
EXPLOITING PROBLEM STRUCTURE FOR FASTER OPTIMIZATION: A
TRILINEAR SADDLE POINT APPROACH

A Dissertation
Presented to

The Academic Faculty

By

Zhe (Jimmy) Zhang

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in Operations Research
H. Milton Stewart School of Industrial and Systems Engineering

Georgia Institute of Technology

August 2023

© Zhe (Jimmy) Zhang 2023

EXPLOITING PROBLEM STRUCTURE FOR FASTER OPTIMIZATION: A
TRILINEAR SADDLE POINT APPROACH

Thesis committee:

Dr. Guanghui Lan (Advisor)
School of Industrial and Systems Engi-
neering
Georgia Institute of Technology

Dr. Siva Theja Manguluri
School of Industrial and Systems Engi-
neering
Georgia Institute of Technology

Dr. Arkadi Nemirovski
School of Industrial and Systems Engi-
neering
Georgia Institute of Technology

Dr. Alexander Shapiro
School of Industrial and Systems Engi-
neering
Georgia Institute of Technology

Dr. Richard Tapia
Department of Computational Applied
Mathematics and Operations Research
Rice Univertsity

Date approved: July 17 2023

Not all those who wander are lost.

J.R.R. Tolkien

To my parents

ACKNOWLEDGMENTS

I am profoundly grateful for the enriching six years I’ve spent at Georgia Tech, immers-

ing myself in operations research and becoming part of its warm and friendly community.

The stimulating discussions in offices and hallways are the highlight of this journey, and I

will deeply miss them.

Throughout this academic pursuit, which included navigating through the challenges of

the pandemic that spanned over half of my journey, I received invaluable support from nu-

merous individuals. Their assistance and encouragement have made this accomplishment

possible, and I sincerely appreciate each and every one of them.

At the forefront, my deepest gratitude goes to my advisor, Dr. Guanghui (George) Lan,

whose commitment to both rigor and beauty has inspired me to strive for excellence. His

wisdom has been an invaluable guiding light, and his unwavering support has carried me

through difficult times. I am genuinely thankful for his care and intellectual guidance.

I also want to extend my thanks to the late Dr. Shabbir Ahmed, who initially guided me

into my current research direction. His sharp intellect and wisdom will forever remain in

my memory. Working with Dr. Siva Theja Manguluri has been a true privilege; his unyield-

ing curiosity and enthusiasm have been a constant source of inspiration. I am indebted to

Dr. Richard Tapia for his instrumental role in helping me gain entry into the PhD program.

His remarkable life story, courage, and tenacity continue to inspire me.

My gratitude also extends to my committee members, Dr. Siva Theja Manguluri, Dr.

Arkadi Nemirovski, Dr. Alex Shapiro, and Dr. Richard Tapia, for generously providing

their time and valuable feedback.

I am deeply appreciative of the support and camaraderie offered by my friends, with

special thanks to Yijiang Li, Xiaoyi Gu, Sanchong Mou, Sheng Zhang, Hongzhen Tian, Ray

Liu, Kaizhao Sun, Shixuan Zhang, Jiaming Liang, Chongzhang Li, Sajad Khodadadian,

Sushil Varma, Zhen Zhong, Tianhang Zhu, Chongzhang Li, Wenbo Yang, Hao Yu, and

v

Yuan Gao. The discussion with my lab mates, including Digivijay Boob, Georgios Kotsalis,

Yi Cheng, Tianjiao Li, Caleb Ju, and Yan Li, has always been exciting. I want to give

special thanks to Georgios, who kept his fighting spirit alive despite losing all the time on

the squash court.

Lastly, no words can express the depth of my gratitude to my parents, Anren Zhang

and Fei Luo, for their unwavering love and support throughout this journey and beyond.

Special thanks also go to my girlfriend, Shulin Zhu, whose encouragement and assistance

have been instrumental in achieving all that I have.

vi

TABLE OF CONTENTS

Acknowledgments . v

List of Tables . xii

List of Figures . xiv

Summary . xv

Chapter 1: Introduction and Background . 1

1.1 Background . 1

1.2 The Trilinear Saddle Point Problem . 5

Chapter 2: Distributionally Robust Two-Stage Linear Program with a Finite
Scenario Support . 8

2.1 Background and Our Contribution . 8

2.1.1 Notations and Assumptions . 13

2.2 Sequential Dual Algorithm . 15

2.2.1 Duality and Primal-Dual Function 16

2.2.2 The Sequential Dual Method . 18

2.3 Sequential Smooth Level Method . 24

2.3.1 Sequential Smoothing Scheme . 25

vii

2.3.2 Sequential Smooth Level Method 32

2.4 Adaptation For Kantorovich Ball . 38

2.4.1 Kantorovich Ball and Joint Probability Matrix Proximal Update . . 39

2.4.2 Modified SD Method . 41

2.4.3 Modified SSL Algorithm . 44

2.4.4 Iteration complexity . 46

2.5 Numerical Studies . 46

2.5.1 Implementation Details . 48

2.5.2 Synthetic Problem: Probability Simplex Ambiguity Set 49

2.5.3 Synthetic Problem: Risk-Averse AVaR Ambiguity Set 51

2.5.4 Synthetic Problem: Modified X2 Ambiguity Set 51

2.5.5 Synthetic Problem: Kantorovich Ball Ambiguity Set 51

2.5.6 Real-world instance: SSN(50) . 52

2.5.7 Comparison with the Benders Decomposition Algorithm 52

Chapter 3: Nested Stochastic Composite Optimization 59

3.1 Introduction . 59

3.1.1 Motivation . 59

3.1.2 Our Contributions . 62

3.1.3 Notations & Assumptions . 67

3.2 Smooth and Structured Non-smooth Two Layer Problems 68

3.2.1 The SSD Method . 69

3.2.2 Convergence Results . 76

viii

3.2.3 Lower Complexity Bound . 81

3.2.4 Convergence Proofs . 83

3.3 General Nonsmooth Two-layer Problem 90

3.3.1 The nSSD Method and Convergence Guarantee 91

3.3.2 Lower Complexity Bound . 98

3.3.3 Convergence Proofs . 100

3.4 Multi-layer Problem . 104

3.4.1 Smooth Multi-layer Problem . 105

3.4.2 The nSSD Method for the General Nested Composition Problem . . 111

3.4.3 Convergence Analysis . 119

3.5 Applications . 122

3.5.1 Risk Averse Optimization . 122

3.5.2 Stochastic Composite Optimization 125

3.6 Conclusion . 128

3.7 Appendix . 129

3.7.1 Technical lemmas for vector-valued functions 129

3.7.2 Lower Complexity Bounds . 132

Chapter 4: Risk Averse Optimization Over a Distributed Network 135

4.1 Background and Our Contribution . 135

4.1.1 Notation & Assumptions . 143

4.2 Preliminary: Q-gap function . 144

4.3 Upper Bounds for Communication Complexity 146

ix

4.3.1 The DRAO method . 146

4.3.2 Convergence analysis . 153

4.4 The DRAO-S method . 159

4.4.1 The Algorithm and Convergence Results 160

4.4.2 Convergence Analysis . 168

4.5 Lower Communication Complexities . 175

4.6 Numerical Experiments . 186

4.6.1 Implementation Details . 187

4.6.2 Risk Averse Linear Regression Problem 188

4.6.3 Risk Averse Two-Stage Stochastic Programming 191

4.6.4 Risk Measure induced by the χ2 Ambiguity Set 194

4.7 Conclusion . 194

4.8 Appendix . 196

4.8.1 Efficient Implementations for Proximal Mappings 197

Chapter 5: Smooth Function Constrained Optimization 199

5.1 Background and Our Contribution . 199

5.1.1 Notations & Assumptions . 205

5.2 The Accelerated Constrained Gradient Descent Method 206

5.2.1 The ACGD method . 206

5.2.2 The Convergence Results . 212

5.2.3 The Binary Search for L(Λr) . 215

5.2.4 Convergence Analysis . 218

x

5.3 Lower Oracle Complexity Bound . 226

5.3.1 Strongly Convex Case . 227

5.3.2 Non-strongly Convex Case . 229

5.4 The ACGD-S method . 232

5.4.1 The ACGD-S Method and its Convergence Results 233

5.4.2 The Binary Search for L(Λr) and d(Λr) 238

5.4.3 The Convergence Analysis . 241

5.5 Conclusion . 250

5.6 Appendix . 251

References . 253

xi

LIST OF TABLES

1.1 Classical FO Oracle Complexity Results for Convex Optimization 3

2.1 Theoretical Performance Comparison for Major Deterministic Algorithms . 11

2.2 Typical Projection Time for Pδ(Sec) . 41

2.3 Theoretical Performance Comparison for O(1/ϵ) Algorithms for Kan-
torovich P Problem . 46

2.4 # Algebraic Operations Required for p proximal update 49

2.5 Parameter Selections . 49

2.6 Numerical Experiment: Simplex Ambiguity Set 53

2.7 Numerical Experiment: AVaR risk Measure 54

2.8 Numerical Experiment: Modified X2 Ambiguity Set 55

2.9 Numerical Experiment: Kantorovich Ball Ambiguity Set 56

2.10 Numerical Experiment: SSN(50) Data on Different Ambiguity Set 57

2.11 Numerical Experiment: Comparison Between SSL and the Benders
Method on Synthetic (50) . 57

2.12 Numerical Experiment: Comparison Between SSL and the Benders
Method on Synthetic (1000) . 58

2.13 Numerical Experiment: Comparison Between SSL and the Benders
Method on SSN(50) . 58

3.1 Two-Layer Oracle Complexity . 62

xii

3.2 k-Layer . 62

4.1 Communication Complexity Results . 141

4.2 Projection Complexity Results . 141

4.3 Communications Rounds and P -Projections Required by DRAO-S for Lin-
ear Regression under a CV@R Risk . 189

4.4 Communication Rounds Required by Two-Stage Stochastic Program under
a CV@R Risk . 193

4.5 Communications Rounds and P -Projections Required by DRAO-S for
Linear Regression under a modified χ2 Risk Measure 195

4.6 Communication Rounds Required by Two-Stage Stochastic Program under
a modified χ2 Risk Measure . 196

5.1 Ideal Complexity for Solving (Equation 5.1) 200

5.2 Complexities for Smooth Constrained Optimization (Equation 5.1) 202

xiii

LIST OF FIGURES

3.1 Illustration of stochastic dependency: ∇f2(yt2, ξ
0
2) is independent of

∇f1(yt1, ξ
0
1) conditioned on π2

i = ∇f(yt2). 75

3.2 Illustrate of tri-conjugation. 92

3.3 Necessity of resampling in the SSD method 109

3.4 Two Layer Formulation for Semi-deviation. 122

3.5 Two Layer Formulation for Additive Composite 125

3.6 Three Layer Formulation . 125

4.1 Network topology of hard instances. 178

4.2 Convergence of DRAO-S for a Randomly Generated Robust Linear Re-
gression Problem with α = 0 . 188

4.3 Convergence of DRAO-S for a Randomly Generated Robust Linear Re-
gression Problem α > 0 . 188

4.4 Convergence of DRAO-S for a Randomly Two-Stage Linear Problem: α =
0, 6 Inner Iterations . 191

4.5 Convergence of DRAO-S for a Randomly Two-Stage Linear Problem: α >
0, 36 Inner Iterations . 192

5.1 (Big-O) Dependence of Complexities on c in Function Constrained Opti-
mization . 231

xiv

SUMMARY

Optimization is vital in operations research, encompassing model fitting and decision-

making. The exponential growth of data holds promise for realistic models and intelligent

decision-making. However, the sheer volume and the exceptional dimension of big data

make computations prohibitively expensive and time-consuming. In this thesis, we propose

a trilinear saddle point approach to tackle some challenges in big-data optimization. By

effectively leveraging problem structure, our approach significantly improves computation

complexities for a few important problem classes in stochastic programming and non-linear

programming. This offers valuable insights into the intrinsic computational hardness.

In Chapter Two, we consider a distributionally robust two-stage stochastic optimization

problem with discrete scenario support. While much research effort has been devoted to

tractable reformulations for DRO problems, especially those with continuous scenario sup-

port, few efficient numerical algorithms are developed, and most of them can neither handle

the nonsmooth second-stage cost function nor the large number of scenarios K effectively.

We fill the gap by reformulating the DRO problem as a trilinear min-max-max saddle point

problem and developing novel algorithms that can achieve an O(1/ϵ) iteration complexity

which only mildly depends on the scenario number . The major computations involved in

each iteration of these algorithms can be conducted in parallel if necessary. Besides, for

solving an important class of DRO problems with the Kantorovich ball ambiguity set, we

propose a slight modification of our algorithms to avoid the expensive computation of the

probability vector projection. Finally, preliminary numerical experiments are conducted to

demonstrate the empirical advantages of the proposed algorithms.

In Chapter Three, we study the convex nested stochastic composite optimization

(NSCO) problem, which finds applications in reinforcement learning and risk-averse opti-

mization. Existing NSCO algorithms exhibit significantly worse stochastic oracle complex-

ities compared to those without nested structures, and they require all outer-layer functions

xv

to be smooth. To address these challenges, we propose a stochastic trilinear (multi-linear)

saddle point formulation that enables the design of order-optimal algorithms for general

convex NSCO problems. When all outer-layer functions are smooth, we propose a stochas-

tic sequential dual (SSD) method to achieve an oracle complexity of O(1/ϵ2) (O(1/ϵ))

when the problem is non-strongly (strongly) convex. In cases where there are structured

non-smooth or general non-smooth outer-layer functions, we propose a nonsmooth stochas-

tic sequential dual (nSSD) method, achieving an oracle complexity ofO(1/ϵ2). Notably, we

prove that this O(1/ϵ2) complexity is unimprovable even under a strongly convex setting.

These results demonstrate that the convex NSCO problem shares similar oracle complexi-

ties as those without nested compositions, except for strongly convex and outer-non-smooth

problems.

In Chapter Four, we investigate the communication complexity of convex risk-averse

optimization over a network. The problem generalizes the well-studied risk-neutral finite-

sum distributed optimization problem and its importance stems from the need to handle risk

in an uncertain environment. For algorithms in the literature, there exists a gap in communi-

cation complexities for solving risk-averse and risk-neutral problems. To address this gap,

we utilize a trilinear saddle point reformulation to design two distributed algorithms: the

distributed risk-averse optimization (DRAO) method and the distributed risk-averse opti-

mization with sliding (DRAO-S) method. The single-loop DRAO method involves solving

potentially complex subproblems, while the more sophisticated DRAO-S method requires

only simple computations. We establish lower complexity bounds to show their communi-

cation complexities to be unimprobvable, and conduct numerical experiments to illustrate

the encouraging empirical performance of the DRAO-S method.

In Chapter Five, we utilize the trilinear saddle point approach to develop new com-

plexity results for classic nonlinear function-constrained optimization. We introduce the

single-loop Accelerated Constrained Gradient Descent (ACGD) method, which modifies

Nesterov’s celebrated Accelerated Gradient Descent (AGD) method by incorporating a

xvi

linearly-constrained descent step. Lower complexity bounds are provided to establish the

tightness of ACGD’s complexity bound under a specific optimality regime. To enhance ef-

ficiency for large-scale problems, we propose the ACGD with Sliding (ACGD-S) method.

ACGD-S replaces computationally demanding constrained descent steps with basic matrix-

vector multiplications. ACGD-S shares the same oracle complexity as ACGD and achieves

an unimprovable computation complexity measured by the number of matrix-vector mul-

tiplications. These advancements offer insights into complexity and provide efficient solu-

tions for nonlinear function-constrained optimization, catering to both general and large-

scale scenarios.

xvii

CHAPTER 1

INTRODUCTION AND BACKGROUND

Intelligent decision-making has the potential to revolutionize productivity across numerous

industries, but unlocking its full benefits requires tackling complex optimization problems

on a massive scale. Machine learning and artificial intelligence (AI) have achieved re-

markable accomplishments in processing vast amounts of data. However, their broader

implementation is hindered by concerns surrounding safety and reliability. In order to en-

sure the deployment of secure AI systems, it becomes imperative to incorporate safety

constraints and risk considerations, thereby introducing large-scale complex optimization

problems. On the other hand, operations research (OR) excels in handling uncertainty, risk,

and constraints. However, OR’s effectiveness in the era of big data also necessitates solving

complex optimization problems on a large scale. In this thesis, we propose a trilinear sad-

dle point approach to tackle some of the challenges encountered in solving such large-scale

complex optimization problems.

1.1 Background

An optimization problem can be formalized as

min
x∈X

f(x), (1.1)

where X represents the feasibility region and f denotes the objective function. We focus

on convex optimization [1], that is, f is a convex function and X is a convex set.

Our goal is to characterize the complexity, i.e., the theoretical computation cost asso-

ciated with finding a ”good” solution for a class of problems, P . Since computing the

exact optimal solution x∗ to (Equation 1.1) is in general intractable, we focus on finding an

1

ϵ-optimal solution x̄ satisfying f(x̄) − f(x∗) ≤ ϵ. Since evaluating the Hessian could be

prohibitively expensive, the large-scale setting necessities us to consider first-order (FO)

methods which utilize only gradients and function values of f to produce the candidate

solution in an iterative fashion.

We call one evaluation of function value and (sub-)gradient at a point x, (f(x),∇f(x)),

one FO oracle evaluation. One natural measure of computation cost is the optimal FO

oracle complexity N∗(ϵ;P), the number of FO oracle evaluations required to find an ϵ-

optimal solution. When an algorithm can find an ϵ-optimal solution in N̄(ϵ,P) oracle

evaluations for every problem in P , we call N̄(ϵ,P) an upper oracle complexity bound be-

cause N̄(ϵ,P) ≥ N∗(ϵ,P). When there exists a hard problem in P for which no algorithm

can find an ϵ-optimal solution in N(ϵ,P) oracle evaluations, we call N(ϵ,P) a lower ora-

cle complexity bound because N(ϵ,P) ≤ N∗(ϵ,P). When N̄(ϵ,P) matches N(ϵ,P) up

to some universal constant, N̄(ϵ,P) characterizes both the sufficient and necessary number

of FO oracle evaluations for optimizing problems in P (up to constants). In that case, we

refer to the associated algorithm as optimal because no algorithm could improve on it (up

to constants).

The study of oracle complexity traces its roots back to the pioneering work of Ne-

mirovsky and Yudin in the late 1970s [2]. They established fundamental oracle complexi-

ties for convex optimization, as outlined below:

• The class of M -Lipschitz continuous objective functions (non-smooth P): if the

objective function f satisfies f(x) − f(y) ≤ M ∥x− y∥ ∀x, y ∈ X , the optimal

oracle complexity N∗(ϵ,P) is O(M2/ϵ2).

• The class of L-Lipschitz smooth objective functions (smooth P): if X = Rn, and the

objective function f is differentiable and satisfies ∥∇f(x)−∇f(y)∥ ≤ L ∥x− y∥

∀x, y ∈ Rn, the optimal oracle complexity N∗(ϵ,P) is O(
√
L/
√
ϵ).

2

Furthermore, if the objective function f is also µ-strongly convex, satisfying

f(y)− f(x)− ⟨f ′(x), y − x⟩ ≥ µ
2
∥y − x∥2 ∀x, y ∈ X

where f ′(x) ∈ ∂f(x) represents an arbitrary subgradient of f at x, the above complexities

can be further improved. Moreover, in an important contribution [3], Nesterov proposed

the highly acclaimed Accelerated Gradient Descent (AGD) method, which achieves the

same O(1/
√
ϵ) oracle complexity without requiring X = Rn. These complexity results

are summarized in Table Table 1.1. Therefore, different types of convex functions have

their intrinsic hardness as characterized by their optimal oracle complexities. For example,

since it requires less oracle evaluations, we can say the smooth problem is easier than the

non-smooth problem from an optimization perspective.

Table 1.1: Classical FO Oracle Complexity Results for Convex Optimization①

Problem Class P Convex µ-Strongly Convex µ > 0
M -Lipschitz Continuous O(M2/ϵ2) O(M2/ϵµ)

L-Lipschitz Smooth O(
√
L/
√
ϵ) O(

√
L/µ log(1/ϵ))

Recently, there has been an increasing focus on investigating the oracle complexities

associated with solving complex problems that involve different types of functions. In such

cases, the complexity of the composed function is typically no better than the worst com-

plexity among the composing functions. For instance, combining a smooth function with

a non-smooth Lipschitz-continuous function results in a composed function that is only

non-smooth Lipschitz-continuous, rather than smooth. Consequently, applying algorithms

specifically designed for solving a single type of function to the composed function can lead

to significant computational costs. This inefficiency has prompted researchers to develop

new algorithms that are better suited for addressing these composed problems.

In the last two decades, there has been significant research on additive composite op-

timization problems, driven by applications in compressed sensing, image processing, and
①We omitted dependence on the initial distance

∥∥x0 − x∗
∥∥ for brevity.

3

machine learning. These problems involve minimizing the sum of a smooth convex loss

function h(x) and a non-smooth regularization penalty function g(x) with specific struc-

tures,

min
x∈X
{f(x) := g(x) + h(x)}.

Optimal first-order methods have been developed under different assumptions about the

properties of g [4, 5, 6, 7, 8]. These algorithms can efficiently solve composite optimization

problems by capitalizing on the smoothness of h and exploiting the structural properties of

g.

A more challenging and general problem involves the nested composition of different

types of functions:

min
x∈X
{f(x) := h ◦ g(x)}. (1.2)

Here, h and g correspond to different types of convex functions. The problem can arise

in optimization problems involving safety constraints or risk considerations. Let’s explore

two examples to illustrate this.

Example 1.1 Consider function-constrained optimization of the form

min
x∈X

g0(x)

s.t. gi(x) ≤ 0 i ∈ [m],

(1.3)

where g0, g1, ..., gm are smooth convex functions. It is equivalent to

min
x∈X

max
λ∈1×Rm

+

∑m
i=0 λigi(x). (1.4)

With g ≡ [g0, g1, g2, ..., gm] and h(y) := maxλ∈1×Rm
+

∑m
i=0 λiy, (Equation 1.3) reduces

to the nested composite problem in (Equation 1.2). Notice that g is smooth while h is

structured non-smooth.

4

Example 1.2 In risk-averse stochastic programming [9], considering a finite scenario sup-

port, the optimization problem can be formulated as:

min
x∈X

ρ(g(x, ξ1), g(x, ξ2), ..., g(x, ξm)), (1.5)

where ξi denotes the ith scenario. In this case, ρ and [g(·, ξ1), ..., g(·, ξm)] corresponds to h

and g in (Equation 1.2) respectively. Here, h and g can represent different types of convex

functions.

The oracle complexity for solving the nested composite optimization problem in

(Equation 1.2) remains unclear. This thesis aims to address this gap by introducing a tri-

linear saddle point problem as a reformulation framework to tackle the nested composite

problem. We leverage this framework to develop optimal algorithms under various settings,

such as deterministic, stochastic, and distributed scenarios. Through these algorithmic ad-

vancements, we aim to enhance our understanding of the inherent complexity of the nested

composite optimization problem. By filling this knowledge gap, our research contributes to

the broader understanding of the challenges and intricacies associated with solving nested

composite optimization problems.

1.2 The Trilinear Saddle Point Problem

We introduce a novel problem called the trilinear saddle point problem, defined as:

min
x∈X

max
p∈P

max
π∈Π
{L(x; p, π) :=

∑
i

pi (⟨Aix, πi⟩ − g∗i (πi))− h∗(p) + u(x)}. (1.6)

Here, u(x) represents a simple convex function, Ai denotes a linear operator, and g∗i and

h∗(x) are convex functions. We assume that X , P , and Π are convex sets. The name

”trilinear” refers to the term ϕ(x; p, π) =
∑

i pi⟨Aix, πi⟩ in (Equation 1.6), which is linear

with respect to the third variable when the other two variables are fixed, i.e., ϕ(x; p̄, π̄)

5

is linear with respect to x. However, the trilinear saddle point problem is generally not

tractable due to the joint maximization of p and π in the bilinear form
∑

i piπi. To address

this, we make the following non-negativity assumption on P :

Assumption 1 P in (Equation 1.6) satisfies P ⊂ Rm
+ .

This assumption ensures that the maximization of πi is independent of the choice of p,

allowing for efficient joint maximization. Furthermore, we can demonstrate that f(x) :=

maxp∈P maxπ∈Π Λ(x; p, π) is a convex function with respect to x.

Let’s examine how Example 1.1 and Example 1.2 can be reformulated as trilinear saddle

point problems:

• Function Constraint Example (1.1): By utilizing the bi-conjugation identity gi(x) ≡

maxπi
⟨πi, x⟩ − g∗i (πi), where g∗i represents the Fenchel conjugate of gi [10], the

problem in (Equation 1.4) can be reformulated into the trilinear saddle point form in

(Equation 1.6) by introducing π = [π0, . . . , πm] and p = [1, λ]. Notably, Assumption

1 is satisfied since the Lagrange multiplier λ is always non-negative.

• Risk-Averse Example (1.2): By applying the bi-conjugate identity to reformulate

both ρ and the scenario costs g(x, ξi), the problem in (Equation 1.5) can be trans-

formed into the trilinear saddle point form in (Equation 1.6). Additionally, if the risk

measure is monotone [9], Assumption 1 is automatically fulfilled.

In summary, both examples can be effectively reformulated as trilinear saddle point prob-

lems (Equation 1.6). This demonstrates the versatility and applicability of the trilinear

saddle point framework in capturing and solving nested composite optimization problems

arising from various contexts.

To facilitate algorithm design, we utilize a gap function Q to measure the quality of a

feasible solution z = (x, p, π) with respect to a feasible reference point ẑ = (x̂; p̂, π̂). The

6

gap function Q is defined as:

Q(z; ẑ) := Λ(x; p̂, π̂)− Λ(x̂; p, π). (1.7)

Note that z is a saddle point of problem (Equation 1.6) if and only if Q(z; ẑ) ≤ 0 for all

feasible reference points ẑ ∈ X × P × Π. By analyzing and minimizing the gap function,

we can devise effective algorithms to find desirable solutions to the trilinear saddle point

problem.

Towards that end, one particularly useful property of theQ function is its decomposition

into three sub-gap functions, which allows us to focus on individual components related to

x, p, and π. This decomposition is given by:

Q(z̄; ẑ) = Qx(z̄; ẑ) +Qp(z̄; ẑ) +Qπ(z̄; ẑ)

with

Qπ(z̄; ẑ) := L(x̄; p̂, π̂)− L(x̄; p̂, π̄) =
∑m

i=1 p̂i [⟨Aix̄, π̂i − π̄i⟩ − g∗i (π̂i) + g∗i (π̄i)] .

Qp(z̄; ẑ) := L(x̄; p̂, π̄)− L(x̄; p̄, π̄)

=
∑m

i=1(p̂i − p̄i)[⟨Aix̄, π̄i⟩ − g∗i (π̄i)]− (h∗(p̂)− h∗(p̄)).

Qx(z̄; ẑ) := L(x̄; p̄, π̄)− L(x̂; p̄, π̄) = ⟨
∑m

i=1 p̄iA
⊤
i π̄i, x̄− x̂⟩+ u(x̄)− u(x̂).

(1.8)

In our approach, we typically begin by designing update steps that reduce the corresponding

sub-gap function while keeping the other two variables fixed. We then combine these steps

in an appropriate manner to derive an iterative algorithm that effectively minimizes the

overall Q function. This decomposition allows for a systematic approach in updating each

variable, leading to an efficient optimization algorithm.

7

CHAPTER 2

DISTRIBUTIONALLY ROBUST TWO-STAGE LINEAR PROGRAM WITH A

FINITE SCENARIO SUPPORT

2.1 Background and Our Contribution

Two-stage stochastic programming (SP) problems are the most widely used stochastic op-

timization models in practice [9]. In this paper, we consider a distributionally robust two-

stage stochastic convex optimization problem with a finite set of scenarios {ξi}Ki=1,

min
x∈X

{
f(x) := f0(x) + max

p∈P

∑K
k=1 pkg(x, ξk)− ϕ∗(p)

}
, (2.1)

where X ⊂ Rn is a convex and compact feasible region for the first-stage decision variable

x, and P ⊂ RK is a convex and compact ambiguity set for the scenario probability vector

p ∈ RK . We assume that the first-stage cost function f0(·) and the second-stage cost

functions g(·, ξk) are proper closed convex (p.c.c.) and Lipschitz continuous, and that ϕ∗①

is a simple p.c.c. function of p. The goal is to minimize the expected cost with respect to

the worst probability vector in P .

Such a problem arises naturally under the following situations.

• Data driven SP with finite scenario support. We want to minimize the expected

cost with respect to the true distribution p∗. However, p∗ is usually unknown, and

only partial information about it can be obtained from either historical observations

or simulation. In this case, one can construct an 1− α confidence ambiguity set Pα,

i.e., p∗ ∈ Pα with a probability of at least 1 − α, and solve for the DRO problem

①Notice that ϕ∗ is usually identically zero in DRO problems, however we include it to handle some non-
coherent risk measures for risk-averse stochastic programming problem.

8

associated with Pα. The true cost for DRO solution x̂ would be less than the DRO

cost with a probability of at least 1 − α. There exist an expansive literature on such

confidence ambiguity sets, including the Phi-divergence ball [11, 12], the ζ-distance

ball [13], and the hypothesis testing set [14].

• Data driven SP with continuous scenario support. An important metric-based

ambiguity set is the Kantorovich ball. This is because when g(x, ξ) is Lipschitz con-

tinuous in ξ for all x, the expected cost Ep[g(x, ξ)] is Lipschitz continuous in p with

respect to the Kantorovich distance. In two-stage stochastic programming, the radius

δ for the Kantorovich Pα ball [15, 16], the sufficient conditions for the Lipschitz-

continuity of g(x, ξ) and the convergence of DRO solutions to true solutions [17] are

well studied. However, computing the DRO solution remains challenging because it

involves finding the maximal in the infinite dimensional space of distributions. One

approach to address such a difficulty is to use a duality argument to simplify the

problem to

min
x∈X,λ≥0

f0(x) + λδ +
1

N

∑N
i=1maxξ∈Ξ g(x, ξ)− λd(ξi, ξ),

where λ is the Lagrange multiplier for the total transportation cost constraint and d

is the distance function. To solve the simplified problem, [18] reformulates it to a

large deterministic convex problem, [19] suggests using the mirror-prox algorithm

and [15] suggests using the Benders decomposition algorithm. The successes of

[19, 18] hinge on the concavity of g(x, ξ) with respect to ξ, while [15] carries some

other structural assumptions on g(x, ξ) and Ξ. These requirements can be restrictive.

For example, the concavity of g(x, ξ) is not satisfied even for a two-stage linear

stochastic program with right-hand side uncertainty. A more general approach is to

use a discrete grid of scenarios ΞK to approximate the whole scenario space Ξ and

solve the DRO problem restricted to ΞK [16, 13]. The approximation error can be

9

bounded by the Hausdorff distance between ΞK and Ξ, so a fine grid, i.e., a large

number of scenarios, is necessary for a moderately accurate solution.

• Risk-averse SP with finite scenario support: In finance, the preference for less

risk can be formulated using a risk measure ϕ, so the goal is to find a decision x

with minimal ϕ. For example, in portfolio selection [20], given a finite number of

scenarios about possible returns {g(x, ξk)}, we want to select a portfolio xwith mini-

mum ϕ(g(x, ξ1), ..., g(x, ξK)). If such a risk measure is p.c.c. and monotone, say the

piecewise linear dis-utility function, then we can use bi-conjugation [10] to rewrite

the problem as minx∈X maxp∈RK
+

∑K
k=1 pkgk(x)− ϕ∗(p). In addition, if ϕ is a coher-

ent risk measure [21], for example the average value-at-risk (AVaR), then ϕ∗ ≡ 0 and

p’s domain must be a subset of the probability simplex.

Now returning to (Equation 2.1), we can simply denote the g(x, ξk) by gk(x). In many

cases, the function g(x, ξk) may involve a linear transformation Tk on x, for example,

the technology matrix in stochastic programming. Then it is often desirable to process

such a linear transformation differently from other nonlinear components of g(x, ξk) in the

design of algorithms. Therefore, we rewrite g(x, ξk) as gk(Tkx) to arrive at the following

equivalent reformulation of (Equation 2.1),

min
x∈X

{
f(x) := f0(x) + max

p∈P

∑K
k=1 pkgk(Tkx)− ϕ∗(p)

}
. (2.2)

Apparently, if one does not need to process Tk separately or such a linear transformation

does not exist, we can simply set Tk = I in (Equation 2.2).

Problem (Equation 2.2) is a convex-concave saddle point problem and can be solved

by the mirror descent method [24] or the bundle level method [23] directly. However gk

is often non-smooth, for example, the minimum objective of a linear program. So direct

applications of these methods would lead to anO(1/ϵ2) iteration complexity bound, which

is independent of the number of scenarios K. In each iteration, the function values and

10

Table 2.1: Theoretical Performance Comparison for Major Deterministic Algorithms

Algorithm Iter Complexity Most Expensive Computation1

Benders Decomposition [13, 22] O(1/ϵn) K separable m× n LPs in parallel

Bundle Level [23] O(1/ϵ2) K separable m× n LPs in parallel
Mirror Descent [24] O(1/ϵ2) K separable m× n LPs in parallel

Constraint PDHG [25] O(1/ϵ) One large-scale and non-separable QP
Separabale PDHG [16] O(K/ϵ) K separable m× n QPs in parallel

Euclidean SD & SSL O(
√
K/ϵ) K separable m× n QPs in parallel

Entropy SD & SSL O(
√
logK/ϵ) K separable m× n QPs in parallel

1 Based on solving distributionally robust two-stage LP.
2 The complexity of Benders decomposition (or Kelley’s cutting plane method) was established
in [22] with n being the dimension of the problem.

sub-gradients for {gk} can be computed in parallel.

To improve the iteration complexity bound, Liu et al. put the second-stage cost func-

tions in the constraint to obtain a composite bilinear saddle point problem in [25],

min
x∈X,vk≥gk(Tkx)

max
p∈P

f0(x) +
∑K

k=1 pkvk − ϕ∗(p). (2.3)

They applied the primal-dual hybrid gradient (PDHG) algorithm in [26] to obtain anO(1/ϵ)

iteration complexity bound. However, this algorithm may not be practical because each

iteration involves projecting (x, v) onto a jointly constrained set, {vk ≥ gk(Tkx),∀k}.

More recently, Chen et al. [16] address the non-separability issue by introducing a copy of

x for each scenario, {xk}, and uses Lagrange multipliers {λk} to enforce their consensus

to arrive at the following reformulation:

min
x0,xk∈X,vk≥gk(Tkxk)

max
p∈P

max
λk∈Rn

⟨v, p⟩+ f0(x0) +
∑K

k=1⟨x0 − xk, λk⟩ − ϕ∗(p). (2.4)

The objective is jointly concave (linear) with respect to (p, λ), so (Equation 2.4) is again a

bilinear saddle point problem to which the PDHG algorithm can be applied. Moreover,

the (xk, vk) projections can be performed in parallel if needed. However such an ap-

11

proach still has two major limitations. Firstly, the combined (p, λ) dual block prevents

us from exploiting the special geometry of P , a subset of the probability simplex, to im-

prove the iteration complexity bound’s dependence on K. More specifically, since the

Euclidean Bregman distance is used in [16], the radii of both the primal feasibility region

for {x0, (x1, v1)...(xK , vK)} and the dual feasibility region for {(p1, p2...pK);λ1;λ2; ...λK}

are O(
√
K). So it follows from [26] that the iteration complexity bound is O(K/ϵ). Sec-

ondly, the projection onto a non-smooth function constrained set {vk ≥ gk(Tkxk)} in each

iteration could be computationally expensive.

An interesting research problem is whether there exists anO(1/ϵ) algorithm which can

handle both the large number of scenarios and the non-smooth second-stage cost gk(Tkx)

effectively. Towards this end, we use bi-conjugation [10] to reformulate the non-smooth

gk(Tkx) as maxπk∈Π(k)⟨πk, Tkx⟩ − g∗k(πk) to arrive at a trilinear saddle point problem,

min
x∈X

f0(x) + max
p∈P

∑K
k=1 max

πk∈Π(k)
pk(⟨Tkx, πk⟩ − g∗k(πk))− ϕ∗(p)︸ ︷︷ ︸

F (x)

, (2.5)

where Π(k) is the domain of the conjugate function g∗k(πk), Π(k) := {πk | g∗k(πk) <∞}②.

As compared to (Equation 2.4), (Equation 2.5) is no longer jointly concave in p and {πk},

and the projection in (p, {πk}) is not parallelizable. So the simple reduction to a convex-

concave saddle-point problem is not possible. However, because p is non-negative, the

non-concave maximization in (Equation 2.5) can be evaluated efficiently in a sequential

manner: given a x ∈ X , first maximize {πk} in parallel and then maximize p.

In this paper, we take advantage of such a sequential structure by treating p and {πk}

as separate dual blocks and develop two new algorithms: a simple sequential dual (SD)

method and a complicated but more efficient sequential smoothing level (SSL) method.

The SD method extends the popular primal-dual method; it has a novel momentum step

②Notice that if gk is a p.c.c. function, then g∗k must also be p.c.c. , so Π(k) is closed and convex. Moreover,
if gk is Lipschitz continuous, then Π(k) must be bounded, i.e., Π(k) is compact.

12

and an additional p-projection step. The SSL algorithm extends Nesterov’s smoothing

scheme to build a two-layer smooth approximation of (Equation 2.5) and then applies the

accelerated prox-level method in [27] to an adaptively smoothed approximation of f . The

SSL algorithm is parameter-free. It is worth noting that bundle-level type methods are

classical methods for solving two-stage stochastic programming problems, but they have

not been studied for solving distributionally robust problems before.

In addition, since P is now a standalone block, we have more flexibility to exploit its

favorable geometry to obtain either a better iteration complexity or cheaper computations in

each iteration. More specifically, if P is simple, we can use entropy p projection to reduce

the iteration complexity bound to O(
√
logK/ϵ). If P is the computationally challenging

Kantorovich ball, we can substitute the expensive p projection with a cheaper joint prob-

ability matrix projection at the price of increasing the iteration complexity to O(
√
K/ϵ).

Due to the separation of the p-block from the other blocks, only stepsize modifications are

needed for our SD and SSL methods. To the best of our knowledge, all these complexity

results appear to be new for solving trilinear saddle point problems given in the form of

(Equation 2.5).

The paper is organized as follows. Section 2 proposes the simple sequential dual (SD)

algorithm, and Section 3 develops the parameter-free sequential smoothing level (SSL)

method. Section 4 introduces the specialized modifications of the SD and SSL algorithms

for the challenging Kantorovich ball. Finally, encouraging numerical results are presented

in Section 5 and concluding remarks are made in section 6.

2.1.1 Notations and Assumptions

Throughout the paper, we use x∗ denote an arbitrary optimal solution to (Equation 2.2). For

any convex function f defined on X , we use ∂f(x) to denote the set of all sub-gradients

and use f ′(x) to denote an arbitrary element in ∂f(x). If the set X is associated with some

norm ∥·∥X , we use ∥·∥X ∗ to denote its dual norm. Moreover, we call f L-smooth if it

13

satisfies f(x1)−f(x2)−⟨x1 − x2, f ′(x2)⟩ ≤ L
2
∥x1 − x2∥2X for all x1, x2 ∈ X , and we call

f µ-strongly convex if it satisfies f(x1) − f(x2) − ⟨x1 − x2, f ′(x2)⟩ ≥ µ
2
∥x1 − x2∥2X for

all x1, x2 ∈ X .

To take advantage of the geometry of P , we need the Bregman distance function. Given

a closed and convex set Y③, let F : Y → R be differentiable and convex, and 1-strongly

convex over dom(∂F) := {y ∈ Y : ∂F (y) ̸= ∅} with respect to some ∥·∥F , the Bregman

distance function dF : dom(∂F)× Y → R is defined as

dF (y1, y2) = F (y2)− F (y1)− ⟨F ′(y1), y1 − y2⟩.

In the following analysis, we will consider a general Bregman distance function W (·, ·)

for P . Distance functions of practical interests consist of the Euclidean W (p1, p2) :=

∥p1 − p2∥2 and the entropyW (p1, p2) :=
∑K

i=1 p1,i log(p2,i/p1,i), which are 1-strongly con-

vex with respect to ∥·∥2 and ∥·∥1 respectively. For X and Π(k), we will use the Euclidean

distance functions V (x1, x2) := ∥x1 − x2∥22 /2 and U(π1,k, π2,k) := ∥π1,k − π2,k∥22 /2 for

simplicity.

To facilitate analyzing how our algorithms scale with K, we need some scenario inde-

pendent radii and operator norms. Let Ω2
X := maxx∈X V (x0, x), Ω2

P := maxp∈P W (p0, p)

for some initial points x0 and p0. ΩX is independent of K, but ΩP can depend on K. More

specifically, if p0 is the empirical distribution and P is the whole probability simplex, then

ΩP is O(1) for Euclidean W and O(
√
logK) for entropy W .

For the multi-block {πk}, we use boldface letters to denote the concatenation: πππ :=

[π1, π2, . . . , πK], TTT := [T1;T2; . . . ;TK], ggg∗(πππ) := [g∗1(π1), . . . , g
∗
K(πK)], and ΠΠΠ := Π(1) ×

Π(2) · · · × Π(K). We use the following shorthand notations for multi-scenario functions:

pTTTπ :=
∑K

k=1 pkTkπk, ⟨x,πππ⟩TTT := [⟨T1x, π1⟩, ⟨T2x, π2⟩, ..., ⟨TKx, πK⟩] and UUU(πππ1,πππ2) :=

[U(π1,1, π2,1), U(π1,2, π2,2), ..., U(π1,K , π2,K)] and their k-th components:

③In general the Bregman distance function can be defined over any set, not necessary a closed and convex
set. For the general definition, please refer to [28].

14

⟨x,πππ⟩Tk
:= ⟨Tkx, πk⟩ and Uk(πππ1,πππ2) := U(π1,k, π2,k). Let the multi-block (2,q)-norm be

∥πππ∥2,q := ∥[∥π1∥2 , ∥π2∥2 , ..., ∥πK∥2]∥q , then the scenario independent radius and operator

norm for πππ and TTT are defined as :

Ω2
ΠΠΠ := max

k∈K
max
πππ∈ΠΠΠ

Uk(πππ0,πππ) for some initial πππ0 ∈ ΠΠΠ,

MTTT := max
k∈[K]

∥Tk∥2,2 and MΠΠΠ := max
πππ∈ΠΠΠ
∥πππ∥2,∞.

(2.6)

Because gk(·) is p.c.c. and Lipschitz-continuous, every Π(k) is a convex closed and

bounded, so MΠΠΠ <∞.

2.2 Sequential Dual Algorithm

In this section, we consider (Equation 2.5) from a saddle point perspective:

min
x∈X

max
(p,πππ)∈P×ΠΠΠ

{L(x, p,πππ) := f0(x) +
∑K

k=1 pk(⟨Tkx, πk⟩ − g∗k(πk))− ϕ∗(p)}. (2.7)

One challenge is the non-concavity of L with respect to (p,πππ), so existing saddle point

algorithms cannot be directly applied. However, upon a closer inspection, we find the

ingredients required to design a primal-dual saddle point algorithm [28] still applicable due

to the non-negativity of the p-block. More specifically, in Subsection 2.1, we show a duality

relationship betweenL in (Equation 2.7) and f in (Equation 2.2), and a conversion from the

primal-dual gap (see Definition 2.1) to the functional optimality gap. Then in Subsection

2.2, we present a decomposition of the primal-dual gap into individual optimality gaps of

the x, p and πππ blocks. These individual optimality gaps are composite linear, i.e., of the

form ⟨·, y⟩ + h(·), where h(·) are some simple convex functions. So, as is standard in

first-order methods [28], these quantities can be gradually decreased by iterative proximal

updates. We introduce some novel momentum terms in these proximal updates, which then

leads to the SD method.

15

2.2.1 Duality and Primal-Dual Function

The following duality relationship between f and L is straightforward because it boils

down to switching the order of a non-negative weighted summation and a maximization.

Proposition 2.1 Let f and L be defined in (Equation 2.2) and (Equation 2.7), then the

following statements hold for all x ∈ X .

a) Weak Duality: f(x) ≥ L(x, p,πππ) for all p ∈ P,πππ ∈ ΠΠΠ.

b) Strong Duality: f(x) = L(x, p̄, π̄ππ) for some p̄ ∈ P, π̄ππ ∈ ΠΠΠ.

Proof: We consider the strong duality first. Pick π̄k ∈ ∂gk(Tkx) such that ⟨Tkx, π̄k⟩ −

g∗k(π̄k) = gk(Tkx) and p̄ ∈ argmaxp∈P
∑K

k=1 pkgk(Tkx) − ϕ∗(p), then it is easy to verify

L(x, p̄, π̄ππ) = f(x).

Next, we show the weak duality. Notice that

f(x) =f0(x) + max
p∈P

∑K
k=1 pk[max

πk∈Π(k)
⟨Tkx, πk⟩ − g∗k(πk)]− ϕ∗(p)

(a)
=f0(x) + max

p∈P
max

πk∈Π(k)

∑K
k=1 pk[⟨Tkx, πk⟩ − g∗k(πk)]− ϕ∗(p)

= max
(p,πππ)∈P×ΠΠΠ

L(x, p,πππ),

where (a) follows from the non-negativity of P . So f(x) = max(p,πππ)∈P×ΠΠΠ L(x, p,πππ) ≥

L(x, p,πππ) for any feasible p and πππ. □

We define a primal-dual gap function [28] for analyzing the saddle point problem

(Equation 2.7) as follows.

Definition 2.1 Let z := (x, p,πππ) ∈ Z := X × P ×ΠΠΠ and u := (ux, up, uπππ) ∈ Z. Then the

primal-dual gap function is given by

Q(z, u) := L(x, up, uπππ)− L(ux, p,πππ).

16

Q(z, u) measures the saddle point optimality of z in comparison to some u; if z is a saddle

point, then Q(z, u) ≤ 0 for all feasible u. In our analysis, we use Q(z, u) as an upper

bound for the functional optimality gap, f(x) − f(x∗). With a carefully chosen u, we can

show
∑N

t=1Q(z
t, u) providing an upper bound for the optimality gap of an ergodic average

solution x̄t, which is illustrated in the following proposition.

Proposition 2.2 Let u := (x∗, up, uπππ) and a feasible sequence {zt := (xt, pt,πππt)} be given.

If max(up,uπππ)∈P×ΠΠΠ

∑N
t=1Q(z

t, u) ≤ B for some finite B. Then the ergodic solution x̄t :=∑N
t=1 x

t/N satisfies

f(x̄t)− f(x∗) ≤ B
N
.

Proof: From the strong duality result in Proposition 2.1, we have L(x̄t, p̄N , π̄ππN) = f(x̄t)

for some p̄N and π̄ππN . But L(x, p̄N , π̄ππN) is convex with respect to x, so it follows from

the Jensen’s inequality that Nf(x̄t) = NL(x̄t, p̄N , π̄ππN) ≤
∑N

t=1 L(xt, p̄N , π̄ππN). Moreover,

the weak duality in Proposition 2.1 implies that f(x∗) ≥ L(x∗, pt,πππt) ∀t, so Nf(x∗) ≥∑N
t=1 L(x∗, pt,πππt). Therefore we have

N(f(x̄t)−f(x∗)) ≤
∑N

t=1 L(xt, p̄N , π̄ππN)−L(x∗, pt,πππt) =
∑N

t=1Q(z
t, (x∗, p̄N , π̄ππN)) ≤ B.

Dividing both sides by N, we get the desired result. □

17

2.2.2 The Sequential Dual Method

The development of the sequential dual method (see Algorithm Algorithm 1) is inspired by

the following decomposition of Q(z;u): Q(z;u) ≡ Qx(z;u) +Qp(z;u) +Qπ(z;u) where

Qπ(z;u) := L(x, up, uπππ)− L(x, up,πππ) = ⟨up, ⟨x, uπππ⟩TTT − ggg∗(uπππ)⟩

−⟨up, ⟨x,πππ⟩TTT − ggg∗(πππ)⟩︸ ︷︷ ︸
πππ gap

.

Qp(z;u) := L(x, up,πππ)− L(x, p,πππ) = ⟨up, ⟨x,πππ⟩TTT − ggg∗(πππ)⟩ − ϕ∗(up)

−⟨p, ⟨x,πππ⟩TTT − ggg∗(πππ)⟩+ ϕ∗(p)︸ ︷︷ ︸
p gap

.

Qx(z;u) := L(x, p,πππ)− L(ux, p,πππ) = f0(x) + ⟨x, pTTTπππ⟩︸ ︷︷ ︸
x gap

−(f0(ux) + ⟨ux, pTTTπππ⟩).

(2.8)

Observe that inside each Q(·) function, the under-braced terms associated with the (·) argu-

ment are of the form ⟨y, ·⟩+ h(·) for some simple convex h(·), e.g., −⟨up, ⟨x, ·⟩TTT − ggg∗(·)⟩

in the πππ gap. So we can use proximal updates to decrease them iteratively. However, at

least two of (x, p,πππ) appear together in every decomposed gap term. Thus we need to use

some guesses for the other blocks if they have not been evaluated in the sequential update

scheme, and care must be taken in designing those guesses to ensure the cancellation of the

consequent prediction errors. More specifically, given a sequence {zi ≡ (xi, pi,πππi)}ti=0, we

propose the following sequential proximal update for the πππ, p and x blocks (in that order)

to obtain a possibly smaller Qx(zt+1;u), Qp(zt+1;u) and Qπ(zt+1;u).

1. πππ block: we need to decrease the value of −⟨up, ⟨xt+1,πππ⟩TTT − ggg∗(πππ)⟩ in (Equa-

tion 2.8). But since up is non-negative, we might as well reduce every component of

the vector −⟨xt+1,πππ⟩TTT + ggg∗(πππ) separately. Moreover, xt+1 is currently unknown, so

we use the guess xt + (xt− xt−1) to arrive at the following πππ−proximal update step,

18

i.e., Line 4 in Algorithm Algorithm 1,

πk,t+1 = argmin
πk∈Π(k)

−⟨2xt − xt−1,πππ⟩Tk
+ g∗k(πππ) + σUk(πππt,πππ).

2. p block: we wish to decrease the value of −⟨p, ⟨xt+1,πππt+1⟩TTT − ggg∗(πππt+1)⟩+ ϕ∗(p) in

(Equation 2.8). Again, the information about ⟨xt+1,πππt+1⟩TTT is unavailable, so we use

the guess ⟨xt,πππt⟩TTT + (⟨xt,πππt+1⟩TTT −⟨xt−1,πππt⟩TTT) to obtain the following p−proximal

update step, i.e., Line 5 in Algorithm Algorithm 1,

pt+1 = argmin
p∈P

− ⟨p, ⟨xt,πππt+1⟩TTT + ⟨xt − xt−1,πππt⟩TTT − ggg∗(πππt+1)⟩

+ ϕ∗(p) + τW (pt, p).

3. x block: We intend to decrease the value of f0(x) + ⟨x, pt+1TTTπππt+1⟩. But since we

already know (pt+1,πππt+1) from the previous two updates, the x-proximal update step,

Line 6 in Algorithm Algorithm 1, is simply

xt+1 = argmin
x∈X

⟨x, pt+1TTTπππt+1⟩+ f0(x) + ηV (xt, x).

The algorithm is named sequential dual method because both the πππ and p blocks can be

viewed as dual blocks and they need to be updated sequentially before the primal x block

can be updated.

Our goal in the remaining part of this section is to analyze the convergence properties

of the SD method. To highlight the dependence of the iteration complexity bound on K,

we need to relate the dual norm ∥πππ∥2,W ∗ , which possibly depends on K, to ∥πππ∥2,∞, which

is independent of K.

Definition 2.2 Let ∥·∥W be the norm associated with P , we call any Cp ≥ 0 a norm

adjustment constant for the ambiguity set P if it satisfies Cp ∥πππ∥2,∞ ≥ ∥πππ∥2,W ∗ for all

19

Algorithm 1 Sequential Dual Algorithm

Input: (x0, p0,πππ0) ∈ X × P ×ΠΠΠ and stepsizes σ, τ, η > 0
Output: (x̄N , p̄N , π̄ππN)

1: Initialization set x−1 = x0.
2: for t = 1, 2, 3...N do
3: set x̃t = 2 ∗ xt−1 − xt−2.
4: set πk,t = argmaxπk∈Π(k)(⟨Tkx̃t, πk⟩− g∗k(πk, ξk))− σUk(πk,t−1, πk), ∀k ∈ [K].

5: set f̃t,k = ⟨xt−1,πππt⟩TTT + ⟨(xt−1 − xt−2),πππt−1⟩TTT − g∗k(πk,t).
6: set pt = argmaxp∈P ⟨p, f̃t,k⟩−ϕ∗(p)−τW (pt−1, p).
7: set xt = argminx∈X f0(x) + ⟨x, ptTTTπππt⟩+ ηV (xt−1, x).
8: end for
9: Return x̄N =

∑N
t=1

xt

N
.

πππ ∈ ΠΠΠ.

In the following analysis, we use some specific choices of norm adjustment constants to

make explicit dependence of the iteration complexity bound on K.

a) When ∥·∥1 and entropy W are used for P , we fix Cp =1.

b) When ∥·∥2 and Euclidean W are used for P , we fix Cp =
√
K.

Proposition 2.3 below shows that the SD method achieves an O(1/N) reduction in

Q(zN ;u).

Proposition 2.3 If the non-negative stepsizes satisfy

η ≥ C2
pM

2
TTTM2

ΠΠΠ

τ
+

M2
TTT

σ
, (2.9)

where MTTT , MΠΠΠ and Cp are defined in Section subsection 2.1.1 and Definition 2.2, then the

following inequality holds for all u ∈ Z,

∑N
t=1Q(zt;u) ≤ σ⟨up, Uk(πππ0, uπππ)⟩+ τW (p0, up) + ηV (x0, ux). (2.10)

20

Proof: First, consider the three projection steps of Algorithm Algorithm 1 for a fixed

iteration t ≥ 1. In the πππ update step, it follows from the standard three point inequality of

proximal update, e.g., Lemma 3.4 in [28], that for a fixed k scenario,

−⟨2xt − xt−1,πππt+1⟩Tk
+g∗k(πππt+1) + σ(Uk(πππt,πππt+1) + Uk(πππt+1, uπππ))

≤ −⟨2xt − xt−1, uπππ⟩Tk
+ g∗k(uπππ) + σUk(πππt, uπππ),

or equivalently,

⟨xt+1, uπππ − πππt+1⟩Tk
− g∗k(uπππ) + g∗k(πππt+1) ≤ σ(Uk(πππt, uπππ)− Uk(πππt+1, uπππ))

+ (σUk(πππt,πππt+1) + ⟨xt+1 − (2xt − xt−1), uπππ − πππt+1⟩Tk
).

Summing up both sides with weight up, we get

Qπ(zt+1;u) ≤ σ⟨UUU(πππt, uπππ)−UUU(πππt+1, uπππ), up⟩

+ ⟨⟨xt+1 − xt, uπππ − πππt+1⟩TTT − ⟨xt − xt−1, uπππ − πππt⟩TTT , up⟩TTT + ϵπ(πππt+1), (2.11)

where

ϵπ(πππt+1) = ⟨up, ⟨xt − xt−1,πππt+1 − πππt⟩TTT − σUUU(πππt,πππt+1)︸ ︷︷ ︸
≤ 1
2σ

∥xt−xt−1∥22M2
TTT for each component

⟩ ≤ 1
2σ
∥xt − xt−1∥22M

2
TTT .

(2.12)

Next in the p update step, again it follows from Lemma 3.4 in [28] that

⟨up − pt+1, ⟨xt,πππt+1⟩TTT + ⟨xt − xt−1,πππt⟩TTT − ggg∗(πππt+1)⟩+

ϕ∗(pt+1)− ϕ∗(up) + τ(W (pt, pt+1) +W (pt+1, up)) ≤ τW (pt, up).

21

After adding ⟨up − pt+1, ⟨xt+1,πππt+1⟩TTT ⟩ to both sides of the inequality, we have

Qp(zt+1;u) ≤ ⟨up − pt+1, ⟨xt+1 − xt,πππt+1⟩TTT − ⟨xt − xt−1,πππt⟩TTT ⟩+

τ(W (pt, up)−W (pt+1, up)−W (pt, pt+1))

≤ τ(W (pt, up)−W (pt+1, up)) + ϵp(pt+1)

+ (⟨up − pt+1, ⟨xt+1 − xt,πππt+1⟩TTT ⟩ − ⟨up − pt, ⟨xt − xt−1,πππt⟩TTT ⟩), (2.13)

where

ϵp(pt+1) = ⟨pt+1 − pt, ⟨xt − xt−1,πππt⟩TTT ⟩ − τW (pt, pt+1)

≤ ∥pt+1 − pt∥W ∥xt − xt−1∥2
∥∥[∥T1πππt,1∥2 , ..., ∥TKπππt,K∥2]

∥∥
W ∗ − τW (pt, pt+1)

≤ 1
2τ
∥xt − xt−1∥22 (CpMTTTMΠΠΠ)

2. (2.14)

Moreover, when computing xt+1 in x update step, we can obtain the following simple

inequality

Qx(zt+1;u) = ⟨xt+1 − ux, pt+1TTTπππt+1⟩+ f0(xt+1)− f0(ux)

≤ η(V (xt, ux)− V (xt+1, ux))− ηV (xt, xt+1). (2.15)

Finally, summing up (paragraph 2.11), (paragraph 2.13), (paragraph 2.15)

for t = 1, 2, 3, . . . , N and applying the telescoping cancellation, we have

∑N−1
t=0 Q(zt+1;u) ≤ σ⟨up,UUU(πππ0, uπππ)⟩+ τW (p0, up) + ηV (x0, ux)− ηV (xN , ux)

+ ⟨up, ⟨xN − xN−1, uπππ − πππN⟩TTT − σUUU(πππN , uπππ)⟩+ (⟨up − pN , ⟨xN − xN−1,πππN⟩TTT ⟩

− τW (pN , up)) +
∑N−1

t=1 (ϵp(pt+1) + ϵπ(πππt+1)− ηV (xt−1, xt))︸ ︷︷ ︸
Notice that ϵp(p1) = 0 and ϵπ(πππ1) = 0 because x0 = x−1.

−ηV (xN−1, xN).

(2.16)

22

Observe that the stepsize requirement η ≥ C2
pM

2
TTTM

2
ΠΠΠ/τ+M

2
TTT/σ implies that the following

parts of (paragraph 2.16) are smaller than 0:

∑N
t=2 ϵp(pt) + ϵπ(πππt)− ηV (xt−1, xt)

≤
∑N

t=2
1
2τ
∥xt − xt−1∥22 (CpMTTTMΠΠΠ)

2 + 1
2σ
∥xt − xt−1∥22M2

TTT −
η
2
∥xt − xt−1∥22 ≤ 0.

⟨up, ⟨xN − xT−1, uπππ − πππN⟩TTT − σUUU(πππN , uπππ)⟩

+ (⟨up − pN , ⟨xN − xT−1,πππN⟩TTT ⟩ − τW (pN , up))− ηV (xN−1, xN) ≤ 0.

So (Equation 2.10) follows by substituting the previous two inequalities and

−ηV (xN , ux) ≤ 0 into (paragraph 2.16). □

The next theorem suggests a stepsize choice for Algorithm Algorithm 1 and shows its

convergence in terms of function value gap.

Theorem 2.1 If we set

σ =MTTT
ΩX

ΩΠΠΠ
, τ =MTTTMΠΠΠCp

ΩX

ΩP
, and η =MTTTMΠΠΠCp

ΩP

ΩX
+MTTT

ΩΠΠΠ

ΩX
, (2.17)

then after N iterations of Algorithm Algorithm 1, we have

f(x̄t)− f(x∗) ≤ 2ΩXMTTT

N
(ΩΠΠΠ + CpMΠΠΠΩP). (2.18)

Proof: Observe that the stepsize choices in (Equation 2.17) satisfies the requirement in

(Equation 2.9) and Ω2
ΠΠΠ, Ω2

P , and Ω2
X are upper bounds for ⟨up,UUU(πππ0, uπππ)⟩,W (p0, up) and

V (x0, x
∗) for any feasible up, uπππ. So it follows from Proposition 2.3 that

∑N
t=1Q(z

t, (x∗, up, uπππ)) ≤ σΩ2
ΠΠΠ + τΩ2

P + ηΩ2
X ∀(up, uπππ) ∈ P ×ΠΠΠ.

Thus Proposition 2.2 implies that f(x̄t)− f(x∗) ≤ σΩ2
ΠΠΠ+τΩ2

P+ηΩ2
X

N
. The bound

(Equation 2.18) then follows from substituting the stepsize choices into the preceding in-

23

equality. □

We remark here that, by using
√
2MΠΠΠ as an upper bound for ΩΠΠΠ, the above convergence

rate could be further simplified to ΩXMTTTMΠΠΠ(
√
2 + CpΩP)/N , i.e., O((1 + ΩPCp)/N) if

we ignore constants independent of K. Then substituting in the values of Cp and ΩP ,

the iteration complexity bounds become O(
√
logK/ϵ) for entropy W and O(

√
K/ϵ) for

Euclidean W.

It is also worth noting that the aforementioned rate of convergence for SD seems to

be tight for solving problem (Equation 2.7) since the O(1/N) rate of convergence is not

improvable even for solving the simpler convex-concave bilinear saddle point problems

[29, 30].

2.3 Sequential Smooth Level Method

In this section, we view (Equation 2.5) from the perspective of a structured non-smooth

problem,

F (x) := max
p∈P

∑K
k=1 max

πk∈Π(k)
pk(⟨Tkx, πk⟩ − g∗k(πk))− ϕ∗(p). (2.19)

(Equation 2.19) contains an additional maximization layer than those considered by Nes-

terov in [31]. Moreover, these two maximization layers cannot be combined because of

non-separability and non-concavity issues. So the current smoothing technique are not

directly applicable. To address such a difficulty, Subsection 3.1 extends the Nesterov’s

framework to build a two-layer smoothing scheme for F and analyzes its smooth approx-

imation properties with respect to a sequence of points. Such a sequence-based approach

helps us to determine a suitable smoothing scheme for the encountered points, rather than

for the whole feasible region.

Another challenge is deciding the smoothing parameters to balance the conflicting goals

of a small approximation gap (for a sound solution) and a small Lipschitz smoothness

constant (for fast convergence). In fact, to calculate an optimal choice of those parameters

24

for a fixed smoothing scheme, we would need to know the distance to the output solution

even before the algorithm is run, which is preposterous. Subsection 3.2 resolves such a

difficulty by introducing a parameter-free bundle level type algorithm that operates on a

dynamically smoothed F , where the smoothness parameters adjust in an on-line fashion to

the encountered points.

2.3.1 Sequential Smoothing Scheme

By a smooth approximation for a non-smooth function f , we mean a convex function f̃

which is both L-smooth and close to f everywhere on its domain.

Definition 2.3 Let f be a convex function on X ⊂ Rn equipped with norm ∥·∥X . We call

a convex function f̃ its (α, β)-domain smooth approximation if

a)
∥∥∥∇f̃(x1)−∇f̃(x2)∥∥∥

X ∗
≤ α ∥x1 − x2∥X ∀x1, x2 ∈ X ,

b) f̃(x) ≤ f(x) ≤ f̃(x) + β ∀x ∈ X .

For our purpose of designing an adaptive smoothing algorithm, we need a weaker notion

of smooth approximation. More specifically, since we use the accelerated proximal level

(APL) method in [27] as the backbone of the SSL algorithm, it is useful to note that the

L-smoothness constant is only used to bound the upper curvature constants associated with

the linearization centers {xlt} and the search points {xmd
t }. So we should focus on the upper

curvature constant and the approximation gap associated with these points and define an

(α, β)-sequence smooth approximation.

Definition 2.4 Let f be a convex function on X ∈ Rn equipped with norm ∥·∥X and let

{(xlt, xmd
t)}Nt=1 be some sequence of points in X . Then we call a convex differentiable func-

tion f̃ an (α, β)-sequence smooth approximation of f over {(xlt, xmd
t)}Nt=1 if the following

conditions hold.

a) f̃(xmd
t)− f̃(xlt)− ⟨∇f̃(xlt), xmd

t − xlt⟩ ≤ α
2

∥∥xmd
t − xlt

∥∥2

X .

25

b) f̃(xmd
t) ≤ f(xmd

t) ≤ f̃(xmd
t) + β ∀t ∈ [N].

It is worth noting that if f̃ is an (α, β)-domain smooth approximation, then it

must be an (α, β)-sequence smooth approximation for all sequences. Moreover, if f̃

is an (α, β)-sequence smooth approximation for all singleton sequences {xlt, xmd
t }1t=1,

then it must be an (α, β)-domain smooth approximation. Because of such a close rela-

tionship, we use the generic name “smooth approximation” when referring to both of them.

Now we develop the two-layer smooth approximation scheme for (Equation 2.5). Let

us briefly review Nesterov’s smoothing scheme in [31] for the following structured non-

smooth function H : X → R,

H(x) = max
y∈Y
⟨x,Ay⟩ − ψ(y), (2.20)

where ψ(y) is some simple p.c.c. function defined on Y . Nesterov suggests adding a µ-

multiple of some 1-strongly convex term ω to the inner y-maximization to obtain

Hµ(x) = max
y∈Y
⟨x,Ay⟩ − ψ(y)− µω(y). (2.21)

The following properties of Hµ are established in Theorem 1 of [31].

Lemma 2.1 Let ω be 1-strongly convex with respect to some ∥·∥ω, then the following state-

ments hold for Hµ defined in (Equation 2.21).

a) Hµ(·) is convex and continuously differentiable with gradient H ′
µ(x) = AT ŷ, where

ŷ is the unique solution to the maximization problem in Hµ(x).

b) For any x1, x2 ∈ X and their corresponding maximizers in Hµ(·), ŷ1, ŷ2, we have

⟨A(x1 − x2), ŷ1 − ŷ2⟩ ≥ µ⟨∇ω(ŷ1)−∇ω(ŷ2), ŷ1 − ŷ2⟩ ≥ µ
2
∥ŷ1 − ŷ2∥2ω.

c) If Ω2
Y := maxy∈Y ω(y), Hµ(·) is an (

∥A∥2ω,X

µ
, µΩ2

y)-domain smooth approximation of

H(x).

26

Returning to our problem (Equation 2.5), the subgradient of F (x) is pTTTπππ. So to make

it Lipschitz continuous, we can consider the following product rule type decomposition④:

p1TTTπππ1 − p2TTTπππ2 = (p1 − p2)︸ ︷︷ ︸
p smoothing

TTTπππ1 + p2TTT (πππ1 − πππ2)︸ ︷︷ ︸
πππ smoothing

. (2.22)

If we smooth both the p-block and the πππ-block, pTTTπππ should be a Lipschitz continuous

function of x. More specifically, for some p̄ ∈ P , we consider the following Fµπππ ,µp(x)

smooth approximation,

gµπππ ,k(x) := max
πk∈Π(k)

⟨πk, Tkx⟩ − g∗k(πk)− µπππU(0, πk), (πππ smoothing)

Fµπππ ,µp(x) := max
p∈P

∑K
k=1 pkgµπππ ,k(x)− ϕ∗(p)− µpW (p̄, p). (p smoothing)

(2.23)

Notice that proxy center for U(π̄k, πk) is set to π̄k := 0. Such a choice allows us to use

MΠΠΠ/
√
2 to bound ΩΠΠΠ so that we need to dynamically estimate only two problem parame-

ters, MΠΠΠ and ΩP .

Now we analyze the properties of the proposed smooth approximation (Equation 2.23).

The following domain smooth approximation properties of (Equation 2.23) are direct con-

sequences of Lemma 2.1.

Lemma 2.2 The following statements hold for Fµπππ ,µp in (Equation 2.23).

a) As a function of x, gµπππ ,k is a (M2
TTT/µπππ, µπππM

2
ΠΠΠ/2)-domain smooth approximation of

gk(Tkx).

b) As a function of gµπππ(x), Fµp,µπππ(·) is a (∥I∥g,W /µp, µpΩ
2
P)-domain smooth approxi-

mation of F (gµπππ(x)) := maxp∈P
∑K

k=1 pkgµπππ ,k(x)− ϕ∗(p).

④Recall that pTTTπππ is not matrix multiplication; it is merely a short hand for
∑K

i=1 pkTkπk. However the
decomposition in (Equation 2.22) is valid because

∑K
i=1 pkTkπk is linear with respect to p and πππ.

27

Proof: Part b) is clear.

For part a), Lemma 2.1 implies that gµπππ ,k is a (∥Tk∥22,2 /µπππ, µπππ(maxπk∈Π(k) U(0, πk))-

domain smooth approximation of gk. But MTTT and M2
ΠΠΠ/2 are upper bounds for ∥Tk∥2,2 and

maxπk∈Π(k) U(0, πk) for all k, so a) follows immediately. □

Just like the chain rule in calculus, we need the following technical result to reduce the

above p-block L-smoothness property with respect to gµπππ(x) to that with respect to x.

Lemma 2.3 Let ∥·∥W ∗ be the dual norm of the p-block. Then for any feasible (x1, x2) and

their corresponding maximizers in the definition of gµπππ , (πππ1, πππ2), we have

∥gµπππ(x1)− gµπππ(x2)∥W ∗ ≤ CpMTTT max{∥πππ1∥2,∞ , ∥πππ2∥2,∞} ∥x1 − x2∥2 . (2.24)

Proof: First, we derive the following Lipschitz-continuity constant for each gµπππ ,k:

|gµπππ ,k(x1)− gµπππ ,k(x2)| ≤ max{∥T ⊺
k π1,k∥2 , ∥T

⊺
k π2,k∥2} ∥x1 − x2∥2 .

Because |gµπππ ,k(x1) − gµπππ ,k(x2)| is the difference of two maximal values attained over the

same domain, we can use the maximizer of the larger value in place of the maximizer of the

smaller value to derive an upper bound. More specifically, if gµπππ ,k(x1) ≥ gµπππ ,k(x2), then

gµπππ ,k(x1)− gµπππ ,k(x2)

:= ⟨π1,k, Tkx1⟩ − g∗k(π1,k)− µπππU(0, π1,k)− max
πk∈Π(k)

(⟨πk, Tkx2⟩ − g∗k(πk)− µπππU(0, πk))

≤ ⟨Tkπ1,k, x1 − x2⟩ ≤ ∥x1 − x2∥2 ∥Tkπ1,k∥2 .

A similar bound can also be obtained when gµπππ ,k(x1) ≤ gµπππ ,k(x2). So we have

|gµπππ ,k(x1)− gµπππ ,k(x2)| ≤ max{∥Tkπ1,k∥2 , ∥Tkπ2,k∥2} ∥x1 − x2∥2

≤MTTT max{∥πππ1∥2,∞ , ∥πππ2∥2,∞} ∥x1 − x2∥2 .

28

Finally (Equation 2.24) follows from the definition of Cp in Definition 2.2. □

Combining the previous two results, we obtain the following sequence smooth approx-

imation property of (Equation 2.23).

Proposition 2.4 Let {xlt, xmd
t }Nt=1 be given. Let {p̂ut , π̂u

t } be the maximizers for {F (xmd
t)}

in (Equation 2.19), and let {plt, πl
t} and {put , πu

t } be the maximizers for {Fµπππ ,µp(x
l
t)} and

{Fµπππ ,µp(x
md
t)} in (Equation 2.23).

If Ω̄2
p ≥ maxt∈[N]W (p̄t, p) and M̄ΠΠΠ ≥ maxt∈[N] max{∥π̂u

t ∥2,∞ , ∥πππu
t ∥2,∞ ,

∥∥πππl
t

∥∥
2,∞}, then

Fµπππ ,µp is a (2M2
TTT/µπππ+2C2

pM̄
2
ΠΠΠM

2
TTT/µp, µpΩ̄

2
p+µπππM̄

2
ΠΠΠ/2)-sequence smooth approximation

of F on {xlt, xmd
t }Nt=1.

Proof: Let a t ∈ [N] be given. For notation convenience, we use x1 and x2 to denote xmd
t

and xlt and use (p1,πππ1) and (p2,πππ2) to denote their corresponding maximizers in Fµπππ ,µp

(Equation 2.23). Denoting F̃µp,µπππ(x, p,πππ) :=
∑K

k=1 pk(⟨πππ, x⟩TTT − g∗k(πππ) − µπππV (π̄k,πππ)) −

ϕ∗(p)− µpW (p̄, p), we have the following decomposition for the upper curvature error,

Fµπππ ,µp(x1)− Fµπππ ,µp(x2)− ⟨∇Fµπππ ,µp(x2), x1 − x2⟩

= F̃µp,µπππ(x1, p1,πππ1)−max
p,πππ

F̃µp,µπππ(x2, p,πππ)− ⟨p2TTTπππ2, x1 − x2⟩

(a)

≤ F̃µp,µπππ(x1, p1,πππ1)− F̃µp,µπππ(x2, p1,πππ1)− ⟨p2TTTπππ2, x1 − x2⟩

= ⟨p1TTTπππ1, x1 − x2⟩ − ⟨p2TTTπππ2, x1 − x2⟩

= ⟨p1TTTπππ1 − p2TTTπππ2, x1 − x2⟩

= ⟨p1TTT (πππ1 − πππ2), x1 − x2⟩︸ ︷︷ ︸
A

+ ⟨(p1 − p2)TTTπππ2, x1 − x2⟩︸ ︷︷ ︸
B

,

where (a) uses F̃µp,µπππ(x2, p1,πππ1) as a lower bound for maxp,πππ F̃µp,µπππ(x2, p,πππ). To bound

A, we conclude from Lemma 2.2.a) that

A ≤ ∥x1 − x2∥2
∑K

k=1 pk,1maxk∈K ∥T ′
k(π1,k − π2,k)∥2 ≤

M2
TTT

µπππ
∥x1 − x2∥22 . (2.25)

29

To bound B, we use Lemma 2.2.b) and Lemma 2.3 to obtain

∥p1 − p2∥W ≤
∥I∥W∗,W

µp
∥gµπππ(x1)− gµπππ(x2)∥W ∗

≤ 1
µp
CpMTTT max{∥πππ1∥2,∞ , ∥πππ2∥2,∞} ∥x1 − x2∥2 ≤

1
µp
CpMTTTM̄ΠΠΠ ∥x1 − x2∥2 ,

which implies that

B = ⟨p1 − p2, ⟨πππ2, x1 − x2⟩TTT ⟩

≤ ∥p1 − p2∥W
∥∥[∥T ⊺

1 π2,1∥2 ∥x1 − x2∥2 , ..., ∥T
⊺
Kπ2,K∥2 ∥x1 − x2∥2]

∥∥
W ∗

≤ 1
µp
CpMTTTM̄ΠΠΠ

∥∥[∥T ⊺
1 π2,1∥2 , ..., ∥T

⊺
Kπ2,K∥2]

∥∥
W ∗ ∥x1 − x2∥

2
2

(b)

≤ 1
µp
(CpMTTTM̄ΠΠΠ)

2 ∥x1 − x2∥22 ,

(2.26)

where (b) follows from the the definition of Cp in Definition 2.2. Combining

(Equation 2.25) and (Equation 2.26), we obtain the desired upper-curvature constant of

2M2
TTT/µπππ + 2C2

pM̄
2
ΠΠΠM

2
TTT/µp. Moreover, it is easy to see that for a given xmd

t , we have

gµπππ ,k(x
md
t) ≤ gk(x

md
t) ≤ gµπππ ,k(x

md
t) + µπππU(0, π̂

u
t,k) ≤ gµπππ ,k(x

md
t) + µπππ

M̄2
ΠΠΠ

2
,

and hence

Fµπππ ,µp(x
md
t) ≤ F (xmd

t) ≤ Fµπππ ,µp(x
md
t) +

∑K
k=1 p̂

u
t,kµπππ

M̄2
ΠΠΠ

2
+ µpW (p̄, p̂ut)

≤ Fµπππ ,µp(x
md
t) + µpΩ̄

2
p + µπππ

M̄2
ΠΠΠ

2
.

□

Using MΠΠΠ and ΩP as upper bounds for M̄ΠΠΠ and Ω̄p for any (x1, x2) ∈ X × X , we obtain

the following domain smooth approximation properties of (Equation 2.23) below as an

immediate corollary.

Corollary 2.1 Fµπππ ,µp is a (2M2
TTT/µπππ + 2C2

pM
2
ΠΠΠM

2
TTT/µp, µpΩ

2
P + µπππM

2
ΠΠΠ/2)-domain smooth

approximation of F.

30

The need to select two smoothing parameters, µp and µπππ, makes (Equation 2.23) rather

complicated. The next result shows a reduction to a single-parameter smoothing scheme

by fixing an optimal ratio between µp and µπππ.

Lemma 2.4 Let Fµπππ ,µp be a (2M2
TTT/µπππ + 2C2

pM̄
2
ΠΠΠM

2
TTT/µp, µpΩ̄

2
p + µπππM̄

2
ΠΠΠ/2)-smooth ap-

proximation of F, then the optimal ratio is

µp

µπππ
=

CpM̄2
ΠΠΠ√

2Ω̄p

.

Proof: To achieve the smallest gap while maintaining a Lipschitz constant at 1/µ, we

solve the following optimization problem analytically by the KKT condition,

min
µp,µπππ≥0

{
µpΩ̄

2
p + µπππ

M2
ΠΠΠ

2
:
2C2

pM
2
TTT M̄2

ΠΠΠ

µp
+

2M2
TTT

µπππ
= 1

µ

}
.

□

Using the above optimal ratio, Fµ defined below is then a (M2
TTT/µ, (1+

√
2CpΩ̄p)

2M̄2
ΠΠΠµ)-

sequence smooth approximation of F :

Fµ(x) = Fµ̄p,µ̄π(x) with µ̄π := µ(2 + 2
√
2CpΩ̄p) and µ̄p := µ(

√
2 + 2CpΩ̄p)M̄

2
ΠΠΠCp/Ω̄p.

(2.27)

Moreover, if we replace Ω̄πππ and M̄ΠΠΠ with their uniform upper bounds, ΩP and MΠΠΠ, then

(Equation 2.27) must be a (M2
TTT/µ, (1 +

√
2CpΩP)

2M2
ΠΠΠµ)-domain smooth approximation

of F . Observe that the smooth approximation properties of Fµ in (Equation 2.27) and Hµ

in (Equation 2.21) studied by Nesterov [31] differ only by a constant factor, therefore any

variant of Nesterov’s accelerated gradient method could be applied to a fixed fµ := f0+Fµ

to achieve an O(CpΩP/ϵ) iteration complexity bound. However, this approach suffers

from the same drawback as Nesterov’s smoothing scheme in [31], i.e., one has to use

31

conservative estimates of ΩΠΠΠ and ΩP to guarantee an O(ϵ/2) uniform approximation gap.

This usually leads to a large L-smoothness constant for Fµ, and thus a slow convergence.

To address this shortcoming, we present in the next subsection a novel SSL algorithm which

operates on an adaptively smoothed Fµ.

2.3.2 Sequential Smooth Level Method

Algorithm 2 SSL Phase

Input: x̄, lb, M̄2
ΠΠΠ, Ω̄

2
p, λ̄

Output: x̃, l̃b, M̃2
π , Ω̃

2
p, λ̃

1: Initialization: set xu0 := x̄, v̄0 := f(xu0), v0 := lb, l := 1
2
(v0 + v̄0), θ := 1

2
, and

µ := θ(v̄0−l)

M̄2
ΠΠΠ(1+

√
2Ω̄pCp)2λ̄

. Set the initial localizer X ′
0 := X and t := 1.

2: while True do
3: Update the lower bound: set xlt := (1 − αt)x

u
t−1 + (αt)xt−1. Evaluate fµ

at xlt to get (plt,πππ
l
t) and construct a supporting function s(xlt, x) := f0(x) +

Fµ(x
l
t) + ⟨∇Fµ(x

l
t), x− xlt⟩. Let st := argminx∈X′

t−1
s(xlt, x) and vt :=

max{vt−1,min{st, l}}.
If vt ≥ l − θ(l − v0), return (xut−1, vt, M̄

2
ΠΠΠ, Ω̄

2
p, λ̄).

4: Update the prox center: set xt := argminx∈X′
t−1,s(x

l
t,x)≤l{V (x0, x)}.

5: Update the upper bound: set xmd
t := (1 − αt)x

u
t + αtxt and evaluate f and fµ at

xmd
t to get (p̂md

t , π̂ππmd
t) and (pmd

t ,πππmd
t). Set v̄t := min{v̄t−1, f(x

md
t)} and choose xut

such that f(xut) = v̄t.
If v̄t ≤ l + θ(v̄0 − l), return (xut , vt, M̄

2
ΠΠΠ, Ω̄

2
p, λ̄).

6: Check π radius: let M̃2
πππ := maxk∈K max{U(0, πl

k,t), U(0, π̂
md
k,t), U(0, π

md
t,k)}.

If M̃2
πππ > M̄2

ΠΠΠ, return (xut , vt, 2M̃
2
πππ , Ω̄

2
p, λ̄).

7: Check p radius: let Ω̃2
p := W (p̄, pmd

t). If Ω̃2
p > Ω̄2

p, return (xut , vt, M̄
2
ΠΠΠ, 2Ω̃

2
p, λ̄).

8: Check aggressiveness param λ: if fµ(x
md
t) ≤ l + θ

2
(v̄0 − l), return

(xut , vt, M̄
2
ΠΠΠ, Ω̄

2
p, 2λ̄).

9: Update the localizer: choose an arbitrary X ′
t such that X t ⊂ X ′

t ⊂ X̄t where
X t := {x ∈ X ′

t−1 : s(xlt, x) ≤ l} and X̄t := {x ∈ X :
⟨∇x=xk

V (x0, x), x− xk⟩ ≥ 0}.
10: Set t := t+ 1.
11: end while

The bundle level method maintains both an upper and a lower bound on f∗. The upper

bound f̄ is the minimum function value of all the encountered points, while the lower bound

f is the minimum value of a lower approximation model h(x), namely bundle, consisted

32

of all evaluated cutting planes for f . In each iteration, f̄ and f are used to construct a level

set, say {x : h(x) ≤ l := (f̄ + f)/2}, in which the next search point and the next cutting

plane will be found. By repeating this process many times, the gap between such lower

and upper bounds can be decreased to ϵ, upon which an ϵ-optimal solution must have been

found.

To build an adaptive smoothing algorithm, we follow [32, 27] to partition the iterations

into phases, inside which some important parameters are fixed. In [32], the constant l for

defining a level set is fixed to allow the use of a restricted memory localizer. A phase of the

NERML algorithm in [32] is terminated only when the upper bound or the lower bound has

made enough progress to warrant a new l for the next phase. In our SSL algorithm, similar

to [27], we fix both l and the smooth approximation function Fµ in a phase. The smoothing

parameters (µ̄p, µ̄π) in (Equation 2.27) are computed using current radii estimates. If these

radii estimates are violated by a new point, we also terminate the current phase such that a

more appropriate smoothing scheme can be constructed for the next phase. So each phase

has two goals: to reduce the gap between the lower and upper bounds, and to update the

radii estimates and hence the smoothing scheme.

• Radius Update: Line 6, 7, and 8 of the SSL Phase in Algorithm Algorithm 2. For

each phase, we should construct a sequence smooth approximation Fµ with the small-

est possible upper curvature constant for fast termination. In the USL method in

[27], the L-smoothness constant of the smooth approximation Hµ is O(Ω̄Y) and the

estimate of Ω̄Y is updated only when it is absolutely necessary; the objective value

achieved by the smooth approximation is well below the upper bound termination

threshold, i.e., Hµ(x
u
t) ≤ l + θ(v̄0 − l)/2, while the true objective value is above the

upper bound termination threshold, i.e., H(xut) ≥ l + θ(v̄0 − l). In this way, [27]

underestimates Ω̄Y to encourage an aggressively small upper curvature constant. Our

situation is different because we need both accurate estimates of radii M̄ΠΠΠ and Ω̄p to

determine the optimal ratio between µp and µπππ in Lemma 2.4 and an aggressively

33

small upper curvature constant for fast convergence. So we create a separate vari-

able λ to control the aggressiveness of the smooth approximation and use M̄ΠΠΠ and

Ω̄p for estimating MΠΠΠ and ΩP only. The radius update block in Algorithm Algo-

rithm 2 thus has two components: 1) Line 6 and 7 check our estimates against the

distances of encountered points to the fixed smoothing centers, p̄ and 0. Once we

find any violations, the violated radius estimate is doubled and the phase is termi-

nated so that the next phase can construct a more appropriate smooth approximation.

2) Line 8 updates the aggressiveness parameter λ in the same fashion as the Ω̄Y up-

date in the USL method. It is doubled only when the objective value achieved by

the smoothed approximation is well below the upper bound termination threshold,

fµ(x
u
t) ≤ l + θ(v̄0 − l)/2, while the true objective value is above the upper bound

termination threshold, f(xut) ≥ l+ θ(v̄0− l), i.e., the approximation gap is too large.

• Gap Reduction: Line 3, 4, 5, and 9 of the SSL Phase in Algorithm Algorithm 2. This

is essentially the composite accelerated proximal level (APL) method [27] applied to

the composite smooth approximation function fµ := f0 + Fµ. Notice that, similar to

Nesterov’s accelerated gradient method [33], we use three sequences of points {xlt},

{xmd
l } and {xt}; we pick xlt := (1 − αt)x

u
t−1 + (αt)xt−1 to construct the composite

cutting plane model and xmd
t := (1 − αt)x

u
t + αtxt to evaluate the objective value.

It is shown in [27] that the following convergence result holds for any composite

smooth function, and our fµ in particular.

Lemma 2.5 Let αt = 2/(t + 1), and also let {xlt}, {xmd
t } and {xut } be the sequences

of points generated by Algorithm Algorithm 2 before it terminates. If {xlt, xmd
t }Nt=1 satisfy

fµ(x
md
t)− s(xlt;xmd

t) ≤ M
2

∥∥xmd
t − xlt

∥∥2 for some M ≥ 0, then we have

fµ(x
u
N)− l ≤

MΩ2
X

N2 .

Before Algorithm Algorithm 2 terminates, our estimates M̄ΠΠΠ and Ω̄p satisfy assump-

34

tions in Proposition 2.4, so Fµ in (Equation 2.27) is a (M2
TTT/µ, (1 +

√
2CpΩ̄p)

2M̄2
ΠΠΠµ)-

sequence smooth approximation of F . Therefore our choice of µ := θ(v̄0−l)

M̄2
ΠΠΠ(1+

√
2Ω̄pCp)2λ̄

in

Algorithm Algorithm 2 implies that

Fµ is a (
M2

TTT M̄2
ΠΠΠ(1+

√
2Ω̄pCp)2λλλ

θ(v0−l)
, θ(v0−l)

λλλ
)-sequence smooth approximation of F over {xlt, xmd

t }.

(2.28)

By substituting M =
M2

TTT M̄2
ΠΠΠ(1+

√
2Ω̄pCp)2λλλ

θ(v0−l)
into Lemma 2.5, we can obtain the following

bound on the number of iterations performed by the SSL Phase in Algorithm Algorithm 2.

Proposition 2.5 Let αt := 2/(t+ 1) and ∆0 := f(x̄) − lb. The SSL Phase in Algorithm

Algorithm 2 terminates in at most (4
√
2ΩXMTTTM̄ΠΠΠ

√
λλλ(1 +

√
2CpΩ̄p))/∆0 iterations.

Proof: Assuming that all other termination conditions have not been reached, then Al-

gorithm Algorithm 2 will terminate in Line 8 if fµ(xmd
N) − l ≤ 1

2
θ(v̄0 − l) := 1

8
∆0. So

it follows from (Equation 2.28) and Lemma 2.5 that the maximum number of iterations,

NSSL, is bounded by

1
8
∆0 ≤

M2
TTT M̄2

ΠΠΠ(1+
√
2Ω̄PCp)2λλλΩ2

X
1
4
∆0

1
N2

SSL
.

After some simplification, we obtain the desired finite termination bound. □

Algorithm 3 Sequential Smoothing Level Method

Input: x̄0 ∈ X , tolerance ϵ > 0, initial estimate Ω̄2
p,0 ∈ (0,Ω2

P], Ω̄
2
π,0 ∈ (0,Ω2

ΠΠΠ], q̄0 ∈ (0, 1]
and λ0 ∈ (0, 1)

Output: x̄, an ϵ−suboptimal solution
1: Initialization Set x̄1 = argminx∈X{h(x̄0, x) = f0(x) + F (x̄0) + ⟨∇F (x̄0), x− x̄0⟩},

lb1 = h(x̄0, x̄1) and ub1 = min{f(x̄0), f(x̄1)}. Set s = 0.
2: while True do
3: If ubs − lbs ≤ ϵ, terminate with x̄ = x̄s.
4: Set (x̄s+1, lbs+1, M̄

2
π,s+1, Ω̄

2
p,s+1,λλλs+1) = SSL-Phase(x̄s, lbs, M̄

2
π,s, Ω̄

2
p,s,λλλs) and set

ubs+1 = f(x̄s+1).
5: Set s = s+ 1.
6: end while

There are two ways for the SSL Phase Algorithm Algorithm 2 to terminate. If it ter-

minates in Line 3 or Line 5, the gap between the lower and upper bounds is reduced by

35

a factor of at least 1/4. So we call it a gap reduction phase. Otherwise, if it terminates

in Line 6, 7, or 8, then one of the estimates Ω̄2
p, M̄2

ΠΠΠ and λλλ must have been enlarged by a

factor of two. So we call it an estimate enlargement phase. Because Ω̄2
p or M̄2

ΠΠΠ is doubled

only when a p or a πππ exceeding its current radius estimate is found, Ω̄2
p and M̄2

ΠΠΠ are upper

bounded by 2Ω2
P and 2M2

ΠΠΠ respectively. Similarly, since the difference between f and fµ

on observed points xmd
t is at most θ(v0 − l)/(λλλ) (by (Equation 2.28)), the termination con-

dition, f(xmd
t) > l+θ(v0− l) and fu(xmd

t) < l+ θ
2
(v0− l) in Line 8 can be satisfied only if

λλλ < 2, i.e., λλλ must be bounded by 4. Therefore, if we repeat the SSL Phase Algorithm with

updated lb, x̄, M̄ΠΠΠ, Ω̄p and λλλ in Algorithm Algorithm 3, there will only be a finite number

of estimate enlargement phases, and the gap reduction phases should reduce the gap to ϵ

eventually. Thus we have the following iteration complexity result for the SSL Algorithm.

Theorem 2.2 Let αt := 2/(t + 1) and f0 be Lipschitz continuous with constant

M0. To obtain an ϵ-suboptimal solution, the SSL algorithm requires at most Ps =

log4/3(2ΩX(
√
2M0 + MTTTΩΠΠΠ(

√
2 + CpΩP))/ϵ) gap reduction phases and PN =

log2(Ω
2
ΠΠΠ/Ω̄

2
π,0) + log2(Ω

2
P/Ω̄

2
p,0) + log2(1/q̄0) + 4 parameter enlargement phases. In total,

the number of iterations performed by Algorithm Algorithm 2 can be bounded by

16(7
√
2 + log2

Ω2
P

Ω̄2
p,0

√
2 + 2)ΩXMTTTΩΠΠΠ(1+2CpΩP)

ϵ
.

Proof: Firstly, let us consider the gap reduction phases. A bound for the initial gap is

ub1 − lb1 ≤ f(x̄1)− f(x̄0)− ⟨f ′(x̄0), x̄1 − x̄0⟩ ≤ ⟨f ′(x̄1)− f ′(x̄0), x̄1 − x̄0⟩

= ⟨f ′
0(x̄1)− f ′

0(x̄0), x̄1 − x̄0⟩︸ ︷︷ ︸
A

+ ⟨∇F (x̄1)−∇F (x̄0), x̄1 − x̄0⟩︸ ︷︷ ︸
B

.

36

By the Cauchy Schwartz inequality and the triangle inequality, the following bounds on A

and B hold,

A ≤ (∥f ′
0(x̄1)∥2 + ∥f

′
0(x̄0)∥2) ∥x̄1 − x̄0∥2 ≤ 2M0

√
2ΩX = 2

√
2M0ΩX ,

B ≤ ∥x̄1 − x̄0∥2 (∥(p1 − p2)TTTπππ1∥2 + ∥p2TTT (πππ1 − πππ2)∥)

≤
√
2ΩX(

√
2MTTTΩPMΠΠΠCp + 2MTTTMΠΠΠ) = 2MTTTMΠΠΠΩX(

√
2 + CpΩP).

So we have ub1 − lb1 ≤ 2ΩX(
√
2M0 +MTTTΩΠΠΠ(

√
2 + CpΩP)), and that number of gap

reduction phases are bounded by Ps = log4/3(2ΩX(
√
2M0 + MTTTΩΠΠΠ(

√
2 + CpΩP))/ϵ).

For the estimate enlargement phases, as discussed before, the upper bounds for M̄2
ΠΠΠ, Ω̄

2
p

and λλλ are 2Ω2
ΠΠΠ, 2Ω

2
P and 4 respectively, hence there are at most PN = log2(Ω

2
ΠΠΠ/Ω̄

2
π,0) +

log2(Ω
2
P/Ω̄

2
p,0) + log2(1/λλλ0) + 4 phases.

Next, we develop separate bounds on the total number of iterations required for the

gap reduction phases, M̄2
ΠΠΠ enlargement phases, Ω̄2

p enlargement phases and λλλ enlargement

phases. For the gap reduction phases, let g1 ≤ g2 ≤ g3 ≤ ... ≤ gS be their indices in

Algorithm Algorithm 3. Then by the construction of Algorithm Algorithm 3, the initial

gap for each phase ∆s := f(xs) − lbs must satisfy ∆gi ≥ ϵ(3
4
)i−S . Thus it follows from

Proposition 2.5 and the relations M̄π,s ≤
√
2MΠΠΠ, Ω̄p,s ≤

√
2ΩP and λλλs ≤ 4 ∀s that the

total number of iterations in the gap reduction phases is bounded by

∑S
i=1

8
√
2ΩXMTTT (

√
2MΠΠΠ)(1+2CpΩP)

√
2

3
4

i−S
ϵ

≤
∑∞

j=0(
3
4
)j 8

√
2ΩXMTTT (

√
2MΠΠΠ)(1+2CpΩP)

√
2

ϵ
≤ 8
√
2(8)ΩXMTTT (MΠΠΠ)(1+2CpΩP)

ϵ
.

For the M̄ΠΠΠ enlargement phases, let s1 ≤ s2 ≤ ... ≤ sL be their indices in Algorithm

Algorithm 3. Similar to the previous analysis, we use the geometric upper bound M̄π,si ≤

MΠΠΠ(1/
√
2)L−i and uniform upper bounds 4,

√
2ΩP , 1/ϵ for λλλs, Ω̄p,s, 1/∆s,∀s to conclude

37

that the number iterations in the M̄ΠΠΠ enlargement phases is bounded by

∑L
i=1

8
√
2ΩXMTTT (MΠΠΠ)(1+2CpΩP)

√
2

ϵ
(1√

2
)L−i

≤
∑∞

j=0(
1√
2
)j 8

√
2ΩXMTTT (MΠΠΠ)(1+2CpΩP)

√
2

ϵ
≤ 16(

√
2 + 1)ΩXMTTT (MΠΠΠ)(1+2CpΩP)

ϵ
.

Similarly, the number of iterations in the λλλ enlargement phases can be bounded by

16
√
2(ΩXMTTT (MΠΠΠ)(1 + 2CpΩP))/ϵ. Next, since there are at most (log2(Ω2

P/Ω̄
2
p,0) + 1)

Ω̄p-enlargement phases and the number of iterations in each phase is bounded uniformly

by 16
√
2(ΩXMTTT (

√
2MΠΠΠ)(1 + 2CpΩP))/ϵ, the number of iterations in the Ω̄p enlargement

phases should be bounded by

16(log2
Ω2

P

Ω̄2
p,0

√
2 +
√
2)ΩXMTTT (MΠΠΠ)(1+2CpΩP)

ϵ
.

The desired iteration complexity bound follows by adding up these individual bounds. □

We remark here that the above iteration complexity bound has the same dependence on

ϵ and K as that of the SD algorithm, i.e., O((1 + CpΩP)/ϵ), which does not seem to be

improvable for solving general trilinear saddle point problems.

2.4 Adaptation For Kantorovich Ball

In the previous sections, we assumed P being simple such that the p proximal update is

easy. However, this is not always the case; when P is the Kantorovich ball, a projection

onto it is expensive. To avoid such an expensive computation, we propose to use the joint

probability matrix projection instead. Because of the standalone P block in our reformu-

lation (Equation 2.5), such an alternative update can be incorporated into the SD and SSL

algorithms with only a change of stepsizes.

38

2.4.1 Kantorovich Ball and Joint Probability Matrix Proximal Update

Given K scenarios and a distance matrix D ∈ RK×K
+ , i.e., Di,j = d(ξi, ξj), the δ-

Kantorovich ball around the empirical distribution vector p̄ = [1
K
, 1
K
... 1

K
] is

Pδ :=
{
p ∈ RK

+ s.t ∃ H ∈ RK×K
+ ,

p̄i =
∑K

j=1Hi,j, ∀i, (source constraints)

pj =
∑K

i=1Hi,j, ∀j, (target constraints)

⟨D,H⟩F ≤ δ} , (transportation cost constraint)

(2.29)

where ⟨D,H⟩F represents the Frobenius inner product,
∑K

i=1

∑K
j=1Di,jHi,j . Since every

row and every column of the joint probability matrix H is constrained by a linear equality,

the computation for the p proximal update, argmaxp∈Pδ
⟨c, p⟩+W (p̄, p)⑤, is not separable

across scenarios. In particular, when W is the Euclidean distance function, we have to

solve a quadratic program (QP) with O(K2) variables and O(K) linear constraints, and

when W is the entropy distance function, we have to solve an exponential cone problem

of the same size. In fact, even checking whether a given p is inside Pδ involves solving an

expensive optimal transport problem.

Alternatively, we can remove the target constraints in (Equation 2.29) by representing

p in terms of H and consider a proximal update of H . Moreover, the rows of H , i.e., {Hi},

would become separable after we dualize the single transportation cost constraint.

More specifically, to implement a separable H proximal update, we need a row separa-

ble Bregman distance function WWW for H constructed from the Bregman distance function

W for p,

WWW (H̄,H) :=
∑K

i=1W (H̄i, Hi).

⑤Notice that ϕ∗ ≡ 0 for Kantorovich ball ambiguity set.

39

Notice that WWW is 1-strongly convex with respect to ∥H∥WWW :=
√∑K

i=1 ∥Hi∥2W . Moreover,

by fixing H̄ for the SSL algorithm and H0 for the SD algorithm to be a uniform matrix

with 1/K2 on every entry, the radii Ω2
H := maxH∈Hδ

WWW (H̄,H) are bounded by 1/K for

the Euclidean WWW and log(K) for the entropy WWW . In the later analysis, to emphasize the

relationship between Ω2
H and Ω2

p, we define another constant Ω̃2
p which has approximately

the same range as Ω2
P :

a) When EuclideanWWW is used, set Ω̃2
p := KΩ2

H .

b) When entropyWWW is used, set Ω̃2
p := Ω2

H .

Now ifHδ := {H ≥ 0 | p̄i =
∑K

j=1Hi,j ∀i, ⟨H,D⟩F ≤ δ} denote the feasibility region

of H , the proximal update for H using WWW and the consequent update for the probability

vector q are:

Ĥ := argmax
H∈Hδ

⟨c,
∑K

i=1Hi⟩ − µqWWW (H̄,H), and q̂ :=
∑K

i=1 Ĥi. (2.30)

To differentiate it from the usual probability vector proximal update, we refer to

(Equation 2.30) as the q-update.

By dualizing the ⟨H,D⟩F ≤ δ constraint, (Equation 2.30) becomes

min
λ≥0

λδ +
∑K

i=1maxHi≥0,⟨Hi,e⟩=p̄i⟨c,Hi⟩ − µqW (Ht,i, Hi)− λ⟨Hi, Di⟩. (2.31)

Notice that for a fixed λ, the inner maximization problem consists of K independent sim-

plex projection sub-problems, so it requires O(K2) algebraic operations. If the bisection

method is used to search for the optimal scalar λ∗, we can find an ϵλ-suboptimal λ̂ and Ĥ in

roughlyO(K2 log(1/ϵλ)) algebraic operations, a significant improvement over the original

QP and the exponential cone problem. As shown in Table Table 2.2, our numerical ex-

periments written in MATLAB 2017a (with Mosek 8.1 as the QP/exponential cone solver)

40

and tested on a Macbook Pro with 2.40GHz Intel Core i5 processor and 8GB of 1600MHz

DDR3 memory demonstrate the significant performance improvement for the q-update.

Table 2.2: Typical Projection Time for Pδ(Sec)

Modified Original

#Scenarios Entropy Euclidean Entropy Euclidean

20 .0011 .019 0.180 0.140
100 .0028 .030 0.538 0.228
500 .047 .16 16.15 6.615

1000 .16 .97 93.38 37.54
5000 7.58 20.72 Out.Mem Out.Mem

2.4.2 Modified SD Method

To use the more efficient q-update, we need to replace the update of pt in Line 6 of Algo-

rithm Algorithm 1 by

Ht := argmax
H∈Hδ

⟨
∑k

i=1Hi, f̃t,k⟩ − τqWWW (Ht−1, H), (2.32)

and use qt :=
∑K

i=1Ht,i in place of pt in all other parts of the algorithm.

Now we modify the arguments in Section 2 to establish the convergence properties of

the modified SD method and suggest some stepsize choices. Recall that the analysis in Sec-

tion 2 revolves around solving the saddle point problem minx∈X max(p,πππ)∈P×ΠΠΠ L(x, p,πππ).

Here we consider a modified saddle point problem associated with H instead, i.e.,

min
x∈x

max
(H,πππ)∈Hδ×ΠΠΠ

{L(x,H,πππ) := f0(x) + ⟨H, (⟨x,πππ⟩TTT − ggg∗(πππ))e⊺⟩F}, (2.33)

where e⊺ ∈ RK is a row vector of ones, [1, 1, . . . , 1]. Similar to Proposition 2.1 and 2.2, the

non-negativity of H implies the duality results between L and f . Then if the gap function

Q in Definition 2.1 is constructed from L(x,H,πππ) in (Equation 2.33), we have N(f(x̄t)−

f(x∗)) ≤ maxuH ,uπππ

∑N
t=1Q [(xt, Ht,πππt), (x

∗, uH , uπππ)]. Next, similar to Proposition 2.3

41

and Theorem Theorem 2.1, the following convergence bounds of
∑N

t=1Q(z
t, u) and the

function value f(x̄t) hold.

Proposition 2.6 If the non-negative stepsizes η, τ and σ satisfy

η ≥ C2
pM

2
TTTM2

ΠΠΠK

τq
+

M2
TTT

σ
, (2.34)

then for any u ∈ Z := X ×H ×ΠΠΠ, we have

∑N
t=1Q(zt;u) ≤ σ⟨up, Uk(πππ0, uπππ)⟩+ τqWWW (H0, uH) + ηV (x0, ux). (2.35)

Moreover, for x̄N =
∑N

t=1
xt

N
we have

f(x̄t)− f(x∗) ≤ σΩ2
ΠΠΠ+τqΩ2

H+ηΩ2
X

N
, (2.36)

where Ω2
H := maxH∈Hδ

WWW (H0, H).

Proof: We only need to modify the inequalities, (paragraph 2.13) and (paragraph 2.14),

related to the p-update. The modified Line 6 for the q-update in (Equation 2.32) implies

that

QH(zt+1;u)

≤ ⟨uH −Ht+1, (⟨xt+1 − xt,πππt+1⟩TTT − ⟨xt − xt−1,πππt⟩TTT)e⊺⟩F+

τq(WWW (Ht, uH)−WWW (Ht+1, uH)−WWW (Ht, Ht+1))

≤ τq(WWW (Ht, uH)−WWW (Ht+1, uH)) + [⟨uH −Ht+1, ⟨xt+1 − xt,πππt+1⟩TTT e⊺⟩F

− ⟨uH −Ht, ⟨xt − xt−1,πππt⟩TTT e⊺⟩F] + ϵp(Ht+1), (2.37)

42

where

ϵp(Ht+1) = ⟨
∑K

i=1Ht+1,i −Ht,i, ⟨xt − xt−1,πππt⟩TTT ⟩+ τqWWW (Ht, Ht+1)

(a)

≤
√
K ∥Ht+1 −Ht∥WWW ∥xt − xt−1∥2

∥∥[∥T1πππt,1∥2 , ..., ∥TKπππt,K∥2]
∥∥
W ∗

+ τqWWW (Ht, Ht+1)

≤ 1
2τq

(CpMTTTMΠΠΠ)
2K ∥xt − xt−1∥22 . (2.38)

Here, (a) follows from the algebraic fact
∥∥∥∑K

i=1Ht,i −Ht+1,i

∥∥∥
W
≤
√
K ∥Ht −Ht+1∥WWW .

The rest of the proof for (Equation 2.35) is the same as that for (Equation 2.10). Finally,

(Equation 2.36) follows directly from (Equation 2.35) and the relationN(f(x̄t)−f(x∗)) ≤

maxuH ,uπππ

∑N
t=1Q(z

t, (x∗, uH , uπππ)). □

Observe that the stepsize requirement (Equation 2.34) and the convergence result

(Equation 2.36) are exactly the same as their counterparts, (Equation 2.9) and (Theo-

rem 2.1) in Section 2, except for some constant factor. So we can apply a change of

variables to reuse the stepsize policy developed in Theorem Theorem 2.1. More specif-

ically, if

a) τ̃ := τq and C̃p :=
√
K for entropyWWW ;

b) τ̃ := τq/K and C̃p :=
√
K for EuclideanWWW ,

then we have τqΩ2
H = τ̃ Ω̃2

p and C2
pk/τq = C̃p

2
/τ̃ . So the following convergence result and

stepsize choice follow immediately from Proposition 2.6 and Theorem Theorem 2.1.

Corollary 2.2 For either the entropyWWW or the EuclideanWWW , if the non-negative stepsizes

satisfy η ≥ C̃p
2
M2

TTTM2
ΠΠΠ

τ̃
+

M2
TTT

σ
, then we have

f(x̄t)− f(x∗) ≤ σΩ2
ΠΠΠ+τ̃ Ω̃2

p+ηΩ2
X

N
.

In particular, if we choose σ := MTTT
ΩX

ΩΠΠΠ
, τ̃ := MTTTMΠΠΠC̃p

ΩX

Ω̃p
, and η := MTTTMΠΠΠC̃p

Ω̃p

ΩX
+

43

MTTT
ΩΠΠΠ

ΩX
, then

f(x̄t)− f(x∗) ≤ 2ΩXMTTT

N
(ΩΠΠΠ + C̃pΩΠΠΠΩ̃p).

2.4.3 Modified SSL Algorithm

We replace the p-smoothing in (Equation 2.23) with a q-smoothing to obtain a modified

smooth approximation F̃µq ,µπππ(x) given by

gµπππ ,k(x) := max
πk∈Π(k)

⟨πk, Tkx⟩ − g∗k(πk)− µπππU(0, πk), (πππ smoothing)

F̃µπππ ,µq(x) := max
H∈Hδ

⟨H,gµπππ(x)e
⊺⟩F − µqWWW (H̄,H) for some H̄ ∈ Hδ. (q smoothing)

(2.39)

To establish the (α, β)-smooth approximation properties of F̃µπππ ,µq(x), we need the follow-

ing domain smooth approximation properties of the q-smoothing as a counterpart to Lemma

2.2.b).

Lemma 2.6 As a function of gµπππ(x), F̃µπππ ,µq is a (K ∥I∥g,W /µq, µqΩ
2
H)-domain

smooth approximation of F (gµπππ(x)) := maxH∈Hδ
⟨H,gµπππ(x)e

⊺⟩F , where Ω2
H :=

maxH∈Hδ
WWW (H̄,H).

Proof: Let g1 := gµπππ(x1) and g2 := gµπππ(x2) be given, and let Ĥ1 and Ĥ2 be the corre-

sponding maximizers in (Equation 2.39). Then we have

∥q̂1 − q̂2∥2W :=
∥∥∥∑K

i=1 Ĥ1,i −
∑K

i=1 Ĥ2,i

∥∥∥2

W

(a)

≤ K
∥∥∥Ĥ1 − Ĥ2

∥∥∥2

WWW

(b)

≤ K
µq
⟨Ĥ1 − Ĥ2, (g1 − g2)e

⊺⟩F

= K
µq
⟨q̂1 − q̂2,g1 − g2⟩

(c)

≤ K
µq
∥q̂1 − q̂2∥W ∥I∥g,W ∥g1 − g2∥g ,

where (a) follows from the algebraic fact that
∥∥∥∑K

i=1Hi

∥∥∥2

W
≤ (

∑K
i=1 ∥Hi∥W)2 ≤

K ∥H∥2WWW , (b) follows from Lemma 2.1.b), and (c) follows from the definition of the op-

44

erator norm ∥I∥g,W . Dividing both sides by ∥q̂1 − q̂2∥W , we conclude that F̃µπππ ,µq is a

Lipschitz smooth function of gµπππ(x) with constant K ∥I∥g,W /µq. The approximation gap

follows from the definition of Ω2
H := maxH∈Hδ

WWW (H̄,H). □

The other parts needed to derive the smooth approximation properties of F̃µπππ ,µq , includ-

ing the πππ smooth approximation properties and the Lipschitz continuity constant of gµπππ ,k,

are exactly the same as those in Section 3. Therefore Corollary 2.3 below follows as an

immediate consequence of Lemma 2.6 and Proposition 2.4.

Corollary 2.3 F̃µπππ ,µq is a (2C2
pKM

2
TTTM

2
ΠΠΠ/µq + 2M2

TTT/µπππ, µqΩ
2
H + µπππΩ

2
πππ)-smooth approxi-

mation of F .

Similar to the analysis of the modified SD algorithm, we can define a change of vari-

ables to simplify the above smooth approximation properties to the same form as that of

Fµπππ ,µp in (Equation 2.23) such that the SSL algorithm can be applied readily. More specif-

ically, we set

a) C̃p :=
√
k and µ̃p := µq for entropyWWW ;

b) C̃p :=
√
k and µ̃p := µq/k for EuclideanWWW ,

such that KC2
p/µq = C̃p

2
/µ̃p and µqΩ

2
H = µ̃pΩ̃

2
p. Then F̃µπππ ,µq(x) is a (2C̃p

2
M2

TTTM
2
ΠΠΠ/µ̃p +

2M2
TTT/µπππ, µ̃pΩ̃

2
p + µπππΩ

2
πππ)-smooth approximation of F⑥, which is almost the same as Fµπππ ,µp

being a (2C2
pM

2
TTTM

2
ΠΠΠ/µp+2M2

TTT/µπππ, µpΩ̃
2
p+µπππΩ

2
πππ) smooth approximation (shown in Propo-

sition 2.4). Since both the optimal smooth ratio (Lemma 2.4) and the SSL algorithm’s

convergence analysis depend only on those smooth approximation properties, we conclude

from Theorem Theorem 2.2 that the SSL algorithm applied to F̃µπππ ,µq(x) has an iteration

complexity of O(ΩXMTTTΩΠΠΠ(1 + 2C̃pΩ̃p)/ϵ).

⑥The sequence smooth approximation properties of F̃µq,µπππ
can also be derived in a similar fashion.

45

Table 2.3: Theoretical Performance Comparison for O(1/ϵ) Algorithms for Kantorovich
P Problem

Algorithm Iter Complexity Computation Required for p Update

Separable PDHG[16] O(K/ϵ) Solving a 2K ×K2 QP

Euclidean SD/SSL O(
√
K/ϵ) Solving a 2K ×K2 QP

Entropy SD/SSL O(
√
logK/ϵ) Solving a 2K ×K2 Conic Program

Modified Euclidean SD/SSL O(
√
K/ϵ) O(K2 log(1/λϵ)) Algebraic Computations

Modified Entropy SD/SSL O(
√
K logK/ϵ) O(K2 log(1/λϵ)) Algebraic Computations

1 We set λϵ to the machine precision.

2.4.4 Iteration complexity

Both the modified SD and the modified SSL algorithms have the same iteration complexity

bound of O((1 + C̃pΩ̃p)/ϵ), i.e., O(
√
K/ϵ) for Euclidean WWW and O(

√
K logK/ϵ) for

entropy WWW . It is worth noting that the extra
√
K factor for entropy WWW arises because the

entropy radius scales sub-linearly, i.e. Ω∆/K = Ω∆/
√
K while the Euclidean radius scales

linearly, i.e. Ω∆/K = Ω∆/K. Although the iteration complexity for the entropy WWW is

O(
√
logK) larger than that for the Euclidean WWW , it is still preferable in practice because

each entropy projection is cheaper (shown in Table Table 2.2).

2.5 Numerical Studies

We use distributionally robust two-stage linear programs to demonstrate the empirical per-

formance of our algorithms .

Firstly, we test our algorithms by measuring their average performance on some ran-

domly generated instances of a synthetic problem. We consider the following capacity

46

installation problem of an electricity utility company.

min
x∈Rn

c⊺x+max
p∈P

∑K
k=1 pkgk(Tkx)

s.t. 0 ≤ xi ≤ U ∀i,

where gk(Tkx) := min
yk∈Rm

+

y⊺kek

s.t. Ryk ≥ dk − Tkx.

(2.40)

The company is planning for the capacities of n technologies, x ∈ Rn, to be installed

for the coming year, with a unit cost vector c ∈ Rn. Moreover, being the sole provider

of electricity in the region, it has to satisfy all demands in different periods of the year,

d ∈ Rm, using a combination of power generated by those installed capacities, with an

availability factor of T ∈ [0, 1]m×n, and power purchased from the outside grid at a unit

cost of e ∈ Rm. The stochastic parameters e, d, and T are unavailable at the planning

time, so the company needs to find either a data-driven or risk-averse solution. In our

experiments, we set m = 20, n = 40 and generate random instances in the following

fashion.

1. c generated entry-wise IID from Unif[0.5 1].

2. ek ∈ Rm generated entry-wise IID from Unif[2,4].

3. dk ∈ Rm generated entry-wise IID from Unif[50, 100].

4. Tk ∈ Rm×n generated entry-wise IID from Unif[0.5 1].

5. R = Im,m is the simple complete recourse matrix.

Since R is the identity matrix, the scenario sub-problems are simple. They admit closed-

form solutions for a given x, and each Π(k) is a box in (Equation 2.5), so the πππ-proximal

update is also simple. However, in reformulation (Equation 2.4) of [16], the projec-

tion of (xk, vk) onto a non-smooth functional constrained feasibility set, {(xk, vk)|vk ≥

47

gk(Tkxk), xk ∈ X}, is more difficult as we have to solve a quadratic program (QP).

We also verify our results on a real-world test instance, namely the telecommunication

network expansion problem with uncertain demands, SSN(50) in [34]. However, rather

than the original expected total unfilled demand, we use some risk-averse function of the

total unfilled demands as the objective function. Moreover, since we have to find the opti-

mal network flow for each demand scenario, the scenario sub-problems are more difficult

(R is not the simple identity matrix and Π(k)s are not boxes). We have to use LP and QP

solvers for finding the optimal flows and computing the proximal updates, respectively.

2.5.1 Implementation Details

The numerical experiments are implemented in MATLAB 2017b with Mosek 8.1 as the

optimization solver and are tested on an Alienware Desktop with 4.20GHz Intel Core i7

processor and 16GB of 2400MHz DDR4 memory. The x proximal updates and level set

projection problems are solved using Mosek QP and the πππ proximal updates are solved

using closed-form solutions for the synthetic problem and using Mosek QP for the network

expansion problem. The p proximal updates are solved to machine accuracy using a binary

search for the Lagrange multipliers associated with the coupling constraints in P . Their

computation complexities are listed in Table Table 2.4.

Given a test instance, SD and PDHG are first fine-tuned by selecting among a few pa-

rameter choices the one achieving the smallest objective value in 100 iterations, f(x̄100)(see

Table Table 2.5 for these parameter choices). Next, the fine-tuned SD and PDHG and the

parameter-free SSL are used to solve the instance. We record the number of iterations and

the wall clock time required for these algorithms to achieve a relative optimality gap of

ϵ ∈ {10%, 1%, 0.1%}, i.e., f(xt) − f∗ ≤ ϵf∗. If the target accuracy is not reached after

2,000 seconds, we record both the number of iterations and the time as NA. To obtain an

estimate of the true objective f ∗, we use the parameter-free SSL algorithm and terminate

only when the absolute gap between the lower and upper bound decreases to 1e−3.

48

Table 2.4: # Algebraic Operations Required for p proximal update

Distance Function W & Ambiguity Set Constraints in P # Algebraic Operations

Euclidean or Entropy W & Simplex Box + One Linear O(K log(1/ϵ))

Euclidean or Entropy W & AVaR Box + One Linear O(K log(1/ϵ))

Euclidean W & Modifed X2 Box + One Linear O(K log2(1/ϵ))
+ One Quadratic

Modified Entropy or See Section 4 O(K2 log(1/ϵ))
Euclidean WWW & Kantorovich

Table 2.5: Parameter Selections

Algorithm # Step-sizes

Over-relaxation parameter ρ = 2.
PDHG 27 η ∈ {10−3, 10−2, ..., 102, 103}.

τ ∈ {10−2, 10−1, 1}/η.

(σ, τ, η) ∈ {.1σ̄, σ̄} × {.1τ̄, τ̄} × {.1η̄, η̄},
SD 16 where σ̄, τ̄ are η̄ calculated using the stepsize choice in Theorem 2.1

with conservative estimates of ΩX ,ΩP ,ΩΠΠΠ and with {.1MΠΠΠ,MΠΠΠ}.

SSL 1 λ0 = 2−6, Ω2
p,0 = W (p̄, p0), M2

π,0 = 2maxk Uk(π̄ππ,πππ0),
where p̄,πππ0 are the maximizers for x0 in (Equation 2.5).

Note that the parameter estimation for the PDHG algorithm is difficult because both the
primal and the dual feasibility region are unbounded.

2.5.2 Synthetic Problem: Probability Simplex Ambiguity Set

Notice that both SD and SSL have the same iteration complexity bound ofO(1 + CpΩP/ϵ).

So to best illustrate how they scale with K, we conduct experiments on the probability

simplex, which has the largest ΩP . We make a few remarks about the result obtained in

Table Table 2.6.

1. In general when the number of scenarios is large, both SSL and SD show significant

improvement over PDHG in both computation time and iteration number. This is

consistent with numerical experiments in [16], where a toy example (with m = 3

and n = 2) takes a significant amount of time even for a small number of scenarios,

K ≤ 200. Besides, SSL seems to outperform SD in finding solutions with high

49

accuracy.

2. Dependence on accuracy ϵ: both SD and PDHG match the theoretical complexity

guarantee ofO(1/ϵ). In contrast, SSL enjoys a linear rate of convergence in practice,

i.e., O(ct), for some c < 1. Such a behavior is often observed for bundle level

methods [32, 27, 23], but there is no rigorous theoretical explanation to the best of

our knowledge.

3. Dependence on the number of scenarios K: both the computation time and the num-

ber of iterations required for PDHG increase quickly with K. However, the numbers

of iterations required for entropy SD and SSL are nearly scenario independent. In

fact, they seem to decrease slightly with increasing K. One plausible explanation

is that more scenarios make f smoother, thus our accelerated algorithms might con-

verge faster. However for Euclidean W , the number of iterations required for SD

increases for large K while that for SSL stays the same.

4. Per iteration computation time: the per iteration computation time of PDHG is larger

than that of SD and SSL. Moreover, the projection of x onto a level set in SSL is

more expensive than the simple x-proximal update in SD. So when the number of

scenarios is small (K = 50 ∼ 2000) such that the level set projection dominates

computation cost, SD seems to be faster than SSL for finding 1%, 10%-suboptimal

solutions, even though its numbers of iterations required are larger. However, when

the number of scenarios is large and theπππ projection dominates the computation cost,

SSL is faster.

50

2.5.3 Synthetic Problem: Risk-Averse AVaR Ambiguity Set

Given the empirical probability vector p̄, we use the following reformulation in [35] of

AVaR risk measure in our experiments.

AV aR1−α[g1(x), ..., gK(x)] =max
p≥0
⟨p,g(x)⟩

s.t
∑K

k=1 pk = 1

0 ≤ pk ≤ 1
α
p̄k.

Observe that results shown in Table Table 2.7 are consistent with our findings in Subsection

5.2. In addition, both the iteration numbers and the computation times for all algorithms

increase slightly in the 97.5% AVaR quantile case because of the larger ΩP .

2.5.4 Synthetic Problem: Modified X2 Ambiguity Set

The modified X2 in [16] is defined as

Pr :=
{
p ∈ Rk

+ :
∥∥p− [1

K
,, 1

K
]
∥∥2

2
≤ r,

∑K
i=1 pi = 1

}
.

Since the entropy projection onto a quadratically constrained Pr is difficult, we conduct

experiments using only Euclidean W . The obtained result in Table Table 2.8 is consistent

with our previous findings.

2.5.5 Synthetic Problem: Kantorovich Ball Ambiguity Set

We test the modified SD and modified SSL algorithms developed in Section 4 for the more

challenging Kantorovich ball. The results are presented in Table Table 2.9. When K =

200, the computation time in each iteration due to the Euclidean p-update in PDHG is 0.2

second, while that for the entropy q-update in both SD and SSL algorithms is 0.02 second.

When K is larger, the saving from the q-update is even more significant.

51

2.5.6 Real-world instance: SSN(50)

We conduct tests on the SSN(50) problem in [34] with all the above-mentioned ambiguity

sets. The obtained results in Table Table 2.10 show that our SD and SSL algorithms sig-

nificantly outperform the PDHG algorithm in computation time. Notice that the number of

iterations of SD is comparable to that of PDHG and its saving derives mainly from easier πππ

proximal updates (as compared to the joint (x, vk, yk) epigraph projection in PDHG). For

problems with a large number of scenarios, we expect our scenario-independent algorithms

to have a more significant advantage over PDHG in iteration number as well.

2.5.7 Comparison with the Benders Decomposition Algorithm

Finally, we compare the SSL algorithm with another frequently used cutting plane method,

the Benders decomposition [36]. Our implementation considers the following master prob-

lem,

min
x∈X,Ψ,vk

c⊺x+Ψ

s.t. Ψ ≥ ϕ(v1, ..., vK), (2.41)

vk ≥ gk(Tkx), ∀k ∈ [K]. (2.42)

In each iteration, the algorithm first computes (xt,Ψt, {vk,t}) by minimizing a master

model, and then adds optimality cuts for the risk function in (Equation 2.41) and for the

scenario cost functions in (Equation 2.42) to the master model.

Using 10 minutes as the cutoff time, we test these two algorithms on the synthetic

problem with both 50 and 1000 scenarios and on the SSN(50) problem, and the results are

listed in Table Table 2.11, Table 2.12, and Table 2.13. Clearly, the Benders decomposition

algorithm outperforms our SSL algorithm when the number of scenarios is small and the

scenario sub-problems are simple (Table Table 2.11). However, when either the number

of scenarios is large (Table Table 2.12) or the scenario sub-problems are difficult (Table

52

Table 2.13), the SSL algorithm converges much faster. Additionally, notice that the Benders

algorithm is unable to reach the 10% optimality gap for most SSN(50) tests. This is possibly

because SSN is a known ill-conditioned problem (see, e.g., Section 9 of [37]).

To sum up, our experiments demonstrate that the proposed SD and SSL algorithms

show significant performance improvement over the PDHG algorithm, especially for prob-

lems with a large number of scenarios. Between SSL and SD, SSL seems to be a better

choice because it does not require any parameter tuning and it has a linear rate of conver-

gence in practice. However, the SD algorithm is simpler to implement and may have some

performance advantages over SSL for small problems with a low accuracy requirement.

Moreover, the flexibility to choose a Bregman distance appropriate for the P geometry

has a significant influence on the per iteration computation time, which is evident in the

Kantorovich ball experiment.

Table 2.6: Numerical Experiment: Simplex Ambiguity Set
mean number of iterations and time(sec) to reach desired relative optimality gap

#Scenarios Gap PDHG SD Euclid SD Entropy SSL Euclid SSL Entropy

10% 333, 11.3s 268, 0.18s 200, 0.13s 74, 0.28s 74, 0.26s
20 1% 3940, 146s 4060, 3.04s 2510, 1.57s 153, 0.60s 142, 0.58s

0.1% NA, NA NA, NA 23600, 16.1s 260, 1.09s 246, 1.02s

10% NA, NA 62, 0.35s 44, 0.27s 94, 1.12s 94, 1.14s
200 1% NA, NA 602, 3.26s 476, 2.65s 181, 2.43s 181, 2.45s

0.1% NA, NA 6010, 32.1s 4810, 26.0s 307, 4.32s 311, 4.50s

10% NA, NA 48, 1.02s 44, 0.94s 101, 7.49s 91, 6.75s
1000 1% NA, NA 471, 10.4s 394, 8.62s 184, 15.0s 177, 14.3s

0.1% NA, NA 4710, 102s 3840, 83.3s 293, 24.7s 291, 24.7s

10% NA, NA 123, 46.4s 34, 14.6s 86, 64.0s 94, 76.1s
20000 1% NA, NA 1210, 461s 220, 92.8s 168, 139s 178, 160s

0.1% NA, NA NA, NA 2020, 821s 285, 248s 285, 274s

53

Table 2.7: Numerical Experiment: AVaR risk Measure

#Scenarios Gap PDHG SD Entropy SSL Entropy

95% AVaR quantile

10% 1170, 104s 111, 0.19s 63, 0.59s
50 1% 12100, 1040s 1340, 2.61s 115, 0.90s

0.1% NA, NA 13700, 23.6s 225, 1.98s

10% NA, NA 30,0.15s 57, 0.49s
200 1% NA, NA 362, 2.08s 120, 1.22s

0.1% NA, NA 3570, 19.8s 233, 2.55s

10% NA ,NA 9, 0.15s 40, 0.94s
1000 1% NA, NA 122, 2.70s 69, 1.94s

0.1% NA, NA 1180, 25.8s 120, 3.90s

97.5% AVaR quantile

10% 1390, 108s 118, 0.16s 70, 0.32s
50 1% 14400, 1140s 1410, 1.98s 154, 0.76s

0.1% NA, NA 14600, 21.3s 290, 1.49s

10% 4140, 1250s 34, 0.29s 60, 0.48s
200 1% NA, NA 410, 2.28s 139, 1.36s

0.1% NA, NA 4090, 21.6s 259, 2.76s

10% NA, NA 24, 0.51s 47, 1.11s
1000 1% NA, NA 205, 4.34s 88, 2.60s

0.1% NA, NA 2030, 43.2s 176, 5.85s

54

Table 2.8: Numerical Experiment: Modified X2 Ambiguity
Set

#Scenarios Gap PDHG SD Euclid SSL Euclid

r = 0.01

10% 514, 40.2s 112, 0.18s 43, 0.22s
50 1% 4120, 330s 1530, 1.96s 82, 0.60s

0.1% NA, NA 15200, 18.0s 157, 1.32s

10% 1040, 314s 26, 0.19s 40, 0.38s
200 1% 4570, 1370s 268, 1.94s 70, 0.92s

0.1% NA, NA 2110, 11.8s 116, 1.77s

10% NA, NA 20, 0.47s 43, 1.50s
1000 1% NA, NA 95, 2.64s 67, 2.97s

0.1% NA, NA 330, 8.80s 99, 4.89s

r = 0.1

10% 996, 76.1s 163, 0.19s 59, 0.37s
50 1% 9970, 804s 2340, 2.69s 121, 0.94s

0.1% NA, NA 20400, 21.6s 245, 2.14s

10% 3390, 997s 68, 0.29s 62, 0.76s
200 1% NA, NA 860, 3.81s 128, 1.91s

0.1% NA, NA 8920, 39.0s 238, 3.81s

10% NA, NA 70, 1.48s 64, 2.83s
1000 1% NA, NA 717, 15.3s 126, 6.37s

0.1% NA, NA 7160, 151s 230, 12.2s

55

Table 2.9: Numerical Experiment: Kantorovich Ball Ambiguity Set

#Scenarios Gap PDHG Modified SD Entropy Modified SSL Entropy

δ = 0.01×median distance in D

10% 247, 27.0s 89, 0.18s 43, 0.33s
50 1% 1560, 181s 846, 1.96s 70, 0.66s

0.1% NA, NA 8170, 19.2s 130, 1.41s

10% 498, 297s 16, 0.28s 38, 1.69s
200 1% 1590, 883s 163, 3.05s 55, 2.90s

0.1% NA, NA 1180, 23.0s 90, 5.74s

10% NA, NA 16, 13.6s 36, 76.5s
1000 1% NA, NA 131, 106s 50, 127s

0.1% NA, NA 602, 443s 73, 221s

δ = 0.1×median distance in D

10% 420, 49.9s 93, 0.23s 55, 0.59s
50 1% 2940, 363s 847, 2.10s 101, 1.30s

0.1% NA, NA 8270, 17.9s 175, 2.45s

10% 756, 557s 20, 0.43s 52, 3.79s
200 1% NA, NA 111, 2.62s 87, 7.24s

0.1% NA, NA 564, 13.0s 136, 12.1s

10% NA, NA 20, 20.6s 51, 171s
1000 1% NA, NA 96, 96.0s 78, 297s

0.1% NA, NA 358, 334s 117, 485s

56

Table 2.10: Numerical Experiment: SSN(50) Data on Different Ambiguity Set

Ambiguity Set Gap PDHG(1) SD Euclid SD Entropy SSL Euclid SSL Entropy

Simplex 10% 420, 873s 360, 63.3s 309, 54.4s 142, 40.0s 107, 31.3s
1% NA, NA 996, 176s 631, 111s 195, 55.2s 187, 54.0s

AVaR 10% 1116, 2310s 366, 64.4s 233, 40.8s 69, 19.3s 135, 40.3s
95% 1% NA, NA 1016, 179.5s 640, 113s 148, 41.6s 211, 61.8s

AVaR 10% 420, 880s 355, 62.9s 310, 55.1s 94, 26.5s 117, 36.0s
97.5% 1% NA, NA 818, 146s 634, 113s 152, 43.0s 190, 57.0s

X2 10% 167, 337s 61, 10.7s 144, 44.3s
r = 0.01 1% NA, NA 129, 22.8s 181, 55.0s

X2 10% 582, 1210s 96, 17.3s 128, 40.6s
r = 0.1 1% NA, NA 477, 84.9s 192, 60.3s

Kantorovich(2) 10% 179, 373s 285, 119s 784, 137s 119, 73.1s 90, 25.0s
δ = 0.01 1% 837, 1750s 768, 306s 2133, 382s 177, 110s 135, 43.1s

Kantorovich 10% 210, 445s 235, 107s 1105, 198s 108, 66.7s 104, 29.2s
δ = 0.1 1% NA, NA 533, 234s 3281, 595s 167, 105s 179, 51.0s

(1) Both SD and PDHG use the best iterate encountered (instead of the ergodic average) to measure the
optimality gap for faster convergence.
(2) Modified Euclidean and entropy projections used for SD and SSL.

Table 2.11: Numerical Experiment: Compari-
son Between SSL and the Benders Method on
Synthetic (50)

Ambiguity Set Gap SSL(1) Benders

Simplex 10% 101, 0.48s 37, 0.36s
1% 202, 1.08s 38, 0.38s

AVaR 10% 79, 0.35s 14, 0.08s
95% 1% 129, 0.64s 15, 0.09s

AVaR 10% 64, 0.27s 22, 0.17s
97.5% 1% 150, 0.77s 23, 0.19s

X2 10% 46, 0.19s 7, 0.03s
r = 0.01 1% 96, 0.52s 10, 0.07s

X2 10% 49, 0.22s 10, 0.07s
r = 0.1 1% 103, 0.57s 11, 0.08s

Kantorovich 10% 47, 0.31s 8, 0.08s
δ = 0.01 1% 71, 0.67s 19, 0.22s

Kantorovich 10% 56, 0.49s 5, 0.04s
δ = 0.1 1% 107, 1.10s 7, 0.07s

(1) SSL uses entropy projection for all but the X2 ambiguity set.

57

Table 2.12: Numerical Experiment: Comparison
Between SSL and the Benders Method on Synthetic
(1000)

Ambiguity Set Gap SSL(1) Benders

Simplex 10% 103, 3.04s 101, 58.0s
1% 184, 5.76s 106, 60.5s

AVaR 10% 48, 1.15s 12, 6.23s
95% 1% 88, 2.44s 19, 7.96s

AVaR 10% 48, 1.16s 17, 7.02s
97.5% 1% 92, 2.66s 26, 8.89s

X2 10% 35, 0.79s 8, 5.06s
r = 0.01 1% 64, 2.04s 22, 8.36s

X2 10% 49, 1.37s 26, 10.3s
r = 0.1 1% 95, 3.19s 37, 12.4s

Kantorovich 10% 42, 60.0s 5, 16.6s
δ = 0.01 1% 52, 96.8s 6, 19.0s

Kantorovich 10% 50, 101s 5, 15.8s
δ = 0.1 1% 76, 187s 16, 40.0s

Table 2.13: Numerical Experiment: Compari-
son Between SSL and the Benders Method on
SSN(50)

Ambiguity Set Gap SSL(1) Benders
Simplex 10% 106, 30.4s NA, NA

1% 185, 52.4s NA, NA

AVaR 10% 135, 39.4s NA, NA
95% 1% 211, 60.4s NA, NA

AVaR 10% 117, 35.1s NA, NA
97.5% 1% 174, 51.1s NA, NA

X2 10% 144, 44.1s 975, 578s
r = 0.01 1% 179, 54.2s NA, NA

X2 10% 128, 39.7s NA, NA
r = 0.1 1% 187, 57.4s NA, NA

Kantorovich 10% 90, 24.7s NA, NA
δ = 0.01 1% 145, 40.2s NA, NA

Kantorovich 10% 104, 29.0s NA, NA
δ = 0.1 1% 159, 44.7s NA, NA

58

CHAPTER 3

NESTED STOCHASTIC COMPOSITE OPTIMIZATION

3.1 Introduction

3.1.1 Motivation

Composite optimization has attracted considerable interest for its applications in com-

pressed sensing, image processing and machine learning. Many algorithmic studies have

been focused on composite optimization of the form minx∈X f(x) + g(x), where f is a

smooth convex function and g is a nonsmooth function with certain special structures. Op-

timal first-order methods have been developed in [4, 5, 6, 7, 8] for solving these problems

under different assumptions about g. In the stochastic setting, Lan [38, 39] presented an ac-

celerated stochastic approximation method that can achieve the optimal iteration/sampling

complexity when one only has access to stochastic (sub)gradients of the objective function

(see, e.g., [40, 41, 42] for extensions).

The study of composite optimization naturally extends to more complex nested compo-

sition problems. For the deterministic setting, Lewis and Wright [43] developed a globally

convergent algorithm for solving minx∈X f(g(x)), where the outer layer function f can

be non-smooth, non-convex and extended-valued. Lan [27] also investigated the complex-

ity of these problems when f is relatively simple. For the stochastic setting where both

f and g are defined as expectation functions, Ermoliev [44, 45] developed two-timescale

algorithms and established their asymptotic convergence. More recently, Wang et al. [46]

studied finite-time convergence properties for these types of algorithms. Owing to its broad

applications in reinforcement learning [46], meta-learning, and risk-averse optimization

[47], nested stochastic composite optimization (NSCO) has become an important research

topic.

59

A key challenge in NSCO is the lack of unbiased gradient estimators for the nested

function. This issue can be illustrated with a simple two-layer problem, minx∈X{f(x) :=

f1(f2(x))}. Using the chain rule, the (sub)gradient of f can be expressed as f ′(x) =

f ′
1(f2(x))f

′
2(x)

① However, the evaluation point for f ′
1, which is f2(x), is inaccessible be-

cause only unbiased estimators (f2(x, ξ), f ′
2(x, ξ)) can be obtained from the stochastic first-

order oracle. If the sub-gradient is evaluated instead at some f2(x, ξ) instead, the nested

estimator is biased, except for an affine f1, i.e.,

E[f ′
1(f2(x, ξ))] ̸= ∇f ′

1(f2(x)). (3.1)

Thus, it is not possible to obtain an unbiased estimator for f ′
1(f2(x)) or f ′

1(f2(x))f
′
2(x).

To resolve the aforementioned challenge, the current approach is to use gradient approx-

imation, which controls the bias, E[f ′
1(ȳ(ξ))− f ′

1(f2(x))], by evaluating f ′
1 at some “close

enough” estimate ȳ(ξ) to f2(x). For example, the empirical average from N = O(1/ϵ2)

samples, ȳ(ξ) :=
∑N

i=1 f2(x, ξi)/N , ensures E[∥ȳ(ξ)− f2(x)∥] ≤ O(ϵ). If f1 is L1-

Lipschitz smooth, we have

E[∥f ′
1(ȳ(ξ))− f ′

1(f2(x))∥] ≤ O(L1ϵ).

Therefore, using f ′
1(ȳ(ξ))f

′
2(x) as the gradient proxy, the stochastic gradient descent

method can find an ϵ-optimal solution, i.e., E[f(xN) − f(x∗)] ≤ ϵ, with O(1/ϵ4) calls

to the stochastic oracle. Indeed, this simple idea provides the intuition to understand the

two-timescale stochastic compositional gradient descent (SCGD) method in [48], and it

achieves the same oracle complexity as the SCGD method.

Comparing this result to those for solving the simple one-layer stochastic optimization

problem without the nested structure, we can observe two significant differences. First,

①For notation simplicity, especially when deriving the gradient for a nested composite function, We use
the Jacobian matrix f ′

i(y) ∈ Rn×m to represent the (sub)-gradient of fi : Rm → Rn.

60

the gradient-approximation type methods require the outer-layer function to be smooth.

Second, their oracle complexities are worse than the O(1/ϵ2) complexity for the one-layer

problem. These observations raise the question:

In the non-convex setting, recent developments provide a partially positive answer to

this question. Here, the goal is to find a δ-stationary solution x̄, i.e.,

E[∥∇f(x̄)∥2] ≤ δ. (3.2)

For the one-layer smooth problem without nested composition, we know it takes O(1/δ2)

[49] queries to the stochastic oracle to find an ϵ-stationary solution. When all the layer func-

tions are smooth, Ghadimi et al. [50] developed an O(1/δ2) algorithm for the two-layer

problem, and they extended it in [51, 47] to solve the multi-layer problem with the same

oracle complexity of O(1/δ2). Additionally, under some stronger smoothness assump-

tions, a variance reduction algorithm proposed in [52] can improve the oracle complexity

further to O(1/δ1.5). However, if any layer function is non-smooth, [47] provided only an

asymptotically convergent algorithm.

In the convex setting, the question remains open. Here, the goal is to find an ϵ-optimal

solution x̄,

E[f(x̄)− f(x∗)] ≤ ϵ. (3.3)

For the one-layer problem without nested composition, Nemirovsky and Yudin [2] estab-

lished the order-optimal oracle complexity of O(1/ϵ2), which can be further improved to

O(1/ϵ) when f is also strongly convex. However, the existing results for NSCO fail to

match them. To the best of our knowledge, finite time convergence bounds for convex

NSCO problems are available only when outer-layer functions are all smooth (see [48, 53,

46]). These works use the gradient approximation idea; they use moving averages to track

function values of the inner layers and apply multi-timescale schemes to ensure their faster

convergence. The complexities for these methods are summarized in Table Table 3.1 and

61

Table 3.1: Two-Layer Oracle Complexity

Problem Type In the Literature SSD/SSDp

Convex
Outer Nonsmooth

Outer Smooth
All Smooth

N.A.
O(1/ϵ4) [48]
O(1/ϵ3.5) [46]

O(1/ϵ2)

Strongly
Convex

Outer Nonsmooth
Outer Smooth
All Smooth

N.A.
O(1/ϵ1.5) [48]
O(1/ϵ1.25) [46]

O(1/ϵ2)
O(1/ϵ)
O(1/ϵ)

Table 3.2: k-Layer

Problem Type In the Literature SSD/SSDp

Convex
Outer Nonsmooth

Outer Smooth
All Smooth

N.A.
O(1/ϵ2k)[53]
O(1/ϵ(7+k)/4)[53]

O(1/ϵ2)

Strongly
Convex

Outer Nonsmooth
Outer Smooth
All Smooth

N.A.
N.A.

O(1/ϵ(3+k)/4)[53]

O(1/ϵ2)
O(1/ϵ)
O(1/ϵ)

Table 3.2. For the two-layer problem, if the innermost layer function is non-smooth, the

oracle complexity isO(1/ϵ4). With an additional smoothness assumption for f2, the oracle

complexity can be improved to O(1/ϵ3.5) and to O(1/ϵ1.25) if the problem is also strongly

convex. For the multi-layer problem, the complexities are even worse as they depend expo-

nentially on the number of layers k. Additionally, it is worth noting that a direct application

of the non-convex methods in [50, 51, 47] would lead to a suboptimal O(1/ϵ4) complex-

ity. This is because only a δ-stationary point with δ = ϵ2 (Equation 3.2) can guarantee an

O(ϵ)-optimal solution.

3.1.2 Our Contributions

As shown in Table Table 3.1, if the outer-layer layer function f1 is smooth, the oracle com-

plexity for the two-layer problem has the same order as the one-layer problem, i.e.,O(1/ϵ2)

in the non-strongly convex case and O(1/ϵ) in the strongly convex case. Moreover, if f1

is either general non-smooth or structured non-smooth, the oracle complexity is O(1/ϵ2)

62

in both the non-strongly convex and the strongly convex cases. Such a worse complexity

in the strongly convex case is not improvable and shows that the nested structure can make

a stochastic composite optimization problem intrinsically more difficult. Additionally, the

complexities for the multi-layer problem in Table Table 3.2 have the same order as those

for the two-layer problem. Thus, the result establishes the orders of problem complexity

for convex NSCO optimization under different settings and refutes the belief that solving

the NSCO problem is as simple as the usual stochastic optimization [54].

In this paper, we answer the question by developing efficient methods to achieve order-

optimal oracle complexities under some mild assumptions. First, we study the two-layer

nested problem with a (possibly strongly) convex regularization term u(x) given by

min
x∈X
{f(x) := f1 ◦ f2(x) + u(x)}, (3.4)

where X is a compact and convex set with a finite radius, i.e., maxx,x̄∈X ∥x− x̄∥ ≤ DX <

∞. We impose the following compositional convexity assumption throughout the paper.

Assumption 2 A nested function f1 ◦ f2(x) in (Equation 3.4) is said to satisfy the compo-

sitional convexity assumption if

• every layer function fi : Rni → Rni−1 is proper closed and convex.

• f1 is component-wise non-decreasing if f2 is not affine.

The above monotonicity and the layerwise convexity assumption together form the classic

sufficient condition for the nested function to be convex (e.g. see [1]). Compared to [46,

48, 53], Assumption 2 is stronger than their assumption of the nested function f being

convex, but we do not require the outer-layer function f1 to be smooth.

The layerwise convexity assumption implies a bi-conjugate reformulation [10] impor-

tant for our development. Specifically, if f ∗
i denotes the Fenchel conjugate to fi and

63

Πi = dom(f ∗
i) := {πi ∈ Rni−1×ni : f ∗

i,j(πi,j) <∞ ∀j ∈ [ni−1]}, we have

fi(yi) := max
πi∈Πi

πiyi − f ∗
i (πi). (3.5)

This relationship motivates us to introduce a novel reformulation approach to the NSCO

problem. We propose a min−max−max saddle-point reformulation by replacing every

layer function with its bi-conjugate (see (Equation 3.5)), such that the dual variables π1 and

π2 represent the (sub)gradients, f ′
1 and f ′

2. The tight coupling between x and the dual vari-

ables is then relaxed, allowing for more flexibility in the choice of dual iterates (πt
1, π

t
2). In

our algorithm, we select an easier πt
1 for which an unbiased estimator is readily available,

rather than πt
1 = f ′

1(f2(x
t)), for which the unbiased estimator is impossible. This allows us

to update xt with unbiased arguments to achieve order-optimal oracle complexities. Specif-

ically, our development can be summarized into four steps.

First, we consider a simple two-layer problem with smooth layer functions

(Equation 3.4). Linearizing both layer functions using the bi-conjugate in (Equation 3.5),

we arrive at the “minx−maxπ1 −maxπ2” saddle-point reformulation, similar to [55]. We

extend the deterministic sequential dual (SD) method proposed in [55] to a stochastic se-

quential dual (SSD) method, which consists of computing prox-mappings for π2 and π1 and

then computing the prox-mapping for x at each iteration. To implement the method, we ob-

serve the equivalence [56] between the dual prox-mappings and gradient evaluations when

the prox functions are chosen to be Bregman distance functions generated by the Fenchel

conjugates. This allows us to obtain unbiased estimators for the dual iterates (πt
1, π

t
2) from

querying the stochastic first-order oracle, enabling us to implement the SSD method in a

primal form. The resulting oracle complexity is O(1/ϵ2) (O(1/ϵ)) under the non-strongly

convex (strongly convex) setting . As illustrated in Table Table 3.1, these complexities

are of the same order as those for solving the simpler one-layer problem, significantly im-

proving upon the existing oracle complexities in the literature. In fact, even if the goal is

64

to find a δ-station point (Equation 3.2) under the non-strongly convex and smooth setting,

combining our SSD method with the iterative regularization technique in [57] can improve

the oracle complexity to O(1/δ). Moreover, in the deterministic setting, the SSD method is

also optimal because its oracle complexities match those of the Nesterov accelerated gra-

dient method [1] up to all problem parameters. Additionally, we extend the SSD method to

solve a closely related problem with f1 being structured non-smooth [31]. We modify the

SSD method by selecting ∥·∥2 as the prox-function when computing the π1-prox mapping.

The resulting method achieves an oracle complexity ofO(1/ϵ2), which is order-optimal for

the non-strongly convex case. Somewhat surprisingly, we demonstrate that this bound is

also order-optimal for the strongly convex case by developing a matching lower complexity

bound.

Second, we consider a more complicated two-layer problem where both f1 and f2 are

general non-smooth functions. The non-smoothness of f1 makes the problem particu-

larly difficult. From the (sub)gradient approximation perspective, estimating f ′
1(f2(x))

is not possible because f ′
1 may not be continuous with respect to its argument. From the

SSD perspective, computing the π1-prox mapping with any strongly convex prox-function

is difficult. To resolve the difficulty, we introduce a tri-conjugate reformulation to f1,

f1(y1) = minv1 maxπ1⟨π1, y1 − v1⟩+f1(v1),where v1 denotes an auxiliary primal variable.

The prox-mappings for both v1 and π1 can be computed efficiently with ∥·∥2 as the prox-

function. Accordingly, we reformulate the nested problem as a minxminv1 maxπ1 maxπ2

saddle point problem, and design a non-smooth stochastic sequential dual (nSSD) method,

which computes prox-mappings for π2 and π1 and then prox-mappings for v1 and x in each

iteration. The nSSD method achieves an oracle complexity of O(1/ϵ2). To the best of our

knowledge, it is the first method to achieve any finite-time convergence guarantee when the

NSCO problem has a non-smooth outer-layer function. This complexity bound is optimal

for the non-strongly convex case since it matches the order for solving the simpler one-

layer problem. Moreover, we show that the complexity bound also has the optimal order in

65

the strongly convex case by developing a matching lower complexity bound.

Third, we extend our methods to the multi-layer setting. We consider a k-layer prob-

lem constructed from an arbitrary nested composition of smooth, structured non-smooth,

and general non-smooth layer functions. In this setting, there exist complex stochastic

dependencies among the sequentially sampled stochastic estimators. When constructing

unbiased arguments for the prox-mappings, we resolve this issue by introducing a novel re-

peated sampling scheme to ensure conditional independence among these estimators. This

leads to the multi-layer SSD and nSSD methods. As shown in Table Table 3.2, when all

the outer-layer functions are smooth, the proposed method achieves the order-optimal ora-

cle complexities ofO(1/ϵ2) (O(1/ϵ)) in the non-strongly convex (strongly convex) setting,

significantly improving upon the existing exponential dependence on k in [53]. If any

outer-layer function is either structured non-smooth or general non-smooth, the multi-layer

SSD/nSSD method achieves an order-optimal oracle complexity of O(1/ϵ2). This appears

to be the first finite-time convergence guarantee for the multi-layer NSCO problem with any

non-smooth outer-layer functions. Moreover, our method is easy to implement because the

oracle complexity of O(1/ϵ2) can be achieved with parameter-free stepsizes.

Fourth, we demonstrate the effectiveness of our SSD and nSSD methods on two in-

teresting examples: a) minimizing the mean-upper-semideviation risk of order 1 for a two-

stage stochastic program, and b) minimizing the maximum loss associated with a system of

stochastic composite functions. A direct application of our methods leads to order-optimal

oracle complexities. The constant dependence of our methods can be further improved

if we modify the SSD/nSSD method to take advantage of some separable problem struc-

tures. The resulting convergence bounds offer new insights into the difficulty of risk-averse

optimization.

The rest of the paper is organized as follows. Section 2 introduces the SSD method for

the smooth and structured-nonsmooth two-layer problem. Section 3 introduces the nSSD

method for the general non-smooth two-layer problem. Section 4 extends these methods to

66

the multi-layer setting and Section 5 provides two concrete applications. Some concluding

remarks are made in Section 6.

3.1.3 Notations & Assumptions

The following notations and assumptions are used throughout the paper.

• The feasible region X is convex and compact withDX := maxx1,x2∈X ∥x1 − x2∥2 <

∞. We assume the solution set X∗ := argminx∈X f(x) to be non-empty and use

x∗ ∈ X∗ to denote an arbitrary optimal solution.

• Every layer function fi : Rni → Rni−1 is closed, convex and proper. We use the

notation ∇fi(yi) ∈ Rni−1 × Rni (f ′
i(yi) ∈ Rni−1 × Rni) to denote the Jocabian (sub-

gradient) matrix.

• There exists a stochastic first-order oracle SOi associated with every layer function

fi. When queried at some yi ∈ Yi, the SOi returns a pair of unbiased estimators,

(fi(yi, ξi), f
′
i(yi, ξi)) for (fi(yi), f ′

i(yi)). Results returned by different queries to SOi

are independent, and all SOi’s are independent.

• The Fenchel conjugate of a convex function g(x) is defined as g∗(π) :=

maxx∈Rn⟨x, π⟩−g(x). The Bregman distance function (or prox-function) associated

with a convex function g is defined as Dg(x; y) = g(x)−g(y)−⟨g′(y), x− y⟩. For a

m-dimensional vector valued function g(x), its dual variable π := [π1; π2; . . . ; πm] is

anm×nmatrix, and g∗ andDg∗ arem-dimensional vector functions. Specifically, the

j th entries of g∗ and Dg∗ are defined according to g∗j (πj) := maxx∈Rn⟨x, πj⟩ − gj(x)

and Dg∗,j(π; π̄) = g∗j (πj)− g∗j (π̄j)− ⟨g∗j ′(π̄j), πj − π̄j⟩.

• We use the term prox-mapping of h to refer to the following type of computation:

yt ← argminy∈Y ⟨y, g⟩+ h(y) + ηV (y; ȳ), (3.6)

67

where Y ⊂ Rn is a closed and convex domain, h is a convex function, and V (·; ·) is

some Bregman distance function. When h is an m-dimensional vector function and

y ⊂ Rm×n is a matrix, we use the term prox-mapping of h to refer to computing the

prox-mapping for every row of y, i.e., yt := [yt1; . . . ; y
t
m] with

yti ← argminyi∈Yi
⟨yi, g⟩+ hi(yi) + ηVi(yi; ȳi) ∀i ∈ [m].

In both cases, we call g the argument, ȳ the prox center, V the prox-function, and η

the stepsize parameter. Moreover, we also use the term prox-mapping for y to denote

the prox-mapping of h if the associated function h(y) is clear from context, e.g.,

prox-mapping for x refers to the prox-mapping of u(x).

• ∥·∥ denotes the l2 (operator) norm unless specified otherwise.

• We use the notation [·]+ to denote projection onto the positive orthant, i.e., [x]+ :=

max{x, 0}, and the notation [·]+Y to denote the projection onto set Y .

3.2 Smooth and Structured Non-smooth Two Layer Problems

In this section, we present the SSD method for the two-layer problem in (Equation 3.4).

We assume f2, the inner layer function, to be smooth and f1, the outer layer function, to

be either smooth or structured non-smooth. Specifically, for a function g(y) defined on Y ,

we call it smooth if its gradient ∇g(y) is Lipschitz continuous, i.e., ∥∇g(y)−∇g(ȳ)∥ ≤

L ∥y − ȳ∥ ∀y, ȳ ∈ Y. We call it structured non-smooth if there is some convex closed set

Π and convex closed and proper function g∗ such that

g(y) = maxπ∈Π⟨π, y⟩ − g∗(π),∀y ∈ Y. (3.7)

We assume the prox-mapping of g∗ with ∥·∥22 as the prox-function to be efficiently com-

putable (see subsection 3.1.3). Notice such a definition differs from the one proposed by

68

Nesterov [31] where the inner product contains a general linear operator A, i.e., ⟨π,Ay⟩.

However, our definition is not restrictive in NSCO becauseAy can be regarded as the output

from an inner linear layer function A(·).

The coming subsections are organized as follows. subsection 3.2.1 introduces the SSD

method, followed by its convergence results in subsection 3.2.2. Next, subsection 3.2.3

presents a lower complexity bound for the structured non-smooth problem and subsec-

tion 3.2.4 presents the detailed convergence analysis.

3.2.1 The SSD Method

As suggested in subsection 3.1.2, the development of the SSD method is inspired by a

min−max−max reformulation of (Equation 3.4) given by

min
x∈X

max
π1∈Π1

max
π2∈Π2

{L(x; π1, π2) := L1(x; π1, π2) + u(x)}, (3.8)

where Π1 and Π2 are respective domains of f ∗
1 and f ∗

2 (see (Equation 3.5)) and the compo-

sitional Lagrangian functions are defined according to

L2(x; π2) = π2x− f ∗
2 (π2), and L1(x; π1, π2) = π1L2(x; π2)− f ∗

1 (π1). (3.9)

For simplicity, we will use the notation z := (x; π1, π2) and Z := X × Π1 × Π2 for the

rest of the section. Since L1(x; π1, π2) can be interpreted as the nested composition of a

lower linear approximation to f2, specified by π2 and f ∗
2 (π2), and a lower linear approx-

imation to f1, specified by π1 and f ∗
1 (π1), a certain duality relationship holds between L

(c.f. (Equation 3.8)) and the original problem (Equation 3.4).

Lemma 3.1 Let f and L be defined in (Equation 3.4) and (Equation 3.8). Then

a) Weak duality: f(x) ≥ L(x; π1, π2) ∀(π1, π2) ∈ Π1 × Π2, ∀x ∈ X .

b) Strong duality: for a given x ∈ X , f(x) = L(x; π̂1, π̂2) for any π̂2 ∈ ∂f2(x) and

69

π̂1 ∈ ∂f1(f2(x)).

c) There exists a pair (π∗
1, π

∗
2) such that z∗ := (x∗; π∗

1, π
∗
2) is a saddle point, i.e.,

L(x∗; π1, π2) ≤ L(x∗; π∗
1, π

∗
2) ≤ L(x; π∗

1, π
∗
2) ∀(x, π1, π2) ∈ Z.

d) For any (x; π1, π2) ∈ Z, an upper bound on the optimality gap of x is given by:

f(x)− f(x∗) ≤ max
π̄1∈Π1,π̄2∈Π2

L(x; π̄1, π̄2)− L(x∗; π1, π2) (3.10)

Proof: First, for Part b), let x ∈ X be given. It follows from π̂1 ∈ ∂f1(f2(x)) and

π̂2 ∈ ∂f2(x) (see Theorem 23.5 in [58]) that

f2(x) = L2(x; π̂2), and f1(f2(x)) = L1(x; π̂1, π̂2).

Thus f(x) = L1(x; π̂1, π̂2) + u(x). Regarding Part a), for any x ∈ X , the following

decomposition is valid for any (π1, π2) ∈ Π1 × Π2:

L(x; π̂1, π̂2)− L(x; π1, π2) = L(x; π̂1, π̂2)− L(x; π1, π̂2) + L(x; π1, π̂2)− L(x; π1, π2)

= L1(x; π̂1, π̂2)− L1(x; π1, π̂2)︸ ︷︷ ︸
A

+π1(L2(x; π̂2)− L2(x; π2))︸ ︷︷ ︸
B

,

where A ≥ 0 because π̂1 ∈ argmaxπ1∈Π1
{π1f2(x) − f ∗

1 (π1) ≡ L1(π1, π̂2;x)}. If f2 is

affine, Π2 is a singleton set such that B = 0. Otherwise, Π1 is non-negative (Assumption

2). L2(π̂2;x) − L2(π2;x) ≥ 0 implies B ≥ 0. Therefore we get f(x) = L(x; π̂1, π̂2) ≥

L(x; π1, π2).

As for Part c), the first-order optimality condition implies that there exist some π∗
1 ∈

∂f1(f2(x
∗)), π∗

2 ∈ ∂f2(x∗) and u′ ∈ ∂u(x∗) such that π∗
1π

∗
2(x−x∗)+⟨u′, x− x∗⟩ ≥ 0 ∀x ∈

70

X. Thus, with Du(x;x
∗) := u(x)− u(x∗)− ⟨u′, x− x∗⟩ ≥ 0, we get

L(x; π∗
1, π

∗
2)− L(x∗; π∗

1, π
∗
2) = π∗

1π
∗
2(x− x∗) + ⟨u′, x− x∗⟩+Du(x;x

∗) ≥ 0.

The relation L(x∗; π1, π2) ≤ L(x∗; π∗
1, π

∗
2) is a direct consequence of the strong duality. So

z∗ := (x∗; π∗
1, π

∗
2) is a saddle point.

Part d) is a direct consequence of Parts a) and b). □

Now we introduce aQ-gap function which is often-used for saddle point problems (e.g.

see [28] and [55]). For a point zt := (xt; πt
1, π

t
2) ∈ Z, the Q-gap function, defined with

respect to some reference point z ∈ Z, is given by

Q(zt, z) := L(xt; π1, π2)− L(x; πt
1, π

t
2). (3.11)

The Q-gap function plays a central role in our development for two reasons. First, it pro-

vides an upper bound to the optimality gap (see Lemma 4.1.d)), so reducing the Q-gap also

reduces the optimality gap. Second, the Q-gap function admits a decomposition conducive

to algorithm design. Specifically, the development of the SSD method is motivated by the

following decomposition:

Q(zt, z) = Q2(z
t, z) +Q1(z

t, z) +Q0(z
t, z), (3.12)

Q2(z
t, z) := L(xt; π1, π2)− L(xt; π1, πt

2) = π1[π2x
t − f ∗

2 (π2)] −π1[πt
2x

t − f ∗
2 (π

t
2)] ,

(3.13)

Q1(z
t, z) := L(xt; π1, πt

2)− L(xt; πt
1, π

t
2) = π1L2(π

t
2;x

t)− f ∗
1 (π1)

−[πt
1L2(π

t
2;x

t)− f ∗
1 (π

t
1)] , (3.14)

Q0(z
t, z) := L(xt; πt

1, π
t
2)− L(x; πt

1, π
t
2) = πt

1π
t
2x

t + u(xt) − (πt
1π

t
2x+ u(x)), (3.15)

71

where Q2, Q1, and Q0 relate to the optimality of πt
2, π

t
1 and xt, respectively. The concep-

tual sequential dual (SD) method, originally proposed in [55], performs sequential prox-

mappings to generate πt
2, π

t
1 and xt to reduceQ2,Q1, andQ0, respectively, that is, the boxed

terms in (Equation 3.13), (Equation 3.14) and (Equation 3.15). With (x0; π0
1, π

0
2) ∈ Z, the

tth iteration of the SD method is given by

πt
2 ← argmax

π2∈Π2

π2x̃
t − f ∗

2 (π2)− τ2,tU2(π2; π
t−1
2), where x̃t := xt−1 + θt(x

t−1 − xt−2);

πt
1 ← argmax

π1∈Π1

π1ỹ
t
1 − f ∗

1 (π1)− τ1,tU1(π1; π
t−1
1),

where ỹt1 := L2(x
t−1; πt

2) + θtπ
t−1
2 (xt−1 − xt−2);

xt ← argminx∈X ỹt0x+ u(x) + ηt
2

∥∥x− xt−1
∥∥2
, ỹt0 := πt

1π
t
2.

(3.16)

In the above listing, U2 and U1 denote general prox-functions and scalars τ2,t, τ1,t and ηt

represent non-negative stepsizes. Since xt is yet available, the arguments to the πt
2 and πt

1

prox-mappings are extrapolated points, i.e., x̃t and ỹt1 to predict xt and L2(x
t; πt

2).

The deterministic SD method has been shown to achieve optimal complexities under

various settings [59, 55, 60]. To adapt it to the NSCO setting, we propose to replace the

deterministic arguments, ỹt1 and ỹt0, with some stochastic estimators, ỹt1(ξ) and ỹt0(ξ). This

leads to a stochastic version of the SD method, namely, the SSD method. Initialized to

(x0; π0
1, π

0
2) ∈ Z and x−1 = x0, its tth iteration is given by

πt
2 ← argmaxπ2∈Π2

π2x̃
t − f ∗

2 (π2)− τ2,tU2(π2; π
t−1
2),

where where x̃t := xt−1 + θt(x
t−1 − xt−2);

πt
1 ← argmaxπ1∈Π1

π1ỹ
t
1(ξ)− f ∗

1 (π1)− τ1,tU1(π1; π
t−1
1),

where ỹt1 := L2(x
t−1; πt

2) + θtπ
t−1
2 (xt−1 − xt−2);

xt ← argminx∈X ỹt0(ξ)x+ u(x) + ηt
2

∥∥x− xt−1
∥∥2
,where ỹt0 := πt

1π
t
2.

(3.17)

72

Next, we provide the concrete implementation to the above prox-mappings and the

construction of the unbiased estimators, i.e., ỹt1(ξ) and ỹt0(ξ) for ỹt1 and ỹt0. First, let us

consider the two-layer smooth problem where f1 is smooth. A key challenge appears to be

that the conjugate functions, f ∗
i ’s, are not explicitly known. However, if Df∗

i
, the Bregman

distance function generated by f ∗
i , is selected as the prox-function Ui, there exists some

primal equivalences to the prox-mappings of f ∗
i ’s such that the steps in (Equation 3.17)

simplify to gradient evaluations. Towards that end, an important result is the following

relation (see Theorem 23.5 in [58]) between a closed convex and proper function g and its

Fenchel conjugate g∗,

π ∈ argmaxπ̄∈dom(g∗)π̄y − g∗(π̄)⇐⇒ π ∈ ∂g(y)⇐⇒ g∗(π) = πy − g(y). (3.18)

The first relation in (Equation 3.18) implies the equivalence of the prox-mapping of f ∗
i

to a gradient evaluation at some averaged point. Specifically, the following lemma is an

extension of a similar result in [28, 56] to vector-valued functions and its proof is deferred

to the Appendix.

Lemma 3.2 Given a convex, closed and proper vector function g, if πt−1 is associated with

some primal point yt−1, i.e., πt−1 = g′(yt−1) ∈ ∂g(yt−1), then the prox-mapping for πt,

i.e., πt ∈ argminπ∈dom(g∗) − πỹt + g∗(π) + τtDg∗(π; π
t−1), is equivalent to

πt = g′(yt) ∈ ∂g(yt) with yt := (ỹt + τty
t−1)/(1 + τt). (3.19)

Thus, initialized to π0
1 = ∇f1(y01) and π0

2 = ∇f2(y02), each iteration of the SSD algorithm

73

in its primal form is given by

πt
2 ← ∇f2(yt2), where yt

2
:= (x̃t + τ2,ty

t−1

2
)/(1 + τ2,t), x̃

t := xt−1 + θt(x
t−1 − xt−2);

ỹt1 := f2(y
t

2
) +∇f2(yt2)(x

t−1 − yt
2
) + θt∇f2(yt−1

2
)(xt−1 − xt−2);

πt
1 ← ∇f1(yt1), where yt

1
:= (ỹt1(ξ) + τ1,ty

t−1

2
)/(1 + τ1,t);

xt ← argminx∈X ỹ
t
0(ξ)x+ u(x) + ηt

2

∥∥x− xt−1
∥∥2 where ỹt0 := ∇f1(yt1)∇f2(y

t

2
).

(3.20)

Notice that the second line in (Equation 3.20) utilizes the fact f2(yt2) + ∇f2(y
t
2
)(xt−1 −

yt
2
) = L2(x

t−1; πt
2). This is valid because πt

2 = ∇f2(yt2) and f ∗
2 (π

t
2) = ∇f2(yt2)y

t
2
− f2(yt2)

(the second equivalence in (Equation 3.18)).

The construction for ỹt1(ξ) and ỹt2(ξ) are provided in the concrete primal-form SSD

method shown in Algorithm 4. We make two observations. First, thanks to its primal

representation in Line 2 of (Equation 3.20), an unbiased estimator to ỹt1, ỹt1(ξ), can be con-

structed in Line 4 of Algorithm 4 with stochastic estimators from SO2, i.e., f2(yt2, ξ
1
2),

∇f2(yt2, ξ
1
2), f2(y

t−1
2
, ξ̂2). Notice that the estimator for f ∗

2 (π
t
2) (as a part of L2(x

t−1; πt
2)

in line 2 of (Equation 3.17)) is obtained without explicitly knowing either f ∗
2 nor πt

2.

Second, the dependence between the sequentially generated iterates requires us to make

three independent queries to SO2 (e.g. Line 3 of Algorithm 4). For example, consider

πt
1π

t
2, the argument to the xt-prox mapping in (Equation 3.20). As shown in Figure Fig-

ure 3.1, since the estimator ∇f2(πt
2, ξ

1
2) is used to generate πt

1 in Line 4 of Algorithm 4,

E[∇f2(yt2, ξ
1
2)|πt

1] ̸= ∇f2(yt2). Line 5 needs a new estimator∇f2(yt2, ξ
0
2) independent of πt

1

(conditioned on πt
2) to ensure

E[∇f1(yt1, ξ
0
1)∇f2(yt2, ξ

0
2)|πt

1, π
t
2] = ∇f1(yt1)∇f2(y

t

2
) = πt

1π
t
2.

An additional estimator f2(yt−1
2
, ξ̂2) is also required in the next iteration for a similar reason.

To highlight their independence, we use the notation ξji to emphasize that an independent

74

πt
2

f2(y
t
2
, ξ12),∇f2(yt2, ξ

1
2)

∇f2(yt2, ξ
0
2)

πt
1 ∇f1(yt1, ξ

0
1)

Figure 3.1: Illustration of stochastic dependency: ∇f2(yt2, ξ
0
2) is independent of

∇f1(yt1, ξ
0
1) conditioned on πt

2 = ∇f(yt2).

j th estimator is drawn from SOi and that it is used as part of the argument for the prox-

mapping to reduce Qj , and use the notation ξ̂i to emphasize it being used for momentum

extrapolation in the next iteration.

Algorithm 4 Stochastic Sequential Dual (SSD) Method for the Smooth Two Layer Problem

Input: x0 ∈ X .
1: Set y0

2
= x−1 ← x0. Call SO2 to obtain∇f2(y02, ξ̂2) and set y0

1
← f2(x

0, ξ̂2).
2: for t = 1, 2, 3...N do
3: Set x̃t ← xt−1 + θt(x

t−1 − xt−2). Set yt
2
← (τ2,ty

t−1
2

+ x̃t)/(1 + τ2,t).

Call SO2 to obtain independent estimates
{f2(yt2, ξ

1
2),∇f2(yt2, ξ

1
2),∇f2(yt2, ξ

0
2),∇f2(yt2, ξ̂2)}.

4: Set ỹt1(ξ)← f2(y
t
2
, ξ12) +∇f2(yt2, ξ

1
2)(x

t−1 − yt
2
) + θt∇f2(yt−1

2
, ξ̂2)(x

t−1 − xt−2).

Set yt
1
← (τ1,ty

t−1
1

+ ỹt1(ξ))/(1 + τ1,t). Call SO1 to obtain∇f1(yt1, ξ
0
1).

5: Set ỹt0(ξ)← ∇f1(yt1, ξ
0
1)∇f2(yt2, ξ

0
2). Compute xt ← argminx∈X ỹ

t
0(ξ)x+ u(x) +

ηt
2
∥x− xt−1∥2, .

6: end for
7: Return x̄N =

∑N
t=1 ωtx

t/(
∑N

t=1 ωt).

Now we present some modifications required to handle a structured non-smooth f1 (c.f.

(Equation 3.7)), i.e.,

f1(y1) := max
π1∈Π1

⟨π1, y1⟩ − f ∗
1 (π1), ∀y1 ∈ Rn1 . (3.21)

Recall that our definition of structured non-smoothness implies that the prox-mapping of

f ∗
1 , with ∥·∥2 as the prox-function, can be efficiently computed. So the concrete imple-

75

mentation of (Equation 3.17), the SSD method for the two-layer problem with a structured

non-smooth f1, is the same as Algorithm 4 except for initializing π0
1 to some point in Π1

and replacing Line 4 and 5 by

Set ỹt1(ξ)← f2(y
t

2
, ξ12) +∇f2(yt2, ξ

1
2)(x

t−1 − yt
2
) + θt∇f2(yt−1

2
, ξ̂2)(x

t−1 − xt−2).

Set πt
1 ← argmaxπ1∈Π1

⟨π1, ỹt1(ξ)⟩ − f ∗
1 (π)− τ1,t

∥∥π1 − πt−1
1

∥∥2
/2.

Set ỹt0(ξ)← πt
1∇f2(yt2, ξ

0
2)

and compute xt ← argminx∈X ỹt0(ξ)x+ u(x) + ηt
2

∥∥x− xt−1
∥∥2
.

(3.22)

3.2.2 Convergence Results

We present in this subsection the convergence guarantees for the proposed SSD method.

The proofs are deferred to subsection 3.2.4.

First, we need to specify a few problem parameters. We use the following sets, Y1 and

Y2, to define the effective domains for f1 and f2.

Y2 := X, Y1 := Conv
(
{L2(π2;x) | π2 = ∇f2(y2), y2, x ∈ Y2}

)
. (3.23)

Notice that Y1 is bounded set because X is assumed to be bounded. For the layer function

f2, the definitions of the smoothness constant L2, the Lipschitz-continuity constant M2

(over Y2) and variance constants, σ2 and σf2 , are listed below.

∥∇f2(y2)−∇f2(ȳ2)∥ ≤ L2 ∥y2 − ȳ2∥ ,∀y2, ȳ2 ∈ Rn.

∥∇f2(y2)∥ ≤M2, ∀y2 ∈ Y2.

E[
∥∥∥∇f2(y2)−∇f2(y2, ξ2)∥∥∥2

] ≤ σ2
2, E[

∥∥∥f2(y2)− f2(y2, ξ2)∥∥∥2

] ≤ σ2
f2
≤ σ2

2D2
X ,∀y2 ∈ Y2.

(3.24)

Notice that we assume the variance of f2(x, ξ) to be bounded also by σ2
2D2

X to simplify

76

the notation. For the layer function f1, we require the Lipschitz-smoothness L1 and the

variance constant σ1 to be defined over Rm1 because the stochastic estimate ỹt1(ξ) could

deviate from Y1. However, the Lipschitz-continuity constant M1 is defined only over the

bounded effective domain Y1 (c.f. (Equation 3.23)). This ensures that it always remains

finite. Specifically, their definitions are given by

∥∇f1(y1)−∇f1(ȳ1)∥ ≤ L1 ∥y1 − ȳ1∥ ,

E[
∥∥∥∇f1(y1)−∇f1(y1, ξ1)∥∥∥2

] ≤ σ2
1, ∀y1, ȳ1 ∈ Rn1 .∥∥∥∇f1(y1)∥∥∥ ≤M1, ∀y1 ∈ Y1.

(3.25)

Additionally, it is also useful to define uniform upper bounds for variances associated

with the stochastic arguments to the prox-mappings in Algorithm 4.

σ̃1 := {max
t≥0

E[
∥∥ỹt1(ξ)− E[ỹt1(ξ)]

∥∥2
]}1/2, σ̃x := {max

t≥0
E[
∥∥ỹt0(ξ)− E[ỹt0(ξ)]

∥∥2
]]}1/2.

(3.26)

Now we are ready to state the convergence rate for the non-strongly convex problem.

Theorem 3.1 Let a smooth two-layer function f be given, with its problem parameters

defined in (Equation 3.24), (Equation 3.25) and (Equation 3.26). If {xt} is generated by

Algorithm 4 with

ωt = t, θt = (t− 1)/t, τ1,t = τ2,t = (t− 1)/2, (3.27)

then σ̃2
1 ≤ 3σ2

2D2
X + 2σ2

f2
≤ 5σ2

2D2
X and σ̃2

x ≤ σ2
1M

2
2 + 2M2

1σ
2
2 + σ2

2(σ
2
1 + 10L2

1σ
2
2D2

X). If,

in addition, ηt is chosen as

ηt = max{ 2
t+1

(M̄1L2 + L1M
2
2),

√
tσ̃x

DX
}, (3.28)

77

for some M̄1 ≥
∥∥∇f1(f2(x̄N))∥∥ , the ergodic average solution x̄N satisfies

E[f(x̄N)− f(x∗)] ≤ M̄1L2+L1M2
2

N(N+1)

∥∥x0 − x∗∥∥2
+

4L1σ̃2
1

N
+ 2M̄1σ̃1√

N
+ 4σ̃xDX√

N
,∀N ≥ 2.

We make two remarks regarding the result. First, in the deterministic case,

i.e., σ1 = σ2 = 0, the SSD method has an oracle complexity of O((M̄1L2 +

L1M
2
2)

1/2 ∥x0 − x∗∥ /
√
ϵ). Since f1 ◦ f2 restricted to X has a smoothness constant of

L1M
2
2 +M1L2 and M̄1 ≤M1, the oracle complexity of the SSD method is of the same or-

der as the optimal oracle complexity of O((M1L2 +L1M
2
2)

1/2 ∥x0 − x∗∥ /
√
ϵ) for solving

a smooth f , e.g. obtained by using the Nesterov’s accelerated gradient method. In prac-

tice, if there exists some prior knowledge about
∥∥∇f1(f2(x̄N))∥∥, say the output solution

x̄N is inside some ball around x∗, then we can select M̄1 to be significantly smaller than

M1 such that the SSD method outperforms the Nesterov’s accelerated gradient method.

This improvement is made possible by exploiting the nested problem structure. Second,

the stepsize parameters of prox-mappings for the dual variables in (Equation 3.27) are pa-

rameter independent. The specific of choice of ηt in (Equation 3.28) is only required to

achieve the desired constant dependence. In practice, any ηt that scales Θ(
√
t) leads to the

order-optimal stochastic oracle complexity of O(1/ϵ2).

The next theorem presents the convergence rate for the strongly convex problem.

Theorem 3.2 Let a smooth two-layer function f (c.f. (Equation 3.4)) be given and let

the regularization term u(x) have a positive strong convexity modulus of α. Let problem

parameters be defined in (Equation 3.24), (Equation 3.25) and (Equation 3.26). If {xt} is

generated by Algorithm 4 with

ωt = t, θt = (t− 1)/t, τ1,t = τ2,t = (t− 1)/2,

we have σ̃2
1 ≤ 3σ2

2D2
X +2σ2

f2
≤ 5σ2

2D2
X and σ̃2

x ≤ σ2
1M

2
2 +2M2

1σ
2
2 +σ

2
2(σ

2
1 +10L2

1σ
2
2D2

X).

78

If, in addition, ηt is chosen as

ηt := max{ 2
t+1

(M̄1L2 + L1M
2
2),

(t−1)α
2
},

for some M̄1 ≥
∥∥∇f1(f2(x̄N))∥∥ , the ergodic average solution x̄N and the last iterate xN

satisfy

E[f(x̄N)− f(x∗)] ≤ (
L1M2

2

α
+ 1)[log(N+1)L̃

N2

∥∥x0 − x∗∥∥2
+ 4

N
(L1σ̃

2
1 +

σ̃2
x

α
)], (3.29)

E[
∥∥xN − x∗∥∥2

] ≤ L̃
αN(N+1)

∥∥x0 − x∗∥∥2
+ 4

αN
(L1σ̃

2
1 +

σ̃2
x

α
), (3.30)

where L̃ := M̄1L2 + L1M
2
2 denotes the overall smoothness constant.

A few remarks are in order. First, a simpler stepsize choice of ηt = (t−1)α/2 still leads

to an order-optimal stochastic oracle complexity of O(1/ϵ), improving over the O(1/ϵ2)

complexity of the non-strongly problem. Second, by applying a certain restarting technique

to Algorithm 4 (see Section 4.2.3 of [28]), the stochastic oracle complexity for finding an

ϵ-close xN , i.e., E[
∥∥xN − x∗∥∥2

] ≤ ϵ, can be improved further to

O[
√
L̃/α log(

∥∥x0 − x∗∥∥2
/ϵ) + 4

αϵ
(L1σ̃

2
1 +

σ̃2
x

α
)].

Notice that the deterministic part, O[
√
L̃/α log(∥x0 − x∗∥2 /ϵ)], is not improvable and the

stochastic part has optimal dependence with respect to both α and ϵ. Third, the stochastic

oracle complexity for finding an ϵ-optimal solution, i.e., E[f(x̄N) − f(x∗)] ≤ ϵ, is also

O(1/ϵα2). Its dependence on α is worse than the O(1/ϵα) complexity for solving a one-

layer stochastic optimization problem. It results from the analysis technique of combining

the Q-gap function and the distance
∥∥x̄N − x∗∥∥2 together to derive a function-value bound.

Such a worse dependence on α is also observed in [61] where a similar technique is used

for analyzing a randomized algorithm. However, it is unclear if the dependence on α is

improvable for the NSCO problem.

79

Now we move on to consider the case with a structured non-smooth f1. We use M̃1 to

denote its Lipschitz continuity constant, i.e.,

max
π1∈Π1

∥π1∥ ≤ M̃1. (3.31)

Notice that the above definition requires f1 to be M̃1-Lipschitz continuous over Rn1 , rather

than over the bounded effective domain Y1 in (Equation 3.25). The convergence guarantee

for the non-strongly case is presented in the next theorem.

Theorem 3.3 Let a two-layer function f (c.f. (Equation 3.4)) comprised of a structured

non-smooth f1 and a smooth f2 be given. Let the problem parameters be defined in

(Equation 3.24), (Equation 3.26) and (Equation 3.31). If {xt} is generated according to

(Equation 3.22) with

ωt = t, θt = (t− 1)/t, τ2,t = (t− 1)/2,

we have σ̃2
1 ≤ 3σ2

2D2
X + 2σ2

f2
≤ 5σ2

2D2
X and σ̃2

x ≤ M2
1σ

2
2. If, in addition, the remaining

prox-mapping stepsizes are chosen as

ηt := max{2M1L2

t+1
+ 2M1M2

DX
,
√
tσ̃x

DX
}, τ1,t := max{M2DX

2M1
,
√
tσ̃1

2M1
}, (3.32)

the ergodic average solution x̄N satisfies

E[f(x̄N)− f(x∗)] ≤ M̃1L2

N2

∥∥x0 − x∗∥∥2
+ 4M̃1M2DX

N
+ 4M̃1σ̃1√

N
+ 2DX σ̃x√

N
. (3.33)

We make three remarks regarding the result. First, in the deterministic case with σ2 = 0,

the oracle complexity simplifies toO((M̃1L2)
1/2 ∥x0 − x∗∥ /

√
ϵ+DXM̃1M2/ϵ),where the

first and the second term can be attributed to the smooth f2 and the structure non-smooth

f1, respectively. Second, the specific choices of ηt and τ1,t in (Equation 3.32) is required

80

only for the desired constant dependence. In the stochastic case, any ηt = Θ(
√
t) and

τ1,t = Θ(
√
t) would lead to the order-optimal oracle complexity of O(1/ϵ2). Third, the

O(1/ϵ2) complexity is not improvable even under the strongly convex setting, which we

will discuss in the next subsection.

3.2.3 Lower Complexity Bound

We present a lower complexity result for the strongly convex problem with a structured

non-smooth outer-layer function. Specifically, we develop a lower bound on the number

of queries to SO2 required to obtain an (expected) ϵ-optimal solution for a class of first-

order methods. For simplicity, we assume X to be a ball centered on 0, B(0, r), and

u(x) := α ∥x∥2 /2.

We take an approach similar to Nesterov [1] by proposing an abstract computation

scheme that updates the reachable affine subspaces. The abstract scheme consists of the

following steps. In the beginning, provided with x0 ∈ X , y01 ∈ Rn1 and π0
1 ∈ Π1, the affine

sub-spaces are initialized to X 0 := span(x0), Y0
1 := {y01}, and Π0

1 = span(π0
1). In the tth

iteration, the updates are given by (the “+” in the definitions of X t, Y t
1 and Πt

1 represents

the Minkowski sum.)

Query SO2 to obtain (f2(y
t
2, ξ

t
2), f

′
2(y

t
2, ξ

t
2)) at some yt2 ∈ X t−1.

Y t
1 := Y t−1

1 + span{f2(yt2, ξt2)− y01}+ {f ′
2(y

j
2, ξ

j
2)x : j ≤ t, x ∈ X t−1}.

Πt
1 := Πt−1

1 + span(πt
1) where πt

1 = argmaxπ1∈Π1
⟨π1, yt1⟩ − f ∗

1 (π1)−
τ1,t∥π1−πt−1

1 ∥2
2

,

for some yt1 ∈ Y t
1, τ1,t ≥ 0, πt−1

1 ∈ Πt−1
1 .

X t := X t−1 + {f ′
2(y

j
2, ξ

j
2)

⊤π⊤
1 : j ≤ t, π1 ∈ Πt

1}.

(3.34)

After N iterations, the scheme can output any xN ∈ XN . Notice the superscript t in

ξt2 above represents the unbiased estimator drawn for the tth iterate yt2, rather than the tth

81

repeated sample used in the last subsection.

The abstract scheme is quite general. As X is a ball centered at zero, X t encompasses

all proximal mappings from each proximal center in X t−1, using any non-negative step

size ηt and any argument within the set At := {f ′
2(y

j
2, ξ

j
2)

⊤π⊤
1 : j ≤ t, π1 ∈ Πt

1}. An

example of this is the SCGD algorithm in [48]. Since Y t
1 in (Equation 3.34) contains every

possible convex combination of evaluated function values {f2(yj2, ξ
j
2)}j≤t, and the above πt

1

evaluation corresponds to gradient evaluation with τ1,t = 0, the argument set At contains

the pseudo-gradient in the SCGD algorithm. Another example is our SSD method. Since

it includes all possible momentum-extrapolation terms, Y t
1 contains ỹt1(ξ) and yt

1
from Al-

gorithm 4-(Equation 3.22) so that At contains ỹt0(ξ) from Algorithm 4-(Equation 3.22).

Additionally, since each iteration of Algorithm 4-(Equation 3.22) requires three indepen-

dent queries to SO2, three iterations of the abstract scheme are sufficient to implement it.

We state the lower complexity result for the abstract scheme in the next theorem, and its

proof is deferred to the Appendix.

Theorem 3.4 Let the abstract scheme in (Equation 3.34) be initialized to x0 = 0, π0
1 = 0

and some y01 . Given problem parameters ϵ > 0, M̃1 > 0, ᾱ ≤ M2
1/(4ϵ), and σf2 ≥

4ϵ/M1, there exists a nested two-layer problem (Equation 3.4) consisting of a structured

non-smooth f1 and a stochastic linear f2 such that f1 is M̃1-Lipschitz continuous (c.f.

(Equation 3.31)), the variance of f2(x, ξ) is bounded by σf2 (c.f. (Equation 3.25)), u(x) =

ᾱ ∥x∥2 /2, and at least N = Ω(M̃2
1σ

2
f2
/ϵ2) iterations is necessary for finding an ϵ-solution

xN with E[f(xN)− f(x∗)] ≤ ϵ.

The preceding lower bound establishes the O(1/ϵ2) oracle complexity in

(Equation 3.33) to be order-optimal even when the setting is strongly convex. This shows

that solving the nested composite problem with a structured non-smooth outer-layer func-

tion may be inherently more challenging than solving the one-layer problem.

82

3.2.4 Convergence Proofs

In this subsection, we present proofs to results in subsection 3.2.2. We begin with a con-

vergence bound for the Q-gap function, which will be useful for proving Theorem 3.1,

Theorem 3.2 and Theorem 3.3.

Proposition 3.1 Consider a two-layer problem of the form (Equation 3.4), with the

Lipschitz-continuity and smoothness constants of f2 defined in (Equation 3.24). Suppose

U1 is β-strongly convex, and f ∗
1 is µ-strongly convex with respect to U1, i.e.,

U1(π1; π̄1) ≥ β ∥π1 − π̄1∥2 /2, Df∗
1
(π1; π̄1) ≥ µU1(π1; π̄i) ∀π1, π̄1 ∈ Π1.

Consider solution iterates {zt := (xt; πt
1, π

t
2)} generated by the abstract

Algorithm (Equation 3.17) with U2 = Df∗
2

and π0
2 = ∇f2(x0). Assume the stochas-

tic arguments ỹt1(ξ) and ỹt0(ξ) satisfy the variance bounds in (Equation 3.26). Let z :=

(x∗; π1, π2 = ∇f2(y2)), with y2 ∈ X , denote a reference point which could potentially

depend on {zt}. If the following requirements are satisfied with some non-negative weights

{ωt} for some constant M̃2 ≥ ∥πt
2∥ ∀t ≥ 1:

ωt = θt+1ωt+1, ωt(τ2,t + 1) ≥ ωt+1τ2,t+1,

ηt ≥ θt+1∥π1∥L2

τ2,t+1
+

θt+1M̃2
2

τ1,t+1β
, ηN ≥ ∥π1∥L2

τ2,N+1
+

M̃2
2

(τ1,N+µ)β
,

(3.35)

the next Q-gap bound is valid (with ω0 := 0)

E[
∑N

t=1 ωtQ(z
t; z) + ωN(ηN + α)

∥∥xN − x∗∥∥2
/2]

≤E[
∑N

t=1{ωtηt − ωt−1(ηt−1 + α)} ∥xt−1 − x∗∥2 /2]

+ E[
∑N

t=1{ωtτ1,t − ωt−1(τ1,t−1 + µ)}U1(π1; π
t−1
1)] + ω1τ2,1Df∗

2
(π2; π

0
2)

+
∑N

t=1 ωtσ̃
2
x/(ηt + α) +

∑N
t=1 ωtσ̃

2
1/β(τ1,t + µ) + E[

∑N
t=1 ωt⟨π1, ỹt1 − ỹt1(ξ)⟩].

(3.36)

83

Proof: First, we use the definition of prox-mapping for π1 in (Equation 3.17) to derive

a convergence bound for Q1 (c.f. (Equation 3.14)). The µ−strong convexity of f ∗
1 with

respect to U1 implies a three point inequality (e.g. Lemma 3.8 of [28])

−(πt
1 − π1)ỹt1(ξ) + f ∗

1 (π1)− f ∗
1 (π

t
1) + (τ1,t + µ)U1(π1; π

t
1)

+ τ1,t(U1(π
t
1; π

t−1
1)− U1(π1; π

t−1
1)) ≤ 0.

(3.37)

Let’s focus on −(πt
1 − π1)ỹt1(ξ). Setting δt1 := ỹt1 − ỹt1(ξ), we get

E[−(πt
1 − π1)ỹt1(ξ)] = E[− (πt

1 − π1)L2(π
t
2;x

t)

+ (πt
1 − π1)δt1 + (πt

1 − π1)(L2(π
t
2;x

t)− ỹt1)],

whereby

(πt
1 − π1)(L2(π

t
2;x

t)− ỹt1) = (πt
1 − π1)πt

2(x
t − xt−1)− θt(πt−1

1 − π1)πt−1
2 (xt−1 − xt−2)

+ θt(π
t−1
1 − πt

1)π
t−1
2 (xt−1 − xt−2),

E[(πt
1 − π1)δt1] = E[πt

1δ
t
1]− E[π1δt1].

Consider E[πt
1δ

t
1] for a fixed t. We can write the πt

1 proximal mapping in (Equation 3.17)

equivalently as:

πt
1 ← argmin

π1∈Π1

π1(g + δt1) + [f ∗
1 (π1) + τ1,tUi(π1; π

t−1
1)],

with g := ỹt1. Since E[δt1|ỹt1] = 0, E[∥δt1∥
2
] ≤ σ̃2

1 , and that [f ∗
1 (π1) + τ1,tUi(π1; π

t−1
1)] has

a strong convexity modulus of (µ + τ1,t)β, we have from Lemma 3.7 from the Chapter

Appendix that

−E[πt
1δ

t
1] ≤

σ̃2
1

β(µ+τ1,t)
.

84

Moreover, Young’s inequality and the fact x0 = x−1 lead us to

E[−θt(πt−1
1 − πt

1)π
t−1
2 (xt−1 − xt−2)− τ1,tU1(π

t
1; π

t−1
1)]

≤ θ2tL1M̃
2
2

∥∥xt−1 − xt−2
∥∥2
/βτ1,t,

E[−(πN
1 − π1)πN

2 (xN − xN−1)− (τN + α)U1(π
N
1 ; πN−1

1)]

≤ L1M̃
2
2

∥∥xN − xN−1
∥∥2
/β(τN + µ),

E[−θt(π0
1 − π1

1)π
0
2(x

0 − x−1)] = 0.

Thus, the ωt-weighted sum of (Equation 3.37) satisfies

E[
∑N

t=1ωtQ1(z
t; z)] ≤

∑N
t=1[ωtτ1,t − ωt−1(τ1,t−1 + µ)]U1(π1; π

t−1
1) +

∑N
t=1

ωtσ̃2
1

β(τ1,t+µ)

+ E[
∑N

t=1 π1δ
t
1] +

∑N
t=2

ωt−1θtM̃2
2

βτ1,t
∥xt−1 − xt−2∥2 + ωNM̃2

2

β(τ1,N+µ)

∥∥xN − xN−1
∥∥2
.

(3.38)

Next, we consider the prox-mapping for π2. The definition of πt
2 in (Equation 3.17),

together with f ∗
2 being 1-strongly convex with respect to Df∗

2
, implies the following three

point inequality

−(πt
2 − π2)x̃t + f ∗

2 (π2)− f ∗
2 (π

t
2) + (τ2,t + 1)Df∗

2
(π2; π

t
2) + τ2,tDf∗

2
(πt

2; π
t−1
2)

− τ2,tDf∗
2
(π2; π

t−1
2) ≤ 0.

Multiplying its rows with weight π1 leads to,

− π1[(πt
2 − π2)x̃t + f ∗

2 (π2)− f ∗
2 (π

t
2)]+

(τ2,t + 1)π1Df∗
2
(π2; π

t
2) + τ2,tπ1Df∗

2
(πt

2; π
t−1
2)− τ2,tπ1Df∗

2
(π2; π

t−1
2) ≤ 0.

(3.39)

Since πt
2 = ∇f2(yt2) for some yt2 ∀t (see Lemma 3.2), Lemma 3.6 in the Chapter Appendix

85

leads to

∥π1∥ π1Df∗
2
(πt

2; π
t−1
2) ≥

∥∥π1(πt
2 − πt−1

2)
∥∥2

2L2

.

We can obtain a Q2 bound using a similar argument as above

E[
∑N

t=1 ωtQ2(z
t; z)] ≤ω1τ2,1π1Df∗

2
(π2; π

0
2)

+
∑N

t=2
ωt−1θtL2∥π1∥

τ2,t
∥xt−1 − xt−2∥2 + ωNL2∥π1∥

τ2,N+1

∥∥xN − xN−1
∥∥2
.

(3.40)

Similarly, we can derive from the prox-mapping for xt (Equation 3.17) that

E[
∑N

t=1 ωtQ0(z
t; z) + ωN (ηN+α)

2

∥∥xN − x∗∥∥2
] + E[

∑N
t=1

ωtηt
2
∥xt − xt−1∥2]

≤
∑N

t=1 ωtσ̃
2
x/(ηt + α)E[

∑N
t=1{ωtηt − ωt−1(ηt−1 + α)} ∥xt−1 − x∗∥2].

(3.41)

The desired inequality in (Equation 3.36) then follows from adding up (Equation 3.38),

(Equation 3.40) and (Equation 3.41). □

We specialize Proposition 3.1 to prove Theorem 3.1.

Proof of Theorem 3.1 Clearly, the proposed Algorithm 4 is a special case of

(Equation 3.17) with U1 = Df∗
1
, πt

1 = ∇f1(yt1) and πt
2 = ∇f2(yt2).

We provide bounds for the variance constants in (Equation 3.26). We have σ̃2
1 ≤ 2σ2

f2
+

3σ2
2D2

X because

E[
∥∥ỹt1(ξ)− E[ỹt1(ξ)]

∥∥2
]

= E[∥{f2(yt2, ξ
1
2)− f2(yt2)}+ {∇f2(y

t

2
, ξ12)−∇f2(yt2)}(x

t−1 − yt
2
)

+ θt{∇f2(yt2, ξ̂2)−∇f2(y
t

2
)}(xt−1 − xt−2)∥2]

≤ 2σ2
f2
+ 2σ2

2D2
X + σ2

2D2
X ≤ 2σ2

f2
+ 3σ2

2D2
X .

The variance constant associated with ỹt0(ξ) is more involved. We begin with bounds for

∥πt
1∥ =

∥∥∥∇f1(yt1)∥∥∥ and ∥πt
2∥ =

∥∥∥∇f2(yt2)∥∥∥. We need some more useful characterizations

86

for yt
1

and yt
2
. Since θt = (t− 1)/t, τ2,t = (t− 1)/2 and y0

1
= x0 ∈ X , we get

yt
2
=

2(
∑t−1

l=1 lx
l + txt−1)

t(t+1)
∀t ≥ 1.

So yt
2
∈ X and ∥πt

2∥ =
∥∥∥∇f2(yt2)∥∥∥ ≤ M2 for all t ≥ 0. Similarly, setting L̂2(x; π

t
2(ξ)) :=

f2(y
t
2
, ξ12)−∇f2(yt2, ξ

1
2)y

t
2
+∇f2(yt2, ξ̂2)x+ [∇f2(yt2, ξ

1
2)−∇f2(yt2, ξ̂2)]x

t−1, we have

yt
1
=

2[
∑t−1

l=1 lL̂2(x
l; πl

2(ξ)) + tL̂2(x
t−1; πt

2(ξ)]
t(t+1)

∀t ≥ 1. (3.42)

Define yt
1,E := 2[

∑t−1
l=1 lL2(x

l; πl
2) + L2(x

t−1; πt
2)]/[t(t+ 1)] ∈ Y1. By Jensen’s inequality,

we have

E[
∥∥∥yt

1
− yt

1,E

∥∥∥2

] ≤ max
l≤t

E[
∥∥L2(x

l; πl
2(ξ))− L2(x

t; πt
2)]

∥∥2
] ≤ 5σ2

2D2
X .

Thus the L1-smoothness of f1 implies that

E[
∥∥∥∇f1(yt1)∥∥∥2

] ≤ 2E[
∥∥∥∇f1(yt1,E)∥∥∥2

] + 2L2
1E[

∥∥∥yt
1
− yt

1,E

∥∥∥2

] ≤ 2M2
1 + 10L2

1D2
Xσ

2
2.

The conditional independence of∇f1(yt1, ξ
0
1) and ∇f2(yt2, ξ

0
2) implies that

E[
∥∥∥yt

0
(ξ)− yt

0

∥∥∥2

] = E[
∥∥∥∇f1(yt1, ξ01)∇f2(yt2, ξ02)−∇f1(yt1)∇f2(yt2)∥∥∥2

]

≤ σ1M
2
2 + σ2

1σ
2
2 + σ2

2E[
∥∥∥∇f1(yt1)∥∥∥]

≤ σ2
1M

2
2 + 2M2

1σ
2
2 + σ2

2(σ
2
1 + 10L2

1σ
2
2D2

X).

So the upper bound for σ̃2
x in the theorem statement is valid.

Now we return to derive the function value convergence bound. Clearly, the require-

ments in Proposition 3.1 is satisfied with β = 1/L1, µ = 1, and M̃2 = M2, so it follows

87

from (Equation 3.36) that

E[
∑N

t=1 ωtQ(z
t; z)] ≤

∑N
t=1[ωtηt − ωt−1ηt−1] ∥xt−1 − x∗∥2 /2 +

∑N
t=1 ωtσ̃

2
x/ηt

+ 2NL1σ̃
2
1 + E

∑N
t=1 ωt⟨π1, ỹt1 − ỹt1(ξ)⟩.

(3.43)

In particular, the Cauchy-Schwartz inequality implies that

E[
∑N

t=1 ωt⟨π1, ỹt1 − ỹt1(ξ)⟩] = E1/2[∥π1∥2]E1/2[
∥∥∥∑N

t=1 ωt{ỹt1 − ỹt1(ξ)}
∥∥∥2

]

≤ N3/2σ̃2
1E1/2[∥π1∥2] ∀N ≥ 2.

(3.44)

Moreover, setting π̂N
1 = ∇f1(f2(x̄N)) and π̂N

2 = ∇f2(x̄N), the strong duality and the weak

duality relations in Lemma 4.1, and the linearity of L(x; π1, π2) with respect to x imply

(
∑N

t=1 ωt)(f(x̄
N)− f(x∗)) =

∑N
t=1 ωtL(

∑N
t=1 ωtx

t/[
∑N

t=1 ωt]; π̂
N
1 , π̂

N
2)−

∑N
t=1 ωtf(x

∗)

≤
∑N

t=1 ωt[L(xt; π̂N
1 , π̂

N
2)− L(x∗; πt

1, π
t
2)]

≤
∑N

t=1 ωtQ(z
t; (x∗; π̂N

1 , π̂
N
2)).

(3.45)

In view of the preceding two inequalities and that ∥π̂t
1∥ ≤ M̄1, the desired function-value

convergence rate can be derived from (Equation 3.43) by setting z to (x∗; π̂t
2, π̂

t
2) and divid-

ing the both sides by (
∑N

t=1 ωt). □

Proof of Theorem 3.2 First, the bounds on σ̃x and σ̃1 follow from the same argument

as that of Theorem 3.1.

Now let us develop a convergence bound for
∥∥xN − x∗∥∥2. Let z∗ := (x∗; π∗

1, π
∗
2) de-

note the saddle point to (Equation 3.8). Because our stepsizes satisfy the requirements in

Proposition 3.1 with µ = 1 and β = 1/L1, the consequent bound in (Equation 3.36) holds

for z = z∗. Taking in account Q(zt; z∗) ≥ 0 ∀t and that E[
∑N

t=1 ωt⟨π∗
1, ỹ

t
1 − ỹt1(ξ)⟩] = 0,

88

we get the

E[
∥∥xN − x∗∥∥2

] ≤ L̃
αN(N+1)

∥∥x0 − x∗∥∥2
+ 4

αN
(L1σ̃

2
1 +

σ̃2
x

α
),∀N ≥ 1.

In particular, Jensen’s inequality implies

E[
∥∥x̄N − x∗∥∥2

] ≤ 2L̃ log(N+1)
αN2

∥∥x0 − x∗∥∥2
+ 8

αN
(L1σ̃

2
1 +

σ̃2
x

α
). (3.46)

Next, choosing some π̂2 ∈ ∂f2(x̄N) and π̂1 = ∇f1(f2(x̄N)), and applying Proposition 3.1

again with the reference point (x∗; π∗
1, π̂2) for some π̂1 ∈ ∂f2(x̄N), we get

E[L(x̄N ; π∗
1, π̂2)− f(x∗)] ≤ L̃

αN(N+1)

∥∥x0 − x∗∥∥2
+ 4

αN
(L1σ̃

2
1 +

σ̃2
x

α
). (3.47)

Towards characterizing the function value convergence E[f(x̄N)−f(x∗)], we need to bound

the difference E[f(x̄N)− L(x̄N ; π∗
1, π̂2)]:

E[f(x̄N)− L(x̄N ; π∗
1, π̂2)] = E[L(x̄N ; π̂1, π̂2)− L(x̄N ; π∗

1, π̂2)]

= E[f ∗
1 (π

∗
1)− f ∗

1 (π̂1)− ⟨π∗
1 − π̂1,L2(x̄

N ; π̂2)⟩]

= E[Df∗
1
(π∗

1; π̂1)] = E[Df1(f2(x̄
N); f2(x

∗))]

≤ L1

2
E[
∥∥f2(x̄N)− f2(x∗)∥∥2

] ≤ L1M2
2

2
E[
∥∥x̄N − x∗∥∥2

].

(3.48)

Here, the fourth equality utilizes the fact that π̂1 = ∇f1(f2(x̄N)) ⇔ L2(π̂2; x̄
N) =

f2(x̄
N) ∈ ∂f ∗

1 (π̂1). The fifth equality relates the dual Bregman distance function Df∗
i

generated by the conjugate function f ∗
1 to the primal one generated by f1. Then the second

last inequality follows from the L1-smoothness of f1, which provides upper bounds for the

Df1 .

Substituting (Equation 3.46) into (Equation 3.48) and then combining it with

(Equation 3.47), we can conclude the desired functional value convergence bound in

89

(Equation 3.29). □

Proof of Theorem 3.3 Clearly, the proposed Algorithm in (Equation 3.22) is a special

case of (Equation 3.17) with U1(·) = ∥·∥2 and πt
2 = ∇f2(yt2). The bound on σ̃1 can be

derived similarly to that of Theorem 3.1. For σ̃x, we have

E[
∥∥∥yt

0
(ξ)− yt

0

∥∥∥2

] = E[
∥∥∥πt

1{∇f2(yt2, ξ
0
2)−∇f2(yt2)}

∥∥∥2

] ≤M2
1σ

2
2.

It is easy to check the requirements in Proposition 3.1 are satisfied with β = 1 and

µ = 0. Then function value convergence can also be deduced using an argument similar to

that of Theorem 3.1. □

3.3 General Nonsmooth Two-layer Problem

We study the general nonsmooth two-layer problem (Equation 3.4) where both f1 and f2

are stochastic and nonsmooth. As suggested in the introduction, the nonsmooth outer-layer

function f1 poses a critical challenge to the SSD method in that it is difficult to imple-

ment the prox-mapping for π1 (see Line 2 in (Equation 3.17)) with a strongly convex prox-

function. Although usingDf∗
1

as the prox-function can lead to efficient computation, it fails

to provide the necessary stabilization that is crucial for the convergence guarantee. This is

because Df∗
1

may not be strongly convex. Conversely, using ∥·∥2 as the prox-function can

provide the desired stabilization, but the prox-mapping with f ∗
1 may not be easily com-

putable. We resolve the challenge in this section by proposing a novel tri-conjugate refor-

mulation and developing a non-smooth stochastic sequential dual (nSSD) method. Specif-

ically, subsection 3.3.1 introduces the nSSD method, subsection 3.3.2 presents a lower

complexity result when the problem is strongly convex, and subsection 3.3.3 concludes the

section with the detailed convergence analysis.

90

3.3.1 The nSSD Method and Convergence Guarantee

First, we introduce a nested linearization reformulation for (Equation 3.4) to motivate the

nSSD method. Towards that end, we need another reformulation for the non-smooth outer

layer function. Given a convex function g : Rm → R, a general linear approximation to it

is specified by the evaluation point v and the approximation vector π

Lg(y, v; π) := ⟨π, y − v⟩+ g(v), π ∈ Rm, v ∈ Rm. (3.49)

Such a linear approximation has two desirable properties (Equation 3.49) ∀y ∈ Rn.

• Given any v̄ ∈ Rn, there always exists a π̂ ∈ Rn, say π̂ ∈ ∂g(y), such that

Lg(y, v̄; π̂) ≥ g(y).

• Given any π̄ ∈ Rn, there always exists a v̂ ∈ Rn such that Lg(y, v̂; π̄) ≤ g(y). Par-

ticularly, when π̄ is some subgradient of g, i.e., π̄ ∈ dom(g∗), we have Lg(y, v̂; π̄) =

⟨π̄, y⟩ − g∗(π̄) ≤ g(y) if π̄ ∈ ∂g(v̂).

Taken together, the two properties imply that the min−max saddle-point value of

Lg(y, v; π) (Equation 3.49) is equivalent ② to g(y):

g(y) = max
π∈Rn

min
v∈Rn
Lg(y, v; π) ∀y ∈ Rn. (3.50)

Since Lg in (Equation 3.49) also provides a certain kind of decoupling between g and the

possibly stochastic argument y, the reformulation could be advantageous for designing

convergent algorithms for the non-smooth nested problem in (Equation 3.4).

We provide two instructive interpretations to (Equation 3.50). First, if we regard π as

the Lagrange multiplier to the constraint v = y, (Equation 3.49) and (Equation 3.50) cor-

respond to the Lagrangian reformulation to the linearly constrained optimization problem,
②We can verify the fact by the first-order optimality condition for the saddle point (v̂; π̂): v̂ = y and

π̂ ∈ ∂g(v̂). In particular, π̂ ∈ ∂g(v̂) implies Lg(y, v̂; p̂i) ≤ g(y), and π̂ ∈ ∂g(v̂) = ∂g(y) implies
Lg(y, v̂; π̂) ≥ g(y). Thus we have g(y) = Lg(y; v̂; π̂).

91

L(y;π)

L(y, v;π)

g(y)

vy

Figure 3.2: A comparison of the bi-conjugate reformulation, Lg(y; π), and the tri-conjugate
reformulation, Lg(y, v; π). For a fixed π, Lg(y, v; π) ≥ Lg(y; π) ∀y ∈ Y and the equality
holds if and only if π ∈ ∂g(v).

g(y) = minv∈V {g(v) s.t. v = y}. We know from nonlinear optimization literature, say

[28], that choosing some bounded dual domain Π for π, instead of the unbounded Rn, can

offer a simpler convergence analysis for solving the problem. For example, choosing Π

to be a bounded ball that includes an optimal Lagrangian multiplier π∗. In what follows,

we are also going to select more restricted domains for v and π to streamline our analysis.

Second, if we regard v as the dual variable to π, (Equation 3.49) and (Equation 3.50) rep-

resent an additional conjugation to the bi-conjugate, giving rise to the name tri-conjugate

reformulation. In this case, we have

g(y) = max
π∈Π
⟨π, y⟩ − g∗(π).︸ ︷︷ ︸

:=minv∈V −⟨π,v⟩+g(v)

.

A comparison between the tri-conjugate and the bi-conjugate reformulations is depicted in

Figure Figure 3.2. Because of their close relationship, we use the common notation Lg for

both, but emphasize the tri-conjugate reformulation by the auxiliary primal variable v. The

key advantage of Lg(y, v; π) for us is the implementability of the prox-mappings for both

v and π with ∥·∥2 as the prox-function, which is crucial for the nSSD method.

Returning to the two-layer problem in (Equation 3.4), the nested linearization is given

92

by

min
(x,v1)∈X×V1

max
(π1,π2)∈Π̃1×Π2

{L(x, v1; π1, π2) := L1(x, v1; π1, π2) + u(x)}, (3.51)

where L1(x, v1; π1, π2) := π1[L2(x; π2)− v1] + f1(v1), and L2(x; π2) := π2x− f ∗
2 (π2).

Here, the reformulation for the inner function f2 utilizes the bi-conjugate with Π2 =

dom(f ∗). The reformulation for the outer layer function f1 utilizes the tri-conjugate in

(Equation 3.49) and (Equation 3.50) because of its stochastic argument. To streamline the

convergence analysis, we restrict the domain for v1 and π1 to some compact convex sets

V1 and Π̃1, respectively. We require both sets to be relatively simple such that Euclidean

projections onto them can be efficiently computed. Additionally, we also require them to

be large enough to contain some important points and to have finite radii DV1 and M̂1:

maxv1,v̄1 ∥v1 − v̄1∥ ≤ DV1 and f2(x∗) ∈ V1.

maxπ1∈Π̃1
∥π1∥ ≤ M̂1, {s ∈ ∂f1(y1), y1 ∈ Rn1} ⊂ Π̃1, and Π̃i ⊂ Rn1

+ if f2 is non-affine.

(3.52)

For example, if R1 ≥ maxx∈X ∥f2(x)∥, V1 can be chosen to be an Euclidean ball, {v1 ∈

Rn1 | ∥v1∥ ≤ R1}. If f1 is M1-Lipschitz continuous, Π̃1 can be chosen to be {π1 ∈

Rn1 | ∥π1∥ ≤ M1}. Furthermore, when Assumption 2 requires f1 to be monotone, we

restrict Π̃1 to the positive orthant, i.e., Π̃1 = {π1 ∈ Rn1| ∥π1∥ ≤M1} ∩ Rn1
+ .

We present a few properties of the nested linearization reformulation (Equation 3.51)

and a Q-gap function, which will lead to the nSSD method. The next Lemma relates

(Equation 3.51) to the original problem in (Equation 3.4). It is a counterpart to Lemma 4.1.

Lemma 3.3 The following relations between L in (Equation 3.51) and f in (Equation 3.4)

are valid.

a) If v∗1 := f2(x
∗), then L(x∗, v∗1; π1, π2) ≤ f(x∗) ∀(π1 × π2) ∈ Π̃1 × Π2.

93

b) Given a pair (x, v1) ∈ X × V1, L(x, v1; π̂1, π̂2) ≥ f(x) if π̂1 ∈ ∂f1(f2(x)) and

π̂2 ∈ ∂f2(x).

c) Thus for any z := (x, v1; π1, π2) ∈ Z, f(x) − f(x∗) ≤ L(x, v1; π̂1, π̂2) −

L(x∗, v∗1; π1, π2) if π̂1 ∈ ∂f1(f2(x)), π̂2 ∈ ∂f2(x), and v∗1 = f2(x
∗).

Proof: For Part a), we have

L(x∗, v∗1; π1, π2) = π1[L2(x
∗; π2)− v∗1] + f1(v

∗
1) + u(x∗) ≤ f1(f2(x

∗)) + u(x∗) = f(x∗).

Here, if f2 is affine,L2(x
∗; π2) = f2(x

∗) = v∗1 such that π1[L2(x
∗; π2)−v∗1] = 0. Otherwise,

π1 is non-negative, and L2(x
∗; π2) ≤ f2(x

∗) = v∗1 such that π1[L2(x
∗; π2)− v∗1] ≤ 0.

Part b) holds because the nested linearization reformulation is always large than the

nested Lagrangian reformulation, i.e.,

L1(x, v1; π̂1, π̂2) = π̂1[L2(x; π̂2)− v1] + f1(v1) = π̂1L2(x; π̂2)− [π̂1v1 − f1(v1)]

≥ π̂1L2(x; π̂2)− max
v1∈Rn1

[π̂1v1 − f1(v1)]

= π̂1L2(x; π̂2)− f ∗
1 (π̂1) = L1(x; π̂1, π̂2) = f1(f2(x)),

whereL1(x; π̂1, π̂2) is defined in (Equation 3.8) and the last inequality follows from Lemma

4.1.b). Part c) is a direct consequence of Part a) and Part b). □

To simplify notation, we will use Z := X×V1×Π̃1×Π2 and z := (x, v1; π1, π2) for the

rest of the section. Lemma 3.3.c) suggests a Q-gap function for algorithm design. Given a

point zt := (xt, vt1; π
t
1, π

t
2) ∈ Z, the Q-gap function with respect to a reference point z ∈ Z

is given by

Q(zt, z) := L(xt, v11; π1, π2)− L(x, v1; πt
1, π

t
2). (3.53)

94

It can be decomposed into component Q-gap functions given by

Q(zt, z) = Q2(z
t, z) +Q1(z

t, z) +Qv
1(z

t, z) +Q0(z
t, z), (3.54)

Q2(z
t, z) := L(xt, vt1; π1, π2)− L(xt, vt1; π1, πt

2)

= π1[π2x
t − f ∗

2 (π2)] −π1[πt
2x

t − f ∗
2 (π

t
2)] , (3.55)

Q1(z
t, z) := L(xt, vt1; π1, πt

2)− L(xt, vt1; πt
1, π

t
2)

= π1[L2(π
t
2;x

t)− vt1] −πt
1[L2(π

t
2;x

t)− vt1] , (3.56)

Qv
1(z

t, z) := L(xt, vt1; πt
1, π

t
2)− L(xt, v1; πt

1, π
t
2) = f1(v

t
1)− πt

1v
t
1 − [f1(v1)− πt

1v1],

(3.57)

Q0(z
t, z) := L(xt, v1; πt

1, π
t
2)− L(x, v1; πt

1, π
t
2) = πt

1π
t
2x

t + u(xt) − [πt
1π

t
2x+ u(x)],

(3.58)

where Q2, Q1, Qv
1, and Q0 relate to the optimality of πt

2, π
t
1, v

1
1 and xt, respectively.

We now present the nSSD method, beginning with the simpler setting where both f1

and f2 are deterministic. For this setting, we propose a non-smooth sequential dual (nSD)

method. Each nSD iteration employs prox-mappings to sequentially minimize Q2, Q1, Qv
1,

and Q0:

πt
2 ← argmaxπ2∈Π2

π2x
t−1 − f ∗

2 (π2);

πt
1 ← argmaxπ1∈Π̃1

π1[ỹ
t
1 − vt−1

1]− τ1,t
∥∥π1 − πt−1

1

∥∥2
/2, where ỹt1 := L2(x

t−1; πt
2);

vt1 ← argminv1∈V1
⟨f ′

1(v
t−1
1)− πt

1, v1⟩+ γ1,t
∥∥v1 − vt−1

1

∥∥2
/2;

xt ← argminx∈X ỹt0x+ u(x) + ηt
∥∥x− xt−1

∥∥2
/2, where ỹt0 := πt

1π
t
2.

(3.59)

There are two simplifications compared to the SD method (c.f. (Equation 3.16)). First,

95

rather than momentum-extrapolated prediction terms, values from the last iterate, i.e., xt−1

and L2(x
t−1; πt

2) (or x̃t and ỹt1 in (Equation 3.16) with θt = 0), are used as arguments for

the πt
2 and πt

1-prox mappings. Second, the πt
2-prox mapping is implemented with τ2,t =

0. These simplifications are justified because the O(1/ϵ2) oracle complexity can not be

improved by the momentum-extrapolated acceleration even for the simple deterministic

nonsmooth problem. Additionally, notice that a linear approximation of f1, ⟨f ′
1(v

t−1
1), ·⟩, is

utilized when performing the prox-mapping for vt1.

We adapt the deterministic nSD algorithm (Equation 3.59) to the nested stochastic set-

ting to obtain the nSSD method shown in Algorithm 5. First, Line 2 of Algorithm 5 queries

the stochastic oracle of f2 to obtain unbiased estimators at xt−1. This is because the πt
2 prox-

mapping in (Equation 3.59) corresponds to the gradient evaluation, πt
2 = f ′

2(x
t−1), (see

Lemma 3.2 with τ2,t = 0). Next, except for replacing the argument ỹt1 with a stochastic es-

timator ỹt1(ξ), Line 3 of Algorithm 5 is the same as the πt
1 prox-mapping in (Equation 3.59).

In particular, the unbiased estimator ỹt1(ξ) is obtained from the function value estimator

f2(x
t−1, ξ12) because

L2(x
t−1; πt

2) := f ∗
2 (π

t
2) + πt

2x
t−1 = [f2(x

t−1)− f ′
2(x

t−1)xt−1] + f ′
2(x

t−1)xt−1 = f2(x
t−1).

Next, Line 4 of Algorithm 5 is the same as the vt1 prox-mapping in (Equation 3.59) ex-

cept for using the stochastic subgradient estimator f ′
1(v

t−1
1 , ξ1) in place of the determinis-

tic subgradient f ′
1(v

t−1
1). Lastly, except for replacing the argument ỹt0 with an unbiased

stochastic estimator ỹt0(ξ), Line 5 of Algorithm 5 is the same as the xt prox-mapping

in (Equation 3.59). Here, similar to the SSD Algorithm 4, an independently sampled

f ′
2(x

t−1, ξ02), which is conditionally independent of πt
1, is used to construct an unbiased

estimator for πt
1π

t
2.

We present the convergence properties of the proposed nSSD method. First, we need

to specify a few problem parameters. The Lipschitz-continuity constants, M1 and M2, and

96

Algorithm 5 Stochastic Sequential Dual-primal (nSSD) Method for Non-Smooth Two
Layer Problem

Input: x0 ∈ X , v01 ∈ V1, π0
1 ∈ Π̃1.

1: for t = 1, 2, 3...N do
2: Call SO2 to obtain independent estimates {f2(xt−1, ξ12), f

′
2(x

t−1, ξ02)}.
3: Compute πt

1 ← argmaxπ1∈Π̃1
π1[ỹ

t
1(ξ) − vt−1

1] − τ1,t
∥∥π1 − πt−1

1

∥∥2
/2 where

ỹt1(ξ) := f2(x
t−1, ξ12).

4: Compute vt1 ← argminv1∈V1
⟨f ′

1(v
t−1
1 , ξ1)− πt

1, v1⟩+ γ1,t
∥∥v1 − vt−1

1

∥∥2
/2.

5: Set ỹt0(ξ) ← πt
1f

′
2(x

t−1, ξ02). Compute xt ← argminx∈X ỹ
t
0(ξ)x + u(x) +

ηt ∥x− xt−1∥2 /2.
6: end for
7: Return x̄N =

∑N
t=1 ωtx

t/(
∑N

t=1 ωt).

the variance constants, σ1, σf2 and σ2, associated with the layer functions are defined as

M1 := maxy1∈Rn1 ∥f ′
1(y1)∥ , M2 := maxx∈X ∥f ′

2(x)∥ ,

E[∥f ′
1(y1, ξ)− f ′

1(y1)∥
2
] ≤ σ2

1 ∀y1 ∈ Rn1 ,

E[∥f ′
2(x, ξ)− f ′

2(x)∥
2
] ≤ σ2

2 and E[∥f2(x, ξ)− f2(x)∥2] ≤ σ2
f2
≤ D2

Xσ
2
2 ∀x ∈ X.

(3.60)

The aggregate variance constants of the stochastic arguments in Algorithm 5 are defined as

follows:

σ̃1 := {max
t≥0

E[
∥∥ỹt1(ξ)− E[ỹt1(ξ)]

∥∥2
]}1/2, σ̃x := {max

t≥0
E[
∥∥ỹt0(ξ)− E[ỹt0(ξ)]

∥∥2
]}1/2.

(3.61)

With these parameters defined, we can now state the convergence result. Its proof is de-

ferred to subsection 3.3.3.

Theorem 3.5 Consider a two-layer problem (c.f. (Equation 3.4)) with stochastic non-

smooth functions f1 and f2. Let their problem parameters be defined in (Equation 3.60),

and the radius constants of the tri-conjugate reformulation of f1 be defined in

(Equation 3.52). If the solution iterates {xt} are generated by Algorithm 5, the variance

97

constants in (Equation 3.61) for the aggregate stochastic estimators in the algorithm satisfy

σ̃1 ≤ σf2 ≤ σ2DX and σ̃x ≤ M̂1σ2. Moreover, if the stepsizes are given by

ωt = 1, ηt = 2max{4M̂1M2, σ̃x}
√
t/DX , τ1,t =

√
tσ̃1/M̂1,

γ1,t = 2max{4M̂1, σ1}
√
t/DV1 ,

(3.62)

the ergodic average solution x̄N satisfies

E[f(x̄N)− f(x∗)] ≤ 1√
N
{8M̂1M2DX + σ̃xDX + 5M̂1σ̃1 + 8M̂1DV1 + σ1DV1}. (3.63)

Three remarks are in order regarding the result. First, when estimating f2(x∗) is difficult

and the total iteration number N is known beforehand, we can set V1 to encompass the

entire Rn1 rather than being confined to a bounded set. In this case, we choose V1 = Rn1

and γ1,t = 2max{4M̂1, σ1}
√
N/(M2DX), and keep ηt and τ1,t to be the same as those in

(Equation 3.62). The convergence bound in (Equation 3.63) would still be valid, and it can

be simplified further to

E[f(x̄N)− f(x∗)] ≤ O{(M̂1 + σ1)(M2 + σ2)DX/
√
N}.

Second, the parameter-free stepsize choices with ηt = Θ(
√
t), γ1,t = Θ(

√
t) and

τ1,t = Θ(
√
t) can lead to a stochastic oracle complexity ofO(1/ϵ2), which is order-optimal.

Third, the bound in (Equation 3.63) is order-optimal because the term O(M̂1σf2/
√
N) is

not improvable even for strongly convex problems. This fact will be illustrated in the next

Subsection.

3.3.2 Lower Complexity Bound

We develop a lower stochastic oracle complexity bound for the strongly convex NSCO

problem with a (general) nonsmooth outer-layer function. At first glance, such a develop-

98

ment might appear unnecessary because Theorem 3.4 already establishes theO(1/ϵ2) lower

bound for the easier problem with a structured non-smooth outer-layer function. However,

upon closer examination, we see Theorem 3.4 is not applicable because the abstract com-

putation scheme in (Equation 3.34) does not cover the nSSD Algorithm 5. Specifically, the

πt
1 generated by (Equation 3.34) contains only sub-gradient information. In contrast, for

Algorithm 5, πt
1 incorporates both residue information, v1 − f2(x) and subgradient infor-

mation (see Line 3 and 4 in Algorithm 5). This arises because π1 serves the dual purpose

of acting as the multiplier for the constrained problem and as the conjugate dual variable in

the tri-conjugate reformulation.

This motivates us to propose a more general abstract scheme to show the O(1/ϵ2)

oracle-complexity for nSSD to be unimprovable. For simplicity, we assume Π̃1 =

Rn1
+ ∩ {π1 ∈ Rn1 | ∥π1∥ ≤ M1}, and V1 and X being rotationally invariant, i.e., zero-

centered balls. The abstract scheme consists of the following steps. Initially, the scheme

is provided with inputs x0 ∈ X , v10 ∈ V1, and π0
1 ∈ Π̃1. It then initializes the affine sub-

spaces to X 0 := span(x0), V 0
1 := v01 , andMt

1 = span(π0
1). In the tth iteration, the updates

are given by (the summations below represent the Minkowski sum and [·]+
Π̃1

denotes the

projection onto Π̃1)

Query SO2 to obtain (f2(y
t
2, ξ

t
2), f

′
2(y

t
2, ξ

t
2))at some yt2 ∈ X t−1;

Mt
1 := span([M̃∞]+

Π̃1
) + M̃∞ where

M̃∞ := span{f2(yt2, ξt2) +
t∑

j=1

f ′
2(y

j
2, ξ

j
2)x

j − v01 : xj ∈ X t−1}

+ span{f ′
1(π1 + v01) : π1 ∈Mt−1

1 }+Mt−1
1 ;

X t := {f ′
2(y

j
2, ξ

j
2)

⊤π⊤
1 : j ≤ t, π1 ∈ Πt

1}+ X t−1.

(3.64)

After N iterations, the scheme outputs some xN ∈ XN .

We make three remarks for the abstract scheme in (Equation 3.64). First, the

span([M̃∞]+
Π̃1
) operation, employed for the Mt

1 computation, is unusual among lower

99

complexity models (see [1]). However, it is necessary in this case because Π̃1 ⊂ Rn1
+

is not rotationally invariant. Second, the nSSD method can be implemented by the ab-

stract scheme. This can shown by observing that πt
1 and vt1 in Algorithm 5 satisfy

πt
1 ∈ Mt

1 and vt1 ∈ v01 +Mt
1, respectively. Third, the abstract scheme still accommo-

dates the SCGD-type algorithms [48], where x is updated with pseudo-gradients of the

form {f ′
1(y1)f

′
2(x

j, ξj)}. This can be seen by noticing Mt
1 + v10 contains all the convex

combinations of {f2(xj, ξ2)}tj=1 andMt
1 contains {f ′

1(y1) : y1 ∈ Mt−1
1 + v10}. Next, we

state the lower complexity result for the abstract scheme and its proof is deferred to the

Appendix.

Theorem 3.6 Let the abstract computation scheme in (Equation 3.64) be initialized to

x0 = 0, π0
1 = 0. Given problem parameters σf2 ≥ 0, M1 ≥ 0, ϵ > 0 and α ≤ M2

1/(4ϵ),

there exists a nested two-layer problem (Equation 3.4) consisting of a general nonsmooth f1

and a stochastic linear f2 such that f1 is M1-Lipschitz continuous, the variance of f2(x, ξ)

is bounded by σf2 (c.f. (Equation 3.60)), and u(x) = α ∥x∥2 /2. Moreover, for some v01 , the

abstract scheme in (Equation 3.64) requires at leastN ≥ Ω(M̃2
1σ

2
f2
/ϵ2) to find an ϵ-optimal

solution, i.e., f(xN)− f(x∗) ≤ ϵ.

3.3.3 Convergence Proofs

We provide detailed convergence proof for Theorem 3.5. Let us begin with a generalQ-gap

convergence bound.

Proposition 3.2 Consider a two-layer problem (c.f. (Equation 3.4)) with stochastic non-

smooth functions f1 and f2. Let its problem parameters be defined in (Equation 3.60),

(Equation 3.52), (Equation 3.61). Suppose iterates {zt := (xt, vt1; π
t
1, π

t
2)} are generated

by Algorithm 5 and the stepsize choice satisfy the following conditions:

ωtηt ≥ ωt−1ηt−1, ωtτ1,t ≥ ωt−1τ1,t−1, ωtγ1,t ≥ ωt−1γ1,t−1,∀t ≥ 2. (3.65)

100

Then for any reference point z := (x∗, v∗1; π̂1, π̂2), where v∗1 := f2(x
∗) and (π̂1, π̂2) ∈

Π̃1 × Π2 could potentially depend on {zt}, we have

E[
∑N

t=1 ωtQ(z
t; z)] ≤(8M̂2

1M
2
2 + σ̃2

x)
∑N

t=1
ωt

ηt
+

ωNηND2
X

2

+σ̃2
1

∑N
t=1

ωt

τ1,t
+ 2ωNτ1,NM̂

2
1 + M̂1σ̃1

√∑N
t=1 ω

2
t

+(8M̂2
1 + σ2

1)
∑N

t=1
ωt

γ1,t
+

ωNγ1,ND2
V1

2
.

(3.66)

Proof: We begin by developing a bound for Q1 and Qv
1. Line 3 of Algorithm 5 implies

(πt
1 − π̂1)[vt−1

1 − f2(xt−1, ξ12)] +
τ1,t
2
(
∥∥πt

1 − π̂1
∥∥2

+
∥∥πt

1 − πt−1
1

∥∥2 −
∥∥πt−1

1 − π1
∥∥2
) ≤ 0.

Denoting δt1 := f2(x
t−1, ξ12)− f2(xt−1), we get

(πt
1 − π̂1)vt−1

1 = (πt
1 − π̂1)vt1 − (πt

1 − π̂1)[vt1 − vt−1
1] ≥ (πt

1 − π̂1)vt1 − 2M̂1

∥∥vt1 − vt−1
1

∥∥ ,
and

E[(πt
1 − π̂1)f2(xt−1, ξ12)] = E[(πt

1 − π̂1)δt1] + E[(πt
1 − π̂1)L2(x

t−1; πt
2)]

=E[πt
1δ

t
1]− E[π̂1δt1] + E[(πt

1 − π̂1){L2(x
t−1; πt

2)− L2(x
t; πt

2)}+ (πt
1 − π̂1)L2(x

t; πt
2)]

=− E[π̂1δt1] + E[πt
1δ

t
1] + E[(πt

1 − π̂1)πt
2(x

t−1 − xt)] + E[(πt
1 − π̂1)L2(x

t; πt
2)]

≤− E[π̂1δt1] + σ̃2
1/τ1,t + 2M̂1M2E[

∥∥xt−1 − xt
∥∥] + E[(πt

1 − π̂1)L2(x
t; πt

2)].

In the last inequality, the bound for E[πt
1δ

t
1] follows from Lemma 3.7 (E[δt1|πt−1

1] = 0), and

the bound for E[(πt
1 − π̂1)πt

2(x
t−1 − xt)] follows from max{∥πt

1, π̂
t
1∥} ≤ M̂1. Thus we get

E[Qv
1(z

t; z) + τ1,t
2
(
∥∥πt

1 − π̂1
∥∥2 −

∥∥πt−1
1 − π1

∥∥2
)]

≤ −E[π̂1δt1] + σ̃2
1/τ1,t + 2M̂1M2E[

∥∥xt−1 − xt
∥∥] + 2M̂1

∥∥vt1 − vt−1
1

∥∥ . (3.67)

101

Next, Line 4 of Algorithm 5 implies that

⟨vt1 − v∗1, f ′
1(v

t−1
1 , ξ1)− πt

1⟩+
γ1,t
2
(
∥∥vt1 − v∗1∥∥2

+
∥∥vt1 − vt−1

1

∥∥2 −
∥∥vt−1

1 − v∗1
∥∥2
) ≤ 0,

whereby

E[⟨vt1 − v∗1, f ′
1(v

t−1
1 , ξ1)⟩]

= E[⟨vt1 − v∗1, f ′
1(v

t−1
1 , ξ1)− f ′

1(v
t−1
1)⟩] + E[⟨vt−1

1 − v∗1, f ′
1(v

t−1
1)⟩+ ⟨vt1 − vt−1

1 , f ′
1(v

t
1)⟩]

+ E[⟨vt1 − vt−1
1 , f ′

1(v
t−1
1)− f ′

1(v
t
1)⟩]

≥ E[f1(vt1)− f1(v∗1)]− σ2
1/γ1,t − E[2

∥∥vt1 − vt−1
1

∥∥ M̂1].

In the last inequality, we utilized the convexity of f1 and the bound for

E[⟨vt1, f ′
1(v

t−1
1 , ξ1)− f ′

1(v
t−1
1)⟩] follows from Lemma 3.7. Thus we get

E[Q1(z
t; z)] + E[γ1,t

2
(
∥∥vt1 − v∗1∥∥2

+
∥∥vt1 − vt−1

1

∥∥2 −
∥∥vt−1

1 − v∗1
∥∥2
)]

≤ σ2
1/γ1,t + E[2

∥∥vt1 − vt−1
1

∥∥ M̂1].

(3.68)

Combine (Equation 3.67) and (Equation 3.68) and apply Young’s inequality,

E[−γ1,t
∥∥vt1 − vt−1

1

∥∥2
/2 + 4M̂1

∥∥vt1 − vt−1
1

∥∥] ≤ 8M̂2
1/γ1,t. We get

E[Qv
1(z

t; z) +Q1(z
t; z) + γ1,t

2
(
∥∥vt1 − v∗1∥∥2 −

∥∥vt−1
1 − v∗1

∥∥2
)]

+ E[τ1,t
2
(
∥∥πt

1 − π̂1
∥∥2 −

∥∥πt−1
1 − π1

∥∥2
)]

≤− E[π̂1δt1] + 8M̂2
1/γ1,t + σ̃2

1/τ1,t + σ2
1/γ1,t + 2M̂1M2E[

∥∥xt−1 − xt
∥∥].

Then we take an ωt-weighted sum of the above inequality. Using E[∥vt1 − v∗1∥
2
] ≤

D2
V1

, the stepsize requirements in (Equation 3.65) lead to E[
∑N

t=1 ωtγ1,t(∥vt1 − v∗1∥
2 −∥∥vt−1

1 − v∗1
∥∥2
]/2 ≤ ωNγN,tD

2
V1
/2. The Cauchy-Schwartz inequality (see (Equation 3.44))

102

allows us to simplify E[
∑N

t=1 ωtπ̂1δ
t
1]. As a result, we get

E[
∑N

t=1 ωt{Qv
1(z

t; z) +Q1(z
t; z)}]

≤ ωN(γN,tD
2
V1
/2 + 2τN,tM̂

2
1) +

∑N
t=1 ωt[8M̂

2
1/γ1,t + σ̃2

1/τ1,t + σ2
1/γ1,t]

+ 2M̂1M2E[
∑N

t=1 ωt ∥xt−1 − xt∥] + M̂1σ1

√∑N
t=1 ω

2
t .

(3.69)

Define πt
2 = f ′

2(x
t−1). We get from Line 2 of Algorithm 5 that (πt

2−π̂2)xt−1−(f ∗
2 (π

t
2)−

f ∗
2 (π̂2)) ≤ 0, so that

Q2(z
t; z) ≤ π̂1(π

t
2 − π̂2)(xt − xt−1) ≤ M̂1M2

∥∥xt−1 − xt
∥∥ .

Summing up the inequality with weight ωt and taking expectation, we obtain

E[
∑N

t=1 ωtQ2(z
t; z)] ≤ 2M̂1M2E[

∑N
t=1 ωt ∥xt−1 − xt∥]. (3.70)

Define δtx = πt
1f2(x

t−1, ξ02) − πt
1π

t
2. We get from Line 5 of Algorithm 5 (see Lemma

3.6 in [28]) that

⟨xt − x∗, πt
1π

t
2 + δtx⟩+

ηt
2
(
∥∥xt − x∗∥∥2

+
∥∥xt − xt−1

∥∥2
) ≤ ηt

2

∥∥xt−1 − x∗
∥∥2
.

Since E[δtx|xt−1] = 0 and E[δtx|x∗] = 0, we get E[⟨δtx, xt⟩] ≤ σ̃2
x/ηt from Lemma 3.7 and

E[⟨δtx, x∗⟩] = 0. Then the stepsize condition in (Equation 3.65) leads to

E[
∑N

t=1 ωtQ0(z
t; z)] ≤

∑N
t=1 ωtσ̃

2
x/ηt+ωNηND2

X/2−E[
∑N

t=1 ωtηt ∥xt−1 − xt∥2]. (3.71)

Therefore, the desired Q-gap convergence bound in (Equation 3.66) can be deduced from

adding up (Equation 3.69), (Equation 3.70) and (Equation 3.71), and applying Young’s in-

equality.

□

103

Proof of Theorem 3.5 The bounds on σ̃1 and σ̃x can be derived directly from the

definition of ỹt1(ξ) and ỹt0(ξ) in Algorithm 5. Applying Lemma 3.3 with π̂N
1 ∈ ∂f1(f2(x̄N))

and π̂N
2 ∈ ∂f2(x̄N) (see (Equation 3.45)), we get

∑N
t=1 ωt(f(x̄

N)− f(x∗))

≤
∑N

t=1 ωtL(
∑N

t=1 ωtx
t∑N

t=1 ωt

,

∑N
t=1 ωtv

t
1∑N

t=1 ωt

; π̂N
1 , π̂

N
2)−

∑N
t=1 ωtL(x∗, v∗1; πt

1, π
t
2)

≤
∑N

t=1 ωtL(xt, vt1; π̂N
1 , π̂

N
2)−

∑N
t=1 ωtL(x∗, v∗1; πt

1, π
t
2)

=
∑N

t=1 ωtQ(z
t; (x∗, v∗1; π̂

N
1 , π̂

N
2)).

Here, the second inequality follows from the joint convexity of L (Equation 3.51) with

respect to (x, v1). The desired function gap convergence bound in (Equation 3.63) can be

derived from applying Proposition 3.2 and dividing both sides of the resulting inequality

by (
∑N

t=1 ωt). □

3.4 Multi-layer Problem

In this section, we extend the SSD and the nSSD methods proposed in the last two sections

to the multi-layer NSCO problem:

min
x∈X
{f(x) := f1 ◦ f2 ◦ . . . ◦ fk(x) + u(x)}. (3.72)

We impose a multi-layer compositional convexity assumption similar to Assumption 2

throughout this section.

Assumption 3 A nested function f1 ◦ f2 ◦ . . . ◦ fk(x) in (Equation 3.72) is said to satisfy

the compositional convexity assumption if

• Every layer function fi : Rni → Rni−1 is proper closed and convex.

• If fi is not affine, {π1π2 . . . πi−1 : πj ∈ ∂fj(yj), yj ∈ Rnj , j ≤ i− 1} ⊂ Rni−1

+ .

104

The second assumption is an extension of the two-layer monotonicity assumption in As-

sumption 2. For a non-affine fi, rather than requiring every outer-layer function to

be component-wise non-negative, our assumption is slightly weaker, requiring only the

product of all possible subgradients of outer-layer functions to be component-wise non-

negative. This weaker assumption can be useful for handling the semi-deviation risk mea-

sure.

Our development consists of three parts. In subsection 3.4.1, we propose the SSD

method for the smooth multi-layer problem. In subsection 3.4.2, we propose the nSSD

method, which is designed to handle the general multi-layer problem arising from arbi-

trary compositions of different types of layer functions. Lastly, we provide a sketch of the

convergence analysis in subsection 3.4.3.

3.4.1 Smooth Multi-layer Problem

In this subsection, we study the multi-layer problem composed only of smooth layer func-

tions. Our development follows the same structure as that of subsection 3.2.1. We begin by

introducing a nested Lagrangian reformulation, which gives rise to a Q-gap function. The

Q-gap function in turn motivates a conceptual algorithm. By implementing the conceptual

algorithm using the stochastic oracles, we derive the multilayer SSD method. Lastly, we

offer convergence guarantees for the SSD method.

For notation simplicity, we will use i : j to denote the indices i, i + 1, ..., j, and use i :

as a shorthand for i : k. For example, πi:j := (πi, πi+1, . . . , πj) and Πi:j := Πi × Πi+1 ×

. . .× Πj . The nested Lagrangian reformulation to (Equation 3.72) is given by

min
x∈X

max
π1:∈Π1:

{L(x; π1:) := L1(x; π1:) + u(x)}, (3.73)

where Li(x; πi:) :=

x if i = k + 1,

πiLi+1(x; πi+1:)− f ∗
i (πi) if 1 ≤ i ≤ k.

105

Here Πi := dom(f ∗
i) denotes the domain of πi. Let z := (x; π1:) and Z := X × Π1:

denote the collections of decision variables and of their domains. We can relate the re-

formulated problem (Equation 3.73) to the original problem (Equation 3.72) through the

following duality result.

Lemma 3.4 Consider f and L defined in (Equation 3.72) and (Equation 3.73), respec-

tively. For any x ∈ X , the following relations are valid.

a) Weak Duality: f(x) ≥ L(x; π1:) ∀π1: ∈ Π1:.

b) Strong Duality: f(x) = L(x; π̂1:) if π̂i ∈ ∂fi(fi+1:(x)) ∀i ∈ [k].

c) There exists some (π∗
1, π

∗
2, . . . , π

∗
k) such that z∗ := (x∗; π∗

1:) ∈ Z is a saddle point,

i.e.,

L(x∗; π1:) ≤ L(x∗; π∗
1:) ≤ L(x; π∗

1:) ∀(x, π1:) ∈ Z.

d) The optimality gap of x is upper bounded by f(x)− f(x∗) ≤ maxπ̄1:∈Π1:L(x; π̄1:)−

L(x∗; π1:),∀π1: ∈ Π1:.

Proof: The proof is similar to that of Lemma 4.1. Part b) follows from the same argument.

For Part a), let π1: ∈ Π1: be given and let π̂i ∈ ∂fi(fi+1:(x)) ∀i such that Part b) is valid,

then we have

f(x)− L(x; π1:) =
∑k

j=1[L(x; π1:j−1, π̂j, π̂j+1:)− L(x; π1:j−1, πj, π̂j+1:)]

=
∑k

j=1 π1:j−1[(π̂jfj+1:(x)− f ∗
j (π̂j))− (πjfj+1:(x)− f ∗

j (πj))]︸ ︷︷ ︸
Aj

.

Here, the definition of π̂i implies that π̂j ∈ argmaxπj∈Πj
πjfj+1:(x) − f ∗

j (πj). If fj is

affine, then we have Aj = 0 because Πj is a singleton set and π̂j = πj . Otherwise,

Assumption 3 implies the non-negativity of π1:j−1, so we have Aj ≥ 0. Therefore, we get

f(x) ≥ L(x; π1:). Next, the derivations of Part c) and d) are similar to those of Lemma

4.1. □ Part d) of the preceding lemma motivates us to consider a multi-layer Q-gap

106

function as an alternative optimality criterion. Specifically, for a point zt := (xt; πt
1:), the

Q-gap function, defined with respect to a reference point z ∈ Z, is given by

Q(zt, z) := L(xt; π1:)− L(x; πt
1:). (3.74)

The Q function admits the following decomposition

Q(zt, z) = Q0(z
t, z) +

∑k
i=1Qi(z

t, z), (3.75)

where

Q0(z
t, z) := L(xt; πt

1:)− L(x; πt
1:)

= πt
1:x

t + u(xt) − πt
1:x− u(x),

Qi(z
t, z) := L(xt; π1:i−1, πi, π

t
i+1:)− L(xt; π1:i−1, π

t
i , π

t
i+1:)

= π1:i−1

(
πiLi+1(x

t; πt
i+1:)− f ∗

i (πi) −[πt
iLi+1(x

t; πt
i+1:)− f ∗

i (π
t
i)]

)
.

To reduce the Q-gap function, we can sequentially update πi to reduce Qi, and then update

x to reduce Q0 in an iterative manner. This idea leads us to a conceptual SSD method.

Specifically, initialized to x0 ∈ X and π0
i = ∇fi(y0i) ∀i ∈ [k], the tth iteration of the

iterative method is given by

for i = k, k − 1, . . . , 1

πt
i ← argmax

πi∈Πi

πiỹ
t
i(ξ)− f ∗

i (πi)− τi,tUi(πi; π
t−1
i),

where ỹti := Li+1(x
t−1; πt

i+1:) + θtπ
t
i+1:(x

t−1 − xt−2).

xt ← argminx∈X ỹt0(ξ)x+
ηt
2

∥∥x− xt−1
∥∥2
, where ỹt0 := πt

1:.

(3.76)

Here Ui is some Bregman distance function, τi,t and ηt are stepsize parameters, and ỹti(ξ)’s

and ỹt0(ξ) are some unbiased estimators to ỹti’s and ỹt0, respectively.

107

We provide a concrete implementation of (Equation 3.76), which would lead to the SSD

Algorithm 6. First, we select the prox function Ui in (Equation 3.76) to be the conjugate

Bregman distance function, Df∗
i
. Similar to Algorithm 4, such a choice simplifies the

πt
i prox mapping in (Equation 3.76) to gradient evaluation at some averaged yt

i
, i.e., πt

i =

∇fi(yti), in Line 5 and 6 of Algorithm 6. Now we construct the unbiased estimators {ỹti(ξ)}

in (Equation 3.76). The following conventions are used:

Lk+1(x; πk+1:) = x, ∇fk+1:(y
t

k+1:
, ξ) = I, and ∇fi:(yti:, ξ

j
i:) :=

k∏
l=i

∇fl(ytl , ξ
j
i).

At the ith layer, the unbiased estimators for Li(x
t−1; πt

i:) and
∏k

l=i∇fl(ytl) are constructed

using i independent estimators in Line 6. The necessity of the repeated independent calls

to SOi is explained in Figure Figure 3.3. After all the πt
i prox-mappings, ∇f1:(yt1:, ξ

0
1:) is

used as the stochastic argument, ỹt0(ξ), for the xt prox mapping in Line 8 of Algorithm 6.

Algorithm 6 Stochastic Sequential Dual (SSD) Method for the Smooth Multi-layer Prob-
lem
Input: x0 ∈ X .

1: Set y0
k
:= x0 and x−1 := x0.

2: Call SOi to obtain∇fi(y0i , ξ̂i) and y0
i−1

= fi(y
0
i
, ξ̂i) for i = k, k − 1, . . . , 1.

3: for t = 1, 2, 3...N do
4: for i = k, k − 1, . . . , 1 do
5: Set ỹti(ξ)← Li+1[x

t−1; πt
i+1:(ξ

i
i+1:)] + θt∇fi+1:(y

t−1
i+1:

, ξ̂i+1:)(x
t−1 − xt−2).

Set yt
i
← (τi,ty

t−1
i

+ ỹti(ξ))/(1 + τi,t).

6: Call SOi to obtain independent estimates {fi(yti, ξ
j
i),∇fi(yti, ξ

j
i)}i−1

j=0 and
∇fi(yti, ξ̂i).
Set Li[x

t−1; πt
i:(ξ

j
i:)] ← fi(y

t
i
, ξji) + ∇fi(yti, ξ

j
i){Li+1[x

t−1; πt
i+1:(ξ

j
i+1:)] −

yt
i
},∀j = 1, . . . , i− 1.

Set∇fi:(yti:, ξ̂i:)← ∇fi(y
t
i
; ξ̂i)∇fi+1:(y

t
i+1:

, ξ̂i+1:), ∀j = 1 . . . i− 1.
Set∇fi:(yti:, ξ

0
i:)← ∇fi(yti; ξ

0
i)∇fi+1:(y

t
i+1:

, ξ0i+1:).
7: end for
8: Set xt ← argminx∈X ỹ

t
0(ξ)x+u(x)+

ηt
2
∥x− xt−1∥2 where ỹt0(ξ) := ∇f1:(yt1:, ξ

0
1:).

9: end for
10: Return x̄N :=

∑N
t=1 ωtx

t+1/
∑N

t=1 ωt.

108

Figure 3.3: Necessity of Resampling in the SSD method: in order to obtain an unbiased esti-
mator for Li(xt−1;πt

i:) := Li(xt−1;∇fi(yti), . . . ,∇fk(y
t
k
)), we need conditionally independent

estimators to ∇fi(yti),∇fi+1(y
t
i+1

), . . . ,∇fk(ytk). However, when generating the evaluation point
yt
l

for any l > i, Algorithm 6 utilizes estimators {∇fj(ytj , ξ
l
j)}j>l, causing yt

l
to be conditionally

correlated with {∇fj(ytj , ξ
l
j)}j>l. In the above figure, this means that the stochastic estimators in

the lth column are correlated with yt
l

in the header row. Consequently, the entire triangle of old
estimators {∇fl(ytl , ξ

j
l)}l>i,j>i (highlighted above) are conditionally correlated with the required

evaluation points {yt
l
}l>i. Therefore, (k − i + 1) new independent estimators need to be redrawn

from SOi’s, i.e.,∇fi(yti, ξ
i−1
i),∇fi+1(y

t
i+1

, ξi−1
i+1), . . . , and ∇fk(ytk, ξ

i−2
k), for constructing an un-

biased Li(xt−1;πt
i:(ξ

i−1
i:)).

We now provide the convergence result for Algorithm 6. First, we need to define a few

problem parameters. We require each layer function fi to be Li-smooth and Mi-continuous

for some Mi ≥ 1③, i.e.,

∥∇fi(yi)∥ ≤Mi and ∥∇fi(yi)−∇fi(ȳi)∥ ≤ Li ∥yi − ȳi∥ ∀yi, ȳi ∈ Rni . (3.77)

For notation compactness, we will use the shorthand Mi:j :=
∏j

l=iMl throughout this

section. The aggregate variance constants for Algorithm 6 are defined as

σ̃i = {max
t≥0

E[
∥∥ỹti(ξ)− E[ỹti(ξ)]

∥∥2
]}1/2, σ̃x = {max

t≥0
E[
∥∥ỹt0(ξ)− E[ỹt0(ξ)]

∥∥2
]}1/2. (3.78)

Similar to Sections section 3.2 and section 3.3, the above uniform aggregate variance con-

③We assume Mi ≥ 1 to avoid trivialities.

109

stants are finite because they can be decomposed into variance bounds associated with in-

dividual layer functions, i.e., SOi’s. However, for the sake of simplicity, we do not present

the decomposition in this section. In the multi-layer nested setting, the decomposition can

be quite complicated, but its knowledge is unimportant in practice since the SSD method

can be implemented with parameter-free stepsizes to achieve the order-optimal oracle com-

plexity.

We are now prepared to state the convergence result for Algorithm 6. The following the-

orem suggests appropriate stepsize choices and provides the convergence rates under both

non-strongly convex and strongly convex settings. The proof of this theorem is deferred to

subsection 3.4.3.

Theorem 3.7 Consider a smooth multi-layer function f (c.f. (Equation 3.72)) with its

problem parameters defined in (Equation 3.77) and (Equation 3.78). Suppose iterates {xt}

are generated by Algorithm 6 with

ωt = t, θt = (t− 1)/t, τi,t = (t− 1)/2,∀i ∈ [k]. (3.79)

Let L̃ :=
∑k

i=1M1:i−1LiM
2
i+1: denote the aggregate smoothness constant of f . The step-

size ηt can be selected based on the strong convexity modulus α of u(x), resulting in the

following convergence guarantees:

a) If u(x) is non-strongly convex, selecting ηt = max{2L̃/(t+ 1), σ̃x
√
t/DX} leads to

E[f(x̄N)− f(x∗)] ≤ L̃
N(N+1)

∥∥x0 − x∗∥∥2
+ 4

N

∑k−1
i=1 M1:i−1Liσ̃

2
i

+ 4√
N
(σ̃xDX +

∑k−1
i=1 M1:iσ̃i).

(3.80)

b) If u(x) is strongly convex with α > 0, selecting ηt = max{2L̃/(t + 1), α(t − 1)/2}

110

leads to

E[f(x̄N)− f(x∗)] ≤ [
∑k−1

i=1 M1:i−1LiM
2
i+1:

α
+ 1][log(N+1)L̃

N2

∥∥x0 − x∗∥∥2

+ 4
N
(
∑k−1

i=1 M1:i−1Liσ̃
2
i +

σ̃2
x

α
)],

E[
∥∥xN − x∗∥∥2

] ≤ L̃
αN(N+1)

∥∥x0 − x∗∥∥2
+ 4

αN
(
∑k−1

i=1 M1:i−1Liσ̃
2
i +

σ̃2
x

α
).

(3.81)

A few observations are worth noting concerning the result. In the deterministic scenario

where σ̃i = 0 ∀i, Algorithm 6 attains the optimal oracle complexity under the non-strongly

convex setting, while a restarted version of it (see Section 4.2.3 of [28]) achieves optimal

oracle complexity under the strongly convex setting. In the stochastic scenario, Algo-

rithm 6 achieves order-optimal stochastic oracle complexity of O(1/ϵ2) (O(1/ϵ)) with the

parameter-free step sizes in (Equation 3.79) and any ηt = Θ(
√
t) (ηt = (t− 1)α/2) under

the non-strongly (strongly) convex setting.

3.4.2 The nSSD Method for the General Nested Composition Problem

In this subsection, we introduce a multi-layer nSSD method to address the general nested

composite problem. For the k-layer problem described in (Equation 3.72), we consider

an arbitrary composition of layer functions, meaning that the layer indices [k] can be par-

titioned into subsets S, P, and N, and fi is smooth, structured non-smooth, or general

non-smooth if i ∈ S, i ∈ P, or i ∈ N, respectively. Our development follows the same

structure as the previous subsection. We propose a nested linearization reformulation, de-

velop a Q-gap function, design the nSSD method, and present the convergence result.

First, we introduce the multi-layer nested linearization reformulation. We need to gen-

eralize (Equation 3.73) because the general problem could involve non-smooth outer-layer

functions. Let No denote the set of such layer indices, i.e., No := N ∩ [k − 1]. The tri-

conjugate reformulations (Equation 3.49) for these layer functions require additional auxil-

iary primal variables. For compactness, we use the shorthand notation vi: := {vl}l∈No∩i:k to

denote these variables, and use Vi: :=
∏

l∈No∩i: Vl to denote domains (see (Equation 3.49)).

111

The multi-layer nested linearization reformulation is defined as:

min
x∈X

min
v1:∈V1:

max
π1:∈Π1:

{L(x; π1:) := L1(x; π1:) + u(x)},

where Li(x; πi:) :=

x if i = k + 1,

πi[Li+1(x; πi+1:)− vi] + fi(vi) if i ∈ No,

πiLi+1(x; πi+1:)− f ∗
i (πi) otherwise.

(3.82)

Here, when i /∈ No, we assume Πi := dom(f ∗
i). When i ∈ No, we assume (Vi,Πi)

satisfy fi:(x∗) ∈ Vi, dom(f ∗
i) ⊂ Πi and the monotonicity requirement in Assumption 3,

i.e., {π1:l−1 : πj ∈ Πj, j ≤ l − 1} ⊂ Rnl−1

+ if fl is not affine.

Let z := (x, v1:; π1:) and Z := X × V1: × Π1:. The next lemma relates the above

reformulation (Equation 3.82) to the original problem in (Equation 3.72).

Lemma 3.5 The following relations betweenL in (Equation 3.82) and f in (Equation 3.72)

are valid.

a) If v∗i = fi:(x
∗) ∀i ∈ No, then L(x∗, v∗1:; π1:) ≤ f(x∗) ∀π1: ∈ Π1:.

b) Given a pair (x, v1:) ∈ X × V1:, L(x, v1; π̂1:) ≥ f(x) if π̂i ∈ ∂fi(fi+1:(x)) ∀i.

c) For any z := (x, v1:; π1:) ∈ Z, f(x) − f(x∗) ≤ L(x, v1:; π̂1:) − L(x∗, v∗1:; π1:) if

π̂i ∈ ∂fi(fi+1:(x)) ∀i.

Proof: The proof is a straightforward extension to that of Lemma 3.3. We need to

show recursively that Li(x
∗, v∗i:; πi:) ≤ fi(fi+1:(x

∗)) ∀i for Part a), and that fi:(x) ≤

Li(x, vi:; π̂i:) ∀i for Part b). □

Part c) of the preceding lemma motivates us to use the following Q-gap function, de-

fined with respect to some reference point z̄ ∈ Z, as an alternative optimality criterion for

algorithm design

Q(z; z̄) := L(x, v1:; π̄1:)− L(x̄, v̄1:; π1:).

112

The Q-gap function admits the following useful decomposition

Q(z; z̄) = Q0(z; z̄) +
∑k

i=1Qi(z; z̄) +
∑

i∈No
Qv

i (z; z̄), (3.83)

where

Q0(z
t, z) := L(xt, v1:; πt

1:)− L(x, v1:; πt
1:) = πt

1:x
t + u(xt) − πt

1:x− u(x),

Qv
i (z

t, z) := L(xt, vt1:i−1, v
t
i , vi+1:; π

t
1:)− L(x, vt1:i−1, vi, vi+1:; π

t
1:)

:= πt
1:i−1[fi(v

t
i)− πt

iv
t
i] − πt

1:i−1[fi(vi)− πt
ivi],

Qi(z
t, z) := L(xt, vt1:; π1:i−1, πi, π

t
i+1:)− L(xt, vt1:; π1:i−1, π

t
i , π

t
i+1:)

=

π1:i−1{πi[Li+1(x
t, vti+1:; π

t
i+1:)− vti] −πt

i [Li+1(x
t, vti+1:; π

t
i+1:)− vti] }

if i ∈ No,

π1:i−1{πiLi+1(x
t, vti+1:; π

t
i+1:)− f ∗

i (πi) −[πt
iLi+1(x

t, vti+1:; π
t
i+1:)− f ∗

i (π
t
i)] }

otherwise.

To reduce the Q-gap function, we can sequentially update πi’s to reduce their respective

Qi’s, and then sequentially update primal variables vi’s and x to reduce Qv
i ’s and Q0. This

idea leads us to a conceptual iterative nSSD method. Specifically, initialized to some z0 :=

(x0, v01:; π
0
1:) ∈ Z, the tth iteration of this iterative method is given by:

113

For i = k, k − 1, . . . , 1 :

If i ∈ S ∪P,

πt
i ← argmax

πi∈Πi

πiỹ
t
i(ξ)− f ∗

i (πi)− τi,tUi(πi; π
t−1
i),

where ỹti := Li+1(x
t−1; πt

i+1:) + θtπ
t
i+1:(x

t−1 − xt−2).

Else if i = k and fk is general non-smooth,

πt
k ← argmax

πk∈Πk

πkx
t−1 − f ∗

k (πk).

Otherwise, i.e.,i ∈ No,

πt
i ← argmaxπi∈Π̃i

πi[ỹ
t
i(ξ)− vt−1

1]− τi,t
∥∥πi − πt−1

i

∥∥2
/2,

where ỹti := Li+1(x
t−1; πt

i+1:);

For i ∈ No,

vti ← argminvi∈Vi
w̃t

i(ξ)vi + γ1,t
∥∥vi − vt−1

i

∥∥2
/2, where w̃t

i = πt
1:i−1(f

′
i(v

t
t−1)− πt

i)

xt ← argminx∈X ỹt0(ξ)x+
ηt
2

∥∥x− xt−1
∥∥2
, where ỹt0 := πt

1:.

(3.84)

We describe the implementation detail for (Equation 3.84) under the nested stochastic

setting, which leads to the concrete multi-layer nSSD method shown in Algorithm 7. The

prox-mappings in Line 5 to Line 18 are straightforward implementations of the {πt
i}, {vti},

and xt updates shown in (Equation 3.84). For smooth layer functions, we utilize the Breg-

man distance generated by the conjugate function, Df∗
i
, as the prox-function Ui, and the πt

i

computation is expressed equivalently as some gradient evaluation in Algorithm 7 (refer to

Lemma 3.2). Now we only need to specify the construction of the unbiased stochastic esti-

mators for the arguments in these prox-mappings. To ensure unbiasedness, independently

sampled estimators are necessary, as explained in detail in Figure Figure 3.3. The nested

composite estimators are constructed incrementally, where at most i+1 queries to SOi are

114

required in each iteration. This construction is given by:

Li(x
t−1, vt−1

i: (ξji:);π
t
i:(ξ

j
i:))

:=

xt−1 if i = k + 1

∇fi(yti, ξ
j
i){Li+1[x

t−1, vt−1
i+1:(ξ

j
i+1:); π

t
i+1:(ξ

j
i+1:)]− yti}+ fi(y

t
i
, ξji) else if i ∈ S

πt
iLi+1[x

t−1, vt−1
i+1:(ξ

j
i+1:); π

t
i+1:(ξ

j
i+1:)]− f ∗

i (π
t
i) else if i ∈ P

πt
i{Li+1[x

t−1, vt−1
i+1:(ξ

j
i+1:);π

t
i+1:(ξ

j
i+1:)]− vt−1

i }+ fi(v
t−1
i , ξji) else if i ∈ No

fk(x
t−1, ξjk) otherwise

πt
i:(ξ

j
i:) :=

I if i ≥ k + 1

∇fi(yti, ξ
j
i)π

t
i+1:(ξ

j
i+1:) else if i ∈ S

πt
iπ

t
i+1:(ξ

j
i+1:) else if i ∈ No ∪P

f ′
k(x

t−1, ξjk) otherwise, i.e., i = k and k ∈ N.

(3.85)

Here {ξ̂i} ∪ {ξji }0≤j<i represent independent samples drawn from SOi. Since it simplifies

to Algorithm 5 if k = 2 and {1, 2} ⊂ N, and to Algorithm 6 if [k] ⊂ S, Algorithm 7 can

be regarded as a generalization to preceding algorithms.

We present the convergence result for the proposed nSSD method. First, we need to

define a few problem parameters that characterize the Lipschitz-continuity and Lipschitz-

115

Algorithm 7 Stochastic Sequential Dual-primal (nSSD) Method for the General Multi-
layer Problem

Input: x0 ∈ X , π0
i ∈ Πi ∀i ∈ P, (v0i , π

0
i) ∈ Vi × Πi ∀i ∈ No.

1: Set y0
k
:= x0 and y0

i
= fi+1(y

0
i+1
, ξ̂i+1)∀i ≤ k − 1. Set π0

i = ∇fi(y0i) ∀i ∈ S and
π0
k = f ′

k(x
0) if k ∈ N.

2: for t = 1, 2, 3...N do
3: for i = k, k − 1, . . . , 1 do
4: Set yti(ξ) := Li+1(x

t−1, vt−1
i+1:(ξ

i
i+1:); π

t
i+1:(ξ

i
i+1:)) and

ỹti(ξ) := Li+1(x
t−1, vt−1

i+1:(ξ
i
i+1:);π

t
i+1:(ξ

i
i+1:)) + πt−1

i+1:(ξ̂i+1:)(x
t−1 − xt−2) (c.f.

(Equation 3.85)).
5: if fi is smooth then
6: set πt

i ← ∇fi(yti) where yt
i
:= (τi,ty

t−1
i

+ ỹti(ξ))/(1 + τi,t).
7: else if fi is structured non-smooth then
8: set πt

i,j ← argmaxπi,j∈Πi,j
πi,j[ỹ

t
i(ξ)]− τi,t

∥∥πi,j − πt−1
i,j

∥∥2
/2 ∀j ∈ [ni−1].

9: else if i = k and fi is general non-smooth then
10: set πt

k ← f ′
k(x

t−1).
11: else i ∈ No ,i.e., fi is general non-smooth
12: Set πt

i,j ← argmaxπi,j∈Πi,j
πi,j[y

t
i(ξ)− vt−1

i]− τi,t
∥∥πi,j − πt−1

i,j

∥∥2
/2 ∀j ∈

[ni−1].
13: end if
14: end for
15: for i ∈ No do
16: Set vti ← argminvi∈Vi

w̃t
i(ξ)vi + γi,t

∥∥vi − vt−1
i

∥∥2
/2 where w̃t

i(ξ) =

πt
1:i−1(ξ

0
1:i−1)[f

′
i(v

t−1
i , ξ̂i)− πt

i].
17: end for
18: Set xt ← argminx∈X ỹ

t
0(ξ)x+ u(x) + ηt

2
∥x− xt∥2 where ỹt0(ξ) := πt

1:(ξ
0
1:).

19: end for
20: Return x̄N :=

∑N
t=1 ωtx

t+1/
∑N

t=1 ωt.

smoothness of the layer functions:

∥∇fi(yi)−∇fi(ȳi)∥ ≤ Li ∥yi − ȳi∥ and ∥∇fi(yi)∥ ≤Mi ∀yi, ȳi ∈ Rni ∀i ∈ S.

∥πi∥ ≤Mi ∀πi ∈ Πi and ∥vi − v̄i∥ ≤Mi+1:DX ∀vi, v̄i ∈ Vi,∀i ∈ No.

∥πi∥ ≤Mi ∀πi ∈ Πi ∀i ∈ P, and ∥f ′
k(x)∥ ≤Mk ∀x ∈ X if k ∈ N.

(3.86)116

We also need the aggregate variance bounds for the unbiased estimators in Algorithm 7:

σ̃i = max{{max
t≥0

E[
∥∥ỹti(ξ)− E[ỹti(ξ)]

∥∥2
]}1/2, {max

t≥0
E[
∥∥yti(ξ)− E[yti(ξ)]

∥∥2
]}1/2},

σ̃x = {max
t≥0

E[
∥∥ỹt0(ξ)− E[ỹt0(ξ)]

∥∥2
]]}1/2,

σ̃v,i = {max
t≥0

E[
∥∥∥πt

1:i−1(ξ
0
1:i−1)[f

′
i(v

t−1
i , ξ̂i)]− E[πt

1:i−1(ξ
0
1:i−1)[f

′
i(v

t−1
i , ξ̂i)]

∥∥∥2

]}1/2.

(3.87)

Now we are ready to state the convergence result.

Theorem 3.8 Consider a general multi-layer function f (Equation 3.72), where S, P and

N denoting the indices of smooth, structured nonsmooth and general nonsmooth layer

functions, respectively. Suppose the problem parameters are defined in (Equation 3.86)

and (Equation 3.87). Let N1:i denote the layer indices of general non-smooth functions

outer to fi+1, i.e., N1:i := {1, 2, ...i} ∩ N. Consider {xt} generated by Algorithm 7 with

stepsizes chosen according to:

ωt := t, θt := (t− 1)/t,

τi,t := (t− 1)/2, ηti := 2M1:i−1LiM
2
i+1:/(t+ 1), ∀i ∈ S

τi,t := max{σ̃i
√
t, Mi+1:DX}/Mi, η

t
i =M1:/DX , ∀i ∈ P

τi,t := σ̃i
√
t/Mi, γi,t := max{(|N1:i|+ 1)M1:i, σ̃i}

√
t/(Mi+1:DX), ∀i ∈ N1:k−1

ηti :=M1:

√
t/DX ∀i ∈ N.

(3.88)

Under these conditions, we obtain the following convergence guarantees.

a) If u(x) is non-strongly convex, selecting ηt := max{
∑k

i=1 η
t
i , σ̃x
√
t/DX} leads to

E[f(x̄N)− f(x∗)]

≤ O{
∑

i∈S[
M1:i−1LiM

2
i+1:D2

X

N2 +
M1:i−1Liσ̃

2
i

N
] +

∑
i∈P[

M1:DX

N
]

+

∑
i∈N1:k−1

[|N1:i|M1:DX + σ̃v,iMi+1:DX]
√
N

+
∑

i∈N[
M1:DX√

N
]

+
∑k

i=1[
M1:iσ̃i√

N
] + DX σ̃x√

N
}.

(3.89)

117

b) If u(x) is strongly convex, i.e., α > 0 and all outer layer functions are smooth, i.e.,

{1, 2, . . . , k− 1} ⊂ S. In this case, selecting ηt := max{
∑k

i=1 η
t
i , α(t− 1)/2} leads

to

E[f(x̄N)− f(x∗)]

≤ O
(
[
∑k−1

i=1 M1:i−1LiM
2
i+1:

α
+ 1]{ log(N+1)

N2 [
∑

i∈SM1:i−1LiM
2
i+1:D

2
X]

+ 1
N
[
∑k−1

i=1 M1:i−1Liσ̃
2
i +

∑
i∈P(M1:DX) +

∑
i∈N

M1:DX

α
+ σ̃2

x

α
]}
)
.

(3.90)

We make three remarks regarding the convergence result. First, under the deterministic

setting, the terms attributable to the smooth and the structured non-smooth functions in

(item 3.89), i.e., M1:i−1LiM
2
i+1:D2

X/N
2 and M1:DX/N , respectively, are unimprovable.

Second, under the stochastic setting, the assumption of all outer layer functions being

smooth is necessary for obtaining the improved stochastic oracle complexity of O(1/ϵ)

in (item 3.90). As discussed in Theorem 3.4 and Theorem 3.6, the O(1/ϵ2) oracle com-

plexity is order optimal for the more general setting. Third, the specific stepsize choices

listed above are required only to achieve the desired constant dependence. In practice, the

same order-optimal stochastic oracle complexity can be obtained with simpler parameter-

independent stepsize choices. For the non-strongly convex case, the same order-optimal

stochastic oracle complexity of O(1/ϵ2) can be obtained if

ωt = t, τi,t := (t− 1)/2 ∀i ∈ S, τi,t := Θ(
√
t) ∀i ∈ N ∪P,

γi,t := Θ(
√
t) ∀i ∈ No, ηt := Θ(

√
t).

(3.91)

For the strongly convex case with all outer layer function being smooth, the order-

optimal oracle complexity of O(1/ϵ) can be obtained if

ωt = t, τi,t := (t− 1)/2 ∀i ∈ S, τi,t := Θ(1) ∀i ∈ P, ηt := (t− 1)α/2.

118

3.4.3 Convergence Analysis

We sketch in this subsection the convergence analysis of the SSD method applied to the

multi-layer smooth problem. It is structured similarly as that of subsection 3.2.4. We begin

by presenting a general convergence result of the Q-gap function. We then specialize it to

provide the concrete convergence rates in Theorem 3.7.

Proposition 3.3 Consider a smooth multi-layer problem (Equation 3.72) with Lipschitz-

continuity and smoothness constants defined in (Equation 3.77), and stochastic arguments

ỹti(ξ) 0 ≤ i ≤ k − 1 that satisfy the aggregate variance bounds in (Equation 3.78). Let

zt := (xt; πt
1:) be generated according to (Equation 3.76) with Ui = Df∗

i
∀i ∈ [k]. Fix a

reference point z = (x∗; π1 = ∇f1(y1) . . . πk = ∇fk(yk)) , where yi ∈ Rni may depend on

{zt}. If the following conditions are satisfied with some non-negative weights ωt’s for all

t ≥ 1:

ωt = θt+1ωt+1, ωt(τi,t + 1) ≥ ωt+1τi,t+1 ∀i ∈ [k],

ηt ≥
∑k

i=1

θt+1M1:i−1LiM
2
i+1:

τi,t+1
, ηN ≥

∑k
i=1

M1:i−1LiM
2
i+1:

τi,N+1
,

(3.92)

the following Q-gap bound is valid for ω0 = 0:

E[
∑N

t=1 ωtQ(z
t; z)] + ωN(ηN + α)

∥∥xN − x∗∥∥2
/2

≤ E{
∑N

t=1[ωtηt − ωt−1(ηt−1 + α)] ∥xt−1 − x∗∥2 /2}+
∑k

i=1 ω1τi,1Df∗
i
(πi; π

0
i)

+
∑N

t=1 ωtσ̃
2
x/(ηt + α) +

∑k−1
i=1 {M1:i−1Liσ̃

2
i [
∑N

t=1 ωt/(τi,t + 1)]}

+
∑k−1

i=1 E{
∑N

t=1 ωtπ1:i−1(πi − πt
i,E)[ỹ

t
i − ỹti(ξ)]},

(3.93)

where πi,E = ∇fi(yi) for some yi ∈ Rni and πt
i,E is independent of ỹti − ỹti(ξ) conditioned

on ỹti .

119

Proof: First, let us develop a convergence bound for Qi ∀i ≥ 1 (c.f. (Equation 3.74)).

The πt
i update in (Equation 3.76) implies a (vector) three-point inequality given by

(πi − πt
i)ỹ

t
i(ξ) + f ∗

i (π
t
i)− f ∗

i (πi) + (τi,t + 1)Df∗
i
(πi; π

t
i) + τi,tDf∗

i
(πt

i ; π
t−1
i)

≤ τi,tDf∗
i
(πi; π

t−1
i).

Let δti := ỹti − ỹti(ξ). Multiplying both sides of the above inequality with the non-

negative weight πp := π1:i−1 leads to

πp[(πi − πt
i)ỹ

t
i + f ∗

i (π
t
i)− f ∗

i (πi)] + (τi,t + 1)πpDf∗
i
(πi; π

t
i) + τi,tπpDf∗

i
(πt

i ; π
t−1
i)

≤ τi,tπpDf∗
i
(πi; π

t−1
i) + πp(πi − πt

i)δ
t
i .

(3.94)

Take πt
i,E ← argmaxπi∈Πi

πiỹ
t
i − f ∗

i (πi) − τi,tUi(πi; π
t−1
i) such that it is conditionally

independent of δti . We now apply the same argument as that of (Equation 3.103) to provide

a bound for
∥∥πp(πt

i − πt
i,E)

∥∥. Observe πiπt
i and πiπt

i,E can be regarded as functions of its

argument, i.e., πpπ̂i(ỹti + δti) and πpπ̂i(ỹti), where

πpπ̂i(y) = argmax
πi∈Πi

πpπiy − πpf ∗
i (πi)− τi,tπpDf∗

i
(πi; π

t−1
i).

As a function of πpπi, the prox term πpf
∗
i (πi) + τi,tπpDf∗

i
(πi; π

t−1
i) have a strong con-

vexity modulus of (τi,t + 1)/(Li ∥πi∥), so πpπ̂i(y) should be Lipschtiz continuous with

respect to its argument with a Lipschitz constant of (Li ∥πi∥)/(τi,t + 1). Thus we have∥∥πp(πt
i − πt

i,E)
∥∥ ≤ ∥πp∥ Li ∥δti∥ /(τi,t + 1) and

E[πp(πi − πt
i)δ

t
i] = E[πp(πi − πt

i,E)δ
t
i] + E[πp(πt

i,E − πt
i)δ

t
i]

≤ E[πp(πi − πt
i,E)δ

t
i] + LiE[∥πp∥

∥∥δti∥∥2
]/(τi,t + 1)

≤ E[πp(πi − πt
i,E)δ

t
i] +M1:i−1Liσ̃

2
i /(τi,t + 1).

(3.95)

120

Next consider the left-hand-side of (Equation 3.94), we have

πp(πi − πt
i)ỹ

t
i =πp(πi − πt

i)Li+1(x
t; πt

i+1:)

− {πp(πi − πt
i)π

t
i+1:(x

t − xt−1)− θtπp(πi − πt
i)π

t
i+1:(x

t−1 − xt−2)}︸ ︷︷ ︸
At

.

Also, an argument similar to that of (Equation 3.38) implies

∑N
t=1 ωt{At − (τi,t + 1)πpDf∗

i
(πi; π

t
i)− τi,tπpDf∗

i
(πt

i ; π
t−1
i) + τi,tDf∗

i
(πi; π

t−1
i)}

≤ τi,1Df∗
i
(πi; π

0
i) +

∑N−1
t=1

ωtθt+1

2τi,t+1
(M1:i−1LiM

2
i+1:) ∥xt − xt−1∥2

+ ωN

2(τi,N+1)
(M1:i−1LiM

2
i+1:)

∥∥xN − xN−1
∥∥2
.

(3.96)

Applying (Equation 3.95) and (Equation 3.96) to an ωt-weighted sum of (Equation 3.94),

we obtain

E[
∑N

t=1 ωtQi(z
t; z)]

≤
∑N−1

t=1
ωtθt+1

2τi,t+1
(M1:i−1LiM

2
i+1:) ∥xt − xt−1∥2 + ωN

2(τi,N+1)
(M1:i−1LiM

2
i+1:)

∥∥xN − xN−1
∥∥2

+ τi,1Df∗
i
(πi; π

0
i) + E[

∑N
t=1 ωtπp(πi − πt

i,E)δ
t
i] +

∑N
t=1 ωtM1:i−1Liσ̃

2
i /(τi,t + 1).

(3.97)

The convergence bound for Q0 is similar to (Equation 3.41). Therefore, adding up the

bounds for Qk, Qk−1, ..., and Q0 and noting the stepsize requirement for ηt, we obtain the

desired convergence bound for Q in (Equation 3.93).

□

Proof of Theorem 3.7 Clearly, Algorithm 6 is a concrete implementation of

(Equation 3.76). With the specific choices of ηt in the theorem statement, the requirements

of Proposition 3.3 are satisfied, so the convergence rates in (item 3.80) and (item 3.81) can

be derived in a similar fashion as those of Theorem 3.1 and Theorem 3.2. □

Proof to Theorem 3.8 The analysis is a straightforward generalization to those of The-

121

orem 3.4, Theorem 3.5 and Theorem 3.7. □

3.5 Applications

In this section, we showcase the practical effectiveness of the SSD and nSSD methods by

applying them to two specific problems: risk-averse optimization and additive composite

optimization. A direct application of the proposed methods would lead to order-optimal

oracle complexities. Moreover, the proposed methods can be easily modified to exploit

specific problem structures to improve the constant dependence. In Subsection subsec-

tion 3.5.1, we show the modified nSSD algorithm can solve the risk-averse problem with

almost the same oracle complexity (with respect to all problem parameters) as the simpler

risk-neutral problem. In Subsection subsection 3.5.2, we show our general SSD method can

achieve the same oracle complexity as the best algorithm specifically designed for additive

composite optimization [42].

3.5.1 Risk Averse Optimization

x

r

x

f(x)

E[g(x, ξ)]

Ix
r + cE[g(x, ξ)− r]+

f2 f1

Figure 3.4: Two Layer Formulation for Semi-
deviation.

First, we consider a risk-averse two-stage stochastic program given by

minx∈X{ρ(Z(x)) := E[g(x, ξ)] + cE[g(x, ξ)− E[g(x, ξ)]]+}. (3.98)

Here, the random variable Z(x) := g(x, ξ) denotes the cost incurred by the decision x

under the scenario ξ. We select mean-upper-semideviation of order one [9] as the risk

122

measure ρ and use the trade-off parameter c ∈ [0, 1] to characterize the degree of the

optimizer’s risk aversiveness. For generality, we assume g(x, ξ) to be non-smooth. For

example, g(x, ξ) in the two-stage linear program, the minimum total cost incurred by the

first-stage decision x under the scenario ξ, is piecewise linear.

To apply our nSSD method in Algorithm Algorithm 5, we formulate (Equation 3.98)

as a two-layer problem illustrated in Figure Figure 3.4. We assume g(x, ξ) to be Lipschtiz

continuous and to have bounded variances:

∥∥E[g′(x, ξ)1{g(x,ξ)≥r}]
∥∥ ≤Mg,

E[∥g′(x, ξ)− E[g′(x, ξ)]∥2] ≤ σ2
G, E[g(x, ξ)− E[g(x, ξ)]]2 ≤ σ2

g ∀x ∈ X ∀r ∈ R.

To handle the non-smooth outer-layer function, we need a tri-conjugate reformulation to f1

(c.f. (Equation 3.49)). We choose the domains Π̃1 and V1 to be

V1 := B1(r̄;DXMg)×X, Π̃1 := [0, 1]× Bn(0;Mg). (3.99)

Here, Bm(x; l) denotes an m-dimensional ball centered at x with a radius l, and r̄ de-

notes any possible value of E[g(x, ξ)] for any x ∈ X . This (V1, Π̃1) satisfies all require-

ments in (Equation 3.52) except for the non-negativity condition, Π̃1,2: = Bn(0;Mg) ̸⊂

Rn
+. Nevertheless, because the input to π1,2: is a linear function, Ix, the results in

Section section 3.3 are still valid. We can directly apply the nSSD method in Algo-

rithm Algorithm 5 to find an ϵ-optimal solution, and the stochastic oracle complexity is

O{(M4
gD4

X +M2
gσ

2
g + σ2

g′M
2
gD2

X)/ϵ
2} (see Theorem Theorem 3.5).

To improve the constant dependence, we need to look into the structure of f1 : (r, x)→

R. As illustrated in Figure Figure 3.4, the mappings for the first coordinate r and for the

next n coordinates x are quite different. The domains (V1, Π̃1) also have some block struc-

tures (see (Equation 3.99)); they are constructed from Cartesian products of two separable

blocks, V1 = V1,1×V1,2: and Π̃i = Π̃1,1×Π̃1,2:. As a result, the vi (π1) prox mappings should

123

be decomposed into the prox-mapping for v1,1 (π1,1) and that for v1,2: (π1,2:). Indeed, in the

prox-mapping for v1, the first coordinate of the argument, 1 − c1{g(xt−1,ξ1)≥vt−1
1 }, differs

greatly from the next n coordinates of the argument, cg′(xt−1, ξ1)1{g(xt−1,ξ1)≥vt−1
1 }. In the

prox-mapping for π1, only the first coordinate of the argument, g(xt−1, ξ12), is stochastic.

These separable structures motivate us to use different stepsizes to update the first block,

v1,1 and π1,1, compared to the remaining block, v1,2: and π1,2:. Specifically, we modify Line

3 and 4 of Algorithm Algorithm 5 to the following:

πt
1,1 ← argmaxπ1,1∈Π̃1,1

π1,1[ỹ
t
1,1(ξ)− vt−1

1,1]− τ r1,t
∥∥π1,1 − πt−1

1,1

∥∥2
/2,

πt
1,2: ← argmaxπ1,2:∈Π̃1,2:

π1,2:[ỹ
t
1,2:(ξ)− vt−1

1,2:]− τ∇1,t
∥∥π1,2: − πt−1

1,2:

∥∥2
/2,

vt1,1 ← argminv1,1∈V1,1
⟨f ′

1,1(v
t−1
1 , ξ1)− πt

1,1, v1,1⟩+ γr1,t
∥∥v1,1 − vt−1

1,1

∥∥2
/2,

vt1,2: ← argminv1,2:∈V1,2:
⟨f ′

1,2:(v
t−1
1 , ξ1)− πt

1,2:, v1,2:⟩+ γ∇1,t
∥∥v1,2: − vt−1

1,2:

∥∥2
/2.

We set τ∇1,t = 0, τ r1,t = σg
√
t, γ∇1,t = max{Mg, σG}

√
t/DX , and γr1,t =

√
t/(DXMg), while

choosing ηt similarly as Theorem Theorem 3.5. Then the resulting oracle complexity can

be improved to

O({M2
gD

2
X + σ2

g + σ2
GD2

X}/ϵ2).

Comparing it to theO({M2
gD

2
X+σ

2
GD2

X}/ϵ2) oracle complexity for solving the risk-neutral

two-stage program, the only extra cost is O(σ2
g/ϵ

2), which arises from the need to estimate

the function value. Therefore, the modified nSSD algorithm can solve the more challenging

risk-averse problem almost as efficiently as solving the simpler risk-neutral problem up to

all problem parameters.

124

x

r

x

f(x)

Ax

Ix
F (r) + g(x)

f3 f2

Figure 3.5: Two Layer Formulation for Additive Composite (Equation 3.100).

x

...

f (2)(x)

f (1)(x)

f (m)(x)

f(x)
max

f3 f2 f1

Figure 3.6: Three Layer Formulation for (Equation 3.101).

3.5.2 Stochastic Composite Optimization

Next, we consider a stochastic composite optimization problem that frequently arises in

machine learning and data analysis [42]:

min
x∈X
{f(x) := F (Ax) + g(x) ≡ max

πF∈ΠF

⟨πF , Ax⟩ − F ∗(πF) + g(x)}. (3.100)

Here, F represents a structured non-smooth function, for example, a regularity term like

the total variation function, and g represents a stochastic smooth function, for example, the

data fidelity loss function. Since the dimension of A is usually large, we assume stochastic

oracles to return unbiased estimators A(ξ), A⊤(ξ), and g′(x, ξ) for A, A⊤ and g′(x), re-

spectively. Furthermore, we assume their variances to be uniformly bounded by σ2
A, σ2

A⊤

and σ2
G, respectively.

The problem (Equation 3.100) can be formulated as a two-layer problem, as shown

125

Algorithm 8 SSD Algorithm for Composite Optimization

Input: x−1 = x0 ∈ X and π0
F ∈ ΠF .

1: Set y0
g
:= x0 and call SO to obtain estimate A(ξ23,0).

2: for t = 1, 2, 3...N do
3: Call SO to obtain estimates A(ξ23,t) and A⊤

(ξ03,t).
4: Let x̃t := xt−1 + θt(x

t−1 − xt−2).
Let yt

g
:= (τg,ty

t−1
g

+ x̃t)/(1 + τg,t) and call SO to obtain πt
g(ξ

0
2,t) := g′(yt

g
, ξ02,t).

5: Let ỹtF (ξ) := A(ξ23,t)x
t−1 + A(ξ̂3,t−1)(x

t−1 − xt−2).
Compute πt

F := argminπF∈ΠF
−⟨πF , ỹtF (ξ)⟩+ F ∗(πF) + τF,t

∥∥πF − πt−1
F

∥∥2
/2

6: Set xt := argminx∈X⟨πt
g(ξ

0
2,t) + A

⊤
(ξ03,t)π

t
F , x⟩+ ηt ∥x− xt∥2 /2.

7: end for
8: Return x̄N :=

∑N
t=1 ωtx

t+1/
∑N

t=1 ωt.

in Figure Figure 3.5. The outer layer f2 is the additive composite of a structured non-

smooth function F (r) and a smooth function g(x). By treating the outer f2 as a general

non-smooth layer function, we can apply the nSSD method in Algorithm Algorithm 5 to

achieve an order-optimal oracle complexity of O(1/ϵ2). To further improve the constant

dependence, we need to exploit the block structure of f2 in a similar fashion as Subsection

subsection 3.5.1. Since f2(x, r) := F (r) + g(x), the dual variable π2 can be decomposed

into blocks attributable to F and g respectively:

π2 := [πF | πg].

Accordingly, the conjugate function and the component gap function Q2 (see

(Equation 3.12)) also decompose,

f ∗
2 (π2) := max

x,r
⟨x, πg⟩+ ⟨r, πF ⟩ − F (r)− g(x)

= [max
r
⟨r, πF ⟩ − F (r)] + [max

x
⟨x, πg⟩ − g(x)] = F ∗(πF) + g∗(πg).

Q2(z
t, z) := (π2 − πt

2)L3(x
t; πt

3)− [f ∗
2 (π2)− f ∗

2 (π
t
2)]

= (πF − πt
F)(Ax

t)− [F ∗(πF)− F ∗(πt
F)]︸ ︷︷ ︸

Q2,F

+(πg − πt
g)x

t − [g∗(πg)− g∗(πt
g)]︸ ︷︷ ︸

Q2,g

.

126

This decomposition motivates the use of separate prox-mappings for πF and πg in Lines

4 and 5 of the proposed Algorithm Algorithm 8. If Lg denotes the Lipschitz-smoothness

constant of g and MF is an upper bound for ∥πF∥ ∀πF ∈ ΠF , we can establish the follow-

ing oracle complexity (see Theorems Theorem 3.1 and Theorem 3.3) with appropriately

chosen stepsizes:

O{
√

Lg∥x−x∗∥
√
ϵ

+
∥A∥DXMF

ϵ
+

(σ2
A+σ2

A⊤)D2
XM2

F

ϵ2
+

σ2
GD2

X

ϵ2
}.

Compared to the specialized accelerated primal-dual (APD) method [42] designed for

solving problem (Equation 3.100), Algorithm Algorithm 8 achieves the same oracle com-

plexity. However, our approach is more general. It allows for easy extension to handle

more complicated problems where f in (Equation 3.100) is but one sub-component. In

particular, if f (i) := g(i)(x) + F (i)(A(i)x), a minimax sub-problem that frequently arises in

either constrained optimization or multi-objective optimization is given by

min
x∈X
{f(x) := max{f (1)(x), f (2)(x), . . . , f (m)(x)} ≡ max

π1∈∆+
m

m∑
i=1

π
(i)
1 f

(i)(x)}④. (3.101)

Clearly, (Equation 3.101) admits a three-layer formulation shown in Figure Figure 3.6

where the outermost layer f1 is structured non-smooth. To derive a convergent SSD

method, We only need to add an additional prox-mapping for π1 before Line 6 in Algo-

rithm Algorithm 8. If the variances for g(i)(·, ξi), ∇g(i)(·, ξi), A(i)(ξi), A(i)⊤(ξi) are uni-

formly bounded by σ2
g , σ2

G, σ2
A and σ2

A⊤ , and if
∥∥A(i)

∥∥, MF (i) and
∥∥∇g(i)(·)∥∥ are uniformly

bounded by ∥A∥, MF and Mg, a straightforward application of Theorem Theorem 3.8 im-

plies an oracle complexity of

O{
√

Lg∥x−x∗∥
√
ϵ

+
√
m∥A∥DXMF

ϵ
+

m(σ2
A+σ2

A⊤)D2
XM2

F

ϵ2
+

m(σ2
g′D

2
X+σ2

g)

ϵ2
+

√
mMg

ϵ
}.

④∆m
+ := {π1 ∈ Rm

+ |
∑m

i=1 π
(i)
1 = 1} is the probability simplex.

127

Additionally, if the entropy Bregman distance function is selected as the prox-function for

the π1-prox mapping, similar to [55], the above complexity can be improved to be nearly

independent of the number of sub-components,

O{
√

Lg∥x−x∗∥
√
ϵ

+

√
log(m)∥A∥DXMF

ϵ
+

log(m)(σ2
A+σ2

A⊤)D2
XM2

F

ϵ2
+

log(m)(σ2
g′D

2
X+σ2

g)

ϵ2
+

√
log(m)Mg

ϵ
}.

3.6 Conclusion

To sum up, this paper characterizes the order of stochastic oracle complexity for the con-

vex NSCO problem under a mild compositional convexity assumption. We propose order-

optimal SSD/nSSD methods to solve the general multi-layer problem constructed from an

arbitrary composition of smooth, structured non-smooth, and general non-smooth layer

functions. Additionally, we develop lower complexity results to illustrate the O(1/ϵ2) ora-

cle complexity for the strongly convex and outer-non-smooth problem to be unimprovable,

demonstrating an intrinsic difficulty for solving the NSCO problem. To demonstrate the

effectiveness of our proposed methods, we apply the SSD/nSSD method to two motivating

applications. For one application, the method achieves the same performance as the best

algorithm specifically designed for the problem. For the other application, it provides new

insights into the oracle complexity of the problem class.

In future work, we will attempt to demonstrate the empirical performance of our pro-

posed methods by conducting numerical studies on real-world datasets, and to establish

their almost-sure convergence properties. An interesting research direction is to investigate

the possibility of an order-optimal algorithm without the compositional convexity assump-

tion.

128

3.7 Appendix

3.7.1 Technical lemmas for vector-valued functions

Proof of Lemma 3.2 This is a direct consequence of the conjugate duality relationship

[10],

πi ∈ ∂gi(y)⇔ πi ∈ argmax
π̄i∈dom(g∗i)

π̄iy − g∗i (π̄i).

In particular, since yt−1 ∈ ∂g∗(πt−1), the ith row of πt satisfies

πt
i ∈ argmin

πi∈dom(g∗i)

−⟨πi, yt⟩+ g∗i (πi) + τtDg∗i
(πi; π

t−1
i),

⇐⇒ πt
i ∈ argmin

πi∈dom(g∗i)

−⟨πi, yt⟩ − τt⟨πi, yt−1⟩+ (1 + τt)g
∗
i (πi),

⇐⇒ πt
i ∈ argmin

πi∈dom(g∗i)

−⟨πi,
yt+τtyt−1

1+τt︸ ︷︷ ︸
yt

⟩+ g∗i (πi) ⇐⇒ πt
i = g′i(y

t) ∈ ∂gi(yt).

Therefore, we have πt = g′(yt).

□

Lemma 3.6 Let a closed convex and proper vector-vectored function g be defined on Rn.

Let it be Lg-smooth , i.e.,

∥∇g(y)−∇g(ȳ)∥ ⑤ ≤ Lg ∥y − ȳ∥ ,∀y, ȳ ∈ Rn.

Let g∗ and Dg∗ denote its (component-wise) conjugate function and (component-wise) con-

jugate Bregman’s distance function. Then given an m-dimensional non-negative weight

vector w, we have

∥w∥w⊤Dg∗(π̄; π) ≥
∥∥w⊤(π̄ − π)

∥∥2

2Lg

(3.102)

if π̄ = ∇g(ȳ) and π = ∇g(y) for some ȳ, y.
⑤l2 operator norm.

129

Proof: First, if w = 0, (Equation 3.102) is clearly true. Now, assume w ̸= 0. The

definition of operator norm implies

∥∥u⊤(g′(y)− g′(ȳ))∥∥ ≤ Lg ∥y − ȳ∥ ∀u with ∥u∥ = 1.

So the one-dimensional guw(y) := u⊤wg(y) with uw := w
∥w∥ is Lg-Lipschitz smooth and its

Fenchel conjugate g∗uw
is 1/Lg strongly convex. More specifically, since g′uw

(y) = u⊤wg
′(y),

we have

g∗uw
(u⊤wπ)− g∗uw

(u⊤w π̄)− u⊤w(π − π̄)ȳ ≥
1

2Lg

∥∥u⊤w(π − π̄)∥∥2
,

if π̄ = g′(ȳ) , i.e., u⊤w π̄ = g′uw
(ȳ).

Thus the key to showing (Equation 3.102) is to relate g∗uw
(u⊤wπ) to u⊤wg

∗(π).

Those two quantities are quite different in general. For g∗uw
(u⊤w π̄) := maxy u

⊤
w π̄y −

guw(y), we can choose only one overall maximizer, y∗, but for u⊤wg
∗(π̄) =∑

j uw,j maxyj π̄jyj − gj(yj), different maximizers ȳ∗j ’s can be selected for different π̄j’s.

So we have g∗uw
(u⊤wπ) ≤ u⊤wg

∗(π) ∀π. However, if π̃ is associated with some primal solu-

tion ỹ, i.e., π̃ = g′(ỹ), all those ỹj’s are the same. Let π̃ = g′(ỹ) such that π̃j = g′j(ỹ). The

conjugate duality implies that g∗(π̃) = π̃ỹ − g(ỹ), so

g∗uw
(u⊤w π̃) := max

ȳ
u⊤w π̃ȳ − guw(ȳ) ≥ u⊤w(π̃ỹ − g(ỹ)) = u⊤wg

∗(π̃).

Therefore, g∗uw
(u⊤w π̃) = u⊤wg

∗(π̃) holds if π̃ is associated with some ỹ.

Now returning to the π and π̄ in the lemma statement, since π̄ = g′(ȳ) and π = g′(y),

130

we have

u⊤wDg∗(π̄, π) = u⊤wg
∗(π)− u⊤wg∗(π̄)− u⊤w(π − π̄)ȳ

= g∗uw
(uwπ)− g∗uw

(uwπ̄)− u⊤w(π − π̄)ȳ ≥
1

2Lg

∥∥u⊤w(π − π̄)∥∥2
.

Then (Equation 3.102) follows from multiplying both sides of the above inequality by

∥w∥2. □

The following lemma provides a bound on the error incurred from utilizing a stochastic

argument during prox update.

Lemma 3.7 Let Π ⊂ Rm be a non-empty closed and convex domain and let function

u(π) be µ-strongly convex. Let π̂ be generated via a prox-mapping with the argument

g + δ, π̂ ← argminπ∈Π⟨π, g + δ⟩ + u(π), where δ denote a noise term with E[δ] = 0 and

E[∥δ∥2] ≤ σ2. Then |E[⟨π̂, δ⟩]| ≤ σ2/µ.

Proof: Let π(y) := argminπ∈Π⟨π, y⟩ + u(π). The µ-strong convexity of u(π) implies

that π(y) is an 1/µ-Lipschitz continuous function of y (see [31]). Define a auxiliary point

π̄ := argminπ∈Π⟨π, g⟩ + u(π) which is independent of δ, i.e., E[⟨δ, π̄⟩] = 0. The 1/µ-

Lipschitz continuity of π(y) implies

∥π̄ − π̂∥ ≤ ∥δ∥ /µ. (3.103)

Thus we get

|E⟨π̂, δ⟩| ≤ |E⟨π̂ − π̄, δ⟩|+ |E⟨π̄, δ⟩|

≤ E[∥π̄ − π̂∥ ∥δ∥] ≤ E[∥δ∥2 /µ] ≤ σ2/µ.

□

131

3.7.2 Lower Complexity Bounds

We present in this subsection the detailed analysis for lower complexity results in Sub-

section subsection 3.2.3 and subsection 3.3.2 . First, we state an one-dimensional hard

problem which will be useful for proving both results. Parameterized by (α, σ, ν, β) with

σ ≥ ν, the problem is given by

f1

−ν

−νβ

f(x) := f1(E[f2(x, ξ2)]) + α ∥x∥2 /2,

X := [−2ν, 2ν], where

f1(y1) := βmax{y1,−ν},

f2(x, ξ2) := x+ ξ2,

with iid r.v. ξ2 :=

−ν w.p. 1− q

ν(1− q)/q w.p. q,

and q := ν2/σ2.

(3.104)

Observe that f1 is β-Lipschitz continuous and the variance of f2(x, ξ2) satisfies

E ∥f2(x, ξ2)− E[f2(x, ξ)]∥2 = E[∥ξ2∥2] ≤ σ2.

The key to our construction is to show the reachable subspace of x being restricted to 0,

i.e., X t = {0}, if a certain condition is met for all generated stochastic estimators. The

next technical lemma characterizes the probability and the optimality gap of that scenario.

Lemma 3.8 The following results are valid for (Equation 3.104).

a) f(0)− f(x∗) ≥ min{βν, β2/α}/2.

b) If ξj2 denotes the j th query to SO2 and N < σ2/(4ν2), then IP{f2(0, ξl2) = −ν ∀l ≤

N} > 1/2.

132

Proof: Part a) can be derived from the first order optimality condition. Since f(x) =

βmax{x,−ν}+ α ∥x∥2 /2, the optimal solution and the optimal objective value are

x∗ =

−β/α if α > β/ν

−ν if α ∈ β
ν
[0, 1],

⇒ f(x∗) ≤

−β2/(2α) if α > β/ν

−βν/2 if α ∈ β
ν
[0, 1].

So the inequality in part a) represents an uniform lower bound on f(0) − f(x∗). Part b)

follows from the algebraic fact that (1− p)t > 3/4− tp if tp < 1/4:

IP{f2(0, ξl2) = −ν ∀l ≤ N} = (1− q)N > 3/4−Nq > 1/2.

□

Now we are ready to prove the lower bound results.

Proof for Theorem Theorem 3.4: Consider applying the abstract scheme in

(Equation 3.34) to the problem in (Equation 3.104). A structured non-smooth formulation

to f1 is given by

f1(y1) = maxπ1∈[0,β]π1y1 − ν(β − π1),

where Π1 = [0, β] and f ∗
1 (π1) = ν(β − π1). Choosing y01 = −ν, we have X 0 = Π0

1 = {0}

andY0
1 = {−ν}.Now assumeX t−1 = Πt−1

1 = {0} andY t−1
1 = {−ν}, then f2(0, ξt2) = −ν

(c.f. (Equation 3.34)) implies Y t
1 = {−ν} and Πt

1 = {0} since

πt
1 = argmaxπ1∈Π1

⟨π1, yt1⟩ − f ∗
1 (π1)− τ1,t

∥∥π1 − πt−1
1

∥∥2
/2

= argmaxπ1∈[0,β]π1(y
t
1 + ν)− βν − τ1,t

∥∥π1 − πt−1
1

∥∥2
/2

= argminπ1∈[0,β]τ1,t ∥π1∥
2 /2 = 0.

It then follows X t = {0}. Such an argument can be applied recursively to show XN = {0}

133

if the event BN := {f2(0, ξl2) = −ν ∀l ≤ N} occurs.

Now selecting β = M1, ν = 4ϵ/M1, α = ᾱ and σ = σf2 , the hard problem in

(Equation 3.104) satisfies the hard problem requirements in the theorem statement. More-

over, with N < σ2
f2
M2

1/(4ϵ
2), Lemma 3.8 implies IP(BN) > 1/2 such that

E[f(xN)− f(x∗)] ≥ IP(BN)E[f(0)− f(x∗)] > min{βν, β2/α}/4 = ϵ. (3.105)

Thus it takes at least Ω(M2
1σ

2
f2
/ϵ2) SO2 queries to obtain an ϵ-optimal solution.

Proof for Theorem Theorem 3.6 The analysis is similar to that of Theorem Theo-

rem 3.4. With v01 = −ν, we need to showMN
1 = XN = {0} if f2(0, ξ

j
2) = −ν ∀j ≤ N .

□We remark that the lower complexity bound of Ω(M2
1σ

2
f2
/ϵ2) is applicable beyond the

first-order schemes like (Equation 3.34) and (Equation 3.64). In fact, it is not hard to use the

hard instance in (Equation 3.104) to show that at least Ω(M2
1σ

2
f2
/ϵ2) samples are required

by any SAA-type method to find an ϵ-optimal solution for the strongly convex NSCO prob-

lem with either a structured non-smooth or a general non-smooth outer-layer function.

134

CHAPTER 4

RISK AVERSE OPTIMIZATION OVER A DISTRIBUTED NETWORK

4.1 Background and Our Contribution

Consider the following risk-averse optimization problem over a star-shape (worker-server)

communication network [62]:

min
x∈X
{f(x) :=max

p∈P

∑m
i=1 pifi(x)− ρ∗(p) + u(x)}, (4.1)

where P ⊆ ∆m
+ := {p ∈ Rm|

∑m
i=1 pi = 1, pi ≥ 0} and X ⊆ Rn and Πi ⊆ Rmi are

closed and convex, and functions fi(x), u(x), and ρ∗(p) are proper closed and convex. We

assume the scenario (or local) cost function fi to be only available to worker node i and

focus on the situation where fi’s are either all smooth or all structured non-smooth. We use

the following generic representation for both types of fi’s:

fi(x) = max
πi∈Πi

⟨Aix, πi⟩ − f ∗
i (πi),

where Πi is a closed convex set and f ∗
i is a proper, closed and convex function. Specifically,

if fi is smooth, Ai is the identity matrix, I ∈ Rn×n, f ∗
i is the Fenchel conjugate to fi, and

Πi = dom(f ∗
i)

①. If fi is structured non-smooth [31], then Ai ∈ Rmi×n is a linear operator,

Πi is bounded, and the f ∗
i -prox mapping can be solved efficiently [28]. This type of struc-

tured non-smooth function has found a wide range of applications, including total variation

regularization in image processing [63], low-rank tensor [64, 65], overlapped group lasso

[66, 67], and graph regularization [68, 67]. Additionally, we assume the (strongly) convex

regularization term u(x) and the risk measure (ρ∗, P) are available to the server node.

①dom(f∗i) := {πi ∈ Rn : f∗i (πi) <∞}.

135

If the ambiguity set P consists of only a fixed probability vector p̄, say the empiri-

cal distribution, (Equation 4.1) is called risk-neutral, and it can be written as a finite-sum

problem (see Chapter 5 of [28]):

min
x∈X

∑m
i=1 p̄ifi(x) + u(x). (4.2)

However, if the costs among workers are imbalanced (different importance, limited avail-

ability of data, etc.), taking an average over the costs across workers might be meaningless

or operationally wrong. In such cases, non-trivial ρ∗ and P in (Equation 4.1) generalizes

risk-neutral optimization to risk-averse optimization and distributionally robust optimiza-

tion (DRO). Specifically, if fff := (f1, . . . , fm) denotes the scenario costs and ρ is a convex

risk measure, it can be formulated as (Equation 4.1) using Fenchel conjugates (see Defini-

tion 6.4 and Theorem 6.5 of [9]):

ρ(fff) := argmax
p∈P

⟨p,fff⟩ − ρ∗(p). (4.3)

For example, if we denote the (reference) probability mass function by p̄, some widely used

risk measures and their conjugates are given as follows.

• Mean semideviation of order r:

ρ(fff) =
∑m

i=1 p̄ifi + c(
∑m

i=1 p̄i[fi − Efff]r+)1/r = maxp∈P ⟨p,fff⟩,

where the ambiguity set P := {p ∈ ∆m
+ : ∃ζi ≥ 0 s.t. pi = p̄i(1+ζi−⟨ζ, p̄⟩), ∥ζ∥s ≤

c}, c ∈ [0, 1] and ∥·∥s is the conjugate norm to ∥·∥r, i.e., 1/s+ 1/r = 1.

• Entropic risk:

ρ(fff) = τ−1 log
∑m

i=1 p̄i exp(τfi) = maxp∈∆+
m
⟨p,fff⟩ − τ−1

∑m
i=1 pi log(pi/p̄i).

136

• Distributionally robust objective: ρ(fff) := supp∈P ⟨fff, p⟩ for some uncertainty set P .

The incorporation of all the above risk measures makes our problem (Equation 4.1) more

challenging than the finite-sum problem (Equation 4.2). We note that (Equation 4.1) also

covers a popular risk measure CV@R with ρ(fff) = maxp∈∆m
+ ,pi∈[0,p̄i/α]⟨p,fff⟩, where the

parameter α > 0 captures the degree of risk aversion. The risk measure admits a finite-

sum reformulation, ρ(fff) = inft
∑m

i=1 p̄i{[fi − t]+/α + t}, but the function f̃i(x, t) :=

[fi(x)− t]+/α+ t is nonsmooth with a very large Lipschitz-continuity constant, even if the

original fi is smooth. In contrast, our conjugate formulation avoids the situation.

As alluded to earlier, we assume the communication network to have a star-topology

where a computationally powerful central server node is connected directly to many worker

nodes. During a communication round, all the worker nodes send their local information to

the server, and the server node broadcasts processed information to all worker nodes. This

type of distributed optimization framework is very popular in machine learning, such as

federated learning [69], where the data are held privately in each worker (device) and the

central server learns a global model by communicating with the workers. Since communi-

cation in a network tends to be slower than computation inside a single node by orders of

magnitude, and less communication implies better protection of privacy, one of the main

goals of this paper is to study the system’s communication complexity, i.e., the number of

communication rounds required to find a quality solution x̄ ∈ X s.t. f(x̄) − f(x∗) ≤ ϵ,

where x∗ denotes an optimal solution of (Equation 4.1).

Risk-averse optimization problems of form (Equation 4.1) have a wide range of appli-

cations in portfolio selection [70], renewable energy [71], power security [72], telecom-

munication [73] and climate change planning [74]. As a concrete example, consider the

massive multiple-input multiple-output (MIMO) system in the 5G communication network

consisting of multiple active antennas and terminal devices [73, 75]. The multiple active

antennas at the base station should be configured to ensure stable connections for all the

137

terminal devices in its service area, rather than a high connection speed when averaged

over all devices. Such an objective can be formulated as (Equation 4.1) with fi being the

negative data speed at the ith terminal device and (P, ρ∗) being the conjugate to the mean-

semideviation risk measure. To gather information for the downlink and uplink channels,

the base station needs to communicate with terminal devices. So in a highly mobile en-

vironment, finding a quality antenna connection quickly, i.e., with a only few rounds of

communication, is crucial. A second example is motivated by climate change. The state

government may wish to invest in infrastructure to prepare for it. Each scenario cost func-

tion fi may denote the long-term economic cost estimated by a certain climate model and

a certain impact model [74]. To avoid downside risk, (P, ρ∗) could be chosen as the conju-

gate to some risk measures mentioned above, say the entropic risk measure. Because these

models involve large amounts of data and costly simulation runs, we might need to store

fi’s on separate computing nodes and use a communication network to find the optimal

policy. In this case, a small number of communication rounds is crucial for efficiency.

Our formulation is also applicable to the computationally demanding distributionally

robust optimization (DRO). DRO provides a powerful framework for learning from limited

data [76] and data-driven decision-making [77, 78]. Under the assumption of finite scenario

support Ξ = [ξ1, . . . , ξm], we could use fi(x) := f(x, ξi) to denote the cost under scenario

ξi and choose ρ to be the risk measure induced by the corresponding probability uncertainty

set [9]. When implemented on a distributed communication network with the evaluation of

f(x, ξi)’s performed in parallel on different machines, a small number of communication

rounds is essential for fast computation.

Additionally, the risk-averse formulation in (Equation 4.1) could also be useful for fed-

erated learning between organizations, i.e., the cross-silo federated learning [69]. Cross-

silo federated learning has found applications in finance risk prediction in reinsurance [79],

drug discovery [80], electronic health record mining [81] and smart manufacturing [82]. If

the workers represent demographically partitioned organizations or geographically parti-

138

tioned data centers, we could choose ρ to be the mean-semideviation risk measure to en-

sure that the trained model offers consistent performance across different populations. Risk

measures may also provide incentives for competing organizations to cooperate. For ex-

ample, consider the operations of competing airlines. When fi(x) is the expected relative

operation cost of ith airline, choosing ρ(fff(x)) := maxi∈[m] fi(x) ensures the new policy

x benefits every participant. In both cases, a smaller number of communication rounds

implies better protection of privacy.

Despite the importance of problem (Equation 4.1), however, the study of its commu-

nication complexity and the development of efficient algorithms are rather limited. Since

(Equation 4.1) can be viewed as a trilinear saddle point problem, we can potentially apply

some recently developed first-order algorithms (e.g. [55, 83]) for solving it. However, these

methods are designed without special consideration for communication burden. The most

related algorithm is perhaps the sequential dual (SD) method, which was first proposed in

[55] for the structured non-smooth problem and later extended in [83] to the smooth prob-

lem. The method is single-loop, so a direct implementation on a communication network

requires one communication round in each iteration, leading to communication complex-

ities of O(
√
LfDX0/

√
ϵ + DPDΠMADX0/ϵ) and O(DΠDX0/ϵ + DPDΠMADX0/ϵ) for

the smooth and the structured non-smooth problems, respectively. Here Lf , DΠ, MA, DP ,

and DX0 correspond to the overall smoothness constant, the dual radius, the operator norm

of Ai, the radius of P , and the distance to the optimal solution (see Tables 1.1 and 1.2,

and Section 3 for their precise definitions). On the other hand, for the risk-neutral prob-

lem (Equation 4.2) with P := {p̄}, direct distributed implementations of the Nesterov

accelerated gradient method [33] and the primal-dual algorithm [84] can achieve commu-

nication complexities of O(
√
LfDX0/

√
ϵ) and O(DΠMADX0/ϵ) for the smooth and the

structured non-smooth problems, respectively, which were shown to be tight (see, e.g.,

[85]). Clearly, there exists a significant gap in communication complexities, especially for

smooth problems where the O(1/ϵ) communication complexity for the risk-averse setting

139

is much larger than theO(1/
√
ϵ) complexity for the risk-neutral setting. Therefore we pose

the following research question:

Can we solve the risk-averse problem over a star-shape network with the

same communication complexity as the finite-sum problem?

This paper intends to provide a positive answer to this question in three steps.

First, we propose a conceptual distributed risk-averse optimization (DRAO) method. It

is inspired by works of Nesterov (Section 2.3.1 of [1]) and Lan [27] on composite optimiza-

tion of the form minx ρ(fff(x)) for a smooth vector function fff . While Nesterov [1] consid-

ers the problem with ρ(fff(x)) = maxi=1,...,m fi(x), Lan [27] generalizes ρ to any monotone

convex function. They can achieve anO(1/
√
ϵ) first-order (FO) oracle complexity of fff by

incorporating the following inner-linearization prox-mapping into the accelerated gradient

descent (AGD) method or into the accelerated prox-level (APL) method:

xt ← argminx∈X ρ
(
f1(x

t) + ⟨∇f1(xt), x− xt⟩, . . . , fm(xt) + ⟨∇fm(xt), x− xt⟩
)

+ η
2

∥∥x− xt−1
∥∥2
.

(4.4)

Such an update is a simplified version of (Equation 4.1) with fi(xt) + ⟨∇fi(xt), x− xt⟩

denoting some (iterative) linearization of fi at xt and η
2
∥x− xt−1∥2 being the proximal

term. Similarly, we modify the SD method by combining the p and x-prox updates into a

single (x, p)-prox update given by

xt ← argmin
x∈X

max
p∈P

∑m
i=1 pi[⟨x,Aiπ

t
i⟩ − f ∗

i (π
t
i)]− ρ∗(p) + u(x) + η

2
∥x− xt−1∥2 , (4.5)

where ⟨x,Aiπ
t
i⟩−f ∗

i (π
t
i) also represents some (iterative) linearization of fi specified by the

140

dual variable πt
i . In fact, rewriting ρ in its primal form (Equation 4.3) shows (Equation 4.5)

to be equivalent to

xt ← argmin
x∈X

ρ
(
⟨x,A1π

t
1⟩ − f ∗

1 (π
t
1), . . . , ⟨x,Amπ

t
m⟩ − f ∗

m(π
t
m)

)
+ u(x)

+ η
2

∥∥x− xt−1
∥∥2
,

which matches (Equation 4.4) if πt
i is selected to be ∇fi(xt) for smooth fi’s. Such a mod-

ification of the SD method leads to the DRAO method. As shown in Table Table 4.1,

it achieves the optimal FO oracle complexities for fff (or Πi-projection complexities) for

both the smooth and the structured non-smooth problems. Since (ρ∗, P) is available to the

server, (Equation 4.5) can be performed entirely on the server, so the communication com-

plexities are the same (shown in Table Table 4.1). However, this approach requires ρ to

be simple so that (Equation 4.5) can be efficiently solved. This assumption might be too

strong in practice. For example, if m is large, the (x, p)-prox update in (Equation 4.5) with

either the mean-semideviation risk measure ρ or the Kantorovich ambiguity set P is known

to be computationally challenging.

Table 4.1: Communication Complexity and FO Oracle Complexity of fff for DRAO and
DRAO-S②

Convex (α = 0) strongly convex (α > 0)

Smooth O(
√
Lf∥x0 − x∗∥/

√
ϵ) O(

√
Lf/α log(1/ϵ))

Structured Non-smooth O(MADΠ

∥∥x0 − x∗
∥∥ /ϵ) O(MADΠ/

√
ϵα)

Table 4.2: P -projection and X-projection Complexity of DRAO-S ③

convex (α = 0) strongly convex (α > 0)
Smooth O(DP M̃∥x0 − x∗∥/ϵ) O((Lf/α)

1/4M̃DP /α
√
ϵ)④

Structured Non-smooth O(DP M̄AΠ∥x0 − x∗∥/ϵ) O(DP M̄AΠ/
√
ϵα)

②MA = maxi∈[m] ∥Ai∥, DΠ = maxi∈[m] maxπi,π̄i∈Πi
∥πi − π̄i∥.

③DP denotes P ’s radius. M̃ denotes the operator norm of ∥∇f1(x), . . . ,∇fm(x)∥ over some bounded ball around x∗ and M̄AΠ

denotes the operator norm of ∥A1π1, . . . , Amπm∥ over the whole feasible region Π.
④Number of P-projections required to generate an ϵ-close solution, i.e.,

∥∥xN − x∗∥∥2 ≤ ϵ.

141

Second, we overcome the restrictive assumption of ρ being simple by developing a

saddle point sliding (SPS) subroutine. It replaces (Equation 4.5) in the DRAO method by

performing only a finite number of P -projections and X-projections to solve the saddle

point subproblem inexactly. The new method, called distributed risk-averse optimization

with sliding (DRAO-S), maintains the same communication complexities as DRAO while

improving on its computation efficiency. Since each inner iteration of the sliding subroutine

requires one P -projection and one X-projection, the total numbers of these projections are

optimal in most cases ⑤. As shown in Table Table 4.2, they match the lower bounds [86]

for solving a single (x, p) bi-linear saddle point problem, i.e., (Equation 4.5) with a fixed

πt and ηt = 0. Such a result is similar to that of the gradient sliding (GS) method [87] for

solving an additive composite problem,

min
x∈X

f(x) + g(x). (4.6)

The GS method can achieve both optimal f -oracle and optimal g-oracle complexities.

However, our nested composite problem appears to be more challenging. This is because

for a fixed x, the optimal dual variables p and π in (Equation 4.1) are dependent, while

the optimal dual variables πf and πg (associated with the saddle point reformulation of

(Equation 4.6) through bi-conjugation [10]) are independent. In fact, (Equation 4.6) can

always be rewritten as a nested composite problem (see the discussion in Example 3 of

[27]). Additionally, the SPS subroutine in the DRAO-S method is initialized differently

from the usual sliding subroutines in [87] and [88]. Such a modification simplifies both the

outer loop algorithm and the convergence analysis. This simplification could motivate the

application of the sliding technique to a wider range of problems. Furthermore, an inter-

esting feature of the DRAO-S method is that its inner loop, the SPS subroutine, can adjust

dynamically to the varying levels of difficulty, characterized by ∥πt∥, of the saddle point

subproblem (Equation 4.5). This allows us to remove the assumption of the smooth fi’s

⑤Except for the strongly convex smooth problem which is worse off by a factor of (Lf/α)
1/4.

142

being Lipschitz continuous, which is required by the SD method in [83], but may not hold

if the domain X is unbounded.

Third, we show that the communication complexities of both DRAO and DRAO-S

are not improvable by constructing lower complexity bounds. Previous developments are

restricted to a trivial P and the smooth problem [89]. We propose a more general com-

putation model which includes both the fi-gradient oracle and the f ∗
i -prox mapping oracle,

and introduce a different set of problem parameters appropriate for the risk-averse problem.

They allow us to develop, for a non-trivial P and for both the smooth and the structured

non-smooth problems, new lower complexity bounds matching the upper communication

complexity bounds possessed by DRAO and DRAO-S.

The rest of the paper is organized as follows. Preliminary Section 2 reviews a gap

function in [55] which will guide the algorithm design. Section 3 and Section 4 propose

and analyze the DRAO and DRAO-S methods, respectively. Section 5 provides lower

communication complexity bounds and Section 6 provides some encouraging numerical

results. Finally, some concluding remarks are made in Section 7.

4.1.1 Notation & Assumptions

The following assumptions and notations will be used throughout the paper.

• The set of optimal solutions to (Equation 4.1), X∗, is nonempty. x∗ denotes an arbi-

trary optimal solution, and f∗ denotes the optimal objective, f(x∗). R0 represents an

estimate of the distance from the initial point to x∗, i.e., R0 ≥ ∥x0 − x∗∥ .

• DP denotes the radius of P , i.e., DP := maxp,p̄∈P
√

2U(p, p̄) where U is the chosen

Bregman distance function [28].

• fff : Rn → Rm denotes a vector of scenario cost functions, [f1; ...; fm], and ∇fff(x) :

Rn → Rm×n denotes the Jacobian matrix function.

143

• We refer to the following computation as either a prox mapping or a projection:

ŵ ← argmin
w∈W

⟨g, w⟩+ h(w) + τV (w; w̄), (4.7)

where the vector g represents some “descent direction” (the gradient for example),

and h(w) denotes a simple convex function [28]. V denotes the Bregman distance

function, w̄ is a prox center, and τ is a stepsize parameter. Together they ensure the

output ŵ is close to w̄. In particular, we call it an x, a πi or a p-prox mapping (an X ,

a Πi or a P -projection) if W = X and h ≡ 0, W = Πi and h = f ∗
i , or W = P and

h = ρ∗, respectively. Sometimes, the term prox update also is used to emphasize that

the prox mapping is performed to update wt = ŵ from w̄ = wt−1.

4.2 Preliminary: Q-gap function

We introduce a gap function [55] which will guide our algorithmic development throughout

the paper. For notation convenience, we denote π ≡ (π1, . . . , πm) and Π ≡ Π1 × Π2 ×

. . .× Πm so that (Equation 4.1) can be written as

min
x∈X

max
p∈P

max
π∈Π
{L(x; p, π) :=

∑m
i=1 pi (⟨Aix, πi⟩ − f ∗

i (πi))− ρ∗(p) + u(x)}. (4.8)

The following duality relation between the reformulation and the original problem

(Equation 4.1) is valid (see Proposition 2.1 of [55]).

Lemma 4.1 Let f and L be defined in (Equation 4.1) and (Equation 5.1), then the follow-

ing statements hold for all x ∈ X .

a) Weak Duality: f(x) ≥ L(x, p, π) for all p ∈ P, π ∈ Π.

b) Strong Duality: f(x) = L(x, p̂, π̂) for any π̂i ∈ argmaxπi∈Πi
⟨πi, Aix⟩ − f ∗

i (πi),

i = 1, . . . ,m, and any p̂ ∈ argmaxp∈P
∑m

i=1 pifi(x)− ρ∗(p).

144

We measure the quality of a feasible solution z = (x, p, π) by a gap function Q associ-

ated with some feasible reference point ẑ := (x̂; p̂, π̂):

Q(z; ẑ) := L(x; p̂, π̂)− L(x̂; p, π). (4.9)

The Q function provides a bound on the function optimality gap from above.

Lemma 4.2 Let Q be defined in (Equation 4.9), then

f(x)− f(x∗) ≤ max
p̂∈P,π̂∈Π

Q((x; p, π); (x∗; p̂, π̂)). (4.10)

Moreover, the optimal solution x∗ of (Equation 4.1), together with some

π∗
i ∈ argmaxπi∈Πi

⟨πi, Aix
∗⟩ − f ∗

i (πi), i = 1, . . . ,m, and p∗ ∈

argmaxp∈P
∑m

i=1 pifi(x
∗) − ρ∗(p) forms a saddle point z∗ := (x∗; p∗, π∗) of

(Equation 5.1), i.e.,

Q(z; z∗) ≥ 0, ∀z ≡ (x; p, π) ∈ X × P × Π. (4.11)

Proof: Let p̂ and π̂ by defined in Lemma 4.1.b). By Lemma 4.1, we have f(x)−f(x∗) ≤

L(x, p̂, π̂) − L(x∗, p, π) = Q((x; p, π); (x∗; p̂, π̂)), from which (Equation 4.10) follows

immediately. Next, the first-order optimality condition of (Equation 4.1) implies that

there exist some π∗
i ∈ argmaxπi∈Πi

⟨πi, Aix
∗⟩ − f ∗

i (πi), g
∗ ∈ ∂u(x∗) and some p∗ ∈

argmaxp∈P
∑m

i=1 pifi(x
∗) − ρ∗(p) such that ⟨

∑m
i=1 p

∗
iA

⊤
i π

∗
i , x − x∗⟩ + u(x) − u(x∗) ≥

⟨
∑m

i=1 p
∗
iA

⊤
i π

∗
i + g∗, x − x∗⟩ ≥ 0 for any x ∈ X . This observation together with the

definition of L in (Equation 5.1) then imply that

L(x; p∗, π∗) ≥ L(x∗; p∗, π∗),∀x ∈ X.

145

Moreover, due to our choice of (p∗, π∗), Lemma 4.1 also implies that

f(x∗) = L(x∗; p∗, π∗) ≥ L(x∗; p, π), ∀(p, π) ∈ P × Π.

(Equation 4.11) then follows from combining the preceding two inequalities. □

In view of Lemma 4.2, we can use Q to guide our search for an ϵ-optimal solution. In

particular, we decompose Q into three sub-gap functions given by

Q(z̄; ẑ) = Qx(z̄; ẑ) +Qp(z̄; ẑ) +Qπ(z̄; ẑ)

with

Qπ(z̄; ẑ) := L(x̄; p̂, π̂)− L(x̄; p̂, π̄) =
∑m

i=1 p̂i [⟨Aix̄, π̂i − π̄i⟩ − f ∗
i (π̂i) + f ∗

i (π̄i)] .

Qp(z̄; ẑ) := L(x̄; p̂, π̄)− L(x̄; p̄, π̄) =
∑m

i=1(p̂i − p̄i)[⟨Aix̄, π̄i⟩ − f ∗
i (π̄i)]

− (ρ∗(p̂)− ρ∗(p̄)).

Qx(z̄; ẑ) := L(x̄; p̄, π̄)− L(x̂; p̄, π̄) = ⟨
∑m

i=1 p̄iA
⊤
i π̄i, x̄− x̂⟩+ u(x̄)− u(x̂).

(4.12)

4.3 Upper Bounds for Communication Complexity

We propose the distributed risk-averse optimization (DRAO) method to provide upper

bounds on communication complexity. The algorithm and its convergence properties are

presented in Subsection subsection 4.3.1 and the convergence analysis is presented in Sub-

section subsection 4.3.2.

4.3.1 The DRAO method

The DRAO method is designed for solving the min-max-max trilinear saddle point problem

in (Equation 5.1). It is inspired by two algorithms for optimizing nested composite prob-

146

lems. First, the sequential dual (SD) algorithm, proposed in [55, 83], performs sequential

proximal updates to the dual variables π and p before updating the primal variable x. The

DRAO method is built on similar sequential proximal updates for π, p, and x. Second, the

accelerated prox-level (APL) algorithm, proposed in [27], can reduce the number of outer

iterations further by solving a more complicated proximal sub-problem (Equation 4.4). The

DRAO method exploits this property by combining the separate p and x proximal updates

into a single (x, p) prox update step in the server node to save communication.

Algorithm Algorithm 9 describes a generic DRAO method which will be later special-

ized for solving the smooth and the structured nonsmooth problems. As shown in Algo-

rithm Algorithm 9, the server first sends an extrapolated point x̃t to the workers for them to

perform dual proximal updates in Line 3. The only goal is to reduce the sub-gap function

Qπi
(c.f. (Equation 4.12)). Here we intentionally leave the prox-function Vi in an abstract

form because its selection and the resulting implementation will depend on the smoothness

properties of fi. Next, the server collects the newly generated Aiπ
t
i in Line 4 to solve the

(x, p) prox update problem in Line 5 to reduce both Qx and Qp.

147

Algorithm 9 A Generic Distributed Risk Averse Optimization (DRAO) Method

Input: x0 = x−1 ∈ X , π0
i ∈ Πi in every node, stepsizes {θt}, {ηt}, {τt}, and

weights {ωt}.

1: for t = 1, 2, 3...N do

2: Server computes x̃t ← xt−1+θt(x
t−1−xt−2). Broadcast it to all workers.

3: Every worker computes πt
i ← argmaxπi∈Πi

⟨Aix̃
t, πi⟩ − f ∗

i (πi) −

τtVi(πi; π
t−1
i), and evaluates vti ← A⊤

i π
t
i and f ∗

i (π
t
i).

4: All workers send their (vti , f
∗
i (π

t
i)) to the server.

5: Server updates

xt ← argminx∈X maxp∈P
∑m

i=1 pi(⟨x, vti⟩ − f ∗
i (π

t
i)) − ρ∗(p) + u(x) +

ηt
2
∥x− xt−1∥2 .

6: end for

7: return x̄N :=
∑N

t=1 ωtx
t/(

∑N
t=1 ωt).

In the generic DRAO algorithm, we assume subproblems in Lines 3 and 5 to be solved

exactly by the workers and server, respectively. Line 3 reduces to local gradient evaluations

in the smooth case, while requiring a prox mapping for the structured nonsmooth case.

Line 5 requires us to solve a structured bilinear saddle point problem. We will discuss in

detail how to solve these problems approximately in the next section while focusing on the

communication complexity now.

First, we consider the smooth problem where all Ai’s are identity matrices and all fi’s

are smooth such that ∥∇fi(x1) − ∇fi(x2)∥ ≤ Li∥x1 − x2∥, ∀x1, x2 ∈ Rn. Since the

Fenchel conjugate to a smooth convex function is strongly convex [90], a natural choice

of the prox-function Vi in DRAO would be the Bregman distance function generated by f ∗
i

given by

Wf∗
i
(πi; π̄i) := f ∗

i (πi)− f ∗
i (π̄i)− ⟨(f ∗

i)
′(π̄i), πi − π̄i⟩. (4.13)

148

It has been shown in [56, 28, 83] that the πi proximal update in Line 3 of Algorithm

Algorithm 9 is equivalent to a gradient evaluation. Specifically, with x0 = x0 and π0
i =

∇fi(x0), Line 3 reduces to the following steps:

xt ← (x̃t + τtx
t−1)/(1 + τt), (4.14)

πt
i ← ∇fi(xt), (4.15)

f ∗
i (π

t
i)← ⟨xt, πt

i⟩ − fi(xt). (4.16)

Plugging f ∗
i (π

t
i) defined in (Equation 4.16) into Line 5 of Algorithm Algorithm 9, we can

completely remove the information about the conjugate function f ∗
i . Therefore, DRAO is

a purely primal algorithm for the smooth problem.

To discuss the convergence properties of DRAO, we need to properly define some Lip-

schitz smoothness constants. For a given p ∈ P , let us denote fp(x) :=
∑m

i=1 pifi(x).

Clearly, fp is a smooth convex function with Lipschitz continuous gradients, i.e.,

∥∇fp(x1) − ∇fp(x2)∥ ≤ Lp∥x1 − x2∥,∀x1, x2 ∈ X. Moreover, Lp ≤
∑m

i=1 piLi. We

define an aggregate smoothness constant Lf to characterize the overall smoothness prop-

erty of the risk-averse problem (Equation 5.1):

Lf = max
p∈P

Lp. (4.17)

Observe that in the risk neutral case with P = {(1/m, . . . , 1/m)}, Lf is the global smooth-

ness constant of f [85], which is upper bounded by 1
m

∑m
i=1 Li. In the robust case when

P = ∆+
m, Lf = maxi Li. Theorem Theorem 4.1 and Theorem 4.2 below show the

convergence rates of the DRAO method applied to the aforementioned smooth problems,

for a non-strongly convex u(x) and a strongly convex u(x) respectively. Their proofs are

given in Section subsection 4.3.2.

149

Theorem 4.1 Let Lf be defined in (Equation 4.17). If {xt}Nt=1 are generated by the DRAO

method applied to a smooth problem with

ωt = t, θt = (t− 1)/t, τt = (t− 1)/2, ηt = 2Lf/t.

Then for a reference point ẑ := (x̂; p̂, π̂) in which π̂i = ∇fi(x̄) for some x̄ ∈ X , we have

∑N
t=1 ωtQ(z

t; ẑ) + Lf

∥∥xN − x̂∥∥2 ≤ Lf ∥x0 − x̂∥2 . (4.18)

In particular, the ergodic solution x̄N satisfies

f(x̄N)− f(x∗) ≤ 2Lf

∥∥x0 − x∗∥∥2
/N(N + 1),∀N ≥ 1. (4.19)

Theorem 4.2 Let Lf be defined in (Equation 4.17). Assume, in addition, that u(x) is α-

strongly convex for some α > 0. Let κ := Lf/α denote the condition number. If {xt}Nt=1

are generated by the DRAO method applied to smooth problems with

θt = θ :=
√
4κ+1−1√
4κ+1+1

, ωt = (1
θ
)t−1, τt = τ :=

√
4κ+1−1

2
, ηt = η := α(

√
4κ+1−1)
2

. (4.20)

Then for a reference point ẑ := (x̂; p̂, π̂) in which π̂i = ∇fi(x̄) for some x̄ ∈ X , we have

∑N
t=1 ωtQ(z

t; ẑ) + α(
√
4κ+1−1)
4θN

∥∥xN − x̂∥∥2 ≤ (
√
4κ+1−1)

4
(α ∥x0 − x̂∥2 + Lf ∥x0 − x̄∥2).

(4.21)

In particular, the last iterate xN converges geometrically:

∥∥xN − x∗∥∥2 ≤ θN(1 + κ)
∥∥x0 − x∗∥∥2

,∀N ≥ 1. (4.22)

We make two remarks regarding the above convergence results. First, selecting the

saddle point z∗ defined in Lemma 4.2 as ẑ, Theorem Theorem 4.1 (c.f. (Equation 4.18))

150

and Theorem 4.2 (c.f. (Equation 4.21)) imply that all generated iterates, {xt}t≥1, are inside

some ball around x∗:

∥∥xt − x∗∥∥ ≤ ∥∥x0 − x∗∥∥ if α = 0,∥∥xt − x∗∥∥ ≤ (1 + Lf/α)
∥∥x0 − x∗∥∥ if α > 0.

This shows that the search space for xt is essentially bounded. Such a property will become

useful when we solve the saddle point subproblem in Line 5 of DRAO approximately in

the next section. Second, Theorem Theorem 4.1 and Theorem 4.2 imply, respectively,

O(
√
Lf ∥x0 − x∗∥ /

√
ϵ) and O(

√
Lf/α log(1/ϵ)) communication complexities to find ϵ-

optimal solutions. It is interesting to note that with Lf defined in (Equation 4.17), these

results are valid even if P is larger than the probability simplex, i.e., ∆m
+ ⊊ P ⊂ Rm

+ , which

could be useful if the risk measure ρ is not positive homogeneous. We will show later in

Section 5 that these communication complexity bounds are not improvable in general.

Next, let us consider the structured non-smooth problem. Because f ∗
i may not be

strongly convex, the Bregman distance function Wf∗
i

(c.f. (Equation 4.13)) is no longer

suitable for πi prox update. Instead, we choose Vi(πi; π̄i) := 1
2
∥πi − π̄i∥2 , so that the πi

proximal update is given by:

πt
i ← argmax

πi∈Πi

⟨Aix̃
t, πi⟩ − f ∗

i (πi)− τt
2

∥∥πi − πt−1
i

∥∥2
. (4.23)

Theorem Theorem 4.3 below states the convergence properties of Algorithm Algorithm 9

applied to the structured nonsmooth problem and its proof is provided in Section subsec-

tion 4.3.2. We need to define the maximum linear operator norm MA and the maximum

dual radius DΠ as

MA := max
i∈[m]
∥Ai∥2,2 , DΠ := max

i∈[m]
max

πi,π̄i∈Πi

∥πi − π̄i∥ . (4.24)

151

Note that MADΠ provides an estimate of the Lipschitz continuity constant of
∑

i pifi(x).

Theorem 4.3 Let a structured non-smooth risk-averse problem (Equation 4.1) be given.

Let MA and DΠ be defined above in (Equation 4.24) and let R0 ≥ ∥x0 − x∗∥.

a) If α = 0 and the stepsizes satisfy

ωt = 1, θt = 1, ηt =MADΠ/ R0, τt =MAR0/DΠ,

the following convergence rate holds for the solution x̄N returned by the DRAO algorithm

f(x̄N)− f(x∗) ≤MADΠR0/N. (4.25)

b) If α > 0 and the stepsizes satisfy

ωt = t, θt = (t− 1)/t, ηt = tα/3, τt = 3M2
A/tα,

the following convergence rate holds for the solution x̄N returned by the DRAO algorithm

f(x̄N)− f(x∗) ≤
(
α
∥∥x0 − x∗∥∥2

/3 + 3M2
AD

2
Π/α

)
/N2. (4.26)

The preceding theorem gives us O(R0DΠMA/ϵ) and O(MADΠ/
√
ϵα)⑥ communica-

tion complexities for solving the structured nonsmooth problem under the non-strongly

convex and the strongly convex settings, respectively. These complexity bounds are worse

than those of the smooth problem by an order of magnitude. It is interesting to note that

the smoothness properties of the scenario cost functions have a significant impact on com-

munication complexity, even under the assumption that the workers are equipped with the

capability to solve the πi proximal update in (Equation 4.23).

⑥We assume the strong convexity modulus α to be small such that the M2
AD

2
Π/α term dominates in

(Equation 4.26).

152

4.3.2 Convergence analysis

Our main goal in this subsection is to establish the convergence rates associated with the

DRAO method stated in Theorems Theorem 4.1, Theorem 4.2, and Theorem 4.3.

We will first show some general convergence properties about the generic DRAO

method in Algorithm Algorithm 9. Since this result holds regardless of the strong con-

vexity of f ∗
i (i.e., µ = 0 is allowed in (Equation 4.27)) and the strong convexity of u (i.e.,

α = 0 is allowed), it will be applied to both smooth and nonsmooth problems under either

convex or strongly convex settings.

Proposition 4.1 Let {zt ≡ (xt; pt, πt)}Nt=1 be generated by Algorithm Algorithm 9 for some

pt ∈ argmaxp∈P
∑m

i=1 pi(⟨xt, πt
i⟩− f ∗

i (π
t
i))−ρ∗(p). Fix a reference point ẑ := (x̂; p̂, π̂) ∈

X × P × Π (c.f. (Equation 4.9)). Assume µ is a non-negative constant satisfying

f ∗
i (πi)− f ∗

i (π̄i)− ⟨g′i(π̄i), πi − π̄i⟩ ≥ µVi(πi; π̄i), ∀πi, π̄i ∈ Πi,∀i ∈ [m]. (4.27)

If there exists a positive constant q satisfying

∑m
i=1 piVi(π

t
i ; π

t−1
i) ≥ 1

2q

∥∥∑m
i=1 piA

⊤
i (π

t
i − πt−1

i)
∥∥2
,∀t ≥ 2,∀p ∈ P,∑m

i=1 piVi(π̂i; π
N
i) ≥ 1

2q

∥∥∑m
i=1 piA

⊤
i (π̂i − πN

i)
∥∥2
,∀p ∈ P,

(4.28)

and the stepsizes satisfy the following conditions for all t ≥ 2 :

ωt−1 = ωtθt,

ηt−1τt ≥ θtq, (τN + µ)ηN ≥ q,

ωtηt ≤ ωt−1(ηt−1 + α), ωtτt ≤ ωt−1(τt−1 + µ),

(4.29)

153

then the next bound is valid for all ẑ := (x̂; p̂, π̂) ∈ X × P × Π and N ≥ 1:

∑N
t=1 ωtQ(z

t; ẑ) + ωN (ηN+α)
2

∥∥xN − x̂∥∥2 ≤ ω1η1
2
∥x0 − x̂∥2 + ω1τ1

∑m
i=1 p̂iVi(π̂i; π

0
i).

(4.30)

Proof: Let Qπ, Qp and Qx be defined in (Equation 4.12). We begin by analyzing the

convergence of Qπ. It follows from the definition of x̃t that

⟨π̂i − πt
i , Ai(x̃

t − xt)⟩ =− ⟨π̂i − πt
i , Ai(x

t − xt−1)⟩+ θt⟨π̂i − πt−1
i , Ai(x

t−1 − xt−2)⟩

+ θt⟨πt−1
i − πt

i , Ai(x
t−1 − xt−2)⟩.

The optimality condition for the dual update in Line 3 of Algorithm Algorithm 9 (see

Lemma 3.1 of [28]) implies

⟨π̂i − πt
i , Aix

t⟩+ f ∗
i (π

t
i)− f ∗

i (π̂i) + ⟨π̂i − πt
i , Ai(x̃

t − xt)⟩

≤ τtVi(π̂i; π
t−1
i)− (τt + µ)Vi(π̂i; π

t
i)− τtVi(πt

i ; π
t−1
i).

So, combining the above two relations, taking the ωt weighted sum of the resulting inequal-

ities and using the conditions that ωt−1 = ωtθt and ωtτt ≤ ωt−1(τt−1 + µ), we obtain

∑N
t=1 ωt(⟨π̂i − πt

i , Aix
t⟩+ f ∗

i (π
t
i)− f ∗

i (π̂i))

≤− (ωN(τN + µ)Vi(π̂i; π
N
i)− ωN⟨π̂i − πN

i , Ai(x
N − xN−1)⟩)

−
∑N

t=2[ωtτtVi(π
t
i ; π

t−1
i) + ωt−1⟨πt−1

i − πt
i , Ai(x

t−1 − xt−2)⟩]

+ ω1τ1Vi(π̂i; π
0
i).

154

A p̂i-weighted sum of the above inequality leads to the desired Qπ convergence bound

given by

∑N
t=1 ωtQπ(z

t; ẑ)

≤− (ωN(τN + µ)
∑m

i=1 p̂iVi(π̂i; π
N
i)− ωN⟨

∑m
i=1 p̂iA

⊤
i (π̂i − πN

i), xN − xN−1⟩)

−
∑N

t=2[ωtτt
∑m

i=1 p̂iVi(π
t
i ; π

t−1
i) + ωt−1⟨

∑m
i=1 p̂iA

⊤
i (π

t−1
i − πt

i), x
t−1 − xt−2⟩]

+ ω1τ1
∑m

i=1 p̂iVi(π̂i; π
0
i).

(4.31)

Next, we consider xt and pt generated by Line 5 in Algorithm Algorithm 9. Let

F (x; πt) := maxp∈P
∑m

i=1 pi[⟨x, vti⟩ − f ∗
i (π

t
i)] − ρ∗(p) + u(x) + η

2
∥x− xt−1∥2 . Since

xt ∈ argminx∈X F (x; π
t), the first-order necessity condition implies the existence of some

maximizer pt and some subgradient u′(xt) ∈ ∂u(xt) such that

∑m
i=1 p

t
iv

t
i + η(xt − xt−1) + u′(xt) ∈ −∂δX(xt)

⇒ ⟨
∑m

i=1 p
t
iA

⊤
i π

t
i , x

t − x̂⟩+ ⟨ηt(xt − xt−1) + u′(xt), xt − x̂⟩ ≤ 0.

Since α-strong convexity of u implies that u(xt)+α∥xt− x̂∥2/2−u(x̂) ≤ ⟨u′(xt), xt − x̂⟩,

and ηt
2
∥xt − x̂∥2 + ηt

2
∥xt − xt−1∥2 − ηt

2
∥xt−1 − x̂∥2 = ⟨ηt(xt − xt−1), xt − x̂⟩ , we get

Qx(z
t; ẑ) + ηt+α

2

∥∥xt − x̂∥∥2 ≤ ηt
2

∥∥xt−1 − x̂
∥∥2 − ηt

2

∥∥xt − xt−1
∥∥2
. (4.32)

Additionally, being a maximizer, pt satisfies

pt ∈ argmax
p∈P

∑m
i=1 pi(⟨xt, Aiπ

t
i⟩ − f ∗

i (π
t
i))− ρ∗(p)

⇒
∑m

i=1(p̂i − pt)(⟨xt, Aiπ
t
i⟩ − f ∗

i (π
t
i)) + ρ∗(pt)− ρ∗(p̂) ≤ 0⇒ Qp(z

t; ẑ) ≤ 0,

(4.33)

155

So, combining (Equation 4.33) and (Equation 4.32), taking a ωt-weighted sum of the re-

sulting inequality and using ωtηt ≤ ωt−1(ηt−1 + α), we obtain

∑N
t=1 ωt(Qx(z

t; ẑ) +Qp(z
t; ẑ)) + ωN (ηN+α)

2

∥∥xN − x̂∥∥2

≤ ω1η1
2

∥∥x0 − x̂∥∥2 −
∑N

t=1
ωtηt
2
∥xt − xt−1∥2 .

(4.34)

Then utilizing (Equation 4.28) and the Young’s inequality, (Equation 4.30) follows imme-

diately by adding (Equation 4.34) to (Equation 4.31). □

We now apply the result in Proposition 4.1 to the smooth problem. Observe that the

gradient evaluation point xt is common for all workers. This allows us to easily characterize

the strong convexity modulus of the aggregate prox-penalty function
∑m

i=1 p̂iWf∗
i
(·; ·) (c.f.

(Equation 4.28)) in the next lemma.

Lemma 4.3 Let p̂ ∈ P be given. If πi = ∇fi(x) and π̄i = ∇fi(x̄) for some x and x̄, then

∑m
i=1 p̂iWf∗

i
(πi; π̄i) ≥ 1

2Lf

∥∥∑m
i=1 p̂iA

⊤
i (πi − π̄i)

∥∥2
. (4.35)

Proof: Let fp̂(x) := (
∑m

i=1 p̂ifi(x)). Then by the definition of Lf in (Equation 4.17), fp̂

is Lf -smooth and its conjugate (fp̂)
∗ is 1/Lf strongly convex. Next, we relate W(fp̂)∗ to∑m

i=1 p̂iWf∗
i

to calculate its strong convexity modulus. Since
∑m

i=1 p̂iπi = ∇fp̂(x) and∑m
i=1 p̂iπ̄i = ∇fp̂(x̄), we have by Fenchel duality that

∑m
i=1 p̂i⟨πi − π̄i,∇f ∗

i (π̄i)⟩ = ⟨
∑m

i=1 p̂i(πi − π̄i), x̄⟩

= ⟨
∑m

i=1 p̂i(πi − π̄i),∇(fp̂)∗(
∑m

i=1 p̂iπ̄i)⟩,∑m
i=1 p̂if

∗
i (πi) =

∑m
i=1 p̂i(⟨πi, x⟩ − fi(x))

= ⟨
∑m

i=1 p̂iπi, x⟩ − (
∑m

i=1 p̂ifi)(x) = (fp̂)
∗(
∑m

i=1 p̂iπi),

156

and, similarly,
∑m

i=1 p̂if
∗
i (π̄i) = (fp̂)

∗(
∑m

i=1 p̂iπ̄i). Thus

∑m
i=1 p̂iWf∗

i
(πi; π̄i)

= (fp̂)
∗(
∑m

i=1 p̂iπi)− (fp̂)
∗(
∑m

i=1 p̂iπ̄i)− ⟨
∑m

i=1 p̂i(πi − π̄i),∇(fp̂)∗(
∑m

i=1 p̂iπ̄i)⟩

= W(fp̂)∗(
∑m

i=1 p̂iπi;
∑m

i=1 p̂iπ̄i) ≥
1

2Lf
∥
∑m

i=1 p̂i(πi − π̄i)∥
2

= 1
2Lf

∥∥∑m
i=1 p̂iA

⊤
i (πi − π̄i)

∥∥2
,

where the last inequality follows from A⊤
i = I in smooth problems. □

We are now ready to prove Theorems Theorem 4.1 and Theorem 4.2.

Proof of Theorem Theorem 4.1: We apply Proposition 4.1 to obtain the convergence

result in (Equation 4.19). Since f ∗
i is 1-strongly convex with respect toWf∗

i
, µ = 1 satisfies

condition (Equation 4.27). Since πt
i = ∇fi(xt) and π̂i = ∇fi(x̄) for some x̄, q = Lf

satisfies condition (Equation 4.28) (c.f. Lemma 4.3). Moreover, since stepsizes proposed

in Theorem Theorem 4.1 verifies (Equation 4.29), all the requirements in Proposition 4.1

are met. Thus Proposition 4.1 leads to (Equation 4.18), i.e.,

∑N
t=1 ωtL(xt; p̂, π̂)−

∑N
t=1 ωtL(x∗; pt, πt) + Lf

∥∥xN − x∗∥∥2 ≤ Lf ∥x0 − x∗∥2 .

In particular, with π̂N
i = ∇fi(x̄N) and p̂N ∈ argmaxp∈P

∑m
i=1 pifi(x̄

N) such that f(x̄N) =

L(x̄N ; p̂N , π̂N) (see Lemma 4.1), we have

∑N
t=1 ωtL(xt; p̂N , π̂N)−

∑N
t=1 ωtL(x∗; pt, πt) ≤ Lf

∥∥xN − x∗∥∥2
.

Because L(·; p̂N , π̂N) is convex with respect to x, the first term satisfies

∑N
t=1 ωtL(xt; p̂N , π̂N) ≥ N(N+1)

2
L(x̄N ; p̂N , π̂N) = N(N+1)

2
f(x̄N).

157

Due to the weak duality in Lemma 4.1, the second term is upper bounded by

∑N
t=1 ωtL(x∗; pt, πt) ≤

∑N
t=1 ωtf(x

∗) = N(N+1)
2

f(x∗).

Then the desired inequality in (Equation 4.19) follows immediately.

□

Proof of Theorem Theorem 4.2: Similar to the preceding proof, the proposed stepsizes

(c.f. (Equation 4.20)), together with µ = 1 and q = Lf , verify the requirements in Propo-

sition 4.1, thus

∑N
t=1 ωt(L(xt; p̂, π̂)− L(x∗; pt, πt)) + ωN(η + α)

∥∥xN − x∗∥∥2

≤ ω1(η
∥∥x0 − x∗∥∥2

+ τ
∑m

i=1 p̂iWf∗
i
(π̂i; π

0
i)).

Using the relation of conjugate Bregman distance functions and the identity

∇(
∑m

i=1 p̂ifi)(x̄) =
∑m

i=1 p̂i∇fi(x̄), the last term can be upper bounded by

∑m
i=1p̂iWf∗

i
(π̂i; π

0
i) =

∑m
i=1 p̂i(Wfi(x

0; x̄))

= (
∑m

i=1 p̂ifi)(x
0)− (

∑m
i=1 p̂ifi)(x̄)− ⟨∇(

∑m
i=1 p̂ifi)(x̄), x

0 − x̄⟩

≤ Lf

2

∥∥x0 − x̄∥∥2
.

Thus the Q convergence bound in (Equation 4.21) follows immediately from

∑N
t=1 ωtQ(z

t; ẑ) + α(
√
4κ+1−1)
4θN

∥∥xN − x̂∥∥2 ≤ (
√
4κ+1−1)

4
(α ∥x0 − x̂∥2 + Lf ∥x0 − x̄∥2).

Additionally, setting the preceding ẑ to the saddle point z∗ defined in Lemma (4.2) (c.f.

(Equation 4.11)) such that Q(zt; z∗) ≥ 0 ∀t and dividing both sides by α(
√
4κ+1−1)
4θN

, the ge-

ometric convergence of xN to x∗ in (Equation 4.22) can be deduced. □Now we move on

to present convergence proofs for structured non-smooth problems.

158

Proof of Theorem Theorem 4.3 First, we consider part a) with a non-strongly convex u(x).

The result is also a consequence of Proposition 4.1. Since Vi(πi; π̄i) := 1
2
∥πi − π̄i∥2 ≥

1
2M2

A

∥∥A⊤
i (πi − π̄i)

∥∥2, the Jensen’s inequality implies the condition (Equation 4.28) is sat-

isfied with q = M2
A. Since f ∗

i is convex, the condition (Equation 4.27) is satisfied with

µ = 0. Additionally, since the chosen stepsizes in Theorem Theorem 4.3 satisfy the condi-

tion (Equation 4.29), all the requirements for Proposition 4.1 are met. Thus for any feasible

ẑ := (x̂; p̂, π̂), we have

∑N
t=1 ωtQ(z

t; ẑ) + ωNηN
2

∥∥xN − x̂∥∥2 ≤ ω1η1
2
∥x0 − x̂∥2 + ω1τ1

2

∑m
i=1 p̂i ∥π̂i − π0

i ∥
2
.

Let π̂N
i ∈ argmaxπi∈Πi

⟨πi, Aix̄
N⟩−f ∗

i (πi) and p̂N ∈ argmaxp∈P
∑m

i=1 pifi(x̄
N) such that

f(x̄N) = L(x̄N ; p̂Ni , π̂N
i) (c.f. Lemma 4.1). Setting ẑ to ẑN := (x∗; p̂N , π̂N) leads to

∑N
t=1 ωtQ(z

t; ẑN) ≤ η1
2
R2

0 +
τ1
2
D2

Π = R0MADΠ.

Then the resulting convergence bound in (Equation 4.25) can be deduced from the fact

(
∑N

t=1 ωt)f(x̄
N)− f(x∗) ≤

∑N
t=1 ωtQ(z

t; ẑN).

As for part b), the derivation is the same except for the different stepsize choice to take

advantage of the α-strong convexity of u(x). □

4.4 The DRAO-S method

The practical application of the DRAO method is limited by the exact computation to the

following saddle point problem in Line 5 of Algorithm Algorithm 9:

xt ← argmin
x∈X

max
p∈P

∑m
i=1 pi[⟨x, vti⟩ − f ∗

i (π
t
i)]− ρ∗(p) + u(x) + ηt

2
∥x− xt−1∥2 . (4.36)

We relax it by assuming only the ability to efficiently compute the p-prox mapping defined

in (Equation 5.6). In the DRO setting, the efficient implementations for risk measures

159

induced by several probability uncertainty sets are described in [55]. For the entropic risk

measure, if we select prox-function to be U(p; p̄) :=
∑m

i=1 pi log(pi/p̄i), the computation

amounts to a softmax evaluation. For the mean semi-deviation risk of order two, the com-

putation can be implemented as a quadratically constrained quadratic program (QCQP).

In this section, we design a novel saddle point sliding (SPS) subroutine to solve

(Equation 4.36) inexactly in the DRAO method and call the resulting method distributed

risk-averse optimization with sliding (DRAO-S). We show the DRAO-S method maintains

the same order of communication complexity as the DRAO method. Moreover, the total

number of P -projections required by the DRAO-S method will be mostly optimal, in the

sense that it is equivalent to the optimal one required for solving problem (Equation 4.1)

with linear local cost functions fi’s.

4.4.1 The Algorithm and Convergence Results

The SPS subroutine for solving (Equation 4.36) inexactly is presented in Algorithm Algo-

rithm 10. It is closely related to the classic primal dual (PD) algorithm (see [84, 28]) for

solving a structured bilinear saddle point problem given by

min
y∈X

max
p∈P
⟨vty, p⟩ − ρ∗(p),

where the matrix vt is obtained from stacking (vt1)
⊤, (vt2)

⊤, . . . , (vtm)
⊤ from Line 3 of Al-

gorithm Algorithm 9 vertically. In iteration s, the subroutine computes an extrapolated

prediction of
∑m

i=1 p
s
iv

t
i in Line 2, a y-prox update in Line 3, and then a p-prox update

in Line 4. The p-prox update utilizes a general Bregman distance function U to allow a

suitable choice to take advantage of the geometry of P . At the end of St iterations, the

SPS subroutine returns a weighted ergodic average of {ys} as an approximate solution to

(Equation 4.36).

160

Algorithm 10 Saddle Point Sliding (SPS) Subroutine

Input: Initial points xt−1, y0 ∈ X , p0, p−1 ∈ P , and gradients {vti}, {vt−1
i }. Non-

negative stepsizes ηt, {δs}, {γs} and {βs}, averaging weights {qs}, and itera-

tion number St.

1: for s = 1, 2, 3...St do

2: ṽs ←

∑m

i=1 p
0
i v

t
i + δ1

∑m
i=1(p

0
i − p−1

i)vt−1
i if s = 1,∑m

i=1 p
s−1
i vti + δs

∑m
i=1(p

s−1
i − ps−2

i)vti if s ≥ 2.

3: ys ← argminy∈X⟨y, ṽs⟩+ u(y) + βs

2
∥y − ys−1∥2 + ηt

2
∥y − xt−1∥2 .

4: ps ← argmaxp∈P
∑m

i=1 pi(⟨vti , ys⟩ − f ∗
i (π

t
i))− ρ∗(p)− γsU(p; ps−1).

5: end for

6: return xt :=
∑St

s=1 qsy
s/(

∑St

s=1 qs), y
t := ySt , p̄t :=

∑St

s=1 qsp
s/(

∑St

s=1 qs),

p̃t := pSt and ≈
pt := pSt−1.

The DRAO-S method is obtained by making the following two modifications to DRAO.

First, we require additional initial points (y0, p̃0, ≈
p0) ∈ X × P × P . For simplicity, we set

y0 = x0 and p̃0 = ≈
p0. Second, we replace the definition of xt in Line 5 of DRAO with the

output solution of the SPS subroutine according to:

(xt, yt, p̄t, p̃t,
≈
pt) = SPS(xt−1, yt−1, p̃t−1,

≈
pt−1, {vti}, {vt−1

i }

| ηt, {δts}, {γts}, {βt
s}, {qts}, St) ∀t ≥ 1.

(4.37)

At the beginning, i.e., t = 1, we set v0i = v1i ∀i ∈ [m]. Due to its similarity to the DRAO

method, we call the outer loop of the DRAO-S method (Algorithm Algorithm 9 with mod-

ification (Equation 4.37)) the outer DRAO loop and say a phase of the DRAO-S method

happens if t is increased by 1. Accordingly, we call the inner loop of the DRAO-S method

(Algorithm Algorithm 10) the inner SPS loop and say an (inner) iteration happens if s is

incremented by 1. Intuitively, if the inner iteration limits St were large enough, xt obtained

from the inner SPS loop would be a good approximate solution of (Equation 4.36). How-

161

ever, the P -projection complexity, i.e., the total number of inner iterations given by
∑

t St,

might be too large. In addition, notice that the computation burdens of the server subprob-

lem and the worker subproblem during each communication round are still different: the

server requires several rounds of P and X-projections for the SPS subroutine, while the

worker needs just one πi-prox mapping. However, since the server is often more power-

ful, e.g. the cloud-edge system, this asymmetry may have a limited impact on the overall

computation performance of the system.

We note here that the DRAO-S method is related to the Primal Dual Sliding (PDS)

method in [88], where the sliding subroutine is also a primal dual type algorithm. However,

since we are dealing with a nested trilinear saddle point problem, rather than the sum of

two bilinear saddle point problems, the DRAO-S method differs from the PDS method

in two important ways. First, the linear operator vt for the saddle point subproblem (c.f.

(Equation 4.36)) changes in every phase. To coordinate consecutive inner SPS loops, we

construct a special momentum term from both the current vt and the previous vt−1 when

transitioning into a new phase, i.e., Line 2 of Algorithm Algorithm 10. This construction

is inspired by the novel momentum term in the SD method [55]. Second, as opposed to

the single initialization in both the PDS method and the gradient sliding method [87], the y

prox update in Line 3 of Algorithm Algorithm 10 utilizes two distinct initialization points,

the ergodic average xt−1 and the last iterate obtained in the last phase, y0. Even though

both are approximate solutions to (Equation 4.36), ys is used only in the inner SPS loop

while the ergodic average xt is used in both the outer loop and the inner loop. As will be

discussed in the next subsection, the additional initialization point appears to significantly

simplify the convergence analysis and the selection of stepsizes in comparison to [87, 88].

Now, let us consider the smooth problem. The stepsizes associated with the inner SPS

loop need to adapt dynamically in two aspects. First, the inner iteration limit St needs

to be an increasing function of t to maintain the same communication complexity as the

DRAO method. Second, as a primal dual type algorithm, the inner SPS loop stepsizes,

162

γts, δ
t
s and βt

s, need to satisfy a certain condition related to the operator norm of vt, i.e.,

γts−1β
t
s ≥ δts ∥vt∥

2, to ensure convergence. Specifically, if the Bregman distance function

U in Line 4 of Algorithm Algorithm 10 is 1-strongly convex with respect to ∥·∥U , the

operator norm of interest is given by

Mt :=
∥∥vt∥∥

2,U∗ := max
∥p∥U≤1,∥y∥≤1

∑m
i=1 pi(v

t
i)

⊤y. (4.38)

Since a uniform bound on Mt may not exist if X is unbounded under the smooth setting,

we choose γts and βt
s to adjust dynamically to Mt in each phase. In particular, the next

theorem presents the stepsize choice and the convergence result under the non-strongly

convex setting.

Theorem 4.4 Let a smooth risk-averse problem (c.f. (Equation 4.1)) be given. Let Mt and

Lf be defined in (Equation 4.38) and (Equation 4.17), and letR0 andDP be defined in Sub-

section subsection 4.1.1. If {xt}Nt=1 are generated by the DRAO-S method (Equation 4.37)

with the following stepsizes:

ωt = t, θt = (t− 1)/(t), τt = (t− 1)/2, ηt = 2Lf/t,

∆ > 0, St = ⌈t∆Mt⌉, M̄t =
St

t∆
, βt

s = βt = DP M̄t

R0
, γts = γt = R0M̄t

DP
,

qts = 1, δt1 =

M̄t/M̄t−1 if t ≥ 2

1 if t = 1

, and δts = 1 ∀ s ≥ 2,

(4.39)

then the solution x̄N returned by the outer DRAO loop satisfies

f(x̄N)− f(x∗) ≤ 2LfR
2
0

N(N+1)
+ 2DPR0

N(N+1)∆
,∀N ≥ 1, (4.40)

and there exists an uniform upper bound M̃ for Mt, i.e., M̃ ≥ Mt, ∀t ≥ 1. In addition, if

163

∆ = DP/(LfR0), the convergence bound can be simplified to

f(x̄N)− f(x∗) ≤ 4LfR
2
0

N(N+1)
,∀N ≥ 1. (4.41)

A few remarks are in place regarding the above result. First, the stepsizes in the outer

DRAO loop are exactly the same as that of Theorem Theorem 4.1. Since each phase

requires only two rounds of communication, the DRAO-S method has a communication

complexity of O(
√
LfR0/

√
ϵ). Second, M̄t defined in (Equation 4.39) is the smallest up-

per bound of Mt needed to make the inner iteration limit St an integer. The factor ∆ in

(Equation 4.39) represents the conversion factor between the P -projection complexity and

the communication complexity (Π projection complexity). A communication complex-

ity of the order O(1/
√
ϵ) can be maintained for any ∆ > 0 and the specific choice in

(Equation 4.39) is needed only for optimal constant dependence. Third, since the number

of phases needed to find an ϵ-optimal solution is bounded by Nϵ := 2
√
LfR0/

√
ϵ, the total

number of P -projections is given by

∑Nϵ

t=1⌈t∆Mt⌉ ≤ ∆M̃N2
ϵ +Nϵ = O(DPM̃R0/ϵ).

Fourth, both the inner SPS loop stepsizes, βt
s, γ

t
s and δts, and the inner iteration limit St

adjust dynamically to the varying operator norm Mt characterizing the difficulty of the

saddle point problem (Equation 4.36) of each phase. Specifically, when the saddle point

problem is easy, i.e., Mt is small, γts, β
t
s, and St become small so that a small number

of inner iterations is performed, and vice versa. Thus, when most Mt’s are significantly

smaller than the upper bound M̃ , the total number of P -projections can be much smaller

thanO(DPM̃R0/ϵ). Such a saving is possible because St can compensate for the changing

βt
s and γts such that the the effective proximal penalty parameter, ωtγ

t
s/St and ωtβ

t
s/St,

remains constant across phases. In contrast, it is difficult for single loop primal dual type

algorithms, such as the SD method [83], to adjust dynamically to the varying operator norm

164

of vt in each iteration.

The following theorem presents the stepsize choice and the convergence result under

the strongly convex setting.

Theorem 4.5 Let a smooth problem f (c.f. (Equation 4.1)) with α > 0 be given. Let

R0 and DP be defined in Subsection subsection 4.1.1. Let the smoothness constant Lf be

defined in (Equation 4.17) such that κ := Lf/α denotes the condition number. If {xt}Nt=1

are generated by the DRAO-S method (Equation 4.37) with the following stepsize:

θt = θ :=
√
8κ+1−1√
8κ+1+1

, ωt = (1
θ
)t−1, τt = τ :=

√
8κ+1−1

2
, ηt = η := α(

√
8κ+1−1)
4

,

βt
s =

α(s−1)
4

, γts =
2St(St+1)
ωtαs∆

, δts = (s− 1)/s,

qts = s, St = ⌈(2ωt∆)1/2Mt⌉, ∆ > 0,

(4.42)

the last iterate xN converges geometrically:

∥∥xN − x∗∥∥2 ≤ θN
(
(1 + 2κ)

∥∥x0 − x∗∥∥2
+

4D2
P

αη∆

)
, ∀N ≥ 1, (4.43)

and there exist an M̃ such that Mt ≤ M̃ ∀t ≥ 1. If ∆ = 2D2
P/ηLfR

2
0 and κ ≥ 1, the

total number of P -projections required to find an ϵ-close solution, i.e.,
∥∥xN − x∗∥∥ ≤ ϵ, is

bounded by O(κ1/4M̃DP

α
√
ϵ

+
√
κ log(1

ϵ
)).

Note that the strong convexity modulus α is split into two to accelerate both the outer

DRAO loop and the inner SPS loop. For the outer DRAO loop, the proposed stepsize

is the same as that of Theorem Theorem 4.2 if α/2 is viewed as the strong convexity

modulus. This allows the DRAO-S method to maintain the same order of communication

complexity, i.e., O(
√
κ log(1/ϵ)). For the inner SPS loop, the stepsizes are similar to that

of the accelerated primal-dual method (see [28]) with a strong convexity modulus of α/2.

Moreover, similar to Theorem Theorem 4.4, the stepsize γts and the inner iteration limit St

adjust dynamically to the varying operator norm M̄t in each phase. It is also worth noting

165

that the constant dependence of the P -projection complexity on κ in Theorem Theorem 4.5

is larger than the optimal by a factor of κ1/4. This complexity can be further improved to

O(M̃DP/α
√
ϵ +
√
κ log(1/ϵ)) if some stepsize choice similar to Theorem 6 of [60] is

utilized.

Next, let us move on to the structured non-smooth problem. Since Π is assumed be

bounded, the following uniform upper bound of Mt (c.f. (Equation 4.38)) is useful for

convergence analysis,

M̃AΠ = max
π∈Π
{
∥∥[A⊤

1 π
t
1; . . . ;A

⊤
mπ

t
m]
∥∥
2,U∗ := max

π∈Π
max

∥y∥2≤1,∥p∥U≤1

∑m
i=1 pi⟨A⊤

i πi, y⟩}. (4.44)

Specifically, the stepsize choices and the convergence properties of the DRAO-S method,

applied to both non-strongly and strongly convex settings, are presented in the next theo-

rem.

Theorem 4.6 Let a structured non-smooth problem f (Equation 4.1) be given. Sup-

pose DΠ, MA, Mt, and M̃AΠ are defined in (Equation 4.24), (Equation 4.38) and

(Equation 4.44), and suppose DP and R0 are defined in Subsection subsection 4.1.1.

a) If α = 0 and the stepsizes are given by

ωt = 1, θt = 1, ηt =MADΠ/2R0, τt =MAR0/2DΠ,

∆ > 0, St = ⌈Mt∆⌉, M̄t :=
St

∆
, βt

s = β = DP M̄t

R0
, γts = γ = R0M̄t

DP
,

qts = 1, δt1 =

M̄t/M̄t−1 if t ≥ 2

1 if t = 1

, and δts = 1 ∀ s ≥ 2,

(4.45)

the solution x̄N returned by the DRAO-S method satisfies

f(x̄N)− f(x∗) ≤ MADΠR0

N
+ DPR0

∆N
,∀N ≥ 1. (4.46)

166

In particular, if ∆ = DP

MADΠ
, the convergence bound can be simplified to

f(x̄N)− f(x∗) ≤ 2MADΠR0

N
∀N ≥ 1. (4.47)

b) If α > 0 and the stepsizes are given by

ωt = t, θt = (t− 1)/t, ηt = tα/6, τt = 6/tα,

∆ > 0 , St = ⌈∆M̃2
AΠ⌉, γts = γt := 4M̃2

AΠ/αt,

βt
s =

α
4 (t− 1) if s = 1

α
4 t ∀ s ≥ 2

, δts =

t−1
t if s = 1

1 ∀ s ≥ 2

, qts = 1,

(4.48)

the solution x̄N returned by the DRAO-S method satisfies

f(x̄N)− f(x∗) ≤ 1
N(N+1)

(α
6
R2

0 +
6M2

AD2
Π

α
+

4M̃2
AΠD2

P

α∆
). (4.49)

In particular, if ∆ = D2
P/(M

2
AD

2
Π + α2R2

0/6), the convergence bound can be simplified to

f(x̄N)− f(x∗) ≤ 1
N(N+1)

(αR2
0 +

10M2
AD2

Π

α
). (4.50)

A few remarks are in place. First, observe the above inner iteration limit St adjust dy-

namically to the operator norm Mt for the non-strongly convex case (Equation 4.45), but

not for the strongly convex case (Equation 4.48). This shortcoming is an artifact of the or-

der of prox updates in Algorithm Algorithm 10. If a p-prox update, utilizing a y-momentum

prediction, is performed before the y-prox update, St can be chosen to be ⌈∆M2
t ⌉ to achieve

the same effect. Moreover, since two communication rounds is required for each phase, the

preceding result implies an O(1/ϵ) (O(1/
√
ϵ)) communication complexity when α = 0

(resp. α > 0). Since the inner iteration limit St is bounded, it also implies anO(1/ϵ) (resp.

O(1/
√
ϵ)) P -projection complexity. In particular, with the specific choices of ∆ shown

167

above, the DRAO-S method can achieve the optimal constant dependence on problem

parameters, that is, O(R0MADΠ/ϵ) communication and O(M̃AΠDPR0/ϵ) P -projection

complexities when α = 0, and O(MADΠ/
√
ϵα) communication and O(M̃AΠDP/

√
ϵα)

P -projection complexities when α > 0.

4.4.2 Convergence Analysis

Our goal in this subsection is to establish the convergence rates of the DRAO-S method

stated in Theorem Theorem 4.4, Theorem 4.5 and Theorem 4.6.

First, we present a recursive bound to characterize the convergence property of each inner

SPS loop under both the non-strongly convex (α = 0) and the strongly convex (α > 0)

settings.

Proposition 4.2 Fix a t ≥ 1. Let Mt := ∥vt∥2,U∗ and Mt−1 := ∥vt−1∥2,U∗ . If the SPS

stepsizes in Algorithm Algorithm 10 satisfy:

δs = qs/qs−1, βsγs−1 ≥ δsM
2
t ,∀s ≥ 2,

qs−1(βs−1 + α/2) ≥ qsβs, qs−1γs−1 ≥ qsγs,∀s ≥ 2,

(4.51)

the generated iterates, {(ys, ps)} and (xt, p̄t), satisfy the following relation for all x ∈ X ,

p ∈ P and S ≥ 1:

(
∑S

s=1 qs)[L(x
t; p, πt)− L(x; p̄t, πt)] + δ1q1⟨y0 − x,

∑m
i=1 v

t−1
i (p0i − p−1

i)⟩

+
(
∑S

s=1 qs)
2

[ηt
∥∥xt − xt−1

∥∥2
+ (ηt + α/2)

∥∥xt − x∥∥2 − ηt
∥∥xt−1 − x

∥∥2
]

− qS⟨yS − x,
∑m

i=1 v
t
i(p

S
i − pS−1

i)⟩

≤q1γ1U(p; p0)− qSγS[U(p; pS) + 1
2

∥∥pS − pS−1
∥∥2

U
] +

q1δ21M
2
t−1

2β1

∥∥p0 − p−1
∥∥2

U

− 1
2
[qS(βS + α/2)

∥∥yS − x∥∥2 − q1β1
∥∥y0 − x∥∥2

].

(4.52)

168

Proof: Fix points x ∈ X and p ∈ P . First, consider the convergence of ys. Since

u(y) + ηt ∥y − xt−1∥2 /2 has a strong convexity modulus of α+ ηt, the y-proximal update

in Line 3 of Algorithm Algorithm 10 leads a three-point inequality (see Lemma 3.1 of

[28]):

⟨ys − x, ṽs⟩+ 1
2
[(βs + α + ηt) ∥x− ys∥2 + βs

∥∥ys − ys−1
∥∥2 − βs

∥∥ys−1 − x
∥∥2
]

+ u(ys)− u(x) + ηt
2
(
∥∥ys − xt−1

∥∥2 −
∥∥x− xt−1

∥∥2
) ≤ 0.

Equivalently, we have

⟨ys − x, ṽs⟩+ 1
2
[(βs + α/2) ∥y − ys∥2 + βs

∥∥ys − ys−1
∥∥2 − βs

∥∥ys−1 − x
∥∥2
]

+ u(ys)− u(x) + 1
2
[ηt

∥∥ys − xt−1
∥∥2

+ (ηt + α/2) ∥ys − x∥2 − ηt
∥∥x− xt−1

∥∥2
] ≤ 0.

(4.53)

In particular, the definition of ṽs in Line 2 of Algorithm Algorithm 10 implies

⟨ys − x, ṽs⟩ = ⟨ys − x,
∑m

i=1 p
svti⟩ − ⟨ys − x,

∑m
i=1(p

s
i − ps−1

i)vti⟩

+ δs⟨ys−1 − x,
∑m

i=1(p
s−1
i − ps−2

i)vti⟩+ δs⟨ys − ys−1,
∑m

i=1(p
s−1
i − ps−2

i)vti⟩,∀s ≥ 2,

⟨y1 − x, ṽ1⟩ = ⟨y1 − x,
∑m

i=1 p
1vti⟩ − ⟨y1 − x,

∑m
i=1(p

1
i − p0i)vti⟩

+ δ1⟨y0 − x,
∑m

i=1(p
0
i − p−1

i)vt−1
i ⟩+ δ1⟨y1 − y0,

∑m
i=1(p

0
i − p−1

i)vt−1
i ⟩.

So, substituting them into (Equation 5.60), summing up the resulting inequality with weight

qs, noting the step-sizes conditions in (Equation 4.51), and utilizing Young’s inequality, we

169

get

∑St

s=1qs

(
L(ys; ps, πt)− L(x; ps, πt) + 1

2
[ηt

∥∥ys − xt−1
∥∥2

+ (ηt + α/2) ∥ys − x∥2
)

−
∑St

s=1 qsηt ∥x− xt−1∥2] + q1δ1⟨y0 − x,
∑m

i=1(p
0
i − p−1

i)vt−1
i ⟩

− qS⟨yS − x,
∑m

i=1(p
S
i − pS−1

i)vti⟩

≤
∑S

s=2
qs−1γs−1

2
∥ps−1 − ps−2∥2U +

q1δ21M
2
t−1

2β1
∥p0 − p−1∥2U

− 1
2
[qS(βS + α/2)

∥∥yS − x∥∥2 − q1β1
∥∥y0 − x∥∥2

].

(4.54)

Next, consider the convergence of ps. The p-proximal update in Line 4 of Algorithm

Algorithm 10 implies

L(ys; p, πt)− L(ys; ps, πt) + γs[U(p; p
s) + U(ps; ps−1)− U(p; ps−1)] ≤ 0.

Observing the strong convexity of U with respect to ∥·∥U and the stepsize conditions in

(Equation 4.51), the qs weighted sum satisfies

∑St

s=1 qs[L(ys; p, πt)− L(ys; ps, πt)] + γSqSU(p; p
S) +

∑St

s=1
qsγs
2
∥ps − ps−1∥2U

≤ q1γ1U(p; p
0).

Then, combining it with the y convergence bound in (Equation 5.61), we get

∑St

s=1qs

(
L(ys; p, πt)− L(x; ps, πt) + 1

2
[ηt

∥∥ys − xt−1
∥∥2

+ (ηt + α/2) ∥ys − x∥2
)

−
∑St

s=1 qsηt ∥xt−1 − x∥2] + q1δ1⟨y0 − x,
∑m

i=1 v
t−1
i (p0i − p−1

i)⟩

− qS⟨yS − x,
∑m

i=1 v
t
i(p

S
i − pS−1

i)⟩

≤q1γ1U(p; p0)− qSγS[U(p; pS) + 1
2

∥∥pS − pS−1
∥∥2

U
] +

q1δ21M
2
t−1

2β1

∥∥p0 − p−1
∥∥2

U

− 1
2
[qS(βS + α/2)

∥∥yS − x∥∥2 − q1β1
∥∥y0 − x∥∥2

].

170

Moreover, since L(ys; p, πt), ∥ys − xt−1∥2 and ∥ys − x∥2 are convex with respect to ys and

L(x; ps, πt) is linear with respect to ps, the desired convergence bound (Equation 4.52) can

be derived using the Jensen’s inequality. □

In the above proposition, an ωt-weighted sum of the terms related to the outer DRAO

loop, xt and p̄t, in (Equation 4.52) is the same⑦ as the Qx and Qp convergence bound in

the proof of Proposition 4.1, (c.f. (Equation 4.34)). So a convergence bound of Q in the

DRAO-S method can be deduced by plugging it into the proof of Proposition 4.1, i.e, the

analysis for the Q convergence in the DRAO method.

Proposition 4.3 Let zt := {xt, p̄t, πt} be generated by the DRAO-S method with the outer

DRAO loop stepsize satisfying (Equation 4.27), (Equation 4.28) and (Equation 4.29), and

the inner SPS loop stepsize satisfying (Equation 4.51). Let ω̃t := ωt/
∑St

s=1 q
t
s denote the ef-

fective summation weight for the inner SPS loops and let Mt be defined in (Equation 4.38).

Suppose the following inter-phase stepsize requirements for inner SPS loop hold for t ≥ 2:

ω̃tqt1(δ
t
1)

2M2
t−1 ≤ ω̃t−1βt

1q
t−1
St−1

γt−1
St−1

, M2
N ≤ γNSN

(βN
SN

+ α/2),

ω̃tqt1β
t
1 ≤ ω̃t−1qt−1

St−1
(βt−1

St−1
+ α/2), ω̃tqt1γ

t
1 ≤ ω̃t−1qt−1

St−1
γt−1
St−1

,

ω̃tδt1q
t
1 = ω̃t−1qt−1

St−1
.

(4.55)

Then the following Q-convergence bound holds for any reference point z := (x∗, p, π) and

for all N ≥ 1

∑N
t=1 ωtQ

(
zt, z

)
+ ωN(ηN + α/2)

∥∥xN − x∗∥∥2
/2

≤ ω1τ1
∑m

i=1 piWf∗
i
(πi; π

0
i) + (ω1η1 + ω̃1q11β

1
1) ∥x0 − x∗∥

2
/2 + ω̃1q11γ

1
1D

2
P/2.

(4.56)

⑦Except that α/2, instead of α, is regarded as the strong convexity modulus for the outer DRAO loop.

171

The above bound also holds if the last condition in (Equation 4.55) is replaced by

γtSt
(βt

St
+ α/2) ≥M2

t , β
t
1 = 0, and δt1 = 0 ∀t ≥ 1. (4.57)

Proof: As pointed out above the proposition, dividing both sides of (Equation 4.52) by∑St

s=1 q
t
s, taking its ωt-weighted sum, and noting the initialization points in (Equation 4.37)

and the telescope cancellation resulting from the stepsize requirements (Equation 4.55), we

get a convergence bound of Qx and Qp given by

∑N
t=1ωt[Qx(z

t; z) +Qp(z
t; z)] +

∑N
t=1

ωt

2
ηt ∥xt − xt−1∥2 + ωN(ηN + α/2)

∥∥xN − x∗∥∥2

≤ ω̃1q11(γ
1
1U(p; p̃

0) + β1
1

∥∥y0 − x∗∥∥2
/2) + ω1η1

2

∥∥x0 − x∗∥∥2
.

(4.58)

The preceding bound is almost the same as its counterpart in Proposition 4.1,

i.e., (Equation 4.34). Moreover, since the generation of πt in the outer DRAO loop of the

DRAO-S method is also the same as that of the DRAO method, the Qπ convergence bound

in Proposition 4.1 (c.f. (Equation 4.31)) is also valid. The desired Q convergence bound

in (Equation 4.56) then follows from combining (Equation 4.31) with (Equation 5.62), and

noting U(p; p̃0) ≤ D2
P/2 and y0 = x0.

In addition, if the alternative stepsize requirement (Equation 4.57) is satisfied,

(Equation 4.52) can be simplified further to

(
∑St

s=1 qs)(L(x
t; p, πt)− L(x; p̄t, πt) + 1

2
ηt
∥∥xt − xt−1

∥∥2
+ (ηt + α/2)

∥∥xt − x∥∥2
)

≤q1γ1U(p; p0)− qStγStU(p; p
St) +

(
∑St

s=1 qs)
2

ηt
∥∥xt−1 − x

∥∥2
.

Then a similar argument would lead to the Q convergence bound in (Equation 4.56) as

well. □

The next convergence proofs of the DRAO-S method for the smooth problem, i.e.,

Theorem Theorem 4.4 and Theorem Theorem 4.5, are direct applications of Proposition

172

4.3.

Proof of Theorem Theorem 4.4 It is easy to verify that the stepsize choice in

(Equation 4.39) satisfies the requirements in Proposition 4.3, thus the following conver-

gence bound is valid for any reference point z := (x∗; p, π) and for all N ≥ 1,

∑N
t=1 ωtQ (zt, z) + Lf

∥∥xN − x∗∥∥2 ≤ LfR
2
0 +DPR0/∆. (4.59)

Let π̂N
i = ∇fi(x̄N) and p̂N ∈ argmaxp∈P

∑m
i=1 pifi(x̄

N) such that f(x̄N) =

L(x̄N ; p̂N , π̂N) (see Lemma 4.1), then the desired convergence result in (Equation 4.40)

can be deduced by choosing the reference point to be (x∗; p̂N , π̂N). Furthermore, the result

in (Equation 4.41) can be deduced by substituting in the specific choice of ∆.

Next, we show the boundedness of Mt. Since πt = ∇fff(xt) (c.f. (Equation 4.15)), fff is

smooth and xt is a convex combination of x0 and {x̃t}, the boundedness of ∥πt∥2,U∗ follows

from the boundedness of x̃t. Setting the reference point to the saddle point (x∗, p∗, π∗) (c.f.

Lemma 4.2), we get from (Equation 4.59)

Lf

∥∥xN − x∗∥∥2 ≤ 2LfR
2
0 ∀N ≥ 2.

This shows that xt’s are restricted to be a bounded ball around x∗. Since θt ≤ 1, the

extrapolated sequence x̃t’s are also restricted to a bounded ball around x∗, implying the

boundedness of {Mt}∞t=1. □

Proof of Theorem Theorem 4.5 We can verify that the stepsize choice in (Equation 4.42)

satisfies the alternative requirements in Proposition 4.3 (c.f. (Equation 4.57)). Setting the

reference point z to the saddle point (x∗, p∗, π∗) (c.f. Lemma 4.2), we get from

(Equation 4.56) the desired geometric convergence of xN (Equation 4.43), i.e.,

∥∥xN − x∗∥∥2 ≤ θN [(1 + 2κ)
∥∥x0 − x∗∥∥2

+
4D2

P

η∆α
],∀N ≥ 1. (4.60)

173

Observe that the above convergence bound also implies the boundedness of {xt}. Thus the

existence of an uniform bound for Mt follows from an argument similar to that of the proof

of Theorem Theorem 4.4.

Next, we establish an upper bound on the total of inner iterations when κ is large and

∆ := 2D2
P/ηLf ∥x0 − x∗∥2. The specific choice of ∆ allows us to simplify (Equation 4.60)

further to ∥∥xN − x∗∥∥2 ≤ θN
(
5κR2

0

)
.

Let Nϵ denotes the least number of phases required to satisfy
∥∥xNϵ − x∗

∥∥2 ≤ ϵ. Clearly,

Nϵ = O(
√
κ log(1/ϵ)). Specifically, since κ ≥ 1 implies 1/θ ≤ 2, we have (1/θ)Nϵ ≤

10κR0/ϵ.

For the total inner iteration number, a bound for St are provided by the stepsizes re-

quirement (Equation 4.42). Since Mt ≤ M̃ and St ≤ 1 +
√
2ωt∆M̃, the total number is

upper bounded by

∑Nϵ

t=1 St ≤ Nϵ +
∑Nϵ

t=1(
√

1
θ
)t−1
√
∆M̃ = Nϵ +

(1/θ)Nϵ/2−1√
1/θ−1

√
∆M̃

≤ Nϵ +
1√

1/θ−1

1√√
8κ+1−1

M̃DP√
LfR0

16
√

LfR0

α
√
ϵ
≤ Nϵ +

64κ1/4M̃DP

α
√
ϵ

.

The second last inequality follows from the algebraic fact
√
1 + l− 1 ≥ l/4 for l ≤ 1, and

1√
1/θ−1

1√√
8κ+1−1

= 1√
1+2/(

√
8κ+1−1)−1

1√√
8κ+1−1

≤ 2(
√
8κ+ 1− 1) 1√√

8κ+1−1

≤ 2

√√
8κ+ 1− 1 ≤ 4κ1/4.

Thus the number of inner iterations, and hence the P projection complexity, are upper

bounded by O(κ1/4M̃DP

α
√
ϵ

+
√
κ log(1

ϵ
)). □

Proof of Theorem Theorem 4.6 The proof is similar to that of Theorem Theorem 4.3. Let

us first consider the non-strongly convex case. Since M̄t ≥ Mt,∀t, the stepsize choice in

(Equation 4.45) satisfies all the requirements in Proposition 4.2 (c.f. (Equation 4.55)). So

174

substituting the stepsize choice into (Equation 4.56), we obtain the following convergence

bound of the Q gap function for any reference point z := (x∗, p, π):

∑N
t=1Q(z

t; z) + η
2

∥∥xN − x∥∥2
+ γ

∆
U(p; pN)

≤ (η
2
+ β

2∆
)
∥∥x0 − x∥∥2

+ γ
∆
U(p; p0) + τ

∑m
i=1 piVi(πi; π

0
i).

(4.61)

The desired function value convergence bound (Equation 4.46) follows immediately by

selecting the reference point to be (x∗, p̂N , π̂N), where p̂N ∈ argmaxp∈P
∑m

i=1 pifi(x̄
N)

and π̂N
i = ∇fi(x̄N).

The convergence bound (Equation 4.49) for the strongly case also follows from substi-

tuting the stepsize choice in (Equation 4.48) into (Equation 4.56). □

4.5 Lower Communication Complexities

In this section, we establish theoretical lower bounds for distributed risk-averse optimiza-

tion to show the communication complexities of both DRAO and DRAO-S are not im-

provable. Towards that end, we propose a distributed prox mapping (DPM) computing

environment consisting of the following requirements and propose uniform lower bounds

for all algorithms satisfying the requirement.

• Local memory: the server node has a finite local memoryMs and each worker node

has a finite primal memory and a finite dual memory,Mi andMπ
i , respectively. In

the beginning, the local memories contain only the trivial vector 0, i.e.,

Mi,0 =Ms,0 := {0}, Mπ
i,0 := {0} ∀i ∈ [m].

In one communication round, these local memories can be updated by both local

computation and server-worker communication:

Ms,t+1 :=Mcp
s,t ∪Mcomm

s,t , Mi,t+1 :=Mcp
i,t ∪Mcomm

i,t , Mπ
i,t+1 :=M

π,cp
i,t , ∀i ∈ [m],

175

whereMcp
s,t andMπ,cp

i,t represent results from the local computation, andMcomm
s,t and

Mcomm
i,t denote the vector(s) communicated to the server and the ith worker node,

respectively.

• Server-worker communication: in one communication round, each worker can

send one vector from its local primal memory to the server:

Mcomm
s,t := {yi ∈ span(Mi,t−1), i ∈ [m]},

and the server can share one vector from its memory with the worker:

Mcomm
i,t ∈ span(Ms,t−1).

• Local computations: between communication rounds, each worker can query its

dual prox mapping oracle and the Ai-multiplication oracle⑧ for L ≥ 0 times.

Mcp
i,t :=M

cp,L
i,t , Mπ,cp

i,t :=Mπ,L
i,t whereMcp,0

i,t :=Mi,t−1,Mπ,0
i,t :=Mπ

i,t−1.

For l = 1, 2, 3, . . . , L :

Mcp,l
i,t =Mcp,l−1

i,t ∪ {A⊤
i π

t,l
i , A⊤

i π̄i}, M
π,l
i,t :=Mπ,l−1

i,t ∪ {πt,l
i , Aix̄},

where x̄ ∈ span(Mcp,l−1
i,t),

π̄i ∈ span(Mπ,l−1
i,t), πt,l

i ∈ argmax
πi∈Πi

⟨Aix̄, πi⟩ − f∗
i (πi)− τ

2 ∥πi − π̄i∥2 ,

for some τ ≥ 0. (4.62)

⑧The oracle returns matrix vector multiplication result of the form Aix and A⊤
i π.

176

The server node can query its u(x) prox mapping oracle for L ≥ 0 times.

Mcp
s,t :=M

cp,L
s,t whereMcp,0

s,t :=Ms,t−1.

For l = 1, 2, 3, . . . , L :

Mcp,l
s,t :=Mcp,l−1

s,t ∪ {xls}, where xls := argmin
x∈X

u(x) + η
2 ∥x− x̄∥2 , x̄ ∈ span(Mcp,l−1

s,t).

• Output solution: the output solution xt comes from local primal memories,

xt ∈ span((∪i∈[m]Mi,t) ∪Ms,t), t ≥ 1.

The only hard requirement for the DPM environment is that only one vector can be sent

and received by each worker during one communication round. Indeed, the computations

supported by the DPM environment are quite strong in several aspects. First, it allows

gradient evaluation of fi since it is equivalent to the πi-prox mapping (c.f. (Equation 4.62))

with τ = 0, i.e.,

π̄i = ∇fi(x̄)⇔ π̄i ∈ argmaxπi∈Πi
⟨πi, x̄⟩ − f ∗

i (πi).

Second, it allows a possibly large number of local computation steps to be performed

between communications. This assumption of generous computing resource at each node

helps us to focus on the communication bottleneck. Third, it allows the freedom to make

an arbitrary selection from the span of the local memory for communication, computation,

and outputting solutions. For example, it might appear that the DRAO method violates

the requirement because of the (x, p)-prox mapping in Line 5 of Algorithm Algorithm 9.

However, if we let (xt, p̂t) be an optimal pair of saddle point solutions in the (x, p)-prox

mapping step (c.f. (Equation 4.36)), the output xt can be written alternatively as

xt ← argmaxx∈Xηt ∥x− x∥
2 /2 + u(x),

where x := xt−1 −
∑m

i=1 p̂
t
iv

t
i/ηt and x ∈ span(Ms,t). So the (x, p)-prox mapping ac-

177

tually satisfies the above local computation requirement. Moreover, the computation and

communication of f ∗
i (π

t
i)’s are unnecessary because they are only used for generating p̂t.

Since all other steps are directly supported, the DRAO method can be implemented on the

DPM environment. Indeed, our setup implies that the desired p can be obtained from any

oracle when selecting x (from the span of local memory of the server). This renders all

communication and computation related to p unnecessary. So the DRAO-S method, and,

more generally, any distributed algorithm consisting of the x-prox mapping, the π-prox

mapping, and some p update can be implemented on the DPM environment. For simplic-

ity, we will call an algorithm satisfying the DPM requirement a DPM algorithm for the rest

of this section.

server

f1 f2

Figure 4.1: Network topology of hard instances.

Now we present some hard instances, inspired by [2, 1, 85], for all DPM algorithms.

We first describe a network topology and a general result which will be used in all our

constructions. As shown in Figure Figure 4.1, the problem has only two workers, node 1

and node 2. LetKi denote the subspace with non-zero entries only in the first i coordinates,

Ki := {x ∈ Rn : xj = 0 ∀j > i}. We will construct f1 and f2 such that the iterate

xt generated in t communication rounds will be restricted to a certain Ki. Towards that

end, we call a hard problem odd-even preserving if the memories generated by any DPM

178

algorithm satisfies

M1,0 ∪M2,0 ∪Ms,0 ⊂ K2,

M1,t−1 ⊂ Ki ⇒

Mcp

1,t ⊂ Ki i ≥ 2 even

Mcp
1,t ⊂ Ki+1 i ≥ 2 odd

,

M2,t−1 ⊂ Ki ⇒

Mcp

2,t ⊂ Ki+1 i ≥ 2 even

Mcp
2,t ⊂ Ki i ≥ 2 odd

,

Ms,t−1 ⊂ Ki ⇒Mcp
s,t ⊂ Ki.

(4.63)

This property stipulates that the progresses on the reachable subspace Ki are possible only

on node 1 or 2 depending on if i is odd or even, so that a large number of communication

rounds between node 1 and 2 are necessary for a non-trivial solution. The next lemma

formalizes such limited progress by a DPM algorithm.

Lemma 4.4 If the odd-even preserving property (Equation 4.63) holds, the output solution

xt generated by a DPM algorithm after t communication rounds satisfy xt ⊂ K⌈t/2⌉+2.

Proof: LetMt := span(M1,t∪M2,t∪Ms,t), and let t(i) := min{t ≥ 0 : ∃y ∈Mt, j ≥

i s.t yj ̸= 0} denote the first time a vector with a non-zero j ≥ ith index is generated. We

develop a lower bound for t(i).

Consider an even i > 2. By the definition of t(i), Mt(i)−1 ⊂ Ki−1. The odd-even

preserving property then implies Mcp
2,t(i) ⊂ Ki−1 and Mcp

s,t(i) ⊂ Ki−1, so M1,t(i) ⊂

Ki, Ms,t(i) ⊂ Ki−1, andM2,t(i) ⊂ Ki−1 after one communication round. Next, the

odd-even preserving property again implies Mcp
1,t(i)+1 ⊂ Ki, Mcp

2,t(i)+1 ⊂ Ki−1 and

Mcp
s,t(i)+1 ⊂ Ki−1, soM1,t(i)+1 ⊂ Ki, Ms,t(i)+1 ⊂ Ki, andM2,t(i) ⊂ Ki−1 after another

communication round. Therefore, we have t(i+1) > t(i)+1, i.e., t(i+1) ≥ t(i)+2. The

same recursive bound can also be obtained for an odd i ≥ 2. In view of t(2) ≥ 0, the largest

non-zero index i inMt satisfies t ≥ t(i) ≥ t(2) + 2i− 4 ≥ 2i− 4, thus i ≤ ⌈t/2⌉+ 2. □

179

We are now ready to provide lower bounds under different problem settings. The next

two results establish tight lower communication bounds for the smooth problem with a

non-strongly convex u(x) and a strongly convex u(x), respectively.

Theorem 4.7 Let Lf > 0, R0 ≥ 1 and ϵ > 0 be given. For a sufficiently large

problem dimension, i.e., n > 2⌈
√
LfR0/8

√
ϵ⌉, there exists a smooth hard problem of

form (Equation 4.1) with an aggregate smoothness constant Lf (c.f. (Equation 4.17)),

∥x0 − x∗∥ ≤ R0 such that any DPM algorithm takes at least Ω(
√
LfR0/

√
ϵ) commu-

nication rounds to find an ϵ-optimal solution.

Proof: Consider the following hard problem parameterized by β ≥ 0, γ ≥ 0 and k ≥ 4,

f(x) := maxp∈∆+
2
p1f1(x) + p2f2(x) + u(x) with X = R2k+1, u(x) = 0,

f1(x) :=
β
2
[2
∑k

i=1(x2i−1 − x2i)2 + x21 + x22k+1 − 2γx1],

f2(x) :=
β
2
[2
∑k

i=1(x2i − x2i+1)
2 + x21 + x22k+1 − 2γx1].

(4.64)

Its aggregate smoothness constant L̄f (c.f. (Equation 4.17)) satisfies L̄f ≤ 6β, and its

optimal solution (x∗, p∗) satisfies

p∗ = [1
2
, 1
2
], x∗i = γ(1− i

2k+2
) ∀i ≤ 2k + 1,

s.t.
∥∥x0 − x∗∥∥ ≤ γ

√
k + 1 and f∗ = −βγ2

2
[1− 1

2k+2
].

Their optimality can be verified with the first order conditions:

0 = ∇(1
2
f1 +

1
2
f2)(x

∗) and [1/2, 1/2] ∈ argmaxp∈∆+
2
p1f1(x

∗) + p2f2(x
∗).

The even-odd preserving property holds for (Equation 4.64). To see this, consider the

worker node f1. Let an even i ≥ 2 be given and assumeM1,t−1 ⊂ Ki, i.e.,Mcp,0
1,t ⊂ Ki.

Because Ai = I , the update rule in (Equation 4.62) imply that Mπ,0
1,t ⊂ Ki. We show

Mcp,l
1,t ∪ M

π,l
1,t ⊂ Ki for all l ≥ 0 by induction. Clearly, the statement holds for l = 0.

180

IfMcp,l−1
1,t ∪Mπ,l−1

1,t ⊂ Ki, x̄ and π̄i chosen in (Equation 4.62) must be in Ki. As for the

πi-prox mapping, if τ = 0, πt,l
1 := ∇f1(x̄) ⊂ Ki. If τ > 0, Lemma 4.5 in the appendix

allows us to write πt,l
1 as

πt,l
1 = π̄1 +

1
τ
(x̄− y), where y ← argminyf1(y) +

1
2τ
∥x̄+ τ π̄1 − y∥2 .

In particular, y ∈ Ki because

y = argminx∈R2k+1
β
2
[2
∑i/2

j=1(x2j−1 − x2j)2 + x21 − 2γx1] +
1
2τ

∑i
j=1 ∥x̄j + τ π̄1,j − xj∥2

+ β
2
x22k+1 +

1
2τ

∑2k+1
j=i+1 ∥xj∥

2 .

So πt,l
1 ∈ Ki also holds for τ > 0. Thus the principle of induction implies thatMcp,L

1,t ∪

Mπ,L
1,t ⊂ Ki,∀L ≥ 0, i.e.,Mcp

1,t ⊂ Ki. In addition, when i ≥ 2 is odd andM1,t−1 ⊂ Ki,

we have M1,t−1 ⊂ Ki ⊂ Ki+1. Since i + 1 is even, the preceding result implies that

Mcp
1,t ⊂ Ki+1. A similar result can also be derived for the worker f2 for both even and odd

i ≥ 2. Therefore, problem (Equation 4.64) satisfies the even-odd preserving property.

Applying Lemma 4.4, the output solution xk from any DPM algorithm in k commu-

nication rounds must satisfy xk ∈ Kk. In particular, let f̄ := (f1 + f2)/2 denote a lower

bound for f . Then f(xk) ≥ minx∈Kk
f(x) ≥ minx∈Kk

f̄(x) = −βγ2

2
[1− 1

k+1
].

Now we set the parameters in (Equation 4.64) to obtain the desired lower bound. If

ϵ ≥ LfR
2
0/4096, Ω(

√
LfR0/

√
ϵ) = Ω(1), so the lower bound clearly hold. Otherwise, we

set β := Lf/6, γ := R0/
√
k + 1 and k := ⌈

√
LfR0/8

√
ϵ⌉ such that (Equation 4.64) is

Lf -smooth (c.f (Equation 4.17)) with ∥x0 − x∗∥ ≤ R0 and k ≥ 4. A solution xk generated

by any DPM algorithm in k communication rounds satisfy f(xk) − f∗ ≥ γ2β
4k+4

≥ ϵ. Thus

they imply the desired Ω(
√
LfR0/

√
ϵ) lower communication complexity bound when the

problem dimension is 2⌈
√
LfR0/8

√
ϵ⌉+ 1. □ We remark here that the above risk-averse

lower bound is the same as the risk-neutral lower bound of Ω(
√
Lf,p̄R0/

√
ϵ), developed

in [85], if P is a singleton set of the empirical distribution, P = {p̄ := (1/m, ..., 1/m)},

and Lf,p̄ denotes the aggregate smoothness constant (c.f. (Equation 4.17)) associated with

181

p̄. But, other than the intuition that the risk-averse problem should be harder than the risk-

neutral problem, the latter bound offers limited insights. Our risk-averse lower bound can

be larger than the risk-neutral lower bound because the aggregate smoothness constant Lf

(c.f. (Equation 4.17)) defined over a non-trivial P can be significantly larger than Lf,p̄. For

example, consider an expanded version of (Equation 4.64) constructed by adding (m− 2)

additional workers with constant local cost functions, fi(x) ≡ C for some C < f∗, and by

setting P to the m-dimensional simplex ∆+
m. The same argument as above will lead to the

same lower bound of Ω(
√
LfR0/

√
ϵ) for the expanded problem. However, because the

smoothness constants of {fi}mi=3 are zero, we have Lf,p̄ ≤ 2Lf/m << Lf .

Theorem 4.8 Let Lf > 8α > 0 and ϵ > 0 be given. There exists an infinite-dimensional

smooth problem of form (Equation 4.1) with an aggregate smoothness constant Lf (c.f.

(Equation 4.17)) and a strong convexity modulus α such that any DPM algorithm requires

at least Ω(
√
Lf/α log(1/ϵ))⑨ communication rounds to find an ϵ-close solution, i.e., x

such that ∥x− x∗∥2 ≤ ϵ.

Proof: Again we prove the result by construction. Consider the following infinite dimen-

sional problem parameterized by β > 2α

f(x) := maxp∈∆+
2
p1f1(x) + p2f2(x) + u(x) where X := R∞

u(x) := α
2
∥x∥2 , f1(x) := β−α

4
[x⊤A1x− 2x1], f2(x) :=

β−α
4
[x⊤A2x− 2x1],

A1 :=

3+5γ
4+4γ

−1

−1 1

1 −1

−1 1

1 −1

−1 1

. . .

, A2 :=

5+3γ
4+4γ

1 −1

−1 1

1 −1

−1 1

. . .

. . .

, γ = α

β
.

(4.65)

⑨We ignore the problem parameter R0 inside the log.

182

Clearly, the aggregate smoothness constant (c.f. (Equation 4.17)) of the problem is

bounded by β − α and its strong convexity modulus is α. The optimal solutions are given

by p∗ = (1/2, 1/2) and x∗, with x∗i = (
1−√

γ

1+
√
γ
)i ∀i ≥ 1, since they satisfy the first order

optimality conditions:

∇(1
2
f1 +

1
2
f2 + u)(x∗) = 0 and (1

2
, 1
2
) ∈ argmaxp∈∆+

2
p1f1(x

∗) + p2f2(x
∗).

Moreover, similar to Theorem Theorem 4.7, the alternating block diagonal structure of A1

and A2 implies the even-odd preserving property, so xk generated by any DPM algorithm

in k ≥ 4 communications rounds satisfy xk ⊂ Kk, i.e.,

∥∥xk − x∗∥∥2 ≥
∑∞

i=k+1(x
∗
i)

2 = (
1−√

γ

1+
√
γ
)2k(

1−√
γ

1+
√
γ
)2/(1− (

1−√
γ

1+
√
γ
)2) = (

1−√
γ

1+
√
γ
)2kR2

0

= (1− 2
√
γ

1+
√
γ
)2kR2

0 ≥ (1− 2
√
γ)2kR2

0 = (1− 2
√
γ)2kR2

0

≥ (1− 2
√
α/(β − α))2kR2

0,

(4.66)

where R2
0 := (

1−√
γ

1+
√
γ
)2/(1 − (

1−√
γ

1+
√
γ
)2). Thus it takes at least Ω(

√
(β − α)/α log(1/ϵ))

communication rounds to obtain an x with ∥x− x∗∥2 ≤ ϵ.

Now we select the parameter β to derive the lower complexity bound. If ϵ ≥ (1 −

2
√

1/κ)8R2
0 such that Ω(

√
Lf/α log(1/ϵ)) = Ω(1), the desired lower bound clearly holds.

Otherwise, we can set β := Lf + α such that the hard problem (Equation 4.65) is Lf -

smooth, and the desired lower communication bound of Ω(
√
Lf/α log(1/ϵ)) follows from

(Equation 4.66). □ We remark here that a finite dimensional

hard problem can also be obtained by modifying (Equation 4.65) according to [56]. Next,

we move on to consider the structured non-smooth problem.

Theorem 4.9 Let MA > 0, DΠ > 0 R0 ≥ 1 and ϵ > 0 be given. When the

problem dimension n is sufficiently large (specified below), there exists a structured

non-smooth problem f of form (Equation 4.1) with MA ≥ maxi∈[m] ∥Ai∥2,2, DΠ ≥

maxi∈[m] maxπi,π̄i∈Πi
∥πi − π̄i∥ (c.f. (Equation 4.24)) and R0 ≥ ∥x0 − x∗∥ such that the

183

following communication lower bounds hold.

a) When u(x) is convex and n > 2⌈DΠMAR0/96ϵ⌉, any DPM algorithm requires at

least Ω(MADΠR0/ϵ) communication rounds to find an ϵ-optimal solution.

b) When u(x) is α > 0 strongly convex and n > 2⌈DΠMA/48
√
αϵ⌉, any DPM algo-

rithm requires at least Ω(MADΠ/
√
ϵα) communication rounds to find an ϵ-optimal

solution.

Proof: We consider the following hard problem parameterized by k ≥ 4, α, γA and γπ:

f(x) := maxp∈∆+
2
p1f1(x) + p2f2(x) with X = R2k+1, u(x) = α

2
∥x∥2 ,

f1(x) := γAγπ[2
∑k

i=1 |x2i−1 − x2i| − (3
2
+ 1

k
)x1],

f2(x) := γAγπ[2
∑k

i=1 |x2i − x2i+1| − (1
2
+ 1

k
)x1].

(4.67)

In particular, the scenario cost functions f1 and f2 are specified in the structured maximiza-

tion form (c.f. (Equation 4.1)), fi(x) := maxπi∈Πi
⟨Aix, πi⟩ − f ∗

i (π) with

A1 := γA

−(3

2
+ 1

k
)

1 −1

1 −1

. . .

1 −1 0

 ,
Π1 := γπ({1} × [−2, 2]k) ⊂ Rk+1, f ∗

1 (π1) ≡ 0,

A2 := γA

−(1

2
+ 1

k
)

1 −1

1 −1

. . .

1 −1

 ,
Π2 := γπ({1} × [−2, 2]k) ⊂ Rk+1, f ∗

2 (π2) ≡ 0.

(4.68)

Clearly, maxi∈[2] ∥Ai∥2,2 ≤ 2γA and maxi∈[m] maxπi,π̄i∈Πi
∥πi − π̄i∥ ≤ 5

√
kγπ. Further-

more, p∗ := [1/2, 1/2] and x∗ := γπγA
2kα

[2, 1, 1, . . . , 1] form the optimal solution since they

184

satisfy the first order optimality conditions given by:

0 ∈ ∂(1
2
f1 +

1
2
f2 + u)(x∗) and (1

2
, 1
2
) ∈ argmaxp∈∆+

2
p1f1(x

∗) + p2f2(x
∗).

So f∗ = f(x∗) = −(γ
2
πγ

2
A

2k2α
+

γ2
Aγ2

π

4kα
), ∥x∗ − x0∥2 = γ2

Aγ2
π

4k2α2 (2k + 4) ≤ γ2
Aγ2

π

kα2 .

Now, let us verify (Equation 4.67) satisfies the even-odd preserving property. Consider

the worker f1. Let an even i ≥ 2 be given and assume M1,t−1 ⊂ Ki, i.e., Mcp,0
1,t ⊂ Ki.

Let Sj denote a (dual) subspace with non-zero entries only in the first j coordinates, Sj :=

{π ∈ Rk+1 : πl = 0 ∀l > j}. Because of the block structure of A1, if the i+ 1th coordinate

of π1 is non-zero for any i ≥ 2, the 2i− 1th and the 2ith coordinates of A1π1 must be non-

zero. So we haveMπ,0
1,t ⊂ Si/2+1; otherwise the update rule (Equation 4.62) in the DPM

environment would lead toM1,t−1 ̸⊂ Ki.

Next, we showMcp,l
1,t ⊂ Ki andMπ,l

1,t ⊂ Si/2+1 for all l ≥ 0 by induction. Clearly the

statement holds for l = 0. Moreover, ifMcp,l−1
1,t ⊂ Ki andMπ,l−1

1,t ⊂ Si/2+1, A1x̄ and π̄1

must be in Si/2+1, so the dual proximal in (Equation 4.62) can be written as

πt,l
1 = argmaxπ1∈Π1

∑i/2+1
j=1 (A1x̄)jπ1,j − τ/2(π1,j − π̄1,j)2 − τ/2

∑k+1
j=i/2+2(π1,j)

2.

This leads us to πt,l
1 ∈ Si/2+1 and A⊤

1 π
t,l
1 ∈ Ki, i.e.,Mcp,l

1,t ⊂ Ki andMπ,l
1,t ⊂ Si/2+1. Then

the principle of induction implies that the statement holds for all l ≥ 0, i.e., Mcp
1,t ⊂ Ki.

In addition, when i ≥ 2 is odd andM1,t−1 ⊂ Ki, we haveM1,t−1 ⊂ Ki+1. Since i + 1 is

even, the preceding result implies thatMcp
1,t ⊂ Ki+1. The property (Equation 4.63) for the

worker f2 for both even and odd i’s can also be deduced in a similar way. Therefore we have

shown that the even-odd preserving property holds for the hard problem (Equation 4.67).

Next, applying Lemma 4.4, the solution xk returned by any DPO algorithm in k ≥ 4

communication rounds must satisfy xk ∈ Kk. We provide a lower bound of f on Kk. Let

f̄ := 1
2
(f1 + f2) + u(x) denote a uniform lower bound for f given by

f̄(x) := γπγA[
∑2k

i=1 |xi − xi+1| − (1 + 1
k
)x1] +

α
2
∥x∥2 .

185

In order to find the minimum of f̄ on Kk, observe that arranging {xi}ki=1 in a decreasing

order decreases f̄ . Moreover, if xk < 0, setting all negative coordinates to zero decreases

f̄ , so we can focus on x1 ≥ x2... ≥ xk ≥ xk+1 = ... = x2k+1 = 0.

minx∈Kk
f̄(x) = minx∈Kk

− γπγA
k
x1 +

α
2
x21 +

α
2

∑2k+1
i=2 x2i ≥ −

γπγA
2k2α

.

Thus, f(xk)− f∗ ≥ minx∈Kk
f̄(x)− f∗ ≥ γ2Aγ

2
π/4kα.

Finally, we choose appropriate problem parameters to establish the lower bounds. If

ϵ ≥ DΠMAR0/400ϵ, Ω(MADΠR0/ϵ) = Ω(1), so the lower bound in a) clearly holds.

Otherwise, setting k := ⌈DΠMAR0/96ϵ⌉, n := 2k + 1, γπ := DΠ/5
√
k, γA := MA/2,

and α := γAγπ/R0

√
k, the parameters of (Equation 4.67) satisfy ∥x0 − x∗∥ ≤ R0, and

maxi∈[2] ∥Ai∥2,2 ≤ MA, maxi∈[m]maxπi,π̄i∈Πi
∥πi − π̄i∥ ≤ DΠ, 4 ≤ k. Since the min-

imum optimality gap attainable in k = Ω(MADΠR0/ϵ) communication rounds is lower

bounded by ϵ, the result in a) follows.

Now consider u(x) being α-strongly convex for a fixed α > 0. If ϵ ≥ D2
ΠM

2
A/40000α,

Ω(MADΠ/
√
αϵ) = Ω(1), so the lower bound in b) clearly holds. Otherwise, setting

k := ⌈DΠMA/48
√
αϵ⌉, n := 2k + 1, γπ := DΠ/5

√
k, and γA := MA/2, the parame-

ters of (Equation 4.67) satisfy maxi∈[2] ∥Ai∥2,2 ≤ MA, maxi∈[m]maxπi,π̄i∈Πi
∥πi − π̄i∥ ≤

DΠ, 4 ≤ k, and ∥x0 − x∗∥ ≤ R0. Since the minimum optimality gap attainable in

k = Ω(MADΠ/
√
αϵ) communication rounds is lower bounded by ϵ, the result in b) fol-

lows. □

4.6 Numerical Experiments

In this section, we present a few numerical experiments to verify the theoretical conver-

gence properties of the proposed DRAO-S method.

186

4.6.1 Implementation Details

The numerical experiments are implemented in MATLAB 2021b and are tested on an

Alienware Desktop with a 4.20 GHz Intel Core i7 processor and 16 GB of 2400MHz

DDR4 memory. The stepsize of the DRAO-S method are chosen according to Theorem

Theorem 4.4, Theorem 4.5 and Theorem 4.6. The implementation details of the proxi-

mal mappings are deferred to the Appendix. Parameter tuning is used to achieve better

empirical performance. The DRAO-S method is first tested on a few trial stepsizes, each

running for only 20 phases. Next, the one achieving the lowest objective value during

the trials is selected to run till the desired accuracy, subject to a termination limit of 5000

phases. The trial stepsizes are calculated according to (Equation 4.39), (Equation 4.42),

(Equation 4.45) and (Equation 4.48). The trial stepsizes are calculated from conservative

estimates of DP ≥ ∥p0 − p∗∥ and R0 ≥ ∥x0 − x∗∥, and from a few scaled estimates of Lf ,

Mt, MA and M̃AΠ. Specifically, for the smooth linear regression problem (Equation 4.69),

the parameters Lf and Mt used for the calculations in (Equation 4.39) and (Equation 4.42)

are given by (refer to Subsection subsection 4.6.2 for the definition of Hi)

Parameter Choices Conservative Estimate

Lf {L̂f , 0.3L̂f} L̂f := maxi∈[m]

∥∥H⊤
i Hi

∥∥
Mt {M̂t, 0.3M̂t} M̂t := ∥[∇f1(xt); . . . ;∇fm(xt)]∥

.

So there are four sets of trial stepsizes. For the structured non-smooth two-stage stochastic

program, the parameters M̃AΠ and MA used for the calculations in (Equation 4.45) and

(Equation 4.48) are given by (refer to Subsection subsection 4.6.2 for the definition of Ti

and ei)

Parameter Choices Conservative Estimate

MA {M̂A, 0.3M̂A, 0.1M̂A} M̂A := maxi∈[m] ∥Ti∥

M̃AΠ {M̂AΠ, 0.3M̂AΠ, 0.1M̂AΠ} M̂AΠ :=
∥∥[T⊤

1 e1; . . . ;T
⊤
mem]

∥∥
.

187

So there are nine sets of trial stepsizes.

4.6.2 Risk Averse Linear Regression Problem

Figure 4.2: Convergence of DRAO-S for a Randomly Generated Robust Linear Regression
Problem with α = 0

Figure 4.3: Convergence of DRAO-S for a Randomly Generated Robust Linear Regression
Problem α > 0

188

Table 4.3: Communications Rounds and P -Projections Required by DRAO-S for
Linear Regression under a CV@R Risk

#Scenarios Opt. Gap 10% Risk 5% Risk 1.25% Risk

Non-strongly Convex α = 0

#Comm #P -proj #Comm #P -proj #Comm #P -proj

10% 6 16 8 50 8 50
20 1% 31 529 38 1236 38 1236

0.1% 76 2858 85 6282 85 6282

10% 3 4 6 16 7 40
50 1% 16 126 20 199 34 1162

0.1% 63 1935 67 2206 68 4245

10% 3 4 3 4 5 14
200 1% 6 19 12 72 23 260

0.1% 30 516 51 1336 65 2113

Strongly Convex Condition Number κ = 10

1e-3 32 665 39 1254 39 1254
20 1e-4 43 1926 44 2139 44 2139

1e-5 48 2980 49 3603 49 3603

1e-3 19 159 29 485 39 1306
50 1e-4 36 854 38 1132 44 2051

1e-5 41 1538 43 2061 49 3754

1e-3 16 54 14 69 29 454
200 1e-4 28 205 32 437 42 1777

1e-5 40 660 44 1357 46 2934

189

For the smooth case, the following risk-averse linear regression problem of the form

(Equation 4.1) is considered:

f(x) := CV@Rδ(f1(x), . . . , fm(x)) +
α
2
∥x∥2 with fi(x) := 1

2
∥Hix− bi∥2, X := Rn.

(4.69)

Here fi denotes the loss function associated with the ith dataset. Such a problem is mo-

tivated by the need for a single robust model under fairness or risk considerations. For

example, the state education department might wish to build a model to help teachers to

identify students who need extra help. (Hi, bi) could represent the data collected in the ith

county and the CV@R risk measure could be used to ensure fairness among counties.

In our experiments, we set n = 40, and generate matrices Hi ∈ R40×200, and bi ∈ R40

randomly. We generate an estimate of f∗ by running the bundle level method [91] to an ex-

tremely high degree of accuracy. We record the average number of communication rounds

and P -projections steps needed, over five randomly generated instances, to achieve the

desired relative optimality gap, i.e., (f(xt)− f∗)/f∗ ≤ ϵ under different settings. In partic-

ular, the DRAO-S method is tested on problems with different levels of risk and different

numbers of computing nodes to understand how the communication and the P -projection

complexities vary with DP and m in practice. The results are presented in Table Table 4.3.

For the number of computing nodes m, both the number of P -projections and the number

of communication rounds scale well with it. In fact, they seem to decrease slightly when

m increases. For DP , recall that a lower risk level corresponds to a larger ambiguity set P

and hence a larger radius DP (c.f. Subsection subsection 4.1.1). Both the number of P -

projections and the number of communication rounds increase with DP , but the number of

communication rounds seems to have a weaker dependence on it. Additionally, typical con-

vergence curves of the DRAO-S method are plotted in Figure 4.2 and Figure 4.3, and they

seem to verify the theoretical convergence guarantees. When α = 0, Table Table 4.3 and

the convergence curve in Figure Figure 4.2 illustrate a communication complexity and a

190

P -projection complexity on the order of O(1/
√
ϵ) and O(1/ϵ), respectively. When α > 0,

the convergence curves in Figure Figure 4.3 and Table Table 4.3 illustrate a communica-

tion complexity and a P -projection complexity on the order of O(log(1/ϵ)) and O(1/
√
ϵ),

respectively. Thus, the DRAO-S method can find highly accurate solutions within a small

number of communication rounds.

4.6.3 Risk Averse Two-Stage Stochastic Programming

Figure 4.4: Convergence of DRAO-S for a Randomly Two-Stage Linear Problem: α = 0,
6 Inner Iterations

191

Figure 4.5: Convergence of DRAO-S for a Randomly Two-Stage Linear Problem: α > 0,
36 Inner Iterations

For the structured non-smooth case, we compare the DRAO-S method with the SD method

[55] using the same risk-averse two-stage stochastic linear programming problem from

[55]:

min
x∈Rn

c⊺x+ CV@Rδ(g1(x), . . . , gm(x)) +
α
2
∥x∥2,

s.t. 0 ≤ xj ≤ U ∀j ∈ [n],

gi(x) := minyi∈Rl
+
{y⊺i ei, s.t. Ryi ≥ di − Tix}.

(4.70)

The problem models the capacity expansion decision of an electricity company. Being

the sole provider of electricity, the company has to meet all demand profiles {di} using a

combination of installed capacity, with an availability factor of Ti, and electricity purchased

from outside the grid, at a unit cost of ei. Being risk averse, the company intends to find a

192

Table 4.4: Communication Rounds Required by Two-Stage Stochastic Pro-
gram under a CV@R Risk

#Scenarios Opt. Gap 10% Risk 5% Risk 1.25% Risk

Non-strongly Convex α = 0

SD DRAO-S SD DRAO-S SD DRAO-S

20 10% 250 59 386 103 386 103
1% 2328 420 2834 597 2834 597

50 10% 357 83 520 79 733 94
1% 2699 511 2971 590 4292 543

200 10% 74 12 183 16 447 34
1% 1614 187 3354 275 NA 293

Strongly Convex α = 1

10% 43 13 41 14 41 14
20 1% 181 24 129 25 129 25

0.1% 494 41 321 47 321 47

10% 26 13 35 14 65 15
50 1% 98 21 131 23 183 24

0.1% 226 37 258 41 335 43

10% 11 10 20 12 44 14
200 1% 75 18 125 20 208 24

1% 320 25 508 31 438 41

NA : Algorithm has not reached specified accuracy after 5000 communication rounds.

decision that keeps the total cost low for roughly (1− δ) of all possible scenarios.

In our experiments, we set n = 40 and l = 20, generate Ti ∈ R20×40, ei ∈ R20, di ∈

R20 and c ∈ R40 randomly, and choose R := I20,20 to be the simple complete recourse

matrix. We record the average number of communication rounds required to achieve the

desired relative optimality gaps for both methods in Table Table 4.4. Clearly, DRAO-S

enjoys significant savings compared to the SD method. The number of communications

rounds required by DRAO-S is also less sensitive to the risk level and DP . Moreover,

typical convergence curves are plotted in Figure Figure 4.4 and Figure 4.5. They seem to

verify the theoretical communication complexities of DRAO-S on the orders ofO(1/ϵ) and

O(1/
√
ϵ), respectively, for the non-strongly convex and the strongly convex problems.

193

4.6.4 Risk Measure induced by the χ2 Ambiguity Set

Next, we test these algorithms on a more complicated quadratically constrained set P .

Given a radius parameter r, the modified χ2 probability uncertainty set respect to the em-

pirical probability [1/m, . . . , 1/m] is given by

Pr = {p ∈ Rm
+ :

∑m
i=1 pi = 1, ∥p− [1/m, . . . , 1/m]∥2 ≤ r}.

Inspired by the χ2 test, Pr is useful for distributionally robust optimization (DRO) [92].

We conduct our experiments with the induced risk-measure ρ(g) = maxp∈Pr⟨p, g⟩ on

both the linear regression problem (Equation 4.69) and the two-stage stochastic program

(Equation 4.70). The average number of communication rounds required to reach the de-

sired sub-optimalities for various levels of r are recorded in Table Table 4.5 and Table 4.6.

Since a larger r implies a larger P , the results are consistent with our findings under the

CV@R setting.

4.7 Conclusion

This paper introduces the problem of distributed risk-averse optimization. A conceptual

DRAO method and a more practical DRAO-S method are proposed. Both of them are able

to solve the risk-averse problem with the same communication complexities as those for

solving the risk-neutral problem. The optimality of their communication complexities is

established with matching lower bounds. And preliminary numerical experiments seem to

indicate promising empirical performance for DRAO-S.

In future work, we will attempt to extend our proposed methods to the more general

cross-device federated learning setting [69] where fi’s are accessible only via a stochastic

first-order oracle and the communication network is unreliable. We will also attempt to

study the extension to more complicated risk measures for which p-prox mappings are

prohibitively expensive and only gradient evaluations are possible.

194

Table 4.5: Communications Rounds and P -Projections Required by DRAO-S for
Linear Regression under a modified χ2 Risk Measure

#Scenarios Opt. Gap r = 0.05 r = 0.1 r = 0.2

Non-strongly Convex α = 0

#Comm #P -proj #Comm #P -proj #Comm #P -proj

10% 3 4 3 4 3 4
20 1% 14 93 17 134 20 188

0.1% 28 274 40 944 73 2710

10% 3 4 3 4 3 4
50 1% 8 33 13 83 19 162

0.1% 21 216 30 524 69 2369

10% 3 4 3 4 3 4
200 1% 7 22 14 95 19 164

0.1% 21 207 40 872 70 2426

Strongly Convex Condition Number κ = 10

1e-3 6 10 9 28 26 235
20 1e-4 32 216 33 343 35 605

1e-5 35 312 36 462 38 754

1e-3 6 10 15 67 26 244
50 1e-4 29 164 32 323 35 566

1e-5 34 266 35 409 37 690

1e-3 20 68 18 80 25 220
200 1e-4 28 163 34 356 36 676

1e-5 34 280 36 450 39 882

195

Table 4.6: Communication Rounds Required by Two-Stage Stochastic Pro-
gram under a modified χ2 Risk Measure

#Scenarios Opt. Gap r = 0.05 r = 0.1 r = 0.2

Non-strongly Convex α = 0

SD DRAO-S SD DRAO-S SD DRAO-S

20 10% 88 41 135 49 190 54
1% 703 292 1006 330 2032 343

50 10% 240 46 319 57 388 75
1% 1543 313 2146 377 2838 409

200 10% 194 16 273 32 332 43
1% 1747 270 2818 315 3191 335

Strongly Convex α = 1

10% 10 10 14 11 21 12
20 1% 41 17 68 19 83 21

0.1% 188 28 301 37 338 39

10% 9 10 15 12 46 14
50 1% 52 18 96 20 199 23

0.1% 231 29 348 36 605 42

10% 14 11 21 13 33 14
200 1% 100 18 158 21 183 24

1% 556 30 771 36 671 37

4.8 Appendix

Lemma 4.5 Let fi : Rn → R be a proper convex closed function and f ∗
i be its Fenchel

conjugate. The following computations are equivalent for all ȳ ∈ X, π̄i ∈ Rn, τ > 0 :

πt
i ← argmaxπi

⟨ȳ, πi⟩ − f ∗
i (πi)− τ

2
∥πi − π̄i∥2 , (4.71)

πt
i ← π̄i +

1
τ
(ȳ − y), where y ← argminyfi(y) +

1
2τ
∥ȳ + τ π̄i − y∥2 . (4.72)

Proof: Let us fix an i ∈ [m] and let ū := ȳ + τ π̄i. Let πt
i be generated according to

(Equation 4.72). Consider a Moreau envelop of fi given by g(u) = (fi2
1
2τ
∥ · −y∥2)(u) :=

infy fi(y) +
1
2τ
∥u− y∥2. Since fi is convex, g is convex and smooth over Rn, thus ∂g(ū) is

non-empty and unique.

196

Next, define ḡ(u) := fi(y) +
1
2τ
∥u − y∥2 such that g(u) ≤ ḡ(u). Since y := infy fi(y) +

1
2τ
∥ū − y∥2 in (Equation 4.72) implies g(ū) = ḡ(ū), the subgradient of g at ū must be a

subgradient of ḡ, a dominating function, at ū, i.e.,

∂g(ū) ⊂ ∂ḡ(ū) = {πt
i :=

1
τ
(ū− y)}.

Therefore πt
i = ∇g(ū). Using the infimal convolution identity (c.f. Theorem 4.16 in [10])

(g)∗(πi) = (fi2
1
2τ
∥·∥2)∗(πi) = f ∗

i (πi)+
τ
2
∥πi∥2 ∀πi, the equivalence between maximiza-

tion and sub-gradient evaluation, and the fact ū := ȳ + τ π̄i, we get

πt
i ∈ ∂g(ū) = ∂(fi2

1
2τ
∥·∥2)(ū)⇔ πt

i ∈ argmaxπi
⟨ū, πi⟩ − (fi2

1
2τ
∥·∥2)∗(πi)

⇔ πt
i ∈ argmaxπi∈Πi

⟨ȳ + τ π̄i, πi⟩ − f ∗
i (πi)− τ

2
∥πi∥2

⇔ πt
i ∈ argmaxπi∈Πi

⟨ȳ, πi⟩ − f ∗
i (πi)− τ

2
∥πi − π̄i∥2 .

□

4.8.1 Efficient Implementations for Proximal Mappings

Since X is either a box or Rn, the x-prox mappings are implemented with closed-form

solutions. The π-prox mappings also admit closed-form solutions. For the linear regres-

sion problem in (Equation 4.69), the equivalent primal gradient computation amounts to

a matrix-vector multiplication. For the two-stage stochastic program in (Equation 4.70),

since the simple complete recourse is assumed [55], Πi is a box and the projection onto it

can implemented by component-wise thresholding.

The p-proximal update are implemented with binary searches and some basic matrix

operations. When ρ is a δ-CV@R risk measure, P can expressed as the intersection of an

equality constraint and a box constraint [9]. By dualizing the coupling equality constraint,

197

we arrive at an equivalent two-level optimization formulation for the pt-prox mapping.

pt = argmaxp ⟨p, g⟩ − 1
2

∥∥p− pt−1
∥∥2

s.t. 0 ≤ pi ≤ 1/(mδ)∑m
i=1 pi = 1

⇔ pt = minλ∈Rargmaxp ⟨p, g⟩ − 1
2

∥∥p− pt−1
∥∥2

+ λ(
∑m

i=1 pi − 1)

s.t. 0 ≤ pi ≤ 1/(mδ).

(4.73)

For a fixed λ, the inner solution p(λ) can be computed via a component-wise vector thresh-

olding and the optimal λt is characterized by the root condition
∑m

i=1 pi(λ
t)−1 = 0. Since

p(λ) is a monotonically non-decreasing function of λ, an accurate approximation to λt and

hence pt can be found by a binary search on λ. Next, when ρ is the risk measure induced

by the χ2 ambiguity set, we can dualize the χ2 constraint to express the pt-prox mapping

equivalently as follows.

pt = argmax
p≥0

⟨p, g⟩ − 1
2

∥∥p− pt−1
∥∥2

s.t. ∥p− [1/m, . . . , 1/m]∥2 ≤ r∑m
i=1 pi = 1.

⇔ pt = min
u∈R+

argmax
p≥0

⟨p, g⟩ − 1
2

∥∥p− pt−1
∥∥2

+ u(∥p− [1/m, . . . , 1/m]∥2 − r)

s.t.
∑m

i=1 pi = 1.

For a fixed u, the inner solution p(u) above can be solved similarly to (Equation 4.73). A

sufficient optimality condition for ut is the KKT condition, i.e. either ut = 0, or ut > 0

and ∥p(ut)− [1/m, . . . , 1/m]∥2 − r = 0. So an accurate ut and hence pt can be found by

a binary search on u.

198

CHAPTER 5

SMOOTH FUNCTION CONSTRAINED OPTIMIZATION

text of this chapter goes here

5.1 Background and Our Contribution

Consider convex smooth function-constrained optimization of the form

min
x∈X
{F (x) := f(x) + u(x)}

s.t. g(x) ≤ 0,

(5.1)

where both f : Rn → R and g := [g1, g2, . . . , gm]
⊤ : Rn → Rm are convex and differen-

tiable with Lipschitz continuous gradients, and the domain X is convex and closed. The

regularization function u(x) is assumed to be both simple [93] and α-strongly convex for

some α ≥ 0. Problem of this type finds a wide range of applications in, for example, the

Neyman-Pearson classification problem [94], the fairness-constrained classification [95],

and the risk-constrained portfolio optimization [96]. Since the dimensions n and m are

large in many applications, we focus on first-order methods to find an approximation solu-

tion. Specifically, (f, g) is assumed to be accessible only via a black-box first-order oracle,

which returns (f(x), g(x);∇f(x),∇g(x)) when queried at some x ∈ Rn, and the goal is

to find an (ϵ; ϵ/c)-optimal solution (or, in short, an ϵ-solution):

F (xN)− F (x∗) ≤ ϵ and
∥∥[g(xN)]+∥∥ ≤ ϵ/c, (5.2)

where the scaling constant c ≥ 1 represents the modeler’s preference for constraint viola-

tion relative to sub-optimality.

199

Table 5.1: Ideal Complexity for Solving (Equation 5.1)

Case Oracle Complexity Computation Complexity
Non-strongly Convex α = 0 O(1/

√
ϵ) O(1/ϵ)

Strongly Convex α > 0 O(log(1/ϵ)) O(1/
√
ϵ)

This paper intends to develop fast methods and to understand the requisite computation

cost. To ensure practical efficiency, special attention is paid to simple methods involving

only oracle evaluations, projections onto X , and basic vector operations like matrix-vector

multiplication. In particular, we consider consider two kinds of cost involved in solving

(Equation 5.1): a) the oracle complexity, i.e., the total number of queries to the first-order

oracle, and b) the computation complexity, i.e., the total number of matrix-vector multipli-

cations (each costing at most O(mn) FLOPs). During implementation, these complexities

translate to different computation burdens, so the dominating cost depends on the con-

text. For instance, if the constraint g is complicated, say a large finite-sum function in

the fairness-constrained problem, the gradient evaluation could be the bottleneck. On the

other hand, if both n and m are large and g is an affine function, the matrix-vector multi-

plication might be the bottleneck. Thus the ideal optimization method should excel in both

directions.

Since convex optimization has been studied extensively, e.g. [1], we can conjecture the

best possible complexities for (Equation 5.1) by reducing it to simpler cases for which the

optimal results are available. Recall from [2, 33], the number of oracle evaluations required

to find an ϵ-optimal solution to a smooth problem without function constraints is Θ(1/
√
ϵ)

in general, and Θ(
√
κ log(1/ϵ)) if the problem is also strongly convex, where κ denotes

the condition number. One way to reduce (Equation 5.1) is to consider the Lagrange dual

formulation:

min
x∈X

max
λ∈Rm

+

{L(x;λ) := f(x) + u(x) + λ⊤(g(x))}. (5.3)

If the multiplier λ is fixed to the optimal dual multiplier λ∗, the optimal Lagrangian func-

tion L(x;λ∗) is smooth and does not have any function constraint. Since some minimizer

200

to L(x;λ∗) is the solution to (Equation 5.1), in the ideal case, optimizing (Equation 5.1)

should have the same oracle complexity as optimizing L(x;λ∗), i.e., O(1/
√
ϵ) for the non-

strongly case (α = 0) andO(
√
κ log(1/ϵ)) for the strongly convex case (α > 0), where κ is

the condition number associated with L(x;λ∗). On the other hand, inspired by [1] and [97],

Xu and Ouyang constructed novel large-scale linearly constrained quadratic programs in

[86] to show the tight computation complexity for the linearly constrained smooth problem

is Θ(1/ϵ) if α = 0, and Θ(1/
√
ϵ) if α > 0. Since the nonlinear constraint function includes

the affine function as a special case, the computation complexity for (Equation 5.1) should

be at least as expensive as the affine case. These conjectured complexities, summarized in

Table Table 5.1, lead naturally to the research question:

Can we solve function-constrained problems with the same oracle com-

plexities as those without function constraints, while maintaining the

same computation complexities as solving linearly constrained prob-

lems?
However, despite much research effort on the subject from different directions, the

question remains open. Broadly speaking, the current results can be grouped according to

reformulations (see the summary in Table Table 5.2). The methods based on the Lagrangian

formulation (Equation 5.3) are usually simple to implement and have a low per-iteration

cost. For instance, the ConEx method in [98] and the APD method in [99] are single-

loop algorithms with optimal computation complexities, but their oracle complexities are

worse than the ideal ones by an order of magnitude. The current best method based on the

augmented Lagrangian reformulation [100], a three-loop algorithm constructed from the

inexact augmented Lagrangian method, the ellipsoid method, and the accelerated gradient

descent (AGD) method, is closer to the ideal oracle complexities. However, the proposed

method in [100] scales poorly with the number of constraints. In fact, the method is advan-

tageous to the APD method only when m ≤ 5 in the numerical experiments [100].

Another line of research [101, 102], called the level-set method, reformulates

(Equation 5.1) to a root finding problem associated with a certain mini-max problem. These

201

Table 5.2: Complexities for Smooth Constrained Optimization (Equation 5.1)

Strongly Convex α > 0 Convex α = 0 Strong Oracle
Method Oracle Computation Oracle Computation Assumption
Level Set1[102] O(1√

ϵ
log(1ϵ)) QCQP Oracle

Level Set1[101] O(1/ϵ) O(1/ϵ)
iALM [100] O(m√

ϵ
log3(1ϵ)) O(m√

ϵ
log3(1ϵ)) O(m log3(1ϵ)) O(m log3(1ϵ)) m = O(1)

APD [99] O(1/
√
ϵ) O(1/

√
ϵ) O(1/ϵ) O(1/ϵ)

ConEx [98] O(1/
√
ϵ) O(1/

√
ϵ) O(1/ϵ) O(1/ϵ)

ACGD [*] O(log(1/ϵ)) O(1/
√
ϵ) QP Oracle

ACGD-S [*] O(log(1/ϵ)) O(1/
√
ϵ) O(1/

√
ϵ) O(1/ϵ)

1 If, in addition to f , all constraint functions, g1, . . . , gm, are α-strongly convex, the oracle complexity is
O(log(1/ϵ)) for the level-set method in [102], and is O(1/

√
ϵ) for [101].

methods typically require all constraint functions to share the same strong convexity mod-

ulus as the objective function. Such an assumption can be quite restrictive because it is

violated when there exists one affine constraint. Assuming the uniform strong-convexity

condition holds, the method proposed by Nesterov in Section 2.3.5 of [102] can achieve an

O(log(1/ϵ)) oracle complexity when α > 0. However, the method might be too compu-

tationally demanding to implement for the large-scale setting because it requires the exact

solution to a quadratic program (QP) in each iteration, and the exact solution to a quadratic-

constrained quadratic program (QCQP) from time to time. Lin et al. relaxes the expensive

computation oracle assumption in [101], but the oracle complexity also becomes worse by

an order of magnitude. To sum up, there exist two major deficiencies: a) current methods

fail to match the ideal oracle complexity, and b) methods that are close to the ideal oracle

complexity are impractical in the large-scale setting.

In this paper, we provide an affirmative answer to the research question by propos-

ing efficient algorithms to achieve the ideal complexities. An important observation for

our development is that the ideal oracle complexity and the ideal computation complexity,

shown in Table Table 5.1, have different orders of magnitudes. This explains why the sin-

gle loop algorithms which carry out O(1) matrix-vector operations per oracle evaluation,

for example, the APD method [99] and the ConEx method [98], can only achieve the ideal

computation complexity, but not the ideal oracle complexity. This also explains why the

202

more complicated algorithms with better oracle complexities, for example, the level set

method in [102] and the iALM method in [100], require stronger computation oracles than

basic matrix-vector operations. Following this observation, we first ask if the ideal oracle

complexity in Table Table 5.1 is attainable with any strong computation oracle. The ques-

tion leads us to the oracle-efficient Accelerated Constrained Gradient Descent (ACGD).

The ACGD method is based on the Lagrangian formulation (Equation 5.3). The method

can be motivated by how Nesterov adapts the AGD method to solve a minimax problem

of the form minxmaxi{f1(x), ..., fm(x)} in Section 2.3 of [102]. Since the Lagrangian

function is also a minimax problem, it also satisfies the following max-type smoothness

condition (see Lemma 2.3.1 in [102]):

max
λ∈Rm

+

L(x, λ)− max
λ∈Rm

+

{lf (x; x̄) +
∑m

i=1 λilg(x; x̄)} ≤
L(Rm

+)

2
∥x− x̄∥2 , (5.4)

where lf and lg denote the linearization of f and g at x̄, and the aggregate smoothness con-

stant L(Rm
+) denotes the maximum, over λ ∈ Rm

+ , of the Lipschitz smoothness constants of

L(x;λ) for a fixed λ. To obtain the desired oracle complexity, Nesterov proposes to modify

the AGD method by replacing the descent step with a max-type descent step (see (2.3.12)

in [102] or the DRAO method in [59]), which in our case becomes

xt ← argmin
x∈X

max
λ∈Rm

+

lf (x;x
t) +

m∑
i=1

λi(lgi(x;x
t)) + u(x) + ηt

2

∥∥x− xt−1
∥∥2
, (5.5)

where the linearization center xt is a certain convex combination of {x0, . . . , xt−1}. Since

the maximization of λ is over Rm
+ , (Equation 5.5) is equivalent to the following quadratic

program,

xt ← min
x∈X
{lf (x;xt) + u(x) + ηt

2

∥∥x− xt−1
∥∥2 s.t. lgi(x;x

t) ≤ 0 ∀i ∈ [m]}.

We call it the constrained descent step and the so-modified AGD method the Accelerated

203

Constrained Gradient Descent method. Just like the AGD method, the stepsize parame-

ter ηt should be selected to be proportional to the aggregate smoothness constant L(Rm
+).

Note, however, that one difficulty with this approach is L(Rm
+) = ∞, so ηt is infinite and

the convergence rate is O(∞/N2), i.e., the method for may not even converge. By tak-

ing a primal-dual perspective, we show ηt only needs to be proportional to the smoothness

constant of L(x, λ∗), denoted by L(λ∗). As a result, ηt remains finite and the oracle com-

plexity of the proposed ACGD method almost matches the optimal oracle complexity for

optimizing L(x;λ∗).

We also investigate the optimality of the proposed ACGD method by constructing new

lower oracle complexity bounds. In the strongly convex case with α > 0, the lower bound

shows the oracle complexity bound of the ACGD method to be unimprovable for all prob-

lem parameters. In the non-strongly case with α = 0, the lower bound shows the oracle

complexity bound of the ACGD method to be tight up to a factor ofO(
√
∥λ∗∥ /c+1), i.e.,

the ACGD method has tight oracle complexity with respect to all problem parameters if

c ≥ ∥λ∗∥. If λ∗ is interpreted as the shadow price of constraint violation around x∗, such a

choice of c ensures that the increase in objective value incurred by moving an ϵ/c-feasible

solution to feasibility is roughly O(ϵ).

To enhance its efficiency for the large-scale setting with many constraints, we use

the sliding technique [87, 59] to extend the ACGD method to the ACGD with Sliding

(ACGD-S) method. Given a linearization center xt, instead of solving (Equation 5.5) to

optimality in each iteration, the ACGD-S method solves the bilinear saddle point inex-

actly by performing only a finite number of λ-prox mappings and x-prox mappings (see

(Equation 5.7)), the most expensive operation during which is matrix-vector multiplication.

Particularly, after the tth oracle evaluation, i.e., {∇g(xt),∇f(xt); f(xt), g(xt)}, the x-prox

mapping and λ-prox mapping are repeated onlyO(t) times if α = 0, andO(
√
θt) times for

some θ > 1 if α > 0. The repetitive updating of prox-mappings and judicious computation

of gradients allow the ACGD-S to achieve the optimal computation complexity (matching

204

the lower bound for linearly constrained problem [86]), while maintaining the same ora-

cle complexity as the ACGD method. Therefore the ACGD-S method provides an almost

complete characterization of both the computation and the oracle complexity for solving a

smooth function-constrained problem. Moreover, the intricate step-size choice to achieve

both the optimal O(log(1/ϵ)) oracle evaluations (outer loops) and the optimal O(1/
√
ϵ)

matrix-vector multiplications (inner iterations) appears to be new to the sliding technique

[87, 88, 59], so it is of independent interest.

One potential concern for implementing ACGD and ACGD-S is that their stepsize se-

lection depends on the Lipschitz smoothness constant of L(x;λ∗) (see (Equation 5.3)),

which could be hard to estimate in practice. To address this issue, we proposed a binary

guess-and-check scheme to search for the elusive problem parameter. Then, given the

strong convexity parameter α, under the assumption X is bounded and its radius DX is

known, both the ACGD and ACGD-S methods can be implemented without the knowl-

edge of any other problem parameters to find an (ϵ; ϵ/c)-solution with the same oracle and

computation complexities as those listed in Table Table 5.1.

The rest of the is organized as follows. Section section 5.2 proposes the ACGD method,

and Section section 5.3 develops matching lower bounds. Section section 5.4 extends it to

a computationally efficient ACGD-S method, and some concluding remarks are made in

Section section 5.5.

5.1.1 Notations & Assumptions

The following assumptions and notations will be used throughout the paper.

• The set of optimal solutions to (Equation 5.1),X∗, is nonempty, and x∗ is an arbitrary

optimal solution. F∗ denotes the optimal objective, F (x∗).

• The Fenchel conjugate (see [10]) of a convex function g(x) is defined as g∗(π) :=

maxx∈Rn⟨x, π⟩ − g(x).

205

• Uh denotes the Bregman distance function (see [10]) generated by a convex function

h, i.e., Uh(π; π̄) := h(π) − h(π̄) − ⟨h′(π̄), π − π̄⟩ where h′(π̄) is some fixed sub-

gradient in ∂h(π̄). If g is vector-valued, i.e., g(ν) := [g1(ν), g2(ν), . . . , gm(ν)], Ug is

vector-valued with its ith component being the Bregman distance function generated

by gi, namely, Ugi .

• We refer to the following computation as either a prox-mapping or a projection:

ŵ ← argmin
w∈W

⟨y, w⟩+ h(w) + τU(w; w̄), (5.6)

where the vector y represents some “descent direction” (the gradient for example),

and h(w) is a simple convex function [28]. U is the Bregman distance function, w̄

is a prox center, and τ is a stepsize parameter. Together they ensure the output ŵ is

close to w̄. In particular, the following will be referred to as the X-projection:

x̂← argmin
x∈X

⟨y, x⟩+ u(x) + τ
2
∥x− x̄∥2 . (5.7)

5.2 The Accelerated Constrained Gradient Descent Method

We present in this section the ACGD method. Specifically, Subsection subsection 5.2.1

introduces a novel primal-dual perspective to motivate the ACGD method, and Subsection

subsection 5.2.2 presents the convergence results. Subsection subsection 5.2.3 proposes

the guess-and-check scheme to look for the problem parameter L(λ∗), and Subsection sub-

section 5.2.4 contains the detailed proofs of the convergence results.

5.2.1 The ACGD method

This subsection presents the primal-dual perspective to motivate the ACGD method. Such

a perspective is important for understanding the finite stepsize parameter ηt discussed in

Section section 5.1. Specifically, we first introduce a novel nested Lagrangian function

206

which reformulates (Equation 5.1) as a min−max−max trilinear saddle point problem.

To search for the saddle point, we propose a primal-dual type method similar to [59, 55].

The ACGD method then simply follows from rewriting the proposed method in the primal

form.

First, we need to assume the existence of a KKT point to the Lagrangian function

defined in (Equation 5.3) throughout this paper:

Assumption 4 There exists a λ∗ ∈ Rm
+ and x∗ ∈ X such that∇f(x∗)+

∑m
i=1 λ

∗
i∇gi(x∗)+

u′ ∈ NX(x
∗) for some u′ ∈ ∂u(x∗), g(x∗) ≤ 0, and λ∗i gi(x

∗) = 0 ∀i, where NX denotes

the normal cone to X.

Note x∗ and λ∗ could be interpreted as an arbitrary element in X∗ and

Λ∗ := argmaxλ∈Rm
+
minx∈X L(x;λ) for the rest of the paper, because any (x̄, λ̄) with

x̄ ∈ X∗ and λ̄ ∈ Λ∗ also constitutes a KKT point (see Proposition 3.4.1 in [103]).

To motivate the nested Lagrangian function, consider the simplified case where the

optimal dual multiplier λ∗ is known. Fix λ to λ∗, an optimal solution x∗ can be found by

solving the following simplified problem under certain regularity conditions:

min
x∈X

f(x) + ⟨λ∗, g(x)⟩+ u(x). (5.8)

One useful framework for designing an optimal algorithm for the constrained problem in

(Equation 5.8) is to consider a bilinear saddle-point reformulation

min
x∈X

max
ν∈V,π∈Π

{⟨x, π⟩ − f ∗(π) + u(x) + ⟨λ∗, νx− g∗(ν)⟩}, (5.9)

where f ∗ is the Fenchel conjugate function to f and Π is its domain, namely, {π ∈ Rn :

f ∗(π) < ∞}, and g∗ := [g∗1, . . . , g
∗
m] is the vector-valued Fenchel conjugate to g and V

is its domain, namely, {v ∈ Rm×n : g∗i (vi) < ∞ ∀i ∈ [m]}. Moreover, since the dual

207

variables π and ν are associated with a common primal variable x, it is sometimes helpful

consider the following joint domain [V,Π]:

[V,Π] = {(∇g(x),∇f(x)) : x ∈ Rn}. (5.10)

However, λ∗ is unknown in practice. So we propose to consider the following nested

Lagrangian reformulation which combines (Equation 5.3) and (Equation 5.9):

min
x∈X

max
λ∈Rm

+ ,π∈Π,ν∈V
{L(x;λ, π, ν) := ⟨x, π⟩ − f ∗(π) + u(x) + ⟨λ, νx− g∗(ν)⟩}, (5.11)

where f ∗, g∗, Π and V are defined in the same way as (Equation 5.9). Notice a common

notation L is used for the nested Lagrangian and the ordinary Lagrangian, but the exact

meaning should be clear from the context. Let Z denote the joint domain, Z := X ×

Rm
+ × Π × V and z∗ := (x∗;λ∗, ν∗ := ∇g(x∗), π∗ := ∇f(x∗)). It is not hard to see that

z∗ is saddle point to (Equation 5.11), and a useful criterion to measure the optimality of

an iterate zt = (xt;λt, νt, pti) ∈ Z is to compare it to some reference point z ∈ Z in the

following gap function:

Q(zt; z) := L(xt;λ, ν, π)− L(x;λt, νt, pti). (5.12)

Indeed, the saddle point z∗ satisfies Q(z∗; z) ≤ 0 ∀z ∈ Z.

A crucial observation for our development is that for the convergence to an ϵ-solution,

it is sufficient to consider only the reference λ’s inside a certain bounded set rather than

the positive orthant. The next lemma shows the Q function still provides upper bounds for

both the feasibility violation and the optimality gap.

Lemma 5.1 Let zt = (xt;λt, νt, pti) ∈ Z be given and let Λr denote a certain set of refer-

ence λ’s,

Λr = {0} ∪ {λ∗ + λ : λ ∈ Br(0) ∩ Rm
+}. (5.13)

208

If maxλ∈Λr,(ν,π)∈[V,Π]Q(z
t; (x∗;λ, ν, π)) ≤ ϵ, we have F (xt) − F (x∗) ≤ ϵ and

∥[g(xt)]+∥ ≤ ϵ/r.

Proof: Consider Part a). Fixing p̂i = ∇f(xt) and ν̂ = ∇g(xt), the given condition

implies that Q(zt; (x∗;λ, ν̂, p̂i)) ≤ ϵ ∀λ ∈ Λr. It then follows from the conjugate duality

relationship (see Section 4.1 and 4.2 of [10]) that

f(xt) + ⟨λ, g(xt)⟩+ u(xt)− [f(x∗) + ⟨λt, g(x∗)⟩+ u(x∗)] ≤ ϵ ∀λ ∈ Λr.

Since x∗ is feasible, i.e., g(x∗) ≤ 0, we have ⟨λt, g(x∗)⟩ ≤ 0. Then taking λ = 0 leads to

f(xt) + u(xt)− f(x∗)− u(x∗) ≤ f(xt) + u(xt) − [f(x∗) + ⟨λt, g(x∗)⟩+ u(x∗)] ≤ ϵ.

Next since (x∗;λ∗) is a saddle point to (Equation 5.3), we have 0 ≤ F (xt) + ⟨λ∗, g(xt)⟩ −

[F (x∗) + ⟨λt, g(x∗)⟩]. Setting λ̂ = λ∗ + r[g(xt)]+/ ∥[g(xt)]+∥ ∈ Λr, we get

r
∥∥[g(xt)]+∥∥ ≤ F (xt) + ⟨λ∗ + r[g(xt)]+/

∥∥[g(xt)]+∥∥ , g(xt)⟩ − [F (x∗) + ⟨λt, g(x∗)⟩]

≤ Q(zt; (x∗; λ̂, ν̂, p̂i)) ≤ ϵ.

□ We remark that a lower bound to F (xt)− F∗ can also be derived in similar fashion, see

[104, 105].

Now, let us move on to consider minimizingQ to find a saddle point to (Equation 5.11).

An essential feature of the nested Lagrangian function (Equation 5.11) is the trilinear term

⟨λ, νx− g∗(ν)⟩. The problem cannot be simplified to a min−max saddle point problem

by combining the ν and λ into a single dual block, because their joint maximization is diffi-

cult to compute. Similar problems have been studied by Lan and Zhang in [59, 55, 83] and

the key to handle the min−max−max trilinear structure is to decompose the Q function

into the sub-gap functions and optimize each sub-gap function sequentially. Specifically,

209

the following decomposition of (Equation 5.12) into sub-gap functions associated with x,

λ, ν and π is useful.

Q(zt; z) = Qx(z
t; z) +Qλ(z

t; z) +Qπ(z
t; z) +Qν(z

t; z) (5.14)

where

Qπ(z
t; z) := L(xt;λ, ν, π)− L(xt;λ, ν, pti) = ⟨xt, π⟩ − f ∗(π) −[⟨xt, pti⟩ − f ∗(pti)] ,

(5.15a)

Qν(z
t; z) := L(xt;λ, ν, pti)− L(xt;λ, νt, pti) =

∑m
i=1 λi(⟨νi, xt⟩ − g∗i (νi)]

−
∑m

i=1 λi[⟨νti , xt⟩ − g∗i (νti]), (5.15b)

Qλ(z
t; z) := L(xt;λ, νt, pti)− L(xt;λt, νt, pti) = ⟨λ, νtxt − g∗(νt)⟩

−⟨λt, νtxt − g∗(νt)⟩ , (5.15c)

Qx(z
t; z) := L(xt;λt, νt, pti)− L(x;λt, νt, pti) = ⟨pti +

∑m
i=1 λ

t
iν

t
i , x

t⟩+ u(xt)

− ⟨pti +
∑m

i=1 λ
t
iν

t
i , x⟩ − u(x). (5.15d)

Similar to the DRAO method in [59], we propose to reduce the boxed terms associated

with Qν and Qπ, and Qx and Qλ using the following sequence of prox-mappings in each

iteration:

x̃t ← xt−1 + θt(x
t−1 − xt−2);

pti ← argmax
π ∈Π

⟨π, x̃t⟩ − f ∗(π)− τtUf∗(π; pt−1
i);

νti ← argmax
νi∈Vi

⟨νi, x̃t⟩ − g∗i (νi)− τtUg∗i
(νi; ν

t−1
i) ∀i ∈ [m];

(xt, λt)← argmin
x∈X

max
λ∈Rm

+

⟨pti, x⟩+ ⟨λ, νtx− g∗(νt)⟩+ u(x) + ηt
∥∥x− xt−1

∥∥2
/2.

(5.16)

In the above listing, θt, τt and ηt are non-negative stepsize parameters, and Ug∗i
and Uf∗

are Bregman distance functions generated by g∗i and f ∗ respectively. Particularly, with the

210

yet available xt replaced by some proxy x̃t, the above pti update corresponds to the mini-

mization of the variable pti in (Equation 5.15a) subject to a prox term τtUf∗(π; pt−1
i). Sim-

ilarly, the νt update corresponds to the minimization of the variable νt in (Equation 5.15b)

subject to a prox term τt
∑m

i=1 λiUg∗i
(νi; ν

t−1
i). Since the summation weights {λi} are

non-negative and the maximizations are separable, the νt update is written equivalently

as individual νti updates in (Equation 5.16). Finally, since both the maximization of λt in

(Equation 5.15c) and the minimization of xt in (Equation 5.15d) do not require any oracle

information related to either f or g, we evaluate them simultaneously subject to a prox term

ηt ∥x− xt−1∥2 /2. This leads to the joint (xt, λt) update in (Equation 5.16). We remark x̃t,

the proxy for xt, is chosen as the momentum extrapolation from xt−1. Such a choice helps

us to achieve acceleration (e.g. see Section 3.4 in [28] for the connection).

The implementable version of (Equation 5.16) is shown in Algorithm Algorithm 11. It

employs two additional simplifications. First, we initialize the dual variables to some gradi-

ents, i.e., p0i = ∇f(x0) and ν0 = ∇g(x0). With Ug∗ and Uf∗ selected as prox-functions, we

can show recursively that pti and νt in (Equation 5.16) are same as the gradients at some av-

eraged point (see Lemma 2 in [83]). Thus the νti and pti computation in (Equation 5.16) sim-

plifies to gradient evaluations in Line 4 of Algorithm Algorithm 11. Second, the (xt, λt)-

saddle point problem in (Equation 5.16) is formulated as a linearly constrained quadratic

program in Line 5 of Algorithm Algorithm 11. Since νt = ∇g(xt) in Algorithm Algo-

rithm 11 implies the relation gi(xt)+g∗i (ν
t
i) = ⟨xt, νti ⟩ (see Theorem 4.20 in [10]), we have

g∗(νt) = νtxt − g(xt). Interestingly, other than the additional linear constraint associated

with g in the descent step (Line 5), Algorithm Algorithm 11 is the same as Nesterov’s AGD

method [3]. Therefore we name it the Accelerated Constrained Gradient Descent method.

211

Algorithm 11 Accelerated Cconstrained Gradient Descent Method

Input: x−1 = x0 = x0 ∈ X , stepsizes {θt}, {ηt}, {τt}, and weights {ωt}.

1: Set p0i = ∇f(x0), νt = ∇g(x0).

2: for t = 1, 2, 3...N do

3: Set xt ← (τtx
t−1 + x̃t)/(1 + τt) where x̃t = xt−1 + θt(x

t−1 − xt−2).

4: Set pti ← ∇f(xt) and νt ← ∇g(xt).

5: Solve xt ← argminx∈X{⟨pti, x⟩+ u(x) + ηt ∥x− xt−1∥2 /2 s.t. νt(x− xt) +

g(xt) ≤ 0}.
6: end for

7: return x̄N :=
∑N

t=1 ωtx
t/(

∑N
t=1 ωt).

5.2.2 The Convergence Results

Next, we present convergence results for the ACGD method. The detailed analysis is de-

ferred to Subsection subsection 5.2.4. The next proposition states some conditions required

for the Q function in (Equation 5.12) to converge. Since these conditions depend on the set

of reference multiplier λ’s under consideration (see Lemma 5.1), it is useful to define an

aggregate Lipschitz smoothness constant as a function of Λ:

L(Λ) := max
λ∈Λ

Lλ, where Lλ ∥x̄− x̂∥ ≥ ∥∇xL(x̄;λ)−∇xL(x̂;λ)∥ ∀x̄, x̂ ∈ Rn. (5.17)

Proposition 5.1 Let a set of reference multipliers Λ ⊂ Rm
+ be given and let the ag-

gregate smoothness constant L(Λ) be defined in (Equation 5.17). Consider the iterates

zt := (xt;λt, νt, pti) generated by Algorithm 11, where λt is defined in (Equation 5.16).

Suppose the following conditions are satisfied by the stepsizes together with some non-

212

negative weights ωt ≥ 0 for all t ≥ 2:

ωtηt ≤ ωt−1(ηt−1 + α), (5.18)

ωtτt ≤ ωt−1(τt−1 + 1), (5.19)

ηN(τN + 1) ≥ L(Λ), ηt−1τt ≥ θtL(Λ) with θt := ωt−1/ωt. (5.20)

Consider the ergodic iterate z̄N = (x̄N ; λ̄N , ν̄N , π̄N) specified according to

x̄N :=
N∑
t=1

ωtx
t/(

∑N
t=1 ωt), λ̄

N :=
∑N

t=1 ωtλ
t/(

∑N
t=1 ωt), π̄

N :=
∑N

t=1 ωtp
t
i/(

∑N
t=1 ωt),

ν̄Ni :=

∑N

t=1 ωtλ
t
iν

t
i/(

∑N
t=1 ωtλ

t
i) o.w.

∇gi(x0) if λti = 0 ∀t.

(5.21)

Then the following convergence bound is valid for any reference point z = (x;λ, ν, π) ∈

X × Λ× [V,Π] with [V,Π] defined in (Equation 5.10):

(
∑N

t=1 ωt)Q(z̄
N , z) + ωN(ηN + α)

∥∥xN − x∥∥2
/2

≤ω1η1
∥∥x0 − x∥∥2

/2 + ω1τ1(U
∗
f (π; p

0
i) + ⟨λ, U∗

g (ν; ν
0)⟩).

(5.22)

Proposition 5.1, together with Lemma 5.1, show that it is possible to select a finite

stepsize ηt related to L(Λr) in place of the infinite L(Rm
+). To provide convergence guaran-

tees for both the feasibility violation and the optimality gap associated with the function-

constrained problem in (Equation 5.1), Lemma 5.1 states that we should only consider

the Q gap function defined with respect to Λr, some small neighborhood of reference λ’s

around λ∗. Proposition 5.1 shows such an Q function converges when the stepsize choice

satisfies certain conditions related to L(Λr), rather than L(Rm
+). Thus a finite ηt propor-

tional to L(Λr) is sufficient for our purpose, and the next theorem states the result more

213

precisely.

Theorem 5.1 Let a smooth constrained optimization problem (Equation 5.1) be given and

let L(Λr) be defined in (Equation 5.13) and (Equation 5.17). Denote its condition number

by κr = L(Λr)/α (We set κr = ∞ if α = 0). Suppose the solution iterates {xt} are

generated by Algorithm Algorithm 11 with the following stepsizes for t ≥ 1

τt = min{ t−1
2
,
√
κr}, ηt = L(Λr)

τt+1
, θt =

τt
τt−1+1

, ωt =

ωt−1/θt if t ≥ 2,

1 if t = 1.

(5.23)

Then the ergodic average x̄N solution satisfies

max{F (x̄N)− F∗, r
∥∥[g(x̄N)]+∥∥} ≤ 2L(Λr)

N(N + 1)

∥∥x0 − x∗∥∥2
. (5.24)

Moreover, in the strongly convex case with α > 0, x̄N also satisfies

max{F (x̄N)− F∗, r
∥∥[g(x̄N)]+∥∥} ≤ √

L(Λr)α ∥x0 − x∗∥2

(1 + 1/
√
κr)N−4 − 1

, (5.25)

∥∥x̄N − x∗∥∥2 ≤
2
√
κr ∥x0 − x∗∥2

(1 + 1/
√
κr)N−4 − 1

. (5.26)

As a consequence of the preceding theorem, we can derive upper bounds on the number

of iterations required of the ACGD method to find an (ϵ; ϵ/c)-solution (see (Equation 5.2)).

The next corollary focuses on the non-strongly convex case, i.e., α = 0.

Corollary 5.1 Suppose {xt} are generated by Algorithm Algorithm 11 using the stepsizes

choice in (Equation 5.23), with L(Λr) = L(Λc) (see (Equation 5.17)). The ergodic average

solution x̄N is an (ϵ, ϵ/c)-solution if

N ≥
√

2L(Λc)
ϵ

∥∥x0 − x∗∥∥ .
For the strongly convex problem with α > 0, it is advantageous to choose a small r to

214

ensure a small aggregate smoothness constant L(Λr) and hence a small condition number

κr. We set it to L(Λ1) in the next corollary.

Corollary 5.2 Suppose {xt} are generated by Algorithm Algorithm 11 using the stepsizes

choice in (Equation 5.23), with L(Λr) = L(Λ1) (see (Equation 5.17)). Then the ergodic

average solution x̄N is an (ϵ, ϵ/c)-solution if

N ≥ min{
√

2max{c,1}L(Λ1)
ϵ

∥∥x0 − x∗∥∥ , [√L(Λ1)
α

+1] log[
max{c,1}

√
L(Λ1)α∥x0−x∗∥2

ϵ
+1]+4}.

Note that for a small λ∗, i.e., ∥λ∗∥ being significantly less than 1, it may be worthwhile to

choose L(Λr) = L(Λ∥λ∗∥) to further reduce the condition number from κ1 = L(Λ1)/α to

κ∥λ∗∥ = L(Λ∥λ∗∥)/α.

Since each iteration of the ACGD method requires only one gradient evaluation, the

preceding two corollaries establish the desired O(1/
√
ϵ) and O(log(1/ϵ)) oracle complex-

ities for the non-strongly convex and the strongly convex problems, respectively.

5.2.3 The Binary Search for L(Λr)

A crucial limitation to the ACGD method is that the desired aggregate smoothness con-

stants, L(Λc) and L(Λ1), may be unavailable for the stepsize calculation in (Equation 5.23)

during implementation. To address this issue, we propose a binary search outer-loop

method to look for the suitable constant in an online fashion. Starting with a guess L̃,

we run the ACGD method for N(L̃) iterations and check if the ergodic average solution

x̄N(L̃) satisfies a certain termination criterion. The outer loop would be stopped if the ter-

mination criterion is met, otherwise the process would be repeated with the guess doubled,

i.e., 2L̃. To ensure the soundness of the search routine, we need to choose the iteration limit

function N(L̃) to guarantee the satisfaction of the termination criterion when L̃ were larger

than the desired aggregate smoothness constant. Additionally, the termination criterion

should also be both easily computable and valid, i.e., a test solution x̄N which satisfies the

215

criterion should be (ϵ; ϵ/c)-optimal. Toward these ends, we need the following additional

assumptions.

Assumption 5 a) X is bounded and an estimate DX of its radius,

i.e., DX ≥ maxx,y∈X ∥x− y∥ , is known.

b) The dual multiplier to the quadratic program in Line 5 of Algorithm Algorithm 11,

λt, is available.

Given iterates {(xt, xt), λt, νt, pti}Nt=1 generated by the ACGD method, our termination

criterion is the two conditions:

∥∥[g(x̄N)]+∥∥ ≤ cϵ and F (x̄N)− FN ≤ ϵ, (5.27)

where x̄N is the ergodic average solution and fN is given by

FN := argmin
x∈X

1∑N
t=1 ωt

N∑
t=1

ωt[⟨pti, x− xt⟩+ f(xt) + u(x))]

s.t. 1∑N
t=1 ωtλ

t
i

N∑
t=1

ωtλ
t
i[⟨νti , x− xt⟩+ gi(x

t)] ≤ 0 ∀i ∈ [m].

(5.28)

Notice Assumption 5.a) ensures FN to be finite, and the dual solutions in Assump-

tion 5.b) are used for constructing the linearized constraints above. Since its objec-

tive and constraints are lower linear approximations to f and g1, g2, . . . , gm respectively,

(Equation 5.28) is a relaxation to (Equation 5.1), and the minimum value FN is a lower

bound to F∗. Therefore the satisfaction of (Equation 5.27) guarantees the solution x̄N to be

(ϵ, ϵ/c)-optimal.

216

Algorithm 12 Binary Search for the Aggregate Smoothness Constant L.

Input: x̄ ∈ X , L̃ > 0 , and an iteration limit function N(L).

1: while true do

2: Set stepsizes to (Equation 5.23) with L(Λr) replaced by L̃.

3: Run the ACGD method for N(L̃) iterations starting from x̄.

4: Set x̄← x̄N(L̃), where x̄N(L̃) is the ergodic average solution.

5: if x̄ satisfies the termination criterion (Equation 5.27) then

6: break

7: else

8: Set L̃← 2L̃.

9: end if

10: end while

11: return x̄.
Putting the pieces together, the binary search scheme is listed in Algorithm Algo-

rithm 12. When it terminates, the output solution is (ϵ, ϵ/c)-optimal. Now we suggest

some concrete iteration limit functions, N(L), and derive upper bounds on the total num-

bers of iterations, across all ACGD runs, required for termination. Their proof is deferred

to Subsection subsection 5.2.4.

Theorem 5.2 Consider a smooth constrained optimization problem of form (Equation 5.1).

Suppose its aggregate smoothness constants, L(Λc) and L(Λ1), are defined according to

(Equation 5.17) and (Equation 5.13), and Assumption 5 is valid. Let L̃ be initialized to

some L̃0, then Algorithm Algorithm 12 terminate finitely for the following choices of the

iteration limit function N(L).

a) In the non-strongly convex case with α = 0, if N(L) = ⌈
√

2L
ϵ
DX ⌉, the total

number of ACGD iterations required for termination is upper bounded by

max{7
√

L(Λc)
α
DX + ⌈log2(

L(Λc)

L̃0
)⌉,

√
2L̃0

ϵ
DX + 1}. (5.29)

217

b) In the strongly convex case with α > 0, if

N(L) = ⌈(
√

L
α
+ 1) log(

max{c,1}
√
LαD2

X

ϵ
+ 1)⌉+ 4,

the total number of ACGD iterations required for termination is upper bounded by

max

{
9

√
L(Λ1)

α
log(

max{c,1}
√

2L(Λ1)αD2
X

ϵ
+ 1) + 5⌈log2

L(Λ1)

L̃0
⌉,

⌈(
√

L̃0

α
+ 1) log(

max{c,1}
√

L̃0αD2
X

ϵ
+ 1)⌉+ 4

}
.

(5.30)

We make two remarks regarding the result. First, the proposed N(L)’s depend only on

the target accuracy (ϵ; ϵ/c) and some easy-to-estimate problem parameters, that is, DX in

the non-strongly convex case, and DX and α in the strongly convex case. So Algorithm

Algorithm 12 is easy to implement. Second, the total numbers of ACGD iterations required

by Algorithm Algorithm 12, (item 5.29) and (item 5.30), are nearly independent of the

initial guess L̃0 for all L̃0 ≤ L(Λ0). The FO oracle complexities of Algorithm Algorithm 12

have the same orders as those in Corollary 5.1 and 5.2, so the total cost of the multiple

ACGD runs in Algorithm Algorithm 12 is on the same order as a single ACGD run with

some carefully selected stepsizes.

5.2.4 Convergence Analysis

We present the detailed proofs to convergence results of Algorithm Algorithm 11 and

Algorithm Algorithm 12.

Proof of Proposition 5.1 Let Qx, Qλ, Qν , and Qπ be defined in (Equation 5.14). It

is useful to view the updates in Algorithm Algorithm 11 from the perspective of prox-

mappings in (Equation 5.16). First, let’s consider Qν . We have from the definition of x̃t

218

that

⟨νi − νti , (x̃t − xt)⟩ =− ⟨νi − νti , (xt − xt−1)⟩+ θt⟨νi − νt−1
i , (xt−1 − xt−2)⟩

+ θt⟨νt−1
i − νti , (xt−1 − xt−2)⟩.

Since g∗i has a strong convexity modulus of 1 with respect to Ug∗i
, the definition of νti prox-

mapping in (Equation 5.16) implies a three-point inequality (see Lemma 3.5 in [28]):

⟨νi − νti , xt⟩+ g∗i (ν
t
i)− g∗i (νi) + ⟨νi − νti , x̃t − xt⟩

≤ τtUg∗i
(νi; ν

t−1
i)− (τt + 1)Ug∗i

(νi; ν
t
i)− τtUg∗i

(νti ; ν
t−1
i).

So, combining the above two relations, taking the ωt weighted sum of the resulting inequal-

ities and using the conditions ωt−1 = ωtθt and ωtτt ≤ ωt−1(τt−1 + µ), we obtain

N∑
t=1

ωt(⟨νi − νti , xt⟩+ g∗i (ν
t
i)− g∗i (νi))

≤− (ωN(τN + 1)Ug∗i
(νi; ν

N
i)− ωN⟨νi − νNi , (xN − xN−1)⟩)

−
∑N

t=2[ωtτtUg∗i
(νti ; ν

t−1
i) + ωt−1⟨νt−1

i − νti , (xt−1 − xt−2)⟩]

+ ω1τ1Ug∗i
(νi; ν

0
i).

A λi-weighted sum of the above inequality leads to the desired Qν convergence bound

given by

N∑
t=1

ωtQν(z
t; z)

≤− (ωN(τN + 1)
∑m

i=1 λiUg∗i
(νi; ν

N
i)− ωN⟨

∑m
i=1 λi(νi − νNi), xN − xN−1⟩)

−
∑N

t=2[ωtτt
∑m

i=1 λiUg∗i
(νti ; ν

t−1
i) + ωt−1⟨

∑m
i=1 λi(ν

t−1
i − νti), xt−1 − xt−2⟩]

+ ω1τ1
∑m

i=1 λiUg∗i
(νi; ν

0
i).

219

A Qπ bound can be derived similarly. Taken together, we get

N∑
t=1

ωt[Qν(z
t; z) +Qπ(z

t; z)]

≤ −(ωN(τN + 1)[
∑m

i=1 λiUg∗i
(νi; ν

t
i) + Uf∗(π; pti)]

− ωN⟨π − pNi +
∑m

i=1 λi(νi − νNi), xN − xN−1⟩)

−
∑N

t=2{ωtτt[
∑m

i=1 λiUg∗i
(νti ; ν

t−1
i) + Uf∗(pti; p

t−1)]

+ ωt−1⟨pt−1
i − pti +

∑m
i=1 λi(ν

t−1
i − νti), xt−1 − xt−2⟩}

+ ω1τ1[
∑m

i=1 λiUg∗i
(νi; ν

0
i) + Uf∗(π; p0i)].

(5.31)

Since (νt, pti) = (∇g(xt),∇f(xt)) ∀t, applying Lemma 5.2 with λ̃ = [λ; 1] and g̃ = [g; f]

implies that

∑m
i=1 λiUg∗i

(νti ; ν
t−1
i) + Uf∗(pti; p

t−1) ≥ 1
2L(Λ)

∥∥pti − pt−1 +
∑m

i=1 λi(ν
t
i − νt−1

i)
∥∥2
.

Similarly, with (ν, π) ∈ [V,Π] (see (Equation 5.10)), we get

∑m
i=1 λiUg∗i

(ν; νNi) + Uf∗(π; pNi) ≥ 1
2L(Λ)

∥∥π − pNi +
∑m

i=1 λi(νi − νNi)
∥∥2
.

Thus applying the Young’s inequality to (Equation 5.31) leads to

N∑
t=1

ωt[Qν(z
t; z) +Qπ(z

t; z)] ≤ ωNL(Λ)
2(τN+1)

∥∥xN − xN−1
∥∥2

+
∑N−1

t=1
ωtθtL(Λ)

2τt
∥xt − xt−1∥2

+ ω1τ1[
∑m

i=1 λiUg∗i
(νi; ν

0
i) + Uf∗(π; p0i)].

(5.32)

Now let us move onto Qx and Qλ. Fix λt. The xt-prox mapping implies a three-point

220

inequality (Lemma 3.5 in [28]):

⟨pti +
∑m

i=1 λ
t
iν

t
i , x

t − x⟩+ u(xt)− u(x) + ηt+α
2

∥∥xt − x̂∥∥2

≤ ηt
2

∥∥xt−1 − x̂
∥∥2 − ηt

2

∥∥xt − xt−1
∥∥2
.

Fix xt. The optimality of λt implies that:

⟨λ− λt, νtxt − g∗(νt)⟩ ≤ 0.

So we have

Qx(z
t; z) +Qλ(z

t; z) + ηt+α
2

∥∥xt − x∥∥2 ≤ ηt
2

∥∥xt−1 − x
∥∥2 − ηt

2

∥∥xt − xt−1
∥∥2
.

Summing across iterations with weight ωt leads to

∑N
t=1 ωt[Qx(z

t; z) +Qλ(z
t; z)] + ωN (ηN+α)

2

∥∥xt − x∥∥2

≤ ω1η1
2

∥∥x0 − x∥∥2 −
N∑
t=1

ωtηt
2

∥∥xt − xt−1
∥∥2
.

(5.33)

Utilizing the stepsize assumption (Equation 5.20), we can add it to (Equation 5.32) to ob-

tain a convergence bound for the Q function

∑N
t=1 ωtQ(z

t; z) + ωN (ηN+α)
2

∥∥xt − x∥∥2

≤ ω1η1
2

∥∥x0 − x∥∥2
+ ω1τ1[

∑m
i=1 λiUg∗i

(νi; ν
0
i) + Uf∗(π; p0i)].

(5.34)

Moreover, the Jensen’s inequality implies that

(
∑N

t=1 ωt)L(x̄N ;λ, ν, π) ≤
∑N

t=1 ωtL(xt;λ, ν, π), (5.35)

221

∑N
t=1 ωtL(x;λt, νt, pti)

≥ (
∑N

t=1 ωt)[⟨x, π̄N⟩ − f ∗(π̄N) + u(x)] +
∑m

i=1(
∑N

t=1 ωtλi)[⟨ν̄ti , x⟩ − g∗i (ν̄Ni)]

≥
∑N

t=1 ωt(L(x; λ̄N , ν̄N , π̄N)).

Thus, we get (
∑N

t=1 ωt)Q(z̄
N ; z) ≤

∑N
t=1 ωtQ(z

t; z), and the desired inequality in

(Equation 5.22) follows from (Equation 5.34). □

Next, the proof of Theorem Theorem 5.1 is a direct application of Proposition 5.1. The

analysis is complicated by the switch from a diminishing stepsize to a constant stepsize in

(Equation 5.23).

Proof of Theorem Theorem 5.1 We apply Proposition 5.1 to obtain the results. First,

we verify that the requirements in (Equation 5.20) and (Equation 5.19) are satisfied by the

stepsize choice in (Equation 5.23). Since θt = τt/(τt−1 + 1) and ηt = L(Λr)/τt+1, all

requirements other than (Equation 5.18) hold automatically. Now let T = ⌈2√κr⌉ + 1

denote the first iteration at which we switch to τt =
√
κr. Since the other iterations and

the case with α = 0 are straightforward to check, we focus on iteration T − 1 and T , and

assume α > 0. For t = T , we have

ωTηT = ωT−1ηT
τT−1+1

τT
= ωT−1

L(Λr)√
κr

⌈2√κr⌉+1

2
√
κr

= ωT−1α
2
√
κr+2

2
≤ ωT−1(α

√
κr + α) ≤ ωT−1(ηT−1 + α).

For t = T − 1, we have

ωT−1ηT−1 = ωT−2ηT−1
τT−2+1

τT−1
= ωT−2

2L(Λr)
2
√
κr

⌈2√κr⌉−1

⌈2√κr⌉−2

≤ ωT−2
2L(Λr)

⌈2√κr⌉−2
= ωT−2ηT−2 ≤ ωT−2(ηT−2 + α).

222

Thus the requirements in Proposition 5.1 are satisfied, and we have

Q(z̄N , z) ≤ L(Λr)
∥∥x0 − x∥∥2

/(
∑N

t=1 ωt) ∀z = (x;λ, ν, π) ∈ X × Λr × [V,Π]. (5.36)

We provide a lower bound to (
∑N

t=1 ωt). It is useful to show

ωt ≥ max{t, (1 + 1/
√
κr)

t−5}.

Since ωt = 1/(
∏N

t=2 θt), the fact ωt ≥ t ∀t ≥ 1 is straightforward. Regarding the second

lower bound, let us first consider t ≤ T = ⌈2√κr⌉ + 1. The algebraic fact in Lemma 5.3

implies that ωt+2 ≥ t ≥ (1 + 1/
√
κr)

t−3∀t ≤ 2
√
κr, so ωt ≥ (1 + 1/

√
κr)

t−5∀t ≤ T =

⌈2√κr⌉+1. For t ≥ T +1, the relation is also valid since 1/θt = (1+ 1/
√
κr). Therefore

we get ωt ≥ max{t, (1 + 1/
√
κr)

t−5}∀t ≥ 1. Using these two lower bounds, it is easy to

derive ∑N
t=1 ωt ≥ max{N(N + 1)/2,

√
κr[(1 + 1/

√
κr)

N−4 − 1]}. (5.37)

Substituting the preceding lower bound into (Equation 5.36) and applying Lemma 5.1 lead

us to the convergence results in (Equation 5.24) and (Equation 5.25).

Now we deduce the convergence bound for ∥xt − x∗∥. Choosing the reference point z

to be ẑ = (x∗;λ∗,∇g(x̄N),∇f(x̄N)) leads to

Q(z̄N ; ẑ) ≤ L(Λr)
∥∥x0 − x∗∥∥2

/(
∑N

t=1 ωt). (5.38)

Moreover, since x∗ minimizes the optimal Lagrangian, we get

223

⟨∇f(x∗) + (λ∗)⊤∇g(x∗) + u′(x∗), x̄N − x∗⟩ ≥ 0 for all u′(x∗) ∈ ∂u(x∗). So we have

Q(z̄N ; ẑ) ≥ f(x̄N) + (λ∗)⊤g(x̄N) + u(x̄N)− [f(x∗) + (λ∗)⊤g(x∗) + u(x∗)]

− ⟨∇f(x∗) + (λ∗)⊤∇g(x∗) + u′(x∗), x̄N − x∗⟩

= f(x̄N)− f(x∗)− ⟨∇f(x∗), x̄N − x∗⟩+
∑m

i=1 λ
∗
i [gi(x̄

N)− gi(x∗)]

−
∑m

i=1 λ
∗
i [⟨∇gi(x∗), x̄N − x∗⟩] + [u(x̄N)− u(x∗)− ⟨u′(x∗), x̄N − x∗⟩]

≥ α
∥∥x̄N − x∗∥∥2

/2,

(5.39)

where the last inequality follows from the fact that the regularization function u(x) is α-

strongly convex. Combining the above two relations, we obtain the desired inequality in

(Equation 5.26):

∥∥x̄N − x∗∥∥2 ≤ 2κr
∥∥x0 − x∥∥2

/(
∑N

t=1 ωt) ≤
2
√
κr∥x0−x∗∥2

(1+1/
√
κr)N−4−1

.

□

Next, we move on to provide proofs to the binary search outer-loop in Algorithm Algo-

rithm 12.

Proof of Theorem Theorem 5.2: First, let’s consider the non-strongly problem. We

show the soundness of the Algorithm Algorithm 12, that is, the output ergodic aver-

age solution from the ACGD method satisfies termination criterion (Equation 5.27) if

the estimate L̃ is larger than the desired aggregate smoothness constant L(Λc). Let

Ñ := N(L̃) = ⌈DX

√
2L̃/ϵ⌉ such that x̄Ñ denotes the output solution. Since DX ≥

∥x0 − x∗∥, ∥[g(x̄Ñ)]+∥ ≤ ϵ/c is a direct consequence of Corollary 5.1. Now consider

the objective criterion. Since L̃ ≥ L(Λc), it follows from (Equation 5.34) that for all

z = (x;λ, ν, π) ∈ X × L(Λc)× [V,Π]

∑N
t=1 ωtQ(z

t; z) ≤ ω1η1 ∥x0 − x∥2 /2 ≤ ω1η1D
2
X/2.

224

Substituting the stepsize choice in (Equation 5.23) then leads to

∑Ñ
t=1 ωtQ(z

t, z)∑Ñ
t=1 ωt

≤ L̃D2
X∑Ñ

t=1 ωt

≤ ϵ,∀z = (x;λ, ν, π) ∈ X × L(Λc)× [V,Π].

In particular, fixing p̂i = ∇f(x̄Ñ) and ν̂ = ∇g(x̄Ñ), we have

F (x̄Ñ) ≤ (
∑Ñ

t=1 ωtL(xt; 0, ν̂, p̂i))(
∑Ñ

t=1 ωt).

Moreover, since

∑Ñ
t=1

ωt∑Ñ
t=1 ωt

L(x;λt, νt, pti) = 1∑Ñ
t=1 ωt

Ñ∑
t=1

ωt[⟨pti, x− xt⟩+ f(xt) + u(xt)]

+
m∑
i=1

[

∑Ñ
t=1 ωtλ

t
i∑Ñ

t=1 ωt

]

∑Ñ
t=1 ωtλ

t
i[⟨νti , x− xt⟩+ gi(x

t)]∑Ñ
t=1 ωtλ

t
i

,

the function is a Lagrangian relaxation to the linearly constrained problem in

(Equation 5.28), so

min
x∈X

ωt∑Ñ
t=1 ωt

L(x;λt, νt, pti) ≤ f Ñ .

Putting these facts together, we get

F (x̄Ñ)− F Ñ ≤ max
z∈X×L(Λc)×[V,Π]

∑Ñ
t=1 ωtQ(z

t, z)∑Ñ
t=1 ωt

≤ ϵ.

Thus x̄Ñ must satisfy the termination criterion in (Equation 5.27) if L̃ ≥ L(Λc), and the

total number of ACGD iterations follows from a straightforward algebraic calculation.

Next, the finite termination of Algorithm Algorithm 12 for the strongly convex case

can be deduced similarly. With the given choice of N(L), we need to show the termination

criterion (Equation 5.27) is satisfied for the ergodic solution x̄Ñ if the estimate L̃ were

larger than L(Λ1). □

225

5.3 Lower Oracle Complexity Bound

In this section, we present the lower oracle complexity bounds, that is, the minimum num-

ber of queries to the FO oracle required to find an (ϵ; ϵ/c)-optimal solution. These results

illustrate the optimality of the ACGD method under a certain optimality regime. We as-

sume, for the sake of simplicity, that u(x) = α ∥x∥2 /2 (see (Equation 5.1)) and that X is

radially invariant, for example, the Rn.

Similar to Nesterov’s lower complexity computation model in [1], we consider the class

of all first-order methods, F , verifying a linear-span update requirement. Given a (finite)

memory of reachable pointsMt−1 after the t − 1th query to FO, the updated memoryMt

after evaluating the FO oracle at some y ∈ span(Mt−1) needs to satisfy

Mt ⊂ {x+ ηt∇f(y) +
∑m

i=1 τi∇gi(y) : x ∈ span(Mt−1), ηt, τi,t ∈ R}. (5.40)

The freedom to choose arbitrary elements from the linear span allows F to cover many

first-order algorithms. For example, the ACGD method is a special case of F because

the generated points in the ACGD method, Mt = {x0, x1, . . . , xt}, satisfy the require-

ment (Equation 5.40). Specifically, when the memory Mt−1 = {x0, x1, . . . , xt−1}, the

evaluation point xt in Line 3 is inside span(Mt−1). Moreover, the xt-update in Line 5 of

Algorithm Algorithm 11 can be expressed as

xt ← argmin
x∈X

{⟨∇f(xt), x⟩+ u(x) + ηt
∥∥x− xt−1

∥∥2
/2

s.t.∇g(xt)(x− xt) + g(xt) ≤ 0}
(a)⇔ xt ← argmin

x∈X
{⟨∇f(xt) +

∑m
i=1 λ

t
i∇gi(xt), x⟩ + α ∥x∥2 /2 + ηt

∥∥x− xt−1
∥∥2
/2 }

⇔ xt ← argmin
x∈X

∥∥∥x− 1
ηt+α

[xt−1 − 1
ηt
(∇f(xt) +

∑m
i=1 λ

t
i∇gi(xt))]

∥∥∥2

(b)⇔ xt = 1
γ(ηt+α)

[xt−1 − 1
ηt
(∇f(xt) +

∑m
i=1 λ

t
i∇gi(xt))] for some γ > 0,

226

where the multiplier λt in (a) is the optimal dual solution to the quadratic program, and (b)

follows from X being radially invariant. Therefore, xt is a member of the right-hand side

of (Equation 5.40),Mt :=Mt−1 ∪ {xt} satisfies the update requirement (Equation 5.40),

and the ACGD method is a member of F . In fact, similar arguments can be used to show

that F covers both the primal methods [101, 1], and the primal-dual methods [98, 99, 100]

in the literature.

Since the dependence on parameters of the smooth objective function is well-

established, e.g. [2, 1], we will investigate the dependence of the lower complexity bounds

on the parameters of the constraint function. Toward that end, we consider an affine f in

the objective, i.e. Lf = 0, and study the dependence of the lower complexity bound on the

norm of the optimal Lagrange multiplier ∥λ∗∥ and the Lipschitz smoothness constant of the

vector-valued constraint function L̄g, i.e., ∥∇g(x)−∇g(y)∥ ≤ L̄g ∥x− y∥ ∀x, y ∈ Rn.

These parameters are used more often in the literature, but we will relate them to the aggre-

gate smoothness constant L(Λr) (Equation 5.17) for the ACGD method in the forthcoming

discussion.

5.3.1 Strongly Convex Case

First, we study the strongly convex problem with α > 0. Since linear convergence is

expected, different optimality criteria have little impact on the lower complexity bound, that

is, they only have different constants inside the “log”. So, without the loss of generality,

we choose to focus on the convergence of ∥xt − x∗∥ in the next theorem.

Theorem 5.3 Let problem parameters L̄g > 0, l ≥ 1, and L̄gl ≥ α > 0 be given. There

exists an infinite dimensional hard problem of the form (Equation 5.1) with ∥λ∗∥ = l, g

being L̄g-Lipschitz smooth, and f being affine, i.e., Lf = 0, such that every first-order

method in F requires at least Ω(
√
L̄gl/α log(1/ϵ)) queries to the FO oracle to find an xN

with
∥∥xN − x∗∥∥2 ≤ ϵ for all ϵ > 0.

227

Proof: Let γ = α/(L̄gl), ∆ = (1 − √γ)/(1 +
√
γ), β = L̄g and x̄ =

[∆,∆2, . . . ,∆i, . . .] ∈ R∞. Consider the following hard problem:

min
x∈R∞

− lβ−α
4
x1 +

α
2
∥x∥2

s.t. g(x) := h(x)− h(x̄) ≤ 0 with h(x) = β−α/l
8

[x21 +
∑m

i=1[∞](xi − xi+1)
2].

(5.41)

Clearly, the objective has a strong convexity modulus of α and the constraint function g(x)

has a smoothness constant of L̄g. It is straightforward to verify that λ∗ = l and x∗ = x̄

satisfies the KKT condition:

g(x∗) = 0 and

λ∗

l
lβ−α
4

2 −1

−1 2 −1

−1 2 −1 . . .

. . .

+ α

1

1

1

...

x∗1

x∗2

x∗3
...

= lβ−α

4

1

0

0

...

.

Starting from M0 = {0}, at iteration t, the solution xt generated by any first-order

method satisfying (Equation 5.40) have non-zeros in only the first t coordinates. Thus we

have

∥∥xt − x∗∥∥2 ≥
∑∞

i=t+1(x
∗
i)

2 = (
1−√

γ

1+
√
γ
)2t

∑m
i=1[∞](

1−√
γ

1+
√
γ
)2i = (

1−√
γ

1+
√
γ
)2t ∥x0 − x∗∥2

≥ (1−√γ)2t
∥∥x0 − x∗∥∥2

,

where the last inequality follows from 1 ≥ γ ≥ 0. Therefore we require at least t =

Ω(
√
L̄gl/α log(1/ϵ)) iterations to find xt with ∥xt − x∗∥2 ≤ ϵ. □

Since, in this section, f is assumed to be affine such that Lf = 0, we haveL(Λ1) ≤ (1+

∥λ∗∥)L̄g = O(∥λ∗∥ L̄g). The preceding theorem then shows the O(
√
L(Λ1)/α log(1/ϵ))

upper complexity bound in Corollary 5.2 to be unimprovable when ∥λ∗∥ ≥ 1, that is, the

ACGD method has a tight oracle complexity.

228

5.3.2 Non-strongly Convex Case

Now we move on to consider the non-strongly convex problem with α = 0. The next

theorem states the lower oracle complexity bound to find an (ϵ; ϵ/c)-optimal solution.

Theorem 5.4 Let problem parameters L̄g > 0, R0 ≥ 1, l > 0, c ≥ 1 and ϵ > 0 be given.

For a large enough problem dimension, n > 2⌈R0

√
L̄gc/ϵ⌉, there exists a hard problem

of form (Equation 5.1) with ∥λ∗∥ = l, ∥x0 − x∗∥ ≤ R0, g being L̄g-Lipschitz smooth,

and f being affine, i.e., Lf = 0, such that every first order method in F requires at least

Ω(
√
L̄gcR0/

√
ϵ) queries to the first order oracle to find an (ϵ; ϵ/c)-optimal solution.

Proof: Consider the following function-constrained problem parameterized by γ > 0,

β > 0, and k ∈ N+:

min
x∈R2k+1

− 2lγβx1

s.t. g1(x) := β[x21 +
∑m

i=1[2k](xi − xi+1)
2 + x22k+1]− (2k+1

2k+2
)γ2β ≤ 0

g2(x) := β[−2x1γ + x21 +
∑m

i=1[2k](xi − xi+1)
2 + x22k+1] + (2k+1

2k+2
)γ2β ≤ 0,

(5.42)

where l is the given parameter in the theorem statement. Without loss of generality, we

take x0 = 0 andM0 = {0}. Let Ki denote the subspace with non-zeros in only the first

ith coordinates, i.e., {x ∈ R2k+1 : xj = 0 ∀j > i}. Given a first-order method satisfying

(Equation 5.40), it is easy to show inductively thatMt ⊂ Kt ∀t ∈ [2k+1]. This is because

Gi = {∇f(x̄),∇g1(x̄),∇g2(x̄) : x̄ ∈ Ki} are non-zero only in the first i + 1 coordinates,

i.e., Gi ⊂ Ki+1. Thus in k iterations, we have the following lower bound on feasibility

violation: ∥∥[g(xk)]+∥∥ ≥ min
x∈Kk

g2(x) ≥ (1
2k+2

)βγ2. (5.43)

Now we calculate the problem parameters associated with (Equation 5.42). It is

straightforward to verify via the KKT condition that the optimal solution and the optimal

229

dual multiplier are respectively:

λ∗ = [l, 0], x∗i = γ[1− i
2k+2

] ∀i ∈ [2k + 1].

So ∥x0 − x∗∥ ≤ γ
√
k + 1, ∥λ∗∥ = l, and the constraint function g have a smoothness

constant of 12β. By selecting k = ⌊1
5

√
L̄gc

ϵ
R0⌋ − 1, β = L̄g/12, γ = R0/

√
k + 1, the

problem satisfies the requirements in the theorem statement. Moreover, (Equation 5.43)

implies that in k = ⌊1
5

√
L̄gc

ϵ
R0⌋ − 1 = Ω(

√
L̄gc

ϵ
R0) iterations, the feasibility violation are

lower bounded by

∥∥[g(xk)]+∥∥ ≥ (1
2k+2

)βγ2 = (1
24
)(12β)[γ2(k + 1)][1

(k+1)2
] ≥ (1

24
)(L̄g)R

2
0

25ϵ
L̄gcR2

0
≥ ϵ

c
.

This shows that Ω(
√

L̄gc

ϵ
R0) iterations are necessary for finding an (ϵ, ϵ/c)-optimal solu-

tion. Since the choice among F is arbitrary, the lower complexity bound is valid for all

first-order methods in F . □

Comparing the above lower bound of Ω{
√

L̄gc

ϵ
∥x∗ − x0∥} to the upper bound of

O{
√

L(Λc)
ϵ
∥x∗ − x0∥} from Corollary 5.2, we see that the dependences of the oracle com-

plexity of the ACGD method on ϵ and ∥x∗ − x0∥ are not improvable. Only the dependence

on the smoothness constant L̄g might be sub-optimal. Specifically, the (big-O) factor of

sub-optimality can be characterized by the following function of c:

H(c) := O(
√

L(Λc)

L̄gc
).

Since, in this section, Lf = 0 such that L(Λc) ≤ L̄g(∥λ∗∥ + c) (see (Equation 5.17)), the

big-O relationship between L(Λr) of the upper complexity bound and the cL̄g of the lower

complexity bound is shown in Figure Figure 5.1.

Clearly H(c) has two distinct regions. When c ∈ [1, ∥λ∗∥], we have 1 ≤ H(c) ≤

230

1 ∥λ∗∥

√
L̄gc

√
L̄g(∥λ∗∥ + c)

√
L(Λc)

c

Figure 5.1: (Big-O) Dependence of Complexities on c in Function Constrained Optimiza-
tion

√
∥λ∗∥ /c, i.e., the oracle complexity of the ACGD method can be sub-optimal up to a

factor of
√
∥λ∗∥ /c. In practice, the factor H(c) can be smaller. In fact, when the con-

straint functions have imbalanced Lipschitz-smoothness constants, H(c) could be 1 so

that the ACGD method is optimal. For instance, consider a slightly modified version of

(Equation 5.42):

min
x∈R2k+1

{−2lγβx1 s.t. g1(x) ≤ 0, lg2(x) ≤ 0},

where the second constraint g2 is multiplied by l. Since the constraint lg2(x) ≤ 0 is not

active, the above modified problem still has the same x∗ and λ∗ = [l, 0] as (Equation 5.42).

Since the smoothness constants L̄g is increased from O(β) to O(lβ), cL̄g = O(lcβ) and

L(Λc) = O[(1 + c)lβ] are now of the same order such that H(c) = 1.

When c ≥ ∥λ∗∥, we have H(c) = 1 such that the ACGD method is always optimal.

Since λ∗ presents the shadow price of the constraints close to x∗, the cost of changing an

(ϵ/c)-feasible solution, i.e. gi(xt) ≤ ϵ̃i, to feasibility is roughly

max
∥ϵ̃∥≤ϵ/c

∑m
i=1 λ

∗ϵ̃i = ∥λ∗∥ ϵ/c.

231

This shows that a scaling constant c ≥ ∥λ∗∥ should be selected to ensure that the (ϵ/c)-

feasibility requirement is comparable to the ϵ-optimality requirement. In this case, the

proposed ACGD method is optimal.

5.4 The ACGD-S method

We extend the ACGD method to the ACGD with sliding (ACGD-S) method to handle the

large-scale problem where both the problem dimension n and the number of constraints m

are large. This section follows the same structure as Section section 5.2. We first discuss

the computation bottleneck in the large-scale setting. Then Subsection subsection 5.4.1

introduces the ACGD-S method and presents the convergence results, Subsection subsec-

tion 5.4.2 proposes a guess-and-check search scheme to look for some elusive problem

parameters important for stepsizes selection, and Subsection subsection 5.4.3 contains the

detailed proofs to the convergence results.

Despite its optimal oracle complexities, the ACGD method may be lacking in compu-

tation efficiency for the large-scale problem. The bottleneck to Algorithm Algorithm 11

lies in Line 5:

xt ← argmin
x∈X

⟨pti, x⟩+ u(x) + ηt
∥∥x− xt−1

∥∥2
/2

s.t. νti (x− xt) + gi(x
t) ≤ 0 ∀i ∈ [m].

(5.44)

It amounts to a large-scale quadratic program (QP) if X is linearly constrained, say a box,

and a large-scale quadratic constrained quadratic program (QCQP) ifX is a Euclidean ball.

In this section, we address the bottleneck by replacing the large-scale QP with a se-

quence of basic matrix-vector operations, each requiring at most O(mn) FLOPs. The

proposed ACGD-S method requires only a similar number of matrix-vector operations as

solving a single linear constrained problem, i.e., g(x) is affine, and maintains the same op-

timal oracle complexity as the ACGD method. Towards that end, we need to assume the

232

projection onto X is easy, i.e., the following operation can be computed in O(n) FLOPs

for any π, x̄ ∈ Rn and ηt ≥ 0.

xt ← argminx∈X⟨π, x⟩+ u(x) + ηt ∥x− x̄∥2 /2. (5.45)

For instance, if u(x) = α ∥x∥2 /2, the computation simplifies to component-wise thresh-

olding ifX is a box,and to vector scaling ifX is a Euclidean ball. IfX is more challenging,

we can model the complicated part using the function constraints.

Algorithm 13 The ACGD-S Method

Input: x−1 = x0 = y
(1)
0 = x0 ∈ X , stepsizes {θt}, {ηt}, {τt}, and weights {ωt}.

1: Set p0i = ∇f(x0), ν0 = ∇g(x0), λ
(1)
−1 = λ

(1)
0 = 0.

2: for t = 1, 2, 3...N do
3: Set xt ← (τtx

t−1 + x̃t)/(1 + τt) where x̃t = xt−1 + θt(x
t−1 − xt−2).

4: Set pti ← ∇f(xt) and νt ← ∇g(xt).
5: Calculate inner loop iteration limit {St} stepsizes {β(t)

s } and {γ(t)s }, and weights
{δ(t)s }.

6: for s = 1, 2, ..., St do

7: Set h̃(t),s =

{
(νt)⊤λ

(t)
0 + ρ

(t)
1 (νt−1)⊤(λ

(t)
0 − λ

(t)
−1) if s = 1

(νt)⊤λ
(t)
s−1 + ρ

(t)
s (νt)⊤(λ

(t)
s−1 − λ

(t)
s−2) o.w.

8: Set y
(t)
s ← argminy∈X⟨h̃(t),s + pti, y⟩ + u(y) + ηt ∥y − xt−1∥2 /2 +

β
(t)
s

∥∥∥y − y(t)s−1

∥∥∥2

/2.

9: Set λ(t)s ← argmaxλ∈Rm
+
⟨λ, νt(y(t)s − xt) + g(xt)⟩+ γ

(t)
s

∥∥∥λ− λ(t)s−1

∥∥∥2

/2.

10: end for
11: Set λ(t+1)

0 = λ
(t)
St

, λ(t+1)
−1 = λ

(t)
St−1, y(t+1)

0 = y
(t)
St

12: Set xt =
∑St

s=1 δ
(t)
s y

(t)
s /(

∑St

s=1 δ
(t)
s) and λ̃t =

∑St

s=1 δ
(t)
s λ

(t)
s /(

∑St

s=1 δ
(t)
s).

13: end for
14: return x̄N :=

∑N
t=1 ωtx

t/(
∑N

t=1 ωt).

5.4.1 The ACGD-S Method and its Convergence Results

The ACGD-S method, listed in Algorithm Algorithm 13, consisted of two loops. For clar-

ity, we will call an outer iteration a phase, and an inner iteration an iteration for the rest of

rest section. In phase t, the outer loop updates happen in Lines 3, 4, and 12; they are iden-

233

tical to the ACGD method except that the exact solution xt to the QP in (Equation 5.44)

is replaced by some average of inner iterates. The others steps, Lines 5-11, constitute the

sliding subroutine. Its goal is to solve the Lagrangian reformulation to (Equation 5.44), or

the (xt, λt) saddle point problem in (Equation 5.16), inexactly:

(xt, λt)← argmin
y∈X

argmax
λ∈Rm

+

⟨pti, y⟩+ ⟨λ, νty − xt⟩+ u(y) + ηt
∥∥y − xt−1

∥∥2
/2. (5.46)

To avoid confusion, we use the dummy variable y to emphasize it being used only in the

inner loop. Specifically, Line 5 calculates the stepsize parameters and iteration number St.

Lines 7-9 carry out primal-dual type updates for St iterations. Line 7 computes a momen-

tum extrapolation term h̃(t),s as a proxy for (νt)⊤ λ(t)s . In Line 8, with the variable (νt)⊤λ

being fixed to h̃(t),s, y
(t)
s is generated by minimizing the variable y in (Equation 5.46)

subject to a prox-function β
(t)
s

∥∥∥y − y(t)s−1

∥∥∥2

. Then in Line 9, with the variable y fixed

to y(t)s , λ(t)s is generated by maximizing (Equation 5.46) with subject to a prox-function

γ
(t)
s

∥∥∥λ− λ(t)s−1

∥∥∥2

. After that, Line 11 prepares the initialization points for the inner loop in

the next phase.

We highlight three features that are essential for achieving the desired computation

efficiency. First, rather than being pre-specified, the inner loop step-size parameters and

iteration limit St are calculated in an online fashion in Line 5. This allows the method to

adjust dynamically to the varying difficulty of the saddle point problems (Equation 5.46)

from different phases. Second, the last operator νt−1, rather than νt, is used for calculating

the momentum extrapolation term at the first iteration s = 1 in Line 7. This is characteristic

of the sequential dual type algorithms [59, 83, 55] for solving the trilinear saddle point

problem in (Equation 5.11). Third, two primal iterates, xt and y(t)St
, are stored after each

inner loop to kick-start the next one. This is common to sliding-type algorithms [87, 88,

59].

Now we suggest certain stepsize choices to obtain concrete convergence rates for Al-

234

gorithm Algorithm 13. The non-strongly convex case and the strongly convex case are

presented in separate theorems.

Theorem 5.5 Consider a non-strongly problem of form (Equation 5.1) with α = 0. Let

the aggregate smoothness constant L(Λc) and the reference multiplier set Λc be defined

in (Equation 5.17) and (Equation 5.13) respectively. Suppose Algorithm Algorithm 13 is

performed with the following stepsizes. The outer-loop stepsizes are

τt =
t−1
2
, ηt =

L(Λc)
τt+1

, ωt = t, θt+1 = ωt+1/ωt ∀t ≥ 1. (5.47)

With Mt = ∥νt∥, d(Λr) = ∥λ∗∥ + r, and some ∆ > 0, the inner loop parameters in the

phase t are calculated according to

St = ⌈Mt∆t⌉, M̃t =
St

∆t
, ρ(t)s =

M̃t/M̃t−1 if s = 1

1 if s ≥ 2,

β(t)
s = M̃td(Λc)

∥x0−x∗∥ , γ
(t)
s =

M̃2
t

β
(t)
s

, δ(t)s = 1 ∀s ≥ 1,

(5.48)

Then Mt ≤ M̄ ∀t, where M̄ is an upper bound of ∥∇g(x)∥ for all x in some bounded

neighbourhood around x∗. Moreover, the ergodic average solution x̄N satisfies

max{F (x̄N)− F∗, c
∥∥[g(x̄N)]+∥∥} ≤ 1

N(N+1)
(
2d(Λc)∥x0−x∗∥

∆
+ L(Λc)

∥∥x0 − x∗∥∥2
). (5.49)

Corollary 5.3 Under the setting of Theorem Theorem 5.5, if ∆ = d(Λc)
∥x0−x∗∥L(Λc)

, the total

numbers of operations required by the ACGD-S method to find an (ϵ; ϵ/c)-optimal solution

are bounded by:

• Nϵ = ⌈
√

3L(Λc)
ϵ
∥x0 − x∗∥⌉ FO-oracle evaluations.

• Cϵ = O{(
√

L(Λc)
ϵ
∥x0 − x∗∥ +

d(Λc)M̄∥x0−x∗∥
ϵ

)} matrix-vector multiplications.

235

Three remarks are in order regarding the above results. First, the oracle complexity of

the ACGD-S method matches that of the ACGD method, while its computation complex-

ity, measured by the number of matrix-vector multiplications, matches the lower bound

for solving a single linearly constrained problem [86]. Second, the stepsize choices in

(Equation 5.47) and (Equation 5.48) only require an upper bound to L(Λc). The misspeci-

fication of ∥x0 − x∗∥, d(Λc) or ∆ would still lead to anO(1/
√
ϵ) oracle complexity and an

O(1/ϵ) computation complexity. Third, the iteration limit function St in (Equation 5.47)

adapts to the varying difficulty of the saddle point sub-problem (Equation 5.46) from dif-

ferent phases. Specifically, St scales in proportion both to ∥νt∥, which characterizes the

hardness of the saddle point sub-problem in (Equation 5.46), and to t, which captures the

degree of accuracy required by the outer loop.

Theorem 5.6 Consider a strongly convex problem of form (Equation 5.1) with α > 0. Let

the aggregate smoothness constant L(Λr) and the reference multiplier set Λr be defined in

(Equation 5.17) and (Equation 5.13) respectively, and let κr := L(Λr)/α be the condition

number. Suppose Algorithm Algorithm 13 is performed with the following stepsizes. The

outer-loop stepsizes are

τt = min{ t−1
2
,
√
2κr}, ηt = L(Λc)

τt+1
, and θt = τt

τt−1+1
∀t ≥ 1. ωt =

ωt−1/θt if t ≥ 2,

1 if t = 1.

(5.50)

For the inner loops, let Mt = ∥νt∥, and let a parameter ∆ > 0 be given. At the beginning,

the iteration limit is set to S1 = min{S ∈ N+ :
∑S

j=1 s ≥ ω1M
2
1∆}, and the step-sizes for

all s ∈ [S1] are set to

δ(1)s = s
Γ1
, β(1)

s = α
4
(s− 1), γ(1)s = 4

α

M2
1Γ1

δ
(1)
s

, and W2 =
δ
(1)
S1

M1
, (5.51)

where Γ1 is the non-negative root to
∑St

s=1[S1]s = Γ2
1(ω1M

2
1∆). Then for phase t ≥ 2, the

236

iteration limit St and the parameter Γt ≥ 0 are specified to satisfy

St =min{S ∈ N+ :
∑St

s=1[St]WtMt + (s− 1) ≥ ωtM
2
t ∆},∑St

s=1 Γt(WtMt) + (s− 1) = Γ2
tωtM

2
t ∆,

(5.52)

and the stepsizes are chosen according to

δ(t)s = WtMt +
1
Γt
(s− 1), γ(t)s = 4

α

M2
t Γt

δ
(t)
s

, β(t)
s =

α
4
(WtΓtMt) if s = 1,

α
4
[WtΓtMt + (s− 2)] otherwise,

and Wt+1 =
δ
(t)
St

Mt
.

(5.53)

Then we haveMt ≤ M̄ ∀t, where M̄ is an upper bound for ∥∇g(x)∥ for x in some bounded

neighbourhood around x∗, and the ergodic average solution x̄N satisfies

max{F (x̄N)− F∗, r
∥∥[g(x̄N)]+∥∥} ≤ 1

WN
(2
α∆

[d(Λr)]
2 + L(Λr)

∥∥x0 − x∗∥∥2
),∥∥x̄N − x∗∥∥2 ≤ 2

αWN
(2
α∆

[d(Λr)]
2 + L(Λr)

∥∥x0 − x∗∥∥2
),

(5.54)

where d(Λr) = ∥λ∗∥+r and the denominator satisfiesWN ≥ max{N(N+1)/2,
√
2κr[(1+

1/
√
2κr)

N−4 − 1]}.

Corollary 5.4 Under the setting of Theorem Theorem 5.6, if ∆ = [d(Λr)]2

L(Λr)∥x0−x∗∥2α , the num-

bers of FO-oracle evaluations Nϵ and of matrix-vector multiplications Cϵ required by the

ACGD-S method to find an (ϵ; ϵ/c)-optimal solution are bounded by:

• Nϵ ≤ min{
√

6L(Λr)max{c/r,1}
ϵ

∥x0 − x∗∥2 , [
√

2L(Λr)
α

+

1] log(
3max{c/r,1}

√
L(Λr)α∥x0−x∗∥2
ϵ

+ 1) + 4}+ 1}.

• Cϵ = O{
√

max{c/r,1}[d(Λr)]2M̄2

αϵ
+Nϵ}.

237

Corollary 5.5 Under the setting of Theorem Theorem 5.6, if the goal is to find an ϵ-close

solution, i.e.,
∥∥x̄N − x∗∥∥2 ≤ ϵ, we can choose c = r = 1 and ∆ = [d(Λ1)]2

L(Λ1)∥x0−x∗∥2α such

that the numbers of required operations can be bounded by

• Nϵ = O{
√

2L(Λ1)
α

log(
√
κ1∥x0−x∗∥2

ϵ
)}

• Cϵ = O{d(Λ1)M̄
α
√
ϵ

+
√

2L(Λ1)
α

log(
√
κ1∥x0−x∗∥2

ϵ
)}.

Again, we make a few remarks regarding the results. First, to find an ϵ-close solution,

Corollary (5.5) implies that the ACGD-S method has the same oracle complexity as the

ACGD method, and has the same computation complexity as that of the lower computa-

tion complexity bound for solving a single strongly-convex linearly constrained problem

[86]. Second, the iteration limit function St is again adaptive to the varying difficulty of the

saddle-point subproblem (Equation 5.46) from different phases. Third, the rather compli-

cated inner-loop stepsize choice in (Equation 5.51) and (Equation 5.53) is the first among

sliding algorithms, e.g. [87, 8, 88, 59], to achieve both the optimal inner loop complexity

of O(1/
√
ϵ) and the optimal outer loop complexity of O(

√
κ log(1/ϵ)) without restarting.

It is unclear if the same effect is achievable with simpler stepsize choices. Notwithstanding

that, the stepsize is easy to implement in practice because only conservative estimates of α

and L(Λr) are required to obtain theO(√κr log(1/ϵ)) oracle complexity and theO(1/
√
ϵ)

computation complexity.

5.4.2 The Binary Search for L(Λr) and d(Λr)

To enhance its implementability, we propose a binary search scheme to find (upper) approx-

imations to these hard-to-estimate problem parameters required by the ACGD-S method.

Since both quantities are proportional to Λr, it is convenient to look for a common upper

bound:

H̃ ≥ max{L(Λr), d(Λr)}.

238

The search scheme has the same logic as Algorithm Algorithm 12: starting with a guess H̃ ,

we first run the ACGD-S method for N(H̃) phases, with the stepsizes specified according

to H̃ , to generate an ergodic solution x̄N(H̃), then we check it against a certain termination

criterion and update our guess H̃ accordingly. The following assumption is required for

constructing an easy-to-verify termination criterion.

Assumption 6 The feasible region X is bounded and we know an estimate DX of its ra-

dius, i.e., DX ≥ maxx,y∈X ∥x− y∥ .

Compared to Assumption 5, we no longer require access to the dual solution λt (Line 5

of Algorithm Algorithm 11). This is because the sliding subroutine (Line 12 of Algorithm

Algorithm 13) provides a feasible dual iterate λ̃t as a by-product. So the new termination

criterion, termed (Equation 5.27)-(Equation 5.55), requires only the following modification

to (Equation 5.27):

Change λti in (Equation 5.28) to λ̃ti. (5.55)

Since λ̃t from Line 12 of Algorithm Algorithm 13 is dual feasible, the minimum value

FN to the modified linear program in (Equation 5.28) (with λ̃t in place of λt) still

bounds F∗ from below. The satisfaction of new termination criterion (Equation 5.27)-

(Equation 5.55) then implies that x̄N(H̃) is (ϵ; ϵ/c)-optimal. Accordingly, we modify Algo-

rithm Algorithm 12 by switching to the ACGD-S method and to the termination criterion

(Equation 5.27)-(Equation 5.55) to arrive at Algorithm Algorithm 14.

239

Algorithm 14 Binary Search Outer Loop to ACGD-S.

Input: x̄ ∈ X , H̃ > 0 , and a phase-limit function N(H).

1: while true do

2: With DX , H̃ , and H̃ in place of ∥x0 − x∗∥, L(Λr), and d(Λr), set step-

sizes to (Equation 5.48) and (Equation 5.47) if α = 0, and to (Equation 5.50),

(Equation 5.51) and (Equation 5.53) if α > 0.

3: Run the ACGD-S method for N(H̃) phases starting from x̄.

4: Set x̄← x̄N(H̃), where x̄N(H̃) is the ergodic average solution.

5: if x̄ satisfies the condition (Equation 5.27)-(Equation 5.55) then

6: break

7: else

8: Set H̃ ← 2H̃ .

9: end if

10: end while

11: return x̄.
Clearly, the above algorithm terminates with an (ϵ, ϵ/c)-optimal solution. We only need

to specify the phase-limit function N(H̃) to make it implementable. The next theorem pro-

vides some choices of N(H̃) and the corresponding complexities. Its derivation is similar

to Theorem Theorem 5.2

Theorem 5.7 Consider a problem of form (Equation 5.1). Let Assumption 6 hold

and M̄ := maxx∈X ∥∇g(x)∥. Suppose the reference set Λr is defined according to

(Equation 5.13). Let L(Λr) denote the aggregate smoothness constant (Equation 5.17)

and d(Λr) = ∥λ∗∥ + r. If H̃ is initialized to some H̃0, Algorithm Algorithm 14 then

terminates finitely with an (ϵ; ϵ/c)-optimal solution under the following choices of phase

limit function N(H̃).

a) In the non-strongly convex case with α = 0, if N(H̃) = ⌈
√

3H̃
ϵ
DX⌉, the total num-

bers of oracle evaluations (phases) and matrix-vector multiplications required for

240

termination are bounded respectively by

O(
√

max{L(Λc),d(Λc),H̃0}
ϵ

DX), and O(max{L(Λc),d(Λc),H̃0}DXM̄
ϵ

).

b) In the strongly convex case with α > 0, if N(H̃) = ⌈(
√

2H̃
α

+

1) log(
3max{c/r,1}

√
H̃αD2

X

ϵ
+1)⌉+4, the total numbers of oracle evaluations (phases)

and matrix-vector multiplications required for termination are bounded respectively

by

O(
√

max{H̃0,L(Λ1),d(Λ1)}
α

log cmax{H̃0,L(Λ1),d(Λ1)}
ϵ

), and O(
√
cmax{H̃0,L(Λ1),d(Λ1)}M̄DX√

αϵ
).

We remark that both the oracle complexity and the computation complexity across the

multiple ACGD-S runs in Algorithm Algorithm 14 have the optimal order for all α ≥ 0. If

the Lipschitz smoothness constants Lf and Lg for f and g are known, we can search instead

for d(Λr) = ∥λ∗∥ + r and utilize Lf + d(Λr)Lg as an upper bound to L(Λr). The resulting

search scheme would have the same complexities, with matching constant dependences, as

those of Corollary 5.3 and 5.4.

5.4.3 The Convergence Analysis

We first prove a generic result for the Q-function (Equation 5.14) useful for both the non-

strongly convex and the strongly convex cases.

Proposition 5.2 Consider an α-strongly convex problem of form (Equation 5.1). Let a set

of reference multipliers Λ ∈ Rm
+ be given and let the aggregate smoothness constant L(Λ)

be defined in (Equation 5.17). Let iterates zt := {xt; λ̃t, νt, pti} be generated by Algorithm

Algorithm 13. Suppose the following stepsize requirements are met. For all t ≥ 1, the

241

outer-loop stepsize requirements are

ωtηt ≤ ωt−1(ηt−1 + α/2),

ωtτt ≤ ωt−1(τt−1 + 1),

ηt−1τt ≥ θtL(Λ) with θt := ωt−1/ωt,

ηN(τN + 1) ≥ L(Λ).

(5.56)

For all t ≥ 1, s ≥ 1, the intra-phase stepsize requirements are

δ(t)s (β(t)
s + α/2) ≥ δ

(t)
s+1β

(t)
s+1,

δ(t)s γ(t)s ≥ δ
(t)
s+1γ

(t)
s+1,

γ(t)s β
(t)
s+1 ≥ ρ

(t)
s+1

∥∥νt∥∥2
, ρ

(t)
s+1 = δ(t)s /δ

(t)
s+1,

γ
(N)
SN

(β
(N)
SN

+ α/2) ≥
∥∥νN∥∥2

.

(5.57)

For all t ≥ 1, the inter-phase requirements are

w̃
(t)
St
(β

(t)
St

+ α/2) ≥ w̃
(t+1)
1 β

(t+1)
1 ,

w̃
(t)
St
γ
(t)
St
≥ w̃

(t+1)
1 γ

(t+1)
1 ,

γ
(t)
St
β
(t+1)
1 ≥ ρ

(t+1)
1

∥∥νt−1
∥∥2
, ρ

(t+1)
1 = w̃

(t)
St
/w̃

(t+1)
1 ,

(5.58)

where w̃(t)
s := ωtδ

(t)
s /(

∑St

s=1 δ
(t)
s) denotes the aggregate weights. Then for any reference

point z = (x;λ, ν, π) ∈ X × Λ × [V,Π] with [V,Π] being defined in (Equation 5.10), we

have

∑N
t=1 ωtQ(z

t; z)+ωN

2
(ηN + α

2
)
∥∥xN − x∥∥2 ≤ w̃

(1)
1 β

(1)
1 +ω1η1
2

∥∥x0 − x∥∥2

+
w̃

(1)
1 γ

(1)
1

2

∥∥∥λ(1)0 − λ
∥∥∥2

+ ω1τ1[Uf∗(π; p0i) + λ⊤Ug∗(ν; ν
0)].

(5.59)

Proof: We first establish a convergence bound the inner loop within a phase. Fix t ≥ 1.

Consider the convergence of y(t)s . Since u(y) + ηt ∥y − xt−1∥2 /2 has a strong convexity

242

modulus of α + ηt, the y-prox mapping in Line 8 of Algorithm Algorithm 13 leads to a

three point inequality (see Lemma 3.1 of [28]):

⟨y(t)s − x, h̃(t),s⟩+ u(y(t)s)− u(x) + ηt
2
(
∥∥y(t)s − xt−1

∥∥2 −
∥∥x− xt−1

∥∥2
)

1
2
[(β(t)

s + α + ηt)
∥∥x− y(t)s

∥∥2
+ β(t)

s

∥∥∥y(t)s − y
(t)
s−1

∥∥∥2

− β(t)
s

∥∥∥y(t)s−1 − x
∥∥∥2

] ≤ 0.

Equivalently, we have

⟨y(t)s − x, h̃(t),s⟩+ 1
2
[(β(t)

s + α/2)
∥∥x− y(t)s

∥∥2
+ β(t)

s

∥∥∥y(t)s − y
(t)
s−1

∥∥∥2

− β(t)
s

∥∥∥y(t)s−1 − x
∥∥∥2

]

+ u(y(t)s)− u(x) +
ηt

∥∥∥y(t)s −xt−1
∥∥∥2+(ηt+α/2)

∥∥∥y(t)s −x
∥∥∥2−ηt∥x−xt−1∥2

2
≤ 0. (5.60)

In particular, the definition of h̃(t),s in Line 7 of Algorithm Algorithm 13 implies

⟨y(t)s − x, h̃(t),s⟩ =⟨y(t)s − x,
∑m

i=1 λ
(t)
s,iν

t
i ⟩ − ⟨y(t)s − x,

∑m
i=1(λ

(t)
s,i − λ

(t)
s−1,i)ν

t
i ⟩

+ ρ(t)s ⟨y(t)s − y
(t)
s−1,

∑m
i=1(λ

(t)
s−1,i − λ

(t)
s−2,i)ν

t
i ⟩

+ ρ(t)s ⟨y
(t)
s−1 − x,

∑m
i=1(λ

(t)
s−1,i − λ

(t)
s−2,i)ν

t
i ⟩, ∀s ≥ 2,

and

⟨y(t)1 − x, h̃(t),1⟩ =⟨y
(t)
1 − x,

∑m
i=1 λ

(t)
1,iν

t
i ⟩ − ⟨y

(t)
1 − x,

∑m
i=1(λ

(t)
1,i − λ

(t)
0,i)ν

t
i ⟩

+ ρ
(t)
1 ⟨y

(t)
1 − y

(t)
0 ,

∑m
i=1(λ

(t)
0,i − λ

(t)
−1,i)ν

t−1
i ⟩

+ ρ
(t)
1 ⟨y

(t)
0 − x,

∑m
i=1(λ

(t)
0,i − λ

(t)
−1,i)ν

t−1
i ⟩.

So, substituting them into (Equation 5.60), summing up the resulting inequality with weight

δ
(t)
s , noting the stepsizes conditions in (Equation 5.57), and utilizing Young’s inequality, we

243

get

St∑
s=1

δ(t)s

(
L(y(t)s ;λ(t)s , ν

t, pti)− L(x;λ(t)s , ν
t, pti)

)
+

St∑
s=1

δ(t)s
1
2
[ηt

∥∥y(t)s − xt−1
∥∥2

+ (ηt +
α
2
)
∥∥y(t)s − x

∥∥2 − ηt
∥∥x− xt−1

∥∥2
]

+ δ
(t)
1 ρ

(t)
1 ⟨y

(t)
0 − x,

∑m
i=1(λ

(t)
0,i − λ

(t)
−1,i)ν

t−1
i ⟩ − δ

(t)
St
⟨y(t)St
− x,

∑m
i=1(λ

(t)
St,i
− λ(t)St−1,i)ν

t
i ⟩

≤
∑St

s=2

δ
(t)
s−1γ

(t)
s−1

2

∥∥∥λ(t)s−1 − λ
(t)
s−2

∥∥∥2

+
δ
(t)
1 ρ

(t)
1 ∥νt−1∥2
2β

(t)
1

∥∥∥λ(t)0 − λ
(t)
−1

∥∥∥2

− 1
2
[δ

(t)
St
(β

(t)
St

+ α/2)
∥∥∥y(t)St

− x
∥∥∥2

− δ(t)1 β
(t)
1

∥∥∥y(t)0 − x
∥∥∥2

].

(5.61)

Next, consider the convergence of λ(t)s . The λ-proximal mapping in Line 9 of Algorithm

Algorithm 13 implies

L(y(t)s ;λ, νt, πt)− L(y(t)s ;λ(t)s , ν
t, πt) +

γ
(t)
s [

∥∥∥λ−λ
(t)
s

∥∥∥2+∥∥∥λ(t)
s −λ

(t)
s−1

∥∥∥2−∥∥∥λ−λ
(t)
s−1

∥∥∥2]
2

≤ 0.

Due to the stepsize conditions in (Equation 5.57), the δ(t)s weighted sum satisfies

∑St

s=1 δ
(t)
s [L(y(t)s ;λ, νt, πt)− L(y(t)s ;λ

(t)
s , νt, πt)] +

γ
(t)
St

δ
(t)
St

2

∥∥∥λ− λ(t)St

∥∥∥2

+
∑St

s=1
δ
(t)
s γ

(t)
s

2

∥∥∥λ(t)s − λ(t)s−1

∥∥∥2

≤ δ
(t)
1 γ

(t)
1

∥∥∥λ− λ(t)0

∥∥∥2

.

244

Then, combining it with the y convergence bound in (Equation 5.61), we get

St∑
s=1

δ(t)s

(
L(y(t)s ;λ, νt, πt)− L(x;λ(t)s , ν

t, πt)+
)

+
St∑
s=1

δ(t)s
1
2
[ηt

∥∥y(t)s − xt−1
∥∥2

+ (ηt +
α
2
)
∥∥y(t)s − x

∥∥2 − ηt
∥∥x− xt−1

∥∥2
]

+ δ
(t)
1 ρ

(t)
1 ⟨y

(t)
0 − x,

∑m
i=1 ν

t−1
i (λ0i − λ

(t)
−1,i)⟩ − δ

(t)
St
⟨y(t)St
− x,

∑m
i=1 ν

t
i (λ

(t)
St,i
− λ(t)St−1,i)⟩

≤ δ
(t)
1 γ

(t)
1

2

∥∥∥λ− λ(t)0

∥∥∥2

− δ
(t)
St

γ
(t)
St

2
[
∥∥∥λ− λ(t)St

∥∥∥2

+
∥∥∥λ(t)St

− λ(t)St−1

∥∥∥2

]

+
δ
(t)
1 ρ

(t)
1 ∥νt−1∥2
2β

(t)
1

∥∥∥λ0 − λ(t)−1

∥∥∥2

− 1
2
[δ

(t)
St
(β

(t)
St

+ α/2)
∥∥∥y(t)St

− x
∥∥∥2

− δ(t)1 β
(t)
1

∥∥∥y(t)0 − x
∥∥∥2

].

Moreover, since L(y(t)s ;λ, νt, πt),
∥∥∥y(t)s − xt−1

∥∥∥2

and
∥∥∥y(t)s − x

∥∥∥2

are convex with respect

to y(t)s and L(x;λ(t)s , νt, πt) is linear with respect to λ(t)s , multiplying both sides by

ωt/(
∑St

s=1 δ
(t)
s) and applying the Jensen’s inequality leads to

ωt

(
L(xt;λ, νt, πt)− L(x; λ̃t, νt, πt) +

ηt∥xt−xt−1∥2+(ηt+α/2)∥xt−x∥2−ηt∥xt−1−x∥2
2

)
+ w̃

(t)
1 ρ

(t)
1 ⟨y

(t)
0 − x,

∑m
i=1 ν

t−1
i (λ0i − λ

(t)
−1,i)⟩ − w̃

(t)
St
⟨y(t)St
− x,

∑m
i=1 ν

t
i (λ

(t)
St,i
− λ(t)St−1,i)⟩

≤ w̃
(t)
1 γ

(t)
1

2

∥∥∥λ− λ(t)0

∥∥∥2

− w̃
(t)
St

γ
(t)
St

2
[
∥∥∥λ− λ(t)St

∥∥∥2

+
∥∥∥λ(t)St

− λ(t)St−1

∥∥∥2

]

+
w̃

(t)
s ρ

(t)
1 ∥νt−1∥2
2β

(t)
1

∥∥∥λ0 − λ(t)−1

∥∥∥2

− 1
2
[w̃

(t)
St
(β

(t)
St

+ α/2)
∥∥∥y(t)St

− x
∥∥∥2

− w̃(t)
1 β

(t)
1

∥∥∥y(t)0 − x
∥∥∥2

],

where w̃(t)
s = ωtδ

(t)
s /(

∑St

s=1 δ
(t)
s) represents the aggregate weight for the inner iterates.

Next, we consider the inner loops from different phases. The inter-phase stepsize con-

dition in (Equation 5.58) implies the sum of preceding inequality across t satisfies

N∑
t=1

ωt[Qx(z
t; z) +Qλ(z

t; z)] +
N∑
t=1

ωt

2
ηt
∥∥xt − xt−1

∥∥2
+ ωN(ηN + α/2)

∥∥xN − x∥∥2

≤ w̃
(1)
1

2
(γ

(1)
1

∥∥∥λ(0)1 − λ
∥∥∥2

+ β
(1)
1

∥∥∥y(1)0 − x
∥∥∥2

) + ω1η1
2

∥∥x0 − x∥∥2
.

(5.62)

Notice (Equation 5.62) is almost identical to the Qx and Qλ inequality in (Equation 5.33).

245

Thus a similar argument to Proposition 5.1 and the outer-loop stepsize requirements in

(Equation 5.56) leads to the desired convergence result in Equation 5.59. □

Now we leverage the preceding proposition to prove the convergence of the ACGD-S

method under the non-strongly convex setting.

Proof to Theorem Theorem 5.5 and Corollary 5.3: It is straightforward to verify

that the outer loop stepsize in (Equation 5.47) satisfies the condition (Equation 5.56), and

the adaptive inner loop stepsize in (Equation 5.48) satisfies both the intra-phase condi-

tion (Equation 5.57) and the inter-phase condition (Equation 5.58). So it follows from

(Equation 5.59) that

∑N
t=1 ωtQ(z

t; z) + ωNηN
2

∥∥xN − x∥∥2 ≤ w̃
(1)
1 β

(1)
1 +ω1η1
2

∥∥x0 − x∥∥2
+

w̃
(1)
1 γ

(1)
1

2

∥∥∥λ(1)0 − λ
∥∥∥2

.

(5.63)

Now consider setting the reference point to z∗ = (x∗;λ∗, ν∗ = ∇g(x∗), π∗ = ∇f(x∗))

such that Q(zt, z∗) ≥ 0 ∀t. The preceding inequality implies that

∥∥xN − x∗∥∥2 ≤ 1
L(Λc)

[(w̃
(1)
1 β

(1)
1 + ω1η1)

∥∥x0 − x∥∥2
+ w̃

(1)
1 γ

(1)
1

∥∥∥λ(1)0 − λ
∥∥∥2

] ∀N ≥ 1.

So xt, being the convex combination of {xt}s, remains in a bounded ball around x∗, and

νt = ∇g(xt) is bounded for all t ≥ 1.

Next, setting the ergodic average solution as z̄N :=

(x̄N ;
∑N

t=1 ωtλ̃
t/(

∑N
t=1 ωt), ν̄

N , π̄N) with

π̄N :=
∑N

t=1 ωtp
t
i/(

∑N
t=1 ωt), ν̄

N
i :=

∑N

t=1 ωtλ
t
iν

t
i/(

∑N
t=1 ωtλ

t
i) o.w.

∇gi(x0) if λti = 0 ∀t,
(5.64)

a similar application of the Jensen’s inequality as (Equation 5.35) and the stepsize choice

246

in (Equation 5.47) and (Equation 5.48) lead to, for all λ ∈ Λc, (ν, π) ∈ [V,Π]

Q(z̄N ; (x∗;λ, ν, π)) ≤ 1
N(N+1)

(
2d(Λc)∥x0−x∗∥

∆
+ L(Λc)

∥∥x0 − x∗∥∥2
). (5.65)

The convergence in both the optimality gap and the feasibility violation in (Equation 5.49)

then follows from Lemma 5.1.

Consider now the given choice of ∆ in Corollary 5.3. It follows from (Equation 5.49)

that at most Nϵ = ⌈
√

3L(Λc)
ϵ
∥x0 − x∗∥⌉ phases are required to find an (ϵ; ϵ/c)-optimal so-

lution. Since each phase requires one gradient evaluation for f and g, the oracle complexity

of the ACGD-S method is Nϵ. Moreover, since each inner iteration requires less than three

matrix-vector multiplication, the total number of matrix-vector multiplication across Nϵ

phases can bounded as

Cϵ = 3
∑Nϵ

t=1 St ≤ Nϵ +N2
ϵ M̄∆ = O{

√
L(Λc)

ϵ
∥x0 − x∗∥ +

d(Λc)M̄∥x0−x∗∥
ϵ

}.

□

The next proof considers the strongly convex case.

Proof to Theorem Theorem 5.6, Corollary 5.4 and Corollary 5.5: It is straightforward to

check that the outer-loop stepsize in (Equation 5.50) satisfies the condition (Equation 5.56),

and the adaptive inner-loop stepsize in (Equation 5.51) and (Equation 5.53) satisfy the

intra-phase condition (Equation 5.57). Now we verify the inter-phase condition in

(Equation 5.58). Consider a fixed t ≥ 2, we have

w̃
(t)
1 =

ωtδ
(t)
1∑St

s=1 δ
(t)
s

=
ωtδ

(t)
1

ωtM2
t Γt∆

=
δ
(t)
1

M2
t Γt∆

= Wt

MtΓt∆
,

w̃
(t−1)
St−1

=
ωt−1δ

(t−1)
St−1∑St

s=1[St−1]δ
(t−1)
s

=
ωt−1δ

(t−1)
St−1

ωt−1M2
t−1Γt−1∆

=
δ
(t−1)
St−1

M2
t−1Γt−1∆

= Wt

Mt−1Γt−1∆
.

247

Thus

w̃
(t−1)
St−1

(β
(t−1)
St−1 + α/2) = Wt

Mt−1Γt−1∆
α
4
(Wt−1Γt−1Mt−1 + St) ≥ Wt

Mt−1Γt−1∆
α
4
(δ

(t−1)
St−1

Γt−1)

= Wt

Mt−1Γt−1∆
α
4
(Mt−1WtΓt−1) =

α
4

W 2
t

∆
= Wt

MtΓt∆
[α
4
MtΓtWt] = w̃

(t)
1 β

(t)
1 .

w̃
(t−1)
St−1

γ
(t−1)
St−1

=
δ
(t−1)
St−1

M2
t−1Γt−1∆

(4
α
)
M2

t−1Γt−1

δ
(t−1)
St−1

= 4
α∆

=
δ
(t)
1

M2
t Γt∆

M2
t Γt

δ
(t)
1

= w̃
(t)
1 γ

(t)
1 .

β
(t)
1 γ

(t−1)
St−1

= (α
4
MtΓtWt)(

4
α
)
M2

t−1Γt−1

Mt−1Wt
=MtMt−1ΓtΓt−1

(a)

≥ MtΓt

Mt−1Γt−1
M2

t−1 =
w̃

(t−1)
St−1

w̃
(t)
1

M2
t−1 = ρ

(t)
1 M

2
t−1,

where the inequality in (a) holds because we have Γt−1 ≥ 1 as a consequence of its defini-

tion. Thus all the requirements in Proposition 5.2 are satisfied. We get from (Equation 5.59)

that

∑N
t=1 ωtQ(z

t; z) + ωNηN
2

∥∥xN − x∥∥2 ≤ w̃
(1)
1 β

(1)
1 +ω1η1
2

∥∥x0 − x∥∥2
+

w̃
(1)
1 γ

(1)
1

2

∥∥∥λ(1)0 − λ
∥∥∥2

.

(5.66)

Similar arguments as that of Theorem Theorem 5.5 imply the boundedness of Mt, and that

the ergodic average solution z̄N defined according to (Equation 5.21) satisfies

Q(z̄N ; (x∗;λ, ν, π)) ≤ 1∑N
t=1 ωt

(
2d(Λr)∥x0−x∗∥

∆
+ L(Λr)

∥∥x0 − x∗∥∥2
),

∀λ ∈ Λr, (ν, π) ∈ [V,Π].

(5.67)

Since
∑N

t=1 ωt ≥ max{N(N + 1)/2,
√
2κr[(1 + 1/

√
2κr)

4 − 1]} (see (Equation 5.37)),

we get the optimality gap and feasibility violation convergence bound in

(Equation 5.54). Moreover, since α
2

∥∥x̄N − x∗∥∥2 ≤ Q(z̄N ; (x∗;λ∗,∇g(x̄N),∇f(x̄N)))

248

(see (Equation 5.39)), the convergence of x̄N to x∗ in (Equation 5.54) also follows from

(Equation 5.67).

Next we show Corollary 5.4. Fix a r ≥ 1, and set ∆ = [d(Λr)]2

L(Λr)∥x0−x∗∥2α . For any

N ≥ min{
√

6L(Λr)max{c/r,1}
ϵ

∥∥x0 − x∗∥∥2
,

[

√
2L(Λr)

α
+ 1] log(

3max{c/r,1}
√

L(Λr)α∥x0−x∗∥2
ϵ

+ 1) + 4},

we get

Q(z̄N ; (x∗;λ, ν, π)) ≤ min{1, r
c
}ϵ,∀λ ∈ Λr, (ν, π) ∈ [V,Π],

⇒ max{F (x̄N)− F∗, r
∥∥[g(x̄N)]+∥∥} ≤ min{1, r

c
}ϵ,

so that x̄N is an (ϵ; ϵ/c) solution. Therefore, the least number of phases Nϵ required for

such a solution admits the upper bound in the corollary statement.

Now we consider the corresponding number of matrix-vector multiplications Cϵ in the

Nϵ phases, i.e., Cϵ =
∑Nϵ

t=1 St. We can deduce from the preceding argument that

Nϵ∑
t=1

ωt ≤
6max{1, c

r
}L(Λr)∥x0−x∗∥2

ϵ
.

Calculating the sum of St directly is challenging, so we consider an easier quantity Rt :=

[St − 3]+. An useful algebraic relation is

∑t−1
i=1Ri ≤ M̄Wt. (5.68)

The result can be deduced by induction. For t = 2, the relation clearly holds since W2M̄ ≥

W2M1 = S1 ≥ R1. Assuming (Equation 5.68) is valid up to t ≥ 2, we have

Wt+1 =
WtMt+

1
Γt

(St−1)

Mt

(a)

≥ Wt +
[St−3]+

Mt

(b)

≥ 1
M̄
{
∑t−1

i=1Ri + [St − 3]+} = 1
M̄

∑t−1
i=1[Ri],

249

where (a) follows from the algebraic fact St

Γt
≥ St − 2 (see Lemma 5.4) and that St −

1 ≥ 0 and (b) follows from the induction hypothesis. Thus the principle of mathematical

induction implies that (Equation 5.68) is valid. Consequently, for Rϵ =
∑Nϵ

t=1Rt, we have

R2
ϵ/2 ≤

∑St

s=1[Rϵ]s =
∑Nϵ

t=1

∑St

s=1[Rt][(
∑t−1

j=1Rj) + s] ≤
∑Nϵ

t=1

∑St

s=1[Rt][M̄Wt + s]

=
Nϵ∑
t=1

∑St

s=1[St − 3][M̄Wt + s] =
∑Nϵ

t=1

∑St−2
t=2 [M̄Wt + (s− 1)]

≤
Nϵ∑
t=1

∑St−1
t=1 [M̄Wt + (s− 1)] ≤ M̄

∑Nϵ

t=1

∑St−1
t=1 [Wt +

(s−1)
Mt

]

(a)

≤ M̄

Nϵ∑
t=1

Mtωt∆ ≤
Nϵ∑
t=1

M̄2ωt∆ ≤
6max{1, c

r
}L(Λr)∥x0−x∗∥2

ϵ
[d(Λr)]2

L(Λr)∥x0−x∗∥2αM̄
2

≤ 6max{1, c
r
}M̄2[d(Λr)]2

ϵα
,

where (a) follows from the fact that
∑St

s=1[St − 1]WtMt + (s− 1) < ωtM
2
t ∆

(see (Equation 5.52)). Therefore we get Rϵ ≤
√

12
αϵ
M̄d(Λr). Since

∑Nϵ

t=1 St ≤ Rϵ + 3Nϵ,

the big-O bound on Cϵ follows immediately.

The complexity bounds in Corollary 5.5 can be derived similarly.

□

5.5 Conclusion

To sum up, this paper proposes two efficient methods for large-scale function-constrained

optimization. The simple ACGD method has the optimal oracle complexity, but it requires

access to a QP solver. The more complicated ACGD-S method has both the optimal oracle

complexity and the optimal computation complexity. Lower complexity bounds are pro-

vided to illustrate the oracle complexity of both ACGD and ACGD-S to be unimprovable

for a general case of first-order methods. Together they provide a complete characterization

of the difficulty of solving a smooth function-constrained optimization problem from both

the oracle complexity and the computation complexity perspective.

250

5.6 Appendix

Lemma 5.2 Let Λ ⊂ Rm
+ and a convex vector-valued function g : Rn → Rm be given. If∑m

i=1 λigi is L-smooth for all λ ∈ Λ, i.e., ∥
∑m

i=1 λi∇gi(x)− gi(x̄)∥ ≤ L ∥x− x̄∥ ∀x, x̄ ∈

Rn,∀λ ∈ Λ, the Bregman distance function generated by its (vector-valued) conjugate

function U∗
g satisfies

⟨λ, U∗
g (ν, ν̄)⟩ ≥ ∥

∑m
i=1 λi(νi − ν̄i)∥

2
/(2L) ∀ν, ν̄ ∈ {∇g(x) : x ∈ Rn}.

Proof: Let λ ∈ Λ, ν = ∇g(x), and ν̄ = ∇g(x̄) be given. Consider the function ĝ :=∑m
i=1 λigi. Clearly, ĝ is L-smooth such that the Bregman distance function generated by

its conjugate satisfies Uĝ∗(v, v̄) ≥ ∥v − v̄∥2 /(2L). Since∇ĝ(x) = λ⊤∇g(x), we have

λ⊤Ug∗(ν; ν̄)
(a)
=

∑m
i=1 λiUg∗i

(νi; ν̄i) =
∑m

i=1 λiUgi(x̄;x)

=
∑m

i=1 λi[gi(x̄)− gi(x)− ⟨∇gi(x), x̄− x⟩]

= ĝ(x̄)− ĝ(x)− ⟨∇ĝ(x), x̄− x⟩
(b)
= Uĝ(x̄;x) = Uĝ∗(λ

⊤ν;λ⊤ν̄) ≥ ∥
∑m

i=1 λi(νi − ν̄i)∥
2
/(2L),

where (a) and (b) follows from the algebraic identity between Bregman distance functions

generated by Fenchel conjugates (h, h∗), Uh(y; ȳ) = Uh∗(∇h(ȳ);∇h(y)). □ The next two

lemmas provide some basic algebraic identifies useful for deriving complexity bounds.

Lemma 5.3 Given an x > 0, the following algebraic relation is valid:

h(y) := (1 + 1/x)y−3 ≤ y ∀ 2x ≥ y ≥ 1. (5.69)

251

Proof: First, we show the relation for y = 2x,

i.e. h(2x) = (1 + 1/x)2x−3 ≤ 2x ∀x > 0. Let’s consider two cases. If x ≥ 4, we have

(1 + 1/x)2x−3 ≤ [(1 + 1/x)x]2 ≤ exp(2) ≤ 8 ≤ 2x.

If 0 < x < 4, we have

[(1 + 1/x)x−1.5]2 ≤ [1/(1− x−1.5
x

)]2 = (x/1.5)2 = (x/2.25)× x ≤ 2x.

Thus h(2x) ≤ 2x. Since h(1) ≤ 1, the relation in (Equation 5.69) follows from the con-

vexity of h with respect to y. □

Lemma 5.4 Given non-negative parameters ∆t, H , and h ∈ {0, 1}, suppose St =

min{S ∈ N+ :
∑St

s=1[S]H + (s − h) ≥ ∆t}, and Γ is the non-negative root of∑St

s=1[St][ΓH + (s− h)] = Γ2∆t, then St satisfies

St/Γ ≥ St − 2.

Proof: Suppose for the sake of contradiction that St/Γ < St − 2. On the one hand, the

definition of St implies that

∆t = H(St

Γ
) +

∑St

s=1
(s−h)
Γ2 = H(St

Γ
) + 1

2
(St−h+1)

Γ
St

Γ
≥ H(St

Γ
) + 1

2
(St

Γ
)2.

On the other hand, the choice of St implies that
∑St

s=1[St − 1][H + (s− h)] < ∆t, thus

H(St − 1) + 1
2
(St − 1)(St − h− 1) < ∆t

⇒ H(St

Γ
) + 1

2
(St

Γ
)2 < ∆t.

These two relations leads to the desired contradiction. □

252

REFERENCES

[1] Y. Nesterov, Introductory lectures on convex optimization: A basic course. Springer
Science & Business Media, 2003, vol. 87.

[2] A. S. Nemirovsky and D. B. Yudin, Problem complexity and method efficiency in
optimization. John Wiley UK/USA, 1983.

[3] Y. E. Nesterov, “A method of solving a convex programming problem with con-
vergence rate o\bigl(kˆ2\bigr),” in Doklady Akademii Nauk, Russian Academy of
Sciences, vol. 269, 1983, pp. 543–547.

[4] Y. Nesterov, “Gradient methods for minimizing composite objective function. core
discussion papers 2007076, université catholique de louvain,” Center for Opera-
tions Research and Econometrics (CORE), vol. 5, no. 5.3, 2007.

[5] P. Tseng, “On accelerated proximal gradient methods for convex-concave optimiza-
tion, manuscript,” University of Washington, USA, 2008.

[6] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algorithm for
linear inverse problems,” SIAM journal on imaging sciences, vol. 2, no. 1, pp. 183–
202, 2009.

[7] G. Lan, “Gradient sliding for composite optimization,” Mathematical Program-
ming, vol. 159(1-2), pp. 201–235, 2016.

[8] G. Lan and Y. Ouyang, “Accelerated gradient sliding for structured convex opti-
mization,” Computational Optimization and Applications, 2020, under revision.

[9] A. Shapiro, D. Dentcheva, and A. Ruszczyński, Lectures on stochastic program-
ming: modeling and theory. SIAM, 2014.

[10] A. Beck, First-order methods in optimization. SIAM, 2017.

[11] L. Pardo, Statistical inference based on divergence measures. Chapman and
Hall/CRC, 2018.

[12] G. C. Pflug and A. Pichler, “Approximations for probability distributions and
stochastic optimization problems,” in Stochastic Optimization Methods in Finance
and Energy, Springer, 2011, pp. 343–387.

[13] C. Zhao and Y. Guan, “Data-driven risk-averse two-stage stochastic program with
ζ-structure probability metrics,” Available on Optimization Online, 2015.

253

[14] D. Bertsimas, V. Gupta, and N. Kallus, “Data-driven robust optimization,” Mathe-
matical Programming, vol. 167, no. 2, pp. 235–292, 2018.

[15] C. Zhao and Y. Guan, “Data-driven risk-averse stochastic optimization with
Wasserstein metric,” Operations Research Letters, vol. 46, no. 2, pp. 262–267,
2018.

[16] Y. Chen, H. Sun, and H. Xu, “Decomposition and discrete approximation meth-
ods for solving two-stage distributionally robust optimization problems,” Compu-
tational Optimization and Applications, vol. 78, no. 1, pp. 205–238, 2021.

[17] A. Pichler and H. Xu, “Quantitative stability analysis for minimax distributionally
robust risk optimization,” Mathematical Programming, pp. 1–31, 2017.

[18] P. M. Esfahani and D. Kuhn, “Data-driven distributionally robust optimization us-
ing the Wasserstein metric: Performance guarantees and tractable reformulations,”
Mathematical Programming, vol. 171, no. 1-2, pp. 115–166, 2018.

[19] R. Gao and A. J. Kleywegt, “Distributionally robust stochastic optimization with
Wasserstein distance,” arXiv preprint arXiv:1604.02199, 2016.

[20] H. Markowitz, “Portfolio selection,” The Journal of Finance, vol. 7, no. 1, pp. 77–
91, 1952.

[21] A. Shapiro, D. Dentcheva, and A. Ruszczyński, Lectures on stochastic program-
ming: modeling and theory. SIAM, 2009.

[22] G. Lan, “Complexity of stochastic dual dynamic programming,” Mathematical
Programming, pp. 1–38, 2020.

[23] C. Lemaréchal, A. Nemirovskii, and Y. Nesterov, “New variants of bundle meth-
ods,” Mathematical Programming, vol. 69, no. 1-3, pp. 111–147, 1995.

[24] A. Ben-Tal and A. S. Nemirovskii, Lectures on modern convex optimization: anal-
yse, algorithms, and engineering applications. SIAM, 2001.

[25] Y. Liu, X. Yuan, S. Zeng, and J. Zhang, “Primal–dual hybrid gradient method
for distributionally robust optimization problems,” Operations Research Letters,
vol. 45, no. 6, pp. 625–630, 2017.

[26] A. Chambolle and T. Pock, “On the ergodic convergence rates of a first-order
primal–dual algorithm,” Mathematical Programming, vol. 159, no. 1-2, pp. 253–
287, 2016.

254

[27] G. Lan, “Bundle-level type methods uniformly optimal for smooth and nonsmooth
convex optimization,” Mathematical Programming, vol. 149, no. 1-2, pp. 1–45,
2015.

[28] G. Lan, Lectures on Optimization Methods for Machine Learning. Springer-Nature,
2020.

[29] A. Nemirovsky, “Information-based complexity of linear operator equations,” Jour-
nal of Complexity, vol. 8, pp. 153–175, 2 1992.

[30] Y. Ouyang and Y. Xu, “Lower complexity bounds of first-order methods for convex-
concave bilinear saddle-point problems,” Mathematical Programming, pp. 1–35,
2019.

[31] Y. Nesterov, “Smooth minimization of non-smooth functions,” Mathematical pro-
gramming, vol. 103, no. 1, pp. 127–152, 2005.

[32] A. Ben-Tal and A. Nemirovski, “Non-euclidean restricted memory level method
for large-scale convex optimization,” Mathematical Programming, vol. 102, no. 3,
pp. 407–456, 2005.

[33] Y. Nesterov, “A method for unconstrained convex minimization problem with the
rate of convergence o (1/kˆ 2),” in Doklady AN USSR, vol. 269, 1983, pp. 543–547.

[34] S. Sen, R. D. Doverspike, and S. Cosares, “Network planning with random de-
mand,” Telecommunication Systems, vol. 3, no. 1, pp. 11–30, 1994.

[35] A. Shapiro and S. Ahmed, “On a class of minimax stochastic programs,” SIAM
Journal on Optimization, vol. 14, no. 4, pp. 1237–1249, 2004.

[36] D. Bertsimas and J. N. Tsitsiklis, Introduction to linear optimization. Athena Sci-
entific Belmont, MA, 1997, vol. 6.

[37] J. Linderoth, A. Shapiro, and S. Wright, “The empirical behavior of sampling
methods for stochastic programming,” Annals of Operations Research, vol. 142,
pp. 215–241, 2006.

[38] G. Lan, “Efficient methods for stochastic composite optimization,” Georgia Insti-
tute of Technology, Manuscript, 2008.

[39] G. Lan, “An optimal method for stochastic composite optimization,” Mathematical
Programming, pp. 365–397, 2012.

255

[40] S. Ghadimi and G. Lan, “Optimal stochastic approximation algorithms for strongly
convex stochastic composite optimization i: A generic algorithmic framework,”
SIAM Journal on Optimization, vol. 22, no. 4, pp. 1469–1492, 2012.

[41] S. Ghadimi and G. Lan, “Optimal stochastic approximation algorithms for strongly
convex stochastic composite optimization, II: Shrinking procedures and optimal
algorithms,” SIAM Journal on Optimization, vol. 23, pp. 2061–2089, 2013.

[42] Y. Chen, G. Lan, and Y. Ouyang, “Optimal primal-dual methods for a class of
saddle point problems,” SIAM Journal on Optimization, vol. 24, no. 4, pp. 1779–
1814, 2014.

[43] A. S. Lewis and S. J. Wright, “A proximal method for composite minimization,”
Mathematical Programming, vol. 158, no. 1-2, pp. 501–546, 2016.

[44] Y. M. Ermoliev, “A general stochastic programming problem. journal of cybernet-
ics,” Journal of Cybernetics, vol. 1, no. 4, pp. 106–112, 1971.

[45] Y. M. Ermoliev, Methods of Stochastic Programming. Nauka, Moscow, 1976.

[46] M. Wang, J. Liu, and E. X. Fang, “Accelerating stochastic composition optimiza-
tion,” The Journal of Machine Learning Research, vol. 18, no. 1, pp. 3721–3743,
2017.

[47] A. Ruszczynski, “A stochastic subgradient method for nonsmooth nonconvex mul-
tilevel composition optimization,” SIAM Journal on Control and Optimization,
vol. 59, no. 3, pp. 2301–2320, 2021.

[48] M. Wang, E. X. Fang, and H. Liu, “Stochastic compositional gradient descent: Al-
gorithms for minimizing compositions of expected-value functions,” Mathematical
Programming, vol. 161, no. 1-2, pp. 419–449, 2017.

[49] S. Ghadimi and G. Lan, “Stochastic first-and zeroth-order methods for nonconvex
stochastic programming,” SIAM Journal on Optimization, vol. 23, no. 4, pp. 2341–
2368, 2013.

[50] S. Ghadimi, A. Ruszczynski, and M. Wang, “A single timescale stochastic approxi-
mation method for nested stochastic optimization,” SIAM Journal on Optimization,
vol. 30, no. 1, pp. 960–979, 2020.

[51] K. Balasubramanian, S. Ghadimi, and A. Nguyen, “Stochastic multilevel compo-
sition optimization algorithms with level-independent convergence rates,” SIAM
Journal on Optimization, vol. 32, no. 2, pp. 519–544, 2022.

256

[52] J. Zhang and L. Xiao, “Multi-level composite stochastic optimization via nested
variance reduction,” arXiv preprint arXiv:1908.11468, 2019.

[53] S. Yang, M. Wang, and E. X. Fang, “Multilevel stochastic gradient methods for
nested composition optimization,” SIAM Journal on Optimization, vol. 29, no. 1,
pp. 616–659, 2019.

[54] T. Chen, Y. Sun, and W. Yin, “Solving stochastic compositional optimiza-
tion is nearly as easy as solving stochastic optimization,” arXiv preprint
arXiv:2008.10847, 2020.

[55] Z. Zhang, S. Ahmed, and G. Lan, “Efficient algorithms for distributionally
robust stochastic optimization with discrete scenario support,” arXiv preprint
arXiv:1909.11216, 2019.

[56] G. Lan and Y. Zhou, “An optimal randomized incremental gradient method,” Math-
ematical Programming, vol. 171, pp. 167–215, 2018.

[57] Z. Allen-Zhu, “How to make the gradients small stochastically: Even faster convex
and nonconvex sgd,” Advances in Neural Information Processing Systems, vol. 31,
2018.

[58] R. T. Rockafellar, Convex analysis. Princeton university press, 1970.

[59] G. Lan and Z. Zhang, “Optimal methods for risk averse distributed optimization,”
arXiv preprint arXiv:2203.05117, 2022.

[60] Z. Zhang and G. Lan, “Solving convex smooth function constrained optimization is
as almost easy as unconstrained optimization,” arXiv preprint arXiv:2210.05807,
2022.

[61] G. Lan and Y. Zhou, “Random gradient extrapolation for distributed and stochastic
optimization,” SIAM Journal on Optimization, vol. 28, no. 4, pp. 2753–2782, 2018.

[62] A. Froehlich, Definition: Star network, https : / / www . techtarget . com /
searchnetworking/definition/star-network, Retrieved: July. 2022.

[63] L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal
algorithms,” Physica D: nonlinear phenomena, vol. 60, no. 1-4, pp. 259–268, 1992.

[64] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,” SIAM
review, vol. 51, no. 3, pp. 455–500, 2009.

257

https://www.techtarget.com/searchnetworking/definition/star-network
https://www.techtarget.com/searchnetworking/definition/star-network

[65] R. Tomioka, T. Suzuki, K. Hayashi, and H. Kashima, “Statistical performance of
convex tensor decomposition,” Advances in neural information processing systems,
vol. 24, 2011.

[66] J. Mairal, R. Jenatton, G. Obozinski, and F. Bach, “Convex and network flow opti-
mization for structured sparsity.,” Journal of Machine Learning Research, vol. 12,
no. 9, 2011.

[67] R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, and K. Knight, “Sparsity and smooth-
ness via the fused lasso,” Journal of the Royal Statistical Society: Series B (Statis-
tical Methodology), vol. 67, no. 1, pp. 91–108, 2005.

[68] L. Jacob, G. Obozinski, and J.-P. Vert, “Group lasso with overlap and graph lasso,”
in Proceedings of the 26th annual international conference on machine learning,
2009, pp. 433–440.

[69] P. Kairouz et al., “Advances and open problems in federated learning,” Foundations
and Trends® in Machine Learning, vol. 14, no. 1–2, pp. 1–210, 2021.

[70] H. Markowitz, “Portfolio selection,” The Journal of Finance, vol. 7, no. 1, pp. 77–
91, 1952.

[71] G. Martı́nez and L. Anderson, “A risk-averse optimization model for unit com-
mitment problems,” in 2015 48th Hawaii International Conference on System Sci-
ences, IEEE, 2015, pp. 2577–2585.

[72] P. Javanbakht and S. Mohagheghi, “A risk-averse security-constrained optimal
power flow for a power grid subject to hurricanes,” Electric Power Systems Re-
search, vol. 116, pp. 408–418, 2014.

[73] E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta, “Massive MIMO for
next generation wireless systems,” IEEE communications magazine, vol. 52, no. 2,
pp. 186–195, 2014.

[74] R. S. Tol, “The economic effects of climate change,” Journal of economic perspec-
tives, vol. 23, no. 2, pp. 29–51, 2009.

[75] S. Parkvall, E. Dahlman, A. Furuskar, and M. Frenne, “Nr: The new 5G radio access
technology,” IEEE Communications Standards Magazine, vol. 1, no. 4, pp. 24–30,
2017.

[76] D. Kuhn, P. M. Esfahani, V. A. Nguyen, and S. Shafieezadeh-Abadeh, “Wasserstein
distributionally robust optimization: Theory and applications in machine learning,”
in Operations research & management science in the age of analytics, Informs,
2019, pp. 130–166.

258

[77] D. Bertsimas and A. Thiele, “Robust and data-driven optimization: Modern deci-
sion making under uncertainty,” in Models, methods, and applications for innova-
tive decision making, INFORMS, 2006, pp. 95–122.

[78] Z. Wang, P. W. Glynn, and Y. Ye, “Likelihood robust optimization for data-driven
problems,” Computational Management Science, vol. 13, no. 2, pp. 241–261, 2016.

[79] WeBank, WeBank and Swiss Re signed cooperation MoU, http:https://www.fedai.
org/news/webank-and-swiss-re-signed-cooperation-mou/, Retrieved: July. 2022.

[80] E. CORDIS, Machine learning ledger orchestration for drug discovery, https : / /
featurecloud.eu/about/our-vision/, Retrieved: July. 2022.

[81] FeatureCloud, Featurecloud: Our vision, 2022, https://cordis.europa.eu/project/id/
831472, Retrieved: July. 2022.

[82] musketeer, Musketeer: About, 2022, https://musketeer.eu/project/, Retrieved: July.
2022.

[83] Z. Zhang and G. Lan, “Optimal algorithms for convex nested stochastic composite
optimization,” arXiv preprint arXiv:2011.10076, 2020.

[84] A. Chambolle and T. Pock, “A first-order primal-dual algorithm for convex prob-
lems with applications to imaging,” Journal of mathematical imaging and vision,
vol. 40, no. 1, pp. 120–145, 2011.

[85] K. Scaman, F. Bach, S. Bubeck, Y. T. Lee, and L. Massoulié, “Optimal conver-
gence rates for convex distributed optimization in networks,” Journal of Machine
Learning Research, vol. 20, no. 159, pp. 1–31, 2019.

[86] Y. Ouyang and Y. Xu, “Lower complexity bounds of first-order methods for convex-
concave bilinear saddle-point problems,” Mathematical Programming, vol. 185,
no. 1, pp. 1–35, 2021.

[87] G. Lan, “Gradient sliding for composite optimization,” Mathematical Program-
ming, vol. 159, no. 1, pp. 201–235, 2016.

[88] G. Lan, Y. Ouyang, and Y. Zhou, “Graph topology invariant gradient and sam-
pling complexity for decentralized and stochastic optimization,” arXiv preprint
arXiv:2101.00143, 2021.

[89] K. Scaman, F. Bach, S. Bubeck, Y. T. Lee, and L. Massoulié, “Optimal algorithms
for smooth and strongly convex distributed optimization in networks,” in interna-
tional conference on machine learning, PMLR, 2017, pp. 3027–3036.

259

http:https://www.fedai.org/news/webank-and-swiss-re-signed-cooperation-mou/
http:https://www.fedai.org/news/webank-and-swiss-re-signed-cooperation-mou/
https://featurecloud.eu/about/our-vision/
https://featurecloud.eu/about/our-vision/
https://cordis.europa.eu/project/id/831472
https://cordis.europa.eu/project/id/831472
https://musketeer.eu/project/

[90] J.-B. Hiriart-Urruty and C. Lemaréchal, Convex analysis and minimization algo-
rithms II. Springer science & business media, 1993, vol. 306.

[91] C. Lemaréchal, A. Nemirovskii, and Y. Nesterov, “New variants of bundle meth-
ods,” Mathematical programming, vol. 69, no. 1, pp. 111–147, 1995.

[92] Y. Chen, H. Sun, and H. Xu, “Decomposition and discrete approximation meth-
ods for solving two-stage distributionally robust optimization problems,” Compu-
tational Optimization and Applications, vol. 78, no. 1, pp. 205–238, 2021.

[93] A. Nemirovski, “Lectures on modern convex optimization,” in Society for Indus-
trial and Applied Mathematics (SIAM, Citeseer, 2001.

[94] P. Rigollet and X. Tong, “Neyman-pearson classification, convexity and stochastic
constraints,” Journal of Machine Learning Research, 2011.

[95] M. B. Zafar, I. Valera, M. G. Rogriguez, and K. P. Gummadi, “Fairness constraints:
Mechanisms for fair classification,” in Artificial intelligence and statistics, PMLR,
2017, pp. 962–970.

[96] R. Gandy, “Portfolio optimization with risk constraints,” Ph.D. dissertation, Uni-
versität Ulm, 2005.

[97] A. S. Nemirovsky, “On optimality of krylov’s information when solving linear op-
erator equations,” Journal of Complexity, vol. 7, no. 2, pp. 121–130, 1991.

[98] D. Boob, Q. Deng, and G. Lan, “Stochastic first-order methods for convex and non-
convex functional constrained optimization,” Mathematical Programming, pp. 1–
65, 2022.

[99] E. Y. Hamedani and N. S. Aybat, “A primal-dual algorithm with line search for
general convex-concave saddle point problems,” SIAM Journal on Optimization,
vol. 31, no. 2, pp. 1299–1329, 2021.

[100] Y. Xu, “First-order methods for problems with o (1) functional constraints can have
almost the same convergence rate as for unconstrained problems,” arXiv preprint
arXiv:2010.02282, 2020.

[101] Q. Lin, S. Nadarajah, and N. Soheili, “A level-set method for convex optimiza-
tion with a feasible solution path,” SIAM Journal on Optimization, vol. 28, no. 4,
pp. 3290–3311, 2018.

[102] Y. Nesterov, Lectures on convex optimization. Springer, 2018, vol. 137.

[103] D. Bertsekas, Convex optimization theory. Athena Scientific, 2009, vol. 1.

260

[104] G. Lan and R. D. Monteiro, “Iteration-complexity of first-order penalty methods
for convex programming,” Mathematical Programming, vol. 138, no. 1, pp. 115–
139, 2013.

[105] S. Yang, X. Li, and G. Lan, “Data-driven minimax optimization with expectation
constraints,” arXiv preprint arXiv:2202.07868, 2022.

261

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Summary
	1 | Introduction and Background
	Background
	The Trilinear Saddle Point Problem

	2 | Distributionally Robust Two-Stage Linear Program with a Finite Scenario Support
	Background and Our Contribution
	Sequential Dual Algorithm
	Sequential Smooth Level Method
	Adaptation For Kantorovich Ball
	Numerical Studies

	3 | Nested Stochastic Composite Optimization
	Introduction
	Smooth and Structured Non-smooth Two Layer Problems
	General Nonsmooth Two-layer Problem
	Multi-layer Problem
	Applications
	Conclusion
	Appendix

	4 | Risk Averse Optimization Over a Distributed Network
	Background and Our Contribution
	Preliminary: Q-gap function
	Upper Bounds for Communication Complexity
	The DRAO-S method
	Lower Communication Complexities
	Numerical Experiments
	Conclusion
	Appendix

	5 | Smooth Function Constrained Optimization
	Background and Our Contribution
	The Accelerated Constrained Gradient Descent Method
	Lower Oracle Complexity Bound
	The ACGD-S method
	Conclusion
	Appendix

	References

