
A CASE-BASED APPROACH FOR SUPPORTING
THE INFORMAL COMPUTING EDUCATION OF

END-USER PROGRAMMERS

A Dissertation
Presented to

The Academic Faculty

by

Brian James Dorn

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in
Computer Science

School of Interactive Computing
Georgia Institute of Technology

December 2010

Copyright c© 2010 by Brian James Dorn

A CASE-BASED APPROACH FOR SUPPORTING
THE INFORMAL COMPUTING EDUCATION OF

END-USER PROGRAMMERS

Approved by:

Dr. Mark Guzdial, Committee Chair
School of Interactive Computing
Georgia Institute of Technology

Dr. John T. Stasko
School of Interactive Computing
Georgia Institute of Technology

Dr. Amy Bruckman
School of Interactive Computing
Georgia Institute of Technology

Dr. Christopher D. Hundhausen
School of Electrical Engineering and
Computer Science
Washington State University

Dr. Janet L. Kolodner
School of Interactive Computing
Georgia Institute of Technology

Date Approved: 24 August 2010

ACKNOWLEDGEMENTS

First and foremost, I thank my wife, Christine, for joining me in this crazy adventure.

I am not sure she fully realized what she was getting into when she moved to Georgia,

but I am grateful for every day we have shared and will share in the years to come.

I cannot wait to see where life takes us!

My family has been a significant influence on my commitment to learning. I

believe that seeing both my parents go through college instilled in me a fascination

with higher education early on. They have humored my desires to earn a doctorate,

despite regularly asking when I would get a job during those first couple years. I

know of no better way to thank them than to proudly say I have finally finished.

Despite regular jokes about my obsession with being a college student forever, my

friends outside of graduate school have been a source of support throughout this, at

times seemingly never-ending, journey. With their unwavering faith in my ability to

finish my Ph.D. and their regular inquires about whether they could call me “Doctor

Dorn” yet, they have regularly humbled me, distracted me, and kept me in good

spirits. I am honored to have such amazing lifelong friends, who are far too numerous

to mention by name here.

I have been fortunate to have the support and friendship of numerous fellow

students at Georgia Tech. Space prevents me from chronicling all the reasons I am

grateful to my friends at Tech, but suffice it to say that their intellectual support,

encouragement, and laughter have made my time at Georgia Tech enjoyable and

memorable. Thank you to those who I have had the pleasure to get to know over the

years, and in particular, I offer my gratitude to Tamara Clegg, Brian Landry, Brian

O’Neill, Erika Shehan Poole, David Roberts, and Sarita Yardi. I must also thank all

iii

current and past members of the Contextualized Support for Learning lab who have

offered their opinions on my work and have (at least) tolerated my lengthy comments

on theirs. I am especially indebted to Allison Elliott Tew for her camaraderie and

assistance with my research, often at the drop of a hat; I couldn’t have asked for a

better desk neighbor and collaborator.

I would be remiss if I did not acknowledge members of my committee. Mark

Guzdial, Amy Bruckman, Christopher Hundhausen, John Stasko, and Janet Kolodner

have provided invaluable feedback about my work during my time at Tech, and they

have pushed me to investigate interesting problems that matter to real people. I

owe an additional debt of gratitude to my advisor, Mark, who asked me some five

years ago what it was that I wanted to do for my dissertation. Out of my nebulous,

ill-defined ideas he helped me build a research agenda and has served as a tireless

advocate for my work ever since.

I also extend my thanks to colleagues in the computing education research com-

munity, who have shaped my ideas greatly. In particular, I deeply value the guidance

of Josh Tenenberg, Sally Fincher, and Briana Morrison. Their willingness to allow

me to pick their brains over the last few years has been personally and professionally

rewarding. The CSEd research field is better for having devoted mentors like them.

Georgia Tech is fortunate to have some of the best staff members with whom I

have had the pleasure to interact. They make sure that students are well cared for

and that the gears of research continue to turn. I am grateful to Monica Ross for

handling of all the little things, to Don Schoner for making us all laugh, and to Brian

Poole for dealing with technical problems at a moment’s notice.

Last, but certainly not least, I am thankful for the National Science Foundation’s

research funding that supported much of my five years at Georgia Tech and the work

detailed in this dissertation. Specifically, NSF grants CISE-0306050, ITR-0613738,

and CCLI-0618674 made the research presented here possible.

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

LIST OF TABLES . x

LIST OF FIGURES . xi

SUMMARY . xii

I INTRODUCTION AND MOTIVATION 1

1.1 Graphic Design End-User Programmers 4

1.2 The Case for Cases . 6

1.3 Thesis Statement . 7

1.4 Research Questions . 7

1.4.1 Understanding Current and Learning Strategies 8

1.4.2 Examining the Conceptual Coverage of a Script Repository 8

1.4.3 Evaluating the Effectiveness of Case-Based Learning Aid . . 9

1.5 Structure of the Dissertation . 9

II BACKGROUND AND RELATED WORK 11

2.1 Supporting End-User Programmers 11

2.1.1 Programming by Demonstration 12

2.1.2 Natural Language Approaches 13

2.1.3 Automating Meta-Programming Tasks 15

2.2 Users as Learners . 16

2.3 Situated Learning . 18

2.4 Case-Based Learning Aids . 19

2.4.1 Case-Based Reasoning . 21

2.4.2 Cognitive Load Theory and Worked Examples 22

2.4.3 Minimalist Instruction . 24

2.5 Chapter 2 Summary . 25

v

III CURRENT KNOWLEDGE AND LEARNING STRATEGIES OF END-
USER PROGRAMMERS . 26

3.1 Study Protocol . 28

3.1.1 Card Sorting Task . 28

3.1.2 Interview . 30

3.1.3 Recruitment . 31

3.2 Participant Demographics and Background 32

3.3 Closed Sort Results . 33

3.3.1 Additional Closed Sorts . 35

3.3.2 Comparison of Closed Sorts 39

3.4 Open Sorting . 41

3.5 Learning and Resources . 43

3.5.1 Impetus for Learning . 43

3.5.2 Learning Processes . 44

3.5.3 Resources Used . 45

3.5.4 Judging Relevance . 46

3.6 Discussion . 48

3.6.1 Findings from the Research Questions 49

3.6.2 Implications Moving Forward 50

3.7 Chapter 3 Summary . 50

IV EXAMINING THE CONCEPTUAL COVERAGE OF A SCRIPT REPOS-
ITORY . 52

4.1 Method . 53

4.1.1 Development of Coding Scheme 53

4.1.2 Coding Process Details . 56

4.2 Results . 56

4.2.1 Project Size . 58

4.2.2 Project Content . 59

4.3 Discussion of Construct Prevalence 61

vi

4.3.1 Operators . 61

4.3.2 Control Structures . 62

4.3.3 Abstraction and Modular Coding 62

4.4 Discussion . 63

4.4.1 Findings for the Research Question 63

4.4.2 Implications for Next Steps 64

4.5 Chapter 4 Summary . 65

V DESIGN OF SCRIPTABLE . 66

5.1 ScriptABLE . 68

5.1.1 Anatomy of a Project . 70

5.1.2 Tagging and Indexing . 79

5.1.3 Search . 84

5.2 Concept Coverage . 84

5.3 Content Review . 86

5.4 Notes on ScriptABLE’s Design . 86

5.5 Chapter 5 Summary . 88

VI SCRIPTABLE EVALUATION . 89

6.1 Methods . 90

6.1.1 Recruitment . 90

6.1.2 Participant Demographics 92

6.1.3 Study Design . 93

6.1.4 Operationalized Research Questions 101

6.2 Evaluating ScriptABLE Usage . 102

6.2.1 Resource Usage . 103

6.2.2 Perception of ScriptABLE’s Usefulness 107

6.3 ScriptABLE as a Task-Oriented Learning Aid 112

6.3.1 Code Correctness . 112

6.3.2 Conceptual Answers . 114

vii

6.3.3 Self-Reported Learning . 117

6.4 Discussion . 119

6.4.1 Revisiting the Research Questions 120

6.4.2 Examining the Case Library Conceptual Gains 123

6.5 Limitations and Alternate Study Designs 125

6.6 Chapter 6 Summary . 128

VII CONCLUSIONS AND FUTURE WORK 129

7.1 Answering the Primary Research Questions 130

7.1.1 What is the nature of graphic/web design end-user program-
mers’ knowledge of normative computing concepts? (RQ1) . 130

7.1.2 What learning practices do graphic/web design end-user pro-
grammers currently employ, and to what extent do typical re-
sources provide opportunities to learn about normative com-
puting concepts? (RQ2) . 131

7.1.3 How does the presentation of conceptual information as a
case library influence the way end users interact with re-
sources? (RQ3) . 132

7.1.4 To what extent does ScriptABLE as a case-based learning aid
enable the appropriation of computing knowledge for users
actively engaged in project-oriented programming activities?
(RQ4) . 133

7.2 Contributions . 134

7.3 Recommendations and Open Questions for Resource Designers . . . 136

7.3.1 Provide Connections to Normative Computing Content . . . 136

7.3.2 Consistency in Organization and Writing is Important . . . 137

7.3.3 Larger Project Collections 137

7.3.4 Index Use is Directly Proportional to Library Size 138

7.3.5 Revisions to the Tagging System are Needed 138

7.3.6 Examine Wikis as a CBLA Platform 139

7.3.7 Reconsider Intended Resource Use Patterns 139

7.3.8 Measure the Effect of Project Length 140

7.4 Future Directions . 140

viii

7.4.1 Moving Out of the Lab . 140

7.4.2 ScriptABLE as a User-Generated Site 141

7.4.3 Extension to Other End-User Programming Domains 142

APPENDIX A INDEX CARDS FROM CARD SORTING STUDY 144

APPENDIX B STUDY 1 SURVEY AND INTERVIEW GUIDE 153

APPENDIX C STUDY 3 SESSION 1 PROBLEM CODE 157

APPENDIX D STUDY 3 SESSION 2 PROBLEM CODE 161

APPENDIX E STUDY 3 INSTRUMENTS 166

REFERENCES . 180

ix

LIST OF TABLES

1 Percentage of Participants Recognizing Card Concepts 34

2 Personal Level of Understanding; Sorted by Decreasing Understanding 36

3 Frequency of Concept Use; Sorted by Decreasing Frequency 38

4 Concept Difficulty to Learn; Sorted by Increasing Difficulty 40

5 Resources for Learning . 46

6 Project Line Length Breakdown . 58

7 Construct Use by Project . 60

8 Concept Coverage of ScriptABLE Projects 85

9 Study Design and Participant Groups 94

10 Concept Coverage of Tasks . 98

11 Assigned Tasks by Session . 99

12 Task Categorization on Bloom’s Taxonomy 100

13 Comparison on Resource Usage by Group 104

14 User Satisfaction Likert Responses 110

15 Which Resource Helped You the Most Today? 110

16 Code Performance Statistics . 113

17 Conceptual Performance Statistics . 115

18 Self-Reported Concept Learning Responses 118

x

LIST OF FIGURES

1 Example ExtendScript for Generating Frames 5

2 Example Card with Definitions . 30

3 Self-Reported Average Weekly Division of Labor 32

4 Percent of Participants Rating Resource as Likely or Very Likely to Use 47

5 Textbook-Based Coding Elements . 54

6 EUP Coding Elements . 56

7 Distribution of Project Submissions 57

8 Distribution of Project Lengths . 59

9 ScriptABLE Front Page . 69

10 Toggle Text Layers Project Description 71

11 Toggle Text Layers Primary Tags . 72

12 Toggle Text Layers Script Use Scenarios 73

13 Toggle Text Layers Script Use Scenario 1 Popup 74

14 Toggle Text Layers Script Development Excerpt 1 75

15 Toggle Text Layers Script Development Excerpt 2 77

16 Toggle Text Layers Script Development Excerpt 3 77

17 Toggle Text Layers Script Downloadable Files 78

18 ScriptABLE Tag Hierarchy . 80

19 ScriptABLE Concepts Tag Page . 82

20 ScriptABLE Selection Statement Tag Page 83

21 Visual Comparison of Case Library and Repository Projects 97

22 Internet Search Queries from Session 1 108

23 ScriptABLE Search Queries from Session 2 109

24 Conceptual Score Increase by Treatment 116

xi

SUMMARY

Software development is no longer a task limited to professionally trained com-

puter programmers. Increasing support for software customization through scripting,

the opening of application programmer interfaces on the Web, and a growing need for

domain specific application support have all contributed to an increase in end-user

programming. Unfortunately, learning to program remains a challenging task, and

the majority of end-user programmers lack any formal education in software develop-

ment. Instead, these users must piece together their understanding of programming

through trial and error, examples found online, and help from peers and colleagues.

While current approaches to address the difficulties facing end-user programmers

seek to change the nature of the programming task, I argue that these challenges often

mirror those faced by all novice programmers. Thus, pedagogical solutions must

also be explored. This dissertation work investigates the challenges that end-user

programmers face from a computer science education perspective. I have engaged

in a cycle of learner-centered design to answer the high-level questions: What do

users know; what might they need to know; how are they learning; and how might

we help users discover and learn what they need or want to know? In so doing,

I uniquely frame end-user programming challenges as issues related to knowledge

and understanding about computer science. Rather than building new languages or

programming tools, I address these difficulties through new types of instructional

materials and opportunities for felicitous engagement with them.

This work is contextualized within a specific domain of non-traditional program-

mers: graphic and web designers who write scripts as part of their careers. Through

xii

an in-depth, learner-centered investigation of this user population, this dissertation

makes five specific contributions:

1. A detailed characterization of graphic and web design end-user programmers

and their knowledge of fundamental computing concepts.

2. An analysis of the existing information space that graphic and web designers

rely on for help.

3. The implementation of a novel case-based learning aid named ScriptABLE that

is explicitly designed to leverage existing user practices while conveying concep-

tual knowledge about programming.

4. Initial confirmatory evidence supporting case-based learning aids for the infor-

mal computing education of web and graphic design end-user programmers.

5. An argument in support of the value of normative computing knowledge among

informally trained programmers.

xiii

CHAPTER I

INTRODUCTION AND MOTIVATION

Recent advances in the software industry and on the Internet are significantly ex-

panding the programming and software development domain. Software artifacts are

now being created by millions of people who have little or no training in computer

science, nor consider themselves programmers by conventional definitions. Archi-

tects and designers looking to extend the creative abilities of their CAD tools note

that through scripting they have “unprecedented accessibility to the generative pos-

sibilities and comprehension of equation-based geometry” (Saunders, 2009, p. 133).

Professional end users like mathematicians, biologists, and physicists are building

software systems to manage and make sense of their knowledge-rich domains (Segal,

2007). Newly opened application programmer interfaces on popular Internet sites like

Facebook, Flickr, and Google enable millions of users to create new user-generated

web content (Yardi, Dorn, Bruckman, & Guzdial, 2008).

Software development is no longer confined to professionally trained computer

programmers. This growing group of informal developers make up a class of com-

puter users known as end-user programmers (EUPers). Broadly defined, EUPers are

those individuals who use applications that incorporate features like textual script-

ing, high-level declarative specification, programming by example, and automation

or customization via wizards (Nardi, 1993). Estimates based on projections from the

Bureau of Labor Statistics report that over 90 million Americans will use a computer

at work by 2012, with 55 million making heavy use of programmable applications like

spreadsheets and databases. Of these, it is estimated that 13 million people will de-

scribe themselves as non-professional programmers (Scaffidi, Shaw, & Myers, 2005).

1

Comparing the size of this subset of end-user programmers to the mere 3 million pro-

fessionally trained programmers in the workforce, it is obvious that informal software

development demands the research community’s attention.

Computer science educators have long recognized that learning to program is a

difficult task, and the barriers end-user programmers face have much in common with

issues any novice programmer encounters. They struggle to devise algorithms which

solve the problem at hand; they wrestle with particulars of language syntax; and

they are at times mystified by program bugs (Ko, Myers, & Aung, 2004). Even in

situations where EUPers can easily master a programming language, other challenges

arise. Segal notes “depending on the context in which the software is going to be used,

issues such as code comprehensibility, software robustness and performance become

important” (Segal, 2007, p. 111). Professionally trained programmers take years

of coursework in fields like computer science to learn skills and techniques to deal

with these issues, but most EUPers are unlikely to ever enroll in formal coursework.

Nonetheless, users still depend on the correctness of such software in order to ensure

the stability of third-party web servers, to make important business decisions, or to

develop scientific theories. In an extreme case, Panko (1995) recounts the story of an

oil company that lost millions of dollars due to spreadsheet errors resulting from a

lack of rigorous testing practices.

Given the above picture, training opportunities for those engaged in end-user pro-

gramming activities seem crucial. The challenge for computer science education is

that EUPers approach learning in a fundamentally different way from their profes-

sional counterparts. EUPers acquire computing knowledge bit-by-bit along the way as

they go about solving tasks in the real world (see e.g., Dorn & Guzdial, 2006). That

is, they are taking part in informal education. Here, the term informal education

refers to:

The lifelong process whereby every individual acquires attitudes, values,

2

skills and knowledge from daily experience, educative influences and re-

sources in his/her environment–from family and neighbors, from work and

play, from the market place, the library and mass media. (Titmus, 1989,

p. 547)

Re-envisioning end-user programmers as informal computer science learners opens

numerous research directions. We can move beyond simply building new technologies

that enable end-user development and begin asking questions about how the end

user comes to understand computing by taking part in software development. Some

obvious questions emerge: What do EUPers know about computer science? How do

they go about acquiring new knowledge? How might we design learning environments

that scaffold their independent learning processes?

The purpose of this dissertation is to explore informal learning among one partic-

ular end-user programmer population, in order to:

• understand the programming knowledge currently held by users,

• describe the processes by which such users learned what they know,

• develop an educational resource which is easily integrated into current informal

learning practices, and

• show that such a resource can promote measurable learning of computer science

concepts.

In particular, I am concerned with supporting end-user programmers’ development

of “normative” computing knowledge. With the term normative here, I mean to ex-

plore standard computing concepts identified by mainstream introductory computing

education curricula (e.g., those of CC2001 (The Joint Task Force on Computing Cur-

ricula, 2001)). I have chosen to focus on a subset of these topics here for two reasons.

First, as a discipline, computing educators have built significant curricula on top of

3

a collection of basic programmatic constructs that are similar across most introduc-

tory CS experiences (Tew & Guzdial, 2010). Given that programming fundamentals

comprise a large portion of the core computing body of knowledge (The Joint Task

Force on Computing Curricula, 2001), I believe these concepts are valuable for all

people engaged in scripting or programming activities. Second, and perhaps more

important, my formative work suggests there is an opportunity to enhance end-user

programmers’ productivity by providing them with additional knowledge about basic

concepts related to testing and code modularity.

1.1 Graphic Design End-User Programmers

There are many distinct end-user programming domains in which to situate this dis-

sertation work. I have chosen to explore these issues among web and graphic design

professionals who write scripts as part of their daily tasks. I have chosen to examine

this group of users because they are a large but previously unstudied population, and

they already make use of scripting languages closely resembling traditional program-

ming languages (i.e., they do not use highly domain-specific systems like spreadsheet

formulae for their scripts).

Graphic/web designers and others involved in media editing make up a relatively

new and growing group of end-user programmers. In the realm of image editing,

professional software packages like Adobe Photoshop and GIMP implement built-in

scripting interfaces via languages like JavaScript, Scheme, and Python. To give a sense

for the type of code written in this environment, Figure 1 illustrates a short example

written in ExtendScript, Adobe’s implementation of JavaScript, which automatically

generates 10 frames for an animation that rotates an image 360 degrees in Photoshop

CS2.

Experienced programmers immediately recognize many common aspects in this

4

// Setup units and document references

preferences.rulerUnits = Units.PIXELS

var docRef = documents [0]

// Resize canvas to be large enough in both dimensions

var diagSize = Math.sqrt(Math.pow(docRef.height , 2) +

Math.pow(docRef.width , 2))

docRef.resizeCanvas(diagSize , diagSize)

// Generate 10 layers for the animation frames

for (var i = 0; i < 10; i++)

{

var toRotate = docRef.artLayers [0]. duplicate ()

toRotate.name = "View " + (i + 1)

toRotate.rotate (36)

}

Figure 1: Example ExtendScript for Generating Frames

example: variable declaration and use, mathematical computation, looping con-

structs, method invocation using the dot-notation, and explanatory comments.

Closer examination also reveals that statements like references.rulerUnits... and

docRef.resizeCanvas(...) make use of an extensive API. In fact, Photoshop is accom-

panied with a 335-page scripting reference manual for ExtendScript (Adobe Photoshop

CS2 JavaScript Scripting Reference, 2005) that is not unlike documentation found

for the Java API.

In formative work, I conducted an online survey of graphic and web designers who

script in order to gain insight into the scope of their activities (Dorn & Guzdial, 2006).

Responses indicate that these users are taking part in substantial programming. They

write scripts of significant length and level of sophistication, despite having little to

no formal training in computer science. Through scripting, they build software to

do things like achieving custom effects not available in the standard tool set and

automating batch jobs to cut down on repetitive tasks. They report relying heavily

on code examples and documentation like FAQs to learn. They reported a high

propensity to reuse existing code (their own and that of others) and to share the

scripts they produce with others.

5

Through this dissertation I will provide a detailed characterization of this user

population that reinforces the observations from this formative study. In particular I

will present research data about their knowledge of introductory programming con-

cepts, their learning strategies, and the instructional content of resources that they

use.

1.2 The Case for Cases

Heavy reliance on example code and frequently asked question style documentation

suggest that there is significant potential to use case-based learning aids to scaffold

learning about computer science topics for this community. In essence, case-based

learning aids distill the experiences of others, presenting them as a library of case

examples wherein important lessons are clearly identified, to help novices learn about

a skill or task (e.g., Guzdial & Kehoe, 1998; Goel, Kolodner, Pearce, Billington, &

Zimring, 1991).1 Put simply, case-based learning aids give learners a set of worked

examples that highlight particular pieces of information relevant to the solution.

With respect to graphic design EUPers, a case might contain an initial problem

statement like: “I want to write a program that removes all non-visible layers from a

Photoshop image.” The case might then include sample input images, a narrative of

how the problem was solved, and a code listing of the final solution. The narrative

would also introduce necessary computing concepts which are necessary to solve the

problem in general (e.g., recursion in this particular case).

Case-based learning aids are a promising means to present computer science con-

tent to EUPers for several reasons. The survey showed the most highly rated sources

of support for learning were examples of similar tasks from which users could bor-

row ideas and/or copy code, followed by FAQs and tutorials. Case-based educational

materials are centered around specific tasks and source code, making them a close

1A more thorough discussion of case-based learning aids is presented in Chapter 2.

6

fit for reported user practices. Users can continue to use strategies developed while

searching other code repositories online, but they will also encounter supplementary

information about the solution that goes beyond source code. My analysis of an

existing project repository found that many topics were simply not present in user

submitted code, and further that most of the projects were, at best, sparsely com-

mented (Dorn, Tew, & Guzdial, 2007). A moderated case library could more directly

target which concepts are to be explored and make important concepts salient, rather

than rely entirely on community submissions.

In this dissertation I provide substantial evidence in support of case-based learning

aids for graphic and web design end-user programmers. Further, I report on the

development and evaluation of ScriptABLE, a case-based learning aid designed to

scaffold learning of computing concepts among graphic design end-user programmers.

Specifically, I will address the following thesis statement with this work.

1.3 Thesis Statement

A case-based learning aid for graphic and web design end-user programmers can

leverage current user practices of project and example-driven learning, promote the

use and browsing of instructional content, and thereby foster the appropriation of

knowledge about normative programming concepts.

1.4 Research Questions

To address this thesis statement, I pose four research questions which will be inves-

tigated in three studies. The first two questions provide the necessary foundation to

inform the design and content of a new case-based learning aid named ScriptABLE.

The final two questions pertain to the evaluation of this resource’s effectiveness. I will

discuss each of these three studies in turn in the remaining sections of this chapter.

RQ1: What is the nature of graphic/web design end-user programmers’

7

knowledge of normative computing concepts?

RQ2: What learning practices do graphic/web design end-user program-

mers currently employ, and to what extent do typical resources provide

opportunities to learn about normative computing concepts?

RQ3: How does the presentation of conceptual information as a case

library influence the way end users interact with resources?

RQ4: To what extent does ScriptABLE as a case-based learning aid en-

able the appropriation of computing knowledge for users actively engaged

in project-oriented programming activities?

1.4.1 Understanding Current and Learning Strategies

The first study in this dissertation focused on aspects of research questions one and

two. To examine what users know about a set of introductory programming concepts,

I conducted a card sorting activity with practicing web and graphic designers to elicit

their knowledge. By comparing the results of individual sorts, I identified a limited

collection of concepts that participants rate as difficult, misunderstood, and infre-

quently used. These findings show natural opportunities for additional conceptual

learning. I also used a semi-structured interview to gather qualitative data about

web and graphic designers’ learning strategies related to scripting and programming.

Findings from the interview data point to example and project-driven aids as scaffolds

to promote learning while also matching users’ current information seeking strategies.

1.4.2 Examining the Conceptual Coverage of a Script Repository

In the second study, I investigated the degree to which an existing popular web-

based resource for web and graphic design scripting contained instructional content

related to introductory programming concepts. I performed a content analysis of

all example scripting projects posted on Adobe’s online repository for user-generated

8

scripts. I found a noticeable lack of content for those concepts previously identified as

difficult and misunderstood by my target user population. While this repository has

visibility and credibility stemming from its corporate host, I argue that it is somewhat

deficient as an educational resource—it lacks sufficient example content to support

learning that the target audience needs.

1.4.3 Evaluating the Effectiveness of Case-Based Learning Aid

The last study of this dissertation investigated research questions three and four—

how presenting conceptual computing content in a case library alters information

seeking behaviors and how it can support measurable learning of these concepts. I

distilled the findings of the first two studies to a set of concrete design guidelines

for educational resources to support graphic and web design end-user programmers.

From these guidelines I designed and implemented a novel case library that explicitly

targets a limited set of programming concepts. I then performed a laboratory study

with users to measure the case library’s effectiveness. I found evidence that using

a case library encourages browsing navigation behaviors and reduces use of search

features. Additionally, I verified that structuring programming content knowledge

within a case library can indeed foster the development of normative conceptual

understanding for end-user programmers.

1.5 Structure of the Dissertation

This dissertation is made up of six chapters beyond this introduction:

• Chapter 2 discusses related research literature from human-computer interac-

tion, the learning sciences, and computing education.

• Chapter 3 presents the first of the three studies. In it, I outline findings related

to web and graphic designers’ current knowledge of programming concepts and

the strategies they used to learn new information.

9

• Chapter 4 details the content-analysis study that I conducted to explore the

degree to which an existing scripting resource could support learning of intro-

ductory computing concepts for web and graphic designers.

• Chapter 5 distills design goals for a new web-based instructional resource for this

end-user programmer population. I then present the design and implementation

of ScriptABLE, a case-based learning aid built with these goals in mind.

• Chapter 6 describes the evaluation study I conducted for ScriptABLE and de-

tails my findings in support of case-based learning aids for web/graphic design

end-user programmers.

• Lastly, Chapter 7 provides explicit answers to the research questions based on

the findings presented in earlier chapters. I also outline the contributions of this

dissertation and briefly comment on potential future research directions.

10

CHAPTER II

BACKGROUND AND RELATED WORK

This chapter begins with a broad overview of prior end-user development research

looking at both the challenges end-user programmers face and several recent attempts

to mitigate these difficulties. I then differentiate this dissertation work from existing

efforts as a learner-centered approach, rather than a strictly user-centered one. I

conclude the chapter by introducing relevant literature from the learning sciences

community.

2.1 Supporting End-User Programmers

The underlying challenge in supporting end-user programmers lies in the need to

empower them to perform tasks for which they lack knowledge and skill. As Beringer

(2004) puts it:

As an expert design topic, end-user development (EUD) is rather new

to human-computer interaction (HCI), although it is implicitly embedded

in many design projects. What makes EUD different from other HCI

topics is that in traditional HCI terms, users are experts in their tasks,

and good tools should match these tasks. Conversely, end-user developers

are trying to complete development tasks in which, by definition, they

are not experts. Therefore, the dominating design goal of EUD tools

is to compensate for a discrepancy between the user’s expertise and the

development task to be performed. (Beringer, 2004, p. 39)

The prevailing research direction that stems from this view is one that seeks to

change the activity of programming to better fit the end user. Thus, there are field

11

studies of EUPers in their natural work environments (e.g., Wiedenbeck, 2005), and

there are lab studies exploring feature use patterns among different groups of end-

users (e.g., Beckwith et al., 2006). Activities like these ultimately feed into the devel-

opment of new programming environments and languages designed to minimize user

frustration (e.g., Leshed, Haber, Matthews, & Lau, 2008; Burnett et al., 2001). To

further depict existing research approaches, I will briefly discuss three representative

EUP approaches.1

2.1.1 Programming by Demonstration

The first solution is a general class of work classified as programming by example

or programming by demonstration (PBD). The motivation behind PBD efforts is

that creating programs ought to be as straightforward as “showing” the computer

an example of what it is that the user would like to accomplish (Cypher, 1993).

That is, they minimize (or entirely eliminate) syntax in favor of recording facilities

through which users specify their intended process. Dozens of PBD systems have been

developed over the last two decades implementing this basic approach. For thorough

reviews of PBD systems, see Cypher (1993) and Lieberman (2001).

One of the more recent systems to subscribe to a PBD approach is CoScripter

(Leshed et al., 2008; Little et al., 2007). CoScripter is a collaborative scripting

environment for automating web-based processes. Using a web browser plugin, the

system records user actions and saves them in a human readable form that can be

played back at a later time. The system utilizes the inherent structure of web pages

and the limited domain of available actions on the web to infer user intent.

For example, a user might want to create a script that performs a Google search

on his or her name. The user would begin recording and navigate to http://www.

google.com. The user would then enter his or her name as a search term and click

1For a more complete depiction of the EUP field, see Lieberman, Paternó, and Wulf (2006).

12

the search button. Meanwhile, CoScripter watches the user’s actions and creates a

script that will perform this series of operations. Additionally, the system recognizes

that the user’s name matches a personal variable called “name” and will automatically

substitute the variable’s value during playback, rather than relying on the static string

input during recording. This way the script can be shared with other people and will

work without any editing.

PBD systems suffer from some basic limitations. The most obvious is that script

playback often requires that the playback environment matches the original environ-

ment exactly. In the case of CoScripter, changes in the structure of the web-pages

visited by the script could interfere with correct script operation (Leshed et al., 2008).

The inference based approach for determining a user’s intent in PBD systems also is

problematic because as the context in which the programming task must take place

grows, the more difficult it becomes to unambiguously decide what the user means to

do every time. Lastly, the flexibility of PBD systems is significantly more limited than

general purpose programming environments due to the reliance on user performable

actions.

2.1.2 Natural Language Approaches

An alternative to the PBD approach is to reduce the complexity of programming

languages, thereby making them easier to use and/or less prone to error. The basic

idea is to derive programming syntax that leverages human knowledge of natural

language. That is, we should be able to write executable programs that match how

we would normally describe the solution in every-day language.

There are numerous projects that seek to develop new syntax that is more human

friendly. The HANDS system (Pane, Myers, & Miller, 2002) is a recent example of

a programming environment in this category. HANDS is a programming system for

13

children that was designed “to provide a close mapping between the way the pro-

grammer envisions a problem solution and the expression of that solution in program

code” (Pane et al., 2002, p. 199) Its syntax was derived from non-programmers’ En-

glish descriptions of solutions to programming problems (e.g., game design) (Pane,

Ratanamahatana, & Myers, 2001). These studies resulted in a syntax that is largely

event based (rather than declarative) and makes heavy use of aggregate operations

across sets of data (rather than element by element manipulation).

However, design decisions ultimately determine which aspects of natural language

can be interpreted by the computer, and the potential for users to incorrectly transfer

existing knowledge shifts to other grammatical constructs. For example, Bruckman

and Edwards (1999) analyzed programming errors made by children in MOOSECross-

ing, which features a syntax designed to resemble natural language. They discovered

that about 10% of all errors were still attributable to natural-language transfer issues,

and some 70% of these were the result of syntax errors or children making guesses

about how to do things based on their knowledge of English. Though their results are

encouraging, a fundamental challenge for natural language approaches remains—the

need to balance support for the ambiguity and multiple forms of expression in natu-

ral language with the need for precision and specificity in formal grammars (Little &

Miller, 2006).

In light of this, it is fitting that Nardi (1993) challenges the premise that “end users

should be shielded from having to use . . . formal languages” (p. 27) and enumerates

several examples in which people employ formal languages in daily life with ease (e.g.,

knitting instructions, baseball play tracking). Instead, she argues for highly domain-

specific formal languages. Examples of such targeted domain-specific languages might

include the Excel formula language, Wiki markup languages, and the ColdFusion

Markup Language.

14

2.1.3 Automating Meta-Programming Tasks

The last approach I consider targets aspects of the programming task that are not

necessarily tied to syntactic challenges. Along with writing program code, software

development involves a number of other tasks. These include, but are not limited

to, debugging, testing, and maintenance. Recognizing that end-user programmers

also face challenges with these aspects, researchers have also begun exploring ways to

facilitate these meta-programming tasks.

In particular, user testing of spreadsheet formulae has received considerable at-

tention. Using the Forms/3 spreadsheet system (Burnett et al., 2001), Burnett et al.

have been exploring ways to encourage users to fully test their code (Wilson et al.,

2003). The system is designed as a collaboration between the software and the user.

As a user creates interconnected formulae in a spreadsheet (i.e., when a formula uses

cells that are the output of one or more other formulae as input), the system builds

an internal model of the formula execution graph. This model contains all possible

paths resulting from branches in the formulae (e.g., if expressions). The system then

encourages users to test various input values and verify the output by highlighting

cell borders with various colors representing the cell’s “testedness” (Wilson et al.,

2003). As the user verifies values, the system updates the internal model, eventually

leading to a model that is completely verified by the user.

Approaches to automating meta-programming tasks are promising, but they may

be hindered by the complexity of the programming task in general. The solution pro-

posed within the spreadsheet domain is tractable within the limited problem space

of the formula language, but this may not scale well to end-user programming tasks

using more general scripting languages. It is well known that the formal modeling

necessary to verify simple programs is cumbersome even for professional program-

mers. This is not to say, however, that verification systems for end-user programmers

15

should be abandoned—they have demonstrated their effectiveness in some applica-

tions. Rather, I argue that extending these techniques to end-users writing code in

languages like JavaScript is non-trivial.

2.2 Users as Learners

Stepping back from particular approaches, we might ask more broadly what is it that

makes programming daunting for end-users in the first place. In a study of non-

programmers learning to use Visual Basic.NET to create GUI applications, Ko et al.

(2004) identified six types of learning barriers. These barriers are summarized below:

• design: inherent difficulties in conceptualizing a solution to the problem

• selection: issues locating and selecting the relevant programming components

and interfaces from those made available by the system

• coordination: problems properly composing selected components into a work-

able solution

• use: properties of the programming interface that obscure an element’s usage

or its effect

• understanding: difficulties that arise as a result of a mismatch between a

program’s external behavior (e.g., at runtime) and learner expectations

• information: challenges caused by an inability to inspect a program’s internal

behavior to test learner hypotheses

The approaches presented in the previous section pose technical solutions to one

or more of the six learning barriers posed by Ko et al. It is not surprising that,

as much of this research has taken place within HCI, these solutions are highly in-

fluenced by the user-centered design (Norman, 1988) process. In fact, Ko et al.’s

16

discussion of their learning barriers explicitly likens them to Norman’s work and

states “we can adapt Norman’s recommendations on bridging gulfs of execution and

evaluation to programming system design” (2004, p. 202). The solutions attempt to

abstract away the intricacies of programming languages or automatically complete

onerous programming chores, like testing, behind the scenes. The net effect is that

the question answered by this stance is: “How can programming be made easier?”

While searching for answers to this question is no doubt useful, we might also ask a

different question: “How can acquiring programming expertise be made easier?” If we

recognize that Ko’s barriers are analogous to the barriers that all novice programmers

encounter (see e.g. Spohrer & Soloway, 1985; Du Boulay, 1989; Green & Payne, 1984;

Felleisen, Findler, Flatt, & Krishnamurthi, 2004), we might suggest that the necessary

solutions are pedagogical, rather than technological. The goal, then, is not to solely

focus on creating novel programming interfaces, but to investigate ways to facilitate

the informal learning about programming that takes place within end-user contexts.

Rather than hide the complexity of the programming task, I seek to enable users

to more easily learn about the complex aspects of the task that are relevant (i.e.,

worthwhile) to their goals.

This distinction between user-centered and learner-centered views is significant.

As Soloway, Guzdial, and Hay note, “if addressing the needs of users is the driver,

then it is natural to focus on ease of use; if addressing the needs of learners is the

driver, then it is natural to focus on the development of understanding, performance,

and expertise” (1994, p. 47). Supporting the learner-as-user requires a wholly differ-

ent approach from traditional user-centered design (Guzdial, 1999). While end-user

programmers tend to be experts in their primary domain (e.g., graphic design, ac-

counting), they are simultaneously novices with respect to programming—they are

learning about programming and computer science as they work. Central to this

task should be resources that help them develop a more expert understanding of

17

programming.

This dissertation focuses on this unexplored space in the end-user programming

literature. I take the general-purpose programming language (JavaScript) used by

web and graphic designers, for better or worse, as a given. My goal is to explore

their challenges through a learner-centered lens. I seek to better understand what

graphic/web design EUPers currently know about computing, their current learning

strategies, and how to design relevant educational resources that enable users to

extend their knowledge of the computing field. The remainder of this chapter explores

relevant learning theories and pedagogic strategies.

2.3 Situated Learning

For end-user programmers, the nature of learning is a situated endeavor. They piece

together their understanding of programming over time by interacting with tools

and programming environments to solve specific problems, seeking information from

books and online resources, and asking for assistance from other people (Dorn &

Guzdial, 2006, 2010). Knowledge in this environment is distributed across the various

components (Hutchins, 1995). Developing an understanding of what is learned and

how it can be facilitated is a process of discovering and leveraging the successful

activity patterns already in place (Greeno, Collins, & Resnick, 1996).

The situated view of learning has been applied in many learning scenarios. Lave

and Wenger propose that learning occurs through legitimate peripheral participation

within a community of practice (Lave & Wenger, 1991). The nature of the social

contexts in which novices participate motivates and drives all learning. As a learner

acquires skill, he or she becomes a more central participant in the community. Ap-

prenticeship environments are the canonical examples of this learning, and Lave and

Wenger illustrate the benefits of analyzing learning in this way by applying it to

midwives, butchers, and members of Alcoholics Anonymous (Lave & Wenger, 1991).

18

Other studies using a situated lens have led to a deeper understanding of how skills

like mathematics are used in real world environments (see e.g., Rogoff & Lave, 1999;

Roth, 2005).

Central to the situated perspective on learning is that knowledge and skills are

developed as a result of engagement in tasks that are meaningful. These tasks might

relate to one’s profession, one’s hobbies, or other aspects of one’s life. Guzdial and

Tew (2006) argue that for instruction to be effective, it necessarily must be perceived

as authentic to and closely aligned with such tasks (i.e., with the learner’s commu-

nity of practice (Lave & Wenger, 1991)). Thus, supporting learning among end-user

programmers requires not only the development of instruction that matches practices

in existing activity patterns, but also the creation of instructive content that relates

topics to specific situations they recognize as relevant.

With this in mind, case-based approaches to instruction seem a natural fit. Prior

research has suggested the importance of code examples in the informal learning

strategies of end-user programmers (Dorn & Guzdial, 2006; Rosson, Ballin, & Rode,

2005), and I will present additional evidence to this point in Chapter 3. Case-based

instructional materials would leverage EUPers’ tendencies to seek out related exam-

ples while also presenting information situated in the context of meaningful tasks. In

the following section, I provide an overview of case-based learning aids and present

three theoretical perspectives that inform their use.

2.4 Case-Based Learning Aids

Case studies have been employed as a tool to promote learning in many educational

settings. In a general sense, a case provides a narrative description of the process

by which experts devise a solution to a given problem. Students learn from cases by

studying their content, asking questions, making predictions, considering alternatives,

and comparing them to other cases.

19

In computing, case studies have been used as a means to help foster both program-

ming language knowledge acquisition and problem-solving skill development (Linn &

Clancy, 1992). Clancy and Linn’s Designing Pascal Solutions: A Case Study Ap-

proach provides a general structure for the presentation of programming cases and

outlines a course-length set of examples for teaching computer science (Clancy &

Linn, 1995). Each case includes a statement of the problem, a narrative description

of an expert’s solution, a complete code listing of the solution, a series of questions for

the learner to consider about the case, and a number of related assessment questions.

Empirical results suggest that the expert commentary about the solution is a key

feature of cases that increases the amount one learns (Linn & Clancy, 1992).

Built on the concept of cases, Kolodner, Owensby, and Guzdial define a case-

based learning aid as “a support that helps learners interpret, reflect on, and apply

experiences . . . in such a way that valuable learning takes place” (2004, p. 829). In

practice, these learning aids often take the form of case libraries (i.e., collections of

cases) in order to enable learners to compare and contrast interrelated cases. This

increases the likelihood that a learner will be able to infer the conditions under which

the solution approaches are applicable (Bransford, Brown, & Cocking, 2000).

Such case-based learning aids have been designed and deployed in design domains

like architecture and object-oriented programming. Archie (Pearce et al., 1992; Goel

et al., 1991) and its descendant Archie-2 (Zimring, Do, Domeshek, & Kolodner, 1995)

provided libraries of architecture case studies intended to support graduate students

in architecture while creating new designs. For example, they contained cases that

explored different ways of providing natural light into a building, helping students to

consider alternatives to their design problems. In software design, Guzdial and Kehoe

(1998) created STABLE (SmallTalk Apprenticeship-Based Learning Environment) as

a resource for students in an object-oriented design course. It contained multiple

correct solutions by previous undergraduate students in the same course on similar

20

assignments. Evaluation results showed that students often used STABLE to find

code fragments related to their current assignments, but in doing so, they gained new

insights into object-oriented design (Guzdial & Kehoe, 1998).

The following three sections introduce case-based reasoning, cognitive load theory,

and minimalist instruction. These educational models justify my application of case-

based learning aids. In each section I outline the model and how it relates to cases

for education.

2.4.1 Case-Based Reasoning

Case-Based Reasoning (CBR) was originally developed as a means to further rea-

soning abilities of expert systems implemented with computers (Kolodner, 1993). It

leverages human tendencies to reference previous experiences when solving new prob-

lems. CBR systems allow computers to recall previous similar situations (i.e., cases),

compare the prior circumstances to the current situation, and adapt the strategies

used in the previous case. Additionally, the computer system stores the new problem’s

solution and any information learned in the process (e.g., failures in the adaptation,

violations of expectations). The expert system learns as it builds a progressively

larger and more thoroughly indexed case base by experiencing additional problem

scenarios.

The CBR computational model has been appropriated by education and learning

sciences researchers as a way to think about human cognition and the design of

learning environments (Kolodner, 1997). This cognitive model has several direct

implications for promoting effective learning (Kolodner et al., 2004):

1. Failure plays an important role in learning, and learners must receive feedback

in order to identify holes in their understanding.

2. Explanation is crucial in case refinement, and learners should be supported to

make predictions and to explain outcomes.

21

3. Case reuse is achieved by thorough indexing; learners need to reflect on their

experiences in order to distill what is learned and the conditions under which

it applies.

4. Knowledge is enhanced through a process of incremental case refinement, and

learning occurs through repeated exposure.

5. Previous experiences provide the basis for reasoning and learners should be

encouraged to reuse their own experiences and the experiences of others.

In providing direct access to the experiences of others, case libraries have a number

of features that align well with CBR’s suggestions (Kolodner et al., 2004). Their

explanatory discussion of problem solutions can easily incorporate failure points and

guidance for others in similar situations. The library’s user interface can explicitly

provide indexes of the library and link related cases together. Their structure, if well

designed, provides an example for learners in how to organize their own knowledge

and experiences.

2.4.2 Cognitive Load Theory and Worked Examples

Introduced by Sweller (1988), Cognitive Load Theory (CLT) seeks to inform and guide

instructional design based on underlying cognitive architectures. CLT presumes a hu-

man cognitive model comprised of long term memory and working memory. Learning

takes place as a result of human interactions with the environment (i.e., senses and

actions). As a person makes sense of something, he/she recalls existing knowledge

from long term memory and manipulates this knowledge along with new information

in working memory. Finally, learning occurs when these knowledge structures, called

schemas, are encoded and stored back in long term memory.

The challenge from an instructional design perspective is that short term working

memory has a limited capacity. Sweller (1988) argues that when novices are given

22

problem solving tasks, they often either lack or fail to recognize relevant schema in

long term memory. In this situation, learners must resort to sub-optimal sense making

strategies (e.g., means-ends analysis) that place a high degree of cognitive burden

on working memory. When used in this way, less working memory is devoted to

schema construction and learning efficiency decreases. Thus, CLT proponents posit

that instructional environments and materials must be designed so as to mitigate

demands on working memory.

Sweller and Cooper (1985) point to “worked examples” as instructional resources

that are well-aligned with CLT. Put simply, a worked example is a description of the

process by which a problem is solved focusing on various problem states and steps

needed in the solution (Caspersen & Bennedsen, 2007).

Research results provide empirical support for using worked examples. Early

experiments with students learning algebra indicated that students learning through

interaction with worked examples indeed facilitated knowledge acquisition when com-

pared to a control group using traditional methods (Sweller & Cooper, 1985). In a

study of novice recursion instruction, Pirolli (1991) explored the use of instructor-

provided examples. In addition to concluding that the examples aided learning,

he discovered that examples written to explain how a solution was reached (how-

it’s-written) were more instructionally efficient than examples that explained how a

solution works (how-it-works).

Cases are, by definition, a form of worked example. Further, as described here,

case-based learning aids closely resemble collections of Pirolli’s “how-it’s-written” ex-

amples. A case’s structure highlights the process by which the problem is solved and

introduces the necessary abstract domain knowledge along the way. In a sense, these

narratives externalize mental schemas employed by the author for direct inspection

by novices. In theory, learning by studying cases reduces the amount of informa-

tion which must be inferred by the learner about the problem solution, and should

23

therefore reduce the burden on working memory.

2.4.3 Minimalist Instruction

The Minimalist model of instruction is the result of research from the mid 1980s that

attempted to better assist users of early computer applications like word processors

(Carroll, 1990). At its core, minimalist instruction emphasizes realistic scenarios in

which users are learning by doing. Recognizing that people naturally seek informa-

tion in order achieve a task, tutorials and documentation designed in the minimalist

fashion organize and present information around activity. This is in contrast to other

instructional design approaches that favor alternative concerns like logical decompo-

sition and conceptual ordering.

Whether applied to simple tasks like word processing or complex tasks like object-

oriented programming, minimalist instruction is driven by four design principles (Car-

roll, 1998):

1. Information should be action-oriented. Users should be given the opportunity

to take meaningful action and should be encouraged to try things out for them-

selves.

2. Information should be anchored in the activity. Instructional activities should

incorporate authentic tasks from the user’s domain.

3. Instructional materials should support error recognition and recovery. Users

should be presented with information about common errors as well as error

diagnosis and recovery that pertains to the actions at hand.

4. Information should serve as scaffolding that promotes user independence.

Carroll and Rosson (2005) argue that case-based learning aids, when properly

designed, can serve quite naturally as minimalist information sources. As narrative

24

descriptions of solutions to problems, they are inherently oriented towards action and

activity. “They provide guidance and encouragement for user action by describing

specific activities, events, and problems from real world practice” (Carroll & Rosson,

2005, p. 4). At the same time they present necessary technical information as part of

the broader narrative. Cases can be written to highlight common pitfalls and failures

associated with the example scenario. Lastly, cases serve as explicit models of expert

practice and exposure to multiple cases guides users towards autonomous action.

2.5 Chapter 2 Summary

In this chapter I have motivated the need to support end-user programmers in their

software development efforts. I described three current approaches to this endeavor

from recent literature: programming by demonstration, natural language systems,

and automation of meta-programming tasks. I then argued for the need to view

EUPers as novices engaged in activity-driven learning, rather than merely users of

software tools. Recognizing that they often obtain their knowledge about program-

ming beyond the confines of formal educational environments, I proposed case-based

learning aids as a means to provide EUPers access to instruction about computing

concepts.

25

CHAPTER III

CURRENT KNOWLEDGE AND LEARNING

STRATEGIES OF END-USER PROGRAMMERS

Whether designing new programming languages, tools, or educational interventions,

a thorough understanding of the target users or learners is required. There is consid-

erable research about what traditional novice programmers do and do not understand

(see e.g., Du Boulay, 1989; Green & Payne, 1984; Lewandowski, Gutschow, McCart-

ney, Sanders, & Shinners-Kennedy, 2005; Sanders et al., 2005; Spohrer & Soloway,

1985), but these studies consider students in formal learning environments. End-

user programmers and many people engaged in scripting activities often learn about

scripting and programming without the aid of a classroom (Dorn & Guzdial, 2006).

There is very little empirical data about how such non-traditionally trained program-

mers grasp conceptual computing knowledge. A detailed characterization of their

understanding is necessary in order to appropriately design tools and resources that

scaffold end-user development processes.

This chapter presents a study which provides a detailed depiction of what aspects

of programming fundamentals one group of non-traditional software developers un-

derstand and how they go about learning.1 This study is contextualized within the

domain of professional web design and development, whose members make up a large

and diverse group of end-user programmers. They regularly engage in programming

activities, making use of textual markup and scripting languages like HTML, CSS,

JavaScript, and PHP. In studying practicing web developers here, I am able to explore

1This chapter is based on the earlier work (Dorn & Guzdial, 2010): c©ACM, 2010. http:

//doi.acm.org/10.1145/1753326.1753430

26

notions of programming among a group of people who program in their careers but

may lack a traditional educational background in computing. In this chapter I focus

on the first two research questions posed in the introduction to this dissertation.

RQ1: What is the nature of graphic/web design end-user programmers’

knowledge of normative computing concepts?

RQ2: What learning practices do graphic/web design end-user program-

mers currently employ, and to what extent do typical resources provide

opportunities to learn about normative computing concepts?

More specifically, for this study I have operationalized these questions as follows.2

RQ1.1: What programming concepts do web developers recognize, and

to what degree do they understand each?

RQ1.2: How do web developers think about and associate foundational

programming concepts with one another?

RQ2.1: What processes do web developers use to learn new programming

concepts as they go about their work, and on what resources do they rely?

The remainder of this chapter begins with an outline of the study design and

methods used. Then, I briefly discuss participant demographics and background.

The primary results are presented in three sections. The first two sections focus on

how participants categorized various computing concepts in a card sorting task. This

is followed by a discussion of themes about learning derived from interview data. I

conclude the chapter by highlighting the findings directly with respect to research

questions.

2Note, the scope of RQ2 is not exhaustively covered by RQ2.1. Chapter 4 will address the later
portion of this question.

27

3.1 Study Protocol

This study was conducted face to face and consisted of three separate parts. First,

participants completed a survey that gathered basic demographic information and

details about their professional background. Next, participants engaged in a card

sorting activity about various introductory computer science concepts. Finally, I

ended each session with a semi-structured interview. The sorting task and interview

are discussed in more detail in the following subsections.

3.1.1 Card Sorting Task

Card sorting is a general purpose elicitation technique that can be applied in a wide

range of settings (Rugg & McGeorge, 1997). At its most basic, it involves partici-

pants grouping items from a set of stimuli (e.g., pictures, words) into categories based

on similarity along some dimension. Sorting tasks may be either closed, where par-

ticipants are provided with the sort criteria and fixed categories in which to place

the cards, or open, with participants developing their own criteria and categories.

Through categorizing the physical cards in multiple ways, participants provide in-

dications of their own mental representation of the concepts (Fincher & Tenenberg,

2005).

Card sorts are often employed in HCI as a usability tool for gaining an under-

standing about how users might naturally group certain aspects of a designed artifact

(e.g., placement of content on web sites (Katsanos, Tselios, & Avouris, 2008)). How-

ever, categorization tasks also allow one to investigate a person’s existing knowledge

about the stimuli. Fincher and Tenenberg argue that card sorting “can be effec-

tive in eliciting our individual, and often semi-tacit, understanding about objects in

the world and their relationships to one another” (2005, p. 90). Accordingly, com-

puter science education researchers have successfully used card sorting to elicit novice

programmers’ knowledge of fundamental computing concepts with cards containing

28

terms about programming (Lewandowski et al., 2005; Sanders et al., 2005).

Building on Sanders et al.’s (2005) work, I used card sorting to explore web de-

signers’ and developers’ knowledge of introductory computing concepts. I developed

a set of 26 cards containing terms from Sanders et al.’s study as well as terms from

another study I conducted to explore common introductory constructs found in an

online repository of scripting code (this study will be described in detail in Chap-

ter 4). After merging the two lists, I removed any duplicated terms and eliminated

terms that lacked concreteness or relevance to the web programming domain (e.g.,

dependency, thread). That is, I ensured the list of terms had clear syntactic repre-

sentations in JavaScript. The final cards contained the concepts listed below, with

one term per card.3

• input

• output

• mathematical operator

• relational operator

• logical operator

• function

• importing code

• functional decomposition

• object

• exporting code

• assignment

• variable

• parameters

• variable scope

• constant

• selection statement

• nesting control structures

• definite loop

• indefinite loop

• recursion

• exception handling

• number

• boolean

• string

• array

• type conversion

The task consisted of a repeated single-criterion card sort with both open and

3The formatting of the actual cards used for the study can be found in Appendix A.

29

selection statement 8A

definition: a control structure that allows different parts of a

program to execute depending on the exact situation

if (condition)

{

…

}

else

{

…

}

Figure 2: Example Card with Definitions

closed sorts. The first four sorts were explicitly prompted by me; these closed sorts

explicitly explored participants’ recognition and understanding of the 26 terms. The

first sort is particularly notable in that it asked participants to separate the cards

based on whether they recognized the term or not. Because I sought to explore

participants’ understanding of the underlying concepts and not simply vocabulary

recognition, I had them repeat the sort for any cards originally placed in the “don’t

recognize” category. In this extra sort, I provided cards that contained the unfamiliar

term, its definition, and a JavaScript example of the concept in use (see Figure 2; all of

the cards with definitions are available in Appendix A). Definitions were drawn from

the glossaries of introductory textbooks (Horstmann, 2006; Lewis & Loftus, 2005;

Zelle, 2004) and adapted where necessary to fit JavaScript. Any concepts recognized

with the aid of this additional information were added to the participant’s “recognize”

category, and any that remained unknown were eliminated from all subsequent sorts.

Following the four closed sorts, participants were invited to openly sort the cards

using one criterion at a time in as many ways as they could generate.

3.1.2 Interview

Once participants had exhausted their ideas for additional open sorts, I conducted

a semi-structured interview that lasted approximately 30 minutes. The interview

30

elicited information about participants’ daily job responsibilities, use of programming

or scripting languages, and use of software tools (e.g., Photoshop). I also inquired

about typical strategies they employ while developing scripts and resources they rely

on to learn new things about programming.

Audio recordings of the interviews were transcribed, and I used a multi-step the-

matic analysis to analyze the qualitative data. Thematic analysis is a qualitative

analytic method that aims to provide a rich and detailed account of the data col-

lected (Braun & Clarke, 2006). The end result of a thematic analysis is a collection

of themes based on common patterns observed in the data (e.g., interview transcripts).

It is important to note that while themes are necessarily repeated by various partici-

pants throughout the interview corpus, it is not the goal of such an analysis to convey

the prevalence or relative importance of the themes.

Coding was done in both a top-down and bottom-up fashion. I coded transcripts

based on particular questions asked of all participants but also allowed for emergent

codes when other themes were mentioned by multiple participants. Additional passes

were made through the transcripts to further refine the codes. Lastly, in prepar-

ing transcript excerpts for presentation in this dissertation, I have edited them as

necessary for anonymity and brevity.

3.1.3 Recruitment

Participants were recruited from a large metropolitan area via email. Solicitation

messages for volunteers were sent primarily to mailing lists for three large Meetup4

groups of local web designers, graphic designers, and users of Adobe Photoshop.

Volunteers were then pre-screened using a short email survey to ensure that they

were actively involved in the web design profession and had prior experience with

writing scripts or programs in JavaScript. Face to face interviews were scheduled

4http://www.meetup.com/

31

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 11 12 avg

Participant

W
e

e
k

ly
 T

a
s

k
 D

iv
is

io
n

Photoshop Scripting

Figure 3: Self-Reported Average Weekly Division of Labor

with participants meeting the study criterion, and participants were compensated

$15 for their time.

3.2 Participant Demographics and Background

In total, I interviewed 12 people—seven men and five women. Ten participants indi-

cated on the survey that they actively work in the web design field, and the remaining

two were students currently enrolled in web design degree programs at local institu-

tions. Most participants (58%) selected “Web Developer” as their job title with only

two people choosing the title “Programmer.”

The participants were well educated. All but two participants (one of whom was a

current student) held a bachelor’s degree, and four participants either had earned or

were pursuing a master’s degree. However only one person held a degree in computer

science. About a third of them held undergraduate degrees in areas related to web

or graphic design (e.g., visual communications) with the rest holding degrees in the

humanities or other fields (e.g., English, psychology, ministry).

I was successful in recruiting broadly from the web design/development commu-

nity with respect to reaching those with a wide range of professional experience. The

32

number of years of experience with Photoshop ranged from 2 to 13 years, and partici-

pants reported between 2 months and 15 years of scripting or programming language

experience. On a scale of 1 (novice) to 5 (expert), the average self reported level of

expertise in scripting was 3.21 (σ = 1.16). Every participant listed exposure to more

than one scripting or programming language with JavaScript, ActionScript, and PHP

being those most frequently mentioned. Figure 3 illustrates participants’ estimated

weekly division of labor between scripting and graphics manipulation in Photoshop.

On average, my participants’ time was split roughly evenly between these two tasks;

however most people tended to concentrate more heavily on one or the other.

When elaborating on the nature of their work, most participants noted being

involved in front-end web development or design. This job often requires them to

build functional web sites from prototypes that have been mocked up with tools like

Photoshop that either they or someone else designed. They make decisions about

how to slice up visual components in the layout so that they render properly across

different browsers, and they write scripts using languages like JavaScript or PHP to

enable the intended interactivity features in the design.

3.3 Closed Sort Results

As mentioned earlier, I asked participants to first sort the 26 programming concepts

into two piles based on whether or not they recognized the term. The results of this

initial sort are presented in Table 1 with concepts ordered by their level of recognition.

Despite the lack of what might be considered a traditional computing education, a

majority of participants recognized nearly all concepts, and ten of the concepts were

universally recognized based on the term alone. The least frequently recognized terms

were selection statement, nesting control structures, and functional decomposition,

with the last being markedly less familiar than all others.

Once provided with cards containing definitions and examples of the concepts, the

33

Table 1: Percentage of Participants Recognizing Card Concepts
CS Concept Term Only With Def’n

assignment 100.0%

input 100.0%

object 100.0%

function 100.0%

parameters 100.0%

array 100.0%

string 100.0%

output 100.0%

number 100.0%

variable 100.0%

mathematical operator 91.7% 100.0%

definite loop 83.3% 100.0%

importing code 83.3% 100.0%

indefinite loop 83.3% 100.0%

boolean 83.3% 91.7%

constant 83.3% 91.7%

exception handling 83.3% 83.3%

type conversion 75.0% 91.7%

exporting code 75.0% 83.3%

logical operator 75.0% 83.3%

relational operator 66.7% 91.7%

variable scope 66.7% 91.7%

recursion 66.7% 83.3%

selection statement 58.3% 91.7%

nesting control structures 58.3% 83.3%

functional decomposition 8.3% 83.3%

34

rate of recognition increased significantly (paired t-test; t(25) = −3.696, p = 0.001).

Over half of the concepts were then familiar to everyone, and the minimum recog-

nition rate increased to 83.3% with this additional information. Many participants

commented on the fact that they did use these concepts often, but they had not

initially recognized the terms simply because they had never learned the names. For

example:

P6: Mathematical operator, goodness gracious. [laughter] I’ve just never

heard it called that before. Plus, minus, sure.

P9: Um, some of them I picked up by seeing the code. I just didn’t

know the name of it, like nesting control structures. You know, putting if

statements and when statements inside each other is common practice in

code, but I just had never given it a name.

3.3.1 Additional Closed Sorts

After participants identified the subset of concepts they recognized, I prompted them

with three additional sorts. Participants sorted the concepts based on their own level

of understanding of the concept, based on how often they use the concepts in scripts,

and based on how difficult they perceive the concepts are to learn. These closed sorts

were intended to provide additional information about conceptual understanding be-

yond simple concept recognition. Results of these sorts are summarized in Tables 2,

3, and 4, respectively. In each table, concepts are sorted by a “rating” value which

is computed as a weighted average of the response frequency across the ordered cat-

egories. For example, in Table 2 categories are assigned values between one and four

(similar to a Likert-type scale) and the rating corresponds to the average value that

participants assigned to this concept. Further, each of these tables divide the upper,

middle, and bottom thirds of the rating values with a double line.

Based on their sorting results, participants reported considerable understanding

35

Table 2: Personal Level of Understanding; Sorted by Decreasing Understanding
CS Concept Rating (1–4) 1 2 3 4

number 3.92 8.3% 91.7%

boolean 3.91 9.1% 90.9%

variable 3.83 16.7% 83.3%

mathematical operator 3.75 8.3% 8.3% 83.3%

function 3.75 8.3% 8.3% 83.3%

array 3.75 8.3% 8.3% 83.3%

object 3.75 25.0% 75.0%

selection statement 3.73 9.1% 90.9%

nesting control structures 3.70 30.0% 70.0%

string 3.67 8.3% 16.7% 75.0%

parameters 3.67 8.3% 16.7% 75.0%

input 3.67 8.3% 16.7% 75.0%

definite loop 3.67 33.3% 66.7%

relational operator 3.64 9.1% 9.1% 81.8%

constant 3.64 18.2% 81.8%

output 3.58 16.7% 8.3% 75.0%

importing code 3.58 16.7% 8.3% 75.0%

logical operator 3.50 10.0% 20.0% 70.0%

assignment 3.50 8.3% 25.0% 66.7%

exporting code 3.50 10.0% 30.0% 60.0%

variable scope 3.45 9.1% 9.1% 9.1% 72.7%

type conversion 3.45 9.1% 27.3% 63.6%

indefinite loop 3.42 16.7% 25.0% 58.3%

exception handling 3.40 10.0% 10.0% 10.0% 70.0%

functional decomposition 3.40 60.0% 40.0%

recursion 2.90 20.0% 20.0% 10.0% 50.0%

36

of and comfort with these concepts. Table 2 shows the rating value for each concept

as well as a breakdown of participants’ self-assessed level of understanding using the

categories:

1. I have heard the term but am not comfortable using it in my scripts.

2. I understand the meaning of the term but have problems using it correctly in

my scripts.

3. I understand the meaning of the term and am comfortable using it in my scripts.

4. I have a strong understanding of the term and feel I could explain it to someone

else.

With the exception of recursion, every concept had a rating of 3 or higher, meaning

that participants understood the term’s meaning and were comfortable using it. The

top two-thirds of topics rated 3.58 or higher, indicating a high degree of knowledge and

an ability to explain the concepts to others. Among the lowest ranked terms were

variable scope, type conversion, indefinite looping, exception handling, functional

decomposition, and recursion. Interestingly, concepts where individual participants

indicated trouble were spread throughout the table and were not localized to the

bottom third, where one might expect.

I also asked participants to sort the cards into four categories depending on how

frequently the concepts were used in code that they wrote. The four categories

provided were Never (1), Rarely (2), Occasionally (3), and Frequently (4). Table 3

presents the results of this sort, ordered by decreasing frequency of use. Unlike the

sort on understanding, the distribution of responses was fairly uniform across the

three tiers—no concept in the top two thirds was placed in the “never” category, and

the six lowest ranking terms were all categorized as frequently used by 50% or fewer of

the participants. In other words, these results indicate a reasonably strong consensus

37

Table 3: Frequency of Concept Use; Sorted by Decreasing Frequency
CS Concept Rating Never Rarely Occasionally Frequently

number 3.92 8.3% 91.7%

string 3.92 8.3% 91.7%

relational operator 3.91 9.1% 90.9%

selection statement 3.91 9.1% 90.9%

boolean 3.91 9.1% 90.9%

logical operator 3.90 10.0% 90.0%

variable 3.83 8.3% 91.7%

mathematical operator 3.83 8.3% 91.7%

array 3.75 8.3% 8.3% 83.3%

object 3.75 8.3% 8.3% 83.3%

definite loop 3.75 8.3% 8.3% 83.3%

parameters 3.73 9.1% 9.1 % 81.8%

nesting control structures 3.70 10.0% 10.0% 80.0%

assignment 3.67 16.7% 83.3%

input 3.67 8.3% 16.7% 75.0%

output 3.67 33.3% 66.7%

function 3.67 33.3% 66.7%

importing code 3.45 9.1% 36.4% 54.6%

functional decomposition 3.40 20.0% 20.0% 60.0%

variable scope 3.36 9.1% 9.1% 18.2% 63.64%

constant 3.18 27.3% 27.3% 45.5%

exporting code 3.10 20.0% 30.0% 50.0%

exception handling 3.10 20.0% 30.0% 50.0%

type conversion 3.09 18.2% 54.6% 27.3%

indefinite loop 3.08 33.3% 25.0% 41.7%

recursion 2.70 10.0% 20.0% 60.0% 10.0%

38

about how frequently these programming concepts arise in typical web development

work. The topics listed in the top third (number to mathematical operator) are

frequently used, and those in the bottom third (importing code to recursion) are used

sporadically.

The final closed sort requested of participants was to categorize their perception of

how difficult the concepts are to learn to use correctly. They were prompted with three

categories for this sort: Easy (1), Intermediate (2), and Advanced (3). Responses on

this sort are outlined in Table 4 and are sorted by increasing level of difficulty. This

sort exhibited the lowest agreement with 73% of the individual concepts being ranked

in all three categories (easy, intermediate, and advanced) by different people. Despite

this variation, the final ordering of concepts maps relatively closely to what one might

find in an introductory textbook table of contents: basic data types and operators;

followed by selection statements and functions; followed by looping, recursion, and

exceptions.

3.3.2 Comparison of Closed Sorts

Comparing the results from Tables 2–4, I observed that many concepts appeared to

be similarly rated in each of the three sorts. Indeed, a Pearson correlation analysis

revealed a statistically significant positive correlation between the ratings for level of

understanding and frequency of use (r = 0.808, N = 26, p < 0.001). I also noted

statistically significant negative correlations between ratings for frequency of use and

learning difficulty (r = −0.641, N = 26, p < 0.001) and between difficulty and

understanding (r = −0.586, N = 26, p = 0.002).

Further I compared the terms with respect to their relative grouping in the tiers

of the three sorts. This provided an indication for the concepts that were uniformly

ranked in terms of the participants’ level of understanding, the frequency with which

39

Table 4: Concept Difficulty to Learn; Sorted by Increasing Difficulty
CS Concept Rating Easy Intermediate Advanced

number 1.08 91.7% 8.3%

boolean 1.09 90.9% 9.1%

relational operator 1.09 90.9% 9.1%

variable 1.17 91.7% 8.3%

constant 1.18 81.8% 18.2%

logical operator 1.20 80.0% 20.0%

string 1.25 83.3% 8.3% 8.3%

mathematical operator 1.33 75.0% 16.7% 8.3%

input 1.33 75.0% 16.7% 8.3%

assignment 1.42 66.7% 25.0% 8.3%

parameters 1.50 58.3% 33.3% 8.3%

selection statement 1.55 45.5% 54.6%

output 1.58 58.3% 25.0% 16.7%

importing code 1.67 50.0% 33.3% 16.7%

function 1.75 33.3% 58.3% 8.3%

type conversion 1.82 27.3% 63.6% 9.1%

nesting control structures 1.90 40.0% 30.0% 30.0%

array 1.92 25.0% 58.3% 16.7%

exporting code 2.00 30.0% 40.0% 30.0%

object 2.00 33.3% 33.3% 33.3%

definite loop 2.08 16.7% 58.3% 25.0%

indefinite loop 2.08 16.7% 58.3% 25.0%

variable scope 2.09 27.3% 36.4% 36.4%

recursion 2.20 20.0% 40.0% 40.0%

functional decomposition 2.30 20.0% 30.0% 50.0%

exception handling 2.50 10.0% 30.0% 60.0%

40

they are used, and the perceived conceptual difficulty. I noted four terms that con-

sistently appeared in the first tier, two in the second, and six in the bottom tier. The

concepts that were rated the most highly understood, most frequently used, and eas-

iest to learn were number, boolean, variable, and mathematical operator. Inversely,

those which ranked least understood, least used, and most difficult were exporting

code, indefinite loop, variable scope, recursion, functional decomposition, and excep-

tion handling. The concepts parameters and output were consistently in the middle

tier.

3.4 Open Sorting

Once participants had completed the final closed sort, I provided them with the op-

portunity to sort the cards into groups using criteria of their own choosing. Through

open sorting, I aimed to gather additional insight about web developers’ knowledge

of these 26 concepts and their associations between concepts. Participants were en-

couraged to generate as many sorts as they could and I recorded the participant’s sort

criterion, category names, and placement of the cards within the groups. Altogether,

the participants generated 28 sorts. With an average of 2.3 sorts per participant, they

generated noticeably fewer sorts than introductory computing students or educators

engaged in a similar task (4.5 and 5.2, respectively) (Sanders et al., 2005). However,

given that these participants completed a number of closed sorts prior to open sort-

ing, this value may be artificially low. I also noted that the participants used fewer

categories per sort on average (2.6) than the students (4.0) or educators (3.7).

To further explore the data gathered from the open sort activity I employed su-

perordinate analysis to classify similar sorts into thematic groups (Rugg & Petre,

2007). These groups bring together sorts that relate to a common theme, regardless

of differences in the wording that participants used to describe them. The purpose

of such an analysis is to determine commonalities in sorts across the participants,

41

indicating the typical ways people think about this particular set of stimuli.

Two independent raters grouped the 28 sorts into mutually exclusive categories

based on the similarity of their criterion. To aid in making decisions about whether

two sorts were similar, raters had access to the criteria and category names given for

a sort by the participant as well as the excerpt of the interview transcript relevant

to each open sort. Transcripts enabled raters to make an informed decision about a

sort’s meaning, particularly in the case where participants had difficulty in succinctly

naming their sort criterion but were able to talk generally about what they were

trying to accomplish with the sort. Raters achieved 79% agreement on the thematic

grouping of the 28 sorts on their first pass. They then collaboratively negotiated the

group definitions relevant to the six sorts where there was initial disagreement. In the

end, seven thematic groups which each contained more than one sort were derived.

These themes were (the number of sorts related to each theme appear in parenthesis):

Conceptual Ordering (4) Sorts which classify concepts by the order in which they

should be learned or the order in which concepts build on one another.

Quality Metrics (4) Sorts which separate concepts by various software quality

metrics like readability, maintainability, and efficiency of code. For example,

concepts believed to slow down code execution might be placed in a category

called “inefficient” while others are placed in an “efficient” category.

Terminology (3) Sorts which classify cards by terminology considerations. For ex-

ample, a sort whose categories are labeled “terms you need to know to commu-

nicate with others” and “terms that are academic.”

Language Decomposition (3) Sorts which attempt to separate concepts into func-

tional groups based on their semantics (e.g., “related to functions” or “related

to numbers”).

42

Expertise of Others (3) Sorts expressing beliefs about the expertise or under-

standing of others. This often appeared when participants believed their peers

might sort the cards differently if asked to rate their expertise.

Relevance to Scripting (2) Sorts that distinguish concepts based on whether they

are generally applicable to the typical code or scripts that web developers write.

Desire to Know More (2) Sorts that prioritize concepts by an interest in learning

more about them.

The results of the card sorting task provide a detailed picture about what com-

puting concepts web developers understand and how they relate the concepts to one

another, but they provide little information about how professional web developers

learn as they go about their work. For this, we must turn to the qualitative data

presented in the next section.

3.5 Learning and Resources

The primary focus of this semi-structured interview with participants was to elicit

their strategies for learning new information. My analysis of interview transcripts

resulted in four themes related to learning: motivation to learn new things, learning

processes, resources used for learning, and heuristics for judging information quality.

Each of these themes is discussed in the following subsections.

3.5.1 Impetus for Learning

While some participants indicated that they enjoyed learning new languages or de-

tails about scripting for curiosity’s sake, most expressed that their decision to learn

something was a matter of necessity. The computing concepts that they chose to

learn needed to contribute in some way to the completion of their current project (in

a similar fashion to Blackwell’s (2002) attention investment model). Incorporation of

new web features like login-based access or embedded streaming video (and learning

43

the necessary underlying programming skills) were driven by project needs. Learning

of new features was also motivated by a need to remain up-to-date in order to write

standards-compliant code. Participants two and five discuss their reasons for learning

new things below.

P2: I don’t care where technology is going. It’s like, does my check get

cashed on Friday? Ok. And if they have a new something that comes out

that will impede my check being cashed on Friday, then I will learn it.

P5: Like when CSS was officially considered a standard, and I went, oh

crap, now I have to learn it.

Even among those who discussed learning new languages or language features for

fun, they often did so by choosing to use the unfamiliar concepts in an upcoming

project. In these cases the participants were willing to tolerate some inefficiency in

completing the project because they recognized they were learning something new.

3.5.2 Learning Processes

Participant nine succinctly conveys his learning process, and that expressed by most

participants, by stating, “generally, the best way I learn is to just jump in headfirst.”

Several participants used the phrase “trial-and-error” to characterize their script de-

velopment. When asked to elaborate they described a process akin to bricolage pro-

gramming (Turkle & Papert, 1991), iteratively writing code, examining the results,

and seeking out information as necessary. In this way, the participants exemplified

the opportunistic approach to programming described by Brandt, Guo, Lewenstein,

Dontcheva, and Klemmer (2009). One participant explains:

P1: I start off actually trying to do something that I need to complete as

my first step even not knowing anything about it. And I guess the first

thing that I’ll do is I’ll Google the subject and see what I can pull out on

44

the Web. What information I can get out of it. And then I just hit the

floor running, or at least I try. And then of course I come to points where

I stumble, and I can’t go forward cause it’s too complex there’s just some

stuff that I don’t know. So at that point I have a couple of choices.

He goes on to describe his decision making process for what to do when web

resources are not enough—whether to consult with a colleague for help or search for

a book.

However, while going to the Web to look for an answer was almost universally

the first line of defense, it may not always be the most fruitful activity. One par-

ticipant realized that this strategy was suboptimal while reflecting on the sources of

information she used and which were the most useful in answering her questions.

P2: The Internet, of course you can Google anything, that’s my number

one place. And it’s fairly useful. Wow, that’s a good question. The order

in which I tap my resources are from least useful to most useful. So my

colleagues are my second level, cause you know, different companies you

work at have different systems. So something might work good in practice

or I might find it on Google, but it just doesn’t work well with servers

and the software we use. So it would be Internet, colleagues, books as far

as the order that I tap my resources. The most useful would be books,

colleagues, Internet.

3.5.3 Resources Used

Over the course of the interviews, participants mentioned relying on over a dozen

different resources for learning something new. In addition to generic occurrences of

“the Internet” or “Google”, seven different online resources were discussed by different

participants. I also noted seven offline resources. Table 5 summarizes these 14 unique

sources.

45

Table 5: Resources for Learning
Online Offline

• code samples or example demos

• walkthroughs and tutorials
(e.g., www.w3schools.com,
www.smashingmagazine.com)

• language or library references
(e.g., www.ruby-doc.org)

• subscription-based online
training sites (e.g.,
www.lynda.com)

• forums or user groups

• blogs, both as authors and as
readers

• podcasts

• books

• code samples

• tutorials or other help files
provided with software

• manuals

• colleagues, friends, or
instructors

• strangers with similar job
descriptions (e.g., other
webmasters)

• classes

To provide greater detail about these web developers’ use of resources, I included

an extra question at the end of the demographic survey. This sequence of prompts

was replicated from Rosson et al.’s (2005) study of web developers. It asked partici-

pants to rate how likely they would be to consult various resources when attempting

something new on a scale of 1 (very unlikely) to 5 (very likely). Specifically, I in-

quired about interactive wizards, example code, classes/seminars, books, FAQs/tuto-

rials/online documentation, friend/coworker, and technical support. Figure 4 depicts

the percentage of participants rating each resource as likely or very likely to consult.

Similar to Rosson et al.’s findings, the participants indicated a strong preference for

online documentation, books, examples, and personal communication.

3.5.4 Judging Relevance

The final theme related to learning deals with how web developers judge the quality

and relevance of content they find online. The breadth of web content can be a

46

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

FAQ
/D

oc

Boo
ks

Exa
m

pl
es

Frie
nd

/C
ow

or
ke

r

C
la
ss

es

W
iz
ar

ds

Tec
h

Sup
po

rt

Figure 4: Percent of Participants Rating Resource as Likely or Very Likely to Use

double-edged sword; on the one hand, chances are good that an answer to one’s

question exists online, but on the other hand, locating that information can be time

consuming. One participant reflects on her ability to find relevant information:

P11: I’m starting to learn where those online resources are, but early on

here it’s been kinda daunting to figure out. I’ve done a lot of online that

just takes me nowhere. It’s, you know, spend an hour just clicking around

trying to figure out where to find the answer at.

Though some participants were unable to articulate specific strategies they use to

evaluate information, relying on their “gut reaction”, many outlined informal heuris-

tics that they employ while searching the Web. I noted 10 such rules of thumb in the

interview corpus, ranging from some that are rather specific to others which could be

highly subjective:

1. Legitimacy of sources, with a preference for content hosted by established or

official publishers

2. Author credentials, preferring people recognized within the web development

community

47

3. Google’s page rank algorithm as a predictor of utility

4. Conformity of provided code to W3C standards

5. Availability of working code demos

6. Similarity of language features used in code examples to those used in the

participant’s code

7. Positive and negative comments of others posted in reply to tutorial, blog, or

forum entries

8. Opinion of peers about a particular source of information

9. “Digestibility” of the information, with a preference for more easily consumable

things (this notion was a combination of how well written and succinct the

content was, while preserving the necessary details for understanding)

10. Overall aesthetic feel of the hosting web site

If not always sophisticated, these heuristics provide evidence that web developers

do develop meta-cognitive strategies for evaluating information. They also have rami-

fications for how educational content might be delivered to end-user programmers via

the Web. In the next section I discuss this and other implications of these findings.

3.6 Discussion

The discussion here is divided into two parts. First I interpret my findings relative

to each of the three operationalized questions in turn. Then I consider high-level

implications that play a role in shaping the informal instruction environment (i.e.,

ScriptABLE) that will be introduced later in Chapter 5.

48

3.6.1 Findings from the Research Questions

3.6.1.1 What programming concepts do web developers recognize, and to what
degree do they understand each? (RQ1.1)

On the whole, the participants recognized nearly all of the concepts with the aid of a

definition and example. The terms used in this study were standard terminology from

introductory materials, but several participants lacked knowledge of the formal names

for these concepts. Thus, these results suggest the importance of multiple indexes

in reference materials which target informal learners. I also found that participants

expressed remarkably normative judgments about concept difficulty; in many ways

the average ratings matched what we might expect from a computer scientist.

3.6.1.2 How do web developers think about and associate foundational program-
ming concepts with one another? (RQ1.2)

The open sorting data provides some insight into how web developers’ associations

may differ from other populations. When compared to Sanders et al.’s (2005) card

sort study with novice computer science students, web developers generated fewer

sorts per person with fewer categories per sort. This suggests that introductory CS

students may have a more sophisticated understanding of these concepts than web

developers.

The common open sort criteria noted in this study also support this interpretation.

While not necessarily organized by natural language groupings (as noted in a pre-

vious study of typical novice programmers (McKeithen, Reitman, Rueter, & Hirtle,

1981)), only one of the seven sort themes I identified involved grouping cards based

on programming language semantics. Contrastingly, the most frequently occurring

category groupings generated by introductory CS students all appear to make use of

programming syntax or semantic concerns (Sanders et al., 2005). The participants in

this study appeared to associate concepts much more frequently based on pragmatic

dimensions related to their day to day use of the concepts.

49

3.6.1.3 What processes do web developers use to learn new programming concepts
as they go about their work, and on what resources do they rely? (RQ2.1)

I found that learning in this context is often motivated by project demands, whether

that be a need to learn a specific new technique or to update one’s skill set to continue

to write standards-compliant code. Participants expressed a trial and error approach

to programming where writing code is interleaved with information foraging. I found

that participants learned from a wide variety of online and offline resources, with a

preference for FAQ-style documentation, books, and related code examples.

3.6.2 Implications Moving Forward

The closed sorting data exhibited a strong correlation between frequency of use and

concept difficulty. Further I noted that these web developers choose to learn concepts

they perceive to be directly related to their tasks. Taken together they seem to

suggest that web developers are learning those concepts that are either the easiest or

the most useful. While perhaps not surprising, web developers and other end-user

programmers may be missing out on more advanced concepts that could be quite

useful but are not entirely obvious to them. For example, concepts like indefinite

loop, exception handling, and program decomposition were uniformly ranked at the

bottom of the sorts, but use of these constructs could easily aid these programmers

in developing more robust, reusable software.

The results presented in this chapter confirm a reliance on resources like tutorials

and example code, often found through web searches. As I argued in Chapter 2, these

practices closely match the affordances of case-based learning aids.

3.7 Chapter 3 Summary

In this chapter I have presented the results of a study of 12 web designers and devel-

opers. Through this analysis of card sorting data I have contributed the first detailed

50

depiction of this group of non-traditional programmers’ understanding of founda-

tional programming concepts. My qualitative results provided additional evidence

in support of models of opportunistic programming, and I further elaborated on the

common resources web developers seek out in order to learn something new.

51

CHAPTER IV

EXAMINING THE CONCEPTUAL COVERAGE OF A

SCRIPT REPOSITORY

The previous chapter highlights a number of normative computing concepts that

were consistently rated as difficult, not well understood, and not frequently used

by graphic and web designers who program. Furthermore, Chapter 3 illustrated

the important role that example code found online plays in these designers learning

processes. Thus it is natural to wonder about the nature of the code examples that

these end-user programmers come across. For example, does the code found online

illustrate examples of how the difficult or misunderstood concepts could be used or

does it only reinforce the concepts which are already frequently used?

This chapter provides a detailed analysis of the JavaScript code contained in one

repository of scripts for Photoshop. In particular, this is a study of the conceptual

coverage of introductory computing concepts within a corpus of scripting projects.1

Such an analysis is important in fully understanding the strengths and weaknesses of

this popular form of support.

This analysis seeks to address the latter portion of the research question two

through the more specific operationalization of this question given in RQ2.2.

RQ2: What learning practices do graphic/web design end-user program-

mers currently employ, and to what extent do typical resources provide

opportunities to learn about normative computing concepts?

RQ2.2: To what extent does code found online provide relevant examples

1This chapter is based on the earlier work (Dorn et al., 2007): c©IEEE, 2007. http://dx.doi.

org/10.1109/VLHCC.2007.35

52

of introductory programming constructs?

The balance of this chapter proceeds as follows. I outline details of the method

used for this study in Section 4.1. I then provide an overview of the results in Sec-

tion 4.2, with a detailed discussion of patterns in construct use following in Section 4.3.

I conclude the chapter by revisiting research question 2.2 and discussing implications

of the results for the design of future example-driven resources.

4.1 Method

I conducted an artifact analysis of all scripts publicly available for download in the

Photoshop scripting section of the Adobe Exchange repository2. As a community-

driven site officially hosted by the company responsible for the product, it has im-

mediate credibility and is a natural source of support for users seeking information.

Also, I illustrated in Chapter 3 that these qualities are important characteristics in

determining whether a resource is considered relevant or not for end-user program-

mers. To focus this analysis, I only considered scripts that were hosted in the Adobe

forum directly and did not include forum contributions that referenced scripts hosted

on other sites.

4.1.1 Development of Coding Scheme

To analyze the contents of these scripts, I developed a coding scheme that consid-

ered both general introductory computing constructs as well as EUP domain specific

constructs. The computing constructs were informed by the computing education

literature, while the domain specific constructs were suggested by end-user program-

ming studies and derived in a data-driven manner by the scripts themselves.

The first set of constructs draws on Tew and Guzdial’s (2010) effort to develop

a language independent assessment of introductory computing concepts.3 They have

2All files retrieved November 30, 2006 from http://share.studio.adobe.com
3While the analysis described in this chapter chronologically precedes the publication by Tew and

53

variable selection (if)
mathematical operators definite loop (for)
relational operators indefinite loop (while)
logical operators nested loops
assignment recursion
number user defined functions
boolean user defined objects
string user input
array output to user

Figure 5: Textbook-Based Coding Elements

identified a set of computing constructs that are common across introductory courses

which avoids bias from any particular language or pedagogical approach. They con-

ducted an analysis of the table of contents of the top two CS1 textbooks as identified

by each of the major publishers—12 books in total. This list of concepts was revised

using the framework of the Computer Science volume of Computing Curricula 2001

(The Joint Task Force on Computing Curricula, 2001) as an organizing principle. It

was further refined by analyzing the content of canonical texts representing each of

the common introductory approaches (objects-first (Deitel & Deitel, 2005; Lewis &

Loftus, 2005), functional-first (Felleisen, Findler, Flatt, & Krishnamurthi, 2001), and

imperative-first (Zelle, 2004)). A construct was included in their list if it was covered

by all of the texts or excluded by only one of the texts. Their analysis yielded 27

total constructs, and I used this set as a starting point for my coding scheme.

It was necessary to modify and extend the original set of constructs considering

the EUP domain in this study. Some concepts were not relevant or practical in the

domain (e.g., class-based objects and inheritance), others needed slight modification

due to the particulars of JavaScript. The resulting computing constructs included in

the coding scheme are listed in Figure 5.

Guzdial (2010), the work was informed by Tew’s ongoing efforts at the time (personal communication,
November, 2006). I have chosen to cite their 2010 paper here as it provides the best reference for
this particular work.

54

Most of these constructs in JavaScript are similar to their counterparts in general-

purpose computing languages. However, a few warrant additional explanation. The

“number” coding element included use of any kind of numeric literal as JavaScript

does not distinguish between types of numerics (e.g., integer, floating point). In

the realm of web and graphic design scripting, user input and output is inherently

graphical in nature. As such, the I/O constructs in the coding scheme included

input dialogs and message boxes. Lastly, since the nature of Photoshop scripting

considered here almost always requires calling of functions and using objects from

the API, I limited my scope to instances of user-defined functions and objects. User-

defined functions had to be explicitly defined and named, and user-defined objects

had to include a constructor and be instantiable.

To fully analyze EUP scripts, it was important to supplement the general intro-

ductory computing concepts with a few domain specific ones. Previous studies of

end-user programming practices (Dorn & Guzdial, 2006; Rosson et al., 2005; Scaffidi,

Ko, Myers, & Shaw, 2006) suggested that intellectual property and code modularity

could be important considerations in this domain. I added three items to the coding

scheme (copyright notice, end-user license agreement, and credits external sources)

to address the issue of intellectual property. ExtendScript allows for importing and

exporting of code to aid in modularity and code reuse, so these items were also added

to the coding scheme.

A few data-driven constructs were included as well. I noted that some users had

attempted to make their scripts unreadable by humans; others employed built-in

functionality in Photoshop to record their script via the user interface rather than

typing code; and others still incorporated rather sophisticated exception handling

mechanisms. I wondered how common these practices were and added these to the

coding scheme. The resulting EUP constructs are listed in Figure 6.

55

copyright notice exception paths (try/catch)
end user license agreement use of recorded code
credits external sources includes external code
code obfuscation externalizes code to client

Figure 6: EUP Coding Elements

4.1.2 Coding Process Details

I began the coding process by establishing the reliability of the coding scheme. Two

independent raters coded a random sample consisting of 13 scripts (≈ 20% of the total

data set) according to the coding scheme. I computed the kappa statistic (Cohen,

1960) as a measure of inter-rater reliability, and while most of my coding elements

exceeded the κ=0.80 threshold expected in the social sciences (Landis & Koch, 1977),

some revisions were necessary on the constructs user defined objects (κ=0.51) and end

user license agreement κ=0.56). The operational definitions of these coding elements

were revised, and raters again coded another 20% of the scripts, randomly selected, on

the two elements whose inter-rater reliability was not yet established. After updating

the criteria and recoding another sample, raters achieved a κ=1.00 on all remaining

coding elements. These high κ values may be partially attributed to binary coding

categories and the lack of rater judgment required for some constructs. Once inter-

rater reliability was confirmed, the two raters each coded half of the scripts according

to the revised coding scheme.

4.2 Results

The initial set of Photoshop scripts was collected from the Adobe Exchange commu-

nity and then cleansed of any entries that were corrupt or incorrectly categorized.

After removing the improper entries, the final data set contained a total of 62 indi-

vidual scripts making up 48 distinct projects contributed by 27 unique users. I use

the term project to refer to one downloadable entry in the online community. For

example, a project could consist of a single script posted as a text file, or it could

56

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5

Number of Projects

N
u

m
b

e
r

o
f

U
s
e
rs

Figure 7: Distribution of Project Submissions

be an archive file containing multiple, related scripts and associated data files. Fig-

ure 7 illustrates the distribution of project submissions. Most users posted only one

project, though one-third of users made multiple contributions to the community.

The bulk of the results presented here use a per-project unit of analysis, rather

than a per-user or per-script approach. Focusing on individual projects mitigates

skewing effects that might be introduced by single projects that contain multiple

scripts (as in a per-script analysis). I also avoid a per-user analysis as it would be

somewhat precarious to infer knowledge of programming based solely on constructs

used in a minimal set of examples, particularly given that most users only contributed

one project. Although previous studies indicate that many end-users lack formal

training in computer science (e.g., Dorn & Guzdial, 2006; Rosson et al., 2005, as

well as the previous chapter), I do not know the particular training background of

the users who posted to this forum, nor can I infer whether these scripts are the

result of personal or work projects. In a sense, what I present here is an analysis of

the computing content embodied in projects that might serve as case examples from

which another end-user could learn.

57

Table 6: Project Line Length Breakdown

Mean StDev Median Min Max

Code 555.56 674.89 246.5 9 3224

Comment4 63.54 65.18 26.5 0 237

Whitespace 65.46 158.47 20.5 0 1057

Total 676.96 760.61 403.5 11 3300

4.2.1 Project Size

While there were as many as eight scripts in a single project, most (87.5%) contained

only one script. In order to gain insight into the size and complexity of the projects

being created, I calculated the total number of lines used for code statements, white-

space, and comments for each. I report based on the sum of the individual script line

lengths for projects containing multiple scripts. Table 6 summarizes basic statistics

for project size. There was a large amount of variation in each of the line types

computed, as noted by the standard deviations. However, the median lengths indi-

cated moderately sized scripts that included a fair amount of commenting, though

the nature of the comments was not closely examined.

Looking at the distribution of these lengths provided a more detailed picture of

project size. Figure 8 depicts the range of project sizes in terms of the number of

source code lines. There were two noticeable peaks in this distribution, the first of

which occurred at 200 or fewer lines of code. This might be predicted if users are

expected to implement short programs that accomplish relatively simple tasks. More

surprisingly, there was a clear second peak occurring in projects with greater than

1000 lines of code.

Project sizes provided an initial feel for the size and complexity of code, but a

more detailed analysis of each project’s content was needed to understand the types

4Lines counted under “Comment” include both comment-only lines and code lines which have
terminal comments.

58

0

2

4

6

8

10

12

≤
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
0
0
0

1
5
0
0

M
o
re

Lines of Code

N
u

m
b

e
r

o
f

P
ro

je
c
ts

Figure 8: Distribution of Project Lengths

of computing knowledge evidenced in the code base.

4.2.2 Project Content

Application of the coding scheme to all of the individual scripts resulted in an overview

of construct use. These results were then aggregated to form a per-project summary.

For those projects containing multiple scripts, a construct was indicated as being

used if one or more of the constituent scripts used the construct. The aggregate

use amounts for each construct, grouped by higher-order concern, are presented in

Table 7.

The most commonly used programming constructs were: variable, assignment, re-

lational operators, selection, number, and string. These results were largely expected

given that tasks like assigning a numeric value to a variable are fundamental to most

coding activities. Excluding those related to intellectual property and recorded code

(as these are not programmatic constructs per se), the least frequent constructs were:

indefinite loop, nested loops, recursion, type conversion, user-defined objects, and

59

Table 7: Construct Use by Project

Construct Use %

Variable 100.00%

Use of Recorded Code 33.33%
E

x
p
re

ss
io

n
s Assignment 100.00%

Relational Operators 97.92%

Mathematical Operators 83.33%

Logical Operators 54.17%

C
on

tr
ol

S
tr

u
ct

u
re

s

Selection (if) 97.92%

Definite Loop (for) 60.42%

Exception Paths (try/catch) 60.42%

Indefinite Loop (while) 37.50%

Nested Loops 29.17%

Recursion 2.08%

D
at

a
T

y
p

es
&

S
tr

u
ct

u
re

s Number 100.00%

String 95.83%

Array 83.33%

Boolean 79.17%

I/
O Output to User 83.33%

User Input 60.42%

M
o
d
u
la

ri
ty User-defined Functions 70.83%

User-defined Objects 18.75%

Import or Include External Code 0.00%

Export Code to External Client 0.00%

In
te

ll
ec

tu
al

P
ro

p
er

ty

Copyright Notice 62.50%

End User License Agreement 47.92%

Credit Given to External Sources 22.92%

Human Unreadable Code Obfuscation 8.33%

60

exporting/importing code. Some of these observations could be tied to tool and lan-

guage influences (e.g., prototype-based rather than class-based definition of objects

in JavaScript). Others, like the decrease in use from definite loops to nested loops to

recursion, seem indicative of conceptual difficulties noted in previous research (e.g.,

Soloway, Bonar, & Ehrlich, 1989; Wiedenbeck, 1988). I present a detailed discussion

of these issues in the section that follows.

4.3 Discussion of Construct Prevalence

I observed that within the higher-order concerns Expressions, Control Structures, and

Modularity some constructs are heavily adopted while others are used at much lower

levels (see Table 7). End-user programmers can be viewed in many ways as novices

because they traditionally lack formal training in computer science and learn content

just-in-time as it relates to their specific tasks (Dorn & Guzdial, 2006, 2010; Rosson et

al., 2005). Therefore, previous studies of novice programmer behavior provide useful

information for interpreting these results.

4.3.1 Operators

Almost all (97.92%) of the projects used a relational operator (e.g., <, >=, !=), most

often inside the condition of a selection (if) statement. A clear majority (83.33%) also

used mathematical operators. While some projects did include numeric calculations to

resize images or parts of images, many of the mathematical operators noted were uses

of the unary increment operator as part of a definite loop (for) construct. However,

markedly fewer projects (54.14%) used a logical operator (&&, ||, !).

Previous work with introductory students (Tew, McCracken, & Guzdial, 2005)

indicates that beginners tend to struggle with boolean logic in conditional statements.

Pane et al. (2001) found that boolean operators are particularly difficult for beginners

because they require statements to be expressed in ways that are unfamiliar. Since

many end-user programmers are self-taught and have learned to program to support

61

their own goals, it is perhaps not surprising that the code found here seems to use

the operators which are familiar to novices.

4.3.2 Control Structures

Control structures of some kind were included in most of the projects I analyzed.

Almost all (97.92%) of them included a selection (if) statement, and most (60.42%)

used a definite loop (for) construct. However, only a third of the projects used the

indefinite loop (while) or nested loop constructs.

Soloway et al. (1989) identified the inherent complexity of the while loop because

it conflicts with the preferred cognitive strategy that students employ when solving

iterative problems. The definite loop (for) construct more closely matches the read,

then process strategy, thus possibly explaining the higher rate of use observed here.

Additionally, the infrequent use of nested loops could be another sign of cognitive

complexity. Boundary condition errors are a frequent mistake when beginning stu-

dents write loops, and loop nesting only exacerbates these boundary concerns (Ginat,

2004).

Only one project included recursion, a topic with which many novices struggle

(Wiedenbeck, 1988). A common pedagogical technique to address this difficulty is to

introduce recursion by way of analogy, but Photoshop lacks readily apparent concrete

examples. However, there are several tasks in this context that do lend themselves to

recursive solutions. For example, the one use of recursion in this analysis, in effect,

traversed a tree made of Photoshop image layers (leaf nodes) and layer sets (internal

nodes) removing all non-visible layers along the way.

4.3.3 Abstraction and Modular Coding

A large portion (70.83%) of the projects contained user-defined functions, while sig-

nificantly fewer (18.75%) implemented objects. Despite the fact that ExtendScript

documentation highlights the ability to create reusable code modules using external

62

files, I noted that no project incorporated either the import or export construct.

Fleury (Fleury, 1997) observed that students consistently preferred programs con-

taining duplicated code rather than programs that used abstracted functions, claiming

that it was more easily read and debugged. While I note that functions were highly

used in this domain, more advanced abstractions for modularity were largely ignored.

Hoadley, et al. suggest an explanation that “abstract understanding of a function and

belief in the benefits of reusing code” (Hoadley, Linn, Mann, & Clancy, 1996, p. 109)

impact whether or not a user is likely to invest time in programming for abstraction.

4.4 Discussion

Additional discussion of these results is separated into two parts. First, I will explicitly

address the research question under investigation in this study. Then I will use the

results here to draw out implications for the design of an example-driven educational

resource (i.e., ScriptABLE).

4.4.1 Findings for the Research Question

At the outset of this chapter I introduced the primary research question for this study

as follows:

RQ2.2 To what extent does code found online provide relevant examples

of introductory programming constructs?

The repository studied here was intentionally domain specific with respect to Pho-

toshop scripting. This guaranteed a high degree relevance (or similarity of context)

for the scripting domain studied in this dissertation. Within the collection of projects

I noted considerable variation whether or not a particular concept was included (as

shown in Table 7). However, as I argued in the previous section, the patterns observed

when considering groups of concepts match empirical evidence about conceptual dif-

ficulty. That is, the easiest concepts had many examples in the repository, while

63

examples of difficult concepts were few and far between. Thus, the code found in this

repository serves to illustrate basic introductory concepts well, but more advanced

concepts—though still well within the scope of introductory computing curricula—are

largely absent.

This observation is problematic if a learner were to attempt to use this repository

as a means to gain additional knowledge. Chances are that the concepts for which

there are multiple examples to compare and contrast are the basic concepts which

are already well understood. In Chapter 3 the concepts that proved least understood,

least frequently used, and most difficult were exporting code, indefinite loop, variable

scope, recursion, functional decomposition, and exception handling. Here, some of

these same concepts have fewest number of examples, if any. Exporting code, indefi-

nite loops, recursion, and functional decomposition5 were all among the six least used

coding constructs here.

4.4.2 Implications for Next Steps

The results in this chapter have clear implications for the design of educational re-

sources for graphic and web design end-user programmers. Given the scope of the

concepts covered, there is a need to explicitly target those concepts were seemingly

absent. Notably, this nicely overlaps with the concepts that were also recognized by

the intended user population as difficult and not well understood. Targeting the more

basic concepts is unnecessary as EUPers express high degrees of familiarity with them

and there are currently many examples from which a user can draw.

Having confirmed the need for resources that address the set of difficult topics, I

have chosen to limit the focus of the remainder of this dissertation to the following

concepts.

5I group functional decomposition among these due to the general lack of modular coding practices
observed in the repository.

64

• selection statement

• indefinite loops

• exception handling

• recursion

• functional decomposition

• importing code

This limited set of concepts will provide a tractable set of learning goals for the

time-constrained evaluation study described in Chapter 6. It intentionally contains

selection as an easier construct, but focuses primarily on the more difficult concepts.

4.5 Chapter 4 Summary

In this chapter I have presented a content analysis of Photoshop scripting projects

posted in a user-driven resource online. The detailed breakdown of introductory

concepts covered by projects in the repository provides insight into the concepts for

which current example-based resources may lack sufficient detail. Notably, I found

significant overlap with the concepts previously noted as difficult, not understood,

and infrequently used in Chapter 3. Taken together, the results of these two chapters

seem to indicate a gap in the coverage of these topics by current domain-specific

example materials. In the next chapter I will present the design of a new case-based

learning aid intended to explicitly scaffold learning about these topics through use of

examples.

65

CHAPTER V

DESIGN OF SCRIPTABLE

This chapter introduces the design of ScriptABLE, a new case-based learning aid for

end-user programmers who script Photoshop. In designing and building this system,

I sought to address the lack of explicit instruction and coverage of introductory pro-

gramming concepts that I observed in Chapter 4. Additionally, I aimed to develop a

resource that would closely align with the learning strategies and preferred resources

discussed by graphic and web designers in Chapter 3. Specifically, I had five design

criteria distilled from the work described in the previous chapters:

1. Focus on Project-Driven Learning I noted in Chapter 3 that graphic and web

designers learned new programming techniques in the context of new projects.

As their learning was typically contextualized within particular projects, I pro-

posed that informal instruction should take a similar approach.

2. Connect Concepts to Example Code Two of the most highly utilized re-

sources I observed in Chapter 3 were code examples and online documentation

(e.g., walkthroughs and tutorials). I aimed to extend these types of resources

by augmenting them with explicit instruction about introductory programming

concepts. This conceptual instruction would be directly tied to the code being

developed for a project.

3. Highlight Errors and Recovery The theoretical models I discussed in Chap-

ter 2 highlight the importance of learning from errors. Case-Based Reasoning

(Kolodner et al., 2004), Cognitive Load Theory (Sweller, 1988), and Minimalist

66

Instruction (Carroll, 1998) all emphasize the need for project-driven instruc-

tional materials to provide explicit reference to likely errors and strategies to

recover from them. Thus, I sought to leverage errors as natural points to intro-

duce conceptual content enabling one to overcome a problem.

4. Multiply Label Concepts Some participants in the card sorting study from

Chapter 3 had difficulty recognizing formal programming terminology without

the aid of definitions or example code. In order to maximize the likelihood

that learners locate relevant instruction offered by the resource, I sought to use

multiple means of indexing content.

5. Target Unfamiliar and Misunderstood Content I identified a number of

concepts that were universally difficult, misunderstood, and infrequently used

by graphic and web designers in Chapter 3. Further, in Chapter 4 I observed

that examples of many of these same concepts were not prevalent in online code

repositories for Photoshop scripting. Thus, I targeted the six concepts out-

lined at the end of the previous chapter: selection statement, indefinite loops,

exception handling, recursion, functional decomposition, and importing code.

These concepts provided a tractable set of content that could potentially result

in learning.

These criteria lend themselves quite naturally to a case-based learning aid. Recall

from Chapter 2 that a case-based learning aid is a collection of interrelated cases (or

projects) that distill the experiences of others so that a novice can learn underlying

content (Kolodner et al., 2004).

Throughout the remainder of this chapter I will describe ScriptABLE’s notable

features and will emphasize the design aspects that address each of the five criteria

above. Section 5.1 makes up the majority of the chapter and discusses ScriptABLE’s

relevant components. In Sections 5.2 and 5.3, I detail ScriptABLE’s coverage of

67

programming concepts and briefly discuss an expert review of the system’s content.

5.1 ScriptABLE

ScriptABLE is implemented using a customized installation of the MediaWiki soft-

ware.1 However, the use of a wiki here is largely incidental to the primary purpose of

this research. It was primarily used as a content management system to simplify the

content creation process, and I relied on MediaWiki’s built in search and indexing

(i.e., categories) features to complete ScriptABLE’s implementation. Modifications

to the code were made as necessary to customize aspects of the interface and to

disable many extraneous wiki features. Open editing of ScriptABLE’s pages is pro-

hibited and users access the content anonymously. ScriptABLE is available online at

http://cases.scriptable.org.

Figure 9 illustrates ScriptABLE’s initial welcome screen. Following a brief greet-

ing, users are given a choice to navigate the system by browsing individual projects,

browsing by the tags used for indexing purposes, or by performing a search query.

Links to each of these three navigation mechanisms are always available using the

navigation panel at the left of the page.

ScriptABLE’s individual case design is based loosely on that of Designing Pascal

Solutions (hereafter, DPS). This textbook is a collection of case studies that intro-

duces students to introductory computing concepts through developing solutions to

programming problems (Clancy & Linn, 1995). Clancy and Linn describe the com-

ponents of their cases and the manner in which learners engage with the content:

In each case study in Designing Pascal Solutions, students first read and

analyze a Problem Statement. Then they use the Commentary on the

design to guide their own knowledge construction. They answer self-test

questions while reading the Commentary. At appropriate intervals they

1http://www.mediawiki.org/

68

Figure 9: ScriptABLE Front Page

extend their understanding by doing on-line and off-line exercises. They

consolidate their knowledge using the Review section, doing exercises to

link their ideas to related problems and issues. As they engage in these

activities they read the Pascal Code for each problem solution and work

with it on line in a computer laboratory. (Clancy & Linn, 1995, p. xvii)

ScriptABLE incorporates many of these components, but leaves others out as a

consequence of differences in audiences and intended use. Most notably, the Review

section from DPS has no corresponding component in ScriptABLE. The Review sec-

tion primarily enumerates a number of related practice problems for the reader which

could be used for assessment purposes. Given that ScriptABLE is not intended for

a formal learning environment, this component is unnecessary. Also, because Script-

ABLE is a collection of hyperlinked pages, its cases have been augmented with mul-

tiple tags corresponding to entries in the library’s indexing system.

69

5.1.1 Anatomy of a Project

The primary components of a ScriptABLE project2 are:

• Project Description

• Primary Tags

• Use Scenarios

• Script Development

• Downloadable Files

• Creative Attribution

• Full Tag Listing

I will discuss each of these components in this subsection. Following the descrip-

tion of a project, I introduce additional details regarding the tagging and indexing

system as well as the search interface used in ScriptABLE. Throughout, I will provide

screenshots from the interface for each of the main components.

5.1.1.1 Project Description

Each of the seven ScriptABLE projects begins with a brief description that outlines

the purpose of the script to be written. This roughly corresponds to the Problem

Statement used by Clancy and Linn (1995) in DPS. The description motivates the

project with a real world problem situated within the context of typical Photoshop

activities a graphic or web designer would likely encounter. In this way it immediately

connects the project to the intended user’s community of practice (Lave & Wenger,

1991) in an effort to begin providing a sense of “thick” authenticity (Shaffer & Resnick,

2The ScriptABLE interface uses the more general term “project” in lieu of “case” to avoid
terminology confusion.

70

Figure 10: Toggle Text Layers Project Description

1999). That is, the description highlights a real world problem likely to be of personal

interest to the user due to its connection to the tools and practices of the user’s domain

of expertise. From this context set by the description, other aspects of the project

structure and writing style are then intended to continue contributing to the overall

feeling of authenticity. An example description from the Toggle Text Layers project

is shown in Figure 10.

5.1.1.2 Primary Tags

Following the project description is the primary tags section (see Figure 11). This

section lists the tags which are the most relevant to the content of the project. These

tags provide links into ScriptABLE’s indexing system and can be thought of more

generally as index terms. Tags are shown in three separate groups: Concepts, Syntax,

and Photoshop Tasks. Thus, the primary tags can be viewed as an indication of what

programming concepts, JavaScript syntax, and Photoshop tasks will be addressed

while developing the code necessary for this project. For example, from Figure 11

one can tell that the Toggle Text Layers project will introduce selection statements

(if syntax), recursion, and functions while working with Photoshop layers. There

may, of course, be additional relevant tags for ancillary concepts or syntax used in

the development of the script which are not listed in this section. Primary tags are

limited to only those concepts, syntax, and tasks which are explicitly discussed and

71

Figure 11: Toggle Text Layers Primary Tags

explained in the body of the project write up (i.e., the Script Development section).

I will provide a more detailed description of all of the possible tags and ScriptABLE’s

index later in Section 5.1.2.

5.1.1.3 Use Scenarios

Each project contains one or more use scenarios that describe different circumstances

in which the script can be run. These serve as use cases for testing the code developed

for the project. Each use scenario is selected so that there are some inputs or con-

ditions that will cause the script to fail. Those failures are then used as motivation

for additional versions of the code, progressively approaching the final result that

functions correctly for all scenarios.

Within the project page itself, use scenarios are presented as thumbnail pictures

that show a small preview of the input details (see Figure 12). When a user clicks on

a particular thumbnail, they are presented with a new pop-up window with details

about that scenario, as shown in Figure 13. Scenario descriptions all have the same

general form. First, each scenario is given a unique name. Then a series of instructions

follows, which detail how to run the script in the appropriate way. In most cases this

involves how to setup the input environment either as a Photoshop document or the

values that will be supplied for the script’s prompt dialogs. Example images and

72

Figure 12: Toggle Text Layers Script Use Scenarios

documents are provided for a user to download and test, should they choose to run

the script as instructed. Lastly, each use scenario ends with a description of the

expected result from running the script.

I designed the set of use scenarios for each ScriptABLE project to intentionally

highlight a need for an additional version of the code, writing which would entail the

introduction of a new programming concept or technique. The provided scenarios

are not intended to be an exhaustive list of every possible test case, and users are

cautioned to this effect in the project text.

5.1.1.4 Script Development

The bulk of each project page consists of the script development section. This section

serves the same purpose as the Commentary in DPS cases. It provides a narrative

description of how the code for this project is developed and interleaves discussion of

the necessary conceptual content within the context of the project. To illustrate the

typical structure of the script development section, I will walk through the develop-

ment section of the Toggle Text Layers (TTL) project as an exemplar.

The goal of TTL is to produce a script which will walk through the collection

of layer objects in a Photoshop document and disable those layers which consist of

text. These layers are denoted in the Photoshop interface with an icon containing

the capital letter T. As shown in Figure 14, the script development section begins

73

Figure 13: Toggle Text Layers Script Use Scenario 1 Popup

74

Figure 14: Toggle Text Layers Script Development Excerpt 1

by enumerating a step-by-step process by which a user could manually produce the

desired result. This näıve process is used as a basic algorithm for the script. The

narrative quickly moves toward a first version of the script by directly translating the

manual process into code. The first version of the TTL script simply uses a definite

loop to iterate through each of the elements of an array containing the layers and

disables them by changing their visible property.

Throughout the development section, each version of the script is followed by an

attempt to execute the program as described by one of the use scenarios. In TTL,

the first version of the script fails to produce the expected output for use scenario

one because the script does not check whether or not a layer is a text layer; it merely

disables all layers. Along with a description of the script’s unexpected result, users are

provided with a screenshot of the output (an example can be seen as an expandable

75

thumbnail captioned “V1 Result” in Figure 14).

Failure on a use scenario is used to motivate the introduction of a new program-

ming concept or technique. For example, at this point in the TTL script development

narrative, readers are introduced to the concept of selection statements, provided with

an explanation of the basic if syntax in JavaScript, and shown how to correctly in-

corporate the concept into the previous version of the script. This, in turn, leads to a

new version of the script, which must be again tested using a use scenario. Like many

of the projects, the intermediate code for the TTL project successfully functions for

the first use scenario, but fails on the subsequent one.

The second version fails for TTL because it is a straightforward iterative solution

that does not take into account the fact that layers can be grouped to form a nested,

tree-like data structure of layers and groups. Correctly handling the second use

scenario (in which there are nested groups) necessitates a recursive solution. Thus,

the script development section then introduces the concept of recursion, shows a

simplified example of the necessary recursive function, and then incorporates it into

the third and final version of the script. Excerpts of this portion of the TTL project

can be seen in Figures 15 and 16.

The script development section ends with confirmation that the script does indeed

produce the desired results for the each of the use scenarios. This involves testing

the failed scenario leading to the final version of the code, as well as re-testing prior

scenarios to ensure that they have not been negatively affected by later changes to

the code.

By presenting concepts as they arise throughout the script development section,

I am able to meet several of ScriptABLE’s design goals. First, the vast majority

of the instructional content designed into ScriptABLE takes place within the script

development section. This results in a highly project-driven learning environment.

Second, as a direct result of the project-driven focus, conceptual content is inherently

76

Figure 15: Toggle Text Layers Script Development Excerpt 2

Figure 16: Toggle Text Layers Script Development Excerpt 3

77

Figure 17: Toggle Text Layers Script Downloadable Files

connected to example code. By focusing exclusively on one concept in each new

iteration of the code, users can directly compare the two subsequent versions of the

script to identify the relevant components of the concept’s implementation. Second,

the role of code errors and expectation failure in ScriptABLE are evident because

the projects have been written to take advantage of these situations as an impetus

for additional learning. Strategies for recovering from errors are then intertwined

naturally into the narrative of the project.

5.1.1.5 Downloadable Files

Following the lengthy narrative about the code, there is a simple section providing

quick access to all of the code created for the various versions of the project. The

code is presented in a tabular format (as seen in Figure 17) and maps each code

version to an indicator of success for each of the use scenarios. This visual reference

is intended to serve as a reminder of the iterative development process as well as a

means to promote comparison between versions of the code.

5.1.1.6 Creative Attribution

A creative attribution section provides additional authenticity by linking to a source

of inspiration for the project. Currently such attributions point to graphic design rules

of thumb, questions posed on online forums by users of Photoshop, and/or example

78

scripting code another user has uploaded. While perhaps tangential to the content

of the project, the purpose of this section is to help users identify with the problems

described in the project and to begin to see the code and concepts explained in the

script as relevant to their activities. My prior work also indicated that recognition

for the intellectual property and creative efforts of others are commonplace within

ScriptABLE’s target user community (Dorn et al., 2007). Accordingly, the attribution

section aims to recognize the provenance of the ideas used in ScriptABLE projects.

5.1.1.7 Full Tag Listing

Each project page ends with a full tag listing that shows all of the tags relevant to this

project. As mentioned above, the primary tags section only includes those concepts

and syntax which are explicitly discussed in the script development section. However,

there are often other concepts used throughout the project. For example, in the TTL

project, definite looping and the corresponding for loop syntax are used in the code

but are not explained in the text. Despite the fact that they are not discussed, the

code in this project could still serve as a useful example of a definite loop for a learner.

The full tag listing section includes all such relevant tags and thus enables users to

locate additional examples of concepts in projects where they are not the primary

focus.

5.1.2 Tagging and Indexing

Now that I have described the structure of ScriptABLE projects, I will turn to the

tagging and indexing provided within the system. As described in the previous sub-

section, projects in ScriptABLE are annotated with a number of tags. These tags

serve as index terms in the system and can be used to browse or locate projects that

make use of similar features or concepts.

ScriptABLE’s tags are arranged in a simple hierarchy, as shown in Figure 18.

79

Tags

Concepts

array
assignment

boolean
constant

definite loop
error

exception handling
function

functional decomposition
importing code
indefinite loop

input
logical operator

mathematical operator
nesting control structures

number
object
output

parameters
recursion

relational operator
selection statement

string
type conversion

variable
variable scope

Syntax

for
if

include
try-catch

while

Photoshop Tasks

crop and straighten
file manipulation

grayscale
guides
layers

new image
paste

Figure 18: ScriptABLE Tag Hierarchy

80

There are three top level groups: concepts, syntax, and Photoshop tasks. The ma-

jority of the tags (26 in total) are contained in the concepts category. These concept

tags are drawn directly from the list of concepts I examined in Chapter 3. There are

also five syntax tags which are unique from the corresponding concepts in name (e.g.,

exception handling and try-catch). When a concept and an element of syntax have

an identical name (e.g., function/function) the tag only appears once in the concept

category. Syntax tags were included separately in order to provide increased recogni-

tion of index terms, similar to what I observed in the card sorting study in Chapter 3.

Lastly, there are seven different task related tags that are tied to particular features

of Photoshop used in the projects (e.g., guide rules).

ScriptABLE users can browse the tag hierarchy using navigation links provided

throughout the interface. When a user views one of the three top level categories,

he or she is presented with a simple alphabetical list of all tags contained therein.

For example, Figure 19 shows the page displayed when a user views the concepts

category.

Index pages for individual tags can be viewed by clicking on the link for a tag’s

name anywhere in the ScriptABLE system. All of these index pages show the tag

name and an alphabetical list of the projects that are marked with the tag; however,

different auxiliary information is displayed on the index page depending on the top

level category to which a tag belongs:

• Concept tags contain the most information, with a brief definition for the con-

cept and a snippet of JavaScript code illustrating the abstract concept. Fig-

ure 20 shows the index page for the selection statement concept. These defini-

tions and examples are identical to those used in the card sorting study from

Chapter 3.

• Syntax tags serve as simple cross-indexes for their corresponding concept. Each

81

Figure 19: ScriptABLE Concepts Tag Page

82

Figure 20: ScriptABLE Selection Statement Tag Page

83

of these index pages instruct users to see the concept page to learn more about

the particular syntactic element, the goal being to direct users towards the

conceptual listing to the extent possible.

• Photoshop task tags have no additional information beyond the alphabetical

listing of tagged projects.

5.1.3 Search

A simple search engine is incorporated into ScriptABLE. With it, users can perform

plain-text searches of the contents of project pages and/or the index pages. Search

results are presented as a basic list of pages that match the criterion. As I made

no significant changes to the default search functionality provided by the MediaWiki

software, I will not discuss this feature further here.

5.2 Concept Coverage

In designing ScriptABLE’s projects, I specifically aimed to provide instruction for

the six concepts that I outlined at the end of Chapter 4. Recall that these concepts

were: selection statement, indefinite loops, exception handling, recursion, functional

decomposition, and importing code. With the exception of selection statement (which

is intentionally included as an easier concept), these concepts were among those least

frequently used, most difficult, and least understood (Chapter 3) and least prevalent

in an existing code repository for scripters (Chapter 4).

Table 8 depicts the coverage of these concepts among the seven projects included

in ScriptABLE. The concepts marked in this table correspond to the primary concept

tags for the projects. All of the targeted concepts are covered by two different projects,

allowing for basic comparison between different uses of the concept. Most projects

explicitly discuss two of the targeted concepts. However, the Grayscale Variations

and Paste as New Image projects only cover one concept each. This was necessary

84

T
a
b
le

8
:

C
on

ce
p
t

C
ov

er
ag

e
of

S
cr

ip
tA

B
L

E
P

ro
je

ct
s

S
c
ri

p
tA

B
L

E
P

ro
je

c
t

S
e
le

c
ti

o
n

S
ta

te
m

e
n
t

F
u

n
c
ti

o
n

a
l

D
e
c
o
m

p
o
si

-
ti

o
n

E
x
c
e
p

ti
o
n

H
a
n

d
li
n

g
In

d
e
fi

n
it

e
L

o
o
p

Im
p

o
rt

in
g

C
o
d

e
R

e
c
u

rs
io

n

B
at

ch
Im

ag
e

R
en

am
e

X
X

C
en

te
r

G
u

id
e

X
X

G
ra

y
sc

a
le

V
a
ri

a
ti

o
n

s
X

G
u

id
e

G
ri

d
X

X

P
a
st

e
a
s

N
ew

Im
a
ge

X

S
ep

ar
at

e
a
n

d
N

am
e

S
ca

n
s

X
X

T
og

g
le

T
ex

t
L

ay
er

s
X

X

85

for the sole reason of keeping the script development sections to a reasonable length.

5.3 Content Review

Following completion of ScriptABLE’s content, a third-party reviewed all of the

project and index pages. The reviewer was an expert computer science educator

with 15 years of experience as a university instructor and professor. The purpose of

this review step was to verify the conceptual content of the projects, identify any miss-

ing information needed for a novice to understand the projects and concepts, and to

confirm the overall readability of the projects. I collaboratively revised ScriptABLE’s

content with the reviewer based on her independent feedback. These revisions were

incorporated into the final version of ScriptABLE used in the evaluation study which

I will describe in the following chapter.

5.4 Notes on ScriptABLE’s Design

In this section I briefly comment on aspects of ScriptABLE’s design by making com-

parisons to some existing commercial resources and prior case-based learning aids.

The style and structure of ScriptABLE projects is reminiscent of tutorials, and a

skeptic might ask how it is any different from any other tutorial one might find on

the Web. To distinguish ScriptABLE from other tutorial style documentation, con-

sider two of the popular online tutorial sites mentioned by participants in Chapter 3:

W3schools3 and Smashing Magazine4. With respect to Web-based JavaScript pro-

gramming, W3schools provides detailed coverage of most aspects of the language

syntax, from comments and variables to objects and exception handling. However,

its presentation style differs from ScriptABLE significantly. W3schools presents a

series individual examples on separate web pages consisting of small snippets (≈ 10

lines) of JavaScript and HTML code. Following the collection of related examples,

3http://www.w3schools.com
4http://www.smashingmagazine.com

86

terse syntax-based instruction is presented that explains the basic semantics of vari-

ous language constructs shown in the examples. ScriptABLE, by contrast, relies on

code examples set in the context of larger projects. The example code is revisited

multiple times, with progressively more sophistication with each presentation. In-

struction in ScriptABLE is interleaved with versions of the code, rather than being

presented separately.

A somewhat different approach is taken by the popular site Smashing Magazine.

As its name implies, content on this site most often takes the form of magazine-like

articles about topics related to web and graphic design. Generally speaking, tips or

techniques are presented in the form of rules of thumb or how tos (e.g., actual recent

JavaScript articles included “The Seven Deadly Sins of JavaScript Implementation,”

“Commonly Confused Bits of jQuery,” and “The Poetics of Coding”). Here code ex-

amples are often presented within the context of the article’s topic, but the degree to

which any given article contains intentional instruction about the syntax or semantics

of the code being used varies widely based on the individual author’s purpose. Script-

ABLE, on the other hand, uses a common structure for all projects and makes its

role in each as an instructional aid explicit. Its concept-driven indexing and tagging

further distinguishes it from tutorial sites like Smashing Magazine, which often rely

on general tags like “coding” or “JavaScript” to classify articles.

It is also useful to examine how ScriptABLE’s design is unique from other forms of

case-based learning aids (CBLAs). In Chapter 2 I briefly discussed STABLE (Guzdial

& Kehoe, 1998), a Web-based case library that supported undergraduate students in

learning about SmallTalk and object-oriented design. STABLE presented example

cases as a hierarchy of steps, each with multiple levels of detail. Learners interacted

with the STABLE case library by exploring examples and drilling-down on the aspects

that they wished to know more about. STABLE presented conceptual information

about object-oriented design principles on separate concept pages which linked to

87

(and were linked from) related example pages. This format and intended interaction

is common to other CBLAs as well (see, e.g., Bhat & Kolodner, 2009).

ScriptABLE differs most significantly from STABLE in that its projects are pre-

sented in their entirety on one page, rather than a series of increasingly concrete

representations of the project. While this drill-down approach is quite natural for

teaching about abstraction in object-oriented systems alongside a formal course ex-

perience, this interaction style does not closely match that of the online resources

currently used by web/graphic design end-user programmers (see Chapter 3)—an

overarching design goal here. Accordingly, ScriptABLE projects take on an inten-

tionally didactic, tutorial-like style for presenting conceptual information. While I

chose to adopt a project structure for ScriptABLE based on the work of Clancy and

Linn (1995), exploring other case-based resources that more closely resemble STABLE

could be equally promising and is a possible avenue of future research.

5.5 Chapter 5 Summary

In this chapter I have described ScriptABLE, a case-based learning aid for end-user

programmers of Photoshop. I began by outlining five basic design criteria derived

from the studies in earlier chapters. In highlighting the structure of ScriptABLE’s

project pages, I demonstrated how they accomplish three of these criteria: focusing

on project-driven learning, connecting conceptual content knowledge to code exam-

ples, and highlighting the role of errors in code evolution. I addressed the remaining

two criteria through design of ScriptABLE’s tag hierarchy and the concept coverage

of its projects. Tagging provides multiple labels for concepts (both normative termi-

nology and syntactic constructs), and collectively the seven projects contain multiple

opportunities for instruction of the six targeted concepts. I concluded the chapter by

comparing and contrasting the design of ScriptABLE to existing tutorial sites and

the STABLE case-based learning aid.

88

CHAPTER VI

SCRIPTABLE EVALUATION

The previous chapter outlined the design of ScriptABLE. Ultimately my goal in build-

ing ScriptABLE was to develop a resource that could promote measurable learning

gains for the targeted normative programming constructs. Further, I intended that

such learning gains could occur while using the system during task-oriented prob-

lem solving, similar to scripting activities an that end-user programmer would likely

encounter. In this chapter, I detail the lab study that I conducted to evaluate Script-

ABLE’s effectiveness at achieving these goals. I focus primarily on the following

research questions in this study:

RQ3: How does the presentation of conceptual information as a case

library influence the way end users interact with resources?

RQ4: To what extent does ScriptABLE as a case-based learning aid en-

able the appropriation of computing knowledge for users actively engaged

in project-oriented programming activities?

Unlike previous chapters, I will postpone the operationalization of these research

questions until I have outlined necessary details regarding the study design. The

remainder of the chapter proceeds as follows. Section 6.1 presents methodological

details about the study including recruitment information, participant demographics,

an overview of the study design, and the operationalized research questions under

investigation. Results are divided into two parts. Section 6.2 explores data about

ScriptABLE usage and user satisfaction (RQ3), and Section 6.3 addresses results

related to learning differences attributable to use of the system (RQ4). I then distill

89

answers to the research questions and provide extended discussion of the results in

Section 6.4. Finally, I address limitations of the study and present alternative study

designs that could mitigate these problems in Section 6.5.

6.1 Methods

6.1.1 Recruitment

I recruited participants for this study using a variety of strategies. As in the card

sorting study from Chapter 3, solicitation emails were posted to several online Meetup

groups in the Atlanta metropolitan area. The groups I contacted all had a primary

focus on graphic or web design or use of specific tools like Photoshop or languages

like JavaScript. A majority of study participants were recruited through these online

groups. I also posted advertisements seeking graphic/web design professionals for

the study on Craigslist1 and in the Savannah College of Art and Design student

newspaper.

While these methods yielded ten participants, I ultimately had to also recruit

from student populations at Georgia Tech to fill the study with a minimum number of

subjects needed for the quantitative analysis described later in this section. My choice

to include students was pragmatic, but reasonable given that college students are often

used as proxies for practitioners in the end-user programming research literature (see

e.g., Ko et al., 2004; Subrahmaniyan et al., 2007; Brandt et al., 2009; Kulesza et al.,

2009). Further, I was deliberate in recruiting from student groups that maintained

the overall integrity of the participant pool’s connection to digital media. I recruited

undergraduate Computational Media majors2 with an email solicitation sent through

the student advising staff. Given that many of these majors go on to careers in

interactive design or digital media (Computational Media, 2008), they share many

1http://www.craigslist.org
2Computational Media is an interdisciplinary major jointly offered by the School of Interactive

Computing and the School of Literature, Communication, and Culture.

90

similarities with the professional populations originally targeted. Though they have

prior formal training in programming, it is not the primary focus of their major

coursework.

I also recruited directly from two undergraduate programming courses at Georgia

Tech. I asked for volunteers in CS1316 (Representing Structure and Behavior, a

data structures course in the context of media computation (Guzdial & Ericson,

2010b)) in the second week of class, so that they could complete the study prior to

being formally introduced to any of the concepts under investigation. Additionally,

undergraduates from CS1315 (Introduction to Media Computation, an introductory

programming course for non-CS majors (Guzdial & Ericson, 2010a)) were recruited for

the study following the first midterm exam, at which point they had basic familiarity

with imperative programming but lacked knowledge of the concepts being studied

here. Volunteers from these two courses also had similarities with the professionals I

recruited. They had experience using scripting or programming to manipulate images

and other media, but they were by no means expert programmers.

Volunteers for the study were sent a screening survey via email to confirm that they

met the study criteria. I declined those volunteers who had no prior experience with

scripting or programming languages, as a basic ability to read and understand code

was required for participation. I also excluded volunteers who had no clear connection

to graphic, web, or digital media either by profession or current coursework (in the

case of the CS1315/16 students).

All participants were compensated with a $75.00 Amazon gift card upon comple-

tion of the study.

91

6.1.2 Participant Demographics

Eighteen participants, 11 men and 7 women, completed the study. Generally speak-

ing, they represented a wide cross-section of the recruitment pool. A third of partici-

pants (6/18) indicated a primary occupation in the web or graphic design industries,

about 40% (7/18) were full-time post-secondary students, and the remaining 5 partic-

ipants reported a combination of the two (e.g., a part-time student with an industry

position). A variety of job titles were given, but careers in photography, web devel-

opment, graphic design, or other design disciplines accounted for over 70% (13/18)

of the total.

Participants had a wide variety of prior experience with image editing and script-

ing tools. Experience with Photoshop ranged from 1 to 18 years with an average of

5.9 years (σ = 4.8), with participants reporting that they used it 9.6 hours per week,

on average (σ = 14.93). Participants had less exposure to scripting or programming

with an average of 4.5 years (σ = 4.1) of prior experience. On a scale from one

(novice) to five (expert), the average self-reported rating of scripting expertise was

2.5 (σ = 1.1). Thus, on the whole, my participants were experienced Photoshop users

with at least basic knowledge of programming.

I again noted a similar pattern of high user preference for resources like tutorials,

online documentation, and code examples, echoing the results I discussed earlier in

Chapter 3. Every participant said they would be likely or very likely to consult

tutorials or frequently asked question documents when attempting to learn something

new, and all but one said they would refer to existing examples from which they could

borrow ideas or code. Less than half (7/18) said they would attend a class or seminar

on the subject and only two would be likely to call technical support phone numbers.

3The large standard deviation here is largely the effect of the split in the participant occupations.
Professional graphic/web designers reported using Photoshop on the order of 20-40 hours a week,
while students indicated significantly less regular use.

92

Despite my choice to recruit participants from a larger number of sources here,

the overall makeup of the participants and their resource preferences was remarkably

similar to those in the card sorting study from Chapter 3. The most notable dif-

ferences were that a higher number of these participants were currently enrolled as

students, and they had comparatively less experience with scripting languages (likely

a side effect of the increased representation of students).

6.1.3 Study Design

The ScriptABLE evaluation that I conducted was a multi-part lab study with two

different treatment conditions allowing for both within and between subjects compar-

isons. While a laboratory study sacrifices some ecological validity when studying the

practices of professionals, it allows for a best-case-scenario where constrained tasks

directly map to the instruction available in ScriptABLE. Additionally a lab study was

necessary to provide the level of detail required to investigate the proposed research

questions. Ultimately, the study involved a series of project-oriented tasks related to

the activities, projects, and tools that the target audience uses in their professions.

To the extent possible I attempted to balance concerns of ecological validity with

pragmatics in order to perform initial verification of ScriptABLE’s design goals.

All participants completed two 2-hour study sessions in a controlled usability

lab. In each session, participants were asked to complete a series of tasks in an

existing Photoshop scripting project written in JavaScript. These tasks consisted

of a combination of code comprehension, bug fixing, and feature extension. While

different projects were used in the two sessions, the nature of the tasks completed

was analogous and the amount of code required to correctly complete the tasks was

not significantly different. The first session was designed to establish a baseline for

participants’ performance on the tasks using only their pre-existing knowledge and

information sources. Then, performance during the second session, in which they

93

Table 9: Study Design and Participant Groups
Participant Group Session 1 (Use Internet) Session 2 (Use ScriptABLE)

Case Library 9 9

Repository 9 9

had access to a version of ScriptABLE, could be compared as a measure of learning.

Table 9 illustrates the final study design by showing the number of participants from

each group in each session.4 Additional details about the format of the two sessions

is provided below.

6.1.3.1 Session 1 Structure

At the start of the first session, participants completed a brief demographic survey

about their scripting experience and background (see Appendix E.1 for the full sur-

vey instrument). Following the survey, participants were introduced to the scripting

project on which they would be working and shown the ExtendScript Toolkit pro-

gramming environment provided with Photoshop. The project for this session was a

script that automatically extracted meta-data from a collection of photos and wrote

it to a comma-separated variable text file. Participants were given time to review the

project description, instructions, and primary code file for the project.5 They were

then asked to complete two warmup tasks to further familiarize themselves with the

IDE and source code. During these warmup tasks I provided assistance as necessary.

After the warmup tasks, participants were instructed to complete each of the six

assigned individual tasks in order in 90 minutes. For the first session, participants

were given unrestricted access to the Internet as well as access to any documentation

provided in the programming environment’s help menu. They were instructed to

use these various resources to help them with the tasks. Lastly, the following rules

4Despite the visualization in Table 9 it should not be interpreted that participants were assigned
to a group prior to session 1. As discussed later, the assignment occurred after session 1 had been
completed. Thus all participants had the same environment in session 1, regardless of treatment.

5A copy of the instructions provided to participants is given in Appendix E.2. Additionally, I have
included listings of the three source code files given to participants for this session in Appendix C.

94

were used in the event that a participant became stuck on a task and was unable to

complete it:

1. If a participant spent a minimum of 15 minutes (i.e., 90 minutes / 6 tasks) on a

given problem and indicated verbally that they were at an impasse, they were

allowed to move on to the subsequent task.

2. If a participant spent 20 minutes and still had failed to indicate completion of

the task, I inquired if they were stuck on the task and invited them to move to

the next task.

Regardless of the rule used to move a participant to the next task, I aided them in

commenting out any code written for the incomplete task which would prevent the

script from functioning as intended on the following tasks.

At the end of the session, I conducted a short semi-structured interview with

participants about their experience. I inquired about their confidence in the code

they had produced, what they struggled with during the tasks, and their use of

various resources during the tasks. Questions from the interview guide are provided

in Appendix E.3.

6.1.3.2 Session 2 Structure

Prior to the start of the second session, I assigned each participant to one of two

treatment groups corresponding to alternate versions of ScriptABLE. The first of

these two groups would be given access to the full version of ScriptABLE described

in Chapter 5. I will refer to this treatment group as the “case library group” or

simply as “case” in the remainder of this chapter. The other group of participants

received a paired down version of ScriptABLE that was identical to the case library

version with the exception that the Script Development section had been removed

from each project page (see Figure 21 for screenshots comparing the case library and

95

repository versions of the same project page). This group of participants will hereafter

be referred to as the “repository group” (or “repo”). The two alternative versions of

ScriptABLE allowed me to explore the relative impact of the various components of

the system and compare user performance in the baseline web-only session through

a mixture of between and within-subjects analysis.

I assigned participants to a treatment group based on their assessed performance

on both coding activities and conceptual answers from session one. In general, I at-

tempted to divide participants with adjacent performance scores into the two groups.

Throughout this process, I worked to maintain comparable average performance mea-

sures between the treatment groups. By intentionally balancing participants to pre-

serve comparable distributions of performance measures from session one, I sought to

eliminate preexisting ability as a potential confound to the extent possible.

The second session was generally scheduled at least one week, but no more than

two weeks following the first session. This session proceeded in a similar fashion to

the first with one notable exception. Regardless of treatment condition, I performed

a brief walkthrough of ScriptABLE’s features and gave each participant a five minute

period to explore the system on their own. I then introduced the second project:

a script which automatically generates thumbnails, preview images, and associated

HTML pages for a web gallery from a specified directory of photos.6

After completing two analogous warmup tasks, participants were once again given

a 90 minute period to complete the individual tasks. The protocol for this portion

of the study was identical to that described for session one. Following the individual

tasks, participants completed a short user satisfaction survey, and I again conducted a

semi-structured interview about their experience during session two (see Appendix E.5

and E.6, respectively).

6Appendix E.4 contains the full project description and instructions for session two. See Ap-
pendix D for source code listings for the initial files given to participants in session two.

96

Figure 21: Visual Comparison of Case Library and Repository Projects

97

Table 10: Concept Coverage of Tasks
Task Selection

State-
ment

Functional
Decom-
position

Exception
Handling

Indefinite
Loop

Importing
Code

Recursion

1 X

2 X

3 X

4 X X

5 X

6 X

6.1.3.3 Projects and Tasks

Each session required participants to complete six tasks within a project. I designed

the tasks to cover the six introductory computing topics outlined at the end of Chap-

ter 4: selection statement, indefinite loops, exception handling, recursion, functional

decomposition, and importing code. Recall from Chapter 5 that these topics are also

the concepts explicitly covered by ScriptABLE’s content. Table 10 illustrates the

mapping of these concepts to the required tasks. All concepts are covered by at least

one task, and all but one task is designed to address a unique concept. Task 4 is an

exception to that rule because, in covering the importing code concept (i.e., external

code libraries and modules), the related concept of functional decomposition arises

naturally.

I designed each of the six tasks to be isomorphic (to the extent possible) in the

two sessions. Despite obvious surface-level changes like variable and function names

caused by differences in the assigned project code, the underlying problem to be

solved was identical for a given task. In fact, where participants needed to produce

additional JavaScript code, the ideal solution was largely the same across the two

sessions. More detail about the various tasks in the two sessions appears in Table 11.

Each task consisted of two or more sub-tasks. These related sub-tasks were used to

assess the intended construct from different perspectives. For example, consider task

98

Table 11: Assigned Tasks by Session
Task

Number
Question

Type
Session 1 Task Session 2 Task

1A describe
setting colorMode string setting portraitFlag

1B code

2A code
getPropertyValue function applyWatermark function

2B strategize

3A strategize
dealing with cancel dealing with cancel

3B code

4A describe
explaining writeRow explaining writeHeader

4B strategize

5A describe

skipping corrupt files skipping non-image files5B strategize

5C code

6A describe
processing subfolders processing subfolders

6B strategize

number five from session one. This task asked participants to diagnose and debug an

error in the script when it encounters a corrupt picture file while processing an input

directory. In this situation an unchecked exception would be thrown by the runtime

engine and participants had to determine what happened, why it happened, and how

to correctly modify the script to gracefully avoid the error. The task consisted of

three separate prompts indicated as 5A, 5B, and 5C in Table 11.

The different question types (describe, strategize, and code, respectively) indicate

the nature of the prompt. Like all “describe” prompts, 5A instructed a participant

to run the program in a particular manner and describe what happened based on the

execution result and any input files. For this sub-task, participants were expected to

indicate that an error had occurred and name the image file they suspected caused the

program to crash. 5B, a “strategize” question, asked participants to devise a strategy

for preventing the error and outline the programming technique they would use in

plain English. Here, I expected an answer involving exception handling mechanisms.

Lastly, “code” questions like 5C required participants to edit the script to implement

their proposed strategy. A correct answer for 5C required a participant to write a

99

Table 12: Task Categorization on Bloom’s Taxonomy
Task Remember Understand Apply Analyze Evaluate Create

Task 1 Part A Part B

Task 2 Part B Part A

Task 3 Part A Part B

Task 4 Part A Part B

Task 5 Part A Part B Part C

Task 6 Part A Part B

try-catch statement in the code, correctly defining the scope of the try and catch

blocks so that erroneous input files would be skipped without preempting program

execution.

The three question types make it possible to investigate both conceptual knowl-

edge about a topic in addition to practical code development ability. This is important

because it was foreseeable that someone could correctly understand what was needed

to complete a task, but struggle with elements of JavaScript syntax in implementing

their idea. Additionally, the sub-tasks were designed to assess knowledge at differ-

ent levels along the cognitive dimension of understanding. Table 12 illustrates the

cognitive sophistication of sub-tasks using Bloom’s Taxonomy.

Originally outlined in 1956, Bloom’s Taxonomy is a classification scheme for var-

ious goals and objectives in the educational domain (Bloom, Englehart, Furst, Hill,

& Krathwohl, 1956). It is a tool intended to aid instructional designers in building

curricula and assessment practices while also enabling educators to better commu-

nicate their course objectives and outcomes. The original taxonomy consisted of six

categories, with each subsequent category building on those prior: Knowledge, Com-

prehension, Application, Analysis, Synthesis, and Evaluation. This classification was

recently revised by Anderson et al. (2001). The revision clarified the original category

labels for the cognitive dimension and provided additional classification guidelines for

assessment activities. I have used the revised category names and definitions in my

placement of sub-tasks in Table 12.

100

By comparing question types for sub-tasks to their corresponding taxonomic clas-

sifications one notices an exclusive relationship. All “describe” prompts fall in the

analyze category, “strategize” prompts appear as evaluation measures, and “code”

sub-tasks are categorized at the create level. In evaluating ScriptABLE’s ability to

promote learning, I focus on the most cognitively sophisticated measures—sub-tasks

from the evaluate and create levels. I use elements from the evaluate column as in-

dicators of conceptual understanding about programming concepts, and I use those

in the create column as measures of participants’ coding ability (i.e., their ability to

translate their abstract idea into a syntactically correct solution).

6.1.4 Operationalized Research Questions

With this background about the evaluation study, I now introduce the specific re-

search questions driving the investigation presented in this chapter. Questions RQ3.1

and RQ3.2 below address issues of resource usage patterns and perceptions of re-

source usefulness; the remaining three questions (RQs 4.1–4.3) deal with the degree

to which the two versions of ScriptABLE promote the appropriation of conceptual

and syntactic knowledge of programming concepts.

RQ3.1: How do usage patterns of web-based references differ comparing

participants’ use of unrestricted Internet access and ScriptABLE in its

repository and case-library forms?

RQ3.2: How do participants’ perceptions of value and usefulness compare

for the two alternate versions of ScriptABLE?

RQ4.1: To what extent do participants write better code, both concep-

tually and syntactically, when given the repository or case library form of

ScriptABLE?

101

RQ4.2: To what extent do participants with access to the case li-

brary form of ScriptABLE produce more coherent conceptual explana-

tions about project-oriented programming activities than those using the

repository version?

RQ4.3: Is there a measurable difference in participants’ self-identified

learning of programming concepts attributable to using a particular ver-

sion of ScriptABLE?

In order to answer these research questions, I relied primarily on quantitative

measures. My analysis made use of non-parametric statistics, as was appropriate

in situations like this involving small sample sizes where assumptions of normally

distributed data cannot be made. In particular I employed the Wilcoxon signed-rank

test for within-subjects comparisons, and both the Mann-Whitney U and Fisher’s

exact tests for between-subjects comparisons. These statistical tests mitigate for

skewed data points (e.g., outliers) that could otherwise negatively affect the reliability

and validity of the results. I will not only report statistical significance at the α = 0.05

level, but also at the 0.05 ≤ α < 0.1 level (denoted as “marginally significant”). Given

the limited sample size in this study and the fact that these marginal values approach

the standard α = 0.05 significance level, their inclusion and discussion has merit.

6.2 Evaluating ScriptABLE Usage

In evaluating user interaction with the case library, I make use of two primary sets

of metrics. First, I will examine and compare usage data from web activity gathered

during each of the two study sessions. Then I will present user satisfaction data to

explore participants’ perceptions of the two ScriptABLE versions.

102

6.2.1 Resource Usage

Web usage histories were captured during each session using the Coscripter Reusable

History add-on for Firefox (formerly called ActionShot (Li, Nichols, Lau, Drews, &

Cypher, 2010)).7 From the history data I tabulated values for each of the following:

total number of pages visited, number of unique pages, total searches performed

(using Google in session one and using the wiki search tool in session two), number of

unique searches, and the number of projects and concept tags viewed during session

two.

Table 13 presents resource usage data for the two sessions. The data gathered

from session one appear first with the prefix ‘S1’ in the variable column. A double-line

divides the first and second session values, and the data for each variable is disag-

gregated by treatment group. In addition to the mean and median values, I present

the results of a Mann-Whitney U test comparing the repository versus case library

groups on each variable (i.e., these are between subjects comparisons). Marginally

significant p-values (0.05 ≤ p < 0.10) are denoted with a single asterisk (*), and

significant p-values (p < 0.05) are indicated by a double asterisk (**).

Comparing the same measures between the two sessions yields some interesting

results. For both treatment groups, the average number of unique pages visited

during the session increased (case: 13.00 to 19.22 and repo: 18.00 to 25.33). A

Wilcoxon Signed Rank test8 confirmed that participants indeed visited significantly

more pages when they were given a version of ScriptABLE (Z = −2.265, n = 18, p =

0.022). Participants viewed more content pages on the web when using ScriptABLE,

despite having access to considerably less information than when their Internet access

was unrestricted. Several participants commented that, compared to the Internet,

7Histories from the second session were cleaned to remove data points from the ScriptABLE
demo period.

8All p-values reported for signed rank tests are the exact 2-tailed significance values.

103

Table 13: Comparison on Resource Usage by Group

Variable Group Mean Median Mean
Rank

Mann-
Whitney

U

Mann-
Whitney
p-value1

S1 Total Pages
case 21.44 19 8.44

31.00 0.423
repo 29.78 33 10.56

S1 Unique Pages
case 13.00 10 8.61

32.50 0.504
repo 18.00 17 10.39

S1 Total Searches
case 11.11 12 8.67

33.00 0.531
repo 14.44 11 10.33

S1 Unique Searches
case 5.56 5 7.94

26.50 0.227
repo 8.56 9 11.06

S2 Total Pages
case 68.67 54 8.11

28.00 0.286
repo 93.67 70 10.89

S2 Unique Pages
case 19.22 20 8.17

28.50 0.306
repo 25.33 20 10.83

S2 Total Searches
case 1.56 1 7.22

20.00 0.075*
repo 5.00 2 11.78

S2 Unique Searches
case 0.78 1 6.56

14.00 0.016**
repo 2.44 2 12.44

Projects Viewed
case 4.67 4 8.78

34.00 0.584
repo 5.11 5 10.22

Concept Tags Viewed
case 4.67 5 10.78

29.00 0.321
repo 3.11 2 8.22

1 All Mann-Whitney p-values given in this chapter are 2-tailed, exact significance
values computed using correction for tied ranks.

104

ScriptABLE was more helpful and made them feel more comfortable. I observed this

among participants from both treatment groups. For example:

P10c: The title, ScriptABLE, made it seem like it was for novices. And

that it wasn’t going to use terms and things that I didn’t understand

without explaining them or providing resources to explain those terms.

... I had help this time. Structured help that would make sense to me. I

don’t know where to start with the Web sometimes. Sometimes I go off

on tangents, [ScriptABLE] kind of kept it concentrated. I wasn’t shown

unnecessary information.

P11r: It’s funny because I felt more confident going into it last week

having the Internet, but with defined sources this time that like I knew

which task they would perform and what they would tell me, it was a

lot easier. ... rather than going to the vast Internet and trying to figure

things out from there.

P16c: When you’re searching the Internet you get a whole bunch of junk

and a lot of people asking questions that maybe won’t apply. So you

really have to bend whatever their question was to what your question is,

and you’re not even sure if those answers they’re getting are right. And

having something that was written for the sole purpose of giving answers

about scripting means that your information is in one place.

P17r: With the Internet you just got so fed up, so at the point that you

put down a search, you almost have to skip the first 8 or 9 before you

found anything that was going to be helpful. I mean even with Google.

And with [ScriptABLE] it was—it’s all kind of laid out there for you and

the tools are there, you just have to find it.

Perceptions like these are indicative of the increased value that participants gave

105

to ScriptABLE. The marked increase in web activity during session two suggests that

these perceptions may have encouraged users to refer to the system for their questions

more frequently.

Furthermore, there were also significant differences in the search behaviors of

both groups during the two sessions. The mean number of unique searches performed

during the session decreased between sessions one and two (case: 5.56 to 0.78 and repo:

8.56 to 2.44). This shift was statistically significant (Z = −3.514, n = 18, p < 0.001).

When given access to the Internet at large, participants relied on an information

seeking strategy that can be best characterized as search-driven. Over 40% of the

unique pages viewed were search result listings in the first session. Generally web

activity began with a Google search query, and then search results were selectively

examined, with participants going back to the search result page relatively quickly.

However, the navigation behavior when using either version of ScriptABLE was

markedly different. Browsing the system through the internal links was the typical be-

havior in session two, with participants occasionally returning to the tag index or the

project listing pages—fewer than 10% of the unique pages were search results. Based

on interview comments like those above, I postulate that the shift from searching to

browsing is the result of ScriptABLE’s content being more focused and intentionally

interconnected than other resources commonly found on the Web.

To look more closely at search behaviors, I compared search queries used in both

sessions of the study. Figure 22 lists all unique strings used to search with Google

during session one, and Figure 23 shows the unique ScriptABLE search engine input

strings used in session two. The sheer difference in the sizes of these lists is strik-

ing, but there are also other interesting observations. Many of the Internet searches

included verbatim substrings from the source code or instructions given to partici-

pants (e.g., the colorMode variable name, the csvFile.writeRow method call, the

isColorImage helper function). While this also occurred with ScriptABLE (e.g.,

106

writeHeader), queries like this were much less frequent in session two. The use of

programming language names to contextualize searches also appeared significantly

different in the two sessions. With the Internet, nearly every search string included a

reference to a programming language like JavaScript, ExtendScript, or Java. Unfor-

tunately many of these searches yielded unrelated results and participants expended

considerable energy looking at topics that were not applicable, especially in the case

when they mistakenly used Java in their query. Note in Figure 23 that no ScriptABLE

search string made such reference to a language. Participants trusted the context of

the system to eliminate their need to refine their queries.

There was also a measurable difference in search behaviors when comparing use of

the two ScriptABLE versions. For participants who received the case library version,

the decreased search frequency was even more pronounced; on average, they per-

formed less than one search query in the system. As indicated in Table 13, there was

a statistically significant difference in the search behavior between the case library

and repository treatment groups (U = 14.00, n1 = n2 = 9, p = 0.016). Reposi-

tory users conducted considerably more searches (though still fewer than they did

in session one). I believe this stems from the relative lack of explanatory content in

the repository version; when browsing the project pages failed to yield an answer,

participants simply resorted to their default search strategies used on the Web.

Beyond search behaviors, I noted no statistically significant differences on other

between-subjects indicators (see Table 13). The repository and case library groups

did not appear to access project pages, concept tag pages, or other pages in any

noticeably different patterns.

6.2.2 Perception of ScriptABLE’s Usefulness

In addition to usage data, I also gathered indicators of participants’ satisfaction with

ScriptABLE to further examine users’ perceptions about the value and usefulness of

107

detecting color in images photoshop

detecting colormode photoshop javascript

photoshop javascript color document mode

error handling javascript

detecting color in images photoshop javascript

photoshop javascript document mode

conditional color detection photoshop color document

mode

javascript user prompt file

javascript user prompt

push java

javascript colorMode ExtendScript Tookit

javascript

ExtendScript Toolkit documentation

extendscript toolkit cs4

javascript colorMode

ExtendScript Toolkit

javascript colorMode ExtendScript Toolkit

getpropertyvalue

color Mode in javascript

colorMode in javascript

javascript try catch

exif

exif colormode in photoshop file info

view .jpg tags in photoshop

exif colormode

javascript print to console

simple JavaScript function

JavaScript File.openDialog

simple JavaScript function with input parameter

exif parameter

adobe extendscript tutorial functions

how to define a function in adobe extendscript

error handling extendscript

javascript isColorImage

javascript "open options are incorrect"

csv file.writeRow

writing functions in javascript

javascript "open options are incorrect

javascript isBWImage

javascript basics

javascript color codes

can javascript identify color

javascript code reprompting

app.open

javascript color selection

javascript colors

csvfile.writeRow

javascript alert

javascript grayscale

javascript dectect RGB

javascript defining in writer

create function java

javascript

boolean javascript

javascript define function

javascript rgb object

javascript for loops

javascript detect RGB

conditionals javascript

javascript detect color

cs4 extendkit functions

javascript equals string

cannot open the file because the open options are

incorrect

try catch javascript

javascript undefined

javascript functions syntax

javascript throw

javascript functions

adobe application object

javascript output

java tutorial + functions

writing functions in javascript

java tutorial boolean

for loops javascript

java tutorial + function notation

setting colorMode in photoshop coding

setting colorMode in Java

setting color Mode in java

setting color Mode in java + boolean

setting colorMode in java for photoshop

setting colorMode in java

batch file stop services

getPropertyValue java

javascript cancel prompt

javascript how to skip a file in a batch

isColorImage(imgDocument) javascript

how to use getPropertyValue java

javascript prompt loop

javascript repromtping

javascript if then

detect color mode of image in photoshop

photoshop scripting color mode

photoshop, iscolorimage

extendscript toolkit tutorial

adobe extendscript iscolorimge

extendscript error in opening file

extendscript error in opening image file

extendscript cannot open files because the open options

are incorrect

coding functions in extendscript

adobe extendscript is color image

javascript alert cancel button

DocumentInfo photoshop

user click cancel openDialog java

DocumentInfo object

File Dialog javascript cancel

user presses cancel dialog javascript

click cancel on openDialog java

user cancel dialog javascript

stop for loop java

javascript delete confirmation dialog

functions javascript

DocumentInfo

java try catch

DocumentInfo photoshop cs4

boolean javascript color mode

boolean expression java

boolean

iscolorimage

boolean expression

extendscript try catch

colorMode extendscript

extendscript javascript

javascript function

CSVWriter

javascript error handling

color mode photoshop cs4

javascript null

Figure 22: Internet Search Queries from Session 1

108

imgDocument.height

imgDocument

img

try-catch

function

close

while

if

height

writeheader

try

if else than

image

false

true false

true

exception

variable name expected

open options

catch

image

tif

syntax error

cancel

dialog

writeHeader

error

open

try

Figure 23: ScriptABLE Search Queries from Session 2

the system’s content. Four Likert-scale questions were asked on the survey at the end

of the second session. These prompts asked participants to rate ScriptABLE on a

scale from one (strongly disagree) to five (strongly agree) for whether it helped them

in the session, whether they felt it was a good way to learn new things for them or

others, and whether they would use it in their daily scripting projects. These results

are summarized in Table 14.

Fisher’s exact tests conducted on each of the response distributions only showed

a significant difference for whether ScriptABLE was a good tool for other people

to learn. However, closer examination of the actual response pattern between the

treatment groups shows that, from a practical standpoint, this difference is not all that

different. Repository group participants were more likely to use the strongly agree

category (resulting in the significant Fisher’s exact test result), but the overall number

of participants agreeing with the statement is comparable. In fact, a Mann-Whitney

test comparing the rank distributions for these two groups on the same question

showed no statistically significant difference. In general, there were no meaningful

differences in user satisfaction reported on these satisfaction indicators.

The survey data indicates that participants held largely similar beliefs about how

useful ScriptABLE was, regardless of whether they saw the case library or repository

109

Table 14: User Satisfaction Likert Responses
Group SD (1) D (2) N (3) A (4) SA (5) Fisher

p-value
Mann-

Whitney
U

Mann-
Whitney
p-value

ScriptABLE helped me complete the tasks today
case 1 2 3 2 1

0.303 28.00 0.227
repo 0 0 4 5 0

ScriptABLE is a good resource for me to learn new things.
case 1 1 0 7 0

0.229 36.50 0.791
repo 1 0 2 4 2

ScriptABLE is a good resource for others to learn new things.
case 0 0 2 7 0

0.043** 32.00 0.519
repo 1 0 2 2 4

I would use ScriptABLE in my daily scripting projects.
case 2 0 2 4 1

0.827 37.50 0.813
repo 1 2 2 3 1

Table 15: Which Resource Helped You the Most Today?
Group Object-Model Viewer ScriptABLE

case 4 5
repo 6 3

version. However, when I asked participants during the interview following session

two which resource was most useful in completing the tasks today, I observed an inter-

esting difference. All participants mentioned either ScriptABLE or the Object Model

Viewer (a built-in API tool accessed through the IDE’s help menu). Table 15 shows

their responses. The majority of participants who had used the case library version

preferred ScriptABLE, while those who had used the repository version preferred the

Object Model Viewer two to one.

When asked to elaborate on why they preferred the Object Model Viewer to

ScriptABLE participants said things like:

P16c: I thought its search capabilities were better than ScriptABLE. And,

not to dis [sic] on ScriptABLE, but the answers that ScriptABLE gave

were stuff that I already knew basically. But if I didn’t know it already it

110

would be extremely useful, especially since it had all that example code.

P2r: ScriptABLE helped a little bit but I think I still got more help from

the toolkit. Just because most of the things that I wanted to know were

basic like API things.

P15r: I knew within that I could search any object or method that

JavaScript uses, or you know Photoshop/JavaScript whatever, and that

it would be there. Unlike, I had the feeling that ScriptABLE was just

catering to some small minority of terms and tasks, and not necessarily

JavaScript.

P20r: I feel like I did better with the Object Model Viewer. The things

I typed in the search box it actually did help me, even in the warm-up

activity. I was able to use that information better. ScriptABLE has very

specific projects, and I wasn’t, like it had a grayscale project, so I didn’t

look at that. I did for a second to see if the code would help me at all, but

it was kind of specific so I wasn’t—some of the projects on there weren’t

even relevant to this, because this was just compiling like a gallery.

Although not statistically significant, this difference in resource preferences may

be indicative of underlying perceptions about the two versions of ScriptABLE. For

those who simply needed an API reference like P16c and P2r, the Object Model

Viewer was an obvious choice, regardless of the version of ScriptABLE used. For

those who needed help with JavaScript concepts, it appeared that repository group

was more likely to discount ScriptABLE as a collection of irrelevant projects as P15r

and P20r did. Similar participants who were given the case library, on the other hand,

identified it as an important resource and felt it help them complete the tasks.

111

6.3 ScriptABLE as a Task-Oriented Learning Aid

My evaluation of ScriptABLE’s effectiveness as a scaffold for learning computing

concepts is divided into three parts. First I examine participants’ ability to complete

syntactically and semantically correct coding tasks, then I present findings related to

their ability to answer conceptual questions about the tasks, and lastly I present data

about self-reported learning gains.

6.3.1 Code Correctness

As I discussed earlier in this chapter, there were four ‘code’ questions (see Table 11).

To analyze the code produced for these questions I developed a simple rubric with

four ordered categories to be applied to the final script. The categories, from most

correct to least, are:

4 points Code functions correctly, uses the intended construct, closely resembling

the ideal solution.

3 points Code functions correctly, uses the intended construct, but also includes

unnecessary additional constructs that could be removed or otherwise simplified.

2 points Code does not function correctly but uses the intended construct.

1 points Code does not function correctly and does not use the intended construct.

0 points No code edited or inserted.

Two independent raters applied the rubric to all 36 scripts produced in the two

sessions. Ratings were compared and any disagreements were collaboratively recon-

ciled between the raters to produce the final value. I then aggregated ratings for

each of the four coding questions to produce a single value between 0 and 15 for

code performance in a session. Table 16 presents summary statistics for participants’

code performance during session one and session two, and it also presents data for

112

Table 16: Code Performance Statistics
Variable Group Mean Median Mean

Rank
Mann-

Whitney
U

Mann-
Whitney
p-value

Session 1 Code
case 7.78 6 9.83

37.50 0.812
repo 7.33 5 9.17

Session 2 Code
case 10.11 13 9.28

38.50 0.872
repo 10.11 8 9.72

Code Improvement
case 2.33 2 8.72

33.50 0.558
repo 2.78 3 10.28

the degree to which their aggregate code score improved (calculated simply as session

two score minus session one score). The rightmost columns show Mann-Whitney test

results for comparisons between the two treatment groups.

You can see from Table 16 that my intentional balancing of participants based

on session one performance yielded treatment groups with very similar performance

distributions. A Mann-Whitney U test comparing session one performance between

the groups resulted in non-significance (p = 0.812). Thus, it is reasonable to consider

these two groups as comparable in their demonstrated coding ability going into the

second session.

Without a doubt, participants’ code scores improved across the board from session

one to session two. The mean and median scores for both the case library and

repository groups increased markedly. A Wilcoxon signed-rank test confirmed that

there was a significant positive shift in scores (Z = −3.172, n = 18, p < 0.001).

However, I did not observe significant differences between the groups in their overall

performance on the second task (U = 37.50, n1 = n2 = 9, p = 0.872) nor in the

degree to which their code improved across the sessions (U = 33.50, n1 = n2 = 9,

p = 0.558). In other words, code scores improved for both groups, but neither group

improved significantly more than the other.

There are several likely explanations for these observations about coding ability.

For example, there could have been learning effects from session one (more than one

113

participant commented on the similarity in tasks), or there could have been differences

between the projects that made the second session’s code easier to understand and/or

edit. However, the important result for the research question I posed is that, while

participants did better on the second session, these gains were not attributable to the

version of ScriptABLE that they used during that session.

6.3.2 Conceptual Answers

Having examined participants’ ability to write code, I now turn to an analysis of

participants’ ability to complete open-ended questions about programming concepts.

Recall from earlier in the chapter that I will be using responses from the five “strate-

gize” sub-tasks as indicators of conceptual understanding. These prompts asked par-

ticipants to outline a programming technique or concept that would be applicable

in the current situation and would allow them to overcome an issue in the code.

Responses to these prompts were written in plain English.

Similar to the analysis of code performance, I developed a rubric for judging

the quality and correctness of conceptual responses. Again, two independent raters

applied the rubric to all 180 responses gathered during the two sessions and collab-

oratively reconciled any disagreements. The final rubric used for each question had

the following four categories, from ordered most to least correct:

3 points Response correctly identifies the intended construct by name, using nor-

mative terminology.

2 points Response correctly describes an approach which makes use of the intended

construct, but does not explicitly use normative terminology in the answer.

1 point Response does not address the intended construct, but does exhibit an al-

gorithmic or programmatic approach to solving the problem which could work

under limited conditions.

114

Table 17: Conceptual Performance Statistics
Variable Group Mean Median Mean

Rank
Mann-

Whitney
U

Mann-
Whitney
p-value

Session 1 Concept
case 7.44 7 9.22

38.00 0.862
repo 7.67 8 9.78

Session 2 Concept
case 10.22 10 10.56

31.00 0.426
repo 8.78 9 8.44

Concept Improvement
case 2.78 2 11.78

20.00 0.071*
repo 1.11 1 7.22

0 points No answer given, or response was nonsensical or wholly unrelated to the

issue being addressed.

I combined conceptual performance scores for individual sub-tasks in a session

to create a single value for each participant ranging from zero to 15. I then used

this aggregate value as the indicator of each participants’ performance on conceptual

questions. I have summarized statistics for conceptual performance in Table 17.

As I did earlier for code performance, this table illustrates the mean and median

conceptual performance values in sessions one and two and the observed improvement

in the answers disaggregated by treatment group. Statistics for between-subjects

comparisons on these three variables appear in the rightmost columns.

The treatment groups performed quite comparably on conceptual questions in

the first session as a result of my deliberate efforts to balance the groups. You can

see in Table 17 that the mean and median values for session one performance were

nearly identical, and a Mann-Whitney U test showed a similarly non-significant result

(U = 38.00, n1 = n2 = 9, p = 0.862). Thus, the groups were alike enough to permit

meaningful comparisons.

There was a statistically significant increase in the quality of conceptual re-

sponses from session one to session two (Wilcoxon signed-rank, Z = −3.135, n = 18,

p = 0.001). That is, their responses were more technically accurate and were more

likely to make use of normative computing terminology. However, unlike the code

115

0

1

2

3

4

Change in Conceptual Score

N
u

m
 P

a
rt

ic
ip

a
n

ts

repo 2 2 2 1 1 0 1 0

case 0 0 3 2 1 1 1 1

-1 0 1 2 3 4 5 6

Figure 24: Conceptual Score Increase by Treatment

measures, there were detectable differences in conceptual performance tied to which

version of ScriptABLE participants received. Simply looking at the average values

for session two it appeared that the case library group outperformed the repository

group (see Table 17). The session two performance values alone were not different

enough to result in a statistically significant finding, but the difference became much

more apparent upon comparing the improvement in conceptual responses. I noted a

marginally significant difference in the degree to which answers improved (U = 20.00,

n1 = n2 = 9, p = 0.071); participants who used the case library form of ScriptABLE

improved on average about 2.5 times better than those who used the repository ver-

sion.

Figure 24 presents a histogram illustrating the observed shift in performance val-

ues for the treatment groups. As you can see, every participant in the case library

group improved by at least one point, and several people improved by three or more

points. Those in the repository condition improved with much less regularity and

four participants showed either negative or no improvement.

These results indicate a measurable difference in the quality and correctness of

116

conceptual responses that can be attributed, in some part, to the version of Script-

ABLE used. Participants who used the full case library version described in Chapter 5

exhibited significantly more growth in the technical correctness of their responses and

their use of normative terminology to describe their proposed solutions. As an ob-

jective indicator of conceptual learning, this serves as evidence that the case library

was able to promote transfer of normative computing knowledge from ScriptABLE’s

projects and indices, at least in the short term. Whether participants retain this

knowledge beyond the study session is beyond the scope of this dissertation. I will

return to these results later in the discussion section where I will elaborate on reasons

for the case library’s success here, but not on code performance.

6.3.3 Self-Reported Learning

The last measure of ScriptABLE’s effectiveness makes use of self-reported learning

gains. On the exit survey following session two, participants were asked to rate their

current understanding of the six concepts being studied. A follow-up question asked

them to compare their current level of knowledge on each concept to what it was prior

to the second study session on a 5-point Likert-type scale ranging from significantly

worse (1) to significantly better (5). Participant’s responses on this prompt are tab-

ulated in Table 18. The table also indicates Fisher’s exact test and Mann-Whitney

U test statistics for comparisons between the case library and repository groups.

On the whole, little can be said based on the self-reported learning gains. The

majority of participants indicated that their level of understanding was unchanged

for all of the concepts except exception handling. Only one participant said they were

more confused about a topic (recursion) after completing the second session. The only

statistically significant difference in the distributions of self-reported learning gains

was for importing code (Mann-Whitney test, U = 18.00, n1 = n2 = 9, p = 0.029),

with five people in the repository group indicating that they felt their knowledge

117

T
a
b
le

1
8
:

S
el

f-
R

ep
or

te
d

C
on

ce
p
t

L
ea

rn
in

g
R

es
p

on
se

s
C

o
n

c
e
p

t
G

ro
u

p
S

ig
.

W
o
rs

e
(1

)

W
o
rs

e
(2

)
A

b
o
u

t
th

e
S

a
m

e
(3

)

B
e
tt

e
r

(4
)

S
ig

.
B

e
tt

e
r

(5
)

F
is

h
e
r

p
-v

a
lu

e
M

a
n

n
-

W
h

it
n

e
y

U

M
a
n

n
-

W
h

it
n

e
y

p
-v

a
lu

e

se
le

ct
io

n
st

at
em

en
t

ca
se

s
0

0
9

0
0

0.
47

1
31

.5
0

0.
47

1
re

p
o

0
0

7
0

2

fu
n

ct
io

n
al

d
ec

o
m

p
o
si

ti
o
n

ca
se

s
0

0
7

2
0

0.
62

0
30

.5
0

0.
45

7
re

p
o

0
0

5
3

1

d
efi

n
it

e
lo

op
ca

se
s

0
0

8
1

0
0.

36
5

26
.0

0
0.

18
8

re
p

o
0

0
5

2
2

im
p

or
ti

n
g

co
d

e
ca

se
s

0
0

9
0

0
0.

02
9*

*
18

.0
0

0.
02

9*
*

re
p

o
0

0
4

4
1

ex
ce

p
ti

on
h

an
d

li
n

g
ca

se
s

0
0

5
4

0
0.

31
1

25
.5

0
0.

20
9

re
p

o
0

0
3

3
3

re
cu

rs
io

n
ca

se
s

0
0

5
4

0
0.

62
0

35
.5

0
0.

69
8

re
p

o
0

1
5

2
1

118

increased and no one in the case library group reporting a change.

Ultimately I believe inferences based on these self-report prompts would be precar-

ious. When one considers these reported gains alongside participants’ rating of their

knowledge there are several inconsistencies. For example, some participants indicated

that they did not recognize a term, but at the same time said their knowledge of the

term was significantly better on this prompt. Further, it would appear that overall

participants in the repository group reported significantly more learning than their

case library counterparts, despite the fact that they performed similarly on coding

questions and worse on conceptual questions.

There are perils with self-reported data, and I believe there was a significant

participant effect (Gay & Airasian, 2000) at work here. Participants were inclined

to say that their understanding improved for these topics because they believed they

were supposed to have learned. Accordingly I believe I lack sufficiently reliable data

to address the research question originally posed about self-identified learning gains

(RQ 4.3: Is there a measurable difference in participants’ self-identified learning of

programming concepts attributable to using a particular version of ScriptABLE?).

As such, I will eliminate it from further discussion and instead rely on the objective

performance measures of coding ability and conceptual knowledge in answering the

top level research question (RQ4).

6.4 Discussion

In this section I explicitly answer each of the four remaining operationalized research

questions under investigation in this study. I also provide additional commentary for

the difference in observed results for the final two research questions.

119

6.4.1 Revisiting the Research Questions

6.4.1.1 How do usage patterns of web-based references differ comparing partici-
pants’ use of unrestricted Internet access and ScriptABLE in its reposi-
tory and case-library forms? (RQ3.1)

There were clear differences in how participants used the web as a resource in the

two sessions. When given access to the Internet at large in the first session, partic-

ipants’ usage revolved around search queries. Individual pages in the result listings

were visited briefly, and then participants returned to search results. On the other

hand, when given ScriptABLE, participants were far more likely to exhibit browsing

behaviors using the internal links in the system to move through content. Many fewer

searches were performed in the second session, and participants using the case library

form of ScriptABLE rarely used the search feature at all.

This result might be explained by information foraging theory (Pirolli, 2007),

a model of information seeking behavior that likens human cognitive information

seeking strategies to the foraging tactics of animals in the wild. Essentially, Pirolli

(2007) posits that a user looking for information attempts to maximize the informa-

tion gained while minimizing the effort expended during the search. Further, users

make decisions about where to look next based on information scent—that is, they

actively predict which path will lead to optimum information gain using cues in the

environment (e.g., links, page rankings).

I argue that the case library form of ScriptABLE inherently has a higher degree

of information scent as a result of the additional information presented in the Script

Development section. The content of that section contextualizes programming con-

tent knowledge with example code and test scenarios. This additional context enables

users to see the relevance of linked pages, promoting browsing behaviors. In the case

of the repository, I believe that users may have perceived a low degree of information

scent. This is a plausible interpretation of the comments from repository partici-

pants indicating they believed ScriptABLE’s content was irrelevant for their tasks.

120

Further it may explain the observation of increased use of search by the repository

group—participants attempted to rely on their default web search behaviors to find

information that they had trouble locating on their own. Unfortunately their search

queries often contained no matches, due to the limited content in the repository.

6.4.1.2 How do participants’ perceptions of value and usefulness compare for the
two alternate versions of ScriptABLE? (RQ3.2)

Overall, there were somewhat mixed results related to users’ perceptions of the two

versions of ScriptABLE. On survey questions about the system, there were no ap-

preciable differences for users’ ratings of the case library and repository. Qualitative

interview data suggest that perhaps case library users valued it more in helping them

complete the tasks than those who were exposed to the repository version. I believe

that participants in the repository group had more difficulty in seeing the relevance of

the project contents to their current task because of the missing Script Development

section. Recall that this section presents the complete narrative of how a script is

written to meet the project goals. In order to understand how the tagged concepts

related to the use scenarios and the different versions of the code, repository partic-

ipants had to piece together the narrative on their own by comparing each of these

separate elements in the interface. The repository provided even less guidance than

the case library, and in this setting the increased cognitive load required of partici-

pants may have turned them away from the system (Kirschner, Sweller, and Clark

(2006) outline a similar argument regarding the failure of other forms of minimally

guided instruction).

In fact, the few repository group participants who preferred ScriptABLE did seem

to make effective use of the information given in the tag pages, use scenarios, and

code examples by repeatedly accessing in an intentional manner. That said, they also

pointed out that they felt something was missing from ScriptABLE in the interview

portion of the study. For example, consider these comments from two participants

121

who preferred ScriptABLE about what resources they would like to have had access

to during the session:

P17r: Maybe some of these [gestures to a tag page in ScriptABLE’s index

on screen], if they were just a little more in-depth. The syntax [tag pages]

that you have here, and then it just directs you to one of these projects.

It doesn’t really explain to you how it could be used. There’s not much

of an explanation behind that.

P9r: I was surprised in ScriptABLE the scenarios were very deemphasized.

I don’t think it actually stopped me from doing anything. But it was hard

to—you had to click inside the scenario to see what was going on, and it

wasn’t connected to the code directly. That would have probably sped a

few things up.

The type of explanation that P17r is requesting and the connection between use

scenarios and code mentioned by P9r is exactly the type of support that participants

who used the case library version had access to in the Script Development section.

6.4.1.3 To what extent do participants write better code, both conceptually and
syntactically, when given the repository or case library form of Script-
ABLE? (RQ4.1)

Participants did generate more correct code during the second session than the first

session of the study, as measured by the rubric. However, there were no significant

differences in the correctness of the code generated by the case library and repository

groups. Further, I found no significant difference in the improvement in code quality

between the two sessions for the treatment groups. Thus, the observed increase in

performance was likely the result of a learning effect or some ancillary detail not

attributable to the version of ScriptABLE used.

122

6.4.1.4 To what extent do participants with access to the case library form
of ScriptABLE produce more coherent conceptual explanations about
project-oriented programming activities than those using the repository
version? (RQ4.2)

I presented confirmatory, though marginally significant, evidence that users of the

ScriptABLE case library did in fact exhibit greater improvement in their conceptual

answers to prompts than users of the repository version. The small sample size and

lab setting used in this study limit the generalizibility of this finding, but I contend

that it does demonstrate that the ScriptABLE case library can measurably lead to

the appropriation of normative computing knowledge.

6.4.2 Examining the Case Library Conceptual Gains

Given the findings of RQ4.1 and RQ4.2, it is natural to wonder why the case library

users showed increased gains in conceptual performance but not in performance on

code measures. Let us consider two types of participants at opposite ends of the spec-

trum: advanced users9 who already have a fairly solid understanding of the concepts

being studied and beginners whose knowledge of JavaScript is largely the product of

simple copy/paste operations of pre-existing code.

Advanced users need resources to look up unfamiliar functionality or, most often,

to remind themselves about small syntactic details which they have forgotten (Brandt

et al., 2009). The underlying concepts have already been learned. For these users,

either version of ScriptABLE provides enough information through the tag pages

and example code to help them with such tasks as remembering how to write a

function header in JavaScript—they are simply seeking small hints about specific

syntax elements. Thus, these users are able to create code that works just as well

given either ScriptABLE version. Their conceptual answers are strong in the first

session because they already know of the various constructs, and they perform equally

9To be clear, I intend “advanced” here to be contextualized within the participant demographics
of the study, and not to refer to expert professionally trained programmers.

123

well in the second session.

On the other hand, beginners must attend to many more details in the two sessions.

I observed that some participants who could be classified as beginners in the study had

never heard of many of the concepts (e.g., while loops, exception handling, recursion).

Lacking a strong understanding of the relevant concepts in the first session, these

participants often provided non-specific answers for the strategize subtasks. They

often wrote little or no code to solve the problems in the first session, and later

remarked that they had trouble figuring out how to get the specific JavaScript code

right. In the second session, their improvement on these factors was influenced by the

version of ScriptABLE they received. Lacking much instructional content, repository

users improved little on their understanding of the concepts, and were still unable

to get started with selecting the necessary JavaScript syntax in the code. However,

those who used the case library were often able to identify the correct concept for a

given task based on the explanations given in ScriptABLE’s project text. The Script

Development narrative helped them confirm that the concept they were reading about

could help solve their problem, and they used this in their responses to the strategize

prompts. This resulted in pronounced improvements in their conceptual performance

scores. However, when they were required to put their strategy into code, they still

struggled to transfer knowledge about the concept to write completely new code in

their project—none of the code examples presented in ScriptABLE could be directly

copy/pasted to solve a subtask. In unsuccessfully transferring between the concrete

details of the ScriptABLE project and the assigned task, their code performance

scores did not improve by the same margin. If this is in fact the case, one might

imagine that case library users would eventually demonstrate code performance gains

given use the system beyond the time constraints in this particular study.

124

6.5 Limitations and Alternate Study Designs

As with any research effort, there are threats to validity that limit the results of

this study. Recruitment proved to be considerably more difficult than originally

anticipated, and as a result, the study was necessarily smaller. Ideally, I would have

had significantly more participants even for the study design ultimately used. It is

encouraging that, given these circumstances, I was able to detect some interesting

and meaningful differences in the data. The remainder of this section enumerates a

number of possible alternative study designs that could inform future research efforts.

1. Add a True Control Group The two condition design I used suffers from a

potential confound in that learning gains between sessions one and two are

to be expected (i.e., a rehearsal effect), but not entirely separable in the final

data set. As mentioned in the results section, participants in both conditions

improved significantly on both coding and conceptual responses, but it cannot

be determined how much of that was simply the result of a learning effect or

differences in the difficulty of the assigned projects. Adding a control group,

who again had access to the Internet in session two, would have allowed for

greater precision in the comparisons. Lacking this, I have been careful in this

chapter to only draw my conclusions about learning from the between-subjects

results.

2. Counterbalance Assigned Projects Across Sessions Another option that

could provide greater power to observe the effect of ScriptABLE versions on

perfomance is to counterbalance the assigned projects across the two sessions.

In this study all participants received the same project in session one and then

the same second project in session two. As I noted earlier, ancillary differences

in the projects could have made one of them more difficult than the other. The

125

collection of search terms is suggestive that participants may have had consid-

erably more trouble with task 1 from session 1 than the corresponding task

in session 2—the helper function named in the session 1 task description ap-

pears many times in the list of queries. Counterbalancing would have reduced

the effect of such differences on the average performance metrics; however, to

conduct such a study would have required considerably more participants to

achieve useful levels of statistical power. In this study, I consciously chose not

to counterbalance due to expected small sample size, and I assumed that all

participants were equally affected by differences in project difficulty. There-

fore, I have only used analysis of the comparisons that are free of this potential

confound in my argument in support of the thesis statement.

3. Utilize a Third-Party Interviewer for Conducting Sessions Conducting

interviews without biasing the results is a highly skilled task (Seidman, 1991).

Participants can be easily influenced by their perceptions of the interviewer

and what they believe the interviewer would like them to say. Similarly, user

behavior and feedback in software usability studies may be affected by the

presence or absence of the system designer. Having a third party conduct the

study sessions and exit interviews with participants would have helped ensure

that this affect was not present. While I personally conducted the study, I did

take measures to limit the extent to which participants knew I was responsible

for building ScriptABLE in order to mitigate this effect. Introduction of

ScriptABLE was done entirely in the third person, using “the author” rather

than “I” to refer to the creator of ScriptABLE’s content. Additionally, I also

provided instruction and reminders about the Object Model Viewer’s interface

at the outset of the sessions so as to not unfairly favor use of one resource over

the other.

126

4. Couple Results with Pre/Post Assessments Ideally, I would have been able

to conduct pre/post assessments of participants’ conceptual understanding of

introductory computing concepts that were not tied to their performance on

the tasks. This would provide an external measure of participants’ knowledge.

However, at the time of this study, no such valid assessment in computing

existed. The recent development of the Foundational CS1 Assessment by Tew

(2010) is promising in enabling such comparisons in future work, but even it

lacks coverage of some of the concepts studied here (e.g., exception handling,

importing code). Even in the ideal setting, adding another component to the

study design would require an increased time commitment from participants in

an already lengthy study, which is a serious consideration for recruitment.

5. Allow Access to Personal Resources Lastly, performance on the tasks may

have been influenced by the lack of access to familiar personal resources. Some

participants mentioned that they would have liked to have had access to their

books or personal development environment (i.e., their desk, their computer,

etc.) while completing the tasks. Obviously, working in an unfamiliar setting

may have impacted how they behaved and limits the degree to which I can rely

on session one performance as a true measure of how they would have behaved

in this situation normally. That said, only 16.7% (3/18) of participants men-

tioned this after session two, and 44.4% (8/18) indicated they had no additional

resources they would have liked to use.10 Given these observations it seems rea-

sonable to say that their behaviors in this study were faithful reproductions of

their tendencies.

10The remaining comments related to specific ScriptABLE feature suggestions or access to one-
on-one tutoring.

127

6.6 Chapter 6 Summary

In this chapter, I presented the design and results of an evaluation study for Script-

ABLE. Eighteen participants with some prior knowledge of programmatic manipu-

lation of pictures and other media completed the two part study. Data collected

was used to investigate resource usage patterns, user satisfaction, and ScriptABLE’s

ability to promote task-oriented learning of normative computing concepts. I pro-

vided evidence that use of ScriptABLE is markedly different than use of the Internet

at large to solve similar problems, and I demonstrated that the case library form of

ScriptABLE can lead to measurable improvement in the responses to questions about

programming concepts among end-user programmers. Lastly, I discussed a number

of potential threats to the validity of this work and provided rationale to support the

interpretations I presented in this chapter, despite the non-ideal circumstances of the

study design.

128

CHAPTER VII

CONCLUSIONS AND FUTURE WORK

With this dissertation I have investigated the challenges that end-user programmers

face from a computer science education perspective. I have engaged in a cycle of

learner-centered design to answer the high-level questions: What do users know;

what might they need to know; how are they learning; and how might we help users

discover and learn what they need or want to know? I have used this unique lens

to frame EUPer challenges as issues related to knowledge and understanding about

computer science. Rather than building new languages or programming tools, I have

addressed these difficulties through new types of instructional materials and opportu-

nities for felicitous engagement with them. Recall the thesis statement I introduced

in Chapter 1:

A case-based learning aid for graphic and web design end-user program-

mers can leverage current user practices of project and example-driven

learning, promote the use and browsing of instructional content, and

thereby foster the appropriation of knowledge about normative program-

ming concepts.

To affirm this thesis statement I have conducted and presented the results of three

unique studies, as well as the design of a new case-based learning aid named Script-

ABLE. The first two studies, presented in Chapters 3 and 4, provided the necessary

context about graphic and web design EUPers to guide the design of ScriptABLE’s

conceptual content and the nature of its presentation. The last study (Chapter 6)

demonstrated ScriptABLE as a proof-of-concept, verifying that it can indeed foster

129

conceptual knowledge gains for users actively engaged in project-oriented program-

ming activities.

In this conclusion chapter, I will revisit and extend some of the results presented

throughout the dissertation. I first examine the findings by providing answers to the

original four research questions that I posed in Chapter 1. I then turn to a discussion

of the specific contributions made by this dissertation work, followed by a series of

recommendations for designers of educational resources that have similar goals to

those of ScriptABLE. I bring the chapter to a close by elaborating on possible future

research directions that stem from the work presented here.

7.1 Answering the Primary Research Questions

The results presented in the chapters of this document provided concrete answers to

operationalized research questions for each of the four large questions put forward

in the introduction. I will now review those results and, in so doing, answer those

top-level research questions.

7.1.1 What is the nature of graphic/web design end-user programmers’
knowledge of normative computing concepts? (RQ1)

The study I presented in Chapter 3 spoke to RQ1. In particular, the open and

closed card sorting activities I carried out with graphic and web designers enabled

me to explore how much they knew about a fixed set of common terms taken from

introductory computer science. Graphic and web designers from the study had some

experience writing scripts and/or programs in various languages. Many of them rec-

ognized the vast majority of the computing terms that I presented to them, however,

often they required the help of a definition and example of the term. Simply put,

formal terminology was a potential roadblock for these designers. Additionally, I

identified a set of six introductory concepts that were consistently ranked as not well

understood, difficult to learn, and infrequently used: exporting code, indefinite loop,

130

variable scope, recursion, functional decomposition, and exception handling. Finally,

results from this study suggested that graphic and web designers associate these in-

troductory concepts differently than typical students of computer science. Rather

than grouping concepts by syntactic or semantic concerns, participants focused more

on pragmatic or concrete relationships between the concepts and how they are used

in daily practice.

Generally speaking, this evidence suggests end-user programmers (or, at least

those in graphic and web design fields) are unique in their relationship to normative

computing knowledge. There is little intrinsic value for them in knowing about pro-

gramming for programming’s sake; their knowledge of concepts is tied closely to the

tasks they need to complete in order to get paid. They are able to identify concepts if

shown concrete syntax (e.g., JavaScript keywords), but they are not overly concerned

with knowing the abstract terminology for concepts. The difficulty with this dispo-

sition is that is it foreseeable that such users will produce sub-optimal solutions by

relying exclusively on familiar constructs. Additionally, lacking common and consis-

tent vocabulary, they may encounter difficulty in communicating with colleagues or

in locating relevant information when needed.

7.1.2 What learning practices do graphic/web design end-user program-
mers currently employ, and to what extent do typical resources pro-
vide opportunities to learn about normative computing concepts?
(RQ2)

Results from Chapters 3 and 4 shed light on this research question. Qualitative

interview comments from graphic and web designers indicated that learning about

programming is often driven by specific project demands. Learning for these end-user

programmers was often reported as a process of trial and error. In a way, their process

resembled bricolage programming discussed by Turkle and Papert (1991). Content

was not identified and learned before writing code; rather, participants described

that information seeking was regularly interleaved with writing code, testing, and

131

examining the outcome. Finally, while graphic and web designers overwhelmingly

preferred online codes examples and documentation, I found a primary repository

for Photoshop scripts lacking in content for the previously identified difficult and

misunderstood concepts.

The important takeaway from these findings is that end-user programmers who

rely on online, community-driven websites for information may find themselves at a

loss when what they need to learn something new. This is particularly pronounced

when their information need is outside of the typical, frequently used scripting con-

structs. Without some form of external support for new conceptual content, repos-

itories like these may become self-reinforcing libraries of a small number of already

well understood concepts.

7.1.3 How does the presentation of conceptual information as a case li-
brary influence the way end users interact with resources? (RQ3)

The ScriptABLE evaluation study presented in Chapter 6 outlined my results pertain-

ing to RQ3. Participants utilized ScriptABLE while solving problems considerably

more than when they had access to the Internet to complete similar tasks. Further, I

found that study participants were significantly more likely to engage in browsing be-

haviors in the ScriptABLE case library, versus their almost exclusively search-driven

information seeking strategies employed when they were allowed access to the Web

at large. Perhaps this was due to the restricted size of ScriptABLE, but nonetheless

its structure and content seemed to have an impact on users’ behaviors. Interest-

ingly, participants did not exhibit markedly divergent opinions about the value of the

different versions of the ScriptABLE system. However, those who had access to the

full version with commentary about example projects may have favored ScriptABLE

slightly more than those who lacked the commentary.

The increase in ScriptABLE use compared to general Internet use taken together

132

with qualitative feedback from participants indicates that I was successful in build-

ing a case-based learning aid that users perceived as useful. These results support

my argument that case-based materials are a good fit for the practices of end-user

programmers. Namely, they leverage project-driven learning while contextualizing

conceptual content and presenting it in a just-in-time manner. One participant went

so far as to remark:

P3c: It was more zoned in or written in a way that I can understand it a

little bit better. It wasn’t written by a programmer for programmers who

already knew how to program.

7.1.4 To what extent does ScriptABLE as a case-based learning aid en-
able the appropriation of computing knowledge for users actively
engaged in project-oriented programming activities? (RQ4)

In the same study presented in Chapter 6, I detailed results covering RQ4. I used

differences in measures of code quality and open-ended conceptual responses to as-

sess the degree to which participants appropriated content knowledge in ScriptABLE.

While I noted that participants produced significantly better code when using either

of two versions of ScriptABLE, I was not able to attribute those differences to specific

features. More directly, the addition of narrative explanations about example projects

did not significantly impact code quality. However, I did observe marginally signif-

icant differences in the sophistication of participant answers to free form questions.

Participants who had access to ScriptABLE’s narrative commentary improved more

in their ability to produce coherent conceptual explanations for questions about a

project not contained in the system. That is, they appeared to learn more computing

content than those who did not see the commentary.

These results confirm that use of ScriptABLE in its full case library form can have

a measurable impact on learning of computing concepts. As the first learner-centered

attempt at supporting end-user programmers, these findings are encouraging. I have

133

shown that it is possible to design and implement an educational resource informed

by existing end-user programmer practices that can promote learning of normative

programming concepts. Further, I observed these learning gains for the concepts

which similar users previously noted were most difficult, least well understood, and

least frequently used.

7.2 Contributions

In answering the four questions this dissertation makes several tangible contributions

to the research community. Specifically:

1. The first detailed characterization of graphic and web design end-user

programmers. Much of the research on end-user programming has concen-

trated on users in disciplines that are closely allied with STEM fields (science,

technology, engineering, and mathematics). For example, accountants (Beck-

with et al., 2006; Wilson et al., 2003), computational scientists (Segal, 2007),

and architects (Gantt & Nardi, 1992). There has also been considerable at-

tention for tools to support those engaged in various forms of knowledge work

(Scaffidi, Myers, & Shaw, 2008; Leshed et al., 2008). However, to date lit-

tle attention has been given to EUPers who use programming for artistic and

creative endeavors. This dissertation work is an in-depth exploration of this

largely unexplored space. Further, in approaching EUPer challenges from a

learner-centered stance, I have provided a novel and detailed depiction of what

graphic and web designers know about normative computing concepts and the

issues they encounter while learning.

2. An analysis of the existing information space of graphic and web de-

sign EUPers. People make use of a vast number of resources when learning

something new about programming. In order to adequately scaffold graphic

and web design EUPers I had to understand the information ecology in which

134

they live. This dissertation not only describes what resources EUPers use, but

it also examines one high profile online code repository with a critical eye. This

content analysis is unique in that it explicitly views the repository’s content

as an educational support, highlighting the deficiencies a novice programmer

would face in using the site to learn.

3. A prototype case-based learning aid with the design and implementa-

tion of ScriptABLE. The design of ScriptABLE and the processes I used

can serve as a model for those who intend to build instructional resources for

informal learners of computing, especially for end-user programmers. From its

tagging and indexing system to the content of its project pages, I drew on re-

search evidence about what resources graphic and web design EUPers use and

how they engage with them. It is is an example of how to present instruction

about computing while leveraging the existing information seeking habits of

EUPers.

4. Initial confirmatory evidence supporting case-based learning aids for

informal computing education among EUPers. The evaluation study I

conducted as part of this dissertation confirms the proof of concept embodied

by ScriptABLE. I was able to demonstrate that EUPers engaged in project-

oriented tasks do come to rely on the ScriptABLE case library for their inquiries.

They also responded favorably to the system, which is indicative of a good fit

with their current practices. Lastly, and most importantly, I confirmed that

the narrative commentary about script development, which was unique to the

ScriptABLE case library, corresponded to measurably improved performance

on open-ended conceptual prompts. These findings provide justification for the

future study of case-based learning aids designed for EUPers.

5. An argument in support of the value of normative computing knowledge

135

among EUPers. One might make the case that end-user programmers have

no use for normative computing knowledge—that the purely situated knowledge

they acquire along the way is sufficient. In this dissertation I have rejected such

notions and have argued in favor of formal conceptual knowledge. My results

point to clear reasons why EUPers would benefit from a more sophisticated

relationship with computing. A formal vocabulary could enhance their ability to

communicate with others and locate relevant resources, and their productivity

might improve through greater attention to code modularization and designing

for reuse.

7.3 Recommendations and Open Questions for Resource
Designers

In this section I distill high-level take-aways for resource designers based on my ob-

servations in the ScriptABLE evaluation study. I also raise some open questions

about my design decisions that could have important implications, but were beyond

the scope of this dissertation work. I should note that the comments I make here

are my informed impressions; however, they are, at the very least, tied to anecdotal

evidence drawn from exit survey data about what participants liked most and least

about ScriptABLE.

7.3.1 Provide Connections to Normative Computing Content

Drawing directly from the findings and contributions of the dissertation work out-

lined in this chapter, I argue that resource designers should make a more concerted

effort to connect to normative computing content in their materials, where appropri-

ate. ScriptABLE takes a direct route in providing such connections by interleaving

discussion of computing concepts within narratives about example projects. I was

able to demonstrate that doing so has a positive measurable impact on participants’

136

conceptual explanations. Additionally, those users who did not need the full expla-

nations provided by ScriptABLE were easily able to ignore them and still make use

of the components of the system that they needed. That is, the interleaved style did

not appear to negatively impact more knowledgeable users.

I contend that attempts at connecting to computing content that are afterthoughts

or merely side notes in a resource (as might be argued was the case for the repository

version of ScriptABLE) cause users to lose the benefits of context in the learning

environment. Certainly, there may be equally valid ways to enact this principle

beyond the narrative structure used in ScriptABLE. However, the manner in which

such connections are made to normative computing content should be explicit and in

the foreground of activity for resource users.

7.3.2 Consistency in Organization and Writing is Important

As I discussed in Chapter 5, one of the things that distinguishes ScriptABLE from

other tutorial sites is consistency in the structure of project articles and their explicit

educational intent. Several participants responded positively to this, noting it was the

characteristic they liked most. I believe this was key in contributing to the increased

sense of comfort they felt using ScriptABLE compared to the Internet at large. The

consistent format allows them to quickly understand how articles are written and

predict what content is present and where it might be found. Resource designers

should take this into consideration and incorporate scaffolding for article or example

authoring tools, especially where content is contributed by third parties.

7.3.3 Larger Project Collections

The study I described in Chapter 6 only relied on seven projects in ScriptABLE.

This collection of projects was quite limited, but intentionally scoped to cover only

the content needed to complete the tasks in the evaluation study. The small size

allowed most users to exhaustively explore the case library, but it also detracted from

137

ScriptABLE’s appeal. Some participants commented that they felt the content was

too limited to be of practical use outside of the study, but noted that they would

be interested in using a later version of the system. Providing reasonably complete

coverage of introductory programming concepts and JavaScript syntax seems neces-

sary to generate sufficient interest in order to sustain real-world use of a resource like

ScriptABLE.

7.3.4 Index Use is Directly Proportional to Library Size

While this may seem somewhat obvious, some participants remarked that the large

number of ScriptABLE pages devoted to tagging and indexing was overkill given the

aforementioned small number of project pages. As a result, these index pages were

underutilized by some people who, instead, just reviewed each of the seven projects.

For hierarchical indexing systems like the one I implemented in ScriptABLE to have

self-evident value to users, the content being indexed needs to be sufficiently large.

I conjecture that a library size on the order of 20–30 projects would begin to show

much more positive opinions of tagging and indexing.

7.3.5 Revisions to the Tagging System are Needed

I relied on MediaWiki’s existing category system to implement the tagging and in-

dexing in ScriptABLE. While project pages distinguished between primary tags and

other tags (see Chapter 5), the tag pages themselves did not separate index entries

based on this distinction. For example, when a user views the tag page for selection

statements, he or she is shown five project pages that incorporate the concept. How-

ever, only two of these pages have explicit instructional content about that topic. In

the study sessions, I observed participants most often visiting the pages listed first

in the cross index list, rather than finding the pages most comprehensively covering

the term. A clear place for improvement in ScriptABLE’s design (and that of other

resources) is to demarcate the primary/secondary tag distinction on the index page.

138

7.3.6 Examine Wikis as a CBLA Platform

On a related note, I chose to use MediaWiki as the platform for ScriptABLE pri-

marily for its ease of content development and potential for future expansion to

community-driven authoring. However, I believe this decision had some unintended

consequences. Most notably, the ScriptABLE search feature used the standard fea-

tures of MediaWiki. Unfortunately, this proved somewhat inadequate for searching

over the mixture of plain text and source code contained in ScriptABLE projects.

While not highly used, search was the most commonly mentioned feature by par-

ticipants when asked what they liked least about the system. Resource developers

need to consider alternative means of specifying search parameters over narrative

style explanations that incorporate programming code. Further, the extent to which

wiki-style interfaces are appropriate in this problem space remains an open question.

7.3.7 Reconsider Intended Resource Use Patterns

While developing the project structure and content for ScriptABLE, I envisioned that

participants would try out at least some of the scripts and use scenarios described

in the case library. Strikingly, no participant ever downloaded or ran the code for a

project (though some people did copy and paste portions of code). As I discussed in

Chapter 5, traditional case-based learning aids often require a learner to actively work

through a case, piecing together information from various components of the system

or drilling down through content. Given the usage patterns I observed, it seems

unlikely that end-user programmers like those in Chapter 6 would engage in such

learning behaviors in a natural setting. ScriptABLE’s design proved robust in this

environment, as it allowed users to still make sense of the project content without

having to run the program first hand. Additional empirical evidence is needed to

further guide resource designers about interaction patterns that are considered natural

or non-obstructive to end-user programmers.

139

7.3.8 Measure the Effect of Project Length

Some participants commented on the fact that they believed ScriptABLE’s project

pages were too long. Certainly, project page length is a valid concern for both re-

source designers and users. I made a concerted effort to constrain the length of pages

by presenting no more than three versions of a script in each project. Still, some

script development sections became considerably larger than others. Discovering the

maximally effective balance between the inclusion of instructional content and project

“digestibility” (to borrow a metric from Chapter 3) is an important question for future

work.

7.4 Future Directions

This final section briefly explores three possible avenues for future work. While I

believe that there are many opportunities for novel learner-centered studies in end-

user programming (and HCI more broadly), I intentionally limit my discussion here

to the future work that I see as most relevant to ScriptABLE and case-based learning

aids.

7.4.1 Moving Out of the Lab

As I mentioned in Chapter 6, the evaluation study for ScriptABLE necessitated a bal-

ance of pragmatic concerns with the preservation of ecological validity. The laboratory

setting I ultimately chose enabled me to gather the data needed for the study, but

it leaves many obvious questions unanswered. For example: Would EUPers actually

read the content of a case library under the pressure of day to day time constraints?

How much additional content (and what kind of content) is needed to make Script-

ABLE useful for web and graphic designers outside of the contrived tasks assigned in

this study? At what point does ScriptABLE cease to be useful for a EUPer? A real

world deployment study would allow me to investigate these questions.

140

Additionally, an in-situ study would permit more longitudinal investigations. Of

particular interest is how information seeking behaviors change for EUPers. I dis-

cussed in Chapter 3 that participants indicated they collectively relied on over a

dozen different resources while trying to learn. I also commented on notable interac-

tion patterns with ScriptABLE and Adobe’s Object Model Viewer tool in Chapter 6.

Given these observations, I believe studying how users interleave references to re-

sources over time is promising. Even studying a limited collection of digital resources

like ScriptABLE, Google searches, and use of the Object Model Viewer could yield

unique patterns for different types of end-user programmers which could further in-

form the design of new instructional materials and programming environments.

7.4.2 ScriptABLE as a User-Generated Site

One of the challenges in building ScriptABLE was the large per project time cost.

The limited set of seven projects in the system used for the evaluation study took

me several weeks to build. While some of this time was spent devising an appro-

priate set of examples that could cover the necessary concepts, considerable effort

still went into developing appropriate use scenarios, creating several versions of each

script, and generating the script development narrative. Thus growing the content of

ScriptABLE, an essential task if it is to be used more widely, is a daunting task.

The success of online communities like Wikipedia,1 Stack Overflow,2 and others

point to the power of user-generated content as a possible solution to this problem.

Several years ago I debated whether to build an online community for my research

and discarded the idea as intractable in the short term. The challenges of building

and sustaining an audience for the community would certainly still exist and are well

beyond the scope of what I have presented here. However, I believe my dissertation

results may provide some guidance moving forward in structuring user contributions.

1http://www.wikipedia.org
2http://stackoverflow.com

141

As discussed in Chapter 6, I did not observe significant differences of opinion between

users of the repository and case library versions of ScriptABLE. They all generally had

moderately positive views about the system. A hybrid approach for content creation

could mitigate the time commitment for project development, quickly increase the size

of the case library, and at the same time preserve overall visitor opinion about the site.

In essence a contributor could start a stub entry for a project with as little information

as what was given in the repository treatment. Then other, perhaps more advanced,

contributors could collaboratively edit the document to craft the script development

narrative and highlight relevant conceptual content. Building a dedicated group of

such curators (or gardners in Nardi’s (1993) terms) could potentially ensure that

unfamiliar conceptual content continues to be introduced into the case library.

7.4.3 Extension to Other End-User Programming Domains

In this dissertation I have explored graphic and web design end-user programmers

from a variety of angles. This has resulted in detailed characterizations of the popu-

lation and a novel educational resource designed explicitly with their needs and habits

in mind. As I mentioned in the introduction, the number of end-user programmers is

conservatively estimated to be roughly four times that of professional programmers

(Scaffidi et al., 2005). However, EUPers cannot be necessarily be considered en masse

because they are made up of distinct user groups, each with their own set of domain-

specific tools and practices. Thus, the extent to which the results presented here

generalize to other end-user programmer groups is yet to be established. There is

considerable reason to be hopeful, however. Some of ScriptABLE’s underlying design

guidelines are based on observations that have been made in other EUP contexts as

well. Most notably is the prominent role of examples and example-centric develop-

ment habits (e.g., Rosson et al., 2005; Brandt, Dontcheva, Weskamp, & Klemmer,

2010). This repeated theme may suggest that case-based approaches may generally

142

prove powerful among diverse end-user programmers and others engaged in informal

learning about computer science.

143

APPENDIX A

INDEX CARDS FROM CARD SORTING STUDY

This appendix contains copies of all cards used in the study described in Chapter 3.

Each of these cards was printed on a 3x5 notecard. The first 26 cards contain a single

programming concept in the middle of the card and a number in the upper right

hand corner that was randomly assigned. The numbers were used to ease recording

of participant answers and have no other significance. The next set of 26 cards were

used in the event that a participant did not recognize a term. These cards contain

the term and the same number (with the letter A as a suffix), but they also have a

brief definition and a JavaScript example in the center of the card.

144

1

recursion

2

array

3

output

4

relational operator

5

importing code

6

type conversion

7

logical operator

8

selection statement

145

9

function

10

variable

11

number

12

functional decomposition

13

boolean

14

variable scope

15

parameters

16

indefinite loop

146

17

mathematical operator

18

object

19

nesting control structures

20

exporting code

21

assignment

22

input

23

definite loop

24

constant

147

25

string

26

exception handling

148

recursion 1A

definition: a function or definition that refers to itself, either
directly or indirectly

function foo()
{

 …
foo();

}

array 2A

definition: a collection of similar objects that can be accessed
through indexing

var myArray = new Array(3);
myArray[0] = "value 1";
myArray[1] = "value 2";
myArray[2] = "value 3";

output 3A

definition: data printed in a human readable form or written to a
file for future use

alert("The value is: " + x);

relational operator 4A

definition: a comparison between values that returns true or false

<

>

<=

>=

==

importing code 5A

definition: makes code from an external library module available
for use within a program

import library.identifer;

#include filename

type conversion 6A

definition: an operation that converts a value of one data type to
another

stringFour = 4.toString();

numFour = parseInt("four");

logical operator 7A

definition: an operator that can be applied to boolean values

&&

||

!

selection statement 8A

definition: a control structure that allows different parts of a
program to execute depending on the exact situation

if (condition)
{

…
}
else
{

…
}

149

function 9A

definition: a subprogram within a program

function funcName()
{

…
}

variable 10A

definition: an identifier that labels a value for future reference

var x;

number 11A

definition: a data type for representing a numeric value

4

3.485

functional decomposition 12A

definition: the process of building a system by starting with a very
high-level alogirthm that describes a solution in terms of
subprograms

function stepOne() { … }
function stepTwo() { … }
function stepThree() { … }

stepOne();
stepTwo();
stepThree();

boolean 13A

definition: a data type for representing a logical truth value

true

false

variable scope 14A

definition: the area of a program where a given variable may be
referenced

function foo()
{

var x = 10;
}

alert("x = " + x);

 // causes error "x is undefined"

parameters 15A

definition: special variables in a function that are initialized at the
time of call with information passed from the caller

function foo(parameter1, parameter2)
{

…
}

indefinite loop 16A

definition: a loop for which the number of iterations required is not
necessarily known at the time the loop begins to execute

while (condition)
{

…
}

150

mathematical operator 17A

definition: an operator that can be applied to number values

+

-

*

/

%

object 18A

definition: a program entity that has some data and a set of
operations to manipluate that data

function Person(name, age) {
this.name = name;
this.age = age;
this.displayName =

function() { alert(this.name); }
 };

 myPerson = new Person("Bob", 40);
 myPerson.displayName();

nesting control structures 19A

definition: the process of placing one control structure inside of
another. Loops and decisions may be arbitrarily nested.

if (condition1)
{

if (condition2)
{

…
}

 }

exporting code 20A

definition: an external collection of useful functions or classes that
can be imported and used in a program

#engine name

export identifier, id2

assignment 21A

definition: the process of giving a value to a variable

x = 500;

input 22A

definition: data retrieved from a user or read from an external file

userName = prompt("Please enter your name");

response = confirm("Is your name " +
 userName + "?");

definite loop 23A

definition: a kind of loop where the number of iterations is known
at the time the loop begins executing

for (initialize; condition; increment)
{

…
}

constant 24A

definition: an identifier that labels a fixed value for future reference

const x = 500;

151

string 25A

definition: a data type for representing a sequence of characters
(text)

"this is a string"

'so is this'

exception handling 26A

definition: a programming language mechanism that allows the
programmer to gracefully deal with errors that the language detects
when a program is running

try
{

…
}
catch(exception)
{

…
 }

152

APPENDIX B

STUDY 1 SURVEY AND INTERVIEW GUIDE

This appendix contains the survey document and interview guide questions used in

the study described in Chapter 3. These materials were used for the portions of the

study not pertaining to the card sorting activity.

153

B.1 Background Survey

Participant #______

Please fill in each oval completely and be as honest and accurate as possible.

1. What is your gender?

O Female O Male

2. Which of the following categories best describes your occupational status?

O Currently working in a civilian/industry position
O Currently working in an academic position (e.g., school/university)
O Student
O Retired
O Unemployed
O Other – please specify: ___________________________________

3. Which of the following best describes your job title?

O Graphic Designer
O Photographer
O Web Developer
O Programmer/Software Developer
O Other – please specify:____________________________________

4. What is the highest level of education you have completed?

O Did not complete high school
O High school diploma/GED
O Some college but no degree
O Associate’s degree
O Bachelor’s degree (e.g., BA, BS)
O Master’s degree (e.g., MA, MS)
O Doctoral or Professional degree (e.g., MD, JD, PhD)

5. If you earned a college degree, what was your major?

6. How many years have you been using Photoshop?

7. Approximately how many hours per week do you spend manipulating images with software
applications (e.g, Photoshop)?

8. What scripting/programming languages have you used in the past (check all that apply)?

O AppleScript O Ruby
O JavaScript O PHP
O Python O Flex
O Perl O ActionScript
O C/C++ O C#
O Visual Basic
O Other – please specify: _____________________________________

154

Participant #______

9. On a scale from 1 (novice) to 5 (expert), how would you rate your scripting/programming expertise?

10. How many years have you been scripting and/or programming?

11. Approximately how many hours per week do you spend developing scripts and/or programs?

12. Have you had formal or professional training (e.g., classes, degrees, certificates) in programming? If
so, briefly describe your training in the space provided.

O Yes O No

13. If you were attempting a new task with a piece of software rate how likely would you be to consult the
following resources for assistance on a scale from 1 (very unlikely) to 5 (very likely)?

Very
Unlikely

1
Unlikely

2

Neither
Likely

nor
Unlikely

3
Likely

4

Very
likely

5
An interactive wizard that takes you
step-by-step through the task O O O O O

Examples of similar tasks from
which you can borrow ideas and/or
copy code

O O O O O

A class or seminar O O O O O

Reference books O O O O O

FAQs, tutorials or online
documentation O O O O O

A friend or coworker O O O O O

Technical support/telephone hotline O O O O O

155

B.2 Interview Questions

• What are some typical projects you use Photoshop for?

• What are your most common uses for scripting?

• Can you tell me about a particular project that you completed recently that

you were really excited about?

• Could you tell me a little about how you most often go about learning a new

technique or skill in Photoshop and/or scripting?

• Could you tell me a little about how you go about writing your scripts?

• What would you like to learn about next with regard to Photoshop?

• Is there a particular technical detail about scripting you would like to know

more about? If so, what?

• Is there a particular project you’re interested in pursuing next? If so, tell me

about it. (Participants were prompted for both scripting and Photoshop answers

to this question.)

• Is there anything else you’d like to share?

156

APPENDIX C

STUDY 3 SESSION 1 PROBLEM CODE

This appendix contains code from the three source files given to participants in the

first study session described in Chapter 6. To complete the assigned tasks, partic-

ipants only needed to make edits to “Extract Meta Data.jsx”. The other two files,

“CSVWriter.jsxinc” and “utils.jsxinc” were included as library files.

C.1 Extract Meta Data.jsx

#target photoshop

// Purpose: This script will save meta -data about photos in an

// easily searchable spreadsheet (CSV) file.

#include CSVWriter.jsxinc

#include utils.jsxinc

// //////////////// Functions Go Here ///////////////////////

// ///////////// Main Program Below /////////////////////////

// Prompt user for the CSV file. A user can specify a

// filename that doesn’t exist yet too.

fileName = File.openDialog("Select CSV database file");

csvfile = new CSVWriter(fileName);

csvfile.writeHeader (["File","Author","Auth Pos","Title","Created", \

"Camera","ColorMode","Keywords"]);

// Prompt user for the folder of images to process

alert("Select input folder containing images");

imageFolder = Folder.selectDialog ();

files = imageFolder.getFiles("*.*");

// Process each file in the input folder

for (var i = 0; i < files.length; i++)

{

//Open picture

app.open(files[i]); //app is an Application object

imgDocument = app.activeDocument;// imgDocument is a Document object

info = imgDocument.info; //info is a DocumentInfo object

157

// Build an array of the values we’d like to save

//in the proper order

var values = new Array ();

values.push(imgDocument.name); //File Name

values.push(info.author); // Author Name

values.push(info.authorPosition); // Author Position

values.push(info.title); // Picture Title

// Extract the creation time from camera data

for (var j = 0; j < info.exif.length; j++)

{

if (info.exif[j][0] == "Date Time Original")

{

values.push(info.exif[j][1]);

}

}

// Extract the camera ’s model information

for (var j = 0; j < info.exif.length; j++)

{

if (info.exif[j][0] == "Model")

{

values.push(info.exif[j][1]);

}

}

// Detect color mode and write out correct value (incomplete)

colorMode = "Color";

values.push(colorMode);

values.push(info.keywords); // Picture Keywords

// Write out all the values for this image

csvfile.writeRow(values);

//All done with this image

imgDocument.close ();

}

//All done , clean up now

csvfile.closeFile ();

C.2 csvWriter.jsxinc

function CSVWriter(filename) {

if (filename == null)

{

throw "No filename specified!";

}

158

this.fileStream = new File(filename);

if (this.fileStream.exists == false)

{

this.fileStream.open(’w’);

this.numberFields = 0;

}

else

{

this.fileStream.open(’e’);

var fileLength = this.fileStream.length;

var fields = this.fileStream.readln ();

this.numberFields = (fields.split(",")). length;

this.fileStream.seek(fileLength);

}

// =======================================

// Methods of the CSVWriter object below

// =======================================

this.writeHeader = function(fieldArray)

{

if (this.numberFields == 0)

{

this.numberFields = fieldArray.length;

this.writeRow(fieldArray);

}

else if (this.numberFields != fieldArray.length)

{

throw "Mismatch in number of columns!";

}

}

this.writeRow = function(valueArray)

{

if (valueArray.length != this.numberFields)

throw "Unexpected number of values!";

for (var i = 0; i < this.numberFields; i ++)

{

//Write out value surrounded by quotes

this.fileStream.write("\"" + valueArray[i] + "\"");

//Write the comma delimiter for all but the last column

if (i < this.numberFields -1)

this.fileStream.write(",");

}

this.fileStream.write("\n");

}

this.closeFile = function ()

{

// Since we’re done writing the file , we should

159

// close the stream

this.fileStream.close ();

}

}

C.3 utils.jsxinc

function isColorImage(imgDocument)

{

return imgDocument.mode == DocumentMode.RGB;

}

function isBWImage(imgDocument)

{

return imgDocument.mode == DocumentMode.GRAYSCALE;

}

160

APPENDIX D

STUDY 3 SESSION 2 PROBLEM CODE

This appendix contains code from the three source files given to participants in the

second study session described in Chapter 6. To complete the assigned tasks, partic-

ipants only needed to make edits to “CreateGallery.jsx”. As with the first sessions,

the other two files, “HTMLWriter.jsxinc” and “utils.jsxinc” were included as library

files.

D.1 CreateGallery.jsx

#target photoshop

// Purpose: This script will automatically generate a

// basic web gallery of pictures for clients

#include "HTMLWriter.jsxinc"

#include "utils.jsxinc"

// ///////// Functions go here /////////////////////

// ////////// Main program starts below /////////////

//Some initial settings

const thumbnailSize = 75;

const previewSize = 480;

const galleryName = "Photo Proofs";

const photographerName = "George Burdell";

currentDate = new Date (); // currentDate is a Date object

copyright = "2009";

// Prompt user for input and output folders

alert("Select input folder containing images");

imageFolder = Folder.selectDialog ();

alert("Select output folder where gallery will be created");

outputFolder = Folder.selectDialog ();

// Build directory structure in output location for the web gallery

161

outFolder = new Folder(outputFolder);

testFolder(outFolder);

outputImageDir = new Folder(outputFolder + "/images");

outputImageDir.create ();

outputThumbDir = new Folder(outputFolder + "/thumbs");

outputThumbDir.create ();

outputPagesDir = new Folder(outputFolder + "/pages");

outputPagesDir.create ();

// Retrieve the list of files in input folder

folder = new Folder(imageFolder);

testFolder(folder);

files = folder.getFiles("*.*");

// Create menu bar frame HTML file

menuPage = new HTMLWriter(outputFolder + "/MenuFrame.html");

menuPage.writeHeader("Gallery Menu");

// Process each file in the input folder

for (i = 0; i < files.length; i++)

{

//Open picture

app.open(files[i]); //app is an Application object

imgDocument = app.documents [0]; // imgDocument is a Document object

// Detect if the image is portrait or landscape (incomplete)

portraitFlag = false;

// Build the thumbnail from a copy of original

thumbDocument = imgDocument.duplicate ();

if (portraitFlag)

thumbDocument.resizeImage(\

(imgDocument.width/imgDocument.height) * thumbnailSize);

else

thumbDocument.resizeImage(thumbnailSize);

thumbnailFile = new File(outputThumbDir.absoluteURI + "/thumb -" +

files[i].name);

thumbDocument.saveAs(thumbnailFile , JPEGSaveOptions);

thumbDocument.close ();

// //

// Changes made after this point will only affect the

// fullsize and preview images (not the thumbnail)

// //

if (portraitFlag)

imgDocument.rotateCanvas (90);

//Add in a watermark so clients can’t just print the full

// resolution images themselves

watermarkLayer = imgDocument.artLayers.add ();

162

watermarkLayer.kind = LayerKind.TEXT;

watermarkLayer.opacity = 50;

watermarkLayer.textItem.size = 300;

ColorWhite = new SolidColor ();

ColorWhite.rgb.hexValue = "FFFFFF";

watermarkLayer.textItem.color = ColorWhite;

watermarkLayer.textItem.justification = Justification.CENTER;

watermarkLayer.textItem.position = Array(imgDocument.width/2,

imgDocument.height / 2 + 200);

watermarkLayer.textItem.contents = "PROOF";

imgDocument.flatten ();

if (portraitFlag)

imgDocument.rotateCanvas (-90);

//Save out full size copy

copyToFile = new File(outputImageDir.absoluteURI + "/" +

files[i].name);

imgDocument.saveAs(copyToFile , JPEGSaveOptions);

//Save out smaller preview copy

if (portraitFlag)

imgDocument.resizeImage(\

(imgDocument.width/imgDocument.height) * previewSize);

else

imgDocument.resizeImage(previewSize);

previewFile = new File(outputImageDir.absoluteURI + "/small -" +

files[i].name);

imgDocument.saveAs(previewFile , JPEGSaveOptions);

//All done with this image

imgDocument.close(SaveOptions.DONOTSAVECHANGES);

// Build the HTML file for the preview page for the image

framePage = new HTMLWriter(outputPagesDir.absoluteURI + "/" +

files[i].name + ".html");

framePage.writeHeader(copyToFile.name);

framePage.writeText("<TABLE CELLSPACING =0 CELLPADDING =0 BORDER =0"+

" WIDTH =100\% HEIGHT =100\%><TR><TD ALIGN=CENTER >");

framePage.writeImage("../ images/" + previewFile.name)

framePage.writeText("
");

framePage.writeLink("../ images/" + copyToFile.name);

framePage.writeText(" </TD ></TR ></TABLE >");

framePage.writeFooter ();

//Add thumbnail and link to menu page

menuPage.writeLinkedImage("thumbs/" + thumbnailFile.name , \

"pages/" + files[i].name + ".html", "previewPane");

menuPage.writeText(files[i].name);

menuPage.writeText("<HR>");

}

// Finish closing the menu HTML file

163

menuPage.writeFooter ();

createIndexPage(outputFolder , galleryName , photographerName , \

copyright);

D.2 HTMLWriter.jsxinc

function HTMLWriter(filename)

{

this.fileStream = new File(filename);

//This will return false if it can’t open this

this.fileStream.open(’w’);

// Specify the methods for the HTMLWriter object

this.writeHeader = function(pageTitle)

{

this.writeText("<HTML ><HEAD ><TITLE >" + pageTitle +

"</TITLE ></HEAD >");

this.writeText("<BODY >");

}

this.writeFooter = function ()

{

this.writeText(" </BODY ></HTML >");

// Since we’re done writing the file , we should close

//the stream

this.fileStream.close ();

}

this.writeText = function(outputText)

{

this.fileStream.writeln(outputText);

}

this.writeImage = function(filepath)

{

this.writeText("");

}

this.writeLink = function(url)

{

this.writeText("" + url + "");

}

this.writeLinkedImage = function(image , url , target)

{

this.writeText("<A TARGET=" + target + " HREF =\"" +

url + "\">");

}

164

}

D.3 utils.jsxinc

function createIndexPage(outputFolder , galleryName , \

photographerName , copyright)

{

// Create index.html now

indexPage = new HTMLWriter(outputFolder + "/index.html");

indexPage.writeHeader("");

indexPage.writeText("<TABLE BGCOLOR =#000000 CELLSPACING =0 " +

"CELLPADDING =0 BORDER =0 WIDTH =100\% HEIGHT =100\% >" +

"<TR ><TD ALIGN=CENTER >")

indexPage.writeText("<TABLE BGCOLOR =# FFFFFF BORDER =0 " +

"WIDTH =800 HEIGHT =450><TR>");

indexPage.writeText("<TD BGCOLOR =# AAAAAA ALIGN=CENTER WIDTH =225>"+

"" + galleryName + "
" +

"By: " + photographerName + "
" +

"(c)" + copyright + " </TD>");

indexPage.writeText("<TD WIDTH =100\% HEIGHT =100\% ROWSPAN=2> " +

"<IFRAME BORDER =0 WIDTH =100\% HEIGHT =100\% NAME=previewPane " +

"SRC=\" pages/" + files [0]. name + ".html\">" +

"Your browser does not support frames." +

"</IFRAME ></TD ></TR>");

indexPage.writeText("<TR><TD HEIGHT =100\%>< IFRAME HEIGHT =100\% " +

"BORDER =0 WIDTH =225 SRC=\" MenuFrame.html\">" +

"Your browser does not support frames." +

"</IFRAME ></TD ></TR ></TABLE >");

indexPage.writeText(" </TD ></TR ></TABLE >");

indexPage.writeFooter ();

}

function testFolder(f)

{

if (! f.exists)

throw "Folder does not exist!";

}

JPEGSaveOptions.quality = 12;

preferences.rulerUnits = Units.PIXELS;

165

APPENDIX E

STUDY 3 INSTRUMENTS

This appendix contains all of the materials and instruments used in conducting the

ScriptABLE evaluation study described in Chapter 6. The included materials are

the demographic background survey, participant instructions for session 1, interview

questions following session 1, participant instructions for session 2, a post session

survey that followed session 2, and the final interview questions asked upon completion

of the study.

166

E.1 Background Survey

Participant #______

Please fill in each oval completely and be as honest and accurate as possible.

1. What is your gender?

O Female O Male

2. Which of the following categories best describes your occupational status?

O Currently working in a civilian/industry position
O Currently working in an academic position (e.g., school/university)
O Student
O Retired
O Unemployed
O Other – please specify: ___________________________________

3. Which of the following best describes your job title?

O Graphic Designer
O Photographer
O Web Developer
O Programmer/Software Developer
O Other – please specify:____________________________________

4. What is the highest level of education you have completed?

O Did not complete high school
O High school diploma/GED
O Some college but no degree
O Associate’s degree
O Bachelor’s degree (e.g., BA, BS)
O Master’s degree (e.g., MA, MS)
O Doctoral or Professional degree (e.g., MD, JD, PhD)

5. If you earned a college degree, what was your major?

6. How many years have you been using Photoshop?

7. Approximately how many hours per week do you spend manipulating images with software
applications (e.g, Photoshop)?

8. What scripting/programming languages have you used in the past (check all that apply)?

O AppleScript O Ruby
O JavaScript O PHP
O Python O Flex
O Perl O ActionScript
O C/C++ O C#
O Visual Basic
O Other – please specify: _____________________________________

167

Participant #______

Please fill in each oval completely and be as honest and accurate as possible.

1. What is your gender?

O Female O Male

2. Which of the following categories best describes your occupational status?

O Currently working in a civilian/industry position
O Currently working in an academic position (e.g., school/university)
O Student
O Retired
O Unemployed
O Other – please specify: ___________________________________

3. Which of the following best describes your job title?

O Graphic Designer
O Photographer
O Web Developer
O Programmer/Software Developer
O Other – please specify:____________________________________

4. What is the highest level of education you have completed?

O Did not complete high school
O High school diploma/GED
O Some college but no degree
O Associate’s degree
O Bachelor’s degree (e.g., BA, BS)
O Master’s degree (e.g., MA, MS)
O Doctoral or Professional degree (e.g., MD, JD, PhD)

5. If you earned a college degree, what was your major?

6. How many years have you been using Photoshop?

7. Approximately how many hours per week do you spend manipulating images with software
applications (e.g, Photoshop)?

8. What scripting/programming languages have you used in the past (check all that apply)?

O AppleScript O Ruby
O JavaScript O PHP
O Python O Flex
O Perl O ActionScript
O C/C++ O C#
O Visual Basic
O Other – please specify: _____________________________________

168

E.2 Session 1 Instructions and Tasks

Participant: _______

Project: Personal Database of Photo Data

Description

The goal of this project is to complete a script that can be used to save important pieces of
information about photos in a collection to a personal database in the form of a CSV (comma
separated variable) file. This CSV file can then be quickly searched to locate a specific photo
within the collection, saving you time and energy when you need to retrieve a picture. This
program should be able to continue adding new information to an existing CSV file so that the
user can add additional photos to the database over time.

Instructions

In the time allotted, complete each of the following tasks in order.

• Some tasks will ask you to write out an answer about what you think is happening in the
program. Please write your answers in the space provided.

• It is okay if you don’t have enough time to finish all of the tasks, so don’t worry about
spending too much time on one task.

• However, if you feel you are really stuck on a task let me know.

You are free to look up any information on the Internet using Firefox. Also, you can make use
of any of the help resources provided in the ExtendScript Toolkit to help you complete these
tasks.

When you begin each task, please indicate to me that you are doing so.

Warmup Tasks

A. Before you continue, look over the files and code provided to you, try running the program

using the file myDatabase.csv and the folder imageSet1. Look at the result by opening
myDatabase.csv in Excel to get a feel for what the program does.

B. Edit the code for the open dialog used for fileName so that only files with the extension

“.csv” are shown.

169

Participant: _______

Individual Tasks

1. Part A: Run the program using imageSet2 as the input folder. Open the CSV file that you

selected and view the result of the script. Compare the images in the folder to the values in
the ColorMode column. In the space below describe what happened for the black and
white images in the folder.

 Part B: Edit/insert the necessary lines of code to appropriately set the variable

colorMode to “Color” or “B/W” depending on the picture document’s color mode. To
help you with this task we have provided two functions described below:

 isColorImage(imgDocument) is true when the document has RGB color

mode and false otherwise

isBWImage(imgDocument) is true when the document is in Grayscale

mode and false otherwise

2. Part A: Currently the script has two areas of largely duplicated code; namely, extracting

creation time and camera model information. Edit the script so that this code appears only
once in a function called getPropertyValue. As parameters, this function should take
the info variable and a string value that indicates which property should be retrieved.
The output of the program should not change as a result of this step.

 Part B: Briefly explain why you might want to create a function such as

getPropertyValue in your design of a script.

3. Part A: If you run the program and click the cancel button when prompted for the CSV

file or input directory, you’ll notice the program encounters an error. Devise a strategy so
that when the user clicks cancel on either dialog, they are prompted again for these values.
Your strategy should only require changes to Extract Meta Data.jsx. In the space below,
briefly explain your strategy.

Part B: Make the necessary changes to Extract Meta Data.jsx to implement your strategy.

4. Part A: Consider the line of code near the bottom of the program (approximately line 63)

that starts with csvfile.writeRow. Where is writeRow defined and why you are
able to call it here?

 Part B: Briefly justify why you might choose to design parts of your script like this.

170

Participant: _______

5. Part A: Run the program using imageSet3 as the input folder. You’ll notice that the script

doesn’t complete correctly. Using the CSV file results, the imageSet3 folder of pictures,
and any information in the ExtendScript Toolkit, determine the image that caused the
program to crash. In the space below describe what you think happened.

 Part B: What programming technique could you use to prevent the program from crashing

in this situation?

 Part C: Edit the script as necessary so that it runs correctly in this scenario. When a bad

file is encountered you should display a message using the code below and then ignore the
file.

 alert(“Skipping a bad file”);

6. Part A: Sometimes photos are organized in sub-folders to make them easier to find. Our

script should be able catalog information about all photos in a collection, regardless of how
it is organized. To test this scenario, run the program using imageSet4 as the input folder.
Did the script perform as intended? If not, describe what happened.

Part B: What combination of programming strategies and/or techniques could you use to
make the script behave as intended in this situation?

171

Accompanying these instructions were a collection of files for participants to use

during session 1. The three code files used are shown in their entirety in Appendix C.

An initial CSV database file was provided that contained only one row of header in-

formation. In addition, participants were provided with 4 input directories described

as follows:

imageSet1 is a folder of 10 JPEG images, all in RGB color mode.

imageSet2 is a folder of 10 JPEG images, three of which are in a grayscale color

mode with the rest in full RGB color.

imageSet3 is a folder of 10 JPEG images, two of which have been corrupted by

inserting text at random into the image file

imageSet4 is a folder containing 2 JPEG images and two subfolders, each with 4

more JPEG images inside

E.3 Session 1 Post-Task Interview Questions

• Of the tasks you completed, which do you think was the most difficult?

• What did you struggle with?

• Did you learn anything today about Photoshop? Did you learn anything today

about scripting? If so, what?

• What resources did you find most useful in solving these problems?

• On a scale of 1 to 10, how confident are you that the code you’ve written is

correct?

• Is there anything you wish you would have had to help you solve these problems?

172

E.4 Session 2 Instructions and Tasks

Participant: _______

Project: Web Gallery of Proof Photos

Description

The goal of this project is to complete a script that can be used to automatically create a simple
web gallery of proof photos for a client. The idea is that given a folder of pictures, the script
should quickly resize the pictures, generate thumbnails, apply watermarks, and generate HTML
necessary for a basic gallery. The resulting output folder will contain everything that needs to be
uploaded to a server in order to give a client access to the gallery.

Instructions

In the time allotted, complete each of the following tasks in order.

• Some tasks will ask you to write out an answer about what you think is happening in the
program. Please write your answers in the space provided.

• It is okay if you don’t have enough time to finish all six, so don’t worry about spending
too much time on one task.

• However, if you feel you are really stuck on a task let me know.

In this session your use of the Internet is limited to a particular website, but you are free to use it
as much as you’d like. You may also use help resources provided in the ExtendScript Toolkit
interface.

When you begin each task, please indicate to me that you are doing so.

Warmup Tasks

A. Before you continue, look over the code provided to you, try running the program with

imageSet1 as the input folder, and look at the output folder to get a feel for what the
program does.

B. Edit the code so that the copyright year stored in the variable copyright is retrieved from

the computer’s date, rather than hard coded to 2009.

173

Participant: _______

Individual Tasks

1. Part A: Run the program using imageSet2 as the input folder. Open the gallery in your

web browser to view the result of the script. Compare the relative sizes of the
thumbnails/previews created for portrait and landscape pictures. In the space below
describe what happens for images that have portrait orientation.

Part B: Edit/Insert the necessary lines of code to set the variable portraitFlag to true
or false depending on the picture’s orientation. Hint: you can access the picture
document’s height and width as shown below:

 imgDocument.height

 imgDocument.width

2. Part A: There is a section of code in this script that handles the creation of the “PROOF”

watermark on the picture. Edit the script so that all of the watermark code is contained in
a function called applyWatermark. As parameters this function should take the picture
document (imgDocument)and a string value with the watermark text (e.g., “PROOF”).
The output of the program should not change as a result of this step.

Part B: Briefly explain why you might want to create a function such as
applyWatermark in your design of a script.

3. Part A: If you run the program and click the cancel button when prompted for the input or

destination folder, you’ll notice the program encounters an error. Devise a strategy so that
when the user clicks cancel on either dialog, they are prompted again for these values.
Your strategy should only require changes to CreateGallery.jsx In the space below, briefly
explain your strategy.

 Part B: Make the necessary changes to CreateGallery.jsx to implement your strategy.

4. Part A: Consider the line of code near the bottom of the program (approximately line 108)

that starts with framePage.writeHeader. Where is writeHeader defined and
why are you able to call it here?

 Part B: Briefly justify why you might choose to design parts of your script like this.

174

Participant: _______

5. Part A: Run the program using imageSet3 as the input folder. You’ll notice that the script
doesn’t complete correctly. Using the resulting web gallery, the imageSet3 folder of
pictures, and any information in the ExtendScript Toolkit, determine the file that caused the
program to crash. In the space below, describe what you think happened.

 Part B: What programming technique could you use to prevent the program from crashing

in this situation?

 Part C: Edit the script as necessary so that it runs correctly in this scenario. When a bad

file is encountered, you should display a message using the code below and then ignore the
file.

 alert(“Skipping a bad file”);

6. Part A: Sometimes photos are organized in sub-folders to make them easier to find. Our

script should be able to create a gallery containing all the photos in a collection, regardless
of how they are organized. To test this scenario, run the program using imageSet4 as the
input folder. Did the script perform as intended? If not, describe what happened.

 Part B: What combination of programming strategies and/or techniques could you use to

make the script behave as intended in this situation?

175

Accompanying these instructions were a collection of files for participants to use

during session 1. The three code files used are shown in their entirety in Appendix D.

In addition, participants were provided with 4 input directories described as follows:

imageSet1 is a folder of 7 JPEG images, all having landscape orientation (i.e., hav-

ing a greater width than height).

imageSet2 is a folder of 7 JPEG images, three of which have portrait orientation

(i.e., having a greater height than width).

imageSet3 is a folder of 6 files. The first four files alphabetically are JPEG images,

the fifth file is a plain text file, and the last file is a image saved in the TIFF

format.

imageSet4 is a folder containing 2 JPEG images and two subfolders, each with 4

more JPEG images inside

176

E.5 Session 2 Completion Survey

Participant ____

Post Session Survey

Of the tasks you completed, which do you think was the most difficult? (circle one)

Task 1: setting portraitFlag

Task 2: applyWatermark function

Task 3: dealing with cancel

Task 4: explaining writeHeader

Task 5: skipping files

Task 6: processing subfolders

On a scale of 1 (not confident at all) to 10 (very confident), how confident are you that
the code you’ve written is correct?

 1 2 3 4 5 6 7 8 9 10

For each of the following concepts, rate your level of understanding:

Concept

I don’t
recognize the

concept

(1)

I recognize the
concept but

would not be
comfortable

using it in my
scripts

 (2)

I understand
the meaning of
the term, but
would have

problems using
it in my scripts

(3)

I understand the
meaning of the
term and would
be comfortable
using it in my

scripts
(4)

I have a strong
understanding of
the term and feel
I could explain it
to someone else.

(5)

Selection
Statement O O O O O

Functional
Decomposition O O O O O

Indefinite Loops O O O O O

Importing Code O O O O O

Exception
Handling O O O O O

Recursion O O O O O

177

Participant ____

For each of the following concepts, rate your current understanding compared to what
you knew before today:

Concept

Significantly
Worse

(1)

Worse

 (2)

About the
same

(3)

Better

(4)

Significantly
better

(5)

Selection
Statement O O O O O

Functional
Decomposition O O O O O

Indefinite Loops O O O O O

Importing Code O O O O O

Exception
Handling O O O O O

Recursion O O O O O

Rate your experience with ScriptABLE:

 Strongly
disagree

(1)

Disagree

(2)

Neutral

(3)

Agree

(4)

Strongly
Agree

(5)
ScriptABLE helped me

complete the tasks today. O O O O O

ScriptABLE is a good
resource for me to learn

new things.
O O O O O

ScriptABLE is a good
resource for other people

to learn new things.
O O O O O

I would use ScriptABLE
in my daily scripting

projects.
O O O O O

What did you like best about ScriptABLE?

What did you like least about ScriptABLE?

178

E.6 Session 2 Post-Task Interview Questions

• What did you struggle with today?

• Did you learn anything today about Photoshop? If so, what?

• Did you learn anything today about scripting? If so, what?

• What resources did you find most useful in solving these problems?

• Is there anything you wish you would have had to help you solve these problems?

• Compare and contrast your experiences in the two sessions.

• (follow up on any survey questions)

179

REFERENCES

Adobe Photoshop CS2 JavaScript scripting reference. (2005). San Jose, CA.
(Retrieved October 24, 2006, from http://partners.adobe.com/public/

developer/en/photoshop/sdk/JavaScriptReferenceGuide.pdf)

Anderson, L. W., et al. (Eds.). (2001). A taxonomy for learning, teaching, and
assessing: A revision of Bloom’s taxonomy of educational objectives (abridged
ed.). New York, NY: Longman.

Beckwith, L., Kissinger, C., Burnett, M., Wiedenbeck, S., Lawrance, J., Blackwell,
A., et al. (2006). Tinkering and gender in end-user programmers’ debugging. In
CHI ’06: Proceedings of the SIGCHI conference on human factors in computing
systems (pp. 231–240).

Beringer, J. (2004). Reducing expertise tension. Communications of the ACM, 47 (9),
39–40.

Bhat, G. P., & Kolodner, J. L. (2009). A case-based system to aid cognition and
meta-cognition in a design-based learning environment. In Association for the
advancement of artificial intelligence fall symposium (pp. 26–31).

Blackwell, A. F. (2002). First steps in programming: a rationale for attention invest-
ment models. In Proceedings of the 2002 IEEE symposium on human centric
computing languages and environments (pp. 2–10).

Bloom, B. S., Englehart, M. D., Furst, E. J., Hill, W. H., & Krathwohl, D. R. (Eds.).
(1956). The taxonomy of educational objectives: The classification of educational
goals; Handbook I: Cognitive domain. New York, NY: David McKay Company,
Inc.

Brandt, J., Dontcheva, M., Weskamp, M., & Klemmer, S. R. (2010). Example-centric
programming: Integrating web search into the development environment. In
CHI ’10: Proceedings of the 28th international conference on human factors in
computing systems (pp. 513–522).

Brandt, J., Guo, P. J., Lewenstein, J., Dontcheva, M., & Klemmer, S. R. (2009).
Two studies of opportunistic programming: Interleaving web foraging, learning,
and writing code. In CHI ’09: Proceedings of 27th international conference on
human factors in computing systems (pp. 1589–1598).

Bransford, J. D., Brown, A. L., & Cocking, R. R. (2000). How people learn: Brain,
mind, experience, and school (Expanded ed.). Washington, D.C.: National
Academy Press.

180

Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative
Research in Pyschology, 3 (2), 77–101.

Bruckman, A., & Edwards, E. (1999). Should we leverage natural-language knowl-
edge? An analysis of user errors in a natural-language-style programming lan-
guage. In CHI ’99: Proceedings of the SIGCHI conference on human factors in
computing systems (pp. 207–214).

Burnett, M., Atwood, J., Djang, R. W., Gottfried, H., Reichwein, J., & Yang, S.
(2001). Forms/3: a first-order visual language to explore the boundaries of the
spreadsheet paradigm. Journal of Functional Programming, 11 (2), 155–206.

Carroll, J. M. (1990). The Nurnberg funnel: Designing minimalist instruction for
practical computer skill. Cambridge, MA: MIT Press.

Carroll, J. M. (Ed.). (1998). Minimalism beyond the Nurnberg funnel. Cambridge,
MA: MIT Press.

Carroll, J. M., & Rosson, M. B. (2005). Cases as minimalist information. In Proceed-
ings of the 38th Hawaii international conference on system sciences.

Caspersen, M. E., & Bennedsen, J. (2007). Instructional design of a programming
course—a learning theoretic approach. In ICER ’07: Proceedings of the 2007
international computing education research workshop (pp. 111–122).

Clancy, M. J., & Linn, M. (1995). Designing Pascal solutions: A case study approach.
New York, NY: W.H. Freeman & Co.

Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and
Pyschological Measurement, 20 (1), 37–46.

Computational media. (2008). Georgia Institute of Technology. (Available at http:

//lcc.gatech.edu/compumedia/, Accessed June 22, 2010)

Cypher, A. (Ed.). (1993). Watch what I do: Programming by demonstration. Cam-
bridge, MA: MIT Press.

Deitel, H., & Deitel, P. (2005). C++: How to program (5th ed.). Upper Saddle River,
NJ: Prentice Hall.

Dorn, B., & Guzdial, M. (2006). Graphic designers who program as informal computer
science learners. In ICER ’06: Proceedings of the 2nd International Workshop
on Computing Education Research (pp. 127–134).

Dorn, B., & Guzdial, M. (2010). Learning on the job: Characterizing the program-
ming knowledge and learning strategies of web designers. In CHI ’10: Pro-
ceedings of the 28th international conference on human factors in computing

181

systems (pp. 703–712).

Dorn, B., Tew, A. E., & Guzdial, M. (2007). Introductory computing construct use
in an end-user programming community. In VL/HCC’07: Proceedings of the
2007 IEEE symposium on visual languages and human-centric computing (pp.
27–30).

Du Boulay, B. (1989). Some difficulties of learning to program. In E. Soloway &
J. Spohrer (Eds.), Studying the novice programmer (pp. 283–299). Hillsdale,
NJ: Lawrence Erlbaum Associates.

Felleisen, M., Findler, R. B., Flatt, M., & Krishnamurthi, S. (2001). How to design
programs: An introduction to programming and computing. Cambridge, MA:
MIT Press.

Felleisen, M., Findler, R. B., Flatt, M., & Krishnamurthi, S. (2004). The Teach-
Scheme! project: Computing and programming for every student. Computer
Science Education, 14 (1), 55–77.

Fincher, S., & Tenenberg, J. (2005). Making sense of card sorting data. Expert
Systems, 22 (3), 89–93.

Fleury, A. (1997). Code reuse through the eyes of students and professionals. In
Proceedings of the national educational computing conference (pp. 136–142).

Gantt, M., & Nardi, B. A. (1992). Gardeners and gurus: Patterns of cooperation
among cad users. In CHI ’92: Proceedings of the SIGCHI conference on human
factors in computing systems (pp. 107–117).

Gay, L. R., & Airasian, P. W. (2000). Educational research: Competencies for analysis
and application (6th ed.). Upper Saddle River, N.J.: Merrill.

Ginat, D. (2004). On novice loop boundaries and range conceptions. Computer
Science Education, 14 (3), 165–181.

Goel, A. K., Kolodner, J. L., Pearce, M., Billington, R., & Zimring, C. (1991).
Towards a case-based tool for aiding conceptual design problem solving. In
Proceedings of the case-based reasoning workshop (pp. 109–120). Washington,
D.C.

Green, T. R. G., & Payne, S. J. (1984). Organization and learnability in computer
languages. International Journal of Man-Machine Studies, 21, 7–18.

Greeno, J. G., Collins, A. M., & Resnick, L. B. (1996). Cognition and learning. In
D. C. Berliner & R. C. Calfee (Eds.), Handbook of educational psychology (pp.
15–46). New York, NY: Simon and Schuster Macmillan.

182

Guzdial, M. (1999). Supporting learners as users. Journal of Computer Documenta-
tion, 23 (2), 3–13.

Guzdial, M., & Ericson, B. (2010a). Introduction to computing and programming in
Python, a multimedia approach (2nd ed.). Upper Saddle River, NJ: Prentice
Hall.

Guzdial, M., & Ericson, B. (2010b). Problem solving with data structures using Java:
a multimedia approach. Upper Saddle River, NJ: Pearson.

Guzdial, M., & Kehoe, C. (1998). Apprenticeship-based learning environments: A
principled approach to providing software-realized scaffolding through hyper-
media. Journal of Interactive Learning Research, 9 (3/4), 289–336.

Guzdial, M., & Tew, A. E. (2006). Imagineering inauthentic legitimate periph-
eral participation: an instructional design approach for motivating computing
education. In ICER ’06: Proceedings of the 2nd International Workshop on
Computing Education Research (pp. 51–58).

Hoadley, C. M., Linn, M. C., Mann, L. M., & Clancy, M. J. (1996). When, why,
and how do novice programmers reuse code? In W. D. Gray & D. A. Boehm-
Davis (Eds.), Empirical studies of programmers: 6th workshop (pp. 109–129).
Norwood, NJ: Ablex.

Horstmann, C. (2006). Big Java (2nd ed.). Hoboken, NJ: John Wiley and Sons.

Hutchins, E. (1995). How a cockpit remembers its speeds. Cognitive Science, 19,
265–288.

Katsanos, C., Tselios, N., & Avouris, N. (2008). AutoCardSorter: Designing the
information architecture of a web site using latent semantic analysis. In CHI ’08:
Proceedings of the 26th international conference on human factors in computing
systems (pp. 875–878).

Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why minimal guidance during
instruction does not work: An analysis of the failure of constructivist, discovery,
problem-based, experiential, and inquiry-based teaching. Educational Psychol-
ogist, 41 (2).

Ko, A. J., Myers, B. A., & Aung, H. H. (2004). Six learning barriers in end-user pro-
gramming systems. In VL/HCC ’04: Proceedings of the 2004 IEEE symposium
on visual languages and human-centric computing (pp. 199–206).

Kolodner, J. L. (1993). Case-based reasoning. San Mateo, CA: Morgan Kaufmann
Publishers, Inc.

Kolodner, J. L. (1997). Educational implications of analogy. American Psychologist,

183

52 (1), 57–66.

Kolodner, J. L., Owensby, J. N., & Guzdial, M. (2004). Theory and practice of
case-based learning aids. In D. H. Jonassen (Ed.), Theoretical foundations of
learning environments (2nd ed., pp. 215–242). Mahwah, N.J.: Lawrence Erl-
baum Associates.

Kulesza, T., Wong, W.-K., Stumpf, S., Perona, S., White, R., Burnett, M. M., et
al. (2009). Fixing the program my computer learned: Barriers for end users,
challenges for the machine. In IUI ’09: Proceedings of the 13th international
conference on intelligent user interfaces (pp. 187–196).

Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for
categorical data. Biometrics, 33 (1), 159–174.

Lave, J., & Wenger, E. (1991). Situated learning: Legitimate peripheral participation.
New York, NY: Cambridge University Press.

Leshed, G., Haber, E. M., Matthews, T., & Lau, T. (2008). Coscripter: automating
& sharing how-to knowledge in the enterprise. In CHI ’08: Proceeding of the
twenty-sixth annual SIGCHI conference on human factors in computing systems
(pp. 1719–1728).

Lewandowski, G., Gutschow, A., McCartney, R., Sanders, K., & Shinners-Kennedy,
D. (2005). What novice programmers don’t know. In ICER ’05: Proceedings
of the 1st international workshop on computing education research (pp. 1–12).

Lewis, J., & Loftus, W. (2005). Java software solutions (Java 5.0 version): Founda-
tions of program design (4th ed.). Boston, MA: Addison Wesley.

Li, I., Nichols, J., Lau, T., Drews, C., & Cypher, A. (2010). Here’s what I did:
Sharing and reusing web activity with ActionShot. In CHI ’10: Proceedings of
the 28th international conference on human factors in computing systems (pp.
723–732).

Lieberman, H. (Ed.). (2001). Your wish is my command: Programming by example.
San Francisco, CA: Morgan Kaufmann.

Lieberman, H., Paternó, F., & Wulf, V. (Eds.). (2006). End user development.
Dordrecht, The Netherlands: Springer.

Linn, M. C., & Clancy, M. J. (1992). The case for case studies of programming
problems. Communications of the ACM, 35 (3), 121–132.

Little, G., Lau, T. A., Cypher, A., Lin, J., Haber, E. M., & Kandogan, E. (2007).
Koala: capture, share, automate, personalize business processes on the web. In
CHI ’07: Proceedings of the SIGCHI conference on human factors in computing

184

systems (pp. 943–946).

Little, G., & Miller, R. C. (2006). Translating keyword commands into executable
code. In UIST ’06: Proceedings of the 19th annual ACM symposium on user
interface software and technology (pp. 135–144).

McKeithen, K. B., Reitman, J. S., Rueter, H. H., & Hirtle, S. C. (1981). Knowl-
edge organization and skill differences in computer programmers. Cognitive
Psychology, 13, 307–325.

Nardi, B. A. (1993). A small matter of programming: Perspectives on end user
computing. Cambridge, MA: MIT Press.

Norman, D. A. (1988). The psychology of everyday things. New York, NY: Basic
Books.

Pane, J. F., Myers, B. A., & Miller, L. B. (2002). Using HCI techniques to design a
more usable programming system. In Proceedings of the 2002 IEEE symposia
on human centric computing languages and environments (pp. 198–206).

Pane, J. F., Ratanamahatana, C., & Myers, B. A. (2001). Studying the language
and structure in non-programmers’ solutions to programming problems. Inter-
national Journal of Human-Computer Studies, 54, 237–264.

Panko, R. R. (1995, May). Finding spreadsheet errors: Most spreadsheet models have
design flaws that may lead to long-term miscalculation. Information Week(529),
100.

Pearce, M., Goel, A. K., Kolodner, J. L., Zimring, C., Sentosa, L., & Billington, R.
(1992). Case-based design support: A case study in architectural design. IEEE
Expert, 7 (5), 14–20.

Pirolli, P. (1991). Effects of examples and their explanations in a lesson on recursion:
A production system analysis. Cognition and Instruction, 8 (3), 207–259.

Pirolli, P. (2007). Information foraging theory: Adaptive interaction with information.
New York, NY: Oxford University Press.

Rogoff, B., & Lave, J. (Eds.). (1999). Everyday cognition. New York, NY: toExcel.

Rosson, M. B., Ballin, J., & Rode, J. (2005). Who, what, and how: A survey of
informal and professional web developers. In VL/HCC ’05: Proceedings of the
2005 IEEE symposium on visual languages and human-centric computing (pp.
199–206).

Roth, W.-M. (2005). Mathematical inscriptions and the reflexive elaboration of
understanding: An ethnography of graphing and numeracy in a fish hatchery.

185

Mathematical Thinking and Learning, 7 (2), 75–110.

Rugg, G., & McGeorge, P. (1997). The sorting techniques: a tutorial paper on card
sorts, picture sorts and item sorts. Expert Systems, 14 (2), 80–93.

Rugg, G., & Petre, M. (2007). A gentle guide to research methods. Berkshire, UK:
Open University Press.

Sanders, K., Fincher, S., Bouvier, D., Lewandowski, G., Morrison, B., Murphy, L., et
al. (2005). A multi-institutional, multinational study of programming concepts
using card sort data. Expert Systems, 22 (3), 121–128.

Saunders, A. (2009). Baroque parameters. Architectural Design, 79, 132–135.

Scaffidi, C., Ko, A., Myers, B., & Shaw, M. (2006). Dimensions characterizing pro-
gramming feature usage by information workers. In VL/HCC ’06: Proceedings
of the 2006 IEEE symposium on visual languages and human-centric computing
(pp. 59–62).

Scaffidi, C., Myers, B., & Shaw, M. (2008). Tool support for data validation by
end-user programmers. In ICSE ’08: Proceedings of the 30th international
conference on software engineering (pp. 867–870).

Scaffidi, C., Shaw, M., & Myers, B. (2005). Estimating the numbers of end users
and end user programmers. In VL/HCC ’05: Proceedings of the 2005 IEEE
symposium on visual languages and human-centric computing (pp. 207–214).

Segal, J. (2007). Some problems of professional end user developers. In VL/HCC’07:
Proceedings of the 2007 IEEE symposium on visual languages and human-centric
computing (pp. 111–118).

Seidman, I. E. (1991). Interviewing as qualitative research: A guide for researchers
in education and the social sciences. New York, NY: Teachers College Press.

Shaffer, D. W., & Resnick, M. (1999). “Thick” authenticity: New media and authentic
learning. Journal of Interactive Learning Research, 10 (2), 195–215.

Soloway, E., Bonar, J., & Ehrlich, K. (1989). Cognitive strategies and looping con-
structs: An empirical study. In E. Soloway & J. C. Spohrer (Eds.), Studying the
novice programmer (pp. 191–207). Hillsdale, NJ: Lawrence Erlbaum Associates.

Soloway, E., Guzdial, M., & Hay, K. E. (1994). Learner-centered design: The challenge
for HCI in the 21st century. interactions, 1 (2), 36–48.

Spohrer, J., & Soloway, E. (1985, November). Putting it all together is hard for
novice programmers. In Proceedings of the IEEE international conference on
systems, man, and cybernetics.

186

Subrahmaniyan, N., Kissinger, C., Rector, K., Inman, D., Kaplan, J., Beckwith, L.,
et al. (2007). Explaining debugging strategies to end-user programmers. In
VL/HCC ’07: Proceedings of the 2007 IEEE symposium on visual languages
and human-centric computing (pp. 127–134).

Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cog-
nitive Science, 12, 257–285.

Sweller, J., & Cooper, G. A. (1985). The use of worked examples as a substitue for
problem solving in learning algebra. Cognition and Instruction, 2 (1), 59–89.

Tew, A. E. (2010). Assessing fundamental introductory computing concept knowledge
in a language independent manner. Unpublished doctoral dissertation, Georgia
Institute of Technology.

Tew, A. E., & Guzdial, M. (2010). Developing a validated assessment of funda-
mental CS1 concepts. In SIGCSE ’10: Proceedings of the 41st ACM technical
symposium on computer science education (pp. 97–101).

Tew, A. E., McCracken, W. M., & Guzdial, M. (2005). Impact of alternative introduc-
tory courses on programming concept understanding. In ICER ’05: Proceedings
of the 2005 international workshop on computing education research (pp. 25–
35).

The Joint Task Force on Computing Curricula (Ed.). (2001). Computing curricula
2001. Journal on Educational Resources in Computing, 1 (3es), 1–240.

Titmus, C. (1989). Lifelong education for adults: An international handbook. Oxford,
UK: Pergamon.

Turkle, S., & Papert, S. (1991). Epistemological pluralism and the revaluation of
the concrete. In I. Harel & S. Papert (Eds.), Constructionism: Research reports
and essays, 1985-1990 (pp. 161–192). Norwood, N.J.: Ablex.

Wiedenbeck, S. (1988). Learning recursion as a concept and as a programming
technique. In SIGCSE ’88: Proceedings of the nineteenth SIGCSE technical
symposium on computer science education (pp. 275–278).

Wiedenbeck, S. (2005). Facilitators and inhibitors of end-user development by teach-
ers in a school environment. In VL/HCC ’05: Proceedings of the 2005 IEEE
symposium on visual languages and human-centric computing (pp. 215–222).

Wilson, A., Burnett, M., Beckwith, L., Granatir, O., Casburn, L., Cook, C., et al.
(2003). Harnessing curiosity to increase correctness in end-user programming. In
CHI ’03: Proceedings of the SIGCHI conference on human factors in computing
systems (pp. 305–312).

187

Yardi, S., Dorn, B., Bruckman, A., & Guzdial, M. (2008). Deconstructing Facebook:
social support for avocational developers. (Unpublished Manuscript)

Zelle, J. M. (2004). Python programming: An introduction to computer science.
Wilsonville, OR: Franklin Beedle.

Zimring, C., Do, E., Domeshek, E., & Kolodner, J. L. (1995). Supporting case-study
use in design education: A computational case-based design aid for architecture.
In Proceedings of the second congress on computing in civil engineering (pp.
1635–1642).

188

