$\% \frac{\%}{\circ} \%$ ㅇ%응
\% Created by Babak Shafei MATSEDLAB
\% Georgia Institute of Technology - School of earth and atmospheric sciences
\%
\% This code accompanies a paper in revision in Computers \& Geosciences \% (3-2012) entitled:
\% A Multi-Component, Non-Steady State Biogeochemical Simulation Module of
\% Early Diagenesis in MATLABÆ by Shafei B, Couture RM and Van Cappellen
P
\%
\% This baseline simulation is used to calibrate the model by analyzing a
\% dataset collected from the perennially oxygenated basin of an \% oligotrophic lake to describe the coupled biogeochemical cycling of As,
\% C, O, Fe and S. Historical variations in atmospheric deposition of As
\% and SO4 were imposed as upper boundary conditions in the transient \% model calculations. The parameters and boundary values are defined \% directly in the script not through an input file. Tha dataset originates
from Couture et al. (2010) ES\&T 44 197-203.
\%
\% Notes:
\% 1) Steady State or Non-steady state can selected : Enabled by commenting
\% lignes 150-151 and uncommenting lines 156-157. Any function of time can be inputed here.
2) Depth-dependant porosity: the default code is run for a constant porosity of 0.9. In case of depth-dependant porosity, the matrices c,f,
\% s,pl,ql,pr \& qr will be replaced by the new ones which are commented
\% next to them. Porosity is defined as function of x in variable 'phi' (line 188)
\% and its analytical derivitive must be saved in variable 'Dphi'
(line 189).
\%
\% 3)Adding a new species: when adding a new species the size of the all
\% of the matrices must be updated by the number of new species. Depending
\% on the phase of new species (solutes or solid-bound) the matrices f,pl
\% ,pr,ql \& qr can be modified.
\%
\% The primary contact with bug reports is Babak Shafei
\% (babak.shafei@eas.gatech.edu)
\%
\% Further documentation can be found at: http://tinyurl.com/matsedlab \%
$\% \%$ $\% \% \%$
$\% \%$ BLOCK
ONE $\% \frac{0}{0} \%$
$\% \%$
$\% \% \%$
function MATSEDLAB_00
tic;
clear all;
close all;
clc;
\% By defining the concentrations of the species, x and t as 'global'
\% variables will be accessible through workspace
global SimValues x t fT \% 1-D diagenesis problem
$m=0$; definition of the spatial domain, $x=\left[\begin{array}{ll}0 & 15\end{array}\right] \mathrm{cm}$ with resolution
of 300
\%***** USER DEFINED *****\%
$\mathrm{x}=$ linspace $(0,15,500)$; $\%$ definition of the spatial domain, $t=\left[\begin{array}{ll}0 & 50\end{array}\right]$
years with resolution of 155
t = linspace $(0,200,255)$; $\%$ defining the species
VarNames $=\left\{{ }^{\prime} \mathrm{O}(\mathrm{aq})^{\prime}, \ldots\right.$ \%ul
' $\mathrm{Fe}(\mathrm{OH}) 3(\mathrm{~s}) \mathrm{I}, ~ . . . ~ \% u 2$
'SO4 (2-) (aq)' , ... \%u3
'Fe(2+)(aq)', ... \%u4
'S(-II)(aq)',... \%u5
'FeS(s)',... \%u6
'As(s)',... \%u7
'As(III,V)(aq)'\}; \%u8
NumVars $=$ int16(length(VarNames)) ;
ql $=[0 ; 1 ; 0 ; 0 ; 0 ; 1 ; 1 ; 0] ; \% 1$ for the soilds and 0 for the solues
$\% * \%$

NumPhases = int16(size(ql, 1)); \%Checking input
if(NumPhases ~= NumVars)
disp('size input does not fit');
stop;
end
SimValues = cell(NumVars, 1); \%creates an NumVars-by-1 cell array of empty matrices.
disp('solving PDE '); \%calling pdepe solver by passing the spatialtemporal domain to it
sol $=$ pdepe(m,@pdex14pde,@pdex1ic,@pdex1bc,x,t); \%Extract each species concentration at each time and depth for $j=1:$ NumVars,

MatValues = sol(:,:,j);
[m, n]= size(MatValues); \% creating an excel file in the current directory to save concetrations of

SimValues\{j\} = MatValues; \% the species at each time time and depth
end

MATSEDLAB_01('simulation_results.xls', VarNames, SimValues, ...
NumVars, t, x); \%time at which depth profiles
are plotted
\%***** USER DEFINED *****\%
timeStep $=255$; if there are field data, the following line will read and save it in DataValuesX1.

```
DataValuesX1 = MATSEDLAB 02('FIELD DATA.xls', VarNames, NumVars );
%If there are no filed d\overline{a}ta commen\overline{t}}\mathrm{ the previous line and uncomment the
following line:
% DataValuesX1 =zeros(1,1);
%if there are filed data available the plots will include simulation
%results versus measured concentrations. Otherwise there will be plots
of
%simulation results only.
MATSEDLAB_03(VarNames, DataValuesX1, SimValues, NumVars, ...
                    timeStep, x, ql );
u1=sol(:,:,1); % O2(aq)
u2=sol(:,:,2); % Fe(OH)3(s)
u3=sol(:,:,3); % SO4(2-)(aq)
u4=sol(:,:,4); % Fe(2+)(aq)
u5=sol(:,:,5); % S(-II)(aq)
u6=sol(:,:,6); % FeS(s)
u7=sol(:,:,7); %As(s)
u8=sol(:,:,8); % As(III,V)(aq)
%Arsenic Flux calculation
noT=length(t);
noX=length(x);
for i=1:noT
    fD(i)=160*.97*(u8(i, 2)-u8(i,1))/x(2);
    for j=1:noX
        Irr(j)=14.4*exp(-.25*x(j))*(u8(i,j)-u8(1,j))*.97;
    end
    fIrr(i)=trapz(x,Irr);
    fT(i)=fIrr(i)+fD(i);
end
figure;
plot(t,fT);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%BLOCK
TWO%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%
function [c,f,s] = pdex14pde(x,t,u,DuDx)
%The boundary values, sedimentation rate, bioturbation coef. and
conversion
%factor (F) must be defined as global since they will be used in BLOCK
FOUR
%If the problem is run for depth-dependant porosity then phi and Dphi
have
%to set as global variables.
global BCO_FeOH3 BCO_O2 BCO_SO4 BCO_Fe BCO_H2S BCO_FeS BCO_AsFeOx
BC0_AsO4 ...
    D_bio w F
%***** USER DEFINED *****%
%boundary conditions at sediment-water interface
BC0_O2=.152;
BC0_Fe=0;
BCO_H2S=0;
```

```
BC0_FeOH3=6.7;
BCO_FeS=0;
BC0_AsO4=1e-6;
%for Steady-state simulation use the constant backgound concentrations
% BC0_SO4=.033; % Present day conditions
% BCO_AsFeOx=BC0_FeOH3*0.32e-3;% Present day conditions
%for Non-steady state make the following comments
BC0_SO4 = 0.022 + 0.06* exp(-0.5*((t-182)/10))^2;
BC0_AsFeOx= 2.14e-3 + 1.9e-3*exp(-0.5*((t-152)/6))^2;
fAsFe=3.2e-4;% amount of As associated with Fe
% bioturbation coef
D_bio=0.0694;
%molecular diffusion coefs
D_02=375;
D_-SO4=175;
D_Fe=118;
D_H2S=284;
D_AsO4=160;
%\overline{half saturation coefs}
KSO4=0.05;
KFeOH3=2000;
KO2=0.004;
%inhibition coefs
kinO2=3.2e-6;
kinFeOH3=200;
%Secondary reaction constants
ktsox=1e3;
kfeox=4e4;
ktsfe=2.5;
kfedis=1e-3;
kfepre=1500;
KFeS=1.78e3;
kAsO4_ads=1.35;
kAs_FeS=1;
w=(.131*(t>62)+.095*(t<=62));%time-dependant burial rate
alfa0=14.4; % bioirrigation constant at sediment-water interface
alfax=alfa0*exp(-.25*x);% depth-dependant bioirrigation
h_plus=3.4e-4;%[H+] concentration equals 10^(-pH)
%uncomment if porosity is depth-dependant
% phi=.9*exp(-0.2*x);
% Dphi=-.18*exp(-.2*x);
F=.06;%convertion factor=rhob*(1-fi)/fi; where fi=porosity and
rhob=solid phase density
%contribution of each mineralization pathway
fO2=u(1)/(KO2+u(1));
fFeOH3=u(2)/(KFeOH3+u(2))*kinO2/(kinO2+u(1));
fSO4=u(3)/(KSO4+u(3))*kinO2/(kinO2+u(1))*kinFeOH3/(kinFeOH3+u(2));
%Saturation index for FeS precipitation
Sat_FeS=u(4)*u(5)/(KFeS*h_plus^2);
Rc=400*exp(-.1831*x);% depth dependant OM degredation
R1=Rc*fO2*26.5; % OM oxidation by O2 and its acceleration factor
R2=Rc*fFeOH3;%OM oxiation by Fe(OH)3
R3=Rc*fSO4;%OM oxiation by SO4
R4=ktsox*u(5)*u(1);%S(II) oxidation by O2
R5=kfeox*u(1)*u(4);%Fe(II) oxidation by O2
```

```
R6=ktsfe*u(2)*u(5);%Fe(OH)3 reduction by S(II)
if (Sat FeS>=1)
    R7=0;
    R_7=kfepre*(Sat_FeS-1);%recipitation rate of FeS
else
    R7=kfedis*u(6)*(1-Sat_FeS);%dissolution rate of FeS
    R_7=0;
end
R8=kAsO4_ads*u(2)*u(8);%As sorption onto Fe(OH)3
R9=kAs_FeS*u(6)*u(8);%As sorption onto FeS
R10=11\overline{7}/F*u(5); %Sulfidization of OM
%adding nitrate to the reaction network
% KNO3=10;%NO3 half saturation
% kinNO3=10;
% fNO3=u(10)/(KNO3+u(10))*kinO2/(kinO2+u(1));
% R11=RC*fNO3; %OM oxiation by NO3 (denitrification)
% finNO3=kinNO3/(kinNO3+u(10)); % inhibition factor of NO3
% R12=knh4ox*u(1)*u(11);%Nitrification
%constant porosity
c=ones (1,8);
%depth dependant porosity
% c = [ phi;...
    1-phi;...
    phi;...
    phi;...
    phi;...
    1-phi;...
        phi;...
        1-phi];
% Transport:constant porosity
f = [(D_bio+D_O2)*DuDx(1)-w*u(1);...
    D_bio*DuDx(2)-w*u(2);...
    (D_bio+D_SO4)*DuDx(3)-w*u(3); ...
    (D_bio+D_Fe)*DuDx(4)-w*u(4);...
    (D_bio+D_H2S)*DuDx(5)-w*u(5);...
    D_bio*DuDx(6)-w*u(6);...
    D_bio*DuDx(7)-w*u(7);...
    (D_bio+D_AsO4)*DuDx(8)-w*u(8)];
% Transport:depth-dependant porosity
% f = [((D_bio+D_O2)*DuDx(1)-w*u(1))*phi+D_bio*Dphi*u(1);...
        (D_bio*DuDx(2)-w*u(2))*(1-phi)-D_bio*Dphi*u(2);...
        ((D_bio+D_SO4)*DuDx(3)-w*u(3))*phi+D_bio*Dphi*u(3);...
        ((D_bio+D_Fe)*DuDx(4)-w*u(4))*phi+D_\overline{bio*Dphi*u(4);...}
        ((D_bio+D_H2S)*DuDx(5)-w*u(5))*phi+D_bio*Dphi*u(5); ...
        (D_bio*DuDx(6)-w*u(6))*(1-phi)-D_bio*Dphi*u(6);...
        ((D_bio+D_AsO4)*DuDx(7)-w*u(7))*phi+D_bio*Dphi*u(7); ...
        (D_\overline{b}io*Du\overline{Dx}(8)-w*u(8))*(1-phi)-D_bio*DDphi*u(8)];
% Reaction: constant porosity
s = [(BC0_O2-u(1))*alfax-F*R1-.25*R5-2*R4;...
    -4*R2+R5/F-8*R6;...
    (BC0_SO4-u(3))*alfax+F*(R6-.5*R3)+R4; ...
    (BC0_Fe-u(4))*alfax+F*(4*R2+8*R6+R7-R_7)-R5;...
    (BC0_H2S-u(5))*alfax+F*(.5*R3-R6+R7-R_7-R10);...
```

```
    -R7+R 7;...
    (-4*f\overline{A}sFe*R2)+(-8*fAsFe*R6 ) + (R8+R9); . . .
    (BC0_AsO4-u(8))*alfax+F*fAsFe*(4*R2+8*R6)-(R8+R9)*F];
% Reaction: depth-dependant porosity
% s = [(BC0_O2-u(1))*alfax-F*R1-. 25*R5-2*R4;...
    -4*R2+R5/F-8*R6;...
    (BC0_SO4-u(3))*alfax+F*(R6-.5*R3)+R4;...
    (BC0_Fe-u(4))*alfax+F*(4*R2+8*R6+R7-R_7)-R5; ...
    (BC0_H2S-u(5))*alfax+F*(.5*R3-R6+R7-R_7-R10);...
    -R7+R_7; ...
    (-4*fA
    (BC0_AsO4-u(8))*alfax+F*fAsFe*(4*R2+8*R6)-R8-R9].*C;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%BLOCK
THREE%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%
function u0 = pdex1ic(x)
%***** USER DEFINED *****%
% the default is zero initial concentrations for all the species.
% it can be modified to assign different initial concentrations for any
of them.
u0=zeros(1,8);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%BLOCK
FOUR%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%
function [pl,ql,pr,qr] = pdex1bc(xl,ul,xr,ur,t)
global BC0_FeOH3 BC0_O2 BC0_SO4 BCO_Fe BCO_H2S BCO_FeS BC0_AsFeOx
BC0_AsO4 w F
%Upper bounday: constant porosity
pl = [ul(1)-BC0_O2;...
    BC0_FeOH3/F;...
        ul(3)-BC0_SO4;...
        ul(4)-BC0_Fe;...
        ul(5)-BCO_H2S;...
        BC0_FeS/F;...
        BC0_AsFeOx/F;...
        ul(\overline{8)-BC0_AsO4];}
    %Upper bounday: depth-dependant porosity
    %rhob=2;% dry density of the sediment
        pl = [ul(1)-BC0_O2;...
        BC0_FeOH3/rhob;...
        ul(3)-BC0_SO4;...
        ul(4)-BCO_Fe;...
        ul(5)-BCO_H2S;...
        BC0_FeS/rhob;...
        BC0_AsFeOx/rhob; ...
```

```
    ul(8)-BC0_AsO4];
```

```
%1 for solid, 0 for solute for both constant and depth-dependant
porosity
ql = [0;1;0;0;0;1;1;0];
%Lower bounday: constant porosity
pr = [w*ur(1);...
    w*ur(2);...
    w*ur(3);...
    w*ur(4);...
    w*ur(5);...
    w*ur(6);...
    w*ur(7);...
    w*ur(8)];
%Lower bounday: depth-dependant porosity
% pr = [w*ur(1)*phi-D_bio*Dphi*ur(1);...
% w*ur(2)*(1-ph\overline{i})+D_bio*Dphi*ur(2);...
% w*ur(3)*phi-D_bio*Dphi*ur(3);...
% w*ur(4)*phi-D_bio*Dphi*ur(4);...
% w*ur(5)*phi-D_bio*Dphi*ur(5);...
% w*ur(6)*(1-ph\overline{i})+D_bio*Dphi*ur(6);...
% w*ur(7)*(1-phi)+D_bio*Dphi*ur(7);...
% w*ur(8)*phi-D_bio*Dphi*ur(8)];
qr=ones(1,8);
%---------------------------------------------------------------------
```

