
Adaptive Analog VLSI Signal Processing and Neural

Networks

A Thesis
Presented to

The Academic Faculty

by

Jeff Dugger

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

School of Electrical and Computer Engineering
Georgia Institute of Technology

November 2003

Copyright c© 2003 by Jeff Dugger

Adaptive Analog VLSI Signal Processing and Neural

Networks

Approved by:

Professor Paul Hasler, Advisor

Professor David Anderson

Professor Mark Clements

Professor Steve DeWeerth

Professor Dieter Jaeger
(Emory University)

Date Approved 24 November 2003

To my father, Don Dugger, and to my mother, Shirley Dugger.

iii

PREFACE

While the digital world frantically pursues ever-faster clock speeds to satisfy demanding sig-

nal processing applications, a quiet revolution in analog computing has been brewing, which

promises to do more with less — more sophisticated signal processing delivered at less power

in a smaller space. Novel application of a digital memory technology, the floating-gate MOS-

FET (used in EEPROMs), as an analog memory and computation device provides the basic

building block of this technology. Utilization of inherent device physics provides the adap-

tivity and programmability needed to realize compact reconfigurable analog VLSI systems.

Floating-gate charge storage provides non-volatile memory for a matrix of coefficients, while

the nonlinear current-voltage relation of the MOSFET provides signal-coefficient multipli-

cation. Summation of products is achieved simply using Kirckhoffs Current Law. Matrix

coefficients adapt according to a correlation learning rule which utilizes physical device phe-

nomena (electron tunneling and hot-electron injection) to program floating-gate charge. All

of this functionality costs only four transistors per coefficient, each operating at nanowatts

of power consumption. The resultant adaptive analog matrix-vector operations form the

core of a novel analog VLSI signal-processing model, which is called computing in memory.

Peripheral circuitry determines learning behavior, controls programmability, and expands

core matrix functionality.

iv

ACKNOWLEDGEMENTS

I wish to thank my colleagues in the Integrated Computational Electronics lab for their

encouragement and support, particularly Venkatesh Srinivasan for assistance with the design

and construction of the adaptive test board, as well as producing some of the simulation

results in Chapter 6.

v

TABLE OF CONTENTS

DEDICATION . iii

PREFACE . iv

ACKNOWLEDGEMENTS . v

LIST OF TABLES . ix

LIST OF FIGURES . x

SUMMARY . xix

I INTRODUCTION TO ADAPTIVE ELECTRONIC SYSTEMS 1

1.1 Basic Neural Network Theory . 2

1.1.1 Feedforward Computation . 3

1.1.2 Adaptation . 8

1.2 VLSI Implementations of Neural Networks 9

1.2.1 Neuron Design . 10

1.2.2 Synapse Design . 11

1.2.3 Analog vs. Digital Circuits . 13

1.2.4 Memories for VLSI Neural Networks 14

1.2.5 Floating-Gate Technology for VLSI Neural Memories 15

II FLOATING-GATE SYNAPSE FUNDAMENTALS 17

2.1 Floating-Gate Transistor Basics . 18

2.2 Charge Adaptation through Electron Tunneling and Hot-Electron Injection 20

2.2.1 Electron Tunneling . 20

2.2.2 Hot-Electron Injection . 22

2.3 Investigating Signal-Adaptive Behavior in Floating-Gate Circuits 23

2.3.1 Separation of Timescales . 24

2.3.2 Fast-Timescale Behavior . 25

2.3.3 Slow Timescale Behavior . 26

2.3.4 The Autozeroing Floating-Gate Amplifier 28

2.3.5 Source-Degenerated pFET Devices: Modeling and Behavior 30

2.4 Concluding Comments . 35

vi

III THE FLOATING-GATE PFET CORRELATION LEARNING RULE 36

3.1 Weight Update for the Continuously Adapting pFET Synapse 36

3.2 Effects of Drain Voltage on the Equilibrium Weight 37

3.3 Effects of Gate Voltage on the Equilibrium Weight 39

3.4 Equilibrium Weight is Determined by Correlations Between Gate and Drain
Voltages . 41

3.5 Hebbian Learning Rule from Approximated Weight Dynamics 43

3.6 Concluding Comments . 44

IV FROM FLOATING-GATE SYNAPSES TO FLOATING-GATE NODES 46

4.1 A Simple Two-Input Floating-Gate Node 47

4.1.1 Simple Floating-Gate Learning Node Experiments 50

4.1.2 Learning a Square Wave from Sinusoidal Inputs 51

4.2 Removal of Non-Ideal Effects in the Correlation Learning Rule 53

4.2.1 Harmonic Distortion, Gate Variance, and Gate Pre-Distortion . . . 54

4.2.2 Drain Variance Effects, Drain Pre-Distortion, and Signal Correlations 57

4.2.3 Cancelling Constant Offset and Gate Variance in the Weight 59

4.3 Concluding Comments . 61

V GENERAL LEAST-MEAN-SQUARES LEARNING IN FLOATING-GATE
NODES . 62

5.1 Issue of Weight Decay for Physical LMS computation structures 62

5.2 The LMS Floating-Gate Synapse Circuit 66

5.2.1 Feedforward Synapse Computation 67

5.2.2 Weight Adaptation and the Floating-Gate Correlation Learning Rule 70

5.2.3 Amplitude Correlation Experiments 73

5.3 The Least-Mean-Square (LMS) Learning Rule 76

5.4 The Two-Input Adaptive Node . 77

5.5 Concluding Comments . 81

VI FROM SIMPLE NODES TO ADAPTIVE NETWORKS 82

6.1 The n-Input Node . 82

6.2 A Multiple-Input/Multiple-Node Adaptive Floating-Gate Integrated Circuit 84

6.2.1 Hardware Test and Development System 85

vii

6.3 All-Transistor Synapse Circuit Model and Simulation 87

6.4 Fourier Series Example . 92

6.5 Example Application: Adaptive Channel Equalization 93

6.6 Concluding Comments . 95

VII CONCLUSIONS . 96

APPENDIX A — OJA’S RULE DERIVATION 98

viii

LIST OF TABLES

Table 1 Tunneling parameter, Vx, versus IC fabrication process. 22

Table 2 Definition of constants in equations (26) and (30) 32

ix

LIST OF FIGURES

Figure 1 Classic picture of a two-layer neural network from the perspective of im-
plementating these networks in hardware. The neural networks are lay-
ers of simple processors, called neurons, interconnected through weighting
elements, called synapses. The neurons aggregate the incoming inputs
(including a threshold or offset) and are applied through a tanh(·) non-
linearity. The synapse elements, which in general are far more numerous
than neuron elements, must multiply the incoming signal by an internally
stored value, called the weight, and must adapt this weight based upon a
particular learning rule. Learning rules implemented in silicon are typically
functions of correlations of signals passing through each synapse processor. 2

Figure 2 Typical architectures for neural network implementations. Although the
routing looks complicated in Fig. 1, it can be easily implemented in a mesh
architecture. Diagram of the Classic Mesh Architecture, typically used for
fully-connected systems. 3

Figure 3 Typical architectures for neural network implementations. Although the
routing looks complicated in Fig. 1, it can be easily implemented in a
mesh architecture. Diagram of a Mesh processor architecture optimized
for nearest-neighbor computations. 4

Figure 4 Learning in a single layer. We can build either supervised algorithms (LMS
is explicitly shown) or unsupervised one-layer networks in this architecture. 5

Figure 5 Building a multilayer architecture from one-layer mesh structures. Mul-
tiple layers can be directly combined to form multilayer neural networks;
each layer will rotate 90 degrees from the previous layer. 6

Figure 6 Possible architectures for adaptive multilayer neural networks. Implemen-
tation for Backpropagation networks. There are many forms and modifi-
cations, but from an implementation viewpoint, these approaches can be
modified towards this architecture. This approach significantly increases
synapse size, because one typically requires the complexity of two synapses
for weight feedback. Further, this approach limits some circuit approaches
to building dense synapses. The output from the hidden layer, or layer 1,
is yh and the error signal given to the hidden layer is eh. The synapses in
the second layer must also output a current proportional to the product of
the error and the stored weight; the sum of these currents along a column
is the error for the next layer. As a result, the synapses on the second layer
must be more complex. 7

x

Figure 7 Possible architectures for adaptive multilayer neural networks. Implemen-
tation using Helmholtz machine concepts. This approach requires twice as
many synapses for all but the first layer, which yields the same complexity
as the Backpropagation approaches. This approach will converge to the
same steady states, only requires a modular tiling of single layer networks,
and its reciprocal feedback has a similar feel to communication between
layers of cortical neurons. 8

Figure 8 Dynamic storage of analog values on capacitors. (a) Circuit schematic
illustrating voltage storage on a capacitor and leakage current through
a pn junction. (b) Plot of the stored voltage versus time. The voltage
decreases linearly over time since the leakage current is constant. 14

Figure 9 Layout, cross section, and circuit diagram of the floating-gate pFET in a
standard double-poly nwell MOSIS process. The cross section corresponds
to the horizonatal line slicing through the layout (or top) view. The pFET
transistor is the standard pFET transistor in the nwell process. The gate
input capacitively couples to the floating-gate by either a poly-poly capac-
itor, a diffused linear capacitor, or a MOS capacitor, as seen in the circuit
diagram (not explicitly shown in the other two figures). We add floating-
gate charge by electron tunneling, and we remove floating-gate charge by
hot-electron injection. The tunneling junction used by the single-transistor
synapse is a region of gate oxide between the polysilicon floating-gate and
nwell (a MOS capacitor). Between Vtun and the floating-gate is our sym-
bol for a tunneling junction, a capacitor with an added arrow designating
the charge flow. 18

Figure 10 The tunneling junction is the capacitor between the floating gate and the
nwell (a MOScap); we use high-quality gate oxide to reduce the effects of
electron trapping. Over a wide range of oxide voltage, most of the tunneling
occurs between the floating gate and n+ diffusion region because this region
is accumulated and the higher electric fields at the corner of the floating
gate. 20

Figure 11 Electron tunneling current versus 1/oxide voltage in a 2.0µm process with
42nm gate oxide. The two straight line fits are to the classic Fowler-
Nordheim expression in (6). The two different straight-line regions might
be due to tunneling through intermediate traps, or due to initially tunnel-
ing through the junction edge for low oxide voltages and tunneling through
the middle of the junction for high oxide vo ltages. 21

Figure 12 Band diagram of a subthreshold pFET transistor under conditions favor-
able for hot-electron injection. Eox is the Si–SiO2 barrier, which is 3.1eV
for no field across the oxide. 23

xi

Figure 13 pFET hot-electron injection. Measured data of pFET injection efficiency
versus the drain-to-channel voltage for four source currents. Injection ef-
ficiency is the ratio of injection current to source current. The injection
efficiencies are nearly identical for the different source currents; therefore,
they appear to be indistinguishable on the plot. At Φdc equal to 8.2V ,
the injection efficiency increases by a factor of e for an increase in Φdc of
250mV . 24

Figure 14 The autozeroing floating-gate amplifier (AFGA). 27

Figure 15 Response of the AFGA to a 1Hz sinewave superimposed on a 19s voltage
pulse. The AFGA has a closed-loop gain of 11.2, and a low-frequency cutoff
at 100 mHz. We see that the signal is amplified, but the much slower step
is adapted away. 29

Figure 16 Minimum and maximum output voltages versus the peak-to-peak output-
voltage amplitude. The frequency of the input sine wave was 100Hz; the
AFGA had a gain of 146. For small input amplitudes, the minimum and
maximum output voltages symmetrically deviate from the steady-state
voltage; for large input amplitudes, however, the DC output voltage fol-
lows the maximum output voltage. The DC voltage was fit to the function
0.5 ln(I0(Vdc / 1.0V)), which is equal to (25) with Vinj =500mV. 31

Figure 17 The source-degenerated (s-d) pFET synapse. The s-d pFET modifies the
basic pFET dynamics by local negative-feedback; the device converges to
a stable equilibrium for either a constant current or voltage. Circuit di-
agram of the s-d pFET synapse. The s-d pFET synapse is comprised
of a floating-gate pFET synapse and a second ultra -short pFET, which
provides feedback to the source terminal. We utilize the DIBL effect in
short-channel MOSFETs to build a compact weakly exponential element. 33

Figure 18 The behavior of the current autozeroing circuit using a source-degenerated
pFET synapse. Unlike the pFET synapse, this circuit converges to its
steady-state current. We use this data to measure weight changes versus
time. The tunneling voltage was held at a constant value throughout
this experiment; there was non-negligible tunneling and injection current
throughout this experiment. 34

Figure 19 Plot of the time-derivative of w versus w for the pFET, and source-degenerated
pFET synapses. The arrows show the direction that the differential equa-
tion will take. This data shows that the pFET synapse will diverge from
the w = 1 steady state, but that source-degenerated synapses will stabi-
lize to the w = 1 steady state. The s-d pFET modifies the basic pFET
dynamics by local negative-feedback. We use zero ∆V̂g and zero ∆V̂g . . 35

xii

Figure 20 Experimental measurements of floating-gate dynamics from a 0.5µ gate-
length process. The gate input is a step decrease in voltage followed later
by a step increase in voltage. We used a power supply voltage, Vdd =
5.60V , and tunneling voltage, Vtun = 15.65V , to set the operating point
for these experiments, as well as the other measurements in this paper. (a)
Convergence of the output current of a single synapse back to equilibrium
after the step perturbations. The response is nonlinear with asymmetries
between tunneling and injection. These nonlinear asymmetries are what
allow us to compute correlations. b Time derivative of the weight (ẇ) vs.
weight value (w). We graphically see that weight value converges toward
its equilibrium level. 37

Figure 21 Change in the dynamical weight equation due to sinusoidal signal ampli-
tudes at only the drain terminal. The gate terminal is remaining at a
fixed voltage through this experiment. dw

dt versus w for three drain input
amplitudes. 38

Figure 22 Change in the dynamical weight equation due to sinusoidal signal ampli-
tudes at only the drain terminal. The gate terminal is remaining at a fixed
voltage through this experiment. Equilibrium w (weq) versus drain input
amplitude. 39

Figure 23 Change in the dynamical weight equation due to sinusoidal signal am-
plitudes at only the gate terminal. The drain voltage is remaining at a
fixed voltage through this experiment. dw

dt versus w for three gate input
amplitudes. 40

Figure 24 Change in the dynamical weight equation due to sinusoidal signal ampli-
tudes at only the gate terminal. The drain voltage is remaining at a fixed
voltage through this experiment. Equilibrium weight (weq) versus gate
input amplitude. 41

Figure 25 dw/dt vs. w for varying ∆Vd and fixed ∆Vg. This data gives strong
evidence for our learning rule, τ ′ dw

dt = −w + ηE[xy]. 42

Figure 26 Change in the dynamical weight equation due to correlated sinusoidal sig-
nal amplitudes between the gate and drain terminals. Change in the dy-
namical weight equation due to different size drain amplitudes for three
different gate amplitudes. 43

Figure 27 Change in the dynamical weight equation due to correlated sinusoidal sig-
nal amplitudes between the gate and drain terminals. Change in the dy-
namical weight equation due to various degrees of correlation (phase dif-
ference) between sinusoidal input signals at the gate and drain terminals. 44

xiii

Figure 28 The differential synapse array enables four quadrant multiplication of weights
with inputs. Each floating-gate transistor behaves as a transistor amplifier
with an adaptive gain. Adaption occurs through slow-timescale dynamics
due to the tunneling and injection process at the floating-gates. We con-
tinuously adapt the synapses with the positive signals, and we program
the synapses with negative signals to balance the steady-state current of
the positive synapse. The network output is the total drain current, and
the learning signal is the applied drain voltage. By applying the appro-
priate relationship between output drain current and the resulting drain
voltage, we could get a variety of learning rules. Since pFET hot-electron
injection is unstable when channel current is the free parameter, we sta-
bilize each synapse element by incorporating DIBL transistors to provide
source-degenerative feedback. 47

Figure 29 Experimental measurements of positive synapse current phase correlations.
We would program the negative synapses to currents of 5.5µA (w−

1) and
3.5µA (w−

2), and therefore both weights are either positive or negative.
These results show correlations between a specific gate and global drain
terminal direct the convergence of that synapse’s weight. 48

Figure 30 Experimental measurements of frequency correlations for sinusoidal inputs
to the two-input node given by Vg1 = sin(2π3ft) and Vg2 = sin(2πft).
The learning signal, Vd = sin(2πfdt), takes on three different frequen-
cies fd = 0.7f, f, 3f . Current outputs from our differential synapses. We
programmed our negative weights to offset the positive synapse current
measured with input signals with the same signal variance. We see that
the synapse that has an identical synapse input frequency as the drain
signal has a non-zero weight. 49

Figure 31 Experimental measurements of a square wave learning signal applied to Vd

Time course of steady-state currents showing convergence of weights. . . 50

Figure 32 Experimental measurements of a square wave learning signal applied to Vd

Spectrum of output current shows amount of each node input frequency
matched to frequency components in learning signal. The frequency axis is
normalized; the frequency does not affect these results until it approaches
the adaptation rate. We obtain 1 and 1/3 for the fundamental and third
harmonics as expected. The fifth harmonic appears due to the drain volt-
age coupling into the floating gate through overlap capacitance. 51

Figure 33 The pre-distort circuit is a simple current mirror which implements ∆Vg =
Vmg ln(1 + x) to eliminate harmonic distortion in the output current. . . 52

Figure 34 The pre-distort circuit for the drain voltage implements ∆Vd = Vmd ln(1+
y) to eliminate drain variance terms in the weight value. 53

xiv

Figure 35 This plot shows the DC value (subtracting the equilibrium current) and
2nd harmonic of the drain current vs. gate voltage pre-distort value. The
gate pre-distortion is given by ∆Vg = Vmg ln(1 + A sin ωt) for ∆Vd = 0.
We find that the appropriate pre-distort factor (Vmg ≈ −0.6V)to be that
which makes the 2nd harmonic to be zero and coincides with the non-zero
root of Idc − Ieq. Ieq is the value the drain current assumes when there is
no signal input. 54

Figure 36 These plots compare the dc values and second-harmonic values of the drain
current vs. gate voltage amplitude both with and without pre-distortion.
We see that the dc value follows a similar quadratic form in both cases,
implying that there is still significant gate variance with pre-distortion for
a given pre-distort value. The second-harmonic plot shows that harmonic
distortion has been significantly reduced. 55

Figure 37 A plot of DC value of the drain current (weight) vs. drain voltage ampli-
tude for a pre-distorted sinusoid applied to the gate and a non-distorted
sinusoid applied to the drain. The gate variance contributes to constant
offsets in the data. The quadratic drain variance term masks the linear
correlation term. 56

Figure 38 This plot shows the DC value of the drain current vs. drain voltage am-
plitude when ∆Vd = Vmd ln(1 + A sin ωt) with ∆Vg = 0. Here we have
plots for several values of Vmd. We choose that value of Vmd = −0.22V
(corresponding to the flattest curve) as the appropriate distortion factor
to eliminate drain variance effects from the weight value. 57

Figure 39 The top figure is a plot of the dc current (weight) minus the equilibrium
current value and those current offsets due to gate variance vs. the am-
plitude of the drain voltage. We see that the quadratic effect due to drain
variance has been eliminated. The curves presented have a tanh form due
to the relationship between the signal amplitude and drain voltage ampli-
tude because of pre-distortion. The bottom figure shows the same data
plotted vs. signal amplitude revealing linear correlations. Steeper slopes
correspond to larger gate voltages. Thus, we see that w ∝ −E[xy], where
x and y are sinusoidal signals to be pre-distorted, is verified. 58

Figure 40 In the ideal situation of no mismatch, an adapting differential pair of
floating-gate devices would cancel both the gate-variance and constant
terms out of the correlation learning rule. 59

Figure 41 Plot of dc current values (weights) minus equilibrium values for two dif-
ferent source-degenerated floating-gate pFETs vs. gate voltage amplitude.
Tunneling junction mismatch leads to significant differences in the gate-
variance terms in the correlation learning rule. The legend demonstrates
the large variation of equilibrium current values also due to mismatch. . 60

Figure 42 The Source-Follower Floating-Gate (SFFG) synapse. 63

xv

Figure 43 Block diagram of a single adaptive floating-gate node. Because the synapse
elements far outnumber all of the other components, each synapse element
must be as small as possible. Filters extract the output signal (y) from its
slow-timescale and DC bias currents. Program circuitry on the periphery
allows us to set the initial conditions and / or to restart the weights in a
known state when experimenting with various algorithms. 64

Figure 44 Basic block diagram for a weight update using transistors for the weight
update element. The result is either non-negligible weight decay or a dif-
ficult analytical system to control. Therefore in practice, we would design
our weight decay to be small enough for our algorithm but large enough
to achieve the desired level of stability. 65

Figure 45 Building a node from a correlating synapse element. Full circuit with re-
quired peripheral interface circuitry. Interface circuitry linearizes synapse
computation and adaptation. The figure also shows programming circuitry
needed to set all of the floating-gate elements. Vtun1 is the tunneling line
for the adaptive and programmed floating-gate elements, where Vtun2 is
the tunneling line for the program only floating-gate elements. 67

Figure 46 10.9513.6=1111The bandwidth of the pre-distort input current mirror lim-
its the speed of the feedforward computation. Bandwith depends on the
bias current, , and the total capacitance seen at the node, . One pre-distort
mirror feeds the input current to each column of the adaptive matrix, driv-
ing the capacitance on m-rows of the matrix. 69

Figure 47 Amplitude correlation results for sinusoids of same frequency and phase
with input and error signal amplitudes of 0.3. (a) Synapse output current
vs. time. Sinusoidal signals are turned on at 16 seconds and turned off at
48 seconds. (b) Extracted dimensionless weight value vs. time, showing
convergence to steady-state due to correlations affected by weight decay
(c) Extracted dimensionless signal amplitude vs. time, which follows a
path similar to the weight, increasing from zero to a steady-state value.
Without an input signal, the output is zero due to multiplicative effects. 73

Figure 48 Basic correlating floating-gate synapse measurements for an individual iso-
lated synapse element. We measured the initial slope from this synapse
for multiple input (sinewave) amplitudes near the zero-input steady-state
condition. This initial slope shows the correlation function used by this
LMS synapse; steady-state solution has less meaning for an LMS synapse
with small weight decay. 74

Figure 49 Results for a single-weight LMS experiment. The input signal is a sinusoid
of fixed amplitude; the target signal has frequency and phase identical to
the input, but varying amplitude. Steady-state weight values for the single-
weight LMS experiment are plotted versus target signal amplitude. The
steady-state weight value is a linear function of the target signal amplitude.
We have plotted the results for several gain levels. 75

xvi

Figure 50 Results for a single-weight LMS experiment. The input signal is a sinusoid
of fixed amplitude; the target signal has frequency and phase identical to
the input, but varying amplitude. Transient solution for a given target
signal amplitude of the single-weight LMS experiment shows the output
signal for this trial tracking the target signal. 76

Figure 51 Experimental setup for examining Least-Mean-Squares behavior in a two-
input node. A scaling operation followed by application of a rotation ma-
trix to an orthogonal signal-space basis of harmonically related sinusoids
yields the system input signals; the fundamental sinusoid is chosen as the
target. The experiment runs for different values of θ, uniformly sampled
from a circle. 77

Figure 52 Two-input Least-Mean-Squares experimental results for the source-follower
floating-gate synapse circuit. Measured data for the case θT = 0 and
λ1 = λ2 show steady-state weight dependence on the parameter, θ, of the
two-dimensional input mixing-matrix. As expected from equation (84),
we get a cosine curve for the first weight, and a sine curve for the second
weight. 78

Figure 53 Two-input Least-Mean-Squares experimental results for the source-follower
floating-gate synapse circuit. Measured data for the same case is plotted
as one steady-state weight versus the other. An ideal LMS rule would
produce a circle similar to our circuit results. 79

Figure 54 Two-input Least-Mean-Squares experimental results for the source-follower
floating-gate synapse circuit. Illustration of measured data compared with
model results computed from equation (83) assuming non-zero constant
weight decay for the case where λ1 = 1, λ2 = 2, and θT = π/3. The gain of
the filter and the amplitude of the input signals determine the scale of the
ellipse. The open circles show steady-state values measured from the actual
circuit. The asterisks and the corresponding fit-line illustrate computed
model results. We observe good agreement between the measured data
and the computed values. As predicted in the text, the results form an
ellipse. 81

Figure 55 The source-follower floating-gate synapse (SFFG) that was introduced in
the preceding chapter. The chip described in the text contains an array of
4 rows and 16 columns of this circuit. 83

Figure 56 Functional diagram of the SFFG array chip described in this chapter. The
chip, fabricated through MOSIS in a 0.5µm process, contains an array
with 16 column inputs and 4 row outputs. Additional circuitry around
the periphery allows for programming the array as desired. The pre- and
post-distort circuitry particular to this design and the SFFG cell appear
in the accompanying figures. 84

xvii

Figure 57 The pre-distort circuit for each column of the array includes an extra
floating-gate pFET for adjusting the charge on the charge on gate of the
pre-distort transistor. The nFET mirror provides the input signal to the
pre-distort circuit as well as feeds the pFET input to the source-follower
bias transistor in the SFFG synapse for the correlation learning rule. . . 85

Figure 58 The post-distort circuit for each row of the array includes a switchable
capacitor bank that allows for tuning the post-distort factor. The floating-
gate pFET on the far left provides a means for setting the charge on the
post-distort circuit gate node. The two pFET transistors and the nFET
mirror on the right provide the error signal for the correlation learning rule. 86

Figure 59 Sample-and-hold circuit formed by a capacitor and a unity-gain follower
provides analog multiplexing allowing one input pin to drive sixteen synapse
inputs. 87

Figure 60 Photograph of the adaptive system test and measurment circuit board. . 88

Figure 61 Functional diagram of the custom circuit board which appears in Fig. 60.
Two floating-gate synapse array chips form the heart of the test system.
One of the arrays has its floating-gate charge programmed to a bias point,
while the second array is allowed to adapt. The programmed array provides
a zero-point for for quadrant multiplication. The differential inputs, +xn

and −xn are applied as a stream of time-division multiplexed samples from
the FPGA through the parallel DACS. The target signals for learning, ŷm,
are applied through through a serial DAC. The bias signals, including
power-supply and tunneling voltages, are also supplied from the DACs.
Finally, the output currents for each and programming currents are The
signals determining the mode of operation, run and ¯run are also provided
by the FPGA. 89

Figure 62 Integrator-based current-to-voltage converter 90

Figure 63 Schematic of the All-Transistor Synapse (ATS) model of the Source-Follower
Floating-Gate (SFFG) synapse . 91

Figure 64 Comparison of system output and the square wave target signal for the
ATS model Fourier LMS simulation. 92

Figure 65 Fourier spectra comparing the learned system weights with the target sig-
nal square wave coefficients. 93

Figure 66 Adaptive channel equalization filter . 94

Figure 67 Circuit diagram of a capacitively coupled current conveyer (C4). This is
a bandpass filter with electronically tunable corner frequencies (controlled
by vτl and vτh) that can be moved independently of one another. The roll
offs are first-order. 95

xviii

SUMMARY

Research presented in this thesis provides a substantial leap from the study of

interesting device physics to fully adaptive analog networks and lays a solid foundation for

future development of large-scale, compact, low-power adaptive parallel analog computation

systems. The investigation described here started with observation of this potential learning

capability and led to the first derivation and characterization of the floating-gate pFET

correlation learning rule. Starting with two synapses sharing the same error signal, we

progressed from phase correlation experiments through correlation experiments involving

harmonically related sinusoids, culminating in learning the Fourier series coefficients of

a square wave [13]. Extending these earlier two-input node experiments to the general

case of correlated inputs required dealing with weight decay naturally exhibited by the

learning rule. We introduced a source-follower floating-gate synapse as an improvement over

our earlier source-degenerated floating-gate synapse in terms of relative weight decay [15].

A larger network of source-follower floating-gate synapses was fabricated and an FPGA-

controlled testboard was designed and built. This more sophisticated system provides an

excellent framework for exploring applications to multi-input, multi-node adaptive filtering

applications. Adaptive channel equalization provided a practical test-case illustrating the

use of these adaptive systems in solving real-world problems. The same system could

easily be applied to noise and echo cancellation in communication systems and system

identification tasks in optimal control problems. We envision the commercialization of

these adaptive analog VLSI systems as practical products within a couple of years.

xix

CHAPTER I

INTRODUCTION TO ADAPTIVE ELECTRONIC

SYSTEMS

Seeing, walking, and navigating an unknown environment are just a few of the sensory,

motor, and cognitive abilities at which biological systems excel, but which are difficult for

the best man-made computing systems. While a computer can prove theorems that tax

the best human minds, a baby is superior to a digital computer in many respects. For

example, a baby is better and faster at visually recognizing objects or faces than the most

advanced AI algorithm running on the best supercomputer. Although the digital computer

is very effective at giving precise answers to well-defined questions, the nervous system is

better at interacting with the real world where sensory data is ambiguous and adaptation

to the environment is required. Biological nervous systems have the advantage of being

small, compact, and dissipating very little power, which is more than can be said for a

supercomputer. They are also robust and fault-tolerant, degrade gracefully, and can learn

to solve difficult problems on their own without specialized programming These advantages

should inspire engineers to look at how biology has solved difficult sensory perception and

motor control problems. Practical engineering examples of learning systems include adap-

tive filters which are used in cases where the desired signal processing is unknown, unknown

and time-varying, or too complicated or costly to model Communication systems provide

examples in adaptive channel equalization, and adaptive noise and echo cancellation. Con-

trol systems utilize adaptive filters to regulate processes where the system concerned is

unknown or too costly to model. Adaptive electronics provide important tools for realizing

these systems.

1

N

N

N

N

N

N

N

N

N

out1

out2

outm-1

First Layer Second Layer

in1

in2

inn xWij

x

Xj
Yi,j

ei

Yi = Σ Yi,jj

θi -

+
outiΣ

Figure 1: Classic picture of a two-layer neural network from the perspective of implemen-
tating these networks in hardware. The neural networks are layers of simple processors,
called neurons, interconnected through weighting elements, called synapses. The neurons
aggregate the incoming inputs (including a threshold or offset) and are applied through a
tanh(·) nonlinearity. The synapse elements, which in general are far more numerous than
neuron elements, must multiply the incoming signal by an internally stored value, called the
weight, and must adapt this weight based upon a particular learning rule. Learning rules
implemented in silicon are typically functions of correlations of signals passing through each
synapse processor.

1.1 Basic Neural Network Theory

Parameterized mathematical models form the basis of many systems studied by engineers

and scientists. Scientists and engineers usually derive these models using basic principles

and intuitive insight, determining parameters by fitting experimental data to the model.

In many cases where difficult to construct from first principles, adaptivity allows a generic

parameterized model to tune itself to the data.

Neural networks and adaptive filters represent the best known examples of generic pa-

rameterized models where parameters adjust through learning. Both neural networks and

adaptive filters comprise a collection of nodes interconnected through a number of synapses.

Figure 1 shows the basic feedforward structure typically used in neural network implemen-

tations. Most approaches focus on feedforward structures, since feedback systems and

networks with time dynamics (e.g. time delays) are straightforward extensions for silicon

implementation, although the algorithm design is considerably more difficult. In this model,

we encode a neuron’s activity as an analog quantity based on the mean spiking rate in a

2

W11 W12 W13 W14

W21 W22 W23 W24

W31 W32 W33 W34

X1 X2 X3 X4

Y1 = Σ W1i Xii

Y2 = Σ W2i Xii

Y3 = Σ W3i Xii

Figure 2: Typical architectures for neural network implementations. Although the routing
looks complicated in Fig. 1, it can be easily implemented in a mesh architecture. Diagram
of the Classic Mesh Architecture, typically used for fully-connected systems.

given time window. One can build linear or nonlinear filters at the input to the sigmoid

function; typically, a low-pass filter is built or modeled since that will naturally occur for

a given implementation. This model is excellent for describing biology if only mean-firing

rate behavior with minimal dendritic interactions is considered.

Before considering circuit implementations of neurons and synapses, we first frame the

overall architecture issues involved in implementing neural networks. In most implemen-

tations, a single layer of synapses are built as mesh architectures connected to a column

of neuron processors to achieve the functionality illustrated in Fig. 1, because silicon ICs

are two-dimensional and require routing schemes that optimally work with two-dimensional

constraints.

1.1.1 Feedforward Computation

A basic model synapse must be able to store a weight, multiply its input with the stored

weight, and adapt that weight based upon a function of the input and a fed-back error

signal. We model feedforward computation mathematically as

yi = Wijxj → y = Wx (1)

3

W32

X5 X6

W32

W32 W32

W32 W32

W32 W32

W32 W32 W32 W32

W32

W32

W32

X7 X8 X9

Y4 Y5 Y6 Y7 Y8

Figure 3: Typical architectures for neural network implementations. Although the routing
looks complicated in Fig. 1, it can be easily implemented in a mesh architecture. Diagram
of a Mesh processor architecture optimized for nearest-neighbor computations.

where xj is the jth input (x is a vector of inputs), yi is the ith output (y is a vector of

outputs), and wij is the stored weight at position (i,j) (W is a matrix of weights). The

result of this output is passed through a nonlinear function,

zi = outi = tanh(a(yi − θi)) (2)

where we designate zi or outi as the result of the computation, a is a gain factor, and θj is

a variable threshold value.

Figure 2 shows the typical implementations for feedforward computation for a single

layer architecture. Currents are preferred for outputs, because the summation typically

required for most connectionist models is easily performed on a single wire, and voltages

are preferred for inputs because they are easy to broadcast. Figure 3 shows how to modify

a mesh architecture when considering m-nearest neighbor connections. Figure 5 shows the

multilayer architecture from one-layer mesh structures.

Synapses require both feedforward and adaptation computations; therefore architectural

constraints imposed by the learning algorithm are an essential consideration for any neural

network. Only learning algorithms that scale to large numbers of inputs and outputs are

practical. A single layer architecture with a local supervised or unsupervised rule only re-

quires communicating the error signal along each row, as seen in Fig. 4. The complexity

4

+
-

x1

x

x2 x3

+
-

z1

z2

z2

z1

x z

z

Symbol for One Layer

Σ

Σ

Figure 4: Learning in a single layer. We can build either supervised algorithms (LMS is
explicitly shown) or unsupervised one-layer networks in this architecture.

of the synapse computation will depend upon the particular learning rule. Many com-

plicated algorithms, like the generalized Hebbian Algorithm (GHA) [27] and Independent

Component Analysis (ICA), require additional matrix-vector multiplications, but can be

developed into a mesh architecture. Algorithms requiring matrix-matrix multiplications

are not feasible in standard IC technologies.

For multilayer algorithms, the architecture gets more complicated, particularly for su-

pervised algorithms such as multilayer backpropagation. To extend the basic silicon synapse

to a backpropagating synapse, we need an additional function; we need an output current

that is the product of the fedback error signal (drain voltage) and stored weight. We show

this architecture in Fig. 6. This additional function results in two issues, one concerning

the signal-to-noise ratio of the resulting error signal, and the other concerning the overall

synapse size. The effect of these small error signals, even without the resolution issues, is a

slow learning rate.

The neural network literature abounds with possible alternative approaches, but we

will base our proposed research on the Helmholtz machine concept [11]. Our primary

reason for this approach rests on our desire to use single layer networks as primitives for

building larger networks, as well as the fact that this reciprocal adaptive single layer network

architecture is seen in various models of sensory neurosystems, such as the pathways from

5

Synapse
Matrix #1

y1

x1
x2

Synapse
Matrix #2

Synapse
Matrix #3

x3

out

y2

y3

Figure 5: Building a multilayer architecture from one-layer mesh structures. Multiple
layers can be directly combined to form multilayer neural networks; each layer will rotate
90 degrees from the previous layer.

Retina to LGN to V1 or some of the pathways between the Cochlea and Auditory Cortex

(A1). Figure 7 considers a two layer network implementation of a backpropagation-like

learning rule using this Helmholtz block. In this case, we double the number of layers, and

therefore double the effective synapse size; for a backprop algorithm, we require the same

number of floating-gate multipliers, but with significant additional implementation costs

that greatly increase the synapse complexity. This approach seems more IC friendly for the

development of adaptive multilayer algorithms than backpropagation approaches, although

its digital implementation is nominally equivalent to backpropagation approaches. This

approach directly expands to multiple layers and could be used in limited reconfigurable

networks because we are building networks with single adaptive layers. Starting with the

single-layer network as the basic building block simplifies the abstraction towards system

development.

Synapses in previous silicon implementations have required large circuit complexity be-

cause they have typically been constructed using traditional circuit building blocks to realize

memory, computation, and adaptation functions separately, rather than taking advantage

6

+
-

x1

x

x2

+
-

z1

z2

z2

z1

eh3eh2eh1

yh1 yh2 yh3

y1

y2

Figure 6: Possible architectures for adaptive multilayer neural networks. Implementation
for Backpropagation networks. There are many forms and modifications, but from an
implementation viewpoint, these approaches can be modified towards this architecture. This
approach significantly increases synapse size, because one typically requires the complexity
of two synapses for weight feedback. Further, this approach limits some circuit approaches
to building dense synapses. The output from the hidden layer, or layer 1, is yh and the
error signal given to the hidden layer is eh. The synapses in the second layer must also
output a current proportional to the product of the error and the stored weight; the sum
of these currents along a column is the error for the next layer. As a result, the synapses
on the second layer must be more complex.

of device physics to combine these functions in a compact circuit element. Not only does

large circuit complexity consume tremendous circuit area and power, but the chance of a

network operating correctly decreases exponentially with cell size.

The most difficult problem to overcome when building efficient adaptive circuits is the

effect of p-n junction leakage currents, illustrated in Fig. 8. First, since many implemen-

tations dynamically store their weight parameters on a capacitor, these junction leakage

currents typically limit the hold time on the order of seconds; therefore weight storage of-

ten becomes a critical concern in many of these applications. Several on-chip refreshing

schemes have been proposed and built [27], and are currently finding applications in various

ICs [21]. Second, since real-time learning often requires time constants from 10ms to days,

junction leakage currents limit the use of capacitor storage techniques, unless prohibitively

large capacitor areas are used. Weight update schemes based upon weight perturbation

7

x z

z

x z

z

x

z

z

Figure 7: Possible architectures for adaptive multilayer neural networks. Implementation
using Helmholtz machine concepts. This approach requires twice as many synapses for all
but the first layer, which yields the same complexity as the Backpropagation approaches.
This approach will converge to the same steady states, only requires a modular tiling of sin-
gle layer networks, and its reciprocal feedback has a similar feel to communication between
layers of cortical neurons.

methods, i.e. where the error signal is based upon random known changes in the weights,

can often work in these constraints if some form of dynamic refreshing schemes are used

[21]. Often junction leakage is too large for many adaptive system problems.

1.1.2 Adaptation

We model the weight adaptation mathematically as

τ
dW
dt

= f(W,xeT) (3)

where e is a vector of error signals that is fed-back along various rows. We call this an

outer-product learning rule, or a local learning rule, because of the xeT computation. The

outer-product learning rule is dependent upon the choice of f(W,xeT) and the choice of

the error signal.

Several learning algorithms have been proposed that conform to this functional form

(several representive examples can be found in [35, 36]). Learning algorithms usually divide

into two categories: supervised and unsupervised. Supervised algorithms adapt the weights

based upon the input signals and a supervisory signal to train the network to produce

8

an appropriate response. Unsupervised algorithms adapt the weights based only upon the

input signals, and in general the weights are a function of the input statistics. Although

these learning algorithms result in very different results, both weight-update rules are similar

from an implementation viewpoint. In many supervised algorithms such as backpropagation

[35, 36]). this weight change is a time average of the product of the input and some fed-back

error signal. Most unsupervised algorithms are based upon Hebbian learning algorithms,

which correspond to neurobiological evidence of learning [7]. For a Hebbian synapse, the

weight change is a time average of the product of the input and output activity.

1.2 VLSI Implementations of Neural Networks

We face the challenge that we cannot simply duplicate biological models in the silicon

media, because the constraints imposed by the biological and silicon media are not identical.

Approaches which have been successful begin with the constraints that the silicon medium

imposes on the learning system. Therefore letting the silicon medium constrain the design

of a system results in more efficient methods of computation.

Parallel computation is an often cited benefit of neural networks for such reasons as

speed of simultaneous operation and fault-tolerance to individual component failure [36].

The matrix-vector operations required by neural networks naturally lend themselves to

parallel implementations. Ironically, most neural algorithms are implemented on serial mi-

croprocessors, where the matrix-vector data for the network is stored in a separate memory,

fetched by the processor as needed, processed in pieces, with the results being written back

to memory.

Implementation using VLSI circuits provides solutions which take advantage of the in-

herent parallelism of neural networks. A readily apparent benefit of using parallel imple-

mentations is the algorithmic speed-up gained by performing many multiply-adds simul-

taneously. A more subtle consideration involves time spent in memory accesses and data

transfers. The most resource efficient implementation would not only use arrays of parallel

processors for computation, but would also use local memory for storing the operating data

9

in the processors themselves. This concept is known as computation in memory. Com-

putation in memory is more efficient in terms of time, area, and power consumption than

traditional computation systems which use separate memory and computation.

In addition, learning algorithms implemented using digital systems are represented by

difference equations, whereas algorithms implemented in analog integrated circuits, operate

in continuous-time and are therefore described by differential equations. Numerical stability

concerns, which plague difference-equation realizations of adaptive algorithms, do not plague

analog learning rules. Moreover, all of the analog weights adapt in parallel. Therefore the

learning algorithm convergence time depends on the system time constant alone, which is

a function of a bias voltage, making the adaptation rate independent of both input signal

power and network size.

1.2.1 Neuron Design

To implement a neuron, we need a function that can compute a tanh(·) function. Fortu-

nately, this function occurs in many IC circuits using either BJT or MOSFET (subthreshold

or above-threshold) devices, such as the differential transistor pair [42]. Since we only need

a column of neuron circuits, they do not have the same area constraints that are imposed

on synapse elements. Dynamics (e.g. low-pass filtering) are usually achieved by adding ad-

ditional capacitance. Often one needs a current to voltage conversion between the summed

synapse outputs and tanh(·) output, as well as at the output of a differential transistor

pair. This conversion often can be nonlinear or needs to be nonlinear to interface with later

processing stages.

One could build a more biologically realistic neuron element. Several researchers have

argued that using pulse computation —which can include mean firing rate computation,

pulse-width modulation, and related techniques— would make multipliers, and therefore

synapses, denser than analog-valued multipliers [45]. Pulse computation may prove im-

portant in biologically inspired implementations that employ event-based processing, since

biological systems communicate and compute with action potentials that encode events.

Unfortunately, no advantage has yet been presented by using these techniques as opposed

10

to encoding the number of action potentials or pulse width as an analog quantity, which is

the typical analog neural network paradigm.

1.2.2 Synapse Design

Synapses provide the of the computation and adaptation in a learning system, multiplying

input signals by adaptive gain parameters, called weights, storing the weights in local mem-

ory, and adapting the weights according to some learning algorithm. therefore synapses are

the key component of neural networks. Because the synapse is the critical element of any

neural network implementation, we previously stated five properties of a silicon synapse

which are essential for building large-scale adaptive analog VLSI synaptic arrays [34]:

1. The synapse stores a weight permanently in the absence of learning.

2. The synapse computes an output current as the product of its input signal and its

synaptic weight.

3. The synapse modifies its weight using outer-product learning rules

4. The synapse consumes minimal silicon area, thereby maximizing the number of synapses

in a given area.

5. The synapse dissipates a minimal amount of power; therefore the synaptic array is

not power constrained.

Achieving all five requirements requires detailed discussions on circuits used to implement

a synapse. Accordingly, an electronic synapse implementation must realize all of these

functions in a compact circuit to afford large networks. Several neural networks have been

built as direct mappings of mathematical and computer models of neural networks into

analog silicon hardware. A primary issue in synapse circuit designs is developing dense

multiplier circuits, because multiplication of an input x weight is fundamental to every

synapse. Since an input voltage should modulate an output current, most implementations

employ a variable resistance or transconductance element. The approaches include synapses

based on

11

• Fixed resistances, which were the earliest implementations [22],

• Switched-capacitor, charge-coupled devices (CCD), and related implementations [48,

27],

• Gilbert multiplier cells [18],

• Linearized conductance elements [10, 16, 21, 28].

Intel’s ETANN chip was the first commercially available neural-network integrated circuit,

and the ETANN used floating gates for weight storage [39]. The implementation of the

Heuralt–Juetten algorithm by Andreou’s group was one of the most successful large-scale

adaptive neural systems, but it required a great deal of circuit complexity [9]. Other re-

searchers implemented unsupervised learning and back-propagation algorithms with mixed

success [4, 5, 27]. The successful analog implementations of connectionist networks included

algorithmic modifications that facilitate its implementation in silicon [19, 27, 47]; history

has shown that the success of an implementation is strongly correlated to the degree to

which the algorithm is adapted to the silicon medium.

Because most networks directly implemented mathematical models, the synapses in

these networks required large circuit complexity. The synapses were large because the

implementations used separate memory, computation, and adaptation blocks. Not only

does large circuit complexity consume tremendous circuit area and power, but the chance

of a network operating correctly decreases exponentially with cell size. Further, the most

difficult problem to overcome when building efficient adaptive circuits was the effect of p-n

junction leakage currents, illustrated in Fig. 8. Real-time adaptation and learning requires

time constants in the range from 10ms to days. Junction leakage currents restrict most

integrated-circuit processes to time constants shorter than 1s unless prohibitively large

capacitor areas are used. The adaptation rate must be much smaller than the input-signal

rate; therefore, the addition of adaptation to a system constrains the minimum computation

rate. A system with several levels of adaptation requires the slowest time constant be several

orders of magnitude slower than the slowest input-signal rate. Often a 1s leakage rate is far

too fast for many adaptive system problems.

12

In previous neural network implementations, the adaptive elements (synapses) were

complex and required a tremendous amount of area. Typical implementations used sep-

arate computation, memory, and adaptation blocks, because these networks were direct

implementations of mathematical models. Transistor leakage currents limit adaptation

time-constants.

1.2.3 Analog vs. Digital Circuits

Much work has been done to implement both analog and digital array processors to exploit

the full advantages of parallel neural computation [6]. Although digital implementations of

neural networks have been preferred for programmability and flexibility, analog VLSI im-

plementations have several features that make them attractive for neural networks. Analog

computational circuits are more compact (measured by chip area or board complexity) and

energy efficient than digital computational circuits.

Consider the computation performed by a single node. In some cases, the node output is

simply the weighted sum of inputs. In other cases, the node output is a nonlinear function

of the weighted sum of inputs. We see that there are two fundamental operations performed

by a node, multiplication and addition, and possibly a third, nonlinear function evaluation.

Digital multiplication and summation require many transistors to implement a handful

of logic gates to multiply or add each bit. Analog multiplication and summation are much

more compact. Analog multiplication can be obtained by exploiting the nonlinear properties

of MOSFETs [24]. Analog summation follows easily by application of Kirchoff’s current law

(KCL). When the analog signals are currents, they can be tied to a common wire, with the

resulting current out of that wire being the sum.

While implementation of nonlinear functions is difficult in digital systems, analog im-

plementations provide easy realization of nonlinear functions [3]. Nonlinear functions com-

monly used in neural networks such as sigmoids and radial-basis type functions can be im-

plemented with only a handful of transistors [42, 12]. Furthermore, digital systems which

interface to an analog world require analog-to-digital converters. This necessity further

increases the use of resources which could otherwise be devoted to computation.

13

Vstore
Ileak

t

Vstore

(a) (b)

Figure 8: Dynamic storage of analog values on capacitors. (a) Circuit schematic illustrat-
ing voltage storage on a capacitor and leakage current through a pn junction. (b) Plot of
the stored voltage versus time. The voltage decreases linearly over time since the leakage
current is constant.

Aside from chip area, power consumption is another metric used for comparing VLSI cir-

cuits. In modern CMOS digital circuits power consumption occurs when current is switched

through transistors. Faster digital systems result in more switching per unit time (higher

clock speed), and therefore faster digital computation requires more power. The massive

heat-sinks on current Pentium chips reflect this fact. In contrast, some experiments suggest

that adaptive analog systems can be operated using 10,000 times less power than compa-

rable digital systems [41]. When it comes to area and power consumption, analog circuits

have many advantages over digital circuits.

1.2.4 Memories for VLSI Neural Networks

Aside from performing matrix-vector computations, neural network circuits must also store

and adapt the elements of the weight matrix. There are two types of storage available,

whether the VLSI system is analog or digital: volatile and non-volatile.

Volatile storage is similar to dynamic RAM, where charge is stored on a capacitor

connected to the gate of a MOSFET. Because of p-n junction leakage currents through pass

transistors used to control charge on these capacitor memories, charge will gradually decay

14

so that the circuit “forgets” its stored value. These types of memories therefore require

frequent value refreshment to avoid losing their data. The effect of p-n junction leakage

currents has been the most difficult problem to overcome to build efficient adaptive circuits.

Real-time adaptation and learning requires time constants in the range from 10ms to days;

because of junction leakage currents, most integrated-circuit processes are restricted to time

constants shorter than 1s unless they use prohibitively large capacitor areas.

Non-volatile storage uses floating-gate technology to store parameters indefinitely with-

out refreshment. Floating-gate technology is utilized in Electrically Erasable Programmable

Read Only Memory (EEPROM) chips. Figure 9 illustrates a floating-gate MOSFET. A

piece of polysilicon completely surrounded by Si02 forms the floating-gate. Charge on the

floating gate is almost permanently stored, since Si02 is a high-quality insulator. Con-

sequently, once the adaptation is finished, the resulting network state is preserved nearly

indefinitely. Input signals are capacitively coupled to the MOSFET channel through the

floating gate, and the charge on the floating gate modulates the effect of these signals on

the channel current. Non-volatile memories not only have the advantage of retaining their

values after the power is turned off, but they also do not require sense amps and other

circuitry to refresh values when the power is on. Thus, floating-gate non-volatile memories

not only have the advantage of long-term data storage, but are more resource efficient than

volatile memory circuits as well.

1.2.5 Floating-Gate Technology for VLSI Neural Memories

Floating-gate technology has been proposed for analog neural network memories for several

years [17, 20, 3]. Intel’s Electrically Trainable Artificial Neural Network (ETANN) chip

was the first commercially available neural-network integrated circuit to use floating gates

for weight storage [39], and remains the best VLSI neural network implementation to date.

Although this was the first practical analog neural network to use floating-gate storage,

there was much concern over its shortcomings. First, most researchers assumed that the

specialized EEPROM processes used, which were unavailable to most researchers at the

15

time, were necessary for programming the synapses [25]. However, we are able to use stan-

dard CMOS processes to implement our floating-gate transistor synapses, thus avoiding the

need for special processes. Second, the ETANN was limited by off-chip learning. This limi-

tation presents a serious drawback to practical usage of the ETANN chip. Therefore, some

researchers have pursued analog on-chip learning in non-volatile floating-gate memories [3],

but have remarked on the difficulty of obtaining learning rules using floating-gate circuits.

Typically, these neural network hardware implementations have attempted to directly fit

mathematical models of neural networks into silicon using standard analog techniques [26].

Our single-transistor floating-gate synapse research goes beyond standard circuit design

and exploits device physics, enabling us to remedy the previously asserted lack of a prac-

tical update mechanism for floating-gate neural networks. Since the floating-gate voltage

modulates a MOSFET’s channel current, the floating gate not only serves as a memory,

but is also an integral part of computation. Our single-transistor learning synapse not

only performs a multiplicative computation with weight storage in a single device, but it

also exploits device physics to implement weight adaptation through a correlation learning

rule [31, 29, 13]. We take advantage of device physics, specifically, we take advantage of

hot-electron injection and electron tunneling, physical processes of transistors that stan-

dard CMOS process designers consider a bug rather than a feature. Using tunneling and

injection processes allows us to add adaptation to the computation and storage capabilities

of the single-transistor floating-gate synapse, providing the key breakthrough necessary to

implement practical, large-scale on-chip learning neural systems.

16

CHAPTER II

FLOATING-GATE SYNAPSE FUNDAMENTALS

While floating-gate transistors have long been utilized for long-term charge storage, and

have even been explored as weight storage elements for VLSI neural networks, we now

consider floating-gate circuits not only as memory elements, but as continuous-time cir-

cuit elements computing at several timescales. We present the single transistor learning

synapse and show how floating-gate circuits can adapt based on signals applied to gate and

drain. First, we introduce the floating-gate pFET device and demonstrate the nonlinear

current-voltage relation that provides synapse computation. Second, because the gate of a

floating-gate MOSFET does not possess any conductive leakage paths, adaptive floating-

gate circuits must utilize continuous programming currents arising from special physical

processes to adapt the floating-gate charge based upon the input signals. In these sys-

tems, a quantum physics phenomena, Fowler-Nordheim electron tunneling, provides a bias

current for the adaptation process. Signal-dependent adaptation in floating-gate devices

derives from the feedback mechanism caused by electrons moving from the transistor chan-

nel to the floating gate by hot-electron injection [32, 31]. Discussions of these physical

charge-adaptation mechanisms appear in Section 2.2. Finally, having introduced the fun-

damental physics behind floating-gate device adaptation, we proceed to Section 2.3.1 which

develops the mathematical tools with which to analyze the dynamics of pFET floating-

gate devices resulting from continuous-time floating-gate currents. These tools include the

concept of separation of device behavior into two timescales, one slow and one fast, lead

to definitions for weight and computation signal behavior, respectively. The Autozeroing

Floating-Gate Amplfiier (AFGA), discussed in Section 2.3.4, provides an example of the

first practical circuit to use a single adaptive floating-gate element. Observation of signal-

dependent adaptation behavior in this circuit inspired initial interest in the possiblity of

obtaining correlation learning rules from these devices. The first floating-gate synapse to

17

p+

n-well n-well

n+
p-substrate

MOS Tunneling
Capacitor

SiO2

Floating Gate
Transistor

Input Capacitor

Vin Vtun
Vfg

Vs Vd

poly2 cap

SiO2

Floating Gate

Metal 1 Layer

(Floating Gate)

Figure 9: Layout, cross section, and circuit diagram of the floating-gate pFET in a stan-
dard double-poly nwell MOSIS process. The cross section corresponds to the horizonatal
line slicing through the layout (or top) view. The pFET transistor is the standard pFET
transistor in the nwell process. The gate input capacitively couples to the floating-gate by
either a poly-poly capacitor, a diffused linear capacitor, or a MOS capacitor, as seen in the
circuit diagram (not explicitly shown in the other two figures). We add floating-gate charge
by electron tunneling, and we remove floating-gate charge by hot-electron injection. The
tunneling junction used by the single-transistor synapse is a region of gate oxide between
the polysilicon floating-gate and nwell (a MOS capacitor). Between Vtun and the floating-
gate is our symbol for a tunneling junction, a capacitor with an added arrow designating
the charge flow.

illustrate correlation learning, the source-degenerated pFET synapse, resulted from explo-

ration of these possibilities; Section 2.3.5 demonstrates this circuit and its properties. The

work presented in this chapter provides the foundation for building dense on-chip learn-

ing networks implementing a wide variety of learning algorithms. The floating-gate pFET

outer-product learning rule, developed in the following chapter, directly results from the

device physics of the floating-gate synapse discussed in this chapter.

2.1 Floating-Gate Transistor Basics

Figure 9 shows the layout, cross-section, and circuit symbol for our floating-gate pFET

device. A floating gate is a polysilicon gate surrounded by SiO2. Charge on the floating gate

18

is stored permanently, providing a long-term memory, because it is completely surrounded

by a high-quality insulator. Signals on the gate terminal of the pFET synapse capacitively

couple into the channel by way of the floating gate.

Since we operate our floating-gate synapses in the subthreshold regime, the relationship

between channel current, floating gate voltage (Vfg), and source voltage (Vs) around a bias

current, Iso, is given by

Is = Is0e
−(κ∆Vfg−∆Vs)/UT e−Vds/VA (4)

where κ is the fractional change in the pFET surface potential due to a change in ∆Vfg

and UT is the thermal voltage, kT
q , and VA represents the Early effect. We do not consider

the Early effect (channel-length modulation) and assume the transistor is in saturation

throughout the remainder of this discussion. For a fixed gate voltage, adding charge to the

floating-gate effectively increases the gate voltage seen by the channel and therefore causes

the channel current to decrease. Similarly, removing charge from the floating gate causes the

channel current to increase. Many of the behaviors extend qualitatively to above-threshold

operation; the quantitative behaviors do not.

To begin our analysis of adaptation in floating-gate devices, we consider floating-gate

devices that use continuous electron-tunneling and hot-electron injection currents. To model

the effect of continuous floating-gate currents, we apply Kirchoff’s Current Law to the

floating-gate node:

CT
dVfg

dt
= C1

dVg

dt
+ C2

dVd

dt
+ Itun − Iinj , (5)

where we have included the effects of electron tunneling (Itun) and hot-electron injection

(Iinj), CT is the total capacitance connected to the floating-gate, C1 is the capacitance

between the input and the floating-gate, and C2 is the capacitance between the drain and

the floating-gate. We have fixed the tunneling voltage terminal to a constant bias voltage

for this formulation; a change in this would simply add another capacitive term into (5) as

well as modify the tunneling current.

19

SiO2

Ec

Vtun

Floating
Gate

EcVtun

Psubstrate

N well

Floating Gate

N+

(a) (b)

Figure 10: The tunneling junction is the capacitor between the floating gate and the nwell
(a MOScap); we use high-quality gate oxide to reduce the effects of electron trapping. Over
a wide range of oxide voltage, most of the tunneling occurs between the floating gate and
n+ diffusion region because this region is accumulated and the higher electric fields at the
corner of the floating gate.

2.2 Charge Adaptation through Electron Tunneling and Hot-
Electron Injection

Given the update equation (5) derived from Kirckhoff’s Current Law at the floating-gate of

the pFET in Fig. 9, we see that we need to understand the tunneling and injection processes

to fully understand adaptation. In this section we consider terminal-voltage dependent

current models of electron tunneling and hot-electron injection.

2.2.1 Electron Tunneling

We add charge to the floating gate by removing electrons. We use electron tunneling

(Fowler-Nordheim tunneling [38]) to remove electrons from the floating gate. The tun-

neling junction is schematically represented by a capacitor coupling the tunneling voltage

terminal to the floating gate as shown in Fig. 9. The arrow on the capacitor denotes the

charge flow. Increasing the voltage across this tunneling capacitor, either by increasing

the tunneling voltage (Vtun) or decreasing the floating-gate voltage, increases the effective

electric field across the oxide, thereby increasing the probability of the electron tunneling

through the barrier. Figure 11 shows measured electron tunneling current through our tun-

neling capacitor versus (1 / applied oxide voltage). Typical values for the oxide field range

from 0.75V/nm to 1.0V/nm. We start from the classic model of electron tunneling through

20

0.028 0.03 0.032 0.034 0.036 0.038 0.04
10

-18

10
-17

10
-16

10
-15

10
-14

10
-13

10
-12

1 / Oxide Voltage

O
xi

de
 C

ur
re

nt

Vo = 1000 V, Io = 0.234 A

Vo = 1691 V, Io = 6.81e+08 A

Figure 11: Electron tunneling current versus 1/oxide voltage in a 2.0µm process with
42nm gate oxide. The two straight line fits are to the classic Fowler-Nordheim expression in
(6). The two different straight-line regions might be due to tunneling through intermediate
traps, or due to initially tunneling through the junction edge for low oxide voltages and
tunneling through the middle of the junction for high oxide vo ltages.

a silicon–silicon-dioxide system [26, 38], in which the electron tunneling current is given by

Itun = I0 exp
(Eo

Eox

)
= I0 exp

(
toxEo

Vtun − Vfg

)
, (6)

where Eox is the oxide electric field, tox is the oxide thickness, and Eo is a device parameter

that is roughly equal to 25.6V/nm [40]. The cause for two separate regions might be due to

tunneling through intermediate traps [51], or due to initially tunneling through the junction

edge for low oxide voltages and tunneling through the middle of the junction for high oxide

voltages.

We can approximate the tunneling current for a fixed bias on the tunneling line by

Itun = Itun0e
(∆Vtun−∆Vfg)/Vx , (7)

where Vx is a parameter related to the quiescent tunneling and floating-gate voltages, ∆Vtun

is the change in the tunneling voltage, and ∆Vfg is the change in the floating-gate voltage

from the quiescent floating-gate voltage. Typical values of Vx for various processes at given

operating conditions appear in Table 2.2.1.

21

Table 1: Each IC fabrication process yields a different gate-oxide thickness which deter-
mines tunneling current for a given tunneling-junction voltage. Typical values used for Vtun

given these oxide thicknesses yields the corresponding VX used in the tunneling current
approximation given in 6.

Process Oxide Thickness Vtun0 − Vfg0 Vx

1.2µm Orbit 30 nm 30 V 1.172 V
0.5µm AMI 11 nm 11 V 0.430 V
0.35µm AMI 8 nm 8 V 0.313 V

2.2.2 Hot-Electron Injection

We use pFET hot-electron injection to add electrons (remove charge) to the floating-gate [34,

26, 28]. We use pFET hot-electron injection, because pFET hot-electron injection can not

be eliminated from a CMOS process without adversely affecting basic transistor operation,

and therefore will be available in all commercial CMOS processes. One might wonder

how pFETs, where the current carriers are holes, inject hot electrons onto the floating

gate. Figure 12 shows the band diagram of a pFET operating under bias conditions that

are favorable for hot-electron injection. The hot-hole impact ionization creates electrons

at the drain edge of the drain-to-channel depletion region, due to the high electric fields

there. The hole impact-ionization current is proportional to the pFET source current, and

is the exponential of a smooth function (f1) of the drain-to-channel potential (Φdc). These

electrons travel back into the channel region, gaining energy as they go. When their kinetic

energy exceeds that of the silicon–silicon-dioxide barrier, they can be injected into the oxide

and transported to the floating gate. We express this relationship as follows:

Iimpact = Ipe
f1(Φdc), (8)

where Φdc is the potential drop from channel to drain. The injection current is proportional

to the hole impact-ionization current, and is the exponential of another smooth function

(f3) of the voltage drop from channel to drain. We express this relationship as follows:

Iinj = Iimpacte
f3(Φdc). (9)

Figure 13 shows measured injection efficiency for four source currents; injection efficiency

is the ratio of the injection current (Iinj) to source current (Is). The measurements for four

22

Ec

Ev

(SiO2)

Eox

E1

Eδ

qΦdc

Source Channel

Drain

Drain to Channel
Depletion Region

z

E

Ev

Ec

Ec

Figure 12: Band diagram of a subthreshold pFET transistor under conditions favorable
for hot-electron injection. Eox is the Si–SiO2 barrier, which is 3.1eV for no field across the
oxide.

different source current values are nearly equal, which is consistent with injection efficiency

being independent of source current. Injection efficiency is approximately an exponential of

a linear function in Φdc over ranges spanning 1V. The slope of the curve on this exponential

scale decreases with increasing Φdc. Using this linear approximation, we can model the

hot-electron injection current for a changing gate and drain-to-source (∆Vds) voltage as [26]

Iinj = Iinj0

(
Is

Is0

)α

e−∆Vds/Vinj , (10)

where Vinj is a device and bias dependent parameter, and α is 1 − UT
Vinj

. For a quiescent

Φdc = 8.2V , a typical value for Vinj is 250mV , and for α is 0.90. We have validated this

model over several orders of magnitude in current and wide ranges in voltage elsewhere

[26, 31].

2.3 Investigating Signal-Adaptive Behavior in Floating-Gate
Circuits

The key idea behind signal-adaptive floating-gate circuits is to find cases where input sig-

nals can modify the equilibrium value of the floating-gate charge through nonlinearities in

the tunneling and injection processes. The first indication that floating-gate devices with

continuous tunneling and hot-electron injection currents are capable of adaptation to in-

put signal properties was given by measurements showing floating-gate circuits that adapt

23

6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11
10

-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

Vdc

In
je

ct
io

n
ef

fic
ie

nc
y

Is = 5nA

Is = 49nA
Is = 200nA

Is = 9nA

Figure 13: pFET hot-electron injection. Measured data of pFET injection efficiency
versus the drain-to-channel voltage for four source currents. Injection efficiency is the ratio
of injection current to source current. The injection efficiencies are nearly identical for the
different source currents; therefore, they appear to be indistinguishable on the plot. At Φdc

equal to 8.2V , the injection efficiency increases by a factor of e for an increase in Φdc of
250mV .

their equilibrium charge based upon statistics of gate and drain terminal voltage signals.

The focus of this section is to develop the mathematics for handling these cases, as well as

showing initial circuit approaches and applications. First, we discuss separation of circuit

behavior into fast (signal) and slow (adaptive)timescales. Next we present the first practical

adaptive floating-gate circuit, the autozeroing floating-gate amplifier (AFGA) and examine

its nonlinear adaptive properties. These results will allow us to investigate correlative be-

haviors in the next chapter. The approach developed here is no different from computing

other correlation type functions, say with a multiplier and low-pass filter.

2.3.1 Separation of Timescales

Floating-gate adaptive circuits explore practical uses of continuous electron-tunneling and

hot-electron injection currents in floating-gate devices. Our analysis begins by taking a

closer look at the floating-gate nodal equation in (5). Because the tunneling and injection

24

currents in the device are small compared with the transistor bias current, changes in

floating-gate charge occur on a much slower timescale than synapse computations. We

can therefore model the behavior of this device at two timescales, defining fast-timescale

variables to represent rapid changes due to the input signals and slow-timescale variables to

represent changes due to adaptation of the floating-gate charge. This analysis decomposes

each terminal voltage, V , into three components one due to equilibrium (bias) conditions

(V0), one due to slow timescale signals (same timescale as floating-gate charge adaptation,

represented as V̄), and one due to fast timescale signals (∆V). For simplicity, we will

collectively define Ṽ = V̄ + ∆V to represent both fast and slow timescale signals. We

will assume that the applied gate and drain-terminal signal voltages are zero mean —

V̄g = V̄d = 0; that is, they only have fast timescale components, and therefore Ṽg = ∆Vg

and Ṽd = ∆Vd. Applying the slow- and fast-timescale decomposition to the floating-gate

voltage yields

Vfg = Vfg0 + Ṽfg

= Vfg0 + V̄fg + ∆Vfg.
(11)

where Vfg0 is the equilibrium dc bias voltage. Separation of timescales will allow us to

divide the floating-gate node equation (5) into two: one modeling the fast dynamics and

one modeling the slow dynamics. For sufficiently fast input signals, this decomposition is

justified because the total floating-gate charge is only affected by the floating-gate currents.

The consequences of this analysis follow.

2.3.2 Fast-Timescale Behavior

As previously mentioned, we consider fast-timescale variables as representing the computa-

tional signals of the synapse; now we define what that means mathematically. Applying the

decomposition of Vfg to the subthreshold channel current of the floating-gate pFET results

in the fast-timescale computation equation given by

Is = Is0(1 + w)e−κ∆Vfg/UT , (12)

where κ is the coupling between the gate voltage and channel potential, and UT is the

thermal voltage; the bias current, Is0, is set by Vfg0. The weight of the synapse is defined

25

as

w = e−κpV̄fg/UT − 1. (13)

We assume this factor, due to the slow-timescale change in floating-gate voltage caused by

tunneling and injection currents, to be constant for computation purposes.

Because we assume the tunneling and injection currents to be negligible at computation

speeds, we simplify the dynamics in (5) as

CT
d∆Vfg

dt
= C1

d∆Vg

dt
+ C2

d∆Vd

dt
→ ∆Vfg =

C1

CT
∆Vg +

C2

CT
∆Vd. (14)

If we assume C2
CT

≈ 0 and solve for the converged value of ∆Vfg then (12) becomes

Is = Is0(1 + w)e−∆Vg/VgA , (15)

where VgA, defined in Table 2.3.5, represents the voltage scale factor for the external gate

voltage. Thus the channel current depends upon a multiplication of an exponential function

of the external gate terminal voltage and an adaptive weight scaled by a bias current.

2.3.3 Slow Timescale Behavior

The slow-timescale floating-gate node voltage equation gives us the starting point for explor-

ing the adaptive behavior of the floating-gate synapse. We analyze the adaptive properties

of this device by neglecting the fast-timescale signal behavior and assuming the gate and

drain voltage signals are zero mean, thus the dynamics in (5) yield

CT
dV̄fg

dt
= Itun − Iinj , (16)

Differentiating the weight, w, given in (13) with respect to time

dw

dt
= −(1 + w)

κ

UT

dV̄fg

dt
. (17)

and substituting this for dV̄fg

dt in (16), we obtain the dynamical equations at slow timescales

as
UT CT

κ

dw

dt
= (1 + w)(Iinj − Itun). (18)

26

Figure 14: An autozeroing floating-gate amplifier (AFGA) that uses pFET hot-electron
injection. The ratio of C2 to C1 sets the gain of this inverting amplifier. The nFET is a
current source, and it sets the current through the pFET. Steady state occurs when the
injection current is equal to the tunneling current. The capacitance from the floating gate to
ground, Cw, represents both the parasitic and the explicitly drawn capacitances. Increasing
Cw will increase the linear input range of the circuit. The capacitance connected to the
output terminal, CL, is the load capacitance. Between Vtun and Vfg is our symbol for a
tunneling junction, which is a capacitor between the floating-gate and an nwell.

To obtain this equation, we use separation of timescales and the assumption that the

input signals are ergodic, which allows us to use time averages for the expected value. We

thus define E[·] as

E[x(t)] =
1
T

∫ T

0
x(t)dt (19)

where the time interval, T , is long enough to average the fast-timescale signals, but is short

enough to assume the slow-timescale variables are nearly constant.

In this chapter, we will investigate the effects of the slow-rate variables, thereby simpli-

fying the equations above. We make this simplification by ∆Vd = ∆Vg = 0 for sustained

periods of time, that is we will apply only step function inputs. In this case, we define the

weight as w = 0 for no input signals, and therefore it is proportional to the average current

at the source. In the following chapter, we will present the complete expansion of these

27

two timescales; in particular to analyze the effect of input signals on the slow-timescale

dynamics and steady states.

2.3.4 The Autozeroing Floating-Gate Amplifier

Offsets often present a difficult problem for designers of MOS analog circuits. A time-

honored tradition for addressing this problem is to use a blocking capacitor to eliminate the

input DC component; however, for integrated filters, this approach requires enormous input

capacitors and resistors to get time constants of less than 1Hz. Existing on-chip autozeroing

techniques rely on clocking schemes that compute the input offset periodically, then subtract

the correction from the input [49]. These autozeroing techniques add significant complexity

to the circuit, as well as clock noise, aliasing, etc. We have developed a bandpass floating-

gate amplifier that demonstrates the use of continuous-time, floating-gate adaptation in

practical circuit design. This circuit, known as the auto-zeroing floating-gate amplifier

(AFGA) and appearing in Fig. 14, uses tunneling and pFET hot-electron injection to set

its DC operating point adaptively despite large changes in the DC input voltage. Because

electron tunneling and hot-electron injection is an inherent part of floating-gate pFET

behavior, we obtain this adaptation with no additional circuitry. Because the gate currents

are small, the circuit exhibits a high-pass characteristic with a cutoff frequency less than

1 Hz. The high-frequency cutoff is controlled electronically, as is done in continuous-time

filters. We have derived analytical models that completely characterize the amplifier and

that are in good agreement with experimental data for a wide range of operating conditions

and input waveforms. The autozeroing floating-gate amplifier represents the first practical

floating-gate adaptive circuit and clearly illustrates the principles of floating-gate adaptive

systems.

For the AFGA circuit in Fig. 14, we assume the floating-gate is fixed, since the signal

path from Vfg to Vout is an ideal high-gain amplifier. At fast timescales, we previously

showed that the change in the output voltage is described by

∆Vout ≈ −C1

C2
∆Vin. (20)

Combining this result with the slow timescale behavior of V̄out which we showed earlier, we

28

0 5 10 15 20 25 30 35 40 45 50

1.5

2

2.5

3

3.5

4

4.5

Time (seconds)

V
ol

ta
ge

 (
V

ol
ts

)

Input

Output

Vtun = 40.15 V, Vdd = 10.6 V

Figure 15: Response of the AFGA to a 1Hz sinewave superimposed on a 19s voltage pulse.
The AFGA has a closed-loop gain of 11.2, and a low-frequency cutoff at 100 mHz. We see
that the signal is amplified, but the much slower step is adapted away.

get

C2
dV̄out

dt
= Ifg0

(
E

[
e
− C1

C2Vinj
∆Vin

]
− 1

)
. (21)

At slow timescales, we previously showed that the equation in V̄out is [26]

C2
dV̄out

dt
= Ifg0

(
E
[
e−∆Vout/Vinj

]
− 1

)
. (22)

where Ifg0e
−∆Vout/Vinj represents the floating-gate current due to hot-electron injection, and

−Ifg0 represents the floating-gate current due to electron tunneling. Vinj is a hot-electron

injection device parameter.

Figure 16 shows measured minimum and maximum output voltages versus the output

signal amplitude for a sine-wave input. For small input amplitudes, the minimum and

maximum output voltages deviate symmetrically from the steady-state voltage, but for

large input amplitudes, most of the change in the output voltage is due to an increasing

maximum output voltage. The steady-state output voltage remains within about Vinj of

the minimum of the signal. We see that the variance of the fast time-scale input affects the

dc operating point of the circuit.

29

We would like to see if (22) predicts this particular AFGA behavior. First, we need to

express E[e−Vout/Vinj] in terms of the fast and slow variables:

E
[
e−Vout/Vinj

]
= e−V̄out/VinjE

[
e−∆Vout/Vinj

]
. (23)

Then, using (23) to rewrite (22), the steady-state solution for ∆V̄out is [26]

V̄out = Vinj ln
(
E
[
e−∆Vout/Vinj

])
. (24)

The AFGA always adapts its floating-gate charge such that the minimum of the output

signal remains at the equilibrium output voltage. Finally, let us consider the output-voltage

behavior as a function of the input-signal amplitude for a sinusoidal input. We define the

amplified input signal as ∆Vout = V1 sin (ωt); for this output signal, the steady-state voltage

is

V̄out = Vinj ln
(∫ 2π

ωt=0
e−(V1/Vinj) sin(ωt)d(ωt)

)

= Vinj ln

(
I0

(
V1

Vinj

))
≈ V 2

1

2Vinj
, (25)

where I0(·) is the modified Bessel function of zeroth order. Figure 16 exhibits experimental

measurements that confirm the results of the analysis in (25) and show that fast timescale

signal statistics can affect the adaptation of the output offset voltage.

2.3.5 Source-Degenerated pFET Devices: Modeling and Behavior

To use the floating-gate pFET as an adaptive computational element, we wish to configure it

as a transconductance amplifier. Unfortunately, in this configuration, with continuous-time

tunneling and injection current, the floating-gate pFET dynamics are unstable. The basic

pFET synapse is unstable because of a positive feedback relationship that exists between

the hot-electron injection current and the channel current. For a step increase in the gate-

to-source voltage of the pFET, we get an increase in the channel current. This increases

the hot-electron injection current in the pFET. Increasing the hot-electron injection current

adds electrons to the floating-gate, which makes the gate-to-source voltage effectively larger,

further increasing the channel current. This positive feedback relation does not give us a

30

0 0.5 1 1.5 2 2.5 3 3.5
2

2.5

3

3.5

4

4.5

5

5.5

6

Peak-to-Peak output voltage (V)

Minimum output voltage

DC output voltage

Maximum output voltage

Figure 16: Minimum and maximum output voltages versus the peak-to-peak output-
voltage amplitude. The frequency of the input sine wave was 100Hz; the AFGA had a
gain of 146. For small input amplitudes, the minimum and maximum output voltages
symmetrically deviate from the steady-state voltage; for large input amplitudes, however,
the DC output voltage follows the maximum output voltage. The DC voltage was fit to the
function 0.5 ln(I0(Vdc / 1.0V)), which is equal to (25) with Vinj =500mV.

stable weight value that we can use in analog computations. We show experimental data

of this phenomena in Fig. 19.

To obtain a stable continuously-adapting pFET synapse, we introduce external negative

feedback by using source degeneration shown in Fig. 17. Figure 17 shows the circuit for

the source-degenerated (s-d) pFET synapse [26, 31]. The circuit diagram for the s-d pFET

synapse shows that we have added another pFET, M2, between Vdd and the source terminal

of the floating-gate pFET, M1. M2 is a short-channel pFET with significant drain-induced

barrier lowering (DIBL). A transistor that strongly exhibits DIBL shows an exponential

change in current for a linear change in drain voltage. The resulting dependence of channel

current on the floating-gate voltage for the circuit in Fig. 17 is

Is = Is0e
−κxκ(V̄fg+∆Vfg)/UT (26)

where κx is a parameter that characterizes the sharpness of the exponential relationship of

the source degenerative feedback element.

31

Table 2: Definition of constants in equations (26) and (30)
τ = (CT UT)/(κxκIfg0) VgA = 1

κx

CT
Cg

UT
κ

γ = 2 − 1
κx

UT
Vinj

Vg0 = VgA/(1 − γ)

β = 1 + 1
κx

(
1
κ

UT
Vx

)
Vg1 = VgA/(β − 1)

The stabilizing effects of adding M2 can be seen in Fig. 19. The DIBL current-voltage

characteristic of M2 guarantees that the decrease in the source voltage of M1 due to an

increase in channel current will be sufficient to provide the negative feedback desired. In-

creasing the channel current in M2 causes a decrease in the source voltage of M1, this in

turn decreases the drain-to-source voltage of M1. Decreasing the drain-to-source voltage

of M1 decreases the channel current, so that hot-electron-injection current also decreases.

Fig. 19 shows dynamics (measured) to get plots for the s-d pFET in Fig. 19.

Including the model for gate currents, we model the weight dynamics of a pFET floating-

gate device as

−UT CT

κIfg0

dw

dt
= w

1+
UT

κpVx − w1+αe−∆Vd/Vinj . (27)

Applying averaging to the tunneling and injection currents in the floating-gate nodal

equation and using the definition for the weight in (13) yields the fundamental equation

governing the weight dynamics of s-d floating-gate pFET synapse as

τ
dw

dt
= wγE

[
e(∆Vg/Vg0−∆Vd/Vinj)

]
− wβE

[
e−∆Vg/Vg1

]
(28)

where the various constants are defined in Table 2.3.5. The result of (30) shows how the

slow timescale behavior depends on fast timescale signals and provides the basis for the rest

of our analysis.

2.3.5.1 Source-Degenerated Synapse Weight Dynamics

To understand the basic form of the weight dynamics, we look at the simplest case of (30)

when ∆Vg = ∆Vd = 0. This allows us to see the dependence of dw
dt on w. Since we are only

interested in the linear dynamics around weq = 0, we use the Taylor expansion and keep

32

Vdd

Vtun1

C1

M1

M2Vb

Vg

Vd

Figure 17: The source-degenerated (s-d) pFET synapse. The s-d pFET modifies the basic
pFET dynamics by local negative-feedback; the device converges to a stable equilibrium for
either a constant current or voltage. Circuit diagram of the s-d pFET synapse. The s-d
pFET synapse is comprised of a floating-gate pFET synapse and a second ultra -short pFET,
which provides feedback to the source terminal. We utilize the DIBL effect in short-channel
MOSFETs to build a compact weakly exponential element.

only the linear terms of the result to obtain

τ dw
dt = (1 + γw) − (1 + βw)

= −(β − γ)w.
(29)

From (29) it is seen that β > γ yields the stable dynamical equation. This relation between

β and γ is determined by the source-degenerated pFET.

For the source degenerated pFET, we experimentally observe the weight dynamics by

noting that the weight of the floating-gate synapse is directly proportional to the channel

current when the signal voltages (fast timescale) are zero. We measure the channel current

indirectly by measuring the source voltage, since the source voltage is logarithmically related

to the channel current due to the DIBL FET operating with subthreshold currents. To see

the weight dynamics, we apply a slow timescale step to the gate voltage, V̄g, and observe

the source voltage, ∆Vs. The gate voltage input and the source voltage response are shown

in Fig. 18. We obtain the channel current, and thus w by taking the exponential of this

value. A finite difference approximation using successive values of w gives dw
dt . The s-d

pFET dynamics given by these measurements appears in Fig. 18. Figure 18 also illustrates

33

5 10 15 20 25 30 35 40 45

Time (s)

Source Output

0
2.4

2.6

2.5

2.7

2.8

2.9

3

3.1

3.2

3.3

3.4

Gate Input

Figure 18: The behavior of the current autozeroing circuit using a source-degenerated
pFET synapse. Unlike the pFET synapse, this circuit converges to its steady-state current.
We use this data to measure weight changes versus time. The tunneling voltage was held
at a constant value throughout this experiment; there was non-negligible tunneling and
injection current throughout this experiment.

the dynamics of this equation for the basic floating-gate pFET synapse. We observe there

are two equilibrium points for both systems, weq = 0 and weq = −1. We are interested

in the weight dynamics around weq = 0, since the weight can not go below zero, and this

steady state will not change with different inputs. Figure 19 verifies that the basic pFET

synapse is unstable, but the source degenerated pFET is stable.

The functional form of the dynamics illustrated in Fig. 18 also hold when ∆Vg and ∆Vd

are non-zero. Non-zero values of these variables will affect the non-zero equilibrium weight,

the slope of the dynamics around this equilibrium weight, and the position of the seperatrix

between the two equilibrium weights. In this discussion we are mainly interested in the

effects of the voltages on the stable-equilibrium weight. In the next chapter, we discuss how

signal statistics determine the value of this weight.

34

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Weight

sdpFET

pFET

Figure 19: Plot of the time-derivative of w versus w for the pFET, and source-degenerated
pFET synapses. The arrows show the direction that the differential equation will take. This
data shows that the pFET synapse will diverge from the w = 1 steady state, but that source-
degenerated synapses will stabilize to the w = 1 steady state. The s-d pFET modifies the
basic pFET dynamics by local negative-feedback. We use zero ∆V̂g and zero ∆V̂g

2.4 Concluding Comments

By taking advantage of physical processes inherent in the floating-gate pFET device, we

provide a compact, low-power circuit element that can not only be utilized as a non-volatile

memory cell, but that can also be utilized as an adaptive computational element. In this

chapter, we discussed charge adaptation mechanisms based on electron tunneling and hot-

electron injection, and developed fundamental mathematical concepts to apply these phys-

ical processes in adaptive signal processing systems. The AFGA presented us with the first

simple, useful circuit which employs continuous-time adaptation, illustrating these key con-

cepts of adaptive floating-gate circuits. Observation of signal-based adaptation exhibited

by the AFGA led to development of the source-degenerated pFET synapse. The following

chapter details correlation learning behavior in this novel adaptive circuit.

35

CHAPTER III

THE FLOATING-GATE PFET CORRELATION

LEARNING RULE

When considered as an analog computational element, a floating-gate device computes its

output as a product of its input and an adaptive device parameter. We call the adaptive

device parameter the weight. When used as an adaptive analog computational element,

we call the floating-gate device a synapse, since we will use it to build electronic neural

networks. We call these elements synapses because of their relationship to synapses in

adaptive filters and neural networks [35], and their loose connection with biological synapses

[7]. A fundamental question we would like to answer is how the synapse weight adapts.

When initially introduced, single transistor floating-gate synapses, involved complicated

weight-update equations based upon the programming physics [34]. This chapter clearly

illustrates how the synapse weight adapts based on correlations between voltage signals

applied to the gate and the drain terminals of the floating-gate pFET synapse. We focus

on pFET floating-gate devices because they are available in any standard CMOS process;

although we focus on pFET floating-gate devices, these results are easily extendable to

nFET floating-gate devices.

3.1 Weight Update for the Continuously Adapting pFET
Synapse

In the last chapter, we noticed that floating-gate circuits can adapt their operating condi-

tions based on terminal-voltage properties and we developed the mathematical tools to de-

scribe this phenomenon. We then introduced the source-degenerated floating-gate synapse

and derived the weight update equation for it as

τ
dw

dt
= wγE

[
e(∆Vg/Vg0−∆Vd/Vinj)

]
− wβE

[
e−∆Vg/Vg1

]
. (30)

36

0 5 10 15 20 25 30 35 40 45
1

10

100

1000

10000

Time (s)

Linear time constant = 6.5s

Downgoing
Step

Upgoing
Step

(a)

0 50 100 150 200 250 300 350 400
-60

-40

-20

0

20

40

60

Equilibrium
at 311nA

Current (nA)

(b)

Figure 20: Experimental measurements of floating-gate dynamics from a 0.5µ gate-length
process. The gate input is a step decrease in voltage followed later by a step increase in
voltage. We used a power supply voltage, Vdd = 5.60V , and tunneling voltage, Vtun =
15.65V , to set the operating point for these experiments, as well as the other measurements
in this paper. (a) Convergence of the output current of a single synapse back to equilibrium
after the step perturbations. The response is nonlinear with asymmetries between tunneling
and injection. These nonlinear asymmetries are what allow us to compute correlations. b
Time derivative of the weight (ẇ) vs. weight value (w). We graphically see that weight
value converges toward its equilibrium level.

We examined the case with no fast-timescale inputs and observed the stability of this

system; the results appear in Figure 20. Now we investigate how statistical properties of

the fast-timescale voltages affect the steady-state solution of the source-follower floating-

gate synapse. First, we note the effects of drain variance on the steady-state solution.

Second, we describe the effects of gate variance. Finally, we present the correlation learning

rule which results from (30).

3.2 Effects of Drain Voltage on the Equilibrium Weight

Our approximation of the weight dynamics begins by considering the effects on the equilib-

rium weight due to drain voltage alone. We start with the weight equation when ∆Vg = 0.

The weight dynamics then become

τ
dw

dt
= wγe−∆Vd/Vinj − wβ. (31)

Figure 21 shows experimental measurements of dw
dt vs. w for fast timescale drain voltage

signals of various amplitudes and no gate voltage signal. We apply a slow timescale step

37

0.5 1 1.5 2
-0.03

0

Weight value

Vd = 0.011V

Vd amplitude = 0.1896V

Vd = 0.1264V

-0.01

-0.02

0.01

0.02

Figure 21: Change in the dynamical weight equation due to sinusoidal signal amplitudes
at only the drain terminal. The gate terminal is remaining at a fixed voltage through this
experiment. dw

dt versus w for three drain input amplitudes.

input to the gate such that we get a sweep of dw
dt vs. w. We apply a fast timescale input,

∆Vd = V1 sin(ωt), at various amplitudes to view the effects of fast timescale signals on the

weight dynamics. As before, we measure the source voltage to obtain the weight dynamics.

To observe the effects of the fast timescale signals on the weight equilibrium, we take

the expected value and solving for weq we get

weq = E[e−∆Vd/Vinj]1/(β−γ) (32)

Next we use a quadratic approximation of e−∆Vd/Vinj by truncating the Taylor series. We

use a quadratic approximation because it is the minimum order expansion needed to show

correlations in our circuit. Taking the expected value of each term of the approximation

yields

weq ≈ (1 +
1
2
E[(∆Vd/Vinj)2])1/(β−γ) (33)

The linear term for ∆Vd disappears since its expected value is zero. We use the Taylor

expansion approximation to eliminate the exponent 1/(β − γ). Solving for weq gives

weq ≈ 1
2

1
(β − γ)

E[(∆Vd/Vinj)2]. (34)

38

0 0.05 0.1 0.15 0.2 0.25
1

1.02

1.04

1.06

1.08

1.1

Drain Amplitude

Figure 22: Change in the dynamical weight equation due to sinusoidal signal amplitudes
at only the drain terminal. The gate terminal is remaining at a fixed voltage through this
experiment. Equilibrium w (weq) versus drain input amplitude.

The data for this experiment uses a sinusoidal input, ∆Vd = V1 sin(ωt). Substituting

this into (34), we get

weq ≈ 1
4

1
(β − γ)

(V1/Vinj)2. (35)

Figure 22 shows weq vs. V1 with Vinj ≈ 500 mV. The dependence of weq on V1 is quadratic,

but the Vinj term is large compared to the range of operation so that Vd has no real effect

on the weight. Thus the effect of Vd on weq can be neglected.

3.3 Effects of Gate Voltage on the Equilibrium Weight

Substituting ∆Vd = 0 in the weight equation allows us to observe the effects of gate voltage

alone. This results in

τ
dw

dt
= wγe∆Vg/Vg0 − wβe−∆Vg/Vg1 . (36)

Figure 23 shows experimental measurements of dw
dt vs. w for fast timescale gate voltage

signals of various amplitudes and no drain voltage signal. We get these dynamics using an

experimental procedure similar to that used to measure drain voltage effects.

39

0.5 1 1.5 2 2.5
Weight value

Vg amplitude = 0.07V

Vg = 1.26V

Vg = 0.84V

0.03

-0.03

0.0

Figure 23: Change in the dynamical weight equation due to sinusoidal signal amplitudes
at only the gate terminal. The drain voltage is remaining at a fixed voltage through this
experiment. dw

dt versus w for three gate input amplitudes.

As in the drain voltage case, we take the expected value, find the equilibrium weight,

and make the quadratic approximation to get

weq ≈
(

1 + 1
2E[(∆Vg/Vg0)2]

1 + 1
2E[(∆Vg/Vg1)2]

) 1
(β−γ)

. (37)

Applying two successive binomial expansions and keeping only those terms relevant to the

quadratic approximation we simplify the fraction and the exponent to get

weq ≈ (1 +
E[(∆Vg/Vg0)2]

2(β − γ)
)(1 − E[(∆Vg/Vg1)2]

2(β − γ)
). (38)

We multiply this out and truncate to the terms appropriate for our quadratic approximation

in ∆Vg. Finally, we get

∆weq ≈ 1
2

1
(β − γ)

E[(∆Vg/Vz)2] (39)

where 1/V 2
z = 1/V 2

g0 - 1/V 2
g1.

Applying a sinusoidal input ∆Vg = V2 sin(ωt), and taking the time average, we get

∆weq ≈ 1
4

1
(β − γ)

(V2/Vz)2. (40)

40

0 0.2 0.4 0.6 1 1.2

1

1.1

1.2

1.3

1.4

Gate Voltage Amplitude
0.8

Figure 24: Change in the dynamical weight equation due to sinusoidal signal amplitudes
at only the gate terminal. The drain voltage is remaining at a fixed voltage through this
experiment. Equilibrium weight (weq) versus gate input amplitude.

Figure 24 shows weq vs. V2 It is seen that the dependence of weq on V2 is quadratic. We

assume that E[(Vg/Vz)2] is constant and can be subtracted out of the weight dynamics

equation. This assumption is realistic if we apply automatic gain control to the input

voltage.

3.4 Equilibrium Weight is Determined by Correlations Be-
tween Gate and Drain Voltages

When we have fast timescale voltage signals on both the gate and the drain, we obtain the

full equilibrium weight equation through a derivation similar to that used in the preceding

sections:

∆weq ≈
E[∆V 2

g]

2V 2
z

− E[∆Vg∆Vd]
Vg0Vinj

+ E[∆V 2
d]

2V 2
inj

β − γ
. (41)

As we have previously stated, we can neglect the effects of the drain voltage. We can also

assume that the signal energy in the gate voltage is constant. This allows us to subtract

off the term due to gate voltage alone, counting it as part of the DC operating point of the

41

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.03

-0.03

0.06

0.0

Weight Value

Vd amplitude = 0V

Vd = 0.632V

Vd = 0.1896V

Figure 25: dw/dt vs. w for varying ∆Vd and fixed ∆Vg. This data gives strong evidence
for our learning rule, τ ′ dw

dt = −w + ηE[xy].

circuit. Taking these two points into consideration, we obtain the result

weq ≈ − 1
β − γ

E[∆Vg∆Vd]
Vg0Vinj

. (42)

This result shows that we can adjust the synapse weight according to correlations between

the gate and drain terminal voltage signals.

We can see this correlation effect by applying fast timescale gate and drain voltages in

two different experiments. The experimental procedure follows that in the earlier cases; we

apply a slow timescale step to the gate and fast timescale sinusoidal voltages to the gate

and drain terminals. Assume the input for ∆Vd = V1 sin(ωt) and ∆Vg = V2 sin(ωt + θ).

Substituting these two inputs into (42) and computing the expected value, we get

weq ≈ −1
2

1
β − γ

V1V2 cos(θ)
Vg0Vinj

. (43)

For the first experiment, consider the two sinusoidal inputs with no phase difference (θ = 0).

Figure 26a shows weq vs. ∆Vd for various values of ∆Vg. We see that for fixed values of gate

voltage, that there is a negative linear dependence of w on Vd as equation (42) suggests. In

the second experiment, we sweep θ from 0 to 2π. For θ �= 0 we have Figure 26b shows weq

vs. θ. We see definite correlations due to phase differences where weq ∝ − cos θ.

42

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

-0.20 -0.16 -0.12 -0.08 -0.04 0 0.04 0.08 0.12 0.16 0.20

Drain voltage amplitude (V)

Vg amplitude = 0.86V

Vg = 1.29V

Vg = 1.72V

Figure 26: Change in the dynamical weight equation due to correlated sinusoidal signal
amplitudes between the gate and drain terminals. Change in the dynamical weight equation
due to different size drain amplitudes for three different gate amplitudes.

3.5 Hebbian Learning Rule from Approximated Weight Dy-
namics

We now present the approximated weight update rule for the linearized region using the

results of the previous sections. The final result is

τ ′ dw
dt ≈ −w − 1

β−γ
1

Vg0Vinj
E[∆Vg∆Vd]

+1
2E[(∆Vg/Vz)2] + 1

2E[(∆Vd/Vinj)2]
(44)

We derive the effects of the terminal voltages on the rate of the weight dynamics using

methods similar to the equilibrium weight derivations. A new time constant, τ ′, is defined

by the following

τ
τ ′ ≈ β − γ + γ

E[∆Vg∆Vd]
Vg0Vinj

−1
2(γ/V 2

g0 − β/V 2
g1)E[(∆Vg)2] − γ

2E[(∆Vd]
Vinj

)2]
(45)

Neglecting the drain voltage effects as before, and assuming the effects due to the gate

voltage are constant and can be absorbed into other circuit constants, we obtain the final

approximation to (30) as

τ ′dw

dt
≈ −w − 1

β − γ

1
Vg0Vinj

E[∆Vg∆Vd] (46)

43

0 50 100 150 200 250 300 350

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7

Vd amplitude =
0.1896V

Vd amplitude =
0.1264V

Phase Difference

Figure 27: Change in the dynamical weight equation due to correlated sinusoidal signal
amplitudes between the gate and drain terminals. Change in the dynamical weight equation
due to various degrees of correlation (phase difference) between sinusoidal input signals at
the gate and drain terminals.

where τ ′ is approximated as

τ

τ ′ ≈ β − γ + γ
E{∆Vg∆Vd}

Vg0Vinj
(47)

Figure 25 shows dw
dt vs. w for varying ∆Vd and fixed ∆Vg. If we let η = 1

(β−γ)Vg0V inj ,

x = ∆Vfg, and y = −∆Vd, then we can rewrite (46) as

τ ′dw

dt
= −w + ηE[xy]. (48)

This is a Hebbian learning rule, based on the correlations between the signals x and y.

3.6 Concluding Comments

The first practical adaptive floating-gate circuit, the AFGA, exhibited signal-dependent

adaptation leading to the development of the source-degenerated floating-gate pFET synapse.

We initially noticed signal-dependent adaptation due to effects of drain variance. Next we

44

observed similar effects in these circuits due to gate variance. Further exploration of signal-

dependent behavior in floating-gate pFET synapses culminated in discovery of the corre-

lation learning rule. We would like to use this learning rule as the basis for several neural

network and adaptive system algorithms such as principal components analysis, adaptive

filtering, self-organizing neural maps, and supervised learning neural networks [36]. The

remaining chapters address practical issues involved in taking floating-gate devices from

single-synapse circuits to adaptive-node networks.

45

CHAPTER IV

FROM FLOATING-GATE SYNAPSES TO

FLOATING-GATE NODES

As illustrated in the preceding chapters, floating-gate devices provide more than just dig-

ital memory functionality, they can also prove useful as computational circuit elements

with analog memory and important time-domain computation and dynamic features all in

one device. We envision large networks based on a few EEPROM type elements with si-

multaneous nonvolatile weight storage, matrix-vector multiplication, and continuous weight

adaptation.

While the synapse is the basic element in any learning system, nodes are the next

computational element to consider in adaptive networks. While a synapse is usually a

single adaptive weight element, a node combines many synapses by summation. In some

cases, the node output is simply the weighted sum of inputs. In other cases, the node

output is a nonlinear function of the weighted sum. Combining several single transistor

learning synapses results in a single node element for an adaptive circuit. An adaptive

floating-gate node circuit provides a foundation to investigate many adaptive networks and

learning algorithms.

In the first section of this chapter, we present experimental results on an adaptive

floating-gate learning node built from an array of pFET single transistor synapses. This

work is the first step in building dense on-chip learning networks implementing a wide space

of learning algorithms. The second section addresses the effects of non-ideal behavior in

the synapse and its learning rule and provides elegant circuit solutions to these problems.

Additional non-ideal behaviors and ways of understanding and mitigating their effects in

larger arrays of floating-gate synapses appear in the following two chapters.

46

V+
dibl

V+
tun

V1 V2 VN

I+1 I+2 I+N

Vd

V-
dibl

V-
tun

-V1 -V2 -VN

I-1 I-2 I-N

I = I+ - I-

Adaptive Array

Programmed Array

Figure 28: The differential synapse array enables four quadrant multiplication of weights
with inputs. Each floating-gate transistor behaves as a transistor amplifier with an adaptive
gain. Adaption occurs through slow-timescale dynamics due to the tunneling and injection
process at the floating-gates. We continuously adapt the synapses with the positive signals,
and we program the synapses with negative signals to balance the steady-state current of
the positive synapse. The network output is the total drain current, and the learning signal
is the applied drain voltage. By applying the appropriate relationship between output drain
current and the resulting drain voltage, we could get a variety of learning rules. Since pFET
hot-electron injection is unstable when channel current is the free parameter, we stabilize
each synapse element by incorporating DIBL transistors to provide source-degenerative
feedback.

4.1 A Simple Two-Input Floating-Gate Node

Figure 28 shows our adaptive floating-gate node, which is built from an array of differential

four-quadrant synapses. The floating-gate transistor is a compact learning element which

acts like an adaptive gain amplifier with built-in storage and gain adaptation. We define

the adaptive gain as the weight. Gate voltages are input signals, and the drain voltage

serves as a common learning signal for the node.

Because a single floating-gate device only allows positive weight values, we use a differ-

ential pair of synapses for each input signal, to obtain signed weights [33]. In this circuit,

we continuously adapt one set of weights, which we will call the positive weights, while the

other set of weights, which we will call the negative weights, does not adapt. Instead, the

negative weights are programmed to give zero-point references for the full four-quadrant

47

0 50 100 150 200 250 300 350
3

3.5

4

4.5

5

5.5

6
x 10

−6

θ
d
 in degrees

S
yn

ap
se

 C
ur

re
nt

s
(A

)

I
g1

 : V
g1

 = cos(2 π f t)

I
g2

 : V
g2

 = sin(2 π f t)

Learning signal: V
d
 = sin(2 π t − θ

d
)

Figure 29: Experimental measurements of positive synapse current phase correlations.
We would program the negative synapses to currents of 5.5µA (w−

1) and 3.5µA (w−
2), and

therefore both weights are either positive or negative. These results show correlations
between a specific gate and global drain terminal direct the convergence of that synapse’s
weight.

weight values. The output current of a differential synapse is described by

I = I+ − I− = Ib

∑
i

(w+
i + w−

i) + g′m
∑

i

(w+
i − w−

i)∆Vi (49)

where Ib is the bias current for every synapse in the array, g′m = κ′Ib/UT is the transcon-

ductance of the floating-gate transistors, Vi is the input into the ith synapse, and w+
i and

w−
i are the plus and minus weights of the ith synapse, respectively. As a result, we get a

weighted sum of inputs riding on a slowly moving bias current.

As seen in the previous chapter, the synapse weight adapts due to tunneling and injection

currents at the floating node of the transistor, and linearizing the resulting weight-dynamics

around a stable equilibrium, we obtained the weight update equation [29, 13]

τ ′ẇi = −wi + a〈∆V 2
i 〉 + b〈∆V 2

d 〉 + c〈∆Vi∆Vd〉, (50)

where Vd is the drain voltage, and we define wi = w+
i − w−

i . The constants a, b, and c

are voltage-normalizing terms dependent on tunneling and injection parameters and are

discussed comprehensively in the previous two chapters as well as earlier publications [31,

48

0 10 20 30 40 50 60
Time (s)

0

1

2

3

4
x 10

-7

D
iff

e
re

n
tia

l S
yn

a
p

se
 C

u
rr

e
n

ts
 (

A
)

I
2

I
1

fd = 0.7f fd = f fd = 3f fd = f

w1 w2

sin(2π f t) sin(2π 3f t)

w1sin(2π f t) + w2sin(2π 3f t)

sin(2π fd t)Learning Signal:

Output Signal:

Figure 30: Experimental measurements of frequency correlations for sinusoidal inputs to
the two-input node given by Vg1 = sin(2π3ft) and Vg2 = sin(2πft). The learning signal,
Vd = sin(2πfdt), takes on three different frequencies fd = 0.7f, f, 3f . Current outputs
from our differential synapses. We programmed our negative weights to offset the positive
synapse current measured with input signals with the same signal variance. We see that the
synapse that has an identical synapse input frequency as the drain signal has a non-zero
weight.

30]. Solving for the steady-state, or equilibrium weight, yields

wi = −〈ViVd〉. (51)

When we have programmed the appropriate zero-point reference weights and constrain each

input at some constant RMS value, then the gate variance and the drain variance terms

cancel in this differential structure.

We want to compare this with the solution to the least mean square algorithm [8],

−→w = Q−1(−→V d), where Q is the autocorrelation matrix of the input signal, −→V is a vector

of inputs, and d is the desired learning signal. For orthogonal inputs (Q is diagonal), the

weight equations are solved as

wi =
< (Vi)(d) >

< V 2
i >

(52)

which compares well to (51) when the input variance remains constant. Thus, we can use

this floating-gate node in adaptive signal processing and neural network applications.

49

1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5

x 10
4

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

x 10
−7

Figure 31: Experimental measurements of a square wave learning signal applied to Vd

Time course of steady-state currents showing convergence of weights.

4.1.1 Simple Floating-Gate Learning Node Experiments

In the first experiment, we show adaptation to phase correlations of fixed-phase sinusoids

applied to each synapse input with a sinusoid of variable phase applied as the learning signal.

Figure 29 shows the results of our first experiment. The inputs to the node are two sinusoidal

signals, with the same frequency (f): Vg1 = 0.15cos(2πft) and Vg2 = 0.15sin(2πft), where

the drain learning signal is Vd = 0.3sin(2πft−θd) From (51) we expect steady-state synapse

weights as

w1 = sin(2πθd) and w2 = −cos(2πθd), (53)

The experimental data in Fig. 29 shows the resulting positive weight values when we swept

the phase. Experimental data shows close agreement with analytic results.

As (51) predicts and Fig. 29 verifies, we get an anti-correlation instead of a correlation

learning rule, where in the case of Vg2 and Vd, the minimum value occurs when θd is 0◦ and

the maximum value occurs when θd is 180◦. Simply negating the learning signal applied to

the drain terminal will yield the desired correlation rule.

50

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.2

0.4

0.6

0.8

1

Normalized Frequency

N
or

m
al

iz
ed

 A
m

pl
itu

de

Fundamental Frequency: 1.0

Third Harmonic: 0.33

(@ 0.07 relative to sampling frequency)

(@ 0.21 relative to sample frequency)

Figure 32: Experimental measurements of a square wave learning signal applied to Vd

Spectrum of output current shows amount of each node input frequency matched to fre-
quency components in learning signal. The frequency axis is normalized; the frequency does
not affect these results until it approaches the adaptation rate. We obtain 1 and 1/3 for
the fundamental and third harmonics as expected. The fifth harmonic appears due to the
drain voltage coupling into the floating gate through overlap capacitance.

In the second experiment, we show adaptation to frequency correlations when we apply a

different frequency to each of the synapse inputs, and we apply another sinusoid as a learning

signal. Figure 30 shows experimental time-course measurements from our adaptive circuit

where the inputs are sinusoids at a fundamental and related third harmonic frequency, and

the drain voltage is also another sinusoid. We show the signals from the positive synapses

and again from the differential synapses. We programmed the negative synapses to eliminate

the steady-state current of the positive synapses for similar input sizes. This approach also

compensates for the mismatch between synapse equilibrium points. We observe that the

circuit identifies a correlation between its input and the drain learning signal.

4.1.2 Learning a Square Wave from Sinusoidal Inputs

We present another example where we train the network to learn the appropriate Fourier

coefficients for the components of a square wave. Our experimental results agree with

theoretical expectations. From the definition of Fourier series a periodic signal can be

51

Ix

Vb Vtun

Vd

C C

Ctun Ctun

Figure 33: The pre-distort circuit is a simple current mirror which implements ∆Vg =
Vmg ln(1 + x) to eliminate harmonic distortion in the output current.

expressed as:

s(t) =
∑
n

ancos(2πnft) +
∑
n

bnsin(2πnft), (54)

where the coefficents result from the correlation of harmonically related sinusoids with the

input signal given as:

an = 〈s(t), cos(2πnft)〉, bn = 〈s(t), cos(2πnft)〉. (55)

As a result, we expect our adaptive circuit to converge to these coefficients.

Figure 31 shows experimental time-course measurements from our adaptive circuit where

the inputs are sinusoids at a fundamental and related third harmonic frequency, and the

drain voltage learning signal is a square wave. We show the convergence of the signals in

Fig. 31 for the positive synapses. Figure 32 shows the normalized amplitude and frequency

of the Fast Fourier Transform of the resulting signal to make it easy to compare rela-

tive amplitudes at relative frequencies. From this experimental data, we get the expected

square wave Fourier coefficients for the fundamental and third harmonics. This experiment

demonstrates this circuit’s behavior in extracting Fourier coefficients. The learning success

demonstrated by this simple Fourier experiment show that the single transistor learning

52

Iy

Ctun

Cwarp

Vd

Vs

Iŷ

Ie Iŷ

Figure 34: The pre-distort circuit for the drain voltage implements ∆Vd = Vmd ln(1 + y)
to eliminate drain variance terms in the weight value.

synapse can be utilitzed to implement an adaptive node with many inputs. However, we

had to assume constant RMS values for the input signals and account for device mismatch,

gate variance, and drain variance effects in the learning rule to obtain this data. Therefore

recognition of these constraints and non-ideal behaviors led to designs for compensation

circuitry as will be discussed next.

4.2 Removal of Non-Ideal Effects in the Correlation Learn-
ing Rule

While we would like to obtain a learning rule purely dependent on correlations between the

gate and drain voltages, the rule we actually obtain from (30) leads to weight dependencies

on the variance of these two voltages as well. Also, we may not be able to make the gate

voltage small enough to obtain a linear model of (26) while simultaneously keeping it large

enough to see correlation behavior. The resulting harmonic distortion can mask the weight

effects. In that case, we would like to eliminate harmonic distortion. Because the drain

current of the source-degenerated floating-gate pFET and its equilibrium weight value are

both determined by exponential functions of the terminal voltages, we explore the use of

logarithmic pre-distortion to remove these undesired effects. Figure 33 shows the circuit

53

−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0
−2

−1

0

1

2

3

4

5

6

7

Drain Voltage Amplitude (V)

C
ur

re
nt

 (
nA

)

V
mg

 ≈ −0.6 V

I
eq

 = 42 nA

2nd Harmonic

I
dc

 − I
eq

Figure 35: This plot shows the DC value (subtracting the equilibrium current) and 2nd

harmonic of the drain current vs. gate voltage pre-distort value. The gate pre-distortion is
given by ∆Vg = Vmg ln(1 + A sin ωt) for ∆Vd = 0. We find that the appropriate pre-distort
factor (Vmg ≈ −0.6V)to be that which makes the 2nd harmonic to be zero and coincides
with the non-zero root of Idc − Ieq. Ieq is the value the drain current assumes when there
is no signal input.

structure which will provide gate pre-distortion, and Fig. 34 illustrates the circuit which

will be used to provide pre-distortion on the drain voltage.

4.2.1 Harmonic Distortion, Gate Variance, and Gate Pre-Distortion

We first remove the harmonic distortion from the pFET drain current by pre-distorting the

gate voltage input. The pre-distorted voltage applied to the gate is

∆Vg = Vmg ln(1 + A sin ωt). (56)

In this experiment, the pre-distort factor, Vmg, ranges from -1 V to 0 V and the sinusoidal

amplitude, A, is 0.65. This experiment is performed with the adaptation mechanism turned

off such that the only effect observed is the harmonic distortion. Substituting (56) in (26)

and simplifying yields

I = Ib(1 + A sin ωt)αg , (57)

54

55

60

65

70

75

80

85

90

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

2

4

6

8

10

12

14

Gate Voltage Amplitude (V)

Figure 36: These plots compare the dc values and second-harmonic values of the drain
current vs. gate voltage amplitude both with and without pre-distortion. We see that the
dc value follows a similar quadratic form in both cases, implying that there is still significant
gate variance with pre-distortion for a given pre-distort value. The second-harmonic plot
shows that harmonic distortion has been significantly reduced.

where αg = −Vmg/VgA. A second-order approximation of (57)leads to

I ≈ Ib(1 + 1
4αg(αg − 1)A2 + αgA sin ωt

−1
4αg(αg − 1)A2 sin 2ωt).

(58)

This second-order approximation indicates that we should look at the dc value and second

harmonic of the drain current in Fig. 35 to determine the appropriate pre-distort factor

that will eliminate harmonic distortion. From (58), we see that we should look for the value

of Vmg where the second harmonic becomes zero, which gives us the appropriate pre-warp

factor, Vmg. We also see that this coincides with the non-zero root of the dc current when

the equilibrium value is subtracted. Figure 35 demonstrates that the appropriate pre-distort

value for this gate is Vmg ≈ −0.6V , which is the corresponding VgA.

Both the dc values and the second-harmonic values of the drain current with and without

pre-distortion are compared in Fig. 36. Both sets of data are obtained with the continuous-

time adaptation mechanism turned on. We obtain the non-distorted data by applying a

55

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
60

70

80

90

100

110

120

130

140

150

Drain Voltage Amplitude (V)

I dc
 (

nA
)

Figure 37: A plot of DC value of the drain current (weight) vs. drain voltage amplitude
for a pre-distorted sinusoid applied to the gate and a non-distorted sinusoid applied to the
drain. The gate variance contributes to constant offsets in the data. The quadratic drain
variance term masks the linear correlation term.

sinusoidal input, ∆Vg = Ag sin ωt, of various amplitudes (0.05V < Ag < 0.5V in steps of

0.05 V) with no drain voltage change (∆Vd = 0). For the pre-distorted data, we use the

factor, Vmg, found above. We choose the sinusoidal amplitude values, A, in 56 as

A = − tanh(Ag/Vmg), (59)

where Ag is the set of amplitudes for the non-distorted case and Vmg is the pre-distort factor.

This equation gives us comparable voltage amplitudes in both the non-distorted and pre-

distorted cases. In Fig. 36 we see that dc current still displays a quadratic dependence, thus

gate variance still has a significant effect even with pre-distortion. This happens because

the pre-distort value for harmonic distortion cancellation and that for optimal gate-variance

cancellation are not the same. This can be seen by comparing the exponential voltage scale

factors in (26) and (30). Figure 36 compares the second-harmonic values of the drain current

from the non-distorted and pre-distorted cases and shows that the harmonic distortion has

been nearly eliminated in the pre-distorted case.

56

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
58

60

62

64

66

68

70

Drain Voltage Amplitude (V)

I dc
 (

nA
)

Figure 38: This plot shows the DC value of the drain current vs. drain voltage amplitude
when ∆Vd = Vmd ln(1 + A sin ωt) with ∆Vg = 0. Here we have plots for several values of
Vmd. We choose that value of Vmd = −0.22V (corresponding to the flattest curve) as the
appropriate distortion factor to eliminate drain variance effects from the weight value.

4.2.2 Drain Variance Effects, Drain Pre-Distortion, and Signal Correlations

Now that we have eliminated the effects of harmonic distortion, we observe the weight that

results for non-zero gate and drain voltages. Figure 37 illustrates how the effects of gate

and drain variance can mask the desired correlation dependence of the weight. We wish to

examine how pre-distortion of the drain voltage affects the resulting weight value.

An analysis of the drain pre-distort circuit illustrated in Fig. 33 leads to the following

Vd = Vs − Vmd ln[(Iŷ − Iy)/Ib], (60)

where Vmd = CT
Cwarp

UT
κ . In this paper, we set the target-signal current in (60) to a constant

bias value (Iŷ = Ib), and we define the learning signal to be y = Iy/Ib. This leads to the

drain voltage function

Vd = Vs − Vmd ln(1 − y) (61)

57

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
-10

-5

0

5

10

15

Drain Voltage Amplitude (V)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-10

-5

0

5

10

15

Drain Signal Amplitude

Figure 39: The top figure is a plot of the dc current (weight) minus the equilibrium
current value and those current offsets due to gate variance vs. the amplitude of the drain
voltage. We see that the quadratic effect due to drain variance has been eliminated. The
curves presented have a tanh form due to the relationship between the signal amplitude
and drain voltage amplitude because of pre-distortion. The bottom figure shows the same
data plotted vs. signal amplitude revealing linear correlations. Steeper slopes correspond
to larger gate voltages. Thus, we see that w ∝ −E[xy], where x and y are sinusoidal signals
to be pre-distorted, is verified.

which is used in our learning rule. All of the experiments described here have the drain

signal of y = A sin(ω t + φ).

We obtain the appropriate pre-distort factor for the drain by observing the dc current

value vs. drain voltage amplitude for several pre-distort factors. Figure 38 exhibits the

results of this experiment. The appropriate pre-distort factor gives the flattest curve. As

seen from the figure, this value is Vmd ≈ −0.22V .

With this pre-distort value for the drain voltage, we observe the resulting weight values

when we apply pre-distorted sinusoidal signals to both the gate and drain voltages. We

hope to see the correlation effects more clearly. In Fig. 39a, we have plotted the dc current

value vs. the drain voltage amplitude. We see a set of curves described by a tanh function,

which is due to the relation given in (59) as applied to the drain. Plotting these dc current

58

Vb

+V -V

Vtun

w+ w-

I (w+ - w-)V

Figure 40: In the ideal situation of no mismatch, an adapting differential pair of floating-
gate devices would cancel both the gate-variance and constant terms out of the correlation
learning rule.

values vs. the actual drain signal amplitude, A, in Fig. 39b, we see a set of straight lines

of various slopes. Steeper slopes correspond to larger gate voltage amplitudes. These lines

correspond to w ∝ −E[xy] where x is the pre-distorted gate signal and y is the pre-distorted

drain signal. This plot demonstrates that we indeed obtain clear linear correlation behavior

with pre-distortion. In both plots we have subtracted offsets due to the gate variance.

4.2.3 Cancelling Constant Offset and Gate Variance in the Weight

Adding a couple of simple, elegant circuits to our basic synapse array eliminated two nonlin-

ear effects in our adaptive floating-gate devices which tend to mask the correlation term in

our weight. These circuits provide pre-distortion on the gate inputs to eliminate harmonic

distortion and pre-distortion on the drain voltage to eliminate drain-variance terms from

the weight equation.

To obtain a pure correlation learning rule, we must yet remove the constant offset and

gate-variance terms appearing in the equilibrium weight. Theoretically, the differential

structure shown in Fig. 40 should cancel all even-order terms due to the input signal.

Unfortunately, device mismatch as illustrated in Fig. 41 results in significant differences in

59

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

10

20

30

40

50

60

Gate Voltage Amplitude (V)

I dc
 −

 I eq
 (

nA
)

I
eq1

 = 61 nA
I
eq2

 = 241 nA

Figure 41: Plot of dc current values (weights) minus equilibrium values for two different
source-degenerated floating-gate pFETs vs. gate voltage amplitude. Tunneling junction
mismatch leads to significant differences in the gate-variance terms in the correlation learn-
ing rule. The legend demonstrates the large variation of equilibrium current values also due
to mismatch.

gate variance, prohibiting this solution for even terms greater than order zero. However,

the order zero, or DC, term can be easily cancelled in the floating-gate differential pair by

programming the charge on one side of the pair to yield the same current as the equilibrium

condition in the adapting floating-gate pFET, thus avoiding mismatch issues in DC bias

current. Differences in weight offsets (due to differences in equilibrium current values) can

be compensated using a differential floating-gate pair where one side continuously-adapts

and the other side of the pair has its floating-gate charge programmed to cancel the offset.

Minimizing gate-variance effects will lead to significant improvements in the correlation

learning rule. To eliminate the gate-variance problem without eliminating mismatch, we

could force every input to a fixed amplitude using an automatic gain control circuit. The

gate-variance term would then be a known constant to be programmed out along with the

weight offset. To remove gate variance by eliminating mismatch, we recognize that mismatch

is due to the tunneling junction of the floating-gate device. In our current devices, most

tunneling occurs at the edge of the tunneling junction; increasing the length of this edge

60

for each device would tend to improve matching. Alternatively, we could attempt to tunnel

directly through the well of the floating-gate device.

4.3 Concluding Comments

In this chapter, we have seen how source-degenerated pFET floating-gate synapses can be

combined to form a single node by simply connecting their drain terminals together. This

connection provides both a summation of the weighted output currents through Kirckhoff’s

Current Law, as well as allows every synapse in the node to share the same error signal.

Preliminary results showed the ability of the system to converge to Fourier series coefficients

for uncorrelated, harmonically related sinusoids. However, special attention had to be

paid to avoid non-ideal behaviors in the multiplication computation and in the learning

rule. Simple, yet elegant circuits were designed to compensate for these undesirable effects.

Unfortunately, gate-signal variance remained a problem to overcome. In addition, another

behavior have to compensate for was not observed due to the uncorrelated nature of the

input signals — this was the effect of weight decay in the learning rule. In general, the

input signals to an adaptive node will be correlated, and we will have to deal with weight

decay and its effects. In the following, we discuss a new synapse design which will reduce

the effects of weight decay and which will provide the added bonus of eliminating gate-

signal variance, obviating the need for special restrictions on the input signals or resort to

well-tunneling.

61

CHAPTER V

GENERAL LEAST-MEAN-SQUARES LEARNING IN

FLOATING-GATE NODES

Figure 42 shows our improved LMS floating-gate synapse circuit. This core synapse circuit

consists of three transistors: a floating-gate pFET in the middle computes the weight-

signal product and another floating-gate and regular pFET pair on the right compose a

source-follower circuit, enabling fairly ideal correlation behavior and minimal weight decay.

The circuit is similar to our previous synapse element [30], except here we linearize and

stabilize the synapse with a regular pFET current source rather than a dibl pFET. Unlike

the dibl pFET, the regular pFET effectively increases the output resistance seen at the

floating-node by the tunneling and injection mechanisms because this circuit behaves like

a cascode configuration [2]. While the synapse presented here superficially resembles a

previously proposed synapse [46], it operates in a fundamentally different way (continuous-

time correlation) using analog instead of digital signals, and was inspired by different design

considerations (minimal weight decay).

5.1 Issue of Weight Decay for Physical LMS computation
structures

Least-mean-square (LMS) learning rules result from minimization of a least-square-error

objective function. Some LMS algorithms intentionally incorporate weight decay — a form

of forgetfulness exhibited by the learning system — for better learning generalization and

tracking of non-stationary signals [8, 35, 36]. Analytical modeling of learning rules yields

the following weight dynamics and steady-state solutions for an LMS algorithm with and

62

Vtun

Vg
Vd

Vs

Vb

Isf Vfg
Cg

Ib

Figure 42: The Source-Follower Floating-Gate (SFFG) synapse.

without weight decay [35]:

No Weight Decay Weight Decay

Dynamics: τ dw
dt = xe τ dw

dt = xe − εw

Steady-state: wss = Q−1r wss = (Q − Iε)−1r

(62)

the error signal, e = ŷ − y, results from the difference between the output and a target

signal, ŷ. The steady-state solution, wss, depends on the input auto-correlation matrix,

Q = E
[
xxT

]
and the input-output cross-correlation vector r = E [xy]. The expected value

operation, E[·], represents ensemble averaging, however we will assume our signals are er-

godic and use time-averaging for this operation. The strength of the weight decay, ε, should

be small (ε << 1) relative to the input and learning-signal amplitudes to minimize deviation

from the ideal LMS solution. However, a tradeoff exists between the stability of a physical

synapse implementation and the amount of weight decay present in the LMS algorithm; the

same mechanism responsible for weight decay results in high-gain and stability concerns

in the circuit. Thus we require a synapse circuit that optimizes ε to produce sufficiently

accurate LMS solutions while maintaining stability.

As a result, it would seem we need simply to implement (62) with ε = 0; this solution

requires an ideal, bidirectional current source to integrate current on a capacitor. In prac-

tice, we will get a weight decay term either through the leakage of a constant current source

63

x x x
1

1w

2

2w

N

Nw

y

ŷ
x x x

1

1

2

2

N

N

e ŷΣ

Figure 43: Block diagram of a single adaptive floating-gate node. Because the synapse
elements far outnumber all of the other components, each synapse element must be as
small as possible. Filters extract the output signal (y) from its slow-timescale and DC bias
currents. Program circuitry on the periphery allows us to set the initial conditions and /
or to restart the weights in a known state when experimenting with various algorithms.

(i.e. reversed-biased diodes) or an effective finite output resistance through our correlat-

ing element. For floating-gate circuit approaches, we have negligable leakage current (mV

change over years); for non floating-gate circuit approaches, these issues put a practical

lower bounds on the resulting adaptation rate (usually 1s to 10s range). The mathematical

implications of both types of weight decay are similar if the effects are not large.

Further, approximating a bidirectional current source implies that we have a balance

between one circuit element providing a negative current and another providing a positive

current. For floating-gate circuit implementations, electron tunneling currents (Itun) provide

the positive current, and hot-electron injection currents (Iinj) provide the negative current.

In equilibrium these two currents are equal, and for floating-gate implementations, we define

this current as Ifg0.

The simple circuit of Fig. 44 exhibits the minimum requirements for a correlation-based

learning rule. The nonlinear voltage-controlled current source provides the signal-error

product for the correlation, while a capacitor provides the dynamic mechanism for the weight

update; the resistor models weight decay. This classical correlator approach could utilize

one of many voltage to current multiplying elements could be such as Gilbert multipliers

[42], linearized resistance multipliers [10, 16, 28], or floating-gate based multipliers [1]. If

we ignore Early effects of these transistors, then ε → 0. We see that τ is set similar

64

Vdd

GND

GND

Vw

Vx

Ve

X
X

Figure 44: Basic block diagram for a weight update using transistors for the weight update
element. The result is either non-negligible weight decay or a difficult analytical system to
control. Therefore in practice, we would design our weight decay to be small enough for
our algorithm but large enough to achieve the desired level of stability.

to the transconductance (gm) for an amplifier generating the current to the integrating

capacitor. and that τ/ε is set through the output resistance modulating current to the

integrating capacitor. Considering the Early voltage effect of the nFET (VAn) and pFET

(VAp) operating with subthreshold bias currents, we get that ε = UT /(κVAn ‖ VAp), which

results in fairly small weight decay values (< 0.01 even for minimum channel lengths). One

could get even lower values by cascoding both the nFET and pFET transistor. Not all

circuit elements, e.g. floating-gate devices at the gate terminal, will naturally have large

enough gain or can be easily cascoded, and therefore additional circuit techniques will be

necessary.

Low weight decay results from a high gain / impedance node, which also implies a

system that becomes more difficult to control without feedback (which often increases ε),

particularly since the resulting weight voltage will often have a small usable voltage range

(like 100mV - 200mV). The one solution, even in digital solutions, is to initialize the weights

before adapting and/or reseting the system when it drifts far off course. Similar weight

decay issues occur in pulse-based systems, because ideal current sources are also needed to

eliminate weight-decay components as well.

Our first version of a correlating floating-gate synapse, illustrated in Fig. 17 (chapter 2),

65

showed weight adaptation based upon correlations of the input and error signals [30], but

these synapses exhibited sizable weight decay, where ε was on the order of 1. These synapses

are closely related to our current synapse design, and these synapses are a good study in the

difficulty of removing weight decay from floating-gate synapse design. The top transistor

in the schematic of Fig. 17, M2, is a DIBL (Drain-Induced Barrier Lowering) transistor,

which possesses a strong exponential Early voltage effect [30]. The added transistor provides

stability and linearized the learning rule as well.

This circuit gives us an outer-product learning rule based on relative changes in the gate

signal (x) and relative changes in the drain signal (y) as

τ
dw

dt
= −εw + E[xy]. (63)

where τ will depend upon device parameters and is inversely proportional to the equilibrium

floating-gate current (Ifg0), and ε is calculated as [30]:

ε =
1
κx

UT

κVx ‖ Vinj
− 1 (64)

where ε was typically near 1 for most implementations.

One straightforward example is that we apply the target signal as a drain voltage,

and therefore we mathematically and experimentally connect our adaptive floating-gate

devices to a class of adaptive filters. The resulting steady-state solution: w = 1
ε E[xy].

Considering a typical LMS adaptation, we get the same solution if Q is an identity matrix,

which requires the inputs to be uncorrelated and of the same input amplitude. Figure

30 shows experimental time-course measurements from this circuit, where the inputs are

sinusoids at a fundamental and related third harmonic frequency, and the drain voltage

is also another sinusoid corresponding to the learning signal. We observe that the circuit

identifies a correlation between its input and the drain learning signal.

5.2 The LMS Floating-Gate Synapse Circuit

Implementing the system shown in Fig. 43 requires two basic functions: feedforward com-

putation and weight adaptation. Feedforward computation consists of multiply and add

66

Vdd

Vb1

Vdd

Vb1

Is0(1+x)

Vtun1

Vdd

Is0(1+x)

biasVtun2

Vtun2

Vb1

Vb1

Is0(1-x)

Vtun2

Vtun2

Ve

Vd

M1
M5M2

M6

M4 M3

M7

bias

Iout

Iout1Iout2

Vb2

Is02(1+e)

M8

Vb2Vtun2

GND GND

Buffer

(Post-Distort)

(Pre-Distort)

(Synapse)
M9 M10

Figure 45: Building a node from a correlating synapse element. Full circuit with re-
quired peripheral interface circuitry. Interface circuitry linearizes synapse computation and
adaptation. The figure also shows programming circuitry needed to set all of the floating-
gate elements. Vtun1 is the tunneling line for the adaptive and programmed floating-gate
elements, where Vtun2 is the tunneling line for the program only floating-gate elements.

operations. Weight adaptation requires circuitry to perform correlation operations on in-

put and learning signals. In this section, we present circuit implementations and measured

results illustrating this functionality.

5.2.1 Feedforward Synapse Computation

The floating node at the gate of each synapse transistor is completely surrounded by silicon

dioxide, an excellent insulator, providing non-volatile weight memory when the adaptation

mechanism is off. Operating pFET devices in subthreshold yields an exponential current-

voltage relation, transforming the sum of the capacitively-coupled input voltage and the

voltage due to charge stored on the floating-gate into a multiplication between the input

signal and the weight. Figure 45 illustrates the circuitry used for our adaptive node which

67

includes the pre- and post-distortion circuitry discussed in chapter 4. We program negative

synapses to eliminate the signal effect of the steady-state current of the positive synapses

for similar input sizes (the resulting bias current increases). Also, since we use a differential

input voltage, we get our output current by summation on one line, rather than taking

the difference of two currents. This approach also compensates for the mismatch between

synapse equilibrium points at the point where tunneling current equals injection current at

each synapse. The goal is to develop a continuously-adapting multilayer neural networks

using these floating-gate adaptive node circuits.

For a set of inputs, x, (where we assume differential signals are available) the differential

structure allows four-quadrant weight-signal multiplication and gives the synapse output

current

Iout = Is0i(2 + wi + wixi). (65)

For the synapse shown in Fig. 45, the floating gate of M1 adapts, giving wi, and the floating

gate of M2 is programmed to Is0i , providing the zero-reference for the differential amplifier.

A typical circuit response illustrating the output of a single synapse appears in Fig. 47.

Figure 47b shows the component of the single-synapse response due to wi. The constant

term and signal term have been removed. Figure 47c shows the envelope of the signal-only

term, where it is observed that an amplitude change in the output signal follows the weight

change in Fig. 47b, as expected. Summing individual synapse currents through KCL leads

to the node output current

In = In0(2N +
N∑

i=0

wi +
N∑

i=0

wixi) (66)

which, after low-pass filtering to remove the constant term (2N) and the slow-timescale

term (
∑N

i=0 wi), yields the standard weighted sum, represented symbolically in Fig. 43.

The computed synapse current and the equilibrium weight value of the synapse both de-

pend on exponential functions of terminal voltages, hence we use logarithmic pre-distortion

to linearize the input (eliminating unwanted signal harmonics) for feedforward computation,

as well as idealizing the correlation learning rule. The resulting feedforward computation

circuit is a current mirror, whose input is the leftmost transistor in Fig. 42; differences in

68

gV

sV

fgC
fgC

tunC

m - rows

ixx xII
i

10

tunC

iixy xwII
i

10

Figure 46: The bandwidth of the pre-distort input current mirror limits the speed of the feedforward
computation. Bandwith depends on the bias current, Ix0, and the total capacitance seen at the node, Vg.
One pre-distort mirror feeds the input current to each column of the adaptive matrix, driving the capacitance
on m-rows of the matrix.

floating-gate charge set the gain of the current mirror [44, 1]. Because these circuits only

add complexity to the periphery of the array, as shown in Fig. 45, they do not significantly

increase the size of the synapse allowing for large arrays.

We can model the feedforward computation by a low-pass filter where the weight of the

synapse corresponds to the passband gain. The speed of the feedforward computation is

essentially equivalent to the time constant of the low-pass filter, which is determined by

the capacitance on the input and output nodes of the system and by the currents driving

these nodes. The output node is a very low-impedance point with small capacitances in

comparison with the input node; therefore the input node contributes the dominant pole for

the low-pass behavior. Figure 46 illustrates the details of how we determine the resulting

time constant of the feedforward computation for m rows (network nodes) as

τ = (m + 1)(CT − Cfg)UT /κIx0 (67)

where CT is the total capacitance at the floating gate of each transistor which includes Ctun

and parasitic capacitance in addition to Cfg. For actual capacitor values of Cfg ≈ 25 fF

and CT ≈ 30 fF, we obtain τ ≈ 0.2(m + 1) µs for a bias current of 1 nA. Therefore, if we

take a 100 input (columns) by 100 node (rows) array, and a typical range of bias currents

from 10 nA to 1 µA, we obtain a range of bandwidths governing the multiplication speed on

the order of 10 kHz to 1 MHz, respectively. Finally, given a 5 V power supply, we estimate

69

that, operating at 0.2 ns, our system performs feedforward matrix-vector computations

equivalent to about 100,000 MIPS/mW at 5 mW of power.

5.2.2 Weight Adaptation and the Floating-Gate Correlation Learning Rule

To realize continuous-time on-chip learning we take advantage of device physics, specifi-

cally, we take advantage of Fowler-Nordheim electron tunneling and hot-electron injection.

The currents resulting from each of these processes are approximately six-orders of magni-

tude smaller than signal currents, yielding a slowly adapting weight parameter which can

be considered approximately constant during weight-signal computation. Current due to

Fowler-Nordheim tunneling depends on an exponential function of the voltage across the

barrier of a MOS capacitor formed between the floating-gate and an external tunneling

junction. We assume the affects on tunneling current due to changes in the weight and

signal voltages on the floating-gate are small in comparison to those due to hot-electron

injection, and therefore treat it as a nearly-constant bias current for the adaptation oper-

ation. Hot-electron injection current depends proportionally on a product of the channel

current with an exponential function of the drain-to-source voltage of the device. Utilizing

these nonlinearities inherent in the injection process provides a compact realization of the

correlation learning rule at the heart of LMS, which is the key to implementing practical,

large-scale on-chip learning adaptive systems. Electron tunneling and hot-electron injection

allow us to add charge to and remove charge from the floating gate, providing us with a

weight update mechanism. We extensively discuss the physics of floating-gate circuits else-

where [31, 34]. Our previous work illustrated how the weight update mechanism leads to

a learning rule based on correlations between the gate and drain voltages of these devices

[14, 30, 34].

Next, we need to derive the floating-gate update equation; we base this derivation on

rigorous treatments presented elsewhere [29, 30]. We start from writing KCL at the floating-

gate node as

CT
dVfg

dt
= Ifg0

(
−
(

I

Is0

)α

e−Ṽes/Vinj + e−Ṽfg/Vx

)
(68)

70

where CT represents the total capacitance connected to the floating-gate, Ifg0 is the equi-

librium bias current, and I and Is0 are the channel current and bias current, respec-

tively, through M5. Terminal-voltage bias conditions determine Vinj , an injection device-

dependent parameter, and Vx, a tunneling device-dependent parameter, which in turn define

α = 1 − UT
Vinj

and β = 1 + UT
κVx

[30].

We substitute for the I/Is0 term by noting that the channel current is set through a

current mirror (M6 through M7) with a power slightly greater than 1 (we define as n). The

power law of the current mirror (M6 and M7) is set by the ratio of the total capacitance at

the floating-gate to the feedback capacitance for M7. We substitute for the Ṽes term in two

parts related to ∆Ve and Ṽs . First, we get ∆Ve through the circuit defined by M5, M6,

and M7 (assume the current mirror is ideal):

Is02e
−∆Ve/Vinj = Is02(1 + e(t)), (69)

where e−∆Ve/Vinj = 1 + e(t), and we call e(t) the error signal for the synapse. We set the

exponential dependence of Ve to the channel current of M5 by the ratio of its feedback

capacitance to the total capacitance of its floating-gate node. The post-distort circuit of

Fig. 45 transforms the exponential dependence of injection current on drain voltage into

a linear dependence on error current. Buffering the error-signal output voltage removes

interference between the desired error signal current and the currents out of the learning

branches of the synapses.

Second, we substitute Ṽs = κṼfg, because we have a follower circuit. We substitute

for Ṽfg, noting that it is the sum of a fast timescale change in the floating-gate voltage

(related to 1 + x) and a slow timescale change in the floating-gate voltage (related to

w). We substitute for dVfg/dt by again expanding into slow timescale and fast timescale

components. We substitute w for the slow timescale component. If we integrate the entire

equation over the fast timescale, defined as E [·], due to its relationship to finding statistical

mean of piecewise ergodic signals, eliminating the fast timescale component for dVfg/dt, we

get

τ
dw

dt
= (1 + w)α(1 + x)αn−UT /Vinj (1 + e) − (1 + w)β(1 + x)β−1, (70)

71

where τ = CT UT /(κIfg0). We choose n such that αn − UT /Vinj = 1. In practice, we use a

bank of capacitors to digitally select the correct capacitor ratio for M4 and M5. A similar

analysis leads to the weight update equation for the circuit in Fig. 42 and Fig. 45 as

τ
dw

dt
= (1 + w)α(1 + x)(1 + e) − (1 + w)β(1 + x)β−1, (71)

which results from the definition of the weight due to the charge on the floating node

and KCL analysis involving the tunneling and injection currents; both currents have been

normalized to the equilibrium bias current. If we put a signal on each column of the

tunneling line, one could eliminate the nonlinearities in the second term as well.

Assuming e is zero mean for this discussion, we can compute the steady state result

for a constantly applied input and error signal. Note that one steady state occurs when

w = −1, which is unstable for this configuration as long as the output of the follower circuit

connected to the floating-gate is not at Vdd. Therefore, the synapse always has a bounded

solution if x and e are driven at a constant amplitude. In practice, e will be defined by the

learning dynamics; therefore we must consider the system as a whole to determine system

stability.

Next, we evaluate and approximate (70) to get a weight update equation that fits within

an adaptive filter or neural network viewpoint [35, 36]. We expand the input, x, in a second-

order approximation, and evaluate E[·] to get

τ dw
dt = (1 + E[xe])(1 + w)α

= −
(
1 + 1

2
UT
κVx

(
1 − UT

κVx

)
E[x2]

)
(1 + w)β−1.

(72)

Furthemore, applying a first-order approximation to w leads to

τ
dw

dt
= E[xe] − a1E[x2]

(
−a2 + α(E[xe]) − a3E[x2]

)
(73)

where a1 = UT
κVx

(
1 − UT

κVx

)
, ε = UT

Vinj‖κVx
, and a3 = UT

κVx

(
1 −

(
UT
κVx

)2
)

. By comparing

typical device parameters, we see that ε, a1, and a3 are first-order terms (≈ ε), and α ≈ 1.

Depending on the technology, we obtain ε in the range from 0.03 to 0.3.

In the next section, we show that the input variance terms are small enough to be

ignored in most cases, and for the remainder of the discussion we simplify (73) as

τ
dw

dt
≈ − (ε − αE[xe]) w + E[xe] (74)

72

0 10 20 30 40 50 60

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Time (s)
(a)

C
ur

re
nt

 (
µ

A
)

0 20 40 60

0

0.1

0.2

0.3

0.4

Time (s)
(b)

W
ei

gh
t

0 20 40 60

0

0.01

0.02

0.03

0.04

Time (s)
(c)

Si
gn

al
 A

m
pl

itu
de

Figure 47: Amplitude correlation results for sinusoids of same frequency and phase with
input and error signal amplitudes of 0.3. (a) Synapse output current vs. time. Sinusoidal
signals are turned on at 16 seconds and turned off at 48 seconds. (b) Extracted dimensionless
weight value vs. time, showing convergence to steady-state due to correlations affected by
weight decay (c) Extracted dimensionless signal amplitude vs. time, which follows a path
similar to the weight, increasing from zero to a steady-state value. Without an input signal,
the output is zero due to multiplicative effects.

Note that the coefficient in front of w, is of first order size but the correlation is zeroth

order.

5.2.3 Amplitude Correlation Experiments

Comparing our floating-gate correlation learning rule (74) with the LMS analysis of (62) we

see that our rule exhibits two components: a correlation term and a weight decay term. We

desire to characterize these terms and compare their relative sizes. Note that weight decay

increases for large-error signals, which may improve generalization in the presence of large

errors; weight decay decreases when the error becomes small. We verify the correlation

learning rule approximation through amplitude-correlation experiments. In what follows,

we present data to illustrate this learning rule; to simplify our analysis, we approximate the

weight decay solely as ε and point out deviations where necessary.

73

−0.03 −0.02 −0.01 0 0.01 0.02 0.03
−0.5

0

0.5

1

Input Amplitude A
x

In
iti

al
 W

ei
gh

t S
lo

pe
 d

w
/d

t

Figure 48: Basic correlating floating-gate synapse measurements for an individual iso-
lated synapse element. We measured the initial slope from this synapse for multiple input
(sinewave) amplitudes near the zero-input steady-state condition. This initial slope shows
the correlation function used by this LMS synapse; steady-state solution has less meaning
for an LMS synapse with small weight decay.

Making a step change in the input and error signal amplitudes from an initial condition

of w = 0 yields the (of course, to get these results, we need the signal bandwidth to be

much larger than the adaptation bandwidth / time-constant)

τ
dw

dt
= E[xe] − a1E[x2] (75)

The input-variance term is typically much smaller than the correlation term, and typically

smaller than a2 when the amplitude of the input signal, x, stays within about less than half

of its full range which is bounded between -1 and 1. Although we can roughly ignore E[x2]

for the remainder of our discussions. it is important to recognize these terms, as they can

be a limiting effect for some algorithms.

Each experiment we discuss involves sinusoidal signals since they provide an easily gen-

erated and commonly used set of test-signals that allow us to readily observe system non-

linearities via harmonic analysis and take advantage of Fourier theory in designing and

analyzing experiments, and facilitate analysis of experimental results. Fig. 47, illustrates

a typical synapse response for a simple amplitude correlation experiment, where we apply

x = Ax sin(ωt) and e = Ae sin(ωt) as the input and error signals. The measured output

74

−5 −4 −3 −2 −1 0 1 2 3 4 5
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Gain Target Value

w
ss

 −
−

−
 o

dd
 c

om
po

ne
nt

Figure 49: Results for a single-weight LMS experiment. The input signal is a sinusoid
of fixed amplitude; the target signal has frequency and phase identical to the input, but
varying amplitude. Steady-state weight values for the single-weight LMS experiment are
plotted versus target signal amplitude. The steady-state weight value is a linear function
of the target signal amplitude. We have plotted the results for several gain levels.

current of the synapse appearing in Fig. 47a shows the fast-timescale output signal riding

on a slow-timescale deviation in the current bias due to weight adaptation. Normalizing

the current to its equilibrium value and low-pass filtering yields the extracted weight value

shown in Fig. 47b; the time-constant, τ , was fit to an RC-model and is approximately 3 sec-

onds. Removing all correlating signals, leaves only weight decay, which returns the synapse

to its initial equalibrium. Finally, Fig. 47c exhibits an increase in output signal amplitude

from zero to a steady-state value of wssAx. To illustrate weight dependency on statistical

properties of applied signals, remaining figures plot either steady-state weight values, wss,

or linear fits of initial weight dynamics, dw
dt , as functions of experiment parameters such as

signal amplitude or phase angle.

We first observe that for w ≈ 0, the initial slope of the weight dynamics, dw
dt , should

yield correlations between the applied input and error scaled by the weight decay as wss =

E[xe]/ε. Fig. 48 demonstrates dw
dt for w ≈ 0 obtained from linearly fitting the initial slopes

of each weight convergence. We see a compressive nonlinearity at high amplitudes due to

75

3.55 3.6 3.65 3.7 3.75 3.8 3.85

−2

−1.5

−1

−0.5

0

0.5

1

1.5

Time (s)

O
ut

pu
t a

nd
 T

ar
ge

t

Figure 50: Results for a single-weight LMS experiment. The input signal is a sinusoid of
fixed amplitude; the target signal has frequency and phase identical to the input, but varying
amplitude. Transient solution for a given target signal amplitude of the single-weight LMS
experiment shows the output signal for this trial tracking the target signal.

higher-order terms in the Taylor series expansion. Fig. 48 also shows an offset at Ax = 0

arising from variance of the error signal due to slight mismatch between the post-distort

circuit and Vinj The size of this term tends to be similar to that of the weight decay for

correlating synapses [14]. These results will be similar to the steady-state solutions when

small amplitude signals are applied; for larger signals we will see nonlinearities due to the

small amount of weight decay.

5.3 The Least-Mean-Square (LMS) Learning Rule

Our new synapse enables the first continuously-adapting floating-gate LMS algorithm. We

previously demonstrated LMS learning for uncorrelated inputs [13]; we now demonstrate

the effects of error-signal feedback in a single-synapse supervised-learning experiment and

present results from a two-input single-node circuit for general inputs.

Unlike the pure correlation case, supervised learning requires feedback of an error signal

defined as the difference between the computed output and a given target. However, before

deriving the error from the single-node output current given in (66), we need to separate

76

bSx 21/

cossin

sincos

)(sincosˆ ty TT b

x
1x 2x

1w 2w

e e ŷ
2

1

0

0

t

t
t

2

Two-Input Node

Generate

input

signals

Orthogonal

sin

sin
)(bbasis set

Figure 51: Experimental setup for examining Least-Mean-Squares behavior in a two-input
node. A scaling operation followed by application of a rotation matrix to an orthogonal
signal-space basis of harmonically related sinusoids yields the system input signals; the
fundamental sinusoid is chosen as the target. The experiment runs for different values of θ,
uniformly sampled from a circle.

the output signal, y = wTx, from the bias and slow-timescale weight terms (2N +
∑

wi)

by low-pass filtering, as illustrated in Fig. 47. The first LMS case concerns supervised

adaptation of a single weight, which illustrates circuit dynamics for a manageable number

of parameters. The output and target signals in this experiment are given by y = wx and

ŷ = Ax, which lead to the error signal e = (A − w)x. An ideal LMS response would force

w to equal A. Instead, we find that with weight decay, as exhibited in (62) and (74), the

LMS rule yields wss = A/(1 − ε/E[x2]), when the term αE[xe] is neglected. Including this

correlation term of the weight decay in (74) adds terms on the order of O(ε2), justifying our

first-order approximation. Figure 49 shows the weight value tracking various target gains,

and Fig. 50 shows the output sinusoid tracking the target signal for a single trial.

5.4 The Two-Input Adaptive Node

Multiple-input LMS learning systems provide deeper results than the single-synapse case.

Fig. 51 illustrates the setup for the simplest possible multiple-input LMS experiment com-

prising two-synapses. Two-dimensional input data allow visualization of the weight results

77

0 50 100 150 200 250 300 350
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Rotation parameter θ (degrees)

S
te

ad
y−

st
at

e
w

ei
gh

ts

Figure 52: Two-input Least-Mean-Squares experimental results for the source-follower
floating-gate synapse circuit. Measured data for the case θT = 0 and λ1 = λ2 show steady-
state weight dependence on the parameter, θ, of the two-dimensional input mixing-matrix.
As expected from equation (84), we get a cosine curve for the first weight, and a sine curve
for the second weight.

as a set of points in the plane, making it easier to observe the effects of weight decay on the

magnitude and direction of the weight vector.

First, we choose an orthonormal basis for the signal space; in these experiments, we

choose harmonically related sinusoids given by

b(t) =
√

2




sin ωt

sin 2ωt


 (76)

which yield the desired orthonormal property

E[b(t)bT (t)] = I. (77)

We construct the input signals from a linear combination of the basis signals as

x(t) = Mb(t)

= SΛ1/2b(t)
(78)

78

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Weight 1 steady state value

W
ei

gh
t 2

 s
te

ad
y

st
at

e
va

lu
e

Figure 53: Two-input Least-Mean-Squares experimental results for the source-follower
floating-gate synapse circuit. Measured data for the same case is plotted as one steady-
state weight versus the other. An ideal LMS rule would produce a circle similar to our
circuit results.

where the mixing matrix, M, is composed of an orthonormal basis for the weight space

determined by a particular value of a single parameter, θ, given by

S(θ) =




cos θ − sin θ

sin θ cos θ


 (79)

and an eigenvalue matrix

Λ =




λ1 0

0 λ2


 (80)

which generates the input signals for the learning circuit according to

x = SΛ1/2 (81)

as illustrated in Fig. 51.

79

Finally, the target signal, ŷ, results from a linear combination of the signal-space basis,

and will be dependent on a single parameter, θT , as shown by

ŷ = [cos θT sin θT]b (82)

Mathematical analysis of this experiment assuming constant weight-decay dynamics (the

simplest case of (74) when the correlation term of the weight decay is ignored) and based

on the results given in (62) yields the steady-state weight solution,

wss = S(θ)




√
λ1

(λ1+ε) cos θT

√
λ2

(λ2+ε) sin θT


 . (83)

Measured results from the synapse circuit appear in Figure 52 and Figure 53. Each

experiment comprises 32 trials of the rotation parameter, θ, uniformly sampled from 0 to

2π with θT held constant. We performed the first experiment with λ1 = λ2 and θT = 0.

Given these parameters, we expect the circuit to yield a weight vector given by

wss =


 cosθ

sinθ


 (84)

Figure 52, shows the steady-state weight values for each of the two weights as a function

of the rotation angle, θ. Steady-state values for the first and second weights approximate

cos θ and sin θ respectively, as expected; a plot of the second vs. the first component of wss

results in a circle as shown in Fig. 53.

In the case where λ1 �= λ2, from (83) we expect a weight-space plot of the first vs. the

second node weight to yield an ellipse when θ is swept from 0 to 2π for a fixed value of

θT = π/3. Figure 54 exhibits the measured data compared with numerically computed

results from (83) in a weight-space plot, which shows that the weights approximate an

ellipse quite well. From the fit to the measured data, we estimate the weight decay, ε ≈ 0.1.

The measured data exhibit a slight rotational difference from the computed results which

is probably due to the higher-order terms in the weight decay which have been ignored in

this analysis.

80

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

w
ss1

w
ss

2

Figure 54: Two-input Least-Mean-Squares experimental results for the source-follower
floating-gate synapse circuit. Illustration of measured data compared with model results
computed from equation (83) assuming non-zero constant weight decay for the case where
λ1 = 1, λ2 = 2, and θT = π/3. The gain of the filter and the amplitude of the input signals
determine the scale of the ellipse. The open circles show steady-state values measured from
the actual circuit. The asterisks and the corresponding fit-line illustrate computed model
results. We observe good agreement between the measured data and the computed values.
As predicted in the text, the results form an ellipse.

5.5 Concluding Comments

We introduced a source-follower floating-gate synapse as an improvement over our earlier

source-degenerated floating-gate synapse in terms of relative weight decay. While the ideal

LMS solution does not exhibit weight decay, it is impossible to build a physical system that

does not have some form of decay inherent in the system. However, zero weight-decay would

result in a learning system which would be difficult to control, therefore we desire a circuit

with a small, non-zero weight decay term. Additionally, weight decay adds some algorithmic

benefits to the learning system, such as the ability to track non-stationary processes. Data

for a general LMS experiment obtained from a two-input circuit exhibited good agreement

with a mathematical model of the system.

81

CHAPTER VI

FROM SIMPLE NODES TO ADAPTIVE NETWORKS

Having investigated the properties of floating-gate synapses in two-input adaptive systems,

we now turn to the more general n-input case. For these investigations we have designed

and fabricated a multiple-input, multiple-node chip through MOSIS. Due to limitations of

our current PC-based experimental set-up, we have developed an FPGA-controlled custom

circuit board for real-time tests up to audio frequencies. This more advanced IC and test set-

up, will allow for the study of LMS in the case of more than two inputs (for example, Fourier

approximation and adaptive channel equalization), as well as exploration of multiple-node

networks and unsupervised learning algorithms.

Because no good models of continuously-adapting floating-gate devices exist, we have de-

veloped an all-transistor non-floating-gate circuit model of the source-follower floating-gate

synapse which has been designed to explore weight decay issues in large-scale networks.

As noted in the previous chapter, any physical implementation of the least-mean-square

learning algorithm will exhibit some weight decay. Due to the nature of this model, we are

actually able to control the amount of weight decay present through design choices. Re-

sults from simulations of least-mean-square learning experiments demonstrate the learning

properties of this simulation model.

We finish our discussion of systems by illustrating how arrays of floating-gate synapses

could be useful in practical adaptive systems through an example of adaptive channel equal-

ization.

6.1 The n-Input Node

In chapter 5, we derived the weight equation for a single source-follower floating-gate synapse

to be

τ
dwi

dt
= −(ε − αE[xie])wi + αE[xie]. (85)

82

Vx_n

Vx1_n

Ve_m

Iy_m

VtunVs

Figure 55: The source-follower floating-gate synapse (SFFG) that was introduced in the
preceding chapter. The chip described in the text contains an array of 4 rows and 16
columns of this circuit.

In the following, we desire to express this learning rule in matrix-vector form. Additionally,

in chapter 5, we examined how constant weight decay affects the steady-state weight solu-

tion; here we wish to examine how the correlation-dependent weight decay term affects the

steady-state weight solution.

We begin our analysis by recognizing that the ideal solution, which we denote w∗, is

given by

w∗ = Q−1r (86)

where r = E[xŷ] is the cross-correlation between the input signals, x, and the target signal,

ŷ. Next, we observe that in the ideal case, our system output

y = w∗Tx, (87)

attempts to represent ŷ in a manner that minimizes the mean-square-error between the two

values, resulting in emin. We further assume that

E[xemin] = 0, (88)

i.e. the residual error signal is orthogonal to every input-channel signal. Now we would like

83

11w 12w 13w Nw1

21w 22w 23w Nw2

1Mw 2Mw 3Mw MNw

1x 2x 3x Nx

1e

2e

Me

Core Synapse

Pre-Distort Inputs

Pre-Distort Errors

Core Matrix

Figure 56: Functional diagram of the SFFG array chip described in this chapter. The chip,
fabricated through MOSIS in a 0.5µm process, contains an array with 16 column inputs
and 4 row outputs. Additional circuitry around the periphery allows for programming the
array as desired. The pre- and post-distort circuitry particular to this design and the SFFG
cell appear in the accompanying figures.

to solve

τ
dwi

dt
= −(ε +

∑
j �=i

(wj − αw∗
j)qij − αqiiw

∗
i)wi − qiiw

2
i − α(

∑
qijwj − ri)) (89)

and observe how the correlation weight decay affects the ideal solution, w∗. Experimental

data presented in the preceding chapter shows that the weight converges close to the con-

stant weight decay case; we wish to further understand how the signal-dependent weight

decay affects this solution so results in higher dimensions can be predicted.

6.2 A Multiple-Input/Multiple-Node Adaptive Floating-Gate
Integrated Circuit

Figure 56 illustrates an array with four nodes and sixteen inputs; this circuit has been

fabricated through MOSIS in a 0.5µm process. The building blocks of this array, the SFFG

synapse cell, and the pre- and post-distort circuits appear in Fig. 55, Fig. 57, and Fig. 58

respectively. Larger arrays are possible, but pin limitations led to the small size of the

array for this design; there is still much room on the chip for more synapses and nodes.

In an attempt to save pins, the 16 inputs of the array enter the chip through a single

pin which feeds an analog multiplexer, and internal linear voltage-to-current converters

84

Ix_n

Vx_n

Vx1_n

Vd_pre-D

Vtun_pre-D

Figure 57: The pre-distort circuit for each column of the array includes an extra floating-
gate pFET for adjusting the charge on the charge on gate of the pre-distort transistor. The
nFET mirror provides the input signal to the pre-distort circuit as well as feeds the pFET
input to the source-follower bias transistor in the SFFG synapse for the correlation learning
rule.

generate current inputs for the pre-distort circuitry from the voltage inputs (see Fig. 59).

The outputs of each node consume four pins total; the outputs are current values which will

need to be transformed into voltages before analog-to-digital conversion. An additional 8

pins provide the four target signals necessary for supervised learning experiments. This chip

also contains infrastructure for programming any element in the array to a desired value,

as well as for programming the pre- and post-distort circuitry to desired bias conditions.

A capacitor bank with individual capacitors which can be switched in and out allows the

ability to select a desired post-distort value, as shown in Figure 58.

6.2.1 Hardware Test and Development System

Due to limitations on sampling speed and the number of channels available with the current

PC-based measurement system, we designed a custom circuit board for test and measure-

ment of the adaptive chip. The custom board interfaces to Matlab through an Altera FPGA

board running a Nios processor with additional custom VHDL code written for more spe-

cialized I/O control. A photograph of the board appears in Figure 60.

The heart of the adaptive experiment circuit board consists of two of the array chips, one

85

1
Ve_m

Vtun_post-D

Vt_m

It_m

Xc_i

Xc_i

Xc_i

CC
ii

2

1

Vd_post-D

C

Capacitor Bank

Figure 58: The post-distort circuit for each row of the array includes a switchable capacitor
bank that allows for tuning the post-distort factor. The floating-gate pFET on the far left
provides a means for setting the charge on the post-distort circuit gate node. The two pFET
transistors and the nFET mirror on the right provide the error signal for the correlation
learning rule.

programmed to provide the zero-point for the differential structure and the other adapting

around this zero-point. Two single-channel parallel D/A converters provide input signals to

the adaptive and programmed differential arrays. Five four-channel serial D/A converters

control various bias voltages including chip power supply and tunneling voltages set through

bipolar junction transistors (BJTs). Logic control signals applied directly from the FPGA

control whether the system is in run or program mode, determine which row and column

to select for programming, and reset the I-to-V converters during current measurments.

The adaptive chip generates output currents. These currents need to be transformed

to voltages before analog-to-digital conversion. Current-to-voltage converters based on an

op-amp integrator (illustrated in Figure 62) provides the necessary conversion. Twelve of

these converters are divided among three quad-op amps; eight of these measure the four

row-current outputs of each chip while the four remaining used for programming-current

measurement Three parallel-output A/D converters, each with four channels, interface the

current-to-voltage converters to the FPGA control board.

We plan to eventually move all of the current measurement and data converter functions

currently performed on the custom circuit board on to the array chip with the goal of

obtaining a standard, simple interface for adaptive system testing. Moving this functionality

on-chip will also allow for much larger arrays to be designed and tested. In addition,

86

Sn

Sn

Vin
Ix_n

Figure 59: Sample-and-hold circuit formed by a capacitor and a unity-gain follower pro-
vides analog multiplexing allowing one input pin to drive sixteen synapse inputs.

the software which has been developed in conjunction with the custom circuit board for

experimental testing provides the starting point for a seamless, user-friendly functional

interface for chip testing. This functional interface will hide circuit-level details from the

user and allows higher-level algorithm and system level experiments.

6.3 All-Transistor Synapse Circuit Model and Simulation

Figure 63 shows the all-transistor synapse (ATS) model of the source-follower floating-gate

synapse. The ATS model allows us to more explicitly study and control weight decay by

looking at the effects of different channel lengths for Ma bias and Mcorr. These channel

lengths control the weight decay by determining the output resistance of the high-gain

amplifier formed by Ma bias and Mcorr. We will refer to this pair of transistors collectively

as the correlation amplifier. A pair of capacitively-coupled current mirrors, formed by

the four transistors Mi+, Ms+, Ms−, and Mi− provides a four-quadrant multiplication

of the weight and input signal. Differences between dc bias points on the gates of each

transistor look effectively like differences in W/L-ratios in terms of current scaling factors.

The bias on Ms+ is set to an equilibrium bias voltage of Vfg0 by the DC output value of

the correlation amplifier The remaining three floating-gate transistors are programmed to

the bias voltage, Vfg0. The difference due to V̄fg on the gate of Ms+ provides the weighting

factor. In the correlation amplifier, Mcorr generates the multiplication operation necessary

for the correlation computation. The transistor, Mx corr, mirrors the input into Mcorr

for multiplication, while Me1 pre-distorts the error signal for the source of Mcorr to yield

multiplication inear in the error signal. Transistor Me2 guarantees a bias condition on the

87

Figure 60: Photograph of the adaptive system test and measurment circuit board.

source of Mx corr matching that on the source of Mcorr due to Me1. Unity-gain buffers

guarantee that the source voltages on Mx corr and Mcorr are independent of their currents.

Finally, Ma bias provides a bias current for signed-integration; current deviations from this

bias driven by Mcorr are integrated on C to yielding correlation. We now show that

this circuit does indeed provide a good all-transistor model of the SFFG synapse, how the

constant weight decay term is controllable through drawn channel length, and we illustrate

that the dynamics will always be similar for this class of adaptive circuits. As before, we

define the weight for the adaptive circuit as

w = e−κV̄fg/UT − 1 (90)

88

Chip 1:

Adapting

Chip 2:

Programmed

I-to-V

Converter
I-to-V

Converter

Parallel

ADC

Parallel

ADC

Parallel

DAC

Parallel

DAC

I-to-V

Converter

Parallel

ADC

run run

Serial

DAC

Serial

DAC

+xn -xnym
^

From FPGA

To FPGA

y
+
m y

-
m Measured

programming

currents

Set Bias

Conditions

Figure 61: Functional diagram of the custom circuit board which appears in Fig. 60.
Two floating-gate synapse array chips form the heart of the test system. One of the arrays
has its floating-gate charge programmed to a bias point, while the second array is allowed
to adapt. The programmed array provides a zero-point for for quadrant multiplication.
The differential inputs, +xn and −xn are applied as a stream of time-division multiplexed
samples from the FPGA through the parallel DACS. The target signals for learning, ŷm,
are applied through through a serial DAC. The bias signals, including power-supply and
tunneling voltages, are also supplied from the DACs. Finally, the output currents for each
and programming currents are The signals determining the mode of operation, run and ¯run
are also provided by the FPGA.

or, alternatively, the floating-gate voltage can be expressed in terms of the weight as

V̄fg = −UT

κ
ln(1 + w). (91)

The derivative of this second expression proves useful in the development of the ATS learning

rule and is thus
dV̄fg

dt
= −UT

κ

1
(1 + w)

dw

dt
(92)

In the last chapter, it was shown that the effective resistance at the output node of a

89

Vout
Vref

Iin

C

Figure 62: This integrator-based current-to-voltage converter transforms output currents
from each adaptive node into voltages suitable for A/D conversion.

high-gain amplifier is given by

R =
VAn ‖ VAp

Ifg0
. (93)

Performing nodal analysis on the gate node of Ms+ substituting (92) for dV̄fg

dt and using the

definition in (93) leads to

dw

dt
= − κ

UT C
(1 + w)(

1
R

UT

κ
ln(1 + w) + (Ifg0 − Ixe)). (94)

Finally, we define the time constant of adaptation as

τ =
UT C

κIfg0
(95)

and the constant weight decay factor, ε, as

ε =
UT

κVAn ‖ VAp
(96)

yielding the ATS learning rule

τ dw
dt = (1 + w)(−ε ln(1 + w) + E[xe])

= −ε ln(1 + w) − (ε ln(1 + w) − E[xe])w + E[xe]

≈ -(ε − E[xe])w + E[xe]

(97)

where the final approximation assumes w is small and we have ignored (ε2) terms. The

dynamics of this equation closely resemble those of the source-follower floating-gate synapse

90

1

CC C C

Va bias

Iyi = 2 + w + wx

Ixi = Ix0(1+x)

Adaptive bias

voltage

Programmed

bias voltage

Multiplication of input

and error signal

Integrating

capacitor

1

Ie = Ie0(1+e)

Ve bias

Ie0

I-xi = Ix0(1-x)

Ms+ Ms-Mi+

Me1 Me2

Vfg0 Vfg

Mcorr

Mx_corr

Ma_bias

 Ifg0(1+x)

Mi-

Figure 63: The differential synapse consists of two matched floating-gate current mirrors.
The gate of Ms+ adapts based on signal correlations while the gates of the remaining
transistors in the mirror-pair are programmed to the bias condition, Vfg0. The adaptation
circuit for each synapse comprises a pFET bias transistor and an nFET current mirror. The
output transistor, Mcorr, of the mirror provides multiplication of the input signal by an error
signal. The source of each nFET is connected to a common buffered error-signal voltage
bias. The source Mcorr is also driven by a buffered error signal voltage which is generated
as a logarithmic transform of a linear current error signal providing a multiplication linear
in the error signal. All signals are represented by variation in current around a bias point.

with an unstable equilibrium at w = −1 and a stable equilibrium at w = 0. As before, our

interest concerns how correlations between the input and error signals determine shifts in

this stable equilibrium value and the weight decay of the system. Note that correlation-

dependent weight decay terms will always arise due to our the weight definition given in (90).

Because ε is dependent on the Early voltages, VAp and VAn of Ma bias and Mcorr respectively,

the constant weight decay term can be controlled through design of the channel length of

these devices; this property allows us to examine the effects of varying weight decay on

the steady-state solution of (97). Simulation of a two-input node using the all-transistor

91

9.3 9.4 9.5 9.6 9.7 9.8 9.9 10 10.1

x 10
−4

−4

−3

−2

−1

0

1

2

3
x 10

−8

Time (s)

S
ig

na
l A

m
pl

itu
de

 (
A

)

Target
Output

Figure 64: Comparison of system output and the square wave target signal for the ATS
model Fourier LMS simulation.

synapse model yields results similar to those exhibited in the two-input node experiment

described in the preceding chapter.

6.4 Fourier Series Example

Fourier series provide an excellent approach for examining LMS learning rules in both

the source-follower floating-gate synapse and the all-transistor synapse model described

in the preceding section. For the simulation results shown here, the inputs consist of pure

harmonically related sinusoids, in particular we show a five-input case. For the target signal,

we use a square wave. Each synapse in the ATS node attempts to learn the appropriate

weight to reconstruct the square wave from its harmonic components. The system output

and the target signals appear in Fig. 64, while their spectra are compared in Fig. 65. A

look at both the time-domain signals and frequency spectra shows that the ATS system

learns a good approximation to the appropriate Fourier coefficients. Discrepancies between

the first, third, and fifth coefficients for the system output and the target signal are likely

due to the constant weight decay term in (97). Notice, however, the introduction of small

components for the second and fourth harmonics. We suspect that the signal-dependent

92

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
5

0

0.2

0.4

0.6

0.8

1

Frequency (Hz)

FFT Normalized to the Target Fundamental

Target
Output

Figure 65: Fourier spectra comparing the learned system weights with the target signal
square wave coefficients.

weight decay term in (97) introduces these components. Additional simulations are needed

to prove or disprove this hypothesis.

6.5 Example Application: Adaptive Channel Equalization

Adaptive channel equalization provides an excellent example of a practical common use of

adaptive filters. Every communication system possesses a channel representing the medium

of transmission between a signal source and a receiver. In mobile communications, due

to movement of the receiver and changes in the receiver’s environment, this channel is

time-varying, requiring an adaptive filter. In this section we propose how our adaptive

floating-gate circuits could be used to solve this practical problem.

We first model the distorting channel as a linear filter with a rational transfer function

as

Hch(s) =
∑m

i=0 bis
i

1 +
∑n

j=1 ajsj
. (98)

The adaptive filter adjusts its parameters to approximate the inverse of the channel, thus

93

)(tx

1w 2w

e e

Nw

e

)(ty

)(ˆ ty

Figure 66: Adaptive channel equalization filter

minimizing channel distortion; ideally we desire that

Hch(s)Haf (s) = 1 (99)

where Haf = H−1
ch (s) is the adaptive filter response.

Figure 66 illustrates our proposed adaptive filter where inputs to the adaptive weights

of a node are provided by a bank of bandpass filters whose transfer functions are given by

Hn(s) = K
τls(1 − τfs)

τlτfs2 + (τl + ατf)s + 1
(100)

implemented using a simple circuit known as the capacitively-coupled current conveyor [23]

which appears in Fig. 67. By tuning each of these filters to cover the frequency band of

interest, we can find a weighted sum of these filters to approximate the inverse channel

response as

Haf (s) =
N∑

n=0

wnHn(s). (101)

The weights adapt to weight each frequency band to provide the desired overall frequency

response of the filter just like an equalizer on a stereo, but instead of adjusting sound to fit

the acoustics of a room, adjusting receiver to fit the radio transmission channel. The same

94

Vin

Vout

Vτl

Vτh

C1
C2

CW

CL
M1

M2

M3

M4

Figure 67: Circuit diagram of a capacitively coupled current conveyer (C4). This is a
bandpass filter with electronically tunable corner frequencies (controlled by vτl and vτh)
that can be moved independently of one another. The roll offs are first-order.

technique can be applied to system identification, which is an important problem in control

theory.

6.6 Concluding Comments

In this chapter we have outlined the ideas necessary to extend the source-follower floating-

gate synapse and simple nodes built from this synapse to larger-scale, multiple-input,

multiple-output adaptive matrices. An array chip built for this purpose was introduced,

and a custom circuit board for testing this system was described. In addition, we intro-

duced a non-floating-gate all-transistor synapse model for simulation purposes. This circuit

proves useful in its own right when faster adaptation rates are needed. Analysis of this

circuit illustrates key features shared among adaptive analog circuits of this type based on

both floating-gate and non-floating-gate devices. Simulation results obtained for this circuit

showed close agreement with experimental data gathered from the SFFG synapse. Finally,

we outlined a real-world application for which both the floating-gate and non-floating-gate

synapses would be useful.

95

CHAPTER VII

CONCLUSIONS

Research presented in this thesis provides a substantial leap from the study of interesting

device physics to fully adaptive analog networks and lays a solid foundation for future devel-

opment of large-scale, compact, low-power adaptive parallel analog computation systems.

This work builds on earlier investigations of floating-gate device physics in the quest to

develop the smallest possible electronic synapse [26]. Previous work was inspired by earlier

research which showed that floating-gate devices might not only be useful for non-volatile

storage, but also useful as analog computational devices [37]. The result of these investi-

gations led to the first useful adaptive floating-gate circuit, the auto-zeroing floating-gate

amplifier (AFGA) [26]. Observation of signal-dependent adaptive behavior in the AFGA

suggested this device could be useful in a learning system [26].

The investigation described here started with observation of this potential learning ca-

pability and led to the first derivation and characterization of the floating-gate pFET corre-

lation learning rule. The learning rule was proven through experiments illustrating that the

device was able to learn correlations between the amplitude and phase differences of sinu-

soidal voltages applied to the gate and drain terminals of the pFET [29, 31, 30]. Discovery

and confirmation of the correlation learning rule led to experiments exploring the possi-

bilities of using floating-gate learning device for adaptive systems, beginning with simple

supervised experiments for uncorrelated inputs applied to a simple two-input node.

Starting with two synapses sharing the same error signal, we progressed from phase

correlation experiments through correlation experiments involving harmonically related si-

nusoids, culminating in learning the Fourier series coefficients of a square wave [13]. These

experiments conclusively demonstrated that the single transistor learning synapse could be

utilitzed to implement an adaptive node with many inputs. During the course of these

investigations, we recognized the need to develop circuitry to remove non-ideal terms from

96

the floating-gate synapse, developing circuits which eliminated harmonic distortion in the

feedforward computation and error-signal energy terms in the correlation learning rule [14].

To cancel input-signal energy terms and dc offsets, we designed a differential structure. We

concluded that finding a way to miminimize input-variance effects would lead to significant

improvements in the correlation learning rule. All of the early two-input node experiments

were restricted to uncorrelated input signals.

Extending these earlier two-input node experiments to the general case of correlated

inputs required dealing with weight decay naturally exhibited by the learning rule. We

introduced a source-follower floating-gate synapse as an improvement over our earlier source-

degenerated floating-gate synapse in terms of relative weight decay [15]. While the ideal

LMS solution does not exhibit weight decay, it is impossible to build a physical system

that does not have some form of decay inherent in the system. However, weight decay

does add some algorithmic benefits to the learning system, such as the ability to track

non-stationary processes. We presented data from a two-input circuit and illustrated good

agreement between the results and a mathematical model of the system. The new design had

the added benefit of eliminating input-signal variance terms from the correlation learning

rule.

A larger network of source-follower floating-gate synapses was fabricated and an FPGA-

controlled testboard was designed and built. This more sophisticated system provides an

excellent framework for exploring applications to multi-input, multi-node adaptive filtering

applications. Adaptive channel equalization provided a practical test-case illustrating the

use of these adaptive systems in solving real-world problems. The same system could

easily be applied to noise and echo cancellation in communication systems and system

identification tasks in optimal control problems. We envision the commercialization of

these adaptive analog VLSI systems as practical products within a couple of years.

97

APPENDIX A

OJA’S RULE DERIVATION

A.1 Adaptive Node Computation

An adaptive node computes the inner product of an input signal vector and an adaptive

weight as demonstrated by

y(t) = wTx(t) (102)

Because the weight, w, is adaptive it is also a function of time, but the rate of adaptation

is such that we can consider it a constant in computation.

A.1.1 General Observations on Weights

Two characteristics define a weight vector — magnitude and direction. We can thus repre-

sent the weight as w = ||w||uw. Variations in weight vector magnitude merely affect the

amplitude of the signal and reflect the gain of the system. The weight vector direction

affects the variation of the weight components relative to each other, which reflects how

much of each input signal shows up in the output. Hence, the direction of the weight vec-

tor affects the temporal shape of the output signal; (consider the effect of varying Fourier

coefficients). The direction of the weight corresponds to a basis signal. Questions to con-

sider when examining the results of learning rules are: 1. What function relates the weight

magnitude to the input and learning signal statistics?; 2. What function relates the weight

direction to the input and learning signal statistics? 3. What happens when the weight

magnitude varies with weight direction?

A.1.2 Input Signals

For our experiments, we design the input signal by first generating a vector of orthonormal

basis signals

E[s(t)sT (t)] = I (103)

98

and then operating on these signals with a mixing matrix

x(t) = As(t) (104)

The orthonormal basis signals can be harmonically related sinusoids or independent, iden-

tically distributed random variables, for example. All expected value operations are taken

with respect to time

E[x(t)] = lim
T→∞

1
T

∫ T/2

−T/2
x(t)dt (105)

The autocorrelation matrix of the input signals is defined as

R = E[x(t)xT (t)] (106)

We express the autocorrelation matrix in terms of the mixing matrix as

R = E[x(t)xT (t)]

= E[As(t)(As(t))T]

= E[As(t)sT (t)AT]

= AAT

(107)

We choose

A = SΛ1/2. (108)

such that we can diagonalize R as

R = SΛST (109)

The matrix S has columns forming an orthonormal eigenvector basis, therefore we have

ST = S−1. We represent the weight in terms of this eigenvector basis as,

w = Sŵ or ŵ = STw (110)

to better study the solutions of various learning rules

R is a positive definite matrix; all of its eigenvalues are positive.

Extracting the weight from y

w = (A−1)T E[s(t)y(t)]

= SΛ−1/2E[s(t)y(t)]
(111)

99

A.2 Unsupervised Learning and Oja’s Rule

Almost all learning rules express a search for a weight vector that minimizes or maximizes

some objective function, with or without a constraint condition [43, 50]. Hebb’s rule results

in a weight vector which yields the maximum output variance. Unfortunately, Hebb’s rule is

unstable. Oja’s rule is a modification of Hebb’s rule which obtains stability by constraining

the weight vector to lie on the unit circle. This rule can be derived starting with the variance

maximization of Hebb’s rule and adding a Lagrange multiplier constraint given by

||w||2 = 1 (112)

which requires the weights to lie on the unit circle. We add the effects of this constraint,

scaled by a multiplier, to the objective function

ε =
1
2
[E[y2] + λ(1 − ||w||2)]; (113)

note that this term adds zero to the overall error, but will introduce another condition to

be met when we take the derivative to optimize this function.

∂ε

∂w
= −λw + E[xy] (114)

−λw + E[xy] = 0 (115)

solve for λ λ = wTRw or λ = σy
2

τ
dw
dt

= (x − wy)y (116)

τ
dw
dt

= −σy
2w + Rw (117)

We observe that without the weight decay term, we obtain Hebb’s rule which is unstable.

σy
2 = wTRw

= (Sŵ)T (SΛST)(Sŵ)

= ŵTΛŵ

(118)

100

τ dŵ
dt = ST (τ dw

dt)

= ST (R − σy
2I)w

= ST (SΛST − σy
2SST)w

= STS(Λ − σy
2I)STw

= (Λ − σy
2I)w

= (Λ − ŵTΛŵI)ŵ

(119)

A.3 The Least-Mean-Square Learning Rule and Weight De-
cay

minw
1
2E[e2] = minw

1
2E[(ŷ − y)2]

= minw(1
2σŷ

2 − E[ŷy] + 1
2σy

2)
(120)

τ
dw
dt

= −Rw + p (121)

p = E[xŷ] (122)

This system is driven by the input, p, which is the only term in which the target signal,

ŷ, appears. Unlike Hebb’s rule, this weight update converges without weight decay because

−R is a negative definite matrix. The solution to this equation is

w = R−1p (123)

ŵ = STw

= STR−1p

= ST (SΛST)−1p

= Λ−1STp

= Λ−1E[STxŷ]

= Λ−1E[Λ1/2sŷ]

= Λ−1/2E[sŷ]

(124)

101

A.3.1 Weight Decay

τ
dw
dt

= −αw − Rw + p (125)

Note similarity to Oja’s rule in (117). The solution to this equation is

w = (R + αI)−1p

= (I + αR−1)−1R−1p
(126)

Diagonalizing (126)

ŵ = STw

= ST (SΛST + αI)−1p

= (I + αΛ−1)−1Λ−1STp

= (I + αΛ−1)−1Λ−1E[STxŷ]

= (I + αΛ−1)−1Λ−1E[Λ1/2sŷ]

= (I + αΛ−1)−1E[Λ−1/2sŷ]

(127)

All the elements of Λ are postive.

102

REFERENCES

[1] Farhan Adil, Guillermo Serrano, and Paul Hasler. Offset removal using floating-gate

circuits for mixed-signal systems. In SouthWest Symposium on Mixed Signal Design,

February 2003.

[2] Phillip E. Allen and Douglas R. Holberg. CMOS Analog Circuit Design. Oxford

University Press, 2 edition, 2002.

[3] A.P. Almeida and J.E. Franca. Digitally programmable analog building blocks for the

implementation of artificial neural networks. IEEE Transactions on Neural Networks,

(2):506–514, March 1996.

[4] J. White B. Furman and A.A. Abidi. Cmos analog ic implementing the backpropagation

algorithm. In Abstracts of the First Annual INNS Meeting, 1988, pages =.

[5] R.G. Benson and D.A. Kerns. Uv-activated conductances allow for multiple time scale

learning. IEEE Transactions on Neural Networks, (3):434–440, 1993.

[6] Gert Cauwenberghs. Neuromorphic learning vlsi systems: A survey. In T. S. Lande,

editor, Neuromorphic Systems Engineering. Kluwer Academic Publishers, Norwell MA,

1998.

[7] P.S. Churchland and T.J. Sejnowski. The Computational Brain. MIT Press, Cambridge,

MA, 1992.

[8] Peter M. Clarkson. Optimal and Adaptive Signal Processing. CRC Press, Boca Raton,

1993.

[9] M. Cohen and A.G. Andreou. Current-mode subthreshold mos implementation of the

herault-jutten autoadaptive network. IEEE Journal of Solid State Circuits, (5):714–

727, 1992.

103

[10] Z. Czarnul. Novel mos resistive circuit for synthesis of fully integrated continuous-time

filters. IEEE Transactions on Circuits and Systems, (2):277–281, 1986.

[11] P. Dayan, G. E. Hinton, R. M. Neal, and R. S. Zemel. The helmholtz machine. Neural

Computation, pages 889–904, 1995.

[12] T. Delbr˘

ck. Bump circuits for computing similarity and disimilarity of analog voltages. In Proc.

IJCNN, volume I, pages 475–479, Seattle, WA, July 8-12 1991.

[13] J. Dugger and P. Hasler. A floating-gate analog adaptive node. In 2000 IEEE Midwest

Symposium on Circuits and Systems, volume 3, pages 1058–1061, East Lansing, MI.,

August 8-11 2000.

[14] J. Dugger and P. Hasler. Improved correlation learning rule in continuously adapting

floating-gate arrays using logarithmic pre-distortion of input and learning signals. In

2002 IEEE International Symposium on Circuits and Systems, volume 2, pages II–536–

II–539, Phoenix, AZ., 2002.

[15] Jeff Dugger and Paul Hasler. An analog floating-gate node for supervised learning.

IEEE Transactions on Circuits and Systems I, Submitted for review.

[16] S.T. Dupuie and M. Ismail. High frequency cmos transconductors. In C. Touma-

zou, F. J. Lidgey, and D. G. Haigh, editors, Analogue IC Design: the Current-Mode

Approach. Peter Peregrinus Ltd., 1990.

[17] D. Durfee and F.S. Shoucair. Comparison of floating gate neural network memory cells

in standard vlsi CMOS technology. IEEE Transactions on Neural Networks, 3(2):347–

353, 1992.

[18] I.A. Mack F. Kub, K.K. Moon and F.M. Long. Programmable analog vector-matrix

multiplier. Journal of Solid State Circuits, (1):207–214, 1990.

[19] G. Cauwenberghs F.J. Pineda and R.T. Edwards. Bangs, clicks, snaps, thuds, and

whacks: an architecture for acoustic transient processing. In M.I. Jordan M.C. Moser

104

and T. Petsche, editors, Advances in Neural Information Processing Systems 9, Cam-

bridge, MA, 1997. MIT Press.

[20] O. Fujita and A Yoshihito. A floating-gate analog memory device for neural networks.

IEEE Transactions on Electron Devices, 40(11):2029–2035, 1993.

[21] C. Neugebauer G. Cauwenberghs and A. Yariv. An adaptive cmos matrix vector mul-

tiplier for large scale analog hardware neural network applications. In Proceedings of

the International Joint Conference on Neural Networks, pages 507–512, Seattle, 1991.

[22] R. Howard B. Howard B. Stranghn J. Denker W. Hubbard D. Tennant G. Graf,

L. Jackel and D. Schwartz. Vlsi implementation of a neural network memory with

several hundreds of neurons. In AIP Conference Proceedings, page 182, Snowbird,

1986.

[23] P. Graham, D.W.; Hasler. Capacitively-coupled current conveyer second-order section

for continuous-time bandpass filtering and cochlea modeling. In IEEE International

Symposium on Circuits and Systems, 2002., pages 485–488.

[24] Gunhee Han and E. Sanchez-Sinencio. Cmos transconductance multipliers: a tutorial.

IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing,

(12):1550–1563, December 1998.

[25] P. Hasler. An implementation of a continuous-time trainable neural network. Master’s

thesis, Arizona State University, August 1991.

[26] P. Hasler. Foundations of Learning in Analog VLSI. PhD thesis, California Institute

of Techonology, February 1997.

[27] P. Hasler and L. Akers. Circuit implementation of a trainable neural network using

the generalized hebbian algorithm with supervised techniques. In Proceedings of the

International Joint Conference on Neural Networks, pages 1565–1568, Baltimore, 1992.

105

[28] P. Hasler and L.A. Akers. A continous-time synapse employing a multilevel dynamic

memory. In Proceedings of the International Joint Conference on Neural Networks,

pages I–563–I–568, Seattle, 1991.

[29] P. Hasler and J. Dugger. Correlation learning rule in floating-gate pFET synapses.

In 1999 IEEE International Symposium on Circuits and Systems, volume 5, pages

387–390, Orlando, FL., May 30 - June 2 1999.

[30] P. Hasler and J. Dugger. Correlation learning rule in floating-gate pFET synapses.

IEEE Transactions on Circuits and Systems II, 48(1):65–73, January 2001.

[31] P. Hasler, B. Minch, J. Dugger, and C. Diorio. Adaptive circuits and synapses using

pFET floating-gate devices. In G. Cauwenberghs and M. Bayoumi, editors, Learning

on Silicon, pages 33–65. Kluwer Academic Press, Norwell MA, 1999.

[32] Paul Hasler. Continuous-time feedback in floating-gate MOS circuits. IEEE Transac-

tions on Circuits and Systems II, 48(1):56–64, January 2001.

[33] Paul Hasler, Chris Diorio, and Bradley A. Minch. A four-quadrant floating-gate

synapse. In IEEE International Symposium on Circuits and Systems, pages 29–32,

Monterey, 1998.

[34] Paul Hasler, Chris Diorio, Bradley A. Minch, and Carver A. Mead. Single transistor

learning synapses. In Gerald Tesauro, David S. Touretzky, and Todd K. Leen, editors,

Advances in Neural Information Processing Systems 7, pages 817–824. MIT Press,

Cambridge, MA, 1995.

[35] S. Haykin. Neural Networks: A Comprehensive Foundation. Prentice-Hall, 1999.

[36] John Hertz, Anders Krogh, and Richard G. Palmer. Introduction to the Theory of

Neural Computation. Addison-Wesley, 1991.

[37] K. Kotani, T. Shibata, and T. Ohmi. Neuron-mos binary-logic circuits featuring dra-

matic reduction in transistor count and interconnections, December 1992.

106

[38] M. Lenzlinger and E.H. Snow. Fowler–nordheim tunneling into thermally grown si02.

Journal of Applied Physics, (1):278–283, 1969.

[39] H. Castro M. Holler, S. Tam and R. Benson. An electrically trainable artificial neural

network with 10240 ‘floating gate’ synapses. In Proceedings of the International Joint

Conference on Neural Networks, pages 191–196, Washington, D.C., 1989.

[40] C. Mead. Scaling of mos technology to submicrometer feature sizes. Journal of VLSI

Signal Processing, pages 9–25, 1994.

[41] Carver Mead. Neuromorphic electronic systems. In Proceedings of the IEEE, volume 78,

pages 1629–1636, Oct 1990.

[42] Carver A. Mead. Analog VLSI and Neural Systems. Addison-Wesley, 1989.

[43] K. D. Miller and D. J. C. MacKay.

[44] B. A. Minch, C. Diorio, P. Hasler, and C. Mead. Translinear circuits using subthreshold

floating-gate MOS transistors. In Analog Integrated Circuits and Signal Processing,

volume 9, pages 167–179, 1996.

[45] A. F. Murray. Pulse arithmatic in vlsi neural networks. IEEE Micro, (6):64–74, 1989.

[46] A. P. Shon, D. Hsu, and C. Diorio. Learning spike-based correlations and conditional

probabilities in silicon. In T. G. Dietterich, S. Becker, and Z. Ghahramani, editors,

Advances in Neural Information Processing Systems 14, Cambridge, MA, 2002. MIT

Press.

[47] B. Linares-Barranco T. Serrano-Gotarredona and J.L. Huertas. A real time clustering

cmos engine. In D.S. Touretzky G. Tesauro and T.K. Leen, editors, Advances in Neural

Information Processing Systems 7, pages 755–762, Cambridge, MA, 1995. MIT Press.

[48] Y. Tsividis and S. Satyanarayana. Analogue circuits for variable synapse electronic

neural networks. Electronics Letters, (2):1313–1314, 1987.

107

[49] E.A. Vittoz. Dynamic analog techniques. In Y. Tsividis and P. Antognetti, editors,

Design of MOS VLSI Circuits for Telecommunications, pages 145–170. Prentice-Hall,

Englewood Cliffs, NJ, 1985.

[50] L. Wiskott and T. Sejnowski. Constrained optimization for neural map formation: A

unifying framework for weight growth and normalization. Neural Computation, pages

671–716, 1998.

[51] Y. Xu. Electron Transport through Thin Film Amorphous Silicon — A Tunneling

Study. PhD thesis, Stanford University, 1992.

108

