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SUMMARY

In this thesis we investigate what modern nonlinear-dynamical methods can

tell us about some longstanding problems in atomic physics. There are two com-

ponents to this thesis: One of them is an classical-mechanical investigation of the

ionization of a highly excited two-electron atom in which we look for a Horseshoe

Construction in the dynamics of this problem. The bulk of the thesis is devoted to

atomic systems which contain large Coriolis-like interactions ~r × ~p, where (~r,~p) are

conjugate variables. These interactions may arise quite straightforwardly as param-

agnetic terms for an atomic electron which interacts with a constant magnetic field,

or more subtly, from viewing the atomic problem from a rotating frame. Generally

the effect of this term on spectra is treated by perturbation theory. However, this

thesis is devoted to understanding the effect of Coriolis terms that are too large to

be treated by perturbation theory. The full treatment of Coriolis terms by classical

mechanics forces one to go beyond well-established notions of stability at a potential

minimum. Indeed, by mixing coordinates and momenta in a bilinear fashion, the

Coriolis term makes the definition of a conventional potential impossible.

In celestial mechanics, where large Coriolis terms are the norm rather than the

exception, there is a well-established way of taking them into account as we will show

in this thesis. In the context of atomic physics, we will go one step further and explore

the quantum mechanics of wave packets in such systems: How they are formed, how

stable they are, and how they can be manipulated. Tailoring and manipulating

electronic wave packets is currently one of the most active and challenging research

subjects in the broad area of quantum control.

It is well-known that it is very difficult to prevent electronic wavepackets from

xi



spreading, and that is where we bring in coherent states. We evaluate two strategies

for forming coherent states in atomic physics problems with large Coriolis interactions

: One involves the use of the “Cranked Oscillator” model to construct nondispersive

wavepackets. We show that it is possible to keep the wavepackets from spreading

while manipulating them with dipole fields with arbitrary time profiles. The second

strategy involves using additional external fields to create a stable outer minimum far

from the core. Whenever this minimum approximates a harmonic well it has its own

subset of near-harmonic eigenstates and nearly-coherent states can be constructed.

As examples of this strategy we study two-particle ion pair systems in a applied

homogeneous magnetic field, and a weakly bound heavy-ion pair (H+ −H−), where

the nonspreading wavepacket corresponds to the motion of the drifting electron-ion

or heavy ion pair in relative coordinates.
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CHAPTER I

INTRODUCTION

Tailoring and manipulating electronic wave packets [1] is currently one of the most

active and challenging research subjects in the broad area of quantum control [2, 3].

Physicists, electrical engineers and mathematicians have joined forces in an effort to

keep the wave packet representing the electron from spreading in uncontrollable ways.

It is well known that it is quite difficult to prevent the spreading of such an electronic

wave packet.

In this thesis we investigate what modern nonlinear-dynamical methods can tell us

about reducing the spreading of wavepackets in atomic physics. The use of classical-

mechanical methods has proved fruitful in atomic physics research as long as the

problems are chosen in the so-called semiclassical regime where the Correspondence

Principle predicts the emergence of classical properties from quantum mechanical

ones. It is well-established that so-called Rydberg atoms [4], i.e., atoms with one

highly excited electron [5], are in this regime and our investigations take them as

subjects.

There are two components to this thesis: One of them is an classical-mechanical

investigation of the ionization of a highly excited atom [6]. It involves the phe-

nomenon of chaotic scattering which can be recognized by hierarchical structure of a

scattering function. The singularity structure of the scattering function is the same

as the pattern resulting from the intersection of the stable manifolds with the local

segment of the unstable manifold. Finding the invariant manifold and constructing

the hierarchy level of the scattering function is a useful way of understanding chaotic

scattering in semiclassical treatment. The bulk of the thesis is devoted to atomic

1



systems which contain large Coriolis-like interactions, ~r×~p where (~r,~p) are conjugate

variables. These may arise quite straightforwardly as a paramagnetic term for an

atomic electron which interacts with a constant magnetic field, or more subtly, from

viewing the atomic problem from a rotating frame. In rotating molecules, the vibra-

tional modes may be coupled through such a term which is known as the vibrational

angular momentum [8]. There, the effect of this term on spectra is generally treated

by perturbation theory. However, this thesis is devoted to understanding the effect

of Coriolis terms that are too large to be treated by perturbation theory.

The treatment of Coriolis terms by classical mechanics forces one to go beyond

well-established notions of stability at a potential minimum. Indeed, by mixing coor-

dinates and momenta in a bilinear fashion, the Coriolis term makes the the definition

of a conventional potential impossible. For, if the term were to be treated as part of

the potential, that potential would become momentum dependent; whereas regarding

it as a part of the kinetic energy could make the kinetic energy negative! In problems

involving the magnetic field, the potential becomes gauge dependent if one does not

treat the Coriolis term properly.

In celestial mechanics, where large Coriolis terms are the norm rather than the

exception, there is a well-established way of taking into account these subtleties as

we will show in this section. We will go beyond classical mechanics and explore the

quantum mechanics of wave packets in such systems: How they are formed, how they

can be stabilized, and how they can be manipulated.

In this work, we are guided by the work rotating systems in nuclear physics where

they are known under the name of “Cranked Oscillator” model which will be sum-

marized here first.
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1.1 The Cranked Oscillator Model in Nuclear Physics

In nuclear physics, a good initial model for describing the nucleus is the Liquid Drop

Model (LDM) [7, 9] which assumes that the nucleus has properties similar to a liquid

drop. The main analogies were the well-defined surface and the short-range forces,

an attractive force holding the nucleons together, and a repulsive force stopping the

nucleons from collapsing in. In the model, nucleons are assumed to interact strongly

with each other so that collective motions are possible and the individual quantum

properties of nucleons can be completely ignored. The collective motion of nucleons

associated with a deformation in nuclear shape may be approximated by introducing

a nonspherical distortion into the zero-order wave functions of the shell model [10].

The LDM can be used to explain some important physical phenomena. For ex-

ample, nuclear fission can be described in terms of free vibrations of a liquid drop.

However, quadrupole moments, in some cases, are too large to be accounted for by

motion of a small number of nucleons and experimental evidence shows discrepancies.

A fine structure was observed with magic numbers (or = 2, 8, 20, 28, 50, 82 and 126)

where these nuclei were more tightly bound than the LDM predicted. Mayer [11] and

Haxel et al [12] accounted for the magic numbers by (jj) coupling shell model on the

assumptions that the nucleons move in a spherically symmetric potential with large

spin-orbit coupling. Introduction of a nonspherical core by Rainwater [13] and Bohr

[7] showed impressive success in accounting for the large quadrupole moments and

suggested that the degree of freedom permitting distortion of the core is important to

the external features of most nuclei without radically modifying the internal coupling

of the nucleons as calculated in the original (jj) coupling scheme.

The distortion or deformation is assumed to arise from the pressure exerted from

within the nucleus on the surface of a bag of liquid representing the core by the

nucleons both belonging to closed shells. The existence of a deformation, by which
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is implied a feature of anisotropy, is a common feature of systems that have rota-

tional spectra. In a molecule, as in a solid body, the deformation reflects the highly

anisotropic mass distribution, as viewed from the intrinsic coordinate frame defined

by the equilibrium positions of the nuclei. In the nucleus, the rotational degrees of

freedom are associated with the deformation in the nuclear equilibrium shape that

results from the shell structure [14].

The deformation causes deviations in the nuclear rotational spectra and a number

of efforts have been directed at understanding the deviations and making corrections

by Inglis [10], Mottelson and Valatin [15], Udagawa and Sheline [16], Chan and Valatin

[17], Bes and Landowne [18], Krumlinde [19] and Marshalek [20]. Of these treatments

Inglis [10] suggested as so called “Cranked Model”; corrections arise from taking

into account the centrifugal stretching and Coriolis-antipairing effect suggested by

Mottelson and Valatin [15]. The cranking model analyzes the collective rotational

motion of the deformed state in a semiclassical way since it assumes that the nuclear

field is cranked externally with constant angular velocity about one of the principal

axes of the nucleus.

The deformed state has a classical nature and can be represented by a wave

packet expanded in terms of the angular momentum eigenstates. In the cranking

model, the classical rotations are applied to this wave packet, and thereby the broken

rotational symmetry is partially restored since the angular momentum is quantized

semiclassically by the Bohr-Sommerfeld condition. The nuclear moments of inertia

can be analyzed by considering the motion of the nucleons in the rotating nuclear

potential. The Coriolis and centrifugal forces are included in the equations of motion

for the system moving in the rotating potential. The forces acting in the rotating

body-fixed system give rise to an increase in the energy of the nucleonic motion, which

can be identified with the rotational energy.
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1.1.1 The Cranking Model

The cranking model is one of the most intuitive methods to describe properties of

collective rotations microscopically. In this method the nucleus is cranked externally

around one of its principal axes and the response of the nuclear field is calculated

either in perturbation or in Hartree-Fock theory [21]. However, because of their nu-

merical complexity, such calculations have been restricted for heavy nuclei. This

restriction is mainly due to the effects of the cranking perturbations of very large

dimensions of a static states at high rotational frequencies. The much simpler case

of a cranked anisotropic harmonic oscillator potential can, however, be treated an-

alytically. Most successful models used extensively to account for collective nuclear

rotation microscopically is that suggested by Inglis [10, 22]. Cranking introduces,

for an asymmetric field, an explicit time dependence into the Schrödinger equation

governing the system. However, by transforming to the rotating frame, this equation

may be reduced to an stationary one which may be used to calculate the response

of the nuclear field to rotation. The case of a cranked anisotropic harmonic oscilla-

tor potential was found to lend itself easily to analytical treatments [14, 23, 24, 25].

Glas et al [26] succeeded by using canonical transformations in obtaining an exact

solution for the wavefunctions of this problem in coordinate space. Such wave func-

tions have proved to be useful in nuclear structure calculations of nuclear currents

and velocity fields. Due to this increase of interest in the cranked harmonic oscillator

model as a theoretical tool for investigating nuclear rotations, it becomes interesting

to investigate other aspects of the model which have not been dealt with.

Collective semiclassical aspects occupy a major place in this respect. In this con-

nection, the concept of coherent states, defined originally by Schrödinger [27] and

developed further by Glauber [28], were introduced for the ordinary harmonic oscilla-

tor in this spirit. Thus, a coherent state was defined as a quantum mechanical state
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manifesting the oscillatory character of the amplitude of a classical harmonic oscil-

lator. Such coherent states have provided a natural framework for the semi-classical

description of a variety of collective phenomena in physics such as the radiation fields

of lasers by Lax and Louisell [29], superconductivity and superfluidity (Cumming and

Johnston [30], Martin [31]), phonons in crystals (Carruthers and Dy [32]), and large-

amplitude nuclear collective motion by Rowe and Bassermann [33]. More relevant to

our work are more recent interesting applications of the harmonic oscillator coherent

states in nuclear physics by Ghosh [34] to introduce the concepts of the single-particle

Schrödinger fluid and viscosity for nuclei.

For a single nucleon, the motion with respect to the potential rotating with fre-

quency ω is described by the Hamiltonian

H = H0 − ~ω ·~l (1.1)

where H0 describes the motion in the absence of the rotation. The ~l is the angular

momentum operator and ~ω is the rotation vector. It is assumed that the rotation is

taking place about the axis with constant angular velocity. If the system is rotating

around z-axis, the Hamiltonian can be written as

H =
p2

x + p2
y

2
+

1

2
(ωxx

2 + ωyy
2) − ω(xpy − ypx). (1.2)

Before studying the solution of this model, we introduce another system which will

be key for this thesis, and it comes from celestial mechanics.

1.2 The Restricted Three-Body Problem as a Cranked Os-

cillator

The Restricted Three-Body Problem of celestial mechanics is a variant of the famous

Three-Body Problem in which the relative motion of two bodies of finite mass (the

“primaries”, for concreteness, the Sun and Jupiter) move along a circular orbit while
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a third body (for concreteness, “asteroid”) of negligible mass is taken to move in their

common field. The origin is chosen to be the center of mass of the two primaries with

the x-axis being the axis connecting the primaries. The y-axis is in the plane of the

primaries’ motion. So, the original eighteen-dimensional problem becomes twelve-

dimensional when we move to the center-of-mass coordinates. By restricting the

planets to a plane, the planar three-body problem is restricted to eight dimensions.

In the nonrotating frame Jupiter is assumed to follow an orbit parametrized as

x = r cosωt

y = r sinωt

where r is the radius of the circular orbit: the eccentricity of Jupiter’s orbit is set

to zero. The time dependence can be eliminated by moving to a rotating coordinate

system whose axes rotate at the constant frequency ω around z-axis; the unit of time

is chosen so that ω=1. Let the unit of mass be the sum of the masses of the two

primaries. If the Jupiter has mass µ, the mass of the Sun will be 1 − µ where by

convention 0 < µ ≤ 0.5. Finally, the unit of distance is so that the distance between

the two primaries is unity. In a frame rotating with the frequency ω, the location of

the two primaries will be fixed at x1 and x2 at the plane of the motion. The distances

of the third body from the two primaries, r1 and r2 respectively, are given by the

following expressions:

r1 =
√

(x− x1)2 + y2 + z2

r2 =
√

(x− x2)2 + y2 + z2 (1.3)

If the third body is at position (x, y, z) then the Hamiltonian governing its subsequent

dynamics in the rotating frame is

K =
p2

x + p2
y + p2

z

2
− 1 − µ

r1
− µ

r2
− (xpy − ypx) (1.4)

where the explicit dependence on m, the third body’s mass, has been scaled out of the

problem in the usual manner. The energy K is a constant which is generally referred
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to as Jacobi’s integral [35] or the Jacobi constant. The last term “−(xpy − ypx)” is

the Coriolis interaction which arises from going to the rotating frame. This Coriolis

interaction prevents the direct separation of the potential terms from the Hamiltonian.

However, the equilibrium points can still be determined by using zero-velocity surface

which was invented by Hill [36] to study the Sun-Earth-Moon system. In fact the

stable equilibrium points L4 and L5 in the RTBP will find direct analogs in the Trojan

wavepackets investigated here. The Lagrange points mentions above, L4 and L5, are

termed as possible equilibrium points of the third body of mass m in the rotating

reference frame. In the rotating frame, the third mass m would remain at rest if

placed at one of the Lagrange points. These points are fixed in the rotating frame.

Conversely, in the inertial frame of reference, the Lagrange points rotate about the

center of mass with angular velocity ω, and the mass m would consequently also

rotate about the center of mass with same angular velocity if placed at one of these

points (with the appropriate velocity). The canonical form [37, 38, 39] of the RTBP

can be rewritten as

H =
1

2
(p2

x + p2
y) − (xpy − ypx) −

1 − µ

ρ1

− µ

ρ2

(1.5)

with

ρ1 =
√

(x+ µ)2 + y2

ρ2 =
√

(x+ µ− 1)2 + y2. (1.6)

Restriction to the configuration plane (xy) displaces the synodical coordinate system

from the center of mass to the Lagrange point L4. The stability of motion at the

equilibria is solved generally by shifting the origin of the initial coordinate system

based on the center of mass to another, synodical coordinate system centered around

the Lagrangian point L4 given by

x =
γ

2
; y =

√
3

2
; px =

√
3

2
; py = −γ

2
(1.7)

8



For convenience, the γ is defined by

γ = 1 − 2µ. (1.8)

Translation to the L4 is a conservative, completely canonical diffeomorphism.

x =
γ

2
+ ξ, px =

√
3

2
+ pξ

y =

√
3

2
+ η, py = −γ

2
+ pη, (1.9)

The RTBP Hamiltonian is thereby converted to

H =
1

2
(p2

ξ + p2
η) − (ξpη − ηpξ) − Ω (1.10)

where

Ω =
1

2
γξ +

√
3

2
η +

1

2

(

1 + γ

ρ1
+

1 − γ

ρ2

)

. (1.11)

In the transformation from (1.5) to (1.11), a additive constant −(3 + γ2)/8 was

neglected. When this last quantity (Ω) is expanded around the equilibrium point, a

cranked oscillator is obtained.

1.2.1 The Zero-Velocity Surface

The stable positions of the Hamiltonian (1.4) can be found from following equations,

ẋ =
∂K

∂px

= ẏ =
∂K

∂py

= ż =
∂K

∂pz

= 0 (1.12)

and

ṗx = −∂K
∂x

= ṗy = −∂K
∂y

= ṗz = −∂K
∂z

= 0. (1.13)
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These equations do not provide a clear physical picture of the dynamics. That is

why the zero-velocity surface is remarkably helpful. The zero-velocity surface is con-

structed as follows. Consider the mechanical velocities expressed as

ẋ = px + y

ẏ = py − x (1.14)

ż = pz.

The momenta can be expressed as functions of the velocities and the Hamiltonian

(1.4) results in:

K =
ẋ2 + ẏ2 + ż2

2
− 1 − µ

r1
− µ

r2
− 1

2
(x2 + y2). (1.15)

This is still equal to Jacobi’s constant, but now this Hamiltonian is separable into

the mechanical velocities and the coordinates:

K = K0 + V (x, y, z), (1.16)

whereK0 is a positive definite quadratic form in the velocities while V (x, y, z) depends

only on the coordinates. If the third body has the Jacobi integral, and lies on the

surface specified in V (x, y, z), then it must have zero velocity. Hence, such a surface is

termed a zero-velocity surface. The surfaces form the boundary of regions from which

the third body is dynamically excluded. In the RTBP and restricting the motion to

the xy plane, i.e., z=0, the zero-velocity surface is a topological map of the function

V (x, y, z) = −1 − µ

r1
− µ

r2
− 1

2
(x2 + y2). (1.17)

Figure 1.2.1(a) shows both an isometric and a contour plot of V for parameters

x1=-0.1, x2=0.9 and µ=1/10. There are 5 equilibrium points marked in the Figure

1.2.1(b) as L1,...,L5 and these are the 5 equilibrium points discovered by Lagrange

in 1772. L1, L2 and L3 are saddle points, while L4 and L5 are maxima. In the
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RTBP defined by the Sun-Jupiter system, L4 and L5 are stable equilibrium points

and they correspond exactly to the locations of the two groups of Trojan asteroids.

In this dissertation much of the analysis done for the RTBP is carried over directly

to the realm of atomic physics. Specifically, the hydrogen atom in microwave electric

fields is atomic-physics analog of the RTBP [40, 41, 42]. In particular the stability of

suitable quantum mechanical wave packets, representing the hydrogen atom’s electron

positioned at locations which are analogs of the stable L4 and L5 will be analyzed. It is

found that, given the right combinations of fields, the wave packets indeed constitute

nonspreading, nondispersive quantum objects [43, 44].
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Figure 1: (a) Isometric and (b) contour plot of the zero-velocity surface for the
arbitrary parameters x1 = -0.1, x2 = 0.9, and µ = 0.1
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CHAPTER II

THE CRANKED OSCILLATOR IN ATOMIC PHYSICS:

RYDBERG ATOMS IN EXTERNAL FIELDS

2.1 Introduction

Rydberg atoms [4] are atoms in which an electron has been promoted to a state with

a high principal quantum number, n. In such a state the outermost electron feels

an almost hydrogenic, Coulomb potential. Quantum mechanically, a state of high

n refers to an atom in which the valence electron have been excited into a formerly

unpopulated electron orbital with higher energy and lower binding energy. However,

Rydberg states have long lifetime and the lifetimes can be explained in terms of the

overlapping of wavefunctions which have very little overlap with the wavefunctions

of the inner electrons. The Bohr atom encapsulates many of the fundamental prop-

erties of Rydberg atoms which make such atoms of considerable interest [4]. What

distinguishes the Bohr atom from the classical Kepler problem is the quantized an-

gular momentum, giving off radiation only when making transitions between certain

quantized states of well-defined energy.

At very large n, the electron of the Bohr atom revolves around the nucleus in an

orbit at the extreme outer edge of the atom and the difference in energy from one

orbit to the next nearly disappears, becoming virtually continuous. Therefore, for

very large n, both quantum and classical theory give the same answer. Generally,

a classical study is easier to implement than the corresponding quantum mechanical

study and can often provide vital insight into dynamical behavior that may be difficult

to obtain from quantum mechanical calculations alone. A modern interpretation of

what constitutes a classical atom can be summarized as follows: (1) A wavepacket
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representing an electron will neither spread nor disperse as its center moves along a

Kepler orbit [45], (2) the classical orbit that contains the electron is confined to a

single plane in space. Such configuration would correspond physically to a rotating

giant dipole [46]. Recent studies of “the classical limit of an atom” that have tried

to implement the definitions have emphasized the creation of nondispersive electronic

wavepackets in Rydberg atoms. The wavepacket is also known as a nondispersive

coherent wavepacket [4, 47].

In the context of a Rydberg atom in crossed electric and magnetic fields, denoted

throughout as the E×B system [48, 46], a number of workers have postulated the exis-

tence of an outer well in the atomic potential [49, 50, 51, 52]. In this field configuration

a Coriolis-like term, the linear Zeeman or paramagnetic term, which is proportional

to the component of electronic angular momentum along the magnetic-field direction

is not conserved and can, therefore, be thought of as a velocity-dependent perturba-

tion that mixes coordinates and momenta. The difficulty in treating such a term has

led to a number of analyses that essentially ignore the paramagnetic term because

its presence prevents the separation of the Hamiltonian into kinetic and potential

parts. In the absence of the paramagnetic contribution, under certain conditions, the

potential in the E × B system may display an outer well [49, 50, 51, 52].

Despite the uncontrolled approximations involved, these studies have engendered

experimental research directed to observing the unusually large atomic dipoles that

might be expected to result from such a well [46]. Unfortunately, simply ignoring the

paramagnetic term is a rather poor approximation and the approximation results in an

unphysical, i.e., gauge-dependent potential [46]. Cederbaum and co-workers [53] have

demonstrated that an outer minimum can be created in the atomic E × B problem

if the finite mass of the nucleus is taken into account, but the remoteness from the

nucleus of the resulting, relatively shallow, well makes it unclear how easy it would

be to observe the consequences of this well in an experiment. In this thesis, the gauge
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invariant and the concept of a zero-velocity surface (ZVS) are being used to handle the

paramagnetic term. In the E×B system it is easy to demonstrate that an outer well

cannot exist in the effective potential in the infinite nuclear mass approximation, but,

for the combined magnetic and CP fields, global equilibria corresponding to maxima

or minima can be readily produced and visualized using the ZVS. In the rotating

frame, therefore, all of the suggestions put forward as to the possible consequences of

an outer potential well in the E×B system apply to this system, with the significant

additional merits that such a well is not only (a) expected to exist theoretically, but

(b) is also expected to be experimentally realizable.

The hydrogen atom, even in the ground state, is a special case of a Rydberg atom.

In this chapter we will show how to construct nonstationary, nondispersive electronic

wave packets in the hydrogen atom, especially, hydrogen atom in particular com-

binations of external electromagnetic fields - circularly polarized (CP) microwave

fields. These fields produce equilibrium points at which the coherent states can be

constructed and the nature of the hydrogen atom is very similar to those of RTBP

outlined in the previous chapter. They are energy maxima that result from the inter-

play of Coriolis and Coulombic forces. However, one cannot identify separate kinetic

and potential parts of the Hamiltonian because of the paramagnetic term. Addition-

ally, the paramagnetic term complicates the computation of the frequencies associated

with the coherent state, since this bilinear perturbation must first be diagonalized.

Therefore, the stability of any equilibrium points must, in principle, be calculated ex-

plicitly. Appropriate frequencies at either a maximum or a minimum in the presence

of the paramagnetic term will be computed. A Hamiltonian of the hydrogen atom

expanded around the equilibrium points reduces to the cranked harmonic oscillator

model. The possibility of classical equilibrium points in the dynamics of the hydrogen

atom in CP fields leads to the question of whether a wave packet placed at such a

point will be stable quantum mechanically. In what follows, we show the creation of
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the equilibrium points, test of their stability and show the building of wavepacket for

the cranked harmonic oscillator. Stable coherent wave packets can be launched at a

equilibrium position and they are supported quantum mechanically.

2.2 The Classical Hamiltonian and The Zero-Velocity Sur-

face

2.2.1 Classical Hamiltonian

In deriving the classical Hamiltonian, we will follow the work of the Ref. [54]. The

classical study of the dynamical behavior of the Rydberg electron begins with the de-

scription of the structure of a hydrogen atom simultaneously subjected to a circularly

polarized (CP) microwave and an orthogonal magnetic field. Circularly polarized

light is the result of two spatially orthogonal waves being 90o out of phase. In the

dipole approximation 1, the field is time-dependent and is given by

F (x cosωf t+ y sinωf t) (2.1)

where F is the field strength and ωf is the frequency. The sign of F is not a crucial

point. The effect of a magnetic field in the symmetric gauge on a permanent magnetic

dipole µ is to cause the angular momentum (L) and magnetic momentum to process

uniformly. The precession angular velocity is known as the Larmor frequency, ωL.

For electrons, the Larmor frequency is counterclockwise around the direction of the

magnetic field. The interaction energy between a magnetic dipole and an external

magnetic field in the xy-plane is

v · A(r) =
1

2
v · (B × r)

=
1

2
ωc(xẏ − yẋ) (2.2)

1The electric dipole approximation is based on the fact that the wavelength of the radiation field
is far longer than atomic dimensions.
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where ωc is the cyclotron frequency (sometimes denoted as the reduced magnetic

field strength, γ, where, γ = B/2.35 × 105T in atomic units) and the choice of sign

is determined by the direction of the magnetic field in the case of the paramagnetic

term. Thus, the Lagrangian for a hydrogen atom (in atomic units a0 = ~ = e = µ = 1

and assuming an infinite nuclear mass) subjected simultaneously to a CP microwave

field (field strength F and frequency ωf) and a static magnetic field perpendicular to

the plane of polarization of the CP field is

L =
ẋ2 + ẏ2 + ż2

2
+

1

r
− ±ωc

2
(xẏ − yẋ) ± F (x cosωf t+ y sinωf t) (2.3)

The sign of F is immaterial but our convention, consistent with Ref.[42], is to choose

this sign such that global equilibria corresponding to maxima or minima will turn

out to lie along the positive x-axis. The Hamiltonian corresponding to eq. (2.3) is

obtained in the standard way using

H(q, p, t) =

n
∑

i=1

q̇ipi − L(qi, q̇i, t) (2.4)

where q̇ = dq/dt, H is the Hamiltonian and qi and q̇i are generalized coordinates and

velocities respectively. pi is the generalized momentum conjugate to qi

pi =
∂L

∂q̇i
. (2.5)

The resulting Hamiltonian is

H =
p2

x + p2
y + p2

z

2
− 1

r
+ωc(xpy − ypx)+

ω2
c

8
(x2 + y2)±F (x cosωf t+ y sinωf t). (2.6)

This Hamiltonian includes time dependent terms with a paramagnetic term. The

presence of a nonconserved velocity dependent paramagnetic term in the Hamilto-

nian prevents the separation of H into a positive-definite quadratic form in momenta

and a potential energy term. Nevertheless, a type of potential - a zero-velocity sur-

face - can be constructed and provides an excellent starting point for studying the

dynamics [36, 55]. Furthermore, the paramagnetic term can be eliminated by proper
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transformations.

2.2.2 Equilibrium Points and Energy Maximum Configuration

Due to Cauchy’s uniqueness theorem, a particle starting out in the plane of polariza-

tion, with an initial velocity contained in that plane, will never leave the plane [56].

This reduces the degrees of freedom and makes the system amenable to analysis. The

time dependence in eq. (2.3) may be eliminated by going to a frame that rotates at

the constant angular velocity ωf [57]. The new coordinates (primed coordinates) are

defined by

x = x′ cosωf t− y′ sinωf t

y = x′ sinωf t+ y′ cosωf t (2.7)

z = z′.

Direct substitution of the relations into the eq. (2.6) yields the time independent

Hamiltonian at the transformed coordinates. Thus, the Hamiltonian in the rotating

frame, after dropping the primes, is:

H = K =
p2

x + p2
y + p2

z

2
− 1

r
− ω(xpy − ypx) ∓ Fx+

ω2
c

8
(x2 + y2), (2.8)

with

ω = ωf ∓ ωc/2, (2.9)

where K is analogous to the Jacobi constant in the restricted three-body problem

(RTBP) [37]. The sign ∓ in the frequency ω depends on the direction of the magnetic

field. It controls the nature of the stable equilibrium point: a “+” sign causes it to

be an energy maximum, while a “-” sign results in an equilibrium point that is an

energy minimum.

As was explained in the previous chapter, when the Hamiltonian contains a non-

conserved paramagnetic term zero-velocity surface can be constructed and provides
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an excellent guide to the dynamics [37]. In analogy with the RTBP of the previous

chapter, the ZVS is given by re-writing the Hamiltonian in terms of velocities of

momenta,

H =
ẋ2 + ẏ2 + ż2

2
− 1

r
∓ Fx− ωf (ωf ∓ ωc)

2
(x2 + y2). (2.10)

The kinetic part is positive definite in momenta, and ZVS is defined

V = H − ẋ2 + ẏ2 + ż2

2

= −1

r
∓ Fx− ωf(ωf ∓ ωc)

2
(x2 + y2). (2.11)

The equilibrium points of the ZVS are found to lie long the x-axis at y = 0 and z = 0

by simultaneously solving the following set of equations:

ẋ =
∂K

∂px

= ẏ =
∂K

∂py

= ż =
∂K

∂pz

= 0

ṗx = −∂K
∂x

= ṗy = −∂K
∂y

= ṗz = −∂K
∂z

= 0. (2.12)

Level curves of the ZVS of Figure 2 may be used to provide information on the

location and nature of equilibrium points and the locations of classically allowed

and forbidden regions, unlike a potential-energy surface, such level curves provide no

information on the linear stability of equilibrium points, unless those equilibria are

saddles. The equilibrium points occur in pairs: either a saddle and a maximum or a

saddle and a minimum depending on the sign chosen in eq. (2.11) (the direction of the

magnetic field). The stability of its critical points in not always obvious. In particular,

although a minimum in the zero-velocity surface will always be linearly stable and

a saddle point will always be unstable, the maximum of the zero-velocity surface

may be stable or unstable depending on the particulars. Stability is established by

calculating the normal mode frequencies. The work presented in this chapter deals

extensively with both configurations.

The maximum configuration is important because it raises the possibility of form-

ing an atomic coherent state but also because a wave packet placed here is a direct
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atomic analog of the Trojan asteroids of the Sun-Jupiter system. It also allows one

to test the stabilizing effects of a magnetic field.

The minimum configuration is also important for the production of coherent states.

Coherent states in various external field will be treated in the next chapter. After the

maximum configurations is introduced, the Hamiltonian will be expanded about the

equilibrium point and local frequencies, obtained from the potential, will be used to

define a Gaussian wave packet. Just like in the harmonic oscillator the ground state

is fundamentally presented here the Gaussian wave packet depends strongly on the

harmonicity of the Hamiltonian in a neighborhood of the equilibrium point. The first

step in uncovering the presence of stationary states for this system is to understand

the nature and shape of the zero-velocity surface. When it comes to configurations, a

saddle and a maximum will be referred to as maximum configuration and a minimum

and a saddle will be referred to as minimum configuration.

2.2.3 The Maximum Configuration

The choice of the “+” sign in eq. (2.11) with ωc ≥ 0 leads to the following zero-

velocity surface:

V = −1

r
+ Fx− ωf (ωf + ωc)

2
(x2 + y2) (2.13)

with the maximum equilibrium points lying on the the x-axis as given by the solutions

of the following two equations:

F + 1/x2
max − ωf(ωf + ωc)xmax = 0 maximum (2.14)

F − 1/x2
s − ωf(ωf + ωc)xs = 0 saddle (2.15)

where xmax refers to the position of the maximum equilibrium point. Figure 2 is

an isometric plot of the two dimensional ZVS with a CP field and no magnetic field

showing the locations of the maximum LM and the saddle LS. This configuration of
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Figure 2: Isometric view of the ZVS with F = 10−7 a.u. Figure (b) is the projection
of the plot to the x − y plane. It shows the saddle LS at the position (S) from the
figure and the maximum LM at the position (M). The positions were plotted using
the maximum equilibrium equations.
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equilibria is preserved even on the addition of a magnetic field (ωc 6= 0), provided

that the Larmor frequency and the helicity of the wave are chosen such that the plus

sign emerges in eq.(2.8). Thus, it is possible to have a maximum equilibrium point

either with or without a magnetic field. The stability of these points and the size

of the regime supporting linear dynamics around the maximum will be influenced by

the three free parameters: F , ωf and ωc.

2.2.4 Zero-Velocity Surface in the Neighborhood of an Equilibrium Point

The harmonic oscillator is the most ideal quantum system that can be used in the

study of nondispersive nonspreading coherent states. The classical Hamiltonian for a

three-dimensional harmonic oscillator is

H =
p2

2m
+
m

2
(ωxx

2 + ωyy
2 + ωzz

2). (2.16)

It is instructive to show the two-dimensional potential energy surface at xy-plane for

different values of ωx and ωy of the eq. (2.16) and the level curves of ZVS of the region

surrounding an equilibrium point. Figure 3 is the potential shape, for example, at a

maximum for the ideal harmonic oscillator and its energy contour plot (level curves)

demonstrates the equal spacing between energy levels.
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Figure 3: Contour plots of the two-dimensional harmonic oscillator at maximum;
(a) potential shape for ωx = ωy = -0.5, and (b) its contour plot.
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It is worth to noting that in the classical dynamics the constant addition to the

Hamiltonian, the eq. (2.32) can be safely neglected, and more importantly, the mag-

netic field can be varied to tune the frequencies “a” and “b” of the eq. (2.31). The

term ω2
c can significantly increase the size of the frequencies with the subsequent in-

crease of the harmonic region. For example, typically ωc will be of the same size ω

(for the cases presented here ωc ∼ ω ∼ 10−6 a.u.), while x0 ∼ 103. Hence, without

the magnetic field a ∼ −b ∼ 10−3 while in the presence of the magnetic field a ∼

−b ∼ 0.25. The stronger the frequencies, the smaller the nonlinearities will be in

comparison. Figure 4 shows the energy contours of the zero-velocity surface for two

distinct cases where (a) the hydrogen atom in the presence of a CP microwave field

only (no magnetic field) and (b) the atom in the CP microwave field with non-zero

magnetic field. In case of no magnetic field, the area surrounding the maximum has

different shape with the Figure 3(b) and contains very little harmonic character and

as a consequence will not support stable motion. The addition of a magnetic field

perpendicular to the plane of polarization is demonstrated in Figure 4(b).

The surrounding region of the equilibrium point looks very similar to that of the

harmonic oscillator. Clearly, the presence of the magnetic field can contribute to a

marked increase in the size of the stability region around the equilibrium point and

these region can support stable nondispersive nonspreading coherent states.

2.2.5 The minimum configuration

Selection of the negative sign in the eq.(2.11) generates this minimum configuration.

It is not just change of sign but entirely different critical point topology. Zero velocity

surface for this configuration is

V = −1

r
− Fx− ωf(ωf − ωc)

2
(x2 + y2). (2.17)
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Figure 4: Contour plots of the two-dimensional zero-velocity surface at maximum;
(a) without a magnetic field ( ωc = 0), and (b) with the field (ωc = 5 × 10−5). Each
graph has the same field strength, F = 5 × 10−9 a.u. and angular velocity of the
external field, ωf = 10−6 a.u.
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Minimum configuration has one minimum and one saddle. The equilibria occur along

the x axis as solutions of equations

F − 1/x2
min − ωf(ωf − ωc)xmin = 0 minimum (2.18)

F + 1/x2
s − ωf (ωf − ωc)xs = 0 saddle (2.19)

Define a function h(x0),

h(x0) = F ∓ 1

x2
0

− ωf(ωf − ωc)x0, (2.20)

where x0 represents a minimum or a saddle. A critical point of F can be calculated

using Eq.(2.19) and a derivative of the function h(x0), dh/dx0 = 0. The critical value

of F for the minimum is

Fc =
3

22/3
[ωf(ωf − ωc)]

2/3. (2.21)

For F < Fc the ZVS possesses no real critical points. Considering the conditions,

F > Fc and increasing F , the function h(x0) splits into a saddle point and a minimum.

The depth of the potential well and its proximity to the nucleus depend sensitively

on the field strengths. Under the conditions for the minimum configuration, Figure

5 shows a graph of the ZVS plot at the plane of y = z = 0 for F = 2004V/cm and

ωc = 4.008T . The minimum equilibrium point is illustrated by xm. The xm reaches its

maximum when ωf = ωc/2 and the value decreases during ωc > ωf . For a condition,

ωf > ωc, xm doesn’t exist. The coefficients of the in (x2 + y2) in ZVS equation (2.13)

and (2.17) can be arranged to be nonzero and positive, thus confining the electron

irrespective of the size of F in the planer limit. This occurs whenever ωc > ωf ,

provided that ωf 6= 0. For a given ωc the coefficients is maximized when ωf = ωc/2,

i.e., the paramagnetic term of (2.8) is absent, and the ZVS becomes equivalent to a

true potential energy surface.

Thus, for the frequency chosen to be ωf = ωc/2, such that the Larmor precession

due to the external magnetic field and the precession due to the CP cancel the param-

agnetic term. This result in an integrable system with an outer minimum, well away
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Figure 5: Plots of ZVS of minimum configurations for ωf > ωc, ωf < ωc and
ωf = ωc/2 (F = 2004V/cm and ωc = 4.008T ). All axes are in atomic units.

from the nucleus, which is locally harmonic [58, 54]. Consequently, its ground state

can be a coherent state which represents a wave packet corresponding to an electron

revolving around the nucleus on a large circular orbit without spreading - much like a

classical electron traveling on the circular orbit of the planetary atom. The following

section derives the nondispreading wavepacket.

2.3 The Cranked Harmonic Oscillator and Nondispersive

Wavepackets

So far equilibrium points have been identified in the zero-velocity surface. It is im-

portant to analyze factors affecting the stability of these points. For conciseness, x0

is used to refer simply to an equilibrium point. Usually, stable motion at an equilib-

rium point in a Hamiltonian system can occur only at a potential-energy minimum.

In many experimentally important problems the Hamiltonian can be separated into

a sum of a positive-definite kinetic term depending quadratically on momenta and

a potential part depending exclusively on coordinates, which prevents stable motion

from occurring other than at a minimum [59].
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While the most common situation in atomic physics is the stable motion at a

potential energy minimum, the problem in hand does not meet this criterion because

of the presence of the paramagnetic term, i.e., one cannot identify separate kinetic

and potential parts of the Hamiltonian. A key point of the configuration of fields is

the latitude it provides to vary or even eliminate the paramagnetic term by proper

transformations. When it is allowed to be present, the paramagnetic term complicates

the computation of the frequencies associated with the coherent state since there is

no “potential” about which to expand. Thus, the basic idea for the elimination of

the paramagnetic term presented here is to expand the Hamiltonian in a Taylor series

at a global equilibrium point. After the expansion, canonical transformations will be

followed by the redefinition of the Hamiltonian to a form of the harmonic oscillator

function.

If the expansion is locally harmonic, then a coherent state (defined by the local

frequencies) can be prepared provided that the equilibrium point is linearly stable.

Such a coherent state in the rotating frame will neither spread nor disperse as it

executes motion along a Kepler orbit (the Kepler frequency of the electron is in a 1:1

resonance with the microwave frequency), although it might decay by tunneling. In

general, more significant source of dispersion will arise if the tails of the wave packet

penetrate appreciably into nonlinear or chaotic parts of phase space. This is expected

to be a bigger problem at the maximum than at the minimum. In the laboratory

frame, if these dispersive factors can be minimized, the electronic wave packet will

travel along a circular Kepler orbit while remaining localized radially and angularly

for a finite number of Kepler periods.

For the maximum configuration, the strategy to be described is used to compute

frequencies of the initial coherent state. The steps involved are (a) a transformation to

a barycentric system of Cartesian coordinates at the equilibrium, (b) expansion of the

ZVS in a power series to second order, thereby producing a cranked oscillator, which
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is separable and harmonic at once, albeit in rotated coordinates (c) determination

of the locally harmonic frequencies of these oscillators, and (d) computation of the

vacuum state of the cranked oscillator. For future references, the derivation of the

initial wave packet will be given in some detail since phase factors are essential in

obtaining fully coherent wave packets.

2.3.1 Taylor Expansion and Cranked Harmonic Oscillator

The harmonic approximation in the neighborhood of the equilibrium point makes it

possible to determine the ground state energy and frequencies of the coherent state

for the Hamiltonian,

H =
p2

x + p2
y + p2

z

2
− 1

r
− ω(xpy − ypx) ∓ Fx+

ω2
c

8
(x2 + y2). (2.22)

The mapping begins with the Taylor expansion of the ZVS around the equilibrium

point (x0, y0, z0). The first term of the Taylor series is linear and the process of

dropping the remaining terms is called linearization [60]. The process of linearization

is important since linear systems are the only large class of differential equations for

which there exists a definite theory [60]. Expansion of the ZVS in the neighborhood

of the equilibrium point involves a canonical transformation from the original rotating

center of mass coordinates to the equilibrium configuration [38]. This shifts the center

from the origin to the equilibrium point. The new coordinates are derived from the

equilibrium point of the Hamiltonian. The equilibrium points can be obtained by

solving

q̇ =

(

∂H

∂pq

)

q0

= 0

ṗq = −
(

∂H

∂q

)

q0

= 0. (2.23)
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where q = x, y, z. These equations lead to following equations

y0 = z0 = 0

px0
= pz0

= 0, py0
= ωx0. (2.24)

where

x0 = ∓ 4r3
0F

4ω2r3
0 − ω2

cr
3
0 − 4

(2.25)

with r0 = (x2
0 + y2

0 + z2
0)

1/2. Thus, the transformation from the original rotating

center of mass coordinates to the equilibrium configuration is accomplished through

the canonical transformation

x = x0 + ξ , px = pξ

y = η , py = ωx0 + pη (2.26)

z = ζ , pz = pζ

which transforms the Hamiltonian (2.22) into the form of cranking model mentioned

at the chapter 1,

H =
p2

ξ + p2
η + p2

ζ

2
− ω(ξpη − ηpξ) ∓ Fξ + Θ (2.27)

where the “force function”[38] is given by

Θ = −1

r
∓ Fx0 +

ω2
c

8
(ξ2 + η2) − 1

2
ω2x2

0 +
1

8
ω2

cx
2
0 + (

ω2
c

4
− ω2)x0ξ (2.28)

and

r = (ξ2 + η2 + ζ2 + 2ξx0 + x2
0)

1/2 (2.29)

which may be expanded around (ξ,η,ζ)=(0,0,0) the the second-order in (ξ,η,ζ) to

produce an approximate Hamiltonian describing librations around the equilibrium

point. The expansion results in

H =
p2

ξ + p2
η + p2

ζ

2
+
ω2

2
(aξ2 + bη2 + cζ2) − ω(ξpη − ηpξ) + Θ0 (2.30)
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with,

a =
1

ω2
(
ω2

c

4
− 2

x3
0

),

b =
1

ω2
(
ω2

c

4
+

1

x3
0

), (2.31)

c =
1

ω2x3
0

and the part of the Hamiltonian containing only constant terms is given by

Θ0 = −1

2
ω2x2

0 ∓ Fx0 +
1

8
ω2

cx
2
0 −

1

x0
. (2.32)

In the classical calculations Hc is ignored, although it provides a useful energy cali-

bration in the quantum computations to be reported elsewhere [61]. From Cauchy’s

uniqueness theorem it follows that a particle starting out in the plane of polarization,

with an initial velocity contained in that plane, will never leave the plane [56].

The linear stability at the equilibrium point (for both the maximum and minimum)

was derived in detail in a paper [42]. Briefly, the approximation to the Hamiltonian

describing librations around the equilibrium point shows the motion in the z (or

ζ)-direction to be stable, harmonic, and decoupled from the planar motion. The

Hamiltonian H is identical in form to the cranked oscillator [14, 26, 62, 63]. More

recently, this problem has also been addressed (based on the Bogoliubov-Tyablikov

transformation) in molecular physics to simplify rotational-vibrational Hamiltonians

[64, 65, 66, 67].

Any eigenstate for eq. (2.30) can be written as

Ψ(ξ, η, ζ) = ψ(ξ, η)φ(ζ), (2.33)

where φ(ζ) is the harmonic oscillator eigenfunction along the ζ-direction. To find the

eigenstates of ψ(ξ, η) is straightforward because the corresponding Hamiltonian can

be rewritten in the form of two uncoupled harmonic oscillator after an appropriate

canonical transformation. Therefore, for the initial conditions in the ξη plane, the
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motion can be treated as being restricted to that plane, and the Hamiltonian in the

plane is

H =
p2

ξ + p2
η

2
+
ω2

2
(aξ2 + bη2) − ω(ξpη − ηpξ). (2.34)

The Hamiltonian (2.34) is the cranked anisotropic oscillator model referred on the

Chapter 1.

2.3.2 Nondispersive Wavepackets

The ground-state energy and spatial distribution of the coherent state can be cal-

culated using the cranked harmonic oscillator method. The motion in the z (or ζ)-

direction was stable, harmonic and as a result the Hamiltonian is separable. Review

the cranked harmonic oscillator from Eq. (2.34):

H =
p2

1 + p2
2

2
+

1

2
(ω1x

2
1 + ω2x

2
2) − ω(x1p2 − x2p1). (2.35)

where, for convenience, ξ and η were replaced by x1 and x2 respectively, and conjugate

momenta by p1, p2. The eigenvalues of the cranked harmonic oscillator are found by

diagonalizing Hamiltonian eq. (2.35) analytically. A suitable transformation of the

coordinates and their conjugate momenta to new primed coordinates x′i and momenta

p′i will make the Hamiltonian uncoupled harmonic oscillator. The transformations are

given by

x′i = Axi +Bpj

p′i = pi + Cxj , (2.36)

where i, j = 1, 2, i 6= j. The primed and unprimed coordinates are connected by a

unitary transformation, which requires the commutation relation between coordinates

and momenta to be preserved. This requirement is fulfilled when A− BC = 1, with
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the primed operators should be real. Their inverse transformations are

xi = x′i − Bp′j

pi = Ap′i − Cx′j . (2.37)

Applying these inverse transformations to the Hamiltonian (2.35) leads to a new

Hamiltonian with bilinear terms, which can be eliminated by setting their coefficients

zero and thereby produces equations for A, B and C. The property of unitary of

transformation with the equations lead to three equations for the three coefficients

whose solutions are

A =
1

2

(

1 +
ω2

2 − ω2
1

S

)

B =
2ω

S

C =
1

4ω

(

ω2
2 − ω2

1 − S
)

(2.38)

with

S = sign(ω2 − ω1)

√

(ω2
2 − ω2

1)
2
+ 8ω2(ω2

2 + ω2
1).

The parameters A, B and C are real for all values of ω1, ω2 and ω, thus the primed

operators, x′i, p
′
j, are hermitian. The sign of S is chosen such that in the limit

ω → 0 the transformation goes over continuously into the identity transformation,

i.e. A → 0, B → 0 and C → 0 whereas for the opposite choice the transformation

becomes singular for ω → 0. Under the transformation (2.37) and with the above

definitions, the resulting rotated Hamiltonian can be written in the form

H =
p′21

2m1
+

p′22
2m2

+
1

2
m1Ω

2
1x

′2
1 +

1

2
m2Ω

2
2x

′2
2 . (2.39)
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The new frequencies and effective masses are defined by

Ω2
1 =

1

2

(

ω2
1 + ω2

2

)

+ ω2 − 1

2
S

Ω2
2 =

1

2

(

ω2
1 + ω2

2

)

+ ω2 +
1

2
S

m1 =
Ω2

1 − Ω2
2

Ω2
1 − ω2

2 + ω2

m2 =
Ω2

2 − Ω2
1

Ω2
2 − ω2

1 + ω2
. (2.40)

The masses approach the particle’s mass2 m in the limit ω → 0 and Ωi → ωi.

Because the masses depend on the frequencies, they may be positive or negative. The

eigenvalues of the Hamiltonian H are real and this imposes the restriction Ω2
i > 0

(i = 1, 2) on the solution which is fulfilled for:

ω < min(ω1, ω2) or ω < max(ω1, ω2). (2.41)

In the low frequency range ω < min(ω1, ω2) both masses are positive whereas for

ω > max(ω1, ω2) one of them is negative and the energy spectrum E has no lower

bound. In the case of stable motion at a maximum, the masses have opposite signs.

The intermediate range must be excluded. In these two allowed regions the energy

eigenvalues of Hamiltonian (2.35) are given by

E0 = sign(m1)

(

n1 +
1

2

)

~|Ω1| + sign(m2)

(

n2 +
1

2

)

~|Ω2|

= ~Ω0 (2.42)

with n1 and n2 being non-negative integers. In the following, the frequencies Ωi

will be assumed to be positive. The ground state (n1 = n2 = 0) eigenfunction can

be found by solving the differential equation for the eigenfunction of the rotating

harmonic oscillator with known eigenvalue E0 of eq. (2.42). The eigenfunctions can

2The Lagrangian and Hamiltonian in this paper use atomic units. The particle’s mass is in
unscaled units.
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be expressed as follows in terms of the original coordinates at the x1x2-plane:

ψ(x1, x2) = Nexp

(

−α
2
x2

1 −
β

2
x2

2 − iγx1x2

)

(2.43)

where the parameters α, β and γ are found as:

α =
Ω0(1 +Q)

~

β =
Ω0(1 −Q)

~

γ =
ωQ

~

with Q =
(a− b)ω2

4(Ω2
0 − ω2)

. (2.44)

In atomic units, ~ = 1. Here the normalization constant is given by

|N |2 =

√
αβ

π
. (2.45)

α and β are positive in the allowed regions ω < ω< and ω > ω>. The spatial distri-

bution of the coherent state is given by |ψ(x1, x2)ψ(x3)|2. The phase iγx1x2 has no

classical consequence, and this term will be cancelled when the spatial distribution in

considered 3. Figure 6(a) shows the harmonic approximation and the corresponding

ground-state wavefunction of the effective potential surrounding a minimum equi-

librium point. Note how well the harmonic approximation fits and is therefore an

excellent estimation of the effective potential. Figure 6(b) shows the iso-energy con-

tours of the zero velocity surface (in the plane z = 0) together with a contour plot of

a ground state for the potential well.

This procedure is valid both at the maximum and minimum, although it is un-

necessary at the minimum for the special case of ωf = ωc/2, paramagnetic term is

eliminated and the Hamiltonian reduces to a harmonic oscillator and the the coherent

states can be calculated directly. Even with coupling terms, same calculations can

3If the position is shifted along x1-axis, it will introduces an additional phase into the ground
sate wavefunction [61], which cannot be ignored when performing quantum mechanical calculations.
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Figure 6: (a) Zero velocity surface for the minimum configuration with ωc = 4.00813
T, ωf = 39.7 GHz and F = 2004.09 V/cm. A section (y = z = 0) through the po-
tential is shown. The harmonic approximation to the potential Vho and the Gaussian
probability density of the ground-state |Ψ|2 are also plotted. (b) Level curves of the
Zero Velocity Surface together with contours of the ground states as obtained by
Taylor expansion about the minimum. The parameters are the same as in (a).
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be done. The following chapter introduces two additional couplings to the cranked

harmonic oscillator.
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CHAPTER III

COHERENT STATES OF THE CRANKED HARMONIC

OSCILLATOR WITH COUPLINGS

3.1 Introduction

Tailoring and manipulating electronic wave packets [1] is currently one of the most

active and challenging research subjects in the broad area of quantum control [2, 3].

Physicists, electrical engineers and mathematicians have joined forces in an effort to

keep the wave packet representing the electron from spreading in uncontrollable ways.

It is well known that it is quite difficult to prevent the spreading of such an electronic

wave packet-and that’s where the concept of a coherent state enters [68].

The coherent state concept was first proposed by Schrödinger [27] for the harmonic

oscillator and developed further by Glauber [28]. These states also can be defined in

several equivalent ways, for example, Gaussian wave packets evolving without spread-

ing. For the one-dimensional harmonic oscillator it is well known that the minimum

uncertainty state gives the corresponding classical behavior for the expectation values

of the position and momentum operators. Coherent states have provided a natural

framework for the semi-classical description of a variety of collective phenomena in

physics such as the radiation fields of lasers [29], and large amplitude nuclear collec-

tive motion [34], and interesting application of the harmonic oscillator coherent states

in nuclear physics by Ghosh [34].

The construction of exact coherent states for quantum mechanical systems can

facilitate the investigation of the collective aspects of these systems in a semiclassical

fashion. With this motivation, a number of investigators have succeeded in con-

structing coherent states for the rotation groups and the asymmetric top [72] and for
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potentials more general than the harmonic oscillator [73], and for the time-dependent

harmonic oscillator [74]. The hydrogen atom, however, has been the most problematic

system in which to look for coherent states [75] ever since Schrödinger failed to repeat

his previous success with the harmonic oscillator [76], i.e., to superpose stationary

states of the hydrogen atom into nondispersing wave packets which moved on the

elliptic orbits generic to the Kepler/Coulomb problem [45]. Today, it is certainly pos-

sible, both theoretically [77, 78, 79, 80, 81] and experimentally [82, 83] to construct

an electronic wave packet which rides on an elliptic Kepler orbit [78, 79] as well as on

circular orbits that correspond to maximal orbital angular momentum [84, 85, 86].

While this wave packet can be localized on the orbital plane and, within that plane,

in the radial direction, it cannot be localized angularly [45].

It is useful to review briefly how nonspreading coherent wave packets might be

prepared in an atom or molecule. Naturally the harmonic oscillator is the ideal

quantum system in which to carry out studies on truly non-dispersive coherent wave

packets due to the constant energy level spacings. Thus the question arises as to

whether it might be possible to prepare locally harmonic regimes in atoms thereby

allowing the creation of almost completely non-dispersive coherent atomic states that

are identical to the coherent states of the harmonic oscillator. The energy level

spacings of a hydrogen atom are clearly not constant but be made to be almost so

with the use of a perturbation such as an external static electric field (the Stark

Effect). From perturbation theory, the energy levels of the hydrogen atom in static

electric field are given to first order by

Enk ≃ − 1

2n2
+

3

2
Fnk (3.1)

where n is the principal quantum number and k is parabolic quantum number (the

stark effect separates in parabolic coordinates). The electric field thus splits the

states of a given principal quantum number manifold into equally spaced (locally

almost harmonic) Stark states.
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Empirically, the symmetry breaking by crossed electric magnetic fields must be

used in order to achieve complete localization [87], but even under favorable cir-

cumstances, this full localization (planar, radial and angular) is short-lived - a brief

encounter with the core is sufficient to undo it [87]. This bleak outlook for full local-

ization was improved by the recent discovery of localized ”Trojan” wave packets in

Rydberg atoms in a circularly polarized microwave field (CPM) by Bialynicki-Birula

et al. (BKE) [40, 88, 89, 90] using the analogy to the famous Restricted Three-Body

Problem (RTBP) of classical mechanics in the previous chapter. Their treatment

maps the CP problem onto an anisotropic cranked oscillator which lends itself easily

to analytical treatments [24, 25].

The construction of nondispersive wave packets in periodically driven quantum

systems has been reviewed thoroughly [92] and realized recently [93]. The addition

of a magnetic field perpendicular to the plane of polarization of the CPM field in the

crossed fields configuration can not only stabilize the localized states of this system,

but more strikingly, create a stable outer potential [58, 54, 61, 94, 95]. This well is

locally harmonic in a region of space that also excludes the nucleus, thereby allowing

the wave packet to circle the nucleus clear of the core and safe from its detrimental

influence on the localization [58, 61]. Because the potential is locally harmonic to

an excellent approximation [96], its vacuum state is a coherent state in the sense of

Schrödinger to the same excellent approximation and therefore does not spread. If

the potential supporting the coherent state were perfectly harmonic, that state would

be merely one of an infinite set of coherent states supported by the field configuration.

These states correspond to tightly localized electron performing classical motion in

the atom. If [xc1, xc2] denotes the classical trajectory of the electron in the orbital

plane of the motion, the probability density of such a coherent state ψα1α2
(x1, x2) is

given in terms of the classical trajectory as the double Gaussian (where the α’s are
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coherent state arguments)

|ψα1α2
(x1, x2)|2 = N 2 exp

{

−D
b21

(x1 − xc1(t))
2

}

· exp

{

−D
b22

(x2 − xc2(t))
2

}

.

The ψα1α2
(x1, x2) is not minimum uncertainty state and involves many intricate phase

factors. But remarkably, it does not spread in time [62].

This chapter will go one step further by asking if the motion of the electron,

represented by a non-spreading (or slowly-spreading) wave packet can be controlled

using external fields, such as a dipole field. The ultimate aim is to make wave packets

move in a prescribed way before they can spread appreciably. As a first step to this

ultimate goal, the behavior of cranked oscillator coherent states in a dipole field will

be presented: we find that they indeed can move in a way prescribed by the dipole

field, constructing near-coherent states for specific atomic potentials and investigation

of their properties in the field configuration will be followed by, where Glauber-type

coherent states [28] are defined in the usual manner.

3.2 Coherent States of a Harmonic Oscillator

The first modern, specific modifications to the coherent states since Schrödinger’s

works were made by Glauber [28] and Sudarshan [97]. Glauber constructed the eigen-

states of the annihilation operator of the harmonic oscillator in order to study the

electromagnetic correlation functions. As emphasized by Glauber, there are three

equivalent ways to construct the coherent states. The first is to define them as eigen-

states of the annihilation operator. The second is to define them by the application

of a “displacement” operator on the vacuum state. The comes from the consideration

of the coherent states as quantum states with a minimum uncertainty relationship.

These definitions are applied to a expanded Hilbert space to generate the Glauber-

type coherent states. To begin with the construction of coherent states, Glauber’s

definitions of the coherent states will be introduced. Next, It will be shown that
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coherent states can be constructed from the classical quantities of coordinates and

momenta calculated from cranked harmonic oscillator with or without the coupling

terms. Remaining of this chapter shows a method to find coordinates representa-

tions of the coherent states and probability distribution to investigate the classical

behavior.

According to Glauber [28], the coherent states can be constructed by three differ-

ent definitions for the harmonic oscillator in no external field.

(a) The coherent states are eigenstates (|α〉)of the harmonic oscillator annihilation

operator a,

a|α〉 = α|α〉, (3.2)

where α is complex number.

(b) The coherent states can be obtained by applying a displacement operator to

the ground state of the oscillator, D(α).

|α〉 = D(α)|0〉, (3.3)

where the displacement operator is defined as

D(α) = eαa†−α∗a. (3.4)

and [a, a†] = 1 as usual.

(c) The coherent states are quantum states with minimum-uncertainty relation-

ship.

(∆q)2(∆p)2 =

(

~

2

)2

(3.5)

where the coordinates and momentum operators are defined,

q̂ =
b√
2
(a† + a)

p̂ =
i~√
2b

(a† − a). (3.6)
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where b =
√

~/mω. Time-dependent expectation values of the operators are straight-

forwardly evaluated for the state |α〉 using Heisenberg picture for the operators and

also they retain the property of being a minimum uncertainty state for all times. The

third definition is by no means unique because the uncertainty relationship does not

provide unique solution for the set of (∆q, ∆p). Expansion in a Hilbert space may be

performed in a number of ways. For following calculations, consider the expansion in

terms of the eigenstates of the Fock states:

|α〉 = D(α)|0〉

= e−α∗α/2
∞
∑

n=0

αn(n!)−1/2|n〉. (3.7)

Here |n〉, n = 0, 1, 2, · · · , denote normalized eigenstates of the number operator N ,

N |n〉 = n|n〉, which may be identified with the eigenstates of the harmonic oscillator

Hamiltonian H0 = (N+1/2)~Ω0. The time evolution of the coherent states is given

by

|α(t)〉 = e−iH0t/~|α〉

= e−α∗α/2
∞
∑

n=0

1√
n!
αne−inΩ0t−iΩ0t/2|n〉 (3.8)

= e−iΩ0t/2|αe−iΩ0t〉.

Thus the time evolution shows that any coherent states of a harmonic oscillator

remains within the family of coherent states, which is referred as temporal stability

under H0 [80]. By calculating the expectation values of the position and momentum

operators of the harmonic oscillator, following relations are obtained,

< q̂(t) > =
√

2b Re{α(t)}

< p̂(t) > =

√
2~

b
Im{α(t)} (3.9)

Therefore the coherent states |α(t)〉 are minimum uncertainty quantum states {q(t),

p(t) }, which follow the classical motion of a harmonic oscillator. α(t) can be written
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as

α(t) =
1√
2b

(

q(t) + i
b2

~
p(t)

)

(3.10)

and the classical motion can be described by

q(t) =
√

2b Re{α(t)} = Re

{(

q(0) + i
b2

~
p(0)

)

e−iΩ0t

}

p(t) =

√
2~

b
Im{α(t)} =

~

b2
Im

{(

q(0) + i
b2

~
p(0)

)

e−iΩ0t

}

. (3.11)

The above relations will be used in the next section to find the coherent states of the

cranked harmonic oscillator in an external field. The coherent states are continuous

in their label α = αR + iαI and admit a resolution of unity given by

1 =
1

π

∫ ∫

|α〉〈α|d 2α. (3.12)

Continuity in the labels plus a resolution of unity establish that the set |α〉 is a set

of coherent states in the modern sense of the term [99].

3.3 Coherent States of a Cranked Harmonic Oscillator

The Glauber definition of the coherent states can be applied to construct coherent

states for the cranked harmonic oscillator which was introduced to the previous chap-

ter. In Chapter 2, the Hamiltonian of a hydrogen atom subjected to a CP microwave

and static magnetic field was transformed to a cranked harmonic oscillator by Taylor

expansion of the ZVS around its equilibrium point. It was also shown that the nondis-

persive nonspreading wavepackets could be constructed from the cranked harmonic

oscillator. This section shows that the coherent states can be constructed from the

classical quantities of coordinates and momenta calculated from cranked harmonic

oscillator using Glauber definitions. As an extension of the discussion, this section

introduces various dipole couplings into the cranked harmonic oscillator and shows

that the coherent states can be constructed.
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3.3.1 The Cranked Harmonic Oscillator with Time-Independent Cou-

plings

With time-independent dipole couplings, the Hamiltonian can be reduced to a sep-

arable form directly by suitable transformation, where lz = x1p2 − x2p1 , and d1, d2

are couplings. We will consider two different cases where the dipole couplings are (A)

time-independent and (B) time-dependent. The Hamiltonian for a spinless particle

moving in dipole fields at xy-plane can be obtained by adding the field into the eq.

(2.34).

H =
1

2

(

p2
1 + p2

2

)

+
1

2

(

ω2
1x

2
1 + ω2

2x
2
2

)

− ωlz + d1x1 + d2 x2 (3.13)

Using the same unitary transformation eq. (2.37), the Hamiltonian can be converted

to two decoupled harmonic oscillators with new frequencies and masses in the primed

coordinates as

H ′ =
1

2m1
(p′1 − Bm1d2)

2
+

1

2
m1Ω

2
1

(

x′1 +
d1

m1Ω2
1

)2

+
1

2m2
(p′2 − Bm2d1)

2
+

1

2
m2Ω

2
2

(

x′2 +
d2

m2Ω2
2

)2

+H ′
shift (3.14)

where the frequencies and masses are given by eq. (2.40). The masses m1 and m2

depend on new frequencies. As was explained before, they approach the particle’s

mass as ω → 0. The frequencies and masses are same as the results from Habeeb’s

paper [62], which are given by eq. (2.40). However, the coordinates and momenta

are shifted because of the dipole couplings. The energy shift is given by

H ′
shift =

∑

i,j=1,2

(

1

2
B2mid

2
j +

d2
i

2miΩ
2
i

)

. (3.15)

Define H = H ′ −H ′
shift to reduce the Hamiltonian into a separable form:

H =
P2

1

2m1
+

P2
2

2m2
+

1

2
m1Ω

2
1χ

2
1 +

1

2
m2Ω

2
2χ

2
2, (3.16)
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where

χi = x′i +
di

miΩ
2
i

= Axi +Bpj +
di

miΩ
2
i

Pi = p′i − Bmidj = pi + Cxj −Bmidj (3.17)

with i, j = 1, 2 and i 6= j. Exact classical solutions xi(t), pi(t) of the equations of

motion governed by the Hamiltonian (3.13) can be found by transforming the classical

solutions of the harmonic oscillator (3.16) to the non-primed system using the inverse

transformation (2.37) and (3.17). The results are

xi(t) = [Axi(0) +Bpj(0) +
di

miΩ2
i

] cos Ωit

+
1

miΩi
[pi(0) + Cxj(0) −Bmidj] sin Ωit

−B[pj(0) + Cxi(0) − Bmjdi] cos Ωjt (3.18)

+BmjΩj [Axj(0) +Bpi(0) +
dj

mjΩ2
j

] sin Ωjt−
di

miΩ2
i

− B2mjdi,

pi(t) = −AmiΩi[Axi(0) +Bpj(0) +
di

miΩ
2
i

] sin Ωit

+ A[pi(0) + Cxj(0) −Bmidj] cos Ωit

− C

mjΩj
[pj(0) + Cxi(0) −Bmjdi] sin Ωjt (3.19)

− C[Axj(0) +Bpi(0) +
dj

mjΩ
2
j

] cos Ωjt+
Cdj

mjΩ
2
j

− ABmidj ,

where i, j = 1, 2, (i 6= j).

3.3.2 The Cranked Harmonic Oscillator with Time-Dependent Couplings

Time dependent coupling terms arise when a polarized microwave field is applied to

the cranked oscillator, which could be given by

d1(t) = F1 cosωf t

d2(t) = F2 sinωf t. (3.20)
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The d1 and d2 will describe the oscillating field strengths, F1, F2 are the amplitudes

and ωf is the frequency of the polarized field. Thus Hamiltonian (3.13) will be

replaced by

H =
1

2

(

p2
1 + p2

2

)

+
1

2

(

ω2
1x

2
1 + ω2

2x
2
2

)

− ωlz

+ F1x1 · cosωf t+ F2x2 · sinωf t. (3.21)

Circularly and elliptically polarized microwave fields correspond to F1 = F2 and F1 6=

F2, respectively. We use following transformations to eliminate the time dependent

terms of the eq. (3.21). These transformations do not change the constant frequency

ω of the rotating frame and other canonical variables, but cancel out the polarized

microwave field in the rotating frame of reference.

x1 = ξ + f1(t), x2 = ζ + f2(t)

p1 = pξ + g1(t), p2 = pζ + g2(t) (3.22)

where

f1(t) =
d1(t)

ω2 − ω2
1

, f2(t) =
d2(t)

ω2 − ω2
2

g1(t) =
−ωd2(t)

ω2 − ω2
2

, g2(t) =
ωd1(t)

ω2 − ω2
1

. (3.23)

The fi and gi (i = 1, 2) were determined to eliminate the explicit time dependent

terms. The new Hamiltonian function is given by

H ′ =
1

2
(p2

ξ + p2
ζ) +

1

2
(ω2

1ξ
2 + ω2

2ζ
2) − ω(ξpζ − ζpξ) − ǫ cosωf t (3.24)

with

ǫ =
F 2

1 /4

ω2 − ω2
1

− F 2
2 /4

ω2 − ω2
2

.
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The Hamiltonian turns out to be the cranked harmonic oscillator with a time depen-

dent term. Using the canonical transformation presented at eq.(2.37),

ξ = χ1 −BP2

ζ = χ2 −BP1

pξ = AP1 − Cχ2

pζ = AP2 − Cχ1, (3.25)

the Hamiltonian can be reduced to the separable form too:

H =
P2

1

2m1
+

P2
2

2m2
+

1

2
m1Ω

2
1χ

2
1 +

1

2
m2Ω

2
2χ

2
2. (3.26)

where the relations between transformed variables and initial variables are

χi = Axi +Bpj − Afi(t) −Bgj(t)

Pi = pi + Cxj − gi(t) − Cfj(t). (3.27)

Hamiltonian (3.26) is identical to the Hamiltonian (3.16) transformed from the Hamil-

tonian with dipole couplings, and new masses and frequencies are also given by equa-

tion (2.40). This results shows that the linear time independent couplings or polarized

time dependent couplings (circularly or elliptically polarized fields) produce exactly

the same dynamics at the transformed coordinates. The classical solutions, xi(t) and

pi(t), of the equations of motion governed by the Hamiltonian eq.(3.21) can also be

calculated from (3.23) and (3.25), and they are given by

xi(t) = fi(t) + χi(0) cos Ωit+
Pi(0)

miΩi
sin Ωjt

−BPj(0) cos Ωjt+BmjΩjχj(0) sinΩjt (3.28)

and

pi(t) = gi(t) + APi(0) cos Ωit− AmiΩiχi(0) sinΩit

− Cχj(0) cos Ωjt−
CPj(0)

mjΩj
sin Ωjt (3.29)
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with the initial values

χi(0) = Axi(0) +Bpj(0) − Fi(A+ ωB)

ω2 − ω2
i

δi1

Pi(0) = pi(0) + Cxj(0) − Fi(ω + C)

ω2 − ω2
i

δi2 (3.30)

where i, j = 1, 2, i 6= j and δ is the Kronecker delta.

Therefore, the energy eigenvalues of the harmonic oscillator Hamiltonian eq.(3.26)

are given by

E = sign(m1)

(

n1 +
1

2

)

~|Ω1| + sign(m2)

(

n2 +
1

2

)

~|Ω2|, (3.31)

with n1 and n2 being non-negative integers. This result is same as eq. (2.42) because

the transformed Hamiltonian is simply a harmonic oscillator. Both Hamiltonians with

different couplings ended up with harmonic oscillator after suitable transformations,

so it is possible to construct the coherent states using classical solutions and calculate

the resultant probability density functions for each different cases in the following

section.

3.3.3 Construction of the Coherent States from Classical Solutions

It has been shown that the cranked harmonic oscillator with or without the coupling

terms can be transformed to uncoupled harmonic oscillators (Eq. (2.39), (3.16) and

(3.26)). The classical solutions of the harmonic oscillator are easily found and thereby

they can be expressed as the solutions of the equations of the original coordinates

Hamiltonian. The coherent states can be constructed from these classical quantities

using the relations in the equations (3.10) and (3.11). Construction of the coherent

states will be performed for the cranked harmonic oscillator with dipole couplings

through this section. Recalling the uncoupled harmonic oscillator in the transformed

coordinates (χ1, χ2)

H =
P2

1

2m1
+

P2
2

2m2
+

1

2
m1Ω

2
1χ

2
1 +

1

2
m2Ω

2
2χ

2
2, (3.32)
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define the coherent states from the representation of eq. (3.8) in terms of their sta-

tionary occupation number states, parametrized by three complex quantities αi (i =

1, 2, 3)[26].

|{αi}; t〉 =

3
∏

i=1

exp

(

−|αi|2
4b2i

) ∞
∑

ni=0

(

αi√
2bi

)ni

· 1√
ni!
e−iΩi(ni+1/2)t|ni〉 (3.33)

where bi =
√

~

|mi|Ωi
(i = 1, 2, 3), and the α of eq. (3.10) was scaled as follows:

α(t) = q(t) + i
b2

~
p(t). (3.34)

In the following calculations for expectation values, the definition of coherent states

(3.33) will be used. The motion in the x3 direction will not be dealt with since it

is decoupled from the motion along x1, x2 direction and it is not affected by the

rotation. Since the coherent states defined by the equation (3.33) are by construction

the ordinary coherent states for the transformed Hamiltonian of equation (3.32), it

follows the standard results for expectation values still hold in the uncoupled system.

< χi(t) > = αR
i (t)

< Pi(t) > =
~

b2i
αI

i (t) (3.35)

where αi(t) = αi exp(−iΩit) (i = 1, 2), and the superscripts R and I stand for real

and imaginary parts respectively. The classical solutions of coordinates and momenta

at the initial coordinates system (x1x2 coordinates) can be expressed by χi(t), Pi(t)

using the inverse transformation, so the classical solutions xi(t) and pi(t) can be

calculated easily, provided that the classical solutions at the transformed coordinates

are known. For the known initial conditions, the harmonic oscillators has followings

as their solutions:

χi(t) = χi(0) cosΩit+
Pi(0)

miΩi
sinΩit

Pi(t) = −miΩiχi(0) sinΩit+ Pi(0) cosΩit, (3.36)
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thereby, xi(t) and pi(t)) are given by

xi(t) = χi(t) +BPi(t) −
di

miΩ2
i

− B2mjdi

pi(t) = APi(t) − Cχj(t) +
Cdj

mjΩ2
j

+ ABmidj (3.37)

for the Hamiltonian with dipole couplings, and for the Hamiltonian with polarized

field they are described as

xi(t) = χi(t) − BPj(t) + fi(t)

pi(t) = APi(t) − Cχj(t) + gi(t). (3.38)

Furthermore, we can find the quantum mechanical expectation values, 〈xi〉 and 〈pi〉,

in terms of αR
i (t), αI

i (t) using the relation (3.35). If we identify αi with the combined

initial values of classical coordinates and momenta, the expectation values 〈xi〉 and

〈pi〉 are identical to the values from the classical solutions. The αi can be found from

αi(t) at t = 0:

αi = αi(0) = αR
i (0) + iαI

i (0), (3.39)

and also following relations are derived:

xi(0) = αR
i (0) +B

~

b2j
αI

j (0) − di

miΩ
2
i

−B2mjdi

pj(0) = A
~

b2j
αI

j (0) − CαR
i (0) +

Cdi

miΩ
2
i

+ ABmjdi (3.40)

for the Hamiltonian with dipole couplings, and

xi(0) = αR
i (0) − B

~

b2j
αI

j + fi(0)

pj(0) = A
~

b2j
αI

j (0) − CαR
i (0) + gj(0). (3.41)

for the Hamiltonian with polarized field, where the subscript of the momentum is

switched to j. Equating two equations of eq.(3.40) or (3.41) with respect to αR
i and
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αI
j results in αi’s for both cases:

αi = Axi(0) +Bpj(0) +
di

miΩ
2
i

+ i
b2i
~

(pi(0) + Cxj(0) +Bmidj) (3.42)

for the constant dipole field, and

αi = Axi(0) +Bpj(0) − Fi(A+ ωB)

ω2 − ω2
i

δi1

+ i
b2i
~

[

pi(0) + Cxj(0) − Fi(ω + C)

ω2 − ω2
i

δi2

]

(3.43)

for the both circularly and elliptically polarized fields. αi(t) can be found from

αi exp(−iΩit).

Thus, the coherent states constructed by the equation (3.33) may serve as the ex-

act quantum-mechanical counterpart of a classical cranked harmonic oscillator [62].

Coherent states are known to the minimum uncertainty states for the ordinary har-

monic oscillator. In the (χ1χ2) coordinate representation, the uncertainty is evidently

minimal:

∆χi∆Pi =
~

2
(3.44)

However, at the initial coordinates system (x1x2 coordinates), the uncertainty is given

by

∆xi∆pi =
~

2

(

1 + δ2
)1/2

(3.45)

where

δ =
~AB

b1b2
+
Cb1b2

~
(3.46)

for both cases. Since δ2 > 0, these coherent states do not retain the minimum

uncertainty product at the unprimed coordinates unless δ = 0. The condition for

minimum uncertainty corresponds to ω → 0. The minimum uncertainty, however, is

not a unique definition for the coherent states as mentioned earlier, and the coherent

states are nondispersive states. This is simply shown by d(∆xi)/dt =0.
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Another aspect of coherent states can be seen by investigating the classical be-

havior, describing the coherent states in their coordinates representation.

ψα1α2
(x1, x2) =

∫ ∞

−∞

∫ ∞

−∞

dχ1dχ2· < x1x2|χ1χ2 >< χ1χ2|α1α2 > (3.47)

φα1α2
(χ1, χ2) = 〈χ1χ2|α1α2〉 is a wave function in the (χ1χ2) coordinate representation

, which is

φα1α2
(χ1, χ2) =

∏

k=1,2

exp

(

−|αk|2
4b2k

) ∞
∑

n=0

(

αk√
2bk

)nk

· 1√
n!

exp (−iΩk(n+ 1/2)t)φn(χk) (3.48)

where φn(χk) is the well-known eigenfunction of a one-dimensional harmonic oscilla-

tor. Using the expression of the eigenfunction, φα1α2
(χ1, χ2) can be written as

φα1α2
(χ1, χ2) =

∏

k=1,2

1

π1/4
√
bk
e−iΩkt/2

· exp

{

− 1

2b2k

(

χ2
k − 2αk(t)χk + αR

k (t)αk(t)
)

}

. (3.49)

The generating formula for Hermite polynomials was used to drive above equation.

e−s2+2sx =
∞
∑

n=0

sn

n!
Hn(x) (3.50)

where Hn(x) are Hermite polynomials.

The integral kernel φχ1χ2
(x1x2)=〈x1x2|χ1χ2〉 from the equation (3.47) is a simul-

taneous eigenfunction of the operator x1 and x2 in the (χ1, χ2) representation. Anal-

ogously, because of the hermitian metric of the probability amplitudes its complex

conjugate is the eigenfunction of the operators χ1, χ2 in the (x1, x2) representation.

Exploiting these properties, φχ1χ2
(x1x2) can be obtained. From the transformation

relations (2.36) and (3.17), the following relations can be derived:

p̂jφ ∽
1

B
(χi − Axi)φ

P̂jφ
∗

∽
1

B
(χi − xi)φ

∗ (3.51)
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where p̂j, P̂j are momentum operators and φ, φ∗ are eigenfunctions in the (χ1χ2),

(x1x2) representations respectively. It leads to

φχ1χ2
(x1x2) = N0 exp

{

i

~B
(−Ax1x2 + χ1x2 + x1χ2 − χ1χ2)

}

. (3.52)

N0 is chosen such that ψα1α2
(x1, x2) is unitary:

N0 =
1

2π~|B| .

Inserting equations (3.49) and (3.52) into the equation (3.47), and performing inte-

grations gives

ψα1α2
(x1x2) = Ne−

i

2
(Ω1+Ω2)t

· exp
(

−γ2
1x

2
1 − γ2

2x
2
2 + δ1x1 + δ2x2 + ηx1x2 + ζ

)

(3.53)

where the parameters are

γ2
i =

D

2b2i

δi =
D

b2i

(

αi(t) +
i~Bαj(t)

b2j

)

i, j = 1, 2(j 6= i)

ζ =
~BD

b21b
2
2

[

~B

2

(

α2
1(t)

b21
+
α2

2

b22

)

− iα1(t)α2(t)

]

η = − i

~B
(A−D)

D =
1

1 + ~2B2/b21b
2
2

. (3.54)

N is a normalization constant of the wave function:

N =

(

D

πb1b2

)1/2
∏

i=1,2

exp

(

−α
R
i (t)αi(t)

2b2i

)

.

From equations (3.52) and (3.53), χi or xi can be replaced by one of following relations

to obtain the wave function ψα1α2
for each field:

χi → χi −
di

miΩ
2
i

(for constant dipole field)

xi → xi − fi(t) (for polarized fields). (3.55)
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After the replacement, the probability density, modulus squared of the wave function

ψα1α2
(x1x2), can be brought to the form

|ψα1α2
(x1x2)|2 = N 2

∏

i=1,2

exp

{

−D
b2i

(xi − xci(t))
2

}

(3.56)

where

N 2 =

∣

∣

∣

∣

D

πb1b2

∣

∣

∣

∣

(3.57)

and xci(t) (i = 1, 2) indicates classical trajectory given by equations (3.19) or (3.28)

for each cases. The probability density is a Gaussian probability distribution whose

center follows the classical trajectory for the cranked oscillator in the x1x2 plane.

This supports the fact that ψα1α2
is really a coherent state for this system.

3.4 Conclusions

This chapter showed that the non-spreading wave packets could be controlled using

external dipole fields while remaining nonspreading. The behavior of cranked oscil-

lator coherent states in a dipole field was presented also. We found that they indeed

could move in a way prescribed by the dipole field.

The properties in the external field configuration were investigated by Glauber-

type coherent states. The coherent states constructed here for the different external

fields, constant dipole field and polarized microwave field, both do not satisfy the

minimum uncertainty relation unless ω → 0. However, the states show minimum

uncertainty at the transformed coordinates, and they are nondispersive states. The

probability densities of both cases follow their own classical trajectory in the x1x2

plane without spreading in time with a Gaussian distribution given by

|ψα1α2
(x1x2)|2 = N 2

∏

i=1,2

exp

{

−D
b2i

(xi − xci(t))
2

}

,

where xci(t) is the classical trajectories given by the eq. (3.19) and (3.28) for the time

independent couplings and time depent couplings, respectively. Thus, the constructed
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coherent states have the behavior expected of coherent state for the systems. This

expression points the way to constructing nondispersive states in a system which is

strongly cranked.
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CHAPTER IV

INTEGRABILITY OF THE GUIDING CENTER

PROBLEM

4.1 Introduction

In the previous chapter, the cranked harmonic oscillator was derived by a Taylor

expansion of the potential or ZVS at an equilibrium point. It was then shown that

the coherent states can be constructed for the cranked harmonic oscillator with the

dipole couplings whether they are time independent or not through the previous

chapter.

However, the electron− ion pair, which is introduced in this chapter, can not be

separated into kinetic energy and potential nor ZVS easily. It needs to be manipulated

into a separable form. To investigate the possibility of separation of the system,

we place the system in a strong magnetic field, which will lead to “guiding center”

approximation [111, 112], and thereby reduce the Hamiltonian in dimensionality. The

Lorentz force experienced by a charged particle moving in a magnetic field causes it to

gyrate about an axis parallel to the local magnetic field while the center of gyration,

or guiding center, undergoes various drifts. The guiding center (drift) approximation

applies when the gyration radius is much smaller than the scale length of any field

inhomogeneity and the gyro-frequency is much higher than any characteristic field

frequency. In this approach the helical trajectory of the particle in a magnetic field

is approximated by a smooth drift motion. The first two sections are devoted to find

the constants of motion and test the integrability of the system under the guiding

center approximation. The dynamics of the system will also be studied. The coherent

state will be constructed after testing the possibility of a potential minimum in the
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reduced Hamiltonian.

There has been a great deal of work on the electron-ion system in a strong magnetic

field [112, 113, 114]. The motion of N interacting particles (in the applied external

field) can be factored into the Hamiltonian with the center of mass (CM), which will

be used as a fixed frame, and remaining part that describes the motion with respect to

the center of mass. The separation of the CM is sufficiently useful. The Hamiltonians

with the removed center of mass are easier to analyze because the potential interaction

is, in many cases, a relatively compact perturbation. For example, the absorption and

emission spectrum is the spectrum of the Hamiltonian with the CM removed [115] and

so is more natural. However, a difficulty is that a true separation of the center of mass

motion and the internal motion is rigorouly not possible. Avron, Herbst and Simon

[115] found an effective separation by introducing the transverse pseudomomentum

and showing that it is a constant of motion. This effective separation was applied to

the hydrogen atom [53] and positronium [116] reducing them to a one-body problem.

In the case of a system in magnetic field, the vector potential is fixed only up to gauge

transformations. This arbitrariness enables a realization of the translation invariance

of the physics in constant magnetic field, as an invariance of the Hamiltonian under

a “translation group”. The classical Hamiltonian, being a function of velocity and

coordinate difference is invariant under the phase space translation gα [117],

gα[x, p] =
(

x+ α, p+
q

2c
B × α

)

.

More precisely, consider N particles in constant magnetic field with a translation

invariant potential interaction. The kinetic energy is translated with mv=p− qA/c.

The applied homogeneous magnetic field leads to a constant of motion, the pseudo-

momentum, which was recognized by Johnson and Lippmann [118]. It is the natural

analog of the momentum for the Laplacian. In general, the constant of motion is de-

fined when interacting particles with translation are in invariant interaction. There

are three ways of looking at this constant of motion: The center of the Landau orbit
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Figure 7: A circular guiding center electron-ion pair. The electron executes cy-
clotron motion with frequency Ωce and oscillates with frequency ωz. ωD is the fre-
quency of E×B drifts [113].

(the so-called “guiding center”) [118]; the generator of skewed phase space transla-

tions [117], and a pair of creation-destruction operators. In this chapter we are more

interested in the guiding center motion. The elimination of a degree of freedom makes

the system more accessible. The weakly bound electron-ion pair (ion with positive

charge) in a strong magnetic field also will be treated by reducing the degrees of

freedom through this chapter. More properly, these weakly bound and strongly mag-

netized systems should be referred to as guiding center drift atoms [112]. Figure 7 is

a drawing of a guiding center drift atom.

The guiding center electron oscillates back and forth along the magnetic field in the

Coulomb well of the ion, and more slowly E×B drifts around the ion. The magnetic

field is sufficiently strong that the cyclotron frequency for the electron is sufficiently

large and the cyclotron radius is sufficiently small that the electron dynamics can be

treated by the guiding center drift theory. Thus the electron-cyclotron motion can
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be averaged over a complete cycle and removed. The type of motion executed by the

electron-ion system depends on the relative size of various dimensionless parameters.

In a particularly simple limit, the guiding center for the electron oscillates back and

forth, as mentioned above, i.e., the pair moves across the magnetic field with the

initial ion velocity like a neutral atom. In another limit, the election and ion E×B

drift together across the magnetic field. In a third limit, the electron executes a

large cyclotron orbit in the vicinity of the ion, which is effectively pinned to the

magnetic field. These limits might produce restrictions in the dynamics resulting in

reduction of degrees of freedom by proper approximations. To find the integrable

system, constants of motion by action angle variables will be searched and then the

dynamics will be investigated.

This chapter will analyze and classify the possible motions.

4.2 The Motion in a Magnetic Field and Constants of Mo-

tion

When a uniform magnetic field along ẑ-direction like B = B ẑ, the vector potential

of the field is defined by A. Consider a specific case of the vector potential, A =

Bx ŷ which has only a component along y-direction. All of vector quantities will be

illustrated bold faced letter through this chapter. The external electric field is chosen

to be zero, however, the electron-ion pair interact electrostatically and moves in the

uniform magnetic field. If the separation between two particle is large enough, there

is no governing force but magnetic field. If not, the resulting motion of a particle is

governed by external magnetic field, end the electrostatic force by the ion. In general,

In the magnetic field, a charged particle oscillates back and forth along the magnetic

field in the Coulomb well of the ion and the equations of motion of an individual

particle with mass m and charge q in electromagnetic fields E (r , t) and B(r , t), take

59



the form

ṙ = v

m v̇ =
q

c
(v ×B) + qE . (4.1)

In case of an electron, for clear definition, the charge q is equal to −e. The next

section deals with the motion by separating the each vectors into two parts, parallel

or perpendicular to the magnetic field. This is a good way to investigate the motion

along or transverse to the field.

4.2.1 Motion of a Charged Particle in a Magnetic Field

The parallel component of the equation (4.1) can be represented by

dv‖
dt

=
q

m
E‖, (4.2)

which predicts uniform acceleration along magnetic field lines. No external electric

field results in vanishing of E‖, hereby,

v‖ = const. (4.3)

So, the velocity parallel to the magnetic field keeps constant speed. When it is zero,

the motion happens in a transverse plane, otherwise, the orbit in the transverse plane

moves with constant speed along the field direction so the trajectory is a helix. The

primary effect of a magnetic field is to cause the plane of the orbit of a electron to

precess with a cyclotron frequency defined by

Ωc e =
|q|B
mc

. (4.4)

Thus, it shows that only the transverse component interacts with B , leading to a

circular motion perpendicular to the B . Because the Lorentz force is always perpen-

dicular to the velocity and thus changes only its direction, but not its magnitude, the
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Figure 8: Guiding center coordinates and directions of the velocity vector [119].

kinetic energy of the electron remains constant resulting in reduction of the degree of

freedom of the system. The velocity of the guiding center can be obtained by differ-

entiating the guiding center position R shown in Figure 8. The figure also shows the

schematic position of a guiding center R, electron position x and a rotating gyration

radius vector r .

The particle trajectory is a helix around the guiding center magnetic field line.

The electron position x can be decomposed into the guiding center position that

moves with velocity v‖ ẑ, and the rotating gyration radius vector. The magnitude of

a gyration radius r can be calculated from the fact that the centrifugal force balances

the Lorentz force as follows:

r = − mc

qB2
v ×B . (4.5)

or r = mcv⊥/|q|B for the vertical part of the velocity. Using the following relations

(v ×B) ×B = −v⊥B
2

v − v⊥ = v‖ẑ,

the velocity of the guiding center v g can be obtained using eq. (4.1) [119],

v g ≡ Ṙ = ẋ − ṙ

= v +
mc

qB2
v̇ ×B

= v‖ẑ +
cE ×B

B2
, (4.6)
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thereby, the E×B drift velocity vD is given by

vD =
cE ×B

B2
. (4.7)

Above equation (4.7) shows that the velocity is independent of the particle mass,

type of charge. Since the electric force is in opposite directions for the electron and

ion, the drift velocity does not depend on the sign of the charges or sort of particles.

Therefore, they form a so-called “drifting pair”[113]. The drifting pair of the guiding

center happens for the special case where the effective electric field vanishes. During

the drifting motion, the electron executes very rapid cyclotron motion with a small

cyclotron radius. More slowly, the ion oscillates back and forth along the magnetic

field in the Coulomb well of the electron. In this limit, the pair flows in a group like a

neutral atom with same velocity and there is no net current as a result of the motion.

4.2.2 The Classical Hamiltonian

When analyzing charged particle motion in uniform (or non-uniform) electromagnetic

fields, somehow, it is possible to neglect the rapid, and relatively uninteresting, gy-

romotion, and focus, instead, on the far slower motion of the guiding center. The

effect of spin will be neglected since the magnetic field is uniform and the spin-field

interaction does not couple the spin and orbital dynamics [114]. The usual spin-orbit

interaction, which is smaller than the electrostatic interaction by order (v/c)2, is very

small for the small binding energies and small velocities. In order to achieve this

goal, averaging the equation of motion over gyrophase is useful to obtain a reduced

equation of motion for the guiding center. Following the concept, this section will

show the construction of a Hamiltonian for the guiding center model, and describe

how to eliminate some degree of freedom from the Hamiltonian.

The Lagrangian for this system can be written as

L =
mi

2
(ẋ2

i + ẏ2
i + ż2

i ) +
me

2
(ẋ2

e + ẏ2
e + ż2

e) +
eB

c
xiẏi −

eB

c
xeẏe − Vint (4.8)
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where i, e indicate ion and electron, respectively. Vint is the interaction potential

between two particles given by

Vint = − e2
√

(xi − xe)2 + (yi − ye)2 + (zi − ze)2
. (4.9)

The Hamiltonian can be obtained from the generalized momentum associated with

the coordinates qk:

H =
∑

pkq̇k − L(qk, q̇k), (4.10)

with

pk =
∂L

∂q̇k
. (4.11)

This leads to

H =
1

2mi
(p i −

eB

c
Ai)

2 +
1

2mi
(pe +

eB

c
Ae)

2 + Vint, (4.12)

where the vector potentials are chosen to be in the static symmetric gauge,

A =
1

2
B × r . (4.13)

At first, consider the motion of the electron. Because of the rapid gyromotion (the

gyration due to the Lorentz force) of the electron which direction is perpendicular to

the uniform magnetic field, the cyclotron frequency Ωc e is much larger than the drift

frequency ωD and the cyclotron frequency is constant. The action variable conjugate

to the cyclotron frequency can be calculated using the transformation of action-angle

variable. The kinetic energy of the electron can be separated into two parts which

are transverse or parallel to the magnetic field,

T = T⊥ + T‖. (4.14)

Here, rewrite the transverse component of the kinetic energy of electron as follows:

T⊥ =
p2

xe

2me
+

1

2
Ωce

( c

eB
pye + xe

)2

(4.15)
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where the cyclotron frequency is defined by

Ωc e =
eB

mec
. (4.16)

Consider the following canonical transformations,

xe =

√

2Ice
meΩce

sinϕce −
c

eB
pye

pxe =
√

2meΩc eIc e cosϕce. (4.17)

These transform the kinetic energy T⊥ into

T⊥ = IceΩce, (4.18)

where Ice is a cyclotron action. Since Ice is a good adiabatic invariant and Ωce is

constant (for a uniform magnetic field), the product IceΩce is constant and does not

influence the dynamics of the remaining variables. Thus the new Hamiltonian can be

written as

H = IceΩce +
p2

ze

2me
+

1

2mi

(

pi −
e

c
Ai

)2

+ Vint (4.19)

with

Vint = − e2
√

(

xi + c
eB
pye −

√

2Ice

meΩce
sinϕce

)2

+ (yi − ye)2 + (zi − ze)2

. (4.20)

As mentioned earlier, the rapid cyclotron motion can be averaged out in the limit

of which the electron cyclotron frequency is the largest of the dynamical frequencies

and the cyclotron radius is the smallest of the length scales. The next step is to

expand the Hamiltonian with respect to sinϕce. Averaging will be performed by

integrating the Hamiltonian over the complete cycle of ϕce. The integration produces

zero for odd functions and nonzero correction terms for even functions but higher

order correction terms are negligible. Thus the Hamiltonian is given by

H = IceΩce +
p2

ze

2me
+

1

2mi

(

p i −
e

c
Ai

)2

− e2
√

(

xi + c
eB
pye

)2
+ (yi − ye)2 + (zi − ze)2

. (4.21)
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This Hamiltonian can be derived more simply from the limit of the largest Ωce and the

smallest cyclotron radius. Because the electronic motion influences the Hamiltonian

dynamics only along z-axis, the constant IceΩce does not influence the dynamics. The

mechanical momentum of eq. (4.12) can be expressed by

mṙ = p − q

c
A. (4.22)

For the choice of vector potential Ae = Bxeŷ, the mechanical momentum of the

electron has effective value for z-motion,

pe +
e

c
Ae = (0, 0, pze). (4.23)

Thus, the canonical momentum of the electron can be described by

pxe = 0

pye = −eB
c
xe

pze = pze. (4.24)

pxe is removed from the system and xe can be replaced by py. The position of the

electron in a transverse plane is specified by

(xe, ye) → (− c

eB
pye, ye). (4.25)

Therefore, (xe, pxe) are eliminated from the dynamics and this elimination of the two

degrees of freedom resulted from averaging out the rapid cyclotron motion and results

in a more reduced form of the Hamiltonian (4.21).

4.2.3 The Pseudomomentum and Canonical Transformation

The previous section showed that the introduction of a cyclotron action Ice and a

action for the field aligned bounce motion effectively averaged the Hamiltonian over

the rapid cyclotron and bounce motions, removing two degrees of freedom. However,
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we need more constant of the motion for the Hamiltonian to be integrable. This

section introduces the pseudomomentum, constants of motion in magnetic field, and

gives the nonrelativistic treatment of particles kinematics in constant fields. Using

the constants of motion to a canonical transformation gives more opportunities to

make the system integrable in certain limits, weak binding and strong magnetic field.

Furthermore, for this guiding center system, the description of center of mass (CM)

motion makes it possible to separate the CM motion from the internal degree of

freedom[120].

For a single particle of charge q and mass m in constant electric and magnetic

field, there are three momentumlike vectors [68],

(1) The canonical momentum p, all of whose components commute or have van-

ishing Poisson brackets,

(2) The mechanical momentum Π:

Π = p − q

c
A, (4.26)

(3) The pseudomomentum K :

K = Π +
q

c
B × r − qE t. (4.27)

where A and c are the vector potential and the speed of light, respectively, and q

is the charge of a particle. The pseudomomentum K is a constant of motion in a

uniform magnetic field. It can found by taking time derivative of the mechanical

momentum. For a constant magnetic field, the time derivative of Π is given by

Π̇ = ṗ − q

2c
B × ṙ

= ṗ − 1

2
(qE −mr̈)

= ṗ − 1

2
(qE − Π̇), (4.28)

and, it can be rearranged as follow

d

dt
K =

d

dt
(−Π + 2p − qE t) = 0. (4.29)
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where

K = −Π + 2p − qE t

= Π +
q

c
B × r − qE t. (4.30)

The vector constant of the motion, K , is called the pseudomomentum. The pseudo-

momentum was derived for E = 0 by Johnson and Lippmann[118]. They described

the pseudomomentum and its significance when only a magnetic field is present. Not

all of the components of Π, nor those of K , commute with each other (unless q = 0

or B = 0). Later, the momentum was applied for combined fields by Bacry [121, 122].

For the electron-ion system, (1) total canonical momentum is the momentum

conjugate to the center of mass and (2) the total mechanical momentum represents

the total mass times the CM velocity, and (3) the total pseudomomentum is a constant

of the motion which is important in separating the center of mass and internal degrees

of freedom. Whether or not an electric field is present, it is possible to eliminate (at

least some of the) CM degrees of freedom by diagonalizing components of the total

pseudomomentum ([123]-[130]). Thus, this pseudomomentum will be very useful in

reducing the internal degree of freedom from the system.

Consider the guiding center atom in a strong magnetic field along z -direction. The

pseudomomentum will be considered in zero external electric field. Total pseudomo-

mentum is given by K = K i + K e, where K i and K e are the pseudomomentum for

ion and electron respectively:

K = miṙ i +meṙ e −
e

c
B × r , (4.31)

where the last term, for the constant magnetic field along z -direction, can be expressed

by

−e
c
B × r = −eB

c
y x̂+

eB

c
x ŷ (4.32)

where r (= r e−r i) is the relative coordinates between the electron and ion. Canonical
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momenta for the ion and the electron are given by

pxi = miẋi, pyi = miẏi +
eB

c
xi, pzi = miżi, (4.33)

for the ion, and

pxe = 0, pye = −eB
c
xe, pze = pze, (4.34)

for the electron. Now, the pseudomomentum can be represented by the canonical

momenta and coordinates given above by inserting the relations into the equation

(4.31). Two constants of motion (Pξ, Pη) are derived. They are defined by

K ≡ Pξ x̂+ Pη ŷ

= (pxi +
eB

c
y) x̂+ (pyi + pye) ŷ. (4.35)

where y = ye − yi.

Another constant of motion can be found from the motion along the field direction

(z -direction), which is independent of other canonical variables perpendicular to the

field, and it can be expressed by the motion of center of mass and reduced mass. The

Hamiltonian is given by

Hcm =
P 2

ζ

2M
+
p2

z

2µ
, (4.36)

where

M = mi +me, µ =
mime

mi +me

Pζ = pzi + pze, ζ =
mizi +meze

mi +me

pz =
mipze −mepzi

mi +me
, z = ze − zi. (4.37)

Canonical transformation using the these new constants of motion and relative coor-

dinates can be found as follows [113]:

Pξ = pxi +
eB

c
y, ξ =

c

eB
(pyi + pye) + xi

Pη = pyi + pye, η =
c

eB
pxi + ye

Pζ = pzi + pze, ζ =
mizi +meze

mi +me
, (4.38)
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and

py = pye +
eB

c
xi, y = ye − yi

pz =
mipze −mepzi

mi +me
, z = ze − zi. (4.39)

Classically, this is a canonical transformation, as can be verified by observing that

the Poisson brackets for the new coordinates and momenta have the canonical value

of unity. The transformed Hamiltonian will be a function of newly defined canonical

variables such as pseudomomentum, relative coordinates and their conjugate mo-

menta:

H = H(Pξ, Pη, Pζ, py, pz, y, z). (4.40)

With the new canonical variables, the transformed Hamiltonian is given by

H = IceΩce +
1

2mi

(

Pξ −
eB

c
y

)2

+
1

2mi
(Pη − py)

2 +
P 2

ζ

2M
+
p2

z

2µ

− e2
√

(

c
eB
py

)2
+ y2 + z2

(4.41)

where Pξ and Pη are pseudomomentum. In summary, new canonical variables and

constants of motion are

Canonical V ariables : Pξ, Pη, Pζ , py, pz, y, z,

Constants of motion : Ice, Pξ, Pη, Pζ. (4.42)

4.3 Integrability of the Hamiltonian in the Limit of the

Guiding Center Motion

Action-angle variables have been generally used to find the constants of motion. Not

only do they reduces the degrees of freedom, but make it also possible to discuss the

atomic dynamics as a function of the constants of motion. In addition, constants of

motion provide simplified equations of motion, thereby, analytic solutions are possible
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in some cases. Analytic solutions are not always possible, however, action-angle

variables lead to more compact form of the Hamiltonian and allow easy analysis

of the system. The constant of motion can also be found by other ways (like the

pseudomomentum in a specific condition presented at previous section).

The scaled Hamiltonian (4.47) has only one constant of motion, Pη. Obtaining

and solving the equations of motion are important part of the analysis of the guiding

center atom. Solving them, in general, is a question of integration. A system of n

degree of freedom will have n differential equations that are second order in time.

The solution of each equation will require two integrations resulting in 2n constants

of integration. In a specific case, these constants will be determined by the initial

conditions. However, majority of problems are not completely integrable. Even when

complete solutions cannot be obtained, it is often possible to extract a large amount

of information of the system motion. Finding the constant of motion is related to

the conservation of a quantity and it leads to more compact equations of motion.

Thus, the constants of motion are important to determine the integrability of the

Hamiltonian.

4.3.1 Scaling

Working in the center of mass coordinates, the motion along ζ-axis will be ignored,

and its conjugate momentum Pζ will be zero. It is possible without losing generality

to put Pξ = 0, also, by orienting the coordinates so that Pξ is zero. This will be done

simultaneously as we choose the orientation at the CM frame. Thus the Hamiltonian

is given by

H = IceΩce +
1

2mi

(

eB

c
y

)2

+
1

2mi
(Pη − py)

2 +
p2

z

2µ
− e2
√

(

c
eB
py

)2
+ y2 + z2

(4.43)

Using scaled value eliminates the need for carrying along undesirable constants

or makes numerical constants amenable to numerical calculation. Scaling of the
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Hamiltonian (4.43) is done as follows:

scaled time → mic

eB
≃ 2.58610 × 10−9 sec

scaled length →
(

mic
2

B2

)1/3

≃ 9.75774 × 10−7m (4.44)

scaled mass → mi ≃ 1.66054 × 10−27 kg.

where the charge uses a unit of “statcoulomb”, “Gauss” for the magnetic field and

“gram” for the mass. The magnetic field used is 40081.4 Gauss. Replacing the initial

coordinates and momenta using scaled variables given by

y → y′
(

mic
2

B2

)1/3

, py → p′y

(

e3miB

c

)1/3

z → z′
(

mic
2

B2

)1/3

, pz → p′z

(

e3miB

c

)1/3

Pη → P ′
η

(

e3miB

c

)1/3

, (4.45)

for the coordinates and momenta, and

µ→ µ′mi

Ice → I ′cee
2

(

B2

mic2

)1/3

H → H ′e2
(

B2

mic2

)1/3

, (4.46)

for the reduced mass, constant of motion and energy. Therefore, the Hamiltonian

(4.43) can be rewritten (after dropping the primes)

H = νIce +
1

2
(Pη − py)

2 +
1

2
y2 +

1

2µe

p2
z −

1
√

p2
y + y2 + z2

(4.47)

where ν is a mass ratio (mi/me) and µe = me/M . For large mass of M , M ≫ me, µe

can be approximated me/mi. Scaled Hamiltonian (4.47) can be separated into three

different motions:

H = Hce +Hy +Hz. (4.48)
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where, the first term Hce is the transverse motion of the electron represented by

Ice, the second Hamiltonian describes harmonic oscillation in y-motion, and the third

term indicates the motion along field direction. In case of Hy, the momentum appears

shifted by Pη. This harmonic oscillation can be reduced to a product of corresponding

action and angle variables. The remaining z-motion, Hz, includes a momentum in its

potential term leading to indistinct shape of the potential. In guiding center motion,

however, the orbit of the transverse motion of a electron is a circular motion with

radius r which is considered to be a constant.

The reduction of dimensionality for the guiding center Hamiltonian could be per-

formed by the proper orientation of the frame of reference. Action-angle variable also

are a useful tool to find constants of motion. Determination of the coordinates at

the center of mass made possible to eliminate another degree of freedom, the pseu-

domomentum. The scaled Hamiltonian could be separated into three different parts

describing the motion along y, z-direction and rapid gyromotion of the electron. Fol-

lowing sections describe details about each Hamiltonian at the center of mass frame.

4.3.2 Integrability of the System for Pη = 0

Pη is the only constant of motion in (4.47). The dynamics of the system will be

investigated for both zero and non zero values. This section starts by letting Pη =

0. When the constant is zero, it provides a limitation of the motion such as onset

of ionization. The following calculation will show the conditions for the onset of

ionization. Moreover it gives a good basic form of Hamiltonian to investigate the

system containing the nonzero pseudomomentum, Pη 6= 0. The Hamiltonian for

Pη = 0 is given by

H0 =
1

2
(p2

y + y2) +
1

2µe
p2

z −
1

√

p2
y + y2 + z2

, (4.49)
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where the action from the rapid gyromotion of a electron, νIce, was eliminated because

it did not affect the dynamics at all. The first term of (4.49) is the Hamiltonian of a

harmonic oscillation of y-motion and the second term is about z-motion.

To find the constant of motion for the y-motion, consider equations of motion for

y and py given by

ṗy = −y − y

(p2
y + y2 + z2)3/2

ẏ = py +
py

(p2
y + y2 + z2)3/2

. (4.50)

Adding two equations after multiplying another variable at each equation such as

yṗy + pyẏ, leads to

p2
y + y2 = 2C (4.51)

where C is a constant. An action variable with respect to y can be defined and

calculated from a general expression:

Iy =
1

2π

∮

pydy, (4.52)

which leads to Iy = C and shows that Iy is also a constant. Thus, the action turns

out to be

Iy =
1

2
(p2

y + y2) = constant, (4.53)

One more degree of freedom can be eliminated by above relation and the Hamiltonian

(4.49) can be described by

H0(Iy, pz, z) =
1

2µe
p2

z + Iy −
1

√

2Iy + z2
, (4.54)

and the effective potential of the Hamiltonian is given by

VIy
(z) = Iy −

1
√

2Iy + z2
. (4.55)

Figure (9) shows the shape of the potential for several values of Iy. The effective

potential has its minimum at z = 0 and no maxima but it tends to a constant as z is
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Figure 9: Graph of the potential VIy
(Iy, z) for Iy = 0.05, 0.3, 0.8 and 1.5 in scaled

units.

becoming larger. The minimum of each potential is gradually shifting upward as the

constant Iy increases.

A conjugate angle variable with respect to the action, Iy, will be found from

following equations of motion:

θ̇y =
∂H

∂Iy
= 1 +

1

(2Iy + z2)3/2

ż =
pz

µe
(4.56)

ṗz = − z

(2Iy + z2)3/2
.

Instead of solving the equations of motion directly, consider the motion at a extremum

and the shape of the equations. Details will be discussed following sections. The

equation for the angle variable, θy, shows that θ̇y can not be zero, therefore the angle

variable can not have any stationary point and there is no bound motion with respect

to the frequency of the angle variable. Suppose pz = 0 at a minimum point (z = 0).
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The equations of motion are given by

z = 0

pz = 0

θ̇y = 1 +
1

(2Iy)3/2
(4.57)

At this time, the motion is stable and the energy is given by

H0 = EIy
= Iy −

1
√

2Iy
. (4.58)

If pz = 0 as z → ∞, the equations of motion are

pz = 0

θ̇y = 1, (4.59)

the motion is also stable and the energy is given by

H0 = EIy
= VIy

= Iy. (4.60)

When EIy
= 0, this is the onset of ionization because the larger z with pz = 0

corresponds to a no interactive system, which is completely ionized. z was defined as

the separation of the electron and ion along field direction at (4.37).

4.3.3 Integrability of the System for Pη 6= 0

The Hamiltonian for nonzero pseudomomentum in scaled unit is given by

H(Pη, py, pz, y, z) =
1

2

[

(Pη − py)
2 + y2

]

+
1

2µe
p2

z −
1

√

p2
y + y2 + z2

(4.61)

where µe = me/M . When it is compared to the Hamiltonian (4.49), this Hamiltonian

has a shifted momentum for its y-motion. An action and conjugate angle variable

can be found from the general definitions. The following calculations are intended to

find constants of motion and thereby make the system integrable.
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The Hamiltonian can be separated into two parts, y-motion and z-motion as

treated from the previous section. However, this section will consider the original

expression for the Hamiltonian without separation. Equations of motion for the

Hamiltonian are given by

ż =
pz

µe

ṗz = − z

(p2
y + y2 + z2)3/2

ẏ = −(Pη − py) +
py

(p2
y + y2 + z2)3/2

ṗy = −y − y

(p2
y + y2 + z2)3/2

. (4.62)

Consider the equations of motion about y and py. The exact treatment about z and

pz will be dealt with at following section. The derivatives of variables are performed

with respect to the scaled time. The equations can be handled to produce following

relation,

yẏ + pyṗy = −Pηy. (4.63)

This relation drives to solutions with trigonometric functions:

y = C sin θy

py = Pη + C cos θy, (4.64)

where the angle variable θy came from a solution for second order differential equation

with respect to y or py. The constant C will be determined by defining a action

variable Iy, and integrating the action after replacement by eq. (4.64). It should be

notified that Iy can not be called a conjugate action about the angle θy and constant

of motion at this time.

Iy =

∮

pydy

=

∮

(C2 cos2 θy + CPη cos θy)dθy (4.65)
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results in

Iy =
1

2
C2. (4.66)

Thus, the Iy turns out to be a constant of motion. Conjugate angle variable can be

found by a canonical transformation which transforms y and py into a angle variable

and Iy, respectively. Suppose that the angle variable is θy. The relations (4.64) are

canonical, which can be easily verified by checking the Poisson brackets are equal to

unity. Transformation of the y-mode into harmonic oscillator action-angle variables

can be done by rewriting the transformation in terms of θy and Iy as follows,

y =
√

2Iy sin θy

py = Pη +
√

2Iy cos θy. (4.67)

Using (4.64) and (4.66), the action variable can be written as

Iy =
1

2

(

(Pη − py)
2 + y2

)

. (4.68)

The Hamiltonian of y-motion can be represented by the action Iy. θy can be derived

from eq. (4.67) as

θy = tan−1

(

y

Pη − py

)

. (4.69)

Thus, the Hamiltonian is described by

H(Iy, θy, pz, z) = Iy +
1

2µe
p2

z −
1

√

2Iy + P 2
η + z2 + 2Pη

√

2Iy cos θy

. (4.70)

In the general case, the action Iy is not a constant of the motion as its conjugate

angle θy appears in the Hamiltonian. To the contrary, the Iy is constant at this

Hamiltonian, which was shown from eq. (4.66). Before looking at the dynamics it

is instructive to rewrite the Hamiltonian to more closely resemble the special case of

Pη = 0. Remembering the Hamiltonian for Pη = 0,

H0 =
1

2
(p2

y + y2) +
1

2µe

p2
z −

1
√

p2
y + y2 + z2

,
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the Hamiltonian can be rewritten to resemble H0:

H(Iy, θy, pz, z) = Iy +
1

2µe

p2
z −

1
√

2Iy + P 2
η + z2

[

1 + 2Pη

√

2Iy

2Iy + P 2
η + z2

cos θy

]−1/2

.

(4.71)

Clearly, in the limit Pη → 0 the Hamiltonian reduces to H0 studied in the previous

section. Define a value ∆ ≡ ∆(Iy, py, z) as,

∆(Iy, py, z) =

√

2Iy

2Iy + P 2
η + z2

. (4.72)

If the ∆ is small, as it would be if z is large, then ∆ will approach unity and the

dynamics will locally be integrable. Here, the large z can be achieved by very weak

coupling. The integrability of the system for the large z was shown at previous section.

However, otherwise the system becomes strongly coupled for very small z and the ∆

is not negligible. This strong coupling leads to the system nonintegrable.

To illustrate the behavior as ∆ ≪ 1 in detail, approximate the system by the

Taylor expansion:

(1 + x)−1/2 = 1 − x

2
+

3x2

8
+O[x3], (4.73)

where the terms with higher order of square were neglected by approximation. The

Hamiltonian can be approximated as follow,

H(Iy, θy, pz, z) ≃ Iy +
1

2µe
p2

z −
1

(

2Iy + P 2
η + z2

)1/2
− Pη

√

2Iy cos θy
(

2Iy + P 2
η + z2

)3/2
. (4.74)

and the equations of motion are given by

ż =
1

µe
pz

ṗz = − z
(

2Iy − P 2
η + z2

)3/2
+ f(Iy, Pη, z)Pη cos θy

θ̇y = 1 +
1

(

2Iy − P 2
η + z2

)3/2
− g(Iy, Pη, z)Pη cos θy

İy = h(Iy, Pη, z)Pη sin θy, (4.75)
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where

f(Iy, Pη, z) =
3z
√

2Iy
(

2Iy + P 2
η + x2

)5/2

g(Iy, Pη, z) =
P 2

η + z2 − Iy
√

2Iy
(

2Iy + P 2
η + z2

)5/2

h(Iy, Pη, z) = −
√

2Iy
(

2Iy + P 2
η + z2

)3/2
. (4.76)

Note that in the limit of ∆ ≪ 1, or large value of z, the representations f , g and h will

come close to zero and the system will be integrable. The motion of guiding center of

weak binding can be explained through this analysis in a phase space. Integrability

of the system depends on the type of binding, weak binding or strong coupling. For

the large z, the dynamics of the system is integrable. However, as the z comes close

to zero, eventually it will pass through zero, the system experiences a strong coupling

and suffers a kick. Following this kick, z again becomes large and the system returns

to the region of phase space characterized by integrable behavior [112, 113].

4.4 The Governing Motion of the Guiding Center Atom in

Various Limits

The Hamiltonian of guiding center atom has been transformed so as to be a function

of constants of motion by canonical transformations. The Hamiltonian represented

by constants of motion has few number of variables and its equations of motion have

compact forms to solve. In addition, the scaling introduces great simplification in

the analysis of the system. The scaled units eliminates the system’s dependence on

parameters such as mass, charge or magnitude of the applied field. Without loss

of generality, the values of the constants of motion can be chosen arbitrarily but

reasonably. The guiding center atom with weak binding in a strong magnetic field

generated limitations on the motion of the atom in specific directions and, thereby,

on the constants of motion. For the properly chosen constants of motion, the system
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will show various kinds of motion. The motion of the guiding center Hamiltonian by

various conditions will be investigated through this section.

4.4.1 Motion along the Field Direction

In the Hamiltonian (4.47), the sum of the last two terms that govern the z motion

are the binding energy

Hz(pz, z) =
1

2µe
p2

z −
1√

r2 + z2
, (4.77)

where p2
y + y2 of (4.47) was substituted by a constant r2 for future analysis. The r

indicates a radius at a transverse plane to the magnetic field and it can be treated

by a constant by eq. (4.53) and (4.68). From the “unscaled” Hamiltonian (4.43), r2

is given by

r = (xe − xi)
2 + (ye − yi)

2

=
( c

eB
py

)2

+ y2

= p2
y + y2. (in scaled unit) (4.78)

The electron kinetic energy associated with velocity components transverse to the

magnetic field is bound up in the cyclotron action, Ice. For a bound electron-ion pair,

Hz is negative. Another constant of motion is given by the bounce action for the z

motion.

Iz =
1

2π

∮

pzdz

For the negative Hz, pz can be expressed as follows:

pz =
√

2µe

(

−(−rHz) +
1√

r2 + z2

)1/2

. (4.79)

where a negative sign in −rHz was added because of negative Hz. Defining a new

integration variable, q ≡ Hz

√
r2 + z2, with a constant γ = −rHz, the action variable
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can be carried out using complete elliptic integral while Hz and r are constants [113],

The constant of motion for the z motion is given by

Iz =
√
µerΦ(γ) (4.80)

where,

Φ(γ) =
2
√

2

π
√
γ

∫ 1

γ

√

q − q2

q2 − γ2
dq

=
2
√

2

πγ
√

1 + γ

[

γ K

(

γ − 1

γ + 1

)

− γ(γ + 1)E

(

γ − 1

γ + 1

)

+Π

(

γ − 1

γ + 1
,
γ − 1

γ + 1

)]

(4.81)

where K, E and Π are complete elliptic integrals of the first, second and third kind

elliptic integrals given by (A.4), (A.5) and (A.6) from appendix B, respectively. Figure

10 illustrates the function Φ as a function of γ on the interval γ = 0 and γ = 1. Also,

it shows a graphical inversion to obtain Hz as a function of Iz and r as follows

Hz(r, Iz) = −1

r
Φ−1

(

Iz√
µer

)

. (4.82)

When γ goes to 1, Φ has a very small value. The action Iz comes close to zero

unless r goes to infinity. To investigate the limit, approximate the function around

γ = 1. For γ ≃ 1,

γ = −rHz ≃ 1. (4.83)

so,

Hz ≃ −1

r
. (4.84)

Hz has the shape of Coulomb potential and the amplitude of electron oscillations in

the Coulomb well is small compared to r, and the potential is approximately harmonic.

In this case Φ(γ) can be approximated by linear dependence:

Φ(γ) ≃ 1 − γ (4.85)
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Figure 10: Graph of Φ (γ) in the interval [0,1]. When γ increases to 1, the function
Φ decreases to zero. For γ=1, the Φ becomes zero.

and

Iz ≃
√
rµe(1 − γ). (4.86)

Therefore, the Hz related with Iz can be found by replacing the γ by −rHz,

Hz = −1

r
+ Izωz (4.87)

where the angle variable ωz = 1/
√

µer3. A correction term of an oscillation energy,

Izωz, was added to the Coulomb potential. Thus the limit, γ ≃ 1, implies that the

total binding energy is the sum of Coulomb potential between two particles at a

transverse plane to the magnetic field and a small oscillation energy along the field

direction. A pair of electron-ion moves along the magnetic field with a small internal

bounce motion of frequency, ωz. Thus, another constant of motion could be obtained

for the bounce motion using the elliptic integral. Motion at the transverse plane

resulted in pseudomomentum. Using the pseudomomentum leads to a possibility of

investigation of the motion at the transverse plane. Following section is intended to

the analysis of guiding center motion using phase trajectories.
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4.4.2 The Motion of Electron-Ion pair when Iz=0

Iz = 0 corresponds to γ = 1 from the previous section. At this limit, the only

potential governing the motion along the field direction is the Coulomb potential and

the internal small oscillation along the magnetic field can be ignored, The magnitude

of z at the center of mass frame will be considered to be a small value. Transformed

Hamiltonian contains several constants of motion in guiding center limit and it can

be more simplified by proper approximation. Considering a Hamiltonian including

the z motion (4.47),

H = νIce +
1

2
(Pη − py)

2 +
1

2
y2 − 1

r
Φ−1

(

Iz√
µer

)

. (4.88)

The mass µe can be approximated to me/mi for larger mi. The action Ice for a rapid

gyromotion of a electron can be eliminated from the Hamiltonian. Without loss of

generality the Hamiltonian can be written as,

H =
1

2
(Pη − py)

2 +
1

2
y2 − 1

√

p2
y + y2

+ Izωz, (4.89)

with ωz = 1/
√

µer3. For a simple case, consider Iz = 0. As shown from the Figure

10, when γ = 1 the elliptic function has zero as its value. Thus the inversion of the

function will have a value of unity for Iz = 0 and lead to a reduced Hamiltonian given

by

H =
1

2
(Pη − py)

2 +
1

2
y2 − 1

√

p2
y + y2

, (4.90)

where r was replaced by p2
y + y2 for analysis. The r was driven at eq. (4.78) in detail.

So the phase space (y, py) depends on only two parameters, H and Pη. The following

analysis is based on the Hamiltonian above. Figure 11 shows a three-dimensional

plot of the energy surface for Pη = 2.5 and its contour plot. Figure 12(a) is a plot

for y = 0 of the Hamiltonian when Pη = 2.5. This graph shows clearly two minima

and a saddle. The first minimum exists at (py = 0, H → ∞) and the second at

(py = pyo, H = H(pyo)). Figure 12(b) shows that the second minimum disappears for
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Figure 11: (a). Three-dimensional plot of the Hamiltonian for Pη = 2.5 and (b)
contour plot of the energy surface at Pη = 2.5.

84



a smaller Pη less than 1.88988. The Figure 12(b) show plots for various Pη, 0.5, 1.0,

1.88988 and 2.5. With the smaller values of Pη (smaller than a critical value), the

graph shows no minimum. The critical value is calculated as Pη = 3/22/3. Contour

plots for Pη = 1.0 and Pη = 3/22/3 are followed.

The motion at the saddle point will be a complicated mix of the motion at the

minimum and the saddle. When the motion happens at near (y = 0, py = 0), the

radius of transverse motion given by r =
√

p2
y + y2 will be small resulting in which

electron E×B drifts around the ion (see the Figure 7). Rewrite the equations of

motion for ion in unscaled unit using eq. (4.33):

ẋi =
pxi

mi

ẏi =
pyi

mi
− eB

mic
xi. (4.91)

The terms of RHS can be replaced by other canonical variables using (4.37) and

(4.38). Using scaled units, the equations are described by

ẋi = −y

ẏi = Pη − py. (4.92)

Thus, the velocity of the ion in the transverse plane is given by

vi =
√

y2 + (Pη − py)2 ≃ Pη. (4.93)

The transverse velocity of ion is nearly constant. This velocity also can be calculated

by taking the average of each velocity:

< ẋi >= 0, < ẏi >= Pη. (4.94)

These results shows that the bound electron-ion pair moves across the magnetic field

with velocity Pη. If py is smaller than Pη initially, the crossing velocity will be similar

to the initial velocity of the ion.
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Figure 12: Graphs for y = 0. (a) is a plot for Pη = 2.5. Clearly, one minimum
(py ≃ 2.31310) and a saddle (py ≃ 0.75756) are shown. (b) shows that how the
minimum disappears as Pη decreases. The critical value for no minimum is Pη =
3/22/3 ≃1.88988.
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Figure 13: Contour plots for (a) Pη = 1.0 and (b) Pη = 3/22/3 ≃1.88988.
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The electron velocity also can be found from eq. (4.25) and (4.39) as follows,

xe = − c

eB
pye = xi −

c

eB
py (in unscaled units)

= xi − py (in scaled units)

ye = ye. (4.95)

Using the eq. (4.62), the derivatives of xe and ye with respect to time can be derived:

ẋe = −ṗye =
y

(p2
y + y2 + z2)3/2

ẏe = ẏ + ẏi =
py

(p2
y + y2 + z2)3/2

, (4.96)

so, the velocity of the electron in the transverse plane is given by

ve =
r

(r2 + z2)3/2
, (4.97)

where r =
√

p2
y + y2. This velocity can be expanded around r = 0 to result in

ve ≃
1

r2
. (4.98)

Thus, for small radius the velocity ve will be large. If r, Pη are constant, their velocities

are constant with a relation, vi=r
2Pη ve. To keep the drifting motion, the electron

drift velocity should be larger than the velocity of the ion, or drifting frequency should

be larger than the cyclotron frequency of the ion,

ωD > Ωi, (4.99)

where ωD and Ωi are electron drifting frequency and ion cyclotron frequency, respec-

tively. This provides a condition for the electron E×B drifting. If the velocity of the

ion is bigger than the velocity of the electron, the drifting electron can not keep up

with the ion and the radius of the ion cyclotron motion will be larger than the radius

of the electron cyclotron motion. If the binding is relatively weak, the ion will leave

the electron eventually, while the electron is oscillating along the magnetic field.
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The motion at another minimum (py = pyo) shows another feature for weak bind-

ing. Same condition (y = 0) but (py = pyo) is applied to the system. If y = 0 and

py=fixed, than the radius r will be constant through the motion. Investigate the ve-

locities of two particles. From the equation (4.92) and (4.96), the velocities at (y = 0,

py = pyo) can be written as

ẋi = 0

ẏi = Pη − pyo, (4.100)

and for small z the velocity of the electron is given by

ẋe = 0

ẏe =
pyo

(p2
yo + z2)3/2

≃ pyo

|pyo|3
, (4.101)

where the ẏe can be approximated for small z,

ẏe =
pyo

|pyo|3
. (4.102)

In addition, the minimum position was found by

dH

dpy
= −(Pη − py) +

py

|py|3
= 0, (4.103)

where H(y = 0, pz = 0) from eq. (4.90) was used. The above relation leads to

Pη − py =
py

|py|3
. (4.104)

This proves that ẏi ≃ ẏe. Thus, the electron and ion form a pair and move together

with same velocity,

v =
√

2(Pη − pyo). (4.105)

The electron and ion E×B drift under the field from each other. This pair forms a

“drifting-pair” [113]. Figure 14 shows a motion of the drifting-pair.
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Figure 14: Schematic plot of a motion that occurs when electron and ion form a
drifting pair [113].

For nonzero but small Iz, the important difference is the binding energy, which

is a correction term. The binding energy is given in Eq.(4.87). Rewrite the binding

energy as a function of the radius r

Hz =
1

r
+

Iz
µer3

(4.106)

The binding energy is still proportional to r−1. However, the phase space of the

Hamiltonian (4.89) depends on three parameters, Pη, H and Iz, rather than two

parameters for the case of Iz = 0. When Iz = 0, the critical value was Pη = 3/22/3

and the second minimum existed at pyo. When Iz 6= 0, however, the critical value

changes. Figure 15(a) shows plots for different values of k (=Iz/
√
µe). As the k

increases, the slopes at py = pyo increase slightly. Thus the critical value will decrease

as the value k increases. Figure 15(b) shows the critical value Pc as a function of k

ranging from 0 to 1.

4.4.3 Coherent States for an Electron-ion Pair

The three dimensional plot of Figure 11 indicates the possibility for the construction

of the coherent states. The energy H is a function of Pη, py and y. If the pseudo-

momentum Pη is bigger than the critical value, Pη = 3/22/3, an energy minimum

point exists along y = 0. Using the Taylor expansion around a minimum point of
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Figure 15: (a) Plots of energy surfaces for different k’s for fixed Pη = 3/22/3, the
critical value for Iz = 0. (b) the critical value (Pc) decreases as k = Iz/

√
µe increases.
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the system after the canonical transformation of the Hamiltonian (4.90) around the

minimum point shifts the center from the origin to the equilibrium point. Coherent

states can be built up at the equilibrium point which is a minimum. Rewrite the

Hamiltonian

H =
1

2

[

(Pη − py)
2 + y2

]

+
1

2µe
p2

z −
1

√

p2
y + y2 + z2

. (4.107)

where µe = me/M . The equilibrium point can be calculated by setting the equations

of motion equal to zero

ẏ = −(Pη − py) +
py

(p2
y + y2 + z2)3/2

= 0

ż =
pz

µe
= 0

ṗy = −y − y

(p2
y + y2 + z2)3/2

= 0

ṗz = − z

(p2
y + y2 + z2)3/2

= 0 (4.108)

Solving the equations results in the equilibrium points

y0 = z0 = pzo = 0

py0
=

Pηr
3
0

r3
0 + 1

(4.109)

where r0 = (p2
y0

+ y2
0 + z2

0)
1/2. Thus the solutions shows that the equilibrium point

exists when z = pz = 0, y = 0 and py = pyo in the phase space. Consider a canonical

transformation

y = y′, py = pyo + p′y

z = z′, pz = p′z. (4.110)

Expanding the Hamiltonian in the neighborhood of the minimum (y, py, z, pz) =

(0, py0, 0, 0) to the second-order transforms the Hamiltonian (4.90) into a harmonic

oscillator (dropping the primes)

H =
p2

y

2µy
+

p2
z

2µe
+

1

2
ay2 +

1

2
bz2 + Θ0 (4.111)
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where

a =
1

2
+

1

2p3
yo

b =
1

p3
yo

µy =
p3

yo

pyo3 − 2

µe =
me

me +mi
, (4.112)

and

Θ0 =
1

2p4
yo

− 1

pyo
. (4.113)

The Hamiltonian eq.(4.111) is a two dimensional harmonic oscillator. Figure 16 is

the graph of the energy surface for y = z = 0 showing plots of (a) the approximated

harmonic Hamiltonian of (4.111) and (b) the Hamiltonian (4.90) together. It shows

that the system can be locally harmonic at the minimum point. The z-motion can

be decoupled from the Hamiltonian. The nondispersive wavepacket for the Hamilto-

nian will have exactly same form with the displaced ground state wave function of a

harmonic oscillator:

Ψ(y) =
1√
bπ1/4

exp[−(y − ycl)
2/2b2], (4.114)

where b =
√

~/mω for a classical harmonic oscillator with a frequency ω. ycl is the

classical trajectory. The variable of the above coherent state, y, is the relative distance

between the two particles. The constructed coherent state with respect to the variable

y will correspond to the separation of the two particles. Thus the coherent state can

be used to explain the E×B drifting pair of the Figure 14 because the coherent state

will be a non-spreading wave packet as long as the separation of the electron-ion pair

remains constant or changes harmonically.
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4.5 Conclusions

The integrability of the electron − ion pair system has been investigated by finding

constants of motion and applying the limit for guiding center motion in a magnetic

field. Constants of motion were found by various properties of the system:

(1) Because the rapid gyromotion of the electron in the uniform magnetic field,

the action Ice was a good adiabatic invariant and Ωce was a constant. The product

IceΩce was constant and did not influence the dynamics of the remaining variables.

IceΩce = constant (4.115)

(2) Rapid cyclotron motion could be averaged out in the limit of which the electron

cyclotron frequency was the largest of the dynamical frequencies and the cyclotron

radius was the smallest of the length scales. Because the electronic motion influ-

enced the Hamiltonian dynamics only along z-axis, the position of the electron in a

transverse plane to the magnetic field was specified by

(xe, ye) → (− c

eB
pye, ye), (4.116)

(3) Moving along the magnetic field direction generated constants of motion illus-

trating transverse motion to the field. The pseudomomentum was the constant of the

motion which was important in separating the center of mass and internal degrees of

freedom. For this guiding center atom, the pseudomomentum, Pξ and Pη, were given

by

K ≡ Pξ x̂+ Pη ŷ

= (pxi +
eB

c
y) x̂+ (pyi + pye) ŷ.

(4) Working in the center of mass coordinates, the motion along ζ-axis was ignored,

and its conjugate momentum Pζ could be chosen to be zero. Pζ and ζ were given by

Pζ = pzi + pze, ζ =
mizi +meze

mi +me
. (4.117)
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One of the pseudomomentum (for instance, Pξ) could be eliminated by orienting the

coordinates at the center of mass frame.

(5) For the condition Iz = 0, the only governing potential was the Coulomb

potential and the small internal oscillation along the field direction could be ignored.

Because the mass of the ion was much larger than the mass of the electron, the motion

along z-axis could be eliminated from the Hamiltonian without loss of generality.

The total binding energy was the sum of Coulomb potential between two particles

at a transverse plane to the magnetic field and a small oscillation energy along the

field direction. Thus the pair of electron-ion moved along the magnetic field with

a small internal bounce motion of frequency, ωz. Another constant of motion could

be obtained for the bounce motion using the elliptic integral. Even though another

constant of motion was found, the Hamiltonian could not be separated into kinetic

and potential parts.

(6) Rather than finding the potential function to investigate the system, the Hamil-

tonian could be expanded at its minimum point and the expansion produced harmonic

oscillator Hamiltonian, thereby constructing the coherent state. The coherent state

constructed at the minimum point could explain the E×B drifting pair because the

relative distance between the particles was used to construct the coherent state as a

function of y.
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Figure 16: Plots of energy surface of (a) approximated harmonic Hamiltonian (de-
noted “H.O.”) and (b) energy surface for y = 0, Iz = 0. The minimum is located at
pyo = 2.3131 when Pη = 2.5.
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CHAPTER V

STABILITY ANALYSIS OF THE ION-PAIR “RYDBERG”

CONFIGURATIONS

5.1 Introduction

In the previous chapter, we have discussed the electron-ion pair with a large mass

difference. Many of the properties of the electron-ion pair have been derived from

the large difference in mass between the ion and the electron. An ion pair, the

subject of this chapter, is essentially a heavy particle system interacting by means of

a Coulombic potential [133]. These states bear much similarity to high-lying Rydberg

states of atoms and molecules. They can be formed by exciting a complex mixture

of zeroth-order states in the Franck-Condon region at short intermediate distances,

and this prepared state can evolve, with small probability, to a long-range charge-

separated state, which in the ion pair [134, 135, 136]. As an another heavy particle

system, antihydrogen atoms were analyzed theoretically and experimentally in Ref.

[137] which showed how the internal orbits of antihydrogen atoms depend on the

external magnetic field.

In this chapter, we show that it is possible to form stable coherent wavepack-

ets [61, 138] which correspond to very long living ion-pair states. This ion pair can

be compared to a hydrogen atom possessing a rather heavy electron. Investigation

will rely on classical mechanics, which has proven its utility in various recent inves-

tigation of Rydberg state phenomena, e.g., the role of collisions with ions in ZEKE

spectroscopy [139, 140, 141, 142, 143, 144].

This section will focus on the production of non-spreading wavepackets by exploit-

ing mechanisms analogous to those which, in celestial mechanics, stabilize the Trojan
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asteroids.

5.2 Hamiltonians Involving the Mass Ratio

An excellent description of the procedure for treating both neutral and charged N -

particle systems in constant electric and magnetic fields is given by Johnson et al.

[120]. In case of a two-body Coulombic system (masses m1 and m2, charges −e and

Ze) interacting with constant electric and magnetic fields, after separation of the

center of mass the Hamiltonian may be written

H =
1

2M
(K − eB × r)2 +

1

2µ
(p − eβB × r)2 + E · r − Ze2

r
. (5.1)

where r = |r |, µ is the reduced mass, and β=(m2 −m1)/2M . The pseudomomentum

K is a constant of motion as was shown through the section 4.2.2 and 4.2.3. The

differences of this system with previous system are the existence of the electric field

and comparable masses. Atomic units are adopted for analysis: the unit of length is

the Bohr radius a0 for a two body system of reduced mass µ and “nuclear” charge Ze,

i.e., a0=~
2/µZe2 - the particle of mass m2 is taken to be the nucleus. If the system

is composed of H+ and H− ions (Z=1), the units are

µ ≃ 1

2
mH

a0 =
~

2

µe2

In these units µ=~=a0=e=1. Suitable measures of the electric and magnetic field

strengths are

E0 =
eZ

a2
0

, B0 =
~c

ea2
0

(5.2)

and it is convenient to work with the dimensionless electric and magnetic fields,

F=E/E0 and ωc = B/B0. The fields are measured in units that depend explicitly

on the masses. The coupling between the internal and CM motion , i.e., the motional
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Stark term is given by

1

M
(B × r) · r . (5.3)

Without loss of generality, K and F may be taken to lie along arbitrary directions

in the x− y plane so that it simplifies the discussion to assume that they point along

orthogonal axes. Assuming that the magnetic field lies along the z-axis and setting

Z=1 leads to the effective internal Hamiltonian [120]

H = E =
1

2
(p2

x + p2
y + p2

z) −
1

r
− ωc

2

(

1 − δ

1 + δ

)

(xpy − ypx) +
ω2

c

8
(x2 + y2)

+

(

F +
ωcK

M

)

x (5.4)

where mass ratio is δ=m1/m2. The Hamiltonian with δ = 0 is equivalent to the two

dimensional E ×B Hamiltonian for the hydrogen atom with an effective electric field

term (F +ωcK/M)x [150, 151, 152]. Even when this system is in a circular polarized

field (CP) and a static electric field, moving in a rotating frame (rotating frequency

ωf) results in the same form of Hamiltonian with (5.4) but with differing magnitude

of coefficients. Assuming the pseudomomentum K = 0,

H =
1

2
(p2

x + p2
y + p2

z) −
1

r
−
(

ωf +
ωc

2

1 − δ

1 + δ

)

(xpy − ypx) + Fx+
ω2

c

8
(x2 + y2) (5.5)

The Coriolis-like paramagnetic term (xpy −ypx) mixes coordinates and momenta and

so prevents the construction of a potential energy surface. As mentioned before, this

difficulty can be treated using the method of ZVS. If δ = 1, then the Hamiltonian

is completely separable into purely kinetic term and coordinate dependent potential

term. For intermediate values of δ the dynamics is sufficiently similar to δ = 0 not

to require a separate discussion. Consider the two mass ratios, δ 6= 1 and δ = 1. The

following discussions are intended to find nondispersive states for each cases.
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5.3 Scaling Properties and Coherent States at a Minimum

If δ 6= 1, the Coriolis-like paramagnetic term (xpy−ypx) strictly prevents the construc-

tion of a potential energy surface. Following Chapter 2, the ZVS can be constructed

as follows

Υ = H(ẋ, ẏ, x, y) − ẋ2 + ẏ2

2

= −1

r
+ Fx−

ωf

(

ωf + ωc
1−δ
1+δ

)

2
(x2 + y2). (5.6)

The equilibrium points of the ZVS are found to lie long the x-axis at y = 0 and z = 0

by simultaneously solving the following set of equations:

q̇ =
∂H

∂pq
= 0, ṗq = −∂H

∂q
= 0. (5.7)

where q = x, y, z. The ZVS (5.6) has a same form as the ZVS of the maximum

configuration of the hydrogen atom in CP field and magnetic field. The maximum

configuration is important because it raises the possibility of forming an coherent

state. Recall that the ZVS is not a potential energy surface even though it may share

some properties with it: A ZVS can support stable motion at its maximum. The

existence of equilibria that can support non-spreading coherent wavepackets [58, 61,

138] has been shown in detail at Chapter 2. The equation (5.7) is a generalization of

that work to ion-pairs in which the masses are variable. For the case H+-H− pair, the

masses are almost same and the paramagnetic term Coriolis term of eq.(5.5) becomes

negligible.

If δ = 1, the Hamiltonian (5.5) reduces to

H =
1

2
(p2

x + p2
y + p2

z) −
1

r
+
ω2

c

8
(x2 + y2) + Fx. (5.8)

This Hamiltonian can be separated into kinetic energy and ordinary potential energy

surface:

V = −1

r
+
ω2

c

8
(x2 + y2) + Fx. (5.9)
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The equilibrium points lie along the x-axis. The potential can be rewritten as a

function of x for future investigation.

5.3.1 Scaling Properties of the External-field Induced Minimum

We will concentrate on the scaling with magnetic fields because strong magnetic fields

are more difficult to include in experiments than electric field.

The potential in question is

V (x) = − 1

|x| +
ω2

c

8
x2 + Fx (5.10)

Denoting the minimum and the maximum as x1(F, ωc) and x2(F, ωc) respectively, the

scaling is derived as follows: Since both the minimum and maximum will occur for

x < 0,

dV

dx
=

d

dx

(

x−1 +
ω2

c

8
x2 + Fx

)

= 0 (x < 0)

= − 1

x2
+
ω2

c

4
x+ F = 0. (5.11)

The scaling

xj(F, ωc) = ω−2/3
c x

(s)
j (Fω−4/3

c , 1) (5.12)

converts the above equation

−
(

1

x
(s)
j

)2

+
1

4
x

(s)
j + Fω−4/3

c = 0, (5.13)

and therefore corresponds to the appropriate parameters of unit magnetic fields and

electric fields Fω
−4/3
c . Similarly, the depth of the outer minimum is

∆(F, ωc) = V (x2) − V (x1)

= ω2/3∆(s)(Fω−4/3
c , 1). (5.14)

The outer minimum disappears when

F ≤ 3

4
ω4/3

c . (5.15)
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The numerical parameters for the H+ −H− pair are:

reduced mass µ = 920 electronmass

a0 = 5.76 × 10−8 µm

E0 = 4.33 × 1015 V cm−1

B0 = 1.98 × 1011 T, (5.16)

with these values, we find the following results for the potential minimum
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Table 1: Numerical values of the scaled field variables and depth of the outer mini-
mum for various intensities of the magnetic field.

B/T F/V (cm−1) x1/µm x2/µm Well Depth∆/cm−1

1 3.5 -6.5 -2.5 1.4
7.0 -14.3 -1.5 25.6
10.4 -21.6 -1.2 72.0
13.9 -28.9 -1.0 139.6

3 13.9 -2.8 -1.3 1.3
17.4 -3.8 -1.1 7.2
20.8 -4.7 -0.9 16.3
24.3 -5.5 -0.8 28.1
27.8 -6.3 -0.8 42.4
31.2 -7.1 -0.7 59.3
34.2 -8.0 -0.7 78.5

5 38.2 -3.1 -0.7 17.0
41.6 -3.4 -0.7 24.0
45.1 -3.7 -0.6 32.1
48.6 -4.0 -0.6 41.0
52.0 -4.3 -0.6 51.0

10 72.9 -1.4 -0.6 5.1
76.3 -1.5 -0.5 7.5
79.0 -1.5 -0.5 10.2
83.3 -1.6 -0.5 13.2
86.8 -1.7 -0.5 16.5
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5.3.2 Coherent States at the Minimum

Figure 17 (a) is the energy surface at y = z = 0 for δ = 1, electric field strength of

10 V/cm and a magnetic field of 1 Tesla. Its three-dimensional plot is given by the

Figure 17 (b). The graph shows a equilibrium point at xm ≃ −3.5817×108 in atomic

units, which is almost 20µ (microns) in unscaled units. The symbol (H.O.) in the

graph illustrates the harmonic oscillator. The expansion of the potential function in

the neighborhood of the equilibrium point involves a canonical transformation from

the original coordinates to the equilibrium configuration [38]. This shifts the center

from the origin to the equilibrium point. The coherent state can be built up at the

equilibrium point which is a minimum. Using following relation

x = xm + ξ, px = pξ

y = η, py = pη

z = ζ, pz = pζ (5.17)

leads to a new potential function :

V = −1

r
+
ω2

c

8
(ξ2 + η2) +

(

F +
ω2

cxm

4

)

ξ + Fxm. (5.18)

with

xm = − 4r3F

4 + r3ω2
c

(5.19)

where r = (ξ2+η2 +ζ2+2xmξ+x2
m)1/2 . Expanding the function to the second-order

around (ξ, η, ζ) = (0,0,0) results in

H =
1

2
(p2

ξ + p2
η + p2

ζ) +
1

2
(aξ2 + bη2 + cζ2) + Θ0 (5.20)

where

a =
ω2

c

4
− 2

x3
m

b =
ω2

c

4
+

1

x3
m

c =
1

x3
m

(5.21)
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with

Θ0 =
ω2

cx
2
m

8
+ Fxm − 1

xm

. (5.22)

The transformed Hamiltonian is the three-dimensional harmonic oscillator function.

Thus coherent states can be constructed at the minimum, explained in Chapter 2

in detail, and the frequencies along each axes are given by
√
a,

√
b and

√
c. The

motion along z (or ζ) axis is stable and separable from the Hamiltonian. Because the

coherent state corresponding to the motion at x−y plane was constructed with respect

to the relative coordinates at the center of mass frame, the distance between the two

particles will not diverge or converge as long as the wavepacket is not spreading.

5.4 Conclusions

The ion pair is essentially a heavy particle system interacting through a Coulombic

potential. The difficulty of treating the the system by a potential function can be

solved by the method of ZVS. The Hamiltonian involves a coefficient δ, mass ratio,

this coefficient introduced two separate discussion about the system, δ 6= 1 and δ = 1.

When δ 6= 1 the Hamiltonian was completely of the same form as the Hamiltonian

discussed before, which was transformed to harmonic oscillator by proper canonical

transformation and thereby the coherent state could be built. When δ = 1, the

Hamiltonian was completely separable to purely kinetic term and coordinate depen-

dent potential term. For intermediate values of δ the dynamics was similar to δ = 0.

Through a canonical transformation, the system was shifted to the minimum and the

potential function was expanded around the point. It transformed the Hamiltonian

the the three dimensional harmonic oscillator function and the coherent state could

be constructed at the minimum. The distance between the two particles will not

diverge or converge as long as the wavepacket is nondispersive. Thus it was possible
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to prepare locally harmonic regimes in ion pair system thereby allowing the creation

of almost completely non-dispersive coherent atomic states.
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Figure 17: Plots of energy surface for δ = 1 of (a) two-dimensinal and (b) three-
dimensional. Energy surface has a minimum at xm ≃ −3.5817× 108 a.u. for B = 1T
and E = 10V/cm. (H.O.) indicates the harmonic oscillator and it shows very good
agreement.
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CHAPTER VI

CLASSICAL ANALYSIS OF THE IONIZATION OF TWO

ELECTRON ATOMS

6.1 Introduction

The three-body problem with Coulomb interactions is one of the most important ex-

amples of nonintegrable Hamiltonian systems [6]. The classical dynamics of collinear

e−Ze− Coulomb three-body system (eZe configuration) was mainly motivated by the

interest of applying semiclassical methods to chaotic systems. As an improvement

on Wannier’s pioneering work [155], its results are in excellent agreement with ex-

periments [156, 157, 158, 159, 160]. Advances in a semiclassical treatment of the

three-body Coulomb problem were possible only due to a better understanding of the

classical dynamics of the system. For the eZe configuration, the special interest lies in

chaotic scattering. In the case of classical chaotic scattering, the scattering functions

have a fractal set of singularities [161]. This fractal set of singularities is the result

of the interaction of the incoming electron asymptotes with the underlying chaotic

invariant set. When the scattering electron trajectory starts exactly on the stable

manifold of the chaotic set it stays on the chaotic set forever, resulting in a singular-

ity of the scattering function. Furthermore, the structure of the set of singularities is

the same as the structure of the chaotic invariant set [162]. Furthermore, the chaotic

invariant set is usually represented by the construction of a Horseshoe Map [163] in

an appropriate Poincaré surface of section. The stable and unstable manifolds for a

fixed point should be clarified before the construction of a Horseshoe Map. However,

we will show in this chapter that the map can not be obtained for the system of

one-dimensional three-body Coulomb interaction. This will be discussed in the last
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section.

6.2 Classical Dynamics of Three-Body Coulomb Problem

6.2.1 Scaling of the Hamiltonian

For a nucleus with charge Z and infinite mass, the nonrelativistic Hamiltonian config-

ured by two Coulomb potential and a interaction term between two electrons, reads

in atomic units (e = me = 1)

H = E =
p2

r1

2
+
p2

r2

2
− Z

r1
− Z

r2
+

1

r12
, (6.1)

where the electron-nucleus distances are given by rj (j = 1, 2) and the distance be-

tween the electrons is r12 ( =|r1±r2|). The “+” sign corresponds to eZe configuration

and “–” sign to the Zee configuration. Z will be 2 for the helium atom. Whenever

an interparticle distance vanishes (particle collision), the potential energy diverges.

Figure 18 is a schematic plot of the coordinates.

The classical Three-Body system can be reduced to four degrees of freedom after

eliminating the center of mass motion and incorporating the conservation of the total

angular momentum. In the case of zero angular momentum, the equations of mo-

tion for the Hamiltonian reduce to three degrees of freedom because both electrons

are confined to a common plane of the three-dimensional configuration space. This

means that the total angular momentum of the electrons points perpendicular to

the plane. Such a planar system describes the general motion for the case of zero

angular momentum. Using infinite nuclear mass approximation, scaling properties

are considered in the three body Coulomb problem in two different ways, (1) scaling

the phase space coordinates with respect to energy and, (2) scaling out an overall

size parameter considering only the shape dynamics of the system [164]. The energy

dependence of the classical dynamics is equivalent to a scaling transformation of the

classical motion in phase space, since the potential energy is a homogeneous function
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Figure 18: Schematic plot of the coordinates r1, r2 and r12.

of the coordinates. Choosing the canonical transformation

ri = |E|r′i

pri =
1

√

|E|
p′ri (6.2)

and a time transformation

t = |E|3/2t′ (6.3)

eliminates the energy dependence in the classical Hamiltonian. The dynamics for the

classical system can be reduced to three district cases by the above transformations

H =
p2

r1

2
+
p2

r2

2
− Z

r1
− Z

r2
+

1

|r1 + r2|
=























+1 E > 0

0 E=0

−1 E < 0

Briefly, H = +1 regime corresponds to the energy region in which three-body breakup

is possible. There exist no periodic orbits of the electron and at least one electron

escapes to infinity [6]. This region is linked to E > 0 and is important for studying

110



the energy dependence on the total quantum cross section for the three particle frag-

mentation by considering the breakup along Wannier orbit [155, 165]. At a ridge of

the Wannier orbit, the conditions for introducing the orbit, pα = 0 and α = π/4 is

connected to E = 0 configuration. Detailed discussion of this energy regime can be

found in Rost [166, 167].

The classical dynamics for E < 0 are linked to E = −1. In this regime, only

one electron can escape classically and it will do for the most initial conditions. The

phase space can be reduced to four dimensions. In this regime, only one electron

can escape classically and it will do for the most initial conditions. The phase space

can be reduced to four dimensions and the dynamics in the reduced space turns out

to be relatively simple. A similar approach has been employed by Wannier [155] by

extrapolating dynamical behavior at E = 0 to the dynamics for E > 0.

The dynamics for E = 0 can be reduced to four dimensional system using an

additional scaling relation (6.2) following McGehee [168].

6.2.2 Fixed Points and Invariant Manifold of the eZe Configuration

The Hamiltonian (6.1) can be transformed to a representation in hyperspherical coor-

dinates for zero angular momentum. Define a hyperradius and hyperangle as follows

R =
√

r2
1 + r2

2

tanα =
r2
r1

(6.4)

where r1 = R cosα, r2 = R sinα. Interelectronic angle will be defined by θ as a

difference between two azimuthal angles of each electrons. Thus the Hamiltonian

may be transformed to

H =
1

2

(

P 2
R +

p2
α

R2
+

p2
θ

R2 cos2 α sin2 α

)

+
1

R
V (α, θ) (6.5)
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where

V (α, θ) = − Z

cosα
− Z

sinα
+

1√
1 − 2 cosα sinα cos θ

. (6.6)

If (θ,pθ) equals (0,0) or (π,0), then θ remains constant. The motion then reduces

by one degree of freedom and resembles that of a collinear atom. If (α,pα) equals

(0,0), (π/4,0), or (π/2,0). For α = 0 and α = π/2 the motion is reduced to that of

a single electron atom. The solution α = π/4 defines the Wannier ridge of collective

motion, where both electron-nucleus distances are the same for all times [170]. In the

special case of zero angular momentum, the motion of the three particles is confined

to a plane fixed in configuration space [153]; the Hamiltonian including finite nucleus

mass terms and after elimination of the center of mass coordinates can be found in

Richter et al. [154]. If one-dimensional configuration is considered, the interelectronic

angle will be set to zero resulting in a reduced Hamiltonian

H = E =
1

2

(

P 2
R +

p2
α

R2

)

− 1

R

(

Z

cosα
+

Z

sinα
− 1

cosα + sinα

)

(6.7)

where (2nπ < α < 2nπ + π
2
). The equations of motion are given by

Ṙ = PR

α̇ =
pα

R2

ṖR =
p2

α

R3
− 1

R2

(

Z

sinα
+

Z

cosα
− 1

cosα + sinα

)

ṗα =
1

R

(

Z
sinα

cos2 α
− Z

cosα

sin2 α
+

cosα− sinα

(cosα + sinα)2

)

. (6.8)

Scaling may be performed to the variables with respect to the hyperradius (R). Scal-

ing transformations by

PR =
1√
R
P̄R

pα =
√
Rp̄α

α = ᾱ

H =
1

R
H̄ (6.9)
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and a transformation of the time

dt = R
√
R dt̄. (6.10)

result in new equations of motion (dropping the “bar” in the equations). However,

H̄ will be used for convenience.

α̇ = pα, ṗα = −1

2
PRpα − ∂

∂α
V (α)

Ṙ = RPR, ṖR =
1

2
p2

α + H̄

˙̄H = PRH̄. (6.11)

Fixed points and invariant subspaces can be found from the equations of motion

(6.11) as follows,

pα = 0

α =
π

4

PR = ±P0 = ±
√√

2(4Z − 1). (6.12)

From the second condition above,

tanα = r2/r1 = 1 (6.13)

the distances between the nucleus and two electrons, r1 and r2, are equal. R denotes

the hyperradius, the radius in hyperspace represented by r1 and r2, increases for

a positive PR and decrease for a negative PR. When it decreases, PR = −P0, the

two electrons will collide with the nucleus simultaneously. The point PR will be

called triple collision point (TCP). Its time reversal produces PR = +P0. Because

overall dynamics is invariant under p→ −p and dt→ −dt, the time reversal of TCP

corresponds to double escape point. The triple collision point and double escape

point (DEP) are thus equivalent and related by time reversal symmetry. From the

Hamiltonian eq. (6.5) and scaling transformation (6.9), the Wannier ridge space is
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described by

H̄ =
1

2
P 2

R + 2p2
θ − 2

√
2Z +

1√
1 − cos θ

= 0, (6.14)

and it is a compact space with the topology of a sphere where the fixed points form

opposite poles [164]. Figure 19 shows a plot of the TCP and DEP. The interior of the

sphere corresponds to the phase space of Wannier ridge for E < 0 and the Wannier

ridge is connected to eZe configuration at the fixed points of E = 0 along Wanner

orbit (WO), where satisfies following relations

α = π/4, θ = π, pα = 0, and pθ = 0 for E < 0. (6.15)

The Hamiltonian along the Wannier orbit is given by

H̄ =
P 2

R

2
− 2

√
2Z +

√
2

2
= 0, (6.16)

resulting in

PR = ±P0 = ±
√√

2(4Z − 1) (6.17)

which is same as the value derived in eq. (6.12).

-P0 P0

PR

pΘ

E=0
E<0

Π

Θ

O

WOTCP DEP

Figure 19: Wannier ridge manifold for E = 0. Along the Wannier orbit (WO) the
subspaces are connected through TCP and DEP [164].
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For the eZe configuration, the orbit coming from PR ≪ −P0 close to triple collision

orbit will approach the TCP point along the a triple collision orbit which ends in the

TCP. After reaching to TCP, it will leave the triple collision region into one of the orbit

of single ionization toward PR ≫ P0 [164]. This single ionization will be considered

in following section.

6.3 Analysis of the eZe configuration in Regularized Coor-

dinates

An essential ingredient for the classical analysis of the Three Body Coulomb problem

is the regularization of the motion. In analogy to the motion of the electron in the

hydrogen atom, the motion can be regularized for binary collisions, where only one

interparticle distance vanishes. However, the triple collision (r1 = r2 = r12 = 0)

cannot be regularized, e.g. these solutions have branch points of infinite order [171].

Thus, it is very hard to access to information near the triple collision point. This is

why asymptotic analysis is introduced to the three body chaotic scattering problem.

Regularization deals with infinite or divergent expressions like 1/r as r → 0. It

introduces an auxiliary concept of a regulator, for example, the minimal distance r

in space which is useful if the divergences arise from short-distance physical effects.

The correct physical result is obtained in the limit in which the regulator goes away,

however, the virtue of the regulator is that for its finite value, the result is finite. The

regularization is the first step to obtain a completely finite and meaningful result.

6.3.1 Kustaanheimo-Stiefel Coordinates

To regularize the binary collisions a procedure of Aarseth and Zare [173] will be used,

which is essentially a double Kustaanheimo-Stiefel (KS) transformation together with

a modified Levi-Civita regularization. Levi-Civita’s regularization of the plane motion
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starts with introducing a parameter-plane w = u1 + iu2 mapped onto the physical

z − plane conformally by the transformation

z = x1 + ix2 = w2

= u2
1 − u2

2 + i(2u1u2). (6.18)

Accordingly parabolic coordinates are introduced in the physical plane. A conical

section centered at the origin of the w − plane is transformed into a conical section

of the z − plane having one focus at the origin; therefore the transformation is very

practical method for the discussion of a Kepler or Coulomb potential problem [174].

For the one-dimensional eZe configuration, rewrite the Hamiltonian,

H = E0 =
p2

r1

2
+
p2

r2

2
− Z

r1
− Z

r2
+

1

r1 + r2
. (6.19)

The transformation to regularized coordinates (Qi,Pi),

r1 = Q2
1, pr1 =

P1

2Q1

r2 = Q2
2, pr2 =

P2

2Q2
(6.20)

and

dt = Q2
1Q

2
2 dτ (6.21)

lead to a new Hamiltonian

HQ =
P 2

1

8Q2
1

+
P 2

1

8Q2
2

− Z

Q2
1

− Z

Q2
2

+
1

Q2
1 +Q2

2

. (6.22)

where τ describes the scaled time. Thus, the regularized Hamiltonian is defined by

G = Q2
1Q

2
2(HQ − E0), (6.23)

and associated equations of motion are given by

dQi

dτ
=

∂G

∂Pi

dPi

dτ
= − ∂G

∂Qi
. (6.24)
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It is advantageous to employ McGehee scaling [168] by the hyperradius (R) in addition

to the KS transformation:

Qi =
√
RQ̄i

Pi = P̄i

dτ =
1√
R

dτ̄ (6.25)

with R =
√

r2
1 + r2

2 =
√

Q4
1 +Q4

2. The equations of motion in the scaled coordinates

are given by

dQ̄1

dτ̄
=

1

4
Q̄2

2P̄1 −
1

4
Q̄3

1Q̄
2
2(Q̄1P̄1 + Q̄2P̄2)

dQ̄2

dτ̄
=

1

4
Q̄2

1P̄2 −
1

4
Q̄2

1Q̄
3
2(Q̄1P̄1 + Q̄2P̄2)

dP̄1

dτ̄
= −1

4
Q̄1P̄

2
2 + 2ZQ̄1 − 2Q̄1Q̄

2
2 + Q̄5

1Q̄
2
2 + 2RQ̄1Q̄

2
2E0

dP̄2

dτ̄
= −1

4
Q̄2P̄

2
1 + 2ZQ̄2 − 2Q̄2Q̄

2
1 + Q̄5

2Q̄
2
1 + 2RQ̄2Q̄

2
1E0. (6.26)

The scaled energy Ē is given by Ē = RE and the equation of motion with respect to

the scaled time is

dĒ

dτ̄
=

1

2
Q̄2

1Q̄
2
2(Q̄1P̄1 + Q̄2P̄2)Ē. (6.27)

The derivatives of hyperradius and time with respect to the scaled time are given by

dR

dτ̄
=

1

2
RQ̄2

1Q̄
2
2(Q̄1P̄1 + Q̄2P̄2)

dt

dτ̄
= R

√
RQ̄2

1Q̄
2
2 (6.28)

Thus regularized equations without singularities are obtained.

6.3.2 Preparation of the Chaotic Invariant Set

The fixed points are found from the equations of motion for the Hamiltonian (6.1),

ṙ2 = pr2

ṗr2 = −
(

Z

r2
2

− 1

(r1 + r2)2

)

(6.29)
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Equations for r1 can be found by replacing the index by 1. The the fixed points are

p2 = 0

r2 = ±∞. (6.30)

For a given value r2 ( 6= 0), the eigenvalues (λ) are given by

λ2 =
4

r3
2

(1 ±
√

2) (6.31)

where for λ2 > 0 the system has hyperbolic fixed points. Thus the considered three-

body Coulomb problem contains the hyperbolic fixed points and thereby the stable

or unstable manifold may be constructed near the fixed points.

The Hamiltonian of the considering three-body Coulomb problem consists of 5

contributions:

1. The kinetic energy of electron 1 = p2
r1/2

2. The kinetic energy of electron 2 = p2
r2/2

3. The potential between electron 1 and the origin = - Z/r1

4. The potential between electron 2 and the origin = - Z/r2

5. The potential between the two electrons = + 1/(r1 + r2)

At energy E < 0 two asymptotic arrangement channels are open:

(a) The channel 0 where both electrons go far away only opens for positive total

energy.

(b) In channel 1, the electron 1 goes far away and electron 2 stays close to the

origin. The corresponding asymptotic Hamiltonian is

Has1 =
p2

r1

2
+
p2

r2

2
− Z

r2
− Z − 1

r1
. (6.32)

From far away the electron 1 sees an effective charge Z−1 at the origin. The channel

interactionW1 is the difference between the complete Hamiltonian and the asymptotic
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channel Hamiltonian

W1 = −Z

r1
+

1

r1 + r2
+
Z − 1

r1

=
1

r1 + r2
− 1

r1

H = Has1 +W1. (6.33)

First, the interaction which plays the role of some kind of scattering potential, is

short range. When r1 ≫ r2, W1 can be approximated as follows

W1 =
1

r1 + r2
− 1

r1

≃ 1

r1

(

1 − r2
r1

− 1 +O(r−2
1 )

)

≃ r2
r2
1

. (6.34)

Thus it falls off like 1/r2 and avoids all problems with the asymptotic conditions

which a Coulomb potential has.

Second, this interaction is always negative if the two electrons are placed on dif-

ferent sides of the origin, actually eZe configuration set the two electrons on different

sides, i.e., the potential is a strictly attractive scattering potential.

Following the contributions, Figure 20 shows the plot of the scattering time as

an example of the scattering function. The graph illustrates the chaotic scattering

region for negative energy (E = −1). Details will be explained in the next section.

The scattering function is a quantity which can be used for the reconstruction of the

internal dynamics [169]. Thus, initial conditions in a asymptotic regime, eventually,

allow to understand the structure of singularities of the scattering function [172].

The phase angle of the Figure 20 can be calculated from action-angle variable for

the motion of the bound electron. The time derivative of the angle variable may be

calculated as

φ̇ =
(−2E2)

3/2

Z
(6.35)
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Figure 20: This plot shows the scattering time on a domain which covers all singu-
larities over the phase angle −π < δφ < −π.
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Figure 21: Magnification of subintervals of the scattering function. The intervals of
continuity can be labeled by their level of hierarchy.
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Thus the period of the motion is given by

T2 =
πa

√

2|E2|
, (6.36)

where a (=−Z/E2) is the oscillation length of the bound electron, and E1, E2 corre-

spond to the energy of outer and bound electron, respectively. A distance that the

outer electron passes during a period of the motion of the bound electron, which is

represented by δr1 is defined from an approximation, initial location r0 much larger

than the oscillating length of the motion of a bound electron. If the outer electron is

located far from the nucleus, the Hamiltonian of the electron is simply the free elec-

tron’s Hamiltonian. Using the time derivative of the distance, the δr1 is represented

by

δr1 = πa

√

∣

∣

∣

∣

E1

E2

∣

∣

∣

∣

. (6.37)

Using above two equations the phase angle is given by a function of δr1

δφ = −2E2

Z

√

∣

∣

∣

∣

E2

E1

∣

∣

∣

∣

δr1. (6.38)

(c). For channel 2, the Hamiltonian and associated equations of motion of the

system can be defined in analogy by interchanging the indice.

When the negative energy E = −1 and channel 1 are considered, the Poincarée

map will be chosen to the surface of intersection which is pr2 = 0. For channel 1, this

is a good choice. Let’s take as line of initial conditions a segment of the curve

pr1(r1) =

√

2(Z − 1)

r1
(6.39)

for r1 sufficiently large so that the asymptotic Hamiltonian is a good approximation.

The position of the other electron (2) must be kept constant at r2 = Z for these initial

conditions. Then on this line electron 2 provides all the energy -1 and electron 1 has

energy 0. Therefore, far out this line is a very good approximation to the separatrix

between going off to infinity and returning. i.e. it is a very good approximation to the
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stable manifold of the point at infinity. With negative momentum, i.e. the negative

branch of the square root in the above equation, the unstable manifold is obtained, or

it is in reverse depending on which side the electron 1 is placed. Remaining calculation

to get invariant manifold is to iterate the initial line segments forward or backward

many times to generate the homoclinic tangle. Note that the initial errors go to zero

exponentially in the iteration process because the initial errors are transverse to the

initial line segment, i.e. they point in the unstable/stable direction which shrinks

exponentially in the iteration process.

6.4 The Scattering Time and Horseshoe Map

One of the two electrons is located at an asymptotic location which is far enough

so that the interaction is negligible. When it comes close to interaction region, the

interaction should be considered. For very small distances, it is very difficult to do

numerical calculations and analyze the scattering process. However, there is a indi-

rect method to analyze the system without considering the small range interaction.

Scattering functions give properties of the final electron asymptotes as a function of

the incoming electron asymptotes. The investigation of the scattering functions is a

variety of indirect study. The intersection of the incoming electron asymptotes with

the invariant manifolds of the chaotic invariant set in the asymptotic region produces

singularities [176]. The chaotic invariant set underlies the structure of the classical

phase space in the sense that its properties determine the quantities that characterize

the scattering process.

The Horseshoe Map is mainly intended for the structural understanding of the

dynamics in chaotic system. In chaotic systems, we always have homoclinic and/or

heteroclinic interactions of invariant manifolds [175], and this pair is always connected

with a Horseshoe construction [175]. The Smale Horseshoe construction proceeds
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stretching a so-called fundamental region [172]. The structural understanding of the

chaotic scattering means some knowledge of the structure of the chaotic invariant

set, so-called chaotic saddle, its partition and its thermodynamic quantities [177].

The matter of obtaining scattering functions directly from the system is complicated.

This complication, however, can be avoided assuming that the scattering functions

are directly available as asymptotic data [162]. We restrict our attentions to a simple

case, eZe configuration. The goal of this section is to extract from asymptotic data

information about the chaotic invariant set, represented by a Horseshoe construction

in an appropriate Poincaré section [169, 161].

6.4.1 The Scattering Function

If the motion in the interaction region can be observed directly, the construction of

the Horseshoe Map from this measurements is straightforward. We only consider the

situation where the direct access to the interaction region is not possible and only

the asymptotic preparation of initial states and asymptotic measurements of the final

states are possible.

As mentioned earlier, the scattering function is a quantity which can be used

for the reconstruction of the internal dynamics [169]. The time delay function, for

instance, can be a good scattering function for the problem of eZe configuration

because the data it contains give the properties of the final asymptote as a function

of the properties of the initial asympotote. The scattering time signals, as a time delay

function of this system, in the Figure 20 were scanned numerically with respect to the

phase angle. Total energy was set to E = −1 and initial location of the outer electron

to r1 = 100 in atomic units. The regularized equations of motion in the previous

section were used for numerical calculations. For each launched trajectories of a

outer electron, the scattering time was measured until one of the electrons reached the
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outgoing asymptotic region (ri = 100 a.u., i = 1 or 2 same as the initial distance). The

scattering time indicates the duration of which the electrons stayed in the interaction

region.

The Figure 21, the magnification of the Figure 20, shows clearly the intervals of

continuity, small gaps between two group of chaotic oscillating signals. The interval

is the characteristic figure of the chaotic scattering which the construction of the

Horseshoe Map is possible [178]. Each interval has a number of hierarchy level number

and the number is the number of times which a scattering trajectory steps into the

fundamental region. The number is a constant in any interval of continuity of the

scattering functions. Thus the construction of the Horseshoe Map for the considering

system, one-dimensional eZe configuration, may be possible.

6.4.2 Construction of the Horseshoe Map

Let the two fixed points be Ps and Pu. The stable manifold theorem states that

for a smooth map, near a hyperbolic fixed point1, the stable manifold, points whose

forward orbit converges to the fixed point, and the unstable manifold, points with

backward orbit converging to the fixed manifold, are both smooth manifolds. In this

thesis, the stable and unstable manifold were searched over the phase space (r1,ṗ1)

using an idea that if a point was on the stable manifold, the time evolution of the

point forward in time would lead to the fixed point. To obtain the unstable manifold,

the integration was performed backward in time to test if the point reached to the

fixed point. The integrations of the stable manifold backward in time and the unstable

manifold forward in time produce the invariant manifolds, thereby stable and unstable

tendrils.

The stable and unstable manifolds by time evolution of the fixed points generates

1Also it is called saddle point. The eigenvalues (λ1, λ2) for the stability matrix are real and have
opposite sign. λ1 < 0 < λ2 and λ1, λ2 ∈ R.
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fundamental region which is closed space made by the first segments of intersection of

the manifolds started from the fixed points. Call the time evolution of the segments

“tendril”. Repeating the integration for the tendrils eventually construct the hierar-

chical structure for the Horseshoe Map [175, 169]. The hierarchy level of the intervals

of continuity for a part of the time delay function can be constructed as follows:

(a) The computation of the time delay function from proper initial conditions in

the asymptotic regime that completely intersects one tendril of the stable manifold

of a outer fixed point Ps.

(b) The iteration of the initial conditions using the regularized equations of motion

until the initial conditions converge toward the boundary of the fundamental region

which is defined by the local segment of the stable and unstable manifold of a fixed

point Pu.

(c) The mapping of the intersections of the set of initial conditions with the stable

manifold of the fixed point Ps onto the intersections of the iterates with the same

stable manifold.

This process will show that the singularity structure of the scattering function is

the same as the pattern resulting from the intersection of the stable manifolds with

the local segment of the unstable manifold of the another fixed point Pu [172]. That

implies that the intervals of continuity of the scattering function correspond to the

gaps that the tendrils of the stable manifolds cut into the fundamental area of the

Horseshoe Map construction.

6.4.3 Discussion

Contrary to our expectation, the Horseshoe Map for the one-dimensional three body

Coulomb problem could not be obtained by our research. The time evolution of a

trajectory at initial asymptotes was obtained by integration along the regularized
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equations of motion. The unstable and stable manifold obtained by integration of

the fixed point, a initial asymptote which was located far enough to be assumed as

a infinite distance. The integration was performed backward in time for the stable

manifold and forward in time for the unstable manifold.

However, these two lines never met each other, and therefore the fundamental

region could not be constructed. Figure 22 shows Poincaré surface of section, which

shows chaotic properties of this eZe configuration for the energy E = −1 and the

Figure 23 is the plot of the stable and unstable manifolds. Initially, the bound electron

was located at its outer turning point and the momentum of the electron was zero

at that time and the outer electron was located at the initial asymptote, r = 100

a.u.. Whenever the momentum of the bound electron was zero, the outer electrons

coordinate and momentum were recorded for the Poincaré surface of section. Because

the motion of the bound electron is a oscillatary motion, if it is not scattered, the

motion of the outer electron in the phase space follows two trajectories.

Figure 24 shows the possible two trajectories. As it can be seen from the Figure

23, the stable (upper) and unstable (lower) manifolds have not cross each other, and

therefore the fundamental region could not be constructed. However, the Figure 24,

magnified figure of the Figure 23, showed a possible candidate for the construction

of hierarchy. The dots and circles illustrated in the Figure 24 were obtained after

tracing the trajectories of both electrons. The dot indicates that the outer electron

was scattered and the circle explains the bound electron was scattered. The scattering

takes place along the two trajectories alternatively. Thus, if the position of the change

can be expressed in terms of phase angle and initial asymptote with a possible quantity

which corresponds to the interval of the time delay function, the hierarchy structure

could possibly be constructed.
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Figure 22: Poincaré surface of section of the outer electron for E=-1.
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Figure 23: Stable (p > 0) and unstable (p < 0) manifolds.
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Figure 24: Magnified plot of the phase space of the Figure 23.
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CHAPTER VII

CONCLUSIONS

In this thesis we investigated what modern nonlinear-dynamical methods could tell

us about reducing the spreading of wavepackets in atomic physics. This thesis was

devoted to atomic systems which contain large Coriolis-like interactions which were

too large to be treated by perturbation theory and understanding the effect of Coriolis

terms. These interaction terms might arise quite straightforwardly as a paramagnetic

term for an atomic electron which interacted with a constant magnetic field, or more

subtly, from viewing the atomic problem from a rotating frame.

The treatment of Coriolis terms by classical mechanics forced one to go beyond

well-established notions of stability at a potential minimum. Indeed, by mixing coor-

dinates and momenta in a bilinear fashion, the Coriolis term made the the definition

of a conventional potential impossible. For, if the term were to be treated as part of

the potential, that potential would become momentum dependent; whereas regarding

it as a part of the kinetic energy could make the kinetic energy negative.

In Chapter 1, a well-established way of taking into account these subtleties was

shown, transformation to a stable potential minimum. We went beyond the classical

mechanics and explored the quantum mechanics of wave packets in such systems. We

were guided by the work rotating systems known as under the name of “Cranked

Oscillator” model. The model was summarized in the first chapter.

Chapter 2 showed the possibility of finding classical equilibrium points in the

dynamics of the hydrogen atom in circularly polarized (CP) fields. These fields pro-

duced equilibrium points at which the coherent states could be constructed and the

nature of the hydrogen atom was very similar to those of RTBP. The CP field created
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the equilibrium points on the ZVS and the stable coherent wave packets could be

launched at a equilibrium position and they were supported quantum mechanically.

In Chapter 3, we went one step further by asking if the motion of the electron,

represented by a non-spreading (or slowly-spreading) wave packet could be controlled

using external fields, such as a dipole field. The ultimate aim was to make wave

packets move in a prescribed way before they could spread appreciably. As a first

step, the behavior of cranked oscillator coherent states in a dipole field was presented,

time independent and time dependent couplings: we found that they indeed could

move in a way prescribed by the dipole field, constructing near-coherent states for

specific atomic potentials. The properties in the field configuration were investigated

by Glauber-type coherent states.

As an application of the construction of the coherent states by expanding the

potential minimum, the guiding center atom was introduced at Chapter 4. The

system of electron− ion pair could not be separated into kinetic energy and potential

nor a ZVS easily. Thus it needed to be manipulated into more separable form:

First, rapid cyclotron motion could be averaged out in the limit of which the

electron cyclotron frequency was the largest of the dynamical frequencies. This can-

cellation was possible because of huge mass difference between the electron and ion,

in addition to the strong magnetic field, which led to “guiding center” approximation.

Second, moving along the magnetic field direction generated constants of motion

illustrating transverse motion to the field. The pseudomomentum played important

role in separating the center of mass and reducing internal degrees of freedom.

Third, the motion along z-axis could be dealt with elliptic integral and the z-

motion could be decoupled from the Hamiltonian.

Thus, the reduced Hamiltonian was obtained and the potential function indicated

a two dimensional harmonic oscillator. The plot of the energy surface showed that

the system could be locally harmonic at the minimum point. The coherent states
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could be constructed at the minimum point as follows,

Ψ(y) =
1√
bπ1/4

exp[−(y − ycl)
2/2b2], (7.1)

where b =
√

~/mω for a classical harmonic oscillator with a frequency ω. ycl is the

classical trajectory. The variable of the above coherent state, y, was the relative

distance between the two particles, thus the constructed coherent state with respect

to the variable y could be used to explain the E×B drafting pair of the Figure 14

because the coherent state would be a non-spreading wave packet as long as the

separation of the electron-ion pair remained constant or changed harmonically.

In Chapter 5, as an extension of the guiding center atom, a ion pair in electro-

magnetic fields was treated. The ion pair is essentially a particle system interacting

by means of a Coulombic potential. The Hamiltonian involved a coefficient δ, mass

ratio. Because the ratio was almost equal to 1, the coefficient introduced two sep-

arate discussion about the system, δ 6= 1 and δ = 1. When δ 6= 1 the behavior of

Hamiltonian was quite similar to the Hamiltonian of the Chapter 4, guiding center

atom, and the Hamiltonian could be transformed to harmonic oscillator by proper

canonical transformation and thereby the coherent state could be built. When δ = 1,

the Hamiltonian was completely separable to purely kinetic term and coordinate de-

pendent potential term. For intermediate values of δ the dynamics was similar to

δ = 0 not to require a separate discussion.

The canonically transformed system was shifted to the minimum and the poten-

tial function was expanded around the point. It transformed the Hamiltonian the

the three dimensional harmonic oscillator function and the coherent state could be

constructed at the minimum. The coherent states corresponding to the the distance

between the two particles showed that the behavior of the states could be used to

explain the motion of the ion pair such as drifting atom. Thus it was possible to

prepare locally harmonic regimes in ion pair system thereby allowing the creation of

almost completely non-dispersive coherent atomic states.
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Chapter 6 showed a classical-mechanical investigation of the ionization of a highly

excited atom. It involved the phenomenon of chaotic scattering which could be rec-

ognized by hierarchical structure of a scattering function. The singularity structure

of the scattering function was the same as the pattern resulting from the intersection

of the stable manifolds with the local segment of the unstable manifold. An essen-

tial ingredient for the classical analysis of the Three Body Coulomb problem was

the regularization of the motion. The regularization was impossible near the triple

collision point. The matter of obtaining scattering functions directly from the system

was complicated. The complication, however, could be avoided by assuming that the

scattering functions was directly available as asymptotic data and the asymptotic

analysis.

The asymptotic analysis accompanies with the contruction of the Horseshoe Map

which is mainly intended to the structural understanding of the dynamics in chaotic

system. The goal of the analysis is to extract from asymptotic data information

about the chaotic invariant set, represented by a horse construction in an appropriate

Poincaré section.

Contrary to our expectation, the Horseshoe Map for the one-dimensional three

body Coulomb problem could not be constructed. The time evolution of a trajectory

at initial asymptotes was obtained by integration along the regularized equations of

motion. The unstable and stable manifold obtained by integration of the fixed point,

a initial asymptote which was located far enough to be assumed as a infinite distance,

backward in time and forward in time for the stable manifold. The manifolds obtained

these two lines never crossed each other, and the fundamental region could not be

constructed. Without the fundamental region, the analysis could not be performed.

However, a possible way of construction of the hierarchy structure was suggested from

the Figure 24, where the two trajectories the scattering happened alternatively.
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APPENDIX A

ELLIPTIC INTEGRALS

The incomplete elliptic integral of the first kind of Jacobi[132] is typical. It is

∫ x

0

1
√

(1 − x2)(1 − k2x2)
dx. (A.1)

Gradshteyn and Ryzhik[146] show a very complete collection of formulas. Concerned

elliptic integral is the complete type of the elliptic integrals. Elliptic integrals occurs

in physical problems and applications. For example, small amplitude oscillations of a

pendulum has simple harmonic motion with a period T. For a maximum amplitude θM

large enough so that sinθM 6= θM , equation’s motion leads to a nonlinear differential

equation, so it is needed to turn to a different approach. Eqaution of motion for the

angle variable from the conservation of energy for the oscillation is given by

dθ

dt
= ±

(

2g

l

√

cos θ − cos θM

)1/2

(A.2)

where the mass of the pendulum m was canceled out and g is the gravitational

constant. For a complete cycle, the period can be obtained by integration,

T = 4

√

l

g

∫ π/2

0

1
√

1 − k2 sin2 φ
dφ (A.3)

where k = sin(θM/2). This defines the complete elliptic integral of the first kind

K(γ) [147, 148]. Generally used complete elliptic integrals of three kinds [147, 149]

are defined as follows.

First kind complete elliptic integral K(γ):

K(γ) =

∫ 1

0

1
√

(1 − x2)(1 − γx2)
dx, (A.4)

where 0 ≤ γ < 1.
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Second kind of complete elliptic integral E(γ):

E(γ) =

∫ 1

0

√

1 − γ2x2

1 − x2
dx, (A.5)

where 0 ≤ γ ≤ 1.

Third kind of complete elliptic integral Π(γ, k)

Π(γ, k) =

∫ 1

0

1

(1 − γx2)
√

(1 − x2)(1 − k2x2)
dx, (A.6)

where 0 < k < 1.
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