
WM09 2:50 Proceedings of the 36th 
Conference on Decision & Control 

- San Diego, Cahfomia USA December 1997 

Toward Real-Time Estimation of Surface Evolution in 
lasma Etching: Isotropy, Anisotropy, and Self-Calibration 

Jordan M. Berg 
Department of Mechanical Eiigiiieeriiig 

Texas Tech University 
Lubbock, TX 79409-1021 

jberg@ttu.edu 

Abstract 

Level set iiietliods are proving to be an effective tool 
for siiiiiilating surface evolution during chip maiiufac- 
turing processes sucli as etching, deposition, and litho- 
graphic development. These inethods can be iinple- 
niented using extremely fast and robust algorithms, 
iiiaking them ideal for real-time model-based control 
applications. An approach for isotropic etching is de- 
veloped, and demonstrated in simulation. Modifica- 
tions necessary to address certain anisotropic processes 
and self-calihration of tlie estimator are sketched. 

1 Introduction 

Applications of the theory of curve evolution to niodel- 
ing surface developinelit in etching processes have been 
considered by several authors, in a nuniber of papers 
beginning in the late 1960’s [4, 7, 8, 181. Adalsteins- 
son and Sethian generalize and extend this method- 
ology, culminating in a unified approach to modeling 
etching, deposition, and lithographic development of 
semiconductor chips This approach allows the treat- 
ment of a host of important effects, iiicludiiig position- 
dependent aiid angle-dependent speed laws, convex and 
non-convex speed functions, inaskiiig aiid visibility, re- 
emission aiid surface diffusion-alone or in coinbina- 
tion [15, 161. Most importantly for our purposes, the 
approach of Adalsteinsson and Sethian is amenable to 
nuinerica1 solution teclinicpes which are fast aiid ro- 
bust. The speed ancl dependability of these algorithms 
lead us naturally to consider thein as a basis for real- 
time estimation of surface profile evolution. 

Given sucli a real-time process model, our general ap- 
proach is as follows: Where possible, we relate avail- 
able nieasureineiits to geometric properties of the wafer 
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surface, such as length, curvature, and area. We then 
write a least-squares cost function involving the pre- 
dicted value of those geometric quantities and tlie ac- 
tual measurements. Estimates of process paraiiiet>ers 
are generated to ininimize that cost function. This re- 
sults in a corresponding estimate of the surface profile 
evolution as well. 

Tlie key to successful implenientation of this strategy is 
tlie rapid and reliable niiniiiiizatioii of the cost function. 
The advantage of basing tlie calculations on fundamen- 
tal geometric objects is tlie iniiiiense store of results on 
tlie dynamics of these objects available in tlie litera- 
ture. In an earlier study [l, 21 we demonstrated this 
procedure on a simulated isotropic etching. This is tlie 
simplest etching process, with a single free process pa- 
rameter. In this paper we extend those earlier results 
in several directions. 

A number of studies have investigated incorporat- 
ing feedback control into tlie plasma etching process 
[3, 11, 13, 6, 19, 201. Tlie focus of these studies has 
been on tlie plasma itself. We are interested instead in 
using in situ measurements in real-time to estimate the 
evolving features. This work is completely conipleiiien- 
tary to other process control tasks, such as tlie control 
of plasma variables. One can imagine, for example, 
adjusting plasma inputs in response to changing etch 
rate estimates. Or, one might use tlie area of tlie active 
surface generated by the estimator as an input to the 
plasma model. 

2 Curve Evolution in the Plane 

In two dimensions surface motion is described by tlie 
equations of curve evolution. Here, the inoving inter- 
face is described by a faiiiily of parameterized curves, 

curve describing the interface evolves according to, 
Ct = P(p,t)N, where p parametrizes the curve, N is 
the outward normal vector and P is the velocity func- 
tion. 

C(P,t) := (Z(P,t),Y(P,t)); P E [0,11,t E [O,tfl. The 
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Numerical solution of curve evolution problelils can be 
difficult, for several reasons. One is that, if curvature 
terms are absent or small, tlie solution will typically 
develop corners, or “shocks,” even if the initial data is 
smooth. Once such shocks occur, one must be careful in 
defining precisely what is meant by a “solution,” since 
the curve is now non-differentiable a i d  so cannot sat- 
isfy a differential equation. Many problems with shoclis 
can be handled by tlie Huygeiis principle, which defines 
the propagating front as tlie envelope of a contiiiuuni of 
circles (or other shapes, in more general formulations), 
centered on tlie initial front. 

Another difficulty arises in treating topological tran- 
sitions of tlie evolving curve, such splitting or merg- 
ing. A series of algorithms that successfully address 
both these problems lias been developed by Oslier and 
Sethian, and their coworkers [12]. These algorithnis 
employ a level set  representation of tlie interface. In 
this description, the evolving curve is treated as a level 
curve of a scalar-valued function on the plane (or on 
R3, for surface evoliition in 3-D), called the level set  
functaon. As clearly and thoroughly explained by Os- 
her and Sethian [12], topological transitions of the level 
surface are absent from the higher-dimensional surface 
formecl by tlie graph of the level set function. 

2.1 Standard Nomenclature and Results 
In what follows, g ( p ,  t )  will denote the Euclidean met- 
ric [xi + yg]’/2. 6’ is defined to be the angle between 
the tangent 7 and the x-axis. Tlie tangent, 7, cur- 
vature, K ,  and outward normal, JV are defined in tlie 
standard way [5]. Further, we let I i( t)  := J;: K g d p  
denote tlie total  curvature. The following formula, a 
derivation of which may be found in several places 
[9, 121, expresses the rate of change of tlie length of 
C‘(t): Lt = si p ~ g d p .  If C is a closed curve, then the 
area enclosed by C ( t )  is given by Green’s Theorem, 
A ( t )  = 3 sd ( C , N ) g d p .  Tlie rate of change of area is 

4 9  = s: PscE1?. 

2.2 Piecewise Constant Normal Velocity 
Tlie relations in tlie previous section give Lt(t)  = 
pli(t) for a smooth curve with constant p. However, 
tlie cases to be coiisidered below will only be precewzse 
smooth. We will need an expression for Lt for a contin- 
uous curve made up of smooth segments, with the seg- 
ments joined at corners, or shocks, at which tlie curve 
fails to be differentiable. In the case to be coiisidered 
the normal velocity will be pseceuuse constant,  that is, 
constant on a given segment, but possibly varying from 
segment to segment. In particular, it may take one of 
two values; either zero, or a positive value which will 
be denoted p. Tlie underlying notion is that the curve 
is propagating through an “active” medium in which 
it has a uniform, isotropic, normal velocity, p. This 
medium lias imbedded in it inert inclusions, through 

which the curve cannot pass. 

Corners in the curve may arise in three ways. First, 
shocks may form in the evolving curve, as described 
in [12]. We will refer to these as active-active shocks 
or fans. Second, an active portion of the curve inay 
encounter an inert incli ision, forming an active-inert 
shock or fan. Third, the inert inclusion inay have a 
corner, which, as it becoiiies part of the evolving curve, 
forms an inert-inert shock. At any such corner the 
curve undergoes a discrete jump in orientation. This 
jump is denoted A6’. 3 3  derive the necessary expres- 
sion for Lt , colisider an arbitrary arrangement of such 
segments at time t. Then propagate each segment for 
small time At  at tlie appropriate normal velocity, ig- 
noring the effect of the corners. The result will be 
a series of segments that no longer meet a t  their end- 
points. Then shock correctLon t e rms  are applied at  each 
corner to enforce continuity. Tlie specific form of the 
correction term will depend on the type of inaterial on 
either side of the corner. and on whether the segiiieiits 
are convergiiig or diverging-that is, on whether the 
corner is a shock or a fan. The shock correction terms 
all have the form p x( i lO) .  The specific functions x 
are listed in [2]. Then the corrected expression for rate 
of change of length is Lt(t; p)  = pA-(t; p) + p X ( t ;  p), 
where X := Cshochs x, and the dependence on the 
value of the constant p is indicated explicitly. 

3 Numerical Implementation 

Consider tlie class of curves evolving so that the nor- 
mal velocity never changes sign. Then once the curve 
lias passed through a point, it never returns. Thus 
at each point we may assign a unique value, equal to 
the time at which tlie citirve passed through it. If the 
curve never reaches that point, a value of co may be 
used. Tlie resulting crossmg-t ime function T ( z ,  y) is 
in fact a time-invariant level set function. Note that 
tlie crossing-time function stores the complete evolu- 
tion. No information is wasted, because only the level 
set values corresponding to tlie actual curve at  some 
time are computed. The corresponding time-invariant 
governing PDE is PllVTll = 1. Sethian has presented 
a f a s t  marching (FM) algorithm for evolving this equa- 
tion; see [17]. 

3.1 Contour Tracing 
The total shock correction term, X(p; t ) ,  mentioned 
in Section 2.2 is easy to write down, but its numeri- 
cal implenientation requires extreme care. In partic- 
ular, it is difficult to compute the change in tangent 
direction, AO, accuratel!y. Although tlie level set func- 
tion may be used to directly generate this information 
through computation of tlie unit normal (which is sim- 
ply VT/llVTII), these estimates are most precise when 
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T is smooth.  Unfortunately, we also require these values 
when T is non,-smooth. In pursuiiig this research, we 
first applied a siiiiple pixel-based algoritliiii for recover- 
ing tlie level set itself [l]. This tecliiiiqie is quite crude, 
and provides a fast, but rough sletcli of tlie evolving 
feature. The next version of the algoritliiii used bilinear 
approximation in each grid cell to estiiiiate the curve 
length, and, as suggested in [Is], averaged the unit nor- 
iiial vector estimates at neiglilmriiig grid points to ob- 
tain tlie change h orientation. Tlie resulting length 
estiiiiate was reasonable, but tlie contour orientation 
was not satisfactory for our purposes near the shock 
points. 

Siclclicii e t  al. [14] coiiipare techiiicpes for recovering 
contours from a level set function, with subpixel reso- 
liition through interpolation. They develop a iiietliod 
that is similar to standard contour tracing algorithms 
foiind in compiiter vision applications, with the ad- 
dition of shock placeme7~t  logic. Tlie algorithm first 
detects zeros along the grid lilies of tlie niesh. It 
then uses geometric interpolation based on lilies, arcs, 
and Euler spirals (curves of linearly varying curva- 
ture) to approximate the entire contour. Threslihold- 
ing logic deteriiiiiies whether the contour coiitaiiis a 
shock. Tlie scheme presented in [14] detects slioclrs 
by abriipt changes in the orientat ion or curvature of 
tlie contour. If two shocks occur in a row, they are “re- 
lieved” by placing a single new shock with subpixel res- 
olution. The curves on either side of that single point 
will have smooth orientation aiid curvature. %’e refer 
to [14] and the references therein for niore details. The 
version iiiipleineiit ecl here, as described in [ 2 ] ,  is similar, 
but only first order. That is, shocks are detected by a 
large change in orientation only, aiid when consecutive 
shocks are relieved by placing a single subpixel shock, 
tlie orientation is smoothed, but tlie ctirvature iiiay not 
be. 

4 The Estimator Structure 

If tlie surface evolution is to be estiiiiated directly from 
2n situ iiieasureiiieiits, then some of those measure- 
ments must relate to properties of the surface. For 
esaiiiple, the rate at which by-products of the clieiiii- 
cal component of a plasma etch are released into the 
plasiiia is related to the exposed area of active material. 
In a 2-D plaiiar etcli, the area is replaced by the length 
of the active surface in a plaiiar cross-section. hiother 
exaiiiple is the particle flux to tlie surface in molec- 
ular beam epitaxy. That flux is related to tlie rate of 
change of voluiiie (area, in a 2-D plaiiar approximation) 
of deposited material on tlie surface. In both cases tlie 
relation is through a fundamental geoiiietric quantity, 
either the length or the area. Note that in either case 
the functional relationship iiiay be quite complicated. 

Figure 1: Feature evolution: estimated vs true, h = 0.10. 
Dark: Estimated; Light: Exact. 

Denote tlie iiieasureiiieiits by tlie function Y(X, A), 
where X is the surface, and A is the vector of uiiknowli 
parameters, and use a static level set model: 

/?(>Y(t), X)llOTII = 1, (1) 

(2) {X(t) E R2 : T ( X )  = t } ,  

y(t) := Y ( X ( t ) ,  A). (3) 

The level set siiiiulation plays the role of the plant 
model. Tlie estiniated process parameters are used to 
propagate the estiiiiated feature. For our present pur- 
pose, “best” will be in a least squares sense. 

Tlie iiat,ure of Y(X, A) largely deteriiiiiies tlie details of 
tlie identification scheme. The reiiiaiiider of this sec- 
tion describes how two different schemes are applied to 
surface tracking of an isotropic etch. The first postu- 
lates that tlie rate of material removal can be sensed. 
This case gives a iiieasureiiieiit that involves the curve 
length. Tlie second postulates that the total amount of 
iiiaterial removed is known. This case gives a measure- 
ment that involves the area swept  by the  curwe. 

4.1 Estimation Based on Curve Length 
Under tlie assuiiiptioii of piecewise coiistaiit 0, in the 
case of iiieasureiiieiit of the rate of iiiaterial removal, 
tlie predicted ineasureineiit is PL(t; 0). It is uiiderstood 
that L( t ;  /?) refers only to the portion of the surface that, 
is exposed silicon, not resist or substrate. 

The cost function is talien 

(4) 

where [E(/?)]; = ,9L(ti; /?) - y ( t i ) .  Generally, efficient 
solution of iiliiiiiiiizatioii probleiiis requires aiialytical 
expressions for the first derivative of the cost func- 
tion with respect to the unknow~i parameters. Here 
that is not straightforward, because it is not obvious 
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Figure 3: Three-trench feature evolution: estimated vs 
true, h = 0.25. Light: Estimate; Dark: Trnth 
model. 

Figure 2: Etch rate estimate, h = 0.10. True value 1.25. 

how to ta le  derivatives through the set operation in 
Eq. (2). We now show how the necessary expressions 
can be obtained. The derivative of the cost function 
is Jp(p) = E(P)TVE(P).  The necessary derivative is 
given by [OE(p)];  = L(t;; p)  + P L p ( t i ;  p). At any time 
t ; ,  given some value of p, L( t ; ;p )  can be found using 
a forward solve. It then remains only to find Lp(t;; p). 
Recall that Lt ( t ;  p)  = ,BA-( t ;  0) + PAX( t ;  p). We make 
the following observation: The shape of the evolving 
feature may be expressed as a function of the variable 
R := Pt  only. This inay be seen from Huygens' princi- 
ple, which states that the front is the envelope of the 
set of circles with radii R centered on the initial active 
surface. Thus we can write L = L(R),  Ir' = I<(R), 
and X = X(R), and Lt = L'(R)Rt = L'(R)P. Then 
L'(R) = Ir'(R) + X ( R ) .  Finally, L p  = L'(R)Rp = 
L'(R)t, or 

Lp(t; p)  = (Ii-(R) + X(R) ) t  (5) 

For any time t and etch rate p the values of Ir'(R) and 
X ( R ) ,  and therefore Jp (P) ,  can be found via a forward 
solve. 

4.2 The Length Method: Simulation results 
An exact solution to the feature evolution question is 
easily obtained for a single-trench etching using the 
Huygeiis principle. The exact solution was used to gen- 
erate measurement data, and the algorithm of the pre- 
ceding section applied. The height of the active layer 
is 5 units, and the width of the periodic cell is 10 units. 
The true etch rate was set to 1.25, and the initial guess 
given to the estiniator was one. The etch rate was 
estiinat,ed at intervals of 1 time unit, and the corre- 
sponding surface drawn. The process was carried out 

Figure 4: Three-trench etch rate estimate, h = 0.25. true 
value 1.25. 

is used, and an initial guess of 1.0 is supplied to the 
estimator, which updates an etch rate estimate a t  0.5 
time unit intervals. Figures 3 and 4 show the results 
for an estimator mesh size of 0.25. 

4.3 Estimation Basedl on Total Area  
Now consider the case where the measurement is based 
on the total amount of inaterial removed. Then the 
etch rate estimate is based on minimizing the least- 
squares cost function 

That is, the iiieasureineiiit is assumed to be exactly the 
total area swept out by the evolving curve in time T. 
Such a nieasureinent might be available directly, or it 
might be obtained by integrating a measurement such 
as described in Section 4.2. For the isotropic case we 
can prove certain importpant properties of J. 

for an estimator mesh size of 0.1. Figures 1 and 2 show Given an ullderlyillg material geometry thell, curve 
the results. is completely defined by t;he paranleter R := Pt,  and we 

write C(R)  for the curve itself, and L(R) for the length 
of the curve. Now, the rate of change of the area swept 
by the curve can be computed to be A(t )  = PL(R). 
S O ,  the area itself is -4(t) = ~ ( p : t ) d ( ~ t ) .  ~l~e re fo re ,  

Consider a mask pattern which repeats after three 
trenches. Again, the height of the active layer is 5 
units, but the periodic cell now has a width of 20 units. 
~n this case the truth model used is an FNI simulation 
with a mesh size of 0.1. Again, a true etch rate of 1.25 adjusting the notation A(R) = s,"L(p)dp. Because 
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L(R)  and P are nonnegative, A(R) is nondecreasing. 

Let the true isotropic etch rate be y. Then J ( p ,  T )  = 
~ : ( ~ ( p t )  - ~ ( 7 t ) ) z c ~ t  w e  seek the value for the pa- 

rameter p that will iiiiniiiiize this function. Since A(R) 
is differentiable, J ( p ,  T )  will be as well, and so any such 
niiiiiiiiizer will satisfy 

J803,T) = J;T(A(Pt) - A(yt))L(Pt)tdt ( 7 )  = o  
Since L and t are both nonnegative, and L is iiot ideii- 
tically zero for any interesting process, the sign of J p  
is deterniiiied by A( P t )  - .4(yt). The nondecreasing 
property of A(R) then gives sign(Jp) = sign($ - y). 
This shows that the correct estimate of etch rate is the 
unique global minimizer. 

It is also of practical interest to exaiiiiiie Jpp. \t7 1 e can 
write 

J/3p = $T2(A(PT) - -4(yT))L(PT)+ 

$ J? L(pt)L(yt)t2dt- (8 )  
3 so ( 4 P t j  - 4 7 t ) W t ) t d t  

We see that tlie second derivative is not continuous, 
because L ( R )  is only piecewise continuous. On the 
other hand, if T is chosen sufficiently large, then Jap  is 
continuous for an arbitrarily large range of P. Then 
since J ~ ~ ( Y , T )  = ~ ? ~ ( y t ) ~ t ’ d t ,  J ~ ~ ( P , T )  > o in 
some neighborhood of y. This raises the question of 
whether Jpp(P,T) > 0 everywhere it is well-defined. 
The answer in general is no. This can be seen by 
considering a planar etch, for wliicli L(R) = Lo when 
R < R f ,  L ( R )  = 0 when R L. R f .  Then J p p ( P , T )  > 0 
for P < (3/2)y, J p p ( P , T )  = 0 for p = (3/2)y, and 
Jpp(P ,T )  < 0 for P > (3/2)Y. 

Tlie preceding discussion suggests the following ap- 
proach to  minimizing the cost function. Given an etch 
rate estimate, calculate the first and second derivatives. 
If the secoiid derivative is positive, use a Newton-type 
method to update tlie estimate. If the second deriva- 
tive is negative, take a gradient-descent step. 

4.4 Self-Calibration for Isotropic Etching 
The total-area cost function assumes that the ineasiire- 
iiient ~ ( t )  is exactly the area swept out by the evolving 
curve. We now treat the case where the measurement 
is merely proportional to that area, and the constant of 
proportionality is not known a przorz. Physically the 
tulkiiown coilstant is usually determined in a cahbration 
step. Calibration may be extremely time-consuming 
(aiid therefore expensive). Furthermore, the process 
must be periodically recalibrated as process paranie- 
ters drift. In a production setting this may severely 
impact productivity. Therefore it is desirable to elim- 
inate the calibration step. As we will now show, this 
can be done in some, possihly most, circumstances. 

Denote the constant of proportionality by p ,  its esti- 
mate by U, and consider the case of an isotropic etcli. 
Then the cost function becomes 

J ( P , D , T j  = - (.A(Pt) - pil(yt))”t (9) 

~ : ( . ~ ( p t )  - p ~ ( y t ) ) i l ( ~ t ) d t  and J~ = S ; r ( U ~ ( p t )  - 

I” 
The first partial derivatives are given by J ,  = 

pA(y t ) )aA/ (Ot) t  d t .  These are differentiable. The sec- 
ond partials are given by 

J,, = JcA(/3t)2dt 

(10) 
Jp/3 = J, D2A~(/3t)2t2CZtS 

JF ( FA( P t )  - pA(yt))~A”(/3t)t  d t  
J,p = J:(2~-4(Pt) - pA(y t ) )A’($ t ) td t  

Let N denote the Hessian. Then at  the solution D = hi 
and p = y, 

det H = ( p 2  JT A ( ~ t ) ~ d t )  (p2  J; A’(yt)2t2dt) - 

(11) 
By the Caucliy-Scliwarz inequality det H 2 0. It would 
be nice if the inequality were strict for every problem 
geometry A(R).  Unfortunately, this is iiot tlie case. 
For example, in a planar etch, for which A(R) = LOR, 
equality holds, aiid the Hessian is iiot full rank. In fact 
it is easy to see physically that the etch rate and the 
calibration coefficient cannot be distinguished indepen- 
dently for this case. On the other hand, equality holds 
J and only  Lf A($) = cA/(yt)t, that is, if and only 
if A(R) = LOR‘, for some constants Lo and e. Tlie 
planar etch is of this form, but in fact, we expect that 
most processes will not be. Then the Hessian will be 
positive definite, at least in some neighborhood of the 
solution. In [2] it was observed that the isotropic etcli- 
ing of a long trench may be self-calibrated. We there- 
fore propose a coiljugate gradient method, switching to 
Newton’s method when the Hessian is positive definite. 

4.5 Angular Dependence 
Up to this point, we have considered only isotropic 
etching. However, most of the interesting plasma etcli- 
iiig processes are anisotropic. Sources of anisotropy in- 
clude the directionality of incoming molecules, the crys- 
tal structure of the material to be etched, and visibility 
effects. Here we treat an important class of anisotropic 
processes, namely those in which the surface normal 
velocity is a function of the surface orientation. The 
angular dependence is expressed using a yield function, 
F (6 ) .  In niany cases of interest this yield function is 
non-convex. These cases require special algorithms for 
propagating the level set equations. We begin our ex- 
amination of this class of functions by considering the 
case ,8 = POoF(0). For now, we restrict F(B) to be non- 
negative, continuous, and not identically zero. 
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As we remarked above, from Green’s theorem, the 
area enclosed by a closed curve is given by A = 
3 ~ ~ ( C , N ) g d p .  The rate of change of area is A = 
J: &F(O)g clp. Huygens’ principle applies to this class 
of systems as well. We can consider the evolving curve 
to be generated by tlie envelope of a continuum of 
plane shapes-the so-called striicturzng elements, no 
longer necessarily circular-expandiiig with rate ,& t 
[lo]. Then, as before, tlie area can be written as 
A(R) := A(Pot). Here R := pot is some cliaracter- 
istic diiiieiision of the structuring element at time t. 
Po will play tlie role of the unknown process parame- 
ter. An analysis similar to tlie one in Section 4.3 gives 
A’(R) = Jt F(O)gdp.  The quantity A’ no longer has 
the interpretation of length, but it is still non-negative, 
and may be found by integrating around tlie contour 
at any time. We then proceed as above. 
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