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SUMMARY

Tanenbaum, Trenk, and Fishburn introduced the concept of linear discrep-

ancy in 2001, proposing it as a way to measure a partially ordered set’s distance from

being a linear order. In addition to proving a number of results about linear discrep-

ancy, they posed eight challenges and questions for future work. This dissertation

completely resolves one of those challenges and makes contributions on two others.

This dissertation has three principal components: 3-discrepancy irreducible posets of

width 3, degree bounds, and online algorithms for linear discrepancy. The first prin-

cipal component of this dissertation provides a forbidden subposet characterization of

the posets with linear discrepancy equal to 2 by completing the determination of the

posets that are 3-irreducible with respect to linear discrepancy. The second principal

component concerns degree bounds for linear discrepancy and weak discrepancy, a

parameter similar to linear discrepancy. Specifically, if every point of a poset is in-

comparable to at most ∆ other points of the poset, we prove three bounds: the linear

discrepancy of an interval order is at most ∆, with equality if and only if it contains

an antichain of size ∆ + 1; the linear discrepancy of a disconnected poset is at most

b(3∆ − 1)/2c; and the weak discrepancy of a poset is at most ∆ − 1. The third

principal component of this dissertation incorporates another large area of research,

that of online algorithms. We show that no online algorithm for linear discrepancy

can be better than 3-competitive, even for the class of interval orders. We also give

a 2-competitive online algorithm for linear discrepancy on semiorders and show that

this algorithm is optimal.
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CHAPTER I

INTRODUCTION

In this dissertation, we study a property of partially ordered sets known as linear

discrepancy. Given any set of objects and a partial order on it, we can create a

linear extension of the partial order, i.e., a total order on the same set that respects

the partial order. When two objects are incomparable, we have a choice of where

they can be placed in the linear extension relative to each other. Given any two

incomparable objects, it is always possible to form a linear extension in which they

appear consecutively, possibly at the expense of placing other incomparable objects

far apart. On the other hand, for some partial orders, it is possible to form a linear

extension in which one incomparable object appears in the lowest position in the

linear extension and the other appears in the highest. Linear extensions in which

objects between which we are unable to make a comparison are placed far apart are

undesirable in many applications since the discrepancy between the objects’ positions

creates an implicit comparison between two objects that are incomparable. The

principal motivation behind the concept of linear discrepancy is to avoid this situation.

With this motivation in hand, we continue this chapter by presenting the formal

definitions and background necessary for the subsequent chapters. We also establish

some initial results which we will find useful in the dissertation. In Chapter 2, we

explore a characterization problem for posets with small linear discrepancy. The focus

of Chapter 3 is on bounds for linear discrepancy of particular classes of posets. In

Chapter 4, we investigate online algorithms for linear discrepancy.
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1.1 Basic definitions and notation

1.1.1 Partially ordered sets

A partially ordered set P = (X,≤P ) consists of a set X and a reflexive, antisymmetric,

and transitive binary relation ≤P on X. The relation ≤P is a partial order, and we

call X the ground set. We will usually refer to partially ordered sets as posets,

although some authors prefer ordered sets. In many cases, we will treat the ground

set implicitly and write x ∈ P for x ∈ X. In this dissertation, we will always assume

that the ground set of a poset is finite and will suppress the subscript on the order

relation when it is clear from context. If x, y ∈ X, we will write x ≤P y to indicate

that (x, y) ∈≤P with the possibility that x = y. If we insist that x 6= y, we write

x <P y. We say that x and y are comparable in P if x <P y, y <P x, or x = y

and denote this by x ⊥P y. We say that x and y are incomparable in P if they are

not comparable in P and write x‖Py. If x <P y and there is no z ∈ X such that

x <P z <P y, we say that x is covered by y or y covers x and write x l y. We say

that x is a maximal element or simply maximal if there is no y such that x <P y.

Similarly, x is a minimal element or minimal if there is no y such that y <P x.

We will frequently find it useful to visualize posets. We do this by identifying

the elements of the poset with points in the standard Cartesian plane. In such a

visualization, we require that if x <P y, then the vertical coordinate of the point

corresponding to x must be smaller than the vertical coordinate of the point corre-

sponding to y. If xlP y, then we draw a line segment from the point corresponding

to x to the point corresponding to y. Such line segments are always drawn so that

they do not pass through any point of the plane which corresponds to a point of the

poset. (To accommodate this rule, particularly when drawing by hand, we sometimes

relax the requirement that line segments be used and allow curves as well.) Such a

visualization of a poset is called its Hasse diagram, order diagram, or often simply

diagram. In Figure 1.1, we show the Hasse diagram for the poset P = (X,≤P ) in

2



1 2 3

12 13 23

123

{}

Figure 1.1: The Hasse diagram of the poset of subsets of {1, 2, 3}

which X is the set of all subsets of {1, 2, 3} and the partial order is subset contain-

ment, i.e., A <P B if and only if A ⊆ B. (For illustrative purposes, in Figure 1.1, we

have written subsets by simply listing the elements, e.g., {1, 2} is written as 12.)

If P = (X,≤P ) and Q = (Y,≤Q) are posets with Y ⊆ X, we say that Q is a

subposet of P if ≤Q=≤P ∩(Y ×Y ). If we are given Y ⊆ X, we define the subposet of

P induced by Y to be (Y, (Y × Y )∩ ≤P ). The dual of P is the poset Pd = (X,≤dP ),

where ≤dP := {(y, x) ∈ X ×X | (x, y) ∈≤P}. If P = Pd, we say that P is self-dual. If

P = (X,≤P ) and Q = (Y,≤Q) are posets with X and Y disjoint, we define the poset

P + Q, often called the sum of P and Q, to be the poset with ground set X ∪ Y and

partial order ≤P ∪ ≤Q. We say P = (X,≤P ) is connected if for all x, y ∈ X, there is

a sequence x = x1, x2, . . . , xn = y with xi ⊥P xi+1 for i = 1, . . . , n− 1. Otherwise, P

is disconnected. If P = (X,≤P ) is a poset and S ⊆ X, the set

D(S) := {x ∈ X | there is s ∈ S with x < s}

is called the down-set of S. We let D[S] := D(S)∪S. If S = {y}, we will write D(y)

instead of D({y}). Similarly, we define the up-set of S to be

U(S) := {x ∈ X | there is s ∈ S with x > s}

and let U [S] := U(S) ∪ S. We also define Inc(x) as {y ∈ X | x‖Py}, the set of

points incomparable to x in P and let ∆(P) := maxx∈X | Inc(x)|. We should point

out that this notation is nonstandard, as it is often used in the literature to denote

the maximum number of elements with which any point is comparable.

3



A chain in a poset is a set C ⊆ X such that x ⊥P y for all x, y ∈ C. The size of a

largest chain in P is called the height of P, denoted height(P). An antichain is a set

A ⊆ X such that x‖Py for all x, y ∈ A. The size of a largest antichain in P is called

the width of P, denoted width(P). If n is a positive integer, we let [n] denote the set

{1, 2, . . . , n}. We also define n to be the total order {0 < 1 < 2 < · · · < n− 1} on n

points and refer to it as the chain on n points. One of the most celebrated theorems

in the theory of partially ordered sets is the following theorem of Dilworth [7].

Theorem 1.1.1 (Dilworth, 1950). Let P = (X,≤P ) be a poset and w := width(P).

Then there exist w disjoint chains C1, C2, . . . , Cw such that X = C1 ∪ C2 ∪ · · · ∪ Cw,

and X cannot be partitioned into fewer than w chains.

We also note the following elementary (but useful) result, which is often referred

to as the “dual of Dilworth’s theorem” because of the way it interchanges the roles

of chains and antichains.

Proposition 1.1.2. Let P = (X,≤P ) be a poset and h := height(P). Then there

exist h disjoint antichains A1, A2, . . . , Ah such that X = A1 ∪ A2 ∪ · · · ∪ Ah, and X

cannot be partitioned into fewer than h antichains.

A total order on a set X is a partial order such that every pair of points in X is

comparable. A linear extension L of a poset P = (X,≤P ) is a total order on X such

that if x <P y, then x <L y. If |X| = n and a linear extension L orders the points of X

as x1, x2, . . . , xn and x = xi, we say that i is the height of x in L and write hL(x) = i.

We write E(P) for the collection of all linear extensions of P. For convenience, we

will often refer to a linear extension of P as a labelling of X (|X| = n) using the

elements of [n] := {1, 2, . . . , n} such that the ordering created by the labelling is a

linear extension of P. Linear extensions have played a central role in the development

of the combinatorics of partially ordered sets. In a 1941 paper, Dushnik and Miller

[8] showed that every partial order is the intersection of a collection R ⊆ E(P) and
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defined the dimension of P, dim(P), to be the least t such that ≤P is the intersection

of t linear extensions from E(P). If ≤P= ∩L∈RL, we call R a realizer of the partial

order ≤P . Dushnik and Miller also showed that finite posets of dimension n exist for

every positive integer n by constructing the class of posets now known as the standard

examples Sn.

It is not difficult to see that R is a realizer of ≤P if and only if for each pair x‖Py,

there are L,L′ ∈ R with x <L y and y <L′ x. Rabinovitch and Rubin showed in

[33] that it is enough to consider only special pairs of incomparable points known as

critical pairs. We say (x, y) is a critical pair of P = (X,≤P ) if x‖Py, D(x) ⊆ D(y),

and U(x) ⊇ U(y). In particular, Rabinovitch and Rubin showed that R is a realizer

if and only if for every critical pair (x, y), there exists L ∈ R with y <L x. Such

a critical pair is said to be reversed in L. For well over 30 years, the study of the

combinatorics of posets has focused in large part on dimension theory, but in this

dissertation we will investigate another property that shares many similarities with

dimension, but stands in stark contrast in other ways. Readers interested in learning

more about dimension theory should consult Trotter’s monograph [40].

1.1.2 Graph theory

Although the primary objects of study in this dissertation are partially ordered sets,

there are many instances where posets are closely related to another combinatorial

structure: the graph. For our purposes, a graph G = (V,E) consists of a finite set

V and a set E of two-element subsets of V . The elements of V are called vertices

and the elements of E are known as edges. Vertices u, v ∈ V are said to be adjacent

or neighbors if {u, v} ∈ E, in which case we will usually simply write uv ∈ E. Note

that uv ∈ E and vu ∈ E are equivalent. If e = uv ∈ E, we say that u and v

are the endpoints of e and that e is incident to u and v. The degree of a vertex v,

denoted d(v) is the number of edges incident to v. The maximum degree of G is

5



∆(G) := maxv∈V d(v). A graph H = (V ′, E ′) is a subgraph of G = (V,E) if V ′ ⊆ V ,

E ′ ⊆ E. We say that H is an induced subgraph of G if H is a subgraph of G and

every edge in E with both endpoints in V ′ is also in E ′.

Given a poset P = (X,≤P ), we can construct a graph GP with vertex set V := X

and uv ∈ E if and only if u ⊥P v. This graph is called the comparability graph of P.

The class of graphs that can be comparability graphs was characterized by Gallai [14]

in 1967. He identified six infinite families of graphs and 10 other graphs that cannot

appear as an induced subgraph in a comparability graph. These are the minimal

graphs that cannot be comparability graphs and are also referred to as forbidden

subgraphs for comparability graphs. Our characterization result of Chapter 2 will

have a very similar flavor to Gallai’s characterization of comparability graphs. We

can also define the cocomparability graph of P = (X,≤P ) (sometimes called the

incomparability graph) to be the graph Gc
P = (V,E) with V := X and uv ∈ E if

and only if u‖Pv. It is important to note that although a given poset has only one

comparability graph and one cocomparability graph, in general, a (co)comparability

graph corresponds to several posets. Any property of a poset that is the same for

all posets with the same comparability graph is called a comparability invariant. For

this dissertation, the graphs we consider will all be cocomparability graphs of posets

because we will have great interest in incomparable pairs in posets in our study of

linear discrepancy.

1.2 Classes of special posets and graphs

As we shall soon see, one special class of posets (and its corresponding class of co-

comparability graphs) has played a central role in the study of linear discrepancy

since the first paper [37] by Tanenbaum et al. In this section, we describe this class

of posets along with a subclass thereof and their characterizations.

An interval order is a poset P = (X,≤P ) for which we can associate a closed,
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bounded interval I(x) = [l(x), r(x)] ⊂ R to each element x ∈ X such that for all

x, y ∈ X, x <P y if and only if r(x) < l(y), i.e., I(x) lies completely to the left of

I(y). We call the associated collection of intervals an interval representation of P.

Note that we do not require that the intervals associated to elements of P be distinct;

however, since we are assuming that X is finite, we may in fact assume when it is

convenient that the intervals are all distinct and in fact that no real number appears

more than once as the endpoint of an interval. The cocomparability graph of an

interval order is called an interval graph. Interval orders are one of the most studied

special classes of posets, so much so that Fishburn wrote a monograph [11] on interval

orders and interval graphs. This monograph contains a nice summary of the origins

of interval orders, dating back to a 1914 paper by Wiener [43], and discussing the rise

to common study because of interest in the behavior sciences in the middle of the

last century.

In [10], Fishburn proved the following characterization of interval orders, which

we will find very useful, particularly in Chapter 4.

Theorem 1.2.1. Let P = (X,≤P ) be a poset. Then the following statements are

equivalent.

(1) P is an interval order.

(2) P does not contain 2 + 2 as a subposet.

(3) For every x, y ∈ X, either D(x) ⊆ D(y) or D(y) ⊆ D(x).

(4) For every x, y ∈ X, either U(x) ⊆ U(y) or U(y) ⊆ U(x).

In 1962, five years before Gallai published his characterization of cocomparability

graphs, Lekkerkerker and Boland [30] gave a characterization of interval graphs by

forbidden subgraphs. Their list consists of four infinite families and two other graphs

that are forbidden as induced subgraphs of interval graphs.

7



A semiorder is an interval order having an interval representation in which all

intervals have the same (usually taken to be unit) length. Their cocomparability

graphs are usually referred to as unit interval graphs. Scott and Suppes [36] first

characterized semiorders in 1958. The formulation we give below is not their original

version, but rather utilizes Fishburn’s later characterization of Theorem 1.2.1.

Theorem 1.2.2. Let P = (X,≤P ) be an interval order. Then P is a semiorder if

and only if P does not contain 1 + 3 as a subposet.

These characterization theorems will give us powerful tools to use in what follows.

We will often be able to deduce facts about the structure of an interval order because

if those facts were false, the poset would have to contain a 2 + 2. We also note that

for an interval order, if D(x) ( D(y), then l(x) < l(y) in any representation. When

considering a semiorder, this also tells us about the ordering of the right endpoints,

a fact we will repeatedly exploit in Chapter 4.

We close this section with a definition and characterization of an even more re-

strictive class of posets that will be used as we introduce and discuss the history of

linear discrepancy in the next section. A finite poset P = (X,≤P ) is a weak order if

there exists a function f : X → R such that for all x, y ∈ X with x 6= y, we have

(1) x <P y if and only if f(x) < f(y) in R, and

(2) x‖Py if and only if f(x) = f(y).

We can view a weak order as an interval order in which the representation consists

entirely of degenerate intervals [f(x), f(x)]. The following characterization of weak

orders is elementary.

Proposition 1.2.3. Let P = (X,≤P ) be a poset. Then the following statements are

equivalent.

(1) P is a weak order.
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(2) P does not contain 1 + 2 as a subposet.

(3) X can be partitioned into into antichains A1, A2, . . . Ah so that if x ∈ Ai and

y ∈ Aj with i < j, then x <P y.

1.3 Linear discrepancy and bandwidth

The principal property of posets studied in this dissertation will be linear discrepancy.

To place the study of linear discrepancy in its proper historical context, we first

introduce a property known as weak discrepancy, which Trenk introduced in [38] as

weakness. (We will uniformly use “weak discrepancy” as this property’s name, even

when discussing results from the papers where it was referred to as weakness.)

Definition 1.3.1 (Weak discrepancy). Let P = (X,≤P ) be a poset and f an integer-

valued function on X. We call f a k-weak labelling if (1) f(x) < f(y) whenever x <P y

and (2) |f(x) − f(y)| ≤ k whenever x‖Py. The smallest k for which there exists a

k-weak labelling of P is called the weak discrepancy of P and denoted wd(P).

The idea behind weak discrepancy is, on some level, to measure a poset’s dis-

tance from being a weak order. It is straightforward to see that if P = (X,≤P ) is a

weak order and A1, A2, . . . , Ah is the antichain partition of X guaranteed by Propo-

sition 1.2.3, then the function f : X → [h] defined by f(x) = i where x ∈ Ai is a

0-weak labelling, so weak orders have weak discrepancy 0. In fact, they are the only

posets with wd(P) = 0. Trenk gave a polynomial time algorithm for computing weak

discrepancy in [38], and then with Gimbel gave another in [16]. Gimbel and Trenk

also showed that weak discrepancy is a comparability invariant.

The next work on weak discrepancy came in [37], when Tanenbaum, Trenk, and

Fishburn proved several more results about it and also introduced linear discrepancy,

which we now define.
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Definition 1.3.2 (Linear discrepancy). Let P = (X,≤P ) be a poset and L ∈ E(P).

We define the linear discrepancy of L, denoted ld(P, L) to be maxx‖P y |hL(y)−hL(x)|.

The linear discrepancy of P is then defined as ld(P) := minL∈E(P ) ld(P, L). (If P is

a linear order, we take ld(P) to be 0.) A linear extension L with ld(P, L) = ld(P) is

said to be optimal.

What we call ld(P, L) here was called the uncertainty of L and denoted uncert(L)

in [37]. We have chosen our notation for its closer alignment to the notation in use for

graph bandwidth, which we will soon define. Notice that hL is a k-weak labelling for

k = ld(P, L) and is also injective, so we can view linear discrepancy as the restriction

of weak discrepancy to require that the labelling function be an injection. Much as

weak discrepancy measures the distance of a poset from being a weak order, linear

discrepancy is a measure of a poset’s distance from being a linear order. In this

sense, it is quite similar to dimension. However, there are also many important ways

in which linear discrepancy is dissimilar from dimension, and we will explore them as

we proceed.

Since it is possible to compute a poset’s weak discrepancy in polynomial time, a

natural first question for the originators of linear discrepancy to ask was whether the

same was true for linear discrepancy. Since it was known that weak discrepancy was

a comparability invariant, it also made sense to see if considering the comparability

or cocomparability graph of a poset could aid in computing its linear discrepancy. If

one pursues that line of research, they quickly discover the similarities between linear

discrepancy and a long-studied graph property known as bandwidth.

Definition 1.3.3 (Bandwidth). Let G = (V,E) be a graph with |V | = n and fix a

bijection σ : V → [n]. We define the bandwidth of the bijection σ, denoted bw(G, σ),

to be maxxy∈E |σ(y) − σ(x)|. The bandwith of G is then minσ bw(G, σ), where the

minimum is taken over all bijections σ : V → [n].

The problem of minimizing bandwidth arose in the study of matrices and soon
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moved into graph theory. In [32], Papadimitriou showed that determining if a graph’s

bandwidth is at most k is NP-complete. Subsequently, Garey, Graham, Johnson,

and Knuth showed in [15] that the situation is even worse by proving that it is NP-

complete to determine if the bandwidth of a tree with maximum degree 3 is at most

k. Because of the difficulties of computing the bandwidth of a graph, much work has

been done on aproximating it, bounding it, and computing it for special classes of

graphs. The survey article by Chinn, Chvátalová, Dwedney, and Gibbs [5] and an

update by Lai and Williams [29] provide an overview of this work. The one result

of this type that will be of particular interest to us is an algorithm of Kleitman and

Vohra, who proved in [27] that for G an interval graph, the decision problem “Is

bw(G) ≤ k?” can be answered in polynomial time.

To see the relationship between linear discrepancy and bandwidth, note that for

a poset P = (X,≤P ) with |X| = n, incomparable pairs correspond to edges in the

cocomparability graph Gc
P. Thus, a linear extension L of P can be interpreted as

a bijection from the vertex set of Gc
P to [n], and so we have ld(P, L) = bw(Gc

P, L)

and ld(P) ≥ bw(Gc
P). In [12], Fishburn, Tanenbaum, and Trenk showed that in

fact ld(P) = bw(Gc
P). They did this by showing that P can be transformed to an

interval order without changing its linear discrepancy, that the bijection found by the

Kleitman-Vohra algorithm is actually a linear extension of the interval order, and that

they could modify this linear extension to a linear extension of the original posest

without increasing its linear discrepancy. Once they knew that the linear discrepancy

of a poset is equal to the bandwidth of its cocomparability graph, the same authors

were able to show in [37] that it is NP-complete to determine if the linear discrepancy

of a poset is at most k since Kloks, Kratsch, and Müller showed in [28] that it is NP-

complete to determine if the bandwidth of the complement of a bipartite graph is

at most k, and therefore this question is NP-complete for cocomparability graphs as

well.
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We conclude this section with a collection of elementary bounds on linear discrep-

ancy and formulas for calculating linear discrepancy. Unless another citation is given,

the result can be found in [37].

Lemma 1.3.4. For every poset P, ld(P) ≥ width(P)− 1 ≥ dim(P)− 1.

The lower bound in the following theorem is trivial. However, the upper bound is

not, and is a result of Rautenbach [35].

Theorem 1.3.5. For every poset P, d∆(P)/2e ≤ ld(P) ≤ 2∆(P)− 2.

Theorem 1.3.6. If P = n1 + n2 + · · ·+ nk with k ≥ 2 and n1 ≥ n2 ≥ · · · ≥ nk, then

ld(P) = dn1/2e+ n2 + · · ·+ nk − 1 and wd(P) = d(n1 + n2)/2e − 1.

Theorem 1.3.7. If P is a semiorder, then ld(P) = width(P) − 1 and the linear

extension which orders the points according to the left endpoints of their intervals in

a unit interval representation is optimal.

1.4 Useful results on linear discrepancy

This chapter concludes by presenting a number of new results for linear discrepancy

that we will find useful in the main portion of the dissertation.

1.4.1 Critical pairs and removing points

One of the unsurprising similarities between linear discrepancy and dimension is that

they are both monotonic. That is, if Q is a subposet of P, then ld(Q) ≤ ld(P) and

dim(Q) ≤ dim(P). This is quite straightforward to see. When studying the dimension

of partially ordered sets, one of the first results one encounters after monotonicity is

the following theorem of Hiraguchi [17].

Theorem 1.4.1 (Hiraguchi [17]). Let P = (X,≤P ) be a poset with |X| ≥ 2 and let

Q be the subposet of P induced by X − {x}. Then dim(P) ≤ 1 + dim(Q).
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It is common to refer to Theorem 1.4.1 by saying that “dimension is continuous,”

since the removal of a small number of points can only cause a small change in the

dimension. In fact, it is a longstanding open question as to whether a stronger form

of this result is true. Namely, the question is whether for every poset P = (X,≤P ),

there exists a pair of points x, y ∈ X such that the removal of x and y decreases the

dimension of P by at most one. Since linear discrepancy and dimension are both

monotonic, we might hope that they are both continuous as well. Unfortunately, this

is not the case. As an example, consider the poset 1 + n. We know by Theorem 1.3.6

that ld(1+n) = dn/2e, but if we remove the isolated point from 1+n, we are simply

left with a chain, which has linear discrepancy 0. Thus, it is not possible to remove an

arbitrary point from a poset and decrease its linear discrepancy by a small amount.

However, we are able to prove a weaker result, which appears below as Theorem 1.4.4.

Before doing this, however, we establish the following pair of lemmas about the role

that critical pairs play in the study of linear discrepancy.

Lemma 1.4.2. Let P = (X,≤P ) be a poset and L a linear extension of P. If x and

y are incomparable in P and hL(y)− hL(x) = ld(P, L), then (x, y) is a critical pair.

Proof. Suppose x‖Py, x <L y, and hL(y) − hL(x) = ld(P, L). If z <P x, then

z <L x, and thus since hL(y) − hL(x) = ld(P, L), we must have z <P y. Therefore,

D(x) ⊆ D(y). Similarly, if z >P y, then z is above y in L and must therefore also be

greater than x in P. Thus, U(y) ⊆ U(x) and (x, y) is a critical pair.

The preceding result will allow us to focus our search for incomparable pairs

witnessing the linear discrepancy of a linear extension to critical pairs, which we will

find useful on multiple occasions. Our next lemma shows that critical pairs play a

role for linear discrepancy that stands in stark contrast to their role in dimension

theory, where any linear extension that does not reverse any critical pair is useless in

forming a realizer. For the following, we shall refer to a critical pair (x, y) as bicritical
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if (y, x) is also a critical pair.

Lemma 1.4.3. Let P = (X,≤P ) be a poset. There exists a linear extension of P

that is optimal with respect to linear discrepancy and reverses no critical pairs that

are not bicritical.

Proof. Consider a linear extension L of P that reverses at least one non-bicritical

critical pair. Among all non-bicritical critical pairs that L reverses, take (x, y) so

that hL(x) − hL(y) is minimal. We know that L must place D(y) below y, which is

below x in L, which must be below U(x) in L. Now notice that any point w satisfiying

y <L w <L x must be incomparable to both x and y, since (x, y) is a critical pair.

Thus, we may form a new linear extension L′ from L simply by switching the positions

of x and y. Furthermore, since (x, y) is a critical pair, any point less than y in L and

incomparable to y must be incomparable to x, and any point greater than x in L and

incomparable to x must be incomparable to y. Thus, the distance between a pair of

incomparable points in L′ is no larger than it is in L, so ld(P, L′) = ld(P, L). Suppose

that switching the positions of x and y has introduced a new reversed critical pair

(that is not bicritical). Then one point of the critical pair must be x or y, and the

other must lie between them in L (and thus in L′). Let this point be z, and without

loss of generality, let us assume that (y, z) is a critical pair that is not bicritical.

Then D(y) ⊆ D(z) and U(y) ⊇ U(z). But since (x, y) is a critical pair, we have that

D(x) ⊆ D(y) ⊆ D(z) and U(x) ⊇ U(y) ⊇ U(z), and thus (x, z) is also a critical

pair. Furthermore, since neither (x, y) nor (y, z) is bicritical, (x, z) is not bicritical.

Now notice that if (y, z) is reversed in L′, we have that (x, z) is reversed in L. Since

y <L z <L x, we have that hL(x)− hL(z) < hL(x)− hL(y), contradicting our choice

of (x, y). Thus, L′ reverses fewer non-bicritical critical pairs than L and does not

increase its linear discrepancy. Thus, we may take any optimal linear extension of

P and use this process until arriving at an optimal linear extension that does not

reverse any non-bicritical critical pairs.
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As previously remarked, it is possible to delete a single point from a poset with

linear discrepancy n/2 and decrease the poset’s linear discrepancy to zero. However,

the following weaker result, which one might be tempted to call the “semi-continuity

of linear discrepancy,” is true.

Theorem 1.4.4. For any poset there exists a point whose removal reduces the linear

discrepancy by at most one.

Proof. Let P = (X,≤P ) be a poset. We first suppose that there are two minimal

elements x and x′ of P with the same up-set. Let L be a linear extension of P−{x′}

that is optimal with respect to linear discrepancy. Create a new linear extension L′

by inserting x′ immediately below x in L. It is clear that L′ is a linear extension of

P. Furthermore, since Inc(x) − {x′} = Inc(x′) − {x}, the linear discrepancy of L′ is

at most one more than the linear discrepancy of L. Thus the removal of x decreased

ld(P) by at most one.

Now suppose that no two minimal elements have the same up-set. Then there

is a minimal emement z such that there is no critical pair of the form (y, z). (A

minimal element z with |U(z)| maximum has this property.) Now consider a linear

extension L of P−{z} that is optimal with respect to linear discrepancy and let s be

the element of U(z) ∪ {v | (z, v) is a critical pair} for which hL(s) is minimal. Form

another linear extension L′ by inserting z immediately below s. By construction, L′ is

a linear extension of P. Since we only wish to show that ld(P, L′) is at most one more

than the linear discrepancy of ld(P, L), the only obstructions are of the form z‖z′.

But by Lemma 1.4.2 and our choice of z, we may restrict our attention to critical

pairs (z, z′).

If s ∈ U(z), our choice of s and z′ imply that s <L z′, and thus we must have

s‖z′, as otherwise z and z′ are comparable. If s 6∈ U(z), then (z, s) is a critical pair,

so U(s) ⊆ U(z) and in particular s‖z′, as otherwise we would have z′ >P z. But then

hL′(z
′)−hL′(z) = hL(z′)−hL(s) + 1 ≤ ld(P−{z}) + 1. Hence the linear discrepancy
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of P− {z} is at least ld(P)− 1 as desired.

1.4.2 Ramsey complexity

A common type of question in combinatorial mathematics involves determining what

substructures are necessary to force a given parameter to be large. When Dushnik

and Miller defined dimension in [8], they showed that posets with arbitrarily large

dimension exist, which gave an indication that it might be an interesting property to

study, since dimension would not be very interesting if no poset had dimension larger

than five, for example. For linear discrepancy, we have already noted in previous

sections that ld(1 + n) = dn/2e and that a poset consisting solely of an n-element

antichain has linear discrepancy n− 1. Of course, these examples merely address the

sufficiency of a subposet to force a parameter up. In this section, we will examine the

question of necessity. To do so, we will formalize the notion of “forcing” a parameter

to be large, following the terminology found in Trotter’s monograph [40].

Consider an infinite set C of discrete structures and a partial order ≺ on C. Let

f : C → R+ be any monotonic parameter on C; that is, if A,B ∈ C, then A ≺ B

implies f(A) ≤ f(B). We say that an infinite chain A1 ≺ A2 ≺ · · · is a Ramsey trail

if f(An)→∞ as n→∞. The Ramsey complexity of f is the least t for which there

exist t Ramsey trails

T1 = {A11 ≺ A12 ≺ A13 ≺ · · · }

T2 = {A21 ≺ A22 ≺ A23 ≺ · · · }
...

Tt = {At1 ≺ At2 ≺ At3 ≺ · · · }

and a function g : N → N such that for every n ∈ N, if f(A) ≥ g(n), then there is

s ∈ [t] such that Asn ≺ A.

As our first example of a set of Ramsey trails, we consider the result after which

the concept was named—Ramsey’s Theorem. To do so, we will use the following
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terminology and notation. Let Kn denote the complete graph on n vertices, i.e., the

n-vertex graph with all possible edges, and let In denote the independent graph on n

vertices, i.e., the n-vertex graph with no edges at all.

Theorem 1.4.5 (Ramsey [34]). Given positive integers m and n, there exists an

integer R(m,n) such that any graph on at least R(m,n) vertices contains either Kn

or In as an induced subgraph.

A casual explanation of Ramsey’s Theorem might be “the only way to force the

number of vertices in a graph to be large is to include a big complete graph or large

independent graph as an induced subgraph.” We will now see how to restate Ramsey’s

Theorem into the language of Ramsey trails.

Example 1.4.6. Let C be the collection of all graphs and say H ≺ G if H is an

induced subgraph of G. For a graph G = (V,E), define f(G) := |V |. Then it is clear

that T1 = {K1 ≺ K2 ≺ K3 ≺ · · · } and T2 = {I1 ≺ I2 ≺ I3 ≺ · · · } are Ramsey trails

for f . Furthermore, Theorem 1.4.5 establishes that these are the only Ramsey trails

needed for f , and so the Ramsey complexity here is 2.

Not all combinatorial parameters have finite Ramsey complexity. For instance, if C

is the class of all posets and ≺ is the “is a subposet of” relation, the standard examples

Sn form a Ramsey trail for dimension. Another Ramsey trail for dimension is the

class of canonical interval orders In, i.e., those determined by all closed intervals with

distinct integer endpoints from [n], since Bogart, Rabinovitch, and Trotter showed in

[2] that dim(In)→∞ as n→∞. Since Sn contains a 2 + 2 for n ≥ 2, these are very

distinct Ramsey trails. In fact, we could go on forever in attempting to assemble a

list of Ramsey trails for dimension, as the Ramsey complexity of this parameter is

infinite. On the other hand, it is a theorem of Kierstead and Trotter [23] that if C is

the class of interval orders, then the Ramsey complexity of dimension is one, and the

single Ramsey trail of canonical interval orders suffices.
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With this background, let us now explore the Ramsey complexity of linear dis-

crepancy.

Theorem 1.4.7. Linear discrepancy has Ramsey complexity 2 as evidenced by the

Ramsey trails T1 := {1+1 ≺ 1+2 ≺ 1+3 ≺ · · · } and T2 := {A1 ≺ A2 ≺ A3 ≺ · · · },

where An is the antichain on n points.

Proof. We have already established that ld(1 + n) = dn/2e and ld(An) = n − 1,

so T1 and T2 are certainly Ramsey trails for linear discrepancy. Now suppose that

P = (X,≤P ) is a poset that contains neither 1 + t nor Ak. Since P does not

contain Ak, width(P) < k and by Dilworth’s Theorem P can be partitioned into

k − 1 chains C1, . . . , Ck−1. Furthermore, since P does not contain 1 + t, any point

x ∈ Ci can be incomparable to at most t− 1 points from Cj for any j 6= i, and thus

∆(P) ≤ (k − 2)(t − 1). But by Theorem 1.3.5, we know that ld(P) ≤ 2∆(P), and

thus ld(P) ≤ 2(k − 2)(t − 1). Therefore, if ld(P) > 2(k − 2)(t − 1), P must contain

1 + t or Ak, and therefore the Ramsey complexity of linear discrepancy is 2.

Although Theorem 1.4.7 will not be specifically invoked many times in the fol-

lowing chapters, its general idea will certainly be a recurring theme in our further

investigations of linear discrepancy.
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CHAPTER II

THE 3-DISCREPANCY-IRREDUCIBLE POSETS OF

WIDTH 3

2.1 Introduction

For most monotonic parameters of discrete structures, it makes sense to ask whether

it is possible to determine the minimal structures for which the parameter takes

on the value k. (Often this is feasible to study only for small values of k.) The

most sensible definition of “minimal structures” usually involves the notion that the

removal of any point results in a structure for which the parameter’s value is smaller.

Rather than saying such a structure is minimal, we usually say that it is k-critical or

k-irreducible for the property in question. For example, in [42], Trotter and Moore

used Gallai’s characterization of comparability graphs to determine the posets that

are 3-irreducible with respect to dimension, i.e., those posets for which the removal

of any point results in a poset of dimension 2. Independently, Kelly provided in [22]

the same characterization via a very different approach. The list of posets that are

3-irreducible with respect to dimension contains 17 isolated posets and 10 infinite

families. In this chapter, we will provide a similar list of posets that are 3-irreducible

with respect to linear discrepancy.

We begin with the following formal definition, which was first used by Chae,

Cheong, and Kim in [4].

Definition 2.1.1. We say that a poset P is k-discrepancy-irreducible (or simply

k-irreducible) if ld(P) = k and ld(P− {x}) < k for all x ∈ X.

The shorter terminology k-irreducible has historically been applied primarily in di-

mension theory, but since there is little risk of confusion here, we will use k-irreducible
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to mean k-discrepancy-irreducible unless there is a chance of confusion.

In [37, Theorem 24], Tanenbaum, Trenk, and Fishburn show that the posets with

linear discrepancy equal to 1 are precisely the semiorders of width 2. In their Corollary

25, they recast this as a forbidden subposet characterization of the posets with linear

discrepancy equal to 1. Specifically, a poset P has ld(P) = 1 if and only if it does not

contain any of 1 + 3, 2 + 2, and 1 + 1 + 1 as an induced subposet. First among the

eight open questions with which Tanenbaum et al. concluded [37] was the question

of characterizing the posets with linear discrepancy equal to 2. After introducing the

idea of k-irreducibility, Chae, Cheong, and Kim recast the result of Tanenbaum et al.

as saying that 1 + 3, 2 + 2, and 1 + 1 + 1 are the 2-irreducible posets. (It is obvious

that the only 1-irreducible poset is the two-element antichain 1 + 1.) The natural

hypothesis at this point seemed to be that there would be a finite list of 3-irreducible

posets, and Rautenbach conjectured in [35] that the list of forbidden subposets for

linear discrepancy 2 was in fact finite.

Before proceeding, some discussion of the interchangeability of the notion of a

k-irreducible poset and of a forbidden subposet of posets with linear discrepancy

equal to k − 1 is warranted. For k = 2, the interchangeability is natural. If linear

discrepancy behaved like dimension in that the removal of a point could decrease the

linear discrepancy by at most one (and for an irreducible poset exactly one), this would

not be a result worth noting. However, we have already noted that linear discrepancy

is only semi-continuous in Theorem 1.4.4. When the results of this chapter were

published in [19] (with Howard and Young), the result of Theorem 1.4.4 was not yet

established, and so a special lemma showing that any poset with linear discrepancy

greater than 2 contains a subposet with linear discrepancy equal to 3 was used to

show that completing the list of 3-discrepancy-irreducible posets gave a forbidden

subposet characterization of posets with linear discrepancy equal to 2. In light of

Theorem 1.4.4, we have the following as an immediate corollary.
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Corollary 2.1.2. Let P = (X,≤P ) be a poset. If ld(P) ≥ k, then P contains an

induced k-discrepancy-irreducible subposet.

Since posets with linear discrepancy equal to 2 have width at most 3, in order

to characterize those with linear discrepancy equal to 2 it suffices by Theorem 1.4.4

to identify the 3-discrepancy-irreducible posets of width 2 and 3. This task was first

addressed in [18] by Howard, Chae, Cheong, and Kim. Contrary to Rautenbach’s

conjecture, they showed that there are infinitely many such posets. In particular,

they showed that the 3-irreducible posets of width 2 are 2 + 3 and an infinite family

of posets, each of which has an even number of points. We denote this infinite family

by I2
3 and describe it in the next section. This chapter completes the characterization

of linear discrepancy 2 by finding the 3-irreducible posets of width 3. We show

that with four exceptions, the 3-discrepancy-irreducible posets of width 3 can all be

derived from the list of Howard et al. for width 2 by the removal of comparabilities

meeting specific criteria. The four exceptional posets, which are easily verified to

be 3-irreducible, are shown in Figure 2.1. The family of 3-discrepancy-irreducible

posets of width 3, which we denote by I3
3 , is developed in Sections 2.3 and 2.4. The

S3 Q1 Qd
1 Q2

Figure 2.1: The exceptional 3-irreducible posets of width 3

theorem below provides the complete answer to the question of Tanenbaum, Trenk,

and Fishburn by characterizing posets of linear discrepancy 2.

Theorem 2.1.3. A poset has linear discrepancy equal to 2 if and only if it contains

1 + 3, 2 + 2, or 1 + 1 + 1 and it does not contain any of the following:

(1) 1 + 1 + 1 + 1;
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(2) any poset obtained from 2 + 3 by the removal of a (possibly empty) subset of

cover relations;

(3) S3, Q1, Qd
1, or Q2; or

(4) any member of the families I2
3 and I3

3 .

2.2 The infinite family of 3-irreducible posets of width 2

We will denote by M2n (n ≥ 3) a special member of I2
3 on 2n points and describe

how the other members of the family on 2n points are obtained from M2n. Since

width(M2n) = 2, we consider it as being made of two chains, which we will call

L (left) and R (right), with some comparabilities added between the chains. The

construction is dependent on the parity of n. For n even, L has n points and R has

n points, while for n odd, L has n+ 2 points and R has n− 2 points. Let the points

of the chain L be l1 l l2 l · · · and the points of the chain R be r1 l r2 l · · · . The

cover relations we then add to construct M2n are

l3 l r2 l l5 l r4 l l7 l r6 l · · ·l ln−3 l rn−4 l ln−1 l rn−2 for n even

and

l3 l r2 l l5 l r4 l l7 l r6 l · · ·l ln−4 l rn−5 l ln−2 l rn−3 l ln for n odd.

The construction of M2n is completed by adding all relations implied by transitivity

after adding the cover relations above. Note that M6 is simply 1 + 5 (where L is the

5-point chain). For illustration, Figure 2.2 shows the posets M8, M10, and M12.

We obtain the remaining 2n-element members of I2
3 from M2n by removing any

subset of the cover relations added between L and R while retaining the comparabil-

ities added because of transitivity. For example, Figure 2.3 shows the 3-irreducible

poset of width 2 derived from M8 by removing the only possible cover relation and
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Figure 2.2: Three members of the infinite family I2
3

(a) (b)

Figure 2.3: Members of the infinite family I2
3 derived from (a) M8 and (b) M10

the 3-irreducible poset of width 2 derived from M10 by removing the cover relation

l3 l r2.

Howard et al. also showed that there are two canonical linear extensions of an

element of I2
3 that witness linear discrepancy 3. Because of the symmetry present in

the members of I2
3 , the way these labellings are created is effectively the same, in one

case being generated by starting at the “bottom” of the poset with label 1 and in

the other starting from the “top” of the poset with label 2n. To construct the first

labelling, which we call f : X → [2n], let f(l1) = 1, f(l2) = 2, and f(r1) = 3. We

then proceed to alternately label the two lowest unlabelled from L and R until one

chain is exhausted, at which point we complete the labelling of the remaining chain,

so f(l3) = 4, f(l4) = 5, f(r2) = 6, f(r3) = 7, and so on. The second labelling g

uses the same pattern, labelling the top two elements of the first chain (if n is even,
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R is the first chain, and if n is odd, L is the first chain) with 2n and 2n − 1, then

labelling the top element of the second chain with 2n− 2, and then returning to the

first chain to establish the pattern of labelling two consecutive elements from each

chain alternately. Figure 2.4 shows the labellings as ordered pairs (f(x), g(x)) for the

two posets from Figure 2.3.

(1, 1)
(2, 2)

(4, 3)

(5, 6)

(3, 4)

(6, 5)

(7, 7)

(8, 8)

(1, 1)
(2, 2)

(4, 3)

(5, 6)

(8, 7)

(9, 9)

(10, 10)

(3, 4)

(6, 5)

(7, 8)

Figure 2.4: Examples of the two labellings of elements of I2
3

2.3 Removing comparabilities

The removal of comparabilities clearly cannot decrease the linear discrepancy of a

poset. However, it is possible to remove comparabilities from a 3-irreducible poset

and continue to have a 3-irreducible poset, as was seen in the previous section. In

fact, there are more cover relations than just those inserted between the chains L and

R to construct M2n that can be removed while retaining 3-irreducibility. The cost

we pay is an increase in width, but only to 3.

Theorem 2.3.1. Let f and g be the two canonical labellings of M2n that witness

linear discrepancy equal to 3 as defined in Section 2.2. Let C be the set of all cover

relations ul v in M2n satisfying both f(v)− f(u) ≤ 2 and g(v)− g(u) ≤ 2. Then the

poset P formed by removing the comparabilities of any subset D of C is 3-discrepancy-

irreducible.

Proof. Our proof is by induction on |D|. If |D| = 0, there is nothing to prove. Suppose

that for some k ≥ 0, if |D| = k then deleting the comparabilities of D creates a poset

24



P that is 3-irreducible. Now consider |D| = k + 1. Fix u, v such that (u, v) ∈ D. Let

D′ = D− {(u, v)}. By induction, deleting D′ gives a 3-irreducible poset P′. We now

consider the effect of removing the comparability ulv from P′, which gives the same

poset P as removing all the comparabilities in D from M2n. The labellings f and g

witness ld(P) = 3, since the only pair of points that are incomparable in P that were

comparable in P′ is {u, v}, but our constraints on the labels of u and v in the two

labellings ensures that this does not increase the linear discrepancy. To see that P

is irreducible, we consider the effect of deleting a point w0. We begin by considering

the poset Q formed by deleting w0 from M2n. Since M2n is an element of I2
3 , it is

3-irreducible, and thus ld(Q) = 2. We can construct a labelling that witnesses this

from the labellings f and g defined above. There are precisely four points for which

f(w0) = g(w0). Two are located at the top of M2n and two at the bottom. If w0

is one of the two points at the top, use f as the labelling, subtracting 1 above the

deleted point, if there are any points above it. Similarly, if w0 is one of the two points

at the bottom, use g as the labelling, subtracting 1 from all values higher than that

of the deleted point. Since f and g each exhibit linear discrepancy 3 for precisely one

pair of incomparable points and that pair is reduced to a difference of 2 under the

modified labelling, M2n − {w0} has linear discrepancy equal to 2. Now suppose that

f(w0) 6= g(w0). Then there is a point w1 such that (as sets) {w0, w1} = {lk, rk−2} for

some 3 ≤ k ≤ n. Intuitively, w0 occurs in a position in M2n where it has the point

w1 opposite it in the other chain. We define a new labelling f ′ as given below.

f ′(x) =


f(x) x = li, i < k, or x = rj, j < k − 2;

g(x)− 1 x = li, i > k or x = rj, j > k − 2;

min(f(x), g(x)) x = w1.

Since f only exhibits linear discrepancy 3 at the top of the poset, where we do not

use it in f ′, and g only exhibits linear discrepancy 3 at the bottom of the poset,
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where we do not use it in f ′, we have constructed a labelling that demonstrates that

ld(M2n−{w0}) ≤ 2. By induction, this labelling demonstrates that ld(P′−{w0}) ≤ 2.

If u, v 6= w0, then removing the cover relation ul v to form P is clearly allowed. On

the other hand, if w0 ∈ {u, v}, we can still remove the relation ul v, as f ′(w1) agrees

with both the labelling used from below and the labelling used from above, adjusting

the assignment by subtracting 1 on one side to adjust for the deletion of w0. Therefore

P is 3-irreducible as desired.

Theorem 2.3.1 demonstrates that there are an infinite number of 3-irreducible

posets of width 3, and we will denote this entire class as I3
3 . In Figure 2.5, the poset

on the left shows M10. Cover relations are colored green (solid or dashed) if their

removal is allowed by Theorem 2.3.1 and red otherwise. The poset on the right of

Figure 2.5 is derived from the one on the left by removing the dashed cover relations.

Figure 2.5: Obtaining a 3-irreducible poset of width 3 from M10

The next section will demonstrate that all elements of I3
3 arise via the approach

of Theorem 2.3.1. It is also worthwhile to note that the cover relations described

in Theorem 2.3.1 are the only cover relations that can be deleted while maintaining

3-irreducibility. It appears that it may be possible to delete a cover relation u l v

for which one of f(v) − f(u) and g(v) − g(u) is equal to 3. However, this is not the

case, as the resulting poset is not irreducible, since it contains an induced copy of a

smaller 3-irreducible poset.
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2.4 Three-irreducible posets of width 3

We are now prepared to provide the complete catalog of 3-discrepancy-irreducible

posets of width 3. There are four such posets on five points, all of which can be derived

from 2 + 3 by removing cover relations. Specifically, they are 1 + 1 + 3, 1 + 2 + 2,

and the pair of dual posets formed from 2 + 3 by removing the top comparability

or the bottom comparability from the 3-element chain. They are shown, along with

2 + 3, the 5-point, 3-irreducible poset of width 2, in Figure 2.6, where each poset

is enclosed in a box to differentiate these disconnected posets. On six points, there

are 15 disconnected, 3-irreducible posets of width 3. They are all elements of I3
3 , as

they are derived from 1 + 5 by deleting a nonempty subset of cover relations. It is

easy to verify that these are all 3-irreducible. In Figure 2.1 (in Section 2.1), we give

the Hasse diagrams of the remaining three six-point 3-irreducible posets of width 3

(the standard example S3, Q1, and Qd
1) along with the only seven-point 3-irreducible

poset of width 3, which we call Q2. Again, it is easy to verify that these posets are

all 3-irreducible.

Figure 2.6: The 3-irreducible posets on five points

In the previous section, we saw that we could remove certain cover relations from

M2n to obtain more 3-irreducible posets. We also have the following theorem, which

effectively says that the process is reversible and that all members of I3
3 arise this

way.

Theorem 2.4.1. For n ≥ 4, every 3-discrepancy-irreducible poset P of width 3 with

2n points can be obtained from M2n by the removal of comparabilities. Furthermore,
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there are no 3-discrepancy-irreducible posets on 2n+ 1 points.

We will prove Theorem 2.4.1 via the following lemmas. The general idea is to

make pairs of points comparable, reversing the removal described in the previous

section. If this cannot be done and the poset is of width 3, the poset in question is

either one of those shown in Figure 2.1 or else is not irreducible.

Remark 2.4.2. Before beginning the proof, we observe that if |P| > 6, ld(P) = 3,

and there exists x ∈ P such that | Inc(x)| > 4, then P is not irreducible, as it contains

one of the disconnected 3-irreducible posets.

Our lemmas focus on 3-element antichains with particular properties, first showing

what can be done if such antichains exist and then focusing on posets that do not

include such antichains.

Definition 2.4.3. A 3-element antichain A = {x, y, z} is called a 3-critical antichain

if | Inc(x)| = 4 and (y, z) is a critical pair.

Lemma 2.4.4. Let P be a 3-discrepancy-irreducible poset of width 3 on at least six

points. If P contains a 3-critical antichain A = {x, y, z}, then the poset obtained by

adding the cover relation y l z to P is also 3-discrepancy-irreducible.

Proof. By Remark 2.4.2, we may assume that | Inc(x)| = 4. Let Inc(x) = {y, z, v, w}.

Since A is an antichain, we know that y‖z. The proof proceeds based on the various

relations that v and w can have to y and z. Up to duality, there are five cases we

must consider as shown in Figure 2.7. Case I is illustrated as having v‖w, but this

is not used in our argument, so Case I also includes the case where v ⊥ w. We show

that (i) the first two configurations cannot exist in a 3-irreducible poset, (ii) the third

either allows the addition of yl z or contains a copy of the excluded configuration of

Case II, and (iii) the final two readily allow for the insertion of the relation y l z.

Case I. Suppose that v and w are both greater than y and z. Then the 3-

irreducibility of P implies that the deletion of a point results in a poset of linear
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Case IV

y z x

v

w
Case V

y z x

v

w

Case III

y z x

v

w

Case I

y z x

v w

Case II

y z x

v w

Figure 2.7: The five cases for Lemma 2.4.4

discrepancy equal to 2. We have that v and w are greater than all elements of

D[A]− {x}. This is because, for example, the deletion of w forces x, y, and z to be

consecutive (in some order) to maintain linear discrepancy equal to 2, and v must

then be greater than all of them in any linear extension witnessing linear discrepancy

2. Thus v cannot be incomparable with anything less than x, y, or z. The argument

for w is analogous. Furthermore, we have that y and z are less than all elements

of U [{v, w, x}] − {x}. This is because any u ∈ U [{v, w, x}] − {x} must be greater

than x and therefore greater than z, since if it is incomparable with z, we have a

3-irreducible poset on 5 points induced by {u, x, v, w, z}. Since (y, z) is a critical pair,

we also get u > y. Now the 3-irreducibility of P implies that the posets U induced

by U [{x, v, w}] and D induced by D[A] each have linear discrepancy 2. Without loss

of generality, we may assume that the linear extension of D that witnesses linear

discrepancy 2 has x at the top followed immediately by y and z (in some order) and

the one for U has x at the bottom with v and w (in some order) immediately above.

(This is because A and {x, v, w} are three element antichains, which must be kept

consecutive in an extension witnessing linear discrepancy 2, and x is comparable to

all points other than y, z, v, w.) Since v and w are both greater than both x and y,
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we can form a linear extension of P which witnesses that ld(P) ≤ 2 by starting with

an optimal linear extension for D and following it by an optimal linear extension for

U. This is a contradiction.

Case II. Suppose that y < v, y < w, z < w, and z‖v. As in the previous case,

we have that v and w are greater than all elements of D[A] − {x} and that y and

z are less than all elements of U [{v, w, x}] − {x}. Again, the 3-irreducibility of P

implies that the posets U induced by U [{x, v, w}] and D induced by D[A] each have

linear discrepancy 2. Since D(y) ⊆ D(z), we may assume without loss of generality

that an optimal linear extension of D ends with y < z < x. If there is an optimal

linear extension of U that starts x < v < w, then we can use the linear extension

of D followed by the linear extension of U to find a linear extension L of P with

ld(P, L) = 2. This is because the only pair of points we must check is z and v,

which are two apart. This contradiction implies that every linear extension of U that

witnesses linear discrepancy 2 must place w < v. Now consider an optimal linear

extension L of P − {y}, which has linear discrepancy 2. Since restricting L to the

points of U would give an optimal linear extension of U, we must have w <L v. Since

{v, w, x} is an antichain, we must have that they appear consecutively in L. But

since x‖z, we cannot have w <L v <L x, otherwise we would have linear discrepancy

3. We also must have z <L x to keep x with v and w, but then x and w are between

z and v, again creating linear discrepancy 3, a contradiction to the 3-irreducibility of

P.

Case III. Suppose that y < v, w < z, and w < v but v‖z and y‖w. (Note here

that w < v is forced by the other four relationships, as if this is not true, we have

an induced 1 + 2 + 2, contrary to 3-irreducibility.) Form P′ by adding the cover

relation y l z to P. If ld(P′) = 3, we are done, as its irreducibility follows from that

of P. Thus, suppose that ld(P′) = 2. If there is an optimal linear extension L of

P′ with w lL y lL x lL z lL v, then we have a contradiction, as the same linear
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extension witnesses that ld(P) = 2. Thus, without loss of generality (by considering

the dual poset if necessary), we may assume that any optimal linear extension L of

P′ orders these five points consecutively as w, y, x, v, z or y, w, x, v, z. There must

be a reason that z is forced to be last among these five, so there is another point u

that is incomparable to z, and thus Inc(z) = {x, y, v, u}. We know that u is greater

than x, and the ordering of points in L (witnessing linear discrepancy 2 for P′) also

implies that u > y. In fact, L forces y to be less than everything in U(A), and thus

U(x) ⊆ U(y). Furthermore, it is clear that D(y) ⊆ D(x). Thus, (y, x) is a critical

pair in P and | Inc(z)| = 4. Since we have y < v, y < u, and x < u, we are in the

excluded configuration of Case II with z playing the role of x, so we are done.

Case IV. Suppose that w < y < v and w < z < v. Then adding the relation

y l z to P clearly forms a poset P′ of linear discrepancy 3. If this were not the case,

in order to have linear discrepancy 2, any optimal linear extension L of P′ would

have w lL y lL xlL z lL v, and thus the removal of the cover relation y l z would

not increase the linear discrepancy. The irreducibility of P′ follows trivially from the

irreducibility of P.

Case V. Suppose that w < y < v and w < z but v‖z. Form P′ by adding y l z

to P. Suppose for a contradiction that ld(P′) = 2. Then if there is an optimal linear

extension L of P′ with w lL y lL x lL z lL v, we have a contradiction, as then L

demonstrates that ld(P) = 2. The only other possible ordering for these five points

in an optimal linear extension of P′ is w lL y lL xlL v lL z. Now there must be a

point u incomparable to z in P′ (and therefore in P as well) that has forced z into this

position in L. Furthermore, we note that x < u and y < u. Now the 3-irreducibility

of P implies that y, x, z, v, u appear consecutively in that order in any optimal linear

extension of P− {w}. If there were a point u′ other than v and u in U(A), we could

delete u′ and again force y, x, z, v, u into order consecutively. We could then combine

the linear extensions arrived at by deleting w and u′ and witness that P has linear
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discrepancy 2, a contradiction. But now that U(A) = {u, v}, we cannot have drawn u

up far enough to require z to appear last in the linear extension L previously discussed

(i.e., we could reverse v and z in L without increasing the linear discrepancy). This

contradiction finally shows that ld(P′) = 3, and its irreducibility follows trivially from

that of P.

Our next step is to resolve the situation where there are no 3-critical antichains

because in any antichain {x, y, z} with | Inc(x)| = 4, the points y and z do not form

a critical pair. In this situation, it turns out that either the poset is not 3-irreducible

or else forms one of our exceptional posets. More precisely, we have the following

lemma:

Lemma 2.4.5. Let P be a 3-discrepancy-irreducible poset of width 3 on at least six

points. Suppose that P does not contain a 3-critical antichain but does contain a

3-element antichain A = {x, y, z} such that | Inc(x)| = 4. Then P is Q1, Qd
1, or Q2.

Proof. Considering duality, there are essentially two possibilities for how we can en-

sure that neither (y, z) nor (z, y) is a critical pair. The first is to have points w and

u such that w > y > u but w‖z and u‖z, and the second is to have points w and u

such that w > y, u > z, w‖z, and u‖y. Since we require at least one additional point

in our poset, in order to ensure 3-irreducibility, we must have in the first case that

w > x, and in the second case we must have w > x and u > x.

Case I. Here we have two subcases, depending on if x‖u or x > u. We first

consider x‖u. Since | Inc(x)| = 4, there is one more point v incomparable to x. We

must have v ⊥ z, since otherwise z would have five points incomparable to it. If

v > z, then we also have vmy, as otherwise w, y, x and v, z form a 3-irreducible poset

on five points. Then these points form Q1, so there are no more points since P is

3-irreducible. (Considering the dual case where w‖x and x > u yields Qd
1.) If v < z,

we must have v < y, otherwise y, u, z, v, and x induce a 2 + 2 + 1. But then we note
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that in any optimal linear extension, we must have v, u, x, z, y appear consecutively

in this fixed ordering, and thus either there are no more points above A or else no

more points below A, as if there are additional points on both sides of A we can

combine the linear extensions to demonstrate that ld(P) = 2. If there are no more

points below A, consider P − {v}, which must have linear discrepancy 2, and then

add v back at the bottom and witness ld(P) = 2. Similarly, if there are no more

points above A, consider the result of removing w.

On the other hand, suppose that x > u. Again, there is a point v incompa-

rable to x, which must (by duality) be greater than y and z in order to maintain

3-irreducibility. By assumption there is another point t incomparable to x. If t < z,

then t < y as well, for otherwise {y, u, x, t, z} induces a smaller 3-irreducible poset.

In this case, we have formed the poset Q2, so we are done. Thus, suppose that t > z.

Again, we must have t > y because of irreducibility, but then {v, t, z, w, x} induce

(regardless of whether t and v are comparable) a 3-irreducible poset on 5 points,

showing that we cannot have t > z and concluding this case.

Case II. We first consider where we can insert the two remaining points incom-

parable to x. Notice that if one of them is above A, then it must be greater than

both y and z because of irreducibility, in which case we have formed S3. Since there

is another point required to complete P (| Inc(x)| = 4 by hypothesis), P is not 3-

irreducible. Thus, the two other points v and t incomparable to x are both less than

A, and in fact must both be less than both y and z in order to avoid a 2+3. Although

we are not able to force a specific ordering on these seven points in an optimal linear

extension, it is clear that v and t must appear in the first two positions (in some

order), followed by x, followed by y and z (in some order), finally followed by w and

u (u first if y comes before z and w first if z comes before w). This again allows

us to say that other than the points already under consideration, there are either no

more points above A or no more points below A. In the former case, delete v, find an
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optimal linear extension of linear discrepancy 2, and reinsert v without increasing the

linear discrepancy, a contradiction. In the latter instance, delete w, find an optimal

linear extension with linear discrepancy 2, and then reinsert w without increasing the

linear discrepancy since it is clear that anything else below A must be comparable to

x, y, and z.

Our final step is to show that with one additional exception, we are able to com-

plete the process described in Lemma 2.4.4 to insert comparabilities, ultimately re-

sulting in the reduction of the width of a 3-irreducible poset of width 3. We do this

via the following lemma.

Lemma 2.4.6. Let P be a poset of width 3 on at least 6 points. Assume that

ld(P) = 3. If for all 3-element antichains A of P, | Inc(x)| ≤ 3 for all x ∈ A,

then P is either S3 or is not irreducible with respect to linear discrepancy.

Proof. As with the previous two lemmas, this proof proceeds by an analysis of cases.

By way of contradiction, we assume that P is 3-irreducible but not isomorphic to S3.

Here, however, we focus on the configuration of the minimal elements M of U(A) and

their relationship to A := {x, y, z}. Since width(P) = 3, we know that |M | ≤ 3. We

may assume, by considering the dual if necessary, that |M | > 0 as well. Additionally,

note that it is clear that if all elements of M are comparable to all elements of A,

then P is not irreducible, as there are no incomparabilities between points of U [M ]

and points of D[A], so one of these sets must induce a smaller 3-irreducible poset.

Case I. Suppose that M = {v}. Without loss in generality, v > y and v‖x. The

arguments for v > z and v‖z differ only slightly, so we will just give the argument

for the former. Note that anything greater than v must also be greater than x since

| Inc(x)| = 3, and anything greater than x is greater than v by the fact that M = {v}.

Thus we have that v and x must be maximal in P, as otherwise we could obtain an

optimal linear extension of U({v, x}) and an optimal linear extension of D[{v, x}] and
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combine them to obtain a linear extension of P with linear discrepancy 2. Having

established that v and x are maximal in P, consider the effect of deleting v. We may

assume that the optimal linear extension L (of linear discrepancy at most 2) does not

place x below both y and z, since it is greater than all other elements of the poset,

and thus we can place v at the top of L without increasing the linear discrepancy,

contradicting that P is 3-irreducible.

Case II. Suppose that M = {v, w}. Here there are three configurations: v and w

each greater than distinct two-element subsets of A, v greater than all elements of A

and w greater than two elements of A, and v greater than all of A and w greater than

one element of A. The arguments are all slight variations on the same theme, so we

will provide the proof for the last scenario, supposing w > x. We first claim that in

order to be 3-irreducible, we must have that either U({v, w}) or D(A) is empty. If not,

deleting an element of U({v, w}) or an element of D(A) results in a linear extension

L witnessing linear discrepancy 2 and thus must have consecutively x, followed by y

and z (in some order), followed by w and then v. Because y and z are each already

incomparable to three other points, they are comparable to all other points of the

poset, and thus their ordering in L can be freely interchanged. Therefore, we may

use the linear extension from deleting an element of U({v, w}) to order D(A) and the

linear extension from deleting an element of D(A) to order U({v, w}) and combine

them by placing xl y l z l w l v in between, achieving linear discrepancy 2.

Having established that either v and w are maximal or A = min(P), we proceed

to argue that this cannot be the case. Suppose that v and w are maximal. If we delete

v, we note that {y, z, x} and {y, z, w} are 3-element antichains, so to witness linear

discrepancy 2 we must have w as the last element of an optimal linear extension,

which allows for placing v at the top without increasing the linear discrepancy, since

v is comparable to all points but w. On the other hand, suppose that A = min(P).

Consider the result of deleting x. Then {y, z, w} is still a 3-element antichain, which
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must be kept consecutive in order to have linear discrepancy 2. Without loss of

generality, we may assume that y and z come before w in an optimal linear extension,

as they are comparable to all points of the poset with x deleted except w. Since x is

less than all points except y and z, we thus may safely add x at the bottom of our

linear extension without increasing linear discrepancy, which is our final contradiction.

Case III. Suppose that M = {u, v, w}. Then we note that, by hypothesis, each

element ofM is incomparable to at most one element of P. Since we have also assumed

that P is not S3, we thus have that at least one element of A is comparable to all

elements of M and vice versa. Suppose that these elements are w and z. Without loss

of generality, take u‖x, since we know we are missing at least one comparability. It

may also be that v > y or v‖y, so we will suppose that v‖y, as the following argument

only becomes simpler if v > y. Since u and x are comparable to all other elements

of P, consider the result of deleting x. This poset has linear discrepancy 2, and we

may assume that our optimal linear extension L places u l v l w, since u and v

are comparable to all other points. Similarly, deleting u results in an optimal linear

extension L′ with z l y l x. Now use L′ to order D[A] and L to order U [M ] and we

clearly have a linear extension that witnesses ld(P) = 2, a contradiction.

Having established these three lemmas, we now have Theorem 2.4.1 as a conse-

quence. Lemma 2.4.4 demonstrates that we are, under most circumstances, able to

insert particular comparabilities in 3-irreducible posets of width 3. Repeating this

process, we are able to reduce the poset to a 3-irreducible poset of width 2 unless we

are in the setting of Lemmas 2.4.5 or 2.4.6, but in both of those cases, we must have

an irreducible poset of at most 7 points. Thus, we are able to reduce the width of any

3-irreducible poset of width 3 on at least 8 points to a 3-irreducible poset of width 2,

implying that there cannot be a 3-irreducible poset of width 3 on an odd number of

points greater than seven.
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With Theorem 2.4.1 proved, we combine it with Corollary 2.1.2 and have a com-

plete proof of Theorem 2.1.3, answering the question posed by Tanenbaum, Trenk,

and Fishburn.

2.5 Conclusion and future work

Although Theorem 2.1.3 disproves Rautenbach’s conjecture by showing that there are

infinitely many forbidden subposets required to characterize posets with linear dis-

crepancy equal to 2, it is still a nice result in that the set of posets which generate this

collection is nicely describable, similar to Gallai’s characterization of comparability

graphs and the list of 3-dimension-irreducible posets. Trotter and Ross showed in [39]

that for t ≥ 3, every t-dimensional poset can be embedded in a (t + 1)-dimensional

poset. For this reason, an attempt to catalog the 4-dimension-irreducible posets is

unlikely to be successful. For linear discrepancy, however, the situation appears to be

better. For instance, the results of Section 2.4 rely on the width and linear discrep-

ancy in a way that suggests they may generalize to posets of higher linear discrepancy.

In particular, it would be interesting to find a more general version of Lemma 2.4.4,

as the role of critical pairs in linear discrepancy is much larger than previously recog-

nized. Unfortunately, our proofs of these results require fairly intricate case analysis

that would quickly become overwhelming with increasing linear discrepancy. Fur-

thermore, computer investigations indicate that the number of “exceptional cases”

increases quickly as linear discrepancy increases, which would make the arguments

even more complex. Also, it appears that even if similar results can be proved for

posets of higher linear discrepancy, the infinite families involved will require more

posets to generate them.
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CHAPTER III

DEGREE BOUNDS FOR LINEAR AND WEAK

DISCREPANCY

3.1 Introduction

In the previous chapter, we mentioned that Tanenbaum et al. gave a list of eight

challenges and questions in the conclusion to their initial paper [37] on linear discrep-

ancy. Another of those questions relates to what we call degree bounds because of

the role played by the maximum degree of the cocomparability graph of a poset. By

Theorem 1.3.6, we know that ld(t + t) = b(3t− 1)/2c, and since ∆(t + t) = t, this is

a degree bound. Tanenbaum et al. asked if ld(P) ≤ b(3∆(P) − 1)/2c is true for all

posets. As we have stated in Theorem 1.3.5, the best known upper bound in terms of

∆(P) is Rautenbach’s [35], which gives an upper bound of 2∆(P)− 2. This answers

the question of Tanenbaum, et al. in the affirmative for posets with ∆(P) = 2 or 3.

In this chapter, we will answer the question of Tanenbaum et al. in the affirmative

for two more classes of posets. First, we show that an even stronger bound is true for

interval orders. This result has a flavor similar to Brooks’ theorem on the chromatic

number of graphs, and we also show that our result is tight even for interval orders

of width 2. This also addresses another of the questions posed by Tanenbaum et al.,

who asked if special results for linear discrepancy could be proved for interval orders.

Second, we show that ld(P) ≤ b(3∆(P) − 1)/2c for disconnected posets, and this

bound is tight by the previous example of t + t. We conclude the chapter with a

degree bound on weak discrepancy.
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3.2 Interval orders

The principal result of this section is the following theorem.

Theorem 3.2.1. An interval order P has linear discrepancy at most ∆(P), with

equality if and only if it contains an antichain of size ∆(P) + 1.

After we establish the validity of the result, we will construct a family of examples

showing that the result is best possible, even for interval orders of width 2.

Proof. Without loss of generality, we will assume that the interval representations we

consideration will have distinct endpoints, i.e., no real number occurs more than once

as the endpoint of an interval in the representation. Such an assumption can readily

be made since we will only consider finite interval orders. We note that it is implicit in

the work of Fomin and Golovach [13] (via a pathwidth argument), that the bandwidth

of an interval graph G is at most ∆(G). However, there is a very straightforward

proof of this fact, which we will express in terms of interval orders. Observe that

the ordering of the points of an interval order P according to right endpoint yields a

linear extension L with linear discrepancy at most ∆(P). This is because if x‖y with

r(x) < r(y), then any element placed between x and y in L must be incomparable

to y, since l(y) < r(x) < r(z) for all z between x and y in L. Thus, there are at

most ∆(P)− 1 elements placed between them and therefore hL(y)− hL(x) ≤ ∆(P).

If width(P) = ∆(P) + 1, then trivially ld(P) ≥ ∆(P) + 1 − 1 = ∆(P), so we must

have ld(P) = ∆(P). The remainder of the proof shows that if this is not the case, we

can strengthen the upper bound.

Let P = (X,≤P ) be an interval order that does not contain an antichain of size

∆(P)+1. By induction, we may assume that P cannot be partitioned into sets D and

U such that d < u for all d ∈ D and u ∈ U , as otherwise ld(P) = max{ld(D), ld(U)}

where D and U are the subposets induced by D and U respectively. Fix an interval

representation of P and let m be the interval with largest left endpoint. We may
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assume that m also has the largest right endpoint. (Since m must be maximal, we

may do this by extending the interval corresponding to m to the right.)

Now form a linear extension L of P by ordering the intervals by right endpoint.

Let x be an arbitrary interval in X − {m}. Since P cannot be partitioned as D ∪ U

with d < u for all d ∈ D and all u ∈ U , x must overlap an interval having larger right

endpoint. Therefore, we must have an element of Inc(x) that is greater than x in L.

Furthermore, the linear extension L has the property that the elements of Inc(x) less

than x in L must precede x immediately as a consecutive block in L. This is because

if y <P x, then r(y) < l(x), and thus there cannot be elements of Inc(x) below any

such y in L. Combining these two facts, we see that hL(x) − hL(y) ≤ ∆(P) − 1 for

any y‖x below x in L, since there are at most ∆(P)− 1 elements incomparable to x

that can appear to its left (for x 6= m).

It only remains to address the interval m with largest left endpoint (and also

largest right endpoint). We first observe that as above, the elements of Inc(m)∪{m}

are consecutive. Furthermore, m is incomparable only to maximal elements by our

choice of m. Since the maximal elements of P are an antichain and width(P) ≤ ∆(P),

m is incomparable to at most ∆(P)− 1 points, and thus hL(m)− hL(z) ≤ ∆(P)− 1

for all z incomparable to m. Therefore, ∆(P)− 1 ≥ ld(P, L) ≥ ld(P).

By the equivalence of the linear discrepancy of a poset with the bandwidth of

cocomparability its graph, we may state this result in terms of the bandwidth of

interval graphs, yielding the following equivalent result.

Theorem 3.2.2. The bandwidth of an interval graph G is at most ∆(G), with equality

if and only if it contains a clique of size ∆(G) + 1.

Consider the poset P = 2+1+1+ · · ·+1 where there are t−1 chains of height 1

in the poset. Then ld(P) = t− 1, ∆(P) = t, and width(P) = t, so it is clear that the

bound of Theorem 3.2.1 is tight. However, the tightness here is really provided by
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the fact that ld(P) ≥ width(P) − 1 in this case. However, we are able to show that

even when the second Ramsey trail for linear discrepancy is the determining factor

and the interval order contains no large antichain, the bound is still tight. To do this,

we produce for each ∆ an infinite family of width-two interval orders that have linear

discrepancy ∆− 1. We will find Lemmas 1.4.2 and 1.4.3 regarding critical pairs and

linear discrepancy very useful in determining the linear discrepancy of these posets.

We will define a family of interval orders Ft
k for k ≥ 3 and t ≥ 1, and we then

show that for k > t, we have ld(Ft
k) = ∆(Ft

k) − 1. For each t ≥ 1 and k ≥ 3 define

the elements of the interval order Ft
k as follows:

• For 0 ≤ i ≤ t − 1 and 0 ≤ j ≤ k − 2, the interval [2jt+ 2i, 2jt+ 2i+ 1] is the

element aji .

• For 0 ≤ j ≤ k, the interval
[
2(j − 1)t− 1

2
, 2jt− 1

2

]
is the element bj.

Figure 3.1 illustrates the interval representation of a general Ft
k, while Figure 3.2

shows F3
4. Note that | Inc(aji )| = 1 for all i, j, | Inc bj| = t + 2 for 1 ≤ j ≤ k − 1, and

| Inc b0| = | Inc bk| = 1, so ∆(Ft
k) = t+ 2. We also observe that width(Ft

k) = 2.

b0
b1

b2
bk−1

bk

a0
i︷ ︸︸ ︷ a1

i︷ ︸︸ ︷ ak−2
i︷ ︸︸ ︷

Figure 3.1: The interval order Ft
k
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Figure 3.2: The interval order F3
4

Proposition 3.2.3. The linear discrepancy of Ft
k is at least

t+ 1− bt/kc = ∆(Ft
k)− 1−

⌊
(∆(Ft

k − 2)/k
⌋
.
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Proof. We begin by identifying the critical pairs of Ft
k. First note that D(aji ) ⊇

D(bi) and U(aji ) ⊇ U(bj), and so there are no critical pairs of the form (aji , bi) or

(bi, a
j
i ). On the other hand, D(bi) ⊆ D(bi+1) and U(bi) ⊇ U(bi+1), and thus the only

critical pairs in Ft
k are of the form (bi, bi+1). Note that the aji form a chain of height

t(k − 1). By Lemma 1.4.3, we may choose an optimal linear extension L that orders

the bi by index. Further, by Lemma 1.4.2 the distances between these pairs of points

completely determine the linear discrepancy. Thus, we wish to distribute the t(k− 1)

remaining points as equally as possible among the k + 1 gaps between the elements

{b0, b1, . . . , bk}. By the pigeonhole principle, this results in one gap containing at least

dt(k − 1)/ke = t− bt/kc elements, implying ld Ft
k ≥ t+ 1− bt/kc.

We note that in particular this implies that for any k > t, we have ∆(Ft
k) − 1 =

t + 1 ≤ ld(Ft
k) ≤ ∆ − 1 and so Theorem 3.2.1 is tight even for interval orders of

width 2 where the lower bound on linear discrepancy is 1.

3.3 Disconnected posets

In their proof of Theorem 1.3.6, Tanenbaum, Trenk, and Fishburn show that if P

is a sum of chains, then the optimal linear extension divides the longest chain in

half as evenly as possible and inserts all the remaining points into the longest chain

at that point. This led to the formula for ld(t + t) and their proposal that the

best upper degree bound on linear discrepancy would be b(3∆(P) − 1)/2c. Using

Theorem 1.4.4, we are able to show that this bound holds for a large class of posets,

namely, the disconnected posets. This is unusual in that there are very few interesting

mathematical results known that are specifically proved for disconnected posets, since

it is trivial to turn a disconnected poset into a connected poset by adding a maximal

(or minimal) element, and doing so has little effect on the order properties of the

poset. In fact, our proof below could be extended to some larger class of posets via

this method, but we do not see how it might be extended to all posets at this time.
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Theorem 3.3.1. Let P = (X,≤P ) be a disconnected poset. Then

ld(P) ≤
⌊

3∆(P)− 1

2

⌋
.

Proof. We proceed by contradiction. Suppose P is a minimal counterexample in terms

of |X|, and hence irreducible with respect to linear discrepancy. Fix ∆ := ∆(P). Now

suppose there is some isolated point x ∈ X. Then ld(P) ≤ |X| − 1 = | Inc(x)| = ∆,

so P cannot be a counterexample. Therefore, P cannot have an isolated point, and

thus removing a single point from P leaves a disconnected poset. In particular, since

the removal of a single point does not increase ∆, minimality and Theorem 1.4.4

imply ld(P) = b(3∆− 1)/2c + 1. Furthermore, Theorem 1.4.4 and the irreducibility

of P guarantee the existence of a point whose removal leaves a poset Q with ld(Q) =

ld(P) − 1, and so let Q be such a subposet. Suppose that ∆(Q) ≤ ∆ − 1. Then by

the minimality of P, the desired degree bound holds for Q, and therefore we have⌊
3∆− 1

2

⌋
= ld(Q) ≤

⌊
3∆(Q)− 1

2

⌋
≤
⌊

3∆− 4

2

⌋
=

⌊
3∆− 2

2

⌋
− 1 <

⌊
3∆− 1

2

⌋
.

Hence, it follows that ∆(Q) = ∆.

Since we know Q is disconnected, let (A,B) be a partition of the ground set

of Q witnessing this fact and suppose without loss of generality |A| ≤ |B|. Let A

and B be the subposets of Q induced by A and B, respectively. We observe that

∆(A) ≤ ∆ − |B| and ∆(B) ≤ ∆ − |A|. Let LB ∈ E(B) be optimal with respect

to linear discrepancy. Form a linear extension L of Q by taking the first d|B| /2e

elements of LB, followed by all the elements of A (in any order that yields a linear

extension), and finally the last b|B| /2c elements of LB. Then ld(Q) ≤ ld(Q, L), and

so in particular, ⌊
3∆− 1

2

⌋
≤ max{|A|+

⌈
|B|
2

⌉
− 1, |A|+ ld(B)}.
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Suppose first that b(3∆ − 1)/2c ≤ |A| + ld(B). Now ld(B) ≤ 2∆(B) − 2 by

Theorem 1.3.5. Therefore, we have b(3∆− 1)/2c ≤ |A|+ 2∆(B)− 2. Combining this

with the observation that ∆(B) ≤ ∆− |A|, we obtain the bound

|A| ≤ 2∆− b(3∆− 1)/2c − 2.

Since ld(Q) = b(3∆− 1)/2c, we must have |A|+ |B| ≥ b(3∆− 1)/2c+ 1. Therefore,

|B| ≥ 2b(3∆ − 1)/2c + 3 − 2∆ ≥ ∆ + 1, a contradiction, since each point of A is

incomparable to every point of B implying that |B| ≤ ∆(Q) = ∆.

Now we suppose that b(3∆ − 1)/2c ≤ |A| + d|B|/2e − 1. Since |A| ≤ |B| and

|B| ≤ ∆−∆(A), we then have⌊
3∆− 1

2

⌋
≤ |A|+

⌈
|B|
2

⌉
− 1 ≤

⌈
3|B| − 2

2

⌉
≤
⌈

3∆− 3∆(A)− 2

2

⌉
.

Therefore, we must have ∆(A) = 0 and |B| ≤ ∆. Similarly,⌊
3∆− 1

2

⌋
≤
⌈

2|A|+ |B| − 2

2

⌉
≤
⌈

3∆− 2∆(B)− 2

2

⌉
=

⌈
3∆− 2

2

⌉
−∆(B).

Hence ∆(B) = 0, and Q is the sum of two chains. Then by Theorem 1.3.6, the ld(Q) =

d|B|/2e+|A|−1, and therefore |A| = |B| = ∆. In this situation, we see that we cannot

form P from Q by the addition of a single point, since ∆(P) = ∆(Q) and P is also

disconnected. Therefore, if P is a disconnected poset, ld(P) ≤ b(3∆(P)− 1)/2c.

3.4 Weak discrepancy

Although the focus of this dissertation is linear discrepancy, it makes sense at this

time to take a brief diversion into the world of weak discrepancy, as we are able to

establish a degree bound for weak discrepancy. First, note that by Theorem 1.3.6,

wd(t + t) = (2t/2) − 1 = t − 1 = ∆(t + t) − 1. Since t + t has motivated the work

on the degree bound for linear discrepancy, it is natural to ask if wd(P) ≤ ∆(P)− 1

for general posets. The next result answers this in the affirmative.
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Theorem 3.4.1. Let P = (X,≤P ) be a poset that is not a linear order. Then

wd(P) ≤ ∆(P)− 1.

Proof. By the dual of Dilworth’s theorem (Proposition 1.1.2), we may partition X

into h antichains A1 ∪ A2 ∪ · · · ∪ Ah. In fact, we form the partition by letting A1 be

the minimal elements of P, A2 be the minimal elements of the subposet induced by

X − A1, etc. (In general, Ai+1 is the minimal elements of the subposet induced by

X − (A1 ∪ · · · ∪Ai).) Now define a labelling f of P by f(x) = i if and only if x ∈ Ai.

Consider a pair of points x, y ∈ X with x‖y and |f(y)−f(x)| = wd(P) = k. Without

loss of generality, say f(x) = i and f(y) = i + k. Now by our definition of f , there

is yk−1 ∈ Ai+k−1 such that y >P yk−1. Similarly, there is yk−2 in Ai+k−2 such that

yk−1 >P yk−2. Continuing this process, we find a chain y = yk >P yk−1 >P · · · >P y0

with yj ∈ Ai+j for j = 0, . . . , k. Now notice that we must have x‖yj for j = 0, . . . , k,

and thus ∆(P) ≥ k + 1, and therefore k = wd(P) ≤ ∆(P)− 1 as desired.

We note that for k ≥ t, the family of interval orders Ft
k defined earlier in this

chapter has wd(Ft
k) = ∆(Ft

k). Therefore, unlike the case of linear discrepancy, there

is not a significant difference between the best possible degree bound for interval

orders and that for general posets, and in fact, the bound of Theorem 3.4.1 may be

tight for interval orders as well.

3.5 Conclusion and future work

This chapter has addressed three questions concerning degree bounds, but one of the

largest interesting questions in linear discrepancy remains open. Can it be shown

that ld(P) ≤ b(3∆(P )−1)/2c for connected posets? The proof of Theorem 3.3.1 and

even the motivation behind the question rest on the very large number of incompa-

rable pairs in a disconnected poset. For posets that cannot be built in a simple way

from disconnected posets, ∆(P) may be considerably smaller, which suggests that an

affirmative answer to the question will be difficult to arrive at. Recently, Choi and
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West [6] have shown that the question can be answered affirmatively for posets of

width 2, but there does not seem to be a reasonable path to address the question

for posets of width 3. An alternative path to resolving the question could involve

seeking results of the form ld(P) ≤ (2 − ε)∆(P) for some ε > 0, and such a result

would be very welcome. It should also be noted that for ∆(P) = 4, Rautenbach’s

bound gives ld(P) ≤ 6, and it is unknown whether this bound can be lowered to 5.

Since Rautenbach’s bound for ∆(P) = 2 and 3 came about as a result of rounding

for small values of ∆, it may prove useful for resolving the general question to seek a

proof that ld(P) ≤ 5 for posets with ∆(P) = 4.
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CHAPTER IV

ONLINE LINEAR DISCREPANCY

4.1 Introduction

We have already discussed that for fixed k it is NP-complete to determine if the

linear discrepancy of a general poset is at most k, while this decision problem can be

answered in polynomial time for interval orders. In this chapter, we turn to another

standard framework for algorithms—online algorithms. Intuitively, an online combi-

natorial structure (e.g., graph or poset) is one in which the points of the structure

come equipped with an arbitrary linear order. An online algorithm is given infor-

mation about the structure one point at a time, in the associated order, along with

complete information about the point’s relationship to all points occurring earlier in

the order (and only those points). When presented with a new point, the algorithm

must make an irrevocable decision about how to treat the point. This is in contrast

to an offline algorithm, which is allowed to see the entire structure before making any

decisions. The performance of an online algorithm is usually assessed by comparing

its output to the output of an optimal offline algorithm. Online algorithms are for

coloring graphs have been studied in great detail. A thorough overview can be found

in Kierstead’s survey article [24].

It is convenient to think of online algorithms for graphs and posets in terms of a

game played by two players, whom we will call Assigner and Builder. Builder presents

the graph or poset one point at a time and tells Assigner the relationship of the new

point to all previously-presented points (the list of vertices to which it is adjacent

in the case of a graph and its up-set and down-set in the case of a poset). The ith

point Builder presents will be referred to as xi, and an online poset for which Builder
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has presented {x1, . . . , xi} will be denoted Pi. The up-set and down-set of a point

x in Pi will be denoted Ui(x) and Di(x), respectively. The information that Builder

presents at step i must be consistent with all the information previously presented, so

in particular, if y‖z in Pi−1, then Builder cannot present xi with y < xi < z in Pi, as

transitivity would then imply y < z in Pi. (Such matters are not a concern for online

graphs, since a graph is defined by adjacency only.) When presented with a new

point, Assigner irrevocably determines how to handle that point, e.g., to which chain

it should be assigned for online chain partitioning or where it should be positioned

in the linear extension of a realizer for online dimension. Assigner’s goal is to make

assignments so that in the end, she has come as close as possible to the optimal

solution, while Builder attempts to force her to be as far from optimal as possible.

Let us consider an example of an online problem for posets. Recall that by Dil-

worth’s Theorem, a poset of width w can be partitioned into w (and no fewer) chains.

The online chain partitioning problem is for Assigner to maintain a collection of chains

C = {Cj} as builder presents the points. When Builder presents xi, Assigner irrevoca-

bly decides into which of the Cj to insert xi by using an algorithm A. When Builder

has finished presenting the online poset P, Assigner has used some number of chains,

which we call the online width of P for algorithm A and ordering of the ground set

given by ≺. We denote this quantity by widthA(P≺). The online width of P is the

maximum of widthA(P≺) over all orderings ≺, which we denote by widthA(P). We

evaluate how successful A was by comparing this number to width(P). For a class

Π of posets, the maximum of widthA(P) over all P ∈ Π is denoted by widthA(Π).

The online width of Π, denoted widthol(Π) is then the minimum of widthA(Π) over

all online chain partitioning algorithms A.

Let Πw denote the collection of all posets of width w. In [25], Kierstead gave an

online chain partitioning algorithm A for which widthA(Πw) ≤ (5w − 1)/4. That is,

Assigner needs no more than (5w − 1)/4 chains to find a chain partition of a poset of
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width w online. Other than for the case w = 2, this is still the best known bound.

(Felsner showed in [9] that widthol(Π2) = 5, while Kierstead’s algorithm gives a bound

of 6.) The best lower bound is that widthol(Πw) ≥
(
w+1

2

)
. (This result is more or

less folklore, often attributed to Szemerédi.) For the class I of interval orders, much

more is known about online chain partitioning, although it is usually discussed in

the equivalent context of online coloring of interval graphs. Kierstead and Trotter

showed in [26] that there is an online chain partitioning algorithm such that for any

interval order P, widthA(P) ≤ 3 width(P)− 2. They also showed that for any online

chain partitioning algorithm A and positive integer w, there is an interval order P of

width w for which widthA(P) ≥ 3w− 2. Despite this result, it has been of particular

interest for many years now to analyze the performance of the greedy algorithm First

Fit for chain partitioning interval orders online. It is known (see [3, 31]) that First

Fit needs no more than 8w− 3 chains for an interval order of width w. Furthermore,

there exists an interval order of width w on which Builder can force First Fit to use

at least 4.99w chains.

In this chapter, we consider the problem of online algorithms for linear discrepancy.

For such problems, we require that Assigner maintains a linear extension Li of Pi

at each step and further that Li is formed from Li−1 by inserting xi between two

consecutive points of Li−1 and leaving the order of x1, . . . , xi−1 unchanged from their

order in Li−1. Our notation here will mirror that used for online chain partitioning

above. After Builder has presented the n-point online poset P revealing the points in

the total order given by ≺, Assigner has constructed a linear extension Ln using online

algorithm A, and we let ldA(P≺) denote ld(P, Ln). The online linear discrepancy of

P is the maximum of ldA(P≺) over all orderings ≺, which we denote by ldA(P). For

a class Π of posets, the maximum of ldA(P) over all P ∈ Π is denoted by ldA(Π).

The online linear discrepancy of Π, denoted ldol(Π) is then the minimum of ldA(Π)

over all online linear discrepancy algorithms A.
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Since the linear discrepancy of a poset is the same as the bandwidth of its co-

comparability graph, before delving into online linear discrepancy, it makes sense to

discuss what is known about online bandwidth of graphs. In [1], Board addressed the

problem of computing graph bandwidth online. He considerd three “protocols” and

determined that unless you give Assigner a monumental amount of power, any online

bandwidth algorithm outputs a permutation whose bandwidth is far from optimal.

In Board’s first protocol, Builder begins by informing Assigner that the graph has

n vertices and its bandwidth is k. He then presents the graph one point at a time

and reveals which of the already-presented points are in its neighborhood. To this

point, this is simply the standard framework for problems on online graphs, although

giving Assigner the number of vertices is a bit unusual, but not unheard of. Assigner

must irrevocably map the new point to an element of [n] not previously mapped to,

striving to form a bijection from the vertex set to [n] with bandwidth as small as

possible. He showed that regardless of the algorithm employed by Assigner, Builder

can always force her to construct a bijection of bandwidth (k/(k + 1))n − 2 given

an n-vertex graph of bandwidth k. He also gave a specific online algorithm that is

guaranteed to produce a bijection with bandwidth no more than ((2k − 1)n+ 1)/2k,

which is not much better than the worst case scenario of n− 1.

On page 181, Board writes “[o]ne difference between our definition and the pro-

tocols used in [other problems] is that we allow the algorithm to know the number of

vertices in the graph” because “any online algorithm would be severely handicapped

if it did not know what the range was required to be.” It seems that it did not occur

to Board that after seeing the first i points, Assigner should have a bijection from the

vertex set to [i] and could extend the bijection when given the next point by inserting

the new point between two previous points and then increasing labels as necessary.

This would be a very reasonable framework in which to operate and would give As-

signer a bit of flexibility but not nearly as much as his two additional protocols. These
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other protocols operate similarly to the first, except that in the second Builder must

give Assigner a new vertex’s complete adjacency list (including any unpresented ver-

tices) and in the third Builder must do this as well as allow Assigner to choose which

unpresented vertex should be presented next. Board does not present algorithms for

either of the latter protocols, only lower bounds on the bandwidth of the bijection

Builder can force Assigner to construct. For the second protocol, he gives a lower

bound of n(k − 1)/4k − 5/4 and for the third he proves a lower bound of (2 − ε)k

for any ε > 0. It would be interesting to revisit Board’s work to see if any significant

improvements can be made by using the less restrictive framework described above,

but that is not our focus here, since we are able to restrict ourselves to the class of

cocomparability graphs and work in terms of linear discrepancy.

4.2 Online Linear Discrepancy

We begin by stating (in slightly different language) a theorem of Kloks, Kratsch, and

Müller that will have an immediate implication for linear discrepancy.

Theorem 4.2.1 (Kloks et al. [28, Theorem 4.5]). Let P be a poset and G its cocom-

parability graph. If L is a linear extension of P and σ a permutation of the vertex set

of G that orders the vertices in the same way as L, then bw(G, σ) ≤ 3 bw(G).

The following proposition is an immediate corollary of Theorem 4.2.1.

Proposition 4.2.2. Let A be any online linear discrepancy algorithm. Then for any

poset P, ldA(P) ≤ 3 ld(P).

Proof. An online linear discrepancy algorithm must output a linear extension of the

poset, so we are able to apply Theorem 4.2.1, restating the conclusion in terms of

linear discrepancy.

We now show that no online linear discrepancy algorithm can do any better than

this.
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Theorem 4.2.3. For every integer n ≥ 2, there exists an interval order Pn with

ld(Pn) = n such that for any online linear discrepancy algorithm A, ldA(Pn) = 3n−1.

a1

an
b1

bn−1

c1

cn−1

d1

dn

x

y

z

Figure 4.1: The extreme poset Pn

Proof. The poset Pn is depicted in Figure 4.1. Let L be the linear extension that

places z between cn−1 and d1, y between bn−1 and c1, and x between an and b1. Then

a quick inspection verifies that ld(Pn, L) = n and furthermore L is optimal. It is also

easy to see that Pn contains no 2 + 2, and thus is an interval order.

The order in which Builder presents the vertices of Pn will depend in some cases on

the algorithmA, and this ordering will emerge through our analysis. We also note that

in cases where two points of some Pi have the same up-sets and down-sets, Builder

can determine which points of P they will represent after seeing how the algorithm

handles them. Builder begins by presenting four points α, β, γ, δ one at a time, in any

order. The relationship between these points is that α < γ, δ and β < γ, δ but α‖β

and γ‖δ. Assigner orders these points as y1 <L y2 <L y3 <L y4 with {α, β} = {y1, y2}

and {γ, δ} = {y3, y4}. Builder subsequently decides that y1 = x, y2 = a1, y3 = dn,

and y4 = z. Builder then presents the points a2, . . . , an, d1, . . . , dn−1, y, and Assigner

has no option of where to place these points.
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Next Builder presents a point that is incomparable to y, above an and x, and

below d1 and z. Notice that all of the bi and ci fit this description, so if Assigner

places this point above y in the linear extension, this point becomes b1. On the other

hand, if Assigner places it below y, the new point becomes cn−1. The remaining ci

and bi are then presented and there is no choice in their placement. Then the height

of y in Assigner’s linear extension is either 3n or n+ 2 while the height of x is 1 and

the height of z is 4n + 1, so the linear discrepancy of the linear extension is 3n − 1

regardless of the height of y in the linear extension.

It is easy to see that even if Assigner had known in advance that Builder would

never construct a 2 + 2, she still would have been forced to form a linear extension of

linear discrepancy 3n− 1. However, if Builder were forced to give Assigner intervals

from an interval representation of Pn (the interval of xi must be consistent with

those presented for xj for j < i) instead of just the up-sets and down-sets at each

step, the next theorem shows that Assigner could do better. This is an interesting

contrast to the online chain partitioning problem for interval orders, where the work

of Kierstead and Trotter shows that being provided with an interval representation

does not provide Assigner with any benefit.

Theorem 4.2.4. Let P be an interval order that Builder presents P to Assigner

by giving each point as an interval consistent with the previously-presented intervals.

Then there is an online linear discrepancy algorithm A for interval orders presented

in this manner such that if P is an interval order, ldA(P) ≤ 2 ld(P). Furthermore,

for each n ≥ 1 there is an interval order Pn such that for any online linear discrep-

ancy algorithm A′, ldA′(Pn) = 2 ld(Pn) when Builder presents Pn via its interval

representation.

Proof. Assigner’s algorithm A simply has to order the intervals by left endpoint,

since then as discussed in Chapter 3, ld(P, L) ≤ ∆(P) ≤ 2 ld(P). To see that
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no online linear discrepancy algorithm can do better, we consider the poset Pn :=

1 + 2n, which has linear discrepancy n. Builder begins by presenting the interval

x1 = [0, 4n] followed by x2 = [2n, 2n]. If Assigner sets x1 <L2 x2, then Builder presents

[n+1, n+1], [n+2, n+2], . . . , [4n−1, 4n−1]. Assigner has no choice but to put these

above x2 and construct a linear extension with linear discrepancy 2n. Similarly, if

x2 <L2 x1, Builder proceeds to present [1, 1], [2, 2], . . . , [2n−1, 2n−1]. In both cases,

the linear extension L that Assigner produces has ld(Pn, L) = 2n = 2 ld(Pn).

The recurring theme in this section is that Builder has needed to construct posets

containing 1 + n for n large in order to force Assigner to construct a linear extension

that is as far from optimal as possible. In the next section we show that these long

chains really are essential by considering the case of semiorders.

4.3 The Case of Semiorders

We begin our discussion of the online linear discrepancy of semiorders with a propo-

sition that follows directly from Theorem 1.3.7.

Proposition 4.3.1. Let P be semiorder and assume that Builder presents P to As-

signer by giving each point as a unit-length interval consistent with the previously-

presented intervals. Then Assigner can always form an optimal linear extension L of

P online.

Proof. Since builder is required to present the unit interval representation of P, As-

signer’s algorithm simply maintains a linear extension by ordering the points by their

intervals’ left endpoints. By Theorem 1.3.7, this linear extension is optimal.

Recall that for interval orders, we saw that the performance of an online linear

discrepancy algorithm depends on whether or not Builder is required to present an

interval representation. It is natural that for semiorders there would also be a differ-

ence. In light of Proposition 4.3.1, for the remainder of this section we will focus only
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on the setting where Builder does not present Assigner an interval representation of

the semiorder. We first note that for all integers n ≥ 1, there exists a semiorder Pn

with ld(Pn) = n and ldol(Pn) ≥ 2 ld(Pn) = 2n. To see this, consider the poset P

consisting of two antichains A and B of size n with a > b for all a ∈ A, b ∈ B and a

point x incomparable to all elements of A ∪ B. This poset is clearly a semiorder, so

since width(P) = n+1, it follows that ld(P) = n. However, if Builder first presents an

antichain of size n+ 1 one point at a time and follows this by presenting an antichain

of size n in which each point is incomparable to the point Assigner placed lowest in

her linear extension and greater than the other n, he has forced a linear extension L

of P having x at the bottom with the points of B above it and the points of A above

them. We have ld(P, L) = 2n = 2 ld(P).

For convenience, let Σn denote the class of all semiorders with linear discrepancy

n. The primary goal of this section is to prove the following theorem.

Theorem 4.3.2. For each positive integer n, ldol(Σn) = 2n.

However, before giving an online linear discrepancy algorithm achieving this, we

give examples to show that the simplest algorithms one might propose do not perform

this well.

4.3.1 Näıve online linear discrepancy algorithms for semiorders

Perhaps the simplest online linear discrepancy algorithm that Assigner can use works

as follows. When presented with a new point x, the algorithm looks at the linear

extension L already constructed, identifies the element d ∈ D(x) appearing highest

in L and the element u ∈ U(x) appearing lowest in L and then places x in position

b(hL(d) + hL(u))/2c and increments the height in the linear extension of all points

above that position. Let us refer to this algorithm as M, since it places x in the

middle of its allowable range. Unfortunately,M is no more effective than an arbitrary

algorithm that maintains a linear extension. We see this by considering the semiorder
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w

Figure 4.2: A semiorder on which simple algorithms behave badly

suggested in Figure 4.2. To be more precise, the boxes labelled A, B, C, and D are

meant to represent antichains of sizes n, n − 1, n − 1, and n respectively, with each

point in one of the antichains represented by a copy of the same interval. Then this

semiorder, which we will call P, has width n+ 1, and therefore ld(P) = n.

Now suppose that Assigner is usingM to construct her linear extension. Builder

begins by presenting, one point at a time, an antichain of size n+1 followed by another

antichain of size n+ 1 with all points of the second antichain being greater than each

point of the first antichain. After seeing the order in which Assigner places the

points, Builder decides to henceforth treat the point Assigner placed at the bottom

of her linear extension as x and the point she placed at the top of it as w. (The

remaining points are the points of A and D.) Builder then presents y, and Assigner

has no choice of where to place it, forming a linear extension in which the points

are ordered as x,A, y,D,w. Next, Builder presents Assigner with the points of B,

which assigner places between B and y, since M biases toward placing points lower

when there are two positions in the “middle.” Finally, Builder presents the points of

C, which Assigner again places below y. But now Assigner has the linear extension

x,A,B,C, y,D,w, which has linear discrepancy 3n− 1, so ldM(Σn) = 3n− 1.

We now consider a second simple algorithm that fails to perform as well as we

desire. When presented with a new point x, the algorithm computes the linear dis-

crepancy of each linear extension that can be formed from the current linear extension
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by inserting x between two points. It then inserts x into the position that minimizes

the linear discrepancy of the new linear extension, breaking ties by placing x as low

as possible. Since this algorithm is in some sense greedy in its operation, we denote it

by G. Algorithm G has some aesthetic appeal, but unfortunately, ldG(Σn) ≥ 5n/2−1.

To see this, we again consider the poset P in Figure 4.2 and assume now that As-

signer is using G to build her linear extension. Builder begins as before, presenting

A ∪D ∪ {x,w} and thereafter treating the lowest point in the linear extension as x

and the highest as w. Builder then presents B, and Assigner has no choice of where

to place it. Next, Builder presents the point y. Assigner sees her linear extension has

x,A,B,D,w and y‖x,w; therefore, she places y in the middle of the linear extension

by splitting B as evenly as possible. Finally, Builder presents the points of the an-

tichain C, which Assigner has no choice but to place between the highest point of B

and the lowest point of D. Now the linear extension that Assigner has constructed

using G has placed d(n− 1)/2e+ (n− 1) + n points between the incomparable points

y and w. Therefore, the linear extension has linear discrepancy d(n− 1)/2e+ 2n and

ldG(Σn) ≥ 5n/2 − 1. It would be interesting to know whether this bound is tight or

if another family of semiorders could increase it.

4.3.2 An optimal online linear discrepancy algorithm for semiorders

The motivation for our next algorithm is a careful examination of what happens when

G makes the crucial bad decision in constructing the linear extension—the placement

of y in the middle of the points of B. According to G’s rule, it has made the right

decision. However, even without knowing that the antichain C is yet to arrive, the

interval representation of P in Figure 4.2 and the fact that the optimal linear extension

of a semiorder orders the intervals by left endpoint strongly suggest that y should be

placed above all of B, despite it producing (for the moment) a linear extension with

larger linear discrepancy. Of course, the algorithm doesn’t know what the interval
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representation of P looks like as Builder presents the points. On the other hand, a

smart algorithm can leverage the fact that when y arrives after A ∪ B ∪D ∪ {x,w},

D(b) = D(y) for all b ∈ B while U(b) ) U(y). The second inclusion implies that the

interval representation of P will have y’s interval ending (and hence starting) after

the intervals for B, suggesting that y should be placed after the points of B in the

linear extension.

With this observation in mind, we are prepared to define algorithm F , which

attempts to mimic the left endpoint ordering as closely as possible based on the

information available at the time a point is presented. This algorithm will use a

function fi(x) := |Di(x)| − |Ui(x)|, with i denoting the index of the last point of the

poset presented. (In contexts where i is not relevant, we will suppress the subscript.)

The goal of F is to place the points so that they are in increasing order according to

fi. However, this is not always possible, so we define it to do the best it can in the

situation it is given. Specifically, when presented with a new point xi, algorithm F

computes fi(y) for every point y of the poset. It then defines

m = max
y : fi(y)<fi(xi)

hLi−1
(y) and m′ = min

y : fi(y)>fi(xi)
hLi−1

(y)

and forms Li by placing xi in position b(m + m′)/2c and incrementing the height in

the linear extension of the points at least this high in Li−1. Notice that if m < m′,

then F has placed xi in a position that agrees with the left endpoint ordering at step

i. However, it is possible that m > m′, in which case F has placed xi in the middle

of the overlap of the region of points with smaller value of fi and those having larger

value of fi.

Our goal for the remainder of this section is to prove that ldF(Σn) ≤ 2n, which

will prove Theorem 4.3.2. We begin with the following lemma.

Lemma 4.3.3. Let P = (X,≤P ) be a semiorder and f(x) = |D(x)| − |U(x)| for all

x ∈ X. If |D(x)| < |D(y)|, then f(x) < f(y).
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Proof. Since P is an interval order, we know by Theorem 1.2.1 that the down-sets

are totally ordered by inclusion. Hence, if |D(x)| < |D(y)|, then D(x) ( D(y) and

either x < y or there is z < y such that z‖x. In the former case, we not only have

|D(x)| < |D(y)| but also |U(x)| > |U(y)|, so f(x) < f(y). In the latter case, the only

way we could not have f(x) < f(y) is if |U(y)| > |U(x)|, but then since the up-sets

are also totally ordered by inclusion, we would have U(y) ) U(x) and therefore there

would be a point z′ with z′ > y and z′‖x. However then {z, y, z′, x} would induce a

1 + 3 in P, contradicting that P is a semiorder.

Before continuing, we note that if f(x) ≤ f(y), then l(x) ≤ l(y) since D(x) can be

no larger than D(y).. The remainder of our analysis will focus on the posets N and

N3 shown in Figure 4.3 and certain undesirable linear extensions of them when they

appear as subposets. The posets in Figure 4.3 are labelled with point names that we

will use consistently for convenience.

x

a

c

y

x

a

b c

y

Figure 4.3: The posets N (left) and N3 (right)

Lemma 4.3.4. Let P be a semiorder. If L ∈ E(P) does not order the points of any

subposet isomorphic to N as x <L c <L a <L y, then ld(P, L) ≤ 2 ld(P).

Proof. Fix x‖Py. Let S := {z | x <L z <L y}. If S ⊆ Inc(x) or S ⊆ Inc(y), then it

follows that ld(P, L) ≤ ∆(P) ≤ 2 ld(P). If S contains a point a comparable to x and

a point c comparable to y, note that these must be different points since otherwise

y >P x. Furthermore, since P is a semiorder, we must have a >P c. Thus, if these

points exist, they form an N in the forbidden order in L, which is a contradiction.

Lemma 4.3.5. The online algorithm F never builds a linear extension Li of a
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semiorder Pi with the points of an induced subposet isomorphic to N3 ordered as

x <Li
c <Li

b <Li
a <Li

y

and xi = b.

Proof. Assume by way of contradiction that F has ordered the points of a subposet

isomorphic to N3 in this order. Since there may be more than one choice of points

{a, c, x, y} that combine with b to form a copy of N3, we wish to fix a particular one.

We do so by choosing x and y to be as far apart as possible, and subject to that, we

choose a so that it is as low in Li as possible, and subject to that, we choose c so that

it is as high in Li as possible.

Now consider the first step j at which all the elements of {a, c, x, y} have been

presented. We first suppose that xj = y. Then fj(y) < fj(a), so there exists a point

z such that z >Lj
y and fj(z) < fj(y). Note that this implies fi(z) < fi(y) as well, so

we may now use only fi to complete our analysis. Since fi(z) < fi(y) and z >Li
y, we

have z‖y. Similarly, we conclude that z and a are incomparable. Since fi(z) < fi(y),

l(z) ≤ l(y), and since z‖y, we have that the interval of z contains the left endpoint of

the interval corresponding to y. Furthermore, the same argument allow us to conclude

that the interval of x contains l(y). Thus, z is incomparable to x as well. Now since

a > x, we have fi(x) < fi(z), and thus z is also incomparable to b. Then the fact that

P is a semiorder implies that we must have z > c. Now note that {x, a, b, c, z} forms

a copy of N3 in Pi with z playing the role of y, and since z >Li
y, we contradict our

choice of y as being as far from x as possible while forming an N3.

Next we suppose that xj = a. Then there is a point z such that z <Lj
a but

fj(z) > fj(a) and thus fi(z) > fi(a). It immediately follows that z is greater than b,

c, and x in Pi. Since z <Li
y, we cannot have z > y in Pi, and if z < y in Pi, then

we would have y > x, so we must have z‖y. But then {x, b, c, y, z} forms a copy of

N3 in Pi, with z playing the role of a. However, for this copy of N3, we have z lower
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than a in Li, contrary to our choice of a.

The argument for xj = x is completely dual to that for xj = y, and the argument

for xj = c is dual to that for xj = a, and thus the lemma is proved.

Theorem 4.3.6. If P is a semiorder, then ldF(P) ≤ 2 ld(P).

Proof. We begin by noting that Lemma 4.3.4 implies the theorem if F never con-

structs a linear extension Li of Pi with the points of an induced subposet isomorphic

to N ordered as x <Li
c <Li

a <Li
y. If F ever constructed such a linear extension,

then Builder could immediately present a point b to form an N3, and F would have

no choice to put it between c and a in Li. However, we know by Lemma 4.3.5 that this

cannot happen, and thus F never orders the points of an N as x <Li
c <Li

a <Li
y,

which completes our proof.

Now that Theorem 4.3.6 is proved, Theorem 4.3.2 follows immediately.

4.4 Conclusion and future work

This chapter’s results address much of the big picture for online algorithms for linear

discrepancy. Interval orders have played a central role in much of the work on linear

discrepancy and have reappeared in this chapter. Of particular interest is the distinc-

tion between other work on online algorithms for interval orders (or interval graphs),

where an online algorithm’s performance is independent of whether or not an interval

representation is provided, and online algorithms for linear discrepancy, which have a

significant performance improvement when provided with an interval representation.

A number of interesting questions remain unanswered by our work in this chap-

ter, however. In the proof of Theorem 4.2.3, we give an interval order with linear

discrepancy n for which any online linear discrepancy algorithm constructs a linear

extension with linear discrepancy 3n− 1. Theorem 4.2.2 shows that no linear exten-

sion of a poset can have linear discrepancy more than three times the optimal value,
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and there are examples of interval orders (see for instance Choi and West [6]) for

which this bound is tight. However, for these specific interval orders, Builder cannot

force Assigner to construct the extreme linear extensions in an online setting. This

raises the question of whether there exists an online linear discrepancy algorithm that

always constructs a linear extension of linear discrepancy at most 3n− 1 for a poset

of linear discrepancy n or if there is another family of posets for which Builder can

force assigner to create a linear extension with linear discrepancy 3n. The distinction

drawn in this chapter between the cases of interval orders and semiorders also sug-

gests the question of determining the online linear discrepancy of the class of interval

orders which excludes 1 + t for fixed t > 3, as it may be intermediate between that

of interval orders and semiorders.
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CHAPTER V

CONCLUSION

In this dissertation, we have examined three principal types of questions on linear

discrepancy for partially ordered sets. While further work along the lines of the

characterization result of Chapter 2 appears at present to be very technical and of

limited interest, it is possible that work on other linear discrepancy problems will

lead to a deeper understanding that provides insight into that line of inquiry as

well. However, Chapters 3 and 4 suggest a number of interesting questions including

improving the best known general degree bound for posets and developing a fuller

understanding of online algorithms for linear discrepancy. There are also a number

of interesting questions regarding online algorithms for other properties of posets.

Moving beyond the work of this dissertation, one of the most intriguing directions

for future work would be to explore the relationship between linear discrepancy and

dimension through their dependence on critical pairs. There does not seem to be

any intuitive reason for the relationship between linear discrepancy and critical pairs,

and therefore it is possible that the relationship is simply a fortunate coincidence.

However, if there were a natural explanation for this relationship, it would perhaps

suggest a proof of the conjecture that if ld(P) = dim(P) = n ≥ 5, then P contains

the standard example Sn as a subposet. (See [37, 41].) Since the class of interval

orders contains posets of arbitrarily large dimension but not the standard examples

for n > 1, it would be interesting to see if this conjecture can be proven for this

restricted class of posets.

Recently, Howard and Trenk have introduced in [20] what they call the t-discrepancy

of a poset. For t-discrepancy, we seek an order-preserving map from the poset’s ground
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set to the integers so that each integer is the image of at most t points in the poset.

Such a function’s t-discrepancy is the maximum difference between the labels of in-

comparable pairs as with linear and weak discrepancy, and the poset’s t-discrepancy

is the minimum over all such functions. The t-discrepancy is intermediate between

linear and weak discrepancy in the sense that a poset’s 1-discrepancy is simply its

linear discrepancy and weak discrepancy results from removing the restriction of each

label being used at most t times altogether. Howard and Trenk have shown that

determining if a poset’s t-discrepancy is at most k is NP-complete and that a poly-

nomial time algorithm exists to compute the t-discrepancy of a semiorder. However,

the complexity of determining the t-discrepancy of an interval order remains open. It

would be interesting to resolve this question, and many of the questions for linear dis-

crepancy have natural generalizations to t-discrepancy that may be worth exploring

as well.

64



REFERENCES

[1] Board, R., “The online graph bandwidth problem,” Inform. and Comput.,
vol. 100, no. 2, pp. 178–201, 1992.

[2] Bogart, K. P., Rabinovich, I., and Trotter, Jr., W. T., “A bound on
the dimension of interval orders,” J. Combin. Theory Ser. A, vol. 21, no. 3,
pp. 319–328, 1976.

[3] Brightwell, G., Kierstead, H., and Trotter, W. T., “A note on First
Fit coloring of interval graphs.” Preliminary manuscript., 2003.

[4] Chae, G.-B., Cheong, M., and Kim, S.-M., “Irreducible posets of linear
discrepancy 1 and 2,” Far East J. Math. Sci. (FJMS), vol. 22, no. 2, pp. 217–
226, 2006.
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