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SUMMARY 

Recent advances in energy storage technology have finally allowed Electric 

Vehicles to enter the mainstream market. The suite of electronics used on these vehicles 

for power management and driving assistance opens the possibility of these vehicles 

operating autonomously. An autonomous vehicle must be recharged for it to drive to a 

destination beyond the range of battery system or for it to operate continuously. To extend 

autonomous operation, an autonomous charging system was developed. A design 

requirement was that the system be made using consumer grade components that are 

common to the DIY IOT movement to decrease system cost. The design and manufacture 

of the autonomous charging system will be briefly discussed but is not the focus of this 

thesis. 

The focus of this thesis is the investigation into the relationship between the 

operating speed and the accuracy of the automation algorithm. Initial development focused 

on delivering the best performance, but the run time of the automation algorithm was more 

than ten minutes, which was too lengthy. The only portions of the code that could be 

improved were the hunt cycles for the port cover and the port detent. During the hunt 

cycles, the algorithm uses closed loop feedback between a vision system and the kinematics 

of the robot. The feedback loop compares the BB centroid to the center of the camera’s 

FOV. The hunt is completed when the comparison drops below a defined threshold. For 

the hunts, the accuracy was decreased by increasing the threshold. Three thresholds were 

chosen for the Port hunt and the Detent hunt and those thresholds represented high, 

medium, and low accuracy. An experiment was conducted using different combinations of 
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accuracy for each hunt. The hypothesis was that it was possible for the cycle time to be 

reduced by decreasing accuracy without sacrificing system performance. 

Test results validated the hypothesis and the cycle time was reduced by 16% 

without impacting system performance. This was done by using the lowest accuracy 

parameter for the charging Port hunt and using the medium accuracy for the Detent hunt. 

During the process of conducting the DOE, additional areas of improvement were 

identified for both the software and the mechanical systems. The proposed improvements 

were developed and implemented prior to outdoor, full-cycle testing. Outdoor tests were 

then completed and verified that the implemented improvements along with the accuracy 

parameters that were the outputs from the test results decreased the full cycle time by 16%. 
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CHAPTER 1. INTRODUCTION 

1.1 Thesis Motivation 

Electric vehicles have been around since the middle of the 1800’s, but the energy 

density of their batteries was no comparison to that of steam or gasoline. Recent advances 

in electric energy storage and battery management systems have finally allowed electric 

vehicles to enter the mainstream market almost a century and half after their first creation. 

The first mainstream rechargeable battery composition was a sealed lead acid battery and 

it was used for the first electric vehicles back in the early 1900s (U.S. Department of Energy 

2019). The sealed lead-acid battery was not good as a primary power system for the early 

electric vehicles, but the advent of the lithium polymer battery in the 1990s gave electric 

vehicles new life. Lithium polymer batteries have two to three times the energy density and 

are much lighter than a sealed lead-acid battery but chemically more unstable (Albright, 

Edie, and Al-Hallaj 2012). This means that for a lithium polymer battery to operate 

sustainably for an extended period, its charging and discharging cycles must be 

meticulously maintained by a dedicated management system.  Figure 1 below depicts an 

example layout of passive and active safety mechanisms that are used in most Lithium Ion 

batteries. 
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Figure 1: Lithium Ion Safety Mechanisms (Albright et al. 2012) 

Recent developments in microcontroller technology have decreased the size and cost of 

these management systems. The pairing of lithium polymer battery technology with these 

new microcontrollers has led to the growth in EV production and sales over the last decade. 

Additionally, the decrease in the cost of these microcontrollers has made them easily 

accessible to consumers and spawned the Internet of Things (IOT) movement. 

1.1.1 Electric Vehicles 

There are two main types of electric vehicles: All-electric Vehicles (AEV or EV) 

and Plug-in Hybrid Electric Vehicles (PHEV). An EV runs solely on electricity and has no 

petroleum powered systems whereas a PHEV has a drive system that utilizes both 

electricity and petroleum power systems. The average range of most EVs on the market is 

between 80 and 100 miles, but some models can be driven more than 200 miles (U.S. 
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Department of Energy 2017). On the other hand, a PHEV can be driven indefinitely using 

its petroleum power system. By charging and engaging the electrical system, the operating 

costs are decreased by increasing the fuel efficiency of the vehicle. Both the EV and the 

PHEV can be connected to the grid so they can recharge. This is either done at home with 

a charger that connects to the home power grid or at a public charging station.    

1.1.2 Autonomous Vehicles 

The growth in microcontroller technology that helped make EVs possible is also 

already being used in the automotive industry to make cars safer. Modern cars use 

microcontrollers to monitor and manage braking systems, steering systems, throttle 

control, air conditioning, fuel injection, and roughly every individual system that is 

onboard. Because of the level of integration that these systems have, some companies have 

begun networking these systems to create fully automated vehicles for various economic 

motivations. In 2019 the National Safety Council estimated that approximately 38,800 

people would die from traffic collisions in the United States and that 4.423 million would 

suffer nonfatal medically consulted injuries from collisions. The costs from these collisions 

is estimated at $400.4 billion for 2019 and reduction in these expenses is a major economic 

incentive (National Safety Council 2020). Widespread use of autonomous vehicles would 

substantially reduce these collisions by removing the root cause of most of these collisions, 

human operators. 

There are numerous ethical considerations that are currently being debated that 

need to be considered regarding the safe, autonomous transportation of a human being 

whereas transport of simple freight contents circumvents these ethical considerations. 
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Because of this, the first application of vehicle automation that is being investigated is 

delivery of goods. Currently, if a person wants to drive to a destination with an EV that is 

outside of its battery range, he or she must plan a stop in transit where the vehicle can be 

recharged. This poses a problem unique to an automated vehicle. If an automated EV needs 

to extend its range by recharging itself, how does it do so? Current EV charging stations 

are no more than a weatherproof plug that is inserted into the EV by the human operator. 

The operator simply inserts the plug into the corresponding receptacle however the EV 

would either need to recruit a human to help or just sit indefinitely. 

1.1.3 Robotic Charging Systems 

A few companies and research institutions have worked at tackling this issue by 

developing a system that helps the EV by charging it automatically. Beside the benefit to 

automated EV systems, human consumers also find the ease-of-use of an automated system 

attractive. These systems can recognize when an EV or PHEV approaches and is needing 

a charge. The system then opens the charging receptacle if the vehicle has not done so 

already and inserts the charger to begin charging the battery. Most of the systems that have 

been developed thus far are very expensive though. Many use small industrial robotic arms 

and controllers that make the low-end cost of most systems more than $50k. These systems 

will be discussed in depth in the Literature Review in Chapter 2. This price tag puts it out 

of reach for most consumers and a difficult consideration for most businesses. Because of 

this, a lower cost option needed to be investigated, which leads to the objective of this 

thesis. 

1.2 Thesis Objective 
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1.2.1 Project Overview 

As an extension of a Georgia Tech Mechanical Engineering Capstone project that 

was sponsored by an external research sponsor, we developed an Automated EV Charging 

robot with the purpose of having the system cost being under $1,500 so it would be 

commercially viable for sale to individual consumers. To decrease cost, the control system 

was built using hobby grade microprocessors and the mechanical structure was modularly 

designed for fabrication instead of using a prefabricated robot. The system was designed 

to operate on a PHEV that was provided by the project sponsor for use in the system’s 

development. The system also had to operate solely on its own with no interaction with the 

vehicle. This meant that the vehicle could not be modified to assist in system operation and 

there could be no communication between the vehicle and the charging system. The 

production vehicle needed to simply drive up and the system would actuate to charge the 

vehicle. 

1.2.2 Thesis Overview 

The purpose of this thesis is to outline the testing intended to reduce the overall 

operating time of the automated EV charging system’s automation software. After this 

introduction, the literature review will discuss current automated charging systems and 

identify the areas of opportunity that motivated the creation of this system. Next, the details 

of the robotic system will be discussed in the Robot System Overview. The details of the 

design decisions that led to the current mechanical and software configurations will be 

omitted from this thesis, but the mechanics, electrical layout, and software of this robot 

will be discussed. The investigation into the effects that the accuracy criterion within the 
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software has on the system performance is the topic of the investigation in this thesis. The 

purpose and procedure of this test will be discussed along with the data from the test and 

the analysis of that data. Lastly, the implementation of the findings from the test will be 

reviewed prior to the conclusion of this thesis.  
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CHAPTER 2. LITERATURE REVIEW 

This section of the thesis summarizes current industry solutions related to 

automated charging or refueling systems. Recent growth of the EV market and the 

expectation of the implementation of self-driving vehicles has led to a push in the 

development of automated charging systems. The robot mechanics and control software of 

the systems that are being developed use commercially available robotic components and 

controllers. Because of this there is very little academic literature related to the 

development of automated charging or fueling systems. The mechanical design of 

automated charging systems will be discussed followed by the study of the control system 

architecture. Finally, the methods of tuning parallel arm robotics systems will be discussed. 

2.1 Mechanical Design of Automated Charging Systems 

Multiple industrial and academic institutions are developing automated recharging 

systems across the world. With the increased use of unmanned aerial vehicles and the 

anticipation of the implementation of automated ground vehicles, these systems would be 

useful as support systems for autonomous craft. While some of the systems are mobile and 

are intended to deploy themselves to the target vehicle or provide support off the grid, most 

have been developed to be stationary. They are employed like current fueling systems but 

do not require human interaction to complete refueling. 

The mobile systems are designed for deployment in remote areas or to help stranded 

vehicles. One such system is discussed in United States Patent US009873408B2 (Capizzo 

2018). This patent discusses the embodiment of a vehicle that is referred to as an Automatic 
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Service Station Facility, or ASSF. This system is an automated service rover that will carry 

a variety of liquid fuels or electric storage devices and solar panels depending on which 

embodiment is chosen. The intended purpose of this system is to provide remote fueling or 

recharging of other unmanned systems be it for military, government, or commercial 

purposes. Though it could be used to support standard sized automobiles, the ASSF was 

designed to support medium sized ground based or aerial based drones. Vehicles needing 

to refuel, or recharge would need to drive onto or land on the ASSF for refueling.  

 

Figure 2: FreeWire Mobi EV Charger 

Other mobile systems have been developed specifically for automobile EVs. One 

of these systems is developed by a company called FreeWire. Their current flagship 

system, the Mobi EV Charger, is little more than a large format EV battery (FreeWire 

Technologies 2020) and can be seen above in Figure 2. This battery system is installed on 
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a wheeled cart or commercial sized gasoline vehicle and is deployed to recharge stranded 

electric vehicles in the same way that a stranded motorist gets a gallon of gasoline to drive 

to the nearest gas station. FreeWire is also developing another system, as seen in United 

States Patent US009592742B1(FreeWire Technologies 2017). In this system, the cart for 

the Mobi EV Charger is motorized and equipped with a robotic system that allows for 

autonomous interaction with the EV. The specifics of the interaction mechanism are not 

discussed in the patent. 

 

Figure 3: Volkswagen e-smartConnect Automated EV Charging System 

The final mobile system to be discussed has been developed by Volkswagen with 

the collaboration of Kuka robotics. Named the VW e-smartConnect, this system is shown 

above in Figure 3 and is designed to interface with the Volkswagen e-Golf. It is also 

compatible with other vehicles that use standard EV charging connectors. The system 

consists of a Kuka LBR iiwa serial robotic arm mounted to a mobile base and DC EV plug 

integrated into the base. The EV plug is the same that is currently used by consumers and 

the end effector of the Kuka arm is modified to grasp the charging plug. The client vehicle 
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transmits its profile and location to the charging system. The system is transported to the 

target location using a conveyor system. The system the engages with the vehicle using a 

vision system mounted on the end effector of the robotic arm. There are additional sensors 

that are used in this system to promote the accuracy and speed of its operation, but those 

systems have not been publicly disclosed (Volkswagen 2015).  

As previously stated, most of the automated charging systems have stationary 

bases. They operate based off the same mentality behind current automobile fueling 

stations. The target vehicle drives within proximity to the fueling station where the 

operator, or the automated system, completes the fueling process on the vehicle. One of 

the earliest automated fueling systems that was patented was specifically designed for 

refueling petroleum vehicles. This system was patented in 2001 by William Pong and 

Edward Fredkin under the United States Patent US006237647B1 (Pong and Fredkin 2001). 

This system is designed for fueling a vehicle, not recharging an EV, but the system 

operations are nearly identical. It was intended to be implemented as a retrofit on standard 

gasoline fueling systems. The automated system would grasp the fuel nozzle from the 

station, open the fuel port on the vehicle, and complete the fueling process in the same 

manner as a human operator would. This system would use any serial robotic manipulator 

and any sensors that would be necessary for normal operation (Pong and Fredkin 2001). 

No information was found regarding whether or not this system was ever implemented but 

the operations of the system are very similar to most EV charging systems and as such, this 

patent was a reference to most of the patents that were reviewed in the creation of this 

literature review. 
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The automated charger that may be the most well-known is the charging “tentacle” 

that was developed by Tesla (Bishop 2015). The benefit of this design is the compact nature 

of the system. However, at this time the system has only been designed to only operate on 

Tesla vehicles. The specifics of the control system or the sensor suite have not been made 

public. It is unknown how the system operates to find the position of the charging port on 

the Tesla.  

 

Figure 4: Kuka Carla_connect Automated EV Charging System 

After the collaboration with Volkswagen to produce the e-smartConnect, Kuka 

developed their own automated charging system, called the Carla_connect (Kuka AG 

2020) and is seen above in Figure 4. This system is specifically designed for indoor use 

and mounting to a vertical surface, such as a wall. The system uses a SCARA serial arm 

robotic arm along with a vision system incorporated into the end effector of the arm. The 

Carla_connect system is very similar to a system developed by a company called Power 
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Hydrant. The Power Hydrant is also a SCARA serial arm robotic system (PowerHydrant 

LLC 2020) and an image of this system can be seen below in . The main difference between 

the two systems is that the Power Hydrant is designed to interface with the front of the 

vehicle. This means that vehicles that do not have front mounted receptacles need to be 

modified to mate with the system. Based off the patent held by Power Hydrant, other 

interfacing options that they could investigate are magnetically actuated couplers or 

powered screws to mechanically interface the charger and the vehicle (Leary and 

PowerHydrant LLC 2016). 

 

Figure 5: PowerHydrant Automated EV Charging System 

2.2 Control System and Sensor Utilization of Automated Charging Systems 

During the investigation of potential control systems for an automated charging or 

fueling system, three design approaches emerged. The first approach was that the system 

would be compatible with one vehicle make or model. This kind of system usually was 

developed by an organization that collaborated with a vehicle manufacturer. This is the 

case for the Volkswagen and Kuka charging systems; the e-smartConnect (Volkswagen 
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2015) and the Carla_conect (Kuka AG 2020). The e-smartConnect was developed to work 

specifically on the Volkswagen e-Golf and the system controller directly communicates 

with the vehicle. This vehicle-to-charger communication provides closed-loop feedback 

that helps the vehicle park closer to the charger and helps the charger now when the 

charging cycle is complete. Additionally, given that only one vehicle is can mate with the 

charger, the system can be trained to know where the charging port is in 3D space. 

The second design approach is that the system is compatible with variety of vehicles, 

but the vehicles must be modified to facilitate communication with the system beforehand. 

Compared to the system designed for use on one manufacturer’s vehicle, this system 

requires additional sensors to detect the charging port and it also requires modifications be 

made to the client vehicle to make it compatible. Modifications to client vehicles were 

either made to facilitate physical connection to the EV charging system, as seen in United 

States Patents US20130338820A1 and US009493087B2, or to facilitate communication 

with the EV charging system, as seen in US006237647B1, US20140203077A1 or 

US8853999B2. 

 The charging interface modifications recommended in patents US20130338820A1 

and US006237647B1 were made to simplify the automated system requirements by 

making the interface easier to find or engage with. In the case of US20130338820A1, the 

EV charging interface would be relocated to the front of the vehicle. A modified license 

plate holder would be installed that would contain two parallel conductive surfaces. These 

surfaces would interface with a coupler on the end effector of the EV that would resemble 

ping pong paddles (Corbett and Maniaci 2013). The PowerHydrant system discussed in 

patent US009493087B2 would use a standardized charging socket, but the socket would 



 14 

have to be relocated to the front of the vehicle. This would not require any modification to 

be made to the EV if it already had a front mounted charging socket but EVs with sockets 

on the side would either by incompatible with the system or would require modifications 

(Leary and PowerHydrant LLC 2016). 

One such proposed system requiring modifications to facilitate communication is 

seen in United States Patent US006237647B1. This patent discusses the potential sensor 

suites and control methods of the automated system using those sensors. This system has 

a detector system that can identify the vehicle and subsequently access a database to 

retrieve information about the identified vehicle. Access to the database is triggered by 

either a RFID system or a transponder, which may need to be installed in the vehicle. The 

database stores vehicle geometry so the fuel filler can be easily located along with customer 

information. A vision system can also be used to detect the arrival of a vehicle and the 

position of the fuel filler. The robotic arm can also employ a camera to be used for control 

feedback during the insertion procedure. (Pong and Fredkin 2001). 

 The PowerHydrant system also requires the creation of a user profile to operate. 

This profile is used for storing the relative position of the charging port and client’s 

information for billing. For the system to operate, the vehicle will create a wireless 

connection with the charger station. The signal proximity and magnitude triggers the 

operation of the system and shares the profile data with the system (Leary and 

PowerHydrant LLC 2016). A system designed by a team at University of California at 

Oakland, US20140203077A1, and one designed by Joseph Haddad, US8853999B2, both 

required the use of imbedded RFID tags to operate. The UC Oakland system uses the RFID 

for access and authentication to the network and scheduling (GADH et al. 2013) whereas 
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the Joseph Haddad system uses RFID to detect and identify a vehicle that needs to be 

charged. The system has a database of vehicle information of which it uses identify the 

vehicle based off its image and determine the location of the charging port based of 

information triggered by the RFID tag. The robotic arm is configured to move the charging 

connector based off information retrieved from the vehicle database to engage the port and 

commence vehicle charging (Haddad and Lysak 2018). 

 The final design approach is a system that operates with any compatible vehicle 

and without any communication with the vehicle or modifications to the vehicle. During 

research for this literature review, no such system was found. All systems found in this 

literature review detailed a communication interface between the charger and the vehicle. 

This is significant because the design requirement was that our system must be able to 

complete a charging cycle with no communication with the target vehicle and the target 

vehicle could not be modified to facilitate finding the location of the charging port on the 

vehicle.  

2.3 Accuracy Tuning a Robotic Arm with Vision Based Closed-loop Feedback 

The robotic charging system that is the focus of this thesis uses a camera mounted 

on the end effector for closed-loop feedback to the control system. All reviewed 

autonomous charging systems had a vision system and most had a camera mounted on the 

end effector as well. As stated in section 2.2, the reviewed systems all detailed a 

communication interface between the charger and the vehicle. The information shared 

between the two systems helps the robotic arm move very close to the charging port on the 

EV where the camera is used to verify the location prior to insertion. The system this thesis 
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focuses on relies solely on the camera and the vision system to find the location of the 

charging port. This manner of operation is like the implementation of vision systems for 

material handling and camera-based robotic calibration systems. 

A system developed by T. Tsay et al. for use in semiconductor facilities operates 

using a similar vision system application. This robotic system was designed for 

autonomous deployment to different manufacturing lines. The system involves a serial 

robotic arm with a gripper end effector fitted with a monocular camera with zoom 

capabilities. The system is mounted to a mobile base that can drive autonomously. The 

camera is used initially for obstacle avoidance during transit, but it then transitions to being 

used for positing when it is within proximity of its desired location. The target location is 

identified by a positioning mark and once the system detects the mark, it evaluates whether 

the lateral position of the system is within the defined accuracy range. If the system has not 

achieved desired accuracy, then it repeats the procedure an additional time. To further 

enhance the accuracy of the system, the optical lens of the camera can be zoomed in to fill 

the positioning mark within the field of view and adjust the system’s position if necessary 

(Tsay, Lai, and Hsiao 2010). 

 

Figure 6: Behavior-based look-and-move control structure (Tsay et al. 2010) 
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The logic of the system developed by T. Tsay et al. is also used for picking operations 

of the system after the relocation process has been completed. The algorithm is operates 

using a behavior-based look-and-move control structure (Tsay and Chang 2004), which is 

seen above in Figure 2. The end effector camera captures of the workpiece, which is 

quadrangle, and analyzes the image to extract the coordinate of the center of geometry, the 

angle of the quadrangle within the field of view, and the ratio of the negative space on the 

two sides of the quadrangle. The system then feeds this data into six neural fuzzy 

controllers to convert the image feature errors into motion commands. To handle 

inaccuracies between the camera and the end effector, the neural fuzzy controllers use a 

back-propagation algorithm to tune the consequents of the fuzzy rules. This allows the 

system to respond accurately without the need of calibration of the camera and the end 

effector (Tsay et al. 2010).  

This calibration of a robotic system with integrated video feedback is discussed 

extensively in the book published by H. Zhuang et al., Camera-Aided Robot Calibration. 

Though multiple calibration techniques are discussed in this book, the calibration technique 

of interest is the Robot Accuracy Compensation discussed in Chapter 11. The accuracy 

compensation technique discussed in this section is broken into three steps. 

1. Repeatability assessment of the robotic system 

2. Determination of the positioning errors of the robot system 

3. Compensation of for the robot positioning errors 

The first step requires that the robot be repeatedly moved to the same position and 

the end effector positions are recorded. The process is repeated in multiple positions within 
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the robot’s workspace and statistical data is computed. This statistical data defines the 

upper bounds of the system’s performance. The second step is like the first, but this time 

the robot’s workplace is defined by a calibration board with dot patterns. The robot is 

moved to various points on the calibration board and the end effector position at these 

points is recorded. Statistical data is computed based off the differences between the 

desired and end effector positions. From this positioning errors at each point can be defined 

for each point. By knowing the positioning errors at each point, the system then 

compensates for those errors by using bilinear interpolation between adjacent points on the 

calibration grid (Zhuang and Roth 2018).  

2.4 Comparison between Parallel and Serial Robotic Arms 

The robotic systems that have been discussed thus far in this literature review have 

all utilized serial manipulator but the robotic system that is the focus of this thesis is a 

parallel manipulator. As such it is necessary to discuss the advantages and disadvantages 

that these different configurations possess and ultimately why it was decided for our 

automated charging system to utilize a parallel configuration. Figure 7 shown below 

outlines characteristics of parallel and serial robotic manipulators. 
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Figure 7: Characteristics of Serial and Parallel Robots (Pandilov and Dukovski 2014) 

Because of cost considerations, our development team had to build our robot from the 

ground up instead of purchasing a pre-built robotic system. Serial arms were initially 

discussed due to the extensive knowledge base regarding serial arm applications along with 

the workspace that a serial system could operate in coupled with its relatively small size. 

Serial robotic systems are used commonly in robotic assisted assembly applications, 

welding, and machine loading and unloading due to ability to perform repetitive tasks in 

confined spaces (Pandilov and Dukovski 2014).  
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Looking into other configurations of robotic systems we started looking into parallel 

manipulators and the low inertia, high accuracy, and high stiffness that is inherent in 

parallel systems was very attractive in the initial design stages. These specific 

characteristics are major contributors to why parallel systems are used for motion 

platforms, fine positioning, or pick-and-place applications in industry (Pandilov and 

Dukovski 2014). The workspace limitations of a parallel configurations are one of the 

major contributors to its smaller areas of application when compared to the serial 

configuration.  

2.5 Literature Review Summary 

There are various embodiments of automated charging systems that are being 

developed currently. All systems identified during this literature review are either made to 

work autonomously on a specific vehicle make or model through collaboration with the 

vehicle manufacturer or require that the vehicle’s geometry be pre-loaded on a database 

for operation. Additionally, all identified systems require some form of communication 

between the automated charging system and the target vehicle. The systems are also made 

using a serial robot configuration and no parallel robotic systems were found. In the 

following section, the robotic system that is the focus of this thesis will be discussed. This 

system utilizes a parallel configuration and operates with no interaction from the target 

vehicle. 
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CHAPTER 3. ROBOT SYSTEM OVERVIEW 

3.1 Customer Specifications 

 The robotic system that is the focus of this thesis was created through the support 

by an external research sponsor. The design of the robot and the operational specifications 

are the result of a Capstone design project from Fall of 2017. The robot needs to 

consistently insert a Level 2 SAE J1772 EV charger into a corresponding SAE J1772 

female socket on the fender of a PHEV that was loaned from our external research sponsor 

(SAE 2017). The robot must open the protective cover on the socket and then insert the 

male charging adapter into the female socket. The operational envelope was also specified 

by the sponsor. The operational envelope is the area where the system was required to 

consistently insert the charger given the charging port cover of the parked car is within the 

window. The mechanical design and the motor sizing were dictated by the specifics of 

operational envelope shown below in Figure 1. 

 

Figure 8: Robot Operational Envelope 
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3.2 Off-the-shelf Components  

The other requirement from the sponsor was that the system needed to be made as 

economical as possible using off-the-shelf electronics that have recently become 

mainstream with the DIY IOT movement which meant that we could not use an industrial 

PLC or pre-built robotic system. The logic of the system was executed using four Arduino 

Uno microcontrollers, a Nvidia Jetson TX2, and a Raspberry Pi 3B+. The outline of this 

system is seen below in Figure 2. The Jetson was also used to process the real-time video 

streams from two Logitech C920 webcams and publish the processed video data for the 

Raspberry Pi. Three of the Arduinos were used as SPI communication interfaces with the 

three rotary induction encoders used on the robot. The fourth Arduino was used as a sensor 

interface to communicate with the Raspberry Pi. The sensor Arduino interfaced directly 

with a force sensitive resistor that acted as a touch probe and consolidates data from three 

SPI Arduinos.  
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Figure 9: Diagram of Electrical Layout 

3.3 Engineered Components 

The sensor Arduino, the Jetson, and the Raspberry Pi all connected on the same 

network. The network between these three devices allows use of the Robot Operating 

System (ROS) for communication. The operating logic of the robot was executed by the 

Raspberry Pi and the Raspberry Pi outputs the control signals to the motor drivers through 

an intermediary board that increased the signal voltage and amperage so it properly 

interfaces with the motor drivers. The board boosted the 3.3V signals from the Raspberry 

Pi to a 5V signal which was required by all the motor drivers. The board also supplied a 

PWM waveform that sets the speed of the motors during operation so the 5V signals 
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include that modulated pulse. The schematic of the signal booster board is shown below in 

Figure 3. 

 

Figure 10: Schematic of PWM and Voltage Booster Board 

3.4 Mechanical System Design 

The robot was structurally designed as a 3 DOF Parallel, SCARA with an additional 

DOF achieved through a rotation joint at the end effector. Figure 4 shown below illustrates 

the robot during an insertion operation with the vehicle that was used during the 

development. Using the following coordinate system to describe the robot; the Z-axis was 

the vertical axis parallel to the tower of the robot, the Y-axis came straight out from the 

robot, and the X-axis moved laterally. The prismatic joint translated along the Z-axis and 

was mounted to the tower of the robot. Seen below in Figure 5, the NEMA 34’s that drive 
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the arm are mounted to a mild steel plate. The plate is mounted to a linear bearing and two 

linear actuators that were driven by two NEMA 24 stepper servos. The two rotating joints 

that control motion on the XY plane were driven by two NEMA 34 motors that are each 

mounted to a 5:1 planetary gearbox which increased the output torque of the system to 

allow for reliable opening and insertion operations.  

 

Figure 11: Parallel Arm SCARA Robot for autonomous EV charging 
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Figure 12: Close view of Parallel Arm SCARA Robot NEMA 34 Direct drive 
stepper motors with 5:1 planetary gearsets.  

As specified by the manufacturer, the backlash of this gearbox coupled with the 

NEMA 34 is less than 25 arcminutes, or .417 degrees (SureGear 2020). The output of the 

gearbox was coupled to the input to the robot’s arms using a jaw spider coupling with a 

shore 92 urethane spider. Lastly, the rotational joint of the End Effector was powered by a 

NEMA 17 stepper motor. The NEMA 17 mounted perpendicular to the axis of rotation, so 

motion was transferred to the end effector by way of a 2:1 straight miter gear combination. 

The backlash of this gearset was around 2-3 degrees. The end effector also used a linear 

actuator for the cover opening operation and distance measurement used a force sensitive 

resistor mounted to its tip.  
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Figure 13: Full Cycle Automation Flowchart 

3.5 Automation Algorithm Overview 

The logic of the robot was written modularly so each separate action was a unique 

function. The automation routine of the system was composed of ten sequential steps that 

call upon individual functions when their operation is needed. Figure 4 shows a visual 
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layout of the automation logic, but each step will be explicitly detailed in the sections 

below. Prior to the operation of the automation routine, the network connection for ROS 

needed to be initialized on the Raspberry Pi and after the network was initialized, the vision 

code was started on the Jetson. The vision system was trained to separately identify  

• the charging port cover,  

• the Detent used to open the charging port, and  

• the socket in which the plug would be inserted.  

For example, if the charging port cover were identified within the field of view of 

the camera then the vision system would place a bounding box around the perimeter of the 

cover. The vision system then would communicate the dimensions of the bounding box 

and the coordinate of the center of the bounding box to any device on the network. The 

vision system was also trained to run the identification algorithm of all three features at the 

same time and publish the bounding box data of all the matches. An example of the output 

from the vision system is shown below in Figure 5. Within this figure, the bounding box 

labeled “fuel door release” refers to the Detent and the bounding box labeled 

“open_circular” refers to the charging port cover. The vision system can identify when the 

charging port is closed or opened. If the charging port was closed, the “open_circular” tag 

will change to “closed_circular”. 
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Figure 14: Example of Vision System match 

The first step of the automation routine confirms that the vision system is publishing 

bounding box data. The specific operations of the vision system are discussed in Yosuke 

Yajima’s Master’s Thesis (Yajima 2020). Additionally, it ensures that the robot is in the 

home position based off the encoder readings. Figure 6 below depicts the geometry of the 

robot along with the coordinate system that is used for our algorithms. The measurements 

are in millimeters and this figure depicts the configuration for the robot when it is in the 

home position. If there are any issues with confirming vision system publication or that the 

robot is at its home position the algorithm will result in an error state and the robot will not 

move further through the automation routine.  

The second step moves the robot to its initial starting position. This motion is 

executed using the encoders for closed loop feedback but all movement after this step uses 

the vision system for closed loop feedback to decrease the computational load required by 

the encoder feedback.  
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The third step uses the camera that is mounted to the support tower of the robot to 

determine the initial location of the fender within the operational window. The robot is then 

moved to one of five hunting locations based off the feedback from the tower camera. This 

ensures that the charging port is within the Field of View (FOV) of the end effector camera 

when the hunting sequence starts in step four.  

 

Figure 15: Geometry and Coordinate System for Robot 

Referring to the vison system operation, the camera feeds are downscaled to a 

resolution window of 640 pixels by 480 pixels. Looking at this window, the vision 

algorithms use the upper left-hand corner as the origin of its coordinate system with the 

positive X direction moving to the right and the positive Y direction moving down to the 

bottom of the window. The end effector camera is mounted in the center of the end effector 

and during a hunting cycle, the robot incrementally moves so that the center of a bounding 

box, referred to as the BB Centroid from here on, from the vision system is within a defined 

tolerance of the center of the window (320, 240), which will be referred to as the FOV 

Centroid from here on.  
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Step four conducts a hunting cycle based off the bounding box of the charging port 

cover. The hunting cycle centers the bounding box for the robot’s Z-axis and then the X 

axis independently. After the BB Centroid is aligned with the FOV Centroid, the system 

then incrementally moves forward until the base and height of the bounding box of the 

charging port cover reach a defined size. At this point, the end effector will be between 250 

and 300 mm from the charging port cover. At this distance, the vision system will 

consistently detect the Detent on the charging port cover.  

In step five the algorithm will repeat the hunting cycle on the Z and X axes based 

exclusively off the bounding box for the Detent. The only other difference between step 

four and step five is that the algorithm does not do a vision-based depth measurement. 

For step six, the system measures the exact Y distance to the center of the charging 

port Detent. The robot initially drops 51 millimeters, which is the distance from the center 

of the end effector camera lens and the center of the linear actuator on the end effector. The 

linear actuator is then fully extended, and the system moves forward on the Y axis one 

millimeter at time until it registers contact on the touch sensor. The total distance moved 

during this step is then stored as a reference coordinate and the actuator is then retracted. 

The system then moves forward an additional 35 millimeters and fully extends the actuator 

to engage the locking mechanism on the charging port cover. When the actuator is 

retracted, the spring mechanism disengages, and the cover opens.  

For the seventh step, the system moves to align with the charging socket and 

performs another hunting cycle to center itself. This hunting cycle is different than the 

previous two hunting cycles. Whereas the previous hunting cycles used the neural network 
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to locate the charging port cover and the Detent, this hunting cycle uses both a neural 

network that is trained on the socket as well as a Hough Circle Transformation. The neural 

network alone does not provide a match that is accurate enough for the system to 

consistently insert the plug into the socket. On the other hand, the Hough Circle 

Transformation provides the accuracy that our system needs to operate, but the geometry 

of the socket has far too many circles and circular features that are all detected by the 

algorithm. Thus, the neural network is used as a filter the Hough Circle Transformation. 

Our algorithm uses a circle that has a centroid that is ±4 pixels from the centroid of the 

neural network fit (Yajima 2020). The system translates +7.5 centimeters on the Z-axis 

after the hunting cycle is complete, which is the distance between the camera lens and the 

charging plug.  

 The eighth, ninth, and tenth steps involve reversing the plug from the socket, 

closing the charging port cover, and retracting the system back to its home position. The 

reversing is straightforward, with the system reversing 90 millimeters to disengage the plug 

from the socket and an additional 100 millimeters so the Detent of the charging port cover 

is within the field of view of the camera. The closing of the charging port cover is executed 

in the same manner as the opening. The Detent hunt is repeated to record the position again. 

The reason that this step is repeated instead of using the recorded position from step six is 

due to the charging port cover hinge axis not being parallel to the Y-axis of the robot. The 

Detent translates in the positive Z, the negative Y, and the positive X directions during 

opening which necessitates a separate hunting cycle to close properly. The ninth step is 

complete after the charging port cover is confirmed closed, after which the arms retract and 
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lower to their home position. At this point the automation has completed and the systems 

has reset itself for operation for the next vehicle in need of charging. 

3.6 Flexible Coupler  

 

Figure 16: View of the front of the End Effector 
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Figure 17: 3D Printed Flexible Coupler 

The SAE J1772 (SAE 2017) plug is located on the bottom of the end effector as 

shown in Figure 7 above and the plug housing is shown in Figure 8. The plug is mounted 

in a three-piece, 3D printed and cast housing that gives the plug both compliance and 

flexibility during the insertion process. This compliance reduces the required system 

accuracy. The interior and exterior housing are SLS 3D printed using a specialized nylon 

powder made for SLS. The housings are spaced by 2.5 millimeters in all directions and are 

held in place. Within this void, a Shore 15 urethane is cast to allow for deflection in all 

directions. During the seventh step of the automation routine when insertion occurs, the 

system increments forward 90 millimeters with step of one millimeter with a delay of .25 

seconds between steps. This repetition of motion and delay effectively vibrates the 
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interface between the plug and the socket, which eases the insertion by overcoming the 

friction and any possible binding within the interface due to misalignment.  

3.7 Code Exceptions 

During initial software development, three error conditions were identified as 

potential failure modes that needed resolution. The three error conditions that were 

identified early on are  

• the “coordinate limit”,  

• the “home position”, and  

• the “port initial x position” conditions.  

The “coordinate limit” condition was one of the first conditions that was 

implemented. This was set as a limit in the software that was based off the geometry of the 

robot.  The “home position” error state was implemented primarily due to issues with the 

first firmware that was written for our encoders. Occasionally during startup, the firmware 

would misinterpret the encoder values and would offset the encoders by approximately 60 

degrees. When the automation algorithm was started, the robot moved from home position 

to a starting coordinate. With the erroneous offset, the robot would think that the end 

effector was positioned in front of the starting coordinate instead of behind it and would 

actuate the motors in reverse, resulting in the motors grounding the arms into the frame. 

To resolve this issue, the encoder values of the system at home was recorded and are 

referenced during initialization. If the initial encoder values are not within 4 degrees of the 

reference values, the automation cycle is stopped, and the condition is flagged. 
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The completed system functioned consistently with the exceptions implemented 

during indoor verification tests, but errors started occurring with increasing frequency 

when performance tests started on a full-sized vehicle outdoors. The transition from the 

laboratory to the intended operating environment brought additional variables into the 

system that had not been accounted for initially. During testing, multiple error conditions 

were identified that would have substantial impact on the robustness of the system that 

needed to be resolved. These error conditions were resolved by writing code exceptions to 

allow for proper functionality in the operating environment. These exceptions would only 

be triggered if the identified error state were met and needed resolution. 

The first of the error conditions are driven by operating environment negatively 

interacting with the system. Those failure modes and their respective error conditions are 

“port is not stationary”, “initial port state”, and “vision match lost during hunt”. The “port 

is not stationary” condition is driven by a failure mode of the automated charging cycle 

being started before the user has parked the car. This condition is resolved by the 

automation cycle comparing the centroid of charging port match with another centroid 

position taken 4 seconds later. If ΔX between those centroids is less than 7 pixels, then the 

centroid is stationary, and the automation can proceed. If not, another comparison is made 

with the same exit criteria. If the third comparison fails, then the automation algorithm is 

stopped, and an error message is generated that states that the user must make the vehicle 

stationary before an automated cycle can proceed.  

The “initial port state” accounts for a user that opens the charging port before 

starting the automated cycle. Using the neural network training, the vision system can 

identify the charging port when it is opened and closed and can differentiate between the 
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two. The initial charging port state is recorded, and the automation cycle proceeds normally 

until it records the distance to the fender. If the charging port was initially closed, then the 

automation proceeds with no change. If the charging port was initially open, then the cycle 

skips the charging port opening step and it adds an offset of +25 mm during the insertion 

operation to account for the Y translation of the charging port when it opens. The “vision 

match lost during hunt” condition operates simply by pausing all motion of the robot if the 

vision match is lost prior to the insertion step. The motion resumes when the match is 

reacquired. The last condition that accounts for external interaction is the “angle extreme” 

error condition. For the robot to work properly, the plane of the charging port must be 

within 10 degrees of parallel to the X-axis of the robot. The vision system performs a 

comparison between the height and width of the bounding box to determine a rough 

approximation of the angle. When viewing the charging port while perfectly perpendicular, 

the bounding box is very close to being square. When viewing from perpendicular on the 

Z axis but at an angle on the X axis, the width of the bounding box will decrease but the 

height will stay the same. By comparing the discrepancy between the width and the height, 

an approximation of the viewing angle can be calculated.  

Though the mechanical system was made as precisely as possible and provides a 

great deal of consistent and reliable performance, design oversights early on created errors 

that cannot be resolved without substantial redesign or rework. These errors primarily 

result in miniscule amounts of backlash and design oversights making it impractical to 

mechanically compensate for the backlash. Along with motion scaling adjustments made 

during the hunt cycles, this backlash is a direct cause of the two remaining failure modes. 

The first of these failure modes is an infinite loop in the hunt loops. To reiterate the function 
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of the hunting procedures, the robot incrementally moves during a hunting cycle so that 

the BB centroid from the vision system is within a defined tolerance of the FOV centroid.  

When the delta between the BB Centroid and the FOV Centroid gets below 15 pixels or 

so, a condition would occasionally arise where the motion of the robot during the hunt 

would overshoot the center of the field of view and the hunt would jump from one side of 

the FOV Centroid to the other with no convergence. This was initially resolved by 

implementing a counter that logged the number of hunt cycles that were executed and 

would halve the incremental distance if the counter exceeded 15.  

Additionally, the wrist of the robot had to be disabled once the counter threshold 

was reached. During X and Y motion, the angle of the wrist is adjusted so the final position 

of the end effector remains perpendicular to the XZ-plane of the robot. During the very 

minute motions that occur when the increments are reduced, the wrist would need to move 

a fraction of a step to maintain perpendicular, but the stepper driver would default to a 

single step. This resulted in the wrist continuously drifting and the hunt never converging. 

As a result, the “infinite hunt loops” condition operates by halving the step size and 

disabling the wrist once the cycle counter reaches 15. Though it is implemented in both the 

X and Z hunts; the failure mode was only seen in the X-axis hunt.  

The last error condition is the “port is not opened” after the opening cycle was 

completed. This is implemented by using the vision system to confirm that the charging 

port was opened after Step 6. If the charging port is opened, then the cycle continues 

uninterrupted. If the charging port was not opened, then the robot returns to the reference 

coordinate that was recorded prior to the Detent hunt in step 5 and then steps 5 and 6 are 

repeated. The robot can fail the confirmation three times before the automation cycle is 
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stopped and the robot returns to the home position. The user is then told that the automation 

was unable to be completed and that the cycle needs to be restarted.  
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CHAPTER 4. EXPERIMENT METHODS AND TEST RESULTS 

4.1 Purpose of Experiment 

At this stage in our development, the structural and electro-mechanical issues of the 

robot had been resolved and the software was functioning reliably. However, the software 

had not yet been tuned. The customer consistently voiced his concerns about the run time 

of one charging cycle and was insistent that the cycle time needed to be reduced. The code 

was audited to determine where operating time could be reduced and about a minute of the 

operating time was eliminated by removing numerous vestigial delay statements, but the 

whole cycle was still taking around 10 minutes to run.  

Referencing Figure 4, the run time of Steps 1, 3, 8, and 10 could not be reduced any 

further but there was opportunity in reducing run time of the Port, Detent, and Socket hunt 

cycles. Each hunt cycle operates by calculating a ΔX or a ΔY between the vision match 

centroid and the center point of the field of view. The cycle will continue until the ΔX or 

ΔY drops below a predefined threshold. When the code was originally written, we defined 

the threshold to be as accurate as possible to give the system the best chances for a 

successful insertion of the plug and that threshold was set at 2 pixels for all hunts. With the 

increase in reliability that came with the robot and the software improvements implemented 

since our initial testing, we were confident that we could trade accuracy for a decrease in 

operating time with minimal impact to system performance.  

4.2 Experiment Hypothesis 
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There were three hypotheses for this experiment that discuss the expected results 

of the experiment and where those results are expected to occur. The hypotheses are listed 

below:  

1. The operating time of the automation algorithm could be reduced without a 

detrimental impact to the system performance. 

2. The reduction in operating time will come from the accuracy improvements of the 

X and the Z hunts. 

3. The highest accuracy criteria will still be necessary for repeat functionality during 

the Detent hunt, but low accuracy of the Port hunt will have no effect on the success 

of the hunting cycles. 

The second hypothesis is inspired from testing the robot during development, the changes 

in operating time are expected to be seen from the hunt cycles that are being directly 

manipulated in the experiment. There is the possibility that changes will also be seen in the 

Y hunt due to the repeated X hunt at the end of the cycle but that is not expected to be any 

greater than the primary X hunt. The third hypothesis is also inspired from testing during 

development. During development, we needed the system to be as accurate as possible in 

order to find the detent, so it was expected that the highest accuracy was needed for repeat 

functionality. 

4.3 Experiment Procedure 

The charging port hunt and the Detent hunt were the subjects of this experiment 

and were recorded to accept tunable parameters. The socket hunt and the Y-hunts were not 

subjected for testing in this experiment for the following reasons. The socket hunt has 
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consistently been one the most significant failure modes of the system operation due to its 

sensitivity to proper placement at the highest accuracy threshold so decreasing its accuracy 

would have a direct and negative impact to system performance. The Y-hunt operates 

differently than the X-hunt and Z-hunt because it compares the size of the bounding box to 

a threshold instead of the centroid (Yajima 2020). This comparison is by nature more 

inaccurate given that the bounding box is dynamically placed on each frame of the video 

stream with a significantly higher standard deviation than that of the centroid placement. 

Any adjustment to the current threshold would also have a detrimental impact to the system 

performance.  

The X-axis and Z-axis thresholds were paired for each hunt during this test, so 

within a hunting cycle the thresholds for each axis were identical. For the charging port 

hunt, the algorithm exit thresholds are shown below in Table 1. It is important to note that 

these values are in terms of pixels used for comparison to the vision feed, and these values 

are not equal to a length in millimeters. Because of this, a scaling factor is implemented in 

the algorithm for each hunt to allow for convergence on the centroid. For the experiment, 

every combinations of the accuracy criterion in Table 1 was run a total of ten times. During 

this experiment, each run was conducted based off an accuracy test code where the first 

digit represented the Port hunt accuracy and the second digit represented the Detent hunt 

accuracy. For example, the first accuracy criterion that was tested used a test code of “11” 

which corresponded to a Port threshold of two pixels and a Detent threshold of five pixels. 
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Table 1: Accuracy Thresholds used for DOE in term of video pixels 

Accuracy Threshold (pixels) 
 Port Detent 
1 2 5 
2 6 12 
3 10 20 

 Because the socket hunt cycle was omitted, the experiment executed only steps 1 

through 5 as well as step 10 of the automation algorithm that was shown in Figure 4. The 

modified routine that was used for the experiment is shown below in Figure 9. A Blackbox 

routine was written within the automation algorithm that collected data from each step of 

the algorithm. The Blackbox recorded runtimes of each step and sub-step in the automation 

algorithm, reference coordinates and their corresponding encoder angle, cycle counts for 

the hunting cycles, and error counts for some of the exception cases. All the data used for 

the analysis in this experiment came from the Blackbox files that were written at the 

completion of a test cycle. 

 

Figure 18: Shortened Automation routine used for Experiment 
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Additionally, each test was manually marked as “Pass” or “Fail” depending on 

whether the center of the touch probe was able to accurately make contact within the 

boundaries of the Detent. Figure 10 shows the alignment of the extruder with the Detent 

prior to actuation and what was considered successful contact with the Detent that resulted 

in a Pass. Throughout our testing for the last year, we determined that if the touch probe 

contacted the Detent during the measurement stage, it was 99% successful in opening the 

charging port. The rare failures resulted from the wrist incorrectly rotating the end effector 

within 5 degrees of perpendicular. In these instances, the touch probe would slip out of the 

Detent without opening the Port. The experiment involved 10 test runs of each pair of 

accuracies for the X hunt and the Detent hunt. There were three accuracies for each hunt 

which meant that the full experiment required a minimum of 90 test cycles to complete. 

Ideally a higher number of runs would be completed to obtain a more statistically relevant 

sample size, but the sample set was reduced due to time constraints.  

 

Figure 19: Alignment and “Passing” contact between Extruder and Detent 

For the development purposes of the robot, the project sponsor provided us with 

three different fenders; all of them were the front driver quarter panel and they were red, 

blue, and champagne. They were to be used for training the vision system as well as full 
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system testing. For our test we used the red fender and it was mounted on a wooden fixture 

that held it at the same orientation and height that it would be on a real vehicle. This allowed 

us to preform our tests indoors in a controlled testing environment. 

4.4 Experiment Set-up 

For this experiment, the base of the red test fender was placed parallel to the front 

of the robot. Figure 11 depicts the layout that was used for this experiment and all the 

coordinates are based off the standard coordinate system shown in Figure 6. The X and Y 

axes of the robot define this plane and the Z-axis is controlled by the linear actuators that 

translate the entire parallel mechanism up and down. The fender was positioned where the 

Detent was at a coordinate of (240, 495) millimeters. This position was chosen to require 

significant utilization of the hunting cycles, which is the subject of this test. Additionally, 

the diameter of the Detent was measured at 25 millimeters.  

 

Figure 20: Experiment Set-up with Robot Geometry 
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4.5 Experiment Data and Analysis 

4.5.1 Data Discussion 

The system accuracy was analyzed based off the encoder angles instead of the 

positions recorded in the Blackbox. The firmware that was written for the encoder’s 

samples were too low of a frequency to be used for continuous feedback, so it was not able 

to be implemented for real-time feedback for the entire operation. The encoders are used 

only during the initial operations of the automation cycle before the vision system starts 

providing positional feedback. Because of this we implemented two separate movement 

functions in the code; one that uses the encoders and the other that uses the vision system 

for positional feedback and accuracy.  

The encoders that are used on the robot are true absolute, rotary induction encoders. 

The model that was selected has a is a 12-bit resolution and has 4,096 steps per a full 

revolution (Zettlex 2020:26). That means that the encoders can read motions greater than 

.0879˚. Also, the backlash of the gearbox coupled with the NEMA 34 is specified by the 

manufacturer at less than .417˚, but each unit was never tested for specific backlash 

(SureGear 2020). This robot was never designed with backlash compensation but was 

designed and manufactured to minimize backlash as much as possible. The first two 

encoder recordings were taken during the home position initialization and the initial Z-axis 

traversal. These two steps in the operation use the encoders for feedback and are the most 

accurate motions during the entire process.  Therefore, the encoder values from these 

motions are used as the baseline in this analysis. Additionally, these motions occur at the 

initialization of the system and were not affected by the tuning parameters from the 
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experiment, so the data from these motions is taken from 90 runs and is shown below in 

Table 2. The purpose of this baseline data was to validate the system accuracy and 

consistency.  

Table 2: Encoder Positions for Baseline Analysis (Values are in degrees) 

  Left Right Wrist 

Home Position  
(0, 255, 0) 

In millimeters 

Avg. 288.219 -80.173 134.672 
St. Dev. 0.506 0.550 3.908 

Max 288.558 -79.589 146.942 
Min 286.976 -81.083 122.684 

Initial Z-traversal  
(0, 255, 100) 

In millimeters 

Avg. 287.259 -79.548 135.490 
St. Dev. 0.346 0.429 2.654 

Max 287.620 -78.271 141.727 
Min 286.214 -80.292 131.473 

 

The home position is at a (X, Y, Z) coordinate of (0, 255, 0) and the coordinate 

after the initial Z-traversal is (0, 255, 100). The encoder position at home is also taken right 

after the system powers up and no motion has occurred, so the data at this position is better 

suited for determining how well the system was reset and not how accurate the motion 

system is. The encoder data after arriving at (0, 255, 100) provides a clear example of the 

best accuracy that this system can offer. With a minimum population standard deviation of 

0.346˚ at start, which results in a translational standard deviation of 0.47 millimeters. Table 

3 shows the translational accuracy based off the minimum standard deviation of 0.346˚. 
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Table 3: Translational Accuracy 

 Y (mm) X (mm) 

X drift with 
.346˚ offset 

255 0.473 
500 2.220 
812 3.503 

After the robot moves to the starting hunt position, the encoders are no longer used 

for feedback, with exception to the wrist encoder to maintain perpendicularity to the target. 

Therefore, the encoder data from the hunt cycles is going to be used to evaluate the 

consistency of each hunt and is not valuable for determining the positional accuracy of the 

algorithm. This is primarily due to the backlash of the system along with the backlash of 

the end effector drive. The miter gearset that is used for motion transfer in the end effector 

has around 2˚ to 3˚ of backlash. Given that the position of the end effector determines the 

projected position of the vision system’s field of view, 2˚ to 3˚ of backlash can equate to 

10 to 20 mm of translational displacement depending on how far the camera is from the 

target. Therefore, the analysis of the performance of the system during the hunting cycles 

is going to be conducted based off the hunt counts, the operating times for the cycles, and 

the percentage of successful runs. 

4.5.2 Data Analysis 

 The mean and standard deviation of the hunt counts are shown below in Table 4 

and Table 5, respectively. The column directly to the right of the tuning parameter code is 

the success percentage of the ten runs at that parameter set. For clarification, the Port hunts 

have two additional steps that are not in the Detent hunt: Port YY and Port YX. The Port 

YY counts are from the Y-axis hunt cycle which is based off the scaling of the bounding 
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box within the field of view. The Port YX counts are from the X-axis hunting cycle that 

happens after the Y-axis hunt is complete and makes sure that the target is still centered in 

the field of view. 

Table 4: Experiment Data – Mean of Hunting Cycle Counts  

   Hunt Counts - Mean 
   Port Z Port X Port YY Port YX Det Z Det X 

Tu
ni

ng
 P

ar
am

et
er

s 

11 90% 3.70 9.20 13.30 14.40 7.90 7.30 
12 100% 4.10 9.40 12.40 13.50 4.10 5.20 
13 70% 4.10 8.60 18.50 16.20 1.40 4.80 
21 80% 3.50 8.20 4.90 14.20 8.40 7.10 
22 30% 4.64 8.45 6.73 16.64 3.82 4.73 
23 40% 3.30 8.30 6.80 17.60 2.20 4.20 
31 80% 3.00 7.00 3.36 15.64 8.64 6.45 
32 90% 3.00 7.09 2.18 10.73 3.00 5.09 
33 50% 3.00 7.20 1.40 8.30 1.20 4.60 

 

Table 5: Experiment Data– Standard Deviation of Hunting Cycle Counts 

   Hunt Counts - Standard Deviation 
   Port Z Port X Port YY Port YX Det Z Det X 

Tu
ni

ng
 P

ar
am

et
er

s 

11 90% 0.48 0.79 8.97 15.67 0.88 0.82 
12 100% 0.57 0.84 8.50 6.52 1.37 0.42 
13 70% 0.32 2.01 3.60 7.02 0.84 0.42 
21 80% 0.53 1.62 3.48 7.50 1.51 1.10 
22 30% 3.23 0.69 4.88 11.90 1.60 0.79 
23 40% 0.48 0.67 4.57 8.90 1.03 0.79 
31 80% 0.00 0.89 3.47 8.31 1.75 0.82 
32 90% 0.00 0.83 1.66 5.59 1.67 0.70 
33 50% 0.00 0.79 1.26 3.86 0.63 0.70 
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The first set of runs to discuss are with the hunts for the Port Accuracy 1 criteria. 

This was the hunt exit threshold that the robot has been using for the past year and is 

essentially the baseline for the hunt portion of the experiment. The Z-axis hunt took close 

to four hunt cycles to complete and had a standard deviation of roughly half a cycle. The 

X-axis hunt took around nine cycles to complete and had a standard deviation close to one 

cycle, with the data from the 13 runs being an outlier. One of the ten runs finished in four 

cycles, which decreased the mean and increased the standard deviation. With this run 

eliminated, the data from run 13 aligns with runs 11 and 12.  

 The data from the Port Accuracy 3 criteria shows a surprising improvement. In 

general, the variance in the number of Port hunt cycles is caused by system backlash, 

primarily in the end effector, and the fluctuations in the vision match on the Port. With the 

Port Accuracy 3 criteria, the symmetric allowance of ten pixels (see Table 1) counters the 

system backlash entirely for the Z-axis. This is seen with the mean of three hunt counts 

paired with the standard deviation of zero for all thirty Z-axis hunts with the accuracy 3 

criteria, meaning that every Port Z hunt took exactly three hunt cycles to complete. The 

lower accuracy also decreased the hunt cycles for the X-axis. The average hunt cycles were 

reduced by almost two cycles. As seen below in Table 6, the reduction of two hunt cycles 

equated to a cycle time reduction of a little over 2 seconds. 
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Table 6: Experiment Data – Average Cycle Times 

   Time Stamps (seconds) - Mean 
   Port Z Port X Port Y Detent Z Detent X Detent Y Full Cycle 

Tu
ni

ng
 P

ar
am

et
er

s 

11 0.9 17.50 10.78 29.75 20.01 17.50 47.25 257.52 

12 1.0 16.19 10.87 27.69 9.44 12.01 49.77 237.52 

13 0.7 15.98 10.00 37.48 1.27 11.00 48.95 235.31 

21 0.8 15.51 9.59 20.17 21.55 16.98 48.85 245.55 

22 0.3 19.91 10.18 24.88 8.65 10.76 48.01 236.34 

23 0.4 15.91 10.04 26.07 3.80 9.39 48.82 226.39 

31 0.8 15.35 8.40 20.02 22.20 15.25 47.66 242.82 
32 0.9 15.11 8.05 13.21 6.02 11.72 50.40 216.38 
33 0.5 15.54 8.42 9.54 0.63 10.41 50.90 207.12 

 

The accuracy 2 criteria for the Port hunts did not have favorable results and 

identified an error state that was fixed after the conclusion of this experiment. Most of the 

accuracy 2 failures occurred due Z-axis inaccuracies instead of X-axis inaccuracies which 

were the primary failure modes during all other hunts. Looking at the 23 data for the Port 

Z hunt in Table 4, the standard deviation is three and a quarter cycle. This is over 6 times 

higher than the standard deviation of all other Port Z hunts, excluding the zero values 

standard deviations from the accuracy 3 data. The failure from the accuracy 2 criteria was 

due to an adverse interaction between the scaling factor and the exit threshold for the Z-

axis hunts.  

 Another interesting phenomenon occurred during the testing of the Port hunt cycles 

that proved to be advantageous. In the initial hypothesis we did not believe that the Y-axis 

hunt would be affected during the Port hunts. This was because the exit threshold for the 
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Z-axis and X-axis hunts are based on the centroid of the vision match, but the exit threshold 

for the Y-axis hunt is based on the size of the bounding box within the field of view. There 

should not be a relationship between the centroid of the bounding box and its size, but the 

hunt counts in Table 4 say otherwise. By looking deeper into the workings of the vison 

match algorithm the cause of this trend was found (Yajima 2020).  

 As previously stated, the Y-hunt functions by incrementing the robot forward along 

the Y-axis until the size of the bounding box exceeds a size threshold. The bounding boxes 

are dynamically placed on Port and Detent if they are within the field of view of the camera 

and if they match the criteria that the algorithm was trained to recognize. The algorithm 

can recognize the Detent and Port from different angles and on different colored fenders, 

but it cannot make a match on a partial target. The Port Y-hunt algorithm is designed to 

increment forward until the bounding box reaches a certain size, but the algorithm will also 

increment forward until it loses its vision match on the Port. The second exit state was not 

anticipated and is an error. It was never detected because once the vision match with the 

Port was lost, a stable match with the Detent was acquired and the algorithm was able to 

move onto the Detent hunt uninterrupted.   

With the high accuracy criteria of the Port hunt, the centroid of the bounding box 

is within two pixels of the center of the field of view. Thus, the Y-hunt operates as intended 

and does not stop until the size of the bounding box reaches the threshold. This happened 

after roughly thirteen cycles but with a large standard deviation of around eight cycles. 

With the decrease in accuracy, the mean number of Y-hunt cycles also decreased. At the 

lowest accuracy, the average number of hunt cycles dropped to roughly two cycles with a 

standard deviation around one and three quarters of a cycle. The loss of the vision match 
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during the Y-hunt did not have any impact on the overall performance of the cycle but 

showed that the exit threshold for the Y-hunt may have been overkill. Within the Port hunt 

portion of the automation algorithm, the decrease in Y-hunt cycles had the single greatest 

decrease on overall cycle time which disproves the second part of the hypothesis, as stated 

in section 4.2. 

There were only two individual hunt cycles for the Detent hunt: Z-axis and X-axis. 

Looking back to Table 4, the Detent Accuracy 3 criteria will not be considered for 

implementation because the best accuracy 3 performance was 70% success, which is 

unacceptable. For the X-axis hunts, the accuracy 1 criteria took an average of one and a 

half more hunt cycles to complete but for the Z-axis hunt, the accuracy 1 criteria took 

almost five more cycles to complete when compared to the accuracy 2 criteria. Though the 

success rates were similar, these additional cycles added almost fifteen seconds to the entire 

automation routine as seen in Table 6. 

4.5.3 Experiment Conclusion 

 After analyzing the results of the experiment, my hypothesis was confirmed that it 

is possible to reduce the operating cycle time without an effect on system performance. 

Figure 12 and Table 7 below show the hunt times and standard deviations for the four data 

sets that had the highest success percentage. Additionally, Figure 13 shows the full cycle 

times for all nine data sets. The error bars on these figures represent a ±1σ for the 

population of the data set. 



 54 

 

Figure 21: Automation Step Cycle times with ±1σ Error Bars 

 

Table 7: Automation Step Cycle Times (used for Figure 12) 

   Time Stamps (seconds) - Mean 
   Port Z Port X Port Y Detent Z Detent X Detent Y Full Cycle 

Pa
ra

m
et

er
s 11 0.9 17.50 10.78 29.75 20.01 17.50 47.25 257.52 

12 1.0 16.19 10.87 27.69 9.44 12.01 49.77 237.52 
31 0.8 15.35 8.40 20.02 22.20 15.25 47.66 242.82 
32 0.9 15.11 8.05 13.21 6.02 11.72 50.40 216.38 
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Figure 22: Average Full Cycle Times for all 9 Experimental test cycles with ±1σ 
Error Bars  

Though the 33-accuracy criterion had the shortest operating time, the success rate 

was too low for implementation. The 32-accuracy criterion has a success rate of 90% and 

represents a reduction of 41.13 seconds in the operating time of the test cycle. This equates 

to a 15.97% reduction in operating time. Therefore, the accuracy criteria of the full 

automation cycle were adjusted to match these parameters to reduce operating time while 

maintaining performance. Additionally, the assumptions made in section 4.2 were verified 

regarding the areas of opportunity for this experiment. Referring to Table 8 below, the four 

sections identified in purple also coincide with Step 1, 2, 3, and 10 from Figure 13. They 

were initially omitted from this experiment due to minimal opportunities of improvement 

for operating time reduction. The mean and standard deviations of those sections are shown 
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in the bottom two lines of the table. The standard deviation of all 90 test runs for the three 

steps are all below a quarter of a second. The data from Step 10 has a higher standard 

deviation but this is expected given that the movement is starting from the final coordinate 

from the previous step. 

Table 8: Validation of Initial Experiment Assumptions regarding omission of 
Automation Steps 1, 2, 3, and 10 from experiment 

  Automation Step Runtimes (in seconds) 
        Port Hunt Detent Hunt     
  Init Start Quad Z X Y Z X Y Start Full 

11 0.9 2.860 40.573 6.148 17.503 10.776 29.751 20.007 17.504 47.253 42.070 257.519 

12 1.0 2.834 40.508 6.070 16.188 10.870 27.694 9.438 12.008 49.770 39.703 237.521 

13 0.7 2.885 40.486 5.996 15.984 10.001 37.479 1.267 11.002 48.951 39.953 235.312 

21 0.8 2.811 40.538 6.001 15.506 9.592 20.165 21.548 16.981 48.852 40.250 245.550 

22 0.3 2.872 40.605 6.705 19.915 10.175 24.884 8.653 10.762 48.009 41.402 236.344 

23 0.4 2.758 40.600 6.453 15.914 10.043 26.068 3.802 9.392 48.819 40.825 226.390 

31 0.8 2.804 40.611 6.431 15.345 8.402 20.021 22.197 15.255 47.659 40.808 242.820 

32 0.9 2.828 40.331 5.955 15.107 8.053 13.210 6.023 11.716 50.399 40.766 216.385 

33 0.5 2.758 40.488 6.100 15.542 8.425 9.543 0.634 10.415 50.901 41.003 207.118 
 μ 2.823 40.527 6.206 16.334 9.593 23.202 10.396 12.782 48.957 40.753 233.884 
 σ 0.043 0.084 0.246 1.426 0.994 8.053 8.173 2.831 1.156 0.685 14.433 

 

4.6 Hypothesis Testing 

The hypotheses for this experiment were stated in section 4.2 but they will be restated 

below. 

1. The operating time of the automation algorithm could be reduced without a 

detrimental impact to the system performance. 
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2. The reduction in operating time will come from the accuracy improvements of the 

X and the Z hunts. 

3. The highest accuracy criteria will still be necessary for repeat functionality during 

the Detent hunt, but low accuracy of the Port hunt will have no effect on the success 

of the hunting cycles. 

The second and third hypotheses were disproven due to the trends identified during the 

analysis of the experiment data. The second hypothesis was disproven because the primary 

contributor to operating time reduction was from the Y hunt and not from the X or Z hunt, 

as was initially expected. The third hypothesis was also disproven because the medium 

accuracy condition for the Detent hunt proved to be successful, so the highest accuracy 

criterion for the Detent was not necessary. 

 The first hypothesis was proven by the trends of the experimental data, but the 

hypothesis was also proven through the use of a t-Test. To simplify verification testing, a 

Two-Sample t-Test was conducted based off of the full cycle times of the four successful 

tests parameters that were identified in Table 7. The 11-criterion was as the benchmark for 

the t-Test and the 12, 31, and 32-criterion were compared to it. The Two-Sample t-Test 

was chosen over the z-Test and the One-Sample t-Test because the sample size of each 

sampled data set was below 30 and the variance of the sample sets are not equal. The results 

of the t-Test are shown below in Table 8 and the calculations were executed using the Data 

Analysis Tools in Microsoft Excel. 
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Table 9: Two-Sample t-Test results for Successful Test Criterion 

   11 12 31 32 

Mean 257.52 237.52 242.81 217.47 
Variance 418.19 303.15 132.78 143.25 

Observations 10 10 10 10 
Hypothesized ΔMean --- 0 0 0 

df --- 18 14 15 
t Stat --- 2.3546 1.9815 5.3455 

P(T<=t) two-tail --- 0.0301 0.0675 0.0001 
t Critical two-tail --- 2.1009 2.1448 2.1314 

 The t-Test was set up with the hypothesized difference between the means of the 

baseline and the test case equal to zero. This was chosen to prove that the test case was 

truly an improvement on the baseline case. The P value of the three test cases were all well 

below 5%, so all three test cases show a reduction in operating time that could not have 

occurred by chance. This therefore proves and validates the first hypothesis. 

4.7 Experiment Verification Test 

 After the experiment was completed, the accuracy parameters were implemented 

into the production automation algorithm and the experiment was rerun for ten cycles with 

the updated parameters. The production algorithm was modified to operate only the same 

cycles that were used for the experiment instead of the full automation routine. The time 

stamps from the verification test along with the other successful test cycles are shown 

below in Table 8. Compared to the data from the 32-accuracy criterion from the 

experiment, the average full cycle time from the verification test is less than half of a 

second than the same cycle time from the 32-accuracy criterion in the experiment.   

Table 10: Average Times for hunting cycles for Successful runs and Verification test 
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   Time Stamps (seconds) - Mean 
   Port Z Port X Port Y Detent Z Detent X Detent Y Full Cycle 

Pa
ra

m
et

er
s 

11 0.9 17.50 10.78 29.75 20.01 17.50 47.25 257.52 
12 1.0 16.19 10.87 27.69 9.44 12.01 49.77 237.52 
31 0.8 15.35 8.40 20.02 22.20 15.25 47.66 242.82 
32 0.9 15.11 8.05 13.21 6.02 11.72 50.40 216.38 

VER 0.9 14.73 9.04 14.71 9.37 11.99 43.87 215.94 

 

4.8 Post-experiment Updates  

During the experiment, observations were made that showed areas of potential 

performance improvement for both the software and the mechanical systems of the robot 

that were outside of the scope of the experiment. This experiment represented the highest 

volume of repetitive tests that the robot had ever undergone, so these observations were 

anticipated. There were three areas of improvement for both the software and the 

mechanical/electrical systems.  

The three identified areas of improvements for the software were the infinite loop 

exception criteria, the firmware update for the SPI interface for the encoders, and the 

perpendicular adjustment code for the wrist. One of the primary failure modes and the 

largest contributor to the X-axis variance during the hunt cycles was due to the wrist 

overcompensating for perpendicular adjustment when the step size was reduced if the 

infinite loop exception criteria was triggered. When the infinite loop exception criteria were 

triggered, minute motions would be commanded by the algorithm. Due to the differences 

in both micro stepping and backlash between the wrist drive and the shoulder drives, the 

shoulder drives would accurately execute the desired motions, but the wrist could not and 
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would move too far. This failure mode was replicated in follow-up tests where the wrist 

would continue to drift. To fix this, the exception criteria was updated so that when the 

step size was reduced once the exception was triggered, the motion of the wrist was 

disabled. 

As coincidence would have it, a week after the experiment was completed the 

GWW Electronics Shop indicated that they had updated the Arduino SPI interface board 

and the firmware. The specifics of the update are not known, but the changes that were 

made resulted in enabling the interface to communicate at 20 Hz instead of the earlier 4 

Hz. This meant that real-time sampling of encoder angles was now feasible. Given the time 

in which this update was made available and how close it was to customer delivery, it was 

not feasible to implement this across the entire robot. Instead, this update was implemented 

for the interface to the wrist encoder. This update also made the next software update 

feasible, which was the perpendicular adjustment algorithm. 

Prior to the implementation of this algorithm, the wrist would adjust 

perpendicularity at the initiation of a motion on the X and Y-axis. At the initiation of a 

motion, encoder readings would be taken for both shoulders and the wrist. From these 

encoder readings the motion of each shoulder and the wrist would be calculated and then 

executed. The issue that was uncovered was that sampling prior to motion would not 

account for inaccuracies during the motion. With the faster sampling rate that resulted from 

the firmware update to the SPI, we were able to read the wrist encoders after motions 

completed. The perpendicular adjustment algorithm was written to take advantage of these 

updates and worked by performing an isolated wrist encoder measurement and motion 

based off the current X and Y-coordinate. This algorithm was written as a single function, 
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so it could be used whenever we wanted additional confidence that the end effector was 

perpendicular to the fender.  

The update to the SPI interface board also accounted for one of the three 

mechanical/electrical updates to the system after the experiment. The other two updates 

were upgrading the NEMA 17 End Effector drive motor to a NEMA 23 drive motor and 

changing the 3:1 miter gearset to a 2:1 miter gearset. The NEMA 23 motor supplied 125 

oz-in of torque compared to the 44 oz-in supplied by the NEMA 17. The additional torque 

provided by the NEMA 23 meant that using a lower gear ratio would still supply higher 

output torque to the end effector. Due to the larger output shaft on the NEMA 23, the miter 

gear that was used on the NEMA 17 could not mount on the NEMA 23, so a new gearset 

needed to be selected. Additionally, the previous 3:1 gearset interfaced to the end effector 

shaft using a single rectangular key, but the keyway for the miter gear was too wide, which 

contributed to the backlash of the system. The opportunity was taken to remake the end 

effector drive shaft to minimize interface backlash. The new shaft was machined as a twin 

D shaft to interface with a twin set screws on the miter’s hub. The upgraded End Effector 

drive system resulted in reducing the backlash and increasing the output torque compared 

to the previous system. 

4.9 Full Cycle Outdoor Testing 

 After the implementation of the accuracy parameters from the experiment results 

along with the updates that were made after the experiment, the entire robot system was 

tested outdoors on the test vehicle that was supplied by the customer. The system was tested 

with a full automation cycle instead of the truncated experiment test cycle. Only five full 
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cycles were run for the final outdoor test. Due to time constraints, more extensive testing 

was not available as the customer needed for the robot to be delivered. These cycles were 

compared to three cycles that were run prior to the experiment. Unfortunately, due to 

rapidly changing updates to the system architecture, only two full cycle tests were 

documented that ran off the same software and hardware architecture as the experiment.  

Table 11: Pre-test and Post-test Cycle Times 

 Time after socket hunt 
(seconds) 

Date Run # Run Time Avg 
12-Dec-

19 
1 283 

287 
2 291 

27-Jan-
20 

1 266 

234 
2 211 
3 231 
4 239 
5 222 

 

The baseline tests were run one week before the experiment, on December 19th of 

2019 while the full cycle verification tests were run on January 27th, 2020. The relevant 

data from those tests is shown above in Table 9. The runtimes used for the comparison of 

these cycles was taken from the completion of the socket hunt because the full cycle data 

was not available for the two December tests. As seen in the table, the average run time of 

the January post-test runs was 53 seconds faster than the average runtime of the pre-test 

test runs. This represents an 18.57% decrease in runtime, which is very close to the 15.97% 

operating time reduction shown from the experiment. The additional improvements are due 
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to the improvements that were made to the end effector drive and the additional software 

improvements that were made prior to the January 27th tests. 
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CHAPTER 5. CONCLUSION AND FUTURE WORK 

5.1 Conclusion 

In conclusion, the customer needs of producing a low-cost automated charging 

system using mostly off-the-shelf components was met. Though not as precise as current 

automated charging solutions that utilize industrial-grade robotic components, this system 

is able to successfully recharge a vehicle autonomously at a fraction of the cost. The advent 

of high volume, hobby-grade microelectronics allows for development of systems that can 

mimic the capabilities of industrial systems. This thesis exhibits the work that was taken to 

improve this system by reducing the overall operating time by 16% while maintaining 

system performance. In the process of conducting the improvement experiment, numerous 

shortcomings in the software were identified that further improved the system 

performance. Additionally, a few mechanical updates were implemented that also 

improved the system performance. 

5.2 Future Work 

Though many upgrades were done to the charging robot after the completion of the 

experiment, there are still many updates that can be implemented. There is the opportunity 

for additional improvements on the software that can be identified with other experiments. 

Another experiment that should be conducted would be a duplicate of the test outlined in 

this thesis, but the focus will be on improving the Y-axis hunt. The primary purpose of the 

new experiment will not be to improve the current Y-axis hunt but to better understand the 

phenomena that led to the cycle time reduction. By understanding this phenomena, further 
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improvements may be made. Also, a DOE should be conducted to better understand and 

model the backlash for all the axes and the end effector. Software based backlash 

compensation can potentially be implemented if we have a better understanding the degree 

of backlash in the system. Additionally, by better understanding the backlash in the system 

we can determine areas where mechanical backlash compensation would be beneficial if 

implemented. 

 Another improvement that can be made in the future is moving from a 

microcontroller and graphics processor control system to using a purpose-built Linux 

computer. Though this computer would be more expensive than the current microcontroller 

system, it would be more robust. We would be able to use any graphics system we need to 

allow for additional development of the vision system and with the ability to expand the 

system memory, we would be able to execute more processes at once with little concern 

about consuming too much of the system resources. Though additional testing would be 

necessary to determine if there are any risks to moving to this new system, there are 

numerous potential benefits. 

The current system is one of the only automated charging systems that uses a parallel 

arm configuration. All the competitive systems that were identified in the literature review 

use serial arms, so there is probably value in using that system. Either a physical DOE or 

a simulation could be conducted to determine if there is any value in reconfiguring the 

system as a serial arm or continuing the use of the parallel arm system.   

The last identified opportunity for future work is the implementation of a tactile 

feedback system for the compliant coupler. Right now, the compliant coupler allows the 



 66 

coupler to flex within the end effector housing to prevent it from breaking if the plug and 

the socket are misaligned. If the compliant coupler was instrumented to allow feedback 

based on the degree of flex during socket and plug engagement, then the coupler could 

assist the entire robot in compensating for misalignment. Additionally, if this system were 

running continuously, it could identify if the vehicle tries to move while the plug is inserted. 

There is a great deal of value for the implementation of a system like this, but it would be 

one of the most difficult future work items to develop from the list that has been identified.  
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