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An Analog VLSI Model of Muscular Contraction
Tina A. Hudson, Member, IEEE, Julian A. Bragg, Member, IEEE, Paul Hasler, and Stephen P. DeWeerth, Member, IEEE

Abstract—We have developed analog VLSI circuits to model the
behavior demonstrated by biological sarcomeres, the force gener-
ating components of muscle tissue. The circuits are based upon the
mathematical description of crossbridge populations developed by
A. F. Huxley. We have implemented the sarcomere circuit using
a standard 1.2- m process, and have demonstrated the nonlinear
transient behaviors exhibited by biological muscle.

Index Terms—Sarcomere model, Huxley’s crossbridge model,
analog VLSI, neuromorphic engineering.

I. INTRODUCTION

NATURE has developed a unique set of solutions for con-
trolling movement in a wide variety of situations. Skeletal

muscle, the actuator used in voluntary movements, is capable
of performing both fine motion control, such as that required
in writing and speech, and large, powerful movements, such as
that associated with running and jumping. This actuator is based
upon a modular architecture that uses different combinations of
a small set of building blocks with different properties to create
a large variety of muscle types, facilitating the amazing versa-
tility found in biological systems [1]. In addition to this versa-
tility, by using arrays of these building blocks, muscle achieves
efficient actuation with an excellent power-to-weight ratio [2].
By exploiting the underlying architecture of muscle, it is pos-
sible to improve the versatility and efficiency of engineered mo-
tion-control systems.

Exploitation of the biological organizational principles pro-
vides a foundation for developing abiomorphic actuator(an
actuator whose structure and function closely resembles its bi-
ological counterpart) and associated control circuitry. Such an
actuator would have the potential to be used in multiple engi-
neering applications. An actuator that had the same input-output
characteristics as biological muscle could be used to produce a
limb prosthesis that mimicked biological movements in a more
natural manner. A biomorphic actuator could also be used in
conjunction with functional electrical stimulation systems (sys-
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tems used to artificially stimulate muscle tissue) to investigate
their effectiveness at controlling muscle tissue in a biological
fashion. We could also use such actuators in autonomous robots,
which require efficient, lightweight actuators that can perform
a diverse set of complex tasks.

The first step to producing a biomorphic actuator is to produce
a biomorphic modelof muscle actuation that will ultimately be
used to control a standard linear actuator or an array of linear
actuators. By basing our implementation on a model that is
founded upon the underlying biological processes, the biomor-
phic model is capable of producing some of the more subtle
nonlinear properties of muscle such as history dependence and
the complex interaction between force, length, and velocity. Ad-
ditionally, the biomorphic model may be more likely to pro-
duce appropriate behaviors when the model is simulated in a
new regime of operation that biological experimentation has not
identified.

We have developed a biomorphic model using nonlinear,
low-power circuitry that demonstrates many of the character-
istics of biological actuation. Muscle demonstrates nonlinear
relationships between force, neural stimulation, length, and ve-
locity. In order to implement these features in the most efficient
manner, we employ nonlinear, analog circuitry. Prosthetic and
autonomous robotics applications require low-power systems
which are portable, demanding low-power circuitry for the
biomorphic model. Therefore, we have exploited a tool that
has been proven to be useful for modeling low-power neural
systems. Neuromorphic, analog very large-scale integrated
(VLSI) circuit technology [3] utilizes large arrays of analog
transistors operating in their subthreshold regime. This type
of circuitry has many advantages including: 1) the ability to
obtain nonlinear behaviors demonstrated by biology using a
small number of transistors; 2) low currents, associated with
subthreshold operation, which produce low-power imple-
mentations; and 3) the ability to be used to implement many
components operating in parallel, mimicking the architecture
governing neural systems. The parallel nature of the VLSI
circuits allows our biomorphic model to operate in real-time,
which is essential to interact with the real world.

In this paper, we will present the nonlinear characteristics as-
sociated with biological actuation and describe a circuit imple-
mentation of these characteristics. This circuit has been fabri-
cated and tested, and experimental results are presented.

II. DESCRIPTION OFBIOLOGICAL ACTUATION

Mammalian skeletal muscle has a hierarchical structure, as
shown in Fig. 1 [1]. Whole muscles are comprised of a par-
allel array of muscle fibers, which contain a parallel array of
myofibrils. The myofibrils contain sarcomeres (the force gen-
erating components of muscle) organized both in series and in
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Fig. 1. The component parts of mammalian skeletal muscle: muscles are made up of parallel fibers, each of which consists of many myofibrils in parallel. The
myofibrils consist of sarcomeres in series and parallel. Sarcomeres, the subunit being modeled in this work, are the fundamental force-generating elements. They
are made up of parallel actin and myosin filaments, with myosin crossbridges stretching between them.

parallel. Within each sarcomere are actin and myosin filaments,
which provide much of the structure of the muscle, and cross-
bridges (the heads of the myosin filament) that stretch between
the actin and myosin [4]. The crossbridges rotate through po-
sitions of lower potential energy causing the actin and myosin
filaments to slide relative to one another, resulting in muscle
contraction.

All force is produced by the spring-like characteristics of
crossbridges [4]. Similar to a spring’s natural length, where its
force is equal to zero, a crossbridge has an equilibrium posi-
tion where it cannot produce force (see Fig. 1). A detached
crossbridge will attach to the actin filament some distance away
from it’s equilibrium position. As a consequence of being a part
of a distributed system, the attached crossbridge can be moved
to positions positive or negative to the equilibrium position by
the sliding of the filaments. Like a spring, each attached cross-
bridge contributes a force that is proportional to the distance it
is stretched from its equilibrium position. The total force of the
muscle is the sum of all the individual crossbridge forces.

The unique force characteristics demonstrated by muscle are
mediated by the attachment, detachment, and movement of the
crossbridges. Muscle force has a nonlinear relationship with
the muscle length and the velocity of stretch or contraction
[5] (shown in Fig. 2), which enhances both stability and per-
formance [6]. As the muscle actively shortens [see Fig. 2(a)],
force falls exponentially, saturating at a lower steady-state
level. Faster contraction velocities result in lower steady-state
force levels (dashed line). This characteristic occurs because
the contraction pulls many crossbridges to positions negative
to their equilibrium position, where they resist contraction,
producing a negative force contribution. However, these cross-
bridges soon detach, preventing the whole sarcomere from
producing a negative net total force. As the muscle lengthens

Fig. 2. The nonlinear dependency of biological muscle force on muscle
velocity during (a) a constant velocity contraction and (b) a constant
velocity stretch. In both cases, the dashed lines indicate higher velocities.
(c) The force output of biological muscle during an extremely high velocity
stretch, demonstrating the nonlinear property of yielding, which is critical in
determining a muscle’s initial response to an applied length perturbation.

due to an externally applied force greater than the muscle force
[see Fig. 2(b)], the muscle force increases and saturates at a
higher steady-state level because crossbridges are being pulled
to positions positive to their equilibrium position, increasing
the force contribution of these crossbridges. Faster lengthening
velocities result in higher steady-state muscle force levels
(dashed line).

The transient response to high velocity stretches is highly
nonlinear [5]. The force rapidly increases to a much higher value
and then falls to a new steady-state value [see Fig. 2(c)]. This re-
sponse is due to crossbridge detachment at positions far from the
equilibrium position. The initial linear response of the muscle is
known as the short range stiffness (for short operating ranges,
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Fig. 3. Crossbridge attachment(f(x)) and detachment(g(x)) rates as a
function of x, with the solid lines indicating the curves used by Huxley [4],
and the dashed line indicating the modification made by Zahalak [8].x = 0
denotes the equilibrium position, and� = 1 denotes the maximum length
at which an unattached crossbridge can attach. We will refer to the region
between these two points as the first bond length.

the stiffness is very high) and the decline in force is known
as yielding. Many neuroscientists assume that the role of short
range stiffness is to stabilize the limb posture in response to un-
expected perturbations [7], [5]. Because this response occurs be-
fore the neural feedback mechanisms can begin to operate, it is
considered an important nonlinear response for muscle tissue.

The length of the sarcomere also plays a major role in deter-
mining its total force production by changing the total number of
crossbridges available for attachment [1]. When the sarcomere
is at longer and shorter lengths, fewer crossbridges are avail-
able for binding, which diminishes the maximum force produc-
tion. The resulting force–length relationship has an optimal re-
gion for producing the maximum force that linearly declines for
longer and shorter lengths.

III. H UXLEY’S MATHEMATICAL MODEL

The nonlinear properties of muscular contraction were cap-
tured by a mathematical model developed by Huxley [4]. Each
sarcomere has thousands of crossbridges, facilitating the study
of sarcomere mechanics using a statistical population of cross-
bridges. If is the percentage of crossbridges that are at a
distance from their binding site at a given time, then
represents the percentage of that are attached. This for-
mula incorporates important mechanical and chemical elements
involved in sarcomere actuation, such as the velocity at which
the actin and myosin filaments slide relative to one another and
the crossbridge binding rates for attachment and detachment.

The equation describing is

(1)

where and are the binding and unbinding rates
of the crossbridges and is the contraction velocity. The

term represents the rate at which unattached
crossbridges will attach. The term denotes the rate
at which attached crossbridges will detach. As the sarcomere
is stretched or shortened, the actin and myosin filaments slide
with respect to one another, causing attached crossbridges
to move to different position. The term
calculates this movement of crossbridges as a function of the
velocity of stretch or shortening.

Huxley hypothesized that the attachment and detachment
rates ( and ) vary with due to the molecular orien-
tations of the actin and myosin filaments [4]. These variations

are depicted in Fig. 3. A crossbridge can only attach over a
finite distance, , called a single bond length. The parameter
is often normalized by the bond length as follows, ,
which relates to a known distance in the sarcomere. Once
the crossbridge is attached, movements in the sarcomere can
stretch the crossbridge to positions where or .
However, this movement increases the energy in the state of
the crossbridges, causing an increase in the detachment rate.
The original Huxley model overestimated the forces during
stretches and did not exhibit yielding at high velocities. Za-
halak corrected this problem by modifying the detachment rate
(shown by the dashed line in Fig. 3). The spatial dependence
of the rate constants has not been experimentally measured;
however, the form developed by Zahalak produces simulation
data that match well to the biological data [8].

Assuming the crossbridge is linearly elastic, its force contri-
bution can be calculated as the stiffness of the crossbridge mul-
tiplied by its distance away from the equilibrium position. The
total force production for the entire sarcomere is the sum of the
force contributions of each attached crossbridge, which is me-
diated by the following equation:

(2)

where is a scaling factor that represents the stiffness of the
crossbridges.

The first order partial differential equation, (1), is difficult to
implement in circuits because of the continuous nature of the
spatial variable . The method of lines is a numerical procedure
that converts a partial differential equation into a set of ordi-
nary differential equations by discretizing one of the indepen-
dent variables using a finite difference equation [9]. We have
applied this method to the spatial variable to simplify the circuit
implementation. We augmented (1) by dividinginto spatial
bins, where each bin represents some range ofvalues. The re-
sulting equation for a single bin is

(3)

where is the bin number in the range 0 to , and the partial
derivative of with respect to is replaced by the theright dif-
ferenceequation of attached crossbridges in neighboring bins.
In each of the difference equations,represents the number of
attached crossbridges in theth bin and represents thevalue
corresponding to the center of the bin. The constantsand
correspond to the value of and evaluated at .

The force is calculated by a discretized version of (2)

(4)

where, for the th bin, represents the number of attached
crossbridges in that bin, represents thevalue at the center of
the bin, and represents the bin width. Because

at and , the force contribution at these
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Fig. 4. Nonuniform bin distribution scheme, which retains a force–velocity
curve matching that seen in biological muscle while reducing the number of bins
required to implement the model. Bin density is highest in the first bond length,
and reduces as bond length increases in the positive and negative directions.

bin positions is equal to zero. The force can be rewritten as a
weighted sum of the distribution of attached crossbridges, where
the weight of each bin is given by .

A major concern in developing the implementation of the
sarcomere model is the trade-off between circuit size and bi-
ological accuracy. Although discretizing the spatial portion of
the partial differential equation makes the circuit tractable, the
implementation now requires a subcircuit for every spatial bin.
Therefore, it is necessary to optimize the biological accuracy
against the number and distribution of spatial bins. Prompted
by the manner in which Huxley’s model calculates crossbridge
movement, we found that a nonlinear distribution of bins, shown
in Fig. 4, with more bins of a smaller width in and near the first
bond length , produced a force–velocity relation-
ship that closely resembled the continuous solution [10], [11].
We performed mathematical simulations of the force–velocity
relationship using a discrete representation of the continuous
solution to Huxley’s model. Using sixteen bins, these simula-
tions demonstrated a two percent variation from the continuous
solution over twenty percent of the input range. The highest ob-
served variation was four percent for large velocity inputs. This
nonlinear grid has been discussed in more detail in [10] and [11].

IV. M ODEL SARCOMERECIRCUIT DESCRIPTION

We implemented the Huxley model of sarcomere actuation
using sixteen bins coupled together by circuits implementing
the velocity term. By carefully setting the parameters among
the bins, we created a nonlinear distribution of bin widths. This
section will detail the circuit implementation of a single bin, the
parameter distribution among the array of bins, and the circuits
calculating the velocity from a differential length input and the
force–length relationship.

A. Single Bin Implementation

The bold circuit elements in Fig. 5 comprise the circuit
schematic for a single bin. Each of the bin circuits are operated
in the subthreshold regime in order to 1) maximize power effi-
ciency; 2) enable low frequency operation to mimic muscular
time constants without requiring large, off-chip capacitors;
and 3) utilize the exponential transconductance in this regime
to simplify the parameter distribution. The capacitor voltage,

encodes the value of . This value is computed via
the integration of a set of currents representing the individual
terms on the right side of (3). Two transconductance amplifiers

( and ) are used to generate currentsand , which
encode the attachment and detachment terms,
and , respectively. The voltages and encode
the attachment rate constant and the detachment rate constant,
respectively. Both of these values are set for each bin as a
function of the crossbridge position,. They set the transcon-
ductance of the TAs, and are programmed to values that ensure
the TAs operate in the subthreshold regime. The relationship
between the differential input voltage and output current of an
TA operating in the subthreshold regime is of the form

(5)

where is the bias current of the TA, is the thermal voltage
equal to , and is the gate efficiency constant [3]. If

mV, (5) can be approximated as a linear
relationship between and , shown below.

(6)

If is defined as the bias current that results from the
voltage and is defined as the current that results
from the voltage , then and can be written as fol-
lows.

(7)

(8)

where and represent the maximal and minimal fraction
of crossbridges (1 and 0 respectively) that can be attached in a
given bin. If and are equal to and in (3), then
(7) and (8) correspond to the attachment rate and
detachment rate terms.

To ensure that is less than 200 mV for each TA,
mV. If (indicating activation of

the sarcomere) and , the node voltage, , will
increase until it reaches . If will remain
at . When the sarcomere is not activated , all
node voltages remain at .

The velocity-dependent term in (3) is implemented using a
complementary pair of unidirectional delay lines. One delay line
calculates crossbridge movement from bins on the right to bins
on the left, which occurs during contraction. The other delay
line calculates crossbridge movement in the opposite direction,
which occurs during lengthening. To appropriately control each
of the delay lines, we transformed the velocity input by multi-
plying it by two unit step functions, and for the con-
traction and lengthening components respectively. In the orig-
inal Huxley equation, positive velocities represent contraction
and negative velocities represent lengthening [4]. To eliminate
the need for negative input voltages, we use these half-wave rec-
tified versions of the velocity. The resulting functions for the
contraction component of the velocity, , and the length-
ening component of the velocity, , are shown in Fig. 6(a).
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Fig. 5. Circuit diagram of a single bin implementing (3), with bold lines indicating the circuit elements comprising a single bin.TA andTA generate currents
representing crossbridge attachment and detachment, whileTA andTA are elements in delay lines that implement the translation of crossbridges as a function
of velocity. The capacitor voltageV (representing the percentage of attached crossbridges in the bin), is translated into a currentI (representing the force
produced by the bin) by the differential pair in theAttachment/Detachment Block.

The discrete Huxley equation was rewritten as follows to include
the half-wave rectified version of the velocity

(9)

where . The parameter indicates the
coupling strength among neighboring bins for a given velocity.

Larger bins widths result in smaller coupling strengths and vice
versa.

Each delay line is constructed using a set of TAs configured
as unidirectional resistive elements ( and in Fig. 5),
which calculate the difference between neighboring capacitor
voltages . Similar to and , if
is less than 200 mV, the TAs operate in the linear portion of
their transconductance relationship. and constrain
to have a 200 mV range; therefore mV
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Fig. 6. Decomposition of the velocity term in order to ensure that crossbridge
movement occurs in only one direction during a given length change. (a) Ideal
decomposition, separating lengthening and contraction velocity components.
When one function is nonzero, the other is zero. (b) Illustration of actual
decomposition implemented by the differential pairs in the delay lines.
Solid line showsI for the contraction delay line. Dashed line shows
I for the lengthening delay line. This decomposition retains a region,
V , where both delay lines are inactivated.

and the TAs have a linear relationship between and
.

The dependence of the velocity term upon , represented
by in the circuit, and , is found in the formulation of

and . These two bias currents are generated
by a differential pair, which has a sigmoidal relationship be-
tween its output current and its differential input voltage. If the
differential input voltage is less than 200 mV, then the output
current can be approximated by the following linear equations:

(10)

(11)

where is the current through the bias transistor due to the bias
voltage and and are constant voltages that de-
termine the zero velocity point of the circuit. The output current
is taken from the respective opposite legs of the differential pair
for the lengthening delay line versus the contraction delay line,
producing opposite slopes for the output currents, as shown in
Fig. 6(b).

The values for and are chosen such that
mV. This restriction ensures that

only one delay line will be activated with a nonzero value
of for any given value of . Additionally, this
separation between and creates a region where

. This dead zone is necessary to
ensure that some value for exists where neither delay line
is activated, denoted by . We can compute the final
velocity terms, linearly dependent upon , and

, as follows:

(12)

(13)

The resulting percentage of attached crossbridges for each
bin, , is weighted and translated into a current that represents
the force contribution of a single bin, . is calculated in a

similar manner as seen in (4). Each bin has a weight associated
with the center of the bin. The weight parameter is calculated as

, where is the width of the bin. is encoded
as the subthreshold bias current of a differential pair.

Because is constrained to a 200 mV range, we can also
assume that the weight differential pair is operating in its linear
region. Thus, the output current of the bin,, which represents
the force generated by the bin, can be calculated as

(14)

where is the bias current of the differential pair that re-
sults from the voltage . The parameter is set to a
value of to ensure that there is a linear transfor-
mation between and . Due to the sigmoidal nature of the
differential pair, this value of produces zero current when
the capacitor voltage is equal to . If the bin has a negative ,
the output current of the differential pair is copied by a current
mirror so that bins with a positive value for source current
and the bins with a negative sink current. The bin currents
(which represent the force produced by each bin) are summed
to compute the total sarcomere force as follows:

(15)

B. Parameter Distribution Among the Bins

The sarcomere circuit consists of sixteen bins connected in a
distribution similar to one shown in Fig. 4. Five bins of equal bin
width are placed in the first bond length, where . Seven
bins of increasing bin width are placed in the lengthening region.
Four bins of increasing bin width are placed in the contraction
region.

Each bin has a number of bias voltages, including
,

and . The level of sarcomere activation, , and the sar-
comere velocity, , are global inputs into each bin across the
array. , and are global constants used
to bias all of the bins into the proper operating region.
and are parameters that depend upon, and therefore the
bias voltages and must be set differently
for each bin. Setting these four bias voltages individually for
each bin would require 64 inputs, requiring more than the 40
pins available on a standard tiny-chip. These voltages could
be set by storing the values on the chip; however, when the
sarcomere is one of many comprising a fiber, setting 64 bias
voltages for every sarcomere would be tedious and difficult.
Therefore, we applied other techniques to reduce the number
of inputs from 64 to 10.

In the first bond length, we used a uniform distribution of bin
widths equal to one-fifth the bond length. We achieved this uni-
form distribution by using a single input, , to set all of the

voltages in this region, as shown in Fig. 5. We implemented
the linear distribution of the , and parameters by lin-
early scaling the ratios of the bias transistors in the corre-
sponding TAs. This scaling allows the , and parameters
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to be set for the entire region using only three bias voltages,
, and .

In the lengthening region, , the slope of increases,
and the bin widths, and therefore the weights, increase monoton-
ically in , as shown in Figs. 3 and 4. The parameterwas set
to zero in this region by connecting the nFET bias transistor of

to ground. We could have increased the remaining param-
eters by scaling the values as seen previously; however
this method would result in prohibitively large transistor sizes.
Therefore, we used resistive ladders for each of the remaining
parameters to produce linear gradients in the bias voltages for
each of the TAs in this region, as shown in Fig. 5. If the volt-
ages across the resistive ladder are below the threshold voltage
of the transistors they are controlling, this linear gradient in bias
voltage translates to an exponential gradient in bias currents.

The parameter sets the bin width, and therefore the bin dis-
tribution. By connecting to the left side of a resistive ladder
and a new parameter, , to the right side of a resistive ladder,
we can control the distribution of bin widths in this region while
preventing a discontinuity in bin widths between the first bond
length and lengthening region. If is closer to the power
supply than , the coupling between neighboring bins will de-
crease in , producing an increasing distribution in bin center
values, , and therefore bin widths that increase exponentially.

Similarly, by connecting to the left-hand side of the de-
tachment rate resistive ladder and a new parameter,, to the
right-hand side, the bias currents of the detachment rate TAs will
increase exponentially while preventing a discontinuity between
the two regions. However, due to the manner in whichis being
set, the values are increasing exponentially in this region as
well. Therefore, if the distribution is carefully matched to the
distribution of values, can increase linearly. The exact
distribution of values in this region is of the following form.

(16)

The weight parameter is defined asmultiplied by the bin
width. Both and the bin widths increase exponentially, there-
fore the weight parameter should increase exponentially as well.
Again, we use a single resistive line to produce an exponential
distribution. Similar to the and parameters, continuity be-
tween the two regions is maintained by connecting the left-hand
side of the resistive ladder to and the right-hand side of the
ladder to a new parameter, , that controls the weight distri-
bution.

The contraction region parametersand are set in a sim-
ilar manner using two additional resistive nets and the parame-
ters and connected to the left-hand side of the coupling
and weight resistive ladders, respectively. The detachment pa-
rameter is constant in this region. To obtain this relationship,
we connected all the bias transistors of the detachment TAs to a
single parameter .

By utilizing resistive ladders and transistor scaling, we are
able to control the entire 16-bin sarcomere using ten bias volt-
ages. For proper circuit operation, all of the parameters must be
set so that the bias transistors are operating in the subthreshold

regime. In addition, the following constraints must be placed
upon the parameters:

(17)

(18)

(19)

(20)

Using these parameter constraints, we have implemented and
tested the operation of the circuit shown in Fig. 5, showing the
effects of the delay line and crossbridge attachment and detach-
ment rates on the force output [11].

The sarcomere model exhibits some second order phe-
nomena. The linear assumption of (5) exhibits approximately
20% error when is near or . As a consequence,
the implementation will allow a greater amount of charge to
leave the bins in the first bond length during a lengthening
or stretch after an isometric activation (where the length has
not changed for a period of time and therefore all capacitor
voltages have reached their maximum, ). This effect is due
to a smaller tranconductance of the attachment TAs when the
input is near . Similarly, the detachment TAs will exhibit a
lower transconductance when is near . This voltage is
observed most commonly in the lengthening and contraction
regions before a change in length causes the charge to redis-
tribute among the bins in this region. Thus, during contractions,
the smaller transconductances will cause the charge to spread
further down the delay line for the VLSI implementation than
for the ideal mathematical model, resulting in a slightly lower
final force. During lengthening, the effects of the attachment
TAs in the first bond length and the detachment TAs in the
lengthening region counter one another. Therefore, the effect is
minimal, although it tends to lean toward slightly higher forces
due to the higher weight distribution in the lengthening region.

Another second-order phenomena occurs if mismatch or
poorly set parameters allows the lengthening delay line and the
contraction delay line to be activated simultaneously. In this
circumstance, the circuit can exhibit feedback loops between
adjacent bins. As a consequence, as increases due to a
contraction, it drives its neighboring bin through the
contraction delay line. As increases, it drives through
the lengthening delay line. This feedback continues until all
node voltages reach the supply voltage. This effect is eliminated
by the dead zone, described in Section IV.A. Additionally, this
effect can be compensated by increasing the transconductance
of the attachment and detachment TAs, which overpower the
positive feedback in the delay line.

Finally, the delay line may exhibit offset accumulation if
offsets occur in the same direction down the resistive ladders.
This could potentially result in less or greater coupling between
neighboring bins, which could effect the final force production.
However, this phenomena does not have a significant effect on
the qualitative behavior of the circuit.

C. Translation From Length to Activation

There are three major circuits in our system that transform
the sarcomere length in order to accurately reflect the effects of
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Fig. 7. Schematic of the circuits used to transform sarcomere length changes into velocity and activation terms. The differential voltage convertershown in A
translates the differential voltageV �V into a single-ended voltageV representing the sarcomere length. The differentiator shown in B (aC circuit [12])
generates the temporal derivative ofV ; its output voltageV represents the sarcomere velocity. The force–length circuit shown in C (a modified bump circuit
[13]) translatesV into a voltageV representing the number of crossbridges able to bind.

sarcomere length on force output. A differential-to-single-ended
voltage converter allows us to express sarcomere length as a
differential voltage, facilitating the future development of fiber
models. A differentiator transforms the length into the velocity
term . Additionally, a bump circuit transforms the length
into an activation factor, , reflecting how sarcomere length ef-
fects the total number of crossbridges available for attachment.
These circuits are illustrated in Fig. 7.

In order to facilitate the future development of a muscle fiber
comprised of several sarcomeres in series, we chose to repre-
sent sarcomere length with a differential signal. In order to meet
later processing stages’ requirement of a single-ended voltage
representing length, we designed a differential-to-single-ended
voltage converter (block A in Fig. 7) to transform the differ-
ential length, , into . The additional diode con-
nected pFET, M1, in the converter ensures that the maximal
value of will be approximately . This lowering
of below the supply voltage ensures that it will remain in the
common-mode input range of the next stage.

To transform the length into a velocity, we designed a
differentiator circuit (block B in Fig. 7) using a Capacitively
Coupled Current Conveyer [12]. The can be used as a
bandpass filter with adjustable corner frequencies. By operating
on the ascending leg of the ’s bandpass filter, we generate
the differential function. This creates a compact differentiator
that does not demonstrate ringing, which is essential for a true
velocity calculation. In addition, the circuit can produce a gain

of less than one at low frequencies. These factors made the
attractive for our design.

One limitation of the circuit is its nonlinear response to
a step increase in . The transistor M4, a drain induced bar-
rier lowering (DIBL) FET, helps to linearize this response [12].
The gate of M4 is less than the minimum length, which pro-
duces a large amount of channel-length modulation. When we
hold the gate of M4 at a constant voltage, channel-length mod-
ulation modulates the current through M3, linearizing the oper-
ating range.

The force–length relationship (block C in Fig. 7) was
computed using a “bump” circuit [13], which has a nonlinear
transfer function that is qualitatively similar to the biological
force–length relationship. This circuit has two inputs rep-
resenting the length of the sarcomere,, and the optimal
length of the sarcomere (the length at which maximal force
is produced), . When these two values are equal to one
another, the bias current is shared equally among all branches,
generating the maximal value of the output current, . As

and differ from one another, the gain of one of the two
series transistors is reduced, lowering the value of . Thus,
as the differential voltage increases, the output current falls to
zero.

The output current is translated into a voltage,, using a
diode connected transistor. The diode connected transistor has
a logarithmic relationship between input current and output
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Fig. 8. Photograph of the sarcomere circuit model, fabricated in a 1.2�m
process on a 1500�m� 1500 �m TinyChip. The sarcomere circuit itself
measures 292�m� 1300�m (379 600�m ).

voltage, which results in a compression of the output voltage.
is computed as follows.

(21)

The logarithmic compression produces a rising and falling
slope that behaves linearly over the input range and broadens
the region for the peak voltage. The output range is limited due
to this logarithmic compression; however the sarcomere circuit
requires only a 200 mV range for . Therefore, the logarithmic
compression improves the qualitative matching of the circuit to
the sarcomere data [1], [7]. When reaches its
maximal value, producing the maximal force in the sarcomere.
The maximal value of is controlled by the bias current, which
is set by . The source voltage of the diode connected tran-
sistor is connected to a bias voltage,. constrains the lower
boundary of within the common-mode input range of the sar-
comere TAs. The value of may be modified to change the
input voltage necessary to produce the peak force, which allows
us to vary the force–length characteristic of sarcomeres in an
array.

V. EXPERIMENTAL RESULTS

We fabricated the sarcomere circuit using the Mosis fab-
rication facility using the AMI 1.2-m CMOS process. In
this process, a single sarcomere circuit requires an area of
292 m 1300 m (379 600 m ). Roughly 30% of this
area consists of bin capacitors. A photograph of the fabricated
chip is shown in Fig. 8. Initially, we obtained experimental
measurements of the effects of the force–length relationship
circuit and the differentiator on the force current individually
to understand their individual contributions to the force. Then
we measured the force response with both circuits activated.

(a)

(b)

Fig. 9. Experimental data showing the force–length relationship of the
length-dependent sarcomere. (a) IncreasingI broadens the force–length
curve. (b) ChangingV translates the the force–length curve, changing the
length at which maximum force is generated.

A. Force–Length Relationship

The force–length characteristic of the circuit was measured
for different values of and (refer to Fig. 7 for the cir-
cuit schematic). was swept over a range of values while

was held at a constant voltage. The sum of all bin cur-
rents, , was measured using a current-to-voltage converter
driving an oscilloscope. The effects of the velocity circuits were
eliminated by placing the bias voltages for the velocity circuits,

and , high and low respectively, which set the bias
currents for the velocity TAs to zero.

Fig. 9(a) presents the force–length relationship for two dif-
ferent values of the bump circuit bias voltage, (refer to
Fig. 7 for the circuit schematic). The curves have been nor-
malized by their maximal output voltages so that the shapes of
the two different curves may be compared. The broader curve
is due to a larger value of . Increasing the bias current of
the bump circuit increases the operating range of, which in-
creases the range of lengths over which the circuit produces a
nonzero force. Both curves exhibit a flat plateau region around
the optimal length, which is uncharacteristic of the bump cir-
cuit. This plateau region is due to the limited range of opera-
tion of the sarcomere circuit. The TAs in the sarcomere circuit
have a linear input-output relationship for only 200 mV. There-
fore, if the range of is greater than 200 mV, the TAs in the
sarcomere circuit saturate. In this region of operation,has
no effect on the circuit. While initially this limitation in oper-
ating range may appear as a limitation of the circuit, in practice
it broadens the plateau region, producing a force–length curve
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(a)

(b)

Fig. 10. Transient force output of the sarcomere circuit shown in Fig. 7 with
length circuitry inactivated. (a) Response to constant-velocity contractions.
(b) Response to constant-velocity stretches. In both figures, the top graph
indicates sarcomere length, the middle graph indicates the output of the length
differentiator circuit, and the bottom graph indicates sarcomere force output.

that is better matched to the biological data [1], [7]. The ef-
fects of modifying the optimal length, , are demonstrated
in Fig. 9(b). Increasing the value of shifts the force–length
curve to the right, but has no effect on the shape of the curve.

B. Force–Velocity Relationship

The effects of different velocity contractions and stretches is
demonstrated in Fig. 10(a) and (b). In this experiment, we con-
trolled the input with a decreasing or increasing ramp func-
tion (representing a constant-velocity contraction or a stretch
respectively) while holding at a constant voltage. We re-
peated the experiment with ramps changing at rates of 2.21,
2.94, 3.98, 4.37, and 5.17 V/s. Using an oscilloscope, we mea-
sured the output of the , and the force of the sarcomere,

. The top graph in the figure presents , the middle ,

and the bottom . In order to ensure that we did not move
into the pass-band region of the circuit, we operated the cir-
cuit in the lower region of the ascending limb of the band-pass
transfer function. As a result, the gain was very low and the
responded slowly. To compensate for this problem, we used a
nonlinear ramp function. Initially, the ramp has a higher slope
to force the circuit to respond, then the ramp function slows
down to the desired slope.

The circuit produces a step function in response to the
ramp input, demonstrating the effectiveness of the circuit in
producing derivatives. Both stretches and contractions produce
step functions with similar differential voltage levels and sim-
ilar time constants. As the speed of the contraction or stretch
increases (shown by an increase in the slope of the line),
the steady-state value of increases. The overshoot in is
due to the slope change in the nonlinear ramp function used to
force a quick response from the circuit.

The sarcomere circuit produces nonlinear force responses in
response to the step in , as shown in Fig. 10(a). The force
data is normalized to the force production of the sarcomere
at zero velocity (called the isometric force). In response to a
contraction, each curve demonstrates an exponential decay
(shown between the dashed lines) down to a steady-state force
(shown after the second dashed line). This same response has
been demonstrated in biological muscles [5]. The explanation
of this effect can be observed by investigating the steady-state
form of the Huxley equation.

(22)

The solution of (22) in the first bond length is of the form

(23)

Thus, the bond distribution in the first bond length decreases
exponentially with the velocity, causing the force to decrease
exponentially. The solution of (22) in the contraction region is
of the form

(24)

Because is negative in this region, the bond distribution in-
creases exponentially with velocity, causing the force to de-
crease exponentially. Assuming that our circuits are operating
in the linear regions of the TAs, they should produce a similar
result.

Increasing the velocity of contraction results in lower steady-
state force and an increase in the slope of the initial fall in force,
which qualitatively matches biological data [5], [14]. Note that
for higher velocity contractions, the force reaches its steady-
state after the velocity reaches its plateau, indicating that the in-
teractions between velocity current, attachment current, and de-
tachment current are responsible for the development of steady-
state force.

In response to a stretch, as shown in Fig. 10(b), each curve
demonstrates a rapid increase in the current representing force
(shown between the two dashed lines) until a new steady-state
force is reached (shown after the second dashed line). As the
velocity is increased, the slope of the initial rise in force and
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Fig. 11. The force output of a biological muscle (frog sartorius) in response
to stretches at six different velocities (from [14]). This data compares well
qualitatively to the force output of the sarcomere circuit shown in Fig. 10(b).

the steady-state force both increase until a phenomenon known
as yielding occurs, as demonstrated by curve C. In yielding,
a lengthening muscle transiently generates a peak force that
is greater than its steady state force at that velocity. Fig. 11
shows yielding behavior in a muscle fiber from the sartorius
muscle of the frog in response to a step increase in velocity
[14]. The two diagrams present similar behaviors. As velocity
increases, the steady-state force increases and yielding becomes
evident. The biological data demonstrates a larger change in the
slope of the initial response than the circuit data. We believe
our circuits could demonstrate a similar behavior by modifying
the parameters.

The experimental data does not perfectly replicate the ideal
simulation of the model. The steady-state force shown by curves
A and B in both the contraction and lengthening graphs do not
exhibit much variation from one another. This effect is due to the
nonlinearity of the circuits converting the velocity to the bias
currents controlling the delay lines (see Fig. 5). These differ-
ential pairs exhibit a sigmoidal relationship between and

. As a consequence, the delay line is not activated as
strongly at very high and very low velocities. Additionally, the
force in this circuit is overestimated for lengthenings and un-
derestimated for contractions. These errors can be corrected by
adjusting the parameters of the circuit.

C. Interaction of Velocity and Length

The final set of experiments investigated the effects of the in-
teraction between the length and velocity on sarcomere force.
The experimental procedures were similar to the velocity tests.
We controlled the input with a decreasing or increasing
ramp function (representing a constant-velocity contraction or
a stretch respectively) while holding at a constant voltage.
Using an oscilloscope, we measured the output of the bump cir-
cuit, , and the force of the sarcomere, .

To better understand what is expected of the data in this sec-
tion, we will first reexamine the circuit model. only effects
capacitor voltages in the first bond length. Without the effects
of the velocity on the bin distribution, the force would merely
follow . However, the velocity delay line causes charge to
move out of this first bond length and into the lengthening or
contraction regions where has no effect. Greater velocities
cause more charge to move out of the first bond length. There-
fore, we would expected the force response of low velocity con-

(a)

(b)

Fig. 12. Force output of the sarcomere circuit shown in Fig. 7 with length
circuits activated. (a) Response to constant-velocity contractions. (b) Response
to constant-velocity stretches. In both figures, the top graph indicates sarcomere
length, the middle graph indicates the output of the force–length circuit, and
the bottom graph indicates sarcomere force output. The force demonstrates
characteristics of both the force–length and force–velocity relationships.

Fig. 13. Force response of soleus in response to a lengthening [1], [7].
The muscle is stretched far enough to exhibit both velocity and length
characteristics. Dashed line represents the force–length relations of the muscle.
The data qualitatively matches the experimental data shown in Fig. 12.
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Fig. 14. System of sarcomeres connected in series (sharing the same force) and in parallel (sharing the same total length) to model a whole muscle.

tractions and lengthenings to appear much like. The force
response of high velocity contractions and lengthenings should
appear much like the data shown in Fig. 10.

Fig. 12(a) and (b) present the effects of contractions and
stretches at the rates of 2.21, 2.94, 3.98, 4.37, 5.17, and 6.32 V/s
on the force. The top graph in the figure presents , the
middle , and the bottom . As the length decreases (a
contraction), also decreases, indicating that bump circuit
is operating on the ascending limb of the force–length rela-
tionship. Similarly, when the length increases (a stretch),
increases, also indicating that the bump circuit is operating
on the ascending limb. As demonstrated in Fig. 9, the general
shape of does not depend on the velocity, but only the
length. The force, however, is sensitive to both velocity and
length.

Fig. 12(a) presents the effects of the velocity and length
mechanisms on the force in response to contractions at different
velocities. The region between the dashed lines shows a sharp
decline in the force due to the velocity circuits. This decline
represents the initial transient response of the muscle to a
contraction. In the region after the second dashed line, the
velocity circuits have reached their steady state, which allows
the length component to become evident for slow velocities.
Note the small curvature of the force in this region as compared
to the seady-state force in Fig. 10 (see curves A, B, and C). This
small curvature is due to the length component of the circuit.
At higher velocities (curves D and E), a larger percentage
of the charge is moved out of the first bond length, which
minimizes the effect of on the force. Thus, less curvature in
the steady-state region is demonstrated.

Fig. 12(b) demonstrates the effects of length and velocity
on the force in response to different velocity stretches. Since
both the length and velocity circuits increase the force under
these circumstances, the force output resemblesmore closely
that the contraction data. The force follows the general shape
of ; however the force is amplified by the velocity circuits.
Higher velocities, which cause higher steady-state forces, result
in greater amplification, as shown by curves A, B, C, and D of
the force graph. The force amplification is reduced in the highest
velocity stretch (curve E) due to force yielding.

This data does not seem to be consistent with the single fiber
data presented in Fig. 11. However, this biological data was
taken over a small length change occurring at the peak of the
force–length relationship, where the force does not change with
length. Responses similar to the data shown in Fig. 12 have been
demonstrated by Joyce, Rack, and Westbury in whole muscle
experiments [7] and are presented in Fig. 13, [1]. When cat
soleus is stretched along the ascending leg of its force–length
relationship (shown as a dashed line), the force increases and
falls back to the isometric force mediated by the force–length
curve. Similarly, when the muscle contracts in this same region,
the force falls below the isometric force and saturates at the new
isometric level. The biological data is qualitatively matches the
experimental data shown in Fig. 12(b).

VI. CONCLUSION

We have developed a crossbridge-level model of sarcomere
behavior using integrated circuits. By using a discrete form of
the Huxley equation governing crossbridge interaction, we are
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able to approximate its continuous spatial and temporal solu-
tion. By employing a nonlinear bin distribution, we are able to
implement the discrete solution using only sixteen spatial bins.
The output current representing force responds to a change in
sarcomere length (represented as a differential voltage) and
demonstrates many of the nonlinear mechanical characteristics
observed in muscle, such as short-range stiffness, yielding,
and the subtle interactions between length and velocity.
These nonlinear characteristics would be difficult to produce
without basing the model upon the underlying mechanisms
governing crossbridge interaction. Thus, the implementation
is a real-time model that produces biomorphic characteristics.
Due to the ability of the model to simulate sarcomere behavior
in real-time, it can be used in engineering systems to add
biological properties to a standard linear actuator, producing
a biomorphic actuator. Such an actuator, by producing a force
that demonstrated the flexibility and complexities inherent
in biological muscle, could be used in applications such as
prosthetics and autonomous robotics.

To examine the efficiency of our analog model, we simulated
Huxley’s model with the same discrete, 16-bin nonlinear grid
using a real-time digital emulation board driven by a DSP. This
model achieved real-time behavior as well, running at a max-
imum speed of 1 kHz. The algorithm required approximately
4 MIPs. Assuming that the processor requires 1 mW for every
20 MIPs, the DSP processor would require approximately
200 W to run the algorithm. Our analog implementation,
running in the subthreshold regime, requires approximately
0.5 W. These numbers suggest that the analog controller of
a prosthetic or autonomous robot would run three orders of
magnitude longer than a traditional DSP solution on the same
power supply. The advantages of the analog model are further
demonstrated when developing a model of a whole muscle. As
shown in Fig. 1, muscles are comprised of many sarcomeres in
series and parallel that interact with one another. The analog
circuit model sarcomere may be implemented easily into an
array, as shown in Fig. 14, to produce a whole muscle model.
This type of model can be used to study the effects of low-level
mechanics on the force characteristics of a highly parallel,
distributed actuator, as well as providing insight into the effects
of muscle architecture on biological motor control. While,
the DSP may have difficulty emulating 100 or 1000 of these
sarcomere models in real time, the parallel nature of the analog
model allows this type of scaling to occur with ease. Using a
0.18- m process, 100 sarcomere models could be placed on
a 7-mm die and 1000 sarcomere models could be placed in
a 1-cm die. Thus, such a highly parallel model of muscle is
feasible using today’s technology.
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