
SPACECRAFT VISUAL NAVIGATION USING APPEARANCE MATCHING AND
MULTI-SPECTRAL SENSOR FUSION

A Dissertation
Presented to

The Academic Faculty

By

Christopher Ryan McBryde

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Aerospace Engineering

Georgia Institute of Technology

August 2018

Copyright © Christopher Ryan McBryde 2018

SPACECRAFT VISUAL NAVIGATION USING APPEARANCE MATCHING AND
MULTI-SPECTRAL SENSOR FUSION

Approved by:

Dr. Glenn Lightsey, Advisor
School of Aerospace Engineering
Georgia Institute of Technology

Dr. Marcus Holzinger
School of Aerospace Engineering
Georgia Institute of Technology

Mr. Chad Frost
Deputy Director of Engineering
Ames Research Center

Dr. Andrew Johnson
Principal GNC Engineer
Jet Propulsion Laboratory

Dr. Eric Johnson
School of Aerospace Engineering
Georgia Institute of Technology

Date Approved: May 3, 2018

It is good to have an end to journey towards; but it is the journey that matters, in the end.

Ursula K. Le Guin, The Left Hand of Darkness

To Alexandra Rodriguez. You’ve been with me every step of the way on this PhD journey

and I could not have done it with out you. Also to my parents, Laura and Ryan McBryde.

You always believed I could do whatever I dreamed and gave me the love and support to

make those dreams a reality.

ACKNOWLEDGEMENTS

This work was sponsored in part by NASA contracts NNX09M51A and NNX15AD26H.

Thank you to my advisor, Dr. Glenn Lightsey, for your all your support and counsel

during my graduate career. I cannot believe we met more than eight years ago. It has been

a long road through two degrees and as many states, but we made it.

I would like to acknowledge Dr. Andrew Johnson for serving on my PhD committee

and for all his assistance on this research topic. Thank you for your mentorship during my

two summers at the Jet Propulsion Laboratory as well as your collaboration. This disser-

tation would not have been possible without your help. I would also like to acknowledge

Chad Frost, who served as my collaborator for the NASA Space Technology Research Fel-

lowship. I appreciate your mentorship during my time interning at Ames Research Center

and for your membership on my committee. Thank you to Dr. Marcus Holzinger and Dr.

Eric Johnson for your instruction as well as for serving on my committee.

Thank you to my colleagues at Georgia Tech: Peter Schulte, Alexandra Long, Andris

Jaunzemis, Hisham Ali, and Timothy Murphy. I’m grateful for your help preparing for

qualifying exams and my proposal. I would also like to acknowledge Andrew Fear, Terry

Stevenson, and Parker Francis for your friendship and support during our transition.

To my parents, Ryan and Laura: thank you for nurturing my curiosity and love of

learning, for your constant support and guidance, and for letting a little boy have National

Geographic Picture Atlas of Our Universe as a bedtime story. Thank you to my siblings,

Katy and Patrick. It’s an honor to call myself your brother, and I hope I have inspired and

taught you as much as you have me.

And finally, to my fiancée, Laura Alejandra Rodriguez Arellanos: There are no words

that are enough to thank you, or room here to list all the times you helped me. You gave

me the strength to go on when things got tough and never let me forget that I could do this.

And you were right. I love you.

v

TABLE OF CONTENTS

Acknowledgments . v

List of Tables . xiv

List of Figures . xv

Chapter 1: Introduction . 1

1.1 Motivation . 1

1.2 Applications . 2

1.2.1 Cooperative control . 2

1.2.2 Satellite servicing or de-orbit . 3

1.2.3 Hazard avoidance . 4

1.3 Statement of contributions . 5

1.3.1 Appearance matching for spacecraft 5

1.3.2 Spacecraft imaging simulation environment 6

1.3.3 Multi-spectral sensor fusion . 7

Chapter 2: Background . 9

2.1 Current algorithms . 9

2.1.1 Object identification . 9

vi

2.1.1.1 Scale-invariant feature transformation 9

2.1.1.2 Shape context matching 10

2.1.1.3 3D model search . 13

2.1.2 Relative pose estimation . 14

2.1.2.1 Simultaneous localization and mapping 14

2.1.2.2 Blobber method . 16

2.1.2.3 Perspective-n-point . 17

2.1.3 Sensor fusion and filtering . 18

2.2 Current hardware . 20

2.2.1 Single-spectrum sensors . 21

2.2.1.1 Orbital Express . 21

2.2.1.2 MESSENGER . 23

2.2.1.3 Hubble Space Telescope Servicing Mission 4 24

2.2.2 Multi-spectrum sensors . 26

2.2.2.1 Near-infrared sensitivity 26

2.2.2.2 Single-device sensor fusion 27

2.3 Summary . 28

Chapter 3: Spacecraft appearance matching . 30

3.1 Overview . 30

3.1.1 Original work . 30

3.1.2 Appearance matching for spacecraft visual navigation 34

3.2 Theoretical basis . 35

vii

3.2.1 Image compression . 35

3.2.2 Intelligent library sorting and nearest neighbor search 36

3.2.3 Karhunen–Loève transform . 37

3.3 Algorithm . 39

3.3.1 Training procedure . 39

3.3.1.1 Normalization . 40

3.3.1.2 Universal eigenspace and hypersurface 40

3.3.1.3 Object eigenspaces and hypersurfaces 42

3.3.2 Testing procedure . 42

3.3.2.1 Object identification . 43

3.3.2.2 Relative attitude determination 43

3.3.2.3 Library search and confidence 44

3.4 Robustness of appearance matching . 45

3.4.1 Fast Robust PCA . 46

3.4.2 Background randomization . 49

3.5 Tuning and observability . 51

3.5.1 Quantity of eigenpairs . 52

3.5.2 Quantity of training images . 52

3.5.3 Observability . 54

Chapter 4: Spacecraft image simulation environment 56

4.1 State of the art and contribution to the field 58

4.1.1 Infrared simulation . 59

viii

4.1.2 Background randomization . 60

4.1.3 Automation . 60

4.1.4 Cost . 60

4.1.5 Contribution . 61

4.2 Visible spectrum image simulation . 61

4.2.1 Solving the visibility problem . 61

4.2.1.1 Z-buffer . 62

4.2.1.2 Ray tracing . 63

4.2.2 Triangular mesh . 64

4.2.3 Radiation simulation . 65

4.2.3.1 Types of reflectance . 66

4.2.3.2 Simulated radiance . 66

4.2.4 Measurement response . 68

4.2.5 Error sources . 69

4.3 Infrared spectrum image simulation . 69

4.3.1 Thermal simulation . 70

4.3.1.1 Conduction . 71

4.3.1.2 Solar irradiation . 71

4.3.1.3 Body radiation . 72

4.3.1.4 Temperature change . 72

4.3.2 Simulated radiance . 72

4.4 Fidelity of simulation . 73

4.4.1 Thermal imaging . 73

ix

4.4.2 Specular effects . 74

4.4.3 Background . 74

4.5 Software implementation . 76

4.5.1 Function sise . 76

4.5.2 Initialization . 78

4.5.2.1 Function cam . 78

4.5.3 Target modeling . 79

4.5.4 Radiation simulation . 80

4.5.5 File creation and refinement . 80

4.5.5.1 Distortion . 80

4.5.5.2 Functions vis_err and ir_err 81

4.5.5.3 Function add_background 82

4.5.6 GPU acceleration . 83

4.5.6.1 CUDA Overview . 83

4.5.6.2 Function kernel . 84

4.5.6.3 Function hit . 84

4.5.6.4 Functions light and therm 86

4.5.6.5 Helper functions . 86

Chapter 5: Sensor fusion and filtering . 87

5.1 Sensor fusion strategies . 87

5.1.1 Target identification and image cropping 87

5.1.1.1 Optical flow . 87

x

5.1.1.2 Iterative processing . 90

5.1.1.3 Infrared masking . 91

5.1.1.4 Relative position . 93

5.1.2 Hybrid PCA . 94

5.1.3 Reconciled PCA . 95

5.2 Multi-sensor framework . 96

5.2.1 Object identification . 97

5.2.2 Attitude determination . 99

5.3 A priori and time history inclusion . 101

5.3.1 Virtual sensor framework . 101

5.3.2 Object identification . 101

5.3.3 Pose estimation . 102

Chapter 6: Results . 103

6.1 Background randomization performance 104

6.1.1 Performance on black-background test images 106

6.1.2 Performance on star test background 108

6.1.3 Performance on cloud test background 110

6.1.4 Performance on horizon background 112

6.2 Sensor fusion versus single-spectrum performance 114

6.2.1 Simulated hardware . 114

6.2.2 Results . 115

6.3 Robustness of appearance matching to imaging error 116

xi

6.3.1 Distortion . 119

6.3.2 Blur . 120

6.3.3 Noise . 121

6.3.4 Glints . 121

6.3.5 Other effects . 122

6.3.6 Results . 123

6.3.6.1 Object identification . 123

6.3.6.2 Attitude determination 124

6.3.6.3 Relative position . 124

6.3.6.4 Summary . 125

6.4 Effect of distance on appearance matching 125

6.5 Hardware-in-the-loop test . 128

6.5.1 Analog model . 128

6.5.2 Test setup . 129

6.5.3 Results . 130

6.5.3.1 Object identification . 130

6.5.3.2 Attitude determination 130

6.6 Mission scenario . 130

6.6.1 Scenario setup . 131

6.6.2 Results . 132

Chapter 7: Conclusion and future work . 134

7.1 Summary of results . 134

xii

7.2 Future work . 135

7.2.1 Multiple model filtering . 136

7.2.2 Color-aided appearance matching 137

7.2.3 Quantity of eigenvalues . 137

7.2.4 Virtual sensing . 138

7.2.5 Adaptive learning . 138

7.2.6 Better simulation fidelity and efficiency 139

7.3 Reflection . 140

References . 140

Vita . 150

xiii

LIST OF TABLES

2.1 Infrared spectrum subdivision . 27

4.1 Rendering time for an image with GPU vs CPU 85

6.1 mvBlueFOX3-1013G camera parameters 106

6.2 Object relative distances . 106

6.3 Black background object identification accuracy 107

6.4 Star background object identification accuracy 108

6.5 Cloud background object identification accuracy 110

6.6 Horizon background object identification accuracy 112

6.7 FLIR Tau 2 640 bolometer parameters . 115

6.8 Object identification accuracy for different spectra 116

6.9 Sensor fusion attitude error statistics . 116

6.10 Error effect on object identification accuracy 123

6.11 Error effect on pitch error . 124

6.12 Error effect on yaw error . 124

6.13 Error effect on relative position error . 125

xiv

LIST OF FIGURES

1.1 Artists rendering of RSGS satellite concept [8] 4

2.1 Model images of planar objects (top), test image (center), and recognition
results showing model outlines and image keys used for matching (bottom)
[12] . 11

2.2 Example of sampling for two images (top). Shape contexts for circle (bot-
tom left), diamond (bottom center), and triangle (bottom right) [13] 12

2.3 Sample images from the COIL-20 library [30] 13

2.4 Example of projected area blobber distribution for a 3U CubeSat 16

2.5 Color and thermal registration results from Han and Bhanu [34]: original
color images (first row), original thermal images (second row), and trans-
formed color images (third row) . 19

2.6 Transformed color image (first), thermal image (second), and silhouette
fusion using two different methods (third and fourth) [34] 19

2.7 Infrared image (left), visible image (center), and fused image (right) [35] . . 20

2.8 Infrared image (left), visible image (center), and human detection (right) [36] 20

2.9 AVGS illumination and processing procedure [37] 22

2.10 Mercury flyby narrow-angle camera image from OpNav number 3 [38] . . . 23

2.11 GNFIR Pose Process Loop [39] . 25

2.12 Feature-based ULTOR P3E overview [39] 26

2.13 Gamut 1080p HD TVI CCTV Bullet Camera [41] 28

xv

2.14 ARTCAM 320-THERMO-HYBRID [43] 28

3.1 Experimental objects used by Murase and Nayar [1] 32

3.2 Hypersurfaces computed for each object (first three dimensions) [1] 33

3.3 Image of tech tower under various levels of compression (Original image
[49]) . 36

3.4 Appearance training block diagram . 39

3.5 Original training image (left) and cropped and scaled image (right) 40

3.6 Brightness vector (x̂, left) and normalized brightness vector (x, right) . . . 41

3.7 Simulated image with black background (left) and reconstruction (right) . . 46

3.8 Simulated image with cloud background (left) and reconstruction (right) . . 47

3.9 FR-PCA training procedure [60] . 48

3.10 Occluded test image (left), reconstruction using standard PCA (center) and
using FR-PCA (right) [60] . 49

3.11 Sample random-background training image 50

3.12 Simulated image with cloud background (left) and reconstruction from random-
background eigenspace (right) . 51

3.13 Eigenpairs versus variance captured . 53

3.14 Theoretical maximum error vs number of training images 54

4.1 High-level SISE block diagram . 57

4.2 Z-buffer process with two differently colored triangles [65] 62

4.3 Ray-tracing for a basic scene [67] . 63

4.4 Asteroid Geographos triangular mesh [68] 65

4.5 Specular (left) versus Lambertian (right) reflection [74] 66

xvi

4.6 Simulated image of a sphere subject to primarily specular (left) and Lam-
bertian (right) reflection [75] . 67

4.7 Reflection model vectors . 67

4.8 Line-of-sight angle (θ) definition for Equation 4.3 69

4.9 Sunlight glint off the Hubble Space Telescope [77] 75

4.10 SISE function flowchart . 77

4.11 Undistorted image (left), radially distorted image (center), tangentially dis-
torted (right) . 81

4.12 Cloud (left), horizon (center) and star (right) background image files 83

5.1 Dense optical flow using the Lucas-Kanade method [86] 89

5.2 Dense optical flow segmentation (right) of ROSA jettison (left) 90

5.3 Dense optical flow segmentation (right) of Dragon docking (left) 90

5.4 Test objects on a cluttered background [59] 91

5.5 Example of infrared masking with HST on a cloud background 92

5.6 Visible (left) and infrared (right) spectrum cropped images 95

5.7 Hybrid image vector . 95

5.8 Object identification fusion procedure . 98

5.9 Pose estimation fusion procedure . 100

6.1 Representative images of test objects: Stardust (top left), Juno (top right),
Odyssey (bottom left), and HST (bottom right) (Images credit: NASA) . . . 105

6.2 Orientation (left) and lighting (right) conditions 105

6.3 Random background attitude error by axis 107

6.4 Black background attitude error by axis 108

xvii

6.5 Sample random-background test image . 109

6.6 Random background attitude error by axis 109

6.7 Black background attitude error by axis 110

6.8 Sample cloud-background test image . 111

6.9 Random background attitude error by axis 111

6.10 Black background attitude error by axis 112

6.11 Sample horizon-background test image . 113

6.12 Random background attitude error by axis 113

6.13 Black background attitude error by axis 114

6.14 Infrared spectrum attitude error by axis . 117

6.15 Visible spectrum attitude error by axis . 117

6.16 Fusion spectrum attitude error by axis . 118

6.17 Comparison of average attitude error by spectrum 118

6.18 Example distorted image . 120

6.19 Example blurred image . 121

6.20 Example noisy image . 122

6.21 Example image with glint . 123

6.22 Recognition accuracy versus object distance 126

6.23 Average median attitude error versus object distance 127

6.24 Relative position error versus object distance 127

6.25 Original Juno model (left), modified model (center), and printed analog (right)129

6.26 Recorded range (green) versus actual range (blue), eclipse portion dashed . 133

6.27 Percent range error over time, eclipse portion dashed 133

xviii

7.1 General structure of a multiple model estimation algorithm with two filters
[97] . 136

7.2 RayChip ray tracing chip [100] . 140

xix

SUMMARY

One of the capabilities necessary for a successful satellite mission is knowledge of its

location and orientation in space, especially relative to a target. Relative navigation is an

enabling technology for spacecraft formation flying, rendezvous and docking, and haz-

ard avoidance. Cameras are particularly useful for this task since they are less expensive,

smaller, and have lower power requirements than many other types of sensors. Object iden-

tification and relative pose estimation is therefore a key topic of research for the future of

spacecraft.

Using cameras for object identification and relative pose estimation presents a few chal-

lenges. Obtaining relative position and orientation data is a two-step process. An object

must first be identified so that the image data can provide a meaningful relative pose. His-

torically, the complete relative navigation process has involved two different algorithms,

one for object identification and another for pose estimation, working in tandem. Finally,

images in the visible spectrum are susceptible to variations in illumination that affects the

perceived shape of the object, if it can be imaged at all.

The approach taken in this research is to apply terrestrial techniques to improve space-

craft navigation. First, appearance matching is used as a common framework for both

object identification and pose estimation and is made more robust using background ran-

domization. Consequently, a spacecraft imaging simulation environment is created to both

generate the necessary training images as well as verify the systems performance. Ad-

ditionally, results for multiple sensors are fused to improve the identification and pose

estimation as well as increase the operating range over more of the orbit.

The result of this research is that a robust method is demonstrated for object identifi-

cation and pose estimation of a spacecraft target. A single framework accomplishes both

tasks and may be further enhanced using multiple sensors. Appearance matching and sen-

sor fusion will help enable the next generation of spacecraft visual navigation.

xx

CHAPTER 1

INTRODUCTION

1.1 Motivation

The last ten years have seen a fundamental change in the way spacecraft are designed and

the purpose for which they are created. In the past, construction and launch of a satellite,

even a small one, was out of the financial and logistical capability of all institutions except

governments and large corporations. Collaboration was often required between multiple

organizations. These devices were expensive, power-hungry, and needed to accomplish

several different objectives in order to justify their high cost. Accordingly, they featured

expensive sensors for accurate determination of their location and orientation. The result

of the rapid miniaturization of electronics in the last decade is that the same capabilities

are now available in smaller, less expensive packages that require less power. Low-cost

microprocessors that are powerful enough to perform more complex pose estimation and

sensor fusion computations in real-time are available to most consumers. As a result, two or

more sensors may be combined to take advantage of complementary functionality without

excessive cost. Sensor fusion is now a more viable strategy for spacecraft sensing than it

was 10 or 15 years ago.

In addition, better on-board processing power means that terrestrial image processing

and recognition techniques combined with spacecraft imaging sensors results in improved

navigation performance. The appearance matching technique is a powerful algorithm that

is well suited to space images. Developed by Murase and Nayar in 1995 [1], the recognition

system learns to identify an object and determine its orientation from overall appearance

rather than from a set of features. Appearance matching has been used in applications

such as facial recognition and identification [2] and optical character recognition [3]. This

1

chapter describes the applications of satellite relative visual navigation and an outline of

contributions.

1.2 Applications

A reliable and accurate method for performing vision-based spacecraft relative navigation

has a number of potential applications. These include cooperative control, satellite ser-

vicing or de-orbit, and hazard avoidance. These scenarios respectively require either the

maintenance of a constant position and orientation relative to a target, approach and ren-

dezvous, or avoidance.

When discussing relative navigation, target objects for coordinated control are generally

broken down into three overarching categories: actively cooperative, passively cooperative,

and non-cooperative. Actively cooperative targets return some form of attitude and position

data to the spacecraft. Passively cooperative targets do not broadcast any information, but

have markers that are specifically designed to be picked up by the sensor. In the absence

of either of these conditions, the target is non-cooperative. Non-cooperative targets include

all natural bodies. The following applications include all three types of targets.

1.2.1 Cooperative control

Given the miniaturization of electronics and power storage improvements that have oc-

curred over the last few decades, organizations have begun exploring the use of several

smaller spacecraft to accomplish tasks which had previously been performed by a single

satellite. These groups of satellites are referred to differently depending on their capabil-

ities. They are usually referred to as “formations” if the control of one satellite involves

the state of another or “swarms” if not. One example of a company utilizing a satellite

constellation is Planet Labs. Formed in 2010, Planet Labs’ goal is to launch a series of

3U CubeSats to obtain real-time Earth imaging data at the 3 to 5 meter resolution. As of

October 2017, there are 190 satellites in orbit, 172 of which are actively imaging [4].

2

Another area with a great deal of potential application for satellite constellations is me-

teorology. In December 2016, NASA launched the Cyclone Global Navigation Satellite

System (CYGNSS), a joint operation between the University of Michigan and the South-

west Research Institute. Consisting of 8 micro-satellites, CYGNSS aims to improve hurri-

cane forecasting by taking ocean surface wind speed measurements at a much higher rate

than previous missions. The CYGNSS constellation has a predicted mean revisit time of

7 hours for any location on Earth. Each satellite measures the wind speed at 4 locations

simultaneously, allowing for up to 32 measurements per second [5].

The next step in complexity beyond satellite constellations is coordinated attitude con-

trol of multiple satellites. Several applications are feasible for this type of system, including

mesh networks to replaced damaged communications satellites or instantaneous synthetic

aperture radar systems. A review by Bandyopadhyay, et al. shows the breadth of topics

covered by contemporary formation flying missions [6].

1.2.2 Satellite servicing or de-orbit

Another potential application for a satellite with a reliable visual navigation system is ren-

dezvous. One potential rendezvous mission is the servicing of a damaged or spent satellite.

The servicing satellite could provide a software patch too large to be radioed from the

ground, refuel a spent cold gas thruster system, or boost the satellite into another orbit.

The Robotic Servicing of Geosynchronous Satellites (RSGS) program is a mission concept

being developed by the Defense Advanced Research Projects Agency (DARPA). RSGS is

intended to extend the life of satellites in geosynchronous orbits and identifies four poten-

tial mission tasks: high-resolution inspection, anomaly correction, cooperative relocation

and upgrade installation [7].

On the other hand, the helper satellite could approach with the intent of retiring the spent

satellite. Most modern satellite missions are required to explain how the spacecraft will be

de-orbited at the end of the mission, assuming natural forces do not solve that problem

3

Figure 1.1: Artists rendering of RSGS satellite concept [8]

within a reasonable span of time. Should the intended de-orbit mechanism fail, another

spacecraft could be launched with the purpose of pushing the target into an unstable orbit

so that it does not contribute to the growing amount of space debris. Singaporean company

Astroscale is developing a proof-of-concept mission called ELSA-d with a planned launch

in 2019. ELSA-d will approach a simulated target using optical sensors and then push the

target into an new orbit for disposal [9]. By changing the perigee to intersect with a denser

part of the atmosphere, the orbit decays to the point where the spacecraft burns up due to

atmospheric friction.

1.2.3 Hazard avoidance

A visual navigation system would also be useful in assisting hazard avoidance maneuvers.

Instead being part of a small, relatively inexpensive satellite, this system would be incor-

porated as part of an expensive, long-term mission. Given the rise in space debris [10],

particularly in low orbit, having a way to autonomously determine if a nearby object is a

threat to the spacecraft would be very useful. A system based on this research could iden-

tify the debris from a library of objects and provide relative navigation information in order

to assist with the threat assessment and, if necessary, help effect an avoidance maneuver.

4

1.3 Statement of contributions

The overall contribution of this dissertation is the improvement of object identification and

pose estimation with methods that have not previously been used in the aerospace field.

The computer vision technique called appearance matching performs object identification

and attitude determination using the same mathematical framework and is made robust

to different environments using background randomization. Pixel data from the image

combined with the object identity allows for a complete pose estimate. The spacecraft

imaging simulation environment (SISE) generates training images to train the appearance

matching method and is used for software-in-the-loop validation. Finally, multi-spectral

sensor fusion extends the operating range of a single-spectrum sensor while allowing for

the capability of more advanced filtering techniques.

1.3.1 Appearance matching for spacecraft

Contribution 1: Appearance matching is applied to spacecraft object identification and

pose estimation for application to uncooperative objects and is extended for use on an

arbitrary background with a single training set.

Several algorithms exist for determining the presence and identity of a target, called

object identification, and calculating its relative location and orientation in space, called

pose estimation. Methods for object identification include 3-D model searches [11], scale-

invariant feature transformation (SIFT) [12], and shape context matching [13]. Methods

like simultaneous localization and mapping (SLAM) [14], the blobber method [15], and

perspective-n-point (PnP) [16] perform pose estimation.

Each of these techniques has advantages and disadvantages. For example, SIFT and

PnP both require the algorithm to identify feature points on the object, which may not be

possible for smooth, shiny objects or while using lower resolution images. Model searches

and context matching are only effective for simple objects that can be modeled from a set

of primitives, which could be difficult to construct for larger or more complex spacecraft.

5

Whichever of these individual techniques is selected, one algorithm will have to be used

for object identification and another for pose estimation. These algorithms would then be

coded and optimized for performance separately. The advantage to appearance matching is

that it performs both processes by the same principle without the need for identifying fea-

ture points. Training images are mapped into a series of higher-dimensional spaces to tune

the algorithm, and test images are mapped into those same spaces for object identification

and pose estimation.

By extending the technique using background randomization, appearance matching

uses the same set of training images to identify objects and conducts relative pose esti-

mation on an arbitrary background. The prior version of the algorithm required that the

background be the same for the training images and the test image, usually black. This re-

search represents the first time appearance matching has been applied to spacecraft relative

navigation and extended in this way using background randomization. Preliminary results

for this contribution were presented in McBryde and Lightsey [17] and updated results are

under review for publication (McBryde, et al. [18]).

1.3.2 Spacecraft imaging simulation environment

Contribution 2: A versatile software tool is created for generating simulated visible and

infrared spectrum images to use in algorithm training and software-in-the-loop verifica-

tion, with enhanced computational efficiency using graphics processing hardware.

One of the first steps in approaching the development of a visual navigation system is

to simulate or acquire high-fidelity images of the target. Generating realistic real-world

scenes has been an area of intense research over the past few decades with the increase in

the photorealism of video games and computer generated images for film and TV. Many

tools exist for simulating objects based on a 3-D model and with particular characteristics

[19, 20, 21]. However, these tools are not suited for this application of appearance matching

and sensor fusion for a couple of reasons. First and foremost, they do not include the ability

6

to simulate infrared radiation. Research has been published on the operational physics of

infrared sensors [22, 23]. However, the actual process of simulating infrared signals has

been limited. Shi, et al. [24] simulated infrared radiation using rudimentary CAD models,

but these were very coarse and lacked any features.

Another drawback is that existing tools are mostly “black boxes.” They render a scene

without providing the user with data such as the radiation emitted from each face of the

object or how many photons are incident on the sensor. This data is useful in algorithm

tuning and in accounting for error sources. Finally, it will be shown later that automat-

ing the generation of simulated images is a necessary part of the training process for the

appearance matching algorithm. The ability to access the source code of the software di-

rectly means that the tool can be easily modified, e.g., to produce a series of images in time

for a software-in-the-loop test or a series of images at different orientations and lighting

conditions for a training data set.

The spacecraft imaging simulation environment (SISE) is explicitly designed for the

training and testing of a visual navigation system incorporating appearance matching and

visible and infrared spectrum sensor fusion. A previous version of SISE is found in McBryde

and Lightsey [25].

1.3.3 Multi-spectral sensor fusion

Contribution 3: A relative navigation filter is developed and demonstrated that applies

sensor fusion to pose estimation results from appearance matching to allow for a larger

operating range over sunlit and eclipse portions of the orbit, under more challenging light-

ing conditions, and with more accurate object identification and pose estimation.

Multi-sensor fusion, including both visible and infrared spectrum images, is developed,

which provides an additional improvement to spacecraft relative sensing. Since radiation

generated in the infrared wavelength is based on the temperature of the object, these cam-

eras are useful in the case when the target object is not fully illuminated. For example,

7

the Earth eclipses the sun for most satellites in low Earth orbits. Thermal cameras allow

the system to distinguish the satellite from the background that has a different temperature

such as the surface of the Earth. This capability was demonstrated by the Prox-1 mission

at Georgia Tech [15]. Thermal cameras should not be relied on exclusively, however. They

have lower resolutions than visible-spectrum cameras for similar volume, mass, and power

requirements. These cameras also have difficulty distinguishing features on the target ob-

ject that are the same temperature. Sensor fusion combines the best capabilities of images

taken in both spectra. The multi-spectral framework also forms the basis for the implemen-

tation of a priori or filtered object identification and pose data through the use of virtual

sensors. These sensors are a specialized data structure within the sensor fusion framework.

They perform like a real sensor but their “data” is based on external information and an

attitude model.

This research represents the first application of a sensor fusion framework to appearance

matching for any application, including relative navigation.

8

CHAPTER 2

BACKGROUND

Computer vision has been a topic of consistent research and hardware development over

the past 30 years. Machine vision, image identification on the internet, and object character

recognition all have their own unique challenges and methods of solution. Relative pose es-

timation is another category of work in computer vision, a process that sometimes includes

object identification as well. Security applications techniques have led to the combination

of images in the visible and infrared spectra.

Several past space missions have made use of optical sensors to accomplish relative

navigation. These include rendezvous and docking tasks as well as interplanetary naviga-

tion. Devices have also been developed to take advantage of multiple spectra, including

near-infrared sensitivity and single-device sensor fusion.

This chapter describes the current state of visual navigation software and hardware. It

identifies terrestrial options which have potential on-orbit applications and those currently

available for spacecraft navigation as well as their potential drawbacks.

2.1 Current algorithms

2.1.1 Object identification

Methods for object identification include scale-invariant feature transformation (SIFT), 3D

model searches, and shape context matching (SCM).

2.1.1.1 Scale-invariant feature transformation

SIFT is a method of identifying key points that are maintained even when the image is

transformed. Developed in a seminal work by Lowe [12], these points are invariant to scale,

9

translation, and rotation. The SIFT features are also somewhat invariant to illumination

changes and affine projection, which stretches one part of the image relative to the rest.

According to Lindeberg [26], Gaussian functions and their derivatives must be used for a

scale-space analysis, in which the object is able to be identified at different sizes in the

image. To additionally preserve rotation and translation invariance, the extrema of the

difference of two different Gaussian functions can be used (Lindeberg [27]). Candidates for

these key points are therefore found by using the extrema of a two-dimensional Gaussian

function. This type of function is separable, so in practice the function is applied in a

horizontal and then a vertical path to increase computational efficiency. A sample 1-D

function for such a formulation is given by Equation 2.1.

g(x) =
1√
2πσ

e−x
2/2σ2

(2.1)

The candidates are validated by checking if they continue to be key points at two dif-

ferent levels of resampling, one higher and one lower. By corresponding key features in a

library image to those in a test image, an object can be identified. An example of such a

test is given in Figure 2.1.

SIFT is very useful for situations like the one given above, where multiple objects,

possibly occluded, need to be identified in the same image. However, a typical spacecraft

navigation scenario deals with only one single target at a time, though the algorithm might

attempt to identify parts of the spacecraft as separate targets. Also, SIFT only has partial

invariance to illumination changes. Illumination on objects in space varies significantly,

especially for objects passing through eclipse by a celestial body. Therefore SIFT was

determined to have limited application for object identification in space.

2.1.1.2 Shape context matching

Shape context matching (SCM) works on a similar principle to SIFT. However, instead of

the individual key points being important, SCM focuses on the relative positioning of all

10

Figure 2.1: Model images of planar objects (top), test image (center), and recognition
results showing model outlines and image keys used for matching (bottom) [12]

11

Figure 2.2: Example of sampling for two images (top). Shape contexts for circle (bottom
left), diamond (bottom center), and triangle (bottom right) [13]

of the feature points (i.e., the context). An edge detector is run on the image and feature

points are sampled from the edges. Figure 2.2 shows an edge detection and sampling of

two letter A’s from Belongie, et al. [13].

For each point the context is found. This context is represented by a 2D histogram.

The bins for the histogram are defined to be uniform in log-polar space, which makes the

descriptor more sensitive to points nearby the focus point than to those further away. For

object detection, the shape contexts of a test image are compared to those in an image

library using the principles of bipartite graph matching. In mathematics, a bipartite graph

is defined as having vertices in two independent sets such that edges connect a vertex in

one set to one in the other. Graph matching is a way to create such a set, and SCM uses the

improved linear assignment method developed in Jonker and Volgenant [28].

SCM is intrinsically invariant to translation since the algorithm is based on relative

position. It is made robust to scale by normalizing the distance to the feature points and

to rotation by implementing a relative instead of an absolute reference frame. The relative

12

Figure 2.3: Sample images from the COIL-20 library [30]

frame chosen is the thin plate spline model developed by Duchon [29].

SCM presents one main drawback for spacecraft appearance matching. In order for the

matching to be performed consistently, the shape of the object must be relatively consistent

between the library and the test images. If an object is partially illuminated, as is common

for objects in space, then the shape will vary even though the object is the same. The 3D

object tests presented in [13] used the COIL-20 library [30], a sample of which is show in

Figure 2.3. That image set consists of household objects imaged under full illumination on

a black background. Since neither of these conditions can be guaranteed in space, the given

case study does not demonstrate that this technique would be successful on orbit.

2.1.1.3 3D model search

The 3D model search method arose out of a desire to improve upon search tools for such

models online. Funkhouser, et al. [11] describe various types of search queries: model

queries in 3D, sketch queries represented in 2D and 3D, and text queries. The method

that would be used for visual navigation is a search based on a three-dimensional sketch

using the test image from the camera as the “sketch.” The 3D model search works by

first rasterizing the model into a voxel grid. Each coordinate is assigned a value of 1 if

the surface of the model is present within the voxel and 0 if it is not. This grid is treated

as a binary real-valued function and is then decomposed using spherical harmonics by

13

restricting the sphere to various radii. The result is Equation 2.2.

fmr (θ, φ) =
m∑

n=−m

amn

√
(2m+ 1)

4π

(m− |n|)!
(m+ |n|)!

Pmn(cos θ)einφ (2.2)

The algorithm thus obtains a two-dimensional, rotation-invariant descriptor for the ob-

ject using spherical harmonics. Specifically, the value at index (m0, r0) corresponds to

the amplitude of the m0-th frequency when the function f is restricted to radius r0. An

analogous descriptor is obtained based on the 2D contours of the test image and two are

compared in higher-dimensional space in order to identify the image. This second method

is described in greater detail in Funkhouser, et al. [11] as well as in work by Zahn and

Roskies [31].

The 3D model search method was designed to quickly identify a model out of a large

repository, potentially 20,000 entries or more. This type of search is not as useful for identi-

fication of spacecraft, where the potential library would be orders of magnitude smaller. In

addition, the way in which the search identifies the object precludes the ability to determine

the attitude of the object, making a second method necessary for that step.

2.1.2 Relative pose estimation

The central problem in visual navigation is to determine the 3D relative position and at-

titude of a target in the image frame with respect to the observer. The relative position

and attitude together are known as the pose, and determining the pose from a 2D image is

referred to as pose estimation. Pose estimation methods include simultaneous localization

and mapping (SLAM), the blobber method, and perspective-n-point (PnP).

2.1.2.1 Simultaneous localization and mapping

SLAM is perhaps the most well-known pose estimation algorithm. It was first introduced

in 1991 in the fundamental work by Leonard and Durrant-Whyte [14]. As the name sug-

gests, SLAM calculates the relative position of the camera to the environment at the same

14

time as it is estimating the environment itself. It developed out of apparently conflicting

requirements in the robotics field. In order to estimate its environment precisely, a robot

must know its location, and in order to know its location, it must have a a precise model

of the environment. SLAM provided a methodology for the environment and the robot’s

location to be estimated and refined simultaneously.

SLAM may be performed with different types of sensors. Sonar was chosen in the

original research, but it is clearly not an option in the space environment. Instead, LIDAR

is often used for space-based applications of SLAM [32]. When SLAM is implemented

with cameras only, it is referred to as visual SLAM (vSLAM) and is another option for

implementing SLAM on orbit. Taketomi et al. [33] provide a thorough survey of recent

vSLAM algorithms. These methods are divided into two categories: feature-based and

direct.

Feature-based methods work by initializing the map with feature points on a known

object and then performing SLAM from there. Direct methods, also known as feature-

less methods, eschew any kind of abstraction and use synthetic view images to estimate

the camera motion and continue to improve the map and camera location information.

Typically, direct methods employ stereo images to determine scale, which otherwise has to

be supplied a priori or by a different sensor.

SLAM and vSLAM are incredibly useful tools in robotics. However, implementing a

solely vSLAM strategy on orbit would be problematic. Identifying points for feature-based

vSLAM runs into problems with invariance to illumination that are similar to those that are

discussed for SIFT in Section 2.1.1.1. Direct vSLAM methods also require the simulation

of images on-board the spacecraft, which would be a large strain in processing load and

data storage on embedded systems.

15

Figure 2.4: Example of projected area blobber distribution for a 3U CubeSat

2.1.2.2 Blobber method

In order to provide relative position information in the vicinity of another, non-cooperative

body, another option is the blobber algorithm (Walker [15]). This algorithm acquires rel-

ative position information in a two-stage process. First, a unit vector to the target is de-

termined by locating the center of brightness on the image plane. Then, using 2D image

coordinates and the camera geometry, a 3D unit vector approximately directed toward the

center of the body is determined in the camera’s reference frame.

The algorithm then estimates the range to the object. First, the major and minor axes of

the blob are determined as well as the ratio of the lengths of these axes, called the axis ratio.

Next, estimates for the maximum and minimum projected areas are found using numerical

methods. The projected area, known as A/A0, is the ratio of the area viewed on the two-

dimensional image plane to the minimum possible area. For example, A0 for a 3U CubeSat

would be the area of its smallest face, 100 cm2. A distribution of possible projected areas

versus the axis ratio is found using randomly generated orientations of the target object. An

example distribution for the 3U CubeSat example is given in Figure 2.4. These data were

generated by simulating images of the satellite at random attitudes.

A maximum and minimum area curve is determined from this distribution of points,

16

from which an estimated range can be found via Equation 2.3 [15].

ρmean = f

√
Amean
Nblob · p2

(2.3)

In this equation, f is focal length of the camera, Amean is the average projected area for

a given ratio of axes, Nblob is number of pixels the imaged object illuminates, and p2 is the

physical area of one pixel on the sensor.

The blobber algorithm approaches the relative navigation problem by analyzing the

geometric properties of the image foreground, which is subject to error when the body is

only partially illuminated. This error results from the fact that while the blobber algorithm

takes into account varying orientations of the object, all of the orientations are viewed

with the same illumination conditions. This method also does not provide relative attitude

information, and thus is not a complete pose estimate.

2.1.2.3 Perspective-n-point

The PnP technique determines the pose of a camera relative to a target by using the intrinsic

properties of the camera and a set of n 3D-to-2D correspondences. In order to perform PnP,

feature points on the object must be selected in the image. These features are also located

on the object in 3D to generated the required correspondences.

The PnP method used as an example here is known as efficient perspective-n-point

(ePnP) and was developed by Lepetit et al. [16]. The ePnP algorithm expresses the

reference points in 3D space (pi, i = 1, ..., n) as weighted sums of 4 control points

(cj, i = 1, ..., 4) as shown in Equation 2.4. The weights are given by the α terms.

pi =
4∑
j=1

αijcj (2.4)

These control points may be selected arbitrarily; however, the authors suggest using the

centroid of the reference points as one control point and selecting the rest to form a basis

17

aligned with the data’s principal directions. The correspondences lead to a linear system of

the form given by Equation 2.5.

Mx = 0 (2.5)

In this case, x is a vector of length 12 consisting of the control point coordinates and

M is generated using the 3D-to-2D correspondences. The details of this process are found

in [16], and the result is the relative pose of the target object in space.

PnP needs this set of correspondences in order to function. Thus, the identity of the

object must be known beforehand or be determined with some other method. There also

must be a way to locate the key points in the image in order to correspond them to the

3D points on the object, which is a difficult problem if the target does not have fiducial

markers.

2.1.3 Sensor fusion and filtering

Visible and infrared spectrum sensor fusion is commonly used in terrestrial security appli-

cations. One example is from Han and Bhanu [34]. The goal behind their work is to extract

a moving human silhouette from synchronized visible and thermal images. That silhou-

ette is then used as an initial correspondence point for a hierarchical genetic algorithm to

register the color and thermal images. This registration improves the silhouette detection.

A sample color-thermal registration is given in Figure 2.5. Once the images from the two

spectra have been registered in this way, they can be combined to locate the silhouette of

the human figure in both images (Figure 2.6).

Another similar application is from Saeedi and Faez [35]. Instead of extraction, a syn-

thesized image is created using the background detail of the visible spectrum image and the

thermal detection of the infrared camera. This fusion is based on wavelets and uses fuzzy

logic and population-based optimization. The result is an enhanced security camera feed

that shows the presence and location of a human in the image, like the one shown in Figure

2.7.

18

Figure 2.5: Color and thermal registration results from Han and Bhanu [34]: original color
images (first row), original thermal images (second row), and transformed color images
(third row)

Figure 2.6: Transformed color image (first), thermal image (second), and silhouette fusion
using two different methods (third and fourth) [34]

19

Figure 2.7: Infrared image (left), visible image (center), and fused image (right) [35]

Figure 2.8: Infrared image (left), visible image (center), and human detection (right) [36]

Lastly, Zhao and Cheung [36] have put forward a method for segmentation of a human

from an image using visible and infrared fusion. This concept is similar to Han and Bhanu

[34], but instead of just the silhouette, the detail of the human target in both spectra is ex-

tracted. The method employs an initial blob-wise registration which is then improved using

temporal inferencing and a two-tier tracking algorithm on both the individual and combined

signals. This method is an improvement over [34] because it is accurate at different depths,

as shown in Figure 2.8.

The concepts from these methods translate well to the requirements of a visual naviga-

tion system for spacecraft. In particular, utilizing the infrared camera to locate and scale

and object within the image frame is a concept that is further explored in Chapter 5.

2.2 Current hardware

Recent visual navigation hardware is divided in two categories: single-spectrum and multi-

spectra. Single-spectrum sensors rely on a single wavelength to obtain visual data. The

20

sensors described in the following section operate in the visible spectrum. Multi-spectra

sensors use data from more than one spectrum, namely the visible and infrared spectra.

2.2.1 Single-spectrum sensors

The following three missions employed visual navigation sensors in a single spectrum.

They relied either on fiducial markers or a target with a known geometry.

2.2.1.1 Orbital Express

Orbital Express (OE) was a mission sponsored by DARPA that performed the first on-

orbit, fully autonomous rendezvous and capture [37], using no instructions after maneuver

initiation or input from the ground. The Advanced Video Guidance System (AVGS) used

on OE consisted of two laser diodes, operating at 800 and 850 nanometers, a retroreflective

mirror on the target, and a camera to image the laser return. Due to the specialized mirrors

on the target object, AVGS would be considered a passively cooperative target.

AVGS worked by subtracting one image of the object illuminated at one wavelength

from another illuminated at the other wavelength. The result eliminated the entire object

from the image except for the retroreflectors. AVGS operated well in the challenging light-

ing conditions of space. Once the fiduciary markers were identified, their centroids were

found and tracked in order to provide a relative navigation solution. A block diagram of

this procedure is given in Figure 2.9.

OE was a highly successful mission but the AVGS navigation concept has a few limita-

tions as a visual navigation sensor. The first and most obvious is that a particular retroreflec-

tor setup is needed on the target object to perform navigation. This requirement precludes

using AVGS for non-cooperative targets. In addition, operating two lasers in addition to a

camera is a high power requirement for smaller or lower-cost spacecraft.

21

Figure 2.9: AVGS illumination and processing procedure [37]

22

Figure 2.10: Mercury flyby narrow-angle camera image from OpNav number 3 [38]

2.2.1.2 MESSENGER

The Mercury Surface, Space Environment, Geochemistry, and Ranging (MESSENGER)

mission was launched in 2004 with arrival at Mercury in March 2011. An optical navigation

system was employed on the spacecraft in part to support the gravity assist flybys prior to

Mercury orbit insertion [38].

The optical navigation on board MESSENGER used the illuminated limb of the planet

(Figure 2.10) in order to locate Mercury within the camera’s field-of-view. Given knowl-

edge about the camera geometry and the size of Mercury, the algorithm determined the

position of the spacecraft relative to the planet. This information was intended to help

make a decision on a potential contingency maneuver during the first Mercury approach.

While the optical navigation solution was not ultimately used for this purpose, it did later

support final confirmation of the injection maneuver and trajectory reconstruction.

The type of visual navigation implemented on MESSENGER is not extendable to other

mission types, despite being useful for navigating with respect to a planet. Locating the

23

centroid of an object using its illuminated limb is a technique restricted to spheroids.

2.2.1.3 Hubble Space Telescope Servicing Mission 4

The Relative Navigation Sensor (RNS) system was developed by NASA’s Goddard Space

Flight Center and flown in the cargo bay of the Space Shuttle Atlantis during the Hubble

Space Telescope’s Servicing Mission 4 (SM4) in May 2009. The system processed images

in real time during the rendezvous, docking, and deployment phases of the servicing mis-

sion. RNS had three cameras whose images were processed using two different algorithms:

GNFIR and ULTOR P3E [39].

The Goddard Natural Feature Image Recognition (GNFIR) system is based on an early

real-time 3D tracking method known as Real-time Attitude and Position Determination

(RAPiD) [40]. GNFIR works by utilizing features on the target, like edges, and therefore

is useful on a non-cooperative target. It does require a predetermined stick-model of the

edges in question. The input image is pre-processed through an edge-detector algorithm

before processing by the feature recognition system. GNFIR can initialize itself or utilize

a commanded initial condition or another attitude determination solution. A wireframe is

projected using this initial pose and then the error is minimized in a least-squares fashion.

A block diagram for this process is given in Figure 2.11.

By utilizing edge-detection, GNFIR gets around some of the issues that harsh illumi-

nation presents in space images. However, it would still be ineffective if the object were

partially illuminated, since the wireframe model would not match up with the edge-detected

image. A reasonable number of edge features are also necessary for this method to be suc-

cessful. Depending on the image and the target object, enough edges may not be present or

may be hard to detect.

The ULTOR Passive Pose and Position Engine (P3E) uses training data to identify fea-

tures on the target object, which in this case is the Hubble Space Telescope. Predetermined

filters of the target object are able to isolate features within an image. These same filters

24

Figure 2.11: GNFIR Pose Process Loop [39]

25

Figure 2.12: Feature-based ULTOR P3E overview [39]

are then applied to a test object, and based on the location of the features within the image

and a mechanical model of the target object, the relative position and attitude of the target

can be determined.

Specific details on the operation of the ULTOR P3E are not available because the tech-

nology is proprietary. However, it seems to operate in a similar manner to methods like

SIFT. Features are identified and then are used in combination with a 3D model to deter-

mine the pose using PnP or a related algorithm. Therefore, it possesses the same major

drawback as SIFT: solution sensitivity to harsh lighting conditions.

2.2.2 Multi-spectrum sensors

There are two main strategies for creating combined visible and infrared hardware. One

option is to use a single device which is primarily a visible spectrum camera, but which

also is sensitive in the near-infrared spectrum. Another is a hybrid sensor: a visible and

an infrared detector in the same device. While multi-spectra cameras exist for terrestrial

applications, there are fewer examples of hardware which have space flight heritage.

2.2.2.1 Near-infrared sensitivity

One simple way to combine visible and infrared data is to use a camera which is sensitive

in both spectra. Several terrestrial security cameras operate in this way, including those

by Gamut [41] (Figure 2.13) and by Baluff [42]. Most CCD sensors have sensitivity that

26

Table 2.1: Infrared spectrum subdivision
Division Abbreviation Wavelength Temperature

Near-infrared NIR 0.75 to 1.4 µm 3591 to 1797 °C
Short-wavelength infrared SWIR 1.4 to 3 µm 1797 to 693 °C
Mid-wavelength infrared MWIR 3 to 8 µm 693 to 89 °C
Long-wavelength infrared LWIR 8 to 15 µm 89 to -80 °C

Far infrared FIR 15 to 1000 µm -80.15 to -270.15 °C

extends into the near-infrared (NIR) regime. Security cameras take advantage of this by

illuminating their field-of-view with infrared LEDs. This light is invisible to the human

eye, but allows the cameras to see objects in the dark. This type of system has not yet been

implemented on spacecraft.

Note that this type of sensor is not an infrared sensor in truest sense. It does not record

the infrared radiation emanating from a body; rather, it illuminates the target with infrared

light in the NIR division. Table 2.1 gives a common subdivision of the infrared spectrum.

Each division has a name, abbreviation, wavelength and temperature for which the infrared

radiation peaks according to Wien’s displacement law. That law states that the black body

radiation curve peaks at a wavelength (λmax) inversely proportional to the absolute tem-

perature (T) with proportionality constant (b) called Wien’s displacement constant, which

is approximately equal to 2900 µm ·K (Equation 2.6). Thus, in order for a infrared sensor

to record radiation from a spacecraft in a typical operating temperature range, it must be

sensitive in the LWIR division.

λmax =
b

T
(2.6)

2.2.2.2 Single-device sensor fusion

Hybrid sensors that have detectors for multiple spectra in the same device are more rare,

even for terrestrial applications. These are devices which employ full visible and infrared

spectrum cameras combined into one housing. One example of this is the ARTCAM 320-

27

Figure 2.13: Gamut 1080p HD TVI CCTV Bullet Camera [41]

Figure 2.14: ARTCAM 320-THERMO-HYBRID [43]

THERMO-HYBRID [43] that is shown in Figure 2.14. This camera uses a 1280 by 1024

pixel visible spectrum camera with a 3.6 millimeter focal length as well as a 320 by 240

pixel uncooled bolometer with and 8 millimeter focal length and spectral sensitivity from

8 to 14 micrometers in the LWIR division.

2.3 Summary

This survey represents the current state of the art in spacecraft image-based relative navi-

gation. Several image-based relative navigation algorithms exist with potential application

to spacecraft hardware. Similarly, different hardware solutions have been implemented in

a single spectrum or are available in multiple spectra. However, none of these options

28

available to date have provided spacecraft visual navigation in a unified, end-to-end frame

work incorporating sensor fusion. This observation is the motivation for the research that is

conducted in this dissertation. The following chapters build upon existing techniques and

take advantage of advances in miniaturization to outline such a solution.

29

CHAPTER 3

SPACECRAFT APPEARANCE MATCHING

After consideration of many different algorithms for visual navigation as described in

Chapter 2, appearance matching was selected as the preferred solution approach for the

space application. The appearance matching algorithm is presented in this chapter along

with a discussion of its advantages and limitations. A new technique is created for training

the appearance matching algorithm with randomized image backgrounds. This randomized

background technique is demonstrated to have improved robustness with respect to vary-

ing background lighting conditions such as the presence of the Earth’s surface in the image

background.

3.1 Overview

3.1.1 Original work

The fundamental research in the topic of appearance matching was presented by Murase

and Nayar in 1995 [1]. Hiroshi Murase had previously done work in the area of pattern

matching, publishing two papers on recognition of characters in the Japanese writing sys-

tem called hiragana [3, 44]. Shree K. Nayar had done significant work in modeling the

illumination of objects with regard to computer vision [45], including work which tied

directly into the training of an appearance matching algorithm [46].

The idea behind Murase and Nayar’s appearance matching algorithm is fairly straight-

forward. Instead of focusing on particular feature points in an image to do object identifica-

tion and attitude determination, the entire appearance of the object is analyzed. An object’s

appearance in an image depends on several different factors. The shape and reflectance of

the object are intrinsic properties and do not vary from scene to scene. The appearance

30

also depends on the sensor taking the image: detector type, camera and lens geometry, and

exposure time. It is assumed that these properties, too, are held constant. The last set of

factors come from the scene itself: the pose of the object and its illumination.

In order to account for variations in these final parameters, Murase and Nayar pro-

posed to create a library of images of each object under various lighting conditions and

orientations. A test image is then compared to this library to find its closest match, which

determines the identity, orientation, and lighting of the test image. However, comparing

the entire image pixel by pixel to the image library is extremely computationally intensive.

Therefore, Murase and Nayar compressed the images into an eigenspace with smaller

dimensions than the image library. This compression was accomplished using principal

component analysis (PCA). The result was a series of points in an eigenspace representing

the object in various poses and under different illuminations. Since these parameters varied

only slightly from image to image, the location of the resulting points varied only slightly

from image to image and the result was a series of higher-dimensional surfaces, one for

each object. Figure 3.1 shows the objects used for this original research, and Figure 3.2

shows the resulting surfaces. Note that only the first three dimensions are shown for each

object. Due to the way in which the PCA is constructed, these are the three directions of

greatest variance.

The results from Murase and Nayar’s initial work were promising. Using a training

library of 4 objects, 5 illumination conditions, and 90 poses, the result was a successful

object identification rate of 100% and an average absolute pose error of 0.5 degrees. It

should be noted, however, that these results were found by varying both the pose of the

object and the illumination about a single axis each. In order for appearance matching to

be a viable method of relative attitude determination, these results must be extended to

three attitude axes and two illumination direction axes per light source. The assumption is

that the lighting is not circularly polarized and therefore is the same for any rotation about

the direction to the light source. Thus, a third lighting direction is not needed.

31

Figure 3.1: Experimental objects used by Murase and Nayar [1]

32

Figure 3.2: Hypersurfaces computed for each object (first three dimensions) [1]

33

3.1.2 Appearance matching for spacecraft visual navigation

Appearance matching has a few advantages over the methods described in Chapter 2. First,

the measurement step for spacecraft navigation requires a two-part process. Existing meth-

ods that have been employed perform either object identification (Section 2.1.1) or pose

estimation (Section 2.1.2). Not only is appearance matching able to execute both parts of

the measurement step, but it does so within the same mathematical framework. The pro-

cedure needs to be optimized only once for the spacecraft on-board computer and stored

only once on the on-board memory. Note that the relative position is actually found by

combining the object identity and pixel data, but this is not a computationally intensive

process.

Appearance matching is also robust to variable on-orbit lighting conditions. The train-

ing procedure accounts not only for different spacecraft orientations but also different illu-

minations, allowing accurate relative pose measurement even if the target is only partially

illuminated. Additionally, because the entire appearance of the target is used for object

identification and pose estimation, it performs well for smooth or shiny surfaces from which

feature points may not be easily extracted.

There are a few limitations to appearance matching. First, while much of the computa-

tional complexity of the algorithm is performed on the ground before launch, the nearest-

neighbor search has to be executed on-board the spacecraft and requires an optimized algo-

rithm to run efficiently (Section 3.3.2.3). Also, since the relative pose measurement relies

entirely on the object’s appearance, the algorithm may experience problems when the ob-

ject is symmetric. This difficulty results from the fact that multiple orientations may have

similar or identical appearances. Possible ways to mitigate this deficiency are discussed in

Section 3.5.2, and any strictly visual navigation process suffers from the same issue.

34

3.2 Theoretical basis

3.2.1 Image compression

One of the key components to appearance matching is image compression. Even a small

image, e.g. 150 by 150 pixels, results in 22500 array elements for each training or test im-

age. In appearance matching, each image is represented by a point in a multi-dimensional

space. Searching such a space with 22500 dimensions is not ideal from a mathematical or

computational perspective. Therefore, the dimensionality of each image must be reduced.

This is done through image compression.

One type of image compression is singular value decomposition (SVD). SVD consists

of decomposing anm×nmatrix A into three component matrices: two unitary matrices U

(m×m) and V (n× n) as well as a rectangular diagonal matrix Σ with same dimensions

as A, m × n. The original matrix A can be reconstructed from these component matrices

(Equation 3.1)

A = UΣV∗ (3.1)

The diagonal values of Σ, denoted σi, are referred to as “singular values” and are or-

dered from greatest to least. Using an SVD, a matrix can be approximated by reconstructing

using a subset of these principal values. Typically, that subset is the largest k values, where

k < r, and r is the smaller of m and n. Thus, the matrix A can be approximated by

Equation 3.2, where ui and vi are the ith column vectors of the U and V matrices and are

known as the principal u- and v-components.

Ak =
k∑
i=1

σiuiv
T
i (3.2)

When the A matrix in question is an image, this process is known as SVD image compres-

sion. The fewer of these singular values are used in the reconstruction, the more distorted is

the resulting image that is produced. The Eckhart-Young-Mirsky Theorem [47, 48] proves

35

Figure 3.3: Image of tech tower under various levels of compression (Original image [49])

that a singular value decomposition minimizes the error of compression when compared

with other types of transformations. Figure 3.3 shows an undistorted image and a recon-

structed image using the largest 5, 10, and 100 singular values.

3.2.2 Intelligent library sorting and nearest neighbor search

One common task in computer science is solving the following problem. A set of data

points is given in an n-dimensional space. A test point is then introduced and the closest

point of the original set to that point must be found. This problem is referred to as finding

the “nearest neighbor”. Often times the nearest neighbor search is expedited by intelligently

sorting the library of existing points to speed up the search.

During both the object recognition and attitude determination steps of appearance match-

ing, a nearest neighbor in a training set must be determined for a test point that has been

projected into the multidimensional space. The number of these training points varies based

36

on the original training parameters and the amount of interpolation, but there could easily

be thousands or tens of thousands of points which must be searched twice: once for object

recognition and once for attitude determination. Unlike the training processes, the search

for a nearest neighbor takes place on the spacecraft computer. Therefore it should be as

computationally efficient as possible. In [1], Murase and Nayar reference an algorithm for

a closest point search in higher dimensions to solve this particular problem [50].

Subsequent research presents a better alternative. Work by Weber, et al., [51] indicates

that even a simple linear scan can outperform partitioning techniques like those described

in [50] for applications with large dimensionality. “Large” in this context is defined as 10

dimensions or greater, which is the exact number used in [1]. Weber also references an even

better method using a vector-approximation file (VA-file method). According to Weber and

Blot [52], the VA-file method outperforms both partitioning methods like R-trees and linear

scans for high-dimensionality applications.

An even more recent strategy is multiple random projection trees (MRPT) by Hyvö-

nen et al. [53]. MRPT is a nearest-neighbor search method designed for use with data

sets that have high dimensionality. According to Hyvönen et al., the method outperforms

other common nearest-neighbor search methods for almost all data sets tested. In addi-

tion, the performance improvement for MRPT becomes more pronounced the greater the

dimensionality of the set. For appearance matching, this fact helps offset the additional

computational cost of using more eigenvalues in the compression. The relationship of this

search method to appearance matching is explored further in Section 3.3.2.3.

3.2.3 Karhunen–Loève transform

The appearance matching algorithm described by Murase and Nayar [1] and referenced in

this dissertation is the discrete form of the Karhunen–Loève Transform (KLT). The origi-

nal idea of decomposing a continuous signal by decorrelating neighboring components was

simultaneously developed by Kari Karhunen [54] in 1947 and Michel Loève [55] in 1948.

37

The concept of stochastic processes expressed as infinite series in this way was first pro-

posed by Damodar Dharmananda Kosambi [56] in 1943 and the procedure is sometimes

cited as the Kosambi–Karhunen–Loève Transform.

The discrete KLT is known by various names depending on the field in which it is be-

ing used: discrete KLT in signal processing, principle component analysis (PCA) in image

processing, empirical orthogonal functions in meteorology, and the Hotelling transform in

multivariate quality control, among others. The latter name results from its independent

development by Harold Hotelling for statistical analysis in psychology in 1933 and ex-

panded in 1936 [57, 58]. Murase and Nayar’s work refers to the transform as a KLT, but

in reality their algorithm is more closely related to PCA: a set of zero-mean column-wise

data is combined into a data matrix. The covariance of that data matrix is computed and

the eigenvalues and corresponding eigenvectors are found. This set of mutually orthogo-

nal eigenvectors forms the basis of a multidimensional space. It should be noted that the

percentage of variance in the data captured by each dimension is equal to the value of asso-

ciated eigenvalue divided by the sum of all of the eigenvalues. This is the key advantage of

PCA: given the standard ordering of eigenvectors according to descending value of associ-

ated eigenvalue, a set of the first k eigenvalues will capture the variance in the data better

than any other set of k eigenvalues. This property also can be used to tune the number of

eigenvectors used in appearance matching, which will be discussed further in Section 3.5.1.

Both KLT and and PCA are related to SVD in that they seek to determine the directions

of greatest variance in a multidimensional space. Some variations of PCA, including the

one presented in this research, utilize SVD in place of a simple eigenvalue decomposition

of the covariance matrix, and the term SVD is often used in place of PCA, even though the

two processes are not strictly the same. When PCA is performed on an image library, it has

the effect of compressing the image data in a way similar to what was described in Section

3.2.1.

38

Figure 3.4: Appearance training block diagram

3.3 Algorithm

3.3.1 Training procedure

Before a test image is analyzed, the appearance matching algorithm must learn the appear-

ance of an object using a training image set. First, the images are normalized. Extraneous

background pixels are cropped out, the image is scaled to the desired size, and the over-

all light intensity is normalized. Next, the universal eigenspace is constructed from every

image in the training set. Finally, eigenspaces are constructed for each object using only

images of that object.

39

Figure 3.5: Original training image (left) and cropped and scaled image (right)

3.3.1.1 Normalization

The first step in appearance matching image set is normalization. This process begins

by cropping each image to include as little of the background as possible. Typically the

cropped image will have a square aspect ratio, but not necessarily. This result is then

scaled to a specified size, e.g., 150 by 150 pixels. These scaled images are vectorized by

reading the brightness values horizontally in a raster scan pattern to form the image vector

x̂ (Equation 3.3). To account for varying lighting intensity and exposure times, each image

vector is scaled so that the sum of the vector is unity, resulting in the normalized image

vector x (Equation 3.4).

x̂ = [x̂1,x̂2, . . . , x̂n]T (3.3)

x =
x̂∑n
i=1 x̂i

(3.4)

3.3.1.2 Universal eigenspace and hypersurface

The normalized image vectors are combined to form image sets. The universal image

set consists of every training image, while the object sets contain all the images of a single

object. In the following equations, r represents the orientation index, l is the lighting index,

40

Figure 3.6: Brightness vector (x̂, left) and normalized brightness vector (x, right)

and p is the object index. The average image c can be calculated by summing each column

of the universal image set and dividing by the total number of images (Equation 3.5).

c =

∑np
p=1

∑nr
r=1

∑nl
l=1 x

(p)
r,l

np · nr · nl
(3.5)

The average image c of the universal image set is used along with the training data

to construct the universal eigenspace. The image matrix X is found by subtracting the

universal average image from each x and combining them as shown in Equation 3.6. The

image matrix is then used to find the symmetric covariance matrix Q , XXT .

X , {x(1)
1,1 − c, . . . ,x

(1)
nr,1 − c, . . . ,x(p)

nr,nl
− c} (3.6)

Finding the full set of eigenpairs of Q would be impractical, so only the first k pairs of

eigenvalues λi and eigenvectors ei are calculated. According to Murase and Nayar [1], a

value for k of 10 was sufficient for learning and recognition. However, more eigenvalues

can improve the accuracy of the matching process at the expense of greater computation

and storage requirements. This trade-off is explored in greater detail in Section 3.5.1.

Each image in the universal set is located as a point in the k-dimensional eigenspace g
(p)
r,l ,

corresponding to the pth object at the rth orientation and lth lighting condition. (Equation

3.7). If desired, these points are interpolated to form the hypersurface g(θ1, θ2), where θ1

and θ2 are the indices of the orientation and illumination conditions, respectively.

41

g
(p)
r,l = [e1, e2, . . . , ek]

T (x
(p)
r,l − c) (3.7)

3.3.1.3 Object eigenspaces and hypersurfaces

The images of each object p are projected into the appropriate object eigenspace by first

creating the object-specific image matrix X(p) (Equation 3.9) and calculating the resulting

eigenspace from the object covariance matrix Q(p) , X(p)(X(p))T . The average image for

object p, c(p), is found by averaging the image vectors of each object (Equation 3.8).

c(p) =

∑nr
r=1

∑nl
l=1 x

(p)
r,l

nr · nl
(3.8)

X(p) , {x(p)
1,1 − c, . . . ,x

(p)
nr,1 − c, . . . ,x(p)

nr,nl
− c} (3.9)

The first k pairs of eigenvalues λ(p)i and eigenvectors e
(p)
i are calculated as well the

hypersurface f (p)(θ1, θ2) from the points f
(p)
r,l (Equation 3.10), similar to the procedure fol-

lowed for the universal space and hypersurface.

f
(p)
r,l = [e

(p)
1 , e

(p)
2 , . . . , e

(p)
k]T (x

(p)
r,l − c(p)) (3.10)

3.3.2 Testing procedure

The preceding steps constitute the initialization of the algorithm. They are performed only

once and the resulting parameters are stored. These parameters are the universal and object

average images, the universal and object eigenvector sets, and the universal and object

interpolated hypersurfaces.

Processing a test image is a two step process. First, the image is projected into the

universal eigenspace in order to determine the object identity. Then, the image is projected

into the appropriate object space in order to determine the relative attitude.

42

3.3.2.1 Object identification

For each test image received, the same normalization procedure is performed as that for

the training images. A image vector ŷ (Equation 3.11) is formed from the cropped and

scaled test image, which is then normalized. The algorithm maps the resulting normalized

test image vector y (Equation 3.12) to location z in the universal eigenspace for object

recognition (Equation 3.13). The object p that minimizes the distance between z (Equation

3.14) and the universal hypersurface g(θ1, θ2, p) is determined.

ŷ = [ŷ1,ŷ2, . . . , ŷn]T (3.11)

y =
ŷ∑n
i=1 ŷi

(3.12)

z = [e1, e2, . . . , ek]
T (y − c) (3.13)

d1 = min
θ1,θ2
||z− g(θ1, θ2, p)|| (3.14)

If the match has a high enough confidence, then the image is determined to include

object p. This confidence threshold is one of the tuning parameters of the algorithm and

will vary from application to application.

3.3.2.2 Relative attitude determination

In order to perform pose estimation, the image is then mapped into location z(p) in the

object p eigenspace (Equation 3.15). The indices θ1 and θ2 that result in the minimum

value of d(p)2 determine the attitude of the object and the closest illumination condition

(Equation 3.16).

43

z(p) = [e
(p)
1 , e

(p)
2 , . . . , e

(p)
k]T (y − c(p)) (3.15)

d
(p)
2 = min

θ1,θ2
||z(p) − f (p)(θ1, θ2)|| (3.16)

3.3.2.3 Library search and confidence

Various methods for intelligent library search were described in Section 3.2.2 with Hyvö-

nen et al. determined to be the best option. This technique is able to search for the knn

nearest neighbors in a space, and different numbers of nearest neighbors are used depend-

ing on the stage of appearance matching. For the object identification step, several nearest

neighbors are found and compared to see if they matched the actual nearest neighbor. Based

on this level of agreement, a confidence value c for the object identification step from 0 to

1 is determined using Equation 3.17. For this equation i is the index of the neighbor, di is

the distance to neighbor i from the the nearest neighbor search, and δi,1 is a parameter that

is 1 if the identity of the ith neighbor matches the nearest neighbor and 0 if it does not. The

result is a weighted match percentage of the knn nearest neighbors to the nearest neighbor.

c =

∑knn
i=1

δi,1
di∑knn

i=1
1
di

(3.17)

For attitude determination, the process works somewhat differently. Nearest neighbors

are useful to verify object identity since all of those neighbors should share the same iden-

tity for a good match. That is not the case for attitude determination, where neighbors have

different attitudes than the attitude that needs to be verified. As such, reconstruction error

is used instead as way to produce an attitude confidence.

Since appearance matching uses a form of image compression, the location z(p) may be

reconstructed into an image using the eigenvectors from the object p eigenspace according

to Equation 3.18. This process reverses the steps of acquiring the eigenspace location from

44

the original image ŷ.

ŷr =

(
n∑
i=1

ŷi

)(
[e

(p)
1 , e

(p)
2 , . . . , e

(p)
k] · z(p) + c(p)

)
(3.18)

This reconstructed image is compared with the original image in order to find the per-

pixel error, which is inverted to produce a confidence value that increases as the pixel

error decreases as shown in Equation 3.19. The number of pixels is n and the resulting

confidence value is ν.

ν = n/

(
n∑
i=1

|ŷi − ŷr,i|

)
(3.19)

The confidence values for object identification and attitude determination are neces-

sary for the implementation of the sensor fusion process later described in Chapter 5 as

well as for the use of appearance matching in a single- or multi-spectral framework with a

navigation filter.

3.4 Robustness of appearance matching

The standard appearance matching algorithm cannot account for test image backgrounds

which differ from those in the training library. This limitation results from the way that the

image library is projected into the universal and object eigenspaces. The PCA transform

works by determining the principal directions by which images in the library are differenti-

ated. When PCA is run on images with a black background, the image locations of greatest

differentiation are those where an object is present in some orientations and not in others.

These locations tend to be approximately halfway between the image center and its edge.

When the test image is also on a black background, this requirement does not present

a problem. Figure 3.7 shows a Stardust satellite test image and the reconstruction of that

image from its eigenspace projection. However, any non-black background disrupts the

PCA. Figure 3.8 compares an image on a non-black background and its reconstruction

45

Figure 3.7: Simulated image with black background (left) and reconstruction (right)

from a black-background eigenspace.

3.4.1 Fast Robust PCA

Since object recognition and attitude determination algorithms based on PCA are particu-

larly susceptible to outlier points like noise, occlusion, and, as was shown in Section 3.4,

non-black backgrounds, techniques have been developed to help improve the performance

of PCA. One way to increase the performance of PCA in such situations is known as ro-

bust PCA. This technique has been proposed by multiple researchers, including Leonardis

and Bischof [59]. A more modern version with better computational efficiency called fast

robust PCA (FR-PCA) has since been presented by Storer, et al. [60].

The concept behind robust PCA is to break the image into multiple subimages. These

images are formed by creating a series of random samples. The samples are then applied

to each full image in the training set, and the resulting data is referred to as a “subimage.”

These subimages are typically about 1% of the total pixels in the image. The number of

samplings that are created is a tunable parameter. 1000 samplings were created in tests

done in [60]. Each of these samplings is applied to each image in the training library,

46

Figure 3.8: Simulated image with cloud background (left) and reconstruction (right)

creating a series of subimage sets. PCA is applied on each one of these subimage sets in

the same way that it was applied to different objects in the standard PCA formulation. The

result is a number of so-called “sub-subspaces”, one from each sampling of the original

image set. An overall subspace is created using PCA from the full image as well. Figure

3.9 outlines the FR-PCA training procedure.

Given a test sample, FR-PCA attempts to create a robust reconstruction of the image

without any outlier points present. This reconstruction is created in two steps: gross outlier

detection and refinement. In the first part, the test image is subsampled and each of the

sample points is reprojected using the appropriate sub-subspace. If the reprojected point is

within a certain tolerance of the actual test point, the point is kept. If not, it is rejected as

an outlier. Once these outliers are removed, a series of reconstructions are created with the

worst reconstruction errors being thrown out until the number of inliers reaches a predeter-

mined threshold. This process is iterative, starting with the test image being reconstructed

from the current set of inliers. The reconstruction is compared with the true image, and the

pixels are ranked based on their reconstruction error. Then a given percentage, say 10%,

are removed and the steps are repeated.

47

Figure 3.9: FR-PCA training procedure [60]

48

Figure 3.10: Occluded test image (left), reconstruction using standard PCA (center) and
using FR-PCA (right) [60]

FR-PCA and robust PCA in general perform very well on outliers like occlusions and

noise. Figure 3.10 shows a test case for an image of a duck with an occlusion in the upper

half [60]. For the case of a non-black background, it struggles since the number of points

being “rejected” is so high. For this reason, an alternate strategy for dealing with varying

backgrounds was created.

3.4.2 Background randomization

In order to make the algorithm useful on an arbitrary background, PCA must be modified

so that it de-emphasizes those image locations which are sometimes background and some-

times not. The result is that the object is identified and its orientation is distinguished using

differences in lighting, shadow, and texture. This change is implemented via background

randomization of the training images.

Since the training images are simulated via ray-tracing, the background is defined by

any location where a cast ray does not intersect with the object. The ray-tracing procedure

is explained in greater detail in Section 4.5.4. The background can then be replaced with

anything. For this process, the background pixels are substituted with a random integer

based on the possible brightness values for the image. For example, they range from 0

(black) to 255 (white), if the images are 8-bit greyscale. A sample training image with the

background randomized is shown in Figure 3.11.

The random pattern is generated separately for each training image. Therefore, the

image locations that differentiate between the images are changed from the black back-

49

Figure 3.11: Sample random-background training image

ground case. The resulting improvement is seen by comparing the reconstruction using a

random-background eigenspace (Figure 3.12) to the previous reconstruction using a black-

background training library (Figure 3.8).

Unfortunately, background randomization does come with its own drawback, albeit one

that may be mitigated. Because the black background with brightness zero is being replaced

with non-zero brightness values, the overall light intensity of the image is raised. That, in

turn, affects the value of the normalized image vector x. In cases where the test image has

a background with similar overall intensity, this change does not affect the accuracy of the

object identification or attitude determination.

However, when the average background intensity varies significantly from half of the

maximum range of brightness, e.g., when the test image background is black or white,

then the process is affected. Specifically, the normalization of the image vector described

in Section 3.3.1.1 causes a discrepancy between the black-background test image and the

random-background training image. For the case when the background is black or nearly

50

Figure 3.12: Simulated image with cloud background (left) and reconstruction from
random-background eigenspace (right)

black, this problem is remedied by replacing the black background of the test image with

a randomized background, which is much more straightforward than the inverse process of

replacing a non-black background with a black one.

Note that this procedure is not perfect. A black or very dark pixel does not guarantee

that the image location is background. It could also be an unilluminated portion of the

object. When using visible spectrum images, this error is unavoidable when employing

background randomization. It may be mitigated when sensor fusion is employed using a

temperature threshold, a process explained in Section 5.1.1.3.

3.5 Tuning and observability

There are two main parameters to be tuned to adjust the computational performance and

accuracy of the appearance matching algorithm: the quantity of the training images and the

number of eigenpairs used to construct the subspaces. An argument could be made that the

resolution of the image being used for training is also one of these parameters. However,

the PCA process is essentially a compression of the training images. Thus the effective

51

image quality used for the match depends much more on the number of eigenpairs than it

does on the resolution of the image.

3.5.1 Quantity of eigenpairs

Because the PCA process is a form of image compression, the more eigenpairs that are

calculated in the partial SVD the better the quality of the reconstructed image. Thus more

features of the target are used to find a match. The downside to having more eigenpairs

is that it increases the dimensionality of the subspace and therefore the complexity of the

nearest neighbor search. The memory requirement on the spacecraft is also greater.

Therefore, a balance between efficiency and performance must be found. One of the

properties of PCA can assist with this determination. As previously mentioned in Section

3.2.3 the amount of variance captured by a particular principal direction is the percentage

of that direction’s associated eigenvalue to the sum of all eigenvalues. An example of this

relationship is given in Figure 3.13 for a sample set with 162 orientations, 4 illuminations

and 3 objects. Thus, if the percentage of captured variance is set as a parameter, it de-

termines the number of eigenvalues required for a given image set. For consistency, this

value is chosen for the universal set and then the same number of eigenpairs are used for

the object sets.

3.5.2 Quantity of training images

The key concern when it comes to tuning the number of required training images is the

amount of acceptable error in the relative attitude determination step. Assuming a correct

identification, an upper bound on the attitude error is half of the difference in attitude be-

tween any two successive training images. Figure 3.14 shows the relationship between the

number of orientations and the maximum error bound. This difference can be lessened

somewhat by interpolating the hypersurface based on training images, but too much inter-

polation leads to an increase in error as well, since the interpolated points will not have

52

Figure 3.13: Eigenpairs versus variance captured

exactly the same parameters as a training image at that same attitude.

Additionally, increasing the number of interpolated or actual training images has a sim-

ilar effect to increasing the number of eigenpairs, in that the computational time to perform

the nearest neighbor search and the memory storage requirement on the spacecraft both

increase with a larger number of hypersurface points. The former relates directly to how

quickly a relative attitude solution can be returned to the attitude determination system of

the spacecraft. As with many attitude sensors, the accuracy and speed of the solution must

be balanced based on the requirements of the mission in question.

As mentioned previously in Section 3.1.2, appearance matching runs into difficulty

when attempting to distinguish between attitudes with similar appearances. The first in-

stance of this phenomenon is similar orientations producing similar appearances. For ex-

ample, training images of the object which are taken at 20 and 21 degrees of roll. This

case is less problematic because while additional error is introduced, it is only a multiple

of the maximum error value discussed earlier. It is mitigated by increasing the number of

eigenpairs or resolution of the training images so that similar orientations are more distinct

from one another.

The more problematic case is two orientations with similar appearances that differ

53

Figure 3.14: Theoretical maximum error vs number of training images

greatly in orientation. Symmetric objects may exhibit this type of error, since symme-

try itself is defined as identical appearance under a transformation. The algorithm has no

way of rectifying this situation on its own, although it would be able to flag a potential issue

since multiple points would exist with nearly identical confidence values. Such errors due

to symmetry would have to handled intelligently by a dynamic filter or similar algorithm

processing the measurements to produce a unique navigation solution.

3.5.3 Observability

Of key concern to any navigation system is the notion of observability. Observability is the

measure of how well the states of a system can be inferred from knowledge of its measured

external outputs. In the spacecraft navigation problem described in this research, the states

are the position and orientation of the target spacecraft relative to the sensing spacecraft. A

related and weaker requirement is known as detectability, which is a condition that allows

unobservable states as long as they are bounded. In the general problem of spacecraft

navigation, no state can be guaranteed to be stable, so the stronger observability condition

is necessary.

For the two vehicle spacecraft relative navigation problem, three degrees-of-freedom in

54

relative position are combined with three degrees-of-freedom in relative orientation for a

total of six degrees-of-freedom. The dynamics of a spacecraft in orbit subject to gravity are

non-linear, but the observability analysis is simplified by linearization. If the linearized sys-

tem is observable at any point, then the non-linear system is observable as well (Bonnifait

and Garcia [61]).

To make the linear system observable, at least 6 linearly independent measurements

must be provided. Here the derivation of appearance matching is an advantage. The un-

derlying basis vectors found in the training process are chosen to be linearly independent.

As long as there are at least 6 eigenvectors resulting from a training library of at least six

images, the measurement inputs to appearance matching will form part of an observable

system. Interestingly, it does not matter what the images look like, as long as they are dis-

tinct. Even an all-black test image matching up to a similar looking training image will be

observable, as long as that training image is unique in the training library.

55

CHAPTER 4

SPACECRAFT IMAGE SIMULATION ENVIRONMENT

One of the requirements of the appearance matching algorithm is the creation of a large set

of training images of the various target objects at different orientations and under different

lighting conditions. Certainly the option exists to use actual images of the objects taken

from a camera. However, this process is time consuming and prone to error if the attitude

of the target cannot be measured exactly. The target objects also may not be available to

be photographed. This is frequently the case for spacecraft, which may not be available for

photography under the correct environmental conditions prior to flight. Therefore, image

simulation is a good alternative for the creation of the necessary training image sets.

This chapter first presents the fundamentals of image simulation, including solving

the visibility problem, object modeling using a triangular mesh, and radiation simulation.

Modifications to the image simulation process to accommodate the infrared spectrum are

also described, including the framework for simplified thermal generation. The current

state-of-the-art in image simulation is briefly described and motivation is presented for

why a new tool needed to be developed.

This software tool is called the spacecraft imaging simulation environment (SISE). The

SISE was developed specifically for this research for two purposes. First, it is used to

generate the simulated images in both the visible and infrared spectra needed to train the

appearance matching algorithm described in the preceding chapter. Second, the SISE is

a useful tool in performing software-in-the-loop tests in order to both verify the intended

performance of appearance matching for spacecraft, and also to assess the impact of tuning

parameters like quantity of training images and number of eigenpairs. The SISE consists

of four parts: initialization, target modeling, radiation simulation, and file creation and

refinement. The order of these steps is given by Figure 4.1.

56

Figure 4.1: High-level SISE block diagram

Initialization loads the necessary parameters about the cameras and scene geometry as

well as specifications about the camera’s sensors and the target. Target modeling rotates

the vertices and faces of the target model into a camera-centered frame and translates them

to the appropriate location. Radiation simulation is the heart of the SISE. The reflected

and emitted radiation from the target is modeled as well as the response of the visible and

infrared sensors. Final refinement is added to the simulated image and the file is saved.

This step involves the application of the following relevant camera errors.

• Radial and tangential distortion: the warping of the image due to physical imperfec-

tions in the camera lens

• Blur: a reduction in image sharpness due to object motion or physical defects in the

camera optics

• Noise: image artifacts resulting from the electronic and digital processing of the

image

Images generated by the SISE are rendered efficiently using CUDA. CUDA was introduced

57

in 2007 by Nvidia as a parallel computing platform and application programming interface

(API). Originally standing for Compute Unified Device Architecture, CUDA allows direct

access to the instruction set and parallel computational elements on a graphics processing

unit (GPU). The CUDA interface utilizes “compute kernels”, which are subroutines that

are executed in parallel on each one of the GPU cores.

4.1 State of the art and contribution to the field

The field of image simulation is one that has been explored extensively, particularly within

the last 20 years. More advanced video games and increased used of computer-generated

imagery (CGI) in film and television has led to the development of numerous tools for cre-

ating more realistic images. Renderman is a program developed by Pixar for use in their 3D

animated movies as well as to license to third parties [20]. Starting in March 2015, it was

made available for non-commercial use. Renderman originally used an algorithm known

as REYES (Renders Everything You Ever Saw) [62] developed at LucasFilm’s Computer

Graphics Research Group, Pixar’s predecessor. REYES was designed to work on the more

primitive computer architecture available in the 1980s and 90s and thus attempted to min-

imize ray-tracing as much as possible. Instead, it favored more efficient, less photoreal-

istic approaches. In 2016 Renderman transitioned to a Monte Carlo-based path tracing

approach. This technique allows for a faster “first-pass” render, but ultimately takes longer

to converge to the same quality as REYES [63].

Mental Ray is another application used to generate photorealistic images [21]. Mental

Ray was originally developed by German company Mental Images, which was bought by

Nvidia in 2007. As its name suggests, Mental Ray focuses on ray tracing to generate

its simulated images. While the application has been widely used for CGI in feature films,

Mental Ray is also accompanied by an application programming interface (API) that allows

it to interface with other programs. As such, software such as Autodesk, AutoCAD, and

Solidworks use Mental Ray to create simulated images within their programs. Mental Ray’s

58

main feature is the ability to use parallel processing to take advantage of multiprocessor

machines and so-called “render farms” of multiple separate computers.

Though much of the work in the field of simulated imaging has been proprietary, an

effort has been made in the computer graphics community to develop an open-source op-

tion. The result is Blender, a free and open-source graphics toolkit currently on version

2.79 [19]. Blender started out as proprietary software developed by Ton Roosendaal for

Neo Geo, an animation studio based out of the Netherlands. Eventually the program was

acquired by the open-source community and its code became freely available in September

2002. Blender has been primarily updated and expanded by community effort ever since.

In addition to rendering simulated images, Blender has modules for visual effects, 3D print-

ing, and an integrated game engine. Blender creates simulated images via ray tracing that

can be accelerated using the GPU.

Given all of these options, including Blender that is free and open-source, it is important

to demonstrate why a separate tool was developed specific to this research. Four factors

went into this decision: the ability to perform infrared simulation, the ease of modifying

the environment to include background randomization, the ability to automate the creation

of simulated images to train the appearance matching algorithm, and a cost that is not

prohibitive for academic research.

4.1.1 Infrared simulation

Since one of the main contributions of this research is the fusion of visible and infrared

images, it is vital that the rendering environment has the ability to simulate images in both

spectra. Based on the limited information available on Renderman and Mental Ray and

the more extensive open-source documentation on Blender, none of these environments is

able to generate simulated infrared images. All three have the ability to generate images

that appear to be infrared, but the effect is created by modifying the color and shading of a

visible image. While this effect is useful for film or television CGI, at least a basic thermal

59

simulation is needed for this research to appropriately demonstrate sensor fusion.

4.1.2 Background randomization

As described in the previous chapter, a randomized background is added to the appearance

matching training image in order to allow the algorithm to operate on an arbitrary back-

ground. In order to do so, it is necessary to identify those pixels in the image which were

not part of the target so that they may be replaced. This information must be provided by

the rendering program. Both Renderman and Mental Ray utilize proprietary algorithms for

which the source code is not available, making this kind of modification extremely difficult.

Blender offers the best option to implement a subroutine for background randomization, so

long as it satisfies the other requirements.

4.1.3 Automation

Additionally, the chosen rendering environment must have an interface that allows the au-

tomated creation of simulated images. Since all three of these environments were designed

with film or video games in mind, they are good at creating a scene which progresses in

space and time, like walking through a forest or approaching a spacecraft. However, ap-

pearance matching requires that multiple views of an object are taken at the same location

and time but from different orientations and under different lighting conditions. The result

is that in order to use one of these environments, the scenario that is used as an input must

be rigged so that it creates the required set of images. In fact, the first version of the SISE

[25] had this same interface and it was abandoned since the image generation needed for

appearance matching was inefficient.

4.1.4 Cost

The final barrier to use one of these applications is cost, both in time and in money. Mon-

etarily, both Renderman and Mental Ray must be licensed from their respective companies

60

and at the start of this research (2013), no academic discount was offered. The cost was

therefore out of the budget of academic research. Blender has the advantage of being a

free, open-source program. The cost associated with conducting the research was in learn-

ing and then applying the necessary coding and API. That cost had to be balanced against

the time cost for the development of a program specifically for the purpose of generating

and testing images for appearance matching and sensor fusion.

4.1.5 Contribution

After taking into account all of the various options, it was determined that development of

an environment (SISE) specific to this research was the best option. The SISE seamlessly

integrates with the necessary functions to perform appearance matching as well as those

for sensor fusion. The images generated by SISE are not as photorealistic as those from

Blender or one of the other aforementioned applications. However, that image quality is

not necessary for adequate performance of the visual navigation algorithm and the advan-

tages to an in-house application outweigh the drawbacks. Finally, the SISE will continue

be developed with the aim of supporting similar research in both of these topics in the fu-

ture. The goal is the release of the software under a free use or open source license, and

discussions are underway with the appropriate legal and information technology personnel

at the Georgia Institute of Technology.

4.2 Visible spectrum image simulation

4.2.1 Solving the visibility problem

In order to create simulated images of objects, a computer graphics challenge called the

visibility problem must be overcome. As the name suggests, the visibility problem is the

determination of which objects in the scene are visible by the camera and which are not,

either because they fall outside of the field of view of the camera or because they are

obscured by other objects. The two most popular methods for image rendering are the

61

Figure 4.2: Z-buffer process with two differently colored triangles [65]

z-buffer and ray tracing.

4.2.1.1 Z-buffer

The z-buffer works by finding and tracking the depth of each part of the object [64]. It starts

with the assumption that no objects are in the scene, and thus each part of the scene has a

near-infinite depth from the camera. As each object is rendered, a z-matrix keeps track of

the distance from the sensor to each pixel that views it. If a new object is also seen by that

pixel, then the renderer compares their depth values and renders the nearer object (Figure

4.2). This process continues until all objects in the image are rendered.

62

Figure 4.3: Ray-tracing for a basic scene [67]

4.2.1.2 Ray tracing

Ray-tracing works in the opposite direction from z-buffering [66]. Instead of relating the

parts of each object to a particular pixel, each pixel is analyzed to see which objects it

sees. A large number of rays are generated from the focal point of the camera and directed

outward throughout the entire field of view. If the ray encounters an object, that event is

recorded and that object is rendered at the pixel associated with that ray. (Figure 4.3)

Depending on how realistic the renderer is, more interactions between the ray and the

object may be taken into account. If the object is shiny and subject to internal reflections,

the ray tracer records these reflections between the object surfaces. The algorithm generates

child rays for translucent objects, accounting for the fact that some light is transmitted and

some is reflected.

For this particular application, the objects being imaged are convex and opaque, this

additional complexity is not needed. Because ray tracing simulates what each pixel of the

camera sees, ray-traced images are generally more realistic at the cost of greater compu-

63

tational complexity, especially when only one object is being simulated. The z-buffer was

initially determined to be the better rendering strategy for this applications since it is more

efficient and large numbers of simulated images must be created for training and testing.

However, note that in ray tracing each ray is cast and calculated independently, whereas a

single z-buffer interacts with every part of the rendered object. Therefore, ray tracing may

be parallelized and accelerated with CUDA and images may be rendered more efficiently.

Z-buffering does not have this advantage. As is shown in Section 4.5.6.2, CPU rendering is

orders of magnitude slower with z-buffering. Because of its ability to be parallelized, ray

tracing is the better choice for the SISE.

4.2.2 Triangular mesh

As a part of the ray tracing procedure, the object to be imaged must be discretized into

shapes for which a ray-shape intersection can be found. One way to perform this dis-

cretization is a triangular mesh. The surface of the target object is covered with a series

of vertices which are then connected by edges to form triangular faces. The more dense

the vertices on the surface, the closer the resulting mesh will be to the actual image of the

object. The most efficient way to create this mesh is not an even distribution of vertices,

but rather concentrating them in regions which are more difficult to discretize. Thus, only

a few vertices may be needed for a long flat solar panel, whereas a dense mesh will be

used for a curved surface like a lens. Figure 4.4 is an example of a triangular mesh of the

asteroid Geographos [68].

If this mesh does not already exist for the digital representation of an object, then it

must be created. The surface of the object must be represented as a three-dimensional

discrete scalar field (more commonly known as “voxels”). Then, a mesh can be found

using the marching cubes algorithm. Developed by Lorenson and Cline [69], the algorithm

“marches” through the scalar field, analyzing 8 neighboring voxels at a time. Based on

the presence or absence of the surface at each vertex of the resulting cube, the polygons

64

Figure 4.4: Asteroid Geographos triangular mesh [68]

necessary to represent the surface are determined. These polygons are then attached to the

existing surface mesh.

Once this mesh has been constructed, the ray-triangle intersection point is calculated

for each ray of the camera, if it exists. An algorithm invented by Tomas Möller and Ben

Trumbore [70] finds the location of the intersection. The Möller-Trumbore method is par-

ticularly fast when compared to other ray-triangle intersection methods because it does

not require pre-computation of the plane equation of the rectangle. More details on the

implementation of the Möller-Trumbore method are given in Section 4.5.6.3.

4.2.3 Radiation simulation

The radiation simulation equations predict the visible light reflecting from each point on

the target object. The radiation is a function of the location, normal direction and optical

properties of each vertex and the relative location of the illumination sources in the scene

[71, 72]. For the types of radiance that are dependent on the direction to the observer, that

vector is taken into account as well. Finally, the temperature of each vertex is updated

based on the energy absorbed, emitted, and conducted to neighboring vertices.

65

Figure 4.5: Specular (left) versus Lambertian (right) reflection [74]

4.2.3.1 Types of reflectance

Reflected light from an object is broken into three categories: ambient, diffuse, and specular

[73]. Ambient reflected light is due to a light source that is sufficiently scattered so that

its direction of origin is unknown. An example of this type of reflection is sunlight on

a cloudy day. The surroundings are clearly being illuminated, but the clouds scatter the

sunlight so that no shadows exist from which to determine the sun’s direction. The next

type is diffuse, or Lambertian reflection. Diffuse reflection results from a directional light

source striking a rough surface. The reflected light is scattered in all directions, with a

greater reflected intensity the smaller the angle is between the light source and the normal

direction of the surface. An example of such a surface would be unpolished stone. The

last type of reflection is specular. Specular reflection results in a “glossy” appearance and

follows Snell’s law: the angle of incidence equals the angle of reflection. For example,

specular reflection results from smooth metal, such as the side of a spacecraft. A sketch

of a comparison between Lambertian and specular reflection is given in Figure 4.5. Figure

4.6 shows the same object and lighting subject to the two types of reflectance.

4.2.3.2 Simulated radiance

Equation 4.1 gives a framework for the calculation of spectral radiance from a vertex. It

was developed based on equations from Christian [76], but the model presented here was

66

Figure 4.6: Simulated image of a sphere subject to primarily specular (left) and Lambertian
(right) reflection [75]

Figure 4.7: Reflection model vectors

created specifically for this research. In this equation, L represents the radiation intensity

at wavelength λ, l is an index of the various light sources, and the k coefficients refer

to the reflective properties of the material. The letter α is called the specular exponent.

It determines the apparent smoothness of the material, with a higher α value resulting

from a smoother surface. N , I , and V , are the surface normal vector, direction from the

point to the light source, and direction to the observer respectively. E is an intermediate

vector calculated from Equation 4.2 (shown in Figure 4.7). In terms of the various types of

reflectance, an a subscript is ambient, d is diffuse or Lambertian, and s is specular.

L(λ) = kaLa(λ) +
n∑
l=1

Ll(λ)(kd(N · I) + ks(E · V)α) (4.1)

67

E · V = 2(N · V)(N · I)− (V · I) (4.2)

4.2.4 Measurement response

The last required step is to calculate the radiation incident on the sensors and to produce

images. The sensor model subroutines traverse the field of view pixel-by-pixel using ray

tracing and calculate which objects are seen by the pixel, which of any observed objects

is the closest, and how much each object irradiates that pixel. This step is where lens

distortion is applied to the image. Then, the subroutines translate that irradiance into a

greyscale brightness value based on the internal physics of the sensors. The final result is a

simulated image, used for the training portion of appearance matching or a software-in-the-

loop simulation. This version of the SISE generates images in greyscale; color simulations

are a topic for future work.

Equation 4.3 gives the general framework for irradiance on a pixel, while Equation 4.4

relates that irradiance to a greyscale value in the final image. These two equations were

based on prior work from Christian [76]. S here refers to the irradiance on the pixel and θ

is the angle between the line-of-sight to the object and the observer surface normal (Figure

4.8). Aap, τ , and f are physical properties of the camera and represent the aperture area,

transmittance, and focal length of the sensor. The variable s is the detector response over

the integration period T. Adet is the area of the detector, F is the fill factor as a fraction

from 0 to 1, and R is the spectral responsivity. A more detailed explanation of these terms

is provided in [76].

S(λ) = L(λ)τ(λ)
Aap
f 2

cos4 θ (4.3)

s =

∫
T

∫ λmax

λmin

AdetS(λ)FR(λ)dλdt (4.4)

68

Figure 4.8: Line-of-sight angle (θ) definition for Equation 4.3

4.2.5 Error sources

After the image has been simulated, the other possible error sources may be added in addi-

tion to distortion, if needed. One potential error source is pixel blur, either due to defects

in the lens or object motion. This effect can be simulated by a convolution function based

on the amount of required blur, which is then iterated over each pixel in the image. Shot

noise can also be introduced using a point spread function based on a normal distribution.

Finally, amplifier and digitization noise can be added. These effects are functions of the

dynamic range and the saturation limit, respectively. The relevant equations are described

in Section 4.5.5.

4.3 Infrared spectrum image simulation

Many of the same fundamentals of image simulation apply to infrared simulation as they

do to the visible spectrum. The visibility problem must be solved in the same way, and

reflected infrared light behaves like visible light, albeit with a longer wavelength. The key

69

difference between the two spectra is the role of temperature. Except for extreme cases

when the body is significantly warped due to temperature shifts or is hot enough to begin

emitting visible light, the simulation of an object’s image in the visible spectrum is the

same regardless of its temperature. In contrast, an infrared image is quite dependent on the

body’s temperature. Therefore, that temperature must be simulated and accounted for in

the light being radiated from the object.

4.3.1 Thermal simulation

Thermal modeling is a topic of a large amount of research and extraordinary detail. There

are applications is which high-fidelity thermal modeling is vital to success. For the pur-

poses of this research, however, a simple surface model with conduction and radiation is

sufficient. The infrared images being created are relatively low quality and will be further

compressed during the appearance learning process. Also, the spacecraft being simulated

are representative models, so the particular internal heating characteristics are unknown.

Therefore, the following simplifying assumptions are made:

1. Only surface thermal properties are modeled.

2. Only heat transfer due to conduction between faces, solar irradiation, and body radi-

ation are considered.

3. Faces are assumed to have uniform albedo, and temperature, thermal conduction

properties.

4. The target surface is assumed to be of uniform thickness.

While these assumptions clearly limit the types of effects that are included in the analysis,

these limitations are considered to be acceptable for a first demonstration of the algorithm.

More detailed models can be included later if necessary to improve the simulation fidelity

and accuracy.

70

4.3.1.1 Conduction

The target models are formed from a convex triangular mesh. Each mesh panel thus has

three neighboring faces. Heat is conducted through these three interfaces according to

Fourier’s Law for heat conduction (Equation 4.5). Q is the heat transferred in Joules, k is

the thermal conductive in watts per meter-Kelvin, A is the interface area, d is the surface

thickness, ∆T is temperature difference in Kelvin or degrees Celsius, and t is the time of

transfer in seconds.

Q =
kA∆T

d
t (4.5)

Using the uniform thickness assumption, this expression is simplified to Equation 4.6

for the ith side of the triangular face. The vectors v1 and v2 are the coordinates of the

interfacing vertices. The subscript i has been added to Q and ∆T for clarity.

Qi = kt||v1 − v2||∆Ti (4.6)

4.3.1.2 Solar irradiation

The solar irradiance is assumed to be equal to 1367 Watts per meter squared near the Earth’s

surface. This value is used in Equation 4.7 to determine the heat transfer to the face via solar

radiation. Qs is the heat transfer, Ss is the solar irradiance, ε is the material’s emissivity,

N and I are the same vectors from Equation 4.1, and Af is the surface area of the face. It

also follows that the sun cannot illuminate the rear face of a convex body, which leads to

the condition on the dot product between the face normal and the illumination direction.


Qs = Ssε(N · I)Af N · I > 0

Qs = 0 N · I ≤ 0

(4.7)

71

4.3.1.3 Body radiation

The radiation of heat from the face into space is found using the model for black body

radiation (Equation 4.8). Qr is the heat transfer, σ is Steffan’s constant, Af is again the

surface area of the face, and T is the absolute temperature in Kelvin.

Qr = σεAfT
4 (4.8)

4.3.1.4 Temperature change

Once the heat transfer for all three neighboring faces of the triangular mesh panel has been

found, the change in temperature of the mesh panel ∆Tf is calculated using the specific

heat capacity c of the face’s material and the various heat transfer values (Equation 4.9).

∆Tf =

(
Qs −Qr +

3∑
i=1

Qi

)
/c (4.9)

4.3.2 Simulated radiance

The model for the simulated radiance of an object in the infrared spectrum is given by

Equation 4.10 and developed from Garnier [22]. This model is similar to Equation 4.1 but

includes an additional term. The variable Lt represents the spectral thermal radiance of

the body. This term is combined with those for reflectance that are present in the infrared

spectrum. Lt is calculated using Equation 4.12, where kb is the Boltzmann constant, c

is the speed of light, h is Plank’s constant, and T is the absolute temperature of body.

The value b is the albedo of the object, since the preceding equation is for black body

radiation. The albedo is a value between 0 and 1 and represents the actual radiation from

the body as a fraction of the ideal black body radiation. Albedo values are empirically

determined for various materials, so the composition of the object must be known to include

the corresponding albedo.

72

L(λ) = kaLa(λ) + Lt(λ) +
n∑
l=1

Ll(λ)(kd(N · I) + ks(E · V)α) (4.10)

E · V = 2(N · V)(N · I)− (V · I) (4.11)

Lt(λ) = b
2π4k4b
15c2h3

T 4 (4.12)

4.4 Fidelity of simulation

4.4.1 Thermal imaging

As discussed in Section 4.3.1, the inclusion of thermal image simulation into the SISE po-

tentially adds a significant amount of complexity to the program. Visible spectrum images

are functions of intrinsic properties of the imaged object: shape, size, material, etc. Ther-

mal images, on the other hand, depend on the temperature of the object. The temperature

varies over the imaging time interval as the object heats up as a result of incident radiation

or cools off from radiating energy into space. The temperature may also vary within the

object itself, since internal systems like computers and batteries generate heat that is seen

by infrared cameras. Fully capturing these effects requires an internal model of the target

object in addition to the surface model.

It is important, therefore, to determine the scope of the thermal image simulation.

Enough fidelity is necessary to ensure that the results obtained using simulated images

would be representative for real images. However, too much complexity would turn the

focus of the research into thermal modeling instead of visual navigation. Therefore, a rudi-

mentary thermal simulation was implemented instead of a more complex thermal model

including internal components of the target. The fusion methodology described in more

detail in Section 5.1 and the subsequent results in Section 6.2 confirm this scope as valid

for this visual navigation application. Expanding the thermal model to include greater de-

73

tail is a promising area of future research (Section 7.2.6).

4.4.2 Specular effects

As described in Section 4.2.3.1, specular reflectance results from smooth surfaces and is

not spread out the same way that diffuse reflectance is. As a result, specular effects can

lead to a concentrated amount of reflected light in a small area, known as a highlight or

“glint.” Glints lead to other phenomena such as blooming and saturation in pixel detectors

which complicates object identification in an image. These glints have an adverse effect

on visual navigation systems, since they distort the illumination and even the perceived

shape of the object. Glint presents a particular challenge for appearance matching, since

the range of orientations in which a glint occurs may be small and not captured by one of

the training images. Figure 4.9 shows sunlight glinting from the solar panel of the Hubble

Space Telescope.

There are a few ways to simulate the effects of glints in order to test the robustness of

the algorithm. The first is to simply increase the specular coefficient ks and the specular

exponent α. This has the effect of creating brighter, more concentrated highlights. For

more complex specular surfaces, a Gaussian operation like the one described in Yan, et

al. [78] is required. Similar to the thermal imaging simulation, the simple solution of

increasing the specular exponent was deemed to have enough fidelity for the purposes of

this dissertation. In this research, detector bloom and saturation are not being modeled, as

these are hardware-specific effects and modern sensors are able to mitigate some of these

conditions (Theuwissen [79]).

4.4.3 Background

The inclusion of the add_background function (Section 4.5.5.3) into the SISE allows the

simulation of a non-black background, both for appearance matching training and for

software-in-the-loop tests. So long as the background is defined either as a brightness

74

Figure 4.9: Sunlight glint off the Hubble Space Telescope [77]

75

function of the image location or via an image file, that background can be included in

the test images. Examples of simulated images with background inclusion can be seen in

Figures 3.8 and 6.11.

4.5 Software implementation

The program which generates simulated images for either appearance training or testing is

known as the spacecraft imaging simulation environment (SISE). The purpose of the SISE

is to generate a series of simulated images of a target spacecraft as viewed by a sensing

spacecraft. The program is written in Python based on a preliminary MATLAB version

developed for prior research (McBryde and Lightsey [25]).

Figure 4.10 outlines the functional flow of the SISE. Within the initialization step is are

the cam and load_scenario functions which create the Camera object and load the scene

parameters, respectively. The next three steps are completed for each image that is simu-

lated. Target modeling takes place within the load_mesh function, which reads in the mesh

file and applies the appropriate transformations. Radiation simulation is performed by two

different functions. The vis_raytrace subroutine simulates visible light, while ir_raytrace

simulates infrared radiation. The final step is file creation and refinement. The functions

vis_err and ir_err apply errors in the appropriate spectrum, while add_background replaces

the black background of the image with a different pattern, if desired.

With the exception of the target modeling functions listed in Section 4.5.3, all programs

and subroutines that comprise the SISE were developed specifically for this research.

4.5.1 Function sise

The function sise is the top-level function for generating simulated images. It is called by

either the appearance training routine or the software-in-the-loop test. That program could

be training image generation or software-in-the-loop testing, for example. The sise function

takes as input the location and orientation of the sensor and the target in inertial space. It

76

Figure 4.10: SISE function flowchart

77

also requires the position of the lighting source or sources in the scene. Additionally,

sise needs some image generation parameters: the file name of the CAD model for the

target and whether or not a background is being added to the image. The purpose of these

two parameters is addressed in Sections 4.5.3 and 4.5.5.3, respectively. Lastly, the main

function requires a Camera object. This object is generated from the cam function and is

addressed in greater detail in Section 4.5.2.1. Given these inputs, the end result is a matrix

of light intensity values which can be saved into an image file, if desired.

The design of the sise function is fairly straightforward. A matrix is initialized of the

appropriate size based on parameters from the Camera object. Functions from the trimesh

library are used to initialize a Mesh object which is then translated or rotated if necessary

to the given target position and attitude. This mesh, along with the camera position and

attributes, is passed to the appropriate ray-tracing function. Finally, the background of the

image is either replaced with the desired background or left black.

4.5.2 Initialization

4.5.2.1 Function cam

The cam function is responsible for initializing parameters for the camera, for the sensor,

and for designating any errors that are applied. These values are given in a configuration file

that is called by cam to create the Camera object. That object also contains the functions

for training an appearance matching library. This encapsulation of the sensor’s character-

istics and appearance training parameters is part of the multi-sensor framework, the details

of which are addressed in Section 5.2. The following parameters are initialized when cam

calls a camera configuration file:

• Camera

– Image size, also called resolution (pixels)

– Focal length (millimeters)

78

– Aperture (f-stop)

– Transmittance (percentage)

– Dynamic range (decibels)

• Sensor

– Spectrum

– Pixel size (micrometers)

– Quantum efficiency (percentage)

– Saturation limit (photons)

– Fill area (percentage)

– Dark fraction (percentage, visible) or wavelength (nanometers, infrared)

• Error

– Radial distortion (coefficients, 1-5)

– Blur (pixels)

– Shot noise (number of electrons)

These parameters are stored in the Camera object and are used to generate the simulated

images.

4.5.3 Target modeling

Unlike the other aspects of the SISE, the triangular mesh handling was performed using a

freely available library called trimesh developed by Dawson-Haggerty [80]. According to

the author, the package “is a Python library for loading and using triangular meshes.” This

research mainly utilized three functions from this library. The function load_mesh creates

the Mesh object from a CAD file. This object contains information about the geometry

79

of the mesh: the location of the vertices in space, the vertices which make up each face,

and the normal direction of each face. The pre-computation of this last value significantly

speeds up ray tracing later in the program. The other two functions are part of the Mesh

object: apply_translation and apply_transform. The first function translates the vertex

locations in space and the second rotates the vertex locations and normal directions of each

triangular face using a direction cosine matrix.

Note that an earlier version of the SISE utilized the library’s built-in ray tracing function

as well. It was later replaced by a faster version using CUDA acceleration, addressed in

greater detail in section 4.5.6.

4.5.4 Radiation simulation

The ray_trace function is the last major component in the image rendering process. It

takes the rotated and translated mesh as well as the camera parameters and returns a light

intensity matrix of the mesh on a black background. There are two versions of the ray_trace

function, one each for the visible and infrared spectra. The main purpose of the function is

to set up the CUDA acceleration which performs the actual ray casting and tracing. Several

arrays are initialized on the GPU to contain the aforementioned data after which a kernel

function is called to cast a ray from each pixel. Further details on that procedure are given

in Section 4.5.6.

4.5.5 File creation and refinement

4.5.5.1 Distortion

Distortion is the first error source to be implemented. Unlike the subsequent error types

described in this section, the calculation and application of distortion takes place in the

kernel function, the particulars of which are discussed in Section 4.5.6.2.

Distortion is defined as the failure of a lens to preserve straight lines in an image.

Distortion comes in two main types: radial distortion, which is radially symmetric, and

80

Figure 4.11: Undistorted image (left), radially distorted image (center), tangentially dis-
torted (right)

tangential distortion, which is not. Since this error is caused by the nonuniform bending

of light that passes through the lens, the part of the object seen by each ray is different

than what would be seen by an undistorted lens. Brown [81] models distortion using five

coefficients, three for radial distortion and two for tangential distortion (Equation 4.13).

The values xn and yn are the first two coordinates of the normalized image location, ki are

the various coefficients, rn is radial image coordinate defined as rn =
√
x2n + y2n, and xd

and yd are the resulting distorted image coordinates. Figure 4.11 shows a simulated image

of the Stardust spacecraft which is transformed by each type of distortion.

 xd

yd

 = (1 + k1r
2
n + k4r

4
n + k5r

6
n)

 xn

yn

+

 2k3xnyn + k4(r
2
n + 2x2n)

k3(r
2
n + 2y2n) + 2k4xnyn

 (4.13)

4.5.5.2 Functions vis_err and ir_err

In order to improve the fidelity of a software-in-the-loop test and to verify the robustness of

an algorithm, the functions vis_err and ir_err can be used to model error effects in visible

and infrared images, respectively. Two categories of error are modeled by these functions:

blur and noise.

Blur in an image is accomplished by convolving the light intensity matrix with a Gaus-

81

sian function (Equation 4.14, Stockman and Shapiro [82]). The standard deviation σ tunes

how much blur is applied to the image and x and y are pixel coordinates.

G(x, y) =
1√

2πσ2
e−

x2+y2

2σ2 (4.14)

Noise can be added from a number of different sources, as described by Kodak [83].

Shot noise results from thermally generated electrons in the photoelectric surface of a vis-

ible spectrum sensor. Amplifier noise applies to both spectra and is a byproduct of ampli-

fying the photoelectric signal coming from the sensor.

The pixel by pixel noise is given by Equation 4.15. The variable g is a normal random

variable, fd is the fraction of the sensor area that is not exposed to light, lsat is the saturation

limit of the pixel in photons, and rd is the dynamic range in decibels.

epix = g

(
fdlsat +

(
lsat
rd/20

)2
)

(4.15)

Finally, digitization noise is inherent in both spectra due to the conversion of the analog

electrical signal into a digital form. It is modeled by dividing the light intensity matrix

by the number of photons per intensity bit a, taking the floor, and then multiplying by the

photons per bit again (Equation 4.16).

I = a

⌊
I

a

⌋
(4.16)

4.5.5.3 Function add_background

The add_background function is an auxiliary function that was added to the SISE to aid

in the background randomization procedure (Section 3.4.2). As part of the ray_trace func-

tion, rays that do not encounter the mesh are assigned a “brightness” of -1. Thus, the

add_background function identifies these pixels for replacement with the desired back-

ground. Any value is possible between 0 and 255, but the options utilized in this research

82

Figure 4.12: Cloud (left), horizon (center) and star (right) background image files

are all zero (black), random, star field, cloud, and horizon. Note that the random values

are determined from a built-in Python function for generating random numbers while the

cloud, horizon, and star backgrounds were copied from an appropriate image file (See Fig-

ure 4.12). Examples of the image with cloud, horizon and star backgrounds of these are

given in Section 6.1. The add_background function searches the light intensity matrix for

negative values and replaces them, returning the modified matrix as an output.

4.5.6 GPU acceleration

Utilizing the multiple processing cores on a graphics processing unit vastly speeds up the

repetitive execution of a simple function. Applying GPU acceleration to the SISE using

CUDA improves the image simulation performance by orders of magnitude.

4.5.6.1 CUDA Overview

CUDA is designed to interface with C, C++, and Fortran by default, but a Python package

known as Numba enables CUDA programs to be written and executed in Python [84].

The ray_trace functions described in Section 4.5.4 load the Numba module, which in turn

allows the creation of the necessary variables and functions on the GPU. Every value or

array called as an input to ray_trace needs to be copied to the GPU so it can be seen by the

kernel. An additional array for the light intensity matrix output is created on the GPU as

well. Once these are set up, the kernel function is executed with two additional parameters:

number of grids and number of threads. These parameters are responsible for telling the

83

GPU how many concurrent processes need to be run. For ray tracing, selection of these

parameters is straightforward: one thread per ray, executed on a 2D array of cores of the

same size as the resulting image.

4.5.6.2 Function kernel

The compute kernel is the function that is executed on each one of the cores. It takes as

input the triangular mesh parameters, the size of the image and the pixels on the sensor, the

focal length of the camera, the sensor position and attitude, and the location of the lighting

source. Based on a management function, the kernel is assigned a particular pixel which

in turn allows it to calculate the unit vector for that ray. Then, a ray-triangle intersection is

calculated for each face of the object. A kernel function was developed specifically for this

research to simulate images as part of the SISE.

If a hit is detected, the distance to that hit is saved in case a face with a closer intersection

exists, in which case that face is replaced. If at least one face of the object is intersected,

the incident radiation on the sensor is calculated using one of the functions from Section

4.5.6.4. If not, the pixel is assigned a -1 brightness value to indicate it is a background

pixel. This process is run in parallel for each pixel in the camera, greatly increasing the

image rendering efficiency.

To show this, a series of images were rendered using the CUDA interface and with only

CPU. 5 images were rendered of the same object at 10 different orientations. The only

difference between the algorithms was that the CPU version used optimized linear algebra

operations in place of the hand-coded versions required by CUDA (Section 4.5.6.5). The

results are given in Table 4.1.

4.5.6.3 Function hit

The hit function is on-board the GPU and calculates the intersection between the cast ray

and a triangular face of the object. It utilizes the intersection algorithm developed by Möller

84

Table 4.1: Rendering time for an image with GPU vs CPU
Image size # of pixels Avg. CPU rendering time (s) Avg. CUDA rendering time (s)

40x32 1280 126.91 0.0483
80x64 5120 493.907 0.0848

160x128 20480 2068.52 0.249
320x256 81920 8249.39 0.982

and Trumbore, the details of which are found in [70]. This process determines whether the

intersection exists and if so, what the distance is to the intersected point. The algorithm

works by taking the origin and direction of the ray and the vertices of the face and then

running a series of checks to determine if the ray, in fact, hits the triangle.

First, a determinant is calculated to make sure that the ray does not lie in the same plane

as the triangle, precluding an intersection. If the ray intersects the plane, the barycentric

coordinates u and v are calculated. Barycentric coordinates, or areal coordinates, define the

location of a point relative to the vertices of a triangle. They are subject to Equations 4.17-

4.19. N is a point in Cartesian coordinates; A, B, and C are the vertices of the triangle;

and u, v, and w are the barycentric coordinates.

N = uA+ vB + wC (4.17)

1 = u+ v + w (4.18)

0 ≤ u, v, w ≤ 1 (4.19)

Because of Equation 4.18, only two of the coordinates need to be calculated in order

to find the third, which in practice is usually w. This relationship leads to an additional

restriction on u and v: u + v ≤ 1. These coordinates are used to make sure that the

intersection lies within the bounds of the triangular face, which means that the barycentric

coordinates satisfy the derived restriction as well as Equation 4.19.

Finally, the algorithm needs to determine the presence of a ray intersection, not just a

85

line intersection. This final check is made to ensure that the intersection point lies along

the correct direction from the origin. If all of these checks are satisfied, a distance from the

origin to the intersection is returned. If at least one fails, a predetermined large distance is

returned, indicating that no intersection exists. Note that this algorithm does not distinguish

between an intersection on the “front” or “back” of a face. That check is made later by the

irradiance functions.

4.5.6.4 Functions light and therm

The two functions light and therm are copied to the GPU and calculate the irradiance from

a particular face onto the pixel from which the ray was cast. For the visual ray_trace

function, light uses Equations 4.1 through 4.4, to find the sensor response of that ray in the

visible spectrum. Similarly, therm uses Equations 4.10 through 4.12 to calculate the sensor

response in the infrared range. These functions are called only once per ray that is incident

on the object.

4.5.6.5 Helper functions

Functions on the GPU have a limited instruction set that does not include any functions that

take arrays as inputs. In order to execute the preceding routines, a series of helper functions

were created and transferred to the GPU:

• Array cross product - z = x× y

• Array dot product - z = x · y

• Array subtraction (also used for array addition) - z = x− y

• Array division by a scalar (also used for array multiplication by a scalar) - z = x/y

• Array Euclidean norm - c =
√

x · x

86

CHAPTER 5

SENSOR FUSION AND FILTERING

5.1 Sensor fusion strategies

As described in Section 2.1.3, there are numerous strategies for visible and infrared sensor

fusion. Based on the needs and limitations of appearance matching, a two-step approach is

proposed for combining multiple visible and infrared cameras. First, a co-located infrared

camera is used to observe the target in the visible image and crop the excess background, if

it exists, from both the infrared and visible camera test images. Then one of two options is

chosen for the actual data fusion. One is to combine the images into a hybrid image vector

and run the PCA on those images. The second is to perform the PCA on the visible image

set and the infrared image set separately and then reconcile the results from the two spectra.

5.1.1 Target identification and image cropping

While the background randomization technique allows the target images to be located on

an arbitrary background, the appearance matching implementation given in this research

requires that the size of the object within the image frame remains consistent from the

training library to the test image. Thus, the target must be located within the image so

that the “excess” image can be removed and the remaining part of the image scaled to the

appropriate size.

5.1.1.1 Optical flow

Multiple techniques exist to perform this kind of object extraction. One method is optical

flow segmentation. Optical flow refers to the movement of pixels from image to image,

usually between frames of a video. If certain parts of an image move in a similar way,

87

an algorithm can be trained to separate those parts into segments based on that motion.

One common method within the field of computer vision is the Lucas-Kanade method

[85]. This method assumes that within the neighborhood of a point under consideration,

the displacement of the contents of the image are small and constant from frame to frame.

Thus, each pixel in a window surrounding the point must satisfy a system of equations

(Equations 5.1 to 5.3) where (Vx, Vy) is the local velocity vector; qi are the pixels within

the window; and Dx, Dy, and Dt are the partial derivatives of the image with respect to

the image location (x, y) and the time t. This overdetermined system is solved using the

least squares principle and the image is segmented into regions with a similar local velocity

vector.

Dx(q1)Vx +Dy(q1)Vy = −Dt(q1) (5.1)

Dx(q2)Vx +Dy(q2)Vy = −Dt(q2) (5.2)

...

Dx(qn)Vx +Dy(qn)Vy = −Dt(qn) (5.3)

The partial derivatives are solved for numerically, using the central difference formula

for the spatial derivatives and backward difference for the temporal derivative. Equations

5.4 to 5.6 give the expressions for these derivatives, with t being the current frame, t − 1

being the previous frame, and ∆t the time between frames.

Dx(qi) =
∂qi
∂x

=
qi(x+ 1, y, t)− qi(x− 1, y, t)

2
(5.4)

Dy(qi) =
∂q

∂y
=
qi(x, y + 1, t)− qi(x, y − 1, t)

2
(5.5)

Dt(qi) =
∂q

∂t
=
qi(x, y, t)− qi(x, y, t− 1)

∆t
(5.6)

Typically these segments are going to be foreground objects that are moving relatively

88

Figure 5.1: Dense optical flow using the Lucas-Kanade method [86]

rapidly and background objects which are moving slowly or not moving at all. Thus, optical

flow is often used to separate foreground from background. Figure 5.1 shows an example

from the software library OpenCV, in which pedestrians in a video are separated from the

roadway on which they are walking.

The obvious drawback to using optical flow for segmentation is that multiple images

are needed before optical flow can be established. Additionally it requires the foreground

and the background to be moving at a different enough rate such that they can be separated.

Neither of these conditions can be guaranteed for a satellite tracking a target. Figure 5.2

shows the optical flow segmentation based on video of the International Space Station jet-

89

Figure 5.2: Dense optical flow segmentation (right) of ROSA jettison (left)

Figure 5.3: Dense optical flow segmentation (right) of Dragon docking (left)

tisoning the Roll-Out Solar Array (ROSA) [87]. Conditions for optical flow segmentation

are favorable and the right hand image clearly shows the array. Figure 5.3 is video of the

Dragon module docking with the ISS [88]. The cloud motion is greater in the background

here and module does not show a consistent enough optical flow to be segmented. Both

of these examples were generated for this research using the OpenCV dense optical flow

library.

5.1.1.2 Iterative processing

Background randomization has already been shown to be effective at identifying an object

on a non-black background. One possibility, therefore, is to process portions of the image

in an iterative fashion. Assuming that an object exists within the image frame and that

enough sub-images are processed, one will return a high-confidence object identity and

thus locate the object within the image. Since the scale of the object within the image is

unknown as well, this process would have to be repeated for multiple window sizes. A

90

Figure 5.4: Test objects on a cluttered background [59]

similar procedure was performed using robust PCA in Leonardis and Bischof [59] on the

image shown in Figure 5.4.

This procedure, too, has an obvious drawback: computation time. Multiple PCA

matches have to be performed for each image. Even assuming the process stops once a

high-confidence match is found, the computation effort is untenable, especially for an em-

bedded system.

5.1.1.3 Infrared masking

Given that an infrared signal is already being used later in the process, the simplest and most

logical choice is to use the information from the infrared camera. A good assumption given

the space environment is that the target will have a significantly different temperature from

the background. Even if the background is the Earth, the average radiating temperature of

the Earth’s surface is 288 K or 15 degrees Celsius [89]. An operable satellite will have a

temperature greater than this due to waste heat from external electronics. An inoperable

target will heat and cool from the presence or absence of solar radiation. This temperature

will differ from the Earth’s, which is regulated by atmospheric processes.

A threshold is applied to the infrared image to separate the foreground of the target from

the background of the image. The location and extent of the target within the image frame

may then be determined. These parameters are represented using two 2D pixel locations:

91

Figure 5.5: Example of infrared masking with HST on a cloud background

the top-right of the image and the bottom-left. The infrared image is then cropped to remove

as much as the background as possible. Finally, the resulting intensity array is scaled to the

same size as the training library. A example of this process is given in Figure 5.5.

For the images from every other sensor, the object is located using the extent infor-

mation from the first infrared image. First, unit vectors uTR and uBL to the object extent

points are found (Equations 5.7 and 5.8). Let (µR1 , ν
T
1) and (µL1 , ν

B
1) be the pixel locations

of the target extent in the infrared image. The values w1 and h1 are the width and height of

the infrared sensor, in pixels, p1 is the infrared pixel size, and f1 is the infrared camera fo-

cal length. Typically these final two values will have units of micrometers and millimeters,

respectively.

Equations 5.9 to 5.12 locate the target extent (µR2 , ν
T
2) and (µL2 , ν

B
2) on the second sen-

sor. The values w2 and h2 are the width and height of the second sensor in pixels, p2 is

the second sensor pixel size, and f2 is the second camera focal length. The dc operator

rounds toward the nearest integer, with half-integers rounding down. Note that an assump-

tion is made in this case that the two cameras are close enough together that the location of

the object does not vary significantly within the two image frames. If the two sensors are

far apart, a correction factor would need to be applied to uTR and uBL to account for the

discrepancy.

92

uTR =


(
µR1 − w1

2

)
p1(

νT1 − h1
2

)
p1

f1

 (5.7)

uBL =


(
µL1 − w1

2

)
p1(

νB1 − h1
2

)
p1

f1

 (5.8)

µR2 =

⌈
uTRx
uTRz

f2
p2

⌋
+
w2

2
(5.9)

µL2 =

⌈
uBLx
uBLz

f2
p2

⌋
+
w2

2
(5.10)

νT2 =

⌈
uTRy
uTRz

f2
p2

⌋
+
h2
2

(5.11)

νL2 =

⌈
uBLy
uBLz

f2
p2

⌋
+
h2
2

(5.12)

5.1.1.4 Relative position

Using the infrared image to crop and scale the target serves an additional purpose besides

transforming the test image into a usable form by the PCA algorithm. Based on the pixel

locations of the extent, the location of the centroid of the target within the image frame,

along with the amount the image must be scaled, can be calculated. This same information

is available for the training image library, though in that case the cropping and scaling will

be minimal if the library is well constructed.

By comparing the image extent in a test image to its corresponding image in the image

library, relative position to the target is found along with the relative orientation determined

using PCA. The location of the centroid in the image gives the unit vector r̂ (Equation

93

5.13) to the object while the scaling factor σ, along with the distance to the object from

the training library dtrain, gives scalar range. These two parameters combine to give a

relative position solution r (Equation 5.14). That solution cannot be found until after the

object identification step of appearance matching, since the geometry of the object is also

required.

r̂ =
uTR + uBL

2
(5.13)

r = σdtrainr̂ (5.14)

5.1.2 Hybrid PCA

The first method for fused PCA is performed using a hybrid image. During single-spectrum

PCA training, an image is rasterized into a vector. That vector is then normalized to a total

brightness of 1 and then combined with the rest of the image set of different objects, illumi-

nations, and orientations to form the matrix X. In order to do hybrid image PCA training,

images at a single orientation from different sensors are vectorized and normalized sepa-

rately (Figure 5.6), and then concatenated in order to form a hybrid image vector (Figure

5.7). That vector is then combined as before to form a new, longer vector Xh. The same

PCA process is then followed as before to create eigenvectors and surfaces for the universal

as well as the object image sets.

The advantage to fusing the signals in this way is that the exact same framework can be

used as before to identify the object and find the closest matching orientation. There are a

couple of drawbacks, though. First, since the image is now larger, more eigenvalues will

have to be used in order to get the same amount of variance. In addition, this method relies

on the exact same alignment between the various cameras during training as for the test

images. Even a slight misalignment could render the hybrid PCA process inconclusive.

Finally, if one or more sensor becomes unavailable, separate PCA parameters would be

94

Figure 5.6: Visible (left) and infrared (right) spectrum cropped images

Figure 5.7: Hybrid image vector

needed for each possible configuration of sensors, including each sensor on its own. It is

apparent that such an arrangement would have a high memory and computation cost for

anything beyond just two sensors.

5.1.3 Reconciled PCA

The second approach to PCA sensor fusion is to reconcile the results of the various sensors.

In this method, the image sets are kept separate and the PCA process is performed on each

of them in turn. This results in as many universal image sets as sensors, and as many object

image sets as the product of the size of the object library and the number of sensors. When a

set of test images is processed, the images from each sensor are matched with its particular

group of eigenspaces. The result is a series of object identities and attitudes and their

corresponding confidence values. These confidence values are defined for a test image in

Section 3.3.2.3. Those values are then usually reconciled into a single result before being

95

passed along to whatever process is performing the visual navigation. The exception to

this approach is the case in which a multiple hypothesis filter is implemented downstream.

That possibility is discussed in greater detail in Section 7.2.1. For the purposes of this

dissertation, it is assumed that a single result is desired.

The advantage to this fusion strategy is that the contribution of each sensor is known and

is balanced according to the user. The downside is that a new, more complicated, fusion-

inclusive subroutine has to be written to combine the results from each sensor. There is

also an increased computational burden on-board the spacecraft, since the projection and

nearest neighbor search must be performed for every sensor instead of just once.

5.2 Multi-sensor framework

In order for this system to be multi-spectral instead of just dual-spectral, the framework

must be able to accommodate more than two sensors, multiple sensors of the same type,

even sensors that are not visible or infrared. In order to accomplish this, the Camera ob-

ject described in Section 4.5.2.1 additionally contains the appearance matching parameters

associated with each sensor.

Nothing about the training or learning procedure must be modified for reconciled PCA.

The PCA procedure is simply run once for each sensor and a list of Camera objects is

carried through the process instead of a single object, one for each sensor. The modifica-

tion comes in the recognition step. Appearance recognition is performed for each sensor,

resulting in an object identity with accompanying confidence value and an attitude with

accompanying confidence as well. The images together are used with infrared masking

(Section 5.1.1.4) to find the relative position and complete the pose estimate. If these val-

ues differ among the sensors, then a single answer has to be found from the different values,

if one can be found. This reconciliation procedure is described in the following sections.

It should be noted that in some ways, the single-spectrum PCA already does a form

of reconciliation in calculating confidence values. Each of the nearest neighbors in the

96

object identification and attitude determination step is analogous to reading from a different

sensor with a confidence determined by its distance from the test point. Relative position

determination is dependent on the object’s identity and is considered to be part of the object

identification step. Therefore, reconciling results from different sensors can be done in

much the same way as for different nearest neighbors. One key difference is that with

different sensors there is the possibility of two or more high confidence results. Reconciled

PCA must be able to handle this possibility in an logical manner.

5.2.1 Object identification

Object identification is the result of a multi-step process. The first step is reconciling the

object’s identity among the various sensors. This step is performed using the algorithm

specified in Section 3.3.2.1. Object identities are returned from each sensor along with

their associated confidence values.

The first parameter to examine is the confidence value associated with each sensor’s

object identification. If that value for one of the sensors is much higher than the others,

then that identity is selected as the best guess. Similarly if more than one sensor agrees

on the object’s identity with high confidence, then the attitude determination proceeds with

reconciling the attitudes of those sensors.

The worst-case scenario is that multiple sensors disagree with similar confidence val-

ues. It does not matter if they have high or low confidence in their disagreement. One final

piece of information may be used to resolve this disagreement. If the history of the object

identity is available and agrees with one of the sensors, then that can be used to “break

the tie.” However, if that information does not exist, then there is no way to reconcile the

two object identities within the current framework. The addition of multiple-model filter-

ing or a similar approach could keep both possibilities active until one collapses. More

detail on this potential addition is provided in Section 7.2.1. Figure 5.8 outlines the object

identification fusion procedure.

97

Figure 5.8: Object identification fusion procedure

98

5.2.2 Attitude determination

Based on the outcome of the object identity reconciliation, the relative attitude is then

determined. This step is performed using the algorithm specified in Section 3.3.2.2. If

no sensor confidently identifies the object, then the attitude is returned as “no solution.”

Assuming the solution is the measurement portion of an attitude filter, then the filter would

propagate for this time step and then wait for the next measurement. If only one sensor

identifies the target with confidence, then the attitude and confidence from that sensor alone

is used.

The reason for using only one sensor instead of some combination of all the attitude

solutions derives from the way that appearance matching performs attitude determination.

Attitude solutions are determined from the object-specific eigenspace. Therefore, if attitude

determination is performed using the wrong object identity, the resulted attitude solution

would be useless. In other words, it does not help to “corrupt” the attitude measurement by

including sensors with low object identification confidence.

For the rest of this section it is assumed that multiple sensors have agreed on an object

identity. The attitude determination solutions must then be reconciled. The ideal scenario is

that the sensors agree on the exact same attitude and both with high confidence. If that is the

case then that attitude is returned by the algorithm with high confidence. This possibility

is extremely rare, but it is included for completeness. The next best option is that the

sensors agree on the attitude within a small margin for error. That possibility is reconciled

using a weighted average of the confidences in each orientation direction, but the overall

confidence for this case is lower than for the case where the sensors fully agree. Equation

5.15 shows how this averaging is performed. The value vr is the reconciled confidence,

and vi are the individual sensor confidences ordered from highest to lowest. The last case

is that in which more than one sensor is confident in its solution but the sensors do not agree

within a margin for error. In that case, the confidences are combined according to Equation

5.16 and the attitude with the highest confidence is returned.

99

Figure 5.9: Pose estimation fusion procedure

It should be noted that the reconciliation described above applies to relative attitude.

Relative position is determined from the single infrared sensor with the highest object con-

fidence as described in Section 5.1.1.3. Figure 5.9 outlines the attitude determination fusion

procedure.

vr =

(
1− v1 −

∑nc
i=2 vi

v1

)
v1 (5.15)

vr = v1 −
nc∑
i=2

vi (5.16)

100

5.3 A priori and time history inclusion

The process presented here exists on the measurement side of the navigation problem.

Given an input of an image or images, appearance matching and sensor fusion returns

an object identity and an pose estimate (using the object identity combined with attitude

determination) along with a confidence value for each of these. As presented here, the

algorithm finds this information using only the single test image and the training library.

Thus, the identity and pose are estimated independently of any stored information or

knowledge from additional sources other than the test image. It follows that such informa-

tion could be tracked and utilized in a filter downstream of this measurement. However,

the sensor fusion framework also allows for the introduction of a priori or time history

information using a virtual sensor if desired.

5.3.1 Virtual sensor framework

The inclusion of a virtual sensor works in much the same way as an actual sensor. For

a particular time step, an object identity and pose estimate is returned along with the ac-

companying confidence values. The difference is that instead of this information resulting

from processing an image, it is derived from a source external to the current appearance

matching process. That could be previous information about the identity of the object or its

pose, or it could be calculated using the time history of the object or an attitude model of

the given scenario.

5.3.2 Object identification

Providing object identity via a virtual sensor is a matter of calculating the probability that

some previously recorded object identity changed. This is analogous to the addition of

process noise to a time update in estimation theory. A simple way to do this is to reduce

the confidence in the object identity proportionally to how much time has passed since the

101

identity was calculated. The time history confidence may also be reduced if there is a series

of low confidence solutions generated by the appearance matching method.

5.3.3 Pose estimation

The best source of pose estimation values and confidences for a virtual sensor is an ex-

tended Kalman filter using a position and attitude model. Previous data can be used to

estimate the pose and how well it is known. The advantage to implementing a virtual

sensor in this way is that the sensor fusion appearance matching protocol is somewhat

“self-correcting” without an outside estimator. Should such an estimator be implemented,

however, then the virtual sensor should not be used as the estimated data would be counted

twice: once by the filter and once by the virtual sensor. Implementation of such a virtual

sensor is reserved for future work and described in more detail in Section 7.2.4.

102

CHAPTER 6

RESULTS

As part of this research, a series of tests were performed in order to prove the utility and ef-

fectiveness of appearance matching and visible-infrared sensor fusion for spacecraft visual

navigation. In particular, the tests themselves fell into two categories: supporting state-

ments made about the algorithms’ performance and showing the algorithms’ effectiveness

in situations representative of those that would be encountered by a spacecraft on-orbit.

Two key additions to the state of the art were made by this research. The first was the

addition of background matching to the appearance matching training procedure in order

to allow object identification and pose estimation on an arbitrary background. To test this

improvement, two libraries of training images were simulated in the visible spectrum, one

using background randomization and one using a black background. A set of test images

was also simulated with four different background cases to compare the appearance match-

ing performance using the two different training libraries. Only the visible spectrum was

tested in this case to simplify the presentation of the results and highlight the improvement

made by background randomization.

The other addition was the application of visible and infrared sensor fusion to appear-

ance matching. To test this procedure, training libraries of the same orientations were

simulated in the visible and infrared spectra. A set of test images was then processed by

the algorithm using only the visible spectrum, only the infrared spectrum, and the fusion

procedure. The results from the three cases were compared in object identification accuracy

and pose estimation error.

To determine the performance of the algorithms in representative conditions, the ap-

pearance matching and sensor fusion were challenged in different ways. First, image ar-

tifacts like noise and glint were introduced in order to test the robustness of visual navi-

103

gation measurement to these errors. Next, object identification and pose estimation were

performed at increasing distances to determine the effect of distance to the sensor on ap-

pearance matching.

The final test was to create a realistic mission scenario that might be performed using

this system. The scenario that was chosen had a target and chasing spacecraft in a stable

Clohessy-Wiltshire-Hill relative orbit. The chasing spacecraft has simulated visible and

infrared cameras to take navigation measurements of the target throughout the orbit.

6.1 Background randomization performance

Background randomization was tested using 100 test images of 4 different spacecraft using

one set constructed from black-background training images and again with a set of random-

background training images. The additional targets serve to test the performance of the

object identification step of the appearance matching algorithm. Representative images

of these objects are given in Figure 6.1. Both universal training sets consisted of a total

of 10272 training images. There were 642 orientations evenly distributed over pitch and

yaw, 4 lighting conditions evenly distributed over pitch and yaw, and 4 spacecraft. The

distributions for lighting and orientations are given in Figure 6.2. The object sets each

contained 2568 images.

The simulated camera had parameters given in Table 6.1. The mvBlueFOX3-1013G

is a commercial-off-the-shelf (COTS) machine vision camera made by German company

Matrix Vision. The 1013G variant uses an e2v EV76C560 sensor [90]. The lens was

selected to be a Fujinon 16 millimeter lens as it is offered by Matrix Vision with the camera.

The sensor-lens system has specifications given in Table 6.1. This hardware has a form

factor and power specifications that could be flown realistically on a small satellite mission

requiring a visible spectrum camera. A corresponding infrared camera is presented later

(Section 6.2).

The PCA was performed using eigenvalues that represented 50% of the variance, ac-

104

Figure 6.1: Representative images of test objects: Stardust (top left), Juno (top right),
Odyssey (bottom left), and HST (bottom right) (Images credit: NASA)

Figure 6.2: Orientation (left) and lighting (right) conditions

105

Table 6.1: mvBlueFOX3-1013G camera parameters
Image size (pixels) 1280× 1024
Focal length (mm) 16

Aperture f/1.4
Sensor type CMOS

Dynamic Range 51.5 dB
Pixel size (µm) 5.3× 5.3

Power < 2.5W

Table 6.2: Object relative distances
Object Relative distance (m)

Stardust 400
Juno 425

Odyssey 500
Hubble 2300

cording to Section 3.5.1. That led to 26 eigenvalues for the black-background set and 253

for the random-background set. The greater variance in the randomized background means

that significantly more eigenvalues are needed for that set than for the black-background

set. Each object was simulated at a distance that had it occupying approximately 80% of

the image frame. These distances are given in Table 6.2. The effect of distance to the target

on appearance matching is presented in Section 6.4.

The following sections compare the performance of the random-background training

set to the one with black-background images. First, a baseline test is presented with black-

background images. This test serves as a best-case scenario for the black-background set as

well as showing that the addition of a random-background training does not degrade the ap-

pearance matching performance for test images with a black background. A series of tests

is then presented with different test backgrounds representative of the space environment.

6.1.1 Performance on black-background test images

In testing the utility of background randomization, it was first important to show that the

background randomization process did not significantly affect the accuracy for test images

106

Table 6.3: Black background object identification accuracy
Object Random-background training Black-background training

Stardust 100.0% 100.0%
Juno 100.0% 100.0%

Odyssey 100.0% 100.0%
Hubble 100.0% 100.0%
Overall 100.0% 100.0%

Figure 6.3: Random background attitude error by axis

that did happen to have a black or nearly black background. For the latter case, random

pixels were added to account for the varying light intensity as described in Section 3.4.2.

The results for object identification for each object as well as overall are given in Table 6.3.

The attitude determination results are shown in Figures 6.3 and 6.4. The full pose estimate

was not required for these tests since the objects were simulated a constant relative distance

for each test.

These results show comparable performance between the black-background library and

the random-background library using the random noise injection. In both cases, the high-

attitude error cases stem from symmetricity. This fact is evident from the clustering of

errors around 90, 120, and 180 degrees.

107

Figure 6.4: Black background attitude error by axis

Table 6.4: Star background object identification accuracy
Object Random-background training Black-background training

Stardust 100.0% 80.0%
Juno 100.0% 100.0%

Odyssey 100.0% 0.0%
Hubble 100.0% 100.0%
Overall 100.0% 73.0%

6.1.2 Performance on star test background

The next series of tests were performed on simulated images with a star background in-

serted. In theory, the black-background library should perform the best on these images, as

they are the closest to pure black of the three test backgrounds. Figure 6.5 shows a sample

star background test image.

Table 6.4 gives the object identification accuracy for the random-background tests sim-

ilar to Table 6.3 above. Figures 6.6 and 6.7 compare the number of trials with a given

attitude error per axis between the two training libraries. Note that the attitude error is only

calculated when the object is correctly identified, so the two cases do not have the same

total number of trials.

108

Figure 6.5: Sample random-background test image

Figure 6.6: Random background attitude error by axis

109

Figure 6.7: Black background attitude error by axis

Table 6.5: Cloud background object identification accuracy
Object Random-background training Black-background training

Stardust 100.0% 100.0%
Juno 100.0% 0.0%

Odyssey 100.0% 0.0%
Hubble 100.0% 0.0%
Overall 100.0% 25.0%

In both object identification and attitude error, the random-background library clearly

outperforms the black-background library. The black-background training handles the ob-

ject identification relatively well, but performs worse at attitude determination.

6.1.3 Performance on cloud test background

The next series of tests were conducted on simulated images with a background of clouds.

This series was designed to emulate a spacecraft being imaged from above in low Earth

orbit. Figure 6.8 shows a sample test image.

Table 6.5 gives the object identification accuracy for this case. Figure 6.9 again com-

pares the number of trials with a given attitude error per axis between the two training

libraries.

110

Figure 6.8: Sample cloud-background test image

Figure 6.9: Random background attitude error by axis

111

Figure 6.10: Black background attitude error by axis

Table 6.6: Horizon background object identification accuracy
Object Random-background training Black-background training

Stardust 100.0% 0.0%
Juno 100.0% 0.0%

Odyssey 96.0% 100.0%
Hubble 100.0% 0.0%
Overall 99.0% 25.0%

The random-background library again outperforms the black-background library. The

only object which was identified correctly at all was Stardust, though that object identifica-

tion was perfect.

6.1.4 Performance on horizon background

The final comparison tests were designed to provide a more difficult situation for the

random-background training. The simulated background is the limb of the earth, result-

ing in a half black and half cloud background. Figure 6.11 shows a sample test image.

As in the tests in Section 6.1.1, any black pixels in the test image were replaced with

random values. Table 6.6 gives the object identification accuracy. Figure 6.12 compares

the number of trials with a given attitude error per axis between the two training libraries.

112

Figure 6.11: Sample horizon-background test image

Figure 6.12: Random background attitude error by axis

113

Figure 6.13: Black background attitude error by axis

As expected, this test was more challenging for the random background library, partic-

ularly for the Odyssey spacecraft. However, it still accommodates the horizon background

as well than the standard black-background algorithm. Conversely, Odyssey is the only

spacecraft correctly identified by the black-background library.

6.2 Sensor fusion versus single-spectrum performance

The sensor fusion protocol was tested using a software-in-the-loop test similar to that per-

formed in Section 6.1. The same set of random attitudes and light directions were tested

three times: once with the visible spectrum only, once with the infrared camera only, and

once with the fusion protocol using both sensors. The visible spectrum and infrared spec-

trum virtual camera reflect real-world hardware that are available for use on spacecraft right

now.

6.2.1 Simulated hardware

For both scenarios, representative hardware was chosen to provide realistic simulated im-

age parameters. The assumption was made that the combined hardware system should be

114

Table 6.7: FLIR Tau 2 640 bolometer parameters
Image size (pixels) 640× 512
Focal length (mm) 19

Aperture f/1.25
Sensor type Uncooled VOx

Spectral band (µm) 7.5 - 13.5
High-gain scene range (degrees C) -25 to 135
Low-gain scene range (degrees C) -40 to 550

Pixel size (µm) 17× 17
Power < 1.2W

of volume, weight, and power profile that could potentially fly aboard a moderately-sized

CubeSat (e.g., 6U to 12U). Using this restriction, a visible spectrum camera and an in-

frared spectrum camera were chosen. These are the Matrix Vision mvBlueFOX3-1013G

[91] mentioned previously and the FLIR Tau 2 640 [92].

The Tau 2 640 is a long-wavelength infrared (LWIR) bolometer made by American

company FLIR. The Tau 2 640 uses an uncooled vanadium oxide (VOx) core with a spec-

tral band of 7.5 to 13.5 µm which allows it to sense temperatures from -25 to 135 degrees

Celsius in high-gain mode and from -40 to 550 degrees Celsius in low-gain mode. This

range adequately spans the usual operating temperature range of spacecraft as well as tem-

peratures of passively heated objects in low Earth orbit. FLIR offers lenses of various focal

lengths; the 19 mm lens was selected to give the bolometer a similar field of view as the

visible spectrum camera. Detailed specifications are given in Table 6.7.

6.2.2 Results

The following are the results of the software-in-the-loop tests for the three sensor measure-

ment cases: visible only, infrared only, and fusion. The test images were the same for each

case, and the results of the single sensor cases were used for the fusion case. The same four

objects were used as in the previous tests, and a number eigenvalues sufficient to cover 50%

of the variance for each sensor were used: 12 for the infrared camera and 82 for the visible

spectrum camera. Table 6.8 compares the object identification accuracy of each case. Table

115

Table 6.8: Object identification accuracy for different spectra
Object Visible only Infrared only Fusion

Stardust 96.0% 100.0% 100.0%
Juno 100.0% 100.0% 100.0%

Odyssey 100.0% 100.0% 100.0%
Hubble 100.0% 100.0% 100.0%
Overall 99.0% 100.0% 100.0%

Table 6.9: Sensor fusion attitude error statistics
Spectrum Median pitch error (deg) % large error Median yaw error (deg) % large error
Infrared 4.18 29.0 2.14 22.0
Visible 3.265 16.0 1.14 15.0
Fusion 3.17 16.0 1.14 15.0

6.9 gives the median attitude error in each axis for each case as well as the percentage of

attitude errors in each axis which fall outside the theoretical maximum error based on the

number of training orientations, called “large error”.

The results here are what one would reasonably expect. The effect of varying lighting is

less apparent for the infrared spectrum, which leads to better object identification accuracy.

However, the detail and lighting variation in the visible spectrum images means that the

attitude determination is better for those images. Finally, the fusion results combine the

best results of both spectra, with as good or better results in both categories.

The more granular results from these three figures back up the overarching results pre-

sented in Table 6.8. Figure 6.16 shows fewer high-error axes than Figure 6.14 and a similar

number to Figure 6.15. This comparison is also evident in Figure 6.17, which shows more

high-error red bars, representing the infrared performance.

6.3 Robustness of appearance matching to imaging error

In order for appearance matching to be a viable technique for spacecraft navigation, it must

be able to work in the presence of common types of errors which may distort the test image.

These errors derive from mechanical imperfections in the camera, like distortion and blur,

116

Figure 6.14: Infrared spectrum attitude error by axis

Figure 6.15: Visible spectrum attitude error by axis

117

Figure 6.16: Fusion spectrum attitude error by axis

Figure 6.17: Comparison of average attitude error by spectrum

118

from noise in the analog-to-digital processing of the image, or from effects due to the nature

of the target like glint. Each one of these error sources was introduced one by one into the

simulated test images to see how they affected the object identification and pose estimation

accuracy. The same simulated hardware was used as in Section 6.2, though the cameras

were not tested individually, only in the fusion configuration.

The training configuration includes 642 orientations under 4 lighting conditions of the

4 objects used in previous software-in-the-loop tests. A number of eigenpairs was used

for each spectrum to account for 60% of image set variance according to Section 3.5.1,

resulting in 18 eigenpairs for the infrared camera and 412 eigenpairs for the visible camera.

This training configuration was used for every one of the tests in this section.

The test scenario consisted of 8 images each of the four objects. These images were

generated using random orientations, lighting, and at two distances from the sensing space-

craft: the relative distances listed in Table 6.2 and 4 times those relative distances. Accord-

ing to the results in Section 6.4, no appreciable degradation in performance occurs over that

distance range for the error-less case. Thus, any impact on performance is due to the intro-

duced errors. Object identification, attitude determination, and range errors are presented

for each error type.

6.3.1 Distortion

As previously discussed in Section 4.5.5.1, distortion is the result of imperfections in the

camera lens. Typically, these distortions are modeled on the ground before a camera is

launched. Standard procedures exist for this kind of modeling [93]. These effects would be

considered when the training library is simulated. However, additional distortion is some-

times introduced in vibrations during launch or thermal effects. Therefore, showing that

appearance matching is robust to a reasonable amount of distortion is important. For these

tests, a first distortion coefficient of 1−8 was used as the test case applied using Equation

4.13. The hardware being simulated in this test was calibrated using the MATLAB calibra-

119

Figure 6.18: Example distorted image

tion procedure referenced earlier [93]. The test value is an order of magnitude worse than

the worst distortion value produced by that process, representing distortion from a lack of

calibration compounded by an additional effect. An example distorted image is shown in

Figure 6.18.

6.3.2 Blur

Blur in a test image may result from two main sources. First, if the shutter time of the

camera is too long, the target may be blurred as is passes through the image frame. Blur

resulting from incorrect shutter speed may be compensated for within the imaging software

routine. Second, the focus point for the camera may differ from the distance from the

camera to the target. If the camera has a fixed focal length, then it is not possible to

fully account for this error on-orbit. Thus, appearance matching must be able to accept a

reasonable amount of blur. For these tests, a Gaussian blur was applied with a standard

deviation of 2 pixels using Equation 4.14. The amount of blur in an image may vary

120

Figure 6.19: Example blurred image

significantly based on the factors previously described. The amount of blur was selected as

it blurred the image enough to be noticeable but not so much that the object was no longer

recognizable. An example blurred image is shown in Figure 6.19.

6.3.3 Noise

Noise in a digital image is introduced as an artifact of analog to digital conversion, as

described in greater detail in Section 4.5.5.2. Noise was introduced to to the test images

according to Equation 4.15 and the cameras’ digital parameters. An example noisy image

is shown in Figure 6.20. The amount of noise in the image has an upper limit set by the

specifications of the camera. The amount simulated for this test is that worst-case scenario.

6.3.4 Glints

Glints in an image are the result of localized regions of high specular reflection. By skewing

the illumination or even overall shape of a target object, glints have the potential to have an

121

Figure 6.20: Example noisy image

adverse effect on appearance matching procedure. Glints for this test were simulated by an

increase in the specular coefficient and exponent of Equations 4.1 and 4.10. These values

were selected to produce a glint effect as similar as possible to actual images of spacecraft

subject to glint. An example image with a glint is shown in Figure 6.21.

6.3.5 Other effects

As discussed in Section 4.4.2, blooming and saturation were not modeled for this research.

Modern sensors can compensate for these effects, so the appearance matching procedure

does not need to be robust to them. If the algorithm is required to perform on older hard-

ware, the effect of sensor effects should be examined.

122

Figure 6.21: Example image with glint

Table 6.10: Error effect on object identification accuracy
Error type Reference distance (RD) 4×RD
No error 100.0 100.0

Distortion 100.0 100.0
Blur 100.0 100.0

Noise 100.0 96.9
Glint 96.9 100.0

6.3.6 Results

6.3.6.1 Object identification

The object identification accuracy was very robust to the various errors, with only a few

failed identification cases for noise and for glint (Table 6.10). The accuracy was good at

both the near and farther relative distances.

123

Table 6.11: Error effect on pitch error
Error type % large pitch error at RD % large pitch error at 4×RD
No error 6.25 25

Distortion 6.25 18.75
Blur 3.125 62.5

Noise 6.25 28.125
Glint 15.625 28.125

Table 6.12: Error effect on yaw error
Error type % large yaw error at RD % large yaw error at 4×RD
No error 6.250 18.750

Distortion 12.500 15.625
Blur 9.375 40.625

Noise 6.25 28.125
Glint 15.625 21.875

6.3.6.2 Attitude determination

In general the fused appearance matching algorithm achieved good results given the er-

rors with respect to attitude determination. Tables 6.11 and 6.12 show the percentage of

large error cases as defined in Section 6.2.2. All of the imaging error cases resulted in a

slight increase in large attitude error cases, with the exception of blur, which had signif-

icantly greater numbers of large attitude error cases at the further distance. The blurred

image along with the smaller number of pixels imaged had a large effect on the shape and

illumination necessary for accurate attitude determination.

6.3.6.3 Relative position

In terms of relative position, the various imaging errors had a slight effect on the relative

position error as measured by object range. Table 6.13 gives this error as a percentage of

the reference distance. This effect was increased at the farther distance, with the relative

position performance suffering more for the imaging error cases than for the case with no

imaging error, with the blurry case again performing the worst of the error cases. As is

discussed later in Section 6.6, a relatively small amount of error is acceptable in relative

124

Table 6.13: Error effect on relative position error
Error type Reference distance (RD) 4×RD
No error 1.58% 3.55%

Distortion 4.52% 3.30%
Blur 2.90% 9.41%

Noise 1.66% 6.02%
Glint 2.67% 6.47%

position because pose estimation with appearance matching would not be used for docking.

Once the image exceeds the image frame the object cannot be positively identified, a step

that is a prerequisite to pose estimation.

6.3.6.4 Summary

Based on these results, it is clear that distortion has the greatest effect on performance at the

reference distance and blur has the greatest effect on performance at the farther distance.

This effect is seen in all three phases of appearance matching: object identification, attitude

determination, and relative location. As such, it would be important in a real-world appli-

cation to make sure the focal lengths of the cameras are selected carefully, and likely with

an emphasis on a farther focal point than a nearer one. Additionally, the cameras should

be calibrated as well as possible on the ground before going into space to reduce distortion

error.

6.4 Effect of distance on appearance matching

In addition to testing the performance of background randomization versus black-background

training, it is also important to show that the improved appearance matching algorithm has

utility as a spacecraft relative navigation technique. Part of that verification is whether or

not objects can be identified and their attitudes determined at various distances. An analo-

gous question is how few pixels are needed for the object to be correctly analyzed by the

algorithm.

125

Figure 6.22: Recognition accuracy versus object distance

For this test, the same library of 4 spacecraft was used as before. Using cloud back-

ground test images, a set of 100 random orientations (25 per object) was simulated at

increasing distances from the virtual sensor. Since the spacecraft are different sizes, the

distance from the camera is given in terms of multiples of a reference distance. That value

is the closest distance from the camera for which the entire object is still visible in the field

of view. Those reference distances are given in Table 6.2. It should be noted that for this

test, it is assumed that the object was located on the background using infrared masking

(Section 5.1.1.3).

The object identification accuracy and median attitude error average over the three axes

was calculated at each distance. Those values are given versus object distance in Figures

6.22 and 6.23, respectively.

The object identification accuracy certainly degrades as the object recedes from the

camera, maintaining 100% accuracy at the first two steps and then declining steadily as the

object recedes. However, an accuracy of at least 80% is maintained even when the object

takes up only 1/16 of the frame, which translates to 64 by 64 pixels. The attitude error

significantly degrades starting at 8 times the reference distance. However it should be noted

126

Figure 6.23: Average median attitude error versus object distance

Figure 6.24: Relative position error versus object distance

127

that the further away the target is, the less critical it is to have exact attitude knowledge,

especially for a rendezvous or intercept scenario. It is also apparent that the relative position

error increases with distance and as object identification accuracy becomes poorer. This

result is logical since the relative distance is found by comparing the normalization scale

between the test image and the training library.

6.5 Hardware-in-the-loop test

Running software-in-the-loop tests for visual navigation is useful for algorithm tuning as

well as verifying the performance of the technique under ideal conditions. However, it

is important for appearance matching to perform well on real images as well. The most

representative test would be to image a spacecraft with known geometry on-orbit using

a camera with known characteristics. Such a test was not feasible in the time frame of

this research. Instead, hardware images were taken of 3D printed analog. This analog

was created using the same computer-aided design (CAD) file that was used to create the

simulated images for appearance training. Thus, the appearances of the real and simulated

images should match closely.

6.5.1 Analog model

The 3D printed analog used for these tests was created using the CAD file based on the file

used for the Juno spacecraft from the earlier software-in-the-loop tests. Due to the way the

solar panels were modeled in the earlier file, it was difficult to create an accurate model.

The model used for test fills in holes in the panel to create a solid face on each side available

on the website Thingiverse [94]. The analogs were printed using a plastic called polylactic

acid (PLA) on an Ultimaker 3 printer [95].

128

Figure 6.25: Original Juno model (left), modified model (center), and printed analog (right)

6.5.2 Test setup

Three images are given in Figure 6.25. The first is the Juno model used for the previous

tests, the second is the modified model for 3D printing, and the third is an image of the

printed analog. The analog was imaged on a pure black background and a bright lamp

was used to simulate the sun’s illumination of the objects the only illumination source for

this test. The training library also used a black background with 252 total orientations,

6 in the roll direction and 42 in the pitch-yaw directions. The same four illumination

directions were simulated as in the previous tests. In order to test the object identification

performance, images of the Odyssey and Hubble models were also simulated and added to

the training library. Thus, the universal training set had 3024 images and each object set

had 1008 images. The PCA was performed with 240 eigenpairs accounting for 70 percent

of the image set variance.

There were 25 images of the analog taken with the mvBlueFOX3 camera (Table 6.1).

Rather than try to measure the orientation of the analog to determine a truth value, simu-

lated images at random attitudes were generated and the analog was positioned to match

the appearance of those images. The attitude of the simulated image was taken as the truth

value for the test image. In addition, the light source was placed at different angles for

each image. Since the light source direction was not being measured in the test, and exact

direction was not needed.

129

6.5.3 Results

6.5.3.1 Object identification

The object identification accuracy of the image set was 92%. Twice the analog was misiden-

tified as the Hubble model in a similar orientation. In both cases the object confidence was

less than .7, lower than the confidence values for any of the correct identifications.

6.5.3.2 Attitude determination

The attitude determination performance was not as strong as in the software in the loop

tests. Of the 23 correctly identified images, 16 or 69.5% returned an attitude solution

within the minimum error for the library. There were 5 images, or 21.7%, that returned an

attitude within the minimum error except for a symmetry error of 120 degrees, reflecting

the three-way nearly axisymmetric nature of the Juno model. The remaining 2 images, or

8.70%, returned a non-symmetric error, averaging 23.2 degrees in each axis.

6.6 Mission scenario

The previous results in this chapter show that appearance matching with background ran-

domization is an accurate object identification and attitude determination technique on an

arbitrary background that can be extended to return a full pose estimate. In addition, sensor

fusion between visible and infrared spectrum cameras improves the operational capacity of

a visual navigation system. However, it is also important to demonstrate that this system

also will work with a more realistic visual navigation scenario. One such scenario was

constructed and tested using simulated images: in a Clohessy-Wiltshire-Hill stable relative

orbit. The hardware simulated in these scenarios is the same as those in previous sections.

130

6.6.1 Scenario setup

The formation flying scenario used for this test uses two satellites in orbit around the Earth.

The target spacecraft is in a circular orbit with a semi-major axis of 6730 km and an incli-

nation of 51.5 degrees, approximating the orbit of the ISS. The model used was the Stardust

spacecraft. The sensing spacecraft is given similar parameters but modified so that it is in a

stable CWH “football orbit” in the frame of the target spacecraft. That has relative dimen-

sions of 500 × 1000 meters. The orbits of both spacecraft are simulated using two-body

orbital mechanics.

The attitude of the target spacecraft is held constant, while the sensing spacecraft is

assumed to be given an input that maintains the target in the center of the image frame. That

attitude is calculated for each time step using the spacecraft’s relative position and the triad

method [96]. The triad method was an early solution to the satellite attitude determination

problem, producing the direction cosine matrix (DCM) relating two linearly independent

reference vectors R1 and R2 in one reference frame to the same vectors r1 and r2 in the

body-fixed frame. The DCM C is found using Equations 6.1 through 6.5. To align the

vector between the spacecraft with the camera boresight in the z-direction, the vectors R2

and r2 are identically the y-unit vector, r1is the z-unit vector, and R1 is the unit vector to

the target spacecraft from the sensing spacecraft.

ŝ =
r1
||r1||

(6.1)

Ŝ =
R1

||R1||
(6.2)

m̂ =
r1 × r2
||r1 × r2||

(6.3)

M̂ =
R1 ×R2

||R1 ×R2||
(6.4)

C =

[
Ŝ M̂ Ŝ× M̂

] [
ŝ m̂ ŝ× m̂

]T
(6.5)

131

The simulation is run for a complete orbit of the spacecraft about the Earth. In order

to simulate the eclipse of the satellite by the earth, the illumination from the sun is turned

off for 50% of the orbit, during which only minimal ambient light is available in the visible

spectrum. The full relative pose is determined at a 120 second time step using the full

fusion system.

6.6.2 Results

The results for this scenario are given in Figures 6.26 and 6.27. The target object entered

eclipse at 1376 seconds and exited eclipse at 4204 seconds, meaning that was eclipsed over

the full range of relative distances twice. This portion is represented in figures by a dashed

line. Object identification was verified at each time step and maintained throughout the

scenario, so those results are not presented here. Also, since the position of the spacecraft

in the image frame stayed consistent and the relative attitude varied only slightly, the range

was the key component of this scenario. That observation is backed up in Figure 6.27,

which shows that the relative error varies from approximately 0 to 4 percent but does not

have any relationship to the range value itself. It should also be noted that the range is over-

estimated the worst at the greatest distance, which is preferable to being underestimated and

risking a collision. It has already been discussed in this research that for docking, another

algorithm would have to be used since appearance matching cannot produce a solution if

the object exceeds the image frame.

Additionally, one might expect this error to reflected in Figure 6.27, but that plot dis-

plays relative error instead of absolute error. For example, the absolute error at 4920 sec-

onds is 31.87 meters and at 4200 seconds is 37.15 meters, but the former time step has

slightly higher relative error.

132

Figure 6.26: Recorded range (green) versus actual range (blue), eclipse portion dashed

Figure 6.27: Percent range error over time, eclipse portion dashed

133

CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Summary of results

This dissertation uses the terrestrial techniques of appearance matching and vision and

infrared sensor fusion that have not been previously applied to spacecraft. As described in

Chapter 1, contributions are made in three areas:

1. Appearance matching for spacecraft is enhanced using background randomization;

2. A spacecraft imaging simulation environment software tool is created for analysis;

and

3. Object identification and pose estimation is performed with sensor fusion using rec-

onciled PCA with simulated spacecraft images.

In Chapter 3, the technique of appearance matching is applied to spacecraft object iden-

tification and attitude determination. The theoretical basis of appearance matching was

explained, including image compression and the Karhunen–Loève Transform. The funda-

mental results from Murase and Nayar [1] were discussed, including the basic procedure

for object identification and attitude determination through the construction of the universal

and object-specific eigenspaces. Robustness was added to the appearance matching method

through the introduction of background randomization. Finally, the effect of the two tuning

parameters of training library size and number of eigenvalues was discussed.

Chapter 4 introduced the spacecraft imaging simulation environment (SISE). First, the

SISE was compared with respect to other image simulation tools. The fundamentals of

image simulation were explained, including ray tracing, the formation of a triangular mesh,

and the simulation of the two types of radiation: visible and infrared. The necessary fidelity

134

for such an environment was discussed, particularly with regard to thermal simulation and

different error sources. The computer architecture for the SISE was described, including

the computational enhancement provided using the CUDA protocol.

In Chapter 5 visible and infrared spectrum sensor fusion was introduced in the context

of appearance matching. It was shown how masking using the infrared camera is able to

isolate a target on a background in the visible spectrum image. This process also combines

with object identification to produce a pose estimate. Hybrid PCA was briefly described

in order to show how reconciled PCA is the better fusion technique. The fusion process

for both object identification and attitude determination was shown. Finally, the virtual

sensor framework was introduced as a way to allow the fusion algorithm to take input from

a priori conditions and external sources.

Finally, Chapter 6 presented results verifying the concepts discussed in the previous

chapters. Software-in-the-loop tests demonstrated how background randomization allows

PCA to operate on multiple different backgrounds and how sensor fusion improved object

identification and relative attitude determination versus each sensor alone. Sensor fusion

appearance matching was also challenged with different types of errors and relative dis-

tances and performed successfully. A test case was presented to demonstrate this perfor-

mance in a realistic context using a target and sensing spacecraft in a stable CHW relative

orbit.

7.2 Future work

While the new methods demonstrate promise for spacecraft vision-based relative naviga-

tion, more work can be done to improve the algorithm’s performance. Some suggested

improvements are presented as potential topics for future research.

135

Figure 7.1: General structure of a multiple model estimation algorithm with two filters [97]

7.2.1 Multiple model filtering

In Chapter 5, the assumption was made that a single object identity and pose estimate was

desired at each time step. However, one area of potential follow-on work would remove

that assumption. In the case of two or more high confidence results, a filter could be im-

plemented to “track” both cases. It would maintain each hypothetical case until additional

information eventually collapsed them into a single solution. Implementing such a system

was beyond the scope of this dissertation, which focused primarily on producing measure-

ments and confidence values. However, adding a multiple model extended Kalman filter

(MMEKF) or a type of particle filter is a logical next step.

Li and Jilkov [97] give an overview of the multiple model framework as well as several

state of the art approaches to constructing an MMEKF. The key fact to note about this type

of filter is that it is a hybrid filter, containing both a discrete component and a continuous

component. When applied to appearance matching, the discrete element is the identity of

the object and the continuous element is the pose of the object. MMEKFs vary in what

is referred to in [97] as the cooperation strategy. It determines how the different models

interact to find a single output. The cooperation strategy either selects the output of one

or the other model or combines them in a kind of average. For appearance matching, the

former strategy would be applicable to a library of several different objects while the latter

136

would be preferable in the case where the library is different configurations of the same

object. An example of this case would be a spacecraft with solar panels at different angles

of deployment.

7.2.2 Color-aided appearance matching

All of the investigation and results for this research used greyscale images. Appearance

matching has been used with color images for object identification. Morioka and Hashimoto

[98] used color histograms to train and appearance matching algorithm. Their algorithm

was able to track and label objects across multiple cameras. Since histograms were used,

this approach would not be able to perform attitude determination.

However, the multi-sensor framework could be used with a color camera, where each

of the red, green, and blue channels represents a different sensor. Training the appearance

matching with each channel and potentially an infrared camera as well would facilitate both

object identification and attitude determination, the combination of which produces a full

pose estimate as described above.

7.2.3 Quantity of eigenvalues

The relationship between the number of eigenpairs and percentage of image set variance

captured was demonstrated in Section 3.5.1. However, the deeper question of how many

eigenpairs are “enough” is more complex. Several factors affect the amount of variance

in a training library, including numbers of orientations, lighting conditions, and objects;

whether background randomization is implemented, and even the physical characteristics

of the target objects. A comprehensive study of the relationship between all of these pa-

rameters to the amount of variance and performance of appearance matching in object

identification and attitude determination would be a useful tool for the implementation of

this method.

137

7.2.4 Virtual sensing

Accurately incorporating a priori information allows the improvement of both the object

identification and pose estimation steps of the appearance matching algorithm. In particu-

lar, many of the high-error attitude determination results are due to the symmetric nature of

the target object. Such cases would be identified and mitigated if previous state information

is available. For example, if an attitude is returned that is 89 degrees away from the result

one second ago, it is much more likely that such a result is due symmetricity, especially if

the target was not viewed to have a high angular rate before.

One way to utilize previous state information is through a dynamic filter, but another

option is presented by the multi-sensor framework described in this research. A “virtual”

sensor may be constructed, which uses a priori object identification and state information

to generate an estimate for the current object identity and state along with associated con-

fidence values. Studies would need to be performance to compare the effectiveness of this

approach versus a dynamic filter of some kind.

7.2.5 Adaptive learning

One logical extension of this research is its application to scenarios where the object is not

well known beforehand. As presented the spacecraft visual navigation algorithm requires

knowledge of the potential targets in order to generate the simulated images for appearance

matching training. A hypothetical system could take a generic model for the target and then

improve the image library as it approached, including more detail over time as knowledge

is gained about the target. Ross et al. [99] propose a method of robust visual tracking that

uses a sequential PCA method to update the eigenspace with additional data.

This feature is attractive, particularly for travel to interplanetary bodies which have not

been well measured or mapped. However, including an adaptive algorithm presents some

challenges. The first is that in order to train the appearance matching algorithm, the attitude

of the object must be associated with each image. This corroboration cannot be done

138

very well if the knowledge of the object is imperfect. Additionally, the processing power

required to solve the eigenanalysis is far greater than to do the projection and matching.

The adaptive update would either take a long time or have to be offloaded to the ground for

processing.

7.2.6 Better simulation fidelity and efficiency

Another potential avenue of future work is to improve the fidelity of the SISE. The cur-

rent version is sufficient for the needs of this research, but better ray tracing or improved

thermal simulation is something that could benefit future appearance matching algorithms

which use more eigenvalues or greater resolution. As addressed in Section 4.3.1, a number

of simplifying assumptions were made for the current version of the thermal simulation.

If infrared appearance matching were being implemented for a real-world mission, more

information would be known about the internal thermal properties of the target. Therefore,

the fidelity of the infrared images could be improved.

In a similar way, the ray tracing implementation for this research did not account for

reflection or refraction, which would have required the generation and handling of “child”

rays for each ray cast. For the targets that were simulated for Chapter 6 this simplification

was acceptable, but a different application could require a higher fidelity image simulation.

In addition, the adaptive learning method described in the previous section may need

to simulate images of its own in order to update the eigenspaces. For this reason, another

potential avenue of future research would be improving the efficiency of the image sim-

ulation. In particular, allowing it to generate simulated images rapidly on platforms not

enabled with GPUs. RayChip, developed by SiliconArts, is a commercial chip designed to

perform real-time ray tracing on an embedded system [100]. If it could be integrated with

a flight or attitude computer on a spacecraft, then simulated images could potentially be

created on the fly.

139

Figure 7.2: RayChip ray tracing chip [100]

7.3 Reflection

The results presented in this research show the advantages and potential of applying new

techniques from different fields to spacecraft visual navigation. As on-board computational

power and memory capacity improve for spacecraft, the work presented here serves as a

possible model for the development of novel navigation techniques. Appearance match-

ing in particular shows promise as an option for spacecraft missions to perform accurate

object identification and pose estimation. The addition of background randomization and

sensor fusion make this version of the technique more flexible and robust than previous

implementations, an expansion that could be applied to terrestrial applications as well.

There are also several topics of future work in algorithm improvement, software de-

velopment, and hardware implementation. Further research will be able to build on and

utilize this research’s contribution to spacecraft navigation in the same way that past work

has benefited this dissertation.

140

REFERENCES

[1] H. Murase and S. K. Nayar, “Learning and recognition of 3d objects from ap-
pearance”, in Proceedings of IEEE Workshop on Qualitative Vision, IEEE, 1993,
pp. 39 –50.

[2] X. He, S. Yan, Y. Hu, P Niyogi, and H. J. Zhang, “Face recognition using lapla-
cianfaces”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.
27, no. 3, pp. 328–340, 2005.

[3] H. Murase, “Online recognition of free-format japanese handwritings”, in
Pattern Recognition, 1988., 9th International Conference on, IEEE, 1988,
pp. 1143–1147.

[4] S. Clark, Ten commercial earth-observing satellites launched aboard minotaur-c rocket,
https://spaceflightnow.com/2017/10/31/ten-commercial-
earth-observing-satellites-launched-aboard-minotaur-c-
rocket/, Online. Accessed 11/05/17., Oct. 2017.

[5] Cyclone global navigation satellite system (cygnss), http : / / clasp -
research.engin.umich.edu/missions/cygnss/docs/CYGNSS_
FactSheet_October2014.pdf, Online. Accessed 11/04/2017., Oct. 2014.

[6] S. Bandyopadhyay, G. P. Subramanian, R. Foust, D. Morgan, S.-J. Chung, and F.
Hadaegh, “A review of impending small satellite formation flying missions”, in
53rd AIAA Aerospace Sciences Meeting, 2015, pp. 2015–1623.

[7] G. Roesler, Robotic servicing of geosynchronous satellites (rsgs), https : / /
www . darpa . mil / program / robotic - servicing - of -
geosynchronous-satellites, Online. Accessed 10/30/17.

[8] Darpa selects ssl as commercial partner for revolutionary goal of servicing satellites in geo,
https://www.darpa.mil/news- events/2017- 02- 09, Online.
Accessed 11/14/2017, Feb. 2017.

[9] Elsa-d | astroscale, http://astroscale.com/services/elsa-d, On-
line. Accessed 11/14/2017., 2016.

[10] J.-C. Liou and N. L. Johnson, “Risks in space from orbiting debris”, in Science,
5759, vol. 311, Jan. 2006, pp. 340–341.

141

https://spaceflightnow.com/2017/10/31/ten-commercial-earth-observing-satellites-launched-aboard-minotaur-c-rocket/
https://spaceflightnow.com/2017/10/31/ten-commercial-earth-observing-satellites-launched-aboard-minotaur-c-rocket/
https://spaceflightnow.com/2017/10/31/ten-commercial-earth-observing-satellites-launched-aboard-minotaur-c-rocket/
http://clasp-research.engin.umich.edu/missions/cygnss/docs/CYGNSS_FactSheet_October2014.pdf
http://clasp-research.engin.umich.edu/missions/cygnss/docs/CYGNSS_FactSheet_October2014.pdf
http://clasp-research.engin.umich.edu/missions/cygnss/docs/CYGNSS_FactSheet_October2014.pdf
https://www.darpa.mil/program/robotic-servicing-of-geosynchronous-satellites
https://www.darpa.mil/program/robotic-servicing-of-geosynchronous-satellites
https://www.darpa.mil/program/robotic-servicing-of-geosynchronous-satellites
https://www.darpa.mil/news-events/2017-02-09
http://astroscale.com/services/elsa-d

[11] T. Funkhouser, P. Min, M. Kazhdan, J. Chen, A. Halderman, D. Dobkin, and D.
Jacobs, “A search engine for 3d models”, ACM Transactions on Graphics, vol. 22,
no. 1, pp. 83–105, 2003.

[12] D. G. Lowe, “Object recognition from local scale-invariant features”, in
Computer vision, 1999. The proceedings of the seventh IEEE international conference on,
Ieee, vol. 2, 1999, pp. 1150–1157.

[13] S. Belongie, J. Malik, and J. Puzicha, “Shape matching and object recognition using
shape contexts”, IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 24, no. 24, pp. 509–522, 2002.

[14] J. J. Leonard and H. F. Durrant-Whyte, “Simultaneous map
building and localization for an autonomous mobile robot”, in
IEEE/RSJ International Workshop on Intelligent Robots and Systems, IEEE,
1991, pp. 1442–1447.

[15] L. Walker and D. Spencer, “Automated proximity operations using image-based
relative navigation”, in 26th Annual USU/AIAA Conference on Small Satellites,
vol. 8, 2012, pp. 1–12.

[16] V. Lepetit, F. Moreno-Noguer, and P. Fua, “Epnp: An accurate o(n) solution to
the pnp problem”, International journal of computer vision, vol. 81, no. 2, pp. 155–
166, 2009.

[17] C. R. McBryde and E. G. Lightsey, “Spacecraft relative nav-
igation using appearance matching and sensor fusion”, in
Proceedings of the 2017 International Technical Meeting of The Institute of Navigation,
Jan. 2017, pp. 301–312.

[18] C. R. McBryde, A. E. Johnson, and E. G. Lightsey, “Spacecraft rel-
ative navigation using appearance matching with random backgrounds”,
Acta Astronautica. Submitted, 2018.

[19] Blender.org - home of the blender project - free and open 3d creation software,
https://www.blender.org/, Accessed: 11/4/2014.

[20] Pixar’s renderman, https : / / renderman . pixar . com / view /
renderman, Accessed: 11/4/2016.

[21] Nvidia advanced rendering: Nvidia mental ray, urlhttps://www.nvidia.com/en-
us/design-visualization/solutions/rendering/product-updates/, Online. Accessed:
11/4/2016.

142

https://www.blender.org/
https://renderman.pixar.com/view/renderman
https://renderman.pixar.com/view/renderman

[22] C. Garnier, R. Collorec, J. Flifla, C. Mouclier, and F. Rousï¿œe,
“Infrared sensor modeling for realistic thermal image synthesis”, in
IEEE International Conference on Acoustics, Speech, and Signal Processing,
vol. 6, IEEE, 1999, pp. 3513–3516.

[23] S. Bhatia and G. Lacy, “Infra-red sensor simulation”, in I/ITSEC, 1999, pp. 1–8.

[24] J.-F. Shi, S. Ulrich, S. Ruel, and M. Anctil, “Uncooperative spacecraft estimation
using an infrared camera during proximity operations”, in AIAA SPACE, 2015,
pp. 149–162.

[25] C. R. McBryde and E. G. Lightsey, “End-to-end testing of a dual use imaging
sensor for small satellites”, Journal of Small Satellites, vol. 5, no. 1, pp. 435–448,
2016.

[26] T. Lindeberg, “Scale-space theory: A basic tool for analyzing structures at different
scales”, Journal of applied statistics, vol. 21, no. 1-2, pp. 225–270, 1994.

[27] ——, “Detecting salient blob-like image structures and their scales
with a scale-space primal sketch: A method for focus-of-attention”,
International Journal of Computer Vision, vol. 11, no. 3, pp. 283–318, 1993.

[28] R. Jonker and A. Volgenant, “A shortest augmenting path algorithm for dense and
sparse linear assignment problems”, Computing, vol. 38, no. 4, pp. 325–340, 1987.

[29] J. Duchon, “Splines minimizing rotation-invariant semi-norms in sobolev spaces”,
in Constructive Theory of Functions of Several Variables, W. Schempp and K.
Zeller, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 1977, pp. 85–100,
ISBN: 978-3-540-37496-1.

[30] S. A. Nene, S. K. Nayar, and H. Murase, Columbia object image library (coil-20),
http://www.cs.columbia.edu/CAVE/software/softlib/coil-
20.php, Online. Accessed 11/1/2017.

[31] C. T. Zahn and R. Z. Roskies, “Fourier descriptors for plane closed curves”,
IEEE Transactions on computers, vol. 100, no. 3, pp. 269–281, 1972.

[32] J. A. Christian and S. Cryan, “A survey of lidar tech-
nology and its use in spacecraft relative navigation”, in
Proceedings of the AIAA Guidance, Navigation, and Control Conference, 2013,
pp. 19–22.

[33] T. Taketomi, H. Uchiyama, and S. Ikeda, “Visual slam algorithms: A survey from
2010 to 2016”, IPSJ Transactions on Computer Vision and Applications, vol. 9, no.
1, pp. 9–16, 2017.

143

http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php

[34] J. Han and B. Bhanu, “Fusion of color and infrared video for moving human dec-
tection”, Pattern Recognition, vol. 40, no. 6, pp. 1771–1784, 2007.

[35] J. Saeedi and K. Faez, “Infrared and visible image fusion using fuzzy logic and
population-based optimization”, Applied Soft, vol. 12, no. 3, pp. 1041–1054, 2012.

[36] J. Zhao and S. S. Cheung, “Human segmentation by geometrically fusing visible-
light and thermal imageries”, Multimedia Tools and Applications, vol. 73, no. 1,
pp. 61–89, 2014.

[37] R. T. Howard, A. F. Heaton, R. M. Pinson, and C. K. Carrington, “Orbital express
advanced video guidance sensor”, in IEEE Aerospace Conference, IEEE, 2008,
pp. 1–10.

[38] K. Williams, A. Taylor, B. Page, P. Wolff, B. Williams, D. Stanbridge, and J.
McAdams, “Navigation for the messenger mission’s first mercury encounter”, in
AIAA/AAS Astrodynamics Specialist Conference and Exhibit, pp. 6761–80.

[39] B. Naasz, J. V. Eepoel, S. Queen, C. M. Southward, and J. Han-
nah, “Flight results of the hst sm4 relative navigation sensor system”,
in 33rd ANNUAL AAS GUIDANCE AND CONTROL CONFERENCE, 2010,
pp. 1–23.

[40] C. Harris, “Tracking with rigid models”, in Active Vision, A. Blake and A. Yuille,
Eds., Cambridge, MA, USA: MIT Press, 1993, ch. Tracking with Rigid Models,
pp. 59–73, ISBN: 0-262-02351-2.

[41] Gamut 1080p hd tvi cctv bullet camera with 30m ir, 4-in-1, ahd: Spycameracctv.com,
https://www.spycameracctv.com/spycamera/gamut-1080p-
tvi- hd- cctv- camera- 30m- night- vision- varifocal- lens,
Online. Accessed 2017-10-09.

[42] Optical identification, http://www.balluff.com/en/de/products/
machine - vision - and - optical - identification / optical -
identification/, Online. Accessed 2017-10-9.

[43] Thermal infrared camera - artray.inc - usb camera, usb3.0 camera, ingaas camera,
http://www.artray.us/thermo.html, Online. Accessed 2017-10-9.

[44] H. Murase, F Kimura, M. Yoshimura, and Y. Miyake, “An improvement of the auto-
correlation matrix in pattern matching method and its application to handprinted
hiragana”, Trans. IECE, vol. 64, no. 3, pp. 276–283, 1981.

144

https://www.spycameracctv.com/spycamera/gamut-1080p-tvi-hd-cctv-camera-30m-night-vision-varifocal-lens
https://www.spycameracctv.com/spycamera/gamut-1080p-tvi-hd-cctv-camera-30m-night-vision-varifocal-lens
http://www.balluff.com/en/de/products/machine-vision-and-optical-identification/optical-identification/
http://www.balluff.com/en/de/products/machine-vision-and-optical-identification/optical-identification/
http://www.balluff.com/en/de/products/machine-vision-and-optical-identification/optical-identification/
http://www.artray.us/thermo.html

[45] M. Oren and S. K. Nayar, “Generalization of lambert’s reflectance model”, in
Proc. of the 21st conference on computer graphics and interactive techniques,
ACM, 1994, pp. 239–246.

[46] H. Murase and S. K. Nayar, “Illumination planning
for object recognition using parametric eigenspaces”,
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 16, no.
12, pp. 1219–1227, 1994.

[47] C. Eckart and G. Young, “A principal axis transformation for non-hermitian ma-
trices”, Bulletin of the American Mathematical Society, vol. 45, pp. 118–121, Feb.
1939.

[48] L. Mirsky, “Symmetric gauge functions and unitarily invariant norms”,
Quarterly Journal of Mathematics, vol. 11, pp. 50–59, Mar. 1960.

[49] B. Novak, Tech tower, https : / / www . flickr . com / photos /
brookenovak/22840887/, O, Jun. 2005.

[50] S. A. Nene and S. K. Nayar, “Closest point search in high dimensions”, in
Proceedings of the 1996 Conference on Computer Vision and Pattern Recognition,
ser. CVPR ’96, Washington, DC, USA: IEEE Computer Society, 1996, pp. 859–
865, ISBN: 0-8186-7258-7.

[51] R. Weber, H.-J. Schek, and S. Blott, “A quantitative analysis and performance
study for similarity-search methods in high-dimensional spaces”, in VLDB, vol. 98,
1998, pp. 194–205.

[52] R. Weber and S. Blott, “An approximation-based data structure for similarity-
search”, ESPRIT project HERMES (no. 9141), Tech. Rep. 24, Oct. 1997.

[53] V. Hyvönen, T. Pitkänen, S. Tasoulis, E. Jääsaari, R. Tuomainen, L. Wang, J. Coran-
der, and T. Roos, “Fast nearest neighbor search through sparse random projec-
tions and voting”, in Big Data (Big Data), 2016 IEEE International Conference on,
IEEE, 2016, pp. 881–888.

[54] K. Karhunen, Über lineare methoden in der wahrscheinlichkeitsrechnung, ser. An-
nales Academiae scientiarum Fennicae. Series A. 1, Mathematica-physica. 1947.

[55] M. Loeve, “Fonctions alï¿œatoires de second order”, in
Processus Stochastiques et Movement Brownien, P. Levy, Ed., Paris: Hermann,
1948.

145

https://www.flickr.com/photos/brookenovak/22840887/
https://www.flickr.com/photos/brookenovak/22840887/

[56] D. D. Kosambi, “Statistics in function space”, in
D.D. Kosambi: Selected Works in Mathematics and Statistics, R. Ramaswamy,
Ed. New Delhi: Springer India, 2016, pp. 115–123, ISBN: 978-81-322-3676-4.

[57] H. Hotelling, “Analysis of a complex of statistical variables into principal compo-
nents.”, Journal of educational psychology, vol. 24, no. 6, p. 417, 1933.

[58] ——, “Relations between two sets of variates”, Biometrika, vol. 28, no. 3/4,
pp. 321–377, 1936.

[59] A. Leonardis and H. Bischof, “Robust recognition using eigenimages”,
Computer Vision and Image Understanding, vol. 78, no. 1, pp. 99–118, 2000.

[60] M. Storer, P. M. Roth, M. Urschler, and H. Bischof, “Fast-robust pca”, in
Scandinavian Conference on Image Analysis, Springer, 2009, pp. 430–439.

[61] P. Bonnifait and G. Garcia, “Design and experimental validation of an
odometric and goniometric localization system for outdoor robot vehicles”,
IEEE Transactions on robotics and automation, vol. 14, no. 4, pp. 541–548, 1998.

[62] R. L. Cook, L. Carpenter, and E. Catmull, “The reyes image rendering architec-
ture”, in ACM SIGGRAPH Computer Graphics, ACM, vol. 21, 1987, pp. 95–102.

[63] M. Seymour, Renderman: Under the (new) varnish, https://www.fxguide.
com/featured/renderman-under-the-new-varnish/, Online. Ac-
cessed 2017-10-15., May 2015.

[64] N. Greene, M. Kass, and G. Miller, “Hierarchical z-buffer visibility”, in
Proc. of the 20th Ann. Conference on Computer Graphics and Interactive Techniques,
ser. SIGGRAPH ’93, New York, New York: ACM, 1993, pp. 231–238.

[65] Rasterization: A practical implementation (an overview of the rasterization algorithm),
https : / / www . scratchapixel . com / lessons / 3d - basic -
rendering/rasterization-practical-implementation, Online.
Accessed 2017-10-9.

[66] A. S. Glassner, Ed., Ray tracing. Acadmeic Press, 1989.

[67] An overview of the ray-tracing rendering technique, https : / / www .
scratchapixel . com / lessons / 3d - basic - rendering / ray -
tracing-overview, Online. Accessed 2017-10-9.

[68] A. SpaceShop, Geographos | 3d resources, https://nasa3d.arc.nasa.
gov/detail/geographos, Accessed: 10/27/2017, Nov. 2015.

146

https://www.fxguide.com/featured/renderman-under-the-new-varnish/
https://www.fxguide.com/featured/renderman-under-the-new-varnish/
https://www.scratchapixel.com/lessons/3d-basic-rendering/rasterization-practical-implementation
https://www.scratchapixel.com/lessons/3d-basic-rendering/rasterization-practical-implementation
https://www.scratchapixel.com/lessons/3d-basic-rendering/ray-tracing-overview
https://www.scratchapixel.com/lessons/3d-basic-rendering/ray-tracing-overview
https://www.scratchapixel.com/lessons/3d-basic-rendering/ray-tracing-overview
https://nasa3d.arc.nasa.gov/detail/geographos
https://nasa3d.arc.nasa.gov/detail/geographos

[69] W. E. Lorensen and H. E. Cline, “Marching cubes: A high resolution 3d surface
construction algorithm”, in Computer graphics, ACM, vol. 21, 1987, pp. 163–169.

[70] T. Möller and B. Trumbore, “Fast, minimum storage ray/triangle intersection”, in
ACM SIGGRAPH 2005 Courses, ACM, 2005, pp. 21–28.

[71] D. Edwards, Radiation heat transfer. New York: Hemisphere Publishing Corpora-
tion, 1981.

[72] S. T. Hsu, Engineering heat transfer. Blacksburg, Virginia: D. Van Nostrand Com-
pany, Inc., 1962.

[73] J. Lekner, Theory of reflection, of electromagnetic and particle waves. Dordrecht,
Netherlands: Springer, 1987.

[74] E. Schubert, Light Emitting Diodes.org, Available at: http://www.ecse.
rpi.edu/~schubert/Light-Emitting-Diodes-dot-org (accessed
October 7, 2015), 2006.

[75] B. Simonds, Physics and creating plausible materials, https://bensimonds.
com / 2010 / 08 / 27 / plausiblematerials/, Online. Accessed
11/20/2017., Aug. 2010.

[76] J. Christian, “Optical navigation for a spacecraft in a planetary system”, PhD thesis,
The University of Texas at Austin, 2011.

[77] Sun glints off hubble’s solar panels during sm3a, http : / / commons .
wikimedia.org/wiki/File:Sun_glint_from_Hubble’s_solar_
panels.jpg, Online. Accessed 11/20/2017.

[78] L.-Q. Yan, M. Hašan, W. Jakob, J. Lawrence, S. Marschner, and R. Ramamoor-
thi, “Rendering glints on high-resolution normal-mapped specular surfaces”,
ACM Transactions on Graphics (TOG), vol. 33, no. 4, pp. 1–9, 2014.

[79] A. J. P. Theuwissen, Solid-state imaging with charge-coupled devices. Springer,
1995.

[80] M. Dawson-Haggerty, Trimesh, https : / / pypi . python . org / pypi /
trimesh, Accessed: 10/15/2017, Sep. 2017.

[81] D. C. Brown, “Close-range camera calibration”,
PHOTOGRAMMETRIC ENGINEERING, vol. 37, no. 8, pp. 855–866, 1971.

[82] G. Stockman and L. G. Shapiro, Computer vision, 1st. Upper Saddle River, NJ,
USA: Prentice Hall PTR, 2001, ISBN: 0130307963.

147

http://www.ecse.rpi.edu/~schubert/Light-Emitting-Diodes-dot-org
http://www.ecse.rpi.edu/~schubert/Light-Emitting-Diodes-dot-org
https://bensimonds.com/2010/08/27/plausiblematerials/
https://bensimonds.com/2010/08/27/plausiblematerials/
http://commons.wikimedia.org/wiki/File:Sun_glint_from_Hubble's_solar_panels.jpg
http://commons.wikimedia.org/wiki/File:Sun_glint_from_Hubble's_solar_panels.jpg
http://commons.wikimedia.org/wiki/File:Sun_glint_from_Hubble's_solar_panels.jpg
https://pypi.python.org/pypi/trimesh
https://pypi.python.org/pypi/trimesh

[83] Ccd image sensor noise sources, https : / / www . uni - muenster . de /
imperia/md/content/ziv/multimedia/downloads/kodak___
noise_sources.pdf, Online. Accessed 3/8/2018, Aug. 2001.

[84] S. K. Lam, A. Pitrou, and S. Seibert, “Numba: A llvm-based python jit compiler”, in
Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC,
ser. LLVM ’15, Austin, Texas: ACM, 2015, 7:1–7:6, ISBN: 978-1-4503-4005-2.

[85] B. D. Lucas and T. Kanade, “An iterative image registration technique with an
application to stereo vision”, in Proceedings of Imaging Understanding Workshop,
1981, pp. 674–679.

[86] Opencv: Optical flow, https://docs.opencv.org/3.2.0/d7/d8b/
tutorial_py_lucas_kanade.html, Online. Accessed 11/2/2017, Dec.
2016.

[87] N. Johnson, Roll-out solar array (rosa) jettisoned from space station, https://
www . youtube . com / watch ? v = jATBbjU4IyA, Online. Accessed
1/18/2018., Jun. 2017.

[88] S. Videos, [iss] hd video of progress 45 (m-13m) docking to iss, https://www.
youtube.com/watch?v=_NPghRm48ok, Online. Accessed 1/18/2018., Nov.
2011.

[89] Atmospheres and planetary temperatures, https : / / www . acs . org /
content / acs / en / climatescience / energybalance /
planetarytemperatures.html, Online. Accessed 3/10/2018, 2018.

[90] Ruby 1.3m - ev76c661 - cmos image sensor - teledyne e2v, https : / / www .
e2v.com/products/imaging/cmos-image-sensors/ev76c661/,
Online. Accessed 11/20/2017., 2017.

[91] Usb3 vision camera with e2v / aptina sensors - mvbluefox3 - industrial image processing,
https : / / www . matrix - vision . com / USB3 - vision - camera -
mvbluefox3.html, Online. Accessed 10/13/2017, Aug. 2017.

[92] Tau 2 lwir camera cores | flir systems, http://www.flir.com/cores/
display/?id=54717, Online. Accessed 11/2/2017, 2017.

[93] J.-Y. Bouget, Camera calibration toolbox for matlab, http://www.vision.
caltech.edu/bouguetj/calib_doc/, Online. Accessed 4/15/2018, 2018.

[94] Juno spacecraft 1:180 for 3d printing by dustin970 - thingiverse, https : / /
www.thingiverse.com/thing:1515076, Online. Accessed 4/10/2018,
Apr. 2016.

148

https://www.uni-muenster.de/imperia/md/content/ziv/multimedia/downloads/kodak___noise_sources.pdf
https://www.uni-muenster.de/imperia/md/content/ziv/multimedia/downloads/kodak___noise_sources.pdf
https://www.uni-muenster.de/imperia/md/content/ziv/multimedia/downloads/kodak___noise_sources.pdf
https://docs.opencv.org/3.2.0/d7/d8b/tutorial_py_lucas_kanade.html
https://docs.opencv.org/3.2.0/d7/d8b/tutorial_py_lucas_kanade.html
https://www.youtube.com/watch?v=jATBbjU4IyA
https://www.youtube.com/watch?v=jATBbjU4IyA
https://www.youtube.com/watch?v=_NPghRm48ok
https://www.youtube.com/watch?v=_NPghRm48ok
https://www.acs.org/content/acs/en/climatescience/energybalance/planetarytemperatures.html
https://www.acs.org/content/acs/en/climatescience/energybalance/planetarytemperatures.html
https://www.acs.org/content/acs/en/climatescience/energybalance/planetarytemperatures.html
https://www.e2v.com/products/imaging/cmos-image-sensors/ev76c661/
https://www.e2v.com/products/imaging/cmos-image-sensors/ev76c661/
https://www.matrix-vision.com/USB3-vision-camera-mvbluefox3.html
https://www.matrix-vision.com/USB3-vision-camera-mvbluefox3.html
http://www.flir.com/cores/display/?id=54717
http://www.flir.com/cores/display/?id=54717
http://www.vision.caltech.edu/bouguetj/calib_doc/
http://www.vision.caltech.edu/bouguetj/calib_doc/
https://www.thingiverse.com/thing:1515076
https://www.thingiverse.com/thing:1515076

[95] Ultimaker 3: Unrivaled print quality, https : / / ultimaker . com / en /
products/ultimaker-3, 2018.

[96] H. D. Black, “A passive system for determining the attitude of a satellite”,
AIAA Journal, vol. 2, no. 7, pp. 1350–1351, 1964.

[97] X. R. Li and V. P. Jilkov, “Survey of maneuvering target tracking. part v: Multiple-
model methods”, IEEE Transactions on Aerospace and Electronic Systems, vol.
41, no. 4, pp. 1255–1321, Oct. 2005.

[98] K. Morioka and H. Hashimoto, “Color appearance
based object identification in intelligent space”, in
Advanced Motion Control, 2004. AMC ’04. The 8th IEEE International Workshop on,
2004, pp. 505–510.

[99] D. A. Ross, J. Lim, R.-S. Lin, and M.-H. Yang, “Incremental learning for robust
visual tracking”, International Journal of Computer Vision, vol. 77, no. 1, pp. 125–
141, 2008.

[100] W.-C. Park, H.-J. Shin, B. Lee, H. Yoon, and T.-D. Han, “Raychip: Real-time ray-
tracing chip for embedded applications”, in Hot Chips 26 Symposium, Cupertino,
CA: IEEE, Aug. 2014.

149

https://ultimaker.com/en/products/ultimaker-3
https://ultimaker.com/en/products/ultimaker-3

VITA

Christopher Ryan McBryde was born in Winter Park, Florida, on July 20, 1988, the 19th

anniversary of the landing of Apollo 11. He attended elementary and middle school in

Maitland, Florida, and graduated from Winter Park High School in 2006 as a valedictorian

with his International Baccalaureate diploma. Christopher graduated summa cum laude

from the University of Florida in 2010 with a Bachelor of Science degree in aerospace

engineering. He began graduate school at the University of Texas at Austin under the

advisement of Dr. Glenn Lightsey where he received his Master of Science in Engineering

in aerospace in 2012. Christopher began his doctoral research at UT Austin with the support

of the NASA Space Technology Research Fellowship during which he interned at Ames

Research Center and the Jet Propulsion Laboratory in the summer. He transferred to the

Georgia Institute of Technology in 2015 where he completed his PhD.

150

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Motivation
	Applications
	Cooperative control
	Satellite servicing or de-orbit
	Hazard avoidance

	Statement of contributions
	Appearance matching for spacecraft
	Spacecraft imaging simulation environment
	Multi-spectral sensor fusion

	Background
	Current algorithms
	Object identification
	Scale-invariant feature transformation
	Shape context matching
	3D model search

	Relative pose estimation
	Simultaneous localization and mapping
	Blobber method
	Perspective-n-point

	Sensor fusion and filtering

	Current hardware
	Single-spectrum sensors
	Orbital Express
	MESSENGER
	Hubble Space Telescope Servicing Mission 4

	Multi-spectrum sensors
	Near-infrared sensitivity
	Single-device sensor fusion

	Summary

	Spacecraft appearance matching
	Overview
	Original work
	Appearance matching for spacecraft visual navigation

	Theoretical basis
	Image compression
	Intelligent library sorting and nearest neighbor search
	Karhunen–Loève transform

	Algorithm
	Training procedure
	Normalization
	Universal eigenspace and hypersurface
	Object eigenspaces and hypersurfaces

	Testing procedure
	Object identification
	Relative attitude determination
	Library search and confidence

	Robustness of appearance matching
	Fast Robust PCA
	Background randomization

	Tuning and observability
	Quantity of eigenpairs
	Quantity of training images
	Observability

	Spacecraft image simulation environment
	State of the art and contribution to the field
	Infrared simulation
	Background randomization
	Automation
	Cost
	Contribution

	Visible spectrum image simulation
	Solving the visibility problem
	Z-buffer
	Ray tracing

	Triangular mesh
	Radiation simulation
	Types of reflectance
	Simulated radiance

	Measurement response
	Error sources

	Infrared spectrum image simulation
	Thermal simulation
	Conduction
	Solar irradiation
	Body radiation
	Temperature change

	Simulated radiance

	Fidelity of simulation
	Thermal imaging
	Specular effects
	Background

	Software implementation
	Function sise
	Initialization
	Function cam

	Target modeling
	Radiation simulation
	File creation and refinement
	Distortion
	Functions vis_err and ir_err
	Function add_background

	GPU acceleration
	CUDA Overview
	Function kernel
	Function hit
	Functions light and therm
	Helper functions

	Sensor fusion and filtering
	Sensor fusion strategies
	Target identification and image cropping
	Optical flow
	Iterative processing
	Infrared masking
	Relative position

	Hybrid PCA
	Reconciled PCA

	Multi-sensor framework
	Object identification
	Attitude determination

	A priori and time history inclusion
	Virtual sensor framework
	Object identification
	Pose estimation

	Results
	Background randomization performance
	Performance on black-background test images
	Performance on star test background
	Performance on cloud test background
	Performance on horizon background

	Sensor fusion versus single-spectrum performance
	Simulated hardware
	Results

	Robustness of appearance matching to imaging error
	Distortion
	Blur
	Noise
	Glints
	Other effects
	Results
	Object identification
	Attitude determination
	Relative position
	Summary

	Effect of distance on appearance matching
	Hardware-in-the-loop test
	Analog model
	Test setup
	Results
	Object identification
	Attitude determination

	Mission scenario
	Scenario setup
	Results

	Conclusion and future work
	Summary of results
	Future work
	Multiple model filtering
	Color-aided appearance matching
	Quantity of eigenvalues
	Virtual sensing
	Adaptive learning
	Better simulation fidelity and efficiency

	Reflection

	References
	Vita

