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SUMMARY 

We introduce and develop a new statistical method for exploring latent structures: 

Frame Analysis. Frame Analysis drops the one-to-one correspondence between factor 

dimensionality and vector space representation found in Factor Analysis. This minor 

change obviates factor rotations, simple structure, and provides equal status for cross-

loaded items. We show that in Frame Analysis, manifest items are defined by only one 

frame loading and are uniquely characterized as a linear combination of latent variables: a 

frame vector. Through a series of simulations, we characterize Frame Analysis 

performance in three scenarios: Exploratory, Constrained, and Partially-Constrained. 

Finally, we apply Frame Analysis to archival five-factor personality data and provide 

evidence that hierarchical personality models are disguised frame vectors.  
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INTRODUCTION 

 Identifying hidden traits and relations is an essential method in the modern research 

psychologist’s tool bag. This practice’s origin is traceable back to Spearman (1904, 1927) 

and his inquiry into human mental ability. Spearman (1904) observed that schoolchildren 

who scored high in one domain also scored high in other disciplines. This observation led 

him to hypothesize that a hidden general ability ‘g,’ measurable only indirectly, explained 

the correlations. He stated, “Whenever branches of intellectual activity are at all dissimilar, 

then their correlations with one another appear wholly due to their being all variously 

saturated with some common fundamental Function” (Spearman, 1904, p. 273). Thus, by 

compressing many overt assessments into a single covert ability, he established the first 

method for scientifically quantifying the unmeasurable: a factor analysis.  

Thurstone (1935) mathematically grounded and extended the nascent factor 

analysis method into a robust exploratory technique to systematically uncover hidden traits. 

He introduced several important concepts in factor analysis that remain impactful a century 

later. First, factors represent primary traits that map the range of observed measurements 

(Thurstone, 1935, p. 150). Whether experimentally measured, self-reported through an 

inventory, or by other means, primary traits reflect the belief that an “unlimited number of 

phenomena can be comprehended in terms of a limited number of concepts or ideal 

constructs” (Thurstone, 1935, p. 44). Second, Thurstone (1935, p. 69, 120) used linear 

algebra to conceptualize factors mathematically as vectors oriented in a multidimensional 

space; the expansion coefficients (i.e., pattern coefficients) defined the relationship 

between the unobserved factors and the measured variables.  
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Third, Thurstone identified that rotational indeterminacy presented an interpretive 

barrier for factors. To circumvent this indeterminacy, he proposed sparse representations 

of expansion coefficients, simple structure (Thurstone, 1935, p. 151) to constrain 

identification and facilitate factor interpretability. Factors should be rotated or transformed 

such that each item is described by only one factor. Browne (2001) provided a “rotation 

bible” for the assortment of possible constraints leading to simple structure. This systematic 

search for simple structure, or something approximating it, led researchers to hypothesize 

hierarchical or bi-factor models (Holzinger & Swineford, 1937) to aid factor 

interpretation.  

In addition to rotational indeterminacy interpretive problems, factor proliferation 

(Shaffer et al., 2015) via rotational duplication is also possible. Rotational duplicates are 

traits formed from linear combinations of other, established traits. For example, the 

direction north-east is a rotational duplicate of north and east. Ludeke et al. (2019) 

demonstrated that the agreeableness and emotionality traits of the HEXACO personality 

model are possible rotational duplicates of the five-factor personality model. Likewise, the 

construct grit may be a rotational duplicate of the five-factor personality constructs of 

conscientiousness, agreeableness, and neuroticism (Tables 4 and 9, Duckworth & Quinn, 

2009; Table 4, Crede et al., 2017).  

Rotational duplication can also affect inventories that reportedly measure the same 

constructs. When assessing personality with a five-factor inventory, should the researcher 

use the NEO-PI-R (Costa & McCrae, 2008), the Personality Inventory for DSM-V (Krueger 

et al., 2012), the Five-Dimensional Personality test (van Kampen, 2012), the Big Five 

Aspects Scale (DeYoung et al, 2007) or the Big Five Inventory 2 (Soto & John, 2017)? 
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John (2008, p.125) succinctly captured the issue with such an abundance of five-factor 

personality inventories “... it’s possible to ask questions such as ‘which Big Five?’ or 

‘whose Big Five?’”. 

 Factor analysis’s modern standard operating procedure tacitly captures Thurstone’s 

legacy. Yong and Pearce (2013) outline this current procedure which includes 1.) 

determining the number of factors (dimensionality), 2.) factor extraction, 3.) rotation for 

interpretation (simple structure), and possibly 4.) dropping cross-loaded items. The present 

work reimagines steps 3 and 4 by dropping the implicit equivalence between 

dimensionality and the number of vectors. Thurstone (1935, p. 69, 120) defined factors as 

vectors which implies the number of factors and vectors are equal. Our alternative approach 

decouples the number of vectors from the number of factors extracted. The number of 

factors still defines the dimensionality of the vector space, but we propose allowing linearly 

dependent vectors to partition this space. These new linearly dependent vectors are 

compositions of the dimensionality1 and form an overdetermined system.  Figure 1 shows 

a vector space that is exactly determined (left) and overdetermined (right). By 

hypothesizing an overdetermined vector space, we can no longer use traditional factor 

analytic methods for analysis. We need to establish new analytical strategies and standard 

operating procedures that properly account for the vector space redundancy while 

maintaining an interpretive connection with classical factor analysis. 

 In the present work, we propose and develop a new statistical technique that we call 

frame analysis.  Frame analysis builds upon the foundation of frame vectors, just as factor 

analysis builds upon the foundation of basis vectors.  Frame analysis reconceptualizes 

 
1  Imagine north and east on a map. The directions north-east and north-north-east are compositions of these 

two dimensions. 
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factor extraction and obviates both factor rotation to simple structure and dropping cross-

loaded items.  In the upcoming sections, we outline properties, define terms, and explore 

three use cases for frame analysis. Next, we provide several examples as a point-of-

departure from both traditional exploratory and confirmatory factor analysis. We then 

perform a simulation study to characterize the performance of frame analysis under 

conditions with known solutions.  Finally, we apply frame analysis to archival five-factor 

personality data to demonstrate an alternative understanding of the item-factor relationship. 

1.1 Frame Analysis 

The multiple factor analytic approach outlined by Thurstone (1935, p. 120) extracts 

a set of basis vectors (primary axes) equal to the number of factors hypothesized. This one-

to-one correspondence affords a traditional linear algebraic approach for further 

interpretation. However, we wish to extend the factor analytic approach to include 

redundancy or linear dependence. Figure 1 demonstrates the difference between an exact 

and overdetermined vector space; mathematicians define an overdetermined vector space 

as a frame (Kovacevic & Chebira, 2007a; Kovacevic & Chebira, 2007b; Morgenshtern & 

Bolcskei, 2011). Note that a frame maintains the same dimensionality, or rank, as the 

extracted basis vectors. Therefore, we denote the analysis performed in this overdetermined 

vector space as a frame analysis and explicate the properties below. 
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1.1.1 Basis and Frame Vectors 

 An n-dimensional vector space is spanned by a set of n linearly independent 

vectors forming a basis set. Any point in this vector space spanned by the basis vectors is 

uniquely determined and identified by the pattern coefficients in factor analysis. Frames 

include the basis set and linear combinations of these basis vectors to include p vectors (p 

> n). Figure 1 (left) illustrates a two-dimensional space defined by two orthogonal basis 

vectors and an overrepresented (right) two-dimensional space, a frame. Similar to factor 

analysis, pattern coefficients in frame analysis are contingent upon the vectors used to 

define the frame. 

1.1.2 Taxonomic Frame Vectors 

Frame vectors can either be data-driven or selected a priori for desirable properties. 

Methods for finding data-driven frame vectors are conceptually similar to oblique rotations 

Figure 1 – Standard and Frame Representation of 2D Space.  Left. Standard 

representation of two-dimensional space. Each point in the grid is represented by a 

unique combination of the blue axes. Right. Frame Representation. Each point is 

represented by an infinite number of combinations of the blue axes.  
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discussed by Browne (2001). Several drawbacks to data-driven strategies are 1.) they can 

only estimate frame vectors for collected data, 2.) researchers must specify the number of 

frame vectors, and 3.) may contain more than one frame coefficient. In Figure 2 (left), 

collected data are used to define three frame vectors. Data in proximity to each frame vector 

would result in a simple structure pattern coefficient representation. However, the lone data 

point in quadrant IV would exhibit non-zero contributions on at least two frame vectors. 

An alternative to data-driven techniques is to cover the n-dimensional space with 

equally spaced vectors, a vector taxonomy. The angular spacing defines a quantization 

error that represents a lower bound on similarity. Returning to Figure 2 (right), frame 

vectors are evenly spaced in polar angle, 22.5 degrees, covering the entire two-dimensional 

space. Each data point has a sparse frame loading represented by the bisecting vector of 

the containing wedge. By definition, data contained within a wedge are equivalent, and this 

compression results in quantization error. Quantization error is controlled by increasing or 

decreasing the angle between frame vectors. We note that the cosine of the wedge angle is 

equivalent to correlation and in the above example is cos(22.5) ≈ .92. Practically this means 

items correlated above .92 are, by definition, equal.  

Moving forward, we discard the data-driven approach to computing frame vectors 

and adopt the taxonomic system. When discussing frame vectors, we imply taxonomic 

frame vectors and label the collection of taxonomic frame vectors for a given 

dimensionality: the frame dictionary. Appendix A describes the creation of the frame 

dictionary. 

1.1.3 Frame Loadings 
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 Frame loadings represent an item’s correlation with the underlying latent variables. 

Computing the analog of structure coefficients in frame analysis is more complex than in 

factor analysis. Because the vector space is exactly determined, there is only one possible 

inverse to compute. Conversely, the redundancy found in frames results in an infinite 

number of possible inverses, a family of matrix inverses defined by the left inverse 

(Morgenshtern and Bolcskei, 2011). Using the frame vector taxonomy outlined above, a 

solution where each item is associated with only one frame vector is possible. Here we see 

an advantage in frame analysis that is not present in factor analysis:  Rotation to simple 

structure is obviated by representing each item with only one frame vector.   

Determining the frame loadings and associated frame vectors requires solving an 

overdetermined system. The most common method for solving overdetermined systems is 

the pseudo-inverse, representing a least-squares solution. Unfortunately, least-squares 

Figure 2 - Two approaches for computing frame vectors. Left. Data-driven frame 

vectors. The lone measurement in quadrant IV will not have a sparse representation. 

Right. Taxonomic frame vectors. Measurements lying in a partition are definitionally 

similar. 
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methods penalize sparse solutions that would result in the desired one-to-one relationship 

between frame vector and item. Therefore, we seek an alternative inverse that minimizes 

the number of non-zero frame loadings to one. Because we adopted a frame dictionary that 

nominally covers the entire vector space, this inverse is equivalent to identifying the closest 

frame vector. We provide an algorithm outline for calculating frame loadings in Appendix 

B. 

Interpreting the frame loading's meaning is straightforward and we note that the 

single frame loading determined in a frame analysis is related to the communality found in 

factor analysis. This understanding has several benefits. First, the frame loading maintains 

a connection with factor analysis. Second, frame analysis decouples the frame loading from 

the coordinate transformation. The frame loading is the square root of the common variance 

explained and is unchanged, up to quantization error, under rotations. Finally, the frame 

vector correlation matrix, the inner product of frame vectors, captures inter-item correlation 

information similar to the factor correlation matrix (Harman, 1967, p.240). 

1.1.4 Frame Rotations 

Another frame analysis benefit is that it obviates the need for rotation to simple 

structure in an exploratory analysis. Since the multidimensional vector space is uniformly 

partitioned, which guarantees only one frame loading, orthogonal rotations or oblique 

transformations provide no extra information or interpretative benefit. However, an 

orthogonal rotation less than the frame separation angle that minimizes quantization error 
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may still be applied. The result of such a rotation is a potential reduction in the number of 

expressed2 frame vectors.  

1.1.5 Exploratory Frame Analysis 

Exploratory frame analysis determines which frame vectors are expressed in the 

dataset and the strength of that expression. Due to the one-to-one relationship between 

items and frame vectors, items expressed on the same frame vector are categorically 

related. When the number of expressed frame vectors equals the dimensionality, then frame 

analysis is conceptually equivalent to factor analysis, up to quantization error. When the 

number of expressed frame vectors is greater than the dimensionality, this is analogous to 

having at least one cross-loaded item in factor analysis. Again, each item in a frame 

analysis has only one non-zero frame loading, and cross-loaded items manifest in the frame 

correlation matrix. 

Interpretation in an exploratory frame analysis is simplified compared to factor 

analysis. The single frame loading is the square root of the communality and a standardized 

(partial-) regression coefficient. The frame correlation matrix defines the relatedness 

among all items, and the element-wise square of this matrix quantifies the shared variance. 

1.1.6 Constrained Frame Analysis 

Constrained frame analysis operates like confirmatory factor analysis (Jöreskog, 

1969). However, a significant difference between the two analyses is the method used to 

estimate model parameters. Confirmatory factor analysis is couched in structural equation 

 
2   We denote a frame vector with a non-zero frame loading as expressed. 
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modeling and requires setting reference items for identification purposes. In constrained 

frame analysis, frame vectors are supplied from previous studies and used to determine 

frame loadings that minimize the same cost function used during the exploratory processes. 

The result is that there are no methodological differences between exploratory and 

constrained frame analysis, and the researcher can use their favorite factor analytic 

extraction method and use either the correlation or covariance matrix. 

It is necessary to orthogonally rotate either the extracted loadings or the supplied 

frame vectors when performing a constrained frame analysis. This rotation aligns the 

current extracted coordinate system with the previously supplied one and offers no 

interpretative information beyond this alignment. The quantization scheme used in a 

taxonomic frame aids constrained frame analysis since it only penalizes models that change 

quantization bins. A comparison between the frame vectors from an exploratory frame 

analysis and the supplied frame vectors may help identify and diagnose changing items 

when a misfit does occur. 

1.1.7 Partially-Constrained Frame Analysis 

 Exploratory and constrained frame analysis represent two ends of the 

informational landscape. When researchers have no information about the latent space 

arrangement, an exploratory frame analysis can reveal the relationship between items. 

When researchers have complete information about the latent space relationships, 

constrained frame analysis can validate this structure. A third condition exists when 

researchers have only partial information about the latent space arrangement. 

This third condition occurs when the manifest variables consist of known and 

unknown items. Supplied frame vectors from a previous analysis constrain the known 
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items, and the orienting process inherent in constrained frame analysis results in identifying 

the frame vectors for the unknown items. Performing a partially constrained frame analysis 

allows researchers to determine how new items relate to established items, determine a new 

construct’s discriminant and convergent validity with a legacy construct, or link equivalent 

forms that share a small subset of items. 

1.2 Frame Analysis Examples 

In this section, we show simple examples for the methods described above. Each 

illustration is performed on synthetic data after applying principal axis factoring to the 

correlation matrix. We set the lower bound on correlation to 0.925, which results in a frame 

dictionary with eight frame vectors in two dimensions. We limit our analysis to a two-

dimensional factor space to facilitate illustrations and comprehension, but frame analysis 

can operate in any finite multidimensional vector space.  

1.2.1 Exploratory Frame Analysis 

We start with a 10-item simulated inventory that has seven simple structure items 

and three cross-loaded items. Table 1 shows the generating loadings and the resulting 

correlation matrix from simulated data. Table 2 shows the extracted loadings after principal 

axis factoring, frame analysis loadings, and frame correlations. Factor analysis’s rotation 

to simple structure is also shown for comparison. The frame loadings associated with frame 

vectors 1 and 4 have zero correlation, suggesting that items related to these two frame 

vectors share no variance. Similarly, frame vectors 3 and 5 are also orthogonal; however, 

there is a 45-degree rotation between these two orthogonal pairs. 
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Table 2 also demonstrates the advantages frame analysis has over factor analysis. 

First, the number of frame vectors immediately informs the researcher about item 

heterogeneity. In our two-dimensional example, if the number of expressed frame vectors 

is greater than two, we can infer that at least one item is categorically composed of the two 

factors. In factor analysis terminology, a linear transformation to a Thurstonian simple 

structure solution is not possible. Similarly, if only one frame vector was expressed, then 

we may have overestimated the dimensionality.  

Second, cross-loaded items (7, 9, and 10) are afforded equal status under frame 

analysis. The frame loading’s magnitude is related to the amount of common variance 

explained by the item, and the sign defines the direction in multidimensional space. 

Finally, the frame loadings are independent of global rotations, and the frame 

correlation matrix identifies the relationships between items. These metrics succinctly 

capture the amount of common variance explained by the item (frame loadings) and the 

amount of variance common with other items (frame correlation matrix). 

 

Table 1 – True Loadings and Simulated Correlation Matrix 
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Similar to factor analysis, the researcher has discretion in naming the frame vectors 

if desired3. External requirements often influence the naming approach taken. One option 

is to assign a unique construct to each frame vector without considering the redundancy 

inherent in frames. Another option is to identify and name a subset from frame vectors. In 

the above example, selecting any two linear independent frame vectors is necessary and 

sufficient. A majority voting criterion would select frame vectors 3 and 5 from Table 2; 

other scenarios where a minority or single item with high frame loadings or interpretability 

are also valid criteria.  

 
3 Although naming is possible, we do not recommend naming every frame vector since the number of frame 

vectors increases considerably with dimensionality. 

Table 2 – Extracted and Rotated Factor Loadings Compared to Frame Loadings 
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 A third option is to use the multidimensional canonical bases and align a set of 

expressed frame vectors as close as possible. In this option, the multidimensional space is 

defined by a set of n orthogonal vectors that require naming. An attractive feature of this 

option is that expressed frame vectors can still be individually named if necessary but are 

recognized as a linear combination of orthogonal factors. Researchers can now use these 

canonical bases as the standardized frame vectors for (partially-) constrained frame 

analysis. 

1.2.2 Constrained Frame Analysis  

We simulated a second dataset with the same parameters as the exploratory frame 

analysis example above but with slightly more unique variance per item. A principal axis 

factoring extracts two factors, and we note that both constrained and exploratory frame 

analysis share the same setup. We then expand the extracted loadings onto the supplied 

frame vectors found during the exploratory analysis, maintaining the item-frame vector  



 15 

relationship above. The effects of increased unique variance on the frame loadings 

are immediately evident in Table 3; the absolute frame loadings are smaller.  

By constraining items to correspond with specific frame vectors, we impart the 

relative relationship between items that was discovered from a previous analysis. 

Conceptually, this is like confirmatory factor analysis. However, our method leverages a 

frame analytic approach instead of a structural approach outlined by Jöreskog (1969). 

1.2.3 Partially-Constrained Frame Analysis 

 To demonstrate a partially constrained frame analysis, we simulated a third dataset 

that consisted of 10 items: 5 items from the previous studies (1, 2, 6, 7, and 9) and five 

previously unused items. The frame vectors associated with the known items constrain and 

orient the factor space, whereas the five unknown items are assigned frame vectors after 

the factor space orientation. Table 4 shows the found relationship between the unknown  

Table 3 – Constrained Frame Loadings 
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items and the available five items. We note that four new items (11, 12, 13, and 15) 

provided redundant measurements given by frame loadings on the existing frame vectors. 

Item 14 is unique enough to warrant an additional expressed frame vector, frame vector 

six. We should conclude that the new items provide additional measurements in our 

theoretical analysis but do not specify new, unique constructs. Additionally, we know how 

item 14 (frame vector 6) relates to item 10 (frame vector 4) by examining the frame 

correlation matrix, even though we did not include item 10 in the analysis. Frame analysis’s 

ability to relate items not included in the same analysis is a novel contribution and provides 

research opportunities not currently possible. 

Table 4 – Partially-Constrained Frame Loadings 
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1.3 Experiment 1: Simulation Study 

 We ran a simulation study to characterize the performance of exploratory, 

constrained, and partially constrained frame analysis. We simulated cross-loaded items 

randomly from a uniform distribution centered at zero and terminating at +/- one and 

normalized the squared sum of the loadings for each item to one. Hypothetical respondents 

with latent traits were selected from a standardized multivariate Gaussian distribution, N(0, 

I)4, and used to simulate the response data. We manufactured unique variance by adding 

Gaussian noise, N(0, σ), σ ~ N(.25, .05), to each item of the simulated response data. 

Finally, we randomly selected four quantile thresholds between zero and one, exclusive, 

from a uniform distribution to quantize the simulated data into five Likert-like response 

categories. 

Next, we computed the polychoric correlation (Olsson, 1979) matrix from the 

simulated digitized data and used principal axis factoring to determine the extracted 

loadings. All data were simulated with a pseudo-random number generator for 

repeatability, and Python scripts are available upon request for explicit computations and 

replicability. Specific considerations for each algorithm used in the simulation study are 

outlined below. 

1.3.1 Metric Definitions 

 The two metrics we used to measure loading similarity are root-mean-squared error 

and congruence. We define the calculation of these metrics below. 

 
4 N(x, y) represents a normal distribution with mean, x, and variance y or covariance y. 
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1.3.1.1 Root-Mean-Squared Error 

 Root-mean-squared error (RMSE) is similar to a standard deviation but with the 

mean replaced by a known value. We use this metric to compare the extracted loadings 

from factor analysis with reconstructed loadings from frame analysis. Let L represent the 

extracted loadings matrix, R represent the reconstructed loadings matrix from frame 

analysis, and indices i, j, identify the matrix components. Then the RMSE is computed as: 

𝑹𝑴𝑺𝑬 =  √
𝟏

𝑰𝑱
∑(𝑳𝒊𝒋 − 𝑹𝒊𝒋)

𝟐

𝒊𝒋

 

1.3.1.2 Congruence 

 Congruence is the root mean squared dot product between the frame vectors from 

a previous and current analysis. We use this metric in partially constrained frame analysis 

to compare the frame vectors expressed for the unconstrained items with the known frame 

vectors on the same items from a previous investigation. Let the P matrix be the set of 

frame vectors associated with items from an earlier analysis, and the C matrix represents a 

set of frame vectors expressed by the same items in the current analysis, then average 

congruence is computed as: 

𝑑 = 𝑑𝑖𝑎𝑔(𝑃𝐶𝑇)

𝑐 =  √
1

𝐾
∑ 𝑑𝑘

2

𝑘

 

The diag operator selects elements from the main diagonal of the matrix. The average 

congruence is insensitive to ∓ sign changes, and we report the minimum or maximum of 
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Equation 2 to determine if a reflection has occurred. Congruence is valid on the closed-

domain from [0, 1], where numbers closer to 1 suggest a higher similarity. 

1.3.2 Exploratory Frame Analysis 

 Our simulation was a 4 factor (2, 3, 4, and 5) x 4 test length (10, 25, 50, and 100) x 

4 sample size (100, 250, 500, and 1000) fully crossed factorial design for a total of 64 

conditions. We set the taxonomic frame vector quantization scheme to 22.5 degrees which 

corresponds to an upper bound on the correlation between two different items of 

approximately .925. The number of frame vectors in the frame dictionary is a function of 

the number of factors, n, and in our quantization scheme is equal to 8, 39, 184, and 860 for 

2, 3, 4, and 5 factors, respectively. We measured reconstruction performance by computing 

the root-mean-squared error between the frame loadings and the extracted factor loadings 

for 250 realizations in each condition. 

1.3.3 Constrained Frame Analysis 

 Like the constrained frame example above, we leveraged the exploratory frame 

analysis simulation to gauge constrained frame analysis performance.  We simulated a 

second dataset in each exploratory frame analysis condition with the same parameters and 

factor loadings to characterize the root-mean-squared error between the frame loadings and 

extracted loadings in a replication situation. The third dataset in each exploratory frame 

analysis condition was simulated with the same parameters as the second dataset but with 

unrelated factor loadings. This dataset characterized the root-mean-squared error between 

the frame loadings and extracted loadings in a non-replication situation. 
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1.3.4 Partially-Constrained Frame Analysis 

 We simulated a scenario where two hypothetical inventories share a subset of items. 

Both inventories consisted of 3 factors, 30 items, and 500 people. We varied the common 

items between 5, 10, and 15. Items in the first inventory were randomly created from a 

uniform distribution centered at zero and terminating at +/- one. The squared sum of the 

loadings for each item was normalized to one. A second inventory was created with the 

same parameters as the first inventory. Factor loadings were extracted using principal axis 

factoring for both simulated inventories. We used the overlapping items to align the two 

inventories and computed the frame loadings and vectors for the non-overlapping items. 

We measured the root-mean-squared error between the overlapping items’ loadings and 

extracted loadings. The average similarity computed for non-overlapping items between 

the recovered frame vectors from the second inventory and the frame vectors found in the 

first inventory assessed their congruence. 

1.3.5 Results 

 The simulated exploratory and constrained frame analysis reconstructed loadings 

results are shown in Figures 3 - 6. We note the standard deviation for the 10-item test length 

in all conditions is larger than the other test lengths, which suggests fortuitous constrained 

alignments were driving the variability. We performed a Type 3 two-way ANOVA on each 

factor condition to determine the dependence of sample size and test length and average 

RMSE.   

For two factors, in Figure 3, the average RMSE for exploratory frame analysis 

remained independent across sample size, F(3, 3984) = 1.94, p > 0.05, but was dependent 
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on test length, F(3, 3984) = 432.35, p < .001, 𝜂2 =.245. The average RMSE slightly 

increased as the test length increased. In the replicating constrained frame analysis 

condition, the RMSE was dependent on both test length and sample size, F(3, 3984) = 

41.38, p < .001, 𝜂2 =.016 and F(3, 3984) = 1231.87, p < .001, 𝜂2 =.473, respectively. The 

average RMSE decreased as sample size increased but increased as test length increased. 

There is a discernible decrease in RMSE variability as sample size and test length increase. 

In the non-replicating constrained frame analysis condition, the average RMSE was only 

dependent on test length, F(3, 3984) = 240.30, p < .001, 𝜂2 =.153. The average RMSE 

increased as test length increased. In this condition, the RMSE variability appeared to only 

depend on test length.  

 For the three factor condition, in Figure 4, the average RMSE for exploratory frame 

analysis was only dependent on test length, F(3, 3981) = 1947.54, p < .001, 𝜂2 =.594. The 

average RMSE was larger than the two factor condition and also increased as test length 

increased. The average RMSE for constrained frame analysis was dependent on test length, 

F(3, 3981) = 147.38, p < .001, 𝜂2 =.038, sample size, F(3, 3981) = 2409.75, p < .001, 𝜂2 

=.620, and the interaction, F(9, 3981) = 2.52, p < .01, 𝜂2 =.002. The interaction effect size 

is minute, and, therefore, we interpret the marginal means as average RMSE decreasing 

with increasing sample size and increasing with longer test lengths. The RMSE variable 

appears to be dependent on both sample size and test length. We note that the three factor 

condition had larger average RMSE for both exploratory and constrained frame analysis 

than the two factor condition, whereas constrained frame analysis showed larger variability 

in RMSE for the three factor condition. In the non-replicating constrained frame analysis 

condition, the average RMSE was only dependent on test length, F(3, 3984) = 787.12, p < 
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.001, 𝜂2 =.371. The average RMSE increased as test length increased and is smaller than 

the two factor condition. The RMSE variability appeared independent of sample size.  

 For four factors, in Figure 5, the average RMSE for exploratory frame analysis was 

dependent on test length, F(3, 3966) = 4965.18, p < .001, 𝜂2 =.787, and sample size, F(3, 

3966) = 8.16, p < .001, 𝜂2 =.001. Again, the average RMSE increased as test length 

increased but was not larger than the three factor condition. We did observe a dependence 

on sample size, however, the effect size is negligible at .1%. The average RMSE for 

constrained frame analysis was dependent on test length, F(3, 3966) = 116.27, p < .001, 𝜂2 

=.030, sample size, F(3, 3966) = 2445.10, p < .001, 𝜂2 =.626, and the interaction, F(9, 3966) 

= 2.52, p < .01, 𝜂2 =.004. Similar to the three factor condition, the interaction is negligible 

and the marginal means had the same trends as the three factor condition. In the non-

replicating constrained frame analysis condition, the average RMSE was dependent on test 

length, F(3, 3966) = 2050.97, p < .001, 𝜂2 =.604, and sample size, F(3, 3966) = 15.76, p < 

.001, 𝜂2 =.005. The average RMSE increased as test length increased and is smaller than 

the three factor condition. The sample size dependence’s effect size is negligible at .5%. 

As in the other conditions, the RMSE variability appeared independent of sample size.   

 For five factors, in Figure 6, the average RMSE for exploratory frame analysis was 

dependent on test length, F(3, 3812) = 6832.62, p < .001, 𝜂2 =.829, sample size, F(3, 3812) 

= 16.01, p < .001, 𝜂2 =.002, and the interaction, F(9, 3812) = 5.78, p < .001, 𝜂2 =.002. We 

note the same dependence and direction of average RMSE on test length as the other factor 

conditions. The sample size and interaction effect sizes, although significant, are small 

enough to forgo interpretation. The average RMSE for constrained frame analysis was 

dependent on test length, F(3, 3812) = 40.49, p < .001, 𝜂2 =.013, sample size, F(3, 3812) = 
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1723.74, p < .001, 𝜂2 =.565, and the interaction, F(9, 3812) = 23.76, p < .01, 𝜂2 =.023. Unlike 

the other factor conditions, the interaction term effect size is large enough to warrant 

consideration. Examining Figure 6, we notice large RMSE variability in the 10-item 

condition. Excluding this condition, leads to a negligible interaction effect size seen in the 

other factor conditions, F(6, 2988) = 7.22, p < .001, 𝜂2 =.002. We interpret this as the 

average RMSE with few items per factor as being significantly higher than the other 

conditions. The RMSE variability trends similarly to the other factor conditions. In the 

non-replicating constrained frame analysis condition, the average RMSE was dependent 

on test length, F(3, 3812) = 1268.89, p < .001, 𝜂2 =.491, sample size, F(3, 3812) = 11.77, p 

< .001, 𝜂2 =.005, and the interaction, F(9, 3812) = 2.82, p < .01, 𝜂2 =.003. The average 

RMSE increased as test length increased and is smaller than the three factor condition. The 

sample size and interaction effect size is negligible at .5%. The RMSE variability appeared 

mostly independent of sample size; the 10 item condition showed greater variability in the 

100 and 250 sample size conditions. The five factor condition had the lowest average 

RMSE in all factor conditions simulated.  

Figures 7 - 10 show the RMSE between the observed polychoric correlation 

matrices and those reconstructed by frame analysis. The reconstructed correlation is the 

outer product of the reconstructed loadings with the unique variance added. Due to this 

fact, we note that the trends observed in the previous section carry over here and errors 

compound with the factor analysis reconstruction errors. We plot the average 

reconstruction RMSE for traditional factor analysis in all figures, which is the average 

RMSE lower bound for frame analysis reconstruction. 
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In the two factor simulation condition, in Figure 7, we observed similar trends as 

the reconstruction loadings with respect to test length dependence. Two notable differences 

are the stronger sample size dependence and larger average RMSE errors overall. The 

sample size dependence mimics that of factor analysis but is attenuated due to the 

quantization error at the loading level. The increased larger average RMSE is due to the 

compounding errors with the factor analysis reconstruction. 

Constrained frame analysis in the replicating conditions showed a similar pattern: 

an average RMSE decreasing as test length increased. This sample size dependence was 

stronger than in the exploratory condition but asymptotically approached the exploratory 

RMSE as the sample size increased. Constrained frame analysis’s RMSE variability did 

show a test length dependence and decreased as test length increased. In addition, the 

RMSE standard deviation also had a slight sample size dependence suggesting a sample 

size by test length interaction. The 10-item condition had the largest variability, which 

suggests fortuitous, constrained alignments were driving the variability. Constrained frame 

analysis’s non-replicating condition showed both a sample size and test length dependence. 

This trend contrasts with the test length only dependence in loading reconstruction. 

We observed similar trends in the three factor, in Figure 8, four factor, in Figure 9, 

and the five factor conditions, in Figure 10, as the two factor condition. We highlight 

constrained frame analysis’s much larger variability in RMSE for the 10-item condition in 

the four and five factor figures. This variability suggests the decreased number of items per 

factor is driving fortuitous and unlucky results. 

The partially constrained frame analysis results are shown in Table 5. The average 

RMSE over the realizations remained stable, whereas the RMSE standard deviation  



 25 

decreased as the item overlap increased for the constrained component. The 

exploratory analysis remained stable and did not vary as the overlap varied. The average 

congruence between the frame vectors expressed after alignment and the frame vectors 

from the initial exploratory frame analysis remained high, >.9, but demonstrated greater 

instability with only five overlapping items. 

1.3.6 Discussion 

 We expected the reconstructed loading’s RMSE in exploratory frame analysis to 

remain stable across test length and sample size conditions as this tracks the quantization 

error in the frame dictionary. The discovered dependence on test length suggested that as 

the number of items increased, the uniformity of error within a quantization bin also 

increased. The average RMSE equivalence in the three, four, and five factor conditions at 

100 items suggests this increase occurs asymptotically and is defined by the quantization 

level. We hypothesize the smaller rate observed in the two-factor condition is due to the 

uniform partitioning of the frame dictionary in two dimensions versus the quasi-uniform 

partitioning in three or more dimensions. 

 The replicating constrained frame analysis demonstrated primarily a sample size 

dependence on loading reconstruction. The decrease in average RMSE appears asymptotic 

Table 5 – Partially-Constrained Frame Analysis RMSE and Congruence 

Performance 
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and approaches the exploratory frame analysis average RMSE. We explain this as a 

statistical phenomenon whereby more samples increase the probability of selecting the 

correct frame vector. In a constrained frame analysis, this phenomenon can occur either in 

the constraining frame vectors or the constrained solution. These results suggest in most 

practical cases, 10 items on two or more factors may be insufficient. The slight dependence 

on test length is explained by the same phenomenon as in exploratory frame analysis, the 

quantization bin utilization.    

The non-replicating constrained frame analysis showed a test length dependence on 

average RMSE loading reconstruction which also decreased across factor conditions. The 

test length dependence is likely due to the increased probability of finding a fortuitous 

least-squares rotation in the coordinate system alignment. We hypothesize the factor 

dependence is due to a restriction of extreme values driven by an increase in factors. As 

the number of items per factor decreases, the probability of observing large differences 

from the generating value shrink, resulting in a smaller overall RMSE. 

Examining the reconstruction correlation RMSE shows frame analysis does not 

reach the lower bound provided by factor analysis. This result is expected since frame 

analysis’s current implementation begins with the extracted loadings from factor analysis. 

The offset between exploratory frame analysis and factor analysis captures the quantization 

error imparted by the frame dictionary. A frame analysis-specific extraction algorithm 

might achieve better performance than the current simulation; however, performance on 

par with factor analysis is likely unachievable due to quantization. Constrained frame 

analysis’s replicating condition had similar RMSE patterns as the frame loading’s RMSE, 

which suggests either observing differences in loadings or correlation would result in 
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similar conclusions. Constrained frame analysis’s non-replicating condition showed a test 

length and sample size dependence for conditions with more than two factors. We have no 

working hypothesis for the root cause of this trend but note that the RMSE errors are still 

considerably larger than both exploratory and replicating constrained frame analysis. The 

correlation reconstruction results suggest analysis at the loading level is appropriate 

moving forward. 

We also demonstrated that constrained frame analysis is a viable alternative 

approach to confirmatory factor analysis. An advantage that constrained frame analysis 

maintains over confirmatory factor analysis is the algorithmic consistency; both 

exploratory and constrained frame analysis use the same extraction methods and provide 

the same outputs. Constrained frame analysis also requires fewer estimated variables since 

it uses factor analysis extraction algorithms. However, a critical missing feature in 

constrained frame analysis is the lack of a goodness-of-fit metric.  

One possible metric for assessing goodness-of-fit is inspired by RMSEA 0.05 

cutoff criterion from structural equation modeling (Browne & Cudeck, 1992; Hu & 

Bentler, 1999). Subtracting the exploratory frame analysis RMSE (quantization error) from 

the constrained frame analysis RMSE and comparing it to a 0.05 threshold might indicate 

a good versus bad fit. This criterion would suggest a poor fit for replicating constrained 

frame analysis sample sizes of 100, as seen in Figures 1-4. Another possibility for assessing 

constrained frame analysis goodness-of-fit is to use a data-driven parallel analysis-like 

algorithm on the extracted loadings (Horn, 1965). The results from the non-replicating 

constrained frame analysis approximate this algorithm. Devising a goodness-of-fit metric 

remains an active area of research. 
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Partially constrained frame analysis is unique to this new paradigm. We 

demonstrated that constraining a common set of items between two inventories resulted in 

high average congruence on the unconstrained items. This outcome suggests our method 

correctly aligns the coordinate systems between the two inventories, and inferences 

between the non-overlapping items are valid. Applications for this process include 

assessing discriminant and convergent validity on new items and determining rotational 

duplication between two different inventories. We plan to conduct a study that evaluates 

the required number of questions per factor necessary to stabilize the congruency. 
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Figure 3 - Root-Mean-Squared Error between Extracted and 

Reconstructed Loadings for 2 Factor Exploratory and Constrained 

Frame Analysis averaged over Realizations. Note. Solid horizontal 

lines are standard deviations. 
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Figure 4 - Root-Mean-Squared Error between Extracted and 

Reconstructed Loadings for 3 Factor Exploratory and Constrained 

Frame Analysis averaged over Realizations. Note. Solid horizontal 

lines are standard deviations. 
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Figure 5 - Root-Mean-Squared Error between Extracted and 

Reconstructed Loadings for 4 Factor Exploratory and Constrained 

Frame Analysis averaged over Realizations. Note. Solid horizontal 

lines are standard deviations. 
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Figure 6 - Root-Mean-Squared Error between Extracted and 

Reconstructed Loadings for 5 Factor Exploratory and Constrained 

Frame Analysis averaged over Realizations. Note. Solid horizontal 

lines are standard deviations. 
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Figure 7 - Average Root-Mean-Squared Error between Polychoric 

Correlation and Reconstructed Correlation for 2 Factor Exploratory 

and Constrained Frame Analysis. Note. Solid horizontal lines are 

standard deviations. 
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Figure 8 - Average Root-Mean-Squared Error between Polychoric 

Correlation and Reconstructed Correlation for 3 Factor Exploratory 

and Constrained Frame Analysis. Note. Solid horizontal lines are 

standard deviations. 
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Figure 9 - Average Root-Mean-Squared Error between Polychoric 

Correlation and Reconstructed Correlation for 4 Factor Exploratory 

and Constrained Frame Analysis. Note. Solid horizontal lines are 

standard deviations. 
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Figure 10 - Average Root-Mean-Squared Error between Polychoric 

Correlation and Reconstructed Correlation for 5 Factor Exploratory 

and Constrained Frame Analysis. Note. Solid horizontal lines are 

standard deviations. 



 37 

1.4 Experiment 2: Five-Factor Personality Application 

We performed the above simulation study to quantify frame analysis performance in 

controlled situations. To demonstrate the benefits of frame analysis in a research 

application, we applied exploratory, constrained, and partially constrained frame analysis 

to archival personality data. We chose personality data since it was the original impetus for 

developing frame analysis and allows frame analysis to demonstrate an alternative 

interpretation of the hierarchical and facet personality models (Costa & McCrae, 1995a; 

DeYoung et al., 2007). 

1.4.1 Circumplex Personality Models 

Proto-frame analytic concepts are found in Leary’s (1957, p.62-67) two-factor and 

Hofstee et al.’s (1992) five-factor circumplex models of personality. Hofstee et al (1992) 

envisioned adjectives as mixtures of two primary traits, i.e., agreeableness and 

conscientiousness, resulting in 10 two-dimensional circumplexes. In their analysis, the two 

most significant non-zero loadings are kept after extraction and varimax rotation. These 

loadings locate each item in a two-dimensional plane partitioned into 12 sections of 30 

degrees. Markey and Markey (2006) extend the circumplex model into three dimensions 

using latitude and longitude analogs to locate items.  

Costa and McCrae (1995a) argued against the circumplex model on two grounds. 

First, there is poor representation of items in all circumplex segments (Costa & McCrae, 

1995a). Second, it co-locates certain traits on the circumplex that represent different 

behaviors (Costa & McCrae, 1995a). We address the first complaint by noting the 

misplaced earnestness for a simple structure. Thurstone (1935, p. 156) suggested that 
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researchers discard items that corrupt simple structure. This selection process has 

downstream effects since items selected for the inventory preference homogeneity over 

breadth (Little et al., 1999).  

Furthermore, a vector space’s lack of representation is not an argument against the 

existence of that vector space; mankind’s representation in the universe is infinitesimally 

tiny, yet our existence is not in doubt. The co-location of items in Hofstee et al.’s 

circumplex personality model (1992) might be explained by the projecting of cross-loaded 

items into two dimensions. It is possible the appearance of co-location vanishes once the 

full dimensionality is considered. Our proposed frame analysis maintains this 

dimensionality and can be loosely interpreted as a higher dimensional analog to circumplex 

models.  

Costa and McCrae (1995) favored an alternative to five-factor circumplex 

personality models. They fractionated the Big Five factors (consciousness, openness, 

agreeableness, extraversion, and neuroticism) into smaller facets “organized 

hierarchically” beneath the broad primary factors (DeYoung et al., 2007; Krueger et al. 

2011; Soto & John, 2017; Lee & Ashton, 2018). An essential property of personality factor 

models that hypothesize facets is that facets do not increase dimensionality. A five-factor 

model with ten facets does not become a ten-factor model but instead divides a single factor 

into two or more sub-factors. DeYoung et al. (2007) and Soto and John (2017) verified a 

five-factor structure when all inventory items were subjected to factor analysis. Their 

results suggest facets are not pure measurements of their factors but instead represent 

compositions of primary factors; in other words, a frame analytic model. 
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Although facets represent redundant and not new factor information, we can use 

frame analysis to determine if the data support the number of hypothesized facets in 

hierarchical models: DeYoung et al. (2007) hypothesize 10 aspects (facets) in their Big 

Five Aspect Scale personality inventory. Soto and John (2017) hypothesize 15 facets in 

their Big Five Inventory 2. Both Costa and McCrae’s NEO-PI-R (1992) and Johnson’s 

(2014) IPIP-120 hypothesize 30 facets. Under a frame analysis, facets (and factors) are 

uniquely expressed frame vectors. Therefore, the number of hypothesized facets should be 

equivalent to the number of expressed frame vectors; for example, a 30-facet model should 

have exactly 30 expressed frame vectors. 

1.4.2 Archival Personality Inventories 

 We used two archival personality data collections available at https://osf.io/tbmh5/. 

Johnson (2014) used the international personality item pool (IPIP) 300 to create a short 

form, the IPIP-120. This necessarily means that the IPIP-120 is a subset of the IPIP-300. 

Both inventories were administered online to self-selecting participants. For our analyses, 

we required participants to have indicated 1.) United States of America as their country of 

origin, 2.) their age as 18 or older, and 3.) answered all the items. 

1.4.2.1 International Personality Item Pool – 300 

The international personality item pool 300 is a set of 300 personality items 

designed to measure 30 facets of the broad five-factor model (Goldberg, 1999). It was 

intended to be a royalty-free version of the NEO-PI-R (Costa & McCrae, 1992). This scale 

consists of 300 items on a 5-point Likert scale ranging from 1 (strongly disagree) to 5 

(strongly agree). We calculated Cronbach’s alpha reliabilities for each of the five factors: 

https://osf.io/tbmh5/
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neuroticism (α=.96), extraversion (α=.94), openness (α=.91), agreeableness (α=.92), and 

conscientiousness (α=.95). The total number of collected surveys before the inclusion 

criteria was 307,313. After we applied the inclusion requirements, the total sample was 

79,743 participants (40% male) with an age of M=27.2 (SD=9.70). Inclusion criterion 3, 

answering all items, was responsible for the largest drop in participants. Only 145,388 

participants completed all items. 

1.4.2.2 International Personality Item Pool – 120 

 International personality item pool - 120 (Johnson, 2014) is an open-source version 

of the NEO PI-R (Costa & McCrae, 1992). Johnson (2014) designed the inventory to 

measure personality on five broad factors with six facets each for 30 facets, four questions 

per facet. This scale consists of 120 items on a 5-point Likert scale ranging from 1 (strongly 

disagree) to 5 (strongly agree). Example items include “I worry about things”, “I make 

friends easily”, and “I enjoy being reckless.” Cronbach’s alpha reliability for the five broad 

factors were neuroticism (α = .90), extroversion (α = .89), openness (α = .83), agreeableness 

(α = .86), and conscientiousness (α = .90). The total number of collected surveys before 

the inclusion criteria was 619,150. Applying the criteria resulted in 243,347 participants 

(41% male) with an age of M=26.6 (SD=9.97). Inclusion criterion 3, answering all items, 

was responsible for the largest drop in participants. Only 410,376 participants completed 

all items. 

1.4.3 Metrics 

1.4.3.1 Coverage 
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 In addition to the two metrics discussed in Experiment 1, we define frame 

dictionary coverage as the ratio of expressed frame vectors to the total number of 

available frame vectors (i.e., the number of frame vectors in the frame dictionary). 

1.4.4 Procedure 

We applied exploratory frame analysis to the IPIP-300 personality inventory. We 

performed a polychoric correlation followed by principal axis factoring and factor loading 

extraction. Based on the scree test, we used five factors to extract the factor loadings. We 

comprised a frame dictionary of eight frame vectors as described in Appendix A to 

determine each item’s expressed frame vector. 

Next, we ran a constrained frame analysis using the frame vectors determined from 

the IPIP-300 exploratory frame analysis and applying them to the shared items on the IPIP-

120 personality inventory. The root-mean-squared-error captured the error between the 

extracted loadings and reconstructed loadings. 

Finally, we performed a partially constrained frame analysis using one-half of the 

frame vectors determined from the IPIP-NEO-300 exploratory frame analysis. We 

measured the average congruence between the unused frame vectors and the recovered 

frame vectors after alignment. 

1.4.5 Results 

 The results of exploratory and (partially-) constrained frame analysis on archival 

personality data are shown in Table 6. Applying exploratory frame analysis to the IPIP-

300 resulted in an RMSE consistent with the quantization error from the simulated results 

in Experiment 1. This result suggests the quantization error is independent of the data 
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source. The frame dictionary coverage for the 300 items was 171 out of 860 possible frame 

vectors or encompassed roughly 20% of the partitioned multi-dimensional space.  

Applying constrained frame analysis to the IPIP-120 using the item-frame vector 

associations found from the IPIP-300 also resulted in an RMSE consistent with the 

replicating simulation results. This result suggests the IPIP-120 model was confirmed using 

the IPIP-300 frame vectors. Applying partially-constrained frame analysis to half of the 

IPIP-120 again found RMSEs consistent with that of simulation. The RMSE from the 

unconstrained items was lower than that from the constrained items which were consistent 

with expectations. We also observed high levels of average congruence between items 

common to both the unconstrained set and the IPIP-300 exploratory results. 

1.4.6 Discussion 

 We applied exploratory, constrained, and partially constrained frame analysis to 

archival personality data with encouraging results. The computed RMSE on the IPIP-300 

Table 6 – Archival Personality Results for Exploratory, Constrained and Partially-

Constrained Frame Analyses 
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was similar to the RMSE found during the exploratory frame analysis simulation study 

suggesting quantization error was the dominant error and is invariant to sample size for 

large samples. The number of expressed frame vectors was modest relative to the possible 

number of vectors, indicating only about 20 percent of the five-dimensional personality 

space was filled by the items.  However, the number of expressed frame vectors was more 

than half of the total number of items; this necessarily requires that some partitions in the 

five-dimensional vector space were only associated with one item. Furthermore, the IPIP-

120 and IPIP-300 were designed to measure 30 facets of the broad five personality markers, 

but these 30 facets failed to cohere in frame analysis. Instead of 30 facets, exploratory 

frame analysis provides relative composite information at the item level. Items may group 

together, contingent on the frame dictionary quantization level, but it is not a requirement.  

Additionally, using the frame vectors derived from the IPIP-300 to constrain the 

frame loadings on the IPIP-120 resulted in an RMSE similar to the quantization error found 

in the exploratory frame analysis. These results strongly suggest the same relative 

relationship between items and provide further validation for Johnson’s (2014) IPIP-120 

short form. Reversing this process also allows the researcher to predict a respondent’s score 

on IPIP-300 items from the IPIP-120. This is possible since both the IPIP-120 and IPIP-

300 inhabit the same multidimensional space and the two coordinate systems are aligned 

through the constrained frame analysis process. 

We also demonstrated that partially constrained frame analysis extends beyond 

simulation and functions on real data. Both constrained and unconstrained (exploratory) 

RMSEs were similar to both the simulation and the previous personality results. The high 

average congruence suggests that if two inventories contained separate items, a direct 



 44 

comparison between these unmeasured items, linked by a small common subset, would be 

accurate. 

One application we envision for partially constrained frame analysis is creating a 

canonical set of five-factor personality items. Researchers could append this small 

canonical set to orient their new construct or inventory and assess validity. This canonical 

set also defines the five factors in much the same way the International Earth Rotation and 

Reference Systems Service Reference Meridian defines 0° longitude. An absolute five-

factor personality reference frame still allows for tailored personality inventories, but now 

a method to create a Rosetta stone between them is established. A future study will identify 

this canonical set from the IPIP-300 items and apply it to other five-factor personality 

inventories. 

A significant limitation of using online self-selecting personality data is that there 

is no way to prevent participants from taking the inventory multiple times or taking both 

IPIP inventories. Johnson’s website (http://www.personal.psu.edu/~j5j/IPIP/) provides 

successive links to the IPIP-120 and the IPIP-300, making it easy for participants to take 

both. Furthermore, easily shareable online links facilitate snowball sampling schemes. In 

concert, these issues might explain the similarity found between the two inventories and 

favorably bias the constrained frame analysis results. A properly controlled study is needed 

to replicate our findings. 

1.5  Discussion 

 Frame analysis is a modern approach for investigating the relationships between 

latent variables. It relies on a dense representation of the n-dimensional vector space and 

obviates factor rotations to simple structure. This seemingly minor change provides several 

http://www.personal.psu.edu/~j5j/IPIP/
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benefits over traditional factor analysis. First, frame analysis offers a straightforward 

interpretation of frame loadings as the square root of the communality and decoupled from 

the frame vectors. The output of frame analysis is the common variance in the item (frame 

loadings) and the percent variance common with other items (frame correlation matrix). 

Therefore, these metrics are relative to the items and are rotationally invariant up to the 

quantization error.  

Second, each item in frame analysis is associated with one frame vector. The frame 

vector defines the item composition relative to the underlying latent variables. These 

associations afford item-level investigation. In addition, defining a fixed coordinate system 

requires only n linearly independent frame vectors or selecting the associated items. Third, 

the item-frame vector pairs make constrained frame analysis, the analog to confirmatory 

factor analysis, possible within the same algorithmic framework. Frame loadings and frame 

vectors are both revealed from the extracted loadings during the exploratory frame analysis 

process. In constrained frame analysis, the frame vectors are supplied, and only the frame 

loadings that minimize reconstruction error are sought. The estimated parameters in 

constrained frame analysis are equal to the number of items or the n-dimensional rotation 

angles: n (n-1) / 2. In a five-dimensional space, the estimated parameters are 10, 

considerably less than the number of items in many inventories. 

Third, partially constrained frame analysis, an amalgam of exploratory and 

constrained analysis, allows direct expansion of untested or disparate items onto a set of 

known items. This analysis is helpful for validity considerations, to combat construct 

proliferation, and link inventories without requiring participants to take both inventories 

completely. We discussed how a canonical set of items that anchor factor orientations 
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would benefit five-factor personality research. Using partially constrained frame analysis 

and a canonical set of personality items interspersed with the inventory under consideration 

would provide a mechanism for researchers to translate between their domain-specific 

personality inventories. 

Another advantage frame analysis has is the inherent clustering of related items. 

Items that express on the same frame vector are defined to be identical. Counting the 

number of non-zero frame loadings associated with a frame vector informs which direction 

in the multidimensional space is or is not represented. Summing non-zero counts over 

neighboring frame vectors provides an efficient method to determine the number and 

breadth of item clusters. 

Finally, frame analysis frees the researcher from setting a factor loading threshold 

for the purpose of relating items and factors. It does this by giving equal status to cross-

loaded items through frame vector expressions. The implications of this minor change are 

potentially considerable in the construction of multi-factor inventories. Multi-factor 

inventories no longer need to consist of multiple single factor constructs. Researchers 

might desire a broad representation of the multidimensional factor space that provides 

greater flexibility in item creation and less sensitivity to missing items. This property is a 

novel development in the examination of latent variables. 

1.5.1 Limitations and Considerations 

 A significant limitation in frame analysis is a missing goodness-of-fit metric for 

(partially-) constrained algorithms. We showed proof-of-concept for both methods, but we 

need to provide an acceptance criterion to garner confidence and adoption. Our initial 

thought is to co-opt a root-mean-squared error of approximation-like fit index from 
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confirmatory factor analysis after removing the noise floor from exploratory frame 

analysis. Another possibility is using Akaike or Bayesian Information criteria in concert 

with a maximum-likelihood extraction approach. These metrics are only speculation, and 

we must perform a proper sensitivity analysis to quantify performance. 

 Closely related to a missing goodness-of-fit metric is frame analysis’ lack of an 

inferential statistic. Traditional inferential metrics inversely scale with sample size; larger 

sample sizes result in smaller detectable differences. An inferential statistic could help 

guide a frame dictionary’s appropriate quantization level. One possible approach is to use 

bootstrapping to build confidence intervals for the determined frame vectors. 

 Out of necessity, we used a legacy factor extraction algorithm, principal axis 

factoring, to apply frame analysis to the extracted loadings. A complete frame analysis 

bypasses this step and estimates the correlation or covariance matrix directly, which would 

require the development of frame analysis-specific extraction algorithms. These 

undeveloped algorithms’ impacts on frame analysis are unknown. However, we speculate 

the implications would be minimal enough to warrant the continued use of the current 

factor analysis extraction algorithms. 

 In addition to factor analysis extraction algorithms, we co-opted other factor 

analysis methods in developing frame analysis. We also borrowed factor analytic methods 

to assess dimensionality: Cattell’s (1966) scree test, Velicer’s (1976) minimum average 

partial test, and Horn’s (1965) parallel analysis. It is possible that under our new redundant 

paradigm, the appropriate number of factors to extract is not the same as factor analysis. 

The impact of missing data on the identification and selection of frame vectors also remains 
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unknown. We did not simulate any conditions with missing data, and we also excluded 

personality assessments that had even one missing item. 

 In using frame analysis, the researcher must decide the frame dictionary’s 

quantization level. We demonstrated frame analysis using a frame dictionary with a .925 

correlation sensitivity. Ideally, measurement reliability and item resolution should guide 

this decision. It seems implausible that such fine resolution is inherent in self- or observer-

report survey data. Furthermore, there is no theoretical justification to create frame 

dictionaries that are nominally uniform and isotropic in factor space; our decision to apply 

these constraints embeds convergent and discriminant validity into the measurement space 

directly. In defining a uniform correlational lower bound, we impose the same similarity 

criteria on all frame vectors. However, it is possible that different quadrants in the 

multidimensional space afford different similarity criteria. The selection of the optimal 

frame dictionary properties remains an area for future investigation. 

 Finally, the impacts of misspecification in either dimensionality or frame vector 

expression are unknown. Hypothesizing a dimensionality less than the true dimensionality 

results in a projection of the higher space into the lower one. How this error propagates 

across (partially-) constrained frame analyses remains to be determined. Similarly, 

misspecified frame vectors also impact (partially-) constrained frame analyses results. 

Under such conditions, frame analysis might fail to provide the positive results found in 

the present analysis.  

1.5.2 Future Applications 

1.5.2.1 Nested Vector Spaces 
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Nested vector spaces are lower-dimensional vector spaces wholly contained within 

higher-dimensional vector spaces. Figure 11 shows an example of a hypothetical three-

factor vector space. The two-factor solution represented by the blue plane captures factors 

A and B, while factor C is excised. This paradigm is easy to visualize and a common way 

to imagine factor reduction. However, this is not the only plausible two-factor solution. 

Another possible solution is given by the red semi-transparent plane. All three factors 

contribute to this two-factor solution but degenerate due to their vector space orientation. 

In the context of personality psychology, this property could couch Eysenck’s 

(Eysenck & Eysenck, 1975) three-factor model as nested within a degenerate five-factor 

model. Costa and McCrae (1995b, Table 3) provide some evidence in support of this 

hypothesis. The plethora of five-factor models might be degenerate nestings of Lee and 

Ashton’s (2018) six-factor HEXACO model. Using partially constrained frame analysis, 

answering these questions is now possible 
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1.5.2.2 Hierarchical and Bifactor Models 

 In traditional factor analysis, correlated factors are used to hypothesize hierarchical 

and bifactor models. Ashton et al. (2009) provided evidence that hierarchical models can 

also be interpreted as blended orthogonal factors, a frame analysis model. Jennrich and 

Bentler (2011) developed an exploratory bifactor procedure based on a structured factor 

loading matrix. The structure they suggest is equivalent to selecting frame vectors with 

desirable properties. If hierarchical and bifactor models are special cases of frame analysis, 

then frame analysis is the more economical solution and ought to be preferred. 

1.5.3 Conclusion 

 We introduced and developed a new statistical method for exploring latent 

structures: Frame Analysis. Frame analysis celebrates cross-loaded items while eschewing 

Figure 11- Diagram of Nested Factor Spaces. Two possible two factor solutions in a 

three factor space. 
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rotation to simple structure. We demonstrated that a unified framework for both 

exploratory and constrained frame analysis emerged by adopting a heterogeneous approach 

to the item-factor relationship. Finally, we showed frame analysis’s efficacy on simulated 

and collected data with positive results. We envision frame analysis as a drop-in 

replacement for both exploratory and confirmatory factor analysis that simplifies the 

researcher’s modus operandi when investigating latent structures. 
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APPENDIX A. FRAME DICTIONARY CREATION 

 The frame dictionary is a set of frame vectors that partition the n-dimensional vector 

space. This dictionary defines all possible relationships between items in frame analysis. 

Here, we outline a method to create a quasi-isotropic frame dictionary that approximately 

creates sections of equal surface area on a hypersphere. This property results in a uniform 

relative quantization error. Many other criteria can be used to create different frame 

dictionaries; a bifactor frame dictionary is one example of alternative criteria. Ultimately, 

the researcher should be the arbiter who defines domain-specific properties tailored to their 

needs.  

A.1  Hyperspherical Vectors 

  It is necessary to define a hyperspherical vector in n-dimensions to populate the 

frame dictionary; n-1 angles define these vectors. If we allow for hemispherical symmetry, 

all angles, θn, are valid over the semi-open domain [0, π). Blumenson (1960) outlines the 

analytic expression to compute these vectors: 

 

 

      (A1) 

 

 

 

A.2  Frame Dictionary 
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  One parameter, the number of partitions in any one canonical hyperplane, defines 

the frame dictionary. This parameter is then applied to every other canonical hyperplane, 

and we note an even number of partitions results in explicit orthogonal frame vectors in 

the canonical bases. Due to surface curvature, we vary the number of partitions between 

hyperplanes to maintain an approximately uniform arc length. The number of partitions is 

proportional to the product of sin(θ1) to sin(θn-2). Since the computed number of partitions 

is often not an integer, we truncate the computed number. Truncating is a conservative 

approach that results in slightly larger partitions away from the canonical hyperplanes but 

prevents over-representation at the poles. The frame vectors are computed by Equation A1 

and collated into a matrix whose row space represents a frame in the desired dimension. A 

Python function that computes frame dictionaries is included in the supplemental material. 

Table A1 shows the number of frame vectors as a function of dimensionality and the 

number of partitions. For high dimensionality, the frame dictionary becomes large but can 

be computed offline for easy retrieval.  

Table A1 – Number of Frame Vectors in a Frame Dictionary as a Function of 

Dimensionality and Number of Partitions 
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APPENDIX B. FRAME LOADING CALCULATION 

B.1  Exploratory Frame Analysis 

 Since frame analysis quasi-isotropically covers the multi-dimensional space, 

computing the frame loadings in exploratory frame analysis is straightforward. The first 

step entails calculating the extracted loadings using any factor analysis algorithm, Step 1 

in Table B1. Next, the vector dot product between a frame vector and the loadings matrix 

computes the items’ frame loading on the frame vector, Step 2 in Table B1. We use the 

frame dictionary matrix to calculate all possible frame loadings on all items 

simultaneously. Lastly, selecting the largest absolute frame loading for each item 

maximizes the correspondence between the extracted loadings from factor analysis and the 

quantization scheme used in frame analysis, Step 3a in Table B1. Alternatively, we can 

refine the solution by applying an n-dimensional orthogonal rotation to search for the least-

squares answer between the extracted loadings and reconstructed loadings, Step 3b in Table 

B1. This alternative step, Step 3b, first rotates the frame dictionary and computes a 

candidate set of frame loadings. These candidate frame loadings are then used to compute 

the reconstructed loadings. Lastly, the squared error between the reconstructed loadings 

and extracted loadings is computed to determine if the applied rotation results in minimal 

squared error.  

B.2  Constrained Frame Analysis 

In constrained frame analysis, a previous exploratory analysis supplies the item-

frame vector associations. We require the constrained frame vectors to correspond with the 
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items such that frame vector 1 defines item 1 and frame vector n defines item n. The task 

to accomplish is determining the frame coefficients that minimize the error between the 

reconstructed loadings and extracted loadings. This task is further complicated due to a 

possible global rotation between the extracted and constrained coordinate systems. 

Computing the constrained frame loadings is similar to the method outlined for exploratory 

frame analysis with two crucial differences. 

First, an n-dimensional rotation must be found that properly orients the two 

coordinate systems. We seed this rotation with a Procrustes rotation (Schönemann, 1966) 

to minimize the search space, Step 2 in Table B2. Next, we refine the rotation by 

minimizing the squared error between the extracted loadings and reconstructed loadings. 

This step, Step 3 in Table B2, is similar to Step 3b in Table B1. Several essential differences 

include using the supplied constrained frame vector matrix, C, instead of a frame 

dictionary, D, and selecting the frame loading associated with the constrained frame vector 

instead of keeping the largest absolute frame loading. The number of parameters estimated 

equals the number of angles required in the rotation matrix in our algorithm. Finally, Step 

4 in Table B2, we compute the constrained frame loadings by using the set of angles found 

in Step 3. 

B.3  Partially-Constrained Frame Analysis 

Partially-constrained frame analysis applies the constrained frame analysis algorithm 

to the known items and uses the determined rotation matrix to apply the exploratory 

analysis algorithm to the unknown items. We do not require the two frame dictionaries to 

be common between the known and unknown items, but this will most likely be the case 

in practice. 
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B.4  Rotations 

Orthogonal rotations in two and three dimensions are familiar to most researchers, 

and it is evident that one and three angles define two- and three-dimensional rotations, 

respectively. Rotations in higher dimensions are less obvious, and we use Givens rotations 

(Ford, 2015) to apply successive rotations to hyperplanes. This rotation formulation 

requires estimating n(n-1)/2 angles. 
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Table B1 – Frame Loading Algorithm Outline for Exploratory Frame Analysis 

Step 1: Extract loadings using factor analysis algorithm, L 

Step 2: Compute all possible frame loadings, Fall, from the frame dictionary, D, and extracted 

loadings 

 

FT
all = D x LT 

Step 3a: Select the largest absolute frame loading for each item 

 

FT
final = column max ( FT

all ) 

Step 3b: (Optional) Perform n-dimensional rotation, R, by estimating n(n-1)/2 angles, φ, that 

minimize the squared error between extracted loadings and reconstructed loadings 

 

φ* = min φ ∑[column max( D x R(φ) x L T)T x D x R(φ) - L]2 

 

FT
final = column max(D x R(φ*) x LT) 

Note: column max zeros out all matrix elements in a column not equal to the maximum 

absolute loading in that column. 

 

Extracted Loading Matrix, L, [i x f] : [number of items by number of factors] 

Frame Dictionary Matrix, D, [v x f] : [number of frame vectors by number of factors] 

Frame Loadings Sparse Matrix, F, [i x v] : [number of items by number of frame vectors] 

Rotation Matrix, R, [f x f] : [number of factors by number of factors] 
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Table B2 – Frame Loading Algorithm Outline for Constrained Frame Analysis 

Step 1: Extract loadings using factor analysis algorithm, L 

Step 2: With constrained frame vector matrix, C, compute the Procrustes rotation, Rp, using the 

singular value decomposition algorithm 

 

U, S, V = SVD [ CT x L] 

Rp = U x VT  

Step 3: Perform n-dimensional rotation, R, by estimating n(n-1)/2 angles, φ, that minimize the 

squared error between extracted loadings and reconstructed loadings 

 

φ* = min φ ∑[ddiag[C x Rp x R(φ) x LT]  x C x Rp x R(φ) - L]2 

  

Step 4: Extract the constrained frame loadings, Fconst 

 

FT
const = ddiag[C x Rp x R(φ*) x LT] 

  

Note: ddiag zeros out all matrix elements not on the main diagonal 

Extracted Loading Matrix, L, [i x f] : [number of items by number of factors] 

Constrained Frame Vectors, C, [v x f] : [number of frame vectors by number of factors] 

Frame Loadings Sparse Matrix, F, [i x v] : [number of items by number of frame vectors] 

Rotation Matrix, R, [f x f] : [number of factors by number of factors] 
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