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SUMMARY 

This thesis focuses on the exploration of different schemes for the autonomous 

traversal of a connected corridor, and the vehicle development work done in Year 4 of the 

EcoCAR Mobility Challenge to enable the testing of one such scheme on Ponce De Leon 

Avenue in Atlanta, Georgia. Georgia Tech is one of 11 teams participating in the EcoCAR 

Mobility Challenge, a 4-year competition that is a part of the Advanced Vehicle 

Technology Competition (AVTC) series. In the fourth year of this competition, teams are 

challenged to refine an SAE Level II Autonomous feature (Adaptive Cruise Control), 

implement Vehicle-To-Everything (V2X) communication between the vehicle and 

connected intersections, and demonstrate a robust and reliable powertrain through 

extensive testing. 

The effectiveness of three different schemes in autonomously traversing a 

Connected Corridor are explored using a cost function consisting of three costs: time taken 

to traverse the corridor, energy used, and driver comfort. Several key parameters will be 

varied to observe their impact on the three schemes’ effectiveness while a Simulink model 

and real-world testing will be used to validate the result of the schemes.  

To perform real-world testing using the hybrid vehicle developed by the Georgia 

Tech EcoCAR team, a comprehensive vehicle development process was followed over the 

four years of this competition. The development and testing methodology of a supervisory 

controller for a hybrid vehicle is detailed in this thesis. Finally, the organization of vehicle 

testing activities in the final year of the EcoCAR Mobility Challenge will be described. 
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CHAPTER 1. INTRODUCTION 

1.1 Introduction to the EcoCAR Mobility Challenge 

The EcoCAR Mobility Challenge is the current installment of the AVTC series, 

sponsored by the US Department of Energy (DOE), General Motors (GM), and 

MathWorks. This is a 4-year competition among 11 university teams from across North 

America to convert a 2019 Chevrolet Blazer into a hybrid vehicle to achieve better fuel 

economy and implement autonomous features for the Mobility-as-a-Service market. After 

conducting market research in Year 1 of the competition, the Georgia Tech team chose 

Uber and Lyft drivers in the Atlanta area as the primary target market for its vehicle. 

Subsequently, several vehicle architectures were modeled and simulated to identify which 

architecture would meet the Vehicle Technical Specifications (VTS) desired by the team 

for its target market. Once this architecture was approved in Year 1, Year 2 and Year 3 of 

this competition were dedicated to the implementation and testing of this hybrid 

powertrain. Work done in these two years include designing all the mechanical, thermal, 

and electrical systems, implementing them in the vehicle along with a basic controls 

strategy for each, and testing them in a closed course environment. Simultaneously, 

components that enable connected and automated vehicle features were integrated into the 

vehicle in these two years, and baseline testing was completed. 

At the start of Year 4 of the competition in August 2021, a hybrid powertrain was 

fully integrated and functional, and the beginnings of an Adaptive Cruise Control (ACC) 

feature had been implemented in the vehicle. In this year, the performance and reliability 

of the hybrid powertrain needed to be verified through a systematic testing process, while 
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the ACC feature needed to be refined to meet competition requirements. Teams are also 

tasked with implementing V2X communication capability on the vehicle in this year. 

Specifically, teams are tasked with equipping the vehicle to autonomously traverse 

connected, signalized intersections that are broadcasting Signal Phase and Timing (SPaT) 

and Intersection Map (MAP) data. 

1.2 Introduction to vehicle architecture 

Georgia Tech’s hybrid vehicle architecture, selected in Year 1 of the competition, is 

shown in Figure 1. The team implements a P0-P4 “through-the-road” parallel hybrid 

vehicle architecture. The stock powercube is replaced with a 2.5 L LCV engine and a 9T30 

M3D transmission from GM. The Denso Integrated Starter Generator (ISG) functions as 

the P0 motor generator unit (MGU) and is belted on the accessory side of the engine. The 

battery is a GM HEV4 Energy Storage System (ESS) and the propulsion source on the rear 

axle is the 50 kW Magna eRAD. 

 

Figure 1 - Georgia Tech hybrid vehicle architecture 
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Georgia Tech’s Connected and Automated Vehicle (CAV) architecture is shown in 

Figure 2. The forward perception system consists of a Bosch Mid-Range Radar (MRR) and 

an Intel Mobileye 6 camera. Both sensor fusion and longitudinal controller algorithms 

necessary to implement ACC are implemented in the primary compute unit, the Intel Tank. 

The Tank interfaces with actuators in the vehicle via the hybrid supervisory controller, the 

dSPACE MicroAutoBox II. The Cohda MK5 On-Board Unit (OBU) is a wireless radio 

that communicates via Dedicated Short-Range Communication (DSRC) and provides V2X 

capability to the team architecture. The OBU is the primary device used to receive SPaT 

and MAP messages from signalized intersections and communicate them to the Tank to 

enable autonomous traversal of signalized intersections. 

 

Figure 2 - Georgia Tech CAV Architecture 

1.3 Ponce de Leon Avenue Connected Corridor 

Ponce De Leon Avenue is a major transportation artery in Atlanta connecting the 

large suburban residential areas of Decatur to the populous business districts of Midtown 

and Downtown. According to the Georgia Department of Transportation (GDOT) website, 

the average daily traffic flow on this road is between 35,000 to 40,000 vehicles [1]. Figure 
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3 highlights 15 connected, signalized intersections along this corridor broadcasting SPaT 

and MAP messages. The Georgia Tech team saw it fitting to use the signal phases of 

intersections along this corridor as a basis for algorithm development to meet the 

competition V2X requirements and go above and beyond, since this would be a connected 

corridor frequented by the team’s target market. 

 

Figure 3 - Connected, signalized intersections along Ponce de Leon Avenue 

To obtain representative SPaT data for each of the 15 intersections along the 

corridor, 15 members of the Georgia Tech EcoCAR team were stationed at the 15 

intersections and recorded the SPaT simultaneously for 5 minutes, the results of which are 

recorded in Figure 4. This data was then fed into the models that the team used to develop 

and test algorithms for corridor traversal. The intersections along Ponce de Leon Avenue 

were used as a baseline scenario to compare different control methodologies and validate 

vehicle models. 

12345
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Figure 4 - SPaT along the 15 intersections of Ponce de Leon Avenue in numeric 

order East to West 
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CHAPTER 2. SCHEMES FOR AUTONOMOUS CORRIDOR 

TRAVERSAL 

2.1 Background 

The work in this chapter was submitted to the EcoCAR competition as part of the 

Final Technical Report (FTR) in April 2022. The FTR was a collaborative effort with 

Nicholas Hummel, who implemented the algorithmics described in the Proposed solutions 

section. The section on Model-In-The-Loop (MIL) validation, including the development 

of a Simulink model to validate the algorithms using a plant model, was worked on by this 

author, while the rest of the sections was a collaborative effort between both individuals. 

2.2 Problem introduction  

2.2.1.1 Problem statement 

The team’s goal is to develop a feature which autonomously controls the 

longitudinal motion of a vehicle and improves the performance of traversing a V2X 

connected corridor based on three driving factors: time required to traverse the corridor, 

energy used, and rider comfort during the traversal. Actuator limits were also considered. 

An assumption is made that a user-set speed limit is defined for vehicle motion. Three 

schemes for implementing this feature will be explored. The first is inspired by human 

driving behavior, referred to as the Stop or Go Scheme. The second explores optimality 

assuming all data can be known prior to the traversal, referred to as the Global Optimal 

Scheme, and the third scales down the approach used in the Global Optimal Scheme to 
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make the solution implementable without prior knowledge of all SPaT and MAP data. It is 

referred to as the Local Optimal Scheme. 

To evaluate each scheme for implementing this feature, different vehicle simulation 

models and parameters are tested. The performance of each scheme is assessed with the 

team collected SPaT data gathered at the Ponce de Leon connected corridor. Two 

simulation models are used for the vehicle: a point mass motion model, where the vehicle 

is abstracted to a point mass modeled by differential equations in a MATLAB simulation 

script, and a hybrid powertrain architecture with efficiency maps from the vehicle’s 

actuators, in the form of a Simulink model. The point mass model is used as the initial test 

case for each scheme and the hybrid model is used to validate that the simplifications made 

in the point mass model do not significantly degrade performance. The key parameters to 

be explored in this work that impact the performance of the three schemes are: 

1. Relative weighting of the different performance metrics 

2. If any violation of the user-set speed limit is allowable, and 

3. For the third scheme, the distance at which SPaT data is received for an intersection.  

The point in time where the vehicle enters the corridor will also be varied to 

demonstrate the robustness of results to a phase shift in the SPaT cycle. Finally, a vehicle-

in-the-loop test run of the Ponce de Leon connected corridor will be conducted to explore 

implementation hurdles. 

2.2.1.2 Simplifications and constraints 
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To narrow the scope of this problem to something more addressable, certain 

simplifications and constraints were imposed. The first simplification made was modeling 

the road as a 1-D system, since only longitudinal motion of the vehicle is considered in this 

feature. The second simplification was ignoring the concepts of elevation and road grade. 

The last simplification made was the elimination of other vehicles in the corridor. The 

constraints placed on the problem exploration were limits on the vehicle’s velocity range: 

the vehicle could not have a negative speed and the upper limit of velocity was fixed. 

Finally, a state limit was imposed such that any state where a vehicle is in an intersection 

during a red-light phase would be deemed unacceptable. 

2.2.2 Proposed solutions  

2.2.2.1 Stop or Go Scheme 

The first scheme for implementing this feature, Stop or Go, is inspired by the decision-

making process humans use when traversing an intersection. If the driver perceives that the 

vehicle will violate the red-light, the car is brought to a stop at the entrance to the 

intersection. Otherwise, the vehicle continues to travel at the desired speed limit. To 

perform this task in an algorithmic manner, at each time step the vehicle calculates the 

minimum time required to reach the next intersection. This calculation utilizes simple 

kinematics and a prior knowledge of vehicle acceleration and velocity limits. Once this 

minimum time required is known, if either of the following conditions are true, the vehicle 

is unable to legally traverse the intersection and must enter a stopping mode: 

1. The current phase is red and the minimum time to the intersection is less than the 

radio reported time to the next phase. 
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2. The next phase is red and the minimum time to the intersection is greater than the 

radio reported time to the next phase.  

Otherwise, the vehicle is free to continue at the user-set speed limit. This decision-making 

process is illustrated in Figure 5. 

 

Figure 5 - Decision making process in Stop or Go Scheme 

2.2.2.2 Practical implementation of the Stop or Go Scheme 

This behavior lends itself to a two-mode architecture. The first mode, referred to as 

Stop Mode, handles stopping at the entrance to an intersection, and the second mode, 

referred to as Go Mode, regulates the vehicle’s velocity to the user-set speed. Linear 

feedback controllers are used to implement these two modes. The Stop Mode uses a 

controller to regulate the distance to the entrance of an intersection, whereas the Go Mode 

uses a controller to regulate velocity, and these two controllers are designed and tuned 

independently. Both controllers in this implementation use state-space architectures 
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augmented with integral action to allow for arbitrary pole placement and to eliminate 

steady-state error. 

This two-mode controller requires knowledge of the vehicle velocity and distance 

of the vehicle to the entrance of the next intersection. The vehicle velocity can be polled 

from sensors at every controller time step, but the distance to the intersection is only 

reported by the V2X radio at a maximum rate of 10 Hz. Since the controller runs at 100 Hz 

and messages are sometimes missed, a state estimator is required to update the distance to 

the intersection based on the vehicle velocity. However, when a new SPaT message is 

received, the distance is updated to that value. 

2.2.2.3 Global Optimal Scheme 

The Stop or Go Scheme is an intuitive solution to the problem of traversing a 

connected corridor, but it begs the question of what the best possible solution is. If all SPaT 

and MAP information is known prior to the traversal of the intersection and there were 

infinite computational resources available, one could explore every possible velocity 

trajectory and measure the cost. The trajectory that yields the lowest cost is the best any 

traversal strategy could achieve. In the continuous time space, this is an infinite 

dimensional problem and is not feasible to solve. One option to address this is to 

analytically solve the problem. However, with all the nonlinearities and state constraints 

introduced in this problem, this approach quickly becomes comparably complex to an 

exhaustive search. Instead, the problem space is discretized and a search algorithm is 

implemented with intelligent search termination criteria to significantly reduce 

computational cost. 
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In this approach, the knowledge of the minimum costs to reach prior states are 

stored. Using this information, the search algorithm can search only trajectories that have 

a chance of being better than the current solution. A visualization of this discretization is 

shown in Figure 6. The final displacement is denoted by xf, and the spatial step is dx. The 

final time is denoted by tf, and the spatial step is dt.   

 

Figure 6 - Visualization of discretization of search algorithm problem space 

The time step dt and the distance step dx dictate the resolution and size of the 

discrete space. Two meshes of this same size are stored as part of the algorithm. The first 

is the light matrix, which holds the phase of the light at a given position and time. If there 

is no light at a location in the light matrix, a 0 is stored. The second is the cost matrix, 

which holds the minimum cost found to reach a given state up to that point in the 

simulation. The cost of each state is initialized to -1, so the search algorithm can judge if a 

state has been visited previously. The search algorithm then starts exploring trajectories 

from the initial state, storing the best cost as it goes. If a trajectory search reaches a state 

that has already been visited, and does so in a more expensive way, the search is terminated. 
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An example of one step of a trajectory search is show in Figure 7. If the vehicle was 

traveling at 2 m/s, with a time step of 1 s and acceleration limits of ±2 m/s2, with a 

quantization of 1 m/s2 there are 5 possible next states. The range of velocities to reach each 

next state is saturated each time step to stay within the velocity constraints established. 

 

Figure 7 - Visualization of trajectory exploration from an initial state 

The search algorithm looks at all possible next states given the current state and 

calculates a cost for each. The order in which these next states are explored is of 

significance to the performance of the algorithm. Initially a breadth-first search was 

implemented where each state parsed by the search algorithm would add all its next states 

to the end of a queue of next states. This led to so many states being stored simultaneously 

that the memory limits of the machine were exceeded. The solution was to implement a 

depth-first search, where an entire velocity trajectory would be explored, then the search 

would return to the last branching point and start a new chain. This led to a search queue 
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length proportional to the time span of the scenario. Additionally, the order of the depth-

first search proved to have significant impact. The final implementation initiates searches 

from the maximum possible acceleration to the minimum at each state. This leads to faster 

solving for certain cost functions. 

The resolution of vehicle velocity states dv is the ratio of dx to dt. The resolution of 

control actions da is the ratio of dv to dt and dictates the number of options for the next 

state available to the search algorithm at the current state. As da becomes smaller the 

number of possible trajectories increases and the accuracy of the result also increases. 

However, this leads to huge increases in computational and memory resources. To find the 

feasibility of implementing this search algorithm, the runtime had to be characterized. 

Table 1 shows the change in both computational performance and cost for a fixed time step 

of 1s, and velocity step sizes of 1 and 0.1 m/s. 

Table 1 - Performance of Global Optimal Scheme with different resolutions 

Velocity Step (m/s) Run Time (s) Normalized Cost % Error 

0.1 29822.71 8.987 - 

1 179.27 9.145 1.75 

 

For only a small decrease in performance, 1.75%, the search algorithm can run over 

166x faster. While this number will exhibit variance based on scenario and initial 

conditions, it is indicative of the relative performance loss to time gain relationship. 

Therefore, within the limits of the quantization, the Global Optimal Scheme can develop a 

near optimal velocity profile.  
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2.2.2.4 Practical implementation of the Global Optimal Scheme 

To execute this velocity profile generated from the inverse dynamics utilized in the 

search algorithm in the vehicle, a controller is needed to regulate the longitudinal motion 

of the vehicle. The same linear feedback controller used in the Stop or Go strategy will 

serve as a baseline. It is desired that the vehicle follows the trajectory generated by the 

search algorithm as closely as possible. After some preliminary testing, it was discovered 

that the linear feedback state-space integral controller could not keep up with sharp 

acceleration requests. To address this, a feedforward component was added utilizing plant 

inversion in addition to the feedback control. The feedforward component can track the 

velocity trajectory output of the search algorithm exactly since the search algorithm already 

accounts for actuator limits. However, to improve robustness of the controller, the 

proportional and integral feedback terms on the vehicle’s velocity are still used. To 

compare each controller, the discretized output of the search algorithm was fed as the 

reference command to each controller. Figure 8 shows the response of each controller to 

this reference command. The response of the feedback + feedforward controller is also 

shown with the addition of noise in the velocity signal to demonstrate robustness.  
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Figure 8 - Comparison of velocity controllers 

The feedback + feedforward controller can be seen to match the reference command 

and effectively mitigate noise in the velocity signal. 

2.2.2.5 Local Optimal Scheme 

The Global Optimal Scheme proved to be effective at generating and tracking a 

velocity profile. However, it relied on knowledge of all SPaT and MAP data prior to 

execution. In the real world this is not implementable with the team’s current architecture, 

since the MK5 radio only starts receiving SPaT and MAP data within 500m of an 

intersection. To address this, a modification was made to only execute the search algorithm 

for a fixed distance in front of the vehicle, which would correspond to the range at which 

the V2X radio receives SPaT data. The search algorithm is then called for a limited time 

and distance horizon at a periodic rate (e.g., once every 10 s).  
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2.2.2.6 Practical implementation of the Local Optimal Scheme 

The same velocity regulator used in the Global Optimal Scheme is utilized to 

control the vehicle’s velocity to the output of the search algorithm. The process of calling 

the search algorithm and regulating the vehicle’s longitudinal motions is illustrated in 

Figure 9. The desired velocity is denoted by 𝑣∗(𝑡), the feedback velocity signal is denoted 

by 𝑣̂(𝑡), and the requested torque from the vehicle is denoted by 𝑢(𝑡). The modulus 

function is employed to execute the search algorithm in a periodic manner. 

 

Figure 9 - Local Optimal Scheme Practical Implementation Structure 

In the current implementation, the velocity trajectory generated by the periodic call 

of the search algorithm is fed to the velocity regulator in an open loop manner. To improve 

robustness in future work, feedback could be used with the search algorithm.  

2.2.3 Simulation models 

2.2.3.1 Point mass model 

The point mass model is a first order system where the motion of the mass is 

affected by a control input force and parasitic drag forces. Due to its simplicity, the point 

mass model is used as a starting point to simulate each scheme of implementing an 
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autonomous connected corridor traversal feature. It can be run quickly and has few 

parameters to tune, making it a perfect choice for initial investigations. 

2.2.3.2 Simulink hybrid vehicle model 

A hybrid vehicle model was developed to validate the results obtained through the 

point mass motion model. This model, shown in Figure 10, contains 4 main components: 

the signal configuration block that produces Ponce de Leon SPaT data, the CAV Control 

block that implements the various traversal schemes and produces a torque request which 

is fed to the PCM Control block that contains the hybrid controls strategy. Finally, the 

Passenger Car which is a plant model that models the dynamics of the 2019 Chevrolet 

Blazer and team-added components. This plant model uses a 1-Degree Of Freedom vehicle 

model using coast-down testing coefficients from EPA testing that models the dynamic 

powertrain load with minimal parametrization. 

 

Figure 10 - Simulink hybrid vehicle model 

2.2.4 Key parameters 

To lend structure to the concept of optimality, a cost function was developed to 

account for the three driving factors discussed: time required to traverse the corridor, 
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energy used, and rider comfort during the traversal. The cost components will hereon be 

referred to as the time cost, energy cost, and comfort cost respectively. 

The time cost imposes a constant running cost on the time taken to traverse the 

corridor, where the total penalty on a traversal is the time taken to reach the final state. The 

energy cost imposes a cost proportional to the power expended at each time step. The 

energy cost includes a term for the power needed to accelerate the vehicle to the next time 

step’s velocity as well as a term to account for the power needed to combat losses from 

drag forces. The comfort cost also comprises two components. The first term imposes a 

cost proportional to the square of the magnitude of acceleration that exceeds 1 m/s2. The 

acceleration threshold for rider discomfort has been explored in several studies and lies 

around 1 m/s2 [2] [3]. The second term imposes a penalty on the error between the user-set 

speed and the vehicle speed. This term creates a response that develops end user trust in 

the system, since deviations from the user-set speed are penalized.  

To simplify the cost function from three components to one scalar value, weighting 

coefficients were assigned as follows: 

• α1 – Weight of time cost 

• α2 – Weight of energy cost 

• α3 – Weight of rider comfort cost 

These three weights were modeled such that they always summed to 1, effectively 

creating a convex set with 2 degrees of freedom, thereby simplifying the complexity of the 

possible search space. The sum of the three costs multiplied by their respective weights is 

taken as the total cost. By increasing one cost’s weight, the relative impact of the other 
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costs was diminished. Additionally, each cost function was multiplied by a normalizing 

weight such that the range of each signal would not have an impact on the relative 

importance of its cost. For example, the vehicle’s acceleration may range from 0 to 5 m/s2, 

but the velocity may vary from 0 to 15 m/s. Therefore, a cost function based solely on 

velocity magnitude would have a normalizing weight 1/3 that of a cost function based 

solely on acceleration magnitude.  

The expected impact of setting α1 to 1, thereby only considering the time cost and 

negating the impact of the energy cost and the comfort cost, is creating a more aggressive 

response that rushes to the end of the corridor at the earliest possible time with no regard 

for energy used or any other parameter. The expected impact of setting α2 to 1 is improved 

energy efficiency, which leads to a later arrival time, with less aggressive acceleration, and 

a lower average speed. Finally, the expected result of setting α3 to 1 is a response with 

smooth acceleration, but which tries to stay at the user-set speed limit.  

The allowable user-set speed limit violation is tested for 2 values, 0 mph greater than 

the user-set limit, and 5 mph over the user-set limit. The expected result of increasing the 

speed limit is an earlier arrival time and higher average speed since the controller will be 

incentivized to travel more quickly. 

Finally, the distance at which SPaT data is received will be varied for the third scheme 

of implementing this feature. This decision is justified by an analysis of the V2X 

technology in use.  The Federal Communications Commission defines 4 classes of DSRC 

devices, each with a maximum output power that defines its communication range as seen 

in Table 2.  
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Table 2 – Federal Communications Commission DSRC Device Classification [4] 

Device Class Max. Output Power (dBm) Communication Zone (meters) 

A 0 15 

B 10 100 

C 20 400 

D 28.8 1000 

Both the Georgia Tech vehicle and the Road-side Units (RSUs) along Ponce de Leon 

Avenue utilize the Cohda MK5 OBU [5], which is a Class C device [6]. However, while 

Class C devices are documented as having a maximum output power of 20 dBm and a 

maximum communication zone of 400 m, the MK5 OBU has a maximum output power of 

22 dBm. This is consistent with the team’s experience of detecting these intersections more 

than 500 m away. 

The distance at which the V2X device can reliably communicate with connected 

intersections impacts the distance over which traversal can be optimized. Studies have 

shown that reliability deteriorates at longer distances. One study using Class C DSRC 

devices suggests that at 400 m in real world conditions, the packet delivery ratio (PDR) 

drops to 58% [7]. 

Based on this information, a maximum range of 500 m, which is representative of real-

world testing, is chosen, and the impact of shorter look ahead distances is also evaluated. 

The expected impact of a shorter distance is lower efficiency since the controller has less 

knowledge about future states.  

2.3 Analysis of findings 
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2.3.1.1 Stop or Go Scheme baseline performance 

The Stop or Go algorithm will serve as a baseline comparison to the Global and 

Local Optimal Schemes, since it is more representative of human driving behavior and has 

no dependance on a cost function. This algorithm was already implemented in the vehicle 

for limited closed course testing, so it will also serve as a first step towards the development 

of the connected corridor traversal feature in the consumer vehicle. The results of the Stop 

or Go Scheme navigating the team collected SPaT data from the Ponce de Leon corridor is 

shown in Figure 11 and Table 3. 

 

Figure 11 - Stop or Go Scheme traversal with 35 mph speed limit 

Table 3 - Performance of Stop or Go Scheme with 35 mph speed limit 

Traversal Time (s) Energy Used (kJ) Average Acceleration (m/s2) 

334.4 1227 0.0468 
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This scheme behaves similarly to a regular human driver where the user-set speed 

is followed unless it is determined that a red light would be violated. In this case the vehicle 

is slowed to a stop at the intersection until a green phase is received. With this baseline 

established, the parameters discussed previously are varied to identify their impact on 

traversal effectiveness as measured by time, energy, and average acceleration. 

2.3.2 Effect of varying cost function weights 

2.3.2.1 Global Optimal Scheme 

The Global Optimal Scheme can find within the approximation of the state 

discretization the best possible velocity profile of the vehicle for a given cost function and 

knowledge of all SPaT information a priori. To visualize the impact of each of the three 

cost functions the Ponce de Leon corridor was tested with the Global Optimal Scheme for 

each weight, 𝛼1, 𝛼2, 𝛼3 set to 1, with the others set to 0. In addition, the results where each 

cost had equal weight is evaluated. The results are shown in Figure 12 while the 

performance metrics are summarized in Table 4. 
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Figure 12 - Global Optimal Scheme traversals with 35 mph speed limit and varying 

α 

Table 4 - Performance of Global Optimal Scheme with 35 mph speed limit and 

varying α 

𝜶𝟏 𝜶𝟐 𝜶𝟑 Traversal Time (s) Energy Used (kJ) Average 

Acceleration (m/s2) 

1 0 0 333.0 1246 0.0470 

0 1 0 360.0 817 0.0028 

0 0 1 334.0 1156 0.0449 

1/3 1/3 1/3 359.9 831 0.0116 

 

When time, 𝛼1, is the only cost, the response of the controller is to rush to each 

light as fast as possible. In terms of the search algorithm, the cost to reach any state is just 
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the time of that state. Therefore, any path that ends at the fastest path from the last red light 

to the target distance would have the optimal cost. Due to the nature of the search order 

and the implementation of the algorithm, this returns a very aggressive response.  

When energy, 𝛼2, is the only cost, the controller’s response is to get to the goal at 

the last time allowed. This leads to less energy lost in actuator effort and parasitic losses. 

It is interesting to note that the controller favors cruising at a relatively high speed after it 

leaves the first light. This is due to the impact of actuator effort on the energy cost. When 

velocity is constant, the vehicle only must expend energy to counter parasitic drag forces.  

When comfort, 𝛼3, is the only consideration, the controller gently accelerates to a 

speed near the limit and travels at that speed for the rest of the corridor. The impact of the 

quadratic cost on acceleration magnitude can be clearly seen when the vehicle departs and 

brakes for lights; the curves are much gentler, since the controller is incentivized to always 

use the minimal allowed acceleration. Additionally, the cost term forcing the velocity 

toward the user-set speed has a clear impact on the cruising speed of the vehicle. With no 

drag forces considered, the vehicle incurs no penalty for cruising constantly at the user-set 

speed. The result is a higher average acceleration than the case where only energy is 

considered, but a much earlier arrival time.  

When all costs are combined with equal weights, we see a blend of the responses 

from each in isolation. The smoothing impact of the energy cost and acceleration 

component of the comfort cost can be seen moderating the aggressive response of the time 

cost. Additionally, the user-set speed violation cost can be seen in the segment from 
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roughly 75 to 175 s, where the vehicle is free to cruise without incurring that cost and 

without impacting the time it will clear the next light at approximately 2000 m.  

2.3.2.2 Local Optimal Scheme 

Using a maximum speed of 35 mph, and a distance horizon of 500 m, the cost function 

weights are varied to evaluate its impact on the Local Optimal Scheme’s performance. The 

results are shown in Figure 13 and Table 5. 

 

Figure 13 - Local Optimal Scheme traversals with 35 mph speed limit, 500 m 

distance horizon and varying α 
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Table 5 - Performance of Local Optimal Scheme with 35 mph speed limit, 500 m 

distance horizon and varying α 

𝜶𝟏 𝜶𝟐 𝜶𝟑 Traversal Time (s) Energy Used (kJ) Average 

Acceleration (m/s2) 

1 0 0 334.0 1267 0.0449 

0 1 0 360.0* 596* 0.0139 

0 0 1 334.2 1153 0.0449 

1/3 1/3 1/3 336.2 1138 0.0446 

*Did not make it to end distance goal 

When time, 𝛼1, is the only cost in the Local Optimal Scheme, the response of the 

controller is like the Global Optimal Scheme, to rush to each light as fast as possible, 

returning a very aggressive response that uses the most energy and has the highest average 

acceleration of the four scenarios.  

When energy, 𝛼2, is the only cost, the algorithm’s response is to moderate 

acceleration heavily, leading to persistent violation of the user-set speed, including a period 

being completely stationary at 1000 m, presumably to avoid stopping at an intersection at 

1400 m. The impact of the limited distance horizon is evident here since the response does 

not even reach the target distance within the simulation time. 

When comfort, 𝛼3, is the only consideration, the controller behaves similarly to the 

first case. The impact of the quadratic cost on acceleration magnitude can be clearly seen 

once again when the vehicle departs and brakes for lights, resulting in smoother 

acceleration compared to the first case. 
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When equal weights are used for all costs, the response largely matches the 𝛼1 = 1 

and 𝛼3 = 1 cases. This is because the improvement to energy usage that is achieved in the 

𝛼2 = 1 case is far outweighed by the resulting cost of violating the user-set speed and the 

traversal time cost. However, a glimpse of the impact of the 𝛼2 is seen in the lower average 

acceleration compared to the third case – the acceleration is moderated even more than 

before to reduce energy usage. The overall form of the response is like the Global Optimal 

Scheme, and the characteristic smoothing is still seen in the approaches and exits from 

intersections.  

2.3.3 Effect of allowing speed limit violations 

In many of the trajectories, the vehicle arrives at an intersection soon after it turns 

red when it might have succeeded in traversing the intersection without stopping if it was 

able to increase its speed marginally. The impact on performance metrics of introducing a 

maximum speed of 40 mph, 5 mph greater than the user-set speed of 35 mph, is explored 

in this section. 

2.3.3.1 Stop or Go Scheme 

Since the Stop or Go Scheme does not differentiate between the user-set speed and 

the speed limit, it can serve as a baseline representative of a human’s behavior if told the 

speed limit of a road was 40 mph. Figure 14 and Table 6 illustrate the performance of the 

Stop or Go Scheme when a maximum speed of 40 mph is introduced. The traversal time 

using the Stop or Go Scheme improves by 30% compared to the 35-mph case by 

eliminating the need to stop for an extended period at a red light. However, the energy used 

increases by 20% and the average acceleration increases by 64%. These increases are 
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driven by the higher average speed and the presence of an intersection that causes the 

vehicle to slow significantly.  

 

Figure 14 - Stop or Go Scheme traversal with 40 mph speed limit 

Table 6 - Performance of Stop or Go Scheme with 40 mph speed limit 

Traversal Time (s) Energy Used (kJ) Average Acceleration (m/s2) 

233.6 1465 0.0766 

 

2.3.3.2 Global Optimal Scheme 

Figure 15 and Table 7 illustrate the performance of the Global Optimal Scheme 

when a 40 mph speed limit is introduced for varying α. Compared to the 35 mph speed 

limit case, the traversal time is faster in every case, but the energy used is higher in every 

case as well due to the higher average speed that results in greater losses to drag forces.  
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Figure 15 - Global Optimal Scheme traversals with 40 mph max speed and varying 

α 

Table 7 - Performance of Global Optimal Scheme with 40 mph speed limit and 

varying α 

𝜶𝟏 𝜶𝟐 𝜶𝟑 Traversal Time (s) Energy Used (kJ) Average 

Acceleration (m/s2) 

1 0 0 235.8 1396 0.0721 

0 1 0 360.0 892 0.0028 

0 0 1 249 1270 0.0602 

1/3 1/3 1/3 344.6 933 0.0156 
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When time, 𝛼1, is the only cost in the Global Optimal Scheme, the traversal time is 

expected to be at a minimum. However, the Stop or Go scheme outperforms the Global 

Optimal Scheme, traversing the intersection 2.2 seconds faster. This discrepancy is 

predominantly due to the discretization of velocities in the Global Optimal Scheme, where 

the 40 mph (17.88 m/s) speed limit is truncated to 17 m/s (38 mph), giving the stop and go 

scheme a 2 mph speed advantage for the duration of the relatively constant-speed traversal. 

To address this discrepancy, the resolution of the discrete space used in the search 

algorithm could be increased at the cost of computation time. 

When energy, 𝛼2, is the only cost, a traversal with the same energy used as the 35 

mph speed limit case, or better, is expected, since there is no penalty associated with 

deviations from the speed limit. However, the energy used in this traversal is 9% greater 

than that in the 35-mph speed limit traversal. Similarly, when comfort, 𝛼3, is the only cost, 

the performance in the average acceleration metric is expected to be the same or better than 

the 35 mph speed limit traversal. However, the average acceleration is 34% higher in the 

40 mph speed limit traversal. 

When all costs are combined with equal weights, the traversal time improves by 

4% over the 35 mph speed limit traversal, but the energy used worsens by 15% and the 

average acceleration increases by 34%.  

These results are unexpected and suggest that even in the absence of the time cost, 

the scheme exhibits an affinity for a quicker traversal when a higher maximum speed is 

possible, even when this result is not optimal. This result is believed to be due to the current 
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searching method implemented in the search algorithm and will be investigated as part of 

future work.  

2.3.3.3 Local Optimal Scheme 

Figure 16 and Table 8 show the response of the Local Optimal Scheme for varying 

values of 𝛼1, 𝛼2, and 𝛼3 when the speed limit is raised by 5 mph to 40 mph. The general 

shape of the response closely follows the behavior of the Global Optimal Scheme when 

only time or rider comfort are considered. A large deviation from the Global Optimal 

Scheme appears when only the energy is considered. Just as in the case when the speed 

limit was 35 mph shown in Figure 13, the response only considers energy cost over a finite 

horizon and does not consider a final time. Due to these factors the response does not make 

it all the way through the corridor. This shows that the Local Optimal Scheme has higher 

sensitivity to the cost function weights than the speed limit relative to the Global Optimal 

Scheme. 
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Figure 16 - Local Optimal Scheme traversals with 40 mph max speed and varying α 

Table 8 - Performance of Local Optimal Scheme with 40 mph speed limit and 

varying α 

𝜶𝟏 𝜶𝟐 𝜶𝟑 Traversal Time (s) Energy Used (kJ) Average 

Acceleration (m/s2) 

1 0 0 234.7 1399 0.0724 

0 1 0 360.0* 583* 0.0083* 

0 0 1 238.6 1392 0.0712 

1/3 1/3 1/3 334.6 1205 0.0477 

*Did not make it to end distance goal 
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2.3.4 Effect of varying distance horizon 

Figure 17 and Table 9 illustrate the sensitivity of the Local Optimal Solver to the 

distance at which it receives SPaT data. This distance is varied from 500 m to 100 m, which 

are representative bounds of the maximum and minimum distances where the MK5 radio 

first received intersection data when driving in Atlanta. All metrics: time, energy, and 

comfort, can be seen to improve as the time horizon distance increases. This result agrees 

with the intuition that the more data the search algorithm under the hood of this scheme is 

armed with, the better it can do. However, while these results approach the performance of 

the Global Optimal Scheme, it still falls short of matching it. It does outperform the Stop 

or Go Scheme results shown in Table 3 in energy used for all tested values of the distance 

horizon and in rider comfort for distance horizons between 100 and 400 m. 
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Figure 17 - Local Optimal Scheme traversals with 35 mph max speed and varying 

distance horizons 

Table 9 - Performance of Local Optimal Scheme traversals with 35 mph max speed 

and varying distance horizons 

Distance 

Horizon (m) 
Traversal Time (s) Energy Used (kJ) 

Average 

Acceleration (m/s2) 

100 579.0 560.9 0.0121 

200 368.0 838.7 0.0299 

300 339.2 959.8 0.0348 

400 337.4 999.5 0.0352 

500 335.2 1142.2 0.0448 
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2.3.5 Robustness of schemes to different SPaT sequences 

To evaluate the robustness of the different schemes to different SPaT sequences, 

each scheme was run with start times varying from 0 s to 100 s in 20 s increments as seen 

in Figure 18, Figure 19, and Figure 20, . The phase of the first intersection is manipulated 

to vary the start times, where the phase is indicated as red until the desired start time. At 

the start time, a green phase is indicated for the scheme to begin the traversal. The mean 

and standard deviation of the three-performance metrics for the six traversals for each 

scheme are summarized in Table 10. 

Table 10 - Mean and standard deviation of performance metrics across six starting 

times for each scheme 

Scheme 
Traversal Time (s) Energy Used (kJ) 

Average Acceleration 

(m/s2) 

𝝁 𝝈 𝝁 𝝈 𝝁 𝝈 

Stop or Go 368 103 1214 24 0.045 0.013 

Global 417 84 762 83 0.006 0.003 

Local 387 85 1127 36 0.040 0.007 
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Figure 18 - Traversals with six varying start times for the Stop or Go Scheme 

 

Figure 19 - Traversals with six varying start times for the Global Optimal Scheme 



 46 

 

Figure 20 - Traversals with six varying start times for the Local Optimal Scheme 

The Stop or Go Scheme performs the best in the traversal time metric, achieving a 

12% improvement over the Global Optimal Scheme and a 5% improvement over the Local 

Optimal Scheme. With no penalty on acceleration or energy usage, traversals using the 

Stop or Go Scheme are characterized by an immediate acceleration to the user desired 

speed after coming to a stop at an intersection and maintaining this speed until a red light 

at a future intersection is encountered. The penalties placed on acceleration and energy 

usage in the Global Optimal and Local Optimal Schemes attenuate the acceleration and 

result in lower mean traversal times. 

When the energy used cost is considered, the Global Optimal Scheme excels, 

performing 37% better than the Stop or Go scheme and 32% better than the Local Optimal 

Scheme. With complete knowledge of the corridor, energy usage is shown to be 
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significantly reduced by optimizing the velocity trajectory over the corridor traversal. 

Similarly, the Global Optimal Scheme produces the lowest average acceleration across the 

six starting distances and the lowest standard deviation for this metric as well.  

In the Stop or Go and Local Optimal Schemes, the traversals converge to a common 

path after coming to a stop at the same intersection. However, the Global Optimal Scheme 

paths do not converge despite stopping at the same intersection. This is expected since the 

Global Optimal Scheme considers the cost of past states when evaluating future states. For 

example, the time taken to reach an intersection will dominate the total cost if two 

controllers are initialized at the same intersection but different times. 

Another interesting point in the responses is the tapering from the velocity trajectory 

in all responses of the Global Optimal Solver. This is because the search algorithm has 

advance knowledge of the final location. Whereas both the Stop or Go Scheme and the 

Local Optimal Solver only look at the current time step and the environment in a 

neighborhood of the vehicle, the Global Optimal Solver knows exactly where the vehicle 

needs to stop and can coast through the finish line. This response is analogous to a human 

letting their foot off the gas as the vehicle cruises through the end of a light. 
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2.4 Validation of results 

2.4.1 Model-In-The-Loop Validation 

 

Figure 21 - Validation of most aggressive velocity trajectory in MIL environment 

For the Global Optimal Scheme in the 40 mph speed limit case with the most 

aggressive acceleration, the velocity trajectory obtained through the search algorithm is 

used with the velocity regulator in the Model-In-the-Loop (MIL) model to validate that the 

trajectory is achievable with plant dynamics and actuator limits accounted for. In this 

simulation, the initial acceleration of the vehicle is not matched by the MIL model, leading 

to a maximum speed error of 3.37 m/s that is largely due to reaching the actuator limit of 

the fast-acting electric motor and the actuator delays expected from an internal combustion 

engine. After the initial acceleration event, the MIL model matches the velocity trace with 
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an RMS error of 0.10 m/s, validating that this speed trace is implementable with vehicle 

dynamics considered. 

 

2.4.2 Vehicle-In-The-Loop Testing on Ponce de Leon Avenue 

To validate the simplifications made in both the vehicle models and simulation 

structures, the final component of this investigation was developed to test one of the 

schemes described above in the vehicle on the Ponce de Leon connected corridor. The first 

scheme, Stop or Go, was selected to be implemented in the vehicle, since it was the 

simplest, the team had already deployed something similar in a closed course environment, 

and it would be effective in analyzing the accuracy of the simulation environment. 

Additionally, experimental variables were identified ahead of time to be measured if one 

proved to be more impactful to the performance of the control strategy. These variables 

were road grade and lead vehicle longitudinal displacement data. 

As a first step towards the implementation of this feature in a consumer vehicle, the 

team sought to validate the Stop or Go Scheme in a real-world setting. The Ponce de Leon 

Avenue connected corridor was traversed using this scheme as seen in Figure 22. The 

vehicle’s ACC feature was active during this traversal and would be activated if a lead 

vehicle was detected, or no SPaT data was being received. SPaT data for this traversal was 

obtained using an API provided to Georgia Tech by the GDOT. The vehicle traverses the 

first intersection at t = 121 s. 
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Figure 22 - Speed trace of successful Ponce de Leon connected corridor traversal 

with CAV operating modes highlighted 

In this traversal, three autonomous stops were executed successfully without driver 

intervention, as seen by the three periods of rest. For each of these, V2X Stop mode was 

entered prior to engaging a “Stop and Hold” mode at the light, where the vehicle’s 

Electronic Brake Control Module is commanded to hold the vehicle stationary. Figure 23 

is a zoomed in view of  Figure 22 when the vehicle traverses the intersection at d = 3078 

m. Here, the vehicle correctly comes to a stop at an intersection, but due to noise in the 

GPS data and inaccurate intersection MAP data, proceeds to creep forward into the 

intersection in V2X Go mode. Driver intervention was necessary to return to manual 

control and prevent this. 
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Figure 23 - GPS noise and inaccurate MAP data resulting in vehicle movement after 

initial stop 

VIL testing revealed several limitations to real-world implementations of V2X 

algorithms. Inaccurate MAP data programmed into RSUs and noise in the GPS signal can 

lead to the vehicle coming to a stop beyond the stop line. Filtering of GPS noise and the 

visual identification of a stop line using cameras are possible approaches to solving this 

issue. Inaccurate SPaT data was also an issue. On some traversal attempts, an intersection 

with a green phase would broadcast a red phase with a time stamp outside the allowable 

range, indicating an undefined or unknown value. This would lead to undesirable behavior, 

including attempting to brake while traversing the intersection. Several intersections were 

not broadcasting SPaT and MAP data at all, presumably due to faulty RSUs. The team 

reached out to the GDOT and confirmed the team’s findings that some of these 

intersections were not broadcasting information. 
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The presence of other vehicles is another confounding variable, prohibiting the ego 

vehicle from following a pre-defined optimal velocity trajectory if the exhaustive search 

algorithm approach is employed. In this traversal, there were 3 instances of entering ACC 

mode where a lead vehicle was identified. Finally, the road grade is not accounted for in 

simulation when this traversal includes 161 ft of elevation gain and 141 ft of elevation loss. 

The optimal velocity trajectory is affected by this variable, especially on steep gradients. 

2.5 Summary and Future Work 

2.5.1 Impact to the EcoCAR Mobility Challenge 

The Connected Mobility Challenge at the EcoCAR Mobility Challenge Year 4 

competition challenges teams to navigate a single signalized intersection broadcasting real-

time SPaT and MAP data. Teams are scored on their ability to traverse the intersection 

correctly, by not running any red lights, and the stopping distance from the stop line in the 

event of a red phase. No lead vehicle will be present at this event and the vehicle will begin 

receiving SPaT and MAP data 160 m away from the intersection. Due to the nature of the 

competition requirements, the energy and comfort components of the cost function 

developed for the Global and Local Optimal Solver in this analysis are not necessary to be 

considered. Instead, two metrics take precedence to maximize points: having the correct 

response to a signal phase and minimizing the displacement error at the stop line. 

The Stop or Go Scheme is the best choice for this competition event due to its simplicity, 

proven robustness through closed course and on-road testing, and track record of consistent 

performance at multiple testing events over the year. Two key learnings from this report 

will be applied in the competition event to maximize the team’s performance. 
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In VIL testing, the only instance where the algorithm responded incorrectly to the 

signal phase was where the RSU broadcasted SPaT data outside the allowable range, 

indicating an undefined or unknown value. Previously, data from this undefined state was 

accepted as valid SPaT input, leading to controller behavior that violated the signal phase. 

This case has now been accounted for in the algorithm by ignoring undefined SPaT data 

until valid data is received from the RSU. This will aid the team in achieving the correct 

response to a signal phase 100% of the time. 

VIL testing has highlighted the sensitivity of the stopping distance to MAP data 

and GPS noise. Several trials of this event have been done at the EcoCAR Spring testing 

event in March 2022 and an offset that minimizes the displacement error at the stop line 

has been calibrated. At the final competition, this offset will need to be validated to ensure 

maximum points are scored in this competition event. 

 

2.5.2 Key Takeaways 

The Georgia Tech team set out to develop a feature capable of automating the 

longitudinal motion of a vehicle to traverse a connected corridor and succeeded in 

developing three schemes to implement this feature. Each was validated in a simulation 

environment, and one was tested in a consumer vehicle on the streets of Atlanta. 

The first scheme was derived from the work the team had already completed in the 

implementation of an ACC feature, where the vehicle needed to regulate velocity or 

distance to a lead vehicle depending on the environment. This scheme exhibited excellent 
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time performance, running though the Ponce de Leon corridor consistently faster than the 

Global and Local Optimal Schemes.  

The second scheme, the Global Optimal Scheme, sought to improve the feature’s 

performance based on team defined cost functions. Armed with prior knowledge of all 

SPaT data, the best results of any scheme were achieved. This scheme illuminated 

interesting behavior abnormal to human behavior but serves as an excellent comparison for 

the best performance any scheme is capable of. 

The final scheme, the Local Optimal Scheme, investigated a modification of the 

Global Optimal Scheme to make it implementable in a vehicle utilizing the team’s current 

CAVs architecture. This scheme was able to demonstrate improvement over the Stop or 

Go Scheme with the same knowledge of the environment. This scheme exhibited the 

perfect blend of performance and practicality that the EcoCAR competition demands. 

The impact of allowing speed limit violations was a faster traversal time but 

significantly worse energy and comfort costs. This result will need to be explored in future 

work by augmenting the searching algorithm or methodology used. 

The relative performance of each scheme showed good robustness to different SPaT 

sequences. This validates the applicability of each scheme to the real world where 

connected corridors may have changing SPaT sequences throughout the day. 

The Stop or Go Scheme was successfully integrated into the vehicle and tested on 

public roads. This surfaced several limitations around real-world functionality of this 

feature including the reliability of SPaT and MAP data from RSUs and the presence of 
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traffic. These challenges will need to be addressed appropriately in future work to reduce 

their impact on algorithm performance.  

2.5.3 Anticipated future investigation 

The EcoCAR EV Challenge is the next installation of the AVTC series and is slated 

to begin in Fall 2022. This competition will have an expanded focus on connectivity and 

cooperative driving automation, necessitating the implementation and testing of V2X 

algorithms. The work done in this report will serve as a foundation for supporting 

development of these features. 

Additionally, the team has outlined and developed the Local Optimal Scheme for 

implementing the connected corridor traversal feature, which performs in certain metrics 

much better than the traditional Stop or Go Scheme. In this paper, only 4 variations of the 

cost function weights are explored for this scheme. Customer preferences around time, 

energy and comfort can be explored to determine the combination of weights that will best 

appeal to the team’s target market. The ability of a user to augment these weights on the 

fly can also be explored to meet different user needs.  

Other future work around this scheme includes integration in a consumer vehicle, 

calibration to parameters do not present in the simulation environment, and further 

optimization of the algorithmic implementation. One such algorithmic improvement could 

be an intelligent state search algorithm. As mentioned, the current search algorithm 

performs a depth first search, but many algorithms exist, such as Dijkstra’s algorithm and 

A* search, which could reduce the runtime of the search algorithm. A different algorithm 
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might also overcome the affinity of the search algorithm to higher speeds even when they 

may be less optimal by exploring the search space more effectively. 

Another area of future work anticipated in integrating a feature like this in real-

world environment is the ability to account for other vehicles on the road. The team has 

currently developed an ACC feature and implemented a first pass of integrating it with the 

Stop or Go Scheme, where the ACC control request will be honored if a lead vehicle is too 

close, otherwise the Stop or Go scheme will take priority. Interesting edge cases were 

observed in the limited VIL testing performed on Ponce de Leon Avenue and open the door 

for much more rich future investigation. This integration with other automation features 

poses a unique challenge to schemes utilizing the search algorithm, which operates in an 

open loop manner, meaning that any interruption in its execution could lead to large 

deviations from desired behavior. 

The evaluation in this paper was performed on a SPaT sequence obtained along the 

Ponce de Leon Avenue corridor. There are more than 1000 connected intersections in 

Atlanta [5], many along continuous corridors. These corridors may have different speed 

limits, levels of traffic, elevation changes and SPaT sequences that may pose different 

challenges that were not explored in this paper. As the EcoCAR competition increases its 

emphasis on V2X technology, the presence of this wealth of testing environments will give 

the Georgia Tech team ample opportunity to innovate and explore different traversal 

schemes in the next competition. 
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CHAPTER 3. DEVELOPMENT AND TESTING OF A HYBRID 

VEHICLE 

3.1 Hybrid Supervisory Controller Development 

A hybrid supervisory controller (HSC) is central to the team’s development and 

integration of a hybrid vehicle in this competition. The EcoCAR competition specifies 

several Vehicle Development Process (VDP) goals at the beginning of the year to guide 

each team’s development process. Several of these goals rely on a fully developed HSC, 

including having an advanced energy management strategy and fully-functional advanced 

fault detection & diagnostic strategies.  

To achieve these goals, several functions of the supervisory controller exist such as: 

• Control all team-added propulsion components 

• Interface with Electronic Control Units (ECUs) that exist on the production vehicle 

• Execute startup and shutdown sequences of components 

• Provide feedback to the operator on system status 

• Provide an interface for the Tank to achieve longitudinal control of the vehicle 

• Arbitrate between the driver and Tank when autonomous features are in use 

 

The Georgia Tech team uses a dSPACE MicroAutoBox II (MABX) as the HSC 

due to its significant automotive I/O capability and robustness as a rapid prototyping 

controller. The development of the HSC was started in Year 2, and since then has been a 
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joint effort by several individuals on the Propulsion Controls and Modeling (PCM) sub-

team over the past three years.  

3.1.1 Supervisory Controller Architecture  

3.1.1.1 Hardware Architecture 

The controller hardware architecture is shown in Figure 24. Central to this 

architecture is the HSC which interacts with several production controllers indicated in 

white, other team-added controllers indicated in green, and third-party controllers on 

components that the team integrated onto the vehicle. Of note is the presence of three 

separate team-programmed gateways, each necessary to augment CAN communication to 

interface correctly with GM production controllers.  

 

Figure 24 - Vehicle Controller Hardware Architecture 
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3.1.1.2 Software Architecture 

The team implements algorithms for the HSC in Simulink. Simulink Code 

Generation is then used to generate the executable that is deployed onto the MABX. The 

HSC software architecture consists primarily of an input layer, application layer and an 

output layer. The input layer receives CAN, Digital and Analog data from other controllers 

in the vehicle using the MABX I/O capabilities and converts them into Simulink signals 

that can be used by the team’s algorithms. The application layer contains all the team’s 

algorithms, implemented in modular sub-systems. The output layer uses the MABX I/O 

capabilities to convert Simulink signals into CAN, Digital and Analog signals that are then 

transmitted to various components in the vehicle to achieve a desired objective. 

3.1.1.3 Application layer 

The design of the application layer makes use of a key principle of software 

architecture: partitioning. The application layer consists of upwards of 20 sub-systems as 

seen in Figure 25, each with its own unique function. The goal with this architecture is to 

enable distributed development, where members of the PCM sub-team can work on 

developing sub-systems in parallel. The coupling between modules is minimized as much 

as possible, to reduce interaction between sub-systems and improve the ability to 

understand code behavior.  
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Figure 25 - HSC Application layer consisting of 26 sub-systems 
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3.1.2 Requirements development and testing 

Each sub-system goes through a comprehensive requirements and test case 

development process before being tested in both MIL and VIL environments, as seen in 

Figure 26. After safety analysis is performed on the sub-system, safety requirements are 

delegated to sub-systems, and sub-systems are added if necessary to cover the scope of the 

safety requirements. All requirements and test cases are then documented systematically 

in sub-system documentation before MIL test cases are executed in the Simulink test 

environment, and VIL test cases are executed in the vehicle. 

 

Figure 26 – Sub-system software development process 

3.1.2.1 Systems Safety Analysis 

The starting point for requirements development is understanding the functionality 

required of the system, followed by performing a safety analysis, identifying requirements, 

and finally decomposing these requirements into sub-systems. Several safety analyses were 
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performed to align with GM’s best practices in Systems Safety that are applied in 

developing production vehicles. These analyses included Systems Theoretic Process 

Analysis (STPA), System Element Fault Analysis (SEFA) and System Functional Interface 

Analysis (SFIA). Based on these analyses, safety hazards are identified, from which safety 

requirements are derived and then allocated to sub-systems in the HSC. An example of 

such a breakdown is shown in Figure 27. In this example, a “Too Early” keyword from the 

SFIA analysis is used to identify the hazard of the P4 MGU producing torque while the 

vehicle is in Park, potentially damaging the MGU and the half-shafts that deliver torque 

from this MGU to the rear wheels. The safety requirement describes the need to set torque 

commands for the P4 MGU to 0 when the transmission is in Park. To implement this safety 

requirement, it is delegated to two existing sub-systems in the HSC, Torque Protection and 

P4 Inverter Management, where individual requirements are identified for each of those 

subsystems. 

 

Figure 27 - Requirements development process from identification of safety hazard 

to sub-system requirements 

P4 Torque Request “Too Early” 
if still in Park

P4TorqueInhibit_bool shall be set 
to true if the transmission shift 

lever is in Park

If P4TorqueInhibit_bool is true 
P4TrqCmd_CAN shall be set to 0

Subsystem Requirement: 
Torque Protection Sub-system

Sub-system Requirement:
P4 Inverter Management Sub-system

Safety Requirement from 
SFIA Analysis

P4 Torque commands shall be 
set to 0 when the transmission 

is in Park

Causal scenario -> Safety requirements -> Subsystem requirements -> Test Cases for V&V

Safety Hazard
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 Through this systematic process of developing safety requirements and 

decomposing them into sub-system requirements, the team has developed a robust HSC 

that is well-documented and can be leveraged by the team in the next competition, the 

EcoCAR EV Challenge, to accelerate the supervisory controller development process. 

3.1.2.2 Requirements Documentation 

Each of the sub-system requirements developed through the process described 

earlier are documented in one of several documents, each dedicated to a sub-system in the 

HSC. These documents include a change log, inputs, outputs, requirements, and test cases, 

providing a one-stop shop for all knowledge of a sub-system. In the EcoCAR EV 

Challenge, the format of these documents will be modified to include justifications for each 

requirement, thus improving the knowledge transfer from one year to the next. 

3.1.2.3 MIL Testing 

Test cases are developed for each requirement using a systematic process that 

considers every possibility and edge case. These test cases are then documented in the sub-

system document described earlier. Execution of these test cases in the MIL environment 

is done using Simulink test harnesses. These test harnesses allow input signals to be 

manipulated for each sub-system and the outputs verified based on what the requirement 

is, and the condition being evaluated by the test case. A short section of the test harness for 

the Torque Protection subsystem is shown in Figure 28 and highlights how the requirement 

in Figure 27 is verified. In this case, the transmission shift lever position input is set to 3 to 

indicate that it is in Park. The sub-system output, P4TorqueInhibit_bool is then verified to 
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be true and this verification statement is tagged with a test case ID that is used to update 

documentation. This process is used to verify all requirements developed by the team. 

 

Figure 28 - Test case example from Torque Protection sub-system test harness 

 

3.2 Vehicle Testing Strategy 

The development of a HSC with an advanced energy management strategy and fully-

functional advanced fault detection & diagnostic strategies is just one aspect of the VDP 

goals in Year 4 of the competition. Other goals include a reliable propulsion system, good 

drive quality, optimized fuel economy, a full speed range Adaptive Cruise Control feature, 

and performing automated navigation of a V2X intersection. These goals are distributed 

across the 3 sub-teams, PCM, CAV, and Propulsion Systems Integration (PSI). Since time 

with the vehicle is a finite resource and each sub-team needs to execute testing towards 

meeting the VDP goals of the competition, a vehicle testing strategy was developed at the 

beginning of Year 4 to manage testing among all sub-teams. This would ensure each sub-

team had the necessary time and resources allocated to perform testing, and any testing 
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locations could be secured ahead of time if they were not immediately accessible to the 

team. 

3.2.1 Vehicle validation goals 

Vehicle testing activities were organized into 4 distinct validation goals in Year 4, 

as seen in Table 11. Each of these validation goals have associated VDP goals, VTS targets 

or competition events that guide the testing activities towards achieving it.  

These 4 validation goals are chosen to distinguish the approaches or requirements 

for each testing day throughout the year. Propulsion System Functionality is a critical 

validation goal that enables the other three validation goals. This is focused on developing 

a robust and reliable vehicle that can be driven consistently and has maximum up-time. 

ACC functionality is an important competition requirement and all activities related to the 

perception system and longitudinal controller fall under this validation goal. Vehicle 

Performance Specifications are metrics that the team needs to meet to succeed in the 

competition. Besides minimum requirements like acceleration and braking, drive quality 

and energy consumption will be tuned throughout the year to achieve this validation goal. 

Finally, with a focus on the Connected Mobility Challenge at the Year 4 competition, 

where the vehicle will autonomously navigate a connected intersection, a fourth validation 

goal is specified for all development and testing activities geared towards V2X 

functionality. 
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Table 11 - Summary of vehicle validation goals 

Validations Goal Associated Needs from VDP Goals, VTS Targets, Testing Goals 

or Competition Events 

Propulsion System 

Functionality 
• 1500 accumulated miles 

• 200-mile continuous drive 

• Advanced fault detection and diagnostic strategies 

• Robust component operation 

ACC Functionality • Reliable perception system 

• Reliable longitudinal controller 

• 400 miles of longitudinal control testing 

• 60-mile continuous ACC drive 

Vehicle 

Performance 

Specifications 

• Meet drive quality metrics 

• Meet acceleration targets 

• Meet braking targets 

• Meet vehicle fuel economy target through efficient energy 

management strategy 

V2X Functionality 

• Connected Mobility Challenge  

3.2.2 Vehicle test plan 

To accomplish these validation goals, a detailed test plan was developed, a portion 

of which is visualized in Figure 29.  
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Figure 29 - Excerpt of vehicle test plan 

This was a living document that was updated throughout the year based on evolving 

circumstances. For example, when transmission damage was sustained on the vehicle in 

December 2021, adjustments were made to the schedule as seen in Figure 30.  

 

Figure 30 - Schedule adjustment due to transmission damage in December 

The planning, maintenance, and execution of this test plan was critical to the team’s 

success and allowed the team to exceed the competition mileage targets for both the 

propulsion system and longitudinal control system three months before the beginning of 

January February
17-Jan 24-Jan 31-Jan 7-Feb 14-Feb 21-Feb

Propulsion System 
Functionality

Mileage 
accumulation for 

self-certification on 
Version 4.00

Regenerative 
Braking Slope 

Testing

P0 Usage 
Improvements

Coast regenerative 
braking

Generation Mode 
Testing

Final testing and 
debugging on 

version 5.00

ACC Functionality ACC Braking
Lane Detection 

verification

Data collection

Sensor fusion 
validation testing & 

data collection

100-mile ACC 
Endurance Drive, 

Baseline Fuel 
Economy

Sensor fusion 
validation testing & 

data collection

Sensor fusion 
validation testing & 

data collection

Vehicle Performance 
Specifications

-
Run drive cycle on 

v4
Re-run drive quality 

events
- - -

V2X Functionality - - -
Curiosity Labs V2X 

Testing
Curiosity Labs V2X 

Testing
-

PropSys Miles Target 700 850 900 1030 1080 1100

PropSys Miles Over/Under 170 248 198 TBD TBD TBD

CAV Miles Target 120 170 210 310 350 390

CAV Miles Over/Under 28 50 11 TBD TBD TBD

4/33

5/33

December January

13-Dec 17-Jan 24-Jan

Initial Vehicle Performance 
Specifications Schedule

Complete drive 
cycle

- -

Revised Vehicle Performance 

Specifications Schedule
- -

Complete drive 
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competition. This paved the way for reduced testing load towards the end of the semester, 

reducing the risk of damaging critical components right before the competition. 

3.2.3 Data processing, storage, and visualization 

Completing all the testing activities in the test plan generated large amounts of data 

from the data logger that is integrated into the vehicle. A systematic approach to storing 

and visualizing this data was necessary to ensure that key component operation metrics 

were being monitored and that component faults were being detected and addressed. At the 

end of each testing day, data logs were extracted from the vehicle data logger into a hard 

drive and uploaded to a cloud storage folder for long term storage. These logs were then 

fed into a MATLAB script that would parse all log files and automatically produce several 

useful outputs: 

1. A PowerPoint presentation showcasing various plots of component operation and 

any faults detected 

2. A text file summarizing all the faults detected, and the time stamp in a particular 

log file that the fault occurred. 

3. An Excel file summarizing key data from each individual log file for ease of 

understanding the utility of each log file. 

4. A .mat file containing uniformly-spaced data streams from 143 key parameters 

on the vehicle for the whole duration of the log files, including component 

temperatures, current, voltage, torque and speed, and diagnostic signals. 

The .mat file can be used for any data processing or plot generation in MATLAB. 

This makes data accessible to any individual on the team in an easy-to-use format to 



 69 

generate visualizations or diagnose component behavior. Generation of the PowerPoint 

presentation uses MATLAB’s API for PowerPoint and automatically produces a 43-slide 

presentation that visualizes the behavior of the engine, P4 MGU, P0 MGU, 12V system, 

High Voltage Cooling System during the period of the log files. These visualizations allow 

the team to validate component functionality quickly and provides a consistent means to 

evaluate the performance of various components daily. 

3.3 Summary and Future Work 

In Year 4 of the EcoCAR Mobility Challenge, a reliable powertrain, ACC feature, 

and connected corridor traversal feature were developed. These features have been tested 

on public roads in Atlanta and have been validated to meet team requirements, culminating 

in an autonomous traversal of the Ponce de Leon Avenue connected corridor.  

A rigorous development and testing process was followed in Year 4 to enable this 

success, including a well-structured test plan that enabled the successful completion of 

each validation goal, and a thorough requirements development and testing process that 

resulted in a HSC that meets the competition VDP goals.   

The systems and processes described in this thesis will be built on in the next 

competition to further enhance the efficiency of the team’s operation. The format of sub-

system documentation is an area that deserves attention. A documentation system that 

captures more insight into the thought process behind requirements and test cases needs to 

be developed. This will not only improve the ability to on-board new members on a sub-

system they are assigned to work on, but will better capture key learnings as team members 

change from one year to another. Opportunities to integrate this documentation system with 
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Simulink’s environment using tools such as Simulink Requirements and Simulink Test 

should be explored, to improve the efficiency of the team’s operations.  

While the first year of the EcoCAR EV Challenge will preclude vehicle testing 

activities, the data processing and visualization workflow developed in this competition is 

a good foundation for future work in this area. In the second year of the EV Challenge, 

once a vehicle is integrated and testing activities have commenced, more visualizations 

should be explored, and the format and presentation of data should evolve based on the 

architecture of the next vehicle. 
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