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Knowledge-Based Segmentation for Tracking Through Deep Turbulence
Patricio A. Vela, Marc Niethammer, Gallagher D. Pryor, Allen R. Tannenbaum, Robert Butts, and

Donald Washburn

Abstract—A combined knowledge-based segmentation/active
contour algorithm is used for target tracking through turbulence.
The algorithm utilizes Bayesian modeling for segmentation of
noisy imagery obtained through longrange, laser imaging of a
distance target, and active contours for tip tracking. The algo-
rithm demonstrates improved target tracking performance when
compared to weighted centroiding. Open-loop and closed-loop
comparisons of the algorithms using simulated imagery validate
the hypothesis.

Index Terms—Active contours, Bayesian statistics, geometric
flows, tracking, turbulence.

I. INTRODUCTION

THIS BRIEF considers the problem of tracking a high-speed
projectile using a laser-based imaging system. Due to the

distance between the laser source and the target, atmospheric ef-
fects become an important factor to consider [1]. The effectively
random nature of turbulence introduces a significant source of
noise to the tracking process due to apparent motion of the target
in the recorded image sequence. The measurement noise is a
detrimental source of jitter for the tilt mirrors controlling the
laser beam [2]. A technique for suppressing this noise during
the image processing stage is given in what follows.

Prior work on laser-guided target tracking has focused on un-
derstanding the source of jitter and reducing jitter through con-
troller design for the optical system [2], [3]. Although effective
plant and controller design lead to performance improvements,
turbulence effects are a consistent source of noise not related to
the physical process of tilt stabilization, which is what an ef-
fective tilt controller design typically corrects for. Related work
on target tracking involves estimation and filtering algorithms
for the tracking signal in order to guide a target to destroy an-
other target [4], [5] with the sensor typically being radar. The
focus of this brief is on the utilization of probabilistic image pro-
cessing algorithms to provide spatio–temporal filtering of the
image signal itself, and not of the resulting track signal. We will
show that active contour methodologies may be naturally com-
bined with this.

Many of the problems associated with noise and uncer-
tainty found in imaging through turbulence are also common
in biomedical imaging. The use of knowledge-based image
processing techniques is commonly practiced [6]–[8] as is the
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use of active contours [9]. Consequently, the application of the
aforementioned algorithms to target tracking should be fruitful.
In [10], the authors apply statistical techniques with active
contours to improve the segmentation of astronomical imagery,
which also exhibits turbulence induced speckle and noise.

1) Modeling and Simulation Environment: The focus of this
brief is on the image processing algorithms involved, therefore,
detailed description of the physical modeling and image gener-
ation is omitted. Open-loop analysis was done using simulated
imagery provided by the Optical Sciences Company (tOSC),
which specializes in theoretical and experimental electro-op-
tics. The simulated environment used for closed-loop analysis
utilizes the tempus simulation environment and the Wavetrain
adaptive optics model of the MZA Corporation.

Fig. 1 depicts the physical setup of the system. The laser-
based imaging system is located on a moving platform whose
goal is to autonomously track a distant target. The platform
is equipped with a beam steering mirror to compensate higher
order aberrations caused by atmospheric turbulence, a high-
bandwidth steering mirror which is used to aim the laser for
tracking purposes and an imaging sensor which picks up the
return signal of the laser to generate an image of the target. In
simulation, the target is equipped with a sensor, called the target
board, which provides a reference signal for performance eval-
uation of the algorithms. The processes described in this brief
focus on recovering a smooth and reliable track signal from the
temporal image sequence.

2) Organization of This Brief: Section II briefly describes the
knowledge-based segmentation algorithm. Section III briefly
outlines the active contour method. The application of said
algorithms to target tracking are discussed in Section IV, in-
cluding comparison to a weighted centroiding technique. Both
open-loop and closed-loop results are given, demonstrating the
relative performance of the various tracking algorithms. A short
conclusion and future work follows in Section V. In particular,
we describe the possibility of putting dynamics directly into
the active contour model as in [11] and [12].

II. KNOWLEDGE-BASED SEGMENTATION

A typical approach to target tracking involves smoothing the
image to minimize the effect of noise, followed by thresholding
to determine the target area. Turbulence induced image noise is
nonadditive [1], therefore, smoothing techniques applied to the
image directly do not reduce noise in a physically meaningful
manner. Second, the dynamic nature of turbulence results in an
image sequence whose peak intensities can have high variation
from frame to frame, meaning that a constant threshold does
not work well over a diverse set of turbulence scenarios. This
section describes a statistical segmentation method which ef-
fectively operates as an adaptive threshold algorithm, thus pro-
viding a level of robustness to turbulence effects. Smoothing
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Fig. 1. Target tracking setup.

Fig. 2. Observer model for knowledge-based segmentation.

is performed on the probabilistic image model, which can be
rigorously motivated using the Markov Random Field Theory
[13], [14].

The knowledge-based segmentation algorithm used here
relies on statistical analysis of the image sequence with
segmentation done through a maximum a posteriori (MAP)
approach. The MAP segmentation algorithm with Bayesian
update, as implemented for image processing, is an adaptive
thresholding algorithm that has found much success in pro-
cessing noise corrupted imagery [15], [16]. The knowledge-
based segmentation technique itself is an observer-based
estimation algorithm using Bayesian modeling [13], where
a probabilistic model is associated to the image sequence.
Analysis is performed on the resulting probabilities, instead of
on the original image. Fig. 2 depicts the observer-framework
structure as a block diagram consisting of the plant, the sensor
measurement, the update model, and the model measurement.

1) Model Description: The model description of the knowl-
edge-based observer framework assumes that the image to
process consists of classes of gray levels ,
and that each class is associated with a mean pixel
intensity and standard deviation . Each class has
a probability field defined over the image domain,
where is a pixel location in the image domain and is the
classification of said pixel. The probability field gives the
classification probability at each pixel location for each class.
The goal of the segmentation process is to classify each pixel
according to the most probable outcome.

2) Model Measurements: The model measurement for the
problem described here is full-state measurement of the proba-
bility fields associated to the classes in .

3) Sensor Measurements: The sensor measurements are not
obtained directly from the imaging sensor, but are first passed
through a preprocessing stage which converts the intensity
values of the image into the probability space of the problem;
this is known as the sensor model [13]. The probabilities are
the likelihoods of classification based on the pixel intensities
of the image. Each pixel intensity measurement is treated
as a random variable with a known distribution, independent
of the other pixels in the image domain. The likelihood that a
particular pixel intensity is associated to a given class

, follows a Gaussian distribution

(1)

with the mean and standard deviation corresponding to
the class . The sensor model assumes that the means and
standard deviations for each class are constant over the imaging
domain. Although not depicted in Fig. 2, the framework allows
for adaptation of the statistical parameters underlying the sensor
model, thus compensating for an incorrect model and/or time-
varying image properties.

4) Correction Step: Given the classification probabilities of
the current sensor measurement , and also
those obtained from the model measurement , the
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posterior probability of a pixel intensity being assigned to a par-
ticular class is given by Bayes’ Rule

(2)

Bayes’ Rule plays the role of the correction step in the observer
framework, as it attempts to resolve any discrepancies between
the current sensor measurement and the current model measure-
ment in the probability space.

5) Update Model: For open-loop analysis of an image se-
quence, the model update step is simply a static model where
the posterior probabilities from the previous correction are used
as the current probability model estimate. In closed-loop simula-
tion, the actuation of the tilt mirrors for beam control causes the
target image to shift around the image plane in direct proportion
to the amount of mirror tilting. This effect must be considered in
the update model, as denoted by the dashed line in Fig. 2, due to
the spatial dependence of the probabilities defined on the image
domain. The update consists of shifting the sensed probabilities
according to the mirror tilts, effectively recentering the measure-
ments. For the initial condition of the probability model, we use
homogeneous probabilities.

Following [16], the posterior probabilities from (2) are cal-
culated for each class, then smoothed and normalized to obtain

. Smoothing of the posterior probabilities diffuses probability
information to local neighboring pixels, thus giving the poste-
rior probabilities spatial consistency in addition to the temporal
consistency provided by Bayes’ Rule. The smoothing step also
suppresses any imaging noise being propagated through the ob-
server framework. In order to account for a potentially incorrect
sensor model of the likelihood Gaussian distribution, the means

and standard deviations for the classes are updated
from their previous state according to the computed statistics of
the current segmentation.

We should also note that implementing Bayes’ Rule for a se-
quence of images without smoothing of the posteriors will tend
to result in convergence to a fixed steady state, potentially incor-
rect. To prevent the segmentation process from converging to an
incorrect steady state, smoothing of the posteriors is performed.

The final step of the process is to segment the object using
the smoothed posterior probabilities, which are the outputs of
the observer-based probabilistic model. The pixel is assigned
to the class with the maximal smoothed posterior probability

(3)

Fig. 3 depicts a sample image and its segmentation via
the MAP algorithm, where the classification set is

. The white area in Fig. 3(b) is classified
as target, and the black area is classified as background. The
MAP classification effectively segments the image by finding a
suitably thresholded probability contour associated to the target
class probability field (the target lies inside of this contour) or
an active contour algorithm (see Fig. 3).

III. ACTIVE CONTOURS

Active contours or snakes were introduced by Kass et al.
[17] as energy minimizing splines in the 2-D image plane.

Fig. 3. Example of MAP segmentation with target imagery. (a) Sample target
image. (b) Segmentation of target image.

The energy to minimize is based on elasticity and rigidity con-
straints on the contour and the underlying image, defined such
that the contour is attracted to desired image features. When
applied to an image sequence, active contours employ image
coherence in order to track features of interest over time. This
ability of active contours to conform to various object shapes
and motions makes them ideal for a variety of image processing
needs, including segmentation, edge detection, shape modeling,
and visual tracking. Moreover, they lend themselves to standard
estimation and prediction techniques such as those based on
Kalman filtering. Here, active contours are used to segment
target from background in the image sequence.

The deformable contour model described in [18] and [19] is
one of our key techniques for tracking. The method is based on
Euclidean curve shortening evolution and on the theory of con-
formal metrics. The Euclidean curve shortening evolution de-
fines the gradient direction whereby a given curve is shrinking
most rapidly relative to Euclidean arc-length. The Euclidean
arc-length is modified by a conformal factor adapted to the de-
sired features of interest. Under the corresponding gradient evo-
lution equations, the features to capture lie at the bottom of a
potential well to which the initial contour will flow.

In [20] and [21], the authors introduce a snake model based
on the level set formulation of the Euclidean curve shortening
equation. More precisely, the model is

(4)

Here, the function depends on the given image and is
used as a “stopping term.” For example, the term may
be chosen to be small near an edge, thereby impeding evolution
when the contour gets close to an edge. One may take

(5)

where is the (greyscale) image and is a Gaussian
(smoothing filter) filter [20], [21]. The function
evolves in (4) according to the associated level set flow for
planar curve evolution in the normal direction with speed a
function of curvature, as introduced in [22] and [23].

It is important to note that the Euclidean curve shortening part
of this evolution, namely

(6)
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is derived as a gradient flow for shrinking the perimeter as
quickly as possible. A constant inflation term may be added
to (4) in order to keep the evolution moving in the proper
direction [20]. The sign of is negative in the interior and
positive in the exterior of the zero level set.

To modify the model (4) in a manner consistent with curve
shortening flow, consider the conformal length metric

where is a positive differentiable function and the curve
in question is parametrized by , e.g., . The
standard Euclidean metric is recovered with . To compute
the corresponding gradient flow for shortening length relative to
the metric , define the modified length functional

Taking the first variation of the modified length function and
using integration by parts [19]

The direction in which the perimeter is shrinking as fast as
possible is given by

(7)

precisely the gradient flow corresponding to the minimization
of the length functional .

The level set version of this is

(8)

The evolution of (8) should attract the contour very quickly to
the feature lying at the bottom of the potential well determined
by the conformal factor . As in [20] and [21], an inflation term

may be added to obtain a modified model similar to (4)

(9)

Fast implementations of these snake algorithms based on level
set methods are possible [22], [23]. The ability of the snakes
to change topology and quickly capture desired features makes
them an indispensable tool for visual tracking algorithms [24].

The active contour uses the posterior target probabilities as
the grayscale image to use in (5). This provides a unique minima
for the contour to attract to for segmentation of the target from
the background. We should note that in this brief, we are in
effect using global statistical information based on a Bayesian
approach to drive our active contour models.

Finally, for tuning our gains in the Bayesian models we have
used an active contour model “without edges” as in Chan–Vese
[25] in order to separate the means and standard deviations for
the Bayesian procedure. For example, to separate the means, we
define the conformal factor as

(10)

Here and

and and denote the domains inside and outside the curve,
respectively. Computing the first variation and setting it to zero
results in

(11)

IV. TARGET TRACKING

Once the segmentation procedure defines a closed curve
whose interior may be classified as the target, a track point
must be determined. This section describes the technique
used to compute the target signal using the knowledge-based
segmentation algorithm, and will compare it to the target signal
obtained from using a masked, weighted centroid algorithm.
Two data sets are used for the comparison: one consists of
pregenerated images for open-loop analysis of the tracking
signal and the other is obtained through closed-loop simulation
of engagement scenarios for the high-speed projectile through
turbulence using the Wavetrain simulation of MZA Associates.

Target Determination: In practice, finding the front tip of the
target provides the most reliable track point. The standard ap-
proach to computing this track point is to generate a mask by
thresholding the image and using a weighted centroid of the
masked image, biased towards the front of the missile. Closed-
loop performance is typically good along the target’s short axis,
but can be poor for the long axis. The goal of introducing addi-
tional image processing is to improve the track signal along the
long axis.

The knowledge-based segmentation/active contour algorithm
generates a classification of target versus background, which
can be used to mask the image, thus generating an image of the
area classified as target only. A weighted centroid applied to the
masked image finds a point on the target, from which the actual
target tip may be sought. This may be accomplished by moving
the track point along the long axis until the target probability
drops to a predefined value or alternatively by using the geodesic
(conformal) active contour segmentation methodology directly
as previously described to find the target tip. Once the target tip
is found, a track point is computed by averaging the tip with its
neighboring tip points.

Fig. 4 demonstrates this process. The white contour sur-
rounding the target is the previously found contour, and the
black circle-plus is the initial target point obtained using the
masked, weighted centroid, whereas the white circle-plus is the
resulting track point after tip-seeking.

A. Open-Loop Analysis

For open-loop analysis, the algorithms may be analyzed
using two measures, both involve comparing the resulting
tracking signal to a scoring beam signal, which is provided
by the simulation. The first method computes the correlation
between the scoring signal and the appropriate tracking signal
and the second calculates the standard deviation of the error
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Fig. 4. Demonstration of tip-seeking for knowledge-based/active contour
algorithm.

TABLE I
OPEN-LOOP TARGET TRACKING COMPARISON

TABLE II
CLOSED-LOOP TARGET TRACKING COMPARISON

between the tracking signal and the scoring beam signal once
the two signals are in commensurate units.

Table I summarizes the performance results of the masked,
weighted centroid (CENT) versus the combined knowledge-
based segmentation/active contour algorithm (KBS/ACT) target
tracking algorithm. In all cases, the first 15 track points out of
2500 total were discarded; a requirement due to the Bayesian
learning process. When comparing the standard deviations, the
KBS/ACT algorithm performed on average 6% better on the
short axis and 40% better on the long axis. The correlations also
show improvement, with higher correlations for both axes when
compared to the centroid algorithm.

B. Closed-Loop Analysis

For closed-loop analysis the hit-point of the laser on the target
board is used to measure performance. The standard deviation
of the laser beam centroid on the target board is indicative of
the degree of jitter in the closed-loop system. Table II summa-
rizes the performance results of the two target tracking algo-

rithms. There are two standard deviation measurements given,
one which incorporates all 1000 frames of the simulation, the
other which discards the first 100 frames from analysis. The
early part of the signal tends to have high jitter due to the ini-
tial transient response of the closed-loop system. Comparing
the standard deviations of the last 900 frames, the jitter for the
KBS/ACT technique was slightly worse by about 3% for the
short (easy) axis, but 49% better for the long (hard) axis. The
slight discrepancies could be a result of using different simula-
tions to generate the open-loop images versus the closed-loop
images.

V. CONCLUSION

A combined knowledge-based and active contour segmenta-
tion algorithm for target tracking through turbulence was com-
pared to a weighted centroid algorithm. This adaptive algorithm
demonstrated significant improvements over the centroid algo-
rithm. The long-axis performance results found in open-loop
analysis of the target signal were reproduced in closed-loop sim-
ulation. Further simulated testing in more difficult scenarios is
needed to verify the reproducibility of the results and the robust-
ness of the algorithm prior to experimental verification.

In future work, we plan to employ the dynamic active contour
models as in [11] and [12]. The hope is then we will no longer
need the knowledge-based step at all.
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