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Thesis Statement
Inducing appropriate grounding in models improves multi-modal AI capabilities. We

can induce appropriate grounding in models via novel attention mechanisms, using

outputs of other vision tasks, novel training paradigms and learning from external

large-scale data.
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SUMMARY

The goal of this thesis is to study how inducing appropriate grounding improves

multi-modal AI capabilities in the context of ‘vision-and-language’. In pursuit of this

overarching goal, I will look at these four tasks: visual question answering, neural

image captioning, visual dialog and vision and language pretraining.

In visual question answering, we collected a large scale visual question answering

dataset and I will study various baselines to benchmark these tasks. To jointly reason

about image and question, I then propose a novel co-attention mechanism that can

learn fine-grained grounding to answer the question.

In the second part, I will address the model designs for grounded caption gener-

ation given an image. A key focus will be to augment the model with the ability to

know when to look at the image when generating each word. For the words which

have explicit visual correspondence (e.g., ‘puppy’ and ‘tie’), we further proposed a

novel approach that reconciles classical slot filling approaches with modern neural

captioning approaches. As a result, our model can produce natural language explic-

itly grounded in entities that object detectors find in the image.

In the third part, I will explore the training paradigms to learn better visual

grounding for visual dialog. I will study both sides of the visual dialog agents –

questioner and answerer. For modeling answerer which answers visual questions in

dialog, we will introduce a novel discriminant perceptual loss that transfers knowledge

from a discriminative model a generative model. For modeling questioner, we will

consider an image guessing game as a test-bed for balancing task performance and

language drift. We propose a Dialog without Dialog task, which requires agents to

generalize from single round visual question generation with full supervision to a

multi-round dialog-based image guessing game without direct language supervision.

We will study a new training paradigm that first learns “how to speak” and then

xxv



learns ”what to speak”. Our visually-grounded dialog models that can adapt to new

tasks while exhibiting less linguistic drift.

Finally, we will study more general multi-modal AI models that can learn visual

groundings from massive meta-data on the internet. Our work represents a shift away

from learning groundings between vision and language only as part of task training

and towards treating visual grounding as a pretrainable and transferable capability.

We will also explore the multi-task vision and language representation learning. Our

results not only show that a single model can perform all 12 vision and language

tasks, but also that joint training can lead to improvements in task metric compared

to single-task training with the same architecture.



CHAPTER 1

INTRODUCTION

“... spend the summer linking a camera to a computer and getting the computer to describe

what it saw.”

The goal of a 1966 first-year undergraduate summer research project for Gerald Sussman [1]

The world around us involves multiple modalities – we see objects, feel texture,

hear sounds, smell odors and so on. In order for Artificial Intelligence (AI) to make

progress in understanding the world around us, it needs to be able to interpret and

reason about multiple modalities. In 1966, Minsky at MIT asked his undergraduate

student to let the computer describe what is saw. Since this now famously ambitious

summer project, steady progress has been made towards systems that can demon-

strate their visual understanding by generating or responding to natural language in

the context of images, videos, or even full 3D environments [2, 3, 4, 5, 6, 7]. These

approaches and corresponding tasks have come to be referred to under the common

banner of ‘vision-and-language’.

In recent years, the advent of deep learning techniques has resulted in exciting

progress on individual aspects of this problem. One the vision side alone, driven by

the advance in training deep Convolutional Neural Networks (CNN) [8], machines

can now reliably recognize whether an image or video contains one of over a thousand

object categories [9]. An attractive byproduct of this progress has been in the real-

ization that the visual features learnt from such large-scale dataset [10] have strong

representational power and are useful as generic image features for various of visual

understanding tasks.

In parallel, machines have learned to translate from French to English and iden-

tify the sentiment of a sentence by using recurrent neural networks (RNN) [11]. More
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recently, language model pre-training on large-scale text corpus (e.g. Wikipedia [12])

such as ELMO [13], GPT [14] and BERT [15] has been shown to be effective for

improving many natural language processing tasks. For example, BERT based sys-

tem [16] beats humans on the general language understanding evaluation benchmark

(GLUE) [17].

In both domains, the learnt visual and linguistic representations can provide use-

ful information for target tasks, like dog breed sensitive image features or a well-

calibrated semantic distance between words. While visual and linguistic understand-

ing is of course essential to vision-and-language tasks, equally important is how they

related to one another – i.e. how to induce appropriate grounding given the het-

erogeneity of the data. For example, a perfect visual representation of dog breeds

is of little use if a downstream vision-and-language model fails to associate it with

appropriate phrases like “beagle” or “shepherd”.

In this thesis we study how inducing appropriate grounding improves multi-modal

AI capabilities in the context of ‘vision-and-language’. We first walk through different

approaches by different vision and language tasks – starting from the task of answering

visual question about an image. Next we address image captioning, where the goal is

to generate image description. Third we address visual dialog, which requires an AI

agent to hold a meaningful dialog with humans in natural, conversational language

about visual content. At last, we study how to learn task-agnostic visiolinguistic

representations for different vision and language tasks.

Definition of ‘Appropriate Grounding’: ‘grounding’ refers to the connection

between symbols and any intended referents (meaning) [12]. In this thesis, ‘appropri-

ate grounding’ refers to slightly different abilities for different tasks. We define those

below.

1. For visual question answering, ‘appropriate grounding’ refers to jointly modeling

visual attention and question attention to answer the questions.
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2. For image captioning, ‘appropriate grounding’ refers to utilizing the outputs of

other visual models (e.g., object detectors) to generate descriptions of an image.

3. For the answering agent in visual dialog, ‘appropriate grounding’ refers to the

ability of a generative visual dialog model to be consistent with the discriminate

visual dialog model.

4. For the question agent in visual dialog, ‘appropriate grounding’ refers to the

human interpretability of the generated questions.

5. For vision and language pretraining, ‘appropriate grounding’ refers to refers to

learn the connection between words and visual patches from large-scale external

data that is not specific to a task at hand.

1.1 Visual Question Answering

Given an image and a natural language question about the image, the task of visual

question answering (VQA) requires the model to provide an accurate natural lan-

guage answer. Mirroring real-world scenarios, such as helping the visually impaired,

both the questions and answers are open-ended. Visual questions selectively target

different areas of an image, including background details and underlying context. As

a result, a system that succeeds at VQA typically needs a more detailed understand-

ing of the image and more complex reasoning than a system producing generic image

captions. We provide a dataset containing ∼0.25M images, ∼0.76M questions, and

∼10M answers. To explore the difficulty of the dataset, we first implement various

baselines and a novel neural approach which uses a hadamard product to fuse visual

and linguistic representations. We further propose a novel co-attention mechanism

that jointly reasons about image attention and question attention to correctly answer

the question. Below I discuss my work on tackling each of these problems in visual

question answering.

3



1.1.1 Dataset and Baselines for VQA

We first introduce the task of free-form and open-ended Visual Question Answering

(VQA). A VQA system takes as input an image and a free-form, open-ended, natural

language question about the image and produces a natural language answer as the

output. As shown in Fig. 1.1, open-ended questions require a potentially vast set of

AI capabilities – fine-grained recognition (e.g., “What color are her eyes?”), object

detection (e.g., ”What is the mustache made of?”) activity recognition (e.g., “Is this

man crying?”), knowledge based reasoning (e.g., “Is this a vegetarian pizza?”), and

commonsense reasoning (e.g., “Does this person have 20/20 vision?”). We present

a large dataset containing ∼0.25M images, ∼0.76M questions, and ∼10M answers.

As part of the VQA initiative, we offer several approaches that use a combination of

both text and state-of-the-art visual features. Thus, in Section 4.1 I first implement

various baselines to explore the difficulty of the VQA dataset.

Does it appear to be rainy? 

Does this person have 20/20 vision? 

Is this person expecting company? 

What is just under the tree? 

How many slices of pizza are there? 

Is this a vegetarian pizza? 

What color are her eyes? 

What is the mustache made of? 

Figure 1.1: Examples of free-form, open-ended questions collected for images via
Amazon Mechanical Turk. Note that commonsense knowledge is needed along with
a visual understanding of the scene to answer many questions.
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1.1.2 Hierarchical Co-Attention for Image Question Grounding

While it is desirable to model “where to look,” using visual attention to answer visual

questions, we argue that the problem of identifying “which words to listen to,” or

question attention, is equally important. For instance, given the questions “how many

horses are in this image?” and “how many horses can you see in this image?”. They

have the same meaning, essentially captured by the first three words. A machine

that attends to the first three words would arguably be more robust to irrelevant

linguistic variations. Motivated by this observation, in Section 4.2 I study different

mechanisms that jointly reason about visual attention and question attention, which

refers to co-attention. The core contribution of this work is in developing a novel co-

attention mechanism to learn grounded features for visual question answering. Our

results suggest the approach offers consistent improvements over baselines that only

perform image attention.

1.2 Neural Image captioning

Image captioning is also a challenging problem that lies at the intersection of computer

vision and natural language processing. It involves generating a natural language

sentence that accurately summarizes the contents of an image. A word in an image

caption can be either visual or non-visual based on whether it has visual meaning or

not. For example, as shown in Fig. 1.2, given an image and the corresponding caption

“A puppy with a tie is sitting at table with a cake,” the non-visual words “a” and

“with” do not have corresponding visual signals. On the other hand, the visual words

“puppy” and “tie” do have an explicit visual correspondence in the image (i.e., to

know which words have visual meaning.) An important prerequisite to appropriate

grounding is the ability to knowing when to look at the image. Of course, when

looking at the image, the model also needs to decide which image region it should

5



attend to. Thus, I describe below my line of work on appropriately grounding (or

not) the visual words and non-visual words. For the visual words, instead of relying

on the language model, I further propose a novel approach that grounds on concepts

exist in object detections.

A white bird perched on top of
a red stop sign.

A puppy with a tie is sitting at
table with a cake.

Figure 1.2: Examples of image captions. Note that there are visual words (in blue)
and non-visual words (in black) based on whether the words have an explicit visual
corresponding in the image. We only consider Noun and Adjective words in the
examples.

1.2.1 Knowing When to Look for Image Caption Generation

Visual attention-based neural encoder-decoder models [18, 19] learns to ”attend” to

selective regions while generating a description. Similar to human vision, which fix-

ates when you perceive the visual world, the attention mechanism typically produces

a spatial map highlighting image regions relevant to each generated word. Most atten-

tion models for image captioning and visual question answering attend to the image

at every time step, irrespective of which word is going to be emitted next [18, 19].

However, not all words in the caption have corresponding visual signals. Consider the

example (right image) in Fig. 1.2 that shows an image and its generated caption “A

white bird perched on top of a red stop sign”. The words “a” and “of” do not have cor-

responding canonical visual signals. Moreover, language correlations make the visual

signal unnecessary when generating words like “on” and “top” following “perched”,

and “sign” following “a red stop”. Motivated by this observation, I next focus on the
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problem of selectively grounding visual signals for caption generation. We introduce a

new Long Short-Term Memory (LSTM) [20] extension, which produces an additional

“visual sentinel” vector instead of a single hidden state. The “visual sentinel”, an

additional latent representation of the decoder’s memory, provides a fallback option

to the decoder. We further design a new sentinel gate, which decides how much new

information the decoder wants to get from the image as opposed to relying on the

visual sentinel when generating the next word.

1.2.2 Neural Baby Talk: Explicitly Grounding on Object Detection

While there are many recent extensions of this basic idea to include attention [18, 21,

22], it is well-understood that models still lack visual grounding (i.e., do not associate

named concepts to pixels in the image). They often tend to ‘look’ at different regions

than humans would and tend to copy captions from training data [23]. For instance,

in Fig. 1.3 a neural image captioning approach [24] describes the image as “A dog is

sitting on a couch with a toy.” This is not quite accurate. But if one were to really

squint at the image, it (arguably) does perhaps look like a scene where a dog could be

sitting on a couch with a toy. It certainly is common to find dogs sitting on couches

with toys. A-priori, the description is reasonable. Existing neural captioning models

tend to produce generic plausible captions based on the language model1 that match

a first-glance gist of the scene.

If we take a step back – do we really need the language model to do the heavy

lifting in image captioning? Given the unprecedented progress we are seeing in object

recognition2 (e.g., object detection, semantic segmentation, instance segmentation,

pose estimation), it seems like the vision pipeline can certainly do better than relying

on just a first-glance gist of the scene. In fact, today’s state-of-the-art object detectors
1frequently, directly reproduced from a caption in the training data.
2e.g., 11% absolute increase in average precision in object detection in the COCO challenge in

2017.
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Figure 1.3: From left to right is the generated caption using the same captioning model
but with different detectors: 1) No detector; 2) A weak detector that only detects
“person” and “sandwich”; 3) A detector trained on COCO [5] categories (including
“teddy bear”). 4) A detector that can detect novel concepts (e.g. “Mr. Ted” and
“pie” that never occurred in the captioning training data). Different colors show a
correspondence between the visual word and grounding regions.

can successfully detect the table and cake in the image in Fig. 1.3(c)! The caption

ought to be able to talk about the table and cake actually detected as opposed to

letting the language model hallucinate a couch and a toy simply because that sounds

plausible. Interestingly, some of the first attempts at image captioning [25, 24] –

before the deep learning “revolution” – relied heavily on outputs of object detectors

and attribute classifiers to describe images. Inspired by this observation, I introduce

a novel framework that reconciles these methodologies. It produces natural language

explicitly grounded in entities found by object detectors. It is a neural approach that

generates a sentence “template” with slot locations explicitly tied to image regions.

These slots are then filled by object recognizers with concepts found in the regions.

The entire approach is trained end-to-end. This results in natural sounding and

grounded captions.
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1.3 Visual Dialog

Despite rapid progress at the intersection of vision and language – in particular, in

image captioning and visual question answering – it is clear that we are far from this

grand goal of an AI agent that can ‘see’ and ‘communicate’ [4]. In captioning, the

machine simply talks at the human with no dialog or input from the human, while

VQA still represents only a single round of dialog. As a step towards conversational

visual AI, the task of visual dialog requires computers to communicate naturally

with human in grounded language to achieve a collaborative objective. For visual

dialog, it usually contains two sides – questioner and answerer. The canonical visual

dialog task [4] lies in modeling answer side, where an agent answers a sequence of

questions grounded in an image, and need to reason about both visual content and

dialog history. Modeling the questioner side is actually more challenging – the agent

needs to learn how to ask meaningful and visually grounded questions to achieve

a goal [26, 27]. A popular approach to these tasks has been to observe humans

engaging in dialogs like the ones we would like to automate and then train agents to

mimic these human dialogs by minimizing the cross-entropy of the human questions

or responses. However, a recurring problem with maximum likelihood estimation

(MLE) trained generative neural dialog models is that they tend to produce ‘safe’

and generic responses (‘I don’t know’, ‘I can’t tell’) and these models are typically

fragile and generalize poorly to new tasks. Thus, I describe below my line of work on

introducing novel training paradigms for generating grounded questions and responses

in the context of visual dialog.

1.3.1 Discriminant Perceptual Loss for Visual Dialog

The standard training paradigm for neural dialog models is maximum likelihood

estimation (MLE) or equivalently, minimizing the cross-entropy (under the model) of
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a ‘ground-truth’ human response. Across a variety of domains, a recurring problem

with MLE trained neural dialog models is that they tend to produce ‘safe’, generic

responses, such as ‘Not sure’ or ‘I don’t know’ in text-only dialog [28], and ‘I can’t

see’ or ‘I can’t tell’ in visual dialog [4, 26]. One reason for this emergent behavior

is that the space of possible next utterances in a dialog is highly multi-modal (there

are many possible paths a dialog may take in the future). In the face of such highly

multi-modal output distributions, models ‘game’ MLE by latching on to the head of

the distribution or mimicing most frequent responses, which by nature tend to be

generic and widely applicable.

One promising alternative to MLE training proposed by recent work [29, 30] is

sequence-level training of neural sequence models. Specifically, using reinforcement

learning to optimize task-specific sequence metrics such as BLEU [31], ROUGE [32],

CIDEr [33]. Unfortunately, in the case of dialog, all existing automatic metrics cor-

relate poorly with human judgment [34], which renders this alternative infeasible for

dialog models. In Section 6.1, Inspired by the success of adversarial training [35], we

propose to train a generative visual dialog model (G) to produce sequences that score

highly under a discriminative visual dialog model (D). The discriminative dialog

model receives as input a candidate list of possible responses and learns to sort this

list from the training dataset. The generative dialog model (G) aims to produce a

sequence that D will rank the highest in the list.

Note that while our proposed approach is inspired by adversarial training, there

are a number of subtle but crucial differences over generative adversarial networks

(GANs). Unlike traditional GANs, one novelty in our setup is that our discriminator

has access to more information than G – specifically, D receives a list of candidate

responses and explicitly learns to reason about similarities and differences across

candidates.
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1.3.2 Learning Image-Discriminative Dialog Policies from VQA

While training dialog agents with a discriminant perceptual loss indeed increases

task performance, language quality suffers even for similar tasks. It tends to drifts

from human language, becoming ungrammatical and loosing human interpretable

semantics – sometimes even turning into unintelligible code. Though bots might

understand it, humans cannot, so humans will not be able to use it either. Both

effects have been observed in earlier work [26, 36].

In Section 6.2, we consider an image guessing game as a test-bed for balancing

task performance and language drift. Our Dialog without Dialog (DwD) task requires

agents to generalize from single round visual question generation with full supervi-

sion to a multi-round dialog based image guessing game without direct language

supervision. Specifically, as illustrated in Fig. 1.4 (top), agents are trained to mimic

human-generated, visually-grounded questions that when answered can discern which

of two images is secretly indicated to the answerer. We then develop techniques to

transfer these agents to a multi-round, QA-based image guessing game over pools of

various sizes, difficulties, and even image domains.

To solve this task we propose a an architecture for the questioner agent, Q-bot,

that decomposes generating question intent from the words used to express that in-

tent. It does this by introducing a discrete latent representation that is the only input

to the language decoder. We pair this with an incremental learning curriculum that

adapts the single round Q-bot to dialog in stages – first learning simply to follow the

dialog and then to influence question intention. We show that our model can be fine-

tuned to increase task performance while maintaining human interpretable language.

To measure interpretability we take a two pronged approach, getting humans to eval-

uate our questions on one hand, and using automatic metrics on the other. Humans

evaluate question fluency and relevance while our automatic metrics evaluate fluency,

relevance, and diversity to help scale our analysis.
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1 2

3 4

What is behind the bird?

SandP: 4

What is the color of collar?

Not relevant

What kind of bird is in the image?

crow

What is the bird sitting on?

What is in the birds beak ?

BugP: left

What kind of flower are these?

BugP: right

VQA

Visual Dialog

COCO Image

CUB Image

Pre-training

Fine-tuning

P: 4

P: 3

Figure 1.4: (Top - 2 pools) We train our questioner to ask questions that can dis-
criminate between pairs of images by mimicing questions from the VQAv2 dataset.
(Bottom - 1 pool) Our proposed model generalizes to new settings in a way that hu-
mans can understand without additional language supervision (i.e., without dialog).

1.4 Vision and Language Pretraining

A compelling reason to study language and vision jointly is the promise of language

as a universal and natural interface for visual reasoning problems – useful both in

specifying a wide range of problems and in communicating AI responses. However,

the current research landscape for visually-grounded language understanding is a

patchwork of many specialized tasks like question answering or caption generation,

each supported by a handful of datasets. As such, progress in this field has been

measured by the independent improvement of bespoke models designed and trained

for each of these specific tasks and datasets.

A general multi-modal AI model cannot emerge within a paradigm that focuses on

the particularities of a single dataset, metric, and tasks. In the vision and language

pretraining chapter, I aim to build a general multi-modal AI model and training
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paradigm that has following properties: 1: it can utilize large webly supervised dataset

to effectively learn the visiolinguistic representations; 2: it has a unified structure

and interface which can be shared across different vision and language tasks; 3: it

is trained with an effective multi-task training paradigm which can handle datasets

that vary greatly in size and difficulty. Thus, I describe below my line of work on

introducing pretrain-then-transfer learning approaches to learn vision and language

representations. I also introduce a novel multi-task training paradigm I use to jointly

train 12 tasks simultaneously and achieve state of the art performance on 7 out of 12

vision and language tasks.

1.4.1 ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations

To learn these joint visual-linguistic representations, we look to recent successes in

self-supervised learning which have captured rich semantic and structural information

from large, unlabelled data sources by training models to perform so-called ‘proxy’

tasks. These proxy tasks leverage structure within the data to generate supervised

tasks automatically (e.g. colorizing images [37] or reconstructing masked words in

text [15]). In Section 7.1, we present a joint model for learning task-agnostic visual

grounding from paired visiolinguistic data which we call Vision & Language BERT

(ViLBERT for short). Our approach extends the recently developed BERT [15] lan-

guage model to jointly reason about text and images. Our key technical innovation

is introducing separate streams for vision and language processing that communicate

through co-attentional transformer layers. This structure can accommodate the dif-

fering processing needs of each modality and provides interaction between modalities

at varying representation depths. We demonstrate that this structure outperforms a

single-stream unified model in our experiments.

In analogy to the training tasks in [15], we train our model using the Concep-

tual Captions dataset [38] and two proxy tasks: predicting the semantics of masked
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words and image regions given the unmasked inputs, and predicting whether an im-

age and text segment correspond. We apply our pretrained model as a base for four

established vision-and-language tasks – visual question answering [39], visual com-

monsense reasoning [40], referring expressions [2], and caption-based image retrieval

[41] – setting state-of-the-art on all four tasks.

1.4.2 12-in-1: Multi-Task Vision and Language Representation Learning

In the previous section I introduced a general architectures for vision-and-language

which reduces architectural differences across tasks [42, 43, 44, 45, 46, 47, 48]. The

model pretrains common architectures on self-supervised tasks to learn general visio-

linguistic representations then finetunes for specific datasets; however, the result is

still a menagerie of independent task-specific models rather than a single unified

model. This is dissatisfying in practice – the model that understands questions can-

not ground noun phrases, the grounding model cannot retrieve images based on a

description, and so forth. Further, this approach does not scale well as each new task

requires storing a new model.

Beyond being intellectually dissatisfying, this task-based fracturing leaves quite

a lot on the table. While individual tasks present different challenges and diverse

interfaces, the underlying associations between language and visual concepts are of-

ten common across tasks. For example, learning to ground the referring expression

“small red vase” requires understanding the same concepts as answering the question

“What color is the small vase?”. Training multiple tasks jointly can potentially pool

these different sources of grounding supervision. Further, developing models that

can perform well on a wide range of tasks simultaneously can help guard against the

research community overfitting to specific datasets and metrics.

In section Section 7.2, I introduce a multi-task model for discriminative vision-and-

language tasks based on the recently proposed ViLBERT[42] model. We consider four

14



categories of tasks – training jointly on a total of 12 different datasets. Our results

not only show that a single model can perform all these tasks, but also that joint

training can lead to improvements on task metrics compared to single-task training

with the same architecture. Our model attains improvements of 0.25 to 4.19 absolute

points from multi-task training – improving over corresponding single-task models for

11 out of 12 tasks.
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CHAPTER 2

BACKGROUND

We will first introduce some necessary background material which will be useful to

understand the proposed models. Specifically, I will first introduce tasks and baseline

models for visual question answering [3], image captioning [49] and visual dialog [4].

Then, I will brief describe other related vision and language tasks explored in the

thesis. Finally, I will talk about a self supervised learning models called bidirectional

encoder representations from transformers (BERT). You can skip this chapter if you

are familiar with these topics.

2.1 Background: Visual Question Answering

We collected one of the most widely used dataset for visual question answering, com-

monly referred to simply as VQA. It comprises two parts, one using natural images

named VQA-real, and a second one with cartoon images named VQA-abstract. The

real part comprises 123,287 training and 81,434 test images, respectively, sourced

from COCO [5]. We tested and evaluated a number of user interfaces for collecting

such “interesting” questions. To bias against generic image-independent questions,

subjects were instructed to ask questions that require the image to answer. Overall,

it contains 614,163 questions, each having 10 answers from 10 different annotators.

For testing, we offer two modalities for answering the questions: (i) open-ended

and (ii) multiple-choice. For the open-ended task, the generated answers are eval-

uated using the following accuracy metric:

accuracy = min(# humans that provided that answer
3 , 1)
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i.e., an answer is deemed 100% accurate if at least 3 workers provided that exact

answer.1 Before comparison, all responses are made lowercase, numbers converted

to digits, and punctuation & articles removed. We avoid using soft metrics such as

Word2Vec [50], since they often group together words that we wish to distinguish,

such as “left” and “right”. For multiple-choice task, 18 candidate answers are created

for each question. As with the open-ended task, the accuracy of a chosen option is

computed based on the number of human subjects who provided that answer (divided

by 3 and clipped at 1).

2.2 Background: Neural Image Captioning

For image captioning, we start by briefly describing the encoder-decoder image cap-

tioning framework [51, 18]. Given an image and the corresponding caption, the

encoder-decoder model directly maximizes the following objective:

θ∗ = arg max
θ

∑
(I,y)

log p(y|I;θ) (2.1)

where θ are the parameters of the model, I is the image, and y = {y1, . . . , yt}

is the corresponding caption. Using the chain rule, the log likelihood of the joint

probability distribution can be decomposed into ordered conditionals:

log p(y) =
T∑

t=1
log p(yt|y1, . . . , yt−1, I) (2.2)

where we drop the dependency on model parameters for convenience.

In the encoder-decoder framework, with recurrent neural network (RNN), each

conditional probability is modeled as:

log p(yt|y1, . . . , yt−1, I) = f(ht, ct) (2.3)
1In order to be consistent with ‘human accuracies’, machine accuracies are averaged over all 9

10
sets of human annotators
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where f is a nonlinear function that outputs the probability of yt. ct is the visual

context vector at time t extracted from image I. ht is the hidden state of the RNN

at time t. In this paper, we adopt Long-Short Term Memory (LSTM) instead of a

vanilla RNN. The former have demonstrated state-of-the-art performance on a variety

of sequence modeling tasks. ht is modeled as:

ht = LSTM(xt,ht−1,mt−1) (2.4)

where xt is the input vector. mt−1 is the memory cell vector at time t − 1. we can

describe the LSTM with the following equations:

it = σ(Wi · [xt−1,ht−1])

ft = σ(Wf · [xt−1,ht−1])

ot = σ(Wo · [xt−1,ht−1]) (2.5)

mt = ft �mt−1 + it � tanh(Wc · [xt−1,ht−1])

ht = ot ·mt

Commonly, context vector, ct is an important factor in the neural encoder-decoder

framework, which provides visual evidence for caption generation [52, 51, 18]. These

different ways of modeling the context vector fall into two categories: vanilla encoder-

decoder and attention-based encoder-decoder frameworks:

• First, in the vanilla framework, ct is only dependent on the encoder, a Convo-

lutional Neural Network (CNN). The input image I is fed into the CNN, which

extracts the last fully connected layer as a global image feature [52, 51]. Across

generated words, the context vector ct keeps constant, and does not depend on

the hidden state of the decoder.

• Second, in the attention-based framework, ct is dependent on both encoder and
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decoder. At time t, based on the hidden state, the decoder would attend to the

specific regions of the image and compute ct using the spatial image features

from a convolution layer of a CNN. In [18, 21], they show that attention models

can significantly improve the performance of image captioning.

2.3 Background: Visual Dialog

Visual Dialog: A visual dialog model is given as input an image I, caption c describ-

ing the image, a dialog history till round t− 1, H = ( c︸︷︷︸
H0

, (q1,a1)︸ ︷︷ ︸
H1

, . . . , (qt−1,at−1)︸ ︷︷ ︸
Ht−1

),

and the followup question qt at round t. The visual dialog agent needs to return a

valid response to the question.

Given the problem setup, there are two broad classes of methods – generative and

discriminative models. Generative models for visual dialog are trained by maximizing

the log-likelihood of the ground truth answer sequence agt
t ∈ At given the encoded

representation of the input (I,H , qt). On the other hand, discriminative models

receive both an encoding of the input (I,H , qt) and as additional input a list of 100

candidate answers At = {a(1)
t , . . . ,a

(100)
t }. These models effectively learn to sort the

list. Thus, by design, they cannot be used at test time without a list of candidates

available.

Image Guessing Game: Visual conversational agents are AI agents trained to

understand and communicate about the contents of a scene via a natural language

dialog. Chattopadhyay et.al. [53] propose to evaluate visual conversational agents by

a human-AI game called GuessWhich. At the start of the game, the visual conversa-

tional agent (Alice) is provided an image which is unknown to a human. The human

then identifies the secret image from a pool of images by asking Alice a sequence of

questions that Alice answers. Machine-machine versions of this game have also been

studied [26] where both the questioning and answering agents are bots. The idea was

that via self-play, these bots could become better conversational agents.
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Concretely, we formulate a game between a questioner bot (Q-BOT) and an an-

swerer bot (A-BOT). The A-BOT is assigned a secret image from a pool of images

taken from the COCO dataset [5] unknown to the Q-BOT. The Q-BOT is provided a

caption of a target image and is allowed to communicate in natural language with the

A-BOT. The objective of this cooperative game is for Q-BOT to ask an intelligent

question to guess the secret image. Our setting is very similar to [53], which evalu-

ates conversational agents. The difference is instead of recruiting human players, we

develop Q-BOT to mimic the human behavior.

2.4 Background: Bidirectional Encoder Representations from Transform-

ers

The BERT model introduced by [15] is an attention-based bidirectional language

model. When pretrained on a large language corpus, BERT has proven to be very

effective for transfer learning to multiple natural language processing tasks.

The BERT model operates on sequences of word tokens w0, . . . , wT . These tokens

are mapped to learned encodings and passed through L “encoder-style” transformer

blocks [54] to produce final representations h0, . . . , hT . Let H(l) be a matrix with rows

h
(l)
0 , . . . , h

(l)
T corresponding to the intermediate representations after the l-th layer.

Abstracting some internal details found in [54], we depict the computation of a single

encoder-style transformer block in Fig. 2.1 consisting of a multi-headed attention

block followed by a small fully-connected network, both wrapped in residual adds.

Note that the intermediate representation H(l) is used to compute three matrices

– Q, K, and V – corresponding to queries, keys, and values that drive the multi-

headed attention block. Specifically, the dot-product similarity between queries and

keys determines attentional distributions over value vectors. The resulting weight-

averaged value vector forms the output of the attention block.

Text Representation. BERT operates over sequences of discrete tokens comprised
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Figure 2.1: Standard encoder transformer block.

of vocabulary words and a small set of special tokens: SEP, CLS, and MASK. For a

given token, the input representation is a sum of a token-specific learned embedding

[55] and encodings for position (i.e. token’s index in the sequence) and segment (i.e.

index of the token’s sentence if multiple exist).

Training Tasks and Objectives. The BERT model is trained end-to-end on a

large language-corpus under two tasks: masked language modelling and next sentence

prediction.

The masked language modelling task randomly divides input tokens into disjoint

sets corresponding to masked XM and observed XO tokens (approximately 15% of

tokens being masked). Masked tokens are replaced with a special MASK token 80% of

the time, a random word 10%, and unaltered 10%. The BERT model is then trained

to reconstruct these masked tokens given the observed set. Specifically, a linear layer

is learned to map the final representations at each index (e.g. hi) to a distribution

over the vocabulary and the model is trained under a cross-entropy loss.

In next sentence prediction, the BERT model is passed two text segments A and

B following the format {CLS, wA1, . . . , wAT , SEP, wB1, . . . , wBT , SEP} and is trained to
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predict whether or not B follows A in the source text. Specifically, a linear layer op-

erating on the final representation for the CLS token (i.e. hCLS) is trained to minimize

a binary cross-entropy loss on this label.
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CHAPTER 3

SITUATING THE WORK

I first discuss related work on visual question answering, then image captioning fol-

lowed by visual dialog. Finally, I will discuss related work on self supervised learning

and multi-task learning for vision and language pretraining. In VQA, I will cover

prior dataset on VQA, and image attention and language attention models. In image

captioning, I will cover related work using template-based approaches, and neural-

based approaches. For visual dialog tasks, I will cover prior work on using generative

adversarial networks for sequence generation and related work on attention models.

I will also cover prior works related to visual question generation, dialog genera-

tion using latent action space and reference game (image guessing game). In vision

and language pretraining, I will discuss related work on self supervised learning and

multi-task learning.

3.1 Visual Question Answering

3.1.1 VQA datasets

Several recent papers have begun to study visual question answering [56, 57, 58, 59].

However, unlike our work, these are fairly restricted (sometimes synthetic) settings

with small datasets. For instance, [57] only considers questions whose answers come

from a predefined closed world of 16 basic colors or 894 object categories. [56] also

considers questions generated from templates from a fixed vocabulary of objects, at-

tributes, relationships between objects, etc. In contrast, our proposed task involves

open-ended, free-form questions and answers provided by humans. Our goal is to

increase the diversity of knowledge and kinds of reasoning needed to provide correct
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answers. Critical to achieving success on this more difficult and unconstrained task,

our VQA dataset is two orders of magnitude larger than [56, 57] (>250,000 vs. 2,591

and 1,449 images respectively). The proposed VQA task has connections to other

related work: [58] has studied joint parsing of videos and corresponding text to an-

swer queries on two datasets containing 15 video clips each. [59] uses crowdsourced

workers to answer questions about visual content asked by visually-impaired users.

In concurrent work, [60] proposed combining an LSTM for the question with a CNN

for the image to generate an answer. In their model, the LSTM question represen-

tation is conditioned on the CNN image features at each time step, and the final

LSTM hidden state is used to sequentially decode the answer phrase. In contrast,

the model developed in this paper explores “late fusion” – i.e., the LSTM question

representation and the CNN image features are computed independently, fused via

an element-wise multiplication, and then passed through fully-connected layers to

generate a softmax distribution over output answer classes. [61] generates abstract

scenes to capture visual common sense relevant to answering (purely textual) fill-

in-the-blank and visual paraphrasing questions. [62] and [63] use visual information

to assess the plausibility of common sense assertions. [64] introduced a dataset of

10k images and prompted captions that describe specific aspects of a scene (e.g., in-

dividual objects, what will happen next). Concurrent with our work, [65] collected

questions & answers in Chinese (later translated to English by humans) for COCO

images. [66] automatically generated four types of questions (object, count, color,

location) using COCO captions.

3.1.2 Image Attention

Instead of directly using the holistic entire-image embedding from the fully connected

layer of a deep CNN (as in [39, 67, 60, 68]), a number of recent works have explored

image attention models for VQA. Zhu et al. [69] add spatial attention to the standard
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LSTM model for pointing and grounded QA. Andreas et al. [70] propose a compo-

sitional scheme that consists of a language parser and a number of neural modules

networks. The language parser predicts which neural module network should be in-

stantiated to answer the question. Some other works perform image attention multiple

times in a stacked manner. In [71], the authors propose a stacked attention network,

which runs multiple hops to infer the answer progressively. To capture fine-grained

information from the question, Xu et al. [72] propose a multi-hop image attention

scheme. It aligns words to image patches in the first hop, and then refers to the

entire question for obtaining image attention maps in the second hop. In [73], the

authors generate image regions with object proposals and then select the regions rele-

vant to the question and answer choice. Xiong et al. [74] augments dynamic memory

network with a new input fusion module and retrieves an answer from an attention

based GRU. In concurrent work, [23] collected ‘human attention maps’ that are used

to evaluate the attention maps generated by attention models for VQA. Note that

all of these approaches model visual attention alone, and do not model question at-

tention. Moreover, [72, 71] model attention sequentially, i.e., later attention is based

on earlier attention, which is prone to error propagation. In contrast, we conduct

co-attention at three levels independently.

3.1.3 Language Attention

Though no prior work has explored question attention in VQA, there are some related

works in natural language processing (NLP) in general that have modeled language

attention. In order to overcome difficulty in translation of long sentences, Bahdanau

et al. [75] propose RNNSearch to learn an alignment over the input sentences. In

[76], the authors propose an attention model to circumvent the bottleneck caused by

fixed width hidden vector in text reading and comprehension. A more fine-grained

attention mechanism is proposed in [77]. The authors employ a word-by-word neural

25



attention mechanism to reason about the entailment in two sentences. Also focused on

modeling sentence pairs, the authors in [78] propose an attention-based bigram CNN

for jointly performing attention between two CNN hierarchies. In their work, three

attention schemes are proposed and evaluated. In [79], the authors propose a two-

way attention mechanism to project the paired inputs into a common representation

space.

3.2 Neural Image Captioning

Image captioning has many important applications ranging from helping visually

impaired users to human-robot interaction. As a result, many different models have

been developed for image captioning. In general, those methods can be divided into

two categories: template-based [25, 24, 80] and neural-based [81, 52, 82, 51, 19, 83,

22, 21].

3.2.1 Template-based approaches

Template-based approaches generate caption templates whose slots are filled in based

on outputs of object detection, attribute classification, and scene recognition. Farhadi

et al. [25] infer a triplet of scene elements which is converted to text using templates.

Kulkarni et al. [24] adopt a Conditional Random Field (CRF) to jointly reason across

objects, attributes, and prepositions before filling the slots. [80] uses more powerful

language templates such as a syntactically well-formed tree, and add descriptive in-

formation from the output of attribute detection.

3.2.2 Neural-based approaches

Neural-based approaches are inspired by the success of sequence-to-sequence encoder-

decoder frameworks in machine translation [84, 85, 75] with the view that image

captioning is analogous to translating images to text. Kiros et al. [81] proposed a
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feed forward neural network with a multimodal log-bilinear model to predict the next

word given the image and previous word. Other methods then replaced the feed

forward neural network with a recurrent neural network [52, 86]. Vinyals et al. [51]

use an LSTM instead of a vanilla RNN as the decoder. However, all these approaches

represent the image with the last fully connected layer of a CNN. Karpathy et al. [87]

adopt the result of object detection from R-CNN and output of a bidirectional RNN

to learn a joint embedding space for caption ranking and generation.

Recently, attention mechanisms have been introduced to encoder-decoder neural

frameworks in image captioning. Xu et al. [18] incorporate an attention mechanism to

learn a latent alignment from scratch when generating corresponding words. [88, 21]

utilize high-level concepts or attributes and inject them into a neural-based approach

as semantic attention to enhance image captioning. Yang et al. [89] extend current

attention encoder-decoder frameworks using a review network, which captures the

global properties in a compact vector representation and are usable by the attention

mechanism in the decoder.

3.3 Visual Dialog

3.3.1 GANs for sequence generation

Generative Adversarial Networks (GANs) [35] have shown to be effective models for

a wide range of applications involving continuous variables (e.g. images) c.f [90, 91,

92, 93]. More recently, they have also been used for discrete output spaces such as

language generation – e.g. image captioning [94, 95], dialog generation [28], or text

generation [96] – by either viewing the generative model as a stochastic parametrized

policy that is updated using REINFORCE with the discriminator providing the re-

ward [96, 94, 95, 28], or (closer to our approach) through continuous relaxation of

discrete variables through Gumbel-Softmax to enable backpropagating the response

from the discriminator [97, 95].

27



There are a few subtle but significant differences w.r.t. to our application, motiva-

tion, and approach. In these prior works, both the discriminator and the generator are

trained in tandem, and from scratch. The goal of the discriminator in those settings

has primarily been to discriminate ‘fake’ samples (i.e. generator’s outputs) from ‘real’

samples (i.e. from training data). In contrast, we would like to transfer knowledge

from the discriminator to the generator. We start with pre-trained D and G models

suited for the task, and then transfer knowledge from D to G to further improve G,

while keeping D fixed. As we show in our experiments, this procedure results in G

producing diverse samples that are close in the embedding space to the ground truth,

due to perceptual similarity learned in D. One can also draw connections between

our work and Energy Based GAN (EBGAN) [98] – without the adversarial training

aspect. The “energy” in our case is a deep metric-learning based scoring mechanism,

instantiated in the visual dialog application.

3.3.2 Modeling image and text attention in visual dialog

In the context of visual dialog, [4] uses attention to identify utterances in the dialog

history that may be useful for answering the current question. However, when model-

ing the image, the entire image embedding is used to obtain the answer. In contrast,

our proposed encoder HCIAE (Section 6.1.1) localizes the region in the image that

can help reliably answer the question. In particular, in addition to the history and

the question guiding the image attention, our visual dialog encoder also reasons about

the history when identifying relevant regions of the image. This allows the model to

implicitly resolve co-references in the text and ground them back in the image.

3.3.3 Visual Question Generation

Other approaches like [99] and [100] also aim to ask questions with limited question

supervision. They give Q-bot access to an oracle to which it can ask any question
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and get a good answer back. This feedback allows these models to ask questions

that are more useful for teaching A-bot [99] or generating scene graphs [100], but

they require a domain specific oracle and do not take any measures to encourage

interpretability. We are also interested in generalizing with limited supervision, using

a standard VQAv2 [101] trained A-bot as a flawed oracle, but we focus on maintaining

interpretability of generated questions and not just their usefulness.

3.3.4 Latent Action Spaces for dialog generation

Of particular interest to us a line of work that uses represents dialogs using latent

action spaces [102, 103, 27, 104, 105, 27, 106]. Recent work use these representations

have been used to discover interpretable language [102] and to perform zero-shot

dialog generation [103], though neither works consider visually grounded language

as in our approach. Most relevant is [107], which focuses on the difference between

word level feedback and latent action level feedback. Like us, they use a variationally

constrained latent action space (like our z) to generate dialogs and find that by

providing feedback to the latent actions instead of the generated words (as opposed

to the approaches in [26] and [36]) they achieve better dialog performance. Our

variational prior is similar to the Full ELBO considered there In contrast to [107], we

consider generalization from non-dialog data and generalization to new modalities.

3.3.5 Reference Games.

The task we use to study question generation follows a body of work that uses ref-

erence games to study language and its interaction with other modalities [108]. Our

particular task is most similar to those in [109] and [110]. In particular, [109] collects

a dataset for goal oriented visual dialog using a similar image reference game and

[110] uses a similar guessing game we use to evaluate how well humans can interact

with A-bot.
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3.4 Vision and Language Pretraining

3.4.1 Self-Supervised Learning

There has been substantial recent interest in both vision [111, 112, 113, 114, 115,

116] and language around self-supervised representation learning. In this paradigm,

deep models are trained for tasks where regularities in existing data can be turned

into supervision automatically. While there has been progress on the vision side, self-

supervised image representations still lag behind those from models trained under

image classification tasks. Self-supervised language models on the other hand have

resulted in significant improvements over prior work [15, 14, 117, 118]. In this work,

we develop a model and proxy tasks for learning joint visual-linguistic representations

– extending the popular BERT [15] model.

Most related to our approach is concurrent work on learning joint representations

between video and language [119]. In this work, self-supervised tasks paralleling our

own are derived from cooking videos paired with text-to-speech transcribed audio.

They present a unified BERT architecture for both the visual and linguistic inputs

similar to the Single-Stream baseline we consider here. They apply the learned model

to two tasks on cooking videos: zero-shot activity recognition and blank-filling on

audio transcripts. In contrast, we learn representations of images and descriptive text

on a wide range of images from the web and focus extensively on transfer learning

from this model for well-established vision-and-language tasks.

3.4.2 Recent Works on Vision-And-Language Pretraining

Since our paper released on arXiv, a few other useful preprints have recently been re-

leased on similar vision-and-language cross-modality pre-training directions. LXMERT

[43] uses a more specific design for the cross-modality model. Instead of using webly

supervised Conceptual Caption [38] dataset, LXMERT uses in-domain datasets (i.e.
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COCO [49] and Visual Genome [120]) for pre-training. VisualBERT [44] directly

extend BERT [15] for vision and language domain. VisualBERT uses both out-of-

domain and in-domain dataset for pre-training and applies MLM object only on the

language side. Unicoder [46] focuses exclusively on image caption retrieval tasks with

online hardest negative mining. More recent preprints including VLBERT [47], Uni-

fied VLP [48] and UNITER [48] also show promising improvements in this research

direction of joint visio-linguistic pretraining.

3.4.3 Multi-Task Learning.

There has been substantial interest in multi-task learning [121, 122], i.e. training a

single model for multiple tasks at once. Advances in multi-task learning have been

developed in the context of vision [123, 124, 125, 126], language [127, 128, 129,

16, 130], and robotics [131, 132, 133]. Among them, Standley et al. [134] studies

how different vision tasks are related to each other. McCann et al. [129] pose ten

natural language processing (NLP) tasks as question answering tasks. MT-DNN [16]

combines multi-task learning with pretraining [15] to improve the learning of text

representations. Despite this progress, it is still challenging to train a single model

on many tasks that can outperform or even match their single-task counterparts. To

enhance the training scheme, BAM [135] applies knowledge distillation where single-

task models teach the multi-task model. Raffel et al. [130] explore different sampling

strategies for NLP tasks. We focus on multi-task learning for V&L tasks.

3.4.4 Multi-Task V&L Learning.

Recent work [136, 137, 138] also explores multi-task learning in V&L. HDC [137]

trains a multi-task network on multiple datasets and uses a hyper-parameter search

method to determine which layer output should be taken for each task. Our method

does not need any hyperparameter search to choose outputs for different tasks and
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outperforms both [136] and [137]. [138] is a concurrent work that does multi-task

training on 12 dialogue datasets (only two with images). Our work differs in that we

focus on a variety of vision and language tasks.
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CHAPTER 4

VISUAL QUESTION ANSWERING

In this chapter, we will discuss my line of work in visual question answering. Since

we first introduced the VQA dataset, to explore the difficulty of the dataset, we first

implement various baselines and a novel neural approach that uses Hadamard product

to fuse the visual and linguistic representations. Our baselines consist of random,

prior, per Q-type prior, and nearest neighbor. We further develop a 2-channel vision

+ language model that culminates with a softmax over K possible outputs.

Next, we will motivate the co-attention framework for VQA that jointly reasons for

image and question attention. In addition, our model reasons about the question (and

consequently the image via the co-attention mechanism) in a hierarchical fashion via

a novel 1-dimensional convolution neural networks (CNN). Our model improves the

state-of-the-art on the VQA dataset from 60.3% to 60.5%, and from 61.6% to 63.3%

on the COCO-QA dataset. By using ResNet, the performance is further improved to

62.1% for VQA and 65.4% for COCO-QA.

4.1 VQA Baselines and Methods

In this section, we explore the difficulty of the VQA dataset for the MS COCO images

using several baselines and novel methods. We train on VQA train+val. Unless stated

otherwise, all human accuracies are on test-standard, machine accuracies are on test-

dev, and results involving human captions (in gray font) are trained on train and

tested on val (because captions are not available for test).

4.1.1 Baselines

We implemented the following baselines:
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1. random: We randomly choose an answer from the top 1K answers of the VQA

train/val dataset.

2. prior (“yes”): We always select the most popular answer (“yes”) for both

the open-ended and multiple-choice tasks. Note that “yes” is always one of the

choices for the multiple-choice questions.

3. per Q-type prior: For the open-ended task, we pick the most popular answer

per question type (see the appendix for details). For the multiple-choice task,

we pick the answer (from the provided choices) that is most similar to the picked

answer for the open-ended task using cosine similarity in Word2Vec[50] feature

space.

4. nearest neighbor: Given a test image, question pair, we first find the K

nearest neighbor questions and associated images from the training set. See

appendix for details on how neighbors are found. Next, for the open-ended

task, we pick the most frequent ground truth answer from this set of nearest

neighbor question, image pairs. Similar to the “per Q-type prior” baseline, for

the multiple-choice task, we pick the answer (from the provided choices) that is

most similar to the picked answer for the open-ended task using cosine similarity

in Word2Vec [50] feature space.

4.1.2 Methods

For our methods, we develop a 2-channel vision (image) + language (question) model

that culminates with a softmax over K possible outputs. We choose the top K = 1000

most frequent answers as possible outputs. This set of answers covers 82.67% of the

train+val answers. We describe the different components of our model below:

Image Channel: This channel provides an embedding for the image. We exper-

iment with two embeddings –
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Figure 4.1: Our best performing model (deeper LSTM Q + norm I). This model uses
a two layer LSTM to encode the questions and the last hidden layer of VGGNet [139]
to encode the images. The image features are then `2 normalized. Both the question
and image features are transformed to a common space and fused via element-wise
multiplication, which is then passed through a fully connected layer followed by a
softmax layer to obtain a distribution over answers.

1. I: The activations from the last hidden layer of VGGNet [139] are used as

4096-dim image embedding.

2. norm I: These are `2 normalized activations from the last hidden layer of

VGGNet [139].

Question Channel: This channel provides an embedding for the question. We

experiment with three embeddings –

1. Bag-of-Words Question (BoW Q): The top 1,000 words in the questions are

used to create a bag-of-words representation. Since there is a strong correlation

between the words that start a question and the answer, we find the top 10

first, second, and third words of the questions and create a 30 dimensional bag-

of-words representation. These features are concatenated to get a 1,030-dim

embedding for the question.

2. LSTM Q: An LSTM with one hidden layer is used to obtain 1024-dim em-

bedding for the question. The embedding obtained from the LSTM is a con-

catenation of last cell state and last hidden state representations (each being

512-dim) from the hidden layer of the LSTM. Each question word is encoded
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with 300-dim embedding by a fully-connected layer + tanh non-linearity which

is then fed to the LSTM. The input vocabulary to the embedding layer consists

of all the question words seen in the training dataset.

3. deeper LSTM Q: An LSTM with two hidden layers is used to obtain 2048-

dim embedding for the question. The embedding obtained from the LSTM

is a concatenation of last cell state and last hidden state representations (each

being 512-dim) from each of the two hidden layers of the LSTM. Hence 2 (hidden

layers) x 2 (cell state and hidden state) x 512 (dimensionality of each of the cell

states, as well as hidden states) in Fig. 4.1. This is followed by a fully-connected

layer + tanh non-linearity to transform 2048-dim embedding to 1024-dim. The

question words are encoded in the same way as in LSTM Q.

Multi-Layer Perceptron (MLP): The image and question embeddings are

combined to obtain a single embedding.

1. For BoW Q + I method, we simply concatenate the BoW Q and I embeddings.

2. For LSTM Q + I, and deeper LSTM Q + norm I (Fig. 4.1) methods, the

image embedding is first transformed to 1024-dim by a fully-connected layer

+ tanh non-linearity to match the LSTM embedding of the question. The

transformed image and LSTM embeddings (being in a common space) are then

fused via element-wise multiplication.

This combined image + question embedding is then passed to an MLP – a fully con-

nected neural network classifier with 2 hidden layers and 1000 hidden units (dropout

0.5) in each layer with tanh non-linearity, followed by a softmax layer to obtain a dis-

tribution over K answers. The entire model is learned end-to-end with a cross-entropy

loss. VGGNet parameters are frozen to those learned for ImageNet classification and

not fine-tuned in the image channel.

We also experimented with providing captions as input to our model. We assume

that a human-generated caption is given as input. We use a bag-of-words repre-
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Table 4.1: Accuracy of our methods for the open-ended and multiple-choice tasks on
the VQA test-dev for real images. Q = Question, I = Image, C = Caption. (Caption
and BoW Q + C results are on val). See text for details.

Open-Ended Multiple-Choice

All Yes/No Number Other All Yes/No Number Other

prior (“yes”) 29.66 70.81 00.39 01.15 29.66 70.81 00.39 01.15
per Q-type prior 37.54 71.03 35.77 09.38 39.45 71.02 35.86 13.34
nearest neighbor 42.70 71.89 24.36 21.94 48.49 71.94 26.00 33.56
BoW Q 48.09 75.66 36.70 27.14 53.68 75.71 37.05 38.64
I 28.13 64.01 00.42 03.77 30.53 69.87 00.45 03.76
BoW Q + I 52.64 75.55 33.67 37.37 58.97 75.59 34.35 50.33
LSTM Q 48.76 78.20 35.68 26.59 54.75 78.22 36.82 38.78
LSTM Q + I 53.74 78.94 35.24 36.42 57.17 78.95 35.80 43.41
deeper LSTM Q 50.39 78.41 34.68 30.03 55.88 78.45 35.91 41.13
deeper LSTM Q + norm I 57.75 80.50 36.77 43.08 62.70 80.52 38.22 53.01

Caption 26.70 65.50 02.03 03.86 28.29 69.79 02.06 03.82
BoW Q + C 54.70 75.82 40.12 42.56 59.85 75.89 41.16 52.53

sentation containing the 1,000 most popular words in the captions as the caption

embedding (Caption). For BoW Question + Caption (BoW Q + C) method,

we simply concatenate the BoW Q and C embeddings.

For testing, we report the result on two different tasks: open-ended selects the

answer with highest activation from all possible K answers and multiple-choice picks

the answer that has the highest activation from the potential answers.

4.1.3 Results

Table. 4.1 shows the accuracy of our baselines and methods for both the open-ended

and multiple-choice tasks on the VQA test-dev for real images. As expected, the

vision-alone model (I) that completely ignores the question performs rather poorly

(open-ended: 28.13% / multiple-choice: 30.53%). In fact, on open-ended task, the

vision-alone model (I) performs worse than the prior (“yes”) baseline, which ignores

both the image and question (responding to every question with a “yes”).

Interestingly, the language-alone methods (per Q-type prior, BoW Q, LSTM Q)

that ignore the image perform surprisingly well, with BoW Q achieving 48.09% on

open-ended (53.68% on multiple-choice) and LSTM Q achieving 48.76% on open-
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ended (54.75% on multiple-choice); both outperforming the nearest neighbor baseline

(open-ended: 42.70%, multiple-choice: 48.49%). Our quantitative results and analy-

ses suggest that this might be due to the language-model exploiting subtle statistical

priors about the question types (e.g. “What color is the banana?” can be answered

with “yellow” without looking at the image). For a detailed discussion of the subtle

biases in the questions, please see [140].

The accuracy of our best model (deeper LSTM Q + norm I (Fig. 4.1), selected

using VQA test-dev accuracies) on VQA test-standard is 58.16% (open-ended) /

63.09% (multiple-choice). We can see that our model is able to significantly outper-

form both the vision-alone and language-alone baselines. As a general trend, results

on multiple-choice are better than open-ended. All methods are significantly worse

than human performance.

Our VQA demo is available on CloudCV [141] – http://cloudcv.org/vqa. This

will be updated with newer models as we develop them.

To gain further insights into these results, we computed accuracies by question

type in Table. 4.2. Interestingly, for question types that require more reasoning,

such as “Is the” or “How many”, the scene-level image features do not provide any

additional information. However, for questions that can be answered using scene-

level information, such as “What sport,” we do see an improvement. Similarly, for

questions whose answer may be contained in a generic caption we see improvement,

such as “What animal”. For all question types, the results are worse than human

accuracies.

We also analyzed the accuracies of our best model (deeper LSTM Q + norm I) on a

subset of questions with certain specific (ground truth) answers. In Fig. 4.2, we show

the average accuracy of the model on questions with 50 most frequent ground truth

answers on the VQA validation set (plot is sorted by accuracy, not frequency). We

can see that the model performs well for answers that are common visual objects such
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as “wii”, “tennis”, “bathroom” while the performance is somewhat underwhelming

for counts (e.g., “2”, “1”, “3”), and particularly poor for higher counts (e.g., “5”, “6”,

“10”, “8”, “7”).

In Fig. 4.3, we show the distribution of 50 most frequently predicted answers

when the system is correct on the VQA validation set (plot is sorted by prediction

frequency, not accuracy). In this analysis, “system is correct” implies that it has

VQA accuracy 1.0. We can see that the frequent ground truth answers (e.g., “yes”,

“no”, “2”, “white”, “red”, “blue”, “1”, “green”) are more frequently predicted than

others when the model is correct.

Table 4.2: Open-ended test-dev results for different question types on real images
(Q+C is reported on val). Machine performance is reported using the bag-of-words
representation for questions. Questions types are determined by the one or two words
that start the question. The percentage of questions for each type is shown in paren-
theses. Last and second last columns respectively show the average human age and
average degree of commonsense required to answer the questions (as reported by AMT
workers), respectively. See text for details.

Open-Ended Human Age Commonsense

Question K = 1000 Human To Be Able To Be Able

Type Q Q + I Q + C Q Q + I To Answer To Answer (%)

what is (13.84) 23.57 34.28 43.88 16.86 73.68 09.07 27.52
what color (08.98) 33.37 43.53 48.61 28.71 86.06 06.60 13.22
what kind (02.49) 27.78 42.72 43.88 19.10 70.11 10.55 40.34
what are (02.32) 25.47 39.10 47.27 17.72 69.49 09.03 28.72
what type (01.78) 27.68 42.62 44.32 19.53 70.65 11.04 38.92
is the (10.16) 70.76 69.87 70.50 65.24 95.67 08.51 30.30
is this (08.26) 70.34 70.79 71.54 63.35 95.43 10.13 45.32
how many (10.28) 43.78 40.33 47.52 30.45 86.32 07.67 15.93
are (07.57) 73.96 73.58 72.43 67.10 95.24 08.65 30.63
does (02.75) 76.81 75.81 75.88 69.96 95.70 09.29 38.97
where (02.90) 16.21 23.49 29.47 11.09 43.56 09.54 36.51
is there (03.60) 86.50 86.37 85.88 72.48 96.43 08.25 19.88
why (01.20) 16.24 13.94 14.54 11.80 21.50 11.18 73.56
which (01.21) 29.50 34.83 40.84 25.64 67.44 09.27 30.00
do (01.15) 77.73 79.31 74.63 71.33 95.44 09.23 37.68
what does (01.12) 19.58 20.00 23.19 11.12 75.88 10.02 33.27
what time (00.67) 8.35 14.00 18.28 07.64 58.98 09.81 31.83
who (00.77) 19.75 20.43 27.28 14.69 56.93 09.49 43.82
what sport (00.81) 37.96 81.12 93.87 17.86 95.59 08.07 31.87
what animal (00.53) 23.12 59.70 71.02 17.67 92.51 06.75 18.04
what brand (00.36) 40.13 36.84 32.19 25.34 80.95 12.50 41.33

Table. 4.3 shows the accuracy of different ablated versions of our best model

(deeper LSTM Q + norm I) for both the open-ended and multiple-choice tasks on
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Figure 4.2: Pr (system is correct | answer) for 50 most frequent ground truth answers
on the VQA validation set (plot is sorted by accuracy, not frequency). System refers
to our best model (deeper LSTM Q + norm I).
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Figure 4.3: Pr (answer | system is correct) for 50 most frequently predicted answers
on the VQA validation set (plot is sorted by prediction frequency, not accuracy).
System refers to our best model (deeper LSTM Q + norm I).

the VQA test-dev for real images. The different ablated versions are as follows –

1. Without I Norm: In this model, the activations from the last hidden layer of

VGGNet [139] are not `2-normalized. Comparing the accuracies in Table. 4.3

and Table. 4.1, we can see that `2-normalization of image features boosts the

performance by 0.16% for open-ended task and by 0.24% for multiple-choice

task.

2. Concatenation: In this model, the transformed image and LSTM embeddings

are concatenated (instead of element-wise multiplied), resulting in doubling the

number of parameters in the following fully-connected layer. Comparing the

accuracies in Table. 4.3 and Table. 4.1, we can see that element-wise fusion

performs better by 0.95% for open-ended task and by 1.24% for multiple-choice

task.

3. K = 500: In this model, we use K = 500 most frequent answers as possible
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outputs. Comparing the accuracies in Table. 4.3 and Table. 4.1, we can see that

K = 1000 performs better than K = 500 by 0.82% for open-ended task and by

1.92% for multiple-choice task.

4. K = 2000: In this model, we use K = 2000 most frequent answers as possible

outputs. Comparing the accuracies in Table. 4.3 and Table. 4.1, we can see that

K = 2000 performs better then K = 1000 by 0.40% for open-ended task and by

1.16% for multiple-choice task.

5. Truncated Q Vocab @ 5: In this model, the input vocabulary to the embed-

ding layer (which encodes the question words) consists of only those question

words which occur atleast 5 times in the training dataset, thus reducing the

vocabulary size from 14770 (when all question words are used) to 5134 (65.24%

reduction). Remaining question words are replaced with UNK (unknown) to-

kens. Comparing the accuracies in Table. 4.3 and Table. 4.1, we can see that

truncating the question vocabulary @ 5 performs better than using all questions

words by 0.24% for open-ended task and by 0.17% for multiple-choice task.

6. Truncated Q Vocab @ 11: In this model, the input vocabulary to the embed-

ding layer (which encodes the question words) consists of only those question

words which occur atleast 11 times in the training dataset, thus reducing the

vocabulary size from 14770 (when all question words are used) to 3561 (75.89%

reduction). Remaining question words are replaced with UNK (unknown) to-

kens. Comparing the accuracies in Table. 4.3 and Table. 4.1, we can see that

truncating the question vocabulary @ 11 performs better than using all ques-

tions words by 0.06% for open-ended task and by 0.02% for multiple-choice

task.

7. Filtered Dataset: We created a filtered version of the VQA train + val dataset

in which we only keep the answers with subject confidence “yes”. Also, we keep

only those questions for which at least 50% (5 out of 10) answers are annotated
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Table 4.3: Accuracy of ablated versions of our best model (deeper LSTM Q + norm
I) for the open-ended and multiple-choice tasks on the VQA test-dev for real images.
Q = Question, I = Image. See text for details.

Open-Ended Multiple-Choice

All Yes/No Number Other All Yes/No Number Other

Without I Norm 57.59 80.41 36.63 42.84 62.46 80.43 38.10 52.62
Concatenation 56.80 78.49 35.08 43.19 61.46 78.52 36.43 52.54
K = 500 56.93 80.61 36.24 41.39 60.78 80.64 37.44 49.10
K = 2000 58.15 80.56 37.04 43.79 63.86 80.59 38.97 55.20
Truncated Q Vocab @ 5 57.99 80.67 36.99 43.38 62.87 80.71 38.22 53.20
Truncated Q Vocab @ 11 57.81 80.42 36.97 43.22 62.72 80.45 38.30 53.09
Filtered Dataset 56.62 80.19 37.48 40.95 60.82 80.19 37.48 49.57

with subject confidence “yes”. The resulting filtered dataset consists of 344600

questions, compared to 369861 questions in the original dataset, thus leading

to only 6.83% reduction in the size of the dataset. The filtered dataset has 8.77

answers per question on average. We did not filter the test set so that accuracies

of the model trained on the filtered dataset can be compared with that of the

model trained on the original dataset. The row “Filtered Dataset” in Table. 4.3

shows the performance of the deeper LSTM Q + norm I model when trained

on the filtered dataset. Comparing these accuracies with the corresponding

accuracies in Table. 4.1, we can see that the model trained on filtered version

performs worse by 1.13% for open-ended task and by 1.88% for multiple-choice

task.

4.2 Hierarchical Co-Attention for Visual Question Answering

In this section, I will explore how to extend from single modality attention to co-

attention to improve VQA performance. As shown in Fig. 4.4, we propose a novel

mechanism that jointly reasons about visual attention and question attention, which

we refer to as co-attention. Unlike previous works, which only focus on visual at-

tention, our model has a natural symmetry between the image and question, in the

sense that the image representation is used to guide the question attention and the
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Figure 4.4: Flowchart of our proposed hierarchical co-attention model. Given a ques-
tion, we extract its word level, phrase level and question level embeddings. At each
level, we apply co-attention on both the image and question. The final answer pre-
diction is based on all the co-attended image and question features.

question representation(s) are used to guide image attention.

We build a hierarchical architecture that co-attends to the image and question

at three levels: (a) word level, (b) phrase level and (c) question level. At the word

level, we embed the words to a vector space through an embedding matrix. At

the phrase level, 1-dimensional convolution neural networks are used to capture the

information contained in unigrams, bigrams and trigrams. Specifically, we convolve

word representations with temporal filters of varying support, and then combine the

various n-gram responses by pooling them into a single phrase level representation. At

the question level, we use recurrent neural networks to encode the entire question. For

each level of the question representation in this hierarchy, we construct joint question

and image co-attention maps, which are then combined recursively to ultimately

predict a distribution over the answers.

4.2.1 Approach

We begin by introducing the notation used in this chapter. To ease understanding,

our full model is described in parts. First, our hierarchical question representation is
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described in Sec. 4.2.1 and the proposed co-attention mechanism is then described in

Sec. 4.2.1. Finally, Sec. 4.2.1 shows how to recursively combine the attended question

and image features to output answers.

Question Hierarchy

Given the 1-hot encoding of the question words Q = {q1, . . . , qT}, we first embed

the words to a vector space (learnt end-to-end) to get Qw = {qw
1 , . . . , q

w
T }. To com-

pute the phrase features, we apply 1-D convolution on the word embedding vectors.

Concretely, at each word location, we compute the inner product of the word vectors

with filters of three window sizes: unigram, bigram and trigram. For the t-th word,

the convolution output with window size s is given by

q̂p
s,t = tanh(W s

c q
w
t:t+s−1), s ∈ {1, 2, 3} (4.1)

where W s
c is the weight parameters. The word-level features Qw are appropriately

0-padded before feeding into bigram and trigram convolutions to maintain the length

of the sequence after convolution. Given the convolution result, we then apply max-

pooling across different n-grams at each word location to obtain phrase-level features

qp
t = max(q̂p

1,t, q̂
p
2,t, q̂

p
3,t), t ∈ {1, 2, . . . , T} (4.2)

Our pooling method differs from those used in previous works [142] in that it

adaptively selects different gram features at each time step, while preserving the

original sequence length and order. We use a LSTM to encode the sequence qp
t after

max-pooling. The corresponding question-level feature qs
t is the LSTM hidden vector

at time t.

Our hierarchical representation of the question is depicted in Fig. 4.6(a).
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Figure 4.5: (a) Parallel co-attention mechanism; (b) Alternating co-attention mech-
anism.

Co-Attention

We propose two co-attention mechanisms that differ in the order in which image

and question attention maps are generated. The first mechanism, which we call

parallel co-attention, generates image and question attention simultaneously. The

second mechanism, which we call alternating co-attention, sequentially alternates

between generating image and question attentions. See Fig. 4.5. These co-attention

mechanisms are executed at all three levels of the question hierarchy.

Parallel Co-Attention. Parallel co-attention attends to the image and question

simultaneously. Similar to [72], we connect the image and question by calculating

the similarity between image and question features at all pairs of image-locations

and question-locations. Specifically, given an image feature map V ∈ Rd×N , and the

question representation Q ∈ Rd×T , the affinity matrix C ∈ RT×N is calculated by

C = tanh(QTWbV ) (4.3)

where Wb ∈ Rd×d contains the weights. After computing this affinity matrix, one

possible way of computing the image (or question) attention is to simply maximize

out the affinity over the locations of other modality, i.e. av[n] = maxi(Ci,n) and

aq[t] = maxj(Ct,j). Instead of choosing the max activation, we find that performance
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is improved if we consider this affinity matrix as a feature and learn to predict image

and question attention maps via the following

Hv = tanh(WvV + (WqQ)C), Hq = tanh(WqQ+ (WvV )CT )

av = softmax(wT
hvH

v), aq = softmax(wT
hqH

q)
(4.4)

where Wv,Wq ∈ Rk×d, whv,whq ∈ Rk are the weight parameters. av ∈ RN and

aq ∈ RT are the attention probabilities of each image region vn and word qt respec-

tively. The affinity matrix C transforms question attention space to image attention

space (vice versa for CT ). Based on the above attention weights, the image and

question attention vectors are calculated as the weighted sum of the image features

and question features, i.e.,

v̂ =
N∑

n=1
av

nvn, q̂ =
T∑

t=1
aq

tqt (4.5)

The parallel co-attention is done at each level in the hierarchy, leading to v̂r and q̂r

where r ∈ {w, p, s}.

Alternating Co-Attention. In this attention mechanism, we sequentially al-

ternate between generating image and question attention. Briefly, this consists of

three steps (marked in Fig. 4.5b): 1) summarize the question into a single vector q;

2) attend to the image based on the question summary q; 3) attend to the question

based on the attended image feature.

Concretely, we define an attention operation x̂ = A(X; g), which takes the image

(or question) features X and attention guidance g derived from question (or image)

as inputs, and outputs the attended image (or question) vector. The operation can
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be expressed in the following steps

H = tanh(WxX + (Wgg)1T )

ax = softmax(wT
hxH)

x̂ =
∑

ax
i xi

(4.6)

where 1 is a vector with all elements to be 1. Wx,Wg ∈ Rk×d and whx ∈ Rk are

parameters. ax is the attention weight of feature X.

The alternating co-attention process is illustrated in Fig. 4.5 (b). At the first

step of alternating co-attention, X = Q, and g is 0; At the second step, X = V

where V is the image features, and the guidance g is intermediate attended question

feature ŝ from the first step; Finally, we use the attended image feature v̂ as the

guidance to attend the question again, i.e., X = Q and g = v̂. Similar to the parallel

co-attention, the alternating co-attention is also done at each level of the hierarchy.

Encoding for Predicting Answers

Following [3], we treat VQA as a classification task. We predict the answer based on

the co-attended image and question features from all three levels. We use a multi-layer

perceptron (MLP) to recursively encode the attention features as shown in Fig. 4.6(b).
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hw = tanh(Ww(q̂w + v̂w))

hp = tanh(Wp[(q̂p + v̂p),hw])

hs = tanh(Ws[(q̂s + v̂s),hp])

p = softmax(Whh
s)

(4.7)

where Ww,Wp,Ws and Wh are the weight parameters. [·] is the concatenation

operation on two vectors. p is the probability of the final answer.

Implementation Details

We use Torch [143] to develop our model. We use the Rmsprop optimizer with a

base learning rate of 4e-4, momentum 0.99 and weight-decay 1e-8. We set batch

size to be 300 and train for up to 256 epochs with early stopping if the validation

accuracy has not improved in the last 5 epochs. For COCO-QA, the size of hidden

layer Ws is set to 512 and 1024 for VQA since it is a much larger dataset. All the

other word embedding and hidden layers were vectors of size 512. We apply dropout

with probability 0.5 on each layer. Following [71], we rescale the image to 448× 448,

and then take the activation from the last pooling layer of VGGNet [139] or ResNet

[144] as its feature.

4.2.2 Results

We evaluate the proposed model on two datasets, the VQA dataset [3] and the COCO-

QA dataset [68].

VQA dataset [3] is the largest dataset for this problem, containing human anno-

tated questions and answers on Microsoft COCO dataset [5]. The dataset contains

248,349 training questions, 121,512 validation questions, 244,302 testing questions,

and a total of 6,141,630 question-answers pairs. There are three sub-categories ac-

cording to answer-types including yes/no, number, and other. Each question has 10
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free-response answers. We use the top 1000 most frequent answers as the possible

outputs similar to [3]. This set of answers covers 86.54% of the train+val answers.

For testing, we train our model on VQA train+val and report the test-dev and test-

standard results from the VQA evaluation server. We use the evaluation protocol of

[3] in the experiment.

COCO-QA dataset [68] is automatically generated from captions in the Microsoft

COCO dataset [5]. There are 78,736 train questions and 38,948 test questions in the

dataset. These questions are based on 8,000 and 4,000 images respectively. There are

four types of questions including object, number, color, and location. Each type takes

70%, 7%, 17%, and 6% of the whole dataset, respectively. All answers in this data

set are single word. As in [68], we report classification accuracy as well as Wu-Palmer

similarity (WUPS) in Table 2.

Results

There are two test scenarios on VQA: open-ended and multiple-choice. The best

performing method deeper LSTM Q + norm I from [3] is used as our baseline. For

open-ended test scenario, we compare our method with the recent proposed SMem

[72], SAN [71], FDA [145] and DMN+ [74]. For multiple choice, we compare

with Region Sel. [73] and FDA [145]. We compare with 2-VIS+BLSTM [68],

IMG-CNN [67] and SAN [71] on COCO-QA. We use Oursp to refer to our parallel

co-attention, Oursa for alternating co-attention.

Table 4.4 shows results on the VQA test sets for both open-ended and multiple-

choice settings. We can see that our approach improves the state of art from 60.4%

(DMN+ [74]) to 62.1% (Oursa+ResNet) on open-ended and from 64.2% (FDA [145])

to 66.1% (Oursa+ResNet) on multiple-choice. Notably, for the question type Other

and Num, we achieve 3.4% and 1.4% improvement on open-ended questions, and 4.0%

and 1.1% on multiple-choice questions. As we can see, ResNet features outperform
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Table 4.4: Results on the VQA dataset. “-” indicates the results is not available.

Open-Ended Multiple-Choice

test-dev test-std test-dev test-std

Method Y/N Num Other All All Y/N Num Other All All

LSTM Q+I [3] 80.5 36.8 43.0 57.8 58.2 80.5 38.2 53.0 62.7 63.1
Region Sel. [73] - - - - - 77.6 34.3 55.8 62.4 -
SMem [72] 80.9 37.3 43.1 58.0 58.2 - - - - -
SAN [71] 79.3 36.6 46.1 58.7 58.9 - - - - -
FDA [145] 81.1 36.2 45.8 59.2 59.5 81.5 39.0 54.7 64.0 64.2
DMN+ [74] 80.5 36.8 48.3 60.3 60.4 - - - - -

Oursp+VGG 79.5 38.7 48.3 60.1 - 79.5 39.8 57.4 64.6 -
Oursa+VGG 79.6 38.4 49.1 60.5 - 79.7 40.1 57.9 64.9 -
Oursa+ResNet 79.7 38.7 51.7 61.8 62.1 79.7 40.0 59.8 65.8 66.1

or match VGG features in all cases. Our improvements are not solely due to the use

of a better CNN. Specifically, FDA [145] also uses ResNet [144], but Oursa+ResNet

outperforms it by 1.8% on test-dev. SMem [72] uses GoogLeNet [146] and the rest all

use VGGNet [139], and Ours+VGG outperforms them by 0.2% on test-dev (DMN+

[74]).

Table 4.5 shows results on the COCO-QA test set. Similar to the result on VQA,

our model improves the state-of-the-art from 61.6% (SAN(2,CNN) [71]) to 65.4%

(Oursa+ResNet). We observe that parallel co-attention performs better than alter-

nating co-attention in this setup. Both attention mechanisms have their advantages

and disadvantages: parallel co-attention is harder to train because of the dot product

between image and text which compresses two vectors into a single value. On the

other hand, alternating co-attention may suffer from errors being accumulated at each

round.

Ablation Study

In this section, we perform ablation studies to quantify the role of each component

in our model. Specifically, we re-train our approach by ablating certain components:

• Image Attention alone, where in a manner similar to previous works [71], we do
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Table 4.5: Results on the COCO-QA dataset. “-” indicates the results is not available.

Method Object Number Color Location Accuracy WUPS0.9 WUPS0.0

2-VIS+BLSTM [68] 58.2 44.8 49.5 47.3 55.1 65.3 88.6
IMG-CNN [67] - - - - 58.4 68.5 89.7
SAN(2, CNN) [71] 64.5 48.6 57.9 54.0 61.6 71.6 90.9

Oursp+VGG 65.6 49.6 61.5 56.8 63.3 73.0 91.3
Oursa+VGG 65.6 48.9 59.8 56.7 62.9 72.8 91.3
Oursa+ResNet 68.0 51.0 62.9 58.8 65.4 75.1 92.0

not use any question attention. The goal of this comparison is to verify that

our improvements are not the result of orthogonal contributions. (say better

optimization or better CNN features).

• Question Attention alone, where no image attention is performed.

• W/O Conv, where no convolution and pooling is performed to represent phrases.

Instead, we stack another word embedding layer on the top of word level out-

puts.

• W/O W-Atten, where no word level co-attention is performed. We replace the

word level attention with a uniform distribution. Phrase and question level

co-attentions are still modeled.

• W/O P-Atten, where no phrase level co-attention is performed, and the phrase

level attention is set to be uniform. Word and question level co-attentions are

still modeled.

• W/O Q-Atten, where no question level co-attention is performed. We replace

the question level attention with a uniform distribution. Word and phrase level

co-attentions are still modeled.

Table 4.6 shows the comparison of our full approach w.r.t these ablations on the

VQA validation set (test sets are not recommended to be used for such experiments).

The deeper LSTM Q + norm I baseline in [3] is also reported for comparison. We
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Table 4.6: Ablation study on the VQA dataset using Oursa+VGG.

validation
Method Y/N Num Other All
LSTM Q+I 79.8 32.9 40.7 54.3
Image Atten 79.8 33.9 43.6 55.9
Question Atten 79.4 33.3 41.7 54.8
W/O Q-Atten 79.6 32.1 42.9 55.3
W/O P-Atten 79.5 34.1 45.4 56.7
W/O W-Atten 79.6 34.4 45.6 56.8
Full Model 79.6 35.0 45.7 57.0

can see that image-attention-alone does improve performance over the holistic image

feature (deeper LSTM Q + norm I), which is consistent with findings of previous

attention models for VQA [74, 71].

Comparing the full model w.r.t. ablated versions without word, phrase, question

level attentions reveals a clear interesting trend – the attention mechanisms closest to

the ‘top’ of the hierarchy (i.e. question) matter most, with a drop of 1.7% in accuracy

if not modeled; followed by the intermediate level (i.e. phrase), with a drop of 0.3%;

finally followed by the ‘bottom’ of the hierarchy (i.e. word), with a drop of 0.2% in

accuracy. We hypothesize that this is because the question level is the ‘closest’ to the

answer prediction layers in our model. Note that all levels are important, and our final

model significantly outperforms not using any linguistic attention (1.1% difference

between Full Model and Image Atten). The question attention alone model is better

than LSTM Q+I, with an improvement of 0.5% and worse than image attention alone,

with a drop of 1.1%. Oursa further improves if we performed alternating co-attention

for one more round, with an improvement of 0.3%.

Qualitative Results

We now visualize some co-attention maps generated by our method in Fig. 4.7. At the

word level, our model attends mostly to the object regions in an image, e.g., heads,
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Figure 4.7: Visualization of image and question co-attention maps on the COCO-
QA dataset. From left to right: original image and question pairs, word level co-
attention maps, phrase level co-attention maps and question level co-attention maps.
For visualization, both image and question attentions are scaled (from red:high to
blue:low). Best viewed in color.

bird. At the phrase level, the image attention has different patterns across images.

For the first two images, the attention transfers from objects to background regions.

For the third image, the attention becomes more focused on the objects. We suspect

that this is caused by the different question types. On the question side, our model is

capable of localizing the key phrases in the question, thus essentially discovering the

question types in the dataset. For example, our model pays attention to the phrases

“what color” and “how many snowboarders”. Our model successfully attends to the

regions in images and phrases in the questions appropriate for answering the question,

e.g., “color of the bird” and bird region. Because our model performs co-attention at

three levels, it often captures complementary information from each level, and then
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combines them to predict the answer.

4.2.3 Discussion

In this chapter, we proposed a hierarchical co-attention model for visual question

answering. Co-attention allows our model to attend to different regions of the image

as well as different fragments of the question. We model the question hierarchically

at three levels to capture information from different granularities. The ablation stud-

ies further demonstrate the roles of co-attention and question hierarchy in our final

performance. Through visualizations, we can see that our model co-attends to in-

terpretable regions of images and questions for predicting the answer. Though our

model was evaluated on visual question answering, it can be potentially applied to

other tasks involving vision and language.
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CHAPTER 5

NEURAL IMAGE CAPTIONING

In this chapter, we will study neural image captioning and how inducing appropriate

grounding improves the sequence generation model. The rationale for why grounding

is useful for sequence generation is based on the idea that the model should know

‘when’ and ‘where’ to look at the image when generating descriptions. However, even

augmenting with these skills, existing models still lack visual grounding (i.e. do not

associate named concepts to pixels in the image). In the second work, we will build

on top of the first work and propose a novel framework that can produce natural

language explicitly grounded in entities that object detectors find in the image. Our

approach reconciles classical slot filling approaches (that are generally better grounded

in images) with modern neural captioning approaches (that are generally more natural

sounding and accurate). Our approach first generates a sentence ‘template’ with slot

locations explicitly tied to specific image regions. These slots are then filled in by

visual concepts identified in the regions by object detectors.

5.1 Knowing When to Look: Adaptive Attention via A Visual Sentinel

for Image Captioning

Automatically generating captions for images has emerged as a prominent interdisci-

plinary research problem in both academia and industry. [19, 87, 51, 18]. It can aid

visually impaired users, and make it easy for users to organize and navigate through

large amounts of typically unstructured visual data. In order to generate high qual-

ity captions, the model needs to incorporate fine-grained visual clues from the image.

Recently, visual attention-based neural encoder-decoder models [18, 19] have been ex-

plored, where the attention mechanism typically produces a spatial map highlighting
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Figure 5.1: Our model learns an adaptive attention model that automatically deter-
mines when to look (sentinel gate) and where to look (spatial attention) for word
generation.

image regions relevant to each generated word.

Most attention models for image captioning and visual question answering attend

to the image at every time step, irrespective of which word is going to be emitted

next [19, 18]. However, not all words in the caption have corresponding visual signals.

Consider the example in Fig. 5.1 that shows an image and its generated caption “A

white bird perched on top of a red stop sign”. The words “a” and “of” do not

have corresponding canonical visual signals. Moreover, language correlations make

the visual signal unnecessary when generating words like “on” and “top” following

“perched”, and “sign” following “a red stop”. In fact, gradients from non-visual words

could mislead and diminish the overall effectiveness of the visual signal in guiding the

caption generation process.

In this section, we introduce an adaptive attention encoder-decoder framework

which can automatically decide when to rely on visual signals and when to just rely

on the language model. Of course, when relying on visual signals, the model also

decides where – which image region – it should attend to. We first propose a novel
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spatial attention model for extracting spatial image features. Then as our proposed

adaptive attention mechanism, we introduce a new Long Short Term Memory (LSTM)

extension, which produces an additional “visual sentinel” vector instead of a sin-

gle hidden state. The “visual sentinel”, an additional latent representation of the

decoder’s memory, provides a fallback option to the decoder. We further design a

new sentinel gate, which decides how much new information the decoder wants to get

from the image as opposed to relying on the visual sentinel when generating the next

word. For example, as illustrated in Fig. 5.1, our model learns to attend to the image

more when generating words “white”, “bird”, “red” and “stop”, and relies more on

the visual sentinel when generating words “top”, “of” and “sign”.

5.1.1 Approach

Spatial Attention Model

First, we propose a spatial attention model for computing the context vector ct which

is defined as:

ct = g(V ,ht) (5.1)

where g is the attention function, V = [v1, . . . ,vk] ,vi ∈ Rd is the spatial image

features, each of which is a d dimensional representation corresponding to a part of

the image. ht is the hidden state of RNN at time t.

Given the spatial image feature V ∈ Rd×k and hidden state ht ∈ Rd of the LSTM,

we feed them through a single layer neural network followed by a softmax function

to generate the attention distribution over the k regions of the image:

zt = wT
h tanh(WvV + (Wght)1T ) (5.2)

αt = softmax(zt) (5.3)

where 1 ∈ Rk is a vector with all elements set to 1. Wv,Wg ∈ Rk×d and wh ∈ Rk are
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Figure 5.2: A illustration of soft attention model from [18] (a) and our proposed
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parameters to be learnt. α ∈ Rk is the attention weight over features in V . Based

on the attention distribution, the context vector ct can be obtained by:

ct =
k∑

i=1
αtivti (5.4)

where ct and ht are combined to predict next word yt+1.

Different from [18], shown in Fig. 5.2, we use the current hidden state ht to

analyze where to look (i.e., generating the context vector ct), then combine both

sources of information to predict the next word. Our motivation stems from the

superior performance of residual network [144]. The generated context vector ct

could be considered as the residual visual information of current hidden state ht,

which diminishes the uncertainty or complements the informativeness of the current

hidden state for next word prediction. We also empirically find our spatial attention

model performs better, as illustrated in Table 5.2 and Table 5.2.

Adaptive Attention Model

While spatial attention based decoders have proven to be effective for image caption-

ing, they cannot determine when to rely on visual signal and when to rely on the
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language model. In this section, motivated from Merity et al. [147], we introduce a

new concept – “visual sentinel”, which is a latent representation of what the decoder

already knows. With the “visual sentinel”, we extend our spatial attention model,

and propose an adaptive model that is able to determine whether it needs to attend

the image to predict next word.

What is visual sentinel? The decoder’s memory stores both long and short

term visual and linguistic information. Our model learns to extract a new component

from this that the model can fall back on when it chooses to not attend to the

image. This new component is called the visual sentinel. And the gate that decides

whether to attend to the image or to the visual sentinel is the sentinel gate. When

the decoder RNN is an LSTM, we consider those information preserved in its memory

cell. Therefore, we extend the LSTM to obtain the “visual sentinel” vector st by:

gt = σ (Wxxt +Whht−1) (5.5)

st = gt � tanh (mt) (5.6)

where Wx and Wh are weight parameters to be learned, xt is the input to the LSTM

at time step t, and gt is the gate applied on the memory cell mt. � represents the

element-wise product and σ is the logistic sigmoid activation.

Based on the visual sentinel, we propose an adaptive attention model to compute

the context vector. In our proposed architecture (see Fig. 5.3), our new adaptive

context vector is defined as ĉt, which is modeled as a mixture of the spatially attended

image features (i.e. context vector of spatial attention model) and the visual sentinel

vector. This trades off how much new information the network is considering from

the image with what it already knows in the decoder memory (i.e., the visual sentinel
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). The mixture model is defined as follows:

ĉt = βtst + (1− βt)ct (5.7)

where βt is the new sentinel gate at time t. In our mixture model, βt produces a scalar

in the range [0, 1]. A value of 1 implies that only the visual sentinel information is

used and 0 means only spatial image information is used when generating the next

word.

To compute the new sentinel gate βt, we modified the spatial attention component.

In particular, we add an additional element to z, the vector containing attention scores

as defined in Equation 5.2. This element indicates how much “attention” the network

is placing on the sentinel (as opposed to the image features). The addition of this

extra element is summarized by converting Equation 5.3 to:

α̂t = softmax([zt;wT
h tanh(Wsst + (Wght))]) (5.8)

where [·; ·] indicates concatenation. Ws and Wg are weight parameters. Notably,

Wg is the same weight parameter as in Equation 5.2. α̂t ∈ Rk+1 is the attention
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distribution over both the spatial image feature as well as the visual sentinel vector.

We interpret the last element of this vector to be the gate value: βt = αt[k + 1].

The probability over a vocabulary of possible words at time t can be calculated

as:

pt = softmax (Wp(ĉt + ht)) (5.9)

where Wp is the weight parameters to be learnt.

This formulation encourages the model to adaptively attend to the image vs. the

visual sentinel when generating the next word. The sentinel vector is updated at each

time step. With this adaptive attention model, we call our framework the adaptive

encoder-decoder image captioning framework.

5.1.2 Implementation Details

In this section, we describe the implementation details of our model and how we train

our network.

Encoder-CNN. The encoder uses a CNN to get the representation of images.

Specifically, the spatial feature outputs of the last convolutional layer of ResNet [144]

are used, which have a dimension of 2048×7×7. We useA = {a1, . . . ,ak},ai ∈ R2048

to represent the spatial CNN features at each of the k grid locations. Following [144],

the global image feature can be obtained by:

ag = 1
k

k∑
i=1
ai (5.10)

where ag is the global image feature. For modeling convenience, we use a single layer

perceptron with rectifier activation function to transform the image feature vector
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into new vectors with dimension d:

vi = ReLU(Waai) (5.11)

vg = ReLU(Wba
g) (5.12)

where Wa and Wg are the weight parameters. The transformed spatial image feature

form V = [v1, . . . ,vk].

Decoder-RNN. We concatenate the word embedding vectorwt and global image

feature vector vg to get the input vector xt = [wt;vg]. We use a single layer neural

network to transform the visual sentinel vector st and LSTM output vector ht into

new vectors that have the dimension d.

Training details. In our experiments, we use a single layer LSTM with hidden

size of 512. We use the Adam optimizer with base learning rate of 5e-4 for the

language model and 1e-5 for the CNN. The momentum and weight-decay are 0.8 and

0.999 respectively. We finetune the CNN network after 20 epochs. We set the batch

size to be 80 and train for up to 50 epochs with early stopping if the validation CIDEr

[33] score had not improved over the last 6 epochs. Our model can be trained within

30 hours on a single Titan X GPU. We use beam size of 3 when sampling the caption

for both COCO and Flickr30k datasets.

5.1.3 Results

Experiment Setting

Flickr30k contains 31,783 images collected from Flickr. Most of these images depict

humans performing various activities. Each image is paired with 5 crowd-sourced

captions. We use the publicly available splits1 containing 1,000 images for validation

and test each.
1https://github.com/karpathy/neuraltalk
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Table 5.1: Performance on Flickr30k test splits. † indicates ensemble models. B-n
is BLEU score that uses up to n-grams. Higher is better in all columns. For future
comparisons, our ROUGE-L/SPICE Flickr30k scores are 0.467/0.145

Method B-1 B-2 B-3 B-4 METEOR CIDEr
DeepVS [19] 0.573 0.369 0.240 0.157 0.153 0.247
Hard-Attention [18] 0.669 0.439 0.296 0.199 0.185 -
ATT-FCN† [21] 0.647 0.460 0.324 0.230 0.189 -
Ours-Spatial 0.644 0.462 0.327 0.231 0.202 0.493
Ours-Adaptive 0.677 0.494 0.354 0.251 0.204 0.531

Table 5.2: Performance on COCO test splits. † indicates ensemble models. B-n is
BLEU score that uses up to n-grams. Higher is better in all columns. For future
comparisons, our ROUGE-L/SPICE COCO scores are 0.549/0.194

Method B-1 B-2 B-3 B-4 METEOR CIDEr
DeepVS [19] 0.625 0.450 0.321 0.230 0.195 0.660
Hard-Attention [18] 0.718 0.504 0.357 0.250 0.230 -
ATT-FCN† [21] 0.709 0.537 0.402 0.304 0.243 -
ERD [89] - - - 0.298 0.240 0.895
MSM† [148] 0.730 0.565 0.429 0.325 0.251 0.986
Ours-Spatial 0.734 0.566 0.418 0.304 0.257 1.029
Ours-Adaptive 0.742 0.580 0.439 0.332 0.266 1.085

COCO is the largest image captioning dataset, containing 82,783, 40,504 and

40,775 images for training, validation and test respectively. This dataset is more

challenging, since most images contain multiple objects in the context of complex

scenes. Each image has 5 human annotated captions. For offline evaluation, we use

the same data split as in [19, 18, 21] containing 5000 images for validation and test

each. For online evaluation on the COCO evaluation server, we reserve 2000 images

from validation for development and the rest for training.

Pre-processing. We truncate captions longer than 18 words for COCO and

22 for Flickr30k. We then build a vocabulary of words that occur at least 5 and 3

times in the training set, resulting in 9567 and 7649 words for COCO and Flickr30k

respectively.
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Compared Approaches: For offline evaluation on Flickr30k and COCO, we first

compare our full model (Ours-Adaptive) with an ablated version (Ours-Spatial),

which only performs the spatial attention. The goal of this comparison is to verify that

our improvements are not the result of orthogonal contributions (e.g. better CNN

features or better optimization). We further compare our method with DeepVS

[19], Hard-Attention [18] and recently proposed ATT [21], ERD [89] and best

performed method (LSTM-A5) of MSM [148]. For online evaluation, we compare

our method with Google NIC [51], MS Captivator [22], m-RNN [52], LRCN

[149], Hard-Attention [18], ATT-FCN [21], ERD [89] and MSM [148].

Quantitative Analysis

We report results using the COCO captioning evaluation tool [5], which reports the

following metrics: BLEU [31], Meteor [150], Rouge-L [32] and CIDEr [33]. We also

report results using the new metric SPICE [151], which was found to better correlate

with human judgments.

Table 5.1 and Table 5.2 shows results on the Flickr30k and COCO datasets respec-

tively. Comparing the full model w.r.t ablated versions without visual sentinel verifies

the effectiveness of the proposed framework. Our adaptive attention model signifi-

cantly outperforms spatial attention model, which improves the CIDEr score from

0.493/1.029 to 0.531/1.085 on Flickr30k and COCO respectively. When comparing

with previous methods, we can see that our single model significantly outperforms all

previous methods in all metrics. On COCO, our approach improves the state-of-the-

art on BLEU-4 from 0.325 (MSM†) to 0.332, METEOR from 0.251 (MSM†) to 0.266,

and CIDEr from 0.986 (MSM†) to 1.085. Similarly, on Flickr30k, our model improves

the state-of-the-art with a large margin. We also report scores on ROUGE-L and

SPICE for future comparisons.

We compare our model to state-of-the-art systems on the COCO evaluation server
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Figure 5.4: Visualization of generated captions and image attention maps on the
COCO dataset. Different colors show a correspondence between attended regions
and underlined words. First 2 rows are success cases, last row are failure examples.
Best viewed in color.

in appendix. We can see that our approach achieves the best performance on all

metrics among the published systems. Notably, Google NIC, ERD and MSM use

Inception-v3 [152] as the encoder, which has similar or better classification perfor-

mance compared to ResNet [144] (which is what our model uses).

Qualitative Analysis

To better understand our model, we first visualize the spatial attention weight α for

different words in the generated caption. We simply upsample the attention weight

to the image size (224 × 224) using bilinear interpolation. Fig. 5.4 shows generated

captions and the spatial attention maps for specific words in the caption. First two

columns are success examples and the last one column shows failure examples. We

see that our model learns alignments that correspond strongly with human intuition.
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Figure 5.5: Visualization of generated captions, visual grounding probabilities of each
generated word, and corresponding spatial attention maps produced by our model.

Note that even in cases where the model produces inaccurate captions, we see that

our model does look at reasonable regions in the image – it just seems to not be

able to count or recognize texture and fine-grained categories. We provide a more

extensive list of visualizations in supplementary material.

We further visualize the sentinel gate as a caption is generated. For each word, we

use 1− β as its visual grounding probability. In Fig. 5.5, we visualize the generated

caption, the visual grounding probability and the spatial attention map generated by

our model for each word. Our model successfully learns to attend to the image less

when generating non-visual words such as “of” and “a”. For visual words like “red”,

“rose”, “doughnuts”, “woman” and “snowboard”, our model assigns a high visual

grounding probabilities (over 0.9). Note that the same word may be assigned different

visual grounding probabilities when generated in different contexts. For example,

the word “a” usually has a high visual grounding probability at the beginning of a

sentence, since without any language context, the model needs the visual information

to determine plurality (or not). On the other hand, the visual grounding probability

of ”a” in the phrase “on a table” is much lower. Since it is unlikely for something to

be on more than one table.
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Figure 5.6: Rank-probability plots on COCO (left) and Flickr30k (right) indicating
how likely a word is to be visually grounded when it is generated in a caption.

Adaptive Attention Analysis

In this section, we analysis the adaptive attention generated by our methods. We

visualize the sentinel gate to understand “when” our model attends to the image as

a caption is generated. We also perform a weakly-supervised localization on COCO

categories by using the generated attention maps. This can help us to get an intuition

of “where” our model attends, and whether it attends to the correct regions.

Learning “when” to attend In order to assess whether our model learns to sep-

arate visual words in captions from non-visual words, we visualize the visual ground-

ing probability. For each word in the vocabulary, we average the visual grounding

probability over all the generated captions containing that word. Fig. 5.6 shows the

rank-probability plot on COCO and Flickr30k.

We find that our model attends to the image more when generating object words

like “dishes”, “people”, “cat”, “boat”; attribute words like “giant”, “metal”, “yellow”

and number words like “three”. When the word is non-visual, our model learns to not

attend to the image such as for “the”, “of”, “to” etc. For more abstract notions such

as “crossing”, “during” etc., our model leans to attend less than the visual words and

attend more than the non-visual words. Note that our model does not rely on any
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Figure 5.7: Localization accuracy over generated captions for top 45 most frequent
COCO object categories. “Spatial Attention” and “Adaptive Attention” are our pro-
posed spatial attention model and adaptive attention model, respectively. The COCO
categories are ranked based on the align results of our adaptive attention, which cover
93.8% and 94.0% of total matched regions for spatial attention and adaptive attention,
respectively.

syntactic features or external knowledge. It discovers these trends automatically.

Our model cannot distinguish between words that are truly non-visual from the

ones that are technically visual but have a high correlation with other words and

hence chooses to not rely on the visual signal. For example, words such as “phone”

get a relatively low visual grounding probability in our model. This is because it

has a large language correlation with the word “cell”. We can also observe some

interesting trends in what the model learns on different datasets. For example, when

generating “UNK” words, our model learns to attend less to the image on COCO,

but more on Flickr30k. Same words with different forms can also results in different

visual grounding probabilities. For example, “crossing”, “cross” and “crossed” are

cognate words which have similar meaning. However, in terms of the visual grounding

probability learnt by our model, there is a large variance. Our model learns to attend

to images more when generating “crossing”, followed by “cross” and attend least on

image when generating “crossed”.

Learning “where” to attend We now assess whether our model attends to the

correct spatial image regions. We perform weakly-supervised localization [153, 154]
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using the generated attention maps. To the best of our best knowledge, no previous

works have used weakly supervised localization to evaluate spatial attention for image

captioning. Given the word wt and attention map αt, we first segment the regions

of of the image with attention values larger than th (after map is normalized to have

the largest value be 1), where th is a per-class threshold estimated using the COCO

validation split. Then we take the bounding box that covers the largest connected

component in the segmentation map. We use intersection over union (IOU) of the

generated and ground truth bounding box as the localization accuracy.

For each of the COCO object categories, we do a word-by-word match to align

the generated words with the ground truth bounding box2. For the object categories

which has multiple words, such as “teddy bear”, we take the maximum IOU score

over the multiple words as its localization accuracy. We are able to align 5981 and

5924 regions for captions generated by the spatial and adaptive attention models

respectively. The average localization accuracy for our spatial attention model is

0.362, and 0.373 for our adaptive attention model. This demonstrates that as a

byproduct, knowing when to attend also helps where to attend.

Fig. 5.7 shows the localization accuracy over the generated captions for top 45

most frequent COCO object categories. We can see that our spatial attention and

adaptive attention models share similar trends. We observe that both models perform

well on categories such as “cat”, “bed”, “bus” and “truck”. On smaller objects, such

as “sink”, “surfboard”, “clock” and “frisbee”, both models perform relatively poorly.

This is because our spatial attention maps are directly rescaled from a coarse 7 × 7

feature map, which looses a lot of spatial resolution and detail. Using a larger feature

map may improve the performance.
2Since one object category can have multiple words corresponding to it, we manually create a

mapping in order to cover more samples. The list can be found in supplementary material.
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5.1.4 Discussion

We present a novel adaptive attention encoder-decoder framework, which provides a

fallback option to the decoder. To realize the adaptive attention mechanism, we in-

troduce a new LSTM extension, which produces an additional “visual sentinel” vector

instead of the single hidden state. Our model achieves state-of-the-art performance

across standard benchmarks on image captioning. We also perform extensive atten-

tion evaluation to analysis our adaptive attention. Through visualization, we can see

our model adaptive attends to interpretable regions when generating the captions.

Though our model is evaluated on image captioning, it can be potentially applied to

a more general attention encoder-decoder framework.

5.2 Neural Baby Talk

Next, I will discuss an approach that can produce natural language explicitly grounded

in entities that object detectors find in the image. Our approach is motivated by

some of the first attempts at image captioning [25, 24] – before the deep learning

“revolution” – relied heavily on outputs of object detectors and attribute classifiers

to describe images. For instance, consider the output of Baby Talk [24] in Fig. 1.3

from introduction, that used a slot filling approach to talk about all the objects and

attributes found in the scene via a templated caption. The language is unnatural but

the caption is very much grounded in what the model sees in the image. Today’s

approaches fall at the other extreme on the spectrum – the language generated by

modern neural image captioning approaches is much more natural but tends to be

much less grounded in the image.

In this section, we introduce Neural Baby Talk that reconciles these methodolo-

gies. It produces natural language explicitly grounded in entities found by object

detectors. It is a neural approach that generates a sentence “template” with slot
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A teddy bear sitting on a table
with a plate of food.

A person is sitting at a table
with a sandwich.

A close up of a stuffed animal
on a plate.

A Mr. Ted sitting at a table with
a pie and a cup of coffee.

Figure 5.8: From left to right is the generated caption using the same captioning model
but with different detectors: 1) No detector; 2) A weak detector that only detects
“person” and “sandwich”; 3) A detector trained on COCO [5] categories (including
“teddy bear”). 4) A detector that can detect novel concepts (e.g. “Mr. Ted” and
“pie” that never occurred in the captioning training data). Different colors show a
correspondence between the visual word and grounding regions.

locations explicitly tied to image regions. These slots are then filled by object recog-

nizers with concepts found in the regions. The entire approach is trained end-to-end.

This results in natural sounding and grounded captions.

Our main technical contribution is a novel neural decoder for grounded image

captioning. Specifically, at each time step, the model decides whether to generate

a word from the textual vocabulary or generate a “visual” word. The visual word

is essentially a token that will hold the slot for a word that is to describe a specific

region in the image. For instance, for the image in Fig. 1.3, the generated sequence

may be “A <region−17> is sitting at a <region−123> with a <region−3>.” The

visual words (<region−[.]>’s) are then filled in during a second stage that classifies

each of the indicated regions (e.g., <region−17>→puppy, <region−123>→table),

resulting in a final description of “A puppy is sitting at a table with a cake.” – a free-

form natural language description that is grounded in the image. One nice feature

of our model is that it allows for different object detectors to be plugged in easily.

As a result, a variety of captions can be produced for the same image using different

detection backends. See Fig. 5.8 for an illustration.
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5.2.1 Approach

Given an image I, the goal of our method is to generate visually grounded descriptions

y = {y1, . . . , yT}. Let rI = {r1, ..., rN} be the set of N images regions extracted from

I. When generating an entity word in the caption, we want to ground it in a specific

image region r ∈ rI . Following the standard supervised learning paradigm, we learn

parameters θ of our model by maximizing the likelihood of the correct caption:

θ∗ = arg max
θ

∑
(I,y)

log p(y|I;θ) (5.13)

Using chain rule, the joint probability distribution can be decomposed over a

sequence of tokens:

p(y|I) =
T∏

t=1
p(yt|y1:t−1, I) (5.14)

where we drop the dependency on model parameters to avoid notational clutter.

We introduce a latent variable rt to denote a specific image region so that yt can

explicitly ground in it. Thus the probability of yt is decomposed to:

p(yt|y1:t−1, I) = p(yt|rt,y1:t−1, I)p(rt|y1:t−1, I) (5.15)

In our framework, yt can be of one of two types: a visual word or a textual word,

denoted as yvis and ytxt respectively. A visual word yvis is a type of word that is

grounded in a specific image region drawn from rI . A textual word ytxt is a word

from the remainder of the caption. It is drawn from the language model , which is

associated with a “default” sentinel “region” r̃ obtained from the language model [155]

(discussed in Sec. 5.2.1). For example, as illustrated in Fig. 1.3, “puppy” and “cake”

grounded in the bounding box of category “dog” and “cake” respectively, are visual

words. While “with” and “sitting” are not associated with any image regions and
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thus are textual words.

With this, Eq. 5.13 can be decomposed into two cascaded objectives. First, maxi-

mizing the probability of generating the sentence “template”. A sequence of grounding

regions associated with the visual words interspersed with the textual words can be

viewed as a sentence “template”, where the grounding regions are slots to be filled in

with visual words.3 An example template (Fig. 5.9) is “A <region−2> is laying on

the <region−4> near a <region−7>. Second, maximizing the probability of visual

words yvis
t conditioned on the grounding regions and object detection information,

e.g., categories recognized by detector. In the template example above, the model

will fill the slots with ‘cat’, ‘laptop’ and ‘chair’ respectively.

In the following, we first describe how we generate the slotted caption template

(Sec. 5.2.1), and then how the slots are filled in to obtain the final image descrip-

tion (Sec. 5.2.1). The overall objective function is described in Sec. 5.2.1 and the

implementation details in Sec. 5.2.2.

“Slotted” Caption Template Generation

Given an image I, and the corresponding caption y, the candidate grounding regions

are obtained by using a pre-trained Faster-RCNN network [156]. To generate the

caption “template”, we use a recurrent neural network, which is commonly used as

the decoder for image captioning [52, 51]. At each time step, we compute the RNN

hidden state ht according to the previous hidden state ht−1 and the input xt such that

ht = RNN(xt,ht−1). At training time, xt is the ground truth token (teacher forcing)

and at test time is the sampled token yt−1. Our decoder consists of an attention based

LSTM layer [157] that takes convolution feature maps as input. Details can be found

in Sec. 5.2.2. To generate the “slot” for visual words, we use a pointer network [158]
3Our approach is not limited to any pre-specified bank of templates. Rather, our approach

automatically generates a template (with placeholders – slots – for visually grounded words), which
may be any one of the exponentially many possible templates.
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Figure 5.9: One block of the proposed approach. Given an image, proposals from
any object detector and current word “A”, the figure shows the process to predict the
next visual word “cat”.

that modulates a content-based attention mechanism over the grounding regions. Let

vt ∈ Rd×1 be the region feature of rt, which is calculated based on Faster R-CNN.

We compute the pointing vector with:

ut
i = wT

h tanh(Wvvt +Wzht) (5.16)

P t
rI

= softmax(ut) (5.17)

where Wv ∈ Rm×d, Wz ∈ Rd×d and wh ∈ Rd×1 are parameters to be learned. The

softmax normalizes the vector ut to be a distribution over grounding regions rI .

Since textual words ytxt
t are not tied to specific regions in the image, inspired

by [155], we add a “visual sentinel” r̃ as a latent variable to serve as dummy grounding

for the textual word. The visual sentinel can be thought of as a latent representation

of what the decoder already knows about the image. The probability of a textual

word ytxt
t then is:

p(ytxt
t |y1:t−1) = p(ytxt

t |r̃,y1:t−1)p(r̃|y1:t−1) (5.18)
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where we drop the dependency on I to avoid clutter.

We first describe how the visual sentinel is computed, and then how the textual

words are determined based on the visual sentinel. Following [155], when the decoder

RNN is an LSTM [20], the representation for visual sentinel st can be obtained by:

gt = σ (Wxxt +Whht−1) (5.19)

st = gt � tanh (ct) (5.20)

where Wx ∈ Rd×d, Wh ∈ Rd×d. xt is the LSTM input at time step t, and gt is the

gate applied on the cell state ct. � represents element-wise product, σ the logistic

sigmoid activation. Modifying Eq. 5.17, the probability over the grounding regions

including the visual sentinel is:

P t
r = softmax([ut;wT

h tanh(Wsst +Wzht)]) (5.21)

where Ws ∈ Rd×d and Wz ∈ Rd×d are the parameters. Notably, Wz and wh are the

same parameters as in Eq. 5.16. P t
r is the probability distribution over grounding

regions rI and visual sentinel r̃. The last element of the vector in Eq. 5.21 captures

p(r̃|y1:t−1).

We feed the hidden state ht into a softmax layer to obtain the probability over

textual words conditioned on the image, all previous words, and the visual sentinel:

P t
txt = softmax (Wqht) (5.22)

where Wq ∈ RV×d, d is hidden state size, and V is textual vocabulary size. Plugging

in Eq. 5.22 and p(r̃|y1:t−1) from the last element of the vector in Eq. 5.21 into Eq. 5.18

gives us the probability of generating a textual word in the template.
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Caption Refinement: Filling in The Slots

To fill the slots in the generated template with visual words grounded in image regions,

we leverage the outputs of an object detection network. Given a grounding region,

the category can be obtained through any detection framework [156]. But outputs of

detection networks are typically singular coarse labels e.g. “dog”. Captions often refer

to these entities in a fine-grained fashion e.g. “puppy” or in the plural form “dogs”. In

order to accommodate for these linguistic variations, the visual word yvis in our model

is a refinement of the category name by considering the following two factors: First,

determine the plurality – whether it should be singular or plural. Second, determine

the fine-grained class (if any). Using two single layer MLPs with ReLU activation

f(·), we compute them with:

P t
b = softmax (Wbfb ([vt;ht])) (5.23)

P t
g = softmax

(
UTWgfg ([vt;ht])

)
(5.24)

Wb ∈ R2×d, Wg ∈ R300×d are the weight parameters. U ∈ R300×k is the glove vector

embeddings [159] for k fine-grained words associated with the category name. The

visual word yvis
t is then determined by plurality and fine-grained class (e.g., if plurality

is plural, and the fine-grained class is “puppy”, the visual word will be “puppies”).

Objective

Most standard image captioning datasets (e.g. COCO [5]) do not contain phrase

grounding annotations, while some datasets do (e.g. Flickr30k [160]). Our training

objective (presented next) can incorporate different kinds of supervision – be it strong

annotations indicating which words in the caption are grounded in which boxes in

the image, or weak supervision where objects are annotated in the image but are not
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aligned to words in the caption. Given the target ground truth caption y∗1:T and a

image captioning model with parameters θ, we minimize the cross entropy loss:

L(θ) = −
T∑

t=1
log

( Textual word probability︷ ︸︸ ︷
p(y∗t |r̃,y∗1:t−1)p(r̃|y∗1:t−1)1(y∗

t=ytxt) +

p
(
b∗t , s

∗
t |rt,y

∗
1:t−1

)
︸ ︷︷ ︸

Caption refinement

( 1
m

m∑
i=1

p
(
ri

t|y∗1:t−1

) )
1(y∗

t=yvis)︸ ︷︷ ︸
Averaged target region probability

) (5.25)

where y∗t is the word from the ground truth caption at time t. 1(y∗
t=ytxt) is the

indicator function which equals to 1 if y∗t is textual word and 0 otherwise. b∗t and

s∗t are the target ground truth plurality and find-grained class. {ri
t}m

i=1 ∈ rI are the

target grounding regions of the visual word at time t. We maximize the averaged log

probability of the target grounding regions.

Visual word extraction. During training, visual words in a caption are dy-

namically identified by matching the base form of each word (using the Stanford

lemmatization toolbox [161]) against a vocabulary of visual words (details of how to

get visual word can be found in dataset Sec. 5.2.3). The grounding regions {ri
t}m

i=1 for

a visual word yt is identified by computing the IoU of all boxes detected by the object

detection network with the ground truth bounding box associated with the category

corresponding to yt. If the score exceeds a threshold of 0.5 and the grounding region

label matches the visual word, the bounding boxes are selected as the grounding re-

gions. E.g., given a target visual word “cat”, if there are no proposals that match the

target bounding box, the model predicts the textual word “cat” instead.

5.2.2 Implementation Details

Detection model. We use Faster R-CNN [156] with ResNet-101 [144] to obtain

region proposals for the image. We use an IoU threshold of 0.7 for region proposal

suppression and 0.3 for class suppressions. A class detection confidence threshold of
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0.5 is used to select regions.

Region feature. We use a pre-trained ResNet-101 [144] in our model. The

image is first resized to 576 × 576 and we random crop 512 × 512 as the input to

the CNN network. Given proposals from the pre-trained detection model, the feature

vi for region i is a concatenation of 3 different features vi = [vp
i ;vl

i;v
g
i ] where vp

i is

the pooling feature of RoI align layer [162] given the proposal coordinates, vl
i is the

location feature and vg
i is the glove vector embedding of the class label for region i.

Let xmin, ymin, xmax, ymax be the bounding box coordinates of the region b; WI and

HI be the width and height of the image I. Then the location feature vl
i can be

obtained by projecting the normalized location [xmin

WI

,
ymin

HI

,
xmax

WI

,
ymax

HI

] into another

embedding space.

Language model. We use an attention model with two LSTM layers [163] as

our base attention model. Given N region features from detection proposals V =

{v1, . . . ,vN} and CNN features from the last convolution layer at K grids V̂ =

{v̂1, . . . , v̂K}, the language model has two separate attention layers shown in Fig 5.10.

The attention distribution over the image features for detection proposals is:

zt = wT
z tanh

(
WvV + (Wght)1T

)
αt = softmax(zt)

(5.26)

where Wv ∈ Rm×d, Wg ∈ Rd×d and w ∈ Rd×1. 1 ∈ RN is a vector with all elements

set to 1. αt is the attention weight over N image location features.

Training details. In our experiments, we use a two layer LSTM with hidden

size 1024. The number of hidden units in the attention layer and the size of the input

word embedding are 512. We use the Adam [164] optimizer with an initial learning

rate of 5×10−4 and anneal the learning rate by a factor of 0.8 every three epochs. We

train the model up to 50 epochs with early stopping. Note that we do not finetune

the CNN network during training. We set the batch size to be 100 for COCO [5] and
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Figure 5.10: Language model used in our approach.

50 for Flickr30k [160].

5.2.3 Experimental Results

Datasets. We experiment with two datasets. Flickr30k Entities [160] contains

275,755 bounding boxes from 31,783 images associated with natural language phrases.

Each image is annotated with 5 crowdsourced captions. For each annotated phrase

in the caption, we identify visual words by selecting the inner most NP (noun phrase)

tag from the Stanford part-of-speech tagger [165]. We use Stanford Lemmatization

Toolbox [161] to get the base form of the entity words resulting in 2,567 unique words.

COCO [5] contains 82,783, 40,504 and 40,775 images for training, validation

and testing respectively. Each image has around 5 crowdsourced captions. Unlike

Flickr30k Entities, COCO does not have bounding box annotations associated with

specific phrases or entities in the caption. To identify visual words, we manually

constructed an object category to word mapping that maps object categories like

<person> to a list of potential fine-grained labels like [“child”, “baker”, ...]. This

results in 80 categories with a total of 413 fine-grained classes. See supp. for details.

Detector pre-training. We use open an source implementation [166] of Faster-

RCNN [156] to train the detector. For Flickr30K Entities, we use visual words that

occur at least 100 times as detection labels, resulting in a total of 460 detection
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A cat is standing on a sign
that says “UNK”.

A young boy with blond-hair and
a blue shirt is eating a chocolate

A band is performing on a 
stage.

A dog is laying in the grass
with a Frisbee.

A bride and groom cutting a
cake together.

A little girl holding a cat in 
her hand.

Two people are sitting on a 
boat in the water.

A woman sitting on a boat
in the water.

Figure 5.11: Generated captions and corresponding visual grounding regions on the
standard image captioning task (Top: COCO, Bottom: Flickr30k). Different colors
show a correspondence between the visual words and grounding regions. Grey regions
are the proposals not selected in the caption. First 3 columns show success and last
column shows failure cases (words are grounded in the wrong region).

labels. Since detection labels and visual words have a one-to-one mapping, we do not

have fine-grained classes for the Flickr30K Entities dataset – the caption refinement

process only determines the plurality of detection labels. For COCO, ground truth

detection annotations are used to train the object detector.

Caption pre-processing. We truncate captions longer than 16 words for both

COCO and Flickr30k Entities dataset. We then build a vocabulary of words that

occur at least 5 times in the training set, resulting in 9,587 and 6,864 words for

COCO and Flickr30k Entities, respectively.

Standard Image Captioning

For standard image captioning, we use splits from Karpathy et al. [19] on COCO/Flickr30k.

We report results using the COCO captioning evaluation toolkit [5], which reports

the widely used automatic evaluation metrics, BLEU [31], METEOR [150], CIDEr

[33] and SPICE [151].

We present our methods trained on different object detectors: Flickr and COCO.
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Table 5.3: Performance on the test portion of Karpathy et al. [19]’s splits on Flickr30k
Entities dataset.

Method BLEU1 BLEU4 METEOR CIDEr SPICE
Hard-Attention [18] 66.9 19.9 18.5 - -
ATT-FCN [21] 64.7 23.0 18.9 - -
Adaptive [155] 67.7 25.1 20.4 53.1 14.5
NBT 69.0 27.1 21.7 57.5 15.6
NBToracle 72.0 28.5 23.1 64.8 19.6

Table 5.4: Performance on the test portion of Karpathy et al. [19]’s splits on COCO
dataset. ∗ directly optimizes the CIDEr Metric, † uses better image features, and are
thus not directly comparable.

Method BLEU1 BLEU4 METEOR CIDEr SPICE
Adaptive [155] 74.2 32.5 26.6 108.5 19.5
Att2in [157] - 31.3 26.0 101.3 -
Up-Down [163] 74.5 33.4 26.1 105.4 19.2
Att2in∗ [157] - 33.3 26.3 111.4 -
Up-Down† [163] 79.8 36.3 27.7 120.1 21.4
NBT 75.5 34.7 27.1 107.2 20.1
NBToracle 75.9 34.9 27.4 108.9 20.4

We compare our approach (referred to as NBT) to recently proposed Hard-Attention

[18], ATT-FCN [21] and Adaptive [155] on Flickr30k, and Att2in [157], Up-Down [163]

on COCO. Since object detectors have not yet achieved near-perfect accuracies on

these datasets, we also report the performance of our model under an oracle setting,

where the ground truth object region and category is also provided during test time.

(referred to as NBToracle) This can be viewed as the upper bound of our method when

we have perfect object detectors.

Table 5.3 shows results on the Flickr30k dataset. We see that our method achieves

state of the art on all automatic evaluation metrics, outperforming the previous state-

of-art model Adaptive [155] by 2.0 and 4.4 on BLEU4 and CIDEr. When using ground

truth proposals, NBToracle significantly outperforms previous methods, improving 5.1

on SPICE, which implies that our method could further benefit from improved object
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detectors.

Table 5.4 shows results on the COCO dataset. Our method outperforms 4 out

of 5 automatic evaluation metrics compared to the state of the art [157, 155, 163]

without using better visual features or directly optimizing the CIDEr metric. In-

terestingly, the NBToracle has little improvement over NBT. We suspect the reason

is that explicit ground truth annotation is absent for visual words. Our model can

be further improved with explicit co-reference supervision where the ground truth

location annotation of the visual word is provided. Fig. 5.11 shows qualitative results

on both datasets. We see that our model learns to correctly identify the visual word,

and ground it in image regions even under weak supervision (COCO). Our model is

also robust to erroneous detections and produces correct captions (3rd column).

Robust Image Captioning

To quantitatively evaluate image captioning models for novel scene compositions, we

present a new split of the COCO dataset, called the robust-COCO split. This new

split is created by re-organizing the train and val splits of the COCO dataset such

that the distribution of co-occurring objects in train is different from test. We also

present a new metric to evaluate grounding.

Robust split. To create the new split, we first identify entity words that belong

to the 80 COCO object categories by following the same pre-processing procedure.

For each image, we get a list of object categories that are mentioned in the caption.

We then calculate the co-occurrence statistics for these 80 object categories. Starting

from the least co-occurring category pairs, we greedily add them to the test set and

ensure that for each category, at least half the instances of each category are in the

train set. As a result, there are sufficient examples from each category in train,

but at test time we see novel compositions (pairs) of categories. Remaining images

are assigned to the training set. The final split has 110,234/3,915/9,138 images in
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A cat laying on the floor next 
to a remote control.

A man sitting on a bench next 
to a bird.

A dog is standing on a skateboard
in the grass.

A bird sitting on a branch in a 
tree.

Figure 5.12: Generated captions and corresponding visual grounding regions for
the robust image captioning task. “cat-remote”, “man-bird”, “dog-skateboard” and
“orange-bird” are co-occurring categories excluded in the training split. First 3
columns show success and last column shows failure case (orange was not mentioned).

Table 5.5: Performance on the test portion of the robust image captioning split on
COCO dataset.

Method BLEU4 METEOR CIDEr SPICE Accuracy
Att2in [157] 31.5 24.6 90.6 17.7 39.0
Up-Down [163] 31.6 25.0 92.0 18.1 39.7
NBT 31.7 25.2 94.1 18.3 42.4
NBToracle 31.9 25.5 95.5 18.7 45.7

train/val/test respectively.

Evaluation metric. To evaluate visual grounding on the robust-COCO split,

we want a metric that indicates whether or not a generated caption includes the

new object combination. Common automatic evaluation metrics such as BLEU [31]

and CIDEr [33] measure the overall sentence fluency. We also measure whether the

generated caption contains the novel co-occurring categories that exist in the ground

truth caption. A generated caption is deemed 100% accurate if it contains at least one

mention of the compositionally novel category-pairs in any ground truth annotation

that describe the image.

Results and analysis. We compare our method with state of the art Att2in [157]

and Up-Down [163]. These are implemented using the open source implementation

from [167] that can replicate results on Karpathy’s split. We follow the experimental

setting from [157] and train the model using the robust-COCO train set. Table 5.5

shows the results on the robust-COCO split. As we can see, all models perform worse
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A zebra that is standing in the
dirt.

A little girl wearing a helmet 
and holding a tennis racket.

A woman standing in front of
a red bus.

A plate of food with a bottle
and a cup of beer.

Figure 5.13: Generated captions and corresponding visual grounding regions for the
novel object captioning task. “zebra”, “tennis racket”, “bus” and “pizza” are cate-
gories excluded in the training split. First 3 columns show success and last column
shows a failure case.

on the robust-COCO split than the Karpathy’s split by 2∼3 points in general. Our

method outperforms the previous state of the art methods on all metrics, outperform-

ing Up-Down [163] by 2.7 on the proposed metric. The oracle setting (NBToracle) has

consistent improvements on all metrics, improving 3.3 on the proposed metric.

Fig. 5.12 shows qualitative results on the robust image captioning task. Our

model successfully produces a caption with novel compositions, such as “cat-remote”,

“man-bird” and “dog-skateboard” to describe the image. The last column shows

failure cases where our model didn’t select “orange” in the caption. We can force our

model to produce a caption containing “orange” and “bird” using constrained beam

search [168], further illustrated in Sec. 5.2.3.

Novel Object Captioning

Since our model directly fills the “slotted” caption template with the concept, it can

seamlessly generate descriptions for out-of-domain images. We replicated an existing

experimental design [169] on COCO which excludes all the image-sentence pairs that

contain at least one of eight objects in COCO. The excluded objects are ‘bottle’,

“bus”, “couch”, “microwave”, “pizza”, “racket”, “suitcase” and “zebra”. We follow

the same splits for training, validation, and testing as in prior work [169]. We use

Faster R-CNN in conjunction with ResNet-101 which is pre-trained on COCO train

split as the detection model. Note that we do not pre-train the language model using
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Table 5.6: Evaluation of captions generated using the proposed method. G means
greedy decoding, and T1−2 means using constrained beam search [168] with 1−2
top detected concepts. ∗ is the result using VGG-16 [172] and † is the result using
ResNet-101.

Out-of-Domain Test Data In-Domain Test Data

Method F1 SPICE METEOR CIDEr SPICE METEOR CIDER

DCC [169] 39.8 13.4 21.0 59.1 15.9 23.0 77.2
NOC [170] 49.1 - 21.4 - - - -
C-LSTM [171] 55.7 - 23.0 - - - -
Base+T4 [168] 54.0 15.9 23.3 77.9 18.0 24.5 86.3

NBT∗+G 48.5 15.7 22.8 77.0 17.5 24.3 87.4
NBT†+G 53.2 16.6 23.9 84.0 18.4 25.3 94.0
NBT†+T1 57.3 16.7 23.9 85.7 18.4 25.5 95.2
NBT†+T2 70.3 17.4 24.1 86.0 18.0 25.0 92.1

COCO captions as in [169, 170, 171], and simply replace the novel object’s word

embedding with an existing one which belongs to the same super-category in COCO

(e.g., bus ← car).

Following [168], the test set is split into in-domain and out-of-domain subsets.

We report F1 as in [169], which checks if the specific excluded object is mentioned

in the generated caption. To evaluate the quality of the generated caption, we use

SPICE, METEOR and CIDEr metrics and the scores on out-of-domain test data are

macro-averaged across eight excluded categories. For consistency with previous work

[163], the inverse document frequency statistics used by CIDEr are determined across

the entire test set.

As illustrated in Table 5.6, simply using greedy decoding, our model (NBT∗+G)

can successfully caption novel concepts with minimum changes to the model. When

using ResNet-101 and constrained beam search [168], our model significantly out-

performs prior works under F1 scores, SPICE, METEOR, and CIDEr, across both

out-of-domain and in-domain test data. Specifically, NBT†+T2 outperforms the pre-

vious state-of-art model C-LSTM by 14.6% on average F1 scores. From the category

F1 scores, we can see that our model is less likely to select small objects, e.g. “bottle”,
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“racket” when only using the greedy decoding. Since the visual words are grounded at

the object-level, by using [168], our model was able to significantly boost the caption-

ing performance on out-of-domain images. Fig. 5.13 shows qualitative novel object

captioning results.

5.2.4 Discussion

In this section, we introduce Neural Baby Talk, a novel image captioning framework

that produces natural language explicitly grounded in entities object detectors find in

images. Our approach is a two-stage approach that first generates a hybrid template

that contains a mix of words from a text vocabulary as well as slots corresponding

to image regions. It then fills the slots based on categories recognized by object

detectors in the image regions. We also introduce a robust image captioning split by

re-organizing the train and val splits of the COCO dataset. Experimental results on

standard, robust, and novel object image captioning tasks validate the effectiveness

of our proposed approach.
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CHAPTER 6

VISUAL DIALOG

In this chapter, our goal will be to study the novel training paradigms for generating

perceptual grounded questions and responses in the context of the visual dialog. Apart

from the model architectures which are explored in the previous section, training

paradigms are also important to learn better grounding and improve multi-modal AI

capabilities. Specifically, we first study the standard training paradigm for neural

dialog models – maximum likelihood estimation (MLE) of a ‘ground-truth’ human

response. Across a variety of domains, we find out a recurring problem with MLE

trained neural dialog models is that they tend to produce ‘safe’ generic responses.

Inspired by the success of adversarial training, we introduce a discriminant perceptual

loss to transfer knowledge from the discriminative model to the generative model and

achieves state of the art performance on visual dialog tasks.

In the second section, we study the training paradigms of goal-oriented dialog

generation in the context of an image guessing game. A popular approach to these

tasks has been to observe humans engaging in dialogs and let the agent mimic hu-

man dialogs to generate human interpretable language (i.e., meaningful English, not

gibberish). However, this requires to collect new human dialogs for each new task,

which is laborious and costly. A pragmatic alternative is to use goal completion as

supervision signals (Discriminant perceptual loss can be viewed as a special case)

to adapt agents to new tasks. To solve this task, we propose a novel model that

decomposes generating question intent from the words used to express that intent.

It does this by introducing a discrete latent representation that is the only input to

the language decoder. We also develop an incremental learning curriculum that first

learns “how to speak” by pretraining with a conditional variational auto-encoders
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(CVAE), and then learns “what to speak” by finetuning with task-specific rewards

with discrete latent space. To verify the effectiveness of our approach, we pair our

agent with human and find our agent learns a strategy for this task that is amenable

to human-AI collaboration. This is in contrast to prior work [110] that showed that

improvements captured by task-trained models for similar image-retrieval tasks did

not transfer when paired with human partners.

6.1 Best of Both Worlds: Transferring Knowledge from Discriminative

Learning to a Generative Visual Dialog Model

The standard training paradigm for neural dialog models is maximum likelihood

estimation (MLE) or equivalently, minimizing the cross-entropy (under the model) of

a ‘ground-truth’ human response. Across a variety of domains, a recurring problem

with MLE trained neural dialog models is that they tend to produce ‘safe’, generic

responses, such as ‘Not sure’ or ‘I don’t know’ in text-only dialog [28], and ‘I can’t

see’ or ‘I can’t tell’ in visual dialog [4, 26].

One reason for this emergent behavior is that the space of possible next utterances

in a dialog is highly multi-modal (there are many possible paths a dialog may take

in the future). In the face of such highly multi-modal output distributions, models

‘game’ MLE by latching on to the head of the distribution or the frequent responses,

which by nature tend to be generic and widely applicable. Such safe generic responses

break the flow of a dialog and tend to disengage the human conversing with the agent,

ultimately rendering the agent useless. It is clear that novel training paradigms are

needed; that is the focus of this paper.

One promising alternative to MLE training proposed by recent work [29, 30] is

sequence-level training of neural sequence models, specifically, using reinforcement

learning to optimize task-specific sequence metrics such as BLEU [31], ROUGE [32],

CIDEr [33]. Unfortunately, in the case of dialog, all existing automatic metrics cor-
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relate poorly with human judgment [34], which renders this alternative infeasible for

dialog models.

In this section, inspired by the success of adversarial training [35], we propose to

train a generative visual dialog model (G) to produce sequences that score highly un-

der a discriminative visual dialog model (D). A discriminative dialog model receives

as input a candidate list of possible responses and learns to sort this list from the

training dataset. The generative dialog model (G) aims to produce a sequence that

D will rank the highest in the list.
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Figure 6.1: (a): Model architecture (b): Given the image, history, and question, D’s
score for different candidate answers. Note that the multiple plausible responses all
score high. The candidate in the blue box is the true response and in green is the
response generated by G.

Note that while our proposed approach is inspired by adversarial training, there

are a number of subtle but crucial differences over generative adversarial networks

(GANs). Unlike traditional GANs, one novelty in our setup is that our discriminator

has access to more information than G – specifically, D receives a list of candidate

responses and explicitly learns to reason about similarities and differences across

candidates. In this process, D learns a task-dependent perceptual similarity [173,

174, 175] and learns to recognize multiple correct responses in the feature space. For

example, as shown in Fig. 6.1 (b), given the image, dialog history, and question ‘Do
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you see any bird?’, besides the ground-truth answer ‘No, I do not’, D can also assign

high scores to other options that are valid responses to the question, including the

one generated by G: ‘Not that I can see’. In that sense, our proposed approach may

be viewed as an instance of ‘knowledge transfer’ [176, 177] from D to G. We employ

a metric-learning loss function and a self-attention answer encoding mechanism for

D that makes it particularly conducive to this knowledge transfer by encouraging

perceptually meaningful similarities to emerge. This is especially fruitful since prior

work has demonstrated that discriminative dialog models significantly outperform

their generative counterparts, but are not as useful since they necessarily need a list

of candidate responses to rank, which is only available in a dialog dataset, not in real

conversations with a user. In that context, our work aims to achieve the best of both

worlds – the practical usefulness of G and the strong performance of D – via this

knowledge transfer.

Our primary technical contribution is an end-to-end trainable generative visual

dialog model, where the generator receives gradients from the discriminator loss of

the sequence sampled from G. Note that this is challenging because the output

of G is a sequence of discrete symbols, which näıvely is not amenable to gradient-

based training. We propose to leverage the recently proposed Gumbel-Softmax (GS)

approximation to the discrete distribution [178, 179] – specifically, a Recurrent Neural

Network (RNN) augmented with a sequence of GS samplers, which when coupled with

the straight-through gradient estimator [180, 178] enables end-to-end differentiability.

6.1.1 Approach: Backprop Through Discriminative Losses for Generative Training

In this section, we describe our approach to transfer knowledge from a discriminative

visual dialog model (D) to generative visual dialog model (G). Fig. 6.1 (a) shows the

overview of our approach. Given the input image I, dialog history H , and question

qt, the encoder converts the inputs into a joint representation et. The generator G
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takes et as input, and produces a distribution over answer sequences via a recurrent

neural network (specifically an LSTM). At each word in the answer sequence, we use

a Gumbel-Softmax sampler S to sample the answer token from that distribution. The

discriminator D in it’s standard form takes et, ground-truth answer agt
t and N − 1

“negative” answers {a−t,i}N−1
i=1 as input, and learns an embedding space such that

similarity(et, f(agt
t )) > similarity(et, f(a−t,·)), where f(·) is the embedding function.

When we enable the communication between D and G, we feed the sampled answer

ât into discriminator, and optimize the generator G to produce samples that get

higher scores in D’s metric space. We now describe each component of our approach

in detail.

History-Conditioned Image Attentive Encoder (HCIAE)

An important characteristic in dialogs is the use of co-reference to avoid repeating

entities that can be contextually resolved. In fact, in the VisDial dataset [4] nearly all

(98%) dialogs involve at least one pronoun. This means that for a model to correctly

answer a question, it would require a reliable mechanism for co-reference resolution.

A common approach is to use an encoder architecture with an attention mecha-

nism that implicitly performs co-reference resolution by identifying the portion of the

dialog history that can help in answering the current question [4, 181, 182]. How-

ever, previous encoders used for this task use a holistic representation for the image

without an attention mechanism. Intuitively, the answer to the question is likely to

be localized to regions in the image that are consistent with attended history.

With this motivation, we propose a novel encoder architecture (called HCIAE)

shown in Fig. 6.2. Our encoder first uses the current question to attend to the

exchanges in the history, and then use the question and attended history to attend

to the image, so as to obtain the final encoding.

Specifically, we use the spatial image features V ∈ Rd×k from a convolution layer
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Figure 6.2: Structure of the proposed encoder.

of a CNN. qt is encoded with an LSTM to get a vectormq
t ∈ Rd. Simultaneously, each

previous round of history (H0, . . . , Ht−1) is encoded separately with another LSTM

as Mh
t ∈ Rd×t. Conditioned on the question embedding, the model attends to the

history. The attended representation of the history and the question embedding are

concatenated, and used as input to attend to the image:

zh
t = wT

a tanh(WhM
h
t + (Wqm

q
t )1T ) (6.1)

αh
t = softmax(zh

t ) (6.2)

where 1 ∈ Rt is a vector with all elements set to 1. Wh,Wq ∈ Rt×d and wa ∈ Rk are

parameters to be learned. α ∈ Rk is the attention weight over history. The attended

history feature m̂h
t is a convex combination of columns of Mt, weighted appropriately

by the elements of αh
t . We further concatenate mq

t and m̂h
t as the query vector and

get the attended image feature v̂t in the similar manner. Subsequently, all three

components are used to obtain the final embedding et:

et = tanh(We[mq
t , m̂

h
t , v̂t]) (6.3)
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where We ∈ Rd×3d is weight parameters and [·] is the concatenation operation.

Discriminator Loss

Discriminative visual dialog models produce a distribution over the candidate answer

list At and maximize the log-likelihood of the correct option agt
t . The loss function for

D needs to be conducive for knowledge transfer. In particular, it needs to encourage

perceptually meaningful similarities. Therefore, we use a metric-learning multi-class

N-pair loss [183] defined as:

LD = Ln−pair

(
{et,a

gt
t , {a−t,i}N−1

i=1 }, f
)

=

logistic loss︷ ︸︸ ︷
log

1 +
N∑

i=1
exp

(
e>t f(a−t,i)− e>t f(agt

t )︸ ︷︷ ︸
score margin

)
(6.4)

where f is an attention based LSTM encoder for the answer. This attention can

help the discriminator better deal with paraphrases across answers. The attention

weight is learnt through a 1-layer MLP over LSTM output at each time step. The

N-pair loss objective encourages learning a space in which the ground truth answer

is scored higher than other options, and at the same time, encourages options similar

to ground truth answers to score better than dissimilar ones. This means that, unlike

the multiclass logistic loss, the options that are correct but different from the correct

option may not be overly penalized, and thus can be useful in providing a reliable

signal to the generator. See Fig. 6.1 for an example. An added benefit of the n-pair

loss is its computational efficiency: Batches can be constructed such that incorrect

options for each example in the batch can be assigned on-the-fly. This leads to

repeated use of the same options across the batch, and hence lesser computation.
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Discriminant Perceptual Loss and Knowledge Transfer from D to G

At a high-level, our approach for transferring knowledge from D to G is as follows:

G repeatedly queries D with answers ât that it generates for an input embedding

et to get feedback and update itself. In each such update, G’s goal is to update its

parameters to try and have ât score higher than the correct answer, agt
t , under D’s

learned embedding and scoring function. Formally, the perceptual loss that G aims

to optimize is given by:

LG = L1−pair

(
{et, ât,a

gt
t }, f

)
= log

(
1 + exp

(
e>t f(agt

t )− e>t f(ât)
))

(6.5)

where f is the embedding function learned by the discriminator as in (6.4). Intuitively,

updating generator parameters to minimize LG can be interpreted as learning to

produce an answer sequence ât that ‘fools’ the discriminator into believing that this

answer should score higher than the human response agt
t under the discriminator’s

learned embedding f(·) and scoring function.

While it is straightforward to sample an answer ât from the generator and perform

a forward pass through the discriminator, näıvely, it is not possible to backpropagate

the gradients to the generator parameters since sampling discrete symbols results

in zero gradients w.r.t. the generator parameters. To overcome this, we leverage

the recently introduced continuous relaxation of the categorical distribution – the

Gumbel-softmax distribution or the Concrete distribution [178, 179].

At an intuitive level, the Gumbel-Softmax (GS) approximation uses the so called

‘Gumbel-Max trick’ to reparametrize sampling from a categorical distribution and

replaces argmax with softmax to obtain a continuous relaxation of the discrete random

variable. Formally, let x denote a K-ary categorical random variable with parameters

denoted by (p1, . . . pK), or x ∼ Cat(p). Let
(
gi

)K

1
denote K IID samples from the

standard Gumbel distribution, gi ∼ F (g) = e−e−g . Now, a sample from the Concrete
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distribution can be produced via the following transformation:

yi = e(log pi+gi)/τ∑K
j=1 e

(log pj+gj)/τ
∀i ∈ {1, . . . , K} (6.6)

where τ is a temperature parameter that control how close samples y from this

Concrete distribution approximate the one-hot encoding of the categorical variable

x.

As illustrated in Fig. 6.1, we augment the LSTM in G with a sequence of GS

samplers. Specifically, at each position in the answer sequence, we use a GS sampler

to sample an answer token from that conditional distribution. When coupled with

the straight-through gradient estimator [180, 178] this enables end-to-end differentia-

bility. Specifically, during the forward pass we discretize the GS samples into discrete

samples, and in the backward pass use the continuous relaxation to compute gradi-

ents. In our experiment, we set the temperature parameter consistently to 0.5, and

do not perform any temperature annealing.

6.1.2 Experiments

Dataset and Setup. We evaluate our proposed approach on the VisDial dataset

[4], which was collected by Das et al. by pairing two subjects on Amazon Mechanical

Turk to chat about an image. One person was assigned the role of a ‘questioner’

and the other of ‘answerer’. One worker (the questioner) sees only a single line of

text describing an image (caption from COCO [5]); the image remains hidden to the

questioner. Their task is to ask questions about this hidden image to “imagine the

scene better”. The second worker (the answerer) sees the image and caption and

answers the questions. The two workers take turns asking and answering questions

for 10 rounds. We perform experiments on VisDial v0.9 (the latest available release)

containing 83k dialogs on COCO-train and 40k on COCO-val images, for a total of
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1.2M dialog question-answer pairs. We split the 83k into 82k for train, 1k for val,

and use the 40k as test, in a manner consistent with [4]. The caption is considered

to be the first round in the dialog history.

Evaluation Protocol. Following the evaluation protocol established in [4], we

use a retrieval setting to evaluate the responses at each round in the dialog. Specifi-

cally, every question in VisDial is coupled with a list of 100 candidate answer options,

which the models are asked to sort for evaluation purposes. D uses its score to rank

these answer options, and G use the log-likelihood of these options for ranking. Mod-

els are evaluated on standard retrieval metrics – (1) mean rank, (2) recall @k, and

(3) mean reciprocal rank (MRR) – of the human response in the returned sorted list.

Pre-processing. We truncate captions/questions/answers longer than 24/16/8

words respectively. We then build a vocabulary of words that occur at least 5 times

in train, resulting in 8964 words.

Training Details In our experiments, all 3 LSTMs are single layer with 512d

hidden state. We use the Adam optimizer with a base learning rate of 4e-4. We

pre-train G using standard MLE for 20 epochs, and D with supervised training based

on Eq (6.4) for 30 epochs. Following [183], we regularize the L2 norm of the embed-

ding vectors to be small. Subsequently, we train G with LG + αLMLE, which is a

combination of discriminative perceptual loss and MLE loss. We set α to be 0.5. We

found that including LMLE (with teacher-forcing) is important for encouraging G to

generate grammatically correct responses.

Results and Analysis

Baselines. We compare our proposed techniques to the current state-of-art genera-

tive and discriminative models developed in [4]. Specifically, [4] introduced 3 encoding

architectures – Late Fusion (LF), Hierarchical Recurrent Encoder (HRE), Memory

Network (MN) – each trained with a generative (-G) and discriminative (-D) de-
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coder. We compare to all 6 models.

Our approaches. We present a few variants of our approach to systematically

study the individual contributions of our training procedure, novel encoder (HCIAE),

self-attentive answer encoding (ATT), and metric-loss (NP).

• HCIAE-G-MLE is a generative model with our proposed encoder trained

under the MLE objective. Comparing this variant to the generative baselines

from [4] establishes the improvement due to our encoder (HCIAE).

• HCIAE-G-DIS is a generative model with our proposed encoder trained under

the mixed MLE and discriminator loss (knowledge transfer). This forms our

best generative model. Comparing this model to HCIAE-G-MLE establishes

the improvement due to our discriminative training.

• HCIAE-D-MLE is a discriminative model with our proposed encoder, trained

under the standard discriminative cross-entropy loss. The answer candidates

are encoded using an LSTM (no attention). Comparing this variant to the

discriminative baselines from [4] establishes the improvement due to our encoder

(HCIAE) in the discriminative setting.

• HCIAE-D-NP is a discriminative model with our proposed encoder, trained

under the n-pair discriminative loss (as described in Section 6.1.1). The answer

candidates are encoded using an LSTM (no attention). Comparing this variant

to HCIAE-D-MLE establishes the improvement due to the n-pair loss.

• HCIAE-D-NP-ATT is a discriminative model with our proposed encoder,

trained under the n-pair discriminative loss (as described in Section 6.1.1), and

using the self-attentive answer encoding. Comparing this variant to HCIAE-

D-NP establishes the improvement due to the self-attention mechanism while

encoding the answers.
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Results. Tables 6.1 present results for all our models and baselines in generative

and discriminative settings. The key observations are:

1. Main Results for HCIAE-G-DIS: Our final generative model with all ‘bells

and whistles’, HCIAE-G-DIS, uniformly performs the best under all the met-

rics, outperforming the previous state-of-art model MN-G by 2.43% on R@5.

This shows the importance of the knowledge transfer from the discriminator

and the benefit from our encoder architecture.

2. Knowledge transfer vs. encoder for G: To understand the relative impor-

tance of the proposed history conditioned image attentive encoder (HCIAE) and

the knowledge transfer, we compared the performance of HCIAE-G-DIS with

HCIAE-G-MLE, which uses our proposed encoder but without any feedback

from the discriminator. This comparison highlights two points: first, HCIAE-

G-MLE improves R@5 by 0.7% over the current state-of-art method (MN-D)

confirming the benefits of our encoder. Secondly, and importantly, its perfor-

mance is lower than HCIAE-G-DIS by 1.7% on R@5, confirming that the

modifications to encoder alone will not be sufficient to gain improvements in

answer generation; knowledge transfer from D greatly improves G.

3. Metric loss vs. self-attentive answer encoding: In the purely discrimina-

tive setting, our final discriminative model (HCIAE-D-NP-ATT) also beats

the performance of the corresponding state-of-art models [4] by 2.53% on R@5.

The n-pair loss used in the discriminator is not only helpful for knowledge trans-

fer but it also improves the performance of the discriminator by 0.85% on R@5

(compare HCIAE-D-NP to HCIAE-D-MLE). The improvements obtained

by using the answer attention mechanism leads to an additional, albeit small,

gains of 0.4% on R@5 to the discriminator performance (compare HCIAE-D-

NP to HCIAE-D-NP-ATT).
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Table 6.1: Results (generative) on VisDial dataset.

Model MRR R@1 R@5 R@10 Mean
LF-G [4] 0.5199 41.83 61.78 67.59 17.07
HREA-G [4] 0.5242 42.28 62.33 68.17 16.79
MN-G [4] 0.5259 42.29 62.85 68.88 17.06
HCIAE-G-MLE 0.5386 44.06 63.55 69.24 16.01
HCIAE-G-DIS 0.5467 44.35 65.28 71.55 14.23

Table 6.2: Results (discriminative) on VisDial dataset.

Model MRR R@1 R@5 R@10 Mean
LF-D [4] 0.5807 43.82 74.68 84.07 5.78
HREA-D [4] 0.5868 44.82 74.81 84.36 5.66
MN-D [4] 0.5965 45.55 76.22 85.37 5.46
HCIAE-D-MLE 0.6140 47.73 77.50 86.35 5.15
HCIAE-D-NP 0.6182 47.98 78.35 87.16 4.92
HCIAE-D-NP-ATT 0.6222 48.48 78.75 87.59 4.81

Does updating discriminator help?

Recall that our model training happens as follows: we independently train the gener-

ative model HCIAE-G-MLE and the discriminative model HCIAE-D-NP-ATT.

With HCIAE-G-MLE as the initialization, the generative model is updated based

on the feedback from HCIAE-D-NP-ATT and this results in our final HCIAE-

G-DIS.

We performed two further experiments to answer the following questions:

• What happens if we continue training HCIAE-D-NP-ATT in an adversarial

setting? In particular, we continue training by maximizing the score of the

ground truth answer agt
t and minimizing the score of the generated answer ât,

effectively setting up an adversarial training regime LD = −LG. The resulting

discriminator HCIAE-GAN1 has significant drop in performance, as can be

seen in Table. 6.3 (45.78% R@5). This is perhaps expected because HCIAE-

GAN1 updates its parameters based on only two answers, the ground truth and
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the generated sample (which is likely to be similar to ground truth). This wrecks

the structure that HCIAE-D-NP-ATT had previously learned by leveraging

additional incorrect options.

• What happens if we continue structure-preserving training of HCIAE-D-NP-

ATT? In addition to providing HCIAE-D-NP-ATT samples from G as fake

answers, we also include incorrect options as negative answers so that the struc-

ture learned by the discriminator is preserved. HCIAE-D-NP-ATT continues

to train under loss LD. In this case (HCIAE-GAN2 in Table. 6.3), we find

that there is a small improvement in the performance of G. The additional com-

putational overhead to training the discriminator supersedes the performance

improvement. Also note that HCIAE-D-NP-ATT itself gets worse at the

dialog task.

One might wonder, why not train a GAN for visual dialog? Formulating the

task in a GAN setting would involve G and D training in tandem with D providing

feedback as to whether a response that G generates is real or fake. We found this to

be a particularly unstable setting, for two main reasons: First, consider the case when

the ground truth answer and the generated answers are the same. This happens for

answers that are typically short or ‘cryptic’ (e.g. ‘yes’). In this case, D can not train

itself or provide feedback, as the answer is labeled both positive and negative. Second,

in cases where the ground truth answer is descriptive but the generator provides a

short answer, D can quickly become powerful enough to discard generated samples

as fake. In this case, D is not able to provide any information to G to get better

at the task. Our experience suggests that the discriminator, if one were to consider

a ‘GANs for visual dialog’ setting, can not merely be focused on differentiating fake

from real. It needs to be able to score similarity between the ground truth and other

answers. Such a scoring mechanism provides a more reliable feedback to G. In fact,

as we show in the previous two results, a pre-trained D that captures this structure
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Table 6.3: Adversarial training results on VisDial dataset.

Discriminative Generative

Model MRR R@1 R@5 R@10 Mean MRR R@1 R@5 R@10 Mean

HCIAE-D-NP-ATT 0.6222 48.48 78.75 87.59 4.81 - - - - -
HCIAE-G-DIS - - - - - 0.5467 44.35 65.28 71.55 14.23

HCIAE-GAN1 0.2177 8.82 32.97 52.14 18.53 0.5298 43.12 62.74 68.58 16.25
HCIAE-GAN2 0.6050 46.20 77.92 87.20 4.97 0.5459 44.33 65.05 71.40 14.34

is the key ingredient in sharing knowledge with G. The adversarial training of D is

not central.

Qualitative Comparison

In Fig 6.3 we present a couple of qualitative examples that compares the responses

generated by G-MLE and G-DIS. G-MLE predominantly produces ‘safe’ and less

informative answers, such as ‘Yes’ and or ‘I can’t tell’. In contrast, our proposed

model G-DIS does so less frequently, and often generates more diverse yet informative

responses (see 2nd example in particular).

Figure 6.3: Qualitative comparison. “Ours” are samples from G-DIS model with
different gumbel noise z. Images from the COCO dataset

6.1.3 Discussion

Generative models for (visual) dialog are typically trained with an MLE objective.

As a result, they tend to latch on to safe and generic responses. Discriminative (or
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retrieval) models on the other hand have been shown to significantly outperform their

generative counterparts. However, discriminative models can not be deployed as dia-

log agents with a real user where canned candidate responses are not available. In this

work, we propose transferring knowledge from a powerful discriminative visual dialog

model to a generative model. We leverage the Gumbel-Softmax (GS) approximation

to the discrete distribution – specifically, an RNN augmented with a sequence of GS

samplers, which coupled with the straight-through gradient estimator enables end-

to-end differentiability. We also propose a novel visual dialog encoder that reasons

about image-attention informed by the history of the dialog; and employ a metric

learning loss along with a self-attentive answer encoding to enable the discriminator

to learn meaningful structure in dialog responses. The result is a generative visual

dialog model that significantly outperforms state-of-the-art.

6.2 Dialog without Dialog: Learning Image-Discriminative Dialog Poli-

cies from Single-Shot Question Answering Data

A popular approach to these tasks has been to observe humans engaging in dialogs

like the ones we would like to automate and then train agents to mimic these human

dialogs [26, 36]. Mimicking human dialogs allows agents to generate interpretable

language (i.e., meaningful English, not gibberish). However, these models are typ-

ically fragile and generalize poorly to new tasks. As such, each new task requires

collecting new human dialogs, which is a laborious and costly process often requiring

many iterations before high quality dialogs are elicited.

A promising pragmatic alternative is to use goal completion as a supervisory signal

to adapt agents to new tasks. That is, after training dialog agents to mimic human

dialogs for one task, fine-tune them on a new task by simply rewarding the agents

for solving the task regardless of the dialog’s content. This approach can indeed

improve task performance, but language quality suffers even for similar tasks. It
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tends to drifts from human language, becoming ungrammatical and loosing human

interpretable semantics – sometimes even turning into unintelligible code. Though

bots might understand it, humans cannot, so humans will not be able to use it either.

Both effects have been observed in prior dialog work [26, 36].

In this section, we consider an image guessing game as a test-bed for balancing

task performance and language drift. Our Dialog without Dialog (DwD) task requires

agents to generalize from single round visual question generation with full supervi-

sion to a multi-round dialog based image guessing game without direct language

supervision. Specifically, as illustrated in Fig. 1.4 (top), agents are trained to mimic

human-generated, visually-grounded questions that when answered can discern which

of two images is secretly indicated to the answerer. We then develop techniques to

transfer these agents to a multi-round, QA-based image guessing game over pools of

various sizes, difficulties, and even image domains.

To solve this task we propose a an architecture for the questioner agent, Q-bot,

that decomposes generating question intent from the words used to express that

intent. It does this by introducing a discrete latent representation that is the only

input to the language decoder. We pair this with an incremental learning curriculum

that adapts the single round Q-bot to dialog in stages – first learning simply to follow

the dialog and then to influence question intention.

We show that our model can be fine-tuned to increase task performance while

maintaining human interpretable language. To measure interpretability we take a

two pronged approach, getting humans to evaluate the fluency and relevance of ques-

tions generated by our model on one hand and using automatic measures of fluency,

relevance, and diversity to help scale our analysis.
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6.2.1 Dialog-based Image Guessing Game

Our objective is to examine how to transfer grounded language models from one task

to another by training agents only to maximize task success. We consider an image-

guessing communication game as the context for our experiments. In this section, we

introduce this game and a model for this multi-round dialog task. In the following

sections, we will discuss how to train such a model using non-dialog data.

Game Definition

We consider a conceptually simple image guessing game demonstrated in Fig. 1.4. In

each episode, one agent (A-bot in red) secretly selects an image y (starred) from an

image pool (in the dashed green box). The other agent (Q-bot in green) must identify

this image by executing a multi-round question-answer based dialog with A-bot. To

succeed, Q-bot will need to understand the image pool, generate discriminative ques-

tions, and interpret the answers A-bot provides to identify A-bot’s selected image.

At a high-level functional view, we can consider the dialog as following a simple

structure. At each round r, Q-bot observes the pool I = {I1, . . . , IP} and dialog

history q0, a0, . . . qr−1, ar−1 and produces a question

qr = QBot.Ask(I, q0, a0, . . . qr−1, ar−1). (6.7)

Given this question qr, A-bot provides an answer ar based on its selected image Iy:

ar = ABot.Answer(Iy, qr) (6.8)

Once Q-bot receives the answer from A-bot, it makes a prediction ŷr+1 about the

target image:

ŷr = QBot.Predict(I, q0, a0, . . . , qr, ar) (6.9)
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where the task performance of Q-bot can be calculated by comparing ŷr and y.

Comparison to GuessWhich. [26] presented a similar dialog-based guessing game

called GuessWhich. In GuessWhich, Q-bot initially observes a caption describing

A-bot’s selected image and must predict the selected image’s features to retrieve it

from a large, fixed pool of images. The inclusion of the caption leaves little room

for the dialog to add information [184] and the fixed-pool would not enable us to

inspect how Q-bot’s behavior generalizes to different pools. As described above, we

drop both these assumptions to enable our analysis.

Modelling A-bot

In this work, we focus primarily on Q-bot agent rather than A-bot. We set A-bot to

be a standard visual question answering agent, specifically the Bottom-up Top-down

[163] model; however, we do make one modification. Q-bot may generate questions

that are not well grounded in A-bot’s selected image (though they may be grounded

in other pool images) – e.g. asking about a surfer when none exists. To enable A-bot

to respond appropriately, we augment A-bot’s answer space with a Not Relevant

token. We augment every image with an additional, randomly-sampled question and

set Not Relevant as its target answer. A-bot is trained independently from Q-bot

on the VQAv2 dataset and then frozen.

Modelling Q-bot

We conceptualize Q-bot as having three major tasks: encoding the state of the game

to decide what to ask about, actually formulating this intent in language, and mak-

ing predictions about A-bot’s selection. Respectively, these correspond to planner,

speaker, and predictor modules. As we focus on language transfer across tasks, we

make fairly standard design choices here.

Pool & Image Encoding We represent the pth image Ip of the pool as a set of B
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Figure 6.4: A single round of our q-bot which decomposes into the modules described
in Section 6.2.1. This factorization allows us to fine-tune just the intention of the
model for task performance, limiting language drift.

bounding boxes such that Ib
p is the embedding of the b-th box following [163]. Note

that we do not assume prior knowledge about the size or composition of the pool.

Planner

The planner’s role is to encode the dialog context (image pool and dialog history)

and decide what to ask about in each round. To limit clutter, we denote the QA pair

at round r as a ‘fact’ Fr = [qr, ar].

Context Encoder Given the prior dialog state hr−1, Fr−1, and image pool I, the

context encoder performs hierarchical attention to identify image regions in the pool

that are most relevant for generating the next question. As we describe in the ap-

pendix, Fr−1 and hr−1 to query the image to compute an attention distribution over

both set of images (αj) and P distributions over the bounding boxes in each image

(βi
j). The overall image encoding v̂r at round r is computed as

v̂r =
P∑

j=1

B∑
i=1

αjβ
i
jv

i
j (6.10)

where both image and region attentions are combined. We leave the details on com-

puting these attention distributions to the appendix to conserve space. We note that

this mechanism is agnostic to the pool size.
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History Encoder. To track the state of the game, the planner applies an LSTM-

based history encoder that takes v̂r and Fr as input and produces an intermediate

hidden state hr+1. Here hr+1 includes a compact representation of question intent

and dialog history, providing a differentiable connection between the intent and final

predictions through the dialog state.

Question Policy. The question policy transforms hr+1 to a question representation

zr that will be passed to the speaker model to generate the actual question text. In

some sense, zr corresponds to the “intent” of the question (e.g. checking the existence

of surfers) that triggers the speaker to produce corresponding text (e.g. “Is anyone

surfing?”). A default choice for zr is identity function (i.e., zr = hr+1). Later we

explore choices where zr is a random variable (continuous or discrete) parameterized

by hr+1.

Speaker

Given an intent zr, the speaker generates a natural language question. We model the

speaker as a standard LSTM-based decoder with an initial hidden state equal to zr

(or an embedding of zr for discrete zr).

Predictor

The predictor uses the planner’s hidden state to guess which image A-bothas selected.

The predictor takes a concatenation F = [F1, . . . , Fr+1] of fact embeddings and the

dialog state hr+1 and computes an attention pooled feature F̂ using hr+1 as attention

context. A score is then computed for each image in the pool based on the image

features, the pooled representation, and the dialog state (see appendix for full model

details). These scores are normalized via a softmax to predict the target image.

The model can then be trained end-to-end to minimize a cross-entropy loss on this

prediction. Note the model is agnostic to the pool size.
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6.2.2 Dialog without Dialog

Aside from some abstracted details, the game setting and model presented in the

previous section could be trained without any further information – a pool of images

could be generated, A-bot could be assigned an image, the game could be rolled out

for arbitrarily many rounds, and Q-bot could be trained to predict the correct image

given A-bot’s answers. While conceptually possible, there is an obvious shortcoming

– it would be nigh impossible for Q-bot to learn to produce interpretable questions.

Nobody discovers French. They have to learn it.

At the other extreme (and representing standard practice in dialog problems),

human’s could be recruited to perform this image guessing game and provide dense

supervision for what questions Q-bot should ask to perform well at this specific task.

However, this suggests a machine learning paradigm that requires collecting language

data for every new task. Aside from being costly, it is intellectually dissatisfying for

agents’ knowledge of natural language to be so inseparably intertwined with individual

tasks. After all, one of the greatest powers of language is the ability to use it to

communicate about many different problems.

In this section, we consider a middle-ground – training our agents with single-shot

question answering data and then learning an agent that can carry on our task-driven

dialog without further supervision.

Stage 1: Language Pre-training

We want Q-bot’s language to be interpretable – in this paper we take that to mean

it should be understandable by and semantically meaningful to humans, so it has to

be something like a meaningful subset of a known human language. To pre-train the

model to use interpretable human language, we design a supervised learning task for

a single-round version of our game.

We leverage the VQAv2 [101] dataset as our language source to learn how to ask
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interpretable questions. By construction, for each question in VQAv2 there exists

at least one image pair which are visually similar but have different ground truth

answers to the question. This somewhat mirrors our dialog game – the image pair

is the pool, the question is guaranteed to be discriminative, and we can provide an

answer depending on A-bot’s selected image. We can view this as a special case of

our game that is fully supervised but contains only a single round of dialog. We can

then train our Q-bot to mimic the human question (e.g. via cross-entropy teacher

forcing) and to predict the correct image given the ground-truth answer.

Stage 2: Transferring to Dialog

The VQA dataset contains simple questions about images, but they are not aimed

at accomplishing our image guessing task. Consequently, the goal of Dialog without

Dialog is to transfer this learned language understanding to new tasks and demon-

strate generalization in terms of interpretability and task performance across many

task variations (e.g. multiple rounds of conversation and new pools of images).

As an initial setting, we could take the pre-trained weights from Stage 1 and

simply fine-tune for our full image guessing task. However, this agent would face a

number of challenges. It has never had to model multiple steps of a dialog. Further,

while following the task objective of predicting A-bot’s selected image, there is little

to encourages Q-bot to continue producing interpretable language. We consider a

number of modifications to address these problems.

Discrete Intention z Representation. Rather than a continuous vector pass-

ing from the question policy to the speaker, we consider a discrete random vari-

able. Specifically, we consider a representation composed of N K-way Concrete vari-

ables [179] so zn ∈ [0, 1]K is a distribution over K objects.

We learn a linear transformation from the intermediate dialog state h̄r to a set of
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logits lzKn:K(n+1)−1 for each variable n in z:

lzKn:K(n+1)−1 = LogSoftmax(hKn:K(n+1)−1)∀n (6.11)

This parameterizes encoder distribution p(zr).

To provide input to the speaker, zr is embedded using a learned dictionary of

embeddings. In our case each variable in z has a dictionary of K learned embeddings.

The value of zn (∈ {1, . . . , K}) picks one of the embeddings for each variable and the

final representation simply sums over all variables:

ez =
N−1∑
n=0

Ez
n(zn). (6.12)

VAE Pre-training When using this representation for the intent, we train Stage 1

by replacing the likelihood with an ELBO loss to restrict information flow through

z. This requires an encoder and a decoder. The decoder is the speaker and the

encoder is a new module q(z|q0, I) that forms a conditional distribution over z. For

the encoder we use a version of the previously described context encoder that uses

just the question q0 as attention query and parameterizes this Concrete distribution

with a linear transformation of the resulting hidden state. The resulting ELBO loss

is like the Full ELBO described (but not implemented) in [107]:

L =Ez∼q(z|q0,I) [log p(speaker(z))] (6.13)

+ 1
N

N−1∑
n=0

DKL [q(zn|q0, I)||U(K)] (6.14)

The first term encourages the encoder to mimic the VQA question. The second

term pushes the distribution of z close to a K-way uniform prior, which forces z to

only carry relevant information. Combined, the first two terms form an ELBO on the
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question likelihood given the image pool [178, 107].

Fixed Speaker Since the speaker contains only lower level information about how

to generate language, we freeze it during task transfer. We want only the high level

ideas represented by z and the predictor which receives direct feedback to adapt to

the new task. If we updated the speaker then it could overfit its language to the

sparse feedback available in each new setting.

Adaptation Curriculum As the pre-trained model has never had to keep track of

dialog contexts beyond the first round, we fine-tune in two stages. In Stage 2.A we

fix the Context Encoder and Question Policy parts of the Planner so the model can

learn to track dialog effectively without trying to generate better dialog at the same

time. This stage takes 20 epochs to train. Once Q-bot learns how to track dialog we

update the entire planner in Stage 2.B for 5 epochs.1

6.2.3 Experiments

Settings

We consider experimental settings which test generalization along four dimensions:

dialog round, pool type, pool size, and image domain. We can control the difficulties

of the proposed DwD task by setting the number of dialog round, number of type

of images in the pool and whether the task is operate on a different image domain.

We consider three image sources – COCO [5], CUB [185], and AWA [186]. We vary

pool size to be either 2 or 9 images either randomly selected or a contrasting pair

(the synthetic VQA pools from Stage 1, only defined for VQA pool size 2). Unless

specified, performance is reported for Q-bot’s final guess at the last round.
1We find that 5 epochs stops training early enough to avoid the significant overfitting that can

otherwise occur.
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Metrics

We consider metrics addressing both Task performance and Language quality.

While task performance is straightforward, language quality is harder to measure.

We use multiple metrics including human evaluations reported in Section 6.2.3.

Task - Guessing Game Accuracy via A-bot. The point of transfer is to improve

task performance so we report the accuracy of Q-bot’s guess at the final round of

dialog.

Language - Question Relevance via A-bot. To be human understandable, the

generated questions should be relevant to at least one image in the pool. We mea-

sure question relevance as the maximum question-image relevance across the pool as

measured by A-bot, i.e. 1− p(Not Relevant). We note that this is only a proxy for

actual question relevance as A-bot may report Not Relevant erroneously if it fails

to understand Q-bot’s question; however, in practice we find A-bot does a fair job in

determining relevance. We also provide human relevance judgements in Section 6.2.3.

Language - Fluency via Perplexity To evaluate Q-bot’s fluency, we train an

LSTM-based language model on the entire corpus of questions in VQA. This allows

us to evaluate the perplexity of the questions generated by Q-bot for dialogs on its

new tasks. Lower perplexity indicates the generated questions are similar to VQA

questions in terms of syntax and content. Questions generated for the new tasks could

have lower perplexity because they have drifted from English or because different

things must be asked for the new task, so lower perplexity is not always better [187].

Language - Diversity via Distinct n-grams This considers the set of all questions

generated by Q-bot across all rounds of dialog on the val set. It counts the number

of n-grams in this set, Nn, and the number of distinct n-grams in this set, Dn, then

reports Nn

Dn
for each value of n ∈ {1, 2, 3, 4}. Note that instead of normalizing by

the number of words as in previous work [188, 189], we normalize by the number

of n-grams so that the metric represents a percentage for values of n other than
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Table 6.4: Performance of our models and baselines in different experimental settings.
From setting A to setting F, agents are tasked with generalizing further from the
source data. Our method strikes a balance between guessing game performance and
interpretability.

Accuracy ↑ Perplexity↓ A-bot Relevance ↑ Diversity↑

V
Q

A
2

C
on

tr
as

t
1

R
ou

nd A1 Stage 1 0.73 2.62 0.87 0.50
A2 Non-Var Cont 0.71 10.62 0.66 5.55
A3 Ours 0.82 2.6 0.88 0.54

V
Q

A
2

C
on

tr
as

t
5

R
ou

nd
s B1 Stage 1 0.67 2.62 0.87 0.50

B2 Non-Var Cont 0.74 10.62 0.66 5.55
B3 Ours 0.87 2.60 0.88 0.54

V
Q

A
2

R
an

do
m

5
R

ou
nd

s C1 Stage 1 0.64 2.64 0.75 1.73
C2 Non-Var Cont 0.86 16.95 0.62 8.13
C3 Ours 0.95 2.69 0.77 2.34

V
Q

A
9

R
an

do
m

9
R

ou
nd

s D1 Stage 1 0.18 2.72 0.77 1.11
D2 Non-Var Cont 0.78 40.66 0.77 2.57
D3 Ours 0.53 2.55 0.75 0.95

A
W

A
9

R
an

do
m

9
R

ou
nd

s E1 Stage 1 0.47 2.49 0.96 0.24
E2 Non-Var Cont 0.48 12.56 0.64 2.21
E3 Ours 0.74 2.41 0.96 0.28

C
U

B
9

R
an

do
m

9
R

ou
nd

s F1 Stage 1 0.36 2.56 1.00 0.04
F2 Non-Var Cont 0.38 20.92 0.47 2.16
F3 Ours 0.74 2.47 1.00 0.04

n = 1. Generative language models frequently produce safe standard outputs [188],

so diversity is a sign this problem is decreasing, but diversity by itself does not make

language meaningful or useful.

Results

Baselines. We compare our proposed approach to two baselines – Stage 1 and Non-

Var Cont – each ablating some aspects of our design choices. The Stage 1 baseline

is our model after the single-round fully-supervised pretraining. Improvements over
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this model represent gains made from task-based fine-tuning. The Non-Var Cont

baseline is our model under standard encoder-decoder dialog model design choices –

i.e. a continuous latent variable, maximum-likelihood pre-training, and fine-tuning

the speaker model.

Results. Table. 6.4 presents results for our model and baselines in different set-

tings. Starting from the first setting and moving downward, agents are tasked with

generalizing further and further from their source data – from setting A which mimics

the human data pretraining to setting F where agents must carry on a nine round

dialog about 9 images containing only different bird species. Our final model uni-

formly performs well on both task performance and language fluency across different

settings in terms of the automatic evaluation metrics (see bolded results). Other key

findings are:

Ours vs. Stage 1: To understand the relative importance of the proposed stage 2

training which transferring to dialog for DwD task, we compared the task accuracy

performance of our model with Stage 1. For setting A which matches the training

regime, our model outperforms Stage 1 by 9% on task performance. As the task

differs, we see further gains with our model consistently outperforming Stage 1 by

20-38%. Despite these gains, our model maintains similar language perplexity, A-bot

relevance, and diversity.

Ours vs. Non-Var Cont: Our discrete latent variable, variational pre-training

objective, and fixed speaker also play a important roles in avoiding language drift.

Compared to the Non-Var Cont model without these techniques, our model achieves

over 4x lower perplexity and 10-53% better A-bot Relevance. Our model also improves

the averaged accuracy over the Non-Var Cont model, which means more interpretable

language also improves the task performance. Note that Non-Var Cont has 2-100x

higher diversity compared to our model, since the language is shifted away from

English (and towards gibberish).
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Table 6.5: Human evaluation of language quality – question fluency (top) and rele-
vance (bottom). Each row compares a pair of agent-generated questions, asking users
which (or possibly neither) is more fluent/relevant. The values report the percentage
of times the option represented by that column was chosen.

Neither Stage 1 Non-Var Cont Ours

Stage 1 vs Non-Var Cont 31.7% 48.1% 20.2% –
Stage 1 vs Ours 49.0% 26.2% – 24.8%
Non-Var Cont vs Ours 32.7% – 17.9% 49.4%

Stage 1 vs Non-Var Cont 19.6% 48.8% 31.7% –
Stage 1 vs Ours 25.0% 38.4% – 36.6%
Non-Var Cont vs Ours 22.0% – 30.2% 47.8%

Game Variations:

– Dialog Rounds: Longer dialogs (more rounds) achieve better accuracy (A3 vs

B3).

– Pool Type: Random pools are easier compared to contrast pool (B3 vs C3

accuracy), however, language fluency and relevance drop on the random pools (B3

vs C3 perplexity and a-bot relevance).

– Image Source: CUB and AWA pools are harder compared to COCO image

domain (D3 vs E3 vs F3). Surprisingly, our models maintains similar perplexity

and high a-bot relevance even on these out-of-domain image pools. The Stage 1

and Non-Var Cont baselines generalize poorly to these different image domains –

reporting task accuracies nearly half our model performance.

Human Studies

In addition to the automatic metrics, we also evaluate our models through human

studies. Specifically, we use workers (turkers) on Amazon Mechanical Turk to evaluate

the relevance, fluency, and task performance of our models. We discuss each study

below.

Human Study for Question Relevance. To get a more accurate measure of
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question relevance, we asked humans to evaluate questions generated by our model

and the baselines (Stage 1 & Non-Var Cont). We curated 300 random, size 4 pools

where all three models predicted the target correctly at round 5. For a random

round, we show turker’s the questions from a pair of models and ask ”Which question

is most relevant to the images?” Answering the question is a forced choice between

three options: either of the pair of models or an “equally relevant” option. More

details including an example of the interface can be found in appendix C. Table. 6.5

(bottom) shows the frequency with which each option was chosen for each model

pair. Our model is considered more relevant than the Non-Var Cont model (47.8%

vs. 30.2% preference) and about the same as the Stage 1 model (36.6% vs. 38.4%

preference).

Human Study for Fluency. We also evaluate fluency by asking humans to compare

questions. In particular, we presented the same pairs of questions to turkers as in

the relevance study, but this time we did not present the pool of images and asked

them ”Which question is more understandable?” As before, there was a forced choice

between two models and an “equally understandable” option. This captures fluency

because humans are more likely to understand grammatically correct. Table. 6.5

(top) shows the frequency with which each option was chosen for each model pair.

Our model is considered more fluent than the Non-Var Cont model (49.4% vs. 17.9%

preference) and about the same as the Stage 1 model (49.0% neither question more

fluent).

Human Study for Task Performance. What we really want is for humans to

be able to collaborate with bots to solve tasks. Therefore, the most direct evalua-

tion of our the DwD task is to have humans interact dynamically with Q-bot. We

implemented an interface that allowed turkers to interact with Q-bot in real time.

Q-bot asks a question. A human answers it. Q-bot asks a new question in response

to the human answer and the human responds to that question. After the 4th answer
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Non-Var Cont Stage 1 Ours

Q0: what is the boy in?

Q1: how many objects can be
breadsticks?

Q2: sweetest meters what is the 
color?

Q3: diving what day is the 
cabinet?

Q4: equestrian pads what can 
be seen ? 

not relevant : A0

2 : A1

white : A2

oval : A3

1 2

3 4

P0: 4

P1: 1

P2: 4

P3: 2

no : A0

not relevant : A1

light : A2

not relevant : A3

Q0: is there a reflection?

Q1:what fruit is walking across 
the right?

Q2:what is bright in the corner?

Q3: is it time?

Q4: is there a cat in this photo? 

P0: 2

P1: 2

P2: 2

P3: 3

not relevant : A0

not relevant : A1

white : A2

bathroom : A3

Q0: What color are the wheels ?

Q1: what is the color of the 
white fence ?

Q2: how many people in the 
room?

Q3:which room is this ?

Q4: is this picture taken during a 
day?

P0: 4

P1: 1

P2: 4

P3: 2

Q0: what color is the photo?

Q1: is the boy’s collar on the
right?

Q2: what color is the thing?

Q3: what is the color?

Q4: what is the first?

gray : A0

not relevant : A1

black : A2

black : A3

P0: 3

P1: 3

P2: 3

P3: 3

Q0: what is on the bowl?

Q1: how is the sitting on water?

Q2: what kind of birds are these?

Q3: what is the bird eating?

Q4: does the bird have a
sheep ’s tail toy? 

bird : A0

sand : A1

crow : A2

nothing : A3

P0: 1

P1: 4

P2: 4

P3: 3

Q0: what is behind the bird ?

Q1: what is the color of the collar?

Q2: what kind of bird is in the
image ?

Q3: what kind of bird is this ?

Q4: what is the bird sitting on ?

P0: 4

P1: 4

P2: 3

P3: 3

sand : A0

not relevant : A1

crow : A2

crow : A3

1 2

3 4

1 2

3 4

Q0: how many legs are visible?

Q1: how many different pillows
are in the pic?

Q2: what is the animal that is next
to the blue animal’s leg?

Q3:what number is on the boogie
head?

Q4: is this animal hungry?

2 : A0

not relevant : A1

bear : A2

not relevant : A3

P0: 2

P1: 3

P2: 4

P3: 3

Q0: what kind of animal is this?

Q1: how many little dogs are
laying around?

Q2: what color is the bear?

Q3: what is the animal holding?

Q4: can the animal be seen in
the water?

Polar bear : A0

0 : A1

white : A2

nothing : A3

P0: 4

P1: 4

P2: 4

P3: 4

Q0: what color is the photo?

Q1: what is the on the bottom
person?

Q2: what shape is this light?

Q3: what shape is the train?

Q4: what shape of this?

not relevant : A0

not relevant : A1

not relevant : A2

not relevant : A3

P0: 4

P1: 4

P2: 4

P3: 4

Figure 6.5: Qualitative comparison of dialogs generated by our model with those
generated by Non-Var Cont and Stage 1 baselines. Top / middle /bottom rows are
image pool from COCO / AWA / CUB images respectively. Our model pretrained on
VQA (COCO image) generates more interpretable questions for the DwD task which
is semantic meaning and generalize well to out-of-domain images.

Q-bot makes a guess about which target image the human was answering based on.

Our interface is described in section C of the supplement. We perform this study

for the same pools for each model and find our approach achieves an accuracy of

69.39% – significantly higher than Non-Var Cont at 44.90% and Stage 1 at 22.92%.

This study shows that our model learns a strategy for this task that is amenable to

human-AI collaboration. This is in contrast to prior work [110] that showed that

improvements captured by task-trained models for similar image-retrieval tasks did

not transfer when paired with human partners.
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Qualitative Results

Figure 6.5 shows example outputs of Non-Var Cont baseline, Stage 1 model and our

proposed models on three different image sources – COCO, AWA and CUB datasets.

We can see that COCO images contains varieties of concepts while AWA images

contains on different animals and CUB images contains on different species of birds.

The A-bot is not accurate, which introduces noisy signals for Q-bot to learn the

DWD tasks. Compared with the baselines, our approach asks more relevant and

interpretable questions in the dialog.

Model Ablations

We investigate the impact of our modelling choices from Section 6.2.2. In Table. 6.6

we report the mean of all four automated metrics averaged over pool sizes, pool

sampling strategies, and datasets.2Next we explain how we vary each of these model

dimensions

– Our 128 4-way Concrete variables require 512 logits (Discrete). Thus we compare

to the standard Gaussian random variable common throughout VAEs with 512

dimensions (Continuous). This just removes the KL term ((6.14)).

– In both discrete and continuous cases we train with an ELBO loss (ELBO), so

we compare to a maximum likelihood only model (MLE) that uses an identity

function as in the default option for the Question Policy (see Section 6.2.1).

– We consider checkpoints after each step of our training curriculum: Stage 1, Stage

2.A, and Stage 2.B. For some approaches we skip Stage 2.A and go straight to

fine-tuning everything except the speaker as in Stage 2.B. This is denoted by Stage

2.

– We consider 3 variations on how the speaker is fine-tuned. The first is our proposed
2This includes 10 settings: {random 2, 4, 9 pools }× {VQA, AWA, CUB} and 2 contrats pools

on VQA
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Table 6.6: Various ablations of our training curriculum.

z Structure Loss Curriculum Speaker Accuracy Perplexity Relevance Diversity
1 Discrete ELBO Stage 2.B Fixed (Ours) 0.81 2.57 0.89 0.86
2 Discrete ELBO Stage 2 Fine-tuned 0.82 2.54 0.85 0.59
3 Discrete ELBO Stage 2 Parallel 0.78 2.60 0.88 0.73
4 Discrete ELBO Stage 1 Fixed 0.72 2.60 0.91 0.48
5 Discrete ELBO Stage 2.A Fixed 0.80 2.59 0.89 0.81
6 Discrete ELBO Stage 2 Fixed 0.80 2.53 0.85 0.62
7 Continuous ELBO Stage 2.B Fixed 0.75 2.45 0.66 0.23
8 Continous MLE Stage 2.B Fixed 0.78 4.27 0.83 4.33

approach of fixing the speaker (Fixed). The next fine-tunes the speaker (Fine-

tuned). To evaluate the impact of fine-tuning we also consider a version of the

speaker which can not learn to ask better questions by using a parallel version of

the same model (Parallel). This last version will be described more below.

Discrete Outperforms Continuous z. By comparing our model in row 1 of Ta-

ble. 6.6 to row 7 we see that our discrete model outperforms the corresponding con-

tinuous model in terms of task performance (higher Accuracy) and about matches it

in interpretability (similar Perplexity and higher Relevance). This may be a result

of discreteness constraining the optimization problem to prevent over-fitting and is

consistent with previous work that used a discrete latent variable to model dialog.

Stage 2.B Less Important than Stage 2.A Comparing rows 4, 5, and 1 of Ta-

ble. 6.6, we can see that each additional step, Stage 2.A (row 4 -> 5) and Stage

2.B (row 5 -> 1), increases task performance and stays about the same in terms of

interpretability. However, most gains in task performance happen between Stage 1

and Stage 2. This indicates that improvements in task performance are mainly from

learning to incorporate information over multiple rounds of dialog.

Better Predictions, Slightly Better Questions To further investigate whether

Q-bot is asking better questions or just understanding dialog context for prediction

better we considered the Parallel speaker model. This model loaded two copies of Q-

bot, A and B both starting at Stage 1. Copy A was fine-tuned for task performance,

119



but every z it generated was ignored and replaced with the z generated by copy B,

which was not updated at all. The result was that copy A of the model could not

incorporate dialog context into its questions any better than the Stage 1 model, so

all it could do was track the dialog better for prediction purposes. By comparing

the performance of copy A (row 3 of Table. 6.6) to our model (row 1) we can see

a 3 point different in accuracy, so the question content of our model has improved

after fine-tuning, but not by a lot. Most improvements are from dialog tracking for

prediction (row 3 accuracy is much higher than row 4 accuracy).

Fine-tuned Speaker During both Stage 2.A and Stage 2.B we fix the Speaker

module because it is intended to capture low level language details and we do not

want it to change its understanding of English. Row 2 of Table. 6.6 does not fix

the Speaker during Stage 2 fine-tuning. Instead, it uses each softmax at each step

of the LSTM decoder to parameterize one Concrete variable [178] per word. This

allows gradients to flow through the decoder during fine-tuning, allowing the model

to tune low-level signals. This is similar to previous approaches which either used this

technique [190] or REINFORCE [26] This model is competitive with DWD in terms

of task performance. When we inspect its output we see somewhat less interpretable

language. We favor our model because it is slightly better in terms o

Variational Prior Helps Interpretability We found the most important factor

for maintaining interpretability to be the ELBO loss we applied during pre-training.

Comparing the continuous Gaussian variable (row 7) to a similar hidden state (row

8) trained without the prior term (6.14) we see drastically different perplexity and

diversity. Perplexity and diversity drop because the model has drifted far from En-

glish. This is similar to the effect in the Non-Var Cont, which is the model from row

8 with a fine-tuned speaker.
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6.2.4 Discussion

In this section we proposed the Dialog without Dialog (DwD) task along with a model

designed to solve this task and an evaluation scheme that takes its goals into account.

The task is to build a dialog agent that generates meaningful and useful dialogs

with language supervision only from , i.e., without dialog. This balance is hard to

strike, but our proposed model manages to strike it. We find it helps to represent

dialogs with a discrete latent variable and carefully transfer language information via

multi-stage training. While baseline models either perform well at new tasks through

fine-tuning or maintain interpretability, our model achieves the goal of DwD by doing

both. We hope both our task and our model help inspire useful dialog agents that

can also interact with humans.
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CHAPTER 7

VISION AND LANGUAGE PRETRAINING

In this chapter, our goal is to build a general multi-modal AI model and training

paradigm that has a unified structure, utilize large external dataset and handle mul-

tiple tasks at the same time.

In the first section, motivated by recently proposed BERT [15], which can effec-

tively learn the textual representations through large-scale pretraining. We want a

model that can learn visual grounding – associations between textual phrase and vi-

sual representations through pretraining. We extend the popular BERT architecture

to a multi-modal two-stream model, processing both visual and textual inputs in sepa-

rate streams that interact through co-attentional transformer layers. We pretrain our

model through two proxy tasks on the large, automatically collected Conceptual Cap-

tions dataset and then transfer it to multiple established vision-and-language tasks –

visual question answering, visual commonsense reasoning, referring expressions, and

caption-based image retrieval – by making only minor additions to the base archi-

tecture. Our work represents a shift away from learning groundings between vision

and language only as part of task training and towards treating visual grounding as

a pretrainable and transferable capability.

Next, we investigate these relationships between vision-and-language tasks by de-

veloping a large-scale, multi-task training regime. Our approach culminates in a

single model on 12 datasets from four broad categories of task including visual ques-

tion answering, caption-based image retrieval, grounding referring expressions, and

multi-modal verification. Compared to independently trained single-task models, this

represents a reduction from approximately 3 billion parameters to 270 million while

simultaneously improving performance by 2.05 points on average across tasks. We
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use our multi-task framework to perform an in-depth analysis of the effect of joint

training on diverse tasks. Further, we show that finetuning task-specific models from

our single multi-task model can lead to further improvements, achieving performance

at or above the state-of-the-art.

7.1 ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations

for Vision-and-Language Tasks

We present a joint model for learning task-agnostic visual grounding from paired

visiolinguistic data which we call Vision & Language BERT (ViLBERT for short).

Our approach extends the recently developed BERT [15] language model to jointly

reason about text and images. Our key technical innovation is introducing separate

streams for vision and language processing that communicate through co-attentional

transformer layers. This structure can accommodate the differing processing needs of

each modality and provides interaction between modalities at varying representation

depths. We demonstrate that this structure outperforms a single-stream unified model

in our experiments.

In analogy to the training tasks in [15], we train our model on Conceptual Captions

on two proxy tasks: predicting the semantics of masked words and image regions given

the unmasked inputs, and predicting whether an image and text segment correspond.

We apply our pretrained model as a base for four established vision-and-language

tasks – visual question answering [39], visual commonsense reasoning [40], referring

expressions [2], and caption-based image retrieval [41] – setting state-of-the-art on

all four tasks. We find improvements of 2 to 10 percentage points across these tasks

when compared to state-of-the-art task-specific baselines using separately pretrained

vision and language models. Furthermore, our structure is simple to modify for each

of these tasks – serving as a common foundation for visual grounding across multiple

vision-and-language tasks.
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Figure 7.1: Our ViLBERT model consists of two parallel streams for visual (green)
and linguistic (purple) processing that interact through novel co-attentional trans-
former layers. This structure allows for variable depths for each modality and enables
sparse interaction through co-attention. Dashed boxes with multiplier subscripts de-
note repeated blocks of layers.

7.1.1 ViLBERT

Inspired by BERT’s success at language modeling, we would like to develop analogous

models and training tasks to learn joint representations of language and visual content

from paired data. Specifically, we consider jointly representing static images and

corresponding descriptive text.

One straightforward approach is to make minimal changes to BERT – simply dis-

cretizing the space of visual inputs via clustering, treat these visual ‘tokens’ exactly

like text inputs, and start from a pretrained BERT model. This architecture suffers

from a number of drawbacks. First, initial clustering may result in discretization

error and lose important visual details. Second, it treats inputs from both modalities

identically, ignoring that they may need different levels of processing due to either

their inherent complexity or the initial level of abstraction of their input representa-

tions. For instance, image regions may have weaker relations than words in a sentence

and visual features are themselves often already the output of a very deep network.

Finally, forcing the pretrained weights to accommodate the large set of additional

visual ‘tokens’ may damage the learned BERT language model. Instead, we develop

a two-stream architecture modelling each modality separately and then fusing them

through a small set of attention-based interactions. This approach allows for variable

network depth for each modality and enables cross-modal connections at different
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depths.

Our model which we call ViLBERT is shown in Fig. 7.1 and consists of two parallel

BERT-style models operating over image regions and text segments. Each stream is

a series of transformer blocks (TRM) and novel co-attentional transformer layers

(Co-TRM) which we introduce to enable information exchange between modalities.

Given an image I represented as a set of region features v1, . . . , vT and a text input

w0, . . . , wT , our model outputs final representations hv0, . . . , hvT and hw0, . . . , hwT .

Notice that exchange between the two streams is restricted to be between specific

layers and that the text stream has significantly more processing before interacting

with visual features – matching our intuitions that our chosen visual features are

already fairly high-level and require limited context-aggregation compared to words

in a sentence.
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Figure 7.2: Our co-attention transformer layer

Co-Attentional Transformer Layers. We introduce a co-attentional transformer

layer shown in Fig. 7.2. Given intermediate visual and linguistic representations H(i)
V

and H(j)
W , the module computes query, key, and value matrices as in a standard trans-

former block. However, the keys and values from each modality are passed as input

to the other modality’s multi-headed attention block. Consequentially, the attention

block produces attention-pooled features for each modality conditioned on the other

– in effect performing image-conditioned language attention in the visual stream and
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Figure 7.3: We train ViLBERT on the Conceptual Captions [38] dataset under two
training tasks to learn visual grounding. In masked multi-modal learning, the model
must reconstruct image region categories or words for masked inputs given the ob-
served inputs. In multi-modal alignment prediction, the model must predict whether
or not the caption describes the image content.

language-conditioned image attention in the linguistic stream. The latter mimics

common attention mechanisms found in vision-and-language models [163]. The rest

of the transformer block proceeds as before, including a residual add with the ini-

tial representations – resulting in a multi-modal feature. In general, co-attention

for vision-and-language is not a new idea (being first proposed in [191]) and con-

current work yu2019deep, peng2018dynamic has shown the effectiveness of similar

co-attentional transformer structures on the visual question answering task.

Image Representations. We generate image region features by extracting bound-

ing boxes and their visual features from a pre-trained object detection network (see

Sec. 7.1.2). Unlike words in text, image regions lack a natural ordering. we encode

spatial location instead, constructing a 5-d vector from region position (normalized

top-left and bottom-right coordinates) and the fraction of image area covered. This

is then projected to match the dimension of the visual feature and they are summed.

We mark the beginning of an image region sequence with a special IMG token

representing the entire image (i.e. mean-pooled visual features with a spatial encoding

corresponding to the entire image).

Training Tasks and Objectives. In analogy to those described in the previous

section, we consider two pretraining tasks: masked multi-modal modelling and multi-

modal alignment prediction.
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The masked multi-modal modelling task (shown in Fig. 7.3a) follows from the

masked language modelling task in standard BERT – masking approximately 15% of

both words and image region inputs and tasking the model with reconstructing them

given the remaining inputs. Masked image regions have their image features zeroed

out 90% of the time and are unaltered 10%. Masked text inputs are handled as in

BERT. Rather than directly regressing the masked feature values, the model instead

predicts a distribution over semantic classes for the corresponding image region. To

supervise this, we take the output distribution for the region from the same pretrained

detection model used in feature extraction. We train the model to minimize the

KL divergence between these two distributions. This choice reflects the notion that

language often only identifies high-level semantics of visual content and is unlikely to

be able to reconstruct exact image features. Further, applying a regression loss could

make it difficult to balance losses incurred by masked image and text inputs.

In the multi-modal alignment task (shown in Fig. 7.3b), the model is presented an

image-text pair as {IMG, v1, . . . , vT , CLS, w1, . . . , wT , SEP} and must predict whether

the image and text are aligned, i.e. whether the text describes the image. We take the

outputs hIMG and hCLS as holistic representations of the visual and linguistic inputs.

Borrowing another common structure from vision-and-language models, we compute

the overall representation as an element-wise product between hIMG and hCLS and

learn a linear layer to make the binary prediction whether the image and text are

aligned. However, the Conceptual Captions [38] dataset only includes aligned image-

caption pairs. To generate negatives for an image-caption pair, we randomly replace

either the image or caption with another.

7.1.2 Experimental Settings

In this section, we describe how we train our model and provide overviews of the

vision-and-language tasks to which we transfer the trained model.
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Training ViLBERT

To train our full ViLBERT model, we apply the training tasks presented in Sec. 7.1.1

to the Conceptual Captions dataset [38]. Conceptual Captions is a collection of 3.3

million image-caption pairs automatically scraped from alt-text enabled web images.

The automatic collection and sanitation process leaves some noise and the ‘captions’

are sometimes not human-like or short on details (e.g. “actors attend the premiere

at festival”). However, it presents a huge diversity of visual content and serves as an

excellent dataset for our purposes. Since some links had become broken by the time

we downloaded the data, our model is trained with around 3.1 million image-caption

pairs.

Implementation Details. We initialize the linguistic stream of our ViLBERT model

with a BERT language model pretrained on the BookCorpus [192] and English Wikipedia.

Specifically, we use the BERTBASE model [15] which has 12 layers of transformer blocks

with each block having a hidden state size of 762 and 12 attention heads. We choose

to use the BASE model due to concerns over training time but find it likely the more

powerful BERTLARGE model could further boost performance.

We use Faster R-CNN [156] (with ResNet-101 [] backbone) pretrained on the

Visual Genome dataset [120] (see [163] for details) to extract region features. We

select regions where class detection probability exceeds a confidence threshold and

keep between 10 to 36 high-scoring boxes. For each selected region i, vi is defined

as the mean-pooled convolutional feature from that region. Transformer and co-

attentional transformer blocks in the visual stream have hidden state size of 1024 and

8 attention heads.

We train on 8 TitanX GPUs with a total batch size of 512 for 10 epochs. We use

the Adam optimizer with initial learning rates of 1e-4. We use a linear decay learning

rate schedule with warm up to train the model. Both training task losses are weighed

equally.
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VQA

Guy in yellow dribbling ball

Referring Expressions Caption-Based Image Retrieval

A large bus sitting next 
to a very tall building.

Figure 7.4: Examples for each vision-and-language task we transfer ViLBERT to in
our experiments.

Vision-and-Language Transfer Tasks

We transfer our pretrained ViLBERT model to a set of four established vision-and-

language tasks and one diagnostic task. We follow a fine-tuning strategy where we

modify the pretrained base model to perform the new task and then train the entire

model end-to-end. In all cases, the modification is trivial – typically amounting to

learning a classification layer. This is in stark contrast to the significant efforts made

within the community to develop specialized models for each of these tasks. We

describe the problem, dataset, model modifications, and training objective for each

task below.

Visual Question Answering (VQA). The VQA task requires answering natural

language questions about images. We train and evaluate on the VQA 2.0 dataset [39]

consisting of 1.1 million questions about COCO images [49] each with 10 answers.

To fine-tune ViLBERT on VQA, we learn a two layer MLP on top of the element-

wise product of the image and text representations hIMG and hCLS, mapping this

representation to 3,129 possible answers. As in [163], we treat VQA as a multi-label

classification task – assigning a soft target score to each answer based on its relevancy

to the 10 human answer responses. We then train with a binary cross-entropy loss

on the soft target scores using a batch size of 256 over a maximum of 20 epochs. We

use the Adam optimizer with an initial learning rate of 4e-5. At inference, we simply

take a softmax.

Visual Commonsense Reasoning (VCR). Given an image, the VCR task presents
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two problems – visual question answering (Q→A) and answer justification (QA→R) –

both being posed as multiple-choice problems. The holistic setting (Q→AR) requires

both the chosen answer and then the chosen rationale to be correct. The Visual

Commonsense Reasoning (VCR) dataset consists of 290k multiple choice QA problems

derived from 110k movie scenes. Different from the VQA dataset, VCR integrates

object tags into the language providing direct grounding supervision and explicitly

excludes referring expressions. To finetune on this task, we concatenate the question

and each possible response to form four different text inputs and pass each through

ViLBERT along with the image. We learn a linear layer on top of the post-elementwise

product representation to predict a score for each pair. The final prediction is a

softmax over these four scores and is trained under a cross-entropy loss over 20 epochs

with a batch size of 64 and initial learning rate of 2e-5.

Grounding Referring Expressions. The referring expression task is to localize

an image region given a natural language reference. We train and evaluate on the

RefCOCO+ dataset [193]. A common approach to this task is to rerank a set of image

region proposals given the referring expression. Thus we directly use the bounding

box proposals provided by [194], which use a Mask R-CNN [162] pretrained on the

COCO dataset. For fine-tuning, we pass the final representation hvi for each image

region i into a learned linear layer to predict a matching score. We label each proposal

box by computing the IoU with the ground truth box and thresholding at 0.5. We

train with a binary cross-entropy loss for a maximum of 20 epochs with a batch size

of 256 and an initial learning rate of 4e-5. At inference, we use the highest scoring

region as the prediction.

Caption-Based Image Retrieval. Caption-based image retrieval is the task of

identifying an image from a pool given a caption describing its content. We train and

evaluate on the Flickr30k dataset [41] consisting of 31,000 images from Flickr with

five captions each. Following the splits in [195], we use 1,000 images for validation and
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test each and train on the rest. These captions are well-grounded in and descriptive

of the visual content and are qualitatively different than the automatically collected

Conceptual Captions. We train in a 4-way multiple-choice setting by randomly sam-

pling three distractors for each image-caption pair – substituting a random caption,

a random image, or a hard negative from among the 100 nearest neighbors of the

target image. We compute the alignment score (as in alignment prediction pretrain-

ing) for each and apply a softmax. We train this model under a cross-entropy loss to

select the true image-caption pair for 20 epochs with a batch size of 64 and an initial

learning rate of 2e-5. At inference, we score each caption-image pair in the test set

and then sort. For efficiency, we cache the linguistic stream representation before the

first Co-TRM layer – effectively freezing the linguistic representation before fusion.

‘Zero-shot’ Caption-Based Image Retrieval. The previous tasks are all transfer

tasks that include dataset specific fine-tuning. In this ‘zero-shot’ task, we directly

apply the pretrained the multi-modal alignment prediction mechanism to caption-

based image retrieval in Flickr30k [41] without fine-tuning (thus the description as

‘zero-shot’). The goal of this task is to demonstrate that the pretraining has developed

the ability to ground text and that this can generalize to visual and linguistic variation

without any task specific fine-tuning. We directly use the ViLBERT model trained on

Conceptual Captions dataset described in Sec. 7.1.2. We use the alignment prediction

objective as a scoring function and test on the same split as the caption-based image

retrieval task described above.

7.1.3 Results and Analysis

Baselines. We compare our pretrained ViLBERT model against two ablative base-

lines:

– Single-Stream consisting of a single BERT architecture that processes both

modality inputs through the same set of transformer blocks – sharing parame-
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ters and processing stacks for both visual and linguistic inputs. Like [119], this

model avoids making changes to the BERT architecture, resulting in significantly

deeper visual processing and earlier interaction between modalities than in our

model. The model is initialized with BERTBASE and trained identically to our full

model. We compare to this baseline to establish the impact of our two-stream

architecture. As both streams interact throughout, we cannot cache any represen-

tations for efficiency. As such, we do not evaluate this baseline on image retrieval

and zero-shot image retrieval due to high computational cost.

– ViLBERT† which is a ViLBERT architecture that has not undergone our pre-

training tasks. Notably, it does still have BERT initilization for the linguistic

stream and represents image regions with the same Faster R-CNN model as the full

ViLBERT model. We compare to this baseline to isolate gains over task-specific

baseline models that might be due to our architecture, language initialization, or

visual features as opposed to our pretraining process on Conceptual Captions .

For both baselines and our model, we finetune the transfer tasks as described in the

previous section.

Task-Specific Baselines. To put our results in context, we present published results

of problem-specific methods that are to our knowledge state-of-the-art in each task:

DFAF [196] for VQA, R2C [40] for VCR, MAttNet [194] for RefCOCO+, and SCAN

[195] for caption-based image retrieval.

Results. Tab. 7.1 shows results across all transfer tasks and we highlight key findings

below:

– Our architecture improves performance over a single-stream model. We

observe improvements across tasks for ViLBERT over the single-stream baseline

for both pretrained (Single-Stream vs. ViLBERT) and non-pretrained (Single-

Stream† vs. ViLBERT†). Most significant gains are observed for VQA and Ref-

COCO+.
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Table 7.1: Transfer task results for our ViLBERT model compared with existing
state-of-the-art and sensible architectural ablations. † indicates models without pre-
training on Conceptual Captions. For VCR and VQA which have private test sets,
we report test results (in parentheses) only for our full model. Our full ViLBERT
model outperforms task-specific state-of-the-art models across all tasks.

VQA [39] VCR [40] RefCOCO+ [193] Image Retrieval [41] ZS Image Retrieval

Method test-dev (test-std) Q→A QA→R Q→AR val testA testB R1 R5 R10 R1 R5 R10

SO
TA

DFAF [196] 70.22 (70.34) - - - - - - - - - - - -
R2C [40] - 63.8 (65.1) 67.2 (67.3) 43.1 (44.0) - - - - - - - - -
MAttNet [194] - - - - 65.33 71.62 56.02 - - - - - -
SCAN [195] - - - - - - - 48.60 77.70 85.20 - - -

O
ur

s

Single-Stream† 65.90 68.15 68.89 47.27 65.64 72.02 56.04 - - - - - -
Single-Stream 68.85 71.09 73.93 52.73 69.21 75.32 61.02 - - - - - -
ViLBERT† 68.93 69.26 71.01 49.48 68.61 75.97 58.44 45.50 76.78 85.02 0.00 0.00 0.00
ViLBERT 70.55 (70.92) 72.42 (73.3) 74.47 (74.6) 54.04 (54.8) 72.34 78.52 62.61 58.20 84.90 91.52 31.86 61.12 72.80

– Our pretraining tasks result in improved visiolinguistic representations.

Our models further improve by between 2% and 13% across tasks when using a

ViLBERT model that has been pretrained under our proxy tasks (ViLBERT vs

ViLBERT† ). We also observe improvements on Single-Stream which verifies our

proxy tasks can generalize to different model architectures.

– Finetuning from ViLBERT is a powerful strategy for vision-and-language

tasks. With a single base architecture, our transfer task performance exceeds

state-of-the-art task-specific models for all four established tasks. We set state-

of-the-art for VCR, RefCOCO+ and image retrieval by significant margins (7-10

percentage points improvement). Further, extending to these tasks was simple –

requiring the addition of a single classifier for each task.

Overall, these results demonstrate that our ViLBERT model is able to learn im-

portant visual-linguistic relationships that can be exploited by downstream tasks.

Effect of Visual Stream Depth. In Tab. 7.2 we compare the results transferring

from ViLBERT models of varying depths. We consider depth with respect to the

number of repeated CO-TRM→TRM blocks (shown in a dashed box in Fig. 7.1) in

our model. We find that VQA and Image Retrieval tasks benefit from greater depth

- performance increases monotonically until a layer depth of 6. Likewise, zero-shot
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Table 7.2: Ablation study of the depth of our model with respect to the number of
Co-TRM→TRM blocks (shown in a dashed box in Fig. 7.1). We find that different
tasks perform better at different network depths – implying they may need more or
less context aggregation.

VQA [39] VCR [40] RefCOCO+ [193] Image Retrieval [41] ZS Image Retrieval [41]

Method test-dev Q→A QA→R Q→AR val testA testB R1 R5 R10 R1 R5 R10

ViLBERT (2-layer) 69.92 72.44 74.80 54.40 71.74 78.61 62.28 55.68 84.26 90.56 26.14 56.04 68.80
ViLBERT (4-layer) 70.22 72.45 74.00 53.82 72.07 78.53 63.14 55.38 84.10 90.62 26.28 54.34 66.08
ViLBERT (6-layer) 70.55 72.42 74.47 54.04 72.34 78.52 62.61 58.20 84.90 91.52 31.86 61.12 72.80
ViLBERT (8-layer) 70.47 72.33 74.15 53.79 71.66 78.29 62.43 58.78 85.60 91.42 32.80 63.38 74.62

image retrieval continues making significant gains as depth increases. In contrast,

VCR and RefCOCO+ seem to benefit from shallower models.

Benefits of Large Training Sets. We also studied the impact of the size of the

pretraining dataset. For this experiment, we take random subsets of 25% and 50%

from the conceptual caption dataset, and pretrain and finetune ViLBERT using the

same setup as above. We can see that the accuracy grows monotonically as the

amount of data increases, which suggests that ViLBERT may benefit from even more

pretraining data.

Table 7.3: Transfer task results for ViLBERT as a function of the percentage of the
Conceptual Captions dataset used during pre-training. We see monotonic gains as
the pretraining dataset size grows.

VQA [39] VCR [40] RefCOCO+ [193] Image Retrieval [41] ZS Image Retrieval [41]

Method test-dev Q→A QA→R Q→AR val testA testB R1 R5 R10 R1 R5 R10

ViLBERT (0 %) 68.93 69.26 71.01 49.48 68.61 75.97 58.44 45.50 76.78 85.02 0.00 0.00 0.00
ViLBERT (25 %) 69.82 71.61 73.00 52.66 69.90 76.83 60.99 53.08 80.80 88.52 20.40 48.54 62.06
ViLBERT (50 %) 70.30 71.88 73.60 53.03 71.16 77.35 61.57 54.84 83.62 90.10 26.76 56.26 68.80
ViLBERT (100 %) 70.55 72.42 74.47 54.04 72.34 78.52 62.61 58.20 84.90 91.52 31.86 61.12 72.80

What does ViLBERT learn during pretraining? To get a sense for what ViL-

BERT learns during Conceptual Caption pretraining, we look at zero-shot caption-

based image retreival and some qualitative examples. While zero-shot performance

(Tab. 7.1, right) is significantly lower than the fine-tuned model (31.86 vs 58.20 R1)
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it performs reasonably without having seen a Flickr30k image or caption (31.86 vs

48.60 R1 for prior SOTA) – indicating that ViLBERT has learned a semantically

meaningful alignment between vision and language during pretraining.

7.1.4 Discussion

We develop a joint model for image content and text and pretrain it on a large,

automatically-collected dataset to learn visual grounding. Our ViLBERT model in-

troduces a novel two-stream architecture with co-attentional transformer blocks that

outperforms sensible ablations and exceeds state-of-the-art when transferred to mul-

tiple established vision-and-language tasks. Furthermore, transferring our model to

these tasks is simple and easy to implement – requiring only the addition of a clas-

sifier for each task we examined here. We consider extensions of our model to other

vision-and-language tasks (including those requiring generation) as well as multi-task

learning as exciting future work.

7.2 12-in-1: Multi-Task Vision and Language Representation Learning

In this work, we develop a multi-task model for discriminative vision-and-language

tasks based on the recently proposed ViLBERT[42] model. We consider four cate-

gories of tasks – training jointly on a total of 12 different datasets. Our results not

only show that a single model can perform all these tasks, but also that joint train-

ing can lead to improvements on task metrics compared to single-task training with

the same architecture. Before undertaking this effort, it was not obvious to us that

this would be the case – multitask training is notorious challenging and vision-and-

language datasets vary greatly in size, interface, and difficulty. Our model attains

improvements of 0.25 to 4.19 absolute points from multi-task training – improving

over corresponding single-task models for 11 out of 12 tasks. Further, we demon-

strate that multi-task training is an effective pretraining step for single-task models
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A child in orange clothes plays with sheep.

Visual Question Answering
What color is the child’s outfit?   Orange

Referring Expressions

child sheep basket people sitting on chair

Multi-modal Verification

The child is petting a dog.  false

Caption-based Image Retrieval

Figure 7.5: We introduce an approach for effective multi-task learning, training a
single model on 12 popular vision-and-language datasets. This single model performs
at par or even better than independent task-specific state-of-the-art approaches for
many tasks.

– leading to further gains and setting a new state-of-the-art for 7 out of 12 tasks.

Large-scale multi-task learning is challenging as datasets can vary in size and diffi-

culty. To address these issues, we introduce a dynamic stop-and-go training scheduler,

task-dependent input tokens, and simple hyper-parameter heuristics. Using our pro-

posed pipeline, we were able to train many multi-task models with varying datasets

– assessing the relationships between different vision-and-language tasks in terms of

their performance when trained together.

To summarize, we make the following contributions:

– We systematically analyze the joint training relationships between different of

vision-and-language datasets and tasks and present a Clean V&L Multi-Task setup,

which ensures no train-test leaks across task.

– We develop a single multi-task model trained on 12 popular V&L datasets. Com-

pared to a set of independent models, this represents a reduction from ∼3 billion

parameters to ∼270 million while simultaneously improving average performance

by 2.05 points.

– We demonstrate that multi-task training is useful even in cases where single-task

performance is paramount. On average, fine-tuning from our multi-task model

for single tasks resulted in an average improvement of 2.98 points over baseline

single-task trained models.
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7.2.1 Vision-and-Language Tasks

Task-Groups and Datasets

We consider 12 popular vision and language datasets. These datasets cover a wide

range of tasks and require diverse grounding granularity and reasoning skills. We

group related datasets into four groups to facilitate our analysis:

Vocab-based VQA. Given an image and a natural-language question, select an

answer from a fixed vocabulary. We consider three popular datasets for this group –

VQAv2[101], GQA [197], and Visual Genome (VG) QA [120].

Image Retrieval. Given a caption and a pool of images, retrieve the target image

that is best-described by the caption. We consider COCO[49] and Flickr30K[160]

captioning datasets for this task-group.

Referring Expressions. Given a natural language expression and an image, identify

the target region that is referred to by expression. The expression can vary greatly

across datasets from simple noun phrases to multi-round dialogs. We consider phrase

grounding in RefCOCO(+/g) [193, 198], Pointing questions in Visual7W [199], and

dialog sequences in the GuessWhat [109]. We note that these language inputs vary

significantly in terms of detail and structure.

Multi-modal Verification. Given one or more images and a natural language

statement, judge the correctness or predict their semantic relationship. We consider

NLVR2 [200] and SNLI-VE [201]. In NLVR2, two images are given and the statement

must be true for both to be true. In SNLI-VE, image-statement pairs are classified as

representing an entailment, contradiction, or neutral. That is, whether the content

of the image confirms, refutes, or is insufficient to comment on the truth of the

corresponding statement.
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Table 7.4: Percentage of row-task test images that are present in column-tasks
train/val images.

% Row-Task Test Images in Column-Task Train/Val Set
[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L]

[A] VQA2.0[101] 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
[B] VG QA[120] 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
[C] GQA[197] 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
[D] COCO[49] 100% 43% 33% 0% 0% 0% 0% 0% 7% 46% 0% 0%
[E] Flickr30k[160] 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 98% 0%
[F] RefCOCO[193] 100% 36% 27% 100% 0% 0% 0% 66% 8% 62% 0% 0%
[G] RefCOCO+[193] 100% 38% 27% 100% 0% 0% 0% 66% 8% 62% 0% 0%
[H] RefCOCOG [198] 100% 41% 31% 100% 0% 53% 53% 0% 8% 63% 0% 0%
[I] Visual 7W [199] 50% 100% 79% 48% 0% 8% 8% 10% 0% 24% 0% 0%
[J] GuessWhat[109] 100% 40% 31% 96% 0% 20% 20% 26% 7% 0% 0% 0%
[K] SNLI-VE[201] 0% 0% 0% 0% 94% 0% 0% 0% 0% 0% 0% 0%
[L] NLVR2 [200] 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

A Clean V&L Multi-Task Setup

Many V&L tasks are built on top of each other and share significant overlap in

terms of individual images. However, as each task is often examined in isolation,

there does not exist an in-depth analysis of this overlap across different V&L tasks.

Table. 7.4 shows the percentage of test images for the target tasks which are present

in other tasks’ train/val sets. As we can see, there exists significant overlap across

tasks. Even though different tasks require different inputs and outputs, other task

annotations will provide clues about the visual grounding – for example, a referring

expression for a “blue striped ball” at training could unfairly improve a VQA model’s

ability to answer “What color is the striped ball?” for the same image at test time. To

avoid information leakage from the annotations of other tasks, we propose a cleaned

multi-task split for V&L tasks where test images are removed from train/val for all

the tasks. We stress that the test sets are not modified in any way such that our

results are comparable to prior work. Cleaning results in about 11% reduction in

training data on average across datasets. Full details of this process and statistics

regarding cleaned dataset size are available in the supplement.
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7.2.2 Approach

Base Architecture

Our base architecture is ViLBERT, which is introduced in previous section. We

make two important modifications to this pretraining process. First, when masking

visual regions we also mask other regions with significant overlap (large than 0.4

IoU) to avoid leaking visual information. This forces the model to rely more heavily

on language to predict image content. Second, we do not enforce the masked multi-

modal modelling loss when sampling a negative (unmatching) caption for multi-modal

alignment prediction. This will effectively remove the noise introduced by negative

samples. While orthogonal to our primary contribution of multi-task learning, we

found these modifications to make the baseline model more effective. For further

discussion, see the supplemental material. All models we present are first pretrained

in this manner.

Multi-Task Learning

We consider a simple multi-task model where each task has a task-specific ‘head’

network that branches off a common, shared ‘trunk’ ViLBERT model.As such, we

learn shared trunk parameters θs and a set of task-specific layers {θt}Tt=1 for T tasks.

Our goal is to learn parameters θs∪{θt}Tt=1 that minimize loss across all tasks. Details

on heads and other modifications follow.

Task Token. While relying on the same groundings, different tasks may still re-

quire the model to process inputs differently – e.g. referring expressions just require

grounding while VQA must follow grounding with additional reasoning. To enable

this, we augment the query with a task token TASKt such that the new input format

is {IMG, v1, . . . , vn, CLS, TASKt, w1, . . . , wm, SEP}. The architecture can then leverage

this task information in a bottom-up manner. In what follows, we describe the task-
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specific heads by task groups.

Vocab-Based VQA Output: We compute a overall image-query representation as

an element-wise product between the holistic hIMG and hCLS representations. As in

[163, 197], we treat vocab-based VQA as a multi-label classification task – assigning

a soft target score to each answer based on its relevancy to the ground truth answer.

We compute scores for a set of the pre-defined answers A by using a two-layer MLP

on top of the overall representation:

Pv(A|I,Q) = σ(MLP(hIMG � hCLS)) (7.1)

where σ is the sigmoid function. Due to the answer vocabulary differences, VQA and

VG QA share the MLP and answer vocabulary while GQA learns a separate one.

Image Retrieval Output: Using the same overall representation, we compute an

alignment score between image-caption pairs as:

Rel(I,Q) = Wi(hIMG � hCLS) (7.2)

where Wi ∈ Rd×1 is shared across COCO and Flickr30k image retrieval tasks As in

[42], we train a 4-way multiple-choice against hard-negatives selected off-line and then

fixed. Recent work has used online hard-negative mining [202, 46] but this is costly

to compute.

Referring Expressions Output: We rerank a set of region proposals [194] given

the referring expression. We pass the final representation hvi for each image region i

into a learned projection Wr ∈ Rd×1 to predict a matching score.

Rel(vi, Q) = Wrhvi (7.3)

Note that Q may be either a phrase, question or dialog based on different tasks (Ref-
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COCO+/g, Visual7W, GuessWhat). Wr is shared across all the referring expression

tasks.

Multi-modal Verification Output: Taking NLVR2 as an example, the input is

a concatenation of two images (I0 and I1) and a statement Q, that the model must

judge the validity of the statement given the images. We consider this a classification

problem given an embedding that encodes the two image-statement pairs (I0, Q) and

(I1, Q). The output probability is predicted by a 2-layer MLP with softmax:

Pv(C|I0, I1, Q) = softmax

MLP


h0

IMG � h0
CLS

h1
IMG � h1

CLS



 (7.4)

where [ ] is concatenation. For SNLI-VE, the input is a single image and statement.

We thus learn a separate classifier of the same form that predicts the sentiment

(entailment, neutral, contradiction) from the inputs.

Large-Scale Multitask Training

With 6 task heads, 12 datasets, and over 4.4 million individual training instances

– training our multi-task ViLBERT model is a daunting proposition. Multi-task

learning (especially at this scale) poses significant challenges as learning objectives

have complex and unknown dynamics and may compete [134]. Further, vision-and-

language datasets vary significantly in size and difficulty. For instance, a single epoch

of VG (our largest dataset) corresponds to 19.8 epochs of RefCOCOg (our smallest).

Likewise, when trained in isolation RefCOCOg converges in 5K iterations whereas

VQA takes 84K iterations (over 16 times more). Below, we describe the details of

our multi-task training approach and techniques to overcome these challenges.

Pretraining. All our models are pretrained on Conceptual Caption dataset [38]

including our self-supervised task modifications.

Round-Robin Batch-Level Sampling. We consider a round-robin batch-level
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Algorithm 1: DSG for Multi-Task Learning
nt ← number of iterations per epoch for task t
∆← size of gap between iterations in stop mode
DSGt ← go
for i ← 1 to MaxIter :

for t ∈ Tasks :
if DSGt = go or (DSGt = stop and i mod ∆ = 0) :

Compute task loss Lt(θ) and gradient ∇t(θ)
Update θ ← θ − ε∇t(θ), where θ = θs ∪ θt

if i mod nt = 0 :
Compute validation score st on task t
if DSGt =go and Converged (st) :

DSGt ← stop
else if DSGt =stop and Diverged (st) :

DSGt ← go
end

end

sampling regime that cycles through each task from the beginning of multi-task train-

ing. As such, one multi-task iteration consists of each task forwarding a batch and

updating parameters in sequence.

Dynamic Stop-and-Go. As noted earlier, different tasks have different difficulties

and dataset sizes. Consequentially, simply cycling through all tasks may drastically

over-train smaller tasks leading to overfitting. Typically early-stopping provides a

strong defense to this phenomenon; however, stopping a task in multi-task training

introduces problems with catastrophic forgetting as the base network drifts over time

due to other tasks. We introduce an intuitive but effective dynamic stop and go (DSG)

mechanism to avoid these problems. We monitor the validation loss st of each task

t, computing it once per task epoch. If performance improvement is less than 0.1%

over 2 epochs, we consider it Converged and shift it into stop mode. In DSG stop

mode, a task only updates every iter-gap (∆) iterations. If validation performance

degrades by 0.5% from the task’s best measured performance while in stop mode,

the task is considered Diverged and is returned to DSG go. This procedure is shown

in Algorithm 1.

Curriculum Learning. Inspired by prior multi-task literature [203] [129], we exper-

imented with both curriculum and anti-curriculum strategies based on task difficulty.
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Specifically, for anti-curriculum we first train on the slowest-converging task-group G1

(Vocab-Based VQA) before starting full round-robin multi-task training. Inversely

for the curriculum setting we first train on our fastest-converging task-group G3 (Re-

ferring Expressions). Different from previous observation [129, 137], we found that

using no curriculum lead to superior performance when combined with other strate-

gies proposed in this section.

Table 7.5: Comparison of our multi-task models to single-task performance. We
find multi-task training (rows 3-5) provides significant gains over single-task training
(rows 1-2) while reducing the parameter count from over 3 billion to 270 million.
Further, following multi-task training by task-specific fine-tuning (rows 6-9) further
gains can be made at the cost of increased parameters.

Vocab-based VQA (G1) Image Retrieval (G2) Referring Expression (G3) Verification (G4)

VQAv2 GQA VG QA COCO Flickr30k COCO COCO+ COCOg V7W GW NLVR2 SNLI-VE
# params

(# models)
All Tasks
AverageClean test-dev test-dev val test(R1) test(R1) test test test test test testP test

1 Single-Task (ST) 71.82 58.19 34.38 65.28 61.14 78.63 71.11 72.24 80.51 62.81 74.25 76.72 3B (12) 67.25
2 Single-Task (ST) 3 71.24 59.09 34.10 64.80 61.46 78.17 69.47 72.21 80.51 62.53 74.25 76.53 3B (12) 67.03

3 Group-Tasks (GT) 3 72.03 59.60 36.18 65.06 66.00 80.23 72.79 75.30 81.54 64.78 74.62 76.52 1B (4) 68.72
4 All-Tasks (AT) 3 72.57 60.12 36.36 63.70 63.52 80.58 73.25 75.96 82.75 65.04 78.44 76.78 270M (1) 69.08
5 All-Tasksw/o G4 3 72.62 59.55 36.76 64.46 64.18 80.43 73.40 76.43 82.99 64.80 - - 266M (1) -

6 GT finetune−−−−−→ST 3 72.61 59.96 35.81 66.26 66.98 79.94 72.12 75.18 81.57 64.56 74.47 76.34 3B (12) 68.81
7 AT finetune−−−−−→ST 3 72.92 60.48 36.56 65.46 65.14 80.86 73.45 76.00 83.01 65.15 78.87 76.73 3B (12) 69.55
8 AT finetune−−−−−→ST 73.15 60.65 36.64 68.00 67.90 81.20 74.22 76.35 83.35 65.69 78.87 76.95 3B (12) 70.24

Setting Multi-Task Hyperparameters. We follow a simple design philosophy –

identify simple heuristics based on hyper-parameters tuned for each task in single-

task training. This significantly reduces the burden of searching for joint-training

hyper-parameters.

Batch Size: For multi-task, we keep the batch size tuned for single-task training for

each task.

Warm-up Duration: We found it important to set warm-up duration relative to the

largest dataset. Specifically, we run linear warm-up over η ∗N iterations where N is

the max. number of iterations taken to train any dataset in the single-task setting.

We observe significant performance degradation for harder tasks when warm-up was

shorter. We set η to 0.1 for our experiments.

Loss Scaling: Our model has shared and task-specific parameters and we found it
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Table 7.6: Pair-wise (left) and triple-wise (right) inter-group representative task anal-
ysis. Each entry is the relative performance change from single-task training for the
row-task when jointly trained with the column-task(s).

Trained With Trained With
G1 G2 G3 G4 Avg. G1 & G2 G1& G3 G1 & G4 G2 & G3 G2 & G4 G3 & G4 Avg.

R
el

at
iv

e
PE

R
F G1 (VQAv2) - 0.38% 0.38% -0.20% 0.19% - - - 0.63% -0.08% 0.18% 0.24%

G2 (Flickr30k) 0.46% - 0.23% -4.13% -1.15% - 1.24% 0.49% - - -4.36% -0.88%
G3 (Visual7W) 0.39% 0.78% - 0.24% 0.47% 0.86% - 0.19% - 0.29% - 0.44%
G4 (NLVR2) 2.29% 1.47% 0.67% - 1.48% 3.69% 3.22% - 2.73% - - 3.21%
Avg. 1.04% 0.88% 0.43% -1.36% - 2.27% 2.23% 0.34% 1.68% 0.10% -2.09% -

important to maintain separate learning rates. For the shared base model, we set the

the base learning rate to the minimum over all single-task dataset parameters. To

accommodate variable learning rates for each dataset, we scale the task loss for each

dataset by the ratio of task target learning rate over base learning rate.

Implementation Details. Image features are from a ResNeXT-152 [204] based

Faster-RCNN [156] trained on Visual Genome [120] with attribute loss. Our model

first initialized from pretrained BERT weights [15]. Our models are trained using

AdamW optimizer [205] with a linear warmup and linear decay learning rate scheduler.

We train our multi-task model for 40K total iterations (same as number of iterations

for VG QA single task) on 8 NVIDIA V100 GPUs for 5 days. See the supplement for

a full list of per task learning rates, batch sizes, and hyperparameter settings.

7.2.3 Experiments and Results

Single-Task Performance

To establish baseline performance for the ViLBERT architecture that forms the back-

bone of our multi-task experiments, we first train single-task models on top of the

base ViLBERT architecture for each of our 12 datasets. Rows 1 and 2 in Table. 7.5

show the performance of these models trained on the full and cleaned datasets, re-

spectively. As expected, reducing the training set size through cleaning results in

lower performance in most cases. Our improvements over the pretraining objective

results in better downstream tasks performance (71.82 vs. 70.55 on VQA and 61.46
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vs. 58.20 on Flickr30k Recall@1). See the supplementary for full comparison. Overall,

our base architecture is competitive with prior work and a good starting point for

multi-task learning.

Intra-Group Multi-task Performance

We begin with the most intuitive multi-task setting – jointly training tasks within

the same groups. As grouped tasks are typically highly related, this is akin to some

existing data augmentation practices (e.g. adding Visual Genome (VG) QA data

when training VQA). Note this corresponds to four separate multi-task models – one

for each group.

Table. 7.5 row 3 shows the result of intra-group multi-task training. Comparing

with single-task models trained on the same data (row 2), we see meaningful im-

provements of between 0.37% (NLVR2) and 4.54% (Flickr30k retrieval) points for 11

out of 12 tasks (only SNLI-VE did not improve). Comparing to row 1, we see that

intra-group multi-task training overcomes the data-loss from cleaning with an aver-

age score of 68.72, outperforming the single-task models trained on the full datasets

which have an average score of 67.25. Further, the total number of parameters drops

by a factor of 3× – going from 12 full models to only 4.

Inter-Group Multi-task Performance

Representative Task Analysis. We next consider the interplay between different

task-groups. For efficiency, we consider multi-task training with representative tasks

from each group – specifically VQA (G1), Retrieval Flickr30k (G2), Visual7W (G3),

and NLVR2 (G4). These were selected to maximize diversity in underlying image

sources. We examine their relationships by jointly training all pairs and triplets of

tasks under our multi-task training approach.

Table. 7.6 (left) shows the results of training each representative task pair. Each
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entry is the percent change from single-task performance for the row-task when jointly

trained with the column-task. As such, the Avg. row (bottom) shows the mean

impact each column-task has on other tasks, and likewise the Avg. column (right)

shows the mean impact other tasks have on each row-task. For instance, we find

that adding VQA (G1) benefits other tasks with an average improvement of +1.04%.

Interestingly, adding NLVR2 (G4) degrades other tasks on average (-1.36%) while

making significant gains itself (+1.48%). This is primarily due to a -4.13% interaction

with G2. Table 7.6 (right) shows all task triplets. Gains in the paired-experiments

are not simply additive. In the pair-wise analysis, G3 gained +0.39% and +0.78%

from G1 and G2 respectively. As before, G4 has some strong negative effects on other

groups (-4.36% G2 with G3 & G4) but these effects can be regulated by other tasks

(+0.49% G2 with G1 & G4).

Full Multi-task Results. We move to our main result – a single model trained on

all 12 datasets. The results of this All-Tasks (AT) model are shown in Table 7.5 row

4. This model outperforms independent single-task models trained on the same data

(row 2) for 11 out of 12 tasks and improve the average score by 2.05 points (69.08

vs. 67.03). We reiterate for emphasis, average performance improves by 2.05 points

while reducing the number of parameters from over 3 billion to 270 million (a 12×

reduction). This is also true for comparison with single-task models trained on full

datasets (row 1) by a similar margin of 1.83 points.

Our AT model also outperforms the Group-Task (GT) models (row 3) despite having

4x fewer parameters (avg. 69.08 vs 68.72). This implies that despite their diversity,

tasks across different groups can benefit from joint training.

We observed from the representative task analysis that G4 tends to have a neg-

atively effect other groups during joint training. To validate this observation on all

tasks, we train an All-Task model without G4 (row 5). This model achieves higher

avg. score of 67.56 for G1+G2+G3 compared to the full AT model’s 67.38.
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Table 7.7: Comparison to recent SOTA. For image retrieval (IR) COCO and Flickr
we report R1 scores on the 1K test set.

Task Split SOTA
UNITER [202] OursAT OursAT->ST

BERTB BERTL BERTB BERTB

VQA test-dev - 72.27 73.24 72.57 73.15
VG QA val - - - 36.36 36.64
GQA test-dev 60.00 [43] - - 60.12 60.65

IR COCO test (R1) 68.50 [46] - - 63.70 68.00
IR Flickr30k test (R1) - 71.50 73.66 63.52 67.90

RefCOCO test - 80.21 80.88 80.58 81.20
RefCOCO+ test - 72.90 73.73 73.25 74.22
RefCOCOg test - 74.41 75.77 75.96 76.35
Visual 7W test 72.53 [206] - - 82.75 83.35
GuessWhat test 61.30 [109] - - 65.04 65.69

NLVR2 testP - 77.87 79.50 78.44 78.87
SNLI-VE test - 78.02 78.98 76.78 76.95

# params
(# models)

602M
(7 x 86M)

2.1B
(7 x 303M)

270M
(1 x 270M)

3B
(12 x 250M)

Multi-Task Learning as Pretraining

For some applications, single task performance may be paramount and justify storing

a task-specific model. Even then, fine-tuning from a multi-task trained model may

allow the model to take advantage of the additional, diverse supervision captured

during multi-task training. Following [16], we finetune our trained multi-task models

(GT and AT) on each downstream task and show results in Table 7.5. Rows 6 and 7

show that finetuning from the all-task model (AT) outperforms finetuning from the

group-task models (GT) with an average score of 69.51 vs. 68.81. For comparison with

our multi-task models, these are finetuned on the cleaned datasets which are 11%

smaller on average. To compare to prior work, we also finetune on the full dataset for

individual tasks (Row 8) and observe further improvements. Recall that our multi-

task model was trained on cleaned data so there is no possibility of test leak here.

These model outperform single-task models without multi-task pretraining (row 1)

by a large margin (70.23 vs. 67.25 avg. score).
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Table 7.8: Comparison with other multi-task models. VQA score is on test-dev and
the retrieval tasks on their respective 1K test split. For Flickr Grounding (FG) we
report R1 on Flickr30K test.

VQA COCO Retrieval Flickr Retrieval FG

R1 R5 R10 R1 R5 R10 R1

OmniNet [136] 55.76 - - - - - - -
HDC [137] 69.28 57.40 88.40 95.60 56.10 82.90 89.40 57.39

Ours 72.70 65.16 91.00 96.20 65.06 88.66 93.52 64.61

Comparison with Existing Work

In Table 7.7 we compare with existing state-of-the-art. We draw special comparison

with the recent UNITER [202] architecture as it is similar to our base ViLBERT

model. Like ViLBERT, UNITER is a general BERT-based vision-and-language ar-

chitecture pretrained through self-supervised tasks and then finetuned for each down-

stream task. We show two UNITER columns corresponding to their underlying BERT

model – either Base B or Large L. Our ViLBERT model uses the smaller BERTB. Our

single all-task model (OursAT) achieves competitive performance to state-of-the-art

task-specific models. Our single-task finetuned models (OursAT->ST) surpass state-of-

the-art on 7 out of 12 tasks.

Table 7.8 compares our method with other recently proposed multi-modal, multi-

task learning approaches – OmniNet [136] and Hierarchical Dense Co-Attention (HDC)

[137]. OmniNet is trained on part-of-speech tagging, image captioning, visual question

answering, and video activity recognition, while HDC is trained on image caption re-

trieval, visual question answering, and visual grounding. We train a multi-task model

on the same tasks and cleaned datasets used in HDC [137]. Flickr Grounding is a new

task that we include for this comparison. Our multi-task model outperforms these

approaches by a large margin.
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7.2.4 Analysis and Ablation Study

Ablations on task token and training strategies. To verify our design choices,

we perform ablations for different task token granularity and multi-task training

strategies. The results are shown in Table 7.9. We report average group and overall

average performance. Detailed breakdown for each task can be found in supplement.

For task tokens, our default setting is with a different task token per dataset (12

total,(Row 1). We compare this with two ablations: one task token per output head

(4 total, Row 2) and no task tokens (Row 3). We observe that task-specific tokens

lead to better performance compared to head-based tokens (avg. 69.08 vs. 68.52) and

no task tokens (avg. 69.08 vs. 68.53). This shows that task-aware feature embedding is

useful even within the same output space; e.g. per-task tokens may help differentiate

noun phrases and pointing questions in Referring Expression.

For multi-task training schedule, we compare our dynamic stop-and-go (DSG) (Row

3) with Curriculum (Row 5) and Anti-Curriculum (Row 6) approaches. We consider

convergence rate as a measure of task difficulty. For Curriculum, we first train tasks

in G4 and then train all tasks together (easier −→ harder). For Anti-Curriculum, we

train G1 tasks first and then train on all tasks together (harder −→ easier). Table

7.9 shows our dynamic stop-and-go training schedule outperforms anti-curriculum

(avg. 68.53 vs. 67.98) and curriculum (avg. 68.53 vs. 67.24). Row 7 shows results of

a ‘vanilla’, round-robin training scheme with no task tokens or training scheduling.

The average score of vanilla multitask is close to anti-curriculum (67.92 vs. 67.98).

Consistent with prior work [129], performance on harder tasks (G1) is worse compared

to anti-curriculum. Our full training regime outperforms this significantly (avg. 69.08

vs. 67.92).

Behavior of Dynamic Stop-and-Go training. To characterize our dynamic

stop-and-go training scheme, we visualize the dynamic training schedule in Fig. 7.6

(left) – bold lines indicate normal go training and thin lines are stop states when

149



Table 7.9: Ablations on our design choices and comparison to curriculum and anti-
curriculum learning multi-task approaches.

Task
Token

Dynamic
Stop-and-Go G1 G2 G3 G4

All Tasks
Average

AT (our)
1 token per dataset X X 56.35 63.61 75.52 77.61 69.08
2 token per head X X 55.95 61.48 75.35 77.37 68.52
3 w/o task token X 55.67 62.55 75.38 76.73 68.53
4 w/o DSG X 55.50 62.92 75.24 76.31 68.52
5 w/ curriculum 54.68 61.21 75.19 76.70 67.24
6 w/ anti-curriculum 55.82 59.58 73.69 75.94 67.98
7 vanilla multitask 54.09 61.45 75.28 76.71 67.92
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Figure 7.6: Left: Visualization of Dynamic stop-and-go during multi-task training.
Solid line indicates in the go mode while thin line indicates stop mode. Right: Mean
accuracy (normalized group-wise for easier comparison) for each group with different
iter-gap ∆ for Dynamic stop-and-go .

datasets receive sparser updates at a fixed iteration gap (every 4th iteration here).

We see that smaller datasets quickly converge and enter stop state training early. As

the base model drifts over time, they periodically return to full go state training to

adjust. Interestingly, after some cycles of this, they enter the stop state and continue

with only sparse updates for the rest of training.

Another aspect of dynamic stop-and-go training is the sparsity of updates in the

stop state. Fig. 7.6 (right) shows the mean normalized accuracy for each group for

multi-task models trained with different iteration gaps (∆). We observe that raising

∆ (i.e. updating more sparsely) improves performance initially but degrades for larger
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values. Absolute and per-task scores are provided in the supplement.

Multi-Task visual grounding consistency. Given the common shared base

model, one question is whether multitask models exhibit more consistent visual

groundings than independent task-specific models. For example, does a model that

correctly answers “What color is the largest dog?” also correctly ground the re-

ferring expression “largest dog”? To assess this, we consider 1500 images from the

RefCOCO/+ test sets that also have VQA annotations such that for each image Ii

there are associated questions {q(i)} and referring expressions {r(i)}. To measure the

overlap in visual concepts between a question q(i)
j and reference r(i)

k , we count overlap-

ping nouns and adjectives (identified using a part-of-speech tagger) and denote this

d(q(i)
j , r

(i)
k ). Armed with this notion of similarity, we consider each question-reference

pair for each image (total 111,275 combinations) and compute a weighted accuracy.

A pair is considered correct if the question was answered correctly and the referent

was localized. Each pair is weighed by their overlap d(q(i)
j , r

(i)
k ). Note that if q(i)

j and

r
(i)
k do not have any common visual concept (d(q(i)

j , r
(i)
k )), the correctness of this pair

does not affect the overall metric.

We evaluate our Single-Task (ST), All-Task (AT), and finetuned from All-Task

(AT->ST) models on the proposed metric. AT consistently outperforms ST (55.40 %

vs. 58.30%) and AT->ST achieves the best performance (64.64%). This shows our

model trained on multiple tasks achieve better visual grounding consistency across

different tasks. Further analysis can be found in the supplement.

Regularizing effects of multi-task learning. We find multi-task training to have

a regularizing effect on tasks which overfit when trained separately. In Fig. 7.7 we

plot the training and validation curves for two tasks (SNLI-VE and Flickr Grounding)

where single task training overfits quickly. On the other hand when trained in a

multi-task setup with all other tasks, the validation score improves and there is no

overfitting.

151



Qualitative examples. Figure 7.8 shows example outputs of our models. Due to

space limitation, we provide extensive visualizations in the supplement.

7.2.5 Discussion

In this work, we develop a training regime and experimental setting for large-scale,

multi-modal, multi-task learning. As one part of this, we introduce a novel task

scheduling approach to help avoid over- or under-training tasks with differing sizes or

difficulties. Using this framework, we explore the relationships between 12 vision-and-

language datasets – our single multi-task model outperforms 12 single-task models.

We find multi-task training can lead to significant gains over independent task train-

ing. Further, we show that multi-task learning is an effective pre-training task for

training state-of-the-art single-task models.
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Figure 7.7: Multi-Task training acts as a regularizer.

Figure 7.8: Our single model (OurAT) can perform a multitude of V&L tasks: caption
and image retrieval, question answering, grounding phrases, guessing image regions
based on a dialog, verifying facts about a pair of images, natural language inferences
from an image, etc. Here we show outputs of our model for a variety of inputs (that
mimic tasks from the 12 datasets it has been trained on).
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CHAPTER 8

CONCLUSION

In this thesis, we studied how inducing appropriate grounding in models improves

multi-modal AI capabilities. Specifically, we walked through different approaches by

different vision and language tasks. We first collected a large scale visual question

answering dataset and provided various baselines to benchmark this task. To jointly

reason about image and question, we then proposed a co-attention mechanism that

can learn fine-grained grounding to answer the questions.

Next, we addressed the model designs for the sequence generation problem in

image captioning. We proposed an adaptive attention encoder-decoder framework

that decided how much new information the decoder wants to get from the image as

opposed to relying on the decoder itself when generating the next word. Even with

advanced attention mechanism, the model was still lack of visual grounding – halluci-

nating objects that do not appear in the image. We thus designed a novel framework

that can directly utilize the output of the object detector to generate captions. This

approach essentially serves as a ‘bridge’ between detection and captioning.

Third, we explored novel training paradigms to learn better visual grounding for

visual dialog. Compared to VQA and image captioning, visual dialog requires both

the ability of ‘understanding’ and ‘generation’ in the contexts. We studied both sides

of the visual dialog agents – questioner and answerer. For answerer which answers

visual questions in dialog, we proposed a novel discriminant perceptual loss that trans-

fers knowledge from a discriminative model to a generative model. For questioner, we

considered an image guessing game as a test-bed for balancing task performance and

language drift. Our Dialog without Dialog (DwD) task requires agents to generalize

from single round visual question generation with full supervision to a multi-round
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dialog-based image guessing game without direct language supervision. We further

proposed a novel training paradigm which first learns “how to speak” by pretraining

with a conditional variational auto-encoders and then learns “what to speak” by fine-

tuning with task-specific rewards with discrete latent space. I believe this is a solid

step to transfer interpretable and grounded language for goal-oriented tasks.

Finally, we studied general multi-modal AI models that can learn visual ground-

ings from massive meta-data on the internet and handle many vision and language

tasks at the same time. We thus first explored how to pretraining task-agnostic visi-

olinguistic representations which is useful for multiple vision and language tasks. Our

work represents a shift away from learning groundings between vision and language

only as part of task training and towards treating visual grounding as a pretrainable

and transferable capability. We further explored multi-task vision and language rep-

resentation learning. Our results not only show that a single model can perform all

these tasks, but also that joint training can lead to improvements on task metrics

compared to single-task training with the same architecture.

I believe that the research thrust explored in this thesis has value for the long-

term process in AI. The problem of learning grounding – the connection between

different modalities – is the core to improve multi-modal AI capabilities. From the

basic ‘late-fusion’ algorithms for VQA to the recent multi-task vision and language

representation learning that can handle 12 tasks simultaneously. We are witnessing a

great process in the vision and language communities. I am excited about the future

directions of progress in these areas.
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APPENDIX A

APPENDIX FOR KNOWING WHEN TO LOOK

A.1 COCO Categories Mapping List for Weakly-Supervised Localization

We first use WordNetLemmatizer from NLTK1 to lemmatize each word of the cap-

tion. Then we map “people”, “woman”, “women”, “boy”, “girl”, “man”, “men”,

“player”,“baby” to COCO “person” category; “plane”, “jetliner”, “jet” to COCO

“airplane” category; “bike” to COCO “bicycle” category; “taxi” to COCO “car”

category. We also change the COCO category name from “dining table” to “table”

while evaluation. For the rest categories, we keep their original names. We show the

visualization of bounding box in Fig. A.1

Figure A.1: Image attention visualization of word “of” on several images. For each
image pair, left: output of spatial attention model (no visual sentinel), right: output
of our adaptive attention model (with visual sentinel).

A.2 Adaptive attention across different datasets

We show the visual grounding probability for the same words across COCO and

Flickr30 datasets in Table A.1. Trends are generally similar between the two datasets.
1http://www.nltk.org/
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Table A.1: Visual grounding probabilities of the same word on COCO and Flickr30K
datasets.
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To quantify this, we sort all common words between the two datasets by their visual

grounding probabilities from both datasets. The rank correlation is 0.483. Words

like “sheep” and “railing” have high visual grounding in COCO but not in Flickr30K,

while “hair” and “run” are the reverse. Apart from different distributions of visual

entities present in the dataset, some differences may be a consequence of different

amounts of training data. Will add this to the paper.

A.3 More Visualization of Attention

Fig. A.2 and Fig. A.3 show additional visualization of spatial and temporal attention.

A.3.1 Visualization of Weakly Supervised Localization

Fig. A.4 shows the visualization of weakly supervised localization.
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Figure A.2: Visualization of generated captions and image attention maps on the
COCO dataset. Different colors show a correspondence between attended regions
and underlined words.

Figure A.3: Example of generated caption, spatial attention and visual grounding
probability.
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Figure A.4: Visualization of generated captions and weakly supervised localization
result. Red bounding box is the ground truth annotation, blue bounding box is the
predicted location using spatial attention map.
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APPENDIX B

APPENDIX FOR NEURAL BABY TALK

The COCO [5] dataset does not have bounding box annotations associated with

specific phrases or entities in the caption. We use category level detection annotations

and create a category mapping list that maps the object categories like <Person> to

a list of potential fine-grained labels like [“child”, “man”, “baker”,...]. We first use

the Stanford lemmatization toolbox [161] to get the base form of the entity words

in the caption. For each category class, we retrieve the top 200 similar words in the

WordVec [207] space. We then manually verify each word in the list, resulting in 413

fine-grained classes. A complete list of the fine-grained class for each object category

can be found in Table B.1 and Table B.3.

161



Table B.1: COCO category mapping list for visual words.

Object category Fine-grained class

<person> person, girl, boy, man, woman, kid, child, chef, baker, people, adult,
rider, children, baby, worker, passenger, sister, biker, policeman,
officer, lady, cowboy, bride, groom, male, female, guy, traveler, mother,
father, gentleman, pitcher, player, skier, snowboarder, skater, skateboarder,
foreigner, caller, offender, coworker, trespasser, patient, politician, soldier,
serviceman, walker, drinker, doctor, bicyclist, thief, buyer, teenager, student,
camper, driver, solider, hunter, shopper, villager, cop, grandchild

<bicycle> bicycle, bike, unicycle, minibike, trike
<car> car, automobile, van, minivan, sedan, suv, hatchback, cab, jeep,

coupe, taxicab, limo, taxi
<motorcycle> motorcycle, scooter, motor bike, motor cycle, motorbike, moped
<airplane> airplane, jetliner, plane, air plane, monoplane, aircraft,

jet, airbus, biplane, seaplane bus, minibus, trolley
<bus> bus, minibus, schoolbus, trolley
<train> train, locomotive, tramway, caboose
<truck> truck, pickup, lorry, hauler, firetruck
<boat> boat, ship, liner, sailboat, motorboat, dinghy, powerboat, speedboat,

canoe, skiff, yacht, kayak, catamaran, pontoon, houseboat, vessel,
rowboat, trawler, ferryboat, watercraft, tugboat, schooner, barge, ferry,
sailboard, paddleboat, lifeboat, freighter, steamboat, riverboat,
surfboard, battleship, steamship

<traffic light> traffic light, street light, traffic signal, stop light, streetlight, stoplight
<fire hydrant> fire hydrant, hydrant
<stop sign> stop sign, street sign
<parking meter> parking meter
<bench> bench, pew
<cat> cat, kitten, feline, tabby
<dog> dog, puppy, beagle, pup, chihuahua, schnauzer, dachshund, rottweiler, canine,

pitbull, collie, pug, terrier, poodle, labrador, doggie,
doberman, mutt, doggy, spaniel, bulldog, sheepdog, weimaraner, corgi, cocker,
greyhound, retriever, brindle, hound, whippet, husky

<horse> horse, colt, pony, racehorse, stallion, equine, mare, foal, palomino, mustang,
clydesdale, bronc, bronco

<sheep> sheep, lamb, goat, ram, cattle, ewe
<cow> cow, cattle, oxen, ox, calf, ewe, holstein, heifer, buffalo, bull, zebu, bison
<elephant> elephant
<bear> bear, panda
<zebra> zebra
<giraffe> giraffe
<backpack> backpack, knapsack
<umbrella> umbrella
<handbag> handbag, handbag, wallet, purse, briefcase
<tie> tie
<suitcase> suitcase, suit case, luggage
<frisbee> frisbee
<skis> skis, ski
<snowboard> snowboard
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Table B.2: COCO category mapping list for visual words (continued).

Table B.3: COCO category mapping list for visual words (continued).

Object category Fine-grained class

<sports ball> sports ball, baseball, ball, football, soccer, basketball, softball,
volleyball, pinball, fastball, racquetball

<kite> kite
<baseball bat> baseball bat
<baseball glove> baseball glove
<skateboard> skateboard
<surfboard> surfboard, longboard, skimboard, shortboard, wakeboard
<tennis racket> tennis racket
<bottle> bottle
<wine glass> wine glass
<cup> cup
<fork> fork
<knife> knife, pocketknife, knive
<spoon> spoon
<bowl> bowl, container, plate
<banana> banana
<apple> apple
<sandwich> sandwich, burger, sub, cheeseburger, hamburger
<orange> orange, lemons
<broccoli> broccoli
<carrot> carrot
<hot dog> hot dog
<pizza> pizza
<donut> donut, doughnut, bagel
<cake> cake, cheesecake, cupcake, shortcake, coffeecake, pancake
<bird> bird, ostrich, owl, seagull, goose, duck, parakeet, falcon, robin, pelican,

waterfowl, heron, hummingbird, mallard, finch, pigeon, sparrow,
seabird, osprey, blackbird, fowl, shorebird, woodpecker, egret, chickadee,
quail, bluebird, kingfisher, buzzard, willet, gull, swan, bluejay, flamingo,
cormorant, parrot, loon, gosling, waterbird, pheasant, rooster, sandpiper,
crow, raven, turkey, oriole, cowbird, warbler, magpie, peacock, cockatiel,
lorikeet, puffin, vulture, condor, macaw, peafowl, cockatoo, songbird

<chair> chair, seat, recliner, stool
<couch> couch, sofa, recliner, futon, loveseat, settee, chesterfield
<potted plant> potted plant, houseplant
<bed> bed
<dining table> dining table, table
<toilet> toilet, urinal, commode, lavatory, potty
<tv> tv, monitor, televison, television
<laptop> laptop, computer, notebook, netbook, lenovo, macbook
<mouse> mouse
<remote> remote
<keyboard> keyboard
<cell phone> cell phone, mobile phone, phone, cellphone, cellphone,

telephone, phon, smartphone, iPhone
<sink> sink
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Object category Fine-grained class

<refrigerator> refrigerator, fridge, refrigerator, fridge, freezer, refridgerator, frig
<book> book
<clock> clock
<vase> vase
<scissors> scissors
<teddy bear> teddy bear, teddybear
<hair drier> hair drier, hairdryer
<toothbrush> toothbrush
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APPENDIX C

APPENDIX FOR DIALOG WITHOUT DIALOG

C.1 Additional Results

Experiments in the main paper considered dialog performance after the first round

(top of Table 1) and at the final round of dialog (either 5 or 9 depending on pool

size). This does not give much sense for how dialog performance increases over rounds

of dialog, so we report Q-Bots guessing game performance at each round of dialog

in Fig. C.1. For all fine-tuned models performance goes up over multiple rounds of

dialog, though some models benefit more than others. Stage 1 models decrease in

performance after round 1 because it is too far from the training data such models

have been exposed to.

C.2 Mechanical Turk Studies

In the experiments section we described two studies where we asked humans to com-

pare questions.

In the relevance study turkers were presented with the interface depicted in

Fig. C.2. It asked them to compare questions based on their relevance to any image

in the image pool. The question with higher relevance should have been picked even

if the question was not very grammatical. All model pairs were evaluated for each

pool of images. The questions were presented in a random order, though the Equally

relevant option was always last.

In the fluency study (Fig. C.3) turkers were presented with the same pairs of

questions as in the relevance interface but they were not given image pools with

which to associate the questions. We asked them to compare questions based on how
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Figure C.1: Task performance (guessing game accuracy) over rounds of dialog. Per-
formance increases over rounds for all models except the Stage 1 models.

well they could be understood. As in the relevance study questions were presented in

a random order.

In the figure 4, we display the interface which was used to pair up the QBot with

a human in real time. The QBot asks a question in order to guess the target image

and a human answers the question by looking at the target image. This sequence of

question/answer starts with a random guess from QBot and goes on for 4 Rounds.
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Figure C.2
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Figure C.3

Figure C.4
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APPENDIX D

APPENDIX FOR MULTI-TASK VISION AND LANGUAGE

REPRESENTATION LEARNING

we first show the full details of the cleaned dataset in Sec. D.1. We further discuss the

modifications in pretraining, show our multi-task model architecture and describe the

implementation details in Sec. D.2, Sec. D.3 and Sec. D.4 respectively. The rest of the

section provides extensive experiment results to fully analyze our proposed model.

D.1 Datasets

Table D.1 shows the number of images in the train+val and test sets before and after

cleaning. Our cleaning process removes 13.02% of the total number of images on

average. It is important to note that here we show the number of images per dataset

and not number of actual training samples. Different tasks have different number of

training samples for each image. For details on training samples please refer Table

D.2. We collect the union of all dataset test sets and remove any occurrence of these

images from all training and validation sets; in this way we arrive at the Clean training

and validation sets. With this strategy, the test sets of the original datasets are not

modified in any way.

D.2 Improvements over ViLBERT Pretraining

In this section, we discuss in detail the modification we made to the base ViLBERT

pretraining approach.

Masked prediction with mislaigned pairs. In the original ViLBERT pretraining

procedure, the model observes an image and caption as inputs. The caption is either

169



Table D.1: Number of images in the train+val and test sets before and after cleaning.
We use the training part of the cleaned dataset in the multi-task experiments. Note
that this is not the number of training samples but the number of images in the
dataset.

Train+Val Test Cleaned Train+Val % Removed
[A] VQA2.0[101] 123,287 81,434 98,861 19.81
[B] VG QA[120] 108,249 - 92,147 14.87
[C] GQA[197] 82,374 2,987 69,868 15.18
[D] COCO Retrieval[49] 118,287 5,000 99,435 15.93
[E] Flickr30k Retrieval [160] 30,014 1,000 29,077 3.12
[F] RefCOCO[193] 18,494 1,500 14,481 21.69
[F] RefCOCO+[193] 18,492 1,500 14,479 21.70
[H] RefCOCOG [198] 23,199 2,600 17,903 22.82
[I] Visual 7W [199] 17,953 7,780 16,415 8.56
[J] GuessWhat[109] 56,638 9,899 51,291 9.44
[K] SNLI-VE[201] 30,783 1,000 29,808 3.16
[L] NLVR2 [200] 95,522 8,056 95,522 0
Average - - - 13.02

obtained from the paired caption (with p = 0.5) or a randomly sampled misaligned

caption from the dataset. The multi-modal alignment prediction task, which predicts

whether the image and caption are aligned, is crucial for image retrieval tasks [42,

43, 46]. Recent work [47] has questioned the necessity of the multi-modal alignment

prediction task and observed better performance on non-image retrieval tasks without

this pretraining objective. Similar observations are also found in the natural language

understanding tasks [208, 118, 209, 210]. Digging further into this, we find that

both the alignment and prediction tasks are typically done together. For misaligned

image-caption pairs, this amounts to forcing the model to predict missing image or

text regions based on incorrect paired data! We find the model will learn worse

context representations in this setup. Instead of removing the multi-modal alignment

prediction task, we only perform the mask multi-modal modelling task on aligned

image-caption pairs. This will effectively remove the noise introduced by negative

samples.
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Masking overlapping regions. Different from words embedding in the caption,

visual feature embeddings (extracted from a pretrained Faster-RCNN [156]) have

a lot of repetitions due to overlapped image regions. To avoid visual clue leakage

from the visual embedding of other elements, VL-BERT [47] sets the pixels laid in

the masked RoI to zeros before applying Faster R-CNN. However, overlapped image

patches with boundary information may still leak the visual clues for the masked

RoI. We mask the overlapped image regions in a more aggressive manner – any visual

embedding that overlaps a masked region by 40% IOU or more is also masked. We

observe significant improvements over the ViLBERT model as shown in Table D.3

when comparing column ViLBERT with OursST.

D.3 Model Architecture

Fig. D.1 shows the architecture of the our model for V&L multi-task learning, which

is described in Sec. 7.2.2. We use ViLBERT as our base model shared across dif-

ferent tasks. For the task-specific heads, our model jointly train with four different

task group – Vocab-Based VQA; Image Retrieval, Refer Expression and Multimodal

Verification.

D.4 Implementation Details

Image features are extracted from a ResNeXT-152 Faster-RCNN model trained on

Visual Genome(VG) with attribute loss. We use AdamW optimizer and warmup

linear schedule. Hyperparameters like learning rate and batch sizes used for each

task are listed in Table D.2. We also report the number of training samples used in

various settings in our experiments.

171



ℎ"# ℎ"$ ℎ"% ℎ"&

<TASK> Tok1 <SEP>

…

…

Query

<CLS>…

Image

ℎ"# ℎ"$ ℎ"% ℎ"&…

<IMG>

MT-VL

Vocab-Based
VQA

𝑃( 𝐴 𝐼, 𝑄

Image
Retrieval
Rel(𝐼, 𝑄)

Refer
Expression
Rel(𝑣3, 𝑄)

Multimodal
Verification
𝑃( 𝐶 𝐼5, 𝐼6, 𝑄

Sh
ar
ed

Ta
sk

sp
ec

ifi
c

Figure D.1: Architecture of the our model for V&L multi-task learning. We augment
the input query with a task token to learn the task-aware feature embedding.

D.5 Multi-Task Training

To further illustrate the multi-task training process, in Fig. D.2 we show the training

curves for single-task vs. multi-task for all the 12 tasks in our setup. Green lines show

single-task training and blue lines show multi-task training. Since we train the model

with maximum iterations across different datasets for multi-task training, for some

smaller datasets (e.g. RefCOCO, Visual7W etc.), the number of iterations for single

task is much smaller compared to the multi-task setting. By comparing the training

curves of single-tasks and multi-tasks, we can see that most of the tasks have similar

training curves. However, the tasks in the vocab-based VQA group benefit from the

multi-task training with faster convergence within first 10000 iterations.

D.6 Comparison with other SOTA

Table D.3 shows the detailed comparison of OursST (also shown in Table 7.5, line 1)

and OursAT->ST (also shown in Table 7.5, line 8) with the recent SOTA approaches,

inlcuding ViLBERT [42], Unicoder-VL [46], VisualBERT [44], LXMERT [43] and
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Table D.2: Training details including sample sizes, testing metric and hyperparame-
ters for single task and multi-task training.

Samples Hyperparams
Full Train Cleaned Train Test Metric BS LR

[A] VQA2.0[101] 655,111 542,104 447,793 VQA Accuracy 128 4e-5
[B] VG QA[120] 1,437,931 1,294,255 5,000 VQA Accuracy 128 4e-5
[C] GQA[197] 1,072,062 962,928 12,578 VQA Accuracy 128 4e-5
[D] IR COCO [49] 566,747 487,600 1,000 Recall @ 1, 5, 10 128 2e-5
[E] IR Flickr30k [160] 145,000 140,485 1,000 Recall @ 1, 5, 10 128 2e-5
[F] RefCOCO[193] 120,624 96,221 10,752 Accuracy 256 2e-5
[F] RefCOCO+[193] 120,191 95,852 10,615 Accuracy 256 2e-5
[H] RefCOCOG [198] 80,512 65,514 9,602 Accuracy 256 2e-5
[I] Visual 7W [199] 93,813 93,813 57,265 Accuracy 256 2e-5
[J] GuessWhat[109] 113,221 100,398 23,785 Accuracy 64 2e-5
[K] NLVR2 [200] 86,373 86,373 6,967 Accuracy 64 2e-5
[L] SNLI-VE[201] 529,527 512,396 17,901 Accuracy 256 2e-5
Total 5,021,112 4,477,939 604,258 - - -

UNITER [202]. Most of the recent proposed methods follows the pretrain-then-

finetune scheme, usually pretraining on out-of-domain data or in-domain data. The

out-of-domain data contains Conceptual Caption Dataset (CC) [38] and SBU dataset

[211] while in-domain data contains COCO [49] and Visual Genome [120]. Pre-

training on the in-domain datasets usually leads to better downstream performance,

since there is less domain transfer from pretraining to finetuning. Similar to ViL-

BERT, we pretrain our model on CC, which is different from VLBERT (CC + Wiki

Corpus), VisualBERT (CC + COCO), LXMERT (COCO + VG) and UNITER (CC

+ SUB + COCO + VG). We achieve comparable performance with less pretrained

data. The table also shows the improvements in Sec D.2 result in better performance

for ViLBERT model.

D.7 Full Breakdown of Ablation Study

Table D.4 shows the full breakdown of paper’s ablation results and Fig. 7.6 per task in

the main paper. RC refers to Retrieval COCO and RF refers to Retrieval Flickr30k.
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Figure D.2: Training curves on train set for OursST (Table 7.5 Row 2) vs OursAT

(Table 7.5 Row 4) models for all the 12 tasks in our experiments. Green lines show
single-task training(OursST) and blue lines show multi-task training(OursAT). Note
that all these training are with the Clean V&L setup. We can observe that for some
of the tasks the training for OursST are shorter as they have fewer number of iterations
when trained alone. Please refer to Sec. D.5 for more details.

VQA and GQA are evaluated on test-dev splits. Retrieval COCO and Flickr30k

are evaluated on their respective 1K test split. NLVR2 is evaluated on testP split.

All other datasets are evaluated on their respective test splits. Table D.5 shows the

full scores for each task for different DSG iteration gap (∆).

D.8 Multi-task visual grounding consistency

In Sec. 7.2.4, we propose the multi-task visual grounding consistency. We explain

the proposed metric in more details. Given N images with RefCOCO/+ refer ex-

pression and VQA questions, we want to test that whether multi-task models exhibit
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Table D.3: Comparison of OursST (Table. 7.5 Row 1) and OursAT->ST (Table. 7.5 Row
8) models on full dataset with other SOTA methods. Results for RefCOCO and
RefCOCO+ are reported on the full test split (testA + testB). Refer to Sec D.6 for
more details.

Tasks SOTA ViLBERT VLBERT Unicoder-VL VisualBERT LXMERT UNITER OursST OursAT->STBASE LARGE

Pretraining Data CC CC + Wiki Corpus CC CC + COCO COCO + VG CC+SUB+COCO+VG CC CC

VQA test-dev 70.63 70.55 70.50 - 70.80 72.42 72.27 73.24 71.82 73.15

VG QA val - - - - - - - - 34.38 36.64

GQA test-dev - - - - - 60.00 - - 58.19 60.65

IR COCO
R1 61.60 - - 68.50 - - - - 65.28 68.00
R5 89.6 - - 92.70 - - - - 91.02 92.38
R10 95.2 - - 96.90 - - - - 96.18 96.52

IR Flickr
R1 48.60 58.20 - 68.30 - - 71.50 73.66 61.14 67.90
R5 77.70 84.90 - 90.30 - - 91.16 93.06 87.16 89.60
R10 85.20 91.52 - 94.60 - - 95.20 95.98 92.30 94.18

Visual 7W test 72.53 - - - - - - - 80.51 83.35

Ref-COCO test 77.12 - - - - - 80.48 80.88 78.63 81.20

Ref-COCO+ test 67.17 70.93 69.47 - - - 73.26 73.73 71.11 74.22

Ref-COCOg test 69.46 - - - - - 74.51 75.77 72.24 76.35

GuessWhat test 61.30 - - - - - - - 62.81 65.69

NLVR2 test-P 53.50 - - - 67.00 74.50 77.87 79.50 74.25 78.87

SNLI-VE test 71.16 - - - - - 78.02 78.98 76.72 76.95
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token per dataset 72.57 36.36 60.12 56.35 63.70 90.84 96.16 63.52 87.48 93.16 63.61 80.58 73.25 75.96 82.75 65.04 75.52 78.44 76.78 77.61 69.08
token per head 72.11 35.84 59.91 55.95 60.66 88.96 94.86 62.30 86.20 92.00 61.48 80.67 73.10 75.82 82.92 64.24 75.35 77.65 77.08 77.37 68.52
w/o task token 72.00 35.09 59.92 55.67 63.16 90.48 95.44 61.94 86.96 92.88 62.55 80.32 73.04 75.94 82.72 64.89 75.38 76.99 76.46 76.73 68.53
w/o DSG 71.99 35.59 58.93 55.50 62.54 90.08 95.42 63.30 86.98 92.86 62.92 79.99 73.09 75.94 82.68 64.52 75.24 77.37 76.31 76.84 68.52

w/ curriculum 70.59 35.54 57.91 54.68 61.14 89.74 95.04 61.28 86.58 92.56 61.21 80.11 73.35 75.62 82.38 64.51 75.19 77.20 76.19 76.69 67.98
w/ anti-curriculum 71.53 35.54 60.39 55.82 61.04 88.78 94.96 58.12 84.66 90.84 59.58 78.99 71.34 74.24 80.80 63.08 73.69 76.14 75.74 75.94 67.24

vanilla multitask 70.39 33.31 58.57 54.09 61.50 89.72 95.42 61.40 87.04 92.74 61.45 80.42 73.51 75.53 82.48 64.50 75.28 77.09 76.34 76.71 67.92

Table D.4: Full per task accuracy for the different ablation studies. RC is Retrieval
COCO and RF is Retrieval Flickr30k. Mean of G2 is taken over the Recall@1 scores.
We can see that with task token per dataset and DSG achieve the best performance.

more consistent visual groundings than independent task-specific models. For each

image Ii, there are associated VQA question {q(i)} and referring expression {r(i)}. To

measure the overlap in visual concepts between a question q
(i)
j and reference r(i)

k , we

count the the number of overlapped noun / adj as d(q(i)
j , r

(i)
k ), the multi-task visaul

grounding consistency can be calculated as:

MT-VGC =

∑N
k=0|

∑
j

∑
k d(q(i)

j , r
(i)
k )1{y(q(i)

j )=1&y(r(i)
k

)=1}|∑N
i=0|

∑
j

∑
k d(q(i)

j , r
(i)
k )1|

(D.1)
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DSG ∆1 71.99 35.59 58.93 55.50 62.54 90.08 95.42 63.30 86.98 92.86 62.92 79.99 73.09 75.94 82.68 64.52 75.24 77.37 76.31 76.84 68.52
DSG ∆4 72.57 36.36 60.12 56.35 63.70 90.84 96.16 63.52 87.48 93.16 63.61 80.58 73.25 75.96 82.75 65.04 75.52 78.44 76.78 77.61 69.08
DSG ∆8 72.61 36.65 59.69 56.32 65.24 90.86 96.02 63.56 87.60 93.08 64.40 80.32 73.56 75.88 82.79 65.33 75.58 77.43 76.75 77.09 69.15
DSG ∆16 72.74 35.34 59.70 55.93 64.78 91.04 95.86 62.36 87.66 92.92 63.57 80.59 73.17 75.88 82.61 64.79 75.41 78.18 76.66 77.42 68.90

Table D.5: Full per task accuracy for Fig. 7.6 showing different Dynamic Stop-and-Go
Iteration Gaps (∆). Mean of G2 is taken over the Recall@1 scores.

where y(q(i)
k ) = 1 means the model correctly answer the question q

(i)
k based on VQA

accuracy metric and y(r(i)
k ) = 1 means the model correctly locate the image regions

(IoU ≤ 0.5) given the reference r(i)
k .

D.9 Qualitative Results

Fig. D.3 shows more qualitative examples of our single model OurAT on different vision

and language tasks and Fig. D.4 shows some failure cases. The examples in Fig. D.3

show that the AT model works well for these wide range of tasks consistently. It

can perform well in both short as well as long reasoning questions, image retrieval,

pointing tasks, referring expressions and multi-modal validation. Failure cases mostly

occur when the model encounters counting questions or difficult referring expressions

and phrases for fine grained recognition.

D.10 Attention Visualizations

To examine the visual groundings learned by the techniques we presented in Sec. D.2.

We verify this by visualizing the attentions of our pretrained model, which is trained

on the Conceptual Caption dataset. Given a test image, and corresponding caption

“The boy and his mom pet the black and white sheep”, we feed the image-caption pair

as input and take the image to question co-attention for visualization. For each image

patch, we use the most attended word to represent its semantic meaning, and show

the patches corresponding to the visual words (‘boy’, ‘mom’, ‘pet’, ‘white’, ‘sheep’).
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Figure D.3: Our single multi-task model can solve multiple task consistently
and correctly. Additional qualitative examples of our single model OurAT on mul-
titude of V&L tasks: caption and image retrieval, question answering, grounding
phrases, guessing image regions based on a dialog, verifying facts about a pair of
images, natural language inferences from an image, etc. Here we show outputs of
our model for a variety of inputs (that mimic tasks from the 12 datasets it has been
trained on).

Fig. D.5 shows the correspondence between attended regions and underlined words.

We can see that the pretrained model learns meaningful visual grounding for the

concept ‘boy’, ‘sheep’, ‘white’ and ‘pet’.

To visualize the attention for our multi-task trained model (OursAT), we use

BertVis1 to visualization the attention distribution on the sentence to sentence self-

attention S→S, sentence to image co-attention S→I, image to sentence co-attention

I→S and image to image self attention I→I. Fig. D.6 shows an example of the sen-

tence to sentence attention for all layers and all heads (middle) and a specific layer and

head (right). We can see that our model learns the previous words attention pattern,

bag of words attention pattern (Layer 1 Head 1) and next words attention pattern
1https://github.com/jessevig/bertviz
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Figure D.4: Failure cases of our single AT model on multitude of V&L tasks. Fail-
ure cases mostly occur when the model encounters counting questions or difficult
referring expressions and phrases for fine grained recognition.

(Layer 2 Head 0). This shows that model is able to generate position-aware queries

and keys to calculate the attentions. To get a sense of the difference of attention dis-

tribution across different tasks, Fig. D.7 and Fig. D.8 show the attention distribution.

We can see for different tasks, the model learns to use significant different sentence

to sentence self-attention pattern.
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The boy and his mom pet the black
and white sheep.

Layer 1 Head 7

Layer 5 Head 7Layer 4 Head 7

Layer 1 Head 5

Layer 2 Head 6

Figure D.5: Visualizations of image to sentence attention for the pretrained model
on conceptual caption dataset. Given the image to sentence co-attention, we use
the most attended word to represent its semantic meaning, and show the patches
corresponding to the visual words (‘boy’, ‘mom’, ‘pet’, ‘white’, ‘sheep’). Different
colors show a correspondence between attended regions and underlined words. We
can see that the model learns meaningful concept through pretraining.

The boy and his mom pet the black 
and white sheep

Figure D.6: Visualizations of the attentions of the pretrained model on conceptual
caption dataset using BertVis toolbox. From left to right: Image and associate cap-
tion, sentence to sentence self-attention for all layers and all heads, sentence to sen-
tence self-attention for Layer 1 Head 1 and Layer 2 Head 0. Our model learns the
previous words attention pattern, bag of words attention pattern and next words
attention pattern.

179



VQA-like: where are the 
elephants ? -- water
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SNLI-VE-like: no elephants in the
image are swimming. -- contradiction
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Figure D.7: Visualizations of the attentions of OurAT model using BertVis toolbox on
each tasks. From left to right are image and associate sentence, sentence to sentence
self-attention, sentence to image co-attention image to sentence co-attention image
to image self-attention. Dashed orange bounding boxes in the image are the referring
expression outputs regardless of tasks. The model learns to use significant different
sentence to sentence self-attention pattern for different tasks.
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GQA-like: is the baby zebra standing 
next to the zebra on the right? -- Yes
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GuessWhat-like: which entity is it? zebra. is it 
on the left? no. is it eating grass? yes.
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IR-COCO-like: Three zebras are grazing
in a grass field.
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Figure D.8: Visualizations of the attentions of OurAT model using BertVis toolbox on
each tasks. From left to right are image and associate sentence, sentence to sentence
self-attention, sentence to image co-attention image to sentence co-attention image
to image self-attention. Dashed orange bounding boxes in the image are the referring
expression outputs regardless of tasks. The model learns to use significant different
sentence to sentence self-attention pattern for different tasks.
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