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SUMMARY 

Relative differential inelastic cross sections for specific 

rotational and vibrational transitions of diatomic molecules due to 

collisional excitation have been measured in the laboratory energy 

region of 10=20 eV using a beam apparatus. 

A mass selected ion beam is decelerated to low kinetic ener

gies in a retarding lens system and focused onto a neutral target gas 

in a rotatable collision chamber. The velocity distribution of the 

inelastically scattered ions is scanned by a 127° cylindrical electro

static velocity selector. Ions passed by the velocity selector are 

then mass analysed by a quadrupole mass spectrometer and detected. 

Internal excitation of the target molecules appears as discrete energy 

losses in the velocity spectrum of the scattered ions. 

Relative differential inelastic cross sections for the colli

sional excitation of rotational transitions have been measured in the 

systems A r + + 0* + D 2 S, and N* + H 2„ Only transitions corresponding 

to AJ = +2 have been observed. An upper limit for higher rotational 

transitions has been set at less than three per cent those for which 

AJ = +2o The velocity dependence of the relative differential cross 

sections for the transitions J = 0 -*2, 1 -*3, 2 -*4, 3 •*•$, 4 -*6 has been 

studied in detail for the system A r + + D 2 in the relative velocity region 

of 7.12=9.05 x 10 cm/sec. The absolute differential inelastic cross 

section for the J = 0 -»2 transition in D 2 is estimated to be 0.15 ±0.10 

A 2/sr. 



ix 

Relative differential inelastic cross sections for the colli-

sional excitation of specific vibrational transitions in the systems 

0 + + and + have been measured. Transitions for which the 

change in the vibrational quantum number is unity are found to predomi

nate at low energies. As the relative energy of the collision is 

increased, however, multiquantum transitions become dominant. Simul= 

taneous vibrational excitation of both the ion and the target molecule 

is observed in the system + Ng-

The relative vibrational transition probabilities measured for 

the system 0* + 0 2 are compared with those predicted by the approximate 

quantum-mechanical theory developed by Edward H. Kerner and C. E. Treanor 

for the collinear collision of a particle with a harmonic oscillator 

using an exponential interaction potential fitted to the Lennard-Jones 

potential function,, Surprisingly good agreement is found between theory 

and experiment. However, the value of the effective range of the poten

tial must be increased from that which has been previously measured for 

intermolecular collisions to account for the presence of polarization 

forces in the collision,, 
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CHAPTER I 

INTRODUCTION 

General 

When a low energy ion collides with a diatomic molecule, either 

of two nonreactive processes may occur 

(1) 

(2) 

Equation (l) represents a collision-resulting only in elastic 

scattering of the ion. Some of the translational energy of the ion A + 

is converted into translational energy of the molecule B^, but the 

internal energy of both species is unchanged during the collision. 

In Equation (2) however, not only is some of the kinetic energy 

of the ion converted into translational energy of the molecule, but the 

initial and final internal states of the molecule are no longer the same. 

The molecule may either lose internal energy in the collision, transfer

ring it into translational energy of the ion, or it may gain internal 

energy which is observed as a discrete translational energy loss of the 

ion below that which would be expected for elastic scattering. This 

process, which is known as an inelastic collision, is the subject of 

this thesis. 

As implied above, internal excitation of the target molecule may 
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be observed in the linear momentum spectrum of the scattered ions. Hence, 

to study the process one might direct particles of a single, known, con

trollable momentum onto target molecules, insuring that only single 

collisions occur. The momentum of the scattered particles would then be 

analysed to detect changes in the internal energy of the target. 

These conditions are closely approximated in a beam experiment 

conducted at low pressures. A mass selected beam having a narrow energy 

distribution must be directed onto the target molecules. Molecular beams 

have been used to examine low kinetic energy interactions, however ions 

are generally chosen for the incident beam at' higher energies since 

their kinetic energy is easily varied. Measurement of the momentum of 

the scattered particles is achieved in practice by determining their 

scattering angle, mass, and velocity. 

The purpose of this work is to study the conversion of trans-

lational energy into the rotational and vibrational energy of a mole

cule during a collision using a beam technique. A thorough knowledge of 

this process is needed to explain, for example, the removal of energy 

from an exothermic chemical reaction or the relaxation of gases per

turbed by a shock wave. In recent years a great amount of research has 

been conducted in this area. However, most experiments have involved 

the study of bulk properties of gases, while a knowledge of individual 

interactions is required if a theoretical model is to be tested. A beam 

technique is useful in providing such information. 

Experimental Method 

Relative differential cross sections have been obtained for the 
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collisional excitation of specific rotational transitions in the systems 

+ H^, 0 * + T>2> A R + + ^ 2 ' a n ^ °^ s P e c i f i c vibrational transitions in 

the systems + Ng, 0 + + Og. The variation of the relative cross sec

tions with the velocity of the collision is studied in several of the 

systems. For the case of vibrational excitation, this variation in 

cross section is compared with that calculated on the basis of a time-

dependent treatment of a forced harmonic oscillator by Treanor (l). 

The experimental procedure consists of passing a low energy, mass 

analysed ion beam through a rotatable collision chamber containing 

neutral target gas. The velocity distribution of the inelastically 

scattered ions is scanned by a 127° cylindrical electrostatic velocity 

selector. Ions passed by the velocity selector are then mass analysed 

by a quadrupole mass spectrometer and detected. The results are analysed 

by a kinematic technique similar to that used by Bernstein (2) and 

Toennies (3). Comparison of the inelastic peak intensities for specific 

transitions provides the relative differential cross sections. 

The present results represent the first measurement of the vari

ation of rotational cross sections with velocity and the lowest velo

cities at which vibrational excitation has been studied in a beam 

experiment. 

Review of Previous Research 

It is desirable to briefly review previous studies of rotational 

and vibrational excitation or de-excitation using ion or molecular beams. 

Measurements of rotational and vibrational relaxation employing spectro

scopic and transport studies have been recently reviewed by Gordon, 
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Klemperer, and Steinfeld (4). 

Recently, independent measurements of vibrational excitation have 

been made by Schottler and Toennies (3) and by Dittner and Datz (5) 

using time of flight spe.ctr.Qmetexs. 

Toennies produced a modulated beam of L i + ions from the surface 

ionization of a lithium oxide which was velocity selected by a 127° cylin 

drical electrostatic sector before entering a rotatable collision chamber 

The velocity spectrum of the scattered ions was analysed by measuring 

their time of flight oyer the fixed distance from the scattering chamber 

to the detector. Differential inelastic cross sections for ions in the 

laboratory (LAB) energy range of 10-50 eV were obtained for the systems 

L i + + and K + + H^ from the intensity of the inelastic peak correspond

ing to ions backscattered in the center of mass (CM) system. Integral 

cross sections for the.processes were obtained by measuring the smallest 

angle at which only elastic scattering could be observed. The probabil

ity of multiquantum vibrational transitions was found to increase with 

the relative energy of the collision and was in fair agreement with that 

predicted by the exact quantum mechanical calculation of Secrest and 

Johnson (6) for the system of He + H^. 

In Datz's apparatus, a beam of K + was produced by the surface 

ionization of K-atoms and passed into a gas-filled collision chamber 

without being velocity selected. The velocity spectrum of the back-

scattered ions at 0° was analysed by measuring the time of flight of 

the ions from the scattering chamber to the detector. No cross sections 

for vibrational excitation were reported, but for K + in the LAB energy 

range of 50-300 eV on H_ and D , the probability of multiquantum 
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transitions was found, in general, to increase with relative energy. 

Blythe, Grosser, and Bernstein (5) have studied the collisional 

de-excitation of the J = 2 rotational state of ortho-D^ to J = 0 by 

K-atoms'using a technique of crossed thermal beams. A velocity selec

ted beam of K was crossed with a cooled, modulated beam of ortho-D^ and 

the velocity spectrum of the scattered K-atoms scanned. The two peaks 

corresponding to the elastically forward and backscattered K-atoms were 

resolved and a peak corresponding to those K which had rotationally 

de-excited the was found superimposed on the backscattered elastic 

peak. The positions of the peaks were in good agreement with those velo

cities calculated from a kinematic analysis of the collision. The dif

ferential cross section for the process was obtained by subtracting the 

elastic backscattering peak obtained for the system K + He from that of 

K + 0^° This difference in area was then compared with the area of the 

elastic backscattering peak. By estimating the differential elastic 

cross section, the differential inelastic cross section was obtained. 

The total inelastic cross section was inferred from data obtained in 

ultrasonic work on the D 2 + D 2 system. 

In earlier experiments, Toennies (6) (7) has observed rotational 

excitation and de-excitation of various molecules using a rotational 

state selected molecular beam. Molecules in a given rotational state 

(J, riK) are separated from a thermal beam of polar molecules (TIF) by an 

electrostatic quadrupole field and passed into a gas filled collision 

chamber. The rotational states of those molecules scattered less than 

0.5° are determined by a second quadrupole field. Inelastic cross sec

tions for the (2,0) •» (3,0) transition were found for He, Ne, Ar, Kr, 
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H 2, 0 2, air, CH 4, SF 6, N 2 0 , H 20, C F 2 C 1 2 , and NH^ as target gases. In 

addition, for the case of NH^ as a target, inelastic cross sections were 

determined for the transitions (l,0) •* (2,0), (2,0) * (l,0), (3,0) •* (l,0), 

(3,0) •* (2,0) plus that for the (l,0) -* (2,0) transition in N D 3 < This 

series showed that the cross sections for single quantum transitions 

were approximately 10 times those for which J = ±2. This selection rule 

was interpreted in a later paper by Toennies (8) on the basis of a time-

dependent perturbation calculation for a dipole-dipole potential. 
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CHAPTER II 

APPARATUS 

Introduction 

The experimental apparatus consists of two mass spectrometers 

mounted in tandem designed to direct a mass analysed low energy primary 

ion beam onto a neutral target gas and scan the mass, energy, and angu

lar distributions of any charged particles emerging from the target 

region (see Figure 1). 

The primary ion beam is produced by electron impact in the source 

and accelerated. These primary ions are then mass selected by a Nier-type 

mass spectrometer and the ions of desired mass decelerated to a given 

energy by the retarding lens system before being focused onto neutral 

gas molecules in the collision chamber. The scattered ions are velocity 

selected by a 127° electrostatic sector and mass analysed by a Residual 

Gas Analyser (RGA) system are suspended from the rotatable collision 

chamber for analysis of the angular distribution of products. 

The complete apparatus is aligned on an optical bench and placed 

as a unit in a 32 in. ID vacuum chamber. Separate gas handling systems 

furnish the sample gases to the source and collision chamber. A more 

detailed description of the construction and operation of the individual 

components will be given in the remainder of this chapter. 

Ion Source and Optics 

The primary ion beam is generated in a gas phase electron impact 
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source designed by T. F. Moran and W. M. Watson. The energy of the elec

trons may be varied, permitting selection of the electronic and vibra

tional states in which the ions are formed. The source is made of 

polished 304 stainless steel. Electrical insulation and lens alignment 

is provided by ground Pyrex glass tubing. The ion source and accelera

ting plates are rigidly supported from the magnet entrance slit by four 

stainless steel rods. Schematic diagrams of the source and accelerating 

plates are given in Figures 2 and 3. 

The cylindrical ionization chamber is 25.40 mm in diameter and 

15„8b mm in length. Electrons are accelerated from a directly heated 

thoriated iridium filament through a 3.18 mm diameter hole perpendicular 

to the axis of the ionization chamber and are collected on the opposite 

side by the electron trap. The filament has the dimensions 20 mm x 1 mm 

x 0.127 mm. It is bent into the shape of a "V" which is then suspended 

above the electron entrance aperture by the filament supports. During 

operation, the filament is covered by a stainless steel enclosure main

tained at the potential of the filament. The filament is heated by a 

direct current of 5 to 7 amps, to give a trap current of 11 u-a. The 

electron beam is collimated into a small cylinder parallel to the repeller 

electrode by a permanent magnet outside the source having a field strength 

of approximately 400 gauss. To prevent reflection of electrons of 

unknown energy back into the ionization region, the trap is shielded by 

a stainless steel plate containing a 5 mm diameter hole for the passage 

of the electrons. 

The source gas inlet is mutually perpendicular to the axis of 

the chamber and the electron beam. The inlet consists of a 3.00 mm ID 

f 
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Figure 2. Schematic View of Ion Source (Front); Filament Cap 
Removed. 



Figure 3. Schematic View of Ion Source (Top); Filament Supports 
Removed. 
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Kovar tube attached directly to the ionization chamber. Glass tubing 

from the gas handling system is attached to the Kovar through a graded 

seal. Ions formed in the center of the chamber are forced out through 

the 3.18 x 15.88 mm exit slit by a repeller electrode within the cham

ber. 

The ion acceleration system consists of five circular plates each 

0.922 mm thick and spaced by 2.74 mm. Plates 1, 3, and 5 contain slits 

3.18 x 15.88 mmo Plates 2 and 4 are vertically split (3.97 mm wide) 

to allow horizontal adjustment of the ion beam to compensate for deflec

tions of the ions due to penetration of magnetic fields from the colli-

mating magnet and the Nier sector. 

Electron emission is regulated in the Filament Power Supply to 

within ±0.1 p.a. by a trap current feedback loop. The filament, trap, 

and repeller are floated from the ionization chamber potential by the 

Filament Power Supply. High voltage to the ionization chamber and the 

accelerating plates is supplied from a Fluke Model 408B High Voltage DC 

Power Supply. The relative voltages of the ionization chamber and accel

erating plates are controlled through a Regulated Voltage Divider designed 

by G. E. 0'Brian which allows independent adjustment of the ionization 

chamber and the two split plates. The voltage ratios between plates 

1, 3, and 5 are set through fixed resistors. Typical voltages for the 

source to produce a 200 eV H e + beam are given in Table 1. These poten

tials are essentially the same for other singly charged ions. 
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Table 1„ Typical Potentials in the Source and Acceleration 
Lens System for the Production of 200 eV He . 
All Voltages Measured with Respect to 
Instrument Ground 

n . Voltage Component 3 

Repeller 35.67 

Trap 91.75 

Ionization Chamber 23.96 

Filament -36.04 

Lens 1 4.28 

Lens 2(R) -30.89 

Lens 2(L) -22.45 

Lens 3 -95.25 

Lens 4(R) -178.3 

Lens 4(L) -176.7 

Lens 5 -200.5 

Nier Mass Spectrometer 

Mass selection of the primary ion beam is accomplished in a 

wedge-shaped 60° Nier sector (9) mass spectrometer. The magnet has a 

radius of 7.62 cm and, with 3.18 x 15.88 mm entrance and exit slits, a 

theoretical resolution defined as ~ of 24. The pole faces, core, and 

yoke were machined from hot rolled steel of low carbon content. Each 

coil is wrapped with ten pounds of No. 24 Beldon Polythermaleze coated 

copper wire. Connected in series, the coils are powered by a Hyperion 
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Model HY-T1-330-1 Regulated Power Supply which regulates the applied 

voltage to within 0.02 per cent. Adjustment of mass selection is made 

with a Servo-Tek DC Velocity Servo (2 rpm maximum velocity, continuously 

adjustable to 0) attached to the 10 turn voltage control of the Hyperion. 

With an air gap of 35.72 mm, the magnet provides mass analysed beams of 

200 eV ions up to 30 amu. 

Since the primary ion beam has a high negative potential with 

respect to the magnet pole faces, the path of the beam through the mag

net must be electrically shielded. This shielding is provided by a 

stainless steel enclosure which is roughly the same shape as the air gap 

and maintained at the potential of the beam. The side of the enclosure 

toward the coils is made of 90 per cent transparent nickel grid to 

permit removal of ions of mass higher than the selected beam which are 

undeflected by the magnetic field. 

The magnet is attached to the optical bench via a 1 1U" shaped alu

minum stand. The acceleration and deceleration lenses are aligned by 

direct attachment to the magnet. The deceleration system is optically 

aligned with the collision chamber entrance aperture by adjusting the 

position of the magnet stand on the optical bench. 

In practice, the resolution of this mass spectrometer has proven 

to be completely adequate for all purposes for which it has been used to 

date. It will, for instance, separate H +, Ĥ "*", and H^ + to within one 

part in 10,000 for the 224 eV ions. Masses 36, 40, and 44 are resolved 

to within at least 100 ppm for the 122 eV ions. 
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Retarding Lens System 

The mass selected ion beam is decelerated to low kinetic ener

gies by the retarding lens system. The system used is similar to the 

"slot" (thick lens) system designed by Kuyatt and Simpson which has been 

previously incorporated into a mass spectrometer by Futrell and Miller 

(10). A slot lens system was chosen since it has been found (10) to 

have significantly greater transmission than the usual thin lens systems. 

Seven of the deceleration lenses were made of 3.36 mm polished 304 

stainless steel with a slit geometry of 4.76 x 15.88 mm. The remaining 

two are 0„922 mm vertically split lenses. The lenses are rigidly 

attached to the magnet exit slit by four stainless steel rods. A l i g n s 

ment and spacing between the lenses is provided by thick-wall Pyrex 

glass tubing ground to within ±0.05 mm. Relative spacing of the lenses 

is shown in the schematic diagram of the retarding lens system in Figure 

4. 

This retarding lens system provides useful H e + beams having a LAB 

kinetic energy of less than 5 eV with an energy spread of 0.75 eV meas

ured full width at half^maximum (FWHM) for 7 eV ions. It is powered by 

the same voltage divider used for the source. The voltage ratios between 

six of the lenses are set through fixed resistors. The ratios for the 

second retarding lens and the two split lenses are independently varia= 

ble, as is the overall potential drop for the system. Table 2 lists 

the typical voltages applied to the retarding lens system for focusing 

mass selected ions having a potential of =200.5 volts onto the collision 

chamber whose potential is 18=83 volts. 



Figure 4. Schematic View of Retarding Lens System (Top). 
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Table 2. Typical Voltages on the Retarding Lens 
System to Focus 10.4 eV H e + into the 
Collision Chamber. All Voltages Meas
ured with Respect to Instrument Ground 

Lens Voltage 

1 -200.5 

CM
 -177.3 

3 -133.7 

4(R) -114.8 

4(L) -111.0 

5 -79.20 

6 -54.20 

7 -26.81 

CO 1.21 

9(R) 12.78 

9(L) 15.00 

Collision Chamber 

The collision chamber was designed and built by F. C. Petty of 

304 stainless steel and Teflon. The chamber is basically two concentric 

stainless steel cylinders with the inner cylinder attached to the optical 

bench. The outer cylinder is capable of rotating on two Teflon disks. 

Each cylinder contains one 6=35 mm diameter circular aperture and one 

6»35 mm wide horizontal slit. When the outer cylinder is rotated, the 

outer hole moves along the inner slit. This arrangement provides a con

stant beam path length of 41„14 mm, poor conductance of the target gas 
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into the vacuum chamber, reduced reflection of the primary beam when 

observing secondary ions at large scattering angles, and an angular 

scanning range of ±45° in the LAB system. Two circular electrodes are 

provided at the top and bottom of the inner cylinder to permit collection 

of slow secondary ions. The target gas enters the collision chamber via 

a 3.18 mm ID stainless steel tube through the bottom of the inner cylin

der. 

The angular orientation of the outer cylinder is controlled 

through a 3600sl gear reduction system designed and built by A. F. 

Hedrick. The gear system is attached to the exterior of the vacuum 

chamber lid. Rotation in the gear system is transferred to the outer 

cylinder through an Ultek Direct-Drive Rotary Motion Feedthrough. The 

gear system may be driven either manually or by a Type 117 constant 

velocity motor manufactured by the Giannini Control Corporation. Digi

tal readout of the angular settings is provided by a turn counter 

attached to the gear system which may be read directly to 0.01°. The 

overall accuracy of the angular measurement is limited by our ability to 

determine 0°, which we define to be the position of the maximum inten-

sity of the primary ion beam with no gas in the collision chamber, and 

by the horizontal angle subtended by the detection system (0.868°). The 

absolute accuracy of the angular measurement is estimated to be within 

±0.5° in the LAB system. 

The potential of the collision chamber is obtained from the same 

voltage divider used by the source and may be adjusted independently of 

the source and retarding lens potentials. The potential of the chamber 

controls the kinetic energy of the ions incident on the target gas. 
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Voltage differences between the ionization chamber and the collision 

chamber determine the kinetic energy of the primary ion beam. Normal 

variations in this potential of ±0.2 per cent per hour are negligible, 

since they cannot be resolved by the sector during the time required for 

measurements. 

127° Electrostatic Sector 

A 127° cylindrical electrostatic sector provides energy analysis 

of either the primary or secondary ion beams, regardless of the masses 

of the ions. Since the performance of the sector is most critical for 

the results obtained in this paper, it will be discussed in somewhat 

greater detail. 

Construction 

The sector assembly consists essentially of four parts (see 

Figure 5 ) . The outer sector is made from 1.27 mm 304 stainless steel 

and is connected directly to the outer collision chamber and to the 

quadrupole by two 6.35 mm diameter stainless steel rods. The inner 

sector support, which is essentially identical to the outer, is 

attached to the outer support by eight bolts. This inner support 

contains the entrance and exit apertures for the sector, which are 

1.016 and 1.320 mm respectively. The entrance slit determines the 

scattering angle subtended by the detection system. 

To the inner support are attached the inner and outer sector 

plates through precision ground Pyrex glass spacers. The inner plate 

is made of solid aluminum having an outside radius of 25.35 mm. The 

outer plate is an aluminum frame having an inside radius of 31.22 mm 
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INNER SECTOR SUPPORT OUTER SECTOR PLATE 

1 Cm 

WIRE GRID 

Figure 5. 127° Electrostatic Velocity Selector. 
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which is tightly wrapped with 0.235 mm diameter Wilstabrite stainless 

steel wire to approximately 20 per cent transparancy. This gives the 

outer plate the advantage of light weight with a non=sputtering surface 

in addition to reducing space charge within the sector. The two aper

ture diameters together with the mean ion radius of 28.30 mm give the 

sector a theoretical energy resolution defined as of 93 (ll), where 

AU is the kinetic energy spread of the focused ions measured FWHM. 

Operation 

The inner and outer sector supports are maintained at the poten

tial of the collision chamber. The potentials of the inner and outer 

sector plates are obtained from a 45 volt battery floated at the poten

tial of the collision chamber. Ten-turn potentiometers allow adjustment 

of each plate from the potential of the collision chamber as well as 

adjustment of the voltage difference between the plates (AV ). 

This AV . , which will be shown to be linear with respect to the sector' K 

kinetic energy of the focused ions, is stable to within ±1 mv/hr. All 

voltages in the sector were measured with a Hewlett Packard Model 3440A 

Digital Voltmeter equipped with a Model 3445A AC/DC Range Unit to an 

accuracy of ±1 mv. 

Theory 

The orbit of a charged particle in the radial field of two cylin

drical electrostatic plates was first calculated in 1929 by Hughes and 

Rojansky (12). They found that at an angle of 127° 17" both the 

refocusing of a diverging beam and the energy resolution of the sector 

were greatest. 

Consider the conditions required for a particle of unit charge (e) 
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mass (m), and velocity (v) to describe a circular path through the sec-
it 

tor. The force of the field must exactly equal the centrifugal force 

on the particle 

HDL? . ZA ( 3 ) 

o o 

where TQ is the mean radius of the sector and A is a constant of the 

fieldo To evaluate A in terms of measurable conditions within the 

sector, let 

W 
= V - V 

sector 
AV = V - V = — ^ = - F F • dl = - f ^ ) d r 4 --- -- r r e e J - - e J v r ' 

1 1 

where W is the work required to move a unit charge from the inner 
r 2 = r l 

plate (r^) to the outer plate {T^), or 

-eAV 
A = . ,*e't0* . (5) In d y r j ) 

Substituting this value of A into equation (4), one obtains 

2 eAV . mv_ _ sector /,\ 

r Q
 = r o m ( r ^ ) • < 6> 

2 

But mv is twice the kinetic energy of the particle and may be expressed 

as 2eU, where U is the energy of the particle in electron volts. Equa

tion (6) now becomes 

This derivation is essentially that of Hughes and McMillen (13). 
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A Vsector " 2 U l n ( r f } ( 7 > 

Hence AV should vary linearly with respect to the kinetic energy 

of the ions focused. It should be noted that AV , for a given 
sector 

sector depends only on the energy of the ions focused, not on the mass 

or charge of the ions as in the case of magnetic selection. 

Hughes and McMillan (13) calculated the potential difference 

required to focus electrons of a given energy in their selector and 

found it to be 0.9 per cent higher than their experimentally observed 
value. In like manner., for the variation of AV . with electron 

* sector 

energy, their theoretical and experimental ratios agreed to within 0.7 

per cent over a range of electron energies from 50 to 200 eV. 

Calibration 

The sector is operated with the potentials of the inner and outer 

plates symmetric about the potential of the collision chamber. The 
ratio between AV and the ion kinetic energy was determined using s 6 c "co r 
a H e + beam by varying only the collision chamber potential and then 

readjusting AV to regain maximum beam intensity. AV was sector 3 7 sector 

found to vary linearly with H e + kinetic energy between 5 and 21 eV within 

±0.05 eV. A change in ^ s e c ^ 0 I
 0 r" 1-000 volts implied a change in ion 

kinetic energy of 2.50 eV. Exactly the same ratio was calculated for 

this sector using equation (?). 

Absolute calibration of the energy scale of the sector required 

determining the potential difference through which the H e + were accel-

erated from the point at which they were formed until they entered the 
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sector. This potential difference is the sum of the voltage between the 

ionization chamber and the collision chamber and the effective potential 

which repelled the ions from the ionization chamber. Due to the posi

tive potential applied to the repeller electrode and the penetration of 

fields from the filament, trap, and accelerating plates, the ionization 

chamber is not an equipotential volume, but, rather, it contains the sum 

of several potential gradients. Resistance plotting of the equipotentials 

within the ionization chamber indicates they are parallel to the face of 

the repeller electrode in the region in which the ions are formed. The 

ions are formed in a collimated cylindrical volume parallel to the 

repeller electrode, hence the potential difference through which these 

ions are accelerated out of the ionization chamber will be the same as 

that through which the electron beam is accelerated within the ioniza

tion chamber. 

To measure this potential difference, H e + current was plotted 

versus the applied voltage between the filament and the ionization cham

ber. By extrapolating the linear portion of this plot to zero ion cur

rent, an apparent ionization potential for He of 23.79 ±0.10 eV was 

obtained. Comparison of this value with the accepted spectroscopic 

value of 24.580 eV (14) implies that the electrons and, therefore, the 

ions are accelerated by 0.80 ±0.10 eV within the ionization chamber. 

Hence 0.80 eV has been added to the potential difference between the 

ionization chamber and the collision chamber measured during the relative 

calibration of the sector to give the true energy of the H e + selected 

by the sector. The fact that the contribution is less than 10 per cent 

of the applied repeller voltage is reasonable since the repeller voltage 
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may be varied several volts without significantly changing the kinetic 

energy of the ion beam. 

The arithmetic mean of 15 repetitive determinations of AV . 
^ sector 

is given in Table 3 for several representative values of H e + kinetic 

energies between 10 and. 20 eV. The corresponding values calculated 

using equation (7) are listed for comparison. 

Table 3. Comparison of Calculated Values of 
AV . with Observed Values for sector 
Various Kinetic Energies of H e + 

AV 
Kinetic sector 
Energy Eqn. (7) Observed 
(eV) 

10.0 4.011 3.96 

12.0 4.814 4.76 

15.0 6.017 5.97 

18.0 7.220 7.18 

20.0 8.023 7.97 

Residual Gas Analyser System 

An Ultek-EAI QUAD 150A Residual Gas Analyser is used to mass 

analyse the energy selected ion beam. The analyser system consists of 

a 35 mm axial beam ionizer, a rf/dc quadrupole mass spectrometer, and 

an electron multiplier detector. 

The quadrupole gives linear mass separation with a resolution 

of unity when resolution is defined as the separation in amu of two 

mass peaks of equal height when the valley between them is 10 per cent 
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the peak height. It should be noted that the quadrupole's mass analysis 

is essentially independent of ion velocity. 

The entrance to the quadrupole is fitted with an Ultek-EAI 35 mm 

axial beam ionizer. During beam measurements, the ionizer is maintained 

at ground potential with the exception of the first acceleration plate 

which remains at =106 volts. Significant grazing of the ion beam with 

the wire grid normally present at the entrance to the ionizer necessi

tated removing the grid. The ionizer assembly is used only for verifica

tion of the quadrupole's mass scale and for detecting leaks in the vacuum 

system. 

The mass selected ion beam is detected by an EAI 14 stage Be-Cu 
5 

electron multiplier having a gain of approximately 10 and a response 

time of better than 10 seconds. The gain of the multiplier is speci

fied by the manufacturer to be stable after an initial decrease of 0.05 

per cent during the first few days of operation. 

The current at the multiplier is measured with a Keithley Model 
-13 -5 

417 High-Speed Picoammeter having 18 current ranges from 10 to 3 x 1 0 

amps full scale. Use of the current suppression adjustment of the in

strument permits full scale display of 0.1 per cent signal variations. 

Zero drift is specified to be less than one per cent per eight hours. 

The output from the Keithley is displayed on a Leeds and Northrup 

Speedomax W/L two pen strip chart recorder. 

The complete RGA assembly is 28 cm long and weighs approximately 

two pounds. It is suspended from the outer sector support by two 6.35 

mm diameter 304 stainless steel rods. 
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Vacuum System 

The entire spectrometer is enclosed in a 15 in. x 32 in. ID 

cylindrical vacuum chamber made of 304 stainless steel. Access to the 

contents of the chamber is provided through the 32 in. top flange. 

Four four inch Ultek "Curvac" flanges are positioned radially about the 

chamber. One of these serves as a viewing port to facilitate alignment 

of the Rotary Direct Drive coupling to the collision chamber. The sec

ond has been specially modified to permit electrical feedthrough into the 

chamber as well as for connecting the source ionization chamber and col

lision chamber with the gas sample handling system. The remaining two 

flanges are equipped with 15 KVA Ceramaseal High Vac electrical feed-

throughs. 

A one and one-half inch Curvac flange is centered on the lid of 

the chamber for the attachment of the rotary motion feedthrough to the 

collision chamber. Two one and one-half inch Curvac flanges on the floor 

of the chamber furnish all electrical feedthroughs required for the RGA 

assembly. All flanges are heliarc welded on the inside of the chamber 

and fitted with metal "0" rings. 

Pumping is through a six inch flange centered in the floor of 

the vacuum chamber by a NRC Model VHS-6 six-inch oil diffusion pump 

equipped with a NRC Type 0317-6 Molecular Sorbent (Zeolite) and a 

water cooled Cold Cap. The diffusion pump has a maximum pumping speed 

of 2400 liters per second for air. The backing pump is a Welch Duo-Seal 

Model 1397. 
=7 

A vacuum of 10 torr may be easily attained within four hours 

from atmospheric pressure without bake-out of either the chamber or its 
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contents. The ultimate is limited by degassing of the magnet coils. 

This degassing of the coils leads to an increase in chamber pressure 
=7 

above 10 torr only when the Nier spectrometer is operated at its highest 

mass range for more than four hours. Overall chamber pressure is measured 

with a CVC Type GPH-100A discharge vacuum gauge having three pressure 
-2 -7 ranges from 2.5 x 10 to 1 x 10 torr. 

Sample Gas System 

The gas samples for the primary and target beams are handled by 

an all glass system which provides more than 12 liters of ballast each 

for the source and target gases. A static pinhole leak in each inlet 
3 

line insures a pressure reduction of approximately 10 on the chamber 

side. The flow rate into the source and target regions may be kept 

constant during a series of measurements by adjusting the pressure in 

the ballast. The system is pumped by a three inch mercury diffusion pump 

equipped with a liquid nitrogen cold cap, and by a Welch Duo-Seal Model 

1400 backing pump. 
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CHAPTER III 

KINEMATICS OF THE COLLISION 

The following notation is used throughout the discussion: 

E 
0 

LAB energy of ions in incident beam 

P 
0 

LAB momentum of ions in incident beam 

V 
0 

LAB velocity of ions in incident beam 

M mass of incident and detected ions 

E '* LAB energy of scattered ions 

P, ?• LAB momentum of scattered ions 

v, V' LAB velocity of scattered ions 

Ee> 
E' e LAB energy of elastically scattered ion 

_N 
P e ' 

.i. 

p. 
e 

LAB momentum of elastically scattered ion 
-*• 
V e LAB velocity of elastically scattered ion 

Ei> £.' 
l 

LAB energy of inelastically scattered ion 

P i ' P.' l LAB momentum of inelastically scattered ion 

v: i LAB velocity of inelastically scattered ion 

m mass of target molecule 

K LAB energy of scattered target molecule 

p LAB momentum of scattered target molecule 

Ae relative energy loss of incident ion (in CM system) 

AE LAB energy loss of incident ion 

The superscript (') is used to distinguish'quantities associated 
with those ions backscattered in the CM system when distinction between 
forward and backscattering is desired. 
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u- reduced mass of system 

F-s initial relative kinetic energy of collision (in CM system) 

F LAB momentum of the center of mass 

R LAB momentum of scattered ion with respect to CM 
_*> 
R LAB momentum of elastically scattered ion with respect 

6 to the CM 

R. LAB momentum of inelastically scattered ion with respect 
1 to the CM 

6 LAB scattering angle of ion 

CM angle of scattered ion 

^e' *e ^ M angle of elastically scattered ion 

<1>̂ , CM angle of inelastically scattered ion. 

Consider a collimated beam of ions of mass M and energy E q inci

dent on target molecules of mass m which are at rest in the laboratory 

(LAB) system. Some of the ions may be elastically scattered by the 

molecules 

M + + m(j,v) * M + + m(j,v) (8) 

and some may transfer a quantum of energy Ae into the internal degrees 

of freedom of the target molecule 

M + + m(j,v) * M + + m ( j \ v » ) (J,V) / (j',V) (9) 

undergoing an inelastic collision. The purpose of this section is to 

explain the kinematics of the detected ion M + which will be observed in 

the LAB" system after it has interacted with a target molecule in the cen= 

ter of mass (CM) system. 

If only in-plane scattering processes are considered, the 
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problem is two dimensional and may be represented as shown in Figure 6. 

Applying conservation of energy to the collision 

E = E + K + AE (10) p 

where AE = 0 for elastic processes and AE > 0 for inelastic excitation. 

In terms of the momentum components of the particles 

2 2 2 2 2 P p + p P + P o r x r y , x y , „ c /, , v 

Since only ions of mass M will be observed by the detector, only the 

equations of motion of the ion will be considered here. The results, 

however, are of essentially the same form for either the molecule or the 

ion. 

p and p may be eliminated from Equation (10) by employing x y 

conservation of the linear momentum of the two particles along the X 

and Y axes 

P = P + p 
0 X rx 

0 = P + p 
y y 

(12) 

to obtain 

2 2 2 P P P P P 
_°_(m__I_M.) = _2L_ + _X_ _ + A E (13) 
2 l m M ' 2 i i 2 i i m * ' U J ; 

The formulation of this problem is based on the procedure used 
by Henglein, Lacmann, and Jacobs (15) who applied it to bimolecular reac
tions. Similar conclusions have been reached by Blythe, Grosser, and 
Bernstein (2) who have applied it to rotational de=excitation using 
crossed beams and Schottler and Toennies (3) for the case of vibrational 
excitation using a time-of-flight technique. 
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i 
Figure 6. Schematic Representation of Collision in LAB System. 
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Multiplying both sides of Equation (13) by 2n and completing the square 

on the terms containing P , one obtains 

P 2 

(P - i T T - P ) 2 + P 2 = P2Uir~-) - i T X - ] + * ( ^ T (14) x M + m o y o - M +m M + m J ^ 2M ' 

M where the term .. , P is the momentum of the center of mass, F. M + m o ' 
The right hand side of Equation (14) may be rearranged to obtain 

(P - F ) 2 + P 2 = R 2 (15) x y 

where 

R = 2u(E s - A E ) 1 / 2 (16) 

is the momentum of the scattered ion relative to the center of mass, 

E s = 1/2 U V Q

2 (17) 

is the relative kinetic energy of the collision, and 

A E = H ± n L l A e ( 1 8 ) 

is the inelastic energy loss of the incident ion in the LAB system. 

Equation (15) may be represented as a circle of radius R in 

momentum space (P^S P ) whose origin is displaced along the P^ axis a 

distance of F (see Figure 7), If an ion detector is placed at an angle 

9 to the path of the incident beam in the plane of scattering and the 

velocity spectrum of the scattered ions is scanned, two peaks will be 
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Figure 7. Schematic Momentum Vector Diagram for Arbitrary 
Collision Showing Initial and Final Coordinates 
of Scattered Ion in LAB and CM Systems. 
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observed having momenta P and P", corresponding to those ions which have 

been scattered through angles <J> and O' in the CM system. 

If both elastic and inelastic processes can occur in the colli

sion, the momentum space of the ion will contain two concentric circles 

of radii R g and R^ drawn from the vector F (see Figure 8 ) . The velocity 

spectrum of the ions observed at the detector will now yield four peaks, 

corresponding to scattering in the CM system at angles $ e , <D^, and 

0\ Considering only the forward scattered peaks (unprimed), the 

observed energy of the elastically scattered ions may be calculated as 

a function of $ from the magnitude of the vector P e 3 e 

| P e ! 2 = + l " e l C 0 S * e ) 2 + s i n * e

) 2 ( 1 9 ) 

= F 2 + 2FR cos- $ + R 2 . _ • e e e 

Upon substitution of the definitions of F and R , Equation (19) may be 

expressed in terms af the 'LAB energy of the elastically scattered ion 

P 2 

E = e 2M 

' 2 2 M + 2Mm cos <I> + m e 
(M + m ) 2 

E Q . (20) 

In a like manner, the observed energy of the forward scattered 

inelastic peak may be obtained 

Pi I 2 = (|F |+ \ t\ cos G . ) 2 + (| R.| sin <2>.)2 (21) 

F 2 + 2FR. cos <J>. + R. 2, l l l ' 

or 



Figure 8. Schematic Momentum Vector Diagram for both Elastic 
and Inelastic Collisions Showing Initial and Final 
Coordinates of Scattered Ion in LAB and CM Systems. 
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..2 . 2 2MmE £ = M T m £ + o 
1 (M + m ) 2 ° (M + m ) 2 

(i - f 
s 

11/2 
) cos <D i M +m (22) 

If g— is small, the square root may be expanded in a binomial series in 
s 

which only the first two terms are retained to obtain Equation (22) in 

the more useful form 

r M 2 + 2Mm cos <t>. + m 
l 

(M + m ) 2 

E. = l 

21 
: r ~ ~ (m + M cos <J>. ) M + m l (23) 

Subtracting Equation (23) from Equation (20) one obtains the observed 

shift in the inelastic peak from the elastic peak 

2MmE 
E -E. = ° _ (cos * - cos *. ) + u~T— (m + M cos G>. ) (24) e i / , , , x2 e l ' M + m i IM + m) 

where <X>e may be calculated from (16)(17) 

sin * 
tan 6 TW/m + cos <I> (25) 

and <I>. from l 

cos = 
1 

1 -
"(M + m ) 2 E. sin 2 6 ~ 1 ^ 2 

l 
m 2 E (1 o 

AE (26) 

* AE A four per cent error for = 0.5. 
s 

See Figure 8° 
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In many cases it is quite accurate to assume cos = cos 0>e, 

whereupon Equation (26) reduces to_ 

E - E. B TT^T- (m + M cos $ ) . (27) e I M + m e 

As an example, consider the case of a beam of 12.20 eV (Ar ) 

incident on D^^ The detector monitors the velocity spectrum of only 

(Ar ) and may be placed at any angle 6 with respect to the incident 
l r + 

beam. For the J = 0 J = 2 rotational transition of X > 0 o, 
L9 2 

B g = 30.429 cm" 1 ( 1 8 ) , hence A g = 0.02263 eV and A E = 0.2489 eV. The 

CM elastic scattering * angle 4>g corresponding to the LAB angle 6 may be 

calculated from Equation (25) and'substituted into Equations (20) and 

(27) to obtain an approximate value of E^. This E^ is then used in 

Equation (26) to obtain an approximate value of 4^ which, in turn, is 

substituted into Equation (24) to obtain the shift in the inelastic peak 

from the elastic peak. While in most cases the accuracy of the results 

thus obtained is more than adequate for the purpose of this paper, higher 

accuracy may be achieved by an iterative -procedure. The results of this 

calculation for three values of 6 are given in Table 4. 



39 

Table 4. Calculated Observables for the Excitation of the J = 0 
I n + 

•+ J = 2 Rotational Transition of X ^ D
2
 b Y 12.20 eV 

(LAB) ( A r 4 0 ) + at Different Laboratory Angles of 

Detection 

(deg.) 4>e (deg.) 4>.(deg.) E g ( e V ) E e = E . ( e V ) E e = E . ( e V ) 

Eqn. 25 Eqn. 26 Eqn. 20 Eqn. 27 Eqn. 24 

3 34.55 36.03 11.64 0.209 0.216 

1 11.07 11.47 12.16 0.245 0.244 

0 0 0 12.20 0.249 0.249 
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CHAPTER IV 

EXPERIMENTAL PROCEDURES AND RESULTS 

General 

The experimental apparatus and general operating conditions 

used in this work have been presented in Chapter II. Several addi

tional conditions particular to the results presented in this chapter 

are listed below. 

The ions in the primary beam were resolved from their more 

abundant isotropic impurities to within 0.1 per cent. The sources and 

purities of the target gases were as follows: D^, Matheson C. P. Grade 

(99.5 atom per cent)j W^s Matheson Prepurified Grade (99.95 per cent min.) 

0^, Matheson E. D. Grade (99,7 per cent min.). All velocity scans were 

obtained by varying AV at a rate of 2 mv/sec or less. The detector 
s Q c *c o r 

position was maintained at zero degrees in the LAB system and subtended 

a half-angle of 22.1 minutes in the horizontal plane. The observed ions 

of the incident beam were completely resolved from those masses corre

sponding to possible charge transfer or reactive collision products. 

Rotational Excitation 

A r + + D 2 

The observed velocity spectrum of the forward scattered A r + 

consists of ions from the primary beam which have not undergone a 

collision, elastically scattered ions and ions which have been inelas

tically scattered. The velocity distribution of the incident beam 
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varied from 0.9 eV FWHM for the 16 eV ions to 1.2 eV FVYHM for the 10 eV 

ions. This inherent width of the primary ion beam and its broadening due 

to elastic scattering within the collision chamber prevented the complete 

separation of the inelastic scattering peaks from the primary A r + beam. 

Rather, the inelastic peaks appear as quite distinct humps superimposed 

on the spectrum of the primary beam. Figure 9 shows the velocity spectrum 

resulting from 12°90 eV A r + on D^. 

To determine the intensities of the inelastic peaks, control 

spectra were obtained for the system Ar + He in which only elastic 

scattering is possible,, These velocity spectra were unstructured and 

had the same general shape as those of A r + + D 2 > Identical intensities, 

however, could be obtained only in the region of the tails of the peaks. 

This is not surprising, since the effective sizes and elastic scatter

ing potentials of the two targets could not be expected to be the same, 

although their masses are essentially identical. Hence, the intensity 

of the spectra obtained for A r + + He had to be extrapolated to those for 

A r + + The dashed line in Figure 9 represents the result of this 

extrapolation. 

Direct subtraction of the two curves results in the rotational 

spectrum of D 2 shown in Figure 10. Also shown are the positions of the 

peaks predicted by Equation (24), where Ae is the energy difference 

between the rotational levels of a diatomic molecule 

A £ = [J (J + 1) - J (J + 1)]B . (28) m,n L n n m m ' J e 
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An extensive list of values for the rotational constants (B ) of most 
e 

diatomic molecules is given in Reference (18). For the particular case 

of D^, B g = 0.0037714 eV. The maximum difference between predicted and 

measured energies of the inelastic peaks for all spectra in this system 

was five per cent. 

It should be noted that only transitions corresponding to 

AJ = +2 are observed. This is readily explained by a consideration of 

the symmetry requirements for the wave function of the target molecule. 

Since a deuteron is a boson, the total wave function for must be sym

metric with respect to the interchange of the coordinates of the two 

nuclei. If the molecule's electronic, vibrational, rotational, and 

nuclear coordinates are separable, the total wave function may be 

written as the product of electronic, vibrational, rotational, and 

nuclear wave functions. 

The electronic and vibrational wave functions depend only on 

distance and are, therefore, symmetric with respect to interchange of 

the two nuclei. Thus the symmetry of the total wave function must 

depend only on the symmetries of the rotational and nuclear wavefunc-

tions. 

The spin states in with total nuclear spins of 0 and 2 are 

symmetric having a six=fold degeneracy. Those states in which the total 

spin is 1 are antisymmetric and have a degeneracy of 3. The molecules 

in which the nuclear spin states are even are called ortho-D^, while 

those in which they are odd are called para-D^. It is easily shown (19) 

that the ratio of the number of molecules of ortho-D^ to that of para-D^ 

in deuterium in equilibrium at room temperature is equal to the ratio of 
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the degeneracies of their respective spin states. In this case, the ratio 

is two.' 

The wave function for rotational states in which J is even is sym

metric, while for states of odd J the wave function is anti-symmetric, 

with respeetHo the interchange of the nuclei. Hence, for the total wave 

function to be symmetric, only rotational states for which J is even can 

occur in ortho-D2. Only those for which J is odd occur in para-D2-

Of course transitions for which AJ is an integral multiple of +2 

are permitted by the above consideration, but such transitions have not 

been observed in the spectra of this system. Considering these transi

tions may be hidden in detector noise, an upper limit to the probabili

ties for the transitions J = 0 •* 4 and J = 1 •* 5 may be set at three per 

cent those for J = 0 •* 2 and J = 1 •* 3 respectively. 

To obtain relative transition probabilities from the relative 

intensities of the inelastic peaks, the intensities must be weighted to 

take into account differences in the relative populations of the rota

tional ground states of the target. The Boltzmann distribution calcu

lated for at 300°K is given in Table 5. This distribution includes 

the 2J + 1 multiplicity of each J state due to the degeneracy of the riK 

states under the experimental conditions, where IIK is the quantum number 

for that component of the angular momentum of the molecule along the 

axis of the rotation. However, since there is twice as much ortho=D2 as 

para-D2 in deuterium gas, the populations of the even states must be 

multiplied by two. These corrected relative populations are also given 

in Table 5. 



Table 5. Relative Populations of the Lower Rotational 
Energy Levels of D at 300°K 

Corrected 
J Relative Population Relative Population 

0 44.6 89.2 
1 100.6 100.0 
2 93.0 186.0 
3 54.2 54.2 
4 21o7 43.4 
5 6.2 6.2 
6 1.3 2.6 
7 0.2 "0.2 

Relative transition probabilities were obtained by dividing the 

relative intensities of each transition by the corrected populations of 

the corresponding ground rotational levels and normalizing the sum of 

the probabilities for transitions observed at a given velocity to one. 

These probabilities for the system A r + + in the relative energy range 

of 0.954=1.54 eV have been corrected for velocity discrimination by the 
s 

detector aperture and are presented in Figure 10. The error bars, rep

resenting the reproducability and expected uncertainty of each determin

ations, a r e functions of peak shape and detector noise. It should be 

stressed that the rotational probabilities obtained in this work are 

relative probabilities and may be considered absolute only if no 

transitions above J = 4 * 6 occur. Unfortunately, this requirement is 

difficult to verify experimentally. Due to the small weighting factors 

for transitions from levels greater than J = 4, a relatively insignifi

cant hump in the high energy loss region of the velocity spectrum would 
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Figure 11. Variation in Relative Rotational Transition 

Probabilities with Relative Velocity in System 
A r + + D 2 . . 



48 

'correspond to a probability for a high J transition far greater than 

for J = 0 * 2 . The present apparatus cannot be expected to detect such 

transitions. 

Differential inelastic cross sections for specific rotational 

transitions (<j) may be obtained from the ratio of the intensity of the 

inelastic peak (i g) to that of the primary beam with no gas in the col-

lision chamber (ip), the path length over which a collision can occur 

(X), and the number density of the target molecules (n) along this path 

as related by the equation 

*= nir • (29) 

p 

While there has been no accurate pressure calibration of the present 

apparatus, the pressure in the scattering chamber may be estimated to 

within an order of magnitude knowing the pressure reduction in the 

static leak from the gas sample system and the pressure outside the 

collision chamber. The average differential inelastic cross section 

thus obtained for the J = 0=>2 transition is approximately 0.15 ±0.10 

A 2/sr. This compares favorably with the value of 0.15 8 2/sr observed 

by Bernstein (2) for the same transition in the system K + 

0* + D 2 and N* + 

Relative differential inelastic cross sections have also been 

measured for rotational excitation in the systems 0* + D 2 and N 2 + 

The velocity spectra for these systems is somewhat complicated due to 

broadening of the peaks by rotational transitions of the incident ions 

occurring within the ion source and optics. This resulted in poor 
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resolution of peaks corresponding to rotational transitions of the target 

molecules with a subsequent loss of accuracy in the determination of 

their positions and intensities. The results for these systems are 

listed in Table 6 and should be considered to have error limits of ±50 

per cent associated with each value. 

Table 6. Relative Transition Probabilities Normalized 
to the Sum of the Transition Probabilities 
Observed at a Given Velocity 

System 

0* + Do 2 2 

N 2 + H 2 

Relative 
Velocity 

1cm/sec) x 1 0 ~ 5 

8.09 

9.35 

10.43 

Transition 
J +J 
m n 

Relative 
Transition 
Probabilities 

0 =*>2 0.44 
1 > 3 0.19 
2 -*4 0.06 
3 -*-5 0.16 
4 -*6 0.15 

0 -*2 0.12 
1 -*3 0.18 
2 "*>4 0.11 
3 -*5 0.18 
4 -»6 0.41 

0 -*2 0.42 
1 * 3 0.03 
2 -»4 0.48 
3 * 5 0.03 
0 -*>4 0.04 

Vibrational Excitation 

General 

Relative differential cross sections for the collisional exci-

tation of specific vibrational transitions have been obtained for the 
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systems 0 + 0^ and fi^ + Ng» The analysis of the velocity spectra was 

conducted the same as that for rotational excitation described in an 

earlier section. Vibrational transitions were observed as distinct 

humps on the velocity spectra of the forward scattered ions. However, 

subtraction of the velocity spectrum of the control systems using He as 

the target gas did not result in well shaped peaks in the inelastic 

spectrum, since rotational-vibrational bands rather than pure vibra-

tional transitions are observed. 

0 + ° 2 

The system 0 + 0^ has been studied at energies of 9.9, 14.6, 

and 20.0 eV in the LAB system. The results observed with target gas in 

the collision chamber are shown in Figures 12, 13, and 14„ The widths 

of the bars represent-the uncertainty in measuring the energies of the 

peak maxima. The positions of these maxima predicted by the kinematics 

of the collision are shown at the top of the figures. The values of 

used in Equation (24) are the energy differences between the vibrational 

states of the harmonic oscillator 

he = E(v =v, J =0) - E(v =0, J = 0) = vhcv (30) 

where v is the quantum number of the oscillator, state, h is Planck's 

constant, c is the speed of light, and v is the frequency of the oscil

lator in units of wavenumbers (cm ^ ) . Values of v for most diatomic 

molecules are tabulated in Reference 18. For the particular case of 

0 2, v = 1580.361 cm" 1 (18). 

It can be seen from these data that the probability of multi-

quantum transitions increases dramatically with increasing relative 
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energy. A similar increase has been observed qualitatively by Schottler 

and Toennies (3) in the system L i + + H^. In the following chapter, the 

experimental transition probabilities for the system 0 + + 0^ will be 

compared with those predicted by theory. 

N* + N 2 

The system + has been studied at an energy of 15.6 eV in 

the LAB system. It has been extremely difficult to obtain a stable 

beam in the present apparatus,, After only a short period of operation, 

nitrides formed at the surface of the filament cause fluctuations in 

the electron emission which, in time, lead to fluctuations in the 

intensity of the primary ion beam. For this reason, only one spectrum 

suitable for analysis has been obtained in this system. These results 

are presented in Figure 15. 

It should be noted that vibrational excitation of either the 

incident ion or the target molecule, or simultaneous excitation of both 

is possible in this system. The vibrational frequencies of the ion and 

the molecule are quite similar. For N*, v = 2207.19 cm 1 (18), while 

for N^, v = 2359.61 cm 1 (18). This difference in the frequencies of 

the molecule and the ion cannot be resolved for the lower vibrational 

transitions, as may be seen in Figure 15. However, for transitions at 

the higher energy losses, the energy differences become more marked, 

until two peaks are finally resolved in the region of relative energy 

loss between 0.8 and 0.9 eV. 
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CHAPTER V 

COMPARISON WITH THEORY 

Introduction 

In this chapter, the experimental results obtained for the col-

lisional excitation of vibrational transitions in the system 0 + + 0^ 

will be compared with those predicted by theory for this system. 

Indeed, much theoretical work has been done in the area of 

vibrational excitation. Secrest and Johnson (6) have presented an 

exact quantum mechanical calculation for the collinear collision of a 

particle with a harmonic oscillator. An exponential interaction poten

tial was used and transition probabilities were calculated for several 

different mass combinations of the particles. Somewhat earlier, Kelley 

and Wolfsberg (22) obtained transition probabilities for the same model 

using an exact classical calculation. Unfortunately no system approxi

mating that of 0 + + 0^ was used in either of these calculations and both 

required extensive machine computation of the respective equations of 

motion, even for such a simple model. 

For these reasons, the treatment which will be followed in this 

chapter is an approximate quantum=mechanical calculation developed by 

Kerner (23) and Treanor (l). This treatment leads to analytic solutions 

for a general class of interaction potentials. In addition, Treanor (l) 

For a review of theoretical work in this area before 1964, see 
Takayanagi (20), (21). 
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has shown the results of this approximate quantum-mechanical calcula= 

tion reduce to those of a semiclassical calculation., For several sys-

temSj, the relationship among the transition probabilities predicted by 

each of the three treatments is known in order to approximately compare 

the experimental results with those which should be predicted by the 

exact quantum mechanical treatment. 

Consider the collinear collision of a particle A incident along 

the bond axis of a diatomic molecule B^o Let x be the distance from the 

center of A to the center of mass of B^, y the internuclear distance of 

B„ at any time t s y the equilibrium internuclear distance of B 9, 

reduced mass of the molecule B^o To a first approximation, the inter-

action between A and the atom B further from it is much smaller than 

that between A and the closer B=atom and s therefore, may be neglected. 

The potential for the system can then be written as 

where Y = y - y Q S ) k is the harmonic oscillator force constant, and F(t) 

is the classical force acting on the closer B-atom due to the collision 

with A. 

The time«dependent Schrb°dinger equation for this system may be 

written as 

A comparison of these theories and others may be found in the 
recent review by Rapp (24)„ 

Classical Calculation 

(31) 
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- |r^+ [1/2 k Y 2 - YF(t)] = . (32) 

Kerner (23) has obtained a solution to this equation via the transforma-

tions 

\|r(Y,t) = cp[Y - u(t),t] exp[Yg(t)] (33) 

C(Y,t) = Y - u(t) 

where g(t) and ep(C»t) are undetermined functions, g and u are chosen 

such that Equation (32) is separable in the variables £ and t with the 

solution 

\Jrm(Y,t) = Nmexp(JnYu) exp(- (5 + E n)dt) • (34) 

exp[=l/2a 2(Y - u) 2] H m[a(Y-u)] 

2 2 l/2 n l/2 where 6 = l/2jiu - 1/2 ku , is a normalization factor [a/(n) ' 2 nl] ' , 
2 l/2 

a = (jik) /jfij is the mth Hermite polynomial, and E^ = (m + l/2)jfa is 

the energy of the mth vibrational state of the harmonic oscillator. 

This solution may be interpreted (23) as describing an oscillating wave 

packet whose center moves under the equations of motion of the classical 

forced oscillator 

jili" + ku = F(t) (35) 

Following the procedure of Treanor (l), the wave function for the 

forced oscillator in the vibrational state m, i|fm(Y,t), may be expanded 

in terms of the complete set of normalized harmonic oscillator wave 

functions 



X n(Y,t) = N nexp(»l/2 a 2Y 2)H n( aY)exp(-iE nt/^) 

such that 

f (Y,t) = J b ( t ) x(Y , t ) m U mn n 

Hence 

r 1 

b = X | dt 
mn J n m 

-ao 

where the course of the collision occurs in the interval t = -oo, 

x =ao t = eoj, x Using Equations (34) and (36), Treanor (l) has 

integrated equation (38) to obtain 

bm n = ( » l ) m ( m f n S ) l / 2 exp(-l/2 O S > + n ) / 2 • mn o mn o 

i t i u 

exp[-i(m-n)(ut + 6 t ) -rj (J & dt - \i —• )] 

where 

c = V . °. mn L (n-jJ.'jKm-j)." 5 

j=0 

6 = tan 1 (u/wu), 

z is the lesser of m and n, u = 2rcv is the angular frequency of the 

oscillator, and 

e Q(t) = ( 1 / ^ u 2 + l/2ku2)/)ta 
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It can be seen that @ q is simply the total energy transferred to the 

classical forced oscillator divided by^ui, and will be written 

g

0

 = 757 • ( 4 3 ) 

If the oscillator is in the state m at t = the probability 

of finding it in the state m at time t is then the square of the magni

tude of the expansion coefficient b 
r mn 

P = |b | 2 = m ; n ; e " e ° , e ( m + n ) S 2 

mn 1 mn 1 o mn 9 

or for the particular case of m = 0 

P o n =.(l/n:)e~ £° en

Q . (45) 

As Rapp (25) has pointed out, this probability function of Treanor rises 

to a maximum transition probability at e Q = n with increasing relative 

energy of the collision and then decreases with a further increase in 

the relative energy. 

To calculate the transition probabilities for a particular sys

tem, one must find the classical energy transferred to the oscillator 

in the collision. This energy is proportional to the square of the 

vibrational amplitude Y. Hence Y must be determined from the classical 

equation of motion of the oscillator as a function of the impulse F(t)4t. 

This problem has already been solved for a general class of oscillators 

(26')o For the particular case of the undamped, forced oscillator 
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dt (46) 

The classical energy transferred to the oscillator during the course 

of the collision is then (26) 

AE = c (4?) 

A suitable potential function must now be found which will pro

vide an accurate description of the interaction for a given physical 

system and yet yield solutions to Equation (47) in closed form. Two 

potentials that fit this latter requirement are availableo Unfor

tunately, the first requirement may be only approximated. 

Rapp (2?) has proposed an exponentially repulsive potential of 

the form 

where E Q = 1/2 mv Q is the total energy of the system and X = x - x

m | n » 

where x . is the value of x at the time of collision (classical turn-min 
ing point)= L is a parameter used to fit an exponential potential to the 

interpreted as the effective range of the interaction. If the poten-

tial is only weakly dependent on the vibrational amplitude^ that is if 

Y « L, then the exponential may be expanded in terms of Y to obtain 

(48) 

repulsive slope of the Lennard=Jones potential function* and may be 

# 
See Appendix. 
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V T(X,Y) = E exp(-X/L)(l - l/2 Y/L) . 
i. o 

To a first approximation, the trajectory of particle A may be consid

ered independent of Y 

V_(X) S E exp(-X /L) (50) 
JL O 

and this approximate potential substituted into the equation of motion 

of A 

1/2 m X 2 = E - V_(X) o (51) o I 

Rapp (26) has integrated Equation (51) to obtain 

exp(=X/L) = sech 2(v ot/2L) . (52) 

Substitution of Equation (52) into Equation (49) yields 

V T (Y , t ) = E (l + 1/2 Y/L) sech 2(v t/2L) „ (53) 
A O O 

The force of the interaction may now be calculated from Vj(Y S it) 

Fj(t) = = 2_ [ v ^ Y j t ) ] = 2~ sech 2(v ot/2L) . 

Equation (4?) has been solved by Rapp (27) for this force to obtain 

A E c I ~ ^i" ̂  m(jL/sinh(Ti(JjL/vo)]2 <> (55) 

Hence the probability of the vibrational transition v = 0 n occurring 

in the collision is 
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p = (_±.) e " e ° e " (45) on n! 

where 

% = ^HT~ [™L/sinh(2,t2 cvL/vQ)f , (56) 

c is the speed of light, and v is the frequency of the oscillator in 

units of cm A plot of equations (45) and (56) for the system 0 + + 0^ 

versus relative velocity for three values of L is shown in Figure 16o 

Here m A = m B = 2.66 X 1 0 = 2 3 g and v = 1580.36 cnf 1 (18). 

Kelley and Wolfsberg (22) have pointed out that this potential 

does not permit energy conservation in high energy collisions for cer

tain mass combinations in the collision system. Consider the high energy 

limit of the classical energy transferred to the oscillator 

am 

Lim E C I - J E Q . (57) 
0 

For the case of 0 + the factor m/u. is on the order of 2.7. Hence, 

energy is not conserved by this potential in the system of interest. 

A second potential has been proposed by Rapp and Sharp (28) of 

the form 

V n ( X , Y ) = E q csch 2[(X/8L) + p] exp(Y/2l) (58) 

2 

where p is a constant whose value is such that csch p = 1. This poten

tial has been obtained as a function of the oscillator amplitude and 

time in a manner analogous to that used for (28). 
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Figure 16. Variation with L of Vibrational Transition 
Probabilities Calculated from Equations (45) 
and (56) for the System 0 + + 0.. ON 
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V, T(Y,t) = E exp (Y/2L)sech(nv ot/4L) (59) 

or equivalently 

F n ( t ) = -(E o/2L)exp(Y/2L)sech(uv ot/4L) . (60) 

If Y < < L, Equation (60) may be expanded in terms of Y to obtain 

Treanor (l) has integrated Equation (47) for this force to obtain the 

classical energy transferred to the oscillator 

Equation (45) may be used to calculate the transition probabilities, 

where £ q is given by 

~2 2 
m v „ 

e = — — seen ( 4 K C V L / V ) . (63 
0 jihcv 0 

+ 

for the system 0 + Og using this potential is plotted versus the 

relative velocity of the collision for three values of L in Figure 17. 

The probabilities for the vibrational transitions v = 0 1, 

v = 0-*'2, and v = 0 °*3 predicted for the system 0 + + 0^ by Equations 

(45) and (63) are shown in Figures 18-20. Also shown are the experi

mental transition probabilities for this system whose sum at each 

F n ( t ) = -(E o/2L )sechUv Q t/4L) . (61) 

~2 2 
(62) 

Comparison of Results 



Figure 17. Variation with L of Vibrational Transition 
Probabilities Calculated from Equations (45) 
and (63) for the System 0 + + 0 . 



1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 
Vo(cm/sec) x 10 

Figure 18. Probability of the Transition v = 0 1 in the 
System 0 + + 0„ Compared to That Predicted by 

£ o 
Equations (45) and (63). L = 0.600 A. —i 



1 

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 
Vo(cm/sec) x 10 ̂  

Figure 19. Probability of the Transition v = 0 2 in the 
System 0 + + 0„ Compared to That Predicted by 
Equations (45) and (63). L = 0.600 A. 

ON 

oo 



0 + + 0 2(v=0) -> 0 + + 0 2(v=3) 

Vo(cm/sec) x 10 

Figure 20. Probability of the Transition v = 0 3 in the 
System 0 + + 0. Compared to That Predicted by 

o 

Equations (45) and (63). L = 0.600 A. 
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velocity has been normalized to the sum predicted by theory at the same 

velocity. To fit the theoretical curves to the data, a value of L = 0*600 

ft had to be chosen. However, for collisions in the system P 2 + 0^, the 

value of this parameter is normally on the order of 0.26 A* (£9). Parker 

(29) has obtained an empirical expression for calculating L from the 

Lennard-Jones molecular diameter r Q which fits his experimental data 

a = 2.625 (l - exp[-(r o/3.46) 6]} (64) 

+ 6,117 (r o/3.46) 6 exp[=(r o/3.46) 6] 

where a = L 1 . In the region below a = 4.0 (L = 0.25) L increases 

monotonically with decreasing r Q . Hence, the larger value of L required 

to fit the data implies a smaller equilibrium internuclear distance 

between the incident particle and the diatomic molecule. 

The presence of this observed decrease in r Q is readily explained 

in part by recalling the incident particle is charged. Therefore an 

additional potential due to polarization of the molecule by the inci-= 

dent ion must be considered. Such a polarization appears in the 

Lennard=Jones potential function as an additional term proportional to 
=4 

r . This term effectively deepens the attractive potential well and 

shifts the equilibrium distance to smaller values of r Q . Hence a larger 

value of L should be expected in this system than in that for a purely 

intermolecular collision,, 

Of course, part of the observed increase in the value of L is a 

form of compensation for approximations made in obtaining a computa

tionally suitable potential and, indeed, in the model on which the 
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theory itself is based. 

Kelley and Wolfsberg (22) have calculated the exact classical 

energy transferred in the collision (AE) for a large number of differ

ent mass combinations,, They have found that the ratio of AE to that 

calculated assuming the coordinates X and Y are independent (AE £) 

depends primarily on a mass ratio of the system. Rapp (25) has fitted 

their results to an empirical function to obtain 

^^c 1.685m /--c\ 

where m for the case of a homonuclear diatomic molecule is given by 

m = m/4(i. For the system 0 + + 0 , m = 0.324 and AE /AE = 1.75. The 
2. C 

maximum probability calculated from Equation (45) for the v = 0 •> 1 

transition will therefore be only 0.304 that which would have been 

obtained if AE had been used in the calculation. This difference 

appears as an additional shift to higher values of L as may be seen 

from the L dependence of the probability function shown in Figure 17. 

Secrest and Johnson (6) have compared their exact quantum 

mechanical results to those of Kelley and Wolfsberg (21) for a number 

of systems. In the case most analogous to that of 0 + + 0^, the exact 

quantum transition probabilities were found to be somewhat lower than 

those predicted by the exact classical theory. The comparison, how

ever,, was made on the ascending branch of the P~ versus v curve, 
s 3 On —•.- o ' 

hence L must be increased still further to approximate the quantum 

results. 

It may be seen that the experimental data for the system 
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0 + °2 "the vibrational transition probabilities predicted by the 

theory of Kerner (23) and Treanor (l) surprisingly well. However some 

of this correspondence may only be fortuitous considering the crudeness 

of the model on which this theory is based. 
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CHAPTER VI 

CONCLUSIONS 

An ion beam technique has been utilized to measure relative dif

ferential inelastic cross sections of specific rotational and vibrational 

transitions in diatomic molecules due to collisional excitation. The 

technique consists of passing a low energy, mass selected ion beam through 

a rotatable collision chamber containing the target gas. The inelastically 

scattered ions are mass selected and velocity analysed. The excitation 

of specific transitions appears as discrete peaks in the velocity spec

trum of the forward scattered ions. 

The variation in the differential inelastic cross sections for 

rotational excitation with the relative velocity of the collision part

ners has been studied in detail for the system A r + + These results 

are presented in Figure 11„ Transitions other than AJ = +2 have not 

been observed. The absolute differential cross section for the excita

tion of the J = 0 •* 2 rotational transition in is estimated to be 

0.15 ±0.10 A^/sr, which is in good agreement with the value obtained by 

Bernstein (5) in the system K + D^. Relative differential inelastic 

cross sections have also been obtained in the systems 0 + + and 

N+ + H 2 . 

The velocity dependence of the probability for the vibrational 

transitions v = 0 -*1, v - 0 ^ 2 , and v = 0 =>3 has been studied in the 
+ 

system 0 + 0 o . It is observed that the most probable vibrational 
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transitions at low kinetic energy of impact involve a change in vibra-

tional quantum number of unity; however, at higher relative energies 

multiquantum transitions predominate. These results have been compared 

with the transition probabilities predicted for this system by the 

approximate quantum=mechanical theory developed by Kerner (23) and 

Treanor (l) for the collinear collision of a particle with a harmonic 

oscillator. Inaccuracies in the theory and in the interaction potential 

may be approximately corrected by a variation in the potential parameter 

L. Surprisingly good agreement is achieved between experiment and 

theory. 
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APPENDIX 

SIGNIFICANCE OF PARAMETER L 

Herzfeld (30) has presented a method for fitting a simple expo

nential potential to the intermolecular Lennard-Jones (LJ) potential 

function 

4 p [ ( r Q / r ) 1 2 - (r o/r) 6] (A-l) 

=6 
The r term is simply the potential due to the long range London attrac 

-12 

tion between molecules and the r term is an approximation of the 

short range intermolecular repulsion due to overlapping of electron 

orbitals of the molecules. P i s a parameter chosen to represent the 
depth of the potential well and r Q is the internuclear distance at which 

V = Oo The equilibrium internuclear distance for the system, that is 
1/6 

the value of r at which V is a minimum, occurs at r = 2 ' r Qo 

Another term, r , must be defined before an exponential potential 

may be fitted to Equation (A-l) for the. case of intermolecular colli-

sionso Consider a particle A of total energy E incident on a second 

particle B. If the interaction between these particles may be repre= 

sented by the LJ potential, the forward motion of A will be stopped by 

the repulsive part of the potential curve at a distance r c from parti

cle B. 

Choose the exponential potential to be of the form 
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