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Significant progress has been made during the first year of this
project on understanding appropriate structures for rate-independent and
rate-dependent constitutive equations for nonproportional cyclic
plasticity.

A two surface theory was developed, based on Mroz kinematic
hardening, with the capabilities of modeling fading memory of the
maximum plastic strain excusion and additional hardening incurred during
nonproportional 1loading. Good correlation with nonproportional block
loading sequences was obtained for type 304 stainless steel.

Several nonproportional loading histories experimentally obtained by
the author have been carefully examined. The superiority of a Mroz-type
kinematic hardening rule was demonstrated. Furthermore, the Mroz
distance vector was shown to more uniquely characterize variation of the
plastic modulus function for nonproportional path segments.

In April 19853, an M.S. Thesis was completed on the subject of
numerical implementation of elasto-plastic models for nonproportional
plasticity. Surprisingly, it was found that numerical integration
techniques previously reported most efficient for state wvariable
theories were found least efficient for nonproportional loading.

Ongoing work in the second year of the project will include further
analysis of more sophisticated isotropic and kinematic hardening rules
for type 304 stainless steel at room temperature and superallovy
Hastelloy-X at 649°C. The latter data has recently become available
from Professor E.H. Jordan of the University of Connecticut; it was
obtained under NASA sponsorship. The thrust of the second year in this
program is switching to consideration of rate-dependent constitutive
laws for nonproportional cyclic loading.

The following is a list of related papers produced during the first
vear of this grant:

1. McDowell, D.L., "A Twao Surface Model for 7Yransient
Nonproportional Cyclic Plasticity: Part I - Development of
Appropriate Equations," ASMFE Journal of Applied Mechanics,

Volumn 52, June 1985, pp. 298-302.

2. McDowell, D.T., "A Two Surface Model for Transient
Nonproportional Cyclic Plasticity: Part II - Comparison of
Theory with Fxperiments,"” ASME Journal of Applied Mechanics,
Volumn 32, June 1985, pp. 303-308.

3. McDowell, D.L., "An Experimental Study of the Structure of
Constitutive Equations for Nonproportional Cyclic Plasticity,
accepted for publication in ASME Journal of Engineering
Materials and Technology, 1985.

"



Progress On NSF Grant
No. MEA-8404080
August 1985

Page 2

Related

2.

McDowell, D.L., "The Significance of Nonproportional Loading
Tests for Characterization of Cyclic Response of Metals." Proc.
1985 Spring Conference on Experimental Mechanics, Society for
Experimental Stress Analysis, Las Vegas, June 10, 1985, pp. 229-
236.

Sotolongo, W., and McDowell, D.L., "An Evaluation of several
Constitutive Model Structures For Transient Nonproportional
Cyclic Plasticity," accepted for publication in ASME Journal of
Pressure Technology, August 1985.

Sotolongo, W., and McDowell, D.I.., "On the Numerical Integration
of Elasto-Plastic Constitutive Model Structures For
Nonproportional Cyclic Loading, " submitted for publication to

Computers and Structures.

external presentations included the following:

McDowel l, D.L., "Description of Nonproportionatl Cyclic
Response,” 0Oak Ridge National Laboratory, July 1984.

McDowell, D.L., "Comments on the Structure of Multiaxial
Constitutive Models," Multiaxial Meeting of Fracture and
Fatigue/Structural Mechanics Branches, NASA Lewis Research
Center, January 22, 1985.

McDoweil, D.L., Some Comments on the Structure of Nonlinear
Constitutive Equations for Nonproportional Cyclic Plasticity,’
presented at the Symposium in Honor of the Retirement of
Professor JoDean Morrow of the University of I1linois, August
1984 .

McDowell, D.L., "The Significance of Nonproportional Loading
Tests for Characterization of Cyclic Response of Metals," 1985
Spring Conference on Experimental Mechanics, SEM, Las Vegas,
June 10, 1985.

McDowell, D.L., "A Two Surface Plasticity Theory for Transient
Nonproportional Cyclic Plasticity,” Joint ASME/ASCE Applied
Mechanics Conference, Univ. of New Mexico, Albuquerque, N.M.,
June 24-27, 1985.

McDowell, D.L., "Work in Progress on Cyclic Plastic Stress
Calculation for Rail Steels,” 4th ETAC Meeting, C.S. DOT
Transportation Systems Center, July 16-17, 1985.
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of accurate characterization of the variation of hardening modulus was confirmed.
It was shown that bounding surface theory is an appropriate constitutive framework
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DISCUSSION OF RESULTS

The primary goal as set forth in the original proposal for this work was
to generalize rate-independent plasticity theory to model essential material
behaviors associated with nonproportional cyclic loading. To this end, the
work conducted under support of this grant has had very significant impact.

From the theoretical standpoint, two papers were published in the ASME
Journal of Applied Mechanics on a two surface cyclic plasticity model which
incorporates nonproportional isotropic hardening effects and an accurate
Mroz-type kinematic hardening rule. The accuracy of the model was examined
by comparison with biaxial experimental results previously obtained by the
author on type 304 stainless steel. As a measure of their significance, the
two papers won the 1986 Alfred Noble Prize jointly awarded by ASME, ASCE,
IEEE, AIMMPE, and WSE for the best paper by an author under 31 years of age
appearing in any of their respective journals. In addition, a paper co-
authored by Dr. McDowell and an M.S. student, W. Sotolongo, explored the
accuracy of several generic types of cyclic plasticity models for
nonproportional loading in an ASME Journal of Pressure Vessel Technology
paper; included in the comparisons were a simple single loading surface
model, a two surface or bounding surface model, and a state variable or
unified creep-plasticity model.

Distinct experimental contributions were also made to the development of
a constitutive framework appropriate for cyclic nonproportional loading. 1In
a 1985 ASME Journal of Engineering Materials and Technology paper, the
author demonstrated the superior correlation of ' kinematic hardening and
modulus function obtained with a two surface Mroz-type approach. The
classical kinematic hardening rules of Prager and Ziegler were shown to be
quite inaccurate. The tremendous importance of an accurate prescription for
plastic modulus variation was clearly shown. A paper presented at the 1985
Spring Conference on Experimental Mechanics in June 1985 emphasized the
importance of nonproportional loading experiments in deducing the
appropriate tensorial nature of kinematic hardening; the noncollinearity of
the backstress and the inelastic strain rate vector provides the additional
information required to develop accurate hardening rules.

A study of nickel-base superalloy Hastelloy X subjected to high-
temperature, nonproportional cyclic Tloading was published 1in 1986 in the
proceedings of the 3rd Symposium on Nonlinear Constitutive Relations for
High-Temperature Applications sponsored by NASA. The experimental results
were obtained from Professor E. Jordan of the University of Connecticut. It
was demonstrated by careful computer analysis of the data that a dynamic
recovery term was absolutely essential to model the kinematic hardening
under sinusoidal, out-of-phase tension-torsion loading of thin walled
~ tubular specimens. Interestingly, Chaboche had shown in 1983 that such a

recovery term was essentially equivalent to a two surface viscoplasticity
model. This study was conducted with two Ph.D. students.

An evaluation of the subtleties and implications of existing

nonproportional cyclic loading data will soon appear in the ASME Journal of
Applied Mechanics. A companion paper which embodies the results of this

-2-



detailed analysis in a simplified model structure was published in the ASCE
Journal of Engineering Mechanics in March 1987.

Beyond the realm of applied continuum mechanics, micro-mechanistic
explanations were sought for the wunusually pronounced cyclic hardening
exhibited by austenitic stainless steels subjected to nonproportional cyclic
loading. The accumulated hardening was greatly in excess of that observed
in uniaxial tests at the same effective strain amplitude. Nonproportionally
cycled specimens were sectioned and examined via conventional metallography,
scanning and transmission electron microscopy, and x-ray diffraction. The
additional cyclic hardening was found to be associated with stress-and
deformation-assisted martensitic transformations which could Dbe
characterized with respect to the nonproportional loading histories. This
work was conducted jointly by the author and Professor S. Antolovich of the
School of Materials Engineering at Georgia Tech. The final revisions are
underway for publication of this work in Metallurgical Transactions.

Another major area addressed in this work is the numerical integration
of these more complex constitutive equations. In particular, the resulting
equations are mathematically "stiff" 1in certain Tloading regimes and
numerical accuracy and efficiency is a concern. Along with his student, W.
Sotolongo, the author published a study of the efficiency and accuracy of a
number of temporal integration algorithms with and without time-step
control, predictor-corrector algorithms, radial return, etc. for a rate-
independent bounding surface model, a rate-independent single Tloading
surface model, and a unified creep-plasticity model. Interestingly, a
higher order Runge-Kutta method with fixed time-step size was found
superior. An important finding was that a simple Euler algorithm with
automatic time-step size control was superior for proportional loading, but
quite unacceptable for nonproportional Tloading; this finding contrasted
with the results of previous researchers who considered only proportional
1ﬁading and espoused simple Euler techniques for state variable constitutive
theories.

Thus far, we have mentioned the theoretical, experimental and numerical
aspects of the work conducted with support of this grant. The contributions
have been significant in all three areas.

With regard to immediate practical concerns of an economic character,
the two surface theory developed during this grant period was applied to the
problem of elastic-plastic rolling contact of wheel on rail. Subsurface
cyclic plastic deformation is a 1likely major contributor to the initiation
and growth of corrugations in rail; it 1is also inextricably linked to
initiation-growth of subsurface fatigue cracks. These problems are
extremely costly to the railroad industry. The cyclic stress-strain field
of material in the contact region varies in a highly nonproportional manner
as the wheel moves past a specific point of the rail. A number of factors
including wheel load, friction, braking or driving influence the cumulative
inelastic deformation of the near-surface region. A computer program was
written which simulated the constraints of various subsurface layers in rail
in two dimensions, applied a two dimensional translating Hertzian
distribution with the same mean pressure as a three dimensional distribution
typical of actual rail-wheel contact geometry, and integrated a two surface-
type constitutive law for cyclic plastic deformation. The results,

-3-



economically obtained with the simple model, compared favorably -with
measured surface deformations and with subsurface residual stress
distributions obtained with very expensive finite element solutions which
used over-simplified constitutive models. The co-author of this paper was
Dr. G. Moyar, a consultant with the Association of American Railroads.

The following is a list of related papers produced during the grant
duration:
(Copies enclosed)

1. McDowell, D. L., "A Two Surface Model for Transient
Nonproportional Cyclic Plasticity: Part I - Development of
Appropriate Equations," ASME Journal of Applied Mechanics,
Vol. 52, June 1985, pp. 298-302.

2. McDowell, D. L., "A Two Surface Model for Transient
Nonproportional Cyclic Plasticity: Part II - Comparison of
Theory with Experiments," ASME Journal of Applied Mechanics,
Vol. 52, June 1985, pp.303-308.

3. McDowell, D. L., "An Experimental Study of the Structure of
Constitutive Equations for Nonproportional Cyclic
Plasticity,” ASME Journal of Engineering Materials and
Technology, Vol. 107, Oct. 1985, pp. 307-315.

4, McDowell, D. L., "The Significance of Nonproportional Loading
Tests for Characterization of Cyclic Response of Metals,"
Proc. 1985 Spring Conference on Experimental Mechanics,
Society for Experimental Stress Analysis, Las Vegas, June 10,
1985, pp. 229-236.

5. Sotolongo, W., and McDowell, D.L., "An Evaluation of Several
Constitutive Model Structures for Transient Nonproportional
Cyclic Plasticity," ASME Journal of Pressure Vessel
Technology, Vol. 108, Aug. 1986, pp. 273-279.

6. Sotolongo, W., and McDowell, D.L., "On the Numerical
Integration of Elasto-Plastic Constitutive Model Structures
for  Nonproportional Cyclic Loading," Computers and
Structures, Vol. 24, No. 4, 1986, pp. 595-606.

7. McDowell, D.L., "An Evaluation of Recent Developments in
Hardening and Flow Rules for Rate-Independent,
Nonproportional Cyclic Plasticity," accepted for publication
in ASME Journal of Applied Mechanics, 1986.

8. McDowell, D.L., "A Simple, Experimentally Motivated Cyclic
Plasticity Model," ASCE Journal of Engineering Mechanics,
Vol. 113, No. 3, March 1987, pp.378-397.

9.  McDowell, D.L., Stock, S.R., Stahl, D., and Antolovich, S.D.,
"Biaxial Path Dependence of Deformation Substructure of Type
304 Stainless Steel," under review for publication in
Metallurgical Transactions, Aug. 1986.
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10.

11.

McDowell, D.L., Moosbrugger, J., Doumi, M., and Jordan, E.H.,
"Some Implications for Cyclic Plastic and Viscoplastic
Equations Based on Nonproportional Loading Experiments,”
Proc. 3rd Symposium on Nonlinear Constitutive Relations for
High-Temperature Applications, NASA Lewis RC, University of
Akron, Ohio, June 11-13, 1986.

McDowell, D.L. and Moyar, G.J., "A More Realistic Model of
Nonlinear Material Response: Application to Elastic-Plastic
Rolling Contact,” Proc. 2nd Int. Symp. on Contact Mechanics
and Wear of Rail/Wheel Systems, University of Rhode Island,
Kingston, July 8-11, 1986.

Related external presentations included the following:

1.

McDowell, D.L., "Description of Nonproportional Cyclic
Response," Oak Ridge National Laboratory, July 1984,

McDowell, D. L., "Some Comments on the Structure of Nonlinear
Constitutive Equations for Nonproportional Cyclic
Plasticity," presented at the symposium 1in honor of the
retirement of Professor JoDean Morrow of the University of
ITlinois, August 1984.

McDowell, D. L., "Comments on the Structure of Multiaxial
Constitutive Models," Multiaxial Meeting of Fracture and
Fatigue/Structural Mechanics Branches, NASA Lewis Research
Center, January 22, 1985.

McDowell, D. L., "The Significance of Nonproportional Loading
Tests for Characterization of Cyclic Response of Metals,”
Proc. 1985 Spring Conference on Experimental Mechanics,
Society for Experimental Stress Analysis, Las Vegas, June 10,
1985, pp. 229-236.

McDowell, D.L., "A Two Surface Plasticity Theory for
Transient Nonproportional Cyclic Plasticity,” Joint ASME/ASCE
Applied Mechanics Conference, Univ. of New Mexico,
Albuquerque, N.M., June 24-27, 1985.

McDowell, D.L., "Work in Progress on Cyclic Plastic Stress
Calculation for Rail Steels," 4th ETAC Meeting, U.S. DOT
Transportation Systems Center, July 16-17, 1985.

McDowell, D.L., Moosbrugger, J., Doumi, M., and Jordan, E.H.,
"Some Implications for Cyclic Plastic and Viscoplastic
Equations Based on Nonproportional Loading Experiments," 3rd
Symposium on Nonlinear Constitutive Relations for High-
Temperature Applications, NASA Lewis RC, University of Akron,
Ohio, June 11-13, 1986.



McDowell, D.L. and Moyar, G.J., "A More Realistic Model of
Nonlinear Material Response: Application to Elastic-Plastic
Rolling Contact," 2nd Int. Symp. on Contact Mechanics and
Wear of Rail/Wheel Systems, University of Rhode Island,
Kingston, July 8-11, 1986.
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A Two Surface Model for
Transient Nonproportional Cyclic
Plasticity:

Part 1

D. L. McDowell .
e, | EQUAtiONS

Assistant Professor,

School of Mechanical Engineering,
Georgia Institute of Technology.
Atlanta, Ga. 30332

Assoc. Mem. ASME

Development of Appropriate

A two surface stress Space model is introduced with internal state variable
repositories for fading memory of maximum plastic strain range and non-
proportionality of loading. Evolution equations for isotropic hardening variables

are prescribed as a function of these internal variables and accumulated plastic
strain, and reflect dislocation interactions that occur in real maierials. The hard-
ening modulus is made a function of prior plastic deformation and the distance of
the current stress point from the limit surface. The kinematic hardening rules of
Mroz and Prager are used for the yield and limit surfuces. respectivelv. The
structure of the model is capable of representing essential aspects of complex
nonproportional deformation behavior, including direction of the plastic strain rate
vector, memory of plastic strain range, cross-hardening effects, variation of hard-
ening modulus, cyclic hardening or softening, cyclic racheting, und mnean stress

relaxation.

Introduction

The presence of cyclic plasticity in a multiaxial stress-strain
field is a serious fatigue design consideration in the nuclear,
aircraft, and ground vehicle industries [1-4]. When the stress
rate is nonradial in deviatoric stress space at some interval of
each loading cycle, the analysis is complicated by non-
proportionality effects [5].

Nonproportional loading places additional requirements on
the constitutive equations for transient cyclic plasticity. In
particular, the plastic strain rate vector direction, memory of
plastic strain range, magnitude of the plastic hardening
modulus, and cross-hardening effects are of critical im-
portance. The objective of this work is to introduce a two
surface model based on the assumptions of time and rate-
independent plasticity theory which is capable of predicting
results from cyclic, nonproportional, room-temperature tests
performed by the author [6, 7], including cyclic hardening
effects. A companion paper demonstrates the quantitative
behavior of this model for nonproportional strain cycling
experiments conducted by the author on type 304 stainless
steel.

Contributed by the Applied Mechanics Division for presentation at the 1985
Joint ASME/ASCE Applied Mechanics, Fluids Engineering, and
Bioengineering Conference, Albuquerque, N. Mex., June 24-26, 1985 of THE
AMERICAN SOCIETY OF MECHANICAL ENGINEERS.

Discussion on this paper should be addressed to 1he Editorial Department,
ASME, United Engineering Center, 345 East 47th Street, New York, N.Y.
10017, and will be accepted until two months afler final publication of the
paper ilself in the JOURNAL OF APPLLED MECHANICS. Manuscripl received by
ASME Applied Mechanics Division, April, 1984; final revision, August, 1984.
Paper No. 85-APM-9.

Copies will be available untit February, 1986.

Journal of Applied Mechanics

Motivation From Previous Work

Plastic Strain Rate Direction. With regard to the direction
of the plastic strain rate vector during nonproportional cyclic
loading there are two approaches. The first approach,
motivated chiefly by yield surface probing experiments during
nonproportional straining [8-11}, requires the formulation of
an anisotropic yield surface [12-15]. This surface can distort,
expand, or contract to reflect deformation-induced
anisotropy and isotropic hardening.

It is reasonable to assume for cyclic plasticity applications
that deformation-induced anisotropy can be accounted for by
a kinematic backstress a. The yield surface may contract or
expand but not distort. These assumptions result in a com-
putationally more efficient form of the yield surface than
most formulations that permit distortion:

f=flo—a,R) =0 I

where & is determined from the consistency condition f = 0
during plastic flow and the ratio of kinematic to isotropic
hardening [16].

As usual, the conditions for plastic flow are

é# =0 otherwise (3)

where m is a scalar mulitiplier, and o is the stress tensor. Here
the usual decomposition of the total small strain rate into
elastic and plastic components is assumed, i.€., ¢ = ¢ + ¢.
The scalar product ¢;; (3f/d0;;) is denoted by o:(3f/ o).
Lamba [17, 18], McDowell et al. [19, 20}, and Garud [21,
22] have demonstrated the applicability of equations (1)-(3)



for proper plastic strain rate direction under conditions of
nonproportional straining at cyclically stable conditions when
the hardening rule is obtained from a nested surface ap-
proach. The yield surface radius R can be determined for
cyclic hardening or softening from a relation that defines R as
a function of accumulated plastic strain g = |, V (&:¢?)  dr
[23].

Plastic Strain Range Effects. It is well known that the
evolution of the isotropic hardening parameter R depends on
plastic strain range [24-26], particularly for the austenitic
stainless steels. Analytical description of this dependence
requires a more detailed repository for history dependence
than 7. At the very least, a measure of the metric plastic strain
accumulation from a point of recent unloading is necessary
[27, 28]. A plastic strain range memory parameter ¢ was
introduced by Chaboche et al. [29] and Nouailhas et al. [30]
for cyclic loading. The evolution of g follows from

zj=%H(F)n:n‘i;(2/3)'/2 4)

where H(F) = | if F = 0and H(F) = 0if F < 0. The
normal to the yield surface f at the current stress point is
denoted by n, where n = (df/d0) / I1df/dall. The notation
13f/dall denotes the norm (3f/de : 3f/3a)"*. Here, F is the
plastic strain memory surface defined in second invariant
form by

F=(2/3)(¢’ —a"):(¢ —a”) —q* =0 (5)

where o is the center of the memory surface in plastic strain
space. Note that n* is the normal to the surface F at the point
¢’ defined by n* = (dF/3¢”) / IdF/3¢’ll. For completely
reversed uniaxial cycling, g represents half the axial plastic
strain range. The surface F is shown in Fig. | in plastic strain
space.

There is a rather severe problem with this formulation of
plastic strain range memory. If an overload cycle occurs in
which the plastic strain range is doubled, for example,
continued cycling at the smalier strain range may not resuit in
a saturated isotropic hardening state that corresponds to the
overload cycle. Yet ¢ would correspond to the plastic strain
range of the overload cycle. The actual plastic strain range
‘‘remembered’’ by the material would lie somewhere between
that of the small and large cycles [25, 31]. This lack of
evanescence can be corrected by introduction of a fading
memory term in equation (4)

. I 2 _ . '
i=[3HET@H-A@ ] ©

where A(q) is the memory loss-rate function and I' is a scalar
to be defined later. This capaoility of fading memory is also
necessary to allow for the possibility of readjustment of the
isotropic hardening or softening response when reducing the
applied strain range during cyclically stable conditions.

Expressing the flow rule in equation (2) in an equivalent
form é¢# = (I/h) (e:n)n allows interpretation of 7 as a
generalized plastic modulus or hardening modulus. It is
particularly attractive to define & through a multiple nested
surface scheme as in the approach of Mroz [32-34]. Path
dependence of & and ¢ is achieved through the translation of
the yield and loading surfaces.

Cross-Hardening Effects. 1t is experimentally observed
for a number of metals [7, 17, 30, 35] that nonproportional
cycling leads to an increase in the size of the region of elastic
response above that corresponding to proportional cycling at
the same effective strain range. This additional isotropic
hardening apparently results from increased dislocation
interaction and is not included in conventional theories.
Brown and Miller [35] were able to correlate this additional

2

hardening for out-of-phase sinusoidal straining of | percent
Cr-Mo-V steel by introducing a rotation factor

shear strain range at 45 deg to maximum shear plane

maximum shear strain range

€

For proportional straining, defined in this work as loading for
which the total strain rate is collinear with the total strain, RF
= 0. For the case of sinusoidal tension-torsion straining of a
thin-walled tubular specimen with an engineering shear to
axial strain amplitude ratio of ¥,/¢, = (l+») and a phase
angle of 90 deg, RF = 1. Here, v is Poisson’'s ratio. The latter
case defines every plane in the specimen wall as a maximum
shear strain plane of equal shear strain range at some point in
the loading cycle. The maximum shear planes rotate at a
constant rate. This case also yielded the most additional cyclic
hardening observed by Brown and Miller within a rather
coarse matrix of phase angle and strain amplitude ratio tests.
Brown and Miller achieved a correlation coefficient of

- 0.836 for various phase angle and strain amplitude ratios by

assuming a linear relation between cyclically stable flow stress
and rotation factor based on a maximum shear stress-strain
Ramberg-Osgood relation analogous to the uniaxial cyclic
stress-strain curve [24].

Nouailhas et al. [30] point out that inclusion of plastic
strain range dependence through the memory parameter g of
equations (5) and (6) is highly insufficient to correlate the
significant additional hardening of type 316 stainless steel
subjected to 90 deg out-of-phase tension-torsion loading.
Hence, the need to define another state variable to account for
the additional hardening during nonproportional loading is
well established.

McDowell [6, 7, 31] introduced an instantaneous measure J
of the nonproportionality of the strain rate tensor

=1 ¥ max (6)/8 (Ymax ()] 3
:Ymax(f)=d/d’(fl —53) (9)
’Ymax(é)=(é)l _(é)J (lo)

where ¢, , €, are the largest and smallest principal strains, and
(é);, (€); are the largest and smallest principal values,
respectively, of the strain rate tensor at each point in time.
The function g is defined by g(x) = 1ifx = 0; g(x) = xifx
= 0.

There is a physical interpretation for this definition of J.
Under conditions of proportional straining, ¥nax(€) = Yma<(€)
and J = I. In this case, the principal axes of strain are fixed
with respect to material axes. For the case of sinusoidal
tension-torsion straining of a thin-walled tubular specimen
with a shear to axial strain amplitude ratio of vy,/¢, = (I + »)
and a phase angle of 90 deg, Ymax(€) = 0 and J = 0 since
Ymax(€) is nonzero. Again, this is the case of maximum ad-
ditional cyclic hardening observed experimentally by Brown
and Miller. Hence, 0=J =<1 with decreasing values of J in-
dicative of higher degrees of instantaneous non-
proportionality.

Since J is an instantaneous measure of nonproportionality,
the degree of nonproportionality, ¢, representative of several
complete cycles of loading can be expressed as a functional of
Jsuch that 0= ¢ =< 1; ¢ is directly analogous to RF in equation
(7), but evolves continuousity. A specific rate form for the
state variable ¢ will be proposed later.

It should also be noted that the form for J in equations
(8)-(10) is valid for proportional straining or for conditions of
nonproportional loading where the principal strain directions
rotate continuously at some or all points of a loading cycle, as
in axial-torsion tests of thin-walled tubular specimens.
Nonproportional variations of principal strains with fixed
principal directions will not be considered in this study.

Transactions of the ASME



Description of Model

It should be noted that the formulation for memory of
plastic strain range and nonproportionality of loading
discussed in the previous sections are strain-based. Hence, the
possibility of including these parameters in a strain space
plasticity theory [36-38] appears physically meaningful.
However, the memory of plastic strain range would still
necessitate a separate plastic strain memory surface or
analogous formulation. In addition, accurate modeling of
modulus and kinematic hardening for nonproportional cyclic
loading would probably require a multiple surface strain
space formulation [38]. Therefore, the present paper will
consider a more conventional stress space formulation for the
yield surface, with the addition of a plastic strain memory
surface.

A two surface, stress-space, cyclic plasticity model similar
to that of Dafalias and Popov [27] and Krieg [34] is con-
sidered. This model includes plastic strain range and non-
proportionality dependence in the isotropic hardening for-
mulation. It is valid for complex, nonproportional, cyclic
loading with transient hardening or softening behavior. Only
small strains are considered.

The yield and limit surfaces are defined as f(s — a, R) = 0
and f*(s* — a*, R*) = 0, respectively, where

f=(3/2)8:(-R? (1)
ST =03/ — (R (12)
wheres = o — (1/3}(e:D], £ =5 -~ @, £* = s* —a*, and
where a, R, and a*, R* denote the vector position of the
center and radius of the yield and limit surfaces, respectively.
The vectors s and s* are position vectors of generic points on
the yield and limit surfaces, respectively, in deviatoric stress
space. The identity tensor is denoted by 1. The flow rule can
bestatedas ¢ = (1/A)(s:m)nif f = Oands:n=0, with ¢’ =
0 otherwise where A = (2/3)(do/de”) is determined from a
stable uniaxial cyclic stress-strain curve, and n = (df/9ds) /
lafsasll.

To formulate hardening rules and the form of the function
h for multiaxial loading, it is necessary to consider previous
nonproportional cyclic loading experiments. The work of
Lamba {17, 18} points to the use of a Mroz-type (32, 33]
kinematic-isotropic hardening rule. The kinematic hardening
rules of Prager [39] and Ziegler [40] prove to be inadequate
for nonproportional cyclic loading [17, 18]. Hence, the use of
two surfaces in the stress space formulation is both minimal
and capable of accuracy.

The following simple hardening rules are representative of
popular two surface models and can include all essential
aspects of reality [23] such as cyclic hardening and softening,
cyclic mean stress relaxation, and cyclic creep or racheting:

&= ity (13)
R=ZIny (14)
@*=«nn 15)
R*=pn (16)

Equations (13) and (15) define kinematic hardening of f and
S, respectively. Isotropic hardening is defined in equations
(14) and (16). In these equations, » = (s* — s)/ lIs* —sl, p =
(¢ : é)* = léPll and « = (2/3) (do/de”) », Where do and
de? are measured from a uniaxial cyclic stress-strain curve.
Hence, « represents the asymptotic plastic modulus. In
practice, « is selected to best fit the asymptotic stress-strain
response. The functions L and { will be discussed later.

In the Mroz rule of equation (13) s* defined as the point on
the surface f which has the same outward normal as the
normal, R, to the yield surface fat the current stress state, s:

s*=a*+(R*/R)¢ a7
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Fig. t Plastic strain memory surface F when the current plastic strain
lieson F

Fig.2 Surfacesf and /" in deviatoric stress space

The rate scalar j, is determined from the consistency
condition f = 0 during the plastic flow, which upon the
substitution & = j,»leads to

fta = (£:5—(2/3)RR) / (£:9) (18)

" The surfaces f and f* and the parameters a, «*, ft and » are
illustrated in Fig. 2 in deviatoric stress space. The hardening
modulus, A, can be expressed as a function of lls* — sl. As
noted by Krieg [34], the stiffness decreases as ls* - sl
decreases until we approach the asymptotic state charac-
terized by x at some significant level of plastic strain. In the
absence of accurate knowledge of the variation of the hard-
ening modulus during nonproportional plastic flow, it is
assumed that the limit surface f* is of primary importance in
defining 4. The functional relationship for 4 can then be
determined from a stable uniaxial cyclic stress-strain curve as
shown in Fig. 3. Since this curve is representative of cyclically
stable response, R = R* = 0 and hardening is purely
kinematic. The radii R* and R determined from this uniaxial
cyclic stress-strain curve will be denoted as R* (0, ¢) and R (O,
q), respectively, where g is the maximum plastic strain am-
plitude in the incremental step test used to determine the
curve. Small offset or deviation from linearity definitions of
yield could be used. The hardening modulus could be
generally written as

h=h(lls* —=sl/(8(R* - R)),x) 19

As lis* — sl = 0, h = «x. The asymptotic slope (2/3)
(da/de”) » defines « as shown in Fig. 3. The radii R and R*
are the Ae¢”/2 = 0 ordinate intercepts defined by a deviation

K]



S-./3/2 1S - &

Slope =3/2x

(do/deP)p=3/2K

ﬁ

g

I

0efr2

Fig. 3 Determination of parameters in two surface model from a
uniaxial cyclic stress-strain curve
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from linearity, perhaps, and back extrapolation of the
asymptotic plastic response defined by «, respectively. Thus,
R is the uniaxial yield strength of the material.

The § parameter in equation (19) introduces memory of the
most recent point of elastic unloading. It is a measure of the
effects of plastic deformation accumulated during the last
loading reversal. From an alternative viewpoint, it is a
measure of the initial distance to the asymptotic plastic state
from the point of initial yielding for the current plastic
trajectory. Hence, the use of 6 has the same qualitative effect
on the plastic modulus function as the delta parameter in-
troduced by Dafalias and Popov [27] to describe the ex-
perimental observation that 4 is not strictly just a function of
current distance from the limit surface. A simple, reasonable
choice for @ for each plastic strain trajectory would be

0:"56—50"/(R6—R0) (20)

where all zero subscripted variables correspond to values at
the most recent point of initial yielding following a change in
loading direction.

The hardening rules in equations (13)-(16) allow the sur-
faces f and f* to expand and translate independently without
intersecting. The limit surface transiates more slowly and,
possibly, in a different direction than the yield surface when
the stress point lies within f*. When lIs* — sl — Oand R =
R* = 0, the surfaces approach tangential contact and
translate according to & — &* = «imn since 4 — x. When ls*
— sll = 0, we can heuristically take » = n.

The use of this stress space formulation is restricted to
strain-hardening behavior for which (3f/ds): § > 0 during
plastic flow, a condition almost universally met by metals of
structural interest at typical cyclic strain magnitudes.

The isotropic hardening functions & and { can be written as

R=pu(R(6,q) —R)yi @2n
R*=pu(R*(6,9) —R*)*% (22)

where R and R* represent cyclically stable values of R and R*
corresponding to the current values of state variables ¢ and g.
The rate of approach to the cyclically stable state is governed
by u. The admissibility functions y and y* place restrictions
on the stable states that can actually be attained. They are
necessary for complex loading because a formulation based
on internal state variables that do not necessarily
monotonically increase (i.e., plastic strain range g and
nonproportionality of loading ¢) implies reversibility; yet
isotropic hardening is known to be largely irreversible for
planar slip metals [25, 26], and nearly reversible for wavy slip
materials of structural interest. In the event of nonfading
memory for cyclically hardening merals, ¥ and y* could be
represented by Heaviside functions u(R(¢,q) — R) and
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u(R*(¢,q) — R*), respectively. In contrast. completely fading
memory can be described by y = ¢y* =

The variable ¢ represents the mtegrated effects of mobile
dislocation interactions during cycling. The evolution of ¢ can
be described by

d=p*(l =J =) ull =J = Simu) (23)
where ¢ = 0 at time r = 0 or i,7dr = 0. Inclusion of the
Heaviside function u(l - J — ¢,,) is based on the
assumption that additional hardening due to interaction of
slip systems during nonproportional loading is determined
primarily by those portions of each loading cycle for which
the maximum shear planes rotate during plastic flow. The
threshold value ¢;;,,;, may be defined as a small number in the
range 0.01 to 0.03 so that virtually all deviations from
proportionality are included. The calculation of ¢ is in-
sensitive to the magnitude of ¢yp; if @m Is less than 0.10,
particularly for moderate to severe degrees of non-
proportionality of loading. For proportional straining, ¢ = 0.
For +v,/¢, = (l+v) during sinusoidal tension-torsion
straining with a phase angle between applied axial and shear
strains of 90 deg, ¢ — | as |,7dr — o. The evolution of q, the
plastic strain range variable, is defined by equation (6). In-
troducing a kinematic hardening rule for Fin equation (5),

a? = (H(F)/2)(é’:n*)n" (24)

Hence, the surface F can evolve only if F = Q0 and ¢’ licson F.
Enforcing the consistency condition F = 0 during plasiic [low
when F = 0 (H(F) = 1),

(0F/0¢?):¢# + (0F/0a” ):a” —2qq =0
which, after some substitution and manipulation, lcads to
F'=n*:n+v6A(q) (26)

All that remains in the isotropic hardening formulaiion is
assignment of the functions K (¢, g) and R*(¢, q) in equations
(21) and (22). McDowell [6, 7] demonstrated the applicabiliy
of the linear form

R(¢,q) =9[R(1,q) —R(0,9)]+ R(0.q) 27
R*(0,9) =0[R*(1,9) —R*(0,9)} + R*(0.9) (28)

where R(1, ¢) and R*(1, @) can be obtained, for example,
from the cyclic stress-strain response during proportional
loading immediately following cyclically stable 90 deg out-of-
phase tension-torsion loading of thin-walled tubular
specimens at a shear to axial strain amplitude ratio of y,/¢, =
(1+v).

(25)

Conclusions

The proposed model, while limited in scope to time and
rate-independent behavior, is significant in two respects.
First, the effects of changes in plastic strain range and
nonproportionality of loading are incorporated in the
evolution of isotropic hardening via two additional state
variables g and ¢. It is fully expected that either or both of
these variables could be included in viriually any constitulive
framework. Abrahamson [41] mcorporated an analogous
form of ¢ proposed by McDowell [7] into a state variable
constitutive framework valid for cyclic viscoplasticity.

It is noted that the structure of the proposed theory is
capable of representing those aspects of materia] behavior
perceived as most essential and relevant by Drucker and
Palgen [23] for time-independent cyclic plasticity including
erasure of memory of prior deformation by overioad ex-
cursions, cyclic hardening or softening under symmetric
cycles of stress or strain in the plastic range, progressive creep
or racheting of the hysteresis response during unsymmetric
cycles of stress in the plastic range, and progressive relaxation
of mean stress during unsymmetric cycles of strain in the
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plastic range. The accuracy of the racheting or mean stress
relaxation capability of this model would be enhanced by
admitting dependence of « and 4 on (1/2) (s:s), the second
invariant ol deviatoric stress.
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Cyclic Plasticity:

Part2 Comparison of Theory With
Experiments

For the two surface cyclic plasticity model introduced in Part 1, methods for
determination of model parameters are described. The model is specialized to axial-
torsional loading of a thin-walled tubular specimen, and applied to non-
proportional, room-temperature cycling of type 304 stainless steel. Computer
simulations for two complex histories show good general agreement with ex-
perimental data obtained by the author.

Introduction

In Part 1 of this two-part paper, a two surface cyclic
plasticity model was developed which includes the essential
aspects of cyclic nonproportional loading. In this part, the
material constants and model parameters are determined for
type 304 stainless steel. The model is specialized to axial-
torsional loading and compared with nonproportional, cyclic
histories consisting of several sequential blocks, each con-
sisting of different strain-controiled paths. It is shown that the
model gives quantitatively good agreement for these complex
histories and that the nonproportional state variable is
necessary for this agreement.

Type 304 stainless steel is widely used in applications that
involve cyclic nonproportional loading such as boiling water
and liquid-metal-cooled fast breeder reactors and gas turbine
engines. Such applications have warranted a relatively high
research effort with regard to room and high-temperature
cyclic deformation characteristics [1-4] related to fatigue and
creep-fatigue interaction {5, 6).

Determination of Model Parameters

Most of the parameters of the two surface model presented
in companion paper can be determined from uniaxial tests.
The model requires well-defined nonproportional, biaxial
tests to determine saturated or cyclically stable isotropic
hardening variables.
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1. Parameters R (0, ¢), R* (0, ), xand h. The radii R
(0, @) and R* (0, g) of the yield and limit surfaces, respec-
tively, can be determined from stable uniaxial cyclic stress-
strain curves [7] determined at several maximum strain
amplitudes across the range of interest. The strain rate of the
tests should be of the same order of magnitude as that of the
histories to be modeled.

It should be noted that the asymptotic slope (do/de”) ., =
(3/2) « is also a function of nonproportionality and strain
range, x = (¢, g), where k denotes the slope for cyclically
stable response corresponding to current vaiues of ¢ and q.
The variables o and ¢ are applied stress and plastic strain in
the axial direction.

The function & = k (0, g) is defined by fitting the slope (2/3)
(do/de®) » of the cyclic stress strain curves at several ¢
values.

Having determined R, R*, and &, we can compute A from
the uniaxial cyclic stress-strain curve at a selected value of g =

’

q

h= 2 do = =h(8/680,%0,q")) a
=3 4 0, X%q )
where
6=v3/2lls* —sll and 6, =V3/2lls§ - s,
=R*(0,q") —R(0,9) (2)

The quantity é is shown in Fig. 3 of Part 1.

2. Parameters R(1, ¢), R* (1, ¢), and i1, ¢). It is
necessary to determine the R (1, g) and R* (1, g) functions in
equations (27) and (28) of Part 1 by running appropriate
biaxial tests. Tension-torsion tests can be run at several strain
amplitude levels with a phase angle between applied
sinusoidal axial and engineering shear strain of 90 deg and a
shear to axial strain amplitude ratio y,/¢, = (I + »). The
parameters R (1, g), R* (1, g) and % (1, q) are determined in



P

P

analogy to the uniaxial case from half of the hysteresis loops
obtained by subsequent axial loading after reaching cyclically
stable response, or from a stable cyclic effective stress-strain
curve obtained by connecting effective stress points at
maxima of effective strain. .

3.  Parameters A(g) and . The function A(g) in
equations (6) and (26) of Part 1 can be determined by running
completely reversed uniaxial tests at a strain amplitude e,
until cyclically stable, increasing the strain amplitude to e,
for three cycles, and then decreasing to ¢,; for 10 cycles. After
decreasing to ¢,,, the cyclic stress amplitude is compared to
that corresponding to ¢, if cycling were continued at am-
plitude ¢,,. We can heuristically define A(g) = Cg, where C
is a constant, based on limited experiments. Upon decreasing
the strain range to ¢,; and integrating equation (6) of Part 1
from this point on with H(F) = 0,

= = 1nlg* /(. "))/ [40e,,"(3/2)' ) - 3

where ¢,” and ¢,” are the plastic strain amplitudes
corresponding to¢,; and ¢,,, just before and after the am-
plitude reduction, respectively, and g* is some plastic strain
amplitude between ¢,” and eazp . From the stress-strain
response after unloadmg from ¢,,” to 10 cycles of _loading at
€.2 » the value of g* can be determined by setting R (0, ¢*) =
R since R (0, g) is known, for example. In general, 8; (0, ¢,,")
# B3 0,q )where B, = R, R* and &, respectively, fori = 1,
2, 3. Note that g* is the maximum plastic strain amplitude
that is ‘‘remembered’’ by the material after the three cycle
overload.

The parameter u can be approximated as a constant for a
range of strain amplitudes as demonstrated in previous
uniaxial and proportional biaxial tests [8, 9, 10]. In the
current rate formulation for ¢, constant u* may be taken to
fit transient response under conditions of nonproportional
loading. For uniaxial tests, ¢ = ¢ = 0 and u is easily found
from tests in which the strain range is suddenly increased.
Denote the values of R, R*, and & pertaining to cyclically
stable response at a completely reversed uniaxial strain
amplitude g, as B; (0, g,). If the plastic strain amplitude is
increased to g, at time ¢ = O such that g, > g,, integration of
equations (21) and (22) of Part 1 and equation (15) of Part 2
(to be introduced) with all ¥ values equal to 1 gives

. N I
Xi=8:0.0,) =18, 0.0 =B, 0.alexp[ -] 5at] (@

where X; = R, R*, and «, respectively, for i = 1, 2, 3. Since
the 3; (0, g) functions are known from previous uniaxial
tests, X; can be determined from the hysteresis loops as a
function of {§ #df and a representative value for x can then be
determined from equation (4). For simplicity, the stress
amplitude could be used to determine x in equation (4) instead
of X; and B;. If the transient response of a virgin specimen is
used, the B; (0, g,) parameters in equation (4) could be
replaced by initial values of R, R*, and «.

4.. Parameters y, y°, ¥, and p*. The form of the ¥, y*,
and ¢, functions in equations (21) and (22) of Part 1 and
equation (15) of Part 2 must be determined for each material.
Minimally, uniaxial tests would be necessary in which the
. strain amplitude is suddenly decreased from g, corresponding
to cyclically stable conditions to g, where q, > q,. The y
functions could be constructed from a number of such tests
since R, R*, and & are known in the evolution equations for
R, R*, and «. Since the ¥ functions may be history-dependent,
it may be sufficiently accurate to heuristically assume simple
forms for wavy and planar slip materials as stated in Part 1.

The choice of u* can be made by fitting the rate of ap-
proach to the new cyclically stable state after switching from
cyclically stable uniaxial loading. Let J’ be defined as the
degree of nonproportionality for the subsequent cycles

2

(approximated as a constant). If the effective strain range is
not substantially increased or decreased, we can approximate

= g@" as a constant. Then, equations (23), (21), or (22), and
(27) or (28) of Part 1 can be combined into the differential
equation

ax;
—— +uX= u(l—-/)(l- s ")lB:(l,q )

dn
-B8i(0,g")) +uB:i(0,g7) (&)
with the initial condition X; = B8, (0, ¢”) at = 0. The
solution to this equation is
«-B(O.q Y+ -J)(B(1,¢7) —B0,g") )1

+(u%e™ " —pe=* ")/ (p—p*)] 6)

fori = 1, 2, 3. The maximum effective stress amplitude could
be used in equation (6) to determine u* instead of X, and B;.
The constant u* can be approximated by fitting equation (6)
to the observed X, versus n response, since u is known.
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Specialization to Axial-Torsional Loading

* For a thin-walled tubular section subjected to combined
tension and torsion, the deviatoric stress components can be
expressed in terms of the nonzero stress components ¢,, and
gy, as follows:

51y =(2/3)0)1,5n =513= —~(1/2)s,1,5; =0}, @)
fn=sn—amén=£f3=—(1/2)§, ,Ep=5p—ay; (®
Sinceazz = a33 = -(l/2)a|,.Also.523 =83 = Q)3 = 03 =
0. Here, the subscripts 1, 2, 3 denote the axial, cir-

cumferential, and radial directions of the tubular test
specimen, and s is the deviatoric stress tensor.

The s and « tensors are, of course, symmetric. In this case
the yield surface is expressed as f = ¢,,% + 30,2 — R? = 0.

The components of the normaln = E/Ilill areny; = &,,/P;
and Ny = EIZ/PE where PE = ((3/2)£” +2 E]22)|/2 and ns3
= ny = —(1/2)ny,. For the case of tension-torsion loading
of a thin-walled tubular specimen, the instantaneous measure
of nonproportionality is expressed as | | Lo

'l=I(Ellé]l(l+y)2+4elzélz) e ] L ‘
Jl(en2(1 + 9)2 +4e,,2)(é1,2(0 + )2 + 4021 )
The kinematic hardening rule for the yield surface becomes
d” = Z(s,‘, —S“)and dlZ = Z(s,z' - Slz)Wher_e_

Z=[(3/2)k1,511 + 260512 - (/IRR] o
lEn(sn* —51)3/2)+ 285052 " —s)1 - = (10)

ands;;* = ap* +(R*/R)§y f spp* = ap* + (R* /R)£IZ
The flow rule can be written in component form as ¢,,” =
(1/h)P.n,, and é,° = (I/R)P.ny, if P, = ((3/2)5,,n,, +
2§),0,) = 0, é,7 = &,° = O otherwise. Here, A is deter-
mined from equation (1). Kinematic hardening of the limit
surface f* follows the Prager rule &,* = «xn;; 3 and d,z‘ =
xny i where 7 = ((3/2) (¢,,7)? + 2(¢,,")H)V2.-

Isotropic and kinematic hardening rules for the plasnc
strain memory surface are written, respectxvely,

§=11((3/2nny* +2n5n,%)

+V6A(q) ) (2/3)'2H(F) /2= A(@)]7
@,,P=P,ny,;*, @ =P.n;,* (12)

where P, = H(F) ((3/2)n;,n,* + 2n,;,n,")#/2; H(F) =
if F = 0and H(F) = 0if F < 0. In the preceding equations,

m* = (en” — ay”)/Aand n;;* = (" — «),") /A where
A=((3/2)(e),” = ") 2 +2(ery” — ),F)H)2 (13)
Isotropie hardening rules for the yielq and limit surfaces
reduceto R = u(R(¢,q) — R)ynand R* = u(R*(¢, q) —

(1n
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R*)y°#7 where ¢ evolves according to the equation
d=p"(1=J =) 4 u(l =J = Syimi)) (14)
with @ymi, = 0.02 (i.e., small) and q is obtained from in-
tegration of equation (11). -
To obtain an accurate representation of the change in

asymptotic plastic modulus x during cyclic hardening, it is
possible to write an evolution equation

k=p(&(¢,q) —x) ¥ 7 (15)
where ¢, is an appropriate admissibility function analogous
toyand ¢*.

Hence, we have established a set of first order evolution
equations for a, ¢, a*, 7, ¢, &, R, R*, ¢, and «, respec-
tively. For a given strain or stress history, they may be in-
tegrated to give the resulting stress or strain response,
respectively. For a known stram history, assuming isotropic
elastic response,

5712 =ZG(éxz -&42") (16)
Using the equations éy,” =(174) (sm)n,,, é2° = (1/h)
(smynpp, E = 2G(1 + »,), oy = (3/2)é, and &y, = 33,
we can substitute into equations (16) to obtain §;, and s,,,

since ¢;, and ¢, are known. Here, », is the value of Poisson’s
ratio from purely elastic response.

on=E(en—én’),

Application to Complex Nonproportional Histories

Determination of Parameters for Type 304 Stainless
Steel. A series of room-temperature, strain-controlled
uniaxial and tension-torsion tests were run to determine the
parameters of the two surface model for type 304 stainless
steel. All specimens were heat treated at 1100°C for 40
minutes in a vacuum and furnace cooled to achieve an
isotropic grain structure with an average grain diameter of
0.16 mm. A schemauc of a tension-torsion specimen is shown
in Fig. 1.

The biaxial tests were performed on a computer-contolled,
closed-loop, servohydraulic test machine. A computer
program was written so that any combination of line segments
in strain space could be joined end-to-end to define a loading
cycle. A block was defined as an arbitrary number of identical
cycles. Furthermore, the program allowed the user to define
any number of blocks, each containing a different cycle
loading path. The effective strain rate ¢ = (¢,,2 + 4¢ 22/3)"2
was kept constant along each segment.

Several uniaxial incremental step tests and out-of-phase
step tests at maximum strain amplitudes ranging from 0.003
to 0.01 were run to establish the plastic strain range depen-
dence of R(0, q), R*(0, q), %O, q), R(l q), R*(1, ¢) and
&1, ). From four uniaxial tests at é = 0.002 sec™', linear
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N Y4/€q=(1+V), P =908 RF=1.00

%/€=2.0, V=05, p=90°%RF=075
0.8} .

%a/€a%1.5, V=05, Pe=60°RF0.58

os Y,/€,"1.5, ¥=0.5, p=45*RF-04I |

? T AR

0.4

/ %,/6°4.0, V=05, p=9ORF-038]
oz[ff Y%a/€=4.0, ¥V=0.5, p=45°RF-0.25]
. _—P=0%, RF-0.00

.0 -

) 2 4 6 8 i0
NUMBER OF CYCLES

Fig. 2 Nonproportionai state variable » versus number of cycles for
sinusoidal ioading with ¢, = 0.005 and varlous v, /¢, and p values. The
rotation factor RF from Brown and Miller's theory Is Inciuded for
comparison In each case.

«

relatxonshxps were fit as a satisfactory approximation for R(0,
9. R*(0, g) and (0, g):

R(0,q) =171+ (g — 0.005)4000 MPa %))
R*(0,q9) =295 + (g — 0.005)20690 MPa (18)
©(0,q) =4370 — (¢ — 0.005)196100 MPa (19)

A plastic strain offset of 0.0005 was used to define yield. The
hardening modulus was determined from the uniaxial cyclic
stress-strain curve with ¢ = 0.0068 as

Is* —sil

ot )

From three sinusoidal tension-torsion tests described by

h=x(l +(9l960/x)[sinh[ 20)

€=¢€) =¢,5iN wt, v=2€,2 =y Sin(wt —p) #3))

withey, = €33 = — vey), €3 = €3 = 0, 7,/¢, = 1.5andp =
90 deg, R(1, @), R*(1, q), and (1, q) were approximated by

R(1,q) =405 MPa,R*(1,q) =565 MPa,k(1,q) = 4046 MPa
22

From uniaxial tests where the strain range was increased or
decreased, constants u and C were takenas p = 10and C =
0.6. The value of u* was taken to be 50 based on a transition
from stable proportional to nonproportional cycling. Plots of
¢ versus number of cycles for the loading described in
equations (21) appear in Fig. 2. For the type 304 stainless steel
of this investigation, ¢ and y* were taken as Heaviside
functions u(8; — X;) for i = 1 and 2, respectively. The °
parameter , was taken as the Heaviside function u(x — &).
Significant fading memory of prior cyclically stable states was
not observed even for nonproportional loading followed by .
proportional loading. All tests were conducted at effective
strain rates ranging from 0.001 sec~! to 0.003 sec ~'.

Correlation of Theory With Experiments. Results of two
separate strain-controlled tension-torsion tests are reported in
this investigation. Young’s modulus and the shear modulus
were respectively determined as £ = 188 GPa and G =
GPa. i

To compare the experimental results with the proposed two
surface theory, the same strain histories were introduced in
the constitutive equations. The specialized axial-torsional
equations were integrated using a first-order predictor-
corrector method [11, 12]. The state equations can be ex-
pressed as X = F(x, #) where

- PP P, P T
X=la a6 €y o *ap*r q oyt ap"R R 5,5,
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Define x, . and x,,§ as predicted and corrected values of x,
respectively, at the (¢ + 1)th time step. The corrector
algorithm was repeated until the norm of the error vector

' . 112
(E(I(xk+l —xk+np)i|/|(xk+|°)i|)z) .. (@

1-1

was acceptable where (X, 1° — X;.F); and (X;.;°); are the
ith components of (X¢,.i° —X;.;”) and Xx,.,°, respectively.
Then, the accepted value of X,,; is Xey; = (@/5)X, ¢ +
(1/5)X,.;". Automatic time-step control was included to
reduce (increase) the time step At if E was greater (less) than
a selected maximum value at a selected iteration. All
calculations were performed on the Georgia Tech Cyber 835..

History 1:" Specimen SS09. This specimen was subjected
to 10 cycles of a proportional incremental step test with
maximum strain amplitudes of ¢, = 0.007, v, = 0.0105, and
a strain rate é = 0.001 sec~!. Subsequently, three blocks of
different loadmg cycles were applied. Block 1 consisted of 16
cycles of proportional loading on the same maximum shear
planes with o = 0°, ¢, = 0.005, and v, = 0.0075. Block 2
consisted of 25 cycles of sinusoidal loading with o = 30 deg,
Y« = 0.0075, and ¢, = 0.005. Block 3 consisted of 25 cycles
of sinusoidal loading w1th p = 60deg, v, = 0.0075,and ¢, =
0.005.

The imposed cyclic strain history for blocks 2 and 3 is
shown in Fig. 3 along with the experimentally observed axial
stress-strain, shear stress-engineering strain and shear stress-

R
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Fig. 4 Predicted results for History 1: 25 cycies of block 2 and first 10
cycies of biock 3

“1

axial stress responses. Block 1 is not included since no ad-
ditional transient cyclic hardening occurred. Since data were
taken in cycles 1 to 10 and geometrically increasing powers-of-
two beyond cycle 10 of each block, only cycles 1 to 10 for
blocks 2 and 3 appear in Fig. 3. Very little additional
hardening occurred between cyclés 10 and 25 [9, 10]. .

It should be noted that any measure of effective plastic
strain range (e.g., octahedral or maximum shear) does not
increase for each subsequent block, yet additional isotropic
hardening occurs at the beginning of blocks 2 and 3. Com-
puter-generated plots of the blocks 2 and 3 from two surface
plasticity theory, shown in Fig. 4, demonstrate the capability
of state variable ¢ to correlate this additional hardening. In
the analysis, the initial values R = 170 MPa, R* = 291 MPa,
and « = 4427 MPa were used, based on the hysteresis loop
response from the stable cycles of block 1. Cyclic hardening in
each block is predicted well by the model. Since the points
from numerical integration were plotted at effective strain
increments of 0.0005 to 0.001 and connected by straight lines,
the plotted results have a piecewise linear appearance. Of
course, the time steps used in integration were considerably
smaller.

For block 3, the yield and limit surfaces are in contact for
most, if not all, of each cycle. The evolution of R, R*, ¢, and
¢ in the model is plotted for this history in Fig. 5 as a function
of time. Note that g exhibits a general decay in each block as
cyclic hardening accumulates. Also, ¢ increases, as expected,

il
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for each block. In the numerical integration, the norm E of
the error vector was kept below 10-3. Poisson’s ratio in
equation (9) was taken as an effective value based on the ratio
of maximum effective plastic strain range to maximum ef-
fective total strain range.

To illustrate the consequences of neglecting non-
proportional cross-hardening effects in the analysis, the
model was used to predict the same imposed strain history
with ¢ = 0 always. This would be the case if, as usually is
done, only uniaxial test results were used as a reference in
models for nonproportional histories. Figure 6 shows the
responses predicted in this case for blocks 1, 2, and 3 of
History I. The lack of transient hardening in blocks 2 and 3 is
noted. Hence, the use of uniaxial baseline data for non-
proportional histories obviously can be quite inaccurate for
this material. .

History 2: Specimen SS01. This specimen was subjected
to three blocks of dissimilar cylces. Block 1 consisted of
proportional loading from the virgin state for 25 cycles with
e, = 0.0041, v, = 0.006, and é = 0.003 sec~'. Block 2
consisted of another 25 cycle path, introducing another
discrete set of maximum shear strain planes at the same axial
and shear strain amplitudes. Block 3 consisted of another 25
cycle path that joined the previous two paths by continuously
rotating the maximum shear strain planes between the tips.
The three blocks of loading paths are shown in Fig. 7 along
with the experimentally observed axial stress-strain, shear
stress-engineering strain, and shear stress-axial stress
responses. All responses are from the first 10 cycles of each
block with the exception of the shear-stress-axial stress
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Fig. 8 Predicted results for History 1 If ¢ = 0. The underestimation of
hardening predicted In blocks 2 and 3 lllustrates the Inaccuracy of
extrapolating unlaxlal test results to nonproportional loading.

responses for blocks 1 and 2, which are from cycle 24. Again,
little additional transient hardening was observed for cycles
10 to 25. The tips of the strain paths are numbered to denote
sequence of loading. The response for block 2 was nearly
stable immediately following block 1. It is clear that the stress
response in block 3 is not symmetric and distortion and/or
translation of the limit or large offset strain yield surface has
occurred. Again, the isotropic hardening accrued in block 3
considerably exceeds that predicted by using a uniaxial cyclic
stress-strain curve a the same maximum plastic strain range.

Results from the model are shown in Fig. 8 for each block.
Note that the transient response in block 3 is well represented
by the model, but the model predicts unloading from the limit
surface near the maximum axial stress amplitude while the
experimental results do not clearly reveal such a phenomenon.
Hence, the peak axial stress amplitude is underestimated. The
rate of hardening in block 3 is reasonably accurate, even
though the loading is quite complex. In the analysis, the initial
values R = 148 MPa, R* = 192 MPa, and x = 8366 MPa
were used, based on the monotonic stress-strain curve for the
annealed type 304 stainless steel. Initial values for all other
variables were taken as zero. Again, the norm of the error
vector was maintained below 10-3.

Conclusions

It has been demonstrated that the proposed two surface
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theory is capable of reasonably accurate prediction of stress-
strain response for complex nonproportional loading. The
model combines an appropriate kinematic hardening rule
based on the theory of Mroz with an isotropic hardening rule
that accounts for dependence on plastic strain range and
nonproportionality of loading, both of which can be
significant for a number of materials of structural interest.
Hence, the model is sophisticated enough to describe essential
aspects of transient, cyclic, nonproportional deformation
behavior.

“

To achieve this necessary sophistication, some concessions
were made. To model plastic strain range dependence, state
variables a” and g are introduced. State variables R*, «* and
x were introduced in addition to the usual variables R and a to
produce an acceptable description of plastic strain rate
direction and hardening modulus during nonproportional
plastic flow. State variable ¢ was defined to account for
additional isotropic hardening during nonproportional
loading. Even with these additional parameters, the model is
simple in the respect that the yield surface is not allowed to
distort. :

Methods for experimental determination of model
parameters have been set forth, although there is freedom to
adapt the model to peculiar characteristics of each material of
interest. For example, the functions A(q), ¥, ¥*, and ¢, may
be determined to any desired degree of precision. The func-
tion 4 may be selected to give smooth reloading response after
unloading for small subcycles, or to accurately fit cyclic creep
racheting response. Even with the relatively small number of
tests run in this investigation to determine R, R*, &, C, and g,
it is seen that the theory satisfactorily models the more
complex histories of this study. No claim can be made
regarding the sufficiency of experimental characterization of
the A(q) and ¥ functions in this study, since the histories to
be predicted did not include overload sequence effects. It
seems that the choice of the structure of the model is more
important than exhaustive experimental characterization, as
evidenced by the poor predictions obtained when ¢ was
neglected.
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An Experimental Study of the
Structure of Constitutive Equations
for Nonproportional Cyclic Plasticity

Three type 304 stainless steel specimens of the same geometry were subjected to
complex, cyclic axial-torsional histories characterized by varying degrees of non-
proportionality of straining. All tests were at room-temperature. The data from
cyclically stable hysteresis loops were reduced and the direction of the plastic strain
rate vector, variation of plastic hardening modulus, and direction of translation of
a rate and time-independent yield surface were studied. It is shown that the in-
dependent variables in a Mroz-type formulation map the experimental results
with a higher degree of uniqueness than other popular formulations studied for
both the hardening modulus and direction of yield surface translation. Also, the
plastic strain rate is not, in general, in the direction of the deviatoric stress or stress

rate.

Introduction

Numerous adaptations of time and rate-independent
plasticity theory have been suggested in the literature [1-7]
and implemented in existing finite element codes for cyclic
loading. Often these models are applied to structures sub-
jected to nonproportional variation of stresses and strains [8].
Model constants and parameters, however, are usually ob-
tained from uniaxial tests (proportional loading or straining).

The usual elements in a time and rate-independent plasticity
theory for metals are a yield surface, a flow rule that relates
increments of stress and plastic strain, and hardening rules
that specify the movement of the yield surface and any shape
changes during plastic flow. Experiments have revealed that
nonproportional strain cycling affects all of these elements
significantly. Translation and distortion of the yield locus has
been shown to be highly dependent on prestrain and changes
in direction of straining [9-12]. Cyclic hardening can be
pronounced under conditions of highly nonproportional
strain cycling [13-16], increasing the cyclic strength level
significantly above that observed in uniaxial tests at the same
effective plastic strain amplitude. The kinematic hardening
rule and flow rule are complicated by changes in plastic strain
rate direction, rendering many generalizations made from
ugiaxial tests inaccurate.

Recent evaluations of hardening and flow rules [17-20]
have consisted of integrating a number of models for a given
control history and comparing with experimentally obtained
hysteresis responses. This procedure allows qualitative
comparison. In this paper, an inverse approach is taken. The
data from nonproportional cyclic tests are reported in reduced
form and several basic proposed structures of hardening and
flow rules are examined for correlative capability.

Contributed by the Materials Division for publication in the JOURNAL of
ENGINEERING MATERIALS AND TECHNoOLOGY. Manuscript received by the
Materials Division, August 13, 1984,
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Experimental Procedure

The material chosen for this study was type 304 stainless
steel with the AISI composition shown in Table 1. Type 304
stainless steel has been‘widely used in high temperature ap-
plications, particularly in nuclear structures. The cyclic
deformation behavior of 304 stainless steel has been ex-
tensively modeled under uniaxial conditions.

Tubular axial-torsional specimens were machined from as-
received bar stock of 50.8 mm diameter as shown in Fig. 1.
The experimental details appear elsewhere [15, 21, 24]. Axial

Table1 Composition

C Mn Si Cr Ni Fe
AISI 0.08% 2.0% 1.0% 18-20% 8-12% Bal.
max max max
Actual 0.08 1.40 0.45 19.13 9.49 Bal.
+
86 R

Grind Smooth
/ 381+0013

—

| e 1)
fe——

33 38—7

210

Fig.1 Tubuiar axial-torsional specimen (dimensions in mm)
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Table2 Complex strain histories

BLOCK #
Haee™ly 1 2 3 s

ENaPOIAT
1equence:

5501 0.003

75 cycles 75 cycles

OO0T [ Tncresental T fl-m
Step Test: v,do.0075

40,007 ~0 -m" -co"
¥ x0.0108

Te, «0. 0051
v,d0.0075

zm:-gmvu

18 cycles T6 cyclas 8 cycles 25 cycles

2 :-0 v=+0.0085

3 ==.0039,v=0.0057

4 0,009, =~0.0057
5 =-0,0046,7=0.0039
6 ©0.0048, v=-0.0039
7 =0.0051,v0

8 =-0. 0051 0

9 0045, v=0.0039

10 I--O 0046 v=-0.0039
11 0,0039,v=0.0057
12 =+0.0019,v=-0.0057
return to cov=0

S0 cycles

stress and shear stress were assumed uniform over the wall-
thickness [16, 22].

Axial strain ¢ was defined as the gage length displacement
divided by the original gage length. The shear strain y was
obtained by dividing the angle of twist by the gage length and
multiplying by the mean radius.

A computer program was written so that any combination
of line segments in e-v strain space could be joined end-to-end
to define a loading cycle. A block was defined as an arbitrary
number of identical cycles. Furthermore, the program
allowed the user to define any number of blocks, each con-
taining a different cycle loading path. The effective strain rate
(¢ = (& + %2/3)"2 assuming a Poisson’s ratio of 1/2) was
kept approximately constant along each segment.

Biaxial Loading Histories

Results of three strain-controlled axial-torsional histories
are reported in this paper. All tests were conducted at room

temperature. The initial values of Young’s modulus and shear
modulus were determined as E = 188 GPa and G = 77 GPa,
respectively. A summary of the three test histories appears in
Table 2, including the effective strain rate and controlled axial
and shear strain endpoint sequence of each block within each
history.

The scope of this paper will be limited to considerations of
essentially stable cyclic response, observed in the latter cycle
of each block. Hence the flow rule and kinematic hardening
rule may be examined in the absence of complicating effects
of isotropic hardening.

Notation. The definition of the axial-torsional subspace
follows as a subspace of Ilyushin’s five-dimensional
deviatoric vector space [23]. Define the stress vector as

g=0,0) +0;30; )
where

=V§0:9 =V§T

and n, and n; are orthonormal base vectors in the stress
plane. Here, z and 8 denote the tube longitudinal and cir-
cumferential directions, respectively. Likewise, the plastic
strain vector is defined by

€ =¢"n, +¢;,"n; 2

0| =0,=0,0;

where
6P =¢,", and ;7 =Q2/V3)e,”
Note that the plastic strain rate vector is defined as
P=éfn +éPn;. (3)

The effective stress & and plastic strain rate é” (normalized to
the axial case) are recognized as

=lol=(0+0)"2 = (o} + 0})1/2 @
= lé? | %
The total strain vector is heuristically defined as

é

€=¢ Ny +¢;03 (6)
where e, = ¢,, = eand ¢; = (2/V3) e;5 = v/V3. The effective
strain rate reported in Table 2 is then é = | ¢! since y = 2654,

Hysteresis Response. The input signals and resulting stress
responses for a complete cycle near the end of selected
nonproportional blocks are shown in Fig. 2. The beginning of

Nomenclature
D;, D, = gage length inside and outside diameters
E = Young’s modulus
G = shear modulus
P = axialload
R, R, = radii of yield and limit surfaces
§; = deviatoric stress tensor
T = torque
Wp = accumulated plastic work
¢ = scalar in kinematic hardening rule
f,/* = yield and limit surfaces
h, h* = plastic hardening moduli
J, = second invariant of deviatoric stress
n = unit vector in direction of plastic strain rate in
axial-torsional subspace
nm,, n; = orthonormal unit vectors in axial-torsional
subspace
n; = unit normal vector to yield surface
s = accumulated effective stress
a = backstress vector in axial-torsional subspace
a; = backstress tensor
B = phase angle
vy = total engmeermg shear strain
v, = total engineering shear strain amplxtude

308/ Vol. 107, OCTOBER 1985

6 = distance from current stress point to
corresponding limit surface point
8m, 8, = distance to limit surface defined by Mroz and
Ziegler based approaches
€, €, = total axial strain
e, = total axial strain amplitude
€, = total shear strain
€, €7 = axial and shear plastic strain components
€ = plastic strain vector in axial-torsional sub-
space
€, 7,657 = components of ¢’
§,&P = effective total strain and plastic strain
d\, d\* = scalars in flow rule
du,,du, = scalarsin kinematic hardening rules
£p = accumulated plastic strain
0,0, = axial stress
g, = shear stress
¢ = stress vector in axial-torsional subspace
0; = Stresstensor
d,,0; = componentsof ¢
¢*, ¢** = points on the limit surface which correspond
to Mroz and Ziegler based approaches
r = shear stress
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Fig. 2 input strain cycle and resuiting stress responses: (a) specimen
S$S01, biock #3, cycle #24; (b) specimen SS09, biock #2, cycle #16; (¢c)
specimen SS09, block #3, cycle #24; (d) specimen SS09, block #4, cycle
#16; and (@) specimen SS04, block #1, cycle #40
the data for each block is marked with “‘B’’ to establish a o
datum for later calculations of accumulated stress or strain.
It should be noted that there are path-dependent differences ¢ % f g P
i . . N P4
in the extent of cyclic hardening. For example, block #3 of a o AN 4 . S b
specimen SS09 exhibits a saturation effective stress level . A AN s - /
which considerably exceeds that of block #2. Yet the ’\3 e ,\5 .
maximum plastic shear strain amplitude of block #2 exceeds A Mo \‘\\‘
that of :block #3. The transient behavior of these three sl X 1 el - 4
histories, including the additional cyclic hardening during G e G we
nonproportional strain cycling, have been previously
documented [15, 24]. This paper, as previously mentioned, €0
will not address the transient behavior. Ly ey
Plastic Strain Rate Direction. To compute the plastic strain g e <’x¢ g ;: ‘/r
rate vector from the data, numerical differentiation was c-, E o F = d
required. The values of axial stress, shear stress, axial strain, & 3 - 5} L
and shear strain of five contiguous data points were / G =~
parameterized with respect to arc length s = I(AgeAg) along '}}Wn‘“
the path. Then a parabola was least-squares fit to the five data oo " J e R J
points to form each of the smoothed functions o(s), 7(s), L L ] MPo

€(s), and y(s), and the derivatives da/ds, dr/ds, de/ds, and
dy/ds were obtained for the central (third) point. The
derivative of plastic strain was computed as

(L e (2

and the unit normal vector in the direction of the plastic strain
rate was defined by

n=(de’/ds)/ | (de” /ds) | 8)

A check on the smoothness of the data was obtained by
applying a first order central difference technique to each
three contiguous points to obtain the derivatives for the
central point [25]. This technique resulted in essentially the
same results as the five-point parabola method, indicating
good differentiability of the data.

To avoid the scatter in plastic strain increment direction
which may occur in regions where the plastic strain increment
is very small (e.g., elastic unloading), a ‘“‘cutoff’ value of
Ide/ds| was used. A value of lde”/ds| = 1.4 x 10-8
MPa-! was selected after initially plotting the histories to
omit regions of unloading for which |def/dsi<1.4x10-¢
MPa-!,

Figure 3 shows the plastic strain rate direction plotted as
vectors from the corresponding positions of the stress space a,

Journal of Engineering Materials and Technology

[ 1 MPo

Fig. 3 Plastic strain rate and deviatoric stress directlions. The longer
vectors are in the direction of plastic strain rate corresponding to the
points at the tail of the vectors. The shorter vectors are in the direction
of deviatoric stress. The cycies correspond to: (a) specimen SS01, block
#3; (b) specimen SS09, block #2; (c) specimen SS09, biock #3; (d)
specimen SS09, block #4; and (e) specimen SS04.

versus gs response. Note that the plastic strain rate direction is
plotted at data points at approximately equal increments of
accumulated stress s. The deviatoric stress (radial) direction is
also plotted at the same data points with shorter vectors.

Two interesting observations are readily made. If the plastic
strain rate were in the direction of deviatoric stress, as
suggested by some current theories [26], then the plastic strain
increment would be radial in o, versus oy space since

OCTOBER 1985, Vol. 107/ 309
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Fig. 4 Modulus h versus accumulated straln from the initlal point in
each cycle correspnding to: (a) specimen SS01, block #3; (b) specimen
$S09, biock #2; (c) specimen SS09, biock #3; (d) specimen SS09, biock

#4; and (e) specimen SS04

, de " =dN2/3)o, —de,, " =d\* o, —de, P =d\* 0, )
dey” =d)“’z0"2dfzop/‘/5

= 725 (3/2)d\*(V304) /N3 —des P =d\* o3 (10)

If the plastic strain rate were in the direction of deviatoric
stress rate, as suggested in some integral formulations [27],
then the plastic strain increment would be tangent to the stress
path. Figure 3 clearly shows that neither is the case for stable
nonproportional cycling. Of the nonproportionally loaded
specimens, only SS04, which consists of several radial paths,
exhibits collinearity of the plastic strain rate and deviatoric
stress.

From the data in Fig. 3, it is obvious that the normality
flow rule would require at the very least a translation of a
Tresca or von Mises yield surface to approximate the
deformation-induced anisotropy (distortion) imparted to the
yield surface under nonproportional loading. This conclusion
has been drawn previously in comparison of experimental
results with predictions from rate-independent cyclic plasticity
theories; in this study, the experimental results only are used
to invalidate the use of deviatoric stress or deviatoric stress
rate in generalized (multidimensional) flow rules.

Variation of Plastic Hardening Modulus. The normality
flow rule may be stated [28] as :

L1,
fAijP= a ( Sk e

)
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where ¢;” is the plastic strain rate tensor, Su is the deviatoric
stress rate tensor, and #;; is the unit normal vector to the yield
surface in nine-dimensional stress space. Here, 4 defines the
plastic hardening modulus.

In the reduced axial-torsional subspace, the flow rule can be
stated as

;P

€ = ;11—‘ (gen)n (12)

where o, ¢” and n are defined by equations (1), (2), and (8),
respectively. Hence,

aen

h*= (13)

éfen
defines the hardening modulus in the subspace. For the axial-
torsional loading of this study, it can be shown that 4 =
(2/3)h*. .

Plots of A versus accumulated strain from the initial point
of each path (points B in Fig. 2) are shown in Fig. 4. It is
noted that the modulus exhibits variations through each
nonproportional cycle, consistently approaching a value less
than 10,000 MPa in the plastic regions. Hence, there appears
to be an approach to an asymptotic value of 4 even for very
complex histories.

It is useful at this point to consider criteria for correlation
of the variation of hardening modulus. In practice, the slope
of a uniaxial cyclic stress-plastic strain curve is fit as a func-
tion of one of these parameters. Then this functional
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relationship is extended to multiaxial calculations. The
validity of this approach comes into question for non-
proportional loading. In this study, several previously
proposed correlations will be investigated.

It is perhaps simplest to consider the modulus to be a
function of effective stress [29],

h=h(~3J;) (14)

where J, = 1/2§;§; is the second invariant to deviatoric
stress. For axial-torsional loading, V3J, = (o% + o3)/2.

Another class of simple correlations for variation of
modulus, more generally accepted for nonproportional
loading, involve two or more nested surfaces [30-32]. These
theories implicitly include kinematic hardening of the yield
surface through dependence on the direction of the unit
normal vector n (plastic strain rate direction). In this study,
the yield surface will be considered as nested within a single
fixed surface of larger radius, defined as the limit surface.
Such two surface theories are widely used and are com-
putationally efficient [31-32].

Two simple models will be evaluated. Both models state
that the modulus 4 is a function of the metric distance from
the current stress point on the yield surface to a generic point
on the limit surface. The models differ only in the definition
of this generic point. In both cases, yield and limit surfaces
are defined by von Mises forms as f = (¢ — a) *» (0 — a)
— R*and f* = o, « 0, — R, 2, respectively, where o, is a
point on the limit surface, and a is the center of the yield
surface.

In the Mroz model, the modulus is a function of the
distance from the current stress point to a corresponding
point ¢* on the limit surface with the same exterior unit

g, normal, as shown in Fig. §. Hence,
Fig.5 Detinition of 5, and 5, in two surface approaches h=h(6,) (15)
300000
a % . o
= % N %
a R b
r3 ';.-‘ “ = . 3
% 700 % \ 700
V3, MPa Vi, MPa
300000 T 300000
g ¢
c* : £ ¢ d
H
= a = {
?
|}
\; »
] o]
° VJ_JZ MPa 700 ° V3_Jz MPa o0

MPa

100
MPa

Fig.6 Modulus h versus V3J; cormresponding to: (a) specimen SS01,
block #3; (b) specimen SS08, block #2; (c) specimen S$S09, block #3; (d)
specimen SS09, biock #4; and (e) specimen SS04
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Fig. 7 Modulus h versus é,, for: (a) specimen SS01, block #3; squares,
circies, and trlangles correspond to R; = 550 MPa, 800 MPa, and 1000
MPa, respectiveiy; (b) specimen SS09, block #2; squares, circies, and
trlangles correspond to R; = 350 MPA, 450 MPa, and 550 MPa,
respectively; (¢) specimen SS09, block #3; squares, clrcles, and
triangles correspond to R; = 450 MPa, 550 MPa and 700 MPa,
respectively; (d) specimen SS08, block #4; squares and circles
correspond to R; = 550 MPA and 800 MPa, respectively; and (o)

specimen SS04, R; = 550 MPa

where 6,, = l(¢* — o)l. Here, ¢* = R n since the limit
surface is not allowed to translate.
Some authors [32] have also proposed the use of a rule

based on Ziegler kinematic hardening,
h=h(8;) (16)

where 6, = l¢** — ol. Here, ¢** is the point on limit surface
defined by the intersection of the unit normal vector to the
yield surface with the limit surface, as shown in Fig. 5.

It should be noted that the correlations in equations
(14)-(16) are functionally identical for cyclic paths in which
the deviatoric stress (stress rate) is radial always. Significant
differences can exist, though, for nonproportional loading.
In Figs. 6, 7, and 8, modulus 4 is plotted versus v3J,, 6,
and &, respectively. A measure of correlative capability of
each can be obtained by examining the scatter of the data
throughout each cycle. A good theory should collapse the data
into one curve, relecting a one-to-one mapping of modulus
versus the independent variable.

Note that the correlations for block #3 of specimen SSO1
are not unique according to the+3J, or 6. variables. In
contrast, the Mroz approach (8,, in Fig. 7) consolidates the
data much better. To evaluate the sensitivity of the Mroz and
Ziegler based approaches to dimension of the limit surface,

312/ Vol. 107, OCTOBER 1985

three limit surface radii of 550 MPa, 800 MPa, and 1000 MPa
were implemented, as seen in Figs. 7 and 8. Only small dif-
ferences exist between the correlations obtained (apart from
translation of curves) for the vastly different limit surface
radii, indicating insensitivity to the radius parameter. Since
translation of the limit surface would be of the order of the
asymptotic value of A multiplied by plastic strain amplitude
[32] (i.e., < 50 MPa), this effect was taken as secondary and
not evaluated in this study.

Specimen SS04 is correlated equally well by the Mroz and
Ziegler approaches. None of the approaches correlate one of
the branches of the path. Even though the end points of the
stress space response correspond roughly to proportional
loading for each straining direction, there is readjustment in
direction of the stress response in the plastic region. Perhaps
as a result an inflection is observed in the plots of modulus
shownin Fig. 6,7, and 8.

Specimen SS09 illustrates some of the problems associated
with modulus correlations for highly nonproportional
cycling. As the loading becomes increasingly non-
proportional, the second invariant_of deviatoric stress ap-
proaches a constant value. Hence, v3J, is useless for block
#4, even though it is satisfactory for the proportional
straining of block #2. Note that for block #4 the Ziegler

Transactions of the ASME
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Fig. 8 Modulus h versus é, for: (a) specimen SS01, block #3; squares,
circles, and triangles correspond to R, = 550 MPa, 800 MPa, and 1000
MPa, respectively; (b) specimen SS09. block #2; squares, circles, and
trlangles comespond to R; = 350 MPA, 450 MPa, and 550 MPa,
respectiveiy; (c) specimen SS09, block #3; squares, circies, and
triangles correspond to R, = 450 MPa, 550 MPa and 700 MPa,
respectively; (d) specimen SS09, block #4; squares and circies
correspond to Ry = 550 MPA and 800 MPa, respectively; and (e)

specimen SS04, R; = 550 MPa

approach is little better than\/f{fz since 8, = constant. But
the Mroz rule exhibits a significant variation of §, through
the cycle. Even the Mroz rule, though, exhibits a higher degree-
of nonlinearity than for the proportional straining of block
#2. Another interesting observation regarding block #4 is the
higher asymptotic value of A in the plastic region. The lowest
value of A in each cycle increases from block #2 to block #4
steadily as the nonproportionality increases. This result is
consistent with the Mroz rule, which allows for an increasing
distance from the asymptotic limit surface (greater 5,,) for
increasing degree of loading nonproportionality. It is also
consistent with the Ziegler based rule to a lesser extent.

A second measure of the accuracy of a modulus correlation
is comparison of the various nonproportional cycles with a
proportional cycle. This comparison is not without some
ambiguity, since the cyclically stable radii of the yield and
limit surfaces may depend on the degree of non-
proportionality of loading. As shown, however, the func-
tional relationship between h and 5, or 5. is weakly depen-
dent on the limit surface radius. Hence, it is useful to compare
the correlations obtained for block #2 of specimen SS09 with
the corresponding V3J>, 8., and &. correlations for non-
proportional cycles. These comparisons are shown in Fig. 9.
Note that the Mroz based correlation, while not uniformly
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accurate, provides the most consistent corrrelation of the
three. Of course, the limit surface would be required to ex-
pand with increasing nonproportionality of loading in order
to maintain a ‘‘unique’’ mapping of 4 and 5,,.

Translation of Yield Surface. Two kinematic hardening rules
which have been widely implemented for cyclic plasticity are
the Mroz [13, 28, 30] and Ziegler [13, 33] rules. According to
the Ziegler rule, the center of the yield surface «,; moves in the
direction of the vector which connects the center of the
current yield surface with the current stress point,

do;=dp(0;— o 7)
where dy, is a scalar factor.

According to the Mroz rule for the yield surface and a
stationary limit surface,

do; =dpy(0f—0;) (18y

where ¢} is a point on the limit surface with the same exterior
unit normal vector as that of the yield surface at the current
stress point, and dy, is another scalar proportionality factor.
Both hardening rules can be compared, at least
qualitatively, by implemention in the axial-torsional sub-
space. In the axial-torsional subspace, the Ziegler rule in
equation (17) is equivalent to Prager’s rule da = cde” where
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Fig. 9 Comparison of proportionally loaded block #2 of specimen
S$S01 with: (a) specimen SS01, block #3; (b) spectimen $S509, block #3; (c)
specimen SS09, block #4; (d) specimen SS04. The solid line in each
case represents the corresponding data for block #2 of spectmen SS09,
and is transtated to match each data set at the point of approach of h to
some smail asymptotic value.

da = da; n, + do, n,, and c is a scalar. Recalling that the
direction of de” was previously found at each point for which
Idef/7ds] = 1.4 x 10~ MPa~!, the direction of da via
Ziegler’s rule is then known. For the Mroz rule, de is in the
direction of (¢* — ), discussed in equation (15).

Invoking the normality flow rule and a von Mises yield
surface of the form f = (¢ — a)*(¢ — a) — R?, the plastic
strain rate direction defines the line along which the yield
surface center a is located. The metric distance from the
current stress point ¢ to a must then equal R from the yield
condition. In Fig. 10, the evolution of « through a cycle is
plotted as a solid line for two histories. For specimen SSO1,
two yield surface radii are plotted for comparison. Note that
errors in calculated plastic strain rate direction are magnified
in the algorithm for plotting «, resulting in a somewhat wavy
path. It is possible, though, to make some very important
comparisons of the two hardening rules based on this data.
In Fig. 10, vectors are plotted according to each rule. The
ideal rule would result in vectors tangent to the path of a.
Inspection of Fig. 10 clearly reveals the superiority of the
Mroz rule for these histories. This superiority had previously
been claimed by Lamba [13, 18] by comparing experimental
axial-torsional hysteresis loops with theory.

Conclusions

For nonproportional, cyclically stable strain cycling of type
304 stainless steel specimens, the following observations are
made.

1. The direction of plastic strain rate does not in general
coincide with that of the deviatoric stress or deviatoric stress
rate.

2. A correlation for modulus based only on the second
invariant of deviatoric stress is unsatisfactory for describing
the variation of modulus along different path segments within
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Fig. 10
Mroz rule and (right column) Zlegter rule for (a) specimen SS01, block
#3, R = 200 MPa; (b) specimen SS01, block #3, R = 100 MPa; (c)
specimen SS09, block #3, R = 200 MPa; and (d) specimen SS09, block
#4, R = 200 MPa. For the Mroz rule, R; = 550 MPa was used.

Instantaneous directions of movement of « via (left column)

the same cycle or along two distinctly different non-
proportional paths.

3. A correlation for modulus based on the metric distance
from the current stress point to a corresponding point on a
fixed limit surface of larger radius can produce satisfactory
results provided the corresponding point is properly selected.
The use of a Mroz based definition of the corresponding point
on the limit surface is superior to that of Ziegler based
definition.

4. The Mroz kinematic hardening rule is more accurate
than the Ziegler rule for nonproportional cycling.
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ABSTRACT

The structure of constitutive models for cyclic plasticity is usually based on uniaxial tests. These
models are then generalized to multiaxial stress-strain states assuming the combined states as equivalent
uniaxial. It is shown that serious errors are introduced by this assumption for nonproportional loading.
Hence, nonproportional loading tests can be helpful in determining appropriate multiaxial generalizations of
theories based on a predominately uniaxial test database.

INTRODUCTION
The usual procedure in formulating constitutive laws for the cyclic plastic behavior of materials is to
a. observe cyclic stress-strain response in uniaxial tests,
b. formulate a constitutive theory capable of including the essential elements of
the uniaxial response,
Cc. determine the model constants and parameters from unijaxial tests dictated by the
form of the model, and
d. generalize to multiaxial states of stress and strain on the basis of effective

stress and strain,

In reality, proceeding from steps (a) - {c) to step (d) is a very large “jump". Furthermore. it is
often done without a physical/experimental basis, particularly if the multiaxial stresses and strains vary
nonproportionally. Yet this generalization from uniaxial response forms the basis of essentially all cyclic
plasticity constitutive subroutines currently found in nonlinear finite element codes. Recently.
formulation of fatigue crack initiation models for complex multiaxial loading [1-3] has been fueled by
industrial concern for predicting fatigue life of components. Since cyclic plasticity has long been related
to low-cycle fatigue life [4-6], it is obvious that application of strain-based multiaxial fatigue criteria
requires accurate constitutive equations.

The purpose of this paper is to discuss inappropriate generalizations, for cyclic plasticity theories,
from uniaxial test data to cyclic, nonproportional, biaxial loading. In addition, some biaxial tests will
be described which can assist in the formulation of more general constitutive laws.

SOME COMMON ASSUMPTIONS OF TIME- AND RATE-INDEPENDENT CYCLIC PLASTICITY THEORY FOR METALS
To provide a framework for this discussion, the elements of generalized time- and rate-independent
theory will be outlined. For theories which employ a yield surface

flg -a, R) =0 (1)
of relatively simple form, the deformation-induced anisotropy is described by Backstress a . The
characteristic dimension of the surface is denoted by R. By Drucker's postulate the associated flow rule,
applicable for metals, is

dsp = dx zf (2)

where vf is the gradient of f in stress space and dx is a scalar multiplier. Expressing the scalar
muttipTier in the forms

de? = H(dg: uf)ef (3)

where H is a scalar or, alternatively,



% = (dginin (a)
where n = vf/||vf|| , h is recognized as the plastic modulus. Df course equations (2) and (3) are
applicable™ even’ for general anisotropic forms of f [7-9]. In principle, anisotropic yield surface
formulations could be used to accurately model multiaxial cyclic plasticity, Extensive necessary
experimental characterization by yield surface probing, difficulty in characterizing history dependence. and
resulting complex analytical forms have seriously limited the use of anisotropic yield surfaces in actual
applications. Since the current work seeks to explore inadequacies in common assumptions, yield surfaces of
the form in equation (1) will be considered. Df course, equations (1)-(4) are applicable in any relevant
stress space or subspace.

In addition to the flow rule, kinematic and isotropic hardening rules are typically specified for a and
R in equation (1):
da = dui (5)

dR = A{g)dg (6)

The evolution of these parameters is related by the consistency condition df = D during plastic flow,
or

yf:dg - vf:da - (af/3R)dR = D (7)

Some of the popular forms for g include

~

Prager rule:. E=n (8)
Ziegler rule: g = (g -a) (9)
Mroz rule: g = (g% - q) (10)

where g* is the point on a loading or bounding surface which encloses yield surface f [10-12] with the same
outward normal vector n as that of the current stress point. For surfaces which do not have a unique
mapping of normal vectors to stress points, such as the Tresca case, one may specify o* to be a
geometrically similar point on the bounding surface [13]. ~

The Mroz rule can apply to a series of loading surfaces in a sequential manner [1D-11], or can apply to
a single bounding surface (e.g. two surface theories [14-18]). It is easy to rationalize the prolific
implementation of the Prager and Ziegler rules, since they are quite simple and requir2 no bounding
surfaces. Furthermore, since no distinction can be made between the rules in equations (8) - (1D) for
uniaxial loading, there is no reason to introduce additional complexity to correlate uniaxial test
databases. Yet, the Mroz rule has been found to be most accurate [14-15,19] for the general case of biaxial
cyclic loading.

Typical forms for g in equation (6) are [2D-22]

p
g = [ (g -a)ae” = [ aWC (11)
or
where dwpc is a measure of plastic work increment. Usually, no particular limits of integration are

specified for equations (11) and (12) other than from the beginning of the history to the current point.
For strain-hardening response, the plastic modulus h in equation (4) is commonly expressed as

h = h{p) (13)

The parameter p often appears as one of the following forms:

linear hardening: p irrelevant, h = constant (14)
effective stress: p = (3J2)1/2 (15)
Mroz-type: p = ||2* -a|l = 5, (16)
Plastic strain or

work accumulation: p = dWre or p = (dgp:dep)l/z {17)

where J, is the second invariant of deviatoric stress, In equation (17), the lower limit of integration is
taken to correspond to the point of initial yielding in the current reversal [23]. Note that the Mroz form
in equation (16) is defined in terms of a two surface theory as in Dafalias [16, 18], Krieg [17] and
McDowell [14-15]. A multiple surface Mroz formulation effectively discretizes stress space into a number of
sub-regions of constant plastic modulus at the expanse of introducing a significant number of additional



loading surfaces and associated backstress components. Hence. for computational efficiency, the two surface
form of the Mroz rule is desirable.

EXPERIMENTAL VALIDITY OF ASSUMPTIONS

One of the most useful tests for characterization of the uniaxial cyclic stress-strain response of
metals is the incremental step test [24]. In this strain-controlled test, the applied strain range is
successively increased and decreased linearly until the stress-strain response stabilizes. The resulting
cyclic stress-strain curve is then used to represent stable hysteresis response.

An analogous test may be defined for tension-torsion testing of thin-walled tubular specimens. In
these tension-torsion tests, the relative angle of twist and axial deformation of the gage section may be
independently enforced via closed-loop, servohydraulic, computer control. The in-plane axial stress s and
shear stress t are taken to be uniform and statically determinate. Details of the specimen design.
extensometry, and testing procedures are discussed elsewhere [25-26]. If sinusoidal axial and engineering
shear strains are enforced with phase angle g ,

e = Ea singt (18)
Y=Y, sin(ut - 8) (19)

a sort of phase angle step test may be run by successively increasing 8 from O to 90 degrees after reaching
cyclic stability at each value of 8 . Such a test was performed on initially annealed type 304 stainless
steel. In Figure 1, the enforced cyclic strain path and resulting stable axial versus shear stress
responses are shown for g = 0 , 30 and 60 degrees with Ya/ea = 1.5 and €, = 0.005. In these tests, the

effective strain rate was maintained constant at 0.001 sec'l. The significant extent of cyclic hardening

Ehmild be noted, with a concurrent successive decrease in any measure of effective plastic strain range
25].

An increase in the value of 8 corresponds to an increase in the overall effects of nonproportionality
within a cycle. McDowell et al. [27] showed in metaliurgical studies that this additional hardening can be
traced to an increase in the uniformity of deformation product (intensity of slip system activation) among
the grains.

This phase angle step test has important implications in terms of the validity of the previously stated
common assumptions of cyclic plasticity theory for metals. Figure 2 shows a plot of maximum effective
stress in each cycle for the three successive blocks. The onset of additional cycle-by-cycle hardening at
each step increase of g dictates that the A dependence on ¢ in equation (6) is not an appropriate general
form. Since this additional hardening occurs without an increase in effective plastic strain range, plastic
strain range dependence is not enough. An additional dependence on the nonproportionality of loading is
required, i.e. .

dR = A(z.¢)dg "~ (20)

where ¢ introduces path nonproportionality effects [28-30]. An additional variable [14-15.25.30] may be
introduced to account for plastic strain range effects observed even in uniaxial tests.

Turning to the kinematic hardening rule, equation (5), it is easy to verify the applicability of the
Prager or Ziegler rules. Since the stress-strain history was recorded on magnetic disk, the data were
appropriately numerically differentiated to give do/ds. dt/ds, de./ds, and dy/ds [31]. where the parametric
independent variable s is the effective stress arc length along the path. i.e.

s =f(ag_-ag)”2 (21)
g =0

g9 0 o3l (22)
o * ¢ (23)
o3 = /3t (24)

Equation (22) defines the stress vector ¢ in deviatoric axial-torsional stress subspace [31] with

orthogonal base vectors 21 and ny . Hence,
deP
~ (% 1 d dy _1ldr 1
s (G FEe*E "tx)nmn (25)

where £ and G are Young's modulus and shear modulus, respectively, and dep is the plastic strain increment.
The plastic strain rate direction is thus defined by equation (25)7 |[n this axial-torsional subspace,
the von HMises yield condition is expressed as

falg-al-(g-a)-R=0 (26)

At any point along the stress trajectory, the backstress q must be located such that dgp is collinear
with (3 - a) . This follows from the normality flow rule, equation (3), applied to equation (26). Note



that n = (g - a)/lg - a| in this case so that equations (3) and (9) result in equivalent forms. If one
assumeés a yield surface radius, then the trajectory of a is fully defined for this case, assuming floY
theory holds, as a = ¢ - Rn . In the analysis of the data, a “"cutoff" value of [dsp/dsl < 1.4 x 107 MPa
was used to define régions of elastic unloading. In Flgure 3, the' trajectory of o is plotted in stress
space for an assumed yle]d surface radius of R = 200 MPa. In addition. the predicted diraction of
backstress increment da in equations (5), (8), and (9) is plotted as a vector from the associated current
backstress point., Nofe the significant lack of correlation with experiment. since the correct kinematic
hardening rule should resuit in tangency of da with the trajectory of a . This lack of correlation holds for
virtually any assumed values of R and other cdnventional forms of the yield surface f (e.g. Tresca).

The Mroz kinematic hardening rule, employing a single bounding surface, results in much better
correlation as seen if Figure 4. Note that g* = R*n , where R* is the radius of a
surface f* = g* g* - (R*)” which bounds the maximum stres$ response.

Another Tmportant result is that the plastic strain rate vector is not, in general, in the direction of
either the deviatoric stress or stress rate since

dsp # dxlg (271)
de” + 2o (28)

as seen in Figure 5.
In the axial-torsional subspace, the flow rule is written as

d¢” = 5§ (de- nin (29)

where h = 2/3 (do n)/(d— p)l/2 is the plastic modulus. In a uniaxial test, h is simply 2/3 do/de
Modulus h is easily decerm1ned from the data during plastic flow since both de /ds and dg/ds are known. In
Figure 6, h is plotted versus some of the assumed forms of o in equations (14)}-(17). Pdre dependence of h
on any one of these parameters would require a uniqueness of h(p) regardless of path. A measure of
correlative capability is the similarity of the shape of the plots for out-of-phase cycling with in-phase
cycling. Clearly, the modulus 1is not constant, as stated in equation (14), but varies from very
high (+ =) to very low (+ ~ 4000 MPa) values. Nor is the modulus generally a function of effective stress
as suggested in equation (15). For the 60 degree out-of-phase loading, the effective stress is
approximately constant. '

Accunulated plastic strain or plastic work from the most recent point of initial yielding is not
satisfactory. As seen in Figure 6, the minimum value of h increases as g increases. Furthermore, there is
essentially no elastic unloading for 8 = 60 degrees or, presumably, for g > 60 degrees. For such histories,
validity of equation (17) would require that the modulus saturates monotonically to some constant value
since this is the case in uniaxial or proportional loading.

The Mroz definition of p in equation (16), also shown in Figure 6, appears to demonstrate the highest
correlation between in-phase and out-of-phase paths.

To put these results into perspective, it should be noted that differences between each of the earlier
assumptions for time- and rate-independent plasticity would vanish for uniaxial loading. Only for
nonproportional loading are the differences large enough to assess validity. Therefore, on the basis of
uniaxial tests only, one might formulate an improper form of the constitutive equations for evaluation of
structural response under nonproportionally varying boundary conditions. [t would seem that nonproportional
loading tests can contribute significantly to the development of a general model framework with little
increase in complexity.

SOME IMPLICATIONS FOR RATE-DEPENDENT, UNIFIED THEORIES

An important class of rate-dependent theories currently proposed for description of cyclic plasticity
and creep over a range of temperatures and strain rates are unified creep-plasticity equations. The typical
structure of these equations is as follows [32]:

g = F(—5—) (g -a) (30)
L
g-hai -l‘ag (31)
K=n '] -r (32)
kK & K
Here, ¢' is the inelastic strain rate and K is an isotropic hardening variable. Hardaning

functions (h_ , h, ) and recovery functions (r , r ) appear in these equations,
It is udual" for researchers to determife béih the structure and material parameters of these equations
from uniaxial testing. Though the equations are highly coupled and nonlinear, one can readily choose forms

for £, > ad Py ¢4 it yniaxial cyclic response, neglecting recovery terms [32].
In Yight of earlier discussion, it is interesting to consider whether the structure of these equations

is appropriate in the general case. For relatively high strain rate cycling, equation (31) is a Prager-type



translation rule. Furthermore., the function F in equation (30) was not necessarily developed to describe
large rotations of the (g - a) vector. More future efforts should be dedicated to evaluation of the
validity of the structure of these equations for nonproportional loading.

SUMMARY

Virtually all of the current models for cyclic plasticity were formulated on the basis of uniaxial
behavior. Sometimes, these constitutive equations are used in loading regimes which are fundamentally
different from uniaxial loading. Nonproportional loading is such a regime. The following generalizations
can be made for rate- and time-independent cyclic plasticity theory for metals.

a. Mroz-type kinematic hardening rules and plastic modulus functions are
appropriate.

b. Using only accumulated plastic strain or work is not entirely appropriate for use
in isotropic hardening rules.

Cc. The direction of the plastic strain rate vector is some combination of deviatoric

stress and stress rate directions which can be aptly prescribed by accurate
backstress evolution.

d. Nonproportional cyclic testing has an important role in placing restrictions on
the structure of cyclic plasticity theory.
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Transient Nonproportional Cyclic
Plasticity

Four constitutive models for cyclic plasticity of different essential structure are
evaluated under conditions of nonproportional, multiaxial loading. Drucker’s one-
surface theory, McDowell’s two-surface theory, Krieg’s one-surface theory with
Radial-Return Integration Algorithm, and Abrahamson’s Unified Creep-Plasticity

theory are the constitutive models under consideration. Their transient hardening
and stable loop responses are compared to experimental data for two nonpropor- °
tional axial-torsional loading histories. Their computational efficiency is also

analyzed.

Introduction

The study of cyclic plasticity under nonproportional loading
conditions is motivated by the fact that such loading is realistic
for many situations encountered in the nuclear, aircraft, and
ground vehicle industries. There are several multiaxial cyclic
plasticity models available in the literature [1-8]. Most of the
implemented models are capable of properly modeling only
uniaxial or proportional, multiaxial loadings. They are
sometimes used for nonproportional straining without basis
for knowing if the predicted results are accurate. This ap-
proach is less than desirable but has evolved from the lack of
knowledge (experimental data) regarding nonproportional
loading histories.

The goal of this study is to evaluate the correlative capabil-
ity of appropriate constitutive equation structures which range
from simple modified classical plasticity theories to complex
modified classical plasticity theories in addition to state
variable or unified theories. This study will evaluate several
generic forms of proposed cyclic plasticity models for non-
proportional, multiaxial loading. Four different plasticity
models will be evaluated and classified based on their accuracy
in predicting the stress-strain response for an axial-torsional
(biaxial) stress state. It should be noted that this study does
not infer that other particular models with the same generic
forms are inferior; the models used were selected on the basis
of the availability of multiaxial generalizations and of material
constants. This test case was chosen for two reasons. There is
experimental data available to serve as the reference in the
model evaluation process. Also McDowell [11] has experimen-

tally shown that these biaxial histories incorporate most of the

relevant anomalous phenomena that characterizes nonpropor-
tinal, mutiaxial loading. In effect, such biaxial histories are
IT,
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the simplest yet most appropriate step to be followed in the
transition from uniaxial to nonproportional, multiaxial
straining.

Realizing that there is no single, superior model structure
for all applications, this study purports to comparitively
clarify the regimes of applicability of each model structure for
complex nonproportional loading.

Drucker’s Model

This model was presented by Drucker and Palgen [1]. Its
structure is that of a modified classical, single-surface theory
valid for time- and rate-independent response. Two versions
were presented. The rounding corner option would predict
smooth rounding of the cyclic stress-strain curves. The sharp
corner option would predict the correct behavior on reloading
after elastic unloading. Only the rounding corner option will

-be considered here.

This model uses a von Mises yield surface given by
RZ
f=% (s—a): (s—a)-T=o ()

where s is the deviatoric stress temsor, o« is the deviatoric
backstress tensor, and R is the uniaxial yield strength. In this
work, the colon respresents the scalar product of two tensors,
C.g., (slj - a,j)(s,j - a,j).

Its associative flow rule is given by

o of 2\ Y .
& -B(?) (s—a)((s—a):s)
if f=0and ¢:(3f/30)=0 )

& =0 otherwise 3)

where ¢ is the plastic strain rate tensor, ¢ is the stress rate ten-
sor, § is the deviatoric stress rate tensor, B and N are ex-
perimentally determined material model parameters, J, is the
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second invariant of s, and & is a normalizing stress. J, and &
are of the following form: -

1

Jy == s:s @)
g=c" (l ¥ -yexp(--!:c—;)) (&)

where
WP = S’ (s—a):&dt %)

and ¢*, y and W, are material dependent model parameters.
Note that W™ is a montonically increasing quantity similar,
but not equivalent, to the accumulated plastic work. Isotropic
hardening is achieved by effectively increasing or decreasing
the plastic tangent modulus at a given stress level. The plastic
modulus is essentially made a function of J, and W?°,

A Ziegler-type kinematic hardening rule is assumed as

1
¢'!=—2k—2 (s —a)((s — a):8) o

where k is the material yield strength in shear. For greater
details on the determination of the model parameters, the
reader is referred to (l1].

McDowell’s Model

This model was presented by McDowell [2, 3]. Its structure
is that of a two-surface simplification [6-8] of the Mroz [9] or
mechanical sublayer models [10]. It consists of a yield surface
within which the material response is elastic and a limit surface
that ‘‘bounds’’ the material response during plastic flow.

This model uses von Mises surfaces for the yield and limit
surfaces of the following forms:

=%(s—a):(s—a)—Rz=0 ®

f'=% (s*—a®):(s*—a")—R*1=0 )]

where R is the radius of the surface. The asterisk superscript
refers to the limit surface.
The flow rule for this model is given by

& =L ($:m)n (10)
h
where h is the plastic modulus and n is the unit normal to the
yield surface given by n = (s—a)/lIs—all. Here, Is—all =
(s —a):(s —a)) /2.
For the yield surface, a Mroz-type kinematic hardening rule
is assumed

((s-a):s'—% RR) (s*—s)

an

ax=
(s—a):(s*—5)

where & is the backstress rate tensor and R represents isotropic
hardening of the yield surface. s* is the point in the limit sur-
face having the same outward normal to the corresponding
point in the yield surface at the current stress state; that is,

s‘=a’+(s—a)% (12)

For the limit surface, a Prager-Ziegler-type kinematic
hardening rule is assumed as

&® =xnn (13)

n= (&) 2=t (14)

where « is the asymptotic modulus and 7 is the norm of the
plastic strain rate tensor.
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The isotropic hardening rules for the yield and limit surfaces
have been similarly defined as

R=p(R(6.q)—R)¥i (15)

- R*=p(R*(¢,q) —R*W"% (16)
where R (¢,q) and R*(¢,q) correspond to the cyclically stable
values of the yield and limit surface radii for given values of ¢
and g, which will be defined shortly.  and ¢* are functions
chosen appropriately for the material being used. For non-
fading memory of cyclically hardening materials, McDoweli

recommends to use Heaviside functions ¢ = u(R(#,q) —R)
and ¥* = u(R*(¢,q) —R*). For completely fading memory,

. McDowell recommends ¢y = ¢* = 1. x is an experimentally

determined scalar rate parameter. Through experimental
testing, McDowell has shown that R (¢,g) and R*(¢,q) can be
expressed approximately as linear functions of the form

R(¢,9)=¢(R(1,9) -R(0,q)) +R(0,9) an
R*(¢,9) =9 (R"(1,9) —R*(0,9)) + R*(0,9) (13

where R(1,9), R(0,9), R*(1,q), and R*(0,q) can be ex-
perimentally determined. The plastic modulus and asymptotic
plastic modulus are defined as

h=x(l + 91:60 (sinh{ “'::_—:ou" }) L1 )
k=p(R(3,0) =), 1 20)

where z(¢,g) corresponds to the cyclically stable values of the
asymptotic modulus for given values of ¢ and g, and s, and
s, * are values of s and s* corresponding to the maximum value
of Is*—si in the history. Parameters s, and s,* are not
material constants. ¥, is an experimentally determined func-
tion. It is assumed that

#(¢,9)=¢(%(1,q9) - (0,q)) +x(0,q) @n

where %(0,q) and x(1,q) can be experimentally determined.
McDowell [12] has defined an instantaneous measure of
nonproportionality of the loading path as

19

ar (€, —¢3)

J= |—m—— (22)
8 ( (&), —(s)

where ¢; and ¢, are the largest and smalilest principal strains,
and (é), and (¢é); are the largest and smallest principal strain
rates. Here g is definedas g(x) = 1, if x = 0or g(x) = xif x
# 0. To account for accumuiated effects of nonproportional
paths, McDowell introduced a state variable ¢ which evolves
according to

d=p*(1 =J~—¢)iu(l = J = bymy) (23)
where u* is an experimentally determined scalar parameter
and u(l—J—-¢yy,) is a Heaviside function introduced to
reduce the effects of proportional path segments in the evolu-
tion of ¢.

To account for memory of maximum plastic strain range,
McDowell introduced a state variable g equal to the radius of
a strain memory surface in plastic strain space given by

2
F=T (¢ —a?):(¢? —a®) —q* =0 4
where o is the center of the strain memory surface in plastic
strain space and g is its current radius. The kinematic harden-
ing rule assumed was of the following form:

H(F)

&P=T (¢:n*)n* 25

where & is the time rate of o, H(F) = | if F = 0 and H(F}
= 0if F < 0, and n* is the unit normal to the strain memory
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surface at the current state of plastic stram Its isotropic
hardening rule was defined as

d= (5 HOT J-A@)i @26)
where " is a scalar function and A(gq) is an experimentally
determined function to account for fading memory of max-
imum plastic strain range. It may be shown that

F=n*n+v6A(q) (27)

For greater detail on the determination of the model
parameters the reader is referred to McDowell {3].

Kreig’s Model With Radial-Return Integration
Algorithm

This model was proposed by Kreig and Key {4]. Its structure
is that of a modified classical theory comparable to that of
Drucker’s. A radial-return integration algorithm is utilized
making this a very efficient material model.

This model uses a von Mises yield surface given by equation
(1) with L = v2/3 R. Kreig and Key {13} introduced a trial
stress rate tensor as

& =C:é 28)
where C is the fourth rank elasticity tensor and ¢ is the total
strain rate tensor. The flow rule is expressed as

1 1

#=| — ——— |':N I[N if f=0and ¢":N=0 (29)
2G H’
1+
3G
& =0 otherwise (30)

where N is the unit normal to the yield surface, G is the shear
yield strength, and H’ is the cyclically stable value of the ex-
perimentally determined asymptotic plastic modulus at the
maximum plastic strain range of interest.

A linear combination of isotropic and Prager-type
kinematic hardening is assumed as given by a model parameter
B as follows:

d=% (1-B)YH'e

L=JTT BH’ (% éP:éP) v

where L is the time rate of change of L.

By letting 8 be a constant, it is essentially assumed that no
saturation of the cyclic stress-strain response occurs as the
material hardens or softens. Kreig’s model was modified by
making 8 a function of WP

@D

(32)

s=yerp( =) @3
=+yeX -
. YexXp W,
where WPe is defined by equation (6), and v and W, are ex-
perimentally determined model parameters.

Applying the radial-return integration algorithm to the
system of differential equations given by equations (28)-(33),
it becomes

o, 1 =0,+C:A¢ 34)
Rl =0h. — @, (3%
1
f Elu-l —T (trace E::o-l)l (36)
with the plastic loading case given by
A ! ! (neK=L,) 37
~ 26 H’ "
1+
3G
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&.,=4+AN (38)

@ =05, —2GAN (39

a, . =a,,+T (1-8)H'AN (40)
2

L,”,l =L,,+T BH’'A 41

W’:ﬁ-l_wgc+A(dn+l—an4-l):N (42)

where { is a tensor approximately normal to the yield surface,
I is the identity tensor, Ae is the increment in the total strain
tensor, and N = {/I{ll is the approximated unit normal to the
yield surface. Subscripts # and n+ | refer to the values at the
beginning and at the end of the current time step.

It must be emphasized that equations (34)-(42) include
Kreig’s simplified model equations, the introduced modifica-
tion, and the numerical integration algonthm to be used to
solve this system.

Abrahamson’s Model

This is a unified creep-plasticity theory. Hence, it has a rate-
dependent structure characteristic of state variable theories
which reflect competition of hardening and recovery
mechanisms. Such unified theories result in highly stiff
systems of ordinary differential equations. Abrahamson’s
model was selected as representative of state variable theories
since it employs the usual backstress and drag stress state
variables and the evolution equations have been determined by
Abrahamson for type 304 stainless steel.

Abrahamson by definition used

3 172
Tt = (7 (s~ a):(s=a0) 43)

3 172
Qopp = (T a:a)

where o, and a are the uniaxial equivalent values of stress
and backstress, respectively.

The magnitude of the inelastic strain rate tensor is a highly
nonlinear function given by

. Terr\ ?
€orr = ‘1(
K

where @ and p are model parameters and K is the current
radius of the stress surface. The flow rule is expressed as

3 ( €ctr )
— |—} (s~
2 Terr
Kinematic hardening is achieved by a function of the form

Ty (aef{)
b7

where B is a temperature correction factor, and A, (c.¢) and
r. (ae) are the hardening and recovery functions assumed for
the material being modeled. Abrahamson showed that the
following forms are appropriate for these functions:

(44)

(45)

én =

(46)

@="H, (Qerr)€" — @7

exp( — daaresr)

if é":ax=0
r if émaz
Ho () = 48)
— if é":a<0
1
ra (ae{{) =c(aef{)m (49)

where d,, d,, ¢, and m are experimentally determined model

parameters. For room temperature cycling at relatively high

strain rates, the recovery functions may be neglected.
Isotropic hardening is achieved by a function of the form
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_ H(,)
T (y(9))?

where ¥ (¢) accounts for nonproportionality effects, w, (K) is
a recovery term, and £(7,,) is an assumed function necessary
to adjust the isotropic hardening rate. Based on experimental
results, w, (X) and H(/,,) can be expressed as

wa (K) = b, (5,K)"
1
a,ayexp(a,(K—k,))

where b, b,. by, a,, a, and &, are all model parameters to be
determined from experimental results.

The function ¥ (¢) was introduced by Abrahamson to his
original model to account for nonproportionality effects.
Abrahamson used McDowell’s original formulation for the
nonproportional state variable ¢ [12]. In later research,
McDowell [2] suggested a rate formulation for ¢ as given by
equation (23). The authors chose to use equation (23).
Abrahamson’s definition of ¥(¢) has to be changed to the
following form:

(‘ﬁ(‘b)am"‘wz([{))é:ﬂ (50)

én

H(I,)= (52)

V(o) =exp(49) (53)

The procedures to follow for the experimental determina-
tion of all the model parameters are explained in [5].

Computer Analysis

A series of computer programs were written to implement
the constitutive models just discussed for the axial-torsional
plane-stress problem. The objective was to predict the stress-
strain response of a thin-walled tubular specimen subjected to
cyclic axial-torsional strain-controlled loadings that result in
significant plastic deformation. Sotolongo [14] presents the
simplified axial-torsional forms of the constitutive models
used and the experimentally determined model parameters,
modeling functions, and material constants for ‘type 304
stainless steel, which are presented in the appendix.

With the exception of Kreig’s model, all models were solved
by using Gear’s numerical integration algorithm. This
guarantees an accurate solution and serves as an .objective
basis for comparison of the computational advantages or
disadvantages of each model.
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Extensive experimental data on type 304 stainless steel is
available in [3]. Figure | summarizes the relevant experimental
data that will be used in this study to evaluate the material
models. The applied shear strain-axial strain curves and the
experimentally observed axial stress-axial strain, and shear
stress-shear strain responses are shown for the transient
hardening case. The tips of the transient shear strain-axial
strain plots have been numbered to denote the sequence of
loading. History I consists of 25 cycles of nonproportional
loading with axial strain amplitude ¢, = 0.0041, shear strain
amplitude v, = 0.0060, and constant effective strain rate é..
= 0.003 s-'. Segments 4-1 and 2-3 are proportional;
segments 1-2 and 3-4 are nonproportional. It should be noted
that the. extent of cyclic hardening in the first 25 cycles
achieved by introducing nonproportionality effects is greatly
(~70 percent) in excess of that for the uniaxial or propor-
tional loading case [11] at the same effective plastic strain
range. History II consists of 25 cycles of nonproportional
sinusoidal loading with 60-deg phase angle, ¢, = 0.0050, v, =
0.0075, and é.; = 0.001 s~ !. Observe the significant degree of
hardening resulting from this severe nonproportional path.

To analyze the computational efficiency of the models, a
nondimensional CPU time has been defined as follows:

CPU,

t

/
where CPU,, is the actual CPU time taken by the Cyber 835 to
solve the history under consideration and ¢, is the final value
of the independent variable (time) for this execution.

CPUN =

(54)

Drucker’s Model. Figure 2 presents the observed computa-
tion times for the constitutive models discussed in this study.
For this model, computational efficiency seems to be history-
independent. The variances in normalized CPU times are
rather small given that the histories are quite different. The
computation times are considerably smaller than those for
McDowell’s and Abrahamson’s models.

Figure 3 shows that for histories I and II (left and right col-
umn plots, respectively), this model greatly underestimates the
additional hardening due to nonproportional loading paths.
Observe that the material shows a saturated response
throughout the 25 cycles. It should be noted that the model
parameters for both Drucker’s and Kreig’s models were deter-
mined from a proportional loading history [14] at approx-
imately the same effective total strain range as the two
histories considered here. Furthermore, the initial values of
dependent variables for all models corresponded to the cyclic
response immediately preceding these two histories. Hence
the absence of the additional nonproportionai hardening ef:,
fect in Drucker’s model is due to the dependence on only a
monotonically increasing scalar parameter, e, coupled with
the constants v and ¢° obtained from a proportionaj history.
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The hysteresis loop shapes are predicted incorrectly; the
asymptotic plastic modulus is considerably underestimated.
The shear plastic strain range is overestimated by about 50
percent.

McDowell’s Model. As seen from Fig. 2, this model’s com-
putational efficiency also seems to be history-independent.
However, this model takes about twice as much computa-
tional effort compared to Drucker’s model. As will be seen,
the increased predictive accuracy atttained might easily
outweigh this disadvantage.

Figure 4 shows the numerical solution predicted by this
model. Note that a significant hardening increase due to non-
proportionality effects is predicted with sufficient accuracy.
The cyclic response saturated within the first 10 cycles of the
history. The axial stress-axial strain hysteresis loop shapes and
hardening rates are accurately predicted. For the sinosoidal
history, although the hardening is correctly predicted, a *‘flat-
tening’’ of the shear stress hysteresis loops is observed
resulting in an overpredicted plastic shear strain range.

Kreig’s Model. Kreig’s model’s execution time is definitely
history-independent as shown in Fig. 2. Note the extremely
short computation times needed; this is the primary advantage
of this model. Since this is the only model solved without using
Gear's method, the radial-return algorithm must be responsi-
ble for this tremendous decrease in execution time. Note
however that this reduction in computation time is accom-
panied by a sacrifice of predictive accuracy as shown next.

Figure 5 shows the predicted response for these nonpropor-
tional histories. Referring to Fig. 3 the reader will realize the
many similarities between Drucker’s and Kreig's predicted
responses for these histories. Thus, the analysis and comments
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made for Drucker’s model are also valid here. In Kreig's
theory, the structure of the isotropic hardening law does not
include dependence on the nonproportionality of loading; on-
ly dependence on W7 is included. However, Krieg’s model
has the advantage of being computationally extremely
efficient.

It should be noted that the modification in equation (33)
was made to coincide with well-known experimental observa-
tions of saturation (or approach to a cyclically stable state) of
the cyclic response. It is important to realize that without this
modification, isotropic hardening would accumulate
unrealistically. With or without the modification, the
dependence of cyclic hardening on the current level of non-
proportionality [2, 3, 2] cannot be described since the
response is implicitly assumed to be equivalent to the uniaxial
or proportional case for this model.

Abrahamson’s Model. Referring to Fig. 2, the reader will
immediately note the large differences in CPU,, as this model
is integrated for nonproportional histories. Also, note that
this model is extremely inefficient compared to any of the
other models discussed. Since this is a generic form of unified
creep-plasticity theory, this path-dependence of computa-
tional efficiency probably extends to other particular unified
theories.

From Fig. 6 it is immediately seen that this model is capable
of predicting nonproportional transient hardening rather ac-
curately. Notice the sharp yielding observed in the axial stress
response which results in underestimated stresses both during
transient hardening and for the stable loop response. ‘‘Fatten-
ing’”’ of the shear response results in overpredictions of the
plastic strain range. The observed hysteresis loops are quite
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similar to those of McDowell’s model. However, McDowell’s
model is computationally more efficient, while Abrahamson’s
is more versatile since it can handle time- and rate-dependent
phenomena.

Discussion of Computer Storage Requirements

In addition to computational time, the relative amount of
required computer storage for each model is a consideration.
Since ail models share stress, strain, backstress, and plastic
strain (for fatigue analysis or cumulative deformation) as
common variables, only the additional evolutionary state
variables associated with each model are enumerated. Also,
model constants are not compared since they would be com-
mon to ail integration points in a stress analysis. The number
of storage arrays stated applies to the axial-torsional subspace,
but relative comparisons can be extended to higher dimen-
sional stress spaces. In the axial-torsional subspace, only two
independent components of «, ¢, a®, or o are necessary
[2-3].

Drucker’s model requires only one additional storage array
for WP. McDowell’s model requires 9 (a*, R, R*, x, ¢, o, q)
and Abrahamson’s requires 2 (K, ¢). Kreig’s model requires
two additional storage arrays for W™ and L,. For fair com-
parison, it should be noted that formulation of memory of
plastic strain range, found in McDoweil’s model, is not
represented in the other three models, nor in two-surface
theory in general [6-8]. Neither is evolution of the asymptotic
modulus. Hence, disregarding o, ¢ and x, which do not
significantly alter the predictive accuracy for the loading cases
considered, McDowell’s model requires only five additional
storage arrays. Likewise, inclusion of nonproportional
isotropic hardening effects in Drucker’s or Kreig’s models to
match experimental observations [5] would result in one more
state variable (e.g., ¢). It must be added that the Mroz
kinematic hardening rule found in McDowell’s model has
been shown to be more accurate for nonproportional loading
than the Ziegler rule used in Drucker’s formulation [2, 3,
14-16}. Also, the modulus function in the flow rule is more
aptly described by a Mroz-type definition [16].

Abrahamson’s model offers the best combination of ac-
curacy and minimal storage requirements, at the expense of
excess computational time and difficult experimental deter-
mination of constants and functions necessary due to the
highly nonlinear coupling of the unified creep-plasticity equa-
tions. Drucker’s model has predictive capability very similar
to that of Krieg’s model, but is not as efficient. Both Kreig’s
and Drucker’s models do not predict the nonproportional
response as accurately as McDowell’s or Abrahamson’s
models. McDowell’'s model requires the most storage, but is
most accurate for nonproportional loading and is less
numerically stiff than Abrahamson’s model.

Hence, it is apparent that gains in predictive accuracy may
be accompanied by loss of numerical efficiency and ease of ex-
perimental characterization, and vice versa.

Conclusions and Recommendations

Every model has been shown to have particular advantages
and disadvantages that make them suitable or not suitable at
all for specific types of applications. Thus, these models can
be best evaluated and classified based on their appropriateness
to solve specific types of problems which have particular
priorities on the computational accuracy and efficiency re-
quired. From the facts just presented, the following recom-
mendations can be made:

1 A simple, single-surface model (e.g., Drucker’s model)
should only be used for proportional Ioading when a relatively
accurate and inexpensive solution is needed. It should not be
used for modeling of nonproportional loading histories.

2 More complex, two-surface models (e.g., McDowell’s -

model) should be used when an accurate representation of the
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material response for proportional and nonproportional,
multiaxial loading is required and concern with the computa-
tional costs involved is not critical.

3 A simple, single-surface model with Radial-Return In-
tegration Algorithm (e.g., Kreig’s model) should only be used
as a very inexpensive but approximate way of solving the pro-
portional, multiaxial, cyclic plasticity problem. It should not
be used when nonproportionality effects are considerable.

4 Unified theories (e.g., Abrahamson’s model) should be
used for relatively accurate solutions under proportional and
nonproportional straining. If low computational costs are of
major concern, this model should not be used.

5 The two-surface model of McDowell and state variable
theory of Arahamson predict the hysteresis response most ac-
curately, yet errors in effective plastic strain range (related to
fatigue life prediction) are still seen to be as high as 50 percent
under ‘‘steady-state’’ conditions. Work is continuing [16] to
determine the source of these errors in the flow and hardening
rules.

6 Selection of a material model structure obviously requires
consideration of compromises between predictive accuracy,
numerical integration efficiency, experimental characteriza-
tion required, and required computer storage.
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APPENDIX Material Constants:
For type 304 stainiess steel in the initially annealed state:
Drucker’s Model yp y
. u=10.0 »=0.29
stcellaneoqs Equations: «=50.0 G=75.1 GPa
B )
A =T Krieg’s Model With Radial-Return Algorithm
Model Parameters: ‘ Model Parameters:
v=0.17 W,=5.9 MPa W,=5.9MPa v=0.35
N=1.35 A=2.6x10""° H'’ =4370 MPa
k=148.1 MPa Units: B MPa-? Material Constants:
o* MPa
For type 304 stainless steel in the initially annealed state: -
Material Constants: G=75.1GPa
For type 304 stainless steel in the initially annealed state: E=193.8 GPa
v=0.29
b
G=75.1 GPa Abrahamson’s Model
Model Parameters:
For 304 stainless steel at 300°K:
=5%x10"4s-! =1.6x10"8MPa~2s-!
McDowell’s Model a s c=16 a’s
a, =0.002 MPa ! dy =58.5x10-MPa-!
Material M9deling Functions: a,=22.8MPa m=2.0
For type 304 stainless steel at room-temperature: B=2.0 p2=30.0
R(0,q) =171 + (g — 0.005)4000 MPa by =0.0975 MPa k, =126 MPa
R*(0,g) =295 + (¢ - 0.005)20690 MPa b,=0.01 MPa-! Briraic = 0.02
(0,g) = 4370 — (g — 0.005)196100 MPa b; =5.89 d, =0.045 MPa !
R(1,q)=405 MPa Material Constants:
R*(1,q)=565 MPa For type 304 stainless steel at 300°K:
#(1,q) = 4046 MPa G=71.1GPa »=0.29
A(q)=0.6q E=173.9GPa ®°*=50.0
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ON THE NUMERICAL INTEGRATION OF ELASTO-PLASTIC
CONSTITUTIVE MODEL STRUCTURES FOR
NONPROPORTIONAL CYCLIC LOADING

W. SotoLonGgot and D. L. McDoweLL}
School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, U.S.A.

(Received 12 Aprii 1985)

Abstract—The classical Runge-Kutta method with Giil coefficients, a non-iterative Adams predictor—
corrector method, an Euler’'s method with automatic step-size control, an iterative Adams predictor—
corrector method with automatic step-size control and Gear’s method are the numerical solution
algorithms considered in this study. Their computational accuracy and efficiency are evaluated for two
cases of axial-torsional loading with transient, nonproportional, cyclic plasticity. The constitive equations
implemented include a modified classical single-surface theory, a two-surface theory and a unified

creep—plasticity or state variable theory.

NOTATION

f yield (stress) surface

k shear yield strength

s deviatoric stress tensor

we accumulated plastic work

a center of yield (stress) surface in deviatoric stress
space

Rop uniaxial equivalent value of &

€,6°,€° total, elastic and plastic strain tensors,
respectively

€t uniaxial equivalent value of ¢

g stress tensor

Ot uniaxial equivalent value of &

[} current measure of nonproportionality

Bint threshold value of ¢

Drucker’s model

ﬁ’,N:‘ o* experimentally determined model parameters
Qs

R axial yield strength .

G plastic modulus function normalizing stress
McDowell’s model

Vi limit surface function

F plastic strain memory surface

g(x) gx)=lforx=0,g(x)=xforx #0

B plastic modulus function
H(F) HF)=1lforF=0,H(F)=0for F<0
J instantaneous measure of nonproportionality

n,n* yield and strain memory surface unit normals,
respectively

q strain memory surface radius

R.R* yield and limit surface radii, respectively

R.R* cyclically stable values of R and R*

s* corresponding deviatoric stress tensor in limit
surface .

u(x) Heaviside function of x .

x* center of limit surface in deviatoric stress space

a® center of strain memory surface in plastic strain
space

r scalar function in evolution of ¢

€,.€ current maximum and minimum principal

strains. respectively

t Graduate Research Assistant.
+ Assistant Professor. To whom all correspondence
should be addressed.

(€);,(€); current maximum and minimum principal strain
rates, respectively

K,k asymptotic plastic modulus and corresponding
cyclically stable value
A(g) memory loss-rate function

@.p* i, rate constants
V. * ¢, admissibility functions in isotropic hardening
rules

Abrahamson’s model

a,,ay,
lg.bz.b,. experimentally determined model parameters
,c,dy,dy,

ky,m,p

h,,r, hardening and recovery terms in kinematic
hardening rule

H(,) isotropic hardening rate adjusting function
stress surface radius
instantaneous measure of nonproportionality

w,(K) recovery term in insotropic hardening function

¢" inelastic strain tensor

€% uniaxial equivalent value of é”

Vi) nonproportional hardening function in isotropic

hardening rule

INTRODUCTION

Transient, nonproportional cyclic plasticity problems
frequently arise in automobile, aerospace and nuclear
industries when mechanical components are designed
to operate under stringent conditions. A balance of
predictive accuracy and computational efficiency
must be achieved to have success in the numerical
solution of this difficult problem.

The objective of this study is to evaluate five
numerical solution schemes for three generic forms
of cyclic plasticity models with special attention to
changes in the numerical behavior of these modcls
when integrating proportional versus nonpropor-
tional histories. The significant coupling betwcen
material models and numerical solution schemes will
be investigated in this work. This study is intendcd to
help guide plasticity model users in the selection of
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the most appropriate combination of material model
type and integration routine to be used for specific
problems in the general area of nonproportional,
multiaxial, cyclic plasticity. When dealing with
structural cyclic plasticity problems via finite element
analysis, a scheme which reduces time spent integrat-
ing constitutive equation subroutines by 50% can
mean thousands of dollars in savings.

CONSTITUTIVE MODEL STRUCTURES

The numerical behavior of constitutive models is
determined by the structure of their equations. Three
generic forms of constitutive models for cyclic
plasticity will be discussed in this study. Drucker’s
model represents the ‘simple’ kinematic-isotropic,
single-surface modified classical theories. McDowell’s
model is representative of the ‘complex’ two-surface
theories which are a specialization of multiple loading
surface theories. Abrahamsons’ model is an applica-
tion of a unified creep—plasticity theory to the cyclic
plasticity problem. Extensive discussions of each
of the models and references to models of the
same generic forms are available in [1-4]; the two-
surface theories and state variable theories have been
shown to have capability to model nonproportional
cyclic loading relatively accurately. The axial-
torsional subspace forms and the experimentally
determined modeling functions and parameters for
each of the models are presented in [5] for type 304
stainless steel. [t is not the intent of this investigation
to evaluate the predictive capability of these three
particular constitutive models; instead, the goal is to
evaluate the efficiency of integration schemes for each
of the generic structures represented by these models
as a function of the nonproportionality of the loading
history. Relative changes in the efficiency of integra-
tion of each of these model structures in going from
proportional to nonproportional loading is particu-
larly interesting. In many cases. one of these model
structures would be selected by the numerical stress
analyst who would make the choice of temporal
integration scheme. Consideration of the number of
model constants, parameters and computer storage
requirements would be made during the selection of
material model; hence, these factors are viewed as
secondary in the present paper. A summary of the
equations for each model will now be presented. A
summary of the parameters and model constants for
type 304 stainless steel at room temperature are given
in the Appendix.

Drucker's model

Yield surfuce:

N

f=§(s—1):(s—¢)—-—§-=0 (1)

Flow rule:
FAG
é?=18B (}?) (s—a)((s—a):§]

if f=0 and &:(3f/o)=0 (2)
€° = 0 otherwise 3)

Isotropic hardening functions:

Jy=1is:s 4
B e

F=a [1+7exp(——u70->:l (5)

W"°=J.(s—a):é°dt (6)

Kinematic hardening rule:

i == D6 -3 ™

McDowell’s model

Yield and limir surfaces:
f=is-a)(—a)-R*=0 ®)

fr=2s*—a*):(s*—a*)— R**=0 9)

Flow rule:
é°=l(§:n)n (10)
B
Yield surface Mroz kinematic hardening rule:
_=[(s—¢):é—§RR](s‘—s) an
(s—a):(s* —5)
-
s*=a*+(s—a)— (12)

R

Limit surface Prager-Ziegler kinematic hardening
rule:

&* = krin (13)
0 =(éP:éP) = ¢y (14)

Yield and limit surface isotropic hurdem’né rules:
R = u[R(¢.9) — Ryri (1s)
R* = pu[R*(¢.q) = R*l*i (16)
R($.q)=¢[R(1.q9)— RO.9)1+ R0.q) (17

R*¢.q)=¢[R*(1.9) = R*(0.9)] + R*(0.9) (18)
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(15)
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(17)
(18)
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Plastic modulus functions:

g = x[x +9'9¥ (sinh{H})l'l] (19)
K =pulk(p,q) —rkly.n (20)
<($,q9) =¢[k(l,q) —<(0,9)]+£(0,9) (21)
Nonproportional hardening state variables:
g; (&, — &)

J=|— 22
gl(€) = (€)s] 2

b =u*A—J = ¢)yiu(l —=J — ¢ym)  (23)
Strain memory surface:

F=

o

(" —a®): (P —aP) —¢° =0 (24)
Strain memory surface kinematic hardening rule:

a'P_.

H(ZF) (é?:n*)n* (25)

Strain memory surface isotropic hardening rule:
¢ =BHEPI/i- A@)h (26)

r=n*n+./64(@q) @7

Abrahamson’s model

Uniaxial equivalent values:

Oqa=[(6—a):(s—a)]'” (28)
%= (3z:a)"? (29)
Flow rule:
é"_—_Z(ﬁf) (s—a) (30)
2 Ucﬂ'
P
é=a (‘%’) 3D

Kinematic hardening rule:

- . r! ae
& = h,(2q)E" — —(Bpl)a (32)
exp( — d: %) if éma>0
d,
h(2g) = (33)
l M 4
z if éma<0
’: (aeﬂ) = c(aeﬂ')m (34)

Isotropic hardening rule:

% H(Iu)
K= ['w(d))].,;[w(fﬁ)dm— H':(K)]é:n (35)
ws(K) = by (B, K 6
1
H(l,)= 37)

- ayasexpla, (K — k)]

Nonproportional hardening state variables:

Y(¢)=exp(d4e) (3%)

where ¢ is given by equation (23).

NUMERICAL INTEGRATION TECHNIQ.L'FS

In general, the problem is to solve an initial value
problem given by a system of ordinary differential
equations (system of ODEs) and the prescribed initial
conditions. Mathematically this can be represented as

X=FX,) (39)
X(0) = X, (40)

where ¢ is the independent vanable, X is the vector of
dependent variables, and F is the vector of functions
relating them.

In time- and rate-independent strain-controlled
plasticity, the independent vanable is the total strain
tensor €. However, the authors decided to use time
as the independent vanable in this study since the
unified creep—plasticity model (Abrahamson’s) is
rate- and time-dependent. This study concentrates on
integration techniques suitable for accurate solution
of general constitutive equations for cyclic plasticity,
including multiple surface and viscoplastic theories.
It should be noted that the commonly used radial-
return algorithm for integrating time- and rate-inde-
pendent cyclic plasticity equations was also studied in
[5]; this algorithm was found to be extremely efficient
for integration of combined linear kinematic-iso-
tropic hardening within the context of a single surface
theory very similar to that of Drucker er al. [1]. Such
a theory, though, was not found to predict experi-
mental results for cyclic nonproportional loading as
accurately as the more complex multiple surface and
unified creep—plasticity theories. No effort is made in
this work to generalize the radial-return scheme to
two-surface theory with nonlinear hardening.

Classical Runge—Kutta method with Gill coefficients

There is a whole family of Runge-Kutta methods
but of particular interest is the version as modified by
Gill [6]). The step-by-step procedure for the solution
of a system of ODEs, denoting X at time ¢ =" by
X(r")=X", is given by:

0 fort"=0
= 4]
% {q:" fort™>0 @1
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k, = AF(X", (" (42)
X, = X" + L(k, — 2q9) 43)
q = go + 3(k, — 2q) — 1k, (44)
k,= hF(x..t"+%> (45)
X=X+ (1 =Dk, —q) (46)

@=q+3(1- Dk —q)-0- Dk, @D

k,=hF(XZ,t"+—I21> (48)
X; =X, + (1 + Dk —qy) (49)
G =0 +30+ Dk -q) -0+ /Dk, (50)
K, = hF(X;, 1" + h) 1)
X"t =X + (ke — 205) (52)
@ = q; + 3(k, — 2q;) — 3k, (53)

where superscripts n — 1, n, n + 1 refer to values at
the previous time step, at the present time step, and
at the desired time step increment, respectively. Note
that 4 is the time-step size and the k;, g,, X, are
intermediate values that do not have to be stored.

A good check on the truncation error can be
obtained by keeping track of the values of q; at each
time step [7]. Thus, the error control criterion used
could be of the form

lg%l <A t20. (54)

Essentially, condition (54) determines the initial
step-size chosen in the solution of a particular set of
ODEs. Because this is a fixed step-size method, A will
be constant for t > 0.

Euler’s method with automatic step-size control

Euler type methods are the simplest numerical
integration techniques used in the solution of systems
of ODEs. According to Kumar et al. [8], a reasonable
step-size control algorithm would involve either
doubling or halving the step-size as required by some
suitable error criterion and the prescribed error
limits. The step-size will be controlled based on a
predicted step-size h, and the actual step-size h.
Thus, for the nth step the procedure would be as
follows:

I.If E > E,,,, replace h, by h,/2 and recompute E.
2.If E < E,,,, let h =h, and compute X"*".
3.If Egn< E <E,, . let hy=h

4. If E < Epy, let hy =25

B NI P

W. SoToLonGO and D. L. McDoweLL

E.u and E . are the prescribed error limits, and £
is a suitable error criterion chosen by the user.
The basic Euler’s method can be expressed as

X' = X"+ AF(X. ). (55)

In this study, the authors chose the following error
criterion:

N noon Al m— 1NN 2
E=(Z[h[Fi(X.l)—1".(X Lt ')]:I >' (56)

im] X:‘

where the i subscript refers to the ith dependent
variable in the system being solved, ie. the ith
component of X. Note that N is the number of
dependent variables in the system.

Iterative Adams predictor—corrector method with automatic
step-size control

The family of Adams-type predictor—corrector
algorithms for solving systems of ODEs is very
extensive and widely used. The predictor equation is
given by

Xo*' =X"+AF(X",1") (57

where A is the current time step-size and X7*' is
the predicted vector of dependent variables. The
corrector equation is given as

X' = X"+ AF(X3 Y
h A+! Jn+! nogn
_5[1:(}(p Y —FXm] (58)

where X?*! is the corrected vector of dependent
variables.

Kumar et al. [8] recommends use of a step-size
control algorithm similar to the one described for
Euler’s method except that an iterative algorithm
for the corrector equation must be included. Thus,
for the nth step the procedure would be as follows:

LIFE > Ep,:

(@ If m<m* let X;*'=X!*""m=m+1, and
recompute X"*' and E;

(b) If m >m*, let m =0, h, = hy/2, and recompute
X3+ Xe+! and E;

2.If E <E,,,, let h =h, and compute X"*';

3.0 Epo < E <E,,.let hy=h;

4.1f E < Ey,, let hy=2h

where m is the current number of corrector iterations
and m* is the maximum number of iterations allowed
at a fixed time step-size.

Once convergence of the corrector equation has
been achieved or the time step has been significantly
reduced to keep the error within desirable bounds,
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the accepted value of the dependent variables at 1"+
becomes

xn+l=§x:+l+%x;+l. (59)

The authors chose the following error criterion:

B hd (x:+l)i_(x;+l)' 2\ 1,2
E —<ZI:—(XQ+'); jl ) . (60)

iml
Non-iterative Adams predictor—corrector method

The non-iterative, explicit versions of Adams
predictor—orrector methods are the most widely
used for non-stiff to mildly stiff systems of ODEs.
Cash [9] presents an extensive list of these methods.
The authors selected a version that was shown to
have a stability interval of more than twice the
interval of absolute stability of any other method in
its class.

The method consists of one corrector and two
predictor equations. Knowing the initial conditions,
the sequence of calculations would be as follows:

Xott =X"+AF(X" 17 6
X;*2=X;*'+hF(Xg+‘,t"+‘) (62)
X+t =xn+h[%[:(x;+2' tn+2)

+IFX L, ) + FFX, )] (63)

where superscripts n, n + 1, and n + 2 refer to values
at the beginning of the present time step, at the end
of the present time step, and at the end of the next
time step respectively. Note the 4 is the time step-
size (constant) and X3*' and X;*? are intermediate
predictor values that must be stored.

The authors chose an overall system error estimate
of the form

hi . 12
E =('Z [(x"f')i—m;*'),»]Z)/ SN

By determining E, the appropriate initial time step-
size can be chosen for a particular system of ODEs.
Note that this time step-size will be kept constant
and should correspond to the smallest necessary time
step-size for the whole solution interval.

Gear's method

Gear's method is the most widely accepted numer-
ical integration technique. It is a multiple-step, im-
plicit, iterative, variable-order, and variable step-size
method whose sophistication guarantees an accurate
solution for virtually any system. Since it has become
the standard ODE solver, the authors decided to use
it as the reference solution technique against which all
other integration methods will be compared. The
mathematical details of this method are lengthy and
complicated; for a detailed discussion, the reader is
referred to [10].

COMPUTER ANALYSIS

The numerical solutions found for the axial-
torsional plane-stress problem using the material
models and numerical solution algorithms just
presented are now described. The objective is to
predict, as accurately and as efficiently as possible.
the stress—strain response of a thin-walled tubular,
type 304 stainless steel specimen subjected to cyclic
strain-controlled, axial-torsional loadings that result
in significant plastic deformation.

To analyze the computational efficiency of the
integration algorithms, a non-dimensional CPU time
has been defined as follows:

CPU,

I

CPU, = (65)

where CPU, is the actual execution time for the
history under consideration and t is the final value of
the independent variable (time) for this run. Plots of
the time variations of the axial and shear stress
integration errors will also be shown. These errors
have been defined as follows:

g, —a
E,(%) =8

(100) (66)

max

E(%) =2""2(100) (67)

max

where g, and 1, are the Gear's method solutions for
the axial and shear stresses at given axial and shear
strains respectively, o, and t, are the corresponding
numerical solutions (at the same axial and shear
strains) by the method being considered, and ¢, and
Tmax are the largest values of axial and shear stresses
calculated by Gear’s method over the input history
under consideration.

As previously stated, all the numerical integration
techniques will be compared against the solutions
calculated using Gear’s numerical integration algo-
rithm. Therefore, errors reported in this section are
computed with respect to Gear’s method solution
(percentage of Gear’s method solution normalized
CPU time), not experimental results. Comparison
with experimentai resuits has been performed in other
works [2-5]. The purpose of this study is to compare
the performance of integration schemes as a function
of structure of constitutive equations given the same
initial conditions and loading history. To minimize
the effects of algorithms for implementation of each
constitutive model on computation time (since we
want to compare integration schemes), all three sets
of constitutive equations were implemented in the
same subroutine structure: furthermore, the structures
of the constitutive model subroutines were written as
similarly as possible. Two input strain histories were
used as the basis for these comparisons. History I
consisted of three cycles of proportional straining
from the initially annealed state with maximum
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axial and shear strain amplitudes ¢, =0.0041 and
7. = 0.0060, respectively. The effective strain rate was
kept constant at é.q = 0.003/sec. History II consisted
of three cycles of sinusoidal loading with 90 degrees
phase angle, ¢, = 0.0050, 7, = 0.0075 and €4 = 0.001/
sec. Figure 4 shows the axial stress—time and the shear
stress—time responses predicted for these histories
using Gear’s numerical integration method with
McDowell's, Drucker’s and Abrahamson’s models.
Figure 1 shows the actual values of CPUy for all
the models using the reference Gear’s method. The
normalized CPU time seems to be insensitive to
input history for McDowell’s and Drucker’s models.
However, note the tremendous increase in execution
time for Abrahamson’s model when integrating non-
proportional history II. So, the computation times
for Abrahamson’s model are greatly sensitive to the
nonproportionality level of the input strain history.
The reader must keep in mind this apparent path-
dependence of computational efficiency since it will
be shown to be an important parameter in the
evaluation of the numerical solution algorithms.

Runge—Kutta method with Gill coefficients

Figure 2 presents computation times for this
numerical method for histories [ and II. Observe
that for all models in both histories at least 60%
reduction in CPU time is achieved compared to
Gear’s method. Largest computational savings are
achieved for McDowell’s and Abrahamson’s models.
Note that due to the large increase in normalized
CPU time for Abrahamson’s model in history II,
the computational savings are in this case about
95%. Evidently, this is a very efficient integration
algorithm. Figure 5 shows that axial and shear stress
integration errors behave similarly in all cases. Larg-
est errors always occur in regions of initial yielding or
just after elastic unloading. Error magnitudes are
kept below 1% throughout both histories except for
the integration of McDowell’s model for history II.
It seems that an optimal time step-size was chosen
since this method is both efficient and quite accurate
compared to Gear’s method.

Gear’s Method Computation Times
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Euler's method with automatic step-size control

As presented by Fig. 2, this method is quite efficient
for history [ (proportional history) and extremely
inefficient for history II (nonproportional history)
for McDowell’'s and Abrahamson's models. Note
that the nonproportionai ioading CPU time as a
percentage of Gear's shown in Fig. 2 for these two
models is significantly in excess of 100% (~2400%);
the rationale for plotting up to only 100% is that
any method less efficient than Gear’s is unacceptable.
The fact that Euler-type methods are very efficient for
proportional straining has been pointed out (8, I1]
and is confirmed in this study. However, most analy-
ses have missed the fact that, as shown here, non-
proportionality of loading has a tremendous effect in
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the efficiency of the numerical solution algorithm. By
removing the nonproportional isotropic hardening
formulation from the models of McDowell and
Abrahamson, it was shown that the large effects of
nonproportional straining on integration efficiency
remained. McDowell’'s and Abrahamson’s models
present highly stiff regions in the integration paths
which result in the very large inefficiencies of this
method. Figure 6 shows that rather large errors occur
for all of the cases discussed; most important of
all, these errors seem to accumulate with time. It
seems that this method is not very efficient for
proportional histories if good accuracy must be
achieved. Euler-type methods should not be used for
nonproportional histories in ‘complex’ or unified
creep—plasticity theories.

i

SIRESSES HPA
«

FiME SET

i

STRESSES HPA
Q

§

b

L 8 i2

R

-t &AL

i

Q

SIRESSES HPA

§

¢ 4 . ¢ 8 i3

s
TIME ZEC

Fig. 4. Axial and shear stress vs time responses for histories I and II integrated by Gear’s method. Left
column, history I; right column, history II; top row, McDowell’s model solution; middle row, Drucker’s
model solution; bottom row, Abrahamson’s model solution.
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Iterative Adams predictor—corrector method with automatic
step-size control

Figure 3 presents the computation times observed
for the cases under consideration. Comparing this
figure to Fig. 2, it is seen that essentially the same
behavior occurs. Figure 7 shows that, however, excel-
lent accuracy is now achieved (comparing to Fig. 6).
It seems that even though Euler-type and Iterative
Adams methods behave similarly, there is an accu-
racy advantage to the latter which is probably due to
the higher order of the integration equations used.
Evidently, this method is efficient and accurate in
proportional straining but quite inefficient for non-
proportional loading. Once again. this is a point
missed in previous analyses [8, 11].

Non-iterative Adams predictor—corrector method

Comparing Figs 3 and 8 with Figs 2 and 5, the
reader will notice that this method is at least as
efficient and as accurate as the Runge-Kutta method.
Computational savings of at least 75% are now
achieved while keeping integration errors below 1.5%
for most of the cases. High-order, fixed step-size
methods seem to have a large computational advan-
tage over low-order, variable step-size methods in the
integration of nonproportional type loadings. How-
ever, fixed step-size methods are inconvenient since
some trial and error is needed to determine the
optimal initial time step-size to be used in the solution
of a particular problem; iteration of solutions might
be necessary to determine the optimal step-size.
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DISCUSSION

Though in finite element calculations interaction
of the constitutive equation integration algorithm
with structural time step-size and associated iteration
algorithm is an important issue, independent selec-
tion of an efficient constitutive equation integration
procedure is also very important. This is especially
relevant for the class of nonproportional loading
problems treated in the paper.

A number of precedental studies [e.g. 8, 11, 12-15]
have recently appeared in the literature regarding
various temporal integration algorithms for stiff rate-
independent and rate-dependent constitutive equa-
tions for cyclic loading. A conclusion of most of these
studies is that an Euler method with automatic time

step-size control is most efficient. In these previous
works, a key feature is that the loading paths are
predominately uniaxial or one-dimensional in stress
space. As was shown in this paper for several classes
of constitutive models, the Euler method with auto-
matic time step-size control may be quite efficient for
uniaxial or proportional loading, but extremely
inefficient for stiff constitutive equations under condi-
tions of nonproportional multiaxial loading. For this
practically important class of problems, a method
with a fixed time step-size is most efficient. Based on
this work, it is suggested that more consideration be
given to nonproportional loading in evaluation of
temporal integration schemes used in constitutive
integration subroutines.
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CONCLLUSIONS

Every integration routine has been shown to have
particular advantages and disadvantages that make
them suitable or not suitable at all for specific types
of applications. Thus, these integration routines can
be best evaluated based on their appropriateness to
solve specific types of problems which have particular
priorities on the computational accuracy and
efficiency required. From the facts just presented, the
following recommendations can be made:

l. Gear's method should be used for proportional
or nonproportional loading when the numerical
behavior of the system being solved is unknown.
However, it should not be used if high computational
efficiency is desired.

2. Runge-Kutta method with Gill coefficients
should be used for integrating proportional and
nonproportional histories for all the model structures
discussed if a good estimate of the appropriate initial
time step-size is available. Otherwise, iteration of trial
solutions might be required to guarantee an efficient
yet accurate solution.

3. Non-iterative Adams predictor—corrector
method presents the same charactenistics of the
Runge-Kutta method and should be used under
the same constraints.

4. Euler’s method with automatic step-size control
should only be used when integrating proportional
loading histories on McDowell's and Abrahamson’s
models. For nonproportional loading histories and
for any model expected to be rather stiff, this method
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should not be used. This conclusion is important,
since it conflicts with the previously reported desir-
ability of this method for stiff constitutive equations,
surmised from proportional loading histories.

5. lterative Adams predictor—orrector method

with automatic step-size control should only be
used when integrating proportional loading histories
in general. For nonproportional straining, this
method behaves very similar to Euler's method and,
consequently, should not be used.
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APPENDIX

Drucker’s model

Miscellaneous equations

B

Model parameters

7 =0.17 W, =59 MPa

N =135 A=26x10"1"

k =148.1 MPa Units: 8 MPa~?
a* MPa

Material constants
For type 304 stainless steel in the initially annealed state:

v =0.29
G =75.1 GPa
McDowell’s model
Material modeling functions
For type 304 stainless steel at room-temperature:
R(0,q) =171 + (g — 0.005)4000 MPa
R *(0.9) = 295 + (g — 0.005)20690 MPa
K(0,g) =4370 — (¢ —0.005)196100 MPa
R(l.g) =405 MPa
R*(1,q) =565MPa
£(1,q) = 4046 MPa
A(g) =0.6¢
¥ =ulR(¢.q) - R]
¥* =ulR*(¢.q)~R*]
Y =ulk — £ (¢.q)]
where u(x) = Heaviside function of x and ¢y, =0.02
Material constants
For type 304 stainless steel in the initially annealed state:
u=10.0 v =029
u* =500 G =75.1GPa

Abrahamson’s model

Model parameters
For 304 stainless steel at 300 K:

a=5x10"*s"! ¢=16x10"*MPa-?s~'
a, =0.002 MPa~! d,=58.5x 10-*MPa"'
ay; =22.8 MPa m=2.0

B=20 2 =300

by = 0.0975 MPa k, = 126 MPa

by=0.01 MPa~"' B = 0.02

by =5.89 d, = 0.045 MPa !

Material constants
For type 304 stainless steel at 300 K:

G =71.1GPa y =029
E=1739GPa u* = 50.0.
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ABSTRACT

The Mroz kinematic hardening rule has previously demonstrated superior
capability to correlate cyclically stable nonproportional stress-strain
response. In this paper, recently proposed kinematic hardening rules for
single and multiple surface cyclic plasticity models are evaluated.
Significant improvement over the Mroz rule, without loss of generality, is
achieved with a deviatoric stress rate-dominated rule proposed by Tseng and
Lee for two surface theory. Recent approaches for correlation of the modulus
function and isotropic hardening are discussed. The norm of the Mroz distance
vector is found to uniquely correlate the variation of plastic hardening
modulus through a cycle; it is necessary to include a measure of instantaneous
nonproportionality, however, to properly normalize the modulus function. A
new evolution equation is offered to correlate the additional isotropic
hardening observed during nonproportional loading, and several contemporary

approaches are also considered.



Introduction

With increasing emphasis on lightweight, high performance structures,
there has been a corresponding rise of interest in constitutive equations for
cyclic plasticity. This is true for the turbine and rocket engine, nuclear
and ground vehicle “industries, for example. Historically the complexity of
cyclic plasticity models increased as more experimentally observed effects
were reported. There has been a relatively recent emphasis (Dafalias and
Popov, 1975; Dafalias, 1981; Krieg, 1975; Lamba and Sidebottom, 1978a, 1978b;
McDowell, 1985a, 1985b; Nouailhas et al., 1983; Tanaka et al., 1985; Tseng and
Lee, 1983) on the formulation of models for multiaxial loading. This includes
consideration of nonproportional variation of the components of stress and
strain referenced to material axes (nonproportional loading).

Lamba and Sidebottom (1978a, 1978b) produced data from nonproportional
cyclic axial-torsional tests on OFHC copper, and showed that the kinematic
hardening rule of Mroz (1967) was far superior to that of Ziegler (1959) or
Prager (1956) for:correlating stress-strain response during nonproportional
loading. Lamba also reported a significant increase in cyclic hardening under
sinusoidal out-of-phase loading, a finding that since has been reported for
other materials for similar loading conditions (McDowell, 1983a; Kanazawa et
al., 1979; Krempl and Lu, 1984). Pnediction of the direction of plastic
strain rate in general depends greatly on the kinematic hardening rule for
nonproportional loading. Likewise, isotropic hardening during nonproportional
loading can no longer be represented as a function of accumulated plastic
strain or plastic work; it is also a function of changes in the direction of

the plastic strain rate vector over a loading history (McDowell, 1985c).
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Since both the direction of the plastic strain rate vector and the additional
hardening during nonproportional loading are of first order importance, it is
not extravagant but absolutely necessary to account for them in the cyclic
plasticity model.

In this paper, experimental data from axial torsional, strain controlled,
cyclic nonproportional loading tests is examined in detail for type 304 stain-
less steel at room temperature. Within the context of von Mises yield and
loading surfaces, recently proposed approaches for kinematic hardening will be
evaluated. More accurate rules are developed where necessary. Second invari-
ant plasticity theory (i.e. von Mises) is selected as the basis for evaluation
since it is of extreme practical importance to the computational plasticity
community. Likewise, studies of isotropic hardening and modulus function will
be based on this framework.

Results of three strain-controllied axial torsional histories are consid-
ered in this paper. All tests were conducted at room temperature. The
initial values of Young's modulus and shear modulus were determined as E = 188
GPa and G = 77 GPa, respectively. A summary of the three test histories
appears in Table I, including the effective strain rate and controlled axial
and shear strain endpoint sequence of each block within each history. Details
of the experimental procedures and mofe in-depth discussion of the experiments
appear elsewhere (McDowell, 1983a, 1983b, 1985d).

Studies of kinematic hardening will be 1imi;ed to consideratién of
essentially stable cyclic response observed in the latter cycles of each
block. In this case, the kinematic hardening rules may be examined in the
absence of isotropic hardening. In a later section, isotropic hardening

effects and the modulus function will also be examined.



Kinematic Hardening Rules

Previous work (Lamba and Sidebottom, 1978a, 1978b; McDowell, 1985d) has
demonstrated the lack of correlation obtained with the use of either a Prager

or Ziegler kinematic hardening rule for nonproportional cyclic loading, i.e.

TR

= pe (1)

or

IR
n

7(s - a) (2)

where s is the deviatoric stress tensor, a is the backstress, and p and ﬁ are
scalar multipliers.

The superiority of a Mroz-type hardening rule, based on the concept of
nested yield and loading surfaces, has been previously demonstrated. Fbr
computationally efficient two surface models with a yield surface f and
enclosing limit surface f* of the form f(s - a, R) = 0 and

f*(s - a*, R*) = 0, the Mroz rule may be stated as

a = pp(s™ - s) (3)

where s* is the similar point on the limit surface as shown in Fig. 1 defined

by

s* =a* + (R*/R) (s - a) v (4)
where R and R* are the yield and limit surface radii, respectively.
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Other kinematic hardening rules have been proposed recently which would
also conceptually apply to the nonproportional loading case. Tseng and Lee
(1983) proposed that the yield surface translation is related to the devia-
toric stress rate direction. Their theory was motivated chiefly by the
predominance of stress rate in translation of the yield locus observed in the
experiments of Phillips et al. (1974, 1979). In their theory, for a

stationary limit surface,

a = pry (5)
where
[E(R* - R - s}
v = (6)
2 *
3R -R-a
s+ oz8/11sl
A= — (7)
s+ aes/] s D
5y = -s ¢ 11311+ [s = 37113107 + GRYHZ - (111D (8)

where the scalar product is defined by St é = sijéij for example. The norm
of a second order tensor S is denoted by ||§|| = (5 : 5)1/2.

Here, &5 is the norm of the vector from the current stress point to the
intersection of the deviatoric stress rate direction relative to the current

stress point with the stationary limit surface f* of the form



(s, RY) = (3/2)s + 5 - (R)? (9)

~ Note that g* = 9 in their formulation. Equations (5) - (9) are meant to
apply to von Mises yield and 1imit surfaces. Note also that the rule
guarantees tangency of the surfaces as §g + 0 as in the Mroz rule.
Outside of the context of a multiple surface plasticity theory, one could
generalize the assumed dominance of deviatoric stress rate direction with the

rule

2= pgs (10)

Another rule which has been introduced in the context of rate-dependent
state variable or unified creep-plasticity theory is due to Chaboche et al.

(1979),

@ = Cla'e’ - al|ef|] (11)

where a' is a constant and C is a scalar. In Chaboche's formulation, both C
and a' can be functions of the accumulated plastic strain, eP. In equation
(11), C is determined by consistency, leaving a' freely specified. The second
term, widely regarded as a dynamic recovery term, in principle can account for
nonpfoportional loading effects since an additional directional index a is
appended to the otherwise Prager-type rule. It should be noted that other
investigators have proposed similar forms (Lindholm et al. 1985). It should
also be noted that neither of equations (10) - (11) requires a multiple sur-
face formulation.

The Tseng-Lee Rule in equations (5)-(8) was motivated by observation that

the yield surface movement was related to deviatoric stress rate. In their



implementation of this observation, however, Tseng and Lee were constrained to
ensure nesting of the yield and limit surfaces as §g + 0. Hence, the devia-
toric stress rate direction and that of v in the Tseng-Lee Rule in equation
(6) are not equivalent, though v much more closely follows the deviatoric
stress rate direction than the Mroz rule in equation (3) for nonproportional
loading.

The Tseng-Lee 'rule may be extended to the case of a translating limit
surface by referencing to 3* rather than the origin. The Tseng-Lee rule with
nonzero S* is illustrated in Fig. 2.

It is possible to evaluate these rules via numerical differentiation of
data from strain-controllied, axial torsional tests on thin-walled tubular
specimens (McDowell, 1985d). It is convenient to make these comparisons in
the axial torsional subspace.

The definition of the axial torsional subspace follows as a subspace of

Ilyushin's five-dimensional deviatoric vector space (McDowell, 1985d). Define

the stress vector as

g =0y M +050N, (12)

where g, =0 g, oy = I?bzg = {3r

2z

and nj and n3 are orthonormal base vectors in the stress plane. Here, z and §
denote the tube longitudinal and circumferential directions, respectively.

Likewise, the plastic strain vector is defined by

P_ P p
€ =€ Np*teyg Ny (13)



P P

- P _ p
where € =€, and €; = (2/(5)629 .

Note that the plastic strain rate vector is defined as

€ =€ Np+e3 Ny (14)

The effective stress & and plastic strain rate eP (normalized to the axial

case) are recognized as

i lal - (o » 2)1/2 ) (012 . 032)1/2 (15)
- 1E7) (16)

The total strain vector is heuristically defined as
€Tl T el (17)

where €1 = €77 = € and €3 = (Z/Jg)ezg = 9/J3. The effective strain rate
reported in Table I is then € = |e| since 7 = 2¢e,4.
The plastic strain rate vector in the subspace was computed by numerical

differentiation of data (McDowell, 1985d).

The axial torsional subspace can also be considered a deviatoric subspace

since the second invariant of deviatoric stress can be related to g » ¢

6=(goa)l/z=%§:§=@ (18)

Hence, a von Mises yield surface also is circular in the subspace, i.e.



felg-aelg-a)-R (19)

~

where R is the uniaxial yield stress and a is the backstress in the subspace.

The associated flow rule in the subspace is given for f = 0 by

é=%<&-n>n (20)

~ ~ ~

where n = (¢ - a)/|o - a| and h is the hardening modulus. The Macauley
bracket is defined by <> = M if M > 0 and <M> = 0 if M 0. Hence, € is
collinear with (¢ - a) for the von Mises case. A stationary limit surface f*

in the subspace, required by two surface theories, is given by

* * * *
f=g oa - (R)? (21)
where ¢* is a point on the limit surface.

Referring to equations (19)-(21), it is apparent that if R and n

(=€P/|€P|) are known, then a can be computed directly from

TR
n

1Q
1

Rn 4 (22)

for each point in the plastic range under conditions of stable or pure
kinematic hardening (R = constant). Figure 3 illustrates the imposed €]
versus €3 strain paths and resulting stable cycles of g1 versus g3 in the

axial torsional subspace for the histories in this study, which are fully

described in Table I.
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In Figs. 4 - 7, the backstress path based on equation (22) is plotted as
a solid line for essentially stable cycles of three nonproportional histories.
In addition, vectors are plotted along these paths which represent the direc-
tion of backstress evolution predicted by the models of Mroz, Tseng-Lee,
deviatoric stress rate, and that of Chaboche. These models are stated in the

axial torsional subspace as

Mroz: a-= ﬁm(a - o) (23)
where ¢* = (R*/R) (s - a) (24)
Tseng-Lee: a = ﬁTus (25)
where (R* - R - 2
V= — - (26)
~ J(RT - R - qf

g+ 65/lal

A= — (27)
lg + 850/ la]]
and
6; = -0+ 5/l5] + [(g » 5/15)% + (R)? - |g]%)]}/2 (28)
Deviatoric stress rate: a = pa& (29)
Chaboche: a = cla(o - a) - &]|ép| (30)

It should be noted that the Mroz and Tseng-Lee models require specifica-
tion of R*, the limit surface radius. Several values of R*, including the

maximum effective stress in a cycle, were used in evaluating these models.
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Also, in the Chaboche model, constant a was selected as a = 2.3 to provide the
best fit to the data from specimen SSO1, block 3. Note that the Timit surface
is stationary in both the Mroz and Tseng-Lee models.

Referring to Figs. 4 - 7, it is noted that degree of tangency of the
vectors to the path of é provides the measure of accuracy of each model.

As discussed later, it was found that the yield surface dimension does
not experience significant change, assuming Jé flow theory and a deviation
from linearity definition of yield. Hence, a constant yield surface radius of
R = 160 MPa was used in all calculations for the backstress path. In
contrast, the limit surface radii required for the Mroz and Tseng-lLee rules
experienced significant dependence on nonproportional loading. In Figs. 4-5
it was assumed that R* = maxlgl + 30 MPa where max|g| is the maximum
cyclically stable value of effective stress in each loading block.

From Figs. 4 - 7, it is clear that some models provide a good correlation
for one history, but poor correlation for others. Interestingly, the harden-
ing rules of Mroz and Chaboche are significantly less accurate than the rules
associated with deviatoric stress rate. The hardening rule of Chaboche is
less accurate for the sinusoidal loading paths than the deviatoric stress rate
rules. The tremendous improvement of the Chaboche rule over the Prager (1956)
or Ziegler (1959) rules indicates strbng]y that a dynamic recovery term must
be included in a single surface (Drucker and Palgen, 1981) or state variable
approach (Chan et al., 1984) which uses Prager-type hardening.

It is noted that there are some differences between the directions of
yield surface translation given by the Tseng-Lee rule-of equation (25) and the
deviatoric stress rate. The deviatoric stress rate direction provides an

overall superior correlation of the backstress rate direction.
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However, use of deviatoric stress rate does not ensure nesting of yield
and 1imit surfaces in a multiple surface model. Hence, the data indicates
that the Tseng-Lee rule is superior to the Mroz rule for two surface theories,
yet still invokes the desired nesting feature for both proportional and non-

proportional loading. The Chaboche rule is the least accurate of those

studied.

Modulus Function

Accurate assignment of the hardening modulus function H in the flow rule

é = % (é : nd>n (31)

expressed in deviatoric stress space is extremely important for modeling
nonproportional cyclic stress-strain response. In the axial torsional

subspace, equation (20) is appropriate where H = (2/3)h. Modulus function h

may be computed from experimental data since

13

(dg/ds) .

h =
(de”/ds) (32)

13

and dg/ds, dSP/ds, and n are known from numerical differentiation of data
(McDowell, 1985d), where s = f(ngdg)l/z is the effective stress arc length
along the path.

McDowell (1985d) showed that dependence of h on the Mroz distance vector

for a two surface theory

*

6 = lo - gl (33)
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offered better correlation with nonproportional cyclic loading data than
dependence on effective stress JF;E;. Since dependence of h on &y is assumed
in two surface models with Mroz-type kinematic hardening rules, it is not
surprising that such models have consistently demonstrated superior accuracy
for nonproportional cyclic plasticity.

Recent advances and close examination of experimental data, however,
suggest that the correlation for h can be improved. In this work, several
recently proposed independent variables will be considered and compared to the
performance of &p.

It is now recognized (McDowell, 1985c; 1985d; Nouailhas et al., 1983)
that for cyclic loading, the accumulation of inelastic strain in the history
is not a sufficient independent variable for h or H. For nonproportional
loading, it is clear that accumulation of plastic strain from the most recent
point of elastic unloading, as suggested in earlier work (Eisenberg, 1976; Wu
and Yip, 1981), is not sufficient.

For cyclic plasticity models which employ only a yield surface,

nonproportionality effects can be included in the modulus function

o 3R ()

where F(n) can be a history functional of the plastic strain trajectory,

including path length and direction (Dafalias, 1984), i.e.

"
F(n) = n(n) : 3—,; j $(n - n')n(y')dp’ (35)
0
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where

dn = g(e)de (36)
and ¢(n - ') is an unspecified function.
It is noted that F(n) is related to the kinematic hardening rule in the

general rate-independent model structure given by Dafalias (1984) for a von

Mises yield surface, i.e.

f=3(s-0a):(s-a -R=0 (37)
L=F G (38)
a = <L> F(p)é/(€ = n) (39)
R =<L>\/§.dR/dEP | (40)

and the flow rule stated in equation (31). The reader can verify that the
consistency condition is met by equations (31), (34), and (37) - (40). In
equation (39), £ is a unit vector representing the direction of translation of
the yield surface.

As pointed out by Dafalias (1984), there are two very different
procedures of assigning H in equation (34). One may define F(y) which
specifies H when dR/deP is known. This is indeed a very difficult task for
nonproportional loading. An alternative route is offered by the multiple
loading surface approaches (Lamba and Sidebottom, 1978; Dafalias and Popov,
1975; McDowell, 1985a, 1985b; Tseng and Lee, 1983; Mroz, 1967; Tanaka et al.,
1985; Dafalias, 1981) in which H is specified and F(y) is computed by invoking

the consistency condition since dR/deP is known.
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The recent theory offered by Krieg and Key for nonproportional loading

(Krieg and Key, 1984) is an example of the first approach. In their model,

(s-a) ¢

&P =5 (s - a) (41)
T 3 ROML+ (z(p) + B)/36] ¢

Since

€= 3/26 + ép + (1/3)(e:D)1 (42)

where I is the identity tensor, one can show that

H =% [2(p) + B] (43)

where g in this case is defined as the scalar product of the backstress and

plastic strain rate direction, i.e.

B=a:n (44)

Parameter B is defined as the asymptotic slope of the stress-plastic
strain curve. Hence, evaluation of this approach can be made by determining
the correlative capability of the § parameter in equations (43) - (44).

The latter approach, in which H is specified, is exemplified by the Mroz
or other multiple surface approaches. This paper will investigate the
capability of several parameters within the context of a two surface theory.
Denoting by § some measure of distance from the current stress point to a
point on the 1imit or bounding surface (i.e. asymptotic stress-strain

response), H may be written as
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¥

H = H(6, 6. , H) (45)

in'
where §ijn s the value of § at initiation of the yielding process. According
to Dafalias (1981,1984), &ijn provides a discrete memory parameter of the most
recent unloading-reloading event. Parameter H* is the asymptotic value of H
reached at high levels of plastic strain accumulated since the most recent
loading reversal. Use of §ijn is necessary in a two surface model to provide a
memory of prior excursions in the plastic range; in multiple surface models,
this memory is provided by the presence of a series of loading surfaces, each
possessing an independent backstress and radius.

A general property of the modulus function is that H + H* as §/6ip *+ O
and H is large (+ ®) as §/6jn *+ 1. There exists a multitude of possible forms

for §. First consider the axial torsional subspace forms

6 = 5m (46)
6 = 65‘ (47)

In Figs. 8 - 9, the corre]ative capability of 6/A for each of equations
(46) - (47) with cyclically stable data from five loading blocks is shown.
Here, A is a parameter used to normalize § between 0 and 1. Parameter A is
analogous to 84, as discussed above. In these three plots, A was independ-
ently selected for each form of § and each history to match the value of §/A
from proportional history block 2 of specimen SS09 at H = 300,000 MPa. Table

IT lists the values of A selected to normalize each history. Hence, the data
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is normalized at high modulus values for comparison. Again, a stationary

limit surface with radius

R* = max|g| + 30 MPa (48)

was used for determining these § parameters, where maxlzl is the maximum
effective stress in a stable cycle for each history. Analysis of the data for
widely varying values of R*, as in an earlier paper (McDowell, 1985d), showed
that the accuracy of each of these § parameters is very weakly dependent on
R*.

To determine the relative performance of these two measures of §, one can
compare their ability to correlate data from several nonproportional cyclic
paths. The measure of correlative capability is the uniqueness of the
functional form independent of path. A1l data are obtained from cyclically
stable cycles, so the hardening can be assumed purely kinematic, i.e. dR/deP =
0. dn the same basis, the Krieg-Key modulus function in equation (43) may be
evaluated, considering the function (é . E)/A’

Referring to Figs. 8-9, it is clear that the correlation achieved by the
Mroz definition of & is superior to the Tseng-Lee § parameter. The Tseng-Lee
definition of § exhibits a very pronounced lack of correlation in the low
modulus regime. The correlative capability of both § parameters, though,
cannot be judged entirely on the basis of Figs. 8-9 without consideration of
the A values required for normalization. From Table II, it is seen that the A
values are certainly not constant for each § parameter for all histories. In
fact, there does not appear to be any relationship between A and R* for each

parameter. This result for these completely reversed nonproportional loading

histories is somewhat disturbing since A and §j, mentioned in equation (45)
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should be essentially equivalent in this case. To further exemplify this
point, &n/A was plotted versus H with A = 2R*: a unique correlation was not
obtained. It should be noted that several previous models for nonproportional
loading based on the Mroz & have employed this somewhat inaccurate
normalization (Lamba and Sidebottom, 1978; McDowell et al., 1982).

The correlative capability of the Krieg-Key modulus function is shown in
Fig. 10, where two different definitions of A are used to normalize the data.
Both definitions appear in Table II., A value of R = 160 MPa was assumed in
calculation of the backstress. Obviously correlation of the data is very poor
using this parameter. It should be noted that the correlation is not improved
when a value of R = 300 MPa is used to compute backstress via equation (22).

Having evaluated the capability of several proposed parameters to
correlate modulus variation during nonproportional loading, we turn to
possible specific forms of equation (45) since the multiple surface (two
surface, in this case) plasticity models have demonstrated superior
correlation of modulus if § is properly selected. It has already been
established in this work that normalization of § by a constant or by R* or
maximum effective stress will not produce satisfactory correlation. Hence, we
must seek forms for H which employ a normalizing parameter which is a function
of the history of loading. |

Dafalias (1981, 1984) has proposed a specific form of equation (45), i.e.

5/6,
R R R [ (9

where g(6ipn) controls the slope of the stress-strain curve. Though rather

elaborate rules can be devised to properly assign 6ipn for unloading-reloading
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events, such rules will be unnecessary in this work since only completely
reversed, nonproportional cyclic loading will be considered. Again, note that
the precise form for § is left unspecified in equation (49). In fact, Tseng
and Lee have used equation (49) for H along with their definition of 6 = &g
from equation (8).

Equation (49) has the property that H + w as § + §ip, i.e. at initial
yielding. Also, H'+ H* as 6§ + 0, i.e. approaching the limit surface.

In Fig. 1lla, the Dafalias modulus function is fit to proportional loading
history SS09, block 2 with & = &y, g = 16, &ip = 417 MPa, R* = 338 MPa, and H*
= 3000 MPa. It should be noted that a better fit could be obtained if the
modulus function were nonlinear in (6m/6in)/(1 - 6m/6in). The best measure of
usefulness of any modulus function, of course, is the capability to extend
uniaxial or proportional loading test results to the nonproportional case.
Figure 11b shows the correlation obtained for all histories of this study
using the Dafalias function with g = constant; the solid line is reproduced
from Fig. 1la, representing proportional cycling. In all cases, 6in was
defined as the maximum value of 6y during plastic flow for each history.

From Fig. 11, it is apparent that the correlation is satisfactory for all
histories except SS09, block 4 (i.e. 60 degree out-of-phase sinusoidal
loading). This history does not ethbit unloading response; hence, the nor-
malizing parameter §ij, is likely more properly determined from a reversal
prior to this history. The value of §jn = 545 MPa obtained for history SS09,
block 3 is close to the value of A = 530 MPa required for correlation with 6y
as reported in Table II. This history points out a difficulty with a
normalization procedure that depends on the initiation of yielding for
nonproportional loading. In particular, it is very difficult to assign a

proper definition of i, for such histories. Also, it is important that the
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modulus function fit proportional cycling data well. Other models (Chan et
al., 1984) have employed an exponential or hyperbolic sine fit.

To obviate the difficulty associated with use of i as a normalizing
parameter, another was sought which depended on current state rather than
prior history. Examination of the data indicated that the quantity (E‘Qdm):
representative of the non-collinearity of the loading increment, is essential
to obtaining good c¢orrelation of data in addition to a distance parameter.
The best correlation is achieved by employing this quantity as a modifier of

the normalizing parameter, i.e.

H= W1+ 6[a;,){stnh (k1 D]}*2] (50)
where
Sm
2= n e ngyl

ki and k» are constants, and ngy = (¢* - 0)/8p.
Here, G(&;p) is a memory repository intended to account for unloading-
reloading effects. In the axial torsional subspace, assuming G(&ip) =

constant for these histories under consideration, the relationship
H = 3000[1 + 16 {sinh(.005D)}1-73] MPa (52)

is determined by fitting the response from the proportional loading block 2 of
specimen SS09. A1l other histories are plotted in Fig. 12 using equation (52)

with R* = max|o| + 30 MPa in each case. Excellent correlation of the data is
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obtained. Furthermore, the constants are determined only from uniaxial or
equivalent proportional loading tests.

It must be stated that no claim is made here regarding the generality of
any specific approach for all metals. It is important to realize, though,
that any truly promising modulus function must exhibit good correlation of
various nonproportional loading paths for at least one material. In this
regard, the fact that one modulus function produced good correlation in this
study is encouraging. Other materials, of course, must be studied to provide
more perspective. The author is not aware of similar detailed evaluation of

modulus functions for nonproportional cyclic loading of other materials.

Isotropic Hardening

It is now wide]y recognized (McDowell, 1983; Kanazawa et al., 1979;
Krempl and Lu, 1984) that the extent of isotropic hardening may depend on the
nonproportionality of loading. Austenitic stainless steels, for example,
exhibit a tremendous cumulative increase in flow stress under nonproportional
biaxial loading relative to stable uniaxial cycling. This effect is certainly
evident in the biaxial histories of this study, as presented elsewhere
(McDowell, 1983). In fact, 90 degree out-of-phase sinusoidal, axial
torsional, strain-controlled loading results in nearly a 100 percent increase
in effective flow stress over the uniaxial case at the same effective plastic
strain range.

McDowell (1985a, 1985b) introduced a measure of nonproportionality of
loading ¢ which entered into the isotropic hardening rule for a scalar

variable, £, i.e.
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Note that the cyclically stable state, E,’is dependent upon the
nonproportionality of the loading path and plastic strain range, reflected by
¢ and q, respectively.

This measure of nonproportionality resulted in good correlation of sinu-
soidal nonproportional biaxial loading (McDowell, 1985b). It resulted in ¢
values of 0 < ¢ < 1 such that ¢ = 0 for proportional straining, and ¢ = 1 for
90 degree out-of-phase sinusoidal, axial torsional straining with a shear to
axial strain amplitude ratio of 73/€5 = (1+v). There are several reservations
which require development of another approach. First, this approach applies
only to cases where the principal axes of strain continuously rotate at some
point during the loading cycle. Secondly, this approach does not provide good
correlation of square loading paths or nonproportional loading paths other
than sinusoidal. Thirdly, calculation of ¢ is based on total strain and strain
rate; from a mechanistic viewpoint, nonproportionality of plastic strain rate
should more closely relate to increased activation and interaction of slip
systems and, hence, additional isotropic hardening.

Several alternate approaches for nonproportional isotropic hardening have
been suggested recently. Bodner and Partom (Lindholm et al., 1985) and Walker
(Lindholm et al., 1985) have introduced isotropic hardening rules intended to
account for additional nonproportional hardening. Both approaches, however,
assume a unique cyclically stable state independent of the degree of
nonproportionality of the path. This prediction of saturation to a single
1imiting value of.-x is not supported by experiments (McDowell, 1983; Kanazawa
et al., 1979; Krempl and Lu, 1984). 1In Fig. 13, the maximum effective stress

in each cycle, max|g|, is plotted versus the accumulated plastic strain f(deP°
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d'e::'P)l/2 for loading blocks from each of the three histories of this study. It
is noted that the cyclically stable state depends greatly on the
nonproportionality of the loading path. This behavior is the key feature of
nonproportional loading.

We now turn to development of an appropriate isotropic hardening rule
which includes dependence of the hardening rate and final state on the nonpro-
portionality of the loading history. For correlation of the final state a
number of parameters were investigated, including (n : é/lléll), ((s/]1sl1) -
(é/||é||)) (e.g. Bodner et al., Lindholm et al., 1985) and (n : s/[[s]|[).

None demonstrated correlation of data with the exception of (ﬁ : E)' where E
is the unit normal vector in the direction of SP at the point of maximum
plastic strain excursion in the current loading block. We may unambiguously
define a loading block as a repeated assemblage of identical cycles or
combination of cycles and subcycles. Careful examination of data led to the

following plastic strain-based parameter:

v )5 - -2 2

where

b= —L gt N Pt (55)
T

and N = €P*/||eP*|| where eP* is the plastic strain at the maximum value of
||eP|| in the current loading block. The time at the initiation of the
current loading block is given by tg. Similar to ¢, it can be shown that ¢* =

0 for proportional loading and ¢* = 1 for 90 degree out-of-phase sinusoidal,
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axial-torsional loading with y3/€5 = J3 and v = 1/2. From a physical
viewpoint, A represents the plastic strain averaged component of the inelastic
strain rate in the maximal plastic strain direction. Since it is defined as
an averaged non-collinearity of plastic strain, it should relate more
fundamentally to isotropic hardening micro-mechanisms.

An appropriate evolution equation for an isotropic hardening variable «

is

% = /10[/:0 + K[¢*]"’(1+¢*) - 5| (€7 2 EP)1/2 (56)

~

where py and m are constants, and K is at most a function of p]astic strain
range (McDowell, 1985a). Parameter x5, also a function of plastic strain
range, is the uniaxial cyclically stable value of x. Note the nonlinear
dependence of the final state (xq + K(g*)m(1+6*)) on ¢*.

Figure 14 demonstrates the correlation obtained for the various loading
blocks of this study between the cyclically stable value of maximum effective
stress in a cycle, max|s|, and (¢*)m(1+¢*); the implicit assumption in this
plot that K = constant is justifiable since the effective plastic strain
ranges for all these histories are nearly equivalent. The correlation is
quite good considering the differences in nonproportional loading paths
considered.

In Fig. 15, assuming x = maxlgl in each cycle, the values of £ from the
histories of this study are normalized and plotted versus accumulated plastic
strain, jlép|dt, in each associated loading block. The normalization of

max|o| in Fig.15 is made between the initial and final values of max|c¢| in
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each cycle for each loading block. Interestingly, most of the histories
essentially follow the hardening response observed for the proportional
straining of initially annealed material in block 1 of history SSO0l. This is
true of histories for which the principal strain directions rotate
continuously (e.g. block 3 of SS01, blocks 3-4 of SS09). However, the rate of
hardening observed for specimen SS04 in Fig. 15 is significantly lower than
that of the other blocks. This behavior can possibly be related to the fact
that plastic strain is accumulated in this history along discrete sets of
principal directions. Hence, the hardening rate may be dependent on
directional accumulation of plastic strain. It should be noted that this
hardening rate behavior could not be correlated with either of the Bodner-
Partom or Walker rate approaches. In fact, none of the parameters mentioned
earlier in conjunction with correlation of the level of isotropic hardening
were viable in correlating the reduced hardening rate of specimen SS04. 1In
view of the correlation which can be achieved for the other histories via the
simple approach in equation (56) and the fact that hardening rate is a second
order effect compared to the extent of hardening, it may not be necessary to
include dependence of the hardening rate coefficient on the nonproportionality
of loading. Certainly, more data is desirable to include such dependence.

As a final point, it should be noted that in general it is necessary to
allow continuous evolution of E between successive loading blocks. An example
would be a number of cycles of axial loading followed by torsional cycling.
Experimentally, some additional hardening is observed in such cases (McDowell,
1983; Krempl and Lu, 1984). Instantaneous re-definition of E to the current
proportional cycling block would be incompatible with this observation. From
a micro-mechanical viewpoint, the values of the resolved shear stresses on

slip planes within each grain have certainly changed, and a latent hardening
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effect is quite reasonably expected.

Isotropic Hardening - Evolution of Yield Surface

or Modulus Function?

The maximum effective stress in a cycle relates closely to R*, the radius
of a 1imit surface in a two surface theory. 1In general, both the yield and
limit surfaces can isotropically harden. Isotropic hardening of the yield
surface is usually associated with changes in the small offset yield strength
after accounting for kinematic hardening. Likewise, isotropic hardening of
the 1imit surface is associated with changes in the flow stress at relatively
large plastic strain levels.,

It is interesting to consider that the modulus function H can also be a
repository for isotropic hardening. In fact, it is difficult to separate
changes in the moduilus function from growth of the yield surface defined by a
plastic strain offset on the basis of uniaxial tests. Nonproportional cyclic
loading tests are quite heipful in this regard since it is possible to deter-
mine the position of the center of any assumed yield surface form by backward
extrapolation of the plastic strain rate direction after abrupt changes in
loading direction. Since for stab]e}cyc1ing hardening is purely kinematic,
one should not observe abrupt changes in the yield surface center after an
unloading-reloading sequence in a different direction for a simple von Mises
yield surface. From plots of backstress for several nonproportional loading
blocks it was observed that R = 160 MPa results in the smoothest path of é.
Since R = 148 MPa is the yield strength of the virgin annealed material,
defined by a deviation from linearity (McDowell, 1985b), it is clear that very

little of the isotropic hardening can be attributed to growth of a small
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offset or deviation from linearity defined yield surface; rather, it must be
accommodated in the modulus function through an isotropic variable associated
with 1imit, not yield, behavior. In a two surface theory this corresponds to
growth of the limit surface. As a result, the kinematic hardening variable
will exhibit increased magnitude during nonproportional hardening.

This result is of considerable importance for this material, since the
extent of isotropic hardening is relatively exceptional. It is somewhat for-
tuitous from a modeling standpoint, since it infers that the domain of purely
elastic behavior for a rate-independent material response is less influenced
in magnitude by complex loading than the domain of plastic behavior. Again,
perspective must be maintained since only one material has been analyzed.
Certainly, though, this result warrants study in other materials under complex
nonproportional loading.

0f course, the objection may be made that anisotropic deformation of the
yield surface may lead to a perceived abrupt change in a as observed for
larger assumed yield surface radii. However, it is observed that the aniso-
tropic deformation of the yield surface (Shiratori et al., 1979; Hecker, 1976)
is strongly a function of the offset plastic strain yield definition.
Anisotropy is much more pronounced for small offset definitions of yield.
Since nearly all computational codes for initially isotropic, rate-independent
metals employ a simple yield surface, usually of von Mises form, it is
worthwhile to experimentally investigate the integrity and extension of such
an approach; the bounding surface approach, in particular, offers the
capability to model anisotropic plastic flow via the modulus function although

the yield surface is a simple form.
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Conclusions

Analysis of nonproportional cyclic loading data for type 304 stainless

steel at room temperature has revealed some interesting results.

1. The kinematic hardening rule for von Mises yield and limit surfaces
is more accurately prescribed by a deviatoric stress rate rule

which provides for nesting than a Mroz rule.

2. If a Prager-type kinematic hardening rule is used in either a state
variable or single loading surface theory, a dynamic recovery term
must be included to correlate nonproportional data. The accuracy
of such an approach, though, was found inferior to that of the two

surface theory with a deviatoric stress rate-type rule.

3. A modulus function based on the distance from the current stress
point to the limit surface in the direction of deviatoric stress

rate does not correlate nonproportional loading data uniquely.

4. A modulus function based 6n a Mroz distance vector can be improved
by including in the normalization the scalar product of the plastic
strain rate direction with the Mroz vector. Proper definition of
din as proposed by Dafalias appears to be a very difficult task for

nonproportional loading.

5. A modulus function is proposed which correlates the data from
several different nonproportional histories quite well. It is
determined entirely from uniaxial or proportional loading tests.
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6. A more general isotropic hardening rule is proposed which
correlates the observed additional hardening. It is found that,
within the context of second invariant plasticity theory, the
isotropic hardening is predominantly associated with growth of an

isotropic limit surface rather than the yield surface.
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Correlation achieved by deviatoric stress rate rule for stable cycles
from (top) block 3, specimen SS09, (center) block 4, specimen SS09,
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Correlation achieved by Chaboche rule for stable cycles from (top)
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Correlation of H versus §/A for Mroz definition of §. Stars,
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block 1 of specimen SS04, respectively.

Correlation of H versus 6/A for Tseng-Lee definition of §&.
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Fig.10 Correlation of H versus Krieg-Key modulus parameter
(a » n)/A for (top) A = max|g| in cycle and (bottom)
A = max(a * n) in cycle. "

Fig.11 Dafalias modulus function with § = &5 (a) fit to proportionally
loaded, stable cycle from block 2, specimen SS09, and (b) resulting

correlation of data from other nonproportional histories with this
function. ~

Fig.12 Correlation of H versus D. Solid line is that obtained by fitting
proportional loading data from specimen SS09, block 2.

Fig.13 Maximum effective stress in each cycle versus accumulated plastic
strain for several loading blocks including block 3, specimen SS09
(squares), block 4, specimen SS09, (circles), block 1, specimen SS04

(plus signs), block 1, specimen SSO01 (stars), and block 3, specimen
SS01 (x's).

Fig.14 Correlation of isotropic hardening achieved using state variable ¢*
for several nonproportional loading blocks. The value of max|o|2 550
MPa was reported by Krempl and Lu (1984) for 90 degree out-of-;hase
loading (i.e. ¢* = 1).

Fig.15 Normalized maximum effective stress in each cycle versus accumulated
plastic strain for several loading blocks. Normalization is between
the initial and stable values of max|o| for each loading block.
Symbols correspond to the same histor?es as in Fig. 13.
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Specimen Identitication

Complex Strain Histories

TABLE I

Block Number

10 ¢=-0.0046,v=~0.0039

see™!) 1 2 3 .
endpoint endpoint endpoint
sequence: sequence: sequence:
0 e=v=y 0 eovs0 0 c=vy=y
$501 0.C33 1 ©=0.0031 1 0.0041 1 ¢»0.0041
0.006 ve-0.006 v=0,006
2 o-0.00341 2 e=-0.0041 2 c=0.0041
v=-0.008 v0.006 v=-0.006
return to return to 3 ¢=-0.0041
caysy o0 0,006
4 ¢=-0.0041
v=-0.006
return to
[ Y]
| | <3 cycles <3 cycies ¢35 cycles
S809 T J.eei Incrementat 'za=\).u35 ﬁ:ﬂ:D.OGS 'c(]:u.w:]
Step flest: vl=0.0075 'a=0'0075 'a=0‘0075l
%0 007 oe0 8=30° »60°
v32%=0.0105
10 cycles 16 cycles 25 cycles 5 cycles )
5504 Jewud U exv=)
1 ¢=0,v=0.008%
2 =0, -0.0085
3 ¢*=.0039,v=0.0057
4 ¢+0.0039,v*-0.0057
5 =-0.0046,vy=0.0039 .
6 ¢=0.0046,v=-0.0039 i
7 ¢=0.0051, v=0
8 ¢=-0.005%,v0
9 ¢=0.0046, v=0.0039
|
|

11 ¢=0.0039.v=0.0057
12 ¢=-0.0039,v=~0.0057
return to ¢*v=Q

S0 cycles

|

*Qenotes sinusoild

al loading with ¢ » ¢
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TABLE II

Values of A for Modulus Parameter Normalization

-

Two Surface § Parameters Kreig-Kevy
A (MPa) A (MPa)
k 4

R max

History sm 8& (MPa) maxlgi (f'f)
SS09, Block #2 440 440 338 308 140
SS09, Block &3 530 360 429 399 230
SS09, Block #4 530 330 500 470 300
SS04, Block #1 465 470 494 464 300
SS01, Block #3 480 530 555 5295 360

*

R = 160 MPa
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SIMPLE EXPERIMENTALLY MOTIVATED
CycLic PrLAsTICITY MODEL

By David L. McDowell’

ABSTRACT: A two-surface cydlic plasticity theory is presented with refinements
based on analysis of nonproportional cyclic plasticity data. It is shown that the
model accurately correlates nonproportional cyclic stress-strain response, yet
the model structure is simplified compared to previous models. New contri-
butions include a more general isotropic hardening rule that reflects additional
nonproportional hardening, and a more accurate plastic modulus representa-
tion for nonproportional loading. A kinematic hardening rule is used, which
reflects experimental observations of backstress translation direction being re-
lated to deviatoric stress rate. Transient stress-strain behavior from four axial
torsional nonproportional loading blocks is predicted.

INTRODUCTION !

With the increasing emphasis on lightweight, high-performance struc-
tures, there has been a corresponding rise of interest in constitutive
equations for cydic plasticity. This is true for the turbine and rocket en-
gine, nuclear and ground vehicle industries, for example. Historically,
the complexity of cyclic plasticity models increased as more experimen-
tally observed effects were reported. There has been a relatively recent
emphasis (Dafalias 1975, 1981; Krieg 1975; Lamba and Sidebottom 1978b;
McDowell 1985¢c, 1985d; Nouailhas, et al. 1983; Ohno 1982; Tanaka, et
al. 1985; Tseng and Lee 1983) on the formulation of models for multiaxial
loading.

Lamba (1978a, 1978b) produced data from nonproportional cyclic axial-
torsional tests on OFHC copper, and showed that the kinematic hard-
ening rule of Mroz (1967) was far superior to that of Ziegler (1959) or
Prager (1956) for correlating stress-strain responses during nonpropor-
tional loading. Lamba also reported a significant increase in cyclic hard-
ening under sinusoidal out-of-phase loading, a finding that since has
been reported for other materials for similar loading conditions (Kana-
zawa, et al. 1979; Krempl and Lu 1984a; McDowell 1983a, 1983b, 1984).
Prediction of the direction of plastic strain rate in general depends greatly
on the kinematic hardening rule for nonproportional loading. Likewise,
isotropic hardening during nonproportional loading can no longer be
represented as a function of accumulated plastic strain or plastic work;
it is also a function of changes in the direction of the plastic strain rate
vector over a loading history (Dafalias 1984; McDowell 1985a, 1985b).

The Mroz kinematic hardening rule was originally proposed for a set
of nested loading surfaces surrounding the yield surface (Mroz 1967).
Since then, two surface theories have been proposed (Dafalias 1975, 1981;
Krieg 1975; McDowell 1985c, 1985d) that assign the modulus in the plas-

1Asst. Prof., George W. Woodruff School of Mech. Engrg., Georgia Inst. of
Tech., Atlanta, GA 30332.

Note.—Discussion open until August 1, 1987. To extend the closing date one
month, a written request must be filed with the ASCE Manager of Journals. The
manuscript for this paper was submitted for review and possible publication on
March 13, 1986. This paper is part of the Journal of Engineering Mechanics, Vol.
113, No. 3, March, 1987. ©AS(?E, ISSN 0733-9399/87/0003-0378/$01.00. Paper No.
21321.
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tic region as a function of the distance from the current stress point to
a similar point on a surrounding limit or bounding surface. In general,
kinematic and isotropic hardening rules are proposed for both the yield
and limit surfaces.

Recent analysis of nonproportional data has indicated that some of the
assumptions of previous two-surface models are not entirely accurate.
The Mroz kinematic hardening rule can be improved by admitting dom-
inance of the deviatoric stress rate (McDowell 1986; Tseng and Lee 1983).
Correlation of the modulus function in the plastic regime can be im-
proved by consideration of the instantaneous degree of nonproportion-
ality in addition to the distance from the stress point to a similar point
on the limit surface. Additional isotropic hardening effects during non-
proportional loading can be correlated with a weighted measure of the
changes in plastic strain rate direction during a cycle of loading. Fur-
thermore, isotropic hardening can be exclusively associated with growth
of the limit surface and, as a consequence, the modulus function.

MobDEeL DeEVELOPMENT

Modifications of classical models based on a single yield surface (Cha-
boche, et al. 1979; Drucker and Palgen 1981; Eisenberg 1976), though
generally simple, do not accurately describe variation in hardening mod-
ulus, kinematic hardening, nor isotropic hardening (McDowell 1985a)
for cyclic nonproportional histories.

Multiple- or nested-surface models (Krieg 1975; Lamba and Sidebot-
tom 1978a, 1978b; McDowell 1985c, 1985d) which use the Mroz rule or
some comparable nesting rule tend to perform accurately for nonpro-
portional loading. Economical two-surface theories have been proposed
(Dafalias 1975, 1981; Krieg 1975; Lamba and Sidebottom 1978b; Mc-
Dowell 1985c, 1985d) which use an analytical representation of the hard-
ening modulus in the regime of plastic deformation. These previously
proposed two-surface theories assigned the plastic modulus as a func-
tion of the distance from the current stress point to a similar point on
a bounding or limit surface. The models of Dafalias, et al. (1975, 1981),
McDowell (1985c, 1985d), Tseng and Lee (1983), and Lamba, et al. (1978a,
1978b), use the concept of an asymptotic modulus, and enforce tangency
of contact between yield and limit surfaces in the asymptotic regime.
This paper will introduce a simplified model structure, conforming to
results of detailed analysis of nonproportional cyclic data, which accu-
rately describes the essential aspects of plastic flow and hardening.

MoDEL STRUCTURE
Only time-rate-independent plasticity will be considered. Deforma-

tion-induced anisotropy is represented by inclusion of backstress a in
the yield surface

3
f=§(s—a):(s—a)—R2 ....................................... 50

where s is the deviatoric stress tensor s = ¢ — (1/3)(o:DI and R is the
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FIG. 1.—Surfaces f and f* in Devlatoric Stress Space

yield stress normalized to the uniaxial case. The identity tensor is de-
noted by I. The flow rule is stated as

1
éP=-’;(S:n)n if f=0 and $M=0........oociuiiiiiiiinn... )

€ =0 otherwise .........ooiiiiiiiiiii i 3)

where the unit normal vector n = (s — «)/||s — a||, and the scalar product
$jn; is denoted by 8:n. The notation ||s — «|| denotes the norm [(s -
«):(s — «)]'%. Here, the usual decomposition of the total small strain
rate into elastic and plastic components is assumed, i.e., &€ = € + ¢". In
Eq. 2, h is the hardening modulus.

Now define a limit surface f* which encloses or bounds the yield sur-
face

3 .
f*= E(s —at) s —at) —(RY) )

where R* is the limit surface radius normalized to the uniaxial case. Sur-
faces f and f* are shown in Fig. 1 in deviatoric stress space.

Kinematic and isotropic hardening rules will next be introduced for
both the yield and limit surfaces. Careful analysis of nonproportional
cyclic test data (McDowell 1986) shows that a variation of the Mroz ki-
nematic hardening rule is more accurate for two surfaces. This variation,
first suggested by Tseng and Lee (1983), was motivated by the obser-
vation that yield surface movement was dominated by the direction of
deviatoric stress rate. Implementation of this observation in a two-sur-
face theory must still provide for tangential nesting of the yield and limit
surfaces at the asymptotic state.

As proposed by Tseng and Lee, modified here for inclusion of trans-
lation of the limit surface (i.e., a* # 0):

2
[Jsm*‘”*-w-av]

where v = (6)

E .......................
"\/B(R*—R)k—(a—a*)

a#

s+ 8 5
sl

o)
[&]]

d & =—(s — *:_§+{|: — *:_s:lz
an - a T (s — a¥) e

1/2
+ERY - - o
3 L ¢ | (7b)

_ According to this kinematic hardening rule, illustrated in Fig. 2, the
instantaneous direction of translation of the yield surface is toward the
position the yield surface would assume if nested with tangential contact
at the point of intersection of the deviatoric stress rate direction (with
respect to the current stress point) with the limit surface.

It was shown by McDowell (1985a) that the Mroz rule, given by

was more accurate for a yield surface and stationary limit surface (o* =
0) than a Prager or Ziegler rule for cyclically stable, nonproportional,
strain-controlled, axial torsional cycles imposed on tubular type 304
stainless steel specimens at room temperature. In Fig. 3, the direction

FIG. 2—Tseng-Lee Kinematic Hardening Rule for Nonzero o*
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of translation predicted by Eqs. 3-7 is compared to the Mroz model in
Eqgs. 8-9, with a* = 0 and R* slightly greater than the maximum effec-
tive stress in each stable cycle, i.e.:

) 3 11
R* = max Es:s +30MPa ... (10)

for three nonproportional loading blocks reported in detail elsewhere
{(McDowell 1985a, 1985d). In Fig. 3, the solid line is the backstress path
in the axial torsional subspace computed by backward extrapolation by
a distance R = 160 MPa from the current stress point along the plastic
strain rate direction; hence, the yield surface form given in Eq. 1 is as-
umed where the plastic strain rate is radial by normality. The axial tor-
sional subspace is defined by ’

o =0n; + L8 23 L (11)

where o, = ¢ and 0, = V31. Hence, Eq. 1 reduces to

where & is the backstress in the subspace. Egs. 5-9 likewise are written
in the subspace for comparison in Fig. 3.

It is noted that the accuracy of the kinematic hardening rule is mea-
sured by tangency of predicted backstress rate direction with the path
of & In Fig. 3, arrows are plotted along the backstress paths in the di-
rections predicted by the Mroz and Tseng-Lee rules. It is evident that
the Tseng-Lee rule provides a more accurate description. As will be dis-
cussed later, the use of R = constant for all-of these histories is war-
ranted by analysis of data.

In Eq. 5, . must be determined from the consistency condition

f'=(¥):s—(z—:):m+(§£)lé=o ............................. (13)

during plastic flow. Unlike previous two-surface models which allow
growth in R, in this work we take R = 0 so that

of the plastic strain rate vector following nonproportional unloading or
abrupt changes in the direction of total strain rate or deviatoric stress
rate vectors (McDowell 1986). According to Eqs. 1-3, the direction of
plastic strain rate, along with continuity in the evolution or growth of
R, implies the position of a. In other words, a cannot experience a sig-
nificant instantaneous “jump’ in location in this theory due to only an
abrupt change in loading direction. This assertion provides a means to
estimate R by analysis of data before and after an abrupt, nonpropor-
tional change in loading direction. It is found that evolution of R can be
neglected (at least for the available data), and the yield surface retains
its original dimension as a first order approximation if yielding is defined
as deviation from linearity. This finding is embodied in a simple theory
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of Drucker and Palgen (1981), and is seemingly confirmed by nonpro-
portional yield probing experiments (Hecker 1976; Liu and Greenstreet
1976; Mair and Pugh 1964; Phillips, et al. 1974) in which the yield surface
is found to distort but not appreciably expand on a cycle-by-cycle basis.

Since the kinematic hardening is best represented within the frame-
work of the current theory by constant R, isotropic hardening is best
represented by evolution of R* and consequential evolution of the mod-
ulus function k in the flow rule. It should be noted (Krempl, et al. 1984b)
that the backstress in nonproportional loading for state variable (time-
and rate-dependent) theories has been shown to exert more dominant
influence than the drag stress, a variable analogous to yield surface ra-
dius in the current theory.

Next, we introduce kinematic and isotropic-hardening rules for limit
surface f*:

S ) (TP (15)

and R*=c[(Ro+ KA™*M) - R¥|i. ..o (16)

where 7 = (€":€")"%;, and Ry, x, ¢, K, and m are material parameters.
Constant R, is the cyclically stable uniaxial value of R*. Ry and K can
depend on the plastic strain range (McDowell 1985c, 1985d), if such de-
pendence is significant. Rate constant c may be selected to fit transient
response, and can be determined from the hardening response in uni-
axial tests. Likewise, k can be determined from the response of uniaxial
or biaxial stress-controlled racheting tests, since racheting response de-
pends heavily on a* and the form of the modulus function to be dis-
cussed later. Mean stress relaxation response also is influenced strongly
by a* and the modulus function, and could serve as a reference.

Constants K and m pertain to the additional isotropic hardening which
occurs during nonproportional loading. State variable A describes the
nonproportionality of the loading path. For uniaxial or proportional strain-
controlled cycling (def = Cef, where €] are components of the plastic
strain tensor), A = 0. For nonproportional cycling, 0 < A = 1. Hence,
K in Eq. 16 is the maximum increase of strength observed in nonpro-
portional cycling, and m provides nonlinear weighting necessary to match
experimental results for intermediate hardening levels. As pointed out
by McDowell (1983a, 1983b, 1984), Kanazawa, et al. (1979), and Krempl
and Lu (1984a), the extent of nonproportional isotropic hardening de-
pends on loading history.

From axial torsional tests on thin-walled tubular specimens, it has been
shown that the case of sinusoidal straining:

Ll I | T 1 2 17)

Y=Yesin(@Wt—p) oo e e (18)

with p = 90° and v,/€, = 1.5 to V3, results in the maximum extent of
additional isotropic hardening in this biaxial case (Kanazawa, et al. 1979;
McDowell 1983a, 1983b, 1984); hence, A = 1 for this case. Sufficient ex-
perimental data is not available for triaxial cycling to determine possible
further hardening due to stressing in a third direction. Previously, a total
strain rate formulation for A (McDowell 1985¢, 1985d) was proposed which
accurately correlated biaxial loading cases in which the maximum shear
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strain planes rotated continuously. A more simple, general isotropic
hardening rule is presented in this paper. Define evolution of variables
¢, and ¢,, and A as:

where N = a/|lal); (d/dt)h = A(n* — N)||¢"|[; t; = time denoting point
of initiation of current loading block B (B = 1, 2, ...); u(t — tg) is the
unit step function; and n* is the unit normal vector €’/|[e”|| at the max-
imum value of le”ll in the current block, i.e., t = t;. We may define a
loading block as a repeated assemblage of identical cycles or combination
of cycles and subcycles.- This definition is unambiguous; a variable load-
ing history would be considered as one block, for example. Initial values
at the beginning of the first block, for a virgin material, can be stated
as¢; =¢, =0and A =n* =n(t =4) = €/|e"] at t = t,, where ¢,
corresponds to initiation of yielding.
At any point in a given block B (i.e., t > t;), define A as

7))

It should be noted that ¢ = ¢,/4, is the ratio of the plastic strain ac-
cumulated in the primary loading direction to the total plastic strain ac-
cumulated in the current block. For proportional straining, ¢,/¢, — 1
and A — 0. For 90° out-of-phase axial torsional loading with v,/e, =
V3 and, Poisson’s ratio of 1/2 (fully plastic), ¢,/¢, = 2/w and A — 1.

A 1-
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The reference direction for computing nonproportionality, defined as
N, is allowed to evolve upon switching to a new loading block. This
vector rotates toward n*, i.e., the direction of maximum plastic strain
excursion in the current loading block. The rate of rotation to n* is de-
termined by A. This evolution is necessary to match experimental ob-
servations of a small amount of hardening upon switching from one pro-
portional path to another “proportional’” path. The extent of additional
hardening predicted upon switching from cyclic tension to cyclic torsion,
for example, is related to A. For large values of A, N approaches n*
rapidly.
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As another point of detail, retention of memory or prior hardening
states, commonly observed for planar-slip metals (McDowell 1983b, 1985c,
1985d), can be included in the equation, Eq. 16, for R*, i.e.:

R* = c[(Ro + KA™™N) — R*Ju(Ro + KA™™N _R¥)iy .............. (22)

where again u( ) is the unit step function.

Saturated values of A™*" for five axial torsional nonproportional
loading blocks of tubular type 304 stainless steel specimens at room tem-
perature (McDowell 1985a) are shown in Fig. 4, along with the corre-
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sponding maximum values of {(3/2) s:s}'” in each block. Note that for
m = 0.35, the maximum effective stresses are essentially linear with A" A,
It should also be mentioned that the scalar product of unit vectors in
the deviatoric stress rate and deviatoric stress direction, $:s (Lindholm,
et al. 1985), was investigated for possible correlative capability of non-
proportional hardening, but did not properly correlate the data for load-
ing other than proportional or 90° out-of-phase sinusoidal.

Finally, the modulus function h must be described accurately for non-
proportional loading. McDowell (1985a) has shown that dependence on
effective stress (Drucker and Palgen 1981) is not valid for nonpropor-
tional cycling. The goal is to suggest an analytic form of representation
of h which can be determined from uniaxial tests, but accurately applied
to nonproportional loading. Recent two-surface theories (Krieg 1975;
Lamba and Sidebottom 1978b; McDowell 1985c, 1985d) have proposed
a dependence on the Mroz distance vector

h-h(i a) 23
=h L) (23)

*+(§:) — —
o R(s a) -8

9, is the value of & at the beginning of the current reversal. Here, & is
the norm of the vector from the current stress point to a similar point
(same n) on the limit surface during plastic flow. Use of the §, parameter
in Eq. 7 for modulus correlation gave poor results, particularly in the
low modulus regime (McDowell 1986). The explicit dependence on §,,
in Eq. 23 is introduced primarily to account for more appropriate initial
reloading response (Dafalias 1981) in the plastic range. Dependence of

where 8§ =
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h on (8/3,,) describes the transition from the elastic state to asymptotic

plastic flow.
Dafalias has suggested the form (1975,1981):

h=x [1 + F(ai")(-{%—g)] ..................................... (25)

which gives the proper values of h at initial yielding (h — «) and asymp-
totic loading (h — «) in the plastic regime. The linear dependence on 8/
(8 — 8) in Eq. 25 does not precisely match data for stable proportional
cycling of type 304 stainless steel. Also, definition of 3;, for nonpropor-
tional loading is a problem. Defining §;, as the value of & at the initiation
of plastic flow did not result in good normalization of the data, nor did
definition of 8, as the maximum value of & within a cycle (McDowell
1986). It has also been shown that defining &;, = R* results in poor nor-
malization of data (McDowell 1986).
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Another description of modulus variation for nonproportional cyclic
data analyzed by the writer is given by

Bo= k1 + kySinh KaD)] « oot (26)
\/5
-8
2
where D=\ . i i i i (27)
2 — |n:ny|

and k,, k,, and k; are constants. Here

s¥—s

and s* is given by Eq. 9. It is important to note in Eq. 27 that the prodpct
|n:ny| serves to normalize data from various nonproportional loading
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histories. For uniaxial or proportional loading, n:n; = 1 and D =
V(3/2)3. Since k, = constant in Eq. 26, this modulus function does not
employ an additional variable such as §,, to normalize the data, which
is highly desirable.

Fig. 5(a) shows the accuracy of this modulus function in correlating
the variation of hardening modulus for four axial torsional nonpropor-
tional loading histories imposed on tubular type 304 stainless steel spec-
imens at room temperature (McDowell 1985a) which have significantly
different values of R*. Data from a cycle of proportional loading is also
included for comparison. It is apparent that a fit to the proportional loading
data is sufficient for description of nonproportional response, i.e.:

h =3,000{1 + 16 [sinh (0.005D)]"™} .. ..., (29)
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FIG. 11.—Experimental Results for History 3: (Left Column) Cycles 1 to 10; (Right
Column) Cycle 40

as shown in Fig. 5(b). This function was used to compute the solid line
appearing in Fig. 5(a). Hence, a uniaxial cyclic stress-strain curve would
be sufficient to determine the constants in Eq. 26.

Eq. 26 is a power law function of sinh (k;D). Due to this form, h is
finite at initial yielding. This results in a small discontinuity in slope in
transition from elastic to elastic-plastic response. The magnitude of this
discontinuity is small, and yielding is relatively smooth. Another qual-
ification must be stated regarding Eq. 26. For accurate unloading-re-
loading response sufficiently far into the plastic regime (i.e., small d), it
might be appropriate to include influence of 8,, to more accurately model

392

T

3
]
]
1
!
1
]

] ] s
H
z z } ~
<
g g I
w T o °f -
[ [ |
< <
w f W
T 1 T
7] L »
=1.00 3 P 1 " T i -1.00 — I n a " "
-.80 0.00 0.80 - 80 000 080
AXIAL STRAIN % AXIAL STRAIN %
s00 500 ——
g g ]
b-3 =
t
a @t
W & o
@ &
] O 1
< <
4 0t Vi
-500 -500 " M ul FU I

00
AXIAL STRAIN %

300

oo

SHEAR STRESS MPA
°

SHEAR STRESS MPA
o

-300
=100

~-300
-1 00

H

i
-3
S

SHEAR STRESS MPA
SHEAR STRESS MPA

-300 — s P PUNY i w

" 00l L L
o -5 )
AXIAL STRESS MPA AXIAL STRESS MPA

FIG. 12.—Predicted Resuits for History 3: (Left Column) Cycies 1 to 10; (Right
Column) Cycie 40

influence of plastic deformation during the previous reversal, i.e.:
h=x[1+G@)sinh (D)) . ... (30)

where G (b,,) monotonically decreases as §,, increases, and is weakly de-
pendent on §,, for moderately large §,, values. In the experiments to be
reported in this paper, however, the loading is completely reversed so
that 8,, is moderately large for each reversal; hence, approximating G (5,,)
as constant is reasonable.

CORRELATION WITH EXPERIMENTS

The theory was tested against several nonproportional cyclic loading
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DIOCKS 1mposed on annealed AlS) type 304 stainless steel. Experimental
details may be found elsewhere (McDowell 1983a, 1983b, 1985c, 1985d,
1984). From uniaxial tests, R = 160 MPa, R, = 310 MPa, ¢ = 5, x = 3,000
MPa, k; = 16, k, = 0.005, and k; = 1.75. From sinusoidal axial torsional
tests, K = 245 MPa, m = 0.35, and A = 250.

The equations were reduced to the case of axial torsional loading of
thin-walled tubular specimens to compare with the experiments (Mc-
Dowell 1985d).

Results of three separate strain-controlled tension-torsion tests are re-
ported in this investigation. Young’s modulus and the shear modulus
were respectively determined as E = 188 GPa and G = 77 GPa.

To compare the experimental results with the proposed two-surface
theory, the same strain histories were introduced_in the constitutive
equations. The specialized axial torsional equations were integrated us-
ing a Runge-Kutta method with Gill coefficients (Eraslan 1969; Sotolongo
1985) and a very small time step-size to ensure negligible cumulative
error. All calculations were performed on the Georgia Tech Cyber 855.

History 1: Specimen 5509.—Details of this history may be found else-
where (McDowell 1985d). Two blocks of loading are discussed in this
paper. Fig. 6 shows the experimental results. Predictions appear in Fig.
7. Note the good correlation achieved for additional hardening. Cyclic
hardening is predicted well by the model. The initial value of R* was
291 MPa (McDowell 1985d).

History 2: Specimen 5501.—Again, refer to McDowell (1985d) for de-
tails of this history. Three consecutive loading blocks are presented; ex-
perimental and predicted results appear in Figs. 8 and 9, respectively.
In the analysis, the initial value R* = 285 MPa was used. Initial values
for all other variables were taken as zero. Note the excellent agreement
between experimental and predicted results.

The movement of the yield surface within the translating limit surface
is illustrated in Fig. 10 for two loading blocks. Note the tangency at the
point of nesting of the yield and limit surfaces.

History 3: Specimen 5504.—This specimen was subjected from the
virgin state to 50 cycles of the path shown in Fig. 11 with

1/2
é= (ez + ;) = 0.002 5607 L @31)

The experimentally observed responses from cycles 1-10 and cycle 40
are also shown in Fig. 11. Note that the accumulation of hardening is
again greatly in excess of the uniaxial case.

As observed in Fig. 12, the shape of the predicted hysteresis responses
accurately fits the experimentally observed responses for cycles 1-10 and
cyde 40. The extent of additional hardening is somewhat overestimated
by the model. An initial value of R* = 192 MPa was used in the analysis,
corresponding to the monotonic response.

SuMMARY AND CONCLUSIONS

A simple two-surface model has been presented. Most of the model
constants can be determined from uniaxial tests. The model structure
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reflects in-depth analysis of actual cyclic nonproportional data and, con-
sequently, can correlate the response well. New contributions include
incorporation of an improved kinematic hardening rule for two-surface
thepry, a more realistic representation of isotropic hardening through
limit surface evolution and modulus function, a more general plastic strain-
based isotropic hardening formulation for nonproportional cyclic load-
ing, and a normaljzation procedure for the modulus function which re-
flects nonproportionality of the next plastic strain increment.
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ApPeNDIX Il.—NoTATION
The following symbols are used in this paper:
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Lf*
kl /kz Ik3

n,,ng
A, N,n*

01,03

T
¢, ¢, b,
@

Il
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il

rate coefficients;

normalized modulus parameter;

yield and limit surfaces, respectively;

hardening modulus;

maximum additional hardening;

constants in modulus function;

constant in isotropic hardening rule;

unit vector in plastic strain rate direction;
orthonormal unit vectors in axial torsional subspace;
vectors associated with isotropic hardening rule;
radii of yield and limit surfaces, respectively;
uniaxial or proportional cyclically stable value of R*;
deviatoric stress tensor;

corresponding point on limit surface;

time at initiation of loading block B;

unit step function;

center of yield and limit surfaces, respectively;
center of yield surface in axial torsional subspace;
total engineering shear strain and amplitude, respectively;
norm of Mroz distance vector and initial value, respec-
tively;

total axial strain and amplitude, respectively;

total, elastic, and plastic strain tensors, respectively;
norm of accumulated plastic strain;

asymptotic value of hardening modulus;
nonproportional hardening state variable;

vector in kinematic hardening rule;

scalar multipliers;

unit vector in kinematic hardening rule;

phase angle;

‘axial stress;

stress vector in axial torsional subspace;
components of o;

shear stress;

quantities related to isotropic hardening rule; and
angular frequency.
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ABSTRACT

Though martensitic transformations in austenitic stainless steels have
been studied rather thoroughly for uniaxial monotonic and cyclic loading, data
are scant for biaxially loaded specimens. In particular, recent experiments
have indicated significant increase 1in cyclic hardening for nonproportionally
loaded specimens. In this paper, a 1link is made between the additional
hardening and microstructural uniformity of transformation product. This link
is expressed through a micromechanicg] viewpo{nt via increased latent
hardening associated with rotation of the principal stress and plastic strain

rate directions.



INTRODUCTION

Changes in loading path, including strain range and loading direction, can
affect cyclic deformation at both microscopic and macroscopic levels [1-5].
This study was undertaken to investigate these effects on type 304 stainless
steel using axial-torsional specimens tested at room temperature and subjected
to proportional and nonproportional Tloading sequences at controlled effective
strains and strain rates. Subsequent to testing, specimens were examined by
advanced metallographic techniques to identify defofmation substructures.

It has been observed in several experimental studies [4-6] that nonpropor-
tional strain cycling results in cyclic hardening beyond the extent observed
in uniaxial tests at the same effective strain range. For materials which
cyclically harden markedly in uniaxial tests, such as the stainless steel in
the current investigation, the additional hardening can be quite pronounced
during nbnproportiona] strain cycling. There 1is evidence to indicate that
materials which cyclically soften during uniaxial tests may harden during
nonproportional cycling [4].

Logically, a link should exist between cyclic deformation substructure
within each grain and polycrystalline stress-strain response. If the deforma-
tion substructure and any associated transformation products are dependent
upon a rotation of the stress field with respect to each grain, then the
extent of isotropic hardening observed in the polycrystalline material should

reflect this dependence, and vice-versa.

EXPERIMENTAL PROCEDURES
Material
This material chosen for this study was type 304 stainless steel with the

AISI composition shown in Table 1. This FCC material exhibits a plastic
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strain range dependent transformation from metastable austenite to BCT a'-
martensite during cycling [7-8] in addition to e-martensite, an HCP form which
is associated with the formation of stacking faults on {111} slip planes [9-
10]. The stacking fault energy of type 304 stainless steel is low (%23 mJ /m2
[11]), resulting in formation of wide stacking faults and planar slip at room
temperature. As a consequence of these factors, type 304 stainless steel
exhibits marked cyclic hardening response dependent on applied strain range
and nonproportionality of loading in the plastic rejion [12].

Type 304 stainless steel has been widely used in high temperature applica-
tions, particularly in nuclear structures.

Specimens

Tubular axial-torsional specimens were machined from as-received bar stock
of 50.8 mm diameter as shown in Fig. 1. The wall-thickness to outside diam-
eter ratio of 0.11 was found necessary from experience to prevent buckling for
cyclic loading at significant levels of plastic strain. From finite element
analysis and strain gage work, the variation 1in axial strain along the gage
lTength was less than three percent. |

Uniaxial specimens were machined from radial and longitudinal directions
of the bar stock with a gage diameter of 3 mm, approximately that of the
axial-torsion specimen wall. Five monotonic tension tests in the longitudinal
direction resulted in a mean true fracture strength of 612 MPa with a standard
deviation of =7 MPa. The mean percent reduction in area for the Tongitudinal
specimens was 64.8% with a standard deviation of 25.7%. The corresponding
values of mean true fracture strength and percent reduction in area for four
radial specimens were 628 MPa and 56.3%, with standard deviations of =1 MPa

and *4,0%, respectively.



In addition, completely reversed, strain-controlled fatigue tests were run
on five specimens machined in the longitudinal direction and six specimens
machined in the radial direction at combarab]e strain ranges. The stable
cyclic stress amplitudes for radial and longitudinal specimens were essenti-
ally the same for a given strain amplitude e€3. The results are shown in Table
II. From the tensile and fatique tests, it 1is apparent that anisotropy
effects in the axial-torsional specimens are minor, particularly since these
specimens were machined from as-received stock. .

A set of wuniaxial and axial-torsional specimens were heat-treated at
1100°C for 40 minutes in a vacuum and furnace cooled to achieve the relatively
isotropic grain structure shown in Fig. 2 with an ASTM grain size number of 4.
There were approximately 25 grains across the wall-thickness of the axial-
torsional specimen shown in Fig.l. Note the polishing marks in Fig.2; the
specimens were intended primarily for cyclic deformation testing, and a fine-
grit was not used in the polishing process.

Testing Procedure

The biaxial, strain-controlled tests were performed on an axial-torsional
load frame with axial and torsional cyclic load capacities of 250 kips and %20
in-kips, respectively. The system was stiffened to decrease lateral torsional
frame deflection. A PDP 11-23 proéessor/interface was used for independent
servohydraulic, closed-loop control of axial and torsional deflection or load
channels and for simultaneous data acquisition.

An internal extensometer [13] was placed inside the specimen with a gage
length of 25.4 mm. A linear variablg differential transformer (LVDT) was used
to measure axial displacement between contact points at the gage length, while
a rotary variable differential transformer (RVDT) measured the relative angle

of twist. Extensometer backlash and interaction between axial and torsional
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channels were negligible. The deviation from linearity for both axial and
shear displacement channels was less than one percent of full-scale. Align-
ment was verified over a wide range of axial and rotational movements of the
servohydraulic ram with respect to the fixed crosshead.

Axial strain e was defined as the gage length displacement divided by the
original gage length. The shear strain <7 was obtained by dividing the angle
of twist by the gage length and multiplying by the mean radius.

Axial stress o and shear stress T were ca]cu]éted from the axial load P

and torque T as
o = 4P/ (x(Dg2 - Di2)) and (1)
T = 12T/(x(Dg3 - Dy3)), (2)

with the assumption that the stresses are uniform across the wall-thickness.
Do and Dy are the gage section outside and inside diameters, respectively.
This assumption obviously involves some error, but the deformation theory of
plasticity cannot be used to estimate the stress distribution of nonpropor-
tional loading. Brown and Miller [4,14] showed that the error in maximum

shear stress,
Tmax = [12 + (¢/2)2]1/2, (3)

is small for proportional loading and for nonproportional loading,
particularly if there is significant cyclic plasticity present.
A computer program was written so that any combination of line segments in

€-7 strain space could be joined end-to-end to define a loading cycle. A
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block was defined as an arbitrary number of identical cycles. Furthermore,
the program allowed the user to define any number of blocks, each containing a
different cycle loading path. The effective strain rate (¢ = (82 + 42/3)1/2),
assuming a Poisson's ratio of 1/2, was kept constant along each segment.

The computer program was written to accomplish the following objectiQes:

(a) Permit generation of a number of successive blocks of different non-
proportional cyclic paths interactively with the computer. A desired
effective strain rate was specified and. the entire history plotted
prior to running the actual test.

(b) Run initial shear and axial modulus checks ét small elastic strains
to compute G and E prior to the imposed history.

(c) Impose the strain history generated 1in objective (a) on the specimen
and acquire data for the first 10 cycles of every block and geometri-
cally increasing (powers of two) cycles starting at cycle 10. Load
and gage length deflection data for both channels were sampled and
stored on a floppy disk at increments of effective Strain specified
by the user. Typically, 50 to 100 sets of data were stored for each

one percent increment of effective strain.

BIAXIAL LOADING HISTORIES

Results of three separate strain-controlled axial-torsional histories are
reported in this paper. All tests were conducted at room temperature. The
initial values of Young's modulus and shear modulus were determined as E = 188

GPa and G = 77 GPa, respectively. A summary of each of these three test



histories appears in Table III, including the effective strain rate and con-
trolled axial and shear strain endpoint sequence of each block within each
history.

Specimen SSO01

Specimén SS01 was subjected starting from the virgin state to the eight
block sequence listed in Table III. The axial-torsional strain history and
hysteresis loops sampled near the end of each loading block are shown in Figs.
3 through 7. |

Several interesting observations can be made regardjng the deformation
behavior. Consider first blocks 1 and 2 depicted in Fig. 3. The cyclic axial
and shear stress amplitudes g3 and 73 1in cycle 24 of block 1, when combined
via von Mises effective stress, & = (032 + 37,2)1/2, or Tresca effective
stress, geff = (aa2 + 4Ta2)1/2, correspond closely to a point on the cyclic
stress-strain curve determined form a uniaxial incremental step test on a
specimen with the same heat treatment [6]. This equivalence, of course, is
not surprising since the straining is proportional.

Upon switching to block 2, however, the cyclic stress amplitudes in block
2 noticeably increased over those of block 1. Yet the plastic strain ampli-
tudes of both axial and shear responses in block 2 were less than those of
block 1. This is evidence of latent or anisotropic hardening (cross harden-
ing) which occurred in the ffrst two blocks. Several experimental studies
have been conducted [15-17] in which the "yield surface" is determined by
strain probing techniques at various points along a strain-controlled, nonpro-
portional loading path. Typically, these studies have concentrated on éne
type of loading path applied for several cycles. In the present study, the

effects of cross hardening are examined by virtue of the hysteresis response.



Continuing into blocks 3 and 4, as seen in Fig. 4, a significant degree of
additional cross hardening is apparent. Any measure of effective plastic
strain range decreases from block 1 to block 2 to block 3. In particular, the
maximum range of plastic shear strain on any pTane in the specimen wall
decreases from AyPpax = 0.0136 in block 1 to A9Ppax = 0.0123 in block 3 [6].
Yet the peak effective stress increased significantly in each block, particu-
larly in block 3. Figure 5 shows the increase in the maximum value of Tresca
effective stress, i.e., maximum value of (g2 + 47'2)1./2 = max geff, in a number
of sampled cycles in the first three blocks. Data are reported for the first
10 cycles and cycle 24 of each block. The maximum effective stress increased
in each block. Note that most of the transient hardening occurred in the
first 10 cycles of each block. Since the maximum effective stress in block 1
corresponds approximately to that of uniaxial cyclic deformation at the same
plastic strain range, the extent.of additional hardening is quite significant.

It is also clear that the additional cross hardening is path-dependent,
and the concept of the "universal" cyclic stress-strain curve in the conven-
tional sense has little meaning. The cyclic strain path of block includes the
paths from blocks 1 and 2 by connecting them at peak endpoints. Along the
segments of the path where axial strain is approximately constant, the maximum
shear strain planes rotated continuoﬁs]y in the specimen wall. Hence, the
principal strains (and stresses) rotated continuously during these portions of
the cycle.

The loading paths in blocks 4 and 5, shown in Figs. 4 and 6, did not
result in significant transient hardening or softening behavior. The mater-
ial retained memory of the loading of blocks 2 and 3 and did not readjust to a
response characteristic of the proportional straining from the virgin state

seen in block 1. This memory of additional cyclic hardening (interaction of
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slip systems) during nonproportional cycling is perhaps most directly related
to the low stacking fault energy of type 304 stainless steel; high stacking
fault energy metals (i.e. those that exhibit wavy slip), in contrast, tend to
readjust to the stress amplitude corresponding to the current strain range
independent of loading sequence in uniaxial test [18-19].

Blocks 6 and 7, shown in Figs. 6 and 7, were a repeat of blocks 4 and 5
with an increase of strain amplitudes by a factor of 1.5. Again, no signifi-
cant additional transient hardening was observed; 0f course, the stress
amplitudes were higher than those of blocks 4 and 5 since the strain ampli-
tudes were increased. For type 304 stainless steel, the extent of additional
cyclic hardening is more strongly dependent on nonproportionality of loading
than on plastic strain range. This observation was also made for nonpropor-
tional strain cycling of type 316 stainless steel by Nouailhas et al [20].

Fina]]y,‘in block 8 the strain cycle of block 3 was again imposed. The
hysteresis response is nearly identical to that of block 3 as seen in Fig. 7.
Only a small component of additional hardening beyond block 3 was observed in
block 8; examination of the transient response in the first 10 cycles of block
8 shows that the rate of hardening in block 8 was essentially equal to that of

the latter cycles in block 3.

Specimen SS09

This specimen, from the virgin state, was subjected first to 10 cycles of
a 10 level incremental step test with maximum axial and shear strain ampli-
tudes of 0.007 and 0.0105, respectively, as shown in Table III. Plots of the
tenth cycle hysteresis loops are shown at the top of Fig. 8. In addition,
uniaxial incremental step tests were conducted on specimens with the same

heat-treatment at several maximum strain ranges. Solid curves in Fig. 8 show
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the monotonic and cyclic stress-strain curves for maximum plastic strain
amplitudes of 0.0045 and 0.0068 in incremental step tests. For comparison
with the uniaxial tests, the axial and shear stress and strain peaks at each
level in the first block of specimen SS09 are plotted in the form of Tresca
and von Mises effective stresses and strains. The Tresca and von Mises effec-

tive plastic strain shown in Fig. 8 are defined, respectively, as

eBef = ((P)2 + (4/9) (P)D)1/2 and (a)

2P = ((eP)2 + (1/3) (yP)2)1/2, (5)

The Tresca and von Mises effective stresses were defined earlier. Note
that the effective stress-strain response in block 1 is essentially equivalent
to the uniaxial case. The stress amplitudes are slightly higher for the uni-
axial case primarily because they are reported after 40 to 50 complete cycles.

Block 2 for specimen SS09 consisted of continued cycling along the propor-
tional path of the incremental step test in block 1 with €3 = 0.005 and 73 =
0.0075. No additional hardening was observed.

In blocks 3 and 4, the specimen was subjected to the same applied axial
and shear strain amplitudes as in block 2, but with sinusoidal variation of
applied strain components. The phase angle A between applied axial and shear

strains, expressed through the equations

€ = easinwt and (6)

7 = Tasin(ut - ), (7)
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was sequentially increased from 0° to 30° (block 2 to 3) and from 30° to 60°
(block 3 to 4).

The strain histories for blocks 2 through 4 and resulting 24th cycle
hysteresis loops are shown in Table III and Figs. 9 and 10. Note that the
degree of nonproportionality of loading increased sequentially from block 2 to
block 4, and the resulting maximum Tresca effective stress in a cycle also
increased sequentially. This block-by-block increase in cyclic strength level
cannot be attributed to an increase in any measure 6f effective plastic strain
range; in fact, the maximum range of plastic shear strain on any plane in the
specimen wall decreases sequentially from A7Pmax = 0.0166 in block 2 to AyPpax
= 0.0146 in block 4.

A plot of maximum Tresca effective stress 1in each cycle is presented in
Fig. 11. It is quite interesting that an increase in the degree of nonpropor-
tionality is analogous to an increase in strain range from cyclically stable
conditions in a uniaxial test. As for specimen SS01, this significant degree
of additional cyclic hardening in the absence of an increase in effective
plastic strain range points to increased activation of and interaction between
slip systems as 1likely mechanisms. During nonproportional cycling, it is
likely that more slip systems in more grains have favorable Schmid factors
during a loading cycle than for proportional straining. The deformation
substructures and martensitic transformations for these specimens are examined
in a later section.

Finally, after block 4, specimen SS09 was subjected to sinusoidal strain
cycling with e = 0.005, 75 = 0.0075 and g = 90°. After eight or nine cycles,
the specimen pulled out of the grips and the data were not transferred to
magnetic disk as intended. An x-y recording indicated that additional harden-
ing did occur in both axial and shear stress responses, presumably approaching
that of 90° out-of-phase step tests reported earlier by one of the authors
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[3,6], i.e., max geff = 600 MPa. For g = 90° with 73/€3 = 1.5, every plane in
the specimen wall is a plane of equal maximum shear strain range during some
point in each loading cycle, and the maximum shear strain planes rotate
continuously (assuming Poisson's ratio is 1/2). Kanazawa, Brown, and Miller
[4] observed that this case resulted in the maximum extent of additional

cyclic hardening for 1% Cr-Mo-V steel, as did Lamba [5] for OFHC copper.

Specimen SS06

This specimen was subjected to 22 consecutive alternating blocks of com-
pletely reversed axial straining or shear straining with an effective strain
rate of é = 0.002 sec -1, as shown in Table III. Block 1 consisted of 40
cycles with axial and shear strain amplitudes of €3 = 0.0075 and 73 = 0
respectively. Block 2 consisted of 40 cycles with axial and shear strain
amplitudes of €3 = 0 and g5 =. 0.01125, respectively. Hence the effective
strain range for block 2 was within 13% of that for block 1. Each successive
set of two consecutive blocks after block 2 simply repeated blocks 1 and 2.

-After the first. several blocks, there was negligible cyclic hardening.
The axial stress and plastic strain amplitudes for block 11 were o3 = 465 MPa
and eap = 0.005, respectively. Thg shear stress and plastic shear strain
amplitudes for block 10 were 73 = .255 MPa and 73 = 0.0074, respectively.
These values were cyclically stable. For blocks 5 and 6, for example, the
stress amplitudes were g3 = 450 MPa and 73 = 255 MPa, respectively. It should
also be noted that, due to the 1large plastic strain amplitudes, the shear
stress was negligibly small during axial cycling and vice versa. It is
important to note that for each type of Tloading bjock, the effective
cyclically stable stress amplitude significantly exceeded that of the uniaxial

cycle stress strain curve.
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PHYSICAL EXAMINATION OF SPECIMENS

Type 304 stainless steel can form both e-martensite as well as a'-marten-
site as a result of deformation, in addition to developing dislocation arrays.
Deformed specimens were examined using conventional optical and SEM microscopy
to delineate e-martensite (or planar slip bands) while x-ray techniques were
used to detect the presence of a'-martensite. In addition, replication tech-
niques were employed to follow the development df deformation marks on the

surface of specimens during the course of cycling.

RESULTS AND DISCUSSION

Correlation of Cyclic Hardening with Deformation Substructure

As mentioned previously, type 304 stainless steel exhibits a plastic
strain range dependent transformation from metastable austenite to a'-marten-
site and e-martensite in uniaxial tests. These transformations account, in
part, for the marked degree of cyclic hardening observed in uniaxial tests 1in
which strain range is increased significantly from a prior cyclically stable
state.

The BCT a'-martensite provides a significant barrier to dislocation
movement. Likewise, the HCP e-martensite forms a platelet structure on {111}
slip planes in association with the presence of stacking faults and would also
be expected to significantly increase the difficulty of slip on intersecting
{111} slip planes. To correlate cyclic hardening behavior, it is essential to
consider the history dependence of these transformation products in addition
to dislocation-dislocation interactions and accumulated dislocation density.

Formation of a'-~ and e-martensite structures was studied for each multi-

axial specimen. Presence of a'-martensite was determined by x-ray diffraction
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while e-martensite was determined by optical microscopy. The initial
structure is seen in Fig. 12 which shows typical austenite grains of 304
stainless steel, many of which are highly twinned.

During deformation, it is possible to form 3 classes of deformation
debris:

1. slip bands composed of dislocation arrays,

2. e-martensite which is hexagonal in form and

3. a'-martensite which is BCT. |
The first two products essentially form in response to the maximum shear
stress and there is little or no effect of the normal stresses or the dilata-
tional component. The e-martensite may form because of the low stacking fault
energy of the austenitic matrix and the relationship of the HCP ¢ to the FCC 7
matrix. It is expected that the amount of a'-martensite would depend on both
the shear and normal stresses as-described elsewhere [21].

In Fig. 13, some deformation product* in SS09 is seen. Note the clearly
defined shear planes and the effects of the twinned regions which either
change the slip direction or completely inhibit it. Similar structures were
seen for other types of cycles. However, there were significant differences
in the distribution of deformation product. Specimen SS09 was subjected to
90° out-of-phase cycling such that every plane in the specimen
experienced the maximum shear strain range. As a consequence, the density of
deformation debris was a maximum. This 1is seen by comparing Fig. 14 to Fig.
15. In Fig. 15 only two sets of slip planes experienced the maximum shear
strain range and the density of deformation debris (slip band traces) was less

than seen in Fig. 14.

*We will not distinguish between e-martensite and planar arrays of extended
dislocations.
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For specimen SS06, which was subjected to alternating pure axial and pure
torsional blocks, deformation was studied during testing using cellulose ace-
tate replica techniques. Again, the deformation debris responds to the maxi-
mum shear strain and diamond-like figures could be seen to develop on the
surface, presumably being defined by the maximum shear strain planes in axial
and torsional loading as seen in Fig. 16 for two different blocks.

The specimens were also examined by x-ray diffraction subsequent to
testing to determine if a'-martensite was presént. The nonproportional
loading subjects more slip planes to a higher normal strain per cycle for a
given maximum shear strain range and thus favors a' formation from a
thermodynamical basis [21]. Associated with an a'-martensitic transformation
is (a) an invariant shear strain 95 and (b) a dilatation en=4V/Vy, where Vg is
the volume prior to transformation. Consider the work done by the applied
stress on the martensitic transformation with respect to a potential habit

plane,

U=0, €% |7g| 75 (8)

where gn is the normal stress to the habit plane and Itgl is the absolute
magnitude of the resolved shear stress on this plane. Note that the sign of
Ts 1S irrelevant but op assists the transformation when positive. Note also
that e, and 95 are constants that depend on the martensite type and the alloy
composition.

For an Fe-30% Ni alloy the values are qg = 0.20 and en = 0.05 [21].
Since high positive values of U will assist transformation on the potential
habit plane associated with 75 and o, it 1is useful to consider the maximum
value of U and the associated material plane at each point for the three
loading histories of this study. Higher maximum values of U and a more
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uniform distribution of associated planes 1in the specimen wall should each
correlate with a greater extent of a' transformation, and hence with the
additional hardening observed in the nonproportional tests.

Figure 17 displays plots of the maximum value of U and the associated
plane in the specimen wall during a cycle for selected blocks of nonpro-
portional histories SS01 and SS09. The calculations were performed using
values of g, and 75 obtained from the data by transformation to each potential
habit plane in the specimen wall. Then U was compufed from equation (8). The
maximum value of U with respect to direction at each point in the cycle is
denoted by Upax and the corresponding plane by angle ¢ measured positive
counter-clockwise from the longitudinal specimen axis. Note that the peaks of
the maximum U values are slightly higher for block 2 of specimen SS01 than for
block 1, as is the maximum effective stress in a stable cycle. However, the
potential habit planes associated with these Upax values are not well
distributed with respect to ¢ and would imply a smaller amount and more
inhomogeneously distributed a' product. Nonproportional 1loading block 3 of
specimen SSO01 exhibits significantly higher peak and average Upax values which
are associated with a more uniform angular distribution of potential habit
planes.

Likewise, it is readily seen that-increasing degrees of nonproportionality
of loading in blocks 2-4 of specimen SS09 correspond to increasing peak and
average Upax values within a cycle, as well as more uniform angular distribu-
tion of corresponding potential habit planes. Note that the range and peak
values of Upax within the more highly nonproportional 1loading blocks are
approximately equal for both histories, reflecting that the extent of addi-

tional hardening is quite similar for the two cases.
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The hypothesis that formation of a'-martensite is directly related to the
additional isotropic hardening would seem to make a great deal of sense based
on the more uniform distribution of potential habit planes for the nonpropor-
tional Tloading blocks. This hypothesis must be tested, however, by
measurement of the amount of a'-martensite formed for each history. X-ray
diffraction analysis using standard techniques [22] revealed significantly
different levels of a'-martensite, with specimen SS09 exhibiting the highest
degree of transformation. At least three differént regions of each specimen
were examined, and the volume fraction of a'-martensite was examined for each
specimen by using two angles of incidence of the x-ray beam. The diffraction
results obtained at the two different angles of incidence were equivalent,
indicating lack of texture. In Fig. 18, the maximum shear stress for each
specimen history is plotted versus the average volume percent a'-martensite
determined from the average of. the two diffraction analyses. Both maximum
shear stress and percent a'-martensite are normalized by the values associated
with specimen SS09. Clearly, there 1is no direct correlation between a'-
martensite formation and the extent of additional isotropic hardening.

It therefore does not appear that formation of a'-martensite is the domi-
nant mechanism for the tremendously increased resistance to cyclic plastic
flow which is observed experimentally. This result suggests that formation of
e-martensite associated with slip bands may more strongly influence the hard-
ening behavior. Certainly, the increased grain-by-grain uniformity of
deformation product mentioned earlier for specimen SS09 conforms with the
observed maximum extent of hardening.

The influence of e-martensite formation on hardening behavior is an
entirely plausible one from the standpoint of micromechanics. Since e-marten-

site is associated with slip planes and may be viewed as an extended stacking
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fault, it is intimately related to plastic flow on the associated slip system.
As more slip systems are activated by comparable Schmid stresses during
nonproportional loading, accumulation of additional plastic strain and
associated deformation product should be expected. When this occurs,
increased resistance is offered against movement of dislocations on
intersecting slip planes. Hence, a full latent hardening effect is produced.
The contribution of e-martensite and slip band-re]ated processes to cyclic
hardening may be reckoned on a micromechanical basis. Following the framework
of Asaro (23] and Hutchinson [24], directed primarily toward textural aniso-
tropy effects in finite deformation, one possible form for a latent hardening

description is

haﬁ = gh + h(l-q)b'ap, (9)

where hgg are slip plane hardening rates which relate the rate of increase of
critical Schmid stress on each a slip system with shearing rates on all active

p systems

n .
@S gl (10)
p

where &(ﬁ) 20 only for active systems. In Eq. (9), h = h(I') and bap = 1 if a
= f; 5ap =0ifa # §B. The value of q governs the rate of hardening on
secondary slip systems. The quantity T represents the cumulative shear for

all slip systems, i.e.
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r Si j 5@ gt | (11)
a=1

and hence is a scalar measure of the extent of plastic deformation. If g=1,
then haﬂ = h(I') and hardening is purely isotropic, i.e. lacking of cross-
hardening effect. For q > 1, secondary slip systems may harden at a higher
rate than the primary system. The off-diagonal terms represent latent
hardening; diagonal terms represent self-hardening. It is probable that the
transformation to e-martensite on {111} slip planes contributes to a high
value of q for 304 stainless steel. It is also quite probable that q is
strongly related to stacking fault energy, since a wavy slip mode results in a
more homogeneous state of deformation than a planar slip mode.

It should be noted that the hardening rule in Eq. (10) is sensitive to
changes in orientation of the applied strain rate tensor. The hardening rule
in Eqs. (9) and (10) 1is the micromechanical analogy to the phenomenological
formulation of an anisotropic plastic potential for a polycrystal. The pos-
sibility of using a single crystal data to predict the extent of hardening for
cases of nonproportional straining of a polycrystal is intriguing. Certainly,
it is necessary to consider the physical mechanisms which produce the seem-

ingly anomalous cyclic hardening observed for the material of this study.

CONCLUSIONS
The distribution of deformation products has been shown to be a function
of loading path for type 304 stainless steel subjected to nonproportional
cyclic loading. Furthermore, the effective stress amplitude in these tests
correlates with the homogeneity and extent of deformatioﬁ products in the

polycrystalline structure.
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It has also been demonstrated that there is a fundamental interaction
between material and stress state. The stress state that is imposed causes
certain features of the material's potential deformation morphology to be
manifested. These features in turn affect shear and tensile stresses in a
strain-controlled test. This mechanics/materials interaction must be taken
into account if reliable constitutive models of deformation under complex
loading are to be developed [25-27]. Unjaxial tests by themselves may be
incapable of developing all deformation substructurés (depending on the mater-
ial) and thus the results of such tests should be put in perspective when
applied to multiaxial conditions.

The role of a'-martensite formation on the exceptional nonproportional
cyclic hardening behavior of type 304 stainless steel, though appealing, does
not appear to be a dominant one. Micrographs indicate that heterogeneity of
" e-martensite and slip band -deformation products are a function of
nonproportionality of loading and may more directly correlate with hardening.
A micromechanical interpretation of latent hardening related to slip band

processes has been offered.
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Tubular axial-torsional specimen. Dimensions in mm.
Grain structure of heat-treated type 304 stainless steel.

Applied strain path and resulting hysteresis response for (left
column) block 1, cycle 24, and (right column) block 2, cycle 24;
specimen SSO1.

Applied strain path and resulting hysteresis response for (left
column) block 3, cycle 24, and (right column) block 4, cycle 24;
specimen SSO1.

Maximum value of Tresca effective stress in each cycle for blocks
1 through 3 for specimen SSO1.

Applied strain path and resulting hysteresis response for (left
column) block 5, cycle 24, and (right column) block 6, cycle 24;
specimen SSO1.

Applied strain path and resulting hysteresis response for (left
column) block 7, cycle 24, and (right column) block 8, cycle 24;
specimen SSO1.

Comparison of tenth cycle biaxial incremental step test for speci-
men SS09 (top) with uniaxial incremental step test results. The
solid curves represent the wuniaxial cyclic stress-strain curves

after 40 to 50 cycles for AeP/2 = 0.0068 (upper) and AeP/2 =
0.0045 (lower), respectively.

Applied strain path and resulting hysteresis response for (left
column) block 2, cycle 16, and (right column) block 3, cycle 24;
specimen SS09. Note that several corresponding points are
numbered in the stress and strain space trajectories.

Applied strain path and resulting hysteresis responses for block
4, cycle 24; specimen SS09. Note that several corresponding
points are numbered in the stress and strain space trajectories.

Maximum value of Tresca effective stress 1in cycle for blocks 2
through 4 for specimen SS09.

Initial structure of 304 stainless steel wused in this study.
Specimen taken from grip section.

Deformation debris in specimen SS09. Note the planar deformation

products and their spatial orientation dependence on grain and
twin structures.
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Deformation debris in specimen  SS09. Note the relatively
homogeneous distribution of deformation product.

Deformation substructure of specimen SSO1. Note the reduced
homogeneity of deformation product compared to specimen SS09.

Surface structure of specimen SS06 delineated by replica. In (a)
the specimen is shown after 6 blocks while in (b) it is shown
aft?r 16 blocks. In (b) the surface is more highly deformed that
in (a).

Maximum values of U through a cycle versus corresponding angular
position of associated potential habit planes for (left column)
blocks 1 (top), 2 (middle), and 3 (bottom) of specimen SSO1, and
for (right column) blocks 2 (top), 3 (middle), and 4 (bottom) of
specimen SS09.

Correlation of maximum Tresca effective stress in a stable cycle
with the measured volume percent of a'-martensite. Note that both
axes are normalized by values corresponding to specimen SS09,
which exhibited maximum additional hardening and volume fraction
a'-martensite.
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TABLE 1I. Composition of 304 SS (w/o)

C Mn Si Cr Ni Fe
AISI 0.08% 2.0% 1.0% 18-20% 8-12% Bal.
ACTUAL 0.057% 1.407% 0.45Z% 19.13% 9.497% Bal.
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Table II.

Summary of Uniaxial Fatigue Tests

Specimen Type

Longitudinal Radial €, Nf
X _ 0.004 4800
X 0.0016 Run-out
b 4 0.003 47600
X 0.0035 4300
R S - 0.0035 3300
X 0.0155 750
X 0.005 2930
X 0.004 7300
X 0.004 7700
X 0.0035 4300
X 0.0035 13700
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Table III. Complex Strain Histories
BLOCK NUMBER
§ (sec™ ) 1 2 3 4 5 6 7 8
end point endpoint endpoint endpoint endpoint
sequence: sequence: sequence: sequence: sequence;
0 e=y=0 0 e=y=0 0 e=y=0 repeat repeat 0 e=y=0 0 e=y=0 repeat
3501 0.003 1 €=0.0041 1 &=0.0041 1 €=0.0041 #1 $2 1 e=0.006 1 €=0.006 #3
y=0.006 y=-0.006 y=0.006 y=0.009 y=-0.009
2 €=-0.0041 2 €=-0.0041 2 £=0.0041 2 €=-0.006 2 ¢=-0.006
y=-0.,006 y=0.006 y=~0.006 y=-0.009 y=0.009
return to return to 3 e=-0.0041 return to return to
e=y=0 e=y=0 Y=O .006 e=v=0 €= Y=O
4 e=-0.0041
y=-0.006
return to
e=y=0
25 cycles 25 cycles 25 cycles 25 cycles 25 cycles 25 cycles 25 cycles 25 cycles
3809 {0.001 Incremental *ea=0.005 *ea=0.005 * g =0.005*ea=0.005
step test: v,20.0075 v _20.0075 ya=8.0075 v,20.0075
e "4%=0.007 8=0 8=30° B=60° =90°
Y, =0.0105
10 cycles 16 cycles 25 cycles 25 cycles 8 cycles
S06 J]0.002 endpoint endpoint repeat repeat repeat repeat continue to end
sequence: sequence: #1 2 k1 k2 of block #22
0 e=y=0 0 e=y=0
1 €=0.0075 1 e=0
y=0 y=0.01125
2 €=-0.00752 =0
y=0 y=-0.01125
return to return to
€= Y=O €= Y=O
40 cycles 40 cycles 40 cycles 40 cycies 40 cycles 40 cycles
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Figure 12

Initial structure of 304 stainless steel used

this study.

Specimen taken from grip section.

in



Figure 13

Deformation debris in specimen SS09. Note the planar deformation

products and their
twin structures.

spatial orientation dependence on grain and
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Figure 16

Surface structure of specimen SS06 delineated by
replica. In (a) the specimen is shown after 6
blocks while in (b) it is shown after 16 blocks.
In (b) the surface is more highly deformed than in

(a).
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Introduction

A number of different formulations exist for state variable or "unified"
creep-plasticity theory [1-10]. There 1is, however, a common isothermal

framework for many of these models which include backstress, e.g.

§“ = f(lls - all,x) (s - a) (1)
é N ha g - ry 8 (2)
E=n & -, (3)

where h, and h. are scalar hardening functions, r, and r, are scalar recovery
functions, a is the backstress, x is the drag stress, s is deviatoric stress,

&N is the inelastic strain rate, and |1&M]| = [&n:&n]1/2,

1 sSchool of Mechanical Engineering, Georgia Institute of Technology,
Atlanta, GA 30332

2 Mechanical Engineering, University of Connecticut, Storrs, CT 06268



It is usual to first select hardening and recovery functions which encom-
pass relevant wuniaxial phenomenological behavior, and then to fit the
associated material constants to this data using appropriate multivariate
error minimization procedures. There 1is a somewhat prevalent assertion among
existing theories that the directional index for the hardening term in equa-

tion (2) is the inelastic strain rate, i.e.

=& (*)

Several theories [2-3, 11-12] include a dynamic recovery term with a as

~

the directional index, i.e.

hyat 181 (5)
where hp is a scalar dynamic recovery function. Uniaxial testing alone is
insufficient to validate the directional index of the dynamic recovery term
since a is collinear with §n. This collinearity is also likely responsible
for the absence of the dynamic recovery term in many theories.

An important attribute of mulitiaxial nonproportional loading is the non-
collinearity of §” and a. As will be shown in this paper, the need for the
dynamic recovery term can be established from cyclic nonproportional biaxial
tests. Furthermore, it is possible to comment on the relative magnitude of
the direct hardening and dynamic recovery coefficients and to assess the
accuracy of the direct hardening and dynamic recovery directional indices
based on selected te;ts. Axial-torsional experiments conducted with two dif-

ferent materials will be discussed.



Definitjon of Axjal-Torsional Subspace

The definition of the axial-torsional subspace follows as a subspace of
Ilyushin's five-dimensional deviatoric vector space [13]. Define the stress

vector as

Q
u

gqny * o303 (6)

g, =0,,=0,03= I§bze = {37

and n1 and n3 are orthonormal base vectors in the stress plane. Here, z and 6
denote the tube Tlongitudinal and circumferential directions, respectively.

Likewise, the plastic strain vector is defined by

n_ _n n
€ =€ N Tegzny (7)

~

where

n o_ n n_ n
€1 €2z ¢ and €3 = (2/f§)eze
Note that the plastic strain rate vector is defined as

en _ en e n

LS L B B (8)
The effective stress 7 and plastic strain rate €N (normalized to the axial

case) are recognized as

1/2 _ (62 + 6112 (9)

[ (10)



The total strain vector is heuristically defined as

= 3\
€ = €Ny * €303 (11)

where €] = €77 = € and €3 = (2/ V3)ezg = 7/V3. The effective strain rate is
then € = |21 since 7 = 2€z9.

AISI TYPE 304 STAINLESS STEEL AT ROOM TEMPERATURE

As reported elsewhere [14-18], thin-walled tubular specimens were
subjected to strain-controlled axial-torsional histories with € = constant.
The strain paths for three different 1loading blocks are shown in Figure 1
along with the resulting stress subspace responses near the end of each
loading block. Paths (b) and (c) in Figure 1 correspond to 30 and 60 degree
out-of-phase sinusoidal Toading. In all cases, the stress subspace responses
are essentially cyclically stable.

It should be noted that there are path-dependent differences in the extent
of cyclic hardening. For example, path (c) exhibits a saturation effective
stress level which considerably exceeds that of block (b). Yet the maximum
plastic shear strain amplitude of path (b) exceeds that of path (c). The
transient behavior of these three histories, including the additional cyclic
hardening during nonproportional stréin cycling, have been previously docu-
mented [14-15]. This paper will not address the transient behavior since it
is concerned with kinematic hardening.

Kinematic Hardening

For these room-temperature, constant effective strain rate tests, rate-
independent plasticity is an acceptable idealization. By normality, the ine-

lastic strain rate in the axial-torsional subspace is given by



" = X - a) (12)

with the assumed yield surface form

f=(0-a)e(oc-a) -R =0 (13)
where R = 0 during the stable latter cycles of each block just discussed. We
may express evolution of a with or without a dynamic recovery term in equation

(5), i.e.

é } /‘1§ " (14)

or

& = jip(uge” - ale') (15)
where u1 and po are determined from the consistency condition and u3 is an
unspecified scalar function.

Assuming R, the path of a may be computed from experimental results if §n
is known. To compute the plastic strain rate vector from the data, numerical
differentiation was required. The v&]ues of axial stress, shear stress, axial
strain and shear strain of five contiguous data points were parameterized with
respect to arc length s = Z(Aqug) along the path. Then a parabola was least-
squares fit to the five data points to form each of the smoothed functions
o(s), 7(s), e(s), and q(s), and the derivatives dg/ds, dr/ds, de/ds, and dy/ds
were obtained for the-central (third) point. The derivative of plastic strain

was computed as



1t [%Z - %;' %]/553 (16)

and the unit normal vector in the direction of the plastic strain rate was

13

defined by

n = (de"/ds)/I(de"/ds) | (17)

A check on the smoothness of the data was obtained by applying a first
order central difference technique to each three contiquous points to obtain
the derivatives for the central point [16]. This technique resulted in
essentially the same results as the five-point parabola method, indicating
good differentiability of the data.

The hardening rules in equations (14)-(15) can be compared, at least qual-
itatively, by implementation in the axial-torsional subspace. Since &N is

collinear with (¢ - a) in the subspace,

a =0 - Rn (18)

~

and the predicted directions of backstress are given by

and

where np and np+pp are vectors representative of direct hardening with or

without dynamic recovery, i.e. equations (14) and (15), respectively. Since n

-6 -



and a are known from equations (17) - (18), equations (19) - (20) can be com-
pare; if @3 is selected to best fit data.

In Figure 2, the backstress path is plotted assuming R. Vectors are peri-
odically plotted along the path representing the directions expressed in
equations (19) - (20). Note that %3 = 2.3 was selected to provide the best
fit to path (a) in Figure 2. Though %3 may be a function of plastic strain
range [11], this dependence is not herein considered. The degree of tangency
of these vectors to the path of a provides the measure of accuracy for each
rule. It should be noted that the presence of the dynamic recovery term is
essential to obtain good correlation with data.

HASTELLOY-X AT 649°C

Experiments were conducted by Jordan on thin-walled tubular specimens.
Experimental details can be found elsewhere [19]. Essentially stabilized
cyclic responses are considered in this work. Two strain-controlled histories
are reported in Figure 3. The two 90° out-of-phase sinusoidal histories were
imposed at 649°C with an engineering shear to axial strain amplitude ratio of
3/2. In this case, each plane in the specimen wall experiences the same shear
strain range and the maximum shear strain planes rotate at constant angular
velocity. This type of history has also been observed to produce the maximum
extent of cyclic hardening for austenitic stainless steel [14-18, 20] and Cr-
Mo [21] alloys in addition to OFHC copper [22-23].

Backstress Evolution in the Rate-Dependent Case

The general deviatoric stress form of the flow rule which incorporates the

kinematic hardening variable of Prager is chosen. As given by Chan et al. [9]

-

" = s - a) (21)

~



where

(22)

In equations (21) and (22) &1 1is the inelastic strain rate, s is the devia-
toric stress and 2N:2N denotes the scalar product of the inelastic strain rate
tensor. Often referred to as the "backstress” or "equilibrium stress,” the
kinematic hardening variable a, as pointed out by Chan et al. [ 9], can
account for directional hardening, non-coaxiality of the inelastic strain rate
with the deviatoric stress, and effects such as reversed creep and relaxation
through zero stress when the quantity (s - a) is negative. In the context of
rate-independent plasticity, a represents the current origin of a translating
yield surface in stress space. A general form for the evolution equation for

the backstress is

tRe

= hi - dM (23)

~ ~

where h and d are, in general, tensors which operate on indices @ and @.
Equati;n (23; represents the case for isothermal, relatively high strain rate
deformation where static thermal recovery is negligible. The first and second
terms represent, in a phenomenological sense, direct hardening and dynamic

recovery, respectively. Typical specializations of equations (23) are

h =h (24)

d =d (25)



where hy and do are scalar constants for the isothermal case and

°n
€

~

H<
"

11eM (27)

Determination of Backstress History

In the axial-torsional subspace, equations (21)-(23) can be written as

.n L ] L ] 1/2
el [En]z + [en]z al - a1
en| ~ : 2 - 7 (28)
€3 [“1 - “1] * [“3 - “3] g3 - a3
with
2 hey hyollen d,, d a
AR jon] 11 913] |*1 (29)
L ] .n ~
aj h31 h33fles d3q d33] (23

where @ and & are given in equations (26) and (27).
With the stress response obtained from a biaxial, strain-controlled test,
the strain history can be differentiated as described earlier (but with

respect to time instead of effective stress arc length) and equation (28) can

be written for each of N discrete times, tj, as

a; =0y - gy - aylng, 1= 1,2,3,...,N (30)

e

where n = &N/[&N], Equation (30) is nonlinear and does not possess a unigue

solution. Writing equation (30) as a fixed point iteration



K+1 K A
. =g. - lg. - a-In,
25 a; - log - ayin, (31)

~ -~ ~

where aK is the ‘Kth iterate of a, convergence is obtained if afK*l + g%,
Howeve;, a® will depend, in general, on the initial guess g’. Thus, a pos-
sible path for the backstress, g(t), can be obtained such that aj = g? if a
reasonable scheme for selecting g% is chosen. Figure 4 shows the backstress
paths calculated using the iteration in equation (31) for the two 90° out-of-
phase histories, choosing §°1 = bg; where b was taken as 0.5, 0.6, 0.75 and
0.95 respectively. One can readily show that aj will converge to oi - (1-
b)lgilgi after one iteration. As can be seen in Figure 4 each represents a
reasonable potential backstress path for the 90® out-of-phase histories.
Figure 5 shows the direction of g - a and n at a discrete number of stress

points for the larger strain amplitude test.

Determination of the Kinematic Hardening Rule

With a possible backstress path, a(t), known as a discrete set of aj, the
backstress history can be differentiated in the manner described for the
strain history to obtain & at each tj. With &; known for each discrete time

tij, we may form the corresponding residual Rj, i.e.

R, = he? - dlea. - 2. (32)

1 ~n ~ ~l Al ~1

Then, the sum of the squared residuals can be minimized to obtain least
squares estimates of h and g.
case 1

If E = hy and 9 ='dy is chosen, then a least-squares fit based on equation

(32) yields

- 10 -



11 "12 o _ 1 (33)
Fa1 Faz| |9 Fy
where
N
Fiu = Zl [(E1:)% + (547, (34)
=
N
12 = Far ” Z - [[221“11 * E31‘131] 3 ] (35)
=1
N
Faz2 = Z [[“?i * "%i] §?|2 ] (36)
=1
N
f1° Z [‘.’11221 ¥ ‘.’31231]' , (37)
=1
N
and Fp = Z'[[“li‘.’li * “31‘.’31] E?ll (38)
=1
CASE II

Choosing h11 = hy, h33 = h3 with hy3 = h31 = 0 and dy1 = dj, d33 = d3 with

dy3 = d37 = 0 yields two systems of equations for a least squares fit,

N [-n ]2 on . h N on
ZE:: €4 €2i%27 €5 2| Z§:: @€

— en n n ]2 — o lep
=1 'eziazi[fi [“21,51 d, =1 232351

where 2 =1 or 2 = 3,

- 11 -



Table 1 summarizes results obtained for the cases outlined above for the
two 90° out-of-phase histories (with b = .5, .6, .75 and .95).

A clearer assessment of the accuracy of the kinematic hardening rules
obtained for the two cases is shown in Figure 6. Here, the backstress history
obtained using Euler integration is plotted, along with o -a and the direc-
tion of the plastic strain rate emanating from (or referenced to) the stress
point. Shown are the results obtained for case I and case II for b = 0.6 by
integrating the kinematic hardening rule using the constants reported in Table
1. Note that the direction of the plastic strain rate is that determined by
differentiating the strain history and the direction of ¢ - a2 is that obtained
by integrating the kinematic hardening rules determined from the least squares
fits. Thus, the non-collinearity of the plastic strain rate direction with g
-a in Figure 6 is an indication of the accuracy of the correlations for 4.

From examination of the results reported in Table 1, two important obser-
- vations are made. First, it is noted that the ratio hi/h3 approaches unity
for b in the range of 0.5 ¢ b < 0.6 for both the large and small strain
amplitude tests. Further, hy = h3 2 hy for both tests at b = 0.6.
Conversely, it is noted that the ratio di/d3 does not approach unity in either
history and d; # d3 # dg. Furthermore, it is noted that use of a tensor oper-
ator (e.g. Case II) in the dynamic recovery term appears to result in a more
realistic integrated backstress path, as observed in Figure 6: 'The ratio
di/d3 is larger for the small strain amplitude test. These observations moti-
vate some speculative assertions about the structure of the kinematic
hardening rule and imply the particular utility of the 90° out-of-phase test.

From the observation that a scalar direct hardening function, h = hg, is
found for b = 0.6 for both tests, it is asserted that @ = E” is a satisfactory

index for the direct hardening term 1in the -evolution of backstress. This

- 12 -



being the case, it is further asserted that it is desirable to find an index,

M, such that d is a scalar in the dynamic recovery term. The determination of
a tensor valued d for general stress space would be a difficult task and the

mechanistic basis of such an approach would have to be justified. To this end

it is proposed that

M= 1e(a - a*). (40)

Equation (40) implies that dynamic recovery occurs in a direction opposite the
backstress referenced to some current state a*, as opposed to the zero state
(M = Ignlg). A possible approach, then, would be to investigate plausible

choices for a* in hope that one would yield a correlation such that d is a

scalar when h is a scalar with N = &7, For example, Walker [24] has proposed

~

°n
€

~

(41)

1 Xe
n
)

n
a-a -n
~ ~0 15 ]

where a5 is a backstress offset, €7 1is the inelastic strain, and nj is a

material constant.

In Walker's formulation in the full deviatoric stress space,

- _ n, n n,.n;,2
= -KI + 3K € € /IIS ze |

~

e, (32)

where Ko provides for a difference in tensile and compressive response as
observed for Hastelloy-X. In equation (42), I is the identity tensor. While
ag provides for asymmetric tensile-compressive response, the term niel in

equation (41) serves as a reference direction for a as the directional index

- 13 -



for dynamic recovery since the principal = axes of €" rotate during nonpropor-
tional loading. It should be noted that the response of type 304 stainless
steel, reported in this paper, obviously requires an additional reference
term, albeit a second order effect, for good correlation of all data; in this
case, however, the ap term is not required since the completely reversed
response is symmetric. Since Walker [24] has determined his model constants
for Hastelloy-X at 648°C, it 1is interesting to compare these constants with

those of this study. According to Walker, the evolution equation for a may be

written in the axial-torsional subspace as

. on on
a = he - dw(g - So)lf ! (43)

at 648°C where ag is reduced to the subspace from the six dimensional form
given in equation (42). Since the magnitude of ag is small compared to that

of a, we may to first order compare hy, and dy with hy and dg of Case I of this

study:

hy = 155,180 MPa

dw = 781

It is clear that both values are of the same order of magnitude as those
reported in Table 1 for hy and dg. Including g in equation (42) for specimen
#21 with b = 0.6 results in a correlated Ky value of 7.5 MPa in contrast to
the value of -13.8 MPa reported by Walker [24]. Certainly ap is of secondary

importance in comparison to g in the dynamic recovery term. It is quite

- 14 -



possible that the difference in the Ky values arises from experimental scatter
in the 90° out-of-phase tests, which is of the same order of magnitude as K.

Following the assertions stated above, the data of Table 1 would also
indicate that the scalars hy and dgy are strong functions of the effective
inelastic strain rate or, alternatively, the effective backstress or over-
stress. It is noted that varjous workers have made the direct hardening
function to depend on such scalar functions as (s - a)’f [25] or the effective
inelastic strain [11,26], and the dynamic recovery function to depend on such
invariants as the effective inelastic strain path length [11,24,26], and the
effective inelastic strain rate [2-3]. Those theories incorporating effective
inelastic strain path length have hardening functions [11] and dynamic recov-
ery functions [11,24,26] which saturate to a limiting value, independent of
the backstress or inelastic strain rate magnitude.

The fortuitous nature of the 90° out-of-phase tests discussed herein is
that the effective deviatoric stress and effective inelastic strain rate are
approximately constant throughout a cycle as demonstrated in Figures 7 - 8.
In contrast, these quantities vary significantly throughout a cycle for a
proportional history. For the 90° out-of-phase test, this characteristic
leads to backstress histories such that the effective backstress and over-
stress are approximately constant throughout a cycle. Thus, a series of 90°
out-of-phase tests with Ay/Ae = 3/2 would provide a means for assessing the
functional dependence of the hardening functions, hgy and dy, in addition to
investigation of f*' Future work will be directed towards identification of

an appropriate constraint on @ which produces a single acceptable path for

each level of a 90° out-of-phase test series.

- 15 -



Conclusions

From cyclic, strain-controlied, nonproportional tests on type 304 stain-

less steel and Hastelloy-X, the following statements may be made:

1.

A dynamic recovery term 1is essential to properly model the backstress
evolution.

From analysis of Hastelloy-X data obtained at 649°C, the inelastic strain
rate appears to be a satisfactory directional index for direct hardening,
but the backstress appears to be an inappropriate directional index of
dynamic recovery.

Sinusoidal, 90° out-of-phase axial torsional tests can be very useful in
aiding determination of backstress evolution functions, including both
directional indices and scalar hardening functions, by virtue of the
as;ociated approximately constant magnitudes of overstress, inelastic
strain fate, and effective stress in addition to the relatively fixed
degree of noncollinearity between the direct hardening and dynamic
recovery directional indices. Such tests have previously been associated
with the study of nonproportional hardening effects but have more far
ranging applications. For example, the magnitude of direct hardening and
dynamic recovery coefficiénts can‘be estimated from a single 90° out-of-
phase test. Furthermore, these estimates may be made without récourse to
fitting a set of uniaxial tests and can be derived for a range of strain
amplitudes typical of actual applications. Relevance of directional

indices can also be assessed.
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TABLE 1 -- RESULTS OF ANALYSES OF THE TWO 90° QUT-OF-PHASE HISTORIES
HASTELLOY-X at 649°C; E = 156 GPa, G = 61 GPa

Specimen # 20 |2n|av = 6.20 x 10~% sec-1
|(I|av = 354 MPa

b = 0.5 b =20.6 b = 0.75 b = 0.95
h1 590250 695645 894621 1299100
h3 . 596865 613755 674015 836185
ho 512287 564304 674781 899441
dl 1376 1724 2223 2897
d3 128 415 820 1382
do 633 911 1304 1851
hy/dq 429 404 402 431
h3/d3 4663 1478 822 605
ho/do 809 619 517 486
h1/h3 0.99 1.13 1.32 1.
d1/ds 10.75 4.15 2.71 2.
lg-alay 177 141 88 17.
lal gy 248 263 293 340

>pecimen # 21 e"l,, = 2.32 x 10-3 sec-l

lalav = 522 MPa

b = 0.5 b = 0.6 b = 0.75 b =0.95

hy 235090 291513 404846 610520
h3 251030 283847 348822 468800
ho 229734 270395 351393 498893
dq 472 604 807 1083
dj 271 355 982 655
dg 364 464 614 817
hy/dq 498 483 502 564
h3/d3 926 800 724 717
ho/dg 631 583 572 £l
hi/h3 0.94 1.03 1.16 1.
di/ds3 1.74 1.70 1.67 1.
la~-al gy 261 209 131 26
lalzy 336 366 420 501
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ABSTRACT

Considerable analysis and experimental verifications have been conducted
to determine the loading and material conditions (e.g. wheel load, friction,
contact configuration, metallurgy, wear, etc.) which lead to progressive
deformation in rail. Yet the onset of corrugations in rail has not been
suitably explained [1]. One very important contributing element to the
explanation of corrugation is likely to be the development of a constitutive
model which more realistically reflects material flow behavior under
nonproportional loading conditions.

This study concentrates on the prediction of cyclic plastic flow in
rolling contact. Previous numerical solutions for subsurface deformation in
rail have concentrated primarily on solution algorithms which incorporate
realistic boundary conditions and satisfaction of equilibrium at each passage
of the wheel. The material model, 1in contrast, has typically included a very
simple, isotropic yield condition without work hardening and an associated
flow rule. Much insight has been gained recently via multiaxial experiments
into cyclic plasticity models appropriate for nonproportional loading typical
of rolling contact. This research has revealed that even combined isotropic
hardening and kinematic hardening models of the Prager or Ziegler type do not
accurately predict cyclic plastic strains in combined tension and torsion
applied nonproportionally. Therefore, inclusion of work hardening and
deformation-induced anisotropy in a modified classical plasticity model is not
enough to ensure accurate prediction of stress and strain at each point within
a highly nonproportional rolling contact stress field. It follows that an
elastic-perfectly plastic material model 1is potentially quite inaccurate for
this case.

In this paper, a two surface cyclic plasticity theory is discussed. The
theory includes a Mroz-type kinematic hardening rule, an accurate
representation of work hardening, and transient cyclic hardening or softening.
The Mroz rule and two surface theory have previously been shown by McDowell
and others to be accurate for nonproportional loading.

As a demonstration of the potential for use of such a material model for
elastic-plastic rolling contact, the model is implemented in a very simple,
approximate numerical scheme for two dimensional plane strain line contact of
a rigid cylinder with a semi-infinite half-space. A Hertzian contact stress
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rolling contact of wheel on rail.
included in the study.
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proportional to the normal
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CUMULATIVE PLASTIC DEFORMATION UNDER NONPROPORTIONAL LOADING

A distinction is made in this work between proportional and
nonproportional loading. proportional loading is defined as loading for which
the deviatoric stresses and stress rates are radial. Nonradial variation of
deviatoric stresses will be termed nonproportional 1loading. In analogy, for
strain-controlled loading, proportionality of the controlled total strain
components results in proportional straining. Hence,

Sij = As Siy (1)
€5 = A €45 (2)
where sij =04y - (1/3)51j”kg are the deviatoric stress components, €55 are

. [ d
the total strain components, xs and xe are scalars, and Sij° and €1j° are
constant second order tensors.

In uniaxial tests in which the applied stress range has a nonzero mean,
cyclic racheting is observed in the direction of the mean stress [2-3]. The
racheting may at first accelerate (cyclic softening conditions) or decelerate
(cyclic hardening conditions). A cyclically stable state may be reached in
which rachet strain accumulates equally per cycle or ceases due to hardening.

There are numerous investigations of wuniaxial cyclic strain racheting
reported in the literature; unfortunately, this information is not entirely
relevant to the more complex case of nonproportional multiaxial loading. The
Titerature which does exist for multiaxial Tloading is primarily for tension-
torsion of thin-walled tubular and torsion-bending specimens. Though these
experiments are more restrictive than the general rolling contact problem in
terms of coverage of stress space regimes, they do have some important
similarities. First, in a very general sense, the rolling contact stress
field is essentially one of compressive normal stress with alternating shear
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stress variation. Tensjon-torsion tests of thin-walled tubular specimens with
a fixed tensile or compressive axial stress and reversed shear stress at least
qualitatively capture the essence of rolling contact stress field variation.

As pointed out by Moyar and Morrow [4], even though the contact stress is
reduced due to plastic deformation, racheting occurs due to the
nonproportional variation of stresses, cyclic softening, etc. Description of
such phenomena requires an understanding of inherent cyclic-dependent material
behavior 1in the absence of macroscopic stress or strain gradients.
Experimental results [4-8] on thin-walled tubular specimens have shown that
significant axial strain accumulation can be produced by alternating torsion
in the presence of a constant axial stress (nonproportional loading). This
accumulation can even occur at cyclic effective stress amplitudes which would
produce no continued rachet strain if applied proportionally.

Early tension-torsion experiments on aluminum and copper solid or thin-
walled tubular specimens were performed by Moyar and Sinclair [4-5], Feltner
and Sinclair [6], and Coffin [7]. Benham [8] demonstrated cumulative axial
elongation under steady tension,‘ reversed torsion for tubular axial-torsional
mild steel specimens in initially normalized and cold-worked conditions. In
general, higher rates of axial creep were observed for higher alternating
shear conditions. Benham also reported significant cyclic accumulation of
axial strain in reversed bending tests with superposed steady axial tension.
Final failure occurred by either gross plastic deformation or fatigue.

Ronay and Freudenthal [9-10] investigated "second-order" effects of axial
strain accumulation under pure torsional cycling for initially isotropic,
strain hardening metals. Bell [11] Tlater showed that these effects could be
accounted for using finite strain considerations. Hence, the second-order
effects reported by Ronay and others in torsional testing are not viewed as
important to prediction of cumulative deformation under complex loading since
they are not essentially due to inherent material behavior and can be
accounted for by using an appropriate finite strain analysis.

More recently, Harvey et al.[12-13] and Shiratori et al. [14] have
investigated axial (torsional) cyclic strain accumulation under reversed
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torsional (axial) loading with superposed steady axial (shear) loads. The
emphasis of their work is accurate modeling of deformation-induced anisotropy
via deformation of the yield surface; racheting behavior is then accurately
correlated for mild steel and 60/40 brass. Again, results were consistent
with previous experiments. Both groups have shown that detailed modeling of
the axial-torsional racheting behavior under nonproportional loading requires
consideration of deformation-induced anistropy, which is entirely neglected by
classical isotropic hardening theories and not suitably described by popular
Prager/Ziegler type kinematic hardening rules for the yield surface. It
should be noted that the work of Shiratori et al. on 60/40 brass also includes
cyclic creep of a thin-walled tube under conditions of cyclic axial load
superposed on steady internal pressure.



Review of Nonproportional Cyclic Plasticity Experiments

There has been a progression of experimental interest in plastic flow
under nonproportional loading. Most of the experimental work from 1950 to
1975 dealt with characterization of initial anisotropy (e.g. [15-18]), changes
in plastic strain rate direction due to abrupt changes in loading direction
(e.g. [19-24]), effects of pre-strain on the yield locus and direction of the
plastic strain rate (e.g. [16-18, 25]), and history dependence of the yield
surface upon nonproportional load reversals (e.g. [26-29]). Virtually all of
these experiments dealt in a very detailed manner with the initial loading
response and just a few, if any, additional reversals of load. Hence, they
established knowledge of the appropriate representation of initial anisotropy
and limited deformation-induced anisotropy, and the superiority of the flow
theory of plasticity for general nonproportional loading.

It was not until the 1970's that experimental studies were conducted in
earnest for nonproportional cyclic Tloading with the intent to characterize
cyclic hysteresis response. The work of Lamba and Sidebottom [30-31] is the
first known to the authors regarding transient and stable cyclic behavior
under nonproportional loading conditions. They subjected annealed, thin-
walled tubular OFHC copper specimens to several nonproportional, strain-
controlled loading paths until cyclic stability was reached. Axial and
torsional hysteresis loops were stored on magnetic tape. Lamba found that the
material's memory of past plastic deformation history can be erased by a
single large excursion into the plastic range. Conversely, influence of prior
overloads dominates subsequent 1lower amplitude cycling. Another important
observation was that additional isotropic cyclic hardening occurred upon
switching to nonproportional cycling from cyclically stable axial cycling; for

~

90 degrees out-of-phase sinusoidal loading (f = 90 degrees, Ta/€4 = 1.5)

€ = g sin wt (3)

7 = 7,81n (wt - p) (4)

Lamba observed a 40% increase in stress amplitudes after switching back to
axial cycling. This significant effect had not been previously observed nor
included in kinematic-isotropic plasticity theory.

-7 -



Later experiments by Kanazawa et al. [32], Krempl et al. [33], and Ohashi
et al. [34] confirm observations made by Lamba for stainless steels and for 1%
Cr-Mo-V steel. McDowell [35-37] and Kanazawa et al. [32] have shown that the
additional isotropic hardening can be correlated if an additional variable is
introduced to account for changes in strain rate direction. All of these
experiments demonstrated that the uniaxial cyclic stress-strain curve was not
entirely capable of representing the actual state of hardening encountered for
highly nonproportional histories. The experiments of Lamba, Ohashi, Krempl,
and McDowell demonstrate that cyclic plastic flow is quite repeatable under
nonproportional loading. In recent papers, McDowell has demonstrated that
good description of nonproportional cyclic plasticity may be achieved, even
during transient cyclic hardening or softening, 1if appropriate generalized
hardening and flow rules are used; furthermore, the uniaxial cyclic stress-
strain curve may still be quite useful for characterizing plastic flow if
SUpplemented by properties obtained from biaxial, nonproportional loading
tests.

McDowell [38-39] also has shown that the plastic strain rate direction
for nonproportional cycling does not correspond to that predicted by classical
theories or by combined kinematic-isotropic hardening theories using Prager or
Ziegler kinematic hardening rules. The dinaccuracy of these commonly used
rules is quite dramatic for complex Tloading. Typically, the extent of cyclic
hardening in uniaxial, torsional, or combined proportional loading tests can
be related to the accumulation of plastic strain. The experiments of McDowell
have shown that this is not the case for nonproportional variation of stresses
and strains within a cycle.

These experiments, though relatively few in number, have substantially
increased our knowledge of elastic-plastic material behavior relevant to the
nonproportional stress-strain state in rolling contact. To date, the authors
are not aware of similar experimental work performed on rail steels.



Appropriate Cyclic Plasticity Theory

The cyclic plastic flow which occurs in rolling contact and other nonpro-
portional Tloading problems is indeed a very complex, history-dependent
phenomenon. Models which seek to predict or correlate only one aspect of the
response (e.g. completely reversed cyclic hysteresis response) may not be
adequate for other important aspects (e.g. cyclic strain accumulation).
Likewise, models which may accurately describe both reversed cyclic response
and cyclic racheting for only uniaxial tests may be quite inadequate for
correlating nonproportional response. Accordingly, any model to realistically
be considered for cyclic plastic flow in rolling contact must demonstrate the
capability to model nonproportional loading suitably. In this work, we
restrict our consideration to time- and rate-independent material response
characteristic of rail steels.

The phenomenon of strain racheting may involve very small cyclic plastic
strain accumulation during each nonproportional Tloading cycle. Experiments
[26-29] clearly show that the aptua1 yield 1locus or surface in stress space
distorts significantly even under proportional stressing; hence, any change in
loading direction may actually result in yielding prior to that predicted by
simple 1isotropic, kinematic or combined plasticity models which employ
classical von Mises or Tresca yield surfaces, e.g.

. _ _ - _pe =
(von Mises) f = (3/2) (Sij a].‘].)(s].‘j aij) R 0 (5)
_ max _ e e
(Tresca) f = 1.“].I(oi ai) (aj aj)l R=0 (6)
where Sij and a; are deviatoric stress and backstress, shown in Figure 1, and
4 and a; are principal values of stress and backstress. Note that a; 4 is the

center of yield surface which represents kinematic hardening. R is the yield
strength in uniaxial loading. Kinematic hardening is represented by changes
in a; g Isotropic hardening (cyclic hardening or softening) is represented by
evolution of R, e.qg.

k- o) e
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(8)

and g is some unspecified function.

The concept of the yield surface requires that there is no increment of
plastic strain if the stress point lies within the yield surface, i.e.
q P _ . .
If the stress point reaches the yield surface, then plastic flow can
occur by a normality flow rule [40] if the stress rate has no inward component
to the yield surface, i.e.

1 .
t (dg in {)n,. if f=0 and do n ; 2 O
de. P = h k17k1774] k17k1 (10)

0 otherwise.

~where n;. is the unit normal vector to the yield surface, g, are true stress

compone;%s, and h is the plastic hardening modulus, analogous to the slope of
the stress versus plastic strain curve in a uniaxial test. During plastic
flow, the yield surface must deform, translate, and expand or contract such
that the stress point a.j remains on the yield surface (consistency condition
f=df =0 if deijpdeij > 0). It can readily be seen in Figure 2 that
reyielding will occur at different points (c', c'', C''') with different
exterior unit normal vector orientations (n', n'‘, n'''). Both combined
kinematic-isotropic and pure isotropic hardening models overpredict the domain
of elastic behavior and give somewhat inaccurate specification of the
direction of the plastic strain rate. These considerations are particularly
important for «cyclic plasticity (and strain racheting behavior) under
nonproportional loading when the reversed plasticity (or cyclic strain
accumulation rate) is small. Such loading is fairly typical of rolling
contact under moderate to heavy hauling conditions where there are relatively
few setup cycles with significant reversed plasticity followed by near
"shakedown" to progressive plastic deformation of quite small cycle-by-cycle
magnitude. Of course, 1if the radius of the intermediate von Mises yield
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surface is defined by a smaller offset yijeld point, it will more accurately
represent initial reyielding and flow direction. The intermediate yield
surface shown in Figure 2 would be typical of a 0.1% or 0.2% offset definition
of yield.

It should be noted that if only proportional loading is of concern, then
consideration of yield surface deformation 1is not necessary. If reyielding
occurs at point D or D' in Figure 2, the direction of nij at either point is
identical and accurate description of plastic flow may be achieved by either
kinematic-isotropic or fully anisotropic formulations of f with a suitable
function for h in equation (10). For proportional loading, the definition of
yield is not even crucial since the modulus function h is very high at either
of points D or D'. However, at points C', C'', or C''', definition of h is
crucial since the values of h will be significantly Ilower in this region
(higher plastic strain rate) and highly directionally dependent. This is
certainly an important consideration in modeling racheting behavior in rolling
contact; these deformation-induced anisotropic effects can result in cumula-
tive plastic strains even when shakedown to «cyclic elastic or completely
reversed plastic strains is predicted using conventional isotropic or linear
kinematic hardening rules.

Shiratori et al. [14] and Harvey et al. [12-13] have recognized the
necessity of including anisotropic yield surface deformation to accurately
model complex cyclic racheting tests. Shiratori and co-workers use the
concept of a set of “equiplastic strain" surfaces to correlate racheting
response for cyclic axial load (or torsion) superposed upon steady torsion (or
tension), and for cyclic axial 1load superposed upon steady internal pressure
for mild steel. In addition to predicting axial rachet response, they were
able to predict axial shortening effects at the initiation of each reversal
due to deformation-induced anisotropy.

It should be noted that these approaches are the only ones in the
literature known to the authors which specifically address anisotropic
deformation of yield surfaces during cyclically nonproportional plastic flow,
and seek to describe the problem of cumulative deformation under these
conditions. Though the goal of both efforts at modeling nonproportional
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racheting response has been achieved to some extent, neither is of a form
general enough for arbitrary nonproportional cyclic loading since they require
a definition of a preloading event which sets up some initial configuration of
loading surface(s) for subsequent cycling.

From this work on anisotropic yield surfaces, it is seen that a series of
loading surfaces, each corresponding to a different offset yield definition,
can be defined at each point in a nonproportional loading history with respect
to the point of initial preloading. Subsequent unloading and reversed loading
from this point results in deformation of this configuration of loading
surfaces. However the Tloading surfaces most affected by subsequent plastic
straining are those defined by small yield offsets. In other words, the inner
yield surface may deform and translate dramatically, while the outer surfaces
deform and translate very Tlittle. Hence, the intermediate surfaces provide
"memory" of maximal preloading events which strongly affect subsequent cyclic
plastic flow for events of lesser magnitude.

This multiple surface concept for material Memory was suggested by Mroz
[40-41] and Iwan [42] for use in plasticity calculations. It is variously
known as a layered, nested, or multiple surface approach. The model has more
recently been associated primarily with Mroz, who has introduced appropriate
rules for nonproportional cyclic Tloading. Deformation-induced anisotropy is
accounted for, to first order, by allowing otherwise simple von Mises or
Tresca loading surfaces to simultaneously translate (kinematic hardening) and
expand or contract (isotropic hardening). During plastic flow, the stress
point always remains on the innermost surface, the yield surface. The
surfaces may be written as

£(k) _ f(k)(‘Iij "’1j(k)' Rk - ¢ (11)

where f(o) is the yield surface and (N + 1) is the total number of surfaces.
Again by normality,

- 12 -



-+ (dog i)y 5 (12)

- (0) (0) (0) 1/2 . .
where nij = 3f /aaij/((af /aamn)(af /aamn)) . The configuration of

loading surfaces is shown in Figure 3. The kinematic hardening rule proposed
by Mroz which applies to all (N + 1) surfaces is

da (k)

k +1 k
i (k + 1) ) ( )) (13)

= dp(aij -0

for all k = 0, 1 ..., m surfaces which have been "touched" by the stress point
and are currently in tangential contact, and

k
daij( ) - 0 (14)

for k =m+ 1, ..., N surfaces not yet reached by the stress point. The point
(k+1) th

i3 )

with the same exterior normal as.that of the k

is defined as the similar point or point on the (k + 1 surface

th surface at the current stress
point. This results in tangential contact of the yield and loading surfaces

at similar points. Also, isotropic hardening is expressed by

dr(K) < (k) ayan (15)
where d\ = (de].‘].pde].‘].P)l/2 and the C(k)(k) are hardening functions. The
modulus function h in equation (12) is taken as a constant between each set of
two surfaces (piecewise 1linear stress strain curve representation shown in
Figure 3), i.e.

h = h(™ (16)

The function h is typically determined from the slope of a uniaxial cyclic
stress-strain curve.

The multiple surface theory of Mroz has proven to be much more accurate
in correlation of multiaxial nonproportional cyclic stress-strain response
than conventional kinematic-isotropic theories (e.g. Prager or Ziegler
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kinematic hardening), as shown by Lamba, McDowell, and others [30-31, 38-39,
43-44]. It uses relatively simple forms for the yield and loading surfaces,
yet offers a good quantitative description of hysteresis response, as shown in
Figure 4 for OFHC copper.

The Mroz approach offers a simplified but reasonably accurate
representation of cyclic deformation-induced anisotropy. McDowell [38-39]
showed that the plastic strain rate direction and modulus function are more
accurately described by a Mroz-type model than by Ziegler kinematic hardening
combined with a modulus function dependent on effective stress level, for
example. Furthermore, it was shown that use of a uniaxial cyclic strain-curve
to define "universal” material response can be quite fallacious. Additional
isotropic hardening of the order of 20% to 100% is typically observed for
steels and other metals, resulting in lack of validity of equation (16).
Likewise, the use of accumulated plastic strain in equation (15) is not
appropriate as the only independent variable since dR k is affected also by
the direction of that accumulation (c.f. [38, 45]), i.e.

¢ - ¢y, 4 (17)
where ¢ reflects changes in direction of plastic straining within a cycle.

Based on these observations and the high frequency of occurrence of
nonproportional loading in practical applications, it is advisable to use
Mroz-type multiple surface constitutive models. Recently, several simple
theories have been offered as solutions to the multiaxial cyclic plasticity
problem [3, 46], but there 1is no evidence of consideration of experimental
evidence for nonproportional loading 1in these models. Hence, even "“first-
order" characteristics such as plastic strain rate direction and modulus
variation are not accurately portrayed.

Hence, experience has shown that a multiple surface approach using simple
loading surface forms or an anisotropic yield surface formulation is needed to
represent nonproportional deformation-induced anisotropy. The problem becomes
even more crucial when cumulative plastic deformation (a "second-order
effect") is to be predicted, as in the rolling contact problem. Then, it may
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be necessary to combine the two approaches using a Mroz-type kinematic
hardening rule with anisotropically deforming yield surfaces, as proposed by
Rees [47]. The multiple surface model of Jhansale et al. [48] has attempted
to include different yield strengths in tension and compression (non-Masing
behavior), but was derived with uniaxial response 1in mind and is somewhat ad
hoc with respect to general nonproportional loading. Use of a simple
invariant yield surface form such as von Mises could result in a relatively
inaccurate prediction of plastic strain rate direction, and hence rachet
strain accumulation, even though the cyclic stress-strain response is
sufficiently modeled.
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Reduction to Two Surface Model

As discussed in the previous section, a multiple surface theory can
provide a reasonably accurate estimate of plastic strain rate directiSn and,
through h, magnitude for nonproportional Tloading. A much more efficient
scheme is to reduce the theory to two surfaces. The inner surface is the
yield surface. The outer surface, often called the Timit or bounding surface,
serves to bound the response. All intermediate loading surfaces are replaced
by analytical forms of modulus function h and plastic strain rate direction
which depend on assumed couplings between the yield and 1imit surfaces and
additional parameters. Kreig [49] and Dafalias and Popov [50] independently
suggested two surface theory. Lamba [30-31] demonstrated its potential for
correlation of nonproportional cyclic hysteresis response. Tseng and Lee [51]
have also demonstrated correlation for the same data and for uniaxial cyclic
creep and mean stress relaxation.

In a somewhat general form, two surface theory can be expressed as (see
Figure 5):

yield surface: f(aij - 25 R) =0 (18)
* %* * *
limit surface: f (”ij IR R)=0 (19)
flow rule: de..P = [ % (do, n, ;)n;, if f=0 and do,n 20
deyy = k17'k1/71j k1 k1 (20)
0 otherwise

kinematic hardening rules:
. _ *
yield surface: daij = dp(oij - Coij) (21)
limit surface: da,. =dp v, (22)
isotropic hardening rules:

yield surface: dR = £(X, ¢, q)(deijpde].jp)l/2 (23)
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linit surface: dR” = € (v, 4, ) (e, Pde; P12 (24)

modulus function: h = h(§, 8ine h,) (25)

* .
where § = ((Uij* - Uij)(aij - aij))l/z. 51n is the initial value of & upon
loading into the plastic regime, and h, = h (asymptotic value) when § = 0.
%
055 is a generic stress point on the 1limit surface defined as the similar
point as the current stress point on the yield surface. If a Mroz-type rule
% % %
is used, then 015 = ey * (R /R)(”ij - aij)' and C = 1.

McDowell [52-53] has introduced the variables ¢ and g in the isotropic
hardening formulation to reflect additional isotropic hardening during
nonproportional loading and plastic strain range effects, respectively. He
has used simple von Mises surfaces in equations (18)-(19), a modulus function

fit to a uniaxial cyclic stress-strain curve, a Mroz-type rule for dai" a

J

P) for daij*' and results of sinusoidal, strain-

Prager rule (da..* = h_de
1 ® *

iJ
controlled axial-torsional tests to determine the hardening functions ¢ and ¢
in equations (23) and (24) for type 304 stainless steel. Good agreement has
been obtained with nonproportional cyclic loading experiments as seen in Ref.

[53].

Dafalias [54] has proposed a general form for the modulus function

i 506, 525 =

based on behavior of mild steel, where g(din) is introduced to accurately
account for unloading-reloading behavior in the plastic range, one aspect of
multiple surface models which is not automatically retained upon the reduction
to two surfaces.

None of the previous work on two surface theories has specifically
addressed the issue of cyclic strain racheting under nonproportional loading.
Though they predict such phenomena, these models do not necessarily model
rachet rates precisely since the use of simple loading surfaces precludes
anisotropic yield surface deformation. Two  surface models do give
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experimentally consistent results, however, in terms of direction of rachet
strain, stabilization to steady state racheting, cessation of racheting, and
transient effects of cyclic hardening or softening. To more precisely model
rachet rates under nonproportional loading, it may be necessary to modify the
modulus function slightly based on further experimental results or to employ
anisotropic yield and loading surfaces.
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Perspectives on Some Previous Solutions for Cumulative
Deformation in Rolling Contact

The work of K.L. Johnson and associates [60-62] has laid a solid
foundation for understanding progressive deformation and shakedown in rolling
contact. The Merwin-Johnson shakedown analyses with and without tangential
tractive forces [60-61] have defined regions of shakedown and continued
elastic-plastic deformation as a nondimensionalized function of Hertzian
normal pressure divided by shear yield strength. Later finite element
analyses [63-64] have somewhat refined the solution via better approximation
of equilibrium and constraint conditions. These analyses have been concerned
with the first few cycles of cumulative plastic deformation to determine
whether or not shakedown would occur.

Several significant features relevant to cumulative deformation have been
neglected in these analyses. Realistic strain hardening behavior has not been
included. An elastic-perfectly plastic material model 1is quite crude; the
extent and nature of plastic deformation for such models is entirely dependent
on the constraint of surrounding‘material without regard for inherent material
response. In reality, the phenomenon of racheting is very much a result of
both constraint and material response. As seen in this paper, however, merely
specifying some ad hoc form for strain-hardening in typical constitutive
equations used in finite element analyses would be unsatisfactory for
predicting racheting response accurately under nonproportional loading typical
of rolling contact. It is the structure of the constitutive equations which
is critical in modeling the racheting response. Nonproportional tests are
necessary to determine this structure.

The work of Megahed [65], primarily concerned with racheting in
structures subjected to thermal constraint, considered several hardening
rules: perfectly plastic, Tlinear kinematic hardening, and lTinear isotropic
hardening. Even for the constrained unidirectional loading conditions of his
study, large differences were seen between the regions of shakedown, reversed
plasticity, and progressive plastic deformation predicted by the various
rules. While the prediction of shakedown 1limit was similar using either
lTinear kinematic hardening or perfect plasticity, the rachet rates were shown
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to be highly dependent on the strain hardening 1in the material model.
Transient cyclic isotropic hardening or softening behavior results in large
differences between perfectly plastic and 1linear kinematic hardening. It
should be noted at this point that none of the three material models
considered by Megahed would be suitable for nonproportional cyclic loading,
and his loading program (two-bar structure) was based on uniaxial response.
It would be expected that the differences among material models would be
considerably greater for constrained nonproportional plasticity in terms of
shakedown, reversed plasticity and racheting rates.

Accurate constitutive equations for nonproportional cyclic plasticity are
a necessary tool for understanding the cumulative plastic deformation
component of rail racheting and corrugation. Other factors such as the
dynamics of rail-wheel interaction [66-68] and wear [69] are also potentially
important components of this problem which are coupled with cumulative plastic
deformation. In the next section, a simple demonstration will be offered to
examine the potential of a two surface Mroz-type theory for cyclic deformation.
in rolling contact.
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DEMONSTRATION OF APPLICABILITY OF TWO
SURFACE THEORY TO RAIL/WHEEL CONTACT

As an illustration of the capability of two surface theory for modeling
cumulative deformation under nonproportional loading, the rolling contact of a
cylinder on a semi-infinite half-space is considered. Both cylinder and half-
space have the same -elastic properties. It is assumed for the sake of
simplicity that the normal pressure distribution in the contact region is two-
dimensional Hertzian, and that tangential tractions in this region are
proportional to the normal pressure, i.e.

=]
1]

pojl - (x/a)? (27)

qojl - (x/a)2<

where q, = APqy: and g is the coefficient of friction. The coordinate system
is shown in Figure 6, along with the normal and tractive pressure
distributions. It should be noted that the assumption that tangential
tractions proportional to normal pressure occur over the entire contact area
is not generally correct, since regions of stick and slip are shown to occur

- 4 (28)

[62, 66, 70]. However, for purposes of demonstration, it is adequate to
consider the effect of tractive forces without regard for interfacial stick-
slip conditions.

From Smith and Liu [71] and Poritsky [72], the linear elastic solution for
stresses in the half-space are:

- .9
Oyx = . a ¢ a

* P a2 + 2x2 + 222 * 27 *
XX [ " P

- Mol [(2"2 SRR REICRE S SR ¢*] (29)
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-p q
- _9 _ x1 _ O 2 p%
03, =3 2lag* - xp*] - 2 2% (30)
“Po 2 99 2 2 2|z z
T, = 2B - — (& t+2xT +2z27|74% - 2r 5 - 3xp* (31)
where

N | (1 + [B/A)

A
2 (32)
575 low7m + (A28 - 2]
gr = 1 (1 - [B/A)
A
2 (33)
[B/A Jz B/A + [%_4&_]
A= (a+ x)2 + 22 (34)
B =(a-x)%+ 272 (35)
and a = half contact width.
The normal stress ay; is given by
%* * E 3
Iy = V(axx + azz) (36)
and the shear stresses oy: = az; = 0. Here, plane strain conditions are
assumed. The Hertzian pressure Po is related to the contact force F per unit
width in the y direction by
= [2F
Py = [rz] (37)

For the sake of illustration, it will be assumed that a given material
point at a selected depth 1is subjected to a Hertzian distribution with
tractive forces moving at velocity V as shown in Figure 6. Furthermore, as a
first order approximation, the elastic stress field will be assumed to apply

for stresses 7,, and Tz during each passage of the contact patch. A finite
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element analysis or other approximate technique would be necessary for the
rigorous elastic-plastic solution of this problem. The recent finite element
analysis of Bhargava et al. [63] resulted in very similar conclusions as the
Merwin-Johnson [60] and Johnson-Jefferis [61] approximate analyses.

Using an elastic-perfectly plastic constitutive model and a modified
Hertzian pressure distribution to account for plasticity, Bhargava et al.
showed that T,y and Tz during plastic flow do not differ much from the
elastic solution at a depth of 0.755a. The primary stress redistributions
(residual stresses) occur for Ty x and ayy' This supports the assumptions of
Merwin and Johnson [60] in their classical analysis. The use of the elastic
solutions for Ty x and ayy' therefore, could be anticipated to result in
somewhat unrealistic cyclic stress conditions for racheting compared to the
rigorous elastic-plastic case. Furthermore, the x direction strain is
constrained in the actual elastic-plastic problem. Hence, a more realistic

set of constraints are provided by the assumptions:

€, = 0 (38)
e =10 39
€y (39)
_ *
0,, =0,y (x, z, t) (40)
*
Txz = Txz (x, z, t) (41)

* ) °
where the superscript refers to the elastic Hertzian solution, and €y and

®
€. are total strain rates, i.e.
Yy
€.. = €..5+¢..P (42)

Equations (38) and (39) represent constraints on longitudinal deformation
and lateral deformation (plane strain), respectively. As discussed by K.L.
Johnson, residual stresses 7., and T, are zero after the load passage.
Stress components axx(x, z, t) and ¢ y(x, z, t) are computed by simultaneously

solving equations (38) and (39), i.e.
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axx = Y042 (Myy rExx] * ”yy[;r&y " "xd (43)
anx + nyy
2 v(n . -n
. [ [ Txx , 1 ]—lﬁllz-ﬁf] {z i Ezzﬂzz]] _ %7 xx

71 h " E [V XX nyy] E h h (44)

Tyy = n,, n 2 ("t Mex)

[y ) e

h (¥Mxx* Myy)

Here, v and E are the usual isotropic elastic constants.

Since the stress history is enforced, only the plastic strain rates need
be computed. The plastic strain rates are given by

+ D l/h(sklnkl)nij if f =0 and sk]nk]z 0

0 otherwise

where Sy is the deviatoric stress rate 855 = &5 - 1/3 &§jj8kk, and njj is the
unit normal vector to the yield surface. The plastic modulus function is
defined as h. Yield surface f is defined as a von Mises form

f = (3/2)(sk1 - ak1)(sk1 - k1) - RZ = 0 (46)

and njj is defined by

(si5 - a;5)

((sk1 - k1) (sk1 - ak1)) /2

ni g (47)
where ajj are the components of the yield surface center which evolve
according to a Mroz rule.

. (s,; - a,1)S,.. - (2/3)RR .
a'IJ = kl k1 k]* (S'IJ = S'IJ) (48)
(spm - apm) (Spm - spm)
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*

*
Here, Sij is a point on a 1imit surface f defined by

* * * * * *2
f = (3/2)(s - ay, )(s -a,)-(R)* =0 (49)
* k1 k1 k1 k1
where @y are the backstress components of the limit surface. The point Sij
*
in equation (48), shown in Figure 5, 1is defined as the point on f with the

same outward normal vector as nsso i.e.

*

sii = a..+ RY/R) (s

i3 i - a;.) (50)

ij ij
It is the modulus function h which accounts for much of the racheting
Py * *
description when a.. =~ 0. The evolution of a5 permits eventual cessation

1]
of racheting response. Hence,

e * _ e pe p 1/2
a.. = /r.(ek] €] ) N

ij (51)

*
where x is a coefficient which governs the rate of translation of a5 and the
associated retardation of racheting rate.

Ordinarily, isotropic hardening rules can be specified for both R and R*:

R = 5R(g, @) - R)(§,,PE, P12

(52)
% _ % * o °
R = E(R (4, @) - R)(E,Pe P12 (53)
where ¢ and q are variables which relate to additional isotropic hardening
under nonproportional Toading and plastic strain range, respectively [52-53].
Here, p is a rate constant.

In this illustrative demonstration, isotropic hardening will be neglected
since the equations are fully capable of displaying complex cyclic racheting
response with pure nonlinear kinematic hardening. Hence, R = Q* = 0 and the
initial values of R and R* are taken from the uniaxial cyclic stress-strain
curve. Furthermore, & is assumed to be zero so that steady state racheting
response (constant racheting rate) is described.
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The modulus function

h = h(6/6 h,) (54)

max'

is also determined from the uniaxial cyclic stress-strain curve. Here, § =
* * 1/2 . . . .

((Sij - Sij)(sij - Sij)) 1 8 pax 1S the maximum value of § in the history,

and h, is the asymptotic plastic modulus (i.e. in linear hardening region).
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Material Constants and Parameters

The rail steel selected for this demonstration is carbon steel, with
uniaxjal cyclic stress-strain properties reported by Park and Fletcher [74].
Cyclic strength coefficient and strain hardening exponent are reported as 281
ksi and 0.226, respectively. Other 1investigators report similar values for
carbon rail steel [75].

The 1imit surface radius was selected to bound any anticipated stress
response. Both R and R* were fixed at cyclically stable uniaxial values R =
35 ksi and R* = 140 ksi since no data from cyclically nonproportional tests
were available for rail steels. Note that a deviation from linearity
definition of yield 1is wused instead of an offset; this permits accurate
description of the Cyc]ic response even for very small plastic strains, which
is necessary in cumulative deformation problems.

The modulus function was fit by a form used by Dafalias et al. [54]:
1.6

- 6/6 ] (55)

h = 1400 + 1200 [—M—

1 - 6/6max

where units of h are in ksi. A plot of h versus § for carbon steel appears in
Figure 7.

Definition of Contact Parameters

The contact area and Hertzian contact pressure Po in equation (37) were
determined from linear elasticity theory. To adequately represent the loading
intensity, the average pressure in a three-dimensional elliptical contact
patch representative of typical rail-wheel contact was equated to the average
pressure in the two-dimensional Hertzian distribution for a cylinder rolling
on a half-space.

From Hamrock and Brewe [73], for two convex, quadratic surfaces in

contact, the major and minor radii of the contact ellipse are given by (see
Figure 8):
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* 6¢PR
a = [KrE'] (56)
2.1/3
x
- [6<PRK
b [ TE' ] (57)
where
2
E' = 1-V12 1-V22
+ 1}
E1 E2

El' E2, Vi Vp = elastic properties of two bodies in contact,

0
n

total normal Toad,

1 _1 1 1 1 1 1
S ==+ 5 = + + + .
R Rx Ry [rax rbx] [ray rbyJ

Fax’ ray' L rby = principal radii of curvature of two solids in

contact.

ax ¢(1-T)

and Z and ¢ are elliptic integrals of the first and second kind, i.e.

* 1/2
- e s b 27 -¢(1+7T) | .
K = ellipticity parameter = % = . =
P yp ,T‘ Q(Rx Ry

/2

2= [1-[1-L)sin2] "% a
a K

7/2
¢ =£ [1-[1- %]sinzgs]l/zdgs

The peak Hertzian pressure for this elliptical contact is given by

-3
Pol3p = 3 —-QET : (58)

xa

with the average contact pressure given by
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- - P _g
Pl3.p = 757 = 3 Pol3-p (59)

In the two-dimensional problem considered here (line contact of
cylinders), the average pressure is given by

5 - F
P =73 (60)

where F = normal load per unit width, and a is half the contact width. The
value of a is expressed as

2 ' 2 2]
a= 2T Ty |- 1oy (61)
T IR 'R E T
1 "2 1 2

where R1 and R2 represent the radii of curvature of the two cylinders in line
contact [71]. Assuming P = $|3—D'

P
Tb (62).

P
2a

*
Since a is known as a function of F from equation (61) and P, a*, and b are
assumed known from the three-dimensional problem we may solve for F from
equation (62). Then we can solve for p, 1n equation (37), and we have a

rational estimate for maximum Hertzian pressure in the illustrative model.

For typical wheel on rail [73] as shown in Figure 8, the parameters are

r = 19.8" K=0.71
Fay = ° ¢ = 1.3526
Fog = Z = 1.8508
r. = 11.8" E, = E., = 30 x 10°ksi
by : 1= 5
Vl = V2 = 0,3

- 29 -



For the cylinder rolling on the half space, R1 = 19.8" and R2 = w,
Hence,

* 1/3

a = 0.093P (63)

b* = 0.066P1/3 (64)
F=1.229 x 1073 p%/(a")* (65)
P, = 16.28 IF (66)

a = 0.0391 {F (67)

where P is in kips and a is in inches. Thus, given a contact load P, we may
compute Po and a values that relate to the "equivalent" two-dimensional line
contact problem with the same average contact pressure as that of a realistic
railroad wheel-rail contact.

Details of Computer Analysis

A FORTRAN computer program was written to calculate the accumulation of
plastic strain with each passage of the contact region. Since the racheting
is steady state for the most part after the first few cycles in the analysis,
20 cycles were imposed for each loading condition. A cycle is defined as the
movement of the center of the contact region from -30a to +30a with respect to
material point in question. The material point is specified by z as shown in
Figure 6. At each increment of the contact region, the stresses in equations
(29) - (36) were imposed. The constitutive equations were integrated using a
Runge Kutta technique with Gill Coefficients [59], which maintains a small
error per time step. Time was taken as the independent variable, even though
the constitutive equations are time- and rate-independent.
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RESULTS AND DISCUSSION

Recognizing that equilibrium is not met by the preceding simple
assumptions, comparison with elastic-plastic finite element results is
intended to be of only a qualitative nature. Some very revealing aspects
regarding the rate of inherent material response can, however, be drawn from
this comparison.

In Figure 9, results are presented for the accumulation of subsurface
plastic shear strain, 7sz' and residual stress, Tyx for only applied normal
tractions (p=0). Note that results at the end of the 15th and 20th cycles
(1oad passages) are reported. In the plots, k = 20.2 ksi and G = 11,500 ksi.
This value of k corresponds to

R
{3
where R 1is the wuniaxial yield strength. Peak Hertzian pressures were

evaluated, ranging from 2V3 ¢ po/k < 5V3. This corresponds to wheel loads
in the range 1.2 < P < 18.7 kips. Note that the shear strains are plotted as

k = (68)

negative to conform in sign to the coordinate system employed by Bhargava et
al [63].

It is interesting to note that the phenomenon of forward shear is
predicted for the higher po/k values. Finite element results obtained by
Bhargava et al [63] are also reported in Figure 9. Though the residual stress
and strain distributions are of similar character, there are several
differences. First, the cyclic shear strain accumulation in the current model
is an order of magnitude smaller. Experimental results are of the same order
of magnitude. Secondly, the magnitude of the positive subsurface shear
strains are a significantly higher fraction of the maximum negative shear
strains than in the finite element results. The smaller rachet strains are
probably attributable to the material workhardening in the current model. The
second observation is possibly due to Tlack of equilibrium in the model and/or
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the rather stringent assumption of instantaneous zero x-direction total strain
rate. Note that the magnitude and sense of the residual stresses are
comparable in each case.

An important result of the current analysis is the relative magnitude of
peak Hertzian pressure for which racheting ceases, i.e. shakedown. From
Figure 9 it is apparent that shakedown 1is evident for po/k S 2V3. A
"shakedown 1imit" is reached somewhere between p /k = 2 Vv 3 and 2.5V3. It
must be emphasized that the definition of k based on deviation from linearity
produces a conservative shakedown limit. Larger values of k based on work
hardening would Tead to even smaller values of shakedown T1imit. It is
recalled that both the Merwin-Johnson [60] and Bhargava et al [63] analyses
found a shakedown 1imit of po/k 2 3.5 - 4.0, which is corroborated by the
value of po/k 2 3.5 found in this study. It should also be noted that the
shape of the shear stress-strain hysteresis Tloops predicted by the model were

very similar to that computed by finite element analysis.

Since the stresses and strains are reasonably well predicted by this
model for the case of zero tangential tractions, it 1is interesting to
introduce effects of driving and braking tangential tractions. A tangential
traction representative of braking was first introduced by assuming 4 = 0.3
such that qp = 0.3 Py Plots of 15th and 20th cycle residual stress and shear
strain are shown in Figure 10 for Po/k values of 2.5V3 and 3.5V3. Note the
significantly enhanced backward shear compared to the same cases with zero

tangential traction. In contrast, application of a driving tangential
traction with 9y = - 0.3 Po results 1in significant forward shear as shown in
Figure 11.

Hence it is clear that driving and braking conditions introduce quite
different subsurface plastic flow. Also, any variation of lubrication
conditions along the rail can result 1in a longitudinal gradient of subsurface
shear strain, normal strain and residual stress.

Based on these results, it appears that the role of inherent material
work hardening response is an important one with respect to accurate
prediction of rachet strain per cycle. The qualitative model herein, based on
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an accurate cyclic plasticity model and representative kinematic constraints,
captures the essence of the subsurface response. It is interesting to note
that integration of this simple model required only 1 - 2 CPU seconds per
complete cycle for each depth on a Cyber 990. This contrasts to the 7 - 24
CPU hours required by the Bhargava finite element solution on a VAX 11-780.

There are, of course, a few reservations about the preceding analysis.
First, equilibrium 1is neglected. Secondly elastic Hertzian stresses are
assumed for g, and Tyzt this assumption should not lead to significant error
in the shakedown regime. Thirdly, the constraint that the total strain rate
in the x direction is zero 1is somewhat stringent. Finally, cyclic hardening
or softening have not been accounted for; one of the advantages of the two
surface cyclic plasticity theory is the ease with which these effects can be

introduced [52-53].
CONCLUSIONS

A sophisticated, two-surface cyclic plasticity theory, known to
accurately correlate nonproportibna] cyclic plasticity experiments, has been
introduced into a qualitative model of two dimensional rolling contact
representative of wheel on rail. It has been demonstrated that the subsurface
residual stresses and shear strains agree qualitatively with rigorous finite
element analysis and with the Merwin-Johnson model, both of which assume
perfectly plastic response. Furthermore, the shakedown limit is comparable to
these analyses. The magnitude of subsurface plastic shear strain accumulation
in the present model is, however, significantly less than either analysis, in
agreement with experimental results. These findings suggest that accurate
representation of the work hardening response and kinematic hardening rule for
cyclic nonproportional loading can significantly enhance solution of cyclic
strain accumulation in a rolling contact stress field.
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