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SUMMARY

The scenario for the interrupted time series quasi experiment
(ITSQE) is a set of n = n; + 1, observations recorded at equispaced
epochs of time, with an intervention or treatment Iintroduced after the
nlth observation. Since the observations are correlated, autoregressive-
moving average models have been used to describe the behavior of obser-
vations obtained from the ITSQE. However, in order to take intc account
that the Intervention has the potential to affect the post-intervention
level of the time series, an additive shift parameter is included in the
post-intervention model. In this dissertation, the models for the
ITSQE were made even more flexible by taking into account that the
intervention also has the potential to affect the variability-
covariability of the process. These models were designated the multi-
consequence intervention medels.

Two methods of parameter estimation were investigated for the
multi-consequence intervention model with particular emphasis directed
towards the first and second order multi-consequence intervention model.
The first method was designated "iterative conditional least squares
estimation,”" and the basic idea is to transform the n original obser-
vations to another set of observations amenable to statistical linear
model analysis. A search is conducted over the permissible parameter
space of the moving average parameters until those values are found
which minimize the sum of squared residuals of the transformed obser-

vations. The method of maximum likelihood was the second methed.



While closed form expressions were obtained for the level and shift
parameters, no such expressions could be obtained for the moving average
parameters. However, an algorithm was presented for efficiently calcu~
lating the likelihood function. One advantage of using the maximum
likelihood method is that an asymptotic likelihood ratio test can be
employed to test whether the pre-intervention moving average parameters
are equal to the post~intervention moving average parameters. The
Appendices contain computer programs for both methods of estimation.

The detection of a shift in the level of an underlying process
is also a problem of utmost importance in the area of quality control.
Since the quality control scemario involves repeated samples of size n,
the monitoring of the process level is usually recorded on a control
chart. Whether there be one or multiple quality characteristics, the
control chart scenario had previously assumed independent observations.
This research has extended that to include correlated observations.
Furthermore, the properties of the statistics used to monitor the
process were also investigated.

For the quality control scenario, this research has also deter-
mined the economic parameters of sample size and control chart constant
by using the scheme of minimizing the average run length of an out of
control process for a large fixed value of the average run length of an
in control process. This was done for two cases: multiple (2 and 3)
quality characteristics for independent obse-vations; and, one quality
characteristic for first-order serially correlated aobservations.

Finally, the concept of a multivariate, multiconsequence inter-

vention model was introduced, and its properties were presented.



CHAPTER I

INTRODUCTION

In recent years, there has been Ilncreasing demand by consumers
for quality products, and there is no sign of abatement, In order to
be responsive to this demand, manufacturers have increasingly adopted
various techniques of statistical quality control. One technique that
has been very successful in monitoring a process is the contrel chart.

Shewhart [59] 1s generally credited with the development of the
control chart in 1924, The basic idea behind the control chart is that
there are two sources of variation in the quality of a product: chance
causes and assignable causes. While the chance cause variation cannot
be controlled, it is assumed that this variation follows a certain
statistical pattern such as the normal distribution. When the variations
do not conform to this assumption, a search is undertaken for one or
more assignable causes such as a difference among raw materials. Addi-
tional discussion of this can be found in Duncan [24] and Grant and
Leavenworth [30].

There are two distinct phases of control chart practice. The
distinction being that in Phase I the control chart is used for
analyzing past data for a lack of control and to assist in establishing
control charts when no standards are given while in Phase II the chart
is used to detect any departure of the underlying process from standard

values. This dissertation is primarily concerned with Phase IT,



Furthermore, although contrel charts are used to monitor both the process
mean and variability, this dissertation concentrates on those used for
the mean. Thus, primary attention is directed towards Phase II control
charts for the mean.

In order to implement a Shewhart chart, a sample of n independent
observations is obtained from the process at time t, and the value of a
statistic (wt) is calculated and plotted on a control chart. The chart
usually has a central line and upper and lower control limits, which
are taken to be E(W) = 3#5;;?%?. If the value of the statistic falls
within E(W) =* BVV;;TET, the decision maker can safely conclude that
the process is under control. If W falls outside the control limits,
assignable causes of variation are sought. With respect to monitoring
the process mean, W is usually taken to be i (the sample mean). Further-
more, if it can be assumed that the process is normally distributed with
the nominal values of the process mean and standard deviation denoted by
“0 and 0y respectively, then upper and lower control limits are given
by uy * 3(9,/7n).

Two underlying assumptions in the methodological development of
control charts are that the process is normally distributed and the
observations within a sample are independent as well as the between
sample values of X. Quite frequently, these assumptions are not
warranted. The normality assumption is frequently justified by the
central limit theorem. Moreover, a recent paper by Schilling and
Nelson [57]) provides tables which show the rate of approach of the

distribution of sample means to normality for various underlying

distributions and sample sizes. One of their findings is that this



rate of approach is particularly slow for exponential and contaminated
distributions.

Although a failure to satisfy the normality assumption is a
serious error, a fallure to satisfy the independence assumption is by
far the more serious type of error. This has been demonstrated by
Daniel [16], Scheffé [56], and Padia [47]. Actually, their investiga-
tions were performed for significance tests for the mean of a normal
population. However, most of their results are applicable to control
charts for the mean because of the one-to-one correspondence between
control charts and significance tests. Walsh [g7] has investigated
the effect of intraclass correlation (the correlation between each
two sample values is the same) on the significance level of the test
for a single mean of a univariate normal population, and this has been
extended by Basu, Odell, and Lewis [12] to samples drawn from a multi-
variate normal population. However, intraclass correlation appears to
be a rare phenomenon in quality control for one is far more likely to
encounter serial correlation such as was investigated by Scheffé and
Padia. Although research into the effect of serial correlation on
specific quality control techniques appears to be scarce, Johnson and
Bagshaw [39][40] have investigated its effect on the CUSUM chart. Their
primary conclusion is that the cusum chart is not robust to departures
from independence.

Chapter 1I of this dissertation is an attempt to partially f£ill
the existing gap concerning the effect of correlated abservations on
Shewhart control charts for the mean. The adaptation and development

of control charts for the mean in the presence of correlated sample



values will be investigated for both univariate and multivariate
characteristics. 1In the latter case, the quality of each item is
dependent upon several characteristics. Thus, there is correlation
within each vector of measurements as well as across the vectors of
measurements for a given sample. However, there is no correlation
among the vectors of different samples. The risk properties of the
statistics developed for correlated observations will be explored, as
well as the power of the contrpol chart. Examples will be provided.

While Chapter II develops the statistics to be used in the
presence of correlated observations, it leaves unanswered the questions
of how large a sample to select and at what wvalue should the control
chart constant be set, The answers to these questions are investigated
in Chapter IV in accordance with the scheme of minimizing the average
run length of an out of control process for a large fixed value of the
average run length of an in control process. This scheme was originally
used by Page [48] for one quality characteristic and uncorrelated
observations. By comparing our newly developed results with thosge of
Page, the effect of correlated observations and multiple quality charac-
teristics can be determined. Although the extension of Page's scheme
dees not answer the question of when to sample, it is felt that his
scheme is the most easily understood and implemented.

A very useful representation of correlated observations is
provided by the autoregressive, moving average models of order (p,q}:
where p represents the order of the autoregressive compoment and ¢q that
of the moving average component. Although these models have existed

for quite some time, it is only within the last few years that they



been widely adopted to model various temporal occurrences. One reason
for this popularity is the publication of Box and Jenkins [13]. They
have increased the flexibility of these models to allow for processes
which exhibit a nonstationary level and a seasonality component. For
this reason, the most general of these models are dencted as Box-
Jenkins multiplicative empirical stochastic models of order (p,d,q) x
(P,D,Q)S where d denotes the degree of differencing needed to achieve
stationarity and the upper case letters refer to the order of the
seasonality component. The popularity and success of Box-Jenkins
models is evident by the increasing number of textbooks and journal
articles In diverse areas devoted to this subject.

Some of the more recent textbooks are those of Nelson [46],
T. W. Anderson [9], Fuller [26], and 0. D. Anderson [8]. Although
the number of journal articles is too exhaustive too list, the
following represents a few of the varied applications: Saboia [54]
improved present methods of forecasting births by using these models,
Leuthold et al [45] used these models to forecast daily hog prices;
Thompson and Tiao [63] analyzed telephone data with these models,
and the list goes on. One of the most successful modeling applications
has been by Deutsch [19], [20] and Deutsch and Rardin [22], [23], who
employed these models in describing monthly crime occurrences. They
have shown that each of the seven index crimes across ten different
cities was represented by the same form of model.

In discussing the estimation of the model parameters, Box and

Jenkins [13] given primary emphasis to the estimation of the autore-



gressive and moving average parameters with only a passing interest in
estimating the level of the series. The need for a reversal of this
emphasis arose with the introduction of the interrupted time-series
quasi-experiemnt (ITSQE) by Campbell and Stanley [15] in 1963. In the

ITSQE, n, equally spaced observations are available prior to the

1
implementation or occurrence of some treatment. After the intervention
occurs, a set of n2 observations becomes available. For example, the

‘observations might be the monthly occurrences of homicide for the city
of Boston and it is suspected that a change in the level could occcur
because of the introduction of a gun control law.

Inferential statistical methods for the ITSQE were first
developed by Box and Tiao [14] for the integrated first-order moving
average process. Although their results were applicable to only this
model, it enabled improved data analyses to be performed for many
diverse areas. For example, Glass [27] used the Box and Tiao results
to analyze the Connecticut speeding crackdown, while Deutsch and
Alt [21] used it to investigate Massachusetts' gun control law. Glass,
Wilsen, and Gottman [28] extended the Box and Tiao results to include
other types of models. However, their model formulations assume that
the autoregressive, moving average parameters (which describe the
process covariance) before the intervention are the same as those
afterwards. In Chapter III, these models are made more flexible to
allow for the consequences of the intervention affecting these para-
meters as well as the process level, For this reason, the extended

models are called multi-consequence intervention models.



After formulating the multi-comsequence intervention model,
Chapter III then considers the estimation of the model parameters via
least squares and maximum likelihood. The least squares procedute
consists of transforming the original nl + n2 observations to another
set of variables amenable to statistical linear model analysis. 1In
the maximum likelihood estimation procedure, explicit expressions can
be obtained for the estimates of the level and shift parameters for
fixed values of the moving average parameters. While such closed form
expressions do not exist for the maximum Iikelihood estimates of the
moving average and autoregressive parameters, an algorithm is presented
for the numerical computation of these estimates. Chapter III also
demonstrates how the least squares estimates differ from the maximum
likelihood estimates.

In investigating the effect of an intervention on a temporal
sequence of occurrences, it quite frequently occurs that the interven-
tion has also affected another temporal sequence of occurrences. For
example, when a municipality introduces a gun control law, it may not
only affect the level of its own monthly occurrences of homicide, but
also the levels of surrounding municipalities. In order to study the
simultaneous effect of an intervention on two or more temporal sequences
of occurrences, Chapter V intreduces the multivariate multi-consequence
intervention model. Chapter V also considers the least gsquares esti-
mation of the model parameters.

Lastly, Chapter VI discusses conclusions and directions for

future research.



CHAPTER II
CONTROL CHARTS FOR CORRELATED OBSERVATIONS

In Chapter I, a brief introduction to the concept of statistical
quality control was presented. The first section of this chapter
elaborates upon that introduction by reviewing the statistical basis
of the traditiomal control chart used to maintain surveillance over the
process mean when there is only one quality characteristic and the
sample is random. It is shown that the statistic used to monitor this
control has favorable risk properties both in the traditional sense as
well as in the Bayeslan and minimax interpretations. Section 2.1.2
extends the work of the first section by allowing the sample elements
to possess any type of known autocorrelative structure. The statistic
used here to monitor control alsc enjoys favorable risk characteristics,
and this statistic reduces to that used 1in the first section when there
is no autocorrelation. Section 2.2.1 continues to elaborate upon the
first section by assuming that the quality of process output is
governed by several characteristics. Thus, each sample element is a
vector of correlated observations. However, as in Section 2.2.1, it
is assumed that the sample elements are uncorrelated. Again, we explore
the risk properties of the statistic used. Section 2.2.2 treats the
most general problem: the quality of process output is governed by
several characteristics and there is correlation across the vectors of

observations. After exploring the risk properties of the statistic



used, we formulate a decision rule for maintaining contrel over the
process mean vector. To illustrate the foregoing concepts, several
examples are presented. Selected portions of this chapter appear in

a paper by Alt, Deutsch, and Walker [5].

2.1 One Quality Characteristic

2.1.1 Independent Observations

When there is only one characteristic determining the quality of
output from a process, measurements denoted by Xy» Xpseesy X, are
obtained from a sample output of size n, and these measurements are
used to make inferences about the process quality. If the process has
been refined to the extent that assignable causes are not affecting the
variation in the measurements, then any remaining variation can be
attributed solely to chance causes, which are inherent in the process.
Thus, in the absence of assignable causes of variation, the measurements
should behave as a sample coming from a probability distribution which
has a certain mean and variance. If this is indeed the case, then the
Process is said to be in a state of statistical control. To maintain
surveillance over the state of control, successive samples of size n
are obtained, a summary statistic is calculated from each sample's
measurements, and this statistic is plotted on a control chart., If
this statistic falls within certain limits on the control chart, the
process is judged to be in control.

This chapter will consider the use of control charts for watch-
ing over the mean of a process, when the process is already in an

existing state of contrel. That is, the process has been refined and
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has evolved to an in-control state where the underlying probability
distribution is completely known, and the parameters of the distribution
have stabilized to fixed values with interest centered on the mean of
the probability distribution. Guttman, Wilks, and Hunter [35] state
that control charts used for this purpose are essentially devices for
detecting important departures from an existing known state of statis-
tical control and are called "theoretical control charts.” Duncan [24]
refers to these charts as "charts for attaining current contral." Quite
frequently, they are also called "charts based on standard values"
because parameter values are specified at which the process can hope-
fully be controlled.

Let X be the random variable associated with the underlying
probability distribution of the measurements. It is not unreasonable
to assume that X is normally distributed, denoted X ~ N. Let Mo and
o denote the standard or nominal values of the process mean and
variance, respectively. The values of Mo and ch may be derived from
past data (where the data base is sufficiently large so that By and 012
may be treated as parameter values and not their estimates), determined
from experience with similar past processes, or selected to attain
certain objectives.

In a single sample of size n from X, let Xl, XZ""’ Xn denote
X

the elements of the sample and assume that X Xn constitute a

1% 2°c >

random sample. That is, Xl, XZ""’ Xn are independent random variables

such that

n
£ nofy () 1y

(X, Xqseee, X ) =
xl,xz,...,xn 1° %2 n {n1
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where

-1/2

£y () = @roY M2 exp (-0xy - W20 D)) @)

Using equations (1) and (2), it is easily shown (see, for example, Hoel,
Port, and Stone [37]) that the maximum likelihood estimator of u is
given by X and that X is a sufficient, unbiased estimator of u with
variance given by UIZ/n. Although X has very many other desirable sté—
tistical properties, only those relating to its risk will be stated.

Let DO denote the class of all unbiased estimators of u. Then, in DO .

(1) X 1s the uniformly minimum variance unbiased estimator of
U, frequently denocted UMVUE;

(11) X is a Bayesian estimator with respect to every prior when
the loss function is quadratic; and,

(111) X 1s a minimax estimator when the loss function is quadratic.

It will be shown that (i) implies (ii) and (iii).

Property (i) is a direct result of the Cramér-Rao inequality and
is demonstrated in numerous textbooks (see [37], [65]). If % =
(Xl, Kpseees Xn)t and d(%) is any other estimator belongton to DO’ then
property (i) can be stated as ciz = Ex(i - u)z < EX(d(ﬁ) - u)2 = cdz
for all u where the subscript 5 on th: expected va}ue operator iIndicates
that the expectation is over the sample result space of the Xi's.
Property (i) can also be restated in terms of loss and risk. Let
L{u, d(%)) be the loss associated with using the estimator d when p is

the true process mean. Only quadratic loss functions will be con-

sidered whereby L(u, d(X)) = (d(X) - w)?. Let R(u, d) denote the risk
4 y
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incurred when y 1s the true mean and the estimator d(X) is used.
")
Intuitively, it seems reasonable to minimize the average quadratic

loss and this is generally defined to be the risk. Specifically,

Reu, ) = B LGu, 4(D) = B@® - 0% = o,%
4" 4"

Thus the mean square error reduces to the variance in DO‘ Note that the
risk is usually a function of u. Thus, to say that X is a minimum
variance estimator in DO is equivalent to saying that X is a minimum
risk estimator for all u when quadratic loss is used, and then R(u, X) =
clzln.

In order to demonstrate property (ii), recall that the mean risk
denoted by r(m, d(%)), for a given prior distribution w(u) and estimator

d(%) is defined to be
_ - _ 2
r(m, d(ﬁ)) =E Riu, &) Eu[Eﬁlu(d(E) wol o,

when quadratic loss is used. The estimator dy is called a Bayes' rule
if it minimizes the mean risk when the prior is w(u), and r({%, dO(E)) is
called the Bayes' risk. When the loss functlon is quadratic, Hoel, Port,
and Stone [37] show that the Bayes' rule is the mean of the posterior
distribution of u. To show that X is a Bayes' rule with respect to
every prior for a quadratic loss in the class DO of unbiased estimators,

let d(ﬁ) be any other estimator in DO' Then, from property (i),
2
= E -
r(m, d(ﬁ)) p[E§|u(d§§) w)“l

>

ot sl G- Wi, B, @
4"
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where aiz = 02/n. However, in general, when a quadratic loss function
is used, there will be blased estimators which have less mean risk
relative to a given prior than any unbiased estimator. In order to
demonstrate this, consider the following example from Hoel, Port, and
Stone. Let Xl, XZ""’ Xn denote a random sample from X, where

X~ NG, 012) with 1 unknown and UIZ known; and, let the prior density

also be normal with mean B and variance uz, both of which are specified.

Then the Bayes' rule is given by
2 2 = 2. 2
do(ﬁ) = (UI B + a nX)/(GI + o' n)
with a Bayes' risk equal to
r(r, 4o = @2 0,9/ % + o )
> 0, I I *
Thus,
r(h, @) /r(r, B = [1+ (@ /o))

Since (Uizln 0% > 0, [1+ (GIZ/n 0?17t < 1, and r(m, do(ﬁ)) < r(m, X).
Thus the mean risk for the biased Bayes' estimator is less than the mean
risk for the unbiased Bayes' estimator.

In order to show property (iii), recall that an estimator d0 is
said to be a minimax estimator in the class D of estimators if

max R(u, do) = min max R(u, d) .
U del g

Since U is restricted to DO’ the class of unbiased estimators, and a

quadratic loss function is being used, R(y, d) = cdz. By property (i),
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022 < cdz for every p and for all deDO, or sup 0—2 Ssupo 2 for all
X " d
deUO. That is, sup ciz = min sup Udz, and property (iii) is estab-
i deDo u
Ilished.

Properties (i), (ii), and (iii) essentially state that, in the
class DO’ X 1s an estimator with uniformly best risk for all u and thus
this estimator is a minimax estimator as well as a Bayes' rule, regard-
less of the chosen prior. As stated by Walker [66], X would "be
eminently satisfactory from a minimal risk point of view."

Additional rationale for using X as the estimator for u is pro-
vided by thinking of the elements in the sample as being generated from

the following linear model:

X, 1 [ a;

X2 =| 1 (u + a2

: : . (4)
-X“. ] | n |
N St

X A U

Ny y

where the disturbances ai are such that

t 2
E(E) = 2. E(H‘H ) =90 I, (5)

The assumptions stated in equations (4) and (5) specify what is known
as the classical linear regression model with the exception that caz is
known. Under these conditions, the Gauss-Markov theorem states that

the best linear unbiased estimator of u is given by the least-squares
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estimator (At A)_l At f, which reduces to X, and the variance of this
leést—squares estimator 1s given by Uaz(At A)_l, which reduces to caz/n.
A proof of the Gauss-Markov least squares theorem is given in Goldberger
[29]. Thus, even though the least-squares estimator is identical with
the maximum likelihood estimator, it was derived under different assump~
tions, the most important of which is the absence of any distributional
assumptions concerning the ai's and equivalently of the Xi's. In this
absence, one cannot say X is normally distributed without reverting to
the Central Limit Theorem. Note that, when the linear model is assumed
as a process generator, the variance of the ai's is identical with the
‘s, or 032 = UIZ.

Now that justification has been given for using X as an esti-

variance of the Xi

mator for u, it will be shown how X is used in maintaining statistical
control of uo.

When there is only one quality characteristie, which is normally
distributed, with standard values specified for the process mean and
variance and successive random samples of size n are generated from
this process. Shewhart [59] proposed that in order to maintain surveil-
lance over U, one should plot the successive values of X on a chart
which has a central line (CL) and upper (UCL) and lower (LCL)} control

limits of the form:

UCL = uy + 2z, (aI//H)

CL = u, ’ (6)

LCL = ujy - 2,/ (01//5) .
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The quantity z,/o denotes the upper ao/2 percentage point of the
standard normal random variable. Usually, Z,/2 = 3.0. A typical X-

chart is shown in Figure 1. If any x's plot above UCL or below LCL,

X

UO + B(UI//g)

5 10 15 Sample no.

Figure 1. An X-chart when n = 5

then a search is undertaken for any assignable causes.
The rationale behind the limits presented in equation (6) is that
since X n N(uo, 012) when the process mean equals the nominal value Hq

and Xl, Xz,..., Xn 1s a random sample from X, then X o N(uo, clz/n) and
- < ¥ < 1 =
P[u0 za/z(cI//E X Zuy+ zalz(oI//ﬁ)] =1~a. (7)

Thus, the center line (CL) is set equal to E(X) while the upper and
lower control limits equal E(X) * koi’ where k > Q. Here k = za/2'
For a single sample of size n, the control chart technique can

also be viewed as a hypothesis testing problem. Namely, one is testing
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Ho:u = uo vs. leu # uo with known ¢ The likelihood ratio test,

I.
details of which are given in Freund [25], yields the following critical

region:

w = {(xl, Xpseeo xn):; <ug - zalz(cllfgj}

(8)
LJ{(xl, Kypeers xn):E > ug + zalz(cI//H} s

when u = Hg- Note that there is a one-to-one correspondence between
the out-of-control region of the X-chart and the critical region of the
likelihood ratic test, given in equation (8). Thus, the control chart
has associated with it the probability of Type I error, dencted by a,
which is the probabllity of saying that the process mean has shifted
from Ho when, in fact, it has not. In this instance, a search would be
made for an assignable cause when none exists. When the control chart
constant zc”2 is set equal to 3.0, o = 0.0027 and only rarely would a
search be made for a nonexistent assignable cause. Also inherent in
the hypothesis testing viewpoint 1s the concept of the power of the
control chart, denoted by n(ul), which is the probability of detecting

that the process mean has shifted from Hg to a value Hye It ig easily

shown that

Ty = ez, p - §Om/a)) + 8(-z,  + §(/oD) (9

where ¢ = Mg — ¥ and ¢ denotes the cumulative distribution function of
the standard normal random variable. When the hypothesis testing view-
point is adopted for successive samples of size n, the X-control chart
technique can be viewed as repeated tests of significance. That is, the

decision maker is successively testing HO:u = Uy Vvs. Hl:u # Hge
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Inherent in the development of the likelihocod ratio test
critical region were the assumptions of process normality and independ-
ence of the sample elements, which again stresses the importance of
these assumptions. In the next sectiomn, departures from the independence

assumption will be investigated.

2.1.2 Dependent Observatioms

The development of the control limits, presented in equation (6),
was based on the assumptions that X v N(uo, 012) and Xl, X2""' Xn was
a random sample from X. This current section covers the development of
control charts for the mean when the sampled elements are correlated.

As a first step in this direction, we will consider what the effects
are when one uses the control limits given in equation (6) when, in
fact, the observations have a first-order serial correlation with the
serial correlation coefficient donated by p. Many authors, starting at
least as far back as Student [62],have reported the presence of such
correlation in their successive measurements.

To investigate the effect of serial correlation, assume that the
n sampled elements are jointly normal with E(Xi) = Hg» var(Xi) = ccz,

_ 2 o t_
and Cov(Xi, Xi+j) = po, for j 1 and O otherwise. If we let %

[Xl, Kgseens Xn], then the joint density of Xi's is given by

t. _ -n/2|. -1/2 t -1, _
f§t<§ s ug) = (2m) z_| exp {~(1/2)Gx - " I 7Gx -p},  (10)

where yu denotes E(X) and Zn denotes the (nxn) covariance matrix of
Q¥ L")

the Xi's. Here
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_ . - )
2
1 cc pa v 0
2
]l pcc cc e 0
E = g = %n Ko and En = . Ly
1 0 0 v a2
¢
s | _

If Pn is the correlation matrix, then P = D(l/cc) Zn D(l/o‘c) where D(l/dc) is
the {nxn) diagonal matrix with entries (llcc). Grenander and Rosenblatt
[34] have shown that a necessary and sufficient condition for Pn to be
positive definite is that |p| < (2 cos[n/(n + 1)])-1. Thus, all values
of p in the interval (-1, 1) are not possible. However, as noted by
Scheffé [56], it follows that all values in (-1/2, 1/2) are possible

for all n. Scheffé has also shown that, under the conditions in

equations (10) and (11),
= 2 -1
X v N(ugs (o /m[1 + 21 -a)D). (12)

Thus, serial correlation affects only the dispersion of X and not its

location. Equation (12) can be used to determine the true probability
of Type 1 error, denoted by g when one uses the control limits given
by equation (6) assuming a nominal probability of Type I error denoted

by @. Specifically, 1f B = [1 + 2p(1 ~ n 1)1, then
6y = P[| (X - uo)/r_x/cc| > za/2] =Pl (X - uo)/E/BocI > zor./Z/B]

= P[lZl > ZG/Z/B] s
where Z denotes the standard normal random variable. For a = .05,

Scheffé has prepared a table giving the effect of p = (-0.4)(0.1)(+0.4)



20

0 The table indicates that for p < 0, %9 < o = 0,05, while for

p > 0, @y > a = 0.05. Obviously for p= 0, ag = G. Since Scheffé's
table was prepared exclusively for o = 0.05, and large n, Table 1 was
prepared to indicate the effect of p on @4 when the nominal level of
significance is 0.0027 and n = 4 and 5, values frequently used by
quality control decision makers. This table was prepared using Univac's
PNORM subroutine in the MSFLIB Library. These results agree with those
of Scheffé's in that, for p < 0, the true probability of Type I error
(ao) is less than the nominal value of .0027 while, for p > 0, the true
probability is greater than the nominal value, Inspection of Table 1

also reveals that, for p < 0, %y decreases as n increases from 4 to 5,

while, for p > 0, g increases as n increases from 4 to 5.

Table 1. Values of Actual Significance Level (ao)
when Nominal Level is 0.0027

p -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4

5 4 3

n=4 .21+10° 7 .52¢10"° .34+107° 0.0011 0.0027 0.0052 0.0085 0,0127 0.0177

6 4 3

n=5 .57+10 ° ,32+10" ' ,27+10"~ 0.0011 0.0027 0.0053 0.0090 0.0137 0.0192

Equation (12) can also be used to derive a revised set of control
limits when p is known from a large amount of past data or determined
from experience with similar past processes. It immediately follows

that
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UCL = ug + zu/z("c/‘/’_‘)[l + 204(1 - n_l)]l/2
CL = Ho ’ (13)
LCL = ¥, - zulz(cc/\/ff)[l + 20,(1 - n_l) 1/2 s

where Po denotes the standard value of the serial correlation coeffi-
cient. The limits given by equation (13) differ from those derived
under the assumption of independence by the factor B==[li-2p0(1-n-l)]l/2,
where B = 1 for Py = 0. Thes, if Py = 0, the control limits given by
equation (13) are identical with those of equation (6) provided g (the
standard deviation of the. correlated observations) equals UI (the
standard deviation of the uncorrelated observations). Additional
explanation of the relationship between a. and Iy will be provided later
in this sectiom.

Padia [47] extended Scheffé's work by investigating samples which

have a kth order autocorrelative structure. If pk denotes the last non-

zero lag autocorrelation, then he has shown that
=y 2
Var (X) = (cc /a)[1 + 2(pl o, o+ pk)] (14)

to order (1/n). Using equation (14), he determined the effect of
various autocorrelative structures on the true probability of Type I
error when testing Hy:u = u, vs. Hy 1y # M- Although ome could use
Padia's results in establishing new control limits, it would be prefer-
able to have a more general approach. The approach that will be taken
1s to find the maximum likelihood estimator of u, when there is any

type of known correlative structure. Since a geometrical approach will
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be adopted, a few basic properties of n-dimensional Euclidean space,
denoted by R°, will be reviewed.
One of the most frequently occurring examples of a real vector
. ph_ .
space is R —-le, Kpsesrs xn). Xy is reall. Let Ej denote the (nx 1)
vector with a 1 in the jth'position and 0's elsewhere. Then, every
vector %aRn is such that x = E x84 and {el,..., e } is called the
i=1
standard basis for R". Another operation that is frequently defined on
R® is the inner product of two vectors, denoted by <+, *> , where for
n
n t
X, XSR > <X, 7> is defined to be X X = z Xy ¥y Since the inner
product defined on R" is nonnegative (<£, x> Z 0 with«x, x> = 0 1if and
LAVI T
only if x= g), conmutative (<§, x> = <X’ §>), and linear
n
(<§1, ax, + §3> = a<z1, m2> + <x1, X3 >}, the ordered pair (R, <+, *>)
is said to be an inner product space. In an inner product space, two
vectors x, zeR are said to be orthogonal is <x, x> = 0. Thus, the
n n v
basis vectors Ej are mutually orthogonal For xeRn, define the norm of
LIV}

X, denoted by ||x||, to be ll [ = » Since the

1==1
norm defined on R" satisfies the properties (i) Il%ll = Q if and only
if X = 0,(11) [laxll = | I]x]I, where o 1s a member of the reals, and
(iii) [|x + X |[ = ||x1|| + ||x2|| the ordered pair (R", [1<1]) is

called a normed vector space. The standard basis for R 1s said to be
orthonormal since [|$jll = 1. Since the square root of the innmer product
defines a norm for Rn, the ordered pair (Rn, <§, §>l/2) is a normed
n
n , 2.1/2
vector space. For X, XER , define d(z, x) ||§ X'l [iél(xi yi) ] .
Since this real-valued function is nonnegative (d(f’ x) = (0 if and only

if x = X)’ commutative (d(ﬁ’ z) = d(x, E))’ and satisfiies the triangle

inequality (d(x, z) = d(x, x) + d(y, z)), the ordered pair (R, d) is
o o N NN
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called a metric space, d 1s called the metric, and dQﬁ, x) is called the
distance between X and Je The metric defined above is frequently called
the Euclidean metric. Additional details of these spaces can be found in
Kasriel [41].

The Euclidean metric. is very satisfactory for quite a.few optimiza-
tion problems. For example, in Section 2,1.1, the elements of the sample
were independent, identical normally distributed random variables; and to

find the maximum likelihood estimator of u, it was required to find that

n
value of u which minimizes Q(u) = } (x.-—u)2 = [[x-xj |[2. This is
i=1 ° ~ Ch
equivalent to finding the orthogonal projection of x on L, the line gen-
Y

erated by jn’ where this projection is merely some constant multiple of
N

j_, denoted by c¢j_. It immediately follows that x - cj_ 1is orthogonal to
AN AR A, an

A~

every vector in L. Specifically, <u %n’ X~ M %ﬁ> =0, and » =

<j., X2/<j_, j_> = X, as previously stated. However, it is sometimes
AT A, ,“n ,bn
convenient to use a non-orthonormal basis and it is necessary to modify

the inner product defined on R%, TFor example, let B be an (nxn) non-

t
X X
n oA

singular, symmetric matrix and let w = Bx. Then <x, x>. =
g ’ ~ N At AL

wt(Bt)-l B-l we=wt Aw = <w, w>», where A = (BBt)-l. Now if A is an
" Y nS o, A

(nxn) positive definite matrix and <w, £>A is defined to be wt Aw for
y y ny

weRn, then (Rn, <s, ->A) is an inner product space, (Rn, [ . I) is a

Y]

normed vector space with ]|x[| = W, W, and (Rn, d) is a metric space
Y

with d(xi, Hz) = llﬁl - xz||. An additional explanation of inner product

spaces in the metric of A is given in Timm [64].

The maximum likelihood estimator of u will now be found.

Theorem 2.1: Let Xl, xz,..., Xn be jointly normal with mean vector ¥

and covariance matrix I as given in equation (15):
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[ u ] (1] [ 2 g a, |
s c 12 " in
2
u b g T e c
_ ) _ 12 c 2n
2
-u- 1 _cln %n e % |

Then the maximum likelihood estimator of u, denoted by ﬂ is given by
=& A 3/ 5 §) (16)
"~ n-n aln n An’ ?

where A = E_l.
n n

Proof: The likelihood function, denoted by L(n), is given by

L = (2m)” ®/Dy |12

N o
exp {-(1/2)(3‘5 - U %n) A (x-w ':\!‘n)} . an
Since A is a positivedefinite matrix, <r, s>A = rt A s is an inner product on

VR » I
”r ” <r, r> l/zanorm, and “E,_ EH = <£ - f,’ ‘1\:'— §>Al'/2 a metric for g, geRn.

Now the 1ikelihood function will be a maximum when the nonnegative quadratic form,
Q(r), in the exponent is a minimum, where Q(u) = (x - ¢ j )t A (x -1 % ) =

Ny AL . a, n

. 2 , A
Hz - U Q,n” . Thus we wish to find that vector u dn lying in the line
L generated by r-?,n’ which is closest to x. This is shown in Figure 2,
n
But, the vector in L lying closest to X is the projection of x onto L,
Ay

denoted by P (x). Since X - P (x) is orthogonal to every vector in L,

~

<F‘(x),x—F’(x)A—Oor‘mJ,x—ujnA 0. 'I’hus,1‘1“'_1,:;:}A
l

~2 - _o<s
- d Fln’ r’ln!‘x Oandu - ,‘?,n’ 3\{,!&/ Q,n’ f{n A®
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n
%
L
X
s
\
N
\\ J
n
hY
i xz
Xl’
Figure 2. The Projection of x on L.
4¥)

The maximum likelihood estimator can also be written in summa-

tion notation:

-1 P o1 Lol oo 1oy

u = Ay, XL/ A, = [ AL ( A Tlx,, (18)
PR ES R R R R S =S i e B P i

where Aij are the entries in An. Thus, the numerator of ﬁ 1s merely the

sum of all the X's where each Xj is weighted by the sum of the elements
in the ith row of An’ and the denominator is the sum of all the entries
in A . Since 1 is a linear combination of the Xj's, which:are multi-
variate normal, then ﬁ is distributed as a univariate normal. The

expected value and variance of ﬁ are obtained as follows:

Ay L.t -1 t A S, [ S
E(“)'(,{:L A %n) [(Eﬁ)ﬁn E{n]'(aln A %n) Wi A jy=w. A9

and
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Var (u)

~ 2 .k -2 t . , € " .
TOR N NI WE RIS (¢ S WERERTE T W 5

n

] -2 £ . . t . te b, . , t i
3n) T EIXTA 5 QAL I IR A S e A 5]

Lt
- (%n Ay in

-2 . .\t .
=G ' A 3) %nt.An[E(ﬁ—-u’_ln)(r}E-ur{n) by

. . . t , vl
an An %n) %n An Zn An %n o (in An %n) ‘ (20

[}
P
[

That u is an unbiased estimator of u follows from equation (19). The

abave three properties of I can be combined by stating that

TR TCTNG IS Tl (21)

Let us now determine the risk properties of 1.

Let DO denote the class of all unbiased estimators of p when the
sample 1s jointly normal with a mean vector and covariance matrix as
given in equation (15). Then ﬁ, the maxiwmum likelihood estimator of u
given in Theorem 3.1, has the following properties in DO:

(i) ﬁ is the uniformly minimum variance estimator of yu;

(i1) ¢ 1is a Bayesian estimator with respect to every prior when
the loss function is quadratic; and,

(ii1) ﬁ is a minimax estimator when the loss function is quadratic.
Statement (i) implies (ii) and (iii).

Property (i) can be established via several approaches. One
approach makes use of the Cramér-Rac Lower Bound CRLB),a precise state-
ment of which can be found in Wilks [68]. Essentially, the Cramér-Rao
inequality asserts that Var (d(%)) 2 1/Var (W) where d(%) is any unbiased

estimator for y and W = 3(fn £ (Xt; W)Y/ou where f (xt; u) 1is as stated
Xty Xt
y n
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in Equation {17). It can be shown that the regularity conditions of
the Cramér-Rao inequality are met for unbiased estimators of finite
variance in this case. Since E(W) = 0, Var (W) = E(Wz). It follows

from equation (17) that
t - _ _ , L - -
£n f%t(?& H u k (1/2) (§ H }:\l,'[l) An(?\{‘ 7} ;\l’n) »

where k = -(n/2) &n (2r) + (1/2) £n lAnl, and

t T
An %n = idn An %n(u W) =W

t, « ¥t C s
e ST SN LN

t 2 ~ 2 _ .t . _ =
Now E(Wz) = (gn An J )T E(m - u)" = %n An ns and CRLB = 1/E(W2) =

A

1/3 t which equals the variance of L. Hence u is a best estimator,

a0

in the minimum-variance sense, in DO' That 1s, its efficiency is 1 where

An in’
the efficiency of an unbiased estimator is the ratio of the CRLB to its
variance. Property (i) can also be shown by using the Lehmann-Scheffé
Theorem, a precise statement of which can be found in Rohatgi [52].
Essentially this theorem asserts that if d(ﬁ) is an unbiased, complete,
sufficient statistic for u, then d(ﬁ) is the UMVUE of u. Since the
unbiasedness of ﬁ has been demonstrated In equation (19), we will now
show that § is sufficient. This follows since u in = PL(f) and thus

5 - ﬁ %n is orthogonal to every vector lying in L. Moreover, every

a
vector in R~ decomposes uniquely into two orthogonal components, one

lying in | and one in the orthogonal complement of L. Specifically,
x-uj = (x-13)+ @i -uil.
x-ui (m “,{n) (u ia win)

Also recall that in an inner product space the Pythagorean property holds.

Specifically,



28

12 o e A 12 N2 0. (12
[z = g 17 = e - w g 17+ -7 {31

Thus,

f§t<§t|u> kexp -(1/2]x - & g0l % ewt-c/ G - w2115

g(x) h(ﬁ, 1-1) ’
"]

and sufficiency is established by the factorization eriterion (see

Rohatgi [52]). As a next step in using the Lehmann-Scheffé theorem,

recall that ﬁ v N{u, l/jnt An jn) and that this distribution is complete.
e LY

That is,

(2n cﬁz)'l/z _4: s(t) expl-(t - w2/ (2029} ae = 0

J

for all u implies s(t) = 0 almost everywhere, where ga? = 1/j £ .
u An ‘n ain

Since ﬁ is sufficient and unbiased and since its distribution (which

is no?mal) is complete with respect to the parameter u, then the effi-
cient property of ﬁ has also been established by the Lehmann-ScheffZ
theorem. That is, it possesses minimum variance in the class of unbiased
estimators with finite wvariance.

Properties (ii) and (iii) are a direct result of property (i) and
their proofs closely parallel the proofs in Section 2.1.1. Thus ﬁ is
"eminently satisfactory from a minimal risk point of view."

Additional rationale for using n as the estimator for u is pro-
vided by considering the same linear model given in equation (4), namely

X = Au + U, where now the disturbances a; are such that
Ny Ay

EQU) = 0, EQU US) = £, (22)
Y] Ny n
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with known En as defined in equation (15). The conditions stated in
equations (4) and (22) specify what is known as the generalized linear
regression model with the exception that Zn is specified. Under these
conditions, Aitken's generalized Gauss-Markov least-squares theorem
asserts that the best (in a minimum variance sense) linear unbiased

estimator of y is given by the generalized least-squares estimator

t s -1 A)_l t

Atz

-1 , t , € .
(A En %), which reduces to (%n An ﬁ)/(%n An %n) since

and An = En_l. The variance of the generalized least-squares

1.,.-1

A= %n

A) T, which reduces to l/jnt A_ j_. Thus,
4!

t -
estimator is given by (A Zn a in

the generalized least-squares estimator of u, which was derived without
any distributional assumptions about the ai's and equivalently about the
Xi's, is identical with the maximum likelihood estimator. Also note
that improving a covariance structure of Zn upon the ai's is equivalent
to stating that the Xi's have a En covariance structure since C(E, Et) =
BE - W& -0 = EG u+ U= 4 w0 u+U-4 w"=EQU) =1,
The generalized least-squares estimator of p could have also been
obtained by transforming the disturbances by a nonsingular matrix R such
that C(RH, (RH)t) = I and using ordinary least-squares on the trans-
formed linear model (R%) = (RAYu + (RE) or %* = A% u + H*. A detailed
presentation of the generalized linear regression model and its equiv-
alence to the classical linear regression model via a transformation can
be found in Goldberger [29].

Control charts for the mean can now be constructed using the

maximum likelihood estimator 1:1 When the process mean equals the
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nominal value Hg» then ﬁ 4y N(uo, 1/j t Au jn) and
n

A1
Plu, - 2 v1/j ta .S pfu,+z v1/ ta j l=1-¢
0 af2 At man T " T 70 af2 %n n ;0 )

Thus, control chart limits for the mean in the presence of any type of

known autocorrelative structure are given by

5
- AN .
CL = u, > (23)
ICL = u. - Y174 a
Ho zcr./2 in n %n ’ )

where /i/%nt An jn = V@ar W . Thus, the control limits are of the form
Ay
BG) *z, ., Kar ) .

As in the case of uncorrelated observations, the ﬁ—control chart
also has a power function, dencoted by n(ul), where ﬂ(ul) is the probability
of detecting that the process mean has shifted from Uy to . It 1is easily

shown that

m(uy) = ¢(-za/2 - 5(%nt AL in)—l/z) + ¢(_za/2 + s(int . gn)—llz)’

where § = Hg = Hpe The control limits presented in equation (23) reduce
to those presented in equation (6) when the off-diagonal elements of Zn
are zero and the diagonal elements are equal.

To gain additional insight into the nature of the control chart
limits presented in equation (23), specifically consider the situation

where the observations have a first-order serial correlation with mean
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vector u
N

n =2, 3, 4, and 5, sample sizes which occur frequently in practice.

and covariance matrix En as presented in equation (1l1l). Let

diagonal matrix of type

We first need to find A = £ L. Since I is a
n n n

2, its inverse exhibits certain properties which assists in its deter-

mination. See Greenberg and Sarhan [33]. For m = 2, 3, 4, 5, we arrive
at the following set of An'é:
2 2
1-p -p P
= 1 1 -0 = 1 - -
by =—7%"7 v A3 =3 Y 1 o
O (1-07) -p 1 . 1-2p
2 2
P -p l-p
1-2p -p(l—pz) e —93
2 2
A = 1 -0 (1-p7) 1-92 -p p
4 2 2. 4 {2k)
- 2 2 2
o (1=3p740 ) P -p 1-p -p(1-p7)
2 2
B -p3 P -0 (1-p7) l--Zp2 R
1-3p%4+p%  —p42p> p2-p* 0> ot 7
—p+203 1-2p 2 —ptp 3 p 2 -p 3
2 2
A = 1 p2-p" ~p+o° 1-20%40% ot p%ep"
3 2(1 4p2+3 4) 3 2 3 2 3
o‘ —-—
c P -p p —-ptp 1-2p -p+2p
N
[ P -p3 pz-pb' -p+203 1-302+9h

From equation (24), we can easily calculate Var (1), which is merely the
reciprocal of the sum of the elements in An. These values are presented
in Table 2. As a point of interest, Table 2 also contains Var X) as
determined from equation (12). That Var (ﬁ) < Var (X) for n 2 3 is not

surprising since ﬁ is an efficient estimator for u. To the quality control



engineer, this means that the contrecl limits are tighter when using ﬂ

(see equation (23)) than when using X (see equation (13)), even though

both control charts have the same center line uo.

Comparison of Var (1) and Var (X)

Var (X)

Table 2.
n Var (1)
=
2
%
2 - (1+p)
2
, Gc 3—@p2
3 3-4p
2
4 9 2--602+2p4
4 2=3p=~p 2+p 3
2
o | Je f 5-20 241554
> 5—8p—6p2+8p +p

3

)
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In equations (4) and (22), impose the additional condition that U
Y

is distributed as an n-variate normal.

Then one can think of the sample

elements as being generated from this linear model structure once Zn and

¢ are specified.

However, for additional flexibility in investigating

the specific nature of dependence among the observations in a sample, 1t

is convenilent to adopt the viewpoints and notation of autoregressive-

moving average models, ARMA, as presented by Box and Jenkins {13]
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and Deutsch [18]. The mixed autoregressive-moving average model of

order (p, q) is given by
"\

where (25)

2

a, ~ NID(0O, a9, ).

Since ¢P(B) 1 ¢lB cee ¢pB , Sq(B) 1 elB cee GqB , B is
n,
the backshift operator, and Xi = Ki - 4, equation (25) can be rewritten

as

v 4"

v

i—‘p i l ai_l LI q i_q 3
(26)

2
a; v NID (O, oy ).

The model, given by equation (26), employs p + q + 2 parameters: ¢1,...,
¢p’ 61,..., Bq, caz, and 4. The parameter u is of primary interest to
the guality control decision maker. Extensive investigation by Box and
Jenkins have revealed that many physical processes can be adequately
modeled when p + ¢ £ 2. In order to specifically show the one-to-one

correspondence between different autocorrelative structures and ARMA

models, let p = 0 and q = 1. In this instance, equation (26) reduces to

Xg=ura; -8 a g

where (27)

2
a, " NID (0, o, )
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Such a model is called a first-order moving-average process, designated

MA(l). It is easily shown that

E(X,) = u, Var (%) = (1 + 912) craz,
and P (28)
Cov(X,s X,.,) = =8, 0.2, k=1
1 M4k 1 7a’?
= 0 L k> 1

if Zn denotes the (nxn) covariance matrix associated with the n sample
elements generated from an MA(l) process, then Zn is the following type

2 diagonal matrix:

2 _
(1+Bl) -8, 0 vo 0
-8 2
l (1+31) —al LI S 0
_ 9 B 2 (29)

aa] ¢ s, a9
. . 2
0 0 0 TN (l+Bl)

The covariance structure presented in equation (29) is identical with

that presented in equation (11) for first-order serial correlation pro-

2 _ 2 2 2 _ 2
vided o, =0, (1 + Bl ) and pcc = 61 g, - Thus, if the observations

' 2
have a first-order serial correlation with a specified p-and g, s one can

think of these observations as emanating from an MA(l) process with el =

[~1 + (1 - 402127720 and an = 202 cc2/[l + (1 - 4622], Alternatively,
if the observations are being generated from an MA(l) process with a known

Gl and 032, this is equivalent to saying that they have a first-order
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serial correlation withdc,z = aaz(l + 612) and p = —el/ {1+ 61-2),,wha're_ pe(~1/2,1/2).

Similar correspondence exists between other autocorrelative structures
and ARMA (p,q) models. A more comprehensive coverage of ARMA models
will be provided in Chapter III.

The relationship between the models for independent and dependent
observations can now be stated. Recall that independent normal observa-

tions can be generated from model (1): X, = u + a a; ~ NID (0,-0a2),

i i’

while first-order serially correlated observations can be generated from

model (2): X, =u+a ~ NID (0, caz). Furthermore, let

1 7% 8y

012 denote Var (Xi) for model (1) and UCZ denote Var (Xi) for model (2).

Since @ 2 . g Z and o 2 = (1 +8 2) a 2, it is cobviocus that o 2 20 2 for
I a c 1 a c I

constant ca2 with 012 = ocz only when 81 = 0 (which is equivalent to

p = 0). However, it is possible to obtain both independent and corre-

lated observations with UIZ = ccz. Let 0312 denote the variance of the

ay for independent observations; let Uacz denote the variance of the a;
for correlated observations. In order to have 012 = Gcz, we require

2 2 2
ap = (1 +8,7).

‘Before an example is presented, recall that for first-order serial

o = cacz(l + 612), or calzlcac

2

Also recall that for any type of autocorre-

correlation an X~control chart would have as its limits g + za/
(0 /(L + 2011 - a2,
lative structure the limits for a p-control chart are given by Mo T zm/2
(int An gn)—l/Z. Furthermore, the limits for a u-chart are always tighter
than those of the correlated X-chart. The relationship between these two
control charts and the one developed for uncorrelated observations also
needs to be explored. Recall that these limits were of the form u, t 2,79

(UI//E), where Mo and ¢. may have been derived from a large amount of

I
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past data or past experiences with similar processes or selected to
attain certain cbjectives. However, if the observations really have
emanated from a first-order serially correlated process and the value
of the process standard deviatlion has been obtained from watching such

a process, then this process standard deviation is not o_. In fact, it

I
is Uc' Thus, if one assumes that there is no serial correlation when

in fact there is, oy would be replaced by O and the control limits for
X are actually given by K + zalz(ocl/ﬁ). Here, the correlated X-chart
will have tighter limits than those of the uncorrelated X-chart when

p < 0. To illustrate some of the previous comments, consider the fol-

lowing hypothetical example.

Example 2.1: From past experience with a process, it is determined that
a first-order serial correlation exists between successive measurements
with Pg = 0.47 and that ccz = 13.41. This is equivalent to saying that
the observations emanate from a first-order moving average process with
6, = -0.7 and o, = 3.0. The nominal value of the process mean, uo,equals
30.0. Twenty samples, each of size 5, were generated from such a process
and their wvalues are giveﬁ in Appendix A. To maintain control over the
process mean, samples of size 5 will be taken every sampling interval,
the p-statistic will be calculated for each sample and plotted on a -
control chart. The first step in constructing the p-chart limits is to

find the numerical entries in AS (see equation (24)):
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[ 0.1005  -0.0743 0.0487  -0.0294 0.0138 |
~0.0743 0.1582  ~0.1037 0.0625 ~0.0294
Ay =| 0.0487  -0.1037 0.1719  -0.1037 0.0487
~0.0294 0.0625  -0.1037 0.1582  -0.0743
| 0.0138  -0.0294 0.0487  -0.0743 0.1095 |
It {immediately follows that ist hg ig = 0.2251 and /1/i5t hg i =

V&4.4425 = 2,11, If one chooses a = 0.0027 (a traditional value), then

/1/j5t A = 30.0 + (3.0)(2.11)
N

%a/2 0¥ Zas2 535
36.33 while LCL = 23.67. Instead of constructing a u-chart, one could

= 3.0 and UCL =y

have set up a modified X-chart with control limits defined in equation

- -1,.,1/2 _
(13). 1In this instance, UCL = yuy + zalz(oc//H)[l + 200(L -~ n )] =

1/2 . 36.50 while LCL = 23.50. If

30 + (3.0)(3.66/Y5)[1 + 2(0.47)(4/5)]
one was unaware of the presence of correlation, then the control chart
limits for the traditional ¥-chart are given by UCL = ug + zdlz(cc//ﬁ =
30 + (3.0)(3.66/VY5) = 34.91 and LCL = 25.09. For each of the twenty

samples, ﬁi and x, were calculated (see Appendix A) and plotted on a

i
control chart using all three sets of control limits. This is illus-
trated in Figure 3.

Inspection of Figure 3 reveals that the traditional X-chart
limits are tighter than those of the modified X-chart and the i-chart.
The significance of this is demonstrated with sample No. 3 where §3
plots above the traditional X-chart limits. Thus, if one were upaware
of the presence of first-order correlation and used a traditional X-

control chart, one would search for nonexistent assignable causes more

frequently than necessary. This is the case with §3.
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In this particular example, there is very little difference
between the limits for the modified X-chart and those of the pn-chart.
However, this is not always the case. For example, if Pg = ~0,47 while
ccz = 13.41, then the u limits are given by [27.82, 32.19], the modified
X limits are given by [25.27, 34.73], and the traditional X limits are
given by [25.09, 34.91], which are the same as before. 1In this case,
the ﬁ-chart limits are much tighter than those of either X-chart. And,
if the manufacturer were to use either X-chart limits, it is the consumer
who would suffer for an out-of-control process has less chance of being
detected.

The control limits presented in equation (23) are valid for any
type of correlative structure. For example, if the underlying process

is AR(1) which is described by

ny ny
X, = 0%, +ay, (30)
then
E(X,) =y, Var(X,) = 0.2/(1 - ¢,2)
i u, Var(X, a ¢l s
(31)
2 .k 2
Cov(Xy, X, .0 =0,” ¢, /1 -¢,7), k21,

and from equation (31) one can construct En’ and An for the appropriate n.
The (nxn) covariance matric associated with equation (31) is a

Toeplitz matrix while its inverse is a Jacobl matrix. The general forms

of these matrices are given in Press [49] and Ray [51]. If one is cal-

culating ﬁ for repeated samples, caution must be exercised in choosing

the sampling intervals due to the nature of an AR(l) process. Equation

(31) reveals that the covariance between observations decreases
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"exponentially," where this decrease is fairly rapid for small values of
f¢1|. In this situation one would be fairly safe in disregarding the
correlation between the Xi's belonging to adjoining sampling intervals.
However, when |¢1| is relatively large, the Xi's of adjoining intervals
could Be correlated and induce correlation between successive ﬁ's.
Recall that |¢1|<Zlis required for stationarity.

In the univariate case, one does not have to adhere to the tradi-
tional format of the Shewhart chart by using the control 1limits and

t

center line presented in equation (23). Since p ~ N(uo, 1/j A F)
Al 0 An

when the process mean equals the nominal value Hg» Ve see that

ita o ) TR <32
%n n %n

2

+ O

The control chart would now appear as in Figure 4, where X1 is such

that P(xl2 > Xlza) = a. The statistic plotted on the chart is
*
[{(a - uo) j ta 3 ]2. Similar results will be obtained for the multi-
AL o An

variate problem. One disadvantage in using such a chart is that runs

above and below Hy can no longer be detected in the xz—chart.

- m e Er W w = m om w m e e s e e e e o o mm Em e B e e om m am Em o wm m ma e =

2
X
l,o

. - ' ’ t —— :
1 2 3 4 3 6 Sample HNo.

Figure 4. A x2 Control Chart for One Quality Characteristic
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2.2 Multiple Quality Characteristics

2.2.1 Independént Obsérvations

The general multivariate statistical quality control problem con-
siders a repetitive process where each item is characterized by p quality
characteristics, Xl’ XZ""’ Xp, which are random variables because of
the chance causes inherent in the process. The probability law asso-—

. t _ t,  t
clated with % = (Xl, XZ""’ Xp) will be denoted by th(E ; h ) where

the (p x 1) population mean vector, denoted by u, is defined to be
"

t _ t, _ -
poo= E(§ ) = [E(X{)5..e, E(XP)] = [”1""’ up] (33)

and the (p x p) covariance matrix of X, denoted by I, is defined to be
N\

—

V(Xl) Cov(Xl, XZ) Cov(Xl, Xp)
= S E . (34)
C R
i ov(Xl, Xp) Cov(Xz, Xp) V(Xp) .

When the scenario is a repetitive manufacturing operation, multiple
measurements will be made on a sample of the successively manufactured
items and it is desired that these multiple measurements behave as though
they were obtained from a population having fxt(xt; it) as its probability
distribution. In this section, interest is cgntered on the population
mean vector E. When changes in the process cause the elements of & to
shift from their nominal values, denoted by 50’ it becomes necessary to
detect these changes to insure a uniform quality product. Previous
research by Alt [2] and Alt, Goode, and Wadsworth [6] have treated

various aspects of this problem. Implicit in thelr work are the assump-

tions that
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(i) the behavior of X is adequately described by a p-variate
N

normal distribution, namely,

‘t -pf2y.-1/2 t 1

£ (x"3 u") = (2m) p/ Iz / exp{-(1/2)(x = ) I “(x - w}, (35)
EE' N Y] Y] n, Y ¥
and

{(1i) the sampled elements X., X,,..., X_behave as a random sample,

~ 2 Al
that is,
t t ot 2 t ot
fx t ¢t xtEy e x T3 u) = T £0(x, 75 uT) (36)
"\11 4 n\,2 3Ty nun v u ~ i=l ny, e v

Under the above assumpticons with I known, 1t is easlly shown that the
maximum likelihood estimator of E is given by X, the vector of sample
. "]

means, where
X “N_(u, £/n). (37)
n P

Details can be found in Press {49] and Anderson [9]. Although X has many

n
desirable statistical properties, only its efficiency will be investigated
here by using the multivariate version of the Cramér-Rao inequality.

For a fixed positive integer n, let X

X %2,..., fn denote a sample

of size n from a distribution that is one member of the family

{fxt(xt; 6%) : 8 £ 0} where X is (p x1), 8 is (r x 1), and 2 denotes the
X' o N "
t Lt
parameter space. Assume fxpﬁﬁ';ﬁ ) satisfies certain regularity conditions.

"
Let the (r x 1) vector 2 be an unbiased estimator of 8; and let the
v

(r 2 1) vector W have as its components
v

t
= t t
Wi 3(ln fX sese (51 -

t t
.oy XT3 87))/%6,
» X ’ ’ ’
r\,l ~on I LN 1
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for i =1, 2,..., r. Furthermore, let Ie be the (r x r) matrix with
A
(1, j)th entry gilven by E(Wi Wj) = —E(awi/aej). If I, denotes the
4"
covariance matrix of 2, then the generalized Cramér-Rao inequality states

that £, - I -1 is positive semi-definite. A proof is given in Silvey

d 8

" "\ .
{61]. For the specific problem at hand, g is the (p x 1) vector ¥ since

Z ig known, and fXF(xt; Bt) is the p-variate normal density which satis-
v ¥

~
fies the regularity conditions. From equations (33) and (36), it follows
that W=n T (X - ) and 3W/3ut = -n :™, Thus I, = ~E(-n 1y =n z'l,
v ny " " v by
and Ie-l = I/n is a "lower bound" for the variance-covariance matrix of
v -
an unbiased estimator of u. Since Zi = I/n, Zi - Ie L 0 and the "lower
Y]
", ") ny
bound" is attained in this case. For p = 1, I, = reduces to the well-

known lower bound result of oIz/n stated in Section 2.1.1. Since X is
n,

an unblased sufficient statistic for yu and since its distributionm is
v

complete, the UMVUE property of X could have also been determined from
the Lehmann-Scheffé Theorem.

Additional rationale for using X as the estimator for ¥ is pro-
u Y

vided by thinking of the sample elements El’ X

Kosvees §h as being generated

from the following linear model:

- - - - .
Xll X12 .o le 1 317 21, e alp
X21 X22 e sz 1 a21 a22 cae azp

el Dupoowgeeees b+ o D] (38)
_xnl XnZ et an_ _1* %1 %2 - anp_
- —~— J Mo o’ N ~ - . ~ "

where the {(n x p) disturbance matrix U has the zero matrix as its expec-

tation and the common variance-ceovariance matrix I within any row of U
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with zero covariance between rows of U. Thus, if Xt = [Xlt, gzt,...,
4" A"

t
%n ], then

E(X) = AB,

and

6 _ [0 T ... 0] _
cex, X9 = -1 . (39)

e

-
*
.

The conditions stated in equations (38) and (39) specify what Is known
as the multivariate classical linear regression model., Goldberger [29]
has shown that the least-squares estimator of B, found by minimizing
the trace of (X - AB)t(X - AB), is given by (At A)—l At X; which reduces
to it for the A and X matrices stated in equation (38). Furthermore,
u
, R t ,.-1
the variance-covariance matrix of this estimator is given by I (:) (A" A) 7,
which reduces to £/n. Thus, even in the multivariate case, the least-
squares estimator, which 1s the best linear unbiased estimator of u, is
v
identical with the maximum likelihood estimator. Now that justification
has been given for estimating u by X, we go on to study the important
Y] "]
problem of testing whether the process mean has shifted from the nominal
value uo and how this relates to X.
N T
Suppose X,, X %n is a random sample of size n from a p-
u

12 A2t

variate normal process with mean vector u and known variance-covariance
"]

matrix Z. The likelihood ratio test of H . :u = p. wvs. H,: u # u, yields
0'n A0 1° 5, " A0

the following critical region
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_ . - t =1.= _ 2
w = {il’ zz,..., zn. n(: RO) I (E RO) > xp,a Y, (40)

when the null hypothesis is true. Thus, 1f the hypothesis testing view-
point of one quality characteristic is generalized to multiple quality
characteristics, the quality control engineer investigates statistical
control of EO by taking a random sample of size n; computing % and
determining whether

- t =1 .- 2
n(E - pp) (X - ) 2 Xpa (41)

If the inequality in (41) holds, then the decision maker would conclude
that E has shifted from Yo and assignable causes would be sought. For
successive samples of size n, the decision making process can be set up
as a contrel chart similar in appearance to Figure 4 with Xl?a replaced
by Xp?a + On this chart, one plots the scalar quantities n(% - Eo)t
2‘1(% - ho) for the successive samples and maintains control over EO by
inspecting this xz-chart. Note that there is only an upper control

limit, namely, UCL = sza

4

,» since the test statistic is a generalized
measure of distance.

The decision rule presented in (41) can also be developed from a
motre intultively appealing viewpoint, as presented in Anderson [9] and
Press [49). If the true process mean is M while the nominal value is Kg»
it is of interest to study how much R deviates from Ly OF, equivalently,
how tmuch ¢ - KO deviates from the zero vector. Since X is eminently

"]

qualified as an estimator for u, it seems reasonable to measure p ~ 0
v v "y

by using % - Yoo where (§ - KO) " NP(Q, Z/n) when B = Mg Since the

deviations of each component of X from those of g may be positive or
. o Iy
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negative and these deviations have differing variability, it is neces-

sary to square these deviations and weight them by the reciprocal of

their spread, which results in using the statistic nX - uo)t E-l(i - EO)'
v N ’\.:

It is easily shown that this statistic has a xpz distribution when the

null hypothesis is true. Thus, this intuitive approach results in the
same rule as that produced by the likelihood ratio test. This is not
surprising since the intuitive approach is based on the sufficient statis-
tic % and the maximum likelihood estimator is a function of this suffi-
cient statistic, namely, the identity function., Furthermore, for testing
HO:R = ho vs. Hl:% # Eoe the likelihood ratio test is a function of

every sufficient statistic for g, and hence of %-

If a statistic does plot out of control on the xz-chart, the
individual components of u responsible for this need to be determined.
One solution to this problem is obtained by using Sidak's inequality
[60]: Let H be distributed as a p-variate normal with E(H) = 2,
arbitrary variances and arbitrary correlations. Then, for any positive

numbers Cys Coyseves Cos

P

P
|Up| $e)) 2 L PC[U ] S ey (42)

P(|U,| £ e
1 i=1

l,

For the specific problem at hand, X 1s distributed as a p-variate normal
4"

with unknown mean values Hiseres UP and knowvm variances g 2/n. To use

i
n1/2

Sidak's inequality, let Ui = (ii - ui)/ci, i=1, 2,..., p and let

¢, = ¢, = ... = ¢_ be such that 2 ¢(c,) =1 + (1 - a)l/p. Then a
1 2 P i
rectangular confidence region for Hyseoos up with bounded confidence

level 1 - ¢ is obtained by using the following individual confidence

intervals:
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[x

- oy Ui//ﬁ, Ei + cg ci//E]. (43)

i

As stated by Sidak ". . . we may always act as if all coordinates . . .
were independent.” The intervals generated by Sidak's inequality are
shorter than those obtained using either the Bonferroni or Scheffé
technique. Additional explanation of these latter two techniques and
other aspects of the xz—chart, such as its power, can be found in Alt [2].

In this section, the development of the decision rule for main-
taining control over RO was based on the assumptions of process normality
and independence of the sample elements. Let us now determine how

departures from this latter assumption affect the decision rule.

2.2.2 Dependent Observations

This section is concerned with the development of control charts
for the mean vector when the sample elements are correlated and the quality
of each item is determined by several, correlated characteristics. Thus,
there is correlation across the sample elements as well as within each
sample element. These statements can be formalized as follows.

Let the n sample elements be denoted by X,, X,,..., X where each

Al a2 a0

%i is a (px 1) vector. Let % denote the (npx 1) vector of sample elements,

t t t t
where E [% . %2 sanes %n 1= [Xll,..., Xpl’
X ]. Let By denote E(X), where this (npx 1) vector is given by

v
v

XlZ"" sz,..., xln""’

pn

t

t t
uX:CR’l‘{.
r\""b

TS I (44)
ny

with ut = (ul,..., up) being the population mean vector of each Xi. If
Q¥ Ny

we let A (:) B denote the direct product (see Graybill [32]) of the
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(ml X nl) matrix A with the (m2 X n2) matrix B, then A (:) B is an
(mlm2 b4 nlnz) matrix with entries (Baij). Thus, equation (44) can be

written as

S s I _
h% (in (:) p) M (45)
where IP is the (pxp) identity matrix. Let ZX denote the {(np x np)
n,
covariance matrix of X. That is, I, = C(X, Xt) =EX - pu )X -1 )t.
" _ X Ao v X A q,;é
" "
ZX may be partitioned as follows:
v
- _
231 12 RIS T
221 222 e zZn ,
S Sl I : : (46)
"] . . .
I I, e T

_ €, _ _ _ t
where the (p x p) submatrix zij = C(%i, ﬁj ) E(,}L{i E)(Ej R) . Now

Zii is a2 (p x p) symmetric matrix. However, in general, I,, may not be

1]
t_ —
a symmetric matrix and thus Zij % zji' Note that Zij = zji' Further

more, ZX is a symmetric, positive definite matrix. The maximum likeli-
"

hood estimator of u will now be found.
Ny

Theorem 2.2: Let X,, X,,+.., X_ be jointly normal with mean vector p
17 A2 % <! m%
and covariance matrix I, as given in equations (45) and (46), respectively.

X

m ~
Then the maximum likelihood estimator of u, denoted by u,is given by
" 4"
- t -1 _t
u= (B AX B) B AX X, (&7)
A" oy m"\;

where .the (np x p) matrix B is defined to be
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= (] 48
B = (3, (:) 1) (48)
-+ -1
and AX Iy
gy o,

Proof: The likelihood function, denoted by L(h)’ is given by

~(np/2) |l/2

L(p) = (2m) exp{-(1/2) Q(g)}, (49)
ny

A%
"
where
t :
= - {3 : A - I . 50
Q) = [x - (3, (D 1] x1 4, X 1)l (50)
Now Q(E) can be expanded to yield the following:
t t . t,. t
= - + .
Q) = & A% x Zﬁ Az(%n (:) Ip) Ly (%n C:) Ip) Aﬁ(in (:) IP) Ly
Recall that 3(Au)/3u = A" and 3(u" Au)/3u = 2 Au. Thus,
ny, “u v u 4" v
3Qu)/op = -2x" A B+ 28 A, By .
LV N X X A
2V} Ay
Setting 8Q(u)/%u = 0 yields equation (47). ||
P

As with the univariate case (Section 2.1.2), the result presented
in equation (47) could have also been obtained using a geometrical

approach, Since AX is a symmetric matrix, there exists an orthogonal
LY

matrix P such that pt AX P i3 a diagonal matrix, D(Ai), whose elements
Y

are the eigenvalues of AX' Furthermore, since Ax 1s positive definite,
Ay s

every A, > 0. And, pt Ay P can be rewritten as P* Ay P = D(/X;) D(/X;).

"] Y]
Thus, by letting Axllz = PD(VAi) Pt, we see that Ax = Axl/g Axllz where
1/2 e W n N
AX is a nonsingular symmetric matrix. This allows us to rewrite

Ny
Q(u) as
"
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. 1
Q) = (x - Bu)t AXI/Z_AX /2(x ~ Bu)
v i " n ~ ay A
Lo L2 12 e, 12 12
x (Ax x &X Bg) (Ax _ AX BE)
" n, i)
= (x' - B'U)t (x' - B'u) = <x' - B'y, x' - B'y>
n, N " n A, LI n
= =t - Bl
~ "
where x' = AKI/Z x and B' = Axl/z B. The least squares problem is to find
4" n 4
" ny

% to minimize this or to find é such that B'% is the projection of %' on
the range of the linear transformation B'. This is equivalent to solving
the normal equations

B B = @Y x!
v v

If (B‘)t B' is invertible, then

i=[@)te ]t et x.
4" N

Since x!' = A 1/2 x and B' = A 1/2
x X X
"

L

B, this reduces to

1/2 t

A _ 1/2 .t 1/2 -1 1/2 _.t _ ot -1
% = [(AX B) (AX B)] (AX B) (AX z) = (B Ax B) B AX ﬁ'

A Ay o 4" " o,

To gain further insight imto equation (47),partition the (mp x np) matrix iy

as follows:

n
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[ A1 A e A
YY) Aon
A.x = * - - 1 3
f\‘ » L] [ ]
| Anl An2 ner Ann_

of the n2 submatrices in AX. Furthermore, B* A, x = E Z A, x
"

and the wvalue of each sample element is weighted by the sum of the

(p x p) matrices in the ith “eolumn" of Ax. Thus, I can be written as
4"

4"}
u = ( Ar) T ( Ay %) (51)
vy gsp M i=1 j=1 it

From equation (47), we see that I = & x,whereA= (Bt Ax B)_l 8t A
7 n,

X
n L")
has dimension (p x np). Hence x is distributed as a p-variate normal

(see Rao [50]). The expected value vector and variance-covariance matrix

of g are obtained as follows:

EG) = BF A BT BT AED = B Ao BT B Ay B =, (52
u Ay \y Ay
and
Ir = C(, no) = E( 8% A, BY L BY A, x - wilE A, B)7T BT Ay X - Tk
H NN X XA A X Ny
) n ") \ n

t -1t t et t t ot -1
E(B-AyB) [ Azf}f B"AyBullB Ay X~ (B AXB)E] (B Ay B)
A .

v y Y ny
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(8 Ay B)"L (gt A[ECX - B p) (X - B Wt AL BY (87 Ay )"t

" 4" v "

8* Ay 3y L &t Ay rx A, B(BE Ay Bt
Y] v

] ’\a

t -1
= (B Ay B)
t -1
= [, ® 1 Y X 1)1 (53)

Equation (52) demonstrates that { is an unbiased estimator of B The
Y]

above three properties of 1 can be combined by stating that
Y]

~ t -1
BN G, [ (1) Mo SENIE (54)

The results presented in equation (54) reduce to those presented
earlier in equation (21) for the univariate case. The efficiency of E
will now be determined using the Cramér-Rao inequality, presented in

Section 2.2.1.

From equations (49) and (50), it follows that W = gt Ax % - gt Ay BR
4
t _ t t .t u v
and 3W / %2~ = - B~ A, B. Thus I, = -E(-B~ A, B) = B~ A, B, while
"

Ie-l = (Bt AX B)_l is a "lower bound" for the variance-covariance matrix

"y 4"
of an unbiased estimator of u. Since Ls = " Ay B, Ir - Ie_l =0,
Y
A ny - ny "y

and the "lower bound" is attained in this case. That p is a UMVUE can
(\J
have just as well been shown using the Lehmann-Scheffé Theorem. Since

the unblasedness of I was shown in equation (52), the sufficiency property
\

of needs to be investigated next. Recall that B ﬂ was the projection
e

W T

of x on the subspace V or R7P generated by B, Thus x - B E 1s orthogonal
u
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to every vector in V and lies in the orthocomplement of V, denoted by

v Moreover, every vector in R decomposgses uniquely inte two orthog-

onal components, one in V and the other in v Specifically, x - Bu=
o

(z - B E)*—(B E-—Bu), and, by the Pythagorean property,
Y

llx -8 ull® = Hx -8 311%+ (3G - p1]%,

where the norm is with respect to the metric matrix AX. Thus,
"

fg\(‘t ()‘{.rt; B =k exp {-(1/2)] |:r\c’ - B El 12} exp {-(1/2)|[B(£ - }é)llz}
= g(x) h (3, p),
Y] Y Y

and sufficiency is established. Since u 1s p-variate normal and the
v
p-variate normal is a special case of the exponential family of distribu-
tion, which is complete, the density of g is complete. Thus, E is indeed
a UMVUE of u.
v
Let us now show how the fact that ﬁ v Np(u, Zﬁ) can be used to
" L

from the nominal value u Actually, interest is

A0’

deviates from the zeroc vector, where H = Ho

detect departures of

centered on how much

cE ¥

will be measured by 0= iy since ﬁ is eminently qualified to estimate u.
Bn v 4" Y
This results in focusing interest on the distributional properties of the
statistic (ﬁ - u )t Zn-l(ﬁ - u.) since the deviations need to be squared
~ ~0 I3 A, ~0

A
and weighted by the "reciprocal" of their variability. First we need to

recall the noncentral chi~square random variable (see Graybill {[31]):
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If the (p x 1) vector W~ N (a, I ), then Wt W is distributed
n P~ P N
as a non-central chi-square random variable with p degrees of

freedom and non-centrality parameter A = at a, denoted by ¥’ ZA_
MY ") ]

When A = 0, the noncentral chi-square random variable reduces to a
regular chi-square random variable. A solution to the distributional

problem can now be formulated.

Theorem 2.3: Since | ~ N{u, L~), then (y - u)t Za_l(ﬁ - Unay vox'
-_— Ay Yy H A L H Ay A0

pyA
"] Ay
t_. -1

where A = (u - uo) Ir (u - uo).

" n, g NN
Procf: Since Zﬁ is positive definite, there exists a nonsingular matrix

r\l -~ -—

R such that I~ = RRt. let W =R 1(u - “0)' Then E{(W) =R l(u - uo) and

E u a N L" n o

-1

TR 5Y =1 . Thus, W~ N (R T
M P ~ P

C fy = - N
(v, W ) E(H H,w) W }iw) R
L s s

v 2

t -1
) (u
PsA

t t -1
- ", = - B
(u EO)’ Ip) and H H X where X (g EO) (R

T MY T
£ -1 t £ -1

. - wtw= (- Ia -u).
E}i (- ) and W W = (u - up) i (= ug) i

(- 50)

Note that when E(X,) =
b

RO’ for 1 =1, 2,..., n, then h u" Np(io’ Zﬁ), and
v

~ t . -1~ 2
('n’l, - r\‘,o) Eu (5 - io) "~ Xp (55)
gy

Thus, to determine whether the process mean has shifted from the nominal

value uo, the decision maker would calculate ﬁ and determine whether
n, s

G-pat e o) > x 2. (56)
n A0 k no a0 P,o

If the above decision rule holds, then the decision maker wauld conclude
that the process mean has shifted from K- For successive samples of
"\
2
size n, the test statistic is plotted om a chart with UCL = xp similar
)

to that of Figure 4, but with xlza replaced by xpza-
3 L]
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When the decision maker computes (ﬁ - uo)t Za—l(ﬁ - u,.) and com-
AnoA B n0
pares it with the control limit for successive samples of size n, he is
merely performing repeated tests of significance. If one adopts this

viewpoint, then the power of the test, denoted w(A), is given by
~ t - =L~ 2
i =P - I~ - > 7
() [(5 ko) i (& ~uy) Xp,a l uls (57)

where w(0) = a.
Let us determine the nature of the decision rule presented in

equation (56) when the off-diagonal submatrices in I, are zero, that 1is,

e
Zi. = 0 for i # j. From equation (51), we see that u = ( E : E A,L)
J 4" = 1]
i=1 j=1
n n
( Z Z A,. x;). Sipce I, is a block diagonal matrix, so is A,. Further-
41 X1 X X
121 j=1 ~ ~
_ n n -1
more, assuming that All = ... = Ann = A, then igl jgl Aij =nl=n1Z
Pofoap™ Pod ) )
and ( Ael) = L/n. Now A, x. = A, x,. = A x, =
i=1 j=1 1 s=1 j=1 dtAt oy Wt 1=1 M
- _ -1 = a -1 -, - -1
nAx=nf xand u = (/o)(n I " x) = x. Also note that I~ — =
~ " N a }t
I -1 . t . =1 ,a - t
= = . N - La - = -
-E .E Aij nlA=nt Thus (h xo) i (h ho) n(f KO)
i=1 j=1 N

(% - &0). The conclusion is that the decision rule presented in
equation (56) for multivariate, correlated observations reduces to that
presented in equation (41) for multivariate, uncorrelated observations

as should be the case since Ei = Q0 for 1 # j implies uncorrelated

3

observations.

When the decision maker reaches the conclusion that p has shifted
A

from Bas the determination of those components of u responsible for this
o "
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conclusion is of prime importance. One way to handle this problem is
through the use of Sidak's inequality (see equation (42)). This
results in the following set of simultaneous confidence intervals of

bounded level 1 - o:

[ﬁi f , ui +cy ‘/mi Z_ e

1

for L1 = 1, 2,..., p, where %iF =:[0;esuy, @, 1, Q,4.., 0] with a 1 in the
th - t o - 1/p
it peosition, by = e B, and cy 1s such that 2 Q(ci) =1+ (1 - a) .
LY

In Section 2.1.2, it was pointed out how the ARMA models of order
(p, q) could be used to represent different types of correlative struc-
ture for the sample elements. In the multivariate case, there is a
similar correspondence. The generalization of univariate ARMA (p, q)
models to the multivariate case is usually obtained by substituting
vectors and matrices for the scalar quantities. For purposes of explora-
tion, consider a2 bivariate, first-order moving average process, the model

for which is presented in equation (58):

Et =Kk- 9 a ;*a,

(58)

a, ~ NID, (0, zg) .

The ' at v NIDZ" denotes that the a, are bivariate normally distributed
Y]

random variables and that they are uncorrelated across time., For the
bivariate case, %t’ E’ and a, are each (2 x 1) vectors while 8 1is a
(2 x 2) matrix, Thus, the first part of equation (58) can be written

as
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Xjp T Hp 7 813 31 o1 7 012 3 1 Ty

(59)

X - & -8

2¢ T H2 7 Y91 3y -1 T Y22 82 1 t gy

Note that equation (58) describes the multivariate classical linear regres-—
sion model when @ is the zero matrix. In accordance with Fuller's [26]
notation, let T'(h) denote the covarlance matrix of X_ and X_,.. That is,

Y at+h

t = - -— t —
T'(h) Eg§t E)(§t+h.— u) " and let T'(-h) E(Et }\LJ)(Xt_h E) . It fol

Y] ny
lows that
(: +oz of . n )
at a . 0
ny u
r o =
-L ¢ , h =1 (60)
T'(h) =< v ;
-9 , h=-1
a
Ny
0 , otherwise
L J

For a sample of size n from such a process, the covariance matrix of % is

as follows:

(r) T 0 .0 |
T(-1) T (0) (1) cose Q
25 = 0 r¢-1) I (0) ... 0 (61)
0 0 0 cee T |

Thus the memory of a multivariate MA(l) model is only one periocd long,
and the vectors of ohservations from such a process possess the multi-

variate analogue of first-order serial correlation. Note that [reylt =
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T(-1). For the univariate MA(l) process, it was required that |Gl| <1
for purposes of invertibility. For the multivariate MA(l) process, the

analogue is that the p = 2 roots of the determinantal equation
|Im - 8] =0 (62)

be less than one in absolute value (see Fuller [26]). Note that equation
(61) is a special case of equation (46) with zii = ['(0), Zi_j==F(l) if
=0 1if {1 - 3| > 1.

i-j=-1 «I(-1) ifi-j=1, and L

»Fi-y |1-3]

One advantage in representing autocorrelation between the vectors
of observations by using the multivariate analogue of ARMA models 1is
that it facilitates the simulation of output from a process that meets
the conditions of Theorem 2.2. Another more general advantage is that
these models facilitate the study of the robustness of multivariate test
procedures to departures from the independence assumption.

In order to demonstrate the decision rule presented in equation

(56) and some of the other concepts in this section, consider the follow-

ing example.

Example 2.2 From past experience with a bivariate process, it is deter-
mined that the vectors of cobservations have a first-order serial correla-
tion as exhibited in equation (61). From equation (60), we see that the

components of I are generally given as follows:

X
n
-6 -8 + cz “B.. Yqo = 8., Yqa * re.c
11 Y11 12 Y21 1 11 Y12 12 Y22 1%2
F(O) = 2 ’
=050 Yqp 7 B2 Yop TGy 7Oy Yipm 8y Yoy t oy
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™) =

Ya1.
r(-1) = rt(
while

Thus, the covarlance structure of X is specified when ©
Y

r, ¢y and

fixed in such a way that equation (62) is satisfied.

59

2 2

Yiof |7 ©1 813 7 TeyCy 8y mey 8y mTeyey 8y,
- >
- T 8 - 2 & -r v - z 8
1Y) €12 %11 7 € 2 "12 €1%2 Y21 T € 2 Ya2
1,
2
[d l rc1c2
za = re 2
v 152 €2

117 %120 %210 Bp0

¢, are specified. Furthermore, 611, 621, and 922 must be

812
Specifically, we

need to check that [mi] <1l, 1i =1, 2, where

7
= + -
my = [(6y; +8,,0 2 “Qell By9) + 4 8y, 0571/2.

It should be noted that Imi| < 1 for the triangular region shown in

Figure 5. Thus, for any point in the triangular invertibility region,
A “12%2 = f12%1
(-2,1) (2,1)
+
> {(8), + 0,
(0,-1)

Figure 5.

Invertibility Region for the Bivariate MA(l) Process.
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there are many four~tuples (811, 612, 821, 622) corresponding to this
point. For example, suppose we pick the point (0, ~0.25). This implies

] + B =0 or @ = = § The other constraint is that

11 22 11 22°

-0.25, which reduces to 6° = 0.25. If

10 922 ~ %12 921 = 22 ¥ 015 8y
2

we let 612 = 821, then the second constraint further reduces to 82224-6 12°
0.25. Thus the locus of points satisfying the second constraint is a
circle with radius equal to v0.25 when we let 912 = 621. To simulate out-

put from such a process, many combinatiens of 922 and 812 could be

selected. For example, four representative points are:

%22 %12
VZ/4 V274
-/2/4 V2/4
-V2/4 -V2/4
V2/4 -Y2/4

For illustrative purposes, let us look at 922 = V2/4 and 812 = /574, in
which case 821 = Y2/4 and 811 = -/2/4. Furthermore, r was set equal to

zerc, ¢, was set equal to one, and sy ranged from 1.0 to 4.0 in increments

1
of 1.0. For convenience, Hy ™ My = 0. In total, 4 simulations were run
with the same random number seed used in each run.

To gain further insight into the simulation procedure, let us

rewrite equations (39) and (60) using the specific parameter values.

Thus,
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[V2/4 V214 .

r(1) = ‘ , ['(-1) =T°(1) ,
_-022 V2/4 - czszlﬁ
[(9/8) + (1/8) c22 (l/8)(c22 -1

re = 2 2 2
b(l/S)(c 5 = 1) e’y + (1/8) (e 2 + 1)

and

1 0

I, =

v 0 022

Furthermore,

Xy, = (/2/4) 3y ¢op T (V2/4) a

2,e-1 T 21¢

X

e = = (V2/4) a 41 - (V2/4) a

2,e-1 3y

Thus, in these four runs, we are investigating the effect of increasing
the variance of the second white noise generator.
Since we set 21 o and 4 9 equal to zero, we discarded the first
> >
100 Xt's to overcome any transilent effects. The first sample consisted
Y
of observations x sasey X , from which ﬁ (as given in equation (51))
101 ~110 A
was calculated as well as (i - u )t(E,)-l(ﬁ - u.),which was designated as
v a0 R A A0
SUM 1. The second sample consisted of observations {151,..., £160"

Again, both i and a value of the test statistic were computed. This was
v

continued for a total of twenty samples. As a measure of comparison, x
By
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was also calculated for each sample as well as n(% - Ho)tz-l(% - EO)’
which was designated as SUM 2, SUM 2 ignores the autocorrelative
structure since I = I'(0). The results are presented in Appendix B.

Note that for a fixed sample number, SUM 2 decreases as <y
increases. This is apparent from examining the off-diagonal elements of
F(0) which become more negative as <, increases. Also, SUM 2 does not
make use of I'(l). This decreasing behavior characteristic of SUM 2
becomes very important as we compare SUM 1 with SUM 2.

To investigate the effect of increasing ¢,, we compare the magni-
tude of SUM 1 with SUM 2. For rum 1, only 15% of the time was SUM 1
larger than SUM 2; for run 2, this increased to 35%; for runm 3, this
increased to 55%; and, for rum 4, the figure 1s 65%. This increasing
percentage is expected because of the decreasing behavior of SUM 2 dis-
cussed in the preceding paragraph. The significance of this is that
as cz increases SUM 2 (the test statistic which ignores the autocorrela-
tive structure) may fail to detect a shift in the population mean; how-
ever, for small cy SUM 2 will tend to indicate that a shift has occurred
when, in fact, it has not. This concludes Example 2.2.

In this chapter, control charts for the mean were reviewed and
developed for four different cases: (i) one quality characteristic,
independent observations {(ii) one quality characteristic, correlated
observations (iii) multiple quality characteristics, independent observa-
tions, and (iv) multiple quality characteristics, correlated observations.
While cases (i) and (iii) have been previously discussed in the litera-

ture, additional motivation for their use has been presented by
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demonstrating that the test statistic has favorable risk characteristics.
The test statistics used in cases (1i) and (iv) also enjoy this property.
Additional properties of the control procedure, such as the power and

the relation to generalized least squares, were also presented.
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CHAPTER III
ESTIMATION FOR THE MULTI-CONSEQUENCE INTERVENTION MODEL

In Chapter I, the concept of multiplicative empirical-stochastic
models of order (p,d,q) % (P,D,Q)S was introduced and a synopisized list
was presented of their enormous success in modeling a temporal sequence
of occurrences for different scenarios. 1In Chapter II, a mathematical
model was presented for both the univariate and multivariate ARMA
(p,q) models, and it was explained how there is a relationship between
these models and different types of autocorrelative structures.
Chapter I also introduced the concept of an intervention model and
the unique prespective it offers in evaluating an unplanned ex-
periment with correlated observations for a change in the level of the
underlying process.

Section 3.1 will elaborate upon earlier introductions to ARMA
models with particular emphasis given to ARMA models of order (0,0,1)
and (0,0,2). This section culminates with a full specification of the
probability density function of a set of n observations from either
an MA{l) or MA(Z) process. Section 3.2 focuses on the estimation of
the model parameters described in Section 3.1 via the technique of
iterative, conditional least squares. Particular emphasis is given
to the case where the treatment has altered not only the level of the
series but also the values of the moving average patrameters, which is
designated the multi-consequence intervention model. Section 3.3 also

addresses the estimation of these parameters but from the maximum
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likelihood viewpoint. The maximum likelihcod estimates can be used to
set up an asymptotic likelihood ratio test to investigate the hypo-
thesis that the moving average parameters prior to the intevention ate
equal to those after the intervention. This section alsoc shows why
the maximum likelihood estimates may be different from the least
squares estimates.

This Chapter concludes with an example for which both least
squares and maximum likelihood estimates are obtained.

Selected portion of this Chapter appear in a paper by Alt,

Deutsch, and Goode [ 4].

3.1 Description of MA(l) and MA(2) Models

3.1.1 Non-Intervention Situation

One very useful technique in modeling a temporal segquence of
occurrences from a process 1s the multiplicative empirical-stochastic
models proposed by Box and Jenkins [13]. The general form of these

models of order (p,d,q) x (P,D,Q)S is given by

s, d_D ., _ . s
¢p(B)¢P(B ) Vg Z = eq(B) OQ (8M)a,, 3

2
a a NID (0,0a) ,

where ¢p(B) and @P(Bs) are the nonseasonal and seasonal auto-

regressive operators, Bq(B) and & (BS) are the nonseasonal and

Q

seasonal moving average operators, vd and VD

g are nonstaticnary and

seasonal differencing operators, and S is the seasonal lag. For

example, the multiplicative model of order (0,1,1) x (O,l,l)12 is
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written as

v v12 Zt

(1-88) (1 - o Blz)at, (64)

where p=P=0, g=Q=1, d=D=1, and $=12. 1In equation (64), it is assumed

that a, v NID(O,oi). By making use of the fact that Bk Zt = Zt-k and

Vk = (l-B)k, we see that equation (64) has the following equivalent
representation:
Ze =21 T B2t T3 T3 03 70 2 gyt 0 g,

When there is nco seasonal component (P=0, D=0, and Q=0), the multi-
plicative model reduces to the autoregressive integrated moving

average (ARIMA) model of order (p,d,q), namely,
s B vz =8 (B a (65)
P t q t’

where quite frequently Vd Zt is written as Wt. When d=1,2, the
effect is to remove linear and quadratic trend, respectively, so that
Wt is stationary in level. If no differencing is necessary, equation
(65) reduces to

u
¢p(B) Z, = eq(B) 3 (66)

P
q

- p with y denoting the process mean. This 1s frequently

where g (B) =1 - ¢ B - ... -¢ B, 0 (B) =1-g B-...-0 9,

ny
and zt = Zt

denoted the ARMA (p,q) model, where the weights ¢1,..., ¢P and el,...,

eq must satisfy certain stationarity-invertibility conditions. 1In

this Chapter, we will be specifically concerned with the case where

$1 = +-- = ¢p = 0. The notation MA(q) is used for such models. For
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example, the MA(l) model is given by

Zt =u + at- %.at-l s (67)
while the MA(2) model is given by

Z,=w+a -9 a ;-6,a 5. (68)

The MA(1l) and MA(2) models are invertible only if

- 69

1<8, <1, (69)
and

61 + 92 <1

0, -8, <1 (70)

_1<82<]_’

respectively. No further restrictions are required for stationarity
since, whatever the values of 81 and 82, aquations (67) and (68) both
define stationary processes. Since a, ~ NID(O,ci), it follows that

for an MA(1l) process

BE(Z) = u, (71)

= = 2 2
Var(zt) Var(u + a ca(l + 81), (72)

e~ 9 at—l)

and

Cov(Zt, Z ..)

4] E[(p + a - 0,8 ;- Wy + a s~ 8

1 2 4 7 01 B W

Ela,a ,-8 —
[a, 45 2122 g1 elat—lat+j+elat—lat+j-1]' (73)
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Thus
= -8 g2 =
Cov(zt, zt+j) 1 Ua » J=1
: (74)
= 0 ’ J>l H
and the memory of am MA(l) process is only one period long. The
covariance matrix of the sample elements Ziseers Zn from an MA(1)
(0,1) . ,
process, denoted by EZ , is given by
1462 -9 0 o |
1 1
- 2 .
'Bl l+81 Bl oo 0 . (75)
z =g
% a
2
] 0 0 0 . l+6l
and, the (nxl) expected value vector, denoted by Uy» is given by
m’b
p, = [p, u 11" = u (76)
'\'z H] H] LS -"\;n ]
v
where jn is the (nxl) vector all of whose entries are 1's. Later
")
on, it will prove convenient to adopt Box and Jenkins' notation
(Osl)_ > (Osl) -1 t_
and let EZ = ca(Mn Yy . Let E = [Zl,Zz,...,Zn] and let
£ N _(0,1) (0,1) |
f [ao,al...,an]. Thenlg C f +r€Z’ where C is the
ny
following [n x (n+l)] matrix:
- ) -
el 0 0
0 -» 1 0
c{0) - : , (77)
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and it follows that Z is distributed as an n-variate normal. To
V]

summarize, if Zl, 22,..., Zn emanate from an MA{l) process at n

equispaced successive times, then

.t . (0,1)
i“\' N G gbn, L, ) (78)
Similar results are obtained for an MA(2) process. Namely,
= i 79
My =u i, (79)
v
2302 - - - 1
[‘(1+el+62) 61(1 92) 8, 0 0
- - 2492 - - -
61(1 82) (l+81+82) 61(1 62) 82 0
- - - 2402y _ -
82 el(l 62) (l+el+62) el(l 62) 0
(0,2)_ »
ZZ -oa
| 2,92
0 0 0 Q - (l+el+62)ﬂ
= 2 (0:2) -1
ca(Mﬁ ) . (80)
_ ~(0,2) t _ (0,2)
and i c i + H%f where a- = [a_l, a s dpsees an] and C

is the following [n x (n+2)] matrix:
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0 -8, 8 1 o]
(0,2) _ _ - 81
C = 0 0 B, =B, .. 0 (81)
_ 0 0 0 0 1

The foregoing results immediately enable us to write down the

probability density function, fz, of either MA process:
"

t ot .. . -n/2,_(0,q) |-1/2 -
e (g gt o= ™, D1 e -/ (g f a0 ) g,

N £

(82)

where 8 = el for an MA(1l) process and § = [81,62]t for an MA(2)
n oy

process. Although the results were specifically developed for MA(1l)

and MA(2) processes, they are easily generalized to higher-order

moving average processes.

3.1.2 C(Continuous Intervention Situation

As indicated in Chapter I, we will be primarily concerned with
the continuous intervention situation where the treatment remains in
effect at each time period after it has been introduced. TFor example,

if we are monitoring the monthly occurrences of homicide for a
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particular city, an intervention might consist of a gun control law

which remains in effect for a relatively long period of time after

its introduction. Furthermore, we will assume that the intervention

abruptly changes the level of the observations, although other types

of level changes can be easily accommodated., To account for a possitble
th

change in level upon introducing an intervention after the n,—

observation, consider the following modification of an MA(1l) process:

#

z

N = 1l,..., 1

(83)

1 + nz.

]
[}

N H+0o+ a, - 61 at-l’ t = n, +1l,..., n

We will assume a, A NID(O,Ui) for t=1,...,n, where n=n, +n2. This
modified single consequence intervention model and its statistical
analysis have been briefly considered by Glass, Willson, and Gottman [28].
We will further modify the intervention model of equation (83) to

allow for the intervention affecting the process variability as well

as the level. This multi-consequence intervention model has the

following formulation:

™~
]

p+a -8, a , t=1,..., n,;
t 1 t-1 1 (84)

™~
il

p+ 4+ a a t=n, +1,..., n, + n,.

t Y1 %e-1? 1 1 2

Thus, the model given in equation (84) differs from that presented in

equation (83) since Yy has replaced el for t=nl+l,..., n. From

equation (84), it follows that

E(Zt) =y, t=1,..., n;
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and

+1,..., 0, +n

1 2’

= 5 =
E(Zt) L+ 6, t ny

which is identical with the expected value of the single consequence
intervention model presented in equation (83). If we partition the

(n x 1) vector Z into two components, namely, the (nl x 1) vector
¥

- t - t
%l = [Zl,,.., an] and the (n2 x 1) vector Z2 [an+1,..., Zn] ,
then E(é), denoted by Kys can be written as
"
oz
ol
o = . (85)
Rz = (¥ w8k
v N2
where
0
My
% = . (86)
1n2

Thus, the (n x 1) vector k has 0's for its first o, entires followed
Ny

by n, 1's. It alsc follows from equation (84) that
- = 2 2y
Var(zt) = Var(u+at elat-l) oa(1+61), t=1,..., n,
while
= - = 42 2y i
Var(zt) Var (p+é+a, Yiat—l) oa(l+yl), £=ny,..., D40, .
Furthermore,
Cov(Zt, Zt+l) = %‘ or t=1, » ny=1,
Cov(Z , Z ) = Cov{Z s 2 ) = - ¥y o?
ny nl+l n1+1 ny 1l a
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and

= - 2 -
va(zt,zt+l) Y1 Ua’ n, +1,..., n,

The above statements concerning the variance-covariance structure of

% can be written in matrix form. Specifically, if Zéo’l) denotes
\
{n x n) covariance matrix of E, then
(0,1) z, b
Ez’ =ﬁ e B (87)
A"} B(OQI) I B(O’l)
21 | A
N2
where
— 2 _ ]
(1+el) el . 0 0
- 2
el (l+el) 0 0
Béo 1) _
Al
2 -
0 0 (1+61) 61
- 2
0 0 see Bl (l+81}“
R _ —
(1+Yl) i 0 0
- 74
Y (1+Yl) 0 0
Béo,l) .
n2
oy 2 -
0 0 (l-rYl) Yl
- 2
i 0 0 .o Yy (1+Yl)
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and
8 -Y
0 0 0 ij
0 0 0 0
(0,1) _
Bor ° T :
0 0 0 0
L0 0 . 0 0
Thus, Z(O’l) is a diagonal matrix of type 2 as are Béo’l) and Béo’l),
{0,1) o1 2
which 321’ is the zero matrix except for the element in the northeast
corner which is ~Yq- Furthermore, since Z = C(O’l) a + u,_, where
Cio’l) is an [n x (n+l)}] matrix similar to that presented in equation
(77) except 91 in rows ny + 1 through rows nl + n2 is replaced by Yq>

we see that Z is distributed as an n-variate normal. This can be
"
summarized by saying that for a first-order moving average intervention

process, denoted MAI(l),

z N (o, 20Dy (38)
v ooz Z
n v
(0,1)
where Uy and ZZ are presented in equation (85) and (87), re-
n

L n
spectively.

Let us now consider when the observations follow a second~order
moving average model, and the intervention produces a constant effect
. h
starting with the(nl + l)t observation. The model formulation is as

follows:

(89)
=n+l,,..,n.4n,_.
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We reformulate the single consequence model of equation (89) to a

multi-consequence model by stating that

Zemwtra =83 "% %2, =1, ..., 0,
(90)
Zt =u+ 6§+ at - Yl atvl - Y2 at—2’ t = nl+l,.,.,nl+n2.
This reformulation not only allows for a change in level of the ob-
servations but also a change in their covariability. Since
a_ ~ NID(0,0%), it follows that
¥y =¥ %ﬂ + & ,5 . (91)
Y
and
0,2) | 0,2)¢
Z 21 ‘
$(0,2) _ 2 YD S (92)
2 a (50,7 (0,2 ’
21 | 22
. v
where
2,02 _ _ _
(l+8 +9 ) 61(1 62) 62 cas 0 0
24p2 _ _
-61(1-82) (1+6 +82) Bl(l 82) “a 0 0
-8 - - 2,92
8, el(l 82) (1+6 +8 ) “ee 0 0
(0,2)
B =
ol :
2482y  _ _
0 0 0 eeo. (148 +82) el(l 62)
_ _ _824n2
0 0 ¥ e Gl(l 62) (1 6 +6 )

(93)
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2,.2 _ _ _
(1+Y]+75) Y, (=YD Yy 0 0
2,2 _ _
-Yl(l-‘fz) (1+Y1+Y2) Yl(l Yz) 0 0
_ - 2 2
0.2) =Y, Y A=y, (Hvydg) .. 0 0
B' 3
1) :
2.2y _ _
0 0 0 . (1+Y1+Y2) Yl(l Y2)
2.2
|0 0 0 cee 7Y (1Y) (1+Y1+Y22_
(94)
and
0 0 rae 0 Y, —Yl+GlY2'
0 o ) 0 =Y,
0,2
Bél - . (95)
|0 0 0 0 0 _

Thus, for an MAI(Z) model

(0,2) (96)
E v Nn(}\l,zs EZ ) ’
AT A7)
) (0,2)
where normality follows from the fact that Z = C a+ y, and a. ~ NID
4"

3.2 Iterative, Conditional Least Squares (ICLS) Estimation

In the previous section, a detailed explanation was presented of
the MA(1l) and MA(2) models along with the modifications necessary to

accommedate a multi-consequence intervention, that is, one which
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affects both the level and variability of the underlying process. 1In
this section, we will be concerned with parameter estimation for the
MAI(l) and MAI(Z) models. Although we shall be primarily concerned
with the estimation of u and & for each of these models, we shall see
that both egtimates are directly dependent upon the wvalues of the
moving-average parameters. Thus, we will use an iterative technique
of searching on the moving-average parameters until those values are
found which minimize the residual sum ¢f squares. For this reason,
the estimation technique is called iterative least squares. In order
to provide a basis for estimation in the MAI(l) and MAI(Z) cases, let

us first consider the non-intervention MA(l) and MA(2) models.

3.2.1 DNon-Intervention MA(q) Models

Let z ey 2 be n successive observations generated from

l, zz’

the MA(l) process of equation (67), which can be rewritten as

a =2 -u+19, a . (97)

t t 1 t-1
_ - n

Box and Jenkins [13] suggest that y can be replaced by z = n z z
t=1

where for "the sample sizes normally considered in time series analysis,

t

this approximation will be adequate." Thus, equation (97) becomes

a_ =z -~z + Bl a_q s (98)

where 81 is the only unknown parameter. However, as Box and Jenkins
point out, even when the zés are substituted into equation (98) and
91 is fixed, the aés still cannot be calculated recursively because

a; depends on a0 which is unknown. This difficulty is overcome by

letting & = 0, its marginal mean. Justification for this is given
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in Adgner [ 7]. Thus, conditional on a0 = 0 and for a fixed el, the

a;s in equation (98) can be recursively calculated. Actually, we are

calculating a;s, which are estimates of the unobservable a;s. The

objective is to find that value of el which minimizes

n n
2 = = -z 2 (99)
E at(ell a, 0, i) E (zt z + el at-l)

§.(8,) =
1 t=1 t=1

The asterisk subsecript on S indicates that the sum of squares is

conditional on a, = 0. This is further emphasized by the conditional

notation of a , viz., a (6 |a = 0, 2). To assist in the search

t t 1 0 "
for Bl, recall that lell < 1 for invertibility purposes. Thus a table
can be set up which lists 81 and S*(Bl) for the (-1,1) interval in
whatever increments are desired. When a minimizing value of Gl is

found, finer increments can be used over the reduced 8. neighborhood

1

if so desired. Experience by other authors suggests that s*(el) is
fairly well-behaved (unimodal) for large sample sizes.
One would proceed in a similar manner for the MA(2) process,

where now

a =z  -u +6l a4 + 82 a_y (100)

n
8,(8,.8,) = Z

2 = =
a=(8.,9 | a ., =a,=20,2)
ea1 £ 12 1 0

LY

(101)
n

= I (zt—z+elat_l + Bzat_z) R

t=1

and a grid search is performed to find those values of (81,82) which
minimize s*(el,ez). The extension of the ICLS estimation procedure

to higher order MA(q) models is straightforward.
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Box and Jenkins [13] give further justification for the ICLS

procedure by relating it to a conditional likelihood function. Let

t . - 2
a. = [a,, a eses 2 ]. Then, since a,_ ~ NID(0,0%)
A 1’ =2 " 4 t el

ty _ 2,-n/2 .t 3
fge ) (Zﬂca) expl a g/an}
and

Ln L*(Et,Ua) ==~ (/2)tn 27 - (0/2)fn o2 - S,,:(,E’t)/Zcf::-l ,

where L, denotes the likelihood function conditional on a, =
[ao, a_ys oo al_q]t = Qt. Furthermore, since Zn L, depends on z
only through S*(g), it follows that contours of fIn L "for any fixed
value of oa in the space of (2’ oa) are contours of S, that these
maximum likelihood estimates are the same as the least squares
estimates, and that in general we can, on the Normal assumption, study
the behavior of the conditional likelihood by studying the conditional
sum of squares function."

1t is apparent from Box and Jenkins' write-up of the ICLS pro-
cedure that their primary interest is in obtaining values of the
moving-average parameters with only a secondary interest in es-
timating u . This emphasis is usually reversed for the inter-
vention models. The adaptation of ICLS estimation to MAI(q) models

is the topic of the next section.

3.2.2 MAI(q) Models

Statistical estimation of the intervention parameter § and the
process level was first reported by Box and Tiao [14]. Their results

were exclusively for the ARIMA(0,1,1) model. See equation (65). The
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basic idea is to transform the n original observations to another

set of variables amenable to statistical linear model analysis. Glass,
Willson, and Gottman [28] extended their results to certain other ARIMA
models by indicating the necessary transformation and providing examples.
Because of their brief treatment of the single consequence MAI(l) model,
we will further imvestigate this case before turning to the multi-

consequence MAI(l) model, which has not been previously investigated.

3.2.2.1 Single-Consegquence MAI(l) Model

The single consequence MAI(l) model was presented in equation (83),
where it is postulated that the intervention abruptly changed the level
of the series after the n%h observation., Before finding the necessary

transformation, recall that the model Y = X 8 + a2 , with a ~ N_(0, ¢21),
A A" L n, A,

describes the classical normal linear regression model, details of
which can be found in Goldberger [29]. 1In our case, Y is an (n x 1)
N

vector as is a , X is an (n x 2) matrix, and 8 = [y, G]t. The trans-—
oy ny

formation necessary to convert equation (83) into linear model form
can be found by considering the first few zés. Specifically,

zl =y + ay - 61 ao
aO = 0, its marginal mean, then z

form. Thus, we let yl =z

» Where aO is unobtainable. However, if we let

1 = + a,, which is linear model

1" Now z2 =y + a, = el al, where the -8

term prohibits z, from being in the desired format. However, if

131

we multiply Yy by 6, and add the result to z,, the desired format is

1 2?

obtained. WNamely, Yy = 2, + 8 = (l+el)u + a Similarly,

171 2°
= = 2
Y3 = %4 + Bl ¥, (1+ %_+ el)u + a,. In general,

y, = (146, + ... + e'l:'l) Wta (102)

t 1



for t=1,..., n, where the required transformation is Ve =z, + el yt—l for

t=2,,.4, nl' Since znl+l =3+ 4§+ an1+1 - 61 anl, we see that
n

- - - 1 . . .
Yo 41 = Zg +1 + 81 v, (1+61+“ +el Y w+ 4 + a 4 1s indeed in
linear model format. Similarly. y = (140 +.,,+0, L ) u +

n1+2 1 1
(1‘+‘el) § + anl +2° In general
_ t-1 t-{n,+1)
yt = (l+el+...+el Y u + (1+91+...+91 1 Y & + at, (103)

for t=nl +1,..., nl+n2. Equations (102) and (103) have the following

matrix representation:

Yl 1r 1 ’ 0 A u .-al
Y2 l+9l 0 5 a,
(U
B .
nl—l
Ynl l+61+---+el 0 anl (104)
—_ — _— e~ — — — —— - — - —_
= 1 4+
Yo +1 l+el+...+el 1 a4
1 1
nl+1
Yo +2 | |FFeqt .ty 146, 8n.+2
1 1
nl+n2—l nz-l
y 1+g.+. . .48 146 +.. .48 a
nl+n2 1 1 1 1 ] i nl+n2_
‘L y L« ~ _
Y X a

1

It immediately follows that 8 = (X'X) - X¥'Y. At this point, Glass,
My N,

Willson, and Gottman give a brief description of the iterative
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estimation procedure without giving specific formulae for u and §. To

fill this gap, let the elements of %X be denoted by €11° S12° and Coge

That is,
. 11 ‘12
XX =
12 22
Nowc.., = 1 +(1+6 )2+ +(145. +...40 nl—l)z + (1+g;+...+8 111)2 +
ll 1 L B ] l - v 9 l 1 LA AN 1
n_4n,-1,2 e
"'+(l+el+‘*‘+91 1 Y™ , and the individual terms are of the form
. i .
(1+Gl+...+611)2 , for i=0, 1,..,, n1+n2—l. Recall that Z al =
i+1 3=0
(1-a~ 7)/(1-a). Thus
i ) .
it+1 2 +1 2
( 1 e F = 1a~ehra-ep?® = a-20"ya-e)
j=0
and
-1
B -2 ° i+l 2 (i+1)

(1-6,)72 (l—ei)'lln(l—ei) - 28, (1+)) (1-s]) + 62(1-0,°™1 ,
{105)

where n = ny + N, Proceeding in a similar fashion, we see that

2n 2n
epy = (16072 102y In,(1-63) - 26,146 ) (-6, D) + (18, D]
(106)

The calculations needed to obtain G,y are slightly more complex since

the individual terms comprising c12 are of the form (l+el +...+eli)

(1+...+elnl+i), for i+0, 1, ..., nz-l. However, these individual
, n, -1 n .
terms can be rewritten as (l+el+...+ell)[(l+el+...+61 1 )+el 1(l+61+...+ell)]
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n n .
Ly 48 1(1—811+l)2].

1 Thus

-2 i+l
= (1-e))77 (-8, ) (-8,

+2 2n
~ -2 -1 2 a2 NP 2
¢ 1,=(1-6) T2 (1-8) T In,y (1-6) -6, (1+6.) (1-6, ) (1+6, Dve, T (-8 D]
(107)
The calculation of E also depends upon the elements of the (2x1) wvector

t .
X E, denoted by S1vy and Soy The individual terms of S,y are of the

i-1 _
form (l+ﬁl+...+6l )yi, for i—l,2,.,.,nl+n2. Thus,

-1 B2 i
T T B N ¢ R
i=1
4 i n,+n, )
= -6y "llnp4ny)y, o - z. 81 vyl (108)
172 i=1
- -1 F t
where ynl+n2 = (n1+n2) iél Yy The second element of X E, Syys 18
the sum of individual terms of the form (1+8.+...+8 l—l)y . » for
1 1 n1+1
i=131,2,..., n,. Thus,
-1 ;2 i
Say = (1-87) (1-8, Dy ‘
2y 1 121 1 n1+1
-1 - nz i
= (l_el) (nzyn - .Z el yn +i) ’ (109)
2 i=1 1
- -1 22 1
where Y, =Dy Z Yo +it If we let ¢ - denote the elements of

2 i=1 1
(XtX) 1 , where the elements of (XtX) are given by equations (105)-(107),

then
- cll I 612 s
. H 1Y 2Y
B = = (110)
v 8 c12 . + (32 s
1y 2Y
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13

Since c it may have been more appropriate to

and SiY depend on 61,
write the estimates of u and & as ;(81) and 3(81) to indicate that
they are conditional least squares estimates. Since 61 is unknown,
the estimates cannot be obtained. However, an ad hoc procedure has
been suggested by Glass, Willson, and Gottman similar to the ICLS

procedure of Box and Jenkins. Specifically, Let a denote the (mxl)

2>

vector of residuals or estimated errors., Then a { - XQ where the
n,

values of a are contingent upon particular values of y and § which in
v

turn are dependent upon Bl' It seems reasonable to use that value of
n
: . . . ".\2 "t“ a t -~
ey which minimizes S*(el) = tzl a =g a= (X - XE) ({-XE), where
minimizing 8,(6,) is equivalent to minimizing cg

It

a“a/(n-2), the
estimated error variance. For that value of el, ; and 8 can be
calculated from equation (110). The output format can be set up in
table fashion with the following column headings: el, ﬁ, 8, ég,

where the search for 31 is restricted to the interval (-1,1). One can
then either perform tests of significance or construct confidence
intervals for y and § by making use of the fact that both (;-u)/
;a(cljjlfz and (5-5)/;a(022)1/2 are distributed as "pseudo" Student-t
random variables with n-2 degrees of freedom. Actually, these
quantities are Tn—2 random variables only for known 6, as opposed to
some fixed 8y which was found by searching on 6y Thus, one avenue

of research is the true distribution of these quantities. Furthermore,
ﬂ and 8 are correlated random variables and their joint confidence
interval is elliptical. Thus, any condifence interval for j or §

alone is merely a marginal one and the confidence level should be

adjusted accordingly using some simultaneous procedure.



Before turning to the multi-consequence MAI(l) model, note that
Box and Jenkins could have included u as an additional parameter to
be estimated instead of substituting z for u , and they point this out,
In this case, the (nxl) observation vector z could have been trans-

u
formed to an (nxl) vector K’ via the transformation ¥; = 21>
and Ve = %, + 91 Veo1? for t=2,...,n, and then ICLS c¢ould have been
used to estimate 1 and 61. However, their primary interest was in
estimating 81 whereas the primary purpose of the tramnsformation is to
facilitate finding u(and 8 for the MAI(l) model) with 91 treated as a
nuisance parameter. Regardless of whether the data is first trana-
formed or not, both estimation approaches are iterative in that they
search on 81, they are conditional in that %)=0, and they both seek
to find that value of Bl which minimizes S*(Gl) = tgl ;E. Thus, there
is essentially no difference between the ICLS estimation technique of
Box and Jenkins and that of Glass, Willson, and Gottman. Furthermore,
any difference that does cccur is a result of the basic difference in

the philosophy of the traditional MA(l) model and that of the MAI(l)

model.

3.2.2.2 Multi-Consequence MA_(1) Model

The multi-consequence MAI(l} model was presented in equation (84),
where the assumption is that the introduction of a treatment after the
n%h- observation abruptly changed the level of the series by a linear
additive effect ¢ and also altered the moving average parameter from
8, to y;. In order to transform the z_'s to y_'s, which are in

statistical linear model form, we let a0=0, ¥1=2Z7> and yt=zt+el Ve 12

for t=2,..., ny, while Y "2, +'Y1 for t=n.+1..., nl+n2, Thus,

Yp1® 1

85
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tedious algebra, it can be shown that

86

V. = (J,+el+...+el W+ a, (111)
for t=1,,.., ng, while
t-n t-n n.-1 t-n
v = (vt o4y 1+91Y1 1+...+61 1 Yy Y
t—(n1+1)
+(1+'Yl+...+'y1 )5+at (112}
for t=nl+l,...,nl+n2. Equations (111) and (112) have the following
matrix representation:
Yl 1 0 M al
Y, (1+el) 0 $ a,
e
\ g
nl—l
ynl (1+el+. . .+e]L ) 0 a_
B -1 _
= n.-1
1 +
y“l"'l [l+'yl(1+81+. ot ] 1 anl+l
2 nl—l

Y“1+2 [1+Y1+Yl(l+el+. . .+61 )1 (l+yl) a“1+2
Yn. +n %y nl_l n2-l

172 [1+,. s Yy (1+el+. . .+el )] (l+vl+. Y ) an1+n2

mr———— . J ] St et

b X a (113)

The elements of XtX will be denoted by Ci1s Cypo and Cogs After much



n

= (1-6) " [ny~(1-8) TH(28)) (1-8) H(1-6)"re2(1-0 21

(]
1

11 1

n
+ v P ny- ey THe) Aoy D) T -y 2]

-2 2 -1 22 2ny

n n - n

+ 20-9) " -y ha~e; Hra~vp Ty a-vy H-a-rh a2y,

(114)

n

- 2. -
¢y = A=Y 2y T n, (v D-2v ) vy Heia TD), a1
and
_ _ n _ 2n
ey = (v Iny-2(1y) Ty, vy DAy R~y D]
_ a n _ n -1 2n
+ (et T amey Hiayp Ty, ey H-awD a1
(11e)

The results obtained in equations (114)-(116) were verified by letting
Y1=51 and observing that these results agreed with those presented in
equations (105)-(107) for the single consequence MAI(l) model. Let

s and s denote the elements of XtY. Then

1y 2y Y
s.. = (14.) (a7 - El e 1 yyra-v )ty - §2 v 1 )
1Y AR B4 . 1 73 1/ MYy ' Yoo+
1 i=1 2 i=] 1
s}
-1 Ly 2 i
+ A=) amg B L REANV (117)

i=1

87
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and
1 HCI
TS N Y A N A L A I (118)
2Y 1 2 o, {=1 1 n1+1
_ g4 oA _ 4 o2
where Y, =™ I vi and Yo =My Z Yo +i These results also
1 i=1 yA i=1l 1

agree with those presented in equations (108) and (109) when el is

substituted for Yy- It follows from linear model theory that

u = Cll s + ch s

17 (119)

2Y

and

>

6=c128 +c22S

17 , (120)

2Y

where cij denote the elements of (XtX)-l. Extending the ad hoc pro-
cedure of Glass, Willson, and Gottman to the multi-consequence model,
we let é =Y- Xé » Wwhere the é vector is contingent upon particular
values of ; and 8 which in turn are contingent upon valuesof g, and vy,.
Let S*(sl’Yl) be the sum of squared residuals or estimated errors for

parzicular values of ,, v;, u, and 8. That is, S*(el,yl)
t=1
the (el,yl) pair which minimizes 5*(91’Y1)’ where minimizing S*(el,yl)

~2_ ot ~ t - .
a,=2a a-= ({ - X%) (z - XQ). It seems reasonable to find

is equivalent to minimizing ;g = a¥ é/(n-Z). The search for the
"

minimizing (el’Yl) pair can be restricted to the open unit square,

that is, (8,v;) ¢ {(¥,%): 0 < X, < 1, i = 1,2}. The output

format associated with the search can be set up in table fashion with

A ~

the following column headings: 81> Yy Us & o, Appendix C contains

a listing of the computer program ICLSMAI(l) designed to find the

~

optimal (Bl’Yl)' After that (el’Yl) is selected which minimizes cg,
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confidence intervals can be constructed or tests of significance can be

- ~ 1/2
performed for both p and & by making use of the fact that (p—u)AIa(cll) /

1/2

and (&-a)/éa(tzz) are each distributed as pseudo-Student-t random
variables with n-2 degrees of freedom. The "pseudo” prefix is necessitated
by the fact that both ratios depend on the nuisance parameters (Gl,Yl) .
Furthermore, keep in mind that the true confidence region for (u,8) is
elliptical in nature, even if (el,yl) were known.

Although we will be primarily concerned with the maximum likelihood
estimation of the parameters in the multi-consequence MAI(l) model, the
ICLS estimates are useful as initial values for numerically determining
the maximum likelihood estimates, and they also enable us to determine
the closeness of these estimates to thoseobtained by the method of

maximum likelihood. Let us now briefly consider the next higher order

moving-average intervention model.

3.2,2,3 Single and Multi~Consequence MAI(Z) Models

The single and multi-consequence MAI(Z) models were presented in
equations (89) and (90}, respectively. The transformation necessary to

convert the first n, observations of the single consequence MAI(Z) model

into linear model form is found by examining the first few zt's.

Specifically, zy = 1l+al--61 ao—ez L where both a, and a_, are

1

unobtainable. However, if we let a,=a =0, then 2z =p+a, , which is linear

0 -1 1

model form. Thus, Y1725 Now z,= ].l+a2-—6l al-ez ag= u+ azrﬁl ars since we

set a,=0, which is its marginal mean. We see that z2 contains an un-

0

wanted ® 4 term, However, if we multiply y, by 8, and add the result
to z,, the desired format is obtained. Namely, y2=22+elyl = (u+a2—elal)

+ el(p+al)=(1+81)u+a2, which is indeed linear model form. Now
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Z3=p+a3_6132—62a1’ where the two terms 6132 and 62a1 prohibit z3 from being

in linear model form. However, if we multiply Yy by 61 and Y1 by B, and
add both of these terms to zy, we cbtain ¥y < 23 + 81 Yy + 92 i =

[(1+8 +6%)+82]u+a3, which is linear model format. Similarly, we let

1

- . , - 2,43
Y, 24+81y3+62y2, in which case Y, [(1+61+91+61)+82(1+281)]u+a4. In

general, the necessary transformation for the single consequence MAI(Z)

model is given by

Y15 %
Yp =240 ’ (121)

Ye TE VO Ve 1t O Yoo

for t=3,...,n Note that the transformation given in equation (121)

1
for the first ny observations of the single-consequence MAI(Z) model is
the same transformation used for the first o, transformations of the
multi-consequence MAI(Z) model since the models given in equation (89)
and (90) are the same for the first n, observations. Furthermore, the

1

necessary transformation on the second set of n, observations for the

single consequence MAI(Z) model is also given by

y, =z, +8 (122)

t 1 yt-l + e2 yt-z *

for t=nl+l,..., nl+n2. This becomes obvious by examining the first
few zt's in this second set.

It is the transformations given in equations {121) and (122) that
are of prime importance, for the transformed yt's can be used as input

to any standard regression package and the estimates of p and § are then



easily obtained, However, in order to compare these yt's with thosge

prevously obtained for the single consequence MAI(l) model (see

equation (102)), it would be nice to have a general expression for the
T

Y. S To accomplish this, expressions for Yyse-+1Yg 3TE obtained and

rewritten as follows:

[(1-63) (=8 Ju + ,u +a

73 3
v, = [(1-8%) (1-0)) " Tu + oul(d/de ) {(1-63) (1-0))T1}] + a,
ys = [(1-63) (1-8 ) " u +ezu[(d/del){(1—63*)(1-61)'1}] + 85u + ag
yg = [(1-6%) (1-0) 1w + eu((asa0 ) T1-05) (-8 ) M1
21402 -1

+ (63u/2) [(d*/deD){(1-67)(1-6)) "} + a,
vy = 1(1=67) (1-8) " Tu + 6,u[(a/a0)) {1-65) (18 ) 1}

+ (82u/2) [dz/dei){(l—ei)(1—81)-1}] +83u + a,
yg = [(1-62) (1-0,) " 1u +o,ul(a/de ) 1(1-8]) (1-8)) "}

+ (624/2) [(42/d02) { (1-68) (1-8) ™1}

+(egu/3!)[(d3/dei){(1-ei)(1-91)‘l}+ ag -

Examination of the above equations suggests that a general expression
for the first set of n transformed observations from either the single

or multi-consequence MAI(Z) model is given by:

9l
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24-1

-1
L ) a-e) Mo+ ...

Ypy = [(1-éij)(1«el)'1]u + 0,1l(d/d8){(1-8

=L iy @it ge 371 L P |
+ (8,7 Tu/(3-1) @ T/de;t HTA-8,7 ) (1=6y) T + a

25 °?
with

23+

-1 23 -1
Y2141 Y(1-6) T + B,u[(d/d8) ((1-977) (1-8) T + ..

+ 18,77 wGgen e T ae I (e Ty (- pTH w4 ey

2541 °

Note that when 92 = 0, the above equations reduce to equation (102)

which describes the ny transformed observations for the single-

consequence MAI(l) model. This is predictable from examining equation
= 0 g = 7 7
(121) which reduces to Y. z, + 1 Ve when 2 0, which is the
necessary transformation for the single-consequence MAI(l) model.
The only case that has not yet been considered is the trans-

formation necessary on the n, observations after the treatment for the

2

multi-consequence MAI(Z) model. By examining the first few zt's of

equation (90), for t=nl+1,..., nl+n2, we see that the necessary trans-

formation is given by

Ve T2t Yy Ve YoV - (123)

Thus, for the single-consequence MAI(Z) model, the necessary trans-
formation is given by equations (121) and (122), while for the multi-
consequence MAI(Z) model equations (121) and (123) describe the

transformation., Once the transformation has been defined, the ICLS
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estimation procedure is straightforward. For the single-consequence
MAI(Z) model, it involves searching over (01,82) in the region given by

equation (70) until that pair of values is found which minimizes

-~

n ~ -~ ~ ~ ~
S,(8,,6,) = ) a2 = a%a - (n-2)c% where a = y — XB. The computer
1’72 =1 BV a a4 A "

output associated with the search can be set up in a format with the
following column headings: 81, 62, ;, 3, ;2. For the minimizing (81,82)
pair, additional statistical inference on u and § can be performed.

One would proceed in a similar manner for the multi-consequence MAICZ)
model where the search is now performed on the 4-tuple (GI,GZ,YI,YZ)
with the ordered pairs (61,82) and (Yl,Yz) each constrained to be in

the triangular region described by equation (70).

The development of the necessary transformations and the application
of the ICLS estimation procedure to higher order, single and multi-
consequence MAI(q) models proceeds in a similar fashion. We will now
investigate the maximum likelihood estimation of the parameters in the

single and multi-consequence MAI(l) and MAI(Z) models, where the ICLS

estimates are used to provide initial estimates.

3.3 Maximum Likelihood Estimation

In this section, we present an algorithm for determining the exact
likelihood function for single and multi-consequence MAI(l) and MAI(Z)
models for a given set of parameter values. It will be shown that
while there are covenient analytical expressions for the maximum
likelihood estimators of parameters pand §, no such expressions exist
for the maximum likelihood estimators of the moving average parameters.
However, this algorithm can be used to search the likelihood function

over the permissible parameter space until those parameter values are



found which maximize the likelihood functiom, S8uch values will be
called the maximum likelihood estimates.

One reason that statistical inference for the pure moving average
process is difficult stems from the fact that Arato (11] has shown that
the dimensionality of the set of sufficient statistics is equal to the
number of observations, That is, the number of sufficient statistics
increases with the number of observations. He also shows that for a
pure autoregressive process of order p the number of sufficient
statistiecs is equal to (p+1) (p+2)/2. However, this is not to imply
that the maximum likelihood estimates of a pure autoregressive process
are easily obtained. As a matter of fact, when p=1, the maximum

likelihood estimate of ¢; is the solution to a cubic equation.

3.3.1 Maximum Likelihood Estimation of p and §

The single and multi-consequence MAI(q) models, g=1,2, were pre-
sented in equations (83)-(84) and (89)-(90), respectively. Each of
these models shares a common facet in that the level of the series for
the first n; observations equals y while this level equals + 3 for
observations nl+l,,., nl+n2=n. In this section, we will obtain closed
form expressions for the maximum likelihood estimates of 1 and 6
where these estimates are functions of the moving average parameters.
Thus, these are conditional maximum likelihood estimates.

We will first consider the single consequence MAI(l) process,

t
Let z = [zl,...,z , 2 1" be a sample of n observations

n n+1’ "7 Zn +4n

i 1 1 72
generated from this process and let % be the (nxl) random vector

assoicated with the vector of sample observations, Also, let

% = [aO’al""’anl+n2]t be an ((n+l) x 1) random vector where
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a, v NID(O,Ui). Thus, the joint distribution of a equals

-(n+l)/2

f(%t;og) = (2n0?) exp{ﬂ%t%/zoi}. (124)

(0,1)

is the [n x (n+l)] matrix
(0,1)(c§0,1))t)_

Since Z = C(O’l)

ere
z I m + uz, wher C

presented in equation (77), it follows that % ~ N (EZ’OZ C

and by definition, Ui CiO,l)(c(O,l))t = Zéo’l) Z(M(O 1)) , where
Eéo’l) is presented in equation (75). Thus,

t -n/2 0,1),1/2 t (o,L
£t (a508,00,00) = (210) e e e 4 2y 1203,

(125)
where Ky = ujn + 6k and (nxl) vector k is given in equation (86). 1In the

" V) A, v
logarithm of the likelihood function assoicated with equation (125),

¥ and ¢ appear only in the quadratic form
(0 1)
Qlu,8) = - (2~uln-6k) (z-ui_ 65)/20 . (126)

To find u and &8, the maximum likelihood estimates, note that

Q" (1, 8) = = 2020, 8)=((z=61)~ui ) M " 1)((z—dk) - 1w
(0,1)
= (z- Gk)t (0 1)( ~6k) -2 (z~6k) M it uzji Mio’l) i, o
L u
and
3Q" (1,8) /3w = - 2(z-810° (0 b 3o+ 2u gt Méo’l) I (127)

Also, note that

Q" @,8) = ((gmuj )-8 " MO (o y-619
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and
3Q% (u,8) /36 = 21< M( ’ )(z “Jun)+25 K" M(O Doy (128)

"b

When equations (127) and (128) are set equal to zero, we obtain the

following pair of simultaneous equations:

FLCRIISUNCE SRR

nn mn A om AL oA, I an

k M(O D 43 k MO o o gt (0 1) ,
e\,n n ’\J n Ay

the solutions to which are given below:

- t (0,1) . (0,1 (0 iy
u =[(_i M %n) 6(k M J )]/ %’n ) (129)

and

S (k M(0 1) z)( (0 1) %n) _ (%t M£O’l) )(k M(O 1), n)
= . (130)
D, (0 D, t ,0.0),
" M0 G - O

Note that /when & = 0 in the single-consequence model of equation
(83), one only needs to estimate j(assuming el is fixed) and equation
- £t (0,1 (o, l)
(129) becomes p =z M- ° M
L A %n/in n r\Jn

in Chapter II (equation (16)) for estimating the mean of a univariate

, which is the result obtained

normal population when the sample elements are correlated. Thus, the
quality control model presented in Chapter II is related to the inter-
vection model presented in Chapter IITI. 1In one sense, the result
presented in equation (16), which was also obtained by Dent [17], 1s

more general than that obtained in equation (129) since it allows for
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any type of autocorrelative structure as opposed to that of an MA(q)
process only. However, in another sense, the quality control model may
appear to be more restrictive than the intervention model since a shift
parameter is not specifically included. Equations (129)~(130) also point
ocut that ; and 8 are functions of the moving average parameter el since

they depend on M(O’l) = ;0’1))_1

N . However, these estimates are
v

2
ca(z
independent of Ui-

The estimates given in equations (129)-(130) for the single con-

sequence MAI(l) model are the same that would be obtained for the

multi-consequence model with the exception that Zéo’l) is now given by
- ]
equation (87), where Eéo’l) = cg(MiO’l)) l. Thus, the estimates are

A,
functions of el and Yy Furthermore, the estimates of p and 6 for the

multi-consequence MAI(Z) are also of the same form with the exception

that Eéo’l) is replaced by ZéO,Z) as given in equation (92), where
Ly _ v

220,2) = cg(Mﬁo’z)) l. The extension to higher-order MA processes

A

is straightforward. Note that the main difficulty in obtaining u and

A

§, for fixed wvalues of the moving average parameters, is the need to

)_1 or equivalently Méo’q).

find (Eéo’q) This will be discussed in the
following sections. Finally, note that equations (129)-(130) are valid
for any type of ARMA(p,q) intervention process.

Let us now turn our attention to the estimation of the moving

average parameters for the single and multi-consequence MAI(q) nodels,

q=1,2.

3,3,2 Maximum Likelihood Estimation of Moving Average Parameters

This section addresses the maximum likelihood estimation of the

moving average parameters for four specific cases: the single
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consequence MAI(l) model, the multi-congequence MAI(l) model, the

single consequence MAI(Z) model, and the multi-consequence MAI(Z) model,
The procedure used parallels that presented by Box and Jenkins [13], where
Box and Jenkins treat the non~intervention moving average models and
assumed ¥ = 0. 1In order to handle the intervention model, their pro-
cedure needs to be modified for several reasons. First, the n obser-
vations for the intervention model are segmented into two groups where
the moving average parameters may be different for each group. Second,
we need to specifically include u and & since they are of prime interest
in determining the effect of the intervention treatment. Third, we do
not use the back-forecasting technique of Box and Jenkins to find
estimates of 8greees al-q since this introduces a transient into the
system, even though this effect may be small for large n. Instead,

we use a least-squares estimate, Let us illustrate the procedure firgt

for the single consequence MAI(l) model.

3.3.2,1 Single Consequence MAI(l) Model

The single consequence MAI(l) model was presented in equation (83).

This can be rewritten as

g T Zgmrt8ya

]
1]

s £ = 1,004, nl

(131)

]

Zt -3 -3+ el at_l, t = nl +L,..., n, + n2 )

where a_ NID(O,cg), t=0,..., n, The joint distribution of

t . : . \ . s
a= [ao,al,..,, a .n 1™ was given in equation (124), while the joint

n -

2
distribution of % [Zl,...,Zn]t was given in equation (125), If

equation (125) were to be interpreted as the likelihood function, then



two basic problems exist in determining its value for a fixed set of
parameter values, viz,, finding IM§0’1)| and evaluating the quadratic
form Q(y,8) given in equation (126). These difficulties are overcome
by making a transformation from the [(n+l) x 1] space of A to the

[{n+1) x 1] space of z and a,, where a, denotes the preliminary value

®

a This transformation allows us to find the joint distribution of

0
z and a, as well as the conditicnal distribution of a, given Z The
forms of these distributions enable us to overcome the above mentioned
difficulties. The details of the transformation now follow.

From the model presented in equation (131), we can write down

the following (ntl) equations, where the first equation is merely an

identity;

a = Z -y 4+ 8. a _

nl nl 1 nl 1

a = 7 U § + 09, a

nl+1 nl+l 1 1

42 Ingp M-S0 a0
1 1

a = Z -u-4+06, a

+n, " “ -
nl 2 n1+n2 1 nl-l-n2 1

99
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In the above system of equationsg, we substitute the expression for ay

in that for a, and continue this substitution scheme until we have

2
= t - t
expressed 2= [ao,,.,, a in ]° in terms of z [Zl""’zn +n 1" and
172 172
a, = an. Specifically,
% T %o
al=21—u+ala0
= - 2
a; = 2y + 8,2 - (0w 407 3
nl"l rll—l n
aml = znl +8,2 _tet8y Z)~(1+0 +. 40 Ju +8; 7 ay
- - - - - - - - -7 nf_'___'_nl—__nlrl___'"
anl+1 = an+l + 61an+,..+6l zl-(l+el+...+el YJu-s +8, a
n +1 n1+l nl+2
a“l"‘2 = an+2 + alznl+l+“'+‘31 zl-(1+el+...+el )u_(1+el)5+el ag
n +4n,-1 n.+n,_-1

_ 172 12

anl+n2 - an+n2 + elznl+n2—l+" ‘+el zl_(l+el+‘ . -+61 )u
n,-1 n.+n
2 172
-(1+61+...+el Y + By a,
(132)

The system of (nl+n2+l)equations in (132) has a matrix representation,

namely,

a=LZ+Xa,~-bpy-csg, (133)
W i u " ny

where I is an [(nl+n2+l)x(nl+n2)] matrix and X is an [(n1+n2+l)xl]

vector as are k and ﬁ' These are presented in equation (134), from



which it is obvious that L, X, b, and
LAV V)

I

- = m m ww we

o

\

0 : 0
|
0 1 0
i
0 : 0
|
I
|
]
]
1 . 0
|
1
el 1 1
\
2 ;
81 \ 61
1
|
]
i
|
N i 1
n,+n.-2 . n, : . n,=-
1 ¢ 1
0
1
l+6l
nl-l
l+61+.. +61 ,,c‘:l =
e — - ﬁi_-._-
l+81+. . +81
nl+1
l+81+. . +Gl
n,+n,-1
12
1+91+...+81 ]

¢ are all functions of Gl.

g

- e

101
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Recall that if the transformation from the (pxl) wvector U to the
v

{pxl) vector V is given by U=BV where B is a nonsingular (pxp) matrix
~ Ny

then the Jacobian, denoted by J, is the determinant of the matrix B.
v
In our case, U=a, V=[a*lzt]t, and B is the [(n,+n,+1) x (n,+n,+1)]
o I 1772 1772

* *
matrix L where L =[X,L]. Thus, |J|=1, and by substituting equation
4"

(133) into equation (124) we see that the joint distribution of % and

a, is
£, Ghagnt, 8,02 = ety 2 epi5a) a0 /202), (133
Z,a*m a
v
where
- 1. _amyt I
S(Bl,a*) = (Lz +Xa R]J 26) (Lé +§F* RLL 25). {(136)

For convenience, we let d=by+cs.
VT VY
Define a, to be the value of a, which minimizes S(el,a*). To
find ;*, note that

t

_ t
S(el,a*) = (Li) (L%) +2a, % L% -2 g Lz - Za*g X+ a.X §+% d
and
ds(s,,a)/da, = 2 X1z - 24 + 2a, x"x.
iy lad Y oA L
Setting this derivative equal to zero shows that 5* is the solution
to the following normal equation:
. t
Fra--Fu+re asn)

To solve this equation, note that
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2 4 2n 2n_+2 2(n.4n,)
t., _ 1 1 1 72
'}é % = l+91+91+.-.+81 +91 +...+61
2(ni+nz+l) 2
= (l‘el )/(l—el)- (138)

Also note that étL is a [1 x(ni+n2)] vector whose elements we will

denote by Zl,..., En 4. ° where
172
b, = 8, (1-8 2(nlJrnz_Hl))/(1-62) (139)
i 1 1 1
i=1,..., nl+n2. Thus.
. nl+n2
Xlz= ] By oz - (140)
i=1
Finally, note that
£ B A I i+1)
Xg=wo (lep™ ] 8, (18,
i=0
-1
n. +1 n2
1 -1 i i+1)
+ 68 (1-9,) .Z B, (1-8, . (141)
i=0
From equation (137), we see that
P, t t
2, = - X L2+ X/ED (142)

where expressions for XtX, XtL z, and Xtd are given in equations (138),
LTI PR v Ny
(140), and (1l41), respectively.

Now S(el,a*) can be rewritten as follows:

$(8),2,) = (124K a,-0) " (Lz + X a,-D)

|

[(Lz+X 3,) -X(3,-3,)-4]) [1z+Xa,)-X(a,-a,)~d]

n

- t ~ ~ t ~ ) t A
(Lz+Xa,) "(Lz+Xa,)-2(a,-a ) X" (Lz+Xa,) -2d " (Lz+Xa,)
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- R - t £
+ (ag-a,)? FX+ 2(aald X +44

A - - 2 t -
= (iz + %a,)" (g + Fa)+r(aca) X% + 45 - 247 (zegay
since -2(a,~a2,)X (LzHa,)+2(a,-a,)d"X
- t t._~
= -2(a*-a*)[§ Lz + 5 éa*-%t %] = 0,

from equation (137). Thus,

56,3, = [(z+ia) 41" [(Lgra,)-d1+(a-a0 XK (143)
S(@l)

where S(Bl) is a function of the observations but not of a,. By

definition,

92)

t t t
t(a*lg 3 u,6, 91,02 3= £ ey (27,a,5 W0, Gl,dﬁ)/fzt(z s 1e,
4 * Y

"

from which it follows that

Za* 1 a

t . 2o T, 2 t, 2
ft ((ﬁ sa*s u,(S, Blsoa) fzt(i ’ Ua‘ss elada)fa*lzt(a*|i 3 ]J.,(S, 8 50 )s
VL "]
(144)

Ny

here f . . . , . . .
whe %fa* is given in equation (135). Upon substituting equation

(143) into equation (135) and then making use of equation (1l44), we

see that
on o 20-1/2, £, 1/2 ~ ook 9
£ |,t@alZ7s 18y 81,0)=(2m00) IR T expl-(a,-a,) “(XTR) /207, )
v (145)
and
t, 2y - ~n/2 t.(=1/2 _ 2
fzt(z 3 H,6, Bl,ca) (2ﬂca) l% §| exp{ S(el)/Zoa} s (146)

"

where S(Bl) is given in equation (143).
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The following deductions can be made from the foregoing statements:

(1) From equation (145), we see that "a, is the conditional ex-

pectation of a. " given z and (u,8, el,gz) = Et. Denote
" a "

~

t _t _ . _
E(a*li s 5 ) by [a,]. Thus, a,= [a*]. Since i = Li + Ea* - 2,

it follows that [a] = Lz + X[a,) - d and that
v " A ",

1 2 '
s(6) = I [al” (147)

A

where a, is obtained from equation (l42).

(ii) By comparing equations (1253) and (146), we see that

| xx|

v

-1 = |M(O,l) l
n
and

’\:r\,z
\

= (oo B (1)
S(el) (i ﬂz) M (z=-n,)
"
.. (0,1 .
Thus, an easy method for finding |Mn | and evaluating the
quadratic form has been provided. The determinant could have also

been found by using a result of Rutherford's [53] or a later result

of Shaman [58].

nl+n2 )
(iii) 1In order to compute S(Gl) = £=O [at] for fixed 81, we
let [aO] = ;* and recursively calculate [al] through [anl+n2] from
[a,] =z, - u+60a_T, (148)
for t=1,2,..., ny, while
fad =a =-u-38+ela_1 , (149)
for t=nl+l,..., 40,
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These results are stated in the following theorem, which closes

out this section.

Theorem 3.1: For the single consequence MAI(l) model, the un-

conditional likelihood is given by
+n
—(n,+n,) /2 R )
21t - 2 172 t.—1/2 - 2192
L(u,8, 8,,05|2") = (2m02) (X0 “expl Z_=o [a 12/202} ,

(150)
where (%tg) is given in equation (138), [ao] = a, as given in equation

(142); and [at]'s for t=1,..., n, are given in equation (148) while,

for t=n1+1,..., n1+n2, the [at]'s are given in equation (149).

3.3.2.2 Multi-Consequence MAI(l) Model

The multi-consequence MAI(l) model was presented in equation (84).

This can be rewritten as

Z -~ u+9

t t 1a‘t:-1’t=l""’n

4]
Ih

(151)

Zt -u -8+ Y, @ =n.+l,..., nl+n2,

t-1° t 1

where a NID(O,gg), t=0,..., n. The joint distribution of

t . s . .
0 al,...,anl+n2 1~ was given in equation (124), while the

joint distribution of % = [zl,...,z

2=l

]twas given in equation (125)
n;*n,

with the understanding that Zéo’l) = oz(Méo’l))-l is as presented in
v

equation (87).

From the model presented in equation (151), we can write down the

following (n+l) equations:
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T
al = Zl - U+ 91 ag
a2 = 22 - U+ 91 a1
a =7 -u+6_a
nl nl 1 l—l
a = Z -u-8+7v, a
ni+1 n1+1 1 n;
a =2 -H=-64+Y a
n1+2 n1+2 1 I+1
a =2 -u=-08+y a
nl+n2 n1+n2 1 n1+n2—l

By successive substitution of ay for a, and sc on, we can express

2 in terms of % and a, = ay Specifically,
40 T 3o
= - 5]
a1 Zl H + 1 a0
- _ i
a, 22 + Bl Zl (l+el)u + el a,
‘ nI—l nl—l ny
a, = Zn + Bl Zn _1 +...+ Bl zlf(l+61+. .+Gl )u+8l ao
1 1 1
- - - - - - - == == 7; ______ ﬂIll
41 T fp Y Py Oy Yy 2, eV o+ o o4
1 1 1 1
nl-l nl
- (l+yl+elyl+...+ Bl yl)u - 3§ + 81 Yy ao
n, -1
®n+2 an+2+“flznl+1+lenl”1912n1-1+921’f12nl-2+'"+91 R

TR S SR Sl S (1) + 8
A RRS AL R A TRARELCI TR SR Yy 1 Y19
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a = Z +y,Z gt
n -!-nz n1+n2 1 nl+n2 1 1 :1
n n n,- It
2 2 2 1 2
Z ...+

+0,7; znl_l +8, Y n -2 + 9 Y1
N2 b
n,—-1 nl n,

2
-(1+ryl+...+yl 8+ el Y1 3 (152)

---+ el Yl )u

This system of (nl+n2+l) equations has the following matrix re-—

presentation:
%=L%+§a*—ku-%6, {153)
where
0 0 o | o 0 0
|
1 0 0 ‘ 0 0 0
6
1 1 o Lo 0 0
. |
. I
nl-l n.=2 ‘
81 a 1
_____ 1 o _l | 0 0 0
n,-1 n -2
1 1 2 |
; |
Lo .
o -
. 1 , n2 . nl 2 n2 n2 ' nz—l n2—2
1 1 1 71 N | Ty Yy 1
- -



109

F -1
s o 0
b 1 0
61 l+6l 0
n n,-1
= 1 b = 1 -
% 61 s o 1+el+...+ 61 ’ 5 0
nl nl—l
Bl Yl 1+Yl(l+81+...+ Bl ) 1
n n -1
1 2 2 1
el Y] 1+...+qr1(1+al+...+e]L ) 1+Y1
n n n n,~1 n. -1
1 2 2 1 2
el Yy L1+.”+Yl (1+el+...+ 6, )_ ] 1+...+w,_1 |
(154)

*
in making the transformation as= L [a*:%t]t, where the
*
[(nl+n2+l) X (nl+n2+l)] matrix L = [X:L], it is easily seen that
v
|F|= 1. Bu substituting equation (153) into equation (124), we see

that the joint distribution of Z and a, is
B

02)-(11-!-1)/2

£ 2. 2
?%Ea*(i ’ a*a u,ﬁ, elelsUa)‘(zﬂ EXP{_S(el,Yl’a*)/zoa}’ (155)

where
t
5(81svy53,) = (Lz+X a, - bu - c8) "(1z+Xa, - bu - ¢d). (156)

For convenience, we let d = by + e§ .
Y v N,
Define a, to be the value of a, which minimizes S(el,yl,a*). By

taking the derivative of S(el,yl,a*) with respect to a, and setting

*

this derivative equal to zero, we find that a, is the solution to the
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following normal equation:
Xxa, =-X%x Lz+X d. (157)
AP EY] Y

To solve this equation, note that

2n
1

_ 2n 2(n,+1) _
Ha-eh ™ ee ta-, 2 Ha-ht, (158)

X"% = (1-8
ANy 1

and, if 21 denotes a general element of the [1 x (nl+n2)] matrix %tL, then

2{n,-1) 2(n,-1) 2(n,+1)
_ i 1 2.-1 1 2 2.-1
£y o= 8 0(1-0 )(1-8]) T + 8 (1-v; Y(A=v) 1,
(159a)
for 1=1,..., nl-l,
n 2(n,+1)
- ... 2 AL
Ty " 8 L0y YA DT, (159b)
and
n i-n 2(n_+n,-i+1)
_ 1 1 1772 2. -1
N e O YA-YDT (159¢)
for 1=nl+l,..., nl+n2. Thus,
. nl+n2
X 1z = }_‘ T (160)
i=1
Also note that
nl—l
t -1 i+l
g = we (1-e )7 ] eli(l-ell+ )
i=0
n nZ-l i
i=0
n n_ -1
1 -1 2 i i+l
ey oy ey )T v ey
i=0
n n n,-1
1 1 -1 o2 2i+l
+u8; Ty (=8, (- T T vy (161)

i=0
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From equation (157), we see that
a, = (- X" Lz + X &)/ (X" (162)
Y] v v V] v V]

where expressions for XtX, Xt Lz, and Xt 4 are given in equations (158),
vt oA TR oA

(160), and (161), respectively. UNote that when Y= el, equations

(158)-(161) are identical with equations (138)-(141l) for the single

consequence MAI(l) model.

By making use of equation (157), we see that S(el,Yl, a,) can be

rewritten as

S(9,,7y> a)=[Lzg 20415 (@eik a )41 + (,-a 07 X" X, (163)
. -’
ICREY

where S(Gl,Yl) is a function of the observations but not of a,. Let

2.t .
E = [u’d’el’Yl’Ua] . Since

t

t
£ z H
ZEa (m > By E

- tn t t' t
N )= Ee(E EOE, ez £ A6
n " ™

it follows from equations (155) and (163) that

-1/2 1/2 - 2
fa*‘zt(a*lit; Et) = (2ﬂ0§) 1/ |§t¥| / exp{-(a*—a*)z(xtx)/an}
K (165)
and
2,65 £ = @Yy ™2 x [T el ~s(e v /207 (166)

4%
where S(el,yl) is given in equation (163).
As with the single consequence MAI(l) model, we deduce the following:

(1) a, is the conditional expectation of a, given z and £. Also,
n, y

t
[a] = L% + %[a*]-%, where [a*] denotes E(a*lzt,é ). Thus,
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n_-+n

1 2 5
$(8,,v)) = | [a,1° . (167)
t=0
D xtE) 7 = %P ana s v = Gt P ).
N m n m
(iii) 1In order to compute
n.+n
172 2
5(8,,v;) = ] fa 1° ,
. t=0
we let [ao] = a, and recursively calculate the first nl[at]'s from
[at] = zt -u+ 91 [at—l]’ (168)

for t=1,..., 0, while the recursive relationship for the last nz[at]'s
is given by

fa ) =2 -wu- 5 + vy la 1) (169)

for t=n1+l,..., n1+n2.

These results are stated in the following theorem.

Theorem 3.2: For the multi-consequence MAI(l) model, the unconditional

likelihood function is given by
<-@l+n2)/2 n,+n,

-1/2 2 2
o2 |2%)=(2m0%) (X% /2 xpi- §=0 [a,17/262 3, (170)

L(ugé,ﬁl,\rl,

where [%tﬁ] is given in equation (158), [ao] = a, as given in equation

*
(162), and [at]'s for t=1,..., n,+n, are given in equations (168) and

(169). Since XtX is a scalar, the determinant symbol has been omitted.
v Ny

3.3.2.3 Single and Multi-Consequence MAI(Z) Models

Because of the rather complicated mathematical expressions that arise
in trying to formulate the likelihood functiom for both the single and

multi-consequence MAI(Z) models, we will consider in detail only the
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single consequence MAI(Z) model. The extension to the multi-consequence
MAI(Z) model is tedious but straightforward.
The single consequence MAI(Z) medel, which was presented in

equation (89), can be rewritten as

a = Zt -u+ el at—l + 82 at-Zi t=1l,..., n

(171)
= Zt -u -8+ 0

1 at-l + 62 at-2’ t = nl+1,..., nl+n2,

where a, ™ NID(O,Ui) for t = -1,0,1,..., nl+n2. Thus, the joint dis-

b - t
tribution of a [a_l, ags Bpseees A L 1~ equals

nyT My

f(%t; ci) (2nc§)'(“+2)/2 exp{-%t %/202} . (172)

The joint distribution of Z = [Zl""’ Z ]t is n-variate normal since
Y

7 ° Namely,
"

0,2 2
exp{~(zp,) WP 2y ) /2003,

s u

(173)

t 2. .. 2.-n/2, (0,2),1/2
fzt(E HTPY. Bl,ez,ca)—(zﬂca) ‘}%1 |
n

(0,2) - 2 (092) -1
Z - a(Mn )

~ (0,2) ~
structure as EZ ! presented in equation (92) with the exception that Y5

Ny
needs to be replaced by 8

where Ky is given in equation (91) and I has the same

i for i=1,2.

From the model presented in equation (171), we can write down the

following (n+2) equations:

al=Zl—p+61a0+82a_1

az=22-u+61al+82a0
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a =Z ~u=-548_a _418,a _
nl+n2 nl-i-n2 1 ni+n2 1'72 nl+n2 2 (174)

We now attempt to express 2 in terms of % and a m* = [a_l, ao]t. The

first three equations are easily cbtained:

1 Z1 ~u+6 a0+62a_1

By substituting this last expression for a, into the equation for a, in

(174), we obtain

2
8
a,= 2+ lZl (l+81)u+(Bl+62)a0+(8182)a_l

Furthermore, by substituting the last two expressions for a; and a, into

the equation for a., in (174), we obtain

3

=Z

2
aq 3+6 YA +(8 +82)z (1+6 +8 +92)u

+ (82428032 + (026 460ya

By continuing this substitution scheme, we obtain the following expressions
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for a,>8c,8¢, and ag:
=7 +e +(92+8 Y2 +(s +25 )z -(1+6 +e 3+e +28 e )
3474, 172 119179149, "

+(ea+3eze +9 )a + (e B +29 B )a

1 172 72 172
=Z +e +(ez+e p¥4 +(s3+29 8,02 +(64+36 8 +e )z

5 5 1 7273 1 172772 1
2 3 4 2
-(1+el+e1 1 l+92+e +26182+38182)u
+(8 +4e 8,436 18 ) +(e 9 +382 2 3')
1°2 2’8 19279208

z +e z +(e +e Y2 +(63+26 )Z +(e +36 +8 )z +(e +4938 +39 82)

175 2774 1 1 272 2 172 1
=140+, . 40740 407420, 6,436 65+4876 )

15040, 1727% YT Y

6 4 2.2 .3 5 3

+(el+selez+6alaz+ez)a0+(alez+461 +3e 92)a
a.=Z_+6_Z . +(0 +e Y2 +(5 +26 e Yz +(64+3926 +82)Z +(0 5+4636 +3e 8 )z
7 7 176 1" 72775 2774 1 17272773 1 2742
6 _. 4 2 2, 3
+ (el+selez+6el ot 2)zl
6 2 3 2 2 4
- 8
(146, +. . .+8,+0,+6,+63+26 1 6,+36, 6543670, +4 le +58182+69 82 ;) H
5 3 2 4 2 3 4

+(8 +6alez+1oel 2+49 8 )a0+(6 8 +56l 2+66 o+ 2)a

At first glance, no discernible pattern is evident for the at's in terms

of % and By However, a recursive relationship for the elements of
L, X, b, and ¢ is obtainable where a = LZ + X a_ - bu = ¢d. For the
. n, n n n% A ~

single consequence MAI(Z) model, L is an [(n1+n2+2)x(nl+n2)] matrixz,

X is an [(nl+n2+2)x2] matrix, and R and ¢ are both [(n1+n2+2)xl] vectors.
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Now L can be partitioned as follows:

Oan

L = |——— ,
%
L

where 0zxn is a[Zx(n1+n2)] matrix all of whse entries are zero while

* * .
L = [lij] is a[(n1+n2)x(nl+n2)] lower triangular matrix with

* )

lii =1, i=1,..., n

2* = 2* i 2 1
i+l,i 0 Ti,i-1 0 T e T
* *

2 = 2 i=3,..., n-1 > (175)

i+l,i-1 i,i-2°

zn’z = ln—l,l /

Equation (175) essentially states that the elements in the main diagonal
of L* are each equal to one, the elements in the first subdiagonal are
equal to each other, the elements in the second subdiagonal are equal to
each other, etec. To utilize the relationships expressed in (175), we

*
generate the elements in the first column of I, by the recursive relationship
* * *

Ri,l - 6121—1,1+82 21_2’1 s, 1= 3,..., n, with the initial conditiomns
2F = 1and 2
1,1 ° an 22,1 = el.
The {(nx2) matrix X can be partitioned as follows:
)
X =|——
*
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* *
where I2 is the (2x2) identity matrix and X = [xij] is a [(nl+n2)x2]

matrix whose second column elements satisfy the recursive relationship

* * * - - . ] L]
xi’2 = 61 xi—l,Z + 62 xi—2,2 for i = 2,3,..., n with the initial conditions
* * : *
X =1 and x = 0_. The elements in the first column of X are such
0,2 1,2 1
h * - 8 * f i =2 ith *oa &
that xi,l =9, Xi—l,Z y for i = 2,..., n wit xl,l = 0y
The [{n+2)x1] b and ¢ vectors can also be partitioned:
0
22 mnl+2
b ) —_—— , c =] — = __
A * v *
b c
Y] v
* * * *
where b = [bi] is an (nx1l) wvector and g = [Ci] is an (nle) vector.
ny

*, * ) %
The bi s satisfy the recursive relationship bi =1+ 81 bi-l + 82 bi—2’

% *
for i = 2,..., n, with the initial conditions that b0 = 0 and bl =1
ad, the c.' hthat ci =146, ci . +8, c for 1 = 2
and, e Ci S are suc at c, = + 1 ci—l 2 ci_2 » for 1 = 2,..., 1o,
* *
with ¢ = 0 and ¢, = 1. Thus a can be expressed in terms of 7 and a, as
0 1 n N n
follows:
a=LZ+Xa*—bu—c5, (176)
Ay N\ v v v

where recursive relationships have been presented for determining the

elements of L, X, b, and c.
N n

. * 0t t
In making the transformation a= L [aki zt] , where the
0" Ny

*
[(n1+n2+2)] matrix L = [ X, L ], it is easily seen that |J| = 1. By
substituting equation (176) into equation (172), we see that the joint

*
distribution of Z and a is
Y] “\.:

t .t 2 . 2 -(nt2)/2 2
fr%f-g&(,% ’ %*’ UQG, el,ezsﬁa)'(zﬂ'ca) EXP{"S(B:L,GZ, 3*)/20'&} ’

(177)
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For convenience, we let d = by + cd.
n, Ny v
Let a,be the vector of values which minimizes S{9,,9,, a,). By
" 1°72° %
taking the derivative of S(el,ez, a*) with respect to a, and setting the
y u

resulting system of equations equal to the zero vector, we find that a,

A,

is the solution to the following normal equations:

(%) a, = -x" 1z + X° d. (179)
] A\ Y]

Since (XtX) is nonsingular, we see that
a, = o™t -« Lz + xtg). (180)

By making use of equation (179), we find that 5(81,62, a ) can be rewritten
Y]

as

“ £ - - £ E "
s(e,,8.,, a_)=[{Lz+X a, )-d Lz + X a )-d}+(a, -a X X(a,-a . 181
(87:8,5 2,)=[(Lz+X 2,)-d1°[(Lz + X a,)-d]+(a,~2,) "X X(a,2,) (181)

A —~ A
S(Gl,az)
where S(Bl,ez) is a function of the observations but not of %*' Let
E = [U,S,Bl,ez,ci]t. Since
f%t’%g(it, 5:; Et) = f%t(gt; Et)fgﬁlﬁt(ii Iit ; Et) . (182)

it follows from equations (177) and (181) that

t) t .t 2,-1 1/2 SRR - ) 2
fat|zt(%*l% 3£ = (2moy) |x"x| exp{-(a,~a,) (X'X)(a,~a,)/20}

®* 1A,

(183)
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and

2,-n/2 -1/2

fzt(zt; Et) = (2n5%) | xtx| e.»xp{-s(el,ez)/2cr§'l t, (184)

a
Y

where 8(61,62) is given in equation (181).
Based on the foregoing statements, we can make the following
deductions:
(i) From equation (183), we see that 2, is the conditional expectation
of 24 given z and £. As with the MAI(l) models, let [%*] denote

E(a,lz, §). Thus, a,= [a,], la] = Lz + X[g,]-d, and

:l+n2 )
S(8,,6,) = } [a,]
1?72 =1 t
. to-1 _ (0,2) —po_ B (0,2)
(1) 1] = T and (65,8 =(zmu,) " M T (2,
Y] Y]
nl+n2 ,
(iii) In order to compute 5(8,,0,) = Z a,]1” , we let
1°72 _, e

t_‘ . '
[a_l,ao] =2, and recursively caleculate the first nl[at] s from

[at] =z - ; + el[at_l]+82[at_2] . (185)

for t=1,..., n,. The recursive relationship for the last nz[at]'s is

given by
a1 =2 -u-6+0,la _ l+e,(a 1 , (186)

for t=nl+1,..., nl+n2.
These results are stated in the following theorem.

Theorem 3.3: For the single consequence MAI(Z) model, the unconditional




120

likelihood is given by

_ n +n2 -9
lXtX| l/zexp{— Zi . [at]Z/?Ua}

2-(n1+n2)/2

2
L(u,6,91,82,0315)=(2ma)

(187)

Since (XtX) is a (2x2) matrix, its determinant is easily evaluated once
the elements of X have been recursively generated. The elements of

-

a, = [a,] are also easily obtained.
4] s

In finding a facile computational form of the likelihood function for
the MAI(Z) model and higher order MAI(q) models, it appears that the main
difficulty is in finding the elements of the matrices L and X and the
vectors b and ¢ which occur in the transformation a = Lz + X a, - by - c&.

~ " u m Ak N x
Actually, upon ingpecting Theorems 3.1-3.3, we see that only a function of
the X matrix, (XtX), explicitly appears, while L, X, b, and c are
A i

implicitly used in calculating é*. However, estimates of ag> 8_qa0res al—q
can be obtained by using a back-forecasting procedure outlined by Box and
Jenkins [13]. Even though this approximation introduces "a transient into
the system,” its effect will "almost certainly be negligible by the time
the beginning of the series is reached and thus will not affect the
calculation of the a's." Thus, it is only the elements of the X matrix for
which a recursive relationship needs to be determined, such as was done
for the single consequence MAI(Z) model. The recursive relationship for
both MAI(l) models is obvious. Since it may be difficult to establish a
recursive relationship to generate the elements of the X matrix for
higher-order MAI(q) models, Box and Jenkins omit the IXtX|_l/2 term from
the likelihood function and actually find unconditional least squares

n

estimates by minimizing z [at]Z. These estimates are unconditional
t=1l-gq
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in the sense that estimates are obtained for the elements of
a, = [ao,a_l,..., al_q] rather than setting i* = 2. Box and Jenkins

-1/2 by stating that is of importance only

justify the omission of |XtX|

for small n. However, there seems to be some disagreement om this point,

and this is reported by Dent [17]. Furthermore, in intervention studies,
to -1/2

the data bases are usually not that large and thus {X XI may play a

major role.

3.3.3 Implementing the MLE Procedure

In Theorems 3.1-3.3, a computational form of the likelihood function
was given for the MAI(l) and MAI(Z) models when the parameter values are
fixed. 1In this section, we discuss the finer points of Implementing the
computations with particular emphasis given to the multi-consequence MAI(l)
model.

Section 3.3.1 focused on the MLE of # and § for a fixed set of
moving-average parameters. Section 3.3.2 set forth a relatively easy way
of evaluating the likelihood function where the case of computation was
directed towards varying the moving-average parameters. The problem still
remains of finding é which maximizes L(Etlit) where, for the multi-

v
consequence MAI(l) nmodel, E = [u,ﬁ,el,yl,oilt. Thus we wish to

t, t
magL(g Iz ). Now this maximization problem can be decomposed as follows:
N v

2, ¢t

max L(Etlﬁt) = max [max L(u’ﬁ’el’Yl’calf ]
. B.,Y,2U.8 2
E 1*71° 9

max {max[max L{p,58,8,,v ,02l zt)]}.
1’'1’"at

2
el,vl Hy6 0
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Up to now, no particular reference has been made concerning the
2 \ .
maximization of L with respect to O Taking the logarithm of

equation (170), we find

n
2 L |2Y = —(a/Lnem - (/DD -1/ (X0 1§ [a1%/20%),
NN a oAy £=0 a
(188)
and
s e/l = - ni2eD + T (122D D
a a £=0 t a
Setting this derivative equal to zero, we find that
S )
o, = LO [a,]%/ (0 +n,) . (189)

~

Thus, ci as presented in equation (189) is the maximum likelihood estimate
of Gi for fixed pn, S, Bl, and Yq- By making use of equation (189) in

equation (170), we find that

max L(§F|§F) =  max 1{max L(u,S,SlWYl,ci)}
g
g B.5Y,5U,6 O _ n_+n
P ., ~(m4n)/2 12 172 5 sy
= max (2mo0) (X°%) exp{ -} [a 17/207}
a VN t a
815 su»8 ( '/2 ( '/ t=0
=(n,+n an =(n. 0
= max (2%) 172 (ci) 12 (XtX)_l/Zexp{—n/Z} .
elel’p:G N
This last expression is equivalent to
nny —(ny+n.)/2
2 1°72 to.~1/2
max (c) (X°X) , (190)

Bl’Ylyu’S

. -n/2 -n/2
since (2r) / and e n/ are constants. Ry substituting equation (189)
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into (190), we can rewrite this as

nl+n2 -(n,+n,) /2
max ] [ad%pnyr Y atnTH?
£=0

MR

eleI:“76

In turn, this is equivalent te

n,4n
172 (n,+n.,)/2
min {3} [at]z/(n1+n2)} 12 (Xt;é)l/2
BleI’U36 =0
nytn, (n,+0.)/2
= min  {min []  (a %@yl b2 (§t§)1/2 b s
el’Yl u!6 t=0

Equation (191) clearly peoints out the difference between unconditiomal
least squares (UCLS) estimation and maximum likelihood estimation. In

UCLSE, one wishes to

n_+n

172 2
min z [at] s
5 5 t=0
lel:]Js
which is equivalent to
0y, ) (n,+n,) /2
min  { § [a,1%/(n +n,) } (192)
t=0

Bl:Yls]Jsa

Thus, UCLS estimation differs from ML estimation by the multiplicative

effect of (XtX)l/z.
N

Am A A

Once that 4-tuple (u,ﬁ,el,yl) is found which satisfies equation (191),

~2
g, is then found from equation (189).
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The most difficult part of satisfying equation (191) is in finding

~ ~ _l 2
u and 8 since this involves finding Mio’l), where (Mio’l)) = Eéo’l)/oa.

Thus, for each (el,yl) pair, it becomes necessary to compute another
inverse. For a relatively large time series, n, = n, = 300, this exceeds

the capacity of core storage. However, simplifications occur by making

(0,1)

use of the patterned structure of EZ presented in equation (88). TFor

notational convenience, we temporarily omit the (0,1) superscript. Thus,

B B

11 : 12
T =g -, T = d M
Ba1 1 By

It is well-known, e.g., see Anderson [10], that, provided the various

inverses exist,

-1 -1 -1 -1 -1
By * B3 BypC 7 Byy By - By Bp©
M = (193)
-1 -1 -1
_C
Bo1 B11 C
where C = B -1 -1 and C_1 exist.

29 = B21 Bll Blz.Since Z% is positive definite, Bll
M could have also been given in a form which involves finding Bgé For

our specific problem, B and B22 are both tridiagonal matrices and thus

11

further simplification results. Let (B, dencte the (i,j)th element

l)
1174, 4
of B;i . Abraham and Weiss [ 1] show that

. 2(n_+1) .
(B, , = ae® oy o P -
1174,3 i+j 2(n_+1) i

v 1 - v 1

> ]

where u = (l—Bi)—l and v = 81. Thus,
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1) -
11,j _alya 1]
(1 Bl)el 1

(B,

An equivalent result was later given by Shaman [58]. In intervention
studies, since oy is usually much larger than Ny, the significance of

equation (194} is obvious.

From equation (193), we see that the only inverse which remains to
1 _ -1 -1 ot -1

= (Byy = Byy By 21 B11 By = Byp By By
is an (nzxnz) matrix whose entries are all zero except for the (1,1) entry,

1
l)n

be computed is C 312)_1‘ Now B

which is of the form Yi (Bz Using Abraham and Weiss' formula, we

1°™
see that

2n 2(n,+1)
2 1 - Y2(1_81 1)/[1_31 1

vy, (B, ]
1 1ag,n, T Y

Thus, C is also a tridiagonal matrix with

2(n_+1)
_ 2 2 20y 1 -1
ey = l+y] - yj(@-o," D [1-8, ]
and the following general pattern:
clli Y1 0 0 0
| 2
-y (D) -y 0 ‘e 0 t
1 1
- = - — = —-1—2 ——————— . ‘11z
e N U e 0| =
c C
Col . ) . 21 22
l - .
2
0 | O 0 0 l+yl
. -
Now, assuming the various inverses exist,
-1 - t -
-1 D 0 ey Czé
c = u , (195)
-1 -1 -1 -1 -1 t -1
€2 S01 D Coz ¥ Co2 E21 D &91 €y
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t -1 .
where the (Ilxl) scalar D = 11 ~ £21 022 Lay° But C22 is an

n.,-1) x (n,~1)] tridiagonal matrix whose inverse elements are given
2 2

by
23 24 2(n1+l)
-1 (1--’\rl ) [Yl - Y i
(Chy ), . = — X , 1> j.
22 71,j 2 itj 2(n_ +1) -
(A=) vy 1-v, 1
Thus, finding M has been reduced to finding B;l and CE% , where closed

form expressions exist for generating the elements of these inverses.
Appendix D contains a listing of the computer program MLE MAI(1)

designed to find the maximum likelihood estimators of the multi-consequence

MAI(l) model.

3.3.4 Additional Statistical Inference

Although previous sections have discussed the determination of point
estimates of the model parameters via the method of maximum likelihood,
there are several inferential aspects that remain unanswered. For
example, is the estimate of the shift statistically significant?
Furthermore, in the multi-consequence intervention model, are the pre-
intervention moving average parameters significantly different from the
post-intervention parameters? We will answer these questions by
specifically addressing the multi-consequence MAI(l) intervention model.

In the intervention models, it is the estimation of 3 that is of
prime importance. However, as can be seen from equation (130), 3 is

contingent upon M(O’l)

L whose elements are 81 and Yy And, it remains to

test
HO: el =y, Vs H1: 81 # Yy- (196)
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This problem is of sufficient importance in its own right without con-
sidering its influence on the estimation of §. For, if the alternative
hypothesis is true, the intervention treatment has affected the variance-
covariance structure of the pre and post-observations. Actually, a one—
sided altermnative hypothesis may be in order since a decrease in the
variability of the post-treatment ohservations seems plausible, To
test the hypotheses stated in (196), we employ an asymptotic chi-
squared test.

Let @ denote the parameter space for the multi-consequence MAI(l)

model. Then 2 is a subset of 5-dimensional space. Specifically,
8 = {(n,6,6,,y 0'2)- —ogp<m, —o<f<o, ~l<g <l,=l<y_ <1 02 > 0}
3 » l’ l, a . L] L] 1 l » a -
Let QO denote the parameter space when the null hypothesis is true. Thus,
2 2
R = {(1,8,0,,7,,0,) 1 0;=yq, ~e<u<m, —w<f<e, o, > 0 ).

Actually, Q defines the parameter space for the single consequence

0
MA (1) model. Let L(ﬁolzt) denote the maximum value of the likelihood
u

function found by using Theorem 3.1, and let L(Q]ﬁt) denote the maximum

value of the likelihood function using Theorem 3.2. Define
A(Z) = L(Q |Zt)/L(.<.:2|Zt).

It can be shown that the distribution of -2 £ni(Z) converges to a Xi
Y
distribution when the null hypothesis is true. See Kendall and Stuart

[43]. Thus, our decision rule is to reject H0 when

-2 £nx(§) > lea . (197)
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Note that

~ 2[4n L(§O|%t) - Ln L(§|%t)]

- 2 A (z)

n ﬂn(&i)o + @R, -0 ﬂn(éi) - & (198)

where the zero subscript indicates the values obtained under the null

]

o 8 =y Thus, the decision rule stated in equation (197)

hypothesis H

can be restated as reject HO when

A t "2 t 2
n f.n(ua)o + (X %)0 -0 £n(cra) - &N > Xl,a . {199)

If the null hypothesls is rejected, one could then set up a pseudo

t-test for testing H § =0 vs,H, : 6 # 0 as described in Section 3.2.2.2

0° 1
(Multi-Consequence MAI(l) Model); if the null hypothesis is not rejected,
one would use the pseudo t-test described in Section 3.2.2.1 (Single-
Consequence MAI(l) Model) .

To illustrate the previous comments, consider the following example

reported by Hall et gl and used by Glass, Wilson, and Gottman [28].

Example 3.1l: TFigure 6 is a record of the daily number of "talk outs” of

twenty-seven pupils in the second grade of an all-black urban proverty
area school for a total time period of forty days. "Talk-outs" is a
phrase describing the number of instances in which pupils talked to the
teacher without first gaining permission such as occurs when the pupil
raises his hand and talks to the teacher without being recognized. The
number of "talk-outs'" was recorded by the teacher on a hand held counter
and a reliability check was made by an outside observer on two of these
forty days. The first twenty days were denoted as the baseline period

before the commencement of an intervention effect, Beginning on the first
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day of the fifth week (the 2lst observation), the teacher initiated a
program of systematic praise for those students who raised their hands
and waited for recognition before talking, The teacher also allowed
the students to choose a favorite activity such as working puzzles when

the frequency of "talk-outs" was six or less.

Number of
”Talk-Outs"h

20

15

10 1

— -
10 20 30 40 Days

Figure 6. A Record of the Daily Number of "Talk-Outs".

A preliminary statistical analysis of the Hall et al data was con-
ducted by Glass, Willson, and Gottman [28]. As a first step in identifying
an appropriate model, seperate correlograms were computed for the pre-
intervention and post-intervention series. As they state, "a single
correlogram should not be computed without regard to possible intervention
effects. The presence of an intervention effect can greatly increase
autocorrelation coefficients." The first three estimated autocorrelations

for both series as well as the average of both are given below:
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Lag
1 2 3
Pre-Intervention Autocorrelations 0.28 0.29 0.09

Post-Intervention Autocorrelations 0.46 0.12 0,07

Average Autocorrelations 0.37 | 0.20 | 0.08

The significance of these autocorrelations can be investigated using
Bartlett's result for the variance of the kth estimated autocorrelation,
denoted .- Bartlett's formula states that, assuming pv = (0 for all

v > q,

q
Var(r,) = (1/M[1+ 27 Qi 1,

=1
for k > q. 1In practice, Py is replaced by T, Furthermore, 0.D.

Anderson [8 ] states that r. is approximately normally distributed

k
for large N if Py = 0. This allows us to compute standard error limits
on the pre-I, post-I, and average autocorrelations stated above. These

standard errors are given below as well as r +20r . They are

k k
Lag
1 2 3
Pre-Intervention Limits c = 0.22 a = (.24 a = (.26
1 ) 3

[-0.16, 0.721] [-0.19, 0.77] | [-0.43, 0.61]

~ ~ ~

Post-Intervention Limits o = 0,22 g = (0,27 a = 0,27
1 ) T3
[0.02, 0.90]] [-0.42, 0,66] | [-0.47,0,61]

~ ~

Limits for Average g = 0.16 a = (.18 ; = 0.18
1 T2 '3
[0.05, 0069] [—0'16, 0156] [-0128, 0-44]
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As stated by Glass, Willson, and Gottman, '"'it is apparent that not even
first differencing is required to remove the latter nonzero auto-
correlations in the original data." Thus, one of the primary purposes

of seperately calculating the pre-~I and post-I autocorrelations is
determining the stationarity of the series., How to combine the infor-
mation from the pre~I and post-I autocorrelations is somewhat problematic.
For example, the confidence intervals for the pre-~I autocorrelatiomns
suggest a random process while those for the post-I autocorrelations
suggest an MAI(l) process. Glass, Willson, and Gottman suggest averaging
the pre-1 and post-1 autocorrelations. Using their suggestions, we
tentatively identify the model as MAI(l). It now remalns to test the

two hypotheses that © and § = 0.

1N
Assuming a single conseguence MAI(l) model and using conditional

least squares estimation, Glass, Willson, and Gottman found that

I\2 ~ ~ ~
O, = ata/(n—Z) was minimized when 61 = - ,34, At this value of el,
Y
A2 ~ rs ~
g, = 4.47, y = 19.24 and § = ~ 14,29, which shows § to be significantly

different from zero. Furthermore, in the region of optimal el, the

graph of ci versus 6, was fairly flat as was the graph of § versus el.

1
When a multi-consequence MAI(l) model was assumed and conditional
least squares estimation was employed (see computer program ICLSMAI(1)

in Appendix C), it was found that 8, = -0.28, ;1 = -0.65, u = 19.07,

1
§ = - 13.94, and ci = 4.30. Thus, while 1, 6, and Si for the multi-

consequence model agree quite closely with the values for the single-

consequence model, there appears to be considerable discrepancy in the

values of the pre-I and post-I moving average parameters, To resolve
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this discrepancy, we employ maximum likelihood estimates and the like-

lihood ratic test,

Using the MLEMAI(l) program listed in Appendix D, it was found that

~ -~ ™ jal
81 =Yy =~ .25, p = 19.26, and § = - 14.33 are the maximum likelihood
estimates under HO : Bl = Yqr These maximum likelihood estimates of u

and § agree quite closely with both sets of least-squares estimates.

Under the assumption that el # Yl’ the maximum likelihood estimates are

sl

~ ~ ~
8, = -.19, Y, = -.58, § = 19,12, and 6 = - 14.06. Again, there is close

1

correspondence with the other cases for the estimates of u and §. Using

the maximum 1ikelihood estimates, we find that
-24&n A(%) = 2.08,

and we would reject HO : 8 only at the 14% level. Thus, if we do

1M1
not reject HO : 61 =Yy, we employ the single-consequence MAI(l) model and
find 8 = - 14.29 to be highly significant. Thus, there was a statistically
significant decrease in the level of "talk-outs" commencing with the

st s
217" day when a reward system was initiated.

This concludes Chapter TII.
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CHAPTER IV
ECONOMIC ASPECTS OF CONTROL CHARTS FOR THE MEAN

This chapter extends the brief introduction to economic aspects
of contrel charts presented in Chapter I. 1In this chapter, we will
determine the constant in the control chart limit as well as the size
of the sample to be selected. These will be chosen to minimize the
average run length of an out of control process. Although we are con-—
sidering a very simple type of economic control chart, it is perhaps the

most valuable because of its ease of understanding and implementation.

In section 4.1, we review the work of Page [48] who laid the
groundwork for this chapter by considering the case when the quality of
output from a process is based on just one characteristic and the sample
is randem. 1In section 4.2, we extend the work of Page to the multi-
variate case with independent observations. That 1is, the quality of
each item is determined by several characteristics and the vectors of
observations are independent. In section 4.3, the quality of each item
is dependent on only one characteristic; however, the observations are
correlated. By comparing the results in the different sections, we are
able to determine the influence of multiple quality characteristics and

nonindependence on the parameters of interest.

4.1 One Quality Characteristic, Independent Observations

In section 2.1, it was shown that, when there is only one quality

characteristic (X) which is normally distributed with standard values
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specified for the process mean (uo) and standard deviation (UI) and
successive random samples of size n are generated from this process, the
control chart limits are of the form PO + B(UI/VE), where B = zOL/2 = 3.,0.
In sccordance with Page [48], let m denote the true value of the process
mean which may vary from period to period. However, 9y remains constant.
12)'

Let P(m) denote the probability that a given sample yields an x

Thus, X v N(w, o

outside the contrel limits when m is the process mean. Then
P(m) = (X > uy + B o //n |m) +P(X < up = B og/Y/n |w)
=P(z > B+ (uy - m)/(5;/¥n)) + B(Z < =B+ (uy-m)/(o./Vn))
{200)

Let Y be a random variable denoting the number of samples up to
and including the first one for which an x indicates an out of control
process. Then Y is a geometric random variable with parameter P(m).

Specifically,
y-1
PY(y) = P(m)[1 -~ P{(m)] , ¥y =1,2,...

= 0 , otherwise

It is well known that E(Y) = 1/P(m).

Page defines the average run length (L) as the average number of

articles inspected between two successive occasions when rectifying action

is taken. For constant m,

L =nE(Y) = n/P(m),
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which 1is the sample size per sample times the average number of samples
up to and including the first one out of control,

Let L0 denote the average run length when m = gt Since
P(uy) = 2 2(-B),

it follows that

Ly = n/{2 ¢(-B)]. (201)

Let k > 0 be a value such that "a shift in the mean m of amount equal to
or greater than kcI is seriocus and we desire that such a shift should be

detected as soon as possible after it has occurred." Define L1 to be

the average run length when m = Ho + kcI. Since

P(ug + kop) = ¢(-B + kv/n) + ¢(-B - kv/n),
it follows that

L, = n/[e(-B + kvn) + ¢(-B - kv/n)]. {202)

Page provides two alternative schemes for determining B and n.
The first of these is to choose that inspection scheme such that Ll is
minimized for some given large value of L0 and fixed k. The second
chooses that scheme such that LO is maximized for some given small value
of Ll and fixed k. We will concentrate only on the first scheme. By
rewriting equation (201) as n = 2 LO ®(-B) and substituting this result

intec equation (202), we see that

2 LO o(~-B)
Ll = (203)
3(-B + kvy2 L0 ®(-B)) + ¢(-B ~ kv2 LO ¢(-B))
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The problem is to find B which minimizes Ll for fixed L0 and k. This B
is then used to find n from the equation n = 2 L0 ¢(-B). By using a com-
puter search routine, Page constructed tables of n, B, and L1 for

LO = 2,000, 5,000, 10,000, 15,000, 20,000, 40,000, and 60,000 and k =
{(0.2)(0.1)(1.8}, where (0.1) denotes the step size of k. Actually,
Page's results were based on an upper control limit only. However, the
values of n, B, and Ll for two-sided control limits can be found from
his tables by doubling the LO value. A computer program was written to
duplicate Page's results, and, in order to facilitate later comparisons,

the output is given in Table 3 for L, = 2,000, 5,000, 10,000, 15,000,

0
20,000, 40,000, and 60,000 with k = 0.2 (0.2) 1.8. These results cor-
respond almost exactly with those of Page. Note that B = fle . By

inspecting the table, we see that, for a fixed LO’ n decreases as k
Increases. This is intuitively appealing since it says that a larger
sample is needed to detect a small shift while a smaller sample will
suffice for a large shift. The table alsc shows that, for a fixed k,

n increases as LO increases. Thus, as the average run length of an in
control process increases, a larger sample size is needed to detect a
shift of given magnitude. Perhaps the most surprising result of Table 3
is that the control chart constant is quite frequently less than 3.0, the
traditional value. For example, when Lo = 5,000, it is only when k 2 1.0
that B 2 3.0. Thus, Page's scheme calls for tighter than usual control

limits and larger than usual sample sizes to detect small shifts.



Table 3. Values of n, ¥ 2 . Bz, and L. for fixed L, and
l,a 1 0
One Characteristic, Independent Observations
2

LO k It Xl,a B L
2000 .20 114 3.623 1.903 192.3
2000 .40 44 5.245 2.290 68.5
2000 .60 24 6.311 2.512 36.1
2000 .80 15 7.149 2.674 22.6
2000 1.00 11 7.705 2.776 15.6
2000 1.20 8 8.284 2.878 11.5
2000 1.40 6 8.807 2.968 8.9
2000 1.60 5 9.140 3.023 7.0
2000 1.80 4 9.548 3.090 5.8
5000 .20 i54 4,664 2.160 245.7
5000 .40 56 6.433 2.536 82.8
5000 .60 29 7.610 2.759 42.5
5000 .80 19 8.377 2.894 26.3
5000 1.00 13 9.068 3.011 18.0
5000 1.20 9 9.741 3.121 13.2
5000 1.40 7 10.199 3.194 10.1
5000 1.60 6 10.478 3.237 8.0
5000 1.80 5 10.827 3.290 6.5
10000 .20 187 5.528 2.351 287.8
10000 .40 65 7.405 2.721 93.8
10000 .60 34 8.579 2.929 47.5
10000 .80 21 9.459 3.07¢6 29.1
10000 1.00 14 10.199 3.194 19.8
10000 1.20 11 10.635 3.261 14.4
10000 1.40 8 11.241 3.353 11.0
10000 1.60 6 11.774 3.431 8.7
10000 1.80 5 12,110 3.480 7.1
15000 .20 208 6.055 2.461 313.0
15000 .40 70 8.004 2.829 100.3
15000 .60 36 9.215 3.036 50.4
15000 .80 22 10.114 3.180 30.7
15000 1.00 15 10.827 3.290 20.8
15000 1.20 11 11.402 3.377 15.1
15000 1.40 9 11.774 3.431 11.5
15000 1.60 7 12.237 3.498 9.1
15000 1.80 6 12.520 3.538 7.4

137



Table 3.

{(Cont'd.)

One Characteristic, Independent Obserwvations

L0 k n Xl,a B Ll
20000 .20 222 6.449 2.539 331.1
20000 40 74 8.425 2.903 105.0
20000 .60 38 9.642 3.105 52.5
20000 .80 23 10.555 3.249 31.9
20000 1.00 16 11.241 3.353 21.6
20000 1.20 12 11.774 3.431 15.7
20000 1.40 9 12.304 3.508 11.9
20000 1.60 7 12.763 3.573 9.4
20000 1.80 6 13.040 3.611 7.6
40000 .20 259 7.412 2.722 375.2
40000 .40 84 9.459 3.076 116.2
40000 .60 42 10.737 3.277 57.6
40000 .80 26 11.625 3.410 34.7
40000 1.00 18 12.304 3.508 23.4
40000 1.20 13 12.896 3.591 16.9
40000 1.40 10 13.361 3.655 12.8
40000 1.60 8 13.741 3.707 10.1
40000 1,80 6 14.364 3.790 8.2
60000 .20 281 7.998 2.828 401.3
60000 .40 89 10.094 3.177 122.8
600060 .60 45 11.360 3.370 60.5
60000 . 80 27 12.304 3.508 36.4
60000 1.00 18 13.040 3.611 24,4
60000 1.20 13 13.606 3.689 17.6
60000 1.40 10 14,169 3.764 13.4
60000 1.60 8 14.582 3.819 10.5
60000 1.80 7 14,827 3.851 8.5
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One can also use equations (201) and (202) to determine L1 for
traditional B = 3.0. Specifically, suppose we let L0 = 10,000 and B =
3.0. From equation (201), we see that n = 2(10,000)(.00135) = 27, From
equation (202) with n = 27, B = 3.0, and k = 0.2, we see that L1 = 1080.
From the tables with k = 0.2, we see that Ll = 288, n = 186, and B =
2.35. Thus, the scheme to minimize L1 results in a considerable reduc-
tion in the number of defective items produced before the out of control
state is detected.

In arriving at equation (202), we looked at P(uO + kol) which is
the probability of a given sample yielding an x outside the control
limits when the true mean has shifted by k standard deviations from the
nominal value. Thus, the measure of departure was in terms of process
standard deviations. One could just as well have measured the departure
using standard deviations of i, viz., Ui where oz = 01//5. In this case,
m =, + (coI//E) and the analogue to equation (202) is

Ll = n/[d{(~B + c) + #(-B - ¢)] ,

which is a simpler expression. However, the decision maker who sets up
control charts may have a more difficult time interpreting departures

expressed in terms of og than when using ¢ For this reason, we will

X I

not adopt this approach.

4,2 Multiple Quality Characteristics, Independent Observations

This section extends the results of the previous section by allow-

ing the quality of each item to be governed by more than one quality
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characteristic. In order to do this, we need to recall certain results
pregsented in Section 2.2.1.

Suppose % - %n is a random sample of size n from a p-

1’ Az

variate normal process with mean vector m and known variance-covariance
MY

matrix L. Let Yo denote the nominal value of the process mean. To
maintain statistical control over Hg» the vector of sample means (x) is
n, A"
calculated and it is necessary to determine whether n(z - u )t E—l(i - )
nvooa0 A a0

"

exceeds the upper control limit (xp‘a).
]
Page's procedure can be extended to this multivariate case by

determining P(m) where
v

o Imls (204)

< t -1z
P(m) = P[n(X - py) " 2 "X - ug) > x
A Y n o Ay
which is the probability that the statistic plots out of control when the

true process mean is m. If X v N (m, £) and hence X~ N {(m, £/n), then
A " P o, P A

it follows that (see Alt [2])

= t ~1,3 2
% - I - v’
n(m RO) (m RO) X PsA
_ _ t -1 -

where A = n(m - py)" I (m %p)+ Thus,

P@ = P, > x T, (o)
When m = pu,, A = 0,

Ao a0
O R
and
L, = o/P(x 25y 2 ;. (205)

P p,C



141

In order to measure departures of m from Hg» it is necessary to
n 2"
account for the possible departure of each component of m. This is
3

accomplished by introducing the (p x 1) vector g where
g = [k,o kzcz,..., kpdp],

and letting m =} + g- We require that at least one ki > 0. Thus,

although we wish to simultaneously control the mean vector of several

variables, it may be necessary to detect a shift in only one of these

variables. Whenm = u, + o, A = n Ut E_l a,
v A0 " Y
2 2
F + g) = P(y' >
and
L, = /PG’ % > x 2 (206)
1 P:A PO '

The specific form of X will become clearer when we let p = 2 and 3.
As with the univariate case, that Inspecticn scheme will be chosen

which minimizes L, for some given large wvalue of L0 and fixed k =
Q]

1

[kl,..., kp]t. However, in the multivariate case, we must also fix p =
a"

t .
[plz, Ppgs=s-s pp—l,p] where pij denotes the correlation between quality

characteristies Xi and Xj‘ By rewriting equation (205) as n = L0 P(x 2>
P
sza) and substituting this result into equation (206), we see that
>

2 2
Lo POx." > x.° )
0 P P,c
5 > . (207)

P(x' >
(x PsrA XP:‘I)

For fixed L., k, 2nd p we seek that yx 2 and n which minimizes L, as
0 ", ", B0 1

stated in equation (207). One difficulty in doing this is the need for
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evaluating the denominator of equation (207), which is the complementary

cumulative noncentral chi-square distribution function evaluated at

X 2
Pso
v 2 h .
Let ¥ = [x v A/(v + 3)]°. Sankaran [55] examined the cumulants
]

2
of Y expressed in terms of the cumulants of X'v

, as a power series in
3

(v + A)-S. Sankaran chooses h so that the leading term in the third
cumulant of Y vanishes. This results in Y heing approximately normally

distributed with

ECY) = 1 4+ h(h - 1D(v + 20 (v + 1) "2

- hh - 1)(2 - W - 3 (v + 2050 + )2,

V(T) _ i+ 2 (- L= WA -3+ 2,
(v + 02 2(v + 2)2

and

1= (2/3)(v + X)) (v + 30)(v + ZA)-Z.

=
]

An empirical comparison by Johnson and Ketz [40] shows that Sankaran's
approximation is remarkably accurate for all values of A. However, in
reporting on Sankaran's approximation, there are several typographical

errors in their equation for V(Y). Now

¢ 2 2, ¢ 2 -1.h 2 -1.h-
POC oA Xp ) TRLGC 0+ ) 7 > Gl (e 2y )T
2 -1,h
=1 - el{Gg e+ D - EDYAYMI, (208)

and approximation (208) was used in the search routine.
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The search routine used to find the minimum L1 is a modified

version of the success-failure method as described by Dixon. The

(1) (1)

0 is fixed and n = n is now

(1)

basic idea is to let n = 1, Since L

fixed, sza can be determined from equation (205). By letting n=n

and ¥ 2 o X 2 (1), a value of Il(denoted by LlCl)) can be determined

P, p,d
@ _ (D

from equation (206). Now let n + §, where § 1s a positive

integer greater than one, and determine Xp2a(2)

2) :
1

tinued until Ll

and evaluate L (k+l).

1
L &2 s g
1 . s forward search 1s continued until some Ll

the previous one, at which time we go back to an earlier n and use a

from equation (205). Im

turn, L is determined from equation (206). This procedure is con-

(k) > Ll(k-l). When this occurs, we set n(k+l)='n(k)

(k+2) _ _(k#1)

- 24
We now set n 4+ (6/2) and evaluate

is greater than

smaller § in the forward search. Although time consuming, this eventually

leads to a minimum value of L, for fixed LO’ k, and p. When the winimum
u v

1
value of Ll is found, the output can be arranged in table format with
£t .t 2
column headings: LO’ g ’ E s T, Xp,a’ Ll’ A. It was this search routine

that was used to generate the univariate results of Table 3 by letting

p =1, p = g, and E =k

reduces to A = n klz.

The first case to be investigated is when p = 2. That is, there

1° When p = 1, the noncentrality parameter

are two quality characteristics. In this Instance,

A =1@ - 0 Tk, 2

2
1 - 20 k.k, + k2 ). (209)

172

Note that when p = 0 and k, = 0, A = n klz, which is the univariate

2

noncentrality parameter. The minimization of Ll was Investigated for
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Ly = 5,000, 10,000, 20,000, and 40,000, p = (-0.8)(0.2)(+0.8), kl =
(0.2)(0.2)(1.8) and k2 = (0.0)(0.2)(1.8). The complete results are
presented in Appendix E, with a few selected values shown in Table 4
to indicate the general pattem.

Inspection of Table 4 reveals several traits. One is that the
sample size needed to detect departures of given magnitudes (fixed kl
and kz) is always larger for L0 = 10,000 than for L0 = 5,000. This
result is intuitively appealing for we should expect that as L0 increases
a larger sample becomes necessary. We also note that reversing the roles
of kl and k2 for fixed p yields the same n, xzfa, and Ll. For example,

when p = -0.8, k, = 0.2 and k2 = 0,6, we get the same results as when

1

kl = 0.6 and k2 = 0.2, This cccurs since the noncentrality parameter
is symmetric in kl and k2'

Upon first glancing at Table 4, it appears that, for a fixed L0
and p, n decreases as k1 and k2 increase. Again, this is intuitively
appealing, for the magnitude of the required sample size should indeed
decrease as the magnitudes of the shifts which are important to detect
increase. Usually, n is much larger for small kl and k2 = 0.0 than for
other wvalues of k2' The interpretation of k2 = 0.0 is that it is
important to detect a shift of zero magnitude in the second component,
or an "infinitesimally small" shift. This accounts for the rather large
sample sizes in this case. However, further inspection of Table 4 shows
that it is not always true that n decreases as kl and k2 increase for

0.4 when

fixed Ly and p. While this is true for p £ 0 and also for p

k, is small, it is not true for the other values of kl and p 0.4, nor

1
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Table 4. Economic Parameters for Twe Quality Characteristics,
Independent Observations
Lo = 5,000 Ly = 10,000
kp ky a XZ?a L," n XZfa L,
0.2 0.0 | 88  8.08 130 | 103  9.15 1481
0.2 | 32 10.10 45 2 36 11.25 50 2
0.6 | 10 12.43 13 3 11 13.62 15 3
. 1.0 5  13.81 6 4 5 15.20 7 4
S 0.6 0.0 | 15 11.61 21 2 17 12.75 23 3
i 0.2 | 10 12.43 13 3 11 13.62 15 3
@ 0.6 5  13.81 7 6 6  14.81 7 6
1.0 3 14.81 47 3 16.22 47
1.0 0.0 6  13.45 98 7 14.51 g 8
0.2 5  13.81 6 4 5 15.20 7 4
0.6 3 14.81 47 3 16.22 47
1.0 2 15.65 3 2 17.00 3
0.2 0.0 | 166 6.81 254 2 199 7.83 295 9
0.2 | 77 8.35 112 89 9.44 127
0.6 | 23 10.76 3210 26  11.90 36 10
1.0 | 11 12,264 15 11 12 13.45 17 1L
. 0.6 0.0 | 30 10.23 43 12 3% 11.37 47 12
S 0.2 | 23 10.76 32 10 26 11.90 36 10
" 0.6 | 13 11.90 18 13 14 13.14 19 13
< 1.0 8  12.87 10 14 9 14.02 11 14
1.0 0.0 | 13 11.90 18 13 14 13.14 19 13
0.2 | 11 12.24 151t 12 13.45 17 11
0.6 g 12.87 10 %* 9 14.02 11 14
1.0 13.81 7 6 6  14.81 g o
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Table 4. (Cont'd.)

Ly = 5,000 Lo = 10,000
ky ky n XZ?a L,* n XZ?a L
0.2 0.0 | 188  6.56 291 227 7.56 339
0.2 | 113  7.58 169 133 8.64 194
0.6 32 10.10 45 2 36 11.25 50 2
1.0 15 11.61 20 L0 16  12.87 22 13
2 0.6 0.0 35 9,92 49 16 50  11.09 55 16
0 0.2 32 10,10 45 2 36 11.25 50 2
< 0.6 20 11.04 27 22 12.24 30
1.0 | 12 12.06 16 %7 13 13.29 17 V7
1.0 0.0 15 11.61 21 ° 17 12.75 23 3
0.2 15 11.61 20 13 16  12.87 22 15
0.6 12 12.06 16 17 13 13.29 17 17
1.0 8 12.87 11 18 9  14.02 12 18
0.2 0.0 | 166  6.81 254 9 199 7.83 295 9
0.2 | 145 7.08 221 173 8.11 254
0.6 35 9.92 49 16 39 11.09 55 16
1.0 14 11,75 20 15 16 12.87 22 15
o 0.6 0.0 | 30 10.23 4332 | 34 11.37 47 12
¢ 0.2 35 9.92 49 16 39 11.09 55 16
" 0.6 26 10.52 37 29 11.68 40
< 1.0 14 11.75 20 15 16  12.87 22 15
1.0 0.0 13 11.90 18 13 14 13.14 19 13
0.2 14 11.75 20 13 16  12.87 22
0.6 14 11,75 20 13 16  12.87 22 13
1.0 11 12.24 15 1L 12 13.45 17 11
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Ly = 5,000 Ly = 10,000
ky ky n XZ?a Ly n XZfa L
0.2 0.0 88 g.08 1301 |[103 9.15 148 1
0.2 | 174 6.72 268 209 7.74 311
0.6 24 10.68 3319 | 27 11.82 36 19
w 1.0 g8 12.87 1118 9 14.02 12 18
¢ 0.6 0.0 15  11.61 21 7 17 12.75 23 2
. 0.2 24 10.68 33 19 | 27 11.82 36 19
® 0.6 32 10.10 45 2 36 11.25 50 2
1.0 14  11.75 19 20 | 15 13.00 21 20
1.0 0.0 13.45 g 8 7 14.51 9 8
0.2 12,87 1118 9 14.02 12 18
0.6 14 11,75 19.20 | 15 13.00 21 20
1.0 14 11,75 19 20 | 15 13,00 21 20

*The numerical superscripts indicate those entries which have the same

values of the economic parameters n, xzza, and Ll.
»
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is it ever true when p = 0.8. Thus, for a relatively large positive
correlation, the sample size needed to detect large positive shifts is
larger than the sample sizes needed for smaller positive shifts. An
explanation of this is provided by examining the noncentrality parameter
A, which is a generalized measure of distance of how far the true mean
is from the nominal value, Fix p = +0.4 and k. = 0,6, When k2 =0.,2,

1

A (n/.84)(.304); when k2 = 0.0, » = (n/.84)(.360); and, when k2 = 0.6,

A

(n/.84)(.432). Inspection of Table 4 shows that, for the (kl, kz)
pairs investigated, the largest sample size (35) occurred with the
smallest value of the noncentrality parameter (.304), the next largest
sample size (30) occurred with the next to the smallest wvalue of the
noncentrality parameter (.36), and the smallest sample size (26) occurred
with the largest value of the noncentrality parameter. Thus, when the
generalized measure of distance (}) between the true mean and the
nominal value is small, it is to be expected that a larger sample size
will be needed to detect such a small shift. The results are summarized

below.

(kl, k2) A n
(0.6, 0.0) (n/.84) (.360) 30
(0.6, 0.2) (n/.84)(.304) 35
(0.6, 0.6) (n/.84)(.432) 26

Let us now compare n for positive p with n for negative p. It is

to be expected that both n's will be equal when k2 = 0 since
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A=n(l - pz)_l k12

operation. However, for fixed kl and k2’ n is always much smaller for

and the sign of p is lost through the squaring

p < 0. However, this i1s not to imply that one should try to choose
negatively correlated characteristics as opposed to positively correlated
characteristics. The stated phenomenon occurs because we are looking at

positive shifts (kl > 0, k, > 0) instead of negative shifts (kl <0,

2

k, < 0). Thus for p < 0 and k

9 >0, k

1 9> 0, the generalized distance
measure (1) is larger than for p > 0 and kl > 0, k2 > ). As the distance
of the true mean from the nominal value increases, the sample size needed
to detect this becomes smaller.

One additional topic of interest 1s how does the required sample
size for two quality characteristics compare with the sample size for one
quality characteristic (Table 3)? Some idea of this behavior is obtained
by letting p = 0.0. Thus, X = n(kl2 + k22). Now, when k2 = 0, X reduces
to the univariate noncentrality parameter n kz. However, the control
limit will still be XZ?a' Tables 3 and 4 show that, for p = 0.0, kz =
0.0 and fixed LO and kl, the required sample size is larger for two
quality characteristics than for one quality characteristic with this
difference becoming smaller as kl increases. Furthermore, as soon as
k2 becomes positive, n for p = 2 is usually much smaller than for p = 1.
Thus, an economical sample size is not an unusual result when two
quality characteristics are used as opposed to one. As a final point
of interest, note that the maximum n in Table 4 occurs for p = 0.0, kl =

0.2, and k, = 0.0. This is the one case where the required sample size

2
for p = 1 (Table 3) is considerably smaller than for p = 2 (Table 4).
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The next case to be investigated is when there are three quality

characteristics (p = 3). Here,
2 2 2 2 2 2

+ 2k1k )+-2k2k (210)

3(P12P237 P13 3(P19P137 P53)]

where

2

_ 2 2
A=1=-0py, =P13 ~Py3 * 2015014093 - (211)

Note that, when P13 = Pp3 = 0 and k3 = 0, equation (210) reduces to
equation (209), which is the noncentrality parameter for two quality
characteristics. The determination of that n and X32a which minimize Ll
was carried out for LO = 10,000, Pig = (-0.4)(0.4)(+0.4), P13 =
(-04)(0.4)(+0.4), Pyq = (-0.4)(0.4) (+0.4), kl = 0,2 (0.4) 1.0, k2 = 0.0,

0.2 (0.4) 1.0, and k, = 0.0, 0.2 (0.4) 1.0. It was necessary to reduce

3
the range of the pij's, since, for given P1s and Pi3s Kendall [42] has

shown that p23 must lie in the range

2 2 2 2.1/2
+ - -
P1p P13 T (L= pyy” = pya” +pgp” 03 )7 7

Although additional values of pij's could have been investigated, the
limitations of space were another determining factor. Selected results
are presented in Table 5.

Quite a few of the entries in Table 5 will be duplicates since
they yield the same noncentrality parameter. These entries are denoted

by superscript numerals in the Ll column. For example, when P13 =
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Table 5. Economic Parameters for Three Quality Characteristics,
Independent Observations
L, = 10,000
p p p k k k n x2 L
12 13 23 1 2 3 3,a 1
0.0 0.0 0.0 0.2 0.0 0.0 254 9.313 374
0.2 0.2 0.0 149 10.478 213
0.2 0.2 0.2 108 11.178 152
0.6 0.6 0.6 17 15.140 23
-0.4 0.0 0.0 0.2 0.0 0.0 | 223 9.599 3251
0.2 0.2 0.0 99  11.367 140 7
0.2 0.2 0.2 80 11.827 112
0.6 0.6 0.6 13 15.706 17
+0.4 0.0 0.0 0.2 0.0 0.0 223 9.599 325 1
0.2 0.2 0.0 194 9.904 281
0.2 0.2 0.2 | 128 10.810 182
0.6 0.6 0.6 21 14,691 28
-0.4 ~0.4 0.0 0.2 0.0 0.0 | 189 9.961 274 2
0.2 0.2 0.0 88 11.621 123 3
0.2 0.2 0.2 56 12.594 77
0.6 0.6 0.6 9 16.473 11
-0.4 +0.4 0.0 0.2 0.0 0.0 | 189 9.961 274 2
0.2 0.2 0.0 ‘88 11.621 123 3
0.2 0.2 0.2 96  11.433 135 &
0.6 0.6 0.6 15  15.405 20 3
40.4 -0.4 0.0 0.2 0.0 0.0 | 189 9.961 274 2
0.2 0.2 0.0 | 184  10.019 266 ©
0.2 0.2 0.2 96 11.433 135 4
0.6 0.6 0.6 15 15.405 20 3
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Table 5. (Cent'd.)
Lg = 10,000
2
P12 P13 P23 | | ky ks n X3,a L
+0.4 +0.4 0.0 | 0.2 0.0 0.0 189  9.961 274 2
0.2 0.2 0.0 186  10.019 266 ©
0.2 0.2 0.2 146 10.522 208
0.6 0.6 0.6 26 14.407 32
-0.4 ~0.4 -0.4 | 0.2 0.0 0.0 141 10.600 202 11
0.2 0.2 0.0 53 12.712 73 14
0.2 0.2 0.2 29 14.004 39
0.6 0.6 0.6 4 18.194 6
-0.4 -0.4 +0.4 | 0.2 0.0 0.0 209  9.741 304 7
0.2 0.2 0.0 99  11.367 140 8
0.2 0.2 0.2 76 11.937 106 °
0.6 0.6 0.6 12 15.874 16 10
-0.4 +0.4 -0.4 See entries for P12 P13 = -0.4, Pyq = +0.4
+0.4 -0.4 -0.4 | 0.2 0.0 0.0 209 9.741 304 7
0.2 0.2 0.0 158 10.351 227 1°
0.2 0.2 0.2 76 11.937 106 2
0.6 0.6 0.6 12 15.874 16 10
+0.4 +0.4 -0.4 | 0.2 0.0 0.0 141 10.600 202 11
0.2 0.2 0.0 194  9.904 281 12
0.2 0.2 0.2 94 11.479 132 13
0.6 0.6 0.6 15  15.405 20 2
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Table 5. (Cont'd.)
Ly = 10,000
2 *
P12 P13 Pz | B k) ky n X3, Ly
+Q.4 -0.4 +0.4 See entries for Pig = Py3 = +0.4, Ppqy = =0,4
-0.4 +0.4 +0.4 | 0.2 0.0 0.0 | 141  10.600 202 11
0.2 0.2 0.0 | 53 12.712 73 14
0.2 0.2 0.2 94  11.479 132 13
0.6 0.6 0.6 15  15.405 20 3
+0.4 +0.4 +0.4 | 0.2 0.0 0.0 | 209 9.741 304 7
0.2 0.2 0.0 | 158  10.351 227 13
0.2 0.2 0.2 | 172 10.166 248
0.6 0.6 0.6 29  14.004 39

*The numerical superscripts indicate those entries which have the same

values of the economic parameters n, xzza, and Ll.
=3
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0, k, = 0.2, and k, = k, = 0.0, we get the same economic para-

1 2 3
meters for 019 ==0.4 as we do for Pip = +0.4.

Pa3 =

Table 5 shows that the largest n occurs when P1g = Py3 = Pgg = Q,
kl = 0.2, and k2 = k3 = 0. In this case, A reduces to the univariate
noncentrality parameter. For p = 3, n = 254 (Table 5); for p = 2, n =
227 (Table 4); and, for p = 1, n = 187. Thus, the trivariate case does
reguire more observations. Remember that ki = 0 implies that it is
important to detect an "infinitesimally" small shift in the ith character-

istic. However, as soon as kl, k2’ and k3 each equal 0.2, the trivariate

sample size n = 108 is less than the bivariate sample size (n = 133) for

k

1 k2 = 0.2 which, in turn, is less than the univariate sample size

187) for kl = 0.2. Thus, even if the variables are uncorrelated,

a x32 chart should be used instead of three univariate X-charts if

"

(n

sample size economy is important.

Table 5 also seems to indicate that, for fixed P1os P13° and Poqs
n decreases as kl, k2’ and k3 increase. However, this is true only for
the first part of Table 5, for, when at lease two of the pij's are posi-
tive, n first increases and then decreases as the k's increase. Thus,
the required sample size does not always decrease as the magnitudes of
the shifts that become important to detect increase in a positive

direction. As in the bivariate case, this oddity is directly related

to the value of the noncentrality parameter.
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4.3 One Quality Characteristic, Correlated Observations

One of the cases considered inSection 2.1.2 assumed that the n
elements of the sample were jointly normal and had a first-order serial
correlation. See equations (10) and (11). If m dentoes the true value
of the porcess mean, then X ~ N(m, (Uzc/n)[l + 2p(1 - n-l)]) and modi-

fied control limits for an X-chart (see equation (13)) are of the form
Mo g B(cc//r_x) [1+ 20(1 - 2 b)) ,

where o) denotes the standard value of the porcess mean and B was substi-
tuted for Zy/2° These limits were derived under the assumption that
T = g Although it was shown that ﬁ (the maximum likelihood estimator)
is more efficient that X, some justification for using X is provided by
the r~dependent central limit theorem, where r-dependence means that

<

Xt and Xt+s are autocorrelated only if s £ r. The stationary r-dependent

central limit theorem is stated by Kleijmen [44] as follows:

Given an r-dependent strictly stationary sample Xl,

3
Xppeens X ., X with E(X)) = u and B(|X_|7) exist-

g2

ing, then the sample mean

is asymptotically normally distributed with mean p

and variance

n
Var (X) = (UZ/n)[l + 2 Z (1 ~ %) pS].
s=1
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Kleijnen points cut that the variance is no asymptotilc property but holds
for any n. The primary importance of this theorem is that in the absence
of process normality a correlated X-chart can still be used.

Let P(m) denote the probability that a given sample yields an x
outside the correlated control limits when m is the process mean. Then,

for first-order serial correlation,

P(m) = P(X > Mo * B(cc/fﬁ) /s 2p(1 - n-l)lm)

+ P(% < Mo - B(oc//ﬁ) /1 + 20(1 - n‘l)lm)

P(Z >B +a) +P(Z <-B +a),

where a = (u, - m)/[(uc//H) /i + 2p(1 - n-l)]. Continuing, we see that

0
P(m) = P(Z-a>B) + P(Z-a<-B) = P(|z - a|>B) = P((Z - a)° > B?)
2 2 _ 2

¥Now (Z - a% ~ N(-a, 1), and (2 - 2)° ~ X1y where A = a~. When m = Mg
A = 0. and P(uy) = p(xl2 > 8%). When m = b + ks A =n K2/[1+ 20 (1-n"1)1,
and P(u0 + kcc) = P()(iz)L > Bz). Note that B2 is merely notation for

2
Xl,a'

Proceeding as we did in the earlier sections, we define
L, = n/B(uy) = n/P(x,> > x,2.) (212)
0 0 1 I1,a

and

2

&

L, = n/R(u, + ko) = n/P(fo > Xy o) » (213)

1
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where now
2 -1
A=nk"/{1+ 21 -1 ). (214)

The above definition of A allows us to investigate the effect of p on
Ll' That inspection scheme will be chosen which minimizes Ll for a
large, fixed value of LO. Specifically, we let L0 = 5,000, 10,000,
20,000, 40,000, o = (-0.4)(0.2)(4+0.4), and k = 0.2 (0.2)(1.8). The
reason for the restricted range of p was presented in Section 2.1.2.
The results are presented in Table 6.

The results presented in Table 6 are identical with those pre—
sented in Table 3 (independent observations) when ¢ = 0. We also see
that, for a fixed L0 and p, n decreases as k increases. This is true
for both negative and positive p. The most surprising result in Table 6
is that, for fixed LO and k, n is always larger for positive p and
smaller for negative p. This result is somewhat counterintuitive.
Recall that, according to Nelson [46], a positive first-order serial
correlation implies that a "higher-than-average observation tends to be
followed by another higher-than-average observation, and although "there
is no very long-lived persistence on one or the other side of the mean"
the series should appear relatively smooth. However, for a negative
first-order serial correlation, a higher-than-average observation tends
to be followed by a lower-than-average observation, and the series should
appear relatively choppy. Thus, in this latter case, we would expect
that a larger sample size is needed to detect a shift of given magnitude

since the shift is partially obscured by the choppy appearance of the



Table 6.

Economic Parameters for One Quality Characteristic, First-Order Serial Correlation

L, = 5,000 Lo = 10,000
2 2
P k n xl’a L1 A n xl,a L1 A
~ 4 .2 52 6.565 73.47 9.86 59 7.579 82.35 i1.25
-4 4 19 8.377 25,60 13.33 21 9.459 27.91 14.89
b .6 11 9.374 14.22 16.20 12 10.478 15.29 17.89
-4 .8 8 9.956 9.57 19.94 8 11.241 10.23 19.94
-.4 1.0 6 10.478 7.12 22,27 6 11.774 7.58 22,27
-.4 1.2 5 106.827 5.67 25.92 5 12,110 5.95 25.92
-.4 1.4 4 11.241 4,66 27.22 4 12.520 4.92 27.22
-.4 1.6 3 11.774 4,09 25.60 4 12.520 4.27 35.56
-. 1.8 3 11.774 3.44 32.40 3 13.040 3.61 32.40
-.2 .2 108 5.277 166.77 7.22 129 6.183 192.59 8.62
-.2 4 38 7.125 55.32 10.23 44 8.111 62,00 11.82
-.2 .6 20 8.284 28.49 12,21 23 9.292 31.48 14.01
-.2 .8 13 9.068 17.74 14.25 14 10.199 19.45 15.32
-.2 1.0 9 9.741 12.31 15.63 10 10.827 13.40 17.29
-.2 1.2 7 10.199 9.14 17.72 8 11.241 9.94 20.11
-.2 1.4 6 10.478 7.20 20.88 6 11.774 7.70 20.88
-.2 1.6 5 10.627 5.86 23.04 5 12,110 6.21 23.04
-.2 1.8 4 11.241 4.52 23.82 4 12.520 5.14 23.82
.0 o2 154 4.664 245,67 6.20 187 5.528 287.81 7.52
.0 oA 56 6.433 82.78 9.12 65 7.405 93.79 10.56
.0 .6 29 7.610 42,53 10.80 34 8.579 47.50 12,60
.0 .8 19 8.377 26.25 12.80 21 9.459 29,05 14.08
.0 1.0 13 9.066 17.95 14.00 14 10.199 19.77 15.00
.0 1.2 9 9.741 13.16 14.40 11 10.635 14.39 17.28
.0 1.4 7 10.199 10.07 15.68 8 11.241 10.99 17.64
.0 1.6 6 10.478 7.97 17.92 6 11.774 8.73 17.92
.0 1.8 5 10.827 6.50 19.44 5 12.110 7.07 19.44
.2 .2 194 4.270 315.65 5.58 239 5.102 373.74 6.87
.2 oh 71 6.013 103.15 8.26 84 6.946 123.45 9.75

BCT



Table 6., (Cont'd.)
L, = 5,000 L, = 10,000
2 2
k n xl,a Ll A n xl,a Lr,1 A
.2 .6 38 7.125 55.84 10.10 44 8.111 62.77 11.65
.2 .8 24 7.953 34.49 11.56 27 9.000 38.42 12.93
2 1.0 17 8.579 23.57 13.06 19 9.642 26.09 14.49
.2 1.2 12 9.215 17.18 13.67 14 10.199 18.94 15.73
.2 1.4 9 9.741 13.11 14.41 11 10.635 14,42 17.21
.2 1.6 7 10.199 10.34 15.17 8 11.241 11.33 17.00
.2 1.8 6 10.478 B.34 16.89 7 11.488 9.16 19.20
.4 .2 230 3.982 379.40 5.14 286 4,791 453.05 6.39
iy A 86 5.676 131.92 7.77 102 6.600 151.46 9.20
iy .6 46 6.783 68.51 9.49 53 7.772 77.35 10.89
4 .8 29 7.610 42.42 10.83 33 8.634 47.46 12.25
A 1.0 20 8.284 29.02 11.92 23 9.292 32.26 13.58
A 1.2 15 8.807 21.17 13.17 17 9.845 23.42 14.76
A 1.4 11 9.374 16.15 13.57 13 10.333 17.80 15.74
.4 1.6 9 9.741 12.70 14.68 10 10.827 13.99 16.30
4 1.8 7 10.199 10.26 15.25 8 11.241 11.27 17.04

65T



Table 6. (Cont'd.)
Ly = 20,000 Ly = 40,000
2 2

p k n xl,u L1 A n xl,a L1 A
~.4 .2 67 8.606 91.34 12.84 74 9.691 100.37 14.24
-.4 b 23 10.555 30.20 16.46 25 11.698 32.54 18.03
-.4 N 13 11.625 16.36 19.60 14 12.763 17.41 21.32
-4 .8 9 12.304 10.83 22,86 9 13.542 11.48 22.86
-.4 1.0 7 12.763 8.00 26.67 7 14.078 8.40 26.67
-.4 1.2 5 13.361 6.30 25.92 6 14.364 6.64 32.07
-4 1.4 4 13.741 5.23 27.22 5 14,700 5.45 35.28
-4 1.6 4 13.741 4,38 35.56 4 15.106 4.55 35.56
-.4 1.8 3 14.364 3.84 32.40 3 15.612 4,11 32.40
-.2 .2 150 7.149 218.91 10.02 173 8.142 245.63 11.56
-.2 A 50 9.140 68.74 13.42 55 10.232 75.49 14.76
-.2 .6 25 10.404 34.49 15.21 28 11.488 37.53 17.01
-.2 .8 16 11.241 21,14 17.45 17 12.409 22.86 18.51
-.2 1.0 11 11.934 14.49 18.95 12 13.040 15.56 20.61
-.2 1.2 8 12,520 10.68 20.11 9 13.542 11.40 22.50
-.2 1.4 6 13.040 8.31 20.88 7 14.078 §.82 24,12
-.2 1.6 5 13.361 6.64 23.04 6 14.364 7.11 27.27
-.2 1.8 4 13.741 5.52 23.82 5 14.700 5.86 29.16
.0 .2 222 6.449 331.12 8.92 259 7.412 375.17 10.40
.0 g 74 8.425 104.96 12.00 84 9.459 116.21 13.60
.0 .6 38 9.642 52.50 14.04 42 10.737 57.55 15.48
.0 .8 23 10. 555 31.86 15.36 26 11.625 34.73 17.28
.0 1.0 16 11.242 21.58 17.00 18 12.304 23.41 19.00
.0 1.2 12 11.774 15.66 18.72 13 12.896 16.90 20.16
.0 1.4 9 12.304 11.91 19.60 10 13.361 12.82 21.56
.0 1.6 7 12.763 9.39 20.48 8 13.741 16.08 23.04
.0 1.8 6 13. 040 7.62 22.68 6 14.364 8.20 22.68

091



Table 6. (Cont'd.)
L, = 20,000 L, = 40,000
2
k n Xl?a Ll A n xl,u L A
.2 .2 287 5.995 433.65 B.24 337 6.941 494,85 9.67
.2 W4 98 7.912 138.97 11.35 110 8.966 154,70 12.72
.2 .6 50 9.140 69.75 13.19 56 10.199 76.76 14.73
.2 .8 31 10.014 42.36 14.76 34 11.128 46.35 16.13
.2 1.0 21 10,737 28.63 15.92 23 11.852 31.18 17.35
2 1.2 15 11.360 20.71 16.76 17 12,409 22.47 18.81
.2 1.4 12 11.774 15.71 18.61 13 12.896 16.99 20.01
.2 1.6 9 12.304 12.32 18.82 10 13,361 13.28 20.65
.2 1.8 7 12.763 9.94 19.20 8 13.741 10.66 21.51
.4 .2 346 5.666 529.31 7.72 409 6.595 607.46 9.12
.4 A 118 7.579 171.32 10.62 135 8.593 191.47 12.13
iy .b 61 8,777 86,32 12,49 69 9.818 95.34 14.09
b .8 38 9.642 52.53 14.03 42 10.737 57.64 15.45
.4 1.0 26 10.333 35.51 15.25 29 11.423 38.81 16.92
o4 1.2 19 10.922 25.70 16. 36 21 12.020 27.98 17.96
iy 1.4 14 11.488 19.48 16.83 16 12.520 21.15 19.01
A 1.6 11 11,934 15.27 17.72 12 13.040 16.54 19.14
A 1.8 9 12.304 12.28 18.84 10 13.361 13.27 20,63

191
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series. However, the results of Table 6 indicate otherwise. The
phencomencn of a larger sample size for positive p is partly explained
by examining the behavior of A, as presented in equation (214). Recall
that A is a generalized measure of distance of how far the true mean is
from the nominal wvalue. For fixed k and n, A is larger for negative p
than it is for positive p. Thus, since the generalized distance is
smaller for positive p, we need a larger sample size to detect this
smaller shift.

One would alsc use the r-dependent central limit theorem to
determine the economic parameters for second and higher-order serial
correlation.

We now continue our investigation of average run lengths for one
quality characteristic in the presence of correlated observations by

looking at the p-chart. In this case, control limits were of the form

+ £ 3 =
ug ¥ Bfl/% 0 A j_ where B = z

n an af2

covariance matrix of the elements of the sample. Recall that this chart

and An is the inverse of the wvariance-

is valid for detecting departures from Mo when there is any type of

autocorrelative structure. Under these conditions,

VAPR ~ ARR: .
+ B l{i n ﬂn €n|m) + Py < Mg B l{ﬂ n An ﬂn‘m)

P(m) = P(p > o

P(Z > B+ a) + P(Z < -B + a)
_ 12 2
_P(Xl,K > B )9

2 _ _o82 it . 2 . L2
where A = a° = (uo m)” (j n An %n) and B® 1is notation for Kl,a'

Since P(uo) = P(Xl2 > Xlzu)’ it follows that
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- 2 2
L, = n/P(xl > X1 o) (215)

Let k » O be such that a shift in the mean m of amount equal to or
greater than kcc is serious. When m = Mg + kac, P(uo + kcc) =

2 2
P(Xi,k g Xl,a) and

2

2
= '
Ll n/P(Xl,?\ > Xl,a) > (216)
where
_ 2 .t -
A= ko DT AL I (217)

In looking at equation (217) for the noncentrality parameter, two dif-
flculties seem to arise. First, the noncentrality parameter seems to be
a function of U?é. Secondly, the noncentrality parameter involves the
calculation of an inverse since An = E;l. To investigate the specific
nature of these difficulties, let us consider first-order serial corre-
lation.

The variance-covariance matrix of first-order serial correlation

was presented in equation (11) and can be written as

by factoring out the 02 It immediately follows that An = Z;l =

c"

2 -1
(1/¢" ) €, ~ and
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_ st -1,
S TERAE I I (218)

This allays our first concern that A depends on ozc. However, equation
(218) very definitely points out that, for fixed k and p, A cannot be
determined until Cnml has been obtained, This chore is somewhat
facilitated by the work of Abraham and Welss [1]. Let (Cn-l)ij denote

the (i,j)th element of Cn—l. They have shown that

(€, y; = a0, (219)
where
1 A - s’ -
_ A - 4p° 20
/l o1 Vi
2p
and

20 20
5 2 (n+1) !
( vl - 4p" = ].)
1 -
2p /

for12j=1,..., n.

In order to find that n and Xlza which minimize L1 by the success-
»

(1)

failure search procedure, we fix L0 and let n =n » in which case
» 2 (1)
1l,a is determined from equation (215), Since p 1s fixed and n is

(1)

temporarily fixed at n' 7/, Cn(l)_l is obtained using equation (219),

and A(l) ig determined in accordance with equation (218). This
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immediately enables us to evaluate Ll(l) from equation (216).
We now set n = n(z) and proceed as outlined above. Again, we
must find a C (2)_1. Because each iteration requires finding an inverse
n

and each line of output requires many iterations, we will not pursue
this further at this time.

In this chapter, we have determined the economic parameters (n
and the control chart constant) by using the scheme of minimizing Ll for
a large fixed value of LO. This was done for three cases, where the
first case merely reviewed Page's work for ome quality characteristic
and independent observations. The second case extended Page's scheme
to two and three quality characteristics with independent cbservations.
One general conclusion was that a xzp-chart requires smaller sample
sizes than p X-charts. The third case extended Page's scheme for one
quality characteristic by allowing first-order serial correlation
between the observations. In general, negatively correlated observa-

tions yielded the most favorable result.
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CHAPTER V

THE MULTIVARIATE, MULTI-CONSEQUENCE INTERVENTION MODEL

In Chapter III, we introduced the multi-consequence intervention
model for a univariate time series where the observations occur at n
equispaced epochs. The "multi-consequence' terminology refers to the
fact that the intervention may have affected the variability-covariability
of the process. In Chapter II, we presented the concept of a vector-
valued or multivariate ARMA model to represent various types of correla-
tion structure across the vectors of observations. This chapter extends
the material presented iIn Chapters IIT and III by considering the multivari-
ate, multi-consequence intervention model, its properties, and its
estimation.

The need for such a model becomes obvious where one realizes that
the introduction of an intervention in some geographic region has the
potential to affect not only the occurrences of that particular region
but also the occurrences of contiguous regions. For example, when
Connecticut instituted its speeding crackdown in 1955 (see Glass [27]),
the monthly fatalities per 100,000,000 miles may have also been affected
for the states of New York, Massachusetts, Rhode Island, and New Jersey.
To assess the simultaneous impact of the speeding crackdown, it may
have been prudent to monitor Et = [th s Z2t s Z3t . 24t . ZSt]t’ where
Zit represents the monthly fatalities per 100 million miles for each of
the five states. Correlation may exist within Et’ such as between zit

and 2., , as well as across the Z_'s.
i't L
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This chapter will specifically address the p-variate multi-
consequence intervention model for a first-order moving average process.
The extension to higher order moving average processes is obvious.

Selected portions of this chapter appear in a paper by Alt and

Deutsch [3].

5.1 Properties of the Multivariate, Multi-Consequence
Intervention Model

5.1.1 Model Description

The bivariate, first-order moving average process was presented in

equation (59), namely,

21 T V1 7 %1121, e-1 T %12%2,6-1 T %1e
Zat T P2 7 %21%1,e-1 T %22%2,e-1 t P2e .
Note that, when 812 = 621 = 0, each equation describes a univariate MA(1l)

process. In order to accommodate a constant, continuous intervention
effect commencing with the (nl + 1) th observation, we modify equation
(59) as follows:

-8 a

in a - 6..4 +
1t - "1 7 %1181, e1 T %102, 001 T e (2208
Zoe = M2 7 95337 po1 7 990% a1 t 2
fort=1,..., g, and
Z1e T W1 Y8 7 8181 ee1 T %1282, 041 T 21
) ) ) (220b)
Zop T Hp T8y = 0518y o1 T 8928y 1 T3y
for t =n, +1,..., n, + n,. Equations (220a) and (220b) have the fol-

1 1 2

lowing matrix representation:

Z - Qa + a t=1,..., 10

i
S it L R 1 (221)

= + - + = +l,..., n,+n_,
Zo=p TS - Ga tas =0y 17
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where

21t Hy 81 911 812
= s H T » § = » 9= .
W n

§ 8

Zoe My 2 21 %22

It is assumed that a_ + NID., (0, I ); that is, the a_'s are bivariate

At 2 n a L
normally distributed random variables and they are uncorrelated across
time. Note that the matrix formulation presented in equation (221}, even
though specifically developed for the bivariate case, also represent the
multivariate or p~variate, single consequence intervention model. 1In the

p-variate case, Z

e M and § are each (p x 1) vectors and @ is a (p x p)
At oA, "

matrix.
Equation (221), which represents the single consequence interven-
tion model for a multivariate, first-order moving average process, can be

used as a basis in the formulation of the multivariate, multi-consequence

intervention model, hereafter designated by MMAI(l). Let us first con-

sider the bivariate case. For t = 1,..., g, the model is identical with
that presented in equation (220a). However, since the intervention may

have affected the post-intervention moving average parameters as well as

the level, equation (220b) becomes modified as follows:

Z =y, + 8, - ¢,.a 1~ Y.,a 4 ta
1t 1 1 1171,t-1 1272,c-1 1t (222)
Zog T My T8y T W93y i1 T V2% 1 t Ay
Thus, the MMAI(l) model has the following matrix formulation:
i R (223)
= - + = +1,... +
Zp=p*d-va ,*ta,ce=n *le, 0t

The matrix formulation of MMAI(q), q > 1, models is straightforward.

Let us now investigate the properties of the MMAI(l) model.
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5.1.2. Properties of MMAI(l) Model

Since E(a ) = 0, it follows that
L a,

and EZ) = t=1eee,my (224)
H
a¥)

E(%t) = » t=mn; + ..., oy + n, -
Note that this is also the expectation of the single consequence inter-

vention model, described in equation (221).

Let I'(h) denote the (p x p) covariance matrix of Z_ and Z prior
nt ~t+h

t
i i . i T = - ! -
to the intervention. That is, T'(h) E[(%t E(Et))(5t+h E(%t+h)) ]

t
F — = — - H = —
and T'(-h) E[(%t E(Et))(zt_h E(Et—h)) ]. Now, for t 1,..., ng 1,
t
T = - -
() = E[Z, - 0 2y - 0]
t
= -0 + - - + -
Bl -0 1 *2, " 0Q -9 8 1730y ~ W)
_ t t t t t t
=EM®@a 12509 9% 0% T 23010 T 33 e
And, it immediately follows that, for t = 1,..., nl -1,
(z, +05, 0° , h =0 3
a a :
" o
-5, © , h=1
r¢h) =< A v (225a)
o5, , h=-1
A
. 0 , otherwise )
Furthermore,
t t
E[(Z - A -u-248 = E{(-0a + -%a + a
(@ = W24y - g - O =ECo, 2 )Co e )Y
. t t
= E(—an a ¥
VR
= -Za ¥yt o, (225b)
")
Let T*(h) denote the (p x p) covariance matrix of Z_ and Z after the

intervention. Then, for t = n, + 1,..., ny + n, = n,
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(z, + e ¥ , h=0 )
4" v
-1 ¥ ,h=1
TPk(h) =¢ " > (225¢)
-v¥E, , h=-1
")
. 0 , otherwise J

The expected value and covariance properties of the MMAI(l) model
can be written in an alternate format, To do this, let the n sample
elements be denoted by 2.,..., Z Z A 4

TR g g H T ey,
a (p x 1) vector. Let % denote the (np x 1) vector of sample elements,

where each Z, is
ad

t t t t
where Z = [Z,... Z veey 2.1 = [2Z Z oigena eersZ 2
Y "\.1’ s mnlp ’bnl+l’ ] Ah ll! Pl 3Zln13 3 pnl! 1’nl+l’
.s Zp,nl+l""’ Zl,n""’ Zp’n]. Let 5% denote E(%), where this (ap x 1)

vector is given by

t t t t
= 5 1+ 8
umz [B7seees 35 (B4 0 7eee, (B 57, (226)

. t ) )
with h = [Ul,..., up]. As in Chapter II, let AC:)B denote the direct

product of the matrices A and B. Thus, equation (226) can be written as

= (j I + (1) §, 227
] GLOT) B+ ()T 8 (227)
where lrfn is an (n x 1) vector which has 0's for its first n, entries
followed by n, 1's. If Iy denotes the (np x np) covariance matrix of
v
E, then IZ; may be partitioned as follows:
"
[T (L) 0 s+ 0 b 0 0 eee 0
r-1) T TL)er 0 )0 0 0 e 0
. . . . i . : .
0 0 0 -~ o) | Ry 0 0 e 0
—————————— f— - —_—_ - — - - = - (228)
0 0 0 «-- T*(—l)l T%(0) T*(1) 0 = 0
0 0 D +*+ 0 | T*(-1) Tx(0) T*(1)+++ O
: . ' . | - . . .
0 0 0 *-+ 0 | 0 0 Q e F*(OU
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This patterned structure illustrates that the memory of a MMAI(l) model is
only one period long.

Note that the expected value and covariance structure of the MMAI(l)
model presented in equations (227) and (228) is very similar to that of
the quality control model presented in Section 2.2.2, when there is a first-
order serial correlation. One of the biggest differences is in their
philosophy. 1In the intervention medel we wish to test, based on a single
sample of size n, whether the intervention has shifted the level from
i to g-kg commencing with the (nl+l)th observation, and our primary inter-
est is in the magnitudes and directions of the components of the shift
vector §. In the quality control model, we wigsh to test whether the pro-

3y
cess mean remains at a nominal value EO in repeated samples of size n.
Furthermore, in the multivariate intervention model, initial interest is
also centered on the possible change in covariance structure accompanying

the introduction of the intervention.

The distribution of Z will now be investigated. Let
v

at = [at at 3t a t a t ]
by ’\,0’ ﬂ_,l’ LML ) mnli ,"nl_‘_l, =00y mn1+n2 ¥
t .
where ay [ali’ aZi""’api]' Thus, a is an ((n+l) p x 1) vector.

Since Z = C a + M where C is an (np x (ntl)p) matrix, it follows that
ur n, v

Z is distributed as an np-variate normal. These properties can be
N

summarized by saying that

Z " N z 229
~ np (:r‘:[”% ] %’%) ( )
where uy is given in equation (227) and Iy is given in equation (228).

A ¥

~ a,

In order to satisfy invertibility conditions, constraints must be

placed on the elements of the © and ¥ matrices. Specifically, we require

that the p roots of the determinantal equation
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lIm - & =0 (230a)
be less than one in absclute value and also that the p roots of the
determinantal equation

Im - ¥| =0 (240b)
be less than one in absclute value. Thus, similar to the univariate multi-
consequence MAI(l) model, two sets of invertibility conditions are
required. For p = 2, the invertibility region of each component of the
MMAI(lj model is shown in Figure 5 (see Chapter II).

Additional aspects of non-intervention vector-valued time series can

be found in Hannan [36].

5.2 Least Squares Estimation of the MMAI(I) Model

In the previous section, a detailed explanation was presented of
the multivariate, multi-consequence, first-order moving average interven-
tion model (MMAI(l)) and its properties. 1In this section, we will be
concerned with parameter estimation for this model with primary concern
directed towards the estimation of p and 2. The least squares estimates

v

of 4 and § are obtained by transforming the original Zt's to Yt's which
e ny 4]

3

are amenable to statistical linear model analysis. We shall see that the
least square estimates of H and g are directly dependent upon @ and Y.

As in the univariate case, we employ an iterative technique of searching
on the elements of © and ¥ until those values are found which minimize
the residual sum of squares of the zt's. However, before demonstrating

the least squares estimation procedure, it may be helpful to review the

basic concepts of the multivariate classical linear regression model.
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In this section, we review some of the concepts of the multivariate,

multiple linear regression model.

material can be found in Goldberger [29].

A more detailed treatment of this

The multivariate linear regression model has the following matrix

formulation:

where

and

B21

T v s

kl

Y=XB+E,
le LA N ] Ylp
Yoz 77 Yy
Yn2 T an
*12 777 1k
a2 777 Fox
*a2 77T Fnk
B
12 e'1p
B
77 eea sz
B
k2 kaJ

= [Y,, Y

2

= [x., x

X '1,2"..

= [B,, B

o A

(231)

Y1,

nP

.3 B]’

AP
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e . -
11 12+ “1p
E £
21 22+ "2p
E = = [E€,, €E,54¢0+45 E .
. . . [ml 2 i mP]
£ £ £
nl nZz *** np

This formulation arises when there are n observations on each of p varia-

bles Y P4 Each row of Y

1 1700 Xy

corresponds to a single joint observation. Equation (231) imples that

Yp for each of k variables x

for each Yj’ j=1,..., p, there is a relation or model of the form
"
Y. = XB, +¢e, ,
nJ nJ ]
which is merely the univariate multiple regression model. Thus, each
column of Y refers to one of the p relations.
Let the (kxp) matrix B dencte the estimate of B. Let W = EtE.
Thus, W is a (pxp) matrix with entries w,, = EFE_. In order to estimate
1] nlay ]
B, we minimize the trace of W denoted by trW. Goldberger [29] shows that
this is equivalent to minimizing |n-lW|, the generalized error variance.
He also points cut that minimizing trW is equivalent to fitting each of
the p relations (Y. = X8, % ¢,) by the least-squares criterion, which
] nJ "
leads to (th)bj = Xth, j=l,..., p. The resulting normal equation for
") .
all p relations are
x*xB = xtv ,

and the estimate of B is the (kxp) matrix

B = (g%t %y, (232)

if the rank of X is k. We again point out that the columns of B could

have been generated by fitting p univariate multiple regression relations.
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The point estimates of the elements of the B matrix, given in
equation (232), can be used as a starting point in the derivation of
correspending interval estimates. However, in order to derive interval
estimates, it is necessary to impose a distributional property on the

. t . .
error matrix E. Let €s denote the i th row of E, for 1 = 1,..., n. We
" -

assume that EE 4 Np (Ot,E). We also adopt the univariate multiple regres-
n, Y]

sion concept that the errors are independent across observations, or

e, v N (0,0? I ) for j=1,..., n. In order to combine the row and
nd na’"J n

column distributional assumptions, let E denote the (nxp) matrix E writ-

Y
in di . " . i di
ten in dictionary form. Then E an (2, In(:)Z) It immediately follows

that the expectation and variance-covariance matrix of B, which denotes

~B
‘s n - {
Let ¢ denote the (i,j)EB-element of (XtX) 1. Thus, ¢™™ £ is the vari-
1

MY
ﬁ written in dictionary form, are p; = E and C(ﬁ,ﬁt) = (XtX)—l(:)Z.
YRV
ance-covariance matrix of %E, which is the i th row of ﬁ, and G?(XtX)_
is the variance-covariance matrix of éj’ which is the j th column of ﬁ.
It also follows that the elements of é are normally distributed since
they are linear combinations of the elements of Y. The estimate of I,

denoted by I, is given by
£ = (Y-XB)T (Y-XB)/(n-k).

It follows from the above statements that a 100{l-a)% confidence inter-

. . o - ~ i1
val for Bij’ i=1,..., k, j=1,..., p, is given by Bij + tl—“/Z,n—kOj(c )
where &j is the square root of the j th diagonal element of I. Additional
types of confidence intervals can be constructed as the need arises.

The multivariate linear regression model provides the basis for

estimating u and & in the MMAI(l) model. As with the univariate case of
m N
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Chapter III, it is necessary to transform the MMAI(l) medel into the

format of a multivariate linear regression model,

5.2.2 Least Squares Estimation Procedure

As it‘now stands, the MMAI(l) model presented in equation (223) is
not in a multivariate linear regression format. The transformation
necessary to convert equation (223) into linear model format can be
found by considering the first few zt's. Specifically, z, = u + al

Thus, zy depends on both a current and previous error vector. An obvious

v
way to alleviate this 1is to let a0 0, its marginal mean. Upon doing
v
this, %l = E + al, and we let y l = %1' Now z, = u + a2 - eil’ and it

A\
also depends on both a current and previous error vector. However, if

we multiply yl by © and add Gyl to z ys We obtain Z, + Oyl =

= (g + iz - Ga ) + (Ou + Ga ) = u + Ou + iu‘ Thus, we let ¥y < % + Oxl.
i = - + = + Ovy,..

Furthermore, since %3 k 912 i3' we let {3 i3 zz In general,
fort =1,..., nl, we employ the transformation

xt = it + 0 Yeo1 {233)
in which case

y = (I +0+...+ et'l) L+ a..

At A aE

For t =n+l,..., n + n,, we again employ the transformation presented

in equation (233), which results in

= (I + 9 +...+ et_l) u
t_(nlﬂ')) 5§+ a
QT ny

Yt
+ (I + 0 +...+0

t

By transforming the original z, 's into yt's using equation (233),
Ly "\

the yt's when put in the appropriate format are amenable to statistical

linear model analysis. Although specific formulae could be developed
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"~ ~

for the elements of py and §, this will not be done at this time. How-
v Q"

-~ ~

ever, it is important to note that u and § are conditional least squares
u o

estimates in that they are dependent on the elements of © and ¥. To find

~ -

the elements of ﬁ and S, we search over the ¥ and O matrices until we
find that pair (¥,0) which minimizes the sguared residuals of the trans-
formed variates,

In Chapter V, we have proposed a multivariate, multi-consequence

intervention model, determined its properties, and cutlined an estimation

procedure for its parameters.
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CHAPTER VI
SUMMARY, CONCLUSIONS, AND RECOMMENDATTIONS

The theme of this research has been the development and investigation
of the properties of tests for location in the presence of correlated
observations. This theme has been investigated for the quality control
scenario (monitoring a process by using repeated samples) as well as
the interrupted time series quasi-experiment setting (detecting a shift
in the level of a single sample),

However, this research has alse investigated inferential problems
concerning the process variability of the ITSQE. Another topic that was
explored was the economics of sampling in the presence of correlated ob-
servations.

A more thorough summary of the results is presented in Section 6.1,
followed by conclusions in Section 6.2, and recommendations for future

research in Section 6.3.

6.1 Summary of Results

This section contains the results of this dissertation. The section

in which the result was first presented is given in parentheses.

6,1.1 Chapter IT. Control Charts for Correlated Observations

l. When there is only one quality characteristic with a standard
value specified for the process mean and the autocorrelative

structure among the observations is known, the maximum likelihood
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estimator of u is given by

t
joA ).
,hn n ,\’n

b= @A /¢
“no.n

The estimator of u was derived under the assumption that the
observations are obtained from an n-dimensional multivariate
normal process (Section 2.1.2).
Under the above conditions,

bNG, Gl 37T,

u 3

which demonstrates that p is unbiased (Section 2.1.2).
Also, ﬂ is the uniformly minimum variance estimator of u. This
implies that, in the class of unbiased estimators, u is a
Bayesian estimator with respect to every prior when the loss
function is quadratic; and, p is a minimax estimator when the
loss function is quadratic (Section 2.1.2),

Control limits for the process mean are given by

/l/jt A3

*
H Za/2 'An ‘n zn

0

~

where E(u) = H, (Section 2.1.2).

The estimator ; is also the generalized least-squares estimator,
which is a known result {(Section 2.1.2).

In the presence of serial correlation of degree r, justification
for using i is provided by the r-dependent central limit theorem
{Section 4.3).

When there are multiple quality characteristics with standard

values specified for the process mean vector and the covariance
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structure within each vector of observations as well as among
the vectors of observations is known, the maximum likelihood

estimator of py is given by

-1 t
= 1, ®1F 1y (0 11 g, 1
The estimator was derived under the assumption that the
observations are obtained from an np-multivariate normal
process (Section 2.2.2).

Under the previously stated conditioms,

- . r , -1
t N Nﬁ(ﬁ’[(%n (:) Ip) A§(i“ (:) Ip)] )
showing that ; is unbiased (Section 2.2.2).
V)
Also, p is the uniformly minimum variance estimator of u
4]
{(Section 2.2.2).
1f (; -1 )t 2:1 (; - un) > X 2 , the conclusion is that the
A, A0 u " E,O P.a
process mean has shifted from the nominal value g (Section

2.2.2).

6.1.2 Chapter IXI. Estimation for the Multi-Consequence Intervention

Model

11.

A multi-consequence intervention model was proposed for first
and second-order moving average processes (Section 3.1.2). For

a first-order moving average process, the model is

Z =y +a t=1,...,n

R T 1

™3
"

u+é+a + 1,...,0, + n

R A R 178
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17.

181

The expected value and covariance structure of these models was
considered in detail (Section 3.1.2).

Specific formulas were developed for conditional least squares
estimators of y and § for both the single and multi-consequence
MAI(l) models (Sections 3.2.2.1 and 3.2.2.2), and a computer
program was written to accomplish this (Appendix C).

A procedure was indicated for obtaining conditional least squares
estimates of u and 6 for both the single and multi-consequence

MAI(Z) models (Section 3.2.2.3).

Explicit expressions were obtained for the maximum likelihood
estimators of u and § for any MAI(q) model. These estimators
are for fixed values of the moving average parameters (Section
3.3.1).

An algorithm was developed for calculating the unconditional
likelihood functicn of the single and multi-consequence MAI(l)
models for a given set of parameter values (Section 3.3.2.1 and
3.3.2.2).

A procedure was indicated for calculating the unconditional
likelihood function of the single and multi-consequence MAI(Q)
models for a given set of parameter values (Section 3.3.2.3).
Explicit instructions were given for implementing the maximum
likelihood estimation algorithm (Section 3.3.3), and a computer
program was written to accomplish this (Appendix D) for the multi-

consequence MAI(I) model.
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18. A likelihood ratio test was proposed to test HO:Gl = Y, for
the MAI(l) model (Section 3.3.4). The outcome of this test

influences the statistical inferential procedure to be used

for 6.

6.1.3 Chapter IV, Economic Aspects of Control Charts for the Mean.

19, Page's scheme for the determination of the sample size and
control chart constant was extended to the case of twe quality
characteristics and independent observations (Section 4.2).

20. Page's scheme was also investigated for three quality
characteristics and independent observations (Section 4.2),

21, Using a modified X-chart with justification provided by the
r-dependent central limit theorem, Page's scheme was employed
to determine the sample size and control chart constant needed
for one quality characteristic when the observations have a

first-order serial correlation.

6.1.4 Chapter V. The Multivarijate Multi-Consequence Intervention Mecdel

22. The univariate multi-consequence intervention model of Chapter
IIT was extended to include vector-valued moving average
processes. That is, at each epoch of time, the sample element

t
1s a ct = .o -
vector Et [th, ZZt’ , Zpt] where the elements com

prising Et may be correlated. The model for a bivariate, first-

order moving average,multi-consequence intervention model is
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216 TH17 99181 e-1 TR0 2 -1t R

Z =p - _ -
26 TH27 82181 b1 7008 1t £ 1seuny

= qd = -
T R T P IR Tl S SR P

i 6 -— — -
2o M2t 027 ¥213) 1oy Va2 8 oyt Ayt =0y FL,. .m0y

In matrix notation, this becomes

Z =y - + = 1,....
S A L AR

Z =u+6-Va +a,t=n

2 Bty 3.1 3> +1,..., 0, +n

1 1 2
The expected value and covariance properties of this model were
explored (Section 5.1).

23. A procedure was indicated for obtaining conditional least squares
estimates of the level and shift parameters for the bivariate,

first-order moving average, multi-consequence intervention

model (Section 5.2).

6.2 Conclusions

This section contains conclusions arising from this research.

1. Whether there be one or multiple quality characteristics, the
maximum likelihood estimator of the process mean is valid for
any type of autocorrelative structure and is the uniformly
minimum variance unbiased estimator of the process mean.

2. The multi-consequence intervention models offer a new type of
flexibility for modeling the interrupted time series quasi

experiment (ITSQE) which will also reduce the residual variance.
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One should always test the equality of the pre-intervention
and post~intervention moving average parameters since the
estimates of the process level and shift are contingent upon
them.

When the process quality depends on several quality character-
istiecs and there are independent vectors of observations, the
use of a single xi-chart instead of p i-charts generally
decreases the sample size that needs to be selected.

When the process quality depends on only one quality chracter-
istic and the observations are correlated, the presence of
negative autocorrelation results in the selection of a smaller

sample size.

6.3 BRecommendations for Future Research

Some perceptions on future regerach are:

1.

The concept of the multi-consequence intervention model needs

to be extended to pure autoregressive processes and autoregressive—

moving average processes. Needless to say, the maximum likeli-
hood and least squares estimation procedures also need to be
extended.

There is a need to consider nonstationary multiconsequence
intervention models and their estimation because of their
proven applicability,

The maximum likelihood technique of parameter estimation needs
to be extended to the multivariate intervention model.

Economic parameters need to be determined for the p-chart.
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APPENDIX A

DATA FOR EXAMPLE 2.1



Appendix A

This is the data for Example 2.1.
each of size 53, from a univariate process with first-order

serial correlation equal to 0.47, variance equal to 13.41
and process mean equal to 30.0.

There are twenty samples,

186

Ml

vl B S T B T f‘
1 26.149 25.392 28.910  32.657 35.011 29.624 29.934
2 28.231 24,838 27.843 28.561 28,623 27.619 28.059
3 35.435 39.090 39.970 32.520 31.688 | 35,741 | 35.590
4 33.580 31.120  35.358 31.376 27.246 31.736 31.870
5 33.713 33.469 32.428 33.817 28.548 32.395 31.789
6 27.596 31.966  34.198 30.636 30.042 30.888 30.594
7 28.767 30.783 34.496 31.857 28,872 30.955 30.678
8 27.030 27.533 35.621 39.204 28.235 31.525 30.515
9 30.723  29.506  27.992  24.209  24.849 | 27.456 | 27.731
10 22.982 29,768 29.875 26.188 24.082 | 26.579 | 25.808
11 31.330 33.887 27.948 26.095 32.754 30.403 30.672
12 34.693 34,548  31.036 30.853 32,080 | 32.642 | 32.659
13 23.057 21.952 26.784  26.991  28.965 | 25.550 | 26.037
14 33.141 32.665 25.366 23.228 28.808 28.642 29.071
15 32.323 32.008 25.988 25.908 23.633 | 27,972 | 27.550
16 26.982  34.313 29.025  26.148 28,597 | 29.013 | 28.423
17 35.402 33.550 28.186 27.215 26.206 30.112 30.035
18 26.745 26.942 31.729 34,890 30.728 30.206 29.820
19 27.987  32.290 35.043  28.617  29.900 | 30.767 | 30.799
20 28.182 31,098 29.858 33.297 34.615 | 31.410 | 31.072
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APPENDIX 3B

DATA FOR EXAMPLE 2.2
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Appendix B

This is the data for Example 2.2. There are four simulation runs. For

each run, twenty samples were generated where each sample consis%ed of

ten (2x1) vectors of observations. For each sample, a=[q ,ﬁz] was
- - - _t n

calculated as well as x = [x3,X5] Furthermore, for each sample, the

test statistic (denoteg SUM 1)
- t -1 -
— ZA" -
(0 = 1) G (= xg)

was calculated as well as the statistic (denoted SUM 2)

- R
(x = p)= I (x - Hods

which completely ignores the correlative structure. For each run,

= 8 = =8 =
811 = Y214, 1 = 85y T S22 7 VAN
r =0.0
= 1.0
°1
U =u =0,0
1 2

The four runs were obtained by letting c¢_ = 1.0 (1.0) 4.0.
The results are as follows, 2
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Run Number 1. ¢, = 1.0

Sample Gl El ﬁz EZ SUM 1 SUM 2
Number '
1 544 .530 177 -.151 1.603 2.428
2 -.026 .039 042 -.040 0.035 0.250
3 - 744 _.767 173 .160 3.194 4.915
4 ~.106 -.175 —.004 .052 0.107 0.265
5 ~.052 -.103 _.001 .019 0.024 0.088
6 .280 .238 -.070 ~.039 0.446 0.466
7 -.057 -.036 061 .069 0.065 0.048"
8 -.024 043 .023 -.026 0.009 0.020
9 -.267 -.156 .092 .018 0.385 0.197
10 252 287 -.052 -.112 0.378 0.761
11 -.303 -.371 065 | .097 0.542 1.180
12 479 ~.508 143 1 .13 1.257 2.200
13 _.347 -.335 079 | 059 0.700 0.925
14 264 .297 -.037 | -.052 0.462 0.727
15 -.452 - 414 144 .082 1.110 1.423
16 ~.165 ~.161 049 .068 0.149 0.245
17 ~.200 ~.206 071 .039 0.216 0.353
18 - . 664 -.662 188 .189 2.433 3.789
19 .597 .779 ~.088 ~.183 2.312 5.125
20 -.126 ~.042 .106 .027 0.194 0.020"

*
The asterisk denotes SUM 1 is greater than SUM 2.
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Run Number 2. cy = 2.0

Siﬁgii Ll X, iy X5 St 1 SIM 2
1 .532 530 | -.253 -.151 1.307 1.891
2 -.013 .039 .091 ~.040 0.059 0.015"
3 -.753 ~.766 .203 .160 2.984 3.874
4 -.116 ~.174 ~.083 .052 0.242 0.206"
5 -.058 -.103 .022 .019 0.016 0.069
6 .282 238 | -.084 | -.039 0.408 0.369"
7 ~.040 | -.036 .096 .069 | 0.053 | o0.021"
8 -.018 043 042 | -.026 0.010 0.014
9 -.259 -.156 127 .018 0.307 0.156"
10 .256 .287 .005 -.112 0.480 0.578
11 -.308 | -.371 048 .097 0.563 0.923
12 -.474 -.508 .205 .131 1.054 1.723
13 ~.351 | -.335 . 064 .059 0.710 0.731
14 .275 . 297 .048 -.052 0.683 0.574*
15 - 444 ~.414 .213 .082 0.908 1.123
16 ~.163 -.161 065 .068 0.127 0.184
17 ~.194 | -.206 .132 .039 0.176 0.279
18 -.660 ~.662 .236 .189 2.131 2.952
19 620 .779 .017 -.183 2.851 4.027
20 -.102 | -.042 .251 .027 0.361 0.014"

*The asterisk denotes SUM 1 is greater than SUM 2.
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Run Number 3. c2 = 3.0
Sample " X n X, SUM 1 SUM 2
Nunber 1 1 2
1 .521 .530 -.328 .151 1.019 1.400
2 ~.005 .039 .139 .039 0.085 0.010"
3 -.752 -.767 .232 .160 2.699 2.873
4 _.128 | -.175 -.160 .052 0.381 0.152"
5 -.056 -.103 043 .019 0.012 0.051
6 .281 .238 -.098 .039 0.363 0.274"
7 ~.032 | -.036 .132 .069 | 0.056 | 0.013"
8 -.014 043 061 026 | 0.012 0.010"
9 ~.253 -.156 .161 .018 0.240 0.116"
10 .263 .287 .060 .112 0.597 0.426%
11 -.311 -.371 .032 .097 0.577 0.683
12 -.466 -.508 .266 .131 0.840 1.276
13 -.354 -.335 049 .059 0.715 0.542"
14 .287 .297 .131 .052 0.913 0.426"
15 . 434 ATA .281 .082 0.702 0.833
16 -.161 -.161 .080 .068 0.105 0.135
17 -.185 -.206 .191 .039 0.132 0.207
18 ~.653 -.662 .283 .189 1.821 2.184
19 .637 .779 .120 .183 3.350 2.984"
20 -.079 | -.042 .395 .027 0.531 0.010"
*The asterisk denotes SUM 1 is greater than SUM 2.
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Run Number 4. = 4.0

Eﬁﬁii ﬂl xq iy %, SUM 1 sIM 2
1 .512 .530 -.385 -.151 0.801 1.028
2 .001 .039 .176 .040 0.106 0.007"
3 ~.749 .767 .254 .160 2.474 2.111%
4 ~.137 .175 -.219 .052 0.488 0.112°
5 -.055 .103 .060 .019 0.008 0.038
6 .279 .238 -.108 .039 0.328 0.201"
7 -.027 .036 .159 .069 0.060 0.009"
8 -.012 . 043 .076 .026 0.014 0.008%
9 -. 249 .156 .187 .018 0.190 0.085"
10 .269 . 287 .102 .112 0.690 0.312%
11 -.314 371 .019 097 | 0.587 0.502"
12 —.459 .508 .313 .131 0.675 0.937
13 -.356 .335 .038 .059 0.719 0.399%
14 .297 297 .195 ~.052 1.091 0.313"
15 -.426 414 .334 .082 0.546 0.612
16 ~.159 .161 .092 .068 0.088 0.099
17 -.179 .206 .236 039 0.099 0.152
18 ~.648 662 .319 .189 1.585 1.603
19 .650 .779 .200 -.183 3.730 2.192%
20 -.062 . 042 .505 .027 0.665 0.007"

*
The asterisk

denotes SUM1is greater thanm SUM 2.
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APPENDIX C

LISTING OF COMPUTER PROGRAM ICLSMAI (1)
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00510 PmUGRAM SUMSQIINPUT,,JUTRUT)

BRI R Y L LY Y Y L T L e L Y
= I XY Y YW

60012% INPUTI LOWER LiMJT, UPPZX LIMIT, 3782 3IZZ
¥ FOR THETAL

Gou13* LCWER LIMIT, UPPZI2 LIMT, 37iP SIZE
* FOR THETAZ

00014 QUTPUT® FOR ZACH THITAL, 44D THITiZ IMUHAT,

* DZ.TAHAT,VARIA

AL a At XL LT L LA R RS L SR R R R L R eI A R e L E R LR L LR
* I SN ERY

Og0L245 DIMoNSION WIETD) s Y{EL ) aS(2e2)955(242)

LGAI25+,

GOGIR+T(2)4B2TA(2) o X(DT0,2) o XBcTA(BIS) 9442720 0)

BUdGl+yJL(Z42)9I2PR(Z) 4= (292)

GCU50 RZAL Liyls

JUOU3) RLAD SudieN1enN2

UC1L0 ogeli FORMATA(EID)

0110 READ @02usli4ULlySTEFL

OlLdY KREAD EUZlecsUzySTIFZ

0130 3323 FIIMAT(FiLaed)

QCLupresrsvxrenes THITTALISATVION CONTROL3 F0X 1IN
» PXIMNTS

GOL5d KiyYwW=21

16l KZvyY=:

i

4]
4
ias)
Q)
L 2]
p &
-
1

00174y KeYs=1
GCi80 KeYSI=L
ed190 KEYT

Lu2uas KEvya
03313 KIYK
bu223 KEY3=
00235 KZYX3
Jc2ud KCLYA=2
250 HLPN2=NL+N2

GL255 RIAD BC2T+(W(I) eI=1,H12NE)

ULe2Bd IFIKEYWsNZe1l) G370 1C

0270 PIINT 33iC

00230 9010 FORMATI/L0X s % === VALUES QF WH==m=*/)

U230 PIINT 015y {(W(I)sI=14NLIPN2)

g0300 9515 FORMATIIOXe2L(F3e3))

86317 10 CONTINUEZ

Q0320+#**+¥¥%¥% 70 | 0OF QVER THZTALANT J9 LJOP LWo= TRETAEZ
GU33I5 NaTZPi=z IFIX{{UL=L1)/STCPLi)+1

0342 TAETAL=L1

0350 035 4000 LC3P1=1,NSTEP1

CC365 wWaToPes IFIx{(U2=L2)/STir2)+1

QU375 TACTAZ=C2

0R33) DI S¢iLl LOOPEZ=L,NETLPEZ

03I+ +*++++w 0 2UTATICN OF ¥ VZCTI=

AGLC) Y(L)I)=W(l)

(1 LI TR R T ]

RSN

e
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BCaild D0 22 I=2.n1

33420 2C Y(I)SW(I)+THEZTAL*Y (I=1)

GUG3] NiPi=HL+l

Juesl DO 30 I=iilPlyNIPNZ

00465 3, Y{I)=W(I}Y+THETAZ*Y(I=1)

QE«S0#+rr¥rxsensrmrx pIAITNT ¥ IF HEZQDZO

00«60 IF(KCYY.NZel) GOTC &3

G470 PRINT 342u

G480 9020 FIRMAT(//12X % VALUES OF Y*/)

J04 30 PIINT 9425, (Y (1) ,I=1,4NL)

C050) 9025 FORMATIEXS10{FGeL))

22513 PRINT 9320

ULE320 225 FIRMAT (M www—wwvsanmmcwaverrmncnamaa?)

Gu530 PRINT 3259 {Y (7)) 4 I=NLPLsNLI2NSZ)

Q5L+« rscvasursrdarx PRINTING CF ¥ OVER

QUSS)*+»*sxedxe CA{CULATION JF SSii

00330 4o TERMI=le/{1.-THETALZ)**Z

Q0573 TLZ2=THZITAL*THCITAL

gd5375 TL=THETAL

JU57p T2=THeTAZ

JG530 TLINL=TL¥*NiL

00530 TLigNL1I=TL++(2*N1)

fubitlh Tez=7z+T2

JUus3c TZNI=TZ2**NnE

GR6AT TzZHNZ2=T2**(2%*N2)

3085) VALL=FLIAT(HL)

UBoBLU VALZZS2 ¢*ToLi¥(le=TINL)/(Le=TL)

00570 VALS=TLZ%(Le=TLlzNL)/(La=T12)

UUB3C TEZRMZ=VALL=-VAL2+VALZ

R kit Rt L L L L RS Ty L R R R e e L T

GO700 TERM3I= e/ (ie.=T2)%*:

QU710eerexeT - -MLY

OG7Z0 VALL=F_JAT(NHEZ)

OC730 VALZ=E 24*THZTAZ*{1l.~T2N2)/(Le=T2)

J07wl VALI=TZ2Z2¥(L.=T22NZ)/(1.=722)

00750 TZRMu=vVALL=-VAL2+VALS

IR RS R L X R A R R P L L L R R S R R P R P A R L L LR r L E
» »

Q0773 VALL=((1e=TiH1)/(1e=T1))=%*2

QU7 B% R X34 R s ryanranxskaars TZAME

QG730 VALZ2=TZ2

UQ795 VAL3I= (L.~T2ZN2)/(1la=T22)

JU0B8C0 TERMS= VALL*VALZ*VALZ

QAL PRFR LN I LRSRBBUR L AN ISR S FH AR RIS EE SRR F LAV ARSI R AR s
- PEEER

OPA2L TERME=SZ24¥(1,=TiINI)/{(Lle=TL)*(1,.,~T2))

UC33Crevrrsarvr T-3IM7

00340 VALLI=THITAZ*(1a~=TZ2NZ)/(1Le~=TZ)

0035) vaL2=722*( 1a=T2202)/(La=TZ22)

00360 TIRM7=vA_1=VALZ
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GO0 e*wwsxx ZALCULATICON CF 3E

GJ91id
fjc32¢C
06933
feaad
UG 35¢
g0 363

S(is31)= TERMLI*TERM2+TERH

[
TIRMLE La/(Le=TZ)**2
VALZ=FLOAT (Ng)

VALZS Z+* TC*(la=T2N2)/ (1a=T2)
VAL3=TZ2Z2#{(L.~T22082)/(1e=T22}
ToRMZ=VALL=VALZ+VALS

5(2,2)= TIZIMLI*TEIM2

QG370 #wevsrssr CALCULATION CF S31¢

GuIBy
36930

TZIML=L W/ {Le=T2)""2
VALLI=FLOAT{NZ)

diJ000 VALC=24*%T2* (La=T2NZ2)/lLa=T2)

giJ1¢
Qi1uzl
dise3y
gidui
310546
01000
0127¢
d12 33

VALSS(TC**2) ¥ (L s=TZENZ)/{La=T2%+2)
TZRMZ=VALL=VALZ+VAL3
TZRMI=T{Le=TiML) /({le=TLl)*{1le=T2))
VALL=TE*(14+TZN2)/{1le~T2)
VALZETZ22* (L .=T22N2)/{1e=T22)
TIRM4=YALLI=-VALZ

S(ly2)= TIAMI¥TIRMZ+TEIMI*TERMG
3(2+2)=5(1+2)

G130 ®*+r++««£+T5 CCMPUTE SZ1Y AND 3532v
GllyJ#exsesi¥xs PIDST COMPUTEZ SUAS

01110
Jiiéz2
01133
G114
g115¢C
gilol
aliv7i
o113l
3113¢
L1200

SUML=IL,
suMz=C,
SUM3=(.
SIMa=¢,
0z 5. I=t
SUMLZSUMLHY (D)
5v UMz

00 8¢ I
SUM3I=3UA3+Y (NieD)

BL SUMWE3IUMLFY (NL+I)*(T2%%])

"I’)43¥¥-¥¥4¥¥¥-¥ :Q‘_CULATIOH G T(1)

o e e

pi12é1
5123¢
wi240
01250
Gi26i
91273
fi23n

TEQMJ.:}../(IQ-TI)

TZRME=SJML=3UM2

ToRMI=1./(Le=THZTAZ)

ToRMa=3JMI=SU 4

TR ={1e=TLM1L) /7 {1e~THZTAL)

ToRIME=3 UM

TLL) =T TEFM2+TERMISTE MG+ TR T ExME

Gl2aleserrrvsrrrsvnsry CALCULATIOIN GF TI(2)

91320

TL2)=TZAMI*JERME

01330##»*xsxvex PIINT S AND T IF NEF3ZD

J1343

S134ls

w1352
g136l
013710
0138y
31335

IFIKEYSeNEW2) GOTO 78
TZ2ME=5J13=-SUMy

PRINT 3330

3537 FIRMAT(/LUX+*S MATRIX*/)
PRINT 3335y ({S(IsJ)sJd=142)4I=Ly2)
.35 FORMATUIZIXNs2FLhLe?)

7. ZF(RKZYTenNE«1) GOTI 8&C

196

J*TERM++ToRIG+TIRHID*TI M7
g
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di4ud PIINT 3338

01410 3033 FIRMAT(/710X%X+* T VICTUR*)

53420 PrRINT 9333, T{L),T(2)

R L T R Y R R Ry N LY Yy P Ty
¢ BrENEEEn

J1G3[¥eshvrrduarsn o8 INIMRAT STATLHMENTIAF SR LNVISIION

Gle32 =2

01435 Call INVITRIS,sULsZ2e2vIP=<e=eSI+0les XKD}

J14bL)r*rrrrarayrary PIINT INVLISE IF PJ333IBac

J1lues50 IF(KZYSieNE«1l) 5GOTO &C

1w80 PrRINT 3548

Gie70 .ue FIRMATH(/LOX® ZHNHVIRSE CF 3*/)

0ia8) PRINT 9330, {(S1(IsJ)yd=1l42)4I=514+2)

U1490**+r3xs>¥ CLLCULATION 2F 3ETA VIZITIR

C15C0 80 BoTA(L)= SI(LeL)*TLL)+23I(L420*7(2)

01510 3cTA(Z) =S (2,20 *TH L) +31(24,2)*T(2)

Ji1520+*wrs¥» OCT YT BETA VECTI® IF MNZzZJZOD

D1530 ZF({XZIY3enzal) GSTO 90

01545 PRINTLIS5L

01550 9uB53 FIIMAT (/10X * eLTA VZICTIR+/)
0156 PRINT 9.35,3E7TA(1),BIT74(2)
G1570%*svrsrr 7O FORMULATE X MATRIX

J1580 3. X(ie)=L1.

04530 0o 250 I=z.i1

01535 X(I+2)=C,

01008 400 XA{I42)SX{Tet)+THETAZ**(I=])

01840 Ce(le=TiNZ)/(24~=T1)

J16Z2) X(NL+1i,1)=L.+C*THETAZ2

G1i030 X(HL+L42) =1

G1o4d Do 110 Ll=gynE

Jio50 SUM=1,

Ji66) IMi=I-1

Oieeo3 23 120 J=l,IM1

1670 {z0 SUMsSUA+{THETAZ** )

U10380 X(Ni+I,2)=353UM

L1090 X(NL+IZ,y2)=3UM+(THETAZ**)*C

1730 113 CCHTINUZ

GL7iC*¥reysemrsrrnx PRINT X MATRIX IF Noz3Z0
J1720 IF(KEY¥YX.4Z.1) GOTC 13:

01735 PXIINT 3J6a

D2740 9,50 FOIOIMATH /L1GX+*X MATREIX*/)

U1750 PIINT 35354 (X (I41)aXx(Is2)sI=14sN1242)
Gl7sis+¥xxyrxrxvsx T) FIND PROOCUCT OF 3574 AND X
gL77) 133 20152 I=1,i1PN2

01786 150 XBEZTA(I)SX(I+11"BTA(1)+x(I2)*3Z74(2)
1795 %*evxanunxer DOTHNT XBETA IF NCZIZJ

1330 IFIKZYX3aNC+1l) 5JITO tEi

e1310 PRIMT Ql7:

81320 L7050 FIIMATI{/10XK ™ PRODULT CF X AND 3LTA*)
013303 PRINT 9025+ {x3ETA(I)sI=1yN10ON2)
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fraspesesrsx oL CULATION OF AHAT

31850 150 00 130 I=1sN1PNc

31860 130 AHAT(I)= Y(I)=XBETA(I)

G171 %4 xrsreppdrnnaxdepTNT AHAT IF NcZ2JI2

314880 IF({KEYA.MEL1) GOTO 190

01393 PRINT 3Jo.

01960 3050 FORMAT(LDX »*LAHAT VeECTO=*)

01913 PRINT 035, (AHAT(Z)I=1yNAPNZ)

fllcis=*erxsr CA_CULATION OF 3A SQUA=XC

J1393L SJM=4.

332942 133 0OC 135 I=1,HNH1PNZ

01350 195 SUMSSUMHAAATIIIYAHATA(L)

J1360 VARSIUM/FLIAT(NL+NZ=2)

31970 #+¢v¥sasvav P INT ALL VALULES

21330 PrINT 959U sTLleTZsBETA(L) ySCTA(Z) 4VA<

01398 gL FIIMAT(/* THETALZ*¥ Flbh by *THETACS*yFLluab 95Ky
. *MUHAT =,

Bl +F b e e A s DL TAHAT* 4y F Ll sy OX o *VARS*,Flu,aa)

02310 THETAZ=T2+3TER2

32920 5000 CONTIHNUE

02332 THETAL=THeTAL+3TZIPL

L2345 GLuGl CONTIHUE

J2usy STaR

u2dBs END
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APPENDIX D

LISTING OF COMPUTER PROGRAM MLEMAI (1)
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CCUZ3 P=OGRAM PIAELL(INBITLUTPUT)
08d11*  HMAXIMUM LIKELIHCOD Z5TIMATION 2xJI3=4M
Ghd12* In2UT1  1.TIME SERIES OATA.ee 222AD INTC 4AZRAY 2%

0oui3> 24 STASTING VALUCZS FCx THEVAL.GAMAL
JQuih* JUTRUT! OPTIMUM VALJZS JF THZ VAIIAZLEZS
GouiS* THET AL +GAMAL yMUHAT D LTAHAT

JUUID®ATTACH SUSROUTINE IKVITR FRCM MIFLI3 BoFORT BUNANING
¥  THE P=JIGRAM

DR L R L L R R T e A T T T s
A RAsdNLAERER

CCOZ DIMENSIIN X(4)eW(Z3het(w)yeZa(u?)

Ddd22 CIMMON NL1eNZ2sZ(Ll)YeXoF

GUw23+ynNITZF

BUO33 OATA (Z1(I)eI=1ya0)/

C0031+20e9i%esi09l8u921lerZ2lertidesllosdierilan

GUD3E+2Ce 9 30922091392l aslbesclioriieslitaslsay

BEU3h+LlZerFavDerbersberbasbBorsterlear3nn

OLU3o+bhasbiasSesbasCorbersOevsiversbance/

00335 NiT===]

UUdsl N=2

Juid bl Ni=Zi

pooLz nNZ=2u

QEGL3 NLANZENLI+NE

JU0530 IPRINT=Z

GBG5L DI Lv3 K3=1l,447

gUs%2 1.3 Z(K2)=Z1(K3I)

80060 HMAXIT=S5.¢

GOQPT Z5CALE=l45

CAGE0 KzAD E,x (1)

JAJ30 KEAD S4X(<)

03115 5 FCRMAT(FL4.8)

Culi? 6393 FIMAT(FL5.58}

CCice c(l)=CLe35

00121 c(2)=(a25

GGl22 E(3)=(ed5

G123 E(4)r=Led5

0130 tW=H*{N+3)

go0160 CALL BOTMIXsEsNeLFyZSCALE s IFPRINT 4 MALIT ol grily G etW)

Q01%1* rnON LINEAR CPTIMIZATION USING POWZ_LS ALG3-ITHH

CCLEZ2*A00PTLD FRIM HMIZE & KUESTERIQPTIMIZATICH TZZHNIGUES
* WITH FO=TRAN I

fGie6l*

QG177 PRINT 1

B0180 1 FORMATH{//45X*VALUZS OF THEZ VARIAZLDSE*)

00193 97 1ul J=1,H

GE2T0 PRINT 2y JeX (D)

80210 & FOSMAT(/5Xa*X (*412,4*) = *,E15.3)

pu22i 1.0 COUNTINUZ

G230 PIINT 34 EF

PG2a0 3 FOXMAT(// 95X *OPT2IMUM VALUE 2F F = *,:156.8)
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0253 cnND

gezaeli*

Jo27i*

Q0230 SUBRIUTINE BOTMUIX g g NeE F oo SCALZ o IPRINT o MAAZT oW oIy lvy
¥ NA)

00290 DiHcNSION LA lHY s W INA) g (i)

G0295 COMMON JUMK(Z2) s FJUNK(GI) s FXXX (&) 4F

go3io*

U310 OOMAG=0.1*Z3CALE

0320 SCER=CW35/25CALZ

JO33F Jd=nN*(nN+l)

30362 JJdd=JJd+N

20357 K=N+1

g3l NFCC=1

Ja370 IND=1

LGd 330 INN=1

GLU3I9U DOu b I=14H

J04CD0 W(I)=Z3CALZ

Cls17 D02 4 J=LlN

dJd4cd WIKI=L.

Q0 43) IF{I=J) 4934

J0GLG*

JgaduSL 3 W(K)=a33(c (1))

Co4By & K=K+l

UCw?0 ITREC=L

043 I3GRAC=Z

D090 CALL CALCFX

CU53C FKEEP=2.,*A35(F)

JG51: 5 ITOMI=L

du5z0C FP=F

Uts30 3UM=3.

C0550 IA28=0J

CO560 00 o I=lM

Udo78 IaP=lXP+1

dG58L 6 WIILP)=x (I}

JdS3C IDIRN=N+1

ei6dd ILIMNZ=1

Qusl1s 7 OMAX=ATILINE)

Q050 DACC=DOMAX*3CER

00630 OMAG=AMINL(DOMAGsLe1*CMAX)

QUB4. OMAG=AMAXL(OMAG.ZL *¥DACDT)

V0650 DOMAX=1:.*DMAG

0060d GUTO (72,70+71)s ITONC

SGa7g*

aioacs

Bio3) 7, OL=3.

dad706 D=DMAG

Jg7il FPRcv=F

gu7z: IL:=5

a{720 FL=FPELV
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007%0 O0A=0L
2375C 3 DO=0-~aL

BO7EC DL=0

BO770 58 K=IJI=N

CO730 035 3 I=isN

Qu73C X(I)=x(I)+DO*W(K)

G360 9 K=K+1

o813 CALL CALCFX

GLUAaZ2h NFCC=NFCOC+l

QUB3Y GOTC (1241291291344 64995) 4253

0\:5"}3 iLF I’:(F'Fh) 15,1612"

00330 12 IF(ASS(D)Y=DMAX)17,17+13

U860 L7 SO=L+3

JUs70 GISTO E

GU333 14 PAINT L9

G890 19 FOFMAT (SR #MAXIHMUM SHANGE DIC3 WJT ALTL~ FUNCTION®)
G 36) G3TO 2¢

U310 1> F3=F

¢e9Zi DB=0

G0332 GOTO <1

003403 24 F3=Fa

CU3>C Ds=04a

036l FaA=F

00373 0A=D

Ja3980 2L 5070 (£3422)4ISGFAD

4993 &3 0=z0D3+083=DA

oi550*

§131% Is=1

314J21 GaTtd 3

B1030 43 O0=SC.5*(CA+083=(FA=F3) /{(ahk=03))

01040 Is=4

D150 IFLIDA=T)*(D=08))E25¢843

G146 25 Is=1

C1lu73 IF(A3S(I=03)=~00MAX)E4842E

G1332 26 D=03+3I16GN(DOMAX.DB8=3A)

1349l s5=2

01100 DOMAX=DOMAX+DTMAX

0111C OSOMAG=0DMAG+DDOMAG

01123 IF(JOMAG.GEe1+LE+E0) COMAG=ZaNZ+0i

£1120 IF{OOMAX=CMAX) 348,27

Gili4d 27 DOMAX=0MAX

1150 GaTo &

01160 135 IF(F=FA) 28423423

31170 285 FC=F8

§1130¢ DC=08

d113C 29 F2=F

§12Ui3 28=D
Bi21d GITO
1220 1¢ IF
L1233 1 FA



Jiz24C
L1258
0126l
gi1272
ulzsg
01291
Ji300
C1313
013z2
01334
1340
01353
41363
01370
01343
613335
01400
Glall
Di420
31430
ity
G1430
Di486]
1475
81430
G1u30
13448
0i51¢
81524
31533
Ji54l
41553
Q1560
c1570
(15483
gisGCcC
P1o10
uised
1631
01642
31653
Lisel
Jio6 73
01680
dlo3f
01700
1710
017238
Ci73l
01735

7L OL=1i.

DOMAX=5,

FA=F2

OA=-%,

FBESFHOLD

DS=L L]

D=1

1L FC=F

JC=D

3L A=(D3=CC)*(FA=-FC)
3=(3C=0A)*{FB=FLC)
IF((A+3)* (DL=0C) ) 33433,30
33 FA=F3

Da=08

F3=FC

08=3C

GATC <cb

3% 3=C.53*(a*{03+0C)+2*¥(DA+IC))/ (A+2)
D.=03

FI=Fg

IF(F3=FCl) bayslblhy3

3 JI=0C

FI=FC

Le GUITI(36436485) ITONE
8% ITONZ=z

GATJ4 «5

88 IF{A35(D=DI)=0DACC) 4lsil,y93

33 ZF(A33(O0=CI)=0.03%AB3(3)} LLyhils+5

G2 LF{{(JA=D0C)*(CC=D) )47 yub4bub
+& FA=F3

DJA=08

F3=F_

DE=0C

GoTO 25

«7 Is=2
IF((33=0)*(D=0C)) LbE4+E, 83
43 IS=3

GaTQY 8

4. F=F1X

D=0I~04

DO=SART((LC=DR) * (OC-DA)*(DA=03)/ (A+3))

DT 43 I=L,N
A(I)=x (Iy+D*WIIDIMFN)
WIIDIFH)=LO*W(ICIRN)
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01740
01753
f178d
ai77eC
ti7sal

318Cy

49 IDIXN=IDIRN+L

WOILINC=W lILINE) /700

I InE=I INE+L

IF(IPFINT=1) 5145052

50 PRINT 52+ITRECYNFCCeFy (X (I)9eI=la N
Se FORMAT(/*ITERATION®e IS IL5,,*F YT

01310 +*F=%,L15:892(Z10ba8ycX))

01323
0183530
2134
i185C
J18¢&0
1570
014853
J21369¢
g13ce
gi3id
d1321d
31330
1940
d1350
13630
G1370
J13¢&0
L133]
ueall
de2aig
6232l
u2i3o
02040
0235:
L2vBj
02073
20 33
32099
e 21C2
Jaiil
g2i12sg
J2130
d21 43
32150
02161
5217C
021814
021933
g2200
@g221¢
62223
322310
c22hLi

GOTC (S5L453) v IPRINT

5. GOTD (55,38) . ITCNE
52 IF(FPRIV=F=3UM) 94,95, 35
895 SUM=FPREV=F
JIL=ILINE

36 IF(IDIRN=JJ) 747430
a4 GITI (924+72) s INC
d¢ FH3OLD=F

i13=56

ixe=JJ

00 59 I=1.N

IXP=IXP+1

53 A(IXP)=X(I)=W(IXF)
D0=2,

GJTO 54

6 GOTI (1124870 INC
1i2 ZF(FP=F) 373791
3L D=2 *(FP+F=2 o *FHOLD) / (FP=F)%=?
IF(O*(F2=FHCLD=SUM}** =S4} 37437437
37 J=JIl¥n+L

IF(J=JJ) 55+B1451L

5. 20 BZ I=d.JdJ

K=I=-1

B2 WIK)=W(I)

DT 37 I=Jdilt

7 AlI=1)=WI(I)

6L IDIRN=IDIRMH=HN
ITINE=S

K=1I0IRN

IxP=JJ

AAA""U -

03 67 I=1s+N

IXP=IxXP+1

WIK)Y=W(IXP)
IF(AAL=ABS(HI(K) /2(I))) EBGe+OTen7
o AAA=ABS{WI(K) /Z(I))
67 K=K+1i

DOMAG=1,
WIN)=ZS5CA.E/7AAA
IoINS =N

GoTO 7

37 IXP=JJ

AAA=L,
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422570
2206l
02270D
G2esa
u2z92
623038
ge3tl
g232d
02333
G234i
623510
£2363
Ce37L
J2383
32330
G35yt
£33i0
432210
03330
Q30470
934653
g33061
03376
G303¢C
63330
031G1
03113
p312n
W3L33
D3ia0
33153
63120
G317C
8031335
03195
§32C30
£3219
032240
33233
43249
63253
3261
0327¢
332890
£ 329¢
§33G60
3310
033210
03330
J3340
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FSFHGLJ

C 33 I=1,4N
IAP=IxP+1
A{T)I=x (1) =W {(IXP)
IF{ AAA®ASS(E(I))=AES(W{IXP))) 33,432,439

48 AAASABS(HW{ZIXPY/ZZ(IN)

99y CoMNTINUZ

GOTU 72

38 ALMA=8AA%(1.+01}

GSTI (724106), ND

7¢ IFIIPRINT=Z) 53,450,550

53 GOTI { 1:9,34), IND

109 IF(AAA=Ce1) 254204706

7o IF(F=FP) 325,743,78

78 PIINT 50U

8u FUFMAT{SX,*ACCURACY LIMITED 3Y Z+Rur3S I F*)
GITO <3

8o I10=1

35 JIMAG=(.4*SQST(ABS(FRP=-F))
IF(OOMAGeGEeLeCE+EDY OIMAG=Ll. 240
ISGRAD=L

1.3 ITRIC=ITRIC+:

(ITRIC=-MARIT) 545,32

1 PRINT 24MAXIT

2 FORMAT(IS*ITIFATICNG CCOMPLETED
FIF=FXZoP) 2L 92591113

T

Th*)

("
g,
[

[}

O o O o

yo
[ fod )

n

1
T
Fa
| 481
tn

[3)

121 I=24HN
NNNENNNESE

11l X(Z}=wlddJd}
GAITJ 23

1.1 JIL=1

F==FKEZ>
IF(F=FKZIZP) 135.7&41iC4
124 JIL=2

FP=F

F=FXELE=

145 Ix==Jl

03 113 I=14N
IAP=IXP+1

K=IXP+N

GOTI {(Liw+iiB),JIL
1.4 WIIXP)I=ZWIK])
GOoTO 113

115 W(IXPY=X(I)
A(I)=W(K)

113 CONTInNUE

JIil=2

GUTO 92

1.0 IF(AALA=Ca1) 2L2C4L07

(]
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3350 22 EF=F

33360 RZTURN

03373 1.7 LiiN=1

03383 GJTu 35

C379C =ND

05600 SUBFRIUTINZ CALCFX

U531) DIMEASION Z(Gl) oMUZA{LI) oMI{wG oo ) oM {uiyul) s Jditld) X (41)
* y

05020 +MZ (L) o MI(LT ) yMKILJ) 4 LILCYsAZT(LT),

05033 +U-(Luat3) s IPRILE) yR{GTyl)

05035+,4T (4¢)

05340 RIAL MUZSMUsMIeMaJo Ky MUHAT g MZ s MKy MI s KMZ 3 IMI 4 KM J

5361+ 4K4K

0So4c+s0

G505) CUMMCN HisNCeZeT1lsGLloMIHATOHAT
05251 +,.F

05352+ 4NITZR

GoLG0#**s*s FUSHMULATION GF MI

OSL1Cw e®s INITIALISE ALL ENTRZIZS TO 2223

02112 INOEZXM=)

83113 INJIXJ=E

U5114 INDCXD=LC

05115 InDexL=y

05115 INJEXS=Z

05117 INDZXx3=4d

G5L30 MNiPHE=NL+Y2

05140 HNLPi=Ki+l

05153 NiMisznNl=1

I5160 TL2=TiwTL

05170 G12=G1¥%31

05175 HUSMURAT

35175 0=DHAT

C5L&0 HNiMi=Ng=i

C519C DI 5 I=14MNLPNZ

45200 32 5 Ji=1,HiPpte

053106 5 MI(1sJ1)=0,

CE3Z0* ¥ 42+ X5 Xardyrsprsrrryrvrans QgL G 4

JSIILr4rdrravrrr sz yrananzyynny MATN JIAZINAL

35340 05 10 I=1.N2

G5350 20 MI(INI)=1.+T1z

QC30L*F 2Ry rrsabrapipanyrsrrnryxy 53 OHTAGONALS

$5370 00 2. I=2Z.Na

053380 MI(I,I=-2)==T1

05390 20 MI(I=i.1)= =71

d5ulrtsssrrwryrer FORMAT TCO PRINT TIN ZLINENTS IN ZTACH 50w

G3410 503 FORMATI(SX.1ZFiL+5)

OOL4er*rrrsxvrrsyxuny FORMAT O PRINT ONZ ZLEMENT IN A FOHW

5420 6L00 FORMALAT(5X,F1ile5)

USLGL** SN ersvarisssyypnrnyauyps 1) OOK?

QELCI % ¥ 2 RR A4 usrrrd Ry A" TTAGIJAL A NG
*  SUBDIAGINALS
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054606 Du 30 ISNLPL.M1PNZ

So4TL Mi(lIsad=1e+G12

D548 MI(I,sI=1)= =G1

05485 30 MI(I=l1,2)==0G1

055i3%»wrerses TAKE INVERSZ 3F MI TO FORMJILZITZ M

Jd5522 o=

05530 CALL IHNVITROMIGyULGMLPNZyNIPN2yIPRyR My dlyIy0X4KI)
5B LoR e R DPIINT MeMI IF NGZDZD

05553 IF(ZI#DIXM.NEL1) GOTG 31

65560 PRINT 10LCE

05570 1000 FORMAT (/10X *¥MI MATRIX*)

U5580 PIINT 500509 ((MICIJI) 4 JI=2aniPNZ) $I=24MNIPNL)

05590 PRINT 1ozl

85535 1010 FIRMAT (/10X ¥4 MATFIX®)

BS6UT PIINT 5000 s LIMIZeJI) 9 JI=1,01PHZ) s I3 Ly iPNL)
05610%***+es yJW FCRMULATE SIGHMA

15615 31 CONTInNUEZ

05620 DJ 38 I=LsHiFNZ

35630 00 34 Ji=1,ilPNg

05640 3¢ JONTINUE

0SH5*re e xyrerx IO COMPUTE MUHAT AND DIZI_TAHAT

L5671 03 b6u I=i,NiPN2

£5687 MJ(IV=0.

U569 DI 7L Ji=i,ni°N2

Q5760 7C MJ(I)= MJI(II+M(I,J0)

95710 6.5 CONTINUZ

JO720+wvwsex® proMULATZ J VZOTCOS AND K VIZTOX

357356 D3 65 I=1,NiPN2

03745 6>
35754 00
05760 75 K(:Z
s5773 D0 78 H1P1 s NIPNE

a578L 78 K(I)=J(I)

JS73irsrrrvvsrarenyxy pTINT J AND K IF NEZ3SED
05305 IF(ZADIXJNELL) GCTC 773

65310 PRINT 1240, (J(2)42=14NLPNS)

05360 10%3 FORMAT(/L1CXe*K MATRIX*/(L3XsFLlrad))
053SOr»rmxrrrerr CLMPUTE MZ N MK)

65863 79 CONTINUZ

G5870 00 3¢ i=i,NiFN2

GC538C MZ(I)=D,

05397 MK(I)=3. :

05303 D2 90 JimiyNiPNZ

05315 MZUZI)=HMZIZ)+M(ILJ1)*2(J1)

315320 MK(I)=MK(IY+MA{I,J1)*K(J1)

35330 9., CONTINUZ

05940 8y CUNTINUE

LS Lrersvsrvrsrsr COMPUTE KMZ+XMUI9ZHd o KM JdHJ
U5360 KMZ=u,

G597] aMJ=s.

-~ O
Ui~
Fi
o~ b~
Cs bt
" - @
Fd
’_k

W n

=



5980 ZImJ=?
G599 KMK=Y
Jodg50 JMJ=g
06Lid KMJ=4
By 3] 00U LdC I=1i,N1PNEZ

Colul KMZ=KMZ+X(I)*MZ(]I)

06050 SMJI=KHMI+K(I)*MI(])

delded ZIMJI=ZIMJI+Z(I)*MJI(])

66070 KMK=KMK+K(I)*MK(I)

008l JMJI=JMI+JI(II®MI(D)

G6L00 12d CONTZIMUE

6120 DHAT=(KMZ¥IMI=IMI*¥KMIY/ (KMK*Jitd=L 1 K1))
LEL30 MUHAT=(ZMJ~OHAT*KMI) /7 JdMd

06135 MU=HMUHAT

ibl35 D=0HAT

ChilSQs*s¥xa=re O2THT OHAT ANI MUHMAT IF A2
Ce177 IF{ INDZIXO.NE.1) GOTOD L01

06130 PRINT 1350, OHATMUHAT

ER

208

062C0 L1.50 FORIMAT (/LK o DHATE* 3 Flbahe i Jhy *MURHATE*yFlu.5}

021G **+sr»erx FOLMULATE L VICTOR
36223 1L1 CCONTINUE

06233 03 110 IL=1.N1

0o24] TAIil=l.=TLZ2%*(Ni-D)

Se242 Tx02=1.-T12

624 TXQ3=TL2¥*(Hi=1)

362406 TXO4=1,-GLi2**(NZ+1)

08243 TX35=1.=512

86255 110 L(I)=(TL*¥*I)*((TXJL/TXIZ) +(TAC3I*TAIL/T4I5))

36270 D3 120 I=HLIPLNLIPN2
CB280 LIIN=ATi**N1)*(51+*(1I=N1))

JB300 L (IV= (I} * (1L e=Gile *(®(NLPNZ=I+L} )1/ (Lle=G1c)

68323 120 CCONTINUE

0B34D***®r+x PRI NT L VECTCR IF NEZDEZD

4b350 IF(INDCZXL.NZe1) GCTD 121

JB3703 PRINT LJBls (LII)sIZT14NLPNZ)

0638d 1.6. FIAMAT(LLXKs*L VECTIR*/ (LIXsFib.B))
J639U 1z1 CONTINUE

fouwCO0****+¥ TO, FIND XTO=STIMLI+TeRMZ+TIRMI+TL MG

cBLiferransr CLHLCULATE SUML,3UM2,3UM3
L6423 SUMiI={.

06430 SUMZ=1{.

cbuul SUMI=L.

Lo450 00 13¢ Ii=t,N1

G655 I=Tiez
geu4ed 130 SUML=
Goea7d DO L4l 11
Go4 80 I=Ii-1
064685 SUMZ=SUMI+(GLi**I)*(1e=31%"{I+1))
J64 90 SUMI=SUMI+GL¥*(2*1I+1)

06500 140 CONTZIhJE

SUMLI+(TL**I ) (La=TL**(1+1))
=1.h2
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2

(]

Ug52fs%sxssr DQTNT SUMS IF NEIED

06537 IF(INDCASNE«1) GOTC 141

065640 PrRINT 1u7C4,s35UML,3UMcy3SJM3

IB550 1272 FIORMAT(/1CX o *SUMLI=® s FlueBedXy®*5UMI=%,3F1beady*SJr3s=
* "Flkos)

L6363 141 CONTINUE

365?3““"*44*“ HU:HUHAT

06580 ToXML=MU*TL/(1.~T1)

06590 ToIML=TZIMNLI*SUML

06600 ToRM2Z=DHAT*{T1**#N1)¥51/ (i.=G1l)

66510 TERM2=TIRM2*SUMZ

U602l TIZIRAMI=MU*(TL#**NI)I*GLi/(1l.~G1)

06630 TIIMI=TZIMI*SUME

06040 TEIML=MUS(TL1**N1)*GLi®*(L.=T1**NL1)/(L,=T1)

C6650 TZIMH=TZI<Mu*SUM3

UBbE] XTOFTTERIMLI+TEFM2+TERMI+TCRMG

(Bo70***>»s 75 CUOMPUTE XTX

06687 XL={.

06535 DI 150 I=LeN1°3NE

UBT7LY 150 AL=X +L{I)*Z (D)

FETLI*rr¥rssns CALCULATION OF XTX

CB720 XTX=(Le=TLi**(2*N1)}/(Le=T12)

06733 ATXCEATA+(TLI® ¥ (2*NL) ) (La=Grl**% (2% (NZ+1) 1) /{La=5G12)

66735 XTX=aATXZ

26747 AHAT=(XTO=XL)/XTX

as?sj““#“‘*‘*-ﬁ;li;"; CQHDUTATION JF A

B67e0 IF(INOIXXD«nNE«1) GITD 1514

6770 PXINT L1I8LaxTCaXTXsAHAT

367 8] 10830 FORMAT (/10X 4 ¥ XT O 4Fiaeb 40X 4 X TXE%,F 446454,
* PAHAT=*,Fibka0)

0679350 131 CUNTINUEZ

GB3C0 AT(1)=Z(i)=-MUHAT+T1*AHAT

JBBLD DI 16i I=Z.NZ

§682C 180 AT(ZI)=Z(I)=MU+TL%*AT(I=1)

0830 00 17. I=HIPL,NLFN2

06840 175 AT(I)=Z(I)=MU=DRAT+Gi*AT(I~-1)

Co35 ¢+ *e¥r¥s TO CALCULATL F

06360 F=AHAT*AHAT

05870 DI 130 I=14NLPNZ

G66880 F=F+({AT(II*AT(I)}/NLPNE)

36490 140 CONTIWNUE

06892 F=(NLFNZ/Z)*ALOS(F)+4S*ALOG(XTX)

06894 PRINT 183,sT1sGLs+MURATDHATSF

06896 183 FIIMAT(S5F1l4.6)

6897 NITER=SNITER+L

§63899 IF(HITEReZJeBINITERSD

089L0 RZTURN

86310 END
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APPENDIX E

ECONOMIC PARAMETERS FOR TWO QUALITY CHARACTERISTICS,

INDEPENDENT OBSERVATIONS
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Two Characteristics, Independent Observations

g=-.80
L0=5,000 L0=10,OOO LO=20,000 LD=40,000
2 2 z 2
kl k2 n Xy, q L, In X2, Ll n X2, o Ly | n XZ,d Ll
.20 0.00(|88 8.08 130.1 (103 9.15 147.6 1118 10.27 165.1 (133 11.41 182.6
L201032 10.10 45.1| 36 11.25 50.0| 41 12.39 54.9! 45 13.58 59.7
40116 11.49 22.3| 18 12.64 24.5| 20 13.81 28.6( 22 15.01 28.7
L6010 12.43  13.4( 11 13.62 14.6 | 12 14.81 15.7) 13 16.06 16.9
.BO) 7 13.14 9.0 7 14.51 9.7 8§ 15.65 10.4 9 16.78 11.2
1.00} 5 13.81 6.4 5 15.20 7.0 6 16.22 7.5 6 17.54 8.0
1.20| 4 14.25 4.9 4 15.65 5.2 4 17.00 5.7 5 17.87 6.0
1.40( 3 14.81 3.8 3 16.22 4,1 3 17.54 4.5 4 18.25 4.7
1.60| 2 15.65 3.2 3 16.22 3.4 3 17.54 3.6 3 18.98 3.7
1.80( 2 15.65 2.5 2 17.00 2.7 2 18.25 2.9 2 19.74 3.2
.40 0.00129 10.30 41.3 | 33 11.42 45.7 (37 12.58 50.0/| 41 13.76 54.4
L2016 11.49 22.3| 18 12.64 24.5( 20 13.81 26.6| 22 15.01 28.7
L40110 12.43 13.7 ) 11 13.62 14.9 |12 14.81 16.1| 13 16.06 17.4
60| 7 13.14 9.2 8 14.25 10.0 8 15.65 10.8 9 16.78 11.5
.80 5 13.81 6.7 6 14.81 7.2 6 16.22 7.7 6 17.54 8.3
1.00| 4 14.25 5.0 4 15.65 5.4 5 16.57 5.9 5 17.87 6.2
1.20| 3 14.81 3.9 3 16.22 4.3 4 17.00 4.6 4 18.25 4.8
1.40| 2 15.65 3.3 3 16.22 3.5 3 17.54 3.6 3 18.98 3.9
1.60| 2 15.65 2.6 2 17.00 2.8 2 18.25 3.0 3 18.98 3.3
1.80| 2 15.65 2.3 2 17.00 2.4 2 18.25 2.5 2 19.74 2.6
.60 0.00 (15 11.61 20.61| 17 12.75 22.6 |18 14.02 24.5| 20 15.20 26.4
.20 110 12.43 13.4 111 13.62 14.6 |12 14.81 15.7 | 13 16.08 16.9
A0 7 13.14 9.2 8 14.25 10.0 8§ 15.65 10.8 9 16.78 11.5
.60 5 13.81 6.7 6 14.81 7.3 6 16.22 7.8 6 17.54 8.4
B0 4 14.25 5.1] 4 15.65 5.5 5 16.57 5.9 5 17.87 6.3
1.00| 3 14.81 4.0 3 16.22 LA 4 17.00 4.7 4 18.25 4.9
1.20 | 3 14.81 3.4 3 16.22 3.5 3 17.54 3.7 3 18.98 3.9
1.40 | 2 15.65 2.7 2 17.00 2.9 2 18.25 3.1 3 18.98 3.3
1.60 | 2 15.65 2.3 2 17.00 2.4 2 18.25 2.5 2 19.74 2.7
1.80 | 2 15.65 2.1 2 17.00 2.2 ] 2 18.25 2.2 2 19.74 2.3
.80 0.00 | 9 12.64 12.5 |10 13.81 13.6 |11 15.01 14.7 )12 16.22 15.8
L2017 13.14 9.0 7 14.51 9.7 8 15.65 10.4 9 16.78 11.2
L4015 13.81 6.7 6 14.81 7.2 6 16.22 7.7 6 17.54 8.3
60| 4 14.25 5.1 | 4 15.65 5.5 5 16.57 5.9 5 17.87 6.3
LB0 [ 3 14.81 4.0 3 16.22 4.4 4 17.00 4.7 4 18.25 4.9
1.00 | 3 14.81 3.4 3 16.22 3.5 3 17.54 3.7 3 18.98 4.0
1.20 | 2 15.65 2.7 2 17.00 2.9 2 18.25 3.2 3 18.98 3.4
1.40 | 2 15.65 2.3 2 17.00 2.4 2 18.25 2.6 2 19.74 2.8
1.60 | 2 15.65 2.1 2 17.00 2.2 2 18.25 2.2 2 19.74 2.3
1.80 (1 17.00 1.8 1 18.25 2.0 2 18.25 2.1 2 19.74 2.1
1.00 0.00 | 6 13.45 8.5 7 14.51 9.1 | 8 15.65 9.9 8 17.00 10.5
.20 |5 13.81 6.4 5 15.20 7.0 6 16.22 7.5 6 17.54 8.0
A0 | 4 14,25 5.0 4 15.65 5.4 5 16.57 5.9 5 17.87 6.2
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p=-.80 (continued)

L0=5 0[010] LO=10,000 L0=20,000 LO=AO,000
2

kq k2 n X3, L, n x%, a L, |n X%, o 1 |n X%, a Ll&
.60 1 3 14.81 4.0 3 16.22 4.4 4 17.00 4.7 4 18.25 4.9
.801| 3 14.81 3.4 |3 15.22 3.5 (3 17.54 3.7 |3 18.98 4.0
1.004 2 15.65 2.7 2 17.00 2.9 2 18.25 3.2 3 18.98 3.4
1.20 | 2 15.65 2.3 2 17.00 2.4 2 18.25 2.6 2 19.74 2.8
1.40 (2 15.65 2,1 |2 17.00 2.2 |2 18.25 2.3 [219.74 2.4
1.60 |1 17.00 1.8 1 18.25 2.0 2 18.25 2.1 2 19.74 2.1
1.80 (1 17.00 1.5 1 18.25 1.6 1 19.74 1.8 1 23.90 2.0
1.20 0.00 |5 13.81 6.2 |5 15.20 6.6 |6 16.22 7.2 (6 17.54 7.6
L2004 14,25 4.9 |4 15.65 5.2 14 17.00 5.7 (5 17.87 8.0
L4013 14.81 3.9 | 316.22 4.3 14 17.00 4.6 (4 18.25 4.8
.60 314.81 3.4 |316.22 3.5 |3 17.54 3.7 [318.98 3.9
.80 12 15.65 2.7 (217.00 2.9 |2 18.25 3.2 |3 18.98 3.4
1.00 12 15.65 2.3 |2 17.00 2.4 |2 18,25 2.8 |2 19.74 2.8
1.20 12 15.65 2.1 |2 17.00 2.2 |2 18.25 2.3 |2 19.74 2.4
1.40 |1 17.00 1.8 1 18.25 2.1 2 18.25 2.1 2 19.74 2.2
1.60 |1 17.00 1.5 1 18.25 1.6 1 19.74 1.8 1 20.90 2.0
1.80 |1 17.00 1.3 1 18.25 1.4 1 19.74 1.5 1 20.90 1.6
1.40 0,00 | 4 14.25 4.7 4 15.65 5.0 4 17.00 5.4 4 18.25 5.8
.20 |3 14.81 3.8 3 16.22 4.1 3 17.54 4.5 4 18.25 4,7
L40 )2 15.65 3.3 [ 316.22 3.5 |3 17.54 3.6 |3 18.98 3.9
602 15.65 2.7 |217.00 2.9 |2 18.25 3.1 |3 18.98 3.3
.80 |2 15.65 2.3 |217.00 2.4 ]2 18.25 2.6 |219.74 2.8
1.00 |2 15.85 2.1 |2 17.00 2.2 |2 18.25 2.3 |2 19.74 2.4
1.20 11 17.00 1.8 1 18.25 2.1 2 18.25 2.1 2 19.74 2.2
1.40 )1 17.00 1.5 |118.25 1.6 ;1 19.74 1.9 |1 20.90 2.1
1.60 1 17.00 1.3 {1 18,25 1.4 |[119.74 1.5 |1 20.90 1.6
1.80 11 17.00 1.2 1 18.25 1.2 1 19.74 1.3 1 20.90 1.4
1.60 0.00 {3 14.81 3.7 3 16.22 3.9 3 17.54 4.2 4 18.25 4.6
20 12 15,65 3.2 |3 16.22 3.4 13 17.54 3.6 |3 18.98 3.7
40 12 15,65 2.6 (2 17.00 2.8 {2 18,25 3.0 |3 18.98 3.3
.60 |2 15.65 2.3 2 17.00 2.4 2 18.25 2.5 2 19.74 2.7
.80 {2 15.65 2.1 2 17.00 2.2 2 18.25 2.2 2 19.74 2.3
1.00 (1 17.00 1.8 1 18.25 2.0 2 18.25 2.1 2 19.74 2.1
1.20 41 17.00 1.5 1 18.25 1.6 1 19.74 1.8 1 20.90 2.0
1.40 |1 17.00 1.3 1 18.25 1.4 1 19.74 1.5 1 20.90 1.6
1.60 11 17.00 1.2 118.25 1.2 1 19.74 1.3 1 20.90 1.4
1.80 §1 17.00 1.1 1 18.25 1.1 1 19.74 1.2 1 20.90 1.2
1.80 0.00 |2 15.65 3.0 3 16.22 3.3 3 17.54 3.5 3 18.98 3.6
.20 |2 15.65 2.5 217.00 2.7 2 18.25 2.9 2 19.74 3.2
40 [ 2 15.65 2.3 2 17.00 2.4 2 18.25 2.5 2 19.74 2.6
.60 (2 15.65 2.1 (217.00 2.2 |2 18.25 2.2 |2 19.74 2.3
.80 |1 17.00 1.8 1 18,25 2.0 2 18.25 2.1 2 19.74 2.1
1.00 |1 17.00 1.5 1 18.25 1.6 1 19.74 1.8 1 20.90 2.0
1.20 |1 17.00 1.3 1 18.25 1.4 1 19.74 1.5 1 20.90 1.8
1.40 (1 17.00 1.2 1 18.25 1.2 1 19.74 1.3 1 20.90 1.4
1.60 |1 17.00 1.1 |1 18.25 1.1 |1 19.74 1.2 (1 20.90 1.2
1.80 [1 17.00 1.0 1 18.25 1.1 1 19.74 1.1 1 20.90 1.1
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=-,60
Lp=5,000 L0=10,000 L0=20,000 LO=40,000

k k n Z L n Z L n L n Z L

1 2 X2, o 1 X2,a 1 X2,a 1 X2, 1
.20 0.00)136 7.21 205.8|161 8.26 236.6|188 9.33 267.7|214 10.46 298.8
.20] 56 B8.98 80.5| 64 10.10 90.3) 73 11.22 100.0; 81 12.40 109.7
L40(1 29 10.30 39.9| 32 11.49 44.1| 36 12.64 48,3 40 13.81 52.5
.60 17 11.37 23.7| 19 12.53 26.9| 21 13.71 28.3} 23 14.89 30.5
.80 12 12.06 15.8] 13 13.29 17.2) 14 14.51 18.6| 15 15.77 20.0
1.00 8 12.87 11.3 9 14,02 12.3{ 10 15.20 13,2 11 16.39 14.2
1.20 6 13.45 8.5 7 14,51 9,2 8 15.65 9.9 8 17.00 10.6
1.40f 5 13.81 6.6 6 14.81 7.2 6 16.22 7.7 6 17.54 8.2
1.60| &4 14.25 5.3 4 15,65 5.8 5 16.57 6.2 5 17.87 6.6
1.80 3 14.81 4.5 4 15.65 4.8 4 17.00 5.1 4 18.25 5.4
L40 0.00) 47 9.33 66.9| 54 10.44 74.7) 60 11.51 82.5| 67 12.78 90.3
.20 29 10.30 39.9, 32 11.49 44,1 36 12.54 48.3) 40 13.81 52.5
L4011 18 11.25 25.0| 20 12.43 27.4( 22 13.62 29,91 24 14,81 32.2
601 12 12.06 16.9| 14 13.14 18.4( 15 14.38 19.,9| 16 15.65 21.5
.80 9 12.64 12.1| 10 13.81 13.1| 11 15.01 14.2| 12 16.22 15.2
1.00 7 13.14 9.1 7 14.51 9.9 3 15.65 10.6 9 16.78 11.3
1.20 5 13.81 7.1 6 14.81 7.6 6 16.22 8.2 7 17.26 8.8
1.40 4 14,25 5.7 5 15.20 6.1 S 16.57 6.6 5 17.87 7.0
1.60 4 14,25 4.7 4 15.65 5.0 4 17.00 5.4 4 18.25 5.8
1.80 3 14.81 3.9 3 16.22 4.2 4 17.00 4.6 4 18.25 4,8
.60 0.00[ 24 10.68 33.8( 27 11.82 37.2] 30 13.00 40.7| 33 14.19 44.1
.20 17 11.37 23,74 19 12,53 26,0 21 13.71 28.3| 23 14.89 30.5
L4011 12 12,06 16.9| 14 13.14 18.41 15 14.38 19.97 16 15.65 21.5
.60 9 12.64 12.4| 10 13.81 13.4 ) 11 15.01 14.5| 12 16.22 15.6
.80 7 13.14 9.4 8 14.25 10.2 8 15,65 11,0 9 16.78 11.7
1.00 b 13.45 7.4 6 14.81 7.9 7 15.91 8.6 7 17.26 9.1
1.20] 4 14,25 6.0 5 15.20 6.4 5 16.57 6.9 6 17.54 7.3
1.40 4 14,25 4.9 4 15.65 5.2 4 17.00 5.6 5 17.87 6.0
1.60 3 14.81 4.1 3 16.22 4.4 4 17.00 4.7 4 18.25 4.9
1.80 3 14.81 3.5 3 16.22 3.7 3 17.54 3.9 3 18.98 4,2
.80 0.00( 15 11.61 20.6| 17 12.75 22.6 18 14.02 24.5| 20 15.20 26.4
.20 12 12.06 15.8| 13 13.29 17.2 14 14.51 18.6| 15 15.77 20.0
40 9 12.64 12.1| 10 13.81 13.1( 11 15.01 14.2| 12 16.22 15.2
.60 7 13.14 9.4 8 14.25 10.2 8 15.65 11.0 9 16.78 11.7
.80 6 13.45 7.5 6 14.81 8.1] 7 15.91 8.7 7 17.26 9.3
1.00 5 13.81 6.1 5 15.20 6.5 5 16.57 7.0 6 17.54 7.5
1.20 4 14,25 5.0 4 15,65 5.4' 4 17.00 5.8| 5 17.87 6.1
1.40 3 14.81 4.2 3 16.22 4.6 4 17.00 4.8 4 18,25 5.1
1.60 3 14.81 3.6 3 16.22 3.8{ 3 17.54 4.1 3 18.98 4.4
1.80 2 15.65 3.1 3 16.22 3.4 3 17.54 3.5 3 18.98 3.7
.00 0.00,) 10 12.43 14.0| 11 13.62 15.3| 13 14.65 16.5| 14 15.91 17.7
.20 8 12.87 11.3 9 14.02 12.3| 10 15.20 13.2) 11 16.39 14.2
40 7 13.14 9,1 7 14.51 9.9 8 15.85 10.6 9 16.78 11.3
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p=-,60 (continued)

L _=5,000 L,=10,000 L,=20,000 Ly=40,000
- 2 2 2

ky k2™ Xy, Ly B Xy o Lyom Xy Lpofmoxp 4 L4
.60 6 13.45 7.4 {6 14.81 7.9 {7 15.91 8.6 | 7 17.26 9.1
.80 | 513.81 6.1 |5 15.20 6.5 |5 16.57 7.0 | 6 17.54 7.5
1.00 | 4 14.25 5.0 |4 15.65 5.4 |5 16.57 5.9 | 517.87 6.2
1.20 | 3 14.81 4.2 |4 15.65 4.6 |4 17.00 4.9 | 4 18.25 5.1
1.40 | 3 14.81 3.6 {3 16.22 3.9 } 3 17.54 4.2 | 4 18.25 4.5
1.60 | 2 15.65 3.2 |316.22 3.4 [317.54 3.8 | 318.98 3.8
1.80| 2 15.65 2.7 [217.00 2.9 |2 18.25 3.2 | 218.98 3.4
1.20 0.00| 8 12,87 10.2 |8 14.25 11.1 | 9 15.41 11.9 |10 16.57 12.7
.20 | 6 13.45 8.5 {7 14.51 9.2 |8 15.65 9.9 | 8 17.00 10.6
.40 | 513.81 7.1 [614.81 7.6 |6 16.22 8.2 | 7 17.26 8.8
.60 | 4 14.25 6.0 [515.20 6.4 5 16.57 6.9 | 6 17.54 7.3
.80 | 4 14.25 5.0 |4 15.65 5.4 |4 17.00 5.8 | 517.87 6.1
1.00 | 3 14.81 4.2 |4 15.65 4.6 | 4 17.00 4.9 | 4 18.25 5.1
1.20 | 3 14.81 3.7 |316.22 3,9 | 317.54 4.2 @ 4 18.25 4.5
1.40| 2 15.65 3.3 |3 16.22 3.4 |317.54 3.6 | 3 18.98 3.8
1.60} 2 15.65 2.8 [217.00 3.0 | 218.25 3.3 | 318.98 3.4
1.80| 2 15.65 2.4 [217.00 2.6 |2 16.25 2.7 | 219.74 3.0
1.40 0.00 | 6 13.45 7.8 |6 14.81 8.4 |7 15.91 9.0 | 8 17.00 9.7
.20| 5 13.81 6.6 |6 14.81 7.2 |6 16.22 7.7 | 6 17.54 8.2
240 ] 4 14.25 5.7 | 515.20 6.1 |5 16.57 6.6 | 517.87 7.0
60| 4 14.25 4.9 |4 15.65 5.2 {4 17.00 5.6 | 517.87 6.0
.80 | 3 14.81 4.2 (3 16.22 4.6 |4 17.00 4.8 | 4 18.25 5.1
1.00 | 3 14.81 3.6 |3 16.22 3.9 |3 17.54 4.2 | 4 18.25 4.5
1.20| 2 15.65 3.3 |3 16.22 3.4 | 317.54 3.6 | 318.98 3.8
1.40] 2 15.65 2.8 |217.00 3.0 |3 17.54 3.3 | 318.98 3.4
1.60 | 2 15.65 2.4 |217.00 2.6 |218.25 2.8 | 219.74 3.0
1.80| 2 15.65 2.2 [217.00 2.3 |2 18.25 2.4 | 219.74 2.8
1.60 0.00 | 5 13.81 6.2 |5 15.20 6.6 | 6 16.22 7.2 | 6 17.54 7.6
.20 4 14.25 5.3 |4 15.65 5.8 |5 16.57 6.2 | 517.87 6.6
40| 4 14,25 4.7 |4 15.65 5.6 | 4 17.00 5.4 | 4 18.25 5.8
.60 | 3 14.81 4.1 |316.22 4.4 | 417.00 4.7 | 4 18.25 4.9
.80 | 3 14.81 3.6 |316.22 3.8 |317.54 4.1 | 318.98 4.4
1.00| 2 15.65 3.2 |3 16.22 3.4 {317.54 3.6 | 318.98 3.8
1.20| 2 15.65 2.8 [217.00 3.0 |218.25 3.3 | 318.98 3.4
1.40| 2 15.65 2.4 |217,00 2.6 |2 18.25 2.8 | 219.74 3.0
1.60| 215.65 2.3 }217.00 2.3 |218.25 2.5 | 219.74 2.8
1.80| 2 15.65 2.1 |217.00 2.2 |2 18.25 2.3 | 219.74 2.4
1.80 0.00 | 4 14.25 5.0 |4 15.65 5.4 | 4 17.00 5.8 | 517.87 6.1
.20] 3 14.81 4.5 |4 15.65 4.8 |4 17.00 5.1 | 4 18.25 5.4
.40 ) 3 14.81 3.9 |316.22 4.2 | 4 17.00 4.6 | 4 18.25 4.8
.60 | 3 14.81 3.5 |3 16.22 3.7 |317.54 3.9 | 318.98 4.2
| .80 | 2 15.65 3.1 |316.22 3.4 |317.54 3.5 3 18.98 3.7
| 1.00| 2 15.65 2.7 |217.00 2.9 |2 18.25 3.2 | 3 18.98 3.4
: 1.20 | 2 15.65 2.4 |217.00 2.6 |2 18,25 2.7 | 219.74 3.0
| 1.40{ 2 15.65 2.2 |217.00 2.3 |2 18.25 2.4 | 2 19.74 2.6
1.60 { 2 15.65 2.1 (217.00 2.2 |2 18.25 2.3 | 219.74 2.4
1.80| 117.00 2.0 |217.00 2.1 [218.25 2.1 | 2 19.74 2.2
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==.40
Ly=5,000 Ly=10,000 Lg=20,000 Lg=40,000
2

ky kp |m xz,0 Lp M X%,a Lp|n X%,a L= X%,u Ly
.20 0.00 |166 6.81 254.3[199 7.83 294.7|232 8.91 335.3267 10.02 376.2
.20| 77 8.35 112.3| 89 9.44 126.8102 10.56 141.4|114 11.71 156.0

.40 39 9.71 55.3| 44 10.85 61.5| 50 11.98 67.7| 55 13.18 73.8

.60 | 23 10.76 32.4| 26 11.90 35.7| 29 13.07 39.0| 32 14.25 42.3

.80 | 16 11.49 21.3| 17 12.75 23.4] 19 13.91 25.4| 21 15.10 27.4

1.00| 11 12.24 15.1] 12 13.45 16.5| 14 14.51 17.9) 15 15.77 19.2
1.20| 8 12.87 11.4| 9 14.02 12.3| 10 15.20 13.3| 11 16.39 14.2
1.40 7 13.14 8.9| 7 14.51 9.6| 8 15.65 10.3| 9 16.78 11.0
1.60| 513.81 7.1 6 14.81 7.6| 6 16.22 8.2| 7 17.26 8.8
1.80| 4 14.25 5.9 5 15.20 6.3| 5 16.57 6.7| 6 17.54 7.2

.40 0.00| 58 8.91 83.8] 67 10.01 94.0| 76 11.14 104.3 85 12,31 114.5
.20 39 9.71 55.3| 44 10.85 61.5| 50 11.98 67.7| 55 13.18 73.8

.40 25 10.60 35.4| 29 11.68 39.0| 32 12.87 42.7( 35 14.07 46.3

.60 | 17 11.37 23.8| 19 12.53 26.1| 21 13.71 28.4 23 14.89 30.6

.80| 12 12.06 16.9( 14 13.14 18.5| 15 14.38 20.0| 17 15.53 21.6

1.06| 9 12.64 12.6| 10 13.81 13.7| 11 15.01 14.8 12 16.22 15.9
1.200 7 13.14 9.8 B8 14.25 10.6| 9 15.41 1l.4| 9 16.78 12.2
1.40| 6 13.45 7.8 6 14.81 8.4| 71591 9.0 8 17.00 9.7
1.60| 5 13.81 6.4 515.20 6.9| 616.22 7.5 6 17.54 7.8
1.80| 4 14.25 5.3| 4 15.65 5.7| 516.57 6.1| 5 17.87 8.5

.60 0.00| 30 10.23 42.6| 34 11.37 47.1| 38 12.53 51.6] 42 13.71 56.2
.20 | 23 10.76 32.4| 26 11.90 35.7| 29 13.07 39.0| 32 14.25 42.3

.40 | 17 11.37 23.8| 19 12.53 26.1| 21 13.71 28.4| 23 14.89 30.6

.60 | 13 11.%0 17.6| 14 13.14 19.2! 16 14.25 20.8} 17 15.53 22.5

.80 | 10 12.43 13.4| 11 13.62 14,5| 12 14,81 15.7| 13 16.06 16.9

1.00| 8 12.87 10.4| 9 14.02 11.3 9 15.41 12.2| 10 16.57 13.1
1.20| 6 13.45 8.3| 7 14.51 9.0 715.91 9.7 8 17.00 10.4
1.40| 5 13.81 6.8 6 14.81 7.4] 6 16.22 7.9| 7 17.22 8.4
1.60 | 4 14.25 5.7 515.20 6.1, 5 16.57 6.5 517.87 7.0
1.80| 4 14.25 4.8 4 15.65 5.1| 4 17.00 5.5| 5 17.87 5.9

.80 0.00 | 19 11.14 26.1| 21 12.33 28.6 23 13.53 31.2| 26 14.65 33.7
.20 | 16 11,49 21.3| 17 12,75 23.4| 19 13.91 25.4| 21 15.10 27.4

.40 [ 12 12.06 16.9| 14 13.14 18.5| 15 14.38 20.0| 17 15.53 21.6

.60 [ 10 12,43 13.4| 11 13.62 14.5| 12 14.81 15.7| 13 16.06 16.9

.80 812,87 10.7| 9 14.02 11.6( 10 15.20 12.5| 10 16.57 13.4

1.00! 6 13.45 8.7 7 14.51 9.3| 8 15.65 10.1| 8 17.00 10.8
1.20| 513.81 7.1} 6 14.81 7.7| 6 16.22 8.3 7 17.26 8.8
1.40| 4 14.25 6.0| 515.20 6.4 516.57 6.9| 6 17.54 7.3
1.60| 4 14.25 5.0| 4 15.65 5.4( 4 17.00 5.8 517.87 6.1
1.801 3 14.81 4.3{ 4 15.65 4.7| 4 17.00 4.9| 4 18.25 5.2
1.00 0.00 13 11.90 17.7] 14 13.14 19.4| 16 14.25 21,0| 17 15.53 22.6
.20 11 12,24 15.1{ 12 13.45 16.5| 14 14.51 17.9| 15 15.77 19.2

40| 9 12.64 12.6] 10 13.81 13.7| 11 15.01 14.8| 12 16.22 15.9
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p=—,40 (continued)

Lg=5,000 Lg=10,000 L,=20,000 L,=40,000

ki, ko|n X L n x2 L n xz L n x2 L

2,0 1 2,0 1 2,0 1 2,u 1
.60 8 12.87 10.4] 9 14,02 11.3! 9 15.41 12.2| 10 16.57 13.1
.80 6 13.45 8.7 7 14.51 9.3 8 15.65 10.1| 8 17.00 10.8
1.00| 5 13.81 7.2 6 14.81 7.8| 6 16.22 8.4 7 17.26 8.9
1.20] 5 13.81 6.1] 515,20 6.5 5 16.57 7.1 6 17.54 7.5
1.40| 4 14.25 5.2 4 15.65 5.6] 5 16.57 6.0| 5 17.87 6.3
1.60| 3 14.81  4.5| 4 15.65 4.81 4 17.00 5.1} 4 18.25 5.4
1.80| 3 14.81 3.8| 3 16.22 4.10 3 17.54 4.5| 4 18.25 4.7
1.20 0.00| 10 12.43 12.9| 11 13.62 14.1| 12 14.81 15.2| 13 16.06 16.3
.20| 8 12.87 11.4| 9 14.02 12.3| 10 15.20 13.3| 11 16.39 14.2
L4010 7 13,14 9.8| 8 14.25 10.6| 9 15.41 11.4] 9 16.78 12.2
.60 6 13.45 8.3| 7 14.51 9.0! 7 15.91 9.7| 8 17.00 10.4
.80| 5 13.81 7.1 6 14.81 7.7| 6 16,22 8.3| 7 17.26 8.8
1.00| 5 13.81 6.11 5 15.20 6.5| 5 16.57 7.1| 6 17.54 7.5
1.20| 4 14.25 5.2 4 15.65 5.6{ 5 16.57 6.0{ 5 17.87 6.4
1.40| 3 14.81 4.6 4 15.65 4.9] &4 17.00 5.2| 4 18.25 5.5
1.60| 3 14.81 3.9| 316.22 4.3| 4 17.00 4.6 4 18.25 4.8
1.80! 3 14.81 3.5{ 3 16.22 3.7| 3 17.54 3.9| 3 18.98 4.3
1.40 0.00| 7 13.14 9.9] 8 14.25 10.7| 9 15.41 11.5| 10 16.57 12.4
.20 7 13.14 8.9 7 14,51 9.6| 8 15.65 10.3| 9 16.78 11.0
40| 6 13.45  7.8) 6 14.81 8.4 715,91 9.,0| 8 17.00 9.7
.60| 5 13.81 6.8 6 14.81 7.4 6 16.22 7.9| 7 17.26 8.4
.80 | 4 14.25 6.00 515,20 6.4 5 16.57 6.9 6 17.54 7.3
1.00| 4 14.25 5.2 4 15.65 5.6| 5 16.57 6.0( 5 17.87 6.3
1.20| 3 14.81 4.6 4 15.65 4.91 4 17.00 5.2] 4 18.25 5.5
1.40| 3 14.81  4.0| 3 16.22 4.3 4 17.00 4.6] 4 18.25 4.8
1.60| 3 14.81 3.5 3 16.22 3.8 3 17.54 4.0) 3 18.98 4.3
1.80| 2 15.65 3.2| 3 16.22 3.4! 3 17.54 3.6! 3 18.98 3.8
1.60 0.006 6 13.45 7.8 6 14.81 8.5 7 15.91 9.1 8§ 17.00 9.7
.20 5 13.81 7.1| 6 14.81 7.6 6 16.22 8.3 7 17.26 8.8
40| 5 13.81  6.4| 5 15.20 6.9 6 16.22 7.4| 6 17.54 7.8
60| 4 14.25 5.7 5 15.20 6.1} 5 16.57 6.5| 5 17.87 7.0
80| 4 14.25 5.0| 4 15.65 5.4 4 17.00 5.8| 5 17.87 6.1
1.00| 3 14.81 4.5| &4 15.65 4.8| 4 17.00 5.1| 4 18.25 5.4
1.20| 3 14.81 3.9! 3 16.22 4.3| 4 17.00 4.6| 4 18.25 4.8
1.40| 3 14.81 3.5| 3 16.22 3.8| 3 17.54 4.0| 3 18.98 4.3
1.60| 2 15.65 3.2| 3 16.22 3.4] 3 17.54 3.6| 3 18.98 3.8
1.80| 2 15.65 2.8{ 2 17.00 3.1{ 3 17.54 3,3 3 18.98 3.4
1.80 0.00| 5 13.81 6.3 5 15.20 6.8| 6 16.22 7.4| 6 17.54 7.8
.20 4 14.25 5.9 515.20 6.3 5 16.57 6.7| 6 17.54 7.2
40| 4 14.25  5.3| 4 15.65 5.7 5 16.57 6.1| 5 17.87 6.5
.60] &4 14.25 4.8) 4 15.65 5.1| 4 17.00 5.5| 5 17.87 5.9
.80 3 14.81 4.3\ 4 15.65 4.7| 4 17.00 4.9) 4 18.25 5.2
1.00| 3 14.81 3.8| 3 16.22 4.1| 3 17.54 4.5| 4 18.25 4.7
1.20| 3 14.81 3.5| 3 16.22 3.7| 3 17.54 3.9| 3 18.98 4.3
1.40| 2 15.65 3.2 3 16.22 3.4| 317.54 3.6| 3 18.98 3.8
1.60| 2 15.65 2.8{ 2 17.00 3.1| 3 17.54 3.3| 3 18.98 3.4
1,80 2 15.65 2.5! 2 17,00 2,71 2 18,25 2,9] 2 19.74 3.2




Two Characteristics, Independent Observations

217

p=-.20
L,=5,000 1,=10,000 L,=20,000 Ly=40,000
2 ‘ 2 2
Y R (® Xp,a 1" X3e M % Xza Li|m X, L1
720 0.00|183 6.63 2B1.8 220 7.63 327.81258 8.70 374.2]298 9.80 420.9
.20| 96 7.91 141.7 |112 8.98 161.01128 10.10 180.5|145 11.24 199.9
40| 48 9.29 68.8| 55 10.41 76.9] 62 11.55 84.9| 69 12.72 93.0
60| 28 10.37 39.6| 32 11.49 43.8| 36 12.64 47.9| 39 13.86 52.1
.80| 19 11.14 25.7| 21 12.33 28.21 23 13.53 30.7( 25 14.73 33.2
1.00| 13 11.90 18.1| 15 13.00 19.7| 16 14.25 21.4]| 18 15.41 23.0
1.20| 10 12.43 13.4| 11 13.62 14.6| 12 14.81 15.7| 13 16.06 16.9
1.40| 8 12.87 10.4( 9 14.02 11.3! 9 15.41 12.2| 10 16.57 13.0
1.60( 6 13.45 8.30 7 14.51 9.0| 7 15.91 9.7 8 17.00 10.3
1.80| 5 13.81 6.8 6 14.81 7.4] 6 16.22 7.9| 7 17.26 8.4
.40 0.00| 65 8.68 93.6| 74 9.81 105.2! 84 10.94 116.9| 95 12.09 128.6
.20 48 9.29 68.8| 55 10.41 76.9| 62 11.55 84.9| 69 12.72 93.0
.40 32 10.10 45.1| 36 11.25 50.0| 41 12.38 54.9| 45 13.58 59.7
.60 | 22 10.85 30.2| 24 12.06 33.2| 27 13.21 36.3] 30 14.38 39.2
.80 15 11.61 21.3| 17 12.75 23.3| 19 13.91 25.2] 21 15.10 27.3
1.00| 12 12.06 15.7| 13 13.29 17.1| 14 14.51 18.5| 15 15.77 19.9
1.20 9 12.64 12.0] 10 13.81 13.0| 11 15.01 14.1] 12 16.22 15.1
1.40| 7 13.14 9.5| 8 14.25 10.3, 8 15.65 11.1, 9 16.78 11.8
1.60| 6 13.45 7.7| 6 14.81 8.3, 7 15.91 8.9| 7 17.26 9.6
1.80| 5 13.81 6.4| 515.20 6.9| 6 16.22 7.4| 6 17.54 7.8
.60 0.00| 34 9.98 47.7| 38 11.14 52.8| 43 12.28 58.0| 47 13.49 63.2
.20| 28 10.37 39.6] 32 11.49 43.8| 36 12.64 47.9) 39 13.86 52.1
40| 22 10.85 30.2| 24 12.06 33.2| 27 13.21 36.3| 30 14.38 39.2
.60 16 11.49 22.6| 18 12.64 24.8( 20 13.81 26.9] 23 14.89 29.0
.80 13 11.90 17.1] 14 13.14 18.7| 15 14.38 20.2| 17 15.53 21.8
1.00] 10 12.43 13.20 11 13.62 14.4| 12 14.81 15.5| 13 16.06 16.7
1.20| 8 12.87 10.5| 9 14.02 11.4| 9 15.41 12.3| 10 16.57 13.1
1.40| 6 13.45 8.5 7 14.51 9.2| 8 15.65 9.9 8 17.00 10.6
1.60| 5 13.81 7.0| 6 14.81 7.6| 6 16.22 8.1| 7 17.26 8.7
1.80| 4 14.25 5.9] 515.20 6.3| 5 16.57 6.8 6 17.54 7.3
.80 0.00} 21 10.94 29.2| 24 12.06 32.2| 26 13.29 35.1| 29 14.44 37.9
.20| 19 11.14 25.7| 21 12.33 28.2| 23 13.53 30.7| 25 14.73 33.2
40| 15 11.61 21.3| 17 12.75 23.3| 19 13.91 25.2| 21 15.10 27.3
60| 13 11.90 17.1| 14 13.14 18.7| 15 14,38 20.2| 17 15.53 21.8
.80| 10 12.43 13.7| 11 13.62 14.9] 12 14.81 16.1| 13 16.06 17.4
1.00| 8 12.87 11.1] 9 14.02 12.0| 10 15.20 13.0| 11 16.39 13.9
1.20| 7 13.14 9.1| 7 14.51 9.8| 8 15.65 10.6| 9 16.78 11.3
1.40| 6 13.45 7.5] 6 14.81 8.1 7 15.91 8.7| 7 17.26 9.3
1.60| 5 13.81 6.3| 5 15.20 6.8] 6 16.22 7.3| 6 17.54 7.8
1.80]| 4 14.25 5.4| 4 15.65 5.9| 5 16.57 6.2| 5 17.87 6.6
1.00 0.00| 15 11.61 19.9| 16 12.87 21.8| 18 14.02 23.6{ 20 15.20 25.5
.20| 13 11.90 18.1| 15 13.00 19.7| 16 14.25 21.4| 18 15.41 23.0
40| 12 12,06 15.7] 13 13.29 17.1] 14 14.51 18.5] 15 15.77 19.9
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p=-,20 (continued)

L.=5,000 15=10,000 14=20,000 Ly=40,000

)
ki ky| m X%,a Lyl » X0 Lp| m o Xpe Iy |m Xg,a L
601 10 12.43 13.2| 11 13.62 14.4| 12 14.81 15.5| 13 16.06 16.7
80| 8 12.87 11.1| 9 14.02 12.0| 10 15.20 13.0( 11 16.39 13.9
1.00| 7 13.14 9.3| 8 14.25 10.1 8 15.65 10.8{ 8 16.78 11.6
1.20| 6 13.45 7.8| 6 14.81 8.5, 7 15.91 9.1| 8 17.00 9.7
1.40| 5 13.81 6.6| 5 15.20 7.20 6 16.22 7.7! 6 17.54 8.2
1.60| 4 14.25 5.7| 5 15.20 6.1 5 16.57 6.5, 5 17.87 7.0
1.80| 4 14.25 4.9| 4 15.65 5.3 4 17.00 5.7| 5 17.87 6.0
1.20 0.00| 11 12.24 14.5| 12 13.45 15.8| 13 14.65 17.1! 14 15.91 18.4
20| 10 12.43 13.4| 11 13.62 14.6, 12 14.81 15.7| 13 16.06 16.9
40l 9 12.64 12.0| 10 13.81 12.0) 11 15.01 14.11 12 16.33 15.1
60| 8 12.87 10.5| 9 14.02 11.4| 9 15.41 12.3| 10 16.57 13.1
.80| 7 13.14 9.1| 7 14.51 9.8 8 15.65 10.6] 9 16.78 11.3
1.00/ 6 13.45 7.8| 6 14.81 8.5! 7 15.91 9.1| 8 17.00 9.7
1.20| 5 13.81 6.7| 6 14.81 7.31 6 16.22 7.8| 6 17.54 8.4
1.40| 4 14.25 5.9| 5 15.20 6.3{ S5 16.57 6.7 6 17.54 7.2
1.60| & 14.25 5.1| 4 15.65 5.5| 5 16.57 5.9, 5 17.87 6.2
1.80| 3 14.81 4.5| 4 15.65 4.8, 4 17.00 5.1 & 18.25 5.4
1.40 0.00] 8 12.87 11.1| 9 14.02 12.0! 10 15.20 13.0! 11 16.39 13.9
.20| 8 12.87 10.4| 9 14.02 11.3| 9 15.41 12.2| 10 16.57 13.0
.40 7 13.14 9.5| 8 14.25 10.3| 8 15.65 11.1] 9 16.78 11.8
60| 6 13.45 8.5| 7 14.51 9.2| 8 15.65 9.9 8 17.00 10.6
.80 6 13.45 7.5| 6 14.81 8.1| 7 15.91 8.7| 7 17.26 9.3
1.00| 5 13.81 6.6! 515.20 7.2| 6 16.22 7.7| 6 17.54 8.2
1.20| 4 14.25 5.9, 5 15.20 6.3| 5 16.57 6.7 6 17.54 7.2
1.40| 4 14.25 5.1, 4 15.65 5.5, 5 16.57 6.0| 5 17.87 6.3
1.60| 3 14.81 4.6| 4 15.65 4.9| 4 17.00 5.2| 4 18.25 5.5
1.80| 3 14.81 4.0| 3 16.22 4.3 4 17.00 4.7 4 18.25 4.9
1.60 0.00 7 13.14 8.8 7 14.51 9.5 8 15.65 10.2 8 17.00 11.0
20| 6 13.45 8.3| 7 14.51 9.0| 7 15.91 9.7] 8 17.00 10.3
40| 6 13.45 7.7| 6 14.81 8.3| 7 15.91 8.9| 7 17.26 9.6
60| 5 13.81 7.0| 7 14.81 7.6| 6 16.22 8.1| 7 17.26 8.7
.80| 5 13.81 6.3| 515.20 6.8 6 16.22 7.3| 6 17.54 7.8
1.00| 4 14.25 5.7| 5 15.20 6.1| 5 16.57 8.5| 5 17.87 7.0
1.20| 4 14.25 5.1| 4 15.65 5.5| 5 16.57 5.9| 5 17.87 6.2
1.40| 3 14.81 4.6| 4 15.65 4.9| 4 17.00 5.2| 4 18.25 5.5
1.60| 3 14.81 4.0| 3 16.22 4.4| 4 17.00 4.7| 4 18.25 4.9
1.80{ 3 14.81 3.6| 3 16.22 3.9| 3 17.54 4.2| 4 18.25 4.5
1.80 0.00| 5 13.81 7.2] 6 14.81 7.7| 6 16.22 8.3| 7 17.26 8.8
.20 5 13.81 6.8 6 14.81 7.41 6 16.22 7.9| 7 17.26 8.4
40| 5 13.81 6.4| 5 15.20 6.9, 6 16.22 7.4| 6 17.54 7.8
.60 4 14.25 5.9 5 15.20 6.3! 5 16.57 6.8! 6 17.54 7.3
.80| 4 14.25 5.4| & 15.65 5.9, 5 16.57 6.2| 5 17.87 6.6
1.00| 4 14.25 4.9 4 15.65 5.31 4 17.00 5.7| 5 17.87 6.0
1.20| 3 14.81 4.5, 4 15.65 4.8! 4 17.00 5.1| 4 18.25 5.4
1.40| 3 14.81 4.0| 3 16.22 4.3| 4 17.00 4.7| 4 18.25 4.9
1.60| 3 14.81 3.6| 3 16.22 3.9! 3 17.54 4.2 4 18.25 4.5
1.80] 3 14.81  3.4] 316.22 3.5| 317.54 3.7] 3 18.98 4.0
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p= 0.0
LO=5,OOO LO=10,000 L0=20,OOO L0=40,000

k) kol B X%,a Ll o X%,a Ll n X%,a Ll n X%,a Ll
.20 0.00(188 6.56 290.7 (226 7.57 338.61(267 8.63 387.0(308 9.73 435.6
.200113 7.58 169.3 (133 8.64 193.5(454 9.73 217.8:175 10.86 242.1

401 56 8.98 80.5| 64 10,10 90¢.3| 73 11.22 100.0| 81 12.40 109.7

.60 32 10.10 45.1| 36 11.25 50.0) 41 12.38 54.9; 45 13.58 59.7

.80 21 10.94 28.7| 23 12.15 31.6| 26 13.29 34.5| 28 14.51 37.3

1.00| 15 11.61 19.9)| 16 12.87 21.8| 18 14.02 23.7| 20 15.20 25.5

1.201 11 12.24 14.7| 12 13.45 16.0] 13 14.65 17.3] 14 15.91 18.6

1.40 8 12.87 1l1.3 9 14.02 12.3) 10 15.20 13.2) 11 16.39 14.2

1.60 7 13.14 9.0 7 14.51 9.7 8 15.65 10.4 9 16.78 11.2

1.80 6 13.45 7.4 6 14.81 7.9 7 15.91 8.5 7 17.26 9.0

3.40 0.00) 67 8.62 96,7 77 9.73 108.9) 87 10.87 121.1| 98 12.02 133.2
: .20 56 8.98 80.5| 64 10.10 90.3| 73 11.22 100.0] 81 12.40 109.7
: 400 38 9.76 54.5| 44 10.85 60.5| 49 12.02 66.64 54 13.21 72.7
| .60 26 10.52 36.1 29 11.68 39.9| 32 12.87 43.6( 36 14.02 47.3
f 80| 18 11.25 25.0( 20 12.43 27.41 22 13.62 29.9] 24 14,81 32,2
E i1.00| 13 11.90 18.1} 15 12.00 19.8| 16 14.25 21.5] 18 15.41 23.2
: 1.20| 10 12.43 13.7) 11 13.62 14.9 12 14.81 16.11 13 16.06 17.4
; 1.40 g8 12.87 10.7 9 14,02 11.6| 10 15.20 12.6| 10 16.57 13.5
, 1.60 6 13.45 8.7 7 14.51 9.3 8 15.65 10.0 8 17.00 10.7
! 1.80 5 13.81 7.1 6 14.81 7.6 6 16,22 8.2 7 17.26 8.8
,+60 0.00] 35 9.92 49.31 40 11.04 54.7) 44 12.24 60.1| 49 13.41 65.5
: .20 32 10.10 45.11) 36 11.25 50.0( 41 12.38 54.9| 45 13.58 59.7
3 40| 26 10.52 36.1| 29 11.68 39.9¢ 32 12.87 43.6| 36 14.02 47.3
! .60 20 11.04 27.4) 22 12,24 30.1 ) 25 13.37 32.8| 27 14.38 35.4
5 .80 15 11.61 20.6) 17 12.75 22.6) 18 14.02 24.5| 20 15.20 26.4
: 1.00{ 12 12.06 15.8| 13 13.29 17.2| 14 14.51 18.6}| 15 15.77 20.1
| 1.20 9 12.64 12.4)| 10 13.81 13.4| 11 15.01 14.5| 12 16.22 15.6
] 1.40 7 13.14 9.9 8 14.25 10.7 9 15.41 11.6| 10 16.57 12.4
1.60 8 13.45 8.1 7 14.51 8.8 7 15.91 9.4 8§ 17.00 10.1

1.80 5 13.81 6.7 6 14.81 7.3 6 16.22 7.8 6 17.54 8.4

.80 0.00( 22 10.85 30.3| 24 12.06 33.3| 27 13.21 36.3| 30 14.38 39.3
L2010 21 10.94 28.7( 23 12.15 31.6| 26 13.29 34.5| 28 14.51 37.3

L4010 18 11.25 25.0| 20 12.43 27.4| 22 13.62 29.9| 24 14.81 32.2

L6010 15 11.61 20.610 17 12.75 22.6) 18 14.02 24.5) 20 15.20 26.4

.80( 12 12.06 16.7| 14 13.14 18.21 15 14.38 19.74¢ 16 15.65 21.2

1.007 10 12.43 13.4) 11 13.62 14.6| 12 14.81 15.8| 13 16.06 17.0

1.20 8 12.87 10.9 9 14.02 11.8| 10 15.20 12.8| 11 16.39 13.7

1.40 7 13.14 9.0 7 14.51 9.7 8 15.65 10.4 9 16.78 11.2

1.60 6 13.45 7.5 6 14.81 8.1 7 15.91 8.7 7 17.26 9.3

1.80 5 13.81 6.3 5 15.20 6.8 6 16.22 7.3 6 17.54 7.8

1.00 0.00| 15 11.61 20.6| 17 12.75 22.6| 18 14.02 24.5| 20 15.20 26.4
.20 15 11.61 19.9) 16 12.87 21.8| 18 14.02 23.7] 20 15.20 25.5

L4011 13 11.90 18,11} 15 13.00 19.8| 16 14.25 21.5] 18 15.41 23.2
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p= 0.0 (continued)
Ly=5,000 Ly=10,000 Ly=20,000 Lg=40,000
k k n x L n X2 L n x2 L, n xz L
1 2 2,a 1 2,0 1 2,q i 2,q 1

.60} 12 12.06 15,8 13 13.29 17.2 ) 14 14.51 18.6; 15 15.77 20.1
.80 10 12.43 13.4| 11 13.62 14.6 | 12 14.81 15.8! 13 16.06 17.0
1.00( 8 12.87 11.3| 9 14.02 12.3) 10 15.20 13.2: 11 16.39 14.2
1.20( 7 13.14 9.5| 8 14.25 10.3| 8 15.65 11.1| 9 16.78 11.8
1.40| 6 13.45 8.0 7 14.51 8.7! 7 15.91 9.3| 8 17.00 10.0
1.60| 5 13.81 6.8| 6 14.81 7.4] 6 16.22 7.9 7 17.26 8.4
1.80| 4 14.25 5.9 5 15.20 6.3! 5 16.57 6.7| 6 17.54 7.2
1.20 0.00( 11 12.24 15.0| 12 13.45 16.4| 13 14,65 17.7| 15 15.77 19.1
.20 11 12.24 14.7| 12 13.45 16.0} 13 14.65 17.3) 14 15.91 18.6
L4011 10 12.43 13.7| 11 13.62 14.9) 12 14.81 16.1) 13 16.06 17.4
.60l 9 12.64 12,47 10 13.81 13.4| 11 15.01 14,5| 12 16,22 15.6
.80 8 12.87 10.9| 9 14.02 11.8| 10 15.20 12.8( 11 16.39 13.7
1.00} 7 13.14 9.5| 8 14.25 10.3| 8 15.65 11.1t¢ 9 16.78 11.8
1.20( 6 13.45 8.2 7 14,51 8.9 7 15.91 9.6 8 16.00 10.2
1.40( 5 13.81 7.1| 6 15.81 7.6 6 16.22 8.2 7 17.26 8.8
1.60| 5 13.81 6.2 5 15.20 6.6| 6 16.22 7.2] 6 17.54 7.6
1.80{ 4 14,25 3.3 4 15.65 5.8 5 16.57 6.2; 5 17.87 6.5
1.40 0.00) 9 12.64 11.5| 9 14.02 12.5| 10 15.20 13.5) 11 16.39 14.4
.20 8 12,87 11.3| 9 14.02 12.3} 10 15.20 13.2| 11 16.39 14.2
L4011 8 12,87 10.7| 9 14,02 1l.6} 10 15,20 12,6, 10 16.57 13.5
.60 7 13,14 9.9y 8 14,25 10.71( 9 15,41 11,6 10 16.57 12.4
.80 7 13,14 9.0 7 14,31 ¢.7| 8 15.65 10.4| 9 16.78 11.2
1.00{ 6 13.45 8.0 7 14.51 8.7 7 15.91 9.3| 8 17.00 1lo0.0
1.20( 513.81 7.1| 6 1.4.81 7.6| 6 1l6.22 8.2 7 17.26 8.8
1.40| 5 13.81 6.3 53 15.20 6.7 6 16.22 7.3 6 17.54 7.7
1.60| 4 14,25 5.5 5 15.20 6.0| 5 le.57 8.3 5 17.87 8.8
1.80) & 14.25 4.9 4 15.65 5.2 4 17.00 5.6 5 17.87 8.0
1.60 0.00 7 13.14 9.1 7 14.51 9.9 8 15.65 10.6 % 16.78 11.3
L2017 13.14 9,01 7 14.51 9.7 8 15.65 10.4]1 9 16.78 11.2
LA40| 6 13.45 8.7 7 14,51 9.3] 8 15.65 10.0( 8 17.00 190.7
60| 6 13.45 8.1 7 14.531 8.8 7 15.91 9.4 8 17.00 110.1
.80 6 13.45 7.5| 6 14.81 8.1 7 15.91 8.7 7 17.26 9.3
1.00 5 13.81 6.8 6 14.81 7.4 6 16.22 7.9 7 17.26 8.4
1.20| 5 13.81 6.2 5 15.20 6.6 6 16.22 7.2 6 17.54 7.6
1.40| 4 14.25 5.5| 5 15.20 6.0| 5 16.57 6.3 5 17.87 6.8
1.60| 4 14.25 4.9| 4 15.65 5.3| 4 17.00 5.7 5 17.87 6.0
1.80( 3 14.81 4.5} 4 15.65 4.8 4 17.00 5.1 4 18.25 5.4
1.80 0.00{ 6 13.45 7.4} 6 14.81 8.0 7 15.91 8.6 7 17.26 9.2
20 6 13.45 7.4 6 14.81 7.9 7 15,91 8.5 7 17.26 9.0
401 5 13.81 7.1 6 14.81 7.6y 8 1l6.22 8.2 7 17.26 8.8
.60 5 13.81 6.7 6 14.81 7.3 6 16.22 7.8 6 17.54 8.4
.80 5 13.81 6.3 5 15.20 6.8 6 16.22 7.3] 6 17.54 7.8
1.00| 4 14.25 5.9 515,20 6.3| 5 16.57 6.7 6 17.54 7.2
1.20| 4 14.25 5.3| 4 15.65 5.8, 5 16.57 6.2 5 17.87 6.5
1.40) 4 14.25 4.9 4 15,65 5.2 4 17.00 5.6| 5 17.87 6.0
1.60) 3 14.81 4.5 4 15,65 4.8 4 17.00 5.1) 4 18.25 5.4
1.80] 3 14.81 4.01 3 16.22 4.3| 4 17.00 4.7!' 4 18.25 4.9
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p=+0.20
LO=5,000 L4=10,000 Ly=20,000 Lp=40,000
2

kl k2 n X%,a Ll n X%,a Ly n X%,a L1 n Xz,a L1
.20 0.00(183 6.62 281.8|220 7.63 327.8|258 8.70 274.2(398 9.80 420.9
L201130 7.30 195.6 (154 8.35 224.6|178 9.44 253.7(203 10.57 282.9
L4011 62 8,78 89,9( 72 9,87 101.0| 81 11.02 112.1( 91 12.17 123.2

60| 34 9.98 48.6( 39 11.09 53.9| 44 12.24 59.2| 48 13.45 64.5
.80 22 10.85 30.2( 24 12,06 33.2| 27 13.21 36.3( 30 14.38 39.2

1.00( 15 11.61 20.6| 17 12.75 22.6| 18 14.02 24.5| 20 15.20 26.4
1.20| 11 12.24 15.0( 12 13.45 16.4( 13 14.65 17.7( 15 15.77 19.1
1.40( 9 12,64 11.5} 9 14.02 12.5| 10 15.20 13.4| 11 16.39 14.4
1.60 7 13.14 9.0 7 14.51 9.8 8 15.65 10.5 9 16,78 11.3
1.80( 6 13.45 7.4 6 14.81 7.9 7 15.91 8.6 7 17.26 9.1

.40 0.00| 65 8.68 93.6| 74 9.81 105.2 84 10.94 116.9 95 12.09 128.6
.20 62 8.78 89.9( 72 9.87 101.0( 81 11.02 112.1| 91 12.17 123.2
40| 45 9,42 63.4) 51 10,56 70,74 57 11,71 78.04} 63 12.91 85.3

.60 30 10.23 41.5( 33 11.42 45.9f 37 12.58 50,.3( 41 13.76 54.7
.80 20 11.04 28.0| 23 12.15 30.8| 25 13.37 33.6] 28 14.51 36.3

1.00( 15 11.61 19.9| 16 12.87 21.8| 18 14.02 23.6[ 20 15.20 25.5
.20 11 12.24 314.8) 12 13.45 16,1 13 14,653 17.4) 14 15,91 18.8
1.40 8 12.87 11.4) 9 14.02 12.4] 10 15.20 13.4} 11 16.39 14.3
1.60 7 13.14 9.1 7 14.51 9.8 8 15.65 10.6 9 16.78 11.3
1.80| 6 13.45 7.41 6 14.81 8.0 7 15.91 8.6 7 17.26 9.1

.60 0.00( 34 9.98 47.7( 38 11.14 52.8| 43 12.28 58.0G) 47 13.49 63.2
.20| 34 9.98 48.61 39 11.09 53.9| 44 12.24 59.2) 48 13.45 64.5
L4030 16.23 41.5] 33 11.42 45.9 37 12.58 50.3) 41 13.76 54.7

.60 23 10.76 32.0| 26 11.90 35.21 29 13.07 38.5] 32 14.25 41.7
L8010 17 11.37 23.9| 19 12.53 26.3| 21 13.71 38.6| 23 14.89 30.8

1.00{ 13 11.90 18.1| 15 13.00 19.7| 16 14.25 21.4| 18 15.41 23.0
1.20( 10 12.43 13.9] 11 13.62 15.1( 12 14.81 16.41| 14 15.91 17.6
1.40 8 12.87 11.0] 9 14.02 11.9( 10 15.20 12.8( 11 16.39 13.8
1.60 7 13.14 8.9 7 14.51 9.6 8 15.65 10.3} 9 16.78 11.1
1.80] 5 13.81 7.3 6 14.81 7.8 7 15.91 8.5 7 17.26 9.0

.80 0.00| 21 10.94 29.2| 24 12,06 32.2| 26 13.29 35.1| 29 14.44 37.S
.20 22 10.85 30.2] 24 12,06 33.2| 27 13.21 36.3| 30 14.38 39.2

40 20 11.04 28.07 23 12.15 30.8| 25 13.37 33.6| 28 14.51 36.3

.60 17 11.37 23.9] 19 12.53 26.3| 21 13.71 28.6| 23 14.89 30.8

.80 14 11.75 19.57] 16 12.87 21.3} 17 14.13 23.1| 19 15.30 25.0

1.00| 12 12,06 15.7%1 13 13.29 17.1( 14 14.51 18.5| 15 15.77 19.9
1.20] 9 12.64 12.6| 10 13.81 13.7] 11 15.01 14.8] 12 16.22 15.9
1.40| 8 12.87 10.2 8 14.25 11.1 9 15.41 11.9] 10 16.57 12.8
1.60] 6 13.45 8.4 7 14.51 9.1 8 15.65 9.8 8 17.00 10.5
1.80] 5 13.81 7.0 6 14.81 7.6 6 16.22 8.1 7 17.26 8.7
1.00 0.00) 15 11.61 19.9| 16 12.87 21.8| 18 14.02 23.6] 20 15.20 25.5
.201 15 11.61 20.6| 17 12.75 22.6| 18 14.02 24.5| 20 15.20 26.4

L4070 15 11.61 19,9 16 12.87 21.8| 18 14.02 23.6] 20 15.20 25.5
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p=+0,20 (continued)

L.=5,000 L0=10,000 ,LO=20,000 L0=40,000
2

kl kz n Xz,u Ll n X%,a Ll n X%,a Ll n Xz,a Ll
.60 13 11.90 18.1| 15 13.00 19.7| 16 14.25 21.4] 18 15.41 23.0
.80 12 12.06 15.7) 13 13.29 17.11) 14 14,51 18.41) 15 15.77 19.9
1.00) 10 12.43 13.24 11 13.62 14.4| 12 14.81 15.5) 13 16.06 16.7
1.20 8 12.87 11.1 9 14.02 12.0| 10 15.20 13.0) 11 16.39 13.9
1.40 7 13.14 9.3 8 14,25 10,1 8 15.65 10.8 9 16.78 11.6
1.60 6 13.45 7.8 & 14.81 3.5 7 15.91 9.1 8 17.00 9.7
1.80 5 13.81 6.6 5 15.20 7.2 6 16.22 7.7 6 17.54 8.2
1.20 0.00 11 12,24 14.5| 12 13.45 15.8) 13 14.65 17.1| 14 15.91 18.4
.20 11 12.24 15.0) 12 13.45 16,4 13 14.65 17.7 | 15 15.77 19.1
L400 11 12,24 14.8) 12 13.45 16.11 13 14.65 17.4( 14 15.91 18.8
.60 10 12.43 13.9( 11 13.62 15.1| 12 14.81 16.491 14 15.91 17.6
.80 9 12.64 12.6| 10 13.81 13,7 11 15.01. 14.8] 12 16.22 15.9
1.00 8 12.87 11.1 9 14,02 12.0| 10 15.20 13.0| 11 16.39 13.9
1.20 7 13.14 9.6 8 14.25 10.4 9 15.41 11.3 9 16.78 12.0
1.40 6 13.45 8.3 7 14,51 9.0 7 15.91 9.7 § 17.00 10.3
1.60 5 13.81 7.2 6 14.81 7.7 6 16.22 8.3 7 17.26 5.8
1.80 5 13.81 6.2 5 15.20 6.6 6 16.22 7.2 6 17.54 7.6
1.40 0.00 8 12.87 11.1 9 14.02 12.01( 10 15.20 13.0] 11 16.39 13.9
. 20 9 12.64 11.5 9 14,02 12.5{ 10 15.20 13.4| 11 16.39 14.4
) 8 12.87 11.4 9 14,02 12,4 10 15.20 13.41] 11 16.39 14.3
.60 8 12.87 11.0 9 14,02 11.9| 10 15.20 12.8| 11 16.39 13.8
.80 8 12.87 10.2 8 14.25 11.1 9 15.41 11.9] 10 16.57 12.8
1.00 7 13.14 9.3 8 14.25 10.1 8 15.65 10.8 9 16.78 11.6
1.20 6 13.45 8.3 7 14,51 9.0 7 15.91 9.7 8§ 17.00 10.3
1.40 6 13.45 7.4 6 14.81 7.9 7 15.91 8.6 7 17.26 9.1
1.60 5 13.81 6.5 5 15.20 7.0 6 16.22 7.5 6 17.54 8.0
1.80 4 14.25 5.7 5 15.20 6.1 5 16.57 8.5 5 17.87 7.0
1.60 0.00 7 13.14 8.8 7 14,351 9.5 8 15.65 10.2 8 17.00 11.0
.20 7 13,14 9.0 7 14.51 9.8 8 15.65 10.5 9 16,78 11.3
.40 7 13.14 9.1 7 14.51 9.8 8 15.63 10.6 9 16.78 11.3
.60 7 13.14 8.9 7 14.51 9.6 8 15.65 10.3 9 16.78 11l.1
.80 6 13.45 8.4 7 14.51 9.1 8 15.65 9.8 8 17.00 10.5
1.00 6 13.45 7.8 6 14.81 8.5 7 15.91 9.1 8 17.00 9.7
1.20 5 13.81 7.2 6 14,81 7.7 8 16,22 8.3 7 17.26 8.8
1.40 5 13.81 6.5 5 15,20 7.0 6 16,22 7.5 6 17.54 8.0
1.60 4 14,25 5.8 5 15.20 6.3 5 16.57 6.7 6 17.54 7.2
1.80 4 14,25 5.2 4 15.65 5.6 5 16.57 6.0 5 17.87 6.3
1.80 0.00 5 13.81 7.2 6 14.81 7.7 6 16,22 8.3 7 17.26 8.8
.20 6 13.45 7.4 6 14.81 7.9 7 15.91 8.6 7 17.26 9.1
40 6 13.45 7.4 6 14.81 8.0 7 15.91 8.6 7 17.26 9.1
.60 5 13.81 7.3 6 14.81 7.8 7 15.91 8.5 7 17.26 9.0
.80 5 13.81 7.0 6 14.81 7.6 6 16,22 8.1 7 17.26 8.7
1.00 5 13.81 6.6 5 15.20 7.2 6 16.22 7.7 6 17.54 8.2
1.20 5 13.81 6.2 5 15.20 6.6 6 16,22 7.2 6 17.54 7.6
1.40 4 14.25 5.7 5 15.20 6.1 5 16.57 6.5 5 17.87 7.0
1.60 4 14.25 5.2 5 15.65 5.6 5 16.57 6.0 5 17.87 6.3
1.80 4 14,25 4.8 4 15.65 5.1 4 17.00 5.4 4 17.87 5.8
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p=+0,40
LO=5,OOO ]iLO=lO,OOO Ly=20,000 Lp=40,000

ki k2 n X%,u Ll n X%,a Ll n Xg,a Ll n X%,a L1
.20 0.00(166 6.81 254.31(199 7.83 294.7|232 8.91 335.3(267 10.02 376.2
.2001145 7.08 220.7 173 8.11 254.4 (201 9.20 288.4)230 10.32 322.4

.40 66 B8.65 95.81 76 9.76 107.8| 87 10.87 119.8| 97 12.04 131.9

.60 35 9.92 49,11 39 11.09 54.5| 44 12.24 59.9| 49 13.41 65.2

.80 21 10.94 29.61| 24 12.06 32.6| 27 13.21 35.5| 29 14.44 38.4

1.00| 14 11.75 19.8)] 16 12.87 21.7| 18 14,02 23.5! 19 15,30 25.4
1,20 11 12.24 14,3} 12 13.45 15.5{ 13 14.65 16,7 14 15.91 18.0
1.40| 8 12.87 10.7| 9 14.02 11.74 10 15.20 12.6| 10 16.57 13.5
1.60| 6 13.45 8.4 7 14.51 9.1y 8 15.65 9.3 8§ 17.00 10.5
1.80] 5 13.81 6.8] 6 14.81 7.4 6 16.22 7.9 7 17.26 8.4
.40 0,00} 58 8.91 83.8) 67 10.01 94.0| 76 11.14 104.3| 85 12.31 114.5
L2010 66 8,65 95,8776 9.76 107.8| 87 10.87 119.8| 97 12.04 131.9
L4050 9.21 72,11 58 10.30 80.61 65 11.45 89.1( 72 12.64 97.6
.60 33 10.04 46.1) 37 11.20 51.0| 41 12.38 56,0/ 46 13.53 61.0

.80 22 10.85 30.0] 24 12.06 33.0] 27 13.21 36.0| 29 14,44 38.9

1.00) 15 11.61 20.6 | 17 12.75 22.6| 18 14.02 24.5| 20 15.20 26.5
1.20) 11 12.24 15.0| 12 13.45 16.3| 13 14.65 17.6| 15 15.77 19.0
1.40] 8 12.87 11.4 9 14.02 12.3] 10 15.20 13.3| 11 16.39 14.2
1.60 7 13.14 8.9 7 14,51 9.6 8 15.65 10.3| 9 16.78 11.1
1.80( 5 13.81 7.2 7 14,81 7.7 6 16,22 B.3 7 17.26 8.8
.60 0.001 30 10.23 42.6| 34 11.37 47.1 38 12.53 51.6| 42 13,71 56.2
.20 35 9.92 49.1( 39 11.09 54.5) 44 12.24 59.9| 49 13.41 65.2
L4011 33 10.04 46.1) 37 11.20 51.0) 41 12,38 56.0| 46 13.53 61.0

.60 26 10.52 36.5| 29 11.68 40.2; 33 12,81 44.0| 36 14.02 47.8
801 20 11.04 26,9 22 12.24 29.6| 24 13.45 32,2 26 14.65 34.8
1.00 14 11.75 19.8| 16 12.87 21.7) 18 14.02 23.5| 19 15.30 25.4
1.20) 11 12.24 14.9| 12 13.45 16.2 | 13 14.65 17.5| 15 15.77 18.9
1.40] 9 12.64 11.5 9 14.02 12.5] 10 15.20 13.5| 11 16.39 14.4
1.60 7 13.14 9.1 7 14,51 9.9 8 15.65 10.6 9 16.78 11.3
1.80| 6 13.45 7.4 6 14.81 7.9 7 15.91 8.6 7 17.26 9.1
.80 0.00| 19 11,14 26.1) 21 12.33 28.6] 23 13.53 31.2| 26 14.65 33.7
.20 21 10.94 29.6| 24 12,06 32,6 27 13.21 35.5| 29 14.44 38.4
L4001 22 10.85 30.0| 24 12,06 33,01 27 13.21 36.0] 29 14.44 38.9
.60 | 20 11,04 26.9| 22 12.24 29,6 24 13.45 32.2| 26 1l4.65 34.8
.80 16 11.49 22,3118 12.64 24,4 20 13.81 36.5| 22 15.01 28.6
1.00} 13 11.90 17,7} 14 13.14 19.4| 16 14.25 21.0| 17 15.53 22.6
1.201 10 12.43 14.0] 11 13.62 15.3| 13 14.65 16.5| 14 15.91 17.7
1.40] 8 12,87 11.2 9 14.02 12.1| 10 15.20 13.1] 11 16.39 14.0
1.60 7 13.14 9.0( 7 14.51 9.8 8 15.65 10.5 9 16.78 11.2
1.80 6 13.45 7.4 6 14.81 8.0 7 15.91 8.6 7 17.26 9.1
1.00 0.00] 13 11.90 17.7| 14 13.14 19.4| 16 14.25 21.0( 17 15.53 22.6
.20 14 11.75 19.8| 16 12.87 21.7} 18 14.02 23.5| 19 15.30 25.4
L4015 11.61 20.64 17 12,75 22,61 18 14.02 24.54 20 15.20 26.4
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e=+0.40 (continued)

Lp=5,000 L,y=10,000 LO=20,000 Ly=40,000
kl k2 n X%’a L1 n X%,a L, n Xg,a Ll n X%,a Ly

.60 14 11.75 19.8| 16 12.87 21.7| 18 14.02 23.5( 19 15.30 25.4

.80 13 11.%0 17.7| 14 13.14 19.4{ 16 14.25 21.0| 17 15.53 22.6
1.00{ 11 12.24 15.1} 12 13.45 16.5| 14 14,51 17.9| 15 15.77 19.2
1.20) 9 12.64 12.6} 10 13.81 13.7} 11 15.01 14.8) 12 16.22 15.9
1.40 8 12.87 10.4 9 14.02 11.3 9 15.41 12.2} 10 16.57 13.1
1.60 6 13.45 8.7 7 14.51 9.3 8 15.65 10.1 § 17.00 10.8
1.80| 5 13.81 7.2| 6 14.81 7.8 6 16.22 8.4| 7 17.26 8.9
1.20 0.00| 10 12.43 12.9| 11 13.62 1l4.1| 12 14.81 15.2{ 13 16.06 16.3
.20 11 12.24 14.31 12 13.45 15.5| 13 14.65 16.7| 14 15,91 18.0

L4001 11 12,24 15.0¢ 12 13.45 16.31| 13 14.65 17.6| 15 15.77 19.0

.60 11 12.24 14.9| 12 13.45 16.29¢ 13 14.65 17.5| 15 15.77 18.9

L8010 10 12.43 14.0) 11 13.62 15.3) 13 14.65 16.51 14 15.91 17.7
1.00| 9 12.64 12.6) 10 13.81 13.7§ 11 15.01 14.8| 12 16.22 15.9
1.26| 8 12.87 11.0| 9 14.02 11.9! 10 15.20 12.9( 11 16.39 13.8
1.40 7 13.14 9.5 8 14.25 10.3 8 15.65 11.1 9 16.78 11.8
1.60| 6 13.45 8.1| 7 14.51 8.7 7 15.91 9.4{ 8 17.00 10.0
1.80( 5 13.81 6.9| 6 l4.81 7.4 6 16.22 8.0| 7 17.26 8.5
1.40 0.00) 7 13.14 9.9| 8 14.25 10.7| 9 15.41 11.5] 10 16.57 12.4
.20} 8 12.87 10.7) 9 14.02 11.7} 10 15.20 12.6} 10 16.57 13.5

.40} 8 12.87 11.4] 9 14.02 12.3) 10 15.20 13.3| 11 16.39 14.2

.60 9 12.64 11.5 9 14,02 12,5] 10 15,20 13.5)| 11 16,39 1l4.4

.80 8 12.87 11.2| 9 14.02 12.1| 10 15.20 13.1| 11 16.39 14.0
1.00 & 12.87 10.4 9 14.02 11.3 9 15.41 12.2| 10 16.57 13.1
1.20| 7 13.14 9.5| 8 14.25 10.2t 8 15.65 1l1.1] 9 1l6.78 11.8
1.40 6 13.45 8.4 7 14,51 9.1 8 15.65 9.8 § 17.00 10.5
1.60| 6 13.45 7.4| 6 14.81 8.0} 7 15.91 8.6 7 17.26 9.1
1.80| 5 13.81 6.4 515.20 7.0| 6 16.22 7.5] 6 17.54 7.9
1.60 0.00 6 13.45 7.8 6 14.81 8.5 7 15.91 9.1 8 17.00 9.7
.20 6 13.45 8.4) 7 14.51 9.1 8 15.65 9.8| 8 17.00 10.5

400 7 13.14 8.9 7 14.51 9.6 8 15.65 10.3{ 9 16.78 11.1

60| 7 13.14 9.1| 7 14.51 9.9 8 15.65 10.6t 9 16.78 11.3

.80 7 13.14 9.0| 7 1l4.51 9.8| 8 15.65 10.5| 9 16.78 11.2
1.00 6 13.45 8.7 7 14.51 9.3} 8 15.65 10.1} 8 17,00 10.8
1.20) 6 13.45 8.1{ 7 14.51 8.7 7 15.91 9.4 8 17.00 10.0
1.40} 6 13.45 7.4 7 14.81 8.0| 7 15.91 8.6| 7 17.26 9.1
1.0 5 13.81 6.6| 6 14.81 7.2 6 16.22 7.7| 6 17.54 8.2
1.80| 4 14.25 6.0) 5 15.20 6.4 5 16.57 6.9 6 17.54 7.3
1.80 0.00; 5 13.81 6.3 5 15.20 6.8| 6 16.22 7.4 6 17.54 7.8
.20 5 13.81 6.8 6 14.81 7.4 6 16.22 7.9 7 17.26 8.4

40 5 13.81  7.2| 6 14.81 7.7 6 16.22 8.3} 7 17.26 8.8

.60 6 13.45 7.4( 6 14.81 7.9| 7 15.91 8.8 7 17.26 9.1

.80 6 13.45 7.4] 6 14.81 8.0| 7 15.91 8.6| 7 17.26 9.1
1.00} 5 13.81 7.2! 6 14.81 7.8 6 16.22 8.4 7 17.26 8.9
1.20p 5 13.81 6.9| 6 14.81 7.4 6 16.22 8.0 7 17.26 8.5
1.40) 5 13.81 6.4 515.20 7.0 6 16.22 7.5 6 17.534 7.9
1.66] 4 14.25 6.0 5 15.20 6.4 5 16.57 6.9 6 17.534 7.3
1.80} 4 14.25 5.4 4 15.65 5.9 5 16.57 6.2| 5 17.87 6.6
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p=+0.60
LO—S,OOO LO-IO,OOO LO—ZO,OOO LO—40,000
2 2

ki ko (m X%,a Ll n X%,a Ly |m X2 ,a Ly |» XZ,a Ll
20 0.00 4136 7.21 205.8 {161 8.26 236.6|188 9.33 267.7|214 10.46 298.8
.20 160 6.88 244.9|191 7.92 283.3}1224 8.98 322.1(257 10.10 361.0
.40 66 8.65 95.5| 76 9.76 107.5( 86 10.90 119.5( 97 12.04 131.4
.60 32 10.10 45.1( 36 11.25 50.,0f 41 12.38 54.9| 45 13.58 59.7
.801 19 11.14 26.0| 21 12.33 28.6| 23 13.53 21.1| 26 14.65 33.7
1.00| 13 11.90 17.0| 14 13.14 18.6| 15 14.38 20.1| 17 15.53 21.7
1,20 9 12.64 12.0f 10 13.81 13.1] 11 15.01 14.1} 12 16.22 15.1
1.40( 7 13.14 9.0, 7 14.51 9.7| 8 15.65 10.4% 9 16.78 11.2
1.60| 5 13.81 7.0] 6 14.81 7.5 6 16.22 8.1 7 17.26 8.6
1.80 4 14.25 5.6 5 15.28 6.1 5 16.57 6.4 517.87 6.9
.40 0.00} 47 9.33 66.9( 54 10.44 74.7) 60 11.61 82.5| 67 12.78 90.3
.20 66 8.65 95.5) 76 9.76 107.5| 86 10.90 119.5| 97 12.04 131.4
.40) 56 8.98 80.5| 64 10.10 90.3| 73 11.22 100.0( 81 12.40 109.7
L.60( 35 9.92 49,0 39 11.09 54,4 44 12.24 59.8) 49 13.41 65.1
.80 22 10.85 29.9) 24 12.06 32.9) 27 13.21 35.8} 29 l4.44 38.8
1.00| 14 11.75 19.6| 16 12.87 21.4| 18 14.02 23.2| 19 15.30 25.0
1.20| 10 12.43 13.7| 11 13.62 14.9| 12 14.81 16.1| 13 16.06 17.4
1.40{ 8 12.87 10.2) 8 14.25 11.0} 9 15.41 11.8) 10 16.57 12.7
1.60] 6 13.45 7.8 6 14.81 8.4| 7 15.91 9.1 8 17.00 9.7
1.80] 5 13.81 6.2| 5 15.20 6.7 6 16.22 7.2 6 17.54 7.6
.60 0.00( 24 10.68 33.8 | 27 11.82 37.2) 20 13.00 40.7| 33 14.19 44.1
.20 32 10.10 45.1) 36 11.25 50.0(| 41 12.38 54.9) 45 13.58 59.7
LG40 35 9.92 49.0( 39 11.09 54.4) 44 12.24 59.8| 59 13.41 65.1
.60 29 10.30 40.8| 33 11.42 45,2 37 12.58 49.5[ 40 13.81 53.8
.80 21 10.94 29.4( 24 12.06 32.31 26 13.29 35.3| 29 14.44 38.1
1.00( 15 11.61 20.6| 17 12.75 22.6) 18 14.02 24.5| 20 15.20 26.4
1.20) 11 12.24 14.81) 12 13.45 16.2| 13 14.65 17.5| 14 15.91 18.8
1.40, 8 12.87 11.0| 9 14.02 12.0% 10 15.20 12.9] 11 16.39 13.9
1.60] 6 13.45 B.5{ 7 14.51 9.21 8 15.65 9.9 8 17.00 10.6
1.80} 5 13.81 6.7) 6 14.81 7.3] 6 16.22 7.8 6 17.54 8.4
.80 0.00| 15 11.61 20.6| 17 12.75 22.6| 18 14.02 24.5| 20 15.20 26.4
L2010 19 11.14 26.0( 21 12.33 28.6] 23 13.53 31.1 26 1l4.65 33.7
.401 22 10.85 29.9| 24 12.06 32.9| 27 13.21 35.8| 29 14.44 38.8
.60 21 10.94 29.4| 24 12.06 32.3| 26 13.29 35.3( 29 1l4.44 38.1
LB0| 18 11.25 25.01 20 12.43 27.4| 22 13.62 29.9!| 24 14,81 32.2
1.00f 14 11.75 19.6 16 12.87 21.4| 18 14.02 23.2| 19 15.30 25.0
1.201 11 12,24 14.9) 12 13.45 16.3| 13 14.65 17.6( 15 15.77 19.0
1.40( 9 12.64 11.5 9 14.02 12.5| 10 15.20 13.5| 11 16.39 14.4
1.60f 7 13.14 9.0) 7 14.51 9.7 8 15.65 10.4 9 16.78 11.2
1.80] 5 13,81 7.2 6 14.81 7.7( 6 16.22 8.3] 7 17.26 8.8
1.00 0.00| 10 12.43 14.0| 11 13.62 15.3| 13 14.65 16.5| 14 15.91 17.7
.20y 13 11.90 17.0( 14 13.14 18.6| 15 14.38 20.1{ 17 15.53 21.7
L400 14 11.75 19.6] 16 12.87 21.4| 18 14,02 23.2] 19 15.30 25.0
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p=+0.60 (continued)
LO—S,OOO L0—10,000 LO-ZO,OOO L0—40,000

olln x5, L |n G, I |n X, Ly | nod, L
.60| 15 11.61 20.6 |17 12.75 22.6 {18 14.02 24.5 |20 15.20 26.4

.80| 14 11,75 19.6 |16 12.87 21.4 |18 14.02 23.2 |19 15.20 25.0
1.00| 13 11.90 17.0 |14 13.14 18.6 |15 14.38 20.1 (17 15.53 21.7
1.20) 10 12.43 14.0 |11 13.62 15.3 {13 14.65 16.5 (14 15.91 17.7
1.40| 8 12.87 11.3 9 14.02 12.3 110 15.20 13.2 |11 16.39 14.2
1.60 7 13.14 9.1 7 14.51 9.9 8 15.65 10.6 9 16.78 11.3
1.80) 6 13.45 7.4 6 14.81 7.9 7 15.91 8.6 7 17.26 9.1
1.20 0.00 8 12.87 10.2 3 14.25 1il.1 9 15.41 11.9 |10 16.57 12.7
.20 9 12.64 12.0 110 13.81 13.1 |11 15.01 14.1 |12 16.22 15.1

L40( 10 12.43 13.7 |11 13.62 14,9 |12 14.81 16.1 |13 16.06 17.4

.60) 11 12.24 14.8 |12 13.45 16.2 |13 14.65 17.5 |14 15.91 18.8

.80y 11 12.24 14.9 |12 13.45 16.3 |13 14.65 17.6 |15 15.77 19.0
1.00] 10 12,43 14.0 |11 13.62 15.3 |13 14.65 16.5 |14 15.91 17.7
1.20 9 12.64 12.4 |10 13.81 13.4 [11 15.91 14.5 (12 16.22 15.6
1.40| 8 12.87 10.5 9 14,02 11.4 9 15.41 12.4 |10 16.57 13.2
1.60 7 13.14 8.8 7 14.51 9.5 8 15.65 10.3 9 16.78 11.0
1.80] 6 13.45 7.4 6 14.81 7.9 7 15.91 8.6 7 17.26 9.1
1.40 0.00( 6 13.45 7.8 6 14.81 8.4 7 15.91 9.0 | 8 17.00 9.7
.20 7 13.14 9.0 7 14.51 9.7 8 15.65 10.4 9 16.78 11.2

.40 8 12.87 10.2 8 14.25 11.0 | 9 15.41 11.8 |10 16.57 12.7

.60 8 12.87 11.0 9 14.02 12.0 |10 15.20 12.9 |11 16.39 13.9

.80 9 12.64 11.5 g 14.02 12.5 |10 15.20 13.5 |11 16.39 14.4
1.00 8 12.87 11.3 9 14.02 12.3 |10 15.20 13.2 |11 16.39 14.2
1.20] 8 12.87 10.5 9 14.02 11.4 9 15.41 12.4 |10 16.57 13.2
1.40 7 13.14 9.4 8 14.25 10.2 8 15.65 11.1 9 16.78 11.8
1.60 6 13.45 8.2 7 14.51 3.9 7 15.91 g.6 8 17.00 10.2
1.80 513.81 7.1 6 14.81 7.6 6 16.22 8.2 7 17.26 8.8
1.60 0.00 513.81 6.2 515.20 6.6 6 16,22 7.2 6 17.54 7.6
.20 513.81 7.0 6 14.81 7.5 6 16.22 8.1 7 17.26 8.6

L40) 6 13.45 7.8 6 14.81 8.4 7 15.91 g.1 8 17.00 9.7

.60 6 13.45 8.5 7 14.51 9.2 8 15.65 9.9 8 17.00 10.6

.80 7 13.14 9.0 7 14.51 9.7 8 15.65 10.4 9 16.78 11.2
1.00] 7 13.14 9.1 7 14.51 9.9 8 15.65 10.6 9 16.78 11.3
1.20 7 13.14 8.8 7 14.51 9.5 8 15.65 10.3 9 16.78 11.0
1.40 6 13.45 8.2 7 14.51 8.9 7 15.91 9.6 8 17.00 10.2
1.60 6 13.45 7.5 6 14.81 8.1 7 15.91 8.7 7 17.26 9.3
1.80| 5 13.81 6.6 5 15.20 7.2 6 16.22 7.7 6 17.54 8.2
1.80 0.00] 4 14.25 5.0 | 4 15.65 5.4 4 17.00 5.8 5 17.87 6.1
.20 4 14,25 5.6 5 15.20 5.1 5 16.57 6.4 5 17.87 6.9

40 5 13.81 6.2 5 15.20 6.7 6 16.22 7.2 6 17.54 7.6

.60 5 13.81 6.7 6 14.81 7.3 6 16.22 7.8 6 17.54 8.4

.80 5 13.81 7.2 6 14.81 7.7 6 16.22 8.3 7 17.26 8.8
1.00{ 6 13.45 7.4 6 14.81 7.9 7 15.91 8.6 7 17.26 3.1
1.20] 6 13.45 7.4 6 14.81 7.9 7 15.91 8.6 7 17.26 9.1
1.40 513,81 7.1 6 14,81 7.6 6 16.22 8.2 7 17.26 8.8
1.60 5 13.81 6.6 5 15.20 7.2 6 16.22 7.7 6 17.54 8.2
1.80 5 13.81 6.1 5 15.20 6.5 5 16.57 7.1 6 17.54 7.5
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Two Characteristics, Independent Observations
g=+0.80
LO=5,OOO Ly=10,000 L0=20,000 L0=4O,OOO

Kk, k, |n  x2 Ly |n x4 L, | n L. | n 2 L
1 2 X2, 0 1 X2, q X2,a 1 X9, 1
.20 0.00 !88 8.08 130.1 103 9.15 147.6(118 10.27 165.1(133 11.41 182.6
.20 ﬁ74 6.72 268.2 R09 7.74 311.4|245 8.80 354.9(283 9,90 398.7
.40 |56 8.98 80.5 |64 10.10 90.3| 73 11.22 100.0| 81 12.40 109.7
.60 |24 10,68 33.0 (27 11.82 36.4| 30 13.00 39.8| 33 14.19 43.1
.80 |13 11.90 17.9 |15 13.00 19.6| 16 14.25 21.2! 18 15.41 22.9
1.00 8 12.87 11.3 9 14,02 12.3| 10 15.20 13.2§ 11 16.39 14.2
1.20 6 13.45 7.8 6 14.81 8.5 7 15.91 9.1 8§ 17.00 9.7
1.40 4 14,25 5.8 5 15.20 6.2 5 16.57 6.6 6 17.54 7.1
1.60 3 14.81 4.5 4 15.65 4.8 4 17.00 5.1 4 18.25 5.4
1.80 3 14.81 3.5 3 16.22 3.8 3 17.54 4.0 3 18.98 4.3
.40 0,00 129 10,30 41.3 (33 11.42 34.7; 37 12.58 50.0} 41 13.76 54.4
.20 |56 8.98 80.5 (64 10.10 90.3; 73 11.22 100.0| 81 12.40 109.7
.40 |61 8.81 88.7 |71 9.90 99.7| 80 11.04 110.6| 90 12.19 121.6
.60 |34 9.98 47.4 |38 11.14 52.5| 43 12.28 57.7| 47 13.40 62.8
.80 |18 11.25 25.0 (20 12.43 27.4| 22 13.62 29.9) 24 14.81 32.2
1.00 111 12.24 15.0 (12 13.45 16.3| 13 14.65 17.7{ 15 15.77 19.0
1.20 7 13.14 10.0 8 14.25 10.8 9 15.41 11.6| 10 16.57 12.5
1.40 5 13.81 7.1 6 14.831 7.6 6 16.22 8.2 7 17.26 8.8
1.60 4 14,25 5.3 4 15.65 5.8 5 16.57 6.1 5 17.87 6.5
1.80 3 14.81 4.1 3 16.22 4.5 4 17.00 4.8 4 18.25 5.0
.60 0.00 15 11.61 20.6 |17 12.75 22.6| 18 14.02 24.5| 20 15.20 26.4
.20 124 10.68 33.0 |27 11.82 36.4| 30 13.00 39.8] 33 14.19 43.1
40 )34 9.98 47.4 |38 11.14 52.5| 43 12.28 57.7) 47 13.49 62.8
.60 |32 10.10 45.1 |36 11.25 50.0| 41 12.38 54.9) 45 13.58 59.7
.80 }22 10.85 30.1 |24 12.06 33.1] 27 13.21 36.1} 30 14.38 39.1
1.00 |14 11.75 18.8 |15 13.00 20.6 17 14.13 22.3] 18 15.41 24.1
1.20 9 12,64 12.4 (10 13.81 13.4) 11 15.01 14.5] 12 16.22 15.6
1.40 6 13.45 8.7 7 14.51 9.3 8 15.65 10.1 8 17.00 10.8
1.60 5 13.81 6.4 5 15.20 6.9 6 16.22 7.4 6 17.54 7.8
1.80 4 14.25 4.9 4 15.65 5.2 4 17.00 5.6 5 17.87 6.0
.80 0.00 9 12.64 12.5 (10 13.81 13.6| 11 15,01 14.7| 12 16.22 15.8
.20 |13 11.90 17.9 |15 13.00 19.6| 16 14.25 21.2| 18 15.41 22.9
4D )18 11.25 25.0 |20 12.43 27.4| 22 13.62 29.9| 24 14,81 32.2
.60 (22 106.85 30.1 (24 12.06 33.1] 27 13.21 36.1| 30 14.38 39.1
L80 (20 11.04 27.7 22 12.24 30.4] 25 13.37 33.1( 27 14.58 35.8
1.00 |15 11.61 20.6 |17 12.75 22.6f 18 14.02 24.5| 20 15.20 26.4
1.20 111 12.24 14.4 |12 13.45 15.7| 13 r4.65 17.0] 14 15.91 18.3
1.40 8 12.87 10.2 8 14.25 11.1 9 15.41 11.9| 10 16.57 12.8
1.60 6 13.45 7.5 & 14.81 8.1 7 15.91 8.7 7 17.26 9.3
1.80 4 14,25 5.7 5 15.20 6.1 5 16.57 6.5 5 17.87 7.0
1.00 0.00 6 13.45 8.5 7 14.51 9.1 8 15.65 9.9 8 17.00 10.5
.20 8 12.87 11.3 9 14.02 12.3] 10 15.20 13.2] 11 16.39 14.2
LG40 111 12,24 15.0 112 13.45 16.3] 13 14.65 17.7) 15 15.77 19.0
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p=+0.80 (continued}

L =5,000 L _=10,000 LO=20,000 L0=40,000
k. ks |m X L n x2 L o 2 L n : L

1 2 Z,a 2,0 1 X2,0 2,0
.60 |14 11.75 18.8 |15 13.00 20.6 (17 14.13 22.3 |18 15.41 24.1

.80 115 11.61 20.6 |17 12.75 22.6 (18 14.02 24.5 |20 15.20 26.4
1.00 {14 11.75 18.8 |15 13.00 20.6 |17 14.13 22.3 |18 15.41 24.1
1.20 111 12.24 15.0 |12 13.45 16.3 |13 14.65 17.7 |15 15.77 19.0
1.40 8 12.87 11.3 9 14,02 12.3 |10 15.20 13.2 (11 16.39 14.2
1.60 6 13.45 8.5 7 14,51 9.1 8 15.65 9.9 8 17.00 10.5
1.80 5 13.81 6.4 5 15.20 7.0 6 16.22 7.5 6 17.54 8.0
1.20 0.00 5 13,81 6.2 5 15.20 6.6 6 16.22 7.2 6 17.54 7.6
.20 6 13.45 7.8 6 14.81 8.5 7 15.91 9.1 8 17.00 9.7

.40 7 13.14 10.0 8 14.25 10.8 9 15.41 11.6 |10 1l6.57 12.5

.60 9 12,64 12.4 )10 13,81 13.4 |11 15.01 14.5 |12 16.22 15.6

.80 |11 12,24 14,4 |12 13.45 15.7 (13 14.65 17.0 114 15.91 18.3
1.00 |11 12.24 15,0 |12 13.45 16.3 |13 14.65 17.7 |15 15.77 19.0
1.20 |10 12.43 13.7 |11 13,62 14.9 {12 14.81 16.1 |13 16.06 17.4
1.40 8 12.87 11.4 9 14.02 12.4 (10 15.20 13.4 |11 16.39 14.3
1.60 7 13.14 9.0 7 14.51 9.8 8 15.65 10.5 9 16.78 11.3
1.80 5 13.81 7.1 6 14.8B1 7.6 6 16.22 8.2 7 17.26 3.8
1.40 0.00 4 14.25 4.7 4 15.65 5.0 | 4 17.00 5.4 4 18.25 5.8
.20 4 14,25 5.8 5 15.20 6.2 5 16.57 6.6 6 17.54 7.1

.40 1 -5 13.81 7.1 6 14.81 7.6 6 16.22 8.2 717.26 8.8

.60 6 13.45 8.7 7 14,51 9.3 8 15.65 10.1 8 17.00 10.8

.80 8 12.87 10.2 8 14.25 11.1 9 15.41 11.9 |10 16.57 12.8
1.00 8 12.87 11.3 9 14.02 12.3 |10 15.20 13.2 ;11 16.39 14.2
1.20 8 12.87 11.4 9 14,02 12.4 |10 15.20 13.4 {11 16.39 14.3
1.40 8 12,87 10.5 9 14.02 11.4 9 15.41 12.3 |10 16.57 13.1
1.60 7 13.14 9.0 7 14,51 9.7 8 15.65 10.4 9 16.78 11.2
1.80 6 13.45 7.4 6 14.81 8.0 7 15.91 8.6 7 17.26 9.1
1.60 0.00 3 14.81 3.7 3 16.22 3.9 3 17.54 4.2 4 18.25 4.6
.20 3 14.81 4.5 4 15.65 4.8 4 17,00 5.1 4 18.25 5.4

.40 4 14.25 5.3 4 15.65 5.8 5 14.57 6.1 5 17.87 6.3

.60 5 13.81 6.4 5 15.20 6.9 6 16.22 7.4 6 17.54 7.8

.80 6 13.45 7.5 6 14.81 8.1 7 15.91 8.7 7 17.26 9.3
1.00 6 13.45 8.5 7 14.51 9.1 8 15.65 9.9 8 17.00 10.5
1.20 7 13.14 9.0 7 14.51 9.8 8 15.65 10.5 9 16.78 11.3
1.40 7 13.14 9.0 7 14.51 9.7 8 15.65 10.4 9 16.78 11.2
1.60 6 13.45 8.3 7 14,51 9.0 7 15.91 9.7 8 17.00 10.3
1.80 5 13.81 7.3 6 14.81 7.8 6 16,22 8.5 7 17.26 9.0
1.80 0.00 2 15.65 3.0 3 16,22 3.3 3 17.54 3.5 3 18.98 3.6
.20 3 14.81 3.5 3 16.22 3.8 3 17.54 4,0 3 18.98 4,3

.40 3 14.81 4.1 3 16,22 4.5 4 17,00 4.8 4 18.25 5.0

.60 ) 4 14.25 4.9 4 15,65 5.2 4 17.00 5.6 5 17.87 6.0

.80 4 14,25 5.7 5 15.20 6.1 5 16.57 6.5 5 17.87 7.0
1.00 5 13.81 6.4 5 15.20 7.0 5 16.22 7.5 6 17.54 8.0
1.20 513.81 7.1 6 14,81 7.6 6 16.22 8.2 7 17.26 8.8
1.40 6 13.45 7.4 6 14,81 8.0 7 15,91 2.6 7 17.26 9.1
1.60 5 13.81 7.3 6 14.81 7.8 6 16.22 8.5 7 17.26 9.0
1.80 5 13.81 6.7 6 14.81 7.3 6 16.22 7.8 6 17.54 8.4
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