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A SKEW TOEPLITZ APPROACH TO THE H* OPTIMAL CONTROL
OF MULTIVARIABLE DISTRIBUTED SYSTEMS*

HITAY OZBAYf AND ALLEN TANNENBAUM$

Abstract. In this paper the problem of the H® optimization of multivariable distributed systems in the
four block setting is studied. This work is based on several previous papers and employs the skew Toeplitz
framework developed in [ Operator Theory: Adv. Appl., 32 (1988), pp. 21-43], [ Operator Theory: Adv. Appl.,
12 (1988), pp. 93-112], [ Operator Theory and Integral Equations, 11 (1988), pp. 726-767], [J. Functional
Anal, 74 (1987), pp. 146-159], [SIAM J. Math. Anal., 19 (1988), pp. 1081-1091].
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1. Introduction. In the past few years, there has been a major research effort
devoted to the study of the H™ optimization of linear systems. We refer the reader to
[13] for an extensive set of references. In this paper we consider the problem of the
\H*-optimization for multivariable distributed systems.

. Motivations leading to the H® optimization in systems theory lie in the most
natural problems of control engineering such as robust stabilization, sensitivity minimi-
ation, and model matching. It can be shown that, in the sense of H* optimality, these
problems are equivalent, and can be stated (see [13]) as one standard problem. Consider
he setup shown in Fig. 1. In this configuration w, u, y, and z are vector-valued signals
with w the exogenous input representing the disturbances, measurement noises, etc.,
i the command signal, z the output to be controlled, and y the measured output. G
represents a combination of the plant and the weights in the control system. The
sandard H* problem is to find a stabilizing controller K such that the H* norm of
the transfer function from w to z is minimized. For finite-dimensional systems an
expression for a suboptimal controller is given in [2] and [4] using a state-space
approach.
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654 H. BZBAY AND A. TANNENBAUM

Now it is quite well known that an optimal solution of the standard problem can
be reduced to finding the singular values of a certain operator (the so-called four block
operator) that will be defined below. For details we refer the reader to [5]-[7].
Depending on the specific problem considered, the corresponding four block operator
can be simplified to a 2-block or a 1-block operator.

This paperisbased onseveral previous papers [6]-[12],[21], and basically employs
the skew Toeplitz framework of [3] to study the standard problem. We should note:
that software for the implementation of the techniques used in this paper has already"
been written at the Systems Research Center of Honeywell, Minneapolis in collabo-
ration with Blaise Morton, and has been applied to several distributed systems including
a flexible beam problem. We plan to write a paper with several such “benchmark”
examples with Blaise Morton in the near future.

The present paper is organized as follows. In the next section we set up some
notation and give some background on the ideas taken from previous work. In § 3 we’
derive our main result which is a rank type formula for the singular values of the four
block operator. We illustrate a special case of our main result by considering SISQ
plants in § 4, and by giving an explicit example in § 5. Finally, in § 6 we summarize
our results and make some comments. '

2. Problem definition and preliminary remarks. We will now state the standard
H*® problem and define the four block operator. We will also present some preliminary
results from earlier work [3], [6], [7]. Throughout the paper all Hardy spaces are’
defined on the unit disc D in the standard way. For an integer m we denote the
canonical unilateral shift (defined by multiplication by z) on H}(C™) by S: H¥(C")>
H?(C™) and the bilateral shift on L3(C™) by U: L*(C™)- L*(C™). Let W, F, G, J, and
M be H®™ matrices, of sizes pxm, px1l gxm, qgx I, and pX p, respectively, with
p=max {m, I}, where W, F, G, J have rational entries, and M is a nonconstant inner
matrix. These matrices are associated with the weighting matrices and the plant in the
usual way of transforming the standard problem to the 4-block framework (i.e., vié
Youla parametrization and some inner outer factorizations; see, €.g., [13] and [20]):
It is important to note that for many problems of interest, in the case of rational
weights and distributed stable plants, this reduces to the kind of problem described
below. See [15] for all the details. The standard H™ problem amounts to finding

][

G J
where for a k x n matrix of the form [& 2], (A, B, C, D having appropriate sizes with

entries in L), we set
& 2l -esll[ed o]la-]
¢ Dll« Plilcwy bwll '
(For the norm on the right-hand side the kx n matrix is taken as a linear operator
from C" to C* for each fixed ¢ in 9D, the unit circle.) Note that if F=G=J=0t
this problem reduces to the classical Nehari problem, which is also known as the
1-block problem. For F =J =0 we have the 2-block problem.
To the p x p inner matrix M, we associate the spaces H(M )= H*(C")© MH*(C’)
and L(M):=L*C?)© MH*(C?). Let Py HC”)>H(M), Py :L(C)3
L(M), Py2: L*(C?)> H?*(C?), and Pp2gy2: LA(C?) > L*(C?)© H?*(C”) be orthogonal
projections. '
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We now define the 4-block operator (see [5] and [7]):

A.=[PH(M)W(S) PL(M)F(U)]
’ G(S) J(U)

Note that A: H*(C™)® L*(C") > L(M)® L*(C?).
. In the paper, by a slight abuse of notation, { will denote a complex variable as
ell as an element of 9 D. The context will make the meaning clear. Note that W(S)
tin be seen as the operator defined by multiplication by W({), and similarly for G(S),
(U), and J(U). Using the commutant lifting theorem [18, pp. 257-259], we can show
hat w is equal to ||A||. (See [5] and [7] for the details.) Note that ||A]|* is the largest
dement of o(A*A), the spectrum of A*A. o(A*A) consists of the discrete spectrum
lie., eigenvalues with finite multiplicity), which we denote by o,(A*A), and its
wmplement o.(A*A), the essential spectrum. The essential spectrum of A*A consists
if those A € C for which there exists

[;‘ ]eH (C™Y@® LX(C') with H[ ]

nd [}»]- 0 weakly as n - co, such that

=1 Vn=1,
2

(AL—-A*A) [x,,] >0 asn- o,
Yn

e essential norm, denotéd by ||All,, is defined as
| A]2=max {A: A € 0.(A*A)}.
In the SISO case we have that (see [7, Thm. 3.2])
[Alle = max (e, B, 7),

where

B W) F()
"_ma"{’[G(g) J(z]H (e (T)}

B=max {[[G({) J(D]l: {eaD},

'[J((;g)]“ geon).

o.(T) denotes the essential spectrum of the operator T := PH(M,S|H(M>. We let R
be the set of all A € 3D that do not lie on any of the open arcs of 4D on which M(¢{)
sa unitary operator-valued analytic function. Then from [17] and [18], we have that

g (T)=R

y:max{

Inthe case of infinite-dimensional MIMO systems it may be difficult to find the essential
norm of A. Nevertheless, upper and lower bounds can be obtained in terms of «, S,
y. This is discussed in detail in § 3.2.

Note that when ||A] > ||A|., ||A]|* is an eigenvalue of A*A. Here we are going to
develop a rank type formula for the eigenvalues of A*A. We will show that this formula
s obtained by a certain linear system of equations (called the singular system in [7]).
These equations are derived from the inversion of two Toeplitz operators and the
gssential inversion of a skew Toeplitz operator. It is important to note that in the
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2-block problem, one of the Toeplitz operator inversions disappears, and in the 1-
case the same is true for both of the Toeplitz operator inversions. The Fred
conditions on the invertibility of the skew Toeplitz operator (which is essen
invertible) and the coupling between various systems of equations constitute the singula
system. See also [3] and [7].

3. Main results.
3.1. Discrete spectrum. Let us begin with the following assumption W=
F=C/k, G=D/k,and J = E/k, where B, C, D, E are polynomial matrices an
a scalar polynomial. We denote by n an upper bound for the degree of the entri
all polynomial matrices appearing throughout the paper.
Now it is easy to see that p? is an eigenvalue of A*A if and only if there ex
a nonzero

[;‘] e HA(C™)@® L¥(C"),

such that

(1) (p*k(S)*k(8)I = B(S)*Prinm)B(S) — D(8)*D(S))x
— (Puz(B(U)* P myC(U) + D(U)*E(U)))y =0,

and

(1b) ~((C(U)*PumB(S)+ E(U)*D(S)))x

+(p2k(U)*k(U)I—C(U)*PL(M)C(U)—E(U)*E(U))y=0-

in [3], we make the factorlzatlon
(f1) M(§)*B(§) =Q,({)Mu(8)*,

where ,({) is a polynomial matrix of size p x m and M,({) is an inner matrix 0
m X m. We now decompose the space H*(C™) as H(M,)® M,H*(C™), and ex
x = x, + Myx}, where x, € H(M,) and x,e H*(C™). Then we have

Pz M({)*B({)x = P2 Q4 (§) M, (§)* (x, + Myxt).
Since M, is inner,
Pz M(O)*B($)x =Qu () x5+ Pz Qp(§) M, ({)* x5,
By (f1) we see that the right-hand side of this last equality is equal to
M(O)*B(IMy(O)xh+ PrzQ, (8 My (£)* x5
We can write ,(¢) = Qpo+ Qi+ - +Q,,0". The fact that x, € H(M,) implies
My(O*xy =0 u +{ U+
for some u_;€ C™, i=1. Therefore,
P,41(l',(§)Mt,(£)’“)cf,—’ZI ,Z, Qud’ ™ 'ui =" Xy

Combining the above computations we get

PH(M)B(S)X= B(S)xb - wab-
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[similarly, for the computation of
P i C(U)y=C(U)y—MP,>M*Cy,
.c use the factorization . ;
) M()*C (L) =Q(OM()*, :

chere 2.({) is a polynomial matrix of size p x [ and M., is an inner matrix of size / x L
\s before we write y =y, + M.y, where y.€ L(M) and y.e H*(C'). Let Q.({)=
+Q(~1§+ t +Qm§n' Then

Lo

P Q.M¥y =% ¥ QL:,{F"UH,: Ve

i=1 j=i
orsome v_, € C, i=1, - n This leads us to
PL(,WDC( U)y=C(U)y.— My,..

yow we see that, with the above factorizations and decompositions, (1a), (1b) are
;quivalent to

(p*k(S)*k(S)I = D(S)*D(S) - B(S)*B(S))x,
2a) —P2((B(U)*C(U)+ D(U)*E(U))y.+ D(U)*E(U)M.y.)
+(p’k(S)*k(S)I = D(S)*D(S)) M, x}, = —B(S)*Mx,, — P> B(U)*My,,
and
(p’k(U)*k(U)I = E(U)*E(U)—C(U)*C(U))y.
12b) —(C(U)*B(S)+ E(U)*D(S))x, - E(U)*D(S)M,x,
+H(p’k(UY*k(U)I = E(U)*E(U))M,y.==C(U)*My, — C(U)*Mx,.
Now we will compute Py2(B(U)*C(U)+ D(U)*E(U))y.. First write
B(U)*C(U)+ D(U)*E(U)=QL, U* +-+-+Qy+---+Q,U".
Then,
P:QLU*y. = QL P,2U*y, = QL. S* (Pu2y.).
et y, ="+ ye-ird '+ Veoy* Yo, { ++ - - . Then
PHZQ:Uiy¢~= Q:S'(Pszt')+Ql!(gi"lyt'("”*—. CF Ye-i)-
Therefore,
Py (B(U)*C(U)+ D(U)*E(U))y.

= (B(SYC(8$)+ DI E()(Pury)+ ¥ QU v+ + i)

Similarly, we have
P> D(U)*E(U)M.y"= D(S)*E(S)M.y"..
Hence (2a) is equivalent to
(ﬂlk(S)*k(S)I—D(S)*D(S)-—B(S)*B(S))x,,+(p3k(S)*k(S)I—D(S)*D(S))M,,x},
Ja) —((B(S)*C(S)+ D(S)*E(S))y. + D(S)*E(S)M.y)
=~ B(S)* M,y = B(S)*My,o+ ¥ QNI yucn -y,

i=1
where y* = P,;2y.. Note that we have y =y, +y, + M,y., where y_ € L(M.)© H(M,),
We H(M,), and y. e H*(C'").
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uation (2b) into two parts by taking zhg;
2(C"). As in the above discussion, if

P ——

We will separate the eq
projections on H 2(C") and L*(ChOH

p2k(U)*k(U)T = E(U)*E(U) = C(UY*C(U)= Q% U*"++ -+ Qi+

then we have
Pi2(p*k(U)Y*k(U)I - E(U)*E(U)- c(u*c(U))y.

= (p2k(S)*k(S)I — E(S)*E(S)— C(S)*C(yc+ él Q¢ Yeeny

Hence the projection of (2b) on H2(C") gives
(p*k(S)*k(S)I - E(S)*E(S)~ C(S)*C(8))y:+(p*k(S)*k(S)I - E(S

(3b) —(C(S)*B(S)+ E(S)*D(S))x, — E(S)*D(S)Myx}

=_C(s) Mywc—c(s)*wab Z Q (C' ly( l)+ +ye( 1)) .'
We now study the projection of (2b) on LX(CHO H?*(C"). First noté
PL’@H’QZ—.- U*iyc = Q2—l U*iyc + Q—‘l(g }’co+ +{ }’c(. 1.

and
PLZOHIQ?Uiyc =QiU'y: — QL "Wy o +yc(—i))-v,:

Hence
(U KUY = E(U)*E(U) - C(U)*C(U))ya

2 (UY*k(U)T = E(U)*E(U) — cu*Cc(W))ye

PL’@H’(P
=(p

+ )’i Q2L Yot A+ Yeion)

i=1

- Z Qz(gl l}’( T +,Vc(—.'))-

This takes care of the first term in (2b). For the projections of the othert

the following notation:
p2k(U)*k(U)I — E(U)*E(U)= QL. U*+

C(U)*B(U)+E(U)*D(U)— QL. U™+
E(U)*D(U)= QS_,,U*"+---+Q?,+---+Q,,U .

.+Qg+. N "FQiU d
e+ Qo+ +Q:Lf.; b

M, ({)= Myot Mblg‘.q.szgz_*__ .
M.(0)= Mot Mard' + M+
M({)= Myt M, + M+
C(U)*=: C§+CHU*+- -+ CIU™,
xh(£) = Xhot Xl ++

YU = Yot yal' s

x,(§) = xbo+x,,,§'+. i
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choe H?(C"), and then multiply-

with this notation, taking the projection of (2b) on L*(
valent to the operation U*",

ing both sides of the resulting equation by {77 (this is equi
yhich is left invertible on L3(C"© H*(C") will give us

(48) X3(C—1)y;3= F}(g_l),
ghere X5({7) = QL+ QT T Q3, and

i—1 .
QL L &y
j=0

FEH=L QX " yeen— X
i=1 j=1 i=1

n i—1 " J n—k
- Z C:k Z g—" o Z Mj~k Z QC(S+k)v—S

i=I j=0 k=0 s=1

i-1 o n P i—j
+ E QA‘ ) 54"_'+bej+ x Qs_‘_ Y ¢ ) Mb(i~j—k)x’bk
i=1 j=0 i=t j=1 k=0

n i =y
-X Q3—i ) g_"ﬂ ) Mr(i—j—k)y,ck
i=0 j=1 k=0

n—k

n i—1 L Jj =
-2 Ct ) g_n+1 Y M« Y Qps+ryU—s-
i j=0 k=0 s=1

i=1

We now play the same game with (3a) and (3b). Indeed, we multiply both sides
of these equations by {". (This is equivalent to the application of the operator S”,

which is left invertible on H*(C') and H?*(C™).) Set
1 p?k(S)*k(S)I - D(8)*D(S) — B(S)*B(S)=:Q%,8*"+: -+ QS+ -+ Q58"
} S2K(S)*k(S)T - D(S)*D(8)= QL,S*"++ -+ Qo+ -+ Qs
D(S)*E(S)= Q%,8*"+- -+ Qb+ -+ QhS",

B(S)*= B§+---+BiS*"
For any polynomial of degree =n, P({), we define ﬁ({) = {"P*({"). Then it is easy
to see that (3a) cox_'nbined with (3b) is equivalent to

el TR
4b X X =
| (4b) 1(5)[})?}“ 2(5)[0 MLy £ )
where
X\ )'_[(pZEkI—DAD—éB) _(BC + DE) ]
(&)= _(¢B+ED) (p*kkl —EE-CC) )
[ (p*kkI - DD) -DE
X(0)= [ -ED (pkkI — EE)]’

" j—1 o n i-1 v j
1 FRO=Y Q%X it L QLY ("™ L My (j—k) Xbk
iz =0 i=1 =0 k=0

j=

i n . i—1

n+i—j n—i+j

4 Ve-ir— Y Q- Y ¢ yei
i=1 j=0

'Z'}. Qa—i,i {n_iﬂ i Mc(j—k)ylck—é(g)M(g) i il Q-b.{iﬂ“—j

j=0 k=0 j

i=1 j=

j=
n -1 o 4 n—k & n i .

+y BryY kZ M L Qorioti-s = BOM(L) Y ¥ Qul
i= =0 =0 s=1 i=1 j=1

n i—1 i j n—k

= Z B:k gn_' ! Z A/lj—k Qc(x+k)u~sa
i=1 j=0 k=0 s=1

L}
i= J

i o — A~ e i
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and

k=0

n i~ N " i-1 _ g
Fl(g): Z O_r Z. g””'l)yu+ 2. O}'l 2 {, Y z ML'[I’A‘),"(’[\
I | jo 0 i- 1 j=0

-1 n i

—Y QLT Y My X = COMQ) Y Y O
i=1 /

-0 k=0 Pyl

n—k n i
Z Ql!(\"l\lu'-\‘.C(;)M(é’) z Z Qué‘“,v
s=1

= -1 j-1

ol

n i—1 o
+YL CPL T LM,
i—= k=0

41 j—0
i-1
X

j=0

+Y Cf
i=1

i

i n--k

g‘”'—l'*) Z M)~l\ Z Q(l\+k)v—\-
h =0 vyl

Let us summarize the above results in the following:

PROPOSITION 1. p” is an eigenvalue of A*A if and only if there exists x, € H( M,
x,e H(C™),yf e H(M,), y. e LIM,))© H(M.), y4e H*(C"), not all zero, such that (4
and (4b) hold.

Defining

we see that

[x,t} e HMy)=H(CMHYOMH(CY), N=m+l.
Y.

| X | Xb .| B
Xy~ ,V: s Xo= y: s 0= Fi P

Then (4b) can be rewritten as
(5) X (Oxo+ X2(E)Myxi= Fy({).

Remark. Equation (5) is exactly the same type of equation that we obtained -
[12] for the 2-block problem. In the 1-block case, we get a similar equation with X>({
a scalar. In fact, if we assume that d,(¢) = det X,({) is not identically equal to zen
then (5) can be put in the form

(6) Xol$)xo+ dy (L) Mxi= Fy({),
where X,= X5 X,, F,= X5 F{, and X5({) is the algebraic adjoint of X,({), i.e.,
X5 XA(0) =X(HX() =dp($) L
For (6), we make the factorization
(f3) Xo(O)M () = My()Q0(£),

where M,({) is N x N inner and Q,(¢) is N x N polynomial. Then, as shown usin
skew Toeplitz theory in [3], there exists X '", an N x N H™-matrix, such that

XS "X,=1+ME, and X, "M,=M,E,

Now set
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ior some Eq and E,, N x N H™-matrices. Multiplying both sides of (6) by Xy "’ and
aking the orthogonal projection, of the resulting equation, on H(M,) we obtain

Pii )Xo = PHtM.)X‘O—”FO(g)~

Now we make our first assumption of genericity.
Assumption (al). The operatét 7:= Py a,|nar,) is invertible.
With this assumption we obtain

(_Ya) Xo:TGIPH(M,)XE)i”Fo,
and
(7b) dy({)xo=Prx(Mo($)*(1 = Xo7 ' Prycayy X o) Fo).

Next, applying the algebraic adjoint of X5(¢7"), X5({™') to both sides of (4a)
we get

(7¢) dy({ye=X3(HRE,

where d,(¢™") =det X5({™"). Equation (7a) gives the conditions for invertibility of a
certain skew Toeplitz operator. See also [3]. We see that it is coupled, via F,, to (7b)
and (7¢), which give the invertibility conditions of two Toeplitz operators.

We will now show that (7a)-(7c) give finitely many interpolation conditions for
p’ to be an eigenvalue of A*A. From this we will derive the finite matricial rank
condition for the determination of the singular values of A. First note that there exists
yoe L(M,)© H(M,) satisfying (7c) if and only if there exists §, € H*(C') satisfying

(7d) dd(g))?;=PHQ({_lX,?({)F}(g))-

Indeed, this follows since L*(C')© H*(C') is isomorphic to SH*(C')=¢H?*(C') and
the natural isomorphism is given by the reflection operator: { ™' > ¢

Next it is easy to see that the right-hand sides of (7a), (7b), and (7d) can be put
into the form

7 Py Xo (O Fo(§) = K. (O,
Pra(Mo($)*(1 = Xo(O) 7™ Py X V(6 Fol$)) = Ki(0) P,
Pux({ T XS(OF(0) = Ku (),

where K,({), K,(¢) are H™ matrices of sizes N x r and K,({) is an I X r polynomial
in ¢ (these all can be explicitly computed from M,, M,, X,, Xi ", X;, F,, and F;),
D" =[xp0" - xl?(n—l)X;:‘l’)_ S Xha=n Yo"t Yeim—nYVeo
‘s .yi_(T”_UuII R TR LT Uf"yf(_l) e yCT(_”)],
and r=2n(m+1)+n(m+2I). With this notation we immediately get the following
identities:

(Sa) I<ui(D = Xois

(8b) Ky ®= ) dpxoij,
=0

J

(Sd) K(liq) = Z dtli)?x_wiiil >
=0

J



.

662 H. OZBAY AND A. TANNENBAUM

forall i=0,---,n, where ;
Ku(§)= Koo+ Kard + Konl ™+ -+, £
Ky(§) = Kyo+ Ky L+ K24+ +
Ki(0) = Kyot Kay L+ Kgpl2++ -+
Xo(&) =t Xoo+ X1 & + X202+ - -,
x0(§) = xg0+x01{ + X027+ + +,
V()= Potial+ial+ -,
dp(§) =t dyot+ -+ dyund ™™™, e

da(0) = dao+- - -+ dazul®". 1
Rearranging terms in (8a), (8b), (8d) and combining them into one equation we obtain,ﬁ
9) K®=0, :

where K is a constant matrix that can be computed from the K,;, Ky, Ky, dy;, and
dg, i=0,-++,n .
We now make our second assumption of genericity. A
Assumption (a2). d,({) and d,({) have distinct roots, all of which are nonzerg,
Then, as in [6], [7], and [10], we see that d, has roots a,,- -, a, inside D,
Gty "y Qann—ry ON 8D and 1/a,, -+, 1/a, outside D. Similarly, d; has roots
Bi,**, B, inside D, B,, .\, ", Baw-r,y on oD and /By, -, I/E,d outside D,
We are ready to state our main result. .
THEOREM 1. Assume (al) and (a2). Then, p*>> ||A||2 is an eigenvalue of A*A if
and only if :

rank R<r,
where
[ K]
Kb(_ax)

(9a) R:=| Ky(@amn-n)| -
Kq(B)

| Ka(Bani-rp) |

Proof. By Proposition 1, p” is an eigenvalue of A*A if and only if there exists
xo€ H(M,), x,e H*(C") and y.e H*(C'), not zero, such that (7a), (7b), (7d) are
satisfied. By an argument similar to the one used in [3], [6], [7], and [11], we see that
the existence of such x,, x4, y. is equivalent to finding a nonzero ® such that

' K,(a;))P=0, i=1,---,2nN—r,,

Kqa(B:))P =0, i=1,--+,2nl—r,

and (9) holds. This completes the proof. a

Remark. In the absence of the genericity assumptions, the matrix (9a) takes o

a certain degenerate form exactly as in [11]. We see from Theorem 1 that the largest
value of p that gives a solution for the equation

det R*R =0
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is the norm of the 4-block operator A. From R, we can determine the singular values
;md singular vectors of the 4-block operator A.

3.2. Essential spectrum. We now give a sufficient condition for p to be strictly
reater than the essential norm of A; in order to do this we study the essential spectrum
of ATA.

PrROPOSITION 2. Suppose that
(33) the Toeplitz operator 1,:= Py M’," M| 2 is invertible,
(a4) {z:det X\(2)=0}No(Ty) =T
where To'= Pricany Slriay - Then, p>max {B, v} implies p*> & o, (A*A), where 8 and vy
are defined as in § 2.

Proof. Let p>max {8, v}. If p° were in o,(A*A), then there would exist

\
:

X X

[ (n)]eHz(C”’)@BLZ(C’) with [ wll =1 ¥Ynz1,
| y yodl2
and [m]~ 0 weakly as n - oo, satisfying

(n) M O T /(n)

(4b)e ({:)l: +(,.)]+Xz(§)|: " M y(") -0 strongly,
and
{7d). X5(0)5. >0 strongly.

(These conditions for p’ € o, (A*A) are sufficient as well.) This follows from Proposition
1 and equations (4b) and (7d). Note that F,({), F,({), and F;({) converge to zero
strongly as x'") and y'" converge to zero weakly. In the above we have, as before,

XM = X" 4 Myx ™,
'—,V (n)+y+(n)+M y/(n)
with
<=y,

b
(n)
l:y—#(n)} = x(()n)e H(MO)a

1(n)
[yf’m] = xy"e H(C™")® H*C"),

and y; " e L*(C')© H*(C"). They all converge to zero weakly as n - co.
Note that (7d), means that
(S)

P> 50 strongly.
<S>DY &Y

(1= J<S)*][
Since p >y, we see that
27 * * F(S)
(p I-[F(S)* J(S) ][J(S)D

§invertible, and so $.'" converges to zero strongly.
Next from (4b), we get that

(6), Xo(O)x{"+ dp () Moxi™ >0 strongly.
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Taking orthogonal projections on M, H*(C") we see that
P M* Xy x0" + P2 M¥ Mod,,(g)x{,("’—) 0 strongly.

Recall that Py M¥* Xox{" = P2 QoM¥x(", so it converges to zero strongly as x{e
H(M,) converges to zero weakly. Hence using Assumption (a3) we have that

(7. d,({)xy™" >0 strongly.
This implies, by (6)., that
(8). dy(¢) det X,(£)x5” >0 strongly.

It is easy to see, by definition of B, that for p > B, d,({) has no roots on D. Then wu‘
can write '

1
dh(§)=(§_a|)(£_'__>"'((‘%w)({‘ ) .
o A, N s
for some «a,, -, a,n € D. Multiplying (7). by ‘
nN di
-‘l;[l (1 - gdi)z,
which is in H® (because all ;s are in D), we obtain
my(¢)xy™ >0 strongly,
where
"ol —ay
m =[] —/———.
=1 5

This implies that x§™ - 0 strongly, because m,(S)*m,(S) is equal to the identity.
From (8)., a similar argument gives that

9). det X,()x{" > strongly.

Let us assume now that d,({):=det X,({) has nonzero distinct roots. So di({)=0 at
points z,, - -, z, inside D, 1/Z,,---,1/Z, outside D, and z, .1, Zy41," " "5 ZaNs Znn
on dD. Using a similar trick as before, we obtain

my({) H ({-2z)(¢—2)x{" >0 strongly,
i=n+1
where

ma0) =11 1.

Hence we see that
H+1 ((-2z)(¢—2)x{” >0 strongly.
Taking the orthogonal projection of this last expression on H(M,), we get
._’ﬁlﬂ (To—z)(To—z)xy” >0 strongly,

for x{ >0 weakly, and x{" € H(M,). By Assumption (a4) none of z;, 7 are in the
essential spectrum of T,, therefore x{” - 0 strongly.
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In summary, we have established that j."’ >0 strongly, x,™ -0 strongly and
x4 > 0 strongly. So, [}i»]~ 0 strongly, which contradicts that [][;55:;]”2 =]forall nz=1.
Thus p? cannot be in o,(A*A). 0
Remark. Note that a sufficient condition for (a4) to hold is p > a. So if ||All.> «,
then the above Proposition 2 gives an upper bound for the essential norm: ||A|. =
max {B, y}. Actually, we must prove, if possible, the equality as in the case of SISO
plants and MIMO finite-dimensional systems. However this is not easy in our case:
All we can show is that if p =y then (7d), holds for some 7, such that ||7.|,=1
for all n=1, and $;'” > 0 weakly. This implies that p’€ g.(A*A), and |A|.= y. But
the difficulty is with B: if p = B then there exists

=1 Vnz=l,

2

x(n) x(n)
[ (")]EHZ(C’")GBHZ(C’) with “[ "
y y

and [;{:3] - 0 weakly as n > o0, such that

(n)

(10). XZ(I)[ (,,)]-90 strongly.

x
y
In the SISO case, by multiplying (10), by My(¢) (which then commutes with X,(¢)),
we get the result that |A|[. = 8. Moreover, in the MIMO finite-dimensional case we
decompose [}n] as xi" + M, x4™, and as before x" e H(M,). Since in the finite-
dimensional case H(M,) is finite-dimensional, xj"’ > 0 weakly implies x§" - 0 strongly.
Hence we obtain that (4b), holds; then ||A||, = B. The infinite-dimensional MIMO
case is much more subtle.

We now summarize the above discussion with two corollaries to Proposition 2.

CoRrRoOLLARY 1. Assume (a3) and a =max {B, y}. Then,

(i) If y= B then |A|. =Y.

(ii) If y<B then y=||A|. <.

CoRroOLLARY 2. Consider finite-dimensional MIMO case, i.e., M ({) is rational. Then,

[All. = max {8, y}.

Proof. Let M denote the algebraic adjoint of M. Then

I:M""’ 0 ][W—MQ F]_[M“dW—mQ MadF]_.L
0 M G J1T L M*G M@

where m := det M. Clearly, L has all rational entries. Now let A; be the 4-block operator
associated to L. Then it is easy to see that |A_|l. = Al.. In other words, without loss
of generality, we may assume that M is of the form mI where me H™ is an inner
scalar-valued function. But in this case, we have that (a3) is satisfied since we can

. choose M, = m (see also the discussion below in § 4). Hence by Proposition 2, and by

the finite dimensionality of H(m), we have the required conclusion. a

Remark. In practice we do not need to compute the essential norm. All we need
to know is an upper bound w, for ||A| with which to start. Then the first zero of
det R*R (considered as a function of p) less than wo, will be ||A|l. Of course, if
Al =l All., then there is no first eigenvalue. Hence on the computer, if we plot det R*R
as a function of p, the graph of det R*R does not cross the p axis above |A[., but
oscillates near this value, since the eigenvalues accumulate at || Al|.. In this way we
can estimate the essential norm.
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4. SISO case. In this section we apply the above theory to SISO plants. The ﬁm
thing to note in this case is that the factorizations (f1), (f2), (f3) are trivial, becausg
M({) is scalar, so it commutes with everything:

M({)*B(¢) = B({HM(L)*,

M()*C({) = C(HM()*,

Xo(§)Mo({) = Mo({) Xo(£). ;
Here we have My(¢) = M ()[4 11. Since My({) = M,({) Assumption (al) holds (in fam ,
7 is the identity). Moreover, we do not really have to compute X§ . Indeed, recajj
the equation
(5) Xi()xo+ Xo(E)Mo(§)x0= Fo({).
Taking the projections of (5) on H(M,) and MoH’*(C"), we obtain
(5a) X1({)xo= Fo(¢&) = Mo({) Pz Mo(£)* Fo({) + Mo(§) Prir Mo(£)* X1 (£) %o,
and
(5b) Xa(8)xo= Pur Mo({)* Fo(£) — Prz Mo({)* X1({) xo.

These equations (5a), (5b), are in the form of the equations (24c), (24d) of [6]. Now
we can use similar computations to the ones used in [6] to obtain the final result;-
namely, a rank type formula as in our main theorem.

In the next section we give an example illustrating the computations for the SISO
case.

%

E

<

5. A SISO 2-block example. For simplicity of notation and exposition, the fol-
lowing example is chosen in the 2-block setup and a SISO plant is considered. The
2-block problem for stable SISO distributed plants was first solved in [22]. Motivations
for studying the 2-block problem comes from the mixed sensitivity minimization (see,
e.g., [14], [19]), which can be stated as follows. Consider the feedback configuration
shown in Fig. 2. The mixed sensitivity minimization problem is to find

HIRIs

m= inf sup{

Cstabilizing

5 [ W(I+PC)'W, ]
= in
Cstabilizing WZC(1+PC)_l W3
é i | v
Wi W, W3

Fic. 2
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. Invoking the standard Youla parametrization of all stabilizing controllers, we obtain
. the following expression for u for P stable:

[W,(l—P)Wl] ~[ W,PW3]Z

w = inf
Wz W3 - Wz WJ

ZeH®

o

Let us now choose some specific values for the weights and the plant: W, =1,
W,=b, W;=1/(s+1),and P=e ™. Here 0=.b < o0 and 0 = h < o0 are free parameters.
We will find the dependence of w on b and h. Note that if b =0 then the problem
reduces to the 1-block case.

Following the factorization techniques used in [15] and [19] we can show that

1 1
J1+b%s+1 [e'“]
:'f -
H QlenH"o b 1 0 Q
J1+p2s+1 -
In terms of our notation
1 (1=¢) b (1-%)
W(¢) = S, ()=
J1+b2 2 J1+b2 2

and M({) = e"“"V/¢=1 We can compute the lower bound for w as [|A|. = b/V1+ b2
Also note that if we set Q =0 then we find an upper bound for u as one. Therefore
we seek solutions p?, to the eigenvalue equations (1a), (1b) in the region:

b’ =p%=1
1+ P ="

In this specific example, equation (5) turns out to be
(11) X1(§)x + X5($M (D) xp, = Fi(¢),

where x,€ H(M), x, € H?, and where X,, X,, and F, can be computed to be

(11a) X(§)=F 0+ (49?0 +1),
b? 4 b?
(11b) Xz(§)=m({2+(—(1:2—)p2—2)§+1>,
2 —h 1
10 A =g st s St gy s (- DM@ +e .

If we now take the projection of both sides of (11) on MH?, we see that
2

b
(12) Xz(l)xé=m(xéo—§u-l)-

Thus from (11), (11a)-(11c) and (12), we have

1 b e -M() ,  ((m1+1+b)OM()+e ")
(13) Xl(g)xb_4xb0+ 41+ b)) Xho 4(1+b2) u
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It is easy to check that for b*/(1+b%) = p’>=1, X,({) has one root, r,, inside the unit
disc D, and that X,({) has both roots, r,, r;' on the unit circle 9 D. Therefore we have
Xpo=ryu_;, and so :

r1+1) —-1=-b’r,+(1+b3)r,
—1=-b’r+(1+b)r"

exp (—Zh

r—1

Hence from (13) we may conclude that

o,
s |

1 )"/1+b2 ;'.~,.

(14) hy +tan” =,
/1_b2y2
where y=v1/p’—1, 0=y=1/b, and tan"' yv1+b’/V1-b>y*€[0, 7/2]. Note that

for (14) to have a solution, we need h = wb/2. Hence, if h=mb/2 then u = lAf,=
b/vV1+b*; otherwise p=p = 1/\/y2+1 where y is the unique solution of (14) in the
range 0=y =1/b. Note that when b =0, (14) becomes

hy+tan™' y =, 0=y=oo,

which is exactly the same equation obtained previously in [9], [10], [16], and [21] for
the 1-block problem. Clearly, as b1 o, we have that u 1 1. The physical meaning of
this situation is that in this case we infinitely penalize the energy of the command
signal u. Indeed, since P is already stable we are allowed to choose C =0, which will
make u =0, and hence solve the problem. However, in this situation the tradeoff is
that the energy of the worst error signal cannot be less than the energy of the disturbance
signal d, so u will be equal to one. Figure 3 gives an indication on how u depends
on the parameters b and h.

6. Concluding remarks. In this paper we have studied H* optimization of multi-
variable distributed systems. We took the most general case of the standard H® problem,
namely, the so-called 4-block problem. Here, we developed a rank type formula for
the computation of the eigenvalues of the operator A*A. It is important to emphasize
once more that the crucial steps of the procedure presented here are: (i) to do the
factorizations (f1)-(f3), and (ii) to find X§ . We refer to the paper [3] for the methods
of performing these steps. From a computational point of view, the same method may

(b, h)

, log(h)
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used to solve the 4-block problem for MIMO lumped systems, and MIMO stable
vdistributed systems.
- At this point we feel that the skew Toeplitz theory gives a satisfactory way of
'salving the optimal version of the 4-block problem in a very general setting. We should
jote that these techniques should also lead to the suboptimal solutions as considered
nl2] and [4] for finite-dimensional systems using a state-space point of view. Indeed,
_ince the operator A is derived from the commutant lifting theorem, we could in
Principle get all of the suboptimal solutions via the one-step extension technique of
(1], once we know how to do the optimal case. This program has already been carried
‘out for the 1-block case in [8]. Such a suboptimal parametrization would allow us to
- make contact with the very important work of [2] and [4]. Finally, it would be interesting
lo explore the possibility of combining state-space and frequency-domain methods in
me 4-block problem as was done in [16] and [23] in the 1-block case.

i

; REFERENCES

- [1] V. M. ADAMJAN, D. Z. ArROV, AND M. G. KREIN, Analytic properties of Schmidt pairs for a Hankel
' operator and the generalized Shur-Takagi problem, Math. USSR Sb., 15 (1971), pp. 31-73.
' [2] J. A. BALL AND N. COHEN, Sensitivity minimization in an H* norm, Internat. J. Conaol, 46 (1986),
pp. 785-816.
- [3] H. BErCOVICI, C. FOIAS, AND A. TANNENBAUM, On skew Toeplitz operators, Operator Theory: Adv.
Appl., 32 (1988), pp. 21-43.
[4] J. DOYLE, K. GLOVER, P. P. KHARGONEKAR, AND B. FRANCIS, State space solutions to standard
H? and H™ control problems, IEEE Trans. Automat. Control, 34 (1989), pp. 831-847.
[5] A. FEINTUCH AND B. FRANCIS, Uniformly optimal control of linear systems, Automatica, 21 (1986),
pp. 563-574.
[6] C. FolAs AND A. TANNENBAUM, On the four block problem, 1, Operator Theory: Adv. Appl., 32
(1988), pp. 93-112.

1 , On the four block problem, 11: the singular system, Operator Theory and Integral Equations, 11
(1988), pp. 726-767.
[8] , On the parametrization of the suboptimal solutions in generalized interpolation, Linear Algebra

Appl., 122/123/124 (1989), pp. 145-164.

[9] C. FoiAs, A. TANNENBAUM, AND G. ZAMES, On the H* optimal sensitivity problem for systems with
delays, SIAM J. Control Optim., 25 (1987), pp. 686-706.

[10] C. FoiAs AND A. TANNENBAUM, On the Nehari problem for a certain class of L™ functions appearing
in control theory, J. Functional Anal., 74 (1987), pp. 146-159.

[lI] C. Foias, A. TANNENBAUM, AND G. ZAMES, Some explicit formulae for the singular values of certain
Hankel operators with factorizable symbol, SIAM J. Math. Anal., 19 (1988), pp. 1081-1091.

[12] C. Foias, H. OzBAY, AND A. TANNENBAUM, Remarks on H* optimization of multivariate distributed
systems, in Proc. Conference on Decision and Control, Austin, TX, 1988, pp. 985-986.

[13] B. FRANCIS, A Course in H* Control Theory, Lecture Notes in Control and Information Sciences, 88,
Springer-Verlag, Berlin, New York, 1987.

[14] E. JONCKHEERE AND M. VERMA, A spectral characterization of H™ optimal feedback performance and
its efficient computation, Systems Control Lett., 8 (1985), pp. 13-22.

[15] P. P. KHARGONEKAR, H. OZBAY, AND A. TANNENBAUM A remark on the four block problem: stable
plants and rational weights, Internat. J. Control, 50 (1989), pp. 1013-1023.

[16] T. LypcHUK, M. SMITH, AND A. TANNENBAUM, Weighted sensitivity minimization: general plants in
H® and rational weights, in Proc. Conference on Decision and Control, Los Angeles, CA, 1987;
Linear Algebra Appl., 109 (1988), pp. 71-90.

{177 N. K. Nikov'sk11, Treatise on the Shift Operator, Springer-Verlag, Berlin, New York, 1986.

(18] B. Sz-NAGY AND C. Foias, Harmonic Analysis of Operators on Hilbert Space, North-Holland,
Amsterdam, 1970.

(197 M. VERMA AND E. JONCKHEERE, L™ compensation with mixed sensitivity as a broadband matching
problem, Systems Control Lett., 4 (1984), pp. 125-129.

20 M. VipvAsaGAR, Control System Synthesis: A Factorization Approach, M1T Press, Cambridge, MA,
1985.



670 H. OZBAY AND A. TANNENBAUM

[21] G. ZamES, A. TANNENBAUM, AND C. Fotas, Optimal H* interpolation: a new approach, {;
Conference on Decision and Control, Athens, Greece, 1986, pp. 350-355. .
[22] G. ZamEs AND S. K. MITTER, A note on essential spectrum and norms of mixed Hankel-
operators, Systems Control Lett., 10 (1988), pp. 159-165. 3
[23] K. ZHOU AND P. P. KHARGONEKAR, On the weighted sensitivity minimization problem for delay s,
Systems Control Lett., 8 (1987), pp. 307-312. : 43



