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CHAPTER 0

INTRODUCTION

The original motivation for the studies In this work is a
theorem by W. A. Coppel (see [4, Theorem 3, p. 58]) in which he uses
the logarithmic norm of a square matrix A to obtain a bound for the
solutions of the linear differential equation u' = Au. The logarithmic
norm is defined and certain basic properties are derived by S. M.

1s a norm

Lozinskil in [11]. If I denotes the identity matrix and
on the square matrices such that ||1]] = 1, then the logarithmic norm of

A--denoted ulAl--is defined by

[T+hall - 1

(0.1) ufA] = 1im -

hto

and let A be a

Let E be a Banach space with norm denoted by |'
function from E into E. Suppose that there is a number K such that
|x-y + hl[Ax-Ayll - |x-y|

(0.2) 1lim = < K|X~y|
h>to

for each % and y in £. We extend the notion of logarithmic norm by
letting the logarithmic derivative of A--dencted L[A]--denote the
smallest number K such that the inequality in {0.2) holds for all x

and y in €. The notion of logarithmic derivative is used in this work



to obtain results on the existence and stability of differential equa-
ticns in a Banach space.

The basic properties of the logarithmic derivative are derived
in Chapter II. Here we also establish a conneation between the
logarithmic derivative and monotonic and accretive operators defined
by T. Kato in [8] and F. E. Browder in [2]. Some existence theorems
by ordinary differential equations in a Banach space are given in
Chapter V. Theorem 5.1 extends to a general Banach space an existence
thecrem of F. E. Browder [1, Theorem 3]; Browder's theorem was obtained
in a Hilbert space.

In Chapter VI we establish some new results on the generation of
semigroups of nonlinear operaters (Theorems 6.1 and 6.2) and, in
Theorem 6.3, we give sufficient conditions to guarantee the existence
of a critical point to an autonomous differential eguation which is
glocbally asymptotically stable. This is an improvement of a theorem
of L. Markus and H. Yamabe [14, Theorem 1], In Chapter VII we show how
these techniques can be used to extend some of the known results on the
stability of differential equations. For example, Theorem 21.1 of

N. N. Krasovskii [9, p. 91] is improved (see Example 7.1).



CHAPTER I
PRELIMINARY LEMMAS

In this chapter we prove four lemmas which form the core of the
concepts developed in this work. Since the results of this chapter are
applicable to several different areas of this work, they are proved
in a somewhat general sciting; and so some of the notations used here
are different from those used in succeeding chapters. Here, K denotes
either the field of real or complex numbers, X denotes a vector space
over the field K, and p[-] denctes a seminorm on X {(i.e. p[+] is a
function from X inte [0,) such that plx+y] < p[x] + p[yl and pl[ax] =
|alp[x] for each x and y in X and a in K).

The space of continuous linear functions from the seminormed
space X Into the field K is denoted by )(:’l and if % is in X and f is in
X*, then (»,f) denotes the image of x under f. The vector space X* is

considered as a seminormed space with seminorm g[+] where
al£1 = sup{ |[(x,£)] : xeX, plx] < 1}
* *
for each £ in X . Note that q[+*] is a norm on X (i.e. g[f] = 0 if

and only if (x,f) = 0 for all x in X).

%
Definition 1.1. For each x in X define the subset G(x) of X by




*
Glx) = {geX : glg]l =1 and (x,g) = p[x]}.

Remark 1.1, If % is in X, plx] # 0, and @ = {ax : aeK} then § is a
subspace of X; and if (ax,f) = ap[x] for eacli « in K then f is a con-
tinuous linear functional from @ into K such that sup{|(ax,f)| : acKk,
plax) = 1} = 1. Consequently, by the Hahn-Banach theorem (see e.g.
(22, p. 167]) there is a member g of X* such that glg]l = 1 and
(y,g) = (yv,f) for each y in Q. Since (x,g) = (x,£) = p[x], g is in

*

Gl{x); and so G[x) is a ncnempty subset of X . Note that if x is in

*
X and p[=] = 0, then G(x) = {geX : qlg]l = i}.

Lemma 1.1, T1f = and y are in X then

1l

(1) m+[x,y] 1im (plx+hy] - p[x]}/bh exists and

h*+o
m [x,y] < (pl=thy] - p[x1)/h for each h>0.
(1) m [x,y]l = 1im (plxthy]l - pl[x1)/h exists and
h*-o
m [%,y] > (plxthy] - p[x]1)/h for each h<0.

(111) -plyl < m_[x,y] € m [x,y] < plyl.

Proof. Tor each number h # 0 let ¢(h) = (p[x+hy] - p[x]1)/h. If k is

a positive number less than one, then

1]

plx+khy] pll{x+hy) + (1-k)Ix]

A

kplx+hy]l + (1-kl}plx].




Thus plxtkhy] - plx] = k(plx+hy] - p[x]) and it follcws that
$(kh) £ ¢(h) if h » 0 and that ¢{kh) = ¢(h) if h ~ 0. In particular,

if o <« hl < h2 or hl < h,, < 0, then ¢(hl) < ¢(h2) so that ¢ is non-

4
decreasing on (-»,0) and on (0,»). Since |¢{h)| = ply], parts (i)

and (ii) follow easily. Furthermere, -ply] < m [x,y] and m+[x,y] < plvl.

Alsc, if h > 0, then

2p[x] = plxthyt+x-hy]

I

< plxthy]l + plx-hy],

sc that p[x+hy] - p[x] = -p[x-hy]l + plx]. Dividing by h » 0 and letting
h>+0 shows that m+[x,y] > m_[x,y], and the proof of the lemma is com-

plicte.

Example 1.1. Suppose that X is the vector space of complex numbers and

p[x] = |x| for each x in X. If z is in X and h > 0, then

(|1thz| - 1)/bh = [(1+hz}(1+hz) - 11/[h(|1+hz| + 1)]

[2Re(z) + h|z|2]/[}1+hz| + 17,

Hence m {1,z] = m+[l,z] Re{z) and the limits defining m_[l,z] and

m+[l,z] are uniform for z in a bounded subset of X.




Lemma 1.2, Let m_ and m be as defined in Lemma 1.1 and let x, y and
z be in X. Then
(1) m+[x,ry] = rm+[x,y] and m [x,ry] = rm [x,y]
for each positive number r.
(ii) m+[x,y+z] < m+[x,y] + m+[x,z] and m [x,ytz]
zm [x,y] + m [x,z].

(iii) |m+[x,y]| < plyl and |m [x,yl| < plyl.

1A

(iv) |m+[x,y] - m+[x,z]| plv-z] and

1A

lm_[x,y] - m_[x,z]| plv-z]1.

(v) m+[x,y+ax] m+[x,y] + Re(a)p[x] and

i

m [x,ytax] = m_[x,y] + Re(a)p[x] for each a in K.

Remark 1.2. Note that (i) and (iv) imply that m[x,*] and m_[x,] are
pozitively homogeneous and continuous functions from X into the real
numbers. Part (ii) shows that m+[x,°] is subadditive. However, if

plx]l # 0, then m+[x,-xj = -p[x] so that m+[x,'] is not a seminorm on X.

Proof of Lemma 1.2. 1f r > 0 then rh»>+0 as h»+0 so that part (i) follows

from the identity

(p[x+hry] - p[x1)/h = r(plx+thry]l - p(x]1}/(hr).

Since plx+hi(y+z)] = p[x+2hy}/2 + p[=x+2hz]/2, it follows that

plx+h(y+z)] - plr] < (plx+2hy] - p{x1)/2 + (p[x+2hz] - p[x])}/2



and part (ii) may be seen by dividing each side of the above inegquality
by h and letting h>*(0. Part (iii} is an immediate consequence of part

{(iii) of Lemma 1.1. From parts {ii) and (iii) of this lemma,

m [x,y] = m [x,z + (y-2)]

< m+[x,z] + ply-z]1,

and so m+[x,y] - m+[x,z] < ply-z]. Interchanging the roles of y and =z
shows that the first assertion of {iv) is true. The second assertion
is proved analogously. It follows easily from Example 1.1 that
m+[x,ax] = Re(a)p[x] for each a in K. Thus from part (ii) of this

lemma,

m+[x,y+ax] < m+[x,y] + Re(a)plx]
and

m+[x,y] = m+[x,y+ax—ax]

1A

m [x,y+ax] - Re(a)plx]

which shows that the first assertion of part (v) is true. The second

assertion is proved analogously and this completes the proof of the

lemma.




Lemma 1.3. For each x in X let G(x) be as defined in Definition 1.1 and
let m, and m_ be as in Lemma 1.1. Then if x and y are in X,

sup{Re(y,g) : geG(x]} and

1l

(1) m+[x,y]

inf{Re(y,g) : geG(x)}.

(i) m [x,y]

Remark 1.3. This lemma may be known, but the author has been unable to

find it in the literature.

Proof of Lemma 1.3. Let I'(x,y) dencte the supremum in (i) and let g be

in G{x). If h > 0, then

(1.1) Re(y,g) = {Re(x+hy,g) - plx1)/h

N

{(plx+hy] - plx])/h.

Here we have used the fact that plx] = Re{x,g) and gqlg] = 1. Letting
h>+0 in (1.1) shows that m+[x,y] > I'(x,y). MNow, for each h > 0, let By,
be a member of G{x+hy). Since Re(x+hy,gh) = plx+hy], we have from (1.1)

that

1A

Re(y,g) < (Re(x+hy,g ) - plx1)/h

(1.2)

1

Re(x,gh)/h + Rely,g, ) - plxl/h.

&y

By transposing terms in (1.2) and multiplying by h,



(1.3) pPLx] - hLRe(y,gh) - Rel(y,g)] < Re(x,gh).
Since l(x,gh)l < p[x] fer each h » 0, it follows from (1.3) that

(1.4) 1im (x,gh) = plx].
h>+0

* &
Since the unit ball of X 1is w -compact (see e.g. [22, p. 137]) there

*
is an £ in X such that q[f] £ 1 and a sequence of positive numbers

(h ),
1

such that lim h = 0 and, if £ =g for each n 2 1, then
11 n n h

n>e« I8
lim(z,fn) = {z,f) for all z in E. TFrom {(1l.u), (x,f) = lim(x,fn) = pl=]
nro n>rw

so that q[f] = 1 and f is in G(x]). Consequently,

I(x,y)

[

Re(y,f)

= 1lim Re(y,fn)

oo

v

1im (Re(x+hny,fn) - p[x])/hn

oo

= 1im (plx+h y]1 - plx1)/h_

n->o

m+[x,y].

Here we have used the fact that Re(x,fn) < plx] and Re(x+hny,fn) =

pfx+hny]. Thus T(x,y) = m+[x,y] and part (1) iIs proved. Noting that



10

m [x,y] = —m+[x,—y]

-sup{Re(-y,g) : geG{x)}

inf{Re(y,g) : geG(x)]),

we see that (i1) is true and the proof of the lemma is complete.

Definition 1.2. Suppose that Y is a normed linear space and n[-]
denotes the norm on Y. Then V¥ is said to be uniformly convex if for

each positive number ¢ there is a positive number § such that if x

and y are in ¥ with n[x] = n[y] 1 and n(x+y] = 2 - 8, then

nlx-y] < e.

bxagmple 1.2. If VY is a complete inner product space the formula
2 2 ) a2
nlxty]” + nlx-yl® = 2(n[x1° + nly1")

is valid for all x and y in ¥ and, as a consequence, Y is uniformly

convex.

*
Lemma 1.4. Suppose that the normed space X 1is uniformly caonvex and
that each of M, B, and € are positive numhers. It fallows that there
is a positive number & = §(M,B,e} such that if x and y are in X with

plx] = B8 and ply] £ M then

| (plx+hy] - p[x])/h - Re(y,g)| = ¢
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for the member g of G(x) and all real numbers h such that 0 < |h| < 4.

Remark 1.4. Suppose x is in X, p[x] # 0, and f and g are in G{x).

*
2. Hence, if X 1is uniformly

Then (x,f+g) = 2plx] =c¢ that gl[f+g]
convex and x is in X with p[x] # 0, then the set G(x]) consists of

exactly one member.

Proof of Lemma 1.4, With the suppositions of Lemma 1.4, let €' > 0 be
*

such that if fl and f2 are in X with q[f]] = q[f2] = 1 and

q[fl+f2] 22 - ', then q[f]—f2] < /M. Choose § = ¢'8/(2M) and let

g be in Gl{x). If 0 < |n| = § and & is in Glx+hy) then

{(p[x+hy] -~ p[x1)/h (Re(x+hy,gh) - pl=x1)/h

Re(x,gh)/h + Re(y,gh) - plx]1/h.

Transposing terms and multiplying by |h} we have

plx] - hRe(y,gh) + plxthy]l - plx] = Re(x,gh)

if h » 0, and we have

-p[x] + hRe(y,gh) ~ plx+hy] + plx] = ~Re(x,gh)

if h <0. Since |Re(y,gh)| < ply] < M and |p[x+hy] - p[x]l < |h|p[Y] <

'h|M, it follows that



~2|h|m = Re(x,gh) - plx] < 2|n|M.

Hence

n

alg, +gl = |Relx,g +g)|/plx]

1

|Refx,e, ) + plx1[/pLx]

'

2 - 2|h|M/pl=].

Since |h| < ¢'g/(2M) and p[x] 2 B, q[gh+g] > 2-¢' and, by the choice

of ', q[gh‘g] < g/M. Tf 0 < h < §, then

<
1A

(plx+hy] - plx])/h - Re(y.,g)

(Re(x+hy,gh) - p[x])/h - Re(y,g)

(Re(x,g, ) - p[xl)/h + Re(y,g, -g)

[

D[y]q[gh—g]

1A
M

Here we have used the fact that Re(x,gh) - plx] £ ¢. Similarly, if

-§ € h < 0, then



o

and the procf of the

(plxthy] - plx])/h - Re(v,5)

+ -olylale, g

I

emma ls complete,

13
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CHAPTER IT

SPACLES OI' OPERATORS

In this chapter we define four classes of functions which are
irom a subset U of a Banach space E into E. One purpose for the con-
struction of these function spaces is to connect the results of this
work to previous results in related areas of the study of differential
equaticns. Another is an attempt both to motivate and to provide a
unification of the definitions and techniques used in the development
of the subsequent theorems. The notations introduced in this chapter
are used in each succeeding chapter.

Tor the remainder of this work K denctes either the field of

real or complex numbers and £ denotes a Banach space over the field K

with the norm on £ denoted by |' The space of continuous linear

* *
functionals from [ into K iz denoted by £ and if £ is in L and x is

*
in £, (x,f) denotes the image of x under f. € 1is considered as a

, where |f| = sup{|(x,£)}] : xe¢€ and

Banach space over K with norm

*
|%| = 1} for each f in E .

Remark 2.1. It should be noted that |«| denotes the norm on both €

*
and £ and alsc the absoclute value on K. However, this should not

cause any confusion since it will be clear from the context as to how

is being used.



15

*
Definition £.1. Tor each x in [ define the subsets F{x] and Gix) of E

by

*
(i) Flx) = {fe€L : (x,f) |Q = |f|2} and

| %

*
(iiy Glx) {geE : |p| =1 and (x,g) = |x|}.

1

*
fremark 2.2, Both F(x] and G(x) are nonempty subszets of £ for each x

in £ (see Remark 1.1), and if x iz a nonzero member of £, then g Is In

G{x} if and only if |x|g is in Fix}.

Notation. Suppose D is a subset of L and A is a function from U into
E. To keep the number of parentheses to a minimum, for each x in D,
Ax denotes the image of x under A. When this notation is ambiguous,
parentheses are inserted in the natural places--for example if

¥ =y + 2z then Ax Is denoted Aly+z).

Definition £2.2. 1f D is a linear subspace of E, dencte by BL(D,E] the
class cf all bounded linear functicns from P into E. For each member
A of BL[D,E) define

[Al = sup{|Ax] : =D, |x| = L}.

With addition and scalar multiplication defined in the natural

manner BL{D,E) with the norm |+| is a Banach space over the field K.
We let 1 denote the identity function from E into E and, for notational
convenience, if P is a subset of E, T also denotes the restriction to D

of the identity function on E. It is immediate that I is in BL(D,T)

for each subspace D of E and that 1] = 1.



16

Definition £.3. For eacl. member A of BL{D,E] define

ulald = Tim (] I+ha] - 1)/n.
h>+0

Hemark £.3, Using the notations of Chapter 1 we have that 1If X is the

Banach space BL(D,E}, p[-] =

, and m, 1s as defined in Lemma 1.1,
then u[A] = m+[I,A1 for each A in BL(D,E). In particular, u[-] satis-
ties each of the properties of m+[T,-] in Lemma 1.2.

If D = E and A and B are in BL(E,E] then A+B denotes the compo-
sition of A with B (i.e. A*B is the member C of BL{E,E) defined by

Cx = A{Bx) for each x in L). It is immediate that |A-B| = |A

B

so that the Banach space BL{E,E], with multiplication defined by com-
position, in a Banach .lgebra over K. A member A of BL{E,E] is sazid to
be invertible if there is a member B of BL({E,E] such that A<B = B+A = 1.
In this case B is dencted KJZ For notational convenience, let A® = I

and for each positive integer n, define A" = A-An“l.

Definition 2.4. For each A in BL{E,E] define

exp{A) = lim(I+n_lA)n.

nro

Remark £2.4. The following preoperties of exp(-) are well known and the
precofs are routine:

(i) exp(a) = A"/ (n1).
n=9o
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(ii) exp(A) is an invertible member of BLI(E,E] with
exp(A)_l = exp(-A) and |exp(a)| = exp(]a]).
(1i1) lexp(aA) - T - A < |a]2exp(a]).

(iv) If A and B commute then exp(A+B) = exp(A)-exp(B).

Proposition 2.1. If A is in BL[E,E} then
(i) ulal = 1im ([exp(ha)] - 1)/h.
h-++0
(i) [lexp(a)] < exp(ulal)
(iii) 1 + hulal < JI+ha] < 1 + mlAl + 2n?|a|%expnllal)

for each h > 0,

Remark £2.5. Lozinskii [11, Lemma 6] shows that (ii) amd (iii) are true
when £ is finite dimensional. The proof of (ii) given here is different

but that of {(iii) is essentially the same as his.

Proof of Proposition 2.1. Part (i) is immediate from part (iii) of

Remark 2.4. Suppose ¢ is a positive number and choose n, sufficiently

A

large so that if n 2 n then ("I+nFlA” - l)/n&l ulAl + €,

| exp ()] < WI+n_lA"n + e, and {1 + n_l(u[A}+E)}n

1A

exp(ulAl + €) + e.

Then

lexp(a)] LA e

748

HI + n

1+ a7 et - 1y v e

1+ 0 Al + e+ e

1A




This shows that

{ii1) of Remark
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< exp(ulA) + €) + 2e.

(ii) is true. From part (ii) of this lemma, part

2.4, and since p[hA]l = hulA] = h"AH for each h > 0

{see parts (1) and (ii1) of Lemma 1.2), we have

I

[ T+hai

1A

I

and the right s

exp(tad] + [|[T+ha - exp(ha)||

exp(hulAl) + HhA”Qexp(HhAH)

L+ nulad + T Al ary + b2a] Zexphfla])
n=>2

ide of the inequality in (iii) follows. The left side

i« immediate since ufA] = (JI+hA] - 1)}/h for each h > 0 (see part (i)

of Lemma 1.1).

From parts (1) and (i11) of Proposition 2.1 we have

Corollary 2.1. 1f A is in BL{E,E) then p[A] = 0 if and only if

”exp(hA)” < 1 for each h > 0.

From part (iii) of Proposition 2.1 we have

Corollary 2.2.

2h[|A] = 1, then

1f A is in BL(E,E} and h is a positive number such that

[(|Tenall - 1)/b - ulal] < unla]®.




1@

Remark £.6. Note that tcrollary 2.2 implies that the approximations

(J|1+ha] ~ 1)/h convergs ro w[A] uniformly on bounded subsets of

BL(E,E).

Example £2.1. Suppose that A 1s in BL[E,E} and ior each x in €

- " 3 <0 - ! pu
uxft) = exp(tA)x for #1101 t Iin [0,«). Then UX(U) *, ux(t) Aux(t),
and |ux(t)| < exp(tu[ﬁ])|x| for all (t,x) in [0,=)xE. In particular,
exp(tA) is a nonexpansive semigroup of operators if and only if

u[Al = 0 (see [13, Theorem 2.17).

Definition 2.5, For each subset D of E denote by L{p(D,E) the class of

all functions A from U into E for whiich there is a number K such that

|ax-Ay| < K|x-y]

fer cach x and y in D. Denote by N[LAT the smallest number K such that
this Inequality holds.

With addition and scalar multiplication defined in the natural
manner Lip(D,E} is a vector space over the field K. N[+] is a seminorm
on the vector space Lip(D,E}, N[A] = 0 if and only if A is constant on
D, and the seminormed space Lip(D,E] is complete. Furthermore, if D
is a subspace of [ and A is a linear function from U into E, then A is
in Lip(D,E} if and enly if A is in BL{D,E) and, in this case,

N[A] = ”A". In particular, BL{D,E) is a closed subspace of Li{p(U,E}.

Definition 2.6 Tor each A in L{p(D,E} define
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MIA] = 1im (N[I+hA] - 1)/h.
b++0
Remark 2.7. If D is a subspace of £ and A is a linear member of
Lip(D,E) then I + hA is in BL[D,E) for each h > 0 and N[T+hA] =

| T+ha| so that M[A] = n[A].

Femark 2.8. Using the notations of Chapter I we have that if X is the
seminormed space Lip(D,E), p[+] = N[-1, and m, is as defined in
Lemma 1.1, then M[AT] = m+[I,A] for each A in Lip(D,E). Consequently,
M[ -] satisfies each of the properties of m+[I,-] in Temma 1.2. For

future reference, we list them here: If A and B are in Lip(D,E)

then
(i) M[rAl = vM[A] for each positive number r.
(ii) M[A+B] < M[A} + M[B].
(iii) |MLaJ] = NEAD.

(iv) |M[A]l - M[B]| < W[A-B].
(v} M[A+aTl]l = M[A] + Re(a) for each a in K.

It D

E and A and B are in L{p(E,E) then A-B denctes the com-
position of A with B. With addition and multiplication by composition,
Lip(E,E) is a near-ring with unity (i.e. Li{plE,E] has each of the
properties of a ring with unity except the left distributiveness of
multiplication over addition). Also the seminormed near-ring Lipl(E,E)
is complete and MLA+B] < N[AIN[B] for each A and B in Li{p(E,E). A
member A of Lip(E,E) is said to be invertible if there is a member B

of ILip({E,E) such that A+B = B*A = I. In this case B is denoted A_l.
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Lerma 2.1, If A is in L{p(E,E] and N[A] < 1 then I - A is an invertible

member of LiplE,E) with NL(T-A)1] < (1-x[a1) ™"

Proof. This is proved by Neuberger [17, Lemma 1] and we cutline it

here. Let B = T and for each n 2 1 let B =1 + A-3 . If % is in
o) n n-1

c2 nLad ax] .

14

Eand n 2z 1 fthen ‘B %I x\ < N[A]|B x-E
7 n n-1

n—?x\

|=| + ‘Ao'N[A]ﬁl then |Ax] = lAx-Ac| + |Ao| <N[ATB(x) so

-1

If B(x)

that [an_Bn x| = NAT"B(x). Thus if m > n > 1 then

-1

m
Do |Bx-B.
i=n+1

248

IB x-B x| x|
mon

1

nt+l

I

< a1 e oAy

It now follews that 1im an = (I—A)flx for each % in E and also,
e

(1-8)"1 is in LAp(E,E] with NC(T-) M) < (-nral L.
Corollary 2.3. Tf A is in L{p(E,E) and M[A] < 0 (respectively
M[-A1 < 0), then A™! existe and is in Lip(E,E) with N[A_l] < —M[A]_l

(respectively, N[A ] € -M[-a] ).

Proof. 1IF M[A] < O then there is an h> 0 such that (N[I+ha]l - 1)/h < ¢
and hence, N[T+hA] < 1. By Lemma 2.1, [I - (I+hA)]_l = [—hA]“l exists
and is in L{p{E,E) with MIC-na) ™) ¢ (L - N[I+nADTR. Thus A71 exists

and since N[(#hA)_l] = h_lN[A_l] we have
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A(1 - N[T+hal) "

1A

[

1

n

-{ ([ 1+ha] - 1)/nt”

Since this Ineguality holds for all sufficiently small h > G, it
- -1 .
follows that NLA l] < -M[A] ~. The other assertlion of the corcllary

follows in a similar manner.

Corollary 2.4, 1f K is the complex field, A is In BL(E,E], and A is

in the spectrum of A, then Re{i) < u[A].

Proof. It follows from Corollary 2.3 that 1f 4 Is in the spectrum
cf A then plA-AT] =z 0. Irom part (v) of Remark 2.8, ul[A] - Re(d) 2 ¢

and the corcllary follows.

Definition 2.7, Tf D is an open subset of E, A is a function from D
into E, and x is Iin D, 1hen A is sald to Le Fréchet differentiable at

X if there is a U in BLI[E,E) such that

Tim {|Ay-Ax-U(y-2)|/]|x-y|} = o,
Y%
U iz called the Fréchet derivative of A at % and will be denoted dA(x).
The basic properties of the Fréchet derivative can be found in
[5, Chapter VITII]. ilere the notion of Fréchet derivative will bhe used
to obtain a further relationship between the functions M[+] and n[-].

To establish this relationship we need the following:
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Lemma 2.2. Suppose x and y are in £ and D is an open subset of E which

contains the line segment from x to y. If A is a continuous functlon

from D into E which is I'rechet differentiable al each point on the open

line segment from x to v, then

|ax-Ay| < Ix-y|sup{fjdA(x+B(y-x))] : 0 < B < 1}.

For a proof of this lemma see [5, p. 155].

Proposition 2.2. Supposc that D i1s an open convex subset of E and A is

a Fréchet differentiable function from D into E.

equivalent :
(i) A is in L{p(D,E).
(1i) Sup{“dA(x)" : %P} is finite.
Iurthermore, if (i) is true, then
(iii) N[AT = sup{[|da(x)| : =eD} and

{(iv) M[A] = sup{pldAa(x)] : xeD}.

Proof. Since P is convex, it is immediate from Lemma 2.2 that (ii)

implies (i), and that N[A] = sup{HdA(x)”

positive number and let X be in D. Since U is open, there is a

§ » 0 such that if |x—xo| < &, then x is in ¥ and if x # s then

i

1dA(xO)([xfxO1/|x—xo|)|

1/

Then these

Now let ¢ be a

IAX—AXO|/|X—XO

N[A] + €.
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Consequently (i) implies (ii) and we alsc have that sup{||da(x)| :

xeD} < N[AJ. Hence if (i) is true, sc is (iii). Let I = sup{u[dA(x)]
xeD}. I1f h > 0, then | + hA in Frechet differentiable on D and
d(I+hA) = T + hdA. From part (iii) we have that N[I+hAJ 2 | I+hdAa(x)]|
for each x in P, and it follows that M[A] = I'. Furthermcre, from

part (iii), for each h » 0 there is an Xy in U such that N[It+hA] =

[T + hdA(xh)H + b2, Tf 2hN[AY < 1, then QthA(xh)” < 1 and, by

Corollary 2.2,

A

NLT+hAD = [Tehda(x )] + n°

L+ hufdadx)] + un?ldatx,)]? + w7

1A

<1 + hl + h2(HN[A]2 + 1),

A

A

Thus {(N[I+hA]} - 1)/h = T" + h(uN[A]2 + 1) for all sufficiently small
h > 0 and part (iv) follows.

In the proof of Proposition 2.2 we have shown

Corollary 2.5. 1f D is an open convex subset of £, A is a Fréchet dif-
ferentiable member of L{p(D,E), and h is a positive number such that

2hN{A] € 1, then

| (M[T+hAT - 1)/h - M[ATJ| £ h(uNLATZ + 1).




Example 2.2. Suppose that [ is the space of real numbers, A is a con-
tinuously differentiable function from E into E, and P is a bounded
open subinterval of E. Then A is in L{p(P,E] (more precisely, the
restriction of A to D is in Li{p(D,E)), N[A] = sup(|A'(x)| : =eD},

and MLAT = sup{a'(x) : xeP}.

Definition £.8. For each subset D of E denote by Ln(D,E} the class of

all functions A from P intc E for which there is a number K such that

lim (|x-y + hlax-Ay1| - |x-y|)/h < K|x-y]

h*+0
for each x and y in U. Denote by LLA] the smallest number K such that

this inequality holds.

Proposition 2.3. Suppose that D is a subset of E, K is a number, and A
is a function from D into E. Then these are equivalent:
(i) A is in in(D,E) with L[A] < K.
(i1) Re(Ax-Ay,g) < K|x-y] for all x and v in D and all g in
Glx-y).
(iii) Re(Ax-Ay,f) < K|x-y| for all x and y in D and all £ in
Fix-v).
Turthermore, if (1) holds then L[A] is the smallest number K for which

the inequalities in (i1) or (i1ii) hold.

Proof. The fact the (i) and (ii) are equivalent 1s immediate from

Lemma 1.3 and the fact that (ii) and (iii) are equivalent is immediate



26

from the definition of G and F. The last assertion of the proposition

is also evident.

Exomple 2.3. Suppose € i1z a Hilbert space and let (x,y) denote the
inner product of % and y for each x and y in E. Using the natural
identification of E* with E, if x is in E then F(x} is a subset of
E. Turthermore, it is immediate that x is in F{x) for each x is [.
Since E is uniformly convex (see Example 1.2), we have by Remarks

1.4 and 2.2 that Flx) contains exactly one member, and hence

F(x} = {x} for each x in E. Consequently, by Proposition 2.3, if D

is a subset of E and A is a function from D intoc E then A is in Ln(D,E)

if and only if there is a number K such that

Re(Ax-~Ay,x-y) < K|x-~y|2

for all x and y in P. Turthermore, L[A] is the smallest number K such

that this inequality holds.

Proposition 2.4. If A and B are in Ln(D,E) then
(i) For each r>0p, rA is in Ln{D,E] with LlrA] = rL[A].
(iiy A + B is in Ln(D,E} with L[A+B] < L[A] + LLB].
{(iii) For each a in K, A + al is in Ln{D,E) with

I{Aa+al] = L[A] + Re(a),.

Proof. With the notations of Chapter I let X be E and let pl+] be

Then

s
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1im (fx-y + vfAx-ay]| - |x-y|[)/h = m+[x—y,Ax~Ay]
hs+0

for each x and y In ¥ so that the ascgertions of this proposition follow

easily from parts (i), (i1), and (v} of T.emma 1.7.

Propogition £.5. If & is in Lip{P,E) then A is in Ln(D,E) and

LIAT = M[A].

Proof. If x and v are in D then

Lim (|x-y + hlAx-Ay]1| - |x-y|)/h £ lim (NCI+hA]|x-y| - |x-v|)/h
h+0 h>+0
= Mla]|x-y|

and the assertions of the proposition are immediate.

Definition 2.9. Suppose that D is a subset of E and A is a functicn

from D into E. Then

M3

(1) A 1s said to be accretive on U if Re(Ax-Ay,f) 2z 0 for

2all x and v in D and all f in F(x-y).

\

{(ii) A is said to be meonctonic on U if Re(Ax-Ay,f) = 0 Tor

all ¥ and v in P and some f in F{x-v]).

Remark 2.8, The definition of an accretive operator is given by
Browder is [2] and that of a monotonic operator is given by Kato in
[8]. It is clear from the dafinitions that if A is accretive on D

then A is monotonic on P. Turthermore, it is clear from the
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relationship between F and G (see Remark 2.2) that the following hold:
(i)' A is accretive on D if and only 1f Re(Ax-Ay,g) 2 0
for all x and y in D and all g in G(x-y).
(i1} A is monotonic on D if and only if Re(Ax-Ay,g} = 0 for

all x and y in D and some g in G(x-y].

Proposition 2.6. Suppose D is a subset of £, A is a function from U into
£, and % is a real rumber. Then these are equivalent:
(i) A is in La(D,E) with L[AJ < ).

{(ii) AI - A is accretive on P.

Proof. If (i) is true then LLA-X1] = LLA]l - » £ 0 so by Proposition
2.3, Re(Ax-ix-Ay+iy,f) < 0 for all x and y in D and all £ in F(x-y).
It is now immediate that A1 - A is accretive on U, and so (i) implies
(i1). MNow suppose (il1) is true. If x and y are in P and f is in

Fix-y) then

o)
[Ia

Rel{-Ax+AxtAy-Ay,f)

-Re(Ax-Ay,f)} + ARe(x-y,f)

~Re(Ax-Ay,f) + Alx—le.

Thus Re(Ax-Ay,f) < A|x—y|2 and (i) is true by Proposition 2.3.

Corollary £.6. 1f A is a function from U into [ then -A is accretive on

D if and only if A is in Lni{D,E) and L[A] < O.




Remark £2.10. There [+ « result pertaining to ronotonlc cperators which
is analogous to Tropc..llion 2.6. By using part (11} of Lemma 1.3 and

techniques analeogous te those used in the proof of Proposition 2.6 one
can show that if A is a function from D into € and * is a real number,

then thecze are equivalent :

(iy 1im {'x—v + nlax-Av1| - |x-y|)/h = x]x-v].
h+-0

(ii) *1 - A iz monotonic on 0.

Since wa will be mainly concerned with functions which are in

Ln(D,C), we will restrici our attention to accretive operatorsz as

opposed to monotone operators. ‘owever, note that if F(x] consists of
exz=otly one member for «ich x In I, then the notions of monotonic

¥
cperators and accretive oporators dare the same--for example, If £ is

uniformly convex (see Remark 1.4},

We say that function A from U into £ has a logarithmic deriva-
tive on U if A is in Ln(D,E). The number L[A] is called the logarithmic
derivative of A on P. As a consequence of Proposition 2.6 we zee that
A has a logarithmic derivative on P if and only if there is a number X
suct that A1 - A is accretive on D. turthermore, it follows easily
that LLA] is the smallest number A such that AT - A is accretive on U.
Using the notion of accretive operators, several results on the
existence of solutieons to differential equations have been obtained in
Banach spaces whose dual space ils uniformly convex (for example, see

[3) and [[8]). With this in mind we make the following definition:
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Defiwition 2.10. For each subset D of E denote Ly ULn(D,E) the class
of all functions A from P into [ having the following property: there
is a number K such that for each bounded subset O of D for which the

image of @ under A is bounded, and for each pair of positive numbers

£ and &, there is a positive number &§ = &§(J,B8,¢) such that

(|x-y + h[Ax-Ay]l| - |x-y|)/h < K|x-y| + ¢

whenever 0 < h € § and x and y are in  with |x—y| > B. Denote by

L'[A] the smallest number K for which this inequality holds. If A is

a member of ULn(D,E) then A is sald to have a uniform logarithmic deriva-
tive on D and L'[A] is called the uniform logarithmic derivative of A

on U,

Remark 2.11, Suppose that A is in ULn(D,E) and x and y are in D with
x # y. By taking Q = {x,y} and 8 = |x-y| in Definition 2.10 we have

that

1im (|x-v + h[Ax-Ay]| -~ |x-y|)/h = L'[A)|x%-y]|.

h+0
Consequentiy, A is in La(D,E) and L[A] < L'[A]. As in the proof of
Proposition 2.5 one can show that if A is in L{p{D,E) then A is in
ULn{D,E) and L'[A] < M[A]. Thus we have the follaowing sequence of

set inclusions:

Lip(D,E) < Uln(D,E) < Ln(D,E].
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Proposition 2.7. Suppose D 1s a subset of E and A and B are in
ULn(D,E). Then
(i) Tor each r » O, rA is in ULwn(D,E) with L'[rA] = rL'[A].
(ii) 1f A and B are bounded on a bounded subset @ of P when-
ever A + B is bounded on 9, then A + B is in ULnr(D,E)
with L'[A+B] = L'[A] + L'[B].
(iii) For each a in K, A + al is in ULwn(D,E) with
L'[A+aIl = L'[A] + Re(a).
The proof of this proposition is similar te the proof of the

analogous parts of Lemma 1.2 and is omitted.

*
Proposition 2.8. 1f E 1is uniformly convex and D is a subset of L,

then Ln(D,E) = ULn{D,E) and if A is in ULwr(D,E]}, then L'[A] = L[A].

Proof. We have by Remark 2.11 that ULn(D,E) < Lwn{D,E} and LLA] £ L'[A].
Now suppose that A is in Lr(D,E) and Q is a bounded subset of D for
which there is a constant I' such that |[Ax| < T for each x in Q. Let B
and & be positive numbers and, by Lemma l.4, choose a positive number §

such that if 0 < h € 6 and x and y are in @ with 'x—y| z B, then
(|x-y + hlAx-Ay]| - |x-y|)/h = Re{Ax-Ay.g) + ¢
for g in G(x-y). TFrom part (ii) of Proposition 2.3, Re(Ax-Ay,g) <=

L[AJ|x-y|, and it follows that A is in ULn(D,E) with L'[A] < L[A].

This completes the proof.
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We now give an example to show that ULn(D,E) is not always equal

to Ln(D,E).

Fxample 2.4. Let L denote the space of all continuous functions x from

[G,?2] into the real numbers such that x(0) = x(2} = 0, and, in this

example, ,, denote the norm on E defined by |x|m = max{ |x(t)]:

te[0,2]}. Let P be the set of all x in E such that x' exists and x'
is in E. Define the function A from P into [ by Ax = x' for each x
in P. Let x be a nonzero member of P and for each h > 0 let t(h) be
a member of [0,2] such that |x+hx']m = |x(t(h)) + hx"(t(h))|. Since
L0,2] is compact, let (hn)i be a sequence of positive numbers such
that lim hn = 0 and there is a to in [0,2] such that lim t(hn) =t

n—+w >

By the choice of t(hn), it is clear that |x|m 1x(to)| and hence,

O.

x'(t ) = 0 and |x(t(hn))| < |x(to)| for all n 2 1. Thus,
lim (|x+hAxlm = [x|_¥/h = 1im(|x(t(h )) + hox" (e(h D] - [x(e ]} /n
h+0 e
< Lim{[x(t(h ) [/h ¢ x Celh D] - x| /b))

Ty rco

1A

Lin|x' (t(h )|

n—rw

Since A is linear, then A is in Ln(D,E] with L[A] < 0.
Now assume, for contradiction, that A is in ULn(D,E]. ILet

P o= max{u|L'[A]],4) and let Q = {xeD : |x|m < 2 and |x'|m < I'}.
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Since Q is bounded and |Ax| = I for all x in 4, there is a positive
number § less than one such that if x is in § with |x|m 2 1 and

0 < h< &, then
(= + hax| - |x] )/h < L'0AT[x| _+ 1/2.

Define the member X g of £ as follows: Xé(t) = F2t2/2 if t is 1In

[0,T ), xg(t) = 1/2 + F(+-T" %) if t is in [T 5,37 Y/2);

x () = 1+ 8 sin(rs T(vo3rt/2)) if € s in (30 Y/2,3T 2«

ﬂéF_1/2); xs(t) =1+ & if t is in [3F’l/2 + nar"l/z,lj; and

xﬁ(t) = x6(2—t) if £t is in (1,2]. Then xg is in Q with \Xé‘m =1+ 8.

Thus, by the cheoice of §,

(=g + oxp] = x| )78 < Lad|x |+ 1/2.

8

Furthermore, since |x, + 6xé|m 2 |x6(3F_l/2) + 6Xé(3F_l/2)| =1+ &0

§

and Jx =1+ &, we have

6]m

3%

(xgtong| = [xg] )78 = (L+8T-1-8)/8

§

I
—
|
—

Since T z 4|L'[A]] and |x < 2 we have that T - 1 < L'[Al|x.| +

6|m -
1/2 = /2 + 1/2. But this implies that [/2 £ 3/2 which is impossible

since T 2 4. This contradiction shows that A is not in ULn(D,E}, and

sc, in this case, ULn{D,E) # Ln(D,E}.
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Remark 2.12. The example abcve shows that there s a Banach space E,
a subset D of E, and a discontinuous function A from D into E which is
in Ln{D,E) but not in ULn{D,E}. The author does not know of an example
of a continuous member A of Ln(P,E} which is not in ULn(D,E). However,
it will be proved (see Proposition €6.3) that If A Is uniformly contin-
uous on bounded subsets of £ and A is in Lr(E,E), then A is in ULn(E,E)
and L'[A] = L[A].

The spaces BL{D,E) and Lip[D,E] are well-known althcugh the
definition of the logarithmic norm M[-] on L{p(D,E] seems to be new.
As a consequence of Proposition 2.8, we have that the space Ln{D,E)
consists precisely of all functions A from D into £ for which there
is 2 number X such that 2I - A is accretive on U. The notion of accre-
tive cperators is well-known, but the limit characterization given here
seems te be new. However, in the case tlat A is linear, Lumer and
Phillips [13, Lemma 3.2] give a similar characterization. The limit
characterization of the space ULn(D,E| seems to be new and this will be
used to prove some existence theorems for differential equations which
have previcusly been proved under the assumption that L is a Hilbert

%
space or that the dual space E is uniformly convex.

Remark £.13. We have that if U is a subset of E then Lip(D,E) <
ULn(D,E) < Ln(D,E} and that proper containment can occur. We also
have that if A is in L4{p(D,E) then M[A] = L'[A] = L{A]. The author
does not know if M[A] = L[A] in general. Hawever, if 0 is a subspace
of E and A is in BL{D,C) then Lumer [12, Lemma 12] shows that

u[A]l = LLAT. One can then show that if D is an open convex subset of




£ and A is a Frechet differentiable member of Lip(D,E) then M[A] =

LCAJ.

35
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CHAPTER III

COMPUTATION OF THE LOGARITHMIC NORM

In this chapter we establish some procedures for the computation
of the logarithmic norm. These are used beth to illustrate some of
the applications of the methods developed here and to connect some of

these results to those of others.

Let o be a norm on the vector space L which is equivalent to

the norm on € and let a and bo be positive numbers such that
a |x| <« |x| = bO|x|Ofor all x in £. If D is a subset of £ and A is a

function from U into E, then \Ax—Ay\O/IX-y|O < boa;l|Ax—Ay|/\x—y| SC

that E, equipped with the neorm o> generates the same classes BL{D,E)

If for each A in

and Lip(D,E) as does E equipped with the norm

Lip(D,E)

NO[A] = sup{|Ax—Ay|o/|x—y|O 1 %,yeD, %¥yl,

then NO is said to be induced by the norm If

M [A] = 1im (N [I+ha] - 1)/h
o]
h>+0

for each A in L{p(D,E), then ¥ is said to be induced by the norm o

Analogous definitions apply to o and po[-] on the space BL(D,E).
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Note that if A is in L[{p{D,E) then aob;lN[A] < NO[A] < boa;lN[A], s0Q
that the seminorms N[ +] and NO[-] are equivalent seminorms on the

vector space L{p(D,E}.

Example 3.1. Suppose that Q is an invertible member of BL(E,E) and,

for each x in L, let IX‘Q = |ex|. It is easy to check that |- 9 is a
nerm on E and since ”Q“_1|X|Q < \x| < ‘|Q—1H‘X|Q for each % in E, |* 9
is equivalent to |- If |- 0 and uQ['] are induced by the norm |- q
and & is in BL{E,E} then
”A”Q = sup{‘Ax|Q : |x|Q = 1}
-1

= Sup{‘Q-A-Q y} : |y‘ = 1}

= llasase™,
and hence,

uglAl = Lin (Jz+na-a-Q7Y - 1)/n
h*+0
= ulQ-a-Q 1.

Example 3.2. Suppose the Q and are as in Example 3.1, D is an

Q

open convex subset of £, and A is a Fréchet differentiable member of

Lip(D,E). If N_ and M, are induced by the norm then by Proposi-

Q Q
tion 2.2 and Example 3.1

Q!
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nTAT = sup{]Q-daC 0 Y| xed)
and

MQ[A] = sup{u[Q'dA(x)'Q_l] : xeP ).

FExample 3.3. Suppose that n is a positive integer and E is the vector
space K" of column vectors (Ek)i where each gk is in K. Assoclate the
vector space BL(Kn, K") with the nxn matrices with entries in K. With

the following norms on Kn, Lozinskii [11, Lemma 4] derives formulas for

computing ||&| and uw[A] where A = (aij) is an nxn matrix and aij is in K,

(i) 1If |(Ek)§|l = max{|£k| :1 < k £ n} and 1 and ul[°] are

:1 < i< n} and

n
induced by then “A“l = max{ } laik|
k=

! 1

ul[A] = max{Re(aii) + Z laik' :1 <1< nt.

k#i
n
(ii) 1If |(£k)§|2 = k£l|gk| and |||, and “2['] are induced by
n
“|, then ”A”2 = max{kz lakj| :1 < J <n} and
=1
u.[A]l = max{Re{a..) + X |a .| 1< 73 < nl.
2 J ey k]
n
(iii) 1If |(£k}§|3 = {kzl|£k|2}l/2 and \-HS and us[-] are induced

3 then ”A”S = max{¥A : X is an eigenvalue of A-A*}

by
and pa[A] = max{A/2 : X is an eigenvalue of A + A“}.

oty

{Here A“ is the adjoint of A--i.e. A" = (bij) where

bij = aji)'
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Example 3.4. As in Example 3.3, let E = K™ and suppose that D is an
open convex subset of K" and A is a Fréechet differentiable member of
LLp(D,Kn). For each integer k in [1,n] let Ak denote the function
from D intc K such that Ax = (Akx)§ for each = in ¥. Since A is
Fréchet differentiable on D, for each x = (gk)T and each integer i in

[1,n], the partial of A, with respect to &i at x--dencted diAk(x)——

k

exlists and dA{(x) is assoclated with the matrix (diA.(x)). If 1 is

the norm on K" which is defined in part (i) of Example 3.3, and Nl and

Ml are induced by |-11, then by Proposition 2.2 and Example 3.3

n
N.[A] = sup{max{ } [d.A (x)| : 1 < i <n} : xeD}
1 k=1 k

and

Ml[A] = sup{max[Re(diAi(x)) + k§i|diAk(x)1 1< i< n} o xel}

- -

5 and

Analogous formulas hold for the norms defined in parts

3
(i1} and (1ii) of Example 3.3.

Example 3.5. Suppose that K is the field of real numbers, € = KQ, and,
for notaticnal convenience, let (51,52) denote the member (Ek)i of Kz.
If A is the function from K2 into K2 defined by A(El,EQ) = (—2.5l +

COS(EQ), sinz(él) - 52) for each (El,EQ) in KQ, then A is Fréchet dif-

ferentiable on K2 and dA(El,EQ) is associated with the matrix
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-2 —sin(&z)

sin(QEl) -1

Since dA is bounded on KQ, A 1s in Lip(Kg,Kz) by Propesition 2.2. Let

@ be the member of BL(KQ,KQ) such that Q(gl,gz) = (51,252/3) for each

(51,52) in K2. One easlly sees that Q'dA(il,é J L) is assoclated with

2

the matrix

-7 -3 sin(ig)/Q

2 sin(?il)/B -1

Corisequently, if ’(EI’EQ)‘l = max{|£l|,|52|}, |(€1’52)|Q = |Q(€l’€2)ll’

ul['] is induced by 1 and M. is induced by |-|Q, then by Example 3.2

Q

B ] S D 2
MQ[A] = sup{ul[Q dA(El,@Q) S (él,ig)ek }.

By part (i) of Ixample 3.3,

ul[Q'dA(El,Eg)-Q_l] max{-2 + |3 sin(£,)/2|, ~1 + [2 sin(g)/3]}

1A

~1/3.

Hence MQ[A] < -1/3 and it follews from Corollary 2.3 that A is a bijec-

1

tion, AT is in Lip(K’,K?), and Nla ™t = 3.
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If 4 is in BL(E,E) the spectrum of A--denoted o(A)--is the set
of all members i» of K such that (AI—A)ﬁl is not a member of BLIE,E].
For the remainder of this chapter we will be interested in the case
when E is a Hilbert space. For notational convenience we suppose that
H is a Hilbert space over the field K and if x and y are in H, (x,y)

denotes the inner product of x with y. 1f A is in BL(H,H] the adjoint

.

of A--denoted A“——js defined by the relation {Ax,y) = (x,A“y) for each

x and y in H.

Proposition 3.1. If A 1s a member of BL(H,H] then

(1) A is in BLULH) with JAT] = |A] and wla™] = ulal.
1/2

(11) [a] = a-a” = suplvX : hea(A-A )}.

(111) wlA] = suplA/2 : reo(A+A ).

(iv) w[A+A~] = w[al + w[A™].

Proof. A proof of part (11) and the fact that A" is in BL{H,H] with
|a°) = |Al| can be found in [20, pp. 250 and 3311. The fact that

u[A 1 = u[A] follows immediately from part (iii) since A = A. Ifh

is a positive number, we have from part (ii) that

1

ITenal” = |1 + h(ata ) + n2a-a"|

1 + h sup{A : AEG(PH-AK + hA'A“)}.

Hence
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(Jr+ha] - 1)/h = (| T+na] + 1) Teha]? - 1i/h

.

(| 7+na] + 1) Tsupin : rea(a+A + ha-AT)},

and part (i1ii) is established by letting h»+0. Part (iv) is immediate
from part (iil),

A member A of BL(H,H) is said to be self-adjolnt 1f A = A*. If
A is a self-adjoint member of BL(H,H) and » is in o(A) then » is real,
(Ax,x) is real for each x in H, and if y = inf{(Ax,x) : |x| = 1} and
I = supl{{Ax,x) : |x\ = 1}, then vy £ » < I'. TFurthermore, y and T are in
g{A) (see [20, p. 330, Theorem 6.2-B1), and "AH = max{|Y|,|F\} (cee

ofa

[20, p. 325, Theorem 6.11-C]). Since A = A, it follows easily from

part (iii) of Proposition 3.1 that u[A] I and -p[-A1 = y. A member

P of BL(H,H) is said to be positive definite self-adjoint if P is self-
adjoint and if inf{(Px,x)} : |x| = 1} > 0 (i.e. if -p[-P] > 0). If P is
a positive definite self-adjoint member of BL[H,H], then there is a
unique positive definite self-adjoint member S of BL{H,H) such that

82 = P (see [19, p. 265]). Turthermore, both P and S are invertihle
members of BL{H,H), and P_l and S_l are positive definite self-adjoint

with 8_2 - p"1. Note also from part (ii) of Proposition 3.1, HSH2 = |p|

~1p2 -1
and Js77]7 = [277.

Example 3.6. Suppese that P and S are positive definite self-adjoint

members of BL(H,H] such that ¢? = P. For each x and y in H define

(x,y)5= (Sx,5y) = (Px,y). This is an inner product on H and if o is

the norm on H induced by this inner preduct (i.e. [XIS = v(x,x)s) then
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}xlu = |Sx‘ for each x in H. Thus, by Example 3.1, if "'HS and

1

US[-] are induced by I"g then HA"S = “S'A'S—lH and uS[A] = u[S-A+S 0]

for each A in BL(H,H).

Proposition 3.2. Suppose that P and S are as in Example 3.6, A is in
BLIH,HI, and I' = sup{} : deo(P*A + A *P)}. Then p[4] 2 e /2 if

'z 0, and p [A] < PHP”_l/Q if T < o.
(el
Proof. By Proposition 3.2 and Example 3.6,
-1
uS[A] = u[S-A-8 7]

suplAi/2 ¢ heo(S-a-s b+ ¢ haaTeoyy,

1}

Furthermore, if z(x) = S_lx/lS*lx\ for each x in H with ’xl = 1 and *

is in 0(8-A*3 " + 87 1eA".8), then

o= sup{([S°£\-S_l + S_l-A*-S]x,x) : x| = 11
. -1 -1 * }
= sup{(S "%x,5 "x)J([P*A + A Plz{x),z(x)) : |x1 = 1},
Since (S‘lx,S“lx) = |Sklx[2 and ”S~l”? = HP_l”, we have ”P"~l <

1S—lx[2 < HP_l” for all x in H with |x| = 1. Since

I' = sup{[P-A + A*P]z(X),Z(X)) x| = 11,
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it follows that if I' » 0 then X < rnp'ln, and if T 2 0, then

Ao F”P”_], and the proposition is true.

.
Feample 3.7. Consider Vhe vector space K° as detined in Example 3.3,

and 1F % = (Ll,h?) and wo= (”1’”2) define (x,y) = €1n1 + ggnp. Nefine

tho 242 matrices A, Py oand 0 oan follows:

-1 4 1 1
A = s Po=  oand 5 o=
0 -l 0 0
Then ' and 3 are positive definite, self-adjecint, and ¢’ = P. lupther-

more, ulA] 1, the larpest eipenvaluec of P<A + A P is W5 - 10, and

DG{A1 = -1/3.

Frxumple 3.8. Suppose that D is an open convex subsct of the Iilhert
space H and A is a Fréchet differentiable member of Lip([D,H). Suppose

further that P and S are positive definite self-adjoint members of

BL{H,H) such that s? = P. As in Ixanple 3.6 lel

a be Tthe norm on

H defined by ‘X'S = |8x| for each x in H. Tor each x in D let

I = sup{} : xea(P-dA(x) + dA(x)*-P) and =eD}.

By Proposition 2.2 T is finite, and by Propositions 2.2 and 3.2, if

then M_[AT = T /2 if 1 2 ¢ and

MS is induced by

MLl < TlE) e i T s o

S’



CHAPTER IV
SOME BASIC DEFINITIONS AND LEMMAS

In this chapter we develop a sequence of definitions and lemmas
which are frequently used in establishing existence and stabllity
theorems for differential equations. Most of the lemmas given here
are well-known, and those which have long or complicated proofs—will

be referenced.

Definition 4.1. A sequence (xn)l in € is said to converge weakly to a

*
member x in E if 1im {(x_,f) = (x,f) for each f in E . In this case we
n-o n
write w-1im = = x.
nre D

Definition 4.2. Suppose that [a,b] is an interval and u is a function

from [a,b] inte E. Then u is said to be weakly continuous on [a,b] if

w-1lim u{s) = u{t) for each t in [a,b]. The function u is said to be

s>t
weakly differentiable on [a,b] if for each t in [a,b] there is a u'(t)
such that w-1im {u{t+h) - u{t))/h = u'(t). If, in addition, the func-
>0

tion t - u'{t) of [a,b] inte E is weakly continuous, then u is said to

be weakly continucusly differentiable on [a,b].

Remark 4.1. MNote that if lim x = % then w-1lim ®oOFX. Consequently,
n-+oo n n-r«©

if u is continuous, differentiable, or continuously differentiable on

[a,b] then u is weakly continuous, weakly differentiable, or weakly

continucously differentiable on [a,bl, respectively.

&




bg

Some of the theory of Bochner integration will be needed and
the reader is referred to [7, pp. 78-881 or [22, pp. 132-1356] for a
discussion of this theory. A list of the lemmas which will be needed
is given below.

Let q be a function from the interval [a,bl] inte E. Then q Iis
said to be finitely-valued if there is a finite family [Bk : 1 <k £ n}
of mutually disjoint measurable subsets of [a,b] and a finite family

{x, : 1< % < n} of members of £ such that q{t} = x

K for each t in B

k k

and q(t) = 0 for each t not in v Bk' The Bochner integral of g over
k

{a,b] is defined as

b n
() [ q(s)ds = 7§ m(Bk)xk
a k=1

where m(Bk) denctes the Lebesqgue measure of B A function v from [a,b]

-
into £ is said to be Bochner integrable on [a,b] if there is a sequence

(qn)? of finitely-valued functions on [a,b] such that lim qn(t) = v(t)
b nre
for almost all t in [a,b] and 1lim f \v(s)—qn(s)|ds = 0. The Bochner
nere a
integral of v on [a,b] is defined as

b b
(8) [ wv(s)ds = lim (B) | qn(s)ds.
a

N> a

Lemma 4.1. 1f v is a Bochner integrable function on [a,b] then |v| in
Lebesque integrable con [a,b] and
b

b
|(BY [ wv(s)ds| = [ [v(s)|ds.
a =}
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(see [7, Theorems 3.7.4 and 3.7.6]).

Lerma 4.2, 1f (VH)T i1.. a sequence of Bochner inlegrable functions on
[a,b] such that v{(t)} = Lim vn(t) for almost all t in [a,b]l and there
1s a Lebesque integrablzy;unction p on [a,b] such that |Vn(t)‘ z p(t)
for each n 2 1 and almost all t in [a,b]l, then v is Hochner integrable
on [a,b]l and

k.

L b
(B) [ wvis)ds = lim (B) [ v_(s)ds.
a e a U

{see [7, Theorem 3.7.9]1).

Lemma 4.3. 1f v is a Bochner integrable function on [a,b] and u(t) =
t

(B) f v{s)ds for each t in [a,bk], then for almost all t in [a,b]
a

u'it) exists and equals v(t)}. (see [7, Theorem 3.7.11 and Corollary

21).

Lemna 4.4. Suppose that u is a Lipschitz continuous function from
[a,b] into E which has a weak derivative almost everywhere on [a,b].
Then u i1s differentiable almost everywhere, u' 1s Bochner integrable

on [La,b]l and
t
u(t) = ula) + (B) [ u'(s)ds
a

for all t in [a,b] (see [7, Theorem 3.8.6]).
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Lemma 4.5. Suppose that g is a function from [a,b] into € and
p(t) = \q(l}\ for each t in [a,b]. Then
T
(i) if q;(t} exists then p+(t) exists and

p,(t) = lin (|q(x)+hg ()| - [a(t)])/hs and
b +0

(1i) 1if ql(t) exists then pi(t} exlsts and

pl(t) = lim (|q(t)+hqi(t)| - Ja(t)])/h.
-0

Procf., The existence of each of these limits follows from Lemma 1.1.

If q;(t) exists and h » 0 is such that t + h is in [a,b] then

[ a(t+n)]

t

la(x)[1/8 - [lato)+ng, ()] - |aCe)|i/m]

H]

I[|aCt+n)| - |alt) + hg' (x)]1/n]

I

[Lalt+h) - a(x)1/b - g (1)

and part (i) follows by letting h»+0. Part (i11) is proved analogously.

Lemma 4.6. Suppese that u is a continuous function from [a,b] into E
which 1s differentiable almest everywhere on [a,b]. Suppose further
that |u| is absolutely continucus on [a,b] and there are Lebesque
integrable, real valued functicns n and v on [a,b] such that if

p(t) = |u(t)| for each t in [a,b] then either

[fa

(1) p;(t} nit)pl{t) + y(r) for almost all t in [a,b], or

A

(ii) pi(t} <= n{t)p(t) + y(t) for almost all t iIn [a,bl.

It follows that
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t t t
p(t) < pladexp(] nls)ds) + f Y(s)exp(f n{r)dr)ds
A d s

for each t in [a,b].

troof. 1 g(t) = p(t)uxp(—jtn(s)ds) then ¢ 1o ahoolutely continuous
on [2,b] so that q'(t) exisis almost everywhere and q(t) = gqla) +
ftq‘(s)ds for each t in [a,b]. Suppose that (i) is true. Then for
Zlmost all s in [a,b]

q'(s) q;(S)

5
[p;(S) - n(s)p{s)lexp(-[ nlrldr)
a

S

y(s)exp(-f n(r)dr).
=]

[

Conzequently, for each t in [a,bl,

t t s
pltlexp(-[ nls)ds) < p(a) + [ v(s)exp(-| n(r)drids
a a a

and the assertion of the lemma when (1) holds fellows. The precof when

(i1) holds is similar.

Remark 4.2. MNote that if u is Lipschitz continuous on [a,b] then |u|

is absolutely continuocus.

Definition 4.3. Suppose that X is a metric space with metric d and A

is a functicn from X into E. The function A is said to be demicontinuocus
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on X if for each x in X and each sequence (xn)I in X such that

1im d{x,x_} = 0, w-lim Ax_ = Ax.
-0 n o] n
Definition 4.4, Suppou. That X and X' are mety ic spaces with metrics

d and 4', respectively, § is a set, and {/\(j : 08 In oa family of
functions from X into X'. The family {Ao : 5eS} is sald to be equi-
continucus on X if for cach ¢ » 0 and each x in X, there is a positive
number & = &{x,e) such that if y is in X with d{y,=) = §, then
d'(AOy,AOx) < ¢ for all o in 8. If § is independent of x in X, the

family {AO v 0e8t is sald to ke uniformly equicontinuous on X.

Definition 4.5. Suppose that D is a subset of £, § is a set, and

{A o seS} is a family of functions from U into E. The family

{AO : 08} 1s said to have an equiuniform logarithmic derivative on

D if there are numbers M and A' such that \on\ < M for all ¢ in S and
¥ in D and, for each pair of posirive numbers R and ¢, there is a

positive number § = &{B,r) such that

(|x-y+hlA x-A,v]| - [x-y|)/h < &' |x-y| + ¢

whenever 0 < h < &, ¢ is in S, and % and y are in D with [x-y| = 3.

Kemark 4.3. Note that if the family {AO : 0¢S8t has equiuniform
logarithmic derivative on P and A' is as in Definition 4.5, then Ao
is in ULn(D,E) with L'(A ] = A' for all o in 8. Furthermcre, 1f S is

finite and, for each o in S, A is in ULn(D,E] and bounded on U, then



the family {AO

51

seS} has equiuniform logarithmic derivative on U, and

A' can be taken as max[L'[AO] : oeSt.
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CHAPTER V

IXISTENCE AND UNIQUENESS THEOREMS

FOR DiFTERENTIAL EQUATIONS

Suppose that [a,l] is an interval, U is an open subset of E,
and {A(t) : tela,bl} iz a family of functions from U into E. 1In this
chapter we give sufficient conditions te insure that the initial value

problem

(IVP) u'(t) = A(tulr)y, u(a) = z, zel

hasz a unique solution on some subinterval [a,c] of [a,bl, and also to
insure that the solution can be extended to [a,b]. We are interested

in three notions of sclution te (IVP) which are defined as follows:

Definition 5.1. Suppose that [a,c] is a subinterval of [a,b] and u is
a Lipschitz continuous function from [a,c] into D such that u(a) = z.
Then
(i} u is said to be a solution in the usual sense to (IVP) on
la,c] if u is continuously differentiable and u'(t) =
A(t)u(t) for all t in [a,c].
(ii) u is said to be a solution in the weak sense to (IVP) on
[a,c] if u is weakly continuously differentiable and

u'(t) = A(t)u(t) for all t in [a,c].




(i1i) u is said to be a solution in the extended sense to
(IVP) on [a,c] if the function t -+ A{t)u(t) is Bochner
integrable on [a,c] and

L

u(t) = z + (B) [ A{s)ul(s)ds
o

for all t in [a,c].

Theorem 5,1. Suppose that D is an open subset of E and {A{t) : tela,bl}
is a family of functiens from D into E which satisfies each of the fol-
lowing conditions:
(1) There 1s a number M such that |A(t)x| < M for all (t,x)
in [a,blxD.
(ii) TFor each x in D the function t + A{t)x is Bochner integrable
on [a,b].
{iii) The function (t,x) + A{1)x is demicontinucus from
lFa,b]xD into E.
(iv) The family {A(t) : te[a,bll has equiuniform logarithmic
derivative on D.
Then for each z in D there is a positive number p = p{z) and a unique
function u from [a,atp] which 1s a solution to (IVP) in the extended
sense on [a,a+p].
The proof of this theorem will be given by a sequence of Lemmas
each of which is with the suppositions of Theorem 5.1. Let z be in D
and let 0 < p < b-a be sufficiently small so that if x is in E and

|x—z| < pM, then x iz in D. Also, for each positive integer n let
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n)A(n)

- - n n 1
)i be a partition of [a,a+p] such that :t. —ti < n for each

1+l

(1

integer 1 in [0,2(n)-1].

Lemma &.7. TYor sach n > 1 there is a function u  from [a,atp] into D

It
satisfying each of the tvllowing:
(1) u (a) = =.
n
(i1 lun(t)—un(g}| < M|t-s| for all t and s in [a,atpl.
(iii) If 0 < i < a(n)-1, then for almost all t in [t?,t?+l),u;(t)
exists and equals A(t)un(tQ).
(iv) ug is Bochnur integrable on [a,atp] and
-

u_(t) =z + (B) fy u' (s)ds
Ti a Tl

for each t in la,atp].
Froof, Let un(a) = z and for each t 1in [a,t?] define

t
un(t) =z + (B) [ Als)zds.

d

Inductively, for each integer 1 in [1,A(n)-1] and for each t in

[+0 ¢
1

1+1J define

T

un(t) = un(t?) + (B) Jn A(s)un(t?)ds.
T,
i

The assertions of the lemma now folleow in a routine manner from

Lemma 4.3.
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Lemma 5.2, The sequons: (UI )m

o constructed in Lemma 5.1 1s uniformly

Cauchy cn [a,atp].

Proof. Since the family 1A(t) : tela,b]} has equiuniform logarithmic
derivative on D, let A" be as in Definition 4.5. We can assume without
loss that A » 0. MHow loi ¢ Le a pusitive number. Yor the pair

B' = gexp(-ATp)}/Y and Lo eexp(-A'p)/[4{p+1)] tlere is, by condition
(iv), a positive number & = 8(R',e') = &(¢) such that if 0 < h < §,

t is in [a,a+p], and x and y are in D with [x—yl z 8', then
{5.1) (|x-y+hla(t)x-A(t)y]] - Ix-y|)/h = A'|x-y| + e'.

Now choose a positive juteoper r such that

1

(5.2) n;l < min{R'/(hii), cexn{-A'p)/{u{p+1)(2A™ + 4M8 )1}

M, amad p. The claim is that when-

b

Hote that n_ depends only on ¢, A
ever n > m 2 g and t is in [a,atp], then ‘un(t)Aum(t)[ < ¢. Assume,
for contradiction, that there 1z a TJ in [a,a+r) and integerz n and m

such that n > m 2 no aned

(5.3) |nn(1l)-um(Tl)[ > e,
Let pl{t) = ‘un(t)hum(t)l for each t in [a,ato]. Then p is continuous,
pla) = 0, and p(Tl) - & - 2f'" 30 There is a number To in (a,Tl) such

that p(TO) = 2p" and u(t) = 23" For all t in [T _,1T,). Thus, by part
L

1



(tii) of femma 5.1, it t is in [T ,7.] and u;(t) and u$(t) exist, then

o'l
there ic an integer 1 in [0,A{(n)-11] and an integer 7 in [0,x(m)-1] such

n m m

that ¢ is in [t,th, 0, 0 i In [rests ) Wi () = alt)u (1), and

u;(t) = A(t)um(t?). By pemma 4.9 and part (i) of Lemma 1.1,

P;(t) = iiTO(|un(t)~um(t)+hFA(r)un(t?)‘A(t)um(t?)]l = fu (e)-u () ) /n
< (|un(t)—um(t}+6FA(t)un(t?)*ﬁ(t)um(t?)]‘ = Ju (o-u_(e) )78,

Consequently,

v () < (Ju e walatou (e -atu I - Tu (-u (5)[)/6

(5.4)
+ ?|un(t)—un(t?)|/6 + 2|um(t?)—um(t)‘/6.

But by part (ii) of Lemma 5.1,

(5.5) 2lu_(t)-u_(tT)]/6 < 2M|t-t?[6‘l < oMn e
n I 1 1 o]
and
.m my.~1 -1.-1
(5.6) 2|um(t)—um(Lj)|/6 < 2M|tﬂtj|6 < oMn "8

Furthermore,
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n m . , i . m
iun(ti)wum(lj)‘ ‘un(t)—um(t)l - |un(Li)—un(1)‘ - ‘Um(t)*um(tj)'
-1
2B - 2n M
l -1, , N I .
by (L.2), ?no M < B 5o fhat |un(Li)uum(ti)| > B'. Thus, Ly using

(5.1}, (5.5), and (5.6}, the inequality (5.4) becemes

R ' - ' LN .m . -1.-1
(5.7) p,(t) = A lun(ti) um(Lj)| + 0+ ubn T

But by part (11} of Lemma 5.1,

WA

A'lun(t?)—um(t?)\ Alu (t)-u (1) ]+ A'}un(t?)fun(t)l + A’|um(t)—um(f?)|

S

Ap(t) + ’2/\'Mn"1
o

and (b.7) becomes

1

(5.8) p;(t) < A'p{t) + '+ n;l(QA'M + 4M& 7).

Using (%.2) and the fact that ¢' cexp(-A'p)/[4(p+1}], (5.8) becomes

(5.9) P () < ATP(t) + cexp(-A'p)/[2(p+1)]

7, the inequality

Since u!(t) and u‘(t) exist for almost all t in [T ,T
n m o1

(5.9} holds for almost all t in [TO,Tl]. Since U and u are Lipschitz



1, it feolilows from (5,%2) and Lemma 4.6 that

continuous on {TO,TJ,

p(Tl) < p(TO)eXp(A'(Tl—TO))

.
]
s f {gexp(—h'p)exp(ﬁ'(Tlﬂs))/[2(p+l)]}ds

T
o

: p(TO)exp(A’p) + /2

Here we have used tho Fact that Tl - 5 < p for all = i3 [TO,Tl].
But p(TO)exp(A'o) = ZR'exp(A'p) = /2 so that p(Tl) < /2 + /2 = k.
This is a contradiction to the assumption (5.3). This contradiction

shows that if n > m > n_ then |un(t)-um(t)| < ¢ and the lemma 1is

proved.

(9]
Lemma 5.3. The sequence (un)1 constructed in Lemma 5.1 converges

uniformly on [a,a+p] To a4 continuous functicn u traom [a,atp] into U

such that ula) = z and ‘u(t)—u(s)i < M\t—s for each t and s in [a,a+p].

&0 - a
Proof.  Since the seguence (ur\)1 is uniformly Cauchy on [a,atp], it
tends uniformly to a continuous function u on [a,a+p]. Since un(a) =z

For all n > 1 and all t and = in [a,a+p],

st |un(t)—un(s)| g Mt-s
it is immediate that u(a) = z and |u(t)-uls)| s M|t-s|. Furthermore,
if t is in Ta,a+p] then \u(t)~u(a)| < M]t—a] < Mp so that u(t) is 1in

D and the iemmz is proved.
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Lemmag 5.4. The function t + A(t)u(t) is Bochmer integrable on
{a,atp] and for each t in [a,a+p]
t
ult) = z + (1) f Alsiu(sd ..

<l
Proef. 1t follows frowm part (iii) of Lemma 5.1 that for almost all t
in [a,a+p],u;(t) exists for all n 2 1 (one only needs to note that a
countable union of sets of measure zero hds medsure zero). Furthermore,
ce e no.n .
if t iz in [ti’ti+l) then

[uCer-u (] = [uC)-u ()] + Ju (+)=u (¢

< ‘u(t)—un(f)| + n_lM.

1
Hence, by the demicontinuity of A(t), if t is in [a,atp] and un(t)
exiasts for all n 2 1 then ué(t) = A(r)un(t?) for scme integer i in

[0,4(n)] and it follows thatl for almost all t in [a,atp],

w-11im u;(t) = A{t)u(t).

nee

Since the functions ug are Bochner integrable on la,at+p]l, if £ is In

I then the functions t - (u;(t),f) are Lebesque integrable on [a,a+tp]

and

T t
| (u;(s),f)ds = ((B) | u;(s)ds,f)
a =1
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for each t in [a,atp] and all n =z 1 (see [7, Theorem 3.7.1]1). Since
|(u;(t),f)| < |u;(t)||f| < MIf| for almost all t in [a,a+p] and

1im (u;(t),f) = (A(t)u(1),f) for almost all 1 in [a,atp], it follows
Ty o

from the Lebesgue dominated convergence theorem and part (iv) of Lemma

5.1 that

{ut),f)

lim (u (£),f)
Tl
e

t
= lim (2 + (B) [ u'(s)ds,#)

Ti+rw a

t
= (z,£) + lim [ (u(s),f)ds
e g

t
(z,£) + [ (A(s)u(s),f)ds.
a

By condition (1ii), u is weakly continuously differentiahle on [a,atp]]
and u'(t) = A(t)u(t) For each t in [a,atp]. Since u is Lipschitz con-
tinmuous on [a,a+p], the assertions of the lemma are an immediate conse-
quence of Lemma 4.4.

Thus u 1s a scolution to (IVP) in the extended sense on [a,a+p].
To complete the proof nf Thecrem 5.1 we need only show that u is

unique.

Lemma 5.5. Let u and v bhe Lipschitz continuous functions from [a,a+p]
inte P such that uf(a) = z and v{(a) = w. Suppose that for almost all t
in [a,atp], u'(t) exists and equals A{t)u(t) and v'(t) exists and equals

A(t)v(t). Then



6l

|[u(t)-v(t)| < |z-wlexp(A'(r-a))

for all t in [a.a+p]). (llere A' is as in Lemma 5.2).

Proof. lYor =ach t in [a,atp] let p(t} = |u(t)—v(t)'. Then by Lemma

t
4.5, p+(t) exists for ulmost all t in [a,a+p] and

(1)

It

Yim (Jult)-vO+h[ACDu () -A{)v ()] - jult)-v(t)])/h
h>+0

|A

LULACEYT|ult)=-v(t)]

A

< A'p(t).

The assertion of the lemma is now an immediate consequence of Lemma
4.6.

Lemma 5.5 shows that the solulion u is unique and the proof of
Theorem 5.1 is complete. In the proof of Lemma 5.4 we have also shown

the following.

Corollary 5.1. The solution u to (IVP) is also a solution in the weak

sense on [a,a+p].

Corollary 5.2. Instead of condition (iii) of Theorem 5.1 suppose that
(iii)' The function (t,x) - A(t)x is continucus from [a,blxD
into E.
Then the solution u to (IVP) is also a solution in the usual sense on

[a,a+tp].



ar
)

Ppoaf. Since the Junetion t o+ A{O)u(t) 1s now continuous, we have hy

Lemma 5.4 That

t
wit) = =z + (B) f Alsz)alods
a
i
=2+ f Als)uls)ds
a

and the corollary is immediate.

Lxample 5.1, Suppose that D 1s an open subset of T and {A(t) : tela,b]}
is a family of members of L{p({P,E] such that the function (t,x) = A(t)x
is continuous from [a,l)xP into £ and there is a number A' such that
NIA(t)] <« A'Y For all 1 in [a,b). Then if x and y are Iin P, t is in

l[a,bl, and h > 0,
(|s=y+h[AC -0y 1] = ey /b o JaCe )n-ACe )y
< N[A(t)]|x—y'
< 0 ney
and so the family {A(t) : tela,b]} has equiuniform logarithmic deriva-
tive on P, Thus each of the conditions of Theorem 5.1 and Corcllary 5.2

are fulfilled and so Corollary 5.2 contains the classical Cauchy

existence thecorem for differential equations.
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Example 5.2. Suppose 1hat E* is uniformly convex, U 1s an open subset
of E, and {A(1)} : tela,l]} is a family of functions from D into L.
Suppose further that ihe function (t,x) - A{t)x is continuous and
bounded on [a,b]xD and there iz a number A' such that Re(A(t)x -
Alt)y,f) < A'|x—y|? 1or all x and y in D and £ in F(x-y}. By Lemma
1.4, for each pair of positive numbers 8 and =, there is a positive
number & such that if % and v are in D with |x~y| > B, t is in [a,bl,

and 0 < h £ &, then

(|x-y+h[A(t)=-A(O)y]1] = Ix-y|)/h = Re(A(t)x-A(t)y,g) + ¢
where g is the member of Glx-y). Letting f = |x-y|g, f is the member

of Flx-y] and

Re(A(r)x-A(t)y,g) = Re(A(t)x—A(t)y,f)/|x—y'

< ﬂ'|x—y\.

Substituting this inte the previous inequality shews that the family
{A(t) : te[a,b]} has equiuniform logarithmic derivative on D, Thus each
of the =suppositions of Theorem 5.1 and Corollary 5.2 arve fulfilled and
so Corollary 5.2 contalns the extension of the classical Cauchy exist-
ence thecrem for a Hilbert space given by Browder [1, Theorem 37.

The next theorem is similar to Theorem 5.1 except that we relax

the condition that the family {A(t) : tela,b]} have equiuniform
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logarithmic derivative on P and place strenger continuity requirements

on the family.

Theorem 5.2. Suppcse thet T is an open subset of € and {A(t) : te(a,bl}
is a family of functions from D into E satisfying each of the following
conditions:
(i) There i1 a nunber M such that |A(t)x| < M for all
(t,x) in [a,l:]xD.
(ii) Tor each x in P the function t - A(t)x is Bochner
intepgrable on [a,b].
(11i) The family {A(t} : te[a,bl} is uniformly equicontinuous
on D.

(iv) There is a positive number A such that

lim (1x—y+h[A(t)x—A(t)y]| - |x—y|)/h < A|x—y\
hr- ()
for all x .l vy in P and t in [a,b].

Then for each z in D theve is a positive number p = p(z) and a unique
function u from [a.,at+p | intc P such that u is a solution to (IVP) in

the extended sense on [a,at+tp].

Remark 5.1, Tt follows from Remark 2.10 that condition {iv) of Theorem
5.2 is fulfilled if and only if AT-A(t) is monotonic on D for each t

in [a,b].
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Remark 65.2. Note that condition (iii) is fulfilled if the function
(t,x) » A(t)x is a uniformly continucus function on [a,b]xD. However,
in [5, p. 2877, Dieudonné gives an example which shows that conditions

(i), (ii), and (iii) are not sufficient to guarantee a solution to

(IVPY}.

Proof of Theorem 5.2. Let p, (t?)?fg), and (un)i he as in the proof of
Theorem 5.1 and suppose that € is a positive number. By condition

(iii) let & » 0 be sufficiently small so that
(5.10) la(t)x-A(t)y| < eexp(-Ap)/(2p)

whenever t is in [a,b] and x and y are in U with |x—y| < 6. Now let n
sk . -1
be z positive integer such that no M < § and suppose that n > m = -

For each t in [a,atp] let p(t) = |un(t)—um(t)‘. Let t be such that

u;(t) and u$(t) exists and let i and j be integers such that t is in

no.n o m o.m . n n

- - <

[t;.t; ;) and t is in [tj,tj+l). Since |u_(t) un(ti)i < M|t ti| <
-1 m

n M= § and |um(t)—um(tj)| < &, it follows from (5.10) that
|A(t)un(t)—A(t)un(t2)| + \A(t)um(t)—A(t)um(t?)l < cexp(-Ap)/p.

By part (iii) of Lemma 5.1 and Lemma 4.5 pi(t) exists; and, using

condition (iv),
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1 ~ . n m
pl(t) = iiTO(\un(t)—um(t)+h[A(t)un(ti)-A(t)um(tj)]| = Ju (£)-u (£)1)/n
< iiTO(Iun(t)vum(t)+h[A(t)un(t)—A(t)um(t)]I - |un(t)—um(t)|)/h
+ {AGu (E-A00u (O] + [attiu (0)-alt)u (£7))

Ap(t) + cexpl-Ap)/p.

Since this ineguality helds for almost all t in [a,a+p], it follows
from Lemma 4.6 that
t

pla)exp(A(t-a)) + f {cexp(-hplexp{A{t-s})/ptds
a

1A

p(t)

A

< plajexplhp) + ¢

for all t in [a,a+p]. Siace pla) = 0 we have |un(t)—um(t)| < ¢ fer all

t in [a,a+p] and all n > 3 > n- Hence, the sequence (un)f is uniformly
Cauchy on [a,a+p]. As in the proof of Lemma 5.3, one can show that the
sequence (Un): tends uniformly to a continuous function u from [a,atp]
into P such that u(a) = z ard |u(t)-u(s)| < M|[t-s| for all t and s in
[a,a+p]. Since A(t) is continucus for each t in [a,b], one can show
with the techniques used in the proof of Lemma 5.4 that 1im ué{t) =

>0
A(t)u{t) for almost all t in [a,atp]. Since ]u;(t)i I Mnfor all n <1

and almost a1l t in [a.,a+p], it fellows from Lemma 4.2 and part (iv) of

Lemma 5.1 that



67

ul(t)

lim u (t)
n

>

t
lim {z + (B) [ u'(s)ds)
d

t
z + (B) | A(s)u(s)ds.
a

1

Thus u is a solution te (IVP) in the extended sense con [a,atp]. Now
let v ke a seluticn to (IVP) in the extended sense on [a,a+p] such that
v(a) = z and let p(t) = |u(t)—v(t)| for each t in [a,a+p]. By Lemma L.5

and conditicn {(iv) of this theorem,

1im (JuCt)y=v(t)+h[A(t u(t)-ACtv(t)]] - |ult)-v(t)|)/h
-0

p'(t)

A

Ap(t)

for almost all t in [a,a+p], and it follows easily from Lemma 4.6 that
p(t) < plalexp(A(t-a)) for all t in [a,atp]. Since p(a) = 0, u = v and
the solutlon u is unique. This completes the proof of Theorem 5.2.

As in Corollaries 5.1 and 5.2 we have

Corolilary 5.3. 1f in addition to the suppositions of Theorem 5.2 we
suppose that the function (t,x) > A(t)x in demicontinuous on [a,blxD

then u 1is a sclution to (IVP) in the weak sense on [a,atp].

Corollary &.4. 1If in addition to the suppositicns of Theorem 5.2 we

suppose that the function (t,x) - A(t)x is continucus on [a,blxP then
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u is a solution to (IVP) in the usual sense on [a.,a+p].
How let {A(t) : te[0,=)} be a family of functions from E into E.
We will give sufficient conditions to insure that the initial value

problem

(IVE)' u'(t) = Altiul(t), ula) = =z

has a wunique solution on [a,») for each {(a,z) in [0,=)xE.

Kemark 5.3. If b is a number or = and u 1s a function from [a.b) into
E, then we say that u is a sclution of (IVP)' in any of the senses of
Definition 5.1 on [a,b) if for each ¢ in {(a,b), u is a solution of

(IVP}' in the corresponding sense on [a,c].

Theorem 5.3. Suppose that {A(t) : te[0,=)} is a family of functions
from E inte [ which satisfy each of the following conditions:
(i) For each = in E the functien t = A(t)x 1s Bochner integrable
on bounded subintervals of [0,=).
(ii) The function (t,x) -+ A(t)x is demicontinuous on [0,=)xE
and maps bounded subsets of [G,»)}xE into bounded subsets
of E.
(iii) For each t in [0,=), A(t) is in tr{E,E} and there is a con-
tinuous function n from [0,=} into the real numbers such
that LLA(t)] £ nit) for all t in [0,x).
{(iv) TFor each (a,z) in [0,»)xE there is a pesitive number

p = pla,z) and a Lipschitz continuous function u from
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[a,a+p] into E such that u(a) = z and u is a solution to
(IVP)' in the extended sense on [a.,a+p].
Then for each (a,z) in [0,=)xE there is a unique function u(-ja,z)
from [a,=) into E such that u(asa,z) = z and u(-;a,z) is a solution in
the extended sense to (IVP)' on [a,=). Furthermore, if w is in E then
t

(5.11) lu(ta,z)-ult;a,w)| < Wz—w|exp(f n(s)ds)
a

for all t in [a,=).

Remark 5.4. Theorems 5.2 and 5.3 and their corollaries give sufficient

conditions for part (iv) of Theorem 5.3 to held.

Remark 5.5. The inequality (5.11) in Theorem 5.3 shows that the solu-
tions to (IVP)' are uniformly continuous with respect te initial values

on bounded subintervals of [a,=). Note that if there is a number T

t
such that | n(s)ds £ T for all t in [a,=) then the solutions are uni-
a
formly continuous with respect to initial values on [a,«). Furthermore,
T
if 1im f n(s)ds = -= then lim {u(t;a,z) - u(tia,w)} = 0 for all z and
Tt g tso0

w in € and the limit is uniform on hounded subsets of E.

Proof of Theorem 5.3. Suppose that (a,z) is in [0,2)xE and u is a
solution to (IVP)' which is given by conditicn (iv) of the theorem.
Suppose that u is defined on [a,T) and T < =. For each t in [a,T) let
p(t) = |u(t)-z|. Then by Lemma 4.5, for almost all t in [a,T),

p;(t) exists and
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p;(t) = 1im (|u(t)-z+ha(tiult)| - |ult)-z|)/b
f+0
< lim(|u(t)-z+h[A(t u(t)-A(t)z]] - |u(t)-z|)/h + |A(t)z]
h>+0
< n(t)plt) + |a(t)yz].

By condition (1)} and Lemmas 4.1 and 4.8,

t t
lu(t)ﬂz‘ < f |A(s)z‘exp(f n{r)dr)ds
a s
for alt t in [0,T) and it follows that u is bounded on [a,T). By con-
dition (ii) let M be a positive number such that |A(t)u(t)| < M for ail
t in [a,T). Then if t and s are in [a,T},
t

[(B) [ A(r)u(r)dr]
s

]

lu(t)-u(s) |

< M|t—s|.

It follows that u(T) = lim u(t) exists. By condition (i1},

t>-T
w-1im A(tiu(t) = A{(T)u(T). Since
t~T
t
u(t) = z + (B) f A(s)u(s)ds
a

*
for all t in [a,T), for each f in E ,



t
(5.12) (u(t),f) = (z,£) + [ (a(s)u(s),f)ds
=1
(see [7, Theorem 3.7.1]). By condition (ii), (5.12) holds for t = T.

Consequently, u ig Lipshitz continucus and weakly differentiable on

[a,T] so by Lemma 4.4,

T
ul(T) = =z + (B) f A(s)u(s)ds.

a
This, along with condition (iv), shows that the solution u can be con-
tinued past T and it follows that u can be extended to [a,»). Now let
z and w be in E and let u and v be solutions to (IVP)' in the extendad
sense cn [a,») such that u(a) = z and v(a) = w. If p{t) = }u(f)—v(t)’
for each t in [a,=), then by Lemma 4.5, for almost all t in [a,=),

p;(t) exists and

p;(t) = lim (|u(t)-v{O+h[A(Dult)-A{t)v(t) 1| - |ult)-v(t)]|)/h.
h++0
By condition (iii}, p;(t) < n{t)p(t) for almost all t in [a,=), and
the inequality (5.11) follows easily from Lemma 4.6. By taking w = z,
the uniqueness of u(-;a,z) 1s immediate from {(5.11) and the proof of
Theorem 5.3 is complete.

In the proof of Theorem 5.3 we have shown that

Corollary 5.5, The solution u(-3a,z) to (IVP)' is a sclution in the
weak sense to {(IVP)' on [a,») for each (a,z) in [0,=)xL.

As in Ccrollary 5.2 we have
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Corollary &.6. If in addition to the suppositions of Theorem 5.3,
suppose that the function (t,x) » A{t)x is centinuous cn [0,=)xE, then
u(+*;a,z) is a solution to (IVP)' in the usual sense on [a&,») for each
(a,z) in [0 ,=)}xL.

*
Example 5.3. Suppose that E is uniformly convex and fA{t) : te[0,%)}

is a family of functions from E into E such that the function (t,x) ~
A{t)» 1Is continuous and maps bounded subsets of [0,~)xE intc bounded
subsets of E. Suppose further that there is a continuous functlon n
from (0,«) into the real numbers such that Re(A(t)x-A(t)y,f) <
n(t)Ix—y|2 for all x and v in E and £ in F(x-y). Then, by Example 5.2,
condition {iv) of Theorem 5.3 is satisfied and so each of the supposi-
tions of Theorem 2.3 and Corollary 5.6 are satisfied. Thus Corollary
5.6 contains the global existence theorem in the case that £ is a Hil-
bert space given by Browder in [1, Theorem 4].

Now we wish to establish sufficient conditions for the global
existence of solutions to an autonomous differential equation on [0,).

Let A be a function from E inte £ and consider the initial value problem

(Ivp)" u'(t) = Ault), u(o) = =z

where z is in B and t is in [CQ,=).

Theorem 5.4. Suppose that A 1s a function from E intc E which satisfles
each of the following conditions:

(i) A is demicontinuous on E.
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(ii) A is in Lnl(E,E}.

{iii) Tor each z in E there is a positive number p = p(z) and a
Lipschitz centinuous function u from [0,p] into E such
that u(0) = z and u is a solution to (IVP)" in the
extended sense on [0,p].

Then for each z in E there is a unique function u(-;z) from [0,=)
into E such that u{03z) = z and u{-;z) is a solution teo (IVP)" in the

extended sense on [0,»). Furthermore, if w is in E then

(5.13) [ult;z)-u(t;w)| = |z-w|exp(L[AaTt)

for all t in [0,=).

Remark 5.6, Theorems 5.2 and 5.3 and thelr corcllaries give sufficient

conditions for part (iv) of Theorem 5.4 to hold.

Froof of Theorem 5.4. Let z be in E and let u be a solution to (IVP)"
which is given by condition {(iv) of the theorem, and suppose that u is
defined on [D,T) where T < «, Let 0 < h < T and for each t in [0,T-h)
define p(t) = |u(t+h)—u(t)|. By Lemma 4.5 and condition (ii), for

almost all t in [O,T—h),p;(t) exists and

1im (|u(t+h)-u(t)+hlAu(t+h)-Au(t)]] - |u(t+h)-u(t)|)/h
=t 0

]

pl(t)

A

< LIAdp(L).




By Lemma 4.6,

|lutt+n)-u(t)| < |ulh)-u(0)|exp(L{A]IL)

for all t in [0,T-h). Hence

lim  Ju(t+h)-u(t)| = lim exp(|LLATIT) Ju(h)-u(0) ]
t,t+h>-T h++0

so that 1im u{t) = u(T) exists. The completion of the procf of
t>-T

Theorem 5.4 Is now essentially the same as the analogous parts of

the proof of Theorem 5.3 (with n(t) = L[A] for each t in [0,=))

an! is omitted.

As 1n Corocllary 5.5 we have

Corollary 5.7. The solution u(-3;z) to (IVP)' is a solution in the
weak sense tc {IVP)'" on [0,®) for each z in E.

As 1in Corollary 5.6 we have

Corollary 5.8. If, in additlion to the suppositions of Theorem 5.4,
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we suppose that A is continuous on L, then u(-3z) is a solution 1s the

usual sense to (IVP)'" on [0,x) for each z is E,

Example 5.4. Let K be the real field and let £ be the space of all

real valued sequences (Ek); such that lim gk = 0. In this example let

koo



: “ = v ad | P P .
;, denocte the norm on E given by ](E,k)l|m magl |4 0 koo 1)

For each k = 1 let Ak be a continuous, nenincreasing functicn from K

into K such that each Ak is uniformly bounded on Lounded subsets of K,

the family {Ak : k 2 1} is equicontinuous on &, and Akﬂ - 0 for each

]

). where » = A E  for

) (wk I k7L

in E define Ax =

(g

il

k 2 1. For each x
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each k » 1. Then A is a continucus function from £ into E. low let

R be a positive number and DR = {xekt : lx\m < Ri. o Let Boand £ be
I

positive numbers and let M be a positive number such that ‘Ax| < M
for all % in DR' Choose & = B/{7M) and let u = (g})T and v = (NT)T e

members of DR such that lx—y\m z 8. Since \Axfﬁy|n = 2M, if
i

0 < h < §, then
(5.14) |-y+h[Ax-Ay]| = B - 2hM = SE/7.
Let q be a positive integer such that
|x-y+h[Ax-Ayl| = |ngnq+h{ﬂng“Aqan}.

Then

gq—nq| > h|Aq£q-Aqnq|ibr if not, |Eq—nq| - M'Angwﬁqnq

?R8/7 which implies that |x—y+h[Ax—Ay]|m < 28/7 ¥ 2847 = 4UR/ST. This

| = 2ny <

is a contradiction tc (5.14}. Thus,

(|x—y+h[Ax—Ay]|m - |x—y|m)/h

)/ h
m

= - - h - ] - lwes
(laq nql IAng Agngl - 1wy
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[—

This shows that A is in ULnr[E,E) with L'[A] £ 0. Thus, by Theorem 5.
and Corcllarvy 5.2, A satisfies each of the conditions of Theorem 5.4
and Corclliary 5.6. . F. Webb [21, bExampie 3] gives an example of a
function A from E into £ which satisfies each of the above conditlions
but is not uniformly continucus on any neighborhood of the origin.
Consequently Theorem 5.2 may not apply to this situation.

The theorems presented in this chapter are new and will appear
in a paper by the author in the Journal of the Mathematical Society of
Japan under the title "The Logarithmic Derivative and Egquations of
Evclution in a Banach Space." It shouid be noted that, in this paper,
the author uses the term logarithmic derivative instead of uniform

logarithmic derivative to characterize members of ULn(D,E}.
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CHAPTER VI

AUTONOMOUS DIFFTERENTIAL EQUATIONS AND

SEMIGROUPS OF NONLINEAR OPERATORS

In this chapter the results of Chapter 5 are applied to the

autonomous differential equation

{ADE) u'(t) = Au(t), u(d) = =,

where A is a function from E into E, z is in E, and t is in [0,=).
We give some applications of these results to the generation of semi-
groups of nonlinear operators in Lip(E,E] and also establish sufficient

conditions for (ADE)} to have a unique critical peint in E.

Definition 6.1. A function U from [0,=} into Lip(E,E) is called a
semigroup of operators in L{p(E,E} if each of the following holds:
(1)} U(0) = I and U(t)-U{(s) = U(t+s) for all t and s in [0,«).
(ii) There 1s a mumber o such that N[U(t)] < exp(ot) for all
t in [0,=).
U is said to be of class (w—Cl) if in addition to (i) and (il)},
(iii) TFor each z in E the function t » U(t)z is weakly continu-~
ously differentiable on [0,=).

U is said to be of class (Cl) if in addition te (i) and (ii),
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(iii)' Tor each z in E the function t » U(t)z is continuously

differentiable on [0,=).

Definition 6.2. Let U be a semigroup cf cperators in L{p{E,E].
(i) If P is the set of all z in E such that w-1lim (U(h)z-z)/h
h=++0
exlsts and Az denotes this limit, then A is said to be
the weak generator of U.
(1i) Tf P is the set of all z in E such that lim (U(h)z-z)/h
h++0

exists and Az denotes this limit, then A is said tc bhe

the strong generator of U,

Remark 6.1. HNote that if U is a semigroup of class (Cl)’ then U is a
semigroup of class (w—Cl). Furthermore, if U is of class (Cl)
{respectively, (w—Cl)), then the strong generator (respectively, weak

generator) of U is defined on all of E.

Example 6.1, Suppose A is in BL(E,E) and U(t) = exp(tA) for each t in
[0,2). Then U is a semigroup of operators in BL(E,E) and A is the
strong generator of U. Furthermore, the number ¢ in part (i1) of Defi-

nition 6.1 can be taken as uw[A] (see part (ii) of Propesition 2.1).

Proposition 6.1. Let U be a semigroup of operators in Lip[E,E] satis-
fying parts (i) and (i1) of Definition 6.1 and suppose A is the weak
generator of U which is defined on a subset U of E. Then A is in

Ln(D,E) and L[A] < o.

Proof. Let x and y be in D and let g be in G(x-y! (see Definition 2.1).

Then




Re(Ax-Avy.,g) Re{lim ([U(h)x-x - U(h)y+yl/h, g)}

h~+0

= Re{lim (U(h)x - U(h)y,g)}/h - (x-y,g)/h}

h>+0
< lim (JU(h)x-U(h)y| - |x-y|)/h
h++0
< 1lim (exp(ch)|x—y| - {x—y|)/h
h—>+(
= olx-y|.

Here, we have used part {(i1i)} of Definition 6.1 and the fact that
(x-y,g) = |x—y|. The asgertion of the proposition now follows from

Proposition 2.3,

Definition £.3. 1If A is a2 function from E into E, then
(i) A is called locally bounded on E if for each z in E there

is a neighborhood Uz of z such that A is bounded on Uz'

(ii) A is called locally uniformly continucus on E if for each
z in € there is a neighborhood UZ of z such that A is
uniformly continuous on UZ.

{(ii1) A is saild to have a local uniform logarithmic derivative
on E if for each z in E there 1s a neighborhood UZ of =z

such that the restriction of A to UZ is in ULH[U7,E].

Theorem 6.1. Suppose that A is a continuous function from E into E

and there is a number ¢ such that

79
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(1) 1im (|x-y+hfAx-Ay]| - |x-y|)/h € o|x-y| for all x and y
h>-0
in E.
Suppose further that either of the following is satisfied:
(i1} A is locally uniformly continuous on E.
(ii)' A has a local uniform logarithmic derivative on E.
Then A is in Ln({E,E), L[A] < o, and A is the strong generator of a

semigroup of operators U of class (Cl) which satisfies the conditions

(i), (ii), and (iii)' of Definition 6.1.

Proof. If (ii) holds then by Corollary 5.4 of Theorem 5.2 (respectively
if (i1i)' helds then by Corollary 5.2 of Theorem 5.1) for each z in E
there is a p{z) » 0 and a continuous function ul-;z) from [0,pc{z)] into
E such that u(03z) = z and u(-;z) is a solution to (ADE) in the usual
sense on [0,p(z)]. If x and y are in E, p = min{p(x}.p{y)}, and p(t} =
|u(t;x)—u(t;y)] for each t i1s f0O,p], then by Lemma 4.51}l(t) exlists for

each t in (0,p] and, by condition (i) of this theorem,

p'(t) = 1im (|u(t;x) - ul(t;y) + hl[Ault;x)} - Au(t,y)]| -
- b0
lu(tsx) - u(t3y))/h
< gp(t).

By Lemma 4.6, p{t) < exp(o(t-s))p(s) for all t and s in [0,p] with

s € t. Consequently, if t is in [0,p),
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p;(t) = 1lim [p(t+h)-p{t)1/h
h>+0

[Fa8

lim [exp{chlp(t)-p(t)]/h
h>+0

= p{t}lim [exp(ch)-11/h
b>+0

= op(t).

i

r
Since u(03x}) = », u(0,y) Vs u+(0;x) = Ax, and u;(O;y) = Ay, we have by

Lemma 4.5 that

lim (|x-y+h[Ax-Ay]| - |x-y|} = p;(O)
h>+0
< ap{0)
= o|x-y|

and sc A is in Lu(E,E} with L[A] £ o. It is now an immediate consequence
of Corollary 5.8 to Theorem 5.4 that for each z in E there Is a unique
function u(-32z) from [0,=} into E which is a solution to (ADE) in the

usual since on [0,»)}. By conclusicn (%.13) to Thecrem 5.4,

lu(tiz)-ult;w)| = |z-w|exp(ot)

for all t in [0,*). Letting U(t)z = u(ti;z) for each (t,z) in [0,=)xE,
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it is immediate that U satisfies the conditions (1), (ii), and (iii )}’

of Definition 6.1 and the proof of Theorem 6.1 is complete.

Proposition 6.2. With the suppositions of Theorem 6.1, conditlon (ii)

implies condition (ii)'.

Proof. Let U be the semigroup generated by A and let z be in E. By
condition (ii) let UZ be a neighborhood of z such that A is uniformly
continuous on UZ and let R > 0 be such that if |x—z‘ < 2R then x 1is in
Uz' Suppose further that VZ is chosen so that there iIs a number M such
that lel < M for all x in Uz' if Tz = {xek: |x—z{ < R}, we will show
that the restriction of A& to TZ is in ULn{TZ,E). Let p » ¢ be such
that pMexp(\c|p) < R and let x be in TZ. if pl(t) = |U(t)x-x| for each

t in [0,p], then, by Lemma 4.5,

p;(t) = 1im (|U(t)x—x + hAU(t)x] - |U(t)x—x|)/h
h>+0
< lim (|U(t)x-x + h[AUCE)x-Ax]| - |U(t)Ix—x]|)/h + |Ax]
b+ 0
< op(t) + M.
Since p{(0) = 0 and t - s € o for each s in [0,t], we have by Lemma 4.6
that
t
p(t) € p(0)explot) + f Mexp(o{t-s))ds
a
< tMexp(|o|p).
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Thus, for each t in [0,p] and each x in Tz’

(6.1) |U(t)x-%| < tMexp(|o|p).

In particular, since t < p and pMexp{|oc|p) < R, we have |U(t)x-z]| <

\U(t)x—x\ + |x—z\ < 2R so that U(t)x is in Uz for all t in [0,p] and x

t
in TZ. Turthermore, since U(t)x = x + f AU(s)xds, we have
Q
..l t
(6.2) |ax - (Utx-x)/t] = [t7° [ {Ax - AU(s)x}ds]|
(@]

[Fa

sup{|Ax—AU(s)x| : Oggst}

for each t in (0,p]. Now let £ be a positive number. Since A is

uniformly continuocus on UZ choose Gl > 0 so that if Wy and W, are in

e/3. By (6.1) let & be such

1A

UZ with |wl~w2| < 8,, then |Awl~Aw2]

IaY

that if t is in [0,8] then |U(t)x—x| < 61 for all x in TZ and further,

choose 8 sufficiently small so that (exp(at)-1)/t = g + e¢/6R for each

A

t in (0,8). Note that if * is in (0,8) then by (6.2) |Ax-(U(t)x-x)/t| <
e/3 for all % in TZ. Using the above estimates, we have that if

0 < h< 48 and x and y are in TZ then
(|x-y +h[Ax-Ay]| - |x-y|}/h < {|x~y + h[(U(h)%-x)/h - (U(h)y-y)/h)]]|
- |x-y|¥/h + [Ax - (U(h)x-x)/h| + |Ay - (U(h)y-y)/h]

< (|uh)x -~ UM)y| - |%-y|)/h +2e/3
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< |x-y| (exp(oh)-1)/h + 2¢/3
< |x-y|(c + €/6R) + 2¢/3
< olx-y| + €.

Here, we used the fact that |x—y| < ?R. This shows that the restriction
of A to Tz is in ULH(TZ,E] and the precof of the proposition is complete.
Using technigues analogous to those in the proof of Proposition

6.2 one can show the following:

Proposition 6.3, If A is a member of Ln(E,E] which is uniformly con-

tinuous on bounded subsets of £ then A is in ULn(E,E) and L'[A] = L[AT.

Remark 6.2, Note that In the proof of Proposition. 3.2 that the number
8§ was chosen independent of the distance apart x and y were in TZ. If
D is a subset of E and A is in ULwn(D,E), one can show directly that
a necessary and sufficient condition for the number & = §(Q,R,e) in

Definition 2.10 to be chosen independent of B is that A be uniformly

continuocus on 0

-

Theorem €.2. Suppose that A is a demicontinuous function from E into E
and each of the following is satisfied:
{i) there 1z & number ¢ such that
lim (|x-y + hlAx-Ayl] - |x-y{)/h £ o|x-y|
b>-0

for all x and y in E.
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(ii) A is locally bounded on E.

(i11) A has a local uniform logarithmic derivative on E.
Then A is in Ln(E,E), L[A) < o, and A is the weak generator of a semi-
group U of class (w—Cl) which satisfies the conditions (i), (ii}, and

{iii} of Definition 6.1.

Proof. Since A is demicontinucus on [ we have from conditions (ii) and
(iii) and from Thecrem 5.1 and Corollary 5.1 that, for each z in E,

there iz a p(z) > ¢ and a unique continuous function u(-;z) from [C,p(z)]
into £ such that u(03z) = z and u(+3z) is a solution to (ADE) in both the
extended and weak sense on [0,p(z)]. If x and v are in €,

p = min{p(x),p{y)}, and p(t) = Iu(t;x) - u(t;y)} for each t in [0,p],
then, by Lemma 4.5, pl(t) exists for almost all t in (0,p] and, by con-

ditien (i) of this theorem,

p:(t) im (Jultsx)r-utsy) + hlAultsx)-Aults;y)]] - |ult ) -ults;y) | ym

-0

[Ia

ap(t).

By Lemma 4.6, p(t) < p(0)explot) = |x-y|exp(ot) for each t in [0,0].

As in the proof of Proposition 6.1, if g is in G[x-y| then
Re(Ax-Ay,g) = lim {Re ([u(h;x)~x - ulhsyy)+ryl/h,g)}
hr+0

< lim (|u(hix)-ulhsy)| - |x-y|)/h
h>+0
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1A

(exp{ch)-1)|x-y|/h

11

a|x-y|.

Hence A is in Ln{E,E} with L[A] < 0. It is now an immediate consequence
of Corollary 5.7 to Thecorem 5.4 that, for each z in £, there is a unique
function u{-3;z) from [0,») into E which is a solution to (ADE) in the

weak sense on [0,*). By conclusicn (5.13) to Theorem 5.U4,

|uCtsz) - ultyw)! = |z-w|exp(ot)

for all t in [0,=). Let U(t)z = u(t;z) for each (t,z) in [0,«=)xE; it
is immediate that U satisfies the conditions (i), (ii), and (iii) of

Definition 6.1 and the proof of Theorem 6.2 is complete.

Proposition 6.4. Suppose that A is a function from & into E and ¢ is a

nonincreasing functien from [0,«) inte (0,») such that

lim (|x-y + hlAx-Ay]| - |x-y|)/h < -p(r)|x-y|
h++0

whenever x and y are in E with |x|,|y| £ r. If x and y are in E with

|xl = |y‘ then

Ik
ax-ay| = |x-y|(|x|-lyD™F [ ot)dr  if |x] > |y

Iy

and




|Ax—Ay| 2 |x—y|p(|y|) if |x| = |y|.

Proof. Let ¢ be a positive number and let (Si)g be a subdivision of

[0,1] such that

1
[ p((-s)|y| + s|x|)ds -

.

o

(6.3)

)‘ < g,

1
ne-13

D((l—si)‘y| + Si'x|)(si—si_

1 1

1

For each integer 1 in [0,n] let 2, = (l—si)y + 5% and let ti =

lv| + si(|x|~|y|). Note that |Zi|’| € t; and lZiﬁZ.

1—1‘

Zi—l'

(Si—si_l)|x~y|. For each integer i in [1l,n] there is a 61 > 0 such
that if 0 < h < 6i, then
(|z.—z. + h[Az.-Az,
i 71-1 1 i-

M- lzgmzy , D/m

s (plty) + e)(si—si_l)|x—y|.

Consequently, if & = min{<5i : 1< i<ntand 0 < h< &, then

(6.4)  |z;-z, | + hlAz.-Az, 7| < (L-ho(£;) + hed(s;-s, D=y

for each integer i in [1,n]. Since




®-y + h[Ax-Ay] = {zi—zi_
i

+ h[Az.-Az. .1}
N R

1 1

H o~

we have by (6.4), (6.3), and the definition of ti that if 0 < h £ &

then

T

n
x-y + hlAx-Ay]]| ) |zi—zi_l t hlAz,-Az. 1]
i21

1

l(l—hp(ti) + hE)(Si“Si_l)|X'Y|

1A
I~

i

1

tA

Since |x-y| - h|Ax-Ay| £ |x-y + hlax-Ay]|, it follows that

1
~hlax-ay| < -nlx-y!] o(ly] + sUx|-|v])ds + 2he|x-y|
0]
and hernce,
1
|ax-ay| = |x-y1] o€ly| + sC]x[-]y|Nds - 2¢[x-y].
0

Since this inequality is true for each ¢ » 0 the assertions of the
lemma follow directly if |x| = |y| and by the change of variable
v o= |y o+ osCx[=|y]>y if |x[ > ly].

Corollary €.1. In additicen to the suppositicns of Propesition 6.4,

[ss]
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Ix—y|{l - hf p(|y| + s(]x\—‘y\))ds t+ 2hel.
0

suppose that | p(r)dr = =». If A is bounded on a subset D of E, then D

0
is a bounded subset of E.



froof. If x is in D and we take y in Proposition 6.4 to be 0 then

%
[ plr)dr = |Ax-Ac]

and it is immediate that T is bounded.

Theorem 6.3,

Suppose that A is a function from E into € and p is =&

nonincreasing function from [0,») into (0,=) such that each of the

following is satisfied:

(i) A is demicontinucus on E.
(i1) [ p(r)dr = =.
0
(iii) TFor each r > 0 and » and y in E with [x|,|y] £ r,
1im (}x—y + h[Ax—Ay]l - |x—y|)/h < —p(r)\x—y|.
h>+0
{iv) Tor each z in £ there is a positive number T = T(z) and a
function u froem [0,T] into E such that u{(0) = 2z and u is
a solution to (ADE) in the extended sense on [0,T].
Then there is a unigue memher X of £ such that Ax = 0, and for each

z in E there is a unique function u(-;z) from [0,») into E such that

u{03z) = z and u{*;z} is a sclution to (ADE) in the extended sense on

[0,»). Furthermore,

\u(t;z)—xC1 = ’z—xciexp(—o(|z—xc| + [xc|)t)

for each + in [0,=).

89
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Proof. Since conditien (iii) implies that A is in Ln{E,E] with L[A] < ©
we have, by Thecrem 5.4, that for each z in E there is a unique function
u{-;z) from [0,=) into £ such that u{0;z) = z and u(-;z) is a solution

to (ADE) in the extended sense on [0,x). Furthermore

(6.5) lultsz) - ultyw)| < lz-w
for all =z and w in E. Now let h be in (0,1) and choose w = u(h;z) so
that u(t;w) = u(t+h;z). Dividing each side of (6.5) by h we have that
(6.6) 1im sup|u(tt+h;z) - u(t;z)|/h

h>+0

< lim sup|u(h;z) - u(0;2)|/h.
h++0

Since u(-3z) is Lipschitz continuous on [0,1] there is a number K such
that |u(h;z) - u(O;z)| < Kh for all h in (0,1]. It then follows from
(6.8) that for almost all t in [0,=), |Au(t;z)| = lu'(t,z)l < K. By
condition (ii) and Corecllary 6.1, there is a number k' such that
|u(t;z)| < K' for almost all t in [0,») and since u{-;z) is continuous,
it is immediate that |u(t3;z)| € K' for all t in [0,*). Hernce, for each
z in E, u(-32) is bounded on [0,»). Let z and w be in E and let v, be
a positive number such that ’u(t;z)|,]u(t;w)| SR for all t in [0,«).
If p(t) = |u(t;z) - u(t;w)\ for each t in £0,») then, by conditicen (iii)
and Lemma 4.5, p;(t) < —p(ro)p(t) for almost all t in [0,»), and we have

by Lemma 4.6 that
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(6.7) )u(t;z) - u(t;w)] < ‘z—wlexp(—o(ro)t)

for all t in [Q,»). If h is In (0,1] and w is taken to be u(hjz)

then (6.7) becomes
(6.8) }u(t+h;z) - u(t;z)! < Iu(h;z) - zlexp(fp(ro)t).

Since \u(h;z) - z’ < Qro, (6.8} shows that ui{t;z) tends to some limit
X, as t tends to =, Dividing both sides of (6.8) by h and letting
h++0, we have that if K is a number such that iu(h;z) - u(O;z)| < Kh
for each h iIn (0,1], then ‘u'(t;z)| < K exp(ﬂp(ro)t) for almost all t
in [0,»}. Hence, there is a sequence (tk)i in [0,«) such that

lim T, = and lim u'(tk;z) = 1lim Au(tk;z) = 0. Since lim u(tyz) = %,

Joaen Y00 koo 1o

ard A 1s demicontinuous on E we have that

Ax = w-1lim Au(tiz)
1o

= w-1im Au(tk;z)

ko

= w-1lim u'(t, 32)
k
Joroo

Now, take w to be %, 80 that u(tyw) = % for all t in [0,=). The

inequality (6.7) becomes
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(6.9) |u(t;z) - XCI < ‘z—xc[exp(—p(ro)t)

for all t in [0,=). In particular, |u(t;z) - xcf < |z—xc| s0 that
lu(ts;z)| = fultsz) - x | + |x | © {z-x_| + |x_| and the number r in

C c C < Q
(6.9) can be taken as }z—xc' + |xc|. Since (6.9) clearly implies that
X, is the only member of [ such that AXC = 0, the proof of Theorem 6.3

is complete.

Femark 6.3. Thecrem 6.3 is related tc Theorem 1 of Markus and Yamabe
in [14]. Their theorem is done with & being a finite-dimensional,
connected, complete Riemannian manifcld and with A being continuously
differentiable. Instead of condition (11} of Theorem 6.3 Markus and
Yamabe require that

o S
(6.10) [ expl-e | plr)dr)ds < «

0 o]
for each ¢ > 0. Note that (6.10) implies that cendition (iil) heolds and

if plr) = (l+r)_l, then p satisfies (ii) but not (6.10).

Remark 6.4. Note that condition (ii) of Theorem 6.3 was used only to
show that each solution to (ADE) was bounded cn [0,=). Instead of

condition (11) assume that there exists at least cone bounded solution
u to (ADE)Y on [0,=), If v is a solution to (ADE) on [0,«) and p(t) =
|u(t) - v(t)|, then p;(t) < L[A]p(t) < 0 for almest all t in [0,=) so
that |u(t) - v(t)]| < |u(0) - v(0)|. Hence each solution to (ADE) is

bounded on [0,=) and the conclusions of Theorem €.3 are valid. In
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particular, if conditions (i), {(iii}, and (iv) of Theorem 6.3 hold,
then either all sclutions to (ADE) are unbounded on [0,=) or the con-
clusicons of Theorem 6.3 are valid. As a simple illustration, let E
be the space of real numbers, let vy be in E, and let Ax = exp{-x) - v
for each ®x in E. Then if v < 0 all solutions are unbounded on [0,=)
and if y > 0 all sclutions are bounded on [0,=) and tend to -1n(y) as

t tends to =.

Corollary €.2. For each y in E let Byx = Ax - y for all x in E and,
in addition to the suppositions of Theorem 6.3, suppose that
(v) TFor each z in E there is a positive number T = T(z) and
a function u from [0,T] into E such that u{(0) = z and u
is a solution in the extended sense to u'(t) = Byu(t) on
Lo,T].
Then A is a bijection from E into E and if D is bounded subset of E,
there is an ro 0 such that NA_lx - A_ly| < p(ro)_l|x—y| for all x

and y in D.

Proof. It is easy to check that By satisfies each of the conditions

of A in Theorem 6.3. Consequently, for each y in E there is a unique
point Xy in [ such that Byxy = 0. Hence Axy = y and it 1s immediate

that A is a bijection. If D is a bounded subset of E and D' = A_l(p),
then A iz bounded on P’ so, by Corollary 6.1, there is an r_ > 0 such
that |x] = r_ for all x in P'. It follows easily from Proposition 6.4
that |Ax—Ay| > p(ro)|x~y| for all x and v in P’ and the last asserticn

of the corollary 1s now evident.
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Corollary 6.3. Suppose that A satisfies the conditions of Theorem 6.1
or Thecrem 6.2 and let A be in K with Re{i) > g. Then A-A] is a bijec-
tion from E into E and (A-AI)™% is in Lip(E,E] with N[(A- I)7T7 <

(Re(A)—U)_l.

Proof. Since A is in Ln(E,E) with L{AT < g, A-AT is in Ln(E,E]) with
L[A-2I1 = L[A] - Re{A) < ¢ - Re(A}. It is now easy to check that A-Al
satisfies each of the conditions of Corecllary 6.2 with p(r) = (Re(i) - o)
for each r in [0,»). Thus the assertions of Corellary £.3 are an immedi-

ate consequence of Corollary 6.2.

Fxample 6.2. Suppose that p satisfies the suppositions of Theorem 6.3
and A is a function from £ into E which has a Fréchet derivative daA(x)
at each point x in E. Suppose further that u[dA(x)] < -p(|x|) for each
x in E and that dA maps bounded subsets of [ into bounded subsets of
BLIE,E). As in the proof of Propesitions 2.2 one can show that if x and

y are in E with |x|.|y| £ r, then

Yim (]x-y + hlAx-Ay]) - |x-y|)/h = —p(r)|x-y].
h++0

Thus each of the suppositions of Theorem 6.3 and Corollary .3 hold.

Example 6.3. Let K'be the field of real numbers, let E = KQ, and let

| be the norm on k? defined by |(£l,£2)|1 = max{|£l|,|£2|} for each

(gl,gg) in KQ. Let A and ¢ be as in Example 3.5--that is

A(E,,6,) = (=26 + cos(,), sin*(5)) - &)
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and
Qe 58,0 = (£, 26,/3).
Tf uQ['] is induced by the norm |- g ©on k? where ‘(El’EQ)lQ = |Q(€1,52)lr

then by Example 3.5
uQ[dA(El,EQ)] < -1/3
and it follows from Example 6.2 that

lim (|x-y + hlAx-Ayl|. - |x-y|.)/h = —|x-y|./3
h>+0 . Q .

for each x and y in K?. Now let B be a continucus function from K2 into

K2 for which there is a nondecreasing function o from [0,=) into (0,=)

such that J (1/3 - 3c6(r)/2)dr = +« and |Bx—By}l < G(r)wx—yll whenever x
0

and y are in K? with |x|

< ar/2. since [¢|, = 1 and [¢7Y, = 3/2,

we have that if r > 0 and x and y are in K2 with |x|Q,|y|Q < r, then

< 3r/2 and

x| Iy, -

lim (k-y + h[Ax+Bx - Ay—By]IQ ~ |X‘Y|Q)/h
h>+0

< lim (|x-y + h[Ax-Ay]| . - |%-y|.)/h + |Bx-By|
ho+0 Q . 2

1A

—|x—y|Q/3 + |QeBx - Q'By\l
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IA

_|x—y)Q/3 + U(r)lx—le

(-1/3 + 30(r)/2)|xfy|Q.

I

Consequently, if p(r) 1/3 - 36(r)/? for each r in [0,=), we have that

A+ B and p satisfy each of the conditions of Theorem 6.3 and Corollary

6.2 with £ = K° and the norm |-| on E being the norm

defined above.

Q

Femark 6.5. If & is as in Example 6.3, Markus and Yamabe [14, p. 310]
show by using the Euclidian norm on K2 that the differential equation
u'(t) = Au{t) has a unique critical peint and that each solution tends

to this critical point as t tends to .

Remark 6.8. The results established in Theorem 6.3 are new and they
will appear iIn a paper by the author in the Journal of Mathematical
Analysis and Applications under the title '"A Theorem on Critical Points
and Glebal Asymptotic Stability." The results established in Thecrems
6.1 and 6.2 also seem to be new but in a remark at the end of section
2 in [21], Webb refers to some recent results of V., DBrowder and T. Kato
which are to appear in the Proceedings of the Symposium on Nonlinear
Function Analysis (published by the American Mathematical Society)}
which have considerable overlap with Theorem 6.1. In particular, Kato
shows that Theorem 6.1 is true if E* is uniformly convex and Browder

shows that Theorem 6.1 is true if condition {(ii) holds.
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CHAPTER VII

APPLICATIONS TO THE STABILITY OF DIFFERENTIAL EQUATIONS

Let {A(t) : te[0,)} be a family of functions from E intc L.
In this chapter we apply the techniques developed in this work to study

the growth of solutions to the differential equation

(DE) u'(t) = Altiult)

In this chapter we assume that the family {A{t) : te[0,»)} satisfies
each of the [ollowing conditions:
(1) A{(t)0 = 0 for each t in [0,=).
{2) Tor each z in L there is a positive number 1 and a
functien u from [0,7) inte B such that u(¢)} = z and u
(7.1) is a solution to (DE) in the usual sense on [0,T).
{3) The sclution u to (DE) in condition {2) can be
continued sc long as it remains is a bounded subset
of E.

The Fundamental theorem used in this Chapter is

Theorem 7.1. Suppose that D is a subset of £ and there are continu-

ous functions n and y from [0,») inte the real numbers such that
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lim (|x+ha(t)x| - |x|)/n = n(t) x|
h->+0

and
~lim (|x-ha(t)x| - [x[)/h = y(£) x|
h>+0

for each (+,x) in [0,«)xP. If u is a solution to (DE) and T is a posi-

tive number such that u(t) is in P for each t in [0,T), then

t
(i) the function t — |u(t)|exp(-f n(s)ds) is nonincreasing on
)
[0,T),
T
(ii) the function t — |u(t)|exp(-/ y(s)ds) is ncndecreasing on
)
[0,T), and
t t
(i11)  {u(o)fexp([ y(s)ds) < |u(t)] < |u(0)|exo(f n(s)ds) for each
) o
t in [0,T).

Remark 7.1, This theorem is closely related to Theorem 2.13.1 of

Lakshmikantham and Leela in [10,p 103].

Proof of Theorem 7.1. For each t in [0,T) let p(t) = |u(t)|. Then,

by Lemma 4.5,

pl(t) = 1im (Jult) + ha(Ou()| - Jut)|)/h
h—++0
< n{t)plt},
t
and it follows easily that the function t — p(t)exp(—f n{s)ds) is con-
(@]

tinucus and has a nonpositive right derivative on [0,T). Consequently,
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part (i) is true. Turthermore, if t is in (0,T) then

p (1) = 1im (Jult) + ha()u(t)| - |u(t)|)/h
h-+-0
= -1im (lu(t) - hACt)ult)| - Jult)])/h
h++0
= y(t)p(t)
t
so that the function t — p(tlexp(-/ y(s)ds) is continucus and has a
o]

nonnegative left derivative on (0,T) and part (ii) is true. Fart (iii)
is immediate from parts (i) and (ii).

We will now give a sequence of propositicns and examples that
show how these techniques relate to and sometimes sharpen some of the

knvan results in the stabllity theory of differential equations.

Proposition 7.1. Suppose that A(t) is in L{p(E,E) for each t in [0,»)
and the functicen t — A(t) is a continuous function from [0,») into the
seminormed space Lip(E,E}. If u is a sclution to (DE), then u exists

on [0,*} and each of the following holds:

t
(i) The function t — |u(t)|exp(-f M[A(s)]ds) is nonincreasing
o
on [0,=).
t
(ii)}) The function t — lu(t)|exp(f M[-A(s)]ds) is nondecreasing
o
on [0,=).
t t

(i11)  |uCo)|exp(-f M[-A(s)1ds) =< |u{t)| < |u(0)|exp(f M[A(s)]ds)
o o

for each t in [0 ,=).
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Remark 7.2. In the case that A(t) is linear for each t in [0,=) this
is Theorem 3 of Coppel in [4, p. 58]. The author in [15, Theorem 2]
shows that there is an analogous result to Theorem 3 of Coppel which

bounds solutions of linear Stieltjes integral equations.

Proof of Proposition 7.1. Since the function t - A(t) is continuous it
follows from part (iv) of Remark 2.8 that the functions t - M[A(t)] and

t + M[-A(t)] are continucus. If x is in E then

lim (|x+hA(t)x| - |x])/h < 1im (N[ I+hA(t)]|x| - |x|)/n
h—=+G0 h-+0
= MLA(t) ]| x|
and
-1im (|x=hA(t)x| - |x|)/h 2 =1im (N[I-hACt)1)x] - [x]|)/h
h>+0 h—=+0
= ~M-A() ]| x|

for each t in [0,=) so that this proposition is an immediate conseguence

of Thecrem 7.1.

Proposition 7.2. Suppose that r is a positive number, D{r) =

{xeE : |x|<r}, and A(t) is Fréchet differentiable in D(r] for each t

in [0,=). Let dzA(t)(x) denote the Fréchet derivative of A(t) at x and
suppose for each T>0 there is a number K(T) such that HdQA(t)(x)“ < K(T)

for each (t,x) in [0,71xD[r). Suppose further that al(r,+) is a
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continucus function from [0,=) into the real numbers such that
(i) u[dQA(t)(x)] < a(r,t) for each (t,x) in [0,=)xD{r].
{1i) There is a number I'(r) such that ftu(r,s)ds < I'(r) for
each t in [0,=). ’

If u is a solution to (DE) such that |u(0)|exp(I(r)) < r then u exists

on [0,=) and

t
|u(t)| = |uCo)|exp(] alr,s)ds)
o
for each t in [0,*). Furthermcre, if these suppoesitions held for each
r>0 and there is a number FO such that I'(r) = FO for each r > ¢, then

each solution to (DE) exists on [0,») and the above bound holds when-

ever |u(0)|exp(FO) < 1,
Proof, Using the techniques developed in the proof of Proposition 2.2

it is easy to show that

im (x+hACo)x] - [%)¥/h 2 alr,t) x|
h=++0

for all (t,x) in [0,=)xD(r). By part (iii) of Theorem 7.1 so long as

a solution u to (DE) remains in Dr)

t
|u(ty]| = |u(0)|exp(f alr,s)ds).
o

Thus if |u(0)|exp(I'(r))<r then |u(t)|<r for ail t in [0,=) and the

assertions of the propositicn follow easily,
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Example 7.1. Suppose that H is a Hilbert space and {A(t) : te[0,»)}

is a family of functions from H into H such that dzA(t)(X) exists and

is bounded on bounded subsets of [0,»)xH. Suppose further that P and

S are positive definite self-adjoint members of BL{H,H]) such that 8% = P,
and, for each r»0, there is a positive number A(r) such that if x is in
Dlr) and A is in the spectrum of P-dzA(t)(x) + dQA(t)(x)*-P, then

A € -A(r) for each t in [0,»). By Proposition 3.2, if u8[°] is induced

by the norm cn H (where |x|S = |sx|), then uS[dQA(t)(x)] <

S
-A(r)/(2||P|) whenever (t,x) is in [0,=)xD{r). Consequently, by Propo-

sition 7.2 (using the norm |+|.), we can take olr,t) = ~A{r)/(2|P|) so

S
that if u is a solution to (DE) such that HS_l”"S”|u(O)| < r, then u

exists on [0,=) and satisfies

luCt)] = [T 8] uCo) |exp(~tacr) /(2] 2]))

for each t in [0,»). In particular, this shows that Proposition 7.2
contains Theorem 21.1 of Krasovskii [9, p. 91]. Here Krasovskii

requires that H is finite dimensional and that -A(pr) = ~AO< 0 for each

r>Q0.

Proposition 7.3. Suppose that S is a nonempty set and {]- ceS}

a

is a family of norms on £ each of which is equivalent to the norm
on E. Also let {ao : 0eS} and {bU : geS} be families of positive num-

bers such that aG|x|U < |xl <b x|CT for each x in E. Furthermore, let

|

D te a bounded subset of £ and suppose that {nO : geS} and {YU : geS}

are families of continucus functions from [0,») into the real numbers
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such that if x is in D, t is in [0,»), and ¢ is in §, then

1im (jx + hACE)x] - x| _)/h < n (2)]x]
R0 y ¢ ? ?

and

lim ([x - RACOR[ - x| /8 = v () ]x]
h-+0

If u is a solution tc (DE) and T is a positive number such that u{t) is

in D for each t in [D,T), then

t
(1) Ju(t)] = |u(0)\inf{(bo/a0)exp(f nU(s)ds) 1 oeS}
O
and
t
(i) fule)] = [ul0)[supl(b_/a_ dexp([ v_(s)ds) : 0eS}
Q

for each t in [0,T).

Proof. It is immediate from part (iii) of Theorem 7.1 that if ¢ is in

S and t is in [0,=) then
t
lu(o) |, < ulo)] _exp([ n_(s)ds).
o
Since |u(t)] = bc‘u(t)]O and |u(0)|U < a;l|u(0)\ it follows that
t
lu(t)] < (bg/ao)lu(O)Iexp(£ n (s)ds)

and part (i) is immediate. The proof of part (11) is analogous.
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Example 7.2, Here we give a simple application of Proposition 7.3 and,
in the next proposition, we extend this example to a more general situ-
ation. Let K be the real field, let £ = K2, and let A(t) be the member

2 . . . . .
of BL(K ,KQ) which is assceciated with the matrix

. 2
F = . "
or each >0 let QE(El,Ez) (et ,Ez) for each (gl,gz) in K Then QE

1

. . - -1 . . . .
is invertible and QE-A(t)-QE is associated with the matrix

-1 et

If

A 2 .
| s the norm on K° defined by |(El,€2)|l = max{‘£l|,|€2|},

. 2 . .
is the norm on K° defined by |(£l,£2)|€ = |Q€(gl,g?)|], and we is

induced by o then, by Example 3.1 and part (i) of Example 3.3,

UE[A(t)] = -1 + gt.

Since |x|E < |x| = a_l|x|E for each x in K and ¢ in (0,11, we have by

Proposition 7.3 that if u is a scolution to (DE) then

[u(t)|l < |u(0)|linf{e_lexp(—t+et2/2) : O<e<l}
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. . -1
for each t in [0,®). In particular, by taking ¢ = min{l,t "},
}u(t)|l < |u(0)|lt exp(-t/2)

for each t in [1,=).

Proposition 7.4. Suppose that K is the real field, n is a positive

integer, E = K, and -11 is the norm on K" defined by l(ék)?]l

1 £k <£n}. Let {A{t) : te[0,=)} be a family of differenti-

£, |
able functions from K" into K such that the function (t,x) — A(t)x
of [0,=)xK" into K" is continuous. Let A(t)x = (Ak(t)x)? for each (t,x)
in [0,2)xK" and suppose that 35 A {t)x is bounded on bounded subsets
of [O,w)xKn. Let J (t)x denote —— A (t)x for each (t,x) in [0, o) xK"

35
and pair of integers i and J in [l,n], and suppose that each of the
following is satisfied:
(i) Ak(t)o = 0 for all t in [0,») and all integer k in [1,n].
(ii) Jij(t)x = 0 whenever (t,x) is in [O,m)xKn and 1 € § < i £ n,
{iii) For each r>0 there is a positive number a{r) such that
J J._('t)x < -a{r} whenever t is in [0,*), % is in K" with

]x| <r, and 1 £ 1 < n.

1
(iv) There 1s a nonnegative number * such that for each r>0
. A
there is a A{r)>»0 for which |Jij(t)x| < A(pr){1+t)" when-

.. . n .
ever t is in [0,=»), x is in K with |x| < r, and

1
1 €1 <3<,

Then each solution u to (DE) exists on [0,»} and there are positive

numbers I' and # (which depend on u) such that
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|u(t)|l = Texp(-Bt)

for each t in [0,=).

Remark 7.3, This propositicn contains Thecrem 4% of Markus and Yamabe
in [14]. Here they prove this proposition in the case that A does not

depend on t.

Froof of Proposition 7.4. The proof will be by induction on n. It is
trivial if n = 1 so assume n > ] and the assertions of the proposition
hold for n - 1. Let u(t) = (uk(t)); be a solution to (DE) and let
v(t) = (O u (t),...5u (£)) for each t for which u(t) is defined. It
follows easily from the induction hypothesis that there are positive

numbers T and B such that |v(t)|l < Texp(-Bt) so long as v(t) exists.

If p(t) = ‘ul(t)l then
p;(t) = lim (|ul(t) + hAl(t)u(t)| - |ul(t)|)/h
h-++0
< {Llim (Ju (t) + RIA (Dult) - A ()v(0)]] - Ju (o)])/h}
h->+0

+ [a (ov(n)].

It follews frem condition (iii) that the number in the braces above is
L]

nonpositive so that p+(t) < |A1(t)v(t)| so long as ult) exists. How-

ever, by condition (iv), [Al(t)v(t)[ < (n—l)A(T)(l+t)A exp(-8t), and

hence, so long as u(t) exists,
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T
A
‘ul(t)' < (n—l)A(F)Ff (1+s) exp(-G3)ds.
o
Thus ul(t) remains bounded so that u{t) remains in a bounded subset of
K" and consequently, u exists on [0,»). Now let r>0 be such that

|u(t)|1<r and for each e in (0,1] let QS be the diagonal matrix

. - -2 - . 1- - - .
dlag(en l,en see-sE41). Then QEl = diag(e U,EQ n,...,e l,l) and 1f
J(tix = (J, . ()=, . . is the Jacobian matrix of A(t) at x then

17 11,350
B 2 n-1. |
Jll Ele 3 JlB S Jln
n-2
0 J edJ S J
9 -J-Q_l _ 22 23 2n
£ £
0 0 0 J
where the arguments are suppressed. If |- . is the norm on K" defined
by |x|E = |an|l’ then by Example 3.1 and part (i) of Example 3.3, if

uE[-] is induced by o> we have the estimate
A
w [ICe)x] < —alr) + eln-1)A(r)(1+t)
for each t in [0,=) and x in K" with |x|l<r. By Propositicen 7.2,

)], < [u(0)] exp(-a(r)t + en-1ae)(1+)* /G

Since |u(‘c)|1 < a_n+l|u(t)|E and \u(O)'€ < |u(0)|l, it follows that
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|U(t)|1 < lu(0)|la_n+lexp(—u(r)t + E(n—l)ﬁ(r)(l+t)A+l/(l+1))

for each t in [0,=) and ¢ is (0,1]. By taking € = min{1,

(A+l)a(r)/[Q(n—l)ﬁ(r)(l+t)A]} and I'' = 2(n-1)A(r)/[al{r){A+1)] we have
luCe) [ < Juto)] T () texpl-alr)t + alr)(1+)/2).
Thus if I = [u(0)] T exp(a(r)/2) then
\u(t)|l < (1) exp(calr)t/2)

for each t in [0,») and it follows that u(t) tends to zero exponentially
as t tends to «. This completes the proof of Proposition 7.4.

Now let {B{t) : te[0,»)} be a family of functions from E into E
and suppose for each z in E there is a positive number T = T(z) and a
functien u from [0,T] into &€ such that u{0) = z and u is a solution to

the differential equation
(FDE) u'(t) = ACt)ul{t) + B{t)ul(t)

in the usual sense on [0,T). Suppose further that u can be extended so
long as it remains in a bounded subset of [, Also let {U(t) : tel[0,=)}
be a family of invertible members of BL(E,E] for which there are posi-
tive numbers Al and AQ such that |u(t)| < Al and ”U(t)_lﬂ S AQ' Suppose

further that the function t — U{t) of [0,~) into BL{E,E] is continu-

ously differentiable.
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. .. . -1
Proposition 7.5. Using the notation above let C(t) = UCt)«A(t)-U(t) ~ +
U'(‘L’)'U(t)_I for each t in [0,=). Let r be a positive number, D(r} =
{xeE : lx|<r}, and suppose that a{r,-) is a continuous function from

[0,=) into the real numbers such that

lim (lx+hC(t)x| - |xl)/h < a(P,t)|x|
h—++0

lTor all (t,x) in [0,=)xD(r]). Now suppose that f{r,+) is a contlnuous
function frem [0,*#) into the real numbers such that

{B(t)x] < 8(r,t)]x|
foer all (t,x) in [0,=)xD{r}) and that there is a nonnegative number I'(r)
suen that

t
[ Talr,s) + AhB(r,s)]ds 5 T(r)
O

for each t in [0,®)}. Then each solution u to (PDE) such that

|[UC0Yu(0) |exp(r(r)) < r exists on [0,») and for each t in [0,=)

t
luCt)| < AjA fulo)|exp(f [alr,s) + A 4,8(r,s)]ds).
O

Proof. Let v{(t) = U(t)u(t) so that

vi{t)

1

U(t)-A(t)ult) + U(t)-B(tlu(t) + U (t)ult)

Clt)v(t) + U(t)+B{(tHu(t).
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If p(t) = |v(t)| then, so long as |v(t)| < r,
p,(t) = lim ([v(t) « hv' (0] - |v(x)[)/n
b0
= Lim (|v(t) + hlc(o)vie) + U(e)-B(ul(t)]] - [v(t)|)/n
h-++0
< 1im (|v(t) + he(o)v(t)| - (vt ])/h + () «B(+ult)]
h>+0

We have by

a(e,tp(t) + 4 [B(1)-U(e) ()|

—+

alr,t)p(t) AlAQB(Y,t)p(t)

Lemma 4.6 that, so long as |v(t)| < r,

t
|v(t)‘ e |V(U)|exp(f [alr,s) + A1A2B(r,s)]ds).
o

Consequently, |v(t)' < ‘U(O)u(D)\exp(F(r))<r so that as long as ul(t)

and v(t) exist, |v{t)|<r and |u(t}| = |U(t)qlv(t)| < Ag‘v(t)‘ < hor.

Thus u{t) remains in a bounded subset of € and so u(t) can be extended

to [O,=).

Furthermore,

(o) = e e

< Agiv(t)|
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t
nQ‘U(O)u(O)|exp(I {alr,s) + ﬂiA?f(P,S)]dS)
i ;

< A

for each t in [0,=) and the assertions of the propositien follow.

Erample 7.3. GSuppose that H is a Hilbert space, the functions A(t)

in Proposition 7.5 (with £ = H) have a Frechet derivative on D(r] and
dyA(t)(x) are bLounded on bounded subsets of [0,=)xD(r]. Suppose further
that {P{t) : tel0,=)} 1s a family of positive definite self-adjoint
members of BL{H,H) such that the function t - P(t) of [0,=) into BL[H,H]
is continucusly differentiable and there are positive numbers Y, and Y,
such that each meiber A{t) of the spectrum of P(t) satisfies

8 < Alt) = Yo Also, suppose that there ls a positlive number a{r) such
that it (t,x) iz in [0,=)xD({r) and if A(t,x) is in the spectrum of
d,ACE) (%) + P(t)’l-dgA(t)(x)*-P(t) + P IR, then M(t,x) € ~o(r).
New let B and 3 be as in Proposition 7.5 and suppose that there is a
number T'(r) such that

T

D l-alry + QVYQ/YL Blr,s)lds ¢ I'{r)
o

for each t in [0,=). Let $(t) denote the positive definite self-

adjoint square root of P(t). With the arguments suppressed we have

-1 *. -1 '
d2A + P d2A P+ P P

- S_l'[S-dQA'S_l + s"l-dgﬁ"-S + s hopras™h s,
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Since P' = QS'S; we have S_l-P‘°S_ = 28‘-5_1 s that

1

- 1
d2A + P

R L s - ,
GQA r+7r P

1 1.=

1 ) 1es.

S_l[(S-dQA-S_ rsresThy 4 (S-dQA-S_ + 51.87

1 1

Hence, each member A of the spectrum of (S-dQA'S— + 815 ) 4+

(S-d?A-S_l + S‘-S_l)" satisfies A € -a(r). By part (iil) of Proposition
3.1,

1

u(Sed A5t + s1.57H < —alp) /o,

Thus with U(t) = $(t) and a(r,t) = -alr)/2 we have that ||U(t)|< /?;
an:i HU(t)_lH < /E?;I- so that the hypotheses of Proposition 7.5 are
Fulfilled. 1In the case that A(t)} is linear for each t in [0,=), this
example is Propositlon 1 of Halanay in [6, p. 72]. Note, however,

that line 3 of Prepesition 1 contains a misprint. It should read

|x(x,t)| < 8(t)|x|, for |x| < c.

Femark 7.4. Even though Theorem 7.1 Is very similar to Theorem 2.13.1
of Lakshmikantham and Leela in [10, p. 103], the propesitions given in
this chapter are new. Most of the results of this chapter are contained
in a peper by the author which will appear in the Journal of Differen-
tial Fgquatione under the title “Bounds for Solutions of a Class of

Nonlinear Differential Equations.'




[8a]
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