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un Circumferential component in the nozzle
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SUMMARY

Injectors are essential components in aerospace propulsion systems, serving a crucial

role in achieving high-quality propellant atomization and mixing, as well as engine stabil-

ity. They are integral components within a complex dynamic system and are responsible

for coupling the feed system to the combustion chamber. Thus, a profound understanding

of injector dynamics is imperative to attain a robust engine design.

Since the early studies, the typical configurations of interest have involved closed-head

injectors, where the liquid propellant swirls around a stationary gas core. Gas-liquid in-

teractions were introduced with recessed coaxial swirl injectors and air-blast injectors with

major emphasis on the atomization process. The classical theory on injector dynamics

lacks the consideration for the effect of the shear stress at the liquid-wall and gas-liquid

interfaces in the governing equations. Therefore, the damping effect on propagating waves

is modelled exclusively through an artificial viscosity factor.

This work conducts a theoretical and numerical investigation for an alternative config-

uration of open-end swirl injectors. The distinctive feature of this configuration is an open

head and a high speed gas that flows coaxially with the swirling liquid towards the injector

exit. Unlike a recessed coaxial injector, the gas immediately interacts with the tangentially

injected liquid into the chamber where the gas is flowing. The comprehensive review of

classical steady-state and transient theories on swirl injectors led to the identification and

resolution of inconsistencies. The analytical inclusion of shear stress at the liquid-wall

and gas-liquid interfaces produced a modified wave equation, and the new solution was

employed to extend the classical theory to Open-Head-Open-End injectors. A parametric

study for frequencies up to 2000 Hz involving gas flow velocity, injector pressure drop,

and geometric parameters highlighted the significance of friction coefficients tuning for an

accurate calculation of the injector transfer function. Computational Fluid Dynamics pro-

vided a qualitative description of the flow physics involved in the injector configuration of

interest.

xiv



CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 Introduction

Swirl injectors emerged during the mid-1960s within the gas generators and combustion

chambers of Russian Liquid Rocket Engines (LRE). The first studies on the swirling flow

dynamics appeared in the late 1940s with Abrarnovich [1] and Taylor [2]. The strong inter-

est towards this type of injector was driven by several advantages over jet injectors. In fact,

swirl injectors are less sensitive to manufacturing errors since they do not rely on impinging

jets. The greater internal volume helps avoiding undesired phenomena such as cavitation

or choking. Smaller droplets and better atomization can be achieved for a given mass flow

rate and pressure drop. Moreover, their self-tuning capability during the initial transient

phase improves ignition [3]. A schematic representation of a swirl injector is depicted in

Figure 1.1.

Figure 1.1: Illustration of a closed-end swirl injector where 1) casing; 2) vortex chamber;
3) nozzle; 4) inlet channels. Ref. [4].

The fundamentals of fluid dynamics in swirl injectors can be elucidated by first addressing

the characteristics in the steady-state regime, followed by an analysis of the non-stationary
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processes [3]. The inlet channels are the first elements encountered by the propellant in its

path towards the combustion chamber. Inlet channels are tangential to the vortex chamber,

that is partially filled with swirling liquid and has a gas core around its symmetry axis. At

the head-end of the vortex chamber, the liquid has only a tangential velocity component

and the distance between the free surface and the symmetry axis is minimum. Note that

the gas core must exist because the swirling velocity approaches infinity as the swirling

radius tends to zero for angular momentum conservation. Proceeding towards the noz-

zle, the liquid gains axial velocity, therefore reducing the tangential component for energy

conservation. Simultaneously, the swirling radius of the free surface increases for angular

momentum conservation. The axial velocity is assumed to be constant and uniform within

the vortex chamber, except at the head-end, where it attains a zero value. Exiting the vortex

chamber, a conical convergent passage reduces the flow area and causes the flow to gain a

high axial velocity. As a consequence, the swirling radius increases again. Finally, at the

nozzle exit, the combination of the tangential and axial velocity produces a cone shaped

thin layer of liquid. The liquid layer breaks down more downstream due to aerodynamic

forces allowing atomization and mixing.

Swirl injectors are characterized by intrinsic non-stationary processes coupled with

other elements of the engine. This renders injectors fundamental members of a complex

dynamic system. A simplified scheme is shown in Figure 1.2, illustrating three primary

interactions.

if.l. c.c.

2

13

Figure 1.2: Simplified scheme of dynamic interactions between the injector (i), combustion
chamber (c.c.), and feed line (f.l.).

Firstly, oscillations of the combustion chamber pressure impact the processes within the

2



chamber (1), specifically atomization, mixing and combustion. Concurrently, these pres-

sure disturbances induce oscillations in velocity, and therefore, mass flow rate, within the

injector element (2). Consequently, pressure fluctuations emerge in the feedline (3), given

the interdependence of these two quantities. Fluctuations in the feed system combine with

pressure oscillations generated by turbulent flows in pipes and valve vibrations. This com-

bination significantly influences propellant injection. Clearly, the injector is the element

that couples the feed system to the combustion chamber and it can be used to affect the

engine dynamic system.

The initial investigations focused on closed-end swirl injectors, characterized by a con-

vergent section connecting the vortex chamber to the nozzle. Conversely, the most recent

configurations feature a vortex chamber extending up to the injector exit, referred as open-

end swirl injectors. Both these injector types have a closed head-end and the gaseous core

has no axial velocity. For rocket engines applications, an axial gas flow was introduced

with recessed coaxial swirl injectors. In aeronautical combustors, instead, air-blast injec-

tors are used. In particular, in pre-filming air-blast injectors the gas interacts with the liquid

film formed on impingement plates, therefore promoting atomization.

The objective of this work is to conduct a theoretical and numerical study on a new class

of coaxial swirl injectors featuring an open head. The liquid is tangentially injected into

the duct where the gas is axially flowing at high speeds. Consequently, the gas interacts

with the liquid from the outset. This investigation extends the classical theory on injec-

tor dynamics by incorporating additional physical phenomena that were absent in previous

models and are relevant in Open-Head Open-End (OHOE) swirl injectors. An analysis is

conducted to study the impact of geometric parameters and flow variables on the dynamic

response of the injector. Finally, Computational Fluid Dynamics (CFD) provides a qualita-

tive description of the flow physics in OHOE injectors. The presence of a high speed axial

gas flow renders these injectors suitable for gas-turbine engines.
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1.2 Background

The importance of controlling instabilities generated in LRE led to several studies about

the internal flow dynamics of liquid swirl injectors. The early theoretical studies emerge

in Russia with Bazarov [5] who focused his research on the flow dynamics in closed-end

swirl injectors. Bazarov developed a linear theory based on the propagation of small dis-

turbances in the flow, specifically surface waves and vorticity waves. The fluid is assumed

to be inviscid, incompressible, and with no surface tension. Due to the linearity of his

theory, Bazarov derived an analytical expression for the transfer function of the whole in-

jector as a product of the response function of different injector parts. Several groups of

researchers advanced the understanding of swirl injectors from a numerical, experimental

and theoretical standpoint.

In Seoul National University in South Korea Prof. Youngbin Yoon and his group of re-

searchers collaborated with Bazarov to investigate the effect of different geometries on the

dynamic characteristics of a simplex injector [6]. They produced pressure oscillations in

the feed line with a pulsator and measured the mass flow rate fluctuations as the output pa-

rameter. They found that the oscillations amplitude decreases with the decrease of the swirl

chamber diameter and with the increase of the swirl chamber length, therefore achieving

a more stable configuration. Moreover, the phase moves clockwise in the phase-amplitude

diagram as the frequency of the input fluctuations increases. More parameters were ana-

lyzed in [7], where it was found that the phase diagrams of the pressure, axial velocity and

mass flow rate start from the fourth quadrant and move in a clockwise direction, while the

film thickness starts in the first quadrant. The quantification of the mass flow rate variation

due to pressure fluctuations was investigated by Khil et al. [8] and a new method that uses

pressure and film thickness in the nozzle was developed. Further studies by Chung et al. [9]

focused on the dynamics of open-end swirl injectors. It was found that there exists a direct

proportionality between the liquid film thickness fluctuation at the exit of the injector and

4



the input pressure oscillation amplitude. However, the increase of tangential inlet number,

vortex chamber diameter and length lowers the proportionality coefficient. Several studies

were also conducted about the self-pulsation phenomenon, first by V. Bazarov and V. Yang

[4] and then in South Korea [10–12], where the effect of internal flow dynamics on spray

characteristics and liquid sheet break up were additional topics of interest [13–17].

In the USA, Prof. S. Heister at Purdue University focused his efforts on numerical in-

vestigation and led his research team to undertake extensive simulations. They used the

Boundary Element Method (BEM) to explore the nonlinear dynamic response of swirl

injectors [18]. Ismailov et al. [19–21] have deconstructed the entire unsteady flow phe-

nomena within swirl injectors into distinct components: disturbance wave refraction, wave

reflection, and vortex chamber resonance. This deconstruction served as the basis for their

linear small perturbation analysis. Furthermore, Ismailov conducted dynamic simulations

using the nonlinear BEM, revealing that the peak of dynamic responses aligns precisely

with resonant frequencies. Richardson et al. [22], instead, engaged in a comparative study

by contrasting simulation outcomes obtained through the BEM with those originating from

Bazarov’s linear model. This analysis demonstrated a notable level of agreement for fre-

quencies below 5000 Hz. Beyond this threshold, discrepancies started to emerge between

the two models.

In Beijing University of Astronautics and Aeronautics, Fu et al. [23–25] investigated

the dynamics in open-end injectors and observed that the magnitude of the film thickness

fluctuation diminishes as the frequency of pressure oscillation rises. Additionally, they

noted that the frequency of the fluctuation in film thickness aligns with the frequency of

pressure oscillation. Furthermore, they established a direct linear relationship between the

phase disparity of mass flow rate fluctuation and pressure oscillation when the pressure

oscillation frequency increases. Moreover, the researchers found that the phase contrast is

influenced by two factors: the geometric characteristic constant A, and the pressure drop.

They observed that an increase in the value A leads to a rise in the phase contrast, while

5



an increase in the pressure drop results in a reduction of the phase contrast. Starting from

the transfer function for closed injectors derived by Bazarov, L. Yang et al. [26] derived

the transfer function of an open-end injector. They considered no wave reflection due to

the absence of a converging conical section, which is responsible of reflecting disturbance

waves back to the head-end of the injector. Moreover, they derived the transfer function

of a swirl injector with two rows of tangential channels. They discovered that oscillations

are attenuated under the condition where the distance between the rows equals half of a

disturbance wavelength. This damping effect arises due to the opposite phase of surface

waves generated by the two inlet rows. Similarly, Richardson, Zakharov and Heister [22,

27] observed that pressure swirl injectors featuring double rows of inlets exhibit more fa-

vorable stability traits compared to their single-row counterparts due to the possibility of

wave cancellation with the appropriate tuning.

Additional configurations of interest in LRE include gas and liquid centered coaxial

swirl injectors. Fu et al. derived the analytical expression for the transfer function in a

recessed liquid centered coaxial swirl injector [28], while experimental studies were con-

ducted by Park et al. on gas centered injectors with a pulsating gas and liquid flow [29, 30].

The latter measure the injector transfer function for different recess ratios, momentum flux

ratios, and gap thickness between the liquid inlet and the solid surface extending up to the

area of liquid-gas contact. The gap and the momentum flux ratio have a significant impact

on the liquid oscillations. Other investigations conducted in China, instead, focused on the

atomization characteristics of this type of injectors [31, 32].

In aeronautical gas turbine engines, much attention was placed on air-blast atomizers.

Investigations focus on atomization process, breakup of the liquid film, prediction of drop

sizes and trajectories with the main objective of spray characterization. Studies were con-

ducted under the theoretical, numerical and experimental perspective [33–43].
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1.3 Research Objectives

Previous studies on swirl injectors mainly focus on configurations featuring a closed-head

end and a liquid film swirling around a stationary gas core. When an axial gas flow is

introduced, the typical configurations of interest include recessed coaxial swirl injectors

for LRE and air-blast injectors for air-breathing engines.

The aim of this work is to theoretically and numerically investigate a new class of

coaxial swirl injectors, schematically depicted in Figure 1.3. The alternative configuration

entails an injector design with openings at both ends (OHOE). The liquid is tangentially

injected into the duct where the gas is axially flowing at high speeds. The interaction

between the two phases is immediate and not limited to a specific region as in recessed

swirl injectors.

Figure 1.3: Illustration of Open-Head Open-End swirl injector with axial gas flow.

The study of this configuration requires the consideration of additional physical phe-

nomena, not included in previous models. The classical model is extended to analytically

include the effect of shear stress at the liquid-wall and gas-liquid interfaces in the gov-

erning equations. These changes lead to the derivation of a modified wave equation and

a new solution. The latter is employed to apply changes to the classical injector transfer

function. Unlike previous models that are based on artificial viscosity factors, the distur-

bances undergo a damping effect analytically represented. A parametric study involving

7



geometric parameters, gas flow velocity and injector pressure drop for frequencies up to

2000 Hz is performed to analyze the effect on the injector transfer function. Furthermore,

the parametric study highlights the significance of friction factors calibration for the ac-

curate calculation of the injector response function. Finally, CFD simulations aid in the

qualitative description of the flow physics in OHOE injectors.

For the sake of comprehensiveness, this work presents the steady-state theory of swirl

injectors from Ref. [3] to emphasize the most important parameters and their mutual rela-

tion. The analysis of the linear dynamics from Bazarov’s theory [5, 44] and the review of

the transfer function derivation for open-end swirl injectors outlined in [26] facilitated the

detection and resolution of typographical errors and inconsistencies.
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CHAPTER 2

THEORY OF LIQUID MONOPROPELLANT SWIRL INJECTORS

2.1 Steady-State Theory of Swirl Injectors

The classical theory describing the ideal steady state flow in a swirl injector is fundamental

to understand the effect of geometrical and physical parameters on the flow. The approach

followed in Ref. [3] is of great help to establish all the important relations to produce the

preliminary design of a liquid swirl injector.

The entire theory is based on the following principles: conservation of mass, energy and

angular momentum, Bernoulli’s equation and maximum flow. The liquid propellant enters

the vortex chamber of the injector through tangential inlets with a velocity Win. The purely

swirling flow gains axial velocity until it exits the injector from the nozzle generating a

conic liquid sheet. The latter breaks down into droplets ensuring atomization of the liquid.

The liquid propellant swirls around a stationary gas core such that the pressure on the liquid

free surface is equal to the pressure in the combustion chamber. Through the Bernoulli’s

equation it is obvious how the pressure difference across the injector is converted into flow

velocity, meaning that the potential energy is converted into kinetic energy. Therefore, the

total liquid flow velocity on the free surface is

WΣ =

√
2

ρ
∆pi =

√
2(pf − pc)/ρ (2.1)

where pc is the combustion chamber pressure and pf is the pressure in the propellant feed

system upstream the tangential entries. In the same way, the inlet velocity can be obtained

Win =
√

2(pf − pin)/ρ (2.2)
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where pin is the tangential inlet pressure. Assuming that the radial velocity in the liquid

film is negligible, then Wr = 0 and the total velocity is

WΣ =
√
W 2

u +W 2
a (2.3)

where the subscripts u and a refer to the circumferential and axial velocity, respectively.

The axial velocity at the head end of the vortex chamber Wak is also zero, thus

WΣ = Wuk (2.4)

where the subscript k denotes the injector head end.

The conservation of angular momentum gives

WinRin = Wukrmk = Wunrmn = Wumrm (2.5)

with Rin the radial location of the center of tangential inlets from the symmetry axis, and

the subscripts m and n referring to the liquid free surface and the nozzle section, respec-

tively. The existence of a free surface that separates the liquid flow from a gas core is en-

sured by the conservation of angular momentum. According to Equation (2.5) the swirling

liquid would approach infinite velocity as rm goes to zero, thus the injector cannot be filled

with liquid. In addition, for the same principle, rmk is the minimum swirling radius: the

entire kinetic energy is represented by the swirling motion at the head end. The swirling

radius increases with the increase of axial velocity of the fluid to conserve both energy and

angular momentum.

The coefficient of passage fullness is defined as the ratio between the area filled by the

liquid and the nozzle area

ϕ =
π(R2

n − r2mn)

πR2
n

= 1− r2mn

R2
n

(2.6)
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where Rn is the nozzle radius and rmn the liquid film radius in the nozzle. Moreover, the

flow discharge coefficient µ is defined as the ratio between the actual mass flow rate and

the maximum flow rate through the nozzle

µ =
ρWanFnϕ

ρWΣFn

=
Wanϕ

WΣ

(2.7)

where Fn is the nozzle area. Using Equations (2.3) and (2.5), Equation (2.7) can be written

as

µ = ϕ

√
W 2

Σ −W 2
un

W 2
Σ

= ϕ

√
1− r2mk

r2mn

(2.8)

The most important parameter is the injector geometric characteristic

A =
FnRin

FinRn

=
RinRn

nr2in
(2.9)

where Fin is the total area of the inlet channels, n is the number of tangential inlets, rin is

the radius of the inlet channels and the other parameters are defined above. In addition, the

liquid sheet spreading angle at the nozzle exit is

tan α =
Wun

Wan

(2.10)

An additional equation can be derived exploiting a differential volume approach as

follows. Considering a liquid element at radius r with unit thickness, width dr and length

rdθ and equating the pressure and centrifugal forces, the following expression is obtained

rdθdP = dm
W 2

u

r
(2.11)

where P = p − pc, and Wu and r refer to the liquid element in the liquid film. Using the
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conservation of angular momentum within the liquid film

Wu =
Wumrm

r
(2.12)

and noting that dm = ρrdrdθ, Equation (2.11) becomes

dP = ρW 2
umr

2
m

dr

r3
(2.13)

This expression can be integrated with P = 0 at r = rm since p = pc on the surface. As a

result

P =
ρ

2
(W 2

um −W 2
u ) (2.14)

The Bernoulli’s equation leads to

ρ

2
(W 2

a +W 2
u ) + P = Pt (2.15)

where Pt = pf − pc. Substitution of Equation (2.14) into Equation (2.15) yields

Wa =

√
2Pt

ρ
−W 2

um (2.16)

From Equation (2.5)

Wum =
WinRin

rm
(2.17)

The total volumetric flow rate entering the vortex chamber through the tangential passages

is given by

Q = nπr2inWin (2.18)

Finally, substituting Win from Equation (2.18) into Equation (2.17) and then using the latter
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to substitute Wum in Equation (2.16), the following expression is derived

Wa =

√
2Pt

ρ
− R2

inQ
2

n2π2r4inr
2
m

(2.19)

This expression can be substituted in the following equation for the liquid flow rate

Q = ϕπR2
nWa (2.20)

Equating Wa from Equations (2.19) and (2.20) and using Equation (2.9), the liquid flow

rate can be expressed as

Q =
1√

A2

1−ϕ
+ 1

ϕ2

πR2
n

√
2Pt

ρ
(2.21)

where the last term under the square root represents the total velocity and its multiplica-

tion with the nozzle area Fn = πR2
n gives the maximum possible volumetric flow rate in

the nozzle. Therefore, based on the definition of the flow coefficient µ and from Equa-

tion (2.21), it is possible to write

µ =
1√

A2

1−ϕ
+ 1

ϕ2

(2.22)

From the physical standpoint, the increase of ϕ causes the axial velocity to decrease faster

than the increase of the equivalent flow area, therefore the mass flow rate decreases. The

decrease of ϕ, instead, causes the equivalent flow area to decrease faster than the increase

in axial velocity, thus the mass flow rate decreases also in this case. As a consequence, a

maximum must exist and it is found applying the following condition to Equation (2.22)

dµ

dϕ
= −1

2

(
A2

1− ϕ
+

1

ϕ2

)(
A2

(1− ϕ)2
− 2

ϕ3

)
= 0 (2.23)

The latter expression allows to express the geometric characteristic parameter as a function
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of the coefficient of passage fullness as follows

A2 =
2(1− ϕ)2

ϕ3
(2.24)

Substituting Equation (2.24) into Equation (2.22) leads to the optimum value of µ, that is

µ = ϕ

√
ϕ

2− ϕ
(2.25)

The mass flow coefficient as a function of ϕ for different values of A is shown in Fig-

ure 2.1, where the dashed line is from Equation (2.25) and the other curves are from Equa-

tion (2.22).

Figure 2.1: Discharge coefficient µ as a function of the coefficient of passage fullness ϕ
for different values of the geometric characteristic parameter A. The dashed line is the
optimum discharge coefficient µopt.

It is possible to find the relation between the pressure drop across the tangential channels

∆pin and across the whole injector ∆pi. From Equations (2.1) and (2.7), the axial velocity
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in the nozzle can be written as

Wan =
µ

ϕ

√
2

ρ
(pf − pc) (2.26)

The circumferential velocity at a radius rm is given by the conservation of angular momen-

tum in Equation (2.5) and the inlet velocity in Equation (2.2):

Wum =
rmk

rm
WΣ =

Rin

rm
Win =

Rin

rm

√
2

ρ
(pf − pin) (2.27)

Applying the Bernoulli’s equation at the nozzle section, the total pressure in the manifold

is

pf = pc +
ρ

2
(W 2

un +W 2
an) (2.28)

Substituting Equations (2.26) and (2.27) into Equation (2.28) yields

pf − pc =
µ2

ϕ2
(pf − pc) +

R2
in

r2mn

(pf − pin) (2.29)

It is easy to see that such expression can be written as

pf − pin
pf − pc

=
∆pin
∆pi

=
1− µ2/ϕ2

(Rin/rmn)2
(2.30)

According to the principle of maximum flow, it is possible to use Equation (2.25) for the op-

timum value of the discharge coefficient. Moreover, from Equation (2.6) rmn = Rn

√
1− ϕ

and Equation (2.30) becomes

∆pin
∆pi

=
2(1− ϕ)2/(2− ϕ)

(Rin/Rn)2
(2.31)

Since the ratio of pressure drops ∆pin/∆pi must be less than 1, the latter equation is valid

only for Rin/Rn > 1. In fact, when this condition is not met, the principle of maximum
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flow rate is not applicable.

The normalization of the injector parameters simplifies its analysis, allowing to identify

their relation with non dimensional parameters µ, ϕ and A. The radii are normalized with

respect to Rn and the velocities with respect to WΣ. The conservation of mass flow rate

gives

WinFin = µFnWΣ (2.32)

and the conservation of angular momentum

RinWin = rmkWΣ (2.33)

The ratio between Equations (2.32) and (2.33), dividing by Rn and rearranging leads to

rmk

Rn

= µ
FnRin

FinRn

= µA (2.34)

This is the normalized radius of the liquid film at the head end of the vortex chamber and it

is only a function of ϕ or A. In fact, substituting µ and A from Equations (2.24) and (2.25)

respectively, gives

rmk =
rmk

Rn

=
√
2(1− ϕ)2/(2− ϕ) ≡

√
a (2.35)

For simplicity, all the normalized quantities are denoted with a bar. With this notation

Equation (2.6) results in

rmn =
√

1− ϕ (2.36)

Dividing Equation (2.35) by Equation (2.36) defines

r2mk/r
2
mn = a/(1− ϕ) = 2(1− ϕ)/(2− ϕ) ≡ b (2.37)

The conservation of angular momentum with the normalized quantities results in
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W unrmn = WΣrmk, therefore the azimuthal velocity in the nozzle is

W un = rmk/rmn =
√

2(1− ϕ)/(2− ϕ) (2.38)

The axial velocity can be written as

W an =

√
1−W

2

un =
√

1− 2(1− ϕ)/(2− ϕ) =
√
ϕ/(2− ϕ) (2.39)

The spreading angle of the liquid sheet at the injector exit is derived with the ratio of

Equations (2.38) and (2.39) as follows

αn = tan−1(Wun/Wan) = tan−1(W un/W an) = tan−1
√
2(1− ϕ)/ϕ (2.40)

Similarly, it is possible to determine the velocities and the spreading angle downstream of

Figure 2.2: Dimensionless parameters as a function of the geometric characteristic param-
eter A.

the injector exit αe. The conservation of angular momentum at the exit, WueRn = WΣrmk,
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leads to the following expression for the azimuthal velocity

W ue = rmk/Rn =
√

2(1− ϕ)2/(2− ϕ) =
√
a (2.41)

Consequently, the axial velocity is

W ae =

√
1−W

2

ue =
√
1− a (2.42)

From the ratio of Equations (2.41) and (2.42), the angle αe is computed as

αe = tan−1
√

a/(1− a) (2.43)

Another form of Equation (2.42) is

Wae = WΣ

√
1− a = WΣ

√
(3− 2ϕ)ϕ/(2− ϕ) (2.44)

and its ratio with the axial velocity in the nozzle gives

W ae/W an =
√

(1− a)(2− ϕ)/ϕ =
√

3− 2ϕ (2.45)

For a liquid film with a thickness that tends to zero, ϕ → 0, thus

W ae =
√
3 W an (2.46)

The dimensionless inlet velocity can be determined from Equations (2.33) and (2.35) as

follows

W inRin = rmk ⇒ W in =

√
a

Rin

(2.47)

The flow parameters in the vortex chamber can be obtained applying the condition of flow

continuity. Since π(R
2

n − r2mn) and π(R
2

vc − r2mv) are the annular flow area in the nozzle
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and vortex chamber respectively, the continuity condition results in

W av = W an
R

2

n − r2mn

R
2

vc − r2mv

(2.48)

The latter equation can be rewritten with the aid of Equations (2.6) and (2.7) obtaining

W av = W an
ϕ

R
2

vc − r2mv

=
µ

R
2

vc − r2mv

(2.49)

Moreover, considering that from Equation (2.1) W 2
uv = W 2

Σ −W 2
av, from the conservation

of angular momentum Wuvrmv = WΣrmk, and from Equation (2.35) r2mk = a, it is possible

to write

r2mv =
a

1−W
2

av

(2.50)

This expression and Equation (2.49) allow to determine Wav and rmv.

2.2 Linear Dynamics of Swirl Injectors

The main mission of propellant injectors is to achieve propellant atomization and the for-

mation of a high quality combustible mixture. However, injectors are characterized by

non-stationary processes and thus can be treated as a dynamic component of the engine.

The oscillations generated in the feed-line due to turbulent flow and in the combustion

chamber due to unsteady combustion are some of the sources of oscillations. The unsteady

processes can be modified and controlled by designing an injector with specific response

characteristics to disturbances in input. Following and correcting the typos in the available

literature, it is possible to derive the total injector transfer function as a product of the re-

sponse function of each injector part. A swirl injector can be decomposed in three main

elements: tangential passages, vortex chamber and nozzle. The tangential inlets are treated

as jet injectors, while the dynamics in vortex chamber and nozzle is based on the formula-

tion of a wave equation for disturbances propagating in a liquid with centrifugal force, as it
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is shown in [4].

A code was implemented to replicate the response function amplitude and phase graphs

shown in [23].

2.2.1 Tangential Channels

Each instantaneous operating parameter can be decomposed into a mean value and a pul-

sation component as follows

∆p̃ = ∆p+∆p′ (2.51)

W̃ = W +W ′ (2.52)

where p and W are pressure and axial velocity, respectively. The one-dimension Euler

equation in the axial direction for an inviscid liquid is

∂W̃

∂t
+ W̃

∂W̃

∂z
= −1

ρ

∂p̃

∂z
(2.53)

In the case of a short jet injector with a length LJ much smaller than the wavelength of

oscillation, the integration of Equation (2.53) in the z direction from the manifold at z1 = 0

with p1 = pf and W̃1 = 0, and the exit at z2 = LJ with p2 = pc and W̃2 = W̃ , gives

∂W̃

∂t
+

W̃ 2

2LJ

=
p̃f − p̃c
ρLJ

≡ ∆p̃

ρLJ

(2.54)

The substitution of Equations (2.51) and (2.52) in Equation (2.54) with the mean value W

independent of time, ∆p/ρ = W 2/2 from the Bernoulli’s equation and considering only

first order terms, leads to the linearized equation that follows

∂W ′

∂t
+

W

LJ

W ′ =
|∆p′|
ρLJ

eiωt (2.55)
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where, for harmonic oscillations in time

∆p′ = |∆p′| eiωt, W ′ = |W ′| eiωt (2.56)

Keeping the latter expressions in mind, Equation (2.55) can be easily solved and the result

is

W ′ =
∆p′

ρW + iωρLJ

(2.57)

Moreover, it is straight forward to derive the transfer function that relates velocity and

pressure drop fluctuations normalized with respect to their mean value. In fact, rearranging

Equation (2.57) and multiplying both sides by ∆p/W with ∆p/ρ = W 2/2, the transfer

function of the jet injector is

ΠJ =
W ′/W

∆p′/∆p
≡ W

′
J

∆p′J
=

∆p

W

1

ρW + iωρLJ

=
1

2

1− iωLJ

W

1 +
(
ωLJ

W

)2 =
1

2

1− iShJ

1 + Sh2
J

(2.58)

where the Strouhal number is ShJ = ωLJ/W . The real and imaginary part are

Re ΠJ =
1

2

1

1 + Sh2
J

, Im ΠJ = −1

2

ShJ

1 + Sh2
J

(2.59)

Consequently, the phase angle ΦJ between W
′
J and ∆p′J is

ΦJ = arctan
Im ΠJ

Re ΠJ

= − arctanShJ (2.60)

The plot of the amplitude-phase diagram of the transfer function is depicted in Figure 2.3,

where ∆p′ = 1 arbitrarily. It is possible to state that for short injectors the amplitude of the

pulsation W ′ decreases as Sh increases, while ΦJ tends asymptotically to π/2.

The analysis for jet injectors can be directly applied to the tangential channels if their

length is much smaller than the wavelength of oscillation.
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Figure 2.3: Transfer function diagram for short jet injectors.

2.2.2 Swirling Chamber

Wave Equation and Wave Speed

The analysis of the swirling flow in the vortex chamber and nozzle requires the derivation

of the wave equation that governs the disturbance propagation in the swirling liquid. The

final expression can be obtained following the approach presented in [44].

For an inviscid axisymmetric flow in the z direction, the Euler equations are

dW̃r

dt
=

W 2
u

r
− 1

ρ

∂p̃

∂r
(2.61)

dW̃a

dt
= −1

ρ

∂p̃

∂z
(2.62)

In addition to the assumption of inviscid fluid, the following assumptions are applied:

• the radial acceleration is considered negligible dWr/dt ≈ 0

• the amplitude of oscillations are small compared to the gas core radius ξ ≪ rm
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• the axial velocity component Wa is uniform in the thin liquid film at any cross section

along the symmetry axis.

Therefore, Equation (2.61) becomes

∂p̃

∂r
= ρ

W 2
u

r
(2.63)

Using Equation (2.17) and integrating from the free liquid surface where r = rm + ξ and

p = pc to a radius r in the liquid film, the following expression can be written

p̃− pc = ρ

∫ r

rm+ξ

W 2
inR

2
in

r3
dr =

ρ

2
W 2

inR
2
in

[
1

(rm + ξ)2
− 1

r2

]
(2.64)

The differentiation of this equation along z leads to

∂p̃

∂z
= −ρ

W 2
inR

2
in

(rm + ξ)3
∂ξ

∂z
(2.65)

The substitution of Equation (2.65) into Equation (2.62) neglecting the convective part of

the material derivative as in [44, 45], and recalling ξ ≪ rm gives

dW̃a

dt
≈ ∂W̃a

∂t
=

W 2
inR

2
in

r3m

∂ξ

∂z
(2.66)

The additional equation required to obtain the wave equation can be derived applying the

conservation of mass. Any cross section in the vortex chamber is characterized by a gas

core and a liquid ring. Considering two cross sections at a distance dz, the volume of liquid

that passes through each one of them in a time dt is

[
W̃aπ

(
R2

vc − (rm + ξ)2
)]

z
dt,

[
W̃aπ

(
R2

vc − (rm + ξ)2
)]

z+dz
dt (2.67)
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Therefore, the change in volume in dt between the cross sections is

∂
[
W̃aπ (R2

vc − (rm + ξ)2)
]

∂z
dzdt (2.68)

Due to incompressibility of the liquid, a change in volume corresponds to a change in the

level of the fluid. The latter changes by a quantity (∂ξ/∂t)dt in an interval dt, thus the

change in volume is

2πrm
∂ξ

∂t
dzdt (2.69)

Equations (2.68) and (2.69) must be equal, leading to

∂ξ

∂t
=

R2
vc − (rm + ξ)2

2rm

∂W̃a

∂z
− rm + ξ

rm
W̃a

∂ξ

∂z
(2.70)

Recalling that ξ is small and neglecting the last term since it is second order [44, 45]

Equation (2.70) can be simplified:

∂ξ

∂t
=

R2
vc − r2m
2rm

∂W̃a

∂z
(2.71)

The differentiation of Equations (2.66) and (2.71) with respect to space z and time t, re-

spectively, and the subsequent elimination of the mixed derivatives that appear in both

expressions, give
∂2ξ

∂t2
=

W 2
inR

2
in

r3m

R2
vc − r2m
2rm

∂2ξ

∂z2
(2.72)

This expression is the wave equation that describes the propagation of disturbances on the

liquid surface in the axial direction. It is easy to note that Equation (2.72) has the following

form
∂2ξ

∂t2
= W 2

w

∂2ξ

∂z2
(2.73)
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where Ww is the surface wave propagation speed, which explicitly is

Ww =

√
W 2

inR
2
in

r3m

R2
vc − r2m
2rm

=
WinRin

r2m

√
R2

vc − r2m
2

(2.74)

Analyzing this expression, it is possible to notice the analogy with the propagation speed

of shallow-water waves Wsh, which is

Wsh =
√

gshhsh (2.75)

where gsh = (W 2
inR

2
in)/(r

3
m) corresponds to the centrifugal acceleration and hsh = (R2

vc −

r2m)/(2rm) corresponds to an effective thickness of the liquid film. In shallow-water waves

under the effect of gravitational force, gsh is the gravitational acceleration and hsh the water

depth. From Equation (2.66) it is possible to write

∂W ′
a

∂t
=

W 2
inR

2
in

r3m

∂ξ

∂z
(2.76)

An expression for ξ is given by the solution of Equation (2.72) for a semi-infinite vortex

chamber, which is the following

ξ = Ω eiω(t−z/Ww) (2.77)

The latter form for ξ can be substituted in Equation (2.76) and expanding W ′
a = |W ′

a| eiω(t−z/Ww),

the amplitude of the axial velocity oscillation is

|W ′
a| =

ΩW 2
inR

2
in

Wwr3m
(2.78)
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Wave Amplitude

The wave speed of Equation (2.74) can be rewritten in a non-dimensional form through the

angular momentum conservation WinRin = WΣ rmk, with rm = rmk, and rmk =
√
a

Ww =
Ww

WΣ

=
WΣ rmk

r2mk

√
R2

vc − r2mk

2
=

√√√√1

2

(
R

2

vc

a
− 1

)
(2.79)

Moreover, the liquid axial velocity in the vortex chamber is given by Equation (2.49),

therefore the total velocity of a surface wave propagating in the vortex chamber is

Ww,vc = Ww +W av =

√√√√1

2

(
R

2

vc

a
− 1

)
+

µ

R
2

vc − a
(2.80)

The surface wave amplitude as a function of the inlet velocity fluctuation W ′
in is derived

from considerations on the volume flow rate. The total instantaneous volume flow rate can

be expressed as

Q+Q′ =

∫ Rvc

rm−ξ

2π(Wav +W ′
av)rdr (2.81)

where

∫ Rvc

rm−ξ

2πWavrdr = Q+

∫ rm

rm−ξ

2πWavrdr = Q+ 2πWavrmξ∫ Rvc

rm−ξ

2πW ′
avrdr =

∫ rm

rm−ξ

2πW ′
avrdr +

∫ Rvc

rm

2πW ′
avrdr = 2πW ′

avrmξ + πW ′
av(R

2
vc − r2m)

(2.82)

The second order term in the last expression of Equation (2.82) can be neglected. After

summing the two right hand sides of Equation (2.82) and comparing to Equation (2.81),

the fluctuating volume flow rate is given by

Q′ = 2πWavrmξ + πW ′
av(R

2
vc − r2m) (2.83)
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Substituting Equation (2.78) and Wav = WΣW av from Equation (2.80) into Equation (2.83),

the following expression is obtained

Q′ = 2π
WΣµ

R2
vc − a

rmkΩvL + πΩvL
W 2

inR
2
in

Ww,vcr3mk

(R2
vc − r2mk) (2.84)

The second term corresponds to volume flow rate fluctuations at the head end of the injector

where Wav = 0 and it can be rewritten as

Q′
k =

πΩvL,kWΣR
2
n(R

2

vc − a)

Ww,vc

(2.85)

with ΩvL = ΩvL/rmk. Equating Q′
k to the volume flow rate oscillation through the tangen-

tial inlets Q′
in = FinW

′
in for continuity of the liquid flow, the wave amplitude ΩvL results

in

ΩvL,k =
1

A

√
2(R

2

vc − a)

∣∣∣∣W ′
in

Win

∣∣∣∣ (2.86)

where the geometric parameter A = RinFn/Fin was used and Ww,vc = Ww at the head-end.

Note that ΩvL,k is the wave amplitude at the head-end where the liquid axial velocity is zero,

while ΩvL accounts for Wav. The amplitude ΩvL can be obtained from Equation (2.84). The

latter can be rewritten using Equation (2.85) and with the approximation that Ww,vc = Ww

as follows

Q′ = πR2
nΩvLWΣ

(√
2a(R

2

vc − a) +
2µa

R
2

vc − a

)
(2.87)

It is now possible to obtain ΩvL equating Q′ and Q′
in

ΩvL =
W ′

inRin

AWΣ

(√
2a(R

2

vc − a) + 2µa

R
2
vc−a

) (2.88)
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Finally, Equation (2.88) can be divided by Equation (2.86) to get the following expression

ΩvL

ΩvL,k

=

√
(R

2

vc − a)3√
(R

2

vc − a)3 + µ
√
2a

(2.89)

2.2.3 Transfer Function of Open-End Injectors

Following the approach used by Bazarov [5] for closed-end injectors, L. Yang [26] derived

an analytical expression for the transfer function of an open-end swirl injector. The absence

of a conical converging section allows the disturbance waves to travel from the head-end

to the exit of the injector without reflecting back. Therefore, there is no superposition of

forward and backward traveling waves in the vortex chamber. Moreover, the axial velocity

of the liquid flow in open injectors is higher than in closed injectors and its effect cannot

be neglected. Even in the case of open injectors the total transfer function is the product of

the response functions of the different parts of the injector.

In Section 2.2.1, the response function for tangential inlets ΠJ was derived. This func-

tion establishes a connection between non-dimensional volume flow rate pulsations and

pressure drop fluctuations across the inlet channels. With a slight change of notation in the

subscript ΠJ is the following

ΠJ = ΠT =
W ′

T/WT

∆p′T/∆pT
≡ W

′
T

∆p′T
(2.90)

where the subscript T substitutes J and is used equivalently to in to indicate the tangential

inlets.

The dynamics of the vortex chamber has a higher complexity. The mass flow rate

fluctuations induced by pressure drop fluctuations across the inlet channels generate two

types of waves. Firstly, surface waves that propagate axially towards the exit of the injector

are indicated with subscript II . Secondly, vorticity waves which travel radially and are

associated to pulsations of the circumferential velocity at different radii. Vorticity waves
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are indicated by subscript III . It is assumed that the pressure drop fluctuation in the vortex

chamber is equally shared by the two types of waves, therefore

∆p⃗ ′
vc = ∆p⃗ ′

vc,II +∆p⃗ ′
vc,III (2.91)

and the total pressure drop is

∆p⃗ ′
i = ∆p⃗ ′

vc +∆p⃗ ′
T (2.92)

The expression for a surface wave at the head-end of the injector is given by

ξk = ΩvL eiωt (2.93)

When the wave travels axially a distance Lvc until the exit of the injector, its amplitude will

be damped by a factor e−νΦvc and its phase shifted by an angle Φvc

ξvn = ΩvL ei(ωt−Φvc)−νΦvc (2.94)

where Φvc = ωtvc = ωLvc/Ww,vc and ν is a dimensionless parameter to account for viscous

friction. Such parameter is determined experimentally for various fluids.

Bazarov [5] shows that for a long vortex chamber, which is the case of an open injector, it

is possible to write

KΣ,II =
∆p′vcII/∆pT
2W ′

in/Win

=
ΩvL

W ′
in/Win

(2.95)

It should be noted that W ′
in/Win = Q′

T/QT and ΩvL is derived from Equation (2.89).

Therefore, the transfer function for surface waves at the head-end of the injector is

ΠvcII =
∆p′vcII/∆pT
2Q′

T/QT

= KΣ,II (2.96)
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As a consequence, at the exit of the injector

Πvn = KΣ,II e
−iΦvc−νΦvc/2π =

Q′
vn/Qvn

Q′
T/QT

(2.97)

The last term needed for the total transfer function is the response function associated to

vorticity waves derived by Bazarov [5]

ΠvcIII =
∆p′vcIII/∆pT
2Q′

T/QT

=
Rvc −

√
a

Rvc

∫ 1

0

ei(ωt−f(x))e−νf(x) dx[
1− Rvc−

√
a

Rvc
x
]3 (2.98)

where

f(x) =
ωRin

WΣ

R
2

vc − a

µ
x tan

(
πx

2

)
(2.99)

At this point, the total transfer function can be constructed through the following pro-

cedure. Let’s divide Equation (2.92) by ∆pT to obtain

∆p′i
∆pT

=
∆p′vc
∆pT

+
∆p′T
∆pT

=

[
2(ΠvcII +ΠvcIII) +

1

ΠT

]
Q′

T

QT

(2.100)

and using ∆pT/∆pi = a/R
2

in Equation (2.100) becomes

∆p′i
∆pi

=
a

R
2

in

[
2ΠT (ΠvcII +ΠvcIII) + 1

ΠT

]
Q′

T

QT

(2.101)

Using Equation (2.97), the volume flow rate pulsation near the exit of the injector can be

related to the total pressure drop fluctuation as follows

∆p′i
∆pi

=
a

R
2

in

[
2ΠT (ΠvcII +ΠvcIII) + 1

ΠTΠvn

]
Q′

vn

QT

(2.102)

In conclusion, the total injector transfer function is

Πi =
Q′

vn/Qvn

∆p′i/∆pi
=

R
2

in

a

[
ΠTΠvn

2ΠT (ΠvcII +ΠvcIII) + 1

]
(2.103)
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where the conservation of mass flow rate was used, in fact QT = Qvc = Qvn.

The injector response function Πi was plotted by Fu et al. in [23] varying several

parameters. The results are shown in Figures 2.4 and 2.5 alongside the graphs obtained

through a MATLAB code to replicate the analytical expression of Equation 2.103. Both

the code and Fu et al. use the approximation Rin ≈ Rvc. The comparison shows that the

MATLAB code replicates perfectly the results obtained by Fu et al and this validates the

code.

(a) (b)

(c) (d)

Figure 2.4: Theoretical Validation – Amplitude and phase diagrams of the injector transfer
function as a function of frequency for different values of injector length to diameter ratio
Lvc/dvc. Graphs (a) and (b) are obtained through a MATLAB code, (c) and (d) are from
[23].
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(a) (b)

(c) (d)

Figure 2.5: Theoretical Validation – Amplitude and phase diagrams of the injector transfer
function as a function of frequency for different values of the geometric characteristic pa-
rameter A. Graphs (a) and (b) are obtained through a MATLAB code, (c) and (d) are from
[23].

32



CHAPTER 3

TRANSFER FUNCTION OF OPEN-HEAD OPEN-END INJECTORS

The classical theory of liquid swirl injectors relies on the assumption of inviscid fluid, intro-

ducing viscous effects through an empirically determined artificial damping factor, denoted

as ν [4]. The classical theory considers a stationary gas core surrounded by a swirling liq-

uid and, therefore, it cannot be automatically generalized to an OHOE swirl injector with

coaxial gas flow. As an initial approximation, it is reasonable to assume that the steady-

state theory of closed-head injectors remains applicable for OHOE injectors in describing

the swirling liquid. Consequently, the conserved quantities and dimensionless parameters

align with those outlined in classical theory. It is assumed, in fact, that the liquid flow

is purely swirling where the tangential inlets are located. This is a strong but plausible

assumption if the liquid-to-air Momentum Flux Ratio (MFR) defined as ρlW
2
l /ρgW

2
g is

high. For instance, considering air at 100 − 150 m/s [46, 47] and water injected through

the tangential channels at 20 − 50 m/s, the MFR is of the order of 20 − 250. As a conse-

quence, the high liquid momentum flux in the tangential direction with respect to the gas

momentum flux in the axial direction may cause some liquid to move upstream towards the

gas inlet. However, after a transient, the liquid film is expected reach equilibrium in the

axial direction due to the presence of strong aerodynamic forces caused by high speed gas.

This condition is depicted schematically in Figure 3.1, but it is necessary to confirm this

assumption through CFD simulations.

In this section, an extension of the classical theory is introduced to incorporate the rel-

evant physical phenomena in OHOE injectors. Initially, a forced wave equation is derived,

considering shear stress at the liquid-wall and liquid-gas interfaces. Subsequently, the in-

jector transfer function is adjusted to include analytical damping factors, eliminating the

need for any artificial factors.
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Figure 3.1: Schematic representation of OHOE injector at steady-state.

3.1 Forced Wave Equation

The extension of the classical theory incorporates viscous effects into the equation of mo-

tion for the swirling liquid by accounting for shear stress interactions between the liquid

and the wall, as well as between the liquid and the gas. Shear stress at the liquid-wall

interface can be modelled as follows

τlw = −ρ
l
Cf,lw

2
W̃ 2

av (3.1)

where Cf,lw is the liquid-wall friction factor, ρ
l

is the liquid density and W̃av = Wav +W ′
av

is the instantaneous liquid velocity in the axial direction. At the liquid-gas interface, shear

stress depends on the relative velocity between the gas and the liquid flows:

τlg =
ρgCf,lg

2

(
W̃av −Wg

)2
(3.2)

where the gas velocity Wg is assumed to be equal to its steady-state value. A schematic

representation of the shear stress acting on the fluid is shown in (Figure 3.2).

The equation of motion in the classical theory, Equation 2.66, can be modified to in-

clude shear stress in the radial direction:

∂W ′
av

∂t
= C

∂ξ

∂z
+

1

ρ
l

∂τ

∂r
(3.3)
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Figure 3.2: Illustration of the shear stress acting on the liquid film in the axial direction.

where C = W 2
inR

2
in/r

3
m. Assuming that the pulsation in the axial velocity is constant in the

radial direction, it is possible to integrate the previous equation. This allows to distribute

the shear stress at the two interfaces along the thickness of the liquid film. The integration

of the equation of motion leads to

∂W ′
av

∂t
= C

∂ξ

∂z
+

τlw − τlg
ρ

L
(Rvc − (rm + ξ))

= C
∂ξ

∂z
+

1

(Rvc − (rm + ξ))

[
−Cf,lw

2
W̃ 2

av −
ρg

ρ
l

Cf,lg

2

(
W̃av −Wg

)2] (3.4)

Neglecting ξ with respect to rm, differentiating Equation 3.4 along z, and linearizing the

stress terms leads to

∂2W ′
av

∂t∂z
= C

∂2ξ

∂z2
− 1

(Rvc − rm)

[
Cf,lwW av +

ρg

ρ
l

Cf,lg

(
W av −Wg

)] ∂W ′
av

∂z
(3.5)

From the conservation of mass described by Equation 2.71 it is possible to substitute

∂W ′
av/∂z in Equation 3.5. Subsequently, the obtained equation can be used to substitute

the mixed derivative in time and space that appears in the mass equation differentiated in

time. This procedure leads to the forced wave equation that follows

∂2ξ

∂t2
+B

∂ξ

∂t
= W 2

w

∂2ξ

∂z2
(3.6)

where B =
[
Cf,lwW av +

ρg
ρ
l
Cf,lg

(
W av −Wg

)]
/(Rvc− rm). As a first approximation, the
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models used for the friction factors are

Cf,lw = 0.0791(Rel)
−1/4 Blasius (1913) (3.7)

with ReL = W av2Rvc/νl for turbulent flow in a pipe, and

Cf,lg = 0.00355/4 Reg < 9000

Cf,lg = 2.82(Reg)
−0.522 Reg > 9000

(3.8)

with Reg = Wg2rm/νg. The last two expressions were determined using CFD simulations

in a horizontal stratified two-phase flow in [48]. Although these friction factors represent

a good initial guess, the flow physics involved in OHOE injectors is far from the flow

structure where Cf,lw and Cf,lg of Equations (3.7) and (3.8) can be accurately employed.

Therefore, it is fundamental to consider their improvement and tuning through CFD simu-

lations or experiments for different Reynolds numbers and disturbance frequencies.

Observing the forced wave equation (Equation 3.6) derived above, it is clear how the

introduction of shear stress at the liquid-wall and gas-liquid interfaces leads to the presence

of the B term. Let the axial gas velocity be zero to describe a stationary gas core as in

the closed-head injectors, then the contribution of the wall and the gas friction on the liquid

film add up, as they are both opposite to the mean liquid flow. Conversely, for a gas velocity

Wg > W av the aerodynamic forces are opposite to the wall friction effect. The gas velocity

needed to overcome the wall friction is given by the following expression

W ∗
g > (1 +

ρ
l
Cf,lw

ρgCf,lg

)W av (3.9)
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3.2 Wave Equation Solution and Injector Transfer Function

The solution of the forced wave equation has the same form as that of the standard wave

equation, which is the following

ξ = Ω ei(ωt−kz) (3.10)

In this case, however, the wave number is found to be complex with the following form k =

kr + iki. From the substitution of Equation 3.10 into Equation 3.6 the real and imaginary

parts of the wave number are

kr =
kI√
2

1 +
√

1 +

(
B

ω

)2
1/2

(3.11)

and

ki = − kI√
2

√1 +

(
B

ω

)2

− 1

1/2

(3.12)

where kI = ω/Ww is the wave number in the inviscid case. The angular frequency ω

is a real quantity, since the disturbances are assumed to not increase nor decay in time.

Consequently, the form of the solution and wave number clearly show the presence of a

spatial damping along the axial coordinate z. The wave amplitude as a function of the

tangential inlet velocity pulsation is necessary to derive the new amplitude of the axial

velocity pulsation. This can be done by integrating the mass equation in dz

W ′
av =

2rm
R2

vc − r2m

∫
∂ξ

∂t
dz (3.13)

and the amplitude results in the following expression

|W ′
av| =

2rm
R2

vc − r2m

ωΩ ekiz√
k2
r + k2

i

(3.14)
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Differently from the classical theory, the axial velocity amplitude is function of the fre-

quency and is damped for z > 0. Substituting the previous expression in Equation 2.83,

the volume flow rate pulsation is

Q′ =

[
2πr2mk

(
WΣµ

R2
vc − a

+
ω ekiz√
k2
r + k2

i

)]
Ω = DΩ (3.15)

with Ω = Ω/rmk and the term in brackets is D for simplicity. From the comparison with

Q′ = Fin|W ′
in| for volume flow rate conservation, the following expression is obtained

KΣ,new =
Ω

W ′
in/Win

=
nπr2inWin

D
(3.16)

where Fin = nπr2in is the total inlet area. The parameter KΣ,new substitutes KΣ,II in the

expressions of the transfer functions described in the classical theory. At the head-end of

the injector the surface wave is determined by

ξk = Ω eiωt (3.17)

Thanks to this theoretical extension, there is no necessity to introduce an artificial damping

factor for the wave reaching the injector exit. In fact, the complex nature of the wave

number k already includes the damping due to viscous effects. Therefore, the wave at the

injector exit is

ξvn = Ω ei(ωt−kLvc) = Ω ekiLvcei(ωt−krLvc) (3.18)

As a consequence, the transfer functions are modified as follows

ΠvcII,new = KΣ,new,0 (3.19)
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which is evaluated at z = 0, and

Πvn,new = KΣ,new,Lvc e
−ikrLvc+kiLvc (3.20)

where KΣ,new,Lvc is evaluated at z = Lvc. The last term to be modified is ΠvcIII since it

contains a damping factor expressed as e−νf(x). However, as it is shown in Section 3.3, the

damping coefficient has a negligible effect on the overall transfer function and it can be

discarded. Thus, ΠvcIII remains unchanged.

An additional quantity of interest is the wave amplitude when the contribution of the

mean axial liquid velocity is negligible or zero. This occurs at the head-end of closed-head

open-end injectors and in the entire swirling chamber of closed-head closed-end injectors.

Starting from Equation 2.83, setting Wav = 0 and using Equation 3.14, the volumetric flow

rate is

Q′
k = 2πrmk

ω ekiz√
k2
r + k2

i

= 2πrmk
Ωk Ww[

1 +
(
B
ω

)2]1/4 (3.21)

The above expression must be equal to the inlet volumetric flow rate pulsation and using

the definition of the geometric parameter A, the non dimensional quantities Ww and rmk,

and the conservation of angular momentum at the head-end, the following expression is

found

Ωk =
Fin|W ′

in|
[
1 +

(
B
ω

)2]1/4
2πr2mkWw

=

[
1 +

(
B
ω

)2]1/4
2AWw

√
a

|W ′
in|

Win

(3.22)

As it can be seen from this expression, the wave amplitude tends to infinity as ω goes to zero

since the other quantities are finite values. This behavior can be associated with the sim-

plified linear approach that is used in this theoretical derivation and with the assumptions

made for the tangential channels dynamics. In fact, for a constant pressure disturbance, i.e.

ω = 0, the pulsation |W ′
in| is finite and non zero.

It was shown that the introduction of the shear stress in the equation of motion leads

to the appearance of B in the wave equation. It is important to highlight that this is an
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extension of the classical theory, and it is easy to verify that setting B equal to zero the

previous model is recovered. In particular, with B = 0

kr = kI ; ki = 0 (3.23)

which implies that the expression for the velocity pulsation amplitude W ′
av returns to be

Equation 2.78, and consequently the wave amplitude Ω. Naturally, this becomes a fully in-

viscid theory and it is necessary to introduce an artificial factor to fully recover the classical

theory.

3.3 Inconsistencies in Previous Models

The critical examination of the classical theory in the preceding paragraphs reveals certain

ambiguous aspects.

Firstly, discrepancies are evident in the authors’ approach to determining the wave am-

plitude, denoted as ΩvL in Equation 2.88, when compared to the procedure employed for

deducing the phase shift Φvc in Equation 2.94. The quantity ΩvL is the wave amplitude that

accounts for the mean axial motion of the liquid film, as shown by its derivation from the

volumetric flow rate. Without any reasonable justification, the propagation velocity of dis-

turbances, Ww,vc in Equation 2.87, is simply approximated to the wave velocity Ww. This

approximation holds well only for calculating the wave amplitude ΩvL,k at the head-end

of Closed-Head Open-End (CHOE) injectors and in the swirling chamber of Closed-Head

Closed-End (CHCE) injectors, where the fluid is purely swirling. It is not appropriate

when accounting for higher axial fluid motion in CHOE and OHOE injectors. In contrast,

the phase shift Φvc is correctly computed by considering the disturbance velocity as the

sum of the wave velocity and the mean axial velocity of the liquid. The extended theory

rectifies this inconsistency when setting B = 0 and kI = ω/Ww,vc. The resultant impact

on the injector transfer function is depicted in Figure 3.3. The curve shifts to lower val-
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ues, and the amplitude of the response function diminishes more gradually with increasing

frequency. The phase graphs remain largely unchanged.

(a) (b)

Figure 3.3: Impact on transfer function when accounting for mean axial liquid velocity in
the wave propagation speed. The extended theory uses B = 0 and kI = ω/Ww,vc.

Additional comparative analysis is illustrated in Figure 3.4. This analysis examines the

repercussions of assuming Ww,vc = Ww in defining both the phase shift and wave ampli-

tude. While consistent, this approach is not accurate due to the comparable magnitudes of

fluid velocity and wave speed in the axial direction. The results indicate that the impact on

the amplitude is smaller compared to the effect on the phase.

This analysis underscores the significant influence of the disturbance velocity used in

defining ΩvL on the amplitude of the overall injector response, whereas a variation in the

disturbance velocity defining the phase shift has a pronounced effect on Φvc. Furthermore,

due to the non negligible magnitude of the fluid axial motion, the latter should be always

added to the wave speed for the total disturbance speed.

Secondly, a point of discussion is the response function associated with vorticity waves

ΠvcIII expressed by Equation 2.98. Vorticity waves contribute to the instantaneous injector

pressure drop and are contingent on centrifugal forces and tangential velocity pulsation.

These waves are found at the injector head, where the tangential inlets are situated. Vor-
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(a) (b)

Figure 3.4: Impact on transfer function when not accounting for mean axial liquid velocity.
The extended theory uses B = 0 and kI = ω/Ww.

ticity waves propagate radially from the tangential inlet to the liquid free surface, decaying

after very short distances in the axial direction [5, 22]. Due to the presence of liquid

layers with different angular velocities, Professor Bazarov introduced viscous damping in

ΠvcIII through the exponential term e−νf(x). This damping term has a significant impact on

closed-end injectors, characterized by a thicker liquid film compared to open-end injectors.

In fact, in the case of open-end injectors, Figure 3.5, removing the damping term practi-

cally does not affect the injector transfer function, with the maximum difference between

the two curves being 0.3%. For this reason, the extended theory for OHOE injectors omits

this term.
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(a) (b)

Figure 3.5: Impact on transfer function when removing the damping term in ΠvcIII .

3.4 Emulation of the Classical Theory

The development of the extended theory aimed to incorporate analytically the damping

effects on propagating waves and introduce a new physical phenomenon—specifically, the

shear stress exerted by the gas flow on the fluid. This inclusion renders the theory applicable

to Open-Head Open-End (OHOE) injectors featuring coaxial gas flow. As addressed at the

conclusion of Section 3.2, the extended theory mathematically converges to the classical

model when setting the damping coefficient B to zero. Additionally, in Section 3.3, it was

highlighted that, due to certain inconsistencies in prior models, the extended theory yields

different results compared to the classical theory.

Nevertheless, a meaningful comparison can still be drawn between the general trends

produced by the complete extended theory with B ̸= 0 and KI = ω/Ww, and the outcomes

derived from the classical theory. To assess closed-head injectors, the transfer function can

be computed through the extended theory while setting Wg to zero, indicating a station-

ary gas core. The geometries of interest are chosen from LJ. Yang’s work [26] and are

summarized in Table 3.1.
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Table 3.1: Injector configurations employed for the comparative analysis between the ex-
tended and classical theory.

(a)

Variable Lvc/dvc

Lvc 75, 7 mm

Rvc 3.5 mm

rin 0.7 mm

LT 5 mm

A 6.67

n 3

∆pinj 0.8 MPa

(b)

Variable A

Lvc 75 mm

Rvc 2.8, 4.2 mm

rin 0.7 mm

LT 5 mm

A 4, 10

n 3

∆pinj 0.8 MPa

3.4.1 Extended Theory

The results for a variable injector length to diameter ratio are shown in Figures 3.6 and 3.7.

In the amplitude graphs, a conspicuous initial overshoot is observed at extremely low fre-

quencies, followed by a comparable trend in both the classical and extended theories. No-

tably, the extended theory exhibits elevated values with increasing frequency. The disagree-

ment is caused by several factors: the inconsistencies mentioned above, the employment of

first approximation friction coefficients and the simplified linear approach.
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(a) (b)

Figure 3.6: Extended vs Classical Theory – Amplitude and phase diagrams with Lvc = 75
mm.

(a) (b)

Figure 3.7: Extended vs Classical Theory – Amplitude and phase diagrams with Lvc = 7
mm.

The coefficient Cf at the liquid-wall and gas-liquid interface necessitates a dependence

on both the frequency of the liquid surface oscillation and the injector geometry. The latter

is inherently contained within the Reynolds number (Re), which is subjected to multipli-

cation by an imprecise constant coefficient and exponentiation to an inaccurate power. It is

noteworthy to observe that the overall agreement between the two curves for Lvc = 7 mm

is significantly enhanced as the damping effect in a shorter injector becomes less relevant.
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The pronounced overshoot at low frequencies primarily derives from the high sensi-

tivity of the extended theory in that range, a consequence of the linear approach adopted.

The axial velocity pulsation depends on the frequency, differently from the classical the-

ory. This strongly influences the volume flow rate pulsation and, consequently, the wave

amplitude. The wave amplitude the the head-end of the injector tends to infinity (Equa-

tion (3.22)).

The impact of a distinct geometric characteristic A is depicted in Figure 3.8. The afore-

mentioned trend remains applicable in this scenario, with the substantial amplitude contrast

between low and high values of A being clearly delineated.

(a) (b)

Figure 3.8: Extended vs Classical Theory – Amplitude and phase diagrams with A = 10
and A = 4.

3.4.2 Asymptotic Theory

The correction of the overshoot at low frequencies is achieved through an asymptotic mod-

ification of the extended theory. The most relevant terms are denoted as Z1 and Z2, defined

as follows

Z1 =
ω ekiz√
k2
r + k2

i

(3.24)

Z2 = ekiz (3.25)
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These terms appear in the D term of Equation (3.15) and the damping term in Equa-

tion (3.20). Their dependency on the frequency is illustrated in Figure 3.9.

(a) (b)

Figure 3.9: Evolution of Z1 and Z2 as a function of frequency. The threshold marks the
frequency beyond which the Z1 and Z2 terms remain within 2% and 0.5%, respectively, of
their values at 2000 Hz.

The logarithmic scale on the x-axis facilitates a clearer visualization of the evolution of

Z1 and Z2 with increasing frequencies. The plots correspond to the case in Table 3.1a with

Lvc = 75 mm. Evidently, the quantities of interest immediately tend to a nearly constant

value. The approximation of the Z terms with their value high frequency value remarkably

improves the performance of the extended theory at low frequencies, as demonstrated in

Figures 3.10 and 3.11.
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(a) (b)

Figure 3.10: Extended vs Asymptotic Theory – Injector transfer function on the complex
plane.

Figure 3.11: Impact of the asymptotic theory on the injector transfer function at low fre-
quencies.

However, the asymptotic approach fails to capture certain effects on the anticipated

transfer function. Specifically, the amplitude peak of the response function occurs at a

48



fixed frequency for varying injector lengths, as prominently depicted in Figure 3.12. This

theoretical limitation is further addressed and improved upon in Section 3.4.3.

(a) (b)

Figure 3.12: Asymptotic Theory – Impact of injector length on the injector transfer func-
tion.

3.4.3 Optimized Extended Theory

The exponential damping Z2 (Equation (3.25)) analytically derived in the extended the-

ory is comparable to the exponential e−νΦvc/2π derived by Bazarov in the classical model.

The latter term decreases significantly with increasing frequencies, indicating a more in-

tense damping on high-frequency waves. Consequently, the approximation of Z2 with its

asymptotic value is inappropriate. Furthermore, Z2 stabilizes to a value near unity. This

analysis implies that modifying Z2 is necessary to achieve the anticipated behavior across

the frequency range of interest. Effective results are obtained through the adjustment of

the friction factors governing shear stress. An examination of the B term in the forced

wave equation, responsible for damping waves, reveals that the contribution of the wall is

considerably greater than the shear stress at the gas-liquid interface. Notably, with a reason-

able value set for both friction factors being 10−4, due to the substantial density difference
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between gas and liquid

Cf,lwW av >>
ρg
ρl
Cf,lg

(
W av −Wg

)
(3.26)

This significant difference holds true for a stationary gas core, but it remains valid for

a typical axial gas velocity in gas turbine engines (100 – 200 m/s). The evaluation of the

axial liquid-to-air MFR provides an additional reason to consider the gas shear stress on the

liquid surface as small. For an axial liquid velocity of 10 – 30 m/s and gas velocity of 200

m/s, the momentum flux ratio is 2.5 – 22.5. Consequently, it is reasonable to firstly apply

changes to the liquid-wall friction factor, neglecting the gas-liquid friction coefficient.

The goal is to introduce frequency dependence in Cf,lw. A potential approach is a first-

order polynomial that is a function of the disturbance pulsation frequency, as follows

C∗
f,lw = Cf,lw (x1 + x2 ω) (3.27)

where x1 and x2 are tuning coefficients. Using the classical theory as a reference for a

stationary gas core (Wg = 0), the coefficients can be determined through an optimiza-

tion algorithm aiming to minimize the difference between the analytical and experimental

damping factor, defined as

err =
n∑

i=1

∣∣ekiLvc − e−νΦvc/2π
∣∣ (3.28)

for the discretized angular frequency ωi = 0, ..., 4000π rad/s. The correction applied to

Cf,lw introduces a linear dependency on the frequency and it prevents the friction fac-

tor from becoming null as ω tends to zero. Particle swarm optimization is employed to

search for the most appropriate coefficients in several cases, yielding interesting results.

The graphs of the injector transfer function for the geometrical configurations studied by

L. Yang are depicted in Figure 3.13. The optimal coefficients are x1 = 2.447 × 10−4 and
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x2 = 2.510× 10−4 s/rad and the optimization is robust with respect to the injector length.

The results closely resemble those presented at the conclusion of Section 2.2.3 and any

discrepancies are attributed to the inconsistencies explained in Section 3.3.

(a) (b)

Figure 3.13: Optimized Theory – Impact of injector length on the injector transfer function.

The results presented in this section highlight the potential of adjusting the friction

factors to improve the extended theory. While this was demonstrated using experimental

results as a reference, it is crucial to emphasize that high-fidelity CFD simulations can play

a fundamental role in calibrating the friction factors in future work.

3.5 Parametric Study

The examination of the impact of geometrical parameters on the injector transfer function

is essential for predicting injector performance and facilitating the design process. The

primary parameters of interest include injector length, geometric parameter A, pressure

drop across the injector and axial gas velocity. All investigations are conducted utilizing

the optimized extended theory with KI = ω/Ww,vc, ensuring freedom from inconsisten-

cies. Moreover, the calibration of the liquid-wall friction coefficient for varying injector

parameters provides insights into the trends of tuning coefficients.
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3.5.1 Injector Length

The parameters characterizing the injector configurations employed in this study are de-

tailed in Table 3.1a, with the exception of Lvc. The choice of injector length is specified

as a multiple of the injector diameter, as outlined in Table 3.2, which also includes the

coefficients x1 and x2. The optimization coefficients remain consistent for every injector

length, showing robustness with respect to this parameter. The effect of length variation

on the injector transfer function is illustrated in Figure 3.14. Increasing the injector length

results in a reduction of mass flow rate oscillation amplitude for a given pressure oscilla-

tion, attributed to the increased damping due to the longer distance traveled by the waves.

Similarly, the phase shift becomes larger with increased length.

(a) (b)

Figure 3.14: Optimized Theory Parametric Study – Impact of injector length on the injector
transfer function.

Table 3.2: Tuning coefficients for different injector lengths.

Variable Lvc

Lvc [mm] 105 70 49 7

x1 2.447× 10−4

x2 [s/rad] 3.751× 10−4
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3.5.2 Geometric Characteristic Parameter

The study for different values of the geometric characteristic parameter is conducted using

the parameters in Table 3.1b. The complete set of injector radius values and the correspond-

ing A values are in Table 3.3, which also includes the optimization coefficients. Notably,

these coefficients exhibit an ascending trend with increasing A, and a second-order polyno-

mial is employed to interpolate the data for A = 4 – 10. Consequently, the values of x1 and

x2 for A = 14, denoted in bold, are predicted using the interpolating polynomial and com-

pared to the values obtained through the optimization process applied to the other A values.

The predicted and the calculated values show close agreement. The observed variation in

the coefficients with increasing Rvc suggests that the Re number in the first-approximation

friction factor is raised to an inaccurate exponent. The trend for the optimization coeffi-

cients and the injector transfer function are depicted in Figures 3.15 and 3.16, respectively.

The physical interpretation of the geometric parameter elucidates the observed results: A

represents the swirling strength of the liquid, leading to wave attenuation as A increases.

Moreover, as A increases, Ww,vc decreases, causing an increase in the phase shift since

Φvc = kiLvc = f(1/Ww,vc).

Table 3.3: Tuning coefficients for different values of the geometric characteristic parameter.
The values in bold are predicted by the interpolating polynomial based on the other values.

Variable A

A 4 6.67 8 10 14

Rvc [mm] 2.8 3.5 3.8 4.2 4.9

x1 (×10−4) 2.418 2.447 2.459 2.474 2.498

x2 (×10−4) [s/rad] 3.288 3.751 3.928 4.141 4.458
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(a) (b)

Figure 3.15: Tuning coefficients as a function of dvc.

(a) (b)

Figure 3.16: Optimized Theory Parametric Study – Impact of geometric characteristic pa-
rameter on the injector transfer function.

3.5.3 Pressure Drop

Pressure drop effects are studied for a given geometry (Table 3.1a with Lvc = 75 mm) and

various values of ∆pinj as listed in Table 3.4. The table includes the tuning coefficients for

each case, and values in bold are predicted through a second-order polynomial that interpo-

lates the x coefficients for ∆pinj = 0.4 – 1.2 MPa. The predicted values lack accuracy due

to the limited amount of interpolated data, but the expected trend of the response function
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for ∆pinj = 0.25 and 1.6 MPa is achieved.The variation in the optimization coefficients

is linked to the inaccurate dependency of the friction factor on the Re number. In fact,

varying the pressure drop across the injector implies a change in liquid velocity. This result

is comparable to the results obtained for a varying geometric characteristic parameter. The

amplitude and phase of the injector response function are illustrated in Figure 3.18.

Table 3.4: Tuning coefficients for different values of the injector pressure drop. The values
in bold are predicted by the interpolating polynomial based on the other values.

Variable ∆pinj

∆pinj [MPa] 0.25 0.4 0.8 1.2 1.6

x1 (×10−4) 2.148 2.244 2.447 2.574 2.625

x2 (×10−4) [s/rad] 5.432 4.864 3.751 3.222 3.276

(a) (b)

Figure 3.17: Tuning coefficients as a function of ∆pinj .
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(a) (b)

Figure 3.18: Optimized Theory Parametric Study – Impact of injector pressure drop on the
injector transfer function.

3.5.4 Gas Velocity

The influence of axial gas velocity on the overall injector transfer function is examined for

a fixed geometry (Table 3.1a with Lvc = 75 mm) and typical gas velocities encountered in

practical applications. As observed in Figure 3.19, the effect of the gas shear stress on the

liquid surface results to be small. This can be attributed to the significantly higher momen-

tum flux ratio of the liquid phase compared to the gas phase. While numerical simulations

could provide deeper insights into the accuracy of this result and offer guidance on the

tuning of the gas-liquid friction coefficient, if required, it is noteworthy that the extended

theory adequately captures the effects associated with gas shear stress, yielding a minor

contribution. Moreover, future investigations could explore the introduction of additional

physical effects. For instance, a pressure distribution on the liquid surface that depends on

the liquid surface instantaneous slope could be an interesting approach to explore.
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(a) (b)

Figure 3.19: Optimized Theory Parametric Study – Impact of gas velocity on the injector
transfer function.
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CHAPTER 4

NUMERICAL INVESTIGATION

The Computational Fluid Dynamics solver used for this work is Ansys® Fluent. The objec-

tive of the numerical study is to provide a qualitative description of the flow physics in an

OHOE coaxial swirl injector. The study is conducted for a 2D axisymmetric domain. Due

to the difficulties in generating an appropriate initialization for steady Reynolds-Averaged

Navier–Stokes (RANS), the unsteady counterpart is used. The validation reference for the

CFD approach is Chen’s work [49]. Several turbulence models are employed to evaluate

their ability to replicate the previous work aiming to reduce the total computational cost.

Multiple mesh resolutions are used and the differences assessed.

4.1 Preliminary Study

A preliminary study is conducted with the objective of selecting a turbulence model, do-

main and mesh able to qualitatively simulate the flow physics involved in OHOE swirl

injectors. This specific injector configuration has never been studied before, therefore

the model cannot be validated replicating a previous work with the exact same physics.

However, for the understanding of the main flow characteristics, the validation and model

selection is performed against the work by Chen [49] for a CHCE swirl injector.

Chen simulated the swirling flow using Reynolds Stress Model (RSM) for a 2D ax-

isymmetric geometry and the results are successfully replicated as shown in Figure 4.1.

Due to the anisotropic nature of the stress tensor, RSM requires the solution of seven equa-

tions and it renders the model computationally expensive. Consequently, several other

turbulence models are tested aiming to find a valid alternative to RSM for faster calcula-

tions. The results obtained through k - ϵ Re-Normalization Group (RNG), k - ϵ RNG with

swirl correction, realizable k - ϵ and k - ω Shear Stress Transport (SST) are depicted in
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Figures 4.3 and 4.4. The comparison is facilitated overlaying the liquid-gas interface for

each model in Figure 4.2. The realizable k - ϵ model produces non-physical results. Re-

Normalization Group k - ϵ exhibits a non-physical representation in the swirling chamber,

where the swirl is the dominant characteristic of the flow. Enabling the swirl correction

partially improves the results in the swirling chamber, but the swirling radius at the free

surface increases in the axial direction. Moreover, strong oscillations are produced in the

nozzle. The best qualitative result is obtained through k - ω SST that produces a flat liquid

surface in the swirling chamber despite the swirling radius is slightly underestimated. In

addition, the oscillations in the nozzle are greatly attenuated but the spray angle is well

represented. The analysis of the turbulence models suggests the k - ω SST as the most

suitable for a qualitative investigation and a significantly lower computational cost.

The simulation of a CHOE injector is also performed. The objective is to validate the

CFD approach with respect to the inviscid steady-state theory for an open-end configura-

tion. The volume fraction contour plot is depicted in Figure 4.5. The injector parameters

are summarized in Table 4.1. As a reference, the liquid surface swirling radius at the head-

end and near the injector exit are compared to the theoretical predictions in Table 4.2.

Table 4.1: OHOE injector configuration.

Rvc [mm] rin [mm] Linj [mm] LT [mm] ṁin [kg/s] n

5 0.65 30 4 0.09 3

Table 4.2: Theoretical and numerical swirling radius of the liquid surface.

rmk [mm] rmn [mm]

CFD 4.2175 4.6647

Theory 4.3482 4.5618

% Error 3.00 2.26
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Figure 4.1: Validation against Chen’s results with RSM.

Figure 4.2: Turbulence models on Chen’s injector.
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(a) RSM

(b) k - ω SST

(c) k - ϵ RNG with Swirl Correction

Figure 4.3: Volume fraction in Chen’s injector for different turbulence models.
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(a) k - ϵ RNG

(b) k - ϵ Realizable

Figure 4.4: Volume fraction in Chen’s injector for different turbulence models.

Figure 4.5: Inviscid CHOE injector.
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4.2 Geometry and Mesh

The geometry used for the viscous simulations of the OHOE injector is similar to the con-

figuration used in the inviscid case (Table 4.1). An extension of 6 mm at the head end

renders the domain appropriate to introduce a gas inlet and analyze the swirling liquid

moving upstream. The domain includes the injector and a downstream region extending

for 14 Dvc and 6 Dvc in the axial and radial direction, respectively. Therefore, the down-

stream region is stretched in the axial direction, that is the predominant flow direction at

the injector exit. This is a consequence of the high speed gas flow. The domain is depicted

in Figure 4.6.

Figure 4.6: Injector domain and downstream region.

Three different structured meshes discretize the domain. The coarsest mesh is char-

acterized by a 100 × 1020 grid inside the injector, depicted in Figure 4.7. Dividing each

element side by square root of two produces a more refined mesh with a grid of 142×1444

doubling the cells of the coarse mesh. Finally, the finest mesh is defined by a 300 × 1530

grid. The latter mesh is distinguished by slowly growing inflation layers starting from the

injector wall. At the injector exit and downstream region, the cells gradually vary in size

ensuring a high quality mesh, as illustrated in Figure 4.8. Moreover, an adaptive mesh

refinement at the liquid-gas interface increases the resolution of the free liquid surface.
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Figure 4.7: Coarse mesh.

Figure 4.8: Fine mesh with inflation layers.
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4.3 Solver Setup

4.3.1 Numerical Models

The simulations are performed with a pressure-based solver on a 2D axisymmetric do-

main. The OHOE coaxial swirl injector involves a two-phase flow field, specifically liquid

and gaseous. Incompressible air at standard conditions models the gas phase (ρg = 1.225

kg/m3), while water at constant density ρl = 998.2 kg/m3 represents the liquid phase. The

multiphase problem is solved by means of a volume of fluid method with an implicit for-

mulation and a dispersed interface modeling. The surface tension coefficient is maintained

constant at 0.07275 N/m. The difficulties encountered to correctly initialize a steady-state

solution lead to the use of URANS. In all cases, the injector is initialized filled with air

at ambient pressure. Reynolds Stress Model is employed with non-equilibrium wall func-

tions. The k - ω SST model is used with the addition of a damping mechanism of the

turbulent viscosity within the interfacial region. The pressure-velocity coupling term is

treated through the SIMPLE scheme and the spatial discretization for pressure is achieved

by means of the PRESTO! method. The momentum and all the other equations involved

are discretized with a second-order upwind scheme.

An adaptive mesh refinement improves surface capturing and stability of the simula-

tions. The mesh is refined at the liquid-gas interface every 4 time-steps and the maximum

level of refinement is set to be 3. The minimum cell size is 2 µm. The refined mesh is

clearly visible in Figure 4.9.
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Figure 4.9: Zoom on mesh refinement at the liquid-gas interface in an instantaneous snap-
shot of RSM.

4.3.2 Boundary Conditions

The boundary conditions applied on the domain are summarized in Figure 4.6. The air

inlet was selected as a velocity inlet specifying the velocity magnitude in the direction

normal to the boundary. The water inlet is a velocity inlet where the radial and tangential

component are calculated for mass flow rate and angular momentum conservation. The

2D axisymmetric nature of the domain implies that a discrete injection through tangential

inlet channels cannot be modelled. Rather, liquid injection occurs continuously across a

slit of thickness 2rin. The angular momentum of the liquid entering the injector through

tangential channels is obtained as

C = WinRin (4.1)

where Win can be found from the inlet mass flow rate ṁin and Rin = Rvc− rin. Therefore,

the inlet tangential velocity in the 2D domain is derived as follows

WT =
C

Rvc

(4.2)
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The inlet radial velocity, instead, ensures the conservation of the ṁin through the slit

Wr =
ṁin

ρlFslit

(4.3)

The other boundaries that define the injector are a no-slip wall and the axis to define the

symmetry. The downstream region is bounded by three pressure outlets where the pressure

is set to 0.1 MPa.

4.4 Numerical Results

The tangentially injected liquid gains axial velocity moving away from the slit inlet while

maintaining a strong swirling motion. The momentum carried by the liquid is greater than

the gas axial momentum, therefore the liquid tends to move upstream besides the axial

downstream motion. The gas immediately interacts with the liquid and a thick liquid region

forms between the two inlets. The parameters chosen for the OHOE configuration produce

a remarkably thin liquid layer. This enhances the formation of surface waves on the liquid

that propagate towards the injector exit and induce an unstable spray. The oscillations

on the liquid surface and the spray characteristics are sensitive to the model used for the

calculations. The differences between RSM and k - ω SST on the coarse mesh are depicted

in Figure 4.10. The former method produces a greatly diffused interface with respect to

k - ω for the same local mesh refinement. The same behavior is observed on the refined

meshes in Figure 4.11, where RSM is employed for the medium mesh and k - ω for the

finest mesh with inflation layers. Although the comparison on different mesh resolutions

in not rigorous, this confirms what the coarse mesh shows. Doubling the number of cells

for RSM calculations does not significantly impact interface capturing, while k - ω SST

reveals intricate wave details. Moreover, the liquid spray produced by k - ω is thinner and

breaks up sooner. The introduction of inflation layers considerably lowers y+ value along

the injector wall. In fact, nearly all the cells have y+ < 2 as shown in Figure 4.12 and
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this improves the treatment of the turbulent boundary layer as it ensures the first cell lies

within the viscous sublayer. A higher gas velocity results in the formation of a shorter

liquid region and more pronounced surface oscillations, as depicted in Figure 4.13.

(a) RSM

(b) k - ω SST

Figure 4.10: Instantaneous volume fraction snapshots with coarse mesh.
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(a) RSM

(b) k - ω SST

Figure 4.11: Instantaneous volume fraction snapshots with medium (a) and fine (b) mesh.
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Figure 4.12: Cell distribution of y+.

Figure 4.13: Instantaneous volume fraction snapshot – k - ω SST with fine mesh and
Wg = 150 m/s.

The contour plots of the vorticity magnitude and pressure are illustrated in Figure 4.14.

The formation of vortices from the interaction between gas and liquid phase is clearly
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visible. The vortices are a combination of axial and swirl velocities, and rotational velocity

around their core. The high vorticity zones match the low pressure zones.

Figure 4.14: Instantaneous vorticity magnitude and pressure – k - ω SST with fine mesh
and Wg = 100 m/s.

Interesting information can be derived from the time-averaged flow field. The stream-

lines representing the mean velocity of the liquid phase in the region between the air and

water inlet are shown in Figure 4.16. Clearly, the swirling velocity is predominant in the

thick liquid region where the axial velocity is slightly negative or zero. This confirms that

the steady-state approach used in the theoretical derivation of the extended theory is coher-
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ent. The time-averaged liquid-gas interface position for all the models used in this study

is illustrated in Figure 4.15. The latter also depicts the liquid surface for the inviscid case

in the CHOE configuration, which overlaps to the other curves confirming the analogous

behavior within the injector.

Figure 4.15: Time-averaged liquid surface for different turbulence models and grids. The
dashed line coincides with the head-end wall of the CHOE injector in the inviscid case.
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(a) Streamlines colored by mean swirl velocity.

(b) Streamlines colored by mean axial velocity.

Figure 4.16: Water time-averaged streamlines – k - ω SST with fine mesh and Wg = 100
m/s.
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CHAPTER 5

RESULTS AND CONCLUSIONS

A new class of coaxial swirl injectors featured by an open-head open-end configuration

was studied from a theoretical and numerical standpoint. This work provides a review and

extension of the classical theory of injector dynamics aiming to obtain a model suitable for

OHOE swirl injectors. The examination of the previous steady-state and dynamic theory

reveals the existence of inconsistencies and typographical errors, which were addressed.

Specifically, the classical model for CHOE injectors computes the oscillation amplitude

of the liquid surface by taking into account the disturbance speed on a stationary liquid.

In contrast, the phase shift and damping effect affecting the waves reaching the injector

exit correctly consider the mean axial velocity of the liquid. On the contrary, the extended

theory is consistent and incorporates the liquid axial velocity in the derivation of the wave

amplitude. Furthermore, the classical theory includes a damping effect in the vorticity

waves transfer function, which is not significant due to the thinner nature of the liquid film

in open-end injectors. The elimination of the damping term results in a maximum discrep-

ancy of approximately 0.3% in the transfer function amplitude and phase, confirming the

negligible impact of this term.

The extension of the classical theory to OHOE injectors necessitates the inclusion of

additional physical phenomena in the theoretical derivation. The effect of shear stress at

the liquid-wall and gas-liquid interface is introduced in the governing equations. Previous

theories rely on an artificial viscosity factor empirically derived for closed-head injectors.

Furthermore, these models lack any term to address gas-liquid shear stress, given the sta-

tionary gas core. In contrast, the extended theory provides an analytical treatment of shear

stress effects, resulting in a modified wave equation. The solution involves the derivation

of a complex wave number that is a function of the forcing term. Consequently, this leads
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to an analytical damping factor and a wave amplitude dependent on the disturbance fre-

quency. As a result, the terms in the injector transfer function associated with the swirling

chamber and the propagation of waves to the injector exit undergo modification.

The classical theory is recovered when setting the friction coefficients to zero, but the

resolution of the inconsistencies in the classical model generates some discrepancies as dis-

cussed in Section 3.3. Emulating the classical theory through the extended theory, under the

condition of zero gas velocity, maintains a similar trend for the transfer function compared

to the earlier approach. Nevertheless, an unusual overshoot at extremely low frequencies

is observed in the response function amplitude. Initially, an asymptotic approach improves

this behaviour but the method is deemed inaccurate and conceptually flawed. Consequently,

modified friction coefficients are introduced to appropriately correct the extended theory.

The incorporation of a linear frequency dependence in the liquid-wall friction coefficient

ensures consistent results with the classical model. These results are obtained through the

calibration of two parameters, utilizing the classical theory as a reference. A parametric

study on geometric and flow variables for frequencies below 2000 Hz reveals certain prop-

erties of the tuning coefficients. Specifically, the injector length does not influence these

coefficients. Conversely, the geometric characteristic parameter A and injector pressure

drop affect the tuning coefficients. The modification of A and ∆pinj leads to variations of

the injector radius and flow velocities, respectively. Since these quantities contribute to the

friction coefficient as part of the Reynolds number, the variability of the tuning coefficients

underscores an inaccurate dependency of Cf on Reynolds. A gas velocity between 50 and

200 m/s produces a remarkably small increase of the response function amplitude. This

can be attributed to the significant axial momentum flux ratio in favor of the liquid phase.

A numerical investigation was conducted through CFD simulations to provide a qual-

itative description of the flow physics in OHOE coaxial swirl injectors. A fraction of the

tangentially injected liquid moves axially towards the injector exit, while another fraction

moves upstream, opposite to the gas flow. This is caused by the higher momentum carried
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by the liquid compared to the gas momentum. Consequently, a thick liquid region forms in

the space between the inlets of the two fluids. In this region, the liquid exhibits a predom-

inant swirl velocity component, as indicated by the time-averaged solutions. Overlapping

the mean position of the gas-liquid interface in the OHOE injector to the inviscid solu-

tion for CHOE injectors reveals analogous behavior of the liquid film within the injector.

On the contrary, the liquid spray in the OHOE configuration markedly differs from that

of a closed-head injector, as evidenced by instantaneous snapshots of the volume fraction,

which depict an oscillating and unstable spray. The snapshots reveal the formation of sur-

face oscillations, accentuated by the remarkably small thickness of the liquid film in the

investigated injector configuration. Furthermore, gas-liquid interaction produces intense

vortices and pressure oscillations in the gas, contributing to surface oscillations. In con-

clusion, a higher gas velocity leads to a shorter liquid region between the two inlets and a

thinner liquid film.

5.1 Future Work

The results of this study show that modifying the friction coefficients by introducing a fre-

quency dependency and suitable tuning coefficients can effectively influence the transfer

function amplitude and phase. Future research focusing on CFD simulations for OHOE

injectors could yield valuable insights into the liquid-wall and gas-liquid friction coeffi-

cients. The numerical study may involve introducing mass flow rate oscillations at the liq-

uid inlet to induce surface waves. By computing the injector response function, gas-liquid

interaction could be analyzed across various frequencies and oscillation amplitudes. Con-

sequently, tuning the friction coefficients to replicate the numerical results could lead to the

derivation of accurate expressions for these coefficients. A study of this kind could confirm

the minimal impact of the gas flow on the injector response for the velocity range studied or

facilitate the modification of Cf,lg to counteract the damping effect of the wall. In addition,

future CFD studies could examine the effects of compressibility of the gas phase on the
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flow field. Regarding the theoretical approach, incorporating gas pressure oscillations in

the governing equations is a prospect. Specifically, a dynamic pressure term proportional to

the gas velocity and local slope of the oscillating liquid surface could potentially promote

the growth of surface waves.
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