
oh brute computation

Marcus Junius Brutus the younger

noise is your friend

Professore Gatto Nero



Noise is your friend
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knowing when to stop

computation of solutions in high-dimensional state spaces,
such as Navier-Stokes,

is at the border of what is feasible numerically, and criteria to
identify finite sets of the most important solutions are very
much needed.

when are we to stop calculating these solutions?



knowing when to stop

need the 3D velocity field at every (x , y , z)!

motions of fluids : require∞ bits?

numerical simulations track 102 - 106 of computational degrees
of freedom; terabytes of data, but how much information is
there in all of this?



knowing when to stop

motions of fluids : require∞ bits??

that cannot be right...



knowing when to stop

Science originates from curiosity and bad eyesight.
— Bernard de Fontenelle,

Entretiens sur la Pluralité des Mondes Habités

in practice
every physical problem is coarse partitioned and finite



noise rules the state space

any physical system experiences (some kind of) noise
any numerical computation is ‘noisy’
any prediction only needs a desired finite accuracy



mathematician’s idealized state space

a manifoldM∈ Rd : d real numbers determine the state of the
system x ∈M

noise-limited state space
a ‘grid’M′ : N discrete states of the system a ∈M′, one for
each noise covariance ellipsoid ∆a



noise limited state space partitions

noise limited cell

a resolvable neighborhood is
no smaller than a ball whose
radius is the noise amplitude

noise limited partition grid

state space noise-partitioned
into neighborhoods indicated
by their centers



dynamics + noise: unique coarse-grained partition

reasonable to assume that the noise
limits the resolution
that can be attained in partitioning the state space



dynamics + noise: unique coarse-grained partition

reasonable to assume that the noise
is uniform,
leading to a uniform grid partition of the state space



dynamics + noise: unique coarse-grained partition

reasonable to assume that the noise
is uniform,
leading to a uniform grid partition of the state space

in dynamics, this is wrong!
noise has memory



dynamics + noise: unique coarse-grained partition

noise memory
accumulated noise along dynamical trajectories
always coarsens the partition nonuniformly



dynamics + noise: unique coarse-grained partition

noise memory
accumulated noise along dynamical trajectories
always coarsens the partition nonuniformly

that is good, because

dynamics + noise determine

the finest attainable partition



the challenge

turbulence.zip

or ‘equation assisted’ data compression:
replace the∞ of turbulent videos by the best possible

small finite set

of videos encoding all physically distinct motions of the
turbulent fluid



devil is in the details

fluid dynamics
have equations: can compute the optimal partition

Navier-Stokes
∂v
∂t

+ (v · ∇)v =
1
R
∇2v−∇p + f , ∇ · v = 0,

velocity field v ∈ R3 ; pressure field p ; driving force f



dynamical system

state space

a manifoldM∈ Rd : d numbers determine the state of the
system

representative point
x(t) ∈M
a state of physical system at instant in time



today’s experiments

example of a representative point
x(t) ∈M, d =∞
a state of turbulent pipe flow at instant in time

Stereoscopic Particle Image Velocimetry→ 3-d velocity field
over the entire pipe1

1Casimir W.H. van Doorne (PhD thesis, Delft 2004)



dynamics

map f t (x0) = representative point time t later

evolution in time
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dynamical description of turbulence

dynamical system
the pair (M, f )

the problem
enumerate, classify all solutions of (M, f )



deterministic partition into regions of similar states

1-step memory partition

M =M0 ∪M1 ∪M2
ternary alphabet
A = {1,2,3}.

2-step memory refinement

01

12

22

02

00

20

21

11
10

Mi =Mi0 ∪Mi1 ∪Mi2
labeled by nine ‘words’
{00,01,02, · · · ,21,22}.



deterministic partitions are no good

deterministic dynamics: partitioning can be arbitrarily fine
requires exponential # of exponentially small regions

|

|
|



deterministic partitions are no good

deterministic dynamics: partitioning can be arbitrarily fine
requires exponential # of exponentially small regions

yet

in practice
every physical problem must be coarse partitioned



deterministic vs. noisy partitions

01

12

22

02

00

20

21

11
10

deterministic partition

can be refined
ad infinitum

01

12

21

22

20

02

00

10

11

noise blurs the boundaries

when overlapping, no further
refinement of partition



periodic points instead of boundaries

mhm, do not know how to compute boundaries...



periodic points instead of boundaries

mhm, do not know how to compute boundaries...
however, each partition contains a short periodic point



periodic orbit partition

deterministic partition

01

12

21

22

20

02

00
10

11 1

some short periodic points:
fixed point 1 = {x1}
two-cycle 01 = {x01, x10}

noisy partition

10
1

01

periodic points blurred by noise
into cigar-shaped densities



periodic points and their cigars

each partition contains a short periodic point smeared into
a ‘cigar’ by noise



periodic points and their cigars

each partition contains a short periodic point smeared into
a ‘cigar’ by noise
compute the size of a noisy periodic point neighborhood!



how big is the neighborhood blurred by the accumulated noise?

the (well known) key formula that we now derive:

Qn+1 = MnQnMT
n + ∆n

density covariance matrix at time n: Qn
noise covariance matrix: ∆n
Jacobian matrix of linearized flow: Mn

Lyapunov equation, doctoral dissertation 1892
Ornstein-Uhlenbeck 1930

Kalman filter ‘prediction’ 1960



Langevin, Fokker-Planck ...

continuous time stochastic dynamical system (M, v , σ)

dx = v(x) dt + σ(x) d ξ̂(t)

x a point in state spaceM
v(x) the deterministic velocity field or ‘drift’
d ξ̂(t) the standard Brownian noise, uncorrelated in time〈

d ξ̂i(t ′) d ξ̂>j (t)
〉

= δij δ(t − t ′)dt

the noise
anisotropic, state dependent and multiplicative
strength given by
diffusion matrix σ(x), or
noise covariance matrix is ∆(x) = σ σ>



strategy

assume the noise is weak
(i.e., deterministic dynamics dominates for short times)

focus on behavior in the vicinity of an equilibrium point
(the argument is valid for any orbit of the system)

1 consider the action of the deterministic dynamics in a
neighborhood of a periodic orbit

2 consider the action of the noise
as if the dynamics were absent

3 the noise and deterministic dynamics combined describe
the noisy flow



linearized deterministic flow

xn

xn+1

Mn vnvn+1

xn+1 + zn+1 = f (xn) + Mn zn , Mij = ∂fi/∂xj

in one time step a linearized neighborhood of xn is
(1) advected by the flow
(2) transported by the Jacobian matrix Mn into a neighborhood

given by the M eigenvalues and eigenvectors



covariance advection

let the initial density of deviations z from the deterministic
center be a Gaussian whose covariance matrix is

Qjk =
〈

zjzT
k

〉

a step later the Gaussian is advected to〈
zjzT

k

〉
→

〈
(M z)j (M z)T

k

〉
Q → M Q MT

next: add noise



roll your own cigar

in one time step

Qn

MnQnMT
n + ∆n

f (xn)

a Gaussian density distribution with covariance matrix Qn is

(1) advected by the flow
(2) smeared with additive noise

into a Gaussian ‘cigar’ whose widths and orientation are given
by the singular values and vectors of Qn+1



covariance evolution

Qn+1 = MnQnMT
n + ∆n

(1) advect deterministically
local density covariance matrix Q → MQMT

(2) add noise covariance matrix ∆

covariances add up as sums of squares



cumulative noise along a trajectory

iterate Qn+1 = MnQnMT
n + ∆n along a trajectory

if M is contracting, |Λj | < 1,

the memory of the covariance Q0 of the starting density is lost,
with iteration leading to the limit distribution

Qn = ∆n + Mn−1∆n−1MT
n−1 + M2

n−2∆n−2(M2
n−2)T + · · · .



example : noise and a single attractive fixed point

if all eigenvalues of M are strictly contracting, all |Λj | < 1

any initial compact measure converges to the unique invariant
Gaussian measure ρ0(z) whose covariance matrix satisfies

Lyapunov equation: time-invariant measure condition

Q = MQMT + ∆

[A. M. Lyapunov doctoral dissertation 1892]



example : Ornstein-Uhlenbeck process

width of the natural measure concentrated at the attractive
deterministic fixed point z = 0

ρ0(z) =
1√

2πQ
exp

(
− z2

2 Q

)
, Q =

∆

1− |Λ|2
,

is balance between contraction by Λ and noisy smearing
by ∆ at each time step
for strongly contracting Λ, the width is due to the noise only
As |Λ| → 1 the width diverges: the trajectories are no
longer confined, but diffuse by Brownian motion



example : 2D Brusselator limit cycle



remembrance of things past

noisy dynamics of a nonlinear system is fundamentally different
from Brownian motion, as the flow ALWAYS induces a local,
history dependent effective noise



things fall apart, centre cannot hold

but what if M has expanding eigenvalues?

both deterministic dynamics and noise tend to smear densities
away from the fixed point: no peaked Gaussian in your future



things fall apart, centre cannot hold

but what if M has expanding eigenvalues?

look into the past, for initial peaked distribution that spreads to
the present state



for unstable directions, look back

if M has only expanding eigenvalues,

balance between the two is attained by iteration from the past,
and the evolution of the covariance matrix Q̃ is now given by

Q̃n+1 + ∆n = MnQ̃nMT
n ,

[aside to control theorists: reachability and observability Gramians]



solving the Lyapunov equation

iterate Qn+1 = MnQnMT
n + ∆n

attractive fixed point, Q = Q∞, M = Mn, Q = Qn:

Q = ∆ + M∆M> + M2∆(M>)2 + · · · =
∞∑

m,n=0

δmnMn∆(M>)m

bring to resolvent form, δmn =
∫ 2π

0
dθ
2πeiθ(m−n)

for M contracting, expanding, or hyperbolic (!)

Q =

∫ 2π

0

dθ
2π

1
1− e−iθM

∆
1

1− eiθM>



Cauchy magic

a similarity transformation S separates the expanding and
contracting subspaces

Λ ≡ S−1MS =

(
Λe 0
0 Λc

)
transformed noise covariance matrix

∆̂ ≡ S−1∆(S−1)> =

(
∆ee ∆ec
∆ce ∆cc

)



Cauchy magic

contour integral representation

Q =

∮
Γ

ds
2π

(1− s−1M)−1∆(1− sM)−1

separates Q into expanding and contracting covariances:

Q̃e ≡ S
(

Qe 0
0 0

)
S> , Qc ≡ S

(
0 0
0 Qc

)
S>

two stationary ‘cigars’, one in the expanding manifold and the
other in the contracting manifold (not orthogonal to each other!)



local problem solved: can compute every cigar
a periodic point of period n is a fixed point of nth iterate of
dynamics

global problem solved: can compute all cigars
more algebra: can compute the noisy neighborhoods of all
periodic points



optimal partition challenge

now can address our challenge:

determine the finest possible partition for a given noise



noisy dynamics partitions: strategy

use periodic orbits to partition state space
compute local covariances at periodic points to determine
their neighborhoods
done once neighborhoods overlap



optimal partition hypothesis

10
1

01

optimal partition:

the maximal set of resolvable
periodic point neighborhoods



how noise frees us from determinism

noise memory
accumulated noise along a
dynamical trajectory always
coarsens the partition

this partition is
intrinsic to dynamics
computable

turbulence.zip



example: representative solutions of fluid dynamics

today we typically have about 10-100 exact invariant
solutions populating the state space

and we have their Jacobians M (that was hell to get)



disclosure

we have not yet tested the method on fluid dynamics



disclosure

we have not yet tested the method on fluid dynamics

the brave candidates: step up after the talk



take home message

computation of unstable periodic orbits in high-dimensional
state spaces, such as Navier-Stokes,

is at the border of what is feasible numerically, and criteria to
identify finite sets of the most important solutions are very
much needed

we are to stop calculating these solutions when we attain



take home message

optimal partition hypothesis



take home message

optimal partition hypothesis

the best of all possible state space partitions
optimal for the given dynamical system, the given noise
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