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the light fields responsible for trapping and cooling, as well as the
quadrupole magnetic fields in both MOTs, are shut off during the
period of the protocol. The ambient magnetic field at each Site is
compensated by three pairs of Helmholtz coils (not shown). Corre-
lated signal and idler fields are generated at Site A. The signal field
is transmitted via optical fiber from Site A to Site B, where it is con-
verted to atomic excitation, stored for a duration Ts, and subsequently
retrieved. A Hanbury Brown-Twiss setup consisting of a beamsplit-
ter BS and two detectors D2 and D3, together with detector D1 for
the idler field, are used to verify the single photon character of the
retrieved field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
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trials. The optical thickness d = 8 and the control field Rabi frequency
Ω = 3Γ are used to obtain the solid curves, based on the theoretical
model discussed in Appendix C. . . . . . . . . . . . . . . . . . . . . 104
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(a) with a cw control field shows EIT pulse delay. In panel (b) the
control field is switched off and then on again after 500 ns, shows light
storage and retrieval. Panel (c) is similar to (b) but with a 15 µs
storage. Panels (d), (e), and (f) are corresponding theoretical plots. . 106

6.4 Measured intensity cross-correlation function gsi and anticorrelation
function α as a function of the idler photoelectric detection probability
p1. Panels (a) and (b) are for the source (propagation in vacuum).
Panels (c) and (d) are for stopped, stored for 500 ns, and retrieved
signal field. The solid lines are based on a theoretical model that
includes losses and background. Error bars represent ± one standard
deviation and are based on the statistics of the photoelectric counting
events. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
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6.5 Normalized signal-idler intensity correlation function gsi as a func-
tion of the storage time Ts at Site B. Data (diamonds) are taken for
p1 = 0.0047, but with a smaller background contribution than that of
Figure 6.4, c and d. The full curve is a fit of the form 1+B exp(−t2/τ 2)
with B = 7 and the collapse time τ = 11 µs as adjustable parameters.
Error bars represent ± one standard deviation and are based on the
statistics of the photoelectric counting events. . . . . . . . . . . . . . 109

6.6 Normalized intensity autocorrelation functions gii (triangles) and gss

(circles for the source, squares for the stored and retrieved field). Un-
certainties are based on the statistics of the photon counting events. 113

7.1 On the left, a diagram shows an atomic ensemble interacting with
copropagating signal and control fields. The signal (helicity α), reso-
nant on the |b〉 ↔ |c〉 transition, is stored and subsequently retrieved
by variation of a control field (helicity β), which resonantly couples

levels |a〉 and |c〉. A constant magnetic field ~B , oriented at an angle
θ from the propagation axis, rotates the atomic coherences during the
storage. For each state |b,m〉 in level |b〉, there is either an associ-
ated Λ configuration, as shown on the right, or an unconnected one,
as discussed in the text. The signal connects the states |b,m〉 and
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an idler field by adiabatic variation of the control field amplitude.
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by a read laser pulse, counterpropagating with respect to the write
pulse. For polarization analysis, each idler field propagates through a
quarter-wave plate (not shown), a half-wave plate (λ/2) and a polariz-
ing beamsplitter (PBS). Polarization correlations of the idler fields are
recorded by photoelectric detection using the single photon detectors
D1-D4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

8.2 Measured coincidence fringes Cn3(θA, θB) as a function of θA, for θB =
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8.3 Measured correlation function E(θA, θB) as a function of θA. (a), θB =
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SUMMARY

In this thesis, we explore the quantum dynamics of light interactions with

optically thick collections of atoms. We provide a theoretical description of several

recent experiments in which some key operations necessary for the implementation

of quantum communication networks are demonstrated. Collective Raman scattering

from an atomic ensemble is shown to produce probabilistic entanglement between

the polarization of a scattered photon and an associated collective atomic excitation.

The predicted correlations agree with experimental observations. We also propose a

method to use cascade transitions to produce entanglement between a photon with

a frequency in the telecom range (ideal for transmission over optical fibers) and a

near infrared photon (ideal for storage in an atomic ensemble), and a description

of the experimental demonstration is provided. We also propose and describe the

implementation of a deterministic source of single photons.

In addition, we generalize the theory of dark-state polaritons in ensembles of three

level Λ atoms to account for the nuclear spin degeneracy of alkali atoms. This gener-

alized theory provides a description of the first demonstration of single photon storage

and retrieval from atomic ensembles. Additionally, in the presence of a uniform mag-

netic field, we predict the occurrence of collapses and revivals of the photon retrieval

efficiency as a function of storage time within the ensemble. These predictions are

in very good agreement with subsequent experimental observations. We also exploit

the ability of photon storage to entangle remote atomic qubits.
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CHAPTER 1

INTRODUCTION

The dynamical law of quantum mechanics has inspired a number of potentially rev-

olutionary ideas in recent decades. Quantum computing (see Ref. [1], and references

therein), for example, holds the promise of solving several problems much faster than

can be achieved classically. The prime factorization of large numbers could be per-

formed exponentially faster [2]. The task of searching a large unsorted list scales with

the square root of the list’s size, where classically the task scales linearly [3]. Quantum

cryptographic key distribution (QCKD) could ensure completely secure communica-

tion between two remote parties [4, 5]. Where private cryptographic keys distributed

classically may be intercepted, without the knowledge of the sender or receiver, by a

malicious (or simply overly curious) party, the security risk can be nullified when the

ideas of QCKD are implemented. In addition to quantum computation and commu-

nication, non classical correlations between many particles can also help to improve

high precision measurements [6, 7, 8, 9, 10, 11, 12, 13, 14, 15].

The essential feature of quantum mechanics that enables these possibilities is the

notion of entanglement. An entangled state of two systems is one which cannot be

characterized by identifying the state of either system individually, i.e. it cannot be

expressed as a product state. One of the most elementary examples of an entangled

state is a Bell state consisting of two qubits (two level quantum systems), labeled

A and B, and is given by the state vector (|0〉A |1〉B − |1〉A |0〉B)/
√

2. In this two

qubit entangled state, a measurement of one particle, gives automatic knowledge of

the state of the other. The nonclassical nature of the correlations of the Bell state

can be quantified by the violation of Bell’s inequality (see Chapter 14 of Ref.[16] and
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references therein). In this system of 2 qubits, the Hilbert space of state vectors has

four dimensions. More generally, for a system composed of N two-level subsystems,

the state space has dimension 2N . The vastness of this state space, along with the

potential for complex interparticle correlations which are not possible classically, is

what permits the possibility of the technologies mentioned above.

In practice, however, creating, manipulating, and distributing, an entangled pair

of qubits, let alone the numbers of these required for a useful quantum computer,

presents enormous technical hurdles. The reason for this is that, in addition to the

interactions between qubits that we can conceivably control, the system also inter-

acts with the surrounding environment. Spins may interact with ambient magnetic

fields; qubits encoded in atomic or ionic states also interact with the electromag-

netic vacuum field. These uncontrolled interactions lead to dissipation in the system,

and ultimately, a decay of useful interparticle correlations; the system would behave

classically.

In this thesis, we provide a theoretical description of several recent experiments in

which key building blocks of quantum networks for use in quantum communication are

implemented [17, 18, 19, 20, 21, 22, 23]. In these experiments, interactions between

the light field and a cold atomic gas, or atomic ensemble, are used to generate, store

and retrieve quantum information stored in nonclassical states of the light field. These

atomic ensembles serve as “quantum memories,” which could be used to implement

quantum repeaters. Realization of the latter would make it possible to distribute

entangled particles over great distances (example: intercontinental).

The remainder of this Chapter is organized as follows. In Section 1.1, we provide

an overview of quantum communication and some of the difficulties that arise in

implementing it over long distances. Section 1.2 introduces the concepts of quantum

networks and quantum repeaters. Finally, in Section 1.3, we provide an outline for

the remainder of this thesis, in which we describe recent experiments that lay the
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foundation for the implementation of the ideas discussed here.

1.1 Quantum Communication

Producing and maintaining entanglement between two remote qubits, or two-level

quantum systems is an essential ingredient in quantum communication schemes. We

first consider the example of quantum teleportation[24]. Suppose a party, Alice, has

produced a qubit in an arbitrary state |φ〉, and wishes to send it to her colleague,

Bob. This is accomplished producing a pair of qubits – one located with Alice at Site

A and the other with Bob at site B – in a Bell state, a maximally entangled state

|ΨBell〉A,B =
1√
2

(|0〉A |1〉B − |1〉A |0〉B) . (1.1)

Alice then performs a joint measurement on her original qubit and particle A, and

sends the results of her measurement over a classical channel to Bob. It is shown in

Ref. [24] that Bob can use these results to reconstruct the original qubit |φ〉 on his

particle at B. We emphasize that this reconstruction does not involve any knowledge

of the original particle, but rather, only depends on the classical information sent to

Bob. In order to transmit arbitrary qubits between remote locations, one therefore

only needs to reliably generate Bell states in entangled pairs of qubits. Quantum

teleportation has been implemented experimentally using entangled photons produced

by parametric down conversion [25, 26, 27], where photons serve as the information

carriers.

In quantum cryptography, entangled particles are used to securely transmit the

cryptographic key [4, 5]. The BB84 protocol involves either remote state prepara-

tion or teleportation of a qubit [24, 25, 26, 28]. The Ekert protocol, on the other

hand, directly uses the measurement on an pair of entangled qubits to generate the

cryptographic key [5].

A requirement of these quantum communication protocols is the distribution of

entangled qubits. While parametric down conversion provides a robust mechanism
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to produce entangled photons for use in quantum communication [24, 25, 26, 28, 27],

distributing entangled photons over great distances is problematic. Due to absorption

in optical fiber and the probabilistic nature of photon pair generation, the communi-

cation rate decreases exponentially with the distance.

This limitation can be overcome through the use of a quantum repeater archi-

tecture [29, 30], in which a quantum memory element (capable of storing a qubit)

is inserted into the quantum communication channel every attenuation length or so.

Long distance entanglement distribution is achieved by first generating entanglement

between two neighboring quantum memory qubits. This can be done efficiently since

light will not be appreciably absorbed within a short segment length. After entangle-

ment between each pair of memory qubits has been established, a joint measurement

on each neighboring pair of qubits is performed. The quantum state of the interme-

diate qubits is destroyed by the measurement, thus achieving entanglement swapping

such that two memory qubits at the ends are entangled. After the entanglement

swapping, the number of entangled memory qubit pairs is reduced by a half, while

the distance over which the entanglement is distributed doubles. One subsequently

performs entanglement purification and additional entanglement swapping until the

quantum states of all of the intermediate qubits are destroyed, leaving the memory

elements at the two ends of the channel entangled. With the use of a quantum re-

peater architecture, the communication rate only scales polynomially with distance

[29, 30].

1.2 Quantum Networks and Atomic Ensembles

The quantum repeater architecture discussed above is an example of the more general

concept of a quantum network. A quantum network consists of quantum memory

nodes at which quantum information is generated, stored, and manipulated, and

quantum channels over which qubits are transmitted. Photons are ideal information
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carriers over the quantum channels since they can propagate quickly over relatively

long distances (shorter than an attenuation length) without suffering from losses,

or appreciably interacting with the environment. Atoms, on the other hand, make

favorable building blocks for quantum memory elements since they can be well isolated

from the environment, and their states may be manipulated by laser fields or applied

dc electric and magnetic fields. Here, we discuss some important primitives of a

quantum network: the ability to entangle a node and a photon, the generation of

deterministic single photons, the ability to map the quantum state of a photon onto

a quantum memory element, and vice versa.

Proposed quantum network architectures implement quantum memory nodes in

a number of different ways. In the microwave domain, single Rydberg atoms and

single photons have been entangled [31]. An entangled state between a photon and a

single ion has also been recently produced [32, 33]. A proposal for a quantum network

architecture for distributed quantum computing using trapped ions has recently been

made [34]. Another scheme involves the use of single atoms/ions within a high finesse

optical cavity [35]. Indeed, cavity QED shows promise for generating entanglement

between neutral atoms and photons, with deterministic single photon generation being

an important step in that direction [36, 37]. Entanglement between a photon and a

single trapped neutral atom has also been achieved [38]. A proposal also exists for

solid state based photon emitters [39].

Collective enhancement of atom-photon interactions in optically thick ensembles

of atoms provides a somewhat simpler route toward the construction of quantum

networks [40, 41, 42, 43, 44, 45, 46]. The atom photon entanglement, however, is

often probabilistic in nature. Duan, Lukin, Cirac, and Zoller (DLCZ) [47] have de-

veloped a scheme for long distance quantum networking based on atomic ensembles

and linear optics. The dynamics of this paradigm turn out to be remarkably similar

to parametric down conversion with the additional capability of quantum memory.
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In parametric down conversion, nonlinear interactions in an optical medium produce

entangled pairs of photons. The DLCZ protocol, on the other hand, uses collective

Raman scattering from an atomic ensemble to create nonclassical correlations be-

tween a scattered photons and collective atomic excitations. The equivalence of this

DLCZ write process and parametric down conversion is discussed in more detail in

Chapter 3. Heterogeneous quantum network schemes employing both single-atom

and collective atomic qubits are also being actively pursued [48, 49, 50].

Non-classical radiation has been produced from the first generation of atomic

ensemble experiments [51, 52, 53, 54, 55, 56]. The ability to prepare a quantum

memory qubit based on two atomic ensembles and subsequently transfer the infor-

mation onto a photonic qubit was then later demonstrated [57]. These experiments

[51, 52, 53, 54, 55, 56, 57] employed copropagating write and read laser fields and

on-axis Raman-scattered light was collected. In contrast to these works, Braje and

coworkers pioneered off-axis four-wave mixing [58] and efficient photon-pair produc-

tion [59] in a cold atomic ensemble, using counter-propagating write and read fields

deep in the regime of electromagnetically-induced transparency. We exploited this

geometry in Chapter 3, in which we report probabilistic entanglement between a

photonic and collective atomic qubit [17].

The capability to generate nonclassical correlations between a scattered photon

and a collective atomic excitation combined with relatively long atomic memory co-

herence times allows one to produce another primitive operation of a quantum net-

work, the production of deterministic single photons. In Chapter 5, we propose and

implement a source of deterministic single photons utilizing the conditional, or her-

alded, single photon sources involved in a DLCZ paradigm for an ensemble of atomic

emitters with a measurement based feedback protocol. In the past, deterministic sin-

gle photon sources have been produced using single emitters, such as quantum dots

[60, 61, 62], color centers [63, 64], neutral atoms [36, 37, 65], ions [66], and molecules
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[67]. The measured efficiency to detect a single photon per trial with these single

emitter sources is typically less than 1%, with the highest reported measured value

of about 2.4% [36, 37], to the best of our knowledge. We report the implementation

of our scheme for an ensemble of atomic emitters using a cold rubidium vapor, with

a measured efficiency of 1 - 2% (see Chapter 5[23]). In common with the cavity QED

systems, our source is suitable for reversible quantum state transfer between atoms

and light. Unlike cavity QED implementations [36, 37], however, our source is un-

affected by intrinsically probabilistic single atom loading. Therefore it is stationary

and produces a photoelectric detection record with truly sub-Poissonian statistics.

1.2.1 Atomic ensembles as quantum memories

Above, we discussed the use of atomic ensembles to generate entanglement between

quantum memory and photonic qubits. One infers this entanglement by mapping

the atomic qubit onto a photonic qubit, and performing appropriate measurements

on the correlated two-photon system [17]. Another elementary quantum network

operation involves storing a qubit state in an atomic quantum memory node, and

then retrieving and transporting the information through a single photon excitation

to a remote quantum memory node for further storage or analysis. To accomplish this,

it is necessary to map the quantum state of the light field onto the remote quantum

memory node. The potential of atomic ensembles to serve as quantum memories has

recently attracted considerable attention [68, 41, 69, 47, 13, 70].

Electromagnetically Induced Transparency (EIT) [71, 72] provides a route toward

the implementation of quantum memories within optically thick atomic ensembles.

In a collection of three level Λ atoms, the application of a classical control field

resonant on one transition renders the medium transparent to a signal, or probe,

field resonant on the other. Whereas in the absence of the control field, the atoms

would absorb the signal, and the atomic medium would be opaque. The detailed
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theory of electromagnetically induced transparency in a degenerate three level atomic

medium, such as rubidium or other alkali atoms, is presented in Appendix C. The

transparency induced by the control field is accompanied by a reduced group velocity.

This phenomenon was observed first in the seminal “slow light” experiments [73], and

coherent light pulses were later “stopped” and subsequently retrieved [44, 45, 74].

The mechanism for “storing” light pulses can be understood through a collective

excitation known as a dark-state polariton first introduced by Fleischhauer and Lukin

[69, 75]. A dark-state polariton (DSP) excitation consists of a photonic component,

and a hyperfine spin wave (a collective matter excitation) component. As a light

pulse enters an atomic medium, it transforms into a DSP excitation with a reduced

group velocity. By adiabatically extinguishing the control field, the signal can be

stopped, converting the DSP entirely into a hyperfine spin wave. The quantum state

of the light field has thus been mapped onto the quantum memory. The signal can

then later be retrieved through reactivation of the control field, allowing the DSP to

propagate out of the sample. Additionally, when EIT is operative, retrieval of atomic

qubits created in a DLCZ style write process can be understood through the DSP

paradigm (see Chapter 3). In this way, optically thick atomic ensembles are excellent

candidates for implementation of quantum memories when EIT is operative.

In this thesis, we generalize the treatment of Fleischhauer and Lukin [69, 75] to

treat atoms with nuclear spin degeneracy as used in the experiments we report. It

was found that the DSP’s in degenerate atomic ensembles consist of an electric field

excitation with a particular linear combination of hyperfine spin wave excitations

(see Chapters 6 and 7 and Appendix C). Orthogonal spin wave components couple

to optical coherences and result in spontaneous emission. In the presence of a uniform

magnetic field, we predict and subsequently measure the occurrence of collapses and

revivals in the quantum memory retrieval efficiency as a function of storage time. In

a separate work, it is shown that additional magnetic field gradients are responsible
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for the current upper bound on the quantum memory lifetime [76].

When the atomic sample is spin polarized, the DSP mechanism allows the storage

of a qubit encoded in the polarization of a photon. We exploited this in Chapter 8 to

produce entanglement between two remote atomic qubits [21].

1.3 Outline

In this thesis, we provide theoretical descriptions of recent experiments that imple-

ment several primitive operations necessary for the construction of quantum networks

using atomic ensembles. These descriptions were born from a close collaboration with

the individuals who performed the experiments, in which theoretical and experimen-

tal developments occurred in parallel. At several instances in the performance of

this work, theoretical predictions were made within days of the corresponding ex-

perimental observations (see, for example, Chapter 7 and Refs. [19, 20]). Much of

this work was published in joint theoretical and experimental articles. Experimental

details are, therefore, provided in this thesis to put the theoretical developments into

context. Note, however, that when the pronoun “we” is used in the presentations

of the experimental details, it is used to refer to the individuals who performed the

experiments, and not the author of this thesis.

The remainder of this thesis is organized as follows. In Chapter 2, we review the

theory of atomic ensemble interactions with the quantized electromagnetic field be-

ginning with the standard Hamiltonian for quantum electrodynamics in the Coulomb

gauge. The formalism developed in that Chapter is used throughout the remainder

of the thesis.

In Chapters 3 and 4, we describe experiments in which interaction of atomic en-

sembles with classical laser fields probabilistically produce entangled pairs of qubits.

Chapter 3 describes the experiment of Ref.[17], in which collective Raman scatter-

ing from a classical write laser field results in the emission of photons, imprinting
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entangled collective excitations onto the atomic medium. We show that the Ra-

man scattering dynamics reduces to that of a nondegenerate parametric amplifier

[16] involving a single mode of the collected signal field and the corresponding idler

atomic excitation. When the write pulse is sufficiently weak, these dynamics re-

sult in the probabilistic entanglement of a photonic, and a collective atomic qubit.

Entanglement was verified experimentally through measurement of the violation of

Bell’s inequality. In Chapter 4 [22], we propose and implement a key feature of a

quantum repeater using atomic cascade transitions. Whereas the photons produced

from ensembles of alkali atoms by collective Raman scattering have frequencies in the

near infrared region, the proposal involving cascade emission provides the freedom to

choose particular atomic transitions such that one of the entangled photons lies in the

telecom range of frequencies. Photons with telecom frequencies propagate through

much greater distances in optical fibers without attenuation than their near infrared

counterparts. The correlated idler photon, on the other hand, is of a frequency ideal

for storage in atomic ensembles.

The collective Raman scattering paradigm in Chapter 3 is exploited in Chapter 5

to produce a source of deterministic single photons [23]. The experimental advances

leading to increased quantum memory lifetimes allow us to implement a measurement-

based quantum feedback protocol to arm an atomic ensemble with a single atomic

excitation with high probability. This excitation can then be mapped to the state

of the electromagnetic field at a predetermined time, yielding a deterministic photon

source. Relevant aspects of the theory of photoelectric detection are presented in

Appendix D.

In Chapters 6 through 8, we turn our attention to the task of storing the quantum

state of an electromagnetic field mode and subsequently retrieving it. In Chapter 6,

we report the first experimental demonstration of storage and retrieval of a single

photon state from an atomic ensemble [18]. EIT for single photons was concurrently
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reported by Eisaman et al [77].

In Ref. [18] (see Chapter 6) we hypothesized that the observed limitation of the

quantum memory lifetime was due to a Larmor collapse of the dark-state polariton

in our degenerate atomic gas. That is, the magnetic field rotates the stored atomic

excitation away from the dark-state polariton mode. We provide support this idea in

Chapter 7, in which we present the theory of EIT and dark-state polariton storage for

an unpolarized degenerate atomic medium. We predicted the occurrence of collapses

and revivals or the retrieval efficiency as a function of storage time in the presence of

a uniform magnetic field. In this chapter, we also present an experimental verification

of this prediction.

In Chapter 8, we report the synthesis of the ideas of Chapters 3 and 6 to produce

probabilistic entanglement between two remote quantum memories. Entanglement

between the polarization of a photon and a collective atomic qubit is generated at

Site A. The photon is then transmitted to a polarized atomic ensemble at Site B where

the photon’s polarizations are mapped to orthogonal collective spin wave excitations.

We follow with some concluding remarks in Chapter 9.

In the Appendices, we provide additional information on the theory of quantum

optics with atomic ensembles. The polarization conventions used throughout the the-

sis are discussed in Appendix A. In Appendix B, we derive the effective Hamiltonian

describing scattering of an off-resonant laser field from an ensemble of degenerate

three-level atoms. We provide the detailed theory of signal propagation through an

ensemble of degenerate three-level atoms in Appendix C. In this treatment, we ac-

count for the presence of the control field and dc magnetic fields. The conditions

under which our model is valid are also discussed. Finally, some relevant aspects of

the theory of photoelectric detection and photon counting statistics are presented in

Appendix D.
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CHAPTER 2

REVIEW OF THE QUANTUM THEORY OF

LIGHT-ATOM INTERACTIONS

In this Chapter, we explore the basic physical mechanisms that facilitate the manipu-

lation of quantum information and quantum states of light within atomic ensembles.

The material presented here, lays the foundation for the presentations we will give in

later chapters regarding photon storage and retrieval , electromagnetically induced

transparency in a degenerate atomic ensemble, dark state polariton collapses and

revivals, and effective qubit entanglement generated by Raman scattering from an

atomic ensemble. We begin in Section 2.1 by considering the Hamiltonian which

describes the interaction of distinct atoms with the the quantized electromagnetic

field. In Section 2.1.1, we describe the level structure of alkali atoms, using 85Rb

as an example. Section 2.1.2 establishes the formalism and notation for the electric

dipole operator in a general multi-level atom. We describe the electromagnetic field

and its decomposition into “system” fields and the reservoir field in Section 2.1.4.

Finally, in Section 2.2, we briefly discuss the dynamics that arises from the atom-field

interactions.

2.1 Electric Dipole Hamiltonian

In Chapters 3 through 8 we consider a system of N atoms coupled to the quantized

electromagnetic field. We assume that the atoms are at a sufficiently high temperature

that we may consider the position of the µth atom ~rµ ( µ = 1 . . . N ) as a classical

variable. We assume, however, that the atomic velocities are sufficiently low so that

we may neglect atomic motion over the time scales of the experiments we will describe
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[17, 22, 23, 18, 20, 21]. In these experiments, ensembles of 85Rb atoms are cooled in a

magneto-optical trap. The temperature of the ensemble is roughly ∼ 100µK, which

corresponds to a thermal velocity of ∼ 10 cm / s. Typical experimental trials, which

include storage time of a collective excitation are on the order of 10µs. In these time

scales, an atom would move about 1µm, much less than the wavelengths of the stored

spin waves (see Chapters 3, 5, 6, 7, and 8.). The stationary atom approximation is,

therefore, sufficient for our theoretical models.

We will describe the electromagnetic field in terms of creation and annihilation

operators for plane waves with wavevector ~k and linear polarization ~ελ(k̂) ( λ =

H, V ), â†λ(
~k) and âλ(~k) respectively. The possible linear polarization vectors {~ελ(k̂)}

for a given propagation direction k̂ ≡ ~k/k, are orthogonal to each other and the

direction of propagation k̂. The linear polarizations are labeled by the index λ ∈

{H, V } and are defined such that {~εH , ~ε V , k̂} form a right handed coordinate system.

In this thesis, whenever it is convenient to choose a specific set of polarization vectors,

we adopt the convention presented in Appendix A. The operators âλ(~k) and â†λ(
~k)

obey the Bosonic commutation relations

[

âλ(~k), âλ′(~k′)
]

=
[

â†λ(
~k ), â†λ′(~k

′)
]

= 0 (2.1a)
[

âλ(~k ), â†λ′(~k
′)
]

= δλλ′δ(~k − ~k′ ) (2.1b)

In the Coulomb gauge, the magnetic vector potential is expressed in terms of these

plane wave mode operators as

Â (~r) =

∫

d3k
∑

λ∈{H,V }

~ελ(k̂)
E (ck)

ck

(

ei~k·~râλ(~k) + e−i~k·~râ†λ(
~k)
)

, (2.2)

where E(ω) ≡ (~ω/ (2ǫ0(2π)3))
1/2

. The Coulomb gauge scalar potential U(~r) is a

function only of the positions of the electrons and atomic nuclei composing the atoms.

This potential can be expressed as

U(~r) =
1

4πǫ0

N
∑

µ=1

∑

υ

qµ,υ

|~r − r̂µ,υ|
, (2.3)
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where the particles that compose atom µ are labeled by the index υ, qµ,υ is the charge

of the υth particle of atom µ, and r̂µ,υ is the position of this particle. The Hamiltonian

for the atom-field system is given by

Ĥ =
∑

µ,υ

[

p̂µ,υ − qµ,υÂ (r̂µ,υ)
]2

2mµ,υ

+

∫

d3k
∑

λ

â†λ

(

~k
)

âλ

(

~k
)

+gµ,υµB ŝµ,υ · B̂(r̂µ,υ) + V̂Coul (2.4)

where mµ,υ is the mass of particle µ, υ, gµ,υ is the Landé g factor of particle µ, υ, ŝµ,υ

is the spin of this particle, µB is the Bohr magneton, p̂µ,υ is the conjugate momentum

of the position r̂µ,υ, and

V̂Coul =
1

16πǫ0

N
∑

µ=1

N
∑

µ′=1

∑

{υ,υ′: υ 6=υ′}

qµ,υqµ′,υ′

|̂rµ,υ − r̂µ′,υ′| (2.5)

is the Coulomb interaction between particles.

When the atoms are well localized in comparison to the wavelengths of light

we consider, (e.g. classical laser fields, signal and idler quantum fields, etc.) it is

convenient to make the Power-Zienau-Woolley transformation [78] by applying the

unitary operator

T̂ ≡ exp

(

1

i~

∫

d3r P̂(~r) · Â(~r)

)

, (2.6)

where

P̂(~r) =
∑

µ

P̂µ(~r) (2.7)

is the polarization density within the atomic sample, and

P̂µ(~r) =
∑

υ

∫ 1

0

du qµ,ν (r̂µ,υ − ~rµ) δ (~r − ~rµ − u (̂rµ,υ − ~rµ)) (2.8)

is the polarization density associated with atom µ, where ~rµ is the center of mass

position of atom µ. Recall that we are considering the atom’s center of mass position

to be a classical variable. In the long-wavelength approximation, we perform a mul-

tipole expansion of P̂µ(~r), keeping only the lowest order contribution. When this is
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done, the polarization density of atom µ may be approximated as

P̂µ(~r) ≈ d̂µδ (~r − ~rµ) (2.9)

where

d̂µ ≡
∑

υ

qµ,υ (r̂µ,υ − ~rµ) (2.10)

is the electric dipole operator for atom µ. An operator Â in the Power-Zienau-Woolley

(PZW) picture is related to the corresponding Coulomb gauge operator by

Â(PZW ) = T̂ Â(Coul)T̂ †. (2.11)

A detailed description of how various physical operators transform is given in Refs.

[78, 79]

The displacement field is defined D̂(~r) = ǫ0Ê(~r)+ P̂(~r), where Ê(~r) is the electric

field at position ~r. In Ref. [78], it is shown that because we are dealing exclusively

with neutral atoms, the displacement field is transverse, i.e. ∇· D̂(~r) = 0. Therefore,

the electric displacement operator is given in the Schrödinger picture after the PZW

transformation by

D̂(~r) = ǫ0

(

Ê
(+)

(~r) + Ê
(−)

(~r)
)

(2.12)

where

Ê
(+)

(~r) = i
∑

λ

∫

d3k E(ck)~ελ(~k)âλ(~k) exp
(

i
(

~k · ~r
))

, (2.13)

is the positive frequency component of the transverse electric field at position ~r in

the Coulomb representation, and Ê
(−)

(~r) = Ê
(+)†

(~r) is the corresponding negative

frequency component. Similarly, the magnetic magnetic field is described by the

Schrödinger picture operator

B̂(~r) = B̂
(+)

(~r ) + B̂
(−)

(~r ) (2.14)

where

B̂
(+)

(~r ) = i
∑

λ

∫

d3k
E(ck)

c
(k̂ × ~ε λ(k̂))âλ(~k ) exp

(

i
(

~k · ~r
))

, (2.15)
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and B̂
(−)

(~r ) = B̂
(+)†

(~r ).

Having applied the Power-Zienau-Wolley transformation the dynamics of the elec-

tromagnetic field - atomic ensemble system by the electric dipole Hamiltonian [78, 79]

Ĥ = ĤRad +

N
∑

µ=1

(

Ĥ
(µ)
0 − 1

ǫ0
d̂

(µ) · D̂(~r µ)

)

(2.16)

where

ĤRad =
∑

λ

∫

d3k ~ckâ†λ(~k )âλ(~k ) (2.17)

is the energy of the free electromagnetic field , and Ĥ
(µ)
0 represents the atomic Hamil-

tonian for atom µ. The interaction of the µth atom with the electric field is accounted

for by the interaction of the displacement field with the dipole, −d̂ · D̂(~rµ)/ǫ0.

In the following subsections, we will discuss the elements of the electric dipole

Hamiltonian in greater detail. Section 2.1.1 provides an overview of the structure of

alkali atoms. We discuss the electric dipole operator in Section 2.1.2. In Section 2.1.3,

we establish some notation within the interaction picture. Finally, in Section 2.1.4,

we decompose the electric field into the system fields, which include classical laser

fields and detected modes of the quantized field, and the reservoir, which consists of

the plethora of undetected field modes.

2.1.1 The atomic Hamiltonian Ĥ
(µ)
0

In this section, we discuss the Hamiltonian for a single atom Ĥ
(µ)
0 . The atom is com-

posed of a nucleus of charge Z, surrounded by a cloud of Z electrons. The electrons

interact with the nucleus, and with one and other via the coulomb interaction. The

atomic Hamiltonian can be expressed as

Ĥ
(µ)
0 =

∑

υ

p̂2
µ,υ

2mµ,υ
+ V̂ µ

Coul + ĤLamb + Ĥfs + Ĥhfs, (2.18)

where, again p̂µ,υ is the momentum of particle υ (electron or nucleus) within atom µ,

V̂ µ
Coul =

1

8πǫ0

∑

{υ,υ′: υ 6=υ′}

qµ,υqµ′,υ′

|̂rµ,υ − r̂µ′,υ′ | (2.19)
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is the Coulomb interaction between the particles. ĤLamb accounts for the shift in

energy levels resulting from the interaction of the atom with the electromagnetic

vacuum. The fine structure interaction, which accounts for relativistic corrections to

the classical Hamiltonian, is contained in Ĥµ
fs, and the hyperfine interaction, which

results from a coupling of nuclear and electronic angular momenta is described by

Ĥµ
hfs.

We label the atomic energy levels |f〉, where f denotes the set of quantum num-

bers that characterize the energy level. In a hydrogen atom, when one neglects fine

structure, radiation shifts of the energy levels, and hyperfine structure, the energy

of level |f〉 is determined entirely by the principal quantum number n. In general,

multi-electron atoms are much more complicated, and the eigenstates depend on the

configuration of all of the electrons in the atom. The alkali atoms that constitute our

ensemble consist of a closed shell with one valence electron. We can make the simpli-

fying assumption that only the valence electron, the electron occupying the outermost

energy level, will undergo transitions, and the configuration of the inner electrons will

remain unchanged. Because of the spherical symmetry of the atomic Hamiltonian,

the total electronic orbital angular momentum L̂
2
, spin angular momentum Ŝ

2
are

conserved quantities. The level |f〉 will therefore depend on the orbital angular mo-

mentum Lf and spin angular momentum Sf quantum numbers respectively, so that

for a state |f,m〉 in level |f〉

L̂
2 |f,m〉 = Lf (Lf + 1) |f,m〉 (2.20)

Ŝ
2 |f,m〉 = Sf(Sf + 1) |f,m〉 . (2.21)

We note that the Z−1 electrons that compose the inner shell have a combined orbital

angular momentum and spin angular momentum of zero. The total orbital angular

momentum Lf and total spin Sf of level |f〉 in an alkali atom are, therefore, identical

to those of the valence electron.
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The fine structure splitting Ĥµ
fs arises from relativistic corrections to the total

Hamiltonian. This correction results in a coupling between the orbital and spin

angular momenta of the outer electron, Ĥµ
fs ∼ L̂·Ŝ. This coupling lifts the degeneracy

of states with equal orbital angular momentum but with different total electronic

angular momenta Ĵ = L̂ + Ŝ. The square of the total electronic angular momentum

Ĵ
2

remains a conserved quantity, however, since L̂ · Ŝ = (1/2)(Ĵ
2 − L̂

2 − Ŝ
2
). For

the degenerate energy level |f〉, we introduce the quantum number Jf such that for a

state |f,m〉 in level |f〉, Ĵ
2 |f,m〉 = Jf(Jf + 1) |f,m〉, and |Lf − Sf | ≤ Jf ≤ Lf + Sf .

Atomic states which share common principal a quantum number n, orbital angular

momentum Lf , spin angular momentum Sf , and total electronic angular momentum

Jf are said to form a fine structure level. In this thesis, we label fine structure levels

using the Russel-Sanders notation, n2S+1LJ , where n is the principal quantum number

of the valence electron, L is a letter representing the total electronic orbital angular

momentum of the atoms (S ⇔ L = 0, P ⇔ L = 1, D ⇔ L = 2 etc.), and J is

the total electronic angular momentum. A diagram of selected fine structure levels is

shown in Figure 2.1

The smallest correction to the energy, and the last mechanism to remove de-

generacy in the absence of external fields is the hyperfine interaction, an effective

interaction between the Ĵ and the nuclear spin Î. In the presence of this interaction

states within energy level |f〉 are eigenstates of the total atomic angular momentum

operator F̂
2

with eigenvalue Ff (Ff + 1), where F̂ = Ĵ + Î is the total atomic angular

momentum. In the absence of external fields, Level |f〉 possesses 2Ff + 1 degenerate

Zeeman states. We label the eigenstates of the z-component of the angular momen-

tum F̂z within level |f〉 as |f,m〉 where m ∈ {mf ∈ Z : |mf | ≤ Ff}. The hyperfine

interaction Hamiltonian may be written as [80][81]

Ĥhfs =
∑

f

E
(f)
hfsP̂f , (2.22)
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Ground State

Hyperfine Manifold

Figure 2.1: A diagram illustrates a sample of fine structure levels for 85Rb. The
fine structure levels are organized according to their orbital angular momentum and
total electronic angular momentum, as indicated by the labels across the top of the
diagram. The levels are arranged vertically according to their energies. A sample
of allowed transitions between the levels is illustrated by color lines connecting the
various levels, where the resonance frequency of the transition is given by the color
coded text. The energy differences between two adjacent levels is given by 2π~ times
the indicated frequency.
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Table 2.1: The magnetic dipole constants Ahfs and electric quadrapole constants
Bhfs for the hyperfine interaction within 85Rb atoms. These quantities are given as a
function of fine structure level j for the ground state and first two excited state fine
structure levels. The numerical values have been obtained from Ref. [82]. The values
of Bhfs are not given for the 52S1/2 and 52P1/2 manifolds since the electric quadrapole
interaction (the second term in Eq. (2.23)) is identically zero for these levels [81].

Fine Structure Level j Ahfs(j) Bhfs(j)

52S1/2 1.011910 GHz
52P1/2 120.72 MHz
52P3/2 25.009 MHz 25.88 MHz

where P̂f ≡ ∑Ff

m=−Ff
|f,m〉 〈f,m| is the projection operator onto level |f〉 and the

hyperfine energy shift is given by [81]

E
(f)
hfs = π~Ahfs (j {f})Kf

+2π~Bhfs (j {f})
3
2
Kf (Kf + 1) − 2I (I + 1) Jf (Jf + 1)

2I (2I − 1) 2Jf (2Jf − 1)
, (2.23)

where Ahfs(j{f}) is the magnetic dipole constant and Bhfs(j{f}) is the electric

quadrapole constant for hyperfine manifold j{f}, j{f} = {|f ′〉 : nf ′ = nf , Lf ′ =

Lf , Sf ′ = Sf , Jf ′ = Jf} is the fine structure level to which |f〉 belongs, I is the nu-

clear angular momentum quantum number, andKf ≡ Ff(Ff+1)−I(I+1)−Jf(Jf+1).

Numerical values for these constants have been determined experimentally for a num-

ber of atoms and hyperfine manifolds [82]. Table 2.1 shows values of Ahfs and Bhfs

for the ground state and first two excited state manifolds of 85Rb. The hyperfine

splittings for 85Rb, as calculated from Eq. (2.23), are displayed in Figure 2.2.

To summarize, the atomic Hamiltonian of atom µ, Ĥµ
0 , and the angular momentum

operators L̂
µ 2

, Ŝ
µ 2

, Î
µ 2

, Ĵ
µ 2

, F̂
µ 2

and F̂ µ
z are simultaneously diagonalizable, and the

20



F=2
1 320¡1¡2¡3¡4 4

52S
1/2

52P
1/2

52P
3/2

F=3

F=2

F=3

F=1
F=2

F=3

F=4

m

113 MHz

211 MHz

1.77 GHz

3.04 GHz

362 MHz

29.3 MHz

63.4 MHz

121 MHz

D
2
 Line

384.2 THz 
780.2 nm

D
1
 Line

377.1 THz
795.0 nm

Figure 2.2: Shows a diagram of the energy levels of 85Rb that form the ground state
52S1/2, and excited state 52P1/2 and 52P3/2 fine structure levels. These levels are
involved in the D1 (52S1/2 ↔ 52P1/2) and D2 (52S1/2 ↔ 52P3/2) line transitions. The
energies difference between two adjacent hyperfine levels is by 2π~ times the indicated
frequency.
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state |f,m〉 in level |f〉 has the following eigenvalues:

Ĥ0 |f,m〉 = ~ωf |f,m〉 (2.24a)

L̂
2 |f,m〉 = Lf(Lf + 1) |f,m〉 (2.24b)

Ŝ
2 |f,m〉 = Sf(Sf + 1) |f,m〉 (2.24c)

Ĵ
2 |f,m〉 = Jf(Jf + 1) |f,m〉 (2.24d)

Î
2 |f,m〉 = If(If + 1) |f,m〉 (2.24e)

F̂
2 |f,m〉 = Ff(Ff + 1) |f,m〉 (2.24f)

F̂z |f,m〉 = m |f,m〉 , (2.24g)

where ~ωf is the energy of level |f〉 and the angular momentum quantum numbers

obey the following restrictions

|Lf − Sf | ≤ Jf ≤ Lf + Sf (2.25a)

|Jf − If | ≤ Ff ≤ Jf + If (2.25b)

−Ff ≤ m ≤ Ff . (2.25c)

The energies of selected levels are indicated in Figs. 2.1 and 2.2. We may write the

Hamiltonian for atom µ resting in the absence of applied fields in terms of it’s energy

Eigenstates as

Ĥµ
0 =

∑

f

~ωf

Ff
∑

m=−Ff

σ̂µ
f,m; f,m. (2.26)

where σ̂µ
f,m; f ′,m′ ≡ |f,m〉µ 〈f ′, m′| is the Schrödinger picture coherence operator be-

tween states |f,m〉µ and |f ′, m′〉µ for atom µ.

2.1.2 The atomic dipole operator d̂

In this section, we examine the atomic dipole operator d̂
µ

in more detail, and establish

a notation which we will use for the remainder of the thesis. It is convenient to

separate the dipole operator into positive and negative frequency components. The
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dipole operator for atom µ is given by

d̂
µ

= d̂
(+) µ

+ d̂
(−) µ

(2.27)

where the positive/negative frequency component is given by

d̂
(±) µ

=
∑

f,f ′

d̂
(±) µ

(f,f ′), (2.28)

and d̂
(±) µ

(f,f ′), the operator that couples levels |f〉 and |f ′〉, is expressed in terms of the

atomic state coherences as

d̂
(−) µ

(f,f ′) =











∑Ff

m=−Ff

∑Ff ′

m′=−Ff ′
σ̂µ

f ′,m′; f,m

〈

f ′, m′|d̂|f,m
〉

: ωf ′ > ωf

0 : ωf ′ ≤ ωf

, (2.29)

and d̂
(+) µ

(f,f ′) = d̂
(−) µ †

(f,f ′) .

We simplify Eq. (2.29) by decomposing the vector operator d̂
(−) µ

(f,f ′) into its rank-1

spherical tensor components [83]

d̂
(−) µ

(f,f ′) =

1
∑

α=−1

~ξ∗αd̂
(−) µ
(f,f ′) α (2.30)

where

~ξ±1 =
1

2
(x̂± iŷ) , (2.31a)

~ξ0 = ẑ, (2.31b)

and

d̂
(−) µ
(f,f ′) α ≡ ~ξα · d̂(−) µ

(f,f ′). (2.32)

We may similarly decompose the positive frequency component of the dipole operator;

d̂
(+) µ

(f,f ′) =

1
∑

α=−1

~ξαd̂
(+) µ
(f,f ′) α, (2.33)

where d̂
(+) µ
(f,f ′) α = d̂

(−) µ †
(f,f ′) α. Using the Wigner-Eckert theorem, we evaluate the dipole

matrix elements and arrive at the expression for dipole operator

d̂
(−) µ
(f,f ′) α =











∑Ff

m=−Ff

(

f ′
∥

∥

∥
d̂

∥

∥

∥
f
)

C
Ff 1 Ff ′

m α m+ασ̂
µ
f ′,m+α; f,m : ωf ′ > ωf

0 : ωf ′ ≤ ωf

, (2.34)
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where
(

f ′
∥

∥

∥
d̂

∥

∥

∥
f
)

is the reduced matrix element of d̂ between the levels |f〉 and |f ′〉
1, and C

Ff 1 Ff ′

m α m+α are the Clebsch-Gordan coefficients.

Since the dipole operator only depends on the positions of the atomic constituents

(Eq. (2.10)), only the spatial electronic wavefunctions, rather than the particle spins,

play a role in electric dipole transitions. To a good approximation, the spatial elec-

tronic/nuclear wavefunctions are unaffected by hyperfine interactions between the

nuclear spin and the electronic angular momentum [82]. It follows that the reduced

matrix element between hyperfine levels |f〉 and |f ′〉 may be expressed in terms of a

reduced matrix element between the fine structure levels, j{f} and j{f ′}, in which

levels |f〉 and |f ′〉 reside. One finds that the reduced matrix elements
(

f ′
∥

∥

∥
d̂

∥

∥

∥
f
)

are

related to the matrix elements between fine structure levels by [84]

(

f ′
∥

∥

∥
d̂

∥

∥

∥
f
)

= δIf ,If ′ (−1)I+1−Jf−Ff [(2Jf ′ + 1) (2Ff + 1)]
1
2

×W (Jf Ff Jf ′ Ff ′ ; If 1)
(

j{f ′}
∥

∥

∥
d̂

∥

∥

∥
j{f}

)

(2.35)

where W (J1 J2 J J3 ; J ′ J ′′) are the Racah coefficients[84].

2.1.3 The Interaction Picture

In the work we present in this thesis, it is convenient to work in the interaction

picture. The interaction picture wavefunction |Ψ(t)〉I is related to the Schrödinger

picture wavefunction |Ψ(t)〉S by the relation

|Ψ(t)〉S = Û(t) |Ψ(t)〉I , (2.36)

where Û)(t) = exp((ĤRad +
∑N

µ=1 Ĥ
µ
0 )t/i~) is a unitary evolution operator. Similarly,

an interaction picture operator ÂI(t) is related to the Schrödinger picture operator

Â by

AI(t) = Û †(t)ÂSÛ(t). (2.37)

1For reduced matrix elements, we use the conventions of Rose [83].
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In the remainder of this document, operators lacking an explicit time argument cor-

respond to Schrödinger picture operators.

The interaction picture Hamiltonian now contains only the electric dipole inter-

action.

V̂ (t) = − 1

ǫ0

N
∑

µ=1

d̂
µ
(t) · D̂(~rµ, t), (2.38)

where

d̂
µ
(t) =

∑

f,f ′

1
∑

α=−1

e−i(ωf ′−ωf )td̃
(+) µ
(f,f ′), α

~ξα + h.c. , (2.39)

and

d̃
(+) µ
(f,f ′) α =











∑Ff

m=−Ff

(

f ′
∥

∥

∥
d̂

∥

∥

∥
f
)∗

C
Ff 1 Ff ′

m α m+ασ̃
µ
f,m; f ′,m+α : ωf ′ > ωf

0 : ωf ′ ≤ ωf

, (2.40)

where σ̃µ
f,m; f ′,m′ ≡ exp(i(ωf ′−ωf )t)σ̂

µ
f,m; f ′,m′(t) is the slowly varying atomic coherence

operator. Note that in the interaction picture, the slowly varying atomic operators

are time independent, i.e. σ̃µ
f ′,m+α; f,m = σ̂µ

f ′,m+α; f,m.

The time dependent displacement field is given in the interaction picture by

D̂(~r, t) = ǫ0

(

Ê
(+)

(~r, t) + Ê
(−)

(~r, t)
)

, (2.41)

where

Ê
(+)

(~r, t) = i
∑

λ

∫

d3k E(ck)~ελ(~k)âλ(~k)e
−ick(t−k̂·~r/c) (2.42)

and Ê
(−)

(~r, t) = Ê
(+)†

(~r, t). In the next section, we will discuss the the decomposition

of the electromagnetic field into system fields, which consist of classical laser fields

and modes detected by photon counters in the experiments, and the reservoir, which

contains the plethora of undetected modes.

2.1.4 Decomposition of the electromagnetic field

When dealing with light interactions with atomic ensembles for the purposes of stor-

ing and generating quantum information, one often considers the interaction of the
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atoms with several narrow band-width fields. We identify these fields as system fields.

The system fields may consist of the write, read, signal and idler fields that we discuss

in the context of entanglement and single photon generation in Chapters 3, 4, 5, and

8. They may also include the classical control and quantum signal fields that partic-

ipate in electromagnetically induced transparency and photon storage, as discussed

in Chapters 6 through 8.

We decompose the displacement field D̂(~r, t) into the system fields plus a contri-

bution from the reservoir.

D̂(~r, t) = D̂R(~r, t) +
∑

ι

D̂ι(~r, t) (2.43)

where ι is the index indicating the system field, and D̂R(~r, t) ≡ D̂(~r, t)−∑ι D̂ι(~r, t) is

the contribution to the field of the reservoir modes. The system field ι is described by a

set of plane wave modes centered on the wavevector ~kι. Specifically, field ι is described

by the set of annihilation and creation operators {âλ(~k), â
†
λ(
~k) : λ ∈ {H, V }, and ~k ∈

Dι}, where Dι = {~k : |k(ι)
‖ − kι| ≤ ∆k/2, and |k(ι)

⊥λ| ≤ kιϑ/2 ∀λ ∈ {H, V }} is the

set of wavevectors for the modes belonging to field ι, ∆k ≪ kι is the range of wave

numbers in Dι, k
(ι)
⊥λ ≡ ~ελ(k̂ι) ·~k is the component of the wavevector ~k along the linear

polarization vector ~ελ(k̂ι) for the plane wave propagating in the direction k̂ι = ~kι/kι,

and ϑ ≪ 1 is the maximum variation of the solid angle for system field ι. For an

arbitrary vector ~v, we label the component parallel to k̂ι as v
(ι)
‖ ≡ ~v · k̂ι and the the

transverse portion as ~v
(ι)
⊥ ≡ ~v − v

(ι)
‖ k̂ι.

Like the total displacement field, we decompose the narrow band field into positive

and negative frequency components.

D̂ι(~r, t) = ǫ0

(

Ê
(+)

ι (r̂, t) + h.c.
)

, (2.44)

where

Ê
(+)

ι (~r, t) = i
∑

λ

∫

Dι

d3k ~ελ(k̂)E(ck)e−ick(t−k̂·~r/c)âλ(~k). (2.45)
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We decompose the Reservoir operator in a similar fashion:

D̂R(~r, t) = ǫ0

(

Ê
(+)

R (r̂, t) + h.c.
)

, (2.46)

where

Ê
(+)

R (~r, t) = Ê
(+)

(~r, t) −
∑

ι

Ê
(+)

ι (~r, t). (2.47)

Because the the variation of wavenumbers ∆k ≪ kι is small, we may make the

narrow-bandwidth approximation, replacing E(ck) with E(ckι) for all ~k ∈ Dι. This

approximation allows us to reexpress the system field Ê
(+)

ι in the simplified form

Ê
(+)

ι ≈
√

~kι

2ǫ0
e−ickι(t−r

(ι)
‖

/c)
Φ̂

(ι)
(~r, t) (2.48)

where we have defined the slowly varying photon flux density operator

Φ̂
(ι)

(~r, t) ≡ i

√

c

(2π)3

∑

λ

∫

Dι

d3k ~ελ(k̂)e
i((~k−~kι)·~r−c(k−kι)t)âλ(~k) (2.49)

= i

√

c

(2π)3

∑

λ

∫

Dι

d3k ~ελ(k̂)

×ei~k
(ι)
⊥ ·~re−ic(k

(ι)
‖

−kι)(t−r
(ι)
‖

/c)e−ic(k−k
(ι)
‖

)tâλ(~k). (2.50)

As we shall see from the following argument, the last exponential appearing in

Eq. (2.50) accounts for diffraction. We may approximate the difference appearing in

the last exponential of Eq. (2.50) as k− k
(ι)
‖ =

√

(k
(ι)
‖ )2 + |~k(ι)

⊥ |2 − k
(ι)
‖ ≈ |~k(ι)

⊥ |2/(2kι),

so that the slowly varying field becomes

Φ̂
(ι)

(~r, t) = i

√

c

(2π)3

∑

λ

∫

Dι

d3k ~ελ(k̂)

×ei~k
(ι)
⊥ ·~re

−ic(k
(ι)
‖

−kι)(t−r
(ι)
‖

/c)
e−ic|~k

(ι)
⊥ |2t/(2kι)âλ(~k) (2.51)

By differentiating Eq. (2.51), we may find the following equation of motion for the

slowly varying envelope operator in the interaction picture,

(

∂

∂t
+ ck̂ι · ~∇

)

Φ̂
(ι)

= ic
∇(ι) 2

⊥

2kι
Φ̂

(ι)
. (2.52)
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It is convenient to further decompose the slowly varying envelope into its helic-

ity components; Φ̂(~r, t) =
∑1

α=−1 ~eα(k̂ι)Φ̂
(ι)
α (~r, t), where ~e±(k̂ι) ≡ ∓(1/

√
2)(~εH(k̂ι) ±

i~εV (k̂ι)) and ~e0(k̂ι) ≡ k̂ι are the helicity vectors for a field propagating in the k̂ι direc-

tion as described in Appendix A, and Φ̂
(ι)
α (~r, t) = ~e∗α(k̂ι) · Φ̂

(ι)
(~r, t) is the component

of the slowly varying photon flux density operator with helicity α. In the problems

we consider, the distribution of propagation directions k̂ within a particular system

field is assumed sufficiently narrow so that we may make the paraxial approxima-

tion. That is, we may approximate the slowly varying field Φ̂
(ι)

(~r, t) by replacing the

polarization vector ~ελ(k̂) appearing in Eqs. (2.49), (2.50), and (2.51) with the linear

polarizations associated with the carrier wave vector ~ελ(k̂ι). With this approxima-

tion, the component of the slowly varying field along k̂ι is negligible, and therefore

Φ̂
(ι)
0 ≈ 0. It can be shown, that in the paraxial approximation, the field operators for

system fields ι and ι′ obey the commutation relations,

[

Φ̂(ι)
α (~r, t), Φ̂

(ι)
β (~r′, t′)

]

=
[

Φ̂(ι)†
α (~r, t), Φ̂

(ι)†
β (~r′, t′)

]

= 0 (2.53a)

[

Φ̂(ι)
α (~r, t), Φ̂

(ι)†
β (~r′, t′)

]

= δι,ι′δα,β
c

(2π)3

∫ ∆k
2

−∆k
2

dq e
−icq((t−t′)−(r

(ι)
‖

−r
(ι) ′
‖

)/c)

×
∫

Dι

d2k
(ι)
⊥ e−ic

k
(ι) 2
⊥
2kι

t+~k
(ι)
⊥ ·~r (2.53b)

= δι,ι′δα,β
c∆k

2π
sinc

[

c∆k

2

(

(t− t′) −
(

r
(ι)
‖ − r

(ι) ′
‖

)

/c
)

]

× 1

(2π)2

∫

Dι

d2k
(ι)
⊥ e

−ic
k
(ι) 2
⊥
2kι

(t−t′)+~k
(ι)
⊥ ·~r (2.53c)

These commutation relations are simplified somewhat when they are taken at equal

times, t = t′,

[

Φ̂(ι)
α (~r, t), Φ̂

(ι′)†
β (~r′, t)

]

= δι,ι′δα,β
c∆k

2π
sinc

[

c∆k

2

((

r
(ι)
‖ − r

(ι) ′
‖

)

/c
)

]

×
(

kιϑ

2π

)2
∏

λ∈{H,V }

sinc

[

kιϑ

2

(

r
(ι)
⊥λ − r

(ι) ′
⊥λ

)

]

(2.54)

≈ cδι,ι′δα,βδ(~r − ~r′), (2.55)

where we have used the approximation, (k/π)sinc(k(x−x′)) ≈ δ(x−x′) when we are
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concerned only with variations of x much larger than 1/k. Interestingly, one also finds

the slowly varying fields are delta correlated in time for equal propagation distances

r
(ι)
‖ = r

(ι) ′
‖ .

[

Φ̂(ι)
α (~r

(ι)
⊥ , r

(ι)
‖ , t), Φ̂

(ι′)†
β (~r

(ι′) ′
⊥ , r

(ι′) ′
‖ , t′)

]

= δι,ι′δα,β
c∆k

2π
sinc

[

c∆k

2
(t− t′)

](

kιϑ

2π

)2

×
∏

λ∈{H,V }

sinc

[

kιϑ

2

(

r
(ι)
⊥λ − r

(ι) ′
⊥λ

)

]

(2.56)

≈ δι,ι′δα,βδ(t− t′)δ(~r
(ι)
⊥ − ~r

(ι) ′
⊥ ). (2.57)

These equal space commutation relations will be helpful in the description of photo

detection, where the detector is fixed in space, and we are interested in how a state

is conditioned on the photon arrival times, as discussed in Appendix D.

The system fields as we have defined them allow us account for the longitudinal

and transverse character of the evolution of the quantum field. Such a general treat-

ment is useful when one studies the propagation and stability properties of quantum

electromagnetic fields in a nonlinear medium [85]. In the problems we treat here,

however, the dynamics in the transverse dimension of the system fields are unimpor-

tant. When quantum fields are detected by photon counters in our experiments, only

a single transverse spatial mode – a Gaussian mode, more specifically – is collected

by an optical fiber. Further, the classical laser fields in the experimental setups have

a controlled transverse spatial structure. For this reason, we will now define effective

one dimensional system fields, where the transverse spatial dynamics are frozen out.

To formally accomplish this task, we identify a complete set of mode functions

{fi : D⊥
ι → C}, where

D⊥
ι ≡

{

~k⊥ ∈ R2 : k
(ι)
⊥,λ < kιϑ, λ ∈ {H, V }, i = 0 . . .∞

}

. (2.58)

These functions are orthonormal on the set D⊥
ι , and therefore satisfy the normal-

ization condition,
∫

D⊥
ι

d2kι
⊥ f

∗
i (~k

(ι)
⊥ )fj(~k

(ι)
⊥ ) = δi,j. (2.59)
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Having identified this set of functions, we ddefine the transverse mode annihilation

operators

â
(ι)
λ,i

(

k
(ι)
‖ , t

)

≡
∫

d2k⊥ e−ic
|~k(ι)

⊥ |2
2kι

tf ∗
i (~k⊥)âλ(~k) (2.60)

where k
(ι)
‖ is the component of ~k parallel to k̂ι, and t functions as a parameter with

units of time. The relationship in Eq. (2.60) can be inverted by

âλ(~k) =
∑

i

fi(~k
(ι)
⊥ )eic

|~k(ι)
⊥ |2
2kι

tâ
(ι)
λ,i(k

(ι)
‖ , t) (2.61)

By inserting the modal expansion of âλ(~k) of Eq. (2.61) into Eq. (2.51), and again

making the paraxial approximation,we find

Φ̂(~r, t) =
∑

λ

~ελ(k̂ι)ϕ̂
(ι)
λ,i(r

(ι)
‖ , t)φ

(ι)
i (~r), (2.62)

where

ϕ̂
(ι)
λ,i(r

(ι)
‖ , t) ≡ 1√

2π

∫

dk
(ι)
‖ e

i
“

k
(ι)
‖

−kι

”“

r
(ι)
‖

−ct
”

â
(ι)
λ,i

(

k
(ι)
‖ , t− r

(ι)
‖ /c

)

(2.63a)

=
1

√

(2π)3

∫

d3k e
i
“

k
(ι)
‖

−kι

”“

r
(ι)
‖

−ct
”

× e
i
|~k(ι)

⊥ |2
2kι

“

r
(ι)
‖

−ct
”

f ∗
i

(

~k⊥

)

âλ (k) (2.63b)

is the one dimensional photon flux operator, and

φ
(ι)
i (~r) =

i

2π

∫

d2k
(ι)
⊥ e

i~k⊥·~re
−i
|~k(ι)

⊥ |2
2kι

r
(ι)
‖ fi

(

~k
(ι)
⊥

)

(2.64)

is the transverse spatial profile associated with fi(~k
(ι)
⊥ ). One can show that for equal

longitudinal positions r
(ι)
‖ , the spatial mode functions satisfy the normalization con-

dition
∫

d2r
(ι)
⊥ φ

(ι)∗
i

(

~r
(ι)
⊥ , r

(ι)
‖

)

φ
(ι)
j

(

~r
(ι)
⊥ , r

(ι)
‖

)

= δi,j . (2.65)

The operators ϕ̂
(ι)
λ,i(r

(ι)
‖ , t) and ϕ̂

(ι) †
λ,i (r

(ι)
‖ , t) obey the equal time commutation relations

[

ϕ̂
(ι)
i

(

r
(ι)
1 ‖, t

)

, ϕ̂
(ι)
j

(

r
(ι)
2 ‖, t

)]

= 0 (2.66a)
[

ϕ̂
(ι)
i

(

r
(ι)
1 ‖, t

)

, ϕ̂
(ι)†
j

(

r
(ι)
2 ‖, t

)]

= δi,jδ
(

r
(ι)
1 ‖ − r

(ι)
2 ‖

)

. (2.66b)
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Furthermore, in the interaction picture the operator ϕ̂
(ι)
λ,i(r

(ι)
‖ , t) satisfies the equation

of motion
(

∂

∂t
+ ck̂ι · ∇

)

ϕ̂
(ι)
i = 0 . (2.67)

The transverse spatial profiles, on the other hand, are time independent, and solve

the differential equation

(

k̂ι · ∇
)

φ
(ι)
i (~r) = i

∇(ι)2
⊥

2kι

φ
(ι)
i (~r) (2.68)

Having expressed the system field in terms of an expansion of transverse spatial

modes, we may easily make the simplification that only one of these transverse modes

is populated and/or detected for a given system field. When we keep only the popu-

lated/detected transverse mode, the positive frequency component of the electric field

for system field ι becomes

Ê
(+)

ι (~r, t) = (2π)3/2 E(ckι)e
−ickι

“

t−r
(ι)
‖

/c
”

φ(ι) (~r)
∑

α=±1

~eα

(

k̂ι

)

ϕ̂(ι)
α

(

r
(ι)
‖ , t

)

, (2.69)

where ϕ̂
(ι)
α (r

(ι)
‖ , t) is the photon flux annihilation operator for the field of helicity α,

and is given by

ϕ̂(ι)
α

(

r
(ι)
‖ , t

)

=
∑

λ∈{H,V }

~e∗α

(

k̂ι

)

· ~ελ

(

k̂ι

)

ϕ̂
(ι)
λ

(

r
(ι)
‖ , t

)

. (2.70)

In the remainder of this thesis, we will assume our system fields are well described

by Eq. (2.69).

2.2 Ensemble Interactions with Narrow Bandwidth

Fields

In this section, we consider the general case in which an atomic ensemble interacts

with one or more narrow band-width fields. To explore the interaction of the atomic

ensemble with the system fields, we begin with the electric dipole Hamiltonian for

the interaction of the ensemble with the full quantized electromagnetic field in the
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interaction picture ( Eq. (2.38) ). We take advantage of the notation developed in

the last section.

We will first examine the dynamics of a system field labeled by the index ι which

propagates in the direction k̂ι and has a carrier frequency ckι. The contribution to

the electric field from system field ι is given by Eq. (2.69). To gain insight into the

generalized field propagation dynamics, we write the Heisenberg equation of motion

for the slowly varying photon flux operator ϕ̂
(ι)
α (r

(ι)
‖ , t) for photons of helicity α = ±1.

This equation of motion is given by

(

∂

∂t
+ ck̂ι · ∇

)

ϕ̂(ι)
α

(

r
(ι)
‖ , t

)

=
i

~ǫ0

∑

µ

[

ϕ̂(ι)
α

(

r
(ι)
‖ , t

)

, D̂ (~rµ, t)
]

· d̂µ (t) (2.71)

The commutation relation appearing in the Heisenberg equation of motion ( Eq. (2.71) )

is evaluated by using the decomposition of the displacement field of Eq. (2.43) and

applying the commutation relations of Eq. (2.66). We then find that,

[

ϕ̂(ι)
α

(

r
(ι)
‖ , t

)

, D̂ (~rµ, t)
]

=

√

~ckιǫ0
2

e
ickι

“

t−r
(ι)
‖

/c
”

φ(ι)∗ (~rµ) δ
(

k̂ι · (~r − ~rµ)
)

~e∗α

(

k̂ι

)

(2.72)

We then have the propagation equation for the Heisenberg field operators

(

∂

∂t
+ ck̂ι · ∇

)

ϕ̂(ι)
α

(

r
(ι)
‖ , t

)

= i

√

ckι

2~ǫ0
e

ickι

“

t−r
(ι)
‖

/c
”

~e∗α

(

k̂ι

)

· P̂
(

r
(i)
‖ , t

)

(2.73)

where

P̂

(

r
(i)
‖ , t

)

≡
∑

µ

d̂µ (t)φ(ι)∗ (rµ) δ
(

k̂ι · (~r − ~rµ)
)

, (2.74)

and d̂
µ
(t) is the Heisenberg picture dipole operator for atom µ, and is given by

d̂
µ
(t) =

∑

f,f ′

e−i(ωf ′−ωf )td̃
(+) µ

(f,f ′)(t) + h.c. , (2.75)

d̃
(+),µ

(f,f ′)(t) =
∑1

α=−1
~ξαd̃

(+) µ
(f,f ′) α is the positive frequency component of the dipole opera-

tor coupling levels |f〉 and |f ′〉, ~ξα are the spherical basis vectors with respect to the

32



ẑ axis as defined in Eq. (2.31), and the spherical component of the dipole operator

d̃
(+) µ
(f,f ′) α is given in the Heisenberg picture by

d̃
(+) µ
(f,f ′) α =











∑Ff

m=−Ff

(

f ′
∥

∥

∥
d̂

∥

∥

∥
f
)∗

C
Ff 1 Ff ′

m α m+ασ̃
µ
f,m; f ′,m+α(t) : ωf ′ > ωf

0 : ωf ′ ≤ ωf

, (2.76)

where σ̃µ
f,m; f ′,m′(t) ≡ exp(i(ω′

f − ωf)t)σ̂f,m; f ′,m′(t) is the slowly varying coherence

operator for atom µ.

Let us now briefly examine the atomic dynamics. The behavior of the atoms

within the ensemble can be completely characterized by the slowly varying coherences

σ̃µ
f,m; f ′,m′(t) between atomic states |f,m〉µ and |f,m′〉µ. These coherence satisfy the

Heisenberg equation of motion

dσ̃µ
f,m; f ′,m′

dt

=
1

i~

[

σ̃µ
f,m; f ′,m′(t), V̂ (t)

]

=
i

~

[

σ̃µ
f,m; f ′,m′(t), d̂(t)

]

·
(

Ê
(+)

R (~rµ, t) +
∑

ι

Ê
(+)

ι (~rµ, t) + h.c.

)

(2.77)

The equations of motion we have derived in this Section describe the interaction

of the electromagnetic fields with an ensemble atoms in an arbitrary configuration.

We have now laid the base from which we can explore the dynamics involved in gen-

erating entanglement, and storing and retrieving quantum information within atomic

ensembles.

33



CHAPTER 3

ENTANGLING A PHOTON WITH A

COLLECTIVE ATOMIC EXCITATION

In this Chapter, we describe a new experimental approach to probabilistic atom-

photon (signal) entanglement. Two qubit states are encoded as orthogonal collective

spin excitations of an unpolarized atomic ensemble. After a programmable delay,

the atomic excitation is converted into a photon (idler). Polarization states of both

the signal and the idler are recorded and are found to be in violation of the Bell

inequality. Atomic coherence times exceeding several microseconds are achieved by

switching off all the trapping fields - including the quadrupole magnetic field of the

magneto-optical trap - and zeroing out the residual ambient magnetic field.1

We will also provide a detailed theoretical model for spontaneous Raman scatter-

ing from an atomic ensemble. It is shown how one arrives at an effective two-mode

description for the collective scattering dynamics when undetected modes of the elec-

tromagnetic field are traced over. This, in turn, serves as the mechanism that gen-

erates the observed probabilistic atom-photon entanglement. The dynamics of the

conversion of the atomic excitation to a photon are also discussed.

3.1 Introduction

Long-distance quantum cryptographic key distribution (QCKD) is an important goal

of quantum information science. Extending the reach of quantum cryptography ide-

ally involves the ability to entangle two distant qubits (two level quantum systems)

1This chapter contains excerpts from Ref. [17].
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[1, 29], using the Bell inequality violation to verify the security of the quantum com-

munication channel. Parametric down conversion is an established technology pro-

ducing entangled photon pairs. Unfortunately, it is not directly applicable to long-

distance QCKD, as the rate scales exponentially with the distance due to probabilistic

nature of entangled photon pairs generation. It is necessary to provide a controllable

delay between the two photons, that is, to have a means of photon storage.

The latter requirement is problematic as photons are difficult to store for an appre-

ciable period of time. By contrast atomic qubits are long lived and easily manipulated

by laser fields; they are well suited for long term quantum information storage. Pho-

tonic qubits, however, can propagate for relatively long distances in fibers without

absorption, making them excellent carriers of quantum information. Entangled sys-

tems of a single photon and a long-lived atomic qubit therefore offer an excellent

building block for a quantum network.

A quantum repeater architecture can overcome the limitations of photons by in-

serting a quantum memory qubit into the quantum channel every attenuation length

or so [29]. The idea is to generate entanglement between two neighboring atomic

qubits, which can be done efficiently since light will not be appreciably absorbed

within the segment length. After entanglement between each pair of atomic qubits

has been established, a joint measurement on each neighboring pair of qubits is per-

formed. The quantum states of all the intermediate qubits are destroyed by the mea-

surement, achieving entanglement swapping such that only the two atomic qubits

at the two ends are entangled. These two qubits can be used for QCKD, either

with the Ekert protocol, that directly uses the entangled pair of qubits, or the BB84

protocol that performs either remote state preparation or teleportation of a qubit

[5, 4, 24, 25, 26, 28]. The rate of QCKD using a quantum repeater protocol can scale

polynomially with distance [29].

In the microwave domain, single Rydberg atoms and single photons have been
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Figure 3.1: (a) Schematic of experimental setup. P1 and P2, polarizers; D1 and D2,
detectors; λ/4, quarter-waveplate. (b) The structure of atomic transitions leading to
generation of atom-photon entanglement and of the subsequent read-out of atomic
qubit.
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entangled [86]. An entangled state of an ion and a photon has also been recently

reported [32, 33]. Cavity QED holds promise for generation of deterministic neutral

atom-photon entanglement, with single photon generation being an important step

in that direction [36, 37]. Collective enhancement of atom-photon interactions in

optically thick atomic ensembles offers a somewhat simpler route towards this goal

[40, 41, 42, 43, 44, 45, 46]. However, the atom-photon entanglement is often of a

probabilistic character.

Duan, Lukin, Cirac, and Zoller (DLCZ) have developed a program of long-distance

quantum networking based on atomic ensembles [47]. This paradigm turns out to be

remarkably similar to parametric down conversion, with the additional capability of

atomic quantum memory. Non-classical radiation has been produced from an atomic

ensemble [51, 52, 53, 54, 55, 56], as well as the preparation of a quantum memory

qubit based on two atomic ensembles with subsequent quantum state transfer onto a

photonic qubit [57]. These experiments [51, 52, 53, 54, 55, 56, 57] employed copropa-

gating write and read laser fields and on-axis Raman-scattered light was collected. In

contrast to these works, Braje and coworkers pioneered off-axis four-wave mixing [58]

and efficient photon-pair production [87] in a cold atomic ensemble, using counter-

propagating write and read fields deep in the regime of electromagnetically-induced

transparency.

In this Chapter we report probabilistic entanglement of a collective atomic excita-

tion and a photon (signal), achieved using the off-axis, counter-propagating geometry

of Braje et al.[58, 87]. We propose and experimentally implement here an atomic

qubit consisting of two distinct mixed states of collective ground-state hyperfine co-

herence which contain one spin excitation. The entanglement of the signal photon

and the collective spin excitation is inferred by performing quantum state transfer

of the atomic qubit onto a photonic qubit (idler) [57], with one of the atomic states

being converted into a right-hand polarized photon and the other into a left-hand
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polarized one. Polarization correlations of the signal and the idler photons are subse-

quently recorded and found to be in violation of the Bell inequality. The atom-photon

entanglement is probabilistic, with the fundamental quantum state consisting mostly

of vacuum. The entangled component of the state is post-selected by coincidence

counting. This type of entanglement is similar to two-photon entanglement in spon-

taneous parametric down-conversion (see [88, 89, 90] and references therein), and to

the ion-photon entanglement of Blinov et al. [32, 33].

3.2 Theory

As illustrated in Figure 3.1(a), the right circularly polarized write pulse generates

Raman scattering. We collect a Gaussian mode centered around the momentum ~ks

that forms a 2◦ angle with the write beam. Figure 3.1(b) indicates schematically

the structure of the three atomic levels involved, |a〉 , |b〉 and |c〉. The experimental

sequence starts with all of the atoms prepared in the unpolarized level |a〉. The

initial density operator of atom µ is given by ρ̂µ
0 =

∑Fa

m=−Fa
pm |a,m〉µ 〈a,m|, where

pm = 1/(2Fa + 1) is the probability of an atom is prepared in the state |a,m〉. A

write pulse tuned to the |a〉 → |c〉 transition is directed into a sample of cold 85Rb

atoms. The classical write pulse is so weak that less than one photon is scattered in

this manner on the |c〉 → |b〉 transition into the collected mode for each pulse.

Using perturbation theory, we show in Section 3.2.1 that the ensemble-photon

density operator may be written as

ρ̂ =
(

1 + χΨ̂† (η)
)

ρ̂0

(

1 + χΨ̂ (η)
)

(3.1)

where

ρ̂0 =

(

N
⊗

µ=1

ρ̂µ
0

)

⊗ |vac〉 〈vac| (3.2)

is the initial density matrix of the ensemble-signal system, |vac〉 is the signal photon
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vacuum state, χ≪ 1 is an interaction parameter given by Eq. (3.53), and

Ψ̂ (η) = cos η Ŝ
(i)
+1â

(s)
+1 + sin η Ŝ

(i)
−1â

(s)
−1, (3.3)

where

cos2 η =
Fa
∑

m=−Fa

pmX
2
m,1/[

Fa
∑

m=−Fa

∑

α=±1

pmX
2
m,α], (3.4)

Xm,α = CFa 1 Fc
m αw m+αw

CFb 1 Fc

m+αw−α α m+αw
is the product of the relevant Clebsch-Gordan

coefficients for the transitions, and αw = 1 is the helicity of the write field. The

collective atomic spin excitation operators Ŝ
(i)
α are given by Eq. (3.55). For weak

states of excitation the collective spin operators satisfy bosonic commutation rela-

tions correct to O(1/
√
N): [Ŝ

(i)
α , Ŝ

(i) †
β ] = δα,β . Evaluating the coefficient cos2η for

the experimental conditions Fa = Fc = 3, Fb = 2, we find η = 0.81 × π/4. It is

important to realize that the vacuum component in density matrix ρ̂ ( Eq. (3.1) )

has no influence on the fidelity of DLCZ’s quantum communication protocols due to

built-in purification, even though χ≪ 1 [47].

Detection of a photon by D1 produced by the |c〉 → |b〉 transition results in the

sample of atoms containing, in the ideal case, exactly one excitation in the related

collective atomic mode. After a variable delay time ∆t (bounded by the lifetime of

the ground-state atomic coherences) we convert the atomic excitation into a single

photon by illuminating the atomic ensemble with a pulse of light near-resonant with

the |b〉 → |c〉 transition and counter-propagating with respect to the write beam

(Figure 3.1). For an optically thick atomic sample, the idler photon will be emitted

with high probability into the mode determined by the phase-matching condition ~k i =

~k w +~k r−~k s, with the atomic qubit state mapped onto a photonic one as discussed in

Section 3.2.2. Under the condition of collective enhancement the atomic excitations

generated by Ŝ
(i) †
±1 map to orthogonal idler photon states up to a phase. Assuming

equal mapping efficiency, the number of correlated signal-idler counts registered by the

detectors can be predicted on the basis of Eq. (3.1). We find, by carefully analyzing
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the measurement procedure,

C (θs, θi) ∝
[

(cos η + sin η) cos (θs − θi) +

(cos η − sin η) cos (θs + θi)
]2
, (3.5)

where θs and θi are the orientations of polarizers P1 and P2. Following Clauser-Horne-

Shimony-Holt (CHSH) [91, 16], we calculate the correlation function E (θs, θi), given

by

C (θs, θi) + C
(

θ⊥s , θ
⊥
i

)

− C
(

θ⊥s , θi

)

− C
(

θs, θ
⊥
i

)

C (θs, θi) + C
(

θ⊥s , θ
⊥
i

)

+ C (θ⊥s , θi) + C
(

θs, θ⊥i
) , (3.6)

where θ⊥ = θ + π/2. The CHSH version of the Bell inequality is then |S| ≤ 2 where

S = E (θs, θi) + E (θs
′, θi) + E (θs, θ

′
i) −E (θ′s, θ

′
i) . (3.7)

The maximum violation of the Bell inequality is achieved for a maximally entangled

state with the canonical set of angles θs = −22.5◦, θi = 0◦, θ′s = 22.5◦ and θ′i = −45◦:

S = 2
√

2 = 2.83. Based on the value η = 0.81× π/4 we find, ideally, S = 2.77 which

significantly violates the Bell inequality.

In the following sections, we will provide a more detailed analysis of the interaction

of the write beam with the atomic ensemble. We will show, that due to collective

enhancement, the spin waves imprinted on the ensemble by the signal photon emission

are independent of those left behind by photons scattered into undetected modes. We

will then describe the dynamics of the read process, in which the read beam is resonant

on the |b〉 ↔ |c〉 transition. We take advantage of the Heisenberg Langevin equations

that describe joint photon and spin wave propagation in the presence of a control

field that are developed in Appendix C.

3.2.1 The Write Process: Raman Scattering from a Collection of Atoms

In this section, we describe the dynamics of the classical write field interacting with

an ensemble of N atoms. We describe the write and the detected signal fields as

distinct narrow bandwidth fields with carrier wave vectors ~kw and ~ks respectively.
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We follow the conventions introduced in Chapter 2 Section 2.1.4. The write beam

is detuned from resonance on the |a〉 ↔ |c〉 transition by a frequency ∆w, so that

ckw = ωc − ωa + ∆w, where ~ωf is the energy of level |f〉 as described in Chapter 2.

The carrier frequency of the signal, cks = ωc − ωb + ∆w, differs from the write beam

frequency by the hyperfine splitting between levels |a〉 and |b〉. We assume that the

propagation direction of the write field k̂w is nearly parallel to the laboratory fixed

angular momentum quantization z-axis, and that the detected signal field propagates

along the z-axis; k̂s = ẑ. In this limit, we make the paraxial approximation so that

the helicities of the fields correspond to the spherical basis vectors (Eq. (2.31)). That

is,

~eα

(

k̂w

)

≈ ~eα

(

k̂s

)

= ~ξα. (3.8)

We note that the write and signal fields are not necessarily collinear so that we may

allow for the off-axis geometry introduced by Braje et al [58]. The positive frequency

electric field operators for the write and signal fields are given by

Ê
(+)

w (~r, t) = (2π)3/2 E (ckw) ei~kw·~re−ickwtφ(w) (~r)
∑

α=±1

~eα

(

k̂s

)

ϕ̂(w)
α

(

r
(w)
‖ , t

)

(3.9)

and

Ê
(+)

s (~r, t) = (2π)3/2 E (cks) e
i~ks·~re−ickstφ(s) (~r)

∑

α=±1

~eα

(

k̂s

)

ϕ̂(s)
α (z, t) (3.10)

respectively, where φ(ι)(~r) (ι ∈ {w, s}) is the transverse mode function (as discussed

in Chapter 2), and r
(ι)
‖ ≡ k̂ι · ~r. We assume the collected signal field has a transverse

spatial profile much narrower than that of the write beam so that the envelope of the

write field is essentially constant over the width of the collected signal mode. The

write field will be treated classically and is assumed to have a fixed helicity αw. The

expression for the write field, therefore, simplifies to

~E(+)
w (~r, t) = ~ξαwe

i~kw·~re−ickwtEw (~r, t) (3.11)
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where

Ew (~r, t) ≡ (2π)3/2 √nwE (ckw)φ(w) (~r)ϕ
(

r
(w)
‖ , t

)

(3.12)

is the slowly varying electric field amplitude,

nw ≡
∫ ∞

−∞

c
〈

ϕ̂†
αw

(z0, t)ϕ̂αw(z0, t)
〉

dt (3.13)

is the average number of photons in the write pulse, z0 is the position at which the

pulse enters the atomic sample, and ϕ(z0, t) is the temporal envelope of the write pulse

that satisfies the normalization condition c
∫∞

−∞ dt′ |ϕ(z0, t
′)|2 = 1. We will typically

work in the undepleted pump approximation, in which the write beam experiences

negligible losses during propagation, i.e. ϕ(z, t) = ϕ(0, t− z/c).

The atoms are assumed to have fixed positions for the duration of the experiment.

We treat the atomic positions {~rµ : µ = 1 . . . N} as a set of independent identically

distributed random variables which are distributed according to the probability den-

sity n(~r)/N , where n(~r) is the number density of the atomic sample. We assume the

atomic density within the sample does not vary over the widths of either the write

or signal transverse spatial modes. The atomic density is, therefore, taken to be a

function only of the propagation distance; n(~r) = n
(

r
(s)
‖

)

≈ n
(

r
(w)
‖

)

≈ n(z).

The dynamics of the system are described by the electric dipole interaction dis-

cussed in Chapter 2. Because the write and signal fields are off resonant on the

|a〉 ↔ |c〉 and |b〉 ↔ |c〉 transitions respectively, we may adiabatically eliminate the

excited level |c〉 when ∆w is much larger than the bandwidth of the write laser pulse

∆kw. We also assume ∆w is small enough so that the write beam is much closer to

resonance on the |a〉 ↔ |c〉 transition than on any other electric dipole transition in

85Rb. We show in Appendix B that adiabatic elimination of the excited level yields

the effective interaction picture Hamiltonian

V̂ (t) = V̂Stark (t) + V̂Rayleigh (t) + V̂Raman (t) (3.14)

42



where V̂Stark(t) accounts for the ac Stark shift, V̂Rayleigh(t) accounts for Rayleigh scat-

tering of the photon in which an excited atom returns to the initial hyperfine level

|a〉, and V̂Raman(t) accounts for the dynamics of Raman scattering. It is the Raman

scattering that results in the creation of the hyperfine spin wave in which the atomic

qubit is encoded.

The Stark shift interaction is given by

V̂Stark (t) =
2

~∆w

N
∑

µ=1

(

d̂
(+) µ

(a,c) (t) · ~E(−)
w (~rµ, t)

)(

d̂
(−) µ

(a,c) (t) · ~E(+)
w (~rµ, t)

)

. (3.15)

Substituting the definitions of the dipole operators ( Eq. (2.40) ) and electric fields

( Eqs. (3.10) and (3.11) ), the Stark shift interaction simplifies to

V̂ µ
Stark (t) =

N
∑

µ=1

~
2 |Ωw (~rµ, t)|2

∆w

Fa
∑

m=−Fa

∣

∣CFa 1 Fc
m αw m+αw

∣

∣

2
σ̃a,m; a,m (t) , (3.16)

where

Ωw (~r, t) ≡
(

c
∥

∥

∥
d̂

∥

∥

∥
a
)

Ew (~r, t) (3.17)

is the write field Rabi frequency. The Stark shift results in each Zeeman state within

ground level |a〉 being shifted by an energy proportional the square of a corresponding

Clebsch-Gordan coefficient. In the nondegenerate three level atomic system treated by

Duan, Cirac, and Zoller [92], the ac Stark shift is handled through a trivial unitary

transformation. In our degenerate system, however, each Zeeman state is shifted

by a different amount. This tends to complicate the dynamics, and its effects on

the entanglement generation scheme presented here will be the subject of future

investigations. In this work, we will assume that either the detuning is sufficiently

large, or the Rabi frequency is sufficiently small so that the ac Stark shift may be

neglected. Expressed formally, we assume θm(~r, t) ≪ 1 for times after the write pulse

interaction, for all m ∈ {m : |m| < Fa} and positions ~r, where the angle θm(~r, t) is

given by

θm (~r, t) ≡ 2

∆w

∣

∣CFa 1 Fc
m αw m+αw

∣

∣

2
∫ t

−∞

dt′ |Ωw (~r, t′)|2 . (3.18)
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The Rayleigh scattering interaction results in the absorption of photons from the

write beam accompanied by emission of photons of the same frequency. The atom

that scatters the photon either returns to its initial state, or possibly a different

Zeeman state within the same hyperfine level. The Rayleigh interaction is given by

V̂Rayleigh (t) =
2

~∆w

(

d̂
(+) µ

(a,c) (t) · Ê(−)

R (~rµ, t)
)(

d̂
(−) µ

(a,c) · ~E(+)
w (~rµ, t)

)

+ h.c. , (3.19)

where

Ê
(+)

R (~r, t) = Ê
(+)

(~r, t) −
∑

ι∈{s,w}

Ê
(+)

ι (~r, t) (3.20)

is the contribution to the electric field from the reservoir of undetected modes.

It is useful to expand the reservoir field into its constituent plane wave modes as

Ê
(+)

R (~r, t) = i

∫

d3k
∑

λ

~ελ

(

k̂
)

E (ck) ei~k·~re−icktδâλ

(

~k ;~r , t
)

, (3.21)

where δâλ(~k ;~r , t) is the contribution of the plane wave annihilation operator âλ(~k)

to the reservoir field. This operator is given by

δâλ

(

~k ;~r , t
)

= âλ

(

~k
)

−
∑

ι∈{s,w}

Θ (∆kι/2 − |k − kι|)

×f (ι)(~k
(ι)
⊥ )e

ic
|~k(ι)

⊥ |2
2kι

“

t−r
(ι)
‖

/c
”

â
(ι)
λ

(

k
(ι)
‖ , t− r

(ι)
‖ /c

)

, (3.22)

where Θ(k) is the Heaviside function, c∆kw[s], is the maximum bandwidth of the write

[signal] field as discussed in Chapter 2,

f (ι)(~k
(ι)
⊥ ) = − i

2π
ei
|~k(ι)

⊥ |2
2kι

r
(ι)
‖

∫

d2r
(ι)
⊥ e−i~k⊥·~rφ(ι)(~r) (3.23)

is the Fourier transform of the transverse mode spatial mode of field ι, and is the

inverse of Eq. (2.64), and the operator

â
(ι)
λ

(

k
(ι)
‖ , t

)

≡
∫

d2k⊥ e−ic
|~k(ι)

⊥ |2
2kι

tf ∗
i

(

~k
(ι)
⊥

)

âλ

(

~k
)

, (3.24)

where ~k = k
(ι)
‖ k̂ι +~k

(ι)
⊥ . We note that the time argument of the operator δâ†λ

(

~k ;~r , t
)

appears as a parameter in the definition ( Eq. (3.22) ) because we are working in
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the interaction picture, and we have included the effects of diffraction of the signal

and write fields. If one were to neglect diffraction, the operator δâλ(~k ) would be

independent of both position ~r and time t.

Expanding the electric field and dipole operators in terms of field mode operators

and atomic coherences yields the Rayleigh scattering Hamiltonian

V̂Rayleigh(t) = −2i~
1
∑

α=−1

Fa
∑

m=−Fa

Ym,α

∫

d3k
∑

λ

(

~ξα · ~ελ

(

k̂
))

×κ′ (ck)

N
∑

µ=1

φ(w) (~rµ)ϕ
(

k̂w · ~rµ, t
)

e−i(~k−~kw)·~rµ

×σ̃µ
a,m+αw−α; a,me

ic(k−kw)tδâ†λ

(

~k;~r , t
)

+ h.c. , (3.25)

where Ym,α ≡ CFa 1 Fc
m+αw−α α m+αw

CFa 1 Fc
m αw m+αw

,

κ′ (ck) ≡

∣

∣

∣

(

c
∥

∥

∥
d̂

∥

∥

∥
a
)∣

∣

∣

2

E (ck)

~2∆w

√

~ckwnw

2ǫ0
(3.26)

is an interaction parameter with units of frequency times volume, σ̃µ
f,m; f ′,m′

≡ exp(i(ωf ′ − ωf)t)σ̂
µ
f,m; f ′,m′(t) are the slowly varying atomic coherences for atom

µ between states |f,m〉µ and |f ′, m′〉µ. We make the further simplifying assumption

that the write electric field sptatio-temporal envelope ϕ(k̂w · ~rµ, t) does not vary over

the length of the ensemble so that it can be taken as independent of the propagation

distance, i.e. ϕ(z, t) = ϕ(0, t). The Rayleigh scattering Hamiltonian then simplifies

to

V̂Rayleigh(t) = −2i~ϕ (0, t)
1
∑

α=−1

Fa
∑

m=−Fa

Ym,α

∫

d3k
∑

λ

(

~ξα · ~ελ

(

k̂
))

×κ′ (ck)
N
∑

µ=1

φ(w) (~rµ) e−i(~k−~kw)·~rµ

×σ̃µ
a,m+αw−α; a,me

ic(k−kw)tδâ†λ

(

~k, t
)

+ h.c. , (3.27)

The Raman scattering interaction involves the absorption of a photon from the

write laser coupled to the emission of a photon with a frequency near cks. This
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interaction is given as

V̂Raman(t) =
2

~∆w

N
∑

µ=1

(

d̂
(+) µ

(b,c) (t) · Ê(−)
(~rµ, t)

)(

d̂
(−)µ

(a,c) (t) · ~E(+)
w (~rµ, t)

)

. (3.28)

It is convenient to expand this interaction in terms of the plane wave creation and

annihilation operators and coherence operators for the individual atoms.

Recalling that we have assumed the write beam does not vary over the length of

the ensemble, ϕ(z, t) ≈ ϕ(0, t), we find that the Raman scattering interaction can

be expressed in terms of products of plane wave operators âλ(~k) and hyperfine spin

waves Ŝα(~k − ~kw), where

Ŝα (~q) ≡
Fa
∑

m=−Fa

√
pmXm,α

√

∑

m pm |Xm,α|2
Ŝa,m; b,m+αw−α (~q) (3.29)

are hyperfine spin waves with wave vector ~q that are created by emission of a photon

with polarization ~ξα during the write process,

Ŝa,m; b,m′ (~q) ≡
√

Ā(w)

pmN

N
∑

µ=1

φ(w)∗ (~rµ) ei~q·~rµσ̃µ
a,m; b,m′ , (3.30)

where

1

Ā(w)
≡ 1

N

∫

dr
(w)
‖ n

(

r
(w)
‖

)

(3.31)

is an effective area of the write beam, and pm is the probability that an atom in

the ensemble is initially in the state |a,m〉. When the total number of scattered

photons is much less than the number of atoms, we may neglect any changes in the

atomic populations during the write process to order 1/N , and Zeeman coherences

can be neglected to order 1/
√
N . With this approximation, we find that the spin

wave operators obey the following commutation relations:

[

Ŝa,m; b,mb
(~q) , Ŝa,m′; b,m′

b
(~q′)
]

= 0 (3.32)
[

Ŝa,m; b,mb
(~q) , Ŝ†

a,m′; b,m′
b
(~q′)
]

= δm,m′δmb,m′
b
̺(~q′ − ~q) +O(1/

√
N), (3.33)
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and

[

Ŝα(~q), Ŝβ(~q′)
]

= 0 (3.34)
[

Ŝα(~q), Ŝ†
β(~q′)

]

= δαβ̺ (~q′ − ~q) +O
(

1/
√
N
)

, (3.35)

where

̺ (~q) ≡ Ā(w)

N

N
∑

µ=1

∣

∣φ(w)∗ (~rµ)
∣

∣

2
e−i~q·~rµ (3.36)

is the phase matching function. Because the positions of the atoms are random and

identically distributed, we take advantage of the central limit theorem and find that

̺ (~q) = Ā(w)

∫

d3r
∣

∣φ(w) (~r)
∣

∣

2 n (~r)

N
e−i~q·~r +O(1/

√
N) (3.37)

is the Fourier transform of an effective atomic density profile interacting with the

write beam. The phase matching function takes on its maximum value of one when

~q = 0. The Raman scattering potential in terms of these spin waves is given by

V̂Raman (t) = −2i~

√

N

Ā(w)

1
∑

α=−1

√

∑

m

pm |Xm,α|2

×ϕ (0, t)

∫

d3k κ (ck)
∑

λ

(

~ξα · ~ελ

(

k̂
))

eic(k−ks)t

×Ŝ†
α

(

~k − ~kw, t
)

â†λ

(

~k
)

+ h.c. (3.38)

where Xm,α ≡ CFa 1 Fc
m αw m+αw

CFb 1 Fc

m+αw−α α m+αw
, and

κ (ck) ≡

(

c
∥

∥

∥
d̂

∥

∥

∥
a
)(

c
∥

∥

∥
d̂

∥

∥

∥
b
)∗

E (ck)

~∆w

√

ckwnw

2~ǫ0
(3.39)

is an interaction parameter with units of frequency times volume. Physically, one

interprets the Raman interaction to mean that when a photon of wave vector ~k is

scattered, a hyperfine spin wave with of wave vector ~k − ~kw is imprinted on the

ensemble.

Let us examine the properties of the phase matching function as it applies to our

experimental set up. The write beam has a Gaussian profile whose full transverse
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width at half its maximum (FWHM) is aboutW = 400µm. For simplicity, we assume

the atomic density has a spherically symmetric Gaussian profile with a FWHM length

of L = 3 mm ≫ W . We also assume that the write beam and collected signal mode

pass through the center of the ensemble. In this case, we find the phase matching

function is given by

̺(~q) = exp

(

− 1

16 ln 2

(

L2q2
z +W 2

(

q2
x + q2

y

))

)

. (3.40)

With this example, let us consider the commutation relations between the spin wave

operators that correspond to scattered photons with collinear wave vectors, Ŝα

(

kk̂−
~kw

)

and Ŝ†
α

(

k′k̂ − ~kw

)

. These two operators obey the commutation relation

[

Ŝα

(

kk̂ − ~kw

)

, Ŝ†
α

(

k′k̂ − ~kw

)]

= ̺
(

(k′ − k) k̂
)

+ Ô
(

1/
√
N
)

, (3.41)

but ̺
(

(k′ − k) k̂
)

≈ 1 if |k− k′| ≪ 1/L. This means that if two photons are emitted

with collinear wave vectors, the spin waves they leave behind are virtually identical

if their frequency difference is much less than c/(2πL) ≈ 16.9 GHz. This frequency is

about five times greater than the hyperfine splitting between levels |a〉 and |b〉, while

the bandwidth of the scattered photons is on the order of the spontaneous emission

rate, which is nearly three orders of magnitude less than the hyperfine splitting. We

may therefore assume that collinearly scattered photons correspond to identical spin

waves, and we make the approximation Ŝα(kk̂ − ~kw) ≈ Ŝα(ksk̂ − ~kw). On the other

hand, if two photons are emitted in different directions k̂, and k̂′, one can show that

the associated spin waves are independent. This is done by evaluating the commutator

between the annihilation operator Ŝα(ksk̂−~kw) and the creation operator Ŝ†
α(ksk̂

′−~kw)

and showing that it is zero. We have

[

Ŝα

(

ksk̂ − ~kw

)

, Ŝ†
α

(

k′k̂ − ~kw

)]

= ̺
(

ks

(

k̂′ − k̂
))

+ Ô
(

1/
√
N
)

. (3.42)

The phase matching function evaluated at the difference of these two wave vectors,

̺(ks(k̂
′ − k̂)) ≈ 0 when |k̂′ − k̂| ≫ max (1/L, 1/W ) = 1/(ksW ) ≈ (π/180) × 0.018◦.
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Two spin waves are therefore, independent if the angle between their corresponding

photon emission directions is greater than a fraction of a degree. For our experiment,

we will therefore make the approximation on the phase matching function

̺
(

~k − ~k′
)

≈ δ2k̂ δ
(

k̂ − k̂′
)

(3.43)

where

δ2k̂ ≡
∫

d2k̂′ ρ
(

ks

(

k̂′ − k̂
))

(3.44)

is a differential solid angle over which two spin waves cannot be differentiated, and

δ
(

k̂ − k̂′
)

is the delta function with respect to the solid angle measure. Up to a nor-

malization factor, this gives us quasi-bosonic commutation relations for the imprinted

spin waves

[

Ŝa,m; b,mb

(

ksk̂ − ~kw

)

, Ŝ†
a,m′; b,m′

b

(

ksk̂
′ − ~kw

)]

= δ2k̂ δm,m′δmb,m′
b
δ
(

k̂ − ~k′
)

. (3.45)

Having made the approximation Ŝα(kk̂ − ~kw) ≈ Ŝα(ksk̂ − ~kw), we may further

simplify the Raman scattering interaction

V̂Raman (t) = −i2~ksκ (cks)

c

√

2πN

Ā(w)

1
∑

α=−1

√

∑

m

pm |Xm,α|2

×
∫

d2k̂ Ŝ†
α

(

ksk̂ − ~kw, t
)

×
∑

λ

(

~ξα · ~ελ

(

k̂
))√

cϕ (0, t) ψ̂†
λ

(

k̂, t
)

+ h.c. , (3.46)

where

ψ̂λ

(

k̂, t
)

≡
√

c

2π

∫ ks+∆ks/2

ks−∆ks/2

dk e−ic(k−ks)tkâλ

(

kk̂
)

, (3.47)

is a field annihilation operator for a photon created at the position ~r = 0 at time t

propagating the direction k̂, and c∆ks is the maximum bandwidth of the signal field.

This frequency is chosen to be much larger than the bandwidth of the emitted signal

photons, yet much smaller than the detuning ∆w. The inverse relationship is given

by

âλ(kk̂) ≈
1

k

√

c

2π

∫ ∞

−∞

dt′ ψ̂λ

(

k̂, t′
)

eic(k−ks)t′ . (3.48)
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These field operators obey the commutation relations

[

ψ̂λ

(

k̂, t
)

, ψ̂†
λ′

(

k̂′, t′
)]

= δλ,λ′δ
(

k̂ − k̂′
) c∆ks

2π
sinc

(

c∆ks

2
(t− t′)

)

≈ δλ,λ′δ
(

k̂ − k̂′
)

δ (t− t′) . (3.49)

We note that the Raman scattering interaction ( Eq. (3.46) ) results in the emission

of photons in all directions. This is in contrast to the results obtained by Duan et

al [92] for the limit of a “hot” atomic ensemble. In this limit, thermal fluctuations

in the atomic positions occur on time scales much faster than the write process,

resulting in photons being scattered preferentially in the forward direction. In our

cold system, however, the atomic positions may be taken as constant for the duration

of the experiment, and the effects of the thermal atomic velocity distribution are

negligible.

3.2.1.1 The Nondegenerate Parametric Amplifier Model of Collective sponta-
neous Raman Scattering

In this section, we demonstrate that, when one traces over uncollected modes, the

scattering dynamics of the write process reduces to those of a single mode nondegen-

erate parametric amplifier for the signal field and an idler spin wave. This model is

used in Chapters 5 and 6 to calculate photo-detection probabilities and correlations

for the field-ensemble system, which is essentially a heralded source of nonclassical

light [47, 18, 23]. Given the interaction picture Hamiltonian in Eq. (3.14) and its Ra-

man scattering component ( Eq. (3.46) ), we seperate the Hamiltonian into that part

that interacts with the signal field Ĥs (t), and that which interacts with the reservoir

modes V̂ (Res) (t) as follows:

V̂ (t) = Ĥs (t) + V̂ (Res) (t) . (3.50)
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The signal Hamiltonian is given by

Ĥs (t) ≡ i~χ
(

cos η
√
cϕ(w) (0, t) ψ̂

(s)†
+1 (t) Ŝ

(i)†
+1

+ sin η
√
cϕ(w) (0, t) ψ̂

(s)†
−1 (t) Ŝ

(i)†
−1 − h.c.

)

, (3.51)

where 0 ≤ η ≤ π/2 and

cos2 η =

∑Fa

m=−Fa
pmX

2
m,+1

∑

α=±1

∑Fa

m=−Fa
pmX2

m,α

. (3.52)

The interaction parameter χ is given by

χ ≡
2
(

c
∥

∥

∥
d̂

∥

∥

∥
b
)∗ (

c
∥

∥

∥
d̂

∥

∥

∥
a
)

∆w

√
kskwnwN

~ǫ0Ā(s)

√

√

√

√

∑

α=±1

Fa
∑

m=−Fa

pmX2
m,α, (3.53)

where

Ā(s) =
1

√

1
N

∫

dr
(s)
‖ |φ(w) (z)|2 n (z)

(3.54)

is an effective area of the signal interaction with the ensemble. The spin wave oper-

ators are given by

Ŝ(i)
α ≡

Fa
∑

m=−Fa

√
pmXm,α

√

∑

m pm |Xm,α|2
Ŝ

(i)
a,m; b,m+αw−α (3.55)

and,

Ŝ
(i)
a,m; b,m′ ≡ i

Ā(s)

√
pmN

N
∑

µ=1

σ̃µ
a,m; b,m+αw−α (t) e−i(~kw−~ks)·~rµφ(s) (~rµ)φ

(w)∗ (~rµ) . (3.56)

We call Ŝ
(i)
α the idler spin wave. The field operator ψ̂

(s)
α (t) is given by

ψ̂(s)
α (t) =

√
cϕ̂(s)

α (0, t) , (3.57)

where ϕ̂α(0, t) is the linear photon density annihilation operator within the ensemble.

One interprets field operator ψ̂
(s)
α (t) as the annihilation operator for a signal photon

created within the ensemble at time t. These field operators obey the standard bosonic

field commutation relations

[

ψ̂(s)
α (t) , ψ̂

(s)†
β (t′)

]

= δαβδ (t− t′) . (3.58)
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The Interaction Hamiltonian responsible for scattering into the reservoir is given by

V̂ (Res) (t) = V̂ (t) − Ĥs(t)

= V̂Rayleigh(t) +
(

V̂Raman(t) − Ĥs(t)
)

. (3.59)

We now show that the signal Hamiltonian commutes with V̂ (Res) (t) to order

O(1/
√
N). Once we show this, we will be able to easily determine the reduced

signal-idler density matrix that results from the write process. One may express the

idler spin wave operators in terms of the constituent directional spin wave operators

as

Ŝa,m; b,m′ ≈ − ks
√

δ2k̂s

∫

d2k̂ f (s)
(

ksk̂ − ~ks

)

Ŝa,m; b,m′

(

ksk̂ − ~kw

)

(3.60)

where we have made the following approximations: d2k
(s)
⊥ ≈ k2

sd
2k̂, ~k

(s)
⊥ ≈ ks

(

k̂ − k̂s

)

,

and

δ2k̂s =

∫

d2k̂′ ̺
(

ks

(

k̂′ − k̂s

))

≈ (2π)2 Ā(w)

k2
sĀ

(s) 2
. (3.61)

One may also express the directional spin wave operator in terms of the idler spin

wave

Ŝα

(

ksk̂ − ~kw

)

=
[

Ŝ(i)
α , Ŝ†

α

(

ksk̂ − ~kw

)]∗

Ŝ(i)
α + δŜα

(

ksk̂ − ~kw

)

= −ks

√

δ2k̂s f
∗
(

ksk̂ − ~ks

)

Ŝ(i)
α + δŜα

(

ksk̂ − ~kw

)

, (3.62)

where

δŜα

(

ksk̂ − ~kw

)

≡ Ŝα

(

ksk̂ − ~kw

)

−
[

Ŝ(i)
α , Ŝ†

α

(

ksk̂ − ~kw

)]∗

Ŝ(i)
α (3.63)

The operator δŜα

(

ksk̂ − ~kw

)

is defined such that

[

Ŝ(i)
α , δŜ†

α

(

ksk̂ − ~kw

)]

= 0 +O(1/
√
N). (3.64)

Eq. (3.62) is the decomposition of the directional spin wave into a portion “ parallel”

to the idler spin wave and a portion orthogonal to the idler spin wave. We may
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similarly decompose the directional photon field annihilation operators. The signal

field operator is given in terms of the directional field operators by

ψ̂(s)
α (t) = ks

∫

d2k̂ f ∗
(

ksk̂ − ~ks

)

ψ̂α

(

k̂, t
)

(3.65)

The directional photon field operator can be decomposed as

ψ̂α

(

k̂, t
)

= ksf
(

ksk̂ − ~ks

)

ψ̂(s)
α (t) + δψ̂α

(

k̂, t
)

, (3.66)

where

δψ̂α

(

k̂, t
)

≡ ψ̂α

(

k̂, t
)

− ksf
(

ksk̂ − ~ks

)

ψ̂(s)
α (t) (3.67)

is defined such that
[

ψ̂(s)
α (t) , δψ̂†

α

(

k̂, t
)]

= 0 (3.68)

Using the decompositions of fields and spin waves presented above, we may write

the portion of the interaction Hamiltonian responsible for scattering into the field

reservoir as

V̂ (Res) (t) = V̂Rayleigh (t) + V̂
(Res)
Raman(t), (3.69)

where

V̂
(Res)
Raman (t) = −i2~ksκ (cks)

c

√

2πN

Ā(w)

1
∑

α=−1

√

∑

m

pm |Xm,α|2

×
∫

d2k̂ δŜ†
α

(

ksk̂ − ~kw, t
)

×
∑

λ

(

~ξα · ~ελ

(

k̂
))√

cϕ (0, t) δψ̂†
λ

(

k̂, t
)

+ h.c. (3.70)

In this form, it is relatively straight forward to show that

[

Ĥs(t), V̂
(Res)
Raman(t)

]

= 0 + Ô
(

1/
√
N
)

(3.71)

One may also show that

[

Ĥs (t) , V̂Rayleigh (t)
]

= 0 + Ô
(

1/
√
N
)

(3.72)
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For a sufficiently large number of atoms within the ensemble, the signal Hamil-

tonian commutes with the remainder of the scattering Hamiltonian V̂ (t). Therefore,

after the interaction of the write pulse with the ensemble, one may trace the den-

sity matrix for the system over the undetected field modes and arrive at the density

matrix for the signal and associated atomic excitation

ρ̂ = Û (s) (χ) ρ̂0Û
(s)† (χ) (3.73)

where Û (s) (χ) ≡ T exp
(

(1/i~)
∫ T

−∞ dt Ĥs (t)
)

, is the unitary evolution operator, T is

some time after the write beam has interacted with the ensemble, and T is the time

ordering operator. Taking advantage of the algebra of the field operators ( Eq. (3.58) ),

one finds the evolution operator may be expressed as

Û (s) (χ) =
∏

α=±1

Û (s)
α (χ) , (3.74)

where

Û
(s)
1 (χ) = exp

(

χ cos η
(

â
(s)†
+1 Ŝ

(i)†
+1 − â

(s)
+1Ŝ

(i)
+1

))

(3.75)

and

Û
(s)
−1 (χ) = exp

(

χ sin η
(

â
(s)†
−1 Ŝ

(i)†
−1 − â

(s)
−1Ŝ

(i)
−1

))

. (3.76)

The signal operator â
(s)
α represents a single mode of the electromagnetic field, and is

given by

â(s)
α ≡

∫

dt
√
cϕ(w) (0, t) ψ̂(s)

α (t) . (3.77)

The unitary operator Û1 (χ) is nothing more than an evolution operator for a two-

mode nondegenerate parametric amplifier discussed in Chapter 5 of Walls and Milburn

[16]. This is a drastic simplification of the scattering dynamics. With this parametric

amplification model, we can easily calculate statistics for correlations between the

signal and idler spin wave. We take advantage of this model in Chapters 5 and 6.
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3.2.1.2 Entanglement of Photonic and Atomic Qubits

In order probabilistically generate entanglement between photonic and atomic qubits,

we assume the interaction parameter χ≪ 1. Expanding the evolution operator Ûs (χ)

to first order in χ, we find that reduced signal-atomic density matrix

ρ̂ =
(

1 + χΨ̂† (η)
)

ρ̂0

(

1 + χΨ̂ (η)
)

(3.78)

where

Ψ̂ (η) = cos η Ŝ
(i)
+1â

(s)
+1 + sin η Ŝ

(i)
−1â

(s)
−1 (3.79)

This matches the density matrix predicted by direct perturbation theory in Ref. [17].

3.2.2 The Read Process: Transferring the Spin Wave to the Idler Field

Now that we have demonstrated how the scattering dynamics produces entanglement

between a photon emitted into the detected signal mode and the spin wave imprinted

onto the atomic ensemble by this emission, we now wish to explore the dynamics of

how the spin wave is transfered to the idler electric field so that it can be subse-

quently detected. We will first present Heisenberg Langevin equations for a detected

idler mode. These Heisenberg equations of motion relate the detected idler field op-

erators to its associated collective atomic excitation. We will then choose an optimal

transverse spatial profile for the idler mode. Having chosen this transverse profile, we

can express the spin wave excitation created by the write process entirely in terms

of the collective excitations coupled to the idler field. We will then solve the Heisen-

berg Langevin equations in the adiabatic limit for the special case of an initially spin

polarized ensemble.

The idler spin wave is retrieved from the ensemble by shining a classical read pulse

resonant on the |b〉 ↔ |c〉 transition on the ensemble with a carrier wave vector ~kr.

We assume the read pulse is traveling anti-parallel to the write pulse; k̂r = −k̂w. The

read field has the same helicity as the write field, so that the read field polarization
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~er = ~eαw

(

k̂r

)

≈ −~ξ−αw , where we have used the polarization conventions introduced

in Appendix A. The positive frequency component of the read field is given by

~E(+)
r (~r, t) = −~ξ−αwe

i~kr ·~re−ickrtEr (t) (3.80)

where Er(t) is a time dependent electric field envelope. We assume the field envelope

does not vary over the length of the ensemble or over the width of the collected idler,

and we have therefore suppressed the position dependence of Er(t).

We detect the retrieved idler field, resonant on the |a〉 ↔ |c〉 transition, with

a transverse spatial envelope φ(i)(~r) and a carrier wave vector ~ki = [(ωc − ωa)/c]k̂i

propagating nearly anitparallel to the z-axis, so that the helicity vectors ~eα

(

k̂i

)

≈

−~ξ−α. The positive frequency component of the idler field is given by

Ê
(+)

i (~r, t) = (2π)3/2 E (cki) e
i~ki·~re−ickitφ(i) (~r)

∑

α=±1

~eα

(

k̂i

)

ϕ̂(i)
α

(

r
(i)
‖ , t

)

(3.81)

where ϕ̂
(i)
α (z, t) is the linear density annihilation operator for idler photons at position

z and helicity α. These photon density operators obey the bosonic commutation

relations
[

ϕ̂(i)
α (z, t) , ϕ̂

(i)†
β (z′, t)

]

= δα,βδ (z − z′) . (3.82)

Their definitions in terms of plane wave operators is given Chapter 2. The read and

write fields interact with the atoms via the electric dipole interaction.

The interaction Hamiltonian written in the rotating wave approximation is given

by

V̂read(t) = V̂i(t) + V̂r(t) + V̂R (t) (3.83)

where V̂i (t) = −∑µ d̂
(−)µ

(a,c) (t) · Ê
(+)

i (~rµ) + h.c. gives the atomic interaction with the

idler field, V̂r(t) = −∑µ d̂
(−)µ

(b,c) (t) · ~E(+)
r (~rµ, t)+h.c. is the interaction with the classical

read field, and V̂R(t) = −∑µ d̂
(−)µ

(t) · Ê(+)

R (~rµ, t) + h.c. is the interaction with the

reservoir, where the reservoir field operator is given by

Ê
(+)

R (~r, t) = Ê
(+)

(~r, t) −
∑

ι∈{r,i}

Ê
(+)

ι (~r, t) . (3.84)
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Following the treatment Appendix C, we assume that the number of idler photons

in a slice of the ensemble of length dz is always much less than the number of atoms

with which it interacts. In this weak idler approximation [69, 75], we arrive at the

following Heisenberg Langevin equations describing the propagation and interaction

or the idler field with matter excitations within the ensemble:

(

∂

∂t
+ ck̂i · ∇

)

ϕ̂(i)
α

(

r
(i)
‖ , t

)

= −i
√

n
(

r
(i)
‖

)

pmκ
∗
i

Fb
∑

m=−Fb

CFa 1 Fc
m −α m−αêm; m−α

(

r
(i)
‖ , t

)

,

(3.85)

d

dt
êm; m−α

(

r
(i)
‖ , t

)

= −iκi

√

n
(

r
(i)
‖

)

pmC
Fa 1 Fc
m −α m−αϕ̂

(i)
α

(

r
(i)
‖ , t

)

−iΩr (t)CFb 1 Fc

m+αw−α −αw m−αŝm; m+αw−α

(

r
(i)
‖ , t

)

+ζ̂a,m; c,m−α

(

r
(i)
‖ , t

)

− 1

2
Γcêm; m−α

(

r
(i)
‖ , t

)

, (3.86)

and

d

dt
ŝm; m+αw−α

(

r
(i)
‖ , t

)

= −iΩ∗
r (t)CFb 1 Fc

m+αw−α −αw m−αêm; m−α

(

r
(i)
‖ , t

)

, (3.87)

where κi =
(

c
∥

∥

∥
d̂

∥

∥

∥
a
)

[~cki/(2ǫ0)]
1/2 is the idler coupling constant, Ωr(t) ≡

(

c
∥

∥

∥
d̂

∥

∥

∥
b
)

Er (t)

is the Rabi frequency of the read field, Γc is the spontaneous emission rate of level

|c〉,

êm; m′

(

r
(i)
‖ , t

)

≡ 1
√

n
(

r
(i)
‖

)

pm

N
∑

µ=1

e−i~ki·~rµφ(i)∗ (~rµ)

σ̃µ
a,m; c,m′ (t) δ

(

(~r − ~rµ) · k̂i

)

(3.88)

is a collective optical coherence at position r
(i)
‖ = k̂i · ~r between atoms in state |a,m〉

and those in |c,m′〉, and

ŝm; m′

(

r
(i)
‖ , t

)

≡ 1
√

n
(

r
(i)
‖

)

pm

N
∑

µ=1

φ(i)∗ (~rµ) e
i(~kr−~ki)·~rµ

×σ̃µ
a,m; b,m′ (t) δ

(

r
(i)
‖ − r

(i)
‖µ

)

(3.89)
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is a collective hyperfine coherence (spin wave) at position r
(i)
‖ . We show in Ap-

pendix C, that these collective operators obey the commutation relations

[

êm1; m′
1

(

r
(i)
‖ , t

)

, ê†m2; m′
2

(

k̂i · ~r′, t
)]

= δm1,m2δm′
1,m′

2
δ
(

k̂i · (~r − ~r′)
)

+ Ô
(

1/
√

Nz

)

(3.90a)

[

ŝm1; m′
1

(

r
(i)
‖ , t

)

, ŝ†m2; m′
2

(

k̂i · ~r′, t
)]

= δm1,m2δm′
1,m′

2
δ
(

k̂i · (~r − ~r′)
)

+ Ô
(

1/
√

Nz

)

, (3.90b)

where Nz is the number of atoms within the idler transverse spatial profile in a slice

of the ensemble of thickness dz at position r
(i)
‖ = −z. We assume Nz ≫ 1 for all

positions within the ensemble.

The Heisenberg Langevin equations state how a collected mode from the read

process is related to a set of collective atomic excitations. We now choose an optimal

carrier wave number ~ki and transverse spatial profile φ(i) (~r) for the idler mode. We

accomplish this by revisiting the expression for the idler spin wave operator, and

re-expressing it as

Ŝ(i)
α ≡

Fa
∑

m=−Fa

√
pmXm,α

√

∑

m pm |Xm,α|2
Ŝ

(i)
a,m; b,m+αw−α (3.91)

and,

Ŝ
(i)
a,m; b,m′ = iĀ(s)

∫

dr
(i)
‖

√

√

√

√

n
(

r
(i)
‖

)

N
e−i((~kw−~ks+~kr−~ki)·k̂i)r

(i)
‖ φ(w)∗

(

r
(i)
‖

)

× 1
√

n
(

r
(i)
‖

)

pm

N
∑

µ=1

σ̃µ
a,m; b,m+αw−α (t) ei(~kr−~ki)·~rµ

×e−i(~kw−~ks+~kr−~ki)·~r(i)
⊥ φ(s) (~rµ) δ

(

k̂i · (~r − ~rµ)
)

. (3.92)

We choose the idler direction and the associated transverse profile pair (k̂i, φ
(i) (~r))

to be the member of the set
{

(k̂i, φ (~r)) :
(

k̂i · ∇
)

φ (~r) = i
∇(i)2

⊥

2ki

φ (~r)

}

(3.93)
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such that
∫

d2r
(i)
⊥

∣

∣

∣
φ
(

~r
(i)
⊥ , r

(i)
‖

)

− ei(~kw−~ks+~kr−~ki)·~r(i)
⊥ φ(s)∗ (~r)

∣

∣

∣

2

(3.94)

is minimized. In this way, the overlap between the excitation associated with the

detected idler mode and the spin wave imprinted by the detection of the signal is

maximized. This overlap is maximized when the phase matching condition ~ki =

~kw − ~ks + ~kr is satisfied and the transverse mode function is given by

φ(i) (~r) = φ(s)∗ (~r) . (3.95)

With this choice, we express the imprinted spin wave as

Ŝ(i)
m,α = i

∫

dr
(i)
‖ Ā

(s)φ(w)∗
(

r
(i)
‖ k̂i

)

√

√

√

√

n
(

r
(i)
‖

)

N
ŝm; m+αw−α

(

r
(i)
‖

)

. (3.96)

Recall that we have chosen to detect the signal whose propagation direction k̂s = ẑ.

According to the phase matching condition, we will consequently choose the idler

propagation direction k̂i = −ẑ anti-parallel to the z-axis.

We see by inspection of the Heisenberg Langevin equations, that under conditions

of phase matching, the imprinted idler spin wave Ŝ
(i)
α , is coupled to the idler field with

helicity α by the dipole interaction with the read field. In this way, the polarization

information of the idler spin wave can be retrieved and detected. In the absence of

decoherence during the storage of the spin wave, the idler can be retrieved after an

arbitrary delay simply by activating the read field.

The idler retrieval Heisenberg Langevin equations may be solved in the adiabatic

limit using the adiabatic dark-state polariton mechanism [69, 75] in the special case

of an initially polarized atomic sample. Let us assume the atoms are prepared in the

state |a, 0〉, so that pm = δm,0. Using an argument analogous to the one presented in

Appendix C, we arrive at the annihilation operator of the dark-state polariton with

helicity α, Ψ̂
(i)
α , which is given by

Ψ̂(i)
α (z, t) ≡ Ω∗

r (t) ϕ̂
(ι)
α (z, t) − κ∗i

√

n (z)
√
pmR

′
α (αw) ŝ0; +αw−α (z, t)

√

|Ωr (t)|2 + n (z) |κi|2 |Rα|2
, (3.97)
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where

Rα (αw) =
CFa 1 Fc

0 −α −α

CFb 1 Fc

αw−α −αw −α

(3.98)

is a ratio of Clebsch-Gordan coefficients. This collective matter-field excitation obeys

the propagation equation

(

∂

∂t
− Vα (z, t)

∂

∂z

)

Ψ̂(i)
α (z, t) = Ψ̂α (z, t)

1

2

∂Vα (z, t)

∂z
, (3.99)

where

Vα (z, t) =
c |Ωr (t)|2

|Ωr (t)|2 + |κi|2 n (z) |Rα (αw)|2
(3.100)

is the position dependent group velocity for a dark-state polariton (DSP) of helicity

α. Notice that where the atomic density goes to zero, the group velocity approaches

the speed of light c, and the polariton consists entirely of the electric field excitation.

One can show that, for constant Rabi frequency, the solution of Eq. (3.99) is

Ψ̂α (z, t) =

√

Vα (z0)

Vα (z)
Ψ̂

(

z0, t+

∫ z

z0

dz′

Vα (z′)

)

, (3.101)

where z0 is some initial position. If, we are given an initial value of the DSP operator

at all of space at a fixed time, t = t0, then the solution to the Heisenberg equations

is given by

Ψ̂α (z, t) =

√

Vα (z0 (z, t))

Vα (z)
Ψ̂α (z0 (t, z) , 0) , (3.102)

where z0 (t, z) is the solution to the integral equation

∫ z0

z

dz′

Vα (z′)
= t− t0. (3.103)

We therefore see that when the atomic sample is polarized and the read field is turned

on adiabatically, the idler spin wave would be completely transfered to the detected

idler field. We note, however, that because the polarization components propagate

at different group velocities, the temporal profiles of the retrieved photons would be

different for each helicity. Therefore, if one were to turn on the read field for only a

short time, one helicity component would be retrieved with a higher efficiency than

60



the other. These unequal retrieval efficiencies are manifested when one estimates the

read process dynamics using time dependent perturbation theory [93]. When one

then traces over the atomic degrees of freedom, the two photon component of the

signal-idler density matrix would be given in the interaction picture by

ρ̂′si = Ψ̂′†
2 |vac〉〈vac|Ψ̂2 (3.104)

where

Ψ̂′
2 =

(

cos η′â
(s)
1 â

(i)
1 + sin η′â

(s)
−1â

(i)
−1

)

, (3.105)

and the different retrieval frequencies are manifested in the difference between the

mixing angle η′ and that of the signal-idler spin wave density matrix of Eq. (3.1), η.

When the atoms are unpolarized, the retrieval dynamics are more complex. With

the level configuration of this experiment [17], a DSP cannot exist for either helicity of

the idler excitation [19, 18] (See Appendix C for more detail.) The retrieval dynamics

in this scenario are the subject of further theoretical investigation. The Heisenberg

Langevin equations do tell us, however, that the stored atomic spin wave Ŝ
(i)
α couples

to the detected idler field of Helicity α. We will therefore model the retrieval process

as an effective beam splitter, where an idler field mode â
(i)
α with some spatio-temporal

envelope ϕ
(i)
α (t+ z/c) is related to Ŝ

(i)
α by

â(i)
α =

√
ǫαŜ

(i)
α +

√
1 − ǫαζ̂

(in)
α (3.106a)

ζ̂ (out)
α = −

√
1 − ǫαŜ

(i)
α +

√
ǫαζ̂

(in), (3.106b)

where ζ̂ (in) and ζ̂ (out) are input and output noise operators respectively, and ǫα is

the retrieval efficiency of the idler spin wave of helicity α. We will assume that

the input noise modes are in the vacuum state, and do not influence the photon

counting statistics. In this chapter, we assume the retrieval efficiencies for the two

idler helicities are equal ǫ1 = ǫ−1.
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3.3 Experiment

A magneto-optical trap (MOT) of 85Rb is used to provide an optically thick atomic

cloud for our experiment (Figure 3.1). The ground levels {|a〉; |b〉} correspond to the

5S1/2, Fa,b = {3, 2} levels, while the excited level |c〉 represents the {5P1/2, Fc = 3}

level of the D1 line at 795 nm. The experimental sequence starts with all of the

atoms prepared in level |a〉. The “dark” period lasts 640 ns, with the whole cycle

taking 1.5 µs. All the light responsible for trapping and cooling is shut off during the

dark period, with the trapping light shut off about 200 ns before the repumping light

to empty the F = 2 hyperfine level. The quadrupole magnetic field of the MOT is

switched off for the duration of the measurement sequence. The ambient magnetic

field is compensated by three pairs of Helmholtz coils.

A 130 ns long write pulse tuned to the |a〉 → |c〉 transition is focused into the

MOT with a Gaussian waist of about 400 µm. The light induces spontaneous Raman

scattering via the |c〉 → |b〉 transition. The scattered light goes through the quarter-

wave plate to map circular polarizations into linear ones, then passes through polarizer

P1 (set at angle θs) and impinges onto a single photon detector D1.

After a user-programmable delay ∆t, a 120 ns long read pulse, with circular

polarization opposite to that of the write pulse, tuned to the |b〉 → |c〉 transition

illuminates the atomic ensemble. This accomplishes a transfer of the memory state

onto the single photon (idler) emitted by the |c〉 → |a〉 transition. After passing

through the quarter-wave plate and polarizer P2 set at angle θi, the idler photon is

directed onto a single-photon detector D2.

Both write/read and signal/idler pairs of fields are counter-propagating. The waist

of the signal-idler mode in the MOT is about 150µm. The four-wave mixing signal

is used to align the single mode fibers collecting signal and idler photons, and to

optimize the overlap between the pump and probe modes [58]. The value of delay

∆t between the application of the write and read pulses is 200 ns. The electronic
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Figure 3.2: Measured coincidence fringe for θi = 67.5◦. The curve is a fit based
on Eq.(3.5), augmented by a background contribution, with η = 0.81 × π/4, with
visibility and amplitude being adjustable parameters. The visibility of the fit is 90%.
Uncertainties are based on the statistics of the photon counting events.

Table 3.1: Measured correlation function E(θs, θi) and S for ∆t = 200 ns delay
between write and read pulses; all the errors are based on the statistics of the photon
counting events.

θs θi E(θs, θi)
-22.5 0 0.641 ± 0.024
-22.5 -45 0.471 ± 0.029
22.5 0 0.587 ± 0.027
22.5 -45 −0.595 ± 0.027

S = 2.29 ± 0.05
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Figure 3.3: Normalized signal-idler intensity correlation function gsi as a function of
storage time. Uncertainties are based on the statistics of the photon counting events.
The full curve is the best exponential fit with time constant τ = 3.7µs.

pulses from the detectors are gated with 140 ns and 130 ns windows centered on the

time determined by the write and read light pulses, respectively. Afterwards, the

electronic pulses are fed into a time-interval analyzer (with 2 ns time resolution). In

order to measure the correlation between the photons produced by the write and read

pulses, the output of D1 is fed into the “Start” input of a time-interval analyzer, and

the output of D2 is fed into the “Stop” input.

A typical interference fringe in the signal-idler coincidence detection is displayed

in Figure 3.2. In order to infer probabilistic atom-photon entanglement, we calculate

the degree of Bell inequality violation |S| ≤ 2 [91, 16]. Table 3.1 presents measured
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values for the correlation function E (θs, θi) using the canonical set of angles θs, θi.

We find S = 2.29± 0.05 � 2 - a clear violation of the Bell inequality. The value of S

is smaller than the ideal value of 2.77 due to experimental imperfections, particularly

non-zero counts in the minima of interference curves that arise as the result of the

finite value of the normalized signal-idler intensity correlation function gsi [90, 51, 54]

shown in Figure 3.3. To our knowledge, this is the first observed violation of the Bell

inequality involving a collective excitation.

The effective detection efficiencies as determined by the ratios of the coincidence

signal-idler count rate Rsi to singles count rates Rs and Ri are αs,i = Rsi/Ri,s ≃ 0.02.

In all cold atomic ensemble experiments within the DLCZ program reported to date,

the quadrupole magnetic field of the MOT has been the main source of the atomic

memory decoherence (limiting storage times on the order of 100 ns [51, 54, 56, 57]). In

this work, we have switched off the quadrupole field for the duration of our protocol,

and the coherence time has increased to several µs, as is evident from the measured

normalized intensity correlation function gsi displayed in Figure 3.3 (the length of the

dark period was increased up to 7 µs for this measurement at the expense of lower

count rate).

The robustness and relative simplicity of probabilistic atom-photon entanglement

hold promise for the realization of a distributed quantum network involving the in-

terconnection of several similar elements. We are currently investigating connecting

two such quantum nodes.
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CHAPTER 4

QUANTUM TELECOMMUNICATION BASED

ON ATOMIC CASCADE TRANSITIONS

A quantum repeater at telecommunications wavelengths with long-lived atomic mem-

ory is proposed, and its critical elements are experimentally demonstrated using a cold

atomic ensemble. Via atomic cascade emission, an entangled pair of 1.53 µm and 780

nm photons is generated. The former is ideal for long-distance quantum communica-

tion, and the latter is naturally suited for mapping to a long-lived atomic memory.

Together with our demonstration of photonic-to-atomic qubit conversion presented

in Chapter 8, both of the essential elements for the proposed telecommunications

quantum repeater have now been realized.

4.1 Introduction

A quantum network would use the resources of distributed quantum mechanical en-

tanglement, thus far largely untapped, for the communication and processing of in-

formation via qubits [29, 30, 47]. Significant advances in the generation, distribution,

and storage of qubit entanglement have been made using laser manipulation of atomic

ensembles, including atom-photon entanglement and matter-light qubit conversion

[57], Bell inequality violation between a collective atomic qubit and a photon [17],

and light-matter qubit conversion and entanglement of remote atomic qubits [21]. In

each of these works photonic qubits were generated in the near-infrared spectral re-

gion. In related developments, entanglement of an ultraviolet photon with a trapped

ion [32, 33] and of a near-infrared photon with a single trapped atom [38] have been

demonstrated. Heterogeneous quantum network schemes that combine single-atom
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and collective atomic qubits are being actively pursued [48, 49, 50]. However, pho-

tons in the ultraviolet to the near-infrared range are not suited for long-distance

transmission over optical fibers due to high losses.

In this Chapter, we propose a telecommunications wavelength quantum repeater

based on cascade atomic transitions in either (1) a single atom or (2) an atomic

ensemble. We will first discuss the latter case, with particular reference to alkali

metals. Such ensembles, with long lived ground level coherences can be prepared

in either solid [94] or gas [17] phase. For concreteness, we consider a cold atomic

vapor confined in high-vacuum. The cascade transitions may be chosen so that the

photon (signal) emitted on the upper arm has telecommunication range wavelength,

while the second photon (idler), emitted to the atomic ground state, is naturally

suited for mapping into atomic memory. Experimentally, we demonstrate phase-

matched cascade emission in an ensemble of cold rubidium atoms using two different

cascades: (a) at the signal wavelength λs = 776 nm, via the 5S1/2 → 5D5/2 two-

photon excitation, (b) at λs = 1.53 µm, via the 5S1/2 → 4D5/2 two-photon excitation.

We observe polarization entanglement of the emitted photon pairs and superradiant

temporal profiles of the idler field in both cases.

4.2 Proposal

We now outline our approach in detail and at the end we will summarize an alternative

protocol for single atoms.

Step (A) - As illustrated in Figure 4.1(a), the atomic sample is prepared in level

|a〉, e.g., by means of optical pumping. It is important to note that, in the case of

an atomic ensemble qubit, an incoherent mixture of Zeeman states is sufficient for

our realization. The upper level |d〉, which may be of either s- or d-type, can be

excited either by one- or two-photon transitions, the latter through an intermediate

level |c〉. The advantage of two photon excitation is that it allows for non-collinear
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phase matching of signal and idler photons; single photon excitation is forbidden in

electric dipole approximation and phase-matched emission is restricted to a collinear

geometry (this argument implicitly assumes that the refractive index of the vapor is

approximately unity). Ideally the excitation is two-photon detuned from the upper

level |d〉, creating a virtual excitation.

Step (B) - Scattering via the upper level |d〉 to ground level |a〉 through the

intermediate level |e〉 (where |e〉 may coincide with |c〉) results in the cascaded emission

of signal and idler fields. The signal field, which is emitted on the upper arm, has

a temporal profile identical to that of the laser excitation as a consequence of the

large two photon detuning. As noted earlier, the wavelength of this field lies in the

1.1-1.6 µm range, depending on the alkali metal transition used. The signal field

can be coupled to an optical fiber (which may have losses as low as 0.2 dB/km) and

transmitted to a remote location.

The temporal profile of the idler field can be much shorter than the single-atom

spontaneous decay time ts of the intermediate level. Under the conditions of a large

Fresnel number of the exciting laser fields, the decay time is of order ts/dth, charac-

teristic of superradiance [95][96][90]. Here dth ≈ 3nλ2l/(8π) is the optical thickness,

where λ is the wavelength, n is the number density and l is the length of the sample.

The direction of the idler field is determined by the phase matching condition

~k 1 + ~k 2 = ~k s + ~k i, where ~k 1 and ~k 2 are the wavevectors of the laser fields I and

II, respectively. Under conditions of phase matching, collective enhancement causes

emission of the the idler photon correlated with a return of the atom into the Zee-

man state from which it originated [17]. The fact that the atom begins and ends the

absorption-emission cycle in the same state is essential for strong signal-idler polar-

ization correlations. The reduced density operator for the field, taking into account

collective enhancement, will be shown to be:

ρ̂(t) ≈
(

1 +
√
ǫÂ†

2(t)
)

ρ̂vac

(

1 +
√
ǫÂ2(t)

)

, (4.1)
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Figure 4.1: (a) The atomic structure for the proposed cascade emission scheme in-
volving excitation by pumps I and II. Pump II and the signal photons lie in the
telecommunication wavelength range when a suitable level of orbital angular momen-
tum L = 0 or L = 2 is used as level |d〉. For atomic rubidium, the signal wave-
length is 1.32µm (6S1/2 → 5P1/2 transition), 1.37 µm (6S1/2 → 5P3/2 transition),
1.48 µm (4D3/2(5/2) → 5P1/2 transition), 1.53 µm (4D3/2(5/2) → 5P3/2 transition).
For atomic cesium, the signal wavelength is 1.36 µm (7S1/2 → 6P1/2 transition), 1.47
µm (7S1/2 → 6P3/2 transition). For Na and K the corresponding wavelengths are in
the 1.1-1.4 µm range. (b) Schematic of experimental setup based on ultra-cold 85Rb
atomic gas. For λs = 776 nm, phase matching results in the angles ε′ ≈ ε ≈ 1◦, while
for λs = 1.53 µm, ε′ ≈ 2ε ≈ 2◦. P1 and P2 are polarizers; D1 and D2 are detectors.
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where ρ̂vac is the vacuum state of the field, Â†
2(t) is a time dependent two photon

creation operator for the signal and idler fields, and ǫ ≪ 1. For linearly polarized

pumps with parallel (vertical) polarizations, we find

Â†
2 = cosχ â†H b̂

†
H + sinχâ†V b̂

†
V (4.2)

where χ is determined by Clebsch-Gordan coupling coefficients ( Section 4.3 ), â†H(V )

and b̂†H(V ) are creation operators for a horizontally (vertically) polarized signal and

idler photon, respectively. For the hyperfine level configuration Fa = 3 → Fc = 4 =

Fe → Fd = 5, and for an unpolarized atomic sample, we find sinχ = 2 cosχ = 2/
√

5.

Step (C) - The photonic qubit is encoded in the idler field polarization. Photonic to

atomic qubit conversion was achieved in Ref.[21]. Such conversion can be performed

either within the same ensemble or in a suitably prepared adjacent ensemble/pair

of ensembles. In either case, a strong laser control beam is required to couple the

other ground hyperfine level |b〉 to the intermediate level |e〉. Collective excitations

involving two orthogonal hyperfine coherences serve as the logical states of the atomic

qubit [57, 17, 21].

4.3 Theory

In this section, we go into more theoretical detail regarding the outline of our pro-

posal. We consider an ensemble of N atoms with the level configuration shown in

Figure 4.1(a). The atomic hyperfine levels |a〉, |b〉, |c〉, |d〉, and |e〉 have energies

~ωa ≡ 0, ~ωb, ~ωc, ~ωd, and ~ωe respectively. The total angular momentum of a

hyperfine level |f〉 is denoted by Ff . We assume the atoms are prepared in an inco-

herent mixture of the Zeeman states of level |a〉. We express the initial atom-field

density matrix ρ̂0 as

ρ̂0 ≡ ρ̂vac ⊗





N
⊗

µ=1

Fa
∑

mµ=−Fa

pmµ |a,mµ〉µ 〈a,mµ|



 , (4.3)
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where pM is the probability of finding an atom in state |a,M〉.

From time t = −T to time t = 0, the pump laser fields are activated. Pump I is

tuned to the |a〉 ↔ |c〉 transition with detuning ∆I = ck1 − ωc, and pump II drives

the |c〉 ↔ |d〉 transition with detuning ∆II = ck2 − (ωd − ωc), where ~k 1 and ~k 2 are

the wavevectors of pumps I and II, respectively. The pump electric fields are given

by

~E I(~r , t) = ~e Ie
i~k 1·~r e−ick1tEI(~r , t) (4.4a)

~E II(~r , t) = ~e IIe
i~k 2·~r e−ick2tEII(~r , t), (4.4b)

where EI(II)(~r , t) is the slowly varying electric field amplitude of pump I (II), and

~e I(II) is the polarization of pump I (II). Since the spatial intensity profiles of the

pump lasers are not uniform throughout the atomic sample, we take the Rabi fre-

quencies ΩI(~r ) = EI(~r , t)
(

c
∥

∥

∥
d̂

∥

∥

∥
a
)

and ΩII(~r ) = EII(~r , t)
(

d
∥

∥

∥
d̂

∥

∥

∥
c
)

to be spatially

dependent. For simplicity, the field and state phases are chosen such that the Rabi

frequencies are real; we further assume the fields I and II have polarizations ~e I = ~ξ αI

and ~e II = ~ξ −αI
respectively, where ~ξ α are the laboratory fixed spherical basis vectors

( Eq. (2.31) ). When the pump fields are off single photon and two photon resonance,

and the duration of the pump fields T is much less than the decay times in the prob-

lem, this process creates the signal photon, as illustrated in Figure 4.1, and leaves

behind a collective atomic excitation with one atom in the excited state |e〉.

In order to estimate the density matrix created by the pump process, we consider

the electric dipole interaction picture Hamiltonian ( Eq. (2.38) ),

V̂ (t) = V̂I(t) + V̂II(t) + V̂s(t) + V̂i(t) + V̂R(t), (4.5)

where V̂I = −∑N
µ=1

~E
(+)
I (~rµ , t) · d̂

(−) µ

(a,c) (t) + h.c. is the interaction of the atoms with

pump I, V̂II = −∑N
µ=1

~E
(+)
II (~rµ , t) · d̂

(−) µ

(c,d) (t) + h.c. is the interaction of pump II with

the atoms, V̂s = −∑N
µ=1 Ê

(+)
(~rµ , t) · d̂

(−) µ

(e,d) + h.c. is the interaction of the atoms with

the field on the signal (|e〉 ↔ |d〉) transition, V̂i = −∑N
µ=1 Ê

(+)
(~rµ , t) ·

(

d̂
(−) µ

(a,e) (t) +
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d̂
(−) µ

(b,e) (t)
)

+ h.c. is the interaction of the atoms with the field on the idler transitions,

and V̂R(t) is the coupling of the electric field to all other allowed transitions within

the atomic sample. We apply third order perturbation theory to the initial system

density matrix ρ̂0. When the phases ∆IT, ∆IIT, (∆I + ∆II)T ≫ 1, and when one

neglects the effects of the ac Stark shift (which becomes relevant in second order

perturbation theory), we find that to first order in the interaction time T the only

resonant terms of the perturbative expansion ( i.e. those terms that do not oscillate

with frequencies on the order of the detunings ) are those that correspond to emission

of a photon with frequency ck = ∆ + ωd − ωf with an atom being transfered from

level |a〉 to |f〉, where |f〉 is some hyperfine level with energy ωf < ωd. In the limit of

a dilute atomic gas, where the optical thickness is low, we make the approximation

that each atom interacts independently with the quantized electromagnetic field. In

this limit, one can determine the state of the system by considering the evolution of a

single atom interacting with the field in the Weisskopf-Wigner model of spontaneous

emission. For times t > 0 this yields the density matrix

ρ̂(t) = (1 + Ûs(t) + ÛR(t))ρ̂0(1 + Û †
s (t) + Û †

R(t)), (4.6)

where the first order contribution to the evolution operator leading to emission of a

signal photon on the |d〉 ↔ |e〉 transition Ûs is given by

Ûs(t) =

N
∑

µ=1

ΩI(~r µ)ΩII(~r µ)

∆I∆

∫

d3ks

∑

λs

κs

1
∑

αs=−1

(

~ε ∗
λ

(

k̂s

)

· ~ξ αs

)

×ei(~k 1+~k 2−~k s)·~r µ
1 − ei(δs(ks)T )

δs (ks)
b̂†λs

(~k s)

×
Fa
∑

M=−Fa

ZM,αsΣ̂
(µ)†
M,αs

(t), (4.7)

where ∆ ≡ ∆I + ∆II is the detuning from the two-photon resonance of the pump

fields, κs = [~(∆ + ωd − ωe)/(2ǫ0(2π)3)]1/2
(

d
∥

∥

∥
d̂

∥

∥

∥
e
)

is a measure of the signal

field coupling strength, ~k s is the signal wavevector, ~r µ is the position of atom µ,
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δs (ks) ≡ cks − (ωd − ωe + ∆) is the signal photon detuning, b̂λs(
~k s) is the annihi-

lation operator for a signal photon of wavevector ~k s and polarization ~ε λ

(

k̂s

)

, and

ZM,αs ≡ CFa 1 Fc

M αI M+αI
CFc 1 Fd

M+αI −αI MC
Fe 1 Fd

M−αs αs M is the appropriate product of Clebsch-

Gordan coefficients. The operator Σ̂
(µ)†
M,αs

(t) contains the dynamics of atom µ inter-

acting with the idler field, and is given by

Σ̂
(µ)†
M,αs

(t) = e−
Γe
2

tσ̂
(µ)
e,M−αs;a,M

+

∫

d3ki

∑

λi

1
∑

αi=−1

e−i~k i·~r µfλi,αi,M(~k i, t)

×â†λi
(~k i)σ̂

(µ)
a,M−αs−αi;a,M

+

∫

d3ki

∑

λi

1
∑

αi=−1

e−i~k i·~r µgλi,αi,M(~k i, t)

×â†λi
(~k i)σ̂

(µ)
b,M−αs−αi;a,M , (4.8)

where Γe is the excited state spontaneous emission rate, σ̂
(µ)
f,m;f ′,m′ ≡ |f,m〉µ 〈f ′, m′| is

a µth atom atomic coherence, ~k i is the idler photon wavevector, âλi
(~k i) is the idler

field annihilation operator for a photon of wavevector ~k i and polarization ~ε λi
(k̂i),

and the time dependence of the amplitudes f and g is given by

fλi,αi,M(~k i, t) = iκi(~ε
∗
λi

(k̂i) · ~ξ αi
)CFa 1 Fe

M−αs−αi αi M−αs

×1 − ei(cki−(ωe−iΓe/2))t

cki − (ωe − iΓe/2)
(4.9)

gλi,αi,M(~k i, t) = iκ′
(

~ε ∗
λi

(

k̂i

)

· ~ξ αi

)

CFb 1 Fc

M−αs−αi αi M−αs

× 1 − ei(cki−(ωe−ωb−iΓe/2))t

cki − (ωe − ωb − iΓe/2)
, (4.10)

where κi =
(

e
∥

∥

∥
d̂

∥

∥

∥
a
)

[~c(ωe − ωa)/(2ǫ0(2π)3)]1/2 is the coupling strength of the field

to the |a〉 ↔ |e〉 transition, κ′ =
(

e
∥

∥

∥
d̂

∥

∥

∥
a
)

[~c(ωe − ωa)/(2ǫ0(2π)3)]1/2 is the coupling

strength of the field to the |b〉 ↔ |e〉 transition. The operator ÛR(t) accounts for the

scattering of photons on transitions other than the signal |d〉 ↔ |e〉 transition.

Once the idler photon has been emitted, for t≫ 1/Γe, we can determine the two-

photon density matrix by tracing over the atomic components of ρ̂(t) in Eq. (4.6).
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When this is done, we find a collective enhancement effect, in which the contributions

of density matrix components corresponding to the atom scattering back to its original

state dominate. This can be seen by expanding the density matrix ( Eq. (4.6) ) in

terms of the photon creation/annihilation operators and individual atomic coherences

between a ground state |a,m〉µ and an arbitrary atomic state |f,m′〉µ for atom µ.

When tracing over the atomic degrees of freedom, one only needs to consider the

following partial traces and their Hermitian conjugates:

Tratoms

(

σ̃µ
f,m′; a,mρ̂0

)

= δf,aδm,m′ ρ̂vac (4.11a)

and

Tratoms

(

σ̃µ
f1,m′

1; a,m1
ρ̂0σ̃

ν
a,m2; f2,m′

2

)

=
[ (

1 − δf1,aδm1,m′
1

)

pm1δm1,m2δm′
1,m′

2
δf1,f2δµ,ν

+pm1δf1,aδf2,aδm1,m′
1
δm2,m′

2
[pm2(1 − δµν) + δm1,m2δµν ]

]

ρ̂vac. (4.11b)

One sees by inspection that the partial trace in Eq. (4.11a), survives only when

the atom scatters back to it’s original state. Furthermore, the trace in Eq. (4.11b)

survives only when the atom scatters back to it’s original state ( second term of

Eq. (4.11b) ) or when the two atomic coherence operators involved correspond to

the same atom ( first term of Eq. (4.11b) ). Because the two-photon portion of the

reduced density operator involves a summation over two atomic indices µ and ν, the

terms in which an atom returns to its original state dominate, and the others provide a

correction of order 1/N . As a result, the photon pairs scattered in the phase matched

directions are polarization entangled. The full two photon density matrix is given in

this approximation by

ρ̂2(t) =
(

1 +
√
ǫÂ†

2

)

ρ̂vac

(

1 +
√
ǫÂ2

)

+Tr
(

ÛR(t)ρ̂0Û
†
R(t)

)

ρ̂vac +O(1/N), (4.12)
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where Â†
2(t) is time dependent two photon creation operator, and ρ̂vac is the vacuum

density matrix. The operator Â†
2 is given by

√
ǫÂ†

2 = i
NΩeff

∆

∫

d3ks

∫

d3ki

(

κsκi̺(~k i + ~k s − ~k 1 − ~k 2)

×1 − e−i(cks−(ωd−ωe+∆))T

cks − (ωd − ωe + ∆)

× 1

cki − (ωe − iΓe/2)

×
1
∑

αs=−1

XαI ,αs â
†
[−αs](

~k i)b̂
†
[αs](

~k s)

)

, (4.13)

where Ωeff ≡ 1
∆I

∫

d3r ΩI(~r )ΩII(~r )n(~r )
N

is the effective two photon Rabi frequency,

and n(~r ) is the atomic density at position ~r . The phase matching function ̺(~q ) is

determined by the Fourier transform of the effective single atom density interacting

with the pump fields, which is given by

̺ (~q ) ≡ 1

N

∑

µ

Ω1(~r µ)Ω2(~r µ)

∆IΩeff
e−i~q ·~r

µ

=

(
∫

d3r
Ω1(~r )Ω2(~r )

∆IΩeff

n(~r )

N
e−i~q ·~r

)

+O(1/
√
N). (4.14)

The weight associated with each pair of polarizations for the signal and idler is given

by the product of Clebsch-Gordan coefficients

XαI ,αs ≡
Fg
∑

M=−Fg

pMC
Fa 1 Fc

M αI M+αI
CFc 1 Fd

M+αI −αI M

×CFe 1 Fd

M−αs αs MC
Fa 1 Fe

M −αs M−αs
. (4.15)

The annihilation operators for polarization ~ξ α are defined as

â[α]

(

~k i

)

≡
∑

λ

(

~ε λ

(

k̂i

)

· ~ξ ∗
α

)

âλ

(

~k i

)

(4.16)

b̂[α]

(

~k s

)

≡
∑

λ

(

~ε λ

(

k̂s

)

· ~ξ ∗
α

)

b̂λ

(

~k s

)

. (4.17)

Note, that unless ~k is oriented along the z-axis, the â[α]

(

~k
)

and â[α′]

(

~k
)

do not

obey strict bosonic commutation relations, but, instead satisfy

[

â[α]

(

~k
)

, â†[α′]

(

~k ′
)]

= δ
(

~k − ~k′
)(

δα,α′ −
(

~ξ α′ · k̂
)(

k̂ · ~ξ ∗
α

))

, (4.18)
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with the signal creation and annihilation operators obeying similar commutation re-

lations. We note that this model does not account for propagation effects or for the

enhanced idler emission rates associated with superradiance which occur in optically

thick media. Since the collective enhancement that produces the desired polarization

entanglement does not depend on the atomic decay rate, however, this entanglement

should still result when superradiance and propagation effects are significant.

In our experiment both pumps are linearly polarized along the fixed z-axis, i.e.

αI = 0, and are counterpropagating along the y-axis. For a field propagating along

the direction k̂, we assume the horizontal polarization ~eH(k̂) and vertical polarization

vectors ~e V (k̂) are defined such that
{

~eH(k̂), ~e V (k̂), k̂
}

form a right handed coordinate

system. We choose the horizontal and vertical polarization vectors to be consistent

with the conventions presented in Appendix A. Signal and idler detectors are placed

so as to detect the phase-matched nearly forward scattered signal, k̂s ≈ ŷ and the

nearly backward scattered idler k̂i ≈ −ŷ, as illustrated in Figure 4.1(b). By tracing

ρ̂2 over the reservoir of undetected modes, we find the effective two-photon state

|Ψeff〉 = (cosχ â†H b̂
†
H − sinχâ†V b̂

†
V ) |vac〉 , (4.19)

where

cosχ =
Y+1 + Y−1

√

4Y 2
0 + (Y+1 + Y−1)2

(4.20a)

sinχ =
2Y0

√

4Y 2
0 + (Y+1 + Y−1)2

, (4.20b)

and

Yα =

Fg
∑

M=−Fg

pMC
Fa 1 FC

M 0 M CFc 1 Fd

M 0 M CFe 1 Fd

M−α α MC
Fa 1 Fe

M −α M−α. (4.21)

For our level configuration and an unpolarized sample (pM = 1/(2Fa + 1)), we find

tanχ = 2 (4.22)

or

|Ψeff〉 =

(

1√
5
â†H b̂

†
H − 2√

5
â†V b̂

†
V

)

|vac〉 . (4.23)
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We could alternatively assume pumps I and II to have opposite circular polariza-

tions (equal helicities) counterpropagating along the z-axis. Let b̂†α be the creation

operator for the forward scattered signal photon with helicity α, and â†αi
be the cre-

ation operator for the phase-matched backward scattered idler photon with helicity

αi. In this case, we find the two photon operator

|Ψeff〉 = (cos ηâ†−1b̂
†
−1 + sin ηâ†+1b̂

†
+1) |vac〉 . (4.24)

where

cos η =
X+1

√

X2
+1 +X2

−1

(4.25)

and

Xα =

Fg
∑

M=−Fg

pMC
Fa 1 Fc

M 1 M+1C
Fc 1 Fd

M+1 −1 MC
Fe 1 Fd

M−α α MC
Fa 1 Fe

M −α M−α. (4.26)

From symmetry relations for the Clebsch-Gordan coefficients, we find that, for the

set of atomic levels used in our experiments, η = π/4, and the thus two-photon state

would be a completely symmetric Bell state.

4.4 Experiment

We observe phase-matched cascade emission of entangled photon pairs, using samples

of cold 85Rb atoms, for two different atomic cascades: (a) at λs = 776 nm, via the

5s1/2 → 5d5/2 two-photon excitation, (b) at λs = 1.53 µm, via the 5s1/2 → 4d5/2 two-

photon excitation. The investigations are carried out in two different laboratories

using similar setups, Figure 4.1(b). A magneto-optical trap (MOT) of 85Rb provides

an optically thick cold atomic cloud. The atoms are prepared in an incoherent mixture

of the level |a〉, which corresponds to the 5s1/2, Fa = 3 ground level, by means of

optical pumping. The intermediate level |c〉 = |e〉 corresponds to the 5p3/2, Fc = 4

level of the D2 line at 780 nm, and the excited level |d〉 represents (a) the 5d5/2

level with λs = 776 nm, or (b) the 4d5/2 level with λs = 1.53 µm. Atomic level
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|b〉 corresponds to 5s1/2, Fb = 2, and could be used to implement the light-to-matter

qubit conversion [21].

The trapping and cooling light as well as the quadrupole magnetic field of the MOT

are switched off for the 2 ms duration of the measurement. The ambient magnetic

field is compensated by three pairs of Helmholtz coils. Counterpropagating pumps I

(at 780 nm) and II (at 776 nm or 1.53µm), tuned to two-photon resonance for the

|a〉 → |d〉 transition are focused into the MOT using the off-axis, counter-propagating

geometry of Harris and coworkers [59]. This two-photon excitation induces phase-

matched signal and idler emission.

With quasi-cw pump fields, we perform photoelectric coincidence detection of the

signal and idler fields. The latter are directed onto single photon detectors D1 and

D2. For λs = 1.53 µm, the signal field is coupled into 100 m of single-mode fiber,

and detector D1 (cooled InGaAs photon counting module) is gated using the output

pulse of silicon detector D2. The electronic pulses from the detectors are fed into a

time-interval analyzer with 1 ns time resolution.

We measure the stationary signal-idler intensity correlation function Gsi(τ) =

〈T : Îs(t)Îi(t + τ) :〉, where the notation T :: denotes time and normal ordering of

operators, and Îs and Îi are the signal and idler intensity operators, respectively [90].

Results for (a) λs = 776 nm and (b) λs = 1.53 µm are presented in Figure 4.2 and

Figure 4.3, respectively. In particular, the measured correlation functions are shown

in Figure 4.2(a,b) and Figure 4.3(a). The correlation function shown in Figure 4.2(a)

exhibits quantum beats due to the two different hyperfine components of the the 5p3/2

level [97]. The correlation times are consistent with superradiant scaling ∼ ts/dth,

Figure 4.2(c), where ts ≈ 27 ns for the 5p3/2 level [95].

In order to investigate polarization correlations of the signal and idler fields, they

are passed through polarizers P1 (set at angle θs) and P2 (set at angle θi), respectively,

as shown in Figure 4.1(b). We integrate the time-resolved counting rate over a window
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Figure 4.2: (a) Count rate proportional to the signal-idler intensity correlation func-
tion Gsi as a function of signal-idler delay τ , |d〉 = |5d5/2, F = 4〉. The quantum
beats are associated with 120 MHz hyperfine splitting, F = 3 and 4, of the 5p3/2 level
[97]. The solid curve is a fit of the form β + A exp(−t/α) sin2(πΩt), where β = 63,
A = 2972, α = 11 ns and Ω = 117 MHz are adjustable parameters. (b) Same as (a),
but for |d〉 = |5d5/2, F = 5〉. Since this state can only decay though the F = 4 compo-
nent of the 5p3/2 level, there are no quantum beats. The solid curve is an exponential
fit with decay time of 3.2 ns. (c) The measured decay time vs the inverse measured
optical thickness. (d) Measured coincidence fringes for θs = 45◦ (red diamonds) and
θs = 135◦ (blue circles). The solid curves are fits based on Eqs. (4.1)(4.2), with
cosχ = 1/

√
5.
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Figure 4.3: (a) Same as Figure 4.2(a,b), but for |d〉 = |4d5/2, F = 5〉. The solid curve
is an exponential fit with decay time of 6.7 ns. (b) Measured coincidence fringes for
θi = 45◦ (red diamonds) and θi = 135◦ (blue circles). The solid curves are fits based
on Eqs. (4.1)(4.2), with cosχ = 1/

√
5.

∆T centered at the maximum of the signal-idler intensity correlation function Gsi(τ),

with (a) ∆T = 6 ns for λs = 776 nm, and (b) ∆T = 1 ns for λs = 1.53 µm.

The resulting signal-idler coincidence rate C (θs, θi) exhibits sinusoidal variation as a

function of the polarizers’ orientations, as shown in Figs. 4.2(d) and 4.3(b). In order

to verify the predicted polarization entanglement, we check for violation of Bell’s

inequality S ≤ 2 [91, 90, 16]. We first calculate the correlation function E (θs, θi),

given by

C (θs, θi) + C
(

θ⊥s , θ
⊥
i

)

− C
(

θ⊥s , θi

)

− C
(

θs, θ
⊥
i

)

C (θs, θi) + C
(

θ⊥s , θ
⊥
i

)

+ C (θ⊥s , θi) + C
(

θs, θ⊥i
) , (4.27)

where θ⊥ = θ + π/2, and S = |E (θs, θi) + E (θs
′, θi) | + |E (θs, θ

′
i) − E (θ′s, θ

′
i) |.

Measured values of E (θs, θi), using the set of angles θs, θi, chosen to maximize the

violation of Bell’s inequality, are presented in Table 4.1. We find (a) S = 2.185±0.025

for λs = 776 nm, and (b) S = 2.132±0.036 for λs = 1.53 µm, consistent with polariza-

tion entanglement of signal and idler fields in both cases. The entangled two-photon

state of Eqs. (4.1)(4.2), for sinχ = 2/
√

5, has a substantial degree of asymmetry. If
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Table 4.1: Measured correlation function E(θs, θi) and S for λs = 776 nm and
λs = 1.53µm.

λs θs θi E(θs, θi)
0◦ −67.5◦ −0.670 ± 0.011
45◦ −22.5◦ −0.503 ± 0.013

776 nm 0◦ −22.5◦ 0.577 ± 0.012
45◦ −67.5◦ −0.434 ± 0.014

S = 2.185 ± 0.025
22.5◦ 45◦ −0.554 ± 0.027
67.5◦ 0◦ −0.682 ± 0.027

1.53 µm 22.5◦ 0◦ 0.473 ± 0.024
67.5◦ 45◦ −0.423 ± 0.029

S = 2.132 ± 0.036

Figure 4.4: Efficiency of storage and subsequent retrieval of a coherent idler field
with decay time of 6 ns in an auxiliary atomic ensemble, obtained by numerical
integration of the Maxwell-Bloch equations [18, 19] as discussed in the text. The
atomic coherence time is assumed to be much longer than the storage time.
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oppositely, circularly, polarized pumps I and II were used, the corresponding two-

photon state would be symmetric with sinχ = cosχ = 1/
√

2.

The quantum repeater protocol involves sequential entanglement swapping via

Hong-Ou-Mandel (HOM) interference followed by coincidence detection [90, 47]. High-

visibility HOM interference requires that the signal and idler photon wave-packets

have no entanglement in the time or frequency domains [98, 99, 100]. This may be

achieved with excitation pulses that are far detuned from two-photon resonance and

with pulse lengths much shorter than the superradiant emission time ts/dth of level

|e〉.

The idler field qubit is naturally suited for conversion into an atomic qubit en-

coded into the collective hyperfine coherence of levels |a〉 =
∣

∣51/2S1/2, F = 3
〉

and

|b〉 =
∣

∣52S1/2, F = 2
〉

. To perform such conversion, either the same or another similar

ensemble/pair of ensembles could be employed [21]. A time-dependent control laser

field resonant on the |b〉 = |52S1/2, F = 2〉 ↔ |e〉 = |52P3/2, F = 3〉 transition could

selectively convert one of the two frequency components of the idler field, shown in

Figure 4.2(a), into a collective atomic qubit. Pulsed excitation should be used in order

to enable the synchronization of the idler qubit and the control laser. Numerical sim-

ulations show that qubit conversion and subsequent retrieval can be done with good

efficiency for moderate optical thicknesses, even though the idler field temporal profile

is shorter than those employed in Chapter 8 [21] (compare with Figure 6.3 in Chap-

ter 6 [18]). To demonstrate this, we consider the following scenario in which the idler

is stored in an auxiliary ensemble initially polarized in the atomic state |a, 0〉. The

time dependence of the idler field envelope is given by ϕ(i)(t) ∼ Θ(t) exp(−t/(2ts/dth))

where Θ(t) is the Heaviside function. A control field of positive helicity (resonant on

the |b〉 ↔ |e〉 transition) propagates parallel to the collected idler mode. The control

field has an initial Rabi frequency Ωc ≡
(

e
∥

∥

∥
d̂

∥

∥

∥
b
)

Ec = 3Γe, where Ec is the control

electric field amplitude. The control field is smoothly turned off over a period of 20 ns
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centered at time t = 20 ns, thus storing the idler qubit. We then reactivate the control

field at a later time t = 520 ns. We numerically calculate the storage and retrieval

dynamics using the procedure for solving the Maxwell-Bloch equations outlined in

Appendix C. In Figure 4.4, we show the calculated efficiency of storage and subse-

quent retrieval of a negative helicity idler field with a time constant ts/dth = 6 ns as

a function of optical thickness of the auxiliary ensemble. These results indicate that

qubit conversion can, indeed, be achieved with reasonable efficiency even though the

bandwidth of the idler field is much larger than the spontaneous emission rate of the

atoms within the sample.

The basic protocols we have outlined can also be applied to single alkali atom

emitters. Similar cascade decays in single atoms were used in early experiments

demonstrating violation of local realism [101] and single photon generation [102]. For

alkali metal atoms, it is necessary to optically pump the atom into a single Zeeman

state, e.g., m = 0, of level |a〉. A virtual excitation of a single Zeeman state of level

|d〉 is created with short laser pulses. Coherent Raman scattering to level |e〉 results

in atom-photon polarization entanglement. In order to prevent spontaneous decay of

the level |e〉, a control field π-pulse is applied immediately after the application of

the two-photon excitation, transferring the atomic qubit into the ground state where

it could live for a long time. It is important that the π-pulse duration is shorter

than the spontaneous lifetime of level |e〉. Two-photon interference and photoelectric

detection of signal photons produced by two remote single atom nodes would result in

entanglement of these remote atomic qubits [103]. Qubit detection for single atoms

can be achieved with nearly unit efficiency and in a time as short as 50 µs [32,

33]. Such high efficiency and speed lead to the possibility of a loophole-free test of

Bell’s inequality, for atoms separated by about 30 kilometers. Cascaded entanglement

swapping between successive pairs of remote entangled atomic qubits may be achieved

via local coupling of one of the atoms from the first pair and its neighboring partner
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from the the following pair [34].

We also point out that the cascade level scheme employed here can be used to

convert a telecommunications photon into a near-infrared photon using four-wave

mixing. This could potentially be useful because single-photon detectors for the

visible and near-infrared currently have much higher quantum efficiency, and much

lower dark count probability, than practically viable (e.g., InGaAs) detectors used at

telecommunication wavelengths.

In summary, we have proposed a practical telecommunication quantum repeater

scheme based on cascade transitions in alkali metal atoms. We have generated en-

tanglement of a pair of 1.53 µm and 780 nm photons using an ensemble of ultra-cold

rubidium atoms. Combined with our recent demonstration of light-to-matter qubit

conversion [21], the key steps of our proposal have now been taken.
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CHAPTER 5

DETERMINISTIC SINGLE PHOTONS VIA

CONDITIONAL QUANTUM EVOLUTION

A source of deterministic single photons is proposed and demonstrated by the appli-

cation of a measurement-based feedback protocol to a heralded single photon source

consisting of an ensemble of cold rubidium atoms. Our source is stationary and

produces a photoelectric detection record with sub-Poissonian statistics1.

5.1 Introduction

Quantum state transfer between photonic- and matter-based quantum systems is a

key element of quantum information science, particularly of quantum communication

networks. Its importance is rooted in the ability of atomic systems to provide excellent

long-term quantum information storage, whereas the long-distance transmission of

quantum information is nowadays accomplished using light. Inspired by the work

of Duan et al. [47], emission of non-classical radiation has been observed in first-

generation atomic ensemble experiments [51, 52, 54].

In 2004 the first realization of coherent quantum state transfer from a matter qubit

onto a photonic qubit was achieved [57]. This breakthrough laid the groundwork

for several further advances towards the realization of a long-distance, distributed

network of atomic qubits, linear optical elements and single-photon detectors [17, 18,

20, 19, 21, 22]. A seminal proposal for universal quantum computation with a similar

set of physical resources has also been made [104].

1This chapter is based on Ref. [23]
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Figure 5.1: Schematic of experimental setup, with the inset showing the atomic level
scheme (see text).

An important additional tool for quantum information science is a deterministic

source of single photons. Previous implementations of such a source used single

emitters, such as quantum dots [60, 61, 62], color centers [63, 64], neutral atoms

[36, 37, 65], ions [66], and molecules [67]. The measured efficiency ηD to detect a

single photon per trial with these sources is typically less than 1%, with the highest

reported measured value of about 2.4% [36, 37], to our knowledge.

We propose a deterministic single photon source based on an ensemble of atomic

emitters, measurement, and conditional quantum evolution. We report the imple-

mentation of this scheme using a cold rubidium vapor, with a measured efficiency
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ηD ≈ 1 − 2%. In common with the cavity QED system, our source is suitable for re-

versible quantum state transfer between atoms and light, a prerequisite for a quantum

network. However, unlike cavity QED implementations [36, 37], it is unaffected by in-

trinsically probabilistic single atom loading. Therefore, it is stationary and produces

a photoelectric detection record with truly sub-Poissonian statistics

The key idea of our protocol is that a single photon can be generated at a predeter-

mined time if we know that the medium contains an atomic excitation. The presence

of the latter is heralded by the measurement of a scattered photon in a write process,

such as the collective stimulated Raman scattering process described in Chapter 3.

Since this is intrinsically probabilistic, it is necessary to perform independent, sequen-

tial write trials before the excitation is heralded. After this point one simply waits

and reads out the excitation at the predetermined time. The performance of repeated

trials and heralding measurements represents a conditional feedback process and the

duration of the protocol is limited by the coherence time of the atomic excitation.

Our system has therefore two crucial elements: (a) a high-quality probabilistic source

of heralded photons, and (b) long atomic coherence times. We note that related

schemes using parametric down-conversion have been discussed [105, 106].

Heralded single photon sources are characterized by mean photon number 〈n̂〉 ≪ 1,

as the unconditioned state consists mostly of vacuum [107, 102]. More importantly, in

the absence of the heralding information the reduced density operator of the atomic

excitation is thermal [16]. In contrast, its evolution conditioned on the recorded

measurement history of the signal field in our protocol, ideally results in a single

atomic excitation. However, without exception all prior experiments with atomic

ensembles did not have sufficiently long coherence times to implement such a feedback

protocol [51, 52, 54, 57, 17, 18, 20, 19, 21, 55, 77, 59, 108]. In earlier work quantum

feedback protocols have demonstrated control of non-classical states of light [109] and

motion of a single atom [110] in cavity QED.
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5.2 Heralded Single Photon Source

We first outline the procedure for heralded single photon generation. A schematic

of our experiment is shown in Figure 5.1. An atomic cloud of optical thickness ≈ 7

is provided by a magneto-optical trap (MOT) of 85Rb. The ground levels {|a〉 ; |b〉}

correspond to the 5S1/2, Fa,b = {3, 2} hyperfine levels, while the excited level |c〉

represents the {5P1/2, Fc = 3} level of the D1 line at 795 nm. The experimental

sequence starts with all of the atoms prepared in level |a〉. An amplitude modulator

generates a linearly polarized 70 ns long write pulse tuned to the |a〉 → |c〉 transition,

and focused into the MOT with a Gaussian waist of about 430 µm. We showed in

Chapter 3 Section 3.2.1.1 that the write process can be described using a simple model

based on nondegenerate parametric amplification. The light induces spontaneous

Raman scattering via the |c〉 → |b〉 transition. The annihilation of a write photon

creates a pair of excitations: namely a signal photon and a quasi-bosonic collective

atomic excitation [47]. The scattered light with polarization orthogonal to the write

pulse is collected by a single mode fiber and directed onto a single photon detector

D1, with overall propagation and detection efficiency ηs. When the write pulse is

sufficiently far detuned from the |a〉 ↔ |c〉 transition, the signal photon has a temporal

envelope ψs(t− r
(s)
‖ /c), where r

(s)
‖ = k̂s · ~r and k̂s is the signal propagation direction,

identical to that of the write pulse. The signal envelope satisfies the normalization

condition
∫ t+t0

t
|ψs(t

′)|2dt′ = 1, where t is the time at which the write process trial

begins, and t0 is the duration of this trial. By adapting the nondegenerate parametric

amplification model of Chapter 3 to the case where only one polarization of the signal

is captured, the correlated signal atomic excitation density matrix may be written as

[16]

ρ̂A s = Ψ̂†(χ)ρ̂0Ψ̂(χ), (5.1)
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where

Ψ̂(χ) =
1

coshχ

∞
∑

n=0

tanhn χ
ân

s Â
n

n!
, (5.2)

ρ̂0 is the signal and atomic vacuum density matrix as given in Eq. (3.2), âs is the

annihilation operator for the detected signal photon, and Â is the atomic excitation

annihilation operator.

Starting with the correlated state of signal field and atomic excitation ( Eq. (5.1) ),

we project out the vacuum from the state produced by the write pulse using the

projection operator : 1̂ − e−d̂†d̂ :, where d̂ =
√
ηsâs +

√
1 − ηsξ̂s, and ξ̂s is a bosonic

operator accounting for degrees of freedom other than those detected. Tracing over

the signal and all other undetected modes, we find that the density matrix for the

atomic excitation A conditioned on having at least one photoelectric detection event

is given by 2

ρA|1 =
1

p1

∞
∑

n=1

tanh2n χ

cosh2 χ
(1 − (1 − ηs)

n)
1

n!
Â†nρ̂0Â

n, (5.3)

where p1 ≪ 1 is the probability of a signal photoelectric detection event per write

pulse, and the interaction parameter χ is given in terms of p1 and ηs by

sinh2 χ = p1/[ηs (1 − p1)], (5.4)

We note that in Eq. (5.3) there is zero probability to find the atomic vacuum ρ̂0.

After a storage time τ , a read pulse of length 80 ns containing around 3 × 107

photons, and with polarization orthogonal to that of the write pulse, tuned to the

|b〉 → |c〉 transition, illuminates the atomic ensemble (Figure 5.1). Ideally, the read

pulse converts atomic spin excitations into the idler field emitted on the |c〉 → |a〉

transition. The elastically scattered light from the read beam is filtered out, while

the idler field polarization orthogonal to that of the read beam is directed into a 50:50

single-mode fiber beamsplitter. Both write/read and signal/idler pairs of fields are

2We show in Appendix D that this result can also be derived using arguments based on elementary
photon counting probabilities [111].
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counter-propagating [59]. The waist of the signal-idler mode in the MOT is about

180 µm. The two outputs of the fiber beamsplitter are connected to detectors D2 and

D3. Electronic pulses from the detectors are gated with 120 ns (D1) and 100 ns (D2

and D3) windows centered on times determined by the write and read light pulses,

respectively. Subsequently, the electronic pulses from D1, D2, and D3 are fed into a

time-interval analyzer which records photoelectric detection events with a 2 ns time

resolution.

The transfer of atomic excitation to the detected idler field at either Dk (k=2,3)

is given by a linear optics relation âk =
√

ηi(τ)/2Â +
√

1 − ηi(τ)/2ξ̂k(τ), where âk

depends parametrically on τ and corresponds to a mode with an associated temporal

envelope φ(t), normalized so that
∫∞

0
dt|φ(t)|2 = 1, and ξ̂k(τ) is a bosonic operator

which accounts for coupling to degrees of freedom other than those detected. The effi-

ciency ηi(τ)/2 is the probability that a single atomic excitation stored for τ results in

a photoelectric event at Dk, and includes the effects of idler retrieval and propagation

losses, symmetric beamsplitter (factor of 1/2) and non-unit detector efficiency. We

start from the elementary probability density Qk|1(tc) for a count at time tc and no

other counts in the interval [0, tc), Qk|1(tc) = |φ(tc)|2〈: â†kâk exp(−
∫ tc
0
dt|φ(t)|2â†kâk) :〉

[111]. Using Eq. (5.3), we then calculate probability pk|1 ≡
∫∞

0
dtQk|1(t) that detec-

tor Dk registers at least one photoelectric detection event. We similarly calculate

the probability p23|1 of at least one photoelectric event occurring at both detectors.

These probabilities are given by

p2|1(τ) = p3|1(τ) = Π(ηi(τ)/2; p1, ηs), (5.5)

p23|1(τ) = p2|1(τ) + p3|1(τ) − Π(ηi(τ); p1, ηs), (5.6)

where we show the explicit dependence on τ . Here 1 − Π(η; p1, ηs) is given by

1

p1

(

1

1 + η sinh2 χ
− 1

1 + (ηs + η (1 − ηs)) sinh2 χ

)

. (5.7)

These calculations are carried out in more detail in Appendix D.
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Our conditional quantum evolution protocol transforms a heralded single photon

source into a deterministic one. The critical requirements for this transformation are

higher efficiency and longer memory time of the heralded source than those previ-

ously reported [17, 18]. In Figure 5.2 we show the results of our characterization of

an improved source of heralded single photons. Panel (a) of Figure 5.2 shows the mea-

sured intensity cross-correlation function gsi ≡ [p2|1+p3|1]/[p2+p3] as a function of p1.

Large values of gsi under conditions of weak excitation - i.e., small p1 - indicate strong

pairwise correlations between signal and idler photons. The efficiency of the signal

photon generation and detection is given by ηs → gsip1, in the limit sinh2 χ ≪ 1.

We have measured ηs ≈ 0.08, which includes the effects of passive propagation and

detection losses ǫs. It is important to distinguish the measured efficiency from the

intrinsic efficiency which is sometimes employed. The intrinsic efficiency of having a

signal photon in a single spatial mode at the input of the single-mode optical fiber

η0
s ≡ (ηs/ǫs) ≈ 0.24. We measure ǫs ≡ ǫfs ǫ

t
sǫ

d
s ≈ 0.3 independently using coherent

laser light, where the fiber coupling efficiency ǫfs ≈ 0.7, optical elements transmis-

sion ǫts ≈ 0.85, and the detection efficiency ǫds ≈ 0.55. The measured efficiency of

the idler photon detection is ηi → gsi(p2 + p3) ≈ 0.075. Here p2 and p3 are defined

by expressions analogous to Eq. (5.4). Similarly, the intrinsic efficiency for the idler

field η0
i ≡ (ηi/ǫi) ≈ 0.34, where we measure ǫi ≡ ǫfi ǫ

t
iǫ

d
i ≈ 0.22, with ǫfi ≈ 0.75,

ǫti ≈ 0.59, and ǫdi ≈ 0.55. The reported values of ηs ≈ 0.08 and ηi ≈ 0.075 represent

slight improvements on the previous highest measured efficiencies in atomic ensemble

experiments of 0.04 − 0.07 [18, 21].

The quality of the heralded single photons produced by our source is assessed using

the procedure of Grangier et al., which involves a beamsplitter followed by two single

photon counters, as shown in Figure 5.1 [102]. An ideal single-photon input to the

beamsplitter results in photoelectric detection at either D2 or D3, but not both. An

imperfect single photon input will result in strong anticorrelation of the coincidence
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Figure 5.2: Correlation functions gsi (panel (a)) and α (panel (b)) as a function of
p1, taken at τ = 80 ns. The solid lines are based on Eq. (5.5,5.6), with addition
of a nearly-negligible background contribution, as in Ref. [18]. The inset shows
normalized signal-idler intensity correlation function gsi as a function of the storage
time τ . The full curve is a fit of the form 1 + B exp(−τ 2/τ 2

c ) with B = 16 and the
collapse time τc = 31.5 µs as adjustable parameters.

counts. Quantitatively, this is determined by the anticorrelation parameter α given

by the ratio of various photoelectric detection probabilities measured by the set of

detectors D1,D2 and D3: α = p23|1/(p2|1p3|1). Classical fields must satisfy a criterion

α ≥ 1 based on the Cauchy-Schwarz inequality [102]. For an ideally prepared single

photon state α → 0. Panel (b) shows the measured values of α as a function of

p1, with min{α} = 0.012 ± 0.007 representing a ten-fold improvement on the lowest

previously reported value in atomic ensembles [18].

In order to evaluate the atomic memory coherence time τc, we measure gsi as a

function of the storage time τ , inset of Figure 5.2(a). To maximize τc, the quadrupole

coils of the MOT are switched off, with the ambient magnetic field compensated by

three pairs of Helmholtz coils [17]. The measured value of τc ≈ 31.5 µs, a three-fold

improvement over the previously reported value, is limited by dephasing of different

Zeeman components in the residual magnetic field [18, 20, 19] as discussed in Chapters

6 and 7.

92



5.3 Protocol for Generation of Deterministic Sin-

gle Photons

The long coherence time enables us to implement a conditional quantum evolution

protocol. In order to generate a single photon at a predetermined time tp, we initiate

the first of a series of trials at a time tp −∆t, where ∆t is on the order of the atomic

coherence time τc. Each trial begins with a write pulse. If D1 registers a signal

photoelectric event, the protocol is halted. The atomic memory is now armed with

an excitation and is left undisturbed until the time tp when a read pulse converts it

into the idler field. If D1 does not register an event, the atomic memory is reset to

its initial state with a cleaning pulse, and the trial is repeated. The duration of a

single trial t0 = 300 ns. If D1 does not register a heralding photoelectric event after

N trials, the protocol is halted 1.5 µs prior to tp, and any background counts in the

idler channel are detected and included in the measurement record.

Armed with Eqs. (5.5) and (5.6), we can calculate the unconditioned detection and

coincidence probabilities for the complete protocol. The probability that the atomic

excitation is produced on the jth trial is p1 (1 − p1)
j−1. This excitation is stored for a

time (N−j)t0 before it is retrieved and detected, N = ∆t/t0 is the maximum number

of trials that can be performed in the protocol (we ignore the 1.5 µs halting period

before the read-out).

One can express the probability of a photoelectric event at Dk (k = 2, 3), Pk, and

the coincidence probabilities P23 in terms of the conditional probabilities of Eqs. (5.5)

and (5.6),

Pµ = p1

N
∑

j=1

(1 − p1)
j−1 pµ|1(∆t− jt0), (5.8)

µ = 2, 3, 23. In the limit of infinite atomic coherence time and N → ∞, Pµ → pµ|1.

Hence, if the memory time is sufficiently long for an adequate number of trials, the

protocol ideally results in deterministic preparation of a single atomic excitation,
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Figure 5.3: Predicted efficiency to generate and detect a single photon ηD as a
function of N and p1. These predictions are based on Eq. (5.8) with the values of
efficiencies and coherence times given in the text.

which can be converted into a single photon at a desired time. Consistent with

Figure 5.2(a) inset, we assume a combined retrieval-detection efficiency that decays

as a Gaussian function of storage time, ηi(τ) = ηi(0)e−(τ/τc)2 , where τc is the atomic

spin-wave coherence time.

In Figure 5.4 we present the predicted degree of second order coherence for zero

time delay g
(2)
D (0) ≡ P23/(P2P3) [112] as a function of N and p1. The corresponding

predicted values of efficiency ηD ≡ P2 + P3 − P23 are shown in Figure 5.3. Figure 5.5

shows the measured degree of 2nd order coherence for zero time delay g
(2)
D (0) [112] and

the measured efficiency ηD as a function of N (panels (a) and (b)), and as a function

of p1 (panels (c) and (d)). The solid curves are based on Eq. (5.8). The dashed lines

in panels (a) and (c) show the expected value of g
(2)
D (0) = 1 for a weak coherent

state (as we have confirmed in separate measurements). The particular value of p1

used in the measurements of Figure 5.5 panels (a) and (b) was chosen with the aid

of Figures 5.3 and 5.4 to optimize g
(2)
D (0) and ηD. The value of ∆t used in panels
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Figure 5.4: Predicted values of ηD as a function of N and p1. These predictions are
based on Eq. (5.8) with the values of efficiencies and coherence times given in the
text.

(c) and (d) was similarly chosen to optimize g
(2)
D (0) and ηD. The minimum value

of g
(2)
D (0) = 0.41 ± 0.04 indicates substantial suppression of two-photon events and

under the same conditions ηD = 0.012 3. As shown in Figure 5.5(a), when N is small,

the protocol does not result in deterministic single photons. Instead, the cleaning

pulse-induced vacuum component of the idler field leads to additional classical noise.

Large N , and hence long coherence times, are crucial to reduce this noise below

the coherent state level and to approach a single photon source. Note, that in the

limit of infinite atomic memory and N → ∞, g
(2)
D (0) → min{α} ≈ 0.012 ± 0.007

and ηD → ηi ≈ 0.075, substantially exceeding the performance of any demonstrated

deterministic single photon source.

Moreover, ηD can be further increased by employing atomic sample with larger

optical thickness and by optimizing the spatial focusing patterns of the signal and

3The corresponding value of the measured Mandel parameter QD ≡ −ηD(1 − g
(2)
D

(0)) is
≈ −0.007± 10% and is largely determined by ηD [112].
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Figure 5.5: g
(2)
D (0) as a function of maximum number of trials N (panel (a)) and

p1 (panel (c)); measured efficiency to generate and detect a single photon ηD as a
function of N (panel (b)) and p1 (panel (d)). For panels (a) and (b) p1 = 0.003
(about 6 × 105 photons per write pulse were used), whereas for for panels (c) and
(d) N = 150. The full curves are based on Eq. (5.8) with the values of efficiencies
and coherence times given in the text, with however ηD multiplied by an empirical
factor of 2/3. We believe this reduced efficiency is due to imperfect switching of the
read light in the feedback-based protocol (we note that there are no other adjustable
parameters in the simple theory presented). Evident deviations from the theory in
panels (c) and (d), beyond the statistical uncertainties associated with photoelectric
counting events, could be explained either by inadequacies of the theory, or slow
systematic drifts in the residual magnetic field and the read light leakage.
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idler fields 4. In principle, the spatial signal-idler correlations from an atomic ensemble

(and, therefore η0
i ) can also be improved by use of an optical cavity. However, in

the absence of special precautions the use of a cavity will itself introduce additional

losses associated, e.g., with the mirror coatings or the cavity locking optics [36, 37, 66,

108]. The measured efficiency ηD would involve a trade-off between improved spatial

correlations due to the cavity and the concomitant losses that it introduces.

Long atomic coherence time enables a large number of trials N , which is necessary

to eliminate the classical fluctuations of the heralded single photon source, and results

in sub-Poissonian photon statistics. This can be explained most simply in the limit

of infinite atomic memory in which the probability Pk that a detection event at Dk

(Figure 5.7) is made after N trials is given by the product of the probability 1− pvac

that an atomic excitation has been created ( pvac is the probability that the ensemble

is in the vacuum state ) and pk|1 the conditional probability that a photoelectric

detection is registered on Dk given that a heralding event was recorded. Likewise,

the probability of a coincidence detection at D2 and D3, P23 is given in terms of the

conditional joint probability p23|1 for coincidence given a heralding event has been

recorded, i.e.,

Pk = (1 − pvac)pk|1 (5.9a)

P23 = (1 − pvac)p23|1, (5.9b)

where pvac = (1−p1)
N for N trials and p1 ≪ 1 is, as defined above, the probability of

a signal photoelectric detection in a single write pulse trial. The correlation function

g
(2)
D (0), is given by

g
(2)
D ≡ P23

P2P3

=
α

1 − pvac
. (5.10)

4In separate sets of measurements, we have observed ηs ≈ 0.2, for the intrinsic signal efficiency
η0

s
≈ 0.6.
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Figure 5.6: g
(2)
D as a function of N and p1 in the limit of infinite atomic memory.

The values for the efficiencies ηs and ηi are given in the text.

When the probability pvac is large, as is the case for a small maximum number of

trials, N , and since the anti-correlation parameter is by definition positive α > 0, the

presence of multiple atomic excitations combined with the large vacuum component of

the detected field gives super-Poissonian statistics. If N is sufficiently large pvac → 0,

however, and we recover a value of g
(2)
D (0) identical to the anti-correlation parameter

α, which is less than one for a heralded single photon source. As a consequence

the statistics become sub-Poissonian in this limit, and the quality of the protocol is

limited by the quality of the single photons produced by the heralded single photon

source (Figure 5.6).

We should emphasize that g
(2)
D does not tend to α in the limit of small N , so the

feedback protocol is essential. In the limit of small N one might expect instead that

g
(2)
D → 2, consistent with a thermal distribution of atomic excitations. However, this

expectation is correct only in the limit of perfect signal propagation and detection
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Figure 5.7: ηD as a function of N and p1 in the limit of infinite atomic memory. The
values for the efficiencies ηs and ηi are given in the text.

efficiency ηs → 1. This can be readily demonstrated using the atomic density operator

given in Eq. (5.3). However, for ηs ≪ 1 one finds g
(2)
D ≫ 2, as confirmed in our

experiments.

In conclusion, we have proposed and demonstrated a stationary source of deter-

ministic photons based on an ensemble of cold rubidium atoms.
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CHAPTER 6

STORAGE AND RETRIEVAL OF SINGLE

PHOTONS TRANSMITTED BETWEEN

REMOTE QUANTUM MEMORIES

In the previous chapters, we have explored the use of atomic ensembles interacting

with classical laser fields to produce non-classical states of light. We reported the

probabilistic generation of entangled qubits in Chapters 3 and 4. While in Chapter

5, we showed how the heralded (probabilistic) single photon source used to generate

entangled qubits in Chapter 3 could be exploited in the generation of deterministic

single photons. Here, we demonstrate how the light-ensemble interface and the idea

of Electromagnetically Induced Transparency (EIT) [71, 72] is used to implement

another essential primitive of a quantum network: a quantum memory element, in

which the nonclassical states of light discussed in the earlier chapters can be stored

and later retrieved1.

6.1 Introduction

An elementary quantum network operation involves storing a qubit state in an atomic

quantum memory node, and then retrieving and transporting the information through

a single photon excitation to a remote quantum memory node for further storage

or analysis. Implementations of quantum network operations are thus conditioned

on the ability to realize such matter-to-light and/or light-to-matter quantum state

mappings. Here, we report generation, transmission, storage and retrieval of single

1This chapter is based on Ref. [18] and the associated supplementary online information

100



quanta using two remote atomic ensembles. A single photon is generated from a

cold atomic ensemble at Site A via the protocol of Duan, Lukin, Cirac, and Zoller

(DLCZ) [47] and is directed to Site B through a 100 meter long optical fiber. The

photon is converted into a single collective excitation via the dark-state polariton

approach of Fleischhauer and Lukin [69]. This mechanism is described in detail in

Appendix C. After a programmable storage time the atomic excitation is converted

back into a single photon. This is demonstrated experimentally, for a storage time of

500 nanoseconds, by measurement of an anticorrelation parameter α. Storage times

exceeding ten microseconds are observed by intensity cross-correlation measurements.

The length of the storage period is two orders of magnitude longer than the time to

achieve conversion between photonic and atomic quanta. The controlled transfer

of single quanta between remote quantum memories constitutes an important step

towards distributed quantum networks.

A quantum network, consisting of quantum nodes and interconnecting channels,

is an outstanding goal of quantum information science. Such a network could be used

for distributed computing or for the secure sharing of information between spatially

remote parties [5, 25, 26, 29, 104, 47]. While it is natural that the network’s fixed

nodes (quantum memory elements) could be implemented by using matter in the form

of individual atoms or atomic ensembles, it is equally natural that light fields be used

as carriers of quantum information (flying qubits) using optical fiber interconnects.

The matter-light interface seems inevitable since the local storage capability of ground

state atomic matter cannot be easily recreated with light fields. Interfacing material

quanta and single photons is therefore a basic primitive of a quantum network.

The potential of atomic ensembles to serve as quantum memories has recently

attracted considerable attention [68, 41, 69, 47, 13, 70], spawning two distinct lines of

research. In one, using the physics of “slow light” propagation in an optically thick

atomic ensemble, weak coherent laser pulses have been stopped and retrieved in a
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controlled fashion [69, 73, 44, 45]. In the other, motivated by the seminal proposal of

Duan, Lukin, Cirac, and Zoller (DLCZ) [47], correlated pairs of photons and single

photons have been produced from an atomic ensemble [51, 52, 53, 54, 55, 59]. Col-

lective atomic qubits, atom-photon entanglement, and quantum state transfer from

atomic to photonic qubits have also been demonstrated [57]. These initial experimen-

tal demonstrations within the DLCZ paradigm were beset by short atomic coherence

times, of the order of the laser pulse length. In contrast, recent advances in atomic

ensemble research [17, 23] allow for long quantum memory times, in excess of ten mi-

croseconds in the present work, more than two orders of magnitude longer than the

duration of the laser pulses involved in the protocols. Longer quantum memory times

have subsequently been produced and reported in Ref.[23], as discussed in Chapter 5.

6.2 Experiment

Here we report the synthesis of these two lines of research by demonstrating the gen-

eration, transmission, storage and retrieval of single photons using remote atomic

ensembles as quantum memories. The essential ingredient which enables the com-

pletion of this synthesis, and which we report here, is the ability to convert single

photons into single collective atomic excitations. In our experiment the remote quan-

tum memories are based on cold atomic clouds of 85Rb confined in magneto-optical

traps (MOTs) at Sites A and B, as shown in Figure 6.1. Sites A and B are physi-

cally located in adjacent laboratories, with a 100 meter long single-mode optical fiber

serving as the quantum information channel.

Our protocol begins with the generation of single photons at Site A, using an

improved version of the DLCZ approach in the off-axis, counter-propagating geometry

[59, 17] (discussed in Chapter 3). The fiber channel directs the signal field to Site

B where an optically thick atomic ensemble is prepared in level |b〉 (right inset in

Figure 6.1). The signal field propagation in the atomic medium is controlled by
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Figure 6.1: A schematic diagram of our experimental setup demonstrating genera-
tion, transmission, storage and retrieval of single photon excitations of the electromag-
netic field. Two atomic ensembles at Sites A and B are connected by a single-mode
fiber. The insets show the structure and the initial populations of atomic levels for
the two ensembles. All the light fields responsible for trapping and cooling, as well as
the quadrupole magnetic fields in both MOTs, are shut off during the period of the
protocol. The ambient magnetic field at each Site is compensated by three pairs of
Helmholtz coils (not shown). Correlated signal and idler fields are generated at Site
A. The signal field is transmitted via optical fiber from Site A to Site B, where it is
converted to atomic excitation, stored for a duration Ts, and subsequently retrieved.
A Hanbury Brown-Twiss setup consisting of a beamsplitter BS and two detectors D2
and D3, together with detector D1 for the idler field, are used to verify the single
photon character of the retrieved field.
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Figure 6.2: Measured transmission spectra of a coherent probe field as the function
of probe detuning in the presence of, and absence of, EIT. Data are taken using 700 ns
long coherent laser pulses. T is the intensity transmittance, ∆ is the probe detuning
and Γ is the decay rate of level |c〉. In the absence of control field (circles) the probe
is strongly absorbed near resonance, whereas with the control field on (diamonds)
the medium becomes transparent. Each probe pulse contains on average 0.3 photons.
Each data point is an average of 2 × 105 experimental trials. The optical thickness
d = 8 and the control field Rabi frequency Ω = 3Γ are used to obtain the solid curves,
based on the theoretical model discussed in Appendix C.

an additional laser field (control) through the process of electromagnetically-induced

transparency (EIT) [71, 72]. As we deal with an unpolarized atomic ensemble, we

must take into account the Zeeman degeneracy of the atomic levels. Choosing the

same circular polarizations for both the probe and the control fields allows us to retain

transparency, as discussed in more detail in Appendix C. In Figure 6.2 we show the

EIT transmission spectrum recorded for a coherent laser probe field instead of the

signal field. Evidently, in the absence of the control light the probe field is absorbed

by the optically thick sample. With the addition of the cw control field, the medium

is rendered transparent around the |b〉 ↔ |c〉 transition resonance ∆ = 0.

The control field strongly modifies the group velocity of the signal field. For a
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time-dependent control field, a strong reduction of the group velocity of the propagat-

ing signal field can be understood in terms of a coupled matter-light field excitation

known as a “dark-state polariton.” By adiabatically switching off the control field,

the coupled excitation can be converted into a pure atomic excitation, i.e., the sig-

nal field is “stopped” [69, 44, 45]. An important condition to achieve storage is a

sufficiently large optical thickness of the atomic sample, which enables strong spatial

compression of the incident signal field [41]. In our experiment the measured optical

thickness d ≃ 8, where d is defined such that exp(−d) is the on-resonance intensity

transmittance in the absence of a control field. Figure 6.3 compares our observations

with the predictions of a theoretical model of Appendix C. Figure 6.3a compares the

propagation of the signal pulse in vacuum and in the atomic medium under conditions

of EIT with a cw control field. The observed pulse delay under conditions of EIT

is about 20 ns, corresponding to more than three orders of magnitude reduction in

group velocity. Figure 6.3b shows the effect of turning off the control-storage field

when the signal pulse is approximately centered in the medium, and the subsequent

retrieval of the signal field when the control-retrieval field is switched back on after a

500 ns storage time. Figure 6.3c shows retrieval after a storage time of 15 µs. Quali-

tative agreement of the pulse shapes has been obtained in our theoretical analysis of

the protocol using the full Zeeman structure of the atoms and a classical description

of the signal field (Figure 6.3d-f).

In order to verify the single-photon character of the signal field (a) without stor-

age, and (b) with storage and retrieval, we use a Hanbury Brown-Twiss detection

scheme, employing a beamsplitter followed by two single photon counters, as shown

in Figure 6.1 [102]. To provide such characterization, we note that classical fields must

satisfy a criterion α ≥ 1 based on the Cauchy-Schwarz inequality [102, 113]. For an

ideally prepared single photon state α → 0. Here the anticorrelation parameter α is

a function of the storage time Ts, and is given by the ratio of various photoelectric
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Figure 6.3: Experimental and theoretical pulse shapes as a function of time, showing
EIT, storage and retrieval. The color code is: control field - black, pulse in vacuum -
blue, delayed, stored and retrieved field - red. Panel (a) with a cw control field shows
EIT pulse delay. In panel (b) the control field is switched off and then on again after
500 ns, shows light storage and retrieval. Panel (c) is similar to (b) but with a 15 µs
storage. Panels (d), (e), and (f) are corresponding theoretical plots.
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detection probabilities which are measured by the set of detectors D1, D2 and D3

(described in Section 6.3):

α(Ts) =
p1p123

p12p13

. (6.1)

As an auxiliary measure of signal-idler field correlations, and as a way to quantify

the quantum memory storage time, we also evaluate the normalized intensity cross-

correlation function gsi ≡ (p12 + p13)/[p1(p2 + p3)] [114, 90]. In particular, it serves to

estimate the total efficiency and background levels in the experiment, since gsi is, by

definition, independent of efficiencies whereas p1 is proportional to the overall idler

channel efficiency.

First we measure gsi and α without storage at Site B (i.e., with no atomic sample

in place), and the results are displayed in Figure 6.4, a and b, respectively. Next we

add an optically thick atomic sample at Site B, and perform storage of duration Ts =

500 ns and subsequent retrieval of the signal field, with results shown in Figure 6.4,

c and d, respectively. No correction for background or dark counts were made to

any of the experimental counting rates. The curve fits of gsi are based on a simple

theoretical model, and allow us to obtain the efficiency in the idler channel and the

background contributions to p2 and p3 for the stored signal field. These same values

are used to produce the corresponding theoretical curves in Figure 6.4, b and d. The

measured values of α < 1, displayed in Figure 6.4, b and d, confirm the single-photon

character of both the source and retrieved signal fields (with the minimum values of

α = 0.14 ± 0.11 and α = 0.36 ± 0.11, respectively). Overall, we estimate that the

probability ps for successful generation, transmission, storage, retrieval, and detection

of a signal photon is approximately ps ≃ 10−5 for each trial. The efficiency of photon

storage and retrieval E can be estimated as the ratio of the values of p2 +p3 with and

without storage. We find E ≃ 0.06, in agreement with the theoretical result shown

in Figure 6.3e.

To investigate the storage capability of our quantum memory at Site B, we measure
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Figure 6.4: Measured intensity cross-correlation function gsi and anticorrelation func-
tion α as a function of the idler photoelectric detection probability p1. Panels (a) and
(b) are for the source (propagation in vacuum). Panels (c) and (d) are for stopped,
stored for 500 ns, and retrieved signal field. The solid lines are based on a theoretical
model that includes losses and background. Error bars represent ± one standard
deviation and are based on the statistics of the photoelectric counting events.
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Figure 6.5: Normalized signal-idler intensity correlation function gsi as a function of
the storage time Ts at Site B. Data (diamonds) are taken for p1 = 0.0047, but with a
smaller background contribution than that of Figure 6.4, c and d. The full curve is
a fit of the form 1 + B exp(−t2/τ 2) with B = 7 and the collapse time τ = 11 µs as
adjustable parameters. Error bars represent ± one standard deviation and are based
on the statistics of the photoelectric counting events.

gsi as a function of the storage time of the signal field Ts (Figure 6.5). A Gaussian fit

provides a time constant τ = 11 µs, which is an estimate of our quantum memory time.

The collapse is consistent with the Larmor precession of a dark-state polariton in an

unpolarized atomic ensemble in a residual magnetic field [51, 57]. Experimentally we

attempt to null the uniform, dc component of the magnetic field. A definitive way

to distinguish whether the collapse is due to uniform or non-uniform and ac fields is

to measure the damping time of the periodic revivals of the retrieved signal field at

longer storage times. In a uniform magnetic field, undamped revivals of the dark-

state polariton should occur at times equal to nTL, where TL is the Larmor period for

level |a〉 or |b〉 and n can be either integer or half-integer, depending on the direction

of the magnetic field relative to the light beam geometry (a synopsis of these ideas

is given in the Appendix C, with the full theory presented in Ref.[19]). We have
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conducted separate experiments with an externally applied magnetic field [20], which

suggest that the collapse in the present experiment is likely due to magnetic field

gradients and/or ac fields at the level of a few tens of mG. However, more extensive

investigations to quantitatively determine the temporal and spatial structure of the

residual magnetic field, and the various contributions to it, are ongoing.

6.3 Measurement Procedure

To generate single photons at Site A, we use the DLCZ approach in the off-axis,

counter-propagating geometry introduced by Harris and coworkers [59]. The insets

in Figure 6.1 indicate schematically the structure of the three atomic levels involved,

|a〉, |b〉 and |c〉, where {|a〉; |b〉} correspond to the 5S1/2, F = {3, 2} levels of 85Rb, and

|c〉 represents the {5P1/2, F = 3} level associated with the D1 line at 795 nm. The

experimental sequence begins with an unpolarized sample of atoms prepared in level

|a〉 (left inset of Figure 6.1). A 160 ns long write laser pulse tuned to the |a〉 → |c〉

transition is focused into the MOT with a Gaussian waist of about 400 µm. The

write pulse generates a Raman-scattered signal field via the |c〉 ↔ |b〉 transition. We

collect a Gaussian mode centered around the momentum ~k s that forms an angle of

about 2◦ with the write beam. The write pulse is so weak that on average less than

one photon is scattered into the collected mode for each pulse. The signal field is

coupled into the 100 meter long fiber connecting Sites A and B.

For each signal photon emission event, a correlated collective atomic excitation is

created in the atomic ensemble. After a delay ∆t = 200 ns, a 140 ns long counter-

propagating read laser pulse resonant with the |b〉 → |c〉 transition illuminates the

atomic ensemble and converts the atomic excitation into the idler field. Under the

conditions of collective enhancement, the idler field is emitted with high probability

into the mode determined by the phase-matching condition ~k i = ~k w +~k r−~k s, where

~k i, ~k w and ~k r are the wave vectors of the idler, write and read fields, respectively.
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The waist of the signal-idler mode in the MOT is about 150 µm. The idler field is

directed onto a single photon counter D1. Ideally, photoelectric detection of the idler

field projects the quantum state of the signal field into a single photon state. The

repetition rate of the experiment is 2 · 105 s−1. Each data point in Figure 6.4 involves

an average over a time period that varied from several minutes up to 1.5 hours for

the data point with the lowest value of p1 in d.

To measure the photoelectric detection probabilities p1, p2, p3, p13, p12, p23, and

p123, the outputs of the detectors are fed to three “Stop” inputs of the time-interval

analyzer which records the arrival times with a 2 ns time resolution. The electronic

pulses from the detectors D1,D2,D3 are gated for periods [ti0, t
i
0 + T i

g ], with T 1
g =

140 ns, T 2
g = T 3

g = 240 ns, respectively, centered on the times determined by the

write and read (for no storage) or control-retrieval (for storage) laser pulses. Counts

recorded outside the gating periods are therefore removed from the analysis. The

list of recorded events allows us to determine the single-channel photoelectric event

probabilities pi = Ni/M , where Ni is the total number of counts in the i -th channel

and M is the number of experimental trials, (for Di, i = 1, 2, 3). If photoelectric

detections in different channels i, k,m happen within the same gating period, they

contribute to the corresponding joint probabilities pij = Nij/M , where Nij is the total

number of coincidences between Di and Dj, i, j = 1, 2, 3. The joint probability of all

three detectors registering a count is given by p123 = N123/M .

6.4 Photoelectric counting statistics

In order to take into account the possibility of the creation of multiple signal-idler

photon pairs created in the write-read processes at site A, we use a theoretical model

based on parametric down-conversion derived in Chapter 3, Section 3.2.1.1. The
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annihilation operators for the idler and signal field are transformed as [90]:

â
(out)
i = cosh(χ)â

(in)
i + sinh(χ)â†(in)

s ,

â(out)
s = cosh(χ)â(in)

s + sinh(χ)â
†(in)
i . (6.2)

Here χ is the Raman gain at Site A. We also wish to assess the overall efficiencies

and the background levels in our experiment. Modeling the background to the signal

in terms of a coherent field with average photon number Bs, we find that in the low

intensity limit discussed in Appendix D

gsi ≈

〈

â
(out)†
i â

(out)†
s â

(out)
s â

(out)
i

〉

〈

â
(out)†
s â

(out)
s

〉〈

â
(out)†
i â

(out)
i

〉 (6.3)

=
(1 + 2 sinh2(χ)) +Bs

sinh2(χ) +Bs

. (6.4)

We also determine the anticorrelation parameter α of Grangier et al. ( in the weak

intensity limit of Appendix D ) [102]:

α ≈

〈

â
(out)†2
s â

(out)†
i â

(out)
i â

(out)2
s

〉〈

â
(out)†
i â

(out)
i

〉

〈

â
(out)†
i â

(out)†
s â

(out)
s â

(out)
i

〉2 (6.5)

=
sinh2(χ)(4 + 6 sinh2(χ)) + 4Bs(1 + 2 sinh2(χ))

(1 + 2 sinh2(χ) +Bs)2
. (6.6)

Using the treatment of Appendix D, we find that in the low intensity limit, the

singles count rates at detectors D1, D2, and D3 are given by R1 = ǫ1 sinh2(χ),

R2 = |T |2ǫ2 sinh2(χ) and R3 = |R|2ǫ3 sinh2(χ) (assuming that Ri ≪ W , where W

is the repetition rate of the experiment); T and R are the transmission and reflection

coefficients of the beamsplitter BS, shown in Figure 6.6.

In the absence of the medium we empirically find negligible background Bs. The

solid curve in Figure 6.4A is based on this model, setting Bs = 0. We find that the

best fit to the data in Figure 6.4A is given by ǫ1 ≈ 0.039. The solid line in Figure 6.4B

is based on Eq. (6.6) with this value of ǫ1.
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Figure 6.6: Normalized intensity autocorrelation functions gii (triangles) and gss

(circles for the source, squares for the stored and retrieved field). Uncertainties are
based on the statistics of the photon counting events.

For the stored light, we have to account for the fact that a significant fraction of

detected signal photons are due to background associated with the control-retrieval

pulse. By fitting the data of Figure 6.4C to Eq. (6.4), we find Bs ≈ 0.08. Substituting

this value into Eq. (6.6), we obtain the solid curve in Figure 6.4D. In order to reduce

this background, we have performed initial investigations using an optically pumped

Rb cell to filter out light at the frequency of the control field. In this case we found

increased non-classical correlations between the idler and the stored and retrieved

signal photon, e.g., for Ts = 500 ns gsi increased from 8 ± 0.2 to 15.6 ± 1.4.

In addition, we measure the intensity autocorrelation functions gss = p23/[p2p3]

and gii. These are shown in Figure 6.1. In order to evaluate the latter, we insert a

beamsplitter and additional detector Da into the path of the idler photon, so that

gii = p1a/[p1pa]. Using these together with the measured values of gsi shown in

Figure 6.4 of Ref.[18], one can evaluate Clauser’s parameter R = g2
si/[gssgii]. For

classical fields R ≤ 1, whereas we observe strong violation of this inequality.

The total measured transmission and detection efficiencies for the idler and signal

fields respectively are wi = 0.25±0.03 and ws = 0.15±0.02, consisting of the quantum

efficiencies of the detectors 0.55±0.05 and the passive transmission losses accounting
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for the rest. The ratio of h ≡ ǫi/wi = 0.16 indicates the strength of the spatial

signal-idler correlations in our source of conditional single photons at Site A, with

h→ 1 for the ideal case.

6.5 Conclusion

We have demonstrated generation, storage and retrieval of single quanta transmitted

between two remote atomic ensembles serving as quantum memory elements. The

control of the matter-field interface at the level of single quanta, and at remote sites,

is encouraging for further developments and applications in quantum information

science. In particular, the storage of a photonic qubit, with two logical states, would

represent a crucial advance. In order to achieve this, the quantum memory at Site B

would likewise need a second logical state, so as to realize a collective atomic qubit.

Two different approaches for such qubits have already been demonstrated [57, 17].

If a second logical state were added to both quantum memories at Sites A and B,

generation of remote entanglement of two atomic qubits would be possible.
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CHAPTER 7

DARK-STATE POLARITON COLLAPSES AND

REVIVALS

In this chapter1, we investigate the dynamics of dark-state polaritons in an atomic

ensemble with ground-state degeneracy. A signal light pulse may be stored and

retrieved from the atomic sample by adiabatic variation of the amplitude of a control

field. This procedure was used to obtain the results of the previous chapter in which

single photons were stored and retrieved from an atomic medium. During the storage

process, a magnetic field causes rotation of the atomic hyperfine coherences, leading to

collapses and revivals of the dark-state polariton number. In Section 7.2, we predict

that these collapses and revivals are observable in measurements of the retrieved

signal field, as a function of storage time and magnetic field orientation.

We test this prediction in the experiments reported in Section 7.3. Both coherent

and single photon states of light are stored in, and retrieved from a cold atomic gas

by time dependent variation of a control field. The observed series of collapses and

revivals of measured retrieval efficiency as a function of storage time agrees very well

with our theoretical predictions.

This strong agreement lends credence to the proposition that the quantum mem-

ory coherence times in the previous chapters are limited by the presence of ambient

magnetic fields.

1This chapter is based on Refs. [19, 20]
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7.1 Introduction

A quantum memory element consisting of an ensemble of atoms, with efficient cou-

pling to a signal light field, represents a node in several quantum network architectures

[69, 47, 41, 48, 49]. A dark-state polariton (DSP) is a collective excitation, with light

field and atomic spin wave parts, in which the relative size of the light and matter

contributions can be varied by changing the amplitude of a control laser field [69].

In connection with atomic memories, DSPs offer the possibility for efficient transfer

of information between a light carrier and an atomic medium, with programmable

storage of the excitation in the atomic spin coherence. The storage and subsequent

retrieval of the signal field component of the DSP can be achieved by the extinction

and subsequent reactivation of the control field after a given storage time. Experi-

mental demonstrations of “stopped-light” can be understood in terms of the concept

of DSP in just this way [44, 45, 74].

In Chapter 6 the storage and retrieval of single photons using an atomic ensemble

based quantum memory was reported, with a storage time conjectured to be limited by

inhomogeneous broadening in the ambient magnetic field [18]. During the storage, the

DSP consists entirely of atomic spin-wave, and in order to understand its dynamics in

a magnetic field it is necessary to properly account for the atomic level degeneracy and

the signal and control field polarizations. In particular for alkali atoms, which have

non-zero nuclear spin, the electronic levels have hyperfine structure ( see Chapter 2 ).

In this case we must define a more general form of DSP field operator than that of

a simple lambda configuration, in which the atomic spin-wave part corresponds to a

particular superposition of hyperfine coherences of the ground electronic level. These

coherences are, in turn, intimately related to the phenomenon of electromagnetically-

induced transparency (EIT) [71, 72, 115, 116].

The remarkable protocol of Duan, Lukin, Cirac, and Zoller (DLCZ) provides a
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measurement-based scheme for the creation of atomic spin excitations [47]. In sys-

tems where EIT is operative, these excitations will in general contain a dark-state

polariton component. The orthogonal contribution may be regarded as a bright-state

polariton in that it couples dissipatively to the excited atomic level in the presence of

the control field [75]. Observation of the retrieved signal field, however, picks out the

dark state polariton part, while the orthogonal component is converted into sponta-

neous emission [19]. A number of previous works reported generation and subsequent

retrieval of DLCZ collective excitations [51, 52, 53, 55, 54, 57, 59, 17, 117]. Several of

these studies investigated the decoherence of these excitations in cold atomic samples

[51, 54, 57, 17, 117]. It has been similarly conjectured in these works that the decay

of the coherence was due to spin precession in the ambient magnetic field. While the

observed decoherence times are consistent with the residual magnetic fields believed

to be present, the observation of revivals predicted in Section 7.2 [19] would be solid

proof that Larmor precession is indeed the current limitation on the quantum mem-

ory lifetime. Moreover, controlled revivals could provide a valuable tool for quantum

network architectures that involve collective atomic memories.

We shall see that in a magnetic field the temporal evolution of the DSP reveals

a series of collapses and revivals due to the evolution of its spin-wave component

during the storage phase of the process. In Section 7.2, we predict that the collapses

and revivals should be directly observable in measurements of the retrieved signal

field as a function of storage time. This prediction is then verified experimentally in

Section 7.3.

7.2 Theory

We develop the theory of EIT in a degenerate atomic medium with ground levels |b〉

and |a〉 and excited level |c〉, which have energies ~ωb ≡ 0, ~ωa and ~ωc, respectively

(Figure 7.1). The Zeeman states of level |b〉 are written |b,m〉, where −Fb ≤ m ≤ Fb;
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Figure 7.1: On the left, a diagram shows an atomic ensemble interacting with coprop-
agating signal and control fields. The signal (helicity α), resonant on the |b〉 ↔ |c〉
transition, is stored and subsequently retrieved by variation of a control field (helicity

β), which resonantly couples levels |a〉 and |c〉. A constant magnetic field ~B , oriented
at an angle θ from the propagation axis, rotates the atomic coherences during the
storage. For each state |b,m〉 in level |b〉, there is either an associated Λ configuration,
as shown on the right, or an unconnected one, as discussed in the text. The signal
connects the states |b,m〉 and |c,m+ α〉, while the control field drives transitions
between |c,m+ α〉 and |a,m+ α− β〉.

similar definitions hold for the other levels. All N atoms are assumed to be initially

prepared in level |b〉 without polarization, i.e., the density matrix of atom µ is ρ̂µ =

∑

m p |b,m〉µ 〈b,m| where we write p = 1/(2Fb + 1). The atoms experience a uniform

magnetic field ~B oriented at an angle θ with respect to the light propagation z axis.

The magnetic field-atom interaction V̂B = µB
~B ·∑s=b,a,c gs

∑N
µ=1 F̂

µ

s , where F̂
µ

s is the

projection of the atomic angular momentum operator for atom µ onto level |s〉 and

gs is the corresponding Landé g factor. The magnetic field induces a Larmor spin

precession which is primarily important in the storage phase, when the signal field

amplitude is zero. In a pure three state system, a magnetic field has been used to

manipulate the phase of a stored light pulse [74]. We note that in prior work collapses

and revivals of single-atom Zeeman coherences have been observed[118, 119].

We assume the signal field has a carrier wave vector ~k s = [(ωc − ωb)/c]ẑ, a time
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independent transverse spatial profile φ(s)(~r ), which satisfies the normalization con-

dition
∫

d2r
(s) 2
⊥

∣

∣φ(s)(~r )
∣

∣

2
= 1, where for a vector ~v , ~v

(s)
⊥ ≡ ~v − k̂s · ~v . The positive

frequency component of the signal electric field is given in the interaction picture by

Ê
(+)

s (~r , t) = (2π)3/2 E (cks) e
i~k s·~r e−ickstφ(s) (~r )

∑

α=±1

~ξ αϕ̂
(s)
α (z, t) , (7.1)

where ϕ̂
(s)
α (z, t) is the linear photon density annihilation operator for signal photons

at position z = ~r · ẑ and helicity α. These photon density operators obey the bosonic

equal time commutation relations

[

ϕ̂(s)
α (z, t) , ϕ̂

(s)†
β (z′, t)

]

= δα,βδ (z − z′) . (7.2)

Their definitions in terms of plane wave operators is given in Eq. (2.63) of Chapter 2.

A control field of helicity β propagates nearly parallel to the z-axis with a wave

vector ~k c = [(ωc − ωa)/c]k̂c. We will make the paraxial approximation on the control

field helicities ~e β

(

k̂c

)

≈ ~ξ β, where ~ξα are the laboratory fixed spherical basis vectors

( Eq. (2.31) ). We allow the freedom in the choice of control field propagation direction

so that we may adequately describe the off axis configuration used in the experiments

described in Section 7.3. The positive frequency component of the classical control

field is given by

~E (+)
c (~r , t) ≡ ~e β(k̂c)e

i~k c·~r e−ickctEc(t), (7.3)

where Ec (t) is the slowly varying control electric field. We assume Ec is constant

over the width of the transverse spatial profile of the signal. Furthermore, we assume

Ec(t) varies sufficiently slowly that we may consider it constant over the length of the

ensemble.

We proceed by generalizing the perturbative treatment of Fleischhauer and Lukin

[75] to include the degenerate atomic level scheme and the presence of a magnetic

field. We assume the number of photons contained in the signal pulse is much less

than the number of atoms in the sample, and we retain only terms up to first order in
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the signal field amplitude. In this limit, we can neglect the populations of levels |c〉

and |a〉, as well as the coherences between these levels. Furthermore, for an initially

unpolarized sample in level |b〉, the ground state populations and Zeeman coherences,

as opposed to hyperfine coherences, are unaffected by the signal, control and magnetic

fields. Our treatment can be extended to an initially spin-polarized atomic sample,

as we will report in a separate publication. We show in Appendix C that in this weak

signal limit [69, 75], the signal field, which we assume propagates in the positive z

direction, and collective atomic coherence operators satisfy the quantum Langevin

equations

(

∂

∂t
+ c

∂

∂z

)

ϕ̂(s)
α (z, t) = i

√

n (z) pκ∗s

Fb
∑

m=−Fb

Cmαêm; m+α (z, t) , (7.4a)

d

dt
ŝm; m′ (z, t) = iΩc (t)C ′

m′β êm; m′+β (z, t) , (7.4b)

and
(

d

dt
+

Γc

2

)

êm; m′ (z, t) = iκs

√

n (z) p

1
∑

α=−1

Cmαδm′;m+αϕ̂
(s)
α (z, t)

+ iΩc (t)C ′
m′−β,β ŝm;m′−β (z, t)

+ δm′,m+αζ̂b,m; c,m+α (z, t) , (7.4c)

where the atomic number density n(z) is assumed to be a function only of the

propagation distance z, κs is the signal field coupling constant on the probe transition,

and Ωc(t) = Ec(t)
(

c
∥

∥

∥
d̂

∥

∥

∥
a
)

is the control field Rabi frequency which we assume is

real. We adopt the shorthand for the Clebsch-Gordan coefficients Cmα ≡ CFb 1 Fc

m α m+α

and C ′
mβ ≡ CFa 1 Fc

m β m+β; it is useful to define Rmα(β) = Cmα/C
′
m+α−β,β. The collective

optical coherence is defined

êm; m′ (z, t) ≡ 1
√

n (z) p

N
∑

µ=1

e−ikszµφ(s)∗ (~r µ) σ̃µ
b,m; c,m′ (t) δ (z − zµ) , (7.5)

and the collective hyperfine coherences are given by

ŝm;m′ (z, t) ≡ 1
√

n (z) p

N
∑

µ=1

φ(s)∗ (~r µ) ei(~k c−~k s)·~r µσ̃µ
b,m; a,m′ (t) δ (z − zµ) . (7.6)
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It is shown in Appendix C, that, in the weak signal limit, these collective coherence

operators obey the quasi-bosonic commutation relations

[

êm1;m′
1
(z, t) , êm2;m′

2
(z′, t)

]

=
[

êm1;m′
1
(z, t) , ŝm2;m′

2
(z′, t)

]

= 0, (7.7a)

[

ŝm1;m′
1
(z, t) , ŝm2;m′

2
(z′, t)

]

=
[

ŝm1; m′
1
(z, t) , ê†m2; m′

2
(z′, t)

]

= 0, (7.7b)
[

êm1;m′
1
(z, t) , ê†m2; m′

2
(z′, t)

]

= δm1,m′
1
δm2,m′

2
δ(z − z′) + Ô

(

1/
√
N
)

, (7.7c)

and

[

ŝm1;m′
1
(z, t) , ŝ†m2;m′

2
(z′, t)

]

= δm1,m′
1
δm2,m′

2
δ (z − z′) + Ô

(

1/
√
N
)

. (7.7d)

The decay rate of level |c〉 is denoted by Γe and ζ̂b,m;c,m′ is a corresponding quantum

noise operator. The coupling of the atoms to the uniform magnetic field can be taken

into account by the addition of appropriate commutators with the interaction V̂B in

the atomic equations.

We first establish some standard features of EIT with our model. The propagation

of a classical (coherent) signal through the medium is found by dropping the quantum

noise operator, and replacing the field and coherence operators with their respective

expectation values. For a constant amplitude control field, the linear susceptibility

for the signal field of angular frequency ω is found to be

χα(∆) ≈ c

2ωc

d′(z)
∑

m

Γc∆X
2
mα(Ω2

cC
′2
m+α−β,β − ∆2 + i∆Γc/2)

(

Ω2
cC

′2
m+α−β,β − ∆2

)2
+ (∆Γc/2)2

, (7.8)

where ∆ ≡ ω − ωc is the detuning of the signal from atomic resonance, Xmα ≡

Cmα/
√

(2Fc + 1)/3, and d′(z) = d d(z)/dz. The dimensionless quantity d(z) is the

optical thickness, which is defined such that exp(−d) is the on-resonance intensity

transmittance in the absence of a control field, and can be expressed as

d(z) = 2πw

(
∫ z

−∞

dz′n(z′)

)(

c

ωe

)2
2Fc + 1

2Fb + 1
(7.9)

where w is the fraction of atoms in excited level |c〉 that spontaneously decay into

ground level |b〉. When a control field is present, an EIT window exists provided that
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the Clebsch-Gordan coefficients C ′
m+α−β,β do not vanish for any −Fb ≤ m ≤ Fb for

which Cmα 6= 0. If, however, C ′
m+α−β,β = 0, and Cmα 6= 0, it means that there is an

excited state |c,m+ α〉 not coupled by the control field to a state in the ground level

|a〉, i.e., there is an unconnected lambda configuration. The subset of atoms initially

in the state |b,m〉 would absorb the signal field and spontaneously emit radiation as

if there were no control field present. In order for EIT to exist, one must make a

judicious choice of atomic levels and signal and control field polarizations.

Assuming a choice of polarizations that supports EIT, we are able to generalize

the adiabatic treatment of Ref. [69] to Eq. (7.4) to derive the DSP operator for

helicity α, with control field polarization β ( see Appendix C )

Ψ̂α (z, t) =
Ω∗

c (t) ϕ̂
(s)
α (z, t) −

√

n (z) pκ∗s
∑

mRmα (β) ŝm; m+α−β (z, t)
√

|Ωc(t)|2 + n (z) p |κs|2
∑

m |Rm,α (β)|2
. (7.10)

As in Ref.[69], this operator obeys the simple propagation equation (∂/∂t+vg∂/∂z)Ψ̂α(z, t) =

−(1/2)Ψ̂α(∂/∂z)vg with the reduced group velocity vg = cΩ2
c/(Ω

2
c+Np|κs|2

∑

m |Rmα(β)|2)

which can be adiabatically controlled by time dependent variation of Ωc(t). From the

definition of Ψ̂, we see that as Ωc goes to zero, the wave excitation stops propa-

gating and transforms into a particular linear combination of hyperfine coherences

∼∑mRmα(β)ŝm; m+α−β(z, t). This nontrivial result arises from the treatment of the

full degeneracy of the atomic ensemble; only this combination of hyperfine coherences

is adiabatically transformed into the signal field via the control field retrieval process.

Orthogonal combinations of hyperfine coherences couple to optical coherences in the

presence of the control field and result in excited state spontaneous emission; we will

refer to these as the bright-state polariton (BSP) component. It is also possible that

some population of atoms remains trapped in the ground states, and is unaffected by

the control field.

One can also show that the DSP behaves like a bosonic field. When the DSP

operator exists for polarizations α and β, the DSP operators obey the commutation
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relations

[

Ψ̂α(z, t), Ψ̂β(z′, t)
]

= 0 (7.11)
[

Ψ̂α(z, t), Ψ̂†
β(z′, t)

]

= δα,βδ(z − z′) + Ô(1/
√
N). (7.12)

In order to demonstrate the importance of the dark state polariton in the signal

storage and retrieval process in a magnetic field, we numerically solve Eqs. (7.4) for

a coherent signal field using the Fourier space propagation equation ( Eq. (C.51) )

of Section C.5 in Appendix C. We thus calculate the expectation values of the spin

wave coherences 〈ŝm; m+α−β(z, t)〉 and the signal field, allowing us to determine the

DSP and BSP components. This is accomplished by defining a vector space of 2Fb +2

dimensions, with orthonormal basis vectors em, each corresponding to a hyperfine co-

herence ŝm; m+α−β , and eϕ corresponding to the signal field. We define the coherence

“vector” v ≡
〈

ϕ̂
(s)
α

〉

eϕ +
∑

m 〈ŝm; m+α−β (z, t)〉 em. We note that this is not normal-

ized since its magnitude is dependent on both the time dependent signal and control

fields. Associated with the DSP we define a vector uΨ ≡ Ωceϕ+
√
Npκs

∑

m Rmα(β)em

and the corresponding unit vector eΨ = uΨ/‖uΨ‖. We then determine the DSP com-

ponent pD = |e∗
Ψ · v|2, and BSP component pB = ‖v − eΨe∗

Ψ · v||2.

As an example of signal storage and retrieval we consider an atomic sample of

85Rb, in which the control field and signal field polarizations are chosen equal α =

β = 1, and the optical thickness d = 8, Figure 7.2. The atomic levels |b〉, |a〉

and |c〉 correspond to the 52S1/2 F = 2, 3 and 52P3/2 F = 3 levels of the D2 line,

respectively. The spontaneous decay rate Γc/(2π) = 5.98 MHz. The incident signal

field has a Gaussian envelope of full width half maximum 120 ns, and the peak enters

the 3 mm long sample at t = −60 ns. The control field has a constant Rabi frequency

Ωc = 1.5Γc until it is smoothly turned off at t = 0 over a period of 20 ns, when a

fraction of the signal field is converted into hyperfine coherences of the atomic spin

wave. The excitation is stored from 0 ≤ t ≤ 2µs in the presence of the magnetic field,
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before the control field is reactivated, and the signal field retrieved. In Figure 7.2,

panels (A) and (B), the magnetic field is chosen so that the storage time corresponds

to a quarter of a Larmor period TL ≡ 2π~/|ggµB
~B |, while in panels (C) and (D),

the storage time is TL/2. In panel (A) pD grows as the signal pulse arrives at the

point of observation, and reaches a peak when the control field is switched off. It

then decays during the storage phase, due to Larmor precession of the hyperfine

coherences in the applied magnetic field, which causes the corresponding growth of pB.

When the control field is reactivated, pB decays rapidly due excited level coupling and

subsequent spontaneous emission, though pD remains finite as the spin wave coherence

of the DSP is converted into the forward propagating signal field; the retrieved signal

field intensity is illustrated in panel(B). In panel (C), where the storage time is TL/2,

pD undergoes a complete revival. The energy of the retrieved signal field shown in

panel (D) is therefore much larger, by a factor of 5.73, than that in panel (B). This is

in good agreement with the DSP theory for retrieval efficiency discussed later, which

predicts that the retrieved signal energy of panel (D) should be 5.53 times that in

panel (B). These results demonstrate the importance of the adiabatic concept of DSP

for a realistic experimental scenario. The retrieved signal field directly reflects the

DSP dynamics in the magnetic field.

We can predict the retrieval efficiency of a stored signal pulse by tracking the

population of the DSP as it evolves under the influence of the magnetic field. During

the storage, the evolution of the spin wave operators is given by ŝm; m+α−β(z, t) =

∑Fg

m1=−Fg

∑Fg′

m2=−Fg′
D(b)†

m1m(t)D(a)
m+α−β,m2

(t)ŝm1; m2(z, 0), where D(s)
m,m′(t) ≡ 〈s,m| exp(−igs

~Ω B·

F̂t) |s,m′〉 is the matrix element of the rotation operator for states in hyperfine level

|s〉, and ~Ω B ≡ µB
~B /~. Using the bosonic commutation relations for the spin wave op-

erators, we can calculate the number of polaritons
〈

N̂α(ts)
〉

=
∫

dz
〈

Ψ̂†
α(z, ts)Ψ̂α(z, ts)

〉

as a function of storage time ts for an arbitrary DSP quantum state created in the

storage process. In the limit of infinite control field amplitude, this converts into
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Figure 7.2: Numerical results illustrate the storage and retrieval of a signal pulse from
an atomic ensemble as described in the text. We show results for two values of the
magnetic field oriented along the z axis. Panels (A) and (B) correspond to a magnetic
field B = 0.267 G, so that the signal is stored for TL/4, where TL = 8µs is the Larmor
period. Panels (C) and (D) show results for B = 0.535 G, corresponding to a signal
storage time of TL/2, where TL = 4µs. The signal field intensity transmittance I(t)/I0
(Solid line) and control field Rabi frequency (dot-dashed line), displayed in arbitrary
units, are shown in panels (B) and (D). Panels (A) and (C) display scaled dark state
pD (solid line) and bright state pB (dashed line) polariton components, as explained
in the text. In panel (B) the ratio of retrieved to input signal pulse energy is 4.38%
while in (D) the ratio is 25.09%.
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Figure 7.3: The DSP population fraction fα(ts) calculated for orientations of the
magnetic field 0 ≤ θ ≤ π/2 over one Larmor period. These results illustrate collapses
and revivals whose features are dependent on θ. The atomic configuration and field
polarizations α and β are described in the text.

the total number of photons in the retrieved signal field
∫

dz
〈

ϕ̂
(s)†
α (z, t)ϕ̂

(s)
α (z, t)

〉

.

We therefore derive an expression for the signal retrieval efficiency as the fraction

fα(ts) ≡ 〈N̂α(ts)〉/〈N̂α(0)〉:

fα(ts) =

∣

∣

∣

∣

∣

∑

m1m2

Rm1α(β)Rm2α(β)
∑

m |Rmα(β)|2
D(g)

m2m1
(ts)

× D(g′)†
m1+α−β,m2+α−β (ts)

∣

∣

∣

∣

∣

2

. (7.13)

In Figure 7.3, we display the fα(ts) as a function of ts for a variety of magnetic field

orientations. We again consider an ensemble of 85Rb atoms with the same choice of

atomic configuration and field polarizations discussed earlier. For ts ≪ TL, we observe

a collapse in the polariton population, yielding an approximate retrieval efficiency of

fα(ts) ≈ exp(−Υ2
α(ΩLts)

2/2), where the collapse rate Υα depends on the angle, θ,

between the magnetic field and the propagation axis. For θ = 0, we find

Υ2
α(θ = 0) = 4

∑

m1,m2

|Rm1α(β)Rm2α(β)|2
(
∑

m |Rmα(β)|2)2 (m1 −m2)
2. (7.14)

With the approximation gb = −ga, valid for ground level alkalis, it is clear that

the system undergoes a revival to the initial state after a complete Larmor period,
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and thus the signal retrieval efficiency should equal the zero storage time value.

Depending on the orientation of the magnetic field, we observe also a partial re-

vival at half the Larmor period. For a magnetic field oriented along the z axis, the

system dynamics are relatively simple. Each hyperfine coherence ŝm; m+α−β merely

picks up a phase factor that oscillates at m + (α − β)/2 times twice the Larmor

frequency, thus returning the system to its initial state at half the Larmor period.

In this case, the partial revival is actually a full revival. On the other hand, for

θ = π/2, a rotation through half the Larmor period causes the coherence transfor-

mation ŝm; m+α−β → ŝ−m; −(m+α−β) up to an overall phase factor. As a result, for the

choice of equal field polarizations (α = β), the retrieval efficiency at half the Larmor

period simplifies to (
∑

m Rmα(α)R−m,α(α)/
∑

m |Rmα(α)|2)2, resulting in a partial re-

vival. For other orientations of the magnetic field, particularly for θ = π/4, the revival

at half the Larmor period is suppressed. This reflects the more complicated dynamics

of the individual spin coherences Ŝg m
g′ m′ each of which transform into a superposition

of all (2Fb + 1)(2Fa + 1) spin coherences, with complex time dependent coefficients

governed by the rotation matrices. Stated physically, there is a strong destructive

interference between the various spin coherences when θ ≈ π/4.

7.3 Experimental Observation

In this section, we report observations of collapses and revivals of dark-state polaritons

in agreement with the theoretical predictions [19] of the previous section. In our

experiment, we employ two different sources for the signal field, a coherent laser

output and a conditional source of single photons [47]. The latter is achieved by using

a cold atomic cloud of 85Rb at Site A in the off-axis geometry pioneered by Harris

and coworkers [59]. Another cold atomic cloud of 85Rb at Site B serves as the atomic

quantum memory element, as shown in Figure 7.4. Sites A and B are physically

located in adjacent laboratories connected by a 100 meter long single-mode optical
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Figure 7.4: A schematic diagram illustrates our experimental setup. A signal field
from either a laser, or a DLCZ source of conditional single photons at Site A is carried
by a single-mode fiber to an atomic ensemble at Site B, where it is resonant on the
|b〉 ↔ |c〉 transition. The signal field is stored, for a duration Ts, and subsequently
retrieved by time-dependent variation of a control field resonant between levels |a〉 and
|c〉. All the light fields responsible for trapping and cooling, as well as the quadrupole
magnetic field in the MOT, are shut off during the period of the storage and retrieval
process. An externally applied magnetic field created by three pairs of Helmholtz
coils (not shown) makes an angle θ with the signal field wavevector. The inset shows
the structure and the initial populations of atomic levels involved. The signal field
is measured by detectors D2 and D3, while detector D1 is used in the conditional
preparation of single photon states of the signal field at Site A.
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fiber. The fiber channel directs the signal field to the optically thick atomic ensemble

prepared in level |b〉. The inset in Figure 7.4 indicates schematically the structure

of the three atomic levels involved, |a〉, |b〉 and |c〉, where {|a〉 ; |b〉} correspond to

the 52S1/2, Fa = 3, Fb = 2 levels of 85Rb, and |c〉 represents the 52P1/2, Fc = 3 level

associated with the D1 line at 795 nm. The signal field is resonant with the |b〉 ↔ |c〉

transition and the control field with the |a〉 ↔ |c〉 transition.

When the signal field enters the atomic ensemble at Site B, its group velocity is

strongly modified by the control field. By switching off the control field within about

100 ns, the coupled excitation is converted into a spin wave excitation with a dominant

dark state polariton component, i.e., the signal field is “stored” [69, 44, 45, 74]. An

important condition to achieve this storage is a sufficiently large optical thickness of

the atomic sample, which enables strong spatial compression of the incident signal

field [41]. In our experiment the measured optical thickness d ≃ 8. The subsequent

evolution of a dark state polariton in an external magnetic field is predicted to reveal

a series of collapses and revivals whose structure is sensitive to the magnitude and

orientation θ of the field relative to the signal wavevector, as discussed in the previous

section[19].

As we deal with an unpolarized atomic ensemble, we must take into account the

Zeeman degeneracy of the atomic levels. Choosing the same circular polarizations for

both the probe and the control fields allows us to retain transparency [18, 19]. For

a signal field of positive helicity, the dark state polariton annihilation operator for

position z is given by [19]

Ψ̂+ (z, t) =
Ω∗

c (t) ϕ̂
(s)
+ (z, t) −

√

n (z) pκ∗s
∑

m Rm,+ (1) ŝm; m (z, t)
√

|Ωc(t)|2 + n (z) p |κs|2
∑

m |Rm,+ (+1)|2
. (7.15)

As discussed in the previous section, the signal is stored in the form of spin wave

excitations associated with the dark state polaritons ∼ ∑

mRm,+Ŝm; m(z) for some

range of positions z within the sample. During the storage phase, and in the presence
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of the magnetic field ~B , the atomic hyperfine coherences rotate according to the

transformation

ŝm; m(z, t) =

Fb
∑

m1=−Fb

Fa
∑

m2=−Fa

D(b)†
m1m(t)D(a)

m,m2
(t)ŝm1; m2(z, 0), (7.16)

For 85Rb,ignoring the nuclear magnetic moment, ga = −gb. This rotation dynamically

changes the dark state polariton population during storage.

The measured signal retrieved after a given storage time Ts is determined by

the remaining dark state polariton population. Stated differently, only the linear

combination of hyperfine coherences ∼ ∑

mRm,+1(1)ŝm; m(z, Ts) contributes to the

retrieved signal. We calculate the number of dark state polariton excitations as a

function of Ts using Eqs. (7.15) and (7.16), 〈N̂(Ts)〉 =
∫

dz〈Ψ̂†
+1(z, Ts)Ψ̂+1(z, Ts)〉,

and find

〈N̂(Ts)〉
〈N̂(0)〉

=

∣

∣

∣

∣

∣

∑

m1m2

Rm1,+1(1)Rm2,+1(1)
∑

m |Rm,+1(1)|2
D(b)†

m2m1
(Ts)D(a)

m1m2
(Ts)

∣

∣

∣

∣

∣

2

. (7.17)

In Figure 7.5, panels (f) through (j), we show the retrieval efficiency for various

orientations of a magnetic field of magnitude 0.47 G, corresponding to the Larmor

period of 4.6 µs. With the approximation ga = −gb it is clear that the system un-

dergoes a revival to the initial state after one Larmor period (2π/|gb
~Ω B|), and thus

the signal retrieval efficiency equals the zero storage time value. Depending on the

orientation of the magnetic field, a partial revival at half the Larmor period is also

observed. For a magnetic field oriented along the z axis (Figure 7.5(f)), the polariton

dynamics is relatively simple. Each hyperfine coherence ŝm; m merely picks up a phase

factor that oscillates at frequency 2m|gb
~Ω |, thus returning the system to its initial

state at half the Larmor period. In this case, the partial revival is actually a full

revival. On the other hand, for θ = π/2 (Figure 7.5(j)), a rotation through half the

Larmor period causes the coherence transformation ŝm; m → −Ŝ−m; −m, and as a re-

sult, the retrieval efficiency is reduced to (
∑

mRm,+1(1)R−m,+1(1)/
∑

mR
2
m,+1)

2. The
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substructure within a half Larmor period is associated with interference of different

hyperfine coherences contributing to the dark-state polariton [19].

To test these predictions, we apply a uniform dc magnetic field of magnitude

0.5 ± 0.05 G to the atomic ensemble using three pairs of Helmholtz coils. In our

first set of measurements, 150 ns long coherent laser pulses containing on average

≃ 5 photons serve as the signal field. The outputs of the single-photon detectors D2

and D3 are fed into two “Stop” inputs of a time-interval analyzer which records the

arrival times with a 2 ns time resolution. The electronic pulses from the detectors are

gated for the period [t0, t0 + Tg], with Tg = 240 ns, centered on the time determined

by the control laser pulse during the retrieval stage. Counts recorded outside the

gating period are therefore removed from the analysis. The recorded data allows

us to determine the number of photoelectric events N2 + N3, where Ni is the total

number of counts in the i-th channel(i = 1, 2, 3).

By measuring the retrieved field for different storage times and orientations of

the magnetic field, we obtain the collapse and revival signals shown in Figure 7.5,

(a) through (e). As expected, we observe revivals at integer multiples of the Larmor

period. In addition, we see partial revivals at odd multiples of half the Larmor period,

except in the vicinity of θ = π/4. The measured substructures within a single revival

period are in good agreement with the theory (cf., insets of Figure 7.5, (e) and (j)).

We attribute the overall damping of the revival signal in the experimental data to

the magnetic field gradients. The evident decrease of this damping while θ is varied

from 0 to π/2 suggests that such gradients are predominantly along the direction of

the signal field wavevector. Similarly, we attribute the additional broadening of the

revival peaks at longer times to inhomogeneous magnetic fields, possibly ac fields,

not included in the theoretical description. We are pursuing additional investigations

to determine the temporal and spatial characteristics of the residual magnetic fields

[76].
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Figure 7.5: Panels (a)-(e) show the ratio of the number of photoelectric de-
tection events for the retrieved and incident signal fields for various orientations,
θ = 0, π/8, π/4, 3π/8, π/2, of the applied magnetic field, and as a function of storage
time. The incident signal field is a weak coherent laser pulse. In all cases the control
pulse is switched off at Ts = 0. We observe a series of collapses and revivals at multi-
ples of the half Larmor period of 2.3 µs. The observed damping over several Larmor
periods is likely caused by residual magnetic field gradients. The inset in Panel (e)
demonstrates the observed substructure within the first Larmor period. Panels (f)
through (j) are corresponding theoretical plots of the dark-state polariton number
calculated using Eq. (7.17).
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Figure 7.6: Diamonds show the measured collapse time TC of the first revival at half
the Larmor period as a function of the measured revival time TR, for magnetic field
values of 0.8, 0.6, 0.4, and 0.2 G, respectively, and for fixed orientation θ = π/2. The
line shows the corresponding theoretical prediction TC ≈ 0.082TR from Eq. (7.17).

Theory predicts that both the collapse and the revival times (TC and TR, re-

spectively) scale inversely with the magnetic field [19]. In Figure 7.6 the theoretical

prediction TC ≈ 0.082TR (solid line) is compared with the experimentally measured

values. We find very good agreement except for the lowest value of magnetic field

B = 0.2 G which may be explained by the presence of residual magnetic field gradi-

ents.

In the measurements presented above, classical, coherent laser light was used as

the signal field [90]. We have also investigated the revival dynamics of our atomic

memory with the signal field in a single photon state, as shown in Figure 7.4. The

procedure for production of a single photon state of the signal field at Site A is

conditioned on the detection of an idler photon by D1 (see Refs.[17, 18] for further

details). If photoelectric detections in different channels 1, 2 or 1, 3 happen within the

same gating period, they contribute to the corresponding coincidence counts between

D1 and Dj, N1j , j = 2, 3. We evaluate the α parameter of Grangier et al. [102], given
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Figure 7.7: Squares show the measured rate of coincidence detections between D1
and D2,3, Nsi = N12 + N13 as a function of the storage time. Diamonds show the
measured level of random coincidences NR. The ratio of squares to diamonds gives
gsi. Uncertainties are based on the statistics of the photoelectric counting events.

by the ratio of various photoelectric detection probabilities which are measured by the

set of detectors D1,D2 and D3. For an ideal single-photon state α = 0, whereas for

coherent fields α = 1. We have experimentally determined α = 0.51 ± 0.06, without

any correction for background or dark counts.

The normalized intensity cross-correlation function gsi ≡ (N12 + N13)/NR may

be employed as a measure of non-classical signal-idler field correlations [90, 16], as

discussed in detail in Ref.[51]. Here NR ≡ N1 · (N2 +N3) ·Rrep is the level of random

coincidences, where Rrep is the repetition rate of the experimental protocol. The

values of gsi are obtained by the ratio of the upper and lower traces in Figure 7.7.

The measurements presented there give values of gsi well in excess of two at the revival

times, suggesting the dark-state polaritons have a non-classical nature. One could

further evaluate self-correlations for the idler field gii, and for the signal field gss, and

confirm that the Cauchy-Schwarz inequality g2
si ≤ gssgii is indeed violated [51, 90, 16].
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We have measured, by adding a beamsplitter and an additional detector, the value

gii = 1.42 ± 0.03. When the signal field is stored and retrieved 500 ns later, we find

that both gss ≤ 2 [18]. While the total number of recorded coincidences between

detectors D2 and D3 is not high enough to evaluate gss for the revived polariton, it

is also expected to be less than two, leading to a substantial violation of the Cauchy-

Schwarz inequality.

7.4 Conclusion

We have developed a theory of the DSP as a mechanism to store and retrieve light

pulses in a degenerate unpolarized atomic medium. The role of the DSP and its

connection to storage retrieval efficiency have been verified by full numerical solutions

of the propagation equations for a classical incident signal field. In the presence of a

magnetic field, we have demonstrated that the DSP population undergoes collapses

and revivals during the pulse storage time. We predict that this polariton dynamics is

directly reflected in the signal pulse retrieval efficiency. These predictions have been

verified by experimental observation. Our results may find applications in quantum

communication and computation approaches that utilize quantum memories [47, 29,

104, 120]
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CHAPTER 8

ENTANGLEMENT OF REMOTE ATOMIC

QUBITS

This chapter presents a synthesis of the protocol for generating probabilistic entan-

glement between the polarization of a photon and a collective atomic excitation of

Chapter 3 and the ability to store nonclassical states of the light field demonstrated

in Chapter 6.1 We report observations of entanglement of two remote atomic qubits,

achieved by generating an entangled state of an atomic qubit and a single photon

at Site A, transmitting the photon to Site B in an adjacent laboratory through an

optical fiber, and converting the photon into an atomic qubit. Entanglement of the

two remote atomic qubits is inferred by performing, locally, quantum state transfer

of each of the atomic qubits onto a photonic qubit and subsequent measurement of

polarization correlations in violation of the Bell inequality |S| ≤ 2. We experimen-

tally determine Sexp = 2.16 ± 0.03. Entanglement of two remote atomic qubits, each

qubit consisting of two independent spin wave excitations, and reversible, coherent

transfer of entanglement between matter and light, represent important advances in

quantum information science.

8.1 Introduction

Realization of massive qubits, and their entanglement, is central to practical quantum

information systems [29, 47, 5]. Remote entanglement of photons can now be achieved

in a robust manner using the well-developed technology of spontaneous parametric

1This chapter is based on Ref.[21].
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down-conversion [25, 26, 27], with propagation to remote locations by means of optical

fibers. Photons, however, are difficult to store for any appreciable period of time,

whereas qubits based on ground-state atoms have long lifetimes. Local entanglement

of massive qubits has been observed between adjacent trapped ions [121] and between

pairs of Rydberg atoms in a collimated beam [31]. In order to entangle qubits at

remote locations the use of photons as an intermediary seems essential [103, 122, 123,

124]. Photons also offer some flexibility as information carriers as they can propagate

in optical fiber with low losses. The creation, transport, storage, and retrieval of

single photons between remote atomic ensembles located in two different laboratories

was recently reported [18]. The first step in creating remote entanglement between

massive qubits is to entangle one such qubit with the mediating light field, which is

then directed towards the second qubit via an optical fiber. There have recently been

important advances towards this goal by demonstrating entanglement of a photon

with a trapped ion [32], with a collective atomic qubit [57, 17], and with a single

trapped atom [38, 125].

A promising route towards the creation and application of long-lived qubit en-

tanglement in scalable quantum networks was proposed by Duan, Lukin, Cirac, and

Zoller [47, 124]. These atomic qubits rely on collective atomic states containing ex-

actly one spin excitation. For useful quantum information processing two orthogonal

spin wave excitation states Ŝ†
+ |0〉a , Ŝ†

− |0〉a are needed for the logical states of a qubit

[47], where |0〉a represents the collective atomic ground state. We note that the two

states |0〉a and Ŝ† |0〉a, do not appear to constitute a practically useful qubit [126].

In the experiment of Chapter 6 [18] each of the two remote ensembles only contained

one logical state, since the atomic ground state component does not serve this pur-

pose. Entanglement of continuous atomic variables in two separate atomic ensembles

has been reported [127], as appropriate for continuous-variable quantum information

processing, but not for qubit entanglement.
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In two recent experiments, collective atomic qubits were generated using cold

atomic ensembles [57, 17]. In the first of these the logical states were single spin wave

excitations (ideally, ŝ†+|0〉a, ŝ†−|0〉a), in either one of two distinct atomic ensembles

inside a high vacuum chamber. In the second experiment, two orthogonal spin waves

of a single cold ensemble represented the logical qubit states [17]. The experiments [57,

17] realized a single atomic qubit system, but did not address the issue of entanglement

of atomic qubits.

While remote entanglement of atomic qubits has not been previously demon-

strated, Refs. [57, 17] realized two basic primitives of a quantum network: (a) en-

tanglement of photonic and atomic qubits, and (b) quantum state transfer from an

atomic to a photonic qubit. The crucial additional ingredient is the reverse operation,

the conversion of a photonic qubit into an atomic qubit. This enables the transfer of

atom-photon entanglement into remote atomic qubit entanglement.

8.2 Theory and Experiment

Here we report remote atomic qubit entanglement using cold atomic clouds of 85Rb

confined at Sites A and B, as shown in Figure 8.1. These sites are situated in separate

laboratories and linked by an optical fiber. A notable distinction between the two

nodes is that the qubit generated at Site A is written on an unpolarized atomic

ensemble, as in Chapter 3 [17], whereas at Site B the atomic ensemble is prepared,

ideally, in the (m = 0) Zeeman state of the F = 2 ground level by optical pumping.

All the light fields responsible for trapping and cooling of the atoms, as well as the

quadrupole magnetic fields at both sites, are shut off during the period of the protocol.

The ambient magnetic field at each site is compensated by three pairs of Helmholtz

coils, and a bias field of 0.2G is added at Site B for the purpose of optical pumping.

Our protocol starts with the generation of an entangled state of a signal photon

and a collective atomic qubit at Site A, achieved through Raman scattering of a
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classical laser write pulse as discussed in Chapter 3. The state can be represented

schematically as

|Ψ〉 = |0〉a |0〉f + χ(cos η |+〉a |+〉f + sin η |−〉a |−〉f )

≡ |0〉a |0〉f + χ |ψ〉 , (8.1)

where |+〉f ≡ â†+ |0〉f and |−〉f ≡ â†− |0〉f are the normalized states of positive and

negative helicity of the signal photon, |0〉f is the field vacuum state, |±〉a ≡ Ŝ†
± |0〉a de-

scribes the two logical qubit states, corresponding to non-symmetric collective atomic

modes [13], and χ≪ 1. The asymmetry angle η = 0.81π/4 [17]. Eq. (8.1) represents

probabilistic entanglement generation, where ideally for each signal photon emission

event, an entangled atomic qubit is created in the atomic ensemble [47, 32]. Since we

deal with an unpolarized atomic ensemble, the state of the system is more rigorously

described by a density operator as discussed in Chapter 3 [17].

The orthogonal polarization modes of the signal field produced at Site A are

directed along the optical fiber to Site B. As the signal field propagates from Site A

to Site B, it passes through two quarter wave plates, causing the transformation of the

signal field operators â± → ±â∓. The signal field propagation in the atomic medium

at Site B is controlled by an additional laser field (control) through the process of

electromagnetically-induced transparency (EIT) [72, 71, 73, 69, 44, 45].

We implement the storage phase at Site B, by adiabatically reducing the control

field amplitude to zero, while the signal pulse lies within the cloud. The orthogonal

atomic spin wave excitations thereby created in the spin-polarized gas constitute the

logical states of the atomic qubit. In order to convert the signal field qubit into a

collective atomic qubit, it is necessary that the optically thick atomic sample supports

EIT for both field helicities [69, 19]. To this end, we optically pump the atomic cloud

at Site B using a linearly polarized field resonant to the F = 2 ↔ F ′ = 2 transition

of the D1-line, and an additional repumping field resonant to the F = 3 ↔ F ′ = 3
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Figure 8.1: A schematic diagram of our experimental setup. Two cold atomic en-
sembles of 85Rb, an unpolarized sample at Site A, and a spin-polarized sample at Site
B, separated by 5.5 m, are connected by a single-mode fiber. The insets show the
structure and the initial populations of the atomic levels for the two ensembles. An
entangled state of a collective atomic qubit and a signal field is generated at Site A
by Raman scattering of the write laser field. The orthogonal helicity states of the
generated signal field are transmitted via optical fiber from Site A to Site B, where
they are converted to orthogonal collective atomic excitations, stored for a duration
Ts, and subsequently converted into an idler field by adiabatic variation of the con-
trol field amplitude. The atomic qubit at Site A is similarly converted into an idler
field by a read laser pulse, counterpropagating with respect to the write pulse. For
polarization analysis, each idler field propagates through a quarter-wave plate (not
shown), a half-wave plate (λ/2) and a polarizing beamsplitter (PBS). Polarization
correlations of the idler fields are recorded by photoelectric detection using the single
photon detectors D1-D4.
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transition of the D2-line. We measured the optical thickness d ≃ 8 for both circular

components of the signal field.

In the adiabatic limit, the propagation, storage, and retrieval of the signal within

Site B is well described by the dark-state polariton mechanism [69, 75, 19, 20] dis-

cussed in Section C.5 of Appendix C. When the atomic sample at Site B is spin

polarized, a dark-state polariton operator exists for each polarization of the signal.

These polaritons are orthogonal, allowing each polarization to be stored indepen-

dently. The dark-state polariton operator of helicity α = ±1 at Site B is given by

Eq. (C.66) with pm = δm,0 and β = 1.

By switching off the control field over a period of about 20 ns, the photonic

qubit is converted into an atomic qubit. At this stage remote atomic qubits should

have been created at Sites A and B. Atoms at Site B should, ideally, be prepared

in a single Zeeman m = 0 state of the F = 2 hyperfine ground level (lower inset

in Figure 8.1). In practice the pumping is not perfect, possibly due to radiation

trapping in the optically thick atomic medium [128]. We measure lower storage and

retrieval efficiency for the negative helicity signal component compared with that

of the positive helicity component (3% vs 8%). Numerical simulations indicate that

the discrepancy between the efficiencies is consistent with a residual population in the

|F = 2, m = −2〉 atomic state at the 10% level. This results in undesirable absorption

of the signal field with negative helicity. These simulations were performed using the

propagation equation (C.51) derived in Section C.4.1.

The signal photon of helicity α = ±1 is stored in the ensemble at Site B with

efficiency ǫα. After a storage time Ts, the non-vacuum component of the state of the

two ensembles is given by the following density operator: ρ̂ = (1− ǫ)ρ̂A + ǫρ̂AB, where

the component ρ̂A describes the state of single excitation at Site A, and is expressed

by

ρ̂A =
1 − ǫ−
1 − ǫ

cos2 ηŝ†A+ρ̂vacŝA+ +
1 − ǫ+
1 − ǫ

sin2 ηŝ†A−ρ̂vacŝA−, (8.2)
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where ρ̂vac is the product of the ground state atomic density operators for the en-

sembles at Sites A and B. The density operator ρ̂AB = Ψ̂†
AB(Ts)ρ̂vacΨ̂AB(Ts) in the

two-qubit sub-space represents an entangled atomic state where

Ψ̂†
AB(Ts) = eiφ(Ts) cos η′ŝ†A+ŝ

†
B− − sin η′ŝ†A−ŝ

†
B+ (8.3)

with cos η′ =
√

ǫ−/ǫ cos η, and ǫ = ǫ− cos2 η + ǫ+ sin2 η is the average efficiency of

photon storage at Site B. The phase φ(t) = −2(gµB/~)B0t is induced by the applied

magnetic field B0 = 0.2G oriented along the propagation axis at Site B, where g is

the Landé g-factor for hyperfine level with F = 3.

Ideally, entanglement should have been created between the collective atomic

qubits at Sites A and B. After a storage time Ts, the remote collective atomic excita-

tions are converted by quantum state transfer into idler fields emanating from Sites

A and B, using a read laser pulse at Site A and by reactivating the control field at

Site B [57, 17]. The resulting idler-idler photoelectric correlations may be calculated

using the effective two-photon state

|Ψ2〉 = cos ηf |HV 〉 + eiφf sin ηf |V H〉 (8.4)

where |HV 〉 = â†A,H â
†
B,V |0〉f and |V H〉 = â†A,V â

†
B,H |0〉f , and the subscripts A and B

indicate the idler mode at the respective site. We omit higher-order terms in photon

number [18].

The phase φf , which includes the contributions due to the Larmor precession

φ(Ts), the light phase shifts in the atomic media, and various optical elements, is

introduced as an adjustable parameter. The mixing angle ηf is determined by the

relative efficiencies with which the two qubit states are transferred from the atomic

ensembles to the idler fields. If we assume equal transfer efficiencies at Site A, we find

cos ηf =
√

ǫB−/ǫB cos η, where ǫB = ǫB− cos2 η + ǫB+ sin2 η and ǫB± is the combined

storage and retrieval efficiency for a photon of helicity ± at Site B. Measurements

of these efficiencies give ǫB+ = 0.08, and ǫB− = 0.03. With η = 0.81π/4 fixed by
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the atom-photon entanglement process at Site A [17] we get ηf = 1.12π/4. Our

experimental data, including those displayed in Figure 8.3, are consistent with this

value of ηf and φf ≪ 1.

The above arguments are clearly conditional on the generation of the signal qubit.

According to Eq. (8.1), the corresponding probability scales as χ2, and this determines

the efficiency of the probabilistic entanglement generation. However, as Duan et

al. point out [47], quantum network protocols eliminate the vacuum component of

Eq. (8.1) and only the entanglement characteristics of |ψ〉 are relevant [129, 130]. In

our experiment, atomic qubits were stored for a time 500 ns at Site A and 200 ns at

Site B. It should be possible to extend the qubit storage times to longer than 10 µs,

as the single-quanta storage results suggest [18].

The measurement of the atomic qubits is performed by quantum state transfer

onto the idler fields at both sites using the read laser pulse at Site A and the control

laser pulse at Site B. The polarization state of either idler field is measured using a

polarizing beamsplitter and two single photon detectors, D1, D2 for Site A and D3,

D4 for Site B (additional technical details are given in Refs.[57, 17, 18]). Polarization

correlations between the idler fields produced at the remote sites are recorded and

analyzed for the presence of entanglement. The contributions of the vacuum and sin-

gle photon idler excitations are excluded in the observed photoelectric coincidences

between the remote sites [129, 130]. Since quantum state transfer is a local process,

it cannot generate entanglement. Hence, observation of idler field entanglement con-

firms probabilistic entanglement of the two remote atomic qubits. We denote the

number of such coincidences between detector Dn, n = 1, 2 at Site A and detector

Dm, m = 3, 4 at Site B by Cnm (θA, θB). Here θA and θB are the angles by which

polarization is rotated by the half-waveplates at these Sites.

The two-particle interference produces a high-visibility sinusoidal fringe pattern

for the coincidence rates Cnm (θA, θB), which is characteristic of entangled particles.
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Figure 8.2: Measured coincidence fringes Cn3(θA, θB) as a function of θA, for θB =
135◦, n = 1, diamonds, n = 2, squares. The curves are sinusoidal fits to the data.
Each point is acquired for 15 minutes. The effective repetition rate is 108 kHz, each
trial takes 1.1 µs.

Figure 8.2 shows measured coincidence fringes for some representative angles. We

calculate the coincidence rates Cnm(θA, θB) to be

C13(θA, θB) ∝ ǫ1ǫ3|(cos ηf + eiφf sin ηf ) sin(θB + θA)

+ (cos ηf − eiφf sin ηf ) sin(θB − θA)|2, (8.5a)

C24(θA, θB) ∝ ǫ2ǫ4|(cos ηf + eiφf sin ηf ) sin(θB + θA)

− (cos ηf − eiφf sin ηf ) sin(θB − θA)|2, (8.5b)

C14(θA, θB) ∝ ǫ1ǫ4|(cos ηf − eiφf sin ηf) cos(θB − θA)

+ (cos ηf + eiφf sin ηf) cos(θB + θA)|2, (8.5c)

C23(θA, θB) ∝ ǫ2ǫ3|(cos ηf − eiφf sin ηf) cos(θB − θA)

− (cos ηf + eiφf sin ηf) cos(θB + θA)|2, (8.5d)
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Figure 8.3: Measured correlation function E(θA, θB) as a function of θA. (a), θB = 0◦,
squares, and 90◦, diamonds. (b), θB = 45◦, squares, and 135◦, diamonds. The curves
are sinusoidal fits to the data.

where ǫm is the overall efficiency (including propagation losses) for detector Dm, and

similar expressions for the other three rates.

8.3 Measurement of Bell’s Inequality Violation

Observation of Bell inequality violation is one method to confirm two-particle en-

tanglement, by way of measurement of discrete values of Cnm(θA, θB) at polarization

settings which lie on the slopes of the fringe pattern. Explicitly, following Clauser-

Horne-Shimony-Holt (CHSH) [91], we calculate the correlation function E(θA, θB),

given by

C13 (θA, θB) + C24 (θA, θB) − C14 (θA, θB) − C23 (θA, θB)

C13 (θA, θB) + C24 (θA, θB) + C14 (θA, θB) + C23 (θA, θB)
. (8.6)

In Figure 8.3 we display E (θA, θB) as a function of θA, for four values of θB. By

fitting the correlation functions in Figure 8.3 with sinusoids, we determine a set of four

pairs of angles θA = 78.5◦, θB = 45◦, θ′A = 33.5◦ and θ′B = 0◦ that should maximize the

Bell inequality violation. We acquire data for two hours at each of these four points

(Table 8.1). In order to account for unequal efficiencies of the detectors D1, D2 and
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Table 8.1: Measured values of the correlation function E(θA, θB) at particular po-
larization settings and the Bell parameter S.

θA θB E(θA, θB)
78.5 45 0.447 ± 0.017
33.5 45 0.640 ± 0.014
78.5 0 0.572 ± 0.015
33.5 0 −0.504 ± 0.016

S = 2.16 ± 0.03

D3, D4, each correlation measurement consisted of four runs, flipping polarization

of either one of the idler fields by 90 degrees between the runs. As a result, the

products ǫmǫn are effectively replaced by the symmetric factor 1
4
(ǫ1 + ǫ2)(ǫ3 + ǫ4) in

Eq. (8.5a). In this case the correlation function E(θA, θB) becomes independent of

these efficiencies:

E(θA, θB) = −1

2
[cos(2(θA − θB))(1 − cosφf sin 2ηf)

+ cos(2(θA + θB))(1 + cos φf sin 2ηf)]. (8.7)

The CHSH version of the Bell inequality is then |S| ≤ 2, where

S = E(θA, θB) + E(θ′A, θB) + E(θA, θ
′
B) −E(θ′A, θ

′
B). (8.8)

We find S = 2.16 ± 0.03 � 2, in clear violation of the Bell inequality. No corrections

for background or dark counts were made to any of the experimental counting rates,

and these are chiefly responsible for the reduction in the observed value of S from the

ideal value of 2.60 predicted by our theoretical model.

8.3.1 Fidelity of entanglement between remote Sites A and B

An alternative method to characterize entanglement of the ensemble of detected idler-

idler photoelectric correlations is to determine the fidelity with respect to the maxi-

mally entangled state [131, 121, 32, 130]

|Ψ〉M = (|VA, HB〉 + |HA, VB〉)/
√

2 (8.9)
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Table 8.2: Inferred density matrix elements ρij . Error bars represent ± one standard
deviation and are based on the statistics of the photoelectric counting events.

θA θB HH HV VH VV
11◦ 0◦ 0.086 ± 0.007 0.315 ± 0.012 0.565 ± 0.013 0.034 ± 0.005
56◦ 45◦ 0.275 ± 0.012 0.055 ± 0.006 0.060 ± 0.006 0.610 ± 0.013

and this is given by

F =
1

2
(ρV H,V H + ρHV,HV + ρHV,V H + ρV H,HV ). (8.10)

We can write a lower bound on F in terms of the diagonal matrix elements of

the two-photon component of the density matrix in the original and rotated basis as

follows [32],

F ≥ 1

2
(ρHV,HV + ρV H,V H − 2

√
ρHH,HHρV V,V V

+ ρ̄HH,HH + ρ̄V V,V V − ρ̄HV,HV − ρ̄V H,V H). (8.11)

The diagonal density matrix elements are proportional to the joint two-photon pho-

toelectric detection probabilities, and can be expressed in terms of the coincidence

counts in the original Cij(11◦, 0◦), and rotated, Cij(56◦, 45◦), bases as follows

ρij,ij =
Cij (11◦, 0◦)

C13 (11◦, 0◦) + C23 (11◦, 0◦) + C14 (11◦, 0◦) + C24 (11◦, 0◦)
(8.12)

ρ̄ij,ij =
Cij(56◦, 45◦)

C13(56◦, 45◦) + C23(56◦, 45◦) + C14(56◦, 45◦) + C24(56◦, 45◦)
. (8.13)

As usual, normalization by the total number of coincidences here accounts for finite

measurement efficiency due to field propagation and detection losses.

Having measured each data point for one hour (Table 8.2), we found F = 0.77 ±

0.01, whereas the classical limit corresponds to F = 0.5.

8.4 Conclusion

In conclusion, we have demonstrated entanglement of two remote atomic qubits, based

on collective atomic states. By photoelectric detection of polarization correlations of
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the idler fields we have also confirmed the mapping of atomic qubit entanglement onto

photonic qubits. Long-lived entanglement of remote massive qubits and entanglement

transfer between matter and light are important prerequisites for realization of a

scalable quantum information network.
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CHAPTER 9

CONCLUSION

In this thesis, we have provided theoretical descriptions of several recent experiments

which implement basic quantum network operations using light interactions with cold

atomic ensembles. We have examined how collective Raman scattering of a classical

laser field can be modeled as a nondegenerate parametric amplifier involving a single

mode of the detected signal field and an associated idler collective excitation. When

the classical write pulse is sufficiently weak, this collective Raman scattering results

in the entanglement between a qubit encoded in the polarization of the photon and

the imprinted atomic excitation. The entanglement is inferred by transferring the

idler spin wave to an associated idler electromagnetic field mode and subsequently

measuring the correlations between the signal and idler fields. This retrieval process

can be understood through the dark-state polariton mechanism when EIT is oper-

ative. When EIT is not possible, as in the experiment of Chapter 3, however, the

retrieval process is not as well understood; the dynamics of the retrieval process are

the subject of future investigations.

We also demonstrated that entanglement between the polarizations of two photons

can be achieved using atomic cascade transitions. The cascade scheme has the advan-

tage that the atomic transitions can be chosen such that one of the photons is emitted

in the telecom range, making it ideal for long distance transmission through optical

fibers. The second photon, on the other hand, lies in a frequency band that is ideal

for storage within an atomic ensemble. In the experimental demonstration of this

entanglement, superradiant time scales were observed in the temporal correlations of

the emitted quantum fields. A detailed theoretical description of the superradiant
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behavior in this system is currently under development [132].

The collective Raman scattering process that generates probabilistic entanglement

between the scattered photons and an associated atomic excitation was also exploited

to produce a source of deterministic single photons. The experimental advances that

lead to increased quantum memory lifetime (e.g. better isolation from ambient mag-

netic fields that lead to Larmor collapse of the dark-state polariton) have allowed us

to implement a measurement-based quantum feedback protocol that arms the atomic

ensemble with a single collective excitation with high probability. The excitation

state of atomic ensemble is then mapped to a detected mode of the electromagnetic

field at a predetermined time.

We also extended the theory of dark-state polaritons introduced in Ref. [69] to

treat collections of atoms with nuclear spin degeneracy. This development allowed us

to theoretically describe the storage and retrieval of single photon states within an

atomic ensemble reported in Chapter 6. We further predicted, that in the presence of

a uniform magnetic field, Larmor precession induces collapses and revivals of the dark-

state polariton population and, therefore, of the retrieval efficiency as a function of

storage time. These predictions were confirmed by experimental observations. It will

be shown in a separate work [76] that magnetic field gradients explain the observed

reduction of revival amplitudes ( Figure 7.5 ), and are responsible for the current

limitation of quantum memory lifetimes.

Finally, the primitive operations of probabilistic entanglement generation between

a photon and quantum memory element and the mapping of a photonic state to a

collective atomic excitation were synthesized to produce entanglement of two remote

atomic qubits.
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APPENDIX A

POLARIZATION CONVENTIONS

In the thesis, whenever I am constrained to choose the polarization vectors ~ελ (λ ∈

{H, V }) for a propagation direction k̂, they are chosen according to the convention

presented here. Let us express the propagation direction k̂ in terms of the angles θk̂

and φk̂ as

k̂ = cos θk̂x̂− sin θk̂ sinφk̂ŷ + sin θk̂ cosφk̂ẑ. (A.1)

We then choose the horizontal polarization

~εH(k̂) = −θ̂k̂ = sin θk̂x̂+ cos θk̂ sin φk̂ŷ − cos θk̂ cosφk̂ẑ, (A.2)

and the “vertical” polarization

~εV (k̂) = −φ̂k̂ = cosφk̂ŷ + sinφk̂ẑ (A.3)

Notice that these vectors are orthonormal and the set {~εH , ~εV , k̂} form a right handed

coordinate system.

We note that in the most common situations, where the signal of interest propa-

gates along the k̂ = ẑ axis, our convention the “expected” definitions for horizontal

and vertical polarization vectors:

~εH(ẑ) = x̂ (A.4)

~εV (ẑ) = ŷ. (A.5)

We also note that when we perform a reflection k̂ → −k̂, we have the following

transformations for the linear polarizations in this particular convention:

~εH(−k̂) = ~εH(k̂) (A.6)

~εV (−k̂) = −~εV (k̂). (A.7)
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We also adopt the following convention for the spherical helicity vectors. Let ~eα(k̂)

be the spherical vector of helicity α ∈ {−1, 0, 1} with respect to the direction k̂. The

helicity vectors are given by

~e0(k̂) = k̂ (A.8a)

~e±1(k̂) = ∓ 1√
2

(

~εH(k̂) ± i~εV (k̂)
)

. (A.8b)

The spherical basis vectors satisfy the orthogonality relations

~e∗α(k̂) · ~eβ(k̂) = δαβ (A.9a)

~eα(k̂) · ~eβ(k̂) = (−1)αδα,−β (A.9b)

Since the z axis serves as the typical quantization axis for angular momentum, we de-

fine the “laboratory fixed” circular polarization vectors as the spherical basis vectors,

~ξα ≡ ~eα(ẑ).

We note the following symmetry relationships among helicity vectors:

~e∗α(k̂) = (−1)α~e−α(k̂) (A.10a)

~eα(−k̂) = −~e−α(k̂) (A.10b)

= (−1)α+1~e∗α(k̂). (A.10c)
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APPENDIX B

DERIVATION OF THE EFFECTIVE

HAMILTONIAN FOR SCATTERING FROM

ATOMIC ENSEMBLES

In this Appendix, we show how one can adiabatically eliminate the excited state

in a three level atom and arrive at the effective Hamiltonian for stimulated Raman

scattering used to describe the Raman scattering from atomic ensembles, which can

result in the generation of entangled qubits.

We consider a collection of N three level atom with two levels |a〉 and |b〉 in the

ground state hyperfine manifold and an excited level |c〉 that may be coupled to

ground levels |a〉 and |b〉 via an electric dipole transition. Levels |a〉, |b〉, and |c〉 have

total atomic angular momenta Fa, Fb, and Fc respectively.

These atoms interact with a pump, or write, field and the electromagnetic reser-

voir. The write field has the properties of a narrow bandwidth system field described

in Chapter 2. The positive frequency electric write field operator can be expressed

in terms of the slowly varying photon density operators ϕ̂(z, t) and their transverse

spatial profile φ(w)(~r) as

Ê
(+)

w (~r, t) = (2π)3/2 E (ckw) ei~kw·~re−ickwtφ(w) (~r)
∑

α=±1

~ξαϕ̂
(w)
α (z, t) (B.1)

The write beam carrier frequency ckw = (ωc − ωa) + ∆w is detuned from resonance

on the |a〉 ↔ |c〉 transition by the frequency ∆w. We assume, however, that ∆w

is small enough that the pump field is much closer to resonance on the |a〉 ↔ |c〉

transition than to any other electric dipole transition in the chosen atom (85Rb in
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our experiments). Furthermore, the bandwidth of the pump field has a bandwidth

c∆kw ≪ ∆w.

The positive frequency component of the electric reservoir field is given by

Ê
(+)

R (~r, t) = Ê (~r, t) − Êw (~r, t) (B.2)

with the total positive frequency electric field expressed in the interaction picture in

terms of plane wave annihilation operators as

Ê
(+)

(~r, t) = i

∫

d3k
∑

λ

~ελ

(

k̂
)

E (ck) ei~k·~re−icktâλ

(

~k
)

(B.3)

The atom field interaction in the interaction picture is given in the electric dipole

and rotating wave approximations by

V̂ (t) = −
∑

µ

(

d̂
(−) µ

(a,c) (t) · Ê(+)
(~rµ, t) + d̂

(−) µ

(b,c) (t) · Ê(+)
(~rµ, t)

)

+ h.c. , (B.4)

where d̂
(−)

(f,f ′) (t) is the negative frequency component of the dipole operator coupling

levels |f〉 and |f ′〉. These dipole operators may be expressed in terms of atomic

coherences as in Eq. (2.39) in Chapter 2.

From the interaction picture Hamiltonian, we arrive at the Heisenberg equation

of motion for the slowly varying write field envelope

(

∂

∂t
+ c

∂

∂z

)

ϕ̂(w)
α (z, t) = i

√

ckw

2~ǫ0
e−ikwzei∆wtP̃(+)

(a,c) α (z, t) , (B.5)

where

P̃(+)
(f,f ′) α (z, t) ≡

N
∑

µ=1

~ξ∗α · d̃(+)(µ)
(f,f ′) (t)φ(w)∗ (~rµ) δ

(

r
(w)
‖ − k̂w · ~rµ

)

, (B.6)

is the slowly varying positive frequency linear polarization density interacting with

the write field component with helicity α, and d̃
(+)µ
(f,f ′)(t) = exp i((ωf ′ − ωf)t)d̂

(+)µ

(f,f ′)(t)

is the slowly varying dipole operator connecting levels |f〉 and |f ′〉.
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B.1 Atomic Coherence Equations of Motion

In this Section we write the equations of motion for the individual atomic coherences.

For a general slowly varying coherence between states |f1, m1〉 and |f2, m2〉, we have

the Heisenberg equation of motion,

dσ̃
(µ)
f1,m1; f2,m2

(t)

dt
=

i

~

[

σ̃f1,m1; f2,m2 (t) , d̂
(+) µ

(t)
]

·
(

Ê
(−)

w (~rµ, t) + Ê
(−)

R (~rµ, t)
)

+
i

~

[

σ̃f1,m1; f2,m2 (t) , d̂
(−) µ

(t)
]

·
(

Ê
(+)

w (~rµ, t) + Ê
(+)

R (~rµ, t)
)

. (B.7)

Below, we write the equations of motion for the slowly varying Zeeman coherences,

optical coherences, and the hyperfine coherences between levels |a〉 and |b〉. The

Heisenberg equations of motion for the Zeeman coherences are as follows:

dσ̃
(µ)
a,m1; a,m2 (t)

dt
=

ieikwzµ

1
∑

α=−1

CFa 1 Fc
m2 α m2+αe

i∆tσ̃a,m1; c,m2+α (t) Ω̂
(w) †
(a,c) α (~r, t)

− ieikwzµ

1
∑

α=−1

CFa 1 Fc
m1 α m1+αe

−i∆tσ̃c,m1+α; a,m2 (t) Ω̂(a,c) α (~rµ, t)

+
1
∑

α=−1

CFa 1 Fc
m2 α m2+ασ̃a,m1; c,m2+α (t)

×
∫

d3k
∑

λ

(

~ξα · ~ελ

(

k̂
))

G∗
(a,c) (ck) e−i~k·~rµei(ck−(ωc−ωa))tã†λ

(

~k, t
)

+

1
∑

α=−1

CFa 1 Fc
m1 α m1+ασ̃c,m1+α; a,m2 (t)

×
∫

d3k
∑

λ

(

~ξ∗α · ~ελ

(

k̂
))

G(a,c) (ck) ei~k·~rµe−i(ck−(ωc−ωa))tãλ

(

~k, t
)

, (B.8)
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dσ̃µ
b,m1; b,m2

(t)

dt

=
1
∑

α=−1

CFb 1 Fc

m2 α m2+ασ̃b,m1; c,m2+α (t)

×
∫

d3k
∑

λ

(

~ξα · ~ελ

(

k̂
))

G∗
(b,c) (ck) e−i~k·~rµei(ck−(ωc−ωb))tã†λ

(

~k, t
)

+
1
∑

α=−1

CFb 1 Fc

m1 α m1+ασ̃c,m1+α; b,m2 (t)

×
∫

d3k
∑

λ

(

~ξ∗α · ~ελ

(

k̂
))

G(b,c) (ck) ei~k·~rµe−i(ck−(ωc−ωb))tãλ

(

~k, t
)

, (B.9)

and

dσ̃µ
c,m1; c,m2

(t)

dt

=
∑

α

CFa 1 Fc
m1−α α m1

ei∆wtσ̃a,m1−α; c,m2 (t)

×
[

∫

d3k
∑

λ

(

~ξα · ~ελ

(

k̂
))

G∗
(a,c) (ck) e−i~k·~rµeic(k−kw)tã†λ

(

~k, t
)

−ie−ikwzΩ̂
(w) †
(a,c) α (~r, t)

]

+
1
∑

α=−1

CFb 1 Fc

m1−α α m1
ei∆wtσ̃b,m1−α; c,m2 (t)

×
∫

d3k
∑

λ

(

~ξα · ~ελ

(

k̂
))

G∗
(b,c) (ck) e−i~k·~rµei(ck−(∆w+ωc−ωb))tã†λ

(

~k, t
)

−
1
∑

α=−1

CFa 1 Fc
m2−α α m2

e−i∆wtσ̃c,m1; a,m2−α (t)

×
[

∫

d3k
∑

λ

(

~ξ∗α · ~ελ

(

k̂
))

G(a,c) (ck) ei~k·~rµe−ic(k−kw)tãλ

(

~k, t
)

−ieikwzΩ̂
(w)
(a,c) α (~r, t)

]

−
1
∑

α=−1

CFb 1 Fc

m2−α α m2
e−i∆wtσ̃c,m1; b,m2−α (t)

×
∫

d3k
∑

λ

(

~ξ∗α · ~ελ

(

k̂
))

G(b,c) (ck) ei~k·~rµ

×e−i(ck−(∆w+ωc−ωb))tãλ

(

~k, t
)

, (B.10)
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where ãλ(~k, t) ≡ eicktâλ(~k, t) is the slowly varying annihilation operator for a photon

of wave vector ~k and polarization ~ελ(k̂),

Ω̂
(w)
(a,c) α (~r, t) ≡

(

c
∥

∥

∥
d̂

∥

∥

∥
a
)

√

ckw

2~ǫ0
φ(w) (~r) ϕ̂(w)

α (z, t) (B.11)

is the Rabi frequency operator of the pump field of helicity α on the |a〉 ↔ |c〉

transition, and G(f,f ′)(ck) ≡
(

f ′
∥

∥

∥
d̂

∥

∥

∥
f
)

E(ck)/~, is the coupling constant between

the quantum field and on the |f〉 ↔ |f ′〉 transition.

The Heisenberg equations for the optical coherences between the ground levels

|a〉,|b〉 and the excited level |c〉 are given by

ei∆wtdσ̃
(µ)
a,m1; c,m2 (t)

dt

= −
1
∑

α=−1

CFb 1 Fc

m2−α α m2
σ̃a,m1; b,m2−α (t)

×
∫

d3k
∑

λ

(

~ξ∗α · ~ελ

(

k̂
))

G(b,c) (ck) ei~k·~rµe−i(ck−(∆w+ωc−ωb))tãλ

(

~k, t
)

+
1
∑

α=−1

(

CFa 1 Fc
m2−α α m2

σ̃a,m1; a,m2−α (t) − CFa 1 Fc
m1 α m1+ασ̃c,m1+α; c,m2 (t)

)

×
[

ieikwzΩ̂
(w)
(a,c) α (~rµ, t)

−
∫

d3k
∑

λ

(

~ξ∗α · ~ελ

(

k̂
))

G(a,c) (ck) ei~k·~rµe−ic(k−kw)tãλ

(

~k, t
)

]

, (B.12)
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and

ei∆wt
dσ̃µ

b,m1; c,m2
(t)

dt

=

1
∑

α=−1

CFa 1 Fc
m2−α α m2

σ̃b,m1; a,m2−α (t)

×
[

ieikwzµΩ̂
(w)
(a,c) α (~rµ, t)

−
∫

d3k
∑

λ

(

~ξ∗α · ~ελ

(

k̂
))

G(a,c) (ck) ei~k·~rµeic(k−kw)tãλ

(

~k, t
)

]

−
1
∑

α=−1

(

CFb 1 Fc

m2−α α m2
σ̃b,m1; b,m2−α (t) − CFb 1 Fc

m1 α m1+ασ̃c,m1+α; c,m2 (t)
)

×
∫

d3k
∑

λ

(

~ξ∗α · ~ελ

(

k̂
))

G(b,c) (ck) ei~k·~rµe−i(ck−(∆w+ωc−ωb))tãλ

(

~k, t
)

.(B.13)

Finally, the hyperfine coherences between levels |a〉 and |b〉 obey the equation of

motion

dσ̃µ
a,m1; b,m2

(t)

dt

=
1
∑

α=−1

CFb 1 Fc

m2 α m2+αe
i∆wtσ̃µ

a,m1; c,m2+α (t)

×
∫

d3k
∑

λ

(

~ξα · ~ελ

(

k̂
))

G∗
(b,c) (ck) e−i~k·~rµei(ck−(∆w+ωc−ωb))tã†λ

(

~k, t
)

−
1
∑

α=−1

CFa 1 Fc
m1 α m1+αe

−i∆wtσ̃c,m1+α; b,m2 (t)

×
[

ieikwzµΩ̂
(w)
(a,c) α (~r, t)

−
∫

d3k
∑

λ

(

~ξ∗α · ~ελ

(

k̂
))

G(a,c) (ck) ei~k·~rµe−ic(k−kw)tâλ

(

~k, t
)

]

. (B.14)

B.2 Adiabatic Elimination of the Optical Coher-

ences

In this section, we give an overview of the argument allowing one to adiabatically

eliminate the optical coherences and populations of level |c〉 from the dynamics. We
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begin by examining the equations of motion for the coherences within the ground

state manifold and the pump field envelope. We identify the conditions under which

these variables are time independent, i.e., are in a steady state. This steady state

is parameterized by the controlled variables of the system, such as the pump field

intensity. According to the principle of adiabaticity, provided the controlled system

variables vary sufficiently slowly, the system variables should follow the steady state

corresponding to those changing parameters.

For the ground level coherences and pump field to remain time independent, it is

necessary that the optical coherences satisfy the following conditions:

d

dt

(

ei∆wtσ̃µ
a,m1; c,m2

(t)
)

= 0, (B.15)

and

d

dt

(

ei∆wtσ̃µ
b,m1; c,m2

(t)
)

= 0. (B.16)

From these conditions and the above equations of motion for the optical coherences,

we may express the optical coherences in terms of the hyperfine coherences and electric

field. These optical coherences are given in the adiabatic limit by

σ̃µ
a,ma;c,mc

(t)

= − 1

~∆w

[

σ̃µ
a,ma; c,mc

(t) , d̂
(−) µ

(t) ·
(

Ê
(+)

w (~rµ, t) + Ê
(+)

R (~rµ, t)
)]

= − 1

~∆w

[

σ̃(µ)
a,ma; c,mc

(t) , d̂
(−) µ

(a,c)

]

·
(

Ê
(+)

w (~rµ, t) + Ê
(+)

R (~rµ, t)
)

− 1

~∆w
σ̃µ

a,ma; c,mc
(t)
(

d̂
(−) µ

(b,c) · Ê(+)

R (~rµ, t)
)

(B.17)

and

σ̃µ
b,mb; c,mc

(t)

= − 1

~∆w
ei(ωc−ωa)tσ̃µ

b,mb; c,mc
(t)
(

d̂
(−) µ

(a,c) ·
(

Ê
(+)

w (~rµ, t) + Ê
(+)

R (~rµ, t)
))

− 1

~∆w

[

σ̃µ
b,mb; c,mc

(t) ,
(

d̂
(−) µ

(b,c) · Ê(+)

R (~rµ, t)
)]

. (B.18)
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Substituting Eqs. (B.17) and (B.18) into the dipole interaction Hamilton ( Eq. (B.4) ),

we arrive at an effective Hamiltonian for the dynamics of the field interacting with

levels |a〉 and |b〉. We write the effective Hamiltonian as

V̂ (t) =
N
∑

µ=1

[

1

~∆w

(

d̂
(+) µ

(a,c) (t) ·
(

Ê
(−)

w (~rµ, t) + Ê
(−)

R (~rµ, t)
))

×
(

d̂
(−) µ

(a,c) (t) ·
(

Ê
(+)

w (~rµ, t) + Ê
(+)

R (~rµ, t)
))

+
2

~∆w

(

d̂
(+) µ

(a,c) (t) ·
(

Ê
(−)

w (~rµ, t) + Ê
(−)

R (~rµ, t)
))

×
(

d̂
(−) µ

(b,c) (t) · Ê(+)

R (~rµ, t)
)

+
1

~∆w

(

d̂
(+)

(b,c) (t) · Ê(−)

R (~rµ, t)
)(

d̂
(−) µ

(b,c) (t) · Ê(+)

R (~rµ, t)
)

]

+ h.c.. (B.19)

We may neglect terms in which only the reservoir field operators Ê
(±)

R (~rµ, t) appear

since these terms contribute to the Lamb shift, or radiation shift, which has already

been included in the bare atomic Hamiltonian in Chapter 2 Section 2.1.1. We then

arrive at the final effective Hamiltonian describing off resonant light scattering from

a cold atomic gas

V̂ (t) = V̂Stark(t) + V̂Rayleigh(t) + V̂Raman(t), (B.20)

where

V̂Stark(t) =
N
∑

µ=1

2

~∆w

(

d̂
(+) µ

(a,c) (t) · Ê(−)

w (~rµ, t)
)(

d̂
(−) µ

(a,c) (t) · Ê(+)

w (~rµ, t)
)

(B.21)

describes the ac Stark shift, an effective shift of the energies of the states in ground

level |a〉 resulting from interaction with the write field,

V̂Rayleigh(t) =
2

~∆w

N
∑

µ=1

(

d̂
(+) µ

(a,c) (t) · Ê(−)

R (~rµ, t)
)(

d̂
(−) µ

(a,c) (t) · Ê(+)

w (~rµ, t)
)

+h.c. (B.22)

describes Rayleigh scattering from the ensemble, and

V̂Raman(t) =
2

~∆w

N
∑

µ=1

(

d̂
(+) µ

(b,c) (t) · Ê(−)

R (~rµ, t)
)(

d̂
(−) µ

(a,c) (t) · Ê(+)

w (~rµ, t)
)

+ h.c. (B.23)

is the Raman scattering interaction, in which a scattered photon results in an atom

being transfered from level |a〉 to level |b〉.
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APPENDIX C

DYNAMICS OF LIGHT PROPAGATION IN A

GAS OF THREE-LEVEL ATOMS

In this appendix, we provide additional information on the theory of electromagnet-

ically induced transparency (EIT) for atoms with Zeeman degeneracy. We begin by

deriving a set of Heisenberg Langevin equations that describe the propagation of a

quantized signal field through an atomic sample in the presence of a control field.

To account for stray magnetic fields in the system, we include a interaction with a

constant, dc, magnetic field. We then describe how the equations of motion can be

solved numerically in the limit of a classical signal field. These simulations were used

to produce the numerical predictions made in Chapters 6 and 7. When a judicious

choice of atomic levels and field polarizations is made, we show that the medium

supports EIT for the signal field. We then show that in an adiabatic limit, the propa-

gation, storage, and retrieval dynamics of the quantum field within the atomic sample

is well described by the dark state polariton mechanism [19]. The dark state polari-

ton was first introduced in the context of electromagnetically induced transparency

in nondegenerate three-level atoms by Fleischhauer and Lukin [69, 75].

C.1 Model Description

In this Section, we introduce the model used in Chapters 6 and 7 to characterize the

signal propagation dynamics leading to EIT in a collection of atoms with Zeeman

degeneracy.
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We consider an ensemble of N atoms with three hyperfine levels in a Λ config-

uration labeled by |a〉, |b〉, and |c〉 with total angular momenta Fa, Fb, and Fc and

energies ~ωa, ~ωb, and ~ωc, respectively. An atom, labeled by index µ ( µ = 1 . . .N ,

rests at position ~r µ. We assume the atomic velocities are sufficiently low that we may

take the atoms to be stationary. The atomic positions {~r µ} are treated as classical

independent identically distributed random variables with an associated probability

density n(~r )/N , where n(~r is the atomic number density. The atoms interact with

a classical control field resonant on the |a〉 ↔ |c〉 transition and a quantized signal

field resonant on the |b〉 ↔ |c〉 transition. The signal and control fields both satisfy

the properties of narrow bandwidth system fields discussed in Chapter 2. We assume

the signal field has a carrier wave vector ~k s = [(ωc −ωb)/c]ẑ. The signal field has the

time independent transverse spatial profile φ(s)(~r ), which satisfies the normalization

condition
∫

d2k
(s) 2
⊥

∣

∣φ(s)(~r )
∣

∣

2
= 1, where for a vector ~v , ~v

(s)
⊥ ≡ ~v − k̂s ·~v . The positive

frequency component of the signal electric field is given in the interaction picture by

Ê
(+)

s (~r , t) = (2π)3/2 E (cks) e
i~k s·~r e−ickstφ(s) (~r )

∑

α=±1

~ξ αϕ̂
(s)
α (z, t) , (C.1)

where ϕ̂
(s)
α (z, t) is the linear photon density annihilation operator for signal photons

at position z = ~r · ẑ and helicity α. These photon density operators obey the bosonic

equal time commutation relations

[

ϕ̂(s)
α (z, t) , ϕ̂

(s)†
β (z′, t)

]

= δα,βδ (z − z′) . (C.2)

Their definitions in terms of plane wave operators is given in Eq. (2.63) of Chapter 2.

The control field propagates nearly parallel to the z-axis with a wave vector ~kc =

[(ωc−ωa)/c]k̂c. We will make the paraxial approximation on the control field helicities

~e α

(

k̂s

)

≈ ~ξ α, where ~ξα are the laboratory fixed spherical basis vectors ( Eq. (2.31) ).

We allow the freedom in the choice of control field propagation direction so that we

may adequately describe the off axis configuration used in the experiments described
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in Chapters 6 through 8. The positive frequency component of the classical control

field is given by

~E (+)
c (~r , t) ≡ ~e ce

i~k c·~r e−ickctEc(t), (C.3)

where ~e c is the control field polarization, and Ec (t) is the slowly varying control

electric field. We assume Ec is constant over the width of the transverse spatial mode

of the signal. Furthermore, we assume Ec(t) varies sufficiently slowly that we may

consider it constant over the length of the ensemble.

The dynamics of the field-ensemble system are governed by the interaction picture

Hamiltonian

V̂ (t) = V̂AS(t) + V̂AC(t) + V̂AR(t) + V̂AB(t), (C.4)

where V̂AS = −∑N
µ=1 d̂

µ
(t) · (Ê(+)

s (~r µ, t)+ Ê
(−)

s (~r µ, t)) is the interaction of the atoms

with the signal field, d̂
µ
(t) is the electric dipole operator of atom µ ( Eq. (2.39) ),

V̂AC(t) = −∑N
µ=1 d̂

µ
(t) · ( ~E

(+)
c (~r µ, t) + ~E

(−)
c (~r µ, t)) is the interaction of the atoms

with the control field,

V̂AB(t) =
∑

f∈{a,b,c}

gfµB
~B ·
(

N
∑

µ=1

F̂
µ

f

)

(C.5)

is the interaction of the atoms with the constant magnetic field ~B , ~F µ
f is the pro-

jection of the total angular momentum operator of atom µ onto level |f〉, gf is the

corresponding Landé g factor, and µB is the Bohr magneton. As we shall demon-

strate later, the associated Larmor precession serves as a possible explanation for the

reduction of retrieval efficiency of stored photons over long storage times reported in

Chapter 6[22]. The uniform magnetic field also leads to the subsequent revivals in

retrieval efficiency discussed in Chapter 7[19, 20]. The interaction of the ensemble

with the reservoir of undetected electromagnetic field modes is given by

V̂AR(t) = − 1

ǫ0

N
∑

µ=1

d̂
µ
(t) · D̂R (~r µ, t) , (C.6)
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where D̂R(~r , t) = ǫ0(Ê
(+)

R (~r , t)+h.c.) is the electric displacement field of the reservoir,

as described in Section 2.1.4 of Chapter 2, the positive frequency electric field operator

of the reservoir is given by

Ê
(+)

R (~r , t) = Ê
(+)

(~r , t) − Ê
(+)

s (~r , t) − ~E (+)
c (~r , t) , (C.7)

and Ê
(+)

(~r , t) is the total positive frequency electric field operator ( Eq. (2.42) ). The

reservoir electric field operator can be expanded in terms of plane wave modes as

Ê
(+)

R (~r , t) = i

∫

d3k
∑

λ

~ε λ

(

k̂
)

E (ck) ei~k ·~r e−icktδâλ

(

~k ;~r , t
)

, (C.8)

where where δâλ(~k ;~r , t) is the contribution of the plane wave annihilation operator

âλ(~k) to the reservoir field. This operator is given by

δâλ

(

~k;~r , t
)

≡ âλ

(

~k
)

−
∑

ι∈{s,c}

Θ (∆kι/2 − |k − kι|)

×f (ι)(~k
(ι)
⊥ )eic

|~k (ι)
⊥ |2
2kι

(t−k̂ι·~r /c)â
(ι)
λ

(

k
(ι)
‖ , t− r

(ι)
‖ /c

)

, (C.9)

where Θ(k) is the Heaviside function, c∆ks[c], is the maximum bandwidth of the signal

[control] field as discussed in Section 2.1.4 of Chapter 2,

f (ι)(~k
(ι)
⊥ ) = − i

2π
e

i
|~k (ι)2

⊥ |
2kι

r
(ι)
‖

∫

d2r
(ι)
⊥ e−i~k ⊥·~rφ(ι)(~r ) (C.10)

is the Fourier transform of the transverse mode spatial mode of field ι ∈ {s, c}, φ(ι)(~r),

and the operator

â
(ι)
λ

(

k
(ι)
‖ , t

)

≡
∫

d2k⊥ e−ic
|~k (ι)

⊥ |2
2kι

tf (ι)∗
(

~k
(ι)
⊥

)

âλ

(

~k
)

, (C.11)

where, for a vector ~v , ~v = v
(ι)
‖ v̂ι + ~v

(ι)
⊥ .

Before the signal field interacts with the ensemble each atom µ is prepared in the

mixed state

ρ̂µ
0 =

Fb
∑

m=−Fb

pm |b,m〉µ 〈b,m| (C.12)
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where pm is the probability that atom µ is in the Zeeman state |b,m〉. This model of

the initial atomic state allows us to account for the two initial conditions considered in

this thesis: an unpolarized sample in which pm = (2Fb +1)−1, and a polarized sample

in which atoms are prepared in an initial Zeeman state |b,M〉, with pm = δmM . We

will refer to the density matrix

ρ̂A,vac =
N
⊗

µ=1

ρ̂µ
0 (C.13)

as the “atomic vacuum”.

In the remainder of this appendix, we will provide an analysis of this model

leading to the phenomenon of EIT and the dark-state polariton mechanism for signal

storage within the atomic ensemble. In the next section, we consider the interaction

of the atoms in the reservoir, and derive the contribution of this interaction to the

atomic coherence equations of motion. Section C.3 presents the Heisenberg Langevin

equations describing the evolution of the atomic variables as the atoms interact with

the signal and control fields. We pay particular attention to the limit of a weak signal

field, where the atomic level populations remain essentially unchanged. With the

weak signal limit, we arrive at the coupled equations between for the signal field and

collective atomic excitations presented in Section C.4. From these equations, we will

examine the dynamics of signal field propagation in the classical limit, and derive the

conditions for EIT. The dark-state polariton mechanism for storage and retrieval of

the signal then arises from the adiabatic treatment of Section C.5.

C.2 Interaction of the Atoms with the Reservoir:

Spontaneous Emission

In this section, we will provide a review of the dynamics of spontaneous decay of

atomic excitations. The decay of optical atomic coherences results from an interaction

of the atomic variables with the reservoir of undetected field modes. In the absence of
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the control field in our system, it is this spontaneous emission that causes the atomic

medium to be opaque to the propagating signal, as observed in Figure 6.2.

Let us consider the Heisenberg equation of motion for the slowly varying atomic

coherences σ̃f1,m1; f2,m2(t) = exp(i(ωf2 − ωf1)t)σ̂f1,m1; f2,m2(t),

dσ̃µ
f1,m1; f2,m2

dt
=

1

i~

[

σ̃µ
f1,m1; f2,m2

(t), V̂AS(t) + V̂AC(t) + V̂AB(t)
]

+
1

i~

[

σ̃µ
f1,m1; f2,m2

(t), V̂AR(t)
]

(C.14)

with the contribution of the reservoir interaction given by

1

i~

[

σ̃µ
f1,m1; f2,m2

(t), V̂AR(t)
]

=
i

~

N
∑

µ=1

[

σ̃f1,m1; f2,m2(t), d̂
µ
(t)
]

·
(

Ê
(+)

R (~r µ, t) + Ê
(−)

R (~r µ, t)
)

, (C.15)

where Ê
(−)

R (~r , t) = Ê
(+)†

R (~r , t) is the negative frequency component of the reservoir

field.

The equation of motion for the coherence ( Eq. (C.14) ) depends on both the

system fields (signal and control) and the reservoir field modes. Ideally, we would

like the atomic coherences and system fields to form a closed set of equations so that

either analytic or numerical solutions become more tractable. To accomplish this,

we approximate the solutions of the reservoir fields, and substitute these solutions

into Eq. (C.14). First, we consider the equation of motion for the slowly varying

plane wave operator ãλ(~k , t) ≡ eicktâλ(~k , t). We note that in the interaction picture,

ãλ(~k , t) = âλ(~k ). This operator evolves in the Heisenberg picture according to

dãλ

(

~k , t
)

dt
=

E (ck)

~

N
∑

µ=1

e−i~k ·~r µ

∑

{f,f ′:ωf ′>ωf}

~ε λ

(

k̂
)

·
(

d̂
(+) µ

(f,f ′)(t) + d̂
(−) µ

(f,f ′)(t)
)

. (C.16)
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Solving Eq. (C.16), we find

ãλ

(

~k , t
)

= ãλ

(

~k , 0
)

+
E (ck)

~

N
∑

µ=1

e−i~k ·~r µ

∑

{f,f ′:ωf ′>ωf}

ei[ck−(ωf ′−ωf)]t

×
∫ t

0

dτ e−i(ck−(ωf ′−ωf))τ~ε λ

(

k̂
)

· d̃(+) µ

(f,f ′) (t− τ)

+
E (ck)

~

N
∑

µ=1

e−i~k ·~rµ

∑

{f,f ′:ωf ′>ωf}

ei[ck+(ωf ′−ωf)]t

×
∫ t

0

dτ e−i(ck+(ωf ′−ωf))τ~ε λ

(

k̂
)

· d̃(−) µ

(f,f ′) (t− τ) , (C.17)

where, again, d̃
(+)µ

(f,f ′) (t) ≡ exp(i(ωf ′ − ωf)t)d̂
(+) µ

(f,f ′)(t) is the slowly varying dipole oper-

ator connecting levels |f〉 and |f ′〉. When we substitute Eq. (C.17) into the equation

of motion for the atomic coherence ( Eq. (C.16) ), we find that find that the equation

of motion contains integrals of the form

Ĝ
s1,s2

µ,ν (t; f, f ′)

≡
∑

λ

∫

d3k

(E (ck)

~

)2

eis1
~k ·(~r µ−~r ν)~ε λ

(

k̂
)

×
∫ t

0

dτ e−i(s1ck−s2(ωf ′−ωf))τ
(

~ε λ

(

k̂
)

· d̃(s2)ν

(f,f ′) (t− τ)
)

, (C.18)

where s1, s2 ∈ {±1}, and µ, ν ∈ {µ ∈ N : µ ≤ N} are atomic indices. These integrals

that appear in the equation of motion not only account for the dynamics of a single

atom in the reservoir, but also result in an effective interaction between neighboring

atoms. It is this interaction that leads to cooperative effects such as superradiance

[95, 96, 133, 134, 90], or multiple photon scattering events within the ensemble. In

this thesis, however, we assume the atomic gas is sufficiently dilute that we can neglect

these multiple scattering effects so that, in essence, each atom sees an independent
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reservoir of field modes. The operator quantity Ĝ is then approximately

Ĝ
s1,s2

µ,ν (t; f, f ′)

= δµ,ν

∑

λ

∫

d3k

(E (ck)

~

)2

~ε λ

(

k̂
)

×
∫ t

0

dτ e−i(s1ck−s2(ωf ′−ωf))τ
(

~ε λ

(

k̂
)

· d̃(s2) µ

(f,f ′) (t− τ)
)

. (C.19)

This quantity involves an integration of the complex exponential e−i(s1ck−s2(ωf ′−ωf))τ

over a broad band of wave numbers k. For nonzero delays τ , the wavenumber con-

tributions tend to destructively interfere. As a result, we may make the Markov

approximation, assuming that the equation of motion for the coherence at time t

depends only on the values of the system variables at that time. We then write

Ĝ
s1,s2

µ,ν (t; f, f ′) = δµ,ν

∑

λ

∫

d3k

(E (ck)

~

)2

~ε λ

(

k̂
)(

~ε λ

(

k̂
)

· d̃(s2) µ

(f,f ′) (t)
)

×
∫ t

0

dτ e−i(s1ck−s2(ωf ′−ωf))τ . (C.20)

Furthermore, we make the approximation on the time integral [16],

∫ t

0

dτ e−i(s1ck−s2(ωf ′−ωf))τ

≈
∫ ∞

0

dτ e−i(s1ck−s2(ωf ′−ωf))τ

= πδ (s1ck − s2 (ωf ′ − ωf)) − iP.V.
1

s1ck − s2 (ωf ′ − ωf)
(C.21)

where P.V. indicates that the integration over k should be the Cauchy principal value

integral.

The final approximation we make in determining the dynamics of an atom inter-

acting with the reservoir is the rotating wave approximation. We assume that we are

only interested in time scales much longer than

τRWA =
2π

min {(ωf − ωf ′) : f 6= f ′} , (C.22)

and neglect any terms in the equations of motion involving complex exponentials with

periods shorter than τRWA. In the three level system we consider in this appendix,
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the minimum energy spacing is the hyperfine splitting of the ground levels: (ωa −

ωb)/(2π) = 3.04 GHz for 85Rb. This energy splitting is much larger than both the

bandwidths of the system fields and the spontaneous emission rate ( Eq. (C.25) ) [81].

Therefore, we may safely set τRWA = 0.33 ns > 2π/|ωa − ωb|.

In the rotating wave and Markov approximations, we find the contribution of the

reservoir interaction to the atomic coherence equations of motion is given by

1

i~

[

σ̃µ
f,m; f ′,m′ , V̂AR (t)

]

≈ ζ̂µ
f1,m1; f2,m2

(t) −
(

1

2
(Γf1 + Γf2) + i (∆f1 − ∆f2)

)

σ̃f1,m1; f2,m2 (t)

+
∑

{f :ωf1
<ωf}

δf1,f2Γ
f
f1

1
∑

α=−1

C
Ff1

1 Ff

m1 α m1+αC
Ff1

1 Ff

m2 α m2+ασ̃f,m1+α; f,m2+α (t) , (C.23)

where ζ̂µ
f1,m1; f2,m2

(t) is the quantum noise operator,

Γf
f1

≡ 4

3

(ωf − ωf1)
3

4πǫ0~c3

∣

∣

∣

(

f
∥

∥

∥
d̂

∥

∥

∥
f1

)∣

∣

∣

2

(C.24)

is the spontaneous decay rate from level f to level f1,

Γf ≡
∑

{f ′:ωf ′<ωf}
Γf

f ′ (C.25)

is the spontaneous emission rate of level f ,

∆f ≡
∑

f ′ 6=f

∆f ′

f (C.26)

accounts for a portion of the radiation shift of level |f〉, and

∆f ′

f ≡ 2

3π

1

4πǫ0~

∣

∣

∣

(

f ′
∥

∥

∥
d̂

∥

∥

∥
f
)∣

∣

∣

2

P.V.

∫ ∞

0

dk
ck3

(ck − (ωf ′ − ωf))
(C.27)

is the contribution to the energy sift of level |f〉 from the level |f ′〉. The noise operator

ζ̂µ
f1,m1; f2,m2

(t) is given in the rotating wave approximation by

ζ̂µ
f1,m1; f2,m2

(t) =

4
∑

j=1

ξ̂
(j)µ
f1,m1; f2,m2

(t) , (C.28)
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where

ξ̂
(1)µ
f1,m1; f2,m2

(t) ≡
∑

{f ′:ωf2
<ωf ′}

1
∑

α=−1

C
Ff2

1 Ff ′

m2 α m2+α

×
(

∫

d3k
∑

λ

(

~ξ α · ~ε λ

(

k̂
))

G∗
(f2,f ′) (ck) e−i~k ·~r ei(ck−(ωf ′−ωf2))tã†λ

(

~k , 0
)

)

× σ̃f1,m1; f ′,m2+α (t) , (C.29a)

ξ̂
(2)µ
f1,m1; f2,m2

(t) ≡ −
∑

{f,:ωf<ωf2}

1
∑

α=−1

C
Ff 1 Ff2
m2−α α m2

σ̃f1,m1; f,m2−α (t)

×
(

∫

d3k
∑

λ

(

~ξ ∗
α · ~ε λ

(

k̂
))

G(f,f2) (ck)

×ei~k ·~r µe−i[ck−(ωf2
−ωf)]tãλ

(

~k , 0
)

)

, (C.29b)

ξ̂
(3)µ
f1,m1; f2,m2

(t) =
∑

{f ′:ωf1
<ωf ′}

1
∑

α=−1

C
Ff1

1 Ff ′

m1 α m1+ασ̃f ′,m1+α; f2,m2 (t)

×
(

∫

d3k
∑

λ

(

~ξ ∗
α · ~ε λ

(

k̂
))

G(f1,f ′) (ck)

×ei~k ·~r µe−i[ck−(ωf ′−ωf1)]tãλ

(

~k , 0
)

)

, (C.29c)

and

ξ̂
(4) µ
f1,m1; f2,m2

(t) ≡ −
∑

{f :ωf<ωf1}

1
∑

α=−1

C
Ff 1 Ff1
m1−α α m1

×
(

∫

d3k
∑

λ

(

~ξ α · ~ε λ

(

k̂
))

G∗
(f,f1) (ck) e−i~k ·~r µei[ck−(ωf1

−ωf)]tã†λ

(

~k , 0
)

)

×σ̃f,m1−α; f2,m2 (t) , (C.29d)

where G(f,f ′)(ck) ≡ E(ck)
(

f ′
∥

∥

∥
d̂

∥

∥

∥
f
)

/~.

We note that we have already included the radiation shift in the bare atomic

Hamiltonian Ĥµ
0 ( Eq. (2.18) ) in Chapter 2. The inclusion of the energy shifts in the
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equation of motion is, therefore, redundant. Removing these energy shifts gives us

1

i~

[

σ̃µ
f,m; f ′,m′ , V̂AR (t)

]

= ζ̂µ
f1,m1; f2,m2

(t) − 1

2
(Γf1 + Γf2) σ̃f1,m1; f2,m2 (t)

+
∑

{f :ωf1
<ωf}

δf1,f2Γ
f
f1

1
∑

α=−1

C
Ff1

1 Ff

m1 α m1+αC
Ff1

1 Ff

m2 α m2+ασ̃f,m1+α; f ′,m2+α (t) . (C.30)

This equation is valid for describing the interaction of any multi-level atom with the

reservoir in which all of the atomic energy levels are well separated.

In deriving the contribution of the reservoir interactions to the equations of mo-

tion, one notices that had a rotating wave approximation been made on the initial

Hamiltonian, the only consequence would have been that the radiation shifts would

have been different. Since these shifts were already redundant, however, delaying the

application of the rotating wave approximation does not have any effect when each

atom interacts with an independent reservoir.

C.3 Heisenberg Langevin Equations for the Atomic

Coherences

In this section, we write the Heisenberg-Langevin equations for the coherences of

individual atoms in our atomic ensemble. We will then make the low-intensity ap-

proximation, in which one can neglect all coherences except the populations of ground

level |b〉, the optical coherences between levels |b〉 and |c〉 and the hyperfine coher-

ences between levels |b〉 and |a〉. A similar low-intensity approximation was used in

the context of EIT in nondegenerate three-level atoms by Fleischhauer and Lukin

[69, 75].

From Eqs. (C.14) and (C.30), we write the Heisenberg Langevin equations of

motion for the Zeeman coherences and populations within the initially populated

level |b〉. When we make the rotating wave approximation on these equations of
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motion, we have

dσ̃b,m; b,m′ (t)

dt
= −i (2π)3/2 G(b,c) (cks) e

ikszµφ(s) (~rµ)

×
1
∑

α=−1

CFb 1 Fc

m α m+ασ̃
µ
c,m+α; b,m′ (t) ϕ̂

(s)
α (zµ, t)

+ i (2π)3/2 G∗
(b,c) (cks) e

−ikszµφ(s)∗ (~r µ)

×
1
∑

α=−1

CFb 1 Fc

m′ α m′+ασ̃
µ
b,m; c,m′+α (t) ϕ̂(s)†

α (zµ, t)

+ ζ̂µ
b,m; b,m′ (t)

+ Γc
b

1
∑

α=−1

CFb 1 Fc

m α m+αC
Fb 1 Fc

m′ α m′+ασ̃
µ
c,m+α; c,m′+α (t) . (C.31)

Similarly, for the Zeeman coherences and populations within level |a〉 we have the

equation of motion

dσ̃µ
a,m; a,m′ (t)

dt
= −iΩc (t) ei~k c·~r µ

1
∑

α=−1‘

(

~ξ ∗
α · ~ec

)

CFa 1 Fc
m α m+ασ̃

µ
c,m+α; a,m′(t)

+ iΩ∗
c (t) e−i~k c·~r µ

1
∑

α=−1

(

~ξ α · ~e ∗
c

)

CFa 1 Fc

m′ α m′+ασ̃
µ
a,m; c,m′+α (t)

+ ζ̂µ
a,m; a,m′ (t)

+ Γc
a

1
∑

α=−1

CFa 1 Fc
m α m+αC

Fa 1 Fc

m′ α m′+ασ̃
µ
c,m+α; c,m′+α (t) , (C.32)

where Ωc(t) ≡
(

c
∥

∥

∥
d̂

∥

∥

∥
a
)

Ec(t)/~ is the control field Rabi frequency. The Zeeman
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coherences and populations within excited level |c〉 evolve according to

dσ̃µ
c,m; c,m′ (t)

dt
= i (2π)3/2 G(b,c) (cks)φ

(s) (~r µ) e
ikszµ

×
1
∑

α=−1

CFb 1 Fc

m′−α α m′ σ̃
µ
c,m; b,m′−α (t) ϕ̂(s)

α (zµ, t)

− i (2π)3/2 G∗
(b,c) (cks)φ

(s)∗ (~r µ) e−ikszµ

×
1
∑

α=−1

CFb 1 Fc

m−α α mσ̃
µ
b,m−α; c,m′ (t) ϕ̂

(s)†
α (zµ, t)

+ iei~k c·~r µΩc (t)
1
∑

α=−1

(

~ξ ∗
α · ~e c

)

CFa 1 Fc

m′−α α m′ σ̃
µ
c,m; a,m′−α (t)

− ie−ikc·~r µΩ∗
c (t)

1
∑

α=−1

(

~ξ α · ~e ∗
c

)

CFa 1 Fc
m−α α mσ̃a,m−α; c,m′ (t)

+ ζ̂µ
c,m; c,m′ (t) − Γcσ̃

µ
c,m; c,m′ (t) . (C.33)

The optical coherences evolve according to

dσ̃µ
a,m; c,m′ (t)

dt
= ieikszµ (2π)3/2 G(b,c) (cks)φ

(s) (~r µ)

×
1
∑

α=−1

CFb 1 Fc

m′−α α m′ σ̃
µ
a,m; b,m′−α (t) ϕ̂(s)

α (zµ, t)

+ iei~k c·~r µΩc (t)
1
∑

α=−1

(

~ξ ∗
α · ~e c

)

×
(

CFa 1 Fc

m′−α α m′ σ̃
µ
a,m; a,m′−α (t) − CFa 1 Fc

m α m+ασ̃
µ
c,m+α; c,m′ (t)

)

+ ζ̂a,m; c,m′ (t) − 1

2
Γcσ̃

µ
a,m; c,m′ (t) , (C.34)

and

dσ̃µ
b,m; c,m′ (t)

dt

= ieikszµ (2π)3/2 G(b,c) (cks)φ
(s) (~r µ)

×
1
∑

α=−1

(

CFb 1 Fc

m′−α α m′ σ̃
µ
b,m; b,m′−α (t) − CFb 1 Fc

m α m+ασ̃c,m+α; c,m′ (t)
)

ϕ̂(s)
α (zµ, t)

+ iei~kc·~rµΩc (t)
1
∑

α=−1

CFa 1 Fc

m′−α α m′ σ̃
µ
b,m; a,m′−α (t)

(

~ξ ∗
α · ~e c

)

+ ζ̂µ
b,m; c,m′ (t) − 1

2
Γcσ̃

µ
b,m; c,m′ (t) . (C.35)
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Finally, the hyperfine coherences between levels |a〉 and |b〉 evolve according to

dσ̃µ
b,m; a,m′ (t)

dt
= −ieikszµ (2π)3/2 G(b,c) (cks)φ

(s) (~r µ)

×
1
∑

α=−1

CFb 1 Fc

m α m+ασ̃
µ
c,m+α; a,m′ (t) ϕ̂

(s)
α (zµ, t)

+ ie−i~k c·~r µΩ∗
c (t)

1
∑

α=−1

(

~ξ α · ~e ∗
c

)

CFa 1 Fc

m′ α m′+ασ̃
µ
b,m; c,m′+α (t)

+ ζ̂µ
b,m; a,m′ (t) . (C.36)

The interaction with the magnetic field is included in the dynamics of an atomic co-

herence σ̃µ
f,m; f ′,m′ (t) can be accounted for by the addition of the term

[σ̃µ
f,m; f ′,m′(t), V̂AB(t)]/(i~) to the corresponding equation of motion.

C.3.1 Weak Signal Approximation

Here, we follow the treatment of Fleischhauer and Lukin [69, 75] in performing a

weak signal approximation. This approximation allows us to neglect many of the

coherences whose dynamics are governed by Eqs. (C.31) through (C.36) when con-

sidering the propagation of the signal field through the ensemble. We assume the

number of signal photons in the slice of the ensemble between z and z + dz, given

by
∑

α=±1

〈

ϕ̂†
α (z, t) ϕ̂α (z, t)

〉

dz, is always much less than the number of atoms with

which the signal mode interacts within that slice. That is, in the most extreme of

scenarios, where all of the photons have been absorbed and transformed into atomic

excitations, only a small fraction of atoms ( O(1/N) for single photon pulses ) will

have been displaced from their original state ρ̂µ
0 ( Eq. (C.12) ). To determine whether

an atomic coherence should be retained in this weak field approximation, we preform

a perturbative expansion in ϕ̂α (z, t) of that slowly varying atomic coherence using

Eqs. (C.31) to Eq. (C.36), and keep coherences to first order in the photon density

operator ϕ̂α (z, t). We note, that to zero order in ϕ̂α, only the populations within

level |b〉 are non-zero ( i.e. σ̃µ
b,m; b,m′ = pmδm,m′ ), and all other coherences are sig-

nificant only to first order or greater in ϕ̂α. In the presence of a magnetic field, we
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make the further assumption that either the magnetic field is parallel to the z-axis

or that the sample is initially unpolarized ( i.e. pm = 1/(2Fb + 1) ). Otherwise, the

Larmor precession of the atoms within the field would produce macroscopic Zeeman

coherences during a storage process regardless of the intensity of the signal field. The

effects of macroscopic Zeeman coherences on the propagation of the signal field is the

subject of future investigations.

Aside from the populations of level |b〉, only the optical coherences σ̃µ
b,m; c,m′(t) and

hyperfine coherences σ̃µ
b,m; a,m′(t) and their Hermitian conjugates survive the weak

signal approximation. To first order in the signal field, these operators obey the

simplified equations of motion

dσ̃µ
b,m; b,m (t)

dt
= 0, (C.37)

(

d

dt
+

Γc

2

)

σ̃µ
b,m; c,m′ (t)

= ieikszµ (2π)3/2 G(b,c) (cks)φ
(s) (~rµ)

×
∑

α=±1

(

pmC
Fb 1 Fc

m α m+αδm′,m+α

)

ϕ̂(s)
α (zµ, t)

+ iei~k c·~rµΩc (t)

1
∑

β=−1

CFa 1 Fc

m′−β β m′ σ̃
µ
b,m; a,m′−β (t)

(

~ξ ∗
β · ~e c

)

+ δm′,m+αζ̂
µ
b,m; c,m′ (t) +

1

i~

[

σ̃µ
b,m; c,m′(t), V̂AB(t)

]

, (C.38)

and

dσ̃b,m; a,m′ (t)

dt
= ie−i~k c·~r µΩ∗

c (t)

1
∑

α=−1

(

~ξ α · ~e ∗
c

)

CFa 1 Fc

m′ α m′+ασ̃
µ
b,m; c,m′+α (t)

+
1

i~

[

σ̃µ
b,m; c,m′(t), V̂AB(t)

]

. (C.39)

The only noise term to survive the weak field approximation is that associated with

the optical coherence σ̃µ
b,m; c,m′(t). This noise operator is given for atom µ by

ζ̂µ
b,m; c,m+α(t) = −pmC

Fb 1 Fc

m α m+α

∫

d3k
∑

λ

(

~ξ ∗
α · ~ε λ

(

k̂
))

G(b,c) (ck)

×ei~k ·~r µe−i[ck−(ωc−ωb)]tãλ

(

~k , 0
)

. (C.40)
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C.4 Field Propagation and Electromagnetically in-

duced transparency

The response of the atomic sample to the time dependent control field allows the stor-

age of the signal field within the medium. In this section, we examine the propagation

dynamics that results from the interaction of the signal field within the ensemble in

the presence of the control field. Beginning from the Heisenberg equation of motion

for the linear photon density operator in a general atomic medium ( Eq. (2.71) ), we

arrive at the following signal propagation equation for three-level model we consider

in this appendix:

(

∂

∂t
+ c

∂

∂z

)

ϕ̂(s)
α (z, t) = i

√

n (z) pmκ
∗
s

Fb
∑

m=−Fb

CFb 1 Fc

m α m+αêm; m+α (z, t) , (C.41)

where n (z) is the atomic number density as a function of z, κs ≡ (2π)3/2 G(b,c) (cks)

is the signal coupling strength, and

êm; m′ (z, t) ≡ 1
√

n (z) pm

N
∑

µ=1

e−ikszµφ(s)∗ (~r µ) σ̃µ
b,m; c,m′ (t) δ (z − zµ) (C.42)

when pm 6= 0 and zero otherwise. In the weak signal approximation, these collective

optical coherences obey the equal time commutation relations

[

êm1;m′
1
(z, t) , êm2;m′

2
(z′, t)

]

= 0 (C.43a)
[

êm1; m′
1
(z, t) , ê†m2; m′

2
(z′, t)

]

=
δm1,m′

1
δm2,m′

2

n(z)

∑

µ

∣

∣φ(s) (~r µ)
∣

∣

2
δ (z − zµ)

×δ (z′ − zµ) . (C.43b)

Because the atomic positions are independent identically distributed random vari-

ables with a probability density n(~r )/N , we may take advantage of the central limit

theorem, and approximate the sum appearing in the commutator as

1

N

∑

µ

∣

∣φ(s) (~rµ)
∣

∣

2
δ (z − zµ) δ(z

′ − zµ)

=

∫

d3r′′
n(z′′)

N

∣

∣φ(s) (~r′′)
∣

∣

2
δ (z − z′′) δ (z′ − z′′) +O(1/

√
N). (C.44)
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Because we assume the atomic density is constant over the width of the transverse sig-

nal mode φ(s) and because φ(s) satisfies the normalization condition,
∫

d2r
(s)
⊥ |φ(s)(~r

(s)
⊥ , z)|2 = 1, we may say the collective optical excitations êm; m′(z, t)

obey approximate bosonic commutation relations

[

êm1;m′
1
(z, t) , ê†m2;m′

2
(z′, t)

]

= δm1,m′
1
δm2,m′

2
δ (z − z′) +O(1/

√
N). (C.45)

We similarly define the collective hyperfine excitations

ŝm; m′ (z, t) ≡ 1
√

n (z) pm

N
∑

µ=1

φ(s)∗ (~r µ) ei(~k c−~k s)·~r µ σ̃µ
b,m; a,m′ (t) δ (z − zµ) (C.46)

when pm 6= 0 and zero otherwise. Like the collective optical coherences, these col-

lective hyperfine coherences obey approximate bosonic commutation relations in the

weak signal limit:

[

ŝm1;m′
1
(z, t) , ŝm2;m′

2
(z′, t)

]

= 0 (C.47a)
[

ŝm1; m′
1
(z, t) , ŝ†m2; m′

2
(z′, t)

]

= δm1,m′
1
δm2,m′

2
δ (z − z′)

+O
(

1/
√
N
)

. (C.47b)

The collective coherences obey the Heisenberg-Langevin equations

d

dt
ŝm; m′ (z, t) ≡ iΩ∗

c (t)
1
∑

α=−1

(

~ξ α · ~e ∗
c

)

CFa 1 Fc

m′ α m′+αêm; m′+α (z, t) , (C.48)

and

(

d

dt
+

Γc

2

)

êm; m′ (z, t) = iκs

√

n (z) pm

1
∑

α=−1

CFb 1 Fc

m α m+αδm′;m+αϕ̂
(s)
α (z, t)

+ iΩc (t)
1
∑

β=−1

CFa 1 Fc

m′−β β m′

(

~ξ ∗
β · ~e c

)

ŝm; m′−β (z, t)

+ δm′,m+αζ̂b,m; c,m+α (z, t) , (C.49)

where

ζ̂b,m; c,m′ (z, t) ≡ 1
√

n (z) pm

N
∑

µ=1

e−i~k s·~r µφ(s)∗ (~r µ) ζ̂µ
b,m; c,m′ (t) δ (z − zµ) (C.50)
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In the remainder of this appendix, we make the simplifying assumption that the

control field has a fixed helicity β; ~ec = ~eβ(k̂c) ≈ ~ξβ.

Once again, the effects of the magnetic field interaction can be accounted for

by the addition of the appropriate commutators with the interaction V̂AB(t) in the

atomic equations. We note, however, that the bosonic commutation relations of Eqs.

(C.45) and (C.47), the collective atomic equations ( Eqs. (C.48) and (C.49) ), and the

signal propagation equation ( Eq. (C.41) ) are only valid under either the following

conditions: the magnetic field is parallel to the quantization z-axis, or the sample is

unpolarized. Otherwise the Larmor precession induced by the magnetic field would

result in macroscopic Zeeman coherences in level |b〉.

C.4.1 Propagation of a Classical Signal

To better understand the storage and retrieval dynamics of the signal field described

in Chapter 6, we consider the propagation of the signal in the classical limit. In this

section, we outline the procedure used to solve the coupled propagation and matter

excitation equations ( Eqs. (C.41), (C.48), and (C.49) ) numerically. The dynamics

of classical propagation are described by Eqs. (C.41), (C.48), and (C.49) where the

quantum operators have been replaced by their expectation values, and the quantum

noise ζ̂m,m′(z, t) is neglected. In this section, when the magnetic field is present, we

consider only the case in which it is oriented along the z-axis; ~B = Bẑ.

We first decompose the fields and collective excitations into their temporal fre-

quency components, Fourier transforming Eqs. (C.41), (C.48), and (C.49) in time.

This transforms the collective excitation equations ( Eqs. (C.48) and (C.49) ) into

coupled algebraic equations, allowing one to express the Fourier components of the

matter excitations in terms of the Fourier components of the signal field. One then

finds that the signal’s frequency components obey the propagation equation

∂

∂z
ϕα (z,∆) = i

∆

c

∫

d∆′

(

δ (∆ − ∆′) +
1

2

ωc

∆
χα (∆,∆′, z)

)

ϕα (z,∆′) , (C.51)
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where

ϕα(z,∆) ≡ 1√
2π

∫ ∞

−∞

dt exp (i∆t)ϕα(z, t), (C.52)

and the non-local linear susceptibility is given by

χα (∆,∆′) = −
(

c

ωc − ωb

)

d′α (z)

Fb
∑

m=−Fb

X2
m,α

(Γc/2)K−1
m,α (∆,∆′)

∆′ + iΓc/2
, (C.53)

where d′α (z) is the spatial derivative of the optical thickness dα, which is defined as

the negative logarithm of the on resonance intensity transmittance of a signal with

polarization α, in the absence of the control field. Here ∆ is the frequency space

Fourier variable, with ∆ = 0 corresponding to a signal component resonant with the

|b〉 ↔ |c〉 transition. Explicitly, dα is given by the dimensionless quantity

dα (z) = 6πw

(

c

ωc − ωb

)2 ∫ z

0

dz′n (z′)
∑

m

pm

∣

∣

∣
CFb 1 Fc

m α m+α

∣

∣

∣

2

, (C.54)

Xm,α ≡ √
pmC

Fb 1 Fc

m α m+α/

√

∑

mb
pmb

∣

∣

∣
CFb 1 Fc

mb α mb+α

∣

∣

∣

2

, and w =
∣

∣

∣

(

c
∥

∥

∥
d̂

∥

∥

∥
b
)∣

∣

∣

2

/

(

∣

∣

∣

(

c
∥

∥

∥
d̂

∥

∥

∥
b
)∣

∣

∣

2

+
∣

∣

∣

(

c
∥

∥

∥
d̂

∥

∥

∥
a
)∣

∣

∣

2
)

is the fraction of atoms in the excited level |c〉 that

spontaneously decays into the ground level |b〉. Furthermore,

Km,α =

(

δ (∆ − ∆′) − 1√
2π

Lm,α (∆,∆′)

(∆ + δc +m∆cb + iΓcb)

)

(C.55)

is a kernel whose inverse satisfies the property
∫

d∆′′ K (∆,∆′′)K−1 (∆′′,∆′) =
∫

d∆′′ K−1 (∆,∆′′)K (∆′′,∆′) = δ (∆ − ∆′). The frequencies δc ≡ α (µBgcB/~) and

∆cb ≡ (gc−gb) (µBB/~) account for the energy splitting of the Zeeman states resulting

from the interaction with the magnetic field ~B = Bẑ. We also have

Lm,α (∆,∆′) =
∣

∣CFa 1 Fc

m+α−β β m+α

∣

∣

2 1√
2π

∫

d∆′′Ωc (∆ − ∆′′)
1

(∆′′ + (δa +m∆ab))
Ω∗

c (∆′ − ∆′′) ,

(C.56)

where

Ωc(∆) ≡ 1√
2π

∫ ∞

−∞

dt exp (i∆t) Ωc(t), (C.57)

δa = (α− β)ga (µBB/~), and ∆ab = (ga − gb) (µBB/~).
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With this propagation equation ( Eq. (C.51) ), we are able to numerically calculate

the propagation of the signal field leading to the various features shown in Figures

6.3 and 7.2 (we assume equal signal and control polarizations α = β in order to

have EIT for the atomic level configurations of Chapters 6 and 7), including group

delay, pulse storage and retrieval. The numerical solution of Eq. (C.51) may be

obtained by assuming periodic boundary conditions for the signal and control fields

on the time interval [0, T ), where T is some time much longer than that in which

the storage and propagation dynamics occur within the ensemble. Additionally, we

sample the signal and control fields on a grid of N equidistant time points {tj =

jT/N : 0 ≤ j < N}. Imposing periodic boundary conditions discretizes the set of

available detunings {∆j = j(2π/T ) : −N /2 ≤ j < N /2}. (For a more detailed

discussion of discrete spectral decomposition, see Ref. [135].) Having chosen the grid

in time and frequency space, we estimate the integrals of Eqs. (C.52) and (C.57)

by making the substitution
∫∞

−∞
dt → (T/N )

∑N
j=0, transforming the integral into

a summation. Similarly, in the frequency integrals of Eqs. (C.51) and (C.56), we

make the substitution
∫

d∆ → (2π/T )
∑N/2−1

j=−N/2. We further replace the Dirac δ-

function with its discrete version: δ(∆ − ∆′) → (T/(2π))δ∆,∆′. These substitutions

transform Eq. (C.51) into a finite set of coupled linear differential equations of the

form (d/dz)ϕα(z,∆i) =
∑

j L
(α)
i,j (z)ϕα(z,∆j). Therefore, given the signal frequency

profile ϕα(z0,∆) ( related to the temporal profile through the Fourier transform ) as

it enters the atomic ensemble at position z0, the frequency profile at position z is

given by ϕα(z,∆i) =
∑

j

[

exp
(

∫ z

z0
dz′L(α)(z′)

)]

i,j
ϕα(z0,∆j). The exponentiation of

the matrix
∫ z

z0
dz′L(α)(z′) may be performed by a numerical linear algebra package

such as MATLAB.

180



C.4.2 Linear Susceptibility for Constant Control Field and Electromag-

netically Induced Transparency

In the limit of constant control field, the susceptibility reduces to the form

χα(∆, z) ≈ c

2(ωc − ωb)
d′α(z)

×
∑

m

Γc∆X
2
mα

(

|Ωc|2
∣

∣CFa 1 Fc

m+α−β β m+α

∣

∣

2 − ∆2 + i∆Γc/2
)

(

|Ωc|2
∣

∣CFa 1 Fc

m+α−β β m+α

∣

∣

2 − ∆2
)2

+ (∆Γc/2)2

, (C.58)

Since the Zeeman shifts are small compared to the spontaneous emission rate, they

have been ignored in the above expression. The intensity transmittance of a cw signal

of helicity α with detuning ∆ is given in terms of the susceptibility by

Tα(∆)

= exp

(

−ωc − ωb

c

∫

dz Im (χα(∆, z))

)

(C.59)

= exp






−dα

∑

m

X2
mα (∆Γc/2)2

(

|Ωc|2
∣

∣CFa 1 Fc

m+α−β β m+α

∣

∣

2 − ∆2
)2

+ (∆Γc/2)2

,






, (C.60)

where dα ≡ limz→∞ dα(z) is the total optical thickness of the sample. From Eq. (C.58),

one can see that in the presence of the control field, the imaginary part of the sus-

ceptibility potentially goes to zero when the signal field is on resonance. When this

happens, Eq. (C.60) indicates there is a transparency window for signal frequencies

near resonance. The width of this electromagnetically induced transparency window

is determined by the intensity of the control field. Notice that the medium will only

exhibit EIT with a judicious choice of atomic hyperfine levels and field polarizations.

If one of the Clebsch-Gordan coefficients multiplying the Rabi frequency Ωc vanishes

(i.e. there is an excited state |c,m+ α〉 not coupled by the control field to the cor-

responding ground state |a,m+ α− β〉), then a fraction of the atoms will simply

absorb the signal light as if there is no control field present. We point out that for

the level scheme used in the experiments of Chapters 6 and 7, EIT is achieved only
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when the signal and control field polarizations are equal (α = β). The solid curves in

Figure 6.2 are based on Eq.(C.58).

C.5 The Adiabatic Limit: Dark State Polaritons

Assuming a choice of polarizations and initial atomic populations pm that supports

EIT, we are able to generalize the adiabatic treatment of Fleischhauer and Lukin to

the propagation equations ( Eqs. (C.41), (C.48), and (C.49)). This adiabatic ap-

proximation results in a simplification of the equations in which the system dynamics

can be described by a single propagation equation for a collective excitation known

as the dark state polariton. The dark state polariton is composed of an electric field

excitation and a particular linear combination of collective hyperfine coherences.

We begin by recognizing that when the medium supports EIT ( i.e. CFa 1 Fc

m+α−β β m+α 6=

0 for all m for which pm 6= 0 ), we can express êm; m+α(z, t) as

êm; m+α (z, t) =
1

iΩ∗
c(t)C

Fa 1 Fc

m+α−β β m+α

∂

∂t
ŝm; m+α−β(z, t) (C.61)

This yields the modified propagation equation

Ω∗
c(t)

(

∂

∂t
+ c

∂

∂z

)

ϕ̂(s)
α (z, t)

=
√

n (z) pmκ
∗
s

Fb
∑

m=−Fb

Rm,α(β)
∂

∂t
ŝm; m+α−β(z, t). (C.62)

where

Rmα (β) ≡ CFb 1 Fc

m α m+α

CFa 1 Fc

m+α−β β m+α

(C.63)

is a ratio of Clebsch-Gordan coefficients. Substituting Eq. (C.61) into Eq. (C.49) for

~ec = ~ξβ, we find

(

d

dt
+

Γc

2

)

(

1

iΩ∗
c(t)C

Fa 1 Fc

m+α−β β m+α

∂

∂t
ŝm; m+α−β(z, t)

)

= iκs

√

n (z) pmC
Fb 1 Fc

m α m+αϕ̂
(s)
α (z, t) + iΩc (t)CFa 1 Fc

m+α−β β m+αŝm; m+α−β (z, t)

+ζ̂b,m; c,m+α (z, t) . (C.64)
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As in Ref. [75], we normalize t to some characteristic time scale Ta, and express

Eq. (C.64) in terms of the dimensionless time τ̃ = t/Ta. We recognize that
〈

ζ̂†b,m; c,m+α(z, t)ζ̂b,m; c,m+α(z, t′)
〉

∼ δ(t − t′) = (1/Ta)δ(τ̃ − τ̃ ′) [69, 75]. In the

Adiabatic limit, we keep terms to lowest order in 1/Ta, and therefore derive from

( Eq. (C.64) ) a necessary condition for adiabaticity

ŝm; m+α−β (z, t) = −κs

√

n (z) pm

Ωc(t)
Rm,α (β) ϕ̂(s)

α (z, t) . (C.65)

This condition for adiabaticity not only ties the hyperfine coherence to the field, as

in Refs. [69, 75], but also ties the values of the hyperfine coherences to each other.

The conditions for adiabaticity ( Eq. (C.65) ) suggest the form for the dark state

polariton of helicity α,

Ψ̂α (z, t) =
Ω∗ (t) ϕ̂α (z, t) −

√

n (z)κ∗s
∑

m

√
pmRmα (β) ŝm; m+α−β (z, t)

√

|Ωc(t)|2 + n (z) |κs|2
∑

m pm |Rm,α (β)|2
. (C.66)

This polariton operator, like the collective hyperfine coherences, is quasi-bosonic and

satisfies the equal time commutation relations

[

Ψ̂α(z, t), Ψ̂β(z′, t)
]

= 0 (C.67)
[

Ψ̂α(z, t), Ψ̂†
β(z′, t)

]

= δ(z − z′) + Ô(1/
√
N). (C.68)

The operator Ψ̂†
α(z, t)Ψ̂α(z, t) may be interpreted as the polariton linear density. From

the field propagation equation ( Eq. (C.62) ), and the condition for adiabaticity

( Eq. (C.65) ), one can show that in the adiabatic limit, the dark-state polariton

satisfies the propagation equation

(

∂

∂t
+ Vα (z, t)

∂

∂z

)

Ψ̂α(z, t) = −1

2
Ψ̂α (z, t)

∂

∂z
Vα (z, t) (C.69)

where

Vα(z, t) =
|Ωc (t)|2

|Ωc (t)|2 + |κs|2 n (z)
∑

m pm |Rm,α(β)|2
(C.70)

is the helicity dependent group velocity at position z corresponding to the control

field Rabi frequency Ωc(t). When the control field intensity is constant, the dark
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state polariton at position z is given in terms of the polariton operator at an initial

position z0 by

Ψ̂α (z, t) =

√

Vα (z0)

Vα (z)
Ψ̂α

(

z0, t−
∫ z

z0

dz′

Vα (z′)

)

. (C.71)

On the other hand, if one has the knowledge of the state of the system or dark-state

polariton operator at a specific time t0, one may modify the above solution to find

Ψ̂α (z, t) =

√

Vα (z0(z, t))

Vα (z)
Ψ̂α (z0(z, t), t0) , (C.72)

where the initial position z0 is the solution to the integral equation

∫ z

z0(z,t)

dz′

Vα (z′)
= t− t0. (C.73)

From Eq. (C.71), one sees that as a signal pulse propagates into the medium, the

reduction in group velocity associated with the increasing atomic density causes the

spatial profile of the pulse to compress. At the same time, the polariton density
〈

Ψ̂†
α(z, t)Ψ̂α(z, t)

〉

increases in proportion to 1/Vα(z). This trade off between spatial

compression of the pulse and increase in polariton density leaves the total polariton

population unchanged [75].

The group velocity’s dependence on the control field Rabi frequency allows one to

manipulate the propagation dynamics of the dark state polariton provided that the

Rabi frequency is changed sufficiently slowly. If the control field is turned off when the

signal pulse overlaps with the ensemble, a portion of this signal pulse will be stored

as the group velocity goes to zero. At this point, the dark state polariton consists

entirely of a particular linear combination of hyperfine coherences. In the ideal case,

one is able to store and retrieve the quantum state of the field with unit efficiency. In

practice, however, there are two competing limitations which limit storage efficiency:

the optical depth of the sample is not sufficient to contain the entire profile of the

signal, or the finite width of the transparency window causes absorption of the off

resonant frequency components. This absorption and the nonadiabatic effects of a
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time varying control field are discussed in the context of a nondegenerate three level

system in Ref. [75].

In addition, the magnetic field causes a reduction in retrieval efficiency for vari-

able storage times. As discussed in Chapter 7, the Larmor precession of the spin wave

causes the stored dark-state polariton into orthogonal bright state polariton [75] com-

ponents. When the control field is turned on, these bright state components couple to

the collective optical coherences, leading to spontaneous emission. In the next section,

we will show how, in the simple case of a magnetic field along the quantization axis,

the magnetic field induces a Larmor collapse of the dark-state polariton population

for short storage times. The dynamics of storage in a uniform magnetic field along

an arbitrary direction, leading to collapses and revivals of the storage efficiency, is

discussed in Chapter 7.

C.5.1 Larmor collapse

In the presence of a magnetic field, a stored atomic collective excitation Larmor pre-

cesses out of the dark-state polariton mode into orthogonal collective excitations.

This causes an apparent decoherence which can be calculated by evaluating the num-

ber of dark-state polaritons as a function of time. Assuming that there are initially

Nα (0) =
∫

dz
〈

Ψ̂†
α(z, 0)Ψ̂α(z, 0)

〉

dark-state polaritons, and for a magnetic field ori-

ented in the z-direction, we find the number of dark state polaritons in an unpolarized

sample ( pm = 1/(2Fb + 1) ) is given by

Nα (t) = Nα (0)
∑

m

∑

m′

|Rm,α(β)Rm′,α(β)|2
(
∑

m |Rm,α(β)|2
)2 cos ((m−m′) ∆abt) (C.74)

where again ∆ab =
(

µB

~
Bz

)

(ga − gb). For short storage times, we find

Nα (t) ≈ Nα (0) exp

(

−1

2
Υ2

α (∆abt)
2

)

(C.75)

where

Υ2 =
∑

m

∑

m′

|Rm,α(β)Rm′,α(β)|2
(
∑

m |Rm,α(β)|2
)2 (m−m′)

2
(C.76)
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For the level scheme used in the experiment of Chapter 6 (with α = β), Υ2
α ≈ 2.1.

We have used this model to estimate the strength of the magnetic field (assuming it

is oriented along the z direction), given the time constant τ measured experimentally

in Figure 6.5. We find the frequency to be

∆ab

2π
≈ 14 kHz . (C.77)

We have used this value in obtaining the theoretical panels in Figure 6.3 and find good

agreement with the experimental observations. Clearly from Eq. (C.74), we can pre-

dict the revival of dark-polariton number when ∆abt is a multiple of 2π. The revivals

occur at t
‖
n = 2πn/[

(

µB

~
Bz

)

|ga − gb|] ≈ π/[
(

µB

~
Bz

)

|ga|]. By contrast, for a magnetic

field perpendicular to the z axis, we find t⊥n = 2π/
[(

µB

~
Bz

)

|ga|
]

= 2π/
[(

µB

~
Bz

)

|gb|
]

,

i.e., t⊥n = 2t
‖
n. The prediction and observation of revivals in retrieval efficiency is

discussed in detail in Chapter 7.
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APPENDIX D

PHOTON COUNTING STATISTICS FOR A

PAIR OF CORRELATED SINGLE MODE

FIELDS

In Chapters 5 and 6, we were concerned with photon counting statistics of two elec-

tromagnetic fields (the signal and idler) emitted from an atomic ensemble during a

write/read process. The write laser beam probabilistically Raman scatters a pho-

ton into a detected signal mode. We showed in Chapter 3 that this process can be

modeled as an effective nondegenerate parametric amplifier with the signal consisting

of excitations of a single mode of the electromagnetic field. The idler is similarly

described by a excitations of a hyperfine spin wave with a spatial profile determined

by that of the collected signal mode. The read process then transfers the idler atomic

excitation to a single mode of the idler electromagnetic field.

In this Appendix, we describe the details of the photodetection processes. By

considering a general correlated state between signal and idler photons, we show how

one arrives at photodetection probabilities from the elementary probability densities

of a photoelectric detection event (PEDE) occurring at a specific time. In the systems

we consider in this thesis, the dead time of the detector, i.e. the time the detector

cannot register a PEDE after one has been registered previously, is on the order of the

signal and idler mode durations. We account for this limitation by only calculating the

elementary probability density for the first photoelectric detection time and neglecting

all subsequent photon arrivals. Section D.2 describes how the state of the idler field is

conditioned on a PEDE in the signal detector. In Section D.3, we apply these results
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specifically to the nondegenerate parametric amplifier model.

Before examining the photodetection process, we define the general correlated

signal-idler state. The results of this appendix can be readily generalized to statistical

mixtures of correlated signal-idler states. We express the state produced by a generic

write process in the interaction picture by the Schmidt decomposition

|Ψ〉si =
∑

j

gj |ψj〉s ⊗ |φj〉i , (D.1)

where {|ψj〉s} and {|φj〉i} are orthogonal sets of state vectors in the signal and idler

Hilbert spaces respectively. We expand the states |ψj〉s and |φj〉s in terms of Fock

states of the single mode fields as

|ψj〉s =

∞
∑

n=0

cn,j
â†n√
n!

|vac〉 (D.2a)

|φj〉 =

∞
∑

n=0

dn,j
b̂†n√
n!

|vac〉 , (D.2b)

where â and b̂ are the signal and idler annihilation operators respectively. These

operators are, in turn, given by

â† ≡
∫ ∞

−∞

dt ψs(t)ψ̂
†
s(t) (D.3a)

b̂† ≡
∫ ∞

−∞

dt ψi(t)ψ̂
†
i (t), (D.3b)

where ψι(t) is the temporal envelope of field ι ( ι = s, i ) which satisfies the normal-

ization condition
∫∞

−∞ dt|ψι(t)|2 = 1, and ψ̂ι(t) is a field operator that annihilates a

photon from field ι at time t and a position ~r such that r
(ι)
‖ = k̂ι · ~r = 0; k̂ι is the

propagation direction of field ι. Neglecting diffraction, and following the treatment

of Chapter 2 Section 2.1.4, we express the field operators in terms of plane wave

annihilation operators as

ψ̂ι(t) ≡ √
cϕ̂

(ι)
λ (0, t)

=

√

c

2π

∫

dk
(ι)
‖ e

−ic
“

k
(ι)
‖

−kι

”

t
â

(ι)
λ

(

k
(ι)
‖

)

, (D.4)
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and

â
(ι)
λ

(

k
(ι)
‖

)

=

∫

d2k⊥ f (ι)∗(~k
(ι)
⊥ )âλ(~k), (D.5)

where f (ι)
(

~k
(ι)
⊥

)

is the transverse mode distribution of field ι as discussed in Chap-

ter 2. The field operators ψ̂ι(t) and ψ̂†
ι (t

′) satisfy the bosonic field commutation

relations

[

ψ̂ι(t), ψ̂ι′(t
′)
]

= 0 (D.6)
[

ψ̂ι(t), ψ̂
†
ι′(t

′)
]

= δ(t− t′). (D.7)

We find that it is useful to decompose the field operator ψ̂s [i](t) into a signal [idler]

mode component and a component consisting of modes orthogonal to the signal [idler];

i.e.

ψ̂s(t) = ψs(t)â+ δψ̂s(t) (D.8a)

ψ̂i(t) = ψi(t)b̂+ δψ̂i(t). (D.8b)

In this Appendix, we assume the detectors D1, D2, and D3 are arranged to collect

the signal and idler fields as illustrated in Figure 5.1. Detector D1 is placed so that

it detects the signal field, and detectors D2 and D3 are placed after a 50:50 beam

splitter, and detect the idler field. We model the non-unit detector efficiency ηk of

detector Dk as a hypothetical detector of unit efficiency preceded by a beam-splitter,

where the field arriving at the detector is described by the field operator ψ̂Dk(t) which

is related to the signal and idler fields by the effective beam-splitter relations

ψ̂D1(t) =
√
η1ψ̂s(t) +

√

1 − η1 ζ̂s(t) (D.9a)

ψ̂D2(t) =
√

η2/2ψ̂i(t) +
√

1 − η2/2 ζ̂2(t) (D.9b)

ψ̂D3(t) =
√

η3/2ψ̂i(t) +
√

1 − η3/2 ζ̂3(t) (D.9c)

where ζ̂k(t) are bosonic operators that account for coupling to degrees of freedom

other than those detected. We assume that the modes associated with these noise
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operators are in the vacuum state. As in Chapter 5, the detector efficiencies ηk

include the effects of propagation losses, which for the idler, may occur before the

beam splitter. Because of this, the noise operators ζ̂2(t) and ζ̂3(t) are not necessarily

independent. This added complication will not have any effect on our calculations

, however, since the noise modes are assumed to be in the vacuum state and we

calculate only normally ordered expectation values.

D.1 Elementary Photon Counting Probability Den-

sities and

In this section, we find an expression for the probability that a detector Dk registers

a photoelectric detection event by considering the elementary probability density for

the registration of the first PEDE occurring at time tc. The elementary probability

density for detecting a photon at time tc with zero PEDE’s prior to tc is given by

[111]

Qk(tc) =
〈

Q̂k(tc)
〉

(D.10)

where Q̂k(tc) is the projection operator

Q̂k(tc) = : ψ̂†
Dk(tc − zk/c)ψ̂Dk(tc − zk/c)

× exp

(

−
∫ tc−zk/c

−∞

dt ψ̂†
Dk(t)ψ̂Dk(t)

)

: , (D.11)

zk is an effective propagation distance for the origin, where the correlated state is

created, and detector Dk, and : : denotes time and normal ordering. The operator

Q̂k(tc) projects on to the subspace in which zero photons arrive at the hypothetical

detector of unit efficiency Dk prior to tc, with one arriving at tc.

We calculate the elementary probability densities and total detection probabilities

at detector D1; similar results will be true at detectors D2 and D3. In order to eval-

uate the elementary probability density Q1(tc), it is necessary to evaluate the matrix

element
〈

ψj2

∣

∣

∣
Q̂1(tc)

∣

∣

∣
ψj1

〉

. By exploiting Eqs. (D.8) and (D.9) and the assumption
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that only the signal and idler modes are not in a vacuum state, we find that this

matrix element is given by

〈

ψj2

∣

∣

∣
Q̂s(tc)

∣

∣

∣
ψj1

〉

=
dς1(tc)

dtc
〈ψj2 | : â†â exp (−η1ςs(tc)) : |ψj1〉 , (D.12)

where ς1(tc) ≡
∫ tc−z1/c

−∞
dt |ψs(t)|2 is the fraction of the signal envelope that has

arrived at detector D1 prior to tc. We similarly define ςk(tc) ( k ∈ {2, 3} ) as

ςk(tc) ≡
∫ tc−zk/c

−∞
dt |ψi(t)|2. By Taylor expanding the normally ordered exponen-

tial and substituting the expansion of the signal basis states in terms of Fock states

( Eq. (D.2) ), we find

〈

ψj2

∣

∣

∣
Q̂1(tc)

∣

∣

∣
ψj1

〉

=
dς1(tc)

dtc

∞
∑

n=1

nc∗n,j2
cn,j1

×
n−1
∑

ℓ=0

(−η1ς1(tc))
ℓ (n− 1)!

ℓ!(n− 1 − ℓ)!
(D.13)

=
dς1(tc)

dtc

∞
∑

n=1

nc∗n,j2
cn,j1 (1 − η1ς1(tc))

n−1 . (D.14)

Using the matrix elements of Eq. (D.14), we arrive at the elementary probability

density

Q1(tc) = Tr
(

Q̂s(tc) |Ψ〉si 〈Ψ|
)

(D.15)

=
dς1(tc)

dtc

∑

j

|gj|2
∞
∑

n=1

n|cn,j|2 (1 − η1ς1(tc))
n−1 (D.16)

From Qk(tc), we can calculate the total probability p1 that at least one photoelec-

tric detection event is registered at Dk;

pk =

∫ ∞

−∞

dtcQk(tc). (D.17)

The probability that a PEDE is registered at detector D1, is given by

p1 =
∑

j

|gj|2
∞
∑

n=1

|cn,j|2 (1 − (1 − η1)
n) (D.18)
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It is straightforward to show that this result is equivalent to that which one would

derive when the detection probability is calculated by

p1 =
〈

Ψ
∣

∣

∣
P̂1

∣

∣

∣
Ψ
〉

si
, (D.19)

where

P̂k ≡ : 1̂ − exp
(

−d̂†kd̂k

)

: (D.20)

=

∞
∑

ℓ=1

(−1)ℓ−1

ℓ!
:
(

d̂†kd̂k

)ℓ

. (D.21)

The annihilation operator of the single populated mode of the field arriving at Dk d̂k

is given by

d̂k =











√
ηk â+

√
1 − ηk ξ̂k : k = 1

√

ηk/2 b̂+
√

1 − ηk/2 ξ̂k : k ∈ {2, 3}
, (D.22)

where ξ̂k are bosonic noise operators that account for the contributions from unde-

tected modes. The operator : exp(−d̂†kd̂k) : represents the projection onto the vacuum

state of the detected mode d̂k [136]. The operator P̂k, therefore, represents the pro-

jection onto the subspace in which at least one PEDE is registered at Dk. This can

be verified by direct calculation and comparison to Eq. (D.17). For the probability

of registering a PEDE at D1, we have

〈

P̂1

〉

= Tr
(

P̂1 |Ψ〉si 〈Ψ|
)

(D.23)

=
∑

j

|gj|2
∞
∑

n=1

|cn,j|2
∞
∑

ℓ=1

(−1)ℓ−1ηℓ
1

n!

ℓ!(n− ℓ)!
(D.24)

=
∑

j

|gj|2
∞
∑

n=1

|cn,j|2 (1 − (1 − η1)
n) (D.25)

= p1. (D.26)

Since this is true for an arbitrary state |Ψ〉si, we must also have the probability of a

PEDE at any detector Dk given by

pk ≡
∫ ∞

−∞

dtkQ(tk)

=
〈

P̂k

〉

. (D.27)
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By generalizing the above arguments, one can calculate the probability of coinci-

dences at detectors Dk1 and Dk2 ( k1 6= k2 ), i.e. the probability that at least one

PEDE is registered at Dk1 and Dk2. These probabilities are given by

pk1k2 ≡
∫ ∞

−∞

dt1

∫ ∞

−∞

dt2

〈

Q̂k1(t1)Q̂k2(t2)
〉

(D.28)

=
〈

P̂k1P̂k2

〉

. (D.29)

Similarly, the probability that at least one photoelectric detection event is registered

at all three detectors is given by

p123 ≡
∫ ∞

−∞

dt1

∫ ∞

−∞

dt2

∫ ∞

−∞

dt3

〈

Q̂1(t1)Q̂2(t2)Q̂3(t3)
〉

(D.30)

=
〈

P̂1P̂2P̂3

〉

. (D.31)

D.1.1 The Low Intensity Limit

In this section, we show that when the probability of detecting a photon from the

correlated state is sufficiently low, we recover the relationships between the field

correlation functions and the probabilities pk, the coincidences pk1k2 , and p123 that

were used in calculating correlation functions in Ref.[18].

In the limit of low intensity, the detection probabilities pk provide good approx-

imations for the mean number of photons in the signal or idler fields. For example,

when η1

〈

â†â
〉

≪ 1, the probability of detecting a photon at D1 is given by

p1 =
〈

: 1̂ − exp
(

−d̂†1d̂1

)〉

(D.32)

=
〈

: 1̂ − exp
(

−η1â
†â
)

:
〉

(D.33)

= η1

〈

â†â
〉

+O
(〈

:
(

η1â
†â
)2

:
〉)

. (D.34)

Similar relationships exist for p2 and p3 when ηk

〈

b̂†b̂
〉

≪ 1. In this limit, we may

approximate the mean number of photons in a field using the measured detection
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probabilities as

〈

â†â
〉

≈ p1

η1

(D.35)

〈

b̂†b̂
〉

≈ 2p2

η2

=
2p3

η3

. (D.36)

In the low intensity limits considered above, one may also use the coincidence

probability to estimate higher order moments of the fields. For instance, because the

operators associated with the fields arriving at each detector commute, [d̂2, d̂
†
3] = 0,

the coincidence between detectors D2 and D3 gives

p23 =

〈

:
(

1̂ − exp
(

d̂†2d̂2

))

×
(

1̂ − exp
(

d̂†3d̂3

))

:

〉

(D.37)

=
η2η3

4

〈

:
(

b̂†b̂
)2

:

〉

+O

(〈

:
(

ηb̂†b̂
)3

:

〉)

. (D.38)

Similarly, the coincidence between detectors D1 and Dk ( k ∈ {2, 3} ) is

p1k ≈ η1ηk

2

〈

: b̂†b̂â†â :
〉

. (D.39)

We therefore have the approximate expressions for second order correlation functions

〈

b̂†2b̂2
〉

≈ 4p23

η2η3

(D.40)

〈

â†b̂†b̂â
〉

≈ 2p12

η2
(D.41)

≈ 2p13

η3

. (D.42)

Similarly, with the three detector configuration we consider in this appendix, we may

approximate the third order correlation function

〈

b̂†2â†âb̂2
〉

≈ 4p123

η1η2η3
(D.43)

Similar approximations were used to calculate the normalized second order corre-

lation functions gsi and the anti-correlation parameter α in Chapter 6.
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D.2 Conditioning of the Idler Field by Detection

of the Signal

Here, we determine how the detection of a signal photon at detector D1 conditions

the state of the idler field. This is accomplished by modifying the above treatment

to calculate detection probabilities using the elementary probability densities Qk(tc).

This procedure can be used to determine the conditioned atomic density matrix given

the detection of the a signal ( Eq. (5.3) ) in Chapter 5. It will be shown that this

procedure is equivalent to the application of the projection operator : 1̂−exp(−d̂†1d̂1) :

followed by a partial trace over the signal degrees of freedom.

We begin by determining how the state of the idler field is conditioned on the

detection of the signal at a time ts. This is accomplished by applying the projection

operator Q̂1(ts) to the state |Ψ〉si and performing a partial trace over the signal degrees

of freedom. This yields the conditioned density matrix ŵi|1(ts)

ŵi|1(ts) = Trs

(

Q̂s(tc) |Ψ〉si 〈Ψ|
)

(D.44)

=
1

Q1(ts)

∑

j1,j2

gj1g
∗
j2
〈ψj2 | Q̂1(ts) |ψj1〉s |φj1〉i 〈φj2| (D.45)

=
1

Q1(ts)

dς1(ts)

dts

∑

j1,j2

gj1g
∗
j2 |φj1〉i 〈φj2|

×
∞
∑

n=1

ncn,j1c
∗
n,j2

(1 − η1ς1(ts))
n−1 (D.46)

If one does not have, or chooses to ignore, the arrival time of the signal photon, the

conditioned state of the idler becomes a statistical mixture of the density matrices

ŵi|1(ts). This statistical mixture is given by

ρ̂i|1 =

∫ ∞

−∞

dts
Q1(ts)

p1
ŵi|1(ts) (D.47)

=
1

p1

∑

j1,j2

gj1g
∗
j2
|φj1〉i 〈φj2|

×
∞
∑

n=1

cn,j1c
∗
n,j2 (1 − (1 − η1)

n) . (D.48)
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The density operator ρ̂i|1 represents the state of the idler given that at least one

PEDE has been registered by the signal detector. This can be verified by applying

the projection operator P̂1 to the original stat |Ψ〉si and performing a partial trace

over the signal Hilbert space. We have

Trs

(

P̂1 |Ψ〉si 〈Ψ|
)

=
∑

j1,j2

gj1g
∗
j2 |φj1〉i 〈φj2|

×
∞
∑

n=1

cn,j1c
∗
n,j2

∞
∑

ℓ=1

(−1)ℓ−1ηℓ
1

n!

ℓ!(n− ℓ)!
(D.49)

=
∑

j1,j2

gj1g
∗
j2 |φj1〉i 〈φj2|

∞
∑

n=1

cn,j1c
∗
n,j2 (1 − (1 − η1)

n) (D.50)

= ρ̂i|1. (D.51)

The conditioned density matrix ρ̂i|1 may readily be used to calculate the statistics

of the idler field given that a signal had been detected. For example, we have the

conditioned detection probabilities pk|1 ≡ Tr(P̂kρ̂i|1) ( k ∈ {2, 3} ). Similarly, the

conditioned coincidence probability p23|1 = Tr(P̂2P̂3ρ̂i|1).

D.3 Application to the Degenerate Parametric Am-

plifier

In this section, we apply the above treatment to the nondegenerate parametric ampli-

fier. The state created by the two-mode nondegenerate parametric amplifier is given

by Eq. (D.1) with

gj =
tanhj χ

coshχ
(D.52a)

cn,j = δn,j, (D.52b)

where the parametric amplification process is parameterized by the dimensionless in-

teraction strength χ. By applying Eq. (D.27), we arrive at the detection probabilities
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for the parametric amplification process

pk(χ, ηk) =



















ηk sinh2 χ

1 + ηk sinh2 χ
: k = 1

ηk sinh2 χ

2(1 + (ηk/2) sinh2 χ)
: k = 2, 3

. (D.53)

If the state is conditioned on the detection of a signal photon at detector D1, the

idler is described by the density matrix

ρ̂i|1 =
1

p1

∞
∑

n=1

tanh2n χ

cosh2 χ
(1 − (1 − η1)

n)
b̂†n |vac〉 〈vac| b̂n

n!
. (D.54)

Notice that if the signal detection process had unit efficiency η1 = 1, then the condi-

tioned density matrix is a thermal state with the vacuum component removed. With

a non unit efficiency, however, the contributions from the higher photon number com-

ponents b̂†n|vac〉〈vac|b̂n

n!
are more heavily weighted than they would be in a thermal state.

It is this feature that leads to the large classical fluctuations in the protocol for gener-

ating deterministic single photons discussed in Chapter 5 for small maximum number

of trials.

The conditioned density matrix ( Eq. (D.54) ) can be used to calculate the con-

ditional detection probabilities pk|1 ( k ∈ {2, 3} ), which are given by

pk|1 = Π(ηk/2; p1, η1), (D.55)

where

Π(η; p1, η1) = 1 − 1

p1

(

1

1 + η sinh2 χ
− 1

1 + (η1 + η (1 − η1)) sinh2 χ

)

.(D.56)

Furthermore, one finds that the conditioned coincidence probability is given by

p23|1 = p2|1 + p3|1 − Π(ηk; p1, η1). (D.57)
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