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SUMMARY

Model-based optimization methods are a class of random search methods that are useful

for solving global optimization problems. These types of methods have shown significant

empirical success in solving a multitude of real-world problems in which the objective

functions are often highly ill-structured. In this dissertation, we propose new approaches

to incorporate and extend model-based methods with the goal of promoting them for future

applications.

In the last 20 years, model-based methods have been gaining popularity as a power-

ful optimization technique among many researchers in different fields. This is due to the

increasing need for solving complex problems that are very difficult or infeasible to solve

with exact algorithms. The main idea of model-based methods is to iteratively construct a

sampling distribution that is biased towards favorable areas in the decision space. Several

algorithms have been developed recently that are classified as model-based methods. We

provide an overview of these methods and investigate how they are similar in many areas

while also having distinctive characteristics.

Part I: We propose a novel algorithm for solving the classical P-median problem. The

essential aim is to identify the optimal extended penalty multipliers corresponding to the

optimal solution of the underlying problem. For this, we first explore the structure of

the data matrix in the P-median problem to recast it as another equivalent global opti-

mization problem over the space of the extended penalty multipliers. Then, we present a

model-based algorithm to find the extended penalty multipliers corresponding to the opti-

mal solution of the original P-median problem. Numerical experiments illustrate that the

proposed algorithm can effectively find a global optimal or very good suboptimal solution

to the underlying P-median problem. It is especially useful for the computationally chal-

lenging subclass of P-median problems with a large gap between the optimal solution of

the original problem and that of its Lagrangian dual.
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Part II: For general multi-objective optimization problems, we propose a new perfor-

mance metric called domination measure to measure the quality of a solution, which can

be intuitively interpreted as the size of the portion of the solution space that dominates that

solution. As a result, we reformulate the original multi-objective problem into a stochastic

single-objective one and propose a model-based approach to solve it. We show that an ideal

version algorithm of the proposed approach converges to a representative set of the global

optima of the reformulated problem. We also investigate the numerical performance of an

implementable version algorithm by comparing it with numerous existing multi-objective

optimization methods on popular benchmark test functions. The numerical results show

that the proposed approach is effective in generating a finite and uniformly spread approxi-

mation of the Pareto optimal set of the original multi-objective problem and is competitive

to the tested existing methods.

Part III: The fields of research for both stochastic optimization and multi-objective op-

timization are well studied and highly developed. Surprisingly, a paucity of research has

attempted to explore the combination of both stochastic and multi-objective optimization.

Therefore, we propose a model-based method for solving optimization problems in which a

solution performance is measured by multiple objectives that are subject to stochastic noise.

Since the objective functions cannot be evaluated directly, the values are estimated via sim-

ulation. The proposed method integrates a new allocation heuristic within the model-based

framework. This heuristic improves the efficiency of the method by allocating the majority

of the computational budget to solutions that play a crucial role in updating the parameters

of the sampling distribution used to facilitate the search process. The proposed method

is designed to deal with multiple objectives and uncertainty simultaneously. In order to

investigate the performance of our proposed algorithm, test functions were constructed by

adding stochastic noise to popular benchmark deterministic multi-objective problems. The

numerical experiments suggest that the proposed method is quite promising in terms of

approximating the Pareto optimal set and in terms of computational efficiency.

xii



CHAPTER 1

INTRODUCTION

1.1 Stochastic Search Methods

Stochastic search methods are algorithms that incorporate some randomized mechanism in

generating candidate solutions. They are effective at solving continuous or discrete opti-

mization problems where the objective function is poorly structured, i.e., discontinuous,

nonconvex or nondifferentiable. Stochastic search methods perform very well in exploring

the entire solution space and are simple to implement since the algorithm is independent

of any structural information of the objective function. The randomness of the algorithm

helps in preventing the algorithm from getting stalled at local optimal solutions. Typically,

stochastic search methods are iterative algorithms that choose candidate solutions by some

stochastic mechanism and improve the way those candidate solutions are selected at ev-

ery iteration. Since many real-world problems are too complex to be solved analytically,

stochastic search methods are a desirable alternative to classical optimization methods.

Stochastic search methods are classified as either instance-based or model-based. The

major distinctions between instance-based and model-based methods are the procedures in

which new candidate solutions are generated and improved. In instance-based methods,

the idea is that good solutions have similar structures. Therefore, new solutions are gener-

ated by some manipulation of previously generated solutions. Examples of instance-based

methods include tabu search [30], simulated annealing [40], and genetic algorithms [62]. In

contrast, model-based methods generate new solutions from a parameterized sampling dis-

tribution. The idea is to continually update the sampling distribution so that solutions that

are close to the global optima are more likely to be sampled as the algorithm progresses.

Since solutions are generated from a sampling distribution, model-based methods are con-
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sidered to be more robust than their instance-based counterparts. Examples of model-based

methods include annealing adaptive search [67], estimation of distribution algorithms [41],

gradient-based adaptive search (GASS) [69], model reference adaptive search (MRAS)

[34], and cross-entropy (CE) method [23].

1.1.1 Literature Review

Model-based methods have shown empirical success in solving global optimization prob-

lems in both continuous and discrete domains. Although model-based methods have the

same foundation, there are a variety of differences among different types of model-based

approaches. Some methods are tailored for specific problems and are designed for good

computational results; whereas, other methods are based on rigorous mathematical theory

and provide convergence results. We present a review of the current most popular model-

based methods for solving global optimization problems in order to describe the central

idea and the flexibility of model-based methods. Although instance-based methods are

also considered stochastic search methods, those types of methods are beyond the scope of

this dissertation.

The goal in single-objective optimization is to find a feasible solution x∗ that achieves

the best value of an objective function. More formally, the problem is mathematically

described as:

x∗ ∈ argmax
x∈X

H(x), (1.1.1)

where x is a vector of n decision variables, X is a nonempty compact set in Rn, and

H : X → R is a real valued bounded function i.e., there exist Hl > −∞ and Hu < ∞ such

that Hl < H(x) < Hu for all x ∈X . We denote the optimal function value as H∗, where

there exists a solution x∗ such that H∗
4
= H(x∗)≥ H(x) for all x ∈X .

We can reformulate the above optimization problem (1.1.1) by transforming it into an

expectation of the objective function under a parameterized probability distribution. Let

{ f (x;θ) : θ ∈Θ} denote the family of parameterized probability density functions (pdfs)
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on X , where Θ is the parameter space. That is,

Eθ [H(x)] =
∫

X
H(x) f (x;θ)dx≤ H∗ ∀θ ∈Θ. (1.1.2)

If there exists an optimal parameter θ ∗ that causes the parameterized probability distribu-

tion f (x;θ) to assign all of its probability mass on the set of global optimal solutions of

(1.1.1), then (1.1.2) is satisfied with equality. As a result, model-based methods seek to

find a θ ∗ such that Eθ∗[H(x)] = H∗, where Eθ∗[·] is the expectation with respect to f (·;θ ∗).

The model-based search approach uses the general framework below to solve single-

objective optimization problems:

1. Generate candidate solutions from a parameterized probability distribution over the

decision space.

2. Update the sampling distribution based on the evaluation of generated candidate so-

lutions.

The fundamental idea is to iteratively construct a probability distribution such that the lim-

iting distribution will allocate most of its mass on a subset of optimal solutions. Essentially,

the hope is that the resulting probability distribution is concentrated on the set of optimal so-

lutions. Typically, the top performing samples are used to update the sampling distribution.

This ensures that after each iteration, more weight is assigned to the area that contains the

best samples from the previous iteration. Clearly, the two components that all model-based

methods have are 1) a probabilistic model that has the ability to easily generate candidate

solutions and 2) an update rule for the parameters of the probabilistic model. In order to

discuss how different methods approach these two components, we provide a brief review

of three model-based algorithms: CE method, MRAS, and GASS.
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Cross Entropy Method

The CE method was first proposed by Rubinstein [60] as an adaptive procedure that uses

importance sampling to estimate rare events, which are events that have an extremely low

probability of occurring. Subsequent work by Rubinstein showed that the CE method can

be modified to solve continuous and combinatorial optimization problems. In other words,

locating an optimal solution via stochastic search can be considered a rare event. As a

result, the CE method seeks to find the parameter of a family of parameterized distributions

that minimizes the Kullback-Leibler (KL) divergence between that family of distributions

and the optimal importance sampling distribution.

To describe how the CE method is used for optimization, we first consider the following

estimation problem similar to the explanation found in [23]. Let X = [X1, . . . ,XN ] be a

random vector from the feasible space X . Suppose we want to calculate the probability l

that H(X) is greater than or equal to a value γ ∈ R under f (·,u) on X . This probability is

defined as

l = P(H(X)≥ γ) = Eu[I{H(X)≥γ}], (1.1.3)

where Eu[·] is the expectation with respect to f (·,u) and I{H(y)≥γ} = 1 if H(y) ≥ γ and

I{H(y)≥γ} = 0 otherwise. We assume P(H(X)≥ γ) is very small, i.e., P(H(x)≥ γ)< 10−5

and thus the event {H(x)≥ γ} can be considered as a rare event. A simple way to calculate

an unbiased estimator l̂ of the above probability is to use Monte Carlo simulation as follows:

Draw independent and identically distributed (i.i.d.) samples X1, . . . ,XN from f (·;u). Then

calculate

l̂ =
1
N

N

∑
i=1

I{H(Xi)≥γ}. (1.1.4)

A large number of simulations are required to get an accurate estimate l̂ noticing that l is

a rare event. In other words, it would take on average 105 simulations to get one random

sample X′ that causes I{H(X′)≥γ} = 1. Alternatively, importance sampling can be used to

obtain a good estimate of l. This technique consists of drawing i.i.d samples X1, . . . ,XN
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from a different pdf g(·) and estimating l by

l̂ =
1
N

N

∑
i=1

I{H(Xi)≥γ}
f (Xi;θ)

g(Xi)
(1.1.5)

The pdf g(·) is known as the importance sampling distribution. The optimal importance

sampling pdf is the density of x conditioned on the event {H(x)≥ γ}; that is

g∗(x) =
I{H(x)≥γ} f (x;u)

l
, (1.1.6)

which yields a zero-variance estimator of l̂. Obviously, we cannot calculate g∗ from the

above equation since it depends on the value l. Therefore, the idea is to restrict the

choice of the importance sampling distributions g(·) to some parametric distribution fam-

ily { f (·,θ) : θ ∈Θ)} and find the “best” parameter θ ∗ that can be related to the optimal

importance sampling distribution. To accomplish this, the CE method seeks to choose the

importance sampling pdf g(·) from the family of pdfs { f (·;θ)} such that Kullback-Leibler

(KL) divergence between the optimal importance sampling pdf g∗(·) and f (·;θ) is mini-

mized. The KL divergence between g∗(x) and f is given by

D(g∗(x), f (x;θ)) = Eg∗

[
ln

g∗(x)
f (x;θ)

]
=
∫
X

g∗(x) lng∗(x)dx−
∫
X

g∗(x) ln f (x;θ)dx

(1.1.7)

This minimization procedure reduces to finding an optimal parameter θ ∗ where

θ
∗ = argmin

θ∈Θ

∫
X

g∗(x) lng∗(x)dx−
∫
X

g∗(x) ln f (x;θ)dx = argmax
θ∈Θ

∫
X

g∗(x) ln f (x;θ)dx

(1.1.8)

Substituting g∗ from (1.1.6) into (1.1.8) we obtain

θ
∗ = max

θ∈Θ

∫
X

I{H(x)≥γ} f (x;u)
l

ln f (x;θ)dx = max
θ∈Θ

Eu[I{H(x)≥γ} ln f (x;θ)] (1.1.9)
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It is important to note that the minimization of KL divergence can be carried out in

analytical form if f (·;θ) belongs to the exponential family. Many common probability

distributions belong to the exponential family, including Gaussian, Poisson, Binomial, Ge-

ometric, etc. The exponential family is defined as follows:

Definition 1.1.1. Exponential Famliy. A parameterized family { f (x;θ) : θ ∈ Θ} is an

exponential family of densities if it satisfies

f (x;θ) = exp
{

θ
T

Γ(x)−η(θ)
}
, (1.1.10)

where Γ(x)= [Γ1(x), ...,Γdθ
(x)]T is the vector of sufficient statistics, η(θ)= ln{

∫
exp(θ T Γ(x))dx}

is the normalization factor to ensure f (x;θ) is a probability density function, and Θ = {θ :

|η(θ)|< ∞} is the natural parameter space with a nonempty interior. We assume that Γ(·)

is a continuous mapping.

We can now calculate the parameter θ ∗ such that f (·,θ ∗) minimizes the KL divergence

with respect to the optimal importance sampling distribution g∗. Recall that the goal is to

find x∗ such that

H(x∗) = max
x∈X

H(x). (1.1.11)

We set γ∗= H(x∗) so that we can associate an estimation problem with the above optimiza-

tion problem. The idea is to use an iterative algorithm to construct a sequence of parameters

{θk : 1, . . .} and levels {γk : 1, . . .} that converges to θ ∗ and γ∗, respectively. Basically, the

choice of γ and θ determines how well we can estimate l while using a moderate number of

samples. In other words, the probability of the target event cannot be too small so that the

event {H(X)≥ γ} rarely happens. Therefore, the CE method guarantees under the density

f (·;θk) that the probability of lk = Eθk [IH(x)≥γk
] is at least ρ , where ρ is chosen not to be

too small, i.e., a common choice is ρ = .1. This is accomplished by updating γk and θk at

every iteration of the algorithm. The procedure is as follows:

1. Adaptive updating of γk: For θk−1, let γk be a (1−ρ) quantile of H(x). That is, γk

6



satisfies

Pθk−1(H(x)≥ γk)≥ ρ (1.1.12)

Pθk−1(H(x)≤ γk)≥ 1−ρ (1.1.13)

where x is generated from the pdf f (·;θk−1). A estimator γ̂k of γk can be obtained by

drawing random samples from f (·;θk−1), calculating H(Xi) for all i, ordering them

in ascending order: H(1) ≤ . . .≤H(N), and evaluating the (1−ρ) sample quantile as

γ̂k = H(d(1−p)Ne) (1.1.14)

2. Adaptive updating of θk: For a fixed γ̂k and θk−1, determine the sampling distribution

θk by

θ̂k = argmax
θ∈Θ

1
N

N

∑
i=1

I{H(Xi)≥γ̂k} ln f (Xi;θ). (1.1.15)

The parameter θ̂k can be further updated by using a smoothing function

θ̂k := αθ̂k +(1−α)θ̂k−1, (1.1.16)

where 0≤ α ≤ 1.

At iteration k, the target event {H(X)≥ γk}, where γk < γ∗ is made less rare by using

the sample (1− ρ) quantile of solutions generated at k to get a good estimate for θk+1.

The hope is that the value θk+1 will make the event {H(X)≥ γk} more common, so in the

next iteration a value γ̂k+2 is obtained such that γ̂k+2 > γ̂k+1 is calculated. The algorithm

terminates when γk is close to γ∗ and the event
{

H(X)≥ γ∗k
}

is no longer a rare event.

1. Choose some θ0. Set k = 1

2. Generate a sample X1, . . . ,XN from the density f (·;θk−1) and compute the sample

(1−ρ) quantile γ̂k of the performance according to (1.1.14).
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3. Use the sample X1, . . . ,XN and solve the deterministic optimization problem in (1.1.15).

4. If the stopping condition is satisfied, terminate the algorithm; otherwise set k← k+1

and return to Step 2.

In summary, the CE method finds the optimal importance sampling distribution that is con-

centrated only on the set of optimal solutions, and the key idea is to use an iterative scheme

to estimate the optimal parameter of that distribution that minimizes the KL divergence

between the optimal distribution and the family of parameterized distributions.

Model Reference Adaptive Search

The model reference adaptive search (MRAS) [34] is similar to the CE method in that it

updates the parameters of a family of parameterized distributions by minimizing the KL di-

vergence. Although MRAS uses a parameterized distribution to generate samples similar to

the CE method, it also uses another sequence of distribution called reference distributions

hk(·) to update the parameters of the sampling distribution. The method starts by specifying

a family of parameterized distributions { f (·;θ) : θ ∈Θ} and projecting hk(·) onto the fam-

ily to obtain a sampling distribution f (·;θk), where the projection is implemented at each

iteration by finding an optimal parameter θk that minimizes the KL divergence between

hk(·) and the parameterized family

θk = argmin
θ

D(hk(x), f (x;θ)) := argmin
θ

(∫
X

ln
hk(x)
f (x;θ)

hk(dx)
)

(1.1.17)

The sequence of reference distributions {hk(·)} can be constructed in numerous ways. One

popular method is to use the simple recursive procedure below:

hk(x) =
H(x)hk−1(x)∫

X H(x)hk−1(dx)
(1.1.18)
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where h0(x) is a given initial distribution on x and under the assumption that H(x)> 0 for

all x ∈X to prevent negative probabilities. Basically, (1.1.18) weighs the new reference

distribution hk so that more mass is concentrated on solutions that have better performance.

As a result, the expectation of H(x) w.r.t the reference distribution improves at each itera-

tion. That is, good solutions are given more probability under the next reference distribution

hk+1

Ehk+1[H(x)] :=
∫
X

H(x)hk+1(dx) =
∫
X H2(x)hk(dx)

H(x)hk(dx)
≥ Ehk [H(X)] (1.1.19)

This results in a sequence {gk} that converges to a degenerate distribution at the optimal so-

lution. A convergence analysis of this method is presented in [34]. We provide a summary

of the MRAS method below.

1. Select a sequence of reference distributions {hk}with desired convergence properties

and choose a parameterized family { fθ}.

2. Given θk, sample N candidate solutions x1
k , . . . ,x

N
k from fθk

3. Update the parameter θk+1 by minimizing the KL divergence

θk+1 = argmin
θ

D(hk+1, f (θ) (1.1.20)

increase k by 1 and reiterate from step 1.

In summary, this method updates the sampling distribution parameter at each iteration by

minimizing the KL divergence between a specific reference distribution and a parameter-

ized family of densities. This method has been shown to converge with probability one

under some mild assumptions and perform well numerically.
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Gradient-based Adaptive Stochastic Search

Similar to the aforementioned model-based methods, the main idea of GASS [69] is to

update the parameterized sampling distribution iteratively towards the favorable areas of

the solution space. In particular, this method takes advantage of the reformulated problem

(1.1.2) being differentiable in θ under mild regularity conditions on f (x;θ). Furthermore,

the gradient is simple to derive as follows:

5θ L(θ) = 5θ

∫
X

H(x) f (x;θ)dx =
∫
X

H(x)
5θ f (x;θ)

f (x;θ)
f (x;θ)dx

= E f (·;θ) [H(x)5θ ln f (x;θ)] ,

where L(θ) = Eθ [H(x)]. Note that an unbiased estimator of 5θ L(θ) could be obtained

by drawing i.i.d. samples X1, . . . ,XN from f (x;θ), and evaluating H(Xi)5θ ln f (Xi;θ),

and taking the sample average of {H(Xi)5θ ln f (xi;θ)}. Then, the idea is to solve the

reformulated problem via a stochastic gradient-based method. Specifically, the method

iteratively carries out the following two steps:

1. Generate candidate solutions according to the sampling distribution.

2. Based on the evaluation of the candidate solutions, update the parameter of the sam-

pling distribution via gradient search.

A shape function Sθ is constructed to satisfy the following conditions: for every θ ,

Sθ (x) is strictly increasing in x, 0 < Sθ (x)≤M, where M < ∞ for all x ∈X , and for every

fixed x, Sθ (x) is continuous in θ . The purpose of the shape function is to make sure the

objective function is positive, while preserving the order of the solutions with respect to the

original objective function H(·). A common choice of Sθ (·) is

Sθ (H(x)) =
1

1+ exp(−So(H(x)− γθ ))
, (1.1.21)
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where So is a large positive constant, γθ is the (1−ρ)-quantile, and Sθ (·) is a continuous

approximation of the indicator function I{H(x)≥γθ} that gives equal weights to the solutions

with function values above γθ and eliminates the solutions with function values below γθ .

For a fixed θ ′ ∈Θ, define

L(θ ;θ
′)
4
=
∫

Sθ ′(L(x)) f (x;θ)dx, and L′(θ ;θ
′)
4
= lnH(θ ;θ

′). (1.1.22)

By the conditions on Sθ ′(·) and the fact that ln(·) is a strictly increasing function, the

original problem can be transformed to maxθ∈Θ L′(θ ;θ ′) for any fixed θ ′. A summary of

the GASS is below:

1. Initialization: choose an exponential family of densities { f (·;θ)} and specify a small

positive constant ε , initial parameter θ0, sample size sequence {Nk}, and step size

sequence {αk}. Set k = 0.

2. Sampling: draw samples X1, . . . ,XN from f (x;θk).

3. Estimation: compute the normalized weight ŵi
k according to

ŵi
k =

Ŝθk(H(xi
k))

∑
Nk
j=1 Ŝθk(H(x j

k))
(1.1.23)

4. Update θk→ θk+1 using a Newton-like iteration for maxθ L′(θ ;θk), where L′(θ ;θk)=

ln{
∫

Sθk(H(x)) f (x;θ)dx}.

5. If the stopping condition is satisfied, terminate algorithm, otherwise set k← k+ 1

and return to Step 2.

In summary, this algorithm generates candidate solutions from a parameterized sam-

pling distribution over the feasible solution space and uses a Newton-like iteration on the

parameter space to update the parameters of the sampling distributions. Convergence re-
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sults are established as a result of formulating the algorithm iterations into a generalized

stochastic approximation recursion.

1.1.2 Motivation and Research Goals

Model-based methods have proven to be very effective for solving global optimization

problems, both in discrete and continuous solution spaces. They are robust and straight-

forward to implement because they typically only rely on function evaluations, rather than

the structure of the objective function. Therefore, model-based methods have been used

to solve a multitude of problems. The advantages of these methods are twofold. On one

hand, they are flexible in nature and can be tailored to solve a particular type of problem; on

the other hand, their performance can also be problem independent because they are firmly

based on probabilistic and statistical principles. As a result, modifications of these methods

apart from their basic steps can be implemented on a problem basis, which includes but are

not limited to:

1. Shape functions can be applied to the objective function so that the sampling distri-

bution tends to favor samples with higher performance more than other samples or

not overreact to samples with high values.

2. The initial parameters of the probability distribution and the probability distribution

itself can be chosen based on knowledge about a particular problem. That is, if it

has been established that some decision variables are related or a subset of decision

variables have high quality solutions in a particular range, then the parameters of the

sampling distribution can be chosen to exploit this information.

3. Historically good solutions can be stored so that the performance of the elite set is

non-decreasing. Many existing model-based algorithms use an auxiliary memory,

where they store some additional information collected during the search, which is

used to update the sampling distribution.
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Essentially, we can use any relevant problem information to inform us of how to modify

model-based methods for peak performance. Clearly, the benefits of model-based methods

are immense, and it has proven to be a very useful and powerful optimization tool. How-

ever, there does exist some shortcomings of the model-based approach. Since the model-

based framework does not incorporate any structural information, this approach may lead

to an inefficient algorithm when gradient information is available or the underlying struc-

ture is convex. Furthermore, model-based methods assume problems have simple feasible

regions; therefore, this approach is not suitable for problems where it is difficult to obtain

even one feasible solution. Those types of problems are not considered in this dissertation.

Since model-based methods are designed to tackle problems where the objective can

only be obtained via black box evaluation, we can redesign problems as a simple input of

decision variables and construct an output that relates back to the original problem. We

attempt to answer the following questions: 1) is it possible to extend model-based methods

to better solve problems that are traditionally tackled by other methods and 2) can we

take advantage of the flexibility of the model-based approach to modify existing model-

based methods in order to develop more effective algorithms. The hope is that the results

and ideas presented in this dissertation will provide useful guidelines for designing new

efficient optimization algorithms using the model-based approach.

1.1.3 Research Results and Contributions

To answer the aforesaid research questions, we propose three model-based algorithms that

take different approaches from traditional techniques. We first propose an algorithm for

solving the classical P-median problem using the model-based approach. We recast the P-

median as another equivalent global optimization problem over the space of the extended

penalty multipliers. Then, we employ a model-based method to find the extended penalty

multipliers corresponding to the optimal solution of the original P- median problem.

Next, we solve the multi-objective optimization problem by using a new concept to
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measure the quality of solutions. This new performance metric called domination measure

can be intuitively interpreted as the size of the portion of the solution space that domi-

nates that solution. As a result, we reformulate the original multi-objective problem into a

stochastic single-objective problem and propose a model-based approach to solve it.

Finally, we propose a method that adapts the model-based approach to stochastic multi-

objective optimization by incorporating an allocation heuristic. This heuristic is developed

in order to improve the computational efficiency of the model-based approach in the multi-

objective stochastic domain. The numerical results suggest that the proposed method is

effective at searching for good solutions in the solution space while at the same time allo-

cating the simulation replications in an efficient manner.

The next three chapters provide details on the previously mentioned approaches. In

Chapter 2, we present the Lagrangian search method that uses the model-based approach to

search for the optimal extended penalty multipliers that correspond to the optimal solution

of the original P-median problem. Within this chapter we

• introduce the P-median problem and provide a literature review.

• formally describe the P-median problem and the Lagrangian relaxation.

• present a detailed description of the proposed algorithm.

• report some numerical results of the proposed algorithm compared with other popular

methods.

In Chapter 3 we introduce domination measure as a new quality metric for multi-

objective optimization problems. As a result, we reformulate the original multi-objective

problem into a stochastic single objective one and propose a model-based method to solve

it. In this chapter, we

• provide background on multi-objective optimization framework and existing meth-

ods.
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• introduce the concept of domination measure under the setting of multi-objective

optimization and use it to reformulate the original problem into a stochastic single-

objective one.

• present a model-based approach to solve the reformulated problem and describe the

ideal version and implementable version algorithm.

• conduct numerical experiments to demonstrate the effectiveness and advantages of

the proposed approach by comparing it to existing approaches.

• provide conclusions and future directions of research.

Finally, Chapter 4 describes a method that is designed to solve optimization prob-

lems where a solution’s performance is measured by multiple objectives that are subject

to stochastic noise. This proposed method integrates a new allocation heuristic within the

model-based framework. In this chapter, we

• describe the need for developing a method specifically designed to solve stochastic

multi-objective optimization problems.

• formally describe the stochastic multi-objective problem.

• present a detailed description of the allocation heuristic and the proposed method.

• provide the results of our computational experiments.

• conclude with a discussion of some future research directions.
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CHAPTER 2

A LAGRANGIAN SEARCH METHOD FOR THE P-MEDIAN PROBLEM

2.1 Background and Motivation

In the P-median problem, we are given a set of n potential facility locations for P facilities

to serve m clients. The objective is to locate P facilities such that the cost of serving all

customers is minimized. Generally, the parameters of this problem can be chosen such that

m ≥ n or m ≤ n and 1 < P < n. This problem arises from various applications such as

clustering [1, 56] and location science [3, 28].

The P-median problem is well-known to be NP-hard [2, 65]. Owing to the NP-hardness

of the underlying problem, exact solution methods for the P-median problem [11] usually

have a formidable complexity that prevents them from solving numerous large-scale in-

stances that have arisen from real world applications. As an alternative, many researchers

have switched to the development of heuristic methods for the P-median problem [4, 56].

Many algorithms based on linear programming relaxation [49, 66] and methaheurstics [58,

52, 17] have been reported in the literature. Various optimization techniques including fil-

tering [13], local search [3], Lagrangian relaxation [6], constructive methods [21, 56], and

primal dual methods [65], have been tried for the P-median problem.

Although heuristic methods enjoy a relatively lower complexity than exact algorithms,

it has been proven that they cannot guarantee a good approximation to generic P-median

problems [61]. To circumvent such a challenge, several researchers considered a restricted

subclass of the P-median problem, the so-called metric P-median problem. For the metric

P-median problem, the assignment cost ci j, the cost of serving client i from a facility at

location j, satisfies the triangle inequality, i.e. cik ≤ ci j + c jk. Furthermore, the cost is

symmetric, i.e. ci j = c ji. Due to its nice geometric property, the metric P-median problem
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has been well studied in the optimization community [61]. On the other hand, we point

out that despite the predominant focus on solving the metric P-median problem, there exist

many real world instances where the cost matrix does not satisfy the triangle inequality.

For example, in the uncapacitated facility location problem, the objective is to minimize

the distance weighted by the demand of each client to an open facility. Moreover, text

documents are usually clustered by the cosine-similarity measure which is a non-metric

measure [1].

It is evident that much work is needed to develop effective algorithms for generic P-

median problems. A paucity of work has attempted to explore means of approximating

such non-metric cases. It is worth mentioning that the algorithms in [49, 66, 18] obtained

some approximation at a cost of violating the constraint of opening only P facilities. For

example, [66] finds a solution that opens O(P log(m+m/ε)) facilities and cost at most

(1+ ε)optP for minimization problems, where optP is the optimal solution for opening P

facilities. In [66] the solution is obtained by first solving the linear relaxation problem

and then using a randomized rounding scheme on the fractional solutions produced by the

linear relaxation problem to get an integer solution. The algorithm in [18] improves the

solution obtained in [66] by greedily opening a new facility that minimizes the cost. These

methods provide some foundation for solving non-metric P-median problem, but cannot be

used in many real world applications where the constraint of opening at most P facilities

cannot be violated. Moreover, these methods require solving large-scale linear programs,

which incur high computational complexity.

One powerful technique to obtain lower bounds for combinatorial minimization prob-

lems is through the Lagrangian relaxation. Given a vector of Lagrangian multipliers, the

resulting Lagrangian problem becomes simpler to solve [26]. Similar approaches have

been used to find competitive and feasible solutions for problems from various applica-

tions [6, 29, 51]. In Lagrangian relaxation-based approaches, the Lagrangian multipliers

are iteratively updated to maximize the lower bound as follows: first, a Lagrangian relax-

17



ation problem is solved to obtain a lower bound; and then a feasible solution to the original

P-median problem is extracted from the solution of the Lagrangian relaxation, which pro-

vides an upper bound; in the final step, the Lagrangian multipliers are updated to improve

the lower bound in the next iteration. Typically, some variant of the sub-gradient method is

applied to adjust the Lagrangian multipliers, as in [5, 6]. We point out that the solution to

the Lagrangian sub-problem may not be feasible for the original problem, yielding only a

bound on the optimal value. Beltran et al. [8] proposed the so-called semi-Lagrangian re-

laxation method for the P-median problem that can provide an optimal integer solution and

close the gap between the original problem and its semi-Lagrangian relaxation. However,

the semi-Lagrangian relaxation of the P-median problem itself is still nontrivial to solve.

As an alternative, stochastic search methods have provided an effective approach for

finding global optimal solutions for many combinatorial problems [72]. The foundation

of stochastic search methods is to “explore” the entire solution space and “exploit” the

promising regions of the solution space. Stochastic search methods, such as ant colony

optimization [48] and simulated annealing [52, 17], have been shown in some cases to sub-

stantially improve the solution quality for larger instances [9] compared with constructive

heuristics and local search methods.

2.1.1 Research Results and Contributions

We propose the Lagrangian Search (LS) method, which is able to provide an optimal or

near-optimal solution to the original problem from its extended Lagrangian relaxation. The

proposed LS method combines the exploration-and-exploitation aspect of stochastic search

methods with the efficient approach of obtaining a solution to the extended Lagrangian

relaxation via penalty multipliers. We show that the space of the penalty multipliers is

usually much smaller than the solution space of the original problem, this allows us to de-

velop an effective search algorithm in the space of the penalty multipliers. To achieve this,

we first elaborate on the Lagrangian relaxation to construct a search space U of penalty
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multipliers associated with the optimal solution of the relaxed problem. Then, we incorpo-

rate a model-based search method to search in the space U to find the penalty multipliers

that correspond to the optimal solution of the original problem. We consider model-based

search methods [12, 60, 69] because they have demonstrated the robustness in searching

the solution space as opposed to their instance-based counterparts. By searching in the

space of the penalty multipliers instead of the original solution space, the structure of the

cost matrix has almost no bearing on the solution quality. Particularly, we focus on Gap-C

instances proposed by Kochetov and Ivanenko in [39], which are defined by non-metric

cost matrices where each column and row have the same number of positive integers from

a set {1,2, . . . , l}. Although there is no restriction on l, the idea is to set l to some integer

not too far from zero. (In the examples given in [39] no integer is greater than 4, i.e. l = 4.)

Compared with other P-median instances, the Gap-C instances have a relatively larger gap

between the optimal value of the original problem and its Lagrangian dual [38]. Therefore,

these instances have been proven to be computationally difficult for many existing meta-

heuristics [39]. To deal with such an issue, we propose to utilize the Lagrangian relaxation

in a non-traditional way, i.e., we create a surjective mapping from the penalty multipliers

to the solution space of the original problem. In this way, we are able to recast the original

P-median problem as another equivalent global optimization problem over the space of the

extended penalty multipliers.

In summary, our main contributions are

• We reformulate the P-median problem as another equivalent global optimization

problem over a space of the extended penalty multipliers such that there always exist

an extended penalty multiplier that corresponds to the optimal solution.

• We introduce a new framework for finding the optimal penalty multipliers via a

stochastic search method instead of the commonly used sub-gradient method.

• We conduct numerical experiments to test the performance of the proposed algo-
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rithm, and illustrate that the proposed method performs well for a subclass of P-

median problems that are known to be computationally difficult for other existing

metaheuristics and exact methods in the literature.

2.2 Problem Formulation

We first describe the P-median problem where the goal is to determine the minimum cost of

opening P facilities out of n possible facility locations to serve m clients. Let I= {1, . . . ,m}

be the finite set of clients and J = {1, . . . ,n} be the finite set of potential facility locations.

We define ci j to be the cost of serving client i from a facility at location j. We assume that

ci j > 0 for all i ∈ I and j ∈ J. Let

y j =

 1 if a facility is open at location j

0 otherwise

xi j =

 1 if client i is served from a facility at location j

0 otherwise

Therefore, we can formulate the P-median problem as the following integer linear program

(ILP)

Z = min
m

∑
i=1

n

∑
j=1

ci jxi j (2.2.1a)

s.t
n

∑
j=1

y j = P (2.2.1b)

n

∑
j=1

xi j = 1, ∀i = 1, . . . ,m (2.2.1c)

xi j ≤ y j, ∀i = 1, . . . ,m, j = 1, . . . ,n (2.2.1d)

xi j ∈ {0,1} ,∀i = 1, . . . ,m, j = 1, . . . ,n (2.2.1e)

y j ∈ {0,1} ,∀ j = 1, . . . ,n (2.2.1f)
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where constraint (2.2.1b) ensures that exactly P facilities are open, constraint (2.2.1c) guar-

antees that each client is served by only one facility, and constraint (2.2.1d) guarantees that

a client is only served from an open facility. We use C to denote a matrix with entries

ci j. We let J̄ =
{

j ∈ J|y j = 1
}

be the set of column indices of C that corresponds to the

facilities that are open in a given solution. Because constraint (2.2.1b) must be satisfied,

|J̄| = P. Given J̄, we can easily determine the variable xi j as follows: for each i we set

xi j′ = 1, where j′ is an index such that ci j′ = min j∈J̄ ci j and xi j = 0 for all j 6= j′. Essen-

tially, we assign facility j from the set of open facilities J̄ that has the minimum cost to

client i. Consequently, we are only concerned with determining the value of the variable

y j.

2.2.1 Lagrangian Relaxation

We relax the constraint that each client has to be served by one facility. Therefore, a

Lagrangian relaxation is obtained by dualizing constraint (2.2.1c)

Zd = max
ui

min
xi j,y j

m

∑
i=1

n

∑
j=1

ci jxi j +
m

∑
i=1

ui(1−
n

∑
j=1

xi j) (2.2.2)

s.t. (2.2.1b), (2.2.1d), and (2.2.1e),

which is equivalent to

Zd = max
ui

min
xi j,y j

m

∑
i=1

n

∑
j=1

(ci j−ui)xi j +
m

∑
i=1

ui (2.2.3)

s.t. (2.2.1b), (2.2.1d), and (2.2.1e).

The objective function (2.2.3) and constraint (2.2.1d) imply the following relationship:

xi j =


y j, if ci j−ui ≤ 0 ∀ i = 1, . . . ,m, j = 1, . . . ,n.

0, otherwise.
(2.2.4)
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Therefore, given a fixed vector u = [u1, · · · ,um], the Lagrangian problem is transformed

into the following integer program

Zd(u) = min
y j

n

∑
j=1

m

∑
i=1

φi jy j +
m

∑
i=1

ui (2.2.5)

s.t.
n

∑
j=1

y j = P,

y j ∈ {0,1} ,∀ j = 1, . . . ,n,

where φi j = min(0,ci j− ui). Clearly, the set J̄ can be determined by following a simple

procedure: because y j’s are the only unknown variables, the y j’s that minimize Zd(u) are

the y j’s corresponding to the P smallest sums ∑
m
i=1 φi j. This result is the gateway in using

the stochastic search method to find the vector u that corresponds to the optimal solution.

2.3 Determining Penalty Multipliers

Throughout this section we use the following notations:

• ci[t] represents the t th order statistic in the ith row of the cost matrix C.

• M =
{

i ∈ I|ci j∗ < ci j ∀ j 6= j∗ : j∗ = argmink cik
}

is the set of rows with a unique

minimal element.

• Jm =
{

j ∈ J|∃i ∈M s.t. ci j = ci[1]
}

is the set of column indices that have a unique

minimal cost in at least one row of the cost matrix.

• I(J) =
{

i ∈ I|ci[1] ∈C·J
}

is the set of row indices where each row’s minimal element

ci[1] is in a given set of columns J.

• J′i =
{

j ∈ J|ci j = ci[1]
}

is the set of column indices which has a minimum cost in row

i.

• J′= { j ∈ J|∃i s.t. j ∈ J′i} is the set of columns that has a minimum element in at least

one row.
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• Ni = |J′i | is the number of columns that have a minimal element in row i.

• J̄ =
{

j ∈ J|y j = 1
}

is the set of open facilities.

• J∗ =
{

j ∈ J|y∗j = 1
}

is the optimal set of open facilities to the original P-median

problem (2.2.1a)-(2.2.1e).

2.3.1 Constructing Space of Penalty Multipliers

The best choice for u is one that maximizes the Lagrangian dual, i.e. maxu Zd(u). Most

methods seek to find u that corresponds to the optimal or near-optimal solution to the La-

grangian dual problem [26]. The primary issue with these methods is that, in most cases,

the optimal solution to the Lagrangian sub-problem associated with the optimal Lagrangian

multipliers may not be feasible for the original problem. In this case, the Lagrangian re-

laxation can at best find upper and lower bounds of the original objective function. For

P-median problems with a large gap between the optimal value of the original problem and

its Lagrangian dual such as the Gap-C instances described in [39], the bounds from the

Lagrangian relaxation are very weak. This explains the difficulty in the branch-and-bound

approach based on Lagrangian relaxation for the Gap-C instances [39].

In this work we plan to take a different course from the traditional Lagrangian relaxation

based approach in the literature. We seek to find a penalty multiplier u corresponding to

the optimal solution of the original problem (2.2.1a)-(2.2.1e). Essentially, we try to find a

vector u whose corresponding solution J̄ of (2.2.5) is precisely the optimal set J∗.

In order to construct a space of penalty multipliers, we need to derive a closed-form

solution to the Lagrangian dual (2.2.5). To make this an easier task, we relax the Lagrangian

dual problem. The extended relaxation causes no effect on the quality of the solution,

since we are not concerned with the optimal value of the Lagrangian dual, but rather the

connection between the penalty multipliers and some feasible solution to the original P-

median problem. The Lagrangian dual sub-problem is relaxed so that every facility is
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open, which implies y j = 1 for all j ∈ J. The Lagrangian sub-problem is described by

Z′d(u) =
m

∑
i=1

n

∑
j=1

φi j +
m

∑
i=1

ui =
m

∑
i=1

n

∑
j=1

min(0,ci j−ui)+
m

∑
i=1

ui, (2.3.1)

which is concave and continuous [26]. Since every facility is open, the optimal value to

the corresponding relaxed version of the original problem, denoted by Z′, is computed by

summing the minimum cost of each client, that is, Z′ = ∑i ci[1]. Each penalty multiplier ui

that maximizes Z′d(u) can be found by expanding Z′d(u) into m maximization problems

max
u1

Z′d1
(u1) ,

n

∑
j=1

min(0,c1 j−u1)+u1 (2.3.2)

max
u2

Z′d2
(u2) ,

n

∑
j=1

min(0,c2 j−u2)+u2

...

max
um

Z′dm
(um) ,

n

∑
j=1

min(0,cm j−um)+um.

We point out that in [21], the authors discussed how to use the above series of problems

to obtain a lower bound based on the Lagrangian relaxation. In contrast to [21], our study

explores the feasible solution set to the above problems to build a surjective mapping from

the penalty multipliers to the set of feasible solutions for the original P-median problem.

Proposition 1 below ensures that a vector u maximizes the function Z′d(u) if and only if each

element in vector u lies in the range between the smallest and second smallest elements of

each row of the cost matrix.

Proposition 2.3.1. A vector u maximizes Z′d(u) if and only if ui ∈
[
ci[1],ci[2]

]
for i= 1, . . . ,m.

Proof. We first prove that if ui ∈
[
ci[1],ci[2]

]
for i = 1, . . . ,m, then Z′d(u) is maximized.

For any fixed i, let ui = ci[2]. The function Z′d(ui) becomes ∑ j min(0,ci j− ci[2])+ ci[2]. For

all j where ci j ≥ ci[2], min(0,ci j − ci[2]) = 0, and the function Z′d(ui) now is reduced to

min(0,ci[1]− ci[2])+ ci[2] ⇒ ci[1], which is the minimal element in row i. Thus, ui = ci[2]
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obtains the maximal value for Z′d(ui) for all i.

Next, for any fixed i, let ui = ci[1]. The function Z′d(ui) becomes ∑ j min(0,ci j−ci[1])+ci[1].

Since min(0,ci j− ci[1]) = 0 for all j, the function Z′d(ui) is reduced to ci[1], which is the

same result as above. Because the function is concave and continuous, the range between

ci[1] and ci[2] will also yield the same function value of ci[1], which is the optimal value for

all i.

Lastly, we prove the “only if” part, that is if ū maximizes Z′d(u), then ūi ∈
[
ci[1],ci[2]

]
for

i = 1, . . . ,m.

Suppose ∃ i, such that ūi /∈
[
ci[1],ci[2]

]
. First, let ūi = β where β < ci[1]. The function Z′d(ui)

becomes ∑ j min(0,ci j−β )+β = β , since β < ci j for all j ∈ J. Therefore, ∑ j min(0,ci j−

ū) < ci[1], which contradicts the hypothesis that ū maximizes Z′d(u). Next, assume ūi = ω

where ω > ci[2]. The function Z′d(ui) becomes ∑ j min(0,ci j−ω)+ω ≤ ci[1]−ω + ci[2]−

ω +ω = ci[1]+ ci[2]−ω , since min(0,ci j−ω) < 0 for at least two distinct j′s. Because

ci[2]−ω < 0⇒ Z′d(ūi) ≤ ci[2]+ ci[1]−ω < ci[1], which contradicts the hypothesis that ū

maximizes Z′d(u). Therefore, if ū maximizes Z′d(u), then ūi ∈
[
ci[1],ci[2]

]
for all i.

ui

Z
0

di
(ui)

ci[1] ci[2]

Figure 2.3.1: Illustration of Proposition 2.3.1

From the proof above, the space of penalty multipliers that maximizes the relaxed La-

grangian dual sub-problem is defined by
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U =
{

u , [u1,u2 · · · ,um]
∣∣ ui ∈ [ci[1],ci[2]], i = 1, . . . ,m

}
. Now that we have obtained the

space of penalty multipliers that maximizes Z′d(u), we will solve the original Lagrangian

dual (2.2.5) to find J̄ (i.e. the set of open facilities) that correspond to any vector u ∈U .

We observed that a vector of penalty multipliers u yields the solution J̄ in (2.2.5) if the

following sufficient conditions hold:

1. ∑i φi j < 0 for all j ∈ J̄.

2. ∑i φi j = 0 for all j /∈ J̄.

Since we want a surjective mapping from the space of penalty multipliers to the feasible

set of open facilities, the idea is to have each ui correspond to a facility j and the value of

ui to indicate whether or not φi j < 0. To ensure that the space of penalty multipliers U

contains the one(s) that corresponds to the optimal set J∗, we show that there exists u ∈U

for any of all the
( n

P
)

combinations of P open facilities. First, we consider a cost matrix

C where every column in C has one unique minimal element with respect to some row

i ∈ I. Proposition 2 shows that we can always construct a vector u ∈U such that the above

sufficient conditions hold for any given J̄.

Definition 2.3.1. A cost matrix C is said to be in Class I, if every column has a unique

minimal element with respect to at least one row. That is, J = Jm.

Proposition 2.3.2. For every cost matrix C in Class I, every possible set J̄ is the unique

solution to the ILP (2.2.5) for some vector u ∈U.

Proof. Given J̄, let ui = ci[2] for all i∈ I(J̄) and ui = ci[1] for all i /∈ I(J̄). We note that by def-

inition of I(J̄), if i∈ I(J̄), then ci[1]= ci j for some j∈ J̄. Thus, ∑i φi jy j =∑i∈I(J̄)min(0,ci j−

ci[2])y j +∑i/∈I(J̄)min(0,ci j− ci[1])y j, where ∑i/∈I(J̄)min(0,ci j− ci[1])y j = 0 for all j ∈ J and

∑i∈I(J̄)min(0,ci j− ci[2])y j = 0 for all j /∈ J̄ since ci j ≥ ci[2] for all j /∈ J̄. Thus, ∑i φi j = 0

for j /∈ J̄. Given that for all j ∈ J̄ there exist some i ∈ I where ci j = ci[1] and ci[1] < ci[2],

Zd(u) = ∑i∈I(J̄)min(0,ci j− ci[2])y j < 0 for all j ∈ J̄. Therefore, ∑i φi j < 0 for j ∈ J̄. This

completes the proof of the proposition.
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Essentially, the strategy of the proof is based on the observation that given J̄, y j = 1

in (2.2.5) for all j ∈ J̄ if and only if ∑i φi j = ∑i min(0,ci j − ui) < 0. In order for φi j to

be nonzero, the unique minimal element of row i must be in column j and the value of ui

must be greater than the minimum element. Therefore, ui determines the value φi j, where

φi j < 0 if ui > ci[1] and ci[1] is in column j, and φi j = 0 otherwise. Thus, y j can only be

assigned the value one if column j has a unique minimal element. Consequently, in order

for a possible set J̄ to be a unique solution to the ILP (2.2.5) the set J̄ must be contained

in Jm =
{

j ∈ J|∃i ∈M s.t. ci j = ci[1]
}

. To reduce the number of possible values for each

ui, we allow ui to only take the value ci[1] or ci[2]. As a result, the search space is updated

to the discrete space U =
{

u , [u1, . . . ,um]| ui ∈
{

ci[1],ci[2]
}
, i = 1, . . . ,m

}
. The following

example explains our construction of this search space. We note that for ease of illustration,

we let T denote a matrix where each row i has all the possible values for ui ∈
{

ci[1],ci[2]
}

.

Example 1:

C =



12 19 11 17

16 13 16 6

1 16 9 21

16 9 17 11


, T =



11 12

6 13

1 9

9 11


(2.3.3)

For this matrix C and P = 2, J∗ = {1,4}, m = n = 4, and Jm = {1,2,3,4}. Since, J∗ ⊆ Jm,

we are able to find a vector u that corresponds to J∗. We display all the possible values of

ui and their corresponding φi j values below:



uuu111 === 111111 → φφφ 1· === [[[000,,,000,,,000,,,000]]]

u2 = 6 → φ2· = [0,0,0,0]

u3 = 1 → φ3· = [0,0,0,0]

uuu444 === 999 → φφφ 4· === [[[000,,,000,,,000,,,000]]]





u1 = 12 → φ1· = [0,0,−1,0]

uuu222 === 111333 → φφφ 2· === [[[000,,,000,,,000,,,−−−777]]]

uuu333 === 999 → φφφ 3· === [[[−−−888,,,000,,,000,,,000]]]

u4 = 11 → φ4· = [0,−2,0,0]


. (2.3.4)

To ensure J̄ is equal to J∗, according to the construction process in our proof of Proposition
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2 we should choose the value of u such that ∑i φi1 < 0, ∑i φi4 < 0 and ∑i φi2 = ∑i φi3 = 0.

The corresponding penalty multipliers are u1 = 11,u2 = 13,u3 = 9,u4 = 9. As a result, the

chosen penalty multipliers applied in (2.2.5) yields the following solution:

min
y j

4

∑
j=1

4

∑
i=1

φi jy j +
4

∑
i=1

ui

=−8y1 +0y2 +0y3−7y4 +42

s.t.
4

∑
j=1

y j = 2,

which solution corresponds to the optimal solution set

J̄ = J∗ = {1,4} .

Next, we consider another class of cost matrix C where every column in C has a minimal

element with respect to some row i, and certain columns have more than one minimal

element.

Definition 2.3.2. A cost matrix C is said to be in Class II if J = J′ and J 6= Jm.

The strategy used in Example 1 relies heavily on the observation that we can always

choose a ui ∈U such that ui > ci[1]. Specifically, each column in the optimal set must have

an unique smallest entry with respect to at least one row. Such a strategy cannot be applied

when there are multiple smallest entries in at least one column, i.e. there exists a j ∈ J∗

where for all i ∈
{

i ∈ I| ci[1] ∈C· j
}

it is true that ci[1] = ci[2]. This is because in the algo-

rithm, we restrict the search space to ui ∈
{

ci[1],ci[2]
}

. Therefore, whenever ci[1] = ci[2], ui

can only take the value ci[1]. Example 2 illustrates such a scenario.

Example 2.
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C′ =



4 0 0 1

5 0 8 0

0 7 6 0

0 3 0 8


, T =



0 0

0 0

0 0

0 0


(2.3.5)

The matrix C′ belongs to the Gap-C instances since each column and row has exactly 2

nonzero integers from the set {1,2, . . . ,8}. For this matrix C′ with the parameters P= 2 and

m = n = 4, the optimal solution of the original problem is J∗ = {1,4}. Since J∗ * Jm = /0,

we are not able to find a vector u that corresponds to J∗. We display all the possible values

of ui and their corresponding φi j values below:



u1 = 0 → φ1· = [0,0,0,0]

u2 = 0 → φ2· = [0,0,0,0]

u3 = 0 → φ3· = [0,0,0,0]

u4 = 0 → φ4· = [0,0,0,0]


Because all the penalty multipliers in the search space are equal to zero, we are forced to

let ui = 0 for all i and the resulting u = [0,0,0,0] applied in (2.2.5) yields the following

solution:

min
y j

4

∑
j=1

4

∑
i=1

φi jy j +
4

∑
i=1

ui (2.3.6)

= 0y1 +0y2 +0y3 +0y4 +0

s.t.
4

∑
j=1

y j = 2,

which has multiple optimal solutions corresponding to (2.2.5). Specifically, the set J̄ that

corresponds to the multiple optimal solutions can be any of the
(

4
2

)
combinations of 2 open

facilities.
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The multiplicity of the optimal solutions in (2.3.6) is caused by the non-uniqueness of the

minimal element in every row. As previously stated, in order for a column j to be a solution

for some u ∈U the column j must have a unique minimal element with respect to at least

one row. Therefore, a cost matrix in which there exists a column that does not contain

a unique minimal element presents problems with our current search space. Recall that

ui determines the value φi j, where φi j < 0, if ui = ci[2] > ci[1] and the minimal element

ci[1] is located in column j. For cost matrices in Class I, we always can find a ci[2] > ci[1]

for all i. Now we consider cost matrices in Class II where there exists an i such that

ci[2] = ci[1]. In order to have ui determine the value φi j when ci[2] = ci[1], we expand each

penalty multiplier ui into a row vector ui· such that ui· can take multiple possible values.

For each column j′ that has a minimum element in row i there exists a u j′
i· such that φi j′ < 0.

This is accomplished by setting

u j′
i j =

 ci[2′] if j = j′.

ci[1] ∀ j ∈ J\{ j′},

where ci[2′] denotes the second smallest element in row i with a distinct value from the

smallest element. Given this new representation of u we replace ui with ui j in (2.2.5).

Thus, for a given matrix u = [u1·, · · · ,um·], we solve the Lagrangian dual problem

Z∗d(u) = min
y j

n

∑
j=1

m

∑
i=1

φi jy j +
n

∑
j=1

m

∑
i=1

ui j (2.3.7)

s.t.
n

∑
j=1

y j = P,

y j ∈ {0,1} ,∀ j = 1, . . . ,n,

where φi j is updated to φi j = min(0,ci j − ui j). Therefore, u j′
i· determines the value φi·,

where φi j < 0 for j = j′ and φi j = 0 for all j 6= j′. In the case where we need φi j = 0 for all
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j we add the penalty multiplier

u0
i j = ci[1] ∀ j ∈ J.

This penalty multiplier is added because ∑i φi j must equal zero for all j /∈ J̄. With this new

formulation J̄, we can ensure that ∑i min(0,ci j− ui j) < 0 for all j ∈ J̄ and ∑i min(0,ci j−

ui j) = 0 for all j /∈ J̄, which satisfies the sufficient conditions mentioned previously. As a

result, for Class II matrices, we now have a surjective mapping from the space of extended

penalty multipliers to the feasible set of open facilities.

In the case where all the entries of a row are equal, we can delete that row in prepossess-

ing, because the facility that is assigned to that client can be arbitrarily chosen. Therefore,

the inequality ci[2′] > ci[1] will always hold. In consequence, the search space is updated to

U =
{

u , [u1·; . . . ;um·]| ui· ∈
{

u0
i·,u

J′i (1)
i· , · · · ,uJ′i (Ni)

i·

}
, i = 1, . . . ,m

}
. Due to the new con-

struction of the search space, the vector u is replaced by an m by n matrix

u =


u11 · · · u1n

...
...

um1 · · · umn

 ,

where we slightly abuse the notation u to denote a matrix.

Proposition 2.3.3. For every cost matrix C in Class II, each possible set J̄ is the unique

solution to Z∗d(u) for some matrix u ∈U.

Proof. Let ui· = u0
i· for all i /∈ I(J̄) and ui· = u j′

i· for all i ∈ I(J̄) where j′ ∈ J̄. Thus,

∑i min(0,ci j−ui j)y j =∑i∈I(J̄)min(0,ci j−u0
i j)y j+∑i/∈I(J̄)min(0,ci j−u j′

i j)y j, where ∑i/∈I(J̄)min(0,ci j−

u0
i j)y j = 0 for all j ∈ J and ∑i∈I(J̄)min(0,ci j− u j′

i j)y j = 0 for all j /∈ J̄ by construction of

u j′
i· , leading to ∑i φi j < 0 for j ∈ J̄ and ∑i φi j = 0 for j /∈ J̄. This completes the proof of the

proposition.

It is clear that Class I can be considered a special case of Class II. Therefore, the
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space of U can also be applied for cost matrices in Class I. The effectiveness of this search

space is demonstrated by Example 3, which further illustrates that for a given matrix C′

belonging to the Gap-C instances, the extended representation of the penalty multipliers

allows the method to find the penalty multipliers corresponding to the optimal solution.

Example 3.

C′ =



4 0 0 1

5 0 8 0

0 7 6 0

0 3 0 8


, T =



uuu000
1· u2

1· u3
1·

u0
2· u2

2· uuu444
2·

u0
3· uuu111

3· u4
3·

u0
4· uuu111

4· u3
4·


(2.3.8)

Note that the matrix C′ remains the same as in Example 2. We display all the possible

values of u and their corresponding φi j values below:



uuu000
1· === [[[000,,,000,,,000,,,000]]] → φφφ 1· === [[[000,,,000,,,000,,,000]]]

u0
2· = [0,0,0,0] → φ2· = [0,0,0,0]

u0
3· = [0,0,0,0] → φ3· = [0,0,0,0]

u0
4· = [0,0,0,0] → φ4· = [0,0,0,0]





u2
1· = [0,1,0,0] → φ1· = [0,−1,0,0]

u2
2· = [0,5,0,0] → φ2· = [0,−5,0,0]

uuu111
3· === [[[666,,,000,,,000,,,000]]] → φφφ 3· === [[[−−−666,,,000,,,000,,,000]]]

uuu111
4· === [[[333,,,000,,,000,,,000]]] → φφφ 4· === [[[−−−333,,,000,,,000,,,000]]]
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u3
1· = [0,0,1,0] → φ1· = [0,0,−1,0]

uuu444
2· === [[[000,,,000,,,000,,,555]]] → φφφ 2· === [[[000,,,000,,,000,,,−−−555]]]

u4
3· = [0,0,0,6] → φ3· = [0,0,0,−6]

u3
4· = [0,0,3,0] → φ4· = [0,0,−3,0]


To ensure J̄ is equal to J∗, we select the penalty multipliers according to the construc-

tion process in our proof of Proposition 3. Since J∗ = {1,4} and I(J∗) = {2,3,4}, we

choose the penalty multipliers u4
2·, u1

3·, and u1
4· which assures that ∑i φi1 < 0 and ∑i φi4 < 0.

Furthermore, we choose the last penalty multiplier u0
1·. As a result of the chosen penalty

multipliers, ∑i φi2 = ∑i φi3 = 0. Therefore, the value for (2.3.7) becomes

min
y j

4

∑
i=1

4

∑
j=1

min(0,ci j−ui j)y j +
4

∑
j=1

4

∑
i=1

ui j

=−9y1 +0y2 +0y3−5y4 +14

s.t.
4

∑
j=1

y j = 2

J̄ = J∗ = {1,4} ,

which is the desired result.

The strategy used above depends on the assumption that every column has a minimum

element with respect to some row i ∈ I. Therefore, cost matrices where there exists a

column that does not contain a minimum element presents complications with our current

search space. We can circumvent this issue by converting such a cost matrix into a matrix

where every column has a minimal element of a certain row.

Definition 2.3.3. A cost matrix C is said to be in Class III if J 6= J′, i.e., J′ is a strict subset

of J.

We can transform a cost matrix C in Class III into a cost matrix C′ in Class II by

modifying the cost matrix so that a minimum element is included in every column. One
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way to accomplish this transformation is to perturb the cost matrix such that every column

has a minimal element and use the original cost matrix to determine the objective value.

This allows us to solve (2.3.7) for any possible J̄ while not affecting the original objective

value.

Let J
′c be the set of column indices that are not in J′, i.e., a column in J

′c does not

contain a minimal element of any row. First, we define C·J′c as a sub-matrix such that

each column has no minimum element respect to any row i of the original cost matrix C.

Next, for each column j in C·J′c , we subtract ci j− ci[1] from an entry ci j. This procedure

ensures that there is a ci[1] in every column. The perturbed cost matrix is only used in the

Lagrangian sub-problem to obtain the solution J̄, and the original cost matrix is used to

obtain the value of J̄. Therefore, the optimal solution is unaffected by this perturbation.

Example 4.

C =



6 3 1 4

5 2 1 5

4 1 6 6

1 6 6 2


⇒ C′ =



6 3 1 4

5 2 1 1

4 1 6 6

1 6 6 2


or C′ =



6 3 1 1

5 2 1 5

4 1 6 6

1 6 6 2


For this example J

′c = 4, which results in C·J′c = [4 5 6 2]T . We choose a minimum element

from column 3, since it has a minimum element with respect to rows 1 and 2. We either

subtract c24−c23 from entry c24 or c14−c13 from c14 to construct the perturbed cost matrix

C′.

We point out that we generally cannot transform a cost matrix in Class II into a cost

matrix in Class I. In particular, when a cost matrix has more columns than rows there

exists no perturbation of that matrix that will cause each column to have a unique minimal

element. Therefore, our construction of matrix u is needed to solve this problem for cost
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matrices with arbitrary dimensions.

Since any cost matrix can be transformed, or be considered to belong in Class II, Propo-

sition 3 plays a critical role in the effectiveness of our method. Specifically, for P-median

problems we extend the Lagrangian relaxation by representing the penalty multipliers via

a matrix and reduce the space of penalty multipliers to the search space U . Proposition 3

guarantees this reduction retains a u ∈ U that corresponds to the optimal solution of the

original problem. Fortunately, the expansion of the penalty multipliers from a vector to a

matrix does not significantly increase the size of the search space U or the memory require-

ments. This yields a novel way to reformulate the original P-median problem as another

global optimization problem of the extended penalty multipliers. In implementation, we

only need to store Ni + 1 elements (each of which is a vector) in each row of matrix T as

displayed in (2.3.8). Below, we explain how to find the matrix of optimal penalty multipli-

ers u∗ that corresponds to the optimal solution of the original problem.

2.3.2 Finding Optimal Penalty Multipliers

We convert the original optimization problem into a new optimization problem. This new

problem is to find a solution u∗ to the problem

argmin
u∈U

h(u), (2.3.9)

where h(u) : Rmxn → R is a function whose image is the value of the original objective

function ∑i, j ci jxi j. The function h(u) is evaluated in the following steps:

1. For u, find a solution J̄ in the ILP (2.3.7). If the cost matrix C falls in Class III, use

the transformed matrix C′.

2. Compute the corresponding x′i js as follows: for each i set xi j′ = 1, where j′ is an

index such that ci j′ = min j∈J̄ ci j and xi j = 0 for all j 6= j′.

3. Compute the objective function ∑i, j ci jxi j from x′i js determined in step 2.

35



In cases where the cost matrix C is augmented to C′, matrix C′ is only used in step 1

to obtain the corresponding columns. The original cost matrix is used to compute the

objective function value. For this reason, the optimal solution for the original problem is

not influenced by the transformation of C to C′.

Due to the lack of structure of the objective function h(u), a stochastic search method

is desirable for finding the global optimal solution. We incorporate a model-based search

algorithm to search in U . The model-based search algorithm is broken up into two primary

steps at each iteration: 1) generate candidate solutions from a sampling distribution, and 2)

update the sampling distribution such that future sampling is biased towards high quality

solutions in the next iteration. In our context, we try to find high quality solutions of the

penalty multiplier u in the search space U we constructed. The sampling distribution is

parameterized by a probability matrix F whose (i, j)th element represents the probability

of selecting the (i, j)th element of matrix T . Matrix T is constructed such that each possible

penalty multiplier ui· is located in row i. (For the cost matrix in Example 3, Fk(3,1) is the

probability that u3· = u0
3· at iteration k.) This probability matrix is used to determine the

probability distribution over all possible matrices of penalty multipliers u. We note that

matrix T is not a matrix in the typical sense, because its elements are row vectors and it

does not necessarily have the same number of elements in every row. However, we use this

notation for the convenience of explaining the implementation of our algorithm. Because

the probability of selecting a matrix of penalty multipliers for each i ∈ I is independent,

the probability of a specific matrix of penalty multipliers is the product of the probabilities

of selecting ui· for each i ∈ I. Consequently, the probability mass function f (·;Fk) of the

penalty multiplier is given by:

f (u;Fk) =
m

∏
i=1

n

∑
j=1

Fk(i, j)I[ui·=Ti j], (2.3.10)
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where the indicator function I[ui·=Ti j] = 1 if ui· = Ti j and I[ui·=Ti j] = 0 otherwise. The prob-

ability matrix can be updated according to a particular model-based optimization algo-

rithm such as the Cross Entropy Method [60], Model Reference Adaptive Search [12], and

Gradient-Based Adaptive Stochastic Search [69]. Implementation details will be discussed

in the next section.

In summary, we significantly reduce the search space of penalty multipliers by con-

structing a space U where each penalty multiplier maximizes the dual function. Then, we

incorporate a stochastic search method to search in U to find the penalty multiplier that

minimizes the objective function h(u). The description of the Lagrangian Search Method

is presented below.

Algorithm 1 Lagrangian Search Method
Input: Cost matrix C, and value for P.
Output: Value ∑i, j ci jxi j, and assignments xi j for all i and j.

1. Make appropriate transformation of cost matrix C to ensure each column has a minimal
element with respect to some row.

2. For each row i, construct the set of columns J′i which have a minimum cost in row i.

2. Construct search space of all possible penalty multiplier matrices: U ={
u , [u1·; . . . ;um·]| ui· ∈

{
u0

i·,u
J′i (1)
i· , . . . ,uJ′i (Ni)

i·

}}
, where u is a matrix of penalty multipli-

ers.

3. Implement a stochastic search method to find the solution to minu∈U h(u).

2.3.3 Optimal Penalty Multipliers vs Optimal Lagrangian Multipliers

It is important to distinguish the differences between the optimal penalty multipliers and the

optimal Lagrangian multipliers. Although both are motivated by Lagrangian relaxation, the

two optimal multipliers are derived from two different objectives. As mentioned previously,

the optimal penalty multipliers u∗ are those that map to the optimal set of open facilities of
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the original P-median problem. On the other hand, the optimal Lagrangian multipliers ū∗

maximizes the Lagrangian dual

Z∗d = max
ū

Zd(ū), (2.3.11)

which can be solve in a straightforward way [26]. Let the set

X =

{
x
∣∣∣∣ n

∑
j=1

y j = P,
n

∑
j=1

xi j > 0,xi j ≤ y j,and xi j ∈ {0,1} ∀i, j

}

contain all feasible solutions to the Lagrangian dual problem. Due to X being a finite set,

all feasible solutions can be enumerated . Let |X |= T and denote xt as a solution belonging

to X , where t = 1, ...,T . Following this, we can express (2.3.11) as the following linear

program

Z∗d = maxw, (2.3.12)

s.t. w ≤
4

∑
i=1

4

∑
j=1

ci jxt
i j +

4

∑
i=1

ūi(1−
4

∑
j=1

xt
i j), t = 1, ...,T.

To explain the difference between the two optimal multipliers we execute CPLEX to find

the optimal Lagrangian multipliers of the cost matrices C and C′ that correspond to Example

1 and Example 3 respectively.

Example 5

C =



12 19 11 17

16 13 16 6

1 16 9 21

16 9 17 11


, C′ =



4 0 0 1

5 0 8 0

0 7 6 0

0 3 0 8


For matrix C and P = 2, the optimal value Z∗ = 30 and for matrix C′ and P = 2, the optimal

value Z∗ = 1. Since the dimensionality of C and C′ is small the set of feasible solutions
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can easily be determined. Recognize that the feasible set of solutions are equivalent for

both cost matrices. Solving (2.3.11) we obtain the optimal Lagrangian multipliers and the

corresponding Lagrangian dual value for both C and C′ via CPLEX, which are given below.

• Matrix C: ū∗ = [14,16,21,16] and Zd(ū∗) = 30

• Matrix C′: ū∗ = [1,3,1,3] and Zd(ū∗) = 0 < Z∗

Although both the optimal Lagrangian multipliers and the optimal penalty multipliers ob-

tain the optimal value Z∗ for matrix C, the multipliers themselves are different; that is,

u∗ 6= ū∗. Since, matrix C′ causes a duality gap, the optimal Lagrangian multipliers are only

able to obtain a lower bound on the optimal value Z∗. In contrast, Example 3 shows that

the extended penalty multipliers are able to obtain the optimal value Z∗. In conclusion, the

main difference between the two optimal multipliers is that in the case where their exist

a duality gap by definition the optimal Lagrangian multipliers do not achieve the optimal

value of the original problem. Yet, by construction there always exist an optimal extended

penalty multiplier that corresponds to the optimal solution of the original problem.

2.4 Numerical Results

We tested our method on instances from the Discrete Location Problems library available at

<http://math.nsc.ru/AP/benchmarks/P-median/p-med_eng.html>, which

are instances with large gap (Gap-C) between the original P-median problem and its La-

grangian relaxation, instances on perfect codes (PCodes), instances on chess boards (Chess),

and instances on finite protective planes (FPP). The other methods considered in the com-

parison are the following:

• Hybrid Heuristic [56], which is based on a greedy randomized adaptive search pro-

cedure, swap-based local search, and path-relinking for the P-median problem.
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• The method presented in [54], which uses a cooperative exact approach where tabu

search procedure in the primal is combined with a Lagrangian branch and bound

search in the dual.

• CPLEX, which to our knowledge is one of the most effective commercial mixed

integer program solver.

For all problems, we incorporated the Monte Carlo version of the Model Reference Adap-

tive Search (MRAS) method [34] as the stochastic search method in step 3 of our algorithm.

The MRAS method is competitive in solving global optimization problems in combinato-

rial and continuous domains and has been proven to converge asymptotically to an optimal

solution. The MRAS method generates candidate solutions from a parameterized proba-

bility distribution on the solution space at each iteration, and uses a sequence of reference

distributions to lead the updating process of the parameterized distribution such that it as-

signs higher probability on the set of optimal solutions. For more details of the MRAS

method, we refer the reader to [34]. We incorporate the MRAS method in the following

manner:

Initialization: Set k = 0 and let F0 be a uniform distribution over T .

1. Generate N random penalty multipliers matrices u1, . . . ,uN from probability matrix

Fk. For each i, sample the penalty multiplier located in the (i, j)th entry of T with

probability Fk(i, j), j = 1, . . . ,Ni.

2. Calculate the objective value h(ui) for all i and order them from smallest to largest,

h[1] ≤ . . . ≤ h[N]. Let γk = h[dpNe] be the p sample quantile of the objective values,

where p ∈ [0,1].

3. Update the probability matrix in the kth iteration by

Fk(i, j) =
∑

N
n=1 S(h(un))k/ f (un;Fk−1)I[h(un)≤γk]I[un

i·∈Ti j]

∑
N
n=1 S(h(un))k/ f (un;Fk−1)I[h(un)≤γk]

, (2.4.1)
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where S(·) : R→ R+ is a strictly decreasing function.

4. Perform smoothing update for the probability matrix

Fk := ψFk +(1−ψ)Fk−1, (2.4.2)

where 0 < ψ ≤ 1.

5. If the stopping criteria is not met, set k := k+1 and go back to step 1.

For each problem instance, we performed 30 independent replications of our algorithm im-

plemented in MATLAB. We report the best solution value (V ∗), worst solution value (V ′),

standard error (δ ), and average running time in seconds obtained out of the 30 trials. We

chose the following initial parameters: sample size N = 1000, percent quantile p = .05,

smoothing constant ψ = .8, S(h(u)) = e−kh(u), and the initial probability matrix F is uni-

formly distributed. The algorithm was terminated when the top performing sample was

the same value for four consecutive iterations. The computational times for the exact co-

operative method were found in [54], which only reports the statistics of the times on all

30 instances for each problem class (Table 5). For the Gap-C instances, the time for our

LS method was found to be significantly shorter than CPLEX and the minimum time of

the exact cooperative method, while achieving the optimal value for 28 out of 30 Gap-C

instances. Furthermore, the LS method obtained better solutions than the Hybrid Heuristic

method for all of the Gap-C instances. For the other classes of problem instances, CPLEX

and the exact cooperative method outperformed the LS method in computational time while

achieving the same optimal value as the LS method. These results were expected due to

the the small gap between the underlying problem and its Lagrangian relaxation. We point

out that CPLEX and the exact cooperative method obtained the optimal solution for every

instance. The numerical experiments presented in Table 1-4 were performed on a computer

with an Intel Core i5-4210U 2.40 GHz processor, 5.91 GB of memory, and a Windows 8

operating system. The results in Table 5 are based on implementation in C and testing on

41



workstations equipped with an Intel i7-2600 CPUs 3.4 GHz processor [54].

In summary, although the Hybrid Heuristic was notably faster than the LS Method, the

Hybrid Heuristic could not consistently achieve values as good as the LS method. More-

over, the LS method solves the Gap-C instances in significantly shorter time than both

CPLEX and the exact cooperative method. The low standard error δ and the mean value

V ′ of the instances indicates that our algorithm is robust with respect to the randomness in

the algorithm. The numerical results below demonstrate that for Gap-C instances, the LS

method outperforms the Hybrid Heuristic with respect to solution quality. Furthermore,

although the exact cooperative method and the LS method were implemented on different

machines, due to the large difference in computational times, it is fair to conclude that the

LS method outperforms the exact cooperative method in terms of computational time for

Gap-C instances.
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2.5 Conclusion

In this chapter, we presented a method that solves the P-median problem by searching in

the space of the extended penalty multipliers. We substantially reduce the space of the

extended penalty multipliers by only considering the penalty multipliers that are solutions

to the extended Lagrangian relaxation. The combination of constructing and searching

in the space of the extended penalty multipliers provides a solid foundation for our algo-

rithm which yields satisfactory solutions in competitive computational experiments. This

provides a new framework within the Lagrangian-type methods by selecting the optimal

penalty multipliers via a stochastic search method. Furthermore, this general framework

has the potential to yield computationally effective heuristic algorithms for other combina-

torial optimization problems.
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Table 2.4.1: Gap-C: n = m = 100 and P = 14

Gap Optimal Value Lagrangian Search Hybrid Heuristic CPLEX
V ∗L V ′ δ Time (sec) V ∗H Time (sec) Time (sec)

39.73 147 147 149 0.33 54 153 .28 17025
58.77 145 145 147 0.01 53 147 .17 25607
59.56 142 142 146 0.42 67 148 .27 17131
41.91 144 144 144 0 48 158 .27 20550
41.52 137 137 140 0.02 52 146 .11 20532
34.83 139 139 142 0.01 59 1146 .11 18567
37.65 130 130 133 0.2 63 1120 .13 20815
43.06 138 138 143 0.67 65 143 .20 22832
43.36 147 147 150 0.23 72 164 .13 26225
41.17 142 142 144 0 70 146 .13 21867
44.39 140 140 147 0.51 67 172 .11 22412
44.20 152 152 158 0.67 62 172 .13 23548
41.94 133 133 137 0.31 65 148 .16 20042
45.24 136 136 144 0.2 63 144 .23 26106
43.98 134 134 138 0.41 69 141 .17 17073
45.56 136 136 136 0 74 154 .22 25665
38.16 137 137 148 0.35 59 145 .16 23591
41.56 140 140 146 0 61 163 .11 56783
36.30 138 140 150 0.2 50 157 .13 23458
40.94 121 121 128 0.1 67 121 .13 20055
42.29 133 133 133 0 63 149 .11 24691
43.92 139 139 145 0.28 61 145 .11 15434
42.17 131 131 139 0 69 142 .11 41641
40.18 132 132 145 0.82 68 156 .11 11852
37.31 136 136 136 0 76 139 .11 32014
41.92 137 137 141 0.61 81 159 .11 11902
37.33 124 124 124 0 52 136 .11 36892
39.29 137 137 137 0 59 142 .17 22212
47.59 141 141 141 0 54 163 .22 26951
40.96 129 130 136 0.51 67 1127 .13 39681
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Table 2.4.2: PCodes: n = m = 128 and P = 7

Gap Optimal Value Lagrangian Search Hybrid Heuristic CPLEX
V ∗L V ′ δ Time (sec) V ∗H Time (sec) Time (sec)

5.98 232 232 234 0.33 62 232 .16 2.24
2.72 217 217 225 0.43 69 218 .16 1.49
1.25 227 227 234 1.21 56 227 .16 1.53
1.96 219 219 225 .39 58 219 .16 1.86
4.14 223 223 227 2.82 52 227 .16 2.24
1.46 215 215 224 1.21 72 215 .16 1.75
1.92 221 221 226 1.2 78 229 .20 1.70
2.48 217 217 228 0.27 68 220 .16 1.88
4.40 220 220 220 0.01 74 221 .20 2.34
1.51 223 223 223 0 79 223 .16 1.60
1.51 211 211 219 1.01 81 211 .16 1.66
2.77 226 226 230 0.82 84 226 .16 2.15
0.17 209 209 215 0.91 75 209 .16 1.64
0.17 226 226 230 0.63 71 230 .16 2.01
0.17 221 221 221 0.0 73 221 .16 2.11
1.95 225 225 235 0.42 81 225 .16 1.72
1.74 222 222 226 0.12 68 222 .20 1.66
0.00 205 205 221 1.98 67 205 .22 1.57
0.77 226 226 233 0.87 62 232 .16 1.72
2.79 229 229 239 0.46 68 229 .20 1.87
0.74 215 215 215 0.0 65 215 .14 1.42
2.83 212 212 216 0.23 71 213 .22 2.06
0.80 209 209 209 0.0 76 209 .16 1.73
1.31 207 207 211 0.51 84 207 .14 1.89
.48 220 220 220 0 .72 220 .16 1.89

2.06 220 220 227 0.61 76 224 .16 1.98
0.00 207 207 212 0.35 72 207 .16 1.57
0.00 222 222 231 0.24 89 229 .16 1.73
2.37 223 223 228 0.21 92 223 .26 2.04
3.44 204 204 204 0.0 78 206 .14 1.90
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Table 2.4.3: FPP: n = m = 133 and P = 11

Gap Optimal Value Lagrangian Search Hybrid Heuristic CPLEX
V ∗L V ′ δ Time (sec) V ∗H Time (sec) Time (sec)

12.20 230 230 230 0.03 62 233 .17 12.45
11.59 220 220 224.32 2.32 60 223 .19 8.52
11.33 233 233 234.78 1.42 69 233 .19 11.26
14.62 221 221 222.63 1.56 56 221 .16 17.37
10.68 226 226 227.49 1.32 59 226 .19 14.93
11.42 236 236 237.83 1.01 61 240 .19 11.38
7.02 211 211 211.71 0.83 68 224 .20 2.71

10.47 220 220 220.82 0.69 62 220 .17 3.50
10.00 225 225 226.31 0.92 78 231 .17 8.64
5.40 228 228 228.91 0.73 80 228 .19 4.45

12.86 219 219 220.61 1.31 69 219 .17 15.20
10.66 239 239 240.18 0.67 65 239 .17 4.69
11.90 226 226 227.33 1.11 75 226 .17 11.25
6.24 224 224 224.67 0.35 63 241 .19 10.08

12.23 236 236 236 0.0 79 236 .17 15.01
7.69 219 219 219.58 0.89 79 219 .17 4.52
7.76 234 234 234.61 0.47 69 234 .19 14.23

11.02 224 224 224.99 0.71 67 224 .17 15.53
5.16 234 234 234.72 0.53 70 244 .19 4.22
9.12 228 228 228.56 0.19 62 228 .19 7.18
9.48 221 221 221.78 0.43 73 221 .17 8.49

14.47 223 223 224.31 0.88 81 223 .19 4.14
6.79 223 223 225.02 1.98 66 230 .17 2.90

13.04 216 216 218.43 2.82 78 216 .17 4.02
10.48 216 216 216.76 0.31 86 216 .17 3.84
9.30 232 232 233.98 1.61 71 232 .17 4.23
6.76 222 222 224.67 2.47 62 222 .19 12.43

10.42 227 227 228.32 .93 89 227 .19 4.12
6.59 213 213 213.43 0.36 71 213 .19 4.00
8.50 231 231 231.72 0.48 77 231 .17 9.21
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Table 2.4.4: Chess: n = m = 144 and P = 4

Gap Optimal Value Lagrangian Search Hybrid Heuristic CPLEX
V ∗L V ′ δ Time (sec) V ∗H Time (sec) Time (sec)

7.17 258 258 259.31 1.23 72 261 .20 2.49
4.82 247 247 247.67 0.48 61 247 .27 2.13
1.89 246 246 249.21 2.48 59 246 .20 2.54

26.38 235 235 236.30 1.20 55 235 .20 2.15
9.96 257 257 257.67 0.89 64 257 .20 3.04
3.76 236 236 237.23 0.91 71 236 .27 2.23
6.21 249 249 251.03 2.22 83 251 .34 2.66

23.01 239 239 239.92 1.47 69 239 .36 2.42
28.88 232 232 232.76 0.83 76 232 .27 2.65
6.23 244 244 244.68 0.45 78 244 .27 2.50
6.44 249 249 251.22 2.51 97 249 .34 2.90
6.43 247 247 248.11 1.13 84 247 .20 3.66
3.01 247 247 247.81 1.31 81 247 .25 2.22

23.20 250 250 250.25 0.28 76 252 .19 2.12
8.79 247 247 247.56 0.32 91 247 .28 2.59

27.67 253 253 253.72 0.78 93 256 .27 2.49
34.66 251 251 251.33 0.57 76 252 .20 2.58
29.22 243 243 243.28 0.41 68 243 .20 2.94
8.48 242 242 242.41 0.29 61 248 .20 2.31
8.01 249 249 250.12 1.08 72 249 .20 2.28

28.00 250 250 251.22 1.52 73 259 .19 3.00
30.12 249 249 249.52 0.78 65 254 .36 2.77
9.58 256 256 256.49 0.63 62 259 .28 2.46
7.74 239 239 241.07 1.73 73 239 .19 2.03
5.07 248 248 248.67 .81 79 250 .19 3.09

26.72 232 232 233.31 0.92 87 232 .28 2.73
28.45 239 239 239.29 0.35 62 239 .19 1.92
31.17 247 247 247.18 0.22 68 251 .27 2.13
2.73 239 239 239.34 0.29 59 239 .28 2.46
3.32 226 226 226 0.0 82 226 .20 2.77

Table 2.4.5: Results from [54]

Exact Cooperative Method Time (sec)
Instances Min Median Max Mean St.Dev

Gap-C 4213 5040 7035 5198 565
PCodes 1 1 1 1 1

FPP 1 1 1 1 1
Chess 1 1 1 1 1
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CHAPTER 3

SOLVING MULTI-OBJECTIVE OPTIMIZATION VIA ADAPTIVE

STOCHASTIC SEARCH WITH DOMINATION MEASURE

3.1 Background and Motivation

Problems that require optimizing several objectives concurrently are known as multi-objective

optimization problems. Obviously, this type of problems arises in many real-world appli-

cations, including construction science [42], economics [63], medical treatments [55], and

logistics [44], in which incommensurable and conflicting objectives need to be optimized.

Therefore, it is often unlikely to have a solution that optimizes all objectives simultane-

ously. A more reasonable goal is to obtain a set of solutions, where the quality of each

solution is incomparable without any prior knowledge of preference. These solutions are

known as Pareto optimal solutions, which are “optimal” in the sense that no other solutions

in the solution space are superior to them while taking into account all of the objectives.

The set of Pareto optimal solutions is called the Pareto optimal set, and its image in the

objective space is called the Pareto front.

Numerous methods have been developed to find or approximate the Pareto optimal set

of a general multi-objective optimization problem, among which perhaps the most popular

ones are evolutionary algorithms [24] that use iterative selection, mutation and crossover

operations to generate multiple Pareto optimal solutions in parallel. Other methods include

stochastic search methods [68] that choose candidate solutions from some probability dis-

tribution and improve the way those candidate solutions are selected in each iteration, and

particle swarm methods [50] that keep a population of potential solutions (particles) that

are manipulated by a velocity vector, which changes the position of the particles at each

iteration. Furthermore, simulated annealing [22] has also been implemented in the multi-
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objective domain by using multiple weight vectors to convert the problem into several

single-objective problems. A major downside of using these types of methods is that in

most cases the performance of the algorithm is very sensitive to the parameters or weights

one chooses.

Although model-based algorithms have mostly been used to solve single-objective op-

timization problems, there are some methods that incorporate the Cross Entropy (CE)

method, a model-based approach, to solve multi-objective problems, see e.g., [64] and

[7]. In [64] samples are generated from a fixed number of sampling distributions, which

allows the algorithm to be very fast and simple to implement. However, since a fixed num-

ber of sampling distributions are used, this method may have difficulty with constructing a

sampling distribution that has majority of its mass on isolated points of the Pareto optimal

set. [7] propose a histogram approach in which candidate solutions are drawn indepen-

dently along each dimension of the solution space. By sampling in this manner the Cross

Entropy method can be applied separately in each dimension, which allows the algorithm

to produce satisfactory results in few evaluations. Although this method performs very well

on some problems, it could have difficulty in capturing the entire Pareto optimal set that

consists of highly correlated solutions.

In view of the existing methods in the literature, a method that explores the superiority

or the dominance relationship among solutions by simple quality metrics is still lacking. In-

corporating such metrics reduces problem dimensionality since the multi-dimensional ob-

jective space is mapped onto a single-dimensional one through direct comparisons among

solutions. Thus, the original multi-objective problem is transformed into a single-objective

one, in which the objective is to find the solutions that optimize a particular quality metric.

Of course, as pointed out by [71], a reduction of problem dimensionality will inevitably

cause the loss of information. That is, generally the global optimal set of the reformulated

problem will not be the same as the Pareto optimal set. In particular, [71] prove that in

order for a metric to retain the Pareto dominance relation the dimension of the metric and
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the objective space must be equivalent. There are some initial explorations along this line

of research. For example, a quality metric can be derived by a weighted aggregation of the

objective functions. The issue with this quality metric is that a single choice of weights

leads to at most one point in the Pareto optimal set. Although multiple points could be

obtained via changing the weights, the final approximation could be unsatisfactory since a

uniform spread of the weighting coefficients does not necessarily produce a uniform spread

of Pareto optimal solutions. Moreover, this technique is infeasible for problems with a large

amount of objectives, since the total number of weight combinations grows exponentially

w.r.t the number of objectives.

In [71] quality metric of a solution set termed hypervolume was proposed, which is

defined as the total size of the area that is dominated by that set in the objective space w.r.t.

a reference point. It is desirable for performance assessment of a solution set since it has the

ability to measure how close solutions are to the Pareto front as well as how evenly spread

the solutions are in the Pareto optimal set. Therefore, it can qualitatively compare two

different solution sets by the use of one value. Since the hypervolume metric is influenced

by any type of progress to the true Pareto front, many methods have used this metric as a

way to guide the search to favorable areas of the solution space, see [27], etc. Although

the hypervolume metric has many favorable properties, there are also some drawbacks.

In particular, the choice of the reference point could affect progression of the search to

promising areas of the solution space, the hypervolume is biased towards convex regions

of the objective space, and as the number of objectives increase so does the computational

complexity of calculating the hypervolume.

3.1.1 Research Results and Contribution

We introduce a new parameter-free and unary performance metric to measure the quality

of solutions, termed as domination measure. Practically, the domination measure of a

solution can be viewed as the measure of the region in the solution space that dominates
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that solution. Unlike hypervolume mentioned previously, it is a global performance metric

since all the solutions in the solution space are taken into account for its computation. To the

best of our knowledge, this work is among the very first to incorporate such a performance

metric for solving multi-objective problems.

There are many advantages for using domination measure as a performance metric.

Foremost, unlike the aforementioned scalarization methods, this metric does not require

any tuning of parameters. Moreover, the domination measure of a solution is a rigorous

quantification of the quality of a solution. That is, the lower the domination measure, the

better the solution. Finally, if a solution is Pareto optimal, then it has a domination measure

of zero since no solution dominates it. When the solution space consists of finite solutions,

the set of Pareto optimal solutions is exactly the set of solutions with domination measure

of zero. Precisely, a solution being Pareto optimal is equivalent to the solution having a

domination measure of zero. In contrast, for a continuous solution space a solution that

is not Pareto optimal can also have a domination measure of zero, which is not surpris-

ing since some of the dominance relation is lost by reducing the dimensionality of the

objective space through domination measure. Although theoretically the set of solutions

with domination of zero is not equivalent to the Pareto optimal set, it is a sufficiently good

approximation in the sense that no solution dominates it almost surely.

By employing domination measure as a performance metric, we are able to transform

the original multi-objective optimization problem into a single-objective problem, where

the goal is to find solutions that have a domination measure of zero. Note that this objective

is also stochastic since domination measure is an expectation of an indicator function on

the dominance relation w.r.t. a uniform probability measure. While we benefit from a

significant reduction in problem complexity, we make the compromise from finding Pareto

optimal solutions to finding solutions with a domination measure of zero. Nevertheless, we

will propose an approach tailored for the reformulated problem and show empirically that

it is not prone to converge to a non-Pareto optimal solution with a domination measure of
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zero.

To solve the reformulated stochastic single-objective problem, we propose a model-

based approach that finds multiple global optimal solutions. The idea is to introduce a

mixed sampling distributions with components from a parameterized family of densities,

and iteratively update the sampling distribution parameters by minimizing the Kullback-

Leibler divergence between properly constructed reference distributions and the parame-

terized sampling distributions. The sampling distributions are updated until they are de-

generate distributions concentrated on a global optima. Our approach is similar to existing

model-based approaches such as the CE method and MRAS in the sense that reference

distributions are introduced to guide the sampling process while the actual sampling is

achieved by the parameterized distributions. A major difference from the aforementioned

methods is that in every iteration our approach keeps track of a population of sampling dis-

tributions with an adaptive number of components instead of a single sampling distribution.

This ensures that multiple uniformly spread global optimal solutions are generated rather

than a single optimal solution.

Based on the proposed approach we design an algorithm in an ideal version and an

implementable version. For the ideal version algorithm, we show that for every solution

that has a domination measure of zero, there exists a sequence of parameterized sampling

distributions that converges to the degenerate distribution on that solution. For the imple-

mentable version algorithm, we show empirically that it is competitive to many existing

multi-objective optimization methods by testing them on several classic benchmark prob-

lems. In particular, we observe that in all the cases tested, our approach is able to generate

solutions that are approximately uniformly spread across the Pareto optimal set by a user-

specified threshold distance.

In summary, the contributions are as follows:

• For multi-objective optimization problems, we introduce a novel performance metric

termed domination measure to determine the quality of a solution, and we reformu-
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late the original problem into a stochastic single-objective one that seeks to minimize

the domination measure.

• We propose a novel model-based approach to solve the reformulated problem, lead-

ing to an ideal version algorithm that possesses nice convergence properties and an

implementable version algorithm that performs well numerically.

• We show that our proposed approach produces a finite and uniformly spread approx-

imation of the Pareto optimal set and performs competitively to or even outperforms

many existing approaches.

3.2 Problem Formulation

A general multi-objective problem consists of minimizing (or maximizing) multiple objec-

tives over a defined solution space, which can be formulated as follows:

min f(x) = { f1(x), f2(x), ..., fn(x)}

s.t. x ∈X ,

(3.2.1)

where X denotes the solution space that might be described by constraints, and { fi(·) :

X → R, i = 1, ...,n} are scalar functions. Without loss of generality, we assume X is a

bounded subset of Rd and all objective are minimized.

Since it is rarely the case that there exists a solution that minimizes all the objectives

simultaneously, a reasonably compromised goal is to find all the solutions that are not

dominated by any other solutions in X in terms of the objective values. Specifically, a

solution x ∈X is (Pareto) dominated by another solution y ∈X if fi(y) ≤ fi(x) for all

i = 1, ...,n, and there exists one j ∈ {1, ...,n} such that f j(y) < f j(x). In other words, a

solution x is dominated by another solution y if all the objectives evaluated at y are better

than (less than or equal to) the ones evaluated at x, and at least one objective evaluated at

y is strictly better than (less than) the one evaluated at x. Note that Pareto dominance is
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a (strict) partial order defined on X since it is irreflexive, asymmetric and transitive. For

simplicity, we use y ≺d x to denote that y dominates x. Following this, a solution x ∈X

is called Pareto optimal if all other solutions in X do not dominate x, and thus the goal

is to find the Pareto optimal set or a uniformly spread subset representation of the Pareto

optimal set.

In general, this problem is difficult because the dominance relation is a partial order

defined on the solution space, and the problem is essentially a combinatorial problem over

a solution space that is often continuous. As mentioned before, many approaches in the lit-

erature are developed for solving various approximations or reductions of a multi-objective

optimization problem. In particular, one type of approach is to reformulate the original

problem into a single-objective one (e.g., through a weighting scheme on the objective

functions) and apply algorithms that are designed for problems with a single objective. As

a result of the reformulation, some information of the original problem (e.g., the dominance

relationship or the defined partial order among solutions) is lost.

In the next subsection, we will propose a performance metric called domination mea-

sure that quantifies the dominance relationship between a solution of interest and all other

solutions in the solution space, and use it to reformulate the original multi-objective prob-

lem into a stochastic single-objective one. In contrast to most of the existing reformulation

techniques, the proposed reformulation technique relies on the combinatorial dominance

relationship between solutions rather than the absolute objective values of the solutions.

We will show that it leads to a close approximation of the original problem, and is solvable

by a proposed model-based optimization method.

3.2.1 Domination Measure

Roughly speaking, domination measure of a solution describes the portion of the solutions

in the solution space that dominates that solution. To ease presentation, let us consider

defining domination measure of a solution x ∈X , denoted by D(x), in the following two
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cases: 1) the solution space X ∈ Rd has a non-zero and finite measure w.r.t. the Lebesgue

measure ν of the d-dimensional Euclidean space Rd; 2) X is finite. For the second case,

we extend the definition of Lebesgue measure on Rd to any finite set S with cardinality |S|

as follows: Suppose S1 ⊆ S is a subset of S, then we define the Lebesgue measure of S1

by ν(S1) = |S1|/|S|, i.e., ν(S1) is the cardinality of S1 divided by the cardinality of |S|; in

particular, ν(S) = 1. We formally define domination measure as follows:

Definition 3.2.1. (Domination Measure). Assume X in problem (3.2.1) is either a subset

of Rd that has a non-zero and finite Lebesgue measure or a finite set. Further assume for

all x ∈X the set of solutions that dominates x, denoted by Dx, is Lebesgue measurable.

Then, for all x ∈X , the domination measure D(x) of x is defined as

D(x)
4
=

ν(Dx)

ν(X )
, (3.2.2)

where ν(A) is the Lebesgue measure of A.

Remark 3.2.1. It is easy to extend Definition 3.2.1 to the case where the set X is (count-

able or uncountable) infinite and has Lebesgue measure of zero. Specifically, let D(x) = 1 if

the cardinality of Dx is infinite and 0 otherwise. Since for this case the domination measure

of a solution only has two trivial values (0 and 1), we omit the discussion about this case.

Intuitively, the domination measure D(x) of x is the ratio of the measure of Dx to the

measure of the entire solution space X . Therefore, ∀x ∈X we have 0 ≤ D(x) ≤ 1. Fur-

thermore, it is a rigorous performance metric for the quality of a solution. If the domination

measure of a solution is close to zero, then that solution is dominated by a small number of

solutions in the solution space.

Lemma 3.2.1. For any Pareto optimal solution x∗ ∈X , its domination measure D(x∗) = 0.

The other direction of the statement in Lemma 3.2.1 might not be true, which means

a solution with domination measure of zero might not be Pareto optimal. To illustrate
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this, consider a simple example with two objectives and a two-dimensional solution space

[0,1]× [0,1] ∈ R2. The two objectives are f1(x1,x2) = x1 and f2(x1,x2) = x2. Therefore,

( f1, f2) is a mapping from [0,1]× [0,1] to itself. The solution space for this example is

displayed in Figure 3.2.1. Although (0,0) is the lone Pareto optimal solution, all solutions

in red have a domination measure of zero. For example, point (0.4,0) is dominated by

all points where x ∈ [0,0.4) and y = 0, but the measure of those points is equal to zero.

Conversely, for a finite solution space, no information is lost using domination measure.

Figure 3.2.1: Illustration of Domination Measure.

Since a Pareto optimal solution achieves a minimum domination measure of zero, dom-

ination measure retains part of the information from the partial order dominance relation.

The benefit is that the original multi-dimensional combinatorial problem can be reduced to

a simple single-objective one with a known minimum objective value of zero.

To demonstrate the effectiveness of this reduction, we consider an example from [50]

as follows: The solution space is Z∩ [0,100], i.e., the set of all the integers between 0 and

100, which is a finite set. There are two objective functions:

f1(x)= 0.001x(x−10)(x−60)(x−100)+1000, f2(x)= 0.001x(x−70)(x−100)(x−200)+6000.

The Pareto optimal set is P∗ = Z∩ ([5,25]∪ [60,85]), and it is highlighted in Figure 3.2.2.
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(a) Pareto Optimal Set by Function Values. (b) Pareto Optimal Set by Domination Measure

Figure 3.2.2: Pareto Optimal Set by Function Values and Domination Measure.

Locating the Pareto optimal set directly using function values (see Figure 3.2.2a) is difficult,

whereas the Pareto optimal set is easily identifiable using domination measure (see Figure

3.2.2b). That is, the solutions with domination measure zero are the Pareto optimal set for

a finite solution space.

We minimize the domination measure instead of solving the original combinatorial

problem. Note that we can reformulate (3.2.2) as

D(x) =
ν(Dx)

ν(X )
=

∫
X 1{y≺d x}ν(dy)∫

X ν(dy)
=
∫
X
1{y≺d x}UX ν(dy) = EU [1{y≺d x}] ,

(3.2.3)

where 1{E} = 1 if the event E is true and 1{E} = 0 otherwise, UX (·) is the uniform

probability measure (induced by the uniform distribution) on X , and EU [·] denotes the

expectation w.r.t. UX (·). Consequently, we solve the following single-objective stochastic

optimization problem:

min
x∈X

D(x) = EU [1{y≺d x}] , or equivalently max
x∈X

−D(x) = EU [−1{y≺d x}] .

(3.2.4)

Typically, the goal is to find multiple global optima of problem (4.2.2) such that they ap-

proximately form a uniform distribution on the Pareto optimal set of the original problem

(3.2.1). Suppose the Pareto optimal set is nonempty, then by Lemma 3.2.1, there always
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exists an x ∈X such that D(x) = 0. As a result, problem (4.2.2) always admits at least one

global optimal. For simplicity, we denote the set of global optima of problem (4.2.2) by

A∗. Therefore, ∀x ∈X , D(x) = 0 if and only if x ∈ A∗.

Explicitly calculating D(x) is usually computationally expensive or infeasible, espe-

cially in the case of a continuous solution space. Alternatively, since Monte Carlo simu-

lation is straightforward to implement and scales well with the dimension of the solution

space, it is a good choice for estimating D(x). The general procedure is as follows: Draw

independent and identically distributed (i.i.d.) samples according to the uniform distribu-

tion UX (·) on the solution space, which is denoted by {x1, ...,xN}. Then calucalte

D̃(xi)
4
=

1
N

N

∑
j=1

1
{

x j ≺d xi} , (3.2.5)

which is an unbiased estimator of D(xi). We also point out that the sampling distribution

could be of other forms via the principle of importance sampling as long as it is fully

supported on X .

3.3 A Framework of Model-based Approach

Recall that we aim to find multiple global minimizers of the domination measure D(x)

such that they approximately form a uniform distribution on the Pareto optimal set of prob-

lem (3.2.1). Since D(x) is often evaluated via simulation, its structural properties such as

convexity or differentiability are unknown. Thus, traditional gradient-based optimization

methods might not be applicable for the minimization of D(x). In contrast, model-based

optimization methods are good alternatives as they impose minimal requirements on the

problem structure. Common model-based methods include Annealing Adaptive Search

(ASS) ([57]), the Cross-Entropy (CE) method ([59]), Model Reference Adaptive Search

(MRAS) ([34]), and Gradient-based Adaptive Stochastic Search (GASS) ([69]), etc.

The main idea of model-based methods is to introduce a sampling distribution, which
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often belongs to a parameterized family of densities, over the solution space, and iteratively

update the parameters of the sampling distribution by generating and evaluating candidate

solutions. Specifically, the methods iteratively carry out the following two steps:

1. Generate candidate solutions according to the sampling distribution.

2. Based on the evaluation of the candidate solutions, update the parameter of the sam-

pling distribution.

The hope is to have the sampling distribution more and more concentrated on the

promising region of the solution space where the optimal solutions are located, and even-

tually become a degenerate distribution on one of the global optima. Therefore, finding an

optimal solution in the solution space is transformed to finding an optimal sampling dis-

tribution parameter in the parameter space. A key difference among the aforementioned

model-based methods lies in how to update the sampling distribution parameter. For ex-

ample, in CE and MRAS the updating rule is derived by minimizing the Kullback-Leibler

(KL) divergences between a converging sequence of reference distributions and a chosen

exponential family of densities. For another example, in GASS the updating rule is derived

by converting the original (possibly non-differentiable) deterministic optimization problem

into a differentiable stochastic optimization problem on the sampling distribution parame-

ter, and then applying a Newton-like scheme.

Compared with gradient-based methods, model-based methods are more robust in the

sense that at every iteration they exploit the promising region of the solution space that

has already been identified, while maintaining exploration of the entire solution space.

The updating rule on the sampling distribution parameter controls the balance between

exploration and exploitation.

In principle, we could extend all the aforementioned model-based methods to our prob-

lem setting in a direct manner. However, there are two main issues with implementing

existing model-based methods: 1) all these methods are designed for producing a single
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global optimal solution which corresponds to a degenerate parameterized distribution, but

multiple evenly spread global optimal solutions are needed to represent the Pareto opti-

mal set; 2) the methods that are convergent require the uniqueness of the global optimal

solution, which in general is not satisfied for problem (4.2.2).

To address the issues mentioned above, we propose a model-based method with a mixed

sampling distribution that consists of a number of distributions from the same parame-

terized family of densities, and iteratively update the parameters of the mixed sampling

distribution. The hope is that each component of the mixed sampling distribution will con-

centrate on a promising region of the solution space and explore that region exclusively.

Eventually, all the components of the mixed sampling distribution will be become degen-

erate distributions concentrated on distinct global optimal solutions.

The choice of the number of components in the mixed sampling distribution and the

method for updating each component are important. Since the promising region of the

solution space is unknown and can only be explored via sample evaluations, the number

of components needs to be determined adaptively so that the all the areas containing the

global optima are eventually explored. The updating scheme on the components needs to

achieve convergence so that degenerate sampling distributions on individual global optimal

solutions are obtained.

In essence, our updating rule on the sampling distributions is similar to the one in the

CE or MRAS, in which the sampling distribution parameter at each iteration is derived by

minimizing the KL divergence between a specific reference distribution and a parameter-

ized family of densities. However, our updating rule keeps track of an increasing population

of reference distributions instead of a single one at each iteration. A common choice of the

parameterized family of densities is the exponential family defined as follows:

Definition 3.3.1. Exponential Famliy. A parameterized family {g(x;θ) : θ ∈ Θ} is an
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exponential family of densities if it satisfies

g(x;θ) = exp
{

θ
T

Γ(x)−η(θ)
}
, (3.3.1)

where Γ(x)= [Γ1(x), ...,Γdθ
(x)]T is the vector of sufficient statistics, η(θ)= ln{

∫
exp(θ T Γ(x))dx}

is the normalization factor to ensure g(x;θ) is a probability density function, and Θ = {θ :

|η(θ)|< ∞} is the natural parameter space with a nonempty interior. We assume that Γ(·)

is a continuous mapping.

We point out that many common probability distributions belong to the exponential

family, including Gaussian, Poisson, Binomial, Geometric, etc. Within the exponential

family of densities, the updating of the sampling parameter using a reference sampling

distribution is carried out as follows: Suppose h(x) is a reference sampling distribution

of interest, then the corresponding sampling distribution g(x;θ∗) within the exponential

family of densities could be found via

θ∗
4
= argmin

θ∈Θ

KL(h(·),g(·;θ)) = argmin
θ∈Θ

Eh

[
ln

h(x)
g(x;θ)

]
= argmax

θ∈Θ

Eh [lng(x;θ)] (3.3.2)

where Eh[·] denotes the expectation w.r.t. h(·). It is important to note that the problem

(3.3.2), i.e., the minimization of KL divergence, can be carried out in analytical form since

g(·;θ) belongs to the exponential family. Specifically, by Definition 3.3.1, problem (3.3.2)

is equivalent to

argmax
θ∈Θ

∫
x∈X

(θ T
Γ(x)−η(θ))h(x)dx.

Note that (θ T Γ(x)−η(θ)) is strictly concave in θ (see, e.g., [47]). It follows that
∫

x∈X (θ T Γ(x)−

η(θ))h(x)dx is also strictly concave in θ . Therefore, (3.3.2) admits a unique optimal solu-

tion θ∗ that satisfies the first-order condition as follows:

∫ (
Γ j(x)−

∫
Γ j(x)exp

(
θ T
∗ Γ(x)

)
dx∫

exp(θ T
∗ Γ(x))dx

)
h(x)dx = 0, j = 1, ...,dθ ,
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or equivalently,

Eh[Γ(x)] = Eθ∗ [Γ(x)], (3.3.3)

where ∀θ ∈Θ, Eθ [·] denotes the expectation w.r.t. g(x;θ).

In practice, finding the exact value of θ∗ can be difficult since Eh[Γ(x)] usually does not

admit a closed-form expression; however, an good estimate of θ∗ could be obtained via the

principle of importance sampling, noting that

Eθ∗[Γ(x)] = Eh[Γ(x)] = Eθ ′

[
Γ(x)h(x)
g(x;θ ′)

]
,

and i.i.d. samples can be drawn according to g(·;θ ′) to estimate the right hand side of

above equation.

For example, if {g(·;x)} is the family of multivariate Gaussian distributions N (µ,Σ),

where µ is the mean parameter, Σ is the covariance matrix, and θ = (µ,Σ). Then θ∗ =

(µ∗,Σ∗) can be solved as

µ∗ =
Eθ ′ [h(x)x/g(x;θ ′)]

Eθ ′ [h(x)/g(x;θ ′)]
and Σ∗ =

Eθ ′
[
h(x)(x−µ∗)(x−µ∗)

T/g(x;θ ′)
]

Eθ ′ [h(x)/g(x;θ ′)]
,

and estimated via sampling according to g(·;θ ′).

3.3.1 Algorithm—An Ideal Version

We first present an ideal version algorithm of the proposed approach. Although it is not

implementable in practice, its merit lies in revealing the mathematical intuition of an im-

plementable version algorithm, which will be introduced later.

Denote the population of reference sampling distribution at the kth iteration by {hi,k(x) :

i = 1, ..., Ik}, where Ik is the number of sampling distributions in the population. Let

{γk : k = 1, ...} be a decreasing sequence of reference values that satisfies γk ∈ (0,1] and

limk→∞ γk = 0. We will use {γk} as reference values for characterizing elite solutions and
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promising regions of the solution space in terms of the domination measure. Specifically,

let Ak := {x ∈X : D(x) ≤ γk} be the set of solutions with domination measure value be-

low γk. Loosely speaking, Ak will approach A∗ as k→ ∞, A∗ is the set of solutions with

domination measure 0.

Let us further introduce a partition on the set Ak, denoted by πk := {A1,k, ...,AIk,k}, such

that each Ai,k is U-measurable (recall that U is the uniform measure on X ), and

Ak = ∪Ik
i=1Ai,k and Ai,k∩A j,k = /0,∀i 6= j.

Note that the cardinality of πk is equal to Ik, which is the number of the sampling dis-

tributions at the kth iteration. Define the magnitude |πk| of the partition πk by |πk| :=

max
i

diam(Ai,k), where diam(A) := supx,y ‖x− y‖ is the “diameter” of set A and ‖·‖ is the

vector Euclidean norm. We impose a requirement on {πk : k = 1, ...} as follows:

lim
k→∞
|πk|= 0. (3.3.4)

Requirement 3.3.4 forces the partition to become arbitrarily fine for sufficiently large k’s.

Equivalently, each partitioning subset Ai,k is shrinking to a degenerate point in A∗ or a

empty set as k→ ∞. Such a partition always exists, since X is bounded

Let the reference distribution hi,k(x) ∝ 1{x ∈ Ai,k}, where hi,k(x) is the uniform dis-

tribution supported on Ai,k. Denote the corresponding sampling distribution by g(x;θi,k),

where

θi,k = argmin
θ∈Θ

KL(hi,k(·),g(·;θ)).

Note that the way to construct the reference sampling distribution is similar to the one in the

CE method (see [59]). Of course, one could also use more sophisticated reference sampling

distributions by an introduction of a shape function to put non-equal weights for x ∈ Ai,k

(see [34]). The mixed sampling distribution at the kth iteration, denoted by gk(x), consists
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of g(x;θi,k) with equal weights. That is,

gk(x) =
1
Ik

Ik

∑
i=1

g(x;θi,k). (3.3.5)

The complete algorithm is summarized in the following Algorithm 2, which is also referred

to as Algorithm “SASMO0”.

Algorithm 2 Stochastic Adaptive Search for Multi-objective Optimization—Ideal
1. Initialization: Choose a parameterized family of densities {g(x;θ) : θ ∈ Θ}. Specify a
sequence of reference values {γk : k = 1, ...}.

2. Iteration: For the kth iteration, choose a partition πk = {A1,k, ...,AIk,k} on Ak, where
Ak = {x ∈X : D(x)≤ γk}. Then determine the sampling distribution parameters {θi,k} by

θi,k = argmin
θ∈Θ

KL(hi,k(·),g(·;θ)).

3. Termination: Check if some stopping criterion is satisfied. If yes, stop and return the
means of the currents sampling distributions; else, set k := k+1 and go back to step 2.

Let us analyze the convergence properties of Algorithm “SASMO0”, which provides

an intuitive understanding towards the convergence of its implementable version. In par-

ticular, we will show that the parameterized sampling distributions {g(x;θi,k} converge to

degenerate distributions on the global optima of the reformulated problem (4.2.2) if g(x;θ)

belongs to an exponential family of densities, as summarized in the following Theorem

3.3.1.

Theorem 3.3.1. Suppose the parameterized family of densities {g(x;θ) : θ ∈ Θ} is an

exponential family defined by Definition 3.3.1. Further suppose that the sequence of refer-

ence values {γk ∈ (0,1] : k = 1, ...} and the sequence of partitions {πk : k = 1, ...} satisfy,

respectively,

lim
k→∞

γk = 0 and lim
k→∞
|πk|= 0. (3.3.6)

Then ∀x∗ ∈ A∗, there exists a sequence of sampling distributions {g(x;θik,k) : k = 1, ...},
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where ik ∈ {1, ..., Ik}, such that

lim
k→∞

Eθik ,k
[Γ(x)] = Γ(x∗). (3.3.7)

Proof. Proof of Theorem 3.3.1. Notice that ∀x∗ ∈A∗, there exists a sequence of partitioning

sets {Aik,k : k = 1, ...} s.t. x∗ ∈ Aik,k and Aik,k ∈ πk, since the sets in each partition πk

completely cover Ak and hence A∗. Furthermore, by the properties of the exponential family

of densities (see (3.3.3)), we have that

Ehik ,k
[Γ(x)] = Eθik ,k

[Γ(x)],

where recall that hik,k ∝ 1{x ∈ Aik,k}.

Therefore, to show (3.3.7), it remains to show

lim
k→∞

Ehik ,k
[Γ(x)] = Γ(x∗), or equivalently, lim

k→∞
Ehik ,k

[Γ(x)−Γ(x∗)] = 0.

That is, to show

lim
k→∞

∫
Aik ,k

(Γ(x)−Γ(x∗))hik,k(x)dx = 0. (3.3.8)

Given that Γ(·) is continuous on X , we have that ∀ε > 0, ∃δ > 0 s.t.

|Γ(x)−Γ(x∗)| ≤ ε, ∀x ∈ Bδ (x
∗),

where Bδ (x∗) := {x ∈X : ‖x− x∗‖ ≤ δ} represents the neighborhood ball centered at x∗

with radius δ . Further note that limk→∞|πk|= 0, we have

lim
k→∞

diam(Aik,k) = 0.

Therefore, there exists a large integer Kε depending on ε such that for all k ≥ Kε , Aik,k ⊆
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Bδ (x∗), we note that x∗ ∈ Aik,k. It follows that for all k ≥ Kε ,

∫
Aik ,k

(Γ(x)−Γ(x∗))hik,k(x)dx≤ ε

∫
Aik ,k

hik,k(x)dx = ε.

Therefore, (3.3.8) and hence Theorem 3.3.1 holds.

Theorem 3.3.1 implies that for any solution with domination measure zero, there exists

a sequence of exponential sampling distributions that converges to a degenerate distribution

on that solution.

In practice, Algorithm “SASMO0” is not implementable for the following reasons:

1) the set Ak, which is regarded as the promising region of the solution space, could not

be constructed explicitly since the domination measure D(x) is unknown; 2) solving for

the sampling parameters exactly through minimizing KL divergence is unlikely since the

reference sampling distribution hi,k(·) do not have an explicit characterization.

3.3.2 Algorithm—An Implementable Version

To have an implementable version of Algorithm “SASMO0”, we integrate a sampling step

at each iteration, in which multiple i.i.d. candidate solutions are drawn according to a cer-

tain sampling distribution and the corresponding values of domination measure are evalu-

ated or estimated.

There many reasons why the sampling step is integral in constructing an implementable

version of Algorithm “SASMO0”. First, the domination measure D(x) can be approxi-

mated for all the candidate solutions, which will then be used to determine the reference

value γk and characterize the set of promising solutions Ak. In particular, suppose gk(·) is

the sampling distribution at the kth iteration, and Nk i.i.d. candidate solutions {x1
k , ...,x

Nk
k }

are drawn according to gk(·). Then the domination measure for each candidate solution can

be estimated by

D̃(xi
k) =

1
Nk ·ν(X )

Nk

∑
j=1

1

gk(x
j
k)
1
{

x j
k ≺d xi

k

}
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via the principle of importance sampling. Second, the partition πk will be determined based

on the evaluations of candidate solutions; that is, the partitioning sets {Aik,k} will be char-

acterized by clusters of the elite candidate solutions from a certain clustering algorithm.

Thus, the reference sampling distributions {hik,k(·)} will be characterized by empirical dis-

tributions consisting of the elite candidate solutions in those clusters. In this case the mag-

nitude of πk will be determined by the parameters of the clustering algorithm. Third, the

sampling parameters {θik,k} will be solved by minimizing the KL divergence between the

constructed empirical sampling distributions and the parameterized sampling distributions.

To this end, let us describe the following Algorithm 3, which is referred to as Algorithm

“SASMO1”, for simulation optimization of multi-objective problem (3.2.1).

In the initialization step (step 1) of Algorithm “SASMO1”, a common choice of the

parameterized family of densities is the exponential family. The initial sampling parameter

θ1,0 should be chosen in such a way that the resulted sampling distribution is close to the

uniform distribution on X , so that the entire solution space will be evenly explored in

the early iterations. For example, if the parameterized family of densities is the family

of multi-variate Gaussian distributions, then θ1,0 is characterized by the mean vector µ1,0

and covariance matrix Σ1,0. To enforce global exploration of the entire solution space, Σ1,0

needs to be relatively large. The mixed coefficient α , the percent quantile ρ , as well as the

sample size sequence {Nk}will affect the robustness and convergence of the algorithm. We

will discuss their selections in the Numerical Experiments Section.
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Algorithm 3 Stochastic Adaptive Search for Multi-objective Optimization—
Implementable
1. Initialization: Choose a parameterized family of densities {g(x;θ) : θ ∈Θ} with initial

parameter θ1,0 with I0 = 1. Specify a mixing coefficient α ∈ (0,1), a percent quantile ρ , a

sample size sequence {Nk}. Set k = 0.

2. Sampling: Draw Nk i.i.d. candidate solutions {xi
k : i = 1,2, ...,Nk} according to g(·;θk),

where

gk(·)
4
= (1−α)gk(·)+αUX (·) (3.3.9)

is a mixed sampling distribution, gk(x) = 1
Ik

∑
Ik
i=1 g(x;θi,k), and UX (·) is the uniform

distribution on X .

3. Estimation: For i = 1, ...,Nk, estimate the domination measure D(xi
k) at xi

k by

D̃(xi
k) =

1
Nk ·ν(X )

Nk

∑
j=1

1

gk(x
j
k)
1
{

x j
k ≺d xi

k

}
. (3.3.10)

Sort {D̃(xi
k)} in ascending order, denoted by D̃(x(1)1 ) ≤ D̃(x(2)1 ) ≤ ·· · ≤ D̃(x(Nk)

1 ). Set the

reference value γ̃k to be the sample ρ-percent quantile D̃(x(dρNke)
1 ), i.e., γ̃k = D̃(x(dρNke)

1 ),

where dρNke is the smallest integer that is greater than or equal to ρNk.

4. Updating: Construct the set of elite candidate solutions by Ãk := {xi
k : D̃(xi

k) ≤

γ̃k}. Using a clustering algorithm (e.g., Algorithm 4) to cluster Ãk into clusters π̃k :=

{Ã1,k, ..., ÃIk,k}. Update the parameter θi,k based on the set of elite candidate solutions Ãi,k

by solving

θi,k
4
= argmax

θ∈Θ

1

|Ãi,k|
∑

x∈Ãi,k

lng(x;θ)

gk(x)
. (3.3.11)

5. Stopping. Check if some stopping criterion is satisfied. If yes, stop and return the means

of the current parameterized sampling distributions; else, set k := k+1 and go back to step
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In the sampling step (step 2), note that in (6) the sampling distribution gk(·) is de-

rived by mixing the uniform distribution on X with the equal-weighted combination of

the parameterized sampling distributions obtained from the previous iteration. The uniform

distribution component in gk(·) helps maintain a global exploration of the entire solution

space. Furthermore, since the candidate solutions drawn from gk(·) will be used to estimate

the domination measure, the uniform distribution component controls the variance in the

estimations. In particular, the variances will be bounded and the bounds only depend on

the choice of Nk. Lastly, the choice of mixing coefficient α affects the robustness of the

algorithm since it determines how much global exploration is achieved and the amount of

variance reduction. A typical choice of α is α = 0.1.

In the estimation step (step 3), for the sake of convergence, the sample size Nk is either

set to be a large constant or in a way such that Nk+1 = τNk for certain τ > 1. The domination

measure of the sampled candidate solutions are estimated via the principle of importance

sampling, where the importance sampling distribution is also the mixed distribution gk(·).

As mentioned earlier, due to the uniform distribution component in the sampling distribu-

tion, the variances of the resulted estimators are bounded. The quantile level ρ controls

the reference value γ̃k, i.e., determines the number of elite candidate solutions that are used

to update the sampling distribution in the next iteration, and the trade-offs between the ex-

ploitation of the neighborhood of current best solutions and the exploration of the entire

solution space. For example, when a smaller ρ is used, less elite candidate solutions are

used in updating the sampling distribution, which results in less exploration in the solu-

tion space. Furthermore, note that the simple evolution of γ̃k does not guarantee that it

convergences to zero. However, it performs well in numerical tests and its performance

is competitive to the more sophisticated methods of constructing γ̃k in other model-based

optimization methods, e.g., the one in SMRAS from [35].

In the updating step (step 4), the promising region Ak is characterized by the set of elite

candidate solutions Ãk, and the partition πk is characterized by the set of clusters π̃k yielded

69



from applying a clustering algorithm on Ãk. Note that π̃k also needs to satisfy

lim
k→∞
|π̃k|= 0, where |π̃k|= max

1≤i≤Ik
diam(Ãi,k).

If a threshold-based clustering algorithm is used as the clustering algorithm, then the se-

quence of the threshold distances should decrease to zero. We defer the discussion of the

details of this clustering algorithm (Algorithm 4). The updating rule (3.3.11) on θ can be

regarded as a sampled version of the updating rule in Algorithm (2), in which the refer-

ence sampling distribution hi,k(·) is replaced by the corresponding empirical distribution.

In particular, if the parameterized family of densities is the family of multivariate Gaussian

family with θ = (µ,Σ), then the mean µi,k and the covariance matrix Σi,k computed from

(3.3.11) is the sample mean and covariance matrix given by the candidate solutions in Ãi,k.

We point out the resulted sampling distribution parameter could be further projected onto

a properly constructed subset of Θ for numerical stability.

In the stopping step (step 5), a common stopping criterion is when the threshold distance

in the clustering algorithm falls below a pre-specified threshold bound ∆̄ or a maximum

number of iterations tmax is reached. The resulted means of the current parameterized

sampling distributions will form a finite and approximate uniform representation of the

solutions with domination measure of zero, with the hope that these solutions are close to

the Pareto optimal set. Moreover, the pre-specified threshold bound or maximum number

of iterations will largely determine the number of solutions in the resulted approximation

of the Pareto optimal set.

n a broader sense, we note that Algorithm “SASMO1” can be used to generate a fi-

nite and an approximate uniform representation of the optimal solution set for a single-

objective optimization problem with multiple (possible uncountable) global optima, with a

deterministic or stochastic objective. Here the advantage of using Algorithm “SASMO1”

for finding multiple minima of the stochastic minimization problem (4.2.2) lies in that only
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a single-layer of simulation is needed instead of a nested one, since the sampling is used

to search the solution space and estimate the domination measure. This is in contrast to

using a model-based algorithm to solve a general stochastic optimization problem, because

an outer-layer simulation is employed to sample on the solution space and an inner-layer

simulation is needed for estimation of the function values.

The convergence analysis of Algorithm “SASMO1” is more complicated due to the

involvement of sampling. Strong requirements on the sample size sequence, the refer-

ence value sequence, the choice of clustering algorithm, and even the updating rule might

need to be imposed to guarantee the convergence of the algorithm. We leave the conver-

gence analysis of Algorithm “SASMO1” for future research. Nevertheless, we will show

that Algorithm “SASMO1” performs competitively to or outperforms some of the exist-

ing algorithms. Note that similar to Algorithm “SASMO1”, these methods do not have

convergence results.

We conclude this section by introducing the clustering algorithm used in the updating

step of Algorithm “SASMO1”, in which a threshold distance ∆0 and a threshold distance

shrinking factor C > 1 are chosen. Of course, other clustering algorithms can be used as

long as it satisfies the aforementioned guidelines.

In the iteration step of Algorithm 4, we randomized the order in which the distance

from the selected solution and the centroids of the existing clusters is compared to pre-

vent one cluster from becoming significantly larger than the other. In the termination

step, the threshold distance at the next iteration ∆k+1 is decreasing adaptively, noting that

1/Ik ·∑Ik
i=1 Tr(Σ̃i,k) is a empirical measure of how solutions within each cluster are close to

each other. If this measure is still large, then the threshold distance is forced to decrease

by at least a factor of C. Therefore, the shrinking factor C determines how fast Algorithm

“SASMO1” terminates and how many solutions are generated in the final finite represen-

tation approximation of the Pareto optimal set.
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Algorithm 4 A Threshold-Based Clustering Algorithm

Input: Threshold distance ∆k and elite solution set Ãk.
Output: The set of clusters π̃k and threshold distance ∆k+1.

1. Initialization: Randomly select a solution from Ãk. This solution is defined as the
centroid of cluster Ã1,k.

2. Iteration: Randomly select a solution from Ãk that has not been assigned to any cluster.
Compute the Euclidean distances from the solution to the centroids of existing clusters in a
randomized order. Assign the solution to first cluster found with distance less than ∆k and
update the centroid of the cluster as the average of the solutions in the cluster. If no such
cluster is found, create a new cluster where the solution is the centroid of the new cluster.

3. Termination: Check if there is solution from Ãk that has not been clustered. If yes, go
to step 2; otherwise return the set of clusters π̃k and the threshold distance at next iteration
by

∆k+1 = min

[
1

CIk

Ik

∑
i=1

Tr(Σ̃i,k),
∆k

C

]
, (3.3.12)

where recall that Ik is the number of clusters, Σ̃i,k is the sample variance of cluster Ãi,k, and
Tr(·) is the trace of a matrix.

3.4 Numerical Experiments

The objective of our numerical results is to show that Algorithm “SASMO1” is 1) not

sensitive to the geometry of the Pareto optimal set or the Pareto front, 2) scalable in terms

of decision variables and objective functions, and 3) competitive to existing methods in

terms of how close the solutions are to the true Pareto optimal set and how evenly spread the

solutions are in the solution space. To accomplish these goals, we evaluate the performance

of Algorithm “SASMO1” on test functions from the ZDT ([24]), DTLZ ([24]), and Van

Veldhuizen’s ([19]) test suites and compare our results with the following existing methods:

• Elitist Non-Dominated Sorting Genetic Algorithm (NSGA-II) ([24])

• Strength Pareto Evolutionary Algorithm (SPEA-II) ([37])

• Pareto Envelope-based Selection Algorithm (PSEA-II) ([20])

72



• Multi-objective Particle Swarm Optimization (MOPSO) ([19])

The above methods are all evolutionary algorithms and they differ in how the population

of candidate solutions are selected and maintained. In NSGA-II the population of solutions

is divided based on the following rule: the first group of solutions is all non-dominated and

the second group of solutions is only dominated by the solutions in the first group. The

grouping is continued in this manner until all solutions are classified. Once the solutions

are divided, a crowding distance is calculated, which measures how close a solution is to its

neighbors. Solutions are selected based on their group classification and crowding distance,

and new solutions are generated from crossover and mutation operators. SPEA-II is an ex-

tended version of the original SPEA algorithm ([70]), which includes a specialized ranking

system to order the solutions based on their fitness value, which is an objective function

that summaries how close a given solution is to the Pareto front. SPEA-II keeps an archive

of all solutions generated starting from the initialization of the algorithm and constructs a

population of solutions that combines the archived solutions with the solutions generated

at the current iteration. All non-dominated solutions in the population are assigned fitness

values such that the search is directed towards the true Pareto front. PSEA-II introduces a

new selection technique where the objective space is divided into hyperboxes and solutions

are randomly selected from those hyperboxes. The fitness value of a non-dominated solu-

tion depends on the number of non-dominated solutions that occupy that same hyperbox.

This method of selection is shown to result in a good spread of solutions in the objective

space. MOPSO is a particle swarm method that includes a constraint-handling mechanism

and a mutation operator that substantially improves the exploration ability of the original

algorithm.

The problems in the ZDT test suite have a scalable number of parameters. Therefore,

this test suite tests the ability of an algorithm to converge to the Pareto front and obtain di-

verse solutions in a high-dimensional solution space. The challenge in dealing with a high

dimensional solution space is that it is more difficult to get an evenly spread of solutions in
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the solution space. In practice the structure of the Pareto front is unknown; therefore, it is

important to see how our method performs with different Pareto front geometries. Conse-

quently, we consider test function from the Van Veldhuizen’s test suite since they present

a variety of Pareto front geometries. The different structures of the Pareto front can be

convex, concave, degenerate, mixed, continuous, discontinuous, or contain flat regions. In

this context, flat regions are areas of the objective space where relative small perturbations

of parameters in the decision space do not affect the objective values. Each geometric

structure presents is own difficulty. For instance, problems with isolated points are difficult

to solve because usually there is no information in the surrounding region that indicates a

Pareto optimal solution is nearby. Furthermore, a function that has a many to one map-

ping between the decision space and the objective space are difficult to solve due to the

flat regions in the objective space. The last set of problems that we consider is the DLTZ

test suite, which has a scalable number of objectives while also having complicated Pareto

front geometries. The increase in dimensionality of the objective space causes problems

with selecting the best solutions. When the number of objectives are large it causes a ma-

jority of solutions to be non-dominated by each other, which may throttle an algorithm’s

convergence to the true Pareto front. The problems chosen from the aforementioned test

suites are listed below and more details on the problems properties and challenges can be

found in [36].

• ZDT2

min f(x) = ( f1(x), f2(x))

f1(x) = x1

f2(x) = g(x)[1− (x1/g(x))2], where

g(x) = 1+9(
30

∑
i=2

xi)/(30−1)]

xi ∈ [0,1], i = 1, . . . ,30.
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• ZDT3

min f(x) = ( f1(x), f2(x))

f1(x) = x1

f2(x) = g(x)[1− (x1/g(x))2− x1

g(x)
sin(10πx1)], where

g(x) = 1+9(
30

∑
i=2

xi)/(30−1)

xi ∈ [0,1], i = 1, . . . ,30.

• ZDT4

min f(x) = ( f1(x), f2(x))

f1(x) = x1

f2(x) = g(x)(1−
√

x1/g(x)), where

g(x) = 1+10(10−1)+
10

∑
i=2

(x2
i −10cos(4πxi))

xi ∈ [−5,5], i = 1, . . .10.

• MOP3

max f(x) = ( f1(x), f2(x))

f1(x) = −[1+(A1−B1)
2 +(A2−B2)

2]

f2(x) = −[(x1 +3)2 +(x2 +1)2], where

A1 = 0.5sin1− cos1+2sin2−1.5cos2

A2 = 1.5sin1− cos1+2sin2−0.5cos2

B1 = 0.5sinx1−2cosx1 + sinx2−1.5cosx2

B2 = 1.5sinx1− cosx1 +2sinx2−0.5cosx2
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xi ∈ [−π,π], i = 1 . . .2.

• MOP4

min f(x) = ( f1(x), f2(x))

f1(x) =
2

∑
i=1

(−10exp(−0.2
√

x2
i + x2

i+1))

f2(x) =
3

∑
i=1

(|xi|0.8 +5sin(xi)
3)

xi ∈ [−5,5], i = 1, . . . ,3.

• MOP5

min f(x) = ( f1(x), f2(x), f3(x))

f1(x) = 0.5(x2
1 + x2

2)+ sin(x2
1 + x2

2)

f2(x) =
(3x1−2x2 +4)2

8
+

(x1− x2 +1)2

27
+15

f3(x) =
1

x2
1 + x2

2 +1
−1.1exp(−x2

1− x2
2)

x1,x2 ∈ [−30,30].

• MOP6

min f(x) = ( f1(x), f2(x))

f1(x) = x1

f2(x) = (1+10x2)[1− (
x1

1+10x2
)2− x1

1+10x2
sin(8πx1)]

x1,x2 ∈ [0,1].
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• DTLZ1

min f(x) = ( f1(x), f2(x), f3(x))

f1(x) = 1/2x1x2(1+g(x))

f2(x) = 1/2x1(1− x2)(1+g(x))

f3(x) = 1/2(1− x1)(1+g(x)), where

g(x) = 100(‖x‖−2+
7

∑
i=3

((xi−0.5)2− cos(20π(xi−0.5)))

xi ∈ [0,1] , i = 1, . . . ,7.

• DTLZ2

min f(x) = ( f1(x), f2(x), f3(x))

f1(x) = cos(x1π/2)cos(x2π/2)(1+g(x))

f2(x) = cos(x1π/2)sin(x2π/2)(1+g(x))

f3(x) = sin(x1π/2)(1+g(x)), where

g(x) =
12

∑
i=3

(xi−0.5)2

xi ∈ [0,1], i = 1, . . . ,12.

We solve all problems with Algorithm “SASMO1”, which terminates when the thresh-

old distance falls below the threshold bound ∆̄ or when the maximum number of iterations

tmax is reached. We choose the following parameters: an initial sample size N0 = 1000

and Nk = k1.01N0, a percent quantile ρ = 0.10, a mixed coefficient α = 0.1, a threshold

bound ∆̄ = 0.001, a threshold distance shrinking factor C = 1.1, an initial mean µ0 = 0, a

maximum number of iterations tmax = 100, and an initial covariance matrix Σ0 = 1000Id .

The resulted approximations of the Pareto fronts for the tested problems are illustrated in

Figure 3.4.1. Note that for each subfigure of Figure 3.4.1, the cyan thick curve represents
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the true Pareto front and the black thin curve represents the approximated Pareto front pro-

duced by Algorithm “SASMO1” in the objective space ( f1, f2). For the tested cases, we

observe that Algorithm “SASMO1” is capable of obtaining isolated Pareto optimal points

and capturing the entire Pareto front for problems that have multiple discontinuous Pareto

curves. These results also demonstrate that relaxing the concept of Pareto dominance to

domination measure does not affect the solution quality of our algorithm.

In order to qualitatively quantify the performance of Algorithm “SASMO1” and com-

pare it with the performances of the aforementioned existing algorithms, we use the con-

vergence metric Λ and diversity metric ϒ defined in [24].

The convergence metric Λ in the objective space is defined by

Λ
4
=

1
|R| ∑

y: f(y)∈R

{
min
x∈Z
‖f(x)− f(y)‖

}
,

where R is a pre-specified reference set consisting of |R| uniformly spread points from the

true Pareto front and we choose R = 500, f(·) = ( f1(·), ..., fn(·)) is the vector of objective

functions, and Z is the set of approximate Pareto front generated by the algorithm of inter-

est. In other words, the convergence metric Λ can be regarded as the average distance from

all points in the reference set to the approximate Pareto front, which measures the closeness

of the approximate Pareto front to the true Pareto front. Therefore, the smaller the value is

for Λ, the closer the approximate Pareto front is to the true Pareto front.

Before introducing the diversity metric ϒ in the solution space, let us first order the ob-

tained |Z| approximate Pareto optimal solutions {x1, ...,x|Z|} generated from an algorithm

of interest by {x(1), ...,x(|Z|)} such that x(1)1 ≤ ·· · ≤ x(|Z|)1 . That is, they are ordered by the

values of their first components. We also let x(1) and x(|Z|) be the left and right boundary

points of the approximate Pareto optimal set, and let xl and xr be the left and right boundary

of the true Pareto optimal set also in terms of the value of a solution’s first component. The
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(a) ZDT2 (b) ZDT3

(c) ZDT4 (d) MOP3

(e) MOP4 (f) MOP6

Figure 3.4.1: Approximate Pareto Front V.S. True Pareto Front.
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diversity metric ϒ is defined by

ϒ =
dl +dr +∑

|Z|−1
i=1 |di− d̄|

dl +dr +(|Z|−1)d̄
,

where dl := ‖xl−x(1)‖ (di := ‖x(i+1)−x(i)‖) is the distance between the left (right) bound-

ary point of the true Pareto optimal set and the left (right) boundary point of the approxi-

mate Pareto optimal set, di := ‖x(i+1)−x(i)‖ is the distance between an approximate Pareto

optimal solution and its closest neighbor, and d̄ := 1/(|Z| − 1)∑
|Z|−1
i=1 di is the average of

these distances. Essentially, ϒ measures how well the solutions are evenly spaced in the

solution space. The smaller the value is for this metric, the closer the approximate Pareto

optimal set is from being uniformly distributed.

For each problem instance, we perform 30 independent replications of each method

implemented in MATLAB. The codes for the existing methods can be found at http:

//yarpiz.com/category/multiobjective-optimization. We report the

best values for the convergence metric Λ and the diversity metric ϒ obtained out of the 30

trials for each method. For the existing methods, we choose the following parameters:

• Number of generations: 100

• Population size: 1000

• Archive size: 1000.

The results are summarized in Table 4.4.1 and Table 4.4.3.

We can see that Algorithm “SASMO1” outperforms the existing methods on over half

of the problems in respect to both the convergence and diversity metrics. The favorable

results w.r.t. the diversity metric is likely due to the fact that the center of each cluster

represents an estimated Pareto optimal solution and it is at least the threshold distance

away from the closest cluster. As a result, the distance between each estimated Pareto

optimal solution is close to the threshold bound for most of the problems. We point out
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Table 3.4.1: Comparisons of Convergence Metric Λ.

Problem SASMO1 NSGA-II SPEA-II MOPSO PSEA-II
Λ Λ Λ Λ Λ

ZDT2 .0023 .1064 .0765 .2134 .1863
ZDT3 .1145 .5657 .3312 .1821 .2765
ZDT4 4.321 7.5432 9.8756 10.321 9.216
MOP3 .0221 .0265 .0456 .8973 .0821
MOP4 .0987 .0345 .0673 .1268 .0531
MOP5 .0299 .0321 .0312 .0589 .0439
MOP6 .0532 .0582 .0439 1.2956 .9882
DTLZ1 2.9831 2.4531 2.8742 3.9814 3.7124
DTLZ2 2.4389 2.9875 2.6192 4.8621 4.0921

Table 3.4.2: Comparisons of Diversity Metric ϒ.

Problem SASMO1 NSGA-II SPEA-II MOPSO PSEA-II
ϒ ϒ ϒ ϒ ϒ

ZDT2 .5641 .9987 1.2534 1.9874 1.8761
ZDT3 .6015 .5654 1.7543 .9479 1.0113
ZDT4 .3490 .3986 .9014 .9851 1.1421
MOP3 .0289 .5467 1.4543 1.2156 2.1949
MOP4 .0354 .3916 .6989 .7126 .9511
MOP5 .0211 .4040 .9431 1.1164 .9346
MOP6 .0216 .4510 .6961 .5174 .6920
DTLZ1 .8721 .8142 1.6380 1.9722 .9974
DTLZ2 .9955 .9013 1.6724 1.9882 2.0521

that as the dimension of the solution space increases so does the diversity metric for all

the algorithms. Another takeaway from the numerical results is how well our algorithm

performed on problems that had discontinuous Pareto fronts. This is likely due to the fact

that an adaptive number of components is used in the mixed sampling distribution so that

each promising region of the solution space is thoroughly explored. In conclusion, we

show that Algorithm “SASMO1” gives satisfactory results regardless of the geometry of

the Pareto front, and is competitive to several existing algorithms.
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3.5 Conclusion and Future Research

In this chapter, we introduce a novel performance metric called domination measure to

measure the quality of a solution in a multi-objective problem. Instead of solving the

original problem, we propose a model-based approach to find a finite and approximately

uniformly spread representation of the solutions with domination measure of zero, which

is close to a finite and approximately uniformly spread representation of the Pareto optimal

set. We present an ideal version algorithm that has nice convergence properties, and an

implementable version of the algorithm that has competitive numerical performances com-

pared to many existing approaches. More sophisticated approaches and algorithms based

on domination measure can be incorporated to further improve the results on theoretically

convergence and numerical performance. Another future direction of research is to extend

Algorithm “SASMO1” to the setting of stochastic multi-objective optimization, where the

sample size allocations across the candidate solutions could to be studied.
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CHAPTER 4

SOLVING STOCHASTIC MULTI-OBJECTIVE OPTIMIZATION WITH AN

ALLOCATION SCHEME USING DOMINATION PROBABILITY

4.1 Background and Motivation

Stochastic multi-objective optimization (SMO) applies to a wide range of fields, such as

inventory management [46], scheduling [53], transportation logistics [31], and medicine

allocation [16]. Although the methods of stochastic optimization and multi-objective opti-

mization are well established, the intersection of the two is less developed. Nevertheless,

for many real-life problems, it is desirable to have an algorithm that can optimize multiple

objectives in the presence of uncertainty. For example, consider the classic (s,S) inven-

tory policy with stochastic demand where s and S denote the reorder point and order up to

point, respectively. In this example, the goal may be to maximize the service level while

minimizing the inventory cost where both performance measures depend on customer de-

mand that can only be realized through simulation. Developing an efficient SMO method

is important due to the increasing necessity for solving problems that seek to optimize mul-

tiple objectives that can only be evaluated through noisy simulation outputs or real world

observations.

The added difficulty of stochastic multi-objective problems when compared to their

deterministic version presented in Chapter 3 lies in the fact that the true performance of

any solution is unknown. In other words, these problems assume that obtaining an exact

evaluation of the objective functions is infeasible or too computationally expensive. As

a result, the performance of a solution has to be approximated by independent simulation

runs, where the outputs from the simulation are not deterministic but follow some unknown

distribution. The error in computing a solution’s true performance is unavoidable and re-
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sults in uncertainty in determining superiority among the solutions. Therefore, it becomes

more difficult to differentiate between dominated solutions and non-dominated solutions

due to the stochastic noise in the objective functions.

We consider multi-objective problems where the decision space is continuous and the

objective values can only be estimated from some noisy observation. This setting requires

expending computational budget on both searching in the solution space for Pareto optimal

solutions and obtaining good estimates of the objective functions at promising solutions.

Essentially, the primary question for this problem is how to distribute the simulation bud-

get between searching the solution space for better solutions and getting a more precise

estimate of a solution’s performance. Due to the empirical success of the model-based ap-

proach in obtaining Pareto optimal solutions in the deterministic setting shown in chapter

3, we adapt this model-based approach for the stochastic variant of multi-objective opti-

mization.

Although model-based approaches for stochastic single-objective optimization prob-

lems are not studied as much as their deterministic counterparts, there do exist a few meth-

ods that have been extended to handle the stochastic case [33]. The Stochastic Model Ref-

erence Adaptive Search (SMRAS) [35] is a generalization of the MRAS method that was

designed for single-objective deterministic optimization. Recall that in the MRAS method

a sequence of reference distributions that depend solely on the performance of candidate

solutions is constructed to update parameters of the sampling distribution. Since, in the

stochastic case, the exact performance of a solution is unknown, the SMRAS method uses

sample averages of the objective function evaluations to approximate the true sequence of

reference distributions. The SMRAS method is shown to perform well numerically and

has convergence results that illustrate that iteratively constructed sampling distributions

converge to a degenerate distribution that is concentrated on the global optimal solution.

Although this method performs well with respect to single-objective optimization, the ex-

tension of this approach to multi-objective optimization is difficult. That is, most of the
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results depend on the uniqueness of an optimal solution, which is clearly not the case in

SMO. Furthermore, SMRAS uses a simple allocation rule that requires each solution to get

an equal number of simulation replications that increases as the algorithm progresses. If

one simulation run is expensive in terms of computational time, the implementation of this

algorithm could be impractical. To improve the efficiency of model-based approaches ap-

plied to stochastic single-objective optimization, He et al [32] combines the idea of optimal

computing budget allocation within each step of the CE method to develop the CEOCBA

method. The efficiency of the CE method is enhanced by allocating replications to solutions

such that the mean squared error of the estimate used to update the sampling distribution

is minimized. Alternatively, Chen et al. [14] developed a procedure that determines the

best subset of a population of solutions. This procedure could be useful for modifying

existing deterministic model-based approaches to handle a stochastic objective. The afore-

mentioned methods work quite well for stochastic single-objective optimization, but their

extensions to SMO seem to be problematic due to the dependency of their mathematical

analyses and algorithmic development on the assumption of a single objective.

Despite that we consider a continuous solution space, the number of candidate solutions

generated at every iteration of a model-based method is finite. As a result, the problem re-

duce to how to allocate replications to candidate solutions to maximize the performance

of the model-based approach when applied to SMO. Within an iteration, the performance

of the model-based approach can directly link to how efficiently and accurately the elite

set can be identified, since typically the solutions in the elite set are used to update the

parameters of the sampling distribution. The problem of optimizing the number of alloca-

tions within an iteration of a model-based method applied to SMO can be thought of as a

multi-objective ranking and selection problem.

There are numerous ranking and selection procedures for multi-objective problems [10,

25, 45, 43]. The most popular method MOCBA [43] seeks to determine the Pareto optimal

solutions out of a set of solutions by minimizing two types of errors dealing with misclas-
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sification. That is, either misidentifying a Pareto optimal solution as non-Pareto optimal

or misidentifying a non-Pareto optimal solution as Pareto optimal. The MOCBA method

is shown to be significantly more efficient than the use of equal allocation. Similar to the

MOCBA method, other methods in the multi-objective ranking and selection literature fo-

cus on correctly identifying the Pareto optimal set. As a consequence, implementing these

types of ranking and selection methods within the model-based approach may not result in

an effective algorithm. Although we are considering discrete sets of solutions, the original

solution space is continuous. Therefore, there may not exist any Pareto optimal solutions in

the set of candidate solutions at the current iteration. Instead of trying to find the Pareto op-

timal solutions, we develop an allocation heuristic that aims to correctly select the solutions

that are used to guide the search process.

4.1.1 Research Results and Contribution

In this chapter we propose a method that is an extension of the SASMO algorithm for

SMO denoted as SASMO-II. SASMO-II adapts the model-based approach presented in

SASMO by incorporating an allocation heuristic that improves the efficiency of the original

model-based approach. Specifically, the allocation heuristic assigns a larger portion of the

computing budget to solutions that are used to identify the solutions that play a critical role

in the search process of the algorithm. Since the best solutions, denoted as the “elite set,”

are used to update the parameters of the distribution, the goal of the allocation heuristic

is to minimize the number of simulation replications required to correctly choose the elite

set. Due to the uncertainty in computing the objective functions, establishing superiority

among solutions is more difficult than in the deterministic setting.

We employ a performance metric to approximate the domination measure, termed dom-

ination probability, that calculates the probability that a solution dominates another solu-

tion given the current number of simulation replications allocated to both solutions. The

idea is to allocate additional replications to solutions that cause a change in our belief re-
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garding which solutions belong to the elite set. If additional replications of a solution have

no impact on the landscape of the elite set, then we assumed that employing more replica-

tions to that solution is not helpful in guiding the search, and thus, is not necessary. The

idea is to allocate replications to solutions that either cause a solution to leave the elite set

or to join the elite set. Furthermore, similar to SMRAS, SASMO-II approximates the ref-

erence distributions used to influence the search process. The advantage of our algorithm

is that instead of focusing on determining the Pareto optimal solution at every iteration, we

design the allocation heuristic to improve the performance of the search process in the case

where the objective functions cannot be computed exactly. Apart from the aforementioned

multi-objective ranking and selection methods, the proposed allocation heuristic is specif-

ically tailored to improve the efficiency of the model-based approach in solving stochastic

multi-objective problems. In spite of this allocation heuristic being designed for implemen-

tation within the SASMO algorithm framework, the ideas associated with this heuristic can

also be used to extend other model-based approaches to SMO.

The contributions of this proposed algorithm are twofold: 1) We develop an allocation

heuristic that is designed to select a top subset of solutions, where the quality of a solution

depends on multiple stochastic objectives, and 2) We propose a model-based algorithm that

is designed specifically to stochastic multi-objective problems and performs well numer-

ically in terms of efficiency and approximating the true Pareto optimal set. We measure

the performance of our algorithm by adding artificial noise to popular deterministic multi-

objective problems. We compare our results with other approaches based on convergence

and diversity metrics.
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4.2 Problem Formulation

A general stochastic multi-objective problem consists of minimizing multiple objectives

over a defined solution space, which can be formulated as follows:

min
{
Eτx,1[ f1(x,τx,1)], . . . ,Eτx,n[ fn(x,τx,n)]

}
(4.2.1)

s.t. x ∈X ,

where X ⊂Rd denotes the deterministic feasible region, { fz(·) : X →R, z = 1, ...,n} are

scalar functions, and τx,z is the stochastic noise in the system for objective z that may or may

not depend on x. We assume that X is a bounded subset of Rd and fz(x,τx,z) is measurable

and integrable with respect to the distribution of τx,z for x ∈X and for z = 1, ...,n.

Since there rarely exists one solution that solves (4.2.1), we seek to find a set of non-

dominated solutions, namely Pareto optimal solutions. Analogous to the deterministic set-

ting, a solution x is characterized as a non-dominated solution if there does not exist a

solution y ∈X such that fz(y)≤ fz(x) for all z = 1, ...,n, and there exists one j ∈ {1, ...,n}

such that f j(y) < f j(x), where fz(x) := Eτx,z[ fz(x,τx,z)] for z = 1, ...,n. In other words,

non-dominated solutions are optimal in the sense that there does not exist another feasi-

ble solution whose true mean is preferred over them while taking into account all of the

objectives.

To alleviate the complexity of solving (4.2.1) directly we use the concept of domination

measure introduced in Chapter 3 to reformulate (4.2.1) into a stochastic single-objective

problem. Recall that the domination measure of a solution can be intuitively interpreted

as the size of the portion of the solution space that dominates that solution. Domination

measure is advantageous for performance assessment of a solution since the performance

of this metric does not depend on any fine tuning of parameters, and if a solution is Pareto

optimal, it has a domination measure of zero. As pointed out in Chapter 3, reducing the

dimensionality of the multi-objective problem via domination measure inevitably causes a
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loss of information. However, this performance metric has shown to perform well empiri-

cally with respect to deterministic objectives. Therefore, we seek to minimize the domina-

tion measure instead of solving the original stochastic multi-objective problem. The goal

is to find multiple solutions to the minimization problem

min
x∈X

D(x) = EU [1{y≺d x}] (4.2.2)

in order to construct an approximate finite representation of the Pareto optimal set.

Since calculating the true domination measure is usually computationally expensive or

computationally infeasible in the case of a continuous decision space, we can estimate the

domination measure by the use of Monte Carlo simulation. This is accomplished by gen-

erating random samples where every sample in the decision space is equally likely to be

selected. Thus, given N independent and identically distributed (i.i.d.) samples {x1, ...,xN}

according to UX (·) on the solution space, the domination measure of x can be approxi-

mated by

D̃(xi)
4
=

1
N

N

∑
j=1

1
{

x j ≺d xi} , (4.2.3)

which is an unbiased estimator of D(xi). Similar to the domination measure, the indicator

function 1
{

x j ≺d xi} cannot be computed exactly since we cannot obtain the mean fz(x)

directly. We will discuss how to estimate the indicator functions in the subsequent section.

4.3 Model Based Approach for Stochastic Multi-objective Problems

The SASMO algorithm presented in Chapter 3 was originally designed for finding Pareto

optimal solutions of deterministic objectives. SASMO is a model-based method that gener-

ates candidate solutions from a mixed sampling distribution from the same parameterized

family of densities. It iteratively updates the parameters of the probabilistic model so that

it is biased toward solutions with a low domination measure. The hope is that each compo-

nent of the mixed sampling distribution will converge to degenerated sampling distributions
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that are concentrated on Pareto optimal solutions.

SASMO-II is designed to integrate a modified version of SASMO with the proposed

allocation heuristic. First, we explain some shortcomings of SASMO when applied to

the stochastic setting and why a new algorithm is needed to tackle stochastic noise in the

objectives. Then we give a full description of SASMO-II.

4.3.1 SASMO Algorithm

In every iteration of SASMO, a population of solutions is generated from a mixed sampling

distribution. The set of elite solutions are selected based on their domination measure

estimate and are used to update the probabilistic model. The main steps of the SASMO

Algorithm are as follows:

1. Select a set of parameterized family of densities {g(x;θ) : θ ∈Θ}.

2. Generate candidate solutions from a mixed sampling distribution.

3. Update the parameters of the distribution by minimizing the KL divergence between

the empirical distribution of the elite set of solutions and the parameterized family of

densities.

The elite set at iteration k is determined by Ak := {xi
k : D̃(xi

k) ≤ γk}, where γk is some

threshold. Consequently, only candidate solutions that have a domination measure that

is no worse than γk will be used in updating the parameters of the sampling distribution.

Clearly, the updating step plays an integral role in the performance of the algorithm, since

the updated parameters are in charge of guiding the search into promising regions of the

solution space. An accurate characterization of the elite set in the deterministic setting is

straightforward since the true objective values are known.

For problems in which the performance of a solution can only be observed via a noisy

simulation output, one simulation is not enough. Instead, multiple simulation replications
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are required to obtain a good estimate of a solution’s true performance. Although the pres-

ence of stochastic noise in the system will impact the search process, the simulation error

can be reduced if the elite set is correctly identified. More accurate objective evaluations

can be obtained by increasing the number of replications, but increasing replications in an

inefficient manner may lead to a computationally expensive algorithm.

A straightforward extension of the SASMO algorithm that solves stochastic multiple

objective problems can be developed by using equal allocation in estimating the objective

values of a solution (i.e., an identical number of replications are used to evaluate every solu-

tion’s performance). The uncertainty in the objectives can be nearly eliminated by perform-

ing many simulations at every candidate solution to diminish the effects of the stochastic

noise. The main disadvantage with implementing this strategy within the SASMO algo-

rithm is that it could potentially be highly inefficient. For example, if the sample means of

a solution have very low variance, then only a few replications would be needed to provide

a good estimate. Furthermore, running several simulations equally for all candidate solu-

tions at every iteration would require a large computational budget. Thus, it is of interest

to design an allocation scheme that will allocate a larger portion of the computing bud-

get to candidate solutions that play a bigger role in the updating process. Essentially, the

allocation scheme needs to identify a subset of candidate solutions that correspond to the

top solutions based on their domination measure. If the top solutions are not determined

correctly, it may result in an updated parameter that directs the search in an unfavorable di-

rection. In the next section, we describe an efficient approach for finding the top solutions

based on some threshold value among a finite set of solutions.

4.3.2 Allocation Heuristic

Throughout this section we use the following notations:

• S⊂X : A finite set of solutions where |S|= N.

• Mi: The number of replications allocated to solution i.
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• Mmax: The total number of simulation replications available.

• A: The set of elite solutions.

• fz(xi,τs
i,z): The sth simulation sample for the zth objective of solution i.

• fz(xi) := E[ fz(xi,τi,z)]: The mean for the zth objective of solution i.

• f̄z(xi) = 1
Mi

∑
Mi
s=1 fz(xi,τs

i,z): The sample mean of solution i for the zth objective.

• σ2
iz: The variance for the random variable τi,z that represents the noise for the zth

objective for solution i.

• f̃z(xi) = N( f̄z(xi),
σ2

i,z
Mi ): A random variable whose probability distribution represents

the posterior distribution of the mean for the zth objective for solution i.

• f̂z(xi) ≈ N( f̄z(xi),
σ2

i,z
Mi+m̃i ): A random variable whose probability distribution repre-

sents the posterior distribution of the mean for the zth objective for solution i after

m̃i additional replications have been allocated to solution i. For more details of this

approximation refer to equation (4.3.8).

• D̃(x): An unbiased estimator of the domination measure D(x).

• D̄(x): The domination count of solution x.

• D̂(x): The domination probability of solution x.

• γ: The elite threshold value based on domination measure.

• γ̄: The elite threshold value based on domination count.

The objective is to find an efficient allocation of the total computing budget of simu-

lation replications such that the set of elite solutions A is selected. Specifically, the elite

set is define as all solutions whose estimated domination measure is less than or equal to

some threshold. Since we are only concerned with determining the solutions that belong to
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the elite set, the rank among those solutions is irrelevant. Considering that the domination

measure is estimated by a finite set of solutions and the value of the true domination mea-

sure is not important for determining the elite set, we can instead calculate the domination

count of the solutions. The domination count D̄(x) of a solution x is defined as

D̄(x) = ∑
y∈S

1{y≺d x} , (4.3.1)

where S ⊂X such that |S| = N. We point out that given a finite set S the domination

count of a solution is equal to N times the domination measure estimate of x; thus, D̄(x) =

N × D̃(x). As a result, the elite set based on the domination count is equivalent to the

elite set corresponding to the domination measure estimate. That is, A =
{

x|D̃(x)≤ γ̃
}
=

{x|D̄(x)≤ γ̄}, where γ̄ = N× γ̃ .

Under the concept of domination count, the performance of one solution is measured in

terms of its dominance relationship with respect to all other solutions in S. Since we cannot

obtain fz(xi) for i = 1, ...,N and z = 1, ...,n, the true dominance relationship is unknown.

However, we can observe random variables fz(xi,τs
i,z) via simulation. Therefore, given that

we generate Mi i.i.d random samples
{

fz(xi,τ1
i,z), . . . , fz(xi,τMi

i,z )
}

we can approximate the

expectation fz(xi) := E[ fz(xi,τi,z)] by the sample mean f̄z(xi). We assume that the random

variable τi,z has a normal distribution with mean zero and variance σ2
i,z. Typically, this nor-

mality assumption is satisfied in practice since the simulation output is usually determined

from batch means or average performance; therefore, the Central Limit Theorem usually

holds. If the variance σ2
i,z is known then the posterior distribution of fz(xi) after Mi sim-

ulation replications is represented by the random variable f̃z(xi) ∼ N( f̄z(xi),
σ2

i,z
Mi ). As Mi

increases, the confidence interval of the true mean becomes more narrow. In other words,

as the number of simulation replications increase we are more confident that the sample

mean estimator f̄z(xi) is close to the true mean fz(xi).
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Using the sample mean, we want to estimate the domination count for all solutions in

S. For simplicity in representing the dominance relation, we assume that there do not exist

two distinct solutions in S that have the same mean for all objectives. Specifically, for any

solutions x,y ∈ S, there exists at least one objective q such that fq(x) 6= fq(y). Following

this assumption, it is true that 1{y≺d x} = ∏
n
z=11{ fz(y)≤ fz(x)}. Then, the dominance

count of solution x can be expressed as

D̄(x) = ∑
j∈S

1{y≺d x}= ∑
j∈S\x

n

∏
z=1

1{ fz(y)≤ fz(x)} . (4.3.2)

As mentioned previously, the computation of the indicator function 1{ fz(y)≤ fz(x)}

requires knowledge of the unknown mean fz(x) for all objectives z = 1, ...,n. To approxi-

mate this indicator function, we can replace the true mean fz(x) by the sample mean f̄z(x)

or the random variable f̃z(x). Substituting the sample mean in (4.3.2) may give partial in-

formation. That is, unless the sample means of two solutions’ objectives are relatively far

from each other, we cannot say for certain if a solution dominates another solution or not.

For example, if the sample means of all of solution x objectives are less than the corre-

sponding sample means of solution y objectives, there could exist one objective such that

the true mean of y is less than the true mean of x. Therefore, we would misclassify x as

dominating y. The sole use of sample means does not provide any information about how

close the estimated domination count is to the true domination count. In contrast, if fz(x)

is replaced by f̃z(x), then we can take the expectation of the indicator function

E[1
{

f̃z(x j)≤ f̃z(xi)
}
] = P( f̃z(x j)≤ f̃z(xi)) = P( f̃z(x j)− f̃z(xi)≤ 0), (4.3.3)

which gives the probability that a solution dominates another solution based on the simula-

tions performed so far. The equation (4.3.3) assumes that the random variable τi,z associated

with each solution and objective are mutually independent. Therefore, we can estimate the
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domination probability for solution x by

D̂(x) = ∑
j∈S\x

n

∏
z=1

P( f̃z(y)− f̃z(x)≤ 0). (4.3.4)

Basically, the domination probability can be interpreted as a continuous approximation of

the domination count. In particular, the closer P( f̃z(y)− f̃z(x)≤ 0) is to one, the higher the

probability that y dominates x. Moreover, as the number of simulation replications goes to

infinity, the domination probability converges to the true domination count.

Lemma 4.3.1. limM→∞ D̂(x) = D̄(x), where M = M1 = M2 = ...= MN

Proof. It is sufficient to show that

lim
M→∞

P( f̃z(y)− f̃z(x)≤ 0) = P( fz(y)− fz(x)≤ 0) (4.3.5)

for any objective z and solution x,y ∈ S. Notice that (4.3.5) is the definition of convergence

in distribution. Therefore, we need to show that f̃z(y)− f̃z(x) converges in distribution to

fz(y)− fz(x).

By the strong law of large numbers limM→∞
1
M ∑

M
s=1 fz(y,τs

y,z)
a.s.→ fz(y) and limM→∞

1
M ∑

M
s=1 fz(x,τs

x,z)
a.s.→ fz(x). Since almost sure convergence implies convergence in distri-

bution, it is true that limM→∞
1
M ∑

M
s=1 fz(y,τs

y,z)− 1
M ∑

M
s=1 fz(x,τs

x,z)
d→ fz(y)− fz(x). As a

result,

lim
M→∞

P( f̃z(y)− f̃z(x)≤ 0) = P( fz(y)− fz(x)≤ 0)

Following the above lemma, we conclude that although the domination probability is

not an unbiased estimator of the domination count, it is a consistent estimator. Therefore,

it is rational to use the domination probability to approximate the domination count. The

probabilities necessary to compute the domination probability can be easily calculated,
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since the difference between two Normal distributions

f̃z(y)− f̃z(x)∼ N

(
f̄z(y)− f̄z(x),

σ2
y,z

My +
σ2

x,z

Mx

)
(4.3.6)

is also a Normal distribution. To improve the accuracy of the domination probability in de-

scribing the domination count, we have to increase the number of simulation replications.

The key question is how to determine the number of replications for each solution in an

efficient manner. The path to answer this question starts with determining how additional

replications impact the domination probability of solutions. The impact of additional repli-

cations before those replications are actually performed can be estimated by constructing a

predictive posterior distribution [15]. A predictive posterior distribution is used to examine

how sensitive the domination probability of a solution is to additional replications of a par-

ticular solution. Before m̃ j simulation replications are allocated to solution j, the predictive

posterior distribution can be represented by a random variable

f̂z(x j)∼ N

(
1

M j + m̃ j

M j+m̃ j

∑
s=1

fz(x,τs
j,z),

σ2
j,z

M j + m̃ j

)
. (4.3.7)

If m̃ j is relatively small when compared to M j, we can expect that the change in the sample

mean is insignificant, and thus, we can approximate the predictive posterior distribution for

solution j and objective z by

f̂z(x j)≈ N

(
1

M j

M j

∑
s=1

fz(x,τs
j,z),

σ2
j,z

M j + m̃ j

)
. (4.3.8)

Then, the probability that x j dominates xi given m̃ j additional replications of solution j

can be expressed as P(x j ≺d xi) = ∏
n
z=1 P( f̂z(x j)− f̃z(xi) ≤ 0), where the distribution of

f̂z(x j)− f̃z(xi) can be approximated by

f̂z(x j)− f̃z(xi)≈ N

(
f̄z(x j)− f̄z(xi),

σ2
j,z

M j + m̃ j +
σ2

i,z

Mi

)
(4.3.9)
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As a result, we can calculate the change in the probability that x j dominates xi given m̃ j

additional replications are allocated to solution j as

∆P(x j ≺d xi)x j =
n

∏
z=1

P( f̂z(x j)≤ f̃z(xi))−
n

∏
z=1

P( f̃z(x j)≤ f̃z(xi)), (4.3.10)

where i 6= j. The above equation for ∆P(x j ≺d xi)x j can be interpreted as how the proba-

bility that j dominates i will be affected if the variance of f̃z(x j) decreases for all z. The

magnitude of the change in probability is comparable to the signal noise ratio in the OCBA

literature. That is, if the magnitude of the change is small, then that indicates that either

the sample means of one solution is much worse than the other solution or the sum of their

variances are low. In either case, we are confident in whether x j dominates xi. This im-

plies that additional replications of x j are not needed to get a more accurate estimate of the

domination count for solution xi. On the other hand, if the difference of the sample means

is close to zero, then the domination probability will change if the variance decreases. The

magnitude of this change will depend on which solution is assigned additional replications.

In particular, if σ2
j,z > σ2

i,z, then additional replications of solution j will result in a big-

ger change of probability than additional replications of solution i. Essentially, if we are

more certain about the true mean of a particular solution, then additional replications of

that solution will not affect the domination probability as much as a solution that we are

less confident about.

Additional replications allocated to a solution may impact its own domination proba-

bility as well as the domination probability of other solutions. Therefore, we can examine

how more replications of a solution influence the domination probability of every solution

in S. Unlike in single objective problems where more replications of a certain solution only

affects the function evaluation of that solution, in this case, the domination probability of a

solution could be affected by more replications of all the solutions in S. Thus, we want to

consider how the change in domination probability for each solution would affect the pro-
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file of the elite set. We employ an allocation scheme that allocates replications to samples

that cause the most elite solutions to leave the elite set and the most non-elite solutions to

enter the elite set.

First, we determine how the domination probability of a solution changes with addi-

tional replications of all the solutions in S. Lets consider the case where j 6= i, then the

change in domination probability of solution i is calculated by

∆D̂(xi)x j =
n

∏
z=1

P( f̂z(x j)≤ f̃z(xi))−
n

∏
z=1

P( f̃z(x j)≤ f̃z(xi)). (4.3.11)

From the above equation, recognize that more replications of solution j can only change

the domination probability of i at most by one. In contrast, when j = i, the change in

domination probability is given by

∆D̂(xi)xi = ∑
j∈S\i

n

∏
z=1

P( f̂z(x j)≤ f̄z(xi))− ∑
j∈S\i

n

∏
z=1

P( f̄z(x j)≤ f̄z(xi)). (4.3.12)

In this case, the domination probability of i can change with respect to all j ∈ S\ i.

From equations (4.3.11) and (4.3.12), we can calculate how additional replications of

solutions in S will change any solution’s domination probability. Following the logic of

OCBA approaches, we aim to allocate the majority of the computational budget to solu-

tions that are critical to the process of identifying the best solutions. In this context, critical

solutions are defined as solutions that are close to the elite threshold γ̄ . We classify solu-

tions as being critical if there are likely to change from being an elite solution to a non-elite

solution or vice versa. That is, if additional replications cause current elite solutions’ dom-

ination probabilities to be close to or greater than the threshold, then those solutions are

considered critical. Similarly, a non-elite solution is considered critical if additional repli-

cations cause its domination probability to be close to or less than the threshold. As result,

we construct the indicator function δ i = 1 if solution i is a critical solution and δ i = 0
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otherwise as follows

δ
i
ε = 1

{
D̂(xi)+

N

∑
j=1
|∆D̂(xi)x j | ≥ γ̄− ε

}
∀i ∈ A. (4.3.13)

δ
i
ε = 1

{
D̂(xi)+

N

∑
j=1
|∆D̂(xi)x j | ≤ γ̄ + ε

}
∀i /∈ A. (4.3.14)

The value γ̄ can be thought as a barrier dividing the elite solutions from the non-elite so-

lutions. The further away a solution in the elite set is from this barrier, the more we are

confident that that solution actually belongs to the elite set. We measure how close solu-

tions are to γ̄ by adding their change in domination probability given additional replications

to their current domination probability. If the change in domination probability causes a

solution performance to become at least ε away from γ , then we classify that solution as a

critical solution.

Now that critical solutions have been identified, the idea is to allocate more replications

to solutions that change the critical solutions’ domination probabilities the most. The num-

ber of replications we allocate to solution j is proportional to the magnitude of the change

in domination probability of the critical solutions given additional replications of solution

j. Additional replications M j of solution j are calculated by

M j =
W j

∑iW i M
max, W j = ∑

i=1
δ

i
ε∆D̃(xi)x j . (4.3.15)

The above allocation equation gives the majority of the computational effort to solutions

that have the biggest effect on the domination probability of the critical solutions. The idea

is that we do not want to waste our computational resources on solutions that will have no

impact on changing the elite set.

We present an effective sequential allocation algorithm denoted as the Domination

Probability Allocation (DPA) heuristic that seeks to characterize the elite set A= {x|D̄(x)≤ γ̄}

by utilizing the change in domination probability. The sequential aspect of the algorithm
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allows the use of updated sample means and variances to play a role in deciding the allo-

cation of additional replications. At each iteration of the algorithm we update the sample

means and variances of every solution and construct the observed elite set A accordingly.

The propose heuristic given initial replications m, maximum number of replications Mmax,

threshold γ̄ , constant ∆t , and a sequence {εt : t = 1, ...} is outlined as follows:

Algorithm 5 Dominaiton Probability Allocation Heuristic
Step 1: Perform m simulation replications for all candidate solutions M1 = M2 = ... =
MN = m. Set t = 0.

Step 2: Calculate the domination probability D̂(xi) for i = 1,2, ...,N and construct the
observed elite set A =

{
xi|D̂(xi)≤ γ̄

}
and determine δ i.

Step 3: If ∑
N
i=1 Mi < Mmax and ∑

N
i=1 δ i

εt
> 0 , set t → t + 1 and go to step 4, otherwise

terminate algorithm and output the final observed elite set A.

Step 4: Increase the total computing budget by ∆t (s.t. ∆t ≤ Mmax − ∑
N
i=1 Mi) and

determine the new allocation M1
t , ...,M

N
t , where Mi

t = b W i

∑ j W j ∆tc.

Step 5: Perform Mi
t additional replications of solution i update the total number of replica-

tions Mi = Mi +Mi
t for all i and go to Step 2.

First, m initial simulation replications are conducted for all N solutions and the dom-

ination probabilities are calculated from those preliminary simulations. At every iteration

of the heuristic the observed elite set is constructed and the number of additional replica-

tions for every solution is calculated. The sequence εt is required to go to zero as t goes to

infinity. This requirement ensures that, at the beginning of the algorithm, we are more con-

servative in identifying solutions as critical, but as the algorithm progresses, we are more

aggressive in classifying solutions as critical. The algorithm terminates when the num-

ber of simulation replications reaches the maximum computing budget or when no critical

solutions have been identified.

To provide some insight into the effectiveness of this allocation scheme, we compare the

DPA heuristic with the Uniform Computing Budget Allocation (UCBA) algorithm, which

allocates the same number of replications to all solutions. We consider the multi-objective
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problem

[ f1(x), f2(x)] = [1− exp(−
3

∑
i=1

(xi−
1√
3
)2)+ τ1,1− exp(−

3

∑
i=1

(xi +
1√
3
)2)+ τ2], (4.3.16)

where τ1,τ2 ∼ N(0,1), X := [−4,4]3 and N = 10. The elite set A is characterized by

γ̄ = 1.5. The true domination count of the solutions considered is illustrated in Table 4.3.1,

in which the elite solutions are bolded.

Table 4.3.1: Solution’s True Domination Count

Solution f (x) D̄(x) Solution f (x) D̄(x)

1. (.45,.15,-.23) [.5729,.8183] 0 6. (-.11,.03,-.44) [.8359,.4546] 0

2. (.26,.30,0) [.4001,.8354] 0 7. (-.83,.73,1) [.8872,.9859] 4

3. (-.58,-.51,-.98) [.9929,.1535] 0 8. (3,.97,-.41) [.9991,1.000] 9

4. (-.31,.26,-.02) [.7120,.6615] 0 9. (-.61,-.98,-.46) [.9926,.1622] 0

5. (-.68,-.93,-.91) [.9977,.2177] 2 10. (2,-.49,.18) [.9639,.9993] 5

To determine an approximate number of replications for the UCBA algorithm, we ap-

ply a brute force search. Given that we must allocate Mmax

10 replications for every solution,

we determine the maximum computing budget that results in the UCBA algorithm identi-

fying all solutions that have a true domination count less than 1.5. We initialize the brute

force search such that Mmax = 10,000 and increment Mmax by 1000 replications until the

algorithm correctly selects the elite set.

We generate 20 replications of the DPA heuristic and the brute force search applied to

the UCBA algorithm. The parameters selected for the DPA heuristic are Mmax = 20,000,

m = 20, εt = .9t , m̃ j = 10 for j = 1, ..,10, and ∆t = 500. We point out that the proposed

allocation algorithm correctly chose the elite set in every experiment. Table 4.3.2 and Fig-

ure 4.3.1 displays the average number of the replications that are allocated to each solution

for both the DPA heuristic M̄DPA and UCBA M̄UCBA from 20 independent numerical exper-
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iments. The DPA heuristic took a total of 2,000 simulation replications compared to 4,250

simulation replications required by the UCBA algorithm to obtain the elite set. The results

indicate that the DPA heursitic is more efficient in correctly identifying the true set of elite

solutions than the UCBA algorithm. Intuitively, this is due to the fact that the DPA heuristic

only allocates replications to solutions that are sensitive to calculating the elite set.

Table 4.3.2: UCBA vs Allocation Algorithm Results

Solution M̄DPA M̄UCBA Solution M̄DPA M̄UCBA

1. (.45,.15,-.23) 712 425 6. (-.11,.03,-.44) 85 425

2. (.26,.30,0) 249 425 7. (-.83,.73,1) 20 425

3. (-.58,-.51,-.98) 294 425 8. (3,.97,-.41) 20 425

4. (-.31,.26,-.02) 224 425 9. (-.61,-.98,-.46) 54 425

5. (-.68,-.93,-.91) 320 425 10. (2,-.49,.18) 22 425

Figure 4.3.1: UCBA vs Allocation Algorithm Results

Since the DPA heuristic is designed for selecting a subset of the top solutions, its use

would be beneficial for model-based algorithms that require a characterization of an elite

set. When model-based methods are applied to a stochastic setting, the efficiency of these

methods is strongly linked with how efficient the elite set can be determined. We combine
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this heuristic with a modified version of the SASMO method introduced in chapter 3 to de-

velop SASMO-II. Along with some modification to the SASMO method for the stochastic

setting, the DPA heuristic is employed to minimize the total computing budget necessary to

evaluate the performance of candidate solutions and correctly identify the elite set at every

iteration of the algorithm. Although this heuristic is implemented in the framework of the

SAMSO algorithm, it could also be applied to any model-based algorithm for stochastic

multi-objective optimization problems.

4.3.3 SASMO-II Algorithm

As mentioned before, extending the SASMO algorithm to simulation multi-objective prob-

lems requires handling the simulation error in an efficient manner. A naive approach would

be to allocate simulation replications uniformly to each candidate solution. In the previous

subsection, we show how inefficient an equal allocation procedure can be for determining

the elite set of solutions. Instead of using equal allocation for estimating the performance

of the candidate solutions, we apply the DPA heuristic to enhance the computational ef-

ficiency of a model-based approach in the multi-objective stochastic domain. Other key

modifications of the SASMO algorithm are required to adapt the SASMO framework to

stochastic multi-objective problems. SASMO-II extends the SASMO algorithm by using

approximations for the reference distribution and integrating the DPA heuristic. A detailed

description of SASMO-II is discussed below.

The algorithm is initialized by choosing a parameterized family of densities {g(·,θ) : θ ∈Θ},

where the initial parameters of the sampling distribution are chosen arbitrarily if no knowl-

edge about where good solutions are located in the decision space is available. For example,

if the family of multi-variate Gaussian distributions is chosen, then the mean vector can ar-

bitrarily be chosen and the trace of the covariance matrix should be large relative to the size

of the feasible region so that all solutions have a significant probability of being sampled.

Since we must maintain a tradeoff between searching in the solution space (exploration)
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Algorithm 6 SASMO-II
1. Initialization: Choose a parameterized family of densities {g(x;θ) : θ ∈ Θ} with
initial parameter. Determine values for the sample size N0, maximum computing budget
Mmax

0 percent quantile ρ , initial sampling parameters θ1,0, maximum number of iterations
tmax > 1, mixing coefficient α ∈ (0,1), and constants ω1 > 1,ω2 > 1, η > 0. Specify
sequence of initial simulation replications {mk : 1, ...} and the sequence required for the
DPA heuristic {εt : 1, ...}. Set k = 0 and I0 = 1.

2. Sampling: Draw Nk i.i.d. candidate solutions {xi
k : i = 1,2, ...,Nk} according to gk(·),

where
gk(·)

4
= (1−α)gk(·)+αUX (·)

where, gk(x) = 1
Ik

∑
Ik
i=1 g(x;θi,k), and UX (·) is the uniform distribution on X .

3. Simulating: Calculate the threshold value γ̄k and determine the sample size Nk+1.
Determine the number of replications Mi

k of solution xi
k and the elite set Ãk from the DPA

heuristic with input parameters Mmax
k , {εt : 1, ...}, and γ̄k. Set Mm

k+1ax = ω2 ∗Mm
k ax.

4. Updating: Update the parameter of the sampling distribution by θk+1 according to the
SASMO algorithm.

5. Terminating: Check if some terminating criterion is satisfied. If yes, stop and return the
means of the current parameterized sampling distributions; else, set k := k+1 and go back
to step 2.

and obtaining an accurate estimate of a good solution (exploitation), the algorithm has two

allocation rules. The first allocation rule denoted by Nk deals with the exploration part of

the algorithm, where the number of candidate solutions generated for the sampling distribu-

tion in iteration k is Nk. The second allocation rule
{

Mi
k, i = 1, ...,Nk

}
is associated with the

exploration aspect of the algorithm which is determined by the DPA heuristic where Mmax
k

determines the total computing budget for iteration k. To be clear, without stochastic noise,

increasing Nk ensures that our domination measure estimate is close to the true domination

measure. Whereas increasing Mmax
k improves our certainty that our comparison of any two

solutions is accurate. Therefore, as both Nk and Mmax
k increase our domination measure,

estimates get closer to the true domination measure. Essentially, the stochastic noise in the

objectives requires another level of simulation when compared to the deterministic setting.

That is, the outer-layer simulation corresponds to sampling on the solution space, whereas
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the inner-layer simulation corresponds to improving the certainty of determining the best

solutions. The constants ω1 and ω2 control the rate of increase in Nk and Mmax, respec-

tively. The percent quantile ρk is used to calculate the threshold γ̄k. Lastly, α facilitates the

proportion of samples that are generated from a uniform distribution.

In the sampling step of our algorithm, we generate candidate solutions according to a

mixture distribution, where solutions are generated from g(·) with probability (1−α) and

a uniform distribution with probability α . Generating candidate solutions from a mixture

distribution allows the probabilistic model to have the ability to concentrate on specific

regions of the decision space. The former component is updated at every iteration based on

the solutions that are in the set of elite solutions. The latter component is used to ensure that

solutions from the entire solution space are used to calculate the domination probability.

Given enough simulation replications, this produces an accurate estimate of the domination

measure, regardless of how biased the first component is to a specific region of the decision

space. Furthermore, the latter component is especially necessary in the later stages of

the algorithm, since the first component will be concentrated on particular regions of the

decision space.

In the simulation step, the DPA heuristic is used to select the elite set of solutions

with parameter Mmax
k . The threshold value γ̄k is calculated by the quantile estimate of

the domination probability from the initial simulation replications mk in iteration k. The

quantile estimate γk = D̂dρk∗Nke depends on both the sample size Nk and percent quantile ρk.

Therefore, the choice of Nk and ρk are both important issues for empirical performance. We

construct the threshold value such that it is strictly decreasing with respect to k as follows:

• If the algorithm is in the first iteration; i.e k = 0, then use the current quantile estimate

D̂dρk∗Nke as the threshold value, i.e γ̄k = γk, set ρk+1 = ρk and increase the sample size

by ω1, Nk+1 = ω1Nk.

• Elseif use the current quantile estimate γk as the threshold value only if there was

some decrease in the current quantile estimate with respect to the previous threshold
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value, γk ≤max{0, γ̄k−1−η} then set γ̄k = γk, ρk+1 = ρk, and Nk+1 = ω1Nt .

• Else find the largest ρ̂ ∈ (0,ρk) such that the quantile estimate D̂dρk∗Nke is less than the

previous threshold value, D̂[dρ̂Nke] ≤max{0, γ̄k−1−η} then set γ̄k = D̂[dρ̂Nke], ρk+1 =

ρ̂ , and Nk+1 = ω1Nk. If such a ρ̂ cannot be found, increase the initial number of

simulation replications until a ρ̂ can be found. Since there always exists a solution

that has a true domination count of zero, we can always find such a ρ̂ with enough

simulation replications.

At every iteration, the sample size strictly increases and the threshold value decreases until

it reaches its lower bound of zero. These conditions are needed to ensure that the quality

of the elite solutions improves at every iteration. Furthermore, the improving threshold

value allows the sampling distribution to quickly direct the search to promising areas of the

decision space.

In the final step of our algorithm, we update the parameters of the sampling distribution

according to SASMO, where the reference sampling distribution is approximated by the

empirical distributions of the elite solutions based on their domination probability. Due to

both allocation rules increasing, the domination probability will become closer to N times

the domination measure as the number of iterations increases. The hope is that the updating

process causes each component of the sampling distribution to converge to a degenerate

distribution concentrated only on Pareto optimal solutions.

4.4 Numerical Results

In this section, we test SASMO-II with some modified deterministic multi-objective opti-

mization problems, where the objectives are altered to mimic stochastic ones. In particular,

we develop test problems by incorporating Gaussian noise to the deterministic objectives.

This Gaussian noise is denoted by a random variable τ which is normally distributed with

mean 0 and variance 10. The objectives are altered to minimize the expectation of the
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multiple functions with respect to τ . The constructed test functions are listed below:

• Modified MOP1

min f(x) = (Eτ [ f1(x,τ)],Eτ [ f2(x,τ)])

f1(x) = (τx)2

f2(x) = (x+ τ−2)2

x ∈ [−103,103]

• Modified MOP2

min f(x) = (Eτ [ f1(x,τ)],Eτ [ f2(x,τ)])

f1(x) = 1− exp(−
3

∑
i=1

(xi−
1√
3
)2)+ τ

f2(x) = 1− exp(−
3

∑
i=1

(xi +
1√
3
)2)+ τ

xi ∈ [−4,4], i = 1,2,3

• Modified ZDT3

min f(x) = (Eτ [ f1(x,τ)],Eτ [ f2(x,τ)])

f1(x) = x1 + τ

f2(x) = g(x)[1− (x1/g(x))2− x1

g(x)
sin(10πx1)]+ τ, where

g(x) = 1+9(
30

∑
i=2

xi)/(30−1)

xi ∈ [0,1], i = 1, . . . ,30.

• Modified ZDT4

min f(x) = (Eτ [ f1(x,τ)],Eτ [ f2(x,τ)])
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f1(x) = x1 + τ

f2(x) = g(x)(1−
√

x1/g(x))+ τ, where

g(x) = 1+10(10−1)+
10

∑
i=2

(x2
i −10cos(4πxi))

xi ∈ [−5,5], i = 1, . . .10.

The above test problems combine the complexity of the original multi-objective problems

with the additional challenge of dealing with uncertainty in the objective functions. These

problems are developed to imitate a stochastic multi-objective problem in the sense that the

expectations must be approximated via simulation.

In order to quantify the performance of our algorithm, we use the convergence metric Λ

and diversity metric ϒ as seen in Chapter 3 and the total number of objective evaluations T .

As a reminder, the convergence metric measures the distance between the estimated Pareto

optimal solutions and the true set of Pareto optimal solutions, and the diversity metric

measures how well spread the solutions are in the decision space.

We compared the performance of SASMO-II with NSGA-II, MOPSO, and SPEA-II

implemented with an equal allocation rule. For the aforementioned methods, we choose

the following parameters:

• Number of generations: 250

• Population size: 100

• Archive size: 100

• Simulation Allocations: 10.

For each problem instance, we performed 30 independent replications of each method im-

plemented in MATLAB. We reported the best value for the convergence metric (Λ) and

the average number of total objective evaluations (T ) obtained out of the 30 trials for each

method.
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SASMO-II terminates when the current iteration number equals the maximum number

of iterations kmax or when the threshold distance of the clustering algorithm is less than the

threshold bound. We choose the following parameters for SASMO-II: initial sample size

N0 = 500, initial simulation replications m0 = 5 maximum computing budget Mmax
0 = 500,

percent quantile ρ0 = .10, initial mean µ0 = 0, initial covariance matrix Σ0 = 1000Id , tmax =

25, mixing coefficient α = 0.1, m̃ j = 10 for j = 1, ..,N, constants ω1 = 1.01, ω2 = 1.10,

η = .01, ∆ = 300 and sequences mk = mk−1 +2 and εt = .9t .

Figure 4.4.1: Modified MOP1 Results.

The results are summarized in Table 4.4.1 - 4.4.3, and the resulted approximations for

the Pareto fronts produced by SASMO-II are illustrated in Figures 4.4.1 - 4.4.4. We can

see that SASMO-II outperforms the existing methods for all the problems with respect to

the convergence metric and total number of objective evaluations. Although the SASMO-

II performed the least amount of objective evaluations with respect to all test problems,

the approximated Pareto front produced by SASMO-II was the best compared to the other

methods. We contribute this to the integration of the DPA heuristic within SASMO-II. The

DPA heuristic causes our proposed method to be less sensitive to simulation error caused

by stochastic noise in the objective functions. We point out that the diversity metric results

are similar to those yielded by the original SASMO algorithm, since the distance between
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the estimated solutions in the decision space is not directly affected by the stochastic nature

of the problem.

In summary, the numerical results indicate that SASMO-II has the ability to obtain

approximate Pareto solutions for problems with complex Pareto front structures with the

addition of stochastic noise. The results also demonstrate that approximating the reference

distributions by the domination probability has little effect on the capability of the proposed

method to find Pareto optimal solutions. Additionally, the DPA heuristic outperforms equal

allocation in terms of the number of simulation replications required to successfully iden-

tify the elite set of solutions.

Figure 4.4.2: Modified MOP2 Results.

Table 4.4.1: Comparisons of Convergence Metric Λ.

Problem SASMO-II NSGA-II SPEA-II MOPSO
Λ Λ Λ Λ

MOP1 .8276 3.942 4.011 4.284
MOP2 1.962 5.287 6.422 7.023
ZDT3 3.178 12.982 14.981 14.502
ZDT4 1.434 11.2173 12.763 13.301
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Figure 4.4.3: Modified ZDT3 Results.

Figure 4.4.4: Modified ZDT4 Results.

4.5 Conclusions and Future Research

We have proposed SASMO-II for solving stochastic optimization problems in the multi-

objective domain. This method extends the SMASO algorithm presented in Chapter 3 and

incorporates an allocation heuristic within every iteration. Instead of finding the Pareto

optimal solutions, the DPA heuristic is designed to determine how the simulation replica-

tions should be allocated in order to successfully identify the elite solutions. As a result,
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Table 4.4.2: Comparisons of Diversity Metric ϒ.

Problem SASMO-II NSGA-II SPEA-II MOPSO
ϒ ϒ ϒ ϒ

MOP1 .02143 .0031 .0289 .4415
MOP2 .0781 .0632 .1621 .9136
ZDT3 .7699 .6214 .9822 1.003
ZDT4 .4967 .5812 1.275 1.344

Table 4.4.3: Total Number of Objective Evaluations T .

Problem SASMO-II NSGA-II SPEA-II MOPSO
T T T T

MOP1 90,842 250,000 250,000 250,000
MOP2 101,779 250,000 250,000 250,000
ZDT3 153,913 250,000 250,000 250,000
ZDT4 149,868 250,000 250,000 250,000

the SASMO-II algorithm is effective at searching for good solutions in the solution space

while at the same time allocating the number of simulation replications to every solution in

order to enhance the computational efficiency of the algorithm.

The numerical results indicate that implementing an allocation methodology specif-

ically to improve the performance of the model-based framework results in an efficient

algorithm designed for SMO. It should be straightforward to extend other model-based al-

gorithms designed for deterministic multi-objective optimization by implementing the DPA

heuristic in the evaluation step of the algorithms. It is important to recognize that the DPA

heuristic does not improve the search process but attempts to minimize the computational

budget required to alleviate the simulation error in the search process due to the stochastic

nature of the problem.

To enhance the performance of SASMO-II, one future research direction is to consider

the effects the parameters have on the performance of the algorithm and to investigate the

theoretical convergence of SASMO-II. Furthermore, determining the optimal number of

samples required for both the inner-layer and outer-layer simulation is still an open area of
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research. Another future research topic is extending this method to solve multi-objective

problems with constraints under uncertainty.
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