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Truth is ever to be found in simplicity, and not in the multiplicity and confusion of things.
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SUMMARY

Statistical signal processing and machine learning are very important in modern science

and engineering. Many theories, methods and techniques are developed to help people

extract and analyze the hidden information from large amount of data, or so called Big

Data. The challenge of dealing with Big Data comes from either huge amount of data or

high-dimensionality of data. Considering the above two aspects, this dissertation focus on

two problems: matrix completion and sequential change-point detection.

The first one is low-rank matrix completion problem. Because many survey data is

capable of being represented approximately as an low-rank matrix, this model can apply to

many applications such as sensor network [1], network traffic analysis [2], sensor localization

[3], recommender systems [4, 5] and natural language processing [6]. Much success has

been achieved, including both theories and algorithms, to learn the model. In the case when

the entries of the matrix is assumed to be continuous, the authors of [7] prove that we can

achieve an exact recovery of the matrix provided that the number of observed entries is at

least on a logarithmic order of the total number of entries of the matrix, and they offer an

efficient algorithm to recover the missing entries of the matrix. Many following work is

then published to extend the results of [7] to more complicated cases when some unknown

continuous random errors exist. Beyond the continuous noise, the authors in [8] first develop

new techniques to handle the discrete noise, called the 1-bit matrix completion, which

is crucial since it provides the theoretical basis for the quantized matrix completion. In

Chapter 3, we extend this work to solve an important and fundamental case where the entries

are Poisson random variables. We formulate the problems into a regularized likelihood

maximization problem and solve this problem through an efficient algorithm based on the

singular value decomposition. Finally, we prove the optimality of the proposed methods and

demonstrate the good performance by synthetic simulations and real-data examples.

The second one is sequential change-point detection. The model is that we observe a

xv



sequence of independent signals and would like to detect if an unexpected change happens

in the system. This belongs to sequential decision making problems and we need decide

sequentially whether an alarm of change detected should be raised as we obtain new

observations. Due to the nature of sequential decision making, sequential change-point

detection has been applied to a large number of engineering applications, such as statistical

quality control [9], financial time series change detection [10], reliability [11], surveillance

system [12] and system prognostic [13]. In Chapter 4, 5 and 6, we consider two related

subtopics in the sequential change-point detection. One is multi-sensor gradual change-

detection and another is robust sequential change-point detection. In the next two paragraphs,

we explain them correspondingly.

As an enabling component for modern intelligent systems, multi-sensory monitoring has

been widely deployed for large scale systems, such as manufacturing systems [14], [15],

power systems [16], and biological and chemical threat detection systems [17]. The sensors

acquire a stream of observations, whose distribution changes when the state of the network

is shifted due to an abnormality or threat. We would like to detect the change online as

soon as possible after it occurs, while controlling the false alarm rate. When the change

happens, typically only a small subset of sensors are affected by the change, which is a

form of sparsity. A mixture statistic which utilizes this sparsity structure of this problem is

presented in [18]. The asymptotic optimality of a related mixture statistic is established in

[19]. Extensions and modifications of the mixture statistic that lead to optimal detection

are considered in [20]. In the above references [18, 20], the change-point is assumed to

cause a shift in the means of the observations by the affected sensors, which is good for

modeling an abrupt change. However, in many applications above, the change-point is an

onset of system degradation, which causes a gradual change to the sensor observations.

Often such a gradual change can be well approximated by a slope change in the means of the

observations. We present a mixture procedure that detects a change-point causing a slope

change to the means of the observations, which can be a model for gradual degradations. We

xvi



derive the log-likelihood ratio statistic, which becomes applying a soft-thresholding to the

local statistic at each sensor and then combining the results. The mixture procedure raises

an alarm whenever the statistic exceeds a prescribed threshold. Moreover, we prove the

asymptotic optimality of our work and demonstrate the good performance of the proposed

method using simulation and real-data examples.

In multi-sensor change-point detection problem, people consider to develop good de-

tection procedures with a high dimension of observed signals, while the robust sequential

change-point detection aims to deal with the case when the pre-change or the post-change

distributions are unknown. It is necessarily to take the robustness into consideration since

classic methods are sensitive to the mismatch of the distribution assumptions. We propose

two techniques to handle the unknown distribution parameters. The first one is to assume

a convex set for the parameters and then solve the best detection procedure via convex

optimization offline before we apply the procedure sequentially. The second one is to

combine the sequential detection procedure with the online convex optimization technique,

namely, we learn the distribution parameters and detect the changes simultaneously. Both of

the above methods improve the robustness and have better performance compared to the

classic CUSUM procedure when there is a model mismatch. We prove the nearly optimality

of the proposed methods, and we demonstrate the good performance of the methods by both

simulation and real-data example.

xvii



CHAPTER 1

INTRODUCTION

Statistical signal processing and machine learning are very important in modern science and

engineering. Many theories, methodsandtechniques are developed to help people extract

and analyze the hidden information from the Big Data. Big Data has two aspects: 1) the

huge number of observations;2) high-dimensionality of data. This dissertation focus on

two specific topics that touch the above two aspects. The first topic is low-rank matrix

completion. Because many survey data is capable of being represented approximately

as a low-rank matrix, this model can apply to many applications such as sensor network,

network traffic analysis,sensor localization, recommender systems and natural language

processing. Even if much success has been achieved to learn the model with continuous

noise, only a few works consider the quantized noise such as Poisson noise, which is applied

to many real applications with count data. This motivates us to develop new algorithms and

theories for the Poisson Matrix Completion. The second topic is sequential change-point

detection. The model is that we observe a sequence of independent signals and would

like to detect if an unexpected change happens in the system. This belongs to sequential

decision-making problems and we need to decide sequentially whether an alarm of change

detected should be raised as we obtain new observations. Due to the nature of sequential

decision making, sequential change-point detection has been applied to a large number of

engineering applications, such as statistical quality control, financial time series change

detection, reliability, surveillance system and system prognostic. In the dissertation, several

subtopics are considered, including multi-sensor gradual change detection and robust change-

point detection via optimization techniques. For each subtopic, new theories and algorithms

are developed.

In Chapter 1, I introduce the background and history for each topic and provide the

1



insights and motivations. In Chapter 2, I review some preliminary results in mathematics,

in order to make readers understand the proofs in the appendix more quickly. Specifically,

I review some useful theorems in the random matrix theory since they play a crucial role

in proving the performance bounds for matrix completion problem. Then, I review briefly

the theory for classic one-sensor sequential change-point detection and present some recent

progress about multi-sensor change-point detection. Besides, I briefly introduce the classic

theory about the robust hypothesis testing and recent progress toward robust change-point

detection.

In Chapter 3, I present the work about Poisson matrix completion.We extend the theory

of low-rank matrix completion to the case when Poisson observations for a subset of the

entries of a matrix are available, which arises in various applications with count data. We

consider the usual matrix recovery formulation through maximum likelihood with proper

regularization constraints on the matrix and establish theoretical upper and lower bounds on

the recovery error.The bounds for matrix completion are nearly optimal up to a logarithmic

factor on the order of the number of entries of the matrix. Then, we show an efficient

algorithm that solves the penalized maximum likelihood approximately and demonstrates

its performance on recovering solar flare images and bike sharing count data.

In Chapter 4, I present the work about multi-sensor sequential gradual change detec-

tion.We develop a mixture procedure for multi-sensor systems to monitor data streams for a

change-point that causes a gradual degradation to a subset of the streams. Observations are

assumed to be initially normal random variables with known constant means and variances.

After the change-point, observations in the subset will have increasing or decreasing means.

The subset and the rate-of-change are unknown. Our procedure uses a mixture statistics,

which assumes that each sensor is affected by the change-point with probability p0. Analytic

expressions are obtained for the average run length and the expected detection delay of the

mixture procedure, which are demonstrated to be quite accurate numerically. We establish

the asymptotic optimality of the mixture procedure. Numerical examples demonstrate the
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good performance of the proposed procedure.We also discuss an adaptive mixture procedure

using empirical Bayes.

In Chapter 5, I present the work about robust change detection via offline convex

optimization.We address the computational challenge of finding the robust sequential change-

point detection procedures when the pre- and post-change distributions are not completely

specified. To tackle the difficulties of looking for least favorable distributions (LFDs) in

high-dimensional settings, we present a method based on convex optimization that addresses

this issue when the distributions are Gaussian with unknown parameters from pre-specified

uncertainty sets. We also establish theoretical properties of our robust procedures, and

numerical examples demonstrate their good performance.

In Chapter 6, I present the work about robust change detection via online convex

optimization. We consider a set of detection procedures based on sequential likelihood ratios

with non-anticipating estimators constructed using online convex optimization algorithms

such as online mirror descent, which provides a more versatile approach to tackling complex

situations where recursive maximum likelihood estimators cannot be found. When the

underlying distributions belong to an exponential family and the estimators satisfy the

logarithm regret property, we show that this approach is nearly second-order asymptotically

optimal. This means that the upper bound for the false alarm rate of the algorithm (measured

by the average-run-length) meets the lower bound asymptotically up to a log-log factor

when the threshold tends to infinity. Our proof is achieved by making a connection between

sequential change-point and online convex optimization and leveraging the logarithmic

regret bound property of online mirror descent algorithm. Numerical and real data examples

validate our theory.

1.1 Poisson matrix completion

Recovering a low-rank matrixM with Poisson observations is a key problem that arises from

various real-world applications with count data, such as nuclear medicine, low-dose x-ray
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imaging [21], network traffic analysis [2], and call center data [22]. There the observations

are Poisson counts whose intensities are determined by the matrix, either through a subset

of its entries or linear combinations of its entries.

Thus far much success has been achieved in solving the matrix completion and recovery

problems using nuclear norm minimization, partly inspired by the theory of compressed

sensing [23, 24]. It has been shown that when M is low rank, it can be recovered from

observations of a subset or a linear combination of its entries (see, e.g.[7, 25, 26, 27, 28, 29,

30, 31, 32]). Earlier work on matrix completion typically assume that the observations are

noiseless, i.e., we may directly observe a subset of entries of M . In the real world, however,

the observations are noisy, which is the focus of the subsequent work [33, 34, 35, 36, 37,

38], most of which consider a scenario when the observations are contaminated by Gaussian

noise. The theory for low-rank matrix recovery under Poisson noise has been less developed.

Moreover, the Poisson problems are quite different from their Gaussian counterpart, since

under Poisson noise the variance of the noisy observations is proportional to the signal

intensity. Moreover, instead of using `2 error for data fit, we need to use a highly non-linear

likelihood function.

Recently there has also been work that consider the more general noise models, including

noisy 1-bit observations [8], which may be viewed as a case where the observations are

Bernoulli random variables whose parameters depend on a underlying low-rank matrix;

[39, 40] consider the case where all entries of the low-rank matrix are observed and the

observations are Poisson counts of the entries of the underlying matrix, and an upper bound

is established (without a lower bound). In the compressed sensing literature, there is a line

of research for sparse signal recovery in the presence of Poisson noise [41, 42, 43] and the

corresponding performance bounds. The recently developed SCOPT [44, 45] algorithm

can also be used to solve the Poisson compressed sensing of sparse signals but may not be

directly applicable for Poisson matrix recovery.

We extend the theory of 1-bit low-rank matrix completion to the case with Poisson
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observations. The matrix recovery problem from compressive measurements is formulated

as a regularized maximum likelihood estimator with Poisson likelihood. We establish

performance bounds by combining techniques for recovering sparse signals under Poisson

noise [41] and for establishing bounds in the case of low-rank matrices [46, 47]. Our

results demonstrate that as the intensity of the signal increases, the upper bound on the

normalized error decays at certain rate depending how well the matrix can be approximated

by a low-rank matrix.

The matrix completion problem from partial observations is formulated as a maximum

likelihood problem with proper constraints on the matrix M (nuclear norm bound ‖M‖∗ ≤

α
√
rd1d2 for some constant α and bounded entries β ≤ Mij ≤ α)1. We also establish

upper and lower bounds on the recovery error, by adapting the arguments used for one-bit

matrix completion [8]. The upper and lower bounds nearly match up to a factor on the

order of O(log(d1d2)), which shows that the convex relaxation formulation for Poisson

matrix completion is nearly optimal. We conjecture that such a gap is inherent to the

Poisson problem in the sense that it may not be an artifact due to our proof techniques

for the upper bound. Moreover, we also highlight a few important distinctions of Poisson

matrix completion compared to the prior work on matrix completion in the absence of noise

and with Gaussian noise: (1) Although our arguments are adapted from one-bit matrix

completion (where the upper and lower bounds nearly match), in the Poisson case there

will be a gap between the upper and lower bounds, possibly due to the fact that Poisson

distribution is only locally sub-Gaussian. In our proof, we notice that the arguments based

on bounding all moments of the observations, which usually generate tight bounds for prior

results with sub-Gaussian observations, do not generate tight bounds here; (2) we will need

a lower bound on each matrix entry in the maximum likelihood formulation, which can be

viewed as a requirement for the lowest signal-to-noise ratio (since the signal-to-noise ratio

1Note that the formulation differs from the one-bit matrix completion case in that we also require a lower
bound on each entry of the matrix. This is consistent with an intuition that the value of each entry can
be viewed as the signal-to-noise ratio (SNR) for a Poisson observation, and hence this essentially poses a
requirement for the minimum SNR.
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(SNR) of a Poisson observation with intensity I is
√
I).

Moreover, we present a set of efficient algorithms, which can be used for both matrix

recovery based on compressive measurements or based on partial observations. These

include two generic (gradient decent based) algorithms: the proximal and accelerated

proximal gradient descent methods, and an algorithm tailored to Poisson problems called the

Penalized Maximum Likelihood Singular Value Threshold (PMLSVT) method. PMLSVT

is derived by expanding the likelihood function locally in each iteration, and finding an

exact solution to the local approximation problem which results in a simple singular value

thresholding procedure [30]. The performance of the two generic algorithms are analyzed

theoretically. PMLSVT is related to [48, 49, 50] and can be viewed as a special case where

a simple closed form solution for the algorithm exists. Good performance of PMLSVT is

demonstrated with synthetic and real data including solar flare images and bike sharing

count data. We show that PMLSVT has much lower complexity than solving the problem

directly via semidefinite program and it has fairly good accuracy.

While working on this paper we realize a parallel work [51] which also studies perfor-

mance bounds for low rank matrix completion with exponential family noise and using a

different approach for proof (Poisson noise is a special case of theirs). Their upper bound

for the mean square error (MSE) is on the order of O (log(d1 + d2)rmax{d1, d2}/m) (our

upper bound is O
(
log(d1d2)[r(d1 + d2)/m]1/2

)
), and their lower bound is on the order

of O (rmax{d1, d2}/m) (versus our lower bound is O
(
[r(d1 + d2)/m]1/2

)
. There might

be two reasons for the difference. First, our sampling model (similar to one bit matrix

completion in [8]) assumes sampling without replacement; therefore there are at most d1d2

observations, and each entry may be observed at most once. In contrast, [51] assumes

sampling with replacement; therefore there can be multiple observations for the same entry.

Since our results heavily depend on the sampling model, we suspect this may be a main

source of the difference. The formulations are also different. The formulation for matrix

completion in our paper is a constrained optimization with an exact upper bound on the
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matrix nuclear norm, whereas [51] uses a regularized optimization with a regularization

parameter λ (which is indirectly related to the nuclear norm of the solution), but there is

no direct control of the matrix nuclear norm. Also, note that their upper and lower bounds

also have a gap on the order of log(d1 + d2), which is consistent with our result. On the

other hand, compared with the more general framework for M -estimator [52], our results

are specific to the Poisson case, which may possibly be stronger but do not apply generally.

1.2 Multi-sensor slope change detection

As an enabling component for modern intelligent systems, multi-sensory monitoring has

been widely deployed for large scale systems, such as manufacturing systems [14], [15],

power systems [16], and biological and chemical threat detection systems [17]. The sensors

acquire a stream of observations, whose distribution changes when the state of the network

is shifted due to an abnormality or threat. We would like to detect the change online as

soon as possible after it occurs, while controlling the false alarm rate. When the change

happens, typically only a small subset of sensors are affected by the change, which is a

form of sparsity. A mixture statistic which utilizes this sparsity structure of this problem is

presented in [18]. The asymptotic optimality of a related mixture statistic is established in

[19]. Extensions and modifications of the mixture statistic that lead to optimal detection are

considered in [20].

In the above references [18, 20], the change-point is assumed to cause a shift in the

means of the observations by the affected sensors, which is good for modeling an abrupt

change. However, in many applications above, the change-point is an onset of system

degradation, which causes a gradual change to the sensor observations. Often such a gradual

change can be well approximated by a slope change in the means of the observations. One

such example is shown in Fig. 4.1, where multiple sensors monitor an aircraft engine and

each panel of figure shows the readings of one sensor. At some time a degradation initiates

and causes decreasing or increasing in the means of the observations. Another example
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Figure 1.1: Degradation sample paths recorded by 21 sensors, generated by C-MAPSS [53].
A subset of sensors are affected by the change-point, which happens at an unknown time
simultaneously and it causes a change in the slopes of the signals. The change can cause
either an increase or decrease in the means.

comes from power networks, where there are thousands of sensors monitoring hundreds

of transformers in the network. We would like to detect the onset of any degradation in

real-time and predict the residual life time of a transformer before it breaks down and causes

a major power failure.

We present a mixture procedure that detects a change-point causing a slope change to

the means of the observations, which can be a model for gradual degradations. Assume the

observations at each sensor are i.i.d. normal random variables with constant means. After the

change, observations at the sensors affected by the change-point become normal distributed

with increasing or decreasing means. The subset of sensors that are affected are unknown.

Moreover, their rate-of-changes are also unknown. Our mixture procedure assumes that each

sensor is affected with probability p0 independently, which is a guess for the true fraction p

of sensors affected. When p0 is small, this captures an empirical fact that typically only a

small fraction of sensors are affected. With such a model, we derive the log-likelihood ratio

statistic, which becomes applying a soft-thresholding to the local statistic at each sensor

and then combining the results. The mixture procedure fires an alarm whenever the statistic
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exceeds a prescribed threshold. We consider two versions of the mixture procedure that

compute the local sensor statistic differently: the mixture CUSUM procedure T1, which

assumes some nominal values for the unknown rate-of-change parameters, and the mixture

generalized likelihood ration (GLR) procedure T2, which uses the maximum likelihood

estimates for these parameters. To characterize the performance of the mixture procedure,

we present theoretical approximations for two commonly used performance metrics, the

average run length (ARL) and the expected detection delay (EDD). Our approximations are

shown to be highly accurate numerically and this is useful in choosing a threshold of the

procedure. We also establish the asymptotic optimality of the mixture procedures. Good

performance of the mixture procedure is demonstrated via real-data examples, including:

(1) detecting a change in the trends of financial time series; (2) predicting the life of air-craft

engines using the Turbofan engine degradation simulation dataset.

The mixture procedure here can be viewed as an extension of the earlier work on multi-

sensor mixture procedure for detecting mean shifts [18]. The extensions of theoretical

approximations to EDD and especially to ARL are highly non-trivial, because of the non-

i.i.d. distributions in the slope change problem. Moreover, we also establish some new

optimality results which were omitted from [18], by extending the results in [54] and [55]

to handle non-i.i.d. distributions in our setting. In particular, we generalize the theory to

a scenario where the log likelihood ratio grows polynomially as a result of linear increase

or decrease of the mean values, whereas in [18], the log-likelihood ratio grows linearly. A

related recent work [19] studies optimality of the multi-sensor mixture procedure for i.i.d.

observations, but the results therein do not apply to the slope change case here.

1.3 Robust sequential change detection

Sequential detection of an abrupt change in a system has rich applications in practice such

as statistical quality control, seismic event identification and network security monitoring

(e.g, [56]). In standard settings, these change detection problems assume that we observe a
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sequence of signal whose distribution changes at some unknown point in time, referred to as

the “change-point”. The goal is to detect the change-point with as little delay as possible,

subject to the constraint that false detections occurring before the true change-point are very

rare. This single sequence case is first studied by Page over 60 years ago in [57] and then

many outstanding contributions are due to [58] and [59]. As the growing complexity of the

systems and the enlarging number of sensors needed to monitor the systems, the detection

procedures that can collect and analyze information from multiple sources are established,

such as [60], [61] and [18].

Most previous work in the area of sequential change-point detection is based on an

assumption that the distributions before and after the change-point are exactly specified.

Under this assumption, it is well known that this optimal procedure is CUSUM procedure

and many great theoretical analysis such as asymptotical and exact optimality are achieved

(e.g, [59, 62, 63]). To implement CUSUM procedure in practice, people need estimate the

parameters in the distributions based on historical data or domain knowledge. However, it is

known in [64] that CUSUM procedure is sensitive to the model mismatch. Therefore, a more

appropriate procedure should be more robust to the uncertainty of the distributions possibly

caused by noise, estimation error and inevitable system error. In the following, I present

two techniques to establish robust sequential detection procedure. The first one utilizes

the offline convex optimization to solve the best detector before we apply the procedure.

The second one utilizes the online convex optimization aiming to jointly estimating the

distribution parameters and detecting the change.

1.3.1 Sequential change detection via offline convex optimization

To improve the robustness of the detection procedure, one can use robust detector to form

the statistics. Robust detector dates back to Huber’s seminal work [65]. Also an asymptotic

version of the robust problem was introduced in [66]. The more recent contributions

[67, 68] introduce a so-called Joint Stochastic Boundedness (JSB), under which one can
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identify a pair of least favorable distributions (LFDs) from the uncertainty classes such that

the CUSUM procedure designed for the LFDs is the optimal for the robust problem in a

minimax sense. However, in the multi-dimensional setting, there remains the computational

challenge to establish robust sequential detection procedures or to find the LFDs. Closed-

form LFDs are found only for a few special cases (e.g,[69] and [70]) for one-dimensional

case. Moreover, the JSB condition in [68] is defined on the real line, and direct extension

of JSB to multi-dimensional setting becomes quite restrictive even in very simple cases.

The following example illustrates the difficulty. Consider two bivariate normal distributions.

Assume that Σ is a positive-definite matrix in R2×2, and we would like to detect a possible

transition from the probability density function P0 = {N (0,Σ)}, to a family of distributions

P1 = {P | P = N (µ1,Σ), ‖µ1 − (10, 10)T‖2 ≤ 1, µ1 ∈ R2}.

In this case, it is impossible to find a distribution in P1 that is stochastically larger than any

other distribution in P1 due the following Lemma 1 (see Fig. 1.2 for the illustration) which

satisfies the JSB condition.

Lemma 1 (Theorem 5 in [71] ). Let X ∼ N (µ,Σ) and X ′ ∼ N (µ′,Σ′) be n-dimensional

normally distributed random vectors. Then X ′ is stochastically larger than X if and only if

µ′(i) ≥ µ(i), for all 1 ≤ i ≤ n and Σ = Σ′, where µ(i) denotes the ith entry of µ.

I present a method of establishing the sequential detection procedures by convex op-

timization. This work is inspired by the recent work for robust hypothesis testing [72].

Given the convex set to which the parameters belong, instead of identifying LFDs under

restrictive assumptions, we solve the best choice of parameters by minimizing the Hellinger

distance between the distributions from uncertainty classes. Then we establish the CUSUM

procedure based on the parameters given by convex optimization. Even if we no longer be

able to prove the optimality of our procedures as a cost for the robustness, we can provide

some useful theoretical analysis and introduce the near optimality. Finally, note that we fix
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Figure 1.2: It is impossible to find a point on the circle of which all the entries are larger
than those of other points on the circle.

the parametric model first (e.g, Normal and Poisson) and the uncertainty class in our work is

represented by a convex set of parameters, which is different with the previous work about

identifying LFDs where the uncertainty class is represented by a set of probability functions

(and our approach leads to computationally more efficient methods).

Our approach is motivated by the recent work using convex optimization for hypothesis

testing [72, 73]. The difference of these approaches from our work is that they treat

sequential change-point detection as a multiple hypothesis test problem. Since for each time

t, there are k possible change-point locations, for a fixed time horizon t ≤ T there are finite

number of hypotheses. One may design the test such that the probability of error for each

of the hypothesis is uniformly controlled and the total probability of error is less than a

given level α. This approach may not be convenient to use for infinite horizon setting of the

sequential change-point detection problem. In this paper, we adopt a different approach and

also characterize two performance metrics that are commonly used for sequential problems:

the Average Run Length (ARL) and Expected Detection Delay (EDD).

1.3.2 Sequential change detection via online convex optimization

We are interested in the sequential change-point detection problem with known pre-change

parameters but unknown post-change parameters. Specifically, given a sequence of samples
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X1, X2, . . ., we assume that they are independent and identically distributed (i.i.d.) with

certain distribution fθ parameterized by θ, and the values of θ are different before and after

some unknown time called the change-point. We further assume that the parameters before

the change-point are known. This is reasonable since usually it is relatively easy to obtain

the reference data for the normal state, so that the parameters in the normal state can be

estimated with good accuracy. After the change-point, however, the values of the parameters

switch to some unknown values, which represent anomalies or novelties that need to be

discovered.

Motivation: Dilemma of CUSUM and generalized likelihood ratio (GLR) statistics

Consider change-point detection with unknown post-change parameters. A commonly used

change-point detection method is the so-called CUSUM procedure [55] that can be derived

from likelihood ratios. Assume that before the change, the samples Xi follow a distribution

fθ0 and after the change the samples Xi follow another distribution fθ1 . CUSUM procedure

has a recursive structure: initialized with W0 = 0, the likelihood-ratio statistic can be

computed according to Wt+1 = max{Wt + log(fθ1(Xt+1)/fθ0(Xt+1)), 0}, and a change-

point is detected whenever Wt exceeds a pre-specified threshold. Due to the recursive

structure, CUSUM is memory and computation efficient since it does not need to store the

historical data and only needs to record the value of Wt. The performance of CUSUM

depends on the choice of the post-change parameter θ1; in particular, there must be a well-

defined notion of “distance” between θ0 and θ1. However, the choice of θ1 is somewhat

subjective. Even if in practice a reasonable choice of θ1 is the “smallest” change-of-interest,

in the multi-dimensional setting, it is hard to define what the “smallest” change would mean.

Moreover, when the assumed parameter θ1 deviates significantly from the true parameter

value, CUSUM may suffer a severe performance degradation [74].

An alternative approach is the Generalized Likelihood Ratio (GLR) statistic based

procedure [56]. The GLR statistic finds the maximum likelihood estimate (MLE) of the post-
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change parameter and plugs it back to the likelihood ratio to form the detection statistic. To be

more precise, for each hypothetical change-point location k, the corresponding post-change

samples are {Xk+1, . . . , Xt}. Using these samples, one can form the MLE denoted as θ̂k+1,t.

Without knowing whether the change occurs and where it occurs beforehand when forming

the GLR statistic, we have to maximize k over all possible change locations. The GLR

statistic is given by maxk<t
∑t

i=k+1 log(fθ̂k,t(Xi)/fθ0(Xt)), and a change is announced

whenever it exceeds a pre-specified threshold. The GLR statistic is more robust than

CUSUM [54], and it is particularly useful when the post-change parameter may vary from

one situation to another. In simple cases, the MLE θ̂k+1,t may have closed-form expressions

and may be evaluated recursively. For instance, when the post-change distribution is

Gaussian with mean θ [75], θ̂k+1,t = (
∑t

i=k+1Xi)/(t− k), and θ̂k+1,t+1 = (t− k)/(t− k+

1) · θ̂k+1,t +Xt+1/(t− k+ 1). However, in more complex situations, in general MLE θ̂k+1,t

does not have recursive form and cannot be evaluated using simple summary statistics. One

such instance is given in Section 1.3.2. Another instance is when there is a constraint on the

MLE such as sparsity. In these cases, one has to store historical data and recompute the MLE

θ̂k,t whenever there is new data, which is not memory efficient nor computational efficient.

For these cases, as a remedy, the window-limited GLR is usually considered, where only

the past w samples are stored and the maximization is restricted to be over k ∈ (t− w, t].

However, even with the window-limited GLR, one still has to recompute θ̂k,t using historical

data whenever the new data are added.

Besides CUSUM or GLR, various online change-point detection procedures using

one-sample updates have been considered, which replace with the MLE with a simple

recursive estimator. The one-sample update estimate takes the form of θ̂k,t = h(Xt, θ̂k,t−1)

for some function h that uses only the most recent data and the previous estimate. Then

the estimates are plugged into the likelihood ratio statistic to perform detection. Online

convex optimization algorithms (such as online mirror descent) are natural approach to

construct these estimators (see, e.g., [76, 77]). Such a scheme provides a more versatile
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approach to develop detecting procedure for complex situations, where the exact MLE

does not have a recursive form or even a closed-form expression. The one-sample update

enjoys efficient computation, as information from the new data can be incorporated via

low computational cost update. It is also memory efficient since the update only needs the

most recent sample. The one sample update estimators may not correspond to the exact

MLE, but they tend to result in good detection performance. However, in general there is no

performance guarantees for such approach. This is the question we aim to address in this

paper.

Application scenario: Social network change-point detection

The widespread use of social networks (such as Twitter) leads to a large amount of user-

generated data generated continuously. One important aspect is to detect change-points in

streaming social network data. These change-points may represent the collective anticipation

of response to external events or system “shocks” [78]. Detecting such changes can provide

a better understanding of patterns of social life. In social networks, a common form of

the data is discrete events over continuous time. As a simplification, each event contains a

time label and a user label in the network. In [79], the authors model discrete events using

network point processes, which capture the influence between users through an influence

matrix. We then cast the problem as detecting changes in an influence matrix, assuming

that the influence matrix in the normal state (before the change) can be estimated from

the reference data. After the change, the influence matrix is unknown (since it represents

an anomaly) and has to be estimated online. Due to computational burden and memory

constraint, since the scale of the network tends to be large, we do not want to store the entire

historical data and rather compute the statistic in real-time.
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Contributions

First, we present a general approach based on online convex optimization (OCO) for

constructing the estimator for the one-sided sequential hypothesis test and the sequential

change-point detection, in the non-anticipative approach of [75] if the MLE cannot be

computed in a convenient recursive form.

Second, we provide a proof of the near second-order asymptotic optimality of this

approach when a “logarithmic regret property” is satisfied and when the distributions are

from an exponential family. The nearly second-order asymptotic optimality [55] means

that the upper bound for performance matches the lower bound up to a log-log factor as

the false-alarm rate tends to zero. Inspired by the existing connection between sequential

analysis and online convex optimization in [80, 81], we prove the near optimality leveraging

the logarithmic regret property of online mirror descent (OMD) and the lower bound

established in statistical sequential change-point literature [82, 55]. More precisely, we

provide a general upper bound for one-sided sequential hypothesis test and change-point

detection procedures with the one-sample update schemes. The upper bound explicitly

captures the impact of estimation on detection by an estimation algorithm dependent factor.

This factor shows up as an additional term in the upper bound for the expected detection

delay, and it corresponds to the regret incurred by the one-sample update estimators. This

establishes an interesting linkage between sequential change-point detection and online

convex optimization. Although both fields, sequential change-point detection and online

convex optimization, study sequential data, the precise connection between them is not clear,

partly because the performance metrics are different: the former concerns with the tradeoff

between average run length and detection delay, whereas the latter focuses on bounding

the cumulative loss incurred by the sequence of estimators through a regret bound [83, 81].

Synthetic examples validate the performances of one sample update schemes. Here we focus

on OMD estimators, but the results can be generalized to other OCO schemes such as the

online gradient descent.
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CHAPTER 2

PRELIMINARIES

In this chapter, we review some fundamentals that will be used for later development. I

will review some results and techniques about matrix completion. Then, some deep and

useful theorems in the random matrix theory are introduced since they play a crucial role in

proving the performance bounds. Next, I will review briefly the theory for classic one-sensor

sequential change-point detection and present some recent progress about multi-sensor

change-point detection. Finally, I will briefly introduce the classic theory about the robust

hypothesis testing and recent progress about robust change-point detection.

2.1 Basic mathematics and results for matrix completion

2.1.1 Basic review of mathematical concepts and tools

In order to prove the theorems in [8] and in Chapter 3, we need have some basic understand-

ings of mathematics including matrix norms, divergence between distributions, information

theory and probability theory. Next, I will offer a quick review of these contents.

Matrix norms

As is known, the matrix norms are all equivalent in Hilbert space with certain inner prod-

uct. Then, people specify them for the convenience of analysis. The Schatten norms, as

one kind of specification, are widely used. Assume that M is an d1-by-d2 matrix, and

σ1, . . . , σmin(d1,d2) are the singular values of M . Then the Schatten p-norm of matrix M is

defined as follows:

‖M‖p =

min(d1,d2)∑
i=1

σpi

1/p

.
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Many useful norms such as Frobenius norm and Spectral norm are special cases of Schatten

norms by taking various ps. Next, I explain the relationship between the norms.

When p = 2, The Schatten 2-norm is just the Frobenius norm, which is defined as the

sum of square of all the entries of a matrix. When p =∞, the Schatten∞-norm is just the

spectral norm, which is defined as the largest singular value of a matrix. When p = 1, the

Schatten 1-norm is just the nuclear norm, which is defined as the sum of the singular values

of a matrix.

Define an inner product 〈A,B〉 in matrix space Rd1×d2 (matrix space is a Hilbert space)

as follows:

〈A,B〉 , Trace(AᵀB) =

d1∑
i=1

d2∑
j=1

AijBij.

Moreover, we define the dual norms. For any (p, q) satisfying p, q > 0 and 1/p+ 1/q = 1,

then Schatten p-norm and Schatten q-norm are called dual norms. For example, the dual

norm of Spectral norm is the nuclear norm and the dual norm of Frobenius norm is itself.

Then the following Hölder’s inequality holds for any pair of dual Schatten p-norms.

Lemma 2 (Theorem 2 in [84], Matrix Hölder’s inequality). For any matrix A,B ∈ Rd1×d2 ,

if 1 ≤ p, q ≤ ∞ satisfying 1/p + 1/q = 1, with the Schatten p-norms and inner product

defined before, we have that

〈A,B〉 ≤ ‖A‖p‖B‖q.

This lemma is useful since we are able to bound the inner product by norms that may

offer some convenience to the analysis.

Other than p = 1, 2,∞, the Scattern p-norms are not very popular so in the following we

denote ‖M‖F as the Frobenius norm, ‖M‖ as the spectral norm and ‖M‖∗ as the nuclear

norm. Therefore, the above lemma offers an useful result: 〈A,B〉 ≤ ‖A‖‖B‖∗, which is

used in the proofs of theorems in Chapter 3.
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Rademacher random variables and contraction principle

In probability theory, one popular proof technique is to take advantage of the symmetry

of random variables. Rademacher random variables, as the simplest symmetric random

variable, are widely used in the probability theory. To obtain a broad horizon, I suggest read

the book [85]. Next, I introduce some essential concepts and results used in this thesis.

Denote B as a Banach space such that there exists a countable subset D of the unit ball

or sphere of the dual space B′ such that

‖x‖ = sup
f∈D
|f(x)|, x ∈ B.

If B is separable, then such D exists (e.g, linear functionals of norm 1) and ‖x‖ is a norm of

x defined on B.

The Rademacher sequence (or Bernoulli sequence) is defined to be a sequence (εi)i∈N

of independent Rademacher random variables taking the values +1 and −1 with equal

probability. A sequence (Xi)i∈N of random variables with values in B is called symmetric

sequence if, for every N ∈ N, (±X1, . . . ,±XN) has the same probability distribution with

(X1, . . . , XN) in BN . The typical example of a symmetric sequence consists in a sequence

of independent and symmetric random variables. Then, an important result about the partial

sum of a symmetric sequence is given by Lévy as follows.

Lemma 3 (Proposition 2.3 in [85]). Let (Xi) be a symmetric sequence of random variables

with values in Banach space B. For every k, set Sk =
∑k

i=1Xi. Then, for any integer N

and t > 0, we have

P{max
k≤N
‖Sk‖ > t} ≤ 2P{‖Sk‖ > t}.

As a consequence, note also that by integration by parts, for every p > 0, we have

Emax
k≤N
‖Sk‖p ≤ 2E‖Sk‖p.
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Using L(́e)vy’s inequalities above, we can prove the following fundamental theorem,

which is known as the contraction principle.

Theorem 1 (Theorem 4.4 in [85], Contraction principle). Let F : R+ → R+ be convex. For

any finite sequence (xi) in a Banach space B and any real numbers (αi) satisfying |αi| ≤ 1

for all i, we have

EF

(∥∥∥∥∥∑
i

αiεixi

∥∥∥∥∥
)
≤ EF

(∥∥∥∥∥∑
i

εixi

∥∥∥∥∥
)
.

Further, for any t > 0,

P

{∥∥∥∥∥∑
i

αiεixi

∥∥∥∥∥ > t

}
≤ 2P

{∥∥∥∥∥∑
i

εixi

∥∥∥∥∥ > t

}
.

Next, we define the contraction. A map φ : R → R is called a contraction if |φ(s) −

φ(t)| ≤ |s−t| for all s, t ∈ R. If we only look at the vector space and add some assumptions,

we can replace αi in Theorem 1 with contractions. The result is summarized in the following

theorem.

Theorem 2 (Theorem 4.12 in [85]). Let F : R+ → R+ be convex and increasing. Let

φi, i ≤ N are contractions satisfying φi(0) = 0. Then, for any bounded subset T in RN , we

have

EF

(
1

2

∥∥∥∥∥
N∑
i=1

εiφi(ti)

∥∥∥∥∥
T

)
≤ EF

(∥∥∥∥∥
N∑
i=1

εiti

∥∥∥∥∥
T

)
, (2.1)

where ‖h(t)‖T , supt∈T |h(t)|.

Note that the right-hand side of (2.1) is not dependent on the contractions φi, i ≤ N .

Therefore, the above theorem offers a bound without possibly complicated functions φis

and then makes the analysis more easily. Finally, we offer a simple but useful result for

Rademacher random variables.

Lemma 4 (Lemma 6.3 in [85]). Let F : R+ → R+ be convex. Then for any finite sequence

(Xi) of independent mean zero random variables in B such that EF (‖Xi‖) <∞ for all i,
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then we have

EF

(
1

2

∥∥∥∥∥∑
i

εiXi

∥∥∥∥∥
)
≤ EF

(∥∥∥∥∥∑
i

Xi

∥∥∥∥∥
)
≤ EF

(∥∥∥∥∥∑
i

εiXi

∥∥∥∥∥
)
.

Equipped with the above knowledge in probability theory, one should be well prepared

to understand the proofs in Chapter 3.

Kullback-Leibler(KL) divergence and Hellinger distance

Similar with the Euclidean distance in vector space, KL divergence and Helliger distance

are used as a measure of the difference between two probability distributions. For discrete

probability distributions P and Q, KL divergence from Q to P is defined to be

DKL(P‖Q) ,
∑
i

P (i) log
P (i)

Q(i)
.

Then, the Hellinger distance between two discrete probability distributions P and Q is

defined to be

H2(P,Q) ,
1

2

∑
i

(
√
P (i)−

√
Q(i))2.

Note that KL divergence is not symmetric with respect to P and Q but Hellinger distance is

symmetric. A simple result is that the Hellinger distance can be bounded by KL divergence

(Equation (12) in Chapter 3 of [86]). I suggest reading the whole Chapter 3 in [86] to obtain

more intuition and knowledge.

Fano’s inequality

In information theory, Fano’s inequality relates the average information lost in a noisy

channel to the probability of the categorization error. In fact, Fano’s inequality has its

statistical interpretation. I refer to Lemma 3 in [87] for the people who are interested to the

generalization of Fano’s result.
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2.1.2 classic matrix completion theory

When it comes to the theory of matrix completion, people need ask three questions: which

matrices can be completed; which sample schemes is reasonable; which algorithm is

appropriate to guarantee the completion accuracy. Matrix completion is not magic but logic.

The first work that answers the above three questions clearly is presented by Dr. Candes and

Dr. Recht in [7]. Next, I will introduce the basic ideas and results and their answers about

the above three questions.

First, they make some assumptions about the matrices to be completed. Assume that

the matrix M ∈ Rd1×d2 is the matrix to be completed. A very important observation is that

the singular vectors of M need to be sufficiently spread in order to minimize the number of

observations needed to recovery M . They present a extreme example to show the intuition.

Consider a rank-2 symmetric matrix M given by

M =
2∑

k=1

σkuku
ᵀ
k, u1 = (e1 + e2)/

√
2, u2 = (e1 − e2)/

√
2,

where the σk are arbitrary singular values and ei is the ith canonical basis vector in Euclidean

space (the vector with all entries equal to 0 but the ith equal to 1). ThenM is zero everywhere

except the top-left 2×2 corner. Intuitively, one can not recoveryM exactly without observing

the top-left corner entries.

Therefore, to explain this case mathematically, they define the coherence of a subspace

U ∈ Rd of dimension r as following:

µ(U) ,
d

r
·max1≤i≤d‖PUei‖2

2,

where PU is the orthogonal projection onto subspace U . One can see that 1 ≤ µ(U) ≤ d/r

for any subspace U ∈ Rd with dimension r. They are interested in subspaces with low

coherence as matrices whose column and row spaces have low coherence cannot really be
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in the null space of the sampling operator.

Assume the singular value decomposition of M is M =
∑r

k=1 ukv
ᵀ
k and with column

and row spaces denoted by U and V , respectively. In this case, PU =
∑

i∈[r] uiu
ᵀ
i and

PV =
∑

i∈[r] viv
ᵀ
i , where [r] is not an exact definition but represents the index set of spanned

spaces. To answer the question about which matrices can be completed with incomplete

observations, they make two assumptions:

• (A0): max(µ(U), µ(V )) ≤ µ0 for some positive µ0.

• (A1): The matrix
∑

1≤k≤r ukv
ᵀ
k has a maximum entry bounded by µ1

√
r/(d1d2) in

absolute value for some positive µ1.

If the matrices to be completed satisfy the above two assumptions, they prove that it is

enough to set sample scheme to be randomly uniform. Finally, they consider the algorithm

used to complete the low-rank matrices. Ideally, they would like to minimize the rank of

matrix M . However, the minimization of rank is proved to be a NP-hard problem that can

not be solved in polynomial time. Therefore, they instead try to minimize the nuclear norm

of M , which is defined as the sum of singular values of M . The nuclear norm of M can

be seen as a convex relaxation (similar with relax `0 norm to `1 norm in LASSO problem).

They consider the following optimization problem:

minimize ‖X‖∗

subject to Xij = Mij, (i, j) ∈ Ω

(2.2)

Then, the main result is the following theorem

Theorem 3 (Theorem 1.3 in [7]). Let M be an d1-by-d2 matrix of rank r obeying (A0) and

(A1) and put d = max(d1, d2). Suppose we observe m entries of M with locations sampled

uniformly at random. Then there exist constants C, c such that if

m ≥ max(µ2
1, µ

1/2
0 µ1, µ0d

1/4)dr(β log d),
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for some β > 2, then the minimizer of (2.2) is unique and equal to M with probability at

least 1− cd−β . For r ≤ µ0d
1/5 and under (A0) only, this estimate can be improved to

m ≥ Cµ0d
6/5r(β log d),

with the same probability of success.

This theorem asserts that when the coherence is low, few observations are required to

recover M with high probability. Also, the theorem suggests the appropriate relationship

between the rank and the dimension for successfully recovering M from randomly sampled

entries. This work is very important and offers the procedures of analyzing the problem.

More refinement is presented in [26].

2.1.3 1-bit matrix completion

After Dr. Candès present the theories for exact matrix completion, people continue working

on this topic and extend the work to many other cases, e.g, [88, 34]. However, the famous

”Netflix Problem” brings new problems that the classic literature for matrix completion

does not consider, namely, the quantized matrix completion. Assume that there is some

unknown matrix whose entries each represent a rating for a particular user on a particular

movie. It is only able to observe a small fraction of the total entries in the matrix since

any user rates only a small subset of movies. The ”Netflix Problem” then asks scientists

to predict the unseen ratings from the observed ratings. This problem is clearly a matrix

completion problem but there is a difference: the ratings are integers but are not continuous

values. The quantization challenges classic matrix completion theories since the classic

theories all assume continuous variables with possible continuous noise (e.g, Gaussian

noise). In recommender system, this phenomenon occurs frequently and even in some cases

the entries are categorical. Therefore, alternative mathematical techniques are needed in

order to demonstrate the performance bounds in such quantized matrix completion problem.
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The first work that considers the quantized observations is written by Dr. Davenport, Dr.

Plan, Dr. Berg and Dr. Wootters in [8]. They answer the three questions again for the

quantized matrix completion problem. Next, I will review the new theories briefly.

First question: which matrices can be completed. Similar with classic theories, the

answer in [8] is that the matrix M should be approximately low-rank. Instead of rigorously

setting the rank of M , authors in [8] presents that an upper bound for the nuclear norm of

M ∈ Rd1×d2 is enough. Specifically, they assume that ‖M‖∗ ≤ α
√
rd1d2 for some positive

α and r. The intuition is that if we see α as the upper bound for ‖M‖∞ and see r as the

upper bound for the rank of M , then the following inequalities show an upper bound for the

nuclear norm of M :

‖M‖∗ ≤
√
r‖M‖F ≤

√
rd1d2‖M‖∞ ≤ α

√
rd1d2.

Second question: which sample schemes is reasonable. Define a subset of indices

Ω ∈ [d1] × [d2], where [d] = {1, 2, . . . , d} and assume that the entries in Ω are observed.

Similar with the classic settings, the authors in [8] assume that Ω follows a binomial

model in which each entry (i, j) ∈ [d1]× [d2] is included in Ω with probability n/(d1d2),

independently, where n is the number of observed entries.

Third question: which algorithm is appropriate to guarantee the completion accuracy.

The answer in [8] is to maximize the log-likelihood function of the optimization variables

with constraints on the nuclear norm and the infinity norm ofM . The log-likelihood function

is dependent on the observation model. Define a differentiable function f : R → [0, 1].

The observation model presented in [8] is as follows: given a matrix M ∈ Rd1×d2 and a

subset of indices Ω, for any (i, j) ∈ Ω, people observe Yij = +1 with probability f(Mij)

and observe Yij = −1 with probability 1− f(Mij). Therefore, the log-likelihood function

for this observation model is defined as follows (X ∈ Rd1×d2 represents the optimization
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variables):

LΩ,Y (X) =
∑

(i,j)∈Ω

(I(Yij = 1) log(f(Xij)) + I(Yij = −1) log(1− f(Xij)))

Then the authors consider solving the following convex optimization problem:

maximize LΩ,Y (X)

subject to ‖X‖∗ ≤ α
√
rd1d2 and ‖X‖∞ ≤ α.

(2.3)

After answering the three questions, the main theorem in [8] proves the upper bound

for the recovery error. Before presenting the main theorem, the authors use Lα and βα to

characterize the ”steepness” and ”flatness” of f in the observation model above. Define that

Lα , sup
|x|≤α

|f ′(x)|
f(x)(1− f(x))

,

and

βα , sup
|x|≤α

f(x)(1− f(x))

(f ′(x))2
.

Theorem 4 (Theorem 1 in [8]). Assume that ‖M‖∗ ≤ α
√
rd1d2 and ‖M‖∞ ≤ α. Suppose

that Ω is chosen at random following the binomial model with E|Ω| = n. Suppose Y is

generated by the observation model above. Consider M̂ as the solution to (2.3), Then with

probability at least 1− C/(d1 + d2),

1

d1d1

‖M̂ −M‖2
F ≤ Cα

√
r(d1 + d2)

n

√
1 +

(d1 + d2) log(d1d2)

n
,

where Cα , C2αLαβα. Above, C1, C2 are absolute constants.

This algorithm proves that when n is greater than (d1 + d2) log(d1d2), the approximately

low-rank matrix M can be recovered accurately with high probability. In fact, the algorithm

offers a order of n for accurate recovery when d1 or d2 goes to infinity.
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Moreover, the authors offer a lower bound for the recovery error and demonstrate that

their method is asymptotically optimal. They design a M and proves that any algorithm can

not recovery M very accurately. The result is summarized in the following theorem.

Theorem 5 (Theorem 3 in [8]). Fix α, r, d1, d2 to be such that r > 4 and α2rmax(d1, d2) >

C0. Suppose f ′(x) is decreasing for x > 0. Let Ω be any subset of [d1]× [d2] with cardinality

n. Let Y be generated from the above observation model. Consider any algorithm which,

for any M satisfying M ∈ K , {M ∈ Rd1×d2 : ‖M‖∗ ≤ α
√
rd1d2 and ‖M‖∞ ≤ α},

takes Yij, (i, j) ∈ Omega as inputs and returns M̂ , there exists a M ∈ K such that with

probability at least 3/4,

1

d1d2

‖M − M̂‖2
F ≥ min

{
C1, C2α

√
β3α/4

√
rmax(d1, d2)

n

}
,

as long as the right-hand side of the above equation exceeds rα2/min(d1, d2). Above,

C1, C2 are absolute constants.

There are several methods to solve (2.3). In [8], the authors choose Spectral projected-

gradient method and alternating-direction method of multipliers (ADMM).

Poisson matrix completion is also a quantized matrix completion problem. Therefore,

the work in Chapter 3 can be seen as an extension of the brilliant work in [8].

2.2 Sequential change detection

In this section, I introduce basic ideas and results about the sequential change-point detection.

There are two major types of this problem: Bayesian and non-Bayesian. In Bayesian method

people assumes that the location of change follows a prior distribution but in non-Bayesian

method there is not such assumption. Bayesian methods are usually more easily to be

analyzed mathematically but non-Bayesian methods are more generally used and more

robust (even if hard to analyze). Both methods are useful. In this thesis, I only consider the
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non-Bayesian methods. I will introduce some classic result for one-sensor case and then

introduce recent progress in multi-sensor change-point detection.

2.2.1 Basic mathematical results

At the beginning, I would like to introduce some famous results that are widely used in the

analysis for sequential change-point detection problem. The most important one is Wald’s

equation, which is also one of the most crucial results in stochastic process.

Lemma 5 (Wald’s equation). Let x1, x2, . . . be independent and identically distributed. For

any stopping time T with ET <∞,

E

(
T∑
i=1

xi

)
= Ex1 · ET.

This is a very good property for the stopping time. Another useful property for stopping

time is about the likelihood ratio.

Lemma 6 (Walds likelihood ratio identity). Let x1, x2, . . . be independent and identically

distributed with density f and g under Pf and Pg respectively. For any event A, we use

E(X;A) to denote E(XIA), where IA is the indicator variable of event A which equals to 1

if A occurs and 0 otherwise. Define the likelihood ratio sequence for any n

ln =
n∑
i=1

g(xi)

f(xi)
.

For any stopping time T and non-negative random variable Y prior to T , we have that

Eg(Y ;T <∞) = Ef (Y lT ;T <∞).

In particular, if Y = IA, then

Pg(A ∩ {T <∞}) = Ef (lT ;A ∩ {T <∞}).
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The proof of Wald’s likelihood ratio identity is a mathematical technique: change of

measure, which establishes an equality between the two cases when the observations are

drawn from f and g. When it is hard to analyze from one side, we can think of changing the

measure and analyzing from the other side.

2.2.2 One-sensor change-point detection

Basic settings and concepts

Assume that a system is monitored by one sensor and the sensor returns records sequentially.

We observe from the sensor a sequence of independent observations x1, x2, . . . . At the

beginning, the system is ”in control” and the observations are drawn from a distribution

with probability density f . At some unknown but deterministic (not random) time κ, called

change-point, the system changes from ”in control” to ”out of control” and the distribution

for the observations change from f to g. Usually we know ahead of time f since when the

system is ”in control” the sensor’s records are stable and easily predicted. However, usually,

it is difficult to know for sure g since many factors can make the system ”out of control”.

Next, I will mainly introduce two type of detection procedures: cumulative sum(CUSUM)

method and generalized likelihood ratio(GLR) methods, where the former one is established

to solve the problem when g is known and the latter one is designed for the case when g is

unknown.

Next question is about how to evaluate the performance of the detection procedures. In

practice, we prefer to raise an alarm as soon as the system is out of control so that we can

take appropriate action, in other words, to minimize the detection delay. In the meantime,

we prefer to control the false alarm rates when the system is in control. One can imagine that

if a procedure with exactly zero false alarm rate it also has infinity detection delay because

of the disturb of noise. Therefore, one good detection procedure must be a procedure that

achieves a good balance between the false alarm rates and detection delay. The problem

of looking for such a procedure is known as a sequential change-point detection problem.
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Since the observations come sequentially, the detection procedure is just a stopping time if

translated to the mathematical language. In this thesis, the two names are interchangeable.

Mathematically, we can formulate the above arguments as the following hypothesis

testing problem:

H0 : xi ∼ f, i = 1, 2, . . . ,

H1 : xi ∼ f, i = 1, 2, . . . , κ,

xi ∼ g, i = κ+ 1, κ+ 2, . . . .

(2.4)

Then, the false alarm rate can be interpreted as the type-I error of hypothesis testing problem

(2.4) and the detection delay is closely rated to the type-II error of (2.4). In fact, the change-

point detection problem is highly related to the sequential hypothesis testing problem.

Under the null hypothesis probability and expectation in this case are denoted by P∞

and E∞, respectively. Under the alternative hypothesis probability and expectation in this

case are denoted by Pκ and Eκ, where κ is the change-point. Define a filtration at time t by

Ft , σ(x1, . . . , xt), which is a smallest sigma-algebra containing x1, . . . , xt. Therefore, Ft

contains all the information before time t. Next, I introduce the mathematical representations

that are frequently used in the theoretical analysis of change-point detection problem. For

any stopping time T ,

• Average Run Length(ARL): the average number of observations between two false

alarms. Larger the better and it can be represented as E∞{T}.

• Expected Detection Delay(EDD): the average number of observations between real

change-point and the alarm time. There are two popular choices of EDD. The first

one is introduced by Lorden in [59], known as the ”worst-case” detection delay:

WDD(T ) , sup
k≥0

(
esssupEk

{
(T − k + 1)+ | Fk

})
,

where the ”esssup” is taken over Fk, meaning that ”for any possible outcome of
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(x1, . . . , xk)”. The second one is introduced by Pollak in [62], known as the condi-

tional average detection delay

CADD(T ) , sup
k≥0

(Ek {T − k | T > k}) .

Note that the event {T > k} is not included in Fk and in fact is not measurable. Therefore,

the WDD and CADD are slightly different but both are meaningful. People would like to

choose one of them for their analysis. Define a class Cγ = {T : E∞{T} ≥ γ} with some

prescribed γ > 0. The goal is to find a stopping time T ∈ Cγ that minimizes WDD(T )

or CADD(T ). Equipped with the above notations and basic concepts, I can introduce the

CUSUM and GLR detection procedures that are most widely used and are proved to be

(asymptotically) optimal.

CUSUM procedure

The CUSUM procedure is first given by Page in [89]. This method requires the distributions

of observations both before and after the change-point, namely, f and g. The core of

CUSUM procedure is the likelihood ratio between f and g. The procedure updates the

testing statistic recursively by taking new likelihood ratio into consideration. Specifically,

under the settings in this section, the CUSUM procedure is a stopping time given by:

TCM , inf

{
t ≥ 1 : max

0≤k<t

t∑
i=k+1

log
g(xi)

f(xi)
≥ b

}
, (2.5)

where b is a prescribed trigger threshold. Note that larger b means larger ARL of CUSUM

procedure TCM . There are two major advantages for TCM : recursively computing and exact

optimality. First, rewriting the procedure TCM , we obtain that

TCM , inf {t ≥ 1 : Ut ≥ b} ,
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where

Ut = max

(
0, Ut−1 + log

g(xt)

f(xt)

)
, t ≥ 1, U0 = 0.

Therefore, the testing statistic Ut can be updated recursively. Note that in fact Ut considers

all the information before time t but at time t it only needs one new computation. This

property is one of the most important properties of the CUSUM procedure. Second, the

CUSUM procedure enjoys good optimality that other procedure usually do not have. Dr.

Moustakides proves the exact optimality in [63].

Theorem 6 (modification of Theorem 1 in [63]). For any b > 0, the CUSUM procedure TCM

minimizes the worst-case detection delay WDD(T ) among all stopping times T satisfying

E∞{T} ≥ E∞{TCM}.

Fixing b first, then E∞{TCM} is also known (note that there is no closed form for this

term). The above theorem proves that in fact the CUSUM procedure is the solution to the

optimization problem minT∈Cγ WDD(T) for any γ > 0. Even if the simple description of

the exact optimality of the CUSUM procedure, the theorem is a deep result and is proved

about 30 years after Page presented the CUSUM procedure. The mathematical tool behind

the theorem is Markov stopping theory and I suggest read [90] if one is interested in the

details. Unfortunately, the proof using Markov stopping theory is not easily extended to

other detection procedures. Therefore, instead of exact optimality, people usually think of

the asymptotic optimality that focus on the case in which γ goes to infinity. Note that the

CUSUM procedure is also asymptotic optimal (of course since it has stronger optimality)

and this result is proved by Dr. Lorden in [59]. Since the optimality in Chapter 4 of this

thesis is also asymptotical optimality, I would like to introduce the basic idea of proving

the asymptotical optimality, which is followed by the thinking clues from Dr. Lorden. The

first step is to prove a lower bound for the WDD, for any detection procedures T ∈ Cγ as

γ → ∞. The second step is to prove that the WDD of CUSUM procedure achieves the

lower bound.
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Theorem 7 (Theorem 3 in [59]). Let n(γ) be the infimum of WDD(T ) as T ∈ Cγ . If

I1 ,
∫
g(x) log

g(x)

f(x)
dx <∞,

then as γ →∞,

n(γ) =
log γ

I1

+ o(γ).

Note that I1 just defined is the KL divergence between pre and post distributions. The

above theorem offers the lower bound. Applying Theorem 2 in [59] we obtain that in fact

CUSUM procedure achieves this lower bound. Following this framework, one can know

that the asymptotic optimal detection procedure is not unique. To compare the procedures

with asymptotic optimality, one can discuss the order of γ of the o(γ).

GLR procedure

Sometimes we do not know exactly what the post-change distribution is, in this case, we can

try to use GLR procedure. GLR procedure assumes a parametric model for the post change

distribution and estimate the parameters for the model based on the historic observations.

The testing statistic is also the likelihood ratio but it is related to a window size w, which

declares from what observations the parameters are estimated. GLR procedure is first

introduced in [91].

Define that Vt as follows:

Vt = max
θ∈Θ

t∑
i=k

log
fθ(xi)

f0(xi)
,

where f0 and fθ are the density before change and the density with parameter θ, and Θ is the

parameter space. For example, fθ can be the normal distribution with mean θ and variance

1 and the density before change is just the standard normal distribution. Then the GLR
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procedure is given by

TGLR , inf

{
t ≥ 1 : max

t−w≤k<t−w1

Vt ≥ b

}
,

where w is the window size and we estimate the parameter θ based on xt−w, . . . , xt−w1 . The

theoretical analysis for GLR procedure is more difficult than that for CUSUM procedure

because of the uncertainty of parameters. Dr. Lai offers some results in [54] (see Lemma 2).

Similar with CUSUM procedure, the GLR procedure sometimes can also be computed

recursively. However, because the GLR procedure needs estimate the unknown parameters

based on the observations in a window with size w, its computation complexity is w

times than the CUSUM procedure. But this computation issue is not obvious since the

computational ability of computers is increasing rapidly, and people care more about the

performance loss caused by the mismatch between real parameters and chosen parameters

in CUSUM procedure. In the next subsection, I will assume that the observations follow

normal distributions and give examples of the CUSUM procedure and GLR procedure

under this setting in order to help reader understand them more easily. The specific form of

procedures are given by assuming N sensors since the one-sensor detection procedure is a

special case when N = 1.

2.2.3 Multi-sensor change-point detection

Even if much progress is achieved to detect the change of one time-series from one sensor,

few work has been done in the case when there are many sensors. When the signal-to-

noise(SNR) ratio is low, in other words, when the signal is weak, one can not detect the

change based on only one series of observations. Therefore, people use many sensors

to monitor one system and detect the change by combing the information from all the

sensors. One example is in the detection of DNA sequence in biometrics. Fig. 2.1 shows the

signals from 10 sensors and the goal is to detect where is the useful DNA sequence (in this

34



0 20 40 60 80 100

1

2

3

4

5

6

7

8

9

10

Genomic locus (kb)

S
ub

je
ct

Figure 2.1: Figure 7.1 in [92]: An artificial example of a data matrix. The raw data for 10
subjects over 100 genomic markers are presented, with 1 marker set every 1 kb. Subjects 2,
3, 7, and 10 have elevated levels of the expectation for the markers in positions 20 to 30.

example we have known that the true DNA in between 20 to 30 based on expert’s bio domain

knowledge). It is hard to detect the true DNA even if we see the signals from all the sensors

and it is impossible to distinguish the true DNA sequence from only one sensor’s information.

Other than this example, multi-sensor detection problem occurs frequently in quality control

and security field. Therefore, effective detection procedure in multi-sensor case is necessary.

Next, I will introduce three recent multi-sensor change detection procedures.

To help reader understand more easily, I assume the normal observations in the following

to show an example. Specifically, we consider the following hypothesis testing problem:

H0 : yn,i ∼ N (0, 1), i = 1, 2, . . . , n = 1, 2, . . . , N,

H1 : yn,i ∼ N (0, 1), i = 1, 2, . . . , κ,

yn,i ∼ N (µn, 1), i = κ+ 1, κ+ 2, . . . , n ∈ A,

yn,i ∼ N (0, 1), i = 1, 2, . . . , n ∈ Ac,

(2.6)
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where N is the number of sensors and only the sensors in the index set A observes the

change in the mean. Note that we do not know A ahead of time and A is also what we

would like to obtain.

Multivariate CUSUM procedure

This procedure is first introduced in [93]. The idea is to run multiple CUSUM procedures

simultaneously on the sensors. If one of the procedures raises an alarm then it reports

that the whole system is down. Multivariate CUSUM procedure assumes that we know

µn, 1 ≤ n ≤ N and assumes that all the sensors observe the change in the mean. The

multivariate CUSUM detection procedure for problem (2.6) is given by

TM−CM , inf

{
t ≥ 1 : max

1≤n≤N
max
0≤k<t

t∑
i=k+1

(µ2
n/2− µnyn,i) ≥ b

}
,

where b is a prescribed threshold.

Here comes the model mismatch: first, µns may be poor guess and far away from the true

values; second, the number of indexes in A is small so only few sensor observes the change.

Although the multivariate CUSUM procedure is easily to be performed in practice, it may

not have good performance if the assumptions are not similar with the real circumstances.

Mei’s Sum CUSUM procedure

In order to decrease the performance loss caused by the assumption that all the sensors

observe the change, Dr. Mei present a new method in [61] recently. The idea is to change

the ”maximum” into ”sum” over the sensors. Specifically, for the problem (2.6), Mei’s

procedure is given by

TMei , inf

{
t ≥ 1 :

N∑
n=1

[
max
0≤k<t

t∑
i=k+1

(µ2
n/2− µnyn,i)

]
≥ b

}
,
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where b is a prescribed threshold. The intuition is that summation over all the sensors is one

kind of combination of the information from all the sensors so it should be better than taking

maximum which treats sensors independently. Moreover, it is asymptotically optimal up to

first-order to detect each and every possible combination of affected data streams when the

data streams are independent, no matter how many data streams are affected. This optimality

is summarized in Theorem 1 in [61].

Even if Mei’s procedure eases the effect caused by incorrect assumption of A, it still

assumes that we know the post-change distribution. If µn is badly guessed, the performance

is poor. To overcome this difficulty, Dr. Xie considers the GLR procedure, but in multi-

sensor case.

Xie’s Multi-sensor GLR procedure

Recently, Dr. Xie and Dr. Siegmund presented the first GLR procedure [18] in multi-sensor

case to solve (2.6) by introducing a sparsity factor p0. p0 is a prior guess for the term |A|/N ,

which is the proportion of the sensors that observe the change. Instead of identifying exactly

the member in A, the guess of p0 is more possible to be accurate. The GLR procedure is as

follows:

TXie = inf

{
t : max

0≤k<t

N∑
n=1

log (1− p0 + p0 exp[`n(k, t)]) ≥ b

}
,

where b is a prescribed threshold and `n(k, t) is the likelihood ratio given by

`n(k, t) =
(
∑t

i=k+1 yn,i)
2

2(t− k)
.

And the version with window size w is given by

T̃Xie = inf

{
t : max

t−w≤k<t

N∑
n=1

log (1− p0 + p0 exp[`n(k, t)]) ≥ b

}
,
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where b is a prescribed threshold. Note that the procedures are not dependent on µn, 1 ≤

n ≤ N but replace them with their Maximum Likelihood Estimators(MLEs).

Xie’s procedure addresses the mismatches from both A and µn, however, it is slower

than the above two procedures since the MLEs are updated based on w historic observations.

This procedure is also first-order asymptotic optimal, which is proved in [13] recently. The

proof is also one major part in Chapter 4 of this thesis. One can see that there is balance

between model generalization and computational complexity. Therefore, there is no perfect

detection procedure, and the ability of establishing appropriate procedures for specific

problems is the most important.

2.3 Robust hypothesis testing and change detection

2.3.1 Classic theory about robust hypothesis testing

As is well known, for testing between two simple hypotheses, Neyman-Pearson test has

the smallest type-II error among all the test with the same type-I error, namely, minimax.

One may ask if we can find such tests when the hypotheses are not quite exactly specified.

Assume that we observe finite sample x1, . . . , xn, and we would like to test H0 : xi ∼ P0 ∈

P0, i = 1, . . . , n against H1 : xi ∼ P1 ∈ P1, i = 1, . . . , n, where P0 and P1 are two sets

of distributions that possibly contain the true distributions. The problem of finding a test

to solve the above testing problem in some sense of optimality is called robust hypothesis

testing problem.

Dr. Huber proved in [65] first that a robust version of probability ratio test is minimax

optimal when P0 and P1 are small perturbations of true distributions. Then Dr. Huber

and Dr. Strassen extended the results to more general cases by introducing the concept of

2-alternating capacity. Next I will review briefly the concepts in a language of probability

theory.
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2-alternating capacity

Let Ω be a complete separate metrizable space, A be its Borel-σ-algebra, C be the set of

all probability measures on Ω and P ⊂ C. Then, the non-empty set P defines an upper

probability

v(A) = sup{P(A),P ∈ P}, A ∈ A

and an lower probability

u(A) = inf{P(A),P ∈ P}, A ∈ A,

then v(A) + u(Ac) = 1 for any A ∈ A. They call 2-alternating capacity any set function v

satisfying the following properties:

• v(∅) = 0 and v(Ω) = 1.

• If A ∈ B, then v(A) ≤ v(B).

• If An ↑ A, then v(An) ↑ v(A).

• If P is weakly compact and Fn ↓ F , then v(Fn) ↓ v(F ).

• v(A ∪B) + v(A ∩B) ≤ v(A) + v(B),

Least favorable distributions and probability ratio tests

Let C be the set of all probability measures on a complete separable metrizable space Ω.

Define that

Pj , {P ∈ C | P(A) ≤ vj(A) for all Borel sets A} , j = 1, 2,

where v0 and v1 are both 2-alternating capacities. Then there exists a pair (Q0,Q1) ∈

P0 × P1 such that the Neyman-Pearson tests between the simple hypotheses Q0, Q1 are
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minimax among all the tests between P0 and P1. The pair (Q0,Q1) is called least favorable

distributions(LFDs) and they prove the existence of the LFDs if the distributions are ”upper

bounded” by 2-alternating capacities. The main results are summarized in the following

theorem.

Theorem 8 (Simplification of Corollary 4.2 in [94]). Define that π as the probability ratio

between Q0 and Q1, namely, a version of dQ1/dQ0. For any sample size n and any level α,

the Neyman-Pearson test of level α, between Q0 and Q1, defined by

φ(x1, . . . , xn) =1 for
n∏
i=1

π(xi) > C

=γ for
n∏
i=1

π(xi) = C

=0 for
n∏
i=1

π(xi) < C,

(2.7)

where C and γ are chosen such that EQ0{φ} = α, is also a minimax test between P0 and

P1 with the same level α and with the same minimum power.

The existence of the least favorable distributions are proved in the above theorem, how

to solve for them remains a very difficult problem, especially in come complicated cases

(e.g., high-dimensional sample space Ω = RN with a large N ). To solve this problem, they

offer a representation of (Q0,Q1) in the following theorem as a solution to a minimization

problem.

Theorem 9 (Theorem 6.1 in [94]). Let Φ be a continuous and strongly convex function

in [0, 1], then the pair (Q0,Q1) ∈ P0 × P1 satisfies the above theorem if and only if it

minimizes ∫
Φ

(
dP0

d(P0 + P1)

)
d(P0 + P1),

among all (P0,P1) ∈ P0 × P1

Unfortunately, the above minimization problem is not easy to solve since the minimiza-
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tion is over a set of distributions and the ratio dP0

d(P0+P1)
can not computed easily in many

circumstances.

Examples of robust testing problems with 2-alternating capacities

Dr. Huber presents that when the observation set is compact, several uncertainty models

such as ε-contamination neighborhoods, total variation neighborhoods, band classes, and

p-point classes are special cases of this model with different choices of capacity.

First example. Let Ω be compact. Define that v(A) = (1− ε)P0(A) + ε for A 6= ∅, then

v is a 2-alternating capacity. And the ε-contamination neighborhoods is just the following

set of distributions:

Pv , {P ∈ C | P = (1− ε)P0 + εH,H ∈ C} .

Second example. Let Ω be compact. Define that v(A) = min(P0(A), 1) for A 6= ∅, then

v is a 2-alternating capacity. And the total variation neighborhoods is just the following set

Pv , {P ∈ C | |P(A)− P0(A)| ≤ ε,∀A} .

For more examples and details, one can see [94] or Chapter 10 in [69].

In summary, Dr. Huber’s work offers us confidence that the probability ratio test is also

minimax in a large number of robust hypothesis testing problems, even if more efficient way

of finding such probability ratio tests are still needed in practice.

2.3.2 Minimax robust sequential change detection in one dimensional case

Recently in [68], Dr. Veeravalli and other authors apply the theories in robust hypothesis

testing to the robust sequential change detection problem. The basic idea is to find the

least favorable distributions first and then use CUSUM procedure to detect the change.

Since the testing statistic in CUSUM procedure is just the probability ratio of pre and post
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change distributions, Dr. Veeravalli and other authors prove the optimality of their detection

procedures by extending Dr. Huber’s work.

The main difference between robust hypothesis testing and robust sequential change

detection is the assumption on the number of sample size. In hypothesis testing problem, the

sample size is fixed ahead of time, however, the sample size in unknown and the observations

come sequentially in the change detection problem. Other than this difference, the change

detection problem uses different metrics to characterize the optimality. Therefore, even

if it seems like a straightforward extension, it remains many difficulties if one wants to

offer a rigorous proof. For this reason, in [68], the authors only consider the case when the

distributions are on the real line R, an assumption that simplifies the analysis much. Next, I

review their results briefly and show some difficulties not addressed in high-dimensional

case.

Joint Stochastic Boundedness(JSB)

The main result in [68] is highly dependent on the assumption called Joint Stochastic

Boundedness. First, I review the definition of stochastic order of random variables. If and X

and X ′ are two real-valued random variables defined on a probability space (Ω,F ,P) such

that

P(X ≥ t) ≥ P(X ′ ≥ t),∀t ∈ R,

then we say that the random variable X is stochastically larger than the random variable X ′,

denoted by X � X ′.

Definition 1 (Joint Stochastic Boundedness in [67]). Consider the pair (P0,P1) of classes

of distributions defined on a measurable space (Ω,F). Let (ν0, ν1) ∈ P0 × P1 be some

pair of distributions from this pair of classes such that ν1 is absolutely continuous with

respect to ν0. The pair (P0,P1) is said to be Joint Stochastic Bounded by (ν0, ν1) if for all

(ν0, ν1) ∈ P0 × P1,

ν0 � ν0, ν1 � ν1.
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And (ν0, ν1) is the pair of LFDs for the uncertainty classes (P0,P1).

The asymptotical optimal robust CUSUM procedure in one dimensional case

Next, I introduce the main result in [68], which claims that the robust CUSUM procedure

is asymptotical optimal in a minimax sense if the JSB assumption is satisfied. Since the

pre-change and post-change distributions are uncertain, we change a little bit the notation

defined before in the one-sensor change detection. When the change happens at k and the

pre-change and post-change distributions are ν0 and ν1 respectively, the probability law is

denoted by Pν0,ν1k and the expectation is denoted by Eν0,ν1k . When there is no change, the

notations are changed to Pν0∞ and Eν0∞, respectively.

Theorem 10 (Theorem III.2 in [68]). Suppose the following conditions hold: (i) The pair

(P0,P1) is Joint Stochastic Bounded by (ν0, ν1). (ii) All distributions ν0 ∈ P0 are absolutely

continuous with respect to ν0. (iii) The function L∗(·), representing the log-likelihood ratio

between ν1 and ν0, is continuous over the support of ν0. Define that the robust CUSUM

procedure TR−CM as follows:

TR−CM , inf

{
t > 0 : max

0≤k≤t

t∑
i=k+1

L∗(xi) ≥ b

}
,

where xis are the observations and b is the prescribed threshold chosen such that Eν0∞{TR−CM} =

γ. Then TR−CM minimizes

sup
ν0∈P0

sup
ν1∈P1

WDDν0,ν1(T )

among all the stopping times in {T : supν0∈P0
Eν0∞T ≥ γ}, where WDDν0,ν1(T ) is defined

as follows (just change the expectation operator)

WDD(T ) , sup
k≥0

(
esssupEν0,ν1k

{
(T − k + 1)+ | Fk

})
.

This theorem shows that in one-dimensional case, we need two steps to find the asymp-
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totic optimal procedure. The first step is to find the pair LFDs (ν0, ν1) given two uncertainty

classes P0 and P1. The second step is to construct classic CUSUM procedure that is used in

the case when the pre-change and post-change distributions are ν0 and ν1 respectively.

Difficulty in high-dimensional sample space

The above JSB assumption is defined only in the case where the distributions are defined

on the real line. One may ask why not extend it to the high-dimensional case with the

extended definition for ”stochastically larger”. Next, I give an counterexample to show that

the ”high-dimension” JSB assumption can not be satisfied even in very simple cases.

First, I introduce the definition of multivariate stochastic order. If and X and X ′ are two

real-valued random variables defined on a probability space (ΩN ,F ,P) such that

Ef(X) ≥ Ef(Y ), ∀ increasing, bounded function f : RN → R,

then we say that the random variable X is multivariate stochastically larger than the random

variable X ′, denoted by X � X ′. We can see that this definition is a direct extension

and when N = 1 the definition is equivalent with the definition of stochastic order for the

distributions on the real line.

Second, we keep the description about JSB assumption except replacing the definition of

stochastic order with the definition of multivariate stochastically larger, and show that this

assumption is too strong to be satisfied in high dimensional case. Consider Ω = R2 and P0

and P1 are two sets of bivariate normal distributions. Assume that Σ is a positive-definite

matrix in R2×2,

P0 = {P | P = N (µ0,Σ), ‖µ0‖2 ≤ 1, µ0 ∈ R2},

and

P1 = {P | P = N (µ1,Σ), ‖µ1 − 10‖2 ≤ 1, µ1 ∈ R2}.

Next lemma shows easily that we can not find a ν0 ∈ P0 such that ν0 � ν0, ∀ν0 ∈ P0.
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Similarly, we can not find ν1 ∈ P1 such that ν1 � ν1,∀ν1 ∈ P1.

Lemma 7 (Theorem 5 in [71]). Let X ∼ N (µ,Σ) and X ′ ∼ N (µ′,Σ′) be n-dimensional

normally distributed random vectors. ThenX ′ � X if and only if µ′i ≥ µi, for all 1 ≤ i ≤ n

and Σ = Σ′.

Therefore, the JSB assumption for multivariate normal distributions is not satisfied in

R2 even in such a simple case. This is because the definition of multivariate stochastic order

is so strong that it needs all the coordinates to satisfy certain property of stochastic order.

2.3.3 Robust optimization for robust hypothesis testing

Recently, Dr. Nemirovski, Dr. Juditsky and Dr. Goldenshluger presents another clue of

solving the robust hypothesis testing problem in [72], from the robust optimization point of

view. Instead of minimizing over a set of distributions, the authors first specifies a parametric

model and then solving a convex optimization problem with variables in very nice parameter

space such as RN . This offers a practical and more efficient method of finding the LFDs,

especially in high dimensional case. Next, I basically introduce the ideas of the authors.

Good observation scheme

The authors first makes some general assumptions and then claims their main results based

on the assumptions. Assume a parametric family P = {Pµ, µ ∈ M} of probability

distributions on a sample space Ω and an observation ω ∼ Pµ with unknown parameter

µ ∈ M. The collection ((Ω,P), {pµ, µ ∈ M},F) is called a good observation scheme if

the following four assumptions are satisfied:

1. M∈ Rm is a convex set which coincides with its relative interior

2. Ω is a Polish space equipped with a Borel σ-additive σ-finite measure P and the

support of P is Ω. Define that pµ(ω) as the density of Pµ ∈ P with respect to P. Then

pµ is continuous, positive and locally uniformly summable in µ ∈M and ω ∈ Ω.
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3. Given a finite-dimensional linear space F of continuous functions on Ω containing

constants such that log(pµ/pν) ∈ F whenever µ, ν ∈M.

4. For every φ ∈ F , the function

Fφ(µ) = log

(∫
Ω

exp{φ(ω)}pµ(ω)P(dω)

)

is well defined and concave in µ ∈M.

Even if long description about the assumptions, in most popular cases the above assumptions

are satisfied. For example, the assumption 3 is equivalent to to saying that distributions

Pµ, µ ∈M form an exponential family with continuous minimal sufficient statistics. There-

fore, the exponential family is a good parametric family that is included in the good

observation scheme. In the end, I will review the case when the distributions are Gaussian.

One sample simple test by convex optimization

The simplest case is when there is only one sample and we would like to test between two

simple hypotheses. On the top of a good observation scheme, given two nonempty convex

compact sets X, Y ∈M and one sample ω, then the testing problem is

H0 : ω ∼ Pµ, µ ∈ X, against H1 : ω ∼ Pµ, µ ∈ Y.

Assume a detector φ(·) ∈ F and the decision rule based on the sample ω is: it accepts H0 if

φ(ω) ≥ 0 and it accepts H1 if φ(ω) < 0. The quality of the detector φ is characterized by

the error probabilities. The robust type-I error is then defined as

εX(φ) , sup
x∈X

Px{ω : φ(ω) < 0},
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and the robust type-II error is defined as

εY (φ) , sup
y∈Y

Py{ω : φ(ω) ≥ 0}.

However, the above two terms do not satisfy good convex or concave properties. Therefore,

the authors convexify the problem by defining another type of error (noting the assumption

4 in the good observation scheme). The risk ε(φ) of detector φ on (H0, H1) is defined to be

the smallest ε satisfying the following two conditions:

∫
Ω

exp{φ(−ω)}px(ω)P(dω) ≤ ε(φ),∀x ∈ X,

and ∫
Ω

exp{φ(ω)}py(ω)P(dω) ≤ ε(φ),∀y ∈ Y.

Using Markov inequality, one can prove that max{εX(φ), εY (φ)} ≤ ε. The authors then

minimize ε(φ) instead of the classic type-I and type-II errors, which transforms the problem

into a convex setting.

Nearly optimal detector for one sample case

In the just described situation and under the above assumptions, define that Φ : F × (X ×

Y )→ R as follows

Φ(φ, [x; y]) , log

(∫
Ω

exp{−φ(ω)}px(ω)P(dω)

)
+ log

(∫
Ω

exp{φ(ω)}py(ω)P(dω)

)
.

Then the nearly optimal detector can be found by solving the saddle point of Φ(φ, [x; y]).

The existence of saddle point and the simple form of the detector is summarized in the

following main theorem.

Theorem 11 (Simplification of Theorem 2.1 in [72]). The theorem contains three parts:

existence of saddle points; nearly optimality; and specification of the detector.
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1. Φ(φ, [x; y]) is continuous in its domain. It is convex in φ(·) ∈ F and is concave in

[x; y] ∈ X × Y . The saddle point (min in φ and max in [x; y]) exists and is denoted

by (φ∗, [x∗; y∗]). Then the following equation holds

∫
Ω

exp{φ∗(ω)}px∗(ω)P(dω) ≤ ε(φ∗) =

∫
Ω

exp{φ∗(ω)}py∗(ω)P(dω) ≤ ε(φ∗),

and the common value of the two quantities is denoted by ε∗. Then ε(φ∗) ≤ ε∗.

2. Let ε be a positive value such that there exists a test for deciding between two simple

hypotheses H0 : ω ∼ px∗ and H1 : ω ∼ py∗ with the sum of type-I and type-II error

less than 2ε, then ε∗ ≤ 2
√
ε(1− ε).

3. In fact, the detector φ∗ is just the probability ratio test. Specifically

φ∗ =
1

2
log

px∗
py∗

.

The above theorem offers an efficient method of finding the good detector for the robust

hypothesis testing problem. For example, when ω ∼ N (µ,Σ) with unknown µ and known

Σ, defining that F as the space of all affine functions on Rm, then the solution of [x; y] is

just the minimizer of the following optimization problem

[x∗; y∗] = arg max
x∈X,y∈Y

[
−1

4
(x− y)ᵀΣ−1(x− y)

]
,

which is the nearest pair of two points in X and Y in the sense of Euclidean distance.

K-Repeated observations

I review the case when there is only one sample. Next, I introduce the case when K sample

points are collected repeatedly. Good observation schemes admit naturally defined direct

products. Assume that φ∗ is the nearly optimal detector for one sample. Then forK-repeated
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sample points, the detector is

φ(K)
∗ =

K∑
k=1

φ∗(ωk),

and the risk is ε(K)
∗ = εK∗ . Note that when the sample size increases the risk decreases

exponentially.
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CHAPTER 3

POISSON MATRIX COMPLETION

In this chapter, I present the work about poisson matrix completion. This work is mainly

summarized in [95]. Section 3.1 sets up the formalism for Poisson matrix completion.

Section 3.2 presents matrix recovery based on constrained maximum likelihood and es-

tablishes the upper and lower bounds for the recovery accuracy. Section 3.3 presents the

PMLSVT algorithm that solves the maximum likelihood approximately and demonstrates

its performance on recovering solar flare images and bike sharing count data. All proofs are

delegated to the appendix.

The notation in this chapter is standard. For reader’s convenience, I present the notations

again here. In particular, R+ denotes the set of positive real numbers and Zm+ denotes a

m-dimensional vector with positive integer entries; JdK = {1, 2, . . . , d}; (x)+ = max{x, 0}

for any scalar x; Let [x]j denote the jth element of a vector x; I{[ε]} is the indicator function

for an event ε; |A| denotes the number of elements in a set A; diag{x} denotes a diagonal

matrix with entries of a vector x being its diagonal entries; 1d1×d2 denotes an d1-by-d2

matrix of all ones. Let ‖x‖1, ‖x‖2 denote the `1 and `2 norms of a vector x. Let entries of a

matrix X be denoted by Xij or [X]ij . For a matrix X = [x1, . . . , xn] with xj being the jth

column, vec(X) = [xᵀ1, . . . , x
ᵀ
n]ᵀ denote vectorized matrix. Let ‖X‖ be the spectral norm

which is the largest absolute singular value, ‖X‖F = (
∑

i,j X
2
ij)

1/2 be the Frobenius norm,

‖X‖∗ be the nuclear norm which is the sum of the singular values, ‖X‖1,1 =
∑

i

∑
j |Xij|

be the `1 norm, and finally ‖X‖∞ = maxij |Xij| be the infinity norm of the matrix. Let

rank(X) denote the rank of a matrix X . We say that a random variable Z follows the

Poisson distribution with a parameter λ (or Z ∼ Poisson(λ)) if its probability mass function

P(Z = k) = e−λλk/(k!)). Finally, let E[Z] denote the expectation of a random variable Z.

The only set of non-conventional notations that we use is the following. By a slight
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abuse of notation, we denote the Kullback-Leibler (KL) divergence between two Poisson

distributions with parameters p and q, p, q ∈ R+ as

D(p‖q) , p log(p/q)− (p− q),

and denote the Hellinger distance between two Poisson distributions with parameters p and

q as

d2
H(p, q) , 2− 2 exp

{
−1

2
(
√
p−√q)2

}
.

It should be understood that the KL distance and the Hellinger distance are defined between

two distributions and here the arguments p and q are merely parameters of the Poisson

distributions since we restrict our attention to Poisson. Based on this, we also denote, by

a slight abuse of notation, the average KL and Hellinger distances for two sets of Poisson

distributions whose parameters are determined by entries of two matrices P , Q ∈ Rd1×d2
+ :

D(P‖Q) ,
1

d1d2

∑
i,j

D(Pij‖Qij),

d2
H(P,Q) ,

1

d1d2

∑
i,j

d2
H(Pij, Qij).

3.1 Formulation

3.1.1 Matrix completion

A related problem is matrix completion. Given a matrix M ∈ Rd1×d2
+ consisting of positive

entries, we obtain noisy observations for a subset of its entries on an index set Ω ⊂ Jd1K×

Jd2K. The indices are randomly selected with E[|Ω|] = m. In other words, I{(i, j) ∈ Ω} are

i.i.d. Bernoulli random variables with parameter m/(d1d2). The observations are Poisson
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counts of the observed matrix entries and they are mutually independent

Yij ∼ Poisson(Mij), ∀(i, j) ∈ Ω. (3.1)

Our goal is to recover M from the Poisson observations {Yij}(i,j)∈Ω.

The following assumptions are made for the matrix completion problem. First, we set an

upper bound α > 0 for each entry Mij ≤ α to entail that the recovery problem is well-posed

[36]. This assumption is also reasonable in practice; for instance, M may represent an image

which is usually not too spiky. The second assumption is characteristic to Poisson matrix

completion: we set a lower bound β > 0 for each entry Mij ≥ β. This entry-wise lower

bound is required by our later analysis (so that the cost function is Lipschitz), and it also has

an interpretation of a minimum required signal-to-noise ratio (SNR), since SNR of a Poisson

observation with intensity I is given by
√
I . Third, we make a similar assumption to one-bit

matrix completion [8]; the nuclear norm of M is upper bounded ‖M‖∗ ≤ α
√
rd1d2. This

is a relaxation of the assumption that M has a rank exactly r (some small integer). This

particular choice arises from the following consideration. If Mij ≤ α and rank(M) ≤ r,

then

‖M‖∗ ≤
√
r‖M‖F ≤

√
rd1d2‖M‖∞ ≤ α

√
rd1d2.

We consider a formulation by maximizing the log-likelihood function of the optimization

variable X given our observations subject to a set of convex constraints. In the matrix

completion problem, the log-likelihood function is given by

FΩ,Y (X) =
∑

(i,j)∈Ω

Yij logXij −Xij, (3.2)

where the subscript Ω and Y indicate the data involved in the maximum likelihood function
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F . Based on previous assumptions, we define a candidate set

S ,
{
X ∈ Rd1×d2

+ : ‖X‖∗ ≤ α
√
rd1d2,

β ≤ Xij ≤ α, ∀(i, j) ∈ Jd1K× Jd2K} .
(3.3)

An estimator M̂ can be obtained by solving the following convex optimization problem:

M̂ = arg max
X∈S

FΩ,Y (X). {matrix completion} (3.4)

3.1.2 Relation of two formulations

Note that the matrix completion problem can also be formulated as a regularized maximum

likelihood function problem. However, we consider the current formulation for the conve-

nience of drawing connections, respectively, between Poisson matrix recovery and Poisson

compressed sensing studied in[41], as well as Poisson matrix completion and one-bit matrix

completion studied in [8].

Indeed, these two formulations in the forms of nuclear norm regularized maximum

likelihood function and (3.4) are related by the well-known duality theory in optimization

(see, e.g. [96]). Consider a penalized convex optimization problem:

min
x
f(x) + λg(x), λ ≥ 0, (3.5)

and the constrained convex optimization problem:

min
x
f(x) subject to g(x) ≤ c. (3.6)

Denote x∗ as the solution to (4.1). Then x∗ is also the solution to (3.6), if we set c = g(x∗).

Conversely, denote x∗ as the solution to problem (3.6). We can interpret λ ≥ 0 as the the

Lagrange multiplier and consider the Lagrange dual problem. Under Slater’s condition (i.e.
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there exists at least one x such that g(x) < c), there is at least one λ such that x∗ is also

the solution to problem (4.1). Therefore, (4.1) and (3.6) are equivalent in the sense that the

two problems have the same minimizer for properly chosen parameters. More details can

be found in [97]. Using the suggestion by Theorem 1 in [97], we choose λ to be around

1/α
√
rd1d2.

3.2 Performance Bounds

In the following, we use the squared error

R(M, M̂) , ‖M − M̂‖2
F , (3.7)

as a performance metric for both matrix recovery and matrix completion problems.

For matrix completion, we first establish an upper bound for estimator in (3.4), and then

present an information theoretic lower bound which nearly matches the upper bound up to a

logarithmic factor O(d1d2).

Theorem 12 (Matrix completion; upper bound). Assume M ∈ S, Ω is chosen at random

following our Bernoulli sampling model with E[|Ω|] = m, and M̂ is the solution to (3.4).

Then with a probability exceeding (1− C/(d1d2)), we have

1

d1d2

R(M, M̂) ≤ C ′
(

8αT

1− e−T

)
· (α
√
r

β
)·

(
α(e2 − 2) + 3 log(d1d2)

)
·
(
d1 + d2

m

)1/2

·[
1 +

(d1 + d2) log(d1d2)

m

]1/2

.

(3.8)
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If m ≥ (d1 + d2) log(d1d2), then (3.8) simplifies to

1

d1d2

R(M, M̂) ≤
√

2C ′
(

8αT

1− e−T

)
·
(
α
√
r

β

)
·

(
α(e2 − 2) + 3 log(d1d2)

)
·
(
d1 + d2

m

)1/2

.

(3.9)

Above, C ′, C are absolute constants and T depends only on α and β. Here the expectation

and probability are with respect to the random Poisson observations and Bernoulli sampling

model.

The proof of Theorem 12 is an extension of the ingenious arguments for one-bit matrix

completion [8]. The extension for Poisson case here is nontrivial for various aforementioned

reasons (notably the non sub-Gaussian and only locally sub-Gaussian nature of the Poisson

observations). An outline of our proof is as follows. First, we establish an upper bound for

the Kullback-Leibler (KL) divergence D(M‖X) for any X ∈ S by applying Lemma 13

given in the appendix. Second, we find an upper bound for the Hellinger distance d2
H(M, M̂)

using the fact that the KL divergence can be bounded from below by the Hellinger distance.

Finally, we bound the mean squared error in Lemma 14 via the Hellinger distance.

Remark 1. Fixing m, α and β, the upper bounds (3.8) and (3.9) in Theorem 12 increase

as the upper bound on the nuclear norm increases, which is proportional to
√
rd1d2. This

is consistent with the intuition that our method is better at dealing with approximately

low-rank matrices than with nearly full rank matrices. On the other hand, fixing d1, d2, α, β

and r, the upper bound decreases as m increases, which is also consistent with the intuition

that the recovery is more accurate with more observations.

Remark 2. Fixing α, β and r, the upper bounds (3.8) and (3.9) on the mean-square-error

per entry can be arbitrarily small, in the sense that the they tend to zero as d1 and d2 go to

infinity and the number of the measurements m = O((d1 + d2) logδ(d1d2)) (m ≤ d1d2) for

δ > 2.
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We may obtain an upper bound on the KL divergence (which may reflect the true

distribution error) as a consequence of Theorem 12.

Corollary 1 (Upper bound for KL divergence). Assume M ∈ S, Ω is chosen at random

following the Bernoulli sampling model with E[|Ω|] = m, and M̂ is the solution to (3.4).

Then with a probability exceeding (1− C/(d1d2)),

D(M‖M̂) ≤2C ′
(
α
√
r/β
) (
α(e2 − 2) + 3 log(d1d2)

)
·(

d1 + d2

m

)1/2

·
[
1 +

(d1 + d2) log(d1d2)

m

]1/2

.

(3.10)

Above, C and C’ are absolute constants. Here the expectation and probability are with

respect to the random Poisson observations and Bernoulli sampling model.

The following theorem establishes a lower bound and demonstrates that there exists an

M ∈ S such that any recovery method cannot achieve a mean square error per entry less

than the order of O(
√
rmax{d1, d2}/m).

Theorem 13 (Matrix completion; lower bound). Fix α, β, r, d1, and d2 to be such that

α ≥ 1, α ≥ 2β, r ≥ 4, and α2rmax{d1, d2} ≥ C0. Fix Ω0 be an arbitrary subset of

Jd1K× Jd2K with cardinality m. Consider any algorithm which, for any M ∈ S , returns an

estimator M̂ . Then there exists M ∈ S such that with probability at least 3/4,

1

d1d2

R(M, M̂)

≥ min

{
1

256
, C2α

3/2

[
rmax{d1, d2}

m

]1/2
}
,

(3.11)

as long as the right-hand side of (3.11) exceeds C1rα
2/min{d1, d2}, where C0, C1 and

C2 are absolute constants. Here the probability is with respect to the random Poisson

observations only.

Similar to [8, 98], the proof of Theorem 13 relies on information theoretic arguments

outlined as follows. First we find a set of matrices χ ⊂ S so that the distance between

56



any X(i), X(j) ∈ χ, identified as ‖X(i) −X(j)‖F , is sufficiently large. Suppose we obtain

measurements of a selected matrix in χ and recover it using an arbitrary method. Then we

could determine which element of χ was chosen, if the recovered matrix is sufficiently close

to the original one. However, there will be a lower bound on how close the recovered matrix

can be to the original matrix, since due to Fano’s inequality the probability of correctly

identifying the chosen matrix is small.

Remark 3. Fixing α, β and r, the conditions in the statement of Theorem 3 can be satisfied

if we choose sufficiently large d1 and d2.

Remark 4. When m ≥ (d1 + d2) log(d1d2), the ratio between the upper bound in (3.9) and

the lower bound in (3.11) is on the order of O(log(d1d2)). Hence, the lower bound matches

the upper bound up to a logarithmic factor.

Our formulation and results for Poisson matrix completion are inspired by one-bit

matrix completion [8], yet with several important distinctions. In one-bit matrix completion,

the value of each observation Yij is binary-valued and hence bounded; whereas in our

problem, each observation is a Poisson random variable which is unbounded and, hence, the

arguments involve bounding measurements have to be changed. In particular, we need to

bound maxij Yij when Yij is a Poisson random variable with intensity Mij . Moreover, the

Poisson likelihood function is non Lipschitz (due to a bad point when Mij tends to zero),

and hence we need to introduce a lower bound on each entry of the matrix Mij , which can be

interpreted as the lowest required SNR. Other distinctions also include analysis taking into

account of the property of the Poisson likelihood function, and using the KL divergence as

well as the Hellinger distance that are different from those for the Bernoulli random variable

as used in [8].

57



3.3 Algorithms

In this section we develop efficient algorithms to solve the matrix completion problems (3.4).

The problem (3.4) is semidefinite program (SDP), as they are nuclear norm minimization

problems with convex feasible domains. Hence, we may solve it, for example, via the

interior-point method [99]. Although the interior-point method returns an exact solution to

(3.4), it does not scale well with the dimensions of the matrix d1 and d2 as the complexity of

solving SDP is O(d3
1 + d1d

3
2 + d2

1d
2
2). Therefore, we develop two set of algorithms that can

solve both problems faster than the interior point methods. These algorithms including the

generic gradient descent based methods, and a Penalized Maximum Likelihood Singular

Value Threshold (PMLSVT) method tailored to our problem. We analyze the performance

of the generic methods. Although there is no theoretical performance guarantee, PMLSVT

is computationally preferable under our assumptions. Another possible algorithm not cover

here is the non-monotone spectral projected-gradient method [100, 8].

3.3.1 Generic methods

Here we only focus on solving the matrix completion problem (3.4) by proximal-gradient.

First, rewrite S in (3.3) as the intersection of two closed and convex sets in Rd1×d2:

Γ1 , {X ∈ Rd1×d2 :β ≤ Xij ≤ α,

∀(i, j) ∈ Jd1K× Jd2K},
(3.12)

and

Γ2 , {X ∈ Rd1×d2 : ‖X‖∗ ≤ α
√
rd1d2},

where the first set is a box and the second set is a nuclear norm ball. Let f(X) , −FΩ,Y (X)

be the negative log-likelihood function. Then optimization problem (3.4) is equivalent to

M̂ = arg min
X∈Γ1

⋂
Γ2

f(X). (3.13)
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Noticing that the search space S = Γ1

⋂
Γ2 is closed and convex and f(X) is a convex

function, we can use proximal gradient methods to solve (3.13). Let IΓ(X) be an extended

function that takes value zero if X ∈ Γ and value∞ if X 6∈ Γ. Then (3.13) is equivalent to

M̂ = arg min
X∈Rd1×d2

f(X) + IΓ1
⋂

Γ2(X). (3.14)

To guarantee the convergence of proximal gradient method, we need the Lipschitz constant

L > 0 such that

‖∇f(U)−∇f(V )‖F ≤ L‖U − V ‖F , ∀U, V ∈ S. (3.15)

Hence, L = α/β2 by the definition of our problem. Define the orthogonal projection of a

matrix X onto a convex set Γ̃ as

ΠΓ̃(X) , arg min
Z∈Γ̃
‖Z −X‖2

F .

Proximal gradient

Initialize the algorithm by [X0]ij = Yij for (i, j) ∈ Ω, and [X0]ij = (α + β)/2 otherwise.

Then iterate using

Xk = ΠS(Xk−1 − (1/L)∇f(Xk−1)). (3.16)

This proximal gradient method has a linear convergence rate:

Proposition 1 (Convergence of proximal gradient). Let {Xk} be the sequence generated by

(3.16). Then for any k > 1,

f(Xk)− f(M̂) ≤ L‖X0 − M̂‖2
F

2k
.

59



Accelerated proximal gradient

Although proximal gradient can be easily implemented, it converges slowly when the

Lipschitz constant L is large. In such scenarios, we may use Nesterov’s accelerated method

[101]. With the same initialization as above, we perform the following two projections at

the kth iteration:

Xk = ΠS(Zk−1 − (1/L)∇f(Zk−1)),

Zk = Xk + ((k − 1)/(k + 2)) (Xk −Xk−1).

(3.17)

Nesterov’s accelerated method converges faster:

Proposition 2 (Convergence of accelerated proximal gradient). Let {Xk} be the sequence

generated by (3.17). Then for any k > 1,

f(Xk)− f(M̂) ≤ 2L‖X0 − M̂‖2
F

(k + 1)2
.

Alternating projection

To use the above two methods, we need to specify ways to perform projection onto the

space S . Since S is an intersection of two convex sets, we may use alternating projection to

compute a sequence that converges to the intersection of Γ1 and Γ2. Let U0 be the matrix to

be projected onto S . Specifically, the following two steps are performed at the jth iteration:

Vj = ΠΓ2(Uj−1) and Uj = ΠΓ1(Vj), until ‖Vj − Uj‖F is less than a user-specified error

tolerance. Alternating projection is efficient if there exist some closed forms for projection

onto the convex sets, which is true in our problems. Projection onto the box constraint Γ1 is

quite simple: [ΠΓ1(Y )]ij assumes value β if Yij < β and assumes value α if Yij > α, and

otherwise maintains the same value Yij if β ≤ Yij ≤ α. Projection onto Γ2, the nuclear
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norm ball, can be achieved by projecting the vector of singular values onto a `1 norm ball

via scaling [30] [102].

3.3.2 Penalized maximum likelihood singular value threshold (PMLSVT)

We also develop an algorithm, referred to as PMLSVT, tailored to solving our Poisson

problems. PMLSVT differs from the classical projected gradient in that instead of computing

the exact gradient, it approximates the cost function by expanding it using a Taylor expansion

up to the second order. The resulted approximate problem with a nuclear norm regularization

term has a simple closed form solution using Theorem 2.1 in [30]. Therefore, PMLSVT

does not perform gradient descent directly, but it has a simple form and good numerical

accuracy as verified by numerical examples.

The algorithm is similar to the fast iterative shrinkage-thresholding algorithm (FISTA)

[103] and its extension to matrix case with Frobenius error [48]. Similar to the construction

in [37] and [49], using λ0 and λ1 as regularizing parameters and the convex sets Γ0 and Γ1

defined earlier in (??) and (3.12), we may rewrite (??) and (3.4) as

M̂ = arg min
X∈Γi

fi(X) + λi‖X‖∗, i = 0, 1, (3.18)

respectively, where f0(X) = −
∑m

i=1 {yi log[AX]i − [AX]i} and f1(X) = −FΩ,Y (X).

The PMLSVT algorithm can be derived as follows (similar to [48]). For simplicity, we

denote f(X) for the f0(X) or f1(X). In the kth iteration, we may form a Taylor expansion

of f(X) around Xk−1 while keeping up to the second term and then solve

Xk = arg min
X

[Qtk(X,Xk−1) + λ‖X‖∗] , (3.19)
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with

Qtk(X,Xk−1) , f(Xk−1) + 〈X −Xk−1,∇f(Xk−1)〉

+
tk
2
‖X −Xk−1‖2

F , (3.20)

where∇f is the gradient of f , tk is the reciprocal of the step size at the kth iteration, which

we will specify later. By dropping and introducing terms independent of M whenever

needed (more details can be found in [104]), (3.19) is equivalent to

Xk =

arg min
X

[
1

2

∥∥∥∥X − (Xk−1 −
1

tk
∇f(Xk−1)

)∥∥∥∥2

F

+
λ

tk
‖X‖∗

]
.

(3.21)

Recall d = min{d1, d2}. For a matrix Z ∈ Rd1×d2 , let its singular value decomposition be

Z = UΣV ᵀ, where U ∈ Rd1×d, V ∈ Rd2×d, Σ = diag{[σ1, . . . , σd]
ᵀ}, and σi is a singular

value of the matrix Z. For each τ ≥ 0, define the singular value thresholding operator as:

Dτ (Z) , Udiag{[(σ1 − τ)+, . . . , (σd − τ)+]ᵀ}V ᵀ.

To obtain a closed form solution to (3.21), we use the following proposition proved in [30]:

Proposition 3 (Theorem 2.1 in [30]). For each τ ≥ 0, and Z ∈ Rd1×d2:

Dτ (Z) = arg min
X∈Rd1×d2

{
1

2
‖X − Z‖2

F + τ‖Z‖∗
}
. (3.22)

Due to Proposition 3, the exact solution to (3.21) is given by

Xk = Dλ/tk

(
Xk−1 −

1

tk
∇f(Xk−1)

)
. (3.23)
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The PMLSVT algorithm is summarized in Algorithm 1. The initialization method for

matrix recovery problem is suggested by [105] and that for matrix completion problem is to

choose an arbitrary element in the set Γ1. For a matrix Z, define a projection of Z onto Γ0

as follows:

P(Z) ,
I

‖(Z)+‖1,1

(Z)+,

where (i, j)th entry of (Z)+ is (Zij)
+. In the algorithm description, t is the reciprocal of

the step size, η > 1 is a scale parameter to change the step size, and K is the maximum

number of iterations, which is user specified: a large K leads to more accurate solution, and

a small K obtains the coarse solution quickly. If the cost function value does not decrease,

the step size is shortened to change the singular values more conservatively. The algorithm

terminates when the absolute difference in the cost function values between two consecutive

iterations is less than 0.5/K. Convergence of the PMLSVT algorithm cannot be readily

established; however, Proposition 1 and Proposition 2 above may shed some light on this.

Algorithm 1 PMLSVT for Poisson matrix recovery and completion
1: Initialize: The maximum number of iterations K, parameters α, β, η, and t.

[X]ij ← Yij for (i, j) ∈ Ω and [X]ij ← (α + β)/2 otherwise {matrix completion}
2: for k = 1, 2, . . . K do
3: C ← X − (1/t)∇f(X)
4: C = UΣV ᵀ {singular value decomposition}
5: [Σ]ii ← ([Σ]ii − λ/t)+, i = 1, . . . , d
6: X ′ ← X {record previous step}
7: X ← P (UΣV ᵀ) {matrix recovery}

X ← ΠΓ1 (UΣV ᵀ) {matrix completion}
8: If f(X) > Qt(X,X

′) then t← ηt, go to 4.
9: If |f(X)−Qt(X,X

′)| < 0.5/K then exit;
10: end for

Remark 5. At each iteration, the complexity of PMLSVT (Algorithm 1) is on the order of

O(d2
1d2 + d3

2) (which comes from performing singular value decomposition). This is much

lower than the complexity of solving an SDP, which is on the order of O(d3
1 + d1d

3
2 + d2

1d
2
2).

In particular, for a d-by-d matrix, PMLSVT algorithm has a complexity O(d3), which is

lower than the complexity O(d4) of solving an SDP. One may also use an approximate SVD
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method[106] and a better choice for step sizes [103] to accelerate PMLSVT.

3.4 Numerical examples

In all the examples below we use our PMLSVT algorithm to solve the optimization problems.

All the numerical examples are run on a laptop with 2.40Hz dual-core CPU and 8GB RAM.

3.4.1 Synthetic data based on solar flare image

We demonstrate the good performance of the PMLSVT algorithm for matrix completion

on the same solar flare image as in the previous section. Set α = 200 and β = 1 in this

case. Suppose the entries are sampled via the Bernoulli model such that E[|Ω|] = m. Set

p , m/(d1d2) in the sampling model. Set t = 10−4 and η = 1.1 for PMLSVT. Fig. 3.1

shows the results when roughly 80%, 50% and 30% of the matrix entries are observed. Even

when about 50% of the entries are missing, the recovery results is fairly good. When there

are only about 30% of the entries are observed, PMLSVT still recovers the main features in

the image. It is also quite fast: the run times for all three examples are less than 1.2 seconds.

3.4.2 Bike sharing count data

To demonstrate the performance of our algorithm on real data, we consider the bike sharing

data set1, which consists of 17379 bike sharing counts aggregated on hourly basis between

the years 2011 and 2012 in Capital bike share system with the corresponding weather and

seasonal information. We collect countings of 24 hours over 105 Saturdays into a 24-by-105

matrix M (d1 = 24 and d2 = 105). The resulted matrix is nearly low-rank. Assuming that

only a fraction of the entries of this matrix are known (each entry is observed with probability

0.5 and, hence, roughly half of the entries are observed), and that the counting numbers

follow Poisson distributions with unknown intensities. We aim at recover the unknown

intensities, i.e., filling the missing data and performing denoising. We use PMLSVT with
1The data can be downloaded at

http://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset[107].
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the following parameters: α = 1000, β = 1, t = 10−4, η = 1.1, K = 4000 and λ = 100. In

this case there is no “ground truth” for the intensities, and it is hard to measure the accuracy

of recovered matrix. Instead, we are interested in identifying interesting patterns in the

recovered results. As shown in Fig. 3.2(b), there are two clear increases in the counting

numbers after the 17th and the 63th Saturday, which may not be easily identified from the

original data in Fig. 3.2(a) with missing data and Poisson randomness.

3.5 Conclusions

In this paper, we have studied matrix recovery and completion problems when the data are

Poisson random counts. We considered a maximum likelihood formulation with constrained

nuclear norm of the matrix and entries of the matrix, and presented upper and lower bounds

for the proposed estimators. We also developed a set of new algorithms, and in particular

the efficient the Poisson noise Maximal Likelihood Singular Value Thresholding (PMLSV)

algorithm. We have demonstrated its accuracy and efficiency compared with the semi-

definite program (SDP) and tested on real data examples of solar flare images and bike

sharing data.
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Rank = 10

(a) p = 0.8. (b) λ = 0.1, K = 2000.

(c) p = 0.5. (d) λ = 0.1, K = 2000.

(e) p = 0.3. (f) λ = 0.1, K = 2000.

Figure 3.1: Matrix completion from partial observations: (a), (c), and (e): 80%, 50% and
30% of entries observed (dark spots represent missing entries); (b), (d), and (f): images
formed by complete matrix with λ = 0.1 and no more than 2000 iterations, and the run times
of the PMLSVT algorithm are 1.176595, 1.110226 and 1.097281 seconds, respectively.
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(a) original data, p = 0.5. (b) λ = 100, K = 4000.

Figure 3.2: Bike sharing count data: (a): observed matrix M with 50% missing entries;
(b): recovered matrix with λ = 100 and 4000 iterations, with an elapsed time of 3.147153
seconds.

67



CHAPTER 4

MULTI-SENSOR SLOPE CHANGE DETECTION

In this chapter, I present the details about sequential gradual change detection in the multi-

sensor case. The work is mainly summarized in [13]. Section 4.1 sets up the formalism of

the problem. Section 4.2 presents our mixture procedures for slope change detection, and

Section 4.3 presents theoretical approximations to its ARL and EDD, which are validated by

numerical examples. Section 4.4 establishes the first order asymptotic optimality. Section

4.5 shows real-data examples. Finally, Section 4.6 presents an extension of the mixture

procedure that adaptively chooses p0. All proofs are delegated to the appendix.

4.1 Assumptions and formulation

Given N sensors. For the nth sensor n = 1, 2, . . . , N , denote the sequence of observations

by yn,i, i = 1, 2, . . .. Under the hypothesis of no change, the observations at the nth sensor

have a known mean µn and a known variance σ2
n. Probability and expectation in this case are

denoted by P∞ and E∞, respectively. Alternatively, there exists an unknown change-point

that occurs at time κ, 0 ≤ κ < ∞, and it affects an unknown subset A ⊆ {1, 2, . . . , N}

of sensors simultaneously. The fraction of affected sensors is given by p = |A|/N . For

each affected sensor n ∈ A, the mean of the observations yn,t changes linearly from the

change-point time κ + 1 and is given by µn + cn(t − κ) for all t > κ, and the variance

remains σ2
n. For each unaffected sensor, the distribution stays the same. Here the unknown

rate-of-change cn can differ across sensors and it can be either positive or negative. The

probability and expectation in this case are denoted by PAκ and EAκ , respectively. In particular,

κ = 0 denotes an immediate change occurring at the initial time. The above setting can
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formulate as the following hypothesis testing problem:

H0 : yn,i ∼ N (µn, σ
2
n), i = 1, 2, . . . , n = 1, 2, . . . , N,

H1 : yn,i ∼ N (µn, σ
2
n), i = 1, 2, . . . , κ,

yn,i ∼ N (µn + cn(i− κ), σ2
n), i = κ+ 1, κ+ 2, . . . , n ∈ A,

yn,i ∼ N (µn, σ
2
n), i = 1, 2, . . . , n ∈ Ac.

(4.1)

Our goal is to establish a stopping rule that stops as soon as possible after a change-point

occurs and avoids raising false alarms when there is no change. We will make these

statements more rigorous in Section 4.3 and Section 4.4. Here, for simplicity, we assume

that all sensors are affected by the change simultaneously. This ignores the fact that there

can be delays across sensors. For asynchronous sensors, one possible approach is to adopt

the scheme in [108], which claims a change-point whenever the any sensor detects a change.

We plan investigate the issue of delays in our future work.

A related problem is to detect a change in a linear regression model. One such example

is a change-point in the trend of the stock price illustrated in Fig. 4.6(a). This can be casted

into a slope change detection problem, if we fit a linear regression model under H0 (e.g.,

using historical data) and subtract it from the sequence. The residuals after the subtraction

will have zero means before the change-point, and their means will increase or decrease

linearly after the change-point.

4.2 Detection procedures

Since the observations are independent, for an assumed change-point location κ = k and an

affected sensor n ∈ A, the log-likelihood for observations up to time t > k is given by

`n(k, t, cn) =
1

2σ2
n

t∑
i=k+1

[
2cn(yn,i − µn)(i− k)− c2

n(i− k)2
]
. (4.2)
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Figure 4.1: Degradation sample paths recorded by 21 sensors, generated by C-MAPSS [53].
A subset of sensors are affected by the change-point, which happens at an unknown time
simultaneously and it causes a change in the slopes of the signals. The change can cause
either an increase or decrease in the means.

Motived by the mixture procedure in [18] and [109] to exploit an empirical fact that typically

only a subset of sensors are affected by the change-point, we assume that each sensor is

affected with probability p0 ∈ (0, 1] independently. In this setting, the log likelihood of all

N sensors is given by

N∑
n=1

log (1− p0 + p0 exp [`n(k, t, cn)]) . (4.3)

Using (4.3), we may derive several change-point detection rules.

Since the rate-of-change cn is unknown, One possibility is to set cn equal to some

nominal post-change value δn and define the stopping rule, referred to as the mixture

CUSUM procedure:

T1 = inf

{
t : max

0≤k<t

N∑
n=1

log (1− p0 + p0 exp[`n(k, t, δn)]) ≥ b

}
, (4.4)

where b is a threshold typically prescribed to satisfy the average run length (ARL) require-
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ment (formal definition of ARL is given in Section 4.3).

Another possibility is to replace cn by its maximum likelihood estimator. Given the

current number of observations t and a putative change-point location k, by setting the

derivative of the log likelihood function (4.2) to 0, we may solve for the maximum likelihood

estimator:

ĉn(k, t) =

∑t
i=k+1(i− k)(yn,i − µn)∑t

i=k+1(i− k)2
. (4.5)

Define τ = t− k to be the number of samples after the change-point k. Denote the sum of

squares from 1 to τ , and the weighted sum of data as, respectively,

Aτ =
τ∑
i=1

i2, Wn,k,t =
t∑

i=k+1

(i− k)(yn,i − µn)/σn.

Let

Un,k,t = (Aτ )
−1/2Wn,k,t. (4.6)

Substitution of (4.5) into (4.2) gives the log generalized likelihood ratio (GLR) statistic at

each sensor:

`n(k, t, ĉn) = U2
n,k,t/2, (4.7)

and we define the mixture GLR procedure as

T2 = inf

{
t : max

0≤k<t

N∑
n=1

log
(
1− p0 + p0 exp

[
U2
n,k,t/2

])
≥ b

}
, (4.8)

where b is a prescribed threshold.

Remark 6 (Window limited procedures.). In the following we use window limited versions

of T1 and T2, where the maximum for the statistic is restricted to a window t−w ≤ k ≤ t−w′

for suitable choices of window size w and w′. In the following, we use T̃ to denote a window-

limited version of a procedure T . By searching only over a window of the past w − w′ + 1
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Figure 4.2: Matched filter interpretation of the generalized likelihood ratio statistic at each
sensor Un,k,t = A−1

τ

∑t
i=k+1(i − k)(yn,i − µn)/σn: data at each sensor is matched with

a triangle-shaped signal that starts at a hypothesized change-point time k and ends at the
current time t. The slope of the triangle is A−1

τ , so that the `2 norm of the triangle signal is
one.

samples, this reduces the memory requirements to implement the stopping rule, and it also

sets a minimum level of change that we want to detect. The choice of w may depend on b and

sometimes we need make additional assumptions on w for the purpose of establishing the

asymptotic results below. More discussions about the choice of w can be found in [110] and

[54]. The other parameter w′ is the minimum number of observations needed for computing

the maximum likelihood estimator for parameters. In the following, we set w′ = 1.

Remark 7 (Relation to mean shift.). For the mean-shift multi-sensor change-point detection

[18], the detection statistic depends on a key quantify, which is the average of the samples

in the time window [k + 1, t]. Note that in the slope change case, the detection statistic has

a similar structure, except that the key quantity is replaced by a weighted average of the

samples in the window: (t− k)−1/2
∑t

i=k+1(yn,i − µn)/σn. This has an interpretation of

“matched filtering”, as illustrated in Fig. 4.2: each data stream is matched with a triangle

shaped signal starting at a potential change-point time k that represents a possible slope
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change.

Remark 8 (Recursive computation.). The quantity Wn,k,t involved in the detection statistic

for (4.8) can be calculated recursively,

Wn,k,t+1 = Wn,k,t + (t+ 1− k) ((yn,t+1 − µn)/σn) ,

where Wn,t,t , 0. This facilitates online implementation of the detection procedure. The

quantity Aτ can be pre-computed since it is data-independent.

Remark 9 (Extension to correlated sensors.). The mixture procedure (4.8) can be easily

extended to the case where sensors are correlated with a known covariance matrix. Define

a vector of observations yi = [y1,i, . . . , yN,i]
ᵀ for all sensors at time i. When there is no

change, yi follows a normal distribution with a mean vector µ = [µ1, . . . , µN ]ᵀ and a

covariance matrix Σ0. Alternatively, there may exist a change-point at time κ such that after

the change, the observation vectors are normally distributed with mean vector µ+ (i− κ)c,

c = [c1, . . . , cn]ᵀ and the covariance matrix remains Σ0 for all i > κ. We can whiten the

signal vector by ỹi , Σ
−1/2
0 (yi − µ), where Σ

−1/2
0 is the square-root of the positive definite

covariance matrix that may be computed via its eigen-decomposition. The coordinates of

ỹi are independent and the problem then becomes the original hypothesis testing problem

(4.1) with all sensors being affected simultaneously by the change-point, the rate-of-change

vector is Σ
−1/2
0 c, the mean vector is zero before the change, and the covariance remains an

identity matrix before and after the change. Hence, after the transform, we may apply the

mixture procedure with p0 = 1 on ỹi.

4.3 Theoretical properties of the detection procedures

In this section we develop theoretical properties of the mixture procedure. We use two

standard performance metrics (1) the expected value of the stopping time when there is no

change, the average run length (ARL); (2) the expected detection delay (EDD), defined to
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be the expected stopping time in the extreme case where a change occurs immediately at

κ = 0. Since the observations are i.i.d. under the null, the EDD provides an upper bound on

the expected delay after a change-point until detection occurs when the change occurs later

in the sequence of observations (this is also a commonly used fact in change-point detection

work [18]). An efficient detection procedure should have a large ARL and meanwhile a

small EDD. Our approximation to the ARL is shown below to be accurate. In practice, we

usually fix ARL to be a large constant, and set the threshold b in (4.8) accordingly. The

accurate approximation here can be used to find the threshold analytically. Approximation

for EDD shows its dependence on a quantity that plays a role of the Kullback-Leibler (KL)

divergence, which links to the optimality results in Section 4.4.

4.3.1 Average run length (ARL)

We present an accurate approximation for ARL of a window limited version of the stopping

rule in (4.8), which we denote as T̃2. Let

g(x) , log(1− p0 + p0 exp(x2/2)), (4.9)

and

ψ(θ) = logE{exp[θg(Z)]},

where Z has a standard normal distribution. Also let

γ(θ) =
1

2
θ2E

{
[ġ(Z)]2 exp [θg(Z)− ψ(θ)]

}
,

and

H(N, θ) =
θ[2πψ̈(θ)]1/2

γ2(θ)N1/2
exp{N [θψ̇(θ)− ψ(θ)]},

where the dot ḟ and double-dot f̈ denote the first-order and second-order derivatives of

a function f , respectively. Denote by φ(x) and Φ(x) the standard normal density func-
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tion and its distribution function, respectively. Also define a special function ν(x) =

2x−2 exp[−2
∑∞

n=1 n
−1Φ(−|x|n1/2/2)]. For numerical purposes an accurate approximation

is given by [111]

ν(x) ≈ (2/x)[Φ(x/2)− 1/2]

(x/2)Φ(x/2) + φ(x/2)
.

Theorem 14 (ARL of T̃2.). Assume that N → ∞ and b → ∞ with b/N fixed. Let θ be

defined by ψ̇(θ) = b/N . For a window limited stopping rule of (4.8) with w = o(br) for

some positive integer r, we have

E∞{T̃2} = H(N, θ) ·

[∫ √2N/(4/3)1/2

√
2N/(4w/3)1/2

yν2(y
√
γ(θ))dy

]−1

+ o(1). (4.10)

The proof of Theorem 14 is an extension of the proofs in [18] and [92] using the change

of measure techniques. To illustrate the accuracy of approximation given in Theorem 14, we

perform 500 Monte Carlo trials with p0 = 0.3, and w = 200. Figs. 4.3(a) and (b) compare

the simulated and theoretical approximation of ARL given in Theorem 14 when N = 100

and N = 200, respectively. Note that expression (4.10) takes a similar form as the ARL

approximation obtained in [18] for the multi-sensor mean-shift case, and only differs in the

upper and lower limits in the integration. In Figs. 4.3(a) and (b) we also plot the approximate

ARL for the mean shift case in [18], which shows the importance of having the corrected

integration upper and lower limits in our approximation. In practice, ARL is usually set

to 5000 and 10000. Table 4.1 compares the thresholds obtained theoretically and from

simulation at these two ARL levels, which demonstrates the accuracy of our approximation.

4.3.2 Expected detection delay (EDD)

After a change-point occurs, we are interested in the expected number of additional observa-

tions required for detection. In this section we establish an approximation upper bound to
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Figure 4.3: (a) Comparison of theoretical and simulated ARL when (a): N = 100, p0 = 0.3,
and w = 200; (b): N = 200, p0 = 0.3, and w = 200.

Table 4.1: Theoretical versus simulated thresholds for p0 = 0.3, N = 100 or 200, and
w = 200.

ARL Theory b Simulated ARL Simulated b
N = 100 5000 46.34 5024 46.31

10000 47.64 10037 47.60
N = 200 5000 77.04 5035 76.89

10000 78.66 10058 78.59

the expected detection delay. Define a quantity

∆ =

(∑
n∈A

c2
n/σ

2
n

)1/2

, (4.11)

which roughly captures the total signal-to-noise ratio of all affected sensors.

Theorem 15 (EDD of T̃2.). Suppose b→∞, with other parameters held fixed. Let U be a

standard normal random variable. If the window length w is sufficiently large and greater

than (6b/∆2)1/3, then

EA0 {T̃2} ≤
{
b− |A| log p0 − (N − |A|)E{g(U)}

∆2/6

}1/3

+ o(1), (4.12)

where EA0 is defined at the beginning of Section 4.1. To demonstrate the accuracy of
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(4.12), we perform 500 Monte Carlo trials. In each trial, we let the change-point happen at

the initial time and randomly select Np sensors affected by the change and set the rate-of-

change cn = c for a constant c, n ∈ A. The thresholds for each procedure are set so that

their ARLs are equal to 5000. Fig. 4.4 shows EDD versus c, where our upper bound turns

out to be an accurate approximation to EDD.

Rate-of-Change c
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Figure 4.4: Comparison of theoretical and simulated EDD when N = 100, p0 = 0.3,
p = 0.3, and w = 200. All rate-of-change cn = c for affected sensors.

4.4 Optimality

In this section, we prove that our detection procedures: T1 and the window limited versions

T̃1 and T̃2 are asymptotically first order optimal. The optimality proofs here extends the

results in [55], [54], for our multi-sensor non-i.i.d. data setting. The non-i.i.d.ness is due to

the fact that under the alternative, the means of the samples change linearly as the number

of post-change samples grows. Following the classic setup, we consider a class of detection
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procedures with their ARL greater than some constant γ, and then find an optimal procedure

within such a class to minimize the detection delay. Since it is difficult to establish an

uniformly optimal procedure for any given γ, we consider the asymptotic optimality when γ

tends to infinity.

We first study a general setup with non-i.i.d. distributions for the multi-sensor problem,

and establish optimality of two general procedures related to T1 and T2. Then we specialize

the results to the multi-sensor slope-change detection problem. In particular, we generalize

the lower bound for the detection delay from the single sensor case (Theorem 8.2.2 in [55]

and Theorem 1 in [54]) to our multi-sensor case. We also generalize the result therein to our

setting where the log-likelihood ratio grows polynomially on the order of jq for q ≥ 1 as the

number of post-change observations j grows (in the classic setting q = 1); this is used to

account for the non-stationarity in our problem.

4.4.1 Setup for general non-i.i.d. case

Consider a setup for the multi-sensor problem with non-i.i.d. data. Assume there are N

sensors that are independent (or with known covariance matrix so the observations can

be whitened across sensors), and that the change-point affects all sensors simultaneously.

Observations at the nth sensor are denoted by xn,t over time t = 1, 2, . . .. If there is no

change, xn,t are distributed according to conditional densities fn,t(xn,t|xn,[1,t−1]), where

xn,[1,t−1] = (xn,1, . . . , xn,t−1) (this allows the distributions at time t to be dependent on the

previous observations). Alternatively, if a change-point occurs at time κ and the nth sensor

is affected, xn,t are distributed according to conditional densities fn,t(xn,t|xn,[1,t−1]) for

t = 1, . . . , κ, and are according to g(κ)
n,t (xn,t|xn,[1,t−1]) for t > κ. Note that the post-change

densities are allowed to be dependent on the change-point κ. Define a filtration at time t

by Ft = σ(x1,[1,t], . . . , xN,[1,t]). Again, assume a subset A ⊆ {1, 2, . . . , N} of sensors are

affected by the change-point. Similar to Section 4.1, with a slight abuse of notation, we

denote P∞, E∞, PAκ and EAκ as the probability and expectation when there is no change, or
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when a change occurs at time κ and a set A of sensors are affected by the change, with the

understanding that here the probability measures are defined using the conditional densities.

4.4.2 Optimality criteria

We adopt two commonly used minimax criteria to establish the optimality of a detection

procedure T . Similar to Chapter 8.2.5 of [55], we consider two criterions associated with the

m-th moment of the detection delay for m ≥ 1. The first criterion is motivated by Lorden’s

work [59], which minimizes the worst-case delay

ESMAm(T ) , sup
0≤k<∞

esssup EAk
{

[(T − k)+]m|Fk
}
, (4.13)

where “esssup” denotes the measure theoretic supremum that excluded points of measure

zero. In other words, the definition (4.13) first maximizes over all possible trajectories

of observations up to the change-point and then over the change-point time. The second

criterion is motivated by Pollak’s work [62], which minimizes the maximal conditional

average detection delay

SMAm(T ) , sup
0≤k<∞

EAk {(T − k)m|T > k} . (4.14)

The extended Pollak’s criterion (4.14) is not as strict as the extended Lorden’s criterion

in the sense that SMAm(T ) ≤ ESMAm(T ), and we prefer (4.14) since it is connected to the

conventional decision theoretic approach and the resulted optimization problem can possibly

be solved by a least favorable prior approach. The EDD defined earlier in Section 4.3 can be

viewed as ESMm and SMm for m = 1, and the supremum over k happens when k = 0.

Define C(γ) to be a class of detection procedures with their ARL greater than γ:

C(γ) , {T : E∞{T} ≥ γ}.
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A procedure T is optimal, if it belongs to C(γ) and minimizes ESMm(T ) or SMm(T ).

4.4.3 Optimality for general non-i.i.d setup

Under the above assumptions, the log-likelihood ratio for each sensor is given by

λn,k,t =
t∑

i=k+1

log
g

(k)
n,i (xn,i|xn,[1,i−1])

fn,i(xn,i|xn,[1,i−1])
.

For any set A of affected sensors, the log-likelihood ratio is given by

λA,k,t =
∑
n∈A

λn,k,t. (4.15)

We first establish an lower bound for any detection procedure. The constant IA below

can be understood intuitively as a surrogate for the Kullback-Leibler (KL) divergence in the

hypothesis problem. When the observations are i.i.d., IA is precisely the KL divergence

[54].

Theorem 16 (General lower bound.). For any A ⊆ {1, . . . , N} such that there exists some

q ≥ 1, j−qλA,k,k+j converges in probability to a positive constant IA ∈ (0,∞) under PAk ,

1

jq
λA,k,k+j

PAk−−−→
j→∞

IA, (4.16)

and in addition, for all ε > 0, for an arbitrary M →∞

sup
0≤k<∞

esssup PAk
{
M−q max

0≤j<M
λA,k,k+j ≥ (1 + ε)IA

∣∣∣∣Fk} −−−−→M→∞
0. (4.17)

Then,

(i) for all 0 < ε < 1, there exists some k ≥ 0 such that

lim
γ→∞

sup
T∈C(γ)

PAk
{
k < T < k + (1− ε)(I−1

A log γ)
1
q

∣∣∣T > k
}

= 0. (4.18)
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(ii) for all m ≥ 1,

lim inf
γ→∞

infT∈C(γ) ESMAm(T )

(log γ)m/q
≥ lim inf

γ→∞

infT∈C(γ) SMAm(T )

(log γ)m/q
≥ 1

I
m/q
A

. (4.19)

Consider a general mixture CUSUM procedure related to T1, which has also been studied

in [109] and [18]:

TCS = inf

{
t : max

0≤k<t

N∑
n=1

log(1− p0 + p0 exp(λn,k,t)) ≥ b

}
, (4.20)

where b is a prescribed threshold. The following lemma shows that for an appropriate choice

of the threshold b, TCS has an ARL lower bounded by γ and, hence, for such thresholds it

belongs to C(γ).

Lemma 8. For any p0 ∈ (0, 1], TCS(b) ∈ C(γ), provided b ≥ log γ.

Theorem 17 (Optimality of TCS.). For any A ⊆ {1, . . . , N} such that there exists some

q ≥ 1 and a finite positive number IA ∈ (0,∞) for which (4.17) holds, and for all ε ∈ (0, 1)

and t ≥ 0,

sup
0≤k<t

esssup PAk
(
j−qλA,k,k+j < IA(1− ε)

∣∣Fk) −−−→
j→∞

0. (4.21)

If b ≥ log γ and b = O(log γ), then TCS is asymptotically minimax in the class C(γ) in the

sense of minimizing ESMAm(T ) and SMAm(T ) for all m ≥ 1 to the first order as γ −→∞.

We can also prove that the window-limited version T̃CS is asymptotically optimal. Since

the window length affects ARL and the detection delay, in the following we denote this

dependence more explicitly by wγ .

Corollary 2 (Optimality of T̃CS.). Assume the conditions in Theorem 17 hold and in addition,

lim inf
γ→∞

wγ

(log γ/IA)1/q
> 1. (4.22)
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If b ≥ log γ and b = O(log γ), then T̃CS(b) is asymptotically minimax in the class C(γ) in

the sense of minimizing ESMAm(T ) and SMAm(T ) for all m ≥ 1 to the first order as γ −→∞.

Intuitively, this means that the window length should be greater than the first order

approximation to the detection delay [(log γ)/IA]1/q. Note that our earlier result (4.12)

for the expected detection delay of the multi-sensor case is of this form for q = 3 and

IA = ∆2/6.

Similarly, we may consider a general mixture GLR procedure related to T2 as in [18].

Denote the log-likelihood (4.15) as λA,k,t(θ) to emphasize its dependence on an unknown

parameter θ. The mixture GLR procedure maximizes θ over a parameter space Θ before

combining them across all sensors. Unfortunately, we are unable to establish the asymptotic

optimality for the general GLR procedure and its window limited version, due to a lack of

martingale property.

4.4.4 Optimality for multi-sensor slope change

Note that T1 and T̃1 correspond to special cases of TCS, T̃CS, so we can use Theorem 17

and Corollary 2 to show their optimality by checking conditions. Although we are not able

to establish optimality of the general mixture GLR procedure as mentioned above, we can

prove the optimality for T̃2 by exploiting the structure of the problem.

Lemma 9 (Lower bound.). For the multi-sensor slope change detection problem in (4.1),

for a non-empty setA ⊆ {1, . . . , N}, the conditions of Theorem 16 are satisfied when q = 3

and IA = ∆2/6.

The following lemma plays a similar role as the general version Lemma 8 in our multi-

sensor case in (4.1), and it shows that for a properly chosen threshold b, ARL of T̃2 is lower

bounded by γ and, hence, for such threshold it belongs to C(γ).
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Lemma 10. For any p0 ∈ (0, 1], T̃2(b) ∈ C(γ), provided

b ≥ N/2− 4 log
[
1− (1− 1/γ)1/wγ

]
.

Remark 10 (Implication on window length.). Lemma 10 shows that to have b = O(log γ),

we need logwγ = o(log γ).

Theorem 18 (Asymptotical optimality of T1, T̃1 and T̃2.). Consider the multi-sensor slope

change detection problem (4.1).

(i) If b ≥ log γ and b = O(log γ), then T1(b) is asymptotically minimax in class C(γ) in

the sense of minimizing expected moments ESMAm(T ) and SMAm(T ) for all m ≥ 1 to

the first order as γ −→∞.

(ii) In addition to conditions in (i), if the window length satisfies

lim inf
γ→∞

wγ

[6(log γ)/∆2]1/3
> 1, (4.23)

then T̃1(b) is asymptotically minimax in classC(γ) in the sense of minimizing expected

moments ESMAm(T ) and SMAm(T ) for all m ≥ 1 to first order as γ −→∞.

(iii) If b ≥ N/2 − 4 log[1 − (1− 1/γ)1/wγ ], b = O(log γ), the window length satisfies

log(wγ) = o(log γ) and (4.23) holds, then T̃2(b) is asymptotically minimax in class

C(γ) in the sense of minimizing ESMAm(T ) and SMAm(T ) for m = 1 to first order as

γ −→∞.

Remark 11. Above we prove the optimality of T1(b) and T̃1(b) for m ≥ 1. However, we

can only prove the optimality of T̃2(b) for a special case m = 1, due to a lack of martingale

properties here.
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4.5 Numerical Examples

4.5.1 Comparison with mean-shift GLR procedures

We compare the mixture procedure for slope change detection, with the classic multivariate

CUSUM [112] and the mixture procedure for mean shift detection [18]. The multivariate

CUSUM essentially forms a CUSUM statistic at each sensor, and raises an alarm whenever

a single sensor statistic hits the threshold. As commented earlier in Remark 7, the only

difference between T̃2 and the mixture procedure for mean shift in [18] is how Un,k,t is

defined. Following the steps for deriving (A.44), we can show that the mean shift mixture

procedure is also asymptotically optimal for the slope change detection problem. Here, our

numerical example verifies this, and show that the improvement of EDD by using T̃2 versus

the multi-variate CUSUM and the mean-shift mixture procedure is not significant. However,

the mean-shift mixture procedure fails to estimate the change-point time accurately due to

model mismatch. Fig. 4.5 shows the mean square error for estimating the change-point time

κ, using the multi-chart CUSUM, the mean-shift mixture procedure, and T̃2, respectively.

Note that T̃2 has a significant improvement.

4.5.2 Financial time series

In the earlier example illustrated in Fig. 4.6(a), the goal is to detect a trend change online.

Clearly a change-point occurs at time 8000 in the stock price, and such a change-point is

verifiable. Fig. 4.6(b) shows that there is a peak in the bid size versus the ask size, which

usually indicates a change in the trend of the price (possible with some delay). To illustrate

the performance of our method in this financial dataset, we plot the detection statistics

by using a “single-sensor”, i.e., using only one data stream, and by using “multi-sensor”

scheme, i.e. using data from multiple streams, which in this case correspond to 8 factors

(e.g, stock price, total volume, bid size and bid price, as well ask size and ask price). In fact,

only 4 factors out of 8 factors contain the change-point. Fig. 4.6(c) plots the statistic if we
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Figure 4.5: Comparison of mean square error for estimating the change-point time for the
mixture procedure tailored to slope change T̃2, the mixture procedure with mean shift, and
multi-chart CUSUM, when N = 100, p0 = 0.3, p = 0.5 and w = 200.

use only a single-sensor. Fig. 4.6(e) illustrates the statistic when we use all the 8 factors

and preprocess by whitening with the covariance of the factors as described in Section 9.

Comparing Fig. 4.6(c) and Fig. 4.6(e), we can see that the sample path of the statistic

designed for multi-sensor is smoother than that of the statistic designed for single-sensor.

This means that the multi-sensor statistic is more robust to the noise than single-sensor

statistic, and this is consistent with intuition since we take advantage of more information.

Looking at Fig. 4.6(e), after the major trend change (around sample index 8000), the multi-

chart CUSUM statistic rises the slowest. Although it appears, the slope-change mixture

procedure rises a bit slower than the mean-shift mixture procedure, we demonstrate in

simulation that for fixed ARL these two procedures have similar EDDs, and also in Fig.

5 that the slope-change mixture procedure has a better performance in estimating k∗ than

the mean-shift mixture procedure. Therefore, the slope-change mixture procedure is still
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preferrable.
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Figure 4.6: Statistic for detecting trend changes in financial time series with w = 500 for
both single sensor and multi-sensor procedures, and p0 = 1 for the multi-sensor procedure.

4.5.3 Aircraft engine multi-sensor prognostic

We present an engine prognostic example using the aircraft turbofan engine dataset simulated

by NASA1. In the dataset, multiple sensors measure different physical properties of the

aircraft engine to detect a faulty condition and to predict the whole life time. The dataset

1Data can be downloaded from http://ti.arc.nasa.gov/tech/dash/pcoe/prognostic-data-repository/
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contains 100 training systems and 100 testing systems. Each system is monitored by N = 21

sensors. In the training dataset, we have a complete sample path from the initial time to

failure for each of the 21 sensors of each training system. In the testing dataset, we only

have partial sample paths (i.e., the system fails eventually but we have not observed that yet

and it still has a remaining life). Our goal is to predict the whole life for the test systems

using available observations. The dataset also provides ground truth, i.e., the actual failure

times (or equivalently the whole life) of the testing systems.

We first apply our mixture procedures to each training system j, j = 1, . . . , 100, to

estimate a change-point location κj (which corresponds to the maximizer of k in the

definition of T̃2 when the procedure stops), and the rate-of-change at nth sensor for the jth

system ĉn,j using (4.5). Then fit a simple survival model using κ̂j and ĉn,j as regressors

in determining the remaining life. We build a model for the Time-To-Failure (TTF) Yj of

system j based a log location-normal model, which is commonly used in reliability theory

[14]: P{Yj ≤ y} = Φ [(log(y)− πj)/η] , where η is a user specified scale parameter that is

assumed to be the same for each system, πj is the location parameter that is assumed to be a

linear function of the rate-of-change: πj = β0 +
∑N

n=1 βj ĉn,j, where (β0, β1, . . . , βN) is a

vector of the regression coefficients that are estimated by maximum likelihood. Next, we

apply the mixture procedure on the jth testing system to estimate the change-point time κ̂j

and the rate-of-change ĉn,j , and substitute them into the fitted models to determine a TTF

using the mean value. The whole life of the jth system is estimated as κ̂j plus its mean TTF.

We use the relative prediction error as performance metric, which is the absolute dif-

ference between the estimated life and the actual whole life, divided by the actual whole

life. Fig. 4.7 shows the box-plot of the relative prediction error versus threshold b. Our

method based on change-point detection works well and it has a mean relative prediction

error around 10%. Here the choice of the threshold b has a tradeoff: the relative prediction

error decreases with a larger b; however, a larger b also causes a longer detection delay.
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Figure 4.7: Aircraft engine prognostic example: box-plot for relative prediction error of the
estimated life time of the engine versus threshold b.

4.6 Discussion: adaptive choice of p0

The mixture procedure assumes that a fraction p0 of the sensors are affected by the change.

In practice, p0 can be different from p which is the actual fraction of sensors affected. The

performance of the procedure is fairly robust to the choice of p0. Fig. 4.8 compares the

simulated EDD of a mixture procedure with a fixed p0 value, versus a mixture procedure

when setting p0 = p if we know the true fraction of affected sensors. Again, thresholds are

chosen such that ARL for all cases are 5000. Note that the detection delay is the smallest if

p0 matches p; however, EDD in these two settings are fairly close when p0 6= p.

Still, we may improve the performance of the mixture procedure by adapting the pa-

rameter p0 using a method based on empirical Bayes. Assume each sensor is affected with

probability p0, but now p0 itself is a random variable with Beta distribution Beta(α, β). This

also allows the probability of being affected to be different at each sensor. With sequential

data, we may update by computing a posterior distribution of p0 using data in the following

way. Choosing a constant a, we believe that the nth sensor is likely to be affected by the

change-point if Un,k,t is larger than a. Let I{·} denote an indicator function. For each t,
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Figure 4.8: Simulated EDD for a mixture procedure with p0 set to a fixed value, versus a
mixture procedure with p0 = p equal to the true fraction of affected sensors, when cn = 0.1,
N = 100 and w = 200.

assume sn,t = I {maxt−w≤k<t Un,k,t > a} is a Bernoulli random variable with parameter pn.

Due to conjugacy, the posterior of p0 at the nth sensor, given sn,t up to time t, is also a Beta

distribution with parameters Beta(sn,t+α, 1−sn,t+β). An adaptive mixture procedure can

be formed using the posterior mean of p0, which is given by ρn , (sn,t + α)/(α + β + 1):

Tadaptive = inf

{
t : max

t−w≤k<t

N∑
n=1

log(1− ρn + ρn exp(U2
n,k,t/2)) ≥ b

}
, (4.24)

where b is a prescribed threshold.

We compare the performance of T̃adaptive with its non-adaptive counterpart T̃2 by nu-

merical simulations. Assume N = 100 and there are 10 sensors affected from the initial

time with a rate-of-change cn = c. The parameters for T̃adaptive are α = 1, β = 1 and a = 2.

Again, the thresholds are set so that the simulated ARL for both procedures are 5000. Table
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4.6 shows that T̃adaptive has a much smaller EDD than T̃2 when signal is weak with a relative

improvement around 20%. However, it is more difficult to analyze ARL of the adaptive

method theoretically.

Table 4.2: Comparing EDD of T̃2 and T̃adaptive.
Rate-of-change 0.01 0.03 0.05 0.07 0.09

Non-Adaptive T̃2 54.15 26.24 18.75 14.98 12.74
Adaptive T̃adaptive 38.56 20.28 14.42 12.17 10.13
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CHAPTER 5

ROBUST SEQUENTIAL CHANGE-POINT DETECTION WITH OFFLINE

CONVEX OPTIMIZATION

In this chapter, I present the robust sequential change-point detection with offline convex

optimization. This work is summarized in [113]. I address the computational challenge

of finding the robust sequential change-point detection procedures when the pre- and post-

change distributions are not completely specified. Earlier works [67, 68] establish the

general conditions for robust procedures which include finding a pair of least favorable

distributions (LFDs). However, in the multi-dimensional setting, it is hard to find such LFDs

computationally. I present a method based on convex optimization that addresses this issue

when the distributions are Gaussian with unknown parameters from pre-specified uncertainty

sets. I also establish theoretical properties of our robust procedures, and numerical examples

demonstrate their good performance.

5.1 Formulation

5.1.1 General setup

Assume that we observe a sequence of observations {ξi}∞i=1 that take values in X . Denote

P(X ) as the set of all the probability distributions on X and assume that there are two

known distributions ν0, ν1 ∈ P(X ). If there is no change, the observations are drawn i.i.d.

from distribution ν0. The probability and expectation in this case are denoted by Pν0∞ and

Eν0∞, respectively. Alternatively, the i.i.d. observations ξi ∼ ν0 for i = 1, . . . , κ − 1, and

at some unknown change-point κ, the distributions of the observations switch abruptly to

ν1, namely, ξi ∼ ν1 for i = κ, κ+ 1, . . .. The observations are independent conditioned on

the change-point κ. The probability and expectation in this case are denoted by Pν0,ν1κ and
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Eν0,ν1κ , respectively. In particular, κ = 0 denotes an immediate change occurring at the initial

time.

A sequential change detection procedure is characterized by a stopping time T with

respect to the observation sequence. To evaluate the performance of the detection procedure

T , two performance measures are widely used: the average run length (ARL) and the

expected detection delay (EDD). There are three commonly used mathematical formulations

about ARL and EDD: Lorden’s worst-case formulation in [59], Pollak’s average worst-case

formulation in [62] and the Bayesian formulation in [58]. In this paper, we adopt the

Lorden’s formulation, where the worst-case EDD of a detection procedure T is defined as

follows:

WDD(T ) = sup
k≥1

esssup Eν0,ν1k

[
(T − k + 1)+ | Fk−1

]
, (5.1)

where (x)+ = max(x, 0). The quantity in (5.1) is called the worst-case EDD as a result of

the two supreme appearing in (5.1). The first supreme means that the detection delay is

taken over all possible locations of the change-point k and the second essential supreme

means that the detection delay is taken over all possible realizations of the observations

before the change-point k. ARL can be interpreted as the mean time between two false

alarms, denoted by Eν0∞[T ]. In practice, one usually fixes a lower bound γ for the ARL and

denotes C(γ) as the set of stopping times with ARL larger than γ > 0, in other words,

C(γ) = {T : Eν0∞[T ] ≥ γ}. Then, our goal is to solve the following problem:

min
T∈C(γ)

WDD(T ). (5.2)

In [59] and [63], it has been proven that the cumulative sum (CUSUM) procedure [57] is

both the asymptotically optimal solution as γ →∞ and the exact optimal solution to (5.2)

for any given γ > 0. Hence, in the following, we will focus on CUSUM-type procedures.

Now we consider the case when ν0 and ν1 are not specified exactly but belong to two

classes of distributions P0,P1 ∈ P(X ), respectively (e.g., [68]). Denote C(P0, γ) = {T :
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Eν0∞[T ] ≥ γ, ∀ν0 ∈ P0} as the set of all candidate stopping times whose ARL is lower

bounded by γ. Then our goal is to solve the following robust version of (5.2):

min
T∈C(P0,γ)

sup
ν0∈P0,ν1∈P1

WDD(T ), (5.3)

Mean change: Assume that we observe a sequence of d-dimensional multivariate normal

distribution with a known covariance matrix that does change. At some time κ, the mean

vector switches from µ0, µ0 ∈ M0 to µ1, µ1 ∈ M1, whereM0 andM1 are two known

convex sets in Rd that are user-specified beforehand. The observations are independent

conditioned on the change-point κ. Mathematically, we formulate the problem as the

following hypothesis testing problem:

H0 : ξi ∼ N (µ0,Σ), µ0 ∈M0, i = 1, 2, . . .

H1 : ξi ∼ N (µ0,Σ), µ0 ∈M0, i = 1, 2, . . . , κ

ξi ∼ N (µ1,Σ), µ1 ∈M1, i = κ+ 1, κ+ 2, . . . ,

(5.4)

where Σ is the known positive definite covariance matrix. Here, the mean vector µ0 and

µ1 can be any element in the convex setsM0 andM1, respectively. For example, in the

context of quality control,M0 can be defined as the set of all the allowable mean vectors

if the system is in-control andM1 denotes the set of all the possible mean vectors if the

system is out-of-control. Our goal is to identify the occurrence of the change as fast as

possible subject to the false alarm constraints.

Covariance matrix change: Similarly, we may come up with a formulation when both

the mean and the covariance matrix of the observations change. Assume a sequence of

d-dimensional multivariate normal observations. At some time κ, the mean vector changes

from µ0, µ0 ∈ M0 to µ1, µ1 ∈ M1 and the covariance matrix changes from Θ0,Θ0 ∈ U0

to Θ1,Θ1 ∈ U1, whereM0 andM1 are two known convex sets in Rd, U0 and U1 are two

known convex sets in Sd+, which are user-specified beforehand. We formulate the problem
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as the following hypothesis testing problem:

H0 : ξi ∼ N (µ0,Θ0), µ0 ∈M0,Θ0 ∈ U0, i = 1, 2, . . .

H1 : ξi ∼ N (µ0,Θ0), µ0 ∈M0,Θ0 ∈ U0, i = 1, 2, . . . , κ,

ξi ∼ N (µ1,Θ1), µ1 ∈M1,Θ1 ∈ U1,

i = κ+ 1, κ+ 2, . . . .

(5.5)

Even if the formulation (5.5) looks similar to the formulation (5.4), (5.5) is much more

difficult than (5.4). For instance, a natural approach is to use sample mean and sample

covariance matrices from the in-control and out-of-control data (there usually are these

training data available in certain form) as the parameters before and after the change when

designing the procedures. Then the uncertainty sets represents the estimation “precision”,

which depend on the sample size and how the estimators are constructed. Mean vectors

can usually be estimated up to good precision. However, it is much harder to estimate high-

dimensional covariance matrix accurately (see, e.g, [114], [115], and [116]). Fortunately,

most of the existing methods can guarantee that the true covariance matrix belongs to a

convex set in Sd+, which enables us to reasonably construct uncertainty sets for covariance

matrices.

5.2 Main results

5.2.1 Robust procedure for detecting mean change

For the robust version for mean shift detection (5.4), we consider a CUSUM-type proce-

dure. CUSUM procedure needs specified likelihood ratio for two singleton pre-change and

post-change distributions. Here, we solve a convex optimization problem to identify an

appropriate pairs of parameters for the pre-change and post-change distributions, and use

them to form the CUSUM procedure.

Let P0 = {N (µ0,Σ), µ ∈ M0} and P1 = {N (µ1,Σ), µ ∈ M1}. Specifically, denote
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(µ∗0, µ
∗
1) as the solution to the following convex optimization problem:

(µ∗0, µ
∗
1) = arg min

µ0∈M0,µ1∈M1

(µ0 − µ1)TΣ−1(µ0 − µ1). (5.6)

In other words, µ∗0 and µ∗1 are two points inM0 andM1 with the minimal Mahalanobis

distance.

Our detection procedure is given as follows:

T1 = inf

{
t > 0 : max

1≤k≤t

t∑
i=k

1

2
L∗(ξi) ≥ b

}
, (5.7)

where L∗ denotes the likelihood ratio between ν∗1 ∼ N (µ∗1,Σ) and ν∗0 ∼ N (µ∗0,Σ). The

threshold b is chosen such that Eν0∞[T1] ≥ γ for all ν0 ∈ P0 and a prescribed lower bound γ

for ARL. We can show the following relationship between γ and b, which offers a guideline

about how to determine b given any γ.

Theorem 19 (ARL). For any ν0 ∈ P0, for the detection procedure T1 defined in (5.7), we

have that Eν0∞[T1] ≥ γ as long as

b ≥ log γ + log
ε∗

1− ε∗
, (5.8)

where

ε∗ = exp(−1

8
(µ∗0 − µ∗1)TΣ−1(µ∗0 − µ∗1)). (5.9)

Remark 12. When P0 = {ν0} and P1 = {ν1} are two singletons, T1 is just the classic

CUSUM procedure and the classic analysis tells us that if b ≥ log γ then Eν0∞[T1] ≥ γ. The

additional second term log(ε∗/(1− ε∗)) in (5.8) can be seen as a cost for the uncertainty.

Specifically, ε∗ is the upper bound for the Type-I and Type-II error for the one sample

composite hypothesis testing problem: H0 : ξ ∼ ν0, ν0 ∈ P0 versus H1 : ξ ∼ ν1, ν1 ∈ P1.
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Next, we prove an upper bound for the worst-case detection delay as the threshold b

goes to infinity.

Theorem 20 (EDD). For any ν0 ∈ P0 and ν1 ∈ P1, for the detection procedure T1 defined

in (5.7), as b→∞, we have that

WDD(T1) ≤ b

1− ε∗
(1 + o(1)),

where ε∗ is defined in (5.9) and o(1) is a vanishing term as b→∞. Therefore, as γ →∞,

we can have both Eν0∞[T1] ≥ γ and

WDD(T1) ≤ log γ

1− ε∗
(1 + o(1)),

where ε∗ is defined in (5.9) and o(1) is a vanishing term as γ →∞.

Remark 13. Note that 1− ε∗ is just the Hellinger distance between the two multivariate

normal distributions found by solving the convex optimization problem: N (µ∗0,Σ) and

N (µ∗1,Σ). When P0 = {ν0} and P1 = {ν1} are two singletons, the classic analysis

tells that the WDD(T1) is asymptotically upper bounded by 2b/I , where I is the Kullback-

Leibler(KL) divergence between pre-change and post-change distributions. The Hellinger

distance plays a similar role with the KL divergence as the denominator in Lorden’s work

[59]. Since KL divergence is known to be bounded below by Hellinger distance, our upper

bound is a little bit looser. This can also be seen as the cost for uncertainty.

Remark 14. Define that ν̄0 and ν̄1 are true pre-change and post-change distributions. Since

we can interpret the robust detection procedure T1 as a repeated one-sided sequential

probability ratio test (SPRT) between ν∗0 = N (µ∗0,Σ) and ν∗1 = N (µ∗1,Σ), we in fact

can obtain that the WDD of T1 is asymptotically upper bounded by 2b/(KL(ν̄1‖ν∗0) −

KL(ν̄1‖ν∗1)). As stated in the seminal work [68], compared with the optimal CUSUM
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procedure between ν̄0 and ν̄1, WDD(T1) is asymptotically larger by a factor no more than

KL(ν̄0‖ν̄1)

KL(ν̄1‖ν∗0)−KL(ν̄1‖ν∗1)
.

Furthermore, as a consequence of theorem 20, for any two true pre-change and post-change

distributions ν̄0 and ν̄1, we have that WDD(T1) is asymptotically larger by a factor no

more than KL(ν̄0‖ν̄1)/[2(1− ε∗)]. When the Mahalanobis distance betweenM0 andM1

increases, ε∗ in (5.9) becomes smaller and then factor above decreases, which means that

our procedure moves closer to the optimal one. This is consistent with our intuition that one

can detect the change more easily when the change is more obvious.

5.2.2 Robust procedure for detecting covariance change

Next, consider the case when both the mean vector and the covariance matrix of a multi-

variate normal distribution change and they belong to some uncertainty sets. In this case,

we may consider linear and quadratic detectors, parameterized by vector h and matrix H

defined below, as suggested in [73]. We include the original derivation from [73] below.

First we define the cost function, which can be viewed as exponential loss function

which relates to the type-I and type-II error in the test (in the fixed sample size scenario).

Let ‖ · ‖ denote the spectral norm and ‖ · ‖F the Frobenius norm, respectively. Let U be a

convex compact set contained in the interior of the cone Sd+ of positive semidefinite d× d

matrices in the space Sd of symmetric d× d matrices. Let Θ∗ ∈ Sd+ be such that Θ∗ � Θ

for all Θ ∈ U , and let δ ∈ [0, 2] be such that

‖Θ1/2Θ−1/2
∗ − Id‖ ≤ δ ∀Θ ∈ U . (5.10)

Let Z be a nonempty convex compact subset of the set Z+ = {Z ∈ Sd+1
+ : Zd+1,d+1 = 1},

and let

φZ(Y ) , max
Z∈Z

Tr(ZY ) (5.11)
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be the support function of Z . These specify the closed convex set

H = Hβ := {(h,H) ∈ Rd × Sd : −βΘ−1
∗ � H � βΘ−1

∗ }, (5.12)

and the function ΦZ : H× U → R,

ΦZ(h,H; Θ) =

− 1

2
log Det(I −Θ1/2

∗ HΘ1/2
∗ ) +

1

2
Tr([Θ−Θ∗]H)

+
δ(2 + δ)

2(1− ‖Θ1/2
∗ HΘ

1/2
∗ ‖)

‖Θ1/2
∗ HΘ1/2

∗ ‖2
F

+
1

2
φZ


 H h

hT

+ [H,h]T [Θ−1
∗ −H]−1 [H,h]

 .

(5.13)

Then, we have that ΦZ is continuous on its domain, convex in (h,H) ∈ H and concave in

Θ ∈ U .

Next, we specify the uncertainty sets for the pre-change and post-change multivariate

normal distributions. Given two collections of data as above: (Uχ,Θ(χ)
∗ , βχ,Zχ), χ = 0, 1,

we define that

Gχ ={N(µ,Θ) : Θ ∈ Uχ

∃u : µ = [u; 1], [u; 1][u; 1]T ∈ Zχ}, χ = 0, 1.

(5.14)

Now to solve for the quadratic detector (h,H), which will be applied on each individual

samples and then used to construct the CUSUM recursion, we consider the convex-concave

saddle point problem

SV = min
(h,H)∈H0∩H1

max
Θ0∈U0,Θ1∈U1

1
2 [ΦZ0(−h,−H; Θ0) + ΦZ1(h,H; Θ1)]︸ ︷︷ ︸

Φ(h,H;Θ0,Θ1)

.
(5.15)
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A saddle point (H∗, h∗; Θ∗0,Θ
∗
1) in this problem does exist, which corresponds to the pa-

rameters of the quadratic detector and the picked worst-case parameters. We obtain the

following quadratic detector

φ∗(ξ) =
1

2
ξTH∗ξ + hT∗ ξ+

1

2
[ΦZ0(−h∗,−H∗; Θ∗0)− ΦZ1(h∗, H∗; Θ∗1)]︸ ︷︷ ︸

a

,
(5.16)

Given above (which is pre-solved before we have seen any data), now given a sequence of

data, we may evaluate φ∗ in (5.16) for each sample and define our detection procedure as

follows:

T2 = inf

{
t > 0 : max

1≤k≤t

t∑
i=k

(−φ∗(ξi)) ≥ b

}
, (5.17)

where b is a prescribed threshold.

Corollary 3 (ARL). For any ν0 ∈ G0, for the detection procedure T2 defined in (5.17), we

have that Eν0∞[T2] ≥ γ as long as

b ≥ log γ + log
ε∗

1− ε∗
,

where

ε∗ = exp(SV) (5.18)

and SV is defined in (5.15).

Corollary 4 (EDD). For any ν0 ∈ G0 and ν1 ∈ G1, for the detection procedure T2 defined

in (5.17), as b→∞, we have that

WDD(T2) ≤ b

1− ε∗
(1 + o(1)),

where ε∗ is defined in (5.18) and o(1) is a vanishing term as b→∞. Therefore, as γ →∞,
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we can have both Eν0∞[T1] ≥ γ and

WDD(T2) ≤ log γ

1− ε∗
(1 + o(1)),

where ε∗ is defined in (5.18) and o(1) is a vanishing term as γ →∞.
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Figure 5.1: Histogram of detection delay. T1 is established by solving (5.6) with: (Left)
M0 = {0} andM1 = {x ∈ Rd : ‖x − 1‖1 ≤ 27}; (Right)M0 = {0} andM1 = {x ∈
Rd : ‖x− 1‖2

2 ≤ 27}. TCUSUM is established by choosing pre-change distribution N (0, I)
and post-change distribution N (1, I). The result has 500 Monte Carlo trials.

5.3 Numerical examples

In this section, we numerically compare our procedures with the corresponding classic

CUSUM procedure. In all the following experiments, we set the dimension d = 30 and

choose b’s such that the ARL of T1 and TCUSUM are both 5000. The classic CUSUM

procedure are formed using randomly chosen pre-change and post-change distributions from

the uncertainty sets. In the following, we denote 1 as an all-one vector.

5.3.1 Mean change detection

Assume M0 = {0} and Σ = I in (5.4). In the first example, set M1 = {x ∈ Rd :

‖x − 1‖1 ≤ 27} in (5.4). We run 1000 experiments and for each run we choose a mean

vector µwhose entries are random from [0.1, 0.5], then generate the post-change observations
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from N (µ, I). For classic CUSUM, we specify the pre-change distribution as N (0, I) and

the post-change distribution as N (1, I). Then we obtain 1000 simulated detection delays

of T1 and TCUSUM, whose histograms are shown in Fig. 5.1. The mean and standard

deviation of detection delay of T1 are 7.6 and 2.3, and those of TCUSUM is 32.2 and 30.1,

respectively. In this case, T1 performs much better than TCUSUM since it is difficult to choose

a good post-change distribution inM1 that is close to the true post-change distribution.

In the second example, the only difference between the second and the first example is

that we replace the norm inM1 from `1 to `2. SetM1 = {x ∈ Rd : ‖x − 1‖2
2 ≤ 27} in

(5.4). We run 1000 experiments, and for each run we choose a mean vector µ whose entries

are random from [0.1, 0.5], then generate the post-change observations from N (µ, I). For

classic CUSUM, we specify the pre-change distribution to be N (0, I), and the post-change

distribution to be N (1, I). Then we obtain 1000 simulated detection delays of T1 and

TCUSUM, whose histograms are shown in Fig. 5.1 (Right panel). The mean and standard

deviation of detection delay of T1 is 10.3 and 2.9, and those of TCUSUM is 32.1 and 31.0,

respectively. In this case, T1 again performs much better than TCUSUM.

5.3.2 Covariance matrix change detection

Consider M0 = M1 = {0} and U0 = {I} in (5.5). In the first example, we set U1 =

{I + σV, σ ∈ [0.5, 1]} in (5.5), where V is a known matrix with diagonal entries Vi,i =

0, i = 1, . . . , d and off-diagonal entries Vi,j = exp(−(i − j)2), i, j = 1, . . . , d, i 6= j. We

run 500 experiments and for each run we randomly choose σ ∈ [0.5, 1] and then generate

the post-change observations from N (0, I + σV ). For classic CUSUM, we specify the

pre-change distribution as N (0, I) and the post-change distribution as N (0, I + 0.75V ).

Then we obtain 500 experiments for T2 and TCUSUM, whose histograms are shown in Fig.

5.2. The mean and standard deviation of detection delay of T2 is 9.10 and 4.21, and

those of TCUSUM is 8.28 and 5.10. In this case, there is no obvious difference between the

two detection procedures, which means that T2 performs almost as well as classical CUSUM
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procedure. The reason is that the set U1 is so small that the cost for mis-specified model is

not large.

In the second example, consider the case with larger uncertainty sets: U1 = {Θ ∈ Sd+ :

‖Θ‖2 ≤ 0.5} in (5.5). Again, we run 500 experiments and for each run we randomly choose

a Σ ∈ U1 and generate the post-change observations from N (0,Σ). For classic CUSUM,

we randomly choose a matrix in U1 as the covariance matrix of its post-change normal

distribution. Then, we obtain the detection delays of T2 and TCUSUM, whose histogram are

shown in Fig. 5.2. The mean and standard deviation of detection delay of T2 is 2.06

and 0.33, and those of TCUSUM is 10.28 and 9.22. In this case, T2 outperforms TCUSUM

since U1 is a large convex set and cost for a misspecified model is greater. Note that for the

above two choices of U1, (5.15) can be solved by first removing the inner maximum since

the maximum is achieved at the boundary of U1. Then solving saddle point is equivalent to

solving a convex optimization.
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Figure 5.2: Histogram of detection delay. (Left) T2 is established by solving (5.15) with
Θ

(0)
∗ = I , Θ

(1)
∗ = 2I , Θ∗ = 2I and β0 = β1 = 0.5. TCUSUM is established by choosing

pre-change distribution N (0, I) and post-change distribution N (0, I + 0.75V ). (Right) T2

is established by solving (5.15) with Θ
(0)
∗ = I , Θ

(1)
∗ = 0.5I and β0 = β1 = 0.5. TCUSUM

is established by choosing pre-change distribution N (0, I) and post-change distribution
N (0,Σ), where Σ is randomly chosen from U1 = {Θ ∈ Sd+ : ‖Θ‖2 ≤ 0.5}. The result has
500 Monte Carlo trials.
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5.4 Conclusions

In this chapter, we propose robust detection procedures for detecting the change for mean

vectors and covariance matrices, when they belong to some convex uncertainty sets. The

proposed procedures are similar to classic CUSUM procedure, and the task is to determine

appropriate pre-change and post-change distributions. Prior works look for pairs of least

favorable distributions and use them to establish CUSUM procedure, but this is difficult in the

multi-dimensional case. In this paper, we solve the pre-change and post-change distributions

by convex optimization and this method is very efficient in both one dimensional and high

dimensional cases. Moreover, from the asymptotic analysis, we obtain useful results to

characterize the ARLs and EDDs and show the upper bound for the cost of robustness.

Another advantage of our method is that the proposed procedures can be implemented

recursively. Compared to Generalized Likelihood Ratio (GLR) methods, our method does

not require solving a possibly complicated nonconvex optimization problem to estimate the

parameters at each time.
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CHAPTER 6

ROBUST SEQUENTIAL CHANGE-POINT DETECTION WITH ONLINE

CONVEX OPTIMIZATION

In this chapter, I present the robust sequential change-point detection via online convex

optimization. This work is summarized in [117].

6.1 Preliminaries

Assume a sequence of i.i.d. random variables X1, X2, . . . with a probability density function

of a parametric form fθ. The parameter θ may be unknown. Consider two related problems:

one-sided sequential hypothesis test and sequential change-point detection. The detection

statistic relies on a sequence estimators {θ̂t} constructed using online mirror descent. The

OMD uses simple one-sample update: the update from θ̂t−1 to θ̂t only uses the current

sample Xt. This is the main difference from the traditional generalized likelihood ratio

(GLR) statistic [54], where each θ̂t is estimated using historical samples. In the following,

we present detailed descriptions for two problems. We will consider exponential family

distributions and present our non-anticipating estimator based on the one-sample estimate.

6.1.1 One-sided sequential hypothesis test

First, we consider a one-sided sequential hypothesis test where the goal is only to reject

the null hypothesis. This is a special case of the change-detection problem where the

change-point can be either 0 or∞ (meaning it never occurs). Studying this special case will

given us an important intermediate step towards solving the sequential change-detection

problem.

Consider the null hypothesis H0 : θ = θ0 versus the alternative H1 : θ 6= θ0. Hence the

parameter under the alternative distribution is unknown. The classic approach to solve this
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problem is the one-sided sequential probablity-ratio test (SPRT) [118]: at each time, given

samples {X1, X2, . . . , Xt}, the decision is either to reject H0 or taking more samples if the

rejection decision cannot be made confidently. Here, we introduce a modified one-sided

SPRT with a sequence of non-anticipating plug-in estimators:

θ̂t := θ̂t(X1, . . . , Xt), t = 1, 2, . . . . (6.1)

Define the test statistic at time t as

Λt =
t∏
i=1

fθ̂i−1
(Xi)

fθ0(Xi)
, i ≥ 1. (6.2)

The test statistic has a simple recursive implementation:

Λt = Λt−1 ·
fθ̂t−1

(Xt)

fθ0(Xt

.

Define a sequence of σ-algebras {Ft}t≥1 where Ft = σ(X1, . . . , Xt). The test statistic has

the martingale property due to its non-anticipating nature: E[Λt | Ft−1] = Λt−1, where the

expectation is taken when X1, . . . are i.i.d. random variables drawn from fθ0 . The decision

rule is a stopping time

τ(b) = min{t ≥ 1 : log Λt ≥ b}, (6.3)

where b > 0 is a pre-specified threshold. We reject the null hypothesis whenever the statistic

exceeds the threshold. The goal is to reject the null hypothesis using as few samples as

possible under the false-alarm rate (or Type-I error) constraint.

6.1.2 Sequential change-point detection

Now we consider the sequential change-point detection problem. A change may occur at

an unknown time ν which alters the underlying distribution of the data. One would like to

detect such a change as quickly as possible. Formally, change-point detection can be cast
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into the following hypothesis test:

H0 : X1, X2, . . .
i.i.d.∼ fθ0 ,

H1 : X1, . . . , Xν
i.i.d.∼ fθ0 , Xν+1, Xν+2, . . .

i.i.d.∼ fθ,

(6.4)

Here we assume an unknown θ to represent the anomaly. The goal is to detect the change as

quickly as possible after it occurs under the false-alarm rate constraint. We will consider

likelihood ratio based detection procedures adapted from two types of existing ones, which

we call the adaptive CUSUM (ACM), and the adaptive SRRS (ASR) procedures.

For change-point detection, the post-change parameter is estimated using post-change

samples. This means that, for each putative change-point location before the current time

k < t, the post-change samples are {Xk, . . . , Xt}; with a slight abuse of notation, the

post-change parameter is estimated as

θ̂k,i = θ̂k,i(Xk, . . . , Xi), i ≥ k. (6.5)

Therefore, for k = 1, θ̂k,i becomes θ̂i defined in (6.2) for the one-sided SPRT. Initialize

with θ̂k,k−1 = θ0. The likelihood ratio at time t for a hypothetical change-point location k is

given by

Λk,t =
t∏
i=k

fθ̂k,i−1
(Xi)

fθ0(Xi)
, (6.6)

where Λk,t can be computed recursively similar to (6.2).

Since we do not know the change-point location ν, from the maximum likelihood

principle, we take the maximum of the statistics over all possible values of k. This gives the

ACM procedure:

TACM(b1) = inf

{
t ≥ 1 : max

1≤k≤t
log Λk,t > b1

}
, (6.7)

where b1 is a pre-specified threshold. Similarly, by replacing the maximization over k in (6.7)
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with summation, we obtain the following ASR procedure [75], which can be interpreted as a

Bayesian statistic similar to the Shiryaev-Roberts procedure.

TASR(b2) = inf

{
t ≥ 1 : log

(
t∑

k=1

Λk,t

)
> b2

}
, (6.8)

where b2 is a pre-specified threshold. The computations of Λk,t and estimator {θ̂t}, {θ̂k,t}

are discussed later in section 6.1.4. For a fixed k, the comparison between our methods and

GLR is illustrated in Figure 6.1.

Remark 15. In practice, to prevent the memory and computation complexity from blowing

up as time t goes to infinity, we can use window-limited version of the detection procedures

in (6.7) and (6.8). The window-limited versions are obtained by replacing max1≤k≤t with

maxt−w≤k≤t in (6.7) and by replacing
∑t

k=1 with
∑t

k=t−w in (6.8). Here w is a prescribed

window size. Even if we do not provide theoretical analysis to the window-limited versions,

we refer the readers to [54] for the choice of w the window-limited GLR procedures.
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GLR One-sample update

Figure 6.1: Comparison of the update scheme for GLR and our methods when a new sample
arrives.

6.1.3 Exponential family

In this paper, we focus on fθ being the exponential family for the following reasons: (i)

exponential family [77] represents a very rich class of parametric and even many nonpara-

metric statistical models [119]; (ii) the negative log-likelihood function for exponential
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family − log fθ(x) is convex, and this allows us to perform online convex optimization.

Some useful properties of the exponential family are briefly summarized below, and full

proofs can be found in [120, 77].

Consider an observation space X equipped with a sigma algebra B and a sigma fi-

nite measure H on (X ,B). Assume the number of parameters is d. Let xᵀ denote

the transpose of a vector or matrix. Let φ : X → Rd be an H-measurable function

φ(x) = (φ1(x), . . . , φd(x))ᵀ. Here φ(x) corresponds to the sufficient statistic for θ. Let Θ

denote the parameter space in Rd. Let {Pθ, θ ∈ Θ} be a set of probability distributions with

respect to the measure H . Then, {Pθ, θ ∈ Θ} is said to be a multivariate exponential family

with natural parameter θ, if the probability density function of each fθ ∈ Pθ with respect

to H can be expressed as fθ(x) = exp{θᵀφ(x) − Φ(θ)}. In the definition, the so-called

log-partition function is given by

Φ(θ) := log

∫
X

exp(θᵀφ(x))dH(x).

To make sure fθ(x) a well-defined probability density, we consider the following two sets

for parameters:

Θ = {θ ∈ Rd : log

∫
X

exp(θᵀφ(x))dH(x) < +∞},

and

Θσ = {θ ∈ Θ : ∇2Φ(θ) � σId×d}.

Note that − log fθ(x) is σ-strongly convex over Θσ. Its gradient corresponds to ∇Φ(θ) =

Eθ[φ(X)], and the Hessian∇2Φ(θ) corresponds to the covariance matrix of the vector φ(X).

Therefore, ∇2Φ(θ) is positive semidefinite and Φ(θ) is convex. Moreover, Φ is a Legendre

function, which means that it is strongly convex, continuous differentiable and essentially
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smooth [120]. The Legendre-Fenchel dual Φ∗ is defined as

Φ∗(z) = sup
u∈Θ
{uᵀz − Φ(u)}.

The mappings∇Φ∗ is an inverse mapping of∇Φ [121]. Moreover, if Φ is a strongly convex

function, then∇Φ∗ = (∇Φ)−1.

A general measure of proximity used in the OMD is the so-called Bregman divergence

BF , which is a nonnegative function induced by a Legendre function F (see, e.g., [120, 77])

defined as

BF (u, v) := F (u)− F (v)− 〈∇F (v), u− v〉. (6.9)

For exponential family, a natural choice of the Bregman divergence is the Kullback-Leibler

(KL) divergence. Define Eθ as the expectation when X is a random variable with density fθ

and I(θ1, θ2) as the KL divergence between two distributions with densities fθ1 and fθ2 for

any θ1, θ2 ∈ Θ. Then

I(θ1, θ2) = Eθ1 [log(fθ1(X)/fθ2(X))] . (6.10)

It can be shown that, for exponential family, I(θ1, θ2) = Φ(θ2)−Φ(θ1)− (θ2−θ1)ᵀ∇Φ(θ1).

Using the definition (6.9), this means that BΦ

BΦ(θ1, θ2) := I(θ2, θ1) (6.11)

is a Bregman divergence. This property is useful to constructing mirror descent estimator

for the exponential family [122, 121].

6.1.4 Online convex optimization (OCO) algorithms for non-anticipating estimators

Online convex optimization (OCO) algorithms [81] can be interpreted as a player who makes

sequential decisions. At the time of each decision, the outcomes are unknown to the player.
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After committing to a decision, the decision maker suffers a loss that can be adversarially

chosen. An OCO algorithm makes decisions, which, based on the observed outcomes,

minimizes the regret that is the difference between the total loss that has incurred relatively

to that of the best fixed decision in hindsight. To design non-anticipating estimators, we

consider OCO algorithms with likelihood-based regret functions. We iteratively estimate

the parameters at the time when a one new observation becomes available based on the

maximum likelihood principle, and hence the loss incurred corresponds to the negative

log-likelihood of the new sample evaluated at the estimator `t(θ) := − log fθ(Xt), which

corresponds to the log-loss in [80]. Given samples X1, . . . , Xt, the regret for a sequence of

estimators {θ̂i}ti=1 generated by a likelihood-based OCO algorithm a is defined as

Ra
t =

t∑
i=1

{− log fθ̂i−1
(Xi)} − inf

θ̃∈Θ

t∑
i=1

{− log fθ̃(Xi)}. (6.12)

Below we omit the superscript a occasionally for notational simplicity.

In this paper, we consider a generic OCO procedure called the online mirror descent

algorithms (OMD) [81, 123]. Next, we discuss how to construct the non-anticipating

estimators {θ̂t}t≥1 in (6.1), and {θ̂k,t}, k = 1, 2, . . . , t− 1 in (6.5) using OMD. The main

idea of OMD is the following. At each time step, the estimator θ̂t−1 is updated using the

new sample Xt, by balancing the tendency to stay close to the previous estimate against the

tendency to move in the direction of the greatest local decrease of the loss function. For the

loss function defined above, a sequence of OMD estimator is constructed by

θ̂t = arg min
u∈Γ

[uᵀ∇`t(θ̂t−1) +
1

ηi
BΦ(u, θ̂t−1)], (6.13)

whereBΦ is defined in (6.11). Here Γ ⊂ Θσ is a closed convex set, which is problem-specific

and encourages certain parameter structure such as sparsity.

Remark 16. Similar to (6.13), for any fixed k, we can compute {θ̂k,t}t≥1 via OMD for

sequential change-point detection. The only difference is that {θ̂k,t}t≥1 is computed if we
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use Xk as our first sample and then apply the recursive update (6.13) on Xk+1, . . .. For θ̂t,

we use X1 as our first sample.

There is an equivalent form of OMD, presented as the original formulation in [122]. The

equivalent form is sometimes easier to use for algorithm development, and it consists of

four steps: (1) compute the dual variable: µ̂t−1 = ∇Φ(θ̂t−1); (2) perform the dual update:

µ̂t = µ̂t−1− ηt∇`t(θ̂t−1); (3) compute the primal variable: θ̃t = (∇Φ)∗(µ̂t); (4) perform the

projected primal update: θ̂t = arg minu∈Γ BΦ(u, θ̃t). The equivalence between the above

form for OMD and the nonlinear projected subgradient approach in (6.13) is proved in [121].

We adopt this approach when deriving our algorithm and follow the same strategy as [76].

Algorithm 2 summarizes the steps1.

Algorithm 2 Online mirror-descent for non-anticipating estimators
Function Exponential family specifications φ(x),Φ(x) and fθ(x); initial parameter value

θ0; sequence of data X1, . . . , Xt, . . .; a closed, convex set for parameter Γ ⊂ Θσ; a
decreasing sequence {ηt}t≥1 of strictly positive step-sizes.

1: θ̂0 = θ0,Λ0 = 1. {Initialization}

2: for all t = 1, 2, . . . , do
3: Acquire a new observation Xt

4: Compute loss `t(θ̂t−1) , − log fθ̂t−1
(Xt) = Φ(θ̂t−1)− θ̂ᵀt−1φ(Xt)

5: Compute likelihood ratio Λt = Λt−1ḟθ̂t−1
(Xt)/fθ0(Xt)

6: µ̂t−1 = ∇Φ(θ̂t−1), µ̂t = µ̂t−1 − ηt(µ̂t−1 − φ(Xt)) {Dual update}

7: θ̃t = (∇Φ)∗(µ̂t)

8: θ̂t = arg minu∈Γ BΦ(u, θ̃t) {Projected primal update}

9: end for

10: return {θ̂t}t≥1 and {Λt}t≥1.

For strongly convex loss function, the regret of many OCO algorithms, including the

OMD, has the property thatRn ≤ C log n for some constant C (depend on fθ and Θσ) and

any positive integer n [124, 77]. Note that for exponential family, the loss function is the
1The implementation of the code can be downloaded at http://www2.isye.gatech.edu/

˜yxie77/one-sample-update-code.zip.
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negative log-likelihood function, which is strongly convex over Θσ. Hence, we can have the

logarithmic regret property.

6.2 Nearly second-order asymptotic optimality of one-sample update schemes

Below we prove the nearly second-order asymptotic optimality of the one-sample update

schemes. More precisely, the nearly second-order asymptotic optimality means that the

algorithm obtains the lower performance bound asymptotically up to a log-log factor in the

false-alarm rate, as the false-alarm rate tends to zero (in many cases the log-log factor is a

small number).

We first introduce some necessary notations. Denote Pθ,ν and Eθ,ν as the probability

measure and the expectation when the change occurs at time ν and the post-change parameter

is θ, i.e., when X1, . . . , Xν are i.i.d. random variables with density fθ0 and Xν+1, Xν+2, . . .

are i.i.d. random variables with density fθ. Moreover, let P∞ and E∞ denote the probability

measure when there is no change, i.e., X1, X2, . . . are i.i.d. random variables with density

fθ0 . Finally, let Ft denote the σ-algebra generated by X1, . . . , Xt for t ≥ 1.

6.2.1 “One-sided” Sequential hypothesis test

Recall that the decision rule for sequential hypothesis test is a stopping time τ(b) defined in

(6.3). The two standard performance metrics are the false-alarm rate, denoted as P∞(τ(b) <

∞), and the expected detection delay (i.e., the expected number of samples needed to reject

the null), denoted as Eθ,0[τ(b)]. A meaningful test should have both small P∞(τ(b) <∞)

and small Eθ,0[τ(b)]. Usually, one adjusts the threshold b to control the false-alarm rate to

be below a certain level.

Our main result is the following. As has been observed by [125], there is a loss in the

statistical efficiency by using one-sample update estimators relative to the GLR approach

using the entire samples X1, . . . , Xt in the past. The theorem below shows that this loss

corresponds to the expected regret given in (6.12).
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Theorem 21 (Upper bound for OCO based SPRT). Let {θ̂t}t≥1 be a sequence of non-

anticipating estimators generated by an OCO algorithm a. As b→∞,

Eθ,0[τ(b)] ≤ b

I(θ, θ0)
+

Eθ,0
[
Ra
τ(b)

]
I(θ, θ0)

+O(1) (6.14)

Here O(1) is a term upper-bounded by an absolute constant as b→∞.

The main idea of the proof is to decompose the statistic defining τ(b), log Λ(t), into

a few terms that form martingales, and then invoke the Wald’s Theorem for the stopped

process.

Remark 17. The inequality (6.14) is valid for a sequence of non-anticipating estimators

generated by an OCO algorithm. Moreover, (6.14) gives an explicit connection between

the expected detection delay for the one-sided sequential hypothesis testing (left-hand side

of (6.14)) and the regret for the OCO (the second term on the right-hand side of (6.14)).

This illustrates clearly the impact of estimation on detection by an estimation algorithm

dependent factor.

Note that in the statement of the Theorem 21, the stopping time τ(b) appears on the

right-hand side of the inequality (6.14). For OMD, the expected sample size is usually small.

By comparing with specific regret bound Rτ(b), we can bound Eθ,0[τ(b)] as discussed in

Section 6.3. The most important case is that when the estimation algorithm has a logarithmic

expected regret. For the exponential family, as shown in section 6.2.3, Algorithm 2 can

achieve Eθ,0[Rn] ≤ C log n for any positive integer n. To obtain a more specific order of

the upper bound for Eθ,0[τb] when b grows, we establish an upper bound for Eθ,0[τb] as a

function of b, to obtain the following Corollary 5.

Corollary 5. Let {θ̂t}t≥1 be a sequence of non-anticipating estimators generated by an

OCO algorithm a. Assume that Eθ,0[Ra
n] ≤ C log n for any positive integer n and some
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constant C > 0, we have

Eθ,0[τ(b)] ≤ b

I(θ, θ0)
+
C log b

I(θ, θ0)
(1 + o(1)). (6.15)

Here o(1) is a vanishing term as b→∞.

Corollary 5 shows that other than the well known first-order approximation b/I(θ, θ0)

[59, 75], the expected detection delay Eθ,0[τ(b)] is bounded by an additional term that is on

the order of log(b) if the estimation algorithm has a logarithmic regret. This log b term plays

an important role in establishing the optimality properties later. To show the optimality

properties for the detection procedures, we first select a set of detection procedures with

false-alarm rates lower than a prescribed value, and then prove that among all the procedures

in the set, the expected detection delays of our proposed procedures are the smallest. Thus,

we can choose a threshold b to uniformly control the false-alarm rate of τ(b).

Lemma 11 (false-alarm rate of τ(b)). Let {θ̂t}t≥1 be any sequence of non-anticipating

estimators. For any b > 0, P∞(τ(b) <∞) ≤ exp(−b).

Lemma 11 shows that as b increases the false-alarm rate of τ(b) decays exponentially

fast. We can set b = log(1/α) to make the false-alarm rate of τ(b) less than some α > 0.

Next, leveraging an existing lower bound for general SPRT presented in Section 5.5.1.1 in

[55], we establish the nearly second-order asymptotic optimality of OMD based SPRT as

follows:

Corollary 6 (Nearly second-order optimality of OCO based SPRT). Let {θ̂t}t≥1 be a

sequence of non-anticipating estimators generated by an OCO algorithm a. Assume that

Eθ,0[Ra
n] ≤ C log n for any positive integer n and some constant C > 0. Define a set

C(α) = {T : P∞(T <∞) ≤ α}. For b = log(1/α), due to Lemma 11, τ(b) ∈ C(α). For

such a choice, τ(b) is nearly second-order asymptotic optimal in the sense that for any
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θ ∈ Θσ − {θ0}, as α→ 0,

Eθ,0[τ(b)]− inf
T∈C(α)

Eθ,0[T ] = O(log(log(1/α))). (6.16)

The result means that, compared with any procedure (including the optimal proce-

dure) calibrated to have a false-alarm rate less than α, our procedure incurs an at most

log(log(1/α)) increase in the expected detection delay, which is usually a small number.

For instance, even for a conservative case when we set α = 10−5 to control the false-alarm

rate, the number is log(log(1/α)) = 2.44.

6.2.2 Sequential change-point detection

Now we proceed the proof by leveraging the close connection [59] between the sequential

change-point detection and the one-sided hypothesis test. For sequential change-point

detection, the two commonly used performance metrics [55] are the average run length

(ARL), denoted by E∞[T ]; and the maximal conditional average delay to detection (CADD),

denoted by supν≥0 Eθ,ν [T − ν | T > ν]. ARL is the expected number of samples between

two successive false alarms, and CADD is the expected number of samples needed to detect

the change after it occurs. A good procedure should have a large ARL and a small CADD.

Similar to the one-sided hypothesis test, one usually choose the threshold large enough so

that ARL is larger than a pre-specified level.

Similar to Theorem 21, we provide an upper bound for the CADD of our ASR and ACM

procedures.

Theorem 22. Consider the change-point detection procedure TACM(b1) in (6.7) and TASR(b2)

in (6.8). For any fixed k, let {θ̂k,t}t≥1 be a sequence of non-anticipating estimators generated
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by an OCO algorithm a. Let b1 = b2 = b, as b→∞ we have that

sup
ν≥0

Eθ,ν [TASR(b)− ν | TASR(b) > ν] ≤ sup
ν≥0

Eθ,ν [TACM(b)− ν | TACM(b) > ν]

≤ (I(θ, θ0))−1
(
b+ Eθ,0

[
Ra
τ(b)

]
+O(1)

)
.

(6.17)

To prove Theorem 22, we relate the ASR and ACM procedures to the one-sided hypoth-

esis test and use the fact that when the measure P∞ is known, supν≥0 Eθ,ν [T − ν | T > ν]

is attained at ν = 0 for both the ASR and the ACM procedures. Above, we may apply a

similar argument as in Corollary 5 to remove the dependence on τ(b) on the right-hand-side

of the inequality. We establish the following lower bound for the ARL of the detection

procedures, which is needed for proving Corollary 7:

Lemma 12 (ARL). Consider the change-point detection procedure TACM(b1) in (6.7) and

TASR(b2) in (6.8). For any fixed k, let {θ̂k,t}t≥1 be any sequence of non-anticipating

estimators. Let b1 = b2 = b, given a prescribed lower bound γ > 0 for the ARL, we have

E∞[TACM(b)] ≥ E∞[TASR(b)] ≥ γ,

provided that b ≥ log γ.

Lemma 12 shows that given a required lower bound γ for ARL, we can choose b = log γ

to make the ARL be greater than γ. This is consistent with earlier works [126, 75] which

show that the smallest threshold b such that E∞[TACM(b)] ≥ γ is approximate log γ.

However, the bound in Lamma 12 is not tight, since in practice we can set b = ρ log γ for

some ρ ∈ (0, 1) to ensure that ARL is greater than γ.

Combing the upper bound in Theorem 22 with an existing lower bound for the CADD

of SRRS procedure in [82], we obtain the following optimality properties.

Corollary 7 (Nearly second-order asymptotic optimality of ACM and ASR). Consider the

change-point detection procedure TACM(b1) in (6.7) and TASR(b2) in (6.8). For any fixed k,
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let {θ̂k,t}t≥1 be a sequence of non-anticipating estimators generated by an OCO algorithm

a. Assume that Eθ,0[Ra
n] ≤ C log n for any positive integer n and some constant C > 0.

Let b1 = b2 = b. Define S(γ) = {T : E∞[T ] ≥ γ}. For b = log γ, due to Lemma 12, both

TASR(b) and TACM(b) belong to S(γ). For such b, both TASR(b) and TACM(b) are nearly

second-order asymptotic optimal in the sense that for any θ ∈ Θ− {θ0}

sup
ν≥1

Eθ,ν [TASR(b)− ν + 1 | TASR(b) ≥ ν]

− inf
T (b)∈S(γ)

sup
ν≥1

Eθ,ν [T (b)− ν + 1 | T (b) ≥ ν] = O(log log γ).

(6.18)

A similar expression holds for TACM(b).

The result means that, compared with any procedure (including the optimal procedure)

calibrated to have a fixed ARL larger than γ, our procedure incurs an at most log(log γ)

increase in the CADD. Comparing (6.18) with (6.16), we note that the ARL γ plays the

same role as 1/α because 1/γ is roughly the false-alarm rate for sequential change-point

detection [59].

6.2.3 Example: Regret bound for specific cases

In this subsection, we show that the regret boundRt can be expressed as a weighted sum

of Bregman divergences between two consecutive estimators. This form ofRt is useful to

show the logarithmic regret for OMD. The following result comes as a modification of [83].

Theorem 23. Assume that X1, X2, . . . are i.i.d. random variables with density function

fθ(x). Let ηi = 1/i in Algorithm 2. Assume that {θ̂i}i≥1, {µ̂i}i≥1 are obtained using

Algorithm 2 and θ̂i = θ̃i (defined in step 7 and 8 of Algorithm 2) for any i ≥ 1. Then for any

θ0 ∈ Θ and t ≥ 1,

Rt =
t∑
i=1

i ·BΦ∗(µ̂i, µ̂i−1) =
1

2

t∑
i=1

i · (µ̂i − µ̂i−1)ᵀ[∇2Φ∗(µ̃i)](µ̂i − µ̂i−1),
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where µ̃i = λµ̂i + (1− λ)µ̂i−1, for some λ ∈ (0, 1).

Next, we use Theorem 23 on a concrete example. The multivariate normal distribution,

denoted by N (θ, Id), is parametrized by an unknown mean parameter θ and a known

covariance matrix Id (Id is a d× d identity matrix). Following the notations in subsection

6.1.3, we know that φ(x) = x, dH(x) = (1/
√
|2πId|) · exp (−xᵀx/2), Θ = Θσ = Rd

for any σ < 2, Φ(θ) = (1/2)θᵀθ, µ = θ and Φ∗(µ) = (1/2)µᵀµ , where | · | denotes the

determinant of a matrix, and H is a probability measure under which the sample follows

N (0, Id)). When the covariance matrix is known to be some Σ 6= Id, one can “whiten” the

vectors by multiplying Σ−1/2 to obtain the situation here.

Corollary 8 (Upper bound for the expected regret, Gaussian). Assume X1, X2, . . . are i.i.d.

following N (θ, Id) with some θ ∈ Rd. Assume that {θ̂i}i≥1, {µ̂i}i≥1 are obtained using

Algorithm 2 with ηi = 1/i and Γ = Rd. For any t > 0, we have that for some constant

C1 > 0 that depends on θ,

Eθ,0[Rt] ≤ C1d log t/2.

The following calculations justify Corollary 8, which also serve as an example of how to

use regret bound. First, the assumption θ̂t = θ̃t in Theorem 23 is satisfied for the following

reasons. Consider Γ = Rd is the full space. According to Algorithm 2, using the non-

negativity of the Bregman divergence, we have θ̂t = arg minu∈ΓBΦ(u, θ̃t) = θ̃t. Then the

regret bound can be written as

Rt =
1

2
(µ̂1 − µ̂0)ᵀ(µ̂1 − µ̂0) +

1

2

t∑
i=2

[i · (µ̂i − µ̂i−1)ᵀ(µ̂i − µ̂i−1)]

=
1

2
(X1 − θ0)ᵀ(X1 − θ0) +

1

2

t∑
i=2

(µ̂i − µ̂i−1)ᵀ(φ(Xi)− µ̂i−1).
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Since the step-size ηi = 1/i, the second term in the above equation can be written as:

1

2

t∑
i=2

(µ̂i − µ̂i−1)ᵀ(φ(Xi)− µ̂i−1)

=
1

2

t∑
i=2

(µ̂i − µ̂i−1)ᵀ(φ(Xi) + µ̂i)−
t∑
i=2

1

2
(µ̂i − µ̂i−1)ᵀ(µ̂i−1 + µ̂i)

=
t∑
i=2

1

2(i− 1)
(φ(Xi)− µ̂i)ᵀ(φ(Xi) + µ̂i) +

t∑
i=2

1

2
(‖µ̂i−1‖2 − ‖µ̂i‖2)

=
t∑
i=2

1

2(i− 1)
‖Xi‖2 −

t∑
i=2

1

2(i− 1)
‖µ̂i‖2 +

1

2
‖µ̂1‖2 − 1

2
‖µ̂t‖2 .

Combining above, we have

Eθ,0[Rt] ≤
1

2
Eθ,0[(X1 − θ0)ᵀ(X1 − θ0)] +

1

2

t∑
i=2

1

i− 1
Eθ,0[‖Xi‖2] +

1

2
Eθ,0[‖X1‖2].

Finally, since Eθ,0[‖Xi‖2] = d(1 + θ2) for any i ≥ 1, we obtain desired result. Thus,

with i.i.d. multivariate normal samples, the expected regret grows logarithmically with the

number of samples.

Using the similar calculations, we can also bound the expected regret in the general case.

As shown in the proof above for Corollary 8, the dominating term forRt can be rewritten as

t∑
i=2

1

2(i− 1)
(φ(Xi)− µ̂i)ᵀ[∇2Φ∗(µ̃i)](φ(Xi) + µ̂i),

where µ̃i is a convex combination of µ̂i−1 and µ̂i. For an arbitrary distribution, the term

(φ(Xi)− µ̂i)ᵀ[∇2Φ∗(µ̃i)](φ(Xi) + µ̂i) can be viewed as a local normal distribution with the

changing curvature∇2Φ∗(µ̃i). Thus, it is possible to prove case-by-case the O(log t)-style

bounds by making more assumptions about the distributions. Recall the notation Θσ in

subsection 6.1.3 such that − log fθ(x) is σ-strongly convex over Θσ. Let ‖ · ‖2 denote the

`2 norm. Moreover, we assume that the true parameter belongs to a set Γ that is a closed

and convex subset of Θσ such that supθ∈Γ ‖∇Φ(θ)‖2 ≤M for some constant M . Thus, one
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can show that − log fθ(x) is not only σ-strongly convex but also M -strongly smooth over Γ.

Theorem 3 in [77] shows that for all θ ∈ Γ and n ≥ 1, consider that {θ̂i}i≥1 is obtained by

OMD, then

Eθ,0[Rn] ≤
Eθ,0

[(
1
2

max1≤i≤n ‖Xi‖2 + 1
2
M
)2
]

σ
· (log n+ 1).

Therefore, for any bounded distributions within the exponential family, we achieve a loga-

rithmic regret. This logarithmic regret is valid for Bernoulli distribution, Beta distribution

and some truncated versions of classic distributions (e.g., truncated Gaussian distribution,

truncated Gamma distribution and truncated Geometric distribution analyzed in [127]).

6.3 Numerical examples

In this section, we present some synthetic examples to demonstrate the good performance of

our methods. We will focus on ACM and ASR for sequential change-point detection. In

the following, we consider the window-limited versions (see Remark 15) of ACM and ASR

with window size w = 100. Recall that when the measure P∞ is known, supν≥0 Eθ,ν [T −ν |

T > ν] is attained at ν = 0 for both ASR and ACM procedures (a proof can be found in

the proof of Theorem 22). Therefore, in the following experiments we define the expected

detection delay (EDD) as Eθ,0[T ] for a stopping time T . To compare the performance

between different detection procedures, we determine the threshold for each detection

procedure by Monte-Carlo simulations such that the ARL for each procedure is about 10000.

Below, we denote ‖·‖2, ‖·‖1 and ‖·‖0 as the `2 norm, `1 norm and `0 norm defined as the

number of non-zero entries, respectively. The following experiments are all run on the same

Macbook Air with an Intel i7 Core CPU.
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6.3.1 Detecting sparse mean-shift of multivariate normal distribution

We consider detect the sparse mean shift for multivariate normal distribution. Specifically,

we assume that the pre-change distribution is N (0, Id) and the post-change distribution is

N (θ, Id) for some unknown θ ∈ {θ ∈ Rd : ‖θ‖0 ≤ s}, where s is called the sparsity of

the mean shift. Sparse mean shift detection is of particular interest in sensor networks [18,

109]. For this Gaussian case, the Bregman divergence is given by BΦ(θ1, θ2) = I(θ2, θ1) =

‖θ1 − θ2‖2
2/2. Therefore, the projection onto Γ in Algorithm 2 is a Euclidean projection

onto a convex set, which in many cases can be implemented efficiently. As a frequently used

convex relaxation of the `0-norm ball, we set Γ = {θ : ‖θ‖1 ≤ s} (it is known that imposing

an `1 constraint leads to sparse solution; see, e.g., [48]). Then, the projection onto `1 ball

can be computed very efficiently via a simple soft-thresholding technique [102].

Two benchmark procedures are the CUSUM and the GLR. For the CUSUM procedure,

we specify a nominal post-change mean, which is an all-one vector. If knowing the post-

change mean is sparse, we can also use the shrinkage estimator presented in [128], which

performs hard or soft thresholding of the estimated post-change mean parameter. Our

procedures are TASR(b) and TACM(b) with Γ = Rd and Γ = {θ : ‖θ‖1 ≤ 5}. In the

following experiments, we run 10000 Monte Carlo trials to obtain each simulated EDD.

In the experiments, we set d = 20. The post-change distributions are N (θ, Id), where

100p% entry of θ is 1 and others are 0, and the location of nonzero entries are random.

Table 6.1 shows the EDDs versus the proportion p. Note that our procedures incur little

performance loss compared with the GLR procedure and the CUSUM procedure. Notably,

TACM(b) with Γ = {θ : ‖θ‖1 ≤ 5} performs almost the same as the GLR procedure and

much better than the CUSUM procedure when p is small. This shows the advantage of

projection when the true parameter is sparse.
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p = 0.1 p = 0.2 p = 0.3 p = 0.4 p = 0.5 p = 0.6
CUSUM 188.60 146.45 64.30 18.97 7.18 3.77
Shrinkage 17.19 9.25 6.38 4.96 4.07 3.55

GLR 19.10 10.09 7.00 5.49 4.50 3.86
ASR 45.22 19.55 12.62 8.90 7.02 5.90
ACM 45.60 19.93 12.50 9.00 7.03 5.87

ASR-`1 45.81 19.94 12.45 8.92 6.97 5.89
ACM-`1 19.24 10.17 7.51 6.11 5.41 4.92

Table 6.1: Comparison of the EDDs in detecting the sparse mean shift of multivariate
Gaussian distribution. Below, “CUSUM”: CUSUM procedure with pre-specified all-one
vector as post-change parameter; “Shrinkage”: component-wise shrinkage estimator in
[128]; “GLR”: GLR procedure; “ASR”: TASR(b) with Γ = Rd; “ACM”: TACM(b) with
Γ = Rd; “ASR-L1”: TASR(b) with Γ = {θ : ‖θ‖1 ≤ 5}; “ACM-L1”: TACM(b) with
Γ = {θ : ‖θ‖1 ≤ 5}. p is the proportion of non-zero entries in θ. We run 10000 Monte
Carlo trials to obtain each value. For each value, the standard deviation is less than one half
of the value.

6.3.2 Detecting the scale change in Gamma distribution

We consider an example that detects the scale change in Gamma distributions. Assume

that we observe a sequence X1, X2 . . . of samples drawn from Gamma(α, β) for some

α, β > 0, with the probability density function given by fα,β(x) = exp(−xβ)xα−1βα/Γ̃(α)

(to avoid confusion with the Γ parameter in Algorithm 2 we use Γ̃(·) to denote the Gamma

function). The parameter α−1 is called the dispersion parameter that scales the loss and the

divergences. For simplicity, we fix α = 1 just like we fix the variance in the Gaussian case.

The specifications in the Algorthm 2 are as follows: θ = −β, Θ = (−∞, 0), φ(x) = x,

dH(x) = 1, Φ(θ) = − log(−θ), µ = −1/θ and Φ∗(µ) = −1 − log µ. Assume that the

pre-change distribution is Gamma(1, 1) and the post-change distribution is Gamma(1, β)

for some unknown β > 0. We compare our algorithms with CUSUM, GLR and non-

ancitipating estimator based on the method of moment (MOM) estimator in [75]. For

the CUSUM procedure, we specify the post-change β to be 2. The results are shown

in Table 6.2. CUSUM fails to detect the change when β = 0.1, which is far away from

the pre-specified post-change parameter β = 2. We can see that performance loss of the

proposed ACM method compared with GLR and MOM is very small.
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β = 0.1 β = 0.5 β = 2 β = 5 β = 10
CUSUM NaN 481.2 33.75 14.37 12.04

MOM 3.41 32.87 40.86 11.42 7.21
GLR 2.40 23.79 33.29 9.07 5.67
ASR 3.95 32.34 45.18 13.45 8.55
ACM 3.70 31.80 47.20 12.42 7.87

Table 6.2: Comparison of the EDDs in detecting the scale change in Gamma distribution.
Below, “CUSUM”: CUSUM procedure with pre-specified post-change parameter β = 2;
“MOM”: Method of Moments estimator method; “GLR”: GLR procedure; “ASR”: TASR(b)
with Γ = (−∞, 0); “ACM”: TACM(b) with Γ = (−∞, 0). We run 10000 Monte Carlo trials
to obtain each value. For each value, the standard deviation is less than one half of the value.

6.3.3 Communication-rate change detection with Erdos-Renyi model

Next, we consider a problem to detect the communication-rate change in a network, which

is a model for social network data. Suppose we observe communication between nodes

in a network over time, represented as a sequence of (symmetric) adjacency matrices of

the network. At time t, if node i and node j communicates, then the adjacency matrix has

1 on the ijth and jith entries (thus it forms an undirected graph). The nodes that do not

communicate have 0 on the corresponding entries. We model such communication patterns

using the Erdos-Renyi random graph model. Each edge has a fixed probability of being

present or absent, independently of the other edges. Under the null hypothesis, each edge is

a Bernoulli random variable that takes values 1 with known probability p and value 0 with

probability 1− p. Under the alternative hypothesis, there exists an unknown time κ, after

which a small subset of edges occur with an unknown and different probability p′ 6= p.

In the experiments, we set N = 20 and d = 190. For the pre-change parameters, we set

pi = 0.2 for all i = 1, . . . , d. For the post-change parameters, we randomly select n out of

the 190 edges, denoted by E , and set pi = 0.8 for i ∈ E and pi = 0.2 for i /∈ E . As said

before, let the change happen at time ν = 0 (since the upper bound for EDD is achieved

at ν = 0 as argued in the proof of Theorem 22). To implement CUSUM, we specify the

post-change parameters pi = 0.8 for all i = 1, . . . , d.

The results are shown in Table 6.3. Our procedures are better than CUSUM procedure
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when n is small since the post-change parameters used in CUSUM procedure is far from the

true parameter. Compared with GLR procedure, our methods have a small performance loss,

and the loss is almost negligible as n approaches to d = 190.

n = 78 n = 100 n = 120 n = 150 n = 170 n = 190
CUSUM 473.11 2.06 2.00 2.00 2.00 2.00

GLR 2.00 1.96 1.27 1.00 1.00 1.00
ASR 8.64 6.39 5.08 3.92 3.36 2.94
ACM 8.67 6.37 5.07 3.88 3.32 2.94

Table 6.3: Comparison of the EDDs in detecting the changes of the communication-rates in a
network. Below, “CUSUM”: CUSUM procedure with pre-specified post-change parameters
p = 0.8 ; “GLR”: GLR procedure; “ASR”: TASR(b) with Γ = R; “ACM”: TACM(b) with
Γ = R. We run 10000 Monte Carlo trials to obtain each value. For each value, the standard
deviation is less than one half of the value.

Below are the specifications of Algorithm 2 in this case. For Bernoulli distribution with

unknown parameter p, the natural parameter θ is equal to log(p/(1 − p)). Thus, we have

Θ = R, φ(x) = x, dH(x) = 1, Φ(θ) = log(1 + exp(θ)), µ = exp(θ)/(1 + exp(θ)) and

Φ∗(µ) = µ log µ+ (1− µ) log(1− µ).

6.3.4 Point process change-point detection: Poisson to Hawkes processes

In this example, to illustrate the situation in Section 1.3.2, we consider a case where a

homogeneous Poisson process switches to a Hawkes process (see, e.g., [79]); this can

be viewed as a simplest case in Section 1.3.2 with one node. We construct ACM and

ASR procedures. In this case, the MLE for the unknown post-change parameter cannot

be found in close-form, yet ACM and ASR can be easily constructed and give reasonably

good performance, although our theory no longer holds in this case due to the lack of i.i.d.

samples.

The Hawkes process can be viewed as a non-homogeneous Poisson process where

the intensity is influenced by historical events. The data consist of a sequence of events

occurring at times {t1, t2, . . . , tn} before a time horizon T : ti ≤ T . Assume the intensity of

the Poisson process is λs, s ∈ (0, T ) and there may exists a change-point κ ∈ (0, T ) such
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that the process changes. The null and alternative hypothesis tests are


H0 : λs = µ, 0 < s < T ;

H1 : λs = µ, 0 < s < κ,

λs = µ+ θ
∑

κ<tj<s
ϕ(s− tj), κ < s < T,

where µ is a known baseline intensity, θ > 0 is unknown magnitude of the change, ϕ(s) =

βe−βs is the normalized kernel function with pre-specified parameter β > 0, which captures

the influence from the past events. We treat the post-change influence parameter θ as

unknown since it represents an anomaly.

We first use a sliding window to convert the event times into a sequence of vectors

with overlapping events. Assume of size of the sliding window is L. For a given scanning

time Ti ≤ T , we map all the events in [Ti − L, Ti] to a vector Xi = [t(1), . . . , t(mi)]
ᵀ,

t(i) ∈ [Ti − L, Ti], where mi is the number of events falling into the window. Note that Xi

can have different length for different i. Consider a set of scanning times T1, T2, . . . , Tt.

This maps the event times into a sequence of vectors X1, X2, . . . , Xt of lengthes m1, m2,

. . ., mt. These scanning times can be arbitrary; here we set them to be event times so that

there are at least one sample per sliding window.

For a hypothetical change-point location k, it can be shown that the log-likelihood ratio

(between the Hawkes process and the Poisson process) as a function of θ, is given by

`(θ|Xi) =
∑

tq∈(Ti−L,Ti)

log

µ+ θ
∑

tj∈(Ti−L,tq)

βe−β(tq−tj)

−µL−θ ∑
tq∈(Ti−L,Ti)

[
1− e−β(Ti−tq)

]
.

(6.19)

Now based on this sliding window approach, we can approximate the original change-point

detection problem as the following. Without change, X1, . . . , Xt are sampled from a Poisson

process. Under the alternative, the change occurs at some time such that X1, . . . , Xκ are

sampled from a Poisson process, and Xκ+1, . . . , Xt are sampled from a Hawkes process

with parameter θ, rather than a Poisson process. We define the estimator of θ, for assumed
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change-point location κ = k as follows

θ̂k,i , θ̂k,i(Xk, . . . , Xi) = θ̂k,i(t` ∈ [Tk, Ti]) (6.20)

Now, consider k ∈ [i− w, i− 1], and keep w estimators: θ̂i−w,i, . . . , θ̂i−1,i. The update for

each estimator is based on stochastic gradient descent. By taking derivative with respect to

θ, we have

∂`(θ|Xi)

∂α
=

∑
tq∈(Ti−L,Ti)

∑
tj∈(Ti−L,tq) βe

−β(tq−tj)

µ+ θ
∑

tj∈(Ti−L,tq) βe
−β(tq−tj)

−
∑

tq∈(Ti−L,Ti)

[
1− e−β(Ti−tq)

]
,

Note that there is no close form expression for the MLE, which the solution to the above

equation. We perform stochastic gradient descent instead

θ̂k,i+1 = θ̂k,i − γ
∂`(θ|Xi+1)

∂θ

∣∣∣
θ=θ̂k,i

, k = i− w + 1, i− w, . . . , i,

where γ > 0 is the step-size. Now we can apply the ACM and ASR procedures, by using

the fact that fθ̂k,t(Xt+1)/fθ0(Xt+1) = `(θ̂k,t|Xt+1) and calculating using (6.19).

Table. 6.4 shows the EDD for different α. Here we choose the threshold such that ARL

is 5000. We see that the scheme has a reasonably good performance, the detection delay

decreases as the true signal strength θ increases.

θ = 0.4 θ = 0.5 θ = 0.5 θ = 0.7
ACM 33.03 27.75 20.39 16.16
ASR 38.59 24.96 20.17 13.91

Table 6.4: Point process change-point detection: EDD of ACM and ASR procedures for
various values of true θ; ARL of the procedure is controlled to be 5000 by selecting threshold
via Monte Carlo simulation.
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6.4 Conclusion

In this chapter, we consider sequential hypothesis testing and change-point detection with

computationally efficient one-sample update schemes obtained from online mirror descent.

We show that the loss of the statistical efficiency caused by the online mirror descent

estimator (replacing the exact maximum likelihood estimator using the complete historical

data) is related to the regret incurred by the online convex optimization procedure. The

result can be generalized to any estimation method with logarithmic regret bound. This

result sheds lights on the relationship between the statistical detection procedures and the

online convex optimization.
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APPENDIX A

PROOFS

A.1 Proofs for matrix completion

To begin, we first recall some definitions from introduction and explain some additional

notation that we will need for the proofs. For two probability distributions P and Q on a

countable set A, D(P||Q) will denote the Kullback-Leibler (KL) divergence

D(P||Q) =
∑
x∈A

P(x) log

(
P(x)

Q(x)

)
,

where P(x) denotes the probability of the outcome x under the distribution P . In the

following, we will abuse this notation slightly, to mean the KL divergence between two

Poisson distributions with different parameters (the arguments in the notations denote

parameters of the Poisson distributions), in the following two ways. First, for scalar inputs

p, q ∈ R+, we will set D(p‖q) , p log(p/q) − (p − q), which gives the KL divergence

between two Poisson probability distributions. Second, we allow the KL divergence to act on

matrices via the average KL divergence over their entries: for two matrices P , Q ∈ Rd1×d2
+ ,

we define

D(P‖Q) ,
1

d1d2

∑
i,j

D(Pij‖Qij).

For two probability distributions P and Q on a countable set A, d2
H(P ,Q) will denote the

Hellinger distance

d2
H(P ,Q) =

∑
x∈A

(√
P(x)−

√
Q(x)

)2

.

Similarly, we abuse this notation slightly to denote the Hellinger distance between two

Poisson distributions with different parameters (the arguments in the notation denote

parameters of the Poisson distributions). We use the Hellinger distance between two
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Poisson distributions, which, for two scalars p, q ∈ R+, is given by, d2
H(p, q) , 2 −

2 exp
{
−1

2

(√
p−√q

)2
}
. For matrices P , Q ∈ Rd1×d2

+ , the average Hellinger distance is

defined by

d2
H(P,Q) ,

1

d1d2

∑
i,j

d2
H(Pij, Qij).

A.1.1 Proof of Theorem 12

To prove Theorem 12, the key is to establish the concentration inequality (Lemma 13) and

the lower bound for the average Hellinger distance (Lemma 14).

Lemma 13. Let FΩ,Y (X) be the likelihood function defined in (4.2) and S be the set defined

in (3.3), then

P
{

sup
X∈S
|FΩ,Y (X)− E[FΩ,Y (X)]|

≥ C ′
(
α
√
r/β
) (
α(e2 − 2) + 3 log(d1d2)

)
·(√

m(d1 + d2) + d1d2 log(d1d2)
)}
≤ C

d1d2

,

(A.1)

where C ′ and C are absolute positive constants and the probability and the expectation are

both over the choice of Ω and the draw of Y .

Lemma 14. For any two matrices P,Q ∈ S, we have

d2
H(P,Q) ≥ 1− e−T

4αT

‖P −Q‖2
F

d1d2

,

where T = 1
8β

(α− β)2.

We will prove Lemma 13 and Lemma 14 below, but first we use them in proving Theorem

12.
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Proof of Theorem 12. To begin, notice that for any choice of X ∈ S,

E [FΩ,Y (X)− FΩ,Y (M)]

=
m

d1d2

∑
i,j

[
Mij log

(
Xij

Mij

)
− (Xij −Mij)

]
= − m

d1d2

∑
i,j

[
Mij log

(
Mij

Xij

)
− (Mij −Xij)

]
= − m

d1d2

∑
i,j

D (Mij‖Xij) = −mD(M‖X),

(A.2)

where the expectation is over both Ω and Y .

On the other hand, note that by assumption the true matrix M ∈ S . Then for any Z ∈ S ,

consider the difference below

FΩ,Y (Z)− FΩ,Y (M)

= FΩ,Y (Z) + E[FΩ,Y (Z)]− E[FΩ,Y (Z)]

+ E[FΩ,Y (M)]− E[FΩ,Y (M)]− FΩ,Y (M)

= E[FΩ,Y (Z)]− E[FΩ,Y (M)]+

FΩ,Y (Z)− E[FΩ,Y (Z)] + E[FΩ,Y (M)]− FΩ,Y (M)

≤ E [FΩ,Y (Z)− FΩ,Y (M)] +

|FΩ,Y (Z)− E[FΩ,Y (Z)]|+ |FΩ,Y (M)− E[FΩ,Y (M)]|

≤ −mD(M‖Z) + 2 sup
X∈S
|FΩ,Y (X)− E[FΩ,Y (X)]| , (A.3)

where the second equality is to rearrange terms, the first inequality is due to triangle

inequality, the last inequality is due to (A.2) and the fact that

|FΩ,Y (Z)− E[FΩ,Y (Z)]| ≤ sup
X∈S
|FΩ,Y (X)− E[FΩ,Y (X)]|
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and

|FΩ,Y (M)− E[FΩ,Y (M)]| ≤ sup
X∈S
|FΩ,Y (X)− E[FΩ,Y (X)]| .

Moreover, from the definition of M̂ , we also have that M̂ ∈ S and FΩ,Y (M̂) ≥ FΩ,Y (M).

Thus, by substituting M̂ for Z in (A.3), we obtain

0 ≤ −mD(M‖M̂) + 2 sup
X∈S
|FΩ,Y (X)− E[FΩ,Y (X)]| .

To bound the second term in the above expression, we apply Lemma 13, and obtain that

with probability at least 1− C/(d1d2), we have

0 ≤ −mD(M‖M̂) + 2C ′
(
α
√
r/β
) (
α(e2 − 2) + 3 log(d1d2)

)
·(√

m(d1 + d2) + d1d2 log(d1d2)
)
.

After rearranging terms, and use the fact that
√
d1d2 ≤ d1 + d2, we obtain

D(M‖M̂) ≤2C ′
(
α
√
r/β
) (
α(e2 − 2) + 3 log(d1d2)

)
·(√

d1 + d2

m

√
1 +

(d1 + d2) log(d1d2)

m

)
.

(A.4)

Note that the KL divergence can be bounded below by the Hellinger distance (Chapter 3

in [86]). Using our notation to denote the parameters of the Poisson distributions in the

argument of the distance, we have

d2
H(p, q) ≤ D(p‖q), (A.5)

for any two scalars p, q ∈ R+ that denote the parameters of the Poisson distributions. Thus,
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(A.4) together with (A.5) lead to

d2
H(M, M̂) ≤ 2C ′

(
α
√
r/β
) (
α(e2 − 2) + 3 log(d1d2)

)
·(√

d1 + d2

m

√
1 +

(d1 + d2) log(d1d2)

m

)
.

(A.6)

Finally, Theorem 12 follows immediately from Lemma 14.

Next, we will establish a tail bound for Poisson distribution with the method of estab-

lishing Chernoff bounds. And this result will be used for proving Lemma 13.

Lemma 15 (Tail bound for Poisson). For Y ∼ Poisson(λ) with λ ≤ α, P(Y −λ ≥ t) ≤ e−t,

for all t ≥ t0 where t0 , α(e2 − 3).

Proof of Lemma 15. The proof below is a specialized version of Chernoff bound for Poisson

random variable [129] when λ is upper bounded by a constant. For any θ ≥ 0, we have

P (Y − λ ≥ t) = P (Y ≥ t+ λ)

= P (θY ≥ θ (t+ λ)) = P (exp (θY ) ≥ exp (θ (t+ λ)))

≤ exp (−θ (t+ λ))E
(
eθY
)

= exp(−θ(λ+ t)) · exp
(
λ(eθ − 1)

)
,

where we have used Markov’s inequality and the moment generating function for Poisson

random variable above. Now let θ = 2, we have

exp(t) · P (Y − λ ≥ t) ≤ exp
(
−t+ λ(e2 − 3)

)
.

Given t0 , α(e2 − 3), then for all t ≥ t0, we have exp(t) · P (Y − λ ≥ t) ≤ 1. It follows

that P (Y − λ ≥ t) ≤ e−t when t ≥ t0 ≥ α(e2 − 3).

Proof of Lemma 13. We begin by noting that for any h > 0, by using Markov’s inequality
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we have that

P
{

sup
X∈S
|FΩ,Y (X)− E[FΩ,Y (X)]|

≥ C ′
(
α
√
r/β
) (
α(e2 − 2) + 3 log(d1d2)

)
·(√

m(d1 + d2) + d1d2 log(d1d2)
)}

= P
{

sup
X∈S
|FΩ,Y (X)− E[FΩ,Y (X)] |h

≥
(
C ′
(
α
√
r/β
) (
α(e2 − 2) + 3 log(d1d2)

)
·(√

m(d1 + d2) + d1d2 log(d1d2)
))h}

≤ E
[

sup
X∈S
|FΩ,Y (X)− E[FΩ,Y (X)]|h

]
/

{
(
C ′
(
α
√
r/β
) (
α(e2 − 2) + 3 log(d1d2)

)
·(√

m(d1 + d2) + d1d2 log(d1d2)
))h
}.

(A.7)

The bound in (A.1) follows by combining this with an upper bound on E
[
supX∈S |FΩ,Y (X)− E[FΩ,Y (X)]|h

]
and setting h = log(d1d2).

Let εijs be i.i.d. Rademacher random variables. In the following derivation, the first

inequality is due the Radamacher symmetrization argument (Lemma 6.3 in [85]) and the

second inequality is due to the power mean inequality: (a+ b)h ≤ 2h−1(ah + bh) if a, b > 0

and h ≥ 1. Then we have

E
[

sup
X∈S
|FΩ,Y (X)− EFΩ,Y (X)|h

]

≤ 2hE

sup
X∈S

∣∣∣∣∣∑
i,j

εijI{[(i, j) ∈ Ω]}(Yij logXij −Xij)

∣∣∣∣∣
h

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≤ 2hE

2h−1

sup
X∈S

∣∣∣∣∣∑
i,j

εijI{[(i, j) ∈ Ω]}(Yij(− logXij))

∣∣∣∣∣
h


+ 2h−1

sup
X∈S

∣∣∣∣∣∑
i,j

εijI{[(i, j) ∈ Ω]}Xij

∣∣∣∣∣
h


= 22h−1E

sup
X∈S

∣∣∣∣∣∑
i,j

εijI{[(i, j) ∈ Ω]}(Yij(− logXij))

∣∣∣∣∣
h


+ 22h−1E

sup
X∈S

∣∣∣∣∣∑
i,j

εijI{[(i, j) ∈ Ω]}Xij

∣∣∣∣∣
h
 ,

(A.8)

where the expectation are over both Ω and Y .

To bound the first term of (A.8) with the assumption that ‖X‖∗ ≤ α
√
rd1d2, we use the

contraction principle (Theorem 4.12 in [85]). Let φ(t) = −β log(t+ 1). We know φ(0) = 0

and |φ′(t)| = |β/(t+1)|, so |φ′(t)| ≤ 1 if t ≥ β−1. Setting Z = X−1d1×d2 , then we have

Zij ≥ β − 1,∀(i, j) ∈ Jd1K × Jd2K and ‖Z‖∗ ≤ α
√
rd1d2 +

√
d1d2 by triangle inequality.
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Therefore, φ(Zij) is a contraction and it vanishes at 0. We obtain that

22h−1E

sup
X∈S

∣∣∣∣∣∑
i,j

εijI{[(i, j) ∈ Ω]}(Yij(− logXij))

∣∣∣∣∣
h


≤ 22h−1E
[
max
i,j

Y h
ij

]
·

E

sup
X∈S

∣∣∣∣∣∑
i,j

εijI{[(i, j) ∈ Ω]}((− logXij))

∣∣∣∣∣
h


= 22h−1E
[
max
i,j

Y h
ij

]
·

E

sup
X∈S

∣∣∣∣∣∑
i,j

εijI{[(i, j) ∈ Ω]}
(

1

β
φ(Zij)

)∣∣∣∣∣
h


≤ 22h−1

(
2

β

)h
E
[
max
i,j

Y h
ij

]
·

E

sup
X∈S

∣∣∣∣∣∑
i,j

εijI{[(i, j) ∈ Ω]}Zij)

∣∣∣∣∣
h


= 22h−1

(
2

β

)h
E
[
max
i,j

Y h
ij

]
E
[

sup
X∈S
|〈∆Ω ◦ E,Z〉|h

]
,

(A.9)

where E denotes the matrix with entries given by εij , ∆Ω denotes the indicator matrix for Ω

and ◦ denotes the Hadamard product.

The dual norm of spectral norm is nuclear norm. Using the Hölder’s inequality for

Schatten norms in [130], which is, |〈A,B〉| ≤ ‖A‖‖B‖∗, we have

22h−1E

sup
X∈S

∣∣∣∣∣∑
i,j

εijI{[(i, j) ∈ Ω]}(Yij(− logXij))

∣∣∣∣∣
h


≤ 22h−1

(
2

β

)h
E
[
max
i,j

Y h
ij

]
E
[

sup
X∈S
‖E ◦∆Ω‖h‖Z‖h∗

]
≤ 22h−1

(
2

β

)h (
α
√
r + 1

)h (√
d1d2

)h
E
[
max
i,j

Y h
ij

]
·

E
[
‖E ◦∆Ω‖h

]
,

(A.10)
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Similarly, the second term of (A.8) can be bounded as follows:

22h−1E

sup
X∈S

∣∣∣∣∣∑
i,j

εijI{[(i, j) ∈ Ω]}Xij

∣∣∣∣∣
h


≤ 22h−1E
[

sup
X∈S
‖E ◦∆Ω‖h‖X‖h∗

]
≤ 22h−1

(
α
√
r
)h (√

d1d2

)h
E
[
‖E ◦∆Ω‖h

]
.

(A.11)

Plugging (A.10) and (A.11) into (A.8), we have

E
[

sup
X∈S
|FΩ,Y (X)− EFΩ,Y (X)|h

]
≤ 22h−1

(
α
√
r + 1

)h (√
d1d2

)h
E
[
‖E ◦∆Ω‖h

]
·((

2

β

)h
E
[
max
i,j

Y h
ij

]
+ 1

)
.

(A.12)

To bound E
[
‖E ◦∆Ω‖h

]
, we use the very first inequality on Page 215 of [8]:

E
[
‖E ◦∆Ω‖h

]
≤ C0

(
2(1 +

√
6)
)h√m(d1 + d2) + d1d2 log(d1d2)

d1d2

h

for some constant C0. Therefore, the only term we need to bound is E
[
maxi,j Y

h
ij

]
.

From Lemma 15, if t ≥ t0, then for any (i, j) ∈ Jd1K× Jd2K, the following inequality

holds since t0 > α:

P (|Yij −Mij| ≥ t)

= P (Yij ≥Mij + t) + P (Yij ≤Mij − t)

≤ exp(−t) + 0 = P(Wij ≥ t),

(A.13)

where Wijs are independent standard exponential random variables. Because |Yij −Mij|s
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and Wij’s are all non-negative random variables and max(x1, x2, . . . , xn) is an increasing

function defined on Rn, we have, for any h ≥ 1,

P
(

max
i,j
|Yij −Mij|h ≥ t

)
≤ P(max

i,j
W h
ij ≥ t), (A.14)

for any t ≥ (t0)h.

Below we use the fact that for any positive random variable q, we can write E[q] =∫∞
0

P(q ≥ t)dt, and then

E
[
max
i,j

Y h
ij

]
≤ 22h−1

(
αh + E

[
max
i,j
|Yij −Mij|h

])
= 22h−1

(
αh +

∫ ∞
0

P
(

max
i,j
|Yij −Mij|h ≥ t

)
dt

)
≤ 22h−1

(
αh + (t0)h +

∫ ∞
(t0)h

P
(

max
i,j
|Yij −Mij|h ≥ t

)
dt

)
≤ 22h−1

(
αh + (t0)h +

∫ ∞
(t0)h

P
(

max
i,j

W h
ij ≥ t

)
dt

)
≤ 22h−1

(
αh + (t0)h + E

[
max
i,j

W h
ij

])
.

(A.15)

Above, first we use the triangle inequality and the power mean inequality, then along

with independence, we use (A.14) in the third inequality. By some standard computations

for exponential random variables,

E
[
max
i,j

W h
ij

]
≤ 2h! + logh(d1d2). (A.16)

Thus, we have

E
[
max
i,j

Y h
ij

]
≤ 22h−1

(
αh + (t0)h + 2h! + logh(d1d2)

)
. (A.17)
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Therefore, combining (A.17) and (A.12), we have

E
[

sup
X∈S
|FΩ,Y (X)− E[FΩ,Y (X)]|h

]
≤ 24h−1

(
α
√
r + 1

)h (√
d1d2

)h
E
[
‖E ◦∆Ω‖h

]
·(

2

β

)h (
αh + (t0)h + 2h! + logh(d1d2)

)
.

(A.18)

Then,

(
E
[

sup
X∈S
|FΩ,Y (X)− E[FΩ,Y (X)]|h

]) 1
h

≤ 16
(
α
√
r + 1

) (√
d1d2

)
E
[
‖E ◦∆Ω‖h

] 1
h ·(

2

β

)
(α + t0 + 2h+ log(d1d2))

≤ 16

(
2

β

)(
α
√
r + 1

) (√
d1d2

)
E
[
‖E ◦∆Ω‖h

] 1
h ·

(
α(e2 − 2) + 3 log(d1d2)

)
≤ 128

(
1 +
√

6
)
C

1
h
0

(
α
√
r

β

)(
α(e2 − 2) + 3 log(d1d2)

)
·(√

m(d1 + d2) + d1d2 log(d1d2)
)
.

(A.19)

where we use the fact that (ah + bh + ch + dh)1/h ≤ a+ b+ c+ d if a, b, c, d > 0 in the first

inequality and we take h = log(d1d2) ≥ 1 in the second and the third inequality.

Plugging this into (A.7), we obtain that the probability in (A.7) is upper bounded by

C0

(
128(1 +

√
6)

C ′

)log(d1d2)

≤ C0

d1d2

,

provided that C ′ ≥ 128
(
1 +
√

6
)
e, which establishes this lemma.

Proof of Lemma 14. Assuming x is any entry in P and y is any entry in Q, then β ≤ x, y ≤

α and 0 ≤ |x − y| ≤ α − β. By the mean value theorem there exists an ξ(x, y) ∈ [β, α]
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such that

1

2
(
√
x−√y)2 =

1

2

(
1

2
√
ξ(x, y)

(x− y)

)2

=
1

8ξ(x, y)
(x− y)2 ≤ T.

The function f(z) = 1− e−z is concave in [0,+∞], so if z ∈ [0, T ], we may bound it from

below with a linear function

1− e−z ≥ 1− e−T

T
z. (A.20)

Plugging z = 1
2
(
√
x−√y)2 = 1

8ξ(x,y)
(x− y)2 into (A.20), we have

2− 2 exp

(
−1

2
(
√
x−√y)2

)
≥ 1− e−T

T

1

4ξ(x, y)
(x− y)2

≥ 1− e−T

T

1

4α
(x− y)2.

(A.21)

Note that (A.21) holds for any x and y. This concludes the proof.

A.1.2 Proof of Theorem 13

Before providing the proof, we first establish two useful lemmas. First, we consider the

construction of the set χ.

Lemma 16 (Lemma A.3 in [8]). Let

H ,
{
X : ‖X‖∗ ≤ α

√
rd1d2, ‖X‖∞ ≤ α

}

and γ ≤ 1 be such that r/γ2 is an integer. Suppose r/γ2 ≤ d1, then we may construct a set

χ ∈ H of size

|χ| ≥ exp

(
rd2

16γ2

)
(A.22)

with the following properties:
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1. For all X ∈ χ, each entry has |Xij| = αγ.

2. For all X(i),X(j) ∈ χ, i 6= j,

‖X(i) −X(j)‖2
F > α2γ2d1d2/2.

Second, we consider about the KL divergence.

Lemma 17. For x, y > 0, D(x‖y) ≤ (y − x)2/y.

Proof of Lemma 17. First assume x ≤ y. Let z = y − x. Then z ≥ 0 and D(x‖x + z) =

x log x
x+z

+ z. Taking the first derivative of this with respect to z, we have ∂
∂z
D(x‖x+ z) =

z
x+z

. Thus, by Taylor’s theorem, there is some ξ ∈ [0, z] so thatD(x‖y) = D(x‖x)+z · ξ
x+ξ

.

Since the zξ/(x+ ξ) increases in ξ, we may replace ξ with z and obtain D(x‖y) ≤ (y−x)2

y
.

For x > y, with the similar argument we may conclude that for z = y − x < 0 there is

some ξ ∈ [z, 0] so that D(x‖y) = D(x‖x) + z · ξ
x+ξ

. Since z < 0 and ξ/(x+ ξ) increases

in ξ, then zξ/(x + ξ) decreases in ξ. We may also replace ξ with z and this proves the

lemma.

Next, we show how Lemma 16 and Lemma 17 imply Theorem 13. We prove the theorem

by contradiction.

Proof of Theorem 13. Without loss of generality, assume d2 ≥ d1. We choose ε > 0 such

that

ε2 = min

{
1

256
, C2α

3/2

√
rd2

m

}
, (A.23)

where C2 is an absolute constant that will be be specified later. Next, use Lemma 16 to

construct a set χ, choosing γ such that r/γ2 is an integer and

4
√

2ε

α
≤ γ ≤ 8ε

α
.
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We can make such a choice because

α2r

64ε2
≤ r

γ2
≤ α2r

32ε2

and
α2r

32ε2
− α2r

64ε2
=

α2r

64ε2
> 4α2r > 1.

We verify that such a choice for γ satisfies the the requirements of Lemma 16. Indeed, since

ε ≤ 1
16

and α ≥ 1, γ ≤ 1
2
< 1. Further, by assumption of the theorem that the right-hand

side of (A.23) is larger than C1rα
2/d1, which implies r/γ2 ≤ d1 for an appropriate choice

of C1.

Let χ′α/2,γ be the set whose existence is guaranteed by Lemma 16, with this choice of γ

and with α/2 instead of α. Then we can construct χ by defining

χ ,
{
X ′ + α

(
1− γ

2

)
1d1×d2 : X ′ ∈ χ′α/2,γ

}
,

where 1d1×d2 denotes an d1-by-d2 matrix of all ones. Note that χ has the same size as χ′α/2,γ ,

i.e.|χ| satisfies (A.22). χ also has the same bound on pairwise distances

‖X(i) −X(j)‖2
F ≥

α2

4

γ2d1d2

2
≥ 4d1d2ε

2, (A.24)

for any two matrices X(i), X(j) ∈ χ. Define α′ , (1− γ)α, then every entry of X ∈ χ has

Xij ∈ {α, α′}. Since we assume r ≥ 4 in theorem statement, for any X ∈ χ, we have that

for some X ′ ∈ χ′α/2,γ ,

‖X‖∗ = ‖X ′ + α
(

1− γ

2

)
1d1×d2‖∗

≤ α

2

√
rd1d2 + α

√
d1d2 ≤ α

√
rd1d2.

Since we choose γ less than 1/2, we have that α′ is greater than α/2. Therefore, from the

142



assumption that β ≤ α/2, we conclude that χ ⊂ S.

Now suppose for the sake of a contradiction that there exists an algorithm such that for

any X ∈ S, when given access to the measurements on Ω0, returns X̂ such that

1

d1d2

‖X − X̂‖2
F < ε2 (A.25)

with probability at least 1/4. We will imagine running this algorithm on a matrix X chosen

uniformly at random from χ. Let

X∗ = arg min
Z∈χ
‖Z − X̂‖2

F .

By the same argument as that in [8], we can claim that X∗ = X as long as (A.25) holds.

Indeed, for any X ′ ∈ χ with X ′ 6= X , from (A.24) and (A.25), we have that

‖X ′ − X̂‖F ≥ ‖X ′ −X‖F − ‖X − X̂‖F >
√
d1d2ε.

At the same time, since X ∈ χ is a candidate for X∗, we have that

‖X∗ − X̂‖F ≤ ‖X − X̂‖F ≤
√
d1d2ε.

Thus, if (A.25) holds, then ‖X∗ − X̂‖F < ‖X ′ − X̂‖F for any X ′ ∈ χ with X ′ 6= X , and

hence we must have X∗ = X .

Using the assumption that (A.25) holds with probability at least 1/4, we have that

P(X∗ 6= X) ≤ 3

4
. (A.26)

We will show that this probability must in fact be large, generating a contradiction.
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By a variant of Fano’s inequality in [87], we have

max
X∈S

P(X∗ 6= X) ≥ 1−
maxX(k) 6=X(l) D̃(X(k)‖X(l)) + 1

log |χ|
, (A.27)

where

D̃(X(k)‖X(l)) ,
∑

(i,j)∈Ω0

D(X
(k)
ij ‖X

(l)
ij ),

and the maximum is taken over all pairs of different matricesX(k) andX(l) in χ. For any such

pairsX(k), X(l) ∈ χ,D(X
(k)
ij ‖X

(l)
ij ) is either 0,D(α‖α′), orD(α′‖α) for (i, j) ∈ Jd1K×Jd2K.

Define an upper bound on the KL divergence quantities

D , max
X(k) 6=X(l)

D̃(X(k)‖X(l)).

By the assumption that |Ω0| = m, using Lemma 17 and the fact that α′ < α, we have

D ≤ m(γα)2

α′
≤ 64mε2

α′
.

Combining (A.26) and (A.27), we have that

1

4
≤ 1− P(X 6= X∗) ≤ D + 1

log |χ|

≤ 16γ2

(
64mε2

α′
+ 1

rd2

)
≤ 1024ε2

(
64mε2

α′
+ 1

α2rd2

)
.

(A.28)

We now show that for appropriate values of C0 and C2, this leads to a contradiction.

Suppose 64mε2 ≤ α′, then with (A.28), we have that

1

4
≤ 1024ε2

2

α2rd2

,

which together with (A.23) implies that α2rd2 ≤ 32. If set C0 > 32, this would lead to a
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contradiction. Suppose 64mε2 > α′, (A.28) simplifies to

1

4
< 1024ε2

(
128mε2

(1− γ)α3rd2

)
.

Since 1− γ > 1/2, we have

ε2 >
α3/2

1024

√
rd2

m
.

Setting C2 ≤ 1/1024 in (A.23) leads to a contradiction. Therefore, (A.25) must be incorrect

with probability at least 3/4, which proves the theorem.

A.1.3 Proofs of Proposition 1 and Proposition 2

Lemma 18. If f is a closed convex function satisfying Lipschitz condition (3.15), then for

any X, Y ∈ S, the following inequality holds:

f(Y ) ≤ f(X) + 〈∇f(X), Y −X〉+
L

2
‖Y −X‖2

F .

Proof. Let Z = Y −X , then we have

f(Y ) = f(X) + 〈∇f(X), Z〉

+

∫ 1

0

〈∇f(X + tV )−∇f(X), Z〉 dt

≤ f(X) + 〈∇f(X), Z〉

+

∫ 1

0

‖f(X + tV )−∇f(X)‖F‖Z‖F dt

≤ f(X) + 〈∇f(X), Z〉+

∫ 1

0

Lt‖Z‖2
F dt

= f(X) + 〈∇f(X), Y −X〉+
L

2
‖Y −X‖2

F ,
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where we use the Taylor expansion with integral remainder in the first line, the fact that

dual norm of Frobenius norm is itself in the second line and Lipschitz condition in the third

line.

In the following, proofs for Proposition 1 and Proposition 2 use results from [101].

Proof of Proposition 1. It is well known that the proximal mapping of a Y ∈ S associated

with a closed convex function h is given by

proxth(Y ) , arg min
X

(
t · h(X) +

1

2
‖X − Y ‖2

F

)
,

where t > 0 is a multiplier. In our case, h(P ) = IS(P ). Define for each P ∈ S that

Gt(P ) ,
1

t
(P − proxth (P − t∇f(P ))) ,

then by the characterization of subgradient,

Gt(P )−∇f(P ) ∈ ∂h(P ), (A.29)

where ∂h(P ) is the subdifferential of h at P . Noticing that P − tGt(P ) ∈ S, then from

Lemma 18 we have

f(P − tGt(P )) ≤ f(P )− 〈∇f(P ), tGt(P )〉+
t

2
‖Gt(P )‖2

F , (A.30)

for all 0 ≤ t ≤ 1/L. Define that g(P ) , f(P ) + h(P ). Combining (A.29) and (A.30) and

using the fact that f and h are convex functions, we have for any Z ∈ S and 0 ≤ t ≤ 1/L,

g(P − tGt(P )) ≤ g(Z) + 〈Gt(P ), P − Z〉 − t

2
‖Gt(P )‖2

F , (A.31)

which is analogous to inequality (3.3) in [101]. Taking Z = M̂ and P = Xk in (A.31), then
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for any k ≥ 0,

g(Xk+1)− g(M̂) ≤ 〈Gt(Xk), Xk − M̂〉 −
t

2
‖Gt(Xk)‖2

F

=
1

2t

(
‖Xk − M̂‖2

F − ‖Xk+1 − M̂‖2
F

)
,

(A.32)

where we use the fact that 〈P, P 〉 = ‖P‖2
F . By taking Z = Xk and P = Xk in (A.31) we

know that g(Xk+1) < g(Xk) for any k ≥ 0. Thus, taking t = 1/L, we have,

g(Xk)− g(M̂) ≤ 1

k

k−1∑
i=0

(
g(Xi+1)− g(M̂)

)
≤ L

2k

k−1∑
i=0

(
‖Xi − M̂‖2

F − ‖Xi+1 − M̂‖2
F

)
≤ L‖X0 − M̂‖2

F

2k
.

(A.33)

Since Xk ∈ S for any k ≥ 0 and M̂ ∈ S, we have that h(Xk) = 0 for any k ≥ 0 and

h(M̂) = 0, which completes the proof.

Proof of Proposition 2. The definitions and notations in the proof of Proposition 1 are also

valid in the proof of Proposition 2.

Define V0 , X0 and for any k ≥ 1,

ak ,
2

k + 1
, Vk , Xk−1 +

1

ak
(Xk −Xk−1) .

For any 0 ≤ t ≤ 1/L, noticing that

Xk = Zk−1 − tGt(Zk−1),

then we can rewrite Vk as

Vk = Vk−1 −
t

ak
Gt(Zk−1).
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Taking Z = Xk−1 and Z = M̂ in (A.31) and making convex combination we have

g(Xk) ≤ (1− ak)g(Xk−1) + akg(M̂)

+ ak〈Gt(Zk−1), Vk−1 − M̂〉 −
t

2
‖Gt(Zk−1)‖2

F

= (1− ak)g(Xk−1) + akg(M̂)

+
a2
k

2t

(
‖Vk−1 − M̂‖2

F − ‖Vk − M̂‖2
F

)
.

(A.34)

After rearranging terms, we have

1

a2
k

(g(Xk)− g(M̂)) +
1

2t
‖Vk − M̂‖2

F ≤

1− ak
a2
k

(g(Xk−1)− g(M̂)) +
1

2t
‖Vk−1 − M̂‖2

F .

(A.35)

Notice that (1−ak)/(a2
k) ≤ 1/(a2

k−1) for any k ≥ 1. Applying inequality (A.35) recursively,

1

a2
k

(g(Xk)− g(M̂)) +
1

2t
‖Vk − M̂‖2

F ≤
1

2t
‖X0 − M̂‖2

F . (A.36)

Taking t = 1/L, we have

g(Xk)− g(M̂) ≤ 2L‖X0 − M̂‖2
F

(k + 1)2
.

Since Xk ∈ S for any k ≥ 0 and M̂ ∈ S, we have that h(Xk) = 0 for any k ≥ 0 and

h(M̂) = 0, which comcludes the proof.

A.2 Proofs for multi-sensor slope change

A.2.1 An informal derivation of Theorem 14: ARL

We first obtain an approximation to the probability that the stopping time is greater than some

big constant m. Such an approximation is obtained using a general method for computing
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first passing probabilities first introduced in [92] and developed in [109]. The method relies

on measure transformations that shift the distribution of each sensor over a window that

contains the hypothesized post-change samples. More technical details to make the proofs

more rigorous are omitted. These details have been described and proved in [109].

In the following, let τ = t − k. Define the log moment-generating-function ψτ (θ) =

logE exp{θg(Un,k,t)}. Recall that Un,k,t is a generic standardized sum over all observations

within a window of size τ in one sensor, and the parameter θ = θτ is selected by solving the

equation

ψ̇τ (θ) = b/N.

Since Un,k,t is a standardized weighted sum of τ independent random variables, ψτ converges

to a limit as τ →∞, and θτ converges to a limiting value. We denote this limiting value by

θ.

Denote the density function under the null as P. The transformed distribution for all

sequences at a fixed current time t and at a hypothesized change-point time k (and hence

there are τ hypothesized post-change samples) is denoted by Pkt and is defined via

dPkt = exp

[
θτ

N∑
n=1

g(Un,k,t)−Nψτ (θτ )

]
dP.

Let

`N,k,t = log(dPkt /dP) = θτ

N∑
n=1

g(Un,k,t)−Nψτ (θτ ).

Let the region

D = {(t, k) : 0 < t < t0, 1 ≤ t− k ≤ w}

be the set of all possible change-point times and time up to a horizon m. Let

A =

{
max

(t,k)∈D

N∑
n=1

g(Un,k,t) ≥ b

}
.
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be the event of interest. Hence, we have

P{A} =
∑

(t,k)∈D

E

{
e`N,k,t∑

(t′,k′)∈D e
`N,k′,t′

;A

}
=
∑

(t,k)∈D

Ekt


 ∑

(t′,k′)∈D

e`N,k′,t′

−1

;A


=
∑

(t,k)∈D

e−N(θτ b−ψτ (θτ )) × Ekt
{
MN,k,t

SN,k,t
e−

˜̀
N,k,t−logMN,k,t ; ˜̀

N + logMN,k,t ≥ 0

}
︸ ︷︷ ︸

I

(A.37)

where

˜̀
N,k,t =

N∑
n=1

θτ [g(Un,k,t)− b],

SN,k,t =
∑

(t′,k′)∈D

e
∑N
n=1 θτ [g(Un,k′,t′ )−g(Un,k,t)],

MN,k,t = max
(t′,k′)∈D

e
∑N
n=1 θτ [g(Un,k′,t′ )−g(Un,k,t)].

As explained in [109], under certain verifiable assumptions, a “localization lemma” allows

simplifying the quantities of the form in I into a much simpler expression of the form

σ−1
N,τ (2π)−1/2E{M/S},

where σN,τ is the Pτs standard deviation of ˜̀
N and E[M/S] is the limit of E{MN,k,t/SN,k,t}

as N →∞. This reduction relies on the fact that, for large N and m, the “local” processes

MN,k,t and SN,k,t are approximately independent of the “global” process ˜̀
N . This allows

the expectation to be decomposed into the expectation of MN/SN times the expectation

involving ˜̀
N + logMN , treating logMN as a constant.

Let τ ′ = t′ − k′, and denote by zn,i = (yn,i − µn)/σn which are i.i.d. normal random
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variables, i = 1, 2, . . .. Note that, use Taylor expansion up to the first order, we obtain

N∑
n=1

θτ [g(Un,k′,t′)− g(Un,k,t)] ≈
N∑
n=1

θτ ġ(Un,k,t)[Un,k′,t′ − Un,k,t]

=
N∑
n=1

θτ ġ(Un,k,t)[A
−1/2
τ ′ Wn,k′,t′ − A−1/2

τ Wn,k′,t′ + A−1/2
τ Wn,k′,t′ − A−1/2

τ Wn,k,t]

=
N∑
n=1

θτ ġ(Un,k,t)√
Aτ ′

(
τ ′∑
j=1

jzn,t′−τ ′+j −
√
Aτ ′

Aτ

τ ′∑
j=1

jzn,t′−τ ′+j)

+
N∑
n=1

θτ ġ(Un,k,t)A
−1/2
τ

(
τ ′∑
i=1

izn,t′−τ ′+i −
τ∑
i=1

izn,t−τ+i

)
(A.38)

Note that in the above expression, the first term has two weighted data sequences running

backwards from t′ and when τ and τ ′ both tends to infinity they tend to cancel with each

other. Hence, asymptotically we need to consider the second term. Observe that one may let

t′ − k′ = τ and θ = limτ→∞ θτ for θτ in the definition of the increments and still maintain

the required level of accuracy. When τ = u the first term in the above expression, and

the second term consists of two terms that are highly correlated. The second term can be

rewritten as

A−1/2
τ θτ

[
N∑
n=1

ġ(Un,k,t)Wn,k′,t′ −
N∑

n′=1

ġ(Un′,k,t)Wn′,k,t

]
. (A.39)

Since all sensors are assumed to be independent (or has been whitened by a known covariance

matrix so the transformed coordinates are independent), so the covariance between the two

terms is given by

Cov

(
N∑
n=1

ġ(Un,k,t)Wn,k,t,
N∑

n′=1

ġ(Un′,k,t)Wn′,k,t

)
=

N∑
n=1

[ġ(Un′,k,t)]
2Cov(Wn,k,t,Wn′,k′,t′).

(A.40)

For each n, let k < k′ < t < t′ and t − k = t′ − k′ = τ , and define u , k′ − k and
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s , t− k′. We have

A−1
τ Cov(Wn,k,t,Wn,k′,t′) =E


(∑t

i=k+1(i− k)zn,i
) (∑t′

i=k′+1(i− k′)zni
)

∑τ
i=1 i

2


=E

{∑t
i=k′+1(i− k)(i− k′)z2

n,i∑τ
i=1 i

2

}
=

∑s
i=1 i

2 + u
∑s

i=1 i∑τ
i=1 i

2
.

By choosing u =
√
τ , we know that the expression above is approximately on the order of

1− (k′ − k) + (t′ − t)
2
(

2
3
τ 2 + 1

3
τ
) ≈ 1− (k′ − k) + (t′ − t)

4
3
τ 2

.

Let η , 4
3
τ 2. Hence, by summarizing the derivations above and applying the law of large

number, we have that when N → ∞ and τ → ∞, the covariance between the two terms

become

cov

(
N∑
n=1

θτg(Un,k′,t′),
N∑

n′=1

θτg(Un′,k,t)

)
≈ θ2N · [1− 1

η
(k′ − k)− 1

η
(t′ − t)].

This shows that the two-dimensional random walk decouples in the change-point time k′

and the time index t′ and the variance of the increments in these two directions are the

same and are both equal to θ2N/η. Hence, the random walk along these two coordiates are

asymptotically independent and it becomes similar to the case studied in [109]. Compare

this with (the equation following equation (A.4) in [109]), note that the only difference is

that here the variance of the increment is proportional to 3/(4τ 2) instead of τ , so we may

follow a similar chains of calculation as in the proof in Chapter 7 of [92], [109] [18], the

final result corresponds to modifying the upper and lower limit by changing the window

length expression to be
√

4/3 and
√

4w/3.
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A.2.2 An informal derivation of Theorem 15: EDD

Recall that Un,k,t is defined in (4.6), let zn,i = (yn,i − µn)/σn. Then for n ∈ A, zn,i are i.i.d.

normal random variables with mean cni/σn and unit variance, and for n ∈ Ac, zn,i are i.i.d.

standard normal random variables. Since we may write

Un,k,t =

∑t
i=k+1(i− k)zn,i√∑t

i=k+1(i− k)2

. (A.41)

For any time t and n ∈ A, we have

EA0 {U2
n,0,t} = 1 +

(
cn
σn

)2 t∑
i=1

i2 = 1 +

(
cn
σn

)2
t(t+ 1)(2t+ 1)

6
=

(
cn
σn

)2
t3

3
+ o(t3),

(A.42)

which grows cubically with respect to time. For the unaffected sensors, n ∈ Ac, EA0 {U2
n,0,t} =

1. Hence, the value of the detection statistic will be dominated by those affected sensors.

On the other hand, note that when x is large,

g(x) = log(1− p0 + p0e
x2/2) = log p0 +

x2

2
+ log

(
1− p0

p0

e−x
2/2

)
≈ x2

2
+ log p0.

Then the expectation of the statistic in (4.8) can be computed if w is sufficiently large (at

least larger than the expected detection delay), as follows:

EA0

{
max
k<t

N∑
n=1

g (Un,k,t)

}
≈

(
|A| log p0 +

1

2

∑
n∈A

EA0
{
U2
n,k,t

}
+

(N − |A|)
2

)
,

At the stopping time, if we ignore of the overshoot of the threshold over b, the value statistic

is b. Use Wald’s identity [131] and if we ignore the overshoot of the statistic over the

threshold b, we may obtain a first order approximation as b→∞, by solving

|A| log p0 +
N − |A|

2
+

EA0 {T 3}
6

[∑
n∈A

(
cn
σn

)2
]

= b. (A.43)
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From Jensen’s inequality, we know that EA0 {T 3
2 } ≥ (EA0 {T2})3. Therefore, a first-order

approximation for the expected detection delay is given by

EA0 {T2} ≤
(
b−N log p0 − (N − |A|)E{g(U)}

∆2/6

)1/3

+ o(1). (A.44)

A.2.3 Proof for Optimality

Proof of Theorem 16. The proof starts by a change of measure from P∞ to PAk . For any

stopping time T ∈ C(γ), we have that for any Kγ > 0, C > 0 and ε ∈ (0, 1),

P∞ {k < T < k + (1− ε)Kγ|T > k}

= EAk
{
I{k<T<k+(1−ε)Kγ} exp(−λA,k,T )

∣∣T > k
}

≥ EAk
{
I{k<T<k+(1−ε)Kγ ,λA,k,T<C} exp(−λA,k,T )

∣∣T > k
}

≥ e−CPAk
{
k < T < k + (1− ε)Kγ, max

k<j<k+(1−ε)Kγ
λA,k,j < C

∣∣∣∣T > k

}
≥ e−C

[
PAk {T < k + (1− ε)Kγ|T > k}−

PAk
{

max
1≤j<(1−ε)Kγ

λA,k,k+j ≥ C

∣∣∣∣T > k

}]
,

(A.45)

where I{A} is the indicator function of any event A, the first equality is Wald’s likelihood

ratio identity and the last inequality uses the fact that for any event A and B and probability

measure P, P(A
⋂
B) ≥ P(A)− P(Bc).

From (A.45) we have for any ε ∈ (0, 1)

PAk {T < k + (1− ε)Kγ|T > k} ≤ p(k)
γ,ε(T ) + β(k)

γ,ε(T ), (A.46)
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where

p(k)
γ,ε(T ) = eCP∞ {T < k + (1− ε)Kγ|T > k} ,

β(k)
γ,ε(T ) = PAk

{
max

1≤j<(1−ε)Kγ
λA,k,k+j ≥ C

∣∣∣∣T > k

}
.

Next, we want to show that both p(k)
γ,ε(T ) and β(k)

γ,ε(T ) converge to zero for any T ∈ C(γ)

and any k ≥ 0 as γ goes to infinity.

First, choosing C = (1 + ε)I[(1− ε)Kγ]
q, then we have

β(k)
γ,ε(T ) = Pk

{
[(1− ε)Kγ]

−q max
1≤j<(1−ε)Kγ

λA,k,k+j ≥ (1 + ε)I

∣∣∣∣T > k

}
≤ esssup PAk

{
[(1− ε)Kγ]

−q max
1≤j<(1−ε)Kγ

λA,k,k+j ≥ (1 + ε)I

∣∣∣∣Fk} . (A.47)

By the assumption (4.17), we have

sup
0≤k<∞

β(k)
γ,ε −−−→

γ→∞
0. (A.48)

Second, by Lemma 6.3.1 in [55], we know that for any T ∈ C(γ) there exists a k ≥ 0,

possibly depending on γ, such that

P∞ {T < k + (1− ε)Kγ|T > k} ≤ (1− ε)Kγ/γ.

Choosing Kγ = (I−1 log γ)1/q, then we have

C = (1 + ε)I(1− ε)qI−1 log γ = (1− ε2)(1− ε)q−1 log γ,

and therefore,

p(k)
γ,ε(T ) ≤ γ(1−ε2)(1−ε)q−1

(1− ε)Kγ/γ

= (1− ε)(I−1 log γ)1/qγ(1−ε2)(1−ε)q−1−1 −−−→
γ→∞

0,
(A.49)
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where the last convergence holds since for any q ≥ 1 and ε ∈ (0, 1) we have (1− ε2)(1−

ε)q−1 < 1. Therefore, for every ε ∈ (0, 1) and for any T ∈ C(γ) we have that for some

k ≥ 0,

PAk {T < k + (1− ε)Kγ|T > k} −−−→
γ→∞

0,

which proves (4.18).

Next, to prove (4.19), since

ESMAm(T ) ≥ SMAm(T ) ≥ sup
0≤k<∞

EAk
{

[(T − k)+]m
∣∣T > k

}
,

it is suffice to show that for any T ∈ C(γ),

sup
0≤k<∞

EAk
{

[(T − k)+]m
∣∣T > k

}
≥ [I−1 log γ]m/q(1 + o(1)) as γ −→ 0, (A.50)

where the residual term o(1) does not depend on T . Using the result (4.18) just proved, we

can have that for any ε ∈ (0, 1), there exists some k ≥ 0 such that

inf
T∈C(γ)

PAk
{
T − k ≥ (1− ε)(I−1 log γ)

1
q

∣∣∣T > k
}
−−−→
γ→∞

1.

Therefore, by also Chebyshev inequality, for any ε ∈ (0, 1) and T ∈ C(γ), there exist some

k ≥ 0 such that

EAk
{

[(T − k)+]m
∣∣T > k

}
≥
[
(1− ε)(I−1 log γ)

1
q

]m
PAk
{
T − k ≥ (1− ε)(I−1 log γ)

1
q

∣∣∣T > k
}

≥
[
(1− ε)m(I−1 log γ)m/q

]
(1 + o(1)), as γ −→∞,

(A.51)

where the residual term does not depend on T . Since we can arbitrarily choose ε ∈ (0, 1)

such that the (A.51) holds, so we have (A.50), which completes the proof.
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Proof of Lemma 8. Rewrite TCS(b) as

TCS(b) = inf

{
t : max

0≤k<t

N∏
n=1

(1− p0 + p0 exp(λn,k,t)) ≥ eb

}
(A.52)

and define TSR(b) an extended Shiryaev-Roberts (SR) procedure as follows:

TSR(b) = inf
{
t : Rt ≥ eb

}
, (A.53)

where

Rt =
t−1∑
k=1

N∏
n=1

(1− p0 + p0 exp(λn,k,t)) , t = 1, 2, . . . ;R0 = 0.

Clearly, TCS(b) ≥ TSR(b). Therefore, it is sufficient to show that TSR(b) ∈ C(γ) if b ≥ log γ.

Noticing the martingale properties of the likelihood ratios, we have

E∞ {exp(λn,k,t)|Ft−1} = 1 (A.54)

for all n = 1, 2, . . . , N , t > 0 and 0 ≤ k < t. Moreover, noticing that

Rt =
t−2∑
k=1

N∏
n=1

(1− p0 + p0 exp(λn,k,t−1 + λn,t−1,t)) +
N∏
n=1

(1− p0 + p0 exp(λn,t−1,t)) ,

(A.55)

then combining (A.54) we have for all t > 0,

E∞ {Rt|Ft−1} =
t−2∑
k=1

N∏
n=1

(1− p0 + p0 exp(λn,k,t−1) · 1) + 1

=Rt−1 + 1.

(A.56)

Therefore, the statistic {Rt − t}t>0 is a (P∞,Ft)-martingale with zero mean. If E∞ {TSR(b)} =

∞ then the theorem is naturally correct, so we only suppose that E∞ {TSR(b)} < ∞ and

thus E∞
{
RTSR(b) − TSR(b)

}
exists. Next, since 0 ≤ Rt < eb on the event {TSR(b) > t},
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we have

lim inf
t→∞

∫
{TSR(b)>t}

|Rt − t| dP∞ = 0.

Now we can apply the optional sampling theorem to have E∞
{
RTSR(b)

}
= E∞ {TSR(b)}.

By the definition of stopping time TSR(b), we haveRTSR(b) > eb. Thus, we have E∞ {TCS(b)} ≥

E∞ {TSR(b)} > eb, which shows that E∞ {TCS(b)} > γ if b ≥ log γ.

Proof of Theorem 17. First, we notice that if b ≥ log γ

E∞

{
T̃CS(b)

}
≥ E∞ {TCS(b)} ≥ γ.

Therefore, by Theorem 16, it is sufficient to show that if b ≥ log γ and b = O(log γ), then

ESMAm(TCS(b)) ≤
(

log γ

IA

)m/q
(1 + o(1)) as γ →∞. (A.57)

Equivalently, it is sufficient to prove that

ESMAm(TCS(b)) ≤
(
b

IA

)m/q
(1 + o(1)) as b→∞. (A.58)

To start with, we consider a special case when p0 = 1 in TCS and denote it by

TCS2(b) = inf

{
t > 0 : max

0≤k<t

N∑
n=1

λn,k,t ≥ b

}
.

Next, we will prove an asymptotical upper bound for the detection delay of TCS2(b).

Let

Gb =

⌊(
b

IA(1− ε)

)1/q
⌋
, (A.59)

and then (Gb)
q ≤ b/[IA(1 − ε)]. Noticing that under PAk , we have

∑N
n=1 λn,k,t = λA,k,t

almost surely since the the log-likelihood ratios are 0 for the sensors that are not affected.
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Therefore, by (4.21) we can have that for any ε ∈ (0, 1), t ≥ 0 and some sufficiently large b,

sup
0≤k<t

esssup PAk

{
N∑
n=1

λn,k,k+Gb < (Gb)
qIA(1− ε)

∣∣∣∣∣Fk
}

≤ sup
0≤k<t

esssup PAk {λA,k,k+Gb < (Gb)
qIA(1− ε)|Fk}

≤ sup
0≤k<t

esssup PAk {λA,k,k+Gb < b|Fk} ≤ ε.

(A.60)

Then, for any k ≥ 0 and integer l ≥ 1, we can use (A.60) l times by conditioning on(
Xn,1, . . . , Xn,k+(l0−1)Gb

)
, n = 1, 2, . . . , N for l0 = l, l − 1, . . . , 1 in succession (see [54])

to have

esssup PAk {TCS2(b)− k > lGb|Fk}

≤ esssup PAk

{
N∑
n=1

λn,k+(l0−1)Gb+1,k+l0Gb , l0 = 1, . . . , l

∣∣∣∣∣Fk
}
≤ εl.

(A.61)

Therefore, for sufficiently large b and any ε ∈ (0, 1), we have

ESMm(TCS2(b)) ≤
∞∑
l=0

{[(l + 1)Gb]
m − (lGb)

m} ·

sup
0≤k<∞

esssup Pk
{

[(TCS2 − k)+]m > (lGb)
m
∣∣Fk}

≤ (Gb)
m

∞∑
l=0

[(l + 1)m − lm]εl

= (Gb)
m(1 + o(1)) as b→∞,

(A.62)

where the first inequality can be known directly from the geometric interpretation of expec-

tation of discrete nonnegative random variables and the last equality holds since for any

given m ≥ 1, [(l+ 1)m− lm]1/l → 1 as l→∞ so that the radius of convergence is 1. Using

the fact that (Gb)
m ≤ [b/I(1− ε)]m/q we prove (A.58) for the case p0 = 1.
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Next, we will deal with the case when p0 ∈ (0, 1). Rewrite TCS2(b) as

TCS2(b) = inf

{
t : max

0≤k<t

(
N log p0 +

N∑
n=1

λkn,t

)
> b+N log p0

}
,

then

TCS2(b−N log p0) = inf

{
t : max

0≤k<t

(
N log p0 +

N∑
n=1

λkn,t

)
> b

}
.

Clearly, ESMAm(TCS(b)) ≤ ESMAm(TCS2(b−N log p0)), and thus

ESMAm(TCS(b)) ≤
(
b−N log p0

IA

)m/q
(1 + o(1)). (A.63)

Therefore, we can claim that (A.58) holds for any fixed p0 ∈ (0, 1] since N and p0 are

constants. If b ≥ log γ and b = O(log γ), TCS(b) belongs to C(γ) and ESMAm(TCS) achieves

its lower bound.

Proof of Corollary 2. The main steps are almost the same with that in the proof of Theorem

17. The only different thing is that we need the condition wγ ≥ Gb (defined in (A.59)) in

order to make (A.61) be correct for any k ≥ 0 and any integer l ≥ 1. And the additional

assumption (4.22) ensures this.

Proof of Lemma 9. Consider testing problem (4.1), then for any k ≥ 0 and j ≥ 1,

λA,k,k+j =
∑
n∈A

1

σ2
n

k+j∑
i=k+1

{
cn(i− k)(yn,i − µj)−

c2
n(i− k)2

2

}
.

We define, for each n ∈ A and for all l = 1, . . . , j,

X
(k)
n,l =

1

σ2
n

{
cnl(yn,l+k − µj)−

c2
nl

2

2

}
.
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Then we have

λA,k,k+j =

j∑
l=1

∑
n∈A

X
(k)
n,l =

j∑
l=1

X
(k)
A,l ,

where we define X(k)
A,l =

∑
n∈AX

(k)
n,l .

Under probability measure PAk , we easily know that (X
(k)
A,l)

j
l=1 are independent variables

which follow normal distribution N((l2/2)
∑

n∈A c
2
n, l

2
∑

n∈A c
2
n). Other simple computa-

tion tells us that

EAk
{

(X
(k)
A,l)

2
}
<∞, ∀l = 1, . . . , j,

and under probability measure PAk ,

∞∑
l=1

Var

(
X

(k)
A,l

l3

)
<∞,

where Var(X) denotes the variance of random variableX . Therefore, combining Kroneckers

lemma with the Kolmogorov convergence criteria, we have immediately a strong law of

large numbers which tells us that

1

j3
λA,k,k+j

a.s.−−−→
j→∞

∑
n∈A

c2
n

6σ2
n

.

Finally, we complete the proof by using the fact that all the observations are independent.

Proof of Lemma 10. First, define ykn,t =
∑t
i=k+1(yn,i−µj)

σj
∑t
i=k+1(i−k)2

, then

P∞
{
T̃2(b) > t0

}
≥ P∞

{
max

0<t≤t0
max

max(0,t−mγ)≤k<t0

N∑
n=1

(ykn,t0)
2

2
< b

}

≥ [P∞{Y < 2b}]wγt0 ,

(A.64)

where Y is a random variable with χ2
N distribution. Then, since T̃2(b) is a non-negative
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discrete random variable, we have

E∞
{
T̃2(b)

}
=
∞∑
t0=0

P∞
{
T̃2(b) > t0

}
≥
∞∑
t0=0

[P∞{Y < 2b}]wγt0 =
1

1− [P∞{Y < 2b}]wγ
.

(A.65)

Then if we can choose some b so that

P∞{Y ≥ 2b} ≤ 1−
(

1− 1

γ

)1/mγ

,

we can claim that E∞
{
T̃2(b)

}
≥ γ and thus T̃2(b) ∈ C(γ). To choose appropriate threshold

b, we need use the tail bound for the χ2
N distribution. Since χ2

1 is sub-exponential with

parameter (2
√
N, 4), it is well known that P∞{Y ≥ 2b} ≤ exp(−2b−N

8
) if b ≥ N . If we set

b ≥ N

2
− 4 log

[
1−

(
1− 1

γ

)1/mγ
]

then T̃1(b) ∈ C(γ).

Proof of Theorem 18. By Lemma 9, we can use Theorem 16 to obtain a lower bound for

the detection delays of arbitrary procedures in C(γ). Specifically, for all m ≥ 1,

lim inf
γ→∞

inf
T∈C(γ)

ESMAm(T ) ≥ lim inf
γ→∞

inf
T∈C(γ)

SMAm(T ) ≥
(

log γ

IA

)m/q
. (A.66)

(i) Since T1(b) is a specified mixture CUSUM procedure for testing problem (4.1) and

the observations are independent, the optimality is an immediate corollary from Theorem

17.

(ii) Since T̃1(b) is a specified window-limited mixture CUSUM procedure for testing

problem (4.1) and the observations are independent, the optimality is an immediate result

from Corollary 2.
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(iii) The assumption that logwγ = o(log γ) ensures that b ≥ N
2
−4 log

[
1−

(
1− 1

γ

)1/mγ
]

and b = O(log γ) can be satisfied simultaneously. Since the observations are independent,

then ESMA1 (T̃2(b)) = SMA1 (T̃2(b)) = EA0 [T̃2(b)]. The optimality of T̃2(b) is an immediate

result from Lemma 10 and the first order approximation of the detection delays in (A.44).

A.3 Proofs for sequential change detection with offline convex optimization

In the following, we denote Eξ∼ν [f(ξ)] as the expected value of f(ξ) when ξ follows some

distribution ν.

Proof of Theorem 12. Define that φ∗ , −1
2
L∗. From Theorem 2.1 in [72], we have that

Eξ∼ν0 [exp(−φ∗(ξ))] ≤ ε∗, ∀ν0 ∈ P0, (A.67)

Eξ∼ν1 [exp(φ∗(ξ))] ≤ ε∗, ∀ν1 ∈ P1, (A.68)

where ε∗ is the solution to the equation

Eξ∼ν∗0 [exp(−φ∗(ξ))] = Eξ∼ν∗1 [exp(φ∗(ξ))],

or equivalently, it is defined in (5.9).

Define a stopping time T = inf{t > 0 :
∑t

i=1−φ∗(ξt) > b}, then T1 in (5.7) is the same

procedure as T and the arguments about T are also true for T1. Following the definition of
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T , for any m > 0, we have that

Pν0∞(T ≤ m) ≤Pν0∞

(
m⋃
k=1

{
k∑
i=1

−φ∗(ξi) > b

})

≤
m∑
k=1

Pν0∞

(
k∑
i=1

−φ∗(ξi) > b

)

=
m∑
k=1

Pν0∞

(
k∑
i=1

(
−φ∗(ξi)−

b

k

)
> 0

)
.

(A.69)

Fix m and k, we define that φ̃∗ = φ∗ + b/k and then we use Chernoff inequality and

inequality (A.67) to obtain that

Pξ∼ν(−φ̃∗(ξ) > 0) ≤ Eξ∼ν [exp(−φ̃∗(ξ))]
1

≤ exp(− b
k

)ε∗, ∀ν ∈ P0.

(A.70)

UnderH0, ξi ∼ ν0 ∈ P0, i = 1, . . . ,m and ξis are independent. If we apply the shifted detec-

tor φ̃∗ on the independent variables ξ1, ξ2, . . . , ξk, from the result for k-repeated observations

(Section 2.4 in [72]) , we can have that

Pν0∞

(
k∑
i=1

(
−φ∗(ξi)−

b

k

)
> 0

)
≤
(

exp

(
− b
k

)
ε∗
)k

.

Then, we have that

Pν0∞(T ≤ m) ≤
m∑
k=1

(
exp

(
− b
k

)
ε∗
)k

=
m∑
k=1

exp (−b) (ε∗)k ,

= exp(−b) · ε
∗ − (ε∗)m+1

1− ε∗
.

(A.71)
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Letting m go to infinity, we have that

Pν0∞(T <∞) = exp(−b) · ε∗

(1− ε∗)
.

Applying Theorem 2 in [59], we have that

Eν0∞(T ) ≥ 1

Pν0∞(T <∞)
= exp(b) · 1− ε∗

ε∗
,

which concludes our result.

Proof of Theorem 20. Similar with the proof for Theorem 12, we define that φ∗ = −1
2
L∗,

St =
∑t

i=1−φ∗(ξt) and a stopping time T = inf{t > 0 : St > b}. Then T is the same as

T1. Noticing that under Pν0,ν10 , ξ1, ξ2, . . . is a sequence of i.i.d random variables following

some distribution ν1 ∈ P1, the well known Wald’s equality (e.g, [131]) shows that

Eν0,ν10 [T ] =
Eν0,ν10 [ST ]

Eξ1∼ν1 [−φ∗(ξ1)]
=
b+ Eν0,ν10 [ST − b]
Eξ1∼ν1 [−φ∗(ξ1)]

,

where Eν0,ν10 [ST − b] is the expected overshoot above the decision boundary.

Combining (A.68) and the fact that for any x ∈ R, −x ≥ 1− exp(x), we have that

Eξ1∼ν1 [−φ∗(ξ1)] ≥ 1− Eξ1∼ν1 [exp(φ∗(ξ1))] ≥ 1− ε∗.

To estimate the overshoot, we apply (8.18) and (8.50) in [131] to show that as b→∞, the

following limit holds,

Eν0,ν10 [ST − b]→
Eξ1∼ν1 [φ∗(ξ1)2]

2Eξ1∼ν1 [φ∗(ξ1)]
−
∞∑
n=1

Eν0,ν10 [S−n ]

n
,

where x− = −min(x, 0).

By the assumption made in the statement, we have that for someM > 0, Eξ1∼ν1 [φ2
∗(ξ1)] ≤

165



M. Therefore, as b→∞, we have that Eν0,ν10 [ST − b] = o(b). Combing the Theorem 2 in

[59], we conclude the result.

Proof of Corollary 3 and 4. When φ∗ is obtained from (5.16), from the Proposition 4.1 in

[73], we have that

Eξ∼ν0 [exp(−φ∗(ξ))] ≤ ε∗, ∀ν0 ∈ G0, (A.72)

Eξ∼ν1 [exp(φ∗(ξ))] ≤ ε∗, ∀ν1 ∈ G1, (A.73)

where ε∗ is defined in (5.18). Then, following the same proof routine as Theorem 12 and 20,

we conclude the results.

A.4 Proofs for Sequential change detection via online convex optimization

Proof of Theorem 21. In the proof, for the simplicity of notation we use N to denote τ(b).

Recall θ is the true parameter. Define that

Sθt =
t∑
i=1

log
fθ(Xi)

fθ0(Xi)
.

Then under the measure Pθ,0, St is a random walk with i.i.d. increment. Then, by Wald’s

identity (e.g., [131]) we have that

Eθ,0[SθN ] = Eθ,0[N ] · I(θ, θ0). (A.74)

On the other hand, let θ∗N denote the MLE based on (X1, . . . , XN). The key to the proof
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is to decompose the stopped process SθN as a summation of three terms as follows:

SθN =
N∑
i=1

log
fθ(Xi)

fθ∗N (Xi)
+

N∑
i=1

log
fθ∗N (Xi)

fθ̂i−1
(Xi)

+
N∑
i=1

log
fθ̂i−1

(Xi)

fθ0(Xi)
, (A.75)

Note that the first term of the decomposition on the right-hand side of (A.75) is always

non-positive since

N∑
i=1

log
fθ(Xi)

fθ∗N (Xi)
=

N∑
i=1

log fθ(Xi)− sup
θ̃∈Θ

N∑
i=1

log fθ̃(Xi) ≤ 0.

Therefore we have

Eθ,0[SθN ] ≤ Eθ,0

[
N∑
i=1

log
fθ∗N (Xi)

fθ̂i−1
(Xi)

]
+ Eθ,0

[
N∑
i=1

log
fθ̂i−1

(Xi)

fθ0(Xi)

]
.

Now consider the third term in the decomposition (A.75). Similar to the proof of

equation (5.109) in [55], we claim that its expectation under measure Pθ,0 is upper bounded

by b/I(θ, θ0) +O(1) as b→∞. Next, we prove the claim. For any positive integer n, we

further decompose the third term in (A.75) as

n∑
i=1

log
fθ̂i−1

(Xi)

fθ0(Xi)
= Mn(θ)−Gn(θ) +mn(θ, θ0) + nI(θ, θ0), (A.76)

where

Mn(θ) =
n∑
i=1

log
fθ̂i−1

(Xi)

fθ(Xi)
+Gn(θ),

Gn(θ) =
n∑
i=1

I(θ, θ̂i−1),

and

mn(θ, θ0) =
n∑
i=1

log
fθ(Xi)

fθ0(Xi)
− nI(θ, θ0).

The decomposition of (A.76) consists of stochastic processes {Mn(θ)} and {mn(θ, θ0)},
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which are both Pθ,0-martingales with zero expectation, i.e., Eθ,0[Mn(θ)] = Eθ,0[mn(θ, θ0)] =

0 for any positive integer n. Since for exponential family, the log-partition function Φ(θ) is

bounded, by the inequalities for martingales [132] we have that

Eθ,0|Mn(θ)| ≤ C1

√
n, Eθ,0|mn(θ, θ0)| ≤ C2

√
n, (A.77)

where C1 and C2 are two absolute constants that do not depend on n. Moreover, we observe

that for all θ ∈ Θ,

Eθ,0[Gn(θ)] ≤ Eθ,0
[
max
θ̃∈Θ

Gn(θ̃)

]
= Eθ,0[Rn(θ)] ≤ C log n.

Therefore, applying (A.77), we have that n−1Gn(θ), n−1Mn(θ) and n−1mn(θ, θ0) converge

to 0 almost surely. Moreover, the convergence is Pθ,0-r-quickly for r = 1. We say that

n−1An converges Pθ,0-r-quickly to a constant I if Eθ,0[G(ε)]r < ∞ for all ε > 0, where

G(ε) = sup{n ≥ 1 : |n−1An − I| > ε} is the last time when n−1An leaves the interval

[I − ε, I + ε] (for more details, we refer the readers to Section 2.4.3 of [55]). Therefore,

dividing both sides of (A.76) by n, we obtain n−1
∑n

i=1 log(fθ̂i−1
(Xi)/fθ0(Xi)) converges

Pθ,0-1-quickly to I(θ, θ0).

For ε > 0, we now define the last entry time

L(ε) = sup

{
n ≥ 1 :

∣∣∣∣∣ 1

I(θ, θ0)

n∑
i=1

log
fθ̂i−1

(Xi)

fθ0(Xi)
− n

∣∣∣∣∣ > εn

}
.

By the definition of Pθ,0-1-quickly convergence and the finiteness of I(θ, θ0), we have that

Eθ,0[L(ε)] < +∞ for all ε > 0. In the following, define a scaled threshold b̃ = b/I(θ, θ0).

Observe that conditioning on the event {L(ε) + 1 < N < +∞}, we have that

(1− ε)(N − 1)I(θ, θ0) <
N−1∑
i=1

log
fθ̂i−1

(Xi)

fθ0(Xi)
< b.
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Therefore, conditioning on the event {L(ε)+1 < N < +∞}, we have thatN < 1+b/(1−ε).

Hence, for any 0 < ε < 1, we have

N ≤ 1+I({N > L(ε)+1})· b̃

1− ε
+I({N ≤ L(ε)+1})·L(ε) ≤ 1+

b̃

1− ε
+L(ε). (A.78)

Since Eθ,0[L(ε)] < ∞ for any ε > 0, from (A.78) above, we have that the third term in

(A.75) is upper bounded by b̃+ O(1).

Finally, the second term in (A.75) can be written as

N∑
i=1

log
fθ∗N (Xi)

fθ̂i−1
(Xi)

=
N∑
i=1

− log fθ̂i−1
(Xi)− inf

θ̃∈Θ

N∑
i=1

− log fθ̃(Xi),

which is just the regret defined in (6.12) for the online estimators: Rt, when the loss function

is defined to be the negative likelihood function. Then, the theorem is proven by combining

the above analysis for the three terms in (A.75) and (A.74).

Proof of Corollary 5. First, we can relate the expected regret at the stopping time to the

expected stopping time, using the following chain of equalities and inequalities

Eθ,0[Rτ(b)] = Eθ,0[Eθ,0[Rn | τ(b) = n]] ≤ Eθ,0[C log τ(b)] ≤ C logEθ,0[τ(b)], (A.79)

where the first equality uses iterative expectation, the first inequality uses the assumption

of the logarithmic regret in the statement of Corollary 5, and the second inequality is due

to Jensen’s inequality. Let α = (b + O(1))/I(θ, θ0), β = C/I(θ, θ0) and x = Eθ,0[τ(b)].

Applying (A.79), the upper bound in equation (6.14) becomes x ≤ α + β log(x). From this,

we have x ≤ O(α). Taking logarithm on both sides and using the fact that max{a1 + a2} ≤

a1+a2 ≤ 2 max{a1, a2} for a1, a2 ≥ 0, log(x) ≤ max{log(2α), log(2β log x)} ≤ log(α)+

o(log b). Therefore, we have that x ≤ α + β(log(α) + o(log b)). Using this argument, we

obtain

Eθ,0[τ(b)] ≤ b

I(θ, θ0)
+
C log b

I(θ, θ0)
(1 + o(1)). (A.80)
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Note that a similar argument can be found in [128].

Next we will establish a few Lemmas useful for proving theorem 22 for sequential

detection procedures. Define a measure Q on (X∞,B∞) under which the probability

density of Xi conditional on Fi−1 is fθ̂i−1
. Then for any event A ∈ Fi, we have that

Q(A) =
∫
A

ΛidP∞. The following lemma shows that the restriction of Q to Fi is well

defined.

Lemma 19. Let Qi be the restriction of Q to Fi. Then for any A ∈ Fk and any i ≥ k,

Qi(A) = Qk(A).

Proof of Lemma 11. To bound the term P∞(τ(b) < ∞), we need take advantage of the

martingale property of Λt in (6.2). The major technique is the combination of change of

measure and Wald’s likelihood ratio identity [131]. The proofs are a combination of the

results in [125] and [75] and the reader can find a complete proof in [125]. For purpose of

completeness we copy those proofs here.

Define the Li = dPi/dQi as the Radon-Nikodym derivative, where Pi and Qi are the

restriction of P∞ and Q to Fi, respectively. Then we have that Li = (Λi)
−1 for any i ≥ 1

(note that Λi is defined in (6.2)). Combining the Lemma 19 and the Wald’s likelihood ratio

identity, we have that

P∞(A ∩ {τ(b) <∞}) = EQ
[
I({τ(b) <∞}) · Lτ(b)

]
,∀A ∈ Fτ(b), (A.81)

where I(E) is an indicator function that is equal to 1 for any ω ∈ E and is equal to 0

otherwise. By the definition of τ(b) we have that Lτ(b) ≤ exp(−b). Taking A = X∞ in

(A.81) we prove that P∞(τ(b) <∞) ≤ exp(−b).

Proof of Corollary 6. Using (5.180) and (5.188) in [55], which are about asymptotic perfor-

mance of open-ended tests. Since our problem is a special case of the problem in [55], we
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can obtain

inf
T∈C(α)

Eθ,0[T ] =
logα

I(θ, θ0)
+

log(log(1/α))

2I(θ, θ0)
(1 + o(1)).

Combing the above result and the right-hand side of (6.15), we prove the corollary.

Proof of Theorem 22. From (A.83), we have that for any ν ≥ 1,

Eθ,ν [TASR(b)− ν | TASR(b) > ν] ≤ Eθ,ν [TACM(b)− ν | TACM(b) > ν].

Therefore, to prove the theorem using Theorem 21, it suffices to show that

sup
ν≥0

Eθ,ν [TACM(b)− ν | TACM(b) > ν] ≤ Eθ,0[τ(b)].

Using an argument similar to the remarks in [75], we have that the supreme of detection

delay over all change locations is achieved by the case when change occurs at the first

instance,

sup
ν≥0

Eθ,ν [TACM(b)− ν | TACM(b) > ν] = Eθ,0[TACM(b)]. (A.82)

This is a slight modification (a small change on the subscripts) of the remarks in [75] but

for the purpose of completeness and clearness we write the details in the following. Notice

that since θ0 is known, for any j ≥ 1, the distribution of {maxj+1≤k≤t Λk,t}∞t=j+1 under Pθ,j

conditional on Fj is the same as the distribution of {max1≤k≤t Λk,t}∞t=1 under Pθ,0. Below,

we use a renewal property of the ACM procedure. Define

T
(j)
ACM(b) = inf{t > j : max

j+1≤k≤t
log Λk,t > b}.

Then we have that Eθ,0[TACM(b)] = Eθ,j[T (j)
ACM(b) − j | T (j)

ACM(b) > j]. However,

max1≤k≤t log Λk,t ≥ maxj+1≤k≤t Λk,t for any t > j. Therefore, T (j)
ACM(b) ≥ TACM(b)
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conditioning on {TACM(b) > j}. So that for all j ≥ 1,

Eθ,0[TACM(b)] = Eθ,j[T (j)
ACM(b)− j | TACM(b) > j] ≥ Eθ,j[TACM(b)− j | TACM(b) > j].

Thus, to prove (A.82), it suffices to show that Eθ,0[TACM(b)] ≤ Eθ,0[τ(b)]. To show this, de-

fine τ(b)(t) as the new stopping time that applies the one-sided sequential hypothesis testing

procedure τ(b) to data {Xi}∞i=t. Then we have that in fact TACM(b) = mint≥1{τ(b)(t) + t−

1}, this relationship was developed in [59]. Thus, TACM(b) ≤ τ(b)(1) + 1− 1 = τ(b), and

Eθ,0[TACM(b)] ≤ Eθ,0[τ(b)].

Proof of Lemma 12. This is a classic result proved by using the martingale property and the

proof routine can be found in many textbooks such as [55]. First, rewrite TASR(b) as

TASR(b) = inf

{
t ≥ 1 : log

(
t∑

k=1

Λk,t

)
> b

}
.

Next, since

log

(
t∑

k=1

Λk,t

)
> log

(
max
1≤k≤t

Λk,t

)
= max

1≤k≤t
log Λk,t, (A.83)

we have E∞[TACM(b)] ≥ E∞[TASR(b)]. So it suffices to show that E∞[TASR(b)] ≥ γ, if

b ≥ log γ. Define Rt =
∑t

k=1 Λk,t. Direct computation shows that

E∞[Rt | Ft−1] =E∞

[
Λt,t +

t−1∑
k=1

Λk,t | Ft−1

]

=E∞

[
1 +

t−1∑
k=1

Λk,t−1 · log
fθ̂t−1

(Xt)

fθ0(Xt)
| Ft−1

]

=1 +
t−1∑
k=1

Λk,t−1 · E∞

[
log

fθ̂t−1
(Xt)

fθ0(Xt)
| Ft−1

]

=1 +Rt−1.

Therefore, {Rt−t}t≥1 is a (P∞,Ft)-martingale with zero mean. Suppose that E∞[TASR(b)] <
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∞ (otherwise the statement of proposition is trivial), then we have that

∞∑
t=1

P∞(TASR(b) ≥ t) <∞. (A.84)

(A.84) leads to the fact that P∞(TASR(b)) ≥ t = o(t−1) and the fact that 0 ≤ Rt ≤ exp(b)

conditioning on the event {TASR(b) > t}, we have that

lim inf
t→∞

∫
{TASR(b)>t}

|Rt − t|dP∞ ≤ lim inf
t→∞

(exp(b) + t)P∞(TASR(b) ≥ t) = 0.

Therefore, we can apply the optional stopping theorem for martingales, to obtain that

E∞[RTASR(b)] = E∞[TASR(b)]. By the definition of TASR(b), RTASR(b) > exp(b) we have

that E∞[TASR(b)] > exp(b). Therefore, if b ≥ log γ, we have that E∞[TACM(b)] ≥

E∞[TASR(b)] ≥ γ.

Proof of Corollary 7. Our Theorem 1 and the remarks in [82] show that the minimum

worst-case detection delay, given a fixed ARL level γ, is given by

inf
T (b)∈S(γ)

sup
ν≥1

Eθ,ν [T (b)− ν + 1 | T (b) ≥ ν] =
log γ

I(θ, θ0)
+
d log log γ

2I(θ, θ0)
(1 + o(1)). (A.85)

It can be shown that the infimum is attained by choosing T (b) as a weighted Shiryayev-

Roberts detection procedure, with a careful choice of the weight over the parameter space

Θ. Combing (A.85) with the right-hand side of (6.15), we prove the corollary.

The following derivation borrows ideas from [83]. First, we derive concise forms of the

two terms in the definition of Rt in (6.12).

Lemma 20. Assume that X1, X2, . . . are i.i.d. random variables with density function fθ(x),

and assume decreasing step-size ηi = 1/i in Algorithm 2. Given {θ̂i}i≥1, {µ̂i}i≥1 generated

by Algorithm 2. If θ̂i = θ̃i for any i ≥ 1, then for any null distribution parameter θ0 ∈ Θ
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and t ≥ 1,
t∑
i=1

{− log fθ̂i−1
(Xi)} =

t∑
i=1

iBΦ∗(µ̂i, µ̂i−1)− tΦ∗(µ̂t). (A.86)

Moreover, for any t ≥ 1,

inf
θ̃∈Θ

t∑
i=1

{− log fθ̃(Xi)} = −tΦ∗(µ̂), (A.87)

where µ̂ = (1/t) ·
∑t

i=1 φ(Xi).

By subtracting the expressions in (A.86) and (A.87), we obtain the following result which

shows that the regret can be represented by a weighted sum of the Bregman divergences

between two consecutive estimators.

Proof of Lemma 20. By the definition of the Legendre-Fenchel dual function we have that

Φ∗(µ) = θᵀµ−Φ(θ) for any θ ∈ Θ. By this definition, and choosing ηi = 1/i, we have that

for any i ≥ 1

− log fθ̂i−1
(Xi)

= Φ(θ̂i−1)− θ̂ᵀi−1φ(Xi)

= θ̂ᵀi−1(µ̂t−1 − φ(Xi))− Φ∗(µ̂i−1) =
1

ηi
θ̂ᵀi−1(µ̂i−1 − µ̂i)− Φ∗(µ̂i−1)

=
1

ηi
(Φ∗(µ̂i)− Φ∗(µ̂i−1))− θ̂ᵀi−1(µ̂i − µ̂i−1)− 1

ηi
Φ∗(µ̂i) +

(
1

ηi
− 1

)
Φ∗(µ̂i−1)

=
1

ηi
BΦ∗(µ̂i, µ̂i−1) +

1

ηi−1

Φ∗(µ̂i−1)− 1

ηi
Φ∗(µ̂i),

(A.88)

where we use the update rule in Line 6 of Algorithm 2 and the assumption θ̂i = θ̃i to have

the third equation. We define 1/η0 = 0 in the last equation. Now summing the terms in
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(A.88), where the second term form a telescopic series, over i from 1 to t, we have that

t∑
i=1

{− log fθ̂i−1
(Xi)} =

t∑
i=1

1

ηi
BΦ∗(µ̂i, µ̂i−1) +

1

η0

Φ∗(µ̂0)− 1

ηt
Φ∗(µ̂t)

=
t∑
i=1

1

ηi
BΦ∗(µ̂i, µ̂i−1)− tΦ∗(µ̂t).

Moreover, from the definition we have that

t∑
i=1

{− log fθ(Xi)} =
t∑
i=1

[Φ(θ)− θᵀφ(Xi)] .

Taking the first derivative of
∑t

i=1{− log fθ(Xi)} with respect to θ and setting it to 0, we

find µ̂, the stationary point, given by

µ̂ = ∇Φ(θ) =
1

t

t∑
i=1

φ(Xi).

Similarly, using the expression of the dual function, and plugging µ̂ back into the equation,

we have that

inf
θ̃∈Θ

t∑
i=1

{− log fθ̃(Xi)} = t · θᵀµ̂− tΦ∗(µ̂)−
t∑
i=1

θᵀφ(Xi) = −tΦ∗(µ̂).

Proof of Theorem 23. By choosing the step-size ηi = 1/i for any i ≥ 1 in Algorithm 2, and

assuming θ̂i = θ̃i for any i ≥ 1, we have by induction that

µ̂t =
1

t

t∑
i=1

φ(Xi) = µ̂.
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Subtracting (A.86) by (A.87), we obtain

Rt =
t∑
i=1

{− log fθ̂i−1
(Xi)} − inf

θ̃∈Θ

t∑
i=1

{− log fθ̃(Xi)}

=
t∑
i=1

iBΦ∗(µ̂i, µ̂i−1)− tΦ∗(µ̂t) + tΦ∗(µ̂)

=
t∑
i=1

iBΦ∗(µ̂i, µ̂i−1)

=
t∑
i=1

i[Φ∗(µ̂i)− Φ∗(µ̂i−1)− 〈∇Φ∗(µ̂i−1), µ̂i − µ̂i−1〉]

=
1

2

t∑
i=1

i · (µ̂i − µ̂i−1)ᵀ[∇2Φ∗(µ̃i)](µ̂i − µ̂i−1).

The final equality is obtained by Taylor expansion.
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