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Abstract- An elliptic integral solution for the post-buckling response of a linear-elastic

and hygrothermal beam fully restrained against axial expansion is presented. Whereas in

the classical solutions the extension of the beam can be neglected, a well-posed formulation

of the title problem must include the extension. The solution for the limiting case of a string

is presented. The present solution shows that the magnitude of the compressive axial load

is a maximum at the onset of buckling and decreases as the potential for free expansion is

increased; this is in contrast to the approximate solutions found in the literature.
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INTRODUCTION

An analytical solution for the post-buckling response of an elastic and hygrothermal beam

subjected to an increase in swelling is presented. There are two interesting features of this

problem that differentiate it from the classical solutions of the elastica. First, the extensibility

of'the beam cannot be ignored. Second, the compressive normal stress field in the beam is

not the result of an applied compressive load but is clue to an increase in either temperature

or moisture content. Thus, the relationship between the axial force and the hygrothermal

expansion is not unique but depends on the degree of buckling.

For the present solution, the beam is assumed to exhibit a purely elastic response and

dimensional changes in the cross-section are assumed to be negligible. The axial stress

is assumed to be proportional to the difference between the stretch and the hygrothermal

extension of the beam. The solution is obtained in the form of two coupled integral equations

of elliptic form, which can be solved numerically to provide the post-buckling response of

the structur e .

From a limiting process, the equilibrium state of a string is obtained from the beam solution.

The value of this solution for the string is that the two unknown parameters are determined

explicitly in terms of elliptic integrals of the first and second kind.

We conclude with a discussion of pertinent results and a comparison with the previous

approximate results found in the literature.

BACKGROUND

One would expect that the thermal buckling of a beam has been well studied but, surprisingly,

little was found in a search of the literature. The critical buckling temperature of a restrained

beam can be obtained from a linear beam buckling theory. The solution given for both the



critical change in the potential for free thermal expansion, (c_AT)c_, and the compressive

load at buckling, P_, for a simply supported beam of length 2L is

2 (1)(o_AT)c,. -(--_- and Pc,-- EA( )2

I
where p2 _ A is the cross sectional area, / is the moment of inertia, and E is Young'sAL 2'

modulus.

Boley and Weiner [1], Nowinski [2] and Ziegler and Rammerstorfer [3] each derived the same

first order approximation, equation (2), for the post-buckling response by including only the

highest order nonlinearity in the expression for axial strain. They [1, 2, 3] obtained

w(O) /4o_AT

L = 2p_/ 7r--_p2 - 1 (2)

where w(0) is the lateral deflection at the mid-span of the beam.

The derivations yielding equation (2) predict that the axial force given in equation (1)

remains constant after initial buckling. Zielger and Rammerstorfer [3] stated that a higher

order approximation of the solution yielded a slight decrease in the magnitude of the axial

force, but provide neither results nor references to substantiate this claim. Boley and Weiner

[1] discuss the general methodology for solving the post-buckling response, but state that

the analysis is quite cumbersome, and only give the solution provided by equations (1) and

(2).

E1 Nashie [4] noted that the thermal buckling problem had not been addressed in the litera-

ture and presented a variational analysis to show that the post-buckling response is stable.

He concluded that the initial post-buckling response is exactly the same as for the inexten-

sible rod subjected to an end thrust and he predicted that the axial load would increase in



the post-buckling response. Unfortunately, E1 Nashie [4] assumed that the axial strain and

angle of rotation are completely independent of each other which, as will be evident from

the present analysis, is not true. Thus, his result is not valid.

Recently, Jekot [5], presented a post-buckling solution for a beam made of a nonlinear ther-

moelastic material. His formulation is the same as mentioned above [1-3] except that he

allows for a nonlinear dependence of thermal expansion on temperature; as in the analy-

ses discussed above, his solution is limited to the prediction of a constant axial load after

buckling.

As it appears that an analytical solution for the title problem has not been given previously,

a solution is presented below. The results of the present analysis determine whether the axial

load increases or decreases in the post-buckling regime, and verify the accuracy of equation

(2).

In order to obtain a solution of the present problem, one naturally looks to the equations

of the elastica. Because the beam cannot be treated as inextensible, a formulation for the

elastica including extensibility must be utilized. Both Stoker [6] and Huddleston [7] provide

the differential formulation and a numerical solution for the post-buckling response of an

elastic extensible beam subjected to an applied axial compressive load. Antman [8] and

Stemple [9] each presented a theory for extensional beams, and derived a post-buckling

solution for an extensible beam subjected to an applied compressive axial load. In these

papers, the solution is determined by two coupled integral equations of elliptic form and a

similar approach will be followed here.

PROBLEM FORMULATION

We seek the post-buckling response of an elastic and hygrothermal beam subjected to an

increase in temperature and/or moisture content. The solution comprises the out-of-plane



deflection, the axial deflection, and the axial stress distribution as a function of the change

in temperature and/or moisture content. Figure 1 illustrates the initial configuration and

buckled configuration of the beam. A beam of length 2L and cross-sectional area A - bh

is pinned at both ends so that axial movement of the beam ends is prohibited. We assume

that the beam is made from a linear-elastic and linear-hygrothermal material with a Young's

modulus of E, a coefficient of thermal expansion a, and coeflScient of hygroexpansion/_.

When either the temperature or moisture content is increased, the beam will attempt to

expand; however, the pinned ends completely restrain the expansion. Initially, the beam

remains undeformed, and an axial compressive force develops. At some critical change in

conditions, the axial force is of sufficient magnitude to cause buckling. If the change in

temperature or moisture content is increased above this critical value, the undeformed beam

is unstable, and a buckling deformation occurs.

In order to determine the post-buckling response of the beam, one must delineate the re-

lationship between both the axial force and the out-of-axis deflection as a function of the

change in temperature or moisture content.

As shown in Figure l, the distance between the pins along the x axis is always 2L. For the

beam to assume a buckled state it must elongate. In classical bucklin g (due to an applied

thrust) the beam is free to move at one end, which allows an inextensible beam to buckle.

For most problems, the compressive strains are considered to be negligible and the material

is treated as inextensible. In the present problem, ignoring the axial extension violates the

geometric constraints, and the classical assumption of inextensibility cannot be invoked.

When the temperature or moisture changes, the magnitude of the compressive force that

develops in the beam is proportional to the difference between the actual extension and

the potential for free expansion. For a given change in the potential for free expansion, the

resulting compressive force is a maximum when the beam has no extension and zero when the



beam is free to expand. Having established that the beam has expanded, it follows that the

magnitude of the axial force will be less than the maximum possible force. The solution of

the equilibrium equations, coupled with the appropriate kinematic and constitutive relations,

will yield both the magnitude of the axial force and the deformation of the beam.

Several assumptions are made in the present formulation. First of all, the cross-sectional area

is assumed to remain constant under any loading or changes in temperature or moisture.

In addition, it is assumed that there is no transverse shear deformation and, hence, the

cross-section remains plane with a normal tangent to the deformed axis of the beam. The

displacements are allowed to be large as will be evident from the kinematic relations. Finally,

the stress is taken to be proportional to the difference between the strain and the potential

strain of free expansion.

The kinematic, equilibrium, and constitutive equations are derived below for the problem

described above; details Of the formulation are provided so that the impact and limitations

of the assumptions will be clear to the reader.

Kinematic Equations

As shown in Figure 1., we choose a reference Cartesian coordinate system with the x axis

coinciding with the neutral axis of the undeformed beam. The z axis is taken as the direction

of the off-axis deformation. Therefore, all bending of the beam is prescribed to be around

the y axis, and the domain of the undeformed beam is taken as

b<y<b h<z<h2-

In the deformed state, the domain of the beam can be specified by a {s, r/, C} curvilinear

coordinate system where the s axis is the neutral axis of the deformed beam, and the 7]

and C axes are in the plane of the cross-section of the beam. The dimensions of the beam's

cross-section are assumed to remain constant (i.e. no swelling and Poisson's ratio is taken

as zero.) During bending, the cross-sectional area remains plane and perpendicular to the



neutral axis of the beam. The final length of the neutral axis of the beam is unknown but

is of magnitude 2(L-t- AL) where AL remains to be determined. Therefore, the domain of

the deformed beam is

b <rl< b h <_.< h
{-(L + AL) _< s _< L + AL, 2- - 2' 2 - - 2}

With the assumptions given above, the neutral axis of the deformed beam can be written in

terms of the reference coordinate system as

{s- -L _<z < L, y - 0,z - w(x)}

where w(x) is the vertical deflection of the neutral axis of the deformed beam. The curvature,

n, of the neutral axis can be written as

d2w

dO dx2- --- (3)
ds dw 3/2

[i + (_)2]

where 0 is the angle formed by the x axis and the line tangent to the neutral axis. In the

present analysis, the normal strain in the beam is defined as the stretch minus one. Figure

2 shows a line segment of original length dS and deformed length ds.

The strain along the neutral axis is defined as

ds
1 (4)

eo = dS

where -L _< S i L. Assuming that the cross-sectional area remains plane and perpendicular

to the neutral axis, the normal strain at any point can be written in terms of the normal

strain and curvature of the neutral axis as

ds ds

= + (5)

For the case of extensible elastica, the total strain is not a linear superposition of e0 and _.

Equation (5) was previously given in References [7-9].



Given the geometry shown in Figure 2, the following additional kinematic relations must

hold

(] 1 dw dS du

ds
-- 1 + ,dw, 2 - = tan(O) and = 1 (6)

dx- _ -cos(O)' dx ' dx dx

A Lagrangian formulation of the above equations can be written by using the S coordinate

system instead of the x coordinate system; in this case, the domain is the same, but the length

dS is less than the length dx due to the extension of the neutral axis. In the Lagrangian

coordinate system, the above kinematic equations are written as'

ds _ du)2 dw)2dS = (1 +_-_ +(_-_ (7)

dw
--(1 + eo)sin(O) (8)dS

and

dx du
= 1 +- --(1 + eo)cos(O) (9)dS dS

Four other geometric conditions that must be satisfied are

u(-L) - u(L) - 0 and w(-L) - w(L) - O. (10)

It is Convenient to write some of the above kinematic conditions in integral form. We let

the angle of rotation at x -- -L equal O1and seek a deformed state that is symmetric about

x - O, such that the angle at x - L is 0 - -0_. Integrating equation (4), or equivalently
dS

the simple identity dS - _-_dO, over the domain -L _<S <_L, yields

2L- 8x



Equation (9) can be integrated from -L to some point S to give

fo°l dS)' S + L + u(S) - u(-L) - (1 + e0)(-_-_ cos(O)dO (12)

Evaluating equation (12) at S = L and noting the boundary conditions given in equation

(10) yields

2L - (1 + e0) -_-_ cos(O)dO (13)01

Integration of equation (8) leads to

(S) w(-L) fo°_ dS)w - - (1 + e0)(-_-_ sin(O)dO (14)

while evaluation of (14) at s - L, with the boundary conditions on w(S) given in equation

(10), yields

f__ dS0 - (1 + e0)(-_-_)sin(O)dO (15)01

Since we have limited our solution to symmetric deflections, equation (15) is identically

satisfied, and provides no useful information for the present problem.

dS

The integral equations given above can be evaluated once e0 and _-_ are expressed as func-

tions of the angle 0; these relationships are determined from considerations of equilibrium

and the constitutive behavior of the beam.

Equations of Static Equilibrium

In the buckled state, the beam is assumed to be in static equilibrium. Equilibrium equations

are derived in differential form by satisfying equilibrium on a deformed segment ds. Figure

3 shows the forces acting on the segment ds. The force components are taken as N and V

along the x and z axis, respectively. The bending moment, Air, acts about the y axis.



The equilibrium equations are

dN dV

dx = O, dx = 0
(16)

dM
+ N tan(g)+ V -0

dx

Therefore, Ar and V are constant. At the pinned ends of the beam, the bending moments

must vanish; thus,

M(L)-M(-L)-0

Using equation (17) in the global equilibrium balance yields V - 0. Therefore, the equilib-

rium equations (16) reduce to

dM

N - constant and dx + Ntan(O) - 0. (18)

Equation (18) can be written in terms of the coordinate s as

dM

d--s--FN sin(O) - 0 (19)

or in terms of the coordinate S as

dM

d-'S + N(1 + eo)sin(O) - 0. (20)

Constitutive Equations

The bean} is assumed to be made from a linear elastic and hygrothermal material. Therefore,

the stress is taken to be proportional to the difference between the actual strain and the

potential strain of free expansion. The stress-strain relation is

a - E(e- o_AT-/_AH) (21)

where c_ and _ are the coefficients of thermal expansion and hygroexpansion, respectively.

The terms AT and AH are the change in temperature and moisture, respectively. The



· potential strain for free hygrothermal expansion is defined as

eh, - aAT + _AH (22)

Substituting equations (5) and (22)into equation (21)yields

a- E[e0- (1 + e0)n(- ent] (23)

The stress given by (23) is normal to the neutral axis of the deformed beam and may be

integrated over the cross-sectional area to determine the resultant forces acting on the cross-

section. Integrating equation (23) over the cross-sectional area A in the deformed state, with

the assumption that the cross-sectional area does not deform, yields

N cos(O)+ V sin(O) - EA(eo - ent) (24)

while integrating the product aC over A yields

M(x) - -EI(1 + e0)_. (25)

We note that, for the present problem, V- 0. Using equations (3) and (6), the moment

expression given in equation (25) can be written as

dO
-- (26)M(x) -

SOLUTION OF THE BUCKLING PROBLEM

The most convenient method of solution for the system of integral equations delineated in

the last section consists of first determining N and ent (asa function of 01) from the integral

equations (11) and (13) after which the displacements can be found using equations (12) and

(13).

lO



In order to accomplish this task, the strain of the neutral axis and the curvature must

be determined as functions of the angle of rotation. The strain, determined directly from

equation (24), is

e0 -- (_-----_A)cos(O) + ent (27)

Substituting equations (26) and (27) into the equilibrium equation (20) yields

d20 N N

dS 2 -- (_-_)[_-_ cos(O) + 1 + ent]sin(O) - 0. (28)

dO

We now multiply (28) by 2_-_ and integrate once to obtain

dO 2 N 1E_(_-_) - -2(_)[_( ) cos2(0)+ (1 + eht)cos(O)] + C (29)

where C is a constant of integration which is to be evaluated using the boundary conditions

(17); these conditions, when combined with equation (26), reduce to

dO(iL) - 0 (30)dS

It then follows that

N 1 N

c- 2(g7)[_(_) cos_(00)+(_+_)cos(0o)] (al)

For convenience, the following change of variable is now made' we define

0_ 0
K - sin(-_-) and K sin(qb) - sin(_) (32)

Then,

cos(O) -- 1 -- 2K 2 sin2(¢), sin(O) - 2K sin(_)V/1 - K 2 sin2(_) (33)

and

do_- 2Xcos(_) (34)
dC v/__ K_s_n_(_)

11



In addition, the following dimensionless parameters are introduced.

I -NL 2
p2 _ and A2= (35)

(AL) 2 E1

Equation (29) can now be re-written and simplified to

d_b A _/1 sin2 (_b)_/1 /_2p2 X 2dS = -(L) - K + eht - [1 - (1 + sin2(_b))] (36)

The negative sign in (36) corresponds to the expectation that the angle of rotation decreases
7[

as x increases. For a symmetric buckling mode, _b(0)- 0, and qS(-L)- _. Equations (27),

(33), (34) and (36) are now substituted into the integral equations (11) and (13) and we

obtain

1 -- f0 _ dC (37)
A_/1 - K 2 sin2(_b)y/1 + eht- A2p2[1 - K2(1 + sin2(_b))]

j_0_ A2p2
1 - _ [1 - 2K 2sin2(_b)][1 + eh,- (1 - 2K 2 sin2(_))]d_b (38)

A_/1 - K2 sin2(_b)_/1 + ent- A2p2[1 - K2(1 + sin2(_b))]

The expressions on the right-hand sides of the relations (32), (38) are both elliptic integrals;

these relations provide two equations which can be solved simultaneously for A and eht for

a prescribed value of K. The deflections may be determined by introducing equation (36)

into equations (12) and (14) so as to yield

w(S) /_ 52Ksin(c))][l+eht-)_2p2(1 2K2 sin2 (_b))]d_b (39)
L -- __; ;_ '- _52il_ X2(1 + sin2(_))]

and

f_ A2P2(1 2K 2sin2 (_b))]dqb S
u(S) [1 - 2K 2sin2(_b)][1 + ent- - -(1 + (40)

L = A_/1 - K 2sin2(_)_/1 + eht-/k2p2[1 - K2(1 + sin2(_b))] L)

12



where ri) is the angle of rotation at position S, which is determined by integrating equation

(36) so as to obtain

2= _ /0 _ d_ (41)
L A_/1 -/(2 sin2(q))V/1 + _ht- A2p2(1 -/'(2( 1 + sin2(qS))

The integral in equation (39) can be written explicitly in the form

w(S)
__ 2K V/1 + eht - A2p2[1 - K2(1 + sin2((I>))] cos(_) (42)L A

Thus, the mid-span deflection is

W(0)
__ 2K X/1 + eht- A2p2(1 -/(2) (43)L A

The complete post-buckling solution has been found and is given by equations (37), (38),

(40), (41), and (42). The onset of buckling is determined by the limit as K goes to zero in

equations (41) and (42). This limiting process does, indeed, yield equation (1).

THE SOLUTION FOR THE LIMITING CASE OF A STRING

The numerical solution of equations (37) and (38) involves solving simultaneously the two

coupled nonlinear equations. Although this can be accomplished on a computer, it would

be beneficial to obtain explicit expressions for A and _ht in terms of K, at least for some

special case. Fortunately, such a case exists. If we assume that the beam is very slender,

then p << 1. When p- 0, the beam is infinitely slender, implying that either the length is

infinite or the cross sectional area is zero. Thus, the beam acts like a string. Setting p - 0

in equations (37) and (38) gives

fo dC = F(K,
AV'I + eht - _/1 - X 2 sin2(_) 2) (44)

13



_ fo_ [1 - 2K 2 sin2(&)]d& = 2E(K, 7r 7r (45)
x/1 + eh, - X/1 _ K 2 Sin2(q_) _)- F(K, _)

7r 7[

where E(K, _) and F(K, _) are the elliptic integrals of the first and second kind, respec-

tively. Equations (44) and (45)can be re-written as

V/ _' _- F(K, _'A - F(K, _)[2E(K, _) - _)] (46)

E(x,
ent = 2[F(K, _) - _)] (47)71' 7r

2E(K, _) - F(K, _)

Thus, for a given value of K, the values of A and ent can be determined explicitly from

equations (46) and (47). The value of A loses physical meaning in this limit, but this value

can be used as an approximation of the axial force in slender beams where p << 1. Finally

by substituting equations (46) and (47)into (43)we obtain

2K
w(0)- z- _- (48)

2E(K, _) - F(K, _)

RESULTS

Using equations (37), (38) and (43) for the beam, and (46), (47) and (48) for the string, the

respective post-buckling responses can be evaluated. To obtain the results presented below,

we used MATHCAD on a PC. The solution was obtained by choosing a value for K and,

numerically, finding the values of _ and ent that satisfy equations (37) and (38) for the beam

or equations (46) and (47) for the string. The equations (43) for the beam and (48) for the

string were used to find the mid-span deflection.

Figure 4 shows the change in the potential for free expansion versus the mid-span deflection

for various values of the slenderness ratio, p. As p increases, the critical potential for free

14



expansion increases in proportion to the square of the slenderness ratio. In the post-buckling

regime, the curves asymptote to the curve for p- 0.

Figure 5 shows the compressive load parameter versus the mid-span deflection. From the

graph, it is clear that the critical load is indeed a maximum and, after buckling, the mag-

nitude of the load decreases; this finding is in disagreement with the results found by E1

Nashie [4] and brings into question the validity of his derivation. The decrease in load makes

physical sense from the standpoint that buckling relieves a percentage of the load that ex-

isted prior to buckling. The present results show that this release of hygrothermal load is

larger than the additional load created by the increase in temperature or moisture required

for buckling to proceed.

The decrease in load shown in Figure 5 is quite small. For example, at the limit of practical

w(0) 1 and p- 0.1 the load has dropped by only 1 2%
applicabilityofour solutionsay, 2£ = 7' ' , ' '

In terms of the axial load, a result similar to the current result is obtained by calculating

the critical buckling load of a beam that has initially been allowed to freely expand to a

length 2L(1 + cbt) and is then buckled by a compressive end thrust. For this case, the critical
71'

buckling load is given by A_ - [2(1 + cbt)]' This critical buckling load also decreases as cbt
increases.

It is of interest to compare the present solution to the approximate solution given in Equation

(2). Figure 6 shows a comparison of the solutions for both p - 0.0 and p - 0.1. We found that

equation (2) underpredicts the mid-span deflection for a given change in _ht but, nonetheless,

1
provides a good prediction of the post-buckling response. In fact, at 2L 7 and r - 0.1,

the elastica solution gives _ht -- 0.07237 while equation (2) gives _ht - 0.07503, a 3.7%

difference.

15



CONCLUSIONS

By obtaining the elastica solution for the case of hygrothermal buckling of a simply supported

beam, it was shown the previous approximate solutions Il, 2, 3] yield a good prediction of

the relationship between the mid-span deflection and the potential strain of hygrothermal

expansion, but that the axial load in the post-buckling regime is not constant as predicted

by tile approximate solution. The present analysis revealed that the magnitude of the axial

load decreases in the post-buckling regime. The dimensionless buckling parameter, A, is

fairly insensitive to the slenderness ratio of the beam, and the prediction for this value which

was obtained for the limiting string case should provide a good estimate for slender beams.

The present solution pertains to a very idealized case. It is well known that the modulus of

a hygrothermal material is dependent on the temperature and moisture content. For most

materials, the modulus drops with increases in temperature and moisture content. Inclusion

of this effect would produce larger drops in axial load after buckling as compared to the case

of constant initial modulus. Accounting for the effect of the lateral swelling would increase

both the cross-sectional area and the moment of inertia of the sample and would increase

the critical buckling load.

It remains to show that the symmetric buckling mode given in this paper is in fact a stable

equilibrium state. This is beyond the scope of the present analysis which was meant to only

provide an elastica solution to the problem. The previous paper by E1 Nashie [4] gives a

correct energy formulation, but the perturbation solution leads to the incorrect conclusion

that the axial load increases in the post-buckling regime. E1 Nashie assumed that the axial

strain and angle of rotation are independent variables, but, equation (27) shows that, in fact,

they are related. E1 Nashie does show that the energy state which has been determined will

be a local minimum.

16
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Figure Captions-

Fig. 1. Buckling of a simply supported beam subjected to hygrothermal loads.

Fig. 2. Geometry for deformation of the element dS to the element ds.

Fig. 3. Resultant forces acting on an element ds.

Fig. 4. Change in the potential for free expansion as a function of the midspan deflection.

Fig. 5. Axial load as a function of the mid-span deflection.

Fig. 6. Comparison of buckling predictions.
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Fig. 1. Buckling of a simply supported beam subjected to hygrothermal loads.
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Fig. 2. Geometry for deformatio_ of the element dS to the element ds.
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Fig. 3. Resultant forces acting on an element ds.
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Fig. 4. Change in the potential for free expansion as a function of the midspan deflection.
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Fig. 5. Axial load as a funct,ion of the mid-span deflection.
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NOMENCLATURE

Symbol Description Dimension
A cross-sectional area of beam [L2]

b width of beam [L]

E Young's modulus [F/L 2]

h depth of beam [L]

H moisture content [%]

I moment of inertia IL4]

K beam rotation parameter [-]

L half length of beam [L]

M bending moment about y axis [FL]

N resultant force in x direction [F]

Pc_ critical buckling load [F]

S undeformed neutral axis of beam [L]

s deformed neutral axis of beam [L]

T Temperature [0]

u axial deflection [L]

V resultant force in z direction IF]

w vertical deflection [L]

(x, y, z) reference coordinate system [L]

a coefficient of thermal expansion [1/0]

coefficientofhygroexpansion [%]

axialnormalstrain [-]

eht potential strain of free expansion [-]

co axialnormalstrainat neutralaxis [-]

normalizedangleofrotation [rad]

n curvature of neutral axis [l/L]

A dimensionlessloadparameter [-]

p slenderness ratio [-]

angleofrotation [rad]

01 angle of rotation at ends [rad]








