standard basis for R n is said to be 

orthonormal since ||e^|| * 1. Since the square root of the inner product 

defines a norm for R n, the ordered pair (Rn, <x, x>"^ 2) is a normed 

vector space. For x, veR n, define d(x, v̂ ) • | |x - vj | ••[ £ (x i- y ^ 2 ] ^ 2 . 

Since this real-valued function is nonnegative (d(x, y) = 0 if and only 

if x = y), commutative (d(x, y) = d(y, x)), and satisfies the triangle 
*\J 'XT R\J 'XT R\J R\J 

inequality (d(x, z) - d(x, y) + d(y, z)), the ordered pair (Rn, d) is 
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called a metric space, d is called the metric, and d(x, y) is called the 

distance between x and ŷ . The metric defined above is frequently called 

the Euclidean metric. Additional details of these spaces can be found in 

Kasriel [4l]. 

The Euclidean metric ia very satisfactory for quite a few optimiza­

tion problems. For example, in Section 2.1.1, the elements of the sample 

were independent, identical normally distributed random variables; and to 

find the maximum likelihood estimator of u, it was required to find that 
n 2 2 value of u which minimizes Q(u) - J (x. - u) = ||x - u j || . This is 

equivalent to finding the orthogonal projection of x on L, the line gen-

erated by j , where this projection is merely some constant multiple of 
t\jTL 

j denoted by cj . It immediately follows that x - cj is orthogonal to 
A. A. A. 

every vector in L. Specifically, <u j , x - u i > = 0, and u = 
K 3 » x>/<j , j > = x, as previously stated. However, it is sometimes fxjti ^n ^n 
convenient to use a non-orthonormal basis and it is necessary to modify 

the inner product defined on R n. For example, let B be an (nxn) non-

singular, symmetric matrix and let w = Bx. Then <x, x> T = x*"x — 

w t(B t) ^ B w = w C Aw = <w, w>. where A = (BB*") \ Now if A is an 

(nxn) positive definite matrix and <w, w> A is defined to be w*" Aw for 

w e R n , then ( R n , <•, •>.) is an inner product space, ( R n , ||*||) is a 
i\j A 

normed vector space with ||w|| = <w, w> A, and (Rn, d) is a metric space 
r\j r\, f\j A 

with d(w,, w 0) = | |w, - w 0||. An additional explanation of inner product 

spaces in the metric of A is given in Timm [64]. 

The maximum likelihood estimator of u will now be found. 

Theorem 2.1: Let X^, X 2 , . . . , X n be jointly normal with mean vector u 

and covariance matrix E as given in equation (15): 
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U '12 

12 
2 

CTln CT2n 

'In 

'2n (15) 

Then the maximum likelihood estimator of y, denoted by y is given by 

V - (X* A J J / C J * A J ) <v n n *on n ^n (16) 

where A = £ \ n n 

Proof: The likelihood function, denoted by L(y), is given by 

L(u) = C2ir)" ( n / 2 ) |A | 1 / 2 exp {-(1/2) (x - y j ) t A (x - y j )} . (17) 
n f\j f\jii. n *v r^n 

Since A is a positive definite matrix, <r, s>. = r C A s is an inner product on 

R N , IIr II = <r, r>/^anorm, and ||r- s IF = <r - s, r - s>?" 7 2a metric for r, S E R N . 

Now the likelihood function will be a maximum when the nonnegative quadratic form, 

Q(u), in the exponent is a minimum, where Q(u) = (x - y j ) t A (x - u j ) = 
2 /\ | fx - y i || . Thus we wish to find that vector y j , lying in the line 

L generated by j , which is closest to x. This is shown in Figure 2. 

But, the vector in L lying closest to x is the projection of x onto L, 

denoted by P. (x). Since x - P. (x) is orthogonal to every vector in L , 
L r\j f\, L f\j 

<P. (x), x - P. (x)> = 0 or <u j x - y j > = 0. Thus, y <j , x> 
L (\, f\j L i\, A r^TL r^Tl A \,n f\j A 

- U 2 ^ » j > A • 0 and y = <j , x>/<j , j > | | ^n* ^n A ^ ^n' <v A V* ^n A 1 1 
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The maximum likelihood estimator can also be written in summa­

tion notation: 

(18) 

where X . . are the entries in A . Thus, the numerator of u is merely the 
I J n 9 

sum of all the X fs where each X.. is weighted by the sum of the elements 

in the i*-*1 row of A n > and the denominator is the sum of all the entries 

in A . Since p is a linear combination of the X.'s, which are multi­ll J 

variate normal, then y is distributed as a univariate normal. The 

expected value and variance of y are obtained as follows: 

E(w) - (i * A j r 1 [(E X 1 1) A j ] = M * A 1 r 1 (U 1 ) * A i = y , (19) 
RYJIL n o,n F\, n r^n ?0n n R\,TI ("On n 'On 

and 
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Var (5) = E(y - y ) 2 = (i fc A j ) " 2 E^X* A j - V j ' A j / ] 

= ( j * A j ) " 2 E l X ^ ^ j ^ - y Q ^ A ^ i }} t[X tA j - y U ^ A n J J J ^n n ^ • n-n ĉn n<\,fl o» xi-̂ n /\,n n^n 

- ( j ' A 5 J ~ 2 JT,t AJECX - y j)CX - y j )']. A i 

= ( j * AN j n ) " 2 j * AN E A j - (j ' A j J " 1 . ( 2 0 ) ?J,n n TSJI ^n n n n ̂ n ^n n ̂ n 

A _ 

That y is an unbiased estimator of y follows from equation ( 1 9 ) . The 

above three properties of y can be combined by stating that 

y * N(y, (j * A j ) _ 1) ( 2 1 ) ^n n fXjii 

Let us now determine the risk properties of y. 

Let DQ denote the class of all unbiased estimators of y when the 

sample is jointly normal with a mean vector and covariance matrix as 
a 

given in equation ( 1 5 ) . Then y, the maximum likelihood estimator of y 

given in Theorem 3 . 1 , has the following properties in V^i 
a 

(i) y is the uniformly minimum variance estimator of y; 
A 

(ii) y is a Bayesian estimator with respect to every prior when 

the loss function is quadratic; and, 
A 

(iii) y is a minimax estimator when the loss function is quadratic. 

Statement (i) implies (ii) and (iii). 

Property (i) can be established via several approaches. One 

approach makes use of the Cramer-Rao Lower Bound (CRLB),a precise state­

ment of which can be found in Wilks [ 6 8 ] . Essentially, the Cramer-Rao 

inequality asserts that Var (d(X)) > 1/Var (W) where d(X) is any unbiased 

estimator for y and W = 3(£n f x t(X t; y))/3y where f x t(x t; y) is as stated 
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in Equation (17). It can be shown that the regularity conditions of 

the Cramer-Rao inequality are met for unbiased estimators of finite 

variance in this case. Since E(W) = 0, Var (W) - ECW 2). It follows 

from equation (17) that 

IN f Y t(X t; y) = k -(1/2) (35 - y j ) * A ( X - y i ) , 

where k = -(n/2) IN (2TT) + (1/2) IN |A |, and 

3(£u f^tt*; y))/3y = X* A i - y j C Afl j = i * A n j (J - y) « W. X L
 f\, <\, n ̂ n ,̂n n ,̂n ,̂n n ̂ n 

Now EC* 2) - (i C h j ) 2 E(y - y ) 2 = j * A„ i , and CRLB = 1/E(W2) = <x,n n ̂ n r̂ n n ̂ n 
A A 

1/j A j , which equals the variance of y. Hence y is a best estimator, 
r\jVL n rJCL 

in the minimum-variance sense, in PQ. That is, its efficiency is 1 where 

the efficiency of an unbiased estimator is the ratio of the CRLB to its 

variance. Property (i) can also be shown by using the Lehmann-Scheffe 

Theorem, a precise statement of which can be found in Rohatgi [52]. 

Essentially this theorem asserts that if d(X) is an unbiased, complete, 
<\* 

sufficient statistic for y, then d(X) is the UMVUE of y. Since the 
A 

unbiasedness of y has been demonstrated in equation (19), we will now 
A A 

show that y is sufficient. This follows since y 1 - r.(x) and thus 
?0n L t\, 

A 

x - y j is orthogonal to every vector lying in I. Moreover, every 

vector in R n decomposes uniquely into two orthogonal components, one 

lying in L and one in the orthogonal complement of L. Specifically, 
x - y j = (x - y j ) + (y i - y i ). 

Also recall that in an inner product space the Pythagorean property holds. 

Specifically, 
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Thus, 

fytCx^y) = k{exp -(1/2511[x - i j n|| 2 } exp{-(l/2)(y - y)2[|i ||2} 
a. 

= g(x) h(y, y) , 

and sufficiency is established by the factorization criterion (see 

Rohatgi [52]). As a next step in using the Lehmann-Scheffe" theorem, 

recall that u *v N(u, 1/j A j ) and that this distribution is complete. 

That is, 

00 

(2ir a ~ 2 ) ' 1 / 2 / s(t) exp{-(t - y) 2/(2 a- 2)} dt = 0 

2 t for all y implies s(t) = 0 almost everywhere, where ff; = 1/j A j . y ,̂ n n ,̂ n 

Since y is sufficient and unbiased and since its distribution (which 

is normal) is complete with respect to the parameter y, then the effi-

cient property of y has also been established by the Lehmann-Scheffe" 

theorem. That is, it possesses minimum variance in the class of unbiased 

estimators with finite variance. 

Properties (ii) and (iii) are a direct result of property (i) and 
A 

their proofs closely parallel the proofs in Section 2.1.1. Thus y is 

"eminently satisfactory from a minimal risk point of view." 
A 

Additional rationale for using y as the estimator for y is pro­

vided by considering the same linear model given in equation (4), namely 

X = Ay + U, where now the disturbances a. are such that 
E(U) = 0, E(U U1") = £ , (22) 

i\, <v <v n 
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with known Z^ as defined in equation (15). The conditions stated in 

equations (4) and (22) specify what is known as the generalized linear 

regression model with the exception that Zfl is specified. Under these 

conditions, Aitken's generalized Gauss-Markov least-squares theorem 

asserts that the best (in a minimum variance sense) linear unbiased 

estimator of u is given by the generalized least-squares estimator 

(At L ' 1 A)" 1(A t L ' 1 X), which reduces to (1 * A X)/(i T A n i ) since n n ^ ^n n ^ ^n n ^n 
A = i and A = Z The variance of the generalized least-squares ?{,n n n 
estimator is given by (AC E "̂ A) \ which reduces to 1/j A j . Thus, 

n ,̂n n ,̂ n 

the generalized least-squares estimator of y, which was derived without 

any distributional assumptions about the a/s and equivalently about the 

X / s , is identical with the maximum likelihood estimator. Also note 

that improving a covariance structure of Z^ upon the a^'s is equivalent 

to stating that the X.'s have a Z covariance structure since C(X, X C) -
i n r\j r\j 

E(X - y)(X - y) 1 1 = E(j' y + U - 1 y)(j u + U - i y ) C = E(U U C) = Z . 

The generalized least-squares estimator of y could have also been 

obtained by transforming the disturbances by a nonsingular matrix R such 
that C(RU, (RU)*") = I and using ordinary least-squares on the trans­

om o» 

formed linear model (RX) = (RA)y + (RU) or X* = A* y + U*. A detailed 
f\j f\j f\, r\j 

presentation of the generalized linear regression model and its equiv­

alence to the classical linear regression model via a transformation can 

be found in Goldberger [29]. 

Control charts for the mean can now be constructed using the 
A 

maximum likelihood estimator y. When the process mean equals the 
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nominal value y n, then y * N(y n, 1/1 A i ) and 0 0* *v»n • n ~n 

E[u n - z / 0 
L K 0 a/2 .̂n n ^n 

A / j A j 1 y < y n + z / 0 A / j A j ] = 1 - a. #j„ „ J „ »• ^0 a/2 ^n n ^n 

Thus, control chart limits for the mean in the presence of any type of 

known autocorrelative structure are given by 

UCL = y n + z ; o JLIL T A j ^0 a/2 '^n n ^n 

CL = y( > 

L C L - ^0 " 2a/2 A ' L N A n ^n 

(23) 

where A / j C A 1~~ = î Var (y) . Thus, the control limits are of the form ?v,n n ^n ' 

E(y) ± z a / 2 A a r (y) . 

As in the case of uncorrelated observations, the y-control chart 

also has a power function, denoted by ir(y^), where ir(y^) is the probability 

of detecting that the process mean has shifted from to y^. It is easily 

shown that 

= H - z a / 2 - UIJ A n k > - 1 / 2 > + # ( - V 2 + « ( J n

e A n J n ) " 1 / 2 ) . 

where 6 = \1Q - y^. The control limits presented in equation (23) reduce 

to those presented in equation (6) when the off-diagonal elements of Z 

are zero and the diagonal elements are equal. 

To gain additional insight into the nature of the control chart 

limits presented in equation (23), specifically consider the situation 

where the observations have a first-order serial correlation with mean 
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vector y and covariance matrix Z as presented in equation (11). Let f\, n 
n = 2, 3, 4, and 5, sample sizes which occur frequently in practice. 

-1 We first need to find A = I 
n n 

Since Z^ is a diagonal matrix of type 

2, its inverse exhibits certain properties which assists in its deter­

mination. See Greenberg and Sarhan [33]. For n = 2, 3, 4, 5, we arrive 

at the following set of A
n

? s : 

A 4 = 

A- -

ri-P2 2 _ 
-P P 

1 "l "P , A 3 

1 1 -P 2/, 2, a c (1-p ) -P 1 
, A 3 

ac
2(l-2p2) "P 

o 
1 -P 

9 
L P -p 1-•P J 

1--2P2 -P(1-P2) 2 
P 

3 
-P 

1 -P(1-P2) 1-P2 -P 2 
P 

ac
2(l-3p2+p 4 ) 2 

P -P i-P2 -P(1-P2) 

-
2 

P -P(l-P2) l-2p2 . 

i-3 P V --P+2p3 2 4 P -P 3 
-P 

-p+2p3 1-2 P
2 ^ 3 2 

P 
1 2 P • 4 -P 

^ 3 -p+P l-2p2+p4 .3 -p+p P 
2 2 4 a z(l-4p^+3p*) c 3 

-P 
2 

P 
^ 3 •P+P l-2p2 "P 

k 
P -P 3- 2 h P -P -P+2P3 1-

(2U) 

4 - i 

-P 
2 4 

2. k 

From equation (2U), we can easily calculate Var (u), which is merely the 

reciprocal of the sum of the elements in A^. These values are presented 

in Table 2. As a point of interest, Table 2 also contains Var (X) as 

determined from equation (12). That Var (u) < Var (X) for n ! 3 is not 
A 

surprising since u is an efficient estimator for y. To the quality control 
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engineer, this means that the control limits are tighter when using y 

(see equation (23)) than when using X (see equation (13)), even though 

both control charts have the same center line y n. 

Table 2. Comparison of Var (y) and Var (X) 

n Var (y) Var (X) 

2 
2 

a 
-f- (1+p) 

2 
a 
~Y~ (1+P) 

3 3 I 3-4p J V ( r ) 
4 °c 2 / 2-6p 2+2p 4 \ 4 

4 \ 2-3P-PVJ 4 \ 2 / 

5 
a c / 5-20p 2+15p 4 j a c /5+8p\ 5 

5 \ 5-8p-6p 2+8p 3+p 4/ 5 \ 5 ) 

In equations (4) and (22), impose the additional condition that U 
'b 

is distributed as an n-variate normal. Then one can think of the sample 

elements as being generated from this linear model structure once and 

y are specified. However, for additional flexibility in investigating 

the specific nature of dependence among the observations in a sample, it 

is convenient to adopt the viewpoints and notation of autoregressive-

moving average models, ABMA., as presented by Box and Jenkins [13] 
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and Deutsch [18]. The mixed autoregressive-moving average model of 

order (p, q) is given by 

$ (B) X. = 9 (B) a. , T p v / i q i 

where ) (25) 

a. *u NTD(0, a 2 ) . i ' a 

Since $ (B) = 1 - B - ... - $ B P, 9 (B) = 1 - 8.B - ...» 6 B q, B is 
P Y l p q l q 

Or 

the backshift operator, and X^ = X^ - u, equation (25) can be rewritten 

as 
X. = X. - + ... + $ X. + a. - 6- a. 6 a. , i Y l i-l Tp i-p i 1 i-l q i-q ' 

' (26) 
a. *u NID (0, a 2 ) . l a 

The model, given by equation (26), employs p + q + 2 parameters: c|>̂ ,..., 
2 

<j>p, 9^,..., 9^, a a , and u. The parameter u is of primary interest to 

the quality control decision maker. Extensive investigation by Box and 

Jenkins have revealed that many physical processes can be adequately 

modeled when p + q 5 2. In order to specifically show the one-to-one 

correspondence between different autocorrelative structures and ARMA 

models, let p = 0 and q = 1. In this instance, equation (26) reduces to 

where 

X ± = u + a± - 9 1 a 1 _ 1 , 

a ± ~ NID (0, a a
2 ) 

(27) 
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Such a model is called a first-order moving-average process, designated 

MA(1). It is easily shown that 

E(X ±) = u, Var (X ±) = (1 + 6 ^ ) a * , 

and 

Cov( X i, X ± + k ) = ^ a a , k - 1 

= 0 , k > 1 

(28) 

If Z^ denotes the (n x n) covariance matrix associated with the n sample 

elements generated from an MA(1) process, then Z^ is the following type 

2 diagonal matrix: 

Z =a 4 

n a 

(i+e2) 

-e. 

-e. 

(i+e2) -e. 

(i+e2) 

(1+0\) 

(29) 

The covariance structure presented in equation (29) is identical with 

that presented in equation (11) for first-order serial correlation pro-
2 2 2 2 2 vided a = a (1 + 6, ) and pa » -6, a . Thus, if the observations c a 1 c l a 

2 

have a first-order serial correlation with a specified p- and a^ , one can 

think of these observations as emanating from an MA(1) process with 6 ^ = 

[-1 + (1 - 4p 2) 1 / 2]/2p and a 2 = 2p 2 a 2/[l + (1 - 4 p 2 ) 1 / 2 ] . Alternatively, 
a c 

if the observations are being generated from an MA(1) process with a known 
0.. and a , this is equivalent to saying that they have a first-order 
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2 2 2 2 serial correlation with. C T C - 0 ^ ( 1 + 6 3 / ) A N D P * ~ 6 1 ^ ^ + 0 1 )> where P E ( - 1 / 2 , 1 / 2 ) . 

Similar correspondence exists between other autocorrelative structures 

and ARMA (p,q) models. A more comprehensive coverage of ARMA models 

will be provided in Chapter III. 

The relationship between the models for independent and dependent 

observations can now be stated. Recall that independent normal observa-
2 tions can be generated from model ( 1 ) : X. = Y + a. , a. ^ NID ( 0 , A ) , 

1 1 1 a 
while first-order serially correlated observations can be generated from 

2 model ( 2 ) : X. = Y + a. - 8 . a. ,, a. ^ NID ( 0 , A ). Furthermore, let 
1 i 1 i-l' 1

 v ' a 
2 2 

denote Var (X^) for model ( 1 ) and denote Var (X^) for model ( 2 ) . 
2 2 2 2 2 2 2 Since A T = A and A = ( 1 + 8 . ) A , it is obvious that A - A _ for l a c 1 a c l 

2 2 2 

constant A^ with = only when 8^ = 0 (which is equivalent to 

p = 0 ) . However, it is possible to obtain both independent and corre-
2 2 2 lated observations with O*_ = A . Let A A denote the variance of the I c aX 

2 

a. for independent observations; let A A denote the variance of the a. 
2 2 for correlated observations. In order to have A _ = A , we require I c 

- % 2 U + 6 ^ ) , O R A A I

2 / A A C

2 = ( 1 + 9 ^ ) . 

Before an example is presented, recall that for first-order serial 

correlation an X-control chart would have as its limits Y ~ + z ,« 
0 A / 2 

— 1 1 / 2 

(A c/v /n)(l + 2 P[l - n ]) . Also recall that for any type of autocorre-

lative structure the limits for a Y-control chart are given by \1Q ± Z

A / 2 

t - 1 / 2 
(j A i ) . Furthermore, the limits for a Y-chart are always tighter r̂ n n <vn 

than those of the correlated X-chart. The relationship between these two 

control charts and the one developed for uncorrelated observations also 

needs to be explored. Recall that these limits were of the form +. Z a / 2 

( A I / ^ ) , where Y Q and A may have been derived from a large amount of 
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past data or past experiences with similar processes or selected to 

attain certain objectives. However, if the observations really have 

emanated from a first-order serially correlated process and the value 

of the process standard deviation has been obtained from watching such 

a process, then this process standard deviation is not â .. In fact, it 

is a . Thus, if one assumes that there is no serial correlation when c 

in fact there is, would be replaced by a^, and the control limits for 

X are actually given by u n t z /9(cr /^n) . Here, the correlated X-chart 

will have tighter limits than those of the uncorrelated X-chart when 

p < 0. To illustrate some of the previous comments, consider the fol­

lowing hypothetical example. 

Example 2.1: From past experience with a process, it is determined that 

a first-order serial correlation exists between successive measurements 
2 

with pQ = 0.47 and that =13.41. This is equivalent to saying that 

the observations emanate from a first-order moving average process with 

6^ = -0.7 and a & = 3.0. The nominal value of the process mean, y^,equals 

30.0. Twenty samples, each of size 5, were generated from such a process 

and their values are given in Appendix A. To maintain control over the 

process mean, samples of size 5 will be taken every sampling interval, 
a a 

the u-statistic will be calculated for each sample and plotted on a y-
A 

control chart. The first step in constructing the u-chart limits is to 

find the numerical entries in (see equation (24)): 
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A5 = 

0.1095 -0.0743 0.0487 -0.0294 0.0138 

-0.0743 0.1582 -0.1037 0.0625 -0.0294 

0.0487 -0.1037 0.1719 -0.1037 0.0487 

-0.0294 0.0625 -0.1037 0.1582 -0.0743 

0.0138 -0.0294 0.0487 -0.0743 0.1095 

It immediately follows that j c A- j_ = 0.2251 and 
/ I / J V A. j_ = 

/4.4425 = 2.11. If one chooses a = 0.0027 (a traditional value), then 

z a / 2 = 3.0 and UCL = MQ + Z A / 2 / l / j 5
t A 5 J 5 = 30.0 + (3.0)(2.11) = 

36.33 while LCL = 23.67. Instead of constructing a y-chart, one could 

have set up a modified X-chart with control limits defined in equation 

(13). In this instance, UCL = y Q + z a / 2 ( O J J V I ) [1 + 2p Q(l - n )] = 

30 + (3.0)(3.66//5)[l + 2(0.47)(4/5)] 1 / 2 = 36.50 while LCL = 23.50. If 

one was unaware of the presence of correlation, then the control chart 

limits for the traditional X-chart are given by UCL = \1Q + z

a/2^° J ^ ~ 

30 + (3.0)(3.66//F) = 34.91 and LCL - 25.09. For each of the twenty 
A _ 

samples, y^ and were calculated (see Appendix A) and plotted on a 

control chart using all three sets of control limits. This is illus­

trated in Figure 3. 

Inspection of Figure 3 reveals that the traditional X-chart 

limits are tighter than those of the modified X-chart and the y-chart. 

The significance of this is demonstrated with sample No. 3 where x^ 

plots above the traditional X-chart limits. Thus, if one were unaware 

of the presence of first-order correlation and used a traditional X-

control chart, one would search for nonexistent assignable causes more 

frequently than necessary. This is the case with x^. 



A 

x 5 
I

 v5 
• « X • 

t 

H ( 1 1 I 1 1 i 1 > i I ) » > 10 15 20 
SAMPLE NUMBER 

Figure 3. A Univariate y Control Chart with y Limits Designated by , Modified X-Limits Designated 
by , and Traditional X-Limits Designated by . 
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In this particular example, there is very little difference 

between the limits for the modified X-chart and those of the y-chart. 

However, this is not always the case. For example, if = -0.47 while 
2 

a c - 13.41, then the y limits are given by [27.82, 32.19], the modified 

X limits are given by [25.27, 34.73], and the traditional X limits are 

given by [25.09, 34.91], which are the same as before. In this case, 

the y-chart limits are much tighter than those of either X-chart. And, 

if the manufacturer were to use either X-chart limits, it is the consumer 

who would suffer for an out-of-control process has less chance of being 

detected. 

The control limits presented in equation (23) are valid for any 

type of correlative structure. For example, if the underlying process 

is AR(1) which is described by 

\ - V i - i + ai» <30> 

then 

E(X.) = y, Var(X.) = a 2/(l - 4 > 2 ) , ) 
X X c l X I 

(31) 
Cov(X ±, X . + k ) * a a

2 4^/(1 - 4 , ^ ) , k > 1 , ) 

and from equation (31) one can construct and A n for the appropriate n. 

The (nxn) covariance matric associated with equation (31) is a 

Toeplitz matrix while its inverse is a Jacobi matrix. The general forms 

of these matrices are given in Press [49] and Ray [ 5 1 ] . If one is cal-

culating y for repeated samples, caution must be exercised in choosing 

the sampling intervals due to the nature of an AR(1) process. Equation 

(31) reveals that the covariance between observations decreases 
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"exponentially," where this decrease is fairly rapid for small values of 

| < J ) j J . In this situation one would be fairly safe in disregarding the 

correlation between the X^'s belonging to adjoining sampling intervals. 

However, when | < J > ^ | is relatively large, the X^*s of adjoining intervals 

could be correlated and induce correlation between successive y Ts. 

Recall that | <J>^ | < 1 is required for stationarity. 

In the univariate case, one does not have to adhere to the tradi­

tional format of the Shewhart chart by using the control limits and 

center line presented in equation (23). Since y ^ N(y n, 1/j A j ) 
u f\jii n ^n 

when the process mean equals the nominal value \1Q, we see that 

y - y. 

l/j fc
 A j ^n n ^n 

2 
:1 ' (32) 

The control chart would now appear as in Figure 4, where a ^ s s u c h 

that P ( x - i > X - i 2 ) = a» Th e statistic plotted on the chart is 
J- .L , ot 

A t 2 [(y - y n) j A j ] . Similar results will be obtained for the multi-
U r\jTi n r̂ n 

variate problem. One disadvantage in using such a chart is that runs 
2 

above and below y^ can no longer be detected in the x -chart. 

l,a 

l. , , , 1 , • 

1 2 3 4 5 6 Sample No. 
2 

Figure 4, A x Control Chart for One Quality Characteristic 
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2.2 Multiple Quality Characteristics 

2.2.1 Independent Observations 

The general multivariate statistical quality control problem con­

siders a repetitive process where each item is characterized by p quality 

characteristics, X^, X2,..., X^, which are random variables because of 

the chance causes inherent in the process. The probability law asso-
t t t ciated with X = (X,, X 0,..., X ) will be denoted by f„t(x ; y x -'v L l p X /\, /\, ; wne re 

the (p x 1) population mean vector, denoted by n, is defined to be 
a. 

/ = ECX*) = [E(L) E(X)] = [ y , , . . . , y 1 
0 , ^ ± p i p 

(33) 

and the (p x p) covariance matrix of X, denoted by Z, is defined to be 

Z = 

v(x1) Cov(X 1, X 2) Cov(X 1, X ) 1' p 

Cov(X_, X ) Cov(X0, X ) 1 p 2 p vex ) 

(34) 

When the scenario is a repetitive manufacturing operation, multiple 

measurements will be made on a sample of the successively manufactured 

items and it is desired that these multiple measurements behave as though 

they were obtained from a population having f v
t(x t; y f c ) as its probability 

distribution. In this section, interest is centered on the population 

mean vector y . When changes in the process cause the elements of y to 

shift from their nominal values, denoted by y n , it becomes necessary to 

detect these changes to insure a uniform quality product. Previous 

research by Alt [2] and Alt, Goode, and Wadsworth [6] have treated 

various aspects of this problem. Implicit in their work are the assump­

tions that 
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(i) the behavior of X is adequately described by a p-variate 
a. 

normal distribution, namely, 

fytfr'; V * ) - ( 2 T T ) " P / 2 | Z R 1 / 2 exp{-(l/2)(x - y ) C Z ' ^ x - y ) } , (35) 

and 

(ii) the sampled elements X,, X„,..., X behave as a random sample, 

that is, 

•y c v t y t . U , ' x J 1 ; y f c ) » II f t ( x

 fc; y 1 1 ) (36) 

Under the above assumptions with Z known, it is easily shown that the 

maximum likelihood estimator of y is given by X, the vector of sample 

means, where 

X ( y , Z/n). (37) 
a- Pa , 

Details can be found in Press [ 4 9 ] and Anderson [ 9 ] . Although X has many 

desirable statistical properties, only its efficiency will be investigated 

here by using the multivariate version of the Cramer-Rao inequality. 

For a fixed positive integer n, let X,, X 0,..., X denote a sample 

of size n from a distribution that is one member of the family 

{f Y
t(x t; 9*) : 6 £ ft} where X is (p x 1) , 9 is (r x 1) , and denotes the 

% t t 

parameter space. Assume f^(x-; 6 ) satisfies certain regularity conditions. 
a, 

Let the (r x 1) vector d be an unbiased estimator of 9 ; and let the 
'V a, 

(r x 1) vector W have as its components 
a, 

W = 3(£n f t t(X t,..., X n
t ; 9 T ) ) / 3 9 . , 

1 A - A r\j±. r̂ n <\, 1 

a,l 'vn 
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for i » 1, 2,..., r. Furthermore, let Ifl be the (r x r) matrix with 
th (i, j) entry given by E(W ± W.) - -E(3W./39.). If Z denotes the 

•3 3 
a, covariance matrix of d, then the generalized Cram£r-Rao inequality states 

-1 that Z^ - Iq is positive semi-definite. A proof is given in Silvey 
o» 'V. 

{61]. For the specific problem at hand, 9 is the (p x 1) vector u since 
t t t 

Z is known, and f (x ; 9 ) is the p-variate normal density which satis-

fies the regularity conditions. From equations (35) and (36), it follows 

that W = n Z" 1 (X - y) and 3W/3pC = -n z" 1. Thus I F L = -E(-n z"1) = n Z" 1, a. a. -1 and Iq = Z/n is a "lower bound" for the variance-covariance matrix of 
^ -1 an unbiased estimator of u. Since Z- = Z/n, Z- - I A - 0 and the "lower 

<\i X 
a. -1 bound" is attained in this case. For p = 1, I a reduces to the well­ed 

2 -known lower bound result of a T /n stated in Section 2.1.1. Since X is 

an unbiased sufficient statistic for y and since its distribution is 

complete, the UMVUE property of X could have also been determined from 

the Lehmann-Scheffe Theorem. 

Additional rationale for using X as the estimator for u is pro-
Oi a. 

vided by thinking of the sample elements X,, X.,..., X as being generated 
<\,L 'x.z -\.n 

from the following linear model: 

. 1 

11 12 
X 21 

nl 

X 22 

n2 

X 

lp 
[2p 

npj 

2»• • • ] + 

B 

all a12 
a21 a22 

L anl an2 

U 

llp 
l 2 P 

np J 

(38) 

where the (n x p) disturbance matrix U has the zero matrix as its expec­

tation and the common variance-covariance matrix Z within any row of U 
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with zero covariance between rows of U. Thus, if X 
a. 

X ], then ^n 

and 

E(X) = AB, 

C(X, X L) = 
a. a. 

E 0 

0 E 

0 0 

= I ( X ) E n (39) 

The conditions stated in equations (38) and (39) specify what is known 

as the multivariate classical linear regression model. Goldberger [29] 

has shown that the least-squares estimator of B, found by minimizing 

the trace of (X - AB) t(X - AB), is given by (Afc A) ^ Afc X; which reduces 

to X1" for the A and X matrices stated in equation (38). Furthermore, 
a. 

the variance-covariance matrix of this estimator is given by E fx) (A A ) , 
which reduces to E/n. Thus, even in the multivariate case, the least-

squares estimator, which is the best linear unbiased estimator of y , is 

identical with the maximum likelihood estimator. Now that justification 

has been given for estimating u by X, we go on to study the important 

problem of testing whether the process mean has shifted from the nominal 

value u n
 a n c* how this relates to X. 

Suppose X.. , X_ ,... , X is a random sample of size n from a p-'vX 'Vi t- 'un 

variate normal process with mean vector \i and known variance-covariance 
a, 

matrix E. The likelihood ratio test of H n :u = u n vs. H.. : u ^ u n yields 
the following critical region 
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- t -1 - 2 
co = {x , x 0 ,... , x : n(x - y n ) Z (x - y ) > x > » (40) 

^ ^ 2 ^ n ^ ^ ° ^ ^0 p ,a 

when the null hypothesis is true. Thus, if the hypothesis testing view­

point of one quality characteristic is generalized to multiple quality 

characteristics, the quality control engineer investigates statistical 

control of y n by taking a random sample of size n; computing x and 

determining whether 

n(? " £(/ Z'1(-l - " Xpja • ( 4 1 > 

If the inequality in (41) holds, then the decision maker would conclude 

that y has shifted from y n and assignable causes would be sought. For 

successive samples of size n, the decision making process can be set up 
2 

as a control chart similar in appearance to Figure 4 with x replaced 
l,a 

2 — t by X n « • 0 n this chart, one plots the scalar quantities n(x - y n ) 
Z "*"(x - y n ) for the successive samples and maintains control over y n by 

2 
inspecting this x -chart. Note that there is only an upper control 
limit, namely, UCL = X 2 » since the test statistic is a generalized 

p,a 

measure of distance. 

The decision rule presented in (41) can also be developed from a 

more intuitively appealing viewpoint, as presented in Anderson [9] and 

Press [ 4 9 ] . If the true process mean is y while the nominal value is y n, 

it is of interest to study how much y deviates from y A or, equivalently, 
I\J <\,v 

how much y - y n deviates from the zero vector. Since X is eminently 

qualified as an estimator for y , it seems reasonable to measure y - y n 

by using X - y A , where (X - y A ) ^ N ( 0 , Z/n) when y = y n . Since the 

deviations of each component of X from those of y A may be positive or 
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negative and these deviations have differing variability, it is neces­

sary to square these deviations and weight them by the reciprocal of 

their spread, which results in using the statistic n(X - y n ) t £ "̂ (X - y n) . 
2 

It is easily shown that this statistic has a x distribution when the 

null hypothesis is true. Thus, this intuitive approach results in the 

same rule as that produced by the likelihood ratio test. This is not 

surprising since the intuitive approach is based on the sufficient statis­

tic X and the maximum likelihood estimator is a function of this suffi-

cient statistic, namely, the identity function. Furthermore, for testing 

H n:u = y n vs. H^:y ^ jin, the likelihood ratio test is a function of 

every sufficient statistic for y, and hence of x. 
2 

If a statistic does plot out of control on the x -chart, the 

individual components of y responsible for this need to be determined. 
'b 

One solution to this problem is obtained by using Sidak's inequality 
[60]: Let U be distributed as a p-variate normal with E(U) = 0, 

'b 'b 'b 
arbitrary variances and arbitrary correlations. Then, for any positive numbers c,, c„,..., c , 1* 2 p 

P 
PCllLjJ < c 1 >... > |XJ | * c ) > n P(|u | < c ± ) . (42) 

P i=l 

For the specific problem at hand, \ is distributed as a p-variate normal 'b 2 with unknown mean values u, , . . . , u and known variances a. /n. To use 
1 p l 

1/2 -
Sida^s inequality, let = n (X̂ ^ - U i ) / ^ i > i = 1, 2,..., p and let c, = c 0 • ... = c be such that 2 $ ( c . ) - l + ( l - a ) 1 ^ . Then a 1 2 p l 
rectangular confidence region for y^,..., y^ with bounded confidence 

level 1 - a is obtained by using the following individual confidence 

intervals: 
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[x ± - c ± a^/n, x ± + c ± o±/Sn] . (43) 

As stated by Sidak ". . .we may always act as if all coordinates . . . 

were independent." The intervals generated by Sidak1s inequality are 

shorter than those obtained using either the Bonferroni or Scheffe 

technique. Additional explanation of these latter two techniques and 
2 

other aspects of the x -chart, such as its power, can be found in Alt [2]. 

In this section, the development of the decision rule for main­

taining control over y n was based on the assumptions of process normality 

and independence of the sample elements. Let us now determine how 

departures from this latter assumption affect the decision rule. 

2.2.2 Dependent Observations 

This section is concerned with the development of control charts 

for the mean vector when the sample elements are correlated and the quality 

of each item is determined by several, correlated characteristics. Thus, 

there is correlation across the sample elements as well as within each 

sample element. These statements can be formalized as follows. 

Let the n sample elements be denoted by X,, X 0,..., X where each 

X. is a (pxl) vector. Let X denote the (npxl) vector of sample elements, 

where X = [X^, £ 2 X ^ ] = [X n,..., X p l , X 1 2,... X p 2 >..., X l n,..., 

X ]. Let y v denote E(X), where this (npxl) vector is given by pn f\jA I\J 
a-

vJ1 ' ( u S y ^ . . . ^ ) , (44) 
a. 

with y*" - ( y - , . . . , y ) being the population mean vector of each X.. If % i P a.1 

we let A (x) B denote the direct product (see Graybill [32]) of the 
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(m^ x n^) matrix A with the (n^ x n^) matrix B, then A [ X J B is an 

(m^n^ x n^n^) matrix with entries (Ba ). Thus, equation (44) can be 

written as 

'n P ^ (45) 

where I is the (pxp) identity matrix. Let £ denote the (np x np) 
p x 

covariance matrix of X. That is, E = C(X, X ) - E(X - y v ) (X - y Y ) . 

Z x may be partitioned as follows: 

EX = 

'11 

'21 

'nl 

'12 

'22 

n2 

'In 

'2n 

nn 

(46) 

where the (p x p) submatrix E, . = C(X., X.*) = E(X. - y) (X. - y ) * . Now 
l j ^1 o>3 o-l a- o-J a. 

E ^ is a (p x p) symmetric matrix. However, in general, £ may not be 

a symmetric matrix and thus E. . ̂  E... Note that E..1" = E... Further-
I J 3i 13 31 

more, E^ is a symmetric, positive definite matrix. The maximum likeli-

hood estimator of y will now be found. 

Theorem 2.2: Let X.., X 0,..., X be jointly normal with mean vector y v 

and covariance matrix E v as given in equations (45) and (46), respectively. 
A 

Then the maximum likelihood estimator of y , denoted by y,is given by 

y = (B*" A_- B ) " 1
 B T AY X , 

r\. A A n , 
(47) 

a-

where the (np x p) matrix B is defined to be 
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B - (jp (X) I p) , (48) 

and \ = z
x
 1 

Proof: The likelihood function, denoted by L(y) , is given by 

L(y) = ( 2 7 T ) " ( N P / 2 ) |A_| 1 / 2 exp{-(l/2) Q(y)}, (49) 
A 'V' 

where 

Q(y) = [x - (i ® I )y] t A [x - (j ® I ) y] . (50) 
A. 

Now Q(y) can be expanded to yield the following: 

" A X * ' 2 ^ V^N Q V « + ^ © IP)T © V >J • 

Recall that 9(Ay)/9y = A T and 8(y t Ay)/8y = 2 Ay. Thus, 

8Q(y)/8y = -2x t A B + 2 B T A B y . 
A. 'V. 

Setting 3Q(y)/3y = 0 yields equation (47). || 
^ ^ ^ 

As with the univariate case (Section 2.1.2), the result presented 

in equation (47) could have also been obtained using a geometrical 

approach. Since A x is a symmetric matrix, there exists an orthogonal 
* t 

matrix P such that P A^ P is a diagonal matrix, D(X^), whose elements 
A. 

are the eigenvalues of A^. Furthermore, since A^ is positive definite, 

every X > 0. And, ?t A x P can be rewritten as ?t A x P = D(/X^) D(/A^). 
1/2 ^ ,— t ^ 1/2 1/2 Thus, by letting A x = PDCA^) P , we see that A x = A x A x where 

j/2 ^ <v <v <\, 
A x Is a nonsingular symmetric matrix. This allows us to rewrite 

Q(y) as 
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Q(y) = (x - By)* A y
1 / 2 A Y

1 / 2 ( x - By) 
R\J F\J A A R\J 

- ( A x
1 / 2 x - A ^ 2 B , ) ' (A*' 2 - A / / 2 BU) 

' A ' \ Y A <V, A A R\J 

= (x* - B ' u ) ' (x* - B 'y ) = <x ? - B ' y , x' - B'y> 
F\J R\J R\J F\J F\J <v*v ^ 

- I I* 1 - B ' u | | 2 , 

1/2 1/2 where x' = A v x and B' = A Y B. The least squares problem Is to find 
F\, A F\J A 

A A 

y to minimize this or to find )I such that B ji is the projection of x on 

the range of the linear transformation B ' . This is equivalent to solving 

the normal equations 

(B*) B'y = ( B !) x 1 

If ( B 1 ) T B* is invertible, then 

5 = [ ( B 1 ) C B ' ] " 1 ( B ' ) C x' . 
/\, |\, 

1/2 1/2 Since x' = A v ' x and BT = A v ' B, this reduces to 

A i\, A 

W = [ ( A Y
1 / 2 B ) t ( A y

1 / 2 B ) ] " 1 ( A „ 1 / 2 B)fc ( A y
1 / 2 x) = ( B ^ B ) " 1 B* A y x . 

* \ , A A A A ry_, A A a j 
/ \ , 0 » OI "*/ F\J 

To gain further insight into equation (47)>partition the (np x np) matrix A^ 

as follows: 
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11 12 In 

l21 L22 L2n 

lnl vn2 nn J 
n n 

where is a (p x p) matrix. Then (B t A Y B) = £ £ A., the *X i=lj=l 1 3 

sum 

n n 2 t r r of the n submatrices in A_. Furthermore, B A„ x = > > A., x. 

and the value of each sample element is weighted by the sum of the 

(p x p) matrices in the i*-*1 "column" of A . Thus, y can be written as 
A r\j 
1 » 

n n .. U. u. 

S - ( I I A r 1 (I [ A x ± 

* i=l j-1 1 3 i=l j=l 3 1 ^ 

n n 
(51) 

a t —1 t From equation (47), we see that u = A x, where A = (B A B) B A 
r\j i\, A A 

'VI O» 

has dimension (p x np). Hence y is distributed as a p-variate normal 
*VI 

(see Rao [50]). The expected value vector and variance-covariance matrix 

of y are obtained as follows: 
a. 

E(y) = (B C A Y B ) " 1 B t A V(EX) = (B*" A v B ) " 1 B* A Y B y = y , (52) lX 

and 

Z~ = C(y, y*) = E[(B t A x B)"* 1 B C A^ X - y][(B t A x B ) " 1 B*" A x X - y] U X a, 
'VY 

'VI 'VI 

= E(B t A Y B) [B1" A^ X - B*" A y B y ] [B^ A X - (B*~ A Y B) y]* ( B t A Y B ) ' 
A A N . A f\j A N . A N . A A r\j 
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(B* A Y B ) " 1 { B T A Y[E(X - B y)(X - B y)'] A _ _ B} ( B F C A Y B ) " 1 

A A ^ 1> I I 1 - A A 

( B F C A X B ) " 1 B F C A X A X - B ( B t . A X - B ) " " 1 

<\I <\» 

( B F C A X B ) " 1 

a. 

• © v c 0 v 1 _ 1 ( 5 3 ) 

Equation (52) demonstrates that y is an unbiased estimator of y. The 
A 

above three properties of y can be combined by stating that 

U - 1 L & . [(j n © 1 / A x q n © Ip)]" 1) • (54) 

The results presented in equation (54) reduce to those presented 

earlier in equation (21) for the univariate case. The efficiency of y 

will now be determined using the Cramer-Rao inequality, presented in 

Section 2.2.1. 

From equations (49) and (50), it follows that W = B F C A X X - B C A X B JJ 

t t t- ^ t ^ * and 9W / 3y = - B L A X B. Thus I Q = -E(-B A X B) * B A X B, while 
^ 1* I\J f\j 

I Q ^ - (B* A X B) ̂  is a"lower bound" for the variance-covariance matrix 

of an unbiased estimator of y. Since I > = (B* A „ B) \ E* - I Q • 0, 
<v U y o 

and the "lower bound" is attained in this case. That y is a UMVUE can 

have just as well been shown using the Lehmann-Scheffe" Theorem. Since 
A 

the unbiasedness of y was shown in equation (52), the sufficiency property 
A A 

of y needs to be investigated next. Recall that B y was the projection 

of x on the subspace V or R n p generated by B. Thus x - B y is orthogonal 
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to every vector in V and lies in the orthocomplement of V, denoted by 

Moreover, every vector in R n j ) decomposes uniquely into two orthog­

onal components, one in V and the other in V"̂ . Specifically, x - B y -

(x - B y) + (B y - B y ) , and, by the Pythagorean property, 
'Vi 'Vi 'Vi <\j 

||x - B H | 2 = | |x - B u||2 + | |B(5 - u ) | | 2 , 
f\l <\, <\j <\j % 'Vi 

where the norm is with respect to the metric matrix Thus, 

f Y t (x*; y) = k exp {-(1/2)||x - B p||2} exp {-(1/2)||B(S - u)||2> 
a. 

* g(x) h (y, y) , 

and sufficiency is established. Since y is p-variate normal and the 

p-variate normal is a special case of the exponential family of distribu­

tion, which is complete, the density of y is complete. Thus, y is indeed 

a UMVUE of y. 

Let us now show how the fact that y ̂  N (y, E~) can be used to 

detect departures of y from the nominal value y n. Actually, interest is 

centered on how much y - y^ deviates from the zero vector, where y - y n 

A. *• 

will be measured by y - p n since y is eminently qualified to estimate y. 

This results in focusing interest on the distributional properties of the 
A. £ —l ~ 

statistic (y - y n) I- (y - y A) since the deviations need to be squared 
'v 'vU y ^ 

and weighted by the "reciprocal" of their variability. First we need to 

recall the noncentral chi-square random variable (see Graybill [31]) •* 
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If the (p x 1 ) vector W ^ N (a, I ), then W* W is distributed 
% P ^ P ^ 

as a non-central chi-square random variable with p degrees of 
t 2 freedom and non-centrality parameter X = a a, denoted by x' 

% 'B P > X 

When X = 0, the noncentral chi-square random variable reduces to a 

regular chi-square random variable. A solution to the distributional 

problem can now be formulated. 

a t —1 ~ , 2 Theorem 2 . 3 : Since y ^ N(y, Z ~ ) > then (y - y) Z~ (y - y n) ^ x 
'x, ^ y % % y ' v ^ u P , A 

0 / 'B 

where X = (y - y J* 1(y - y n ) . 
'B 'V," Y 'B ' V U 

a. 
Proof: Since Z * is positive definite, there exists a nonsingular matrix 

^ t - 1 - - 1 R such that E A = RR . Let W = R (y - y n ) . Then E(W) = R (y - y n) and 
y ^ ' V , ' V , U ^ ' B ' V A J 

C(W, w') = E(W - yJCW - y T^) t = R _ 1 Z ^ R ' V = I . Thus, W ~ N ( R _ 1 

(y - y ), I ) and W t W 2, where X = (y - y ) T ( R _ 1 ) T R" 1(y - y n) = 
- B ' V / U P ' V ' B P ^ X 'B M) ' B ' B O 

(y - y ) ' Z - ~ ̂ y - y ) and W* W = (y - y ) fc z f X(y - y ). | | 

A 

Note that when E(X.) • y n, for i = 1 , 2 , . . . , n, then y ^ N (yn, Z * ) , and 
-\A P r̂U y 

(y - y ) ' E^CJT - y ) (55) 

Thus, to determine whether the process mean has shifted from the nominal 
A 

value y n, the decision maker would calculate y and determine whether 

(y - z^fHy - yn) > x

 2 . (56) 

If the above decision rule holds, then the decision maker would conclude 

that the process mean has shifted from y n. For successive samples of 
2 

size n, the test statistic is plotted on a chart with UCL = x similar 
P , A 

2 2 to that of Figure 4, but with X-. replaced by x 
L , A P , A 
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When the decision maker computes (y - Ur.)*" 2> "̂(y - y n) and com-

pares it with the control limit for successive samples of size n, he is 

merely performing repeated tests of significance. If one adopts this 

viewpoint, then the power of the test, denoted IT (A), is given by 

ir(X) - P[(S - Wn)' 2-" 1(£ ~ yn) > X n * I v] , (57) <vu y a. a.u P>" ^ 

where 7r(0) • a. 

Let us determine the nature of the decision rule presented in 

equation (56) when the off-diagonal submatrices in Z x are. zero, that is, 
n n 

Z.. * 0 for i ^ j. From equation (51), we see that y = ( 7 7 A..) 
1 3 * 1-1 j=l 1 3 

n n 
^ I I A.^ x^). Since Z x is a block diagonal matrix, so is A x- Further-
i=l j=l 3 ^ ^ 'v, 

n n ^ 
more, assuming that A „ = ... = A = A, then 7 7 A. . = nA = n S ° 11 nn * in 

1*1 1=1 J 

n n - n n « n 
and ( I I A , , ) " 1 = Z/n. Now £ £ A x. » £ A x = A £ x -

i-l j=i J 1 ~ 1 i=l 1 1 ^ i=l ^ i-l j=l ± 3 

n A x - n Z ^ x and y = (Z/n) (n Z x) = x. Also note that £~ *̂ = 
*\* i\, <\j t\, y 

n n 1 

I I A = n A = n Z~ . Thus, (y - y ) t E~~ (y - y n) = n(x - y j 1 1 

1 -L J J- a. 

Z "̂(x - y n ) . The conclusion is that the decision rule presented in 

equation (56) for multivariate, correlated observations reduces to that 

presented in equation (41) for multivariate, uncorrelated observations 

as should be the case since Z ^ = 0 for i f j implies uncorrelated 

observations. 
When the decision maker reaches the conclusion that y has shifted 

a. 
from y n, the determination of those components of y responsible for this 
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conclusion is of prime importance. One way to handle this problem is 

through the use of Sidak*s inequality (see equation (42)). This 

results in the following set of simultaneous confidence intervals of 

bounded level 1 - a: 

for i » 1, 2,..., p, where e.* s [0;'..., 0, 1, 0,..., 0] with a 1 in the 
i/p 

In Section 2.1.2, it was pointed out how the ARMA models of order 

1«» p o s l t i o n , ft 
= e . u , and c. is such that 2 $(c.) = 1 + (1 - a) 

1 <V*L A . J- 1 

(p, q) could be used to represent different types of correlative struc­

ture for the sample elements. In the multivariate case, there is a 

similar correspondence. The generalization of univariate ARMA (p, q) 

models to the multivariate case is usually obtained by substituting 

vectors and matrices for the scalar quantities. For purposes of explora­

tion, consider a bivariate, first-order moving average process, the model 

for which is presented in equation (58): 

X - u - 0 a - + a , 
T\,L. R\j N ^ T — X F\,Z. 

a. * NID 9(0, I ) . 
R\JZ L R\J 3 

(58) 

The "a *u NID 9" denotes that the a are bivariate normally distributed 
R\jL. Z ROT 

random variables and that they are uncorrelated across time. For the 

bivariate case, X̂ ., y, and a. are each (2 x 1) vectors while 0 is a 
1 # T <\i O I T 

(2 x 2) matrix. Thus, the first part of equation (58) can be written 

as 
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Xlt " v l " 611 al,t-l ~ 812 a2,t-l + alt 

X2t * U 2 " 921 al,t-l " 922 a2,t-l + a2t 

(59) 

Note that equation (58) describes the multivariate classical linear regres­

sion model when 0 is the zero matrix. In accordance with Fuller's [26] 

notation, let r(h) denote the covariance matrix of X. and X.... That is, 

T(h) = E(X. - U)(X<.,, - u ) t and let T(-h) - E(X. - u) (X. - u) f c. It fol-

lows that 

r(h) =< 

Z + 0 1 0 
a a 

-Z 0 ' 
a 

- 0 Z a 

h = 0 

h - 1 

h = -1 

otherwise 

( 6 0 ) 

> 

For a sample of size n from such a process, the covariance matrix of X is 

as follows: 

a. 

r ( 0 ) 

r ( - i ) 

o 

r (D 

r ( 0 ) 

r ( -D 

o 

r (D 

r ( 0 ) 

r ( 0 ) 

(61) 

Thus the memory of a multivariate MA(1) model is only one period long, 

and the vectors of observations from such a process possess the multi­

variate analogue of first-order serial correlation. Note that [T(l)] t = 
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r(- l ) . For the univariate MA.(1) process, it was required that |9..| < 1 

for purposes of invertibility. For the multivariate MA(1) process, the 

analogue is that the p - 2 roots of the determinantal equation 

be less than one in absolute value (see Fuller [26]). Note that equation 

One advantage in representing autocorrelation between the vectors 

of observations by using the multivariate analogue of ARMA. models is 

that it facilitates the simulation of output from a process that meets 

the conditions of Theorem 2.2. Another more general advantage is that 

these models facilitate the study of the robustness of multivariate test 

procedures to departures from the independence assumption. 

In order to demonstrate the decision rule presented in equation 

(56) and some of the other concepts in this section, consider the follow­

ing example. 

Example 2.2 From past experience with a bivariate process, it is deter­

mined that the vectors of observations have a first-order serial correla­

tion as exhibited in equation (61). From equation (60), we see that the 

components of 2 are generally given as follows: 

Im - 0| = 0 (62) 

(61) is a special case of equation (46) with = T(0), Z. . * r(l) if 
i i i"-J 

- © + c 2 11 Y12 " 912 Y22 + r C l c 2 12 Y21 1 
r(0) = 2 

21 Tll " 622 Y21 + rc-c 1 C2 ~ 921 Y12 " 22 Y22 + c 2 
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r(D -

Y12~ 

Y22. 

° 21 °11 - r c l C 2 912 -° 21 921 " r c l C 2 e22 

r c l C 2 611 ' ° 22 612 " r c l C 2 921 - ° 22 922 

r(-i) = rt(i) , 

while 

Z = a 

r C l C 2 

rc xc 2 c 

Thus, the covariance structure of X is specified when 6 , , , 6 1 0 , 60- , 6 0 « , 
-\, 1 1 L2L 2.L 2.2. 

r, c^, and are specified. Furthermore, @i2» ®21' a n c* ^22 m u s t ^ e 

fixed in such a way that equation (62) is satisfied. Specifically, we 

need to check that |nu | < 1, i = 1, 2, where 

m i " t ( 9 l l + 922> * / ( 6 1 1 " 9 2 2 ) 2 + 4 S12 9 2 l " 2 -

It should be noted that < 1 for the triangular region shown in 

Figure 5. Thus, for any point in the triangular invertibility region, 

(-2,1) 

(0,-1) 

Figure 5. Invertibility Region for the Bivariate MA(1) Process. 
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there are many four-tuples (®^> ®i2' ^21' ^22^ c o r r e s P O I 1 d i n g to this 

point. For example, suppose we pick the point (0, -0.25). This implies 

The other constraint is that > + e 2 2 = o or e 22' 
611 922 " 612 921 S ~ 0 , 2 5 » w h i c h reduces to 9 2 2 + Q 2 $ 2 1 = 0.25. If 

2 2 

we let 9^2 • ®21' t ^ i e n t* i e s e c o n d constraint further reduces to 9 2 2 + 9 ^ 2 

0.25. Thus the locus of points satisfying the second constraint is a 
circle with radius equal to /0.25 when we let 9^2 = 9 2^. To simulate out­

put from such a process, many combinations of 9 2 2 and 9^2 could be 

selected. For example, four representative points are: 

622 612 

•2/4 •2/4 

-•2/4 •2/4 

-•2/4 -•2/4 

•2/4 -•2/4 

For illustrative purposes, let us look at 9 2 2 = ^2/4 and = •2/4, in 

which case 9 2^ = >/2/4 and 9̂ ^ • ->/2/4. Furthermore, r was set equal to 

zero, c^ was set equal to one, and c 2 ranged from 1.0 to 4.0 in increments 

of 1.0. For convenience, - p 2 = 0. In total, 4 simulations were run 

with the same random number seed used in each run. 

To gain further insight into the simulation procedure, let us 

rewrite equations (59) and (60) using the specific parameter values. 

Thus, 
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r(D = 
V2/4 

-c 2 /2/4 c Z
2/2/4 

, r(-i) = r L(i) , 

r(0) = 
(9/8) + (1/8) c 2

2 (1/8)(c 2
2 - 1) 

(1/8)(c j - 1) c 2
2 + (1/8)(c 2

2 + 1) 

and 

2 = a 
2 J 

Furthermore, 

: i t = (/2/4) a ^ - (/2/4) a 2 ) t _ 1 + 

: 2 t = - (/2/4) ̂  - (^2/4) a 2 ) t _ 1 + a, t 

Thus, in these four runs, we are investigating the effect of increasing 

the variance of the second white noise generator. 

Since we set a^ Q and a 2 Q equal to zero, we discarded the first 

100 X fs to overcome any transient effects. The first sample consisted ^t 
of observations x, n, x 1 i n , from which u (as given in equation (51)) 

was calculated as well as (y - y^ ^ E * ) ^ (y - u^),which was designated as ^ 'vO' y ' 
SUM 1. The second sample consisted of observations x........ x,,.. 

^151 'vloO 
Again, both y and a value of the test statistic were computed. This was 

a. 

continued for a total of twenty samples. As a measure of comparison, x 
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was also calculated for each sample as well as n(x - y n ) Z (x - , 

which was designated as SUM 2. SUM 2 ignores the autocorrelative 

structure since Z = T(0). The results are presented in Appendix B. 

Note that for a fixed sample number, SUM 2 decreases as c 2 

increases. This is apparent from examining the off-diagonal elements of 

T(0) which become more negative as increases. Also, SUM 2 does not 

make use of T(l). This decreasing behavior characteristic of SUM 2 

becomes very important as we compare SUM 1 with SUM 2. 

To investigate the effect of increasing c 2, we compare the magni­

tude of SUM 1 with SUM 2. For run 1, only 15% of the time was SUM 1 

larger than SUM 2; for run 2, this increased to 35%; for run 3, this 

increased to 55%; and, for run 4, the figure is 65%. This increasing 

percentage is expected because of the decreasing behavior of SUM 2 dis­

cussed in the preceding paragraph. The significance of this is that 

as c 2 increases SUM 2 (the test statistic which ignores the autocorrela­

tive structure) may fail to detect a shift in the population mean; how­

ever, for small SUM 2 will tend to indicate that a shift has occurred 

when, in fact, it has not. This concludes Example 2.2. 

In this chapter, control charts for the mean were reviewed and 

developed for four different cases: (i) one quality characteristic, 

independent observations (ii) one quality characteristic, correlated 

observations (iii) multiple quality characteristics, independent observa­

tions, and (iv) multiple quality characteristics, correlated observations. 

While cases (i) and (iii) have been previously discussed in the litera­

ture, additional motivation for their use has been presented by 
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demonstrating that the test statistic has favorable risk characteristics. 

The test statistics used in cases (ii) and (iv) also enjoy this property. 

Additional properties of the control procedure, such as the power and 

the relation to generalized least squares, were also presented. 
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CHAPTER III 

ESTIMATION FOR THE MULTI-CONSEQUENCE INTERVENTION MODEL 

In Chapter I, the concept of multiplicative empirical-stochastic 

models of order (p,d,q) x (P,D,Q) was introduced and a synopisized list 

was presented of their enormous success in modeling a temporal sequence 

of occurrences for different scenarios. In Chapter II, a mathematical 

model was presented for both the univariate and multivariate ARMA 

(p,q) models, and it was explained how there is a relationship between 

these models and different types of autocorrelative structures. 

Chapter I also introduced the concept of an intervention model and 

the unique prespective it offers in evaluating an unplanned ex­

periment with correlated observations for a change in the level of the 

underlying process. 

Section 3.1 will elaborate upon earlier introductions to ARMA 

models with particular emphasis given to ARMA models of order (0,0,1) 

and (0,0,2). This section culminates with a full specification of the 

probability density function of a set of n observations from either 

an MA(1) or MA(2) process. Section 3.2 focuses on the estimation of 

the model parameters described in Section 3.1 via the technique of 

iterative, conditional least squares. Particular emphasis is given 

to the case where the treatment has altered not only the level of the 

series but also the values of the moving average parameters, which is 

designated the multi-consequence intervention model. Section 3.3 also 

addresses the estimation of these parameters but from the maximum 
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likelihood viewpoint. The maximum likelihood estimates can be used to 

set up an asymptotic likelihood ratio test to investigate the hypo­

thesis that the moving average parameters prior to the intevention are 

equal to those after the intervention. This section also shows why 

the maximum likelihood estimates may be different from the least 

squares estimates. 

This Chapter concludes with an example for which both least 

squares and maximum likelihood estimates are obtained. 

Selected portion of this Chapter appear in a paper by Alt, 

Deutsch, and Goode [ 4 ] . 

3.1.1 Non-intervention Situation 

One very useful technique in modeling a temporal sequence of 

occurrences from a process is the multiplicative empirical-stochastic 

models proposed by Box and Jenkins [13]. The general form of these 

models of order (p,d,q) x (P,D,Q) C is given by 

where * (B) and $^(1$ ) are the nonseasonal and seasonal auto-
P ^ 

S 

regressive operators, 6q(B) and0^(B ) are the nonseasonal and 

seasonal moving average operators, and are nonstationary and 

seasonal differencing operators, and S is the seasonal lag. For 

example, the multiplicative model of order (0,1,1) x (O,l,l) 1 0 is 

3.1 Description of MA(1) and MA(2) Models 

4 p(B)* p(B S) v d v ^ z t = eq 8 (B) GQ (B S)a t, 
(63) 

S 
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written as 

V Z t = (1-6B) (1 - 9 , B 1 2 ) a t , (64) 

where p=P=0, q=Q=l, d=D=l, and S=12. In equation (64), it is assumed 

that a ^ NID(0,a 2). By making use of the fact that B k = , and t a t t-k 
V = (1-B) , we see that equation (64) has the following equivalent 

IV 

representation: 

\ ~ Zt-1 " Zt-12 + Zt-13 = at " 9 at-l " 0 at-12 + 8 9 at-13-

When there is no seasonal component (P=0, D=0, and Q=0), the multi­

plicative model reduces to the autoregressive integrated moving 

average (ARIMA) model of order (p,d,q), namely, 

•(B) V d Z t = 0(B) a t, (65) 

where quite frequently Z f c is written as Wfc. When d=l,2, the 

effect is to remove linear and quadratic trend, respectively, so that 

Wj. is s t a t i o n a r y in level. If no differencing is necessary, e q u a t i o n 

(65) reduces to 

a, 
4> (B) Z t = 9 (B) a t, (66) 

where <|> (B) = 1 - < j > 1 B - ... - ^ B P, 9 (B) = 1 - Q 1 B- ... - 9 q B q, 
a. 

and ZT = Z t - y with y denoting the process mean. This is frequently 

denoted the ARMA (p,q) model, where the weights < J > ^ , . . . , (j> and 9^,..., 

9^ must satisfy certain stationarity-invertibility conditions. In 

this Chapter, we will be specifically concerned with the case where 

( j ) ^ = . . . = (j) = 0. The notation MA(q) is used for such models. For 
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example, the MA(1) model is given by 

Z t - „ + a t - ^ a £_ x , (67) 

while the MA(2) model is given by 

\ = V + \ - \ »t-l " 8 2 at-2- < 6 8> 

The MA(1) and MA(2) models are invertible only if 

-1 < 6 < 1, (69) 

and 

2 v l < 1 (70) 

- i < e 2 < i , 

respectively. No further restrictions are required for stationarity 

since, whatever the values of 8^ and 8 , equations (67) and (68) both 

define stationary processes. Since a ^ NID(0 , a 2 ), it follows that 
t a 

for an MA(1) process 

E(Z t) = y , (71) 

Var(Z t) - Var(y + afc - B ± a ^ ) = o*(l + 8*), (72) 

and 

Cov(Z t, Z t + j ) - E[(u + a t - e x - y) (y + a f c + j - 6 X a ^ ^ - y ) ] 

• E t a t a
t + j - e i a t a t + J - r 9 i a t - i a t + j + e i a t - i a t + 3 - i ] • ( 7 3 ) 
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Thus 

C o v ( Z t , Z t + . ) = 

0 , j>l , 

(74) 

and the memory of an MA(1) p rocess i s only one per iod long . The 

covariance matrix of the sample elements Z ^ , . . . , from an MA(1) 

p r o c e s s , denoted by E ^ ' ^ , i s given by 

Z a 

1+02 

l+e 2 

o 

-0. 

1+02 

(75) 

and, the (nx l ) expected value v e c t o r , denoted by y , i s given by 
«uZ 

y = [y , y , . . . , y] = y j ' , 
^n 

(76) 

where j i s the (nx l ) v e c t o r a l l o f whose en t r i e s are l ' s . Later 

on, i t w i l l prove convenient to adopt Box and Jenkins ' no ta t ion 

and l e t z f> X >= „2 ( M ^ Let Z = [Z.. , Z 0 , . . . ,Z ] and l e t 
n ^ 1 z n 

a" = [>Q,a^. . . ja^] . Then Z = C ^ ' ^ a ' + y 7 , where C ^ ' " ^ i s the 

fo l lowing [n x (n+1)] matrix: 

,(0,1) _ (77) 

0 0 



69 

and it follows that Z is distributed as an n-variate normal. To 

summarize, if Z. , Z 0,..., Z emanate from an MA(1) process at n 
1 Z n 

equispaced successive times, then 

Z ~ N (y j*, E ^ 0 , 1 ) ) . (78) 
RY, n ^n Z 

Similar results are obtained for an MA(2) process. Namely, 

y 7 - y j n , (79) 
^ Z OJL 

Z a 

•(i+e|+e|) 

-e 1 ( i -e 2 ) 

- e 1 ( i - e 2 ) 

(i+e^+e|) _ 6 i ( i - e 2 ) - e 2 

-e 1 ( i - e 2 ) (l+ej+e*) -e 1 ( i -e 2 ) 

(i+e2+e|). 

a n (80) 

and Z = C ^ ' ^ a + y_, where at = [a .. , a , a-,..., a ] and C ^ ' ^ 
^ NZ ^ - 1 o 1 n 'V 

is the following [n x (n+2)] matrix: 
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r - e 

(0,2) _ 

2 1 

0 -9 0 

0 

L o 

0 

1 J 

(81) 

In summary, for an MA(2) model, 

Z * N(y, ^ ° ' 2 ) ) a, n % z. a. 

The foregoing results immediately enable us to write down the 

probability density function, f , of either MA process: 
CJ 

v ^ t • « • l ^ ^ • ( 2 ' ^ / 2 l s z

c o ' q ) l - 1 / W - ( l / 2 ) ( z ^ n ) ^ E ( o ' « • ) ) - l

( ? - u j J 1 , 
- I / O ; %J A. ^n' 

(82) 

where 6*9.. for an MA(1) process and 6 - [B. ,6 ] for an MA(2) 
a, 1 I\, L 2. 

process. Although the results were specifically developed for MA(1) 

and MA(2) processes, they are easily generalized to higher-order 

moving average processes. 

3.1.2 Continuous Intervention Situation 

As indicated in Chapter I, we will be primarily concerned with 

the continuous intervention situation where the treatment remains in 

effect at each time period after it has been introduced. For example, 

if we are monitoring the monthly occurrences of homicide for a 
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particular city, an intervention might consist of a gun control law 

which remains in effect for a relatively long period of time after 

its introduction. Furthermore, we will assume that the intervention 

abruptly changes the level of the observations, although other types 

of level changes can be easily accommodated. To account for a possible 
th 

change in level upon introducing an intervention after the n ^ — 

observation, consider the following modification of an MA(1) process: Z t = y + a t - 6 1 a t - 1 , t = 1,..., 

Z f c = y + 6 + afc - 0^ a
t_^> t = n i + 1>•••> n i + n 2 * 

(83) 

We will assume a^ ^ NID(0,a2) for t=l,...,n, where n=n, +n 0. This t a i L 

modified single consequence intervention model and its statistical 

analysis have been briefly considered by Glass, Willson, and Gottman [28] 

We will further modify the intervention model of equation (83) to 

allow for the intervention affecting the process variability as well 

as the level. This multi-consequence intervention model has the 

following formulation: 

Z t = y + afc - 0 1 a t_ x , t = 1,..., n±; 

Z t = y + 6 + afc - Y1 a t_ 1, t = n 1 +1,..., n 1 + 

Thus, the model given inequation (84) differs from that presented in 

equation (83) since has replaced 0^ for t=n^+l,..., n. From 

equation (84), it follows that 

(84) 
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and 

E(Z t) = y + 6 , t = n 1 + l , . . . , n 1 + n 2 , 

which is identical with the expected value of the single consequence 

intervention model presented in equation (83). If we partition the 

(n x 1) vector Z into two components, namely, the (nn x 1) vector 
a. 1 

Z n = [Zn ,..., Z and the (n« x 1) vector Z« = [Z Z ]*". 
<\i± ± n^ z z n^+l n 
then E(Z), denoted by jjz, can be written as 

where 

k = 
a. 

U 
^ 2 

L^2J 

(85) 

(86) 

Thus, the (n x 1) vector k has 0 fs for its first n, entires followed 

by n 2 l fs. It also follows from equation (84) that 

Var(Z t) * Var (]i+a t-9 1a t_ 1) = ^(1+6^), t=l,..., 

while 

Var(Z t) = Var(y+6+a t-Y 1
a
t^ 1) = -Cf|(l+Yi) > t-n^..., n ^ ^ 

Furthermore, 

Cov(Z t, Z t + 1 ) 91 a ' t = 1 > " * > ni""1* 

Cov(Z , Z ) = Cov(Z , Z ) = n^ n^+l n^+l n^ - Y l a l a ' 
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and 

Cov(Z t,Z t + 1) = - y1 a 2 , t=n x + 1,..., n. 

The above statements concerning the variance-covariance structure of 

Z can be written in matrix form. Specifically, if E^'"^ denotes 

(n x n) covariance matrix of Z, then 

Z a 

'Xj .(0,1) 

,(0,1) 
21 

(0,1) 

f\j2 

'Xj 

(87) 

where 

.(0 1) 
h 

(1+62) -6. 

U+e 2) 

(l+e2) - e 1 

- e x d+e 2 ) 

(0,1) 
'XJ 

(1+Y2) 

-Y-, 

- Yi 

(1+Y2) 

(1+Y2) -Y x 

-Y x (1+Y2) 
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and 

B (0,1) = 

21 

0 0 

0 0 

0 0 

0 0 

0 -Y,n 

Thus, £_* 0 , 1^ is a diagonal matrix of type 2 as are B ^ 0 , 1 ^ and B ^ 0 , 1 ^ , 
^ 1 ;T2 (0 1) ^ ^ which B ^ ' is the zero matrix except for the element in the northeast 

corner which is - 7 r Furthermore, since Z = C^'"^ a + y , where 
(0 1) ^ Ĉ . is an [n x (n+1) ] matrix similar to that presented in equation 

(77) except 6^ in rows n^ + 1 through rows n^ + n^ is replaced by 

we see that Z is distributed as an n-variate normal. This can be 
a. 

summarized by saying that for a first-order moving average intervention 

process, denoted MA^(l), 

Z * N (y„ , Z ^ 0 , 1 ) ) , 
a, n aZ Z 

a, a, 

where y,, and Z ^ 9 ^ are presented in equation (85) and (87) , re-

(88) 

Z 
spectively. 

Let us now consider when the observations follow a second-order 

moving average model, and the intervention produces a constant effect 
th 

starting with the (n-̂  + 1) observation. The model formulation is as 

follows: 

Z t = y + a t - Q± a ^ - 9 2 a t_ 2, t = 1, n± ; 

Zfc = y + 6 + afc - e x a t_ 1 - 6 2 a f c_ 2, t = n^+1,,,, ,^"h^ • 
(89) 
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We reformulate the single consequence model of equation (89) to a 

multi-consequence model by stating that 

Z t = y + a t - 6 X a t_ x - 9 2 a t_ 2 ^ fc = ^ ^ ^ . 

Z t = y + 5 + a t - Y l a t, 1 - Y 2 , t = n^l, ., . , n ^ n 
(90) 

This reformulation not only allows for a change in level of the ob­

servations but also a change in their covariability. Since 

afc 'v NID(0,a 2), it follows that t a 

O/Z r̂ n A, 

and 

(0>2) - ,2 
Z = a' 

((0,2) 
Zi 
,(0,2) 
21 

(0,2) 

0/< 

where 

(0,2) _ 

|(l+62+82
2) -6 1(l-8 2) 

-6 1(l-6 2) (1+82+02) 

-e2" -e 1 ( i -e 2 ) 

-e 1 ( i -e 2 ) 

(l+e^+e2) 

(91) 

(92) 

(i+0 2+e 2) - e 1 ( i -e 2 ) 

-8 1(l-6 2) (1-82+82) 

(93) 
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, ( 0 , 2 ) _ 

a/2 

( I + Y £ + Y | ) 

-Y 1(l-Y 2) 

-Y. 

(l+Yj+Y?,) 

-Y, 

-Y^l-Y,,) 

(1+Y^+Y 2) 

( 1 + Y | + Y | ) - Y ^ l - Y ^ 

and 

" Y 1 ( 1 " Y 2 ) ( I + Y I + Y | ) 

(94) 

,(0,2) _ 
2 1 

-Y- • Yl + ei Y 2 ~ 

-Y-
. (95) 

Thus, for an M A ^ . ( 2 ) model 

Z - NGi . , ^ ° , 2 ) ) , (96) 

where normality follows from the fact that Z = C ^ ' ^ a + u_ and a 'v* NID 
ro I /y, t 

3 . 2 Iterative, Conditional Least Squares (ICLS) Estimation 

In the previous section, a detailed explanation was presented of 

the MA.(1) and M A ( 2 ) models along with the modifications necessary to 

accommodate a multi-consequence intervention, that is, one which 



affects both the level and variability of the underlying process. In 

this section, we will be concerned with parameter estimation for the 

MAjCl) and MA^(2) models. Although we shall be primarily concerned 

with the estimation of y and <S for each of these models, we shall see 

that both estimates are directly dependent upon the values of the 

moving-average parameters. Thus, we will use an iterative technique 

of searching on the moving-average parameters until those values are 

found which minimize the residual sum of squares. For this reason, 

the estimation technique is called iterative least squares. In order 

to provide a basis for estimation in the MA^(l) and MA^.(2) cases, let 

us first consider the non-intervention MA(1) and MA(2) models. 

3.2.1 Non-intervention MA(q) Models 

Let z^, z^, z^ be n successive observations generated from 

the MA(1) process of equation (67), which can be rewritten as 

a t - z t - y + 9 1 a t - 1 . (97) 

- -1 n 

Box and Jenkins [ 13] suggest that y can be replaced by z - n J zfc 

t=l 

where for "the sample sizes normally considered in time series analysis, 

this approximation will be adequate." Thus, equation (97) becomes 
a t = z t - z + Q± a t - 1 , (98) 

where 9^ is the only unknown parameter. However, as Box and Jenkins 

point out, even when the z^s are substituted into equation (98) and 

9^ is fixed, the a^s still cannot be calculated recursively because 

a^ depends on a^ which is unknown. This difficulty is overcome by 

letting a^ = 0, its marginal mean. Justification for this is given 
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in Aigner [ 7 ] . Thus, conditional on a^= 0 and for a fixed 0 ^ , the 

a^s in equation (98) can be recursively calculated. Actually, we are 

calculating a^s, which are estimates of the unobservable a^s. The 

objective is to find that value of 0 ^ which minimizes 

W " \ at ( 9i I AO - °- s> - \ (zt -* + 9i V i ) 2 ( 9 9 ) 

t=l t'=l 

The asterisk subscript on S indicates that the sum of squares is 

conditional on a^ = 0. This is further emphasized by the conditional 

notation of a , viz., a ( 0 . |a = 0 , z). To assist in the search t t i 0 % 

for 0 , recall that |0 | < 1 for invertibility purposes. Thus a table 

can be set up which lists 0- and S . ( 0 ) for the (-1,1) interval in 
± * 1 

whatever increments are desired. When a minimizing value of 0 ^ is 

found, finer increments can be used over the reduced 0 ^ neighborhood 

if so desired. Experience by other authors suggests that S ^ ( 0 ^ ) is 

fairly well-behaved (unimodal) for large sample sizes. 

One would proceed in a similar manner for the MA(2) process, 

where now 

at = Zt ~V + 9 1
 at-l + 9* at-2 ' ( 1 0 0 ) 

n 

I 
t=l 

n 

S * ( 0 R 0 2 ) = I a 2 ( 0 1 , 0 2 | a_± = a Q = 0, z) 

(101) 

« I ( V* + 6l at-l + 0 2 a t _ 2 ) , 
t=l 

and a grid search is performed to find those values of (0,8^) which 

minimize S A ( 0 ^ , 0 2 ) . The extension of the ICLS estimation procedure 

to higher order MA(q) models is straightforward. 
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Box and Jenkins [13] give further justification for the ICLS 

procedure by relating it to a conditional likelihood function. Let 
t 9 a .= [a,, a 0, .... a ]. Then, since a^ ^ NID(0,a z), ^ L 1' 2 ' n t a 

f (a^ = (27ra 2)" n / 2 expC-a* a/2a 2} <v a f\» i» a 
and 

-cn 1^(6*,^) = - (n/2)£ n 2TT - (n/2)£ H a 2 - S j f cC0 t)/2a 2 , 

where L. denotes the likelihood function conditional on a. = 

[a , a a. ]* = 0*. Furthermore, since £n L. depends on z o -1 1-q ^ * % 
only through S. ( 9 ), it follows that contours of tvi L. "for any fixed 

value of a in the space of ( 9 , a ) are contours of S., that these a 'v. a * 
maximum likelihood estimates are the same as the least squares 

estimates, and that in general we can, on the Normal assumption, study 

the behavior of the conditional likelihood by studying the conditional 

sum of squares function." 

It is apparent from Box and Jenkins' write-up of the ICLS pro­

cedure that their primary interest is in obtaining values of the 

moving-average parameters with only a secondary interest in es­

timating u . This emphasis is usually reversed for the inter­

vention models. The adaptation of ICLS estimation to MA^(q) models 

is the topic of the next section. 

3.2.2 MA^q) Models 

Statistical estimation of the intervention parameter 6 and the 

process level was first reported by Box and Tiao [14]. Their results 

were exclusively for the ARIMA(0,1,1) model. See equation (65). The 
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basic idea is to transform the n original observations to another 

set of variables amenable to statistical linear model analysis. Glass, 

Willson, and Gottman [28] extended their results to certain other ARIMA 

models by indicating the necessary transformation and providing examples, 

Because of their brief treatment of the single consequence MA^(l) model, 

we will further investigate this case before turning to the multi-

consequence MA^.(1) model, which has not been previously investigated. 

3.2.2.1 Single-Consequence MA^Cl) Model 

The single consequence MA^(l) model was presented in equation (83), 

where it is postulated that the intervention abruptly changed the level 
th 

of the series after the n̂ -— observation. Before finding the necessary 

transformation, recall that the model Y = X 3 + a , with a ^ N (0, a 2I), 

describes the classical normal linear regression model, details of 

which can be found in Goldberger [29]. In our case, Y is an (n x 1) 
a- t vector as is a , X is an (n x 2) matrix, and 3 = [y, 6] . The tranS-

r O a, 

formation necessary to convert equation (83) into linear model form 

can be found by considering the first few z^s. Specifically, 

z^ = y + a^ - 0 ^ a^, where a Q is unobtainable. However, if we let 

a Q = 0, its marginal mean, then z-̂  = y + a^, which is linear model 

form. Thus, we let = Now = y + a 2 - 0 ^ a^, where the 

term prohibits & from being in the desired format. However, if 

we multiply y^ by 0 ^ and add the result to the desired format is 

obtained. Namely, y 2 = z^ + 0 ^ y^ = (1+0^)y + a^. Similarly, 

y 3 - z 3 + 6 1 y 2 = (1+ 0 1+ 0 2)y + a^. In general, 
t-1. yt = ( 1 + 0 1 + * * * + 9 1 ) y + at (102) 
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for t=l,,.., n^, where the required transformation is y = zfc + 0^ y £ ^ for 

t = 2 , , , , , n, • Since z ,, = y + <$ + a f 1 - 9, a ,we see that 
' 7 1 n.,+1 n„+l I n ' 

n" y = z L l + 0- y = (1+9.+. , .+0_ 1) u + <$ + a ..is indeed in yn,+l n-+l I n , 1 1 n.,+1 = z 
i- , • — n-+± J- "nn " ± ± r M .-
1 1 1 1 n +1 

linear model format. Similarly, y^ + 2
 = (1+0^+...+0^ 1 ) u + 

(1+9-) 6 + a l 0 . In general - ± n^+z 

y t - Ci+9^..,+9 1
t~ 1) p + ( l + e ^ ^ . + e ' " ^ l 4 " 1 ^ ) 8 + a , ( 1 0 3 ) 

for t*n + 1 , . . . , n x+n 2. Equations ( 1 0 2 ) and ( 1 0 3 ) have the following 

matrix representation: 

y l 1 0 

i+e 0 

• 

n - 1 

• + 9 i 0 

y

n i + l 1 + Q ± + . . 1 

y

n i + 2 1+9^. . 
n..+1 

. + 6 l 1 + e l 

\ + N 2 
1+0^.. 

n +n - 1 

• ^ 1 

n 
1+0.J + . . . + Q ±

 2 

X 

+ 

n„ 

n x+l 

n±+2 

n l + n 2 

( 1 0 4 ) 

t - 1 t 
It immediately follows that 6 = (X X) X Y. At this point, Glass, 

a, a, 
Willson, and Gottman give a brief description of the iterative 
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estimation procedure without giving specific formulae for u and 6. To 

fill this gap, let the elements of X f cX be denoted by c^f c^> a n d c22* 

That is, 

X T X = 

Cll C12 

c c 12 22 J 

2 n l ~ 1 2 "1 2 
N o w C n = 1 + ( 1 + e i ) + - ^ + ( i + e

1 + - - « + e

1 ) + d+e^.-.+ej^ r + 
., ,+(l+0^+,, t+9^ l"'"n2 ? and the individual terms are of the form 

i 2 v 1 i (1+0.. + .. .+6- ) , for i=0, 1,.,,, n 1+n 9-l. Recall that I a J = 

(1-a ̂  )/Cl-a). Thus 

and 

( \ 9 l

j f = [ ( l - a / * 1 ) / ^ ) ] 2 = ^ ^ / d - e j 2 , 
j=o 1 x 

cii = 

-2 n-1 
i+1 , n 2(i+l). 

= A-e,) I D-20 + 9 / ^ ' ^ ) 
i=0 

= Ci-01) 2 (l - e^'^nd - e ^ ) - 20 1 ( i+e 1 ) ( i -e° ) + 92(i- 9 l
2 n)] , 

(105) 

where n = n^ + n 2» Proceeding in a similar fashion, we see that 

9 O ^ N O ^ N O 
C2.2 = C 1 ^ ^ Cl - 0 2 ) [n o(l - 0 2 ) - 20 1(l+ 9 l)(l-0 1

 2 ) + 02(1-0, 2)] 

(106) 

The calculations needed to obtain c,^ a r e slightly more complex since 

the individual terms comprising c ^ are of the form (1+9^ +..•+9^1) 

(1+,•.+0^ ni +^), for i+0, 1, ,,,, ̂ - 1 * However, these individual 
n - 1 n 

terms can be rewritten as (1+9.J + ,. .+0^) [ (1+0 + . . , + Q 1 )+0 1 (1+0.J + .. . + 0 ^ 
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= d - e 1 ) " 2 [ ( i - e l
i + 1 ) ( i - e i

n i ) + e ^ a - e ^ 1 ) 2 ] . Thus 

n,+2 2n, 
c 1 2=(i - e 1)" 2(i - 8 2

1)" 1in 2a - e 2

1 ) ^ e 1(i+ e 1)(i - e 1
 2)(i+e 1

 1 ) + e 1

 1 2 ) ] 

(107) 

The calculation of $ also depends upon the elements of the (2x1) vector 

X Y, denoted by s 1 and s 0 . The individual terms of s n are of the 

form (1 + 9 ^ . . . + e i
1 _ 1 ) y i , for 1=1,2,... .i^-h^. Thus, 

•1Y 
-1 n i 

= (l -eo
 x I (l-e! )v± 

1 i=l 
n l + n 2 
I n

 e l l y i ] -
1=1 

(108) 

where -1 r z y , = (n-+n0) > y.. The second element of X Y, s O T 7, is n.,+n_ x z . _ I <\, ZY 1 2 i=l 

n 

i-l> the sum of individual terms of the form (1+6.+.. .+9, )y .. , for 
1 1 yn^+i 

i = 1,2,..., n 2. Thus, 

n, 

• ( 1 - 9 i ) _ 1 ^ i X '2Y i=l ,+i 

-1 
n. 

= (i-9l) - ( V - l 6 , y ) , 
2 1=1 1 

(109) 

n. 
where y = n_ Y y ... If we let cTJ denote the elements of n 0 2 . L- yn..+i t -1 2 x=l 1 t (X X) , where the elements of (X X) are given by equations (105)-(107), 

then 
r _ A —, 

y 

L 6 J 

11 12 
C S1Y + ° S2Y 

, 12 22 L c a + c s 2 Y 

(110) 
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I I 

Since c and depend on 0^, it may have been more appropriate to 

write the estimates of y and 6 as y (0^ ) and 6(0^) to indicate that 

they are conditional least squares estimates. Since 0^ is unknown, 

the estimates cannot be obtained. However, an ad hoc procedure has 

been suggested by Glass, Willson, and Gottman similar to the ICLS 

procedure of Box and Jenkins. Specifically, Let a denote the (nxl) 
A A 

vector of residuals or estimated errors. Then a = y - Xfi where the 
A A A 

values of a are contingent upon particular values of y and 6 which in 
turn are dependent upon 0^. It seems reasonable to use that value of 

n <•> 
0 1 which minimizes Ŝ Ce-̂ ) - I a t = â  a = (v̂  - Xj3) (^~x$) > where 

^ A A £ A 
minimizing S . . (0 , ) is equivalent to minimizing a 2 - a a/(n -2) , the 

A *• 

estimated error variance. For that value of 0^, y and 6 can be 

calculated from equation (110). The output format can be set up in 
A A 

table fashion with the following column headings: 0 - , y , 6, a 2 , 
J. a 

where the search for 0^ is restricted to the interval (-1,1). One can 

then either perform tests of significance or construct confidence 
A 

intervals for y and 6 by making use of the fact that both ( y - y ) / 1L.1/2 * ~ 22 1/2 a (c "1 and ( 6 - 6 ) / a (c ) are distributed as "pseudo" Student-t a a 

random variables with n-2 degrees of freedom. Actually, these 

quantities are T n _ 2
 r andom variables only for known 0^ as opposed to 

some fixed 0-̂  which was found by searching on 0^. Thus, one avenue 

of research is the true distribution of these quantities. Furthermore, 
A A 

y and 6 are correlated random variables and their joint confidence 

interval is elliptical. Thus, any condifence interval for y or 6 

alone is merely a marginal one and the confidence level should be 

adjusted accordingly using some simultaneous procedure. 
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Before turning to the multi-consequence MA^.(1) model, note that 

Box and Jenkins could have included u as an additional parameter to 

be estimated instead of substituting z for u , and they point this out. 

In this case, the (nxl) observation vector z could have been trans­it. 

formed to an (nxl) vector y, via the transformation y^ = z^> 

and y = z + 0^ v
t_i> f ° r t=2,...,n, and then ICLS could have been 

used to estimate u and 9^. However, their primary interest was in 

estimating 0^ whereas the primary purpose of the transformation is to 

facilitate finding y(and 5 for the MA^(l) model) with 0^ treated as a 

nuisance parameter. Regardless of whether the data is first trans­

formed or not, both estimation approaches are iterative in that they 

search on 0^, they are conditional in that ^~0» and they both seek 
n * 

to find that value of 0- which minimizes S.(9..) = > af. Thus, there 
1 1 TL=± t 

is essentially no difference between the ICLS estimation technique of 

Box and Jenkins and that of Glass, Willson, and Gottman. Furthermore, 

any difference that does occur is a result of the basic difference in 

the philosophy of the traditional MA(1) model and that of the MA^.(1) 

model. 

3.2.2.2 Multi-Consequence MA^(l) Model 

The multi-consequence MA^(l) model was presented in equation (84), 

where the assumption is that the introduction of a treatment after the 
th 

n^— observation abruptly changed the level of the series by a linear 

additive effect 6 and also altered the moving average parameter from 

Q l t o Yl" I n o r c * e r t 0 transform the z t
?s to y t's, which are in 

statistical linear model form, we let a =0, y =z., and y =z +0„ y^ - , 
' O i l ' t t l ^t-1 

for t=2,,,., n^, while y t
= z

t
 + Y^ v

t ±» f o r t =n^+l..., n^+n^- Thus, 



y t = a + 0 1 + . . . + e 1
t ' " V + a t, 
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for t=l,,, t, n^, while 

t-n t-n ni"~l t~ ni 

y t = C 1 + Y 1 + . . . + Y 1 + V l y± )v 
t-(n +1) 

+ (1+^+. • • + Y 1 )6+a t 
(112) 

for t=n^+l,...,n.j+n2. Equations(111) and (112) have the following, 

matrix representation: 

n. 

n,+l 

yn.j+2 

7 n l + n 2 

(i+e x ) 

n - 1 
( i + Q 1 + . . . + e 1 ) 

V 1 

[ i + Y 1 ( i + e 1 + . . . + e 1 ) ] 

[1+Y 1 +Y 1(1+0 1+...+0 1 )] 

n, n r l 

(l+Y^ 

n - 1 
U+,..+Y, (1+0, + ,.. +0- )J + . ..+Y-, ) 

+ 

n±+2 

X 

n 1 + n 2 j 

a (113) 

The elements of X X will be denoted by c 1 1 , c ^ 2 , a n < * ^22* A £ t e r much 

tedious algebra, it can be shown that 

(111) 
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n. 
+ CI-Y^DY-U-Y-L) 1(2Y 1 ) ( l-Y 1

 2 )+(l-Y 1 V 1Y 2 Cl-Y 1
2 n 2)] 

+ a-e 1 )" 2(1-Y*) - 1 ( l - e ^ 1 ) 2 Y 2 ( I - Y X

2 N 2 ) 

+ 2C1-0 1)"" 1(1-Y 1)" 1C1-0 1
 X ) [(l-Y 1)"\(l-Y i

n 2)-(l - Y 5" 1Yi(.l-Y 1
2 Q 2)] , 

(114) 

c 2 2 = ( I ~ Y I ) ^ - ^ ' V ^ I - Y ^ Y ^ I + Y ^ ^ 

and 

C12 = ( 1 _ Y 1 ) 2[n 2-2(l"Y 1) 1Y 1(l-Y i
n 2)+d-Yi) ^ ( l - Y ^ 2 ) ] 

-1 -1 n i -1 n 2 2 -1 2 2 n 2 
+ ( l - e^ - " ( I - Y ^ a-01 n i a - y j Y 1 ( I - Y 1 *)-a-yp Y ^ I ^ ) ] . 

(116) 

The results obtained in equations (114)-(116) were verified by letting 

Y^=9^ a n (j observing that these results agreed with those presented in 

equations (105)-(107) for the single consequence MA^.(1) model. Let 

s^ v and s ^ denote the elements of xSf. Then 
n l n

2 

s 1 Y - u-e^cv - I V y^+a-V'^Vn, " ? W 
1 1=1 2 i=l 1 
n n 2 

+ ( i - 0 1 ) ' 1 ( i - e 1

 x ) I Y ^ y . . , (117) 
i=l 1 

211 = C 1 - \ ) " 2 I n i - ( 1 - 9 1 ) " 1 ( 2 9 l ) ( 1 - \ n i ) + ( 1 - \ 2 ) " l 6 ^ 1 - 9 l 2 n i ) J 
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s 2 y = Cl-Yi)- 1 Cn^^ - F = i T X
X y v l ) , C118) 

-1 ^ - -1 " 2 

where y = n., / y. and y = n 0 / y ... These results also 
1 1=1 2 i=l 1 

agree with those presented in equations (108) and (109) when 9^ is 

substituted for It follows from linear model theory that 

11 12 
y = c S l, r + c s„,r (119) 

n 2 

1Y 2Y 

and 

12 22 
5 - c 1 s l y + c z z s 2 y , C120) 

where denote the elements of (XfcX) \ Extending the ad hoc pro­

cedure of Glass, Willson, and Gottman to the multi-consequence model, 
A A /v 

we let a = - Xj3 , where the a vector is contingent upon particular 
A A 

values of y and 6 which in turn are contingent upon values of 0^ and y^. 

Let S^(9^>y^) be the sum of squared residuals or estimated errors for 
A A 

particular values of e 1, y 1, y, and 6. That is, S ) k(9 1,y 1) 
^ a 2 ^ t A * t * = £ afc = a a = (y - Xj3) (y - Xj3) . It seems reasonable to find 

the (9-ĵ jy-̂ ) pair which minimizes S^(9^,y^), where minimizing S^(9^,y-^) 
A A A 

is equivalent to minimizing g 2 = a a/(n-2). The search for the 
a ^ ^ 

minimizing (9^>Yi) P a i r c a n be restricted to the open unit square, 

that is, (9-j^Yi) £ K ^ , 2 ^ ) : 0 < x ^ < 1» 1 = i* 2)* T h e output 

format associated with the search can be set up in table fashion with 
<"* A A the following column headings: 0, , y. , y, <5, a • Appendix C contains 

J- J_ Si 

a listing of the computer program ICLSMAI(l) designed to find the 
A 

optimal (9^>Y^) ' After that ( e ^ Y ^ ) is selected which minimizes G 2 » 

and 
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confidence intervals can be constructed or tests of significance can be 
* A 1 1 1/2 performed for both u and <5 by making use of the fact that (u-u) /$ (c 1 1) 

a . 

* 22 1/2 and (6-d)/a (c ) are each distributed as pseudo-Student-t random a 
variables with n-2 degrees of freedom. The "pseudo" prefix is necessitated 

by the fact that both ratios depend on the nuisance parameters (0^ > » 

Furthermore, keep in mind that the true confidence region for (u,6) is 

elliptical in nature, even if (9^,y^) were known. 

Although we will be primarily concerned with the maximum likelihood 

estimation of the parameters in the multi-consequence MAj.(l) model, the 

ICLS estimates are useful as initial values for numerically determining 

the maximum likelihood estimates, and they also enable us to determine 

the closeness of these estimates to those obtained by the method of 

maximum likelihood. Let us now briefly consider the next higher order 

moving-average intervention model. 

3.2.2,3 Single and Multi-Consequence MA^.(2) Models 

The single and multi-consequence MA^(2) models were presented in 

equations ( 8 9 ) and ( 9 0 ) , respectively. The transformation necessary to 

convert the first n^ observations of the single consequence MA^(2) model 

into linear model form is found by examining the first few z^s. 

Specifically, z^ = y+a^-9^ aQ~*92 a l* w n e r e D O t n SLQ and a are 

unobtainable. However, if we let 3g=a - ^ = 0 » then z^=y+a^, which is linear 

model form. Thus, Y^2!' Now z^= u+a^-Q^ a±~Q2 A 0 = y + a2~ 9l al* s i n c e w e 

set S Q = 0 , which is its marginal mean. We see that contains an un­

wanted 8 1a L termr However, if we multiply y 1 by e 1 and add the result 

to z^, the desired format is obtained. Namely, v 2 = z 2 + 9 l y i = (w + a2~ 9l al^ 

+ 0^(p+a^)=Cl+9^)y+a2? which is indeed linear model form. Now 



90 

z3 = 1 J + a3"~ 9l a2~ 92 al , w n e r e fc^e t w o t e r m s 9 i a 2 a n c* 9 2 a l P r o n i b i t z3 f r ° m being 

in linear model form. However, if we multiply y 2 by 6^ and y^ by © 2 and 

add both of these terms to z^, we obtain y^ = z^ + 0^ y^ + 0 2 ~ 
2 

[(1+0^+0^)+02]y+a3> which is linear model format. Similarly, we let 
y 4 = z 4 + 0 i y 3 + e 2 y 2 ' i n w h i c h c a s e y 4 = r(l+0 1+0^+0^)+0 2( 1 + 2 0

1)]l i + a4' I n 

general, the necessary transformation for the single consequence MA^(2) 

model is given by 

y i = z i 

y 2 = z 2 + e x y]_ , (121) 

yt = z
t
 + 9 i yt.i + 9 2 y t - 2 ' 

for t=3,...,n^. Note that the transformation given in equation (121) 

for the first n^ observations of the single-consequence MA^.(2) model is 

the same transformation used for the first n^ transformations of the 

multi-consequence MA^.(2) model since the models given in equation (89) 

and (90) are the same for the first n^ observations. Furthermore, the 

necessary transformation on the second set of n 2 observations for the 

single consequence MA^(2) model is also given by 

yt " Zt + 9 1 y
t - l + 9 2 yt-2 > ( 1 2 2 ) 

for t=n^+l,..., n^+n 2. This becomes obvious by examining the first 

few z
t ' s l n this second set. 

It is the transformations given in equations (121) and (122) that 

are of prime importance, for the transformed y t's can be used as input 

to any standard regression package and the estimates of u and <S are then 



easily obtained, However, in order to compare these y t
? s with those 

prevously obtained for the single consequence MA^.(1) model (see 

equation (102)), it would be nice to have a general expression for the 

y t
? s . To accomplish this, expressions for y 3 >...,yg a r e obtained and 

rewritten as follows: 

y 3 = [(i-e3)(i-e 1)~ 1]y + e2y + a 3 

y 4 = [a-ejxi-e^" 1]^ + e 2y[(d/d0 1 ){( i-e3)( i-e 1 )^ 1 }] + a 4 

y 5 - [ ( l - e ^ U - e ^ j y +e 2y[(d/de 1) {(l-ej) d - e ^ " 1 } ] + 02y + a 5 

y 6 = ^ 1 - 8 i ) ( 1 - V " 1 ] y + e 2 l l [ ( d / d e i ) { ( 1 ~ e i K 1 ' 8 l ) " 1 } ] 

+ (e2y/2) [ (^ /de jHCi -e^a - e^" 1 } ] + a 6 

y ? = [(l-ejxi-e^" 1 ]^ + e^Ud /de^m-e^u-e^" 1 }] 

+ Ce|y/2) [ d V d e ^ f d - e ^ d - e ^ " 1 } ] + e|y + a ? 

y 8 = [(1-0^) (1-6 1)"^y +0 2y[(d/d0 1){(l-07)(l-0 i)- 1}] 

+ (e2u/2) [(d2/d02){(l-0|)(l-.0l)"1}] 

+(8|y/3!)[(d 3/d03){(l-05)(i^0 i)- 1} + a g . 

Examination of the above equations suggests that a general expression 

for the first set of n^ transformed observations from either the single 

or multi-consequence MA T(2) model is given by; 
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y 2 j - [ a - e ^ K i - V 1 i y + V [ ( d / d 8 i ) { ( W i J ^ a - V " 1 ^ + 

with 

y2j+i = [ ( i ^ 4 " 1 ) ^ - 9 ! ) " 1 ^ + e 2y[Cd/de 1){(i-e 2 j)(i~e 1) r' : L}] + , . . 

Not e that when 9^ = 0, the above equations reduce to equation (102) 

which describes the n^ transformed observations for the single-

consequence MA_j.(l) model. This is predictable from examining equation 

(121) which reduces to yfc = z^ + 9^ y^ ̂  when 9^ - 0, which is the 

necessary transformation for the single-consequence MA^(l) model. 

The only case that has not yet been considered is the trans­

formation necessary on the n 2 observations after the treatment for the 

multi-consequence MA^.(2) model. By examining the first few z t's of 

equation (90), for t=n^+l,,.., n.|+n2, we see that the necessary trans­

formation is given by 

y t
 = z t + yi *t-i+ 2̂ V2 • ( 1 2 3 ) 

Thus, for the single-consequence MA. (2) model, the necessary trans­

formation is given by equations (121) and (122), while for the multi-

consequence MA. (2) model equations (121) and (123) describe the 

transformation. Once the transformation has been defined, the ICLS 



93 

estimation procedure is straightforward. For the single-consequence 

MA-j,(2) model, it involves searching over C 9 - ^ ^ i n fche region given by 

equation (70) until that pair of values is found which minimizes 

SAQ, ,8 0) = T afc = a a = (n-2)cr2 where a = y - XB. The computer 
* 1 z t^2. t % <\, a t a, a, 

output associated with the search can be set up in a format with the 

following column headings: 6^, Q^* VY <S, a 2. For the minimizing ( e ^ , ^ ) 

pair, additional statistical inference on u and 6 can be performed. 

One would proceed in a similar manner for the multi-consequence MA_j.(2) 

model where the search is now performed on the 4-tuple ( 9^» 92 , Y1 , Y2^ 

with the ordered pairs (9^,8^) and (Y^»Y2) e^ch constrained to be in 

the triangular region described by equation (70). 

The development of the necessary transformations and the application 

of the ICLS estimation procedure to higher order, single and multi-

consequence MA^-(q) models proceeds in a similar fashion. We will now 

investigate the maximum likelihood estimation of the parameters in the 

single and multi-consequence MA^(l) and MA^(2) models, where the ICLS 

estimates are used to provide initial estimates. 

3.3 Maximum Likelihood Estimation 

In this section, we present an algorithm for determining the exact 

likelihood function for single and multi-consequence MA^(l) and MA^(2) 

models for a given set of parameter values. It will be shown that 

while there are covenient analytical expressions for the maximum 

likelihood estimators of parameters uand 6, no such expressions exist 

for the maximum likelihood estimators of the moving average parameters. 

However, this algorithm can be used to search the likelihood function 

over the permissible parameter space until those parameter values are 
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found which maximize the likelihood function, Such values will be 

called the maximum likelihood estimates. 

One reason that statistical inference for the pure moving average 

process is difficult stems from the fact that Arato [11] has shown that 

the dimensionality of the set of sufficient statistics is equal to the 

number of observations, That is, the number of sufficient statistics 

increases with the number of observations. He also shows that for a 

pure autoregressive process of order p the number of sufficient 

statistics is equal to (p+1)(p+2)/2. However, this is not to imply 

that the maximum likelihood estimates of a pure autoregressive process 

are easily obtained. As a matter of fact, when p-1, the maximum 

likelihood estimate of <j>̂  is the solution to a cubic equation. 

3.3.1 Maximum Likelihood Estimation of u and 6 

The single and multi-consequence MA^(q) models, q=l,2, were pre­

sented in equations (83)-(84) and (89)-(90), respectively. Each of 

these models shares a common facet in that the level of the series for 

the first n^ observations equals y while this level equals y + 6 for 

observations n^+1,.., n^+n^-n. In this section, we will obtain closed 

form expressions for the maximum likelihood estimates of y and 6 

where these estimates are functions of the moving average parameters. 

Thus, these are conditional maximum likelihood estimates. 

We will first consider the single consequence MA^(l) process. 

Let z = [z_,,.,,z , z z , ] C be a sample of n observations ^ 1 1 n^+1 7 n l 2 
generated from this process and let Z be the (nxl) random vector 

assoicated with the vector of sample observations, Also, let 

a = [an,a ,,,,,a , ] t be an ((n+1) x 1) random vector where ^ U 1 n..+n0 
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a ^ NID(Q,crz). Thus, the joint distribution of a equals t a ^ 

fCaSo 2 ) = ( 2 7 r a 2 r C n + 1 ) / 2
 exp{-a t a/2a 2}, (124) 

Since Z = C^ 0 , 1 ^ a + y 7 , where C^ 0 , 1^ is the [n x (n+1)] matrix 
a, I ^ I 

presented in equation (.77), it follows that Z ̂  N
n ^ Z , < 7 a c ^ ° , 1 ^ C i ° , 1 ^ t ^ *» 

A t . J r - . . . . 2 „(0,1) ,„(<),l)xt ,(0,1) 2/^(0,1)N-1 , and by definition, a z C.: (C; ) = = a z(M * ') , where • ? a I I a n 
Z^'^ is presented in equation (75). Thus, 

K 

tzt<f;V,S,\,°Z> - (2,a|)- n / 2|M^> 1 ) |^W-C*-^) (z-^)/2a|>, 

(125) 

where = yj + 6k and (nxl) vector k is given in equation (86). In the 

logarithm of the likelihood function assoicated with equation (125) , 

V and 6 appear only in the quadratic form 

QC,«) = - (IG-u -̂sjB)' ^ 0 , 1 ) ( R ^ - 8 » / 2 a a • ( 1 2 6 ) 

To find y and 6, the maximum likelihood estimates, note that 

Q*(y,6) - - 2a 2Q ( y,6 ) K(z-6k ) - y j J t M ( 0 , 1 )((z-6k) ~ y j ) 

= (z-6k) tM (° , 1 )(z-6k)-2y(z-6k) tM ( ' \+ P2J^ M i 0 , 1 ) J* > 

and 

3 Q V«/^ = - 2(z-«k) e
 M f > X ) ^ + 2p ̂  M ^ 0 ' " ^ (127) 

Also, note that 

Q*Gi,6) = C(z~yj J-Sk)* M< 0 , 1 ) C(z-v :L) -« iO 
^ <\>ti n -\, ^n o» 



96 

, . . N t w ( 0 , l ) , . . o x i t ^ C O , ! ) / • \ . x2 i t w ( 0 , l ) . 
v^ r?Cn n \ ^ n ^n' n <v 

and 

3Q*(n,6)/a<S = - 2k11 M ( 0 , 1 ) ( z - u j )+2<S k C M ( 0 , 1 ) k . (128) 
<\, n <\> iTn. *v n 'v 

When equations (127) and (128) are set equal to zero, we obtain the 

following pair of simultaneous equations: 

' .t „co,D . . ; .t „co,i) . t ^(o,i) . 
u j M j + o k M i = z M i 

KM n ^n ^ n ^n ^ n ^n 

~ . t Mco,i) . , : , t M(o,i) , t M(o,i) . y k M i + <5 k M k = z M ' k , 
r\j n r^n n a. n ^ 

the solutions to which are given below: 

« s i ) - ijvi' i , 
r ^ n ^n r ^ n r^n r̂ n n r̂ n 

(129) 

and 

- < k ' M n 0 , 1 ) V < * n A ) V ~ M n 0 , 1 ) V^'^V 
* _ i, n ^n nji n ^ n ^n n fei /- i^AN 

^ n r^, <x>n n rjn. ^ n r^n 

Note thatwhen 6 = 0 in the single-consequence model of equation 

(83)f one only needs to estimate ^(assuming 9^ is fixed) and equation 
<- t (0 1) t (0 1) (129) becomes y = z M i/i M i , which is the result obtained 

^ n <vn ̂  n ^ n 

in Chapter II (equation 0-6)) for estimating the mean of a univariate 

normal population when the sample elements are correlated. Thus, the 

quality control model presented in Chapter II is related to the inter-

vection model presented in Chapter III, In one sense, the result 

presented in equation (16), which was also obtained by Dent 117], is 

more general than that obtained in equation (129) since it allows for 
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any type of autocorrelative structure as opposed to that of an MA(q) 

process only. However, in another sense, the quality control model may 

appear to be more restrictive than the intervention model since a shift 

parameter is not specifically included. Equations (129)--(130) also point 

out that u and <5 are functions of the moving average parameter 0^ since 

they depend on M^'"^ = o ^ C E ^ ' ^ ) \ However, these estimates are 7 n a Z 
independent of a 2, a 

The estimates given in equations (129)-(130) for the single con­

sequence MA_j.(l) model are the same that would be obtained for the 

multi-consequence model with the exception that ^ ^ ' ^ ^ s n o w 8^- v e n by 
equation (87), where EĴ '^ = a 2 ( M ^ ' ^ ) Thus, the estimates are 

Z a n 

functions of 0^ and Y ^ . Furthermore, the estimates of u and 6 for the 

multi-consequence MA^(2) are also of the same form with the exception 

that E ^ ' ^ * s r e P l a c e d by E ^ ' ^ as given in equation (92), where 
(0 2}^ (0 2} —1 ^ E_ ' = a 2(M ) . The extension to higher-order MA processes Z a n ° r 

is straightforward. Note that the main difficulty in obtaining u and 
A 

6, f o r f i x e d v a l u e s o f t h e m o v i n g a v e r a g e p a r a m e t e r s , i s t h e n e e d t o 

find ( E ^ ' ^ ) ^ or equivalently M ^ ' ^ . This will be discussed in the 
K N 

following sections. Finally, note that equations (129)-(130) are valid 

for any type of ARMA(p,q) intervention process. 

Let us now turn our attention to the estimation of the moving 

average parameters for the single and multi-consequence MAj.(q) models, 

q-1,2. 

3.3.2 Maximum Likelihood Estimation of Moving Average Parameters 

This section addresses the maximum likelihood estimation of the 

moving average parameters for four specific cases: the single 
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(131) 
a

t * Zt " v + 9 1 at-l' C = 1>--" n i 

= Z t - y - 6 + 6 1 a ^ t = ^ +1,..,, n 1 + n 2 , 

where a <\, NID(0,a 2) , t=0,,.,, n. The joint distribution of 

a = [an,a.. ,,,,, a , ] C was given in equation (124), while the joint a/ u ± n--rn 
1 2 t distribution of Z = fZ ,,.,,Z ] was given in equation (125). If a* i n 

equation (125) were to be interpreted as the likelihood function, then 

consequence MA^(l) model, the multi-consequence MA^.(1) model, the 

single consequence MA^C2) model, and the multir-consequence MA^C2) model. 

The procedure used parallels that presented by Box and Jenkins 113] , where 

Box and Jenkins treat the non-intervention moving average models and 

assumed v = 0, In order to handle the intervention model, their pro­

cedure needs to be modified for several reasons. First, the n obser­

vations for the intervention model are segmented into two groups where 

the moving average parameters may be different for each group. Second, 

we need to specifically include u and <5 since they are of prime interest 

in determining the effect of the intervention treatment. Third, we do 

not use the back-forecasting technique of Box and Jenkins to find 

estimates of a.,..., a. since this introducers a transient into the 0 1-q 
system, even though this effect may be small for large n. Instead, 

we use a least-squares estimate. Let us illustrate the procedure first 

for the single consequence MA^(l) model. 

3,3.2,1 Single Consequence MA^(l) Model 

The single consequence MA^.(1) model was presented in equation (83). 

This can be rewritten as 
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a o = a o 

a i = h ~ y + 9 i a o 

y + e i a l 

a = Z 
n l n l 

- y + i 'l a n r l 

a n +1 " \ + 1 - y - 6 + e a 
J- 1 1 

a n +2 = Z
n + 2 + W + 6, a • 1 1 1 n 1+l 

two basic problems exist in determining its value for a fixed set of 

parameter values, viz,, finding | M ^ ' ^ | and evaluating the quadratic 

form Q(y,<5) given in equation (126). These difficulties are overcome 

by making a transformation from the [(n+1) x 1] space of ^ to the 

[(n+1) x 1] space of z and a^, where a^ denotes the preliminary value 

a~. This transformation allows us to find the joint distribution of 0 J 

Z and a^ as well as the conditional distribution of a^ given Z, The 

forms of these distributions enable us to overcome the above mentioned 

difficulties. The details of the transformation now follow. 

From the model presented in equation (131), we can write down 

the following (n+1) equations, where the first equation is merely an 

identity: 
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In the above system of equations, we substitute the expression for a^ 

in that for a^ and continue this substitution scheme until we have 

expressed a = [a.,..,, a , J1" in terms of Z s [Z..,,,,Z . ]*" and <\, 0 n l + n2 ^ 1 nl 2 
a^ = a Q, Specifically, 

a 0 = a o 

a 1 = Z x - y + Q± a Q 

a 2 = Z 2 + 9 1 Z 1 " ( 1 + e i ^ + 9 i a o 

\ = Zni + 9 iV 1 + " , + e i 1 lzr(1+ei+---^ini ^ + S i " 1 a

0 

~ ~ ~ ~~ ~~n7~ n n +1 
\+l " Zn x+1 + 6 l Z n 1

+ " - + e
1 Z 1-(l+e i +. . .+e i

 i ) y - ^ + e i
 1 a Q 

\+2 ' \+2 + 9i Zn 1 +i +-" + 9i 1
 z 1 - ( i - h e L + . . . - w 1 ^ ^ ( l + e ^ ^ e ^ 1 ^ 

n +n -1 n 1+n 2-l 
a^ = z . + e z . . . + e - z 1 - ( i + e - , + . • .+9-, ) y 

1 2 1 2 n l 2 1 1 1 M 

n 2~l n^+n 2 

- ( l + e ^ . . . + e 1 )6 + e x a Q 

(132) 

The system of (n^+n2+l)equations in (132) has a matrix representation, 

namely, 

a = L Z + X a . - b y - c 6 , (133) 

where L is an [(n^+n2+l)x(n^+n2)] matrix and X is an [(n^+n2+l)xl] 

vector as are b and c. These are presented in equation (134), from 
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which it is obvious that L, X, b, and c are all functions of 9, 

0 0 ... 0 ! 0 0 0 

1 0 ... 0 ! o 0 0 

el 1 ... 0 1 0 0 0 

n -2 
ei ... 1 ! o 0 0 

n-1 
e i ... e x • i 0 0 

n-+l 
9 i 

"l 
9 1 . . . 0 2 

e i 1 0 

n^+n^-l n^+t^^ n 0-l n~-2 
'i 9 i ••• 1 

n n+l 
9 i 1 

n 1+2 

n 1+n 2 

> b 
a. 

(134) 
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Recall that if the transformation from the (pxl) vector U to the 

(pxl) vector V is given by U=BV where B is a nonsingular (pxp) matrix 

then the Jacobian, denoted by J, is the determinant of the matrix B. 
I t t ^ 

In our case, U=a, V=[a. z ] , and B is the [(n..+n0+l) x (n.,+n0+l)] 
* * _ i . ,, matrix L where L = [ X | L ] . Thus, J - 1 , and by substituting equation 

Or 

(133) into equation (124) we see that the joint distribution of Z and 

a * i s 

f (z'.a^u.fi, 9.,a2) = ( 2 T r a 2 ) " ( n + 1 ) / 2 exp{-S(91 ,a„)/2a2} , (135) 
7£ a> * l a a _L * a Zi, a 

where 

S(9 . , a . ) = (Lz +Xa,,-b |i-c6) t(Lz -l-Xa -b u-c5) . (136) 

For convenience, we l e t d=bu+c5. 
a 

Define a K to be the value of a x which minimizes S(e^,a^) . To 

find a K , note that 

S ^ T , a . ) = ( L z ) C ( L z ) + 2 a , X 1 Lz - 2 d ' Lz - 2 a * d t X + a^X t X+d t d 

and 

dS(e , ,aJ/da. = 2 X ^ z - 2d f cX + 2a. X f cX. 

A 

Sett ing th i s d e r i v a t i v e equal to zero shows that a x i s the so lu t i on 

to the fo l lowing normal equation: 

X fcX L = - X f c Lz + X f c d. (137) 
o» o» K o> o> o» o> 

To s o l v e th i s equat ion, note that 
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2 4 2 n i 2 n i + 2 2(n 1+n 2) 
x x = i + e 1 + e 1 + . . + 0 _ + . . . + e . 
°o ^ 1 1 i i l 

2(n +n + 1 ) 2 

= ( 1 ^ 1 L )/(l-0 1). ( 1 3 8 ) 

Also note that is a [1 x(n^+n^)] vector whose elements we will 

denote by ,..., £ , , where 1 n x+n 2 

2(n +n -i+1) 2 

£ i = e l ( 1 " e i ) / d - e 1 ) , ( 1 3 9 ) 

i=l,..., n^+n 2. Thus. 

V n 2 
X Lz = I % z ± . (140) 

i = l 

Finally, note that 
n l + n 2 _ 1 

1=0 

n-+l i n 2 " 1 . . , n 

+ 5 0 n

 1 ( 1 - 0 , ) _ ± I e ^ d - e ^ 1 ' . ( 1 4 1 ) 
i=0 1 

From equation ( 1 3 7 ), we see that 

a. = (- X11 Lz + X td)/(X tX) , ( 1 4 2 ) 

where expressions for XfcX, X*^ Z* and Xfcd are given in equations ( 1 3 8 ) , 

( 1 4 0 ) , and ( 1 4 1 ) , respectively. 

Now S(0^,a^) can be rewritten as follows: 

S ( e 1,a f t) =• (Lz+S a^-d/d-z + X a*-d) 

• [(L?+£ A*> -^(A*-A.)-^TKI-R^*>-«(A*-A.)-^ 
= (Lz+Xa A)' (Lz+Xa*) -2 (a,-*,) F (Lz+Xa*) -2^ (Lz+X^) 
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+ ( a A - a A ) 2 X ^ + 2 ( a , r a j f e ) d t X + fa 

s i n c e - 2 ( ^ - a * ) ^ ( L z + X a , ) +2 ( a ^ - a , ) jj'x 

- - 2 ( a A - a A ) [ ^ L z + ^ a . " ^ # = 0 ' 

f rom e q u a t i o n ( 1 3 7 ) . Thus , 

sOi) 

where S(9^) i s a f u n c t i o n o f t h e o b s e r v a t i o n s but n o t o f a^. By 

d e f i n i t i o n , 

f a | z t ( a * k t ; y ' 6 ' 6 l ' a a ) = f z t a ( ^ ' a * ; P ' 6 ' V 0 ^ / f

Z ^ J y ' 6 ' e i > a 

* a.' a.* * a. ^ 

from which i t f o l l o w s t h a t 

f t ( z f c , a ; y , 6 , B - . a ^ f . ( z 1 ; y , 6 , 9 , a

2 ) f i t ( a * | z t ; y , 6 , 6 , a * ) 
Z a + % J - a z o , ± a a z * o» 1 a 

( 1 4 4 ) 

where f ^ t a ^ ^ s g i v e n i n e q u a t i o n ( 1 3 5 ) . Upon s u b s t i t u t i n g e q u a t i o n 

( 1 4 3 ) i n t o e q u a t i o n ( 1 3 5 ) and then making u se o f e q u a t i o n ( 1 4 4 ) , we 

s e e t h a t 

f . J z t ( a * ' ' t s 9 r ° i ) - ( 2 T O « ) " 1 / 2 | ^ | 1 / 2 ^ P { - ( a v t - a , ) 2 ( X t X ) / 2 a 2 } 

(145) 

and 

f r 7 t ( z t ; y , 6 , 9 , a 2 ) = ( 2 ™ • ) ~ n / 2 I x ' x f 1 7 2 e x p { - S ( 9 - ) / 2 a

2 } , ( 1 4 6 ) 
Z l a a Si V l a 

where S (9^) i s g i v e n i n e q u a t i o n ( 1 4 3 ) . 
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The following deductions can be made from the foregoing statements: 

(i) From equation (145), we see that "a^ is the conditional ex-
2 t pectation of a." given z and (u,<5, 6_ ,cr ) = £ • Denote K ^ i a 

t t *" 

E(a. lz , £ ) by [aj. Thus, a = [a.]. Since a = Lz + Xa. - d, 

it follows that [a] = Lz + X[a.] - d and that 
n l + n 2 

S ( e j = I [a.] Z , (147) 
t=0 

A 

where a^ is obtained from equation (142). 
(ii) By comparing equations (125) and (146), we see that 

i x ' x r 1 - I M ( 0 , 1 ) I 

and 

S(6 ) = ( z - y y M < 0 , 1 ) ( z - y _ ) . 
J- o> a,/, n a, n.Z 

'a> O/Z' n v<\, ^Z' 

Thus, an easy method for finding | M ^ ' ^ | and evaluating the 

quadratic form has been provided. The determinant could have also 

been found by using a result of Rutherford's [53] or a later result 

of Shaman [58]. 
n l + n 2 2 

(iii) In order to compute S(0..) = £ [a 1 for fixed 9.. , we 
t=0 

let [a^] = a^ and recursively calculate [a^] through [a^ + n ] from 

[at] = z t - y + 6 1[a t_ 1], (148) 

for t=l,2,..., n^, while 

[at] - a t - y - 6 + 6 - J a ^ ] , (149) 

for t=n^+l,..., n 1+n 2. 
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These results are stated in the following theorem, which closes 

out this section. 

Theorem 3.1: For the single consequence MA^(l) model, the un­

conditional likelihood is given by 

-(n 1+n ?)/2 / 9
 n l + n 2 

L(y,6, G ^ a 2 ^ ) = (2TTQ2) 1 (X'X) 1 / Z e x p { - J [ a l 2 / 2 a 2 } , 
1 a " \ J a ^ t —0 

(150) 

where ($fc$) is given in equation (138) , [a^] = a^ as given in equation 

(142); and [a tJ fs for t=l,..., n^ are given in equation (148) while, 

for t=n^+l,..., n^+n 2, the [a tJ Ts are given in equation (149). 

3.3.2.2 Multi-Consequence MA^l) Model 

The multi-consequence MA^(l) model was presented in equation (84). 

This can be rewritten as 

a t = Z t - y + 6 1 t = 1,..., ^ j 

(151) 
I 

= Zfc - y - 6 + y± a t_ 1, t = n^l,..., n-j+n^ 

where a ^ NID(0,a 2), t=0,..., n. The joint distribution of 
C 3. 

a = [a^, a^,...,an + ^ ] f c was given in equation (124), while the 
joint distribution of Z = [Z^,...,Z n + n ]twas given in equation (125) (0 1) ^ 2(0 1) -1 with the understanding that Z,: = a 2(M ) is as presented in 

Z n 
equation (87). 

From the model presented in equation (151), we can write down the 

following (n+1) equations: 
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a o = a o 

a l " Z l - y + 91 a 0 
a 2 = Z 2 " y + 9 1 a l 

a = z - y + 9 a . 
1 n-j_~l 

a . n = Z - y - 6 + a n^+1 n^+1 1 

a ^ = Z ^ - y - 5 +Y- a n l n^+2 1 n^+1 

a , = Z , - y - <$ + Y-, a . 
n l 2 n l 2 n.j+n2-l 

By successive substitution of a^ for a^ and so on, we can express 

a in terms of Z and a^ = a A. Specifically, 

a 0 = a o 

a l = Z l " y + ei a 0 
a 2 = Z 2 + 6 1 Z ± - (1+e^y + %\ a Q 

n T~l ni~-'- ni 
a = Z + 9- Z -+...+ 9, Zi-(l+9- + .. .+9- )y+9. 1 a_ n^ n^ 1 n^~l 1 1 1 1 1 0 

n. -1 n^ 
v a 

0 
n. -1 

- ( 1 ^ + 9 ^ + . . . + B 1
 1 Y x)y - <S + 9 1

 1 y ± a 

2 _2 2 1 9 i ,0=Z ,0+Y.Z .T+Y.Z "h ' 2 9 1Z n+e^YiZ «+. ..+9, Z-1 n l n^+1 1 n 1 1 1 n^-1 1 1 n-^-2 1 1 1 

- (l+Y^Y ^ + 9 ^ 2 + . . . + 9 1
 1 Y^)y - (l+Y^S + 9 2 \ ^ a Q 
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n-1 n 
n̂ +n2

 nl n 2 n̂ +n2~l 1 n-̂ +1 1 
n 2 n2 n̂ l n2 

+Vl \-l +
 6 1 Tl V 2 + ' " " + 9 l Y l Z l 

n« n~ 
- ( i + r 1 + . . - + r 1 +V1 + . - - + 6 i 

V 1
 n 2 , 

n 2-l n n 
- ( 1 + Y 1 + . . . + Y 1

 Z )6 + 9 1
 1 Y x a 0 (152) 

This system of (n^+i^+l) equations has the following matrix re-

presentation: 

a = LZ + X a. - by - c S , (153) 

where 

0 0 0 0 0 0 

1 0 0 0 0 0 

e l 1 • • • 0 0 0 0 

n -1 
9 i 

' n - 2 
91 • • • 1 1 0 0 0 

1 L 

n - 2 
91 *1 • • • 

Y l 1 1 0 0 
n--l 

9 i X A 
n - 2 

9 i x 4 • • • Y' ! Y l 1 0 

• 
• 

n-1 n 2 

91 Y l 
91 Y l f • • 

n 2 1 
Y i ! 

n 2~l 
Y l Y l 1 
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X = 
a. 

n. 

'l Y l 
n i 2 

>1 \ 

b 

0 

1 

1+6. 

n - 1 
1+0^.. .+ 0 1 

n - 1 
l+Y 1(l+0 1+...+ B 1 ) 

n - 1 
i+ . . . + y 2 ( i + 9 + . . .+e 1 ) 

n n - 1 
l + . . . + Y 1 (1+6^...+ ) 

a. 

1 + Y -

1 + . . . + Y 

n 2-l 

(154) 
In making the transformation a = L [a. z ] , where the 

[(n^+n2+l) x (n^+n2+l)] matrix L = [XJL], it is easily seen that 

|j|= 1. Bu substituting equation (153) into equation (124), we see 

that the joint distribution of Z and a^ is 
a. 

f zt a ( z t » a * ; U><5> e 1,Y 1.a^)-(2 1ro^)" ( n + 1 ) / 2 exp{-S ( e x, Y l,a„)/2 a
2}, (155) 

where 

S ( e 1 , Y 1 , a ) = (Lz+X a. - by - c6) * (Lz + X a. - by - c6) . (156) 

For convenience, we let d = by + c6 . 
a. a. a. 

Define a^ to be the value of a^ which minimizes S(6 ^ , y^»a^). By 

taking the derivative of S ( e x , Y ^ > a ^ ) with respect to a^ and setting 

this derivative equal to zero, we find that a^ is the solution to the 
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following normal equation: 

XfcX a. = - Xt Lz + X t d. (157) 
O. O. * O. O. O. O. 

To solve this equation, note that 

2n 1 2 1 2 nl 2 ( n 9 + 1 ) 9 -j 
S£" ( 1~ ei )d- ei) + e i ( 1 " Y i ) d - y p , (158) 

and, if I. denotes a general element of the [1 x (n,+n0)] matrix X ^ , then l i l o. 
2(n -i) 9 2(n -i) 2(n 9+l) 2 -

*± = E1

1[(I-E1

 1 )(I-E^)-1 + E1
 1 ) ( I - Y 1 ) ] , 

(159a) 

for i-l,..., n^-1, 

n 2(n?+l) 9 

\ = 9 1 [ ( 1 ~ Y 1 )(1-Yp _ 1] , (159b) 

and 

n i-n_ 2(n +n_-i+l) 9 .. 
* ± - EI

 1 y±

 1[(l-y1

 1 )(1-Yp" 1] , (159c) 

for i=n^+l,..., n^+n^. Thus, 

X Lz - I l , . (160) 
i=l 

Also note that 

V 1 

F% = YE (i-E r 1 I Ê (i-E 1 + 1 ) 
i=0 

n V 1 i 

+ YE^1 Y ^ l - Y J " 1 I2
 1 Y i ^ l - V 4 1 ) 

1 -1 i=o 1 

n i n i -1 n?""̂" 0'_i_1 
+ UE X Y.d-E ^(l - e - ) 1 J Y-, (161) 

1=0 
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From equation (157), we see that 

a. = (- X C Lz + X* d ) / ^ X) (162) 
K O/ O/ 'V/ O/ O/ 

where expressions for XfcX, Xfc Lz, and Xfc d are given in equations (158), 

(160), and (161), respectively. Note that when ŷ  = aquations 

(158)-(161) are identical with equations (138)-(141) for the single 

consequence MA^(l) model. 

By making use of equation (157), we see that S(0 ,̂Ŷ , a^) can be 
rewritten as 

S(EI,Y1, a^) = [(Lz+X a^-d^KLz+G + ( a ^ ) 2 X, (163) 
v v ' 

S(61,Y1) 
where S(9̂ ,Y-̂ ) is a function of the observations but not of a^. Let 

£ = [VUMI >Y, i Q 1 ' \ t . Since 
<\j ± j. a 

f_ t a (zfc, a^; = f-TCZS f^f | 7 T(A*LZ T; 1̂  » <164> Z~a. ^ * ^ a. Z L * 

it follows from equations (155) and (163) that 

f i-TCAJZ*; ^) = (27RA2)"1/2|XTX|1/2 exp(-(a^) 2(X f cX) /2A 2 } 
a-

(165) 

and 

f
7 t ( z t ; ^ ) - (27RA2)""N/2|XTXR1/2 exp{ -S (6N ,Y, )/2A2} , (166) 
& f\, a n, i ± a 

where S(9^,Y-^) is given in equation (163). 

As with the single consequence MA-j.(l) model, we deduce the following: 

(i) a. is the conditional expectation of a. given z and £. Also, 

[a] = Lz + X[a.]-d, where [a.] denotes E(a.Izt,£*"). Thus, 
'Xi 'Xi n f\j X ~ Oj 'XJ 
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V N 2 , 
SCe^.Y,) = I [aj . ( 1 6 7 ) 

t=0 

(ii) IX'XF1 = |M^ 0 , 1 )| and S(6 y ) = (z-y.)1" M ^ 0 , 1 ) (z-y_) . 

(iii) In order to compute 
n 1+n ? 

S ( 8 Y T ) = T k l , 
1 t=0 C 

we let [a^] = a^ and recursively calculate the first n^[a t] fs from 

[at] = z t - y + 6 1 [ a t - 1 ] , ( 1 6 8 ) 

for t=l,..., n^, while the recursive relationship for the last n 2[a ] fs 

is given by 

[at] = zfc - y - 6 + Y-L [ a ^ ] , ( 1 6 9 ) 

for t=n^+l,..., n^+n2« 

These results are stated in the following theorem. 

Theorem 3 . 2 : For the multi-consequence MA^(l) model, the unconditional 

likelihood function is given by 
-fc + n 2 ) / 2 n 1+n 2 

L(]i>«S,9 Y 1 , a 2 | z t ) = (27T02) ( X ^ ) " 1 7 2 exp{- I [a J 2 / 2 a 2 }, ( 1 7 0 ) L L a f\, a o- o. t=0 a 

where [X X] is given in equation ( 1 5 8 ) , [an] = a. as given in equation 

( 1 6 2 ) , and [a t] fs for t=l,..., n^+n 2 are given in equations ( 1 6 8 ) and 

( 1 6 9 ) . Since X CX is a scalar, the determinant symbol has been omitted. 
o, o, 

3 . 3 . 2 . 3 Single and Multi-Consequence MA_j.(2) Models 

Because of the rather complicated mathematical expressions that arise 

in trying to formulate the likelihood function for both the single and 

multi-consequence MA ^ ( 2 ) models, we will consider in detail only the 
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single consequence MA^(2) model. The extension to the multi-consequence 

MA^(2) model is tedious but straightforward. 

The single consequence MA.̂ .(2) model, which was presented in 

equation (89), can be rewritten as 

a t = Z t - u + e a t - 1 + 6 2 a t _ 2 i t=l,..., n± 

Z t - y - 6 + e l a ̂  + 9 2 at__2, t = n^l,..,, n-j+n^ 
(171) 

2 
where a ^ NID(0,a ) for t = -1,0,1,..., n,+n 9. Thus, the joint dis-

t Si - L 

tribution of a = [a n, a_, a.,..., a , ] f c equals a, -l U 1 n^+n 2 

f(a'; a 2) = (2Trcr 2)~ ( n + 2 ) / 2 expf-a* a/2a 2} . (172) 
'Xj 'XJ 

The joint distribution of Z s [Z, Z , ]** is n-variate normal since 
^ i n n +n 9 

(0 2) 
Z = Cl a + u . Namely, 

'XJ 

f t t / i M , e 1 , e , . . ? ) - ( 2 w , 2 ) ^ y o , 2 ) | 1 / 2 « P { - ^ z ) t M n ° , 2 > ( i S - « z ) / 2 o a } ' 
2 u o » - L Z a a 1 n 1 a» n o» a 

'XJ 'XJ 'XJ 
(173) 

(0 2) 2 (0 2) -1 where ^ is given in equation (91) and cra(Mn ' ) has the same 
^ (o 2) ^ structure as r ' ' presented in equation (92) with the exception that y. 

needs to be replaced by 9^ for i=l,2. 

From the model presented in equation (171), we can write down the 

following (n+2) equations: 

a-l = a-l 
a =a_ 0 0 
a 1=Z 1-y+9 1a o+0 2a_ 1 

a 2 - z 2 - y + e 1a 1 + e 2a 0 
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a = Z -u+8,a ,+80a 0 

a ,T = Z -u-6+e a +9 a -n^+1 n^+1 1 n l 

a , 0=Z , „-y-<5+0 a , n+9 a n^+2 1 2 

a , =Z -y-6+6-a , -,+80a 0 /-,-,/N 
n l 2 n l 2 n l 2~ n l 2 (174) 

We now attempt to express ^ in terms of ̂  and a^ = [a ̂ , a^]*". The 

first three equations are easily obtained: 

a-i = a-i 

a i " z r , J + e i a o + e2 a - i 

By substituting this last expression for a^ into the equation for a 2 in 

(174), we obtain 

a 2 = Z 2 + e i Z r ( 1 + e i ) ; i + ( 9 l + e 2 ) a 0 + ( e i 9 2 ) a - l * 

Furthermore, by substituting the last two expressions for a^ and a^ into 

the equation for a^ in (174), we obtain 

a 3 = Z 3 + 8 l Z 2 + ( e i + e 2 ) Z l ~ ( 1 + e i + e i + e 2 ) y 

+ ( e j +29 19 2)a 0 + ( e j e ^ e^a^ . 

By continuing this substitution scheme, we obtain the following expressions 
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for a.,a_,a,, and an: 4 j o / 

a 4 = z 4 + e 1 z 3 + ( e 2+0 2 ) z 2+(0^+20 10 2 ) z 1-(i+ e 1+0 2+0 ^ + e 2+20 l e 2 

+(0^+30^0 2+0 2)a Q + (0 10 2+20 10 2)a - 1 

a^=Z 5+0 1Z 4+(0 2+0 2)Z 3+(0^+20 10 2)Z 2+(0^+30 20 2+0 2)Z 

-(1+9^0^0^+9^02+9 2 + 2 e 1 e 2 + 3 e 1 e 2 ) v 

+(9 1+49^9 2+39 19 2)a Q+(9^9 2+39p 2+9 2)a_ 1 

a 6=Z 6+9 1Z 5+(9 1+0 2)Z 4+(0^+20 10 2)Z 3+(0 1+30 10 2+0 2)Z 2+(0 1+40 10 2+30 10 2)Z 1 

-(1+0^. . .+0^+0 2+0 2+20 10 2+30 10 2+40^0 2)y 

+(0^+50^0 2+60 20 2+0 2)a o+(0^0 2+40^0 2+30 10 2)a_ 1 

a 7=Z 7+0 1Z 6+(0 2+0 2)Z 5+(0^+20 10 2)Z 4+(0j+30 20 2+0 2)Z 3+(0^+40^0 2+30 10 2)Z 2 

+ (0^+59j0 2+60 20 2+0 2)Z 1 

-(1+0J + . . .+0^+0 2+0 2+0 2+20 10 2+30 10 2+30 20 2+49^9 2+59 49 2+69 29 2)y 

+(9^+69^2+109^02+49^2) a o+(9^9 2+50^0 2+60 20 2+0 2)a - : L 

At first glance, no discernible pattern is evident for the a
t ' s in terms 

of Z and a.. However, a recursive relationship for the elements of 

L, X, b, and c is obtainable where a = LZ + X a - by = c5. For the 

single consequence MA^(2) model, L is an [ (n.j+n2+2)x(n.j+n2) ] matrix, 

X is an [(nn+n0+2)x2] matrix, and b and c are both [(n-+n0+2)xl] vectors. 
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Now L can be partitioned as follows 

L = 
0 2xn 

* 

where 0 2 ^ s a[2x(n^+n 2)] m a t r l x a H °f whse entries are zero while 

ij 
L = is a[(n-j+n2)x(n^+n2) ] lower triangular matrix with 

£ ± i = 1, i = 1,..., n 

• i - 2,.., n-1 

X * 

*i+l,i-l = *i,i-2 ' 1 = 3'*--> n " 1 

n,2 n-1,1 J 

(175) 

Equation (175) essentially states that the elements in the main diagonal 
X 

of L are each equal to one, the elements in the first subdiagonal are 

equal to each other, the elements in the second subdiagonal are equal to 

each other, etc. To utilize the relationships expressed in (175), we 
* 

generate the elements in the first column of L by the recursive relationship * * * 
I . , - 6,£. t i+90 L. o , , i = 3 , . . . , n, with the initial conditions 1,1 1 1-1,1 2 1-2,1 1 
*1,1 = 1 a n d *2,1 = V 

The (nx2) matrix X can be partitioned as follows: 
I, 

X 
X 
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where 1^ ^ s t n e (2x2) identity matrix and X = [x^ J is a [(n^+n2)x2] 

matrix whose second column elements satisfy the recursive relationship 
X X X 

x. „ = 0, x. ., 0 + 6 0 x . 0 0 for i = 2,3,..., n with the initial conditions i,2 1 i-l,2 2 i-2,2 
X X X 

XQ 2 = 1 a n c* x i 2 = 91' ^ e e l e m e n t s t n e f i r s t column of X are such 
X X X 

that x. = 0 O x. . 0 , for i = 2,..., n with x, , = 0 O. i,l 2 i-l,2 1,1 2 
The [(n+2)xl] £ and c vectors can also be partitioned: 

b = 
°2 
X 

b 

c = 

0
 ^ ^n^+2 

c 

X X X X 
where b = [b. ] is an (nxl) vector and c = [c] is an (n0xl) vector. 

O / l F\, ~L 2. *, x * * b. s satisfy the recursive relationship b. = 1 + 0- b. , + 0« b. „ l l 1 i-l 2 i-2 

The 
i i i l-i 

X X 
for i = 2,..., n, with the initial conditions that b^ = 0 and b^ = 1; *t * * * and, the c.'s are such that c. = 1 + 8 , c. + 8 n c . - , for i = 2,..., n o J l l 1 i-l 2 i-2 ' ' ' 2 

X X 
with c n = 0 and c. = 1 . Thus a can be expressed in terms of Z and a. as 

U 1 R\, R\J* 
follows: 

- LZ + X a - by - c5 , (17 6) 

where recursive relationships have been presented for determining the 

elements of L, X, b, and c. 
x t I t t 

In making the transformation a = L [a. , z ] , where the 
X 

[(n 1+n 2+2)] matrix L = [ X | L ], it is easily seen that |j| = 1. By 

substituting equation (176) into equation (172), we see that the joint 

distribution of Z and a is V a ^ ' a*; v'6' VV aa ) = (27Taa}
 ( n + 2 ) / 2 exp{-S(0 1,0 2, a K)/2a 2} 

R\J9 r̂X ^ (177) 
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where 

S(e i,9 0, a.) = (Lz + X a - by - c6) (Lz + X a - by - c6). (178) 
1 2 Ay* % % % % % Or-. a. % ' 

For convenience, we let d = by + c<5. 

Let a.be the vector of values which minimizes S(9.. ,9 0, a.). By 

taking the derivative of S(9,,9«, a.) with respect to a. and setting the 
J- £ a- a,* 

resulting system of equations equal to the zero vector, we find that a 

is the solution to the following normal equations: 
(X^) a^ = - X*1 Lz + X* d. (179) 

o>* a- a> 

Since (X tX) is nonsingular, we see that 

a. = ( X ^ ) " 1 (- X11 Lz + X^l). (180) ^* ^ 

By making use of equation (179), we find that S(9 ,9 , a.) can be rewritten 
1 2 Ay* 

as 

S(9 ,9 , a ) = [(Lz+X a ) - d ] t [ ( L z 4- X a ) - d ] + (a -a ) t X t X ( a . - a ) , (181) 
j. z ^ ^ " /x, Ay o> o» a- a- a> a. 

S(9 1,9 2) 

where S(9-,0O) is a function of the observations but not of a.. Let 
l £• Ay" 

2 t C = [y,6 ;9 n,9 9,a ] . Since Ay l l a 

f t at( z t> ^ ) = f-tC^; ^)f t| 7t(a* l z t ; , (i82) 
Z ^ Ay ^ Ay Z Ay Ay ^ ̂  ̂  ^ ^ 

it follows from equations (177) and (181) that 

f^\7t(dht^t) = (2Tra2)"1|x tx|1 / 2 e x p M a ^ - a ^ ^ X ) (a -a. )/2a2} 
a"" Z ̂  ̂  ̂  Ay a Ay* AyK Oy X Ay Q_ 7C Ay 

(183) 
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and 

fr7t(zt; iZ) = (2Tra2)""n/2|xtxr1/2 exp{-S(9_,90)/2a2 } , ( 1 8 4 ) Z f\, r\, a. ± z a 
a. 

where 5(9^,9^) is given in equation ( 1 8 1 ) . 

Based on the foregoing statements, we can make the following 

deductions: 

(i) From equation ( 1 8 3 ) , we see that a is the conditional expectation 

of a^ given z and As with the MA^ . (1 ) models, let [a^] denote 

*<fi*k> £>' T h u s ' a * = [ a * ] ' W
 = LS + X[a.*H' and 

n 1 + n 2 

S(9 ,9 ) = I [a ] 2 

1 t=-l 

(ii) Ix'xf1
 = | M<°' 2 )| and S(9 1,9 ?) = (z-y ) C M < ° ' 2 ) (z-y_) . 

n ± z ^ n a. 'v.Z 
a- a-

n l + n 2 2 

(iii) In order to compute S(9 ,9 9) = £ [a ] , we let 

[a i,an] = a. and recursively calculate the first n,[a.]Ts from 

[at] = z t - y + e i [ a
t _ l ] + 9 2 [ a t - 2 ] ' ( 1 8 5 ) 

for t=l,..., n^. The recursive relationship for the last n 2[a ] Ts is 

given by 

[a ] = z t - y - 6 + 9i[ a
t_ 1J +9 2

[ at-2- 1 ' ( 1 8 6 ) 

for t=n^+l,..., n^+n^. 

These results are stated in the following theorem. 

Theorem 3 . 3 : For the single consequence MA^(2) model, the unconditional 
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likelihood is given by 

9 9-(n.+n« ) / 2 . , / 0

 n i + n ? o ? 
L ( y , 6 , e i , 0 2 , a a | z ) = ( 2 u a a ) 1 2 | X ^ f ^ W - I [ a t ] 2 ^ } 

( 1 8 7 ) 

Since (X f c X) is a ( 2 x 2 ) matrix, its determinant is easily evaluated once 

the elements of X have been recursively generated. The elements of 

a A = [a.] are also easily obtained. 

In finding a facile computational form of the likelihood function for 

the MAj.(2) model and higher order MA^.(q) models, it appears that the main 

difficulty is in finding the elements of the matrices L and X and the 

vectors b and c which occur in the transformation a = Lz + X a. - by - c6. 

Actually, upon inspecting Theorems 3 . 1 - 3 . 3 , we see that only a function of 

the X matrix, ( X C X ) , explicitly appears, while L, X , b, and c are 

implicitly used in calculating a^. However, estimates of aQ, a a^ 

can be obtained by using a back-forecasting procedure outlined by Box and 

Jenkins [ 1 3 ] . Even though this approximation introduces "a transient into 

the system," its effect will "almost certainly be negligible by the time 

the beginning of the series is reached and thus will not affect the 

calculation of the a fs." Thus, it is only the elements of the X matrix for 

which a recursive relationship needs to be determined, such as was done 

for the single consequence MA^.(2) model. The recursive relationship for 

both MA^(l) models is obvious. Since it may be difficult to establish a 

recursive relationship to generate the elements of the X matrix for 
1 / 2 

higher-order MA^(q) models, Box and Jenkins omit the | X f c x | ~ term from 
the likelihood function and actually find unconditional least squares 

n 2 
estimates by minimizing £ [a ] . These estimates are unconditional 

t=l-q 
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in the sense that estimates are obtained for the elements of 

a A - [a,.,a a- ] rather than setting a. = 0. Box and Jenkins 'v,* 0 -1 1-q ^* ^ 

justify the omission of | X tX| "*"̂ 2 by stating that is of importance only 

for small n. However, there seems to be some disagreement on this point, 

and this is reported by Dent [17], Furthermore, in intervention studies, 

the data bases are usually not that large and thus | Xfcx| ^ 2 may play a 

major role. 

3.3.3 Implementing the MLE Procedure 

In Theorems 3.1-3.3, a computational form of the likelihood function 

was given for the MA^(l) and MA^.(2) models when the parameter values are 

fixed. In this section, we discuss the finer points of implementing the 

computations with particular emphasis given to the multi-consequence MA^(l) 

model. 

Section 3.3.1 focused on the MLE of u and 6 for a fixed set of 

moving-average parameters. Section 3.3.2 set forth a relatively easy way 

of evaluating the likelihood function where the case of computation was 

directed towards varying the moving-average parameters. The problem still 
* t t remains of finding £ which maximizes L(£ lz ) where, for the multi-
<v • 1X1 ̂  

2 t 

consequence MA^(l) model, £ = [y, 5 >9-j_,Yi 9°a} ' T ^ u s w e w i s n t o 

maxL(^ t|z t). Now this maximization problem can be decomposed as follows: 
£ O. 'XJ 

max L ( C t U t ) = m a x [max L(y , 6 ,9-, , Y-, | z C] 
I- 'XJ 'XJ n X-0 ± ± 3. 'XJ 

5 . 9 1,Y 1,y 3 6 2 
2 t 

= max {max[max L(y,6 ,8-,Yi >O" I z )]}. 
'l'^l y ' 6 Q a 

1"1' a1 ^ 
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Up to now, no particular reference has been made concerning the 
2 

maximization of L with respect to a . Taking the logarithm of 

equation (170), we find 
In L(^ t|z t) = -(n/2)Xn(27T)-(n/2)£n(a2)-(l/2)(XtX) -{ [ [a.] 2/2a 2}, 

(188) 

and 

9 In L/3a 2 = - n/(2a2) + £ [a ] 2/(2(af) 2) . 
a a t=0 fc a 

Setting this derivative equal to zero, we find that 
n l + n 2 

ol = I [aJ 2/(n 1 +n ) . (189) 
a t=0 c 1 z 

"2 
Thus, a as presented in equation (189) is the maximum likelihood estimate 

2 
of a for fixed u, 6, 9.,, and Yi • By making use of equation (189) in a 1 1 
equation (170), we find that 

max L(^" |zfc) = max {max L(y,5,6^,y 1,a 2)} 
I 9i>Y-,,y,<5 a 2 , . / 9 n +n 9 

1 1 a A 9 -(n,+n9)/2 - / 9 1 2 9 A 9 

= max (2TTCT ) 1 1 ^ t ) ' exp{ - J [ a Y / 2 c } 
0 1,Y 1 ,y»6 t=0 

-(n 1+n 9)/2 ^ 9 -(n,+n9)/2 _ 1 / 9 

= max (2TT) X Z (a ) (X^) ' exp{-n/2} . 
e 1 , Y 1 , y , 5 a * * 

This last expression is equivalent to 
A? -(n-,+n9) /2 - / 9 

max (a ) z (X CX) 1 , (190) 
a a. I\J 

e 1 ,Y 1,y,6 

since (2ir) n /' 2 and e n ^ 2 are constants. By substituting equation (189) 
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into (190), we can rewrite this as 

n„+n 
max 

e 1 ,Y 1 , p,6 

V n 2 - ( n + n ) / 2 , 
{£ [ a . r / ( n 1 + n j } ( X ^ ) i / Z . 
t=0 ^ ~ 

In turn, this is equivalent to 

n,+n 
min 

* t = 0 

V n 2 2 ( n 1 +nJ/2 , 
{ I [aJ Z/(n 1 +n 2)} ' r* rt t ± z o» o» 

V n 2 (n+n)/2 . 
min {min [ J [a ] /(n +n )] X ( X ^ ) " ^ } (191) 

e 1 , Y 1 u,6 

Equation (191) clearly points out the difference between unconditional 

least squares (UCLS) estimation and maximum likelihood estimation. In 

UCLSE, one wishes to 

V n 2 2 

min I [a ] 
a r t=0 

which is equivalent to 

V n 2 
min { J [aJVCn.+nJ } X Z (192) 

t=0 
6 1,Y 1,y,6 

Thus, UCLS estimation differs from ML estimation by the multiplicative 

effect of ( X t x ) 1 ^ . 
o» a-

A A A 

Once that 4-tuple (u,6,9^,Y^) is found which satisfies equation (191) 
A2 
a is then found from equation (189). 
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The most difficult part of satisfying equation (191) is in finding 

y and <5 since this involves finding M^ 0 , 1^, where (M^ 0' 1^) 1 = Z^ 0 , 1^/a 2, 
° n n Z a 

Thus, for each (9^,y^) pair, it becomes necessary to compute another 

inverse. For a relatively large time series, n^ = n^ = 300, this exceeds 

the capacity of core storage. However, simplifications occur by making 

use of the patterned structure of E ^ ' ^ presented in equation (88). For 
La 

notational convenience, we temporarily omit the (0,1) superscript. Thus, 

E„ = a Z a 

B 

B 

11 

21 

'12 

B 22 
= a M -1 

It is well-known, e.g., see Anderson [10], that, provided the various 

inverses exist, 

M = 
r Bll + Bll B12 C 1 B21 Bll 

- c _ 1 B 2 i B i i 

- B i i Bi2 c 

-1 

-11 

-1 -1 

(193) 

-1 where C = B 2 2 ~ B ^ B^* B^ 2 .Since I is positive definite, B ^ and C exist 
* -1 M could have also been given in a form which involves finding B 2 2 . For 

our specific problem, B ^ and B 2 2 are both tridiagonal matrices and thus 
—1 th further simplification results. Let (B--). . denote the (i,j) element 

of B^^ . Abraham and Weiss [ 1 ] show that 

< B n > - A 

= u ( v - l) x _[y - v ] 

2 -1 
where u = (1-8^) and v = 6̂ , 

1 - v 

Thus, 

2(^+1) 1 > j 
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( i - e 2 j ) [e 2i 
2(^+1) 

(1-6 J) 9 ^ 
X 

1-0. 
2(^+1) , i >_ j = 1,.. . , n 1 

(194) 

An equivalent result was later given by Shaman [58]. In intervention 

studies, since n^ is usually much larger than n^, the significance of 

equation (194) is obvious. 

From equation (193), we see that the only inverse which remains to 

be computed is C 1 = (B 2 2 - B 2 1 B~^ B 1 2 ) 1 
N O W B N I S " * B 1 2 - B ^ 2 B - J 

is an (n^xn^) matrix whose entries are all zero except for the (1,1) entry, 
2 -1 which is of the form Y I (B i n) . Using Abraham and Weiss' formula, we 
J- -LJ_ ? 

see that 

2n. 2 -1 2 " I 2 ( n l + 1 ) 

H ^A\,^1-^l-ex ) / [ 1 - e i ] 

Thus, C is also a tridiagonal matrix with 

2(n,+l) 
'11 

7 7 7TL 1 ' 

- 1 + Yi - Yid-9-L !) [1-91
 1 ] -1 

and the following general pattern; 

~ cll> 0 0 > 

_ Y l ' ( 1 + Y 2 ) 0 

c = 0 

• 1 

~ Y1 ( 1 + Y * ) 

* 

o I 0 0 

T 

0 1 + Y 

'11 

21 

,t -i 
;2i 

:22 

Now, assuming the various inverses exist, 

-1 ~ ?21 C22 

-C -1 22 ^21 D 

-1 -1 -1 -1 t -1 
L22 + C22 ̂ 21 $21 22 

(195) 
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where the (lxl) scalar D = c_ -, - c^ C 0« c o n . But C n o is an 
o-ll o»21 22 o»21 22 

[(^-1) x (^-1)] tridiagonal matrix whose inverse elements are given 

by 

N 2 ^ R2I 2 ( N I + 1 ) I 
-1 (i-Y-L ) [ y l " Y l ] 

( C22 }i,j = ~ 7 27 ifT"X
 2(n+l) ' 1 - j # 

, J (1-YX) Y x 1-Y1 1 

Thus, finding M has been reduced to finding B ^ and , where closed 

form expressions exist for generating the elements of these inverses. 

Appendix D contains a listing of the computer program MLE MAI(l) 

designed to find the maximum likelihood estimators of the multi-consequence 

MA I(1) model. 

3.3.4 Additional Statistical Inference 

Although previous sections have discussed the determination of point 

estimates of the model parameters via the method of maximum likelihood, 

there are several inferential aspects that remain unanswered. For 

example, is the estimate of the shift statistically significant? 

Furthermore, in the multi-consequence intervention model, are the pre-

intervention moving average parameters significantly different from the 

post-intervention parameters? We will answer these questions by 

specifically addressing the multi-consequence MAj.(l) intervention model. 

In the intervention models, it is the estimation of 5 that is of 

prime importance. However, as can be seen from equation (130), 6 is 

contingent upon M^'"^ whose elements are 9-̂  and y^. And, it remains to 

test 

H Q: ei = Y x vs. 9 X t Y r (196) 
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This problem is of sufficient importance in its own right without con­

sidering its influence on the estimation of 5. For, if the alternative 

hypothesis is true, the intervention treatment has affected the variance-

covariance structure of the pre and post-observations. Actually, a one­

sided alternative hypothesis may be in order since a decrease in the 

variability of the post-treatment observations seems plausible. To 

test the hypotheses stated in (196), we employ an asymptotic chi-

squared test. 

Let ft denote the parameter space for the multi-consequence MA^.(1) 

model. Then ft is a subset of 5-dimensional space. Specifically, 

2 2 ft = { ( u , 6 , 6 1 , Y 1 , a a ) : -OO<u<°°, - » < 6 < « > , -1<0 1<1 »-l<Y1<l,a > 0}. 

Let ftg denote the parameter space when the null hypothesis is true. Thus, 

2 2 ftQ = {(u ,5,9 1,Y 1»a ) : e
1

= Y 1 > - C O < U < O O , -CO<5<CO, a ^ > 0 

Actually, ft^ defines the parameter space for the single consequence 

MA^(l) model. Let L(ftQ|z ) denote the maximum value of the likelihood 
" I t 

function found by using Theorem 3.1, and let L(ft z ) denote the maximum 

value of the likelihood function using Theorem 3.2. Define 

A(Z) = L(ftn|Zt)/L(ft|Zt). 

2 

It can be shown that the distribution of -2 Zn\(Z) converges to a X_ 

distribution when the null hypothesis is true. See Kendall and Stuart 

[43]. Thus, our decision rule is to reject HQ when 

- 2 InX(z) > Y 2 , (197) 
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Note that 

- 2 LN\(Z) = - 2[LN USJZ*) - IN LCFLLZ*)] 
>\I \J 'XI 'XI 

= n in(7) Q + (FP0 - n te(^) - (X^) , (198) 

where the zero subscript indicates the values obtained under the null 

hypothesis HQ ; 9^ = y . Thus, the decision rule stated in equation (197) 

can be restated as reject HQ when 

n LN(O2)N + (X f cX) n - n INCA1) - (XfcX) > X, 2 . (199) v a y0 \ v O a/ % V l,a 

If the null hypothesis is rejected, one could then set up a pseudo 

t-test for testing HQ : 5 = 0 vs.H^ : M 0 as described in Section 3.2.2.2 

(Multi-Consequence MA^(l) Model); if the null hypothesis is not rejected, 

one would use the pseudo t-test described in Section 3.2.2,1 (Single-

Consequence MA^.(1) Model). 

To illustrate the previous comments, consider the following example 

reported by Hall ET DT and used by Glass, Wilson, and Gottman [28]. 

Example 3.1: Figure 6 is a record of the daily number of "talk outs" of 

twenty-seven pupils in the second grade of an all-black urban proverty 

area school for a total time period of forty days. "Talk-outs" is a 

phrase describing the number of instances in which pupils talked to the 

teacher without first gaining permission such as occurs when the pupil 

raises his hand and talks to the teacher without being recognized. The 

number of "talk-outs" was recorded by the teacher on a hand held counter 

and a reliability check was made by an outside observer on two of these 

forty days. The first twenty days were denoted as the baseline period 

before the commencement of an intervention effect, Beginning on the first 
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day of the fifth week (the 21st observation), the teacher initiated a 

program of systematic praise for those students who raised their hands 

and waited for recognition before talking. The teacher also allowed 

the students to choose a favorite activity such as working puzzles when 

the frequency of "talk-outs" was six or less. 
• Number of 

i I "> • < • • . .I I ,,. INI , — • — I — , — — • „ . . , F < I • ^ 

10 20 30 40 Days 

Figure 6. A Record of the Daily Number of "Talk-Outs". 

A preliminary statistical analysis of the Hall et al data was con­

ducted by Glass, Willson, and Gottman [28]. As a first step in identifying 

an appropriate model, seperate correlograms were computed for the pre-

intervention and post-intervention series. As they state, "a single 

correlogram should not be computed without regard to possible intervention 

effects. The presence of an intervention effect can greatly increase 

autocorrelation coefficients." The first three estimated autocorrelations 

for both series as well as the average of both are given below: 
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Lag 

1 2 3 
Pre-Intervention Autocorrelations 0 28 0.29 0,09 

Post-Intervention Autocorrelations 0 .46 0.12 0,07 

Average Autocorrelations 0 37 0.20 0.08 

The significance of these autocorrelations can be investigated using 

Bartlett's result for the variance of the kth estimated autocorrelation, 

denoted r^. Bartlett's formula states that, assuming = 0 for all 

v > q, 

q o 
Var(r ) - (1/N)[1 + 2 I ] , 

v=l v 

for k > q. In practice, p^ is replaced by r . Furthermore, O.D. 

Anderson [8 ] states that r^ is approximately normally distributed 

for large N if = 0. This allows us to compute standard error limits 

on the pre-I, post-I, and average autocorrelations stated above. These 
standard errors are given below as well as r, +2a . They are 

k " r k 

Lag 
1 2 3 

Pre-Intervention Limits a = 0.22 
r l 

[-0.16, 0.72] 

a = 0.24 
r 2 
[-0.19, 0.77] 

a - 0.26 
r 3 
[-0.43, 0.61] 

Post-Intervention Limits a - 0.22 
r l 
[0.02, 0.90] 

a = 0.27 
r 2 
[-0.42, 0,66] 

a - 0.27 
r 3 
[-0.47,0,61] 

Limits for Average a * 0.16 
r l 
[0.05, 0.69]« 

1 

o = 0.18 
r 2 
[-0.16, 0.56] 

a - 0.18 
r 3 
[-0.28, 0.44] 
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As stated by Glass, Willson, and Gottman, "it is apparent that not even 

first differencing is required to remove the latter nonzero auto­

correlations in the original data," Thus, one of the primary purposes 

of seperately calculating the pre-I and post-I autocorrelations is 

determining the stationarity of the series. How to combine the infor­

mation from the pre-I and post-I autocorrelations is somewhat problematic. 

For example, the confidence intervals for the pre-I autocorrelations 

suggest a random process while those for the post-I autocorrelations 

suggest an MAj.(l) process. Glass, Willson, and Gottman suggest averaging 

the pre-I and post-I autocorrelations. Using their suggestions, we 

tentatively identify the model as MAj.(l) . It now remains to test the 

two hypotheses that 9^ = y-̂  a n c* <$ = 0. 

Assuming a single consequence MA^(l) model and using conditional 

a = a a/(n-2) was minimized when 8- - - .34. At this value of 9,, a _ _ x x 

least squares estimation, Glass, Willson, and Gottman found that 
2 = 

a. ^ 
a =4.47, u = 19.24 and 6 = - 14.29, which shows 6 to be significantly 

Si 

different from zero. Furthermore, in the region of optimal 9^, the 

graph of a versus 9-̂  was fairly flat as was the graph of 6 versus 9^. 

When a multi-consequence MA^(l) model was assumed and conditional 

least squares estimation was employed (see computer program ICLSMAI(l) 
/\ /\ A 

in Appendix C), it was found that 9 1 = -0.28, = -0.65, u = 19.07, 

6 = - 13.94, and a =4.30. Thus, while u, 6, and a for the multi-
a a 

consequence model agree quite closely with the values for the single-

consequence model, there appears to be considerable discrepancy in the 

values of the pre-I and post-I moving average parameters. To resolve 
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this discrepancy, we employ maximum likelihood estimates and the like­

lihood ratio test. 

Using the MLEMAI(l) program listed in Appendix D, it was found that 
A A A <*l 

9^ = Y-L = ~ - 2 5 , y = 1 9 , 2 6 , and 5 = - 1 4 . 3 3 are the maximum likelihood 

estimates under HQ : 9^ = Y^» These maximum likelihood estimates of y 

and 6 agree quite closely with both sets of least-squares estimates. 

Under the assumption that 9^ f Y-^» the maximum likelihood estimates are 
A A, A, A 

Q± = - . 1 9 , Y-L = - . 5 8 , 6 = 1 9 . 1 2 , and 6 = - 1 4 . 0 6 . Again, there is close 

correspondence with the other cases for the estimates of y and 6. Using 

the maximum likelihood estimates, we find that 

- 2 IN A(z) = 2 . 0 8 , 

and we would reject HQ : 9^ = Y-^ only at the 14% level. Thus, if we do 

not reject HQ : 9^ = y^, we employ the single-consequence MA^ . (1 ) model and 

find 6 = - 1 4 . 2 9 to be highly significant. Thus, there was a statistically 

significant decrease in the level of "talk-outs" commencing with the 
st 

2 1 day when a reward system was initiated. 

This concludes Chapter I I I . 
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CHAPTER IV 

ECONOMIC ASPECTS OF CONTROL CHARTS FOR THE MEAN 

This chapter extends the brief introduction to economic aspects 

of control charts presented in Chapter I. In this chapter, we will 

determine the constant in the control chart limit as well as the size 

of the sample to be selected. These will be chosen to minimize the 

average run length of an out of control process. Although we are con­

sidering a very simple type of economic control chart, it is perhaps the 

most valuable because of its ease of understanding and implementation. 

In section 4.1, we review the work of Page [48] who laid the 

groundwork for this chapter by considering the case when the quality of 

output from a process is based on just one characteristic and the sample 

is random. In section 4.2, we extend the work of Page to the multi­

variate case with independent observations. That is, the quality of 

each item is determined by several characteristics and the vectors of 

observations are independent. In section 4.3, the quality of each item 

is dependent on only one characteristic; however, the observations are 

correlated. By comparing the results in the different sections, we are 

able to determine the influence of multiple quality characteristics and 

nonindependence on the parameters of interest. 

4.1 One Quality Characteristic, Independent Observations 

In section 2.1, it was shown that, when there is only one quality 

characteristic (X) which is normally distributed with standard values 
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specified for the process mean (UQ) and standard deviation (a^) and 

successive random samples of size n are generated from this process, the 

control chart limits are of the form y n ~t B(aT/vri), where B = z / n = 3.0. 
0 I a/2 

In accordance with Page [48], let m denote the true value of the process 

mean which may vary from period to period. However, remains constant. 

Thus, X * N(m, o ^ 2 ) . 

Let P(m) denote the probability that a given sample yields an x 

outside the control limits when m is the process mean. Then 

P(m) = P(X > y + B a /vt |m) + P(X < y Q - B a /JTL |m) 

-P ( Z > B + ( y Q - m)/(aI/v^)) + P(Z < -B + ( y Q - m)/(QJ /VG)) 

(200) 

Let Y be a random variable denoting the number of samples up to 

and including the first one for which an x indicates an out of control 

process. Then Y is a geometric random variable with parameter P(m). 

Specifically, 

P Y(y) = P(m)[l - PGn)] 7" 1, y = 1,2,... 

= 0 , otherwise 

It is well known that E(Y) * 1/P(m). 

Page defines the average run length (L) as the average number of 

articles inspected between two successive occasions when rectifying action 

is taken. For constant m, 

L = nE(Y) = n/P(m), 
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which is the sample size per sample times the average number of samples 

up to and including the first one out of control. 

Let LQ denote the average run length when m - U Q. Since 

P(u 0) = 2 *(-B), 

it follows that 

L Q = n/[2 *(-B)]. (201) 

Let k > 0 be a value such that "a shift in the mean m of amount equal to 

or greater than ko^ is serious and we desire that such a shift should be 

detected as soon as possible after it has occurred." Define L^ to be 

the average run length when m - UQ + ka^. Since 

P(y Q + ka].) = $(-B + la/a) + $(-B - kv£), 

it follows that 

L^ - n / [ * ( - B + kv^n) + $ ( - B - kv^n) ] . (202) 

Page provides two alternative schemes for determining B and n. 

The first of these is to choose that inspection scheme such that L^ is 

minimized for some given large value of LQ and fixed k. The second 

chooses that scheme such that LQ is maximized for some given small value 

of L^ and fixed k. We will concentrate only on the first scheme. By 

rewriting equation (201) as n = 2 LQ *(-B) and substituting this result 

into equation (202), we see that 

2 L n *(-B) 
L = (203) 

K - B + k/2 LQ $(-B)) + *(-B - k/2 L Q *(-B)) 
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The problem is to find B which minimizes for fixed LQ and k. This B 

is then used to find n from the equation n = 2 LQ $(-B). By using a com­

puter search routine, Page constructed tables of n, B, and L^ for 

LQ = 2,000, 5,000, 10,000, 15,000, 20,000, 40,000, and 60,000 and k = 

(0.2)(0.1)(1.8), where (0.1) denotes the step size of k. Actually, 

Page's results were based on an upper control limit only. However, the 

values of n, B, and L^ for two-sided control limits can be found from 

his tables by doubling the LQ value. A computer program was written to 

duplicate Page's results, and, in order to facilitate later comparisons, 

the output is given in Table 3 for L Q = 2,000, 5,000, 10,000, 15,000, 

20,000, 40,000, and 60,000 with k = 0.2 (0.2) 1.8. These results cor-

inspecting,the table, we see that, for a fixed LQ, n decreases as k 

increases. This is intuitively appealing since it says that a larger 

sample is needed to detect a small shift while a smaller sample will 

suffice for a large shift. The table also shows that, for a fixed k, 

n increases as LQ increases. Thus, as the average run length of an in 

control process increases, a larger sample size is needed to detect a 

shift of given magnitude. Perhaps the most surprising result of Table 3 

is that the control chart constant is quite frequently less than 3.0, the 

traditional value. For example, when LQ = 5,000, it is only when k > 1,0 

that B > 3.0, Thus, Page's scheme calls for tighter than usual control 

limits and larger than usual sample sizes to detect small shifts. 

respond almost exactly with those of Page. By 



able 3. Values of 2 
n ' Xl,cf 

2 j _ B , and for fixed LQ and 

One Characteristic, Independent Observations 

L k n B L 
0 Al,a 1 

2000 .20 114 3.623 1.903 192.3 
2000 .40 44 5.245 2.290 68.5 
2000 .60 24 6.311 2.512 36.1 
2000 .80 15 7.149 2.674 22.6 
2000 1.00 11 7.705 2.776 15.6 
2000 1.20 8 8.284 2.878 11.5 
2000 1.40 6 8.807 2.968 8.9 
2000 1.60 5 9.140 3.023 7.0 
2000 1.80 4 9.548 3.090 5.8 
5000 .20 154 4.664 2.160 245.7 
5000 .40 56 6.433 2.536 82.8 
5000 .60 29 7.610 2.759 42.5 
5000 .80 19 8.377 2.894 26.3 
5000 1.00 13 9.068 3.011 18.0 
5000 1.20 9 9.741 3.121 13.2 
5000 1.40 7 10.199 3.194 10.1 
5000 1.60 6 10.478 3.237 8.0 
5000 1.80 5 10.827 3.290 6.5 

10000 .20 187 5.528 2.351 287.8 
10000 .40 65 7.405 2.721 93.8 
10000 .60 34 8.579 2.929 47.5 
10000 .80 21 9.459 3.076 29.1 
10000 1.00 14 10.199 3.194 19.8 
10000 1.20 11 10.635 3.261 14.4 
10000 1.40 8 11.241 3.353 11.0 
10000 1.60 6 11.774 3.431 8.7 
10000 1.80 5 12.110 3.480 7.1 
15000 .20 208 6.055 2.461 313.0 
15000 .40 70 8.004 2.829 100.3 
15000 .60 36 9.215 3.036 50.4 
15000 .80 22 10.114 3.180 30.7 
15000 1.00 15 10.827 3.290 20.8 
15000 1.20 11 11.402 3.377 15.1 
15000 1.40 9 11.774 3.431 11.5 
15000 1.60 7 12.237 3.498 9.1 
15000 1.80 6 12.520 3.538 7.4 



Table 3. (Cont'd.) 

One Characteristic, Independent Observations 

k n x , 2 B L. 
0 Al,a 1 

20000 .20 222 6.449 2.539 331.1 
20000 .40 74 8.425 2.903 105.0 
20000 .60 38 9.642 3.105 52.5 
20000 .80 23 10.555 3.249 31.9 
20000 1.00 16 11.241 3.353 21.6 
20000 1.20 12 11.774 3.431 15.7 
20000 1.40 9 12.304 3.508 11.9 
20000 1.60 7 12.763 3.573 9.4 
20000 1.80 6 13.040 3.611 7.6 
40000 .20 259 7.4.12 2.722 375.2 
40000 .40 84 9.459 3.076 116.2 
40000 .60 42 10.737 3.277 57.6 
40000 .80 26 11.625 3.410 34.7 
40000 1.00 18 12.304 3.508 23.4 
40000 1.20 13 12.896 3.591 16.9 
40000 1.40 10 13.361 3.655 12.8 
40000 1.60 8 13.741 3.707 10.1 
40000 1.80 6 14.364 3.790 8.2 
60000 .20 281 7.998 2.828 401.3 
60000 .40 89 10.094 3.177 122.8 
60000 .60 45 11.360 3.370 60.5 
60000 .80 27 12.304 3.508 36.4 
60000 1.00 18 13.040 3.611 24.4 
60000 1.20 13 13.606 3.689 17.6 
60000 1.40 10 14.169 3.764 13.4 
60000 1.60 8 14.582 3.819 10.5 
60000 1.80 7 14.827 3.851 8.5 
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One can also use equations ( 2 0 1 ) and ( 2 0 2 ) to determine for 

traditional B = 3 . 0 . Specifically, suppose we let LQ = 1 0 , 0 0 0 and B = 

3 . 0 . From equation ( 2 0 1 ) , we see that n = 2 ( 1 0 , 0 0 0 ) ( . 0 0 1 3 5 ) = 2 7 . From 

equation ( 2 0 2 ) with n = 2 7 , B = 3 . 0 , and k = 0 . 2 , we see that = 1 0 8 0 . 

From the tables with k = 0 . 2 , we see that 1^ = 2 8 8 , n = 1 8 6 , and B = 

2 . 3 5 . Thus, the scheme to minimize results in a considerable reduc­

tion in the number of defective items produced before the out of control 

state is detected. 

In arriving at equation ( 2 0 2 ) , we looked at P ( P Q + ka^) which is 

the probability of a given sample yielding an x outside the control 

limits when the true mean has shifted by k standard deviations from the 

nominal value. Thus, the measure of departure was in terms of process 

standard deviations. One could just as well have measured the departure 

using standard deviations of X , viz., o- where a- = a //n. In this case, 
X A X 

m = PQ + (co^/v^) and the analogue to equation ( 2 0 2 ) is 

L X = n / [ $ ( - B + c) + $ ( - B - c)] , 

which is a simpler expression. However, the decision maker who sets up 

control charts may have a more difficult time interpreting departures 

expressed in terms of a= than when using a . For this reason, we will 
A 1 

not adopt this approach. 

4 . 2 Multiple Quality Characteristics, Independent Observations 

This section extends the results of the previous section by allow­

ing the quality of each item to be governed by more than one quality 
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characteristic. In order to do this, we need to recall certain results 

presented in Section 2.2.1. 

Suppose X,, X o J..., X is a random sample of size n from a p-
<\,L 'XtZ O/n 

variate normal process with mean vector m and known variance-covariance 

matrix Z. Let y n denote the nominal value of the process mean. To 
O i l ) 

maintain statistical control over u n , the vector of sample means (x) is 
<\jV <\, 

calculated and it is necessary to determine whether n(x - y n ) t Z "'"(x - y n) 

exceeds the upper control limit ( x * ) . 
p,a 

Page's procedure can be extended to this multivariate case by 

determining P(m) where 

P(m) = P[n(X - y . ) ' Z _ 1(X - y n) > X
 2 |m] , (204) 

which is the probability that the statistic plots out of control when the 

true process mean is m. If X ^ N (m, Z) and hence X ^ N (m, Z/n), then 
0/ °u p ^ a, P a, 

it follows that (see Alt [ 2]) 

n(X - y n ) t Z - 1(X - y ) * X ' 2 

where A = n(m- y n ) t Z "̂(m - y v 
Ay Oj . inus, 

P(m) = P(XT * > X 2 |m) . ^ p,A p,a ^ 

When m = y n, A = 0, 

and 

P(y n) = P(X 2 > X 2 ) , p p,a' » 

L = n/P( X
 2 > X 2 ) (205) 

0 P P,a;* 
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In order to measure departures of m from u n , it is necessary to 

account for the possible departure of each component of m. This is 

accomplished by introducing the (p x 1) vector a where 
a. 

afc = [ k ^ , k 2a 2,..., k pa p] , 

and letting m = u n + a. We require that at least one k. > 0. Thus, 

although we wish to simultaneously control the mean vector of several 

variables, it may be necessary to detect a shift in only one of these 

variables. When m = u n + a, X = n at Z ^ a , 

P ( l i + a) = P ( x ' 2 , > X 2 ) , >\,0 ^ p,A p,a' 

and 

L, = n / P ( X ' \ > X 2 ) . (206) 
1 P» A P,a 

The specific form of X will become clearer when we let p =» 2 and 3. 

As with the univariate case, that inspection scheme will be chosen 

which minimizes L. for some given large value of L N and fixed k = x U % 

[k-,..., k ] C . However, in the multivariate case, we must also fix p = 
1 P <\, 

[ p , O J p-.,..., p ., ] f c where p . . denotes the correlation between quality 12 13 p-l,p lj n J 

characteristics X . and X . . By rewriting equation (205) as n = L n P ( x 2 > 
1 3 P 

2 
Xp a ) and substituting this result into equation (206), we see that 

2 2 L„ P ( Y > Y ) 
= ^ o i , ( 2 0 7 ) 

2 For fixed L«, k, and p we seek that x and n which minimizes L, as 
U % F\, p, ot ± 

stated in equation (207). One difficulty in doing this is the need for 
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evaluating the denominator of equation (207), which is the complementary 

cumulative noncentral chi-square distribution function evaluated at 
2 

Xp,ct* 
2 h Let Y = [ X F ,/(v + X)] . Sankaran [55] examined the cumulants 

V J A 
2 

of Y expressed in terms of the cumulants of X ' , as a power series in 
V , A 

— S 

(v + A) . Sankaran chooses h so that the leading term in the third 

cumulant of Y vanishes. This results in Y being approximately normally 

distributed with 
E(Y) - 1 + h(h - l)(v + 2A)(v + A ) " 2 

- h(h - 1)(2 - h)(l - 3h)(v + 2A)2(v + A)" 4/2 , 

V(Y) = 2h 2(v + 2A) [ ± _ (1 - h)(l - 3h)(v + 2A) ] 
(v + A ) 2 2(v + A ) 2 

and 

h - 1 - (2/3) (v + A) (v + 3A) (v + 2A)" 2 . 

An empirical comparison by Johnson and Kotz [40] shows that SankaranTs 

approximation is remarkably accurate for all values of A. However, in 

reporting on Sankaran's approximation, there are several typographical 

errors in their equation for V(Y). Now 

= 1 - *[{(X„2„(P + X)" 1) 1 1 - E(Y)}/v'V(Y)"] , (208) 

and approximation (208) was used in the search routine. 
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The search routine used to find the minimum is a modified 

version of the success-failure method as described by Dixon. The 

basic idea is to let n ^ * 1. Since LQ is fixed and n = n ^ is now 
2 (1) fixed, Xp a
 c a n be determined from equation (205). By letting n = n 

2 2 (1) (1) and x = X » a value of L, (denoted by L- ) can be determined p,a p,a i J
 1 

from equation (206). Now let n ^ = n ^ + <5, where 5 is a positive 
2 (2) 

integer greater than one, and determine Xp a from equation (205). In 
(2) 

turn, L ^ is determined from equation (206). This procedure is con-... , , (k) ^ . (k-1) f,. , (k+1) (k) 0 . tinued until L^ ^1 • W h e n this occurs, we set n = n - 2o 

and evaluate L ^ ^ + ^ \ We now set n ^ + ^ = n ^ + ^ + (6/2) and evaluate 

L ^ k + 2 \ This forward search is continued until some L^ is greater than 

the previous one, at which time we go back to an earlier n and use a 

smaller 6 in the forward search. Although time consuming, this eventually 

leads to a minimum value of L . for fixed L N , k, and p. When the minimum 

value of L^ is found, the output can be arranged in table format with 
t t 2 

column headings: L N , p , k , n, x » L N » X. It was this search routine 
that was used to generate the univariate results of Table 3 by letting 

p = 1, p = 0, and k = k-. When p = 1, the noncentrality parameter 
2 

reduces to X • n k^ . 

The first case to be investigated is when p = 2. That is, there 

are two quality characteristics. In this instance, 

X = n(l - p 2 ) " 1 ( k 1
2 - 2p k x k 2 + k 2

2 ) . (209) 

2 

Note that when p = 0 and k 2 = 0, X = n k^ , which is the univariate 

noncentrality parameter. The minimization of L ^ was investigated for 
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L Q = 5 , 0 0 0 , 1 0 , 0 0 0 , 2 0 , 0 0 0 , and 4 0 , 0 0 0 , p = ( - 0 . 8 ) ( 0 . 2 ) ( + 0 . 8 ) , ^ = 

( 0 . 2 ) ( 0 . 2 ) ( 1 . 8 ) and k 2 = ( 0 . 0 ) ( 0 . 2 ) ( 1 . 8 ) . The complete results are 

presented in Appendix E, with a few selected values shown in Table 4 

to indicate the general pattern. 

Inspection of Table 4 reveals several traits. One is that the 

sample size needed to detect departures of given magnitudes (fixed k^ 

and k 2) is always larger for L Q = 1 0 , 0 0 0 than for L Q = 5 , 0 0 0 . This 

result is intuitively appealing for we should expect that as LQ increases 

a larger sample becomes necessary. We also note that reversing the roles 
2 

of k^ and k 2 for fixed p yields the same n, x 2 a> a n ^ L-p ^or example, 

when p = - 0 . 8 , k^ = 0 . 2 and k 2 = 0 . 6 , we get the same results as when 

k^ = 0 . 6 and k 2 = 0 . 2 . This occurs since the noncentrality parameter 

is symmetric in k^ and k^. 

Upon first glancing at Table 4 , it appears that, for a fixed LQ 

and p , n decreases as k^ and k 2 increase. Again, this is intuitively 

appealing, for the magnitude of the required sample size should indeed 

decrease as the magnitudes of the shifts which are important to detect 

increase. Usually, n is much larger for small k^ and k 2 = 0 . 0 than for 

other values of k 2» The interpretation of k 2 - 0 . 0 is that it is 

important to detect a shift of zero magnitude in the second component, 

or an "infinitesimally small" shift. This accounts for the rather large 

sample sizes in this case. However, further inspection of Table 4 shows 

that it is not always true that n decreases as k^ and k 2 increase for 

fixed LQ and p . While this is true for p - 0 and also for p = 0 . 4 when 

k^ is small, it is not true for the other values of k^ and p = 0 . 4 , nor 
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Table 4. Economic Parameters for Two Quality Characteristics, 

Independent Observations 

L 0 = 5,000 L Q = 10,000 

k i n 2 
X2 , a L l n 2 

X2 , a L l 

0.2 0.0 88 8.08 130 1 103 9.15 148 1 

0.2 32 10.10 45 2 36 11.25 50 2 

0.6 10 12.43 13 3 11 13.62 15 3 

CO 
• 
o 
1 

1.0 5 13.81 6 4 5 15.20 7 4 
CO 
• 
o 
1 

0.6 0.0 15 11.61 21 5 17 12.75 23 5 

II 0.2 10 12.43 13 3 11 13.62 15 3 
Q. 0.6 5 13.81 7 6 6 14.81 7 6 

1.0 3 14.81 4 7 3 16.22 4 7 

1.0 0.0 6 13.45 9 8 7 14.51 9 8 

0.2 5 13.81 6 4 5 15.20 7 4 

0.6 3 14.81 4 7 3 16.22 4 7 

1.0 2 15.65 3 2 17.00 3 

0.2 0.0 166 6.81 254 9 199 7.83 295 9 

0.2 77 8.35 112 89 9.44 127 
0.6 23 10.76 32 1 0 26 11.90 36 10 

1.0 11 12.24 15 1 1 12 13.45 17 11 

o 
I 

0.6 0.0 
0.2 

30 
23 

10.23 
10.76 

43 1 2 

32 1 0 

34 
26 

11.37 
11.90 

47 
36 

12 
10 

II 
CL 

0.6 
1.0 

13 
8 

11.90 
12.87 

18 1 3 

10 1 4 

14 
9 

13.14 
14.02 

19 
11 

13 
14 

1.0 0.0 13 11.90 18 1 3 14 13.14 19 13 

0.2 11 12.24 15 1 1 12 13.45 17 11 

0.6 8 12.87 10 1 4 9 14.02 11 14 

1.0 5 13.81 7 6 6 14.81 8 6 



146 

Table 4. (ContM.) 

L Q - 5,000 L 0 = 10,000 

k l n 2 
x2,ot L * L l n 2 

x2,a L * L l 

0.2 0.0 188 6.56 291 227 7.56 339 
0.2 113 7.58 169 133 8.64 194 
0.6 32 10.10 45 2 36 11.25 50 2 

1.0 15 11.61 20 1 5 16 12.87 22 15 
o 
• 
o 
II 

0.6 0.0 
0.2 

35 
32 

9.92 
10.10 

49 1 6 

45 2 

40 
36 

11.09 
11.25 

55 
50 

16 
2 

CL 0.6 20 11.04 27 22 12.24 30 
1.0 12 12.06 16 1 7 13 13.29 17 17 

1.0 0.0 15 11.61 21 5 17 12.75 23 5 

0.2 15 11.61 20 15 16 12.87 22 15 

0.6 12 12.06 16 17 13 13.29 17 17 

1.0 8 12.87 11 18 9 14.02 12 18 

0.2 0.0 166 6.81 254 9 199 7.83 295 9 

0.2 145 7.08 221 173 8.11 254 
0.6 35 9.92 49 I 6 39 11.09 55 16 
1.0 14 11.75 20 I 5 16 12,87 22 15 

0.6 0.0 30 10.23 43 12 34 11.37 47 12 
• o + 0.2 35 9.92 49 1 6 39 11.09 55 16 

II 0.6 26 10.52 37 29 11.68 40 
CL 1.0 14 11.75 20 15 16 12.87 22 15 

1.0 0.0 13 11.90 18 13 14 13.14 19 13 

0.2 14 11.75 20 I 5 16 12.87 22 
0.6 14 11.75 20 15 16 12.87 22 15 

1.0 11 12.24 15 11 12 13.45 17 11 
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Table 4. (Cont'd.) 

L Q • 5,000 L 0 = 10,000 

k l n 2 
X2,a L l n 2 

X2,a L l 

0.2 0.0 88 8.08 130 1 103 9.15 148 1 

0.2 174 6.72 268 209 7.74 311 
0.6 24 10.68 33 19 27 11.82 36 19 

oo 1.0 8 12.87 11 18 9 14.02 12 18 
o + 0.6 0.0 15 11.61 21 5 17 12.75 23 5 
ll 0.2 24 10.68 33 19 27 11.82 36 19 

0.6 32 10.10 45 2 36 11.25 50 2 

1.0 14 11.75 19 20 15 13.00 21 20 

1.0 0.0 6 13.45 9 8 7 14.51 9 8 

0.2 8 12,87 11 18 9 14.02 12 18 

0.6 14 11.75 19 20 15 13.00 21 20 

1.0 14 11.75 19 20 15 13.00 21 20 

*The numerical superscripts indicate those entries which have the same 
2 

values of the economic parameters n, Xo » a n (* L n. 
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is it ever true when p = 0.8. Thus, for a relatively large positive 

correlation, the sample size needed to detect large positive shifts is 

larger than the sample sizes needed for smaller positive shifts. An 

explanation of this is provided by examining the noncentrality parameter 

X, which is a generalized measure of distance of how far the true mean 

is from the nominal value. Fix p • +0.4 and = 0.6. When k^ = 0.2, 

X = (n/.84)(.304); when k £ = 0.0, X - (n/.84)(.360); and, when k 2 = 0.6, 

X = (n/.84)(.432). Inspection of Table 4 shows that, for the ( k ^ k^) 

pairs investigated, the largest sample size (35) occurred with the 

smallest value of the noncentrality parameter (.304), the next largest 

sample size (30) occurred with the next to the smallest value of the 

noncentrality parameter (.36), and the smallest sample size (26) occurred 

with the largest value of the noncentrality parameter. Thus, when the 

generalized measure of distance (X) between the true mean and the 

nominal value is small, it is to be expected that a larger sample size 

will be needed to detect such a small s h i f t . The r e s u l t s a r e summarized 

below. 

X n 

(0.6, 0.0) (n/.84)(.360) 30 

(0.6, 0.2) (n/.84)(.304) 35 

(0.6, 0.6) (n/.84)(.432) 26 

Let us now compare n for positive p with n for negative p . It is 

to be expected that both n's will be equal when k_ = 0 since 
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2 - 1 2 

X = n ( l - p ) k^ and the sign of p is lost through the squaring 

operation. However, for fixed k^ and k 2, n is always much smaller for 

p < 0 . However, this is not to imply that one should try to choose 

negatively correlated characteristics as opposed to positively correlated 

characteristics. The stated phenomenon occurs because we are looking at 

positive shifts (k^ > 0 , k^ > 0 ) instead of negative shifts (k^ < 0 , 

k^ < 0 ) . Thus for p < 0 and k^ > 0 , k^ > 0 , the generalized distance 

measure (X) is larger than for p > 0 and k^ > 0 , k^ > 0 . As the distance 

of the true mean from the nominal value increases, the sample size needed 

to detect this becomes smaller. 

One additional topic of interest is how does the required sample 

size for two quality characteristics compare with the sample size for one 

quality characteristic (Table 3 ) ? Some idea of this behavior is obtained 
2 2 

by letting p • 0 . 0 . Thus, X • n(k^ + k 2 ). Now, when k 2 = 0 , X reduces 
2 

to the univariate noncentrality parameter n k . However, the control 
2 

limit will still be Xo • Tables 3 and 4 show that, for p • 0 . 0 , k„ = 
2,a 2 

0 . 0 and fixed LQ and k^, the required sample size is larger for two 

quality characteristics than for one quality characteristic with this 

difference becoming smaller as k^ increases. Furthermore, as soon as 

k 2 becomes positive, n for p = 2 is usually much smaller than for p = 1 . 

Thus, an economical sample size is not an unusual result when two 

quality characteristics are used as opposed to one. As a final point 

of interest, note that the maximum n in Table 4 occurs for p = 0 . 0 , k^ = 

0 . 2 , and k 2 = 0 . 0 . This is the one case where the required sample size 

for p - 1 (Table 3 ) is considerably smaller than for p = 2 (Table 4 ) . 
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The next case to be investigated is when there are three quality 

characteristics (p = 3 ). Here, 

X- (n/A ) [ k 1
2(l- p 2 3

2 ) + k 2
2 ( l - p 1 3

2 ) + k 3
2 ( l - p 1 2

2 ) + 2 k 1 k 2 ( p 1 3 p 2 3 - p 1 2 ) 

+ 2 k 1 k 3 ( p 1 2 P 2 3 - p 1 3 ) + 2 k 2 k 3 ( p 1 2 p 1 3 - p 2 3 ) ] (210) 

where 

A = 1 - p 1 2

2 - p 1 3

2 - p 2 3

2 + 2 p 1 2 p 1 3 p 2 3 . (211) 

Note that, when p ^ 3 = p 2 3 = 0 and k 3 = 0 , equation (210) reduces to 

equation (209), which is the noncentrality parameter for two quality 
2 

characteristics. The determination of that n and Y~. which minimize L, 
A 3 , a 1 

was carried out for L Q - 10 ,000 , p 2 = ( - 0 . 4 ) ( 0 . 4 ) ( + 0 . 4 ) , p 1 3 = 

( - 0 4 ) ( 0 . 4 ) ( + 0 . 4 ) , p 2 3 - ( - 0 . 4 ) ( 0 . 4 ) ( + 0 . 4 ) , k± = 0 .2 ( 0 . 4 ) 1.0, k 2 = 0 . 0 , 

0.2 ( 0 . 4 ) 1.0, and k 3 « 0 . 0 , 0.2 ( 0 . 4 ) 1.0. It was necessary to reduce 

the range of the p„'s, since, for given p ^ 2 and P-^* Kendall [ 4 2 ] has 

shown that p 2 3 must lie in the range 
+ n 2 2 , 2 2 ,1 /2 

P 1 2 P 1 3 + (1 - P 1 2 - P 1 3 + P 1 2 P 1 3 ) 

Although additional values of P^'s could have been investigated, the 

limitations of space were another determining factor. Selected results 

are presented in Table 5. 

Quite a few of the entries in Table 5 will be duplicates since 

they yield the same noncentrality parameter. These entries are denoted 

by superscript numerals in the column. For example, when p ^ 3 • 
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Table 5. Economic Parameters for Three Quality Characteristics, 

Independent Observations 

L Q = 10,000 

p12 p13 p23 k l k 2 k 3 n X3,a h* 
0.0 0.0 0.0 0.2 0.0 0.0 254 9.313 374 

0.2 0.2 0.0 149 10.478 213 
0.2 0.2 0.2 108 11.178 152 
0.6 0.6 0.6 17 15.140 23 

-0.4 0.0 0.0 0.2 0.0 0.0 223 9.599 325 1 

0.2 0.2 0.0 99 11.367 140 7 

0.2 0.2 0.2 80 11.827 112 
0.6 0.6 0.6 13 15.706 17 

+0.4 0.0 0.0 0.2 0.0 0.0 223 9.599 325 1 

0.2 0.2 0.0 194 9.904 281 
0.2 0.2 0.2 128 10.810 182 
0.6 0.6 0.6 21 14.691 28 

-0.4 -0.4 0.0 0.2 0.0 0.0 189 9.961 274 2 

0.2 0.2 0.0 88 11.621 123 3 

0.2 0.2 0.2 56 12.594 77 
0.6 0.6 0.6 9 16.473 11 

-0.4 +0.4 0.0 0.2 0.0 0.0 189 9.961 274 2 

0.2 0.2 0.0 •88 11.621 123 3 

0.2 0.2 0.2 96 11.433 135 4 

0.6 0.6 0.6 15 15.405 20 5 

+0.4 -0.4 0.0 0.2 0.0 0.0 189 9.961 274 2 

0.2 0.2 0.0 184 10.019 266 6 

0.2 0.2 0.2 96 11.433 135 * 
0.6 0.6 0.6 15 15.405 20 5 
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Table 5. (Cont'd.) 

LQ = 10,000 

P12 p13 p23 k 2 k 3 n 2 
X3,a L i * 

+0.4 +0.4 0.0 0.2 0.0 0.0 189 9.961 274 2 

0.2 0.2 0.0 184 10.019 266 6 

0.2 0.2 0.2 146 10.522 208 
0.6 0.6 0.6 24 14.407 32 

-0.4 -0.4 -0.4 0.2 0.0 0.0 141 10.600 202 1 1 

0.2 0.2 0.0 53 12.712 73 W 
0.2 0.2 0.2 29 14.004 39 
0.6 0.6 0.6 4 18.194 6 

-0.4 -0.4 +0.4 0.2 0.0 0.0 209 9.741 304 7 

0.2 0.2 0.0 99 11.367 140 8 

0.2 0.2 0.2 76 11.937 106 9 

0.6 0.6 0.6 12 15.874 16 1° 
-0.4 +0.4 -0,4 See entries for p 1 2 « p13 = -0,4, p 2 3 = +0.4 

+0.4 -0.4 -0.4 0.2 0.0 0.0 209 9.741 304 7 

0.2 0.2 0.0 158 10.351 227 1 5 

0.2 0.2 0.2 76 11.937 106 9 

0.6 0,6 0.6 12 15.874 16 1° 
+0.4 +0.4 -0.4 0.2 0.0 0.0 141 10.600 202 1 1 

0.2 0.2 0.0 194 9.904 281 1 2 

0.2 0.2 0.2 94 11.479 132 1 3 

0.6 0.6 0.6 15 15.405 20 5 
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Table 5. (Cont'd.) 

L Q - 10,000 

P12 P13 p23 k l k 2 k 3 n 2 
x3,a 

* 
L l 

+0.4 -0.4 +0.4 See entries for p 1 2 = p13 = +0.4, p 2 3 = -0.4 

-0.4 +0.4 +0.4 0.2 0.0 0.0 141 10.600 202 1 1 

0.2 0.2 0.0 53 12.712 73 1 4 

0.2 0.2 0.2 94 11.479 132 1 3 

0.6 0.6 0.6 15 15.405 20 5 

+0.4 +0.4 +0.4 0.2 0.0 0.0 209 9.741 304 7 

0.2 0.2 0.0 158 10.351 227 1 5 

0.2 0.2 0.2 172 10.166 248 
0.6 0.6 0.6 29 14.004 39 

*The numerical superscripts indicate those entries which have the same 
2 

values of the economic parameters n, Xo > a n <3 L 1. 
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p>23 = 0, = 0.2, and k 2 - k^ = 0.0, we get the same economic para­

meters for =~0.4 as we do for p^ 9 = +0.4. 

Table 5 shows that the largest n occurs when P ^ 2

 = P^3 = p23 = ^' 

k^ = 0.2, and k^ = k^ = 0. In this case, X reduces to the univariate 

noncentrality parameter. For p = 3, n = 254 (Table 5); for p = 2, n = 

227 (Table 4); and, for p = 1, n = 187. Thus, the trivariate case does 

require more observations. Remember that k^ = 0 implies that it is 

important to detect an "infinitesimally" small shift in the i t n character­

istic. However, as soon as k^, k 2, and k^ each equal 0.2, the trivariate 

sample size n = 108 is less than the bivariate sample size (n = 133) for 

k^ = k^ = 0.2 which, in turn, is less than the univariate sample size 

(n = 187) for k^ = 0.2. Thus, even if the variables are uncorrelated, 
2 

a X 3 chart should be used instead of three univariate X-charts if 

sample size economy is important. 

Table 5 also seems to indicate that, for fixed P-̂ 2» P13» a n (* p23' 

n decreases as k^, k 2, and k^ increase. However, this is true only for 

the first part of Table 5, for, when at lease two of the P^j' s a r e posi­

tive, n first increases and then decreases as the k's increase. Thus, 

the required sample size does not always decrease as the magnitudes of 

the shifts that become important to detect increase in a positive 

direction. As in the bivariate case, this oddity is directly related 

to the value of the noncentrality parameter. 
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4.3 One Quality Characteristic;, Correlated Observations 

One of the cases considered in Section 2.1.2 assumed that the n 

elements of the sample were jointly normal and had a first-order serial 

correlation. See equations (10) and (11). If m dentoes the true value 
2 -1 

of the porcess mean, then X ^ N(m, (a c/n)[1 + 2p(1 - n )]) and modi­
fied control limits for an X-chart (see equation (13)) are of the form 

y Q ± B(ac/v£)[l + 2p(l - n" 1)] , 

where HQ denotes the standard value of the porcess mean and B was substi­
tuted for z These limits were derived under the assumption that 

a/2 r 

A 

m = U Q. Although it was shown that y (the maximum likelihood estimator) 

is more efficient that X, some justification for using X is provided by 

the r-dependent central limit theorem, where r-dependence means that 

Xfc and X f c + g are autocorrelated only if s 1 r. The stationary r-dependent 

central limit theorem is stated by Kleijnen [44] as follows: 
Given an r-dependent strictly stationary sample X^, 

X.,..., X_,..., X with E(XJ = y and E ( |xJ 3 ) exist-2 ' t n t 1 t1 

ing, then the sample mean 

n 
X = I X /n 

t=l 

is asymptotically normally distributed with mean y 

and variance 

Var (X) = (a2/n)[l + 2 ? (1 - p i . 
s=l n 3 
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Kleijnen points out that the variance is no asymptotic property but holds 

for any n. The primary importance of this theorem is that in the absence 

of process normality a correlated X-chart can still be used. 

Let P(m) denote the probability that a given sample yields an x 

outside the correlated control limits when m is the process mean. Then, 

for first-order serial correlation, 

P(m) = P(X > u 0 + B(a^//n") /l + 2p(l - n" 1) m) 

+ P(X < u Q - B(ac//n") + 2p(1 - n ^) |m) 

= P(Z > B + a) + P(Z < -B + a) , 

where a = (y^ - m)/[ (cr̂ /v̂ n) / L + 2p (1 - n ^) ]. Continuing, we see that 

P(m) = P(Z- a> B) + P(Z- a < -B) = P(|z - a| > B) = P((Z - a ) 2 > B 2) 

2 2 2 Now (Z - a) ^ N(-a, 1), and (Z - a) ^ x ± ^ where X = a . When m = y^, 

X = 0. and P(y^) = P ( x - , 2 > B 2) . When m = y n + ka , X = n k 2/[1+ 2p(1 - n" 1 

U 1 U C 
2 2 2 and P ( u n + ) = P(x-[ ^ > B ) • Note that B is merely notation for 

2 
Xl,a -

Proceeding as we did in the earlier sections, we define 

L Q = n/P(y Q) = n / P ( X l
2 > x ^ ) (212) 

and 

L ± = n/P(yQ + ka Q) = n / P ( X { 2
A > x ^ a ) , (213) 
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where now 

X = nk 2/[l + 2p(l - n" 1)] . ( 2 1 4 ) 

The above definition of X allows us to investigate the effect of p on 

L ^ . That inspection scheme will be chosen which minimizes for a 

large, fixed value of L Q . Specifically, we let L Q - 5 , 0 0 0 , 1 0 , 0 0 0 , 

2 0 , 0 0 0 , 4 0 , 0 0 0 , p = ( - 0 . 4 ) ( 0 . 2 ) ( + 0 . 4 ) , and k = 0 . 2 ( 0 . 2 ) ( 1 . 8 ) . The 

reason for the restricted range of p was presented in Section 2 . 1 . 2 . 

The results are presented in Table 6 . 

The results presented in Table 6 are identical with those pre­

sented in Table 3 (independent observations) when p = 0 . We also see 

that, for a fixed LQ and p , n decreases as k increases. This is true 

for both negative and positive p . The most surprising result in Table 6 

is that, for fixed LQ and k, n is always larger for positive p and 

smaller for negative p . This result is somewhat counterintuitive. 

Recall that, according to Nelson [ 4 6 ] „ a positive first-order serial 

correlation implies that a "higher-than-average observation tends to be 

followed by another higher-than-average observation, and although "there 

is no very long-lived persistence on one or the other side of the mean" 

the series should appear relatively smooth. However, for a negative 

first-order serial correlation, a higher-than-average observation tends 

to be followed by a lower-than-average observation, and the series should 

appear relatively choppy. Thus, in this latter case, we would expect 

that a larger sample size is needed to detect a shift of given magnitude 

since the shift is partially obscured by the choppy appearance of the 



Table 6. Economic Parameters for One Quality Characteristic, First-Order Serial Correlation 

L 0 = 5,000 L 0 = 10,000 

p k n 2 
xl,a L l X n 2 

xl,a L l X 

-.4 .2 52 6.565 73.47 9.86 59 7.579 82.35 11.25 
-.4 .4 19 8.377 25.60 13.33 21 9.459 27.91 14.89 
T.4 .6 11 9.374 14.22 16.20 12 10.478 15.29 17.89 
-.4 .8 8 9.956 9.57 19.94 8 11.241 10.23 19.94 
-.4 1.0 6 10.478 7.12 22.27 6 11.774 7.58 22.27 
-.4 1.2 5 10.827 5.67 25.92 5 12.110 5.95 25.92 
-.4 1.4 4 11.241 4.66 27.22 4 12.520 4.92 27.22 
-.4 1.6 3 11.774 4.09 25.60 4 12.520 4.27 35.56 
-.4 1.8 3 11.774 3.44 32.40 3 13.040 3.61 32.40 
-.2 .2 108 5.277 166.77 7.22 129 6.183 192.59 8.62 
-.2 -.4 38 7.125 55.32 10.23 44 8.111 62.00 11.82 
-.2 .6 20 8.284 28.49 12.21 23 9.292 31.48 14.01 
-.2 .8 13 9.068 17.74 14.25 14 10.199 19.45 15.32 
-.2 1.0 9 9.741 12.31 15.63 10 10.827 13.40 17.29 
-.2 1.2 7 10.199 9.14 17.72 8 11.241 9.94 20.11 
-.2 1.4 6 10.478 7.20 20.88 6 11.774 7.70 20.88 
-.2 1.6 5 10.627 5.86 23.04 5 12.110 6.21 23.04 
-.2 1.8 4 11.241 4.52 23.82 4 12.520 5.14 23.82 
.0 .2 154 4.664 245.67 6.20 187 5.528 287.81 7.52 
.0 .4 56 6.433 82.78 9.12 65 7.405 93.79 10.56 
.0 .6 29 7.610 42.53 10.80 34 8.579 47.50 12.60 
.0 .8 19 8.377 26.25 12.80 21 9.459 29.05 14.08 
.0 1.0 13 9.066 17.95 14.00 14 10.199 19.77 15.00 
.0 1.2 9 9.741 13.16 14.40 11 10.635 14.39 17.28 
.0 1.4 7 10.199 10.07 15.68 8 11.241 10.99 17.64 
.0 1.6 6 10.478 7.97 17.92 6 11.774 8.73 17.92 
.0 1.8 5 10.827 6.50 19.44 5 12.110 7.07 19.44 
.2 .2 194 4.270 315.65 5.58 239 5.102 373.74 6.87 
.2 .4 71 6.013 103.15 8.26 84 6.946 123.45 9.75 
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L 0 = 5,000 L 0 = 10,000 

p k n 2 
Xl,a L l X n 2 

xl,a L l X 

.2 .6 38 7.125 55.84 10.10 44 8.111 62.77 11.65 

.2 .8 24 7.953 34.49 11.56 27 9.000 38.42 12.93 

.2 1.0 17 8.579 23.57 13.06 19 9.642 26.09 14.49 

.2 1.2 12 9.215 17.18 13.67 14 10.199 18.94 15.73 

.2 1.4 9 9.741 13.11 14.41 11 10.635 14.42 17.21 

.2 1.6 7 10.199 10.34 15.17 8 11.241 11.33 17.00 

.2 1.8 6 10.478 8.34 16.89 7 11.488 9.16 19.20 

.4 .2 230 3.982 379.40 5.14 286 4.791 453.05 6.39 

.4 .4 86 5.676 131.92 7.77 102 6.600 151.46 9.20 

.4 .6 46 6.783 68.51 9.49 53 7.772 77.35 10.89 

.4 .8 29 7.610 42.42 10.83 33 8.634 47.46 12.25 

.4 1.0 20 8.284 29.02 11.92 23 9.292 32.26 13.58 

.4 1.2 15 8.807 21.17 13.17 17 9.845 23.42 14.76 

.4 1.4 11 9.374 16.15 13.57 13 10.333 17.80 15.74 

.4 1.6 9 9.741 12.70 14.68 10 10.827 13.99 16.30 

.4 1.8 7 10.199 10.26 15.25 8 11.241 11.27 17.04 
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L 0 = 20,000 L 0 = 40,000 

p k n 2 
Xl,a L l X n 2 

Xl,a L l X 

-.4 .2 67 8.606 91.34 12.84 74 9.691 100.37 14.24 
-.4 .4 23 10.555 30.20 16.46 25 11.698 32.54 18.03 
-.4 .6 13 11.625 16.36 19.60 14 12.763 17.41 21.32 
-.4 .8 9 12.304 10.83 22.86 9 13.542 11.48 22.86 
-.4 1.0 7 12.763 8.00 26.67 7 14.078 8.40 26.67 
-.4 1.2 5 13.361 6.30 25.92 6 14.364 6.64 32.07 
-.4 1.4 4 13.741 5.23 27.22 5 14.700 5.45 35.28 
-.4 1.6 4 13.741 4.38 35.56 4 15.106 4.55 35.56 
-.4 1.8 3 14.364 3.84 32.40 3 15.612 4.11 32.40 
-.2 .2 150 7.149 218.91 10.02 173 8.142 245.63 11.56 
-.2 .4 50 9.140 68.74 13.42 55 10.232 75.49 14.76 
-.2 .6 25 10.404 34.49 15.21 28 11.488 37.53 17.01 
-.2 .8 16 11.241 21.14 17.45 17 12.409 22.86 18.51 
-.2 1.0 11 11.934 14.49 18.95 12 13.040 15.56 20.61 
-.2 1.2 8 12.520 10.68 20.11 9 13.542 11.40 22.50 
-.2 1.4 6 13.040 8.31 20.88 7 14.078 8.82 24.12 
-.2 1.6 5 13.361 6.64 23.04 6 14.364 7.11 27.27 
-.2 1.8 4 13.741 5.52 23.82 5 14.700 5.86 29.16 
.0 .2 222 6.449 331.12 8.92 259 7.412 375.17 10.40 
.0 .4 74 8.425 104.96 12.00 84 9.459 116.21 13.60 
.0 .6 38 9.642 52.50 14.04 42 10.737 57.55 15.48 
.0 .8 23 10.555 31.86 15.36 26 11.625 34.73 17.28 
.0 1.0 16 11.241 21.58 17.00 18 12.304 23.41 19.00 
.0 1.2 12 11.774 15.66 18.72 13 12.896 16.90 20.16 
.0 1.4 9 12.304 11.91 19.60 10 13.361 12.82 21.56 
.0 1.6 7 12.763 9.39 20.48 8 13.741 10.08 23.04 
.0 1.8 6 13.040 7.62 22.68 6 14.364 8.20 22.68 
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L o = 2 0 , 0 0 0 L o = 4 0 , 0 0 0 

p k n 2 
Xl,a L l X n 2 

Xl,a L l X 

. 2 . 2 287 5 .995 4 3 3 . 6 5 8 . 2 4 337 6 . 9 4 1 4 9 4 . 8 5 9 .67 

. 2 . 4 98 7 . 9 1 2 1 3 8 . 9 7 1 1 . 3 5 110 8 . 9 6 6 1 5 4 . 7 0 1 2 . 7 2 

. 2 . 6 50 9 . 1 4 0 6 9 . 7 5 1 3 . 1 9 56 1 0 . 1 9 9 7 6 . 7 6 1 4 . 7 3 

. 2 . 8 31 1 0 . 0 1 4 4 2 . 3 6 1 4 . 7 6 34 1 1 . 1 2 8 4 6 . 3 5 1 6 . 1 3 

. 2 1 .0 21 1 0 . 7 3 7 2 8 . 6 3 1 5 . 9 2 23 1 1 . 8 5 2 3 1 . 1 8 1 7 . 3 5 

. 2 1.2 15 1 1 . 3 6 0 2 0 . 7 1 1 6 . 7 6 17 1 2 . 4 0 9 22 .47 1 8 . 8 1 

. 2 1.4 12 1 1 . 7 7 4 1 5 . 7 1 1 8 . 6 1 13 1 2 . 8 9 6 1 6 . 9 9 2 0 . 0 1 

. 2 1.6 9 1 2 . 3 0 4 1 2 . 3 2 1 8 . 8 2 10 1 3 . 3 6 1 1 3 . 2 8 2 0 . 6 5 

. 2 1.8 7 1 2 . 7 6 3 9 .94 1 9 . 2 0 8 1 3 . 7 4 1 1 0 . 6 6 2 1 . 5 1 

. 4 . 2 346 5 . 6 6 6 5 2 9 . 3 1 7 . 7 2 409 6 .595 6 0 7 . 4 6 9 . 1 2 

. 4 . 4 118 7 . 5 7 9 1 7 1 . 3 2 1 0 . 6 2 135 8 .593 191 .47 1 2 . 1 3 

. 4 . 6 61 8 .777 8 6 , 3 2 1 2 . 4 9 69 9 .818 9 5 . 3 4 1 4 . 0 9 

. 4 .8 38 9 . 6 4 2 5 2 . 5 3 1 4 . 0 3 42 1 0 . 7 3 7 5 7 . 6 4 1 5 . 4 5 

. 4 1.0 26 1 0 . 3 3 3 3 5 . 5 1 1 5 . 2 5 29 1 1 . 4 2 3 3 8 . 8 1 1 6 . 9 2 

. 4 1.2 19 1 0 . 9 2 2 2 5 . 7 0 1 6 . 3 6 21 1 2 . 0 2 0 27 .98 1 7 . 9 6 

. 4 1.4 14 1 1 . 4 8 8 1 9 . 4 8 1 6 . 8 3 16 1 2 . 5 2 0 2 1 . 1 5 1 9 . 0 1 

. 4 1.6 11 1 1 . 9 3 4 15 .27 1 7 . 7 2 12 1 3 . 0 4 0 1 6 . 5 4 1 9 . 1 4 

. 4 1.8 9 1 2 . 3 0 4 1 2 . 2 8 1 8 . 8 4 10 1 3 . 3 6 1 1 3 . 2 7 2 0 . 6 3 



162 

series. However, the results of Table 6 indicate otherwise. The 

phenomenon of a larger sample size for positive p is partly explained 

by examining the behavior of A, as presented in equation (214). Recall 

that A is a generalized measure of distance of how far the true mean is 

from the nominal value. For fixed k and n, A is larger for negative p 

than it is for positive p . Thus, since the generalized distance is 

smaller for positive p , we need a larger sample size to detect this 

smaller shift. 

One would also use the r-dependent central limit theorem to 

determine the economic parameters for second and higher-order serial 

correlation. 

We now continue our investigation of average run lengths for one 

quality characteristic in the presence of correlated observations by 

looking at the y-chart. In this case, control limits were of the form 

y A + B/l/j A j where B = z ,„ and A is the inverse of the variance-0 ^ n n ^n a/2 n 
covariance matrix of the elements of the sample. Recall that this chart 

is valid for detecting departures from y^ when there is any type of 

autocorrelative structure. Under these conditions, 

P(m) = P (y > y n + B/l/j A/^ A n 0 - B / L / J * n 

- P(Z > B + a) + P(Z < -B + a) 

where A - a - (y - m) (j A j ) and B is notation for Xi 
n n ^n l,a 

> Xi )» it follows that 
» 
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(215) 

Let k > 0 be such that a shift in the mean m of amount equal to or 

greater than ka is serious. When m = y~ + ka , P(y~ + ka ) = c 0 c 0 c 

(216) 

where 

X = (ka2 )(j t A j ) c X n n %n (217) 

In looking at equation (217) for the noncentrality parameter, two dif­

ficulties seem to arise. First, the noncentrality parameter seems to be 

2 
a function of o . Secondly, the noncentrality parameter involves the 
calculation of an inverse since A = E . To investigate the specific 

n n o r 

nature of these difficulties, let us consider first-order serial corre­

lation. 

The variance-covariance matrix of first-order serial correlation 

was presented in equation (11) and can be written as 

n c 

1 p 0 

p i p 

0 0 0 

= a C , c n 

2 -1 by factoring out the a . It immediately follows that A = Z J • c J n n 

(l/a 2
c) C ^ 1 and 
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X = kCj* C " 1 j ) , (218) 

This allays our first concern that X depends on a . However, equation 

(218) very definitely points out that, for fixed k and p, X cannot be 

determined until C ^ has been obtained. This chore is somewhat 
n 

facilitated by the work of Abraham and Weiss [11. Let (C ^).. denote J J n lj 
th ""1 the (i,j) element of . They ha.ve shown that 

where 

and 

a = 
A - 4 p 2 

JT^T? - i ^ 
2p 

A- • 2 4p - 1 
2p 

- 1 

(219) 

b = 

for i « j = 1 n. 

2(n+l) 
4p^ - 1 
2p 

21 
4p - 1 
2p 

1 - 4p' 
2p 

2(n+l) 

2 In order to find that n and Y-i which minimize L , by the success-l,a 1 J 

failure search procedure, we fix LQ and let n = n ^ , in which case 

x 2 ( 1 ) 

l,a is determined from equation (2:15). Since p is fixed and n is 
(1) -1 . is obtained using equation (219), temporarily fixed at n , C ... 

n(l) 
and X ^ is determined in accordance with equation (218). This 
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immediately enables us to evaluate L 

(2) 
We now set n = n and proce< 

(1) from equation (216). 

and proceed as outlined above. Again, we 

must find a C -1 Because each iteration requires finding an inverse n(2) 
and each line of output requires many iterations, we will not pursue 

this further at this time. 

In this chapter, we have determined the economic parameters (n 

and the control chart constant) by using the scheme of minimizing for 

a large fixed value of LQ. This was done for three cases, where the 

first case merely reviewed Page's work for one quality characteristic 

and independent observations. The second case extended Page's scheme 

to two and three quality characteristics with independent observations. 
2 

One general conclusion was that a x p " c n a r t requires smaller sample 

sizes than p X-charts. The third case extended Page's scheme for one 

quality characteristic by allowing first-order serial correlation 

between the observations. In general, negatively correlated observa­

tions yielded the most favorable result. 
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CHAPTER V 

THE MULTIVARIATE, MULTI-CONSEQUENCE INTERVENTION MODEL 

In Chapter III, we introduced the multi-consequence intervention 

model for a univariate time series where the observations occur at n 

equispaced epochs. The "multi-consequence" terminology refers to the 

fact that the intervention may have affected the variability-covariability 

of the process. In Chapter II, we presented the concept of a vector-

valued or multivariate ARMA model to represent various types of correla­

tion structure across the vectors of observations. This chapter extends 

the material presented in Chapters II and III by considering the multivari­

ate, multi-consequence intervention model, its properties, and its 

estimation. 

The need for such a model becomes obvious where one realizes that 

the introduction of an intervention in some geographic region has the 

potential to affect not only the occurrences of that particular region 

but also the occurrences of contiguous regions. For example, when 

Connecticut instituted its speeding crackdown in 1955 (see Glass 127]), 

the monthly fatalities per 100,000,000 miles may have also been affected 

for the states of New York, Massachusetts, Rhode Island, and New Jersey. 

To assess the simultaneous impact of the speeding crackdown, it may 

have been prudent to monitor Z = {Z- , Z 0 , Z , Z. , Z_ ] t , where 
»\,t it At. Jt 4t jt 

Z^ represents the monthly fatalities per 100 million miles for each of 

the five states. Correlation may exist within Z , such as between Z. 
OJT -L U 

and Z. T , as well as across the Z 's. i t ^t 



167 

This chapter will specifically address the p-variate multi-

consequence intervention model for a first-order moving average process. 

The extension to higher order moving average processes is obvious. 

Selected portions of this chapter appear in a paper by Alt and 

Deutsch [3]. 

5.1 Properties of the Multivariate, Multi-Consequence 
Intervention Model 

5.1.1 Model Description 

The bivariate, first-order moving average process was presented in 

equation (59), namely, 

Zlt = y l " 9llal,t:-l " 912 a2,t-l + alt 
Z2t = y 2 " 921 al,t-l " 622 a2,t-l + a2t . 

Note that, when = ^ 1 = ^' e a c ^ e cl u a tion describes a univariate MA(1) 

process. In order to accommodate a constant, continuous intervention 

effect commencing with the (n^ + 1) th observation, we modify equation 

(59) as follows: 

Zlt = y l " 9ll al,t-l " 912 a2,t-l + alt 
Z2t = y 2 " 92l ai,t-l " 922 a2,t-l + a2t , 

(220a) 

for t = 1,..., n^, and 

Zlt - y l + 51 " 9ll al,t-l " 912 a2,t-l + alt 
Z2t = y 2 + 6 2 " 92l al,t-l " 922 a2,t-l + a2t , 

(220b) 

for t = n1 + 1,..., n 1 + n 2 > Equations (220a) and (220b) have the fol­

lowing matrix representation: 

Z = y - 0a - + a , t =1,..., n 

Z = y + 6 - ©a + a . t = n+1,..., n +n , 
F\JZ R\J R\J 0»t —1 0»t 1 ± 2 . 

(221) 
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where 

~ zlt" ~VL~ , 9 = 
911 912 

— » V = . 6 = , 9 = 
- Z2t- - » 2 - - V - 921 922 -

It is assumed that a ^ NID 0 (0, E ); that is, the a 's are bivariate 
OIT L. % a F\,T. 

normally distributed random variables and they are uncorrelated across 

time. Note that the matrix formulation presented in equation (221), even 

though specifically developed for the bivariate case, also represent the 

multivariate or p-variate, single consequence intervention model. In the 

p-variate case, Z , y, and 6 are each (p x 1) vectors and 9 is a (p x p) 

matrix. 

Equation (221), which represents the single consequence interven­

tion model for a multivariate, first-order moving average process, can be 

used as a basis in the formulation of the multivariate, multi-consequence 

intervention model, hereafter designated by MMA^(l). Let us first con­

sider the bivariate case. For t = 1,..., n^, the model is identical with 

that presented in equation (220a). However, since the intervention may 

have affected the post-intervention moving average parameters as well as 

the level, equation (220b) becomes modified as follows: 

It = y l + 6 1 " *llal,t-l " *12a2,t-l + alt 

2 t = y 2 + 6 2 - * 2 1 a ! - * 2 2 * 2 9 T - L + a ^ . 
(222) 

Thus, the MMA^(l) model has the following matrix formulation: 

Z = y - 0a + a , t = 1, . . ., n-
OIT F\, 0»T—1 OIT 1 

Z = y + 6 - ^a - + a , t = n. + 1, ..., n- + n, 
0,t R\, F\J F\JT-L R\JT 1 1 I 

(223) 

The matrix formulation of MMA^(q), q > 1, models is straightforward. 

Let us now investigate the properties of the MMA^(l) model. 
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5.1.2. Properties of MMA T(1) Model 

and 

Since E(a ) = 0 , it follows that 'vt % 

E(Z ) = y, t = 1,..., n 
O/t f\j L 

E(Z ) = y + 6, t = n.. + 1,..., n.. + n 9 . 
(224) 

Note that this is also the expectation of the single consequence inter­

vention model, described in equation (221). 

Let F(h) denote the (p x p) covariance matrix of Ẑ_ and Z f c +^ prior 

to the intervention. That is, R (h) = E[(Z„ - E(Zj) (Zfc,, - E(Z4.,,)) ] %t t+h '^t+h' 
and R(-h) = E[(Z. - E(Z.))(Z. . - E(Z. J ) ' ] . Now, for t - 1 1 1 , - 1 , 

<\,t r̂ t 'vt-n 'vt.-n l 

R(h) = E [ ( Z . - y ) ( z . . . - y) c] 
<\,t o» a»t"t"n o» 

= E[(u - 0a + a - y) (y - 0 a +a - u)'] % %t-± r̂t f\j *\» 'vt+n-l 'vt+n ^ 

And, it immediately follows that, for t = 1,..., n^ - 1, 

f E a + 0Z a 0* , h = 0 

r(h) =< 

a 

a. 
-0£„ 

I o 

, h = 1 

, h = -1 

, otherwise 

> (225a) 

Furthermore, 

E[(Z - u)(Z , - - y - 5)*] = E[(-0an + a ) (-'Fa + a )*] 
t t = E(-a a ¥ ) o-n^^n^ 

= -I 4ft . (225b) 
a 

Let T*(h) denote the (p x p) covariance matrix of Z and Z after the 
^t <\,t-t-n 

intervention. Then, for t = n^ + 1,..., n^ + n^ = n, 
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r*(h) - < 

Z 0 + ¥Z 0¥ a a 
a. t, 

-I / ^a x 

a. 
-TZ 

, h = 0 

, h = 1 

, h = -1 

, otherwise 

> (225c) 

The expected value and covariance properties of the MMA^.(1) model 

can be written in an alternate format. To do this, let the n sample 

elements be denoted by Z . z , Z M,... Z , where each Z. is 
^1 ^ n l + n 2 ^ 

a (p x 1) vector. Let Z denote the (np x 1) vector of sample elements, 
'Xt 

where Z C = [Z* .., Z C, Z C
+ 1 , ..., Z ] = [Z , Z . . . ,7 ,Z ,Z- , 

% <vn̂  %n^+l ^n 11 pi l11! P nl l'»ni+l Z Z- Z ]. Let y 7 denote E(Z), where this (np x 1) p,n n+l l,n p,n -v^ <v 
i "\> 

vector is given by 

VZ = [ / , . . . , A 6)*..... ( v i + 6)*] , (226) 
t ^ 

with y = [l^,..., V ]. As in Chapter II, let A ( X ) B denote the direct 

product of the matrices A and B . Thus, equation (226) can be written as 
^ " UJF)1** y + ( k i 5 0 I n ) 5 » ( 2 2 ? ) 

or ohv_y p a, anv-—7 p <v 

where k is an (n x 1) vector which has 0 fs for its first n n entries 
'Xll 1 

followed by l's. If Ẑ  denotes the (np x np) covariance matrix of 
a. 

Z, then Ẑ  may be partitioned as follows: 
~r(0) r(i) 0 • • • 0 1 0 0 0 • 0 
r(-D 
• 
• 

r(0) 
• 
• 

r ( i ) . . . 
• 
• 

0 1 

• 1 
0 
• 
• 

0 
• 
• 

o • 
• 
• 

0 
• 
• 

• 

0 
• 

0 0 
• 

r(o) 1 

• 

r*(i) 
• 

0 
• 

o • 
• 

0 

0 0 0 r*(-D | r*(o) r*(D 0 • 0 
0 
• 
• 

0 
• 
• 

0 • • • 
• 
• 

0 j 
• 
• 

r*(-D 
• 

r*(o) 
• 
• 

r*(i)• 
• 
• 

•• 0 
• 
• 

• 

0 
• 

0 
• 

0 
• 1 

0 | 
• 

0 
• 

0 
• 

o • 
• 

•• r*(0) 

(228) 
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This patterned structure illustrates that the memory of a MMA^(l) model is 

only one period long. 

Note that the expected value and covariance structure of the MMA^(l) 

model presented in equations (227) and (228) is very similar to that of 

the quality control model presented in Section 2.2.2, when there is a first-

order serial correlation. One of the biggest differences is in their 

philosophy. In the intervention model we wish to test, based on a single 

sample of size n, whether the intervention has shifted the level from 

u to u + 6 commencing with the (n.+l)th observation, and our primary inter-

est is in the magnitudes and directions of the components of the shift 

vector 5. In the quality control model, we wish to test whether the pro­
of 

cess mean remains at a nominal value u n in repeated samples of size n. 

Furthermore, in the multivariate intervention model, initial interest is 

also centered on the possible change in covariance structure accompanying 

the introduction of the intervention. 

The distribution of Z will now be investigated. Let 

t _ f t t t t: t , 
3 . | _ 3 . , c L - i , « » « , 3 . , 3 . 3 , J , % %o nji^ ^n^+± nji^+n^ 

where a} = [a, ., a_.,...,a . ] . Thus, a is an ((n+1) p x 1) vector. 
^ i l i l~L p i ^ 

Since Z = C a + u , where C is an (np x (n+l)p) matrix, it follows that 

Z is distributed as an np-variate normal. These properties can be 

summarized by saying that 

* np ^ ^ 
where ^ i S given in equation (227) and Z% is given in equation (228). 

In order to satisfy invertibility conditions, constraints must be 

placed on the elements of the 0 and ¥ matrices. Specifically, we require 

that the p roots of the determinantal equation 
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|lm - 0| = 0 (230a) 

be less than one in absolute value and also that the p roots of the 

determinantal equation 

|lm - y| = 0 (240b) 

be less than one in absolute value. Thus, similar to the univariate multi-

consequence MAj(l) model, two sets of invertibility conditions are 

required. For p = 2, the invertibility region of each component of the 

MMA^Cl) model is shown in Figure 5 (see Chapter II). 

Additional aspects of non-intervention vector-valued time series can 

be found in Hannan [36]. 

5.2 Least Squares Estimation of the MMA^.(1) Model 

In the previous section, a detailed explanation was presented of 

the multivariate, multi-consequence, first-order moving average interven­

tion model (MMA^(l)) and its properties. In this section, we will be 

concerned with parameter estimation for this model with primary concern 

directed towards the estimation of u and <5. The least squares estimates 
'Xl 'XJ 

of u and <5 are obtained by transforming the original Z Ts to Y Ts which 
'Xi r\j r\jt r\jt 

are amenable to statistical linear model analysis. We shall see that the 

least square estimates of u and <5 are directly dependent upon 0 and f. 
'Xl 'XJ 

As in the univariate case, we employ an iterative technique of searching 

on the elements of 0 and ¥ until those values are found which minimize 

the residual sum of squares of the Y Ts. However, before demonstrating 
O f t 

the least squares estimation procedure, it may be helpful to review the 

basic concepts of the multivariate classical linear regression model. 
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5.2.1 Multivariate Linear Regression Model 

In this section, we review some of the concepts of the multivariate, 

multiple linear regression model. A more detailed treatment of this 

material can be found in Goldberger [29]. 

The multivariate linear regression model has the following matrix 

formulation: 

Y = X B + E , (231) 

where 

Y = 

11 

21 

"nl 

12 

22 

"n-2 

lp 
:2p 

np 

= [ Y , , Y „ , . . . , Y J , 
Or1- V 0,P 

X = 

x 11 
L21 

nl 

1 2 

x 22 

N2 

L K 

L2k 

nk 

[x_, x_,. . ., x. ] , 
0,1 R^Z R^K. 

B = 

11 
I 
21 

I 
kl 

12 

22 

lp 
5 
2p 

kp 

- [ 8 , , 8 0 , . . . , 8 ] , 
0/1 A / O/P 

and 

k2 
I 
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E = 

e e e 11 12 * * * lp 
£ £ E 
21 22 ••• 2p 

nl £ £ 
n2 • •• np 

= [£ , e £ ] 

This formulation arises when there are n observations on each of p varia­
bles Y- ,..., Y for each of k variabl Each row of Y 

1 p l k 

corresponds to a single joint observation. Equation (231) imples that 

for each Y., j = 1,..., p, there is a relation or model of the form 

Y. = X3. + e. , 
^3 ^3 ^3 

which is merely the univariate multiple regression model. Thus, each 

column of Y refers to one of the p relations. 
t 

Let the (kxp) matrix B denote the estimate of B. Let W = E E. 

Thus, W is a (pxp) matrix with entries w. . - £*?£.. In order to estimate 

B, we minimize the trace of W denoted by trW. Goldberger [29] shows that 

this is equivalent to minimizing |n "H/|, the generalized error variance. 

He also points out that minimizing trW is equivalent to fitting each of 
the p relations (Y. = X$. * e.) by the least-squares criterion, which o-j o-j o-j 
leads to (Xt"X)b. = XSF., j=l,..., p. The resulting normal equation for 
all p relations are 

t * t X XB = X Y , 

and the estimate of B is the (kxp) matrix 

B = ( X ^ ) " 1 X ^ , (232) 

if the rank of X is k. We again point out that the columns of B could 

have been generated by fitting p univariate multiple regression relations 
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The point estimates of the elements of the B matrix, given in 

equation (232), can be used as a starting point in the derivation of 

corresponding interval estimates. However, in order to derive interval 

estimates, it is necessary to impose a distributional property on the 

error matrix E. Let denote the i th row of E, for i = 1,..., n. We 
t t 

assume that e. ̂  N (0 ,E). We also adopt the univariate multiple regres-
o-1 P *VI 

sion concept that the errors are independent across observations, or 
2 e. a. N (0,a. I ) for j = 1,..., n. In order to combine the row and n- j n 

column distributional assumptions, let E denote the (nxp) matrix E writ-

ten in dictionary form. Then E ̂  N (0, ^ ( x ^ ) • I t : immediately follows 
that the expectation and variance-covariance matrix of B, which denotes 

a, 
B written in dictionary form, are y~ = B and C(B,B t) = (X tX )~ 1 (x)s . 

o,B a, ^ ^ \~s 
Let c 1^ denote the (i,j)— element of (X*"X) . Thus, c ^ £ is the vari-

At 2 t -1 ance-covariance matrix of (3., which is the i th row of B, and a . (X X) 

is the variance-covariance matrix of 8 . , which is the i th column of B. 
AO 

It also follows that the elements of B are normally distributed since 

they are linear combinations of the elements of Y. The estimate of E, 

denoted by E, is given by 

E = (Y-XB) t (Y-XB)/(n-k). 

It follows from the above statements that a 100(l-a)% confidence inter-
~ * 2.2. % 

val for B , i=l,..., k, j=l,..., p, is given by 6 ^ ± ti«a/ 2,n-k C Tj^ C ^ 

where a is the square root of the j th. diagonal element of E. Additional 

types of confidence intervals can be constructed as the need arises. 

The multivariate linear regression model provides the basis for 

estimating y and <5 in the MMA (1) model. As with the univariate case of 
a, a, I 
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Chapter III, it is necessary to transform the MMA^(l) model into the 

format of a multivariate linear regression model. 

5.2.2 Least Squares Estimation Procedure 

As it now stands, the MMA^(l) model presented in equation (223) is 

not in a multivariate linear regression format. The transformation 

necessary to convert equation (223) into linear model format can be 

found by considering the first few z 's. Specifically, z. = y + a -0a_. 
r̂t 1 r̂ l MJ 

Thus, z n depends on both a current and previous error vector. An obvious 
oA 

way to alleviate this is to let a n = 0, its marginal mean. Upon doing 

this, z.. - u + a-, and we let y.. = z... Now z 0 = y + a_ - 0a.., and it 

also depends on both a current and previous error vector. However, if 
we multiply y.. by 0 and add 0y to z 0, we obtain z 0 + 0yn = 

oA oA '\A ^ oA 

= (y + a 0 - 0a ) + (0y + 0a ) = y + 0y + a . Thus, we let y = z + 0y . 

Furthermore, since z~ = y - 0a 9 + a~, we let y~ = z~ + 0y o. In general, 

for t = 1,..., n^, we employ the transformation 

in which case 

y = z + 0 y , (233) 
o-t 'X.t o,t-l 

y. = (I + 0 +...+ 0* X ) y + a . 
o.t a. '\»t 

For t = n +1,..., n + n ?, we again employ the transformation presented 

in equation (233), which results in 

y = (I + 0 +. . .+ 0 1 1" 1) y 

+ (I + 0 +...+ 0 t " ( n l + 1 ) ) o + a . 
'Xi rxr-

By transforming the original z 's into y ' s using equation (233), 

the y 's when put in the appropriate format are amenable to statistical o-t 
linear model analysis. Although specific formulae could be developed 
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for the elements of y and 5 , this will not be done at this time. How-

ever, it is important to note that y and 5 are conditional least squares 

estimates in that they are dependent on the elements of 0 and To find 
A, A. 

the elements of y and 5 , we search over the ¥ and 0 matrices until we 

find that pair ( ¥ , 0 ) which minimizes the squared residuals o f the trans­

formed variates. 

In Chapter V, we have proposed a multivariate, multi-consequence 

intervention model, determined its properties, and outlined an estimation 

procedure for its parameters. 
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CHAPTER VI 

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

The theme of this research has been the development and investigation 

of the properties of tests for location in the presence of correlated 

observations. This theme has been investigated for the quality control 

scenario (monitoring a process by using repeated samples) as well as 

the interrupted time series quasi-experiment setting (detecting a shift 

in the level of a single sample). 

However, this research has also investigated inferential problems 

concerning the process variability of the ITSQE. Another topic that was 

explored was the economics of sampling in the presence of correlated ob­

servations . 

A more thorough summary of the results is presented in Section 6.1, 

followed by conclusions in Section 6.2, and recommendations for f u t u r e 

research in Section 6.3. 

6.1 Summary of Results 

This section contains the results of this dissertation. The section 

in which the result was first presented is given in parentheses. 

6.1.1 Chapter II. Control Charts for Correlated Observations 

1. When there is only one quality characteristic with a standard 

value specified for the process mean and the autocorrelative 

structure among the observations is known, the maximum likelihood 
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estimator of y is given by 

The estimator of y was derived under the assumption that the 

observations are obtained from an n-dimensional multivariate 

normal process (Section 2.1.2). 

Under the above conditions, 

which demonstrates that y is unbiased (Section 2.1.2). 

Also, y is the uniformly minimum variance estimator of y. This 

implies that, in the class of unbiased estimators, y is a 

Bayesian estimator with respect to every prior when the loss 

function is quadratic; and, y is a minimax estimator when the 

loss function is quadratic (Section 2.1.2). 

Control limits for the process mean are given by 

where E(y) = y Q (Section 2.1.2). 

The estimator y is also the generalized least-squares estimator, 

which is a known result (Section 2.1.2). 

In the presence of serial correlation of degree r, justification 

for using X is provided by the r-dependent central limit theorem 

(Section 4.3). 

When there are multiple quality characteristics with standard 

values specified for the process mean vector and the covariance 
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structure within each vector of observations as well as among 

the vectors of observations is known, the maximum likelihood 

estimator of y is given by 

£ - [ % © y ' v ^ N © y I " 1 <J» © y ' \ 

0» f\j 'XJ 'Xi 
The estimator was derived under the assumption that the 

observations are obtained from an np-multivariate normal 

process (Section 2 . 2 . 2 ) . 

8 . Under the previously stated conditions, 

showing that y is unbiased (Section 2 . 2 . 2 ) . 
O, 

9. Also, y is the uniformly minimum variance estimator of y 

(Section 2 . 2 . 2 ) . 
A t —1 A 2 

1 0 . If (y - y n) (y - y ) > x > the conclusion is that the o< o<u y <w P>ot 
0 / 

process mean has shifted from the nominal value y^ (Section 

2 . 2 . 2 ) . 

6 . 1 . 2 Chapter III. Estimation for the Multi-Consequence Intervention 

Model 

1 1 . A multi-consequence intervention model was proposed for first 

and second-order moving average processes (Section 3 . 1 . 2 ) . For 

a first-order moving average process, the model is 

z
t = V + a t - 9 1a t_ 1, t = 1 , . . . , ^ 

Z t = y + 6 + a t - y 1 a t _ 1 , t = n 1 + 1 ,...^ + n £ . 
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The expected value and covariance structure of these models was 

considered in detail (Section 3.1.2). 

12. Specific formulas were developed for conditional least squares 

estimators of u and 5 for both the single and multi-consequence 

MA^(l) models (Sections 3.2.2.1 and 3.2.2.2), and a computer 

program was written to accomplish this (Appendix C). 

13. A procedure was indicated for obtaining conditional least squares 

estimates of u and 5 for both the single and multi-consequence 

MA].(2) models (Section 3.2.2.3). 

14. Explicit expressions were obtained for the maximum likelihood 

estimators of u and 5 for any MA^(q) model. These estimators 

are for fixed values of the moving average parameters (Section 

3.3.1). 

15. An algorithm was developed for calculating the unconditional 

likelihood function of the single and multi-consequence MA^.(1) 

models for a given set of parameter values (Section 3.3.2.1 and 

3.3.2.2). 

16. A procedure was indicated for calculating the unconditional 

likelihood function of the single and multi-consequence MA^.(2) 

models for a given set of parameter values (Section 3.3.2.3). 

17. Explicit instructions were given for implementing the maximum 

likelihood estimation algorithm (Section 3.3.3), and a computer 

program was written to accomplish this (Appendix D) for the multi-

consequence MA (1) model. 
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18. A likelihood ratio test was proposed to test H^:0^ f ° r 

the MA^Cl) model (Section 3.3.4). The outcome of this test 

influences the statistical inferential procedure to be used 

for 6. 

6.1.3 Chapter IV. Economic Aspects of Control Charts for the Mean. 

19. Page's scheme for the determination of the sample size and 

control chart constant was extended to the case of two quality 

characteristics and independent observations (Section 4.2). 

20. Page's scheme was also investigated for three quality 

characteristics and independent observations (Section 4.2), 

21. Using a modified X-chart with justification provided by the 

r-dependent central limit theorem, Page's scheme was employed 

to determine the sample size and control chart constant needed 

for one quality characteristic when the observations have a 

first-order serial correlation. 

6.1.4 Chapter V. The Multivariate Multi-Consequence Intervention Model 

22. The univariate multi-consequence intervention model of Chapter 

III was extended to include vector-valued moving average 

processes. That is, at each epoch of time, the sample element 

is a vector Z. = [Z-. , Z«. Z i . ] t where the elements corn­et It' 2t' ' pt 
prising Z may be correlated. The model for a bivariate, first-

O / T 

order moving average, multi-consequence intervention model is 
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Zlt = vl ~ 611 a l , t-1 " 912 a 2 , t - l + alt 

Z2t = V2~ 821 al,t-l" e22 a2,t-l + a2t' 

Z l t " W l + d l " *11 al,t-1 " +12 3 2 , t - 1 + alt 

Z 2 1 = W2 + 62 ' +21 a l , t-1 " +22 a 2 , t - 1 + a2t • ' " n l + 1 ' • • • ' nl + n 2 

In matrix notation, this becomes 

Z = u - 0 a + a , t - 1 , ,n-
o»c a. % z ~ 1 %z 1 

Z - y + 6 - Y a + a t = n + 1,..., n. + n 0 

O/t o» o» o»t—1 o,t ± 1 2 

The expected value and covariance properties of this model were 

explored (Section 5.1). 

23. A procedure was indicated for obtaining conditional least squares 

estimates of the level and shift parameters for the bivariate, 

first-order moving average, multi-consequence intervention 

model (Section 5.2). 

6.2 Conclusions 

This section contains conclusions arising from this research. 

1. Whether there be one or multiple quality characteristics, the 

maximum likelihood estimator of the process mean is valid for 

any type of autocorrelative structure and is the uniformly 

minimum variance unbiased estimator of the process mean. 

2. The multi-consequence intervention models offer a new type of 

flexibility for modeling the interrupted time series quasi 

experiment (ITSQE) which will also reduce the residual variance. 
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3. One should always test the equality of the pre-intervention 

and post-intervention moving average parameters since the 

estimates of the process level and shift are contingent upon 

them. 

4. When the process quality depends on several quality character­

istics and there are independent vectors of observations, the 
2 

use of a single X p ~ c n a r t : instead of p X-charts generally 

decreases the sample size that needs to be selected. 

5. When the process quality depends on only one quality chracter-

istic and the observations are correlated, the presence of 

negative autocorrelation results in the selection of a smaller 

sample size. 

6.3 Recommendations for Future Research 

Some perceptions on future reserach are: 

1. The concept of the multi-consequence intervention model needs 

to be extended to pure autoregressive processes and autoregressi 

moving average processes. Needless to say, the maximum likeli­

hood and least squares estimation procedures also need to be 

extended. 

2. There is a need to consider nonstationary multiconsequence 

intervention models and their estimation because of their 

proven applicability. 

3. The maximum likelihood technique of parameter estimation needs 

to be extended to the multivariate intervention model. 

4. Economic parameters need to be determined for the y-chart. 



APPENDIX A 

DATA FOR EXAMPLE 2.1 
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Appendix A 

This is the data for Example 2.1. There are twenty samples, 
each of size 5, from a univariate process with first-order 
serial correlation equal to 0.47, variance equal to 13.41 
and process mean equal to 30.0. 

Sample X 
i 

x 3 
x 4 x 5 X y 

Number 

1 26.149 25.392 28.910 32.657 35.011 29.624 29.934 

2 28.231 24.838 27.843 28.561 28.623 27.619 28.059 

3 35.435 39.090 39.970 32.520 31.688 35.741 35.590 

4 33.580 31.120 35.358 31.376 27.246 31.736 31.870 

5 33.713 33.469 32.428 33.817 28.548 32.395 31.789 

6 27.596 31.966 34.198 30.636 30.042 30.888 30.594 

7 28.767 30.783 34.496 31.857 28.872 30.955 30.678 

8 27.030 27.533 35.621 39.204 28.235 31.525 30.515 

9 30.723 29.506 27.992 24.209 24.849 27.456 27.731 

10 22.982 29.768 29.875 26.188 24.082 26.579 25.808 

11 31.330 33.887 27.948 26.095 32.754 30.403 30.672 

12 34.693 34.548 31.036 30.853 32.080 32.642 32.659 

13 23.057 21.952 26.784 26.991 28.965 25.550 26.037 

14 33.141 32.665 25.366 23.228 28.808 28.642 29.071 

15 32.323 32.008 25.988 25.908 23.633 27.972 27.550 

16 26.982 34.313 29.025 26.148 28.597 29.013 28.423 

17 35.402 33.550 28.186 27.215 26.206 30.112 30.035 

18 26.745 26.942 31.729 34.890 30.728 30.206 29.820 

19 27.987 32.290 35.043 28.617 29.900 30.767 30.799 

20 28.182 31.098 29.858 33.297 34.615 31.410 31.072 
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Appendix B 

This is the data for Example 2.2. There are four simulation runs. For 
each run, twenty samples were generated where each sample consisted of 
ten (2x1) vectors of observations. For each sample, y = [y ,y ] was _ _ _ t a. 1 2 calculated as well as x = [x^,X2] • Furthermore, for each sample, the 
test statistic (denoted SUM 1) 

. t , -1 -s 

(y - u ) (IrY (y - y ) 

was calculated as well as the statistic (denoted SUM 2) 

(x - y n ) f c Z. 1 (x - u ) , 

which completely ignores the correlative structure. For each run, 

e u = / I/4, e 1 2 = e 2 1 = e 22 = 

r =0.0 

1 2 

The four runs were obtained by letting c = 1.0 (1.0) 4.0. 
The results are as follows. 
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Run Number 1. = 1.0 

Sample 
Number 

A - A. 

u 2 
x 2 SUM 1 SUM 2 

1 .544 .530 -..177 -.151 1.603 2.428 

2 -.026 .039 ..042 -.040 0.035 0.250 

3 -.744 -.767 .173 .160 3.194 4.915 

4 -.106 -.175 -,.004 .052 0.107 0.265 

5 -.052 -.103 -,.001 .019 0.024 0.088 

6 .280 .238 -,.070 -.039 0.446 0.466 

7 -.057 -.036 .,061 .069 0.065 0.048* 

8 -.024 .043 .,023 -.026 0.009 0.020 

9 -.267 -.156 .092 .018 0.385 0.197* 

10 .252 .287 -.052 -.112 0.378 0.761 

11 -.303 -.371 .065 .097 0.542 1.180 

12 -.479 -.508 .143 .131 1.257 2.200 

13 -.347 -.335 .079 .059 0.700 0.925 

14 .264 .297 -.037 -.052 0.462 0.727 

15 -.452 -.414 .144 .082 1.110 1.423 

16 -.165 -.161 .049 .068 0.149 0.245 

17 -.200 -.206 .071 .039 0.216 0.353 

18 -.664 -.662 .188 .189 2.433 3.789 

19 .597 .779 -.088 -.183 2.312 5.125 

20 -.126 -.042 .106 .027 0.194 0.020* 

The asterisk denotes SUM 1 is greater than SUM 2. 
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Run Number 2. c 2 = 2.0 

Sample 
Number 

y l y 2 x 2 SUM 1 SUM 2 

1 .532 .530 -.253 -.151 1.307 1.891 
2 -.013 .039 .091 -.040 0.059 0.015* 

3 -.753 -.766 .203 .160 2.984 3.874 

4 -.116 -.174 -.083 .052 0.242 0.206* 

5 -.058 -.103 .022 .019 0.016 0.069 

6 .282 .238 -.084 -.039 0.408 0.369 

7 -.040 -.036 .096 .069 0.053 0.021 

CO
 

-.018 .043 .042 -.026 0.010 0.014 

9 -.259 -.156 .127 .018 0.307 * 
0.156 

10 .256 .287 .005 -.112 0.480 0.578 

11 -.308 -.371 .048 .097 0.563 0.923 

12 -.474 -.508 .205 .131 1.054 1.723 

13 -.351 -.335 .064 .059 0.710 0.731 

14 .275 .297 .048 -.052 0.683 0.574 

15 -.444 -.414 .213 .082 0.908 1.123 

16 -.163 -.161 .065 .068 0.127 0.184 

17 -.194 -.206 .132 .039 0.176 0.279 

18 -.660 -.662 .236 .189 2.131 2.952 

19 .620 .779 .017 -.183 2.851 4.027 

20 -.102 -.042 .251 .027 0.361 0.014* 

The asterisk denotes SUM 1 is greater than SUM 2. 
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Run Number 3. c 2 = 3.0 

Sample 
Number 

A 

^1 X l u 2 

x 2 SUM 1 SUM 2 

1 .521 .530 -.328 -.151 1.019 1.400 
2 -.005 .039 .139 -.039 0.085 0.010* 

3 -.752 -.767 .232 .160 2.699 2.873 

4 -.128 -.175 -.160 .052 0.381 * 
0.152 

5 -.056 -.103 .043 .019 0.012 0.051 

6 .281 .238 -.098 -.039 0.363 * 
0.274 

7 -.032 -.036 .132 .069 0.056 0.013 

8 -.014 .043 .061 -.026 0.012 0.010* 

9 -.253 -.156 .161 .018 0.240 0.116 

10 .263 .287 .060 -.112 0.597 0.426* 

11 -.311 -.371 .032 .097 0.577 0.683 

12 -.466 -.508 .266 .131 0.840 1.276 

13 -.354 -.335 .049 .059 0.715 0.542* 

14 .287 .297 .131 -.052 0.913 * 
0.426 

15 -.434 -.414 .281 .082 0.702 0.833 

16 -.161 -.161 .080 .068 0.105 0.135 

17 -.185 -.206 .191 .039 0.132 0.207 

18 -.653 -.662 .283 .189 1.821 2.184 

19 .637 .779 .120 -.183 3.350 2.984* 

20 -.079 -.042 .395 .027 0.531 0.010* 

The asterisk denotes SUM 1 is greater than SUM 2. 
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Run Number 4. c 2 = 4.0 

Sample 
Number "1 x 2 SUM 1 SUM 2 

1 .512 .530 -.385 -.151 0.801 1.028 

2 .001 .039 .1.76 -.040 0.106 0.007* 

3 -.749 -.767 .254 .160 2.474 2.111* 

4 -.137 -.175 -.219 .052 0.488 0.112* 

5 -.055 -.103 .060 .019 0.008 0.038 

6 .279 .238 -.108 -.039 0.328 0.201* 

7 -.027 -.036 .159 .069 0.060 0.009* 

CO
 -.012 .043 .076 -.026 0.014 0.008* 

9 -.249 -.156 .187 .018 0.190 0.085* 

10 .269 .287 .102 -.112 0.690 0.312* 

11 -.314 -.371 .0.19 .097 0.587 0.502* 

12 -.459 -.508 .313 .131 0.675 0.937 

13 -.356 -.335 .038 .059 0.719 0.399* 

14 .297 .297 .195 -.052 1.091 0.313* 

15 -.426 -.414 .334 .082 0.546 0.612 

16 -.159 -.161 .092 .068 0.088 0.099 

17 -.179 -.206 .236 .039 0.099 0.152 

18 -.648 -.662 .319 .189 1.585 1.603 

19 .650 .779 .200 -.183 3.730 2.192* 

20 -.062 -.042 .505 .027 0.665 0.007* 

The asterisk denotes SUM 1 is greater than SUM 2. 
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GGG1G PROGRAM 5UMSCKINPUT,OUTPUT) 

* ******* 
G0G12* INPUT* LOWER LIMIT, UPP£* LIMIT, STEP SIZE 

* FOR THCTAl 
GGJ13* LOWER LIMIT* UPPER - IM T, STEP SIZE 

* FOR THETA2 
000 1<f* OUTPUT* FOR EACH 7HETA1, AND TH E 7 A 2 IMUHAT, 

* Oci.TA.HATtVAP.IA 
Q Q Q ^ ^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * . . * * * * * * * * * ^ * * * * * * . * * 

* * * * * * * * * * 
00'J2u DIMENSION W ( 6 C Q ) , Y ( 6 C C ) * S ( 2 * 2 ) ? S X ( 2 » 2 ) 
0 0 0 2 5 + , 
u G G 3 0 + 7 ( 2 ) , 8 E 7 A ( 2 ) , X ( 6 C C s 2>,*3 £ 7 A(6CG),4 - M 7(2CG) 
0 Q Q ^ D + , J L ( 2 , 2 ) , I P R ( 2 ) , R ( 2 , 2 ) 
GO Q 50 REAu L 1 , L 2 
GOG 3 3 READ d u G l , N l , N 2 
0C1CQ 6uZl F3RMAT(3I6) 
U O l i j READ 3 C 2 u f L I » U l f S T E F 1 
OCi20 KEAO £ 0 2 3 , L 2 , U 2 , S T E P 2 
uC13fl 3323 FDRMA7 ( F i f.o) 
Q0i<+Q*********** INITIALISATION CONTROLS -OR INTERMEDIATE 

* PRINTS 
00153 K E Y W = I 
C016Q K E Y Y=1 
00170 K E Y S = I 
0 0 i 3 3 K£YSI=1 
00190 KEY T = 1 
Q u 2 J J K E Y 3 = I 
00213 K E Y/=1 
0 U 22 Q KEY 3 = 1 
00 23J K E Y X 3 = 1 
QC2<+3 K£YA=1 
u0 2 5C NlPN2=Nl + ,\2 
CL255 READ 6 G 20 , ( W ( I ) , I = 1 , N1 ='N2 ) 
U L 2 6 3 I F ( K E Y W . N E . l ) GOTO 1C 
00270 PRINT 9J1C 
00260 9C10 FORMAT ( / 1 0 X » * VALUES OF W * / ) 
U029Q PRINT 9015» (W ( I ) , I = 1,N1PN2) 
Q03QD 9 i i 5 FDRMAT(3 C X , 1 L ( F 9 • 3 ) ) 
0G313 ID CONTINUE 
0 0 3 2 0 * * * * * * * * DO LOOP OVER THE7A1AN3 DO LOOP O V L R THE7A2 
0G333 N5T£P1= I F I X < ( U l - L l ) / S T E P I ) + 1 
QG3<+3 THE TA1 =u l 
00350 D3 4OL0 L03P1=1»NSTEP1 
0G363 NSTc?2= IFIX ( ( U 2 - L 2 ) / S 7 E P 2 ) + 1 
GG37G THE TA2 = u2 
00333 03 5GCG L3DP2=1,NS7EP2 
0u39Q********C3M?UTATICN OF Y VECTOR 
0G<fC3 Y ( 1 ) = W ( 1 ) 

http://Oci.TA.HATtVAP.IA
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00*13 DO 22 1 = 2 , N l 
00420 2G Y ( I ) = W ( I ) + T H E T A i * Y ( I - l ) 
GU433 N i P l = N l + l 
00*43 DO 30 I = N l P l , N l P N 2 
Q C 3J Y ( I ) = W ( I ) + T H E T A 2 * Y ( I - l ) 
0 0 * 5 0 * * * * * * * * * * * * * * * PRINT Y IF NcEOEu 
00*60 I F ( K c Y Y . N E . 1 ) GOTO 43 
GO 470 PRINT 90 2 u 
0C*6u 9Q2Q FORMAT ( / / 1 0 X , * VALUES OF Y * / ) 
00493 PRINT 9 J 2 5 , (Y ( I ) , I = 1 ,N1) 
G05Q3 9C25 FORMAT(5X,10 ( F 9 . 4 ) ) 
00513 PRINT 9326 
G G 5 2 G 90 2 6 FORMAT (* - *> 
0053Q PRINT 9 Q 2 5 , ( Y ( I ) , I = hi P1., N1PN2 ) 
0 0 5 * * 0 * * * * * * * * * * * * * * * PRINTING GF Y OVER 
00 5 5 3 * * * * * * * * * * CALCULATION ~JF S S l l 
00560 4u T E R M l = l . / ( i . - T H E T A i ) * * 2 
00 5 73 T12=7HETAL*THETA1 
00575 Tl=THETAl 
0 0 5 7 6 T2=THcTA2 
00530 T1N1=T1**N1 
00590 T12N1=T1**(2*N1) 
00600 T22=T2*T2 
0U630 T2N2=T2**N2 
0 0 640 T22N2=T2**(2*N2) 
0G653 VA Li = FLGA T ( N l ) 
U0660 V A u 2 = 2 . * T l * ( l . - T i N l ) / ( l « - T l ) 
00 673 \/AL3 = 7 1 2 * ( i . - T l 2 N l ) / ( i . - T l 2 ) 
00630 TERM2=VAL1-VAL2*VAL3 
0 0 6 9 3 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
0070 G TL^Z= . . / ( 1 . - T 2 ) **2 
00710******TERM4 
0 0 720 7A L1 = F ^ 3 A ' ( N 2 ) 
OC730 VAL2 = 2 • * T N E T A 2 * ( 1 . - T 2 N 2 ) / ( 1 . - T 2 ) 
00 7 <H0 VA L 3 = 122 * ( 1 . - T 2 2 N 2 ) / ( I . - T 2 2 ) 
00750 7ERM*+ = VALi-VAL2*\/AL3 
Q G 7 6 3 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * V 

0 0 773 V A L i = ( ( 1 . - T I N ! ) / ( l . - T l ) ) * * 2 
O O 7 8 0 * * * * * * * * * * * * * * * * * * * * * * * * * TERM5 
0079Q VAL2=T22 
0 0 7 9 5 7 AL 3 = ( l . - T 2 2 N 2 ) / ( l . - T 2 2 ) 
308CC TERM5= \1 A L 1 * V A L 2 * VAL3 
Q 0 3 1 G * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * * * 
Q032C T E R M 6 = 2 . * ( 1 . - T 1 N 1 ) / ( ( l . - T l ) * ( i . - T 2 ) ) 
0 0 3 3 0 * * * * * * * * 
00 3 4D VALi = H £ T A 2 * ( 1 . - T 2 N 2 ) / ( I • - T 2 ) 
0C353 VAL2=T22*( 1 • - T 2 2 N 2 ) / ( 1 . - T 2 I ) 
00 360 TERM7 = \ /Aul-VAL2 
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00370 3 ( 1 t i ) = 7ERMl*7ER*2 + 7ERH3*7ERM4 + 7 £ R ' l 5 + 7ERH6*7iRM7 
QG3GD******* CALCULATION CF SS22 
00910 TERM1= l . / ( i . ~ T 2 ) * * 2 
00920 \ /AL1 = F L J A 7 (NZ) 
00930 V A L E = 2 . * 7 2 * ( l . - 7 2 N 2 ) / ( l . - 7 2 ) 
0u9*»C \/AL3 = T22* (1 . - T 2 2 N 2 ) / ( 1 . - T 2 2 ) 
00950 TcRM2=VA»_--VAL2 + \/AL3 
00963 5 ( 2 , 2 ) = TERM1*7ERM2 
G G 9 7 0 * * * * * * * * * CALCULATION CF S512 
6 0 98 u 7 E R M 1 = 1 . / ( 1 . - T 2 ) * * 2 
00493 VA Li = F LOA T ( N2 ) 
010 COO \ / A L 2 = 2 . * T 2 * ( ± . - T 2 N 2 ) / ( l . - 7 2 ) 
01J1G \/A L3=( 72 **2 ) * ( ! . - 7 2 2 N 2 ) / ( i . - 7 2 * * 2 ) 
0 10 2 3 TERM2 = \/AL1-VA.L2 + VAL3 
010 3 3 T E R M 3 = < 1 . - 7 1 N 1 ) / ( ( 1 . - T D M 1 . - T 2 ) ) 
G1J4G V A L 1 = T 2 * ( 1 . - T 2 N 2 ) / ( 1 . - 7 2 ) 
010 53 \/AL2 = 7 2 2 * (1 . - 7 2 2N2) / ( l „ - 7 2 2 ) 
010 60 TERM<* = VAL1-VAL2 
013 70 S ( l , 2 ) = 7ERMI*7ERM2+7ERM3*7£RM* 
01333 S ( 2 , i ) = S ( l , 2 ) 
Q1Q90*********TO CGMPU7E SS1Y AND SS2Y 
C l i u 3 * * * * * * * * * FIRST COMPUTE SUMS 
O H I O SUMi = l • 
31123 SUM2=C. 
01133 SUM 3 = 1 . 
011^0 SUM<*=C. 
011 50 03 5 ; I = i . N l 
01163 SUMl=SUMlfY( I ) 
0117 3 5G S U M 2 = S U M 2 + Y ( I ) * ( 7 i * * I ) 
01130 DO bi I = l t N 2 
01193 SUM3 = S'JM3 + Y (Nl + I ) 
G12GQ 63 SUM* = 3UM<+ + Y (Nl +1) * ( 7 2 * * 1 ) 
3 1 2 1 3 * * * * * * * * * CALCULATION 0- 7 ( 1 ) 
01220 7 E R M i = l . / ( 1 . - T 1 ) 
G12 3Q TERM2=SJMi-SUM2 
012^0 7 E R M 3 = 1 # / ( i « - 7 H E 7 A 2 ) 
G125G T£RMH = 3JM5-SUMi* 
012 60 T£R.M5 = ( 1 . - T 1 N 1 ) / (1 • •THE7Ai ) 
01273 7ERM6 = SJMM. 
C12 3G 7 ( 1 ) = 7ERM1*7ER.M2 + 7ERM3*7ERM^ + 7ERM5* TERM6 
01293 * * * * * * * * * * * * * * * * * CALCULATION OF T ( 2 ) 
01320 7 ( 2 ) =TERM3* JERM<+ 
01330 * * * * * * * * * * PRINT S AND T IF NEFD'iD 
G13<+3 I F ( K E Y S . N E . l ) GOTO 70 
013413 7ERM2=3UM3-SUM<* 
013 53 PRINT 93 3G 
G1363 9 3 3 : FORMAT ( / i O X t * S MATRIX*/) 
01370 PRINT 9 3 3 5 , ( ( S ( I , J ) , J = L , 2 ) , 1 = 1 , 2 ) 
0133U 9335 FORM A 7 (1 C X , 2 Fl k .&) 
31393 73 I F ( K E Y 7 . N £ . 1 ) GOTO 8C 
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01*03 PRINT 3c 
131*10 9333 FORMAT ( / 1 G X , * T VECTOR*) 
0 l * 2 C PRINT 9>J35, 7 ( 1 ) , T ( Z ) 
0 1 * 2 5 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

01*30 * * * * * * * * * * * * * HERE IN3MRT STATEMENT]-OR INVERSION 
0 1 * 3 2 L = 2 
0 1 * 3 5 CALL I N V I T R ( S , U L , 2 , 2 , I 3 R , R , S I , D i , L , D X , K D ) 
01**3 * * * * * * * * * * * * PRINT INVERSE IF ?03SI8-_£ 
01*50 I F ( K E Y S I . N E . l ) GOTO 80 
Gl*60 PRINT 9G*G 
01*70 9**0 F O R M A T ( / i u X , * INVERSE OF S * / ) 
01*83 PPINT 9 J 3 5 f ( (S I ( I » J ) , J = 1» 2 ) , 1 = 1 * 2 ) 
0 1 * 9 0 * * * * * * * * CALCULATION OF 3ETA VECTOR 
01500 3C B E T A ( i ) = S I ( l . l ) * T ( 1 ) + 5 1 ( 1 , 2 ) * T ( 2 ) 
01513 3 E T A ( 2 ) = 5 I ( 2 , l ) * T ( i ) + S I ( 2 , 2 ) * T ( 2 ) 
0 1 5 2 0 * * * * * * * 3RIMT BETA VECTOR I F NEEJEG 
01530 I F C < E Y 3 . N E . l ) GOTO 90 
015*0 PRI NTL 9J 5 . 
01550 9u50 FORMAT(/IO X , * 5ETA VECTOR*/) 
01563 PRINT 9 3 3 5 . 3 E T A ( i ) . B E T A ( 2 ) 
0 1 5 7 0 * * * * * * * * TO FORMULATE X MATRIX 
01560 9- X ( l , . ) = i . 
0159Q OJ ICC 1 = 2 , N l 
01595 X ( I , 2 ) = G . 
016CG 100 X ( 1 , 1 ) = X ( I - l ) + T H E T A 1 * * ( I - l ) 
01613 C= ( i . - T I N ! ) / ( l . - T l ) 
01623 X ( N i + l , l ) = 1 . + C * T H E T A 2 
016 3 0 X ( N l + i , 2 ) = i . 
016*3 OO 11C i = 2 , N 2 
016 50 S'JM = 1 . 
01663 I M 1 = I - 1 
0 1 6 6 5 OO 12L J = 1 , I M 1 
01670 120 3UM=SUM+(THETA2**J) 
0166C X (Ni + I , 2 ) = 5 U M 
G169G X ( N 1 + I , 1 ) = 3 U M + ( T H £ T A 2 * * I ) * C 
01700 113 CONTINUE 
0 1 7 1 0 * * * * * * * * * * * * * * PRINT X MATRIX IF 'AEIJEO 
01720 I F ( K E Y X . N E . l ) GOTO 13L 
01733 PRINT 93 53 
017*0 9u5C FORMAT(/1CX,*X MATRIX*/) 
017 53 PRINT 93 3 5 , (X (1 , 1 ) , X C , 2 ) , I = 1 , N 1 = M 2 ) 
0 1 7 5 0 * * * * * * * * * * * * * TO FIND PRODUCT O ^ BETA AND :< 
01773 133 DC150 I=1 ,N1PN2 
017 50 150 X 6 E T A ( I ) = X ( I , l ) ^ 3 E T A ( i ) + X ( I , 2 ) * 3 E T A ( 2 ) 
01793 * * * * * * * * * * * * PRINT X3ETA IF NEEDED 
01300 I F ( K E Y X B . N E . l ) GOTO l & i i 

01313 PRINT 9371 
01320 9G7G FORMAT( /10X,* PRODUCT CF X AND BETA*) 
01333 PRINT 9j 3 5 , ( X 3E T A ( I ) , 1 = 1 , N l ° N 2 ) 
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01 3<fQ * * * * * * * CALCULATION OF AH A T 
G1850 15Q OO 13C I=1,N1PNZ 
01860 160 AHAT(I>= Y ( I ) - X B E T A ( I ) 
01373 * * * * * * * * * * * * * * * * * PRINT AHAT IF NcEOED 
G138C I F ( K E Y A . N E . l ) SOTO 19C 
01393 PRI'U 93 6t 
019 0 0 90 5 0 FORMAT (10 X , * AH AT VECTO^.*) 
01913 PRINT 90 3 5 » ( A H A T ( I ) , I = l f N 1 P N 2 ) 
0 1 9 2 0 * * * * * * * * CALCULATION OF 5A SQUARED 
01933 SJM=3. 
J19*3 190 DC 195 I=1 ,N1PN2 
01950 195 SUM=SUM+AHAT(I)*AHAT(I) 
01960 VAR=SUM/FLOAT(N1+N2-2) 
0 1 9 7 0 * * * * * * * + * * : PRINT ALL V A L U E S 
01930 PRINT 90 9 u , T i * T 2 , B E T A ( 1 ) , 5 E 7 A ( 2 > , VAR 
0 1 9 9 8 9c9U FORMATC/* THETA 1 = * , Flk . 6 , * THE T A2 = * , Fl 6 , 5X , 

* *MUHAT=* , 
Q19:*9+Fl<+.&,5< , *D£LTAHAT*, F l * . 6 , 5 X . *VAR = * , F m . o ) 
02313 THETA2=72+3TEP2 
02020 5003 CONTINUE 
020 33 7HE7Ai = T"Hc7Al + STEPl 
0 20 ^3 <fuG3 CONTINUE 
02J53 STOP 
0 23 63 END 
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APPENDIX D 

LISTING OF COMPUTER PROGRAM MLEMAI (1) 
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QCUlD PROGRAM POWELL(INPUT * OUTPUT) 
OOOH* MAXIMUM LIKELIHOOD ESTIMATION =>r<3SRAM 
GGG12* 1N 3 UTI i . T I M E SERIES DA T A • • • ^EAQ I n T G ARRAY Z l 
0 0 0 1 3 * ^.STARTING VALUES FOR THETAl,GAtfAl 
QQjl<f* OUTPUT: OPTIMUM VALUES OF THE VARIABLES 
0 0 0 1 5 * THETAl,GAMA1,MUHAT,0ZuTAHAT 
GGul6*ATTACH SUBROUTINE INVITR FROM M S F l I 3 BEFORE RUNNING 

* THE PROGRAM 
00 O l d * * * * * * * * * * " * * * * * * * * * * * * * * * * * * * * * * * * * * * ' * * * * * * * * * * * * * * * ' * * * ' 

CC02D DIMENSION X ( < * ) « W ( 2 3 ) « E ( * ) i Z K ^ D 
00 0 22 COMMON N1 f N2 t Z (A-C ) , X • F 
GOJ23+ ,NITEF 
00033 DATA < Zl ( I ) , I = 1 , <*C ) / 
0 0 0 3 1 + 2 u « » 1 3 « » 2 3 « » l f l « f 2 1 « » 2 t « » 1 9 • • 2 2 • • 2 3 • » 2 0 • , 
fl0032+22«fl3«»2l«fi9«»2G#,ie.»2 0 . t i £ « » H * . f l d « t 
0 G 3 3 ^ + 1 2 « » 3 « f & « « 6 « f H « , 5 « » 6 » » 4 # t 2 « » 5 » t 
QCG35 + if« f 4 • » 5 • »A-« «2 • »if • * 6 • * L • <> ^ • t 2 • / 
0C035 NIT£R=3 
uUu<+G N = 2 
OuOifl Ni=2C 
G00if2 N2=23 
00uif3 Nl 3 N2=Ni+N2 
00 0 30 IPRINT=2 
GGG51 DO 103 K9=1,^C 
0 0 0 5 2 lw3 Z ( K 9 ) = Z 1 ( K 9 ) 
GG063 MAXIT=5CG 
0007G £ i C A L £ = 3 , 5 
GOOdQ READ 5 , X ( 1 ) 
0 0 G 90 R E A O 5 * X ( 2 ) 
0 0 1 1 5 5 F0RMAT(FiA-.6) 
QG117 6993 FORMAT(F15 • 6 ) 
CC123 £ < 1 ) = C . 3 5 
0 0 1 2 1 £ ( 2 ) = l . : 5 
GC122 E ( 3 ) = C . J 5 
00123 E (i+) =L . 3 5 
GG130 NW = N*(N + 3) 
0 u 1 <f 0 CALL BOT M (X f E • N • E F, E S C A L£ * I P R IMT • MA < I T t W , Nl • H O , .NW ) 
0 0 1 5 1 * NON LINEAR OPTIMIZATION USING P O W E l l S ALGORITHM 
C0152*ADOPTED FROM MIZE & KUESTERJ0PTIMIZATIGN TECHNIQUES 

* WITH FORTRAN I 
GG163* 
00173 PRINT 1 
00130 1 FORMAT<// ,5X,"VALUES OF THE VARIABLES*) 
0 0193 DO 1UC J=1 ,N 
GG200 PRINT 2 , J , X ( J ) 
GO210 2 F O R M A T ( / 5 X t * X ( * * 12 » * ) = * , E 1 5 . 3 ) 
00220 130 CONTINUE 
GG23D PRINT 3 , EF 
002*0 3 FORMAT(// ,5X»*OPTIMUM VALUE OF F = * , E 1 6 . 3 ) 
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00253 END 
Q026Q* 
0 0 2 7 0 * 
00 2 60 SUBROUTINE B O T H ( X , E , N , E F , E S C A L E , I ° R I N T , M A X I T , W , N I , N o , 

* NW) 
00 293 DIMENSION X (N ) , W ( NW) , E < N) 
00295 COMMON JUMK(2) ,FJUNK(43) ,FXXX ( 4) , F 
0 0 3 0 3 * 
00310 DDMAG=Q•1*ESCALE 
CO 32 0 SCER=0.3 5/E3CALE 
00330 JJ=N*(N*1) 
00343 JJJ=JJ+N 
00353 K = N + 1 
00363 NFCC=1 
00370 IND = 1 
CU33G IN N = 1 
00390 DJ 4 1=1 ,N 
004GO W(I)=ESCALE 
00*13 DO 4 J=1 ,N 
0 0 423 W ( K ) = 0 . 
00433 I F ( I - J ) 4 , 3 , 4 
0044C* 
00*53 3 W ( K ) = A 3 S ( E ( I ) ) 
00463 4 K = K + 1 
00470 ITREC=1 
0C43C ISGRAD=2 
0Q49Q CALL CALCFX 
0050G FKEEP=2.*A3S(F) 
OG510 5 ITGNE=i 
0052G FP=r 
0G53Q 3JM=0. 
00553 IXP=JJ 
00560 DO 6 1 = 1, N 
0057Q I A 3 = : X P + 1 
00 530 6 W ( I X P ) =X ( I ) 
00590 IDIRN = .M + 1 
0 060 0 ILINE=1 
00613 7 D M A X = W(ILINE) 
0062C 0ACC=DMAX*3CER 
00 6 30 OMAG=AMINl(DDMAG,G.1*CMAX) 
0 0 643 ONAG=AMAXi(DMAG,2L• * D A C C) 
U065D DDMAX=13,*DMAG 
00663 GOTO ( 7 3 , 7 0 , 7 1 ) , ITCNE 
0 0 6 7 0 * 
0C633* 
00690 73 OL=3. 
G070G D=OMA G 
0071!: FPRH)f = F 
00723 IS=5 
OC730 FA=FPREV 
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00740 DA = DL 
00750 3 DO=D-OL 
00 760 DL = D 
0077C 56 K=IDIRN 
00730 03 9 I = i , N 
0u790 X ( I ) = X ( I ) + D O * W ( K ) 
00303 9 K = K + 1 
00813 CALL CAuOFX 
00320 NFCC=NFCC+1 
QU830 GOTO ( 1 3 , 1 1 , 1 2 , 1 3 , 1 4 , 9 5 ) , I S 
00343 14 I F ( F - F A ) 1 5 , 1 6 , 2 4 
Q035Q 15 I F ( A B S ( D ) - D M A X ) 1 7 , l 7 , 1 3 
00 363 17 D = O D 
00 37 0 GOTO 6 
00 333 13 PPsINT 19 
0G39Q 19 FORMAT(5X,^MAXIMUM CHANGE DOES 'i j T 
00403 GOTO 23 
00910 15 F3 = F 
00920 D3 = D 
00933 GOTO 21 
00940 24 F3=FA 
0035D 03=DA 
00960 FA = F 
00970 DA=D 
00980 21 GOTO ( 6 3 * 2 3 ) »ISGFAD 
00993 23 3 = 03+-0B-DA 
010 0 0 * 
01013 IS=1 
01023 GOTO 3 
Q103C d3 0 = C . 5 * ( 0 A + Q 3 - ( F A - F 5 ) / ( D A - D 3 ) ) 
01040 13=4 
0105C I F ( ( O A - Q ) * ( 0 - 0 3 ) ) 2 5 , 6 , 3 
010 60 25 IS=1 
01u73 I F ( A B S ( D - E 3 ) - O D M A X ) 8 , 6 , 2 6 
G1030 26 0=D3+SIGN(DOMAX,D3-0A) 
01090 15=1 
01100 DDMAX=DDMAX+DDMAX 
O H I O DOMAG=OOMAG+OOMAG 
01120 I F ( D 0 M A G . G £ . 1 . C E + 6 G ) DDMAG = 1.. OE + 60 
01130 IF(DDMAX-DMAX) 3 , 8 , 2 7 
01143 27 DOMAX=DMAX 
0115C GOTO e 
01163 13 I F ( F - F A ) 2 3 , 2 3 , 2 3 
01170 23 FC=F3 
01180 DC=DB 
01193 29 F3=F 
01203 DB=0 
0121J GOTO 33 
01222 12 I F ( F - F 3 ) 2 3 , 2 6 , 3 1 
01233 31 FA =F 

A u T E F U N C T I O N * ) 
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012*0 DA = u 
01250 GOTO 33 
01260 11 I F ( F - F 3 ) 3 2 , 1 C , 1 C 
01272 32 FA = F3 
01230 0A = D6 
01290 GOTO 29 
01300 71 DL=1. 
01310 DDMAX = 5• 
01320 FA = FP 
01330 D A = - i . 
01340 FB=FH0L3 
01352 D 6 = c . 
01360 D = l . 
01370 10 FC=F 
01332 OC=D 
01390 3i A = ( D 3 - C C ) * ( F A - F C ) 
0140 0 3=(DC-OA) M F B - F O 
C141C I F ( ( A + 3 ) * ( O A - D C ) ) 3 3 , 3 3 ,3 4 
01420 33 FA = F3 
01430 OA = DB 
01440 F3 = FC 
01450 DB^DO 

01*60 GOTO 26 
01470 34 D=C . 5 M A * (D3 + DC)+S* ( O A O C ) ) / ( A+B) 
01430 DI = D3 
01430 FI=FS 
0150G I F ( F B - F C ) 4 * , 4 4 , U 3 
0151C 43 DI=DO 
0152G F 1 = FZ 
01530 4^ GJTO( 3 6 , 36 , 3 5 ) ,ITON£ 
01540 35 ITON£=> 
015 50 GOTO *5 
01560 86 I F ( A 3 S ( D - D I ) - O A C C ) 4 1 , 4 1 , 9 3 
01570 93 I F ( A 3 5 ( 0 - C I ) - G . 0 5 * A 3 S ( D ) ) 4 1 , 4 1 , 4 5 
01560 45 I F ( ( D A - D O * (DC-D) ) 47 , 4 6 , 46 
01603 *6 FA = F3 
01610 0 A = Q B 
01520 F3=FC 
01630 D6 = DC 
01640 GOTO 25 
01653 *7 IS=2 
01660 I F ( ( D 3 - 0 ) * ( D - D C ) ) 46 , fa ,3 
01670 43 IS=3 
01660 GOTO 3 
01690 *1 F=FI 
01700 D=DI-DL 
01710 Ou = 33RT ( (DC-0 3) * ( DC-D A) * ( OA-03) / (A*3 ) ) 
01720 DO 49 1 = 1 , N 
01730 X ( I ) = X ( I ) + D * W ( I D I F N ) 
0 1 7 3 5 W(IDIP.N) =DD*W(IDIFN) 
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01740 *9 IDIRN=IDIRN+1 
01753 W(ILINE)= W ( I L I N E ) / O D 
01763 Ii.lNE = IuINE + i 
Q177C I F ( I P R I N T - l ) 5 l , 5 C , 5 1 
01730 53 PRINT 5 2 , I T R E C , N F C C , F , ( X C I ) , I = 1 , N ) 
01303 5c FORMAT ( / * I T E R A T I O N * , 1 5 , 1 1 5 , * F U N : r i u N V A L J E . 5 * • 1 L X , 
0 1 6 1 0 + * F = * , E 1 5 . 3 , 2 ( E 1 6 . 6 , 2 X ) ) 
01323 GOTO ( 5 1 , 5 3 ) , I P R I N T 
01830 51 GOTO (55,3c), ITCNE 
0134G 55 I F ( F P R E V - F - S U M ) 9 4 , 9 5 , 9 5 
01850 95 3UM=FPREV-F 
01360 J IL=ILINE 
01670 94 I F ( I D I R N - J J ) 7 , 7 , 8 ^ 
01860 34 GOTO ( 9 2 , 7 2 ) , INC 
01393 92 F H O L D = F 

019C3 15=6 
01910 IXP=JJ 
31920 OO 59 1=1,N 
01930 IXP=IXP+1 
01940 59 W ( I X ? ) = X ( I ) - W ( I X P ) 
01950 0 0 = 1 . 
C1960 GOTO 53 
0197Q 96 GOTO ( 1 1 2 , 5 7 ) , INO 
01960 112 1 F { F ° - F ) 3 7 , 3 7 , 9 1 
C1993 91 D = 2 . M F P + F - 2 . * F H C L D > / ( F » - F ) *+2 
OZO0C I F ( O * ( F P - F H O L O - S U M ) * * 2 - S L M ) 3 7 , 3 7 , 3 7 
02010 37 J = J I L * N + 1 
02323 I F ( J - J J ) 6 0 , 6 : , 6 1 
02330 53 DO 62 I = J , J J 
02043 K = I - i 
02353 62 W(K)=W(I ) 
02U60 OO 97 I=J IL»M 
0 20 70 97 rt(I-l)=W(I) 
020 30 61 IDIRN=IOIRM-N 
02093 ITONE=3 
02100 K=IDIRN 
02110 I X P = J J 

02123 A A A = u • 
0213D DO 67 1=1,N 
J2140 I X P = I X P + i 
02150 W(K)=W(IXP) 
02163 I F ( A A A - A 3 S ( W ( K ) / E ( I ) ) ) 6 6 , 6 7 , 6 7 
Q217C 66 A A A = ABS(W(K) / E ( I ) ) 
02183 67 K=K+1 
02190 DDMAG=1• 
02200 W ( N ) = E S C A L L / A A A 

02213 IuINE=N 
02223 GOTO 7 
02230 37 IXP=JJ 
02240 A A A = L • 
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02253 F=FH0LD 
0 22 60 00 99 I = 1 , N 
0227D IXP=IXP+1 
02230 X ( I ) = X ( I ) - W ( I X P ) 
02293 IF ( AAA* A6S (£ ( I ) ) -AES (W ( I X 3 ) ) ) 9 5 , 9 ^ , 9 9 
02303 96 A A A = A B S ( W ( I X P > / £ ( ! > > 
02313 99 CONTINUE 
02320 GOTO 72 
02333 33 AAA=AAA*(1•+DI ) 
023*0 GOTO ( 7 2 , 1 0 6 ) , INO 
0235D 72 I F ( I P R I N T - Z ) 5 3 , 5 0 , 5 0 
02363 53 GOTO ( 1 3 9 , 3 5 ) , INO 
C237C 139 I F ( A A A - C . l ) 2 0 , 2 3 , 7 6 
02333 7o IF(F-F=>) 3 5 , 7 3 , 7 3 
32390 73 PRINT 50 
0300C 3u FORMAT(5X,^ACCURACY LIMITED 3Y ERRuRS IN F*) 
03010 GOTO 20 
0332Q 86 INO=l 
03330 35 DDMAG=C# ** S Q R T ( A 5 5 ( F P - F) ) 
030*3 IF(DDMAGaGE«1«CE+6J) 00MAG=1.3E+63 
03053 I3GRA0=i 
03063 133 ITR£C=ITREC+i 
030 70 IF ( IT REC-MAXIT) 5 , 5 , 3 1 
03080 81 PRINT 62, t tAXIT 
0 30 90 82 FORMAT(15,*I7SRATICNS COMPLETED iY BOTM*) 
03100 I F ( F - F K E £ a ) 2 L , 2 Q , 1 1 3 
03113 H O F = F K E E P 
03120 DO 111 1=1 ,N 
03132 J J J = J J J + i 
031*0 i l l x ( I ) = w ' ( J J J > 
23153 GOTO 23 
03160 1.1 J IL=1 
G317G F ^ F K E E 3 

03130 IF(F-FKEE P) 1 0 5 , 7 6 , 10 * 
03190 1 3 * J IL=2 
03200 FP=F 
03213 F=FKEEP 
0 3220 lu5 IX a = J J 
03233 OO 113 1 = 1,N 
032*0 IXP = IXP+-1 
03253 <=IXP+N 
G3263 GOTO ( 1 1 * , 1 1 5 ) , J I L 
03270 l l * W(IXP)=W(K) 
03280 GOTO 113 
03290 115 W ( I X P ) = X ( I ) 
03300 X ( I ) = W ( < ) 
U3310 113 CONTINUE 
0332D JIL=2 
03333 GOTO 92 
033*0 1^6 I F ( A A A - O . i ) 2 C , 2 G , 1 C 7 
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03350 23 E F = F 
3 33 60 RETURN 
03373 137 INN=l 
03380 GOTO 35 
C37 9G END 
05ii0u SUBROUTINE CALCFX 
0 5013 DIMENSION Z (<*»:) , MUZ (Z) , M I ( *G , 43 ) , M ( *u , 4G ) , J (i+ j ) , < ( + C ) 

* , 
0 50 2 0 * M Z ( 4 C ) , M J ( 4 G ) , M K ( 4 0 ) , L ( 4 C ) , A I T ( 4 0 ) , 
0 50 3 3 + U w ( 4 c , 4 3 ) , I P R ( 4 C ) , R ( 4 3 , 4 C ) 
Q5Q35*,AT(4C> 
0 53 40 REAL M U Z , M U , M l , M , J , K , M J H A T , M Z , M K , M J , K M Z , J M J , K M J 
Q5Q41+,KMK 
0 50 4 2 + t u 
05053 COMMON Nl ,N2 ,Z ,T i ,G l ,MUHAT,OHAT 
Q 5 3 5 l * , F 
0 5052+ ,NITER 
G51GG***** F U R M U L A T I O N OF M I 

0 5 1 1 0 * * * ' * * INITIALISE ALL ENTRIES TO Z E R O 

0 5112 INDEXM=u 
05113 INDEXJ=G 
0 5114 INDEXD=G 
05115 lNOEXL=G 
0 5115 I\D£XS=G 
0 5117 INDEX*D=G 
0 513 0 Ni?N2=Nl+N2 
G514C N l P i = N i * l 
05153 N l M i = N l - l 
05160 7 i 2 = T l * T i 
0517D G l 2 = G l * 3 i 
0 5 1 7 5 MU=MUHAT 
3 5 1 7 5 D=DHAT 
C5163 N2Mi=N2-l 
C5190 DO 5 I = 1 , N 1 ° N Z 
3 52GC DO 5 J1=1,N1PN2 
05310 5 M I ( I , J l ) = G . 
C 5320 * * * * * * * * * * * * * * * * * * * * * * * * * * * BLOCK 1 
0 53 3 C * * * * * * * * * * * * * * * * * * * * * * * * * * * * MAIN DIAGONAL 
05343 DO 10 1 = 1 , N l 
G535Q 13 M I ( I , I ) = 1 . + T 1 2 
Q 5 3 6 G * * * * * * * * * * * * * * * * * * * * * * * * * * * * * SUB DIAGONALS 
C537C DO 2 . 1 = 2 , Nl 
05380 M I ( I , I - i ) = - T l 
05390 23 M l ( I - i , I ) = - T i 
3 5 * C 0 * * * * * * * * * * * * * FORMAT TO PRINT TEN ELENENT3 IN EACH ROW 
G5410 5G3H FORMAT(5X,1CFlC.5 ) 
G 5420 * * * * * * * * * * * * * * * * FORMAT 0 Pi^l^T ONE ELEMENT IN A ROW 
J543Q 63GC FORMAT(5X,F l i . 5 ) 
0 5 ^ k * * * * * + * + + + * -**********¥»** 3LOCK2 
05450 * * * * * * * * * * * * * * * * * * * * * * * * * MAIN DIAGONAL AND 

* SUBDIAGONALS 
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05460 01 30 I=N1P1,N1PN2 
05470 M i ( 1 , 1 ) = 1 . + G 1 2 
05480 MX ( I , I - i ) = - G l 
05485 3D MI ( 1 - 1 , 1 ) =-G 1 
0 5 5 1 5 * * * * * * * * * TAKE INVERSE OF MI TC FORMJLZTE M 
0 5520 LJ=U 
0 553 0 CALL I N V I T R ( H I • U L , N i P N 2 , N i P N 2 , I P R , R , M , 0 1 , L 3 , C X , K O ) 
0 5 5 4 5 * * * * * * * * * * * * * PRINT M, MI IF NEEDED 
05550 IF ( INDEXM.NE. I ) GOTO 51 
05560 PRINT 10GC 
05570 1G00 FORMAT(/10X,*MI MATRIX*) 
05580 PRINT 5 0 0 S , ( ( M I ( I , J I ) , J I = 1 , H i P N 2 ) , I = 1 , N l P N 2 ) 
05590 PRINT lCiG 
0 55 35 10 10 FORMAT ( / 1 C X , * M MATRIX*) 
U56O0 PRINT 5D0G , ( ( M ( I , J I ) , J I = l , N L P N 2 ) , 1 = 1 , N 1 P N 2 ) 
0 5 6 1 0 * * * * * * * NOW FORMULATE SIGMA 
05615 31 CONTINUE 
05623 DO 36 I = i , N l P N 2 
05630 OO 33 J I=1 ,N1PN2 
0 5643 3d CONTINUE 
(3 5650 * * * * * * * * * * * TC COMPUTE MUHAT AND DE^TAHAT 
05673 OO 6G I=1 ,N1PN2 
C5580 M J ( I ) = Q « 
0 56 93 DO 7C J 1 = 1 , N 1 ° N 2 
0570 0 7G M J ( I ) = MJ(I )+M ( I , J l ) 
05710 6J CONTINUE 
0 5 7 2 3 * * * * * * * * FORMULATE J VECTOR AND K VECTOR 
0 5730 OO 65 I=1,N1PN2 
0574G 65 J ( X ) = i . 
05750 OO 75 1 = 1 , N I 
05763 75 K ( I ) = G . 
05773 DO 76 I=N1P1,N1PN2 
05780 76 K ( I ) = J ( I ) 
0 5 7 9 G * * * * * * * * * * * * * * * PRINT J AND K IF NEEDED 
053G3 I F ( I N D E X J . N E . l ) GOTO 73 
0 5310 PRINT 10 4C , ( J ( I ) , I = 1 , M P N 2 ) 
05343 10 40 FORMAT(/1CX,*K M A T R I X * / ( 1 3 X , F l 4 . 6 ) ) 
05350 * * * * * * * * * * * COMPUTE MZ N MK) 
05363 79 CONTINUE 
05370 DO 30 I = l , N i F N 2 
05360 M Z ( I ) = 0 . 
05393 M K ( I ) = 0 . 
05900 DO 90 J i = i , N i ° N 2 
0 5913 M Z ( I ) = M Z ( X ) + M ( I , J l ) * Z ( J i ) 
3 592 3 M K ( I ) = M K ( X ) + M ( I , J 1 ) * K ( J 1 ) 
0 5330 9J CONTINUE 
05940 3u CONTINUE 
0 5 9 5 3 * * * * * * * * * * * * * COMPUTE KMZ,KMJ,ZMJ,KM<,JMJ 
05963 KMZ=u. 
05973 OMJ=0. 
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05980 ZMJ=C. 
05991. KMK=G • 
36000 JMJ=G. 
06U10 KM J = G• 
0 6033 00 1GC I=1 ,N1PN2 
0 6040 KMZ = KMZ+K(I> * M Z ( I ) 
0 60 50 KMJ=KMJ+K(I)*MJ(I ) 
0 6060 Z M J = Z M J + Z ( I ) * M J ( I ) 
G607C KM K = KMK + K ( I ) * M K ( I ) 
0 60 80 JMJ=JMJ+J( I )*MJ( I> 
06100 100 CONTINUE 
06123 OH AT= (KMZ* JMJ-ZMJ + KMJ) / (KMK* JMJ- K;1J * KM J) 
G 6130 MUHAT=(ZMJ-DHAT*KMJ)/JMJ 
0 6135 MU = MUH AT 
0 6 1 3 5 0=OHAT 
C 6 1 5 0 * * * * * * * * * PRINT OH AT AND MUHAT IF NEEDED 
C6173 IF ( INDEXD.NE. i ) GOTO 1C1 
06190 PRINT 135G,DHAT,MUHAT 
362CG 1350 FORMAT(/1G X , *DH A 7= * , Fl 4 • 6 , i 0 X , * M U H A 7 = * • F l 4 • 6 ) 
0 6 2 1 G * * * * * * * FORMULATE L VECTOR 
06223 131 CONTINUE 
06233 OO 11C 1 = 1 , N l 
0 62 43 7 * 0 1 = 1 . - 7 1 2 * * ( N l - I ) 
0 6 2 4 2 7 X 0 2 = 1 . - 7 1 2 
0 6 2 4 4 7 X 0 3 = 7 l 2 * * ( N l - I ) 
0 6 2 4 6 7 X 0 4 = 1 . - G 1 2 * * ( N 2 + 1 ) 
0 6 2 4 3 7 X 0 5 = 1 . - 3 1 2 
G625G H Q u ( I ) = ( T i * * l > * ( ( T X 0 1 / T X 0 2 ) + ( T X G 3 * 7 X 0 4 / 7 X 0 5 ) ) 
G6270 DO 12C I = N l P l , N I O N 2 
G6280 L ( l > = < 7 i * * N i ) * ( G l + * ( I - N l ) ) 
063CO L ( I ) = L ( I ) * ( 1 . - G 1 * * ( Z * ( N 1 P N 2 - I + 1 ) > ) / (1 . - G l 2 ) 
G6323 12C CONTINUE 
0 6 3 4 0 * * * * + + * PRl^T L VECTOR IF NEIQEJ 

G635Q IF( INCEXL.N£ • i ) GCTO 121 
06370 PRINT 1 J 6 C , ( L ( l ) , I = 1 , N 1 P N 2 ) 
0 6383 1G6J FORMAT(10 X , * L V E C T O R * / ( 1 C < , F i 4 . 6 ) ) 
06390 121 CONTINUE 
0 64C 0 * * * * * * TO, FIND XTD = TER Ml + TERM 2 + 7 ERM3 + TER Mi* 
0 6 4 1 3 * + * * * * + CALCULA7E SUM1,3UM2,SUM3 
G6423 SUMi=C. 
06430 SUM2 = L 
06440 SUM3=L. 
G645G OO 13C 1 1 = 1 , N l 
0 6 * 5 5 1 = 1 1 - 1 
06460 130 SUM1 = S U M 1 + ( T 1 * * I ) * ( 1 . - T I * * ( I + 1 ) > 
G6470 DO 14C 1 1 = 1 , N 2 
G6460 1 = 1 1 - 1 
0 64 85 S U M 2 = S U M 2 + ( G i * * I ) * ( ! • - 3 ! * * ( ! + ! ) ) 
06490 SUM3=SUM3+G1**(2*I+1) 
0650 0 140 CONTINUE 
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0 6 5 2 0 * * * * * * * PRINT SUMS IF NEEDED 
0653Q I F ( I N O E X S . N E . I ) GOTO 1 4 1 
06540 PRINT lu7C,SUMl,SUM2,SJM3 
0 6550 13 7" FORMAT</l0X,*SUM1 = * , F i 4 , 6 ,5X,*>UM2= * , F i 4 • 6 , * S U M 3 = 

* * , F 1 4 . 6 ) 
06563 141 CONTINUE 
0 6 5 7 3 + * * * * * * * * * MU=MUHAT 
0 65 80 T E R M l = M U * T l / ( i . - T l ) 
0 65 90 TERM1=TERN1*SUM1 
0 6600 T E R M 2 = D H A T * ( T l * * N i ) * S l / ( 1 . - G 1 ) 
0 6610 TERM2=TERM2*SUM2 
U662C T E R M 3 = M U * ( T I * * N 1 ) * G 1 / ( 1 . - G l ) 
0 663 0 TERM3=TERM3*SUM2 
0 6643 TERM4 = M'J* (T1**N1) * G 1 * ( 1 » - T 1 * * N 1 ) / ( 1 * - T 1 ) 
O665 0 TERM4=TERM**SUM3 
0 666 3 X7D = TERM1 + TEFM2 + TERM3 + T£R'14 
0 6 6 7 0 * * * * * TO COMPUTE XTX 
0 66 83 XL=C. 
06693 DO l5C I = l , N l a N 2 
06703 150 X L = X U + L ( I ) * Z ( I ) 
0 6 7 1 0 * * * * * * * * * CALCULATION OF XTX 
C672D X T X = ( 1 . - T i * * ( 2 * N 1 ) ) / ( l . - T 1 2 ) 
0 67 33 XTXC=XT*+(T1** (2*N1 > ) * ( 1 . - G 1 + M 2 * ( N 2 + 1 > ) ) / ( ! . - G i 2 ) 
0 6 7 3 5 X T X = A T X O 
0 674 3 AHAT=(XTD-XL)/XTX 
0 675 3 * * * * * * * * * * * * * * * * * * * COMMUTATION OF A 
06763 I F ( I N D E X X O . N E . l ) GOTO 151 
06770 PRINT 1380 ,XTD,XTX,AHAT 
06783 1-311 F O R M A T ( / 1 0 X , * X T D = * f F i 4 . 6 , 5 X , * < 7 X = * , F l 4 . 6 , 5 X , 

+ * A H A T = * , F 1 4 . 6 ) 
06793 151 CONTINUE 
063CQ A T ( 1 ) = Z<1)-MUHAT+T1*AHAT 
06313 DO 160 1 = 2 , N l 
06320 160 A T ( I ) = Z ( I ) - M U + T 1 * A T ( I - 1 ) 
06333 DO 17L I=N1P1,N1PN2 
06340 170 A 7 ( I ) = Z ( I ) - M U - 0 N A T + G i * A T ( I - l ) 
0 6 3 5 3 * * * * * * * * TO CALCULATE F 
06360 F=AHAT*AHAT 
0 637 0 DO 1 3 0 I = 1 , N 1 P N 2 
06883 F = F + ( A T ( I ) * A T ( I ) / N i P N 2 ) 
06390 130 CONTINUE 
0 6 392 F = ( N 1 P N 2 / 2 ) * A L O G ( F ) + . 5 * A L O G ( X T X ) 
0 6 3 9 4 PRINT 133 ,TI ,Gl ,MUHAT,DHA 7,F 
0 6 8 9 6 183 FORMAT(5F14.6) 
06897 NITER=NITER+i 
0 6 3 9 9 I F ( N I T E R . E a . 5 ) N I T E R = 0 
06900 RETURN 
06913 END 



APPENDIX E 

ECONOMIC PARAMETERS FOR TWO QUALITY CHARACTERISTICS, 

INDEPENDENT OBSERVATIONS 
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TWO C H A R A C T E R I S T I C S , I N D E P E N D E N T O B S E R V A T I O N S 

P = - . 8 0 

L Q = 5 , 0 0 0 V = 1 0 , 0 0 0 L = 
0 

= 2 0 , 0 0 0 L = 
0 

= 4 0 , 0 0 0 

K 2 N 
2 

X 2 > A L L 
N 

2 
* 2 , A L L 

N 
2 

X 2 , A 
L L 

N 
2 

X 
2 , A 

L 
1 

. 2 0 0 . 0 0 8 8 8 . 0 8 1 3 0 . 1 1 0 3 9 . 1 5 1 4 7 . 6 1 1 8 1 0 . 2 7 1 6 5 . 1 1 3 3 1 1 . 4 1 1 8 2 . 6 
. 2 0 3 2 1 0 . 1 0 4 5 . 1 3 6 1 1 . 2 5 5 0 . 0 4 1 1 2 . 3 9 5 4 . 9 4 5 1 3 . 5 8 5 9 . 7 
. 4 0 1 6 1 1 . 4 9 2 2 . 3 1 8 1 2 . 6 4 2 4 . 5 2 0 1 3 . 8 1 2 8 . 6 22 1 5 . 0 1 2 8 . 7 
. 6 0 1 0 1 2 . 4 3 1 3 . 4 1 1 1 3 . 6 2 1 4 . 6 1 2 1 4 . 8 1 1 5 . 7 1 3 1 6 . 0 6 1 6 . 9 
. 8 0 7 1 3 . 1 4 9 . 0 7 1 4 . 5 1 9 . 7 8 1 5 . 6 5 1 0 . 4 9 1 6 . 7 8 1 1 . 2 

1 . 0 0 5 1 3 . 8 1 6 . 4 5 1 5 . 2 0 7 . 0 6 1 6 . 2 2 7 . 5 6 1 7 . 5 4 8 . 0 
1 . 2 0 4 1 4 . 2 5 4 . 9 4 1 5 . 6 5 5 . 2 4 1 7 . 0 0 5 . 7 5 1 7 . 8 7 6 . 0 
1 . 4 0 3 1 4 . 8 1 3 . 8 3 1 6 . 2 2 4 . 1 3 1 7 . 5 4 4 . 5 4 1 8 . 2 5 4 . 7 
1 . 6 0 2 1 5 . 6 5 3 . 2 3 1 6 . 2 2 3 . 4 3 1 7 . 5 4 3 . 6 3 1 8 . 9 8 3 . 7 
1 . 8 0 2 1 5 . 6 5 2 . 5 2 1 7 . 0 0 2 . 7 2 1 8 . 2 5 2 . 9 2 1 9 . 7 4 3 . 2 

. 4 0 0 . 0 0 2 9 1 0 . 3 0 4 1 . 3 3 3 1 1 . 4 2 4 5 . 7 3 7 1 2 . 5 8 5 0 . 0 4 1 1 3 . 7 6 5 4 . 4 
. 2 0 1 6 1 1 . 4 9 2 2 . 3 1 8 1 2 . 6 4 2 4 . 5 2 0 1 3 . 8 1 2 6 . 6 2 2 1 5 . 0 1 2 8 . 7 
. 4 0 1 0 1 2 . 4 3 1 3 . 7 1 1 1 3 . 6 2 1 4 . 9 1 2 1 4 . 8 1 1 6 . 1 1 3 1 6 . 0 6 1 7 . 4 
. 6 0 7 1 3 . 1 4 9 . 2 8 1 4 . 2 5 1 0 . 0 8 1 5 . 6 5 1 0 . 8 9 1 6 . 7 8 1 1 . 5 
. 8 0 5 1 3 . 8 1 6 . 7 6 1 4 . 8 1 7 . 2 6 1 6 . 2 2 7 . 7 6 1 7 . 5 4 8 . 3 

1 . 0 0 4 1 4 . 2 5 5 . 0 4 1 5 . 6 5 5 . 4 5 1 6 . 5 7 5 . 9 5 1 7 . 8 7 6 . 2 
1 . 2 0 3 1 4 . 8 1 3 . 9 3 1 6 . 2 2 4 . 3 4 1 7 . 0 0 4 . 6 4 1 8 . 2 5 4 . 8 
1 . 4 0 2 1 5 . 6 5 3 . 3 3 1 6 . 2 2 3 . 5 3 1 7 . 5 4 3 . 6 3 1 8 . 9 8 3 . 9 
1 . 6 0 2 1 5 . 6 5 2 . 6 2 1 7 . 0 0 2 . 8 2 1 8 . 2 5 3 . 0 3 1 8 . 9 8 3 . 3 
1 . 8 0 2 1 5 . 6 5 2 . 3 2 1 7 . 0 0 2 . 4 2 1 8 . 2 5 2 . 5 2 1 9 . 7 4 2 . 6 

. 6 0 0 . 0 0 1 5 1 1 . 6 1 2 0 . 6 1 7 1 2 . 7 5 2 2 . 6 1 8 1 4 . 0 2 2 4 . 5 2 0 1 5 . 2 0 2 6 . 4 
. 2 0 1 0 1 2 . 4 3 1 3 . 4 1 1 1 3 . 6 2 1 4 . 6 1 2 1 4 . 8 1 1 5 . 7 1 3 1 6 . 0 8 1 6 . 9 
. 4 0 7 1 3 . 1 4 9 . 2 8 1 4 . 2 5 1 0 . 0 8 1 5 . 6 5 1 0 . 8 9 1 6 . 7 8 1 1 . 5 
. 6 0 5 1 3 . 8 1 6 . 7 6 1 4 . 8 1 7 . 3 6 1 6 . 2 2 7 . 8 6 1 7 . 5 4 8 . 4 
. 8 0 4 1 4 . 2 5 5 . 1 4 1 5 . 6 5 5 . 5 5 1 6 . 5 7 5 . 9 5 1 7 . 8 7 6 . 3 

1 . 0 0 3 1 4 . 8 1 4 . 0 3 1 6 . 2 2 4 . 4 4 1 7 . 0 0 4 . 7 4 1 8 . 2 5 4 . 9 
1 . 2 0 3 1 4 . 8 1 3 . 4 3 1 6 . 2 2 3 . 5 3 1 7 . 5 4 3 . 7 3 1 8 . 9 8 3 . 9 
1 . 4 0 2 1 5 . 6 5 2 . 7 2 1 7 . 0 0 2 . 9 2 1 8 . 2 5 3 . 1 3 1 8 . 9 8 3 . 3 
1 . 6 0 2 1 5 . 6 5 2 . 3 2 1 7 . 0 0 2 . 4 2 1 8 . 2 5 2 . 5 2 1 9 . 7 4 2 . 7 
1 . 8 0 2 1 5 . 6 5 2 . 1 2 1 7 . 0 0 2 . 2 2 1 8 . 2 5 2 . 2 2 1 9 . 7 4 2 . 3 

. 8 0 0 . 0 0 9 1 2 . 6 4 1 2 . 5 1 0 1 3 . 8 1 1 3 . 6 1 1 1 5 . 0 1 1 4 . 7 1 2 1 6 . 2 2 1 5 . 8 
. 2 0 7 1 3 . 1 4 9 . 0 7 1 4 . 5 1 9 . 7 8 1 5 . 6 5 1 0 . 4 9 1 6 . 7 8 1 1 . 2 
. 4 0 5 1 3 . 8 1 6 . 7 6 1 4 . 8 1 7 . 2 6 1 6 . 2 2 7 . 7 6 1 7 . 5 4 8 . 3 
. 6 0 4 1 4 . 2 5 5 . 1 4 1 5 . 6 5 5 . 5 5 1 6 . 5 7 5 . 9 5 1 7 . 8 7 6 . 3 
. 8 0 3 1 4 . 8 1 4 . 0 3 1 6 . 2 2 4 . 4 4 1 7 . 0 0 4 . 7 4 1 8 . 2 5 4 . 9 

1 . 0 0 3 1 4 . 8 1 3 . 4 3 1 6 . 2 2 3 . 5 3 1 7 . 5 4 3 . 7 3 1 8 . 9 8 4 . 0 
1 . 2 0 2 1 5 . 6 5 2 . 7 2 1 7 . 0 0 2 . 9 2 1 8 . 2 5 3 . 2 3 1 8 . 9 8 3 . 4 
1 . 4 0 2 1 5 . 6 5 2 . 3 2 1 7 . 0 0 2 . 4 2 1 8 . 2 5 2 . 6 2 1 9 . 7 4 2 . 8 
1 . 6 0 2 1 5 . 6 5 2 . 1 2 1 7 . 0 0 2 . 2 2 1 8 . 2 5 2 . 2 2 1 9 . 7 4 2 . 3 
1 . 8 0 1 1 7 . 0 0 1 . 8 1 1 8 . 2 5 2 . 0 2 1 8 . 2 5 2 . 1 2 1 9 . 7 4 2 . 1 

1 . 0 0 0 . 0 0 6 1 3 . 4 5 8 . 5 7 1 4 . 5 1 9 . 1 8 1 5 . 6 5 9 . 9 8 1 7 . 0 0 1 0 . 5 
. 2 0 5 1 3 . 8 1 6 . 4 5 1 5 . 2 0 7 . 0 6 1 6 . 2 2 7 . 5 6 1 7 . 5 4 8 . 0 
. 4 0 4 1 4 . 2 5 5 . 0 4 1 5 . 6 5 5 . 4 5 1 6 . 5 7 5 . 9 5 1 7 . 8 7 6 . 2 
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p=-.80 (continued) 

L O=5,000 L =10,000 
n 

L ( 3
=20,000 L ^=40,000 

k 2 n 2 
L l n 2 

X 2, a L l n 2 
*2 , a L l n 2 

X2, a L l 
.60 3 14.81 4.0 3 16.22 4.4 4 17.00 4.7 4 18.25 4.9 
.80 3 14.81 3.4 3 15.22 3.5 3 17.54 3.7 3 18.98 4.0 

1.00 2 15.65 2.7 2 17.00 2.9 2 18.25 3.2 3 18.98 3.4 
1.20 2 15.65 2.3 2 17.00 2.4 2 18.25 2.6 2 19.74 2.8 
1.40 2 15.65 2.1 2 17.00 2.2 2 18.25 2.3 2 19.74 2.4 
1.60 1 17.00 1.8 1 18.25 2.0 2 18.25 2.1 2 19.74 2.1 
1.80 1 17.00 1.5 1 18.25 .1.6 1 19.74 1.8 1 20.90 2.0 
0.00 5 13.81 6.2 5 15.20 6.6 6 16.22 7.2 6 17.54 7.6 
.20 4 14.25 4.9 4 15.65 5.2 4 17.00 5.7 5 17.87 8.0 
.40 3 14.81 3.9 3 16.22 4.3 4 17.00 4.6 4 18.25 4.8 
.60 3 14.81 3.4 3 16.22 3.5 3 17.54 3.7 3 18.98 3.9 
.80 2 15.65 2.7 2 17.00 2.9 2 18.25 3.2 3 18.98 3.4 

1.00 2 15.65 2.3 2 17.00 2.4 2 18.25 2.8 2 19.74 2.8 
1.20 2 15.65 2.1 2 17.00 2.2 2 18.25 2.3 2 19.74 2.4 
1.40 1 17.00 1.8 1 18.25 2.1 2 18.25 2.1 2 19.74 2.2 
1.60 1 17.00 1.5 1 18.25 1.6 1 19.74 1.8 1 20.90 2.0 
1.80 1 17.00 1.3 1 18.25 1.4 1 19.74 1.5 1 20.90 1.6 
0.00 4 14.25 4.7 4 15.65 5.0 4 17.00 5.4 4 18.25 5.8 
.20 3 14.81 3.8 3 16.22 4.1 3 17.54 4.5 4 18.25 4.7 
.40 2 15.65 3.3 3 16.22 3.5 3 17.54 3.6 3 18.98 3.9 
.60 2 15.65 2.7 2 17.00 2.9 2 18.25 3.1 3 18.98 3.3 
.80 2 15.65 2.3 2 17.00 2.4 2 18.25 2.6 2 19.74 2.8 

1.00 2 15.65 2.1 2 17.00 2.2 2 18.25 2.3 2 19.74 2.4 
1.20 1 17.00 1.8 1 18.25 2.1 2 18.25 2.1 2 19.74 2.2 
1.40 1 17.00 1.5 1 18.25 1.6 1 19.74 1.9 1 20.90 2.1 
1.60 1 17.00 1.3 1 18.25 1.4 1 19.74 1.5 1 20.90 1.6 
1.80 1 17.00 1.2 1 18.25 1.2 1 19.74 1.3 1 20.90 1.4 
0.00 3 14.81 3.7 3 16.22 3.9 3 17.54 4.2 4 18.25 4.6 
.20 2 15.65 3.2 3 16.22 3.4 3 17.54 3.6 3 18.98 3.7 
.40 2 15.65 2.6 2 17.00 2.8 2 18.25 3.0 3 18.98 3.3 
.60 2 15.65 2.3 2 17.00 2.4 2 18.25 2.5 2 19.74 2.7 
.80 2 15.65 2.1 2 17.00 2.2 2 18.25 2.2 2 19.74 2.3 

1.00 1 17.00 1.8 1 18.25 2.0 2 18.25 2.1 2 19.74 2.1 
1.20 1 17.00 1.5 1 18.25 1.6 1 19.74 1.8 1 20.90 2.0 
1.40 1 17.00 1.3 1 18.25 1.4 1 19.74 1.5 1 20.90 1.6 
1.60 1 17.00 1.2 1 18.25 1.2 1 19.74 1.3 1 20.90 1.4 
1.80 1 17.00 1.1 1 18.25 1.1 1 19.74 1.2 1 20.90 1.2 
0.00 2 15.65 3.0 3 16.22 3.3 3 17.54 3.5 3 18.98 3.6 
.20 2 15.65 2.5 2 17.00 2.7 2 18.25 2.9 2 19.74 3.2 
.40 2 15.65 2.3 2 17.00 2.4 2 18.25 2.5 2 19.74 2.6 
.60 2 15.65 2.1 2 17.00 2.2 2 18.25 2.2 2 19.74 2.3 
.80 1 17.00 1.8 1 18.25 2.0 2 18.25 2.1 2 19.74 2.1 

1.00 1 17.00 1.5 1 18.25 1.6 1 19.74 1.8 1 20.90 2.0 
1.20 1 17.00 1.3 1 18.25 1.4 1 19.74 1.5 1 20.90 1.8 
1.40 1 17.00 1.2 1 18.25 1.2 1 19.74 1.3 1 20.90 1.4 
1.60 1 17.00 1.1 1 18.25 1..1 1 19.74 1.2 1 20.90 1.2 
1.80 1 17.00 1.0 1 18.25 1..1 1 19.74 1.1 1 20.90 1.1 
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Two Characteristics, Independent Observations 

-.60 

L0=5,000 LQ=10,000 LQ=20,000 L0=40,000 

k l k 2 n 2 
*2,a 

L l n 2 
*2, a 

L l n *2,a L l n *2,a L 
1 

.20 0.00 136 7.21 205.8 161 8.26 236.6 188 9.33 267.7 214 10.46 298. 8 
.20 56 8.98 80.5 64 10.10 90.3 73 11.22 100.0 81 12.40 109. 7 
.40 29 10.30 39.9 32 11.49 44.1 36 12.64 48.3 40 13.81 52. 5 
.60 17 11.37 23.7 19 12.53 26.9 21 13.71 28.3 23 14.89 30. 5 
.80 12 12.06 15.8 13 13.29 17.2 14 14.51 18.6 15 15.77 20. 0 

1.00 8 12.87 11.3 9 14.02 12.3 10 15.20 13.2 11 16.39 14. 2 
1.20 6 13.45 8.5 7 14.51 9.2 8 15.65 9.9 8 17.00 10. 6 
1.40 5 13.81 6.6 6 14.81 7.2 6 16.22 7.7 6 17.54 8. 2 
1.60 4 14.25 5.3 4 15.65 5.8 5 16.57 6.2 5 17.87 6. 6 
1.80 3 14.81 4.5 4 15.65 4.8 4 17.00 5.1 4 18.25 5. 4 

.40 0.00 47 9.33 66.9 54 10.44 74.7 60 11.51 82.5 67 12.78 90. 3 
.20 29 10.30 39.9 32 11.49 44.1 36 12.54 48.3 40 13.81 52. 5 
.40 18 11.25 25.0 20 12.43 27.4 22 13.62 29.9 24 14.81 32. 2 
.60 12 12.06 16.9 14 13.14 18.4 15 14.38 19.9 16 15.65 21. 5 
.80 9 12.64 12.1 10 13.81 13.1 11 15.01 14.2 12 16.22 15. 2 

1.00 7 13.14 9.1 7 14.51 9.9 3 15.65 10.6 9 16.78 11. 3 
1.20 5 13.81 7.1 6 14.81 7.6 6 16.22 8.2 7 17.26 8. 8 
1.40 4 14.25 5.7 5 15.20 6.1 5 16.57 6.6 5 17.87 7. 0 
1.60 4 14.25 4.7 4 15.65 5.0 4 17.00 5.4 4 18.25 5. 8 
1.80 3 14.81 3.9 3 16.22 4.2 4 17.00 4.6 4 18.25 4. 8 

.60 0.00 24 10.68 33.8 27 11.82 37.2 30 13.00 40.7 33 14.19 44. 1 
.20 17 11.37 23.7 19 12.53 26.0 21 13.71 28.3 23 14.89 30.5 
.40 12 12.06 16.9 14 13.14 18.4 15 14.38 19.9 16 15.65 21. 5 
.60 9 12.64 12.4 10 13.81 13.4 11 15.01 14.5 12 16.22 15. 6 
.80 7 13.14 9.4 8 14.25 10.2 8 15.65 11.0 9 16.78 11. 7 

1.00 6 13.45 7.4 6 14.81 7.9 7 15.91 8.6 7 17.26 9. 1 
1.20 4 14.25 6.0 5 15.20 6.4 5 16.57 6.9 6 17.54 7. 3 
1.40 4 14.25 4.9 4 15.65 5.2 4 17.00 5.6 5 17.87 6. 0 
1.60 3 14.81 4.1 3 16.22 4.4 4 17.00 4.7 4 18.25 4. 9 
1.80 3 14.81 3.5 3 16.22 3.7 3 17.54 3.9 3 18. 98 4. 2 

.80 0.00 15 11.61 20.6 17 12.75 22.6 18 14.02 24.5 20 15.20 26. 4 
.20 12 12.06 15.8 13 13.29 17.2 14 14.51 18.6 15 15.77 20. 0 
.40 9 12.64 12.1 10 13.81 13.1 11 15.01 14.2 12 16.22 15. 2 
.60 7 13.14 9.4 8 14.25 10.2 8 15.65 11.0 9 16.78 11. 7 
.80 6 13.45 7.5 6 14.81 8.1 7 15.91 8.7 7 17.26 9. 3 

1.00 5 13.81 6.1 5 15.20 6.5 5 16.57 7.0 6 17.54 7. 5 
1.20 4 14.25 5.0 4 15.65 5.4 4 17.00 5.8 5 17.87 6. 1 
1.40 3 14.81 4.2 3 16.22 4.6 4 17.00 4.8 4 18.25 5. 1 
1.60 3 14.81 3.6 3 16.22 3.8 3 17.54 4.1 3 18.98 4. 4 
1.80 2 15.65 3.1 3 16.22 3.4 3 17.54 3.5 3 18.98 3. 7 

1.00 0.00 10 12.43 14.0 11 13.62 15.3 13 14.65 16.5 14 15.91 17. 7 
.20 8 12.87 11.3 9 14.02 12.3 10 15.20 13.2 11 16.39 14. 2 
.40 7 13.14 9.1 7 14.51 9.9 8 15.85 10.6 9 16.78 11. 3 
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P=--.60 (continued) 

L 3=5,000 LQ=10,000 L 0=20,000 L Q=40,000 
2 2 2 2 

kl k 2 n *2 ,a L l n x 2 ,a L l n X 2 ,a L l n *2 ,a L l 
.60 6 13.45 7.4 6 14.81 7.9 7 15.91 8.6 7 17.26 9.1 
.80 5 13.81 6.1 5 15.20 6.5 5 16.57 7.0 6 17.54 7.5 

1.00 4 14.25 5.0 4 15.65 5.4 5 16.57 5.9 5 17.87 6.2 
1.20 3 14.81 4.2 4 15.65 4.6 4 17.00 4.9 4 18.25 5.1 
1.40 3 14.81 3.6 3 16.22 3.9 3 17.54 4.2 4 18.25 4.5 
1.60 2 15.65 3.2 3 16.22 3.4 3 17.54 3.8 3 18.98 3.8 
1.80 2 15.65 2.7 2 17.00 2.9 2 18.25 3.2 2 18.98 3.4 

1.20 0.00 8 12.87 10.2 8 14.25 11.1 9 15.41 11.9 10 16.57 12.7 
.20 6 13.45 8.5 7 14.51 9.2 8 15.65 9.9 8 17.00 10.6 
.40 5 13.81 7.1 6 14.81 7.6 6 16.22 8.2 7 17.26 8.8 
.60 4 14.25 6.0 5 15.20 6.4 5 16.57 6.9 6 17.54 7.3 
.80 4 14.25 5.0 4 15.65 5.4 4 17.00 5.8 5 17.87 6.1 

1.00 3 14.81 4.2 4 15.65 4.6 4 17.00 4.9 4 18.25 5.1 
1.20 3 14.81 3.7 3 16.22 3.9 3 17.54 4.2 4 18.25 4.5 
1.40 2 15.65 3.3 3 16.22 3.4 3 17.54 3.6 3 18.98 3.8 
1.60 2 15.65 2.8 2 17.00 3.0 2 18.25 3.3 3 18.98 3.4 
1.80 2 15.65 2.4 2 17.00 2.6 2 16.25 2.7 2 19.74 3.0 

1.40 0.00 6 13.45 7.8 6 14.81 8.4 7 15.91 9.0 8 17.00 9.7 
.20 5 13.81 6.6 6 14.81 7.2 6 16.22 7.7 6 17.54 8.2 
.40 4 14.25 5.7 5 15.20 6.1 5 16.57 6.6 5 17.87 7.0 
.60 4 14.25 4.9 4 15.65 5.2 4 17.00 5.6 5 17.87 6.0 
.80 3 14.81 4.2 3 16.22 4.6 4 17.00 4.8 4 18.25 5.1 

1.00 3 14.81 3.6 3 16.22 3.9 3 17.54 4.2 4 18.25 4.5 
1.20 2 15.65 3.3 3 16.22 3.4 3 17.54 3.6 3 18.98 3.8 
1.40 2 15.65 2.8 2 17.00 3.0 3 17.54 3.3 3 18.98 3.4 
1.60 2 15.65 2.4 2 17.00 2.6 2 18.25 2.8 2 19.74 3.0 
1.80 2 15.65 2.2 2 17.00 2.3 2 18.25 2.4 2 19.74 2.8 

1. 60 0.00 5 13. 81 6. 2 5 15.20 6. 6 6 16.22 7.2 6 17.54 7.6 
.20 4 14.25 5.3 4 15.65 5.8 5 16.57 6.2 5 17.87 6.6 
.40 4 14.25 4.7 4 15.65 5.6 4 17.00 5.4 4 18.25 5.8 
.60 3 14.81 4.1 3 16.22 4.4 4 17.00 4.7 4 18.25 4.9 
.80 3 14.81 3.6 3 16.22 3.8 3 17.54 4.1 3 18.98 4.4 

1.00 2 15.65 3.2 3 16.22 3.4 3 17.54 3.6 3 18.98 3.8 
1.20 2 15.65 2.8 2 17.00 3.0 2 18.25 3.3 3 18.98 3.4 
1.40 2 15.65 2.4 2 17.00 2.6 2 18.25 2.8 2 19.74 3.0 
1.60 2 15.65 2.3 2 17.00 2.3 2 18.25 2.5 2 19.74 2.8 
1.80 2 15.65 2.1 2 17.00 2.2 2 18.25 2.3 2 19.74 2.4 

1.80 0.00 4 14.25 5.0 4 15.65 5.4 4 17.00 5.8 5 17.87 6.1 
.20 3 14.81 4.5 4 15.65 4.8 4 17.00 5.1 4 18.25 5.4 
.40 3 14.81 3.9 3 16.22 4.2 4 17.00 4.6 4 18.25 4.8 
.60 3 14.81 3.5 3 16.22 3.7 3 17.54 3.9 3 18.98 4.2 
.80 2 15.65 3.1 3 16.22 3.4 3 17.54 3.5 3 18.98 3.7 

1.00 2 15.65 2.7 2 17.00 2.9 2 18.25 3.2 3 18.98 3.4 
1.20 2 15.65 2.4 2 17.00 2.6 2 18.25 2.7 2 19.74 3.0 
1.40 2 15.65 2.2 2 17.00 2.3 2 18.25 2.4 2 19.74 2.6 
1.60 2 15.65 2.1 2 17.00 2.2 2 18.25 2.3 2 19.74 2.4 
1.80 1 17.00 2.0 2 17.00 2.1 2 18.25 2.1 2 19.74 2.2 
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Two Characteristics, Independent Observations 

P =-.40 

L 
0 =5,000 L 0 =10,000 L0= 20,000 L 0 =40,000 

kl k 2 n 2 
*2,a L l n x2 , a L l n *2,a L l n A2 , a L l 

.20 0.00 166 6.81 254.3 199 7.83 294.7 232 8.91 335.3 267 10.02 376.2 
.20 77 8.35 112.3 89 9.44 126.8 102 10.56 141.4 114 11.71 156.0 
.40 39 9.71 55.3 44 10.85 61.5 50 11.98 67.7 55 13.18 73.8 
.60 23 10.76 32.4 26 11.90 35.7 29 13.07 39.0 32 14.25 42.3 
.80 16 11.49 21.3 17 12.75 23.4 19 13.91 25.4 21 15.10 27.4 

1.00 11 12.24 15.1 12 13.45 16.5 14 14.51 17.9 15 15.77 19.2 
1.20 8 12.87 11.4 9 14.02 12.3 10 15.20 13.3 11 16.39 14.2 
1.40 7 13.14 8.9 7 14.51 9.6 8 15.65 10.3 9 16.78 11.0 
1.60 5 13.81 7.1 6 14.81 7.6 6 16.22 8.2 7 17.26 8.8 
1.80 4 14.25 5.9 5 15.20 6.3 5 16.57 6.7 6 17.54 7.2 

.40 0.00 58 8.91 83.8 67 10.01 94.0 76 11.14 104.3 85 12.31 114.5 
.20 39 9.71 55.3 44 10.85 61.5 50 11.98 67.7 55 13.18 73.8 
.40 25 10.60 35.4 29 11.68 39.0 32 12.87 42.7 35 14.07 46.3 
.60 17 11.37 23.8 19 12.53 26.1 21 13.71 28.4 23 14.89 30.6 
.80 12 12.06 16.9 14 13.14 18.5 15 14.38 20.0 17 15.53 21.6 

1.00 9 12.64 12.6 10 13.81 13.7 11 15.01 14.8 12 16.22 15.9 
1.20 7 13.14 9.8 8 14.25 10.6 9 15.41 11.4 9 16.78 12.2 
1.40 6 13.45 7.8 6 14.81 8.4 7 15.91 9.0 8 17.00 9.7 
1.60 5 13.81 6.4 5 15.20 6.9 6 16.22 7.5 6 17.54 7.8 
1.80 4 14.25 5.3 4 15.65 5.7 5 16.57 6.1 5 17.87 8.5 

.60 0.00 30 10.23 42.6 34 11.37 47.1 38 12.53 51.6 42 13.71 56.2 
.20 23 10.76 32.4 26 11.90 35.7 29 13.07 39.0 32 14.25 42.3 
.40 17 11.37 23.8 19 12.53 26.1 21 13.71 28.4 23 14.89 30.6 
.60 13 11.90 17.6 14 13.14 19.2 16 14.25 20.8 17 15.53 22.5 
.80 10 12.43 13.4 11 13.62 14.5 12 14.81 15.7 13 16.06 16.9 

1.00 8 12.87 10.4 9 14.02 11.3 9 15.41 12.2 10 16.57 13.1 
1.20 6 13.45 8.3 7 14.51 9.0 7 15.91 9.7 8 17.00 10.4 
1.40 5 13.81 6.8 6 14.81 7.4 6 16.22 7.9 7 17.22 8.4 
1.60 4 14.25 5.7 5 15.20 6.1 5 16.57 6.5 5 17.87 7.0 
1.80 4 14.25 4.8 4 15.65 5.1 4 17.00 5.5 5 17.87 5.9 

.80 0.00 19 11.14 26.1 21 12.33 28.6 23 13.53 31.2 26 14.65 33.7 
.20 16 11.49 21.3 17 12.75 23.4 19 13.91 25.4 21 15.10 27.4 
.40 12 12.06 16.9 14 13.14 18.5 15 14.38 20.0 17 15.53 21.6 
.60 10 12.43 13.4 11 13.62 14.5 12 14.81 15.7 13 16.06 16.9 
.80 8 12.87 10.7 9 14.02 11.6 10 15.20 12.5 10 16.57 13.4 

1.00 6 13.45 8.7 7 14.51 9.3 8 15.65 10.1 8 17.00 10.8 
1.20 5 13.81 7.1 6 14.81 7.7 6 16.22 8.3 7 17.26 8.8 
1.40 4 14.25 6.0 5 15.20 6.4 5 16.57 6.9 6 17.54 7.3 
1.60 4 14.25 5.0 4 15.65 5.4 4 17.00 5.8 5 17.87 6.1 
1.80 3 14.81 4.3 4 15.65 4.7 4 17.00 4.9 4 18.25 5.2 

1.00 0.00 13 11.90 17.7 14 13.14 19.4 16 14.25 21.0 17 15.53 22.6 
.20 11 12.24 15.1 12 13.45 16.5 14 14.51 17.9 15 15.77 19.2 
.40 9 12.64 12.6 10 13.81 13.7 11 15.01 14.8 12 16.22 15.9 
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P =-. ^0 (continued) 

L Q=5,000 L0=10,000 LQ=20,000 LQ=40,000 

k L k2 n x2,ot L l n X2 a » L l n A2,a L l n 2 
X2,a L l 

.60 8 12.87 10.4 9 14.02 11.3 9 15.41 12.2 10 16.57 13.1 

.80 6 13.45 8.7 7 14.51 9.3 8 15.65 10.1 8 17.00 10.8 
1.00 5 13.81 7.2 6 14.81 7.8 6 16.22 8.4 7 17.26 8.9 
1.20 5 13.81 6.1 5 15.20 6.5 5 16.57 7.1 6 17.54 7.5 
1.40 4 14.25 5.2 4 15.65 5.6 5 16.57 6.0 5 17.87 6.3 
1.60 3 14.81 4.5 4 15.65 4.8 4 17.00 5.1 4 18.25 5.4 
1.80 3 14.81 3.8 3 16.22 4.1 3 17.54 4.5 4 18.25 4.7 

1 .20 0.00 10 12.43 12.9 11 13.62 14.1 12 14.81 15.2 13 16.06 16.3 
.20 8 12.87 11.4 9 14.02 12.3 10 15.20 13.3 11 16.39 14.2 
.40 7 13.14 9.8 8 14.25 .10.6 9 15.41 11.4 9 16.78 12.2 
.60 6 13.45 8.3 7 14.51 9.0 7 15.91 9.7 8 17.00 10.4 
.80 5 13.81 7.1 6 14.81 7.7 6 16.22 8.3 7 17.26 8.8 

1.00 5 13.81 6.1 5 15.20 6.5 5 16.57 7.1 6 17.54 7.5 
1.20 4 14.25 5.2 4 15.65 5.6 5 16.57 6.0 5 17.87 6.4 
1.40 3 14.81 4.6 4 15.65 4.9 4 17.00 5.2 4 18.25 5.5 
1.60 3 14.81 3.9 3 16.22 4.3 4 17.00 4.6 4 18.25 4.8 
1.80 3 14.81 3.5 3 16.22 3.7 3 17.54 3.9 3 18.98 4.3 

1 40 0.00 7 13.14 9.9 8 14.25 10.7 9 15.41 11.5 10 16.57 12.4 
.20 7 13.14 8.9 7 14.51 9.6 8 15.65 10.3 9 16.78 11.0 
.40 6 13.45 7.8 6 14.81 8.4 7 15.91 9.0 8 17.00 9.7 
.60 5 13.81 6.8 6 14.81 7.4 6 16.22 7.9 7 17.26 8.4 
.80 4 14.25 6.0 5 15.20 6.4 5 16.57 6.9 6 17.54 7.3 

1.00 4 14.25 5.2 4 15.65 5.6 5 16.57 6.0 5 17.87 6.3 
1.20 3 14.81 4.6 4 15.65 4.9 4 17.00 5.2 4 18.25 5.5 
1.40 3 14.81 4.0 3 16.22 4.3 4 17.00 4.6 4 18.25 4.8 
1.60 3 14.81 3.5 3 16.22 3.8 3 17.54 4.0 3 18.98 4.3 
1.80 2 15.65 3.2 3 16.22 3.4 3 17.54 3.6 3 18.98 3.8 

1 60 0.00 6 13.45 7.8 6 14.81 8.5 7 15.91 9.1 8 17.00 9.7 
.20 5 13.81 7.1 6 14.81 7.6 6 16.22 8.3 7 17.26 8.8 
.40 5 13.81 6.4 5 15.20 6.9 6 16.22 7.4 6 17.54 7.8 
.60 4 14.25 5.7 5 15.20 6.1 5 16.57 6.5 5 17.87 7.0 
.80 4 14.25 5.0 4 15.65 5.4 4 17.00 5.8 5 17.87 6.1 

1.00 3 14.81 4.5 4 15.65 4.8 4 17.00 5.1 4 18.25 5.4 
1.20 3 14.81 3.9 3 16.22 4.3 4 17.00 4.6 4 18.25 4.8 
1.40 3 14.81 3.5 3 16.22 3.8 3 17.54 4.0 3 18.98 4.3 
1.60 2 15.65 3.2 3 16.22 3.4 3 17.54 3.6 3 18.98 3.8 
1.80 2 15.65 2.8 2 17.00 . 3.1 3 17.54 3.3 3 18.98 3.4 

1. 80 0.00 5 13.81 6.3 5 15.20 6.8 6 16.22 7.4 6 17.54 7.8 
.20 4 14.25 5.9 5 15.20 6.3 5 16.57 6.7 6 17.54 7.2 
.40 4 14.25 5.3 4 15.65 5.7 5 16.57 6.1 5 17.87 6.5 
.60 4 14.25 4.8 4 15.65 5.1 4 17.00 5.5 5 17.87 5.9 
.80 3 14.81 4.3 4 15.65 4.7 4 17.00 4.9 4 18.25 5.2 

1.00 3 14.81 3.8 3 16.22 4.1 3 17.54 4.5 4 18.25 4.7 
1.20 3 14.81 3.5 3 16.22 3.7 3 17.54 3.9 3 18.98 4.3 
1.40 2 15.65 3.2 3 16.22 3.4 3 17.54 3.6 3 18.98 3.8 
1.60 2 15.65 2.8 2 17.00 3.1 3 17.54 3.3 3 18.98 3.4 
1.80 2 15.65 2.5 2 17.00 2.7 2 18.25 2.9 2 19.74 3.2 
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Two Characteristics, Independent Observations 

p=-.20 

LQ=5,000 Ln=10,000 LQ=20,000 LQ=40,000 

n :2 , a L l n *2.a n 2 
X2 a 

.20 0.00 183 6. 62 281. 8 220 7. 63 327. 8 J258 oo 70 374.2 298 9. 80 420. 9 
.20 96 7. 91 141. 7 112 8. 98 161. 0 128 10. 10 180.5 145 11. 24 199. 9 
.40 48 9. 29 68. 8 55 10. 41 76. 9 62 11. 55 84.9 69 12. 72 93. 0 
.60 28 10. 37 39. 6 32 11. 49 43. 8 36 12. 64 47.9 39 13. 86 52. 1 
.80 19 11. 14 25. 7 21 12. 33 28. 2 23 13. 53 30.7 25 14. 73 33. 2 

1.00 13 11. 90 18. 1 15 13. 00 19. 7 16 14. 25 21.4 18 15. 41 23. 0 
1.20 10 12. 43 13. 4 11 13. 62 14. 6 12 14. 81 15.7 13 16. 06 16. 9 
1.40 8 12. 87 10. 4 9 14. 02 11. 3 9 15. 41 12.2 10 16. 57 13. 0 
1.60 6 13. 45 8. 3 7 14. 51 9. 0 7 15. 91 9.7 8 17. 00 10. 3 
1.80 5 13. 81 6. 8 6 14. 81 7. 4 6 16. 22 7.9 7 17. 26 8. 4 

.40 0.00 65 8. 68 93. 6 74 9. 81 105. 2 84 10. 94 116.9 95 12. 09 128. 6 
.20 48 9. 29 68. 3 55 10. 41 76. 9 62 11. 55 84.9 69 12. 72 93. 0 
.40 32 10. 10 45. 1 36 11. 25 50. 0 41 12. 38 54.9 45 13. 58 59. 7 
.60 22 10. 85 30. 2 24 12. 06 33. 2 27 13. 21 36.3 30 14. 38 39. 2 
.80 15 11. 61 21. 3 17 12. 75 23. 3 19 13. 91 25.2 21 15. 10 27. 3 

1.00 12 12. 06 15. 7 13 13. 29 17. 1 14 14. 51 18.5 15 15. 77 19. 9 
1.20 9 12. 64 12. 0 10 13. 81 13. 0 11 15. 01 14.1 12 16. 22 15. -i X 
1.40 7 13. 14 9. 5 8 14. 25 10. 3 8 15. 65 11.1 9 16. 78 11. 8 
1.60 6 13. 45 7. 7 6 14. 81 8. 3 7 15. 91 8.9 7 17. 26 9. 6 
1.80 5 13. 81 6. 4 5 15. 20 6. 9 6 16. 22 7.4 6 17. 54 7. 8 

.60 0.00 34 9. 98 47. 7 38 11. 14 52. 8 43 12. 28 58.0 47 13. 49 63. 2 
.20 28 10. 37 39. 6 32 11. 49 43. 8 36 12. 64 47.9 39 13. 86 52. 1 
.40 22 10. 85 30. 2 24 12. 06 33. 2 27 13. 21 36.3 30 14. 38 39. 2 
.60 16 11. 49 22. 6 18 12. 64 24. 8 20 13. 81 26.9 23 14. 89 29. 0 
.80 13 11. 90 17. 1 14 13. 14 18. 7 15 14. 38 20.2 17 15. 53 21. 8 

1.00 10 12. 43 13. 2 11 13. 62 14. 4 12 14. 81 15.5 13 16. 06 16. 7 
1.20 8 12. 87 10. 5 9 14. 02 11. 4 9 15. 41 12.3 10 16. 57 13. 1 
1.40 6 13. 45 8. 5 7 14. 51 9. 2 8 15. 65 9.9 8 17. 00 10. 6 
1.60 5 13. 81 7. 0 6 14. 81 7. 6 6 16. 22 8.1 7 17. 26 8. 7 
1.80 4 14. 25 5. 9 5 15. 20 6. 3 5 16. 57 6.8 6 17. 54 7. 3 

.80 0.00 21 10. 94 29. 2 24 12. 06 32. 2 26 13. 29 35.1 29 14. 44 37. 9 
.20 19 11. 14 25. 7 21 12. 33 28. 2 23 13. 53 30.7 25 14. 73 33. 2 
.40 15 11. 61 21. 3 17 12. 75 23. 3 19 13. 91 25.2 21 15. 10 27. 3 
.60 13 11. 90 17. 1 14 13. 14 18. 7 15 14. 38 20.2 17 15. 53 21. 8 
.30 10 12. 43 13. 7 11 13. 62 14. 9 12 14. 81 16.1 13 16. 06 17. 4 

1.00 8 12. 87 11. 1 9 14. 02 12. 0 10 15. 20 13.0 11 16. 39 13. 9 
1.20 7 13. 14 9. 1 7 14. 51 9. 8 8 15. 65 10.6 9 16. 78 11. 3 
1.40 6 13. 45 7. 5 6 14. 81 8. 1 7 15. 91 8.7 7 17. 26 9. 3 
1.60 5 13. 81 6. 3 5 15. 20 6. 8 6 16. 22 7.3 6 17. 54 7. 8 
1.80 4 14. 25 5. 4 4 15. 65 5. 9 5 16. 57 6.2 5 17. 87 6. 6 

1.00 0.00 15 11. 61 19. 9 16 12. 87 21. 8 18 14. 02 23.6 20 15. 20 25. 5 
.20 13 11. 90 18. 1 15 13. 00 19. 7 16 14. 25 21.4 18 15. 41 23. 0 
.40 12 12. 06 15. 7 13 13. 29 17. 1 14 14. 51 18.5 15 15. 77 19. 9 
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p=-.20 (continued) 

LQ=5,000 LQ=10,000 L0=20,000 L0=40,000 

kl k 2 n 
x 2 , a L l n 2 

x 2 , a L l n 2 
x 2 , a L l n 2 

x 2 , a L l 
,60 10 12.43 13.2 11 13.62 14.4 12 14.81 15.5 13 16.06 16.7 
.80 8 12.87 11.1 9 14.02 12.0 10 15.20 13.0 11 16.39 13.9 

1.00 7 13.14 9.3 8 14.25 10.1 8 15.65 10.8 8 16.78 11.6 
1.20 6 13.45 7.8 6 14.81 8.5 7 15.91 9.1 8 17.00 9.7 
1.40 5 13.81 6.6 5 15.20 7.2 6 16.22 7.7 6 17.54 8.2 
1.60 4 14.25 5.7 5 15.20 6.1 5 16.57 6.5 5 17.87 7.0 
1.80 4 14.25 4.9 4 15.65 5.3 4 17.00 5.7 5 17.87 6.0 

1. 20 0.00 11 12.24 14.5 12 13.45 15.8 13 14.65 17.1 14 15.91 18.4 
.20 10 12.43 13.4 11 13.62 14.6 12 14.81 15.7 13 16.06 16.9 
.40 9 12.64 12.0 10 13.81 12.0 11 15.01 14.1 12 16.33 15.1 
.60 8 12.87 10.5 9 14.02 11.4 9 15.41 12.3 10 16.57 13.1 
.80 7 13.14 9.1 7 14.51 9.8 8 15.65 10.6 9 16.78 11.3 

1.00 6 13.45 7.8 6 14.81 8.5 7 15.91 9.1 8 17.00 9.7 
1.20 5 13.81 6.7 6 14.81 7.3 6 16.22 7.8 6 17.54 8.4 
1.40 4 14.25 5.9 5 15.20 6.3 5 16.57 6.7 6 17.54 7.2 
1.60 4 14.25 5.1 4 15.65 5.5 5 16.57 5.9 5 17.87 6.2 
1.80 3 14.81 4.5 4 15.65 4.8 4 17.00 5.1 4 18.25 5.4 

1. 40 0.00 8 12.87 11.1 9 14.02 12.0 10 15.20 13.0 11 16.39 13.9 
.20 8 12.87 10.4 9 14.02 11.3 9 15.41 12.2 10 16.57 13.0 
.40 7 13.14 9.5 8 14.25 10.3 8 15.65 11.1 9 16.78 11.8 
.60 6 13.45 8.5 7 14.51 9.2 8 15.65 9.9 8 17.00 10.6 
.80 6 13.45 7.5 6 14.81 8.1 7 15.91 8.7 7 17.26 9.3 

1.00 5 13.81 6.6 5 15.20 7.2 6 16.22 7.7 6 17.54 8.2 
1.20 4 14.25 5.9 5 15.20 6.3 5 16.57 6.7 6 17.54 7.2 
1.40 4 14.25 5.1 4 15.65 5.5 5 16.57 6.0 5 17.87 6.3 
1.60 3 14.81 4.6 4 15.65 4.9 4 17.00 5.2 4 18.25 5.5 
1.80 3 14.81 4.0 3 16.22 4.3 4 17.00 4.7 4 18.25 4.9 

1. 60 0.00 7 13.14 8.8 7 14.51 9.5 8 15.65 10.2 8 17.00 11.0 
.20 6 13.45 8.3 7 14.51 9.0 7 15.91 9.7 8 17.00 10.3 
.40 6 13.45 7.7 6 14.81 8.3 7 15.91 8.9 7 17.26 9.6 
.60 5 13.81 7.0 7 14.81 7.6 6 16.22 8.1 7 17.26 8.7 
.80 5 13.81 6.3 5 15.20 6.8 6 16.22 7.3 6 17.54 7.8 

1.00 4 14.25 5.7 5 15.20 6.1 5 16.57 8.5 5 17.87 7.0 
1.20 4 14.25 5.1 4 15.65 5.5 5 16.57 5.9 5 17.87 6.2 
1.40 3 14.81 4.6 4 15.65 4.9 4 17.00 5.2 4 18.25 5.5 
1.60 3 14.81 4.0 3 16.22 4.4 4 17.00 4.7 4 18.25 4.9 
1.80 3 14.81 3.6 3 16.22 3.9 3 17.54 4.2 4 18.25 4.5 

1. 80 0.00 5 13.81 7.2 6 14.81 7.7 6 16.22 8.3 7 17.26 8.8 
.20 5 13.81 6.8 6 14.81 7.4 6 16.22 7.9 7 17.26 8.4 
.40 5 13.81 6.4 5 15.20 6.9 6 16.22 7.4 6 17.54 7.8 
.60 4 14.25 5.9 5 15.20 6.3 5 16.57 6.8 6 17.54 7.3 
.80 4 14.25 5.4 4 15.65 5.9 5 16.57 6.2 5 17.87 6.6 

1.00 4 14.25 4.9 4 15.65 5.3 4 17.00 5.7 5 17.87 6.0 
1.20 3 14.81 4.5 4 15.65 4.8 4 17.00 5.1 4 18.25 5.4 
1.40 3 14.81 4.0 3 16.22 4.3 4 17.00 4.7 4 18.25 4.9 
1.60 3 14.81 3.6 3 16.22 3.9 3 17.54 4.2 4 18.25 4.5 
1.80 3 14.81 3.4 3 16.22 3.5 3 17.54 3.7 3 18.98 4.0 
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Two Characteristics, Independent Observations 

"O
 = 0.0 

Lo 5 =5,000 10,000 L 0 ~ 20,000 LQ=40,000 

*2 n *2,a L l n x2 , a L l n 2 
X2,a L l n L l 

.20 0. 00 188 6.56 290. 7 226 7.57 338.6 267 8.63 387.0 308 9.73 435. 6 
20 113 7.58 169. 3 133 8.64 1.93.5 454 9.73 217.8 175 10.86 242. 1 
40 56 8.98 80. 5 64 10.10 90.3 73 11.22 100.0 81 12.40 109. 7 
60 32 10.10 45. 1 36 11.25 50.0 41 12.38 54.9 45 13.58 59. 7 
80 21 10.94 28. 7 23 12.15 31.6 26 13.29 34.5 28 14.51 37. 3 

1. 00 15 11.61 19. 9 16 12.87 21.8 18 14.02 23.7 20 15.20 25. 5 
1. 20 11 12.24 14. 7 12 13.45 16.0 13 14.65 17.3 14 15.91 18. 6 
1. 40 8 12.87 11. 3 9 14.02 12.3 10 15.20 13.2 11 16.39 14. 2 
1. 60 7 13.14 9. 0 7 14.51 9.7 8 15.65 10.4 9 16.78 11. 2 
1. 80 6 13.45 7. 4 6 14.81 7.9 7 15.91 8.5 7 17.26 9. 0 

| .40 0. 00 67 8.62 96. 7 77 9.73 108.9 87 10.87 121.1 98 12.02 133. 2 
20 56 8.98 80. 5 64 10.10 90.3 73 11.22 100.0 81 12.40 109. 7 
40 38 9.76 54. 5 44 10.85 60.5 49 12.02 66.6 54 13.21 72. 7 

J 60 26 10.52 36. 1 29 11.68 39.9 32 12.87 43.6 36 14.02 47. 3 
1 . 80 18 11.25 25. 0 20 12.43 27.4 22 13.62 29.9 24 14.81 32. 2 

1. 00 13 11.90 18. 1 15 12.00 19.8 16 14.25 21.5 18 15.41 23. 2 

i 1. 20 10 12.43 13. 7 11 13.62 14.9 12 14.81 16.1 13 16.06 17. 4 
| 1. 40 8 12.87 10. 7 9 14.02 11.6 10 15.20 12.6 10 16.57 13. 5 
! 
I 

1. 60 6 13.45 8. 7 7 14.51 9.3 8 15.65 10.0 8 17.00 10. 7 
| 1. 80 5 13.81 7. 1 6 14.81 7.6 6 16.22 8.2 7 17.26 8. 8 
.60 0. 00 35 9.92 49. 3 40 11.04 54.7 44 12.24 60.1 49 13.41 65. 5 

i 20 32 10.10 45. 1 36 11.25 50.0 41 12.38 54.9 45 13.58 59. 7 
] 40 26 10.52 36. 1 29 11.68 39.9 32 12.87 43.6 36 14.02 47. 3 
i 
j 

60 20 11.04 27. 4 22 12.24 30.1 25 13.37 32.8 27 14.58 35. 4 
! 80 15 11.61 20. 6 17 12.75 22.6 18 14.02 24.5 20 15.20 26. 4 
1 1. 00 12 12.06 15. 8 13 13.29 17.2 14 14.51 18.6 15 15.77 20. 1 

1. 20 9 12.64 12. 4 10 13.81 13.4 11 15.01 14.5 12 16.22 15. 6 
I 1. 40 7 13.14 9. 9 8 14.25 10.7 9 15.41 11.6 10 16.57 12. 4 

1. 60 8 13.45 8. 1 7 14.51 8.8 7 15.91 9.4 8 17.00 10. 1 
1. 80 5 13.81 6. 7 6 14.81 7.3 6 16.22 7.8 6 17.54 8. 4 

.80 0. 00 22 10.85 30. 3 24 12.06 33.3 27 13.21 36.3 30 14.38 39. 3 
20 21 10.94 28. 7 23 12.15 31.6 26 13.29 34.5 28 14.51 37. 3 
40 18 11.25 25. 0 20 12.43 27.4 22 13.62 29.9 24 14.81 32. 2 
60 15 11.61 20. 6 17 12.75 22.6 18 14.02 24.5 20 15.20 26. 4 

. 80 12 12.06 16. 7 14 13.14 1.8.2 15 14.38 19.7 16 15.65 21. o i. 
1. 00 10 12.43 13. 4 11 13.62 1.4.6 12 14.81 15.8 13 16.06 17. 0 
1. 20 8 12.87 10. 9 9 14.02 1.1.8 10 15.20 12.8 11 16.39 13. 7 
1. 40 7 13.14 9. 0 7 14.51 9.7 8 15.65 10.4 9 16.78 11. 2 
1. 60 6 13.45 7. 5 6 14.81 8.1 7 15.91 8.7 7 17.26 9. 3 
1. 80 5 13.81 6. 3 5 15.20 6.8 6 16.22 7.3 6 17.54 7. 8 

1.00 0. 00 15 11.61 20. 6 17 12.75 22.6 18 14.02 24.5 20 15.20 26. 4 
20 15 11.61 19. 9 16 12.87 21.8 18 14.02 23.7 20 15.20 25. 5 
40 13 11.90 18. 1 15 13.00 19.8 16 14.25 21.5 18 15.41 23. 2 
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p= 0.0 (continued) 

LQ=5,000 LQ=10,000 LQ=20,000 L0=40,000 

k l k 2 n 2 
x 2 , A L l n 

x 2 , A L l n 
x2,A L, 

X 
| n 

x2,A L l 

.60 12 12.06 15.8 13 13.29 17.2 14 14.51 18.6 ! is 15.77 20.1 

.80 10 12.43 13.4 11 13.62 14.6 12 14.81 15.8 I 13 16.06 17.0 
1.00 8 12.87 11.3 9 14.02 12.3 10 15.20 13.2 ! ii 16.39 14.2 
1.20 7 13.14 9.5 8 14.25 10.3 8 15.65 11.1 9 16.78 11.8 
1.40 o 13.45 8.0 7 14.51 8.7 7 15.91 9.3 8 17.00 10.0 
1.60 5 13.81 6.8 6 14.81 7.4 6 16.22 7.9 7 17.26 8.4 
1.80 4 14.25 5.9 5 15.20 6.3 5 16.57 6.7 6 17.54 7.2 

1.20 0.00 11 12.24 15.0 12 13.45 16.4 13 14.65 17.7 15 15.77 19.1 
.20 11 12.24 14.7 12 13.45 16.0 13 14.65 17.3 14 15.91 18.6 
.40 10 12.43 13.7 11 13.62 14.9 12 14.81 16.1 13 16.06 17.4 
.60 9 12.64 12.4 10 13.81 13.4 11 15.01 14.5 12 16.22 15.6 
.80 8 12.87 10.9 9 14.02 11.8 10 15.20 12.8 11 16.39 13.7 

1.00 7 13.14 9.5 8 14.25 10.3 8 15.65 11.1 9 16.78 11.8 
1.20 6 13.45 8.2 7 14.51 8.9 7 15.91 9.6 8 16.00 10.2 
1.40 5 13.81 7.1 6 15.81 7.6 6 16.22 8.2 7 17.26 8.8 
1.60 5 13.81 6.2 5 15.20 6.6 6 16.22 7.2 6 17.54 7.6 
1.80 4 14.25 5.3 4 15.65 5.8 5 16.57 6.2 5 17.87 6.5 

1.40 0.00 9 12.64 11.5 9 14.02 .12.5 10 15.20 13.5 11 16.39 14.4 
.20 8 12.87 11.3 9 14.02 12.3 10 15.20 13.2 11 16.39 14.2 
.40 8 12.87 10.7 9 14.02 11.6 10 15.20 12.6 10 16.57 13.5 
.60 7 13.14 9.9 8 14.25 10.7 9 15.41 11.6 10 16.57 12.4 
.80 7 13.14 9.0 7 14.51 9.7 8 15.65 10.4 9 16.78 11.2 

1.00 6 13.45 8.0 7 14.51 8.7 7 15.91 9.3 8 17.00 10.0 
1.20 5 13.81 7.1 6 14.81 7.6 6 16.22 8.2 7 17.26 8.8 
1.40 5 13.81 6.3 5 15.20 6.7 6 16.22 7.3 6 17.54 7.7 
1.60 4 14.25 5.5 5 15.20 6.0 5 16.57 8.3 5 17.87 8.8 
1.80 4 14.25 4.9 4 15.65 5.2 4 17.00 5.6 5 17.87 8.0 

1.60 0.00 7 13.14 9.1 7 14.51 9.9 8 15.65 10. 6 9 16.78 11.3 
.20 7 13.14 9.0 7 14.51 9.7 8 15.65 10.4 9 16.78 11.2 
.40 6 13.45 8.7 7 14.51 9.3 8 15.65 10.0 8 17.00 10.7 
.60 6 13.45 8.1 7 14.51 8.8 7 15.91 9.4 8 17.00 10.1 
.80 6 13.45 7.5 6 14.81 8.1 7 15.91 8.7 7 17.26 9.3 

1.00 5 13.81 6.8 6 14.81 7.4 6 16.22 7.9 7 17.26 8.4 
1.20 5 13.81 6.2 5 15.20 6.6 6 16.22 7.2 6 17.54 7.6 
1.40 4 14.25 5.5 5 15.20 6.0 5 16.57 6.3 5 17.87 6.8 
1.60 4 14.25 4.9 4 15.65 5.3 4 17.00 5.7 5 17.87 6.0 
1.80 3 14.81 4.5 4 15.65 4.8 4 17.00 5.1 4 18.25 5.4 

1.80 0.00 6 13.45 7.4 6 14.81 8.0 7 15.91 8.6 7 17.26 9.2 
.20 6 13.45 7.4 6 14.81 7.9 7 15.91 8.5 7 17.26 9.0 
.40 5 13.81 7.1 6 14.81 7.6 8 16.22 8.2 7 17.26 8.8 
.60 5 13.81 6.7 6 14.81 7.3 6 16.22 7.8 6 17.54 8.4 
.80 5 13.81 6.3 5 15.20 6.8 6 16.22 7.3 6 17.54 7.8 

1.00 4 14.25 5.9 5 15.20 6.3 5 16.57 6.7 6 17.54 7.2 
1.20 4 14.25 5.3 4 15.65 5.8 5 16.57 6.2 5 17.87 6.5 
1.40 4 14.25 4.9 4 15.65 5.2 4 17.00 5.6 5 17.87 6.0 
1.60 3 14.81 4.5 4 15.65 4.8 4 17.00 5.1 4 18.25 5.4 
1.80 3 14.81 4.0 3 16.22 4.3 4 17.00 4.7 4 18.25 4.9 
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Two Characteristics, Independent Observations 

P= +0.20 

=5,000 L0= =10,000 L 0 ~ 20,000 L0= =40,000 

kl k 2 n 2 
X2,ct L l n x2,a Ll n 2 

L l n 2 
2,a Ll 

.20 0. 00 183 6.62 281. 8 220 7.63 327. 8 258 8.70 274. 2 398 9.80 420. 9 
20 130 7.30 195. 6 154 8.35 224. 6 178 9.44 253. 7 203 10.57 282. 9 
40 62 8.78 89. 9 72 9.87 101. 0 81 11.02 112. 1 91 12.17 123. 2 
60 34 9.98 48. 6 39 11.09 53. 9 44 12.24 59. 2 48 13.45 64. 5 
80 22 10.85 30. 2 24 12.06 33. 2 27 13.21 36. 3 30 14.38 39. 2 

1. 00 15 11.61 20. 6 17 12.75 22. 6 18 14.02 24. 5 20 15.20 26. 4 
1. 20 11 12.24 15. 0 12 13.45 16. 4 13 14.65 17. 7 15 15.77 19. 1 
1. 40 9 12.64 11. 5 9 14.02 12. 5 10 15.20 13. 4 11 16.39 14. 4 
1. 60 7 13.14 9. 0 7 14.51 9. 8 8 15.65 10. 5 9 16.78 11. 3 
1. 80 6 13.45 7. 4 6 14.81 7. 9 7 15.91 8. 6 7 17.26 9. 1 

.40 0. 00 65 8.68 93. 6 74 9.81 105. 2 84 10.94 116. 9 95 12.09 128. 6 
20 62 8.78 89. 9 72 9.87 101. 0 81 11.02 112. 1 91 12.17 123. 2 
40 45 9.42 63. 4 51 10.56 70. 7 57 11.71 78. 0 63 12.91 85.3 
60 30 10.23 41. 5 33 11.42 45. 9 37 12.58 50. 3 41 13.76 54. 7 
80 20 11.04 28. 0 23 12.15 30. 8 25 13.37 33. 6 28 14.51 36. 3 

1. 00 15 11.61 19. 9 16 12.87 21. 8 18 14.02 23. 6 20 15.20 25. 5 
1. 20 11 12.24 14. 8 12 13.45 16. 1 13 14.65 17. 4 14 15.91 18. 8 
1. 40 8 12.87 11. 4 9 14.02 12. 4 10 15.20 13. 4 11 16.39 14. 3 
1. 60 7 13.14 9. 1 7 14.51 9. 8 8 15.65 10. 6 9 16.78 11. 3 
1. 80 6 13.45 7. 4 6 14.81 8. 0 7 15.91 8. 6 7 17.26 9. 1 

.60 0. 00 34 9.98 47. 7 38 11.14 52. 8 43 12.28 58. 0 47 13.49 63. 2 
20 34 9.98 48. 6 39 11.09 53. 9 44 12.24 59. 2 48 13.45 64. 5 
40 30 10.23 41. 5 33 11.42 45. 9 37 12.58 50. 3 41 13.76 54. 7 
60 23 10. 76 32. 0 26 11.90 35. 2 29 13.07 38. 5 32 14.25 41. 7 
80 17 11.37 23. 9 19 12.53 26. 3 21 13.71 38. 6 23 14.89 30. 8 

1. 00 13 11.90 18. 1 15 13.00 19. 7 16 14.25 21. 4 18 15.41 23. 0 
1. 20 10 12.43 13. 9 11 13.62 15. 1 12 14.81 16. 4 14 15.91 17. 6 
1. 40 8 12.87 11. 0 9 14.02 11. 9 10 15.20 12. 8 11 16.39 13. 8 
1. 60 7 13.14 8. 9 7 14.51 9. 6 8 15.65 10. 3 9 16.78 11. 1 
1. 80 5 13.81 7. 3 6 14.81 7. 8 7 15.91 8. 5 7 17.26 9. 0 

.80 0. 00 21 10.94 29. 2 24 12.06 32. 2 26 13.29 35. 1 29 14.44 37. 9 
20 22 10.85 30. 2 24 12.06 33. 2 27 13.21 36. 3 30 14.38 39. 2 
40 20 11.04 28.0 23 12.15 30. 8 25 13.37 33. 6 28 14.51 36. 3 
60 17 11.37 23. 9 19 12.53 26. 3 21 13.71 28. 6 23 14.89 30. 8 
80 14 11.75 19. 5 16 12.87 21. 3 17 14.13 23. 1 19 15.30 25. 0 

1. 00 12 12.06 15. 7 13 13.29 17. 1 14 14.51 18. 5 15 15.77 19. 9 
1. 20 9 12.64 12. 6 10 13.81 13. 7 11 15.01 14. 8 12 16.22 15. 9 
1. 40 8 12.87 10. 2 8 14.25 11. 1 9 15.41 11. 9 10 16.57 12. 8 
1. 60 6 13.45 8. 4 7 14.51 9. 1 8 15.65 9. 8 8 17.00 10. 5 
1. 80 5 13.81 7. 0 6 14.81 7. 6 6 16.22 8. 1 7 17.26 8. 7 

1.00 0. 00 15 11.61 19. 9 16 12.87 21. 8 18 14.02 23. 6 20 15.20 25. 5 
20 15 11.61 20. 6 17 12.75 22. 6 18 14.02 24. 5 20 15.20 26. 4 
40 15 11.61 19. 9 16 12.87 21. 8 18 14.02 23. 6 20 15.20 25. 5 
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P = =+0. 20 (continued) 

LQ=5,000 LQ=10,000 LQ=20,000 L D=40,000 

k 
1 

k 
2 

n 2 
x 2 ,a L l n x 2 ,a L l n x 2 ,a Ll n 2 

X 2 ,a L i 
.60 13 11.90 18.1 15 13.00 19.7 16 14.25 21.4 18 15.41 23.0 
.80 12 12.06 15.7 13 13.29 17.1 14 14.51 18.4 15 15.77 19.9 

1.00 10 12.43 13.2 11 13.62 14.4 12 14.81 15.5 13 16.06 16.7 
1.20 8 12.87 11.1 9 14.02 12.0 10 15.20 13.0 11 16.39 13.9 
1.40 7 13.14 9.3 8 14.25 10.1 8 15.65 10.8 9 16.78 11.6 
1.60 6 13.45 7.8 6 14.81 8.5 7 15.91 9.1 8 17.00 9.7 
1.80 5 13.81 6.6 5 15.20 7.2 6 16.22 7.7 6 17.54 8.2 

1.20 0.00 11 12.24 14.5 12 13.45 15.8 13 14.65 17.1 14 15.91 18.4 
.20 11 12.24 15.0 12 13.45 16.4 13 14.65 17.7 15 15.77 19.1 
.40 11 12.24 14.8 12 13.45 16.1 13 14.65 17.4 14 15.91 18.8 
.60 10 12.43 13.9 11 13.62 15.1 12 14.81 16.4 14 15.91 17.6 
.80 9 12.64 12.6 10 13.81 13.7 11 15.01. 14.8 12 16.22 15.9 

1.00 8 12.87 11.1 9 14.02 12.0 10 15.20 13.0 11 16.39 13.9 
1.20 7 13.14 9.6 8 14.25 10.4 9 15.41 11.3 9 16.78 12.0 
1.40 6 13.45 8.3 7 14.51 9.0 7 15.91 9.7 8 17.00 10.3 
1.60 5 13.81 7.2 6 14.81 7.7 6 16.22 8.3 7 17.26 8.8 
1.80 5 13.81 6.2 5 15.20 6.6 6 16.22 7.2 6 17.54 7.6 

1.40 0.00 8 12.87 11.1 9 14.02 12.0 10 15.20 13.0 11 16.39 13.9 
.20 9 12.64 11.5 9 14.02 12.5 10 15.20 13.4 11 16.39 14.4 
.40 8 12.87 11.4 9 14.02 12.4 10 15.20 13.4 11 16.39 14.3 
.60 8 12.87 11.0 9 14.02 11.9 10 15.20 12.8 11 16.39 13.8 
.80 8 12.87 10.2 8 14.25 11.1 9 15.41 11.9 10 16.57 12.8 

1.00 7 13.14 9.3 8 14.25 10.1 8 15.65 10.8 9 16.78 11.6 
1.20 6 13.45 8.3 7 14.51 9.0 7 15.91 9.7 8 17.00 10.3 
1.40 6 13.45 7.4 6 14.81 7.9 7 15.91 8.6 7 17.26 9.1 
1.60 5 13.81 6.5 5 15.20 7.0 6 16.22 7.5 6 17.54 8.0 
1.80 4 14.25 5.7 5 15.20 6.1 5 16.57 8.5 5 17.87 7.0 

1.60 0.00 7 13.14 8.8 7 14.51 9.5 8 15.65 10. 2 8 17.00 11.0 
.20 7 13.14 9.0 7 14.51 9.8 8 15.65 10.5 9 16.78 11.3 
.40 7 13.14 9.1 7 14.51 9.8 8 15.65 10.6 9 16.78 11.3 
.60 7 13.14 8.9 7 14.51 9.6 8 15.65 10.3 9 16.78 11.1 
.80 6 13.45 8.4 7 14.51 9.1 8 15.65 9.8 8 17.00 10.5 

1.00 6 13.45 7.8 6 14.81 8.5 7 15.91 9.1 8 17.00 9.7 
1.20 5 13.81 7.2 6 14.81 7.7 8 16. 22 8.3 7 17.26 8.8 
1.40 5 13.81 6.5 5 15.20 7.0 6 16.22 7.5 6 17.54 8.0 
1.60 4 14.25 5.8 5 15.20 6.3 5 16.57 6.7 6 17.54 7.2 
1.80 4 14.25 5.2 4 15.65 5.6 5 16.57 6.0 5 17.87 6.3 

1.80 0.00 5 13.81 7.2 6 14.81 7.7 6 16.22 8.3 7 17.26 8.8 
.20 6 13.45 7.4 6 14.81 7.9 7 15.91 8.6 7 17.26 9.1 
.40 6 13.45 7.4 6 14.81 8.0 7 15.91 8.6 7 17.26 9.1 
.60 5 13.81 7.3 6 14.81 7.8 7 15.91 8.5 7 17.26 9.0 
.80 5 13.81 7.0 6 14.81 7.6 6 16.22 8.1 7 17.26 8.7 

1.00 5 13.81 6.6 5 15.20 7.2 6 16.22 7.7 6 17.54 8.2 
1.20 5 13.81 6.2 5 15.20 6.6 6 16.22 7.2 6 17.54 7.6 
1.40 4 14.25 5.7 5 15.20 6.1 5 16.57 6.5 5 17.87 7.0 
1.60 4 14.25 5.2 5 15.65 5.6 5 16.57 6.0 5 17.87 6.3 
1.80 4 14.25 4.8 4 15.65 5.1 4 17.00 5.4 4 17.87 5.8 



223 

Two Characteristics, Independent Observations 

p=+0.40 

V =5,000 V =10,000 20,000 L0= =40,000 

k 2 n Ll n X2 a > L l n 2 
X 2,a Ll n X2 a > L i 

.20 0. 00 166 6.81 254. 3 199 7.83 294.7 232 8.91 335. 3 267 10.02 376.2 
20 145 7.08 220. 7 173 8.11 254.4 201 9.20 288. 4 230 10.32 322.4 
40 66 8.65 95. 8 76 9.76 107.8 87 10.87 119. 8 97 12.04 131.9 
60 35 9.92 49. 1 39 11.09 54.5 44 12.24 59. 9 49 13.41 65.2 
80 21 10.94 29. 6 24 12.06 32.6 27 13.21 35. 5 29 14.44 38.4 

1. 00 14 11.75 19. 8 16 12.87 21.7 18 14.02 23. 5 19 15.30 25.4 
1. 20 11 12.24 14. 3 12 13.45 15.5 13 14.65 16. 7 14 15.91 18.0 
1. 40 8 12.87 10. 7 9 14.02 11.7 10 15.20 12. 6 10 16.57 13.5 
1. 60 6 13.45 8. 4 7 14.51 9.1 8 15.65 9. 8 8 17.00 10.5 
1. 80 5 13.81 6. 8 6 14.81 7.4 6 16.22 7. 9 7 17.26 8.4 

.40 0. 00 58 8.91 83. 8 67 10.01 94.0 76 11.14 104. 3 85 12.31 114.5 
20 66 8.65 95. 8 76 9.76 107.8 87 10.87 119. 8 97 12.04 131.9 
40 50 9.21 72. 1 58 10.30 80.6 65 11.45 89. 1 72 12.64 97.6 
60 33 10.04 46. 1 37 11.20 51.0 41 12.38 56. 0 46 13.53 61.0 
80 22 10.85 30. 0 24 12.06 33.0 27 13.21 36. 0 29 14.44 38.9 

1. 00 15 11.61 20. 6 17 12.75 22.6 18 14.02 24. 5 20 15.20 26.5 
1. 20 11 12.24 15. 0 12 13.45 16.3 13 14.65 17. 6 15 15.77 19.0 
1. 40 8 12.87 11. 4 9 14.02 12.3 10 15.20 13. 3 11 16.39 14.2 
1. 60 7 13.14 8. 9 7 14.51 9.6 8 15.65 10. 3 9 16.78 11.1 
1. 80 5 13.81 7. 2 7 14.81 7.7 6 16.22 8. 3 7 17.26 8.8 

.60 0. 00 30 10.23 42. 6 34 11.37 47.1 38 12.53 51. 6 42 13.71 56.2 
20 35 9.92 49. 1 39 11.09 54.5 44 12.24 59. 9 49 13.41 65.2 
40 33 10.04 46. 1 37 11.20 51.0 41 12.38 56. 0 46 13.53 61.0 
60 26 10.52 36. 5 29 11.68 40. 2 33 12. 81 44. 0 36 14.02 47.8 
80 20 11.04 26. 9 22 12.24 29.6 24 13.45 32. 2 26 14.65 34.8 

1. 00 14 11.75 19. 8 16 12.87 21.7 18 14.02 23. 5 19 15.30 25.4 
1. 20 11 12.24 14. 9 12 13.45 16.2 13 14.65 17. 5 15 15.77 18.9 
1. 40 9 12.64 11. 5 9 14.02 12.5 10 15.20 13. 5 11 16.39 14.4 
1. 60 7 13.14 9. 1 7 14.51 9.9 8 15.65 10. 6 9 16.78 11.3 
1. 80 6 13.45 7. 4 6 14.81 7.9 7 15.91 8. 6 7 17.26 9.1 

.80 0. 00 19 11.14 26. 1 21 12.33 28.6 23 13.53 31. 2 26 14.65 33.7 
20 21 10.94 29. 6 24 12.06 32.6 27 13.21 35. 5 29 14.44 38.4 
40 22 10.85 30. 0 24 12.06 33.0 27 13.21 36. 0 29 14.44 38.9 
60 20 11.04 26. 9 22 12.24 29.6 24 13.45 32. 2 26 14.65 34.8 
80 16 11.49 22. 3 18 12.64 24.4 20 13.81 36. 5 22 15.01 28.6 

1. 00 13 11.90 17. 7 14 13.14 19.4 16 14.25 21. 0 17 15.53 22.6 
1. 20 10 12.43 14. 0 11 13.62 15.3 13 14.65 16. 5 14 15.91 17.7 
1. 40 8 12.87 11. 2 9 14.02 12.1 10 15.20 13.1 11 16.39 14.0 
1. 60 7 13.14 9. 0 7 14.51 9.8 8 15.65 10. 5 9 16.78 11.2 
1. 80 6 13.45 7. 4 6 14.81 8.0 7 15.91 8. 6 7 17.26 9.1 

1.00 0. 00 13 11.90 17. 7 14 13.14 19.4 16 14.25 21. 0 17 15.53 22.6 
20 14 11.75 19. 8 16 12.87 21.7 18 14.02 23. 5 19 15.30 25.4 

• 40 15 11.61 20. 6 17 12.75 22.6 18 14.02 24. 5 20 15.20 26.4 
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p=+0.40 (continued) 

L 3=5,000 L 0=10, 300 LQ=20,000 L 3=40,000 

k l k 2 n Ll n X 2 , a L l n 2 
x 2 , a 

L l n 2 
* 2 , a L l 

.60 14 11.75 19.8 16 12.87 21.7 18 14.02 23.5 19 15.30 25.4 

.80 13 11.90 17.7 14 13.14 19.4 16 14.25 21.0 17 15.53 22.6 
1.00 11 12.24 15.1 12 13.45 16.5 14 14.51 17.9 15 15.77 19.2 
1.20 9 12.64 12.6 10 13.81 13.7 11 15.01 14.8 12 16.22 15.9 
1.40 8 12.87 10.4 9 14.02 11.3 9 15.41 12.2 10 16.57 13.1 
1.60 6 13.45 8.7 7 14.51 9.3 8 15.65 10.1 8 17.00 10.8 
1.80 5 13.81 7.2 6 14.81 7.8 6 16.22 8.4 7 17.26 8.9 

I—
1 20 0.00 10 12.43 12.9 11 13.62 14.1 12 14.81 15.2 13 16.06 16.3 

.20 11 12.24 14.3 12 13.45 15.5 13 14.65 16.7 14 15.91 18.0 

.40 11 12.24 15.0 12 13.45 16.3 13 14.65 17.6 15 15.77 19.0 

.60 11 12.24 14.9 12 13.45 16.2 13 14.65 17.5 15 15.77 18.9 

.80 10 12.43 14.0 11 13.62 15.3 13 14.65 16.5 14 15.91 17.7 
1.00 9 12.64 12.6 10 13.81 13.7 11 15.01 14.8 12 16.22 15.9 
1.20 8 12.87 11.0 9 14.02 11.9 10 15.20 12.9 11 16.39 13.8 
1.40 7 13.14 9.5 8 14.25 10.3 8 15.65 11.1 9 16.78 11.8 
1.60 6 13.45 8.1 7 14.51 8.7 7 15.91 9.4 8 17.00 10.0 
1.80 5 13.81 6.9 6 14.81 7.4 6 16.22 8.0 7 17.26 8.5 

1. 40 0.00 7 13.14 9.9 8 14.25 10.7 9 15.41 11.5 10 16.57 12.4 
.20 8 12.87 10.7 9 14.02 11.7 10 15.20 12.6 10 16.57 13.5 
.40 8 12.87 11.4 9 14.02 12.3 10 15.20 13.3 11 16.39 14.2 
.60 9 12.64 11.5 9 14.02 12.5 10 15.20 13.5 11 16.39 14.4 
.80 8 12.87 11.2 9 14.02 12.1 10 15.20 13.1 11 16.39 14.0 

1.00 8 12.87 10.4 9 14.02 11.3 9 15.41 12.2 10 16.57 13.1 
1.20 7 13.14 9.5 8 14.25 10.2 8 15.65 11.1 9 16.78 11.8 
1.40 6 13.45 8.4 7 14.51 9.1 8 15.65 9.8 8 17.00 10.5 
1.60 6 13.45 7.4 6 14.81 8.0 7 15.91 8.6 7 17.26 9.1 
1.80 5 13.81 6.4 5 15.20 7.0 6 16.22 7.5 6 17.54 7.9 

1. 60 0.00 6 13.45 7.8 6 14.81 8.5 7 15.91 9.1 8 17.00 9.7 
.20 6 13.45 8.4 7 14.51 9.1 8 15.65 9.8 8 17.00 10.5 
.40 7 13.14 8.9 7 14.51 9.6 8 15.65 10.3 9 16.78 11.1 
.60 7 13.14 9.1 7 14.51 9.9 8 15.65 10.6 9 16.78 11.3 
.80 7 13.14 9.0 7 14.51 9.8 8 15.65 10.5 9 16.78 11.2 

1.00 6 13.45 8.7 7 14.51 9.3 8 15.65 10.1 8 17.00 10.8 
1.20 6 13.45 8.1 7 14.51 8.7 7 15.91 9.4 8 17.00 10.0 
1.40 6 13.45 7.4 7 14.81 8.0 7 15.91 8.6 7 17.26 9.1 
1.60 5 13.81 6.6 6 14.81 7.2 6 16.22 7.7 6 17.54 8.2 
1.80 4 14.25 6.0 5 15.20 6.4 5 16.57 6.9 6 17.54 7.3 

1. 80 0.00 5 13.81 6.3 5 15.20 6.8 6 16.22 7.4 6 17.54 7.8 
.20 5 13.81 6.8 6 14.81 7.4 6 16.22 7.9 7 17.26 8.4 
.40 5 13.81 7.2 6 14.81 7.7 6 16.22 8.3 7 17.26 8.8 
.60 6 13.45 7.4 6 14.81 7.9 7 15.91 8.8 7 17.26 9.1 
.80 6 13.45 7.4 6 14.81 8.0 7 15.91 8.6 7 17.26 9.1 

1.00 5 13.81 7.2 6 14.81 7.8 6 16.22 8.4 7 17.26 8.9 
1.20 5 13.81 6.9 6 14.81 7.4 6 16.22 8.0 7 17.26 8.5 
1.40 5 13.81 6.4 5 15.20 7.0 6 16.22 7.5 6 17.54 7.9 
1.60 4 14.25 6.0 5 15.20 6.4 5 16.57 6.9 6 17.54 7.3 
1.80 4 14.25 5.4 4 15.65 5.9 5 16.57 6.2 5 17.87 6.6 
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Two Characteristics, Independent Observations 

•P =+0. 60 

V =5,000 V L0,000 L 0 20,000 V =40,000 
n 2 

*2 ,a L l n * 2 , a 
L l n 2 

*2 ,a L l n 2 
*2 ,a L l 

.20 0.00 136 7.21 205. 8 161 8.26 236. 6 188 9.33 267. 7 214 10.46 298. 8 
20 160 6.88 244. 9 191 7.92 283. 3 224 8.98 322. 1 257 10.10 361. 0 
40 66 8.65 95. 5 76 9.76 107. 5 86 10.90 119. 5 97 12.04 131. 4 
60 32 10.10 45. 1 36 11.25 50. 0 41 12.38 54. 9 45 13.58 59. 7 
80 19 11.14 26. 0 21 12.33 28. 6 23 13.53 21. 1 26 14.65 33. 7 

1. 00 13 11.90 17. 0 14 13.14 18. 6 15 14.38 20. 1 17 15.53 21. 7 
1. 20 9 12.64 12. 0 10 13.81 13. 1 11 15.01 14. 1 12 16.22 15. 1 
1. 40 7 13.14 9. 0 7 14.51 9. 7 8 15.65 10. 4 9 16.78 11. 2 
1. 60 5 13.81 7. 0 6 14.81 7. 5 6 16.22 8. 1 7 17.26 8. 6 
1. 80 4 14.25 5. 6 5 15.28 6. 1 5 16.57 6. 4 5 17.87 6. 9 

.40 0. 00 47 9.33 66. 9 54 10.44 74. 7 60 11.61 82. 5 67 12.78 90. 3 
20 66 8.65 95. 5 76 9.76 107. 5 86 10.90 119. 5 97 12.04 131. 4 
40 56 8.98 80. 5 64 10.10 90. 3 73 11.22 100. 0 81 12.40 109. 7 
60 35 9.92 49. 0 39 11.09 54. 4 44 12.24 59. 8 49 13.41 65. 1 
80 22 10.85 29. 9 24 12.06 32. 9 27 13.21 35. 8 29 14.44 38. 8 

1. 00 14 11.75 19. 6 16 12.87 21. 4 18 14.02 23. 2 19 15.30 25. 0 
1. 20 10 12.43 13. 7 11 13.62 14. 9 12 14.81 16. 1 13 16.06 17. 4 
1. 40 8 12.87 10. 2 8 14.25 11. 0 9 15.41 11. 8 10 16.57 12. 7 
1. 60 6 13.45 7. 8 6 14.81 8. 4 7 15.91 9. 1 8 17.00 9. 7 
1. 80 5 13.81 6. 2 5 15.20 6. 7 6 16.22 7. 2 6 17.54 7. 6 

.60 0. 00 24 10.68 33. 8 27 11.82 37. 2 20 13.00 40. 7 33 14.19 44. 1 
20 32 10.10 45. 1 36 11.25 50. 0 41 12.38 54. 9 45 13.58 59. 7 
40 35 9.92 49. 0 39 11.09 54. 4 44 12.24 59. 8 59 13.41 65. 1 
60 29 10.30 40. 8 33 11.42 45. 2 37 12.58 49. 5 40 13.81 53. 8 
80 21 10.94 29. 4 24 12.06 32. 3 26 13.29 35. 3 29 14.44 38. 1 

1. 00 15 11.61 20. 6 17 12.75 22. 6 18 14.02 24. 5 20 15.20 26. 4 
1. 20 11 12.24 14. 8 12 13.45 16. 2 13 14.65 17. 5 14 15.91 18. 8 
1. 40 8 12.87 11. 0 9 14.02 12. 0 10 15.20 12. 9 11 16.39 13. 9 
1. 60 6 13.45 8. 5 7 14.51 9. 2 8 15.65 9. 9 8 17.00 10. 6 
1. 80 5 13.81 6. 7 6 14.81 7. 3 6 16.22 7. 8 6 17.54 8. 4 

.80 0. 00 15 11.61 20. 6 17 12.75 22. 6 18 14.02 24. 5 20 15.20 26. 4 
20 19 11.14 26. 0 21 12.33 28. 6 23 13.53 31. 1 26 14.65 33. 7 
40 22 10.85 29. 9 24 12.06 32. 9 27 13.21 35. 8 29 14.44 38. 8 
60 21 10.94 29. 4 24 12.06 32. 3 26 13.29 35. 3 29 14.44 38. 1 
80 18 11.25 25. 0 20 12.43 27. 4 22 13.62 29. 9 24 14.81 32. 2 

1. 00 14 11.75 19. 6 16 12.87 21. 4 18 14.02 23. 2 19 15.30 25. 0 
1. 20 11 12.24 14. 9 12 13.45 16. 3 13 14.65 17. 6 15 15.77 19. 0 
1. 40 9 12.64 11. 5 9 14.02 12. 5 10 15.20 13. 5 11 16.39 14. 4 
1. 60 7 13.14 9. 0 7 14.51 9. 7 8 15.65 10. 4 9 16.78 11. 2 
1. 80 5 13.81 7. 2 6 14.81 7. 7 6 16.22 8. 3 7 17.26 8. 8 

1.00 0. 00 10 12.43 14. 0 11 13.62 15. 3 13 14.65 16. 5 14 15.91 17. 7 
20 13 11.90 17. 0 14 13.14 18. 6 15 14.38 20. 1 17 15.53 21. 7 
40 14 11.75 19. 6 16 12.87 21. 4 18 14.02 23. 2 19 15.30 25. 0 
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p=+0.60 (continued) 

3=5,000 LQ=10,000 ^=20,000 
L ( 
-=40,000 

h *2 n *2 ,a L l n *2 ,a L l n *2 ,a L l n 2 
*2 ,a 

L l 

# 60 15 11.61 20.6 17 12.75 22. 6 18 14.02 24. 5 20 15.20 26. 4 
80 14 11.75 19.6 16 12.87 21. 4 18 14.02 23. 2 19 15.20 25. 0 

1. 00 13 11.90 17.0 14 13.14 18. 6 15 14.38 20. 1 17 15.53 21. 7 
1. 20 10 12.43 14.0 11 13.62 15. 3 13 14.65 16. 5 14 15.91 17. 7 
1. 40 8 12.87 11.3 9 14.02 12. 3 10 15.20 13. 2 11 16.39 14. 2 
1. 60 7 13.14 9.1 7 14.51 9. 9 8 15.65 10. 6 9 16.78 11. 3 
1. 80 6 13.45 7.4 6 14.81 7. 9 7 15.91 8. 6 7 17.26 9. 1 

I—
1 20 0. 00 8 12.87 10.2 8 14.25 11. 1 9 15.41 11. 9 10 16.57 12. 7 

20 9 12.64 12.0 10 13.81 13. 1 11 15.01 14. 1 12 16.22 15. 1 
40 10 12.43 13.7 11 13.62 14. 9 12 14.81 16. 1 13 16.06 17. 4 
60 11 12.24 14.8 12 13.45 16. 2 13 14.65 17. 5 14 15.91 18. 8 
80 11 12.24 14.9 12 13.45 16. 3 13 14.65 17. 6 15 15.77 19. 0 

1. 00 10 12.43 14.0 11 13.62 15. 3 13 14.65 16. 5 14 15.91 17. 7 
1. 20 9 12.64 12.4 10 13.81 13. 4 11 15.91 14. 5 12 16.22 15. 6 
1. 40 8 12.87 10.5 9 14.02 11. 4 9 15.41 12. 4 10 16.57 13. 2 
1. 60 7 13.14 8.8 7 14.51 9. 5 8 15.65 10. 3 9 16.78 11. 0 
1. 80 6 13.45 7.4 6 14.81 7. 9 7 15.91 8. 6 7 17.26 9. 1 

1. 40 0. 00 6 13.45 7.8 6 14.81 8. 4 7 15.91 9. 0 8 17.00 9. 7 
20 7 13.14 9.0 7 14.51 9. 7 8 15.65 10. 4 9 16.78 11. 2 
40 8 12.87 10.2 8 14.25 11. 0 9 15.41 11. 8 10 16.57 12. 7 
60 8 12.87 11.0 9 14.02 1.2. 0 10 15.20 12. 9 11 16.39 13. 9 
80 9 12.64 11.5 9 14.02 1.2. 5 10 15.20 13. 5 11 16.39 14. 4 

1. 00 8 12.87 11.3 9 14.02 12. 3 10 15.20 13. 2 11 16.39 14. 2 
1. 20 8 12.87 10.5 9 14.02 11. 4 9 15.41 12. 4 10 16.57 13. 2 
1. 40 7 13.14 9.4 8 14.25 10. 2 8 15.65 11. 1 9 16.78 11. 8 
1. 60 6 13.45 8.2 7 14.51 8. 9 7 15.91 9. 6 8 17.00 10. 2 
1. 80 5 13.81 7.1 6 14.81 7. 6 6 16.22 8. 2 7 17.26 8. 8 

1. 60 0. 00 5 13.81 6.2 5 15.20 6. 6 6 16.22 7. 2 6 17.54 7. 6 
20 5 13.81 7.0 6 14.81 7. 5 6 16.22 8. 1 7 17.26 8. 6 
40 6 13.45 7.8 6 14.81 8. 4 7 15.91 9. 1 8 17.00 9. 7 
60 6 13.45 8.5 7 14.51 9. 2 8 15.65 9. 9 8 17.00 10. 6 
80 7 13.14 9.0 7 14.51 9. 7 8 15.65 10. 4 9 16.78 11. 2 

1. 00 7 13.14 9.1 7 14.51 9. 9 8 15.65 10. 6 9 16.78 11. 3 
1. 20 7 13.14 8.8 7 14.51 9. 5 8 15.65 10. 3 9 16.78 11. 0 
1. 40 6 13.45 8.2 7 14.51 8. 9 7 15.91 9. 6 8 17.00 10. 2 
1. 60 6 13.45 7.5 6 14.81 8. 1 7 15.91 8. 7 7 17.26 9. 3 
1. 80 5 13.81 6.6 5 15.20 7. 2 6 16.22 7. 7 6 17.54 8. 2 

1. 80 0. 00 4 14.25 5.0 4 15.65 5. 4 4 17.00 5. 8 5 17.87 6. 1 
20 4 14.25 5.6 5 15.20 6. 1 5 16.57 6. 4 5 17.87 6. 9 
40 5 13.81 6.2 5 15.20 6. 7 6 16.22 7. 2 6 17.54 7. 6 
60 5 13.81 6.7 6 14.81 7. 3 6 16.22 7. 8 6 17.54 8. 4 
80 5 13.81 7.2 6 14.81 7. 7 6 16.22 8. 3 7 17.26 8. 8 

1. 00 6 13.45 7.4 6 14.81 7. 9 7 15.91 8. 6 7 17.26 9. 1 
1. 20 6 13.45 7.4 6 14.81 7. 9 7 15.91 8. 6 7 17.26 9. 1 
1. 40 5 13.81 7.1 6 14.81 7. 6 6 16.22 8. 2 7 17.26 8. 8 
1. 60 5 13.81 6.6 5 15.20 7. 2 6 16.22 7. 7 6 17.54 8. 2 
1. 80 5 13.81 6.1 5 15.20 6. 5 5 16.57 7. 1 6 17.54 7. 5 
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Two Characteristics, Independent Observations 

P =+0.80 

L0= =5,000 LQ=10,000 L 0 = 20,000 V =40,000 
kl k 2 n x2 , a L l n 2 

*2,a L l n 2 
*2,a L l n A2>a L 

1 
.20 0.00 88 8.08 130.1 L03 9.15 147.6 118 10.27 165. 1 133 11.41 182. 6 

.20 L74 6.72 268.2 209 7.74 311.4 245 8.80 354. 9 283 9.90 398. 7 

.40 56 8.98 80.5 64 10.10 90.3 73 11.22 100. 0 81 12.40 109. 7 

.60 24 10.68 33.0 27 11.82 36.4 30 13.00 39. 8 33 14.19 43. 1 

.80 13 11.90 17.9 15 13.00 19.6 16 14.25 21. 2 18 15.41 22. 9 
1.00 8 12.87 11.3 9 14.02 12.3 10 15.20 13. 2 11 16.39 14. 2 
1.20 6 13.45 7.8 6 14.81 8.5 7 15.91 9. 1 8 17.00 9. 7 
1.40 4 14.25 5.8 5 15.20 6.2 5 16.57 6. 6 6 17.54 7. 1 
1.60 3 14.81 4.5 4 15.65 4.8 4 17.00 5. 1 4 18.25 5. 4 
1.80 3 14.81 3.5 3 16.22 3.8 3 17.54 4. 0 3 18.98 4. 3 

.40 0.00 29 10.30 41.3 33 11.42 34.7 37 12.58 50. 0 41 13.76 54. 4 
.20 56 8.98 80.5 64 10.10 90.3 73 11.22 100. 0 81 12.40 109. 7 
.40 61 8.81 88.7 71 9.90 99.7 80 11.04 110. 6 90 12.19 121. 6 
.60 34 9.98 47.4 38 11.14 52.5 43 12.28 57. 7 47 13.40 62. 8 
.80 18 11.25 25.0 20 12.43 27.4 22 13.62 29. 9 24 14.81 32. 2 

1.00 11 12.24 15.0 12 13.45 16.3 13 14.65 17. 7 15 15.77 19. 0 
1.20 7 13.14 10.0 8 14.25 10.8 9 15.41 11. 6 10 16.57 12. 5 
1.40 5 13.81 7.1 6 14.81 7.6 6 16.22 8. 2 7 17.26 8. 8 
1.60 4 14.25 5.3 4 15.65 5.8 5 16.57 6. 1 5 17.87 6. 5 
1.80 3 14.81 4.1 3 16.22 4.5 4 17.00 4. 8 4 18.25 5. 0 

.60 0.00 15 11.61 20.6 17 12.75 22.6 18 14.02 24. 5 20 15.20 26. 4 
.20 24 10.68 33.0 27 11.82 36.4 30 13.00 39. 8 33 14.19 43. 1 
.40 34 9.98 47.4 38 11.14 52.5 43 12.28 57. 7 47 13.49 62. 8 
.60 32 10.10 45.1 36 11.25 50.0 41 12.38 54. 9 45 13.58 59. 7 
.80 22 10.85 30.1 24 12.06 33.1 27 13.21 36. 1 30 14.38 39. 1 

1.00 14 11.75 18.8 15 13.00 20.6 17 14.13 22. 3 18 15.41 24. 1 
1.20 9 12.64 12.4 10 13.81 13.4 11 15.01 14. 5 12 16.22 15. 6 
1.40 6 13.45 8.7 7 14.51 9.3 8 15.65 10. 1 8 17.00 10. 8 
1.60 5 13.81 6.4 5 15.20 6.9 6 16.22 7. 4 6 17.54 7. 8 
1.80 4 14.25 4.9 4 15.65 5.2 4 17.00 5. 6 5 17.87 6. 0 

.80 0.00 9 12.64 12.5 10 13.81 13.6 11 15.01 14. 7 12 16.22 15. 8 
.20 13 11.90 17.9 15 13.00 19.6 16 14.25 21. 2 18 15.41 22. 9 
.40 18 11.25 25.0 20 12.43 27.4 22 13.62 29. 9 24 14.81 32. 2 
.60 22 10.85 30.1 24 12.06 33.1 27 13.21 36. 1 30 14.38 39. 1 
.80 20 11.04 27.7 22 12.24 30.4 25 13.37 33. 1 27 14.58 35. 8 

1.00 15 11.61 20.6 17 12.75 22.6 18 14.02 24. 5 20 15.20 26. 4 
1.20 11 12.24 14.4 12 13.45 15.7 13 14.65 17. 0 14 15.91 18. 3 
1.40 8 12.87 10.2 8 14.25 11.1 9 15.41 11. 9 10 16.57 12. 8 
1.60 6 13.45 7.5 6 14.81 8.1 7 15.91 8. 7 7 17.26 9. 3 
1.80 4 14.25 5.7 5 15.20 6.1 5 16.57 6. 5 5 17.87 7. 0 

1.00 0.00 6 13.45 8.5 7 14.51 9.1 8 15.65 9. 9 8 17.00 10.5 
.20 8 12.87 11.3 9 14.02 12.3 10 15.20 13. 2 11 16.39 14. 2 
.40 11 12.24 15.0 12 13.45 16.3 13 14.65 17. 7 15 15.77 19. 0 
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P! =+0.80 (continued) 

L 
I 
=5,000 L • ( ^=10,000 •V =20,000 L0= =40,000 

kl k 2 n X 2 , a L l n x2 , a 
L l n 2 

x 2 , a 
L l n X 2 , a L i 

.60 14 11.75 18.8 15 13.00 20.6 17 14.13 22.3 18 15.41 24.1 

.80 15 11.61 20.6 17 12.75 22.6 18 14.02 24.5 20 15.20 26.4 
1.00 14 11.75 18.8 15 13.00 20.6 17 14.13 22.3 18 15.41 24.1 
1.20 11 12.24 15.0 12 13.45 16.3 13 14.65 17.7 15 15.77 19.0 
1.40 8 12.87 11.3 9 14.02 12.3 10 15.20 13.2 11 16.39 14.2 
1.60 6 13.45 8.5 7 14.51 9.1 8 15.65 9.9 8 17.00 10.5 
1.80 5 13.81 6.4 5 15.20 7.0 6 16.22 7.5 6 17.54 8.0 

1. 20 0.00 5 13.81 6.2 5 15.20 6.6 6 16.22 7.2 6 17.54 7.6 
.20 6 13.45 7.8 6 14.81 8.5 7 15.91 9.1 8 17.00 9.7 
.40 7 13.14 10.0 8 14.25 10.8 9 15.41 11.6 10 16.57 12.5 
.60 9 12.64 12.4 10 13.81 13.4 11 15.01 14.5 12 16.22 15.6 
.80 11 12.24 14.4 12 13.45 15.7 13 14.65 17.0 14 15.91 18.3 

1.00 11 12.24 15.0 12 13.45 16.3 13 14.65 17.7 15 15.77 19.0 
1.20 10 12.43 13.7 11 13.62 14.9 12 14.81 16.1 13 16.06 17.4 
1.40 8 12.87 11.4 9 14.02 12.4 10 15.20 13.4 11 16.39 14.3 
1.60 7 13.14 9.0 7 14.51 9.8 8 15.65 10.5 9 16.78 11.3 
1.80 5 13.81 7.1 6 14.81 7.6 6 16.22 8.2 7 17.26 8.8 

1. 40 0.00 4 14.25 4.7 4 15.65 5.0 4 17.00 5.4 4 18.25 5.8 
.20 4 14.25 5.8 5 15.20 6.2 5 16.57 6.6 6 17.54 7.1 
.40 •5 13.81 7.1 6 14.81 7.6 6 16.22 8.2 7 17.26 8.8 
.60 6 13.45 8.7 7 14.51 9.3 8 15.65 10.1 8 17.00 10.8 
.80 8 12.87 10.2 8 14.25 11.1 9 15.41 11.9 10 16.57 12.8 

1.00 8 12.87 11.3 9 14.02 12.3 10 15.20 13.2 11 16.39 14.2 
1.20 8 12.87 11.4 9 14.02 12.4 10 15.20 13.4 11 16.39 14.3 
1.40 8 12.87 10.5 9 14.02 11.4 9 15.41 12.3 10 16.57 13.1 
1.60 7 13.14 9.0 7 14.51 9.7 8 15.65 10.4 9 16.78 11.2 
1.80 6 13.45 7.4 6 14.81 8.0 7 15.91 8.6 7 17.26 9.1 

1. 60 0.00 3 14.81 3.7 3 16.22 3.9 3 17.54 4.2 4 18.25 4.6 
.20 3 14.81 4.5 4 15.65 4.8 4 17.00 5.1 4 18.25 5.4 
.40 4 14.25 5.3 4 15.65 5.8 5 16.57 6.1 5 17.87 6.5 
.60 5 13.81 6.4 5 15.20 6.9 6 16.22 7.4 6 17.54 7.8 
.80 6 13.45 7.5 6 14.81 8.1 7 15.91 8.7 7 17.26 9.3 

1.00 6 13.45 8.5 7 14.51 9.1 8 15.65 9.9 8 17.00 10.5 
1.20 7 13.14 9.0 7 14.51 9.8 8 15.65 10.5 9 16.78 11.3 
1.40 7 13.14 9.0 7 14.51 9.7 8 15.65 10.4 9 16.78 11.2 
1.60 6 13.45 8.3 7 14.51 9.0 7 15.91 9.7 8 17.00 10.3 
1.80 5 13.81 7.3 6 14.81 7.8 6 16.22 8.5 7 17.26 9.0 

1. 80 0.00 2 15.65 3.0 3 16.22 3.3 3 17.54 3.5 3 18.98 3.6 
.20 3 14.81 3.5 3 16.22 3.8 3 17.54 4.0 3 18.98 4.3 
.40 3 14.81 4.1 3 16.22 4.5 4 17.00 4.8 4 18.25 5.0 
.60 4 14.25 4.9 4 15.65 5.2 4 17.00 5.6 5 17.87 6.0 
.80 4 14.25 5.7 5 15.20 6.1 5 16.57 6.5 5 17.87 7.0 

1.00 5 13.81 6.4 5 15.20 7.0 6 16.22 7.5 6 17.54 8.0 
1.20 5 13.81 7.1 6 14.81 7.6 6 16.22 8.2 7 17.26 8.8 
1.40 6 13.45 7.4 6 14.81 8.0 7 15.91 8.6 7 17.26 9.1 
1.60 5 13.81 7.3 6 14.81 7.8 6 16.22 8.5 7 17.26 9.6 1.80 5 13.81 6.7 6 14.81 7.3 6 16.22 7.8 6 17.54 8.4 
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