
EMBEDDED SOFTWARE STREAMING VIA

BLOCK STREAMING

A Dissertation
Presented to

The Academic Faculty

by

Pramote Kuacharoen

In Partial Fulfillment
of the Requirements for the Degree of

Doctor of Philosophy

School of Electrical and Computer Engineering
Georgia Institute of Technology

April 2004

Copyright c© 2004 by Pramote Kuacharoen

EMBEDDED SOFTWARE STREAMING VIA

BLOCK STREAMING

Approved by:

Professor Vincent J. Mooney III, Committee
Chair

Professor Mostafa Ammar

Professor Biing-Hwang Juang

Professor Vijay K. Madisetti

Professor Karsten Schwan

Date Approved: 7 April 2004

To my mother

iii

ACKNOWLEDGMENTS

I would like to express my sincere gratitude and appreciation to everyone who helped

make this dissertation possible. First and foremost, I would like to thank my advisor,

Professor Vincent J. Mooney III, for his patience and guidance during my graduate

study at Georgia Tech. With his knowledge and experience, he has guided me to

achieve my research objective. I truly admire him for all his encouragement he has

given me throughout this process. He was always there when I needed him.

Second, I would like to thank my dissertation committee members, Professor

Mostafa Ammar, Professor Biing-Hwang Juang, Professor Vijay K. Madisetti, and

Professor Karsten Schwan, for their critical evaluation and valuable suggestions for

fine tuning the focus of my dissertation.

Third, I would like to thank all members of the Codesign group for their friendship

and support, especially, Mohamed A. Shalan and Tankut Akgul who are coauthors of

a number of the conference papers. We had many good times together at conferences

and had many interesting conversions during lunch times.

Finally, I would like to thank my family for their love and support throughout

my entire graduate study. My mother always encourages me to work hard. To our

beloved brother, I did not have much chance to spend time with you, but you will be

missed forever and will always be in my heart.

iv

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGMENTS . iv

LIST OF TABLES . ix

LIST OF FIGURES . x

SUMMARY . xiii

I INTRODUCTION . 1

1.1 Problem Statement . 1

1.2 Contributions . 2

1.3 Terminology for Software Streaming 3

1.4 Organization of the Dissertation . 4

II MOTIVATION AND PERSPECTIVE 7

III RELATED WORK . 10

3.1 Conventional Memory Management 10

3.1.1 Overlaying . 10

3.1.2 Paging . 11

3.1.3 Dynamic Linking . 11

3.2 Client/Server Computing . 12

3.2.1 Direct Download . 12

3.2.2 Remote Execution . 13

3.2.3 Virtual File Systems . 14

3.2.4 Incremental Software Delivery 17

3.3 Summary . 20

IV SOFTWARE STREAMING VIA BLOCK STREAMING 22

4.1 Softstream Client/Server Model . 22

4.2 Stream-Enabled Software . 23

v

4.3 Softstream Protocol . 25

4.3.1 Softstream Message Format 26

4.3.2 Transmission Profile . 28

4.3.3 Softstream Flow Control . 32

4.4 Summary . 34

V STREAM-ENABLED PROGRAM FILES 36

5.1 Stream-Enabled Program File Overview 36

5.1.1 Client/Server Processes . 37

5.1.2 Softstream Generator . 38

5.1.3 Stream-Enabled Program File Request 40

5.1.4 Softstream Loader/Linker . 41

5.2 Stream-Enabled Code Generation 44

5.2.1 Preventing the Execution of Non-existing Code 44

5.2.2 Coping with Non-Interruptible Sections 53

5.2.3 Generating Off-Block Branch Information 57

5.2.4 Stream Block Placement . 58

5.3 Load-Time Code Modification . 58

5.4 Run-time Code Modification . 60

5.5 Program Profiling . 62

5.6 Performance Metrics . 63

5.6.1 Softstream Overhead . 63

5.6.2 Application Load Time . 66

5.6.3 Application Suspension Time 67

5.7 Performance Analysis . 68

5.8 Summary . 69

VI STREAM-ENABLED FILE INPUT/OUTPUT 71

6.1 File Transfer . 71

6.2 SIO Messages . 73

vi

6.3 SIO Function Calls . 76

6.4 SIO Support by Modifying the Application Binary Image 78

6.5 Using Stream-Enabled File I/O for Program Files 80

6.6 Data Profiling . 81

6.7 Performance Analysis . 84

6.8 Summary . 85

VII BLOCK STREAMING PERFORMANCE ENHANCEMENT . 86

7.1 Code Transformation . 86

7.1.1 Determining Function Boundaries 86

7.1.2 Remapping Functions . 89

7.1.3 Generating Fixed Size Stream Units 91

7.2 Stream Unit Removal . 94

7.2.1 Unlinking Mechanism . 94

7.2.2 Stream Unit Replacement . 95

7.3 Security Issues . 97

7.3.1 Network Security . 97

7.3.2 Computer Security . 98

7.3.3 Thread-Safe . 98

7.4 Summary . 98

VIII EXPERIMENTS AND RESULTS 99

8.1 Experimental Setup . 99

8.1.1 Simulation Environment . 99

8.1.2 MBX860 Broad . 100

8.1.3 Code Size . 101

8.2 Stream-Enabled Program Files . 101

8.2.1 Simulation Results . 101

8.2.2 MBX860 Board Results . 103

8.3 Stream-Enabled File I/O . 105

vii

8.3.1 Reading a Data File Using Various Benchmarks 105

8.3.2 Data Acquisition . 107

8.3.3 Data Utilization Rate . 108

8.4 Stream-Enabled File I/O and Stream-Enabled Program File 109

8.5 Summary . 111

IX CONCLUSION . 112

REFERENCES . 114

PUBLICATIONS . 118

viii

LIST OF TABLES

Table 1 Softstream message header values and explanations. 35

Table 2 Stream-enabled application information. 40

Table 3 Stream-enabled program softstream overhead for a stream unit. . . 69

Table 4 Stream-enabled file I/O overhead for a stream block. 84

Table 5 Softstream programs. 101

Table 6 Simulation results for stream-enabled program files. 103

ix

LIST OF FIGURES

Figure 1 An evolution of computing environments. 7

Figure 2 A possible evolution of software distribution. 8

Figure 3 An exemplary computer network for software streaming. 23

Figure 4 Generating stream units. 24

Figure 5 Client-side softstream protocol stack. (a) Softstream protocol stack
in the OSI reference model. (b) Protocol stack detail. 25

Figure 6 A simple client/server communication. 26

Figure 7 Softstream message format. 27

Figure 8 Structure of the service type field. 28

Figure 9 A Transmission profile. 30

Figure 10 A transmission flow graph. 31

Figure 11 Server-side software-streaming process. 37

Figure 12 Client-side software-streaming process. 38

Figure 13 The binary image of an application is broken up into blocks. 39

Figure 14 Stream-enabled application information. 41

Figure 15 Stream block lookup table. 42

Figure 16 The stream unit format for program files. 42

Figure 17 The first stream unit of the robotic exploration application. 43

Figure 18 Block loader flow chart. 44

Figure 19 C code and corresponding PowerPC assembly. 46

Figure 20 Block 1 and Block 2 after the stream-enabled code generation. . . . 46

Figure 21 The 32-bit PowerPC conditional branch instruction format. 48

Figure 22 The 32-bit PowerPC unconditional branch instruction format. . . . 48

Figure 23 A sort function using a function pointer as a parameter. 50

Figure 24 The format of the 32-bit PowerPC conditional branch to the link
register. 51

Figure 25 A sort function using a function pointer as a parameter. 52

x

Figure 26 The µC/OS-II OSSchedUnlock function. 54

Figure 27 Assembly code containing a non-interruptible section. 56

Figure 28 Off-block branch information. 57

Figure 29 Branch loader code and branch information. 60

Figure 30 Runtime code modification. 61

Figure 31 Program Profiling: (a) Control flow graph of the software (note all
edges have associated conditions not shown). (b) A transmission
profile. 64

Figure 32 Downloading and processing data for 1MB of data streamed by block
sizes of 1MB and 4KB. 73

Figure 33 The stream unit format for data blocks. 74

Figure 34 Data block table. 75

Figure 35 A subset of a program using uClibc file I/O. 79

Figure 36 Profiling Data: (a) The file is divided into blocks. (b) The cor-
responding transmission flow graph. (c) Depth-first transmission
profile. (d) Breadth-first transmission profile. 83

Figure 37 Enforcing block boundaries. (a) A function is placed into separate
blocks. (b) The block boundaries are matched with function bound-
aries. 88

Figure 38 A sample symbol table. 88

Figure 39 An example shows the program lacks block locality. 90

Figure 40 Rewriting a short range branch. (a) The branch target address is
too far for the conditional branch. (b) An unconditional branch is
inserted to redirect the conditional branch. 93

Figure 41 Unlinking. (a) Block 1 and Block 2 are linked together. (b) Block 2
is unlinked from Block 1. 95

Figure 42 A transmission profile is created according to the minimum retrans-
mission policy. 97

Figure 43 Simulation environment. 100

Figure 44 Experiment setup. 100

Figure 45 Code location. 101

Figure 46 Application load time vs. block size for connection speed of 128 Kbps.104

Figure 47 Application load time vs. block size for connection speed of 1 Mbps. 105

xi

Figure 48 File I/O performance comparisons. 107

Figure 49 Time to acquire data from a 1 MB file. 108

Figure 50 The amount of time it takes to process a 1 MB file with various data
utilization rate. 109

Figure 51 The amount of time the user has to wait before playing the game. . 110

xii

SUMMARY

Downloading software from a server usually takes a noticeable amount of time,

that is, noticeable to the user who wants to run the program. However, this issue

can be mitigated by the use of streaming software. Software steaming is a means

by which software can begin execution even while transmission of the full software

program may still be in progress. Therefore, the application load time observed by the

user can be significantly reduced. Moreover, unneeded software components might

not be downloaded to the device, lowering memory and bandwidth usages. As a

result, resource utilization such as memory and bandwidth usage may also be more

efficient. Using our streaming method, an embedded device can support a wide range

of applications which can be run on demand. Software streaming also enables small

memory footprint devices to run applications larger than the physical memory by

using our software streaming technique.

Traditionally, an embedded application includes data inside its program file since

the amount of data has historically been quite small. However, as embedded applica-

tions become more complex, the amount of data required may be larger. Therefore,

embedding the data in the program file may become impractical. Thus, file I/O op-

erations such as file read and file write become increasingly important. However, file

I/O operation latency may be significant when the file is located remotely. File I/O

operation latency may be reduced by the means of incremental data delivery. Using

this method, file data is not necessarily transmitted in a linear order of the data in

the file, but is preferably transmitted in the order in which the data is used. There-

fore, the application can obtain needed data more quickly. Furthermore, transmission

xiii

bandwidth and memory usage may be lowered since unneeded data may not be sent.

In short, this dissertation also addresses streaming of software programs which use

significant amounts of file I/O.

In this dissertation, we present a streaming method we call block streaming to

transmit stream-enabled applications, including stream-enabled file I/O. We imple-

mented a tool to partition software into blocks which can be transmitted (streamed)

to the embedded device. Our streaming method was implemented and simulated on

an MBX860 board and on a hardware/software co-simulation platform in which we

used the PowerPC architecture. We show a robotics application that without our

streaming method is unable to meet its deadline. However, with our software stream-

ing method, the application is able to meet its deadline. The application load time

for this application also improves by a factor of more than 10X when compared to

downloading the entire application before running it. The experimental results also

show that our implementation improves file I/O operation latency; in our examples,

the performance improves up to 55.83X when compared with direct download.

xiv

CHAPTER I

INTRODUCTION

Today’s embedded devices typically support various applications with different char-

acteristics. With limited storage resources, it may not be possible to keep all features

of the applications loaded on an embedded device. In fact, some software components

may not be needed at all. As a result, the memory on the embedded device may not

be efficiently utilized. Furthermore, the application software will also likely change

over time to support new functionality, and perhaps quite rapidly in the case of game

software. Today, the user has to download the software and install it prior to use.

This means that the entire software must be downloaded before it can be run. Down-

loading the entire program delays its execution. In other words, application load time

(the amount of time from when the application is selected for download to when the

application can be executed) is longer than necessary. To minimize the application

load time, the software should be executable while downloading. Software Streaming

enables the overlapping of transmission (download) and execution of software.

1.1 Problem Statement

This research addresses long application load times when running software over a

networked environment. The amount of time required to download large software

from a server can be significant, thus delaying the execution of the software. This

research also addresses utilization of resources such as bandwidth and memory; since

many features downloaded to the device may not be used at all, these unused features

waste the user’s time, bandwidth, and memory. As a result, many embedded devices

which have limited storage resources cannot support large applications.

1

The primary objective of the research is to implement a method for executing

software on a device while transmission/streaming may still be in progress, reducing

the amount of time from when the application is selected for download to when the

application can be executed. Furthermore, the secondary objective is to reduce the

occurrence of and the amount of time during which an application is suspended or

stalled during execution due to missing code. The tertiary objective of the research

is to provide support for small memory footprint embedded devices.

1.2 Contributions

In this dissertation, we present a new method for streaming software. The trans-

mission of the software can be completely transparent to the user. The software is

executed as if it is local to the device. Our streaming method can also significantly

reduce the application load time since the CPU can start executing the application

without downloading the entire program.

The following items are contributions of this research.

• Block streaming allows the execution of stream-enabled software on a device

even while transmission/streaming of the software may still be in progress.

Thus, the user does not have to wait for the completion of download before

running the program. As a result, the user will experience a relatively shorter

application load time.

• Block streaming enables client devices, especially embedded devices, to poten-

tially support a wider range of applications by more efficiently utilizing resources

— such as memory and bandwidth — and more efficiently supporting dynamic

download and execution of programs.

2

• Block streaming provides applications with the ability to access file data without

obtaining the entire data file. Parts of the data in the data file can be manip-

ulated while other parts of the file data are being transferred. As a result,

applications can potentially access file data more quickly.

• Block streaming facilitates software distribution and software updates since soft-

ware is directly streamed from the server. In case of a bug fix, the software de-

veloper can apply a patch at the server. The up-to-date version of the software

is then always streamed to the client device.

• Block streaming has the potential to dramatically alter the way software is

executed in the embedded setting where minimal application load time for newly

selected applications is important to clients.

While security is a major concern for all modern computing systems, we do not

cover security issues in this dissertation. However, we do present in Chapter 7.3 a

few known approaches to security which we believe could be used in conjunction with

this dissertation to implement secure software streaming.

1.3 Terminology for Software Streaming

In this section, we define terms which we use in this dissertation.

Application load time: The amount of time from when an application is

selected for download to when the application can be executed.

Application suspension time: The amount of time from when an application

is suspended due to missing code to when the application can be resumed.

Off-block branch: a branch instruction that may cause the CPU to execute

an instruction in a different code block.

3

Softstream client: A device which executes a stream-enabled application.

Softstream protocol: A standard procedure for regulating data transmission

between a softstream server and a softstream client.

Softstream server: A program which accepts and responds to requests from

a softstream client.

Stream-enabled application: An application which can be executed while

the transmission/streaming of the software may still be in progress.

Stream-enabled software: Software which can be executed while the trans-

mission/streaming of the software may still be in progress.

Stream-enabling information: Data which is used to received and integrate

stream units into a stream-enabled application.

Stream block: Contiguous executable code and/or data.

Stream unit: A payload which consists of the stream unit header and associ-

ated stream block.

User perceived application load time: The amount of time from when an

application is selected to download to when the application can interact with

the user.

1.4 Organization of the Dissertation

The dissertation is organized into nine chapters:

CHAPTER I: INTRODUCTION. This chapter provides a general overview of

software streaming. The chapter also provides the terminology for software

streaming and the contributions of the dissertation.

4

CHAPTER II: MOTIVATION AND PERSPECTIVE. This chapter describes

some motivation for this dissertation. This chapter also describes the perspec-

tive of software streaming via block streaming.

CHAPTER III: RELATED WORK. This chapter reviews work related to soft-

ware streaming, specifically, in the areas of conventional memory management

and client/server computing. For conventional memory management, this chap-

ter surveys overlaying, paging, and dynamic linking. For client/server comput-

ing, this chapter surveys methods for transferring files across the network and

executing applications.

CHAPTER IV: SOFTWARE STREAMING VIA BLOCK STREAMING. This

chapter explains the concept of our software streaming method. This chapter

explains our software streaming client/server model and the protocol. Perfor-

mance metrics used to evaluate our software streaming implementation are also

discussed. This chapter also explains how software profiling is essential for

software streaming.

CHAPTER V: STREAM-ENABLED PROGRAM FILES. This chapter de-

scribes the process of generating a stream-enabled program from its binary

image by partitioning the program file into blocks and modifying the binary

image. This chapter also describes the process of loading the code blocks into

memory and linking the code blocks together by using a binary rewriting tech-

nique.

CHAPTER VI: STREAM-ENABLED FILE I/O. This chapter describes stream-

enabled file I/O which enables data in the file to be used without downloading

the entire file. The data file is divided into blocks and is profiled. Then, the

server sends data blocks according to the transmission profile.

5

CHAPTER VII: BLOCK STREAMING PERFORMANCE ENHANCEMENT.

This chapter describes a method to improve code locality by remapping binary

code at the function level. Remapping binary code can reduce the occurrence

of block misses and, hence, the number of software suspensions. This chapter

also presents a method which enables small memory footprint embedded devices

to support large applications which cannot be loaded into memory at once by

using software streaming and allowing stream units to be removed.

CHAPTER VIII: EXPERIMENTS AND RESULTS. This chapter discusses the

experiments and results of our software streaming implementation. The exper-

iments were conducted on an MBX860 board and a hardware/software cosim-

ulation platform.

CHAPTER IX: CONCLUSION. This chapter concludes the dissertation.

6

CHAPTER II

MOTIVATION AND PERSPECTIVE

Computing environments have evolved from one computer serving many people, e.g.,

a mainframe, to one computer serving one person, e.g., a personal computer (PC).

Current and future computing environments have many computers serving one single

person. In the future, computing resources will become ubiquitous. Many embedded

devices and sensors will be used to support everyday activities [1]. An evolution of

computing environments are illustrated in Figure 1.

��������� 	
 ������������������������

Figure 1: An evolution of computing environments.

Software distribution has also changed over the past 40 years. Initially, software

was predominantly packaged and was delivered through postal mail or was sold at

stores. This still happens today although not as frequently. As the Internet becomes

more prevalent, software can be easily downloaded or can be run remotely. However,

future computing environments will demand a new approach for distributing soft-

ware. One possible method to deliver software to future embedded devices is through

software streaming. A possible evolution of software distribution is shown in Figure 2.

Consider a scenario where a user utilizes a portable device to download an appli-

cation from a remote server and executes the application. As the availability and use

of computing resources becomes more and more ubiquitous, this scenario is likely to

7

�������

��	
����

���������������

����	���

�������
�

Figure 2: A possible evolution of software distribution.

become quite common. The user may have to wait a long time to execute a cutting

edge application which the user has selected for the first time.

The problem is the user demands small embedded devices — such as cellular

phones and personal digital assistants which have limited resources — to run many

applications. However, a small embedded device cannot, by definition, hold thousands

or more of the latest applications. Furthermore, the user does not want to wait for a

long time for an application to start. A long wait time may be overcome by streaming

program files. With streaming support, the application can start running without

requiring all program code to be downloaded. Furthermore, most embedded programs

are written in a manner similar to desktop programs and thus use a significant amount

of file I/O. If the application is suspended for a long time while reading a data file,

the user perceives that the application is loaded slowly. Therefore, we need to stream

data files as well. With the combination of program file streaming and data file

streaming techniques, the user can interact with the application more quickly, and

small embedded devices can potentially run many more applications as if they were

all fully downloaded and installed already.

Software to be streamed must be modified before it can be streamed over a trans-

mission medium. The software must be partitioned into parts for streaming. We

call the process of modifying code for streaming software streaming code generation,

and we perform this modification after normal compilation. After modification, the

application is ready to be executed after the software unit containing the program

entry point is loaded into the memory of the device. In contrast to downloading the

whole program, software streaming can improve the application load time. While

8

the application is running, additional parts of the stream-enabled software can be

downloaded in the background or on-demand. If the needed part is not in memory,

the needed part must be transmitted in order to continue executing the application.

The application load time can be adjusted by varying the block sizes and the amount

of blocks transferred before the application can be executed. The download time

for the subsequent blocks must be considered to avoid suspension of the application

due to block misses. The predictability of the software execution once it starts can

be improved by software profiling which determines the transmission order of the

blocks. By using software profiling, the application suspension due to block misses

can potentially be avoided.

In short, we propose streaming of embedded software as a new paradigm for

software delivery.

9

CHAPTER III

RELATED WORK

There are two main areas which are related to this research, namely, conventional

memory management and client/server computing. We survey conventional mem-

ory management techniques which cope with memory being scarce. We also discuss

client/server computing which deals with transferring data across a network and ex-

ecuting applications stored at a server.

3.1 Conventional Memory Management

In this section, we present the conventional memory management techniques of over-

laying and paging. First, we describe overlaying which is used to manage an appli-

cation’s memory without any assistance from an operating system (OS). Then, we

present paging which is typically implemented in an OS.

3.1.1 Overlaying

For systems that have limited physical memory and that lack hardware support for

memory management, a technique called overlaying can organize a large program

and data in such a way that various modules can be assigned to the same memory

space [34], [35]. The programmer writes an overlay manager which dynamically loads

the instructions and data into memory as needed at any given time. When instruc-

tions are needed and memory is not available, the overlay manager evicts a block of

instructions and loads the instructions into space that was previously occupied by the

evicted instructions. Overlays do not require any special support from the operating

system. The overlay manager reads a needed module from the program file on the

10

disk into memory and jumps to execute the code. The programmer must have com-

plete knowledge of the structure of the program, its code, and its data structures in

order to design the overlay structure properly.

3.1.2 Paging

Most virtual memory systems use a technique called paging to manage memory [37].

The paging technique permits the virtual address space of a process to be noncon-

tiguous. When a program generates a virtual address, the virtual address goes to

a memory management unit (MMU) instead of the memory bus. Then, the MMU

translates the virtual address into a corresponding physical address and puts the

physical address to the memory bus. The virtual address space is divided up into

blocks, called pages, all of the same size. A range of physical memory can be mapped

to multiple pages using a page table. The pages which are not currently being used

can be swapped out while the needed page can be swapped in. Therefore, the paging

technique allows the execution of programs which use more memory than the available

physical memory.

3.1.3 Dynamic Linking

Dynamic linking refers to the method of deferring the linkage of external modules until

after the load module has been created. Thus, the load module contains unresolved

references to other programs. These references can be resolved either at load time

or run time. For load-time dynamic linking, all unresolved references in the program

are resolved. If the target module is not loaded, it must be loaded. The references

are modified to the loaded locations. Since linking is done before program execution,

it may take some time before the program can be executed. With run-time dynamic

linking [9], [10], some of the linking is postponed until execution time. Therefore,

the program execution can start sooner. However, when the program refers to an

external reference, the target module must be loaded for the program to continue.

11

If the external reference is encountered again, there is no need to reload the target

module. Run-time dynamic linking also minimizes the work of the linker since the

only external references linked are those actually encountered at least once during

execution.

3.2 Client/Server Computing

In a networked environment, a client device can request certain software from a server.

A typical process involves downloading, decompressing, installing and configuring

the software before the CPU can start executing the program. For a large program,

download time can be very long. The download (transmission) time of the software

predominantly contributes to the application load time. Hence, a long download time

is equivalent to a long application load time. A long application load time experienced

by the user is an undesirable effect of loading the application from the network. In the

following subsection, we discuss several methods for executing an application stored

at the server.

3.2.1 Direct Download

One of the simplest means to transfer files is to use direct download (DD). In DD,

the server sends the entire file to the client. Usually, the client application waits for

the completion of the download before starting to process the data. Downloading a

large file takes a significant amount of time via a typical network connection. Hence,

the user may have to wait for some time before the data can be used.

An application which may consist of program files and data files can also be down-

loaded from a server. When the entire application is downloaded, the user typically

installs the application before running it. The time to download the software can

be excessive for large programs and unacceptable to users, resulting in, for example,

12

users who refuse to update their software or who refuse to even download new soft-

ware applications that they might otherwise desire (i.e., in the absence of excessive

download times).

There are a few variants of DD. For example, a classic implementation of DD is

the File Transfer Protocol (FTP) [28]. The FTP client downloads the entire file from

the server. Another variant is Java’s FileInputStream [18]. In FileInputStream, when

an application reads a file, a Java Virtual Machine (JVM) downloads the entire file

from a server via HTTP [8]. If the file is large, the download time is long and the

application is suspended until the download is finished.

3.2.2 Remote Execution

Remote execution is a service which provides a user on a client access to remote ap-

plications. With remote execution, the applications are stored on a different machine

and the local machine does not store or cache the applications. The user issues com-

mands to the remote machine to execute commands or run programs. The remote

machine sends output to display at the client. The remote applications are usually

not highly interactive by nature; otherwise, network latency becomes an issue as ap-

plications are typically too slow to react to user input. Another drawback in remote

execution is the server may not efficiently support all clients due to the server’s lim-

ited computing resources. The server can be bombarded with requests. Hence, the

server may not response to a particular client in a timely manner.

3.2.2.1 X Window System

The X Window System [27], [32], [46] provides a mechanism to run an X application

(X client) remotely. The X server runs at a local computer, collecting input from the

keyboard or mouse and accepting commands from an X client at a remote computer.

The X server is also responsible for displaying graphics. When the user interacts with

an X application, the user input is sent to the X client. The X client handles the user

13

input and sends commands to the X server to update the screen. In a high latency

network, communication between the X server and the X client is very slow. The

response time may be too high for an interactive application so that the application

becomes unresponsive. Furthermore, an application which generates a huge amount

of data may experience performance degradation [42]. Therefore, the X Window

System only works well in low latency, high bandwidth networks such as local area

networks.

3.2.2.2 Common Gateway Interface

Common Gateway Interface (CGI) [2], [5] is a standard for external gateway programs

to interface with information servers such as Web servers. Typically, the user uses a

program such as a Web browser on the local machine to send input to the server. The

server runs a CGI program and sends the output from the CGI program back to the

client. The client displays the output on the screen. For example, suppose the user

wants to search a book title in a database using a Web browser. The Web browser

sends a query to the server. After receiving the query, the server runs a CGI program

and sends the query result back to the client. In this case, the server can be overloaded

since it can handle only a certain amount of simultaneous requests. Besides processing

time, there is also overhead associated with invoking a CGI script [43]. Therefore,

CGI may not work well for a highly interactive application.

3.2.3 Virtual File Systems

A virtual file system (VFS) allows a client machine to mount directories located at

server machines. The client machine can access files in the mounted directories as if

they are local files. A typical flow for accessing a remote file is as follows: the user

process invokes a system call (e.g., read), the kernel dispatches the command to the

VFS, and the VFS handles the request (for example, if the read command is issued,

14

the VFS obtains the data either from the server or local cache and copies the data to

user memory).

3.2.3.1 Andrew File System

Andrew File System (AFS) [4] is a distributed file system with a common name space.

Data are stored in volumes on AFS file server machines and accessed through a cache

manager on AFS client machines. A callback mechanism is used for cache consis-

tency [38]. The file server keeps track of which clients have cached copies and notifies

the client to invalidate its copy when the file is modified. Caching reduces traffic

between the client and the server. When, for example, a client runs an application,

the application is automatically cached. For subsequence calls, the client uses the

cached version of the application. Since the client uses its local copy, the client does

not have to communicate with the server. Therefore, no traffic is generated and the

server is not interrupted to satisfy requests for commonly used files. When a new

version of the application is installed, the server calls back all clients having cached

the application. On the next execution of the application, the client realizes that

the local copy is inconsistent with the one stored on the server and fetches the new

version. AFS is a large scale file system; there is only one AFS on the Internet. Every

AFS cell is under the same AFS root directory. AFS may be too complex for a small

embedded device.

3.2.3.2 Network File System

Network File System (NFS) [13], [31], [33] employs a client/server model for file

sharing on a network. NFS uses remote procedure calls to manipulate files. Using

the NFS protocol, a client can access file systems located on the server. The client

uses memory to cache file attributes [3]. With the small memory-only cache, more

network traffic is generated. As a result, NFS can support only a small number of

clients. NFS works well in a local area network environment.

15

From an application perspective, the file systems are accessed as if they are lo-

cal on the client machine. An advantage this environment is that one copy of the

program can be shared by many users. The user also has access to many additional

programs, which otherwise would not be available due to the fact that the combined

total memory requirement for all the programs exceeds the local disk size. Moreover,

NFS enables a diskless client (a machine that does not have a local disk) to mount

a remote file system. NFS would be a possible solution for many embedded devices

which do not have a local disk. The diskless client uses the server as a storage de-

vice. The embedded devices may run a version of embedded Linux which supports

NFS. Then, the embedded devices can mount a remote file system using NFS. How-

ever, performance is a different issue. Unlike our method, NFS uses only file caching

not profiling. We explain how file profiling can improve file access performance in

Section 8.3.

3.2.3.3 A Low-Bandwidth Network File System

LBFS [25] is a network file system designed for low-bandwidth networks. The LBFS

file server divides files into chucks and indexes the chucks by a hash value. Similarly,

the LBFS client also indexes a large persistent file cache. The client is assumed to have

enough cache to contain a user’s entire working set of files. LBFS reduces bandwidth

requirements by exploiting inter-file similarities. To avoid transmitting the redundant

data over the network, LBFS identifies chucks of data that the recipient already has

in other files. For example, a file written by an application often contains a number of

segments in common with the previous version of the file. Therefore, there is no need

to send the entire file back to the server when only a portion of the file is changed.

Only the modified parts are sent back to the server.

LBFS only deals with reducing data transfer between the server and the client

once the data is already transferred. The main contribution is to reduce bandwidth

16

by sending only the modified chucks. However, the method does address how quickly

the file can be used initially at the client.

3.2.3.4 Method and System for Executing Network Streamed Application

Eylon et al. [7] describe a virtual file system installed in the client that is configured

to appear to the operating system as a local storage device containing all of the

application files to be streamed as required by the application. The application files

are broken up into pieces called streamlets. If the needed streamlet is not available

at the client, a streamlet request is sent to the server and the virtual file system

maintains a busy status until the necessary streamlets have been provided. In this

system, overhead from a virtual file system may be too high for some embedded

devices to support. Unlike the method in [7], our block streaming method does not

need virtual file system support.

3.2.4 Incremental Software Delivery

The incremental software delivery (ISD) technique enables applications to run on a

client device without having the whole program downloaded. The program code is in-

crementally delivered while the application is running. The program code increments

may be transmitted on demand or in the background.

3.2.4.1 Java Applet Implementation

In Java applets, the typical process of downloading an entire program is eliminated.

A Java applet can be run without obtaining all of the classes used by the applet.

Java class files can be downloaded on-demand from the server. If a Java class is not

available to the Java Virtual Machine (JVM) when an executing applet attempts to

invoke the class functionality, the JVM may dynamically retrieve the class file from

the server [18], [21], [44]. In theory, this method may work well for small classes.

The application load time should be reduced, and the user should be able to interact

17

with the application rather quickly. In practice, however, Web browsers make quite

a few connections to retrieve class files. HTTP/1.0, allows one request (e.g., for

a class file) per connection [26]. Therefore, if many class files are needed, many

requests must be made, resulting in large communication overhead. The number of

requests (thus, connections) made can be reduced by bundling and compressing class

files into one file [45], which in turn unfortunately can increase the application load

time. Furthermore, very large Java applets exist [41], which definitely increase the

application load time.

While using persistent connections in HTTP/1.1 may improve the performance

for the applet having many class files by allowing requests and responses to be

pipelined [8], the server does not send the subsequent Java class files without a re-

quest from the client. The JVM does not request class files not yet referenced by a

class. Therefore, when a class is missing, the Java applet must be suspended. For

a complex application, the class size may be large, which requires a long download

time. As a result, the application load time is also long, a problem avoided by the

block streaming method in which the application can start running as soon as the

first executable block is loaded into memory. Chapters III, IV, and V describe our

implementation of software streaming via block streaming in detail.

3.2.4.2 Software Caching

Huneycutt et al. [14] propose a method to solve an extreme case of limited resource

issues for networked embedded devices such as distributed sensors and cell phones; the

solution is achieved by implementing software caching. In this system, the memory

on the device acts as cache for a more powerful server. The server sends a section of

instructions or data to the device. When the device requires code outside the section,

a software cache miss occurs. The server is then requested to send the needed code.

Dynamic binary rewriting is required to properly supply the code to the device which

18

incurs time overheads of at least 19% compared to no caching [14]. The program

will also suffer frequent suspensions if software cache misses constantly occur. Our

method allows software code to be streamed in the background which may reduce

software suspension due to code misses.

3.2.4.3 Streaming Modules/Functions

Raz, Volk and Melamed [29] describe a method to solve long load-time delays by

dividing the application software into a set of modules. For example, a Java applet is

composed of Java classes. Once the initial module is loaded, the application can be

executed while additional modules are streamed in the background. The transmission

time is reduced by substituting various code procedures with shortened streaming stub

procedures, which will be replaced once the module is downloaded. Since software

delivery size varies from one module to another, predicting suspension time may

be difficult. However, in our block streaming approach (see Chapter 4), this issue

(unpredictable suspension time) can be lessened by streaming fixed-size blocks.

Krintz et al. [16] propose a non-strict form of mobile program execution by over-

lapping execution with transfer. Java is used as an execution environment. In the

proposed model, a class file is partitioned into two parts, namely, global data with in

the class and function code with its local data. The global data must be transferred

first. Then each function can be sent while the class file is being executed. During

the execution of a Java program, if a function is called but it or its data have not

completed transferring, the program is stalled until the function code or data has

transferred.

3.2.4.4 Liquid Software

Hartman et al. [12] introduce the idea of dynamically moving functions in a network.

Their implementation uses location-independent code or mobile code which runs on

a heterogeneous platform. Using mobile code, the execution state of one computer

19

can be moved to another. However, so-called liquid software must execute efficiently

on each computing machine. Therefore, a very fast compiler (a compiler which can

compile liquid software as fast as it can be transmitted over a network) is needed on

every machine to translate the mobile code into native code. Liquid software requires

every machine on the network to have high processing power.

3.2.4.5 Streaming Source Code

Software streaming can also be done at the source code level. The source code is

transmitted to the embedded device and compiled at load time [6]. Although the

source code is typically small compared to its compiled binary image and can be

transferred faster, the compilation time may be very long and the compiler’s memory

usage for temporary files may be large. Since the source code is distributed, full

load-time compilation also exposes the intellectual property contained in the source

code being compiled [10]. Moreover, a compiler must reside in the client device at

all times, which occupies a significant amount of storage space. This method may

not be appropriate for a small memory footprint and slower or lower-power processor

embedded device.

3.3 Summary

In this chapter, we provided an overview of conventional memory management and

client/server computing. We will apply and extend several memory management

techniques in our work. The related work in the area of client/server computing can

help solve issues such as application load time, application suspension time due to

missing a particular piece of code or data, how frequently the application suspensions

occur (as opposed to the amount of time spent resolving a particular occurrence),

low bandwidth, and limited memory. However, none of the prior work covered in

this chapter solves these issues together simultaneously. For example, Java reduces

application load time, but Java classes are sent when they are needed, increasing

20

the occurrence of application suspensions. Moreover, Java assumes that the client

has enough memory to store the entire program. Function level streaming methods

described in Section 3.2.4.3 may reduce the occurrence of application suspensions,

but the methods also assume that the client has enough memory to load the entire

program. On the other hand, software caching described in Section 3.2.4.2 assumes

that memory is limited so the device memory acts as a cache for the server, increasing

the occurrence of application suspensions. Thus, prior approaches tend to help solve

one problem (e.g., limited local memory) at a cost of exacerbating another problem

(e.g., occurrence of application suspensions). However, modern embedded devices

require these issues to be solved together for the devices to effectively support the

ever growing number of applications demanded by users. Therefore, our work aims to

address these issues together, improving all of them simultaneously in a coordinated

fashion.

21

CHAPTER IV

SOFTWARE STREAMING VIA BLOCK

STREAMING

Software streaming (softstream) is a method for overlapping transmission and execu-

tion of stream-enabled software. The stream-enabled software can run on a device

even while the transmission/streaming of the software may still be in progress. Thus,

a user does not have to wait for the completion of the software’s download prior to

starting to execute the software. Using software streaming, the user can experience

that the application is loaded very quickly since the application can starting running

as soon as the stream unit containing the program entry point is loaded into memory.

In this chapter we will introduce the basics of software streaming. In the following

chapter (Chapter 5), we will focus on the case of streaming program files. One chapter

later (Chapter 6), we will extend our streaming approach to data files as well. For

now, however, let us discuss how clients request streamed applications from servers.

4.1 Softstream Client/Server Model

In our software streaming implementation, we use a client/server model as illustrated

in Figure 3. A softstream server stores stream-enabled applications. A softstream

client, on the other hand, runs stream-enabled applications. A stream-enabled ap-

plication, composed of stream units, is an application which can be safely executed

while it is being sent (streamed). Each stream-enabled application has a correspond-

ing transmission profile which is used to determine the order of the transmission of

the stream units.

22

��������	
���

�����������������

����������	
������

����������	
������

�����������������

����������������� ���

���

����������	
������

Figure 3: An exemplary computer network for software streaming.

When a softstream client requests a stream-enabled application, the softstream

server sends the stream-enabled application to the softstream client. The softstream

client loads the stream units into memory and links the stream units together. After

loading the stream unit containing the program entry point, the softstream client

can begin execution of the stream-enabled application even while the rest of the

application is still in the process of being streamed. While the application is running,

if a particular stream unit is needed but is currently missing, the softstream client

sends a request to the softstream server to send the needed stream unit.

4.2 Stream-Enabled Software

Before a file can be transferred and used on a device (using our streaming method) the

file must be modified and may be profiled as well (to optimize streaming performance).

We treat program files and data files differently. For a program file, we need to

23

generate new binary images (including proper resolution of all branch instructions)

from the original binary program image. However, for a data file, there are no branch

instructions and so no new code needs to be generated. If profiled, each file has

an associated transmission profile. Program file and data file issues are discussed in

detail in Chapter 5 and Chapter 6, respectively.

We call a file ready to be streamed a stream-enabled file which is composed of

stream units. As shown in Figure 4, a program file or a data file is divided into

blocks, and then stream units are generated. A stream unit is composed of a stream

unit header together with an associated stream block. A stream unit header contains

information which is used to assemble stream blocks together at a softstream client,

and a stream block is a data block or a new binary image code block generated from

an original unmodified block of program code. The server sends the stream-enabled

file by transmitting stream units. When the client receives a stream unit, the client

assembles the stream unit into the stream-enabled file using the stream unit header

in the stream unit.

���������	
���

��
�

�������	����

��

����	����

���������	
���

���������	
���

������	
���

������	����	������
��
�

������	����

������	
���

������	����	������

������	����

������	
���

������	����	������

������	����

Figure 4: Generating stream units.

This dissertation focuses on single threaded applications. However, we do present

in Chapter 7.3.3 some approaches to extend block streaming to support multi-threaded

applications.

24

4.3 Softstream Protocol

The softstream protocol is an application-level protocol for software streaming via

block streaming. The softstream protocol enables stream-enabled applications to be

transferred and executed on a device. The softstream protocol is a request/reponse

protocol, which means that a softstream client sends a request, and a softstream

server responds to the request. The communication of the softstream protocol takes

place over any reliable transport protocol layer such as Transmission Control Protocol

(TCP) as shown in Figure 5(a), which means that error checking is performed by

the transport and lower layer protocols. As shown in Figure 5(b), the client-side

softstream protocol stack consist of three main layers: the stream-enabled software

layer, softstream assembly layer (the softstream loader/linker and stream-enabled file

I/O layer), and softstream protocol layer.

����������	

�������

�	�

����	�����	

������	

��	����

��������

������

������������������

�������	�������������

�����������������

���

��

���	�����

������������������

�������	�������������

�������	������ �����!"

����������
�	��

����������
����

�����������������

#�$ #�$

Figure 5: Client-side softstream protocol stack. (a) Softstream protocol stack in the
OSI reference model. (b) Protocol stack detail.

The stream-enabled software layer is the application layer. A stream-enabled

application is executed in this layer. Stream units are assembled together in the

softstream assembly layer. Since there are significant differences between program

files and data files, we handle them differently. For the program files, we need a

25

���������	
������ ���������	
������������
��
��������
�

��������
����
�����	
�����

�������
�

����
���

��������
����
�����	
�����

���� ����

Figure 6: A simple client/server communication.

softstream loader and a softstream linker. However, for the data files, we use stream-

enabled file I/O (to be described in detail in Chapter 6). The softstream protocol

layer handles the communication between a softstream server and a softstream client.

Example 4.3.1 shows a typical interaction between layers.

Example 4.3.1 A simple communication between a softstream server and a softstream client

is shown in Figure 6. When the user runs a stream-enabled application, the softstream loader

sends a request to the softstream server to stream the application using the softstream protocol.

After receiving the request, the server sends stream units to the client. The softstream loader

(Figure 5) stores the received blocks in memory using stream-enabling data. When the stream

unit containing the program entry point is received, the stream-enabled application can be

executed. The softstream linker assembles blocks as needed while the application is running.

When data in a file is needed, the application performs File I/O operations through the stream-

enabled file I/O layer. 2

4.3.1 Softstream Message Format

In order to stream a stream-enabled application properly, we use a certain message

format which we call a softstream message. Softstream messages can be classified into

two main categories: request and response. A request message is sent by the client

26

for a particular service, and the server sends a response message. Figure 7 shows the

softstream message format.

���������	
�� ������
����

���������	
�������

��
���� ��
����

���������	

�������

������

Figure 7: Softstream message format.

An example of a possible softstream payload in Figure 7 could be, in the case of

a response message, a stream unit to a client sent by a server.

The three fields in the softstream message shown in Figure 7 have the following

meaning.

Softstream ID

This 32-bit field in Figure 7 is called a softstream ID and serves as an identification

corresponding to an open file on the softstream server. This field is zero when the

client initiates a request to open a stream. Once the stream is open, the server assigns

this value; each softstream ID assigned by a particular server can be guaranteed to

be unique. However, if a softstream client connects to multiple servers, one server

may assign the same softstream ID as another server. Therefore, concurrent stream-

enabled files at the client may potentially have the same softstream ID. However,

this will not cause any problem since the network connections between the softstream

client and the servers are different (i.e., different sockets).

Service Type

This 32-bit field in Figure 7 specifies the type of the service. Figure 8 shows the

structure of the service type field for a request message. The first 16 bits of the

service type field specifies a stream operation type. There are three types of stream

27

operations, namely, read request (0x0001), write request (0x0002), and close request

(0x0003). The read request stream operation attempts to obtain a stream unit. The

write request stream operation attempts to write to a file. Finally, the close request

stream operation advises the server to close the open stream. Note that while 16 bits

of information are not strictly needed to specify the stream operation, we chose 16 bits

in order to be easily addressable (i.e., as a halfword); however, if desired, less than

16 bits could be used.

The last 16 bits of the service type field contains a flow control field. The flow

control field regulates how stream units are transmitted. We describe flow control

options in Section 4.3.3.

��������	����
�� �����������

����
�� ����
��

Figure 8: Structure of the service type field.

For a response message, all 32 bits of the service type field are used for stream

unit removal; the details will be as described in Section 7.2.

Softstream Payload

This field contains a message body which is used to communicate between a softstream

server and a softstream client. There are three types of softstream payloads for

a request message, namely, a filename, an identification of the needed (requested)

stream unit, and nothing (for a close request message). There are three types of

softstream payloads for a response message, namely, file information for a requested

program file, a stream unit, and an error message. Error messages include errors such

such as access denied and file not found.

4.3.2 Transmission Profile

It is preferable to send stream units according to the order in which they are used.

This can lower the occurrence of application suspensions due to missing stream units.

28

In order to achieve this, we profile a file to be streamed. Stream unit transmission

can be viewed as a flow graph where a node represents a stream unit and an edge

represents a time order of the transmission. We call this flow graph a transmission

flow graph.

A transmission profile is simply a number presenting the first stream unit to be

sent and an array containing numbers indicating the order of subsequent stream units

to be sent. A number in an array presents the stream unit to be sent after the stream

unit represented by the array index is sent. For example, if the value of the first

element (index of 0) of the array is 1, the stream unit represented by 1 will be sent

after the stream unit represented by 0. If an array element has a value of -1, the stream

unit represented by the index is an end node. When an application is requested, the

server sends the stream unit represented by the first number in the transmission

profile. After the first stream unit is sent, the server uses the number of the first

stream unit as an index to obtain the next number in the array. Then, the server

transmits the stream unit represented by the obtained number. The process may

be repeated until the obtain number is -1. For a candidate application, we typically

define a few (usually less than five) common transmission profiles. If a stream unit

is requested, the softstream server sends stream units according to the transmission

profile.

Example 4.3.2 Figure 9 show a transmission profile. In this transmission profile, the first

stream unit represented by 0 will be sent first. Then, we use 0 as index to obtain the value in

the array. Using the number representing a stream unit as an index until obtaining -1 yields 1, 2,

4, 6 and 7. Therefore, stream units represented by these numbers will be sent sequentially. 2

A profiling algorithm can be used to determine in which order stream units should

be sent. Stream units can be sent based on a particular objective. If we want to

save bandwidth and memory, we send only the stream units which appear along the

29

�

�

�

�

�

�

�

��

�	
�	��	�
�����	

����

�

�

�

�

�

�

�

� �	��

�

������
�

Figure 9: A Transmission profile.

most likely path in a transmission flow graph. If a stream unit in another path

is needed, we interrupt the current sequence and start a new sequence from the

needed/requested stream unit. On the other hand, if we want to potentially lower

occurrence of application suspensions due to missing code/data, we send all stream

units in a breadth-first fashion starting with the stream units which are closer to the

root node in a transmission flow graph.

Note that more than one transmission sequence can be contained in the trans-

mission profile. Then, if a request arrives for a block not in the initial transmission

sequence, then either (i) a new sequence may be selected based on the new request or

(ii) no sequence can be selected which means that only specifically requested blocks

are streamed (this case will be described as a version of on-demand stream flow control

in Section 4.3.3).

Example 4.3.3 An example of a transmission flow graph is shown in Figure 10. Suppose

that SU 3 and SU 5 in Figure 10 contain features uncommonly used. To save bandwidth and

memory for the typical case where SU 3 and SU 5 are not used, the transmission sequence

would be SU 0, SU 1, SU 2, SU 4, SU 6, and SU 7 (the stream units SU 4 and SU 6 would

never be sent). This specific transmission sequence is represented by the transmission profile of

Figure 9 which is explained in Example 4.3.2. However, suppose that an atypical case occurs,

i.e., the stream units needed are SU 0, SU 1, SU 3, SU 5 and SU 7 (SU 2, SU 4 and SU 6 are

not needed). For this atypical case, suppose that the typical transmission sequence was being

30

followed with SU 2 completely loaded already at the point when this atypical case finishes SU 1

and calls for code in SU 3. Then the original stream sequence would be interrupted. In this

case, SU 3 would be loaded, and then index 3 would be used in Figure 10 to determine the next

stream unit to be loaded. Thus, the stream units loaded subsequent to SU 3 would be SU 5

and SU 7. 2

����

����

����

����

����

���	

���

����

Figure 10: A transmission flow graph.

Initially, a transmission profile may be created manually by the programmer.

When the application is being used, the server can collect the usage pattern to improve

how stream units should be sent.

Please note that we do not propose a specific, unique algorithm to be used exclu-

sively to create a transmission profile but instead provide support for any algorithm.

In this spirit, while we have not formally and precisely defined what exactly consti-

tutes a transmission flow graph, we have nonetheless give a few intuitive examples

which can serve as a guide to possible ways to derive a transmission profile. Please

note further that many other implementations of the core idea behind a transmission

profile — namely, the core idea being to guide stream unit transmission — exist. We

give here only one of many possible implementations of a transmission profile.

31

4.3.3 Softstream Flow Control

The softstream flow control techniques are used to regulate the amount of stream units

sent to the client. There are two types of flow control, namely, continuous stream and

on-demand stream. Depending on the availability of its resources, the client decides

the type of flow control to be used by setting the last 16 bits of the service type field.

The flow control techniques are described in the following subsections.

4.3.3.1 Continuous Stream

It is typically preferable that an application runs without interruption due to missing

code/data. By allowing the stream units comprising the application to be transmitted

in the background while the application is running, all program code/data can po-

tentially arrive in memory prior to being needed. As a result, execution delay due to

code/data misses is reduced, possibly to zero. Thus, the application is suspended less

frequently or not at all. When a client requests continuous stream service, the soft-

stream server sends stream units according to the corresponding transmission profile.

If the program execution is different from the most likely transmission sequence (as

predicted by the transmission profile), the client simply requests the missing block.

Then, the server sends stream units with a sequence starting from the missing stream

unit. In continuous stream flow control, stream units are sent from a start node to an

end node along a predicted path, which means that some of the stream units may not

be sent. Setting the last 16 bits of the service type field (described in Section 4.3.1)

to 0x0000 advises the server to use continuous stream flow control.

4.3.3.2 On-Demand Stream

In some cases where bandwidth and memory are scarce resources, continuous stream

flow control may not be suitable. Many stream units may not be needed by the

application under particular conditions. For example, a multimedia application may

use only one filter algorithm in a certain mode of operation or may provide features

32

which are rarely used. Memory usage is minimized when stream units are downloaded

on-demand, i.e., only when the application needs to use the code in the stream unit.

While downloading the requested code, the application will be suspended. In a mul-

titasking environment, the stream unit request system call will put the current task

in the I/O wait queue, and the operating system may switch to run other ready tasks.

On-demand stream flow control allows the user to decrease resource usage at a cost

of potentially increasing the number of application suspensions.

On-demand stream flow control does not imply that the client must request a

single stream unit at a time. The client may request a particular number of stream

units at one time. However, the client does not have to wait until all requested stream

units are loaded into memory; the client can continue execution as soon as the first

stream unit is loaded. Other stream units will be sent in the background according

to the application’s transmission profile.

To use on-demand stream flow control, a client sets the last 16 bits of the service

type field to the number of stream units the client can store when the client requests a

file. Note that for on-demand stream flow control, the client can specify up to 216 − 1

units to be transmitted; otherwise, continuous stream unit will be used. If needed in

the future, this field can be expanded to use addition bits (e.g., 32 instead of 16).

Table 1 illustrates softstream message header values and explanations. If a client

sends a request message to stream an application using a continuous stream flow con-

trol, the client sets the softstream ID field to zero, the service type field to 0x00010000,

and the softstream payload to the application name (see the first row of Table 1). On

the other hand, if a client sends a request message to stream an application using a on-

demand stream flow control, the client assigns the service type field to 0x0001nnnn,

where nnnn represents the number of stream units to be transmitted (see the second

row of Table 1). When an application open a a file for writing, the service type field

is set to 0x00020000 (third row of Table 1). When the requested file is open, the

33

softstream ID field is used to represent the file. If a client closes a file, the client

transmits a request message with the file’s softstream ID field assigned by the server

and a service type field of 0x00030000 (4th row of Table 1). While running an appli-

cation, if a required stream unit is not memory, the client sends a request message

with a service type field of 0x00010000 and with softstream payload field set to the

required stream unit (5th row). The client can request a certain number of stream

units by setting the service type field to 0x0001nnnn, where nnnn is the maximum

number of stream units that can be stored at the client (6th row). When an appli-

cation writes to an open file, the client sends a message with the service type field of

0x00020000 (7th row). For a server’s first response message to a client requesting a

file, the server sends in the message payload either (i) the file information or (ii) an

error message. An error message is marked with a service type field of 0xFFFFFFFF

(8th row). Finally, the server can send a response message with a stream unit in the

softstream payload field; in this case, the value of the service type field is set the

value of the stream unit ID to be replaced, i.e., in this case, the value of nnnnnnnn

specifies which stream unit to be replaced (8th row).

4.4 Summary

Software streaming enables an application to run while application transmission may

still be in progress. However, the application must be modified before it can be trans-

ferred and executed on the client device. A transmission profile should be generated

and is a crucial part of software streaming since the server sends stream units ac-

cording to the transmission profile. Therefore, the transmission sequence affects the

performance of the application. The process of transforming an application into a

stream-enabled application is discussed in Chapter 5 (for the application program

itself) and Chapter 6 (for any file I/O required by the application program).

34

Table 1: Softstream message header values and explanations.

Softstream ID Service Type Softstream Payload Explanation
0 0x00010000 File info Continuous stream request

to start a new stream
0x0001nnnn File info On-demand stream request

to start a new stream with
nnnn units

0x00020000 File info Open file to write request
6= 0 0x00030000 Close stream request

0x00010000 Stream unit ID Continuous stream request
starting from the stream
unit ID in the payload

0x0001nnnn Stream unit ID On-demand stream request
starting from the stream
unit ID in the payload, up
to nnnn stream units can be
sent

0x00020000 Data info Write request
0xnnnnnnnn Info Server response

35

CHAPTER V

STREAM-ENABLED PROGRAM FILES

Software to be streamed must be modified before it can be streamed over a trans-

mission medium. The software must be partitioned into stream units for streaming.

We call the process of modifying code for streaming software streaming code gener-

ation. We perform this modification after normal compilation. After modification,

the application is ready to be executed after the stream unit containing the program

entry point is loaded into the memory of the device. In contrast to downloading

the whole program, software streaming can reduce application load time. While the

application is running, additional parts of the streamed software can be downloaded

in the background (continuous streaming) or on-demand. If a required stream unit

is not in memory, the needed stream unit must be transmitted in order to continue

executing the application.

5.1 Stream-Enabled Program File Overview

Our implementation of software streaming presented here tries to optimize application

performance. Our target platform is an embedded device. It turns out that for a

program file the number one issue for proper streaming is the suitable handling of

branches in the program file. In particular, information about the branch instructions

in a program file is generated both at a server and at an embedded client device.

Generating branch information at the server can reduce client processing time since

such code generation is done off-line (from the perspective of the client). On the other

hand, generating branch information at the client can save bandwidth if, as a result,

the server does not have to send an excessive amount of branch information (the

36

branch information forms a part of the stream unit header described in Section 4.2).

Processing time is a key issue for a low processing-power embedded processors, and

bandwidth is a key issue for transferring data across a network since transfer time is

proportional to data size.

Throughout this chapter, we use the Motorola PowerPC microprocessor archi-

tecture [24] in our implementation. However, the techniques illustrated here can be

easily applied to other architectures.

5.1.1 Client/Server Processes

As shown in Figure 11, the software streaming process on the server involves (i) com-

piling the application source code into an executable binary image by a standard

compiler such as GCC [11], (ii) dividing the executable binary image into code blocks,

(iii) generating a new binary for the stream-enabled application, and (iv) creating a

transmission profile. The four steps (i-iv) can be done off-line. The server uses the

transmission profile to determine transmission order of stream units to a client.

���������	

��
�

����������

����������	

����������������
��
�

����������

����������	

����������������

����������

����������	

����������������

����������

���������	

���������	

�����������

����������������

�������������

�������!

����������"����#���

���#����$������

�����#���%!

����������"�������

���������

�������!

����&�'���
�����()�#���

*++�������

��� ���� ����� ��,�

Figure 11: Server-side software-streaming process.

The process to receive a block of stream-enabled application on the client device

is illustrated in Figure 12: (i) loading a stream block into memory and (ii) linking the

37

stream block into the existing code. This linking process will most likely involve some

code modification(s) which will be described later in Section 5.3 and in Section 5.4.

���������	

��
�

���������	

���������������

��
�

���������

���������	

���������������

���������

���������	

���������������

���������

���������	

���������	

�������

Figure 12: Client-side software-streaming process.

5.1.2 Softstream Generator

We define a code block to be a contiguous address space of data or executable code or

both. A block does not necessarily have a well-defined interface; for example, a block

may not have a function call associated with the beginning and ending addresses of the

block. Instead, block boundaries may place assembly code for a particular function

into multiple, separate blocks. The compiled application is considered as a binary

image occupying memory. This binary image is divided into blocks before the stream-

enabled code (stream block) is generated. Each block is generated into a stream unit.

The size of each block of the same application may be different. However, in our

current implementation, we use a fixed block size. The block size may be determined

from streaming parameters such as network speed. Example 5.1.1 illustrates that a

binary image is divided into fixed-size blocks.

Example 5.1.1 The box on the left in Figure 13 represents the compiled binary image of

an application, and the boxes on the right represent the binary image of the application broken

38

up into blocks. For instance, if equal block size is configured, a 10 MB robotic exploration

application can be broken into ten 1 MB blocks. 2

������������� 	
���	�

������������ �	
��	�

����������� �	
	

������������ �
����	�

������	����� �
�	��	�

���

��	��������� �
�

��	��������� �
	�������

���

������������

������������� 	
���	�

������������ �	
��	�

����������� �	
	

������������ �
����	�

������	����� �
�	��	�

���

���	�������� �
�

��	��������� �
	�������

��	��������� �
���	�

��	�������� �

��	��������� 		
��	�

��	���	����� �
��		�

���

���

Figure 13: The binary image of an application is broken up into blocks.

After the application is divided into blocks, exiting and entering a block can occur

in four ways. First, a branch or jump instruction can cause the processor to execute

code in another block. Second, when the last instruction of the block is executed,

the next instruction can be the first instruction of the following block. Third, when

a return instruction is executed, the next instruction would be the instruction after

calling the current block subroutine, which could be in another block. Fourth, when

an exception has occurred, the exception handling code may be in a different block.

We call a branch instruction that may cause the CPU to execute an instruction in

a different block an off-block branch. All off-block branches to blocks not yet loaded

must be modified for the application to work properly.

We aim to generate stream blocks in such a way that they are relocatable; if we

are successful, a generated stream block can be placed anywhere in memory. As a

result, a client does not have to allocate memory space for the entire program in

39

order to execute part of the program code. Furthermore, the client can dynamically

allocate memory for a stream block as needed.

5.1.3 Stream-Enabled Program File Request

A softstream client requests a stream-enabled program file by sending a read request

message to a server. The client assigns the softstream ID field to zero, the first 16 bits

of the service type field to 0x0001, and the last 16 bits of the service type field to

a value depending on the preferred flow control. The client also sends the unique

filename (name of the desired program) in the softstream payload field.

In order for the server to properly send (and for the client to properly receive)

stream units for a stream-enabled application, some basic information is required.

This stream-enabled application information shown in Table 2 consists of application

size, program entry point, number of stream units, number of off-block branches, and

stream block size. Each field is a 32-bit integer. The softstream loader/linker software

at the client device uses this information to load and to link stream units together.

Code generation techniques are discussed in Section 5.2.

Table 2: Stream-enabled application information.

Field Explanation
Application Size The size of the program code
Program Entry Point The location of the first instruction in the program

to be executed
Number of Stream Units The amount of stream units in the application
Number of Off-Block Branches The amount of off-block branches in the applica-

tion
Stream Block Size The maximum stream block size in a stream unit

Example 5.1.2 The stream-enabled application information of a 10 MB robotic exploration

application in Example 5.1.1 is illustrated in Figure 14. Since the application is divided into

10 equal-sized blocks, the number of stream units is 10 and the maximum stream block size

is 1 MB. The number of off-block branches for this particular application is 30. Finally, the

40

program entry point is at the address 0x4000. When the stream block with an ID of 0 is loaded,

the program can start running since the stream block contains the program entry point. 2

����������	
���� ��
��

�������
�	���
���	�� ������

�����
��
�����
�	�� � ��

�����
��
!��"����#
����$ � %�

�����
����#
���� �
��

Figure 14: Stream-enabled application information.

The softstream server responds to the client request by sending a softstream mes-

sage with a softstream ID and the stream-enabled application information stored in

the softstream payload field. When a stream block is needed, the client sends a re-

quest message by setting the softstream ID field to the received softstream ID and

softstream payload to the needed stream block ID.

5.1.4 Softstream Loader/Linker

To transmit an application using our approach, the softstream server daemon running

on the server first transmits the stream-enabled application information of Table 2 to

the client device. After the softstream loader receives the stream-enabled application

information, the softstream loader sets up a stream block lookup table as shown in

Figure 15, where N is the number of stream units. The stream block lookup table

has stream block ID and address entries. Stream block IDs are assigned sequentially

as they appear in the stream-enabled file, starting from zero. If the address entry is

0xFFFFFFFF, the stream block is not yet loaded into memory.

Software streaming code generator (softstream generator) software on the server

generates a stream unit header for each stream unit. The stream unit header provides

the softstream loader/linker with the information to handle stream block misses and to

link stream blocks together. Each stream unit must be encapsulated with a softstream

message header (as shown in Figure 7 of Section 4.3) before the stream unit can be

transmitted. The stream unit (a softstream payload of a response message) format

41

��������	
���� �������

�

�

�

���

���

����������

����������

����������

�

����������

Figure 15: Stream block lookup table.

for program files is illustrated in Figure 16. For program files, the stream unit header

consists of stream block ID, off-block branch information size, stream block size, and

off-block branch information. The off-block branch information size field in Figure 16

indicates the amount of off-block branch information in the stream unit in bytes.

The stream block size field represents the amount of the program code/data in the

stream unit in bytes (note that even though we divide a program file into fixed-sized

blocks, the last block may not be the same size as the others). The off-block branch

information contains data which is used to link stream blocks together. We will

describe how to generate off-block branch information in Section 5.2.3.

������

��	�

�����

��������������
��������������

��������	����	��
�������������	��

�����������

����	�� ����	�� ����	��

�����������������������	��

Figure 16: The stream unit format for program files.

Example 5.1.3 The robotic exploration application in Example 5.1.1 and Example 5.1.2 has

program code size of 10 MB. The application is divided into 1 MB blocks. Each block is

generated into a stream unit with an ID corresponding to the stream block ID which the stream

unit encapsulates. The stream unit generated from the first block is illustrated in Figure 17.

42

Since the stream block is the first block generated, the stream block ID generated for this block

is 0. For this first stream unit, the off-block branch information size for this stream unit is

16 bytes, and code size is 1 MB (= 220 = 0x00100000). 2

���������� ���������� ����������

������������������������������	����
�������������������������

���

������� ������� �������

Figure 17: The first stream unit of the robotic exploration application.

Once the stream block containing the program entry point (e.g., the stream unit

with ID=0) is downloaded, the softstream loader stores the stream block in the mem-

ory space allocated for the stream block using a dynamic memory management tech-

nique and saves the address of the stream block in the stream block lookup table.

The softstream loader will be discussed in detail in Section 5.3.

After the softstream loader finishes assembling the stream block containing the

program entry point, the application begins execution. Application execution contin-

ues until an off-block branch is taken. Figure 18 shows the sequence when a modified

off-block branch is first taken. The softstream linker uses the stream block lookup

table (Figure 15) to check if the needed stream block is already in memory. If the

needed stream block is not fully in memory, the needed stream block is, if not already

done previously, requested to be streamed. After the needed stream block is in mem-

ory, the off-block branch instruction is modified to jump to the proper location. The

program execution is then resumed. We will discuss the softstream linker in detail in

Section 5.4.

A stream-enabled application at a client consists of two threads: a softstream

loader thread and an application thread. In this dissertation, we only support a single

43

���������	�
���

����	��	�����
��	��	�����		��

��	����
��

������	��	�
���

��������	�
��
��	���������

��

���

Figure 18: Block loader flow chart.

threaded application (however, in Chapter 7.3.3 we do suggest some approaches to

extend to support multi-threading). The application thread writes the needed stream

block ID to a shared variable, and the softstream loader thread reads the variable

and requests the needed stream block. The softstream loader thread communicates

to a softstream server using the transport layer, e.g., through a TCP socket.

5.2 Stream-Enabled Code Generation

In our approach, stream-enabled embedded software is generated from an executable

binary image of the software application to be streamed. The executable binary

image of the software is created from a standard compiler such as GCC. The following

sections describe how to generate a stream-enabled application in detail.

5.2.1 Preventing the Execution of Non-existing Code

As mentioned previously in Section 5.1.2, exiting and entering a block can occur in

four ways: (i) after executing a branch or jump instruction, (ii) after executing the

last instruction in the block, (iii) after executing a return instruction, or (iv) after an

44

exception has occurred. In order to prevent the CPU from executing code incorrectly,

these off-block branch instructions are modified. For the first case (i), a branch

instruction which can potentially cause the processor to execute code in another block

not yet loaded into memory is modified to load the block containing the needed code

as illustrated in Example 5.2.1. For the second case (ii), suppose the last instruction

in a block is not an unconditional branch or a return instruction. If left this way,

the processor might execute the next instruction. To prevent the processor from

executing invalid code, an instruction is appended by default to load the next block;

an example of this is shown at the end of Example 5.2.1. For the third case (iii), no

return instruction ever needs to be modified if blocks are not allowed to be removed

from memory since the instruction after the caller instruction is always valid (even if

the caller instruction is the last instruction in the block upon initial block creation,

an instruction will be appended according to the second case above). However, if

blocks are allowed to be removed, all return instructions returning to another block

must be modified to load the other block (i.e., the caller block) if needed. For the

last case (iv), we require all exception handling code to be streamed before allowing

the execution of any block(s) containing the corresponding exception instruction.

Therefore, exception instructions are not modified since the entire exception handling

code is already loaded prior to any execution of the exception instruction. Note that

we can easily extend our approach to stream exception handling code by modifying

the interrupt table to jump to the branch table to load the needed code.

Example 5.2.1 Consider the if-else C statement in Figure 19. The C statement is compiled

into corresponding PowerPC assembly instructions. The application can be divided so that the

statement is split into different blocks. Figure 19 shows a possible split.

In this small example, the first block (Block 1) contains two branch instructions, each of

which could potentially jump to the second block. If the second block (Block 2) is not in

memory, this application will not work properly. Therefore, these branch instructions must be

45

���������

�����	

��

�����	

���

�� ����

��� ���������

���

�������

�������

����� ����

��
 �� !�"�

�� ����

��� ����������

� �� !�"�

Figure 19: C code and corresponding PowerPC assembly.

modified. All off-block branches are modified to invoke the appropriate loader function if the

block to which the branch jumps is not in memory. After the missing block is loaded, the

intended location of the original branch is taken. Figure 20 shows Block 1 and Block 2 from

Figure 19 after running the software streaming code generation program on the application code.

Branch instructions bne .L3 and b .L4, as seen in Figure 19, are modified to bne load2 1

and b load2 2, respectively, as seen in Figure 20.

����� ���	

�� �����	

� ����

��� ��������	�

 ������

�����	�����

�����������

����

� ���	

��� �������	�

���� ���

 ������

�����������

�����	

������

Figure 20: Block 1 and Block 2 after the stream-enabled code generation.

Since the last instruction of Block 2 is neither an unconditional branch nor a return instruc-

tion, the instruction bl load3 0 will be appended to Block 2 after it is loaded from Figure 19

to load the subsequent block. The instruction bl load3 0 can be replaced later by the first

instruction of the block after Block 2 if the client preserves code continuity, which means that

the client allocates memory large enough to store the entire application. 2

46

Branch instructions can be categorized into conditional branch instructions and

unconditional branch instructions. A conditional branch has two paths: a target

path and a fall-through path. The execution follows the target path if the condition

is satisfied. Otherwise, the execution follows the fall-through path. On the other

hand, for an unconditional branch, the execution always follows the target path.

Both conditional and unconditional branches may have a flag causing the return

address (the address after the branch instruction) to be saved in the link register (the

PowerPC architecture uses the link register to save a return address). Usually, the

return address is saved when a function or a subroutine is invoked. When the target

path is followed, the address of the instruction after the branch instruction is saved as

the return address. After executing a return instruction, the processor executes the

instruction at the return address. Essentially, the return instruction can be classified

as an unconditional branch. If the target address of a branch is outside the block

which contains the branch, we modify this branch. In the next two subsections, we

will discuss in detail how our approach handles branches.

5.2.1.1 Handling Static Branches

A static branch is a branch whose target address is encoded in the instruction. A

static branch instruction can be conditional or unconditional. The target address can

be an absolute address or a relative address.

Consider the 32-bit PowerPC conditional branch format in Figure 21. BD, the

fourth field from the left in Figure 21, is an immediate field specifying a 14-bit signed

two’s complement integer that is concatenated on the right with 0b00 (note that ‘0b’

indicates a number in binary format) and sign-extended to 32 bits. If the absolute

address bit (AA), the fifth field from the left in Figure 21, is 0b0, the immediate field

BD represents an address relative to the current instruction address. On the other

hand, if AA is 0b1, the immediate field BD represents an absolute address.

47

�� ��������������

� 	

� ��
�� �	
�� � �� ��

Figure 21: The 32-bit PowerPC conditional branch instruction format.

The 32-bit PowerPC unconditional branch instruction format is shown in Fig-

ure 22. LI, the second field from the left in Figure 22, is an immediate field specifying

a 24-bit signed two’s complement integer that is concatenated on the right with 0b00

and sign-extended to 32 bits. As previously explained, depending on the value of AA,

the immediate field LI can be a relative address or an absolute address.

�� ����������

� ����	
� �� ��

Figure 22: The 32-bit PowerPC unconditional branch instruction format.

In order to determine whether or not a branch is an off-block branch, the branch

target address is calculated as shown in Listing 1.

Get Branch Target Address() takes as input a static branch instruction with its

instruction address and returns the branch target address. Conditional branch target

address calculation is shown in lines 2 to 6, and unconditional branch target address

calculation is shown in lines 8 to 12. The EXTS() function in Listing 1 returns the

sign-extended value of the input, and ‖ is a concatenate operation. If the target

address does not belong the current block, the branch is an off-block branch. The

address field (BD or LI) of the off-block branch instruction is modified (via binary

rewriting) so that when the branch is taken, it goes to the loader function to load the

target block.

5.2.1.2 Handling Dynamic Branches

A dynamic branch is a branch which does not have the branch target address encoded

in the instruction. The branch target address is usually stored in a particular register

or can also be in memory. For example, when a function pointer is used, the address

48

Listing 1 Get Branch Target Address(): Determining the branch target address.
Input: A branch instruction B and the current instruction address CIA

Output: The target address T

begin

1 if B is a conditional branch then

2 if B is an absolute address branch then

3 T = EXTS(BD‖0b00)
4 else

5 T = CIA + EXTS(BD‖0b00)
6 end if

7 else

8 if B is an absolute address branch then

9 T = EXTS(LI‖0b00)
10 else

11 T = CIA + EXTS(LI‖0b00)
12 end if

13 end if

end

of the function is loaded to the link register before the function is called. When a

dynamic branch is taken, the next instruction loaded is from the address in the link

register. (Note that if no special link register exists, then the register used in place of

the link register needs to be used instead.) Example 5.2.2 shows dynamic branches

which are used to call a function using a function pointer and to return back to a

return address.

Example 5.2.2 A generic function is a function which operates on a variety of objects.

Usually, a generic function requires another function which manipulates the passed objects. In

Figure 23, a sort function (shown partly in both C and PowerPC assembly) sorts objects in a

certain order. The sort function requires three parameters: an array of objects of the same size,

the size of the object, and a pointer to a function used to compare objects. When the sort

function is called, the caller return address is saved in the link register. Inside this function,

the function used to compare objects can only be identified during runtime. Therefore, the

sort function contains a dynamic branch to the function used to compare objects. The return

49

instruction to the caller function is also a dynamic branch since the return address is saved in a

link register.

���������	�����
������������������	
�����	�����
�������
��

�

����������������������������

�����

������������	������������������

���������� �	

 ������
� ����������

! �����
� ����������

"���������� �������

�����

#��������� ��

$��������

%

���������������������������������������

! ������������������"���������

#����������������

������������������������������

 ���������$�����������������������

%�&��������������������

Figure 23: A sort function using a function pointer as a parameter.

A typical step for calling a function using a function pointer is shown in assembly instructions

in Figure 23. First, the address of the function pointer is loaded into the link register as shown

in line 2. Note that the address of the function which is used to compare objects is stored in r5.

Second, the values to be passed are loaded as shown in line 3 and line 4. Finally, the function

is called using a dynamic branch as shown in line 5.

For returning back to the caller function from the sort function, the caller return address is

saved in r0 (line 1) and is later loaded into the link register (line 6); finally, the return instruction

is executed (line 7). After the execution of the return instruction, the instruction at the address

stored in the link register will be executed. 2

A dynamic branch must be intercepted to determine if the block containing the

branch target address is loaded already into memory. Whether or not the block

containing the branch target is loaded already into memory is verified by checking

the designated register storing the branch target address. In order to first verify

if a dynamic branch target address leads to a stream block already in memory, we

modify the dynamic branch so that when the dynamic branch is taken, it goes to a

50

dynamic branch interceptor function. If the stream block is in memory, the dynamic

branch interceptor function redirects to the intended location, and the program can

continue its execution. Otherwise, the program will be suspended, the stream block

required for execution will be requested, and, after loading the needed stream block,

the dynamic branch interceptor function jumps to the proper code location.

Figure 24 shows the format of the 32-bit PowerPC conditional branch to the link

register. If the branch is taken, the branch target address is the address stored in

the link register. This dynamic branch has a similar format as the branch format in

Figure 21. Therefore, we replace this dynamic conditional branch by binary rewriting

with a conditional branch which leads to the location of the dynamic branch inter-

ceptor function and is redirected to the intended location. In the similar fashion, we

replace a dynamic unconditional branch with an unconditional branch.

���������������������

� ����	 ����� ����	
� �� ��

������

�

Figure 24: The format of the 32-bit PowerPC conditional branch to the link register.

Example 5.2.3 shows how dynamic branches are modified.

Example 5.2.3 Figure 25 illustrates the result of modifying the dynamic branches (line 5 and

line 7) of the sort() function in Figure 23 to jump to the dynamic branch interceptor function. 2

For fixed-sized blocks, the information needed for redirecting a dynamic branch

can be calculated as shown in the following equations. Note that all operations are

integer operations.

stream block ID = (target address − first address) ÷ stream block size

offset = (target address − first address) % stream block size

redirect address = stream block address + offset

51

���������	�����
������������������	
�����	�����
�������
��

�

����������������������������

�����

������������	������������������

���������� �	

 ������
� ����������

! �����
� ����������

"������� �������������

�����

#��������� ��

$������ �������������

%

�������������� ���������!�������������"

����������!����������������

$����������������������������!������

������������!�������� �������"

%�&���������!��������

$����������������������������!������

Figure 25: A sort function using a function pointer as a parameter.

where

stream block ID is the stream block ID of the branch target address,

target address is the address stored in the link register,

first address is the location of the first instruction in the program,

stream block size is the size of all stream blocks,

offset is the offset location of the instruction within the stream block,

redirect address is the intended address of the dynamic branch,

stream block address is the location of the stream block.

Example 5.2.4 Suppose that the robotic exploration application in Example 5.1.1 uses the

sort function in Example 5.2.2. We modify the sort function as in Example 5.2.3. When the

instruction at line 5 in Figure 25 is executed, the branch interceptor function will be called. The

branch interceptor function obtains a value from the link register. Suppose that the value of

the link register is 0x00105024. The target address is the value in the link register, i.e., the

target address is 0x00105024. Since the stream block size is 1 MB and we assume we start

from memory address 0x00000000 (i.e., first address = 0x00000000), the target stream block

ID is 1, and the offset is 0x5024. If the stream block with stream block ID of 1 is not in memory,

52

the stream block will be requested. If we load the stream block with an ID of 1 in to memory

starting from 0x00200000, the redirect address is 0x00205024. 2

5.2.2 Coping with Non-Interruptible Sections

Some applications may contain one or more non-interruptible (critical) sections which

are used to access shared resources such as data and devices. This means that while

the processor is executing a non-interruptible section, the processor cannot accept

interrupts. Usually, a non-interruptible section contains an instruction to disable

interrupts and one or more instructions to enable interrupts. Example 5.2.5 illustrates

a non-interruptible section.

Example 5.2.5 Figure 26 shows the µC/OS-II [17] OSSchedUnlock() function which con-

tains commands to disable and to enable interrupts using OS ENTER CRITICAL() and

OS EXIT CRITICAL(), respectively. In this example, the interrupts are disabled at line 5 and

are enabled at lines 11, 16, and 21, depending on a certain condition. The OSSched() function

is not a part of the non-interruptible section. 2

A non-interruptible code section should not be suspended due to missing software

components since downloading software from the network can be very long and unpre-

dictable. Furthermore, if we were to allow an application to enter a non-interruptible

section not yet fully loaded, then the following could occur: the application could

need to execute code in a stream unit not yet loaded, however, the softstream loader

would not be able to receive any stream unit because the interrupts are disabled in

a non-interruptible section! Therefore, we stream any non-interruptible section in its

entirety to the client device before the non-interruptible section can be entered.

A programmer may write a non-interruptible section to perform a non-interruptible

task. However, a compiler may put a non-interruptible section anywhere in a pro-

gram file. Since we generate a stream-enabled application from its binary image

53

� ���������	
�������������
� �
����� ����������������������
� � ������
����
��� � ��������������������
� ��	
��
	����������
� ������!���"
� ����#�$�
� � ���%���� ��
��
�
� ������
��&�$���
� ��!���"
� ���''(���%
��
�
� ������
� ����
�
���
� �������!���"
� ����)���*� "
� ��������$�
�� � ����

������	
�������
'
��+
�������� ����*�����
�� ��	
���	����������
�� ����	
���(����

������	��	
��,����� &� ��������
��&����
�� -
��
�

�� �
�� ��	
���	����������
�� -
�� -
��
�

�� �
�� ��	
���	����������
�� -
�� -
�� -

Figure 26: The µC/OS-II OSSchedUnlock function.

(i.e., we have may not have any source code or other additional information), we

need to locate non-interruptible sections. Listing 2 shows pseudo code for obtaining

non-interruptible sections in a program. Get CS() takes as input an assembly pro-

gram P and starts searching for non-interruptible sections by searching for interrupt

disable instructions. Get CS() stops when all interrupt enable instructions are found

(lines 3 to 30).

A non-interruptible section may have one disable interrupt instruction and many

interrupt enable instructions. Therefore, all branches must be followed to reach all

corresponding interrupt enable instructions. For an unconditional branch, we follow

the branch target path (lines 8 to 12). However, for a conditional branch, we save the

address of the branch target address and proceed with the the branch fall-through

path (lines 13 to 15). The branch target path will be added later. If we encounter

an interrupt disable instruction while constructing a non-interruptible section, that

location may already be covered (line 16 to 19) or will be included (line 20 to 22).

54

Listing 2 Get CS(): Obtaining non-interruptible (critical) sections.
Input: A program P

Output: The non-interruptible sections in program P

begin

1 repeat

2 Add the address of an interrupt disable instruction to the address list
3 repeat

4 Get an address from the address list
5 Set the current address and the start address to the obtained address
6 repeat

7 Read the instruction from the current address
8 if Encountered an unconditional branch then

9 Set the end address to the address of the branch instruction
10 Add the address range to the current critical section
11 Advance to the branch target address
12 Set the start address to the branch target address
13 else if Encountered a conditional branch then

14 Add the branch target address to the address list
15 Advance to the next address
16 else if Encountered an interrupt disable instruction then

17 if Already covered then

18 Set the end address to the previous address
19 Add the address range to the existing critical section
20 else

21 Mark the interrupt disable instruction as covered
22 Advance to the next address
23 end if

24 else

25 Advance to the next address
26 end if

27 until An interrupt enable instruction is found
28 Set the end address to the address of the interrupt enable instruction
29 Add the address range to the current critical section
30 until The address list is empty
31 until All interrupt disable instructions are covered

end

55

Example 5.2.6 Figure 27 shows assembly code containing a non-interruptible section. This

code is input to Get CS(). The first instruction of Figure 27 disables all interrupts and is

discovered by line 2 of Listing 2, thereby allowing the loop starting at line 3 to be entered. The

conditional branch bne .L3 on line 3 of Figure 27 is discovered by line 13 of Listing 2 with

its target address stored as indicated in line 14. In this case, line 15 examines the fall-through

address associated with the found branch instruction. The next interesting instruction is b .L4

on line 6 of Figure 27; this branch is discovered by line 8 of Listing 2. Since b .L4 is an

unconditional branch, this discovery delimits the first part of the non-interruptible section as

consisting of lines 1-6 in Figure 27. In a similar fashion, the second part of the non-interruptible

section is found to consist of lines 11-12 of Figure 27 (with the discovery of an enable interrupt

command at line 12 causing an end to this second part). Finally, the third (and final) part of the

non-interruptible section is found to be lines 7-9. The result list of address lines corresponding

to this non-interruptible section consist of lines 1-9 and 11-12 of Figure 27. 2

���

� ����� ���	�

� ����� ��	

� �� ���

 �� ��	�

� ��� ��	�����
�

� � ���

������� �� ��	

� ��� ��	����
�

� ����� ���	�

�
 � ���

������� �� ��	��

�� ����� �
�	�

������ ���

���������������

��������������

��������������

Figure 27: Assembly code containing a non-interruptible section.

Note that Get CS() only obtains non-interruptible sections with no dynamic branches.

If the program contains a non-interruptible section utilizing dynamic branches, we

assume this information is provided by the programmer in some unambiguous format.

56

5.2.3 Generating Off-Block Branch Information

In order to link a stream block B into an application, we only need the locations of

all off-block branches. The stream unit header with which B arrived contains a list

of the locations all off-block branches in B. The instruction of an off-block branch in

B can be obtained from its location.

Now consider the following question: how can we find out the stream block ID

of the block containing the target address of an off-block branch? For each static

off-block branch instruction, we can compute the branch target address which can be

used to determine the needed stream block ID. However, for each dynamic branch, we

use a dynamic branch interceptor (described in Section 5.2.1.2) to obtain the needed

stream block ID at runtime. In this way, the softstream linker will compute the

needed stream unit ID when an off-block branch is taken. We also sequentially assign

each off-block branch with a number, starting from zero. Therefore, as illustrated in

Figure 28, the off-block branch information consist of the start branch number (i.e.,

the branch number assigned to the first off-block branch appearing in this code block),

the number of off-block branches, and series of off-block branch locations (addresses).

�����������	�
����

�����������������

�����	��

���������������	����������

������ ������

Figure 28: Off-block branch information.

Off-block branch information contains the data which is used to assemble stream

blocks together at a softstream client. In block streaming, we generate off-block

branch information at a server so that a client does not have to examine every in-

struction in a stream block before the client can load the stream block. The client

has to perform code modification during load time. Therefore, we have to generate a

57

sufficient amount of off-block branch information for the client to link stream blocks

together.

5.2.4 Stream Block Placement

In Figure 11, step (iii) shows a code block being transformed into a stream block with

associated stream unit header. We have introduced the stream unit header details

in Section 5.1.4 and Figure 16, describing in subsequent sections how each field of

the stream unit header is determined. If the original binary image is position inde-

pendent, the stream blocks generated will also be position independent. A position

independent stream block can be loaded anywhere in memory. However, if the orig-

inal code is not position independent, the embedded program data must be placed

in the exact memory locations as originally compiled in order to guarantee correct

execution (especially when considering data loads hard coded address). For the rest

of this dissertation, we assume position independent compiled assembly code.

5.3 Load-Time Code Modification

When a stream unit is received, a client loads the associated stream block into mem-

ory and updates the location of the stream block in the stream block lookup table.

Since the stream block is generated by the softstream generater relocatable or posi-

tion independent as explained in Section 5.2.4, the client does not have to allocate

memory large enough to store the entire application initially, but instead the client

can dynamically allocate memory for stream blocks as needed. Then, the client uses

the off-block branch information to integrate the stream block into the application:

all off-block branches must be modified so that when any branch is taken, proper

code will be executed. Each off-block branch address location and actual instruction

are saved in a branch information table. Each off-block branch is modified such that

when the off-block branch is taken, it goes to specific branch loader code. The branch

58

loader code contains instructions to load branch numbers and to invoke the softstream

linker.

Assuming that an off-block branch instruction can jump to the branch loader code,

the modified version of the off-block branch instruction can be calculated as follows.

bc = (((BLC + n × 12) − L) & 0x0000FFFC) | (I & 0xFFFF0003))

b = (((BLC + n × 12) − L) & 0x03FFFFFC) | (I & 0xFC000003))

where

bc is the modified conditional off-block branch instruction,

L is the location of a off-block branch instruction,

BLC is the address branch loader code,

n is the off-block number,

I is the off-block branch instruction,

b is the modified unconditional off-block branch instruction.

Note that an off-block branch incurs 3 instructions in the branch loader table and

each instruction occupies 4 bytes. Therefore, we multiply the branch number by 12.

Example 5.3.1 Suppose that the block loader code is located at 0x00000100, the uncon-

ditional off-block instruction is at 0x00004000, branch number is 4, and the instruction is

0x4800005D. Substituting all values into the equation to compute b, we obtain the modified

unconditional off-block branch instruction 0x48FFC131. 2

Figure 29 shows a possible branch loader code and branch information table for

an application. Each field in the branch loader code consists of an instruction to save

register r3, an instruction to load the branch number into r3, and an instruction to

branch to the softstream linker function. In the softstream linker function, we use

register r3 to pass the branch number to the softstream linker. This is why we save

59

the value of the register r3 prior to using r3; at the end of the linker function, we

restore r3 from the stack (r1 is the stack pointer). Each field of the branch information

table consists of the offset of the off-block branch and the instruction of the off-block

branch. These values will be used during run-time linking of the block.

���������	

���������

����������

�����

������������

�����

������������

�����

������������

���

�

�

�

���������	
����
�������

�	� ���� �����	����

!� ����	�	

� !��"

�
� ��� �����	����

!� ����	�

� !��"

��� ��� �����	����

!� ����	��

� !��"

���������

� ���������	

� ���������

� ����������

��������
������
��

Figure 29: Branch loader code and branch information.

5.4 Run-time Code Modification

Recall that, as described in Section 5.3, all off-block branch instructions are modified

to branch to an appropriate branch loader code to load the needed stream block before

proceeding to the target. After loading the needed stream block, the corresponding

off-block branch is modified to jump to the target location instead of invoking the

loader function the next time the off-block branch is re-executed. Although run-

time code modification (run-time binary rewriting) introduces some overhead, the

application will run more efficiently if the modified branch instruction is executed

frequently. This is because, after modification, there is no check as to whether or not

the stream block is in memory, but instead the modified branch instruction branches

to the exact appropriate code location.

Example 5.4.1 Suppose that the software from Figure 19 is modified, resulting in the soft-

ware streaming code generated as illustrated in Figure 20. Further suppose that the streaming

60

code is running on an embedded device. When an off-block branch is executed and is taken,

the missing block must be made available to the application. Figure 30 shows the result after

the first branch to load Block 2 is replaced with a branch to location .L3 in Block 2 (look at

the second instruction in the top left box Figure 30).

����� ���	

�� ��

�� ����

��� ��������	�

 �������

���

�� ���	

��� �������	�

���

� �������

������	��

���������

���������

������	

�������

Figure 30: Runtime code modification.

The run-time code modification only changes the instruction which issues the request. Other

branches (such as b load2 2 in Figure 30) remain untouched even if the corresponding block is

already in memory. If such a branch instruction is executed to load a block already in memory,

the branch instruction will be modified at that time. 2

Listing 3 Link(): Run-time Linking.
Input: Branch Number i, Branch Information BI

Output: None
begin

1 Save registers used in this function
2 Obtain the branch instruction from the branch information table
3 Determine the needed block ID
4 if The needed block is not loaded then

5 Request the needed block
6 Wait until the block is loaded
7 end if

8 Compute the branch target address
9 Rewrite the off-block branch to jump to the branch target address

10 Restore registers
11 Jump to the branch target address

end

61

Listing 3 shows the pseudo code for run-time linking when an off-block branch

is taken for the first time. The off-block branch will jump to a corresponding ad-

dress in the branch loader code. The branch number is loaded and is passed to the

Link() (softstream linker) function. In the softstream linker function, registers which

are used in this function are saved (line 1). Since the branch number is passed as

a parameter, the Link() function obtains the branch information from the branch

information table (line 2). From the original off-block branch instruction stored in

the branch information table, we can determine the stream block ID of the needed

stream block (line 3). If the needed stream block is not loaded into memory, the

needed stream block will be requested and the program is suspended until the stream

block is loaded (lines 4 to 7). After the needed stream block is loaded, we calculate

the branch target address (line 8) and modify the off-block branch to jump the in-

tended location (line 9). The used registers are restored (line 10) and the function

jumps to the intended location.

5.5 Program Profiling

It is extremely unlikely that the application executes its code in a linear address

ordering. Therefore, the stream units should preferably be streamed in the order of

code execution. This can minimize the occurrence of application suspensions resulting

from missing code blocks. Program profiling can help determine the order of code to

be streamed in the background and/or on-demand. When a code miss occurs, the

associated missing code block will be requested. When a stream unit is requested,

the transmission order of stream units will restart from the requested stream unit.

A software execution path can be viewed as a traversal of a control flow graph such

as the graph illustrated in Figure 31. When the program execution flows along a

certain path, the streaming can potentially be conducted accordingly. Example 5.5.1

shows an example how a program file may be profiled. A path prediction algorithm

62

is necessary for background streaming to minimize software misses. Since we do not

have an automatic tool to profile program files, we manually predict the software

execution path. However, if developed, an automated tool could be used and could

effectively interface to our streaming methodology.

Example 5.5.1 Suppose that a program file is divided into eight blocks, and stream units

are created. As illustrated in Figure 31(a), for an execution path consisting of stream blocks B0,

B6, B1, B2, B3, B1, B4, B1, B5, B3, B4, B1, B4, B3, B2, B3, B1, B2 and B6 in the given order,

assuming that stream blocks are not removed from the client memory, we can send stream units

containing stream blocks B0, B6, B1, B2, B3, B4, and B5. A stream unit containing the stream

block B7 need not be streamed since it is not in the execution path. If the stream block B7 is

needed, the client will request stream block B7, and a stream unit containing B7 will be sent

by the server. In short, for this execution path, a transmission profile (containing transmission

sequence B0, B6, B1, B2, B3, B4, and B5 as shown in Figure 31(b)) provides low occurrence

of application suspensions. 2

5.6 Performance Metrics

A stream-enabled application has many components that individually contribute to

performance. However, in performance analysis, we only measure the components

which are affected by software streaming. Thus, the performance metrics are soft-

stream overhead, application load time, and application suspension time.

5.6.1 Softstream Overhead

The process of generating a stream-enabled file adds additional information (a soft-

stream message header shown in Figure 7 and a stream unit header shown in Figure 4)

which we call stream-enabling information. This stream-enabling information is added

63

�� ��

��

��
����

��

�	

�����

������
����

�����

�����
����

�

	

�

�

�

��

�

�

�����������������

�����

�

�

	

�

�

�

�

�

����

�

��������

 �! "!

Figure 31: Program Profiling: (a) Control flow graph of the software (note all edges
have associated conditions not shown). (b) A transmission profile.

to the original file to enable the file to be streamed. The stream-enabling information

added constitutes the softstream overhead, potentially resulting in additional band-

width utilization, memory usage, and processing time. Thus, softstream overhead

comprises three specific types of overhead: bandwidth overhead, memory overhead,

and processing time overhead.

5.6.1.1 Bandwidth Overhead

When stream-enabling information is sent to a client over a network, additional band-

width is utilized. Therefore, the more stream-enabling information is added, the

higher bandwidth is needed. Generally, since the client processor can process data

received from a network more quickly than the network can supply new data, the

client can generate part of the off-block branch information, instead of transmitting

all off-block branch information. Specifically, the client can perform load time code

modification, generating a branch information table and branch loader code for the

application. However, the off-block branch information should be sufficient so that

64

the client does not spend an excessive amount of time processing generating the off-

block branch information. Furthermore, in a network which does not provide quality

of service (QoS), the amount of time for the client to obtain a stream unit is very

difficult to predict. Thus, the amount of the stream-enabling information should be

carefully considered.

5.6.1.2 Memory Overhead

The size of stream-enabling information transmitted by the softstream server is not

necessarily the same as the size of stream-execution information stored in the client

memory. Stream-execution information for an application consists of stream block

table, branch information table, and branch loader code. In particular, the softstream

message header is dropped and is not individually stored at the client. The stream

unit header is used to generate perform load time code modification and generate an

entry in the branch information table; after initial use, the stream unit header may

dropped (erased). Memory overhead is memory space occupied by stream-execution

information.

5.6.1.3 Processing Time Overhead

After a softstream client receives a stream unit, the softstream client uses the stream-

enabling information to assemble the stream unit into the application. Furthermore,

during program execution, if an off-block branch is taken for the first time, the soft-

stream client has to check if the stream unit containing the target address of the

off-block branch is in memory. Then, appropriate modification of stream blocks is

performed. We call the time the softstream client uses to handle (to verify, to modify,

and to load) stream units processing time overhead.

65

5.6.2 Application Load Time

Application load time is the time between when the application program is selected

to run and when the CPU executes the first instruction of the selected application.

Application load time is proportional to the total size of stream units needed before

the application can begin execution and is inversely proportional to the speed of

the transmission medium. The application program can start running earlier if the

application load time is lower. Application load time can be calculated as illustrated

in the equations below.

tapplication load time =
ns
∑

i=0

tstream unit download time

where

tstream unit download time is the time to download a stream unit,

ns is the number of stream unit(s) needed before the application can begin

execution.

Note that tstream unit download time may be difficult to measure since network and

server conditions are unpredictable. However, if we ignore all unpredictable factors

as well as ignore the time used in requesting an application or a stream unit, we can

exclusively use the amount of time to transfer a stream unit to estimate the time

to download a stream unit. The transfer time of a stream unit can be computed as

follows:

ttransfer = u bytes

r bps
× 8 bits

1 byte

where

u is the size of the stream unit in bytes,

r is the bandwidth of the transmission medium in bps.

Example 5.6.1 illustrate how application load time is estimated.

66

Example 5.6.1 Suppose we need to stream 4 stream units over a 128 bps connection before

the application can start running, and the sizes of stream units are 4124 bytes, 4132 bytes, 4140

bytes, and 4156 byes. The estimate application load time is 1.03 seconds. 2

5.6.3 Application Suspension Time

An application suspension occurs when the next instruction that would be executed

in normal program execution is in a stream unit yet to be loaded or only partially

loaded into memory. The application must be suspended until the required stream

block is streamed into memory. The worst case suspension time occurs when the

needed stream unit is still at the server and the client has to send a request to receive

the needed stream unit; in this case the suspension time is the time to download the

entire stream unit (note that we assume we can ignore the relatively tiny amount

of time used in requesting the stream unit). The best case occurs when the stream

unit is already in memory. Therefore, given our assumptions, the suspension time is

between zero and the time to download the entire needed stream unit as shown in the

following equation. The time to download a stream unit depends on many factors such

as the network and server conditions which are unpredictable. However, application

suspension time is also proportional to the stream unit size. The application developer

can vary the stream unit size to obtain an acceptable application suspension time in

ideal conditions if a block miss occurs.

tsuspension

= 0, when the stream unit is loaded

≤ tstream unit download time, when the stream unit is not fully loaded

where tstream unit download time is the time to acquire the needed stream unit.

For applications involving many interactions, low application suspension time is

very crucial. While the application is suspended, it cannot interact with the en-

vironment or the user. Response time can be used as a guideline for application

suspension time since the application should not be suspended longer than response

67

time. A response time which is less than 0.1 seconds after the action is considered

to be almost instantaneous for user interactive applications [35]. Therefore, if the

application suspension time is less than 0.1 seconds, the performance of the stream-

enabled application should be acceptable for most user interactive applications when

stream unit misses occur.

5.7 Performance Analysis

In order to take advantage of software streaming, the streaming environment must

be thoroughly analyzed. The streaming environment analysis will likely include CPU

speed, connection speed, stream block size and program execution path. Without

knowledge about the environment for software streaming, the performance of the

system can be suboptimal. For instance, if the stream block size is too small and the

processor can finish executing the first stream block faster than the transmission time

of the second stream block, the application must be suspended until the next stream

block is loaded. This would not perform well in an interactive application. Increasing

the stream block size of the first stream block will delay the initial program execution,

but the application may run more smoothly.

The most obvious overhead is the code added during the stream-enabling code

generation step for block streaming. For block streaming, each off-block branch adds

four bytes of extra information to the original code. The off-block branch information

(added code) for off-block branches is the offset of the instruction which occupies four

bytes. The original code and the off-block branch information are put together into

a stream unit. A stream unit must be loaded before the CPU can safely execute the

code. Therefore, the added off-block branch information incurs both transmission

and memory overheads.

68

Table 3 shows bandwidth overhead and memory overhead for an off-block branch.

The bandwidth overhead is four bytes and the memory overhead (assuming no frag-

mentation) is 20 bytes. The bandwidth overhead is the off-block branch information

(the location of the branch). We use the off-block branch information to generate

additional off-block branch information during load-time code modification. For each

off-block branch, we generate 12 bytes (three instructions) for the branch table and

eight bytes for the branch information. Therefore, the memory overhead is higher than

the bandwidth overhead. Increasing the stream block size may reduce total overheads

for a stream unit since the stream block may contain less off-block branches. How-

ever, a larger stream block size increases the application load time and the application

suspension time since a larger stream block takes longer to be transmitted.

Table 3: Stream-enabled program softstream overhead for a stream unit.

Type of overhead Overhead per off-block branch Overhead for stream block b
Bandwidth 4 bytes 4 × nb bytes
Memory 20 bytes 20 × nb bytes

Note that in Table 3 nb is the number of off-block branches in stream block b.

Processing time overhead is associated with code checking, code loading and code

modification. Code loading occurs when the code is not in the memory. Code checking

and code modification occur when an off-block branch is first taken. Therefore, these

overheads from the runtime code modifications eventually diminish.

5.8 Summary

One of the crucial steps for enabling program files for streaming is the code generation

step. At this step, we determine what is best for an application by considering the

trade-offs of the overheads. The amount of off-block branch information generated

directly affects the performance of the application.

69

Load-time code modification is done for each block received by using the off-block

branch information. At this step, the block is linked to the branch table. When the

branch is executed and the target path is taken, the CPU executes an instruction

located at the branch table. We perform run-time code modification at this time.

If the needed stream block is not in memory, the client requests the needed stream

block from the server. After the needed stream block is in memory, linking between

stream blocks actually occurs. Then, the program can continue its execution.

In the next chapter, we will describe stream-enabled file input/output which is a

block streaming approach for data file.

70

CHAPTER VI

STREAM-ENABLED FILE INPUT/OUTPUT

Often an embedded application includes data inside its program file. For instance, a

game application may embed data for rendering a scene in the program code. How-

ever, as the data becomes larger, embedding the data in the program file becomes

impractical. Moreover, the data may change over time, which obsoletes the applica-

tion embedding the old data. Therefore, it is preferable to keep the application data

separate from the application code itself and supply on demand the needed data to

the application.

Traditionally, many embedded applications download the entire data file before

starting using the data. However, downloading the entire data file may take a signifi-

cant amount of time when the file is large and is located remotely. This may cause the

applications to be suspended for a long time. In this chapter, we present a method

to send file data incrementally and to allow embedded application to access the data

file while transmission may still be in progress.

6.1 File Transfer

An application may use only a subset of a required data file at a particular time.

Therefore, requiring all data to be available to the application at once is typically

unnecessary. Example 6.1.1 shows a quantitative comparison between downloading

the entire file versus just downloading the needed data.

Example 6.1.1 Assume that a game application contains a 4 MB data file. However, the

game application needs to process only 1 MB of the data (a single scene) before the user can

71

begin to play the game. If we transfer the entire file over a 128 Kbps link, it will take over

262 seconds (approximately 4 minutes and 22 seconds). On the other hand, if we transfer

1 MB of data and allow the game application to start processing the data, it will take only

approximately 65 seconds. Therefore, in this case, the game application can utilize the data

needed for the scene 4X faster when compared to transferring the entire file. 2

In addition, an application may also take some time to process the input data.

By enabling the application to process part of the needed data while the rest of the

data is concurrently being downloaded, the total amount of time required to access

and process the needed data can be reduced. This is because the application usually

has to wait for transmission. While waiting for transmission, the application can

perform some computation on the data already loaded. As shown in Example 6.1.2,

interleaving the transmission and the computation of data is faster than serializing

data transmission and the computation.

Example 6.1.2 Suppose that the game application in Example 6.1.1 reads 1 MB of data over

a 128-Kbps link to render the first scene, and the game application is limited by the computing

capability of the processor which enables the application to process data at a rate of 64 KB/s. As

shown in Figure 32, downloading a 1 MB block takes approximately 65 seconds and processing

it takes 16 seconds. Thus, the user has to wait 81 seconds. On the other hand, by downloading

4 KB of data at a time and concurrently allowing the game application to process the data after

a 4 KB block is loaded, the user has to wait only 65 seconds to begin to play, assuming that

the game application reads a few bytes at a time. The game application can finish rendering

the scene 1.25X faster when the data is transmitted in 4 KB blocks as compared to when the

entire 1 MB of data is sent at once. Note that we omit context switching time because the

72

context switching time is typically small and thus its effect on the result is negligible, and we

also ignore protocol overhead. 2

�

� ���� ���� ����� ����� 	
���
��������

���

�

	
��
������	��� ��
��������	���

�

�
�
��
��
�

Figure 32: Downloading and processing data for 1MB of data streamed by block
sizes of 1MB and 4KB.

Using the quantitative comparisons from Example 6.1.1 and Example 6.1.2, we

propose a stream-enabled file I/O (SIO) implementation which transfers files in blocks

and allows the application to access files while transmission may still be in progress.

The block transmission is not necessarily performed in a linear order of the blocks

in the file, but is preferably performed in the order in which the blocks are used.

Therefore, the application can obtain the needed data more quickly. Also, the trans-

mission bandwidth and memory usage may be lowered since unneeded data may not

be transmitted. We describe our implementation in the following subsections.

6.2 SIO Messages

SIO implements network file I/O using a client-server model. The design goal is to

enable applications running on a client device to perform file I/O operations on files

stored at a server. At the server, we divide files into blocks which we call data blocks

73

and then create a transmission profile (information on how to transmit data blocks)

for each file. We assign an ID to each data block sequentially in the same order in

which they appear in the file, starting from 0. When a client requests a file, the

softstream server sends the file information (e.g., file size and block size) and streams

data blocks to the client according to the transmission profile.

The stream unit format for a data block is shown in Figure 33. A softstream

message can be classified as a request message or a reply message. For SIO, a client

sends a request message when a file is open, closed, read, or written. The server sends

reply messages to respond to the client request. When the client requests a file to be

streamed (open), the the client sends the filename. When the client requests a needed

stream block, the client sends the stream block ID or the stream unit ID. When the

client write data into a file, the client sends offset, data size, and data. The offset

field represents the location in which the data will be written. The data size is the

size of the data in the data field. The server sends stream units in response to the

client request. When the missing block is requested, the server sends the stream unit

ID, data size, and data. The server also sends typical file information such as access

status (granted or denied), file size, and block size.

����

�������	
����� ��������

Figure 33: The stream unit format for data blocks.

At the client, when the application opens a data file, if the data file has not yet

been requested, the SIO client sends a request to receive the data file from the server

and uses the data file information to construct data file status information. The

data file status information contains a data block table. Each entry in a data block

table is an address field storing the location of the data block associated with that

entry. However, if the address is invalid (we use the address value of 0xFFFFFFFF

74

to indicate an invalid address), the data block is not yet loaded; otherwise, the data

block is in memory. Figure 34 shows an example of a data block table. When the SIO

client receives a data block, the corresponding address field entry is updated to the

location where the data block is stored. Example 6.2.1 illustrates how a data block

table is updated.

Example 6.2.1 In Figure 34, when the stream unit containing a data block with stream

block ID of 1 is received, the SIO client allocates the needed memory space. Suppose that the

allocated memory space starts at 0x00010400. The SIO client loads the data block into memory

starting at 0x00010400 and updates the address field of the entry at offset 1 with the starting

location of the data block. 2

����������

����������

����������

����������

����������

�

�

�

�

	
�

�����

�������� ������
�

���������������

���������������

�

�������������

�������������

�

�������������

�������������

���

����

!"#��!�

!"#��!�

���

Figure 34: Data block table.

By using a data block table, SIO function calls can determine whether or not the

data block is available. If the block is missing, the SIO client sends a request to the

SIO server for the needed block. Otherwise, the application can access the data in

the block. For limited storage devices, an unneeded data block can be removed by

changing the address field of the block to an invalid address and freeing the memory

75

occupied by the unneeded data block. If the removed data block is later needed, it

will be requested for retransmission. In SIO, we only allow a server to transmit fixed

size blocks to lower processing time. However, the data block containing the end of

file can be smaller than others.

6.3 SIO Function Calls

We implemented SIO function call primitives, namely, sio open(), sio close(),

sio lseek(), sio read() and sio write(). These function calls are very similar to the

file I/O system calls. The applications must use SIO function calls to perform SIO

operations. The sio open() function sends a request to the server to open a file. If

the file can be opened, it returns a file descriptor (file number) to the application.

The file descriptor is an integer used to represent the opened file. The SIO server

starts streaming data blocks after the open request is received. The sio close() func-

tion deallocates the file descriptor and updates the data if the file is modified. The

sio lseek() function sets the file pointer to a specified offset in the file. The value in

the file pointer is the current location in the file. The sio read() function attempts to

read a specified amount of data. The SIO client checks if the data is available at the

client device. If not, the data block containing the needed data will be downloaded

before the application can continue. The sio write() function attempts to write a

specified amount of data. The sio write() function has two modes: write-through

and delayed-write. In the write-through mode, the SIO client sends data to the SIO

server first and returns control back to the application. On the other hand, in the

delayed-write mode, SIO may delay sending the data to the server.

The following descriptions are the internal design of the SIO functions.

• int sio open(const char *path, int oflag): When sio open() is invoked, the client

sends a request message to stream a file. The softstream ID is set to zero and the

service type is set according to oflag. The server assigns a softstream ID which

76

can be used as a file descriptor. Then, the server sends back file information

such as access mode, file size, and block size. The client uses this information

to construct file status information and returns a file descriptor back to the

application. The file descriptor is the identification of the opened file. The

application uses the file descriptor to communication with SIO function calls.

The server can start streaming the file.

• int sio close(int fildes): The application requests the closing of the open file

associated with filedes. Using the softstream protocol (Section 4.3), the client

sends a message with the value of service type of 0x00000000. When the server

receives this message, the server closes the stream.

• int sio read(int fildes, void *buf, int nbyte): The sio read() function attempts

to read nbyte bytes from the file associated with the open file descriptor, fildes,

into the buffer pointed to by buf. The client checks if the block(s) containing

the needed data is/are in memory. If not, the client sends a request to stream

the needed block(s). The needed data may be located in different blocks. When

the server receives a block request, it sends the requested block to the client. In

continuous stream service, if the server is still sending stream units according

to a certain order in the corresponding transmission profile, the server ends the

previous streaming order and starts a new streaming order starting from the

requested block. As a result, block misses may be reduced. The client also keeps

track of the position in the file. The sio read() function returns the amount of

data read from the file.

• int sio write(int fildes, const void *buf, int nbytes): The sio write() function

attempts to write nbyte bytes from the buffer pointed to by buf to the file

associated with file descriptor fildes. The client sends the write message to the

server. The payload for the write request consists of the offset in the file, the

77

size of the data, and the data. The write() function return the amount of data

written.

• int sio lseek(int fildes, int offset, int mode): The lseek() function set the current

position in the file associated with file descriptor fildes. The file pointer is

set according to the value of mode. The mode value allows the application to

flexibly set the current position in the file. If mode is 1, the file pointer is set to

offset bytes. If mode is 2, the pointer is set to the current location plus offset.

If mode is 3, the pointer is sent to the size of the file plus offset. If the position

of the file pointer is in a block not loaded in memory, the client requests the

server to stream the block. The sio lseek() function return the position of the

file pointer.

6.4 SIO Support by Modifying the Application

Binary Image

An application can use SIO function calls by including SIO files in the source code.

However, source code of an application might not be available. Therefore, we support

this application by modifying the applications’ binary images. In a typical system,

an application invokes a system call to perform file I/O. A system call is a call to

the kernel for a specific function which controls a device or executes a privileged

instruction. Usually, when a system call is invoked, the system call function loads a

system call number into a register and generates an interrupt. The kernel uses the

number in the register to distinguish which service is requested. After finishing the

system call service, the control is handed back to the application.

In order to modify an application’s binary image so that the application can use

SIO functions, we identify the system calls which are used to handle file I/O and

replace the system calls with the SIO functions. The process for modifying binaries

to use SIO functions is illustrated in Example 6.4.1.

78

Example 6.4.1 Figure 35 shows a subset of a program using the uClibc [40] library. In

main(), the system calls open() (line 3) and write() (line 5) are called to open a file and write

to it. When open() (libc open) is called, it manipulates the passed parameters and jumps to

syscall open (line 18). The syscall open code loads system call number 5 into the register r0

(line 13) and jumps uClibc syscall (line 14). The uClibc syscall code generates an interrupt

by using the sc instruction. Similarly, when the write() (libc write) is invoked (line 5), the

libc write loads system call number 4 to register r0 and jumps to uClibc syscall (line 10).

�������������������

	�����

����������	 ���������
� � ���������������������

������

�����������	 ����������� � ����������������������

�����

�

���������������������������

�����������	 ����������� � ����

�����������	 ����������� � ������������������ ! ���

��

�	���������������������������

�
���������	 ����������� � ����

�����������	 ����������� � ������������������ ! ���

��

�������������������������

������

���������"�	 ���##�##��� � ������������ ! ��������

������

	�

	������������������������������

		���������	 ����������� �

	
���������	 ����������� �� �

	����������	 ����������� � ������������ ! ���������

Figure 35: A subset of a program using uClibc file I/O.

This program can be modified to use SIO functions by locating the code which generates

an interrupt. We can insert code to check if the system call is to handle file I/O. The inserted

code will redirect to an appropriate SIO function call. Otherwise, a system call interrupt will

be generated. We can also trace back to the location from which the system call is invoked by

locating the branch instruction which calls a particular libc function; then, we modify the the

79

branch instruction to jump directly to the SIO functions. For example, line 3 and line 5 will be

modified to branch to sio open() and sio write(), respectively. 2

6.5 Using Stream-Enabled File I/O for Program

Files

Chapter 5 illustrates a method to stream a program file by modifying its binary image.

The necessary off-block branch information is generated off line. The objective of the

softstream generator is to save the client processing time. The client does not have to

generate all off-block branch information. However, if the client has high computing

power, we can use our stream-enabled file I/O technique to stream the program file.

Using stream-enabled file I/O, a program file is treated as a data file. The program

file is divided into blocks, and a transmission profile is created by analyzing the

program flow. When the program file is requested, the server sends stream units

containing the program file blocks according to the transmission profile. However,

when a stream unit arrives at the client, a version of softstream loader which has

softstream generator capabilities generates off-block branch information and code

from the stream unit and the softstream linker integrates the stream-enabled block

into the application. In other words, the stream-enabled code generation step is done

at the client.

Another advantage for using stream-enabled file I/O may occur when the client

supports demand paging. The size of the block would be the same as the size of the

page. There is no needed to modify branches, since if a branch target address is in a

page not yet allocated, a page fault occurs. When the page fault occurs, the operating

system can read the page using stream-enabled file I/O. Using a transmission profile

to send the program file, the page fault rate can be reduced.

80

6.6 Data Profiling

Data profiling is used to predict the run-time file access behavior of an application in

order to stream data accordingly. Data which is most likely to be used first will be

streamed first. Using data profiling, the data miss rate and the application suspension

time due to missing data can be significantly reduced. Furthermore, data which is

not needed by the application for a certain execution may not be sent at all, saving

memory and bandwidth. In this section, we discuss profiling of data files.

A data file is profiled at the block level. However, we do not rearrange data

within a block or across multiple blocks; we leave the data structures inside the file

unchanged. Thus, since block boundaries are at points dictated by the fixed sizes

(e.g., all blocks of size 4 KB), a data structure may be split across two blocks. In

this case, in order to obtain the entire data structure, both blocks must be streamed.

After the file is divided into blocks, we predict the order that the program uses the

data blocks and then we create a flow graph for data transmission. A node (vertex)

of the graph represents the data block and an edge linking two nodes indicates a

possible flow of the transmission. We also assign a weight to each edge of the flow

graph; the higher the weight is, the higher probability that the block corresponding

to the next node will be sent. Then, we create a transmission profile of the file by

traversing the flow graph based on an algorithm. Data blocks are sent according to

the profile. The profile of the file may be dynamically or statically updated based

on the statistical usage of the file collected from the actual file access pattern of the

application.

One of the simplest access patterns is a sequential access pattern; the application

reads the data file sequentially from start to finish. Profiling a sequentially-accessed

file is still beneficial as shown in Example 6.6.1.

81

Example 6.6.1 As mentioned in Example 6.1.1, the game application needs to process only

1 MB of data to allow the user to play the game; therefore we can profile the data in such

a way that the first scene is sent to the client with a data rate higher than the rate for the

subsequent scenes. In this way, the subsequent scenes will be sent while the user is playing the

first scene without utilizing resources as much as the first scene. When the user advances to

the next scene, the next required data may be ready at the client device. 2

When the data access pattern is unordered and unpredictable, profiling may be

difficult or impossible. However, if the data access pattern is known or has a certain

characteristic, we profile the file so that the data will be sent in a similar fashion

to the data access pattern or characteristic. Therefore, the application would have

access to data more quickly. Example 6.6.2 shows a profiling method for a file which

has a well-known data access characteristic.

Example 6.6.2 Suppose that an application searches for a specific value in a file which

stores data sorted in ascending order. The application uses a binary search algorithm which

has an efficiency of O(log N), where N is the number of data elements in the file. Since the

data access characteristic of the application is according to the binary search algorithm, we

can profile the file according to the binary search algorithm as illustrated in Figure 36. In

this example, we divide the file into 10 blocks labeled from 0 to 9 (Figure 36(a)) and create

a transmission flow graph (Figure 36(b)). Each edge is assigned a weight value based on the

probability of the blocks corresponding to next level nodes to be sent. We also show two possible

transmission profiles based on depth-first (Figure 36(c)) and breadth-first (Figure 36(d)) graph

traversing algorithms. Since the number of blocks is even we pick block 4 to be the middle

block. A depth-first transmission profile sends the data blocks starting from the root node in

a transmission flow graph, then to each child node in the same branch until reaching the leaf

82

node before starting another branch. The breadth-first transmission profile, on the other hand,

sends the data blocks starting from the root node, then to each child node on the same level

before advancing to another level.

���

�

�

�

�

�

	

�

�

� � � � � 	
 � �

���

� � � � � � 	
 �

���

� � � � � 	 � �

���

����

��	 ��	

��	 ��	 ��	 ��	

� � �

Figure 36: Profiling Data: (a) The file is divided into blocks. (b) The correspond-
ing transmission flow graph. (c) Depth-first transmission profile. (d) Breadth-first
transmission profile.

Suppose that the depth-first transmission profile is used and the data we are looking for is

in block 5. According to the transmission profile, we send block 4 and then block 1. Suppose

further that, while sending block 1, the request for block 7 comes in. We send block 7, block 5

and then block 6. If we profile the file to save the client memory, we wait until the application

sends another request since we reach a leaf node. Otherwise, we send block 8 and block 9. At

the client device, the application finds that the data is located in block 5. For this scenario, if

we chose to save the client memory with the continuous stream flow control, we only send five

blocks of data instead of sending the entire file (10 blocks), saving 50% of memory. Note that

the continuous stream flow control does not mean that all blocks must be sent; the continuous

stream flow control means all blocks in a certain path in the transmission profile is sent until

the end of the path is reached. 2

83

Please note that we do not propose a specific, unique algorithm to be always used

to create a transmission profile but instead provide support by specifying how the

data structure in the transmission profile for any algorithm, such as a depth-first

graph traversing algorithm, which the user desires to implement. For example, to

create a transmission profile, the user may use an algorithm to discover a path that

maximizes the sum of edge weights traversed in the transmission flow graph.

6.7 Performance Analysis

Since we divide a data file into blocks to create a transmission profile, we do not add

any data to the original file. Therefore, the size of the file remains the same. However,

when the server sends a block to the client, the server adds a stream unit ID and the

data size. As shown in Table 4, the bandwidth overhead is only eight bytes. At the

client, we keep track of data blocks using a data block table. Therefore, as shown in

Table 4, the memory overhead is only four bytes (assuming no fragmentation). Both

bandwidth and memory overheads are relatively small. For example, bandwidth and

memory overhead for a 1-KB block is only 0.78% and 0.39%, respectively. Note that

if we include the softstream header, the bandwidth overhead would be 16 bytes.

Table 4: Stream-enabled file I/O overhead for a stream block.

Type of overhead Overhead per stream block
Bandwidth 8 bytes
Memory 4 bytes

Runtime overhead occurs every time the data is accessed. This is because the

sio read() function checks if the block containing the data is in memory. If the data

is in the same block, reading one byte or a few bytes incurs the same overhead.

84

6.8 Summary

File I/O operation latency may be significant when the file is located remotely. The

latency can increase significantly if the entire file is required to be downloaded before

a file operation can begins. A large file can take a considerable amount of time to

download to the client. However, using our stream-enabled file I/O method, the client

can access data in the file while it is being transferred, which may reduce the file I/O

operation latency.

In SIO, we divide a file into blocks and create a transmission profile. The server

sends the blocks according to the transmission profile. The sequence of transmission

can be interrupted and another can be started if the client operates in a different

mode. The application at the client uses the SIO function calls to perform I/O

operations.

In the next chapter, we will discuss several techniques to improve block streaming

performance and to allow block streaming to be used on a limited memory embedded

device.

85

CHAPTER VII

BLOCK STREAMING PERFORMANCE

ENHANCEMENT

This chapter examines some more advanced techniques related to stream-enabled code

generation, further enhancing the performance of stream-enabled software. First, we

discuss a code transformation technique for software streaming. Then, we introduce a

method which enables a small memory footprint embedded device to support a large

application, i.e., larger than the available memory, by profiling and allowing stream

units to be removed from the client’s memory. The code transformation scheme and

profiling are done at the server while the removal of stream units is done at the client.

7.1 Code Transformation

Chapter 5 discusses a stream-enabled code generation method, which divides the pro-

gram binary image into blocks before generating stream-enabled code. The program

binary image is used as it is, without considering other issues such as performance

and resources. However, this section introduces techniques which may improve per-

formance and may reduce resource usage by statically transforming the program.

7.1.1 Determining Function Boundaries

One drawback for randomly dividing a binary image into blocks is that some of the

code in a particular block may not be used. For instance, consider the case where the

first instruction of a function is the last instruction in block. For this case, perhaps

only one instruction of the entire block (the last instruction) may be needed if the

86

other function(s) in the block are never called. As a result, memory and bandwidth

are not efficiently used. Moreover, when the function is called and the block is not

in memory, we have to stream two blocks for the function to work. However, by

obtaining the size of each function, the block boundaries can be enforced to more

closely match with function boundaries.

Example 7.1.1 shows that occurrence of application suspensions is reduced when

the block boundary is match closely with function boundary.

Example 7.1.1 Figure 37(a) shows that function fn2() is split with part of the function in

the first block (2 instructions) and the rest is in the second block. When fn2() is called and is not

in memory, we request the first block and call the function. The application may be interrupted

shortly thereafter because it needs the rest of the function code to return back to the caller.

The second block may be streamed in background or on-demand. When the second block is

loaded, the application continues its execution. In this scenario, the application is interrupted

twice, and we have to send two blocks. If fn2() is put in the second block, we only have to send

one block, saving memory and bandwidth. Moreover, the occurrence of application suspensions

is reduced.

As illustrated in Figure 37(b), fn2() is placed in the second block. If client memory is allo-

cated into fixed size blocks corresponding to fixed sized code blocks, this method creates internal

block fragmentation which wastes client memory. For example, the first block of Figure 37(b)

contains eight bytes of unused memory space. Therefore, the amount of wasted space must be

taken into consideration before matching the function boundaries with the block boundaries. If

the wasted space is too large, it may be better to leave the function in different blocks. 2

Function boundaries can be determined using the symbol table if the binary im-

age format is in Executable and Linking Format (ELF). Figure 38 shows a sample

87

�����

�

���� �	
 ����������

���� ��

�	
 ���������

���

�	�� ��

���

����

�������

�����

�

���� �	
 ����������

���� ��

���

�	�� ��

���

����

�������

��� ���

Figure 37: Enforcing block boundaries. (a) A function is placed into separate blocks.
(b) The block boundaries are matched with function boundaries.

symbol table. The value field gives the value of the associated symbol, depending

on the context. For a function, this field is the address of the first instruction of the

function. The type field indicates that the symbol is associated with a function or

other executable code. The function belongs to section name .text. The size field

gives the size information associated with the symbol. Finally, the name field is the

name of the symbol. In our case, it is the name of the function. Using the symbol

table, we obtain the function location and size of the function. Hence, we can eas-

ily determine the boundaries of the function using the symbol and can match block

boundaries with function boundaries.

�������� � ��	
� �������� ����	�������	��
�������� � ��	
� �������� �	�	���
�������� � ��	
� �������� ����	�����	
�����	�������
�������� � ��	
� �������� ���������	��
�������� � ��	
� �������� ����������		�
�������� � ��	
� �������� �	��� 	
����!�"� � ��	
� �������� ����	��	
��
�������� � ��	
� �����"#� �	����	�$���
�������� � ��	
� �������� ������
���"�	�� % ������ �������� ����	�������	����	��#��
�������� � ��	
� ������"� ���	��	������
����	!#� � ��	
� �������� ������
�����

�������� � ��	
� �������� ����&��

���

'���	 (��)	�����*+��)�,	 +��	

Figure 38: A sample symbol table.

88

Symbols in the program binary image take storage space, especially if the program

is stored in memory such as ROM or Flash memory. For this reason, the symbols in

program binary image may have been discarded (e.g., using GNU strip). As a result,

function boundaries information cannot be obtained from the symbol table. However,

we can determine the function boundaries from examining the program code.

The binary code of a function generated by a compiler usually has a single function

entry point and a single function exit point. The function entry point is the branch

target address of the branch instruction which calls the function. When this branch

instruction is executed, the return address (address after the branch instruction) is

saved. The function exit point is at the return instruction. The function boundaries

are at the function entry point and the function exit point. The code which is not

covered by the function caller instruction is either dead code or functions which are

called using function pointers.

Another simple technique to obtain function boundaries is to look for return in-

structions by scanning from the first instruction to the last instruction. The first

instruction of the program code is the function entry point, and the function exit

point is at the first return instruction encountered. The instruction after the return

instruction is the next function entry point. All function boundaries are obtained at

the end of the program.

Note that we do not consider the case of a point where a function invokes another

function at a function exit point. This is because when the invoked function is

done, the program returns back to the current function. Furthermore, the invocation

location is irrelevant in determining function boundaries.

7.1.2 Remapping Functions

A programmer usually writes an application in such a way that functions with a

similar purpose are put in together in a file. Functions are typically placed randomly

89

within a file. When compiled, the binary code of the functions are in the same order as

the original source code. After generating blocks for streaming, the order of function

placement remains the same. Example 7.1.2 shows how the lack of spatial locality of

reference degrades stream-enabled software.

Example 7.1.2 Suppose that a program file is divided into three blocks as shown in Figure 39.

The functions are in the same order as they were written. The function fn1() calls fn5(), and

the function fn5() calls fn7(). These function are in separate blocks. When the function fn1()

is invoked and is not in memory, the block containing fn1() will be requested and will be

loaded. The function fn1() is interrupted quickly because fn5() is not in memory causing the

block containing fn5() to be loaded. The function fn5() is also interrupted to load the block

containing fn7(). Therefore, we need three blocks for fn1() to complete its operation. 2

�����������	

����

��������������	�

�

�����������	

������

�

�����������	

������

�

�����������	

�������

�

��������������������	

�����

������������	�

������

�

�����������	

������

�

�����������	

������

�

�����������	

������

�

�����������	

������

�

Figure 39: An example shows the program lacks block locality.

In Example 7.1.2, we can remap fn1(), fn5(), and fn7() so that they are in the

same block. We only need one block for fn1() to complete its operation without being

interrupted due to missing code. Remapping functions according to execution paths

improves the locality of reference.

90

Programs often spend 80 or 90 percent of their time in 10 to 20 percent of the

code [44]. The frequently used code should be packed together to improve temporal

locality of reference of the stream block since the code will be executed more often.

If the client has limited memory, stream blocks are removed from memory before

other needed blocks is loaded. The stream blocks may be requested more frequently

if functions in a program is arranged randomly. However, remapping frequently used

functions together may reduce occurrence of application suspensions due to missing

stream blocks, since the temporal locality of reference is improved. Therefore, we

remap the frequently used functions together.

In order to remap functions, we analyze the application at the function level since

the source code may not be available. Then, we create a program call graph which

represents the program flow. The binary image is rearranged based on its program

call graph to improve spatial locality. Functions which are potentially executed in

a proximate time frame will be placed in a proximate memory location. Common

functions are also placed in a proximate memory location. After rearranging func-

tions, the stream-enabled application can be generated by dividing the binary image

into blocks and generating stream units. A transmission profile of the stream-enabled

application is also generated using a profiling approach.

7.1.3 Generating Fixed Size Stream Units

In this section, we discuss a method to generate fixed size stream units and to allow

stream blocks to be loaded to anywhere in memory and to be removed from memory.

However, note that a conditional branch has a limited range to where the branch can

jump. If a conditional branch is an off-block branch, the conditional branch limits

where the stream blocks can be loaded.

91

Recall the 32-bit PowerPC conditional branch format in Figure 21. If a condi-

tional branch is an off-block branch, the first instruction of the corresponding stream-

enabling code can only be located in address from 0x00000000 to 0x0000FFFC or in

address having displacement less than or equal to 32764 (0x00007FFC) bytes (8191

instructions) from the off-branch instruction. Furthermore, the distance between the

off-block branch instruction and the branch target address cannot be more than 32764

bytes apart. Therefore, location of the blocks are restricted. However, this issue can

be mitigated by inserting code in the block so that the conditional branch jumps

to the a longer branch and is redirected to the stream-enabling code. Using an un-

conditional branch, the next instruction may be located in address from 0x00000000

to 0x03FFFFFC or in address having displacement less than or equal to 3,554,428

(0x01FFFFFC) bytes (8,388,607 instructions) from the branch instruction. Exam-

ple 7.1.3 shows a short range branch (a conditional branch) is rewritten to jump to

an inserted unconditional branch instruction.

Example 7.1.3 In the original program, Block 1 and Block 2 are close enough for the condi-

tional branch bne .L3 to reach address .L3 in Block 2. However, as illustrated in Figure 40(a)

by the “X” over the arrow, Block 1 and Block 2 could be placed in memory so far apart that the

branch target address (.L3) is to far to be reached (i.e., further away then 8191 instructions).

Therefore, in Figure 40(b), we insert a branch instruction b .L3 which is within the reach of

the conditional branch bne .L3; in this way, the desired jump is achieved in two hops (two

jumps). 2

92

������� ���

������� ���	
 ����

������ ��� ���

������� �
 ����

������� ��	 ���������

������� � �������

�������

���� ���

������ �
 ����

������� ��	 ��������

���� ���

������� �� �������

�������

�������

������� ���

������� ���	
 ����

������ ��� ���

������� �
 ����

������� ��	 ���������

������� � �������

���� � ���

�������

���� ���

������ �
 ����

������� ��	 ��������

���� ���

������� �� �������

�������

�������

��� ���

Figure 40: Rewriting a short range branch. (a) The branch target address is too far
for the conditional branch. (b) An unconditional branch is inserted to redirect the
conditional branch.

For the software streaming implementation which allows blocks to be removed, the

block size must be fixed to guarantee avoidance of memory fragmentation. Inserting

code after dividing the binary image into blocks results in blocks with different sizes.

Fixed size blocks can be generated by taking inserted code into account as shown in

Listing 4.

In Listing 4, we start by locating all conditional branch locations with one com-

plete pass over the program P (line 1). Then we enter a loop where we first obtain the

block starting the first instruction of the program (line 3). Some of the instructions

in this block may be removed later in the process. Then, we scan for a conditional

off-block branch in the block. For each conditional off-block branch, we remove an

instruction from the block (line 6) and replace the removed instruction with a uncon-

ditional branch to jump to the intended location (line 7). Next, we write a conditional

off-block branch to jump to the added branch (line 8). We have to fixed all affected

branches. The process repeat until the end of the program is reached.

93

Listing 4 Generate Fixed Size Blocks(): Generating fixed size blocks.
Input: A program P

Output: List fixed size stream units S

begin

1 Locate all conditional branches
2 repeat

3 Get a fix block from the remaining code starting for the low address
4 repeat

5 if The conditional branch in the block an off-block branch then

6 Remove the last instruction and put it back in the remaining code
7 Add an unconditional branch which jumps the original branch target address
8 Rewrite the conditional branch to jump to the added instruction
9 Fix all affected branches

10 end if

11 until All conditional branch in the the current block are covered
12 Add the current block to S

13 until The end of the program is reach

end

7.2 Stream Unit Removal

For a client which has limited memory, removing stream blocks from memory is

essential in order to support an application larger than the available memory. When

a stream block is received, it is linked to the application. Therefore, when the stream

block is removed, it must be unlinked. If the stream block is needed later, it will be

requested.

7.2.1 Unlinking Mechanism

Unlinking is a reverse process of linking. All the branches which jump to the stream

block to be removed must be unlinked. Example 7.2.1 shows unlinking a block using

binary rewriting. Note that we can avoid run-time binary rewriting altogether by

not performing run-time code modification. However, the code would not perform

efficiently if the branch is taken frequently since stream-enabling code performs code

checking and redirects to the proper location.

Example 7.2.1 Suppose that the client has to deallocate Block 2 in Figure 41(a) to make

room for a new stream block. Since the second instruction of Block 1 (bne .L3) jumps to

94

Block 2 if the condition is satisfied, we have to modify this instruction to jump to the branch

table. When the modified instruction is later executed, Block 2 will be requested if it is not

in memory. Figure 41(b) shows Block 1 after Block 2 is removed. The second instruction of

Block 1 (bne load2 1) is change to load Block 2. 2

����� ���	

��� ���

� ����

��� �������	�

�
������

����

� ���	

��� �������	�

���� ���

�

������

�
���	

�
����

����� ���	

��� ��	
��

� ����

��� �������	�

�
������

�
���	

��� ���

Figure 41: Unlinking. (a) Block 1 and Block 2 are linked together. (b) Block 2 is
unlinked from Block 1.

To unlink a stream block, one needs to know all incoming off-block branches to

the block to be removed. Therefore, the additional off-branch information includes

the number of incoming off-block branches and the branch numbers as described

in Section 5.2.3. Using the branch numbers, we locate the instructions which may

jump to the removed block. Then, we modify (unlink) the branches to jump to the

corresponding locations in the branch table.

7.2.2 Stream Unit Replacement

At the server, we create a program flow graph for the application. The client allocates

memory to store stream blocks. When the client requests the application, the client

sends the maximum number of stream blocks that the client can allocate. The last

16 bits of the service type field is set the the maximum number of stream blocks

95

(on-demand stream flow control). The server creates a transmission profile for the

application based on the maximum number of stream blocks. The objective is to

minimize the number of retransmissions. Therefore, we can create a transmission

profile based on an optimal replacement algorithm described in [34]. As a result, a

stream block that will not be used for the longest period of time will be replaced

first. First, we can apply an optimal replacement algorithm along the predicted

program execution path. Then, we can apply the optimal replacement algorithm

along other paths. The stream block to be replaced with the requested block is

indicated the service type field of the softstream header. When the program execution

is as according to the predicted execution path, the number of retransmission will be

minimal if we apply the optimal replacement algorithm. Example 7.2.2 illustrates the

replacement of stream units.

Example 7.2.2 Figure 42 shows an example of a transmission profile according to the optimal

replacement algorithm for a client with a maximum number of blocks of three. A superscript

number indicates which stream block to be replaced. If the superscript number is the same

as the stream block number, that stream block can be placed in an available memory block.

When the client requests the application, the first three stream blocks are sent. Then, the

client requests stream block 3, the server sends stream block 3 and advises the client to replace

stream block 6, because stream block 6 will not be used until reference 18, whereas stream

block 1 will be used at 5, and stream block 2 at 14. Stream block 4 can be sent to replace

stream block 2 without waiting for the client request since stream block 2 will not be used

until reference 14. When stream block 4 is needed, it will potentially be in memory, reducing

occurrence of stream block misses. In the example, if we only requested a single stream block

at a time based the optimal replacement algorithm, we would have nine occurrences of stream

96

block misses. However, with block streaming, we can potentially reduce occurrences of stream

block misses to six since stream block 1, stream block 2 and stream block 4 are sent without

waiting for the request from the client. 2

� ������ ������ � � � � � � �

�� ���� ��

� �

�

�

�

�

�

�

�

��

�

�

�

��

�

�

�

��

�

�

�

��

�

�

�

��

�

�

�

��	
����������	

����������������	

��	����	����

Figure 42: A transmission profile is created according to the minimum retransmis-
sion policy.

7.3 Security Issues

One very important area not addressed in this dissertation is security. Security risks

may arise while transmitting stream units (network security) or while executing a

stream-enabled application (computer security and thread-safe). We briefly discuss

these security issues in the next two subsections.

7.3.1 Network Security

The softstream protocol is a layer above a connection-oriented protocol such as TCP

which may not be secure. However, the softstream protocol may be implemented so

that it will be a layer above a secure layer such as the secure socket later (SSL) [30].

The secure layer provides network security by encrypting and authenticating data.

Therefore, stream-enabled applications will have lower network security risks.

97

7.3.2 Computer Security

A stream-enabled application could possibly be written such a way that it contains

malicious code. In the public domain such as the Internet, we suggest that stream-

enabled applications should be requested from a trusted server. Furthermore, since

we use a binary rewriting technique, program space is writable. A stream-enabled

application may intentionally modify other applications. A possible solution is to

provide memory protection so that a stream-enabled application cannot write to

another application’s memory space.

7.3.3 Thread-Safe

We implemented a stream-enabled application using two threads: one for downloading

stream units (the softstream loader thread) and the other for running the applica-

tion (the stream-enabled application thread). When a stream block miss occurs, the

stream-enabled thread writes the stream block ID to a shared variable notifying the

softstream loader thread to request the stream unit. We can extend block streaming

to support multi-threading stream-enabled applications by protecting the shared vari-

able using a semaphore or a mailbox. If stream units are allowed to be removed from

memory, the softstream loader/linker can potentially be extended to be thread-safe.

7.4 Summary

The performance of stream-enabled applications can be improved by both statically

transforming code and profiling. Furthermore, small memory footprint embedded

devices can run many applications as if they were fully loaded. The application can

be executed even though the program size is much larger than the actual physical

memory.

In the next chapter, we will discuss the block streaming experiments and results.

98

CHAPTER VIII

EXPERIMENTS AND RESULTS

We verified our software streaming implementation on a hardware/software cosim-

ulation platform and on an MBX860 board. The stream-enabled program file im-

plementation was tested on both a simulation and a board environment, while the

stream-enabled file I/O was tested only on a board environment (the MBX860 board).

8.1 Experimental Setup

In this section, we describe our hardware/software cosimulation environment and our

board environment used. The hardware/software cosimulation environment is used to

debug our stream-enabled profile file method since we can easily examine registers and

memory whereas the board environment is used to measure the actual performance

which includes all overhead.

8.1.1 Simulation Environment

We implemented a tool for breaking up executable binary images in PowerPC assem-

bly into blocks and generating corresponding stream units ready to be streamed to the

embedded device. We simulated our block streaming for program file method using

hardware/software co-simulation tools which consist of Synopsys r© VCS
TM

[36], Men-

tor Graphics r© Seamless CVE
TM

[20], and Mentor Graphics XRAY r© Debugger [20].

Among the variety of processor instruction-set simulators (ISSes) available in Seam-

less CVE
TM

, we chose to use an ISS for the PowerPC 750 architecture. As illustrated

in Figure 43, the simulation environment is a shared-memory system. Each processor

99

runs at 400 MHz while the bus runs at 83 MHz. A stream-enabled application runs

on the main processor. The I/O processor is for transferring data.

������� ������� �	�
����

�������������� �������������

Figure 43: Simulation environment.

8.1.2 MBX860 Broad

For the board setup, we used an MBX860 board [22], [23]. The MBX860 board con-

sists of a PowerPC 860 processor with a 4 MB DRAM, a 2 MB Flash, and a 10 Mbps

Ethernet port. The board runs Linux version 2.4.21-ben2 [19]. As shown in Figure 44,

the MBX860 board is connected to a local area network via a 10 Mbps Ethernet port.

However, the server is located in a different subnet which means the traffic is routed

through network devices such as routers and switches. We also used the Linux Traffic

Shaper [39] (shapercfg version 2.2.12) to regulate the connection bandwidth. Note

that the Linux Traffic Shaper does not regulate connection bandwidth at the exact

configured bandwidth.

��������	
���

�����

������

Figure 44: Experiment setup.

100

8.1.3 Code Size

Table 5 shows softstream program code sizes in number of lines of C. As illustrated,

in Figure 45, he softstream server program and softstream generator program are on

a softstream server. As shown in Figure 45, the softstream client program, softstream

loader/linker program, and SIO function call code are on a client device.

Table 5: Softstream programs.

Program Size (C lines)
Softstream server ≈ 3400
Softstream client ≈ 1400
Softstream generator ≈ 2200
Softstream loader/linker ≈ 1300
SIO function calls ≈ 1500

���������	
��������������	
������

���������	
������

���������	
���������

���������	
�����

���������	
������������

���
�������
�����

Figure 45: Code location.

8.2 Stream-Enabled Program Files

In the following two subsections, we used our block streaming for program file method

to transmit the stream-enabled robotic exploration application from the server to the

robot and obtained the simulation results and the board results.

8.2.1 Simulation Results

In a real case example, the Mars Pathfinder did not function properly because of

priority inversion. When JPL engineers discover the bug, a short C program was

101

uploaded to the robot to solve the problem [15]. We simulated similar scenario where

a robot needed a new code to react to a new environment as described below.

In robot exploration, it may be impossible to write and load software for all

possible environments that the drone will encounter. The programmer may want

to be able to load some code for the robot to navigate through one type of terrain

and conduct an experiment. As the robot explores, it may roam to another type of

terrain. The behavior of the robot could be changed by newly downloaded code for

the new environment. Furthermore, the remote robot monitor may want to conduct

a different type of experiment which may not be programmed into the original code.

The exploration would be more flexible if the software could be sent from the base

station. When the robot encounters a new environment, it can download code to

modify the robot’s behavior. The new code can be dynamically incorporated without

reinitializing all functionality of the robot.

In this robot application, we use the block streaming for program file method

to transmit the software to the robot. A binary application code of size 10 MB

was generated. The stream-enabled application was generated using our softstream

code generation tool. The binary image is divided into blocks for streaming. There

were three off-block branch instructions on average in each block. The software was

streamed over a 128 Kbps transmission media. Table 6 shows average bandwidth

overhead of added code per block and load time for different block sizes. The average

added code per block is 36 bytes (due to an average in each block of three off-block

branches each of which adds 4 bytes, 4 bytes for the start branch number, 4 bytes for

the stream-enabled information size, 4 bytes for the code size, 4 bytes for the stream

unit ID, 4 bytes for softstream ID, and 4 bytes for flow control). This overhead

is insignificant for block sizes larger than 1 KB. The load times were calculated

using only transmission of the stream unit. The results in Table 6 do not include

102

other overhead such as propagation delay (network latency) and processing. If other

overhead was included, the load time would be larger.

Table 6: Simulation results for stream-enabled program files.

Block size (bytes) Total # of blocks Bandwidth overhead/block Load time (s)
10M 1 0.0003% 655.36
5M 2 0.0007% 327.68
2M 5 0.0017% 131.07
1M 10 0.0034% 65.54

0.5M 20 0.0069% 32.77
100K 103 0.0352% 6.40
10K 1024 0.3516% 0.64
1K 10240 3.5156% 0.07
512 20480 7.0313% 0.03

Without using the block streaming method, the application load time would be

over 10 minutes (approximately 655 seconds). If the robot has to adapt to the new

environment within 120 seconds, downloading the entire application would miss the

deadline by more than eight minutes. However, if the application were broken up into

1 MB or smaller blocks, the deadline could be met. Even if the strict deadline is not

crucial, the block streaming method reduces the application load time by more than

ten times for the block sizes of 1 MB or less. The application load time for block size

of 1 MB is approximately 65 seconds whereas the existing method application load

time is more than 655 seconds.

While our sample application is not a full industrial-strength example, it does

verify the block streaming functionality and provides experimental data.

8.2.2 MBX860 Board Results

We also ran the software on a MBX860 board to measure the application load times

for various block sizes. The results are illustrated in Figure 46. The measurements

include all overhead such as processing and network latency. Note the stream blocks

103

of size 5 MB and 10 MB cannot be loaded into memory on the board since they

are too large. We overwrote part of the code which is not used for starting the

program. However, the load time measurements are accurate. Using block streaming

with stream block size of 1 MB, the robot application can start new code 10X faster

than when downloading the entire 1 MB code.

0.03 0.06 0.69 7.25
34.06

66.28

132.49

331.27

662.52

0

100

200

300

400

500

600

700

512 1K 10K 100K 0.5M 1M 2M 5M 10M

Block Size (bytes)

A
p

p
lic

at
io

n
 L

o
ad

 T
im

e
(s

)

Figure 46: Application load time vs. block size for connection speed of 128 Kbps.

We increased the speed of network connection to 1 Mbps to its effect on application

load time. The results are illustrated in Figure 47. When the network connection

speed increases to 1 Mbps, the deadline of 120 seconds is met by all the block sizes,

including downloading the entire file. However, streaming the application with stream

unit size of 1 MB, the application can start running 10X faster than downloading

the entire file. What if the robotic had to adapt to the new environment within

60 seconds? Downloading the entire application would cause the robot to miss its

deadline by more than 13 seconds while streaming with stream unit size of 1 MB

would make the deadline.

104

0.0008 0.0511 0.6916
3.6501

7.3171

14.6445

36.6716

73.3697

0

10

20

30

40

50

60

70

80

1K 10K 100K 0.5M 1M 2M 5M 10M

Block Size (bytes)

A
p

p
lic

at
io

n
 L

o
ad

 T
im

e
(s

)

Figure 47: Application load time vs. block size for connection speed of 1 Mbps.

8.3 Stream-Enabled File I/O

We implemented a stream-enabled file I/O method in C. We tested our implemen-

tation on an MBX860 board which was set up as described in Section 8.1.2. In all

experiments, we configured the connection speed to 128 Kbps. Then, we measured

the performance of our SIO and compared the results with the results obtained by

using NFS version 3 which comes with Linux version 2.4.21 and DD. For DD, we

implement a version of DD using Linux TCP/IP 1.0 for NET4.0 socket to download

the entire file first and then allow the application to access the data. DD is capable

of downloading a file and put it in non-contiguous memory space.

8.3.1 Reading a Data File Using Various Benchmarks

In this experiment, we created four benchmarks, namely, Seq, Rand 1K, Stat and

BSearch to test the performance of SIO, NFS and DD. These four benchmarks sim-

ulate typical activities for reading data from files. The Seq benchmark sequentially

reads a 1 MB data file with a minimal amount of data processing; the data is read and

assigned to a single variable. This benchmark simulates applications which read an

entire file into memory. The Rand 1K benchmark randomly reads 1 KB of data from

105

a 1 MB data file. Since data access is random, this benchmark tests the performance

under such circumstances when the application’s data accesses are unordered and un-

predictable. The Stat benchmark calculates various statistical values of the data in a

1 MB data file. This benchmark simulates applications which interleave reading and

processing of data. Finally, the BSearch benchmark finds a specific value in a 1 MB

file whose data is sorted in ascending order. This benchmark tests the performance

of reading data files which have a known, non-sequential data access characteristic.

The performance comparison of SIO, NFS and DD using these four benchmarks

is shown in Figure 48. Figure 48 shows the time taken to stream and process a

1 MB data file used by each benchmark. For the Seq benchmark, SIO is 1.31X faster

than NFS since SIO streams data while NFS sends data upon request. However,

SIO performs almost the same as DD since the whole file is transmitted and data

processing is minimal. For the Rand 1K benchmark, SIO is 1.83X and 2.16X faster

than NFS and DD, respectively. In this benchmark, a subset of the data is required

at the client. DD takes the longest time since the whole file must be downloaded

whereas SIO and NFS allow data to be access without obtaining all data. For the

Stat benchmark, SIO outperforms NFS and DD. Even though the whole file is needed,

SIO allows computations while the file is being transferred.

For the BSearch benchmark, SIO is 4.95X and 55.83X faster than NFS and DD.

The performance of SIO is much better than both implementations because SIO

uses the data file profiling approach described in Section 6.6. Specifically, we use

a sequential transmission profile for the Seq, Rand 1K, and Stat benchmarks. The

data blocks are sent in the same order as they appear in the file. When the client

requests a data block, the server sends the requested block and the blocks after

the requested block. However, we used a breadth-first transmission profile for the

BSearch benchmark. Data file profiling is used to predict which data block is needed

first. Therefore, the server will stream the block according to the transmission profile.

106

61.33

28.46

73.76

1.12

80.40

52.18

110.48

5.54

65.01
61.36

80.31

62.47

0

20

40

60

80

100

120

Seq Rand 1K Stat BSearch

T
im

e
(s

)

SIO NFS DD

Figure 48: File I/O performance comparisons.

8.3.2 Data Acquisition

In this experiment, we measured the amount of time a game application takes to

acquire a certain amount of data from a 1 MB file over a 128 Kbps connection and

compared our implementation with NFS and DD. The data is read sequentially from

the beginning of the file until the required amount of data is acquired. Note that, in

this experiment, we do not process data; we read the data and store it in memory.

The results are plotted in Figure 49.

For the DD implementation, the amount of time to acquire data varies only slightly

with data size since the entire file must be downloaded independent of the amount

of data needed. In contrast, SIO and NFS implementations allow the application to

process the data after a subset of the data is loaded. Therefore, the amount of time

to acquire a particular amount of data for both implementations depends on the size

of the data. In other words, the amount of time the application takes to acquire data

is proportional to the size of the data. However, the amount of time to acquire data

via SIO approaches the amount of time to download the entire file as the size of data

107

0

10

20

30

40

50

60

70

80

90

0 200 400 600 800 1000
Data (Kbytes)

T
im

e
(s

)

SIO NFS DD

Figure 49: Time to acquire data from a 1 MB file.

approaches the size of the file while the amount of time to acquire data via NFS is

more than the time to download the entire file. The primary reason for this difference

is NFS has a high overhead for transferring data. The high overhead of NFS is due

to the file system support provided.

8.3.3 Data Utilization Rate

Data utilization rate measures how fast data (in KB) is consumed on average (per

second) by the client. In this experiment, we measured the amount of time it takes to

process a 1 MB file using various data utilization rates over a 128 Kbps connection.

The intention of the experiment is to show the effects of the data utilization rate on

the amount of time required to process all data when reading a file which must be

transferred over a link at a particular connection speed. We used a different data

utilization rate to simulate different types of data. For example, encrypted data is

consumed at a different rate than unencrypted data since the encrypted data needs

to be decrypted before it can be used. The results are illustrated in Figure 50.

The experiment shows that SIO outperforms both NFS and DD. When the data

utilization rate is less than the connection data rate, the application spends more time

108

0

40

80

120

160

200

0 20 40 60 80 100 120
Data Utilization Rate (KB/s)

T
im

e
(s

)

SIO NFS DD

Figure 50: The amount of time it takes to process a 1 MB file with various data
utilization rate.

processing the data after all data is transfer to the client. However, when the data

utilization rate is greater than the connection data rate (which in our case is 16 KB/s),

total time is dominated by transfer time. In this experiment, SIO performs better

(i.e., processes the 1 MB file faster) than both NFS and DD for every data utilization

rate measured. The main reason for this in the case of NFS is that SIO streams data

automatically instead of waiting for a request. The main reason for this in the case

of DD is that SIO allows the overlapping of transmission with computation.

8.4 Stream-Enabled File I/O and Stream-Enabled

Program File

In this experiment, we combined block streaming for program file method (SPG) and

block streaming for data file method (stream-enabled file I/O). Then, we compared the

user perceived application load time (the amount of time from when the application is

selected to download to when the application can interact with the user) with the user

perceived application load times obtained when running the application via SPG, NFS

and DD. In the SPG implementation, we embedded all data in the program code.

109

Therefore, all data must be streamed first. We created a simple game application

which has a program file of size 512 KB and a data file of size 1 MB. The game

application contains four scenes, and each scene is rendered using 256 KB of data.

The code needed for rendering the scene occupies 128 KB of memory. The user can

start playing the game after the first scene is rendered. The amount of time the user

has to wait before playing the game is shown in Figure 51.

22.85

72.60

32.38

97.78

0

20

40

60

80

100

SIO+SPG SPG NFS DD

U
se

r
P

er
ce

iv
ed

 A
p

p
lic

at
io

n
 L

o
ad

 T
im

e
(s

)

Figure 51: The amount of time the user has to wait before playing the game.

Using a combination of SIO and SPG (SIO+SPG), the user can start playing

games 3.18X more quickly than using SPG alone, 1.42X more quickly than using

NFS, and 4.28X more quickly than using DD. For the SPG implementation, all data

must be streamed before the needed program code. Therefore, the game application

can start rendering the scene when all data and the needed program code are loaded.

As a result, SPG significantly underperforms NFS. If the game application were im-

plemented using SPG for the program file and DD for the data file, the performance

would still be bounded by file I/O.

110

8.5 Summary

Our embedded software streaming implementation reduces the application load time

significantly depending on the size of the application and the size of blocks while

having minuscule overhead. Our stream-enabled file I/O also performs well for vari-

ous benchmarks. With the combination of stream-enabled program file and stream-

enabled file I/O implementations, a stream-enabled application can achieve a short

application load time and a short file I/O latency.

111

CHAPTER IX

CONCLUSION

Software streaming via block streaming allows a device to start executing an ap-

plication while the application is being transmitted. We presented a method for

transmitting embedded software from a server to be executed on a client device.

Our streaming method can lower application load time, bandwidth utilization and

memory usage. We verified our streaming method using an MBX860 board a hard-

ware/software co-simulation platform for the PowerPC architecture, specifically for

MPC 750 processors. In our experiment, a robotics application that without our

streaming method is unable to meet its deadline. However, with our software stream-

ing method, the application is able to meet its deadline. The application load time

for the application also improves by a factor of more than 10X for the stream block

size of 1 MB when compared to downloading the entire application before running it.

File I/O operations may be accelerated using our stream-enabled file I/O method.

The application can access the data more quickly since the data is likely to be trans-

mitted in the order in which it will be used. We presented a method for transmitting

a data file from a server to a client. We tested our implementation using an MBX860

board running embedded Linux. The experimental results show that our implemen-

tation outperforms the other comparative methods; in our examples, the performance

improves up to 4.95X and 55.83X when compared with network file system and direct

download, respectively.

Advantageously, software streaming enables client devices, especially embedded

devices, to support a wide range of applications by efficiently utilizing resources.

Software streaming also enables small memory footprint embedded devices to run

112

applications larger than the physical memory. Using our approach, the user can ex-

perience a relatively short application load time. Additionally, our method facilitates

software distribution and software updates since software is directly streamed from

the server. In case of a bug fix, the software developer can apply a patch at the

server. The up-to-date version of the software is always streamed to the client device.

Finally, software streaming has the potential to dramatically alter the way software is

executed in the embedded setting where minimal application load time is important

to clients.

113

REFERENCES

[1] Abowd, G., Atkeson, C., Bobick, A., Essa, I., MacIntyre, B., Mynatt,

E., and Starner, T., “Living laboratories: the future computing environments
group at the georgia institute of technology,” in Extended Abstracts of the ACM
Conference on Human Factors in Computing Systems, pp. 215–216, 2000.

[2] Barron, D., The World of Scripting Languages. Chichester, NY: Wiley, 2000.

[3] Callaghan, B., NFS Illustrated. Reading, MA: Addison-Wesley, 2000.

[4] Campbell, R., Managing AFS: the Andrew File System. Upper Saddle River,
NJ: Prentice Hall PTR, 1998.

[5] Dwight, J., Erwin, M., and Niles, R., Using CGI. Indianapolis, IN: Que,
1997.

[6] Eisenhauer, G., Bustamante, F., and Schwan, K., “A middleware toolkit
for client-initiated service specialization,” Operating Systems Review, vol. 35,
no. 2, pp. 7–20, 2001.

[7] Eylon, D., Ramon, A., Volk, Y., Raz, U., and Melamed, S., “Method
and system for executing network streamed application,” U.S. Patent Application
20010034736, Oct. 2001.

[8] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L.,
Leach, P., and Berners-Lee, T., Hypertext Transfer Protocol – HTTP/1.1,
RFC 2616. The Internet Engineering Task Force, June 1999.
http://www.ietf.org/rfc/rfc2616.txt?number=2616.

[9] Fong, P. and Cameron, R., “Proof linking: modular verification of mobile
programs in the presence of lazy, dynamic linking,” ACM Transactions on Soft-
ware Engineering and Methodology (TOSEM), vol. 9, pp. 379–409, Oct. 2000.

[10] Franz, M., “Dynamic linking of software components,” Computer, vol. 30,
pp. 74–81, Mar. 1997.

[11] GCC, http://gcc.gnu.org.

[12] Hartman, J., Manber, U., Peterson, L., and Proebsting, T., “Liquid
software: a new paradigm for networked systems,” Tech. Rep. 96-11, Department
of Computer Science, University of Arizona, Tucson, AZ, June 1996.

[13] Herman, D., UNIX System V NFS Administration. Englewood Cliffs, NJ: PTR
Prentice Hall, 1993.

114

[14] Huneycutt, C., Fryman, J., and Mackenzie, K., “Software caching using
dynamic binary rewriting for embedded devices,” in Proceedings of International
Conference on Parallel Processing, pp. 621–630, 2002.

[15] Jones, M., “What happened on mars?,” Dec. 1997.
http://www-2.cs.cmu.edu/afs/cs/user/raj/www/mars.html.

[16] Krintz, C., Calder, B., Lee, H., and Zorn, B., “Overlapping execution
with transfer using non-strict execution for mobile programs,” in Proceedings of
International Conference on Architectural Support for Programming Languages
and Operating Systems, pp. 159–169, 1998.

[17] Labrosse, J., MicroC/OS-II: the real-time kernel. Lawrence, KS: R & D Pub-
lications, 1999.

[18] Lindholm, T. and Yellin, F., The Java Virtual Machine Specification. Read-
ing, MA: Addison-Wesley, second ed., 1999.

[19] The Linux Kernel Archives, http://www.kernel.org.

[20] Mentor Graphics Corp., http://www.mentor.com.

[21] Meyer, J. and Downing, T., Java Virtual Machine, pp. 44–45. Cambridge,
MA: O’Reilly, 1997.

[22] Motorola, Inc., Data Sheet: MBX 860.
http://mcg.motorola.com/us/ds/pdf/ds0134.pdf.

[23] Motorola, Inc., Tempe, AZ, MBX Series Embedded Controller Installation and
Use, MBXA/IH1 ed., July 1997.
http://mcg.motorola.com.

[24] Motorola, Inc., Tempe, AZ, PowerPC Microprocessor Family: the programming
environments for 32-bit microprocessors, MPCFPE32B/AD ed., 1997.
http://mcg.motorola.com.

[25] Muthitacharoen, A., Chen, B., and Mazières, D., “A low-bandwidth
network file system,” in Proceedings of ACM Symposium on Operating Systems
Principles, pp. 174–187, 2001.

[26] Nahum, E., Barzilai, T., and Kandlur, D., “Performance issues in WWW
servers,” IEEE/ACM Transactions on Networking, vol. 10, pp. 2–11, Feb. 2002.

[27] Pavlidis, T., Fundamentals of X programming: graphical user interfaces and
beyond. New York, NY: Kluwer Academic, 1999.

[28] Postel, J. and Reynolds, J., FILE TRANSFER PROTOCOL (FTP),
RFC 959. The Internet Engineering Task Force, Oct. 1985.
http://www.ietf.org/rfc/rfc0959.txt?number=959.

115

[29] Raz, U., Volk, Y., and Melamed, S., “Streaming modules,” U.S. Patent
6,311,221, Oct. 2001.

[30] Rescorla, E., SSL and TLS : designing and building secure systems. Boston,
MA: Addison-Wesley, 2001.

[31] Santifaller, M., TCP/IP and NFS: internetworking in a UNIX environment.
Reading, MA: Addison-Wesley, 1991.

[32] Scheifler, R. and Gettys, J., X Window System: core and extension proto-
cols: X version 11, releases 6 and 6.1. Boston, MA: Digital Press, 1997.

[33] Shepler, S., Callaghan, B., Robinson, D., Thurlow, R., Beame, C.,
Eisler, M., and Noveck, D., Network File System (NFS) version 4 Protocol,
RFC 3530. The Internet Engineering Task Force, Apr. 2003.
http://www.ietf.org/rfc/rfc3530.txt?number=3530.

[34] Silberschatz, A., Galvin, P., and Gagne, G., Applied Operating System
Concepts. New York, NY: John Wiley, first ed., 2000.

[35] Stallings, W., Operating Systems: internals and design principles. Upper
Saddle River, NJ: Prentice Hall, fourth ed., 2001.

[36] Synopsys, Inc., http://www.synopsys.com.

[37] Tanenbaum, A., Operating Systems: design and implementation. Upper Saddle
River, NJ: Prentice Hall, second ed., 1997.

[38] Tobbicke, R., “Distributed file systems: focus on Andrew File Sys-
tem/Distributed File Service (AFS/DFS),” in Proceedings of IEEE Symposium
on Mass Storage Systems, pp. 23–26, 1994.

[39] Traffic Shaper, Red Hat, http://www.redhat.com.

[40] uClibc, http://www.uclibc.org.

[41] van der Linden, P., Not just Java: a technology briefing. Mountainview, CA:
Sun Microsystems Press, second ed., 1999.

[42] van der Werff, M., de Grijp, M., Vrind, S., and Haverkort, B., “The
X Window System over ISDN–a performance study,” in Proceedings of Teletraffic
Symposium, pp. 1/1–1/7, 1993.

[43] Venkitachalam, G. and cker Chiueh, T., “High performance Common
Gateway Interface invocation,” in Proceedings of IEEE Workshop on Internet
Applications, pp. 4–11, 1999.

[44] Venners, B., Inside the Java Virtual Machine. New York, NY: McGraw-Hill,
1998.

116

[45] Wang, P., Java with Object-Oriented Programming and World Wide Web Ap-
plication, pp. 193–194. Pacific Grove, CA: Brooks/Cole Pub., 1999.

[46] X.Org Foundation, http://www.x.org.

117

PUBLICATIONS

This dissertation is based on and extends the work and results presented in the

following publications:

[1] Kuacharoen, P. and Mooney, V., “Block streaming for embedded sys-
tems,” to be published in Proceedings of the Mobility Conference & Exhibition,
Aug. 2004.

[2] Kuacharoen, P., Mooney, V., and Madisetti, V., “Software stream-
ing via block streaming,” in the book Embedded Software for SoC, edited by
Jerraya, A., Yoo, S., Verkest, D. and Wehn, N., Boston, MA: Kluwer
Academic Publishers, pp. 435–448, Sep. 2003.

[3] Kuacharoen, P., Mooney, V., and Madisetti, V., “Software streaming
via block streaming,” in Proceedings of the Design Automation and Test in
Europe, pp. 912–917, Mar. 2003.

[4] Kuacharoen, P., Mooney, V., and Madisetti, V., “Methods and systems
for transmitting application software,” U.S. Patent Application 20040006637,
Jan. 2004.

The following publications are related but not covered in this dissertation:

[1] Akgul, B., Mooney, V., Thane, H., and Kuacharoen, P., “Hardware
Support for Priority Inheritance,” in Proceedings of the IEEE Real-Time Sys-
tems Symposium, pp. 246-254, Dec. 2003.

[2] Kuacharoen, P., Shalan, M., and Mooney, V., “A configurable hardware
scheduler for real-time systems,” in Proceedings of the International Conference
on Engineering of Reconfigurable Systems and Algorithms, pp. 96–101, June
2003.

[3] Kuacharoen, P., Akgul, T., Mooney, V., and Madisetti, V., “Adapt-
ability, extensibility, and flexibility in real-time operating systems,” in Proceed-
ings of the EUROMICRO Symposium on Digital Systems Design, pp. 400–405,
Sep. 2001.

[4] Akgul, T., Kuacharoen, P., Mooney, V., and Madisetti, V., “A de-
bugger RTOS for embedded systems,” in Proceedings of the 27th EUROMICRO
Conference, pp. 264–269, Sep. 2001.

118

[5] Kuacharoen, P., Akgul, T., Mooney, V., and Madisetti, V., “Dynamic
operating system,” U.S. Patent Application 20030074487, Apr. 2003.

[6] Akgul, T., Kuacharoen, P., Mooney, V., and Madisetti, V.,
“Debugger operating system for embedded systems,” U.S. Patent Application
20030074650, Apr. 2003.

119

