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Significant progress has been made during the first year of this 
project on understanding appropriate structures for rate-independent and 
rate-dependent constitutive equations for nonproportional cyclic 
plasticity. 

A two surface theory was developed, based on Mroz kinematic 
hardening, with the capabilities of modeling fading memory of the 
maximum plastic strain excusion and additional hardening incurred during 
nonproportional loading. Good correlation with nonproportional block 
loading sequences was obtained for type 304 stainless steel. 

Several nonproportional loading histories experimentally obtained by 
the author have been carefully examined. 	The superiority of a Mroz-type 
kinematic hardening rule was demonstrated. 	Furthermore, the Mroz 
distance vector was shown to more uniquely characterize variation of the 
plastic modulus function for nonproportional path segments. 

In April 1985, an M.S. Thesis was completed on the subject of 
numerical implementation of elasto-plastic models for nonproportional 
plasticity. Surprisingly, it was found that numerical integration 
techniques previously reported most efficient for state variable 
theories were found least efficient for nonproportional loading. 

Ongoing work in the second year of the project will include further 
analysis of more sophisticated isotropic and kinematic hardening rules 
for type 304 stainless steel at room temperature and superalloy 
Hastelloy-X at 649 ° C. The latter data has recently become available 
from Professor E.H. Jordan of the University of Connecticut; it was 
obtained under NASA sponsorship. The thrust of the second year in this 
program is switching to consideration of rate-dependent constitutive 
laws for nonproportional cyclic loading. 

The following is a list of related papers produced during the first 
year of this grant: 

1. McDowell, 	D.L., 	"A Two Surface Model 	for Transient 
Nonproportional Cyclic Plasticity: Part I - Development of 
Appropriate Equations," ASME Journal of Applied Mechanics, 
Volumn 52, June 1985, pp. 298-302. 

2. McDowell, 	D.L., 	"A Two Surface Model for Transient 
Nonproportional Cyclic Plasticity: 	Part II - Comparison of 
Theory with Experiments," ASME. Journal of Applied Mechanics, 
Volumn 52, June 1985, pp. 303-308. 

3. McDowell, D.L., "An Experimental Study of the Structure of 
Constitutive Equations for Nonproportional Cyclic Plasticity," 
accepted for publication in ASME. Journal of Engineering 
Materials and Technology, 1985. 
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4. McDowell, D.L., "The Significance of Nonproportional 	Loading 
Tests for Characterization of Cyclic Response of Metals." Proc. 
1985 Spring Conference on Experimental Mechanics, Society for 
Experimental Stress Analysis, Las Vegas, June 10, 1985, pp. 229-
236. 

5. Sotolongo, W., and McDowell, 	D.L., 	"An Evaluation of several 
Constitutive Model Structures For Transient Nonproportional 
Cyclic Plasticity," accepted for publication in ASME Journal of 
Pressure Technology, August 1985. 

6. Sotolongo, W., and McDowell, D.L., "On the Numerical Integration 
of Elasto-Plastic Constitutive Model Structures For 
Nonproportional Cyclic Loading, " submitted for publication to 
Computers and Structures. 

Related external presentations included the following: 

1. McDowell. 	D.L., 	"Description 	of 	Nonproportional 	Cyclic 
Response," Oak Ridge National Laboratory, July 1984. 

2. McDowell, D.L., 	"Comments on the Structure of Multiaxial 
Constitutive Models," Multiaxial Meeting of Fracture and 
Fatigue/Structural Mechanics Branches, NASA Lewis Research 
Center, January 22, 1985. 

3. McDowell, D.L., Some Comments on the Structure of Nonlinear 
Constitutive Equations for Nonproportional Cyclic Plasticity," 
presented at the Symposium in Honor of the Retirement of 
Professor JoDean Morrow of the University of Illinois. August 
1984. 

4. McDowell, D.L., 	"The Significance 	of Nonproportional 	Loading 
Tests for Characterization of Cyclic Response of Metals," 1985 
Spring Conference on Experimental Mechanics, SEM, Las Vegas, 
June 10, 1985. 

5. McDowell, D.L_ 	"A Two Surface Plasticity Theory for Transient 
Nonproportional Cyclic Plasticity," Joint ASME/ASCE Applied 
Mechanics Conference, Univ. of New Mexico, Albuquerque, N.M., 
June 24-27, 1985. 

6. McDowell, 	D.L., 	"Work in Progress on 	Cyclic 	Plastic 	Stress 
Calculation for Rail Steels," 4th ETAC Meeting, 	U.S. 	DOT 
Transportation Systems Center, July 16-17, 1985. 
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DISCUSSION OF RESULTS 

The primary goal as set forth in the original proposal for this work was 
to generalize rate-independent plasticity theory to model essential material 
behaviors associated with nonproportional cyclic loading. To this end, the 
work conducted under support of this grant has had very significant impact. 

From the theoretical standpoint, two papers were published in the ASME 
Journal of Applied Mechanics on a two surface cyclic plasticity model which 
incorporates nonproportional isotropic hardening effects and an accurate 
Mroz-type kinematic hardening rule. The accuracy of the model was examined 
by comparison with biaxial experimental results previously obtained by the 
author on type 304 stainless steel. As a measure of their significance, the 
two papers won the 1986 Alfred Noble Prize jointly awarded by ASME, ASCE, 
IEEE, AIMMPE, and WSE for the best paper by an author under 31 years of age 
appearing in any of their respective journals. In addition, a paper co-
authored by Dr. McDowell and an M.S. student, W. Sotolongo, explored the 
accuracy of several generic types of cyclic plasticity models for 
nonproportional loading in an ASME Journal of Pressure Vessel Technology 
paper; included in the comparisons were a simple single loading surface 
model, a two surface or bounding surface model, and a state variable or 
unified creep-plasticity model. 

Distinct experimental contributions were also made to the development of 
a constitutive framework appropriate for cyclic nonproportional loading. In 
a 1985 ASME Journal of Engineering Materials and Technology paper, the 
author demonstrated the superior correlation of kinematic hardening and 
modulus function obtained with a two surface Mroz-type approach. The 
classical kinematic hardening rules of Prager and Ziegler were shown to be 
quite inaccurate. The tremendous importance of an accurate prescription for 
plastic modulus variation was clearly shown. A paper presented at the 1985 
Spring Conference on Experimental Mechanics in June 1985 emphasized the 
importance of nonproportional loading experiments in deducing the 
appropriate tensorial nature of kinematic hardening; the noncollinearity of 
the backstress and the inelastic strain rate vector provides the additional 
information required to develop accurate hardening rules. 

A study of nickel-base superalloy Hastelloy X subjected to high-
temperature, nonproportional cyclic loading was published in 1986 in the 
proceedings of the 3rd Symposium on Nonlinear Constitutive Relations for 
High-Temperature Applications sponsored by NASA. The experimental results 
were obtained from Professor E. Jordan of the University of Connecticut. It 
was demonstrated by careful computer analysis of the data that a dynamic 
recovery term was absolutely essential to model the kinematic hardening 
under sinusoidal, out-of-phase tension-torsion loading of thin walled 
tubular specimens. Interestingly, Chaboche had shown in 1983 that such a 
recovery term was essentially equivalent to a two surface viscoplasticity 
model. This study was conducted with two Ph.D. students. 

An evaluation of 	the 	subtleties 	and 	implications of existing 
nonproportional cyclic loading data will soon appear in the ASME Journal of 
Applied Mechanics. A companion paper which embodies the results of this 

-2- 



detailed analysis in a simplified model structure was published in the ASCE 
Journal of Engineering Mechanics in March 1987. 

Beyond the realm of applied continuum mechanics, micro-mechanistic 
explanations were sought for the unusually pronounced cyclic hardening 
exhibited by austenitic stainless steels subjected to nonproportional cyclic 
loading. The accumulated hardening was greatly in excess of that observed 
in uniaxial tests at the same effective strain amplitude. Nonproportionally 
cycled specimens were sectioned and examined via conventional metallography, 
scanning and transmission electron microscopy, and x-ray diffraction. The 
additional cyclic hardening was found to be associated with stress-and 
deformation-assisted martensitic transformations which could be 
characterized with respect to the nonproportional loading histories. This 
work was conducted jointly by the author and Professor S. Antolovich of the 
School of Materials Engineering at Georgia Tech. The final revisions are 
underway for publication of this work in Metallurgical Transactions. 

Another major area addressed in this work is the numerical integration 
of these more complex constitutive equations. In particular, the resulting 
equations are mathematically "stiff" in certain loading regimes and 
numerical accuracy and efficiency is a concern. Along with his student, W. 
Sotolongo, the author published a study of the efficiency and accuracy of a 
number of temporal integration algorithms with and without time-step 
control, predictor-corrector algorithms, radial return, etc. for a rate-
independent bounding surface model, a rate-independent single loading 
surface model, and a unified creep-plasticity model. Interestingly, a 
higher order Runge-Kutta method with fixed time-step size was found 
superior. An important finding was that a simple Euler algorithm with 
automatic time-step size control was superior for proportional loading, but 
quite unacceptable for nonproportional loading; this finding contrasted 
with the results of previous researchers who considered only  proportional 
loading and espoused simple Euler techniques for state variable constitutive 
theories. 

Thus far, we have mentioned the theoretical, experimental and numerical 
aspects of the work conducted with support of this grant. The contributions 
have been significant in all three areas. 

With regard to immediate practical concerns of an economic character, 
the two surface theory developed during this grant period was applied to the 
problem of elastic-plastic rolling contact of wheel on rail. Subsurface 
cyclic plastic deformation is a likely major contributor to the initiation 
and growth of corrugations in rail; it is also inextricably linked to 
initiation-growth of subsurface fatigue cracks. These problems are 
extremely costly to the railroad industry. The cyclic stress-strain field 
of material in the contact region varies in a highly nonproportional manner 
as the wheel moves past a specific point of the rail. A number of factors 
including wheel load, friction, braking or driving influence the cumulative 
inelastic deformation of the near-surface region. A computer program was 
written which simulated the constraints of various subsurface layers in rail 
in two dimensions, applied a two dimensional translating Hertzian 
distribution with the same mean pressure as a three dimensional distribution 
typical of actual rail-wheel contact geometry, and integrated a two surface-
type constitutive law for cyclic plastic deformation. The results, 
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economically obtained with the simple model, compared favorably with 
measured surface deformations and with subsurface residual stress 
distributions obtained with very expensive finite element solutions which 
used over-simplified constitutive models. The co-author of this paper was 
Dr. G. Moyar, a consultant with the Association of American Railroads. 

The following is a list of related papers produced during the grant 
duration: 

(Copies enclosed) 

1. McDowell, D. L., "A 	Two 	Surface Model for Transient 
Nonproportional Cyclic Plasticity: Part I - Development of 
Appropriate Equations," ASME Journal of Applied Mechanics, 
Vol. 52, June 1985, pp. 298-302. 

2. McDowell, D. L., "A 	Two 	Surface Model for Transient 
Nonproportional Cyclic Plasticity: Part II - Comparison of 
Theory with Experiments," ASME Journal of Applied Mechanics, 
Vol. 52, June 1985, pp.303-308. 

3. McDowell, D. L., "An Experimental Study of the Structure of 
Constitutive 	Equations 	for 	Nonproportional 	Cyclic 
Plasticity," ASME Journal 	of Engineering Materials and 
Technology, Vol. 107, Oct. 1985, pp. 307-315. 

4. McDowell, D. L., "The Significance of Nonproportional Loading 
Tests for Characterization of Cyclic Response of Metals," 
Proc. 1985 Spring Conference on Experimental Mechanics, 
Society for Experimental Stress Analysis, Las Vegas, June 10, 
1985, pp. 229-236. 

5. Sotolongo, W., and McDowell, D.L., "An Evaluation of Several 
Constitutive Model Structures for Transient Nonproportional 
Cyclic Plasticity," 	ASME 	Journal 	of 	Pressure Vessel 
Technology, Vol. 108, Aug. 1986, pp. 273-279. 

6. Sotolongo, W., and 	McDowell, 	D.L., "On the Numerical 
Integration of Elasto-Plastic Constitutive Model Structures 
for 	Nonproportional 	Cyclic 	Loading," 	Computers 	and 
Structures, Vol. 24, No. 4, 1986, pp. 595-606. 

7. McDowell, D.L., "An Evaluation of Recent Developments in 
Hardening and Flow Rules for Rate-Independent, 
Nonproportional Cyclic Plasticity," accepted for publication 
in ASME Journal of Applied Mechanics, 1986. 

8. McDowell, D.L., "A Simple, Experimentally Motivated Cyclic 
Plasticity Model," ASCE Journal of Engineering Mechanics, 
Vol. 113, No. 3, March 1987, pp.378-397. 

9. McDowell, D.L., Stock, S.R., Stahl, D., and Antolovich, S.D., 
"Biaxial Path Dependence of Deformation Substructure of Type 
304 Stainless Steel," under 	review for publication in 
Metallurgical Transactions, Aug. 1986. 
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10. McDowell, D.L., Moosbrugger, J., Doumi, M., and Jordan, E.H., 
"Some Implications for 	Cyclic Plastic and Viscoplastic 
Equations Based on Nonproportional Loading Experiments," 
Proc. 3rd Symposium on Nonlinear Constitutive Relations for 
High-Temperature Applications, NASA Lewis RC, University of 
Akron, Ohio, June 11-13, 1986. 

11. McDowell, D.L. and Moyar, G.J., "A More Realistic Model of 
Nonlinear Material Response: Application to Elastic-Plastic 
Rolling Contact," Proc. 2nd Int. Symp. on Contact Mechanics 
and Wear of Rail/Wheel Systems, University of Rhode Island, 
Kingston, July 8-11, 1986. 

Related external presentations included the following: 

1. McDowell, D.L., 	"Description 	of Nonproportional Cyclic 
Response," Oak Ridge National Laboratory, July 1984. 

2. McDowell, D. L., "Some Comments on the Structure of Nonlinear 
Constitutive Equations for Nonproportional Cyclic 
Plasticity," presented at the symposium in honor of the 
retirement of Professor JoDean Morrow of the University of 
Illinois, August 1984. 

3. McDowell, D. L., "Comments on the Structure of Multiaxial 
Constitutive Models," Multiaxial Meeting of Fracture and 
Fatigue/Structural Mechanics Branches, NASA Lewis Research 
Center, January 22, 1985. 

4. McDowell, D. L., "The Significance of Nonproportional Loading 
Tests for Characterization of Cyclic Response of Metals," 
Proc. 1985 Spring Conference on Experimental Mechanics, 
Society for Experimental Stress Analysis, Las Vegas, June 10, 
1985, pp. 229-236. 

5. McDowell, D.L., "A 	Two 	Surface Plasticity Theory for 
Transient Nonproportional Cyclic Plasticity," Joint ASME/ASCE 
Applied 	Mechanics 	Conference, 	Univ. 	of 	New Mexico, 
Albuquerque, N.M., June 24-27, 1985. 

6. McDowell, D.L., "Work in Progress on Cyclic Plastic Stress 
Calculation for Rail Steels," 4th ETAC Meeting, U.S. DOT 
Transportation Systems Center, July 16-17, 1985. 

7. McDowell, D.L., Moosbrugger, J., Doumi, M., and Jordan, E.H., 
"Some Implications for Cyclic Plastic and Viscoplastic 
Equations Based on Nonproportional Loading Experiments," 3rd 
Symposium on Nonlinear Constitutive Relations for High-
Temperature Applications, NASA Lewis RC, University of Akron, 
Ohio, June 11-13, 1986. 
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8. 	McDowell, D.L. and Moyar, G.J., "A More Realistic Model of 
Nonlinear Material Response: Application to Elastic-Plastic 
Rolling Contact," 2nd Int. Symp. on Contact Mechanics and 
Wear of Rail/Wheel Systems, University of Rhode Island, 
Kingston, July 8-11, 1986. 
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A Two Surface Model for 
Transient Nonproportional Cyclic 
Plasticity: 
Part 1 Development of Appropriate 
Equations 
A two surface stress space model is introduced with internal state variable 
repositories for fading memory of maximum plastic strain range and non-
proportionality of loading. Evolution equations for isotropic hardening variables 
are prescribed as a function of these internal variables and accumulated plastic 
strain, and reflect dislocation interactions that occur in real materials. The hard-
ening modulus is made a function of prior plastic deformation and the distance of 
the current stress point from the limit surface. The kinematic hardening rules of 
Mroz and Prager are used for the yield and limit surfaces. respectively. The 
structure of the model is capable of representing essential aspects of complex 
nonproportional deformation behavior, including direction of the plastic strain rate 
vector, memory of plastic strain range, cross-hardening effects, variation of hard-
ening modulus, cyclic hardening or softening, cyclic racheting, and mean stress 
relaxation. 

  

Introduction 

The presence of cyclic plasticity in a multiaxial stress-strain 
field is a serious fatigue design consideration in the nuclear, 
aircraft, and ground vehicle industries [1-4]. When the stress 
rate is nonradial in deviatoric stress space at some interval of 
each loading cycle, the analysis is complicated by non-
proportionality effects [5]. 

Nonproportional loading places additional requirements on 
the constitutive equations for transient cyclic plasticity. In 
particular, the plastic strain rate vector direction, memory of 
plastic strain range, magnitude of the plastic hardening 
modulus, and cross-hardening effects are of critical im-
portance. The objective of this work is to introduce a two 
surface model based on the assumptions of time and rate-
independent plasticity theory which is capable of predicting 
results from cyclic, nonproportional, room-temperature tests 
performed by the author [6, 7], including cyclic hardening 
effects. A companion paper demonstrates the quantitative 
behavior of this model for nonproportional strain cycling 
experiments conducted by the author on type 304 stainless 
steel. 

Contributed by the Applied Mechanics Division for presentation at the 1985 
Joint ASME/ASCE Applied Mechanics, Fluids Engineering, and 
Bioengineering Conference, Albuquerque, N. Mex., June 24-26, 1985 of THE 
AMERICAN SOCIETY OF MECHANICAL ENGINEERS. 

Discussion on this paper should be addressed to the Editorial Department, 
ASME, United Engineering Center, 345 East 47th Street, New York, N.Y. 
10017, and will be accepted until two months after final publication of the 
paper itself in the JOURNAL OF APPLIED MECHANICS. Manuscript received by 
ASME Applied Mechanics Division, April, 1984; final revision, August, 1984. 
Paper No. 85-APM-9. 

Copies will be available until February, 1986.  

Motivation From Previous Work 

Plastic Strain Rate Direction. With regard to the direction 
of the plastic strain rate vector during nonproportional cyclic 
loading there are two approaches. The first approach, 
motivated chiefly by yield surface probing experiments during 
nonproportional straining [8-11], requires the formulation of 
an anisotropic yield surface [12-15]. This surface can distort, 
expand, or contract to reflect deformation-induced 
anisotropy and isotropic hardening. 

It is reasonable to assume for cyclic plasticity applications 
that deformation-induced anisotropy can be accounted for by 
a kinematic backstress a. The yield surface may contract or 
expand but not distort. These assumptions result in a com-
putationally more efficient form of the yield surface than 
most formulations that permit distortion: 

f=f (a - a,R) =0 
	

(I ) 

where di is determined from the consistency condition f = 0 
during plastic flow and the ratio of kinematic to isotropic 
hardening [16]. 

As usual, the conditions for plastic flow are 

= rir(af/aa) if f=0 and a:(af/aa) a.- 0 
	

(2) 

E' =0 otherwise 	 (3) 

where fir is a scalar multiplier, and a is the stress tensor. Here 
the usual decomposition of the total small strain rate into 
elastic and plastic components is assumed, i.e., E = Er 	iP. 

The scalar product 	(aPaa,, ) is denoted by er(aPaa). 
Lamba [17, 18], McDowell et al. [19, 20], and Garud [21, 

22] have demonstrated the applicability of equations (1)-(3) 
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for proper plastic strain rate direction under conditions of 
nonproportional straining at cyclically stable conditions when 
the hardening rule is obtained from a nested surface ap-
proach. The yield surface radius R can be determined for 
cyclic hardening or softening from a relation that defines  R as 
a function of accumulated plastic strain n = ( EP  : EP ) di 
[23]. 

Plastic Strain Range Effects. It is well known that the 
evolution of the isotropic hardening parameter R depends on 
plastic strain range [24-26], particularly for the austenitic 
stainless steels. Analytical description of this dependence 
requires a more detailed repository for history dependence 
than n. At the very least, a measure of the metric plastic strain 
accumulation from a point of recent unloading is necessary 
[27, 28]. A plastic strain range memory parameter q was 
introduced by Chaboche et al. [29] and Nouailhas et al. [30] 
for cyclic loading. The evolution of q follows from 

1 

2 
q= - H(F)n:n• ii(2/3)1/2 	 (4) 

where H(F) = 1 if F = 0 and H(F) = 0 if F < 0. The 
normal to the yield surface J.  at the current stress point is 
denoted by n, where n = (aPaa) / IlaPaall. The notation 
Ilapaall denotes the norm (afiaa : apaa)i' 2 . Here, F is the 
plastic strain memory surface defined in second invariant 
form by 

F= (2/ 3)(eP - aP):(eP - aP)- q2  = 0 	(5) 

where aP is the center of the memory surface in plastic strain 
space. Note that n • is the normal to the surface F at the point 
el) defined by n• = (aFiatP) oaFiael. For completely 
reversed uniaxial cycling, q represents half the axial plastic 
strain range. The surface F is shown in Fig. 1 in plastic strain 
space. 

There is a rather severe problem with this formulation of 
plastic strain range memory. If an overload cycle occurs in 
which the plastic strain range is doubled, for example, 
continued cycling at the smaller strain range may not result in 
a saturated isotropic hardening state that corresponds to the 
overload cycle. Yet q would correspond to the plastic strain 
range of the overload cycle. The actual plastic strain range 
"remembered" by the material would lie somewhere between 
that of the small and large cycles [25, 31]. This lack of 
evanescence can be corrected by introduction of a fading 
memory term in equation (4) 

4=[-2 H(F)r(2/3)'/2  - A(q)] n 	 (6) 

where A (q) is the memory loss-rate function and I' is a scalar 
to be defined later. This capaoility of fading memory is also 
necessary to allow for the possibility of readjustment of the 
isotropic hardening or softening response when reducing the 
applied strain range during cyclically stable conditions. 

Expressing the flow rule in equation (2) in an equivalent 
form EP  = (1/h) ( a: n)n allows interpretation of h as a 
generalized plastic modulus or hardening modulus. It is 
particularly attractive to define h through a multiple nested 
surface scheme as in the approach of Mroz [32-34]. Path 
dependence of h and EP is achieved through the translation of 
the yield and loading surfaces. 

Cross-Hardening Effects. It is experimentally observed 
for a number of metals [7, 17, 30, 35] that nonproportional 
cycling leads to an increase in the size of the region of elastic 
response above that corresponding to proportional cycling at 
the same effective strain range. This additional isotropic 
hardening apparently results from increased dislocation 
interaction and is not included in conventional theories. 
Brown and Miller [35] were able to correlate this additional  

hardening for out-of-phase sinusoidal straining of I percent 
Cr-Mo-V steel by introducing a rotation factor 

shear strain range at 45 deg to maximum shear plane 
RF- 

maximum shear strain range 

( 7 ) 

For proportional straining, defined in this work as loading for 
which the total strain rate is collinear with the total strain, RF 
= 0. For the case of sinusoidal tension-torsion straining of a 
thin-walled tubular specimen with an engineering shear to 
axial strain amplitude ratio of 7„/E,, = (I + v) and a phase 
angle of 90 deg, RF = 1. Here, v is Poisson's ratio. The latter 
case defines every plane in the specimen wall as a maximum 
shear strain plane of equal shear strain range at some point in 
the loading cycle. The maximum shear planes rotate at a 
constant rate. This case also yielded the most additional cyclic 
hardening observed by Brown and Miller within a rather 
coarse matrix of phase angle and strain amplitude ratio tests. 

Brown and Miller achieved a correlation coefficient of 
0.836 for various phase angle and strain amplitude ratios by 
assuming a linear relation between cyclically stable flow stress 
and rotation factor based on a maximum shear stress-strain 
Ramberg-Osgood relation analogous to the uniaxial cyclic 
stress-strain curve [24]. 

Nouailhas et al. [30] point out that inclusion of plastic 
strain range dependence through the memory parameter q of 
equations (5) and (6) is highly insufficient to correlate the 
significant additional hardening of type 316 stainless steel 
subjected to 90 deg out-of-phase tension-torsion loading. 
Hence, the need to define another state variable to account for 
the additional hardening during nonproportional loading is 
well established. 

McDowell [6, 7, 31] introduced an instantaneous measure ) 
of the nonproportionality of the strain rate tensor 

J= I 	g (7,„,(E)) I (8)  

;y n, a,(t) = di dt (E 	- € 3 ) (9)  

7...(E)= (i)i - (03 (10)  

where El E3 are the largest and smallest principal strains, and 
, (0 3  are the largest and smallest principal values, 

respectively, of the strain rate tensor at each point in time. 
The function g is defined by g(x) = 1 if x = 0; g(x) = x if x 

0. 
There is a physical interpretation for this definition of J. 

Under conditions of proportional straining, 'Y max (f) = .(i) 
and J = 1. In this case, the principal axes of strain are fixed 
with respect to material axes. For the case of sinusoidal 
tension-torsion straining of a thin-walled tubular specimen 
with a shear to axial strain amplitude ratio of y 0  = (1 + 
and a phase angle of 90 deg, max (t) = 0 and J = 0 since 

is nonzero. Again, this is the case of maximum ad-
ditional cyclic hardening observed experimentally by Brown 
and Miller. Hence, 0<-J<_ 1 with decreasing values of J in-
dicative of higher degrees of instantaneous non-
proportionality. 

Since J is an instantaneous measure of nonproportionality, 
the degree of nonproportionality, 4:), representative of several 
complete cycles of loading can be expressed as a functional of 
J such that Os s. 1; is directly analogous to RF in equation 
(7), but evolves continuously. A specific rate form for the 
state variable 4> will be proposed later. 

It should also be noted that the form for J in equations 
(8)-(l0) is valid for proportional straining or for conditions of 
nonproportional loading where the principal strain directions 
rotate continuously at some or all points of a loading cycle, as 
in axial-torsion tests of thin-walled tubular specimens. 
Nonproportional variations of principal strains with fixed 
principal directions will not be considered in this study. 
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Description of Model 

It should be noted that the formulation for memory of 
plastic strain range and nonproportionality of loading 
discussed in the previous sections are strain-based. Hence, the 
possibility of including these parameters in a strain space 
plasticity theory [36-38] appears physically meaningful. 
However, the memory of plastic strain range would still 
necessitate a separate plastic strain memory surface or 
analogous formulation. In addition, accurate modeling of 
modulus and kinematic hardening for nonproportional cyclic 
loading would probably require a multiple surface strain 
space formulation [38]. Therefore, the present paper will 
consider a more conventional stress space formulation for the 
yield surface, with the addition of a plastic strain memory 
surface. 

A two surface, stress-space, cyclic plasticity model similar 
to that of Dafalias and Popov [27] and Krieg [34] is con-
sidered. This model includes plastic strain range and non-
proportionality dependence in the isotropic hardening for-
mulation. It is valid for complex, nonproportional, cyclic 
loading with transient hardening or softening behavior. Only 
small strains are considered. 

The yield and limit surfaces are defined as f (s - a, R) = 0 
and!' (s* - a', R•) = 0, respectively, where 

f= (3/2)E:k -R= 	 (11) 

f = (3/2)E•:E• - (R•) 2 	 (12) 

where s = a - (1/3)(a:1)1, k = s - a, k• = s• -a', and 
where a, R, and a', R• denote the vector position of the 
center and radius of the yield and limit surfaces, respectively. 
The vectors s and s• are position vectors of generic points on 
the yield and limit surfaces, respectively, in deviatoric stress 
space. The identity tensor is denoted by I. The flow rule can 
be stated as iP = (1/h ) (S: n)n if f = 0 and i:n 0, with iP  = 

0 otherwise where h = (2/3)(da/deP) is determined from a 
stable uniaxial cyclic stress-strain curve, and n = (apas) / 
Haf/asll. 

To formulate hardening rules and the form of the function 
h for multiaxial loading, it is necessary to consider previous 
nonproportional cyclic loading experiments. The work of 
Lamba [17, 18) points to the use of a Mroz-type [32, 33] 
kinematic-isotropic hardening rule. The kinematic hardening 
rules of Prager [39] and Ziegler [40] prove to be inadequate 
for nonproportional cyclic loading [17, 18]. Hence, the use of 
two surfaces in the stress space formulation is both minimal 
and capable of accuracy. 

The following simple hardening rules are representative of 
popular two surface models and can include all essential 
aspects of reality [23] such as cyclic hardening and softening, 
cyclic mean stress relaxation, and cyclic creep or racheting: 

a= iµ.# (13)  

it =En.  (14)  

ir° = 	n (15)  

= (16)  

Equations (13) and (15) define kinematic hardening of f and 
, respectively. Isotropic hardening is defined in equations 

(14) and (16). In these equations, v = (s* - s) / Ils• —s11, n = 
: iP)I/ 2  = IIEP II and K = (2/3) (da/deP)„, where da and 

deP are measured from a uniaxial cyclic stress-strain curve. 
Hence, K represents the asymptotic plastic modulus. In 
practice, K is selected to best fit the asymptotic stress-strain 
response. The functions E and be discussed later. 

In the Mroz rule of equation (13) s• defined as the point on 
the surface f which has the same outward normal as the 
normal, n, to the yield surface f at the current stress state, s: 

s° = a' + (R"/ R) k 	 (17) 

Fig. 1 Plastic strain memory surface F when the current plastic strain 
lieson F 

Fig. 2 Surfaces I and,' In deviatoric stress space 

The rate .  scalar A. is determined from the consistency 

condition f = 0 during the plastic flow, which upon the 

substitution a = ih,v leads to 

ih c, = (E:i - (2/3)Rit) / (E:v) 	 (18) 

The surfaces f and f• and the parameters a, a', n and v are 
illustrated in Fig. 2 in deviatoric stress space. The hardening 

modulus, h, can be expressed as a function of Ils* - sll. As 
noted by Krieg [34], the stiffness decreases as 11s• - sll 
decreases until we approach the asymptotic state charac-

terized by K at some significant level of plastic strain. In the 
absence of accurate knowledge of the variation of the hard-
ening modulus during nonproportional plastic flow, it is 

assumed that the limit surface f• is of primary importance in 

defining h. The functional relationship for h can then be 
determined from a stable uniaxial cyclic stress-strain curve as 
shown in Fig. 3. Since this curve is representative of cyclically 

stable response, R = R• = 0 and hardening is purely 

kinematic. The radii R° and R determined from this uniaxial 

cyclic stress-strain curve will be denoted as R• (0, q) and R (0, 

q), respectively, where q is the maximum plastic strain am-
plitude in the incremental step test used to determine the 
curve. Small offset or deviation from linearity definitions of 
yield could be used. The hardening modulus could be 

generally written as 

h=h(11s• -s11/(0(R• -R) ),K) 	 (19) 

As 11s• - sll - 0, It - K. The asymptotic slope (2/3) 

(da/deP),, defines K as shown in Fig. 3. The radii R and R• 
are the AEP/2 = 0 ordinate intercepts defined by a deviation 
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Fig. 3 Determination of parameters in two surface model from a 
uniaxial cyclic stress-strain curve 

from linearity, perhaps, and back extrapolation of the 
asymptotic plastic response defined by K, respectively. Thus, 
R is the uniaxial yield strength of the material. 

The 8 parameter in equation (19) introduces memory of the 
most recent point of elastic unloading. It is a measure of the 
effects of plastic deformation accumulated during the last 
loading reversal. From an alternative viewpoint, it is a 
measure of the initial distance to the asymptotic plastic state 
from the point of initial yielding for the current plastic 
trajectory. Hence, the use of 8 has the same qualitative effect 
on the plastic modulus function as the delta parameter in-
troduced by Dafalias and Popov [27] to describe the ex-
perimental observation that h is not strictly just a function of 
current distance from the limit surface. A simple, reasonable 
choice for 8 for each plastic strain trajectory would be 

0= Ilsr, — s o ll (RO — Ro) 	 (20) 

where all zero subscripted variables correspond to values at 
the most recent point of initial yielding following a change in 
loading direction. 

The hardening rules in equations (13)—(16) allow the sur-
faces f and f to expand and translate independently without 
intersecting. The limit surface translates more slowly and, 
possibly, in a different direction than the yield surface when 
the stress point lies within f' . When Ils* — sli — 0 and R = 
12• = 0, the surfaces approach tangential contact and 
translate according to a — eg* = Kim since h — K. When Ils* 
— s I = 0, we can heuristically take v = n. 

The use of this stress space formulation is restricted to 
strain-hardening behavior for which (aPas): s > 0 during 
plastic flow, a condition almost universally met by metals of 
structural interest at typical cyclic strain magnitudes. 

The isotropic hardening functions E and can be written as 

R = µ(12(0,q) —R)1,0) 	 (21) 

= it(I2*(4),q) —R*),P 	 (22) 

where /2 and I2• represent cyclically stable values of R and R" 
corresponding to the current values of state variables (/) and q. 
The rate of approach to the cyclically stable state is governed 
by A. The admissibility functions ik and 1/' place restrictions 
on the stable states that can actually be attained. They are 
necessary for complex loading because a formulation based 
on internal state variables that do not necessarily 
monotonically increase (i.e., plastic strain range q and 
nonproportionality of loading 0) implies reversibility; yet 
Isotropic hardening is known to be largely irreversible for 
planar slip metals [25, 26], and nearly reversible for wavy slip 
materials of structural interest. In the event of nonfading 
memory for cyclically hardening metals,_ik and ‘1,* could be 
represented by Heaviside functions u(R (0,q) — R) and 

u(i?*(0,q) — R•), respectively. In contrast, completely fading 
memory can be described by 1/, = = 1. 

The variable c15 represents the integrated effects of mobile 
dislocation interactions during cycling. The evolution of th can 
be described by 

	

Q=µ'(1 —J— do)i7 u(1 —J— Qh,„,1) 	(23) 

where c15 = 0 at time t = 0 or i ,i7dt = 0. Inclusion of the 
Heaviside function u( 1 — J — cb lin,„) is based on the 
assumption that additional hardening due to interaction of 
slip systems during nonproportional loading is determined 
primarily by those portions of each loading cycle for which 
the maximum shear planes rotate during plastic flow. The 
threshold value ¢,i ;„„, may be defined as a small number in the 
range 0.01 to 0.03 so that virtually all deviations from 
proportionality are included. The calculation of (75 is in-
sensitive to the magnitude of gi5 timi, if Qum , is less than 0.10, 
particularly for moderate to severe degrees of non-
proportionality of loading. For proportional straining, c15 = 0. 
For -ya ie c, = (1 + v) during sinusoidal tension-torsion 
straining with a phase angle between applied axial and shear 
strains of 90 deg, ¢ — 1 as j,37dt — 03 . The evolution of q, the 
plastic strain range variable, is defined by equation (6). In-
troducing a kinematic hardening rule for Fin equation (5), 

= (H(F)/2)(iP:n•)n• 	 (24) 

Hence, the surface F can evolve only if F = 0 and f r  lies on F. 
Enforcing the consistency condition F = 0 during plastic now 
when F = 0 (H(F) = 1), 

(aFiae):EP+ (aFiaaP):ciel' —2q4 = 0 	(25) 

which, after some substitution and manipulation, leads to 

F=n*:n+v6A(q) (26) 

All that remains in the isotropic hardening formulation is 
assignment of the functions R(Q, q) and R • (Q. q) in equations 
(21) and (22). McDowell [6, 7] demonstrated the applicability 
of the linear form 

(0,q) = 0[12(1,q) —12(0,q)j + 12(0,q) 	 (27) 

	

12* (<4. ,q) = 0[12*(1,q)-12*(0,q)1+ ir(0,q) 	(28) 

where f2(1, q) and /2*(1, q) can be obtained, for example, 
from the cyclic stress-strain response during proportional 
loading immediately following cyclically stable 90 deg out-of-
phase tension-torsion loading of thin-walled tubular 
specimens at a shear to axial strain amplitude ratio of -Nit a  = 
(1 + v). 

Conclusions 

The proposed model, while limited in scope to time and 
rate-independent behavior, is significant in two respects. 
First, the effects of changes in plastic strain range and 
nonproportionality of loading are incorporated in the 
evolution of isotropic hardening via two additional state 
variables q and Q. It is fully expected that either or both of 
these variables could be included in virtually any constitutive 
framework. Abrahamson [41] incorporated an analogous 
form of cb proposed by McDowell [7] into a state variable 
constitutive framework valid for cyclic viscoplasticity. 

It is noted that the structure of the proposed theory is 
capable of representing those aspects of material behavior 
perceived as most essential and relevant by Drucker and 
Palgen [23] for time-independent cyclic plasticity including 
erasure of memory of prior deformation by overload ex-
cursions, cyclic hardening or softening under symmetric 
cycles of stress or strain in the plastic range, progressive creep 
or racheting of the hysteresis response during unsymmetric 
cycles of stress in the plastic range, and progressive relaxation 
of mean stress during unsymmetric cycles of strain in the 
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plastic range. The accuracy of the racheting or mean stress 
relaxation capability of this model would be enhanced by 
admitting dependence of K and h on (1/2) (s:s), the second 
invariant of deviatoric stress. 

Acknowledgments 

The author wishes to acknowledge the National Science 
Foundation (Grant No. MEA-8404080; Program Manager, 
C. J. Asti11) for continuing research support on the subject of 
this paper. 

References 

1 Krempl, E., The Influence of State of Stress on Low-Cycle Fatigue of 
Structural Materials, ASTM STP 549,1974. 

2 Brown, M. W., and Miller, K. J., "Two Decades of Progress in the 
Assessment of Multiaxial Low-Cycle Fatigue Life," Low-Cycle Fatigue and 
Life Prediction, ASTM STP 770,1982. pp. 482-499. 

3 Fash, J. W., Socie, D. F., and McDowell, D. L., "Fatigue Life Estimates 
for a Simple Notched Component Under Biaxial Loading," to appear in ASTM 
STP 853. 

4 Garud, Y. S., "MULTI-AXIAL FATIGUE: A Survey of the State of the 
Art," Proceedings of the ASTM/SAE Workshop on Elasto-Plastic Materials 
Behavior and Component Fatigue Analysis, Minneapolis, April 1980. 

5 Laflen, J. H., and Cook, T. S., "Equivalent Damage—A Critical 
Assessment," NASA CR-I 67874, Nov. 1982. 

6 McDowell, D. L., "On the Path Dependence of Transient Hardening and 
Softening to Stable States Under Complex Biaxial Cyclic Loading," 
Proceedings of the International Conference on Constitutive Laws for 
Engineering Materials, Desai and Gallagher, Eds., Tucson, Ariz., Jan. 1983, 
pp. 125-132. 

7 McDowell, D. L., "Transient Nonproportional Cyclic Plasticity," Ph.D. 
thesis, Design and Materials Division, Report No. 107, Department of 
Mechanical and Industrial Engineering, University of Illinois at Urbana-
Champaign, June 1983. 

8 Liu, K. C., and Greenstreet, W. L., "Experimental Studies to Examine 
Elastic-Plastic Behaviors of Metal Alloys Used in Nuclear Structures," Con-
stitutive Equations in Viscoplasticity: Computational and Engineering Aspects, 
AMD, ASME, Vol. 20,1976, pp. 35-56. 

9 Hecker, S. S., "Experimental Studies of Yield Phenomena in Biaxially 
Loaded Metals," Constitutive Equations in Viscoplasticity: Computational and 
Engineering Aspects, AMD, ASME, Vol. 20,1976, pp. 1-32. 

10 Phillips, A., Tang, J. L., and Ricciuti, M., "Some New Observations on 
Yield Surfaces," Acta Mechanica, Vol. 20,1974, pp. 23-39. 

II Ohashi, Y., Kawashima, K., and Yokochi, T., "Anisotropy Due to 
Plastic Deformation of initially Isotropic Mild Steel and Its Analytical For-
mulation," Journal of the Mechanics and Physics of Solids, Vol. 23,1975, pp. 
277-294. 

12 Phillips, A., and Weng, G. J., "An Analytical Study of an Ex-
perimentally Verified Hardening Law," ASME JOURNAL OF APPLIED 

MECHANICS, Vol. 42, June 1975, pp. 375-378. 
13 Shiratori, E., Ikegami. K., and Yoshida, F., "Analysis of Stress-Strain 

Relations by Use of an Anisotropic Hardening Plastic Potential," Journal of 
the Mechanics and Physics of Solids, Vol. 27,1979, pp. 213-229. 

14 Drucker, D. C., "Some Implications of Work Hardening and Ideal 
Plasticity," Quarterly of Applied Mathematics, Vol. 7, No. 4, Jan. 1950, pp. 
411-418. 

15 Mair, W. M., and Pugh, H., "Effect of Prestrain on Yield Surfaces in 
Copper." Journal Mechanical Engineering Science, Vol. 6, No. 2. 1964, pp. 
150-163. 

16 Newman, J. C., Jr., "Finite Element Analysis of Crack Growth Under 
Monotonic and Cyclic Loading," Cyclic Stress-Strain and Plastic Deformation 
Aspects of Fatigue Crack Growth, ASTM STP 637,1977, pp. 56-80. 

17 Lamba, H. S., "Nonproportional Cyclic Plasticity," TAM Report No. 
413, Department of Theoretical and Applied Mechanics, University of Illinois 
of Urbana-Champaign, 1976. 

18 Lamba, H. S., and Sidebottom, 0. NI., "Proportional Biaxial Cyclic 
Hardening of Annealed Oxygen-Free High-Conductivity Copper," Journal of 
Testing and Evaluation, ASTM, Vol. 6, No. 4,1978, pp. 260-267. 

19 McDowell, D. L., "Multiaxial Nonproportional Cyclic Deformation," 
Report No. 102, Design and Materials Division, Department of Mechanical and 
Industrial Engineering, University of Illinois at Urbana-Champaign, May 1981. 

20 McDowell, D. L., Socie, D. F., and Lamba, H. S., "Multiaxial Non-
proportional Cyclic Deformation," Low-Cycle Fatigue and Life Prediction, 
ASTM STP 770,1982. pp. 500-518. 

21 Garud, Y. S., "A New Approach to the Evaluation of Fatigue Under 
Multiaxial Loadings," Proceedings, Symposium on Methods for Predicting 
Material Life in Fatigue, ASME, Dec. 1979, pp. 247-263. 

22 Garud, Y. S., "Prediction of Stress-Strain Response Under General 
Multiaxial Loading," Mechanical Testing for Deformation Model Develop. 
ment, ASTM STP 765,1982, pp. 223-238. 

23 Drucker, D. C., and Palgen, L., "On Stress-Strain Relations Suitable for 
Cyclic and Other Loading," TAM Report No. 443, Department of Theoretical 
and Applied Mechanics, University of Illinois at Urbana-Champaign, July 
1980. 

24 Landgraf, R. W., Morrow, J., and Endo, T., "Determination of the 
Cyclic Stress-Strain Curve," Journal of Materials, ASTM, Vol. 4, No. I, Mar. 
1969, pp. 176-188. 

25 Lukas, P., and Polak, J., "Cyclic Stress-Strain Response in Low Am-
plitude Region," Proceedings of the Symposium on Work Hardening in 
Tension and Fatigue, AIME, Cincinnati, Nov. 1975, pp. 177-205. 
• 26 Landgraf, R. W., "Cyclic Stress-Strain Responses in Commercial 

Alloys," Proceedings of the Symposium on Work Hardening in Tension and 
Fatigue, AIME, Cincinnati, Nov. 1975, pp. 240-259. 

27 Dafalias, Y. F., Popov, E. P., "A Model of Nonlinearly Hardening 
Materials for Complex Loading," Acta Mechanica, Vol. 21.1975, pp. 173-192. 

28 Eisenberg. M. A., "A Generalization of Plastic Flow Theory With 
Application to Cyclic Hardening and Softening Phenomena," ASME Journal 
of Engineering Materials and Technology, Vol. 98,1976, pp. 221-228. 

29 Chaboche, J.-L., Dang Van. K., and Cordier, G., "Modelization of the 
Strain Memory Effect on the Cyclic Hardening of 316 Stainless Steel," 
Proceedings of the 5th International Conference on Structural Mechanics in 
Reactor Technology, Berlin, 1979. 

30 Nouailhas, D.. Policella. H., and Kaczmarek, H., "On the Description of 
Cyclic Hardening Under Complex Loading Histories." Proceedings of the 
International Conference on Constitutive Laws for Engineering ,Vluterials, 
Desai and Gallagher, Eds., Tucson, Ariz., Jan. 1983, pp. 45-49. 

31 McDowell, D. L., and Socie, D. F.. "Transient and Stable Detormatton 
Behavior Under Cyclic Nonproportional Loading," to appear in ASTM STP 
853. 

32 Mroz, Z., "Mathematical Models of Inelastic Material Behavior," Solid 
Mechanics Division, University of Waterloo, W'atcrloo, Ontario. 1973. 

33 Mroz, Z., "An Attempt to Describe the Behavior of Metals Under Cyclic 
Loads Using a More General Workhardening Model." Acta Mechanica, Vol. 7, 

1967, pp. 199-212. 

34 Krieg, R. D., "A Practical Two Surface Plasticity Theory," ASME 
JOURNAL OF APPLIED MECHANICS, Vol. 42, Sept. 1975. pp. 641-646. 

35 Brown, M. W., and Miller, K. J., "Cyclic Deformation of I Percent Cr-
Mo-V Steel Under Out-of-Phase Loads," Fatigue of Engineering Materials and 
Structures, Vol. 2,1979, pp. 217-228. 

36 Casey, J., and Naghdi, P. M., "On the Characterization of Strain-
Hardening in Plasticity," ASME JOURNAL OF APPLIED MECHANICS, Vol. 48, 
1981, pp. 285-296. 

37 Casey, J., and Naghdi. P. M., "On the Nonequivalence of the Stress 
Space and Strain Space Formulations of Plasticity Theory," ASME JOURNAL 

OF APPLIED MECHANICS, Vol. 50,1983, pp. 350-354. 

38 Yoder. P. J., and Iwan, W. D., "On the Formulation of Strain-Space 
Plasticity With Multiple Loading Surfaces," ASME JOURNAL OF APPLIED 

MECHANICS, Vol. 48,1981, pp. 773-778. 
39 Prager, W., "A New Method of Analyzing Stress and Strain in 

Workhardening, Plastic Solids," ASME JOURNAL OF APPLIED MECHANICS, Vol. 

23.1956, p. 493. 
40 Ziegler, H., "A Modification of Prager's Hardening Rule," Quarterly of 

Applied Mathematics, Vol. 17.1959, pp. 55-60. 
41 Abrahamson, T. E., "Modeling the Behavior of Type 304 Stainless Steel 

with a Unified Creep-Plasticity Theory," Ph.D. thesis, Department of 
Mechanical and Industrial Engineering, University of Illinois at Urbana-

Champaign, 1983. 

Printed in U.S.A. 

Journal of Applied Mechanics 



THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS 
345 E. 47 St., New York, N.Y. 10017 

The Society shall not be responsible for statements or opinions advanced in papers or in 
discussion at meetings of the Society or of Its Divisions or Sections. or printed in its 
publications. Discussion is printed only if the paper is published In en ASME Journal. 
Released for general publication upon presentation. Full credit should be given to ASME. 
the Technical Division, and the author(s). Papers are available from ASME for nine months 
after the meeting. 
Printed In USA, 

85-APM-10 

A Two Surface Model for 
Transient Nonproportional 
Cyclic Plasticity: 
Part 2 Comparison of Theory With 
Experiments 
For the two surface cyclic plasticity model introduced in Part 1, methods for 
determination of model parameters are described. The model is specialized to axial-
torsional loading of a thin-walled tubular specimen, and applied to non-
proportional, room-temperature cycling of type 304 stainless steel. Computer 
simulations for two complex histories show good general agreement with ex-
perimental data obtained by the author. 

D. L. McDowell 
Assistant Professor, 

School of Mechanical Engineering, 
Georgia Institute of Technology, 

Atlanta, Ga. 30332 
Assoc. Mem. ASME 

Introduction 

In Part 1 of this two-part paper, a two surface cyclic 
plasticity model was developed which includes the essential 
aspects of cyclic nonproportional loading. In this part, the 
material constants and model parameters are determined for 
type 304 stainless steel. The model is specialized to axial-
torsional loading and compared with nonproportional, cyclic 
histories consisting of several sequential blocks, each con-
sisting of different strain-controlled paths. It is shown that the 
model gives quantitatively good agreement for these complex 
histories and that the nonproportional state variable is 
necessary for this agreement. 

Type 304 stainless steel is widely used in applications that 
involve cyclic nonproportional loading such as boiling water 
and liquid-metal-cooled fast breeder reactors and gas turbine 
engines. Such applications have warranted a relatively high 
research effort with regard to room and high-temperature 
cyclic deformation characteristics [1-4] related to fatigue and 
creep-fatigue interaction [5, 6]. 

Determination of Model Parameters 

Most of the parameters of the two surface model presented 
in companion paper can be determined from uniaxial tests. 
The model requires well-defined nonproportional, biaxial 
tests to determine saturated or cyclically stable isotropic 
hardening variables. 
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1. Parameters R (0, q), A* (0, q), x and h. The radii R 
(0, q) and R* (0, q) of the yield and limit surfaces, respec-
tively, can be determined from stable uniaxial cyclic stress-
strain curves [7] determined at several maximum strain 
amplitudes across the range of interest. The strain rate of the 
tests should be of the same order of magnitude as that of the 
histories to be modeled. 

It should be noted that the asymptotic slope (da/ deP ) = 
(3/2) K is also a function of nonproportionality and strain 
range, k = k(4), q), where k denotes the slope for cyclically 
stable response corresponding to current values of (t) and q. 
The variables a and e" are applied stress and plastic strain in 
the axial direction. 

The function ic = ic (0, q) is defined by fitting the slope (2/3) 
(daideP ),,, of the cyclic stress-strain curves at several q 
values. 

Having determined A, R*, and K, we can compute h from 
the uniaxial cyclic stress-strain curve at a selected value of q = 
q' 

2 da 
h= — — = 

3 
deP h(6/ 60 ,40,d')) 

where 

45 = ■./11s* - s II and 45 0  = 	Ilso -s o li  

0 (0,q ' ) - ft(0,q) 	 (2) 

The quantityois shown in Fig. 3 of Part 1. 

2. Parameters k(1, q), k* (1, q), _and 01, q). It is 
R necessary to determine the (1, q) and R 0  (1, q) functions in 

equations (27) and (28) of Part 1 by running appropriate 
biaxial tests. Tension-torsion tests can be run at several strain 
amplitude levels with a phase angle between applied 
sinusoidal axial and engineering shear strain of 90 deg and a 
shear to axial strain amplitude ratio -y a / = (1 + v). The 
parameters R (1, q), 1?* (1, q) and is (1, q) are determined in 

(1) 
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analogy to the uniaxial case from half of the hysteresis loops 
obtained by subsequent axial loading after reaching cyclically 
stable response, or from a stable cyclic effective stress-strain 
curve obtained by connecting effective stress points at 
maxima of effective strain. 

3. Parameters A(q) and *  A. The function A(q) in 
equations (6) and (26) of Part I can be determined by running 
completely reversed uniaxial tests at a strain amplitude E at 
until cyclically stable, increasing the strain amplitude to F -al 
for three cycles, and then decreasing to E at  for 10 cycles. After 
decreasing to E at, the cyclic stress amplitude is compared to 
that corresponding to E at if cycling were continued at am-
plitude e a ,. We can heuristically define A(q) = Cq, where C 
is a constant, based on limited experiments. Upon decreasing 
the strain range to E 02 and integrating equation (6) of Part 1 
from this point on with H(F) = 0, 

C= — 1 n[q * /(€ P  )]/ [40€02P(3/2) 1/2] - 	(3) 
where e„ I P  and e a2P  are the plastic strain amplitudes 
corresponding to e a , and ea , just before and after the am-
plitude reduction, respectively, and q• is some plastic strain 
amplitude between € 01 P  and e a2P . From the stress-strain 
response after unloading from f a l l'  to 10 cycles of loading at 
Ea2P, the value of q• can be determined by setting R (0, qs) = 
R since R (0, q) is known, for example. In general, 13 i  (0, E a2P ) 

13, (0, q*) where 3i  = R, R* and k, respectively, for i = 1, 
2, 3. Note that q• is the maximum plastic strain amplitude 
that is "remembered" by the material after the three cycle 
overload. 

The parameterµ can be approximated as a constant for a 
range of strain amplitudes as demonstrated in previous 
uniaxial and proportional biaxial tests [8, 9, 10]. In the 
current rate formulation for ck, constant 12 .  may be taken to 
fit transient response under conditions of nonproportional 
loading. For uniaxial tests, (f) = = 0 andµ is easily found 
from tests in which the strain range is suddenly increased. 
Denote the values of R, , and k pertaining to cyclically 
stable response at a completely reversed uniaxial strain 
amplitude q. as 13, (0, q.). If the plastic strain amplitude is 
increased to q b  at time t = 0 such that q. > q a , integration of 
equations (21) and (22) of Part I and equation (15) of Part 2 
(to be introduced) with all values equal to 1 gives 

X, — [3,(0,q.)=[13 ; (0,q.)— 3 ; (0,q.)]exp[— 	 (4) 

where X, = R, R', and K, respectively, for i = 1, 2, 3. Since 
the 3, (0, q) functions are known from previous uniaxial 
tests, X, can be determined from the hysteresis loops as a 
function of 5 iidt and a representative value forµ can then be 
determined from equation (4). For simplicity, the stress 
amplitude could be used to determineµ in equation (4) instead 
of X/  and 3i . If the transient response of a virgin specimen is 
used, the 3, (0, q.) parameters in equation (4) could be 
replaced by initial values of R, R', and K. 

4. Parameters 0, P, 	and o'. The form of the 4,, 
and 0, functions in equations (21) and (22) of Part 1 and 
equation (15) of Part 2 must be determined for each material. 
Minimally, uniaxial tests would be necessary in which the 
strain amplitude is suddenly decreased from q b  corresponding 
to cyclically stable conditions to q a  where q. > q a . The 1,/, 
functions could be constructed from a number of such tests 
since R, 	, and is are known in the evolution equations for 
R, R•, and K. Since the functions may be history-dependent, 
it may be sufficiently accurate to heuristically assume simple 
forms for wavy and planar slip materials as stated in Part 1. 

The choice of can be made by fitting the rate of ap-
proach to the new cyclically stable state after switching from 
cyclically stable uniaxial loading. Let J' be defined as the 
degree of nonproportionality for the subsequent cycles  

(approximated as a constant). If the effective strain range is 
not substantially increased or decreased, we can approximate 
q = q" as a constant. Then, equations (23), (21), or (22), and 
(27) or (28) of Part 1 can be combined into the differential 
equation 
dX, 

+ X,= p.(1—J')(1—e -u •)(i3i (1,q") 

— [3, (0,q")1 +43, (0,q") 	 (5) 
with the initial condition X, = 13, (0, q") at n  = 0. The 
solution to this equation is 

X, = [3, (0,q")+ (1 — J' )1f3,(1,q" ) — f3,(0,q")I[1 

+ (We' — Ae -" ")/(µ— µ')] 	 (6) 
for i = 1, 2, 3. The maximum effective stress amplitude could 
be used in equation (6) to determine A s  instead of X, and 3g . 
The constant A s  can be approximated by fitting equation (6) 
to the observed X, versus n response, sinceµ is known. 

Specialization to Axial-Torsional Loading 

• For a thin-walled tubular section subjected to combined 
tension and torsion, the deviatoric stress components can be 
expressed in terms of the nonzero stress components a ll  and 
a 12  as follows: 

s li  = (2/3)a11 ,s22 =533 = (1 /2)S11 ,Su = 
	

(7) 

En =sli all 2E22 = 33 = - ( 1 /2)%11 2t12 = S12 - a12 
	(8) 

since an  = a33  = — (1/2)a l  . Also, s23  = si3 = all = a23 = 
0. Here, the subscripts 1, 2, 3 denote the axial, cir-
cumferential, and radial directions of the tubular test 
specimen, and s is the deviatoric stress tensor. 

The s and a tensors are, of course, symmetric. In this case 
the yield surface is expressed asf = an 2  + 3a122  — R 2  = 0. 

The components of the normal o = e/ N E  II are n il  = e n  /PE 
 and n12 = El2 /PE where PE 

= "3  
and n 33  

= //22 = -(1/2)n11. For the case 2o)1  of tension-torsion nsi 2  on-to1r224/2n 1oading 
of a thin-walled tubular specimen, the instantaneous measure 
of nonproportionality is  as 
J= I (e ll  i ll (1 + v)2  +4 12 E 12 ) 	 - 

'1 ii(€11 2 (1 + 	

+ 4 	

2 (1 + 1)2 

+ 

(9) 

The kinematic hardening rule for the yield surface becomes 
a ll  = Z(4, —.5• 11 ) and au = Z(Su s  - Su) where 

• 
Z= 	+ 2e 12S 12  — (2/3)RA] 

—sii)(3/2)+ 2i iz(siz — siz)] 	(10) 

ands"' = all' + (R • /R)kii 	sne  = a12 * + (R'/A)Eiz- 
The flow rule can be written in component form as iii P  = 
(1/h)P,n n  and i 12P  = ( 1 /h)P,n12 if P, = ((3/2)innii + 
2 i12n12) a 0; iiI P  = E,2P  = 0 otherwise. Here, h is detei-
mined from equation (1). Kinematic hardening of the limit 
surfacef follows the Prager rule a u ' = tur n n  and au' = 
xn u il where n = ((3/2) (i II P)2  + 2(i12P)2 ) 1/2 . 

Isotropic and kinematic hardening rules for the plastic 
strain memory surface are written, respectively, as 

q=[1((3/2)n li n i , • +2n n 12-12 e ) 

+VgA(q) )(2/3) 1/2 H(F)/2 — A(q)]il 	(11) 

aii P =Fc‘nii 	ai2P =F.niz e 	 (12) 
where Pc, = H(F) ((3/2)n li n 11 e  + 2/112n12')///2; H(F) = 1 
if F = 0 and H(F) = 0 if F < 0. In the preceding equations, 
Thi s  = (eli P  — ali P )/A and n 12 ' = (€12P  a12 ') /A where 

A= ((3/2)(e li P  — al I P ) 2  +2(E12P
_, I2p)2 ) 1 /2 	(13) 

Isotropic hardening rules for the yield and limit surfaces 
reduce to A = A(I2 (4), q) — R) Oil and R• = 1.4( E• (44 q) — 

2 	 Transactions of the ASM E 



1.0 

0.8 

Grind Smooth 
0.6 

3.81±Q013 

25  

38—.4 

Fig. 1 Tubular biaxial specimen; dimensions In mm 

R")0° ij where rt• evolves according to the equation 

=A'(1 — 	4) u(1 — 	Oh= ) 	 (14) 

with cp /ono  = 0.02 (i.e., small) and q is obtained from in-
tegration of equation (11). 

To obtain an accurate representation of the change in 
asymptotic plastic modulus K during cyclic hardening, it is 
possible to write an evolution equation 

ic= A(k(c/),q)— 	 (15) 

where 0, is an appropriate admissibility function analogous 
to sk and sk*. 

Hence, we have established a set of first order evolution 
equations for a, f P , a*, q, aP  , R, R', 0, and K, respec-
tively. For a given strain or stress history, they may be in-
tegrated to give the resulting stress or strain response, 
respectively. For a known strain history, assuming isotropic 
elastic response, 

ail 	 =2G(ii2 — =E(in 	 12P) 	 (16)  
Using the equations i iiP  =(1/h) (i:n) n il , E12" = (1 / h) 

E = 2G(1 + 'e ), all = (3/2)i n, and a12 = 
we can substitute into equations (16) to obtain s 11  and s12, 
since in  and i I2  are known. Here, ve  is the value of Poisson's 
ratio from purely elastic response. 

Application to Complex Nonproportional Histories 

Determination of Parameters for Type 304 Stainless 
Steel. A series of room-temperature, strain-controlled 
uniaxial and tension-torsion tests were run to determine the 
parameters of the two surface model for type 304 stainless 
steel. All specimens were heat treated at 1100 ° C for 40 
minutes in a vacuum and furnace cooled to achieve an 
isotropic grain structure with an average grain diameter of 
0.16 mm. A schematic of a tension-torsion specimen is shown 
in Fig. 1. 

The biaxial tests were performed on a computer-contolled, 
closed-loop, servohydraulic test machine. A computer 
program was written so that any combination of line segments 
in strain space could be joined end-to-end to define a loading 
cycle. A block was defined as an arbitrary number of identical 
cycles. Furthermore, the program allowed the user to define 
any number of blocks, each containing a different cycle 
loading path. The effective strain rate = (i 11 2  4i122/3)1/2 
was kept constant along each segment. 

Several uniaxial incremental step tests and out-of-phase 
step tests at maximum strain amplitudes ranging from 0.003 
to 0.01 were run to establish the plastic strain range depen-
dence of A ( 0 , q), E"(0, q), q), R(1, q), R'(l, q) and 
k(1, q). From four uniaxial tests at "E = 0.002 sec - , linear 

0.00 	
2 	 4 	 6 

NUMBER OF CYCLES 
Fig. 2 Nonproportional state variable o  versus number of cycles for 
sinusoidal loading with fa = 0.005 and various 14 /f a  and p values. The 
rotation factor RF from Brown and Miller's theory is included for 
comparison In each case. 

relationships were fit as a satisfactory approximation for R(0, 
q), R'(0, q) and k(0, q): 

E(0,q)= 171 + (q — 0.005)4000 MPa 	(17) 

R '(0,q)=295+ (q- 0.005)20690 MPa 	(18) 

k(0,q)= 4370 — (q — 0.005)196100 MPa 	(19) 

A plastic strain offset of 0.0005 was used to define yield. The 
hardening modulus was determined from the uniaxial cyclic 
stress-strain curve with q = 0.0068 as 

h= 	+ (91960/K) {sinh{ 	}} ) 
Ils5 — so  II 	

(20) 

From three sinusoidal tension-torsion tests described by 

e =E 1 1 =eo sin cot, 	7= 2E12 = Yasin(cor — P) 	(21) 

with €22 = €33 = — P€11, €23 = 813 = 0, ya  /€ 1, = 1.5 and p = 
90 deg, E(1, q), • (1, q), and 41, q) were approximated by 

E(1 ,q)= 405 MPa,E*(1,q) =565 MPa,i41,q)= 4046 MPa 

(22) 

From uniaxial tests where the strain range was increased or 
decreased, constants u and C were taken as A = 10 and C = 
0.6. The value of A* was taken to be 50 based on a transition 
from stable proportional to nonproportional cycling. Plots of 
es versus number of cycles for 1  the loading described in 
equations (21) appear in Fig. 2. For the type 304 stainless steel 
of this investigation, and 0" were taken as Heaviside 
functions u(13, — X; ) for i = 1 and 2, respectively. The 
parameter sk, was taken as the Heaviside function u ( K — k). 
Significant fading memory of prior cyclically stable states was 
not observed even for nonproportional loading followed by 
proportional loading. All tests were conducted at effective 
strain rates ranging from 0.001 sec -' to 0.003 sec 

Correlation of Theory With Experiments. Results of two 
separate strain-controlled tension-torsion tests are reported in 
this investigation. Young's modulus and the shear modulus 
were respectively determined as E = 188 GPa and G = 77 
GPa. 

To compare the experimental results with the proposed two 
surface theory, the same strain histories were introduced in 
the constitutive equations. The specialized axial-torsional 
equations were integrated using a first-order predictor-
corrector method [11, 12]. The state equations can be ex-
pressed as ai = F(x, 1) where 

x= al I aizEil P €12Pail a ct12 '77 q al1 P a12PR R*(1) K S11S12) T  

(23) 
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Fig. 3 Experimental results for History 1: (left column) cycles 1 to 10 of 
block 2, and (right column) cycles 1 to 10 of block 3 

Define x k  r and x k + 1 as predicted and corrected values of x, 
respectively, at the (k + 1)th time step. The corrector 
algorithm was repeated until the norm of the error vector 

16 

I/I (Xk+l c )/ 1 )2) 

\ 1/2 
E= (E ( 1 0Ck+ic— Xk+1P )i 	 (24) 

a- I 

was acceptable where (x k  + — xk+ I P ); and (xk+ lc  ), are the 
ith components of (x k+ lc — xk+  IP ) and ick+ic  
Then, the accepted value of x k + 1 is Xk+1 = (4751cti )3ex k+ ivcel.  +y 

 (1 /5)x k + IP  • Automatic time-step control was included to 
reduce (increase) the time step ,It k  if E was greater (less) than 
a selected maximum value at a selected iteration. All 
calculations were performed on the Georgia Tech Cyber 835. 

History 1: Specimen SS09. This specimen was subjected 
to 10 cycles of a proportional incremental step test with 
maximum strain amplitudes of €. = 0.007, 7. = 0.0105, and 
a strain rate E = 0.001 sec I  . Subsequently, three blocks of 
different loading cycles were applied. Block 1 consisted of 16 
cycles of proportional loading on the same maximum shear 
planes with p = 0 ° , E. = 0.005, and 7. = 0.0075. Block 2 
consisted of 25 cycles of sinusoidal loading with p = 30 deg, 
7. = 0.0075, and Ea  = 0.005. Block 3 consisted of 25 cycles 
of sinusoidal loading with p = 60 deg, 7. = 0.0075, and E. = 

0.005. 
The imposed cyclic strain history for blocks 2 and 3 is 

shown in Fig. 3 along with the experimentally observed axial 
stress-strain, shear stress-engineering strain and shear stress- 
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a  

CO 
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a 

-500 
	

500 
AXIAL STRESS MPA 

Fig. 4 Predicted results for History 1: 25 cycles of block 2 and first 10 
cycles of block 3 

axial stress responses. Block 1 is not included since no ad-
ditional transient cyclic hardening occurred. Since data were 
taken in cycles 1 to 10 and geometrically increasing powers-of-
two beyond cycle 10 of each block, only cycles 1 to 10 for 
blocks 2 and 3 appear in Fig. 3. Very little additional 
hardening occurred between cyclks 10 and 25 [9, 10]. 

It should be noted that any measure of effective plastic 
strain range (e.g., octahedral or maximum shear) does not 
increase for each subsequent block, yet additional isotropic 
hardening occurs at the beginning of blocks 2 and 3. Com-
puter-generated plots of the blocks 2 and 3 from two surface 
plasticity theory, shown in Fig. 4, demonstrate the capability 
of state variable 4  to correlate this additional hardening. In 
the analysis, the initial values R = 170 MPa, R* = 291 MPa, 
and K = 4427 MPa were used, based on the hysteresis loop 
response from the stable cycles of block 1. Cyclic hardening in 
each block is predicted well by the model. Since the points 
from numerical integration were plotted at effective strain 
increments of 0.0005 to 0.001 and connected by straight lines, 
the plotted results have a piecewise linear appearance. Of 
course, the time steps used in integration were considerably 
smaller. 

For block 3, the yield and limit surfaces are in contact for 
most, if not all, of each cycle. The evolution of R, R', q, and 
4 in the model is plotted for this history in Fig. 5 as a function 
of time. Note that q exhibits a general decay in each block as 
cyclic hardening accumulates. Also, 4  increases, as expected, 
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for each block. In the numerical integration, the norm E of 
the error vector was kept below 10 -3 . Poisson's ratio in 
equation (9) was taken as an effective value based on the ratio 
of maximum effective plastic strain range to maximum ef-
fective total strain range. 

To illustrate the consequences of neglecting non-
proportional cross-hardening effects in the analysis, the 
model was used to predict the same imposed strain history 
with 4) = 0 always. This would be the case if, as usually is 
done, only uniaxial test results were used as a reference in 
models for nonproportional histories. Figure 6 shows the 
responses predicted in this case for blocks 1, 2, and 3 of 
History 1. The lack of transient hardening in blocks 2 and 3 is 
noted. Hence, the use of uniaxial baseline data for non-
proportional histories obviously can be quite inaccurate for 
this material. 

History 2: Specimen SSOI. This specimen was subjected 
to three blocks of dissimilar cylces. Block 1 consisted of 
proportional loading from the virgin state for 25 cycles with 
e. = 0.0041, 7. = 0.006, and E = 0.003 sec -1 . Block 2 
consisted of another 25 cycle path, introducing another 
discrete set of maximum shear strain planes at the same axial 
and shear strain amplitudes. Block 3 consisted of another 25 
cycle path that joined the previous two paths by continuously 
rotating the maximum shear strain planes between the tips. 
The three blocks of loading paths are shown in Fig. 7 along 
with the experimentally observed axial stress-strain, shear 
stress-engineering strain, and shear stress-axial stress 
responses. All responses are from the first 10 cycles of each 
block with the exception of the shear-stress-axial stress 
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Fig. 8 Predicted results for History 1 If o we 0. The underestimation of 
hardening predicted In blocks 2 and 3 illustrates the inaccuracy of 
extrapolating uniaxial test results to nonproportional loading. 

responses for blocks 1 and 2, which are from cycle 24. Again, 
little additional transient hardening was observed for cycles 
10 to 25. The tips of the strain paths are numbered to denote 
sequence of loading. The response for block 2 was nearly 
stable immediately following block 1. It is clear that the stress 
response in block 3 is not symmetric and distortion and/or 
translation of the limit or large offset strain yield surface has 
occurred. Again, the isotropic hardening accrued in block 3 
considerably exceeds that predicted by using a uniaxial cyclic 
stress-strain curve a the same maximum plastic strain range. 

Results from the model are shown in Fig. 8 for each block. 
Note that the transient response in block 3 is well represented 
by the model, but the model predicts unloading from the limit 
surface near the maximum axial stress amplitude while the 
experimental results do not clearly reveal such a phenomenon. 
Hence, the peak axial stress amplitude is underestimated. The 
rate of hardening in block 3 is reasonably accurate, even 
though the loading is quite complex. In the analysis, the initial 
values R = 148 MPa, R' = 192 MPa, and K = 8366 MPa 
were used, based on the monotonic stress-strain curve for the 
annealed type 304 stainless steel. Initial values for all other 
variables were taken as zero. Again, the norm of the error 
vector was maintained below 10 -3 . 

Conclusions 

It. has been demonstrated that the proposed two surface 
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Fig. 8 Predicted results for History 2 (left column) cycles 1 to 25 of 
block 1, (center column) cycles 1 to 25 of block 2, and (right column) 
cycles 1 to 25 of block 3 

theory is capable of reasonably accurate prediction of stress-
strain response for complex nonproportional loading. The 
model combines an appropriate kinematic hardening rule 
based on the theory of Mroz with an isotropic hardening rule 
that accounts for dependence on plastic strain range and 
nonproportionality of loading, both of which can be 
significant for a number of materials of structural interest. 
Hence, the model is sophisticated enough to describe essential 
aspects of transient, cyclic, nonproportional deformation 
behavior. 

To achieve this necessary sophistication, some concessions 
were made. To model plastic strain range dependence, state 
variables aP and q are introduced. State variables R • , a' and 
K were introduced in addition to the usual variables R and a to 
produce an acceptable description of plastic strain rate 
direction and hardening modulus during nonproportional 
plastic flow. State variable ct• was defined to account for 
additional isotropic hardening during nonproportional 
loading. Even with these additional parameters, the model is 
simple in the respect that the yield surface is not allowed to 
distort. 

Methods for experimental determination of model 
parameters have been set forth, although there is freedom to 
adapt the model to peculiar characteristics of each material of 
interest. For example, the functions A (q) , , , and 1,1,„ may 
be determined to any desired degree of precision. The func-
tion 0 may be selected to give smooth reloading response after 
unloading for small subcycles, or to accurately fit cyclic creep 
racheting response. Even with the relatively small number of 
tests run in this investigation to determine R, Rs, k, C, and /A, 
it is seen that the theory satisfactorily models the more 
complex histories of this study. No claim can be made 
regarding the sufficiency of experimental characterization of 
the A (q) and functions in this study, since the histories to 
be predicted did not include overload sequence effects. It 
seems that the choice of the structure of the model is more 
important than exhaustive experimental characterization, as 
evidenced by the poor predictions obtained when ct• was 
neglected. 
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An Experimental Study of the 
Structure of Constitutive Equations 
for Nonproportional Cyclic Plasticity 
Three type 304 stainless steel specimens of the same geometry were subjected to 
complex, cyclic axial-torsional histories characterized by varying degrees of non-
proportionality of straining. All tests were at room-temperature. The data from 
cyclically stable hysteresis loops were reduced and the direction of the plastic strain 
rate vector, variation of plastic hardening modulus, and direction of translation of 
a rate and time-independent yield surface were studied. It is shown that the in-
dependent variables in a Mroz-type formulation map the experimental results 
with a higher degree of uniqueness than other popular formulations studied for 
both the hardening modulus and direction of yield surface translation. Also, the 
plastic strain rate is not, in general, in the direction of the deviatoric stress or stress 
rate. 

Introduction 

Numerous adaptations of time and rate-independent 
plasticity theory have been suggested in the literature [1-7] 
and implemented in existing finite element codes for cyclic 
loading. Often these models are applied to structures sub-
jected to nonproportional variation of stresses and strains [8]. 
Model constants and parameters, however, are usually ob-
tained from uniaxial tests (proportional loading or straining). 

The usual elements in a time and rate-independent plasticity 
theory for metals are a yield surface, a flow rule that relates 
increments of stress and plastic strain, and hardening rules 
that specify the movement of the yield surface and any shape 
changes during plastic flow. Experiments have revealed that 
nonproportional strain cycling affects all of these elements 
significantly. Translation and distortion of the yield locus has 
been shown to be highly dependent on prestrain and changes 
in direction of straining [9-12]. Cyclic hardening can be 
pronounced under conditions of highly nonproportional 
strain cycling [13-16], increasing the cyclic strength level 
significantly above that observed in uniaxial tests at the same 
effective plastic strain amplitude. The kinematic hardening 
rule and flow rule are complicated by changes in plastic strain 
rate direction, rendering many generalizations made from 
uniaxial tests inaccurate. 

Recent evaluations of hardening and flow rules [17-20] 
have consisted of integrating a number of models for a given 
control history and comparing with experimentally obtained 
hysteresis responses. This procedure allows qualitative 
comparison. In this paper, an inverse approach is taken. The 
data from nonproportional cyclic tests are reported in reduced 
form and several basic proposed structures of hardening and 
flow rules are examined for correlative capability. 

Contributed by the Materials Division for publication in the JOURNAL OF 

ENGINEERING MATERIALS AND TECHNOLOGY. Manuscript received by the 
Materials Division, August 13, 1984. 

Experimental Procedure 

The material chosen for this study was type 304 stainless 
steel with the AISI composition shown in Table 1. Type 304 
stainless steel has been' widely used in high temperature ap-
plications, particularly in nuclear structures. The cyclic 
deformation behavior of 304 stainless steel has been ex-
tensively modeled under uniaxial conditions. 

Tubular axial-torsional specimens were machined from as-
received bar stock of 50.8 mm diameter as shown in Fig. 1. 
The experimental details appear elsewhere [15, 21, 24]. Axial 

Table 1 Composition 

C 	Mn 	Si 	Cr 	Ni 	Fe 
AISI 	0.08% 	2.0% 	1.0% 	18-20% 	8-12% 	Bal. 

max 	max 	max 
Actual 	0.08 	1.40 	0.45 	19.13 	9.49 	Bal. 

86 R 

Grind Smooth 

-0-33 

210 

Fig. 1 Tubular axial•torsional specimen (dimensions in mm) 
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stress and shear stress were assumed uniform over the wall-
thickness [16, 22]. 

Axial strain e was defined as the gage length displacement 
divided by the original gage length. The shear strain 1,  was 
obtained by dividing the angle of twist by the gage length and 
multiplying by the mean radius. 

A computer program was written so that any combination 
of line segments in e--y strain space could be joined end-to-end 
to define a loading cycle. A block was defined as an arbitrary 
number of identical cycles. Furthermore, the program 
allowed the user to define any number of blocks, each con- 
taining a different cycle loading path. The effective strain rate 
( e  = (e 2 	.,:y2/3 s1/2 ) 	assuming a Poisson's ratio of 1/2) was 
kept approximately constant along each segment. 

Biaxial Loading Histories 
Results of three strain-controlled axial-torsional histories 

are reported in this paper. All tests were conducted at room  

temperature. The initial values of Young's modulus and shear 
modulus were determined as E = 188 GPa and G = 77 GPa, 
respectively. A summary of the three test histories appears in 
Table 2, including the effective strain rate and controlled axial 
and shear strain endpoint sequence of each block within each 
history. 

The scope of this paper will be limited to considerations of 
essentially stable cyclic response, observed in the latter cycle 
of each block. Hence the flow rule and kinematic hardening 
rule may be examined in the absence of complicating effects 
of isotropic hardening. 

Notation. The definition of the axial-torsional subspace 
follows as a subspace of Ilyushin's five-dimensional 
deviatoric vector space [23]. Define the stress vector as 

a= cr, 	+a3  n 3 	 (I) 
where 

a1  = cr= = cr, a3  =Za.,8  =Jr 

and n 1  and n 3  are orthonormal base vectors in the stress 
plane. Here, z and 0 denote the tube longitudinal and cir-
cumferential directions, respectively. Likewise, the plastic 
strain vector is defined by 

€' = 1'n 1  +e 3 P n 3 	 (2) 
where 

P  = ezz P 
 

and e 3 P  =(2/Z)ez8 P . 

Note that the plastic strain rate vector is defined as 
E P  =erlli+e3Pn3. 	 (3) 

The effective stress a and plastic strain rate e (normalized to 
the axial case) are recognized as 

a= I a l = (, • 01/2 = 	o3)I/2 	 (4) 

EP= le I 	 (5) 
The total strain vector is heuristically defined as 

e=e 1 n 1  A-e 3 n3 	 (6) 
where e 1  = e z, = e and E3 = (2/Z) e zo  = 7/Z. The effective 
strain rate reported in Table 2 is then E = I E I since -y = 2e zo. 

Hysteresis Response. The input signals and resulting stress 
responses for a complete cycle near the end of selected 
nonproportional blocks are shown in Fig. 2. The beginning of 

Nomenclature 

= gage length inside and outside diameters 
= Young's modulus 
= shear modulus 
= axial load 
= radii of yield and limit surfaces 
= deviatoric stress tensor 
= torque 
= accumulated plastic work 
= scalar in kinematic hardening rule 
= yield and limit surfaces 
= plastic hardening moduli 
= second invariant of deviatoric stress 
= unit vector in direction of plastic strain rate in 

axial-torsional subspace 
= orthonormal unit vectors in axial-torsional 

subspace 
= unit normal vector to yield surface 
= accumulated effective stress 
= backstress vector in axial-torsional subspace 
= backstress tensor 
= phase angle 
= total engineering shear strain 
= total engineering shear strain amplitude 

= distance from current stress point to 
corresponding limit surface point 

oz  = distance to limit surface defined by Mroz and 
Ziegler based approaches 

E, e zz  = total axial strain 
ea  = total axial strain amplitude 

= total shear strain 
= axial and shear plastic strain components 

e P  = plastic strain vector in axial-torsional sub-
space 

-1 P p ,E3 = components of e P  
e,eP  = effective total strain and plastic strain 

dX, dX' = scalars in flow rule 
, dµ 2  = scalars in kinematic hardening rules 

= accumulated plastic strain 
a, azZ  = axial stress 

aze  = shear stress 
a = stress vector in axial-torsional subspace 

ao  = stress tensor 
a1 , cr3  = components of a 

a', a" = points on the limit surface which correspond 
to Mroz and Ziegler based approaches 

r = shear stress 

E.20 
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Fig. 2 Input strain cycle and resulting stress responses: (a) specimen 
SS01, block #3, cycle #24; (b) specimen SS09, block #2, cycle #16; (c) 
specimen SS09, block #3, cycle #24; (d) specimen SS09, block #4, cycle 
#16; and (e) specimen SSO4, block #1, cycle #40 

the data for each block is marked with "B" to establish a 
datum for later calculations of accumulated stress or strain. 

It should be noted that there are path-dependent differences 
in the extent of cyclic hardening. For example, block #3 of 
specimen SS09 exhibits a saturation effective stress level 
which considerably exceeds that of block #2. Yet the 
maximum plastic shear strain amplitude of block #2 exceeds 
that of. ..block #3. The transient behavior of these three 
histories, including the additional cyclic hardening during 
nonproportional strain cycling, have been previously 
documented [15, 24]. This paper, as previously mentioned, 
will not address the transient behavior. 

Plastic Strain Rate Direction. To compute the plastic strain 
rate vector from the data, numerical differentiation was 
required. The values of axial stress, shear stress, axial strain, 
and shear strain of five contiguous data points were 
parameterized with respect to arc length s = E(Ao.A0) along 
the path. Then a parabola was least-squares fit to the five data 
points to form each of the smoothed functions a(s), r(s), 
€ (s), and 7(5), and the derivatives da/ds, dr/ds, (kids, and 
dleids were obtained for the central (third) point. The 
derivative of plastic strain was computed as 

( d€ 	1 da 	dry 	1 dr 
— = — - - —) n, + — - - — On 3  (7) 
ds 	ds E ds 	ds G ds 

and the unit normal vector in the direction of the plastic strain 
rate was defined by 

n =(de P /ds)/ I (deP / ds) I 	 (8) 

A check on the smoothness of the data was obtained by 
applying a first order central difference technique to each 
three contiguous points to obtain the derivatives for the 
central point [25]. This technique resulted in essentially the 
same results as the five-point parabola method, indicating 
good differentiability of the data. 

To avoid the scatter in plastic strain increment direction 
which may occur in regions where the plastic strain increment 
is very small (e.g., elastic unloading), a "cutoff" value of 

I de P /ds I was used. A value of I deP/ds I = 1.4 x 10 -6 
 MPa -' was selected after initially plotting the histories to 

omit regions of unloading for which 1de/cis I <1.4 x 10 -6  
MPa -1 . 

Figure 3 shows the plastic strain rate direction plotted as 
vectors from the corresponding positions of the stress space a,  

d 

b" 

600 

Or 	MPo 

Fig. 3 Plastic strain rate and deviatoric stress directions. The longer 
vectors are in the direction of plastic strain rate corresponding to the 
points at the tail of the vectors. The shorter vectors are in the direction 
of deviatoric stress. The cycles correspond to: (a) specimen SS01, block 
#3; (b) specimen SS09, block #2; (c) specimen SS09, block #3; (d) 
specimen SS09, block #4; and (e) specimen SSO4. 

versus a3  response. Note that the plastic strain rate direction is 
plotted at data points at approximately equal increments of 
accumulated stress s. The deviatoric stress (radial) direction is 
also plotted at the same data points with shorter vectors. 

Two interesting observations are readily made. If the plastic 
strain rate were in the direction of deviatoric stress, as 
suggested by some current theories [26], then the plastic strain 
increment would be radial in a l  versus a3  space since 
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If the plastic strain rate were in the direction of deviatoric 
stress rate, as suggested in some integral formulations [27], 
then the plastic strain increment would be tangent to the stress 
path. Figure 3 clearly shows that neither is the case for stable 
nonproportional cycling. Of the nonproportionally loaded 
specimens, only SSO4, which consists of several radial paths, 
exhibits collinearity of the plastic strain rate and deviatoric 
stress. 

From the data in Fig. 3, it is obvious that the normality 
flow rule would require at the very least a translation of a 
Tresca or von Mises yield surface to approximate the 
deformation-induced anisotropy (distortion) imparted to the 
yield surface under nonproportional loading. This conclusion 
has been drawn previously in comparison of experimental 
results with predictions from rate-independent cyclic plasticity 
theories; in this study, the experimental results only are used 
to invalidate the use of deviatoric stress or deviatoric stress 
rate in generalized (multidimensional) flow rules. 

Variation of Plastic Hardening Modulus. The normality 
flow rule may be stated [28] as 

p 	1 	• 

= 	(SkinkI)n,J 
	 (11)  

where 	is the plastic strain rate tensor, 	is the deviatoric 
stress rate tensor, and is the unit normal vector to the yield 
surface in nine-dimensional stress space. Here, h defines the 
plastic hardening modulus. 

In the reduced axial-torsional subspace, the flow rule can be 
stated as 

EP= —
1 
 ( ir.n)n 	 (12) 

h* 

where o, EP and n are defined by equations (1), (2), and (8), 
respectively. Hence, 

h•= 
• n 

defines the hardening modulus in the subspace. For the axial-
torsional loading of this study, it can be shown that h = 
(2/3)h•. 

Plots of h versus accumulated strain from the initial point 
of each path (points B in Fig. 2) are shown in Fig. 4•. It is 
noted that the modulus exhibits variations through each 
nonproportional cycle, consistently approaching a value less 
than 10,000 MPa in the plastic regions. Hence, there appears 
to be an approach to an asymptotic value of h even for very 
complex histories. 

It is useful at this point to consider criteria for correlation 
of the variation of hardening modulus. In practice, the slope 
of a uniaxial cyclic stress-plastic strain curve is fit as a func-
tion of one of these parameters. Then this functional 

(13) 
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relationship is extended to multiaxial calculations. The 
validity of this approach comes into question for non-
proportional loading. In this study, several previously 
proposed correlations will be investigated. 

It is perhaps simplest to consider the modulus to be a 
function of effective stress [29], 

Cl  

Fig. 5 Definition of b n, and b z  in two surface approaches  

h=h(..112 ) 	 (14) 

where .12 = 1/2S,,S, is the second invariant to deviatoric 
stress. For axial-torsional loading, 3 j2 	30u2. 

Another class of simple correlations for variation of 
modulus, more generally accepted for nonproportional 
loading, involve two or more nested surfaces [30-32]. These 
theories implicitly include kinematic hardening of the yield 
surface through dependence on the direction of the unit 
normal vector n (plastic strain rate direction). In this study, 
the yield surface will be considered as nested within a single 
fixed surface of larger radius, defined as the limit surface. 
Such two surface theories are widely used and are com-
putationally efficient [31-32]. 

Two simple models will be evaluated. Both models state 
that the modulus h is a function of the metric distance from 
the current stress point on the yield surface to a generic point 
on the limit surface. The models differ only in the definition 
of this generic point. In both cases, yield and limit surfaces 
are defined by von Mises forms as f = (a - a) • (a - a) 
- R2  and f = aL  • aL  - R L 2 , respectively, where aL  is a 
point on the limit surface, and a is the center of the yield 
surface. 

In the Mroz model, the modulus is a function of the 
distance from the current stress point to a corresponding 
point a" on the limit surface with the same exterior unit 
normal, as shown in Fig. 5. Hence, 

h=h(o„,) 	 (15) 

a b 
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Fig. 6 Modulus h versus J3J2 corresponding to: (a) specimen SS01, 
block #3; (b) specimen SSW, block #2; (e) specimen SS09, block #3; (d) 
specimen SS09, block #4; and (e) specimen SSO4 

Journal of Engineering Materials and Technology 	 OCTOBER 1985, Vol. 107 I 311 



300000 

O. 
2 

•• 

••■ ••• 	 • •:,•• 	• • 

'• , • 	.• • 

• • 	• 
• . • 	• • 

,11. • .111 • 	 .4 

j
J
Y

j

•
J
V°
j
J 

boaer" .  

1000 
MPo 

d 

b 

0 0 
 

0 0 

a- 
2 

6. 	MPa 
	 1003 

6. 	MPa 
	 1000 

6,, 

6. 	MPo 
	 030 

a 

C 

e 

Fig. 7 Modulus h versus b m  for (a) specimen SS01, block #3; squares, 
circles, and triangles correspond to RL = 550 MPa, 800 MPa, and 1000 
MPa, respectively; (6) specimen SS09, block #2; squares, circles, and 
triangles correspond to RL = 350 MPA, 450 MPa, and 550 MPa, 
respectively; (e) specimen SS09, block #3; squares, circles, and 
triangles correspond to RI, = 450 MPa, 550 MPa and 700 MPa, 
respectively; (d) specimen SS09, block #4; squares and circles 
correspond to RL = 550 MPA and 800 MPa, respectively; and (e) 
specimen SSO4, RL = 550 MPa 

where 6„, = 1(a• - a)I. Here, ce = Rol since the limit 
surface is not allowed to translate. 

Some authors [32] have also proposed the use of a rule 
based on Ziegler kinematic hardening, 

h=h(t5) 	 (16) 

where 6, = Ia•• - al. Here, ce• is the point on limit surface 
defined by the intersection of the unit normal vector to the 
yield surface with the limit surface, as shown in Fig. 5. 

It should be noted that the correlations in equations 
(14)-(16) are functionally identical for cyclic paths in which 
the deviatoric stress (stress rate) is radial always. Significant 
differences can exist, though, for nonproportional loading. 
In Figs. 6,7, and 8, modulus h is plotted versus 3J2 , 

and 6,, respectively. A measure of correlative capability of 
each can be obtained by examining the scatter of the data 
throughout each cycle. A good theory should collapse the data 
into one curve, relecting a one-to-one mapping of modulus 
versus the independent variable. 

Note that the correlations for block #3 of specimen SSO1 
are not unique according to the ./3J, or 6. variables. In 
contrast, the Mroz approach (6,,, in Fig. 7) consolidates the 
data much better. To evaluate the sensitivity of the Mroz and 
Ziegler based approaches to dimension of the limit surface,  

three limit surface radii of 550 MPa, 800 MPa, and 1000 MPa 
were implemented, as seen in Figs. 7 and 8. Only small dif-
ferences exist between the correlations obtained (apart from 
translation of curves) for the vastly different limit surface 
radii, indicating insensitivity to the radius parameter. Since 
translation of the limit surface would be of the order of the 
asymptotic value of h multiplied by plastic strain amplitude 
[32] (i.e., < 50 MPa), this effect was taken as secondary and 
not evaluated in this study. 

Specimen SSO4 is correlated equally well by the Mroz and 
Ziegler approaches. None of the approaches correlate one of 
the branches of the path. Even though the end points of the 
stress space response correspond roughly to proportional 
loading for each straining direction, there is readjustment in 
direction of the stress response in the plastic region. Perhaps 
as a result an inflection is observed in the plots of modulus 
shown in Fig. 6,7, and 8. 

Specimen SSO9 illustrates some of the problems associated 
with modulus correlations for highly nonproportional 
cycling. As the loading becomes increasingly non-
proportional, the second invariant of deviatoric stress ap-
proaches a constant value. Hence, J3J 2  is useless for block 
#4, even though it is satisfactory for the proportional 
straining of block #2. Note that for block #4 the Ziegler 
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approach is little better than Vii.2 since 6, a: constant. But 
the Mroz rule exhibits a significant variation of (5„, through 
the cycle. Even the Mroz rule, though, exhibits a higher degree 
of nonlinearity than for the proportional straining of block 
#2. Another interesting observation regarding block #4 is the 
higher asymptotic value of h in the plastic region. The lowest 
value of h in each cycle increases from block #2 to block #4 
steadily as the nonproportionality increases. This result is 
consistent with the Mroz rule, which allows for an increasing 
distance from the asymptotic limit surface (greater (5„,) for 
increasing degree of loading nonproportionality. It is also 
consistent with the Ziegler based rule to a lesser extent. 

A second measure of the accuracy of a modulus correlation 
is comparison of the various nonproportional cycles with a 
proportional cycle. This comparison is not without some 
ambiguity, since the cyclically stable radii of the yield and 
limit surfaces may depend on the degree of non-
proportionality of loading. As shown, however, the func-
tional relationship between h and (5„, or 6, is weakly depen-
dent on the limit surface radius. Hence, it is useful to compare 
the correlations obtained for block #2 of specimen SS09 with 
the corresponding 3J,, (5„„ and 6, correlations for non-
proportional cycles. These comparisons are shown in Fig. 9. 
Note that the Mroz based correlation, while not uniformly  

accurate, provides the most consistent corrrelation of the 
three. Of course, the limit surface would be required to ex-
pand with increasing nonproportionality of loading in order 
to maintain a "unique" mapping of h and (5„,. 

Translation of Yield Surface. Two kinematic hardening rules 
which have been widely implemented for cyclic plasticity are 
the Mroz [13, 28, 30] and Ziegler [13, 33] rules. According to 
the Ziegler rule, the center of the yield surface a u  moves in the 
direction of the vector which connects the center of the 
current yield surface with the current stress point, 

dau =dA l (a,j — a d ) 	 (17) 

where dA, is a scalar factor. 
According to the Mroz rule for the yield surface and a 

stationary limit surface, 

dau  =dt4 2 (a7J — au ) 	 (18) 

where a is a point on the limit surface with the same exterior 
unit normal vector as that of the yield surface at the current 
stress point, and dA 2  is another scalar proportionality factor. 

Both hardening rules can be compared, at least 
qualitatively, by implemention in the axial-torsional sub-
space. In the axial-torsional subspace, the Ziegler rule in 
equation (17) is equivalent to Prager's rule da = cdtP where 
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Fig. 9 Comparison of proportionally loaded block 42 of specimen 
SSO1 with: (a) specimen SS01, block 43; (b) specimen SS09, block 43; (c) 
specimen SS09, block 44; (d) specimen SSO4. The solid line in each 
case represents the corresponding data for block 42 of specimen SS09, 
and is translated to match each data set at the point of approach of h to 
some small asymptotic value. 

da = da, n 1  + da2  n2 , and c is a scalar. Recalling that the 
direction of deP was previously found at each point for which 
IdePids1 a. 1.4 x 10 -6  MPa - t, the direction of da via 
Ziegler's rule is then known. For the Mroz rule, da is in the 
direction of (a' — a), discussed in equation (15). 

Invoking the normality flow rule and a von Mises yield 
surface of the form f = (a — a)•(a — a) — R 2 , the plastic 
strain rate direction defines the line along which the yield 
surface center a is located. The metric distance from the 
current stress point a to a must then equal R from the yield 
condition. In Fig. 10, the evolution of a through a cycle is 
plotted as a solid line for two histories. For specimen SSO1, 
two yield surface radii are plotted for comparison. Note that 
errors in calculated plastic strain rate direction are magnified 
in the algorithm for plotting a, resulting in a somewhat wavy 
path. It is possible, though, to make some very important 
comparisons of the two hardening rules based on this data. 
In Fig. 10, vectors are plotted according to each rule. The 
ideal rule would result in vectors tangent to the path of a. 
Inspection of Fig. 10 clearly reveals the superiority of the 
Mroz rule for these histories. This superiority had previously 
been claimed by Lamba [13, 18] by comparing experimental 
axial-torsional hysteresis loops with theory. 

Conclusions 
For nonproportional, cyclically stable strain cycling of type 

304 stainless steel specimens, the following observations are 
made. 

1. The direction of plastic strain rate does not in general 
coincide with that of the deviatoric stress or deviatoric stress 
rate. 

2. A correlation for modulus based only on the second 
invariant of deviatoric stress is unsatisfactory for describing 
the variation of modulus along different path segments within 

Fig. 10 Instantaneous directions of movement of a via (left column) 
Mroz rule and (right column) Ziegler rule for (a) specimen SS01, block 

R = 200 MPa; (b) specimen SS01, block 43, R = 100 MPa; (c) 
specimen SS09, block 43, R = 200 MPa; and (d) specimen SS09, block 
44, R = 200 MPa. For the Mroz rule, AL = 550 MPa was used. 

the same cycle or along two distinctly different non-
proportional paths. 

3. A correlation for modulus based on the metric distance 
from the current stress point to a corresponding point on a 
fixed limit surface of larger radius can produce satisfactory 
results provided the corresponding point is properly selected. 
The use of a Mroz based definition of the corresponding point 
on the limit surface is superior to that of Ziegler based 
definition. 

4. The Mroz kinematic hardening rule is more accurate 
than the Ziegler rule for nonproportional cycling. 
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ABSTRACT 
The structure of constitutive models for cyclic plasticity is usually based on uniaxial tests. These 

models are then generalized to multiaxial stress-strain states assuming the combined states as equivalent 
uniaxial. It is shown that serious errors are introduced by this assumption for nonproportional loading. 
Hence, nonproportional loading tests can be helpful in determining appropriate multiaxial generalizations of 
theories based on a predominately uniaxial test database. 

INTRODUCTION 
The usual procedure in formulating constitutive laws for the cyclic plastic behavior of materials is to 

a. observe cyclic stress-strain response in uniaxial tests. 
b. formulate a constitutive theory capable of including the essential elements of 

the uniaxial response, 
c. determine the model constants and parameters from uniaxial tests dictated by the 

form of the model, and 
d. generalize to multiaxial states of stress and strain on the basis of effective 

stress and strain. 

In reality, proceeding from steps (a) - (c) to step (d) is a very large "jump". 	Furthermore, it is 
often done without a physical/experimental basis, particularly if the multiaxial stresses and strains vary 
nonproportionally. Yet this generalization from uniaxial response forms the basis of essentially all cyclic 
plasticity constitutive subroutines currently found in nonlinear finite element codes. Recently. 
formulation of fatigue crack initiation models for complex multiaxial loading [1-3] has been fueled by 
industrial concern for predicting fatigue life of components. Since cyclic plasticity has long been related 
to low-cycle fatigue life [4-6], it is obvious that application of strain-based multiaxial fatigue criteria 
requires accurate constitutive equations. 

The purpose of this paper is to discuss inappropriate generalizations, for cyclic plasticity theories, 
from uniaxial test data to cyclic, nonproportional, biaxial loading. In addition, some biaxial tests will 
be described which can assist in the formulation of more general constitutive laws. 

SOME COMMON ASSUMPTIONS OF TIME- AND RATE-INDEPENDENT CYCLIC PLASTICITY THEORY FOR METALS 
To provide a framework for this discussion, the elements of generalized time- and rate-independent 

theory will be outlined. For theories which employ a yield surface 

f(a - a, R) = 0 	 (1) 

of relatively simple form, the deformation-induced anisotropy is described by backstress a . 	The 
characteristic dimension of the surface is denoted by R. By Drucker's postulate the associated flow rule, 
applicable for metals, is 

de = dx 7f 	 (2) 

where of is the gradient of f in stress space and dA is a scalar multiplier. 	Expressing the scalar 
multiplier in the forms 

de l  = H(da: vf)vf 
	

(3) 

where H is a scalar or, alternatively, 

•1 



Or 

de = 	(da:n)n 
P 	1 
	

(4) 

where n = vf/Ilvfll , h is recognized as the plastic modulus. 	Of course 	equations (2) and (3) are 

appli6ible—  even for general anisotropic forms of f [7-9]. 	In principle. anisotropic yield surface 
formulations could be used to accurately model multiaxial cyclic plasticity. 	Extensive necessary 
experimental characterization by yield surface probing, difficulty in characterizing history dependence, and 
resulting complex analytical forms have seriously limited the use of anisotropic yield surfaces in actual 
applications. Since the current work seeks to explore inadequacies in common assumptions, yield surfaces of 

the form in equation (1) will be considered. Of course, equations (1)-(4) are applicable in any relevant 

stress space or subspace. 
In addition to the flow rule, kinematic and isotropic hardening rules are typically specified for a and 

R in equation (1): 

	

da = du& 	 (5) 

dR = A(c)dc 	 (6) 

The evolution of these parameters is related by the consistency condition df = 0 during plastic flow, 
Or 

vf•°da - vf*da - (af/aR)dR = 0 	 (7) • 

Some of the popular forms for & include 

Prager rule:. 	& = n 	 (8) 

Ziegler rule: 	& = (a - a) 	 (9) 

Mroz rule: 	 & = (a*  - a) 	 (10) 

where a* is the point on a loading or bounding surface which encloses yield surface f [10-12] with the same 
outward normal vector n as that of the current stress point. For surfaces which do not have a unique 
mapping of normal vectors to stress points, such as the Tresca case, one may specify a* to be a 
geometrically similar point on the bounding surface [13]. 

The Mroz rule can apply to a series of loading surfaces in a sequential manner [10-11], or can apply to 
a single bounding surface (e.g. two surface theories [14-18]). It is easy to rationalize the prolific 
implementation of the Prager and Ziegler rules, since they are quite simple and require no bounding 
surfaces. Furthermore, since no distinction can be made between the rules in equations (8) - (10) for 
uniaxial loading, there is no reason to introduce additional complexity to correlate uniaxial test 
databases. Yet, the Mroz rule has been found to be most accurate [14-15,19] for the general case of biaxial 
cyclic loading. 

Typical forms for ; in equation (6) are [20-22] 

(a - a):de = 	dW 
P J.  Pc 

e
P :de P )

1/2 
	

(12) 

where dWPc is a measure of plastic work increment. 	Usually, no particular limits of integration are 
specified for equations (11) and (12) other than from the beginning of the history to the current point. 

For strain-hardening response, the plastic modulus h in equation (4) is commonly expressed as 

	

h = h(p) 	 (13) 

The parameter p often appears as one of the following forms. 

linear hardening: 	p irrelevant, h = constant 	 (14) 

effective stress: 	P = (3..) 2 )
1/2 

(15) 

Mroz-type: 	 P = Ila *  - all = cs m 	 (16) 

C = 

Plastic strain or 
work accumulation: p = wPc Or p ( dcp,W) 1 / 2  (17) 

where J
2 

is the second invariant of deviatoric stress. 	In equation (17), the lower limit of integration is 
taken to correspond to the point of initial yielding in the current reversal [23]. Note that the Mroz form 
in equation (16) is defined in terms of a two surface theory as in Dafalias [16, 18], Krieg [17] and 
McDowell [14-15]. A multiple surface Mroz formulation effectively discretizes stress space into a number of 
sub-regions of constant plastic modulus at the expense of introducing a significant number of additional 



loading surfaces and associated backstress components. Hence, for computational efficiency, the two surface 

form of the Mroz rule is desirable. 

EXPERIMENTAL VALIDITY OF ASSUMPTIONS 
One of the most useful tests for characterization of the uniaxial cyclic stress-strain response of 

metals is the incremental step test [24]. 	In this strain-controlled test, the applied strain range is 
successively increased and decreased linearly until the stress-strain response stabilizes. 	The resulting 
cyclic stress-strain curve is then used to represent stable hysteresis response. 

	

An analogous test may be defined for tension-torsion testing of thin-walled tubular specimens. 	In 
these tension-torsion tests, the relative angle of twist and axial deformation of the gage section may be 
independently enforced via closed-loop, servohydraulic, computer control. 	The in-plane axial stress a and 
shear stress T are taken to be uniform and statically determinate. 	Details of the specimen design. 
extensometry, and testing procedures are discussed elsewhere [25-26]. 	If sinusoidal axial and engineering 
shear strains are enforced with phase angle s , 

	

E =
a 

sinwt 
	

(18) 

y = y a  sin(wt - s) 
	

(19) 

a sort of phase angle step test may be run by successively increasing s from 0 to 90 degrees after reaching 
cyclic stability at each value of s . Such a test was performed on initially annealed type 304 stainless 
steel. 	In Figure 1, the enforced cyclic strain path and resulting stable axial versus shear stress 
responses are shown for s = 0 , 30 and 60 degrees with yaa = 1.5 and E a 

= 0.005. 	In these tests, the 

effective strain rate was maintained constant at 0.001 sec -I . 	The significant extent of cyclic hardening 
should be noted, with a concurrent successive decrease in any measure of effective plastic strain range 
[25]. 

An increase in the value of s corresponds to an increase in the overall effects of nonproportionality 
within a cycle. McDowell et al. [27] snowed in metallurgical studies that this additional hardening can be 
traced to an increase in the uniformity of deformation product (intensity of slip system activation) among 
the grains. 

This phase angle step test has important implications in terms of the validity of the previously stated 
common assumptions of cyclic plasticity theory for metals. Figure 2 shows a plot of maximum effective 
stress in each cycle for the three successive blocks. The onset of additional cycle-by-cycle hardening at 
each step increase of S dictates that the A dependence on c in equation (6) is not an appropriate general 
form. Since this additional hardening occurs without an increase in effective plastic strain range, plastic 
strain range dependence is not enough. An additional dependence on the nonproportionality of loading is 
required, i.e. 

	

dR = A(c.0)cic 	 (20) 

where 0 introduces path nonproportionality effects [28-30]. 	An additional variable [14-15.25.30] may be 
introduced to account for plastic strain range effects observed even in uniaxial tests. 

Turning to the kinematic hardening rule, equation (5), it is easy to verify the applicability of the 
Prager or Ziegler rules. Since the stress-strain history was recorded on magnetic disk, the data were 
appropriately numerically differentiated to give da/ds, cly/ds, de./ds, and dy/ds [31]. where the parametric 
independent variable s is the effective stress arc length along the path. i.e. 

s = f(da  .da)1/2 
	

(21) 
 

	

2 = a l 2 1 	a3 	 (22)  

	

a l = a 	 (23)  ( 

	

a 3  = J3 T 	 (24) 

Equation (22) defines the stress vector a in deviatoric axial-torsional stress subspace [31] with 
3 • Hence, 	"' 

  
orthogonal base vectors n

1 
 and n 

de
P 	

, de 	I da 	 q/ 	1 gI 	1 „. 

= k 	- 	
/ 

'21 	ds 	G ds / v3 43 
	 (25) ds 

where E and G are Young's modulus and shear modulus, respectively, and de P  is the plastic strain increment. 
The plastic strain rate direction is thus defined by equation (25): In this axial-torsional subspace, 

the von Mises yield condition is expressed as 

f = (a - a) (a - a) - R
2 

= 0 
	

(26) 

At any point along the stress trajectory, the backstress a must be located such that dE P  is collinear 
with (a - a ) . 	This follows from the normality flow rule, equation (3), applied to equation (26). 	Note 



that n = (a - a)/la - al in this case so that equations (8) and (9) result in equivalent forms. 	If one 
assumes a Yiel'a su-rfaCe radius, then the trajectory of a is fully defined for this case, assuming El2 flo/ 
theory holds, as a = a - Rn . In the analysis of the data, a "cutoff" value of Ide P/ds1 < 1.4 x 10 -°  MPa 
was used to define regioni of elastic unloading. 	In Figure 3, the trajectory of a is plotted in stress 
space for an assumed yield surface radius of R = 200 MPa. 	In addition, the predicted direction of 
backstress increment da in equations (5), (8), and (9) is plotted as a vector from the associated current 
backstress point. Nofe the significant lack of correlation with experiment. since the correct kinematic 
hardening rule should result in tangency of da with the trajectory of a . This lack of correlation holds for 
virtually any assumed values of R and other conventional forms of the yield surface f (e.g. Tresca). 

The Mroz kinematic hardening rule, employing a single bounding surface, results in much better 
correlation as seen ii Figure 4. Note that o* = R*n , where R* is the radius of a 
surface f* = a* a* - (R*) which bounds the maximum stress respoiTse. 

Another impgtant result is that the plastic strain rate vector is not, in general, in the direction of 
either the deviatoric stress or stress rate since 

dE
P * da l o 1- 

de
P 
 * A

2 
 da 

as seen in Figure 5. 
In the axial-torsional subspace, the flow rule is written as 

P 	2 1 dE = 	Ti  (do. n)n 	 (29) 

where h = 2/3 (da• n)/(de
P

. de
P

)
1/2 

is the plastic modulus. 	In a uniaxial test, h is simply 2/3 do/dE P  
Modulus h is easili'dete-rmined from the data during plastic flow since both de /ds and da/ds are known. In 
Figure 6, h is plotted versus some of the assumed forms of p in equations (14')-(17). Pure dependence of h 
on any one of these parameters would require a uniqueness of h(p) regardless of path. A measure of 
correlative capability is the similarity of the shape of the plots for out-of-phase cycling with in-phase 
cycling. Clearly, the modulus is not constant, as stated in equation (14), but varies from very 
high (4. 	to very low (4. - 4000 MPa) values. 	Nor is the modulus generally a function of effective stress 
as suggested in equation (15). 	For the 60 degree out-of-phase loading, the effective stress is 
approximately constant. 

Accumulated plastic strain or plastic work from the most recent point of initial yielding is not 
satisfactory. As seen in Figure 6, the minimum value of h increases as 6 increases. Furthermore, there is 
essentially no elastic unloading for g = 60 degrees or, presumably, for 6 > 60 degrees. For such histories, 
validity of equation (17) would require that the modulus saturates monotonically to some constant value 
since this is the case in uniaxial or proportional loading. 

The Mroz definition of p in equation (16), also shown in Figure 6, appears to demonstrate the highest 
correlation between in-phase and out-of-phase paths. 

To put these results into perspective, it should be noted that differences between each of the earlier 
assumptions for time- and rate-independent plasticity would vanish for uniaxial loading. 	Only for 
nonproportional loading are the differences large enough to assess validity. 	Therefore, on the basis of 
uniaxial tests only, one might formulate an improper form of the constitutive equations for evaluation of 
structural response under nonproportionally varying boundary conditions. It would seem that nonproportional 
loading tests can contribute significantly to the development of a general model framework with little 
increase in complexity. 

SOME IMPLICATIONS FOR RATE-DEPENDENT, UNIFIED THEORIES' 
An important class of rate-dependent theories currently proposed for description of cyclic plasticity 

and creep over a range of temperatures and strain rates are unified creep-plasticity equations. The typical 
structure of these equations is as follows [32]: 

Ila - all 

	

e = F( 	K 	) (a - a) 

a =he - ra 
a- 	a- 

K = h K  IIE 1 II - rK 

Here, e is 	the inelastic 	strain 	rate and K 	is an 	isotropic 	hardening variable. 	Hardening 
functiiins (h

a' 
h

K
) and recovery functions (r , r v ) appear in these equations. 

It is usual for researchers to determih bdth the structure and material parameters of these equations 
from uniaxial testing. Though the equations are highly coupled and nonlinear, one can readily choose forms 
for f, h , and hK to fit uniaxial cyclic response, neglecting recovery terms [32]. 

In light of earlier discussion, it is interesting to consider whether the structure of these equations 

is appropriate in the general case. For relatively high strain rate cycling, equation (31) is a Prager-type 

(27)  

(28)  

(30) 

(31)  

(32) 



translation rule. 	Furthermore, the function F in equation (30) was not necessarily developed to describe 

large rotations of the (a - a) vector. 	More future efforts should be dedicated to evaluation of the 
validity of the structure Of t1ese equations for nonproportional loading. 

SUMMARY 
Virtually all of the current models for cyclic plasticity were formulated on the basis of uniaxial 

behavior. 	Sometimes, these constitutive equations are used in loading regimes which are fundamentally 

different from uniaxial loading. 	Nonproportional loading is such a regime. The following generalizations 
can be made for rate- and time-independent cyclic plasticity theory for metals. 

a. Mroz-type kinematic hardening 	rules 	and 	plastic modulus 	functions 	are 

appropriate. 

b. Using only accumulated plastic strain or work is not entirely appropriate for use 
in isotropic hardening rules. 

c. The direction of the plastic strain rate vector is some combination of deviatoric 
stress and stress rate directions which can be aptly prescribed by accurate 
backstress evolution. 

d. Nonproportional cyclic testing has an important role in placing restrictions on 
the structure of cyclic plasticity theory. 
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An Evaluation of Several 
Constitutive Model Structures for 
Transient Nonproportional Cyclic 
Plasticity 
Four constitutive models for cyclic plasticity of different essential structure are 
evaluated under conditions of nonproportional, multiaxial loading. Drucker's one-
surface theory, McDowell 's two-surface theory, Krieg's one-surface theory with 
Radial-Return Integration Algorithm, and Abrahamson's Unified Creep-Plasticity 
theory are the constitutive models under consideration. Their transient hardening 
and stable loop responses are compared to experimental data for two nonpropor-
tional axial-torsional loading histories. Their computational efficiency is also 
analyzed. 
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Introduction 

The study of cyclic plasticity under nonproportional loading 
conditions is motivated by the fact that such loading is realistic 
for many situations encountered in the nuclear, aircraft, and 
ground vehicle industries. There are several multiaxial cyclic 
plasticity models available in the literature [1-8]. Most of the 
implemented models are capable of properly modeling only 
uniaxial or proportional, multiaxial loadings. They are 
sometimes used for nonproportional straining without basis 
for knowing if the predicted results are accurate. This ap-
proach is less than desirable but has evolved from the lack of 
knowledge (experimental data) regarding nonproportional 
loading histories. 

The goal of this study is to evaluate the correlative capabil-
ity of appropriate constitutive equation structures which range 
from simple modified classical plasticity theories to complex 
modified classical plasticity theories in addition to state 
variable or unified theories. This study will evaluate several 
generic forms of proposed cyclic plasticity models for non-
proportional, multiaxial loading. Four different plasticity 
models will be evaluated and classified based on their accuracy 
in predicting the stress-strain response for an axial-torsional 
(biaxial) stress state. It should be noted that this study does 
not infer that other particular models with the same generic 
forms are inferior; the models used were selected on the basis 
of the availability of multiaxial generalizations and of material 
constants. This test case was chosen for two reasons. There is 
experimental data available to serve as the reference in the 
model evaluation process. Also McDowell [11] has experimen-
tally shown that these biaxial histories incorporate most of the 
relevant anomalous phenomena that characterizes nonpropor-
tinal, mutiaxial loading. In effect, such biaxial histories are 
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the simplest yet most appropriate step to be followed in the 
transition from uniaxial to nonproportional, multiaxial 
straining. 

Realizing that there is no single, superior model structure 
for all applications, this study purports to comparitively 
clarify the regimes of applicability of each model structure for 
complex nonproportional loading. 

Drucker's Model 

This model was presented by Drucker and Palgen [1]. Its 
structure is that of a modified classical, single-surface theory 
valid for time- and rate-independent response. Two versions 
were presented. The rounding corner option would predict 
smooth rounding of the cyclic stress-strain curves. The sharp 
corner option would predict the correct behavior on reloading 
after elastic unloading. Only the rounding corner option will 
be considered here. 

This model uses a von Mises yield surface given by 

1 	 R 2  
f=— 

2 
 (s- a): (s- a)-- =0 	 (1) 

3 

where s is the deviatoric stress tensor, a is the deviatoric 
backstress tensor, and R is the uniaxial yield strength. In this 
work, the colon respresents the scalar product of two tensors, 
e.g., (su  - alt ) (su  - ). 

Its associative flow rule is given by 

B ( *12 N  , EP = ( 
1,2 

) ts — aMS — a):8) 

iff= 0 and in(af/aa) 0 
	

(2) 

EP = 0 otherwise 
	

(3) 
where EP is the plastic strain rate tensor, a. is the stress rate ten- 
sor, a is the deviatoric stress rate tensor, B and N are ex- 
perimentally determined material model parameters, J2 is the 

Journal of Pressure Vessel Technology 
	 AUGUST 1986, Vol. 108 / 273 



second invariant of s, and a is a normalizing stress. J2 and a 
are of the following form: 

J2 =— 
2 

s:s 
	 (4) 

= a' (1+ -yexp 	)) 	 (5) 

where 

WPc = 	(s- a):i-Pdt 
	

(6) 

and a', y and Wo  are material dependent model parameters. 
Note that WPC  is a montonically increasing quantity similar, 
but not equivalent, to the accumulated plastic work. Isotropic 
hardening is achieved by effectively increasing or decreasing 
the plastic tangent modulus at a given stress level. The plastic 
modulus is essentially made a function of J2 and WPc. 

A Ziegler-type kinematic hardening rule is assumed as 

a =
2 
 (s- a)((s- a):i) 

2k 
	 (7) 

where k is the material yield strength in shear. For greater 
details on the determination of the model parameters, the 
reader is referred to [1]. 

McDowell's Model 

This model was presented by McDowell [2, 3]. Its structure 
is that of a two-surface simplification [6-8] of the Mroz [9] or 
mechanical sublayer models [10]. It consists of a yield surface 
within which the material response is elastic and a limit surface 
that "bounds" the material response during plastic flow. 

This model uses von Mises surfaces for the yield and limit 
surfaces of the following forms: 

=— 
2 

(s- a):(s - a) - R 2  = 0 
3 

(8) 

3 
p =— 

2 
(s. —a•):(s• — a•)— R• 2  =0 	(9) 

where R is the radius of the surface. The asterisk superscript 
refers to the limit surface. 

The flow rule for this model is given by 

=— (s:n)n 	 (10) 

where h is the plastic modulus and n is the unit normal to the 
yield surface given by n = (s- cx)/11s - ail. Here, is-al = 
((s- cx):(s- a)) 112 . 

For the yield surface, a Mroz-type kinematic hardening rule 
is assumed 

3 
RR) (•-s) 

a= 
(s- a):(s• - s) 

where ac is the backstress rate tensor and R represents isotropic 
hardening of the yield surface. s• is the point in the limit sur-
face having the same outward normal to the corresponding 
point in the yield surface at the current stress state; that is, 

R• 
s• = a• + (s- a)— 	 (12) 

For the limit surface, a Prager-Ziegler-type kinematic 
hardening rule is assumed as 

a. =Kiln 	 (13) 

(c:P:c:P)" 2  =11i-9 11 	 (14) 

where K is the asymptotic modulus and n  is the norm of the 
plastic strain rate tensor. 

The isotropic hardening rules for the yield and limit surfaces 
have been similarly defined as 

=g(A(0,4)-R)IGii 	 (15) 

A• = A (A•(0 4 ) — (16) 

where R(45,q) and It•(0,q) correspond to the cyclically stable 
values of the yield and limit surface radii for given values of cto 
and q, which will be defined shortly. and and le are functions 
chosen appropriately for the material being used. For non-
fading memory of cyclically hardening materials, McDowell 
recommends to use Heaviside functions 1,/, = u(R (4,q) - R) 
and le = u(R•(0,q)- R•). For completely fading memory, 
McDowell recommends 1,1, = 1,1, * = 1. g is an experimentally 
determined scalar rate parameter. Through experimental 
testing, McDowell has shown that R (4,q) and Ift•(0,q) can be 
expressed approximately as linear functions of the form 

	

E(0,q)=0(A(1,q) — A (0,g)) + A(0,q) 	(17) 

11"(0,q) =4:1(E*(1,q) - (0,q)) +R • (0,4) 	(18) 

where E(1,q), 	(0,q), f•(1,q), and il•(0,q) can be ex- 
perimentally determined. The plastic modulus and asymptotic 
plastic modulus are defined as 

	

h = K (I + 2-1960  (sinh{ 	is. 	
n 1.1 

Ils 	

) 
(19) cr — so  II 

	

ti= g(k(ct,,q)- 	 (20) 
where fc(0,q) corresponds to the cyclically stable values of the 
asymptotic modulus for given values of ct, and q, and so  and 
so  • are values of s and s' corresponding to the maximum value 
of Ils• -MI in the history. Parameters s o  and so  • are not 
material constants. \L. is an experimentally determined func-
tion. It is assumed that 

( ,q) = 4:1(it (1 ,q) - k(0,q))+ k(0,q) 	(21) 
where rc(0,q) and k(1,q) can be experimentally determined. 

McDowell [12] has defined an instantaneous measure of 
nonproportionality of the loading path as 

dt (61-63)  
J_ 	  (22) 

g( 	-(03 ) 

where e l  and 6 3  are the largest and smallest principal strains, 
and W I  and (03  are the largest and smallest principal strain 
rates. Here g is defined as g (x) = 1, if x = 0 or g(x) = x if x 
0 0. To account for accumulated effects of nonproportional 
paths, McDowell introduced a state variable cto which evolves 
according to 

it = g•(1- J-0)iiu(1- J-0 11,m ) 	 (23) 
where g•  is an experimentally determined scalar parameter 
and u (1- J-011„,m ) is a Heaviside function introduced to 
reduce the effects of proportional path segments in the evolu-
tion of 

To account for memory of maximum plastic strain range, 
McDowell introduced a state variable q equal to the radius of 
a strain memory surface in plastic strain space given by 

F.— 
3 
 (c-P -ceP):(c-P - ofP) - q 2  = 0 

2 
(24) 

where al' is the center of the strain memory surface in plastic 
strain space and q is its current radius. The kinematic harden-
ing rule assumed was of the following form: 

H(F) 	
(25) =-

2 
 (P:n•)n• 

where ao is the time rate of a? H(F) = 1 if F = 0 and H(F) 
= 0 if F < 0, and n• is the unit normal to the strain memory 

2741 Vol. 108, AUGUST 1986 
	

Transactions of the ASME 



el,), = el, + AN 

tr 
(In+ I = 	- 2GAN 

4= 
	H(F)r 

2 	 3 	 3 
2 -A (q))7) 	(26) 	 an+ , = + — (1- (3)H'AN 

where I' is a scalar function and A (q) is an experimentally 
determined function to account for fading memory of max- 
imum plastic strain range. It may be shown that 

r=a*:n+1/6- A(q) 	 (27) 

For greater detail on the determination of the model 
parameters the reader is referred to McDowell [3]. 

Kreig's Model With Radial-Return Integration 
Algorithm 

This model was proposed by Kreig and Key [4]. Its structure 
is that of a modified classical theory comparable to that of 
Drucker's. A radial-return integration algorithm is utilized 
making this a very efficient material model. 

This model uses a von Mises yield surface given by equation 
(1) with L = ./f R. Kreig and Key [13] introduced a trial 
stress rate tensor as 

surface at the current state of plastic strain. Its isotropic 
hardening rule was defined as 

b'r =C:i 	 (28) 

where C is the fourth rank elasticity tensor and E is the total 
strain rate tensor. The flow rule is expressed as 

[2 	
"

1G ( 1 

	)
4 :N N if f=0 and ir":N?_-0 

1+ 
H ' 

 

	

3G 

	 (29) 

e= 0 otherwise (30) 

where N is the unit normal to the yield surface, G is the shear 
yield strength, and H' is the cyclically stable value of the ex-
perimentally determined asymptotic plastic modulus at the 
maximum plastic strain range of interest. 

A linear combination of isotropic and Prager-type 
kinematic hardening is assumed as given by a model parameter 
(3 as follows: 

ir=— 
2 

(1 --0)Iffe 	 (31) 
3 

L = 	
2 	) 	

(32) 
1/2 

L — (311' 

	

3 	3 
where L is the time rate of change of L. 

By letting 13 be a constant, it is essentially assumed that no 
saturation of the cyclic stress-strain response occurs as the 
material hardens or softens. Kreig's model was modified by 
making i3 a function of WPc  

(38) 

(39) 

(40) 

L n+1 = L„ +— 
3 
 ,3H' A 

2 
(41) 

Wrt +I = Wftc  4.  A ( °'n + I Crn+ I ):N 
	

(42) 

where r is a tensor approximately normal to the yield surface, 
I is the identity tensor, DE is the increment in the total strain 
tensor, and N = rn is the approximated unit normal to the 
yield surface. Subscripts n and n+ 1 refer to the values at the 
beginning and at the end of the current time step. 

It must be emphasized that equations (34)-(42) include 
Kreig's simplified model equations, the introduced modifica-
tion, and the numerical integration algorithm to be used to 
solve this system. 

Abrahamson's Model 
This is a unified creep-plasticity theory. Hence, it has a rate-

dependent structure characteristic of state variable theories 
which reflect competition of hardening and recovery 
mechanisms. Such unified theories result in highly stiff 
systems of ordinary differential equations. Abrahamson's 
model was selected as representative of state variable theories 
since it employs the usual backstress and drag stress state 
variables and the evolution equations have been determined by 
Abrahamson for type 304 stainless steel. 

Abrahamson by definition used 

	

cref  = 	(s cr):(s - 
2 

3 	 a))  1/2 

3 )  1/2 

2 ce = 	a:a) 

where ael  and anfr  are the uniaxial equivalent values of stress 
and backstress, respectively. 

The magnitude of the inelastic strain rate tensor is a highly 
nonlinear function given by 

Creff  
Ee!! = a\ 	

(45) 

where a and p are model parameters and K is the current 
radius of the stress surface. The flow rule is expressed as 

n  

	

„ 	( ieif 	, 
=— 	 k S — ) 	 (46) 

2 	Creff 

Kinematic hardening is achieved by a function of the form 

(43) 

(44) 

WPc 
j3=7exp 

4+1 = a„ + C:Lie 

tr = ;1+1 - an 
1 r=u+ s  -- 3  (trace a+  

with the plastic loading case given by 

A ( Orli 	) - 
2G ( 	H •  

1+ 
3G  

(33) 	 a = hQ  (aeff)e•
n 

ra(a 

BP

eff)  

where B is a temperature correction factor, and h o  (aeff ) and 
ra  (am ) are the hardening and recovery functions assumed for 
the material being modeled. Abrahamson showed that the 
following forms are appropriate for these functions: 

exp( - d,aeff ) 
	 if e:aa0 
di 	

i 

ha (aeff) =  

— if in:a< 0 

ra (aeff)= C( am)'" 	 (49) 

where d i , d2 , c, and m are experimentally determined model 
(3 7) parameters. For room temperature cycling at relatively high 

strain rates, the recovery functions may be neglected. 
Isotropic hardening is achieved by a function of the form 

(47) 

where WP is defined by equation (6), and y and Wa  are ex-
perimentally determined model parameters. 

Applying the radial-return integration algorithm to the 
system of differential equations given by equations (28)-(33), 
it becomes 

(34) 

(35) 

(36) 

(48) 
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Fig. I Experimentally observed transient hardening responses for 
History I (feft column) and History 11 (right column ► . Top row, input strain 
history; middle row, resulting axial stress•axial strain response; bottom 
row, resulting shear stress•shear strain response. 

K-  H 
(4,  (0)cgeff - Ve2 (K))4ff 	 (50) 

(0(0)) u2  
where 0(0 accounts for nonproportionality effects, w2 (K) is 
a recovery term, and H (Zoe ) is an assumed function necessary 
to adjust the isotropic hardening rate. Based on experimental 
results, w2  (K) and H(Ioe ) can be expressed as 

w 2 (K) = b l (b2K) b3 	 (51) 

1 

0(0)==exp(40) 	 (53) 

The procedures to follow for the experimental determina-
tion of all the model parameters are explained in [5]. 

Computer Analysis 

A series of computer programs were written to implement 
the constitutive models just discussed for the axial-torsional 
plane-stress problem. The objective was to predict the stress-
strain response of a thin-walled tubular specimen subjected to 
cyclic axial-torsional strain-controlled loadings that result in 
significant plastic deformation. Sotolongo [14] presents the 
simplified axial-torsional forms of the constitutive models 
used and the experimentally determined model parameters, 
modeling functions, and material constants for type 304 
stainless steel, which are presented in the appendix. 

With the exception of Kreig's model, all models were solved 
by using Gear's numerical integration algorithm. This 
guarantees an accurate solution and serves as an objective 
basis for comparison of the computational advantages or 
disadvantages of each model. 
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Constitutive Model Computation Time 

Orucker 	McDowell 	Krieg 	Abrahomson 

Fig. 2 Constitutive model computational efficiency for Histories I and 
11 

CPUN  = (54) 
tI 

where CPU4  is the actual CPU time taken by the Cyber 835 to 
solve the history under consideration and tf  is the final value 
of the independent variable (time) for this execution. 

Drucker's Model. Figure 2 presents the observed computa-
tion times for the constitutive models discussed in this study. 
For this model, computational efficiency seems to be history-
independent. The variances in normalized CPU times are 
rather small given that the histories are quite different. The 
computation times are considerably smaller than those for 
McDowell's and Abrahamson's models. 

Figure 3 shows that for histories I and II (left and right col-
umn plots, respectively), this model greatly underestimates the 
additional hardening due to nonproportional loading paths. 
Observe that the material shows a saturated response 
throughout the 25 cycles. It should be noted that the model 
parameters for both Drucker's and Kreig's models were deter-
mined from a proportional loading history [14] at approx-
imately the same effective total strain range as the two 
histories considered here. Furthermore, the initial values of 
dependent variables for all models corresponded to the cyclic 
response immediately preceding these two histories. Hence, 
the absence of the additional nonproportional hardening ef- 
fect in Drucker's model is due to the dependence on only a 
monotonically increasing scalar parameter,  WPC, coupled with 
the constants -y and a' obtained from a proportional history. 

Transactions of the ASME 

H(Ioe ) - 	 (52) 
at a3 exp(a 1 (K - k 0 )) 

where b i  , b2 , b3 , a l , a3  and k 0  are all model parameters to be 
determined from experimental results. 

The function 0(0 was introduced by Abrahamson to his 
original model to account for nonproportionality effects. 
Abrahamson used McDowell's original formulation for the 
nonproportional state variable cti [12]. In later research, 
McDowell [2] suggested a rate formulation for i  as given by 
equation (23). The authors chose to use equation (23).. 
Abrahamson's definition of OM has to be changed to the 
following form: 

Extensive experimental data on type 304 stainless steel is 
available in [3]. Figure I summarizes the relevant experimental 
data that will be used in this study to evaluate the material 
models. The applied shear strain-axial strain curves and the 
experimentally observed axial stress-axial strain, and shear 
stress-shear strain responses are shown for the transient 
hardening case. The tips of the transient shear strain-axial 
strain plots have been numbered to denote the sequence of 
loading. History I consists of 25 cycles of nonproportional 
loading with axial strain amplitude E. = 0.0041, shear strain 
amplitude ya  = 0.0060, and constant effective strain rate € elf 

= 0.003 s . Segments 4-1 and 2-3 are proportional; 
segments 1-2 and 3-4 are nonproportional. It should be noted 
that the. extent of cyclic hardening in the first 25 cycles 
achieved by introducing nonproportionality effects is greatly 
( - 70 percent) in excess of that for the uniaxial or propor-
tional loading case [11] at the same effective plastic strain 
range. History II consists of 25 cycles of nonproportional 
sinusoidal loading with 60-deg phase angle, E. = 0.0050. ya  = 
0.0075, and i eff  = 0.001 s . Observe the significant degree of 
hardening resulting from this severe nonproportional path. 

To analyze the computational efficiency of the models, a 
nondimensional CPU time has been defined as follows: 

CPU.4  
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Fig. 3 Numerical solution by Drucker's model for History I (left col- Fig. 5 Numerical solution by Krieg's model for History I (left column) 
umn) and History II (right column) 

	
and History II (right column) 

Flg. 4 Numerical solution by McDowell s model for History I (left col-
umn) and History II (right column) 

The hysteresis loop shapes are predicted incorrectly; the 
asymptotic plastic modulus is considerably underestimated. 
The shear plastic strain range is overestimated by about 50 
percent. 

McDowell's Model. As seen from Fig. 2, this model's com-
putational efficiency also seems to be history-independent. 
However, this model takes about twice as much computa-
tional effort compared to Drucker's model. As will be seen, 
the increased predictive accuracy atttained might easily 
outweigh this disadvantage. 

Figure 4 shows the numerical solution predicted by this 
model. Note that a significant hardening increase due to non-
proportionality effects is predicted with sufficient accuracy. 
The cyclic response saturated within the first 10 cycles of the 
history. The axial stress-axial strain hysteresis loop shapes and 
hardening rates are accurately predicted. For the sinosoidal 
history, although the hardening is correctly predicted, a "flat-
tening" of the shear stress hysteresis loops is observed 
resulting in an overpredicted plastic shear strain range. 

Kreig's Model. Kreig's model's execution time is definitely 
history-independent as shown in Fig. 2. Note the extremely 
short computation times needed; this is the primary advantage 
of this model. Since this is the only model solved without using 
Gear's method, the radial-return algorithm must be responsi-
ble for this tremendous decrease in execution time. Note 
however that this reduction in computation time is accom-
panied by a sacrifice of predictive accuracy as shown next. 

Figure 5 shows the predicted response for these nonpropor-
tional histories. Referring to Fig. 3 the reader will realize the 
many similarities between Drucker's and Kreig's predicted 
responses for these histories. Thus, the analysis and comments 

Fig. 8 Numerical solution by Abrahamson's model for History I (left 
column) and History ll (right column) 

made for Drucker's model are also valid here. In Kreig's 
theory, the structure of the isotropic hardening law does not 
include dependence on the nonproportionality of loading; on-
ly dependence on KIN is included. However, Krieg's model 
has the advantage of being computationally extremely 
efficient. 

It should be noted that the modification in equation (33) 
was made to coincide with well-known experimental observa-
tions of saturation (or approach to a cyclically stable state) of 
the cyclic response. It is important to realize that without this 
modification, isotropic hardening would accumulate 
unrealistically. With or without the modification, the 
dependence of cyclic hardening on the current level of non-
proportionality [2, 3, 12] cannot be described since the 
response is implicitly assumed to be equivalent to the uniaxial 
or proportional case for this model. 

Abrahamson's ModeL Referring to Fig. 2, the reader will 
immediately note the large differences in CPU N  as this model 
is integrated for nonproportional histories. Also, note that 
this model is extremely inefficient compared to any of the 
other models discussed. Since this is a generic form of unified 
creep-plasticity theory, this path-dependence of computa-
tional efficiency probably extends to other particular unified 
theories. 

From Fig. 6 it is immediately seen that this model is capable 
of predicting nonproportional transient hardening rather ac-
curately. Notice the sharp yielding observed in the axial stress 
response which results in underestimated stresses both during 
transient hardening and for the stable loop response. "Fatten-
ing" of the shear response results in overpredictions of the 
plastic strain range. The observed hysteresis loops are quite 
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similar to those of McDowell's model. However, McDowell's 
model is computationally more efficient, while Abrahamson's 
is more versatile since it can handle time- and rate-dependent 
phenomena. 

Discussion of Computer Storage Requirements 
In addition to computational time, the relative amount of 

required computer storage for each model is a consideration. 
Since all models share stress, strain, backstress, and plastic 
strain (for fatigue analysis or cumulative deformation) as 
common variables, only the additional evolutionary state 
variables associated with each model are enumerated. Also, 
model constants are not compared since they would be com-
mon to all integration points in a stress analysis. The number 
of storage arrays stated applies to the axial-torsional subspace, 
but relative comparisons can be extended to higher dimen-
sional stress spaces. In the axial-torsional subspace, only two 
independent components of a, e, a', or ce are necessary 
[2-3]. 

Drucker's model requires only one additional storage array 
for W. McDowell's model requires 9 (a', R, R', K 4), as' , q) 
and Abrahamson's requires 2 (K, c/i). Kreig's model requires 
two additional storage arrays for Wes and L.. For fair com-
parison, it should be noted that formulation of memory of 
plastic strain range, found in McDowell's model, is not 
represented in the other three models, nor in two-surface 
theory in general [6-8]. Neither is evolution of the asymptotic 
modulus. Hence, disregarding as', q and K, which do not 
significantly alter the predictive accuracy for the loading cases 
considered, McDowell's model requires only five additional 
storage arrays. Likewise, inclusion of nonproportional 
isotropic hardening effects in Drucker's or Kreig's models to 
match experimental observations [5] would result in one more 
state variable (e.g., 4i). It must be added that the Mroz 
kinematic hardening rule found in McDowell's model has 
been shown to be more accurate for nonproportional loading 
than the Ziegler rule used in Drucker's formulation [2, 3, 
14-16]. Also, the modulus function in the flow rule is more 
aptly described by a Mroz-type definition [16]. 

Abrahamson's model offers the best combination of ac-
curacy and minimal storage requirements, at the expense of 
excess computational time and difficult experimental deter-
mination of constants and functions necessary due to the 
highly nonlinear coupling of the unified creep-plasticity equa-
tions. Drucker's model has predictive capability very similar 
to that of Krieg's model, but is not as efficient. Both Kreig's 
and Drucker's models do not predict the nonproportional 
response as accurately as McDowell's or Abrahamson's 
models. McDowell's model requires the most storage, but is 
most accurate for nonproportional loading and is less 
numerically stiff than Abrahamson's model. 

Hence, it is apparent that gains in predictive accuracy may 
be accompanied by loss of numerical efficiency and ease of ex-
perimental characterization, and vice versa. 
Conclusions and Recommendations 

Every model has been shown to have particular advantages 
and disadvantages that make them suitable or not suitable at 
all for specific types of applications. Thus, these models can 
be best evaluated and classified based on their appropriateness 
to solve specific types of problems which have particular 
priorities on the computational accuracy and efficiency re-
quired. From the facts just presented, the following recom-
mendations can be made: 

1 A simple, single-surface model (e.g., Drucker's model) 
should only be used for proportional loading when a relatively 
accurate and inexpensive solution is needed. It should not be 
used for modeling of nonproportional loading histories. 

2 More complex, two-surface models (e.g., McDowell's 
model) should be used when an accurate representation of the  

material response for proportional and nonproportional, 
multiaxial loading is required and concern with the computa-
tional costs involved is not critical. 

3 A simple, single-surface model with Radial-Return In-
tegration Algorithm (e.g., Kreig's model) should only be used 
as a very inexpensive but approximate way of solving the pro-
portional, multiaxial, cyclic plasticity problem. It should not 
be used when nonproportionality effects are considerable. 

4 Unified theories (e.g., Abrahamson's model) should be 
used for relatively accurate solutions under proportional and 
nonproportional straining. If low computational costs are of 
major concern, this model should not be used. 

5 The two-surface model of McDowell and state variable 
theory of Arahamson predict the hysteresis response most ac-
curately, yet errors in effective plastic strain range (related to 
fatigue life prediction) are still seen to be as high as 50 percent 
under "steady-state" conditions. Work is continuing [16] to 
determine the source of these errors in the flow and hardening 
rules. 

6 Selection of a material model structure obviously requires 
consideration of compromises between predictive accuracy, 
numerical integration efficiency, experimental characteriza-
tion required, and required computer storage. 
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=u(12(ct,,q)- R) 
=u(1Z. *(ct,,q)- IV) 
=u(K - it(40,q)) 

where u (x) - Heaviside function of x and Co li„,. = 0.02. 

APPENDIX 	 Material Constants:  

For type 304 stainless steel in the initially annealed state: 

16 McDowell. D. L.. "An Experimental Study of the Structure of Con-
stitutive Equations for Nonproportional Cyclic Plasticity," ASME Journal of 
Engineering Materials and Technology. Vol. 107. Oct. 1985, pp. 307-315. 

Drucker's Model 

Miscellaneous Equations: 
µ= 10.0 

K'=50.0 

v=0.29 
G = 75.1 GPa 

 

B 
A = (a

. )2N 
	

Krieg's Model With Radial-Return Algorithm 

Model Parameters: 

 

Model Parameters: 

W. =5.9 MPa 
H' = 4370 MPa 

Material Constants: 

 

7=0.17 
N=1.35 
k= 148.1 MPa 

W. =5.9 MPa 
A=2.6 x 10 -1°  

Units: B MPa -3  
a' MPa 

7=0.35 

    

Material Constants: 

For type 304 stainless steel in the initially annealed state: 
= 0.29 

G= 75.1 GPa 

McDowell's Model 

Material Modeling Functions: 

For type 304 stainless steel at room-temperature: 

R(0,q) = 171 + (q- 0.005)4000 MPa 
/2•(0,q)= 295 + (q - 0.005)20690 MPa 

ic(0,q). 4370 - (q -0.005)196100 MPa 

/2(1 ,q) = 405 MPa 
R•(1,q). 565 MPa 

R(1 ,q) = 4046 MPa 
A (q) =0.6q  

For type 304 stainless steel in the initially annealed state: 
G=75.1 GPa 
E= 193.8 GPa 

Abrahamson's Model 

Model Parameters: 

For 304 stainless steel at 300 . 1C: 
a =5 x 10 -4s - 	c= 1.6 x 10 -8MPa -2 s -1  

a l  =0.002 MPa -1 
	

d, =58.5x 10 -6MPa 
a3  = 22.8 MPa 	m= 2.0 
B = 2.0 	 p = 30.0 

b, = 0.0975 MPa 	ko  = 126 MPa 
b2  = 0.01 MPa -1 	= 0.02 
b3  = 5.89 
	

d2  =0.045 MPa 

Material Constants: 

For type 304 stainless steel at 300*K: 
G=71.1 GPa 	 v=0.29 
E = 173.9 GPa 	 u*=50.0 

• 
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NOTATION 

f 	yield (stress) surface 
k 	shear yield strength 
s 	deviatoric stress tensor 
Wa 	accumulated plastic work 
a 	center of yield (stress) surface in deviatoric stress 

space 
aeff 	uniaxial equivalent value of a 

total, elastic and plastic strain tensors, 
respectively 

cdr 	uniaxial equivalent value of 
a 
	

stress tensor 
aef 	uniaxial equivalent value of a 

current measure of nonproportionality 

Otieut 
	threshold value of 

Drucker's model 

B, N, 

Wo,7,G, 
	experimentally determined model parameters 

axial yield strength R 
plastic modulus function normalizing stress a 

McDowell's model 

limit surface function 
F 
	

plastic strain memory surface 
g(x) 
	

g(x)= 1 for x = 0, g(x) = x for x 0 

fi 
	

plastic modulus function 
H(F) 
	

H(F)= I for F =0, H(F)= 0 for F < 0 
I 
	

instantaneous measure of nonproportionality 
n* 
	

yield and strain memory surface unit normals, 
respectively 

q 
	

strain memory surface radius 
R,R 5 
	

yield and limit surface radii, respectively 
cyclically stable values of R and R 5  

s5 
	

corresponding deviatoric stress tensor in limit 
surface 

u(x) 
	

Heaviside function of x 
center of limit surface in deviatoric stress space 

aP 
	

center of strain memory surface in plastic strain 
space 

r 	scalar function in evolution of q 
61,63 
	current maximum and minimum principal 

strains, respectively 
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current maximum and minimum principal strain 
rates, respectively 
asymptotic plastic modulus and corresponding 
cyclically stable value 
memory loss-rate function 
rate constants 
admissibility functions in isotropic hardening 
rules 

Abrahamson's model 

a l ,a 3 , 
6 1 ,62 ,63 , 
B,c,d,,d2 , 
ko ,m,p 

hardening and recovery terms in kinematic 
hardening rule 

H(I.) 
	

isotropic hardening rate adjusting function 
K 	stress surface radius 

Q 
	

instantaneous measure of nonproportionality 

w2(K) 
	

recovery term in insotropic hardening function 
I^ 
	

inelastic strain tensor 
uniaxial equivalent value of i" 
nonproportional hardening function in isotropic 
hardening rule 

INTRODUCTION 

Transient, nonproportional cyclic plasticity problems 
frequently arise in automobile, aerospace and nuclear 
industries when mechanical components are designed 
to operate under stringent conditions. A balance of 
predictive accuracy and computational efficiency 
must be achieved to have success in the numerical 
solution of this difficult problem. 

The objective of this study is to evaluate five 
numerical solution schemes for three generic forms 
of cyclic plasticity models with special attention to 
changes in the numerical behavior of these models 
when integrating proportional versus nonpropor-

tional histories. The significant coupling between 

material models and numerical solution schemes will 
be investigated in this work. This study is intended to 
help guide plasticity model users in the selection of 
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ON THE NUMERICAL INTEGRATION OF ELASTO-PLASTIC 
CONSTITUTIVE MODEL STRUCTURES FOR 

NONPROPORTIONAL CYCLIC LOADING 

W. SOTOLONGOt and D. L. MCDOwELL: 

School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, U.S.A. 

(Received 12 April 1985) 

Abstract—The classical Runge–Kutta method with Gill coefficients, a non-iterative Adams predictor–
corrector method, an Euler's method with automatic step-size control, an iterative Adams predictor–
corrector method with automatic step-size control and Gear's method are the numerical solution 
algorithms considered in this study. Their computational accuracy and efficiency are evaluated for two 
cases of axial–torsional loading with transient, nonproportional, cyclic plasticity. The constitive equations 
implemented include a modified classical single-surface theory, a two-surface theory and a unified 
creep–plasticity or state variable theory. 

experimentally determined model parameters 
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the most appropriate combination of material model 
type and integration routine to be used for specific 
problems in the general area of nonproportional, 
multiaxial, cyclic plasticity. When dealing with 
structural cyclic plasticity problems via finite element 
analysis, a scheme which reduces time spent integrat-
ing constitutive equation subroutines by 50% can 
mean thousands of dollars in savings. 

CONSTITUTIVE MODEL STRUCTURES 

The numerical behavior of constitutive models is 
determined by the structure of their equations. Three 
generic forms of constitutive models for cyclic 
plasticity will be discussed in this study. Drucker's 
model represents the 'simple' kinematic—isotropic, 
single-surface modified classical theories. McDowell's 
model is representative of the 'complex' two-surface 
theories which are a specialization of multiple loading 
surface theories. Abrahamsons' model is an applica-
tion of a unified creep—plasticity theory to the cyclic 
plasticity problem. Extensive discussions of each 
of the models and references to models of the 
same generic forms are available in [1-4]; the two-
surface theories and state variable theories have been 
shown to have capability to model nonproportional 
cyclic loading relatively accurately. The axial—
torsional subspace forms and the experimentally 
determined modeling functions and parameters for 
each of the models are presented in [5] for type 304 
stainless steel. It is not the intent of this investigation 
to evaluate the predictive capability of these three 
particular constitutive models; instead, the goal is to 
evaluate the efficiency of integration schemes for each 
of the generic structures represented by these models 
as a function of the nonproportionality of the loading 
history. Relative changes in the efficiency of integra-
tion of each of these model structures in going from 
proportional to nonproportional loading is particu-
larly interesting. In many cases, one of these model 
structures would be selected by the numerical stress 
analyst who would make the choice of temporal 
integration scheme. Consideration of the number of 
model constants, parameters and computer storage 
requirements would be made during the selection of 
material model; hence, these factors are viewed as 
secondary in the present paper. A summary of the 
equations for each model will now be presented. A 
summary of the parameters and model constants for 
type 304 stainless steel at room temperature are given 
in the Appendix. 

Drucker's model 

Yield surface: 

R' 
f =:(s —1):(s — a) — =o 	(I)  

Flow rule: 

i* = B(-17-  (s --(x)Rs 

if f = 0 and ci : (ofrao). 0 (2) 

= 0 otherwise 

Isotropic hardening functions: 

= S : S 

3/Pc)]

c7 =a i l -T7 exp( — - E-T-i  

W°`= I(s — a): i" dt 

Kinematic hardening rule: 

ci = 	 (s — a)[(s — a): 2k 2 

McDowell's model 

Yield and limit surfaces: 

f = i(s —a):(s — a) — R 2 =0 

f* = i(s* — a"): (s* — a ") — R *2  = 0 

Flow rule: 

1 	 (1 0) 

Yield surface Mroz kinematic hardening rule: 

[(s — a):S 	RA](s* — s) 
— 

(s — a):(s* — s) 

s*=1*+(s—s)f-
• 	

(12) 

Limit surface Prager—Ziegler kinematic hardening 
rule: 

a*= Kqn 
	

(13) 

= 	= 
	

(14) 

Yield and limit surface isotropic hardening rules: 

R = 	(0,q) — RitInj 	 (15) 

= a[R*(0,q)— Rit/1 	 (16) 

R(0,0= CR(1.q) — R(0.q)]+ R(0,q) 	(17) 

R *(q5,q) = 	*(1,q) — R*(0. q)]+  P(0,q) (18) 



if i":2 < 
d, 

— 

Strain memory surface isotropic hardening rule: 

4 = [1H(F)M- A(q)]ri 

= n* :n + .1g A (q) 

Abrahamson's model 

Uniaxial equivalent values: 

adr =[i(s— 2):(s-2)]"2  

ccefr  = (42:2)1 /2  

Flow rule: 

('eff  

2 Cdr 

i(al '',',T = a  
K 

Kinematic hardening rule: 

tr) (cce 
=11.(letr)i" 	

r. 	a 
BP 

{ exp(  — d: x er) 
if i":a > 0 

d, 

r.(ccetr)= c(ler 

0 (2) 

(3) 

(7) 

(8) 

(9) 

(10) 
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w 2 (K)= b,(b2 Kr,  
k = Aft; f(0,q)— 	 (20) 

	

1Z(41,q)=O[R(1,q)-1Z(0,q)]+1Z(0,q) (21) 	H(I„)— 	
1 

a,a3 exp [a,(K — k o )] 

Plastic modulus functions: 

Q = K [
i +

91960 ( sinhi  Ms* — 	1 1 
K 	 SOIn  SO j ) 

Isotropic hardening rule: 

H(I„) 
— 	[ (0)2,fr— w2(K)1i7rr (19) 	 ftli (4) 

597 

(35) 

(36) 

(37) 

(38) 

Nonproportional hardening state variables: 

(Ei — E3) 
dt 

gRi), — (i) 3 ] 

=u'(1 — J — 0)riu(1 — J — OH.) (2 3) 

Strain memory surface: 

F =i(cP — a''):(cP — aP)— q2  =0 	(24) 

Strain memory surface kinematic hardening rule:  

Nonproportional hardening state variables: 

0(4)) = exp (40 ) 

where ¢ is given by equation (23). 

NUMERICAL INTEGRATION TECHNIQUES 

In general, the problem is to solve an initial value 
problem given by a system of ordinary differential 
equations (system of ODEs) and the prescribed initial 
conditions. Mathematically this can be represented as 

= F(X, 	 (39) 

J= (22) 

X(0) = Xo 	 (40) 

(25) where t is the independent variable, X is the vector of 
dependent variables, and F is the vector of functions 
relating them. 

In time- and rate-independent strain-controlled 
(26) plasticity, the independent variable is the total strain 

tensor E. However, the authors decided to use time 
(27) as the independent variable in this study since the 

unified creep—plasticity model (Abrahamson's) is 
rate- and time-dependent. This study concentrates on 
integration techniques suitable for accurate solution 
of general constitutive equations for cyclic plasticity, 

(28) including multiple surface and viscoplastic theories. 
It should be noted that the commonly used radial- 

(29) return algorithm for integrating time- and rate-inde-
pendent cyclic plasticity equations was also studied in 
[5]; this algorithm was found to be extremely efficient 
for integration of combined linear kinematic—iso- 

(30)
tropic hardening within the context of a single surface 
theory very similar to that of Drucker et al. [1]. Such 
a theory, though, was not found to predict experi- 

(31)
mental results for cyclic nonproportional loading as 
accurately as the more complex multiple surface and 
unified creep—plasticity theories. No effort is made in 
this work to generalize the radial-return scheme to 
two-surface theory with nonlinear hardening. 

Classical Runge —Kutta method with Gill coefficients 

There is a whole family of Runge—Kutta methods 
but of particular interest is the version as modified by 
Gill [6]. The step-by-step procedure for the solution 
of a system of ODEs, denoting X at time t = t" by 
X(t") = X", is given by: 

0 	for t" = 0 
(34) 	Q0= 	I for t" > 0 

(32) 

(33) 

(41) 



X, = X, + (1 - A)(k 2  - q 1 ) 

q 2  = qi + 3(1 -;)(1c 2 - q 1 ) - ( 1 - 11)k, (47) 

 (46) 	 iF h[F,(X^,  t") - 	t" 'An' 
(56) 
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k, = h F(X", t") 
	 (42) 	Emu  and E„„„ are the prescribed error limits, and E 

is a suitable error criterion chosen by the user. 
X, = 	+1(1c, 2q0 ) 

	
(43) 	The basic Euler's method can be expressed as 

qi = q0  + ;(k, - 2q0 ) -; k 1 	 (44) 
	

X"+ = 	+ h F(X", t"). 	(55) 

Ic2 = hF(X,,t"+-h ) 
2 

(45) In this study, the authors chose the following error 
criterion: 

k, = hF(X„:"+!1-) 
2 	

(48) 

X3 = X2 + ( 1 + 11)(1c 3 -q2 ) 
	

(49) 

q, = q2  + 3(1 + ,A)(1t, -q 2 )- (1 + 11)k, (50) 

k4  = hF(X,,t"+ h ) 
	

(51) 

X"' =X 3  + 6(k4  - 2q3 ) 
	

(52) 

= q3 	1(k.$ 	2(13) 
	

(53) 

where superscripts n - 1, n, n + 1 refer to values at 
the previous time step, at the present time step, and 
at the desired time step increment, respectively. Note 
that h is the time-step size and the Ic„ q„ X, are 
intermediate values that do not have to be stored. 

A good check on the truncation error can be 
obtained by keeping track of the values of q", at each 
time step [7]. Thus, the error control criterion used 
could be of the form 

l9"4,115 h 10  t 	0. 	(54) 

Essentially, condition (54) determines the initial 
step-size chosen in the solution of a particular set of 
ODEs. Because this is a fixed step-size method, h will 
be constant for t > 0. 

Euler's method with automatic step -size control 

Euler type methods are the simplest numerical 
integration techniques used in the solution of systems 
of ODEs. According to Kumar et al. [8], a reasonable 
step-size control algorithm would involve either 
doubling or halving the step-size as required by some 
suitable error criterion and the prescribed error 
limits. The step-size will be controlled based on a 
predicted step-size h p  and the actual step-size h. 
Thus, for the nth step the procedure would be as 
follows: 

1.If E > Emu , replace hp  by hp/2 and recompute E. 

2. If E E,„x , let h = hp  and compute X" + 

3. If Ernm  < E < Emu . let hp  = h. 

4. If E < Em „, let hp = 2h.  

where the i subscript refers to the ith dependent 
variable in the system being solved, i.e. the ith 
component of X. Note that N is the number of 
dependent variables in the system. 

Iterative Adams predictor—corrector method with automatic 
step-size control 

The family of Adams-type predictor-corrector 
algorithms for solving systems of ODEs is very 
extensive and widely used. The predictor equation is 
given by 

X;,"" I  =X" - hF(X^,t") 	(57) 

where h is the current time step-size and X; 	is 
the predicted vector of dependent variables. The 
corrector equation is given as 

= X"+hF(Vp'+',:"+') 

-
2  
-
h 

[F(X; 	t" + I ) - F(X", t")] (58) 

where X," 4  is the corrected vector of dependent 
variables. 

Kumar et al. [8] recommends use of a step-size 
control algorithm similar to the one described for 
Euler's method except that an iterative algorithm 
for the corrector equation must be included. Thus, 
for the nth step the procedure would be as follows: 

1. If E > 

(a) If m < m *, let X"p + ' = X," 41 , m = to +1, and 
recompute X," + and E; 

(b) If m > m*, let m = 0, h p  = hp/2, and recompute 
X"p + X,"+ and E; 

2. If E < Emax , let h = hp  and compute X" '; 

3. If Enun < E < Erna., let hp  = h; 

4. If E < Emin , let hp = 2/1 

where m is the current number of corrector iterations 
and m* is the maximum number of iterations allowed 
at a fixed time step-size. 

Once convergence of the corrector equation has 
been achieved or the time step has been significantly 
reduced to keep the error within desirable bounds, 
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the accepted value of the dependent variables at t" 
becomes 

X"+ 	+ 	. 	(59) 

The authors chose the following error criterion: 

E 	F(X.,'+'( ),c 	+ 112)1/2 

\.; - IL 	
(60) 

Non - iterative Adams predictor —corrector method 

The non-iterative, explicit versions of Adams 
predictor—corrector methods are the most widely 
used for non-stiff to mildly stiff systems of ODEs. 
Cash [9] presents an extensive list of these methods. 
The authors selected a version that was shown to 
have a stability interval of more than twice the 
interval of absolute stability of any other method in 
its class. 

The method consists of one corrector and two 
predictor equations. Knowing the initial conditions, 
the sequence of calculations would be as follows: 

	

X,;+ = X" + h F(X", t") 	 (61) 

X;+ 2 = V I + hF(X;+',e+ l ) 

X"+ = X" + h[AF(XT;+ 2, t"+ 2) 

+ 1F(Xr', t"+ + F(X", t")] (63) 

where superscripts n, n + 1, and n +2 refer to values 
at the beginning of the present time step, at the end 
of the present time step, and at the end of the next 
time step respectively. Note the h is the time step-
size (constant) and X",+ and X t,"+ 2  are intermediate 
predictor values that must be stored. 

The authors chose an overall system error estimate 
of the form 

 v 
	 I/2 

=( E pc+ - oc+1),12) . (64) 
 

By determining E, the appropriate initial time step-
size can be chosen for a particular system of ODEs. 
Note that this time step-size will be kept constant 
and should correspond to the smallest necessary time 
step-size for the whole solution interval. 

Gear's method 

Gear's method is the most widely accepted numer-
ical integration technique. It is a multiple-step, im-
plicit, iterative, variable-order, and variable step-size 
method whose sophistication guarantees an accurate 
solution for virtually any system. Since it has become 
the standard ODE solver, the authors decided to use 
it as the reference solution technique against which all 
other integration methods will be compared. The 
mathematical details of this method are lengthy and 
complicated; for a detailed discussion, the reader is 
referred to [10]. 

COMPUTER ANALYSIS 

The numerical solutions found for the axial—
torsional plane-stress problem using the material 
models and numerical solution algorithms just 
presented are now described. The objective is to 
predict, as accurately and as efficiently as possible. 
the stress—strain response of a thin-walled tubular. 
type 304 stainless steel specimen subjected to cyclic 
strain-controlled, axial—torsional loadings that result 
in significant plastic deformation. 

To analyze the computational efficiency of the 
integration algorithms, a non-dimensional CPU time 
has been defined as follows: 

CPU N 
 = CPU, 

 
tt 

(65) 

where CPU, is the actual execution time for the 
history under consideration and t, is the final value of 
the independent variable (time) for this run. Plots of 
the time variations of the axial and shear stress 
integration errors will also be shown. These errors 
have been defined as follows: 

(66) 

Es(%) 	
— t

g 	 (100) 	 (67) 
;MX 

where ag  and tg are the Gear's method solutions for 
the axial and shear stresses at given axial and shear 
strains respectively, a, and ta  are the corresponding 
numerical solutions (at the same axial and shear 
strains) by the method being considered, and am„ and 
T. are the largest values of axial and shear stresses 
calculated by Gear's method over the input history 
under consideration. 

As previously stated, all the numerical integration 
techniques will be compared against the solutions 
calculated using Gear's numerical integration algo-
rithm. Therefore, errors reported in this section are 
computed with respect to Gear's method solution 
(percentage of Gear's method solution normalized 
CPU time), not experimental results. Comparison 
with experimental results has been performed in other 
works [2-5]. The purpose of this study is to compare 
the performance of integration schemes as a function 
of structure of constitutive equations given the same 
initial conditions and loading history. To minimize 
the effects of algorithms for implementation of each 
constitutive model on computation time (since we 
want to compare integration schemes), all three sets 
of constitutive equations were implemented in the 
same subroutine structure: furthermore, the structures 
of the constitutive model subroutines were written as 
similarly as possible. Two input strain histories were 
used as the basis for these comparisons. History I 
consisted of three cycles of proportional straining 
from the initially annealed state with maximum 

and E 
r. 
as 

(55) 

error 

(56) 
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•ector 
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axial and shear strain amplitudes E. = 0.0041 and 
= 0.0060, respectively. The effective strain rate was 

kept constant at i eff  = 0.003/sec. History II consisted 
of three cycles of sinusoidal loading with 90 degrees 
phase angle, E. = 0.0050. y„= 0.0075 and iefr  = 0.001/ 
sec. Figure 4 shows the axial stress-time and the shear 
stress-time responses predicted for these histories 
using Gear's numerical integration method with 
McDowell's, Drucker's and Abrahamson's models. 
Figure 1 shows the actual values of CPU N  for all 
the models using the reference Gear's method. The 
normalized CPU time seems to be insensitive to 
input history for McDowell's and Drucker's models. 
However, note the tremendous increase in execution 
time for Abrahamson's model when integrating non-
proportional history II. So, the computation times 
for Abrahamson's model are greatly sensitive to the 
nonproportionality level of the input strain history. 
The reader must keep in mind this apparent path-
dependence of computational efficiency since it will 
be shown to be an important parameter in the 
evaluation of the numerical solution algorithms. 

Runge -Kutta method with Gill coefficients 

Figure 2 presents computation times for this 
numerical method for histories I and II. Observe 
that for all models in both histories at least 60% 
reduction in CPU time is achieved compared to 
Gear's method. Largest computational savings are 
achieved for McDowell's and Abrahamson's models. 
Note that due to the large increase in normalized 
CPU time for Abrahamson's model in history II, 
the computational savings are in this case about 
95%. Evidently, this is a very efficient integration 
algorithm. Figure 5 shows that axial and shear stress 
integration errors behave similarly in all cases. Larg-
est errors always occur in regions of initial yielding or 
just after elastic unloading. Error magnitudes are 
kept below 1% throughout both histories except for 
the integration of McDowell's model for history II. 
It seems that an optimal time step-size was chosen 
since this method is both efficient and quite accurate 
compared to Gear's method. 
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Fig. 3. Constitutive model computation times for histories 
I and II using iterative and non-iterative Adams predictor- 

corrector numerical integration algorithms. 
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Euler's method with automatic step-sire control 

As presented by Fig. 2, this method is quite efficient 
for history I (proportional history) and extremely 
inefficient for history II (nonproportional history) 
for McDowell's and Abrahamson's models. Note 
that the nonproportional loading CPU time as a 
percentage of Gear's shown in Fig. 2 for these two 
models is significantly in excess of 100°/0 (-2400%); 
the rationale for plotting up to only 100°/0 is that 
any method less efficient than Gear's is unacceptable. 
The fact that Euler-type methods are very efficient for 
proportional straining has been pointed out [8, 1 1] 
and is confirmed in this study. However, most analy-
ses have missed the fact that, as shown here, non-
proportionality of loading has a tremendous effect in  

the efficiency of the numerical solution algorithm. By 
removing the nonproportional isotropic hardening 
formulation from the models of McDowell and 
Abrahamson, it was shown that the large effects of 
nonproportional straining on integration efficiency 
remained. McDowell's and Abrahamson's models 
present highly stiff regions in the integration paths 
which result in the very large inefficiencies of this 
method. Figure 6 shows that rather large errors occur 
for all of the cases discussed; most important of 
all, these errors seem to accumulate with time. It 
seems that this method is not very efficient for 
proportional histories if good accuracy must be 
achieved. Euler-type methods should not be used for 
nonproportional histories in 'complex' or unified 
creep—plasticity theories. 

e 	 17 	a 	z 	4 	ii 	• 
rrmE SEC 	 rIME EEC 

Fig. 4. Axial and shear stress vs time responses for histories I and II integrated by Gear's method. Left 
column, history I; right column, history II; top row, McDowell's model solution; middle row, Drucker's 

model solution; bottom row. Abrahamson's model solution. 
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Fig. 5. Axial and shear stress errors vs time responses for histories .I and II integrated by Runge-Kutta 
method. Left column, history I; right column, history II; top row, McDowell's model solution; middle 

row, Drucker's model solution; bottom row, Abrahamson's model solution. 
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Iterative Adams predictor-corrector method with automatic 
step-size control 

Figure 3 presents the computation times observed 
for the cases under consideration. Comparing this 
figure to Fig. 2, it is seen that essentially the same 

behavior occurs. Figure 7 shows that, however, excel-

lent accuracy is now achieved (comparing to Fig. 6). 

It seems that even though Euler-type and Iterative 

Adams methods behave similarly, there is an accu-
racy advantage to the latter which is probably due to 

the higher order of the integration equations used. 

Evidently, this method is efficient and accurate in 
proportional straining but quite inefficient for non-

proportional loading. Once again, this is a point 
missed in previous analyses [8, I it 

Non-iterative Adams predictor-corrector method 

Comparing Figs 3 and 8 with Figs 2 and 5, the 

reader will notice that this method is at least as 
efficient and as accurate as the Runge—Kutta method. 

Computational savings of at least 75% are now 
achieved while keeping integration errors below 1.5% 

for most of the cases. High-order, fixed step-size 
methods seem to have a large computational advan-

tage over low-order, variable step-size methods in the 

integration of nonproportional type loadings. How-
ever, fixed step-size methods are inconvenient since 
some trial and error is needed to determine the 
optimal initial time step-size to be used in the solution 
of a particular problem; iteration of solutions might 
be necessary to determine the optimal step-size. 
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Fig. 6. Axial and shear stress errors vs time responses for histories I and H integrated by Euler's method. 
Left column, history I; right column, history II; top row, McDowell's model solution; middle row, 

Drucker's model solution; bottom row, Abrahamson's model solution. 

DISCUSSION 

Though in finite element calculations interaction 
of the constitutive equation integration algorithm 
with structural time step-size and associated iteration 
algorithm is an important issue, independent selec-
tion of an efficient constitutive equation integration 
procedure is also very important. This is especially 
relevant for the class of nonproportional loading 
problems treated in the paper. 

A number of precedental studies [e.g. 8,11,12-15] 
have recently appeared in the literature regarding 
various temporal integration algorithms for stiff rate-
independent and rate-dependent constitutive equa-
tions for cyclic loading. A conclusion of most of these 
studies is that an Euler method with automatic time  

step-size control is most efficient. In these previous 
works, a key feature is that the loading paths are 
predominately uniaxial or one-dimensional in stress 
space. As was shown in this paper for several classes 
of constitutive models, the Euler methdd with auto-
matic time step-size control may be quite efficient for 
uniaxial or proportional loading, but extremely 
inefficient for stiff constitutive equations under condi-
tions of nonproportional multiaxial loading. For this 
practically important class of problems, a method 
with a fixed time step-size is most efficient. Based on 
this work, it is suggested that more consideration be 
given to nonproportional loading in evaluation of 
temporal integration schemes used in constitutive 
integration subroutines. 
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Fig. 7. Axial and shear stress errors vs time responses for histories I and II integrated by iterative Adams 
method. Left column, history I; right column, history II; top row, McDowell's model solution; middle 

row. Drucker's model solution; bottom row, Abrahamson's model solution. 

CONCLUSIONS 

Every integration routine has been shown to have 
particular advantages and disadvantages that make 
them suitable or not suitable at all for specific types 
of applications. Thus, these integration routines can 
be best evaluated based on their appropriateness to 
solve specific types of problems which have particular 
priorities on the computational accuracy and 
efficiency required. From the facts just presented, the 
following recommendations can be made: 

I. Gear's method should be used for proportional 
or nonproportional loading when the numerical 
behavior of the system being solved is unknown. 
However, it should not be used if high computational 
efficiency is desired. 

2. Runge—Kutta method with Gill coefficients 
should be used for integrating proportional and 
nonproportional histories for all the model structures 
discussed if a good estimate of the appropriate initial 
time step-size is available. Otherwise, iteration of trial 
solutions might be required to guarantee an efficient 
yet accurate solution. 

3. Non-iterative Adams predictor—corrector 
method presents the same characteristics of the 
Runge—Kutta method and should be used under 
the same constraints. 

4. Euler's method with automatic step-size control 
should only be used when integrating proportional 
loading histories on McDowell's and Abrahamson's 
models. For nonproportional loading histories and 
for any model expected to be rather stiff, this method 
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Fig. 8. Axial and shear stress errors vs time responses for histories I and II integrated by non-iterative 
Adams method. Left column, history I; right column, history II; top row, McDowell's model solution; 

middle row, Drucker's model solution; bottom row, Abrahamson's model solution. 

should not be used. This conclusion is important, 
since it conflicts with the previously reported desir-
ability of this method for stiff constitutive equations, 
surmised from proportional loading histories. 

5. Iterative Adams predictor—corrector method 
with automatic step-size control should only be 
used when integrating proportional loading histories 
in general. For nonproportional straining, this 
method behaves very similar to Euler's method and, 
consequently, should not be used. 
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APPENDIX 

Drucker's model 

Miscellaneous equations 

B 
A = (0.• ) 2.v  

Model parameters 

7 = 0.17 
	

141, = 5.9 MPa 

N = 1.35 
	

A = 2.6 x 10 -10  

k= 148.1 MPa 
	

Units: B MPa 

o• MPa 

Material constants 

For type 304 stainless steel in the initially annealed state: 

v = 0.29 

G = 75.1 GPa 

McDowell's model 

Material modeling functions 

For type 304 stainless steel at room-temperature: 

R- (0, q) = 171 + (q - 0.005)4000 MPa 

II *0,0= 295 + (q - 0.005)20690 MPa 

(0,q)= 4370 - (q - 0.005)196100 MPa 

R(1,q)= 405 MPa 

If *(1,q) = 565 MPa 

iF(1,q)= 4046 MPa 

A(q)=0.6q 

= u[R(q),q)- R] 

W • = u[lf *(0,q) - R.] 

t1.1 „ = u[K - (0, q)] 

where u(x) a,  Heaviside function of x and (/),,„,„ = 0.02 

Material constants 

For type 304 stainless steel in the initially annealed state: 

= 10.0 
	

v = 0.29 

k I • = 50.0 
	

G = 75.1 GPa 

Abrahamson's model 

Model parameters 

For 304 stainless steel at 300 K: 

a =5 x 	 c = 1.6 x 10 - 'MPa -2 s -I  

a, = 0.002 MPa - ' 
	

d, =58.5 x 10 -6  MPa -1  

a 3  = 22.8 MPa 
	

m = 2.0 

B =2.0 
	

p = 30.0 

= 0.0975 MPa 
	

ko = 126 MPa 

b2  = 0.01 MPa - ' 
	

= 0.02 

b 3  = 5.89 
	

d,= 0.045 MPa-' 

Material constants 

For type 304 stainless steel at 300 K: 

G = 71.1 GPa 	 v = 0.29 

E = 173.9 GPa 	 = 50.0. 
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ABSTRACT  

The Mroz kinematic hardening rule has previously demonstrated superior 

capability to correlate cyclically stable nonproportional stress-strain 

response. In this paper, recently proposed kinematic hardening rules for 

single and multiple surface cyclic plasticity models are evaluated. 

Significant improvement over the Mroz rule, without loss of generality, is 

achieved with a deviatoric stress rate-dominated rule proposed by Tseng and 

Lee for two surface theory. Recent approaches for correlation of the modulus 

function and isotropic hardening are discussed. The norm of the Mroz distance 

vector is found to uniquely correlate the variation of plastic hardening 

modulus through a cycle; it is necessary to include a measure of instantaneous 

nonproportionality, however, to properly normalize the modulus function. A 

new evolution equation is offered to correlate the additional isotropic 

hardening observed during nonproportional loading, and several contemporary 

approaches are also considered. 
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Introduction  

With increasing emphasis on lightweight, high performance structures, 

there has been a corresponding rise of interest in constitutive equations for 

cyclic plasticity. This is true for the turbine and rocket engine, nuclear 

and ground vehicle industries, for example. Historically the complexity of 

cyclic plasticity models increased as more experimentally observed effects 

were reported. There has been a relatively recent emphasis (Dafalias and 

Popov, 1975; Dafalias, 1981; Krieg, 1975; Lamba and Sidebottom, 1978a, 1978b; 

McDowell, 1985a, 1985b; Nouailhas et al., 1983; Tanaka et al., 1985; Tseng and 

Lee, 1983) on the formulation of models for multiaxial loading. This includes 

consideration of nonproportional variation of the components of stress and 

strain referenced to material axes (nonproportional loading). 

Lamba and Sidebottom (1978a, 1978b) produced data from nonproportional 

cyclic axial-torsional tests on OFHC copper, and showed that the kinematic 

hardening rule of Mroz (1967) was far superior to that of Ziegler (1959) or 

Prager (1956) for correlating stress-strain response during nonproportional 

loading. Lamba also reported a significant increase in cyclic hardening under 

sinusoidal out-of-phase loading, a finding that since has been reported for 

other materials for similar loading conditions (McDowell, 1983a; Kanazawa et 

al., 1979; Krempl and Lu, 1984). Prediction of the direction of plastic 

strain rate in general depends greatly on the kinematic hardening rule for 

nonproportional loading. Likewise, isotropic hardening during nonproportional 

loading can no longer be represented as a function of accumulated plastic 

strain or plastic work; it is also a function of changes in the direction of 

the plastic strain rate vector over a loading history (McDowell, 1985c). 
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Since both the direction of the plastic strain rate vector and the additional 

hardening during nonproportional loading are of first order importance, it is 

not extravagant but absolutely necessary to account for them in the cyclic 

plasticity model. 

In this paper, experimental data from axial torsional, strain controlled, 

cyclic nonproportional loading tests is examined in detail for type 304 stain-

less steel at room temperature. Within the context of von Mises yield and 

loading surfaces, recently proposed approaches for kinematic hardening will be 

evaluated. More accurate rules are developed where necessary. Second invari-

ant plasticity theory (i.e. von Mises) is selected as the basis for evaluation 

since it is of extreme practical importance to the computational plasticity 

community. Likewise, studies of isotropic hardening and modulus function will 

be based on this framework. 

Results of three strain-controlled axial torsional histories are consid-

ered in this paper. All tests were conducted at room temperature. The 

initial values of Young's modulus and shear modulus were determined as E = 188 

GPa and G = 77 GPa, respectively. A summary of the three test histories 

appears in Table I, including the effective strain rate and controlled axial 

and shear strain endpoint sequence of each block within each history. Details 

of the experimental procedures and more in-depth discussion of the experiments 

appear elsewhere (McDowell, 1983a, 1983b, 1985d). 

Studies of kinematic hardening will be limited to consideration of 

essentially stable cyclic response observed in the latter cycles of each 

block. In this case, the kinematic hardening rules may be examined in the 

absence of isotropic hardening. In a later section, isotropic hardening 

effects and the modulus function will also be examined. 



Kinematic Hardening Rules  

Previous work (Lamba and Sidebottom, 1978a, 1978b; McDowell, 1985d) has 

demonstrated the lack of correlation obtained with the use of either a Prager 

or Ziegler kinematic hardening rule for nonproportional cyclic loading, i.e. 

or 

• 	.p 
a = #e 	 (1) 

a = f7(s - a) 	 (2) 

where s is the deviatoric stress tensor, a is the backstress, and # and i are 

scalar multipliers. 

The superiority of a Mroz-type hardening rule, based on the concept of 

nested yield and loading surfaces, has been previously demonstrated. For 

computationally efficient two surface models with a yield surface f and 

enclosing limit surface f *  of the form f(s - a, R) = 0 and 

f* (s - a* , R*) = 0, the Mroz rule may be stated as 

a = #m (s * - s) 
	

(3) 

where s *  is the similar point on the limit surface as shown in Fig. 1 defined 

by 

s *  = a*  + (R*/R)(s - a) 	 (4) 

where R and R*  are the yield and limit surface radii, respectively. 
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Other kinematic hardening rules have been proposed recently which would 

also conceptually apply to the nonproportional loading case. Tseng and Lee 

(1983) proposed that the yield surface translation is related to the devia-

toric stress rate direction. Their theory was motivated chiefly by the 

predominance of stress rate in translation of the yield locus observed in the 

experiments of Phillips et al. (1974, 1979). In their theory, for a 

stationary limit surface, 

(5) 

where 

[5-2  * (R - R))!  - !I 

= 

F (R*  - R)X - a 3 

s + o.ssillsII 
A - 	 (7) 

II(! 	5;;111,;,,11)11 

5; = -s 	[(! 	/11,ij1) 2 	(3(R* ) 2  - Ils 112)] 1/2 
	

(8) 

where the scalar product is defined by s : s = sijsij for example. The norm 

of a second order tensor s is denoted by Hsi' = (s : s) 1 / 2 . 

Here, 5; is the norm of the vector from the current stress point to the 
intersection of the deviatoric stress rate direction relative to the current 

stress point with the stationary limit surface f *  of the form 

(6) 
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f*  ( s, R* ) = (3/2)s : s - (R * ) 2 	 (9) 

Note that a*  = 0 in their formulation. Equations (5) - (9) are meant to 

apply to von Mises yield and limit surfaces. Note also that the rule 

guarantees tangency of the surfaces as as i 0 as in the Mroz rule. 

Outside of the context of a multiple surface plasticity theory, one could 

generalize the assumed dominance of deviatoric stress rate direction with the 

rule 

a = # s s 
	

(10) 

Another rule which has been introduced in the context of rate-dependent 

state variable or unified creep-plasticity theory is due to Chaboche et al. 

(1979), 

- 
C[aie - allE

P 
 II] (n) 

where a' is a constant and C is a scalar. In Chaboche's formulation, both C 

and a' can be functions of the accumulated plastic strain, iP. In equation 

(11), C is determined by consistency, leaving a' freely specified. The second 

term, widely regarded as a dynamic recovery term, in principle can account for 

nonproportional loading effects since an additional directional index a is 

appended to the otherwise Prager-type rule. It should be noted that other 

investigators have proposed similar forms (Lindholm et al. 1985). It should 

also be noted that neither of equations (10) - (11) requires a multiple sur-

face formulation. 

The Tseng-Lee Rule in equations (5)-(8) was motivated by observation that 

the yield surface movement was related to deviatoric stress rate. In their 

- 7 



implementation of this observation, however, Tseng and Lee were constrained to 

ensure nesting of the yield and limit surfaces as 5; 4  0. Hence, the devia-

toric stress rate direction and that of v in the Tseng-Lee Rule in equation 

(6) are not equivalent, though v much more closely follows the deviatoric 

stress rate direction than the Mroz rule in equation (3) for nonproportional 

loading. 

The Tseng-Leerule may be extended to the case of a translating limit 

surface by referencing to a* rather than the origin. The Tseng-Lee rule with 

nonzero a* is illustrated in Fig. 2. 

It is possible to evaluate these rules via numerical differentiation of 

data from strain-controlled, axial torsional tests on thin-walled tubular 

specimens (McDowell, 1985d). It is convenient to make these comparisons in 

the axial torsional subspace. 

The, definition of the axial torsional subspace follows as a subspace of 

Ilyushin's five-dimensional deviatoric vector space (McDowell, 1985d). Define 

the stress vector as 

a = a n + 	n 1 -1 	3 -3 (12)  

where. 	 a
1 

= a
zz 

= a
' 
a
3 

= 170.z9 

and n1 and n3 are orthonormal base vectors in the stress plane. Here, z and 0 

denote the tube longitudinal and circumferential directions, respectively. 

Likewise, the plastic strain vector is defined by 

e P  = e 	n + e 	n 1 -1 	3 -3 (13) 



where 
	

e 1 = e
zz 
 , and e

3 
= (2/Me

ze
P . 

Note that the plastic strain rate vector is defined as 

.13 	• P 	• P 
e =e 	n+en 1 	1 	3 	3 

The effective stress a and plastic strain rate if' (normalized to the axial 

case) are recognized as 

Q= 1 ,71  = (a 	a) 1/2 	(0.
1
2 +Q3 2 ) 1/2 

P 	•P 
E 	= 	I 

The total strain vector is heuristically defined as 

.e =e n +e 1 -1 	3 
n  _3 

where El = EZZ 	E ad = 	d E3 = (2/I)EZ9 = 7/45. The effective strain rate 

reported in Table I is then e = 1E1 since 7 = 2Ez19. 

The plastic strain rate vector in the subspace was computed by numerical 

differentiation of data (McDowell, 1985d). 

The axial torsional subspace can also be considered a deviatoric subspace 

since the second invariant of deviatoric stress can be related to a • a 

Q = (a  ,a) 1/2 s : s = 
2 - - 	2 (18) 

Hence, a von Mises yield surface also is circular in the subspace, i.e. 

(14)  

(15)  

(16)  

(17)  
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f = (a - a).(a - a) - R2 	 (19) 

where R is the uniaxial yield stress and a is the backstress in the subspace. 
AO 

The associated flow rule in the subspace is given for f = 0 by 

e = Ili </ • n> n 
	

(20) 

where n = (c - a)lla - al and h is the hardening modulus. The Macauley 
" 	"""" 

bracket is defined by <M> = M if M 	0 and <M> = 0 if M < 0. Hence, j is 
AS 

collinear with (c - a) for the von Mises case. A stationary limit surface f * 

 in the subspace, required by two surface theories, is given by 

* 
f* = a • a

* 
 - (R* ) 2 (21) 

where a*  is a point on the limit surface. 

Referring to equations (19)-(21), it is apparent that if R and n 
AO 

(.eP/IjI) are known, then a can be computed directly from 
AS 	 AS 	 N 

a = a - Rn 	 (22) 
Pip 	 Pip 	 n, 

for each point in the plastic range under conditions of stable or pure 

kinematic hardening (R = constant). Figure 3 illustrates the imposed el 

versus e3 strain paths and resulting stable cycles of al versus a3 in the 

axial torsional subspace for the histories in this study, which are fully 

described in Table I. 



In Figs. 4 - 7, the backstress path based on equation (22) is plotted as 

a solid line for essentially stable cycles of three nonproportional histories. 

In addition, vectors are plotted along these paths which represent the direc-

tion of backstress evolution predicted by the models of Mroz, Tseng-Lee, 

deviatoric stress rate, and that of Chaboche. These models are stated in the 

axial torsional subspace as 

• 

Mroz: 	 a = ism  (a*  - a) 	 (23) 
 - 

where 	a*  = (R* /R)(a - a) 	 (24) 

• 
Tseng-Lee: 	a = lies 	 (25) 

where 	 (R*  - R)A - a 
v
s 

(26) 
l(R*  - R)A - al 

a + 54/1ill - 	a- - 
-  	 (27) • • 

IQ 4-  ailaYla11 

and 

5e  = _a  • idlel + [(a  • aili1 1) 2  + ((R* ) 2 
 - 10.12)]1/2 

Deviatoric stress rate: 
	

a = Pa?: 
• . 

Chaboche: 
	a = c[a(a - a) - E]iel 

(28)  

(29)  

(30)  

It should be noted that the Mroz and Tseng-Lee models require specifica-

tion of R* , the limit surface radius. Several values of R * , including the 

maximum effective stress in a cycle, were used in evaluating these models. 



Also, in the Chaboche model, constant a was selected as a = 2.3 to provide the 

best fit to the data from specimen SS01, block 3. Note that the limit surface 

is stationary in both the Mroz and Tseng-Lee models. 

Referring to Figs. 4 - 7, it is noted that degree of tangency of the 

vectors to the path of a provides the measure of accuracy of each model. 
As discussed later, it was found that the yield surface dimension does 

not experience significant change, assuming ,* flow theory and a deviation 

from linearity definition of yield. Hence, a constant yield surface radius of 

R = 160 MPa was used in all calculations for the backstress path. In 

contrast, the limit surface radii required for the Mroz and Tseng-Lee rules 

experienced significant dependence on nonproportional loading. In Figs. 4-5 

it was assumed that R *  = maxloj + 30 MPa where maxloi is the maximum 

cyclically stable value of effective stress in each loading block. 

From Figs. 4 - 7, it is clear that some models provide a good correlation 

for one history, but poor correlation for others. Interestingly, the harden-

ing rules of Mroz and Chaboche are significantly less accurate than the rules 

associated with deviatoric stress rate. The hardening rule of Chaboche is 

less accurate for the sinusoidal loading paths than the deviatoric stress rate 

rules. The tremendous improvement of the Chaboche rule over the Prager (1956) 

or Ziegler (1959) rules indicates strongly that a dynamic recovery term must 

be included in a single surface (Drucker and Palgen, 1981) or state variable 

approach (Chan et al., 1984) which uses Prager-type hardening. 

It is noted that there are some differences between the directions of 

yield surface translation given by the Tseng-Lee rule - of equation (25) and the 

deviatoric stress rate. The deviatoric stress rate direction provides an 

overall superior correlation of the backstress rate direction. 

- 12- 



However, use of deviatoric stress rate does not ensure nesting of yield 

and limit surfaces in a multiple surface model. Hence, the data indicates 

that the Tseng-Lee rule is superior to the Mroz rule for two surface-theories, 

yet still invokes the desired nesting feature for both proportional and non-

proportional loading. The Chaboche rule is the least accurate of those 

studied. 

Modulus Function  

Accurate assignment of the hardening modulus function H in the flow rule 

e = u ‹s .1) 	1 	• : n> n 
	

(3 1) 
Pk, 	 H 	no 	no 	no 

expressed in deviatoric stress space is extremely important for modeling 

nonproportional cyclic stress-strain response. In the axial torsional 

subspace, equation (20) is appropriate where H = (2/3)h. Modulus function h 

may be computed from experimental data since 

(da/ds) • n 

h =  	 (32) 
(de P/ds) • n 

and da/ds, deP/ds, and n are known from numerical differentiation of data 
All 	 All 	 All 

(McDowell, 1985d), where s = f(da•da) 1 / 2  is the effective stress arc length "., 	"., 

along the path. 

McDowell (1985d) showed that dependence of h on the Mroz distance vector 

for a two surface theory 

8m = la - al 
	

(33) 
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offered better correlation with nonproportional cyclic loading data than 

dependence on effective stress F3,Z Since dependence of h on 5 m  is assumed 

in two surface models with Mroz-type kinematic hardening rules, it is not 

surprising that such models have consistently demonstrated superior accuracy 

for nonproportional cyclic plasticity. 

Recent advances and close examination of experimental data, however, 

suggest that the correlation for h can be improved. In this work, several 

recently proposed independent variables will be considered and compared to the 

performance of 5 m . 

It is now recognized (McDowell, 1985c; 1985d; Nouailhas et al., 1983) 

that for cyclic loading, the accumulation of inelastic strain in the history 

is not a sufficient independent variable for h or H. For nonproportional 

loading, it is clear that accumulation of plastic strain from the most recent 

point of elastic unloading, as suggested in earlier work (Eisenberg, 1976; Wu 

and Yip, 1981), is not sufficient. 

For cyclic plasticity models which employ only a yield surface, 

nonproportionality effects can be included in the modulus function 

2 MLA ui  pi 

where F(,7) can be a history functional of the plastic strain trajectory, 

including path length and direction (Dafalias, 1984), i.e. 

F(ti) = n(ti) : 	f tl  5(/ - / 1 )n(/')d/' 

0 

(34)  

(35)  



where 

	

d,7 = g(e)de 	 (36) 

and c(ti - 'I') is an unspecified function. 

It is noted that F(ti) is related to the kinematic hardening rule in the 

general rate-independent model structure given by Dafalias (1984) for a von 

Mises yield surface, i.e. 

f = 3 (s - a) : (s - a) - R
2 

= 0 	 (37) 

L = 	: n) 	 (38) 

a = <L> F(OC/(C : n) 	 (39) 

1=<L>VT-dR/di P 	 (40) 

and the flow rule stated in equation (31). The reader can verify that the 

consistency condition is met by equations (31), (34), and (37) - (40). In 

equation (39), C is a unit vector representing the direction of translation of 

the yield surface. 

As pointed out by Dafalias (1984), there are two very different 

procedures of assigning H in equation (34). One may define F(ti) which 

specifies H when dR/diP is known. This is indeed a very difficult task for 

nonproportional loading. An alternative route is offered by the multiple 

loading surface approaches (Lamba and Sidebottom, 1978; Dafalias and Popov, 

1975; McDowell, 1985a, 1985b; Tseng and Lee, 1983; Mroz, 1967; Tanaka et al., 

1985; Dafalias, 1981) in which H is specified and F(ti) is computed by invoking 

the consistency condition since dR/diP is known. 
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The recent theory offered by Krieg and Key for nonproportional loading 

(Krieg and Key, 1984) is an example of the first approach. In their model, 

(s - a) : 
•P 
E - 	 (s - a) 2 2 [1 

—3 	
+ (Z(/3) + B)/3G]  

Since 

p. 
= i/2G + e + (1/3)(i:I)I 

where I is the identity tensor, one can show that 

2 
H = —

3 
 [z (A) + [3] 

where p in this case is defined as the scalar product of the backstress and 

plastic strain rate direction, i.e. 

p = a : n 	 (44) 

Parameter B is defined as the asymptotic slope of the stress-plastic 

strain curve. Hence, evaluation of this approach can be made by determining 

the correlative capability of the p parameter in equations (43) - (44). 

The latter approach, in which H is specified, is exemplified by the Mroz 

or other multiple surface approaches. This paper will investigate the 

capability of several parameters within the context of a two surface theory. 

Denoting by 5 some measure of distance from the current stress point to a 

point on the limit or bounding surface (i.e. asymptotic stress-strain 

response), H may be written as 

(41)  

(42)  

(43)  
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H = H(5, 5 in , H ) 	 (45) 

where bin  is the value of 5 at initiation of the yielding process. According 

to Dafalias (1981,1984), Bi n  provides a discrete memory parameter of the most 

recent unloading-reloading event. Parameter H *  is the asymptotic value of H 

reached at high levels of plastic strain accumulated since the most recent 

loading reversal. Use of Bi n  is necessary in a two surface model to provide a 

memory of prior excursions in the plastic range; in multiple surface models, 

this memory is provided by the presence of a series of loading surfaces, each 

possessing an independent backstress and radius. 

A general property of the modulus function is that H + H *  as 5/5i n  + 0 

and H is large (+ 0) as 5/5i n  + 1. There exists a multitude of possible forms 

for 5. First consider the axial torsional subspace forms 

5 = 5m  

5 = 5. a 

In Figs. 8 - 9, the correlative capability of 5/A for each of equations 

(46) - (47) with cyclically stable data from five loading blocks is shown. 

Here, A is a parameter used to normalize 5 between 0 and 1. Parameter A is 

analogous to Bi n  as discussed above. In these three plots, A was independ-

ently selected for each form of 5 and each history to match the value of 5/A 

from proportional history block 2 of specimen SSO9 at H = 300,000 MPa. Table 

II lists the values of A selected to normalize each history. Hence, the data 

(46)  

(47)  



is normalized at high modulus values for comparison. Again, a stationary 

limit surface with radius 

R*  = maxloj + 30 MPa 	 (48) 

was used for determining these 5 parameters, where maxlol is the maximum 

effective stress in a stable cycle for each history. Analysis of the data for 

widely varying values of R* , as in an earlier paper (McDowell, 1985d), showed 

that the accuracy of each of these 5 parameters is very weakly dependent on 

R* . 

To determine the relative performance of these two measures of 5, one can 

compare their ability to correlate data from several nonproportional cyclic 

paths. The measure of correlative capability is the uniqueness of the 

functional form independent of path. All data are obtained from cyclically 

stable cycles, so the hardening can be assumed purely kinematic, i.e. dR/cg = 

O. On the same basis, the Krieg-Key modulus function in equation (43) may be 

evaluated, considering the function (a • n)/A. 

Referring to Figs. 8-9, it is clear that the correlation achieved by the 

Mroz definition of 5 is superior to the Tseng-Lee 5 parameter. The Tseng-Lee 

definition of 5 exhibits a very pronounced lack of correlation in the low 

modulus regime. The correlative capability of both 5 parameters, though, 

cannot be judged entirely on the basis of Figs. 8-9 without consideration of 

the A values required for normalization. From Table II, it is seen that the A 

values are certainly not constant for each 5 parameter for all histories. In 

fact, there does not appear to be any relationship between A and R *  for each 

parameter. This result for these completely reversed  nonproportional loading 

histories is somewhat disturbing since A and bi n  mentioned in equation (45) 
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should be essentially equivalent in this case. To further exemplify this 

point, Sm/A was plotted versus H with A = 2R* ; a unique correlation was not 

obtained. It should be noted that several previous models for nonproportional 

loading based on the Mroz S have employed this somewhat inaccurate 

normalization (Lamba and Sidebottom, 1978; McDowell et al., 1982). 

The correlative capability of the Krieg-Key modulus function is shown in 

Fig. 10, where two different definitions of A are used to normalize the data. 

Both definitions appear in Table II. A value of R = 160 MPa was assumed in 

calculation of the backstress. Obviously correlation of the data is very poor 

using this parameter. It should be noted that the correlation is not improved 

when a value of R = 300 MPa is used to compute backstress via equation (22). 

Having evaluated the capability of several proposed parameters to 

correlate modulus variation during nonproportional loading, we turn to 

possible specific forms of equation (45) since the multiple surface (two 

surface, in this case) plasticity models have demonstrated superior 

correlation of modulus if 5 is properly selected. It has already been 

established in this work that normalization of 5 by a constant or by R *  or 

maximum effective stress will not produce satisfactory correlation. Hence, we 

must seek forms for H which employ a normalizing parameter which is a function 

of the history of loading. 

Dafalias (1981, 1984) has proposed a specific form of equation (45), i.e. 

6/bin 	11H* H= 	g(5ini 	5/5in 
(49) 

where g(bi n ) controls the slope of the stress-strain curve. Though rather 

elaborate rules can be devised to properly assign 5i n  for unloading-reloading 
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events, such rules will be unnecessary in this work since only completely 

reversed, nonproportional cyclic loading will be considered. Again, note that 

the precise form for 5 is left unspecified in equation (49). In fact, Tseng 

and Lee have used equation (49) for H along with their definition of 5 = 5; 

from equation (8). 

Equation (49) has the property that H 	m as 5 4  5i n , i.e. at initial 

yielding. Also, H 4  H*  as 5 4  0, i.e. approaching the limit surface. 

In Fig. 11a, the Dafalias modulus function is fit to proportional loading 

history SS09, block 2 with 5 = 5m , g = 16, bi n  = 417 MPa, R *  = 338 MPa, and H * 

 = 3000 MPa. It should be noted that a better fit could be obtained if the 

modulus function were nonlinear in (5m/5i n )/(1 - 5m/5i n ). The best measure of 

usefulness of any modulus function, of course, is the capability to extend 

uniaxial or proportional loading test results to the nonproportional case. 

Figure llb shows the correlation obtained for all histories of this study 

using the Dafalias function with g = constant; the solid line is reproduced 

from Fig. 11a, representing proportional cycling. In all cases, 5i n  was 

defined as the maximum value of 5 m  during plastic flow for each history. 

From Fig. 11, it is apparent that the correlation is satisfactory for all 

histories except SS09, block 4 (i.e. 60 degree out-of-phase sinusoidal 

loading). This history does not exhibit unloading response; hence, the nor-

malizing parameter 5i n  is likely more properly determined from a reversal 

prior to this history. The value of 5i n  = 545 MPa obtained for history SS09, 

block 3 is close to the value of A = 530 MPa required for correlation with 5 m 

 as reported in Table II. This history points out a difficulty with a 

normalization procedure that depends on the initiation of yielding for 

nonproportional loading. In particular, it is very difficult to assign a 

proper definition of 5i n  for such histories. Also, it is important that the 

-20- 



modulus function fit proportional cycling data well. Other models (Chan et 

al., 1984) have employed an exponential or hyperbolic sine fit. 

To obviate the difficulty associated with use of Bi n  as a normalizing 

parameter, another was sought which depended on current state rather than 

prior history. Examination of the data indicated that the quantity (n•n5m), 

representative of the non-collinearity of the loading increment, is essential 

to obtaining good correlation of data in addition to a distance parameter. 

The best correlation is achieved by employing this quantity as a modifier of 

the normalizing parameter, i.e. 

H = H11 + 45 inlisinh (ki Dp k21 	 (50) 

where 

am  
D - 

 

(5 1) 

 

In • n5m 1 

k1 and k2 are constants, and n5m  = (a*  - a)/5m . 
N 	m 

Here, G(5i n ) is a memory repository intended to account for unloading-

reloading effects. In the axial torsional subspace, assuming G(oi n ) = 

constant for these histories under consideration, the relationship 

H = 3000[1 + 16 (sinh(.005D)) 1 . 75] MPa (52) 

is determined by fitting the response from the proportional loading block 2 of 

specimen SS09. All other histories are plotted in Fig. 12 using equation (52) 

with R*  = maxlal + 30 MPa in each case. Excellent correlation of the data is 
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obtained. Furthermore, the constants are determined only from uniaxial or 

equivalent proportional loading tests. 

It must be stated that no claim is made here regarding the generality of 

any specific approach for all metals. It is important to realize, though, 

that any truly promising modulus function must exhibit good correlation of 

various nonproportional loading paths for at least one material. In this 

regard, the fact that one modulus function produced good correlation in this 

study is encouraging. Other materials, of course, must be studied to provide 

more perspective. The author is not aware of similar detailed evaluation of 

modulus functions for nonproportional cyclic loading of other materials. 

Isotropic Hardening 

It is now widely recognized (McDowell, 1983; Kanazawa et al., 1979; 

Krempl and Lu, 1984) that the extent of isotropic hardening may depend on the 

nonproportionality of loading. Austenitic stainless steels, for example, 

exhibit a tremendous cumulative increase in flow stress under nonproportional 

biaxial loading relative to stable uniaxial cycling. This effect is certainly 

evident in the biaxial histories of this study, as presented elsewhere 

(McDowell, 1983). In fact, 90 degree out-of-phase sinusoidal, axial 

torsional, strain-controlled loading results in nearly a 100 percent increase 

in effective flow stress over the uniaxial case at the same effective plastic 

strain range. 

McDowell (1985a, 1985b) introduced a measure of nonproportionality of 

loading 0 which entered into the isotropic hardening rule for a scalar 

variable, ic, i.e. 
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ci) - is) 	1,1) 1/2 
	

(53) 

Note that the cyclically stable state, R, is dependent upon the 

nonproportionality of the loading path and plastic strain range, reflected by 

0 and q, respectively. 

This measure of nonproportionality resulted in good correlation of sinu-

soidal nonproportional biaxial loading (McDowell, 1985b). It resulted in 0 

values of 0 5 0 5 1 such that 0 = 0 for proportional straining, and 0 = 1 for 

90 degree out-of-phase sinusoidal, axial torsional straining with a shear to 

axial strain amplitude ratio of 7 a/ea  = (1+0. There are several reservations 

which require development of another approach. First, this approach applies 

only to cases where the principal axes of strain continuously rotate at some 

point during the loading cycle. Secondly, this approach does not provide good 

correlation of square loading paths or nonproportional loading paths other 

than sinusoidal. Thirdly, calculation of 0 is based on total strain and strain 

rate; from a mechanistic viewpoint, nonproportionality of plastic strain rate 

should more closely relate to increased activation and interaction of slip 

systems and, hence, additional isotropic hardening. 

Several alternate approaches for nonproportional isotropic hardening have 

been suggested recently. Bodner and Partom (Lindholm et al., 1985) and Walker 

(Lindholm et al., 1985) have introduced isotropic hardening rules intended to 

account for additional nonproportional hardening. Both approaches, however, 

assume a unique cyclically stable state independent of the degree of 

nonproportionality of the path. This prediction of saturation to a single 

limiting value of is is not supported by experiments (McDowell, 1983; Kanazawa 

et al., 1979; Krempl and Lu, 1984). In Fig. 13, the maximum effective stress 

in each cycle, maxlal, is plotted versus the accumulated plastic strain f(deP• 
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(5 5) 

deP) 1 / 2  for loading blocks from each of the three histories of this study. It 

is noted that the cyclically stable state depends greatly on the 

nonproportionality of the loading path. This behavior is the key feature of 

nonproportional loading. 

We now turn to development of an appropriate isotropic hardening rule 

which includes dependence of the hardening rate and final state on the nonpro-

portionality of the loading history. For correlation of the final state a 

number of parameters were investigated, including (n : ;ill; II), ((s/11s11) : 
" " " 	" " 

(i/Ilill ))(e.g. Bodner et al., Lindholm et al., 1985) and (n : s/Ils11). 
" " 	 " " " 

None demonstrated correlation of data with the exception of (N : n), where N 
AI 

is the unit normal vector in the direction of eP at the point of maximum 
AN 

plastic strain excursion in the current loading block. We may unambiguously 

define a loading block as a repeated assemblage of identical cycles or 

combination of cycles and subcycles. Careful examination of data led to the 

following plastic strain-based parameter: 

= (J2 )1(7] 

where 

A = 	t  

	

f
t 	

IlePlIdt 
Ei 	" 

(54) 

1 

and N = e"/IleP*11 where eP*  is the plastic strain at the maximum value of " " 	" 	 " 

11€1311 in the current loading block. The time at the initiation of the 
III 

current loading block is given by tg. Similar to 0, it can be shown that 0*  = 

0 for proportional loading and 0*  = 1 for 90 degree out-of-phase sinusoidal, 



axial-torsional loading with 7 a/e a  = j and v = 1/2. From a physical 

viewpoint, A represents the plastic strain averaged component of the inelastic 

strain rate in the maximal plastic strain direction. Since it is defined as 

an averaged non-collinearity of plastic strain, it should relate more 

fundamentally to isotropic hardening micro-mechanisms. 

An appropriate evolution equation for an isotropic hardening variable x 

is 

Poko 	K[Ol m(1+95*)  - lc] 	: EPJ
1/2 
	

(56) 

where po  and m are constants, and K is at most a function of plastic strain 

range (McDowell, 1985a). Parameter xo , also a function of plastic strain 

range, is the uniaxial cyclically stable value of x. Note the nonlinear 

dependence of the final state (x 0  + K(0* ) 111 ( 1+0 * )) on 0* . 

Figure 14 demonstrates the correlation obtained for the various loading 

blocks of this study between the cyclically stable value of maximum effective 

stress in a cycle, maxlal, and (0 * )m( 1-115* ); the implicit assumption in this 

plot that K = constant is justifiable since the effective plastic strain 

ranges for all these histories are nearly equivalent. The correlation is 

quite good considering the differences in nonproportional loading paths 

considered. 

In Fig. 15, assuming x = maxlal in each cycle, the values of x from the 

histories of this study are normalized and plotted versus accumulated plastic 

strain, fWIdt, in each associated loading block. The normalization of 
ro 

maxlol in Fig.15 is made between the initial and final values of maxlal in 
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each cycle for each loading block. Interestingly, most of the histories 

essentially follow the hardening response observed for the proportional 

straining of initially annealed material in block 1 of history SS01. This is 

true of histories for which the principal strain directions rotate 

continuously (e.g. block 3 of SS01, blocks 3-4 of SS09). However, the rate of 

hardening observed for specimen SSO4 in Fig. 15 is significantly lower than 

that of the other blocks. This behavior can possibly be related to the fact 

that plastic strain is accumulated in this history along discrete sets of 

principal directions. Hence, the hardening rate may be dependent on 

directional accumulation of plastic strain. It should be noted that this 

hardening rate behavior could not be correlated with either of the Bodner-

Partom or Walker rate approaches. In fact, none of the parameters mentioned 

earlier in conjunction with correlation of the level of isotropic hardening 

were viable in correlating the reduced hardening rate of specimen SSO4. In 

view of the correlation which can be achieved for the other histories via the 

simple approach in equation (56) and the fact that hardening rate is a second 

order effect compared to the extent of hardening, it may not be necessary to 

include dependence of the hardening rate coefficient on the nonproportionality 

of loading. Certainly, more data is desirable to include such dependence. 

As a final point, it should be noted that in general it is necessary to 

allow continuous evolution of N between successive loading blocks. An example 

would be a number of cycles of axial loading followed by torsional cycling. 

Experimentally, some additional hardening is observed in such cases (McDowell, 

1983; Krempl and Lu, 1984). Instantaneous re-definition of N to the current 

proportional cycling block would be incompatible with this observation. From 

a micro-mechanical viewpoint, the values of the resolved shear stresses on 

slip planes within each grain have certainly changed, and a latent hardening 
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effect is quite reasonably expected. 

Isotropic Hardening - Evolution of Yield Surface  

or Modulus Function?  

The maximum effective stress in a cycle relates closely to R * , the radius 

of a limit surface . in a two surface theory. In general, both the yield and 

limit surfaces can isotropically harden. Isotropic hardening of the yield 

surface is usually associated with changes in the small offset yield strength 

after accounting for kinematic hardening. Likewise, isotropic hardening of 

the limit surface is associated with changes in the flow stress at relatively 

large plastic strain levels. 

It is interesting to consider that the modulus function H can also be a 

repository for isotropic hardening. In fact, it is difficult to separate 

changes in the modulus function from growth of the yield surface defined by a 

plastic strain offset on the basis of uniaxial tests. Nonproportional cyclic 

loading tests are quite helpful in this regard since it is possible to deter-

mine the position of the center of any assumed yield surface form by backward 

extrapolation of the plastic strain rate direction after abrupt changes in 

loading direction. Since for stable cycling hardening is purely kinematic, 

one should not observe abrupt changes in the yield surface center after an 

unloading-reloading sequence in a different direction for a simple von Mises 

yield surface. From plots of backstress for several nonproportional loading 

blocks it was observed that R = 160 MPa results in the smoothest path of a. 
A. 

Since R = 148 MPa is the yield strength of the virgin annealed material, 

defined by a deviation from linearity (McDowell, 1985b), it is clear that very 

little of the isotropic hardening can be attributed to growth of a small 
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offset or deviation from linearity defined yield surface; rather, it must be 

accommodated in the modulus function through an isotropic variable associated 

with limit, not yield, behavior. In a two surface theory this corresponds to 

growth of the limit surface. As a result, the kinematic hardening variable 

will exhibit increased magnitude during nonproportional hardening. 

This result is of considerable importance for this material, since the 

extent of isotropth hardening is relatively exceptional. It is somewhat for-

tuitous from a modeling standpoint, since it infers that the domain of purely 

elastic behavior for a rate-independent material response is less influenced 

in magnitude by complex loading than the domain of plastic behavior. Again, 

perspective must be maintained since only one material has been analyzed. 

Certainly, though, this result warrants study in other materials under complex 

nonproportional loading. 

Of course, the objection may be made that anisotropic deformation of the 

yield surface may lead to a perceived abrupt change in a as observed for 

larger assumed yield surface radii. However, it is observed that the aniso-

tropic deformation of the yield surface (Shiratori et al., 1979; Hecker, 1976) 

is strongly a function of the offset plastic strain yield definition. 

Anisotropy is much more pronounced for small offset definitions of yield. 

Since nearly all computational codes for initially isotropic, rate-independent 

metals employ a simple yield surface, usually of von Mises form, it is 

worthwhile to experimentally investigate the integrity and extension of such 

an approach; the bounding surface approach, in particular, offers the 

capability to model anisotropic plastic flow via the modulus function although 

the yield surface is a simple form. 



Conclusions  

Analysis of nonproportional cyclic loading data for type 304 stainless 

steel at room temperature has revealed some interesting results. 

1. The kinematic hardening rule for von Mises yield and limit surfaces 

is more accuratelyprescribed by a deviatoric stress rate rule 

which provides for nesting than a Mroz rule. 

2. If a Prager-type kinematic hardening rule is used in either a state 

variable or single loading surface theory, a dynamic recovery term 

must be included to correlate nonproportional data. The accuracy 

of such an approach, though, was found inferior to that of the two 

surface theory with a deviatoric stress rate-type rule. 

3. A modulus function based on the distance from the current stress 

point to the limit surface in the direction of deviatoric stress 

rate does not correlate nonproportional loading data uniquely. 

4. A modulus function based on a Mroz distance vector can be improved 

by including in the normalization the scalar product of the plastic 

strain rate direction with the Mroz vector. Proper definition of 

5i n  as proposed by Dafalias appears to be a very difficult task for 

nonproportional loading. 

5. A modulus function is proposed which correlates the data from 

several different nonproportional histories quite well. It is 

determined entirely from uniaxial or proportional loading tests. 
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6. 	A more general isotropic hardening rule is proposed which 

correlates the observed additional hardening. It is found that, 

within the context of second invariant plasticity theory, the 

isotropic hardening is predominantly associated with growth of an 

isotropic limit surface rather than the yield surface. 
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squares, circles, plus signs and x's correspond to data from stable 

cycles of block 2-4 of specimen SSO9, block 3 of specimen SS01, and 

block 1 of specimen SSO4, respectively. 

Fig. 9 	Correlation of H versus 5/A for Tseng-Lee definition of 5. 
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Fig.10 	Correlation of H versus Krieg-Key modulus parameter 

(a • n)/A for (top) A = maxlol in cycle and (bottom) 

A = max(a • n) in cycle. 

Fig.11 	Dafalias modulus function with 5 = 5m  (a) fit to proportionally 
loaded, stable cycle from block 2, specimen SS09, and (b) resulting 

correlation of data from other nonproportional histories with this 

function. 

Fig.12 	Correlation of H versus D. Solid line is that obtained by fitting 

proportional loading data from specimen SS09, block 2. 

Fig.13 	Maximum effective stress in each cycle versus accumulated plastic 

strain for several loading blocks including block 3, specimen SS09 

(squares), block 4, specimen SS09, (circles), block 1, specimen SSO4 

(plus signs), block 1, specimen SSO1 (stars), and block 3, specimen 

SSO1 (x's). 

Fig.14 	Correlation of isotropic hardening achieved using state variable 0*  
for several nonproportional loading blocks. The value of maxlal= 550 

MPa was reported by Krempl and Lu (1984) for 90 degree out-of-phase 

loading (i.e. 0*  = 1). 

Fig.15 	Normalized maximum effective stress in each cycle versus accumulated 

plastic strain for several loading blocks. Normalization is between 

the initial and stable values of maxloI for each loading block. 
10.1 

Symbols correspond to the same histories as in Fig. 13. 
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TABLE I 

Complex Strain Histories 

Block Number 

c(See l ) 1 2 3 4 

endpoint 
sequence: 

endooint 
sequence: 

enopoint 
sequence: 

0 c.T•0 0 c•T.0 0 c• -U 
SSO1 0.603 1 	c•0.0041 

1.0.006 
1 	c.0.0041 

ea-0.006 
1 	c.0.0041 

Ym0.006 
2 	c•-0.0041 2 	c.-0.0041 2 c•0.0041 

T.-0.006 
return to 

c.1..0 

1.0.006 
return to 

c•1■0 

T.-0.006 
3 c•-0.0041 

T.0.006 
4 	c--0.0041 

T.-0.006 
return to 

c.T.0 

25 cycles Z 	cycles ZS cycles 

SSOT 3. - .1 Incremental *t..J.I.55 *c ...0.005 4, 	.u.,,J)I 

Step 	Fest: Ta =0.0075 Ta .10.00 7 5 Ya =0.0075 

',:a4 ' n . 007 

 ni;a4 .0.0105 

e.0 6.303  .60")  

10 cycles 16 cycles 25 cycles .5 	cycles 

SSO4 3...32 J caveo 
1 	ca0.em0.0085 
2 re00m-0.0065 
3 	c•-.11039.T.0.0057 
4 c.0.0039.T.-0.057 
5 c.-0.0046.T.0.0039 
6 c.0.0046.T.-0.0039 
7 	c.0.0051.T.0 
8 c.-0.0051.T.0 
9 r.0.0046.T+0.0039 
10 c.-0.0046.T.-0.0039 
11 	c.0.0039.T+0.0057 
12 c.-0.0039.T.-0.0057 
return to teem() 

50 cycles 

enotes sinusolo4 	oullnq .1Ln c • ca sino.. y 	ya s n 	- e) . 
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TABLE II 

Values of A for Modulus Parameter Normalization 

Two Surface 8 Parameters Kreig-Key 

A (MPa) A (MPa) 

R
* X

 c
 ■ 

a
l . 

5
 Id

  
t 

—
 History 8 m 8-7  (MPa) maxIal 

SS09, 	Block *2 440 440 338 308 140 

SS09, 	Block #3 530 360 429 399 230 

SS09, 	Block *4 530 330 500 470 300 

SSO4, 	Block *1 465 470 494 4b4 300 

SSOI, 	Block #3 480 530 555 525 360 

R = 160 MPa 
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SIMPLE EXPERIMENTALLY MOTIVATED 
CYCLIC PLASTICITY MODEL 

By David L. McDowell' 

ABSTRACT: A two-surface cyclic plasticity theory is presented with refinements 
based on analysis of nonproportional cyclic plasticity data. It is shown that the 
model accurately correlates nonproportional cyclic stress-strain response, yet 
the model structure is simplified compared to previous models. New contri-
butions include a more general isotropic hardening rule that reflects additional 
nonproportional hardening, and a more accurate plastic modulus representa-
tion for nonproportional loading. A kinematic hardening rule is used, which 
reflects experimental observations of backstress translation direction being re-
lated to deviatoric stress rate. Transient stress-strain behavior from four axial 
torsional nonproportional loading blocks is predicted. 

INTRODUCTION 

With the increasing emphasis on lightweight, high-performance struc-
tures, there has been a corresponding rise of interest in constitutive 
equations for cyclic plasticity. This is true for the turbine and rocket en-
gine, nuclear and ground vehicle industries, for example. Historically, 
the complexity of cyclic plasticity models increased as more experimen-
tally observed effects were reported. There has been a relatively recent 
emphasis (Dafalias 1975, 1981; Krieg 1975; Lamba and Sidebottom 1978b; 
McDowell 1985c, 1985d; Nouailhas, et al. 1983; Ohno 1982; Tanaka, et 
al. 1985; Tseng and Lee 1983) on the formulation of models for multiaxial 
loading. 

Lamba (1978a, 1978b) produced data from nonproportional cyclic axial-
torsional tests on OFHC copper, and showed that the kinematic hard-
ening rule of Mroz (1967) was far superior to that of Ziegler (1959) or 
Prager (1956) for correlating stress-strain responses during nonpropor-
tional loading. Lamba also reported a significant increase in cyclic hard-
ening under sinusoidal out-of-phase loading, a finding that since has 
been reported for other materials for similar loading conditions (Kana-
zawa, et al. 1979; Krempl and Lu 1984a; McDowell 1983a, 1983b, 1984). 
Prediction of the direction of plastic strain rate in general depends greatly 
on the kinematic hardening rule for nonproportional loading. Likewise, 
isotropic hardening during nonproportional loading can no longer be 
represented as a function of accumulated plastic strain or plastic work; 
it is also a function of changes in the direction of the plastic strain rate 
vector over a loading history (Dafalias 1984; McDowell 1985a, 1985b). 

The Mroz kinematic hardening rule was originally proposed for a set 
of nested loading surfaces surrounding the yield surface (Mroz 1967). 
Since then, two surface theories have been proposed (Dafalias 1975, 1981; 
Krieg 1975; McDowell 1985c, 1985d) that assign the modulus in the plas- 

'Asst. Prof., George W. Woodruff School of Mech. Engrg., Georgia Inst. of 
Tech., Atlanta, GA 30332. 

Note.Discussion open until August 1, 1987. To extend the closing date one 
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March 13, 1986. This paper is part of the Journal of Engineering Mechanics, Vol. 
113, No. 3, March, 1987. ©ASCE, ISSN 0733-9399/87/0003-0378/$01.00. Paper No. 
21321. 
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tic region as a function of the distance from the current stress point to 
a similar point on a surrounding limit or bounding surface. In general, 
kinematic and isotropic hardening rules are proposed for both the yield 
and limit surfaces. 

Recent analysis of nonproportional data has indicated that some of the 
assumptions of previous two-surface models are not entirely accurate. 
The Mroz kinematic hardening rule can be improved by admitting dom-
inance of the deviatoric stress rate (McDowell 1986; Tseng and Lee 1983). 
Correlation of the modulus function in the plastic regime can be im-
proved by consideration of the instantaneous degree of nonproportion-
ality in addition to the distance from the stress point to a similar point 
on the limit surface. Additional isotropic hardening effects during non-
proportional loading can be correlated with a weighted measure of the 
changes in plastic strain rate direction during a cycle of loading. Fur-
thermore, isotropic hardening can be exclusively associated with growth 
of the limit surface and, as a consequence, the modulus function. 

MODEL DEVELOPMENT 

Modifications of classical models based on a single yield surface (Cha-
boche, et al. 1979; Drucker and Palgen 1981; Eisenberg 1976), though 
generally simple, do not accurately describe variation in hardening mod-
ulus, kinematic hardening, nor isotropic hardening (McDowell 1985a) 
for cyclic nonproportional histories. 

Multiple- or nested-surface models (Krieg 1975; Lamba and Sidebot-
tom 1978a, 1978b; McDowell 1985c, 1985d) which use the Mroz rule or 
some comparable nesting rule tend to perform accurately for nonpro-
portional loading. Economical two-surface theories have been proposed 
(Dafalias 1975, 1981; Krieg 1975; Lamba and Sidebottom 1978b; Mc-
Dowell 1985c, 1985d) which use an analytical representation of the hard-
ening modulus in the regime of plastic deformation. These previously 
proposed two-surface theories assigned the plastic modulus as a func-
tion of the distance from the current stress point to a similar point on 
a bounding or limit surface. The models of Dafalias, et al. (1975, 1981), 
McDowell (1985c, 1985d), Tseng and Lee (1983), and Lamba, et al. (1978a, 
1978b), use the concept of an asymptotic modulus, and enforce tangency 
of contact between yield and limit surfaces in the asymptotic regime. 
This paper will introduce a simplified model structure, conforming to 
results of detailed analysis of nonproportional cyclic data, which accu-
rately describes the essential aspects of plastic flow and hardening. 

MODEL STRUCTURE 

Only time-rate-independent plasticity will be considered. Deforma-
tion-induced anisotropy is represented by inclusion of backstress a in 
the yield surface 

 

(1) 

 

where s is the deviatoric stress tensor s = a - (1/3)(cr:1)I and R is the 
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3 
f = 

2
- (s - a) : (s - a) - R 2  



I \s+s` Ilsll
—a

* i ll  
X (7a) 

FIG. 1.—Surfaces f and f* In Devlatoric Stress Space 

yield stress normalized to the uniaxial case. The identity tensor is de-
noted by I. The flow rule is stated as 

1 
E P  = 	: n)n if f = 0 and s:n >. 0 	  (2) 

E P  = 0 otherwise 	  (3) 

where the unit normal vector n = (s a)/IIs 
– 

all, and the scalar product 
§,o, is denoted by s:n. The notation Ils – all denotes the norm [(s – 

a):(s – a)1 1/2 . Here, the usual decomposition of the total small strain 
rate into elastic and plastic components is assumed, i.e., E = ke + In In 
Eq. 2, h is the hardening modulus. 

Now define a limit surface f * which encloses or bounds the yield sur-
face 

f * 	(s – a*):(s – a*) – (R*) 2  

 

(4) 

 

where R* is the limit surface radius normalized to the uniaxial case. Sur-
faces f and f* are shown in Fig. 1 in deviatoric stress space. 

Kinematic and isotropic hardening rules will next be introduced for 
both the yield and limit surfaces. Careful analysis of nonproportional 
cyclic test data (McDowell 1986) shows that a variation of the Mroz ki-
nematic hardening rule is more accurate for two surfaces. This variation, 
first suggested by Tseng and Lee (1983), was motivated by the obser-
vation that yield surface movement was dominated by the direction of 
deviatoric stress rate. Implementation of this observation in a two-sur-
face theory must still provide for tangential nesting of the yield and limit 
surfaces at the asymptotic state. 

As proposed by Tseng and Lee, modified here for inclusion of trans-
lation of the limit surface (i.e., a*  0 0):  

where v = 

[.\I 3-2  (R* – R) X – (a – a*)] 

II 
	

3
(R*–R)A–(a–a*) 

s + — — a*  

and 	= — — a*): — + f[(s – a*);
-12 

	

011 	 411] 

	

_ (R*)2 – Its – air 
1 1/2 	

(76) 

According to this kinematic hardening rule, illustrated in Fig. 2, the 
instantaneous direction of translation of the yield surface is toward the 
position the yield surface would assume if nested with tangential contact 
at the point of intersection of the deviatoric stress rate direction (with 
respect to the current stress point) with the limit surface. 

It was shown by McDowell (1985a) that the Mroz rule, given by 

a -= tim (s* – s) 

	

S*  = a*  + (s - a) — 	  (R
*) 

	

R 
	 (9) 

was more accurate for a yield surface and stationary limit surface (a* --= 
0) than a Prager or Ziegler rule for cyclically stable, nonproportional, 
strain-controlled, axial torsional cycles imposed on tubular type 304 
stainless steel specimens at room temperature. In Fig. 3, the direction 

(6) 

(8) 

ue = tiv 

 

(5) FIG. 2.—Tseng-Lee Kinematic Hardening Rule for Nonzero a* 
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of translation predicted by Eqs. 3-7 is compared to the Mroz model in 
Eqs. 8-9, with a* = 0 and R* slightly greater than the maximum effec-
tive stress in each stable cycle, i.e.: 

	

3 	)/2 
R* = max 

2
- s : s + 30 MPa 	  

	

( 	
1 	

(10) 

for three nonproportional loading blocks reported in detail elsewhere 
(McDowell 1985a, 1985d). In Fig. 3, the solid line is the backstress path 
in the axial torsional subspace computed by backward extrapolation by 
a distance R = 160 MPa from the current stress point along the plastic 
strain rate direction; hence, the yield surface form given in Eq. 1 is as-
umed where the plastic strain rate is radial by normality. The axial tor-
sional subspace is defined by 

a = ai n i  + a3 n3 	  (11) 

where of  = a and 03  = V5T. Hence, Eq. 1 reduces to 

f = (cr - cit)• (a - et) - R 2 	  (12) 

where a is the backstress in the subspace. Eqs. 5-9 likewise are written 
in the subspace for comparison in Fig. 3. 

It is noted that the accuracy of the kinematic hardening rule is mea-
sured by tangency of predicted backstress rate direction with the path 
of Ct. In Fig. 3, arrows are plotted along the backstress paths in the di-
rections predicted by the Mroz and Tseng-Lee rules. It is evident that 
the Tseng-Lee rule provides a more accurate description. As will be dis-
cussed later, the use of R = constant for all. of these histories is war-
ranted by analysis of data. 

In Eq. 5, ii must be determined from the consistency condition 

( 	a 
as 	as 	aR 

during plastic flow. Unlike previous two-surface models which allow 
growth in R, in this work we take R = 0 so that 

n 
= s : 

(v : n) 
	  (14) 

The condition R = 0 is motivated by a study of changes in direction 
of the plastic strain rate vector following nonproportional unloading or 
abrupt changes in the direction of total strain rate or deviatoric stress 
rate vectors (McDowell 1986). According to Eqs. 1-3, the direction of 
plastic strain rate, along with continuity in the evolution or growth of 
R, implies the position of a. In other words, a cannot experience a sig-
nificant instantaneous "jump" in location in this theory due to only an 
abrupt change in loading direction. This assertion provides a means to 
estimate R by analysis of data before and after an abrupt, nonpropor-
tional change in loading direction. It is found that evolution of R can be 
neglected (at least for the available data), and the yield surface retains 
its original dimension as a first order approximation if yielding is defined 
as deviation from linearity. This finding is embodied in a simple theory 
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of Drucker and Palgen (1981), and is seemingly confirmed by nonpro-
portional yield probing experiments (Hecker 1976; Liu and Greenstreet 
1976; Mair and Pugh 1964; Phillips, et al. 1974) in which the yield surface 
is found to distort but not appreciably expand on a cycle-by-cycle basis. 

Since the kinematic hardening is best represented within the frame-
work of the current theory by constant R, isotropic hardening is best 
represented by evolution of R* and consequential evolution of the mod-
ulus function h in the flow rule. It should be noted (Krempl, et al. 1984b) 
that the backstress in nonproportional loading for state variable (time-
and rate-dependent) theories has been shown to exert more dominant 
influence than the drag stress, a variable analogous to yield surface ra-
dius in the current theory. 

Next, we introduce kinematic and isotropic-hardening rules for limit 
surface f*: 

= 
	

65) 
and R* = c[(R0  + KA"'"")) — 	 (16) 

where = (E P :E P) 112; and R0 , K, c, K, and m are material parameters. 
Constant R o  is the cyclically stable uniaxial value of R*. R o  and K can 
depend on the plastic strain range (McDowell 1985c, 1985d), if such de-
pendence is significant. Rate constant c may be selected to fit transient 
response, and can be determined from the hardening response in uni-
axial tests. Likewise, K can be determined from the response of uniaxial 
or biaxial stress-controlled racheting tests, since racheting response de-
pends heavily on a*  and the form of the modulus function to be dis-
cussed later. Mean stress relaxation response also is influenced strongly 
by a*  and the modulus function, and could serve as a reference. 

Constants K and m pertain to the additional isotropic hardening which 
occurs during nonproportional loading. State variable A describes the 
nonproportionality of the loading path. For uniaxial or proportional strain-
controlled cycling (c/Er, = CEP, where Er, are components of the plastic 
strain tensor), A = 0. For nonproportional cycling, 0 < A 1. Hence, 
K in Eq. 16 is the maximum increase of strength observed in nonpro-
portional cycling, and m provides nonlinear weighting necessary to match 
experimental results for intermediate hardening levels. As pointed out 
by McDowell (1983a, 1983b, 1984), Kanazawa, et al. (1979), and Krempl 
and Lu (1984a), the extent of nonproportional isotropic hardening de-
pends on loading history. 

From axial torsional tests on thin-walled tubular specimens, it has been 
shown that the case of sinusoidal straining: 

E = Ea  sin o) t 	
 

(17) 

'Y = sin (co P)   (18) 
with p = 90° and -V ,a, Ea  = 1.5 to 1,73- , results in the maximum extent of 
additional isotropic hardening in this biaxial case (Kanazawa, et al. 1979; 
McDowell 1983a, 1983b, 1984); hence, A = 1 for this case. Sufficient ex-
perimental data is not available for triaxial cycling to determine possible 
further hardening due to stressing in a third direction. Previously, a total 
strain rate formulation for A (McDowell 1985c, 1985d) was proposed which 
accurately correlated biaxial loading cases in which the maximum shear 
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0 
0 

FIG. 4.—Maximum Effective Stress In Stable Cycles versus Nonproportlonal 
Hardening Parameter with m = 0.35 

strain planes rotated continuously. A more simple, general isotropic 
hardening rule is presented in this paper. Define evolution of variables 41  and 4)2 , and 111 as: 

4), = IN:i Piu ft — 
t8) 	  (19) 

4)2 = NO U (t — t8 ) = ilu(t — t8 ) 	  

where N = iiiiifill; 	
(20) 

(d/dt)11 = A(n* — NAIE PH; t8 = time denoting point 
of initiation of current loading block B (B = 1, 2, ...); u (t — t 8 ) is the 
unit step function; and n*  is the unit normal vector EP/ii€P11 
imum value of Nell 	

at the max- 
in the current block, i.e., t 	to . We may define a 

loading block as a repeated assemblage of identical cycles or combination 
of cycles and subcycles. This definition is unambiguous; a variable load-
ing history would be considered as one block, for example. Initial values 
at the beginning of the first block, for a virgin material, can be stated 
as 4), = 4) 2  = 0 and ti = n*  = n (t = t,) = €P/11€11 at t = t„ where t, 
corresponds to initiation of yielding. 

At any point in a given block B (i.e., t > to ), define A as 

A = 11 — I ( ir 	ir  ) (4) 111 	  
— 2 	it 

It should be noted that 4 = 4)142 is the ratio of the plastic strain ac-
cumulated in the primary loading direction to the total plastic strain ac-
cumulated in the current block. For proportional straining, 44/402 
and A —> 0. For 90° out-of-phase axial torsional loading with -y a/E„ = 
1/3-  and, Poisson's ratio of 1/2 (fully plastic), 4) 1 /4)2 	2/ir and A 	1. 
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FIG. 5.—Correlation of Hardening Modulus Based on Eq. 29 for: (a) Stable Cycles 
from Four Different Nonproportional Loading Blocks; for (b) Stable Cycle from 
Proportional Loading Block, to Which Modulus Function Was Fit 

The reference direction for computing nonproportionality, defined as 
N, is allowed to evolve upon switching to a new loading block. This 
vector rotates toward n* , i.e., the direction of maximum plastic strain 
excursion in the current loading block. The rate of rotation to n*  is de-
termined by A. This evolution is necessary to match experimental ob-
servations of a small amount of hardening upon switching from one pro-
portional path to another "proportional" path. The extent of additional 
hardening predicted upon switching from cyclic tension to cyclic torsion, 
for example, is related to A. For large values of A, N approaches n*  

rapidly. 
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AXIAL STRESS MPA 

FIG. 6.—Experimental Results for History 1: (Left Column) Cycles 1 to 10 of Block 
2; (Right Column) Cycles 1 to 10 of Block 3 

As another point of detail, retention of memory or prior hardening 
states, commonly observed for planar-slip metals (McDowell 1983b, 1985c, 
1985d), can be included in the equation, Eq. 16, for R*, i.e.: 

R* = c[(R 0  + KAm(l+A)
) 	 u(R 0  + KAm" ^)  –   (22) 

where again u ( ) is the unit step function. 
Saturated values of A'" (" for five axial torsional nonproportional 

loading blocks of tubular type 304 stainless steel specimens at room tem-
perature (McDowell 1985a) are shown in Fig. 4, along with the corre- 
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of Block 3 

sponding maximum values of 1(3/2) s: s1" 2  in each block. Note that for 
m = 0.35, the maximum effective stresses are essentially linear with Am" ^) . 
It should also be mentioned that the scalar product of unit vectors in 
the deviatoric stress rate and deviatoric stress direction, §: s (Lindholm, 
et al. 1985), was investigated for possible correlative capability of non-
proportional hardening, but did not properly correlate the data for load-
ing other than proportional or 90° out-of-phase sinusoidal. 

Finally, the modulus function h must be described accurately for non-
proportional loading. McDowell (1985a) has shown that dependence on 
effective stress (Drucker and Palgen 1981) is not valid for nonpropor-
tional cycling. The goal is to suggest an analytic form of representation 
of h which can be determined from uniaxial tests, but accurately applied 
to nonproportional loading. Recent two-surface theories (Krieg 1975; 
Lamba and Sidebottom 1978b; McDowell 1985c, 1985d) have proposed 
a dependence on the Mroz distance vector 

	

h = h (-
8

,   (23) 
bin 

+ 	- a) -   (24) 

8,„ is the value of 8 at the beginning of the current reversal. Here, 8 is 
the norm of the vector from the current stress point to a similar point 
(same n) on the limit surface during plastic flow. Use of the 8 5  parameter 
in Eq. 7 for modulus correlation gave poor results, particularly in the 
low modulus regime (McDowell 1986). The explicit dependence on 8,„ 
in Eq. 23 is introduced primarily to account for more appropriate initial 
reloading response (Dafalias 1981) in the plastic range. Dependence of 
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FIG. 8.—Experimental Results for History 2: (Left Column) Cycles 1 to 10 of Block 
1; (Center Column) Cycles 1 to 10 of Block 2; (Right Column) Cycles 1 to 10 of 
Block 3 

h on (8/8,„) describes the transition from the elastic state to asymptotic 
plastic flow. 

Dafalias has suggested the form (1975,1981): 

(  8  ) 

- 8  
 (25) 

which gives the proper va ues of h at initial yielding (h ---0 co) and asymp-
totic loading (h -+ K) in the plastic regime. The linear dependence on 8/ 
(8,„ - 8) in Eq. 25 does not precisely match data for stable proportional 
cycling of type 304 stainless steel. Also, definition of 8,„ for nonpropor-
tional loading is a problem. Defining 8,„ as the value of 8 at the initiation 
of plastic flow did not result in good normalization of the data, nor did 
definition of 8,„ as the maximum value of 8 within a cycle (McDowell 
1986). It has also been shown that defining 8,„ = R* results in poor nor-
malization of data (McDowell 1986). 
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and s* is given by Eq. 9. It is important to note in Eq. 27 that the product 
in:nbl serves to normalize data from various nonproportional loading 
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FIG. 10.—Yield and Limit Surface Movement for: (Top) Early Cycle In Block 3 of 
History 2; (Bottom) Stable Cycle In Block 3 of History 1 

histories.  For uniaxial or proportional loading, n :n o  = 1 and D = 
1/(3/2)8. Since k 2  = constant in Eq. 26, this modulus function does not 
employ an additional variable such as 8,„ to normalize the data, which 
is highly desirable. 

Fig. 5(a) shows the accuracy of this modulus function in correlating 
the variation of hardening modulus for four axial torsional nonpropor-
tional loading histories imposed on tubular type 304 stainless steel spec-
imens at room temperature (McDowell 1985a) which have significantly 
different values of R*. Data from a cycle of proportional loading is also 
included for comparison. It is apparent that a fit to the proportional loading 
data is sufficient for description of nonproportional response, i.e.: 

= 3,000 {1 + 16 [sinh (0.005D)]' 75} 	  (29) 
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FIG. 11.—Experimental Results for History 3: (Left Column) Cycles 1 to 10; (Right 
Column) Cycle 40 

as shown in Fig. 5(b). This function was used to compute the solid line 
appearing in Fig. 5(a). Hence, a uniaxial cyclic stress-strain curve would 
be sufficient to determine the constants in Eq. 26. 

Eq. 26 is a power law function of sinh (k 2 D). Due to this form, h is 
finite at initial yielding. This results in a small discontinuity in slope in 
transition from elastic to elastic-plastic response. The magnitude of this 
discontinuity is small, and yielding is relatively smooth. Another qual-
ification must be stated regarding Eq. 26. For accurate unloading-re-
loading response sufficiently far into the plastic regime (i.e., small 8), it 
might be appropriate to include influence of 8,„ to more accurately model 
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FIG. 12.—Predicted Results for History 3: (Left Column) Cycles 1 to 10; (Right 
Column) Cycle 40 

influence of plastic deformation during the previous reversal, i.e.: 

h = [1 + G(8,„){sinh (k 2 D)} k3 ] 	  (30) 
where G(8,„) monotonically decreases as 8,„ increases, and is weakly de-
pendent on 8,„ for moderately large 8,„ values. In the experiments to be 
reported in this paper, however, the loading is completely reversed so 
that 8,„ is moderately large for each reversal; hence, approximating G(8,„) 
as constant is reasonable. 

CORRELATION WITH EXPERIMENTS 

The theory was tested against several nonproportional cyclic loading 
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moth Imposed on annealed A151 type 304 stainless steel. Experimental 
details may be found elsewhere (McDowell 1983a, 1983b, 1985c, 1985d, 
1984). From uniaxial tests, R = 160 MPa, R o  = 310 MPa, c = 5, K =-- 3,000 
MPa, kl  = 16, k2  = 0.005, and k3  = 1.75. From sinusoidal axial torsional 
tests, K = 245 MPa, m = 0.35, and A = 250. 

The equations were reduced to the case of axial torsional loading of 
thin-walled tubular specimens to compare with the experiments (Mc-
Dowell 1985d). 

Results of three separate strain-controlled tension-torsion tests are re-
ported in this investigation. Young's modulus and the shear modulus 
were respectively determined as E = 188 GPa and G = 77 GPa. 

To compare the experimental results with the proposed two-surface 
theory, the same strain histories were introduced_ in the constitutive 
equations. The specialized axial torsional equations were integrated us-
ing a Runge-Kutta method with Gill coefficients (Eraslan 1969; Sotolongo 
1985) and a very small time step-size to ensure negligible cumulative 
error. All calculations were performed on the Georgia Tech Cyber 855. 

History 1: Specimen SS09.-Details of this history may be found else-
where (McDowell 1985d). Two blocks of loading are discussed in this 
paper. Fig. 6 shows the experimental results. Predictions appear in Fig. 
7. Note the good correlation achieved for additional hardening. Cyclic 
hardening is predicted well by the model. The initial value of R* was 
291 MPa (McDowell 1985d). 

History 2: Specimen SS01.-Again, refer to McDowell (1985d) for de-
tails of this history. Three consecutive loading blocks are presented; ex-
perimental and predicted results appear in Figs. 8 and 9, respectively. 
In the analysis, the initial value R * = 285 MPa was used. Initial values 
for all other variables were taken as zero. Note the excellent agreement 
between experimental and predicted results. 

The movement of the yield surface within the translating limit surface 
is illustrated in Fig. 10 for two loading blocks. Note the tangency at the 
point of nesting of the yield and limit surfaces. 

History 3: Specimen SSO4.-This specimen was subjected from the 
virgin state to 50 cycles of the path shown in Fig. 11 with 

( 	
io) 1 /2 

= t2  + -
3 	

= 0.002 sec-1 	  (31) 

The experimentally observed responses from cycles 1-10 and cycle 40 
are also shown in Fig. 11. Note that the accumulation of hardening is 
again greatly in excess of the uniaxial case. 

As observed in Fig. 12, the shape of the predicted hysteresis responses 
accurately fits the experimentally observed responses for cycles 1-10 and 
cycle 40. The extent of additional hardening is somewhat overestimated 
by the model. An initial value of R* = 192 MPa was used in the analysis, 
corresponding to the monotonic response. 

SUMMARY AND CONCLUSIONS 

A simple two-surface model has been presented. Most of the model 
constants can be determined from uniaxial tests. The model structure 
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reflects in-depth analysis of actual cyclic nonproportional data and, con-
sequently, can correlate the response well. New contributions include 
incorporation of an improved kinematic hardening rule for two-surface 
theory, a more realistic representation of isotropic hardening through 
limit surface evolution and modulus function, a more general plastic strain-
based isotropic hardening formulation for nonproportional cyclic load-
ing, and a normalization procedure for the modulus function which re-
flects nonproportionality of the next plastic strain increment. 
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APPENDIX II.—NOTATION 

The following symbols are used in this paper: 
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ABSTRACT 

Though martensitic transformations in austenitic stainless steels have 

been studied rather thoroughly for uniaxial monotonic and cyclic loading, data 

are scant for biaxially loaded specimens. In particular, recent experiments 

have indicated significant increase in cyclic hardening for nonproportionally 

loaded specimens. In this paper, a link is made between the additional 

hardening and microstructural uniformity of transformation product. This link 

is expressed through a micromechanical viewpoint via increased latent 

hardening associated with rotation of the principal stress and plastic strain 

rate directions. 
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INTRODUCTION 

Changes in loading path, including strain range and loading direction, can 

affect cyclic deformation at both microscopic and macroscopic levels [1-5]. 

This study was undertaken to investigate these effects on type 304 stainless 

steel using axial-torsional specimens tested at room temperature and subjected 

to proportional and nonproportional loading sequences at controlled effective 

strains and strain rates. Subsequent to testing, specimens were examined by 

advanced metallographic techniques to identify deformation substructures. 

It has been observed in several experimental studies [4-6] that nonpropor-

tional strain cycling results in cyclic hardening beyond the extent observed 

in uniaxial tests at the same effective strain range. For materials which 

cyclically harden markedly in uniaxial tests, such as the stainless steel in 

the current investigation, the additional hardening can be quite pronounced 

during nonproportional strain cycling. There is evidence to indicate that 

materials which cyclically soften during uniaxial tests may harden during 

nonproportional cycling [4]. 

Logically, a link should exist between cyclic deformation substructure 

within each grain and polycrystalline stress-strain response. If the deforma-

tion substructure and any associated transformation products are dependent 

upon a rotation of the stress field with respect to each grain, then the 

extent of isotropic hardening observed in the polycrystalline material should 

reflect this dependence, and vice-versa. 

EXPERIMENTAL PROCEDURES 

Material  

This material chosen for this study was type 304 stainless steel with the 

AISI composition shown in Table I. 	This FCC material exhibits a plastic 
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strain range dependent transformation from metastable austenite to BCT a'- 

martensite during cycling [7-8] in addition to e-martensite, an HCP form which 

is associated with the formation of stacking faults on (111) slip planes [9-

10]. The stacking fault energy of type 304 stainless steel is low (=23 mJ/m 2 

 [11]), resulting in formation of wide stacking faults and planar slip at room 

temperature. As a consequence of these factors, type 304 stainless steel 

exhibits marked cyclic hardening response dependent on applied strain range 

and nonproportionality of loading in the plastic region [12]. 

Type 304 stainless steel has been widely used in high temperature applica-

tions, particularly in nuclear structures. 

Specimens  

Tubular axial-torsional specimens were machined from as-received bar stock 

of 50.8 mm diameter as shown in Fig. 1. The wall-thickness to outside diam-

eter ratio of 0.11 was found necessary from experience to prevent buckling for 

cyclic loading at significant levels of plastic strain. From finite element 

analysis and strain gage work, the variation in axial strain along the gage 

length was less than three percent. 

Uniaxial specimens were machined from radial and longitudinal directions 

of the bar stock with a gage diameter of 3 mm, approximately that of the 

axial-torsion specimen wall. Five monotonic tension tests in the longitudinal 

direction resulted in a mean true fracture strength of 612 MPa with a standard 

deviation of *7 MPa. The mean percent reduction in area for the longitudinal 

specimens was 64.8% with a standard deviation of *5.7%. The corresponding 

values of mean true fracture strength and percent reduction in area for four 

radial specimens were 628 MPa and 56.3%, with standard deviations of *1 MPa 

and *4.0%, respectively. 

r 



In addition, completely reversed, strain-controlled fatigue tests were run 

on five specimens machined in the longitudinal direction and six specimens 

machined in the radial direction at comparable strain ranges. The stable 

cyclic stress amplitudes for radial and longitudinal specimens were essenti-

ally the same for a given strain amplitude e a . The results are shown in Table 

II. From the tensile and fatigue tests, it is apparent that anisotropy 

effects in the axial-torsional specimens are minor, particularly since these 

specimens were machined from as-received stock. 

A set of uniaxial and axial-torsional specimens were heat-treated at 

1100°C for 40 minutes in a vacuum and furnace cooled to achieve the relatively 

isotropic grain structure shown in Fig. 2 with an ASTM grain size number of 4. 

There were approximately 25 grains across the wall-thickness of the axial-

torsional specimen shown in Fig.1. Note the polishing marks in Fig.2; the 

specimens were intended primarily for cyclic deformation testing, and a fine -

grit was not used in the polishing process. 

Testing Procedure  

The biaxial, strain-controlled tests were performed on an axial-torsional 

load frame with axial and torsional cyclic load capacities of *50 kips and *20 

in-kips, respectively. The system was stiffened to decrease lateral torsional 

frame deflection. A PDP 11-23 processor/interface was used for independent 

servohydraulic, closed-loop control of axial and torsional deflection or load 

channels and for simultaneous data acquisition. 

An internal extensometer [13] was placed inside the specimen with a gage 

length of 25.4 mm. A linear variable differential transformer (LVDT) was used 

to measure axial displacement between contact points at the gage length, while 

a rotary variable differential transformer (RVDT) measured the relative angle 

of twist. Extensometer backlash and interaction between axial and torsional 

r 
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channels were negligible. 	The deviation from linearity for both axial and 

shear displacement channels was less than one percent of full-scale. Align-

ment was verified over a wide range of axial and rotational movements of the 

servohydraulic ram with respect to the fixed crosshead. 

Axial strain e was defined as the gage length displacement divided by the 

original gage length. The shear strain 7 was obtained by dividing the angle 

of twist by the gage length and multiplying by the mean radius. 

Axial stress a and shear stress r were calculated from the axial load P 

and torque T as 

a = 4P/(T(D02  - Di 2 )) and 

r = 12T/(r(D0 3  - Di 3 )) 

with the assumption that the stresses are uniform across the wall-thickness. 

Do  and Di are the gage section outside and inside diameters, respectively. 

This assumption obviously involves some error, but the deformation theory of 

plasticity cannot be used to estimate the stress distribution of nonpropor-

tional loading. Brown and Miller [4,14] showed that the error in maximum 

shear stress, 

Tmax = [T2 	(7/2) 2] 1 / 2 , 	 (3) 

is small for 	proportional 	loading 	and 	for nonproportional loading, 

particularly if there is significant cyclic plasticity present. 

A computer program was written so that any combination of line segments in 

e-7 strain space could be joined end-to-end to define a loading cycle. A 
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block was defined as an arbitrary number of identical cycles. Furthermore, 

the program allowed the user to define any number of blocks, each containing a 

different cycle loading path. The effective strain rate (i . (g2 + 12/3)1/2) , 

 assuming a Poisson's ratio of 1/2, was kept constant along each segment. 

The computer program was written to accomplish the following objectives: 

(a) Permit generation of a number of successive blocks of different non-

proportional cyclic paths interactively with the computer. A desired 

effective strain rate was specified and the entire history plotted 

prior to running the actual test. 

(b) Run initial shear and axial modulus checks at small elastic strains 

to compute G and E prior to the imposed history. 

(c) Impose the strain history generated in objective (a) on the specimen 

and acquire data for the first 10 cycles of every block and geometri-

cally increasing (powers of two) cycles starting at cycle 10. Load 

and gage length deflection data for both channels were sampled and 

stored on a floppy disk at increments of effective strain specified 

by the user. Typically, 50 to 100 sets of data were stored for each 

one percent increment of effective strain. 

BIAXIAL LOADING HISTORIES  

Results of three separate strain-controlled axial-torsional histories are 

reported in this paper. All tests were conducted at room temperature. The 

initial values of Young's modulus and shear modulus were determined as E = 188 

GPa and G = 77 GPa, respectively. A summary of each of these three test 

r 
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histories appears in Table III, including the effective strain rate and con-

trolled axial and shear strain endpoint sequence of each block within each 

history. 

Specimen SSO1  

Specimen SSO1 was subjected starting from the virgin state to the eight 

block sequence listed in Table III. The axial-torsional strain history and 

hysteresis loops sampled near the end of each loading block are shown in Figs. 

3 through 7. 

Several interesting observations can be made regarding the deformation 

behavior. Consider first blocks 1 and 2 depicted in Fig. 3. The cyclic axial 

and shear stress amplitudes a a  and ra  in cycle 24 of block 1, when combined 

via von Mises effective stress, a = (° a2  + 3ra2)1/2,  or Tresca effective 

stress, aeff = (0a2 + 4ra2)1/2, correspond closely to a point on the cyclic 

stress-strain curve determined form a uniaxial incremental step test on a 

specimen with the same heat treatment [6]. This equivalence, of course, is 

not surprising since the straining is proportional. 

Upon switching to block 2, however, the cyclic stress amplitudes in block 

2 noticeably increased over those of block 1. Yet the plastic strain ampli-

tudes of both axial and shear responses in block 2 were less than those of 

block 1. This is evidence of latent or anisotropic hardening (cross harden-

ing) which occurred in the first two blocks. Several experimental studies 

have been conducted [15-17] in which the "yield surface" is determined by 

strain probing techniques at various points along a strain-controlled, nonpro- 

portional loading path. 	Typically, these studies have concentrated on one 

type of loading path applied for several cycles. 	In the present study, the 

effects of cross hardening are examined by virtue of the hysteresis response. 
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Continuing into blocks 3 and 4, as seen in Fig. 4, a significant degree of 

additional cross hardening is apparent. Any measure of effective plastic 

strain range decreases from block 1 to block 2 to block 3. In particular, the 

maximum range of plastic shear strain on any plane in the specimen wall 

decreases from Wmax  = 0.0136 in block 1 to W max  = 0.0123 in block 3 [6]. 

Yet the peak effective stress increased significantly in each block, particu-

larly in block 3. Figure 5 shows the increase in the maximum value of Tresca 

effective stress, i.e., maximum value of ( a2 472)1/2 = max a eff, in a number 

of sampled cycles in the first three blocks. Data are reported for the first 

10 cycles and cycle 24 of each block. The maximum effective stress increased 

in each block. Note that most of the transient hardening occurred in the 

first 10 cycles of each block. Since the maximum effective stress in block 1 

corresponds approximately to that of uniaxial cyclic deformation at the same 

plastic strain range, the extent.of additional hardening is quite significant. 

It is also clear that the additional cross hardening is path-dependent, 

and the concept of the "universal" cyclic stress-strain curve in the conven-

tional sense has little meaning. The cyclic strain path of block includes the 

paths from blocks 1 and 2 by connecting them at peak endpoints. Along the 

segments of the path where axial strain is approximately constant, the maximum 

shear strain planes rotated continuously in the specimen wall. Hence, the 

principal strains (and stresses) rotated continuously during these portions of 

the cycle. 

The loading paths in blocks 4 and 5, shown in Figs. 4 and 6, did not 

result in significant transient hardening or softening behavior. The mater-

ial retained memory of the loading of blocks 2 and 3 and did not readjust to a 

response characteristic of the proportional straining from the virgin state 

seen in block 1. This memory of additional cyclic hardening (interaction of 
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slip systems) during nonproportional cycling is perhaps most directly related 

to the low stacking fault energy of type 304 stainless steel; high stacking 

fault energy metals (i.e. those that exhibit wavy slip), in contrast, tend to 

readjust to the stress amplitude corresponding to the current strain range 

independent of loading sequence in uniaxial test [18-19]. 

Blocks 6 and 7, shown in Figs. 6 and 7, were a repeat of blocks 4 and 5 

with an increase of strain amplitudes by a factor of 1.5. Again, no signifi-

cant additional transient hardening was observed. Of course, the stress 

amplitudes were higher than those of blocks 4 and 5 since the strain ampli-

tudes were increased. For type 304 stainless steel, the extent of additional 

cyclic hardening is more strongly dependent on nonproportionality of loading 

than on plastic strain range. This observation was also made for nonpropor-

tional strain cycling of type 316 stainless steel by Nouailhas et al [20]. 

Finally, in block 8 the strain cycle of block 3 was again imposed. The 

hysteresis response is nearly identical to that of block 3 as seen in Fig. 7. 

Only a small component of additional hardening beyond block 3 was observed in 

block 8; examination of the transient response in the first 10 cycles of block 

8 shows that the rate of hardening in block 8 was essentially equal to that of 

the latter cycles in block 3. 

Specimen SSO9  

This specimen, from the virgin state, was subjected first to 10 cycles of 

a 10 level incremental step test with maximum axial and shear strain ampli-

tudes of 0.007 and 0.0105, respectively, as shown in Table III. Plots of the 

tenth cycle hysteresis loops are shown at the top of Fig. 8. In addition, 

uniaxial incremental step tests were conducted on specimens with the same 

heat-treatment at several maximum strain ranges. Solid curves in Fig. 8 show 
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the monotonic and cyclic stress-strain curves for maximum plastic strain 

amplitudes of 0.0045 and 0.0068 in incremental step tests. For comparison 

with the uniaxial tests, the axial and shear stress and strain peaks at each 

level in the first block of specimen SSO9 are plotted in the form of Tresca 

and von Mises effective stresses and strains. The Tresca and von Mises effec-

tive plastic strain shown in Fig. 8 are defined, respectively, as 

egff 	((e P)2 	(4/9) (7P)2)1/2 and 

	

E P = (( e P)2 	(1/3) ( 7P)2)1/2 .  

The Tresca and von Mises effective stresses were defined earlier. Note 

that the effective stress-strain response in block 1 is essentially equivalent 

to the uniaxial case. The stress amplitudes are slightly higher for the uni-

axial case primarily because they are reported after 40 to 50 complete cycles. 

Block 2 for specimen SSO9 consisted of continued cycling along the propor-

tional path of the incremental step test in block 1 with Ea = 0.005 and 7a  = 

0.0075. No additional hardening was observed. 

In blocks 3 and 4, the specimen  was subjected to the same applied axial 

and shear strain amplitudes as in block 2, but with sinusoidal variation of 

applied strain components. The phase angle fl between applied axial and shear 

strains, expressed through the equations 

e = easinwt and 

7 = 7asin(wt - fl), 



was sequentially increased from 0° to 30° (block 2 to 3) and from 30° to 60° 

(block 3 to 4). 

The strain histories for blocks 2 through 4 and resulting 24th cycle 

hysteresis loops are shown in Table III and Figs. 9 and 10. Note that the 

degree of nonproportionality of loading increased sequentially from block 2 to 

block 4, and the resulting maximum Tresca effective stress in a cycle also 

increased sequentially. This block-by-block increase in cyclic strength level 

cannot be attributed to an increase in any measure of effective plastic strain 

range; in fact, the maximum range of plastic shear strain on any plane in the 

specimen wall decreases sequentially from A7Pmax  = 0.0166 in block 2 to A7P max 

 = 0.0146 in block 4. 

A plot of maximum Tresca effective stress in each cycle is presented in 

Fig. 11. It is quite interesting that an increase in the degree of nonpropor-

tionality is analogous to an increase in strain range from cyclically stable 

conditions in a uniaxial test. As for specimen SS01, this significant degree 

of additional cyclic hardening in the absence of an increase in effective 

plastic strain range points to increased activation of and interaction between 

slip systems as likely mechanisms. During nonproportional cycling, it is 

likely that more slip systems in more grains have favorable Schmid factors 

during a loading cycle than for proportional straining. The deformation 

substructures and martensitic transformations for these specimens are examined 

in a later section. 

Finally, after block 4, specimen SSO9 was subjected to sinusoidal strain 

cycling with Ea = 0.005, 7a  = 0.0075 and p = 90°. After eight or nine cycles, 

the specimen pulled out of the grips and the data were not transferred to 

magnetic disk as intended. An x-y recording indicated that additional harden-

ing did occur in both axial and shear stress responses, presumably approaching 

that of 90° out-of-phase step tests reported earlier by one of the authors 
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[3,6], i.e., max °eff = 600 MPa. For p = 90° with 7a/e a  = 1.5, every plane in 

the specimen wall is a plane of equal maximum shear strain range during some 

point in each loading cycle, and the maximum shear strain planes rotate 

continuously (assuming Poisson's ratio is 1/2). Kanazawa, Brown, and Miller 

[4] observed that this case resulted in the maximum extent of additional 

cyclic hardening for 1% Cr-Mo-V steel, as did Lamba [5] for OFHC copper. 

Specimen SSO6  

This specimen was subjected to 22 consecutive alternating blocks of com-

pletely reversed axial straining or shear straining with an effective strain 

rate of e = 0.002 sec -1 , as shown in Table III. Block 1 consisted of 40 

cycles with axial and shear strain amplitudes of Ea = 0.0075 and 7a  = 0 

respectively. Block 2 consisted of 40 cycles with axial and shear strain 

amplitudes of e a  = 0 and 7a  =, 0.01125, respectively. Hence the effective 

strain range for block 2 was within 13% of that for block 1. Each successive 

set of two consecutive blocks after block 2 simply repeated blocks 1 and 2. 

After the first several blocks, there was negligible cyclic hardening. 

The axial stress and plastic strain amplitudes for block 11 were a a  = 465 MPa 

and e aP = 0.005, respectively. The shear stress and plastic shear strain 

amplitudes for block 10 were ra  = 255 MPa and 7a  = 0.0074, respectively. 

These values were cyclically stable. For blocks 5 and 6, for example, the 

stress amplitudes were aa  = 450 MPa and ra  = 255 MPa, respectively. It should 

also be noted that, due to the large plastic strain amplitudes, the shear 

stress was negligibly small during axial cycling and vice versa. It is 

important to note that for each type of loading block, the effective 

cyclically stable stress amplitude significantly exceeded that of the uniaxial 

cycle stress strain curve. 



PHYSICAL EXAMINATION OF SPECIMENS 

Type 304 stainless steel can form both e-martensite as well as a'-marten-

site as a result of deformation, in addition to developing dislocation arrays. 

Deformed specimens were examined using conventional optical and SEM microscopy 

to delineate e-martensite (or planar slip bands) while x-ray techniques were 

used to detect the presence of a'-martensite. In addition, replication tech-

niques were employed to follow the development of deformation marks on the 

surface of specimens during the course of cycling. 

RESULTS AND DISCUSSION 

Correlation of Cyclic Hardening with Deformation Substructure  

As mentioned previously, type 304 stainless steel exhibits a plastic 

strain range dependent transformation from metastable austenite to a'-marten-

site and e-martensite in uniaxial tests. These transformations account, in 

part, for the marked degree of cyclic hardening observed in uniaxial tests in 

which strain range is increased significantly from a prior cyclically stable 

state. 

The BCT a'-martensite provides a significant barrier to dislocation 

movement. Likewise, the HCP e-martensite forms a platelet structure on {111} 

slip planes in association with the presence of stacking faults and would also 

be expected to significantly increase the difficulty of slip on intersecting 

{111} slip planes. To correlate cyclic hardening behavior, it is essential to 

consider the history dependence of these transformation products in addition 

to dislocation-dislocation interactions and accumulated dislocation density. 

Formation of a'- and e-martensite structures was studied for each multi-

axial specimen. Presence of a'-martensite was determined by x-ray diffraction 
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while e-martensite was determined by optical microscopy. 	The initial 

structure is seen in Fig. 12 which shows typical austenite grains of 304 

stainless steel, many of which are highly twinned. 

During deformation, it is possible to form 3 classes of deformation 

debris: 

1. slip bands composed of dislocation arrays, 

2. e-martensite which is hexagonal in form and 

3. a'-martensite which is BCT. 

The first two products essentially form in response to the maximum shear 

stress and there is little or no effect of the normal stresses or the dilata-

tional component. The e-martensite may form because of the low stacking fault 

energy of the austenitic matrix and the relationship of the HCP e to the FCC 7 

matrix. It is expected that the amount of a'-martensite would depend on both 

the shear and normal stresses as•described elsewhere [21]. 

In Fig. 13, some deformation product *  in SSO9 is seen. Note the clearly 

defined shear planes and the effects of the twinned regions which either 

change the slip direction or completely inhibit it. Similar structures were 

seen for other types of cycles. 	However, there were significant differences 

in the distribution of deformation product. 	Specimen SSO9 was subjected to 

90• out-of-phase cycling such that every  plane in the specimen 

experienced the maximum shear strain range. 	As a consequence, the density of 

deformation debris was a maximum. This is seen by comparing Fig. 14 to Fig. 

15. In Fig. 15 only two sets of slip planes experienced the maximum shear 

strain range and the density of deformation debris (slip band traces) was less 

than seen in Fig. 14. 

*We will not distinguish between e-martensite and planar arrays of extended 

dislocations. 
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For specimen SS06, which was subjected to alternating pure axial and pure 

torsional blocks, deformation was studied during testing using cellulose ace-

tate replica techniques. Again, the deformation debris responds to the maxi-

mum shear strain and diamond-like figures could be seen to develop on the 

surface, presumably being defined by the maximum shear strain planes in axial 

and torsional loading as seen in Fig. 16 for two different blocks. 

The specimens were also examined by x-ray diffraction subsequent to 

testing to determine if a'-martensite was present. The nonproportional 

loading subjects more slip planes to a higher normal strain per cycle for a 

given maximum shear strain range and thus favors a' formation from a 

thermodynamical basis [21]. Associated with an a'-martensitic transformation 

is (a) an invariant shear strain 7s  and (b) a dilatation e n =AV/V0 , where Vo  is 

the volume prior to transformation. Consider the work done by the applied 

stress on the martensitic transformation with respect to a potential habit 

plane, 

U = an  E n  + ITs 1 7s 	 (8) 

where an  is the normal stress to the habit plane and Ir s 1 is the absolute 

magnitude of the resolved shear stress on this plane. Note that the sign of 

rs  is irrelevant but a n  assists the transformation when positive. Note also 

that e n  and 7s  are constants that depend on the martensite type and the alloy 

composition. 

For an Fe-30% Ni alloy the values are 7 s  = 0.20 and e n  = 0.05 [21]. 

Since high positive values of U will assist transformation on the potential 

habit plane associated with rs  and an , it is useful to consider the maximum 

value of U and the associated material plane at each point for the three 

loading histories of this study. Higher maximum values of U and a more 

- 16 - 



uniform distribution of associated planes in the specimen wall should each 

correlate with a greater extent of a' transformation, and hence with the 

additional hardening observed in the nonproportional tests. 

Figure 17 displays plots of the maximum value of U and the associated 

plane in the specimen wall during a cycle for selected blocks of nonpro-

portional histories SSO1 and SS09. The calculations were performed using 

values of a n  and rs  obtained from the data by transformation to each potential 

habit plane in the specimen wall. Then U was computed from equation (8). The 

maximum value of U with respect to direction at each point in the cycle is 

denoted by U max  and the corresponding plane by angle 0 measured positive 

counter-clockwise from the longitudinal specimen axis. Note that the peaks of 

the maximum U values are slightly higher for block 2 of specimen SSO1 than for 

block 1, as is the maximum effective stress in a stable cycle. However, the 

potential habit planes associated with these Umax  values are not well 

distributed with respect to 0 and would imply a smaller amount and more 

inhomogeneously distributed a' product. Nonproportional loading block 3 of 

specimen SSO1 exhibits significantly higher peak and average U max  values which 

are associated with a more uniform angular distribution of potential habit 

planes. 

Likewise, it is readily seen that increasing degrees of nonproportionality 

of loading in blocks 2-4 of specimen SSO9 correspond to increasing peak and 

average Umax  values within a cycle, as well as more uniform angular distribu-

tion of corresponding potential habit planes. Note that the range and peak 

values of Umax  within the more highly nonproportional loading blocks are 

approximately equal for both histories, reflecting that the extent of addi-

tional hardening is quite similar for the two cases. 



The hypothesis that formation of a'-martensite is directly related to the 

additional isotropic hardening would seem to make a great deal of sense based 

on the more uniform distribution of potential habit planes for the nonpropor-

tional loading blocks. This hypothesis must be tested, however, by 

measurement of the amount of a'-martensite formed for each history. X-ray 

diffraction analysis using standard techniques [22] revealed significantly 

different levels of a'-martensite, with specimen SSO9 exhibiting the highest 

degree of transformation. At least three different regions of each specimen 

were examined, and the volume fraction of a'-martensite was examined for each 

specimen by using two angles of incidence of the x-ray beam. The diffraction 

results obtained at the two different angles of incidence were equivalent, 

indicating lack of texture. In Fig. 18, the maximum shear stress for each 

specimen history is plotted versus the average volume percent a'-martensite 

determined from the average of. the two diffraction analyses. Both maximum 

shear stress and percent a'-martensite are normalized by the values associated 

with specimen SS09. Clearly, there is no direct correlation between a'- 

martensite formation and the extent of additional isotropic hardening. 

It therefore does not appear that formation of a'-martensite is the domi-

nant mechanism for the tremendously increased resistance to cyclic plastic 

flow which is observed experimentally. This result suggests that formation of 

e-martensite associated with slip bands may more strongly influence the hard-

ening behavior. Certainly, the increased grain-by-grain uniformity of 

deformation product mentioned earlier for specimen SSO9 conforms with the 

observed maximum extent of hardening. 

The influence of e-martensite formation on hardening behavior is an 

entirely plausible one from the standpoint of micromechanics. Since e-marten-

site is associated with slip planes and may be viewed as an extended stacking 
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fault, it is intimately related to plastic flow on the associated slip system. 

As more slip systems are activated by comparable Schmid stresses during 

nonproportional loading, accumulation of 	additional plastic strain and 

associated deformation product should be expected. 	When this occurs, 

increased resistance is 	offered 	against 	movement of dislocations on 

intersecting slip planes. Hence, a full latent hardening effect is produced. 

The contribution of e-martensite and slip band-related processes to cyclic 

hardening may be reckoned on a micromechanical basis. Following the framework 

of Asaro [23] and Hutchinson [24], directed primarily toward textural aniso-

tropy effects in finite deformation, one possible form for a latent hardening 

description is 

hap = qh + h(1-q)6ap, 	 (9) 

where h ap are slip plane hardening rates which relate the rate of increase of 

critical Schmid stress on each a slip system with shearing rates on all active 

p systems 

	

n 	. 

	

c 

(a) :› 	hapI7 (1)) 1 , 
 p=1 

(1 0) 

where l(P) >0 only for active systems. In Eq. (9), h = h(r) and Bap = 1 if a 

= p; Bap = 0 if a $ p. The value of q governs the rate of hardening on 

secondary slip systems. The quantity r represents the cumulative shear for 

all slip systems, i.e. 



r 	Wandt , 

a=1 

and hence is a scalar measure of the extent of plastic deformation. If q=1, 

then hap = h(r) and hardening is purely isotropic, i.e. lacking of cross-

hardening effect. For q > 1, secondary slip systems may harden at a higher 

rate than the primary system. 	The off-diagonal terms represent latent 

hardening; diagonal terms represent self-hardening. 	It is probable that the 

transformation to e-martensite on {111} slip planes contributes to a high 

value of q for 304 stainless steel. It is also quite probable that q is 

strongly related to stacking fault energy, since a wavy slip mode results in a 

more homogeneous state of deformation than a planar slip mode. 

It should be noted that the hardening rule in Eq. (10) is sensitive to 

changes in orientation of the applied strain rate tensor. The hardening rule 

in Eqs. (9) and (10) is the micromechanical analogy to the phenomenological 

formulation of an anisotropic plastic potential for a polycrystal. The pos-

sibility of using a single crystal data to predict the extent of hardening for 

cases of nonproportional straining of a polycrystal is intriguing. Certainly, 

it is necessary to consider the physical mechanisms which produce the seem-

ingly anomalous cyclic hardening observed for the material of this study. 

CONCLUSIONS 

The distribution of deformation products has been shown to be a function 

of loading path for type 304 stainless steel subjected to nonproportional 

cyclic loading. Furthermore, the effective stress amplitude in these tests 

correlates with the homogeneity and extent of deformation products in the 

polycrystalline structure. 
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It has also been demonstrated that there is a fundamental interaction 

between material and stress state. The stress state that is imposed causes 

certain features of the material's potential deformation morphology to be 

manifested. These features in turn affect shear and tensile stresses in a 

strain-controlled test. This mechanics/materials interaction must be taken 

into account if reliable constitutive models of deformation under complex 

loading are to be developed [25-27]. Uniaxial tests by themselves may be 

incapable of developing all deformation substructures (depending on the mater-

ial) and thus the results of such tests should be put in perspective when 

applied to multiaxial conditions. 

The role of a'-martensite formation on the exceptional nonproportional 

cyclic hardening behavior of type 304 stainless steel, though appealing, does 

not appear to be a dominant one. Micrographs indicate that heterogeneity of 

e-martensite and slip band -deformation products are a function of 

nonproportionality of loading and may more directly correlate with hardening. 

A micromechanical interpretation of latent hardening related to slip band 

processes has been offered. 
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TABLE I. 	Composition of 304 SS (w/o) 

  

C 	Mn 	Si 	 Cr 	Ni 	Fe 

 

    

 

AISI 	0.08% 	2.0% 	1.0% 	18-20% 	8-12% 	Bal. 

 

 

ACTUAL 0.05% 
	

1.40% 	0.45% 	19.13% 	9.49% 	Bal. 
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Table II. Summary of Uniaxial Fatigue Tests 

Specimen Type 
Longitudinal Radial E

a  N f 

X 0.004 4800 
X 0.0016 Run-out 
X 0.003 47600 
X 0.0035 4300 
X 0.0035 3300 

x 0.0155 750 
x 0.005 2930 
x 0.004 7300 
x 0.004 7700 
x 0.0035 4300 
x 0.0035 13700 



Table III. Complex Strain Histories 

, t 	(sec
-1 

 ) 

3501 0.003 

;SO9 0.001 

S06 0.002 

BLOCK NUMBER 

2 3 4 	 5 6 7 8 

endpoint 
sequence: 
0 	e=y=0 
1 	e=0.0041 

y=-0.006 
2 	e=-0.0041 

y=0.006 
return to 
e=y=0 

endpoint 
sequence: 
0 	e=y=0 
1 	e=0.0041 

y=0.006 
2 	e=0.0041 

y=-0.006 
3 	e=-0.0041 

y=0.006 

4 	e=-0.0041 
y=-0.006 

return 	to 
e= y=0 

repeat 	repeat 
#1 	 #2 

endpoint 
sequence: 
0 	e= y=0 

1 	e=0.006 
y=0.009 

2 	c=-0.006 
y=-0.009 

return 	to 
e=y=0 

endpoint 
sequence: 
0 	e=y=0 
1 	e=0.006 

y=-0.009 
2 	e=-0.006 

y=0.009 
return to 
e=y=0 

repeat 
#3 

25 	cycles 25 	cycles 25 	cycles 25 	cycles 25 	cycles 25 cycles 25 	cycles 

*e =0.005 
ya 20.0075 

0=0 

*e=0.005 
y
a 
2 0.0075 

0=30 °  

* 	e =0.005*e =0.005 
y
a
=8.0075 	y

a
20.0075 

(3=60 ° 	(3=90
o  

16 	cycles 25 	cycles 25 	cycles 8 	cycles 

endpoint 
sequence: 

repeat 
#1 

repeat 	repeat 
#2 	 #1 

repeat 
#2 

continue 	to 
of 	block 	#22 

end 

40 cycles 	40 cycles 	40 cycles 	40 cycles 40 cycles 40 cycles 

1 

end point 
sequence: 
0 e=y=0 
1 e=0.0041 

y=0.006 
2 e=-0.0041 

y=-0.006 
return to 
e=y=0 

25 cycles 

Incremental 
Step test: 

ea
max 

 =0.007 

y
a
max

=0.0105 

10 cycles 

endpoint 
sequence: 

0 e=y=0 	0 e=y=0 
1 e=0.0075 1 e=0 

	

y=0 	 y=0.01125 

2 e=-0.00752 e=0 

	

y=0 	 y=-0.01125 

	

return 	to 	return to 

	

e=y=0 	e= y=0 
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Figure 1 Tubular axial-torsional specimen. 	Dimensions in 
mm. 



1 m m 

Figure 2 	Grain structure of heat-treated type 304 stainless 
steel. 
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Figure 12 	Initial structure of 304 stainless steel used in 
this study. Specimen taken from grip section. 



Figure 13 	Deformation debris in specimen SS09. 	Note the planar deformation 
products and their spatial orientation dependence on grain and 
twin structures. 

. 
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Figure 14 	Deformation debris in specimen 	SS09. 	Note the relatively 
homogeneous distribution of deformation product. 
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Figure 15 	Deformation substructure of specimen SS01. 	Note the reduced 
homogeneity of deformation product compared to specimen SS09. 
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Figure 16 Surface structure of specimen SSO6 delineated by 
replica. In (a) the specimen is shown after 6 
blocks while in (b) it is shown after 16 blocks. 
In (b) the surface is more highly deformed than in 
(a). 
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Introduction  

A number of different formulations exist for state variable or "unified" 

creep-plasticity theory [1-10]. There is, however, a common isothermal 

framework for many of these models which include backstress, e.g. 

.n 
E 	= f(liS - all,x) (s - a) 

a = h 	- r 
a - 	a 

t = h 11 n 11 - r 

where h a  and h ic  are scalar hardening functions, ra  and ric  are scalar recovery 

functions, a is the backstress, x is the drag stress, s is deviatoric stress, 

In is the inelastic strain rate, and = [In:191/2. 
•••• 	•••• 
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It is usual to first select hardening and recovery functions which encom-

pass relevant uniaxial phenomenological behavior, and then to fit the 

associated material constants to this data using appropriate multivariate 

error minimization procedures. There is a somewhat prevalent assertion among 

existing theories that the directional index for the hardening term in equa-

tion (2) is the inelastic strain rate, i.e. 

• .11 
e (4 ) 

Several theories [2-3, 11-12] include a dynamic recovery term with a as 

the directional index, i.e. 

• n . 	 . 
C = e 	- h 

-1
h all

n
e II 

a D- (5) 

where hp is a scalar dynamic recovery function. 	Uniaxial testing alone is 

insufficient to validate the directional index of the dynamic recovery term 

since a is collinear with gn. This collinearity is also likely responsible 

for the absence of the dynamic recovery term in many theories. 

An important attribute of multiaxial nonproportional loading is the non-

collinearity of gn and a. As will be shown in this paper, the need for the 

dynamic recovery term can be established from cyclic nonproportional biaxial 

tests. Furthermore, it is possible to comment on the relative magnitude of 

the direct hardening and dynamic recovery coefficients and to assess the 

accuracy of the direct hardening and dynamic recovery directional indices 
•• 

based on selected tests. 	Axial-torsional experiments conducted with two dif- 

ferent materials will be discussed. 

- 2 



Definition of Axial-Torsional Subspace  

The definition of the axial-torsional subspace follows as a subspace of 

Ilyushin's five-dimensional deviatoric vector space [13]. Define the stress 

vector as 

Q =an +a 
1-1 	3-

n
3 

a l = azz = a ' a3 = fTazO = fTT  

and nl and n3 are orthonormal base vectors in the stress plane. Here, z and 0 

denote the tube longitudinal and circumferential directions, respectively. 

Likewise, the plastic strain vector is defined by 

e
n 

= e 
n
n + e 

n
n - 	1 1 	3 _3 

where 

e 1
n 

= e zz
n

' and e 3
n 

= (2/fT)e zO n 

 Note that the plastic strain rate vector is defined as 

..n 	•n 	• n E n  =en +en 
11 	3 -3 

The effective stress Tr and plastic strain rate En (normalized to the axial 

case) are recognized as 

= (47 . 47) 1/2 = (44 + 4 ) 1/2 Ti = lal 

I 
i En 

= le
n 
 I 

(6) 

(7) 

(8)  



The total strain vector is heuristically defined as 

E =en +en 
1_1 	3_3 

where el =e zz  = e and e3 = (2/ N/T)ezo = 7/Vi. The effective strain rate is 

then E = Itl since 7 = 26z0- 

AISI TYPE 304 STAINLESS STEEL AT ROOM TEMPERATURE  

As reported elsewhere 	[14-18], 	thin-walled tubular specimens were 

subjected to strain-controlled axial-torsional histories with t = constant. 

The strain paths for three different loading blocks are shown in Figure 1 

along with the resulting stress subspace responses near the end of each 

loading block. Paths (b) and (c) in Figure 1 correspond to 30 and 60 degree 

out-of-phase sinusoidal loading. In all cases, the stress subspace responses 

are essentially cyclically stable. 

It should be noted that there are path-dependent differences in the extent 

of cyclic hardening. For example, path (c) exhibits a saturation effective 

stress level which considerably exceeds that of block (b). Yet the maximum 

plastic shear strain amplitude of path (b) exceeds that of path (c). The 

transient behavior of these three histories, including the additional cyclic 

hardening during nonproportional strain cycling, have been previously docu-

mented [14-15]. This paper will not address the transient behavior since it 

is concerned with kinematic hardening. 

Kinematic Hardening  

For these room-temperature, constant effective strain rate tests, rate-

independent plasticity is an acceptable idealization. By normality, the ine-

lastic strain rate in the axial-torsional subspace is given by 

4 



= 	(o• - a) 	 (12) 

with the assumed yield surface form 

f = (a - a).(a - a) - 

	 = 0 	 (13) 

where k = 0 during the stable latter cycles of each block just discussed. We 

may express evolution of a with or without a dynamic recovery term in equation 

(5), i.e. 

• • n 
a = # 1 E 

or 

• • 	•ri 
a = #2 (# 3 E - al 5n 1) 

where #1 and #2 are determined from the consistency condition and #3 is an 

unspecified scalar function. 

Assuming R, the path of a may be computed from experimental results if to 

is known. To compute the plastic strain rate vector from the data, numerical 

differentiation was required. The values of axial stress, shear stress, axial 

strain and shear strain of five contiguous data points were parameterized with 

respect to arc length s = E(Aa•Aa) along the path. Then a parabola was least-_ 

squares fit to the five data points to form each of the smoothed functions 

a(s), r(s), E(s), and 7(s), and the derivatives da/ds, dr/ds, dE/ds, and d7/ds 

were obtained for the-central (third) point. The derivative of plastic strain 

was computed as 

(14)  

(15) 



de n  

rde _ 1 dul n 	rA2 _ 	,/[7„, (16) 
ds 	lds 	E dsJ_1 	lds 	G dsJ// 

and the unit normal vector in the direction of the plastic strain rate was 

defined by 

n = (de n /ds)/1(de n /ds)1 	 (17) 

A check on the smoothness of the data was obtained by applying a first 

order central difference technique to each three contiguous points to obtain 

the derivatives for the central point [16]. This technique resulted in 

essentially the same results as the five-point parabola method, indicating 

good differentiability of the data. 

The hardening rules in equations (14)-(15) can be compared, at least qual-

itatively, by implementation in the axial-torsional subspace. Since to is 

collinear with (o - a) in the subspace, 

a = a - Rn 	 (18) 

and the predicted directions of backstress are given by 

2D = n (19) 

and 

2D+DR 	= 143(u - a) - 
a 
	

(20) 

•■• 

where nD and n D idDR are vectors representative of direct hardening with or 

without dynamic recovery, i.e. equations (14) and (15), respectively. Since n 



and a are known from equations (17) - (18), equations (19) - (20) can be com-

pared if ;73 is selected to best fit data. 

In Figure 2, the backstress path is plotted assuming R. Vectors are peri-

odically plotted along the path representing the directions expressed in 

equations (19) - (20). Note that 713 = 2.3 was selected to provide the best 

fit to path (a) in Figure 2. Though ;73 may be a function of plastic strain 

range [11], this dependence is not herein considered. The degree of tangency 

of these vectors to the path of a provides the measure of accuracy for each 

rule. It should be noted that the presence of the dynamic recovery term is 

essential to obtain good correlation with data. 

HASTELLOY-X AT 649°C  

Experiments were conducted by Jordan on thin-walled tubular specimens. 

Experimental details can be found elsewhere [19]. Essentially stabilized 

cyclic responses are considered in this work. Two strain-controlled histories 

are reported in Figure 3. The two 90° out-of-phase sinusoidal histories were 

imposed at 649°C with an engineering shear to axial strain amplitude ratio of 

3/2. In this case, each plane in the specimen wall experiences the same shear 

strain range and the maximum shear strain planes rotate at constant angular 

velocity. This type of history has also been observed to produce the maximum 

extent of cyclic hardening for austenitic stainless steel [14-18, 20] and Cr-

Mo [21] alloys in addition to OFHC copper [22-23]. 

Backstress Evolution in the Rate-Dependent Case  

The general deviatoric stress form of the flow rule which incorporates the 

kinematic hardening variable of Prager is chosen. As given by Chan et al. [9] 

•n 
e = X(s - a) (21) 



where 

 

E :E 	
1/2 •n •n 

 

  

(22) (s - a):(s - a) 	• 

In equations (21) and (22) tn is the inelastic strain rate, s is the devia-

toric stress and tn:tn denotes the scalar product of the inelastic strain rate 

tensor. Often referred to as the "backstress" or "equilibrium stress," the 

kinematic hardening variable a, as pointed out by Chan et al. [ 9], can 

account for directional hardening, non-coaxiality of the inelastic strain rate 

with the deviatoric stress, and effects such as reversed creep and relaxation 

through zero stress when the quantity (s - a) is negative. In the context of 

rate-independent plasticity, a represents the current origin of a translating 

yield surface in stress space. A general form for the evolution equation for 

the backstress is 

a= hN- dM 
	

(23) 

where h and d are, in general, tensors which operate on indices N and A. 

Equation (23) represents the case for isothermal, relatively high strain rate 

deformation where static thermal recovery is negligible. The first and second 

terms represent, in a phenomenological sense, direct hardening and dynamic 

recovery, respectively. Typical specializations of equations (23) are 

h = h 
o 
	 (24) 

d = do 	 (25) 



where h o  and do  are scalar constants for the isothermal case and 

, N = n 
 E 

A 

(26) 

(27) 

Determination of Backstress History 

In the axial-torsional 

1 

•n 
E
3 

subspace, equations 

rrI 2 .1_ (rd 2 
1) 

(21)-(23) 

1/2 

can be written as 

fa l - a ll 
(2 8) 

C3 
	a3 - 

 [a l - a l) 2 	[a3 	a 3) 2  

with 

'.n 
a l h

11 	
h
13 

E
1 

•n - 

d
11 

d
13 

a
1 (29) 

a 3 
h
31 

h
33 d 31 d 33_ 

a
3 

where f:1 and A are given in equations (26) and (27). 
With the stress responSe obtained from a biaxial, strain-controlled test, 

the strain history can be differentiated as described earlier (but with 

respect to time instead of effective stress arc length) and equation (28) can 

be written for each of N discrete times, ti, as 

a.1  = a.1  - la.1  - a.1ln.11 i = 1,2,3,...,N 
	

(3 0) 

= vinyl where n 	I. Equation (30) is nonlinear and does not possess a unique 

solution. Writing equation (30) as a fixed point iteration 

9 



	

a.
K+1 

 = c. - lc. - a.ln. 
	

( 31) 

where aK is the Kth iterate of a, convergence is obtained if aK + l - a'. 

However, a' will depend, in general, on the initial guess a°. Thus, a pos-

sible path for the backstress, a(t), can be obtained such that ai = ai if a 

reasonable scheme for selecting 4 is chosen. Figure 4 shows the backstress 
paths calculated using the iteration in equation (31) for the two 90° out-of-

phase histories, choosing ei = loci where b was taken as 0.5, 0.6, 0.75 and 

0.95 respectively. One can readily show that ai will converge to ci - (1- 

b)lailni after one iteration. As can be seen in Figure 4 each represents a 

reasonable potential backstress path for the 90° out-of-phase histories. 

Figure 5 shows the direction of c - a and n at a discrete number of stress 

points for the larger strain amplitude test. 

Determination of the Kinematic Hardening Rule  

With a possible backstress path, a(t), known as a discrete set of ai, the 

backstress history can be differentiated in the manner described for the 

strain history to obtain 8i at each ti. With 8i known for each discrete time 

ti, we may form the corresponding residual Ri, i.e. 

	

R. = hr - dirla. - a. 	 (3 2) 

Then, the sum of the squared residuals can be minimized to obtain least 

squares estimates of h and d. 

Case I  

If h = 11 0  and d = d o  is chosen, then a least-squares fit based on equation 

(32) yields 



1= 1 

where 

 

fh o 
d o 

 

F
11 

F
12 

F
21 

F
22 

( 33) 

  

   

N 

 F 11  
	fr;1n.12 	

(v3i
1  )21 

IA 1  
i=1 

N  

F
12 	

F21 = 	- [(en 	+ en 	jl en ll 
e li a li 	e31 a3i 

1=1 

(34)  

(35) 

F
22

.  Ral i 	4d I
vi

l 2 I ,  (36) 

F 1 = 	[f .; n . + a . 	
. ' 

	

11 11 	3
E

1 311 
• • 

1=1 

N 
• • 	.n1 

and F2 = > 	-L(a li a li + a31 .a3i )1e.11 • 
i=1 

CASE II  

Choosing h11 = hl, h33 = h3 with h13 = h31 = 0 and d11 = dl, d33 = d3 with 

d13 = d31 = 0 yields two systems of equations for a least squares fit, 

(37)  

(38) 

(•n 12 	• 	•n - E  .a 	le 1 	
lh I 

z1J 	2.1 zi 

1:n1 	(a . 112 
d 2.  211 11J 

where z = 1 or z = 3. 



Table 1 summarizes results obtained for the cases outlined above for the 

two 90° out-of-phase histories (with b = .5, .6, .75 and .95). 

A clearer assessment of the accuracy of the kinematic hardening rules 

obtained for the two cases is shown in Figure 6. Here, the backstress history 

obtained using Euler integration is plotted, along with o - a and the direc-

tion of the plastic strain rate emanating from (or referenced to) the stress 

point. Shown are the results obtained for case I and case II for b = 0.6 by 

integrating the kinematic hardening rule using the constants reported in Table 

1. Note that the direction of the plastic strain rate is that determined by 

differentiating the strain history and the direction of a - a is that obtained 

by integrating the kinematic hardening rules determined from the least squares 

fits. Thus, the non-collinearity of the plastic strain rate direction with g 

- a in Figure 6 is an indication of the accuracy of the correlations for 

From examination of the results reported in Table 1, two important obser-

vations are made. First, it is noted that the ratio h1/h3 approaches unity 

for b in the range of 0.5 < b < 0.6 for both the large and small strain 

amplitude tests. Further, hl = h3 = 11 0  for both tests at b = 0.6. 

Conversely, it is noted that the ratio di/d3 does not approach unity in either 

history and d1 # d3 # d o . Furthermore, it is noted that use of a tensor oper-

ator (e.g. Case II) in the dynamic recovery term appears to result in a more 

realistic integrated backstress path, as observed in Figure 6. The ratio 

di/d3 is larger for the small strain amplitude test. These observations moti-

vate some speculative assertions about the structure of the kinematic 

hardening rule and imply the particular utility of the 90° out-of-phase test. 

From the observation that a scalar direct hardening function, h = [1 0 , is 

found for b = 0.6 for both tests, it is asserted that ri = t° is a satisfactory 

index for the direct hardening term in the evolution of backstress. This 
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being the case, it is further asserted that it is desirable to find an index, 

M, such that d is a scalar in the dynamic recovery term. The determination of 

a tensor valued d for general stress space would be a difficult task and the 

mechanistic basis of such an approach would have to be justified. To this end 

it is proposed that 

A = In(a - a*). 	 (40) 

Equation (40) implies that dynamic recovery occurs in a direction opposite the 

backstress referenced to some current state a*, as opposed to the zero state 

• 
(M = Itnla). A possible approach, then, would be to investigate plausible 

choices for a* in hope that one would yield a correlation such that d is a 

• 
scalar when h is a scalar with N = tn. For example, Walker [24] has proposed 

A 

 .[

a - ao  _ n 1- 
	- 
Ell;n1 

-  

where ao  is a backstress offset, E n  is the inelastic strain, and nl is a  

material constant. 

In Walker's formulation in the full deviatoric stress space, 

a = -K I + 3K E
n 

• E
n
PIE

n
:E

n
II

2 
o 	o_ 	o_  (42) 

where Ko  provides for a difference in tensile and compressive response as 

observed for Hastelloy-X. In equation (42), I is the identity tensor. While 

ao  provides for asymmetric tensile-compressive response, the term nierl in 

equation (41) serves as a reference direction for a as the directional index 

(41) 
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for dynamic recovery since the principal axes of E n  rotate during nonpropor-

tional loading. It should be noted that the response of type 304 stainless 

steel, reported in this paper, obviously requires an additional reference 

term, albeit a second order effect, for good correlation of all data; in this 

case, however, the ao  term is not required since the completely reversed 

response is symmetric. Since Walker [24] has determined his model constants 

for Hastelloy-X at 648°C, it is interesting to compare these constants with 

those of this study. According to Walker, the evolution equation for a may be 

written in the axial-torsional subspace as 

•  a = - 	: hw n 	
• 

E - d
w 
 (a - a0  )IE

n  I (43) 

at 648°C where etc, is reduced to the subspace from the six dimensional form 

given in equation (42). Since the magnitude of a o  is small compared to that 

of a, we may to first order compare hw  and dw  with h ip  and d o  of Case I of this 

study: 

hw  = 155,180 MPa 

dw  = 781 

It is clear that both values are of the same order of magnitude as those 

reported in Table 1 for 11 0  and do . Including ao  in equation (42) for specimen 

#21 with b = 0.6 results in a correlated Ko  value of 7.5 MPa in contrast to 

the value of -13.8 MPa reported by Walker [24]. Certainly a o  is of secondary 

importance in comparison to a in the dynamic recovery term. It is quite 
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possible that the difference in the K o  values arises from experimental scatter 

in the 90° out-of-phase tests, which is of the same order of magnitude as K o . 

Following the assertions stated above, the data of Table 1 would also 

indicate that the scalars h o  and do  are strong functions of the effective 

inelastic strain rate or, alternatively, the effective backstress or over-

stress. It is noted that various workers have made the direct hardening 

function to depend on such scalar functions as (s - a):a [25] or the effective 

inelastic strain [11,26], and the dynamic recovery function to depend on such 

invariants as the effective inelastic strain path length [11,24,26], and the 

effective inelastic strain rate [2-3]. Those theories incorporating effective 

inelastic strain path length have hardening functions [11] and dynamic recov-

ery functions [11,24,26] which saturate to a limiting value, independent of 

the backstress or inelastic strain rate magnitude. 

The fortuitous nature of the 90° out-of-phase tests discussed herein is 

that the effective deviatoric stress and effective inelastic strain rate are 

approximately constant throughout a cycle as demonstrated in Figures 7 - 8. 

In contrast, these quantities vary significantly throughout a cycle for a 

proportional history. For the 90° out-of-phase test, this characteristic 

leads to backstress histories such that the effective backstress and over-

stress are approximately constant throughout a cycle. Thus, a series of 90° 

out-of-phase tests with A7/Ae = 3/2 would provide a means for assessing the 

functional dependence of the hardening functions, 11 0  and do , in addition to 

investigation of a*. Future work will be directed towards identification of 

an appropriate constraint on a which produces a single acceptable path for 

each level of a 90° out-of-phase test series. 



Conclusions  

From cyclic, strain-controlled, nonproportional tests on type 304 stain-

less steel and Hastelloy-X, the following statements may be made: 

1. A dynamic recovery term is essential to properly model the backstress 

evolution. 

2. From analysis of Hastelloy-X data obtained at 649°C, the inelastic strain 

rate appears to be a satisfactory directional index for direct hardening, 

but the backstress appears to be an inappropriate directional index of 

dynamic recovery. 

3. Sinusoidal, 90° out-of-phase axial torsional tests can be very useful in 

aiding determination of backstress evolution functions, including both 

directional indices and scalar hardening functions, by virtue of the 

• 
associated approximately constant magnitudes of overstress, inelastic 

strain rate, and effective stress in addition to the relatively fixed 

degree of noncollinearity between the direct hardening and dynamic 

recovery directional indices. Such tests have previously been associated 

with the study of nonproportional hardening effects but have more far 

ranging applications. For example, the magnitude of direct hardening and 

dynamic recovery coefficients can be estimated from a single 90° out-of-

phase test. Furthermore, these estimates may be made without recourse to 

fitting a set of uniaxial tests and can be derived for a range of strain 

amplitudes typical of actual applications. Relevance of directional 

indices can also be assessed. 
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TABLE 1 -- RESULTS OF ANALYSES OF THE TWO 90' OUT-OF-PHASE HISTORIES 
HASTELLOY-X at 649°C; E = 156 GPa, G = 61 GPa 

Specimen # 20 WI av  = 6.20 x 10 -4  sec -1  

lulav = 354 MPa 

b = 0.5 	 b = 0.6 	 b = 0.75 	 b = 0.95 

h1 590250 695645 894621 1299100 
h3  596865 613755 674015 836185 
h0  512287 564304 674781 899441 
d1 1376 1724 2223 2897 
d3 128 415 820 1382 
d0  633 911 1304 1851 
hi/di 429 404 402 431 
h3/d3 4663 1478 822 605 
h 0 /d0  809 619 517 486 
h1/h3 0.99 1.13 1.32 1.49 
d1/d3 10.75 4.15 2.71 2.10 

IQ-al ai  177 141 88 17.7 

lalav 248 263 293 340 

Specimen # 21 
av = 2.32 x 10 -3  sec -1  

Iclav = 522 MPa 

b = 0.5 	 b = 0.6 b = 0.75 b = 0.95 

h1 235090 291513 404846 610520 
h3 251030 283847 348822 468800 
h0  229734 270395 . 351393 498893  
d1 472 604 807 1083 
d3 271 355 982 655 
d0 364 464 614 817 
hi/di 498 483 502 564 
h3/d3 926 800 724 717 
h0 /d0  631 583 572 rl. 
h1/h3 0.94 1.03 1.16 1.30 
d1/d3 1.74 1.70 1.67 1.65 

16-alav 261 209 131 26 
lalav 336 366 420 501 
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Fig. 1 	Controlled axial-torsional strain paths 	(left column) and resulting 
stable stress subspace responses for type 304 stainless steel at room 
temperature: (a) t = 0.003 sec -1 , (b) 30' out-of-phase sinusoidal 
with A7/Ae = 1.5, t = 0.001 sec -1 , and (c) 60' out-of-phase 
sinusoidal with A7/Ae = 1.5, t = 0.001 sec-1. 
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R = 160 MPa in all cases. Note the accuracy increase due to the 
dynamic recovery term in the right column. 
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Fig. 6 	Direction n (short vectors) and associated overstress vectors (a - a) 
for Specimen #21 with a obtained by Euler integration of (left) 
scalar direct hardening and dynamic recovery coefficients and (right) 
tensor valued coefficients. In each case, the initial value of a 
corresponded to b = 0.6. Note that the non-collinearity of n and ( -6:  
- a) in each case arises from error in the backstress evolution rule 
and/or experimental scatter. 
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ABSTRACT  

Considerable analysis and experimental verifications have been conducted 

to determine the loading and material conditions (e.g. wheel load, friction, 

contact configuration, metallurgy, wear, etc.) which lead to progressive 

deformation in rail. 	Yet the onset of corrugations in rail has not been 

suitably explained [1]. 	One very important contributing element to the 

explanation of corrugation is likely to be the development of a constitutive 

model which more realistically reflects material flow behavior under 

nonproportional loading conditions. 

This study concentrates on the prediction of cyclic plastic flow in 

rolling contact. Previous numerical solutions for subsurface deformation in 

rail have concentrated primarily on solution algorithms which incorporate 

realistic boundary conditions and satisfaction of equilibrium at each passage 

of the wheel. The material model, in contrast, has typically included a very 

simple, isotropic yield condition without work hardening and an associated 

flow rule. Much insight has been gained recently via multiaxial experiments 

into cyclic plasticity models appropriate for nonproportional loading typical 

of rolling contact. This research has revealed that even combined isotropic 

hardening and kinematic hardening models of the Prager or Ziegler type do not 

accurately predict cyclic plastic strains in combined tension and torsion 

applied noriproportionally. Therefore, inclusion of work hardening and 

deformation-induced anisotropy in a modified classical plasticity model is not 

enough to ensure accurate prediction of stress and strain at each point within 

a highly nonproportional rolling contact stress field. It follows that an 

elastic-perfectly plastic material model is potentially quite inaccurate for 

this case. 

In this paper, a two surface cyclic plasticity theory is discussed. The 

theory includes a Mroz-type kinematic hardening rule, an accurate 

representation of work hardening, and transient cyclic hardening or softening. 

The Mroz rule and two surface theory have previously been shown by McDowell 

and others to be accurate for nonproportional loading. 

As a demonstration of the potential for use of such a material model for 

elastic-plastic rolling contact, the model is implemented in a very simple, 

approximate numerical scheme for two dimensional plane strain line contact of 

a rigid cylinder with a semi-infinite half-space. A Hertzian contact stress 
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distribution, including tangential traction 	proportional to the normal 

pressure, is translated repeatedly across the half-space to represent the 

rolling contact of wheel on rail. Several peak Hertzian pressures were 

included in the study. 



CUMULATIVE PLASTIC DEFORMATION UNDER NONPROPORTIONAL LOADING 

A distinction is 	made 	in 	this 	work 	between proportional and 

nonproportional loading. proportional loading is defined as loading for which 

the deviatoric stresses and stress rates are radial. Nonradial variation of 

deviatoric stresses will be termed nonproportional loading. In analogy, for 

strain-controlled loading, proportionality of the controlled total strain 

components results in proportional straining. Hence, 

• 
s ij = I s S

ij 

• 
ij = IE ij  

where s ib 
	aii 	 ij41 kk 
= 	- (1/3)5- 	are the deviatoric stress components, E

ij 
are 

the total strain components, I
s and I 	are scalars, and s

ij ° and E
ij

°  are 

constant second order tensors. 

In uniaxial tests in which the applied stress range has a nonzero mean, 

cyclic racheting is observed in the direction of the mean stress [2-3]. The 

racheting may at first accelerate (cyclic softening conditions) or decelerate 

(cyclic hardening conditions). A cyclically stable state may be reached in 

which rachet strain accumulates equally per cycle or ceases due to hardening. 

There are numerous investigations of uniaxial cyclic strain racheting 

reported in the literature; unfortunately, this information is not entirely 

relevant to the more complex case of nonproportional multiaxial loading. The 

literature which does exist for multiaxial loading is primarily for tension-

torsion of thin-walled tubular and torsion-bending specimens. Though these 

experiments are more restrictive than the general rolling contact problem in 

terms of coverage of stress space regimes, they do have some important 

similarities. First, in a very general sense, the rolling contact stress 

field is essentially one of compressive normal stress with alternating shear 
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stress variation. Tension-torsion tests of thin-walled tubular specimens with 

a fixed tensile or compressive axial stress and reversed shear stress at least 

qualitatively capture the essence of rolling contact stress field variation. 

As pointed out by Moyar and Morrow [4], even though the contact stress is 

reduced due to plastic deformation, racheting occurs due to the 

nonproportional variation of stresses, cyclic softening, etc. Description of 

such phenomena requires an understanding of inherent cyclic-dependent material 

behavior in the absence of macroscopic stress or strain gradients. 

Experimental results [4-8] on thin-walled tubular specimens have shown that 

significant axial strain accumulation can be produced by alternating torsion 

in the presence of a constant axial stress (nonproportional loading). This 

accumulation can even occur at cyclic effective stress amplitudes which would 

produce no continued rachet strain if applied proportionally. 

Early tension-torsion experiments on aluminum and copper solid or thin-

walled tubular specimens were performed by Moyar and Sinclair [4-5], Feltner 

and Sinclair [6], and Coffin [7]. Benham [8] demonstrated cumulative axial 

elongation under steady tension, reversed torsion for tubular axial-torsional 

mild steel specimens in initially normalized and cold-worked conditions. In 

general, higher rates of axial creep were observed for higher alternating 

shear conditions. Benham also reported significant cyclic accumulation of 

axial strain in reversed bending tests with superposed steady axial tension. 

Final failure occurred by either gross plastic deformation or fatigue. 

Ronay and Freudenthal [9-10] investigated "second-order" effects of axial 

strain accumulation under pure torsional cycling for initially isotropic, 

strain hardening metals. Bell [11] later showed that these effects could be 

accounted for using finite strain considerations. Hence, the second-order 

effects reported by Ronay and others in torsional testing are not viewed as 

important to prediction of cumulative deformation under complex loading since 

they are not essentially due to inherent material behavior and can be 

accounted for by using an appropriate finite strain analysis. 

I) 

More recently, Harvey et al.[12-13] and Shiratori et al. [14] have 

investigated axial (torsional) cyclic strain accumulation under reversed 



t, 

torsional (axial) loading with superposed steady axial (shear) loads. The 

emphasis of their work is accurate modeling of deformation-induced anisotropy 

via deformation of the yield surface; racheting behavior is then accurately 

correlated for mild steel and 60/40 brass. Again, results were consistent 

with previous experiments. Both groups have shown that detailed modeling of 

the axial-torsional racheting behavior under nonproportional loading requires 

consideration of deformation-induced anistropy, which is entirely neglected by 

classical isotropic hardening theories and not suitably described by popular 

Prager/Ziegler type kinematic hardening rules for the yield surface. It 

should be noted that the work of Shiratori et al. on 60/40 brass also includes 

cyclic creep of a thin-walled tube under conditions of cyclic axial load 

superposed on steady internal pressure. 
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Review of Nonproportional Cyclic Plasticity Experiments  

There has been a progression of experimental interest in plastic flow 

under nonproportional loading. Most of the experimental work from 1950 to 

1975 dealt with characterization of initial anisotropy (e.g. [15-18]), changes 

in plastic strain rate direction due to abrupt changes in loading direction 

(e.g. [19-24]), effects of pre-strain on the yield locus and direction of the 

plastic strain rate (e.g. [16-18, 25]), and history dependence of the yield 

surface upon nonproportional load reversals (e.g. [26-29]). Virtually all of 

these experiments dealt in a very detailed manner with the initial loading 

response and just a few, if any, additional reversals of load. Hence, they 

established knowledge of the appropriate representation of initial anisotropy 

and limited deformation-induced anisotropy, and the superiority of the flow 

theory of plasticity for general nonproportional loading. 

It was not until the 1970's that experimental studies were conducted in 

earnest for nonproportional cyclic loading with the intent to characterize 

cyclic hysteresis response. The work of Lamba and Sidebottom [30-31] is the 

first known to the authors regarding transient and stable cyclic behavior 

under nonproportional loading conditions. They subjected annealed, thin-

walled tubular OFHC copper specimens to several nonproportional, strain-

controlled loading paths until cyclic stability was reached. Axial and 

torsional hysteresis loops were stored on magnetic tape. Lamba found that the 

material's memory of past plastic deformation history can be erased by a 

single large excursion into the plastic range. Conversely, influence of prior 

overloads dominates subsequent lower amplitude cycling. Another important 

observation was that additional isotropic cyclic hardening occurred upon 

switching to nonproportional cycling from cyclically stable axial cycling; for 

90 degrees out-of-phase sinusoidal loading (g = 90 degrees, 7a/e a  1.5) 

e = e a
sin wt 
	

(3) 

7 = 7asin (cut - ,5) 	 (4) 

Lamba observed a 40% increase in stress amplitudes after switching back to 

axial cycling. This significant effect had not been previously observed nor 

included in kinematic-isotropic plasticity theory. 
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Later experiments by Kanazawa et al. [32], Krempl et al. [33], and Ohashi 

et al. [34] confirm observations made by Lamba for stainless steels and for 1% 

Cr-Mo-V steel. McDowell [35-37] and Kanazawa et al. [32] have shown that the 

additional isotropic hardening can be correlated if an additional variable is 

introduced to account for changes in strain rate direction. All of these 

experiments demonstrated that the uniaxial cyclic stress-strain curve was not 

entirely capable of representing the actual state of hardening encountered for 

highly nonproportional histories. The experiments of Lamba, Ohashi, Krempl, 

and McDowell demonstrate that cyclic plastic flow is quite repeatable under 

nonproportional loading. In recent papers, McDowell has demonstrated that 

good description of nonproportional cyclic plasticity may be achieved, even 

during transient cyclic hardening or softening, if appropriate generalized 

hardening and flow rules are used; furthermore, the uniaxial cyclic stress-

strain curve may still be quite useful for characterizing plastic flow if 

supplemented by properties obtained from biaxial, nonproportional loading 

tests. 

McDowell [38-39] also has shown that the plastic strain rate direction 

for nonproportional cycling does not correspond to that predicted by classical 

theories or by combined kinematic-isotropic hardening theories using Prager or 

Ziegler kinematic hardening rules. The inaccuracy of these commonly used 

rules is quite dramatic for complex loading. Typically, the extent of cyclic 

hardening in uniaxial, torsional, or combined proportional loading tests can 

be related to the accumulation of plastic strain. The experiments of McDowell 

have shown that this is not the case for nonproportional variation of stresses 

and strains within a cycle. 

These experiments, though relatively few in number, have substantially 

increased our knowledge of elastic-plastic material behavior relevant to the 

nonproportional stress-strain state in rolling contact. To date, the authors 

are not aware of similar experimental work performed on rail steels. 



Appropriate Cyclic Plasticity Theory 

The cyclic plastic flow which occurs in rolling contact and other nonpro-

portional loading problems is indeed a very complex, history-dependent 

phenomenon. Models which seek to predict or correlate only one aspect of the 

response (e.g. completely reversed cyclic hysteresis response) may not be 

adequate for other important aspects (e.g. cyclic strain accumulation). 

Likewise, models which may accurately describe both reversed cyclic response 

and cyclic racheting for only uniaxial tests may be quite inadequate for 

correlating nonproportional response. Accordingly, any model to realistically 

be considered for cyclic plastic flow in rolling contact must demonstrate the 

capability to model nonproportional loading suitably. In this work, we 

restrict our consideration to time- and rate-independent material response 

characteristic of rail steels. 

The phenomenon of strain racheting may involve very small cyclic plastic 

strain accumulation during each nonproportional loading cycle. Experiments 

[26-29] clearly show that the actual yield locus or surface in stress space 

distorts significantly even under proportional stressing; hence, any change in 

loading direction may actually result in yielding prior to that predicted by 

simple isotropic, kinematic or combined plasticity models which employ 

classical von Mises or Tresca yield surfaces, e.g. 

(von Mises) 

(Tresca) 

f = (3/2) (s ib  - aid ) (s ib - a id ) - R2  = 0 

f = maxl(a. - a i  ) - 	- a.)I - R = 0  J 

where s ib and aid are deviatoric stress and backstress, shown in Figure 1, and 

a. and iz i  are principal values of stress and backstress. Note that aid is the 

center of yield surface which represents kinematic hardening. R is the yield 

strength in uniaxial loading. Kinematic hardening is represented by changes 

in a id . Isotropic hardening (cyclic hardening or softening) is represented by 

evolution of R, e.g. 

A = g(e)e 1) 	 (7) 



E = 
E P 	f2 • P. 91/2 

E ij  e ij 	 (8 ) 

and g is some unspecified function. 

The concept of the yield surface requires that there is no increment of 

plastic strain if the stress point lies within the yield surface, i.e. 

de
ij 

= 0 if f<0 
	

(9) 

If the stress point reaches the yield surface, then plastic flow can 

occur by a normality flow rule [40] if the stress rate has no inward component 

to the yield surface, i.e. 

I (dc n ln ij  if f=0 and da. n 	0 

i 
d, 	P 	h 	- kl kl' 	 K1 kl 
'j 

0 otherwise. 

(10) 

where n.ij 
 is the unit normal vector to the yield surface, a ki  are true stress 

components, and h is the plastic hardening modulus, analogous to the slope of 

the stress versus plastic strain curve in a uniaxial test. During plastic 

flow, the yield surface must deform, translate, and expand or contract such 

that the stress point a. remains on the yield surface (consistency condition 

f = df = 0 if de. Pde ij 
0). 	It can readily be seen in Figure 2 that 

ij  
reyielding will occur at different points (C', C", C"') with different 

exterior unit normal vector orientations (n', n", n"'). Both combined 

kinematic-isotropic and pure isotropic hardening models overpredict the domain 

of elastic behavior and give somewhat inaccurate specification of the 

direction of the plastic strain rate. 	These considerations are particularly 

important for cyclic plasticity 	(and strain racheting behavior) under 

nonproportional loading when the reversed plasticity (or cyclic strain 

accumulation rate) is small. Such loading is fairly typical of rolling 

contact under moderate to heavy hauling conditions where there are relatively 

few setup cycles with significant reversed plasticity followed by near 

"shakedown" to progressive plastic deformation of quite small cycle-by-cycle 

magnitude. Of course, if the radius of the intermediate von Mises yield 
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surface is defined by a smaller offset yield point, it will more accurately 

represent initial reyielding and flow direction. The intermediate yield 

surface shown in Figure 2 would be typical of a 0.1% or 0.2% offset definition 

of yield. 

It should be noted that if only proportional loading is of concern, then 

consideration of yield surface deformation is not necessary. If reyielding 

occurs at point D or D' in Figure 2, the direction of n ib at either point is 

identical and accurate description of plastic flow may be achieved by either 

kinematic-isotropic or fully anisotropic formulations of f with a suitable 

function for h in equation (10). For proportional loading, the definition of 

yield is not even crucial since the modulus function h is very high at either 

of points D or D'. However, at points C', C", or C"', definition of h is 

crucial since the values of h will be significantly lower in this region 

(higher plastic strain rate) and highly directionally dependent. This is 

certainly an important consideration in modeling racheting behavior in rolling 

contact; these deformation-induced anisotropic effects can result in cumula-

tive plastic strains even when shakedown to cyclic elastic or completely 

reversed plastic strains is predicted using conventional isotropic or linear 

kinematic hardening rules. 

Shiratori et al. [14] and Harvey et al. [12-13] have recognized the 

necessity of including anisotropic yield surface deformation to accurately 

model complex cyclic racheting tests. Shiratori and co-workers use the 

concept of a set of "equiplastic strain" surfaces to correlate racheting 

response for cyclic axial load (or torsion) superposed upon steady torsion (or 

tension), and for cyclic axial load superposed upon steady internal pressure 

for mild steel. In addition to predicting axial rachet response, they were 

able to predict axial shortening effects at the initiation of each reversal 

due to deformation-induced anisotropy. 

It should be noted that these approaches are the only ones in the 

literature known to the authors which specifically address anisotropic 

deformation of yield surfaces during cyclically nonproportional plastic flow, 

and seek to describe the problem of cumulative deformation under these 

conditions. Though the goal of both efforts at modeling nonproportional 



racheting response has been achieved to some extent, neither is of a form 

general enough for arbitrary nonproportional cyclic loading since they require 

a definition of a preloading event which sets up some initial configuration of 

loading surface(s) for subsequent cycling. 

From this work on anisotropic yield surfaces, it is seen that a series of 

loading surfaces, each corresponding to a different offset yield definition, 

can be defined at each point in a nonproportional loading history with respect 

to the point of initial preloading. Subsequent unloading and reversed loading 

from this point results in deformation of this configuration of loading 

surfaces. However the loading surfaces most affected by subsequent plastic 

straining are those defined by small yield offsets. In other words, the inner 

yield surface may deform and translate dramatically, while the outer surfaces 

deform and translate very little. Hence, the intermediate surfaces provide 

"memory" of maximal preloading events which strongly affect subsequent cyclic 

plastic flow for events of lesser magnitude. 

This multiple surface concept for material memory was suggested by Mroz 

[40-41] and Iwan [42] for use in plasticity calculations. It is variously 

known as a layered, nested, or multiple surface approach. The model has more 

recently been associated primarily with Mroz, who has introduced appropriate 

rules for nonproportional cyclic loading. Deformation-induced anisotropy is 

accounted for, to first order, by allowing otherwise simple von Mises or 

Tresca loading surfaces to simultaneously translate (kinematic hardening) and 

expand or contract (isotropic hardening). During plastic flow, the stress 

point always remains on the innermost surface, the yield surface. The 

surfaces may be written as 

	

f(k) = f (k) (,.. ..„ 	(k) 	(k) 

	

'"ii -a 
	(k) 

' 

k = 0, 1, 2, ..., N 

= 0 	 (11) 

where f
(0) 

 is the yield surface and (N + 1) is the total number of surfaces. 

Again by normality, 



uE ij = dX
Oaij 

= T  (damn )n
ij 

P 	of (0) 
	1 	

(12) 

where n ij = 3f (()) /0a ij /((af (()) /0amn
)(0f (°) /3a

mn
)) 1/2 

 . 	The configuration of 

loading surfaces is shown in Figure 3. The kinematic hardening rule proposed 

by Mroz which applies to all (N + 1) surfaces is 

daij
(k) 

 = d#(aij
(k + 1) -. 

alj () ) 
	

(1 3) 

for all k = 0, 1 	m surfaces which have been "touched" by the stress point 

and are currently in tangential contact, and 

da
ij

(k)  = 0 
	

(14) 

for k = m + 1, 	N surfaces not yet reached by the stress point. The point 

a
ij

(k+1) 
is defined as the similar point or point on the (k + 1) th surface 

with the same exterior normal as-that of the k th 
surface at the current stress 

point. This results in tangential contact of the yield and loading surfaces 

at similar points. Also, isotropic hardening is expressed by 

dR (k)  = C (k) (X)dX 	 (15) 

where dA = (dE
ij

PdE
ij

P
)
1/2 

and the C (k)
(X) are hardening functions. The 

modulus function h in equation (12) is taken as a constant between each set of 

two surfaces (piecewise linear stress strain curve representation shown in 

Figure 3), i.e. 

h = h (m ) 
	

(16) 

The function h is typically determined from the slope of a uniaxial cyclic 

stress-strain curve. 

The multiple surface theory of Mroz has proven to be much more accurate 

in correlation of multiaxial nonproportional cyclic stress-strain response 

than conventional kinematic-isotropic theories (e.g. Prager or Ziegler 
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kinematic hardening), as shown by Lamba, McDowell, and others [30-31, 38-39, 

43-44]. It uses relatively simple forms for the yield and loading surfaces, 

yet offers a good quantitative description of hysteresis response, as shown in 

Figure 4 for OFHC copper. 

The Mroz approach 	offers 	a 	simplified 	but reasonably accurate 

representation of cyclic deformation-induced anisotropy. McDowell [38-39] 

showed that the plastic strain rate direction and modulus function are more 

accurately described by a Mroz-type model than by Ziegler kinematic hardening 

combined with a modulus function dependent on effective stress level, for 

example. Furthermore, it was shown that use of a uniaxial cyclic strain-curve 

to define "universal" material response can be quite fallacious. Additional 

isotropic hardening of the order of 20% to 100% is typically observed for 

steels and other metals, resulting in lack of validity of equation (16). 

Likewise, the use of accumulated plastic strain in equation (15) is not 

appropriate as the only independent variable since dR (k) 
is affected also by 

the direction of that accumulation (c.f. [38, 45]), i.e. 

(k) 	(k) C 	= C 	(X, 0) (1 7) 

where 0 reflects changes in direction of plastic straining within a cycle. 

Based on these observations and the high frequency of occurrence of 

nonproportional loading in practical applications, it is advisable to use 

Mroz-type multiple surface constitutive models. Recently, several simple 

theories have been offered as solutions to the multiaxial cyclic plasticity 

problem [3, 46], but there is no evidence of consideration of experimental 

evidence for nonproportional loading in these models. Hence, even "first-

order" characteristics such as plastic strain rate direction and modulus 

variation are not accurately portrayed. 

Hence, experience has shown that a multiple surface approach using simple 

loading surface forms or an anisotropic yield surface formulation is needed to 

represent nonproportional deformation-induced anisotropy. The problem becomes 

even more crucial when cumulative plastic deformation (a "second-order 

effect") is to be predicted, as in the rolling contact problem. Then, it may 
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be necessary to combine the two approaches using a Mroz-type kinematic 

hardening rule with anisotropically deforming yield surfaces, as proposed by 

Rees [47]. The multiple surface model of Jhansale et al. [48] has attempted 

to include different yield strengths in tension and compression (non-Masing 

behavior), but was derived with uniaxial response in mind and is somewhat ad 

hoc with respect to general nonproportional loading. Use of a simple 

invariant yield surface form such as von Mises could result in a relatively 

inaccurate prediction of plastic strain rate direction, and hence rachet 

strain accumulation, even though the cyclic stress-strain response is 

sufficiently modeled. 



Reduction to Two Surface Model  

As discussed in the previous section, a multiple surface theory can 

provide a reasonably accurate estimate of plastic strain rate directidn and, 

through h, magnitude for nonproportional loading. 	A much more efficient 

scheme is to reduce the theory to two surfaces. 	The inner surface is the 

yield surface. The outer surface, often called the limit or bounding surface, 

serves to bound the response. All intermediate loading surfaces are replaced 

by analytical forms of modulus function h and plastic strain rate direction 

which depend on assumed couplings between the yield and limit surfaces and 

additional parameters. Kreig [49] and Dafalias and Popov [50] independently 

suggested two surface theory. Lamba [30-31] demonstrated its potential for 

correlation of nonproportional cyclic hysteresis response. Tseng and Lee [51] 

have also demonstrated correlation for the same data and for uniaxial cyclic 

creep and mean stress relaxation. 

In a somewhat general form, two surface theory can be expressed as (see 

Figure 5): 

yield surface: 	f(a.lj 	lj 
- a id , R) = 0 	 (18) 

* 	* 	* 	* 
limit surface: 	f (oil  - aid  , R) = 0 	 (19) 

(da. i n,,)n.. if f=0 and da ki n ki 0 flow rule: de. 	= 	 K KI lj 	 (20) 

0 otherwise 

kinematic hardening rules: 

yield surface: 	daij  = dgaij  - Co)ij 	 (21) 

limit surface: 	daij
* 
 = dµ*  vii 	 (22) 

isotropic hardening rules: 

yield surface: dR = e(X, 0, q)(de u Pde 1j P ) 1/2 
	

( 2 3 ) 
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limit surface: dR *  = C* (X, 0, q)(de ij
P 
 dEij )

Pa/2 
	

(24) 

modulus function: h = h(.5, d in , h.) 
	

(2 5) 

where a = ((aij
* 

- a ij 	ij* )(a 	- a ij ))
1/2 

	

. 	din is the initial value of a upon 
loading into the plastic regime, and h. = h (asymptotic value) when 5 = 0. 

* 
au  is a generic stress point on the limit surface defined as the similar 

point as the current stress point on the yield surface. If a Mroz-type rule 
* 	* 	* 

is used, then aij = aij + (R /R)(aij 	ij - a) '  and C = 1. 

McDowell [52-53] has introduced the variables 0 and q in the isotropic 

hardening formulation to reflect additional isotropic hardening during 

nonproportional loading and plastic strain range effects, respectively. He 

has used simple von Mises surfaces in equations (18)-(19), a modulus function 

fit to a uniaxial cyclic stress-strain curve, a Mroz-type rule for.. claw  a  

Prager rule (da
ij 

= hcoj  dE. p) for dau  , and results of sinusoidal, strain- 

controlled axial-torsional tests to determine the hardening functions C and C 

in equations (23) and (24) for type 304 stainless steel. Good agreement has 

been obtained with nonproportional cyclic loading experiments as seen in Ref. 

[53]. 

Dafalias [54] has proposed a general form for the modulus function 

h = h41 + g(d in) [AA] 	 (26) 
'in 

based on behavior of mild steel, where g(d in ) is introduced to accurately 

account for unloading-reloading behavior in the plastic range, one aspect of 

multiple surface models which is not automatically retained upon the reduction 

to two surfaces. 

None of the previous work on two surface theories has specifically 

addressed the issue of cyclic strain racheting under nonproportional loading. 

Though they predict such phenomena, these models do not necessarily model 

rachet rates precisely since the use of simple loading surfaces precludes 

anisotropic yield surface deformation. Two surface models do give 
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experimentally consistent results, however, in terms of direction of rachet 

strain, stabilization to steady state racheting, cessation of racheting, and 

transient effects of cyclic hardening or softening. To more precisely model 

rachet rates under nonproportional loading, it may be necessary to modify the 

modulus function slightly based on further experimental results or to employ 

anisotropic yield and loading surfaces. 



Perspectives on Some Previous Solutions for Cumulative 

Deformation in Rolling Contact  

The work of K.L. Johnson and associates [60-62] has laid a solid 

foundation for understanding progressive deformation and shakedown in rolling 

contact. The Merwin-Johnson shakedown analyses with and without tangential 

tractive forces [60-61] have defined regions of shakedown and continued 

elastic-plastic deformation as a nondimensionalized function of Hertzian 

normal pressure divided by shear yield strength. Later finite element 

analyses [63-64] have somewhat refined the solution via better approximation 

of equilibrium and constraint conditions. These analyses have been concerned 

with the first few cycles of cumulative plastic deformation to determine 

whether or not shakedown would occur. 

Several significant features relevant to cumulative deformation have been 

neglected in these analyses. Realistic strain hardening behavior has not been 

included. An elastic-perfectly plastic material model is quite crude; the 

extent and nature of plastic deformation for such models is entirely dependent 

on the constraint of surrounding material without regard for inherent material 

response. In reality, the phenomenon of racheting is very much a result of 

both constraint and material response. As seen in this paper, however, merely 

specifying some ad hoc form for strain-hardening in typical constitutive 

equations used in finite element analyses would be unsatisfactory for 

predicting racheting response accurately under nonproportional loading typical 

of rolling contact. 	It is the structure of the constitutive equations which 

is critical in modeling the racheting response. 	Nonproportional tests are 

necessary to determine this structure. 

The work of Megahed [65], 	primarily concerned with racheting in 

structures subjected to thermal constraint, considered several hardening 

rules: perfectly plastic, linear kinematic hardening, and linear isotropic 

hardening. Even for the constrained unidirectional loading conditions of his 

study, large differences were seen between the regions of shakedown, reversed 

plasticity, and progressive plastic deformation predicted by the various 

rules. While the prediction of shakedown limit was similar using either 

linear kinematic hardening or perfect plasticity, the rachet rates were shown 
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to be highly dependent on the strain hardening in the material model. 

Transient cyclic isotropic hardening or softening behavior results in large 

differences between perfectly plastic and linear kinematic hardening. It 

should be noted at this point that none of the three material models 

considered by Megahed would be suitable for nonproportional cyclic loading, 

and his loading program (two-bar structure) was based on uniaxial response. 

It would be expected that the differences among material models would be 

considerably greater for constrained nonproportional plasticity in terms of 

shakedown, reversed plasticity and racheting rates. 

Accurate constitutive equations for nonproportional cyclic plasticity are 

a necessary tool for 	understanding the cumulative plastic deformation 

component of rail racheting and corrugation. 	Other factors such as the 

dynamics of rail-wheel interaction [66-68] and wear [69] are also potentially 

important components of this problem which are coupled with cumulative plastic 

deformation. In the next section, a simple demonstration will be offered to 

examine the potential of a two surface Mroz-type theory for cyclic deformation. 

in rolling contact. 



DEMONSTRATION OF APPLICABILITY OF TWO  

SURFACE THEORY TO RAIL/WHEEL CONTACT 

As an illustration of the capability of two surface theory for modeling 

cumulative deformation under nonproportional loading, the rolling contact of a 

cylinder on a semi-infinite half-space is considered. Both cylinder and half-

space have the same elastic properties. It is assumed for the sake of 

simplicity that the normal pressure distribution in the contact region is two-

dimensional Hertzian, and that tangential tractions in this region are 

proportional to the normal pressure, i.e. 

p = 	(7:/a) 2 	 (27) 

q = q0 1 - (x/a) 2 
	

(28) 

where (10  = 00 , and # is the coefficient of friction. The coordinate system 

is shown in Figure 6, 	along 	with the normal and tractive pressure 

distributions. It should be noted that the assumption that tangential 

tractions proportional to normal pressure occur over the entire contact area 

is not generally correct, since regions of stick and slip are shown to occur 

[62, 66, 70]. However, for purposes of demonstration, it is adequate to 

consider the effect of tractive forces without regard for interfacial stick-

slip conditions. 

From Smith and Liu [71] and Poritsky [72], the linear elastic solution for 

stresses in the half-space are: 

	

Q * 	52 4a2  + 2x2  + 2z2  * 27 

	

xx 	r 	a 	 - 	- 3xp 

- go/7  f(2x2  - 2a2 	
3z2)15* 1. 27 	2(a2 - x2  - z2 )  i 0*  (29) 
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zz 	x
z[aO* - xr] _ 	z2p*

7 
	 (3 0) 

- Po 	go I[ 
T* 	= 	z

2  p* - 	a2  + 2x2  +2z 2  ZO* - 27 	- 3x15* 	 (31) 
xz 	 a 	a 

where 

0* - A 	(1 + 117T)  

	

fg7T  Lam  [A + BA- 4a2] 	 ( 32 ) 

- A 

  

   

(33) 
.1 21-em + 	+ AB - 4a2] 

A = (a + 	z2 	 (34) 

	

B =. (a - x ) 2  + z2 	 (35) 

and a = half contact width. 

The normal stress a
YY 
 is given by 

a
YY 

= v(aXX + a ) zz 
	 (3 6) 

* 	* 
and the shear stresses °yx  = azy  = 0. 	Here, plane strain conditions are 

assumed. The Hertzian pressure p c)  is related to the contact force F per unit 

width in the y direction by 

Po - [Nra 
	 (37) 

For the sake of illustration, it will be assumed that a given material 

point at a selected depth is subjected to a Hertzian distribution with 

tractive forces moving at velocity V as shown in Figure 6. Furthermore, as a 

first order approximation, the elastic stress field will be assumed to apply 

for stresses a 	and r
xz 
 during each passage of the contact patch. 	A finite 

zz  

-22- 



element analysis or other approximate technique would be necessary for the 

rigorous elastic-plastic solution of this problem. The recent finite element 

analysis of Bhargava et al. [63] resulted in very similar conclusions as the 

Merwin-Johnson [60] and Johnson-Jefferis [61] approximate analyses. 

Using an elastic-perfectly plastic constitutive model and a modified 

Hertzian pressure distribution to account for plasticity, Bhargava et al. 

showed that a 	and r
xz 
 during plastic flow do not differ much from the 

zz  
elastic solution at a depth of 0.755a. 	The primary stress redistributions 

(residual stresses) occur for a
XX 

and a
YY  . 
	This supports the assumptions of 

Merwin and Johnson [60] in their classical analysis. The use of the elastic 

solutions for a
XX 

and a
YY' 

 therefore, could be anticipated to result in 

somewhat unrealistic cyclic stress conditions for racheting compared to the 

rigorous elastic-plastic case. 	Furthermore, the x direction strain is 

constrained in the actual elastic-plastic problem. 	Hence, a more realistic 

set of constraints are provided by the assumptions: 

E
XX 

= 0 	 (38) 

;
YY 

= 0 	 (39) 

* 
azz  = azz  (x, z, t) 	 (40) 

* 
rxz  = rxz  (x, z, t) 	 (41) 

where the 	superscript refers to the elastic Hertzian solution, and eXX and 
e
YY 

are total strain rates, i.e. 

• 	• e 	• p 
e l. J. = 6 1. J. 	+ 6 1. 3. 

(42) 

Equations (38) and (39) represent constraints on longitudinal deformation 

and lateral deformation (plane strain), respectively. As discussed by K.L. 

Johnson, residual stresses a zz  and rxz  are zero after the load passage. 

Stress components a
XX

(x, z, t) and a
YY 
 (x, z, t) are computed by simultaneously 

solving equations (38) and (39), i.e. 
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i 1/h(; ki n kl )n ij  if f = 0 and 
sklnkl>  0 

0 otherwise 

(45) 

v6zz

• 

(nyy 	nxx) 	6yy

• 

lvnyy 	nxx)  71xx - (vnxx 	nyy) 

2 	)11(nyy-nxx) v 	
n
xx

n
zzl 	

26
xz

• n

xz
n
xx 

71zz 	 J(vnxx+n yv) 	 h  
6 
YY 	nvY  nxx 	4 

h 

	

nx 	(vnyy+ nxx)] 

 ("xx+ nyy) 

Here, v and E are the usual isotropic elastic constants. 

Since the stress history is enforced, only the plastic strain rates need 

be computed. The plastic strain rates are given by 

(43)  

(44)  

where tki is the deviatoric stress rate tij = sij- 1/3 5ij5kk, and nij is the 

unit normal vector to the yield surface. The plastic modulus function is 

defined as h. Yield surface f is defined as a von Mises form 

f = (3/2)(su 	ak1)(skl 	akl) - R2  = 0 	 (46) 

and nij is defined by 

(s ij  - ail ) 

((skl - akl)(skl - aki))1/2 

where aij are the components of the yield surface center which evolve 

according to a Mroz rule. 

•
(s

kl 
- a kl ); kl - (2/3)RA 

a ij = 	 (sij - sij) 

nij (47) 

(spm - 6pm )(Spm - spm) 
(48)  



Here, s
ij 

is a point on a limit surface f defined by 

-c* 	ll .') le 	* 	
* 	* 	le) 	

loo le ) 2 	n 	 (49) ' 	= kj-Iv'ki 	— a kl )(s kl 	- akl ' - k" 1 	= v  * 	 * 
where a

kl 
are the backstress components of the limit surface. The point s. 

in equation (48), shown in Figure 5, is defined as the point on f with the 

sameoutwardnormalvectorasn..
iji 

 i.e. 

aid  + (R /R) (s ib - a id ) 
	

(5 0) 

It is the modulus function h which accounts for much of the racheting 

•ii* description when a 	- O. 	The evolution of a id *  permits eventual cessation 

of racheting response. Hence, 

a. 	
• „, • * 

ij 	x(EkrE kl p)1/2n ij 

	

= 	 (51) 

where x is a coefficient which governs the rate of translation of a ij
* 

and the 

associated retardation of racheting rate. 

* 
Ordinarily, isotropic hardening rules can be specified for both R and R : 

R  = T (17(95 ►  q ) 	R)( 10 13 1(1 13)1/2  

_* 	 * • 1)0 p 1/2 R = #(R (0, q) - R 	E 	) 
• s - k1 - kl • 

where 0 and q are variables which relate to additional isotropic hardening 
under nonproportional loading and plastic strain range, respectively [52-53]. 

Here, I; is a rate constant. 

In this illustrative demonstration, isotropic hardening will be neglected 

since the equations are fully capable of displaying complex cyclic racheting 
* • 

response with pure nonlinear kinematic hardening. 	Hence, 	= R = 0 and the 

initial values of R and R are taken from the uniaxial cyclic stress-strain 

curve. Furthermore, x is assumed to be zero so that steady state racheting 

response (constant racheting rate) is described. 

(52)  

(53) 
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The modulus function 

h = h ("max' hco ) 

	
(5 4) 

is also determined from the uniaxial cyclic stress-strain curve. Here, 5 = 
((s..ij *  - s

ij ij
)(s * - s

ij 
 )) 1/2

' max 
 5 is the maximum value of 5 in the history, 

and h. is the asymptotic plastic modulus (i.e. in linear hardening region). 



Material Constants and Parameters 

The rail steel selected for this demonstration is carbon steel, with 

uniaxial cyclic stress-strain properties reported by Park and Fletcher [74]. 

Cyclic strength coefficient and strain hardening exponent are reported as 281 

ksi and 0.226, respectively. Other investigators report similar values for 

carbon rail steel [75]. 

The limit surface radius was selected to bound any anticipated stress 

response. Both R and R were fixed at cyclically stable uniaxial values R = 
* 

35 ksi and R = 140 ksi since no data from cyclically nonproportional tests 

were available for rail steels. 	Note that a deviation from linearity 

definition of yield is used instead of an offset; this permits accurate 

description of the cyclic response even for very small plastic strains, which 

is necessary in cumulative deformation problems. 

The modulus function was fit by a form used by Dafalias et al. [54]: 

1.6 

(55) 

where units of h are in ksi. A plot of h versus 6 for carbon steel appears in 

Figure 7. 

Definition of Contact Parameters 

The contact area and Hertzian contact pressure p c, in equation (37) were 

determined from linear elasticity theory. To adequately represent the loading 

intensity, the average pressure in a three-dimensional elliptical contact 

patch representative of typical rail-wheel contact was equated to the average 

pressure in the two-dimensional Hertzian distribution for a cylinder rolling 

on a half-space. 

From Hamrock and Brewe [73], for two convex, quadratic surfaces in 

contact, the major and minor radii of the contact ellipse are given by (see 

Figure 8): 

h = 1400 + 1200 r 5/5max 1 
ll - 5/.5maxJ 
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1/3 _ rican 
a* - (KrEJ 

2 1/3 
b*  11501U 

rE' J 

where 

2  

	

E, = 1_1 
1  2 
	1_1 

2 
 21 

[ + E1 	' 	
E2 

E 1 , E2 , vi , 1/2  = elastic properties of two bodies in contact, 

P = total normal load, 

Tii .,t_ i. f . f 1 + 1 1+f _i + 1 1 , 
Kx 	y 	rax 	rbx) 	fray 	rbYJ 

rax , ray , rdx , rdy  = principal radii of curvature of two solids in 

contact. 

	

b* 	2Z - c(1 + r) 1/2 
K = ellipticity parameter = * = 	 (-AL; -4-  

	

a 	 1) 5(1 - r) 	 r = R 

and Z and c are elliptic integrals of the first and second kind, i.e. 

7/2 
-1/2 do  Z = f 	[1 - (1 - 1-21sin 2 0] 

0 

7/2 

S = 	[i - ri - 1=isin2dindo  
e) 0 

The peak Hertzian pressure for this elliptical contact is given by 

3 
Po  I 	-  3-D 	2 era "b 

with the average contact pressure given by 

(58) 

(56)  

(57)  
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a = 
-  

[ 1  
„ 2 	i 
vl or 	 '■

2 
-2—F- i[l 
" 	R

1 

1 	) 
j— 
R
2 

E
l 

V 2 2 11 
E
2 

(61) 

r
ax 

= 19.8" 

ray  = 

rbx 
= 

r
by 

= 11.8" 

K = 0.71 

S = 1.3526 

Z = 1.8508 

3 
E
1 

= E
2 

= 30 x 10 ksi 

P 	2 n  
151 3-D = "iT4- 57  - 3 Po' 3-D 

In the two-dimensional problem 	considered 	here (line contact of 

cylinders), the average pressure is given by 

-5 L 
r 	2a (60) 

where F = normal load per unit width, and a is half the contact width. The 

value of a is expressed as 

(59) 

where R
1 
and R

2 
represent the radii of curvature of the two cylinders in line 

contact [71]. Assuming P = T1 3 _ 13 , 

2a - 7a*b* . 	 (62)  

Since a is known as a function of F from equation (61) and P, a , and b are 

assumed known from the three-dimensional problem we may solve for F from 

equation (62). Then we can solve for p o  in equation (37), and we have a 

rational estimate for maximum Hertzian pressure in the illustrative model. 

For typical wheel on rail [73] as shown in Figure 8, the parameters are 

F 	P 

1 =
2 

= 0 . 3 
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For the cylinder rolling 	on 	the 	half 	space, 	R1  

Hence, 

a
* 

= 0.093P
1/3 

b
* 

= 0.066P
1/3 

F = 1.229 x 10
-3 

P
2
ga

*
) 

p c, = 16.28 TT 

a = 0.0391 TT 

= 	19.8" 	and 	R2  = co. 

(63)  

(64)  

(65)  

(66)  

( 6 7) 

where P is in kips and a is in inches. 	Thus, given a contact load P, we may 

compute p c)  and a values that relate to the "equivalent" two-dimensional line 

contact problem with the same average contact pressure as that of a realistic 

railroad wheel-rail contact. 

Details of Computer Analysis 

A FORTRAN computer program was written to calculate the accumulation of 

plastic strain with each passage of the contact region. Since the racheting 

is steady state for the most part after the first few cycles in the analysis, 

20 cycles were imposed for each loading condition. A cycle is defined as the 

movement of the center of the contact region from -30a to +30a with respect to 

material point in question. The material point is specified by z as shown in 

Figure 6. At each increment of the contact region, the stresses in equations 

(29) - (36) were imposed. The constitutive equations were integrated using a 

Runge Kutta technique with Gill Coefficients [59], which maintains a small 

error per time step. Time was taken as the independent variable, even though 

the constitutive equations are time- and rate-independent. 
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RESULTS AND DISCUSSION  

Recognizing that equilibrium is not 	met by the preceding simple 

assumptions, comparison with elastic-plastic 	finite element results is 

intended to be of only a qualitative nature. 	Some very revealing aspects 

regarding the rate of inherent material response can, however, be drawn from 

this comparison. 

In Figure 9, results are presented for the accumulation of subsurface 

plastic shear strain, 
7xzP' 

 and residual stress, axx , for only applied normal 

tractions (#=0). Note that results at the end of the 15th and 20th cycles 

(load passages) are reported. In the plots, k = 20.2 ksi and G = 11,500 ksi. 

This value of k corresponds to 

where R is the uniaxial yield strength. Peak Hertzian pressures were 

evaluated, ranging from 2N/T-  po/k 	5)/T. This corresponds to wheel loads 

in the range 1.2 5. P 18.7 kips. Note that the shear strains are plotted as 

negative to conform in sign to the coordinate system employed by Bhargava et 

al [63]. 

It is interesting to note that the phenomenon of forward shear is 

predicted for the higher p o/k values. Finite element results obtained by 

Bhargava et al [63] are also reported in Figure 9. Though the residual stress 

and strain distributions are of similar character, there are several 

differences. First, the cyclic shear strain accumulation in the current model 

is an order of magnitude smaller. 	Experimental results are of the same order 

of magnitude. 	Secondly, the magnitude of the positive subsurface shear 

strains are a significantly higher fraction of the maximum negative shear 

strains than in the finite element results. The smaller rachet strains are 

probably attributable to the material workhardening in the current model. The 

second observation is possibly due to lack of equilibrium in the model and/or 



the rather stringent assumption of instantaneous zero x-direction total strain 

rate. Note that the magnitude and sense of the residual stresses are 

comparable in each case. 

An important result of the current analysis is the relative magnitude of 

peak Hertzian pressure for which racheting ceases, i.e. shakedown. From 

Figure 9 it is apparent that shakedown is evident for po/k = 21/5. A 

"shakedown limit" is reached somewhere between p o/k = 2 1/-5- and 2.5\/-57 It 

must be emphasized that the definition of k based on deviation from linearity 

produces a conservative shakedown limit. 	Larger values of k based on work 

hardening would lead to even smaller values of shakedown limit. 	It is 

recalled that both the Merwin-Johnson [60] and Bhargava et al [63] analyses 
AO 

found a shakedown limit of po/k = 3.5 - 4.0, which is corroborated by the 
AO 

value of po/k = 3.5 found in this study. 	It should also be noted that the 

shape of the shear stress-strain hysteresis loops predicted by the model were 

very similar to that computed by finite element analysis. 

Since the stresses and strains are reasonably well predicted by this 

model for the case of zero tangential tractions, it is interesting to 

introduce effects of driving and braking tangential tractions. A tangential 

traction representative of braking was first introduced by assuming # = 0.3 

such that qo  = 0.3 po . Plots of 15th and 20th cycle residual stress and shear 

strain are shown in Figure 10 for Po/k values of 2.5 and 3.51/T Note the 

significantly enhanced backward shear compared to the same cases with zero 

tangential traction. In contrast, application of a driving tangential 

traction with qo  = - 0.3 po  results in significant forward shear as shown in 

Figure 11. 

Hence it is clear that driving and braking conditions introduce quite 

different subsurface plastic flow. Also, any variation of lubrication 

conditions along the rail can result in a longitudinal gradient of subsurface 

shear strain, normal strain and residual stress. 

Based on these results, it appears that the role of inherent material 

work hardening response is an important one with respect to accurate 

prediction of rachet strain per cycle. The qualitative model herein, based on 

AO 
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an accurate cyclic plasticity model and representative kinematic constraints, 

captures the essence of the subsurface response. It is interesting to note 

that integration of this simple model required only 1 - 2 CPU seconds  per 

complete cycle for each depth on a Cyber 990. This contrasts to the 7 - 24 

CPU hours required by the Bhargava finite element solution on a VAX 11-780. 

There are, of course, a few reservations about the preceding analysis. 

First, equilibrium is neglected. 	Secondly elastic Hertzian stresses are 

assumed for a 	and 	this assumption should not lead to significant error 
zz  

in the shakedown regime. Thirdly, the constraint that the total strain rate 

in the x direction is zero is somewhat stringent. Finally, cyclic hardening 

or softening have not been accounted for; one of the advantages of the two 

surface cyclic plasticity theory is the ease with which these effects can be 

introduced [52-53]. 

CONCLUSIONS 

A sophisticated, two-surface 	cyclic 	plasticity 	theory, known to 

accurately correlate nonproportional cyclic plasticity experiments, has been 

introduced into a qualitative model of two dimensional rolling contact 

representative of wheel on rail. It has been demonstrated that the subsurface 

residual stresses and shear strains agree qualitatively with rigorous finite 

element analysis and with the Merwin-Johnson model, both of which assume 

perfectly plastic response. Furthermore, the shakedown limit is comparable to 

these analyses. The magnitude of subsurface plastic shear strain accumulation 

in the present model is, however, significantly less than either analysis, in 

agreement with experimental results. These findings suggest that accurate 

representation of the work hardening response and kinematic hardening rule for 

cyclic nonproportional loading can significantly enhance solution of cyclic 

strain accumulation in a rolling contact stress field. 
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Fig.1 	Von Mises yield surface in the 
deviatoric stress plane. 

Fig.3 	Initial configuration of loading 
surfaces. based on Mroz model, 
derived from cyclic stress-
strain curve (from Gam) (431). 
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Fig.2 	Effect of functional form of 
yield surface on nonproportional 
plastic flow. 
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Flg.4 	Experimental (top row) and pre- 
dicted (bottom row) results for 
nonproportional cyclic loading 
of OFHC copper (from McDowell et 
al. (441). 
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Fig.7 	Modulus function h versus norm 
of Mroz distance vector d for 
carbon rail steel. 

Fig.6 Coordinate frame for moving 
contact area with respect to a_ • 
fixed material element at z = z. 

Fig.8 	Typical wheel/rail contact geom- 
etry (left. from Hamrock and 
Brewe 1731), and definition of 
a* and h* (right). 

5000 	 
carbon steel 

Fig.S 	Von Mises yield and limit sur- 
faces in the deviatoric stress 
plane. 
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SUMMARY 

Accurate fatigue life prediction of 	mechanical 	components 

subjected to high cyclic loads that cause nonlinear plastic deformation 

is becoming a design problem of prime importance in today's industry. 

This thesis compares four constitutive models for cyclic plasticity 

under conditions of nonproportiona], multiaxial loading. It evaluates 

five numerical solution algorithms from the standpoints of computational 

accuracy and efficiency. 

Drucker's one-surface theory, McDowell's two-surface theory, 

Krieg's one-surface theory with Radial-Return Integration Algorithm, and 

Abrahamson's state variable theory are the constitutive models that have 

been evaluated. Their transient hardening and stable loop responses are 

compared to experimental data in four different axial-torsional loading 

cases. 

The Classical Runge-Kutta method with Gill Coefficients, Non-

Iterative Adams Predictor-Corrector method, Euler's method with 

Automatic Step-Size Control, Iterative Adams Predictor-Corrector method 

with Automatic Step-Size Control, and Gear's method are the numerical 

solution algorithms considered in this study. Their computational 

efficiency and accuracy are evaluated for two cases of axial-torsional 

loading. 

It is found that the one-surface theories predict with relatively 

good accuracy the stress-strain responses for proportional loading 

histories. They are not capable of predicting additional hardening due 

xiv 



xv 

to nonproportionality effects. Two-surface and state variable theories 

with repositories for nonproportional state variables predict rather 

accurately the material response to proportional and nonproportional 

loading paths. However, significantly increased computation times result 

from these gains in predictive accuracy. 

For fixed step-size numerical methods like Runge-Kutta and Non-

Iterative Adams, it is found that the integrated responses are quite 

accurate with significant reductions in computation times compared to 

Gear's method. For low-order, variable step-size methods such as Euler's 

and Iterative Adams, it is seen that their performance strongly depends 

on the nonproportionality level of the input history. They are 

computationally efficient for proportional type histories. Their 

computation times for nonproportional loadings make them cost-prohibitve 

as compared to Gear's method. 



CHAPTER I 

INTRODUCTION 

Problem Definition  

Design of mechanical components for finite fatigue life is 

becoming a common structural design problem encountered in industry 

today as more stringent design requirements and operating conditions 

place additional constraints in weight, safety, and reliability of the 

components to be built. The automotive, aerospace, and nuclear power 

industries are just a few examples of the areas of applicability of this 

design philosophy. New technologies are geared toward the design of 

parts to operate at high cyclic loads and/or high temperatures for a 

finite length of time. These extreme operating conditions inevitably 

cause plastic deformation that strongly affects the fatigue life and 

performance of the component being designed. Turbine engine blades and 

rocket motor nozzles are two typical examples of current areas of 

application of this technology where extreme operating temperatures, 

close dimensional tolerances to be kept, and weight constraints require 

expertise in design for plastic deformation and finite life. In the 

ground vehicle industry, it is common to include the effects of 

overloads which produce cyclic plastic deformation. Most analyses of 

fatigue failures involve the quantification of cyclic ptasticity at 

critical locations which result in initiation and/or growth of 

microcracks. 
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Nonproportional, multiaxial, cyclic plasticity embraces the most 

general plasticity problem for time- and rate-independent phenomena. 

This theory is used in applications where the component's operating 

temperatures are low enough and/or strain rates are high enough to 

exclude time- and rate-dependent phenomena. At the present moment, 

cyclic plasticity models valid for the more restricted case of 

proportional loading are being used in finite element codes to predict 

plastic deformation behavior. In genera], the problem is to predict the 

stress-strain response at every point of interest in a component or part 

subjected to cyclic loadings that cause significant plastic deformation. 

These loadings can be either uniaxial or multiaxial. For example, a 

simple tension test would impose a uniaxial stress field. Any stress 

tensor that contains more than one independent component is by 

definition 	multiaxial. 	Proportional 	loading 	(straining) 	is 

mathematically defined by 

7,e 
—r 	—o 

where E
o 
 is a constant strain tensor, r is an scalar rate parameter, and 

is the strain rate tensor. Figure 	1-1 	shows 	a 	schematic 

representation of a proportional loading path (a) and two 

nonproportional strain paths (b,c). Note that equation (1.1) requires 

that the strain tensor in nine-dimensional strain space be radial. 

Stated in words, a proportional loading path is that for which the 

individual components of the strain tensor change proportionally. Any 

other path is by definition nonproportional. Physically, a proportional 



/ 
/ 

Figure 1-1. Nonproportional and Proportional Loading Paths in Strain 
Space. (a) proportional loading path; (b) linear nonproportional loading 
path; (c) nonlinear nonproportional loading path. 

3 
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loading path activates a discrete set(s) of maximum shear strain 

planes with constant principal shear strain directions; a 

nonproportional path continuously changes the directions of maximum 

shear strain, resulting in an observed increase in hardening (McDowell, 

1984f). Obviously, if a general loading case is to be analyzed, 

nonproportional loading effects have to be taken into account. 

The effect of a nonproportional loading path on the predicted 

stress-strain response is currently an area of concentration for 

constitutive equations of metals. The dramatic increase in hardening due 

to nonproportional straining is caused, according to McDowell (1984f), 

by increased dislocation interactions. The activation of previously 

inactive slip systems, as the critical resolved shear stress direction 

is rotated via nonproportional loading, is responsible for the higher 

uniformity of deformation product observed in specimens. So, the 

nonproportional, multiaxial, cyclic plasticity problem can be approached 

from both micromechanical and phenomenological viewpoints. 

Solutions for the time- and rate-independent case can give better 

insight into the solution of the general time- and rate-dependent 

plasticity and visco-plasticity problems. Hence, it is extremely 

important to accurately and efficiently (i.e. low cost) predict the 

stress-strain response for the nonproportional, multiaxial, cyclic 

plasticity problem. 

Purpose and Outline of Work  

There is a wide variety of cyclic plasticity models available in 

the literature. Most of the implemented models are capable of properly 
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modeling only uniaxial or proportional, multiaxial loadings. They are 

sometimes used for nonproportional straining without basis for knowing 

if the predicted results are accurate. This approach is less than 

desirable but has evolved from the lack of knowledge (experimental data) 

regarding nonproportional loading histories. 

This study has two major objectives. First, it will evaluate 

several generic forms of proposed cyclic plasticity models with respect 

to their modeling capability for nonproportional, multiaxial, cyclic 

plasticity. Four different plasticity models will be evaluated and 

classified based on their accuracy in predicting the stress-strain 

response for an axial-torsional (biaxial) stress state. This test case 

was chosen for two reasons. There is extensive experimental data 

available to serve as the reference in the model evaluation process. 

Also, McDowell (1984e) has experimentally shown that these biaxial 

histories incorporate most of the relevant anomalous phenomena that 

characterizes nonproportional, multiaxial loading. In effect, such 

biaxial histories are the simplest yet most appropriate step to be 

followed in the transition from uniaxial to nonproportional, multiaxial 

straining. It is felt that once the biaxial loading case is fully 

understood and accurately predicted, the transition toward more 

complicated stress fields (e.g. triaxial) can be easily achieved. 

The second objective of this study is to evaluate a series of 

numerical solution schemes for the models mentioned above with speciaL 

attention to changes in the numerical behavior of these models when 

integrating proportional versus nonproportional histories. Five 

different ordinary differential equation solvers will be implemented and 
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categorized according to their computational accuracy and efficiency for 

each of the models discussed. Special emphasis will be placed on the 

analysis of the influences of nonproportionality on the integration 

procedures themselves. The significant coupling between material models 

and numerical solution schemes will be extensively investigated in this 

work. This study is intended to be a practical guide for plasticity 

model users in the selection of the most appropriate combination of 

material model and integration routine to he used for specific problems 

in the general area of nonproportional, multiaxial, cyclic plasticity. 

When dealing with structural cyclic plasticity problems via finite 

element analysis, a scheme which reduces computational time by 50% can 

mean thousands of dollars in savings in a single run. This work is the 

first known to the author to systematically compare several forms of 

constitutive equations with nonproportional, cyclic experimental 

results. Also, it is the first work known to critically investigate the 

behavior of numerical integration techniques for both proportional and 

nonproportional loadings. 

In order to achieve this dual objective, this discussion has been 

written so that each chapter is somewhat independent. Chapter II 

presents the general equations, model characteristics, and some 

mathematical background necessary for the computer implementation of the 

four models discussed. Drucker's, McDowell's, Krieg's, and Abrahamson's 

models will be discussed in detail. These models were selected on the 

basis of their generic representation of the structure of three 

currently dominant approaches. A general overview of plasticity theory 

is presented as the introduction to Chapter II. Chapter III summarizes 
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the numerical integration techniques to be evaluated in the analysis 

section. Classical Runge-Kutta with Gill Coefficients, Non-Iterative 

Adams Predictor-Corrector, Euler's with Automatic Step-Size Control, 

Iterative Adams Predictor-Corrector with Automatic Step-Size Control, 

and Gear's methods will be discussed in general. The importance of 

considering coupled effects of material model and integration technique 

performance is highlighted throughout the chapter. Chapter IV analyzes 

the material models of chapter TI and the integration routines of 

chapter III in the context of the axial-torsional loading problem. A 

general overview of the computer system utilized and evaluation 

procedure used is given early in the chapter. Descriptions of the axial-

torsional test input histories are given for both material models and 

integration routines. Chapter V summarizes the results of chapter IV and 

classifies the material models and integration routines according to 

their capabilities. Appendix A is a summary of the axial-torsional forms 

of the models presented in chapter II. Model parameters, modeling 

functions, and material constants used in the numerical solution are 

also listed in this appendix. Appendix B presents genera] details on the 

experimental procedure used to gather the experimental data shown in 

this study. Appendix C deals with the evaluation of Euler's and 

Iterative Adams methods with automatic step-size control using an 

alternate error criterion. The results are compared to those shown in 

chapter IV. 



CHAPTER II 

MATERIAL MODELING: TIME- AND 

RATE-INDEPENDENT CYCLIC PLASTICITY 

The 	main 	objective 	of 	the 	mathematical 	modeling 	of 

nonproportional, multiaxial, cyclic plasticity of metals is to predict, 

as accurately and as efficiently as possible, the inelastic material 

behavior considered relevant to the application at hand. Most room 

temperature cyclic plasticity problems encountered in industry today 

require that just a few aspects of nonlinear material behavior be 

accurately predicted. The most essential aspects of material behavior to 

be predicted were defined by Drucker and Palgen (1980) and McDowell 

(1984a) as: 

1. Materials subjected to symmetric cycles of stress or strain will 

harden or soften until they reach a stable state described by stable 

hysteresis loops. Whether they harden or soften is dependent on the 

material and/or its initial state. 

2. Materials subjected to unsymmetric cycles of stress in the plastic 

region will develop progressive deformation in the direction of the 

applied stress, a phenomenon called ratcheting. 

3. Materials subjected to unsymmetric cycles of plastic strain will 

show stress relaxation toward a mean value of zero for the stress cycle. 

4. Materials retain "memory" of prior deformation history which is 

dependent on the maximum plastic strain range and the degree of 

8 
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nonproportionality of the previous loading paths. 

5. Materials subjected to nonproportional loadings may harden to 

significantly higher values of stress compared to proportional loadings 

at the same strain range for cyclic hardening materials. Cross-hardening 

becomes more noticeable for nonproportional paths. 

6. On elastic unloading and subsequent reversed loading, materials 

yield at stress levels significantly smaller than the current yield 

stress. This is called the Bauschinger effect. 

With these requirements in mind, many researchers have tackled 

the problem of developing general constitutive equations. In so doing, 

two schools of thought developed. On one hand, the classical theories 

were developed which differentiated between plastic and creep strains. 

On the other hand, unified creep-plasticity models which did not make 

that distinction appeared. In this work, only time- and rate-independent 

responses will be considered. Hence, modifications of classical 

plasticity theories and some limited forms of unified creep-plasticity 

theories are appropriate for this case. 

The classical models themselves can be divided into two groups: 

"simple" theories and "complex" theories. Their differences reside in 

the complexity of the concepts and equations used in the modeling 

process as well as their modeling capabilities. They relate increments 

of stress to the correspondent increments of strain and thus are called 

incremental theories. Generally, they have four basic components: 

J. The yield surface, a convex surface in nine-dimensional stress space 

within which the material response is linearly elastic. During plastic 

flow it will be required that the stress point stay on the yield surface 
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(consistency condition). The von Mises and the Tresca yield surfaces are 

the most widely used forms. 

2. The flow rule, an equation relating stress increments to increments 

of plastic strain during plastic flow. In essence, it requires that the 

plastic strain be in the direction of the outer normal to the yield 

surface. 

3. The hardening rules, a set of equations governing the response of 

the yield surface in stress space due to a stress increment during 

plastic flow. The most popular hardening rules are either isotropic or 

kinematic or a combination of both. Isotropic hardening allows for the 

yield surface to expand or contract as plastic flow occurs. Kinematic 

hardening allows for pure translation of the yield surface to model 

deformation-induced anisotropy or the so-called Bauschinger effect. Many 

theories use combined isotropic and kinematic hardening in which the 

yield surface translates and expands/contracts as necessary during 

plastic flow. 

4. The elastic constitutive equations. Since this study deals with 

isotropic, polycrystalline metals only, linear isotropic elasticity 

equations are appropriate. 

The unified creep-plasticity models invoke a state variable 

approach. Usually, two or more state variables are used to predict the 

material response in the form of a system of ordinary differential 

equations relating stress, strain, temperature, and the chosen internal 

state variables. Linear isotropic elasticity is applicable in the 

elastic regime as in the classical models. However, according to 

Abrahamson (1983), there are some differences between the two 
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approaches: 

I. The stress surface, a surface similar to the yield surface, is 

generally introduced in the model to define a region in stress space in 

which the material response will be nearly elastic, but not linearly 

elastic. The stress point is allowed to be outside of the stress surface 

in contrast to•the yield surface concept. 

2. The flow rule, an equation relating the stress increments to the 

given strain increments, is used to model both elastic and plastic 

material responses. As a consequence, these theories are characterized 

by the high stiffness of the resulting systems of ordinary differential 

equations. 

3. The hardening rules, the equations governing the behavior of the 

stress surface, introduce temperature dependence in the form of added 

recovery terms. These equations allow for description of creep without 

distinction between creep and time-independent plastic strains. However, 

they are also restricted to isotropic and kinematic hardening/recovery 

as explained above. 

With this introduction, the models to be considered in this study 

will be described. Four models from different categories will be 

described as follows: 

1. Drucker's Model, a "simple" classical theory. 

2. McDowell's Model, a "complex" classical theory. 

3. Krieg's Model with Radial-Return Integration Algorithm, a "simple" 

classical theory. 

4. Abrahamson's Model, a unified-creep plasticity theory. 

The main features of each model will be described using the most 
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general form of their equations. Their possible 	advantages 	and 

disadvantages will be highlighted to serve as references for chapter IV. 

Each model will be specialized to its axial-torsional subspace form and 

implemented in a computer program to analyze its performance in 

predicting actual data. 

Drucker's Model 	- 

This model was presented for the first time in 1980 by Drucker 

and Palgen as a relatively simple solution to a rather complex problem. 

It was intended to satisfy most of the material modeling requirements 

explained before with a model as simple as possible. Two versions of it 

were presented. The rounding corner option would predict smooth rounding 

of the cyclic stress-strain curves. The sharp corner option would 

predict the correct behavior on reloading after elastic unloading. The 

first option will be described in the lines to follow since it seemed to 

predict a more realistic material response for the experimental 

histories to be considered in this study. 

According to Drucker and Palgen (1980), this model uses a von 

Mises yield surface (yield criterion) given by 

1 	 R
2 

2 f = -(s - a):(s - a) - - 	= 0 3 (2.1) 

where s is the deviatoric stress tensor, a is the deviatoric backstress 

tensor, and R is the current material yield strength for the uniaxial 

loading case. In this work, the colon represents the scalar product of 

two second order tensors. 
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) N (s 	a)((s - a):;) 

■•■• 	 ■•■• 
(2.5) 
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This model assumes that the increment of plastic strain is always 

along the normal direction to the yield surface. Its associative flow 

rule is thus given by 

p  
E = G(—.cy)— as — as (2.2) 

• p 
when f = 0 and 

• 
cr:3f/3a 	0, and where E 	is the plastic strain rate 

tensor, G is a scalar multiplier, and ; is the stress rate tensor; 

.p 
E = 0 for f < 0 and/or a:af/ao < 0. Substituting equation (2.1) into 

(2.2) and assuming G to be of the form 

G = A(J 2 ) N  

1 
J = —s:s 
2 	a-  

(2.3) 

(2.4) 

it may be shown that 

where A and N are material dependent model parameters. 

A Ziegler-type kinematic hardening rule is assumed to 	be 

applicable. The center of the yield surface in deviatoric stress space, 

that is, the backstress tensor, is assumed to evolve according to the 

following equation: 

a = 	1 	(s - a)((s - a):s

• 

) 	 (2.6) 
2k2

— 	

- 	

"I 	 AO 0, 
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where a is the backstress tensor and k is a model parameter that very 
A./ 

closely resembles the material yield strength in shear. Equation (2.6) 

satisfies the consistency condition ? = 0 during plastic flow with R 

taken to be a constant. 

Isotropic hardening is achieved by effectively increasing or 

decreasing the plastic tangent modulus at a given stress .level for the 

hardening or softening cases respectively. This is achieved by modifying 

equation (2.5) as 

J
2 N • 

E 	= B( 	) (s - a)((s - a):;) 
a 

(2.7) 

where ; is a normalizing stress dependent on the accumulated plastic 

work. The functional form of a was assumed to be of the following form: 

wpc 
a = a (1 T yexp( 	)) 

0 

(2.8) 

where ..1 wPC = 

i t 
- a):E P  dt 	 (2.9) 

and y and Wo  are material dependent model parameters. The upper sign in 

equation (2.8) applies to hardening materials while the lower sign 

applies to softening materials. Note that W Pc  is a direct measure of the 

accumulated effects due to plastic deformation; it is the accumulated 

plastic work. Due to the modifications of equations (2.7)-(2.9), it is 

necessary to redefine model parameter A as 
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A - 	 
2N 

(c ) 

(2.10) 

Model parameters A, N, k, ', and W
o 

can be determined from 

uniaxial cyclic stres-strain curves and transient hardening cyclic 

hysteresis loops at a given maximum strain range. For more details on 

the determination of the model parameters the reader is referred to 

Drucker and Palgen (1980). 

In the elastic regime, this model assumes that linear isotropic 

elasticity is valid. So, the stress rate tensor can be expressed as 

• 	• 	• 
 a = C: (E - e
jp 

 ) (2.11) 

where C is the fourth rank elasticity tensor for isotropic materials. 

Substituting equation (2.7) into (2.11) will allow a so]ution for the 

stress rate tensor, given the strain rate tensor and the current state. 

This model was tested by Drucker and Palgen for the uniaxia] 

loading case and it performed very nicely. However, it is unknown to the 

author if it has been tested for nonproportional multiaxial cyclic 

loadings. It is expected not to perform adequately because the model 

parameters are constants independent of maximum plastic strain range and 

nonproportionality levels. The model will not predict additional 

hardening due to nonproportionality effects. 

For a detailed revision of the axial-torsional form of this 

model, the material constants, and the model parameters used, the reader 

is referred to Appendix A. 
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McDowell's Model  

This model was presented for the first time in 1984 by McDowell 

as a possible general solution to the nonproportional multiaxial cyclic 

plasticity problem based on the assumptions of time- and rate-

independent plasticity theory. This theory belongs to the class of 

multiple-surface, modified classical theories. It is based on the 

concept of a yield surface within which the material response is elastic 

and a limit surface that "bounds" the material response during plastic 

flow. In this sense, it could be categorized as a "complex" theory. 

According to McDowell (1984b), this model uses von Mises surfaces 

for the yield and limit surfaces of the following forms: 

f = —(s - a):(s - a) - R
2 

= 0 
3 
-2 

* 3 * 	
* = 0
2 

f = —(s - a ):(s - a ) - R 
2 

(2.12) . 

(2.13) 

where s is the deviatoric stress tensor, a is the center of the surface 

in deviatoric stress space (backstress tensor), and R is the radius of 

the surface. The asterisk superscript refers to the limit surface. 

The flow rule for this model is given by 

1 • 
E = 7(s:n)n n  ".• we AO 

(2.14) 

where h is the plastic modulus, n is the unit normal to the yield 

surface, ; is the deviatoric stress rate tensor, and E p  is the plastic 

strain rate tensor. In essence, the plastic strain rate tensor is normal 
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to the yield surface as in Drucker's model. 

This model has isotropic and kinematic hardening rules for the 

yield and limit surfaces. For the yield surface, a Mroz-type kinematic 

hardening rule is assumed: 

• 
a = µ v (2.15) 

 

(s - s) 

 

(2.16) 

 

lls
* - so 

 

((s - a):; - 30) 
(2.17) 

 

(s - a):v 

— 
where a is the backstress rate tensor, v is the unit vector from s to 

s , and ri 
a  is an scalar function determined by applying the consistency 

condition 	= 0, to the yield surface. The term i represents isotropic 

* 
hardening of the yield surface. Note that s is defined as the point at 

the limit surface with the same outward normal as the yield surface at 

the current stress state: 

* 

s
* 

= a
* 

+ (s - a)— 
R 

(2.18) 

For the limit surface, a Prager-Ziegler type kinematic hardening 

rule is assumed as 

a = xiln 	 (2.19) 
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.1) .1) 1/2 	r) 
= (E :E ) 	E‘ II (2.20) 

.* 
where a is the backstress rate tensor, x is the asymptotic modulus, n 

is the yield surface unit normal given by (s-a)/Hs-all, and -; is the norm 

of the plastic strain rate tensor. 

The isotropic hardening rules for the yield and limit surfaces 

have been similarly defined. For the yield and limit surfaces, 

= µ( 72($,q) - R)441 	 (2.21) 

	

* 	_* 	* 

	

R 	= p(R (4),q) - R )y -rt 	 (2.22) 

_* 
where R(4,q) and R ((i),q) correspond to the cyclically stable values of 

the yield and limit surface radii for the given values of state 

variables (I) and q. State variables (I) and q have been introduced in the 

model to account for nonproportionality and maximum plastic strain range 

effects, respectively, and will be be discussed later. p and  P are 

admissibility functions chosen appropriately for the material being 

used. For non-fading memory of cyclically hardening materials, McDowell 

recommends to use Heaviside functions p = u(R(4,q)-R) and qi 

-* 
u(R (4,q)-R ). 	For 	completely fading memory, McDowell recommends 

* 
y = y = 1. In equations (2.21) and (2.22), p is a scalar rate parameter 

experimentally determined from the transient hysteresis response of the 

material. 

McDowell, through experimental testing, has shown that R(,q) and 

_* 
R (4,q) can be expressed approximately as linear functions of the form 
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12(4,q) = b(R(1,q) - R(O,q))  + 12(0,q) 	 (2.23) 

—* 	—* 	—* 	_* 
R (4),q) = 	(1,q) - R (0,q)) + R (0,q) 	 (2.24) 

_* 	 _* 
where R(1,q), Ti(0,q), R (1,q), and R (0,q) can be experimentally 

determined. For greater detail on the determination of the model 

parameters the reader is referred to McDowell (1984c). 

An evolution equation for the asymptotic plastic modulus can be 

written as 

; = p(TC(4),q) - x)tp x; 	 (2.25) 

where x(4),q) corresponds to the cyclically stable values of the 

asymptotic modulus for given values of variables 4) and q. tpr  is an 

admissibility function similar to p  and  p  which must be experimentally 

determined. Following the reasoning behind equations (2.23) and (2.24), 

it is assumed that 

	

x(4),q) = 4)(x(1,q) - x(0,q)) + x(0,q) 	 (2.26) 

where x(0,q) and x(1,0 can be experimentally determined. With a]] these 

parameters known, an experimentally determined function for the plastic 

modulus can be written as shown in Appendix A. 

The most desirable attributes of this model are its capability to 

accurately predict nonproportionality effects as well as memory of 

maximum plastic strain range. McDowell (1983) has defined an 

instantaneous measure of nonproportionality of the loading path as 
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 Jr 

 

J 
dt

(E
1 - E3) 

 

(2.27) 

 

g((E)
1 
 - (E)

3 
 ) 

-   

 

     

where E
1 

and E
3 
are the largest and smallest principal strains, and (E) 1 

and (E) 3 
 are the largest and smallest principal strain rates. Here g is 
 

defined as g(x) = 1, if x = 0 or g(x) = x if x x 0. It may be proved 

that for radial or proportional loading paths equation (2.27) gives 

J = 1. For the case of sinusoidal tension-torsion tests with a shear to 

axial strain amplitude ratio of ya/E a  = (1 + v) and 90 degrees out-of-

phase, equation (2.27) gives J = 0. This sinusoidal loading path has 

been experimentally shown to be highly nonproportional in terms of 

additional hardening. 

To be able to account for accumulated effects of nonproportional 

paths, McDowell (1983) introduced a state variable (1) which evolves 

according to 

= p (1 - J - (p) friu(1 - J - 4,
limit

) (2.28) 

where 4 	is an experimentally determined 	scalar 	parameter 	and 

u(1-J-4 limit) is a Heaviside function introduced to reduce the effects 

of proportional path segments in the evolution of 4). It can be shown 

that for proportional straining = 0 while for sinusoidal straining 

with a phase angle of 90 degrees, 4) = 1. 

To account for memory of maximum plastic strain range, McDowell 

(1983) also introduced a state variable q equal to the radius of a 

strain memory surface in nine-dimensional plastic strain space. For this 
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surface he also introduced kinematic and isotropic hardening rules. This 

surface was defined in second invariant form as 

PPPP F = 2 -(E - a ):(E - a ) - q
2 = (2.29) 

where a is the center of the strain memory surface in plastic strain 

space and q is its current radius. The kinematic hardening rule assumed 

was of the following form: 

. 0 	H(F) 	. 1) :n )n * * 
a-  = 	(E 

2  
(2.30) 

where CI P  is the time rate of change of position of the center of the 

strain memory surface, H4F) = 1 if F = 0 and H(F) = 0 if F < 0, and n 

is the unit normal to the strain memory surface at the current state of 

plastic strain. Its isotropic hardening rule was assumed to be of the 

following form: 

= (-1H(F)rif - A(q));1 2 	• 	3 
(2.31) 

where r is an scalar parameter and A(q) is a function to account for 

fading memory of maximum plastic strain range. In general, this function 

has to be experimentally determined. Applying the consistency condition 

P = 0 during plastic flow when the plastic strain point lies of F, it 

may be shown that 

r = n :n + f6 A(q) 	 (2.32) 
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Equations (2.12)-(2.32) make up the main body of McDowell's two-

surface theory. However, there are many model parameters and functions 

that must be experimentally determined. These details are outside the 

scope of this study and the reader is referred to McDowell 

(1983,1984b,1984c) for greater details. 

As in Drucker's mode], one of the assumptions is that linear 

elasticity is applicable in the elastic regime. By substituting equation 

(2.14) into equation (2.11) and recognizing that s = a - 
1.(a:I)I where I 

is the indentity tensor, it may be shown that 

• 	. 	1 . 	 2G 2G • 
s = 2G(E - 

3 
—(E:I)I 	

h + 	(E:n)n) 
(2.33) 

where G is the shear modulus and h is a function defining the plastic 

modulus. 

This 	model 	has already been tested for proportional and 

nonproportional multiaxial cyclic plasticity by McDowell (1984b). It was 

shown that it predicts accurately most of the relevant aspects of the 

material response as described at the beginning of this chapter. 

However, there are two significant inconveniences to this model. 

Firstly, it requires a great deal of experimental tests to be run so 

that all model parameters and modeling functions be determined for each 

different material. This is time consuming and expensive. Secondly, due 

to the complexity and the number of ordinary differential equations to 

be solved, finding a solution will require considerably longer 

computation times when compared to simple theories. 

Appendix A shows a summary of the axial-torsional form of this 
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model, its material constants, the model parameters, and the modeling 

functions used. 

Krieg's Mode] with Radial-Return Integration Algorithm  

This model belongs to the class of "simple" classical theories 

for the time- and rate-independent cyclic plasticity problem. However, 

by using a radial-return algorithm to solve these equations, it has been 

separated from the rest of its group. It was introduced by Krieg and Key 

in 1976 as a fast yet accurate model to be used in applications of the 

finite element method to the solution of problems where significant 

plastic deformation occurs. The intention was to present a set of 

constitutive equations with a good balance of predictive accuracy and 

computational efficiency. 

According to Hughes (1983), this model assumes a von Mises yield 

surface of the form given by equation (2.1). In order to implement the 

radial-return algorithm, Krieg and Key introduced a trial stress rate 

tensor given by 

.ir 
a 	= C:E (2.34) 

where C is the fourth rank elasticity tensor and E is the total strain 

rate tensor. In essence, equation (2.34) gives a pseudo-elastic stress 

increment. 

As with other models, it is assumed that the plastic strain rate 

tensor is along the normal to the yield surface. So, the flow rule is 

expressed as 
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tr . 
E = AN if f = 0 and a :N ? 0 

(2.35) 

p 	 .tr 
E = 0 if f < 0 or f = 0 and a :N < 0 

where A is found by applying the consistency condition during plastic 

flow and N is the unit normal to the yield surface at the beginning of 

the time step as approximated by the radial-return algorithm. It can be 

shown that A is given by 

. 
A - 

2G
( 	

1 
H' )a

tr 
 :N 

1 	-4- 
3G 

(2.36) 

where H' is the cyclically stable value of the asymptotic plastic 

modulus Of the material at the maximum plastic strain range of interest. 

This value has to be experimentally determined. 

Isotropic and kinematic hardening are assumed to be necessary to 

appropriately model the material behavior. Krieg and Key assumed a 

linear combination of isotropic and Prager-type kinematic hardening or 

softening as given by a model parameter p. Kinematic and isotropic 

hardening were given by 

ac = (1 - P)H'E P 
 3 

(2.37) 

=F
2 pH,veff 3 

(2.38) 

where Cc is the time rate of change of the backstress tensor, R is the 
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time rate of change of R (which is given by R = VT k) , B is the 

linearizing parameter, and 413eff is given by 

,2.p .p,1/2 
E 	= (—E :E ) 
eff 	3- 

(2.39) 

Note that in this model k corresponds to the material shear yield 

strength in a similar way as in Drucker's model. 

Note that p is a constant that is experimentally determined as 

pointed out by Key, Krieg, and Stone (1981). This constant is determined 

by the reversed-loading yield stress in a simple cyclic experiment 

(Bauschinger effect). However, by letting p be a constant, it is assumed 

that no saturation of the cyclic stress-strain response occurs as the 

material hardens or softens. Obviouly, this violates point one of the 

essential material behavior to be modeled as described at the beginning 

of this chapter. In view of this, it seemed necessary to modify Krieg's 

model so that it could be fairly evaluated against the other three 

models presented in this study. 

The modification was quite simple. The linearizing parameter p 

was made a function of the accumulated plastic work. As pointed out by 

Drucker and Palgen (1980), this is a reasonable assumption. Thus, 

similarly to equations (2.8) and (2.9), it is assumed that 

Wpc  = 	(s - a):E dt 
	

(2.40) 

pc 
p = yexp( 
	

(2.41) 
"o 
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where WP  is the accumulated plastic work, y and W
o are model parameters 

that must be experimentally determined, and s and a are the deviatoric 

parts of the stress and backstress tensors respectively. 

Krieg 	and 	Key (1976) applied the radial-return numerical 

integration technique to the system of differential equations given by 

equations (2.34)-(2.39). Including equations (2.40)-(2.41) and applying 

this algorithm, the system of ordinary differential equations becomes: 

a
tr

1  
= a

n 
 + C:tE 

-.11+ 	— 

tr 	tr = a 	- a 
—n+1 	—n+1 	~11 

1 e tr - —(trace e tr )I 
—11+1 	3 	11+1 

with the elastic loading case given by 

EP = E P 
—11+1 	-n 

(2.42) 

(2.43) 

(2.44) 

(2.45) 

tr 
n+1 

= c7
n+1 	 (2.46) — 	— 

an+1 
= a

n 	 (2.47) — 

R
n+1 

= R
n 	 (2.48) 

WP  = Wpc 
n+1 

°n+1 = ° 11 

(2.49) 

(2.50) 

and the plastic loading case given by 
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1 	1 
H' 

	

A - 
2G

( 	 • II - Rn ) 
1 + 3G 

E 
n+1 

= E
p 

 AN 
- 	-n 

tr 

	

a 	= 	- 2GAN 
-n+1 -n+1 

(2.51) 

(2.52) 

(2.53) 

2 

a11+1 = a n 
+ 

3
-(1 - t3)1PAN 	 (2.54) 

-  

R
n+1 

= Fi n 
	3 
+ 411 1 A 	 (2.55) 

= wpc W 	 + A(s P 	 a 	):N 
n+1 	 -11+1 - --n-4-1 

(2.56) 

where C is a tensor approximately normal to the yield surface, T is the 

identity tensor, Ile is the increment in the total strain tensor, Ho is 

the norm of the tensor C , and N = is the approximated unit normal 

to the yield surface in deviatoric stress space. Subscripts n and n+1 

refer to the values at the beginning and at the end of the current time 

step. 

It must be emphasized that equations (2.42)-(2.56) include 

Krieg's simplified model equations, the introduced modification, and the 

numerical integration algorithm to be used to solve this system. The 

form of equations (2.42)-(2.56) is such that if all dependent variables 

at time to are known, their values at the next time step can be 

calculated with no need of a differential equation solver routine. In 

essence, an Euler type ordinary differential equation solver is used by 

expressing (2.42)-(2.56) in their time-discretized form. It is possible 
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to solve equations (2.34)-(2.41) without using the 	radial-return 

algorithm. However, the author deemed it unnecessary due to the existing 

similarities between this model and Drucker's model; no new information 

would be gained. 

This model will be analyzed from two different points of view. 

Firstly, its .modeling capabilities will be compared to the other three 

models presented in this study. It is expected to behave similarly to 

Drucker's model including its inability to correctly predict plastic 

material behavior when subjected to nonproportional loading paths. 

Secondly, its computational characteristics will be compared against 

some standard numerical integration techniques. Due to the simplicity of 

equations (2.42)-(2.56), it is expected that the radial-return algorithm 

will present significantly reduced computation times. However, one 

subtle problem can be inmediately seen: the radial-return equations are 

model-dependent and, therefore, they have to be rederived for each model 

to be solved. For complex models like McDowell's and Abrahamson's this 

might be a quite difficult task. 

For a detailed version of this model as specialized to the axial-

torsional subspace, its model parameters, and the material constants 

used, the reader is referred to Appendix A. 

Abrahamson's Model  

This model is the result of the application of a two state 

variable unified creep-plasticity theory to the time- and rate-

independent nonproportional, multiaxial, cyclic plasticity problem. It 

was presented by Abrahamson in 1983 to show the wide range of 
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applications of unified creep-plasticity models. Although quite general 

in scope, such unified theories result in highly stiff systems of 

ordinary differential equations with the capability to model elastic, 

plastic, time- and rate-independent, and time- and rate-dependent 

material behavior. 

According to Abrahamson (1983), the multiaxial form of this 

theory can be generalized from the uniaxial case. By definiton he used 

3 
a 	

2 
eff = e-(s -a):(s - a))

1/2 

3  
a 	= (a:a) 1/2 

	

eff 	a- - 

(2.57) 

(2.58) 

where s is the deviatoric stress tensor, a is the center of the stress 

surface in deviatoric stress space, and a
eff 

and a
eff 

are the uniaxial 

equivalent values of stress and backstress, respectively. 

The magnitude of the inelastic strain rate tensor is a highly 

nonlinear function given by 

.n
a
eff,p 

E
eff 

= ak----)
K 

(2.59) 

where a and p are model parameters and K is the current radius of the 

stress surface. Note that this is a scalar equation in which the flow 

stress is rate-dependent. Similar to classical theories, it is assumed 

that the direction of the inelastic strain rate tensor is normal to the 

stress surface. Thus, the flow rule can be expressed as 
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•n 
.n 	3 	eff  
E - 

2

( 
a 	

)(s - a) 	 (2.60) 

As explained in the beginning of the the chapter, this theory 

uses both isotropic and kinematic hardening rules characterized by the 

presence of hardening and recovery terms. The hardening terms represent 

the hardening due to dislocation interactions as plastic flow occurs. 

The recovery terms represent the effects of recovery processes that 

become significant as temperature increases. It can be shown that the 

recovery terms are negligible in modeling the room-temperature tests 

considered in this study. 

Kinematic hardening is achieved by a function of the form 

• 
a = h

a  (a eff  )En 
ra (a eff ) 
	a 

BP 
(2.61) 

where z is the time rate of change of the center of the stress surface, 

B is a temperature correction factor, and 
ha(aeff) 

 and r
a
(a
eff

) 

are the hardening and recovery functions assumed for the material being 

modeled. Abrahamson (1983) showed that the following forms are 

apropriate for these functions: 

exp(-d2a eff ) 

d
l  

if ei :a > 0 

eff 

(2.62) 

1 	 •n if E :a < 0 d
1 

h
a
(a
eff

) = 



H(I
aE

) 
•11 

(4, (0 )) 

1/2 (" )a eff 	w2 (K))E eff 

1 H(I 	) - 
aE 	a la 3exp(a l (K - k a )) 

(2.66) 
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r
a
(a
eff

) = c(a eff )m 
	

(2.63) 

where d l , d 2, c, and m are model parameters to be 	determined 

experimentally. 

The isotropic hardening is achieved by a function of the form 

(2.64) 

where R is the time rate of change of the stress surface radius, ;HO is 

a function that accounts for nonproportionality effects, w2 (K) is a 

recovery term, and H(IaE ) is an assumed function necessary to adjust the 

isotropic hardening rate. 

Based on experimental analysis Abrahamson (1983) proposed the 

following functions for the recovery term w2 (K) and the adjustment term 

H(IaE ):  

w
2 (K) = b 1

(b
2
K) b

3 	
(2.65) 

where b 1 , b 2 , b3, a
1'  a3 

and k
o 

are all model parameters to be 

determined from experimental results. 

The function kp($0) was introduced by Abrahamson to his original 

model in order to account for the observed increase in hardening for 

nonproportional loading paths. In his work, Abrahamson used McDowell's 



I t u(Q0  - Q)E effQ dt 
0 

.11 
u(Q0  - Q)E eff  dt 

It  
t 
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original formulation for the nonproportional state variable 4), that is, 

(2.67) 

where Q is exactly equivalent to J in equation (2.27). In later 

research, McDowell (1984b) suggested a rate formulation for 4) as given 

by equation (2.28). Striving for better results, the author modified 

Abrahamson's model by using equation (2.28) instead of (2.67) to define 

4). In view of this change, it was necessary to also change Abrahamson's 

definition of 4,(0 to the following final form: 

tp(0 = exp(44) 	 (2.68) 

Equations (2.57)-(2.68) form the main body of Abrahamson's model. 

The procedures to follow for the experimental determination of all the 

model parameters are explained by Abrahamson (1983) and the reader is 

referred to him for greater details. 

Linear isotropic elasticity is also valid in Abrahamson's model. 

Assuming E = E
e 

+ E
n where E

e 
 is the elastic strain tensor, and 

substituting equation (2.60) into equation (2.11), the stress rate 

tensor can be expressed as a function of total strain and the current 

stress state. 

This model in its original form has already been tested for 

nonproportional multiaxial cyclic plasticity problems. According to 
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Abrahamson (1983), it predicted to a good first approximation the 

essential aspects of material behavior that were mentioned at the 

beginning of this chapter. However, no comments are ever made regarding 

the computational difficulties that may arise from this highly stiff 

system of ordinary differential equations. This is seen as one of the 

critical aspects to be considered in the analysis of unified creep-

plasticity theories like this one. Another inconvenience of this model 

is the tremendous amount of experimental work necessary to determine ail 

the model parameters. 

It should be noted that the modified Abrahamson model will go 

through its first test in this study. For greater details on the axial-

torsional form of this model and the corresponding model parameter 

values, the reader is referred to Appendix A. 



CHAPTER III 

NUMERICAL. INTEGRATION TECHNIQUES 

Once the different material models have been described, it is 

necessary to expand on the five numerical integration algorithms used by 

the author to solve the different systems of ordinary differential 

equations encountered in this study. The selection of the appropriate 

numerical solution technique is as critical as the selection of the 

correct material model. The success in the implementation of any 

material model depends heavily on the accuracy and efficiency of the 

solution technique used. Likewise, the performance of the numerical 

solution technique strongly depends on the numerical behavior of the 

model to be solved. 

In general, the problem is to solve an initial value problem 

given by a system of ordinary differential equations and the prescribed 

initial conditions. Mathematically this can be represented as 

	

= F(X,t) 
	

(3.1) 

	

X(0) = Xo 	 (3.2) 

where t is the independent variable, X is the vector of dependent 

variables, and F is the vector of functions relating them. 
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For the time- and rate-independent strain-controlled plasticity 
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problem, the actual independent variable is the total strain tensor E. 

However, the author decided to use time as the independent variable in 

this study with E implicitly assumed to be the independent variable. 

This change was implemented to allow for the introduction of time- and 

rate-dependent phenomenon to the material model equations. For the 

models presented in chapter II, the dependent variables are generally 

the deviatoric stress tensor s, the deviatoric backstress tensor a, the 

plastic strain tensor E P , and the chosen state variables. 

The number of numerical integration techniques available for the 

solution of initial value problems is tremendous. According to Carnahan 

et. al. (1969), these techniques can be classified in many categories. 

For example, these methods can be one-step or multiple-step, explicit or 

implicit, iterative or non-iterative, variable-order or fixed-order, 

variable step-size or fixed step-size, etc. 

This study is concentrated on the integration techniques that 

seem best suited for the solution of cyclic plasticity problems. The 

selection was made based on previous research work by others and the 

author's personal experience. Thus, the following numerical integration 

techniques were implemented, each one belonging to a different class: 

1. Classical Runge-Kutta Method with Gill coefficients, a multiple-

step, explicit, non-iterative, fixed-order, fixed step-size method. 

2. Euler's Method with Automatic Step-Size Control, a one-step, 

explicit, non-iterative, fixed-order, varible step-size method. 

3. Iterative Adams Predictor-Corrector Method with Automatic Step-Size 

Control, a one-step, explicit, iterative, fixed-order, variable step-

size method. 
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4. Non-iterative Adams Predictor-Corrector Method, a multiple-step, 

explicit, non-iterative, fixed-order, fixed step-size method. 

5. Gear's Method, a multiple-step, implicit, iterative, variable-order, 

variable step-size method. 

Each integration technique will be described in its most general 

form, that is, with its equations expressed in vector form. The error 

control criteria either for step-size changes and/or determination of 

iterative convergence will also be described. The performance 

characteristics of each method will be briefly mentioned. Special 

emphasis will be placed on issues such as computation time, accuracy of 

solution, complexity of coding, and data storage requirements. 

Classical Runge-Kutta Method with Gill Coefficients  

Runge-Kutta methods have been widely used in the solution of 

systems of ODE's (Ordinary Differential Equations) that are 

characterized by their relatively low stiffness. There is a whole family 

of Runge-Kutta methods but of particular interest is the version as 

modified by Gill (1950). This method has been organized to require the 

least amount of data storage at any time step of any of the Runge-Kutta 

type formulae. 

According to Gill (1950), the step-by-step procedure for the 

solution of a system of ODE's, denoting X at time t = t o by X(t
n
) = X

n
, 

is given by: 
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0 	for to  = 0 

(3.3) 
qo 

4
n-1 

for to > 0 
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k1 = hF(X
n
,t
n
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(3.5) 

(I 

:•3 1 	qo 
1 

- 2q 
o
) - k (3.6) 
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(3.12) 
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(3.14) 

n 1 	 1 
q = q + —(k - 2q ) - —k 
—4 —3 	2 4 	3 	a4 

(3.15) 

where superscripts n-1, n, n+1 refer to values at the previous time 
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step, at the present time step, and at the desired time step increment, 

respectively. Note that h is the time-step size and the k i , q., X i  are 

intermediate values that do not have to be stored. 

This integration technique introduces single-step errors of the 

order of h 4 . The exact magnitudes depend on the system of ODE's being 

solved. As stated by Eraslan (1969), a good check on the truncation 

error can be obtained by keeping track of the values of q lzi, at each time 

step. If at any time step t o the value of I q
41 

1 (where the i subscript 

refers to the i-th component of q4 
n
) is greater than h 10

, then this 

method might be introducing considerable errors. Thus, 

cl4i 1 	h
10 	t > 0 	 (3.16) 

must be true in order to guarantee accurate results. Essentially, 

condition (3.16) determines the initial time step-size chosen in the 

solution of a particular set of ODE's. Because this is a fixed step-size 

method, h will then be constant for t O. 

This method has two attractive advantages. Firstly, it is very 

simple to code in FORTRAN as presented by equations (3.3)-(3.15). 

Secondly, it requires very little storage and this is very important for 

large systems of ODE's. However, its major disadvantage is its inability 

to accurately solve medium to highly stiff systems of ODE's. Eraslan 

(1969) showed mathematically that this method becomes unstable as the 

stiffness of a particular system increases. 
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Euler's Method with Automatic Step-Size Control  

Euler type methods are the simplest numerical 	integration 

techniques used in the solution of systems of ODE's. They are not very 

accurate unless they are used with very small time step-sizes. So, they 

are extremely inefficient in solving even mildly stiff systems. However, 

by implementing them with an automatic step-size control algorithm, they 

become well suited for the solution of stiff systems. 

According to Kumar et. al. (1980), a reasonable step-size control 

algorithm would involve either doubling or halving the step-size as 

required by some suitable error criterion and the prescribed error 

limits. The step-size will then be controlled based on a predicted step-

size h and the actual step-size h. Thus, for the n-th step the 

procedure would be as follows: 

1. If E > E
max

, replace h p  by h /2 and recompute E 

2. If E < E max' let h = h p  and compute X
n+1 

3. If E min < E < E 
max

, let h = h 
—  

4. If E< %arc  let h = 2h
p  

where E
max 

and E
min are the prescribed error limits, and F is a suitable 

error criterion chosen by the user. 

Given that the initial conditions at time t o  are given by 

X(t
n
) = X

n
, the basic Euler's method can be expressed as 

Xn+1 = Xn + hF(Xn ,tn ) 
	

(3.17) 

where superscripts n and n+1 refer to values at the beginning and at the 

end of this time step respectively. 



E [ 

N 	h(Fit,,,,n,tn,) _ ,. 	F.(Xn-1 ,tn-1 )) 
1 -  

= 

2 

1/2 
	

(3.19) 
1= 1 X. 

1 
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This method introduces single step errors of the order of h
2
. So, 

it is reasonable to expect smaller step-sizes for this method as 

compared to any other method under the same accuracy constraints. Kumar 

et. al. (1980) chose the following error criterion for the automatic 

step-size control: 

E. = 
1 

 

h(F i (Xn ,tn ) - F
1
(Xn-1 ,tn-1 )) 

 

(3.18) 

 

X. 

 

     

where the i subscript refers to the i-th dependent variable in the 

system being solved, i.e. the i-th component of X. In this study and for 

the totality of the system the author chose the following error 

criterion: 

where superscripts n and n-1 and subscripts i are as defined before. 

Note that N is the number of dependent variables in the system. 

This method is very simple and easy to code. Its storage 

requirements are also minimal. Theoretically, this method should be able 

to solve highly stiff systems as accurately as any sophisticated method 

by just specifying a small enough maximum acceptable error. However, the 

time taken to solve them will increase tremendously. Note that in this 

discussion the round-off errors introduced by the computer are ignored; 
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as the time step-size becomes smaller, these round-off errors can become 

an important consideration. For the systems of ODE's being considered, 

based on the fact that the calculations were executed using a CDC Cyber 

855, it is reasonable to ignore this secondary effect. 

From the standpoint of computational accuracy, this method is 

expected to perform well by specifying a small enough maximum acceptable 

error. From the standpoint of computational efficiency, this method is 

expected to be slower than desirable due to the small step-sizes 

achieved through the automatic step-size control algorithm. 

Iterative Adams Predictor-Corrector Method  

with Automatic Step-Size Control  

The family of Adains type predictor-corrector algorithms for 

solving systems of ODE's is very extensive and widely used. In general 

they consist of predictor equations, corrector equations, and an 

equation relating predicted and corrected values to an acceptable 

solution for the system. In their basic form (no iterations and no 

automatic step-size control),- they perform quite nicely for non-stiff 

systems or systems with low stiffness. In order for them to be stable as 

the stiffness of the system increases, automatic step-size control 

and/or iterative algorithms must be incorporated into the solution 

technique. The approach followed here incorporates both features. 

Given that the initial conditions at time t o  are given by 

X(t
n
) = Xn , the predictor equation is given by 

X +1 
= X

n 
 + hF(X

n
,t

n
) 

-P 
(3.20) 
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where h is the current time step-size, X p
n+1 is the predicted vector of 

dependent variables, and superscripts n and n+I refer to values at the 

beginning and at the end of this time step respectively. The corrector 

equation is given as 

Xn+1 	Xn  n+1 n+I 	h 	n+1 n+1 
+ hF(X 	,t 	) -(F(X 	,t 	) - F(X

n
,t

n
)) 	(3.21) 

-c 	 -13 	 2 -p 

where X 
cn+1 

is the corrected vector of dependent variables. 
- 

As recomended by Kumar et. al. (1980), the step-size control 

algorithm used in this method is the same as the one described for 

Euler's method except that an iterative algorithm for the corrector 

equation must be accounted for in this new procedure. The step-size and 

iteration algorithms will be controlled based on a predicted step-size 

hp , an actual step-size h, and the current number of iterations m. Thus, 

for the n-th step the procedure would be as follows: 

1. If f > E
max

: 

a. If m < m
*
, let X -pn+1 = X -C

n+1 
 

m = m + 1, an recompute 

- 
X and E 
-c 

b. If m > m , let m = 0, h p  = h /2, and recompute X 
-P

n+1  

X 
n+1

, and E 
-c 

2. If E < E
max

, let h = h p  and compute Xn+1 

3. If E
min < g < E max' let h

p 
 = h 

4. If g < E
min' 

let hp  = 2h 

where E. 
max

and  E
min 

are the prescribed error limits, P. is a suitable 

* 
error criterion chosen by the user, and m is the maximum number of 

iterations allowed at a fixed time step-size. In order to approach 
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convergence 	as quickly as possible, m must be kept small to force a 

reduction in step-size rather quickly. In this study, the maximum number 

of iterations allowed at a fixed time step varied between two and ten. 

Once convergence of the corrector equation has been achieved or 

the time step has been significantly reduced to keep the error within 

desirable bounds, the accepted value of the dependent variables at t n+1 

becomes 

Xn 1 	4n1 = 7.X 	+ —X 5—p 
(3.22) 

This method introduces single-step errors of the order of h
2 

for 

the predictor and corrector equations treated individually. However, 

since they are coupled by,the iteration algorithm, it seems reasonable 

to expect smaller single-step errors. Kumar et. al. (1980) chose the 

following error criterion for the iteration and automatic step-size 

control algorithms: 

E. = 

 

(Xn
+1

).- (X
1
). 

—c 	—p 

 

(3.23) 

 

+1 
(xn 	). 
""C 	1 

 

     

where the i subscript refers to the i-th dependent variable in the 

system. For the whole system of equations the author chose the following 

error criterion: 



r 	
2

J / 2 

N 

1=1 
E 

(X
n+1 ). - (X

+1
). 

-c 	1 	p 	1 
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(3.24) 

where N is the number of dependent variables in the system. 

Equations (3.20)-(3.24) with the control algorithm as explained 

above make up this iterative Adams Predictor-Corrector method. It is 

attractive from many standpoints. It is relatively simple to code in 

FORTRAN. It is expected to be able to integrate highly stiff systems of 

equations due to the increased region of stability achieved through its 

iteration and step-size control algorithms. The accuracy of the method 

can be adjusted by just specifying the desired bounds of the error. 

However,  two disadvantages are visible. Firstly, the stiffer the system 

is, the longer will be the computation time required for the given 

bounds of the acceptable error. Secondly, this method needs twice the 

storage capacity of any of the methods already described. 

Non-iterative Adams Predictor-Corrector Method  

As mentioned before, there is a large variety of predictor-

corrector pairs that fall in the class of Adams Predictor-Corrector 

Methods. The non-iterative, explicit versions are the most widely used 

for non-stiff to mildly stiff systems of ODE's. Thus, it seemed 

reasonable to investigate an example of such a type to determine its 

performance characteristics in solving the three elasto-plastic material 

models presented in this study. 

Cash 	(1979) presents an extensive list of explicit, non- 
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iterative, second-order, Adams Predictor-Corrector methods. The author 

selected what Cash calls "scheme three". This method was shown to have 

an stability interval of more than twice the interval of absolute 

stability of any other method in its class. 

The method consists of one corrector and two predictor equations. 

Knowing the initial conditions at time t n , that is, X(tn ) = Xn , the 

sequence of calculations would be as follows: 

X
n+1 

= X
n 

+ hF(X
n
,t
n

) -p 

_n+2 	
xn+1 + hF(Xn+1 ,tn+1 ) LCp 	-p 	,„/3 

(3.25) 

(3.26) 

1 	.11+2. 
X
n+1

= X
n 

+ h(--F(X
n+2 

 ,t 	) + 3 7F(Xn+1 t
n+1 

 ) + 
9 
 --F(X

n
, 	) 	(3.27) 

16--p 	 -p 	 16-- 

where superscripts n, n+1, and n+2 refer to values at the beginning of 

the present time step, at the end of the present time step, and at the 

end of the next time step respectively. Note the h is the time step-size 

n+1 	n+2 
(constant) and Xp 	and Xp 	are 	intermediate 	predictor values 

that must be stored. 

Even though this method requires just one set of initial 

conditions, it is essentially a multiple-step method. Looking at 

equation (3.27) it can be seen that the calculated value of X n+1 
is a 

function of the initial condition Xn  and two predicted values X -p
n+1  

and X 
n+2

. In effect, this is a three-step method. 

This method introduces single-step errors of the order of h
2 

for 

the predictor and corrector equations. Cash (1979) specifies that a good 
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estimate of the single-step error is given by 

(01-1 ) 	- (01-1 ) i  
1 	 i 	—co  

(3.28) 

where the i subscript refers to the i-th dependent variable. The author 

chose an overall system error estimate of the form 

N 	 1~p 	1 1 

= 	Z [ (0 +3 ). - (0+1) 
i  2 1/2 

 

[ 
i=1 

(3.29) 

where N is the number of dependent variables. The aim is to maintain E 

below a specified maximum allowable error Emax.  By determining F, the 

appropriate initial time step-size can be chosen for a particular system 

of ODE's. Note that this time step-size will be kept constant and should 

correspond to the smallest necessary time step-size for the whole 

solution interval. 

Like 	the 	iterative Adams Predictor-Corrector method, this 

technique requires twice the storage used by any of the other methods 

already discussed. It is very easy to implement. However, its greatest 

disadvantage resides on its expected inability to accurately integrate 

highly stiff systems. It is suspected that this technique will be quite 

accurate and efficient for non-stiff systems while it may be slow or 

even unstable for stiff systems of ODE's. 
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Gear's Method  

Gear's method is by far the most widely accepted numerical 

integration technique for all types of systems of ordinary differential 

equations. It was developed by Gear in the late 1960's to serve as a 

general purpose ODE solver. It is a multiple-step, implicit, iterative, 

variable-order; and variable step-size method whose sophistication 

guarantees an accurate solution for virtually any system. Since it has 

become the standard ODE solver, the author decided to use it as the 

reference solution technique against which all other integration methods 

will be compared. This point will be discussed extensively in the next 

chapter. 

The 	mathematical 	details of this method are lengthy and 

complicated. So, the author decided to only present the general ideas 

concerning its operation. For a detailed explanation on the subject the 

reader is referred to Gear (1969). 

The method consists of a p-th order explicit predictor equation 

and a p-th order iterative, implicit corrector equation. The predictor 

equation is used to obtain the first iterate of the corrector equation. 

To iterate the corrector equation, p number of values of the dependent 

variable vector at distinct points in time must be known. Since the 

corrector equation is implicit, at each iteration a system of N 

simultaneous algebraic equations (where N is the number of dependent 

variables) must be solved. Once solved, the single-step error is 

estimated. If this error is less than the maximum allowable single-step 

error, the calculated value is returned as the result. Otherwise, one of 

the following alternatives is chosen: continue iterating, decrease the 
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step-size, or increase the order of the predictor and corrector 

equations used. Al] of these measures are intended to decrease the 

magnitude of the estimated error. The decision is made based on the 

status of the solution at the current time step. Briefly stated, the 

decision process would be as follows: 

1. If the number of iterations is less than or equal to three, continue 

the iteration procedure. 

2. If the number of iterations is greater than three but the order of 

the method is less than twelve, increase the order by one and start the 

iteration procedure again. 

3. If the number of iterations is greater than three and the order of 

the method is greater than or equal to twelve, decrease the time step-

size to one fourth of its original value and start the iteration 

procedure again. 

Whenever the estimated error becomes smaller than some prescribed 

maximum allowable error, this method returns the last iterate value as 

the solution for the current time step. 

This method has proved itself to be one of the most accurate 

available for the solution of stiff systems of ODE's. However, it is 

also one of the slowest methods. Note that for each iteration the 

Jacobian matrix of the system must be inverted; must of the computation 

time is spent in this operation. Also note that these operations require 

increased data storage; in fact, this method requires about 20 times 

more memory than simple techniques like Euler and Runge-Kutta methods. 

When solving systems of ODE's whose numerical behavior is unknown 

and a guaranteed accurate solution is needed, this method must be used. 
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This is the approach followed in the first part of chapter IV. When 

computational efficiency and storage requirements are the major concern, 

any of the methods already described may be used. This is the approach 

followed in the second part of chapter IV. 



CHAPTER IV 

COMPUTER ANALYSIS 

This chapter presents the numerical solutions found for the 

axial-torsional plane-stress problem using the material models and 

numerical solution algorithms presented in chapters II and III, 

respectively. The objective is to predict, as accurately and as 

efficiently as possible, the stress-strain response of a thin-walled 

tubular specimen subjected to cyclic axial-torsional loadings that 

result in significant plastic deformation. 

A series of computer programs were written to implement all 

possible combinations of material models with numerical integration 

techniques. Figure 4-1 shows the general program structure used in the 

solution process. This program structure was standarized to ease the 

matching of material models and integration routines. This 

standarization allowed a fair comparison of the material models and 

integration techniques by largely avoiding solution bias due to specific 

programming characteristics of the model or integration routine used. A 

modular approach was taken. The input pre-processor allows the user to 

generate all the input data for the main program interactively. This 

data consists of the applied strain and strain rate histories, the 

initial dependent variable values, initial time step-size, and the 

tolerances on the acceptable single-step error magnitudes. The main 

program controls all input/output operations and coordinates the 
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PRE-PROCESSOR 

Generates input strain and 
strain rate histories, initial 
conditions, and single-step 
error bounds given by the user 

MAIN PROGRAM 

51 

"■••■1111110 
Controls I/O operations and 
coordinates its subroutines 

SETUP SUBROUTINE 

Controls downloading of in- 
formation to integration routine 

. 

NUMERICAL INTEGRATION SUBROUTINE 

Implements numerical solution 
algorithms of chapter III 

	INV 

PHENOMENOLOGICAL SUBROUTINE 

Implements the material 
models of chapter II 

POST-PROCESSOR 

Plots stress-strain histories 
and stable loop errors. Collects 
statistics on CPU time, stress 
errors, time step-size, and 

number of function evaluations 

Figure 4-1. Program Structure Used for the Solution of the Cyclic 
Axial-Torsional Loading Problem. 
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operation of the three main subroutines. The setup subroutine prepares 

the input data for downloading into the integration subroutine. The 

numerical integration subroutines (one for each method) implement the 

numerical solution algorithms presented in chapter TIT. The 

phenomenological subroutines (one for each model) implement the axial-

torsional forms of the material models presented in Appendix A. The 

output post-processor takes the output data from the main program for 

input into data reduction programs. The resulting output consists of 

plots of the calculated stress-strain histories, stable loop errors, and 

integration routine errors. It also collects statistics on computation 

times, time step-sizes, number of function evaluations, and axial and 

shear stress integration errors. This program structure was utilized 

throughout this work with exception of Krieg's model where the 

integration and phenomenological subroutines are combined into one 

larger subroutine. 

All programs with the exception of the output post-processor were 

written in FORTRAN and executed on Georgia Tech's CDC Cyber 835. All 

calculations were done using 64 bits of accuracy to minimize round-off 

errors. The output post-processor was written in BASIC and executed on 

an IBM-PC linked to an HP-7470A plotter. Double-precision was not used 

on the IBM-PC since it was only used for plotting and statistics 

gathering purposes. 

To clarify the analysis, this chapter has been divided into two 

separate halves. The first half deals strictly with comparisons between 

the four material models presented in chapter II. With the exception of 

Krieg's model, all models were solved by using Gear's numerical 
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integration algorithm. This guarantees an accurate solution and serves 

as an objective basis for comparison of the computational advantages or 

disadvantages of each model. The second half compares the five numerical 

solution algorithms presented in chapter ITT. Integration routine 

performance will be evaluated by using Gear's method as the standard of 

reference. The evaluations will he made in the context of the expected 

numerical behavior of the models being solved. 

Material Mode] Evaluations  

Even though experimental data for nonproportional, multiaxial, 

cyclic plasticity are scarce, McDowell provided the author with 

sufficient experimental results to make extensive model evaluations. 

Some general details of the axial-torsional, strain-controlled 

experimental tests are given in Appendix B. 

Figures 4-2 through 4-5 summarize the relevant experimental data 

that will be used in this study to evaluate the material models. In this 

study, they will be referenced as histories I, II, III, and IV, 

respectively. In reality, histories I and II are part of a single 

history run by McDowell. Likewise, histories III and IV are also part of 

a different but single strain history. Due to limitations on space, the 

complete histories cannot be analyzed in this work. The applied shear 

strain-axial strain curves and the experimentally observed axial stress-

axial strain, shear stress-shear strain, and shear stress -axial stress 

responses are shown for the transient hardening case (left column) and 

the stable loop or steady state case (right column) for each of the four 

histories. The tips of the transient shear strain-axial strain plots 
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have been numbered to denote the sequence of loading. The stable loop 

plots have been numbered at some locations to denote the starting point 

("0") and the ending point ("1") of the stable cycle. 

For 304 Stainless Steel at room temperature, the measured values 

of Young's and shear moduli were E = 188 GPa and G = 77 GPa, 

respectively. Histories I and II were run on specimen SS01. As shown in 

Figure 4-2, history I consists of 25 cycles of proportional loading from 

the virgin state with axial strain amplitude E a  = 0.0041, shear strain 

amplitude y a  = 0.0060, and constant effective strain rate af. f  = 0.003 

s -1 . Observe that very little hardening occurred in this history and 

that the material stabilized within the first ten cycles. This is a 

typical response to purely proportional loading. As shown in Figure 4-3, 

history II consists of '25 cycles of nonproportional loading with the 

same axial and shear strain amplitudes as history 1. Segments 4-1 and 

2-3 are proportional in terms of total strain and correspond to the 

previously applied strain histories for this specimen. Segments 1-2 and 

3-4 are nonproportional since the components of the strain tensor change 

nonproportionally. Note the tremendous increase in hardening achieved by 

introducing nonproportionality effects even though the maximum plastic 

strain ranges have not increased. Histories III and IV were run on 

specimen SS09. As shown in Figure 4-4, history III consists of 25 cycles 

of nonproportional sinusoidal loading from an initially hardenened state 

(through proportional loading) with 30 degrees phase angle, strain 

amplitudes E a  = 0.0050 and ya  = 0.0075, and an effective strain rate 

eff = 0.001 s -1
. Observe the significant increase in hardening 

resulting from this "mild" nonproportionality level. Again, very little 
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Figure 4-2. Experimental Data for History I. 
Left column shows transient response (cycles 1-10); 
right column shows stable loop response (cycle 25). 
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Figure 4-3. Experimental Data for History II. 
Left column shows transient response (cycles 1-10); 
right column shows stable loop response (cycle 25). 
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Left column shows transient response (cycles 1-10); 
right column shows stable loop response (cycle 25). 
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Figure 4-5. Experimental Data for History IV. 
Left column shows transient response (cycles 1-10); 
right column shows stable loop response (cycle 20). 
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hardening occurred between cycles 10 and 25. Finally, Figure 4-5 shows 

history IV which consists of 25 cycles of nonproportional sinusoidal 

loading from the history III ending state with 60 degrees phase angle 

and the same strain amplitudes as in the third history. Notice the 

increase in hardening achieved by just changing the phase angle of the 

test. History. IV then is a more severe nonproportional path with a 

consequential hardening increase. 

As previously stated, Appendix A summarizes 	the 	material 

constants, model parameters, modeling functions, and axial-torsional 

forms of the models discussed here. It was assumed that for multiaxial, 

cyclic plasticity applications the model parameters could be determined 

on the basis of uniaxial equivalent values. So, the model parameters 

shown in Appendix A for Drucker's and Krieg's models were determined 

from experimental history I based on effective axial and shear stresses 

and strains. The model parameters and modeling functions for McDowell's 

and Abrahamson's models were taken from their respective analyses on the 

experimental histories shown in this work. 

Each of the four models presented in chapter II will be evaluated 

for each of the four histories discussed. The numerical solutions will 

be shown in a format similar to that of Figures 4-2 through 4-5. In 

addition, plots of the axial and shear stress errors durAng the stable 

loop response will be shown. These errors have been defined as follows: 

a 	a 
E
a
(%) - 	

a
a 	(100) 
max 

(4.1) 



E s (%) - 
T
a 
 - T

e  
(100) (4.2) 

T
max 
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where a
e 

and T
e 
are the experimental values of axia] and shear stresses 

for given axial and shear strains respectively, a
s 

and T
a 

are the 

corresponding numerical solutions (at the same axial and shear strains) 

by the model' being considered, and a max -
and T

max 
are the largest 

experimental values of axial and shear stresses over the stable loop 

response. Thus, the axial and shear stress errors E a 
and E

s 
are 

normalized with respect to the same measure for the histories being 

analyzed. 

To further expand the analysis of the stable loop error plots, 

average and maximum stress errors will be shown in the analysis to 

follow. The axial stress average error Ea,avg 
and the shear stress 

average error Es,avg 
correspond to average values calculated over the 

shown stable loop response. The axia] stress maximum error E and 
a,max 

 

the shear stress maximum error 
Es,max 

are the actual absolute maximums 

over the stable hysteresis loop. The error criteria chosen might not be 

the best possible; however, they do show the error trends and relative 

error magnitudes necessary to evaluate the material models. Due to the 

cyclic nature of the problem being considered, multiplicity of stress 

values at a given strain is observed. Furthermore, due to phase lags of 

the predicted stress behaviors, sudden jumps in the stable loop error 

plots will be observed as the loading direction changes or as the stress 

values pass through zero. These are two inconveniences of the error 

criteria chosen which slightly affect the accuracy of the results shown. 

To analyze the computational efficiency of the models, a non- 
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N 
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dimensional CPU time has been defined as follows: 

(4.3) 

where CPU
A 

is the actual CPU time taken by the Cyber 835 to solve the 

history under consideration and t
f 

is the final value of the independent 

variable (time) for this execution. Thus, the normalized CPU time CPUN 

is calculated based on the assumption that the computation time varies 

linearly with the total length of the execution. Due to the cyclic 

nature of the calculations, this is a reasonable assumption. 

Drucker's Mode]  

Figures 4-6 through 4-9 show the 	predicted 	stress-strain 

responses for Drucker's model for the four histories considered. Table 

4-1 presents general data pertaining to the stable loop error plots and 

computation times required. 

Computation times for Drucker's model seem to be history-

independent as seen in Table 4-1. The variances in normalized CPU times 

are rather small given that al] histories are quite different. Notice 

that the average stable loop errors are smallest for history I 

(proportional history) and about three times larger for all other 

histories (nonproportional histories). Also note that the maximum stress 

errors are considerably larger than the average errors regardless of the 

applied strain history. 

History I. As can be seen from Figure 4-6, the transient 

hardening response is predicted quite accurately for this proportional 

loading path. The stabilized axial and shear stress amplitudes are 
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Table 4-1. Stable Loop Errors and Computation Times for Drucker's 
Model. 

History I History II 	History III 	History IV 

CPU 
 

E 
E
a,avg 

E 
a,max 
s,avg 
s,max 

0.71 
12.0 
43.0 
8.1 

38.2 

	

0.73 	0.60 

	

32.7 	30.2 

	

48.7 	40.7 

	

21.5 	27.2 

	

43.8 	54.5 

0.60 
35.3 
51.3 
34.7 
66.0 

predicted very well. However, notice that this model overestimates axial 

and shear stress values near the region of initial yielding. The sharp 

yielding shown is not characteristic of the implemented rounding corner 

option of this model. The stable loop error plots confirm that the peak 

stress errors always occur near the point of initial yielding and then 

are driven toward zero as the material deforms into the asymptotic 

plastic region. Note that the shear stress-shear strain plots exhibit an 

extraneous material softening followed by increased hardening just after 

initial yielding. This seems to be a consequence of the sharp yielding. 

History TT.  Figure 4-7 shows that this model does not predict any 

further hardening due to nonproportional loading paths. Observe that the 

material shows a saturated response throughout the 25 cycles; hence, the 

predicted hardening response does not describe experimental results. The 

stable loop shapes are predicted incorrectly; the asymptotic plastic 

modulus is considerably underestimated. Notice that in this case the 

axial stress-axial strain plots exhibit softening followed by increased 

hardening just after yielding. The stress error plots show that, 
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contrary to history I, the largest errors occur as the material deforms 

into the asymptotic plastic region and then are driven back to zero as 

the material unloads and enters the initial yielding regime. This 

behavior results from this model's inability to predict the increased 

isotropic hardening due to nonproportionality effects. 

History' III. Figure 4-a shows the numerical solution to the 

nonproportional 30 degrees out-of-phase sinusoidal strain path. Notice 

that even though this model predicts hardening, it significantly 

underestimates the isotropic hardening for the axial stress response. 

The shear stress response is poorly predicted. The shape of the 

stabilized shear hysteresis loop is not in agreement with the 

experimental results. According to McDowell (1984a) this is probably, at 

least partially, a consequence of using a von Mises yield condition 

normalized to the axial stress. The axial stress error plot confirms 

that the largest errors occurred as the material deformed in the 

asymptotic plastic region. The shear stress error plot shows that this 

model significantly overestimates the shear stress for the entire stable 

hysteresis loop. 

History IV. As can be seen from Figure 4-9, this model's 

predictions are quite similar for histories III and IV. First, observe 

that throughout 25 cycles the model predicts a stabilized stress 

response. Hardening due to nonproportionality effects is disregarded. 

The stable loop responses greatly underestimate the actual hardening 

incurred. The stress error plots show that the largest errors always 

occur as the material yields into the asymptotic plastic region; this 

confirms expectations. An interesting point should be made here. 
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Figure 4-6. Numerical Solution by Drucker's Model for History I. 
Left column, top three plots show transient response (cycles 1-10); 
right column, top three plots show stable loop response (cycle 25); 
bottom row shows stable loop errors compared to experimental data. 
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Figure 4-7. Numerical Solution by Drucker's Model for History U. 
Left column, top three plots show transient response (cycles 1 - 10); 
right column, top three plots show stable loop response (cycle 25); 
bottom row shows stable loop errors compared to experimental data. 
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Figure 4-8. Numerical Solution by Drucker's Model for History III. 
Left column, top three plots show transient response (cycles 1-10); 

right column, top three plots show stable loop response (cycle 25); 

bottom row shows stable loop errors compared to experimental data. 
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Figure 4-9. Numerical Solution by Drucker's Model for History IV. 
Left column, top three plots show transient response (cycles 1-10); 
right column, top three plots show stable loop response (cycle 25); 
bottom row shows stable loop errors compared to experimental data. 
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Considering the stress space stable response, it can be seen that, 

disregarding stress amplitude differences, the predicted response shape 

is accurate. This suggests the possibility that an improved isotropic 

hardening rule would significantly increase this model's accuracy with 

little increase in computational efforts. McDowell (1984d) has shown for 

these histories that a plastic modulus dependence on effective stress, 

as assumed in this model, is not a viable description. Hence, loop shape 

does not seem to be greatly affected by inaccuracies in the plastic 

modulus function representation. Plastic strain range, however, is 

apparently greatly affected by the form of the plastic modulus 

representation under nonproportional loading. This is a very important 

point to be remembered. 

McDowell's Model  

Figures 4-10 through 4-13 present plots of the predicted stress-

strain responses by McDowell's model for the histories under 

consideration. Table 4-2 shows some statistics with regard to the stable 

loop error plots and computation times required. 

Table 4-2 shows that McDowell's model computation times seem to 

be history-independent. The normalized CPU time variances do not seem to 

follow a pattern dependent on history characteristics. On the other 

hand, the stable loop average errors do follow a clear pattern. For 

proportional history I the average and maximum errors are quite small. 

The axial stress average and maximum errors are basically the same for 

histories II, III, and IV. The shear stress average and maximum errors 

for histories III and IV are considerably larger than any other error 

for this model. It is immediately seen that this model has problems 
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Table 4-2. Stable Loop Errors and Computation Times for McDowell's 
Model. 

History I 	History II 	History III 	History IV 

CPU 
 

E 
E
a,avg 

E 
a,max 

E 
s,avg 
s,max 

1.87 
4.3 

14.1 
2.6 

11.2 

1.87 
13.6 
19.8 
7.6 

11.7 

1.45 
12.0 
17.3 
24.9 
38.0 

1.56 
15.2 
24.9 
25.0 
41.5 

predicting the shear response of sinusoidal nonproportional histories. 

History I.  As can be seen from Figure 4-10, this model predicts 

quite accurately the transient hardening, the transient hardening rate, 

and the stable hysteresis loop responses for proportional histories. 

Observe that very realistic smooth yielding is predicted. The stress 

error plots show that the largest (but still small) errors occur just 

after initial yielding where this model underestimates the response for 

both axial and shear stresses. 

History II.  Figure 4-11 shows the numerical solution predicted by 

this model. Note that a significant hardening increase due to 

nonproportionality effects is predicted with sufficient accuracy. The 

stable loop shear stress amplitude and shape are predicted with very 

good accuracy. However, the axial stress stable loop amplitude is 

considerably underestimated at the point of unloading after maximum 

axial stress loading. This is due to the fact that the model predicts 

elastic unloading from the yield surface at this point when the 

experimental plots show this is not true. The axial stress error p]ot 
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Figure 4-10. Numerical Solution by McDowell's Model for History I. 
Left column, top three plots show transient response (cycles 1-10); 
right column, top three plots show stable loop response (cycle 25); 
bottom row shows stable loop errors compared to experimental data. 
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Figure 4-11. Numerical Solution by McDhwell's Model for History ti. 
Left column, top three plots show transient response (cycles 1-10); 
right column, top three plots show stable loop response (cycle 25); 
bottom row shows stable loop errors compared to experimental data. 
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Figure 4-12. Numerical Solution by McDowell's Model for History III. 
Left column, top three plots show transient response (cycles 1-10); 
right column, top three plots show stable loop response (cycle 25); 
bottom row shows stable loop errors compared to experimental data. 
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Figure 4-13. Numerical Solution by McDowell's Model for History IV. 
Left column, top three plots show transient response (cycles 1-10); 
right column, top three plots show stable loop response (cycle 25); 
bottom row shows stable loop errors compared to experimental data. 
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confirms that the maximum errors occur at large values of axial strain. 

The shear stress errors are seen to vary smoothly around the stable loop 

with no region of significantly larger errors. 

History III. As shown in Figure 4-12, this model is capable of 

predicting additional hardening due to nonproportional loading. Even 

though the initial flow stress at yielding is underestimated, the 

transient hardening response is very well predicted up to the saturated 

state. The stable axial stress-axial strain loop very closely resembles 

the shape and amplitude of the experimentally observed values. The axial 

stress error plot confirms that the largest prediction errors occur at 

large values of axial strain; note that these errors are still rather 

small. The stable shear stress-shear strain loop shows rather large 

deviations from experiment. The shear stress error plot shows that these 

deviations are due to the "fattening" of the shear response. This fact 

suggests that a Tresca yield condition may predict a more accurate shear 

response. Observe that the maximum plastic strain range is overestimated 

by about 30% and thus, any fatigue life calculations based on this 

prediction can be significantly•in error. 

History IV.  Comparing Figures 4-12 and 4-13 it is seen that most 

comments regarding history III apply to this history. Transient 

hardening is again well-predicted. Predicted axial stress response is 

more accurate than the shear stress response for the same reasons. Note 

again that this model predicted with good accuracy the additional 

hardening due to nonproportional loading. 

Krieg's Model  

The numerical solutions obtained using Krieg's mode] for the 
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Table 4-3. Stable Loop Errors and Computation Times for Krieg's 
Model. 

History I 	History II 	History III 	History IV 

CPUN 	 0.17 
E 	 12.9 
a,avg 

 
40.0 

Ea,max 23.3 
s,avg 

54.1 
s,max 

0.17 
33.2 
51.5 
26.8 
53.4 

0.16 
31.3 
41.4 
27.2 
60.9 

0.16 
37.5 
52.3 
37.4 
74.0 

test histories under consideration are shown in Figures 4-14 through 

4-17. Table 4-3 summarizes some statistics regarding stable loop errors 

and computer execution times required. 

Krieg's mode] execution time is definitely history-independent as 

shown in Table 4-3. Note the extremely short computation times needed; 

this is the primary advantage of this model. Remember that this 

evaluation incorporates both the material model and the radial-return 

integration algorithm. Since this is the only model solved without using 

Gear's method, the radial-return algorithm must be responsible for the 

tremendous decrease in execution time. Note however that this reduction 

in computation time results in a sacrifice of predictive accuracy. It is 

seen that the axial and shear stress stable loop average and maximum 

errors increase from left to right in the table, from proportional to 

highly nonproportiona] loading. It must be pointed out that even for 

proportional paths this method predicts a response with large errors. 

History I.  As shown in Figure 4-14, the transient hardening 

response for this proportional history is very well predicted. It is, 
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however, the basic response shape what introduces the large errors in 

this model. Even though the axial stress response shows smooth yielding, 

this model significantly overestimates the experimental axial stress 

values at yielding. This is clearly shown by the two peaks in the axial 

stress error plot; it is also seen that the axial stress error is driven 

toward zero as the materia] deforms into the asymptotic plastic region. 

The predicted shear stress response is totally unrealistic. Firstly, it 

presents a ficticious materia] softening just after yielding. This 

results in significantly underestimated shear stress values in the 

asymptotic region. Secondly, it overestimates the extent of the elastic 

regime. This is shown by the two peaks in the shear stress error plot. 

History II.  Figure 4-15 shows the predicted response for this 

nonproportional history. Referring to Figure 4-7 the reader will realize 

the many similarities between Drucker's and Krieg's predicted responses 

for this history. The predicted response shapes are identical. The only 

difference resides in the actual magnitude of the stresses. So, the 

analysis made for Drucker's model is also valid here. 

History III.  Figure 4-16 shows the predicted results for history 

III. Again, if the reader compares Figures 4-8 and 4-16, it is evident 

that Drucker's and Krieg's models behave very similarly for 

nonproportional loading histories. Notice again that the hysteresis loop 

shape is fairly accurate. This confirms the contention that the plastic 

modulus formulation is not very influential on the predicted loop shape 

for simple models like Drucker's and Krieg's, since their plastic 

modulus descriptions are different. 

History TV. Finally, Figure 4-17 shows the predicted solution 
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Figure 4-14. Numerical Solution by Krieg's Model for History I. 
Left column, top three plots show transient response (cycles 1-10); 
right column, top three plots show stable loop response (cycle 25); 
bottom row shows stable loop errors compared to experimental data. 
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Figure 4-15. Numerical Solution by Krieg's Model for History II. 
Left column, top three plots show transient response (cycles 1-10); 
right column, top three plots show stable loop response (cycle 25); 
bottom row shows stable loop errors compared to experimental data. 
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Figure 4-16. Numerical Solution by Krieg's Model for History III. 
Left column, top three plots show transient response (cycles 1-10); 
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Figure 4-17. Numerical Solution by Krieg's Model for History IV. 
Left column, top three plots show transient response (cycles 1-10); 
right column, top three plots show stable loop response (cycle 25); 
bottom row shows stable loop errors compared to experimental data. 
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for history IV which, if compared to Figure 4-9, leads to the same 

conclusion: for nonproportional loading paths, Krieg's and Drucker's 

models behave effectively the same. In this sense, Krieg's model has the 

advantage of being computationally more efficient. Note that this is not 

true for proportional loadings where Drucker's model is considerably 

more accurate than this model. 

Abrahamson's Model  

Figures 4-18 through 4-21 exhibit the stress-strain response 

calculated by Abrahamson's model for histories I through IV. Table 4-4 

shows the execution times and stable loop error statistics. 

Referring to Table 4-4, the reader will note immediately the very 

large variations in computation time from one history to the other. For 

example, compare histories.III and IV where a 30 degrees phase angle 

difference results in a 760% increase in computation time. Similarly, 

compare histories I and II where the addition of two nonproportional 

segments to the hysteresis cycle result in a 330% increase in 

computation time. There seems to be a nonlinear relationship between 

computation time and the level of nonproportionality of the applied 

strain history. In general, it can only be said that for Abrahamson's 

model the computation time is history-dependent until further analysis 

is done. Since this model is a generic form of unified creep-plasticity 

theory, this path-dependence of computational efficiency probably 

extends to other particular unified theories. 

Similar to 	McDowell's 	model, 	this 	model 	predicts 	the 

nonproportional axial stress response with greater accuracy than the 

shear stress response. Table 4-4 shows that the stable loop average 
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Table 4-4. Stable Loop Errors and Computation Times for Abrahamson's 
Model. 

History I 	History II 	History III 	History IV 

CPU
N 

E
a,avg 
a,max 

E
s,avg 
s,max 

0.97 
15.3 
32.5 
15.5 
39.0 

3.20 
12.1 
21.7 
11.6 
20.1 

0.95 
12.6 
24.7 
25.3 
46.9 

7.18 
14.8 
23.0 
21.6 
39.5 

axial stress errors remain essentially constant 	with 	increasing 

nonproportiona]ity. 	However, 	the 	average 	shear 	stress 	errors 

significantly increase for the two sinusoidal histories. 

History T.  As shown in Figure 4-18, the transient hardening 

response is predicted with relatively good accuracy. The stable loop 

maximum stress amplitudes are within 5% of the experimental values. 

However, notice that due to the very sharp yielding characteristic of 

unified creep-plasticity theories, this model underestimates the stress 

values in the first few cycles; as it hardens, the stable loop response 

is matched accurately except in the initial yielding regime. The axial 

and shear stress error plots show that the maximum prediction error 

occurs just after yielding (notice the two error peaks) and then reduces 

toward zero as the material deforms into the asymptotic plastic region. 

History TI.  Figure 4-19 shows the resulting numerical solution. 

it is immediately seen that this model is capable of predicting 

nonproportional transient hardening rather accurately. Again notice the 

very sharp yielding observed in the axial stress response which results 
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in underestimated stresses both during transient hardening and for the 

stable loop response. The stable loop error plots show that for the 

axial case the largest errors occur in the asymptotic plastic region 

while for the shear case (due to "fattening" of the shear plot), they 

occur just after initial yielding. 

History. III. Figure 4-20 presents the calculated values for 

history III. Again, due to the sharp yielding characteristics of this 

model, it is seen that the transient hardening response significantly 

underestimates the stress histories for the first few cycles. On the 

other hand, the stable loop stress amplitudes are matched with better 

accuracy. Like McDowell's model, the shear stress response is 

characterized by a hysteresis loop "fattening" that significantly 

overpredicts the maximum plastic strain range and the stress values just 

after initial yielding for every cycle. 

History IV.  Figure 4-21 finally shows the predicted hysteresis 

loops for history IV. Note that disregarding the "fattening" of the 

shear stress response, both the transient hardening and the stable loops 

are predicted rather accurately, Comparing Figures 4-10 through 4-13 to 

Figures 4-18 to 4-21, the reader will note the existing similarities 

between McDowell's and Abrahanson's predicted results. Even though these 

models have radically different structures, the predicted results are 

quite similar. However, McDowell's model is computationally more 

efficient while Abrahamson's is more versatile since it can handle time-

and rate-dependent phenomena. McDowell (1984a) expresses that, as a 

general rule, unified creep-plasticity theories are computationally 

inefficient in solving time-dependent problems. 
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Figure 4-18. Numerical Solution by Abrahamson's Model for History I. 
Left column, top three plots show transient response (cycles 3-10); 
right column, top three plots show stable loop response (cycle 25); 
bottom row shows stable loop errors compared to experimental data. 
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Figure 4-19. Numerical Solution by Abrahamson's Model for History II. 
Left column, top three plots show transient response (cycles 1 - 10); 
right column, top three plots show stable loop response (cycle 25); 
bottom row shows stable loop errors compared to experimental data. 
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Figure 4-20. Numerical Solution by Abrahamson's Model for History III. 
Left column, top three plots show transient response (cycles 1-10); 
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Figure 4-21. Numerical Solution by Abrahamson's Model for History IV. 
Left column, top three plots show transient response (cycles 1-10); 
right column, top three plots show stable loop response (cycle 25); 
bottom row shows stable loop errors compared to experimenta] data. 
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- It should be noted that for all the models, when subjected to 

nonproportional strain paths, the predicted plastic strain range does 

not reflect the experimental results. This is evidenced clearly by the 

"fattening" of the shear stress responses under nonproportional type 

loadings. If accurate fatigue life predictions are to be made, it is 

necessary to •engage in further research to develop a mode] capable of 

accurately predicting the plastic strain ranges in addition to stress 

amplitudes. This is seen as the next step for current research and 

development of these constitutive equations. 

Model Evaluation Summary  

Table 4-5 shows a summarized version of the conclusions that can 

be drawn from the model evaluations just presented. 

Table 4-5. Model -  Evaluation Summary. 

Proportional 
Multiaxial 
Loadings 

Nonproportional 
Multiaxial 
Loadings 

Time- and 
Rate-dependent 
Phenomena 

Drucker's Model: 
Predictive Accuracy Good Inferior Incapable 
Computational Eff. Medium Medium 

McDowell's Model: 
Predictive Accuracy Excellent Good Incapable 
Computational Eff. Low Low 

Krieg's Model: 
Predictive Accuracy Regular Inferior Incapable 
Computational Eff. Very High Very High 

Abrahamson's Model: 
Predictive Accuracy Good Good Good 
Computational Eff. Medium Very Low Very Low 
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Integration Technique Evaluations  

In the previous section, it was shown that most of the models 

outlined presented a numerical behavior independent of input strain and 

strain rate history. With the exception of Abrahamson's mode], all 

models showed little sensitivity to changes in input history from the 

standpoint of computational efficiency. However, Abrahamson's model's 

normalized CPU time (a measure of computational efficiency) showed large 

variations which reflected that radical changes in the numerical 

behavior of the model were occurring as the input history was changed. 

This suggests the possibi]ity of the model's numerical behavior changing 

not only with input strain history but also with the numerical solution 

algorithm. This section shows that, as suspected, the computational 

efficiency of the models change with numerical solution algorithm used. 

In this section, Krieg's model will not be integrated since it 

was only introduced in the analysis to show the tremendous computational 

advantage of the radial-return integration algorithm applied to a 

constitutive model of the generic form of Drucker's model. 

As previously stated, .a]l the numerical integration techniques 

will be compared against the solutions calculated using Gear's numerical 

integration algorithm. Therefore, errors reported in this section are 

computed with respect to Gear's method solution, not experimental 

results. Two input strain histories were used as the basis for these 

comparisons. History V consisted of three cycles of proportional 

straining from the initially annealed state with maximum axial and shear 

strain amplitudes E a  = 0.0041 and ya  = 0.0060, respectively (very 

similar to history I). The effective strain rate was kept constant at 
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eff = 0.003 sec
-1 . History VI consisted of three cycles of sinusoidal 

loading with 90 degrees phase angle, E a  = 0.0050, y a  = 0.0075, and 

eff = 0.001 sec
-1 . McDowell (1984a) and others have experimentally 

shown this history to result in the largest observed increase in 

hardening due to nonproportionality effects for axial-torsional loading. 

These two contrasting histories were chosen so that any history-

dependent model numerical behavior would be clearly exhibited. 

Figure 4-22 shows the axial stress-time and the shear stress-time 

responses predicted for histories V and VT by using Gear's numerical 

integration method with McDowell's, Drucker's, and Abrahamson's models. 

These graphs show the predicted results by using Gear's method in its 

most efficient yet accurate form, as explained next. A series of trial 

runs were executed with the same input strain histories but variable 

initial time step-size and maximum allowable single-step error. It was 

determined that the solution was insensitive to changes in the initial 

time step-size unless the chosen values were unreasonably large. The 

best combination of computational accuracy and efficiency was found by 

keeping the maximum allowable single-step error E max  < 0.001. Choosing 

Emax > 0.001 resulted in large variations for the calculated stress 

values as compared to the values predicted with E max  5 0.001. Choosing 

E
max 

<<< 0.001 resulted in no significant change of the calculated 

stress values but tremendously increased the computation times. So, this 

was chosen as the reference solution used for this analysis. 

The integration routines presented in chapter III have been 

evaluated for both histories V and VI, and for each of the models 

mentioned above. The standard input values used in the first execution 
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of  each integration rout  ine were chosen  as E 	= 0.001 , E 	= 0.0001, max 	 min 

hinit = 0.01 sec., and m = 2. E
max  , E min 

, and m are as defined in 

chapter III and hinit is the initial time step-size chosen by the user. 

* 
Notice that m 	is a parameter applicable to the Iterative Adams 

Predictor-Corrector method only. After the first set of executions with 

standard values, further insight was gained by varying some of these 

parameters as shown in the sections to follow. 

The integration routines will be evaluated based on computational 

accuracy and efficiency. Efficiency performance evaluation will be based 

on the normalized CPU time CPU
N 
as defined by equation (4.3) and the 

number of phenomenological subroutine evaluations N f  (to be called 

number of function evaluations) as given by 

N 
N = --- N f 	tf 

(4.4) 

where N
c 

is the total number of function evaluations for the history 

under consideration and t
f is the corresponding final value of the 

independent variable (time). Table 4-6 shows the actual values of CPU rl 

 and N
f 

for all the models when integrating histories V and VI using the 

reference Gear's method. As noted in the previous section, the 

normalized CPU time seems to be insensitive to input history for 

McDowell's and Drucker's models. This is confirmed by the small 

variances in the number of function evaluations N
f . However, note the 

tremendous increase in execution time for Abrahamson's model when 

integrating nonproportional history VI. So, as shown in the previous 

section, the computation times for Abrahamson's model are greatly 
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Table 4-6. Actual Computation Times and Number of Function Evaluations 
Using Gear's Method with Standard Input Parameter Values. 

Model 	 McDowell 	 Drucker 	 Abrahamson 

History 	V 	VI 	V 	VI 	V 	VI 

CPUN 	 7.72 	7.08 	2.98 	2.99 	4.05 	44.97 
Nf 	

1494• 	1354 	865 	844 	920 	13974 

sensitive to the nonproportionality level of the input strain history. 

The reader must keep in mind this apparent path-dependence of 

computational efficiency since it will be shown to be an important 

parameter in the selection of the best numerical solution algorithm for 

nonproportional, multiaxial, cyclic plasticity. Tables 4-7 through 4-15 

and C-1' through C-2 show values of CPU
N 

and N
f 
as percentages of the 

values shown in Table 4-6 to give the reader a relative basis for 

comparison of the different numerical methods studied. 

Integration routine accuracy will be evaluated on the basis of 

axial stress average error 
Ea,avg, 

 axial stress maximum error E
a,max' 

shear stress average error 
Es,avg, 

 and shear stress maximum error 

Es,max . Axial and shear stress errors are defined by equations (4.1) and 

(4•.2), respectively, with the modifying assumption that the reference is 

Gear's corresponding numerical solution instead of experimental data. 

Plots of these erros as they vary with time will be shown to pinpoint 

segments of large errors and to determine the overall trends of the 

error patterns. 

Runge-Kutta Method with Gill Coefficients  

As presented in chapter III, this is a multiple-step, explicit, 
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non-iterative, fourth-order, fixed step-size method. Because this method 

maintains a constant time step-size, it is insensitive to changes in the 

numerical behavior of the system of ODF's if viewed from the standpoint 

of computational efficiency. However, if the fixed time step-size chosen 

is too large relative to the stiffness of the system being solved, it 

may render thiS method unstable or at least it will introduce false 

oscillations in the predicted results. On the other hand, if the time 

step-size is small enough so that no oscillations occur, it may still 

introduce considerable errors. 

The standard input values were used in the first execution. It 

was found that the estimated single-step error as defined in chapter III 

was well within desirable bounds. So, there was no danger of instability 

or false,oscillations. Table 4-7 summarizes the results obtained for the 

performance parameters with h init = 0.01. Table 4-8 shows a similar 

tableforasecondsetofrunswithh imit =0.005. Figure 4-23 shows 

axial and shear stress errors vs. time for the first cycle of histories 

V andVIforallthemodelswithh=0.01. 
init 

History V.  For proportional type histories, Table 4-7 shows that 

this method results in computation time savings of the order of at least 

70% compared to Gear's method. Such large savings are due to an 

approximate drop of 65% in the number of function evaluations as shown 

in Table 4-7. It is seen that the savings incurred apply to all the 

models tested with the largest savings occurring for McDowell's model. 

Notice that there is no sacrifice in computational accuracy. The maximum 

axial stress error observed was in the order of 1% with average error 

values ranging from 0.05% to 0.45% for all the models. The maximum 
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Figure 4-3. Experimental Data for History II. 
Left column shows transient response (cycles 1-10); 
right column shows stable loop response (cycle 25). 
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hardening occurred between cycles 10 and 25. Finally, Figure 4-5 shows 

history IV which consists of 25 cycles of nonproportional sinusoidal 

loading from the history III ending state with 60 degrees phase angle 

and the same strain amplitudes as in the third history. Notice the 

increase in hardening achieved by just changing the phase angle of the 

test. History, IV then is a more severe nonproportional path with a 

consequential hardening increase. 

As previously stated, Appendix A summarizes 	the 	material 

constants, model parameters, modeling functions, and axial-torsional 

forms of the models discussed here. It was assumed that for multiaxial, 

cyclic plasticity applications the model parameters could be determined 

on the basis of uniaxial equivalent values. So, the model parameters 

shown in Appendix A for Drucker's and Krieg's models were determined 

from experimental history I based on effective axial and shear stresses 

and strains. The model parameters and modeling functions for McDowell's 

and Abrahamson's models were taken from their respective analyses on the 

experimental histories shown in this work. 

Each of the four models presented in chapter II will be evaluated 

for each of the four histories discussed. The numerical solutions will 

be shown in a format similar to that of Figures 4-2 through 4-5. In 

addition, plots of the axial and shear stress errors during the stable 

loop response will be shown. These errors have been defined as follows: 

a - a 
E
a
(%) - 	

as 
	

(100) 
max 

(4.1) 
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T 
a
T 	

e 
- T 

E s (%) - 	
(100) 

max 
(4.2) 

where a e 
and T

e 
are the experimental values of axia] and shear stresses 

for given axial and shear strains respectively, a
s 

and i
s 

are the 

corresponding numerical solutions (at the same axial and shear strains) 

by the model' being considered, and a max -
and

max 
are the largest 

experimental values of axial and shear stresses over the stable loop 

response. Thus, the axial and shear stress errors Ea 
and E

s 
are 

normalized with respect to the same measure for the histories being 

analyzed. 

To further expand the analysis of the stable loop error plots, 

average and maximum stress errors will be shown in the analysis to 

follow. The axial stress average error Ea,avg 
and the shear stress 

average error Es,avg correspond to average values calculated over the 

shown stable loop response. The axia] stress maximum error E and a,max 
 

the shear stress maximum error 
Es,max 

are the actual absolute maximums 

over the stable hysteresis loop. The error criteria chosen might not be 

the best possible; however, they do show the error trends and relative 

error magnitudes necessary to evaluate the material models. Due to the 

cyclic nature of the problem being considered, multiplicity of stress 

values at a given strain is observed. Furthermore, due to phase lags of 

the predicted stress behaviors, sudden jumps in the stable loop error 

plots will be observed as the loading direction changes or as the stress 

values pass through zero. These are two inconveniences of the error 

criteria chosen which slightly affect the accuracy of the results shown. 

To analyze the computational efficiency of the models, a non- 
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dimensional CPU time has been defined as follows: 

CPUA 
CPU

N 
- 	

t
f 

(4.3) 

where CPUA 
is the actual CPU time taken by the Cyber 835 to solve the 

history under consideration and t f  is the final value of the independent 

variable (time) for this execution. Thus, the normalized CPU time CPU N 

is calculated based on the assumption that the computation time varies 

linearly with the total length of the execution. Due to the cyclic 

nature of the calculations, this is a reasonable assumption. 

Drucker's Mode]  

Figures 4-6 through 4-9 show the 	predicted 	stress-strain 

responses for Drucker's model for the four histories considered. Table 

4-1 presents general data pertaining to the stable loop error plots and 

computation times required. 

Computation times for Drucker's model seem to be history-

independent as seen in Table 4-1. The variances in normalized CPU times 

are rather small given that all histories are quite different. Notice 

that the average stable loop errors are smallest for history I 

(proportional history) and about three times larger for al] other 

histories (nonproportional histories). Also note that the maximum stress 

errors are considerably larger than the average errors regardless of the 

applied strain history. 

History I. As can be seen from Figure 4-6, the transient 

hardening response is predicted quite accurately for this proportional 

loading path. The stabilized axial and shear stress amplitudes are 
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Table 4-1. Stable Loop Errors and Computation Times for Drucker's 
Model. 

History I History II 	History III History IV 

CPU
N 

F. 
E
a,avg 

E
a,max 

F s,avg 
s,max 

0.71 
12.0 
43.0 
8.1 

38.2 

	

0.73 	0.60 

	

32.7 	30.2 

	

48.7 	40.7 

	

21.5 	27.2 

	

43.8 	54.5 

0.60 
35.3 
51.5 
34.7 
66.0 

predicted very well. However, notice that this model overestimates axial 

and shear stress values near the region of initial yielding. The sharp 

yielding shown is not characteristic of the implemented rounding corner 

option of this model. The stable loop error plots confirm that the peak 

stress errors always occur near the point of initial yielding and then 

are driven toward zero as the material deforms into the asymptotic 

plastic region. Note that the shear stress-shear strain plots exhibit an 

extraneous material softening followed by increased hardening just after 

initial yielding. This seems to be a consequence of the sharp yielding. 

History TT.  Figure 4-7 shows that this model does not predict any 

further hardening due to nonproportiona.l loading paths. Observe that the 

material shows a saturated response throughout the 25 cycles; hence, the 

predicted hardening response does not describe experimental results. The 

stable loop shapes are predicted incorrectly; the asymptotic plastic 

modulus is considerably underestimated. Notice that in this case the 

axial stress-axial strain plots exhibit softening followed by increased 

hardening just after yielding. The stress error plots show that, 
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contrary to history I, the largest errors occur as the material deforms 

into the asymptotic plastic region and then are driven back to zero as 

the material unloads and enters the initial yielding regime. This 

behavior results from this model's inability to predict the increased 

isotropic hardening due to nonproportionality effects. 

History• III. Figure 4-8 shows the numerical solution to the 

nonproportional 30 degrees out-of-phase sinusoidal strain path. Notice 

that even though this model predicts hardening, it significantly 

underestimates the isotropic hardening for the axial stress response. 

The shear stress response is poorly predicted. The shape of the 

stabilized shear hysteresis loop is not in agreement with the 

experimental results. According to McDowell (1984a) this is probably, at 

least partially, a consequence of using a von Mises yield condition 

normalized to the axial stress. The axial stress error plot confirms 

that the largest errors occurred as the material deformed in the 

asymptotic plastic region. The shear stress error plot shows that this 

model significantly overestimates the shear stress for the entire stable 

hysteresis loop. 

History IV. As can be seen from Figure 4-9, this model's 

predictions are quite similar for histories III and IV. First, observe 

that throughout 25 cycles the model predicts a stabilized stress 

response. Hardening due to nonproportionality effects is disregarded. 

The stable loop responses greatly underestimate the actual hardening 

incurred. The stress error plots show that the largest errors always 

occur as the material yields into the asymptotic plastic region; this 

confirms expectations. An interesting point should be made here. 
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Figure 4-6. Numerical Solution by Drucker's Model for History I. 
Left column, top three plots show transient response (cycles 1-10); 
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Figure 4-8. Numerical Solution by Drucker's Model for History III. 
Left column, top three plots show transient response (cycles 1-10); 
right column, top three plots show stable loop response (cycle 25); 
bottom row shows stable loop errors compared to experimental data. 
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Figure 4-9. Numerical Solution by Drucker's Model for History IV. 
Left column, top three plots show transient response (cycles 1-10); 
right column, top three plots show stable loop response (cycle 25); 
bottom row shows stable loop errors compared to experimental data. 
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Considering the stress space stable response, it can be seen that, 

disregarding stress amplitude differences, the predicted response .  shape 

is accurate. This suggests the possibility that an improved isotropic 

hardening rule would significantly increase this model's accuracy with 

little increase in computational efforts. McDowell (1984d) has shown for 

these histories that a plastic modulus dependence on effective stress, 

as assumed in this model, is not a viable description. Hence, loop shape 

does not seem to be greatly affected by inaccuracies in the plastic 

modulus function representation. Plastic strain range, however, is 

apparently greatly affected by the form of the plastic modulus 

representation under nonproportional loading. This is a very important 

point to be remembered. 

McDowell's Model  

Figures 4-10 through 4-13 present plots of the predicted stress-

strain responses by McDowell's model for the histories under 

consideration. Table 4-2 shows some statistics with regard to the stable 

loop error plots and computation times required. 

Table 4-2 shows that McDowell's model computation times seem to 

be history-independent. The normalized CPU time variances do not seem to 

follow a pattern dependent on history characteristics. On the other 

hand, the stable loop average errors do follow a clear pattern. For 

proportional history I the average and maximum errors are quite small. 

The axial stress average and maximum errors are basically the same for 

histories II, III, and IV. The shear stress average and maximum errors 

for histories III and IV are considerably larger than any other error 

for this model. It is immediately seen that this model has problems 
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Table 4-2. Stable Loop Errors and Computation Times for McDowell's 
Model. 

History I 	History II 	History III 	History IV 

CPUN 
E 
E
a,avg 

E 
a,max 

E 
s,avg 
s,max 

1.87 
4.3 

14.1 
2.6 

11.2 

1.87 
13.6 
19.8 
7.6 
11.7 

1.45 
12.0 
17.3 
24.9 
38.0 

1.56 
15.2 
24.9 
25.0 
41.5 

predicting the shear response of sinusoidal nonproportional histories. 

History I.  As can be seen from Figure 4-10, this model predicts 

quite accurately the transient hardening, the transient hardening rate, 

and the stable hysteresis loop responses for proportional histories. 

Observe that very realistic smooth yielding -  is predicted. The stress 

error plots show that the largest (but still small) errors occur just 

after initial yielding where this model underestimates the response for 

both axial and shear stresses. 

History II.  Figure 4-11 shows the numerical solution predicted by 

this model. Note that a significant hardening increase due to 

nonproportionality effects is predicted with sufficient accuracy. The 

stable loop shear stress amplitude and shape are predicted with very 

good accuracy. However, the axial stress stable loop amplitude is 

considerably underestimated at the point of unloading after maximum 

axial stress loading. This is due to the fact that the model predicts 

elastic unloading from the yield surface at this point when the 

experimental plots show this is not true. The axial stress error plot 
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Figure 4-10. Numerical Solution by McDowell's Model for History I. 
Left column, top three plots show transient response (cycles 1 - 10); 
right column, top three plots show stable loop response (cycle 25); 
bottom row shows stable loop errors compared to experimental data. 
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Left column, top three plots show transient response (cycles 1-10); 
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confirms that the maximum errors occur at large values of axial strain. 

The shear stress errors are seen to vary smoothly around the stable loop 

with no region of significantly larger errors. 

History III. As shown in Figure 4-12, this model is capable of 

predicting additional hardening due to nonproportional loading. Even 

though the initial flow stress at yielding is underestimated, the 

transient hardening response is very well predicted up to the saturated 

state. The stable axial stress-axial strain loop very closely resembles 

the shape and amplitude of the experimentally observed values. The axial 

stress error plot confirms that the largest prediction errors occur at 

large values of axial strain; note that these errors are still rather 

small. The stable shear stress-shear strain loop shows rather large 

deviations from experiment. The shear stress error plot shows that these 

deviations are due to the "fattening" of the shear response. This fact 

suggests that a Tresca yield condition may predict a more accurate shear 

response. Observe that the maximum plastic strain range is overestimated 

by about 30% and thus, any fatigue life calculations based on this 

prediction can be significantly•in error. 

History IV.  Comparing Figures 4-12 and 4-13 it is seen that most 

comments regarding history III apply to this history. Transient 

hardening is again well-predicted. Predicted axial stress response is 

more accurate than the shear stress response for the same reasons. Note 

again that this model predicted with good accuracy the additional 

hardening due to nonproportional loading. 

Krieg's Model  

The numerical solutions obtained using Krieg's model for the 
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Table 4-3. Stable Loop Errors and Computation Times for Krieg's 
Model. 

History I 	History II 	History III History IV 

CPU
N 

Ea,avg 

E
a,max 

E
s,avg 
s,max 

0.17 
12.9 
40.0 
23.3 
54.1 

0.17 
33.2 
51.5 
26.8 
53.4 

0.16 
31.3 
41.4 
27.2 
60.9 

0.16 
37.5 
52.3 
37.4 
74.0 

test histories under consideration are shown in Figures 4-14 	through 

4-17. Table 4-3 summarizes some statistics regarding stable loop errors 

and computer execution times, required. 

Krieg's model execution time is definitely history-independent as 

shown in Table 4-3. Note the extremely short computation times needed; 

this is the primary advantage of this model. Remember that this 

evaluation incorporates both the material model and the radial-return 

integration algorithm. Since this is the only model solved without using 

Gear's method, the radial-return algorithm must be responsible for the 

tremendous decrease in execution time. Note however that this reduction 

in computation time results in a sacrifice of predictive accuracy. It is 

seen that the axial and shear stress stable loop average and maximum 

errors increase from left to right in the table, from proportional to 

highly nonproportional loading. It must be pointed out that even for 

proportional paths this method predicts a response with large errors. 

History I.  As shown in Figure 4-14, the transient hardening 

response for this proportional history is very well predicted. It is, 
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however, the basic response shape what introduces the large errors in 

this model. Even though the axial stress response shows smooth yielding, 

this model significantly overestimates the experimental axial stress 

values at yielding. This is clearly shown by the two peaks in the axial 

stress error plot; it is also seen that the axial stress error is driven 

toward zero as the material deforms into the asymptotic plastic region. 

The predicted shear stress response is totally unrealistic. Firstly, it 

presents a ficticious material softening just after yielding. This 

results in significantly underestimated shear stress values in the 

asymptotic region. Secondly, it overestimates the extent of the elastic 

regime. This is shown by the two peaks in the shear stress error plot. 

History II.  Figure 4-15 shows the predicted response for this 

nonproportional history. Referring to Figure 4-7 the reader will realize 

the many similarities between Drucker's and Krieg's predicted responses 

for this history. The predicted response shapes are identical. The only 

difference resides in the actual magnitude of the stresses. So, the 

analysis made for Drucker's model is also valid here. 

History III.  Figure 4-16 shows the predicted results for history 

III. Again, if the reader compares Figures 4-8 and 4-16, it is evident 

that Drucker's and Krieg's models behave very similarly for 

nonproportional loading histories. Notice again that the hysteresis loop 

shape is fairly accurate. This confirms the contention that the plastic 

modulus formulation is not very influential on the predicted loop shape 

for simple models like Drucker's and Krieg's, since their plastic 

modulus descriptions are different. 

History TV. Finally, Figure 4-17 shows the predicted solution 
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Figure 4-14. Numerical Solution by Krieg's Model for History I. 
Left column, top three plots show transient response (cycles 1-10); 
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Figure 4-15. Numerical Solution by Krieg's Model for History II. 
Left column, top three plots show transient response (cycles 1-10); 
right column, top three plots show stable loop response (cycle 25); 
bottom row shows stable loop errors compared to experimental data. 
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Figure 4-16. Numerical Solution by Krieg's Model for History III. 
Left column, top three plots show transient response (cycles 1-10); 
right column, top three plots show stable loop response (cycle 25); 
bottom row shows stable loop errors compared to experimental data. 
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Figure 4-17. Numerical Solution by Krieg's Model for History IV. 
Left column, top three plots show transient response (cycles J-10); 
right column, top three plots show stable loop response (cycle 25); 
bottom row shows stable loop errors compared to experimental data. 
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for history IV which, if compared to Figure 4-9, leads to the same 

conclusion: for nonproportional loading paths, Krieg's and Drucker's 

models behave effectively the same. In this sense, Krieg's model has the 

advantage of being computationally more efficient. Note that this is not 

true for proportional loadings where Drucker's model is considerably 

more accurate than this model. 

Abrahamson's Model  

Figures 4-18 through 4-21 exhibit the stress-strain response 

calculated by Abrahamson's model for histories I through IV. Table 4-4 

shows the execution times and stable loop error statistics. 

Referring to Table 4-4, the reader will note immediately the very 

large variations in computation time from one history to the other. For 

example, compare histories•III and IV where a 30 degrees phase angle 

difference results in a 760% increase in computation time. Similarly, 

compare histories I and II where the addition of two nonproportional 

segments to the hysteresis cycle result in a 330% increase in 

computation time. There seems to be a nonlinear relationship between 

computation time and the level of nonproportionality of the applied 

strain history. In general, it can only be said that for Abrahamson's 

model the computation time is history-dependent until further analysis 

is done. Since this model is a generic form of unified creep-plasticity 

theory, this path-dependence of computational efficiency probably 

extends to other particular unified theories. 

Similar to 	McDowell's 	model, 	this 	model 	predicts 	the 

nonproportional axial stress response with greater accuracy than the 

shear stress response. Table 4-4 shows that the stable loop average 
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Table 4-4. Stable Loop Errors and Computation Times for Abrahamson's 
Model. 

History I 	History II 	History III 	History IV 

CPU
N 

E 
 

E
a,max 
s,avg 
s,max 

0.97 
15.3 
32.5 
15.5 
39.0 

3.20 
12.1 
21.7 
11.6 
20.1 

0.95 
12.6 
24.7 
25.3 
46.9 

7.18 
1 4.8 
23.0 
21.6 
39.5 

axial stress errors remain essentially constant 
	with 	increasing 

nonproportionality. However, the average shear stress errors 

significantly increase for the two sinusoidal histories. 

History T.  As shown in Figure 4-18, the transient hardening 

response is predicted with relatively good accuracy. The stable loop 

maximum stress amplitudes are within 5% of the experimental values. 

However, notice that due to the very sharp yielding characteristic of 

unified creep-plasticity theories, this model underestimates the stress 

values in the first few cycles; as it hardens, the stable loop response 

is matched accurately except in the initial yielding regime. The axial 

and shear stress error plots show that the maximum prediction error 

occurs just after yielding (notice the two error peaks) and then reduces 

toward zero as the material deforms into the asymptotic plastic region. 

History TT.  Figure 4-19 shows the resulting numerical solution. 

it is immediately seen that this model is capable of predicting 

nonproportional transient hardening rather accurately. Again notice the 

very sharp yielding observed in the axial stress response which results 
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in underestimated stresses both during transient hardening and for the 

stable loop response. The stable loop error plots show that for the 

axial case the largest errors occur in the asymptotic plastic region 

while for the shear case (due to "fattening" of the shear plot), they 

occur just after initial yielding. 

History. III. Figure 4-20 presents the calculated values for 

history III. Again, due to the sharp yielding characteristics of this 

model, it is seen that the transient hardening response significantly 

underestimates the stress histories for the first few cycles. On the 

other hand, the stable loop stress amplitudes are matched with better 

accuracy. Like McDowell's model, the shear stress response is 

characterized by a hysteresis loop "fattening" that significantly 

overpredicts the maximum plastic strain range and the stress values just 

after initial yielding for every cycle. 

History IV.  Figure 4-21 finally shows the predicted hysteresis 

loops for history IV. Note that disregarding the "fattening" of the 

shear stress response, both the transient hardening and the stable loops 

are predicted rather accurately. Comparing Figures 4-10 through 4-13 to 

Figures 4-18 to 4-21, the reader will note the existing similarities 

between McDowell's and Abrahanson's predicted results. Even though these 

models have radically different structures, the predicted results are 

quite similar. However, McDowell's model is computationally more 

efficient while Abrahamson's is more versatile since it can handle time-

and rate-dependent phenomena. McDowell (1984a) expresses that, as a 

general rule, unified creep-plasticity theories are computationally 

inefficient in solving time-dependent problems. 
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Figure 4-18. Numerical Solution by Abrahamson's Model for History I. 
Left column, top three plots show transient response (cycles ]-10); 
right column, top three plots show stable loop response (cycle 25); 
bottom row shows stable loop errors compared to experimental data. 
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Figure 4-19. Numerical Solution by Abrahamson's Model for History II. 
Left column, top three plots show transient response (cycles 1-10); 
right column, top three plots show stable loop response (cycle 25); 
bottom row shows stable loop errors compared to experimental data. 
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Figure 4-20. Numerical Solution by Abrahamson's Model for History III. 
Left column, top three plots show transient response (cycles 1-10); 
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Figure 4-21. Numerical Solution by Abrahamson's Model for History IV. 
Left column, top three plots show transient response (cycles 1-10); 
right column, top three plots show stable loop response (cycle 25); 
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88 

- It should be noted that for all the models, when subjected to 

nonproportional strain paths, the predicted plastic strain range does 

not reflect the experimental results. This is evidenced clearly by the 

"fattening" of the shear stress responses under nonproportional type 

loadings. If accurate fatigue life predictions are to be made, it is 

necessary to .engage in further research to develop a mode] capable of 

accurately predicting the plastic strain ranges in addition to stress 

amplitudes. This is seen as the next step for current research and 

development of these constitutive equations. 

Model Evaluation Summary  

Table 4-5 shows a summarized version of the conclusions that can 

be drawn from the model evaluations just presented. 

Table 4-5. Model Evaluation Summary. 

Proportional 
Multiaxial 
Loadings 

Nonproportional 
Multiaxial 
Loadings 

Time- and 
Rate-dependent 
Phenomena 

Drucker's Model: 
Predictive Accuracy Good Inferior Incapable 
Computational Eff. Medium Medium 

McDowell's Model: 
Predictive Accuracy Excellent Good Incapable 
Computational Eff. Low Low 

Krieg's Model: 
Predictive Accuracy Regular Inferior Incapable 
Computational Eff. Very High Very High 

Abrahamson's Model: 
Predictive Accuracy Good Good Good 
Computational Eff. Medium Very Low Very Low 
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Integration Technique Evaluations  

In the previous section, it was shown that most of the models 

outlined presented a numerical behavior independent of input strain and 

strain rate history. With the exception of Abrahamson's mode], a]l 

models showed little sensitivity to changes in input history from the 

standpoint of computationa] efficiency. However, Abrahamson's model's 

normalized CPU time (a measure of computational efficiency) showed large 

variations which reflected that radical changes in the numerical 

behavior of the model were occurring as the input history was changed. 

This suggests the possibility of the model's numerical behavior changing 

not only with input strain history but also with the numerical solution 

algorithm. This section shows that, as suspected, the computationa] 

efficiency of the models change with numerical solution algorithm used. 

In this section, Krieg's model will not be integrated since it 

was only introduced in the analysis to show the tremendous computational 

advantage of the radial-return integration algorithm applied to a 

constitutive model of the generic form of Drucker's model. 

As previously stated, a]l the numerical integration techniques 

will be compared against the solutions calculated using Gear's numerical 

integration algorithm. Therefore, errors reported in this section are 

computed with respect to Gear's method solution, not experimental 

results. Two input strain histories were used as the basis for these 

comparisons. History V consisted of three cycles of proportional 

straining from the initially annealed state with maximum axial and shear 

strain amplitudes E a  = 0.0041 and ya  = 0.0060, respectively (very 

similar to history I). The effective strain rate was kept constant at 
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eff 
= 0.003 sec -1 . History VI consisted of three cycles of sinusoidal 

loading with 90 degrees phase angle, E a  = 0.0050, y a  = 0.0075, and 

eff 
= 0.001 sec -1 . McDowell (1984a) and others have experimentally 

shown this history to result in the largest observed increase in 

hardening due to nonproportionality effects for axial-torsional loading. 

These .two contrasting histories were chosen so that any history-

dependent model numerical behavior would be clearly exhibited. 

Figure 4-22 shows the axial stress-time and the shear stress-time 

responses predicted for histories V and VI by using Gear's numerical 

integration method with McDowell's, Drucker's, and Abrahamson's models. 

These graphs show the predicted results by using Gear's method in its 

most efficient yet accurate form, as explained next. A series of trial 

runs were executed with the same input strain histories but variable 

initial time step-size and maximum allowable single-step error. It was 

determined that the solution was insensitive to changes in the initial 

time step-size unless the chosen values were unreasonably large. The 

best combination of computational accuracy and efficiency was found by 

keeping the maximum allowable single-step error F.
max 

< 0.001. Choosing 

Emax  > 0.001 resulted in large variations for the calculated stress 

values as compared to the values predicted with E max  0.001. Choosing 

E
max 

<<< 0.001 resulted in no significant change of the calculated 

stress values but tremendously increased the computation times. So, this 

was chosen as the reference solution used for this analysis. 

The integration routines presented in chapter III have been 

evaluated for both histories V and VI, and for each of the models 

mentioned above. The standard input values used in the first execution 



2 	4 	6 	a 
TIME SEC 

12 10 12 10 2 	4 	6 

TIME SEC 

_AXIAL 
- -51-EAR 

400 

200 
2 

-400 
0 12 10 

-400 
0 	2 

TIME SEC 

2 	4 	 6 	 a 	10 	12 

TIME SEC 

9.1 

200 - 

LP) 
4.1 o 
LP) 

4.1 

co  -200 - 

-400 
0 

--------- 

2 	4 	6 	a 	10 	12 

TIME SEC  
2 	4 	 6 	a 

TIME SEC 
10 
	

12 

Figure 4-22. Axial and Shear Stress vs. Time Responses for Histories V 
and VI Integrated by Gear's Method. 
Left column, history V; right column, history VI; top row, McDowell's 
mode] solution; middle row, Drucker's model solution; bottom row, 
Abrahamson's model solution. 



N 
 (4.4) N

f 	tf 

92 

Emax 
	. 0001 , 

* 	 * 
hinit = 0.01 sec., and m = 2. E

max  , E
m . , and in are as defined in min 

chapter III and hinit 
is the initial time step-size chosen by the user. 

Notice that m is a parameter applicable to the Iterative Adams 

Predictor-Corrector method only. After the first set of executions with 

standard values, further insight was gained by varying some of these 

parameters as shown in the sections to follow. 

The integration routines will be evaluated based on computational 

accuracy and efficiency. Efficiency performance evaluation will be based 

on the normalized CPU time CPU N 
as defined by equation (4.3) and the 

number of phenomenological subroutine evaluations N f  (to be called 

number of function evaluations) as given by 

where Nc  is the total number of function evaluations for the history 

under consideration and t f 
is the corresponding final value of the 

independent variable (time). Table 4-6 shows the actual values of CPU N 

and N
f 

for all the models when integrating histories V and VI using the 

reference Gear's method. As noted in the previous section, the 

normalized CPU time seems to be insensitive to input history for 

McDowell's and Drucker's models. This is confirmed by the small 

variances in the number of function evaluations N f . However, note the 

tremendous increase in execution time for Abrahamson's model when 

integrating nonproportional history VI. So, as shown in the previous 

section, the computation times for Abrahamson's model are greatly 
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Table 4-6. Actual Computation Times and Number of Function Evaluations 
Using Gear's Method with Standard Input Parameter Values. 

Model 	 McDowell 	 Drucker 	 Abrahamson 

History 	V 	VI 	V 	VI 	V 	VI 

CPU 	 7.72 	7.08 	2.98 	2.99 	4.05 	44.97 
N f 	1494• 	1354 	865 	844 	920 	13974 

sensitive to the nonproportionality level of the input strain history. 

The reader must keep in mind this apparent path-dependence of 

computational efficiency since it will be shown to be an important 

parameter in the selection of the best numerical solution algorithm for 

nonproportional, multiaxial, cyclic plasticity. Tables 4-7 through 4-15 

and C-1' through C-2 show values of CPU
N 

and N
f 
as percentages of the 

values shown in Table 4-6 to give the reader a relative basis for 

comparison of the different numerical methods studied. 

Integration routine accuracy will be evaluated on the basis of 

axial stress average error 
Ea,avg,  axial stress maximum error F  

shear stress average error 
Es,avg,  and shear stress maximum error 

E
s,max

. Axial and shear stress errors are defined by equations (4.1) and 

(4.2), respectively, with the modifying assumption that the reference is 

Gear's corresponding numerical solution instead of experimental data. 

Plots of these erros as they vary with time will be shown to pinpoint 

segments of large errors and to determine the overall trends of the 

error patterns. 

Runge-Kutta Method with Gill Coefficients  

As presented in chapter III, this is a multiple-step, explicit, 
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non-iterative, fourth-order, fixed step-size method. Because this method 

maintains a constant time step-size, it is insensitive to changes in the 

numerical behavior of the system of ODF's if viewed from the standpoint 

of computational efficiency. However, if the fixed time step-size chosen 

is too large relative to the stiffness of the system being solved, it 

may render thiS method unstable or at least it will introduce false 

oscillations in the predicted results. On the other hand, if the time 

step-size is small enough so that no oscillations occur, it may still 

introduce considerable errors. 

The standard input values were used in the first execution. It 

was found that the estimated single-step error as defined in chapter III 

was well within desirable bounds. So, there was no danger of instability 

or false ,oscillations. Table 4-7 summarizes the results obtained for the 

performance parameters with h. 	= 0.01. Table 4-8 shows a similar snit 

table for a secondsetofrunswithh..nit = 0.005. Figure 4-23 shows i  

axial and shear stress errors vs. time for the first cycle of histories 

VandVIforallthemodelswithh.=0.01. 
snit 

History V.  For proportional type histories, Table 4-7 shows that 

this method results in computation time savings of the order of at least 

70% compared to Gear's method. Such large savings are due to an 

approximate drop of 65% in the number of function evaluations as shown 

in Table 4-7. It is seen that the savings incurred apply to all the 

models tested with the largest savings occurring for McDowell's model. 

Notice that there is no sacrifice in computational accuracy. The maximum 

axial stress error observed was in the order of 1% with average error 

values ranging from 0.05% to 0.45% for all the models. The maximum 
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