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Abstract: The control problem for robotic manipulators with flexible links is 
considered in this paper. The dynamic equations of motion can be deri ved by 
means of a recently developed Lagrangian-assumed modes method. In the case of 
flexibility at links it has been shown that there is no analogue of the well 
established computed torque method widely adopted for rigid arm control. Under 
the assumption that the flexible dynamics is faster than the rigid dynamics, 
singu lar perturbation theory provides an engineering tool for reduced order 
modeling. The resulting slow subsystem allows the determination of a tracking 
control as for rigid manipulators, since the number of control variables 
equals that of control led variables. For the fast subsystem an additive 
control is in charge of stabilizing the deflections along the joint angle 
trajectory. The result is a composite control strategy which combines the 
advantages of rigidity ("controllability") with those of fle~ibility 
("lightweight compliant structures"). / 
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1. INTRODUCTION 

Flexible link manipulators represent one successful strategy to improve 

today's robot performance. Control is one key to an effective use of 

lightweight flexible arms. The main drawback is represented by the much more 

complicated dynamics, as compared to the case of rigid links. As a consequence 

the control goal for flexible manipulators is to be properly reformulated. In 

fact a flexible manipulator is required not only to execute some motion, but 

also it is desired to stabilize the vibrations naturally excited along the 

motion and damp them out as fast as possible at the terminal point. 

The basic step in designing a control system consists in disposing of a 

good dynamical model for the flexible manipulator. To this purpose the 

recursive Lagrangian-assumed modes method developed in (Book, 1984) apparently 

represents a complete and straightforward modeling technique. The generalized 

coordinates of the dynamic system are the joint variables and the amplitudes 

of the mode shapes derived by the modal analysis for link deflections. 

A first research effort to control a one link flexible arm moving along a 

pre-defined trajectory is presented in (Sicil iano et al., 1986); the approach 

is based on Model Reference Adaptive Control for the full order system, but it 

does not seem extensible to multi-degree-of-freedom arms with flexible links. 

A different strategy which aims at decdupling the joint angle motion from the 

flexible motion is reported in (Singh and Schy, 1985), but additional 

stabi 1 izing end forces are required. As a matter of fact, whenever only as 

many control inputs as joint variables are available, nonlinear control of 

combined rigid body and flexible motion seems to remain an unresolved issue. 

In support of this statement, the recent work investigating the feedback 

1 inearizibil ity of manipulators with flexible joints (Cesareo and Marino, 

1984) or links (Marino et al., 1986) has shown that the system does not 
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satisfy the conditions for external linearization. 

This paper presents an approach to the control of flexible manipulators 

moving along pre-defined trajectories, based on singular perturbation theory. 

A conceptually similar approach has proved successful for the case of 

flexibil ity concentrated at joints (Marino and Nicosia, 1984). The crucial 

assumption to be made is that the spectrum of the flexible modes is "well" 

separated from the spectrum of the rigid modes; a first order estimate of the 

perturbation parameter is given by the ratio of speeds of the slow vs the fast 

dynamics (Kokotovic, 1984). In this way two reduced order systems are 

identified: a slow subsystem which nicely turns out to be of the same order as 

that of a rigid manipulator, and a fast subsystem in which the slow state 

variables act as parameters. According to a composite control technique 

(Suzuki, 1981) a slow feedback tracking control is designed first, then a fast 

feedback control is added, whose purpose is to stabi 1 ize the fast subsystem 

along its equilibrium trajectory naturally set up by the slow subsystem under 

the slow control. If the fast subsystem is stabilizable for any trajectory of 

interest in the manipulator workspace, Tikhonov's theorem (Kokotovic, 1984) 

wi 11 assure that the orbits of the fu 11 order system wi 11 approach in the 

limit those derived by the two subsystems. The approach presented in this 

paper has been tested by means of simulations carried out for the one 1 ink 

flexible arm in the Flexible Automation Laboratory at Georgia Tech. 

Last but not least it must be mentioned that full state availability is 

assumed for control synthesis. In reality the flexible deflections can be 

obtained from strain gage measure~ents (Hastings and Book, 1985), whereas 

their derivatives need to be reconstructed through either a Luenberger 

observer or a Kalman filter (Sangveraphunsiri, 1984). 
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2. THE DYNAMIC MODEL 

The equations of motion fora manipulator with flexible links can be 

successfully derived using the recursive La9rangian approach outlined'in 

(Book, 1984). A solution to the flexible motion of a link i is obtained 

through modal analysis, under the assumption of small deflection of the link, 

(1 ) 

where ~ij is the eigenvector expressing the displacement of mode j of link i's 

deflection, 8ij is the time-varying amplitude of mode j of link i, and mi is 

the number of modes used to describe the deflection of link i. As far as the 

external forcing terms in Lagrange's formulation, if the clamped-free 

assumption is adopted for each flexible link, there will be no displacements 

at joint locations and then the corresponding generalized forces will be zero. 

Thus, according to the derivation in (Book, 1984), the dynamic equations of 

motion for an n-degree-of-freedom manipulator with up to n flexible links can 

be written in the fol lowing form: 

( 2) 

where: 

J is the inertia matrix, 

q = (q1 q2'" qn)T is the vector of joint variables, 

3 = (8 11 812 ... 81m1 821 ", 82m2 ~ .. 8nmn )T is the vector of deflection 

variables, 

f1 includes all the remaining dynamic terms from the joint equations excluding 

the second derivatives of the generalized coordinates, 
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f2 includes all the remaining dynamic terms from the deflection equations 

excluding the second derivatives of the generalized coordinates, 

U = (71 72 ... 7n)T is the control vector of generalized forces applied at the 

joints; 

in (2) appears also a null vector 0 which reflects the assumption of clamped-

free vibrational modes. 

The positive definite inertia matrix J can be inverted and partitioned as 

fo 11 ows: 

where m' = m1 + m2 + ... + mn. Eqs. (2) then become 

.. 
8 = H21f1 + H22f2 + H21 u. 

Let define the state variables 

Eq s. (4) become 

i ~ g2(X'Z)+ B2(x,z)u 
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The eqs. (6) of the full order system clearly show why the control problem for 

flexible 1 ink manipulators is a hard one to sol ve. Exact compensation 

techniques (inverse dynamics or computed torque method in the robotics 

literature (Luh et al., 1980)} which rely on the invertibility of the mapping 

between input torques and the accelerations of the generalized coordinates are 

not applicable. Similarly the state equations cannot be globally decoupled to 

design sliding mode controllers for each joint (Slotine, 1985). In addition 

the perfect model following conditions which underl ie the model reference 

adaptive control approaches (Balestrino et al., 1983) cannot be satisfied. A 

different control strategy then must be pursued, with the goal of achieving a 

trade off between accurate joint trajectory tracking and stable vibration 

motion along the trajectory. 

3. A SINGULARLY PERTURBED MODEL 

Under the assumption that the spectrum of rigid body motion is well separated 

from the spectrum of flexible link deflections, the system can be considered a 

singularly perturbed one. Since the system is nonl inear, the procedure for 

identifying the perturbation parameter is not straightforward and may involve 

considerable effort, even if the flexible dynamics are known to be faster than 

the rigid dynamics. A first order estimate is given by the ratio of the 

hi ghest frequency of the slow dynami cs vs the sma 11 est frequency of the fast 

d y n ami 'c s; ass u min g t hat ape r t u r bat ion par a met e rca n b e f act 0 red 0 u t 0 f the 

flexible dynamics, the overal 1 syste~ in singularly perturbed form results 

(7a) 

p.Z = g~x,z) + B~x,z)u. (7b) 
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At this point the typical steps of a singular perturbation technique can be 

taken. Because of the presence of p., the system (7) exhi bits a boundary 1 ayer 

phenomenon in the fast variables z. Formally setting p.= 0 accomplishes an 

order reduction from n + m' to n, because the differential equations (7b) 

degenerate into the algebraic equations 

(8) 

where the bar is used to indicate that the variables belong to the so-cal led 

slow subsystem with p. = O. 

Under the assumption that in a domain of interest (8) has an isolated 

root, i. e. the system (7) is in standard form (Kokotovic, 1984), 

z = h(i,ii), (9) 

a well-defined n-dimensional reduced model can be obtained by substituting (9) 

in (7a), i.e . 

. 
x = f(x) + B(x)ii. (10) 

The conditions under which (8) admits a solution for z are discussed in 

(Siciliano and Book, 1986) for the specific case of flexible link 

manipulators. The model (10) is a qua~i-steady-state model, because z, whose 

velocity z can be large when p. is small, may rapidly converge to the root (9), 

which is the quasi-steady-state form of (7b). Loosely speaking, the slow 

response is approximated by the reduced model (10), while the discrepancy 

between the response of the reduced mode 1 (10) and that of the fu 11 mode 1 (7) 

is the fast trans i ent. 

To deri ve the fast subsystem or the boundary layer system, it is assumed 
. 

that the slow variables are constant in the boundary layer; that is i = 0 and 

x = x = constant. Operating the state variable change around the equil ibrium 
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trajectory zf = Z - Z, and correspondingly uf = U - U, the fast subsystem of 

(7) resu lts 

(11) 

where T= tip. is the fast time scale. It must be emphasized that in (11), due 

to the time scale introduced, the slow variables x act as parameters. Setting 

Uf = 0 in (11) also gives an estimate of the natural frequencies excited by 

the rigid body trajectory under the effect of the slow control; this point may 

be conveniently exploited for trajectory planning purposes. 

4. COMPOSITE CONTROL DESIGN ISSUES 

As evidenced by the two reduced order subsystems (10) and (11), the design of 

a feedback control u for the fu 11 order system (7) can be spl it into two 

separate designs of feedback controls u and uf for the two reduced order 

systems, namely a two-time scale composite control (Suzuki, 1981) 

with the constraint that uf(x,O) = 0 , such that the fast control uf is 

inactive along the solution (9). 

As far as the slow control is concerned, the reduced system (10) allows 

the adoption of well established control techniques as developed for rigid 

manipulators, such as (Luh et al., 1980), (Slotine, 1985), (Balestrino et al., 

1983) to mention only a few. More specifically, assume that a trajectory is 

specified for the joint variables, say x(t), as a result of an inverse 

kinematic computation from the end effector trajectory for the equivalent 

rigid body manipulator. The slow control can be generally thought of as 
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li(i) = Bt(iH-f(i) + v(i,x)] ( l3) 

where the first term provides a precompensation of the nonlinear term f, and v 

is an additional control input which allows the slow subsystem to track the 

desired trajectory and compensate for parameter uncertainties and modeling 

inaccuracies (Slotine, 1985), (De Maria et al., 1985). 

Incidentally it might observed that the strategy of adaptively control ling 

the system (7a), by just dropping the flexible dynamics (7b) and considering z 

in (7a) as a disturbance to the system, is likely to fail, since no assumption 

on the boundedness of the disturbance can be made. 

Another promising approach towards the synthesis of the slow control could 

be a one based on the concept of integral manifold for the slow system 

(Sobolev, 1984); it has already been proposed for the case of flexibility at 

joints (Spong et al., 1985). The application to flexible link manipulators is 

currently being investigated by the authors. 

At this point the singular perturbation theory requires that the boundary 

layer system (11) be uniformly stable along the equilibrium trajectory z given 

in (9). This can be accomplished only if the fast subsystem (11) is uniformly 

stabil izable for any slow trajectory x(t). If this assumption holds, a fast 

state feedback control of the type 

(14 ) 

will serve the purpose. On the other hand x can be seen as unknown parameters 

and uf can be designed as an adaptive controller. 

Under the above conditions Tikhonov's theorem (Kokotovic, 1984) assures 

that the states of the full order system can be approximated by 

x = i + O(l.L) (15a) 
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Z = Z + zf + O(~). (15b) 

The goal of tracking the joint trajectory and stabilizing the deflections 

around the quasi-steady-state trajectory, naturally set up by the slow system 

under the slow control, is achieved by an ([])(~) approximation. This is the 

typical result of a singular perturbation approach. 

5. A CASE STUDY 

The one link flexible arm prototype in the Flexible Automation Laboratory at 

Georgia Tech (fig. 1) has been chosen to develop a case study. Its dynamic 

model can be found in (Sici 1 iano and Book, 1986). Two modes have been chosen 

in (1) to expand the deflection of the single flexible link. It has been 

tested that the dynamic system is in the standard form (Kokotovic, 1984), that 

is (8) has an isolated root of the type (9). The slow control (13) can be 

chosen as a linear model following control. Since the fast subsystem is a 

linear system parametrized in the slow variables, the fast control (14) can be 

selected according to optimal control with a prescribed degree of stabil ity. 

Several simulation studies are currently being carried out and will be 

described in details in the final version of the paper. Figs. 2-5 illustrate 

some preliminary results with a trapezoidal velocity profile commanded to the 

joint angle. 

6. CONCLUSIONS 

A singular perturbation approach has been proposed for control of 1 ightweight 

flexible manipulators moving along ~redefined paths. 

The drawback concerned with flexible arm tracking control, namely the 

number of control inputs is less than the number of control led variables, has 

been turned around by means of a model order reduction which is characteristic 
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of a two-time scale approach. Indeed, for the slow subsystem well established 

control strategies, as for rigid arms, can be adopted. For the fast subsystem 

a stabi 1 izing control along the quasi-steady-state trajectory, set up by the 

slow subsystem as controlled by the slow control, is needed. The control goal 

is achieved by an O(l.t) approximation, where 11. represents the ratio of the 

speeds of the slow vs the fast dynami cs. The stabi 1 ity of the fu 11 order 

system has not been directly addressed, and estimates of the domain of 

attraction and of an upper bound on the pertubation parameter are still being 

sought. 
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