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Abstract. We generalize the well-known result of Graff and Zehnder on the
persistence of hyperbolic invariant tori in Hamiltonian systems by considering
non-Floquet, frequency varying normal forms and allowing the degeneracy of
the unperturbed frequencies. The preservation of part or full frequency com-
ponents associated to the degree of non-degeneracy is considered. As applica-
tions, we consider the persistence problem of hyperbolic tori on a submanifold
of a nearly integrable Hamiltonian system and the persistence problem of a
fixed invariant hyperbolic torus in a non-integrable Hamiltonian system.

Dedicated to Professor George R. Sell on the occasion of his 65th birthday

1. Introduction

In [14], Moser considered the following Hamiltonian system:

(1.1) H = e + 〈ω0, y〉 +
1

2
〈y, Ay〉 +

1

2
〈z, Mz〉+ P (x, y, z),

where (x, y, z) ∈ T n × Rn × R2m, ω0 ∈ Rn is a fixed Diophantine toral frequency,
A, M are n× n, 2m× 2m non-singular, constant matrices, respectively, JM is hy-
perbolic with all eigenvalues being real and distinct, and P is a small perturbation.
The persistence of the unperturbed Diophantine hyperbolic torus T n × {0} × {0}
was shown along with the preservation of the toral frequency ω0. By considering a
symplectic reduction of M into the form

(1.2) M =

(

O B0

B>
0 O

)

,

Graff [9] generalized Moser’s result by allowing multiple eigenvalues of M . An al-
ternative proof of Graff’s result was later given by Zehnder in [25] using implicit
function technique. This result has played a fundamental role in analyzing global
branches of invariant tori and Arnold diffusion in Hamiltonian systems ([10, 23]).
For the Lindstedt series approach to the persistence of hyperbolic tori in Hamilton-
ian systems, we refer the readers to [8, 11].

The present paper concerns a generalization of the Graff-Zehnder result to the
non-Floquet, frequency varying cases in which certain degeneracy of the unper-
turbed frequencies is allowed. More precisely, we consider the following Hamiltonian
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systems

(1.3) H = e(λ) + 〈ω(λ), y〉 +
1

2
〈
(

y

z

)

,M(x, λ)

(

y

z

)

〉 + h(x, y, z, λ) + P (x, y, z, λ),

where (x, y, z) ∈ T n ×Rn ×R2m, λ is a parameter in a bounded, closed, connected
region O ⊂ Rk, e and ω are of class C l0 on O for some fixed l0 ≥ max{n, 2}, M is
symmetric, real analytic in x ∈ D(r) = {x ∈ Cn/Zn : |Imx| < r} and C l0 in λ ∈ O,
h(x, y, z, λ) = O(|(y, z)|3) is real analytic, and, P , viewed as a perturbation, is real
analytic in a complex neighborhood D(r, s) = {(x, y, z) : |Imx| < r, |y| < s, |z| < s}
of T n × {0} × {0} and C l0 in λ ∈ O.

Throughout the paper, we shall use the same symbol | · | to denote the sup-
norm of vectors and its induced matrix norm, the standard l1 norm in a lattice Zp,
absolute value of functions, and Lebesgue measure of sets etc. Thus, for any matrix
Q = (qij), |Q| = maxi

∑

j |qij |. Also, [ · ] will denote both the average of a matrix

valued function on a torus and the integral part of a real number. For any (vector,
matrix valued) function f defined on a domain D, |f |D stands for supD |f |, and,
for any two complex column vectors ξ, ζ of the same dimension, 〈ξ, ζ〉 means the
transpose of ξ times ζ.

Write M in (1.3) into blocks:

(1.4) M =

(

A B
B> M

)

,

where A = A(x, λ), B = B(x, λ), M = M(x, λ) are n× n, n× 2m, 2m× 2m blocks
of M = M(x, λ) respectively. With respect to the standard symplectic form

n
∑

i=1

dxi ∧ dyi +

m
∑

j=1

dzj ∧ dzj+m,

the equation of motion associated to (1.3) reads














ẋ = ω(λ) + Ay + Bz + ∂yh + ∂yP,

ẏ = −1

2
∂x〈
(

y

z

)

,M(x, λ)

(

y

z

)

〉 − ∂xh − ∂xP,

ż = JMz + JB>y + J∂zh + J∂zP,

where J denotes the 2m × 2m symplectic matrix. Thus, the unperturbed system
associated to (1.3) admits a smooth family of invariant n-tori Tλ = T n ×{0}× {0}
with toral frequencies ω(λ) parameterized by λ ∈ O. We first assume that J [M ] is
hyperbolic on O, i.e., if λi(λ), i = 1, 2, · · · , 2m, are eigenvalues of J [M ](λ), then

H) there is a σ0 > 0 such that

|Reλi(λ)| ≥ σ0,

for all λ ∈ O and i = 1, 2, · · · , 2m.

We note that if both |M − [M ]|D(r)×O and |B|D(r)×O are sufficiently small, then
H) implies that the invariant tori Tλ, λ ∈ O, are hyperbolic in the z-direction.

Next, we assume the Rüssmann condition on the frequency map, i.e.,

R)

max
λ∈O

rank{∂αω(λ) : ∀|α| ≤ n − 1} = n.
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The Rüssmann condition is known to be the weakest non-degenerate condition for
the persistence of maximal dimensional invariant tori in nearly integrable Hamil-
tonian systems ([3, 19, 20, 22, 24]).

Define

η0 =
2

√

ρ2
0 + 4α0ρ0 + ρ0

,

where,

α0 = (1 + 2m)|[M ]−1|O,

ρ0 =
4m

σ0
(1 +

2m

σ0
|[M ]|O)2m−1.(1.5)

Our main result is stated as follows.

Theorem 1. Consider (1.3). Assume conditions H), R) and that

(1.6) |M − [M ]|D(r)×O, |B − [B]|D(r)×O < η0.

Then there is a µ = µ(r, s, l0, σ0) > 0 sufficiently small such that if

(1.7) |∂l
λP |D(r,s)×O < s2γ3l0+4µ, |l| ≤ l0,

then there is a 0 < r0 = r0(r, σ0) ≤ r and a Cantor-like set Oγ ⊂ O, with |O\Oγ | =

O(γ
1

n∗−1 ), where n∗ = max{2, n}, for which the following holds. There is a C l0−1

Whitney smooth family of real analytic, symplectic transformations

Ψλ : D(r0,
s

2
) → D(r0, s), λ ∈ Oγ ,

which are C l0 uniformly close to the identity such that

H ◦ Ψλ = e∗ + 〈Ω∗(λ), y〉 +
1

2
〈
(

y

z

)

,M∗(x, λ)

(

y

z

)

〉 + h(x, y, z, λ) + P∗(x, y, z, λ),

where

|∂l
λe∗ − ∂l

λe|Oγ
= O(γ2(l0+1)µ

1
2 ),

|∂l
λΩ∗ − ∂l

λω|Oγ
= O(γ2(l0+1)µ

1
2 ),

|∂l
λM∗ − ∂l

λM|D(r0)×Oγ
= O(γl0+1µ

1
4 ),

for all |l| ≤ l0. Moreover,

∂p
y∂q

zP∗|(y,z)=(0,0) ≡ 0, |p| + |q| ≤ 2.

Thus, all unperturbed tori Tλ with λ ∈ Oγ will persist and give rise to a C l0−1

Whitney smooth family of slightly deformed, analytic, quasi-periodic, invariant n-

tori of the perturbed system with the Diophantine toral frequencies Ω∗(λ).

Our next result concerns the preservation of toral frequencies in connection with
the degree of non-degeneracy of the matrix [A]. More precisely, we assume that

ND) there is an 1 ≤ n0 ≤ n such that both the n0 ×n0 ordered principal block U
of [A] and Y ≡ [M ] − [B]>diag(U−1, O)[B] are non-singular on O, where

O denotes the zero matrix.
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It is clear that ND) holds automatically if [A] is non-singular on O and |[B]|O is
sufficiently small (in particular when [B] ≡ 0).

Define

(1.8) η =
2

√

ρ2
0 + 4αρ0 + ρ0

,

where ρ0 is as in (1.5) and

(1.9) α = (1 + 2m)(|Y −1| + |U−1| + (|Y −1||U−1|)(1 + |[B]| + |[B]||U−1|))O.

Theorem 2. Consider (1.3). Assume conditions H), ND), the condition (1.6) with

η in place of η0, and the condition (1.7) with respect to a sufficiently small positive

number µ = µ(r, s, l0, σ0, U).

1) If R) holds, then there is a r0 = r0(r, σ0, U) such that Theorem 1 holds with

(Ω∗(λ))i = ωi(λ), λ ∈ Oγ , i = 1, 2, · · · , n0,

i.e., the first n0 components of a perturbed toral frequency Ω∗(λ) coincide

with the corresponding ones of the unperturbed toral frequency ω(λ).
2) If n0 = n, i.e., U = [A] is non-singular on O, then every hyperbolic Dio-

phantine tori Tλ with Diophantine type (γ, τ) for a fixed τ > n − 1 will

persist with unchanged toral frequencies.

The roughness condition (1.6) in Theorem 1 and the similar roughness condition
in Theorem 2 hold automatically if both M and B are small perturbations of x-
independent matrices. Since both roughness conditions are independent of the size
of the perturbation P and there is no restriction on the smallness of |A − [A]|, the
above theorems can be applied to Hamiltonians of form (1.3) which may be far
from being integrable. In particular, if M = [M ], B = [B], then Theorem 1 holds
for arbitrary A(x, λ).

The above theorems extend the results of Graff and Zehnder even for the case
of (1.1), by allowing the degeneracy of A, a general matrix M, and the variation
of toral frequencies. It is clear that if B = 0 then Theorem 2 2) coincides with
the results of Graff and Zehnder. We remark that, in the frequency varying case, a
smoothly varying, symplectic reduction of (1.3) to (1.1), in particular with M being
reduced to the form (1.2), is generally not available especially when eigenvalues of
J [M ](ω) change their multiplicities.

The proof of the above theorems will use a linear iterative scheme which follows
the traditional KAM framework but only deals with the elimination of all resonant
terms in each KAM step.

The paper is organized as follows. In section 2, we consider applications of the
above results to problems such as the persistence of hyperbolic lower dimensional
tori on a submanifold in a partially integrable system and the persistence of a
hyperbolic invariant torus in a non-integrable system. In Section 3, we describe
the linear iterative scheme for one KAM step with respect to (1.3) and also give
estimates for the symplectic transformation and the new Hamiltonian. In Section
4, we prove an iteration lemma which checks the validity of all KAM steps. Proofs
of both theorems will be completed in Section 5.

We would like to thank the referee for valuable comments and suggestions.
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2. Applications

2.1. Persistence of hyperbolic tori on submanifolds. A natural way to intro-
duce parameters in the application of Theorems 1 and 2 is to consider persistence
of hyperbolic tori on submanifolds in a partially integrable Hamiltonian system. To
be more precise, let us consider the Hamiltonian

(2.1) H(x, y, z) = H0(y, z) + εP (x, y, z), x ∈ T n, y ∈ Rn, z ∈ R2m,

endorsed with the standard symplectic structure. We assume that H0 is partially
integrable in the sense that the surface {z = 0} is invariant with respect to the
Hamiltonian flow associated to H0. Hence H0 admits the following Taylor expansion

H0(y, z) = H0(y, 0) +
1

2
〈z, M̃(y)z〉 + O(|z|3),

where M̃(y) = (∂2H0/∂z2)(y, 0). Now consider a k-dimensional (1 ≤ k ≤ n)
submanifold Ξ of Rn defined by

Ξ = {y = y(λ), z = 0 : λ ∈ O},
where O is a closed bounded region in Rk and y : O → Rn is a smooth imbedding.
Then with the translation y − y(λ) 7→ y, z = z, the Hamiltonian H0 becomes

H0(y, z, λ) = H0(y(λ), 0) + 〈ω̃(y(λ)), y〉

+
1

2
〈y, Ã(y(λ))y〉 +

1

2
〈z, M̃(y(λ))z〉 + O(|z|3) + O(|y||z|2),

where ω̃(y) = (∂H0/∂y)(y, 0), Ã(y) = (∂2H0/∂y2)(y, 0). Thus by letting e(λ) =

H0(y(λ), 0), ω(λ) = ω̃(y(λ)), A(λ) = Ã(y(λ)), M(λ) = M̃(y(λ)), the Hamiltonian
H has the canonical form

H = e(λ) + 〈ω(λ), y〉 +
1

2
〈
(

y

z

)

,M(λ)

(

y

z

)

〉 + h(y, z, λ) + P (x, y, z, λ),

with M = diag(A, M), and,

h(y, z, λ) = O(|z|3) + O(|y||z|2), P (x, y, z, λ) = εP (y + y(λ), z, x).

Since P and its derivatives with respect to λ will be sufficiently small in a complex
neighborhood of T n × {0} × {0}, an application of Theorems 1 and 2 yields the
following.

Corollary 1. Consider (2.1) on the submanifold Ξ and assume that M̃ is hyperbolic

on Ξ in the sense of H).

1) If ω̃ satisfies the Rüssmann condition on Ξ, i.e., ω satisfies R) on O, then

there is an ε0 > 0 and a family of Cantor-like sets Ξε ⊂ Ξ, 0 < ε ≤ ε0,

with |Ξ\Ξε| → 0, as ε → 0, such that for all y ∈ Ξε, the unperturbed n-tori

Ty = {y} × {0} × T n persist and give rise to a Whitney smooth family of

hyperbolic, analytic, Diophantine n-tori Ty,ε of the perturbed system.

Moreover, if for some 1 ≤ n0 ≤ n, the n0 × n0 ordered principal block

U(y) of Ã(y) is non-singular on Ξ, then the first n0 components of the toral

frequency of each Ty,ε are the same as those of Ty.

2) If Ã(y) itself is non-singular on Ξ, then all unperturbed hyperbolic Diophan-

tine n-tori Ty on Ξ with Diophantine type (γ, τ), where 0 < γ < ε
1

6n+8 is

arbitrary and τ > n− 1 is fixed, will persist as ε → 0 with unchanged toral

frequencies.



6 YONG LI AND YINGFEI YI

To give an example, let us consider

H(x, y, z) =
1

2
y2
1 + y2 +

1

2
(u2 − v2) + εP (x, y, z),

where x = (x1, x2)
> ∈ T 2, y = (y1, y2)

> ∈ R2, z = (u, v)> ∈ R2, associated to the
standard symplectic structure. Let Ξ be the unit circle in R2 which we parameterize
by Ξ = {(cosλ, sin λ) : 0 ≤ λ < 2π}. With the notion above, it is clear that

ω(λ) = (cos λ, 1)>,

A(λ) =

(

1 0
0 0

)

,

M(λ) =

(

1 0
0 −1

)

.

Hence the condition H) is clearly satisfied on Ξ. Since

rank{∂αω(λ) : ∀|α| ≤ 1} = rank

(

cosλ − sinλ
1 0

)

= 2, λ 6= 0, π,

R) is also satisfied. An application of Corollary 2 yields the persistence of the
majority of the unperturbed 2-tori on Ξ after a small perturbation. Moreover,
since the 1 × 1 principal block of A equals 1, the first component of the frequency
of a perturbed torus Tλ,ε is simply cosλ.

2.2. Non-integrable KAM problem. Let H0(p, q), (p, q) ∈ Rd × Rd be a real
analytic Hamiltonian on R2d endorsed with the standard symplectic structure. We
assume that H0 admits an analytic, invariant, Diophantine n-torus T0 for some
1 ≤ n < d, i.e., there are real analytic functions P̂ , Q̂ : T n → Rd, and a Diophantine
vector ω0 ∈ Rn, such that T0 = cl{(P̂ (ω0t), Q̂(ω0t)) : t ∈ R}. Let x ∈ T n be the
standard coordinate on T n. One can apply the Frobenius’ theorem ([16]) to obtain
a symplectic coordinate system (x, y, z) ∈ T n × Rn × R2d−2n in the vicinity of T0

such that T0 = {y = 0, z = 0} and

H0 = e + 〈ω0, y〉 +
1

2
〈
(

y

z

)

,M(x)

(

y

z

)

〉 + O((|y| + |z|)3).

Write M into blocks like (1.4) and assume that a) [A] is non-singular; b) [M ] is
hyperbolic in the sense of H); c) |M − [M ]|, |B − [B]| are sufficiently small. Then
an application of Theorem 2 2) yields the persistence as well as the frequency
preservation of T0 after a small perturbation of H0. In the case that a smooth
family of such invariant n-tori Tλ of H are given, one can show the persistence of
the majority of invariant tori in the family under either the Rüssmann condition
R) or the non-degeneracy of [Aλ] according to Theorems 1 and 2.

The non-integrable persistence problem is even more significant when the per-
sistence of a smooth family of maximal dimensional invariant tori Tλ ' T d, λ ∈ O,
is considered for H0, where O ⊂ Rk is a bounded closed region.

By introducing a symplectic coordinate (x, y) ∈ D(r, s) = {(x, y) : |Imx| <
r, |y| < s} in the vicinity of the invariant tori, the perturbed Hamiltonian H0 + εP
can be written in the form

(2.2) H = e(λ) + 〈ω(λ), y〉 +
1

2
〈y, A(x, λ)y〉 + O(|y|3) + εP (x, y, λ).
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For a fixed Diophantine toral frequency ω = ω0, persistence of an invariant n-
torus of (2.2) for small ε has been shown for the non-degenerate case (i.e., [A] is a
non-singular constant matrix) by Salamon and Zehnder ([21]) using the Lagrangian
formalism and by Eliasson ([6]) using Lindstedt series. A generalization of these
works is recently made in [5] without using action-angle variables.

In the frequency varying case with possible degeneracy of ω(λ), an immediate
consequence of Theorems 1 and 2 is the following.

Corollary 2. Consider (2.2).

1) If ω(λ) satisfies the Rüssmann condition R) for n = d, then there is a

sufficiently small ε0 > 0 and a family of Cantor-like sets Oε ⊂ O, 0 < ε ≤
ε0, with |O \ Oε| → 0, as ε → 0, such that for all λ ∈ Oε, the unperturbed

d-tori Tλ = T d × {0} persist and give rise to a Whitney smooth family of

slightly deformed, analytic, Diophantine, invariant d-tori of the perturbed

system.

Moreover, if for some 1 ≤ d0 ≤ d, the d0 × d0 ordered principal block of

[A] is non-singular on O, then the first d0 components of the toral frequency

of each perturbed torus coincide with those of the corresponding unperturbed

toral frequency.

2) If [A] itself is non-singular on O, then all Diophantine tori Tλ of Diophan-

tine type (γ, τ), where 0 < γ < ε
1

6d+8 is arbitrary and τ > n − 1 is fixed,

will persist as ε → 0 with unchanged toral frequencies.

Part 2) of Corollary 3 particularly holds when the persistence of a fixed Dio-
phantine torus in a non-integrable Hamiltonian system is considered. Assume that
the Hamiltonian H0 admits a Diophantine invariant d-torus T0 with toral frequency
ω0. Let (x, y) ∈ T d × Rd be a symplectic coordinate system in the vicinity of T0

such that T0 = {y = 0}. Then with respect to the new coordinate the Hamiltonian
H0 becomes

H0 = e + 〈ω0, y〉 +
1

2
〈y, A(x)y〉 + O(|y|3),

where A(x) = (∂2H/∂y2)(x, 0). Applying part 2) of Corollary 3, it is clear that if
H0 is non-degenerate on T0, i.e., A is non-singular on T d, then not only does T0

persist under a small perturbation of H0 but also the perturbed toral frequency is
kept unchanged.

3. KAM Step

In this section, we describe our linear iterative scheme with respect to (1.3) for
one KAM step, under the conditions of the first part of Theorem 2. As we shall
see in the sequel, Theorem 1 and the second part of Theorem 2 can be more or
less treated as special cases of the first part of Theorem 2 by taking n0 = 0 and n
respectively (to unify the notation, n0 = 0 means the omission of all U -related terms
in the assumptions of Theorems 1 and 2). Below, we let τ > max{n(n − 1) − 1, 0}
be fixed. Also, for simplicity, we set l0 = n.

Initially, set e0 = e, Ω0 = ω, M0 = M, A0 = A, B0 = B, M0 = M , h0 = h,

P0 = P , O0 = O, β0 = s, r∗ = r, γ0 = γ, s0 = γ
n+1+

a0
2

0 µ
1
4 , µ0 = s2γ

n+1+
a0
2

0 µ
1
2 ,
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µ∗ = µ. We also write [A0](= [A]) into blocks:

[A0] =

(

U0 E0

(E0)> V 0

)

,

where U0 = U . Without loss of generality, assume that 0 < r∗, β0, µ∗ ≤ 1, s0 ≤ β0.
By (1.7), we have that

(3.1) |∂l
λP0|D(r0,s0) ≤ γn+1

0 s2
0µ0, |l| ≤ n,

where r0 ∈ (0, r∗] will be specified in Section 3.3.
Suppose at a KAM step, say the νth step, we have arrived at a Hamiltonian

H = Hν = N + P,(3.2)

N = Nν(x, y, z, λ) = e + 〈Ω(λ), y〉 +
1

2
〈
(

y

z

)

,M(x, λ)

(

y

z

)

〉 + h0(x, y, z, λ),

where (x, y, z) ∈ D = Dν = D(r, s), 0 < r = rν ≤ r0, 0 < s = sν ≤ s0, γ =
γν ≤ γ0, λ ∈ O = Oν ⊂ O0, e(λ) = eν(λ), Ω(λ) = Ων(λ) are smooth on O
with (Ω(λ))i = ωi(λ), 1 ≤ i ≤ n0, M(x, λ) = Mν(x, λ) is real symmetric over
D × O = {x : |Imx| < r} × O which is smooth in λ ∈ O and real analytic in
x ∈ D = Dν = D(r), P = Pν(x, y, z, λ) is real analytic in (x, y, z) ∈ D, smooth in
λ ∈ O, and moreover,

|∂l
λP |D×O ≤ γn+1s2µ, |l| ≤ n,

for some µ = µν > 0.
We shall construct a symplectic transformation Φ = Φν+1 which transforms

the Hamiltonian (3.2), in smaller phase and frequency domains, to the desired
Hamiltonian in the next KAM cycle (the (ν + 1)th KAM step).

Below, for simplicity, quantities (domains, normal form, perturbation, etc.) in
the next KAM cycle will be simply indexed by “ + ” (=ν + 1) and we shall often
suspend the dependence of functions on their arguments. Also, all constants c1−c7

in this section are positive and independent of the iteration process. We shall
also use c = c(r0, β0, l0, σ0) to denote any intermediate positive constant which is
independent of the iteration process.

Let b, σ, d be sufficiently small positive constants such that

σ − (b + σ)(2b + 3σ) > 0, δ(1 + b + σ) > 1,

(n + 1 +
a0

2
)(1 − 2b − 3σ) > n + 1,

where δ = 1 − d, a0 ∈ (0, 1/3).
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Define

γ+ =
γ0

4
+

γ

2
,

r+ = δr + d(1 − δ2

2
)r0,

s+ = s1+b+σ,

β+ =
β

2
+

β0

4
,

K+ = ([log
1

s
] + 1)3,

D(a) = D(r+ +
6

8
(r − r+), a), a > 0,

D(a) = {x : |Imx| < a}, a > 0,

Γ(a) = e
r0(1−δ)δ2

16

∑

0<|k|≤K+

|k|n+(n+1)τ+6e−|k| a
8 , a > 0,

D+ = D(r+, s+),

D+ = D(r+) = {x : |Imx| < r+},

D̃+ = D(r+ +
5

8
(r − r+), β+),

Di = D(r+ +
i − 1

8
(r − r+), is+), i = 1, 2, · · · , 8.

3.1. Truncation. We express P into Taylor-Fourier series

P =
∑

i∈Zn
+,j∈Z2m

+ ,k∈Zn

pkijy
izje

√
−1〈k,x〉

and consider the truncation

R =
∑

|i|+|j|<3,|k|≤K+

pkijy
izje

√
−1〈k,x〉 =

∑

|k|≤K+

(Pk00 + 〈Pk10, y〉

+〈Pk01, z〉 + 〈y, Pk20y〉 + 〈y, Pk11z〉 + 〈z, Pk02z〉)e
√
−1〈k,x〉.(3.3)

Lemma 3.1. Assume that

H1) s+ ≤ s

16
;

H2)

∫ ∞

K+

λne−λ
r−r+

16 dλ ≤ s.

Then there is a constant c1 such that

|∂l
λ(P − R)|D8 ≤ c1γ

n+1(s3 +
s3
+

s
)µ, |l| ≤ n.
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Proof. Denote

I =
∑

|k|>K+

pkijy
izje

√
−1〈k,x〉,

II =
∑

|k|≤K+,|i|+|j|≥3

pkijy
izje

√
−1〈k,x〉

=

∫

∂(p,q)

∂yp∂zq

∑

|k|≤K+,|i|+|j|≥3

pkije
√
−1〈k,x〉yizjdydz,

D∗ = D(r+ +
7

8
(r − r+), s),

where

∫

is the obvious anti-derivative of ∂(p,q)

∂yp∂zq for |p| + |q| = 3. Clearly,

P − R = I + II.

We note by H1) that D8 ⊂ D∗.
Since, by Cauchy’s estimate,

|
∑

i∈Zn
+,j∈Z2m

+

∂l
λpkijy

izj | ≤ |∂l
λP |D(r,s)e

−|k|r ≤ γn+1s2µe−|k|r, |l| ≤ n,

H2) implies that

|∂l
λI |D∗ ≤

∑

|k|>K+

γn+1s2µe−|k|re|k|(r++ 7
8 (r−r+))

≤ γn+1s2µ

∞
∑

κ=K+

κne−κ
r−r+

8 ≤ γn+1s2µ

∫ ∞

K+

λne−λ
r−r+

16 dλ

≤ γn+1s3µ, |l| ≤ n.

It follows that

|∂l
λ(P − I)|D∗ ≤ |∂l

λP |D(r,s) + |∂l
λI |D∗ ≤ 2γn+1s2µ, |l| ≤ n.

By Cauchy’s estimate of ∂l
λ(P − I) on D∗, we then have

|∂l
λII |D8 ≤ |

∫

∂(p,q)

∂yp∂zq

∑

|k|≤K+,|i|+|j|≥3

∂l
λpkije

√
−1〈k,x〉yizjdydz|D8

≤ |
∫

| ∂(p,q)

∂yp∂zq
∂l

λ(P − I − R)|D∗dydz|D8

≤ 2

(

1

s − 8s+

)3

γn+1s2µ|
∫

dydz|D8 ≤ cγn+1 s3
+

s
µ, |l| ≤ n.

Thus,

|∂l
λ(P − R)|D8 ≤ cγn+1(s3 +

s3
+

s
)µ, |l| ≤ n.

�
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3.2. The linear homological equations. Write M into blocks

M(x, λ) =

(

A B
B> M

)

,

where

A(x, λ) =
∑

k∈Zn

Ake
√
−1〈k,x〉,

B(x, λ) =
∑

k∈Zn

Bke
√
−1〈k,x〉,

M(x, λ) =
∑

k∈Zn

Mke
√
−1〈k,x〉

are n × n, n × 2m, 2m× 2m blocks of M respectively.
To transform (3.2) into the Hamiltonian in the next KAM cycle, a symplectic

transformation should at least eliminate all its first order resonant terms

Pk00e
√
−1〈k,x〉, 〈Pk10, y〉e

√
−1〈k,x〉, 〈Pk01, z〉e

√
−1〈k,x〉, 〈P001, z〉, 0 < |k| ≤ K+.

An essential idea of our linear iterative scheme is to find a Hamiltonian F of the
form

(3.4) F =
∑

0<|k|≤K+

(fk0 + 〈fk1, y〉 + 〈Fk1, z〉)e
√
−1〈k,x〉 + 〈F01, z〉

such that the time-1 map φ1
F of the flow generated by F , as a symplectic trans-

formation, will precisely eliminate the above resonant terms. To be able to fix the
first n0 components of the toral frequencies as stated in Theorem 2 1), we shall also
find a Y∗ ∈ Rn0 so that the translation of coordinate

φ : x → x, y → y +

(

Y∗
0

)

, z → z

removes all possible drifts among the first n0 components of the new toral frequen-
cies.

Denote

[A] =

(

U E
E> V

)

,

R′ = [R] +
∑

0<|k|≤K+

(〈y, Pk20y〉 + 〈y, Pk11z〉 + 〈z, Pk02z〉)e
√
−1〈k,x〉

−〈P001, z〉 +
∑

|k|≤K+

〈B−kJFk1, y〉,(3.5)

Rt = (1 − t){N, F} + R,(3.6)

y∗ =

(

Y∗
0

)

,

where U , E, V are the n0 × n0, n0 × (n − n0), (n − n0) × (n − n0) blocks of [A]
respectively.

Let

Φ+ = φ1
F ◦ φ.
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Then it is easy to see that

H+ = H ◦ Φ+ = H ◦ φ1
F ◦ φ = (N + R) ◦ φ1

F ◦ φ + (P − R) ◦ φ1
F ◦ φ

= (N + R′) ◦ φ − 〈y∗, (A − [A])y〉 − 〈y∗, Bz〉
+({N, F}+ R − R′) ◦ φ + 〈y∗, (A − [A])y〉 + 〈y∗, Bz〉

+

∫ 1

0

{Rt, F} ◦ φt
F ◦ φdt + (P − R) ◦ φ1

F ◦ φ.

Since the Taylor-Fourier series of R − R′ consists of terms of Fourier modes

e
√
−1〈k,x〉, 0 < |k| ≤ K+, but that of {N, F} contains some high modes e

√
−1〈k,x〉

for |k| > K+, we need to choose a function Q of high order such that both equations

({N, F} + R − R′) ◦ φ − Q + 〈y∗, (A − [A])y〉 + 〈y∗, Bz〉 = 0,(3.7)

diag(U, O)y∗ = diag(In0 , O)(−P010 −
∑

|j|≤K+

B−jJFj1)(3.8)

are solvable. If this is the case, then it is easy to see that

H+ = N+ + P+,

N+ = e+ + 〈Ω+(λ), y〉 +
1

2
〈
(

y

z

)

,M+

(

y

z

)

〉 + h0(x, y, z, λ)

= e+ + 〈Ω+(λ), y〉 +
1

2
〈
(

y

z

)

,

(

A+ B+

B+>
M+

)(

y

z

)

〉 + h0(x, y, z, λ),

where

e+ = e + P000 + 〈Ω, y∗〉,(3.9)

Ω+ = Ω + diag(O, In−n0 )([A]y∗ + P010 +
∑

|k|≤K+

B−kJFk1),(3.10)

A+ = A +
∑

|k|≤K+

2Pk20e
√
−1〈k,x〉,(3.11)

B+ = B +
∑

|k|≤K+

Pk11e
√
−1〈k,x〉,(3.12)

M+ = M +
∑

|k|≤K+

2Pk02e
√
−1〈k,x〉,(3.13)

P+ =

∫ 1

0

{Rt, F} ◦ φt
F ◦ φdt + (P − R) ◦ φ1

F ◦ φ

+
1

2
〈y∗, (A − 2diag(U, O))y∗〉 + h0(x, y + y∗, z, λ) − h0(x, y, z, λ)

+
∑

|k|≤K+

(〈y∗, Pk20y∗〉 + 〈y∗, 2Pk20y〉 + 〈y∗, Pk11z〉)e
√
−1〈k,x〉 + Q.(3.14)

We now explore equations (3.7) and (3.8). Let

Q = (
∑

0<|k|≤K+

(〈1
2
∂x〈y, A(x, λ)y〉 + ∂x〈y, B(x, λ)z〉 +

1

2
∂x〈z, M(x, λ)z〉

+∂xh0(x, y, z, λ), fk1〉 + (−
√
−1〈k, A(x, λ)y + B(x, λ)z〉

+∂yh0(x, y, z, λ))(fk0 + 〈fk1, y〉 + 〈Fk1, z〉))e
√
−1〈k,x〉
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+
∑

|k|>K+

(〈BkJF01, y〉 + 〈MkJF01, z〉)e
√
−1〈k,x〉

+
∑

|k|>K+,0<|j|≤K+

(〈Bk−jJFj1, y〉 + 〈Mk−jJFj1, z〉)e
√
−1〈k,x〉

+
∑

0<|k|≤K+

〈∂zh0(x, y, z, λ)JFk1, z〉e
√
−1〈k,x〉) ◦ φ

+
∑

0<|k|≤K+

(−
√
−1〈fk1, y∗〉 + 〈B>(x, λ)y∗, JFk1〉 + 〈Pk10, y∗〉)e

√
−1〈k,x〉

+
∑

|k|>K+

(〈y∗, Aky〉 + 〈y∗, Bkz〉)e
√
−1〈k,x〉 + 〈B>(x, λ)y∗, JF01〉.(3.15)

Substituting (3.3)-(3.5) and (3.15) into (3.7) yields

−
∑

0<|k|≤K+

√
−1〈k, Ω(λ)〉(fk0 + 〈fk1, y〉 + 〈Fk1, z〉)e

√
−1〈k,x〉

+
∑

|j|≤K+

〈z, M−jJFj1〉 +
∑

0<|k|≤K+,|j|≤K+

(〈y, Bk−jJFj1〉

+〈z, Mk−jJFj1〉)e
√
−1〈k,x〉 +

∑

0<|k|≤K+

(〈y∗, Aky〉 + 〈y∗, Bkz〉 + Pk00 + 〈Pk10, y〉

+〈Pk01, z〉)e
√
−1〈k,x〉 + 〈P001 + [B]>y∗, z〉 = 0.

By comparing coefficients above, equations (3.7), (3.8) give rise to the following
linear homological equations for all 0 < |k| ≤ K+:

√
−1〈k, Ω(λ)〉fk0 = Pk00,(3.16)

√
−1〈k, Ω(λ)〉fk1 = Pk10 + Aky∗ +

∑

|j|≤K+

Bk−jJFj1,(3.17)

√
−1〈k, Ω(λ)〉Fk1 − [M ]JFk1 =

∑

0<|j|≤K+,j 6=k

Mk−jJFj1

+Pk01 + B>
k y∗ + MkJF01,(3.18)

[M ]JF01 = −P001 −
∑

0<|j|≤K+

M−jJFj1 − [B]>y∗,(3.19)

diag(U, O)y∗ = diag(In0 , O)(−P010 −
∑

0<|j|≤K+

B−jJFj1 − [B]JF01).(3.20)

Let

O+ = {λ ∈ O : |〈k, Ω(λ)〉| >
γ

|k|τ , 0 < |k| ≤ K+},(3.21)

Y = [M ]J − [B]>diag(U−1, O)[B]J,

Y 0 = [M0]J − [B0]>diag((U0)−1, O)[B0]J.

Then 〈k, Ω(λ)〉 is invertible on O+ for all 0 < |k| ≤ K+. If we assume that

H3) |∂l
λ(M−M0)|D(r)×O ≤ γn+1

0 µ
1
4∗ , |l| ≤ n,
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then as µ∗ small, both U and Y are non-singular on O. Thus, for all 0 < |k| ≤ K+,
λ ∈ O+, (3.16) is immediately solvable, and, (3.17), (3.19) and (3.20) can be also
solved in terms of Fk1, 0 < |k| ≤ K+. More precisely, we have

fk0 = −
√
−1〈k, Ω(λ)〉−1Pk00,(3.22)

fk1 = −
√
−1〈k, Ω(λ)〉−1(Pk10 − Akdiag(U−1, O)(P010

+
∑

0<|j|≤K+

B−jJFj1) + (Bk − Akdiag(U−1, O)[B])JY −1(−P001

−
∑

0<|j|≤K+

M−jJFj1 + [B]>diag(U−1, O)P010

+diag(U−1, O)
∑

0<|j|≤K+

B−jJFj1) +
∑

0<|j|≤K+

Bk−jJFj1),(3.23)

F01 = Y −1(−P001 −
∑

0<|j|≤K+

M−jJFj1 + [B]>diag(U−1, O)P010

+diag(U−1, O)
∑

0<|j|≤K+

B−jJFj1),(3.24)

y∗ = diag(U−1, O)(−P010 −
∑

0<|j|≤K+

B−jJFj1 − [B]JY −1(−P001

−
∑

0<|j|≤K+

M−jJFj1 + [B]>diag(U−1, O)P010

+diag(U−1, O)
∑

0<|j|≤K+

B−jJFj1)).(3.25)

Substituting (3.24), (3.25) into (3.18), it is easy to see that Fk1, 0 < |k| ≤ K+,
satisfy the following equations:

(3.26) LkFk1 =
∑

0<|j|≤K+

MkjFj1 + Pk,

where

Lk =
√
−1〈k, Ω(λ)〉I2m − [M ]J,(3.27)

Mkj =

{

M̄kk, j = k,
Mk−jJ + M̄kj , j 6= k,

(3.28)

Pk = Pk01 − B>
k diag(U−1, O)P010 + B>

k diag(U−1, O)[B]JY −1P001

−B>
k diag(U−1, O)[B]JY −1[B]>diag(U−1, O)P010

−MkJY −1P001 + MkJY −1[B]>diag(U−1, O)P010,(3.29)

with

M̄kj = MkJY −1(−M−jJ + diag(U−1, O)B−jJ)

+B>
k diag(U−1, O)(−B−jJ + [B]JY −1(M−jJ − diag(U−1, O)B−jJ)).

Thus, equations (3.16)-(3.20) are solvable on O+ if and only if (3.26) is. In fact,
for the sake of convergence of the symplectic transformations to be constructed, not
only do these equations need to be solvable, but also their solutions should satisfy
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certain exponential decay properties. This motivates us to consider the following
weighted functions:

F̃k1 = e|k|(r++ 7
8 (r−r+))Fk1, 0 < |k| ≤ K+,

M̃kj = e(|k|−|j|)(r++ 7
8 (r−r+))Mkj , 0 < |k|, |j| ≤ K+,

P̃k = e|k|(r++ 7
8 (r−r+))Pk, 0 < |k| ≤ K+.

Let T = “ < ” be a fixed ordering on Zn
+ with the property that whenever

k, k∗ ∈ Zn
+ with |k| < |k∗|, then k < k∗. We define

F =









...

F̃j1

...









, P =









...

P̃j

...









as the column vectors which vertically line up all F̃j1, P̃j , 0 < |j| ≤ K+, respectively,
according to the ordering T . We also form the matrices

(3.30) Λ = diag(Lk), A = (M̃kj),

according to the same ordering T . Then it is clear that the equations in (3.26) can
be putted into the following system form:

(3.31) (Λ −A)F = P .

3.3. Invertibility of Λ−A. The invertibility of Λ−A will be shown by a pertur-
bation argument.

Let {M0
k}, {B0

k} be the Fourier coefficients of M 0, B0 respectively, and let
M0

kj , 0 < |k|, |j| ≤ K+, be defined as in (3.28) with M0
k , B0

k, U0, Y 0 in place of

Mk, Bk, U, Y , for all 0 < |k| ≤ K+, respectively. Denote

L0
k =

√
−1〈k, ω〉 − [M0]J, M̃0

kj = e(|k|−|j|)(r++ 7
8 (r−r+))M0

kj , 0 < |j|, |k| ≤ K+,

and let Λ0, A0 be defined as in (3.30) with L0
k, M̃0

kj in place of Lk, M̃kj , 0 <

|j|, |k| ≤ K+, respectively. We first show the invertibility of Λ0 −A0 on O0, along
with the estimate of an upper bound for its inverse.

By the hyperbolicity of [M0]J , it is easy to see that all L0
k, 0 < |k| ≤ K+, are

non-singular on O0. This implies that Λ0 is non-singular on O0. To obtain an upper

bound of |(Λ0)−1| on O0, we need to estimate a uniform bound for all |L0
k

−1|O0 ,
0 < |k| ≤ K+.

To do so, let L = L(λ) be non-singular on O0 such that

L−1[M0]JL = E,

where E = E(λ) denotes the Jordan canonical form of [M 0]J = [M0(λ)]J for each
λ ∈ O0. Due to the possible change of multiplicities of eigenvalues of [M 0]J , L
is in general not continuous on O0. However, by the standard Q-R decomposition
procedure, for each λ ∈ O0, there is an upper triangular matrix S = S(λ) such that

LS is orthogonal. Denote Ẽ = Ẽ(λ) ≡ S−1ES, then Ẽ is also upper triangular,
and,

(LS)>[M0]J(LS) = (LS)−1[M0]J(LS) = S−1ES = Ẽ.
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Let | · |2 denote the matrix norm induced by the Euclidean vector norm. Then
for any n × 2m matrix (aij),

1√
2m

|(aij)| ≤ |(aij)|2 ≤
√

2m|(aij)|.

It follows that

|Ẽ| ≤
√

2m|Ẽ|2 =
√

2m|[M0]J |2 ≤ 2m|[M0]|,(3.32)

|(L0
k)−1| ≤

√
2m|(L0

k)−1|2 =
√

2m|(
√
−1〈k, ω〉I2m − Ẽ)−1|2

≤ 2m|(
√
−1〈k, ω〉I2m − Ẽ)−1|.(3.33)

Since the eigenvalues of [M0]J coincide with those of Ẽ, eigenvalues of√
−1〈k, ω〉I2m − Ẽ are bounded below in absolute value by σ0. Using H), (3.32),

(3.33) and the standard inverse formula for upper triangular matrices, we have that

|(L0
k)−1| ≤ 2m|(

√
−1〈k, ω〉I2m − Ẽ)−1| ≤ 2m

σ0
(1 +

|Ẽ|O0

σ0
)2m−1

≤ 2m

σ0
(1 +

2m

σ0
|[M0]|O0)

2m−1 =
ρ0

2

for all λ ∈ O0, 0 < |k| ≤ K+, i.e.,

(3.34) |(Λ0)−1|O0 ≤ ρ0

2
.

Next, we give an estimate for |A0|O0 .
Let U(x) = (uij(x)) be a real analytic, matrix valued function defined on D(a)

(a > 0) and denote Uk = (ukij), k ∈ Zn \{0}, as the kth Fourier coefficient of U(x).
Since

Uk =

∫

T n

(U − [U ])e−
√
−1〈k,x〉dx,

Cauchy’s estimate yields that

(3.35) |Uk| ≤ |U − [U ]|D(a)e
−|k|a.

It also follows from Parseval’s identity that

∑

0<|k|≤K̃

|Uk| =
∑

0<|k|≤K̃

max
i

∑

j

|ukij | ≤
√

2m
∑

0<|k|≤K̃

∑

i,j

|ukij |2

=
√

2m
∑

i,j

(
∑

0<|k|≤K̃

|ukij |2)
1
2 ≤ 2m max

i

∑

j

‖uij − [uij ]‖L2(D(a))

≤ 2m max
i

∑

j

|uij − [uij ]|D(a) = 2m|U − [U ]|D(a)(3.36)

for any K̃ > 0.
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Applying (3.36) to the formula for M 0
kj similar to (3.28), we see that, for any

0 < |k| ≤ K+, λ ∈ O0,
∑

0<|j|≤K+

|M0
kj | = |M0

kk | +
∑

0<|j|≤K+,j 6=k

|M0
kj |

≤ |M0 − [M0]|D(r∗) + (1 + 2m)|(Y 0)−1||M0 − [M0]|2D(r∗)

+(1 + 2m)|(Y 0)−1||(U0)−1||M0 − [M0]|D(r∗)|B0 − [B0]|D(r∗)

+(1 + 2m)|(Y 0)−1||(U0)−1||B0 − [B0]|2D(r∗)

+(1 + 2m)|(U0)−1||B0 − [B0]|2D(r∗) + (1 + 2m)|[B0]||(Y 0)−1||(U0)−1|
|M0 − [M0]|D(r∗)|B0 − [B0]|D(r∗)

+(1 + 2m)|[B0]||(Y 0)−1||(U0)−1|2|B0 − [B0]|2D(r∗) < η + αη2 =
1

ρ0
,(3.37)

where η, α are as in (1.8), (1.9) respectively, i.e.,

η =
2

√

ρ2
0 + 4αρ0 + ρ0

,

α = (1 + 2m)(|(Y 0)−1| + |(U0)−1|
+ (|(Y 0)−1||(U0)−1|)(1 + |[B0]| + |[B0]||(U0)−1|))O0 .

We now choose r0 in (3.1). Define

A0(a) = (e(|k−j|)aM0
kj)

as the one parameter family of matrices which are of the same dimension as A and
are formed according to the ordering T . Then (3.37) clearly implies that

|A0(0)|O0 <
1

ρ0
.

Note that, by (3.35),
∑

|j|>0

e|k−j|a|∂l
λM0

kj | ≤ c
∑

|j|>0

e−|k−j|(r∗−a) ≤ c
∑

|j|≥0

e−|j|(r∗−a) < ∞,

∑

|j|>0

|k − j|e|k−j|a|∂l
λM0

kj | ≤ c
∑

|j|>0

|k − j|e−|k−j|(r∗−a)

≤ c
∑

|j|≥0

|j|e−|j|(r∗−a) < ∞

for all |l| ≤ n. It follows that the family of functions

ηk,K̃(a) =
∑

0<|j|≤K̃

e|k−j|a|M0
kj |

is uniformly bounded and equi-continuous. Hence

|A0(a)|O0 = max
0<|k|≤K+

∑

0<|j|≤K+

e|k−j|a|M0
kj |O0

is continuous in a ∈ [0, r∗) uniformly in K+.
Let r0 = r0(r∗, σ0, U

0) ∈ (0, r∗

2 ] be fixed such that

|A0((1 − dδ2

16
)r0)|O0 <

1

ρ0
.
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Denote

(3.38) ξ(a) = (
7

8
+

δ

8
)a +

d

8
(1 − δ2

2
)r0.

Then

ξ(r) = r+ +
7

8
(r − r+),

ξ(r0) = (1 − dδ2

16
)r0.

Since

e(|k|−|j|)ξ(r)|M0
kj | ≤ e|k−j|ξ(r)|M0

kj | < e|k−j|ξ(r0)|M0
kj |, 0 < |k|, |j| ≤ K+,

we have that

(3.39) |A0|O0 ≤ |A0(ξ(r0))|O0 <
1

ρ0
.

Thus, by (3.34),

|(Λ0 −A0)−1|O0 ≤ |(Λ0)−1|O0

1 − |A0|O0 |(Λ0)−1|O0

< 2ρ0.

Lemma 3.2. Assume H3) and also that

H4) |∂l
λA− ∂l

λA0|O < µ
1
4∗ .

Then as µ∗ sufficiently small, L = Λ−A is non-singular on O, and moreover, there

is a constant c2 such that

|∂l
λL|O ≤ c2K+, |l| ≤ n.

Proof. Given ε0 > 0 small. Since, by H3),

|U − U0|O, |Y − Y 0|O, |M − M0|O ≤ |M−M0|O ≤ µ
1
4∗ ,

we can choose µ∗ small, say, µ∗ ≤ ε40
1 + ε0

min{ 1

|(U0)−1|O0

,
1

|(Y 0)−1|O0

}, such that

|U−1|O ≤ (1 + ε0)|(U0)−1|O0 ,(3.40)

|Y −1|O ≤ (1 + ε0)|(Y 0)−1|O0 ,(3.41)

|M |O ≤ (1 + ε0)|M0|O0 .

Define ρ∗ similar to ρ0 with M , O, σ∗ = (1 − ε0)σ0 in place of M0, O0, σ0

respectively. Then, ρ∗ ≤ 4

3
ρ0 as ε0 small, and, as µ∗ small the real parts of all

eigenvalues of [M ]J are bounded below in absolute value by σ0.
On one hand, by a similar argument as for (3.34), we have that

|Λ−1|O ≤ 1

2
ρ∗ ≤ 2

3
ρ0.

On the other hand, by (3.39) and H4), we can make µ∗ even smaller if necessary
so that

|A|O <
2

3ρ0
.

It follows that L is non-singular on O and

|L−1|O ≤ 4ρ0.
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Since, by H3) and H4),

|∂λL|O ≤ |∂λΛ|O + |∂λA|O ≤ cK+,

we also have

|∂λL−1|O = |L−1(∂λL)L−1|O ≤ |∂λL|O|L−1|2O ≤ cK+.

By induction,

|∂l
λL−1|O ≤ cK+, |l| ≤ n.

�

Above all, with the hypotheses H3), H4), the linear system (3.31) can be uniquely
solved on O+ to yield smooth functions fk0, fk1, Fk1, F01, y∗, 0 < |k| ≤ K+. Hence,
the Hamiltonian F in (3.4) is well defined, smooth in λ ∈ O+, and real analytic in
(x, y, z) ∈ D.

3.4. Estimates on the transformation. We first give some estimates on F and
its derivatives. Denote

ζ = K+Γ(r − r+).

Lemma 3.3. Assume H3), H4) and also that

H5) |∂l
ω(Ω − ω)|O ≤ µ

1
4∗ , |l| ≤ n.

Then there is a constant c3 such that the following holds for all |l| ≤ n.

1) |∂l
λy∗|O+ ≤ c3γ

n+1sµζ.
2) On D(s) ×O+,

|∂l
λF |, |∂l

λFx|, s|∂l
λFy|, s|∂l

λFz | ≤ c3s
2µζ.

3) On D(β) ×O+,

|∂l
λDiF | ≤ c3µζ, |i| ≤ 4,

where D = ∂(x,y,z).

Proof. Let |l| ≤ n. First, we observe by Cauchy’s estimate that

|∂l
λPkij |O ≤ cs−(i+j)|∂l

λP |D(r,s)×Oe−|k|r

≤ cγn+1s2−i−jµe−|k|r, |k| ≥ 0, i, j = 0, 1, 2,(3.42)

and by (3.35) and H3) that

|∂l
λMk|O, |∂l

λBk|O ≤ |∂l
λM− ∂l

λM0|D(r)×Oe−|k|r

≤ γn+1
0 µ

1
4∗ e−|k|r ≤ 2n+1γn+1µ

1
4∗ e−|k|r, |k| > 0.(3.43)

Let λ ∈ O+, |k| > 0. Then, by (3.29), (3.40)-(3.43), we have that

|∂l
λPk| ≤ cγn+1sµe−|k|r,

i.e.,

|∂l
λP| ≤ cγn+1sµ.

Using (3.31) and Lemma 3.2, it follows that

|∂l
λF̃k1| ≤ |∂l

λF| = |∂l
λ(L−1P)| ≤ cγn+1sµK+.

Hence,

(3.44) |∂l
λFk1| ≤ cγn+1sµK+e−|k|(r++ 7

8 (r−r+)).
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By straightforward applications of (3.40)-(3.44) to (3.24) and (3.25), we then
obtain 1) and also that

(3.45) |∂l
λF01| ≤ cγn+1sµK+.

Next, we note by H5), (3.21) and a direct calculation that

|∂l
λ〈k, Ω(λ)〉−1| ≤ c

|k||l|+(|k|+1)τ

γ|l|+1
.

This together with (3.40)-(3.44) implies that

|∂l
λfk0| ≤ c|k||l|+(|l|+1)τs2µe−|k|r,(3.46)

|∂l
λfk1| ≤ c|k||l|+(|l|+1)τsµK+e−|k|(r++ 7

8 (r−r+)).(3.47)

Now, using the expression of F , y∗ in (3.4) and (3.25) respectively, parts 2), 3)
of the lemma follow directly from (3.43)-(3.47). �

Lemma 3.4. Assume H1), H3)-H5) and also that

H6) c3µζ < 1
8 (r − r+);

H7) c3sµζ < s+;

H8) c3µζ < β−β+

2 .

Let φt
F be the flow generated by F . Then the following holds.

1) For all 0 ≤ t ≤ 1,

φt
F : D3 → D4,

φ : D1 → D3

are well defined, real analytic and depend smoothly on λ ∈ O+.

2) Let Φ+ = φ1
F ◦ φ. Then for all λ ∈ O+,

Φ+ :
D+ → D,

D̃+ → D(r, β).

3) There is a constant c4 such that

|∂l
λ(φt

F − id)|D(s)×O+
≤ c4sµζ,

|∂l
λDi(Φ+ − id)|D̃+×O+

≤ c4µζ,

for all |l| ≤ n, 0 ≤ i ≤ 3, 0 ≤ t ≤ 1, where D = ∂(x,y,z).

Proof. Let λ ∈ O+.
1) We note that

(3.48) φt
F = id +

∫ t

0

XF ◦ φξ
F dξ,

where XF = (Fy ,−Fx, JFz)
>.

Denote φt
F1, φ

t
F2, φ

t
F3 as components of φt

F in x, y, z planes respectively. For any
(x, y, z) ∈ D3, let t∗ = sup{t ∈ [0, 1] : φt

F (x, y, z) ∈ D4. By H1), we have that
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D4 ⊂ D(s). It follows from H6), H7) and Lemma 3.3 that

|φt
F1(x, y, z)| = |x| + |

∫ t

0

Fy ◦ φξ
F dξ| ≤ |x| + |Fy |D(s) ≤ r+ +

2

8
(r − r+) + c3sµζ

< r+ +
3

8
(r − r+),

|φt
F2(x, y, z)| = |y| + | −

∫ t

0

Fx ◦ φξ
F dξ| ≤ |y| + |Fx|D(s) ≤ 3s+ + c3s

2µζ < 4s+,

|φt
F3(x, y, z)| = |z| + |

∫ t

0

JFz ◦ φξ
F dξ| ≤ |z| + |Fz |D(s) ≤ 3s+ + c3sµζ < 4s+,

i.e., φt
F (x, y, z) ∈ D4 for all 0 ≤ t ≤ t∗. Thus, t∗ = 1 and 1) holds.

2) follows from Lemma 3.3, H8) and a similar argument as 1).
3) Using Lemma 3.3 and (3.48), we immediately have

|φt
F − id|D(s) ≤ c3sµζ.

Differentiating (3.48) with respect to λ yields

∂λφt
F =

∫ t

0

DXF ◦ φξ
F ∂λφξ

F dξ +

∫ t

0

(∂λFy ,−∂λFx, J∂λFz)
> ◦ φξ

F dξ.

It follows from Lemma 3.3 and Gronwall’s inequality that

|∂λφt
F |D(s) ≤ csµζ.

By induction, we have

|∂l
λφt

F |D(s) ≤ csµζ, |l| ≤ n.

The estimates for Φ+ follow from a similar application of Lemma 3.3 and Gron-
wall’s inequality, and the identity

Φ+ − id = (φ1
F − id) ◦ φ +





0
y∗
0



 .

We omit the details. �

3.5. Estimates on the new Hamiltonian. We first estimate the new normal
form.

Lemma 3.5. Assume H3), H5). Then there is a constant c5 such that the following

holds for all |l| ≤ n:

|∂l
λ(e+ − e)|O+ ≤ c5γ

n+1sµζ,

|∂l
λ(Ω+ − Ω)|O+ ≤ c5γ

n+1sµζ,

|∂l
λ(M+ −M)|D+×O+ ≤ c5γ

n+1µΓ(r − r+).

Proof. The estimates for |∂l
λ(e+−e)|O+ follows immediately from (3.9), (3.42), H5)

and Lemma 3.3 1). Also, it follows from (3.10), (3.42)-(3.44) and Lemma 3.3 1)
that

|∂l
λ(Ω+ − Ω)|O+ ≤ cγn+1sµζ + cγn+1sµK+

∑

|k|>0

e−
|k|r0

2 ≤ cγn+1sµζ,
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and from (3.11)-(3.13) and (3.42) that

|∂l
λ(M+ −M)|D(r++ 1

8 (r−r+))×O+
≤ c

∑

|k|>0

|k|
∑

i+j=2

|∂l
λPkij |Oe|k|(r++ 7

8 (r−r+))

≤ cγn+1µ
∑

|k|>0

|k|e−|k| r−r+
8 ≤ cγn+1µΓ(r − r+), |l| ≤ n.(3.49)

This proves the lemma. �

Lemma 3.6. Assume that

H9) c5γ
n+1sµζKτ+1

+ < γ − γ+.

Then

|〈k, Ω+(λ)〉| >
γ+

|k|τ ,

for all λ ∈ O+ and 0 < |k| ≤ K+.

Proof. By H9) and Lemma 3.5, we have

|〈k, Ω+(λ)〉| ≥ |〈k, Ω(λ)| − c5γ
n+1sµζKτ+1

+

≥ γ

|k|τ − c5γ
n+1sµζKτ+1

+ >
γ+

|k|τ ,

as desired. �

Let U+ be the n0 × n0 ordered principal block of [A+]. By (3.49) and H7), we
see that

|U+ − U |O+ ≤ cγn+1µΓ(r − r+) ≤ cµζ ≤ c

c3

s+

s

=
c

c3
sb+σ ≤ c

c3
sb+σ
0 ≤ c

c3
µ

b+σ
4∗ .

It follows that U+ is non-singular on O+ as long as µ∗ is small. A similar argument
shows the same for

Y + = [M+]J − [B+]>diag((U+)−1, O)[B+]J.

Now, let M+
k , B+

k denote the Fourier coefficients of M+, B+, respectively, and

define M+
kj , |k|, |j| 6= 0, as in (3.28) with M+

k , B+
k , U+, Y + in place of Mk, Bk, U, Y ,

for all |k| 6= 0, respectively. We have the following.

Lemma 3.7. Assume H3), H5) and H7). Then there is a constant c6 such that

max
|k|>0

∑

|j|>0

e(|k|−|j|)ξ(r+)|∂l
λM+

kj − ∂l
λMkj |O+ ≤ c6γ

n+1µΓ2(r − r+), |l| ≤ n,

where ξ is as in (3.38).

Proof. First of all, we note by H3) and (3.49) that M+
k , B+

k , Mk, Bk, (U+)−1,
(Y +)−1, U−1, Y −1 are uniformly bounded on O+ by a constant which is indepen-
dent of the iteration process. Secondly, by (3.49) and Cauchy’s estimate, we have



PERSISTENCE OF HYPERBOLIC TORI IN HAMILTONIAN SYSTEMS 23

that

|∂l
λM+

j − ∂l
λMj |O+ ≤ |∂l

λM+ − ∂l
λM |D(r++ 1

8 (r−r+))×O+
e−|j|(r++ 7

8 (r−r+))

≤ |∂l
λM+ − ∂l

λM)|D(r++ 1
8 (r−r+))×O+

e−|j|(r++ 7
8 (r−r+))

≤ cγn+1µΓ(r − r+)e−|j|ξ(r),

|∂l
λB+

j − ∂l
λBj |O+ ≤ |∂l

λB+ − ∂l
λB|D(r++ 1

8 (r−r+))×O+
e−|j|(r++ 7

8 (r−r+))

≤ |∂l
λM+ − ∂l

λM)|D(r++ 1
8 (r−r+))×O+

e−|j|(r++ 7
8 (r−r+))

≤ cγn+1µΓ(r − r+)e−|j|ξ(r).

It follows from (3.28) and a similar formular for M+
kj that

|∂l
λM+

kj − ∂l
λMkj |O+ ≤ cγn+1µΓ(r − r+)e−|k−j|ξ(r)

for all |k|, |j| > 0.
Hence,
∑

|j|>0

e(|k|−|j|)ξ(r+)|∂l
λM+

kj − ∂l
λMkj |O+ ≤

∑

|j|>0

e(|k−j|)ξ(r+)|∂l
λM+

kj − ∂l
λMkj |O+

≤ cγn+1µΓ(r − r+)
∑

|j|>0

e−|k−j|(ξ(r)−ξ(r+))

≤ cγn+1µΓ(r − r+)
∑

|j|>0

e−|k−j| r−r+
8 ≤ cγn+1µΓ2(r − r+).

�

Let

(3.50) ∆ =
ζ3

r − r+
(s3µ + γn+1s2µ2 + γn+1 s3

+

s
µ).

Lemma 3.8. Assume H2)-H7). Then there is a constant c7 such that

|∂l
λP+|D+ ≤ c7∆, |l| ≤ n.

Thus, if

H10) c7∆ ≤ γn+1
+ s2

+µ+, and 2sµKτ+1
+ < γ − γ+,

then

(3.51) |∂l
λP+|D+ ≤ γn+1

+ s2
+µ+.

Proof. Let |l| ≤ n, λ ∈ O+. By Lemma 3.1 and Cauchy’s estimate, we have

|∂l
λD(P − R)|D4 ≤ c

(r − r+)s+
|∂l

λ(P − R)|D8 ≤ cγn+1µ

r − r+
(
s3

s+
+

s2
+

s
),

where D = ∂(x,y,z). This together with Lemma 3.3 1) implies that

|∂l
λ(P − R) ◦ Φ+|D+ ≤ c

γn+1µ2

r − r+
(
s4

s+
+ s2

+)ζ + cµ(s3 +
s3
+

s
)

≤ c
γn+1

r − r+
(s2µ2 +

s3
+

s
µ)ζ.(3.52)
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Also, a direct estimate using (3.42) yields that

|∂l
λDαR|D(s) ≤

∑

0<|k|≤K+,0≤i,j≤2

|∂l
λPkij |si+j−1|k|e|k|(r++ 6

8 (r−r+)

≤ cγn+1sµ
∑

0<|k|≤K+

|k|e−|k| r−r+
4 ≤ cγn+1sµΓ(r − r+), α = 0, 1.(3.53)

Similarly, by (3.5), (3.42)-(3.44),

(3.54) |∂l
λDαR′|D(s) ≤ cγn+1sµK+Γ(r − r+) = cγn+1sµζ, α = 0, 1.

We now estimate Q in (3.15). Let

Q1 =
∑

0<|k|≤K+

(〈1
2
∂x〈y, A(x, λ)y〉 + ∂x〈y, B(x, λ)z〉

+
1

2
∂x〈z, M(x, λ)z〉 + ∂xh0(x, y, z, λ), fk1〉

+(−
√
−1〈k, A(x, λ)y + B(x, λ)z〉 + ∂yh0(x, y, z, λ))(fk0 + 〈fk1, y〉 + 〈Fk1, z〉)

+〈∂zh0(x, y, z, λ)JFk1, z〉)e
√
−1〈k,x〉,

Q2 =
∑

|k|>K+

(〈BkJF01, y〉 + 〈MkJF01, z〉)e
√
−1〈k,x〉,

Q3 =
∑

|k|>K+,|j|≤K+

(〈Bk−jJFj1, y〉 + 〈Mk−jJFj1, z〉)e
√
−1〈k,x〉,

q0 = 〈B>(x)y∗, JF01〉,
q1 = −

∑

0<|k|≤K+

√
−1〈fk1, y∗〉 + 〈B>(x)y∗, JFk1〉 + 〈Pk10, y∗〉)e

√
−1〈k,x〉,

q2 =
∑

|k|>K+

(〈y∗, Aky〉 + 〈y∗, Bkz〉)e
√
−1〈k,x〉,

q = h0(x, y + y∗, z, λ) − h0(x, y, z, λ).

Then

Q = (Q1 + Q2 + Q3) ◦ φ + q0 + q1 + q2.

By H3), it is clear that

|∂l
λA|D(r), |∂l

λB|D(r), |∂l
λM |D(r), s−3|∂l

λ∂xh0|D(r), s−2|∂l
λ∂(y,z)h0|D(r), |U | ≤ c.

It follows from the above and (3.44)-(3.47) that

|∂l
λQ1|D3 ≤ c

∑

0<|k|≤K+

(s2
+|∂l

λfk1| + s+|k|(|∂l
λfk0| + s+|∂l

λfk1|

+ s+|∂l
λFk1|)e|k|(r++ 1

4 (r−r+))

≤ cs2s+µK+

∑

0<|k|≤K+

|k|n+(n+1)τ+6e−|k| 5(r−r+)

8

≤ cs2s+µK+Γ(r − r+) = cs2s+µζ
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and from (3.42), (3.47) and Lemma 3.3 1) that

|∂l
λq0|D1 ≤ c

∑

0<|k|≤K+

(|∂l
λy∗||Fk01| + |y∗||∂l

λFk01|) ≤ cγn+1s2µ2K+ζ,

|∂l
λq1|D1 ≤

∑

0<|k|≤K+

(|∂l
λy∗|(|fk1| + |Fk1| + |Pk10|)

+|y∗|(|∂l
λfk1| + |∂l

λFk1| + |∂l
λPk10|))e|k|(r++ 1

4 (r−r+))

≤ cγn+1s2µ2ζK+

∑

0<|k|≤K+

|k|1+2τe−|k| 3(r−r+)

4 ≤ cγn+1s2µ2ζ2.

Similarly,

|∂l
λQ1|D(s) ≤ cs3µζ,

|∂l
λq0|D(s) ≤ cγn+1s2µ2K+ζ,

|∂l
λq1|D(s) ≤ cs2µ2ζ2,

|∂l
λq|D(s) ≤ cγn+1s+s3µζ.(3.55)

By (3.43)-(3.45) and H2), we also have

|∂l
λQ2|D3 ≤ c

∑

|k|>K+

s+((|∂l
λBk| + |∂l

λMk|)|F01|

+(|Bk| + |Mk|)|∂l
λF01|)e|k|(r++ 1

4 (r−r+))

≤ cγn+1ss+µK+

∑

|k|>K+

e−|k| 3(r−r+)

4 ≤ cγn+1ss+µ2K+,

|∂l
λQ3|D3 ≤ c

∑

|k|>K+,0<|j|≤K+

s+((|∂l
λBk−j | + |∂l

λMk−j |)|Fj1|

+(|Bk−j | + |Mk−j |)|∂l
λFj1|)e|k|(r++ 1

4 (r−r+))

≤ cγn+1ss+µK+(
∑

|k|>K+

e−|k| (r−r+)

2 )(
∑

0<|j|≤K+

e−|j| (r−r+)

8 )

≤ cγn+1ss+µ2K+Γ(r − r+) = cγn+1ss+µ2ζ.

Similarly,

|∂l
λQ2|D(s) ≤ cγn+1s2µ2K+,

|∂l
λQ3|D(s) ≤ cγn+1s2µ2ζ.

Note that, similar to (3.43),

|∂l
λAk |O ≤ |∂l

λM− ∂l
λM0|D(r)×O0

e−|k|r ≤ γn+1
0 µ

1
4∗ e−|k|r.

This together with (3.43), H2) and Lemma 3.3 1) implies that

|∂l
λq2|D3 ≤ c

∑

|k|>K+

s+((|∂l
λAk| + |∂l

λBk|)|y∗|

+ (|Ak | + |Bk|)|∂l
λy∗|)e|k|(r++ 1

4 (r−r+))

≤ cγn+1
0 s+sµK+

∑

|k|>K+

e−|k| 3(r−r+)

4 ≤ 2n+1cγn+1s+sµ2ζ.
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Similarly,

|∂l
λq2|D(s) ≤ cγn+1s2µ2ζ.

It now follows from Lemma 3.3 1) that

|∂l
λQ|D+ ≤ c(s2s+µ + γn+1s2µ2)ζ2,(3.56)

|∂l
λQ ◦ φ−1|D(s) ≤ c(s3µ + γn+1s2µ2)ζ2.(3.57)

Applying Cauchy’s estimate to (3.57), we then have

|∂l
λD(Q ◦ φ−1)|D3 ≤ c

(r − r+)(s − 3s+)
|∂l

λ(Q ◦ φ−1)|D(s)

≤ c

r − r+
(s2µ + γn+1sµ2)ζ2.(3.58)

Denote

W0 =

∫ 1

0

{Rt, F} ◦ φt
F dt,

W1 =
1

2
〈y∗, (A − 2diag(U, O))y∗〉

+
∑

|k|≤K+

(〈y∗, Pk20y∗〉 + 〈y∗, 2Pk20y〉 + 〈y∗, Pk11z〉)e
√
−1〈k,x〉.

Then by (3.14),

(3.59) P+ = W0 ◦ φ + W1 + Q + q + (P − R) ◦ Φ+.

Since by (3.6) and (3.7)

Rt = (1 − t){N, F} + R

= (1 − t)((Q − 〈y∗, (A − [A])y〉 − 〈y∗, Bz〉) ◦ φ−1 − (R − R′)) + R,

we have

W0 =

∫ 1

0

{(1− t)((Q− 〈y∗, (A− [A])y〉 − 〈y∗, Bz〉) ◦ φ−1 −R + R′) + R, F} ◦ φt
F dt.

Using Lemma 3.3 1), 2) and Lemma 3.4 3), we have by (3.58) that

(3.60) |∂l
λ

∫ 1

0

{Q ◦ φ−1, F} ◦ φt
F dt ◦ φ|D+ ≤ c

r − r+
(s3µ2 + γn+1s2µ3)ζ3,

and, by (3.53) and (3.54) that

(3.61) (|∂l
λ

∫ 1

0

{R, F} ◦ φt
F dt ◦ φ| + |∂l

λ

∫ 1

0

{R′, F} ◦ φt
F dt ◦ φ|)D+ ≤ cγn+1s2µ2ζ3.

By Lemma 3.3, it is also clear that

|∂l
λ

∫ 1

0

{(〈y∗, (A − [A])y〉 + 〈y∗, Bz〉) ◦ φ−1, F} ◦ φt
F dt ◦ φ|D+ ≤ cγn+1s2µ2ζ3.

This together with (3.60) and (3.61) yields that

(3.62) |∂l
λW0 ◦ φ|D+ ≤ c

µ2

r − r+
(s3 + γn+1s2)ζ3.

Using the above arguments along with (3.42) and Lemma 3.3, we also have

(3.63) |∂l
λW1|D+ ≤ cγn+1(s+ + s)sµ2ζ2.
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Above all, it follows from (3.52), (3.55), (3.56), (3.59), (3.62), (3.63) that

|∂l
λP+|D+ ≤ c

ζ3

r − r+
(s+s2µ + γn+1s2µ2 + s3µ2 + γn+1 s3

+

s
µ) ≤ c∆.

�

4. Iteration Lemma

Let r0, s0, µ0, γ0,O0, H0, N0, e0, Ω0,M0, A0, B0, M0,A0, h0, P0 be defined as in
Section 3 and let D̃0 = D(r0, β0), D0 = D(r0, s0), D0 = {x : |Imx| < r0}, K0 = 0,
Φ0 = id. For ν = 1, 2 · · · , we index all index-free quantities in Section 3 by ν and
index all “ + ”-indexed quantities in Section 3 by ν + 1. This yields the following
sequences with the properties stated in Section 3:

Hν = Hν(x, y, z, λ) = Nν + Pν ,

Nν = eν + 〈Ων , y〉 +
1

2
〈
(

y

z

)

,Mν

(

y

z

)

〉 + h0(x, y, z, λ),

Mν =

(

Aν Bν

(Bν)
>

Mν

)

,

rν = r0(1 − 1

2
(1 − δ)

ν
∑

i=1

δi+1),

sν = s1+b+σ
ν−1 ,

βν = β0(1 −
ν
∑

i=1

1

2i+1
),

γν = γ0(1 −
ν−1
∑

i=0

1

2i+2
),

µν = c0s
σ
ν−1µν−1, c0 = max{1, c1, · · · , c7},

Kν = ([log
1

sν−1
] + 1)3, ν ≥ 1,

Oν = {λ ∈ Oν−1 : |〈k, Ων−1(λ)〉| >
γν−1

|k|τ , 0 < |k| ≤ Kν}, ν ≥ 1,

Dν = D(rν , sν),

D̃ν = D(rν +
7

8
(rν−1 − rν), βν),

Dν = {x : |Imx| < rν},

ν = 0, 1, · · · .
We now prove an iteration lemma which checks the validity of all KAM steps.

Lemma 4.1. (Iteration Lemma) If µ∗ = µ∗(r∗, β0, σ0, U
0) is sufficiently small,

then the following holds for all |l| ≤ n; ν = 1, 2, · · · .
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1)

|∂l
λ(eν − e0)|Oν

≤ γ
2(n+1)
0 µ

1
2∗ ,(4.1)

|∂l
λ(eν − eν−1)|Oν

≤ γ
2(n+1)
0 µ

1
2∗

2ν
,(4.2)

|∂l
λ(Ων − Ω0)|Oν

≤ γ
2(n+1)
0 µ

1
2∗ ,(4.3)

|∂l
λ(Ων − Ων−1)|Oν

≤ γ
2(n+1)
0 µ

1
2∗

2ν
,(4.4)

|∂l
λ(Mν −M0)|Dν×Oν

≤ γn+1
0 µ

1
4∗ ,(4.5)

|∂l
λ(Mν −Mν−1)|Dν×Oν

≤ γn+1
0 µ

1
4∗

2ν
,(4.6)

|∂l
λPν |Dν×Oν

≤ γn+1
ν s2

νµν .(4.7)

2) (Ων(λ))i = ωi(λ), i = 1, 2, · · · , n0.

3) There is a transformation Φν : D̃ν × Oν −→ D̃ν−1, Dν × Oν −→ Dν−1,

which is symplectic and analytic in (x, y, z) ∈ D̃ν+1, and smooth in λ ∈
Oν+1, such that

Hν = Hν−1 ◦ Φν

and

(4.8) |∂l
λDi(Φν − id)|D̃ν×Oν

≤ µ
1
4∗

2ν
, 0 ≤ i ≤ 3.

4)

Oν+1 = {λ ∈ Oν : |〈k, Ων(λ)〉| >
γν

|k|τ , Kν < |k| ≤ Kν+1}.

Proof. The lemma will be proved by induction. We first verify the conditions H1),
H2), H5)-H10) in Section 3 for all ν = 0, 1, · · · .

By definitions of µν , sν , we clearly have

µν = cν
0µ0s

σ
b+σ

((1+b+σ)ν−1)

0 ,(4.9)

sν = s
(1+b+σ)ν

0 ,(4.10)

s0 = γn+1+
a0
2 µ

1
4∗ .(4.11)

Define

Eν =
rν − rν+1

8
=

1

16
r0(1 − δ)δν+2,

χ = n + 6 + (n + 1)[τ ]

and let ε > 0 be fixed such that

(n + 1 + a0)(1 − 2b− 3σ − 2ε) > (n + 1),

σ > (b + σ)(2b + 3σ + 2ε) + ε,

3ε < b.
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By (4.9)-(4.11), it is clear that if µ∗ (hence s0) is small, then

c0
µν

s2b+3σ+2ε
ν

=
cν+1
0 µ0s

σ
b+σ

((1+b+σ)ν−1)

0

s
(1+b+σ)ν(2b+3σ+2ε)
0

= c0s
− σ

b+σ

0 µ0c
ν
0s

( σ
b+σ

−(2b+3σ+2ε))(1+b+σ)ν

0

≤ s
− σ

b+σ

0 µ0(c0s
ε
0)

ν ≤ s
− σ

b+σ

0 µ0 ≤ µ
1
4∗ .(4.12)

Since

Γν = Γ(rν − rν+1) = eE0

∑

0<|k|≤Knu+1

|k|n+(n+1)τ+6e−|k|Eν

≤ eE0

∫ ∞

1

λχe−λ
Eν
2 dλ ≤ eE02χ(χ + 1)!

Eχ
ν

,

we can make µ∗ (hence s0) small such that

c0
sε

νΓ3
ν

Eν

≤ c0(e
E02χ(χ + 1)!)3

sε
ν

E3χ+1
ν

≤ c0e
3E023χ(χ + 1)!)3

E3χ+1
0

(

s
(b+σ)ε
0

δ

)ν

s0 ≤ 1.

On the other hand, we can also make µ∗ (hence sν) small such that

sε
νK3

ν+1 = sε
ν([log

1

sν

] + 1)9 ≤ 1.

Therefore,

(4.13) c0
s2ε

ν ζ3
ν

Eν

=

(

c0s
ε
νΓ3

ν

Eν

)

(sε
νK3

ν+1) ≤ 1.

By (4.9) and (4.13), we can again make µ∗ (hence s0) small such that

c0µνζ3
ν = c0

µν

s2ε
ν

(s2ε
ν ζ3

ν ) ≤ c0
µν

s2ε
ν

≤ µ
1
4∗ s2b+3σ

ν

= µ
1
4∗ s

(2b+3σ)(1+b+σ)ν

0 ≤ µ
1
4∗
(

s
(2b+3σ)(b+σ)
0

)ν

≤ µ
1
4∗

2ν+1
.(4.14)

Using the definition of sν , we clearly have

sν+1 ≤ sb+σ
0 sν ≤ sν

16
,

i.e., H1) holds.
By making µ∗ small, we can apply (4.10) and (4.11) to make sν small such that

log(n + 1)! + 3n log([log
1

sν

] + 1) − Eν

2
([log

1

sν

] + 1)3 + (n + 1)(log 2 + log Eν)

≤ log(n + 1)! + 3n log(log
1

sν

+ 2) − (log
1

sν

)2

+(n + 1)(log 2 + log(2−4r0(1 − δ)δ2) + ν log δ)

≤ − log
1

sν

.

Hence,
∫ ∞

Kν+1

λne−λ
Eν
2 dλ ≤ 2n(n + 1)!

(

Kν+1

Eν

)n

e−Kν+1
Eν
2 ≤ sν .

This verifies H2).
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Applying (4.12) and (4.13), we have that

c0µνζν

Eν

=
µν

s2ε
ν

c0s
2ε
ν ζν

Eν

≤ µν

s2ε
ν

≤ s2b+3σ
ν < 1,

c0sνµνζν

sν+1
=

µν

sb+σ+2ε
ν

(c0s
2ε
ν ζν) ≤ µν

sb+σ+2ε
ν

< 1,

which verify H6) and H7) respectively. H9) can be verified similarly.
Since

βν − βν+1 =
β0

2ν+2
,

it follows from (4.14) that

c0µνζν

βν − βν+1
≤ 2

µ
1
4∗

β0
<

1

2

as µ∗ <
β4

0

28
. This verifies H8).

Applying (4.12) and (4.13) again, we have that

c0∆ν

γn+1
ν+1 s2

ν+1µν+1

= c0
ζ3
ν

4Eν

(
s3

νµν

γn+1
ν s2

ν+1µν+1

+
s2

νµ2
ν

s2
ν+1µν+1

+
sν+1µν

sνµν+1
)

=
1

4
(
c0s

2ε
ν ζ3

ν

Eν

)(
s1−2b−3σ−2ε

ν

c0γ
n+1
ν

+
µν

c0s
2b+3σ+2ε
ν

+
sb−2ε

ν

c0
)

≤ 1

4
(
c0s

2ε
ν ζ3

ν

Eν

)(
s1−2b−3σ−2ε
0

γn+1
ν

+ 2) < 1,

i.e., the first part of H10) holds. The second part of H10) is obvious.
Next, we verify H3)-H5) by induction. For each ν = 0, 1, · · · , we define M ν

kj ,

|k|, |j| > 0, as in (3.28) with Mν
k , Bν

k , Uν , Y ν in place of Mk, Bk, U, Y , respectively,
for all |k| > 0. Using the same ordering T as in Section 3, we also have the matrices

Aν = (e(|k|−|j|)ξ(rν)Mν
kj), A0 = (e(|k|−|j|)ξ(rν)M0

kj), 0 < |k|, |j| ≤ Kν+1,

where ξ is as in (3.38).
Clearly, H3)-H5) trivially hold for ν = 0. We now assume that for some positive

integer ν∗ H3)-H5) hold for all ν = 1, · · · , ν∗. Then the KAM step described in
Section 3 is valid for all ν = 1, · · · , ν∗. In particular, Lemmas 3.5, 3.6 hold for all
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ν = 1, · · · , ν∗. It follows from (4.14) that

|∂l
λ(Ων∗+1 − Ω0)| ≤

ν∗
∑

ν=0

|∂l
λ(Ων+1 − Ων)|Oν+1 ≤

ν∗
∑

ν=0

c0γ
n+1
0 sνµνζν

≤ γn+1
0 s0

ν∗
∑

ν=0

µ
1
4∗

2ν+1
≤ γ

2(n+1)
0 µ

1
2∗ < µ

1
4∗ ,

|∂l
λ(Mν∗+1 −M0)|Dν∗+1×Oν∗+1 ≤

ν∗
∑

ν=0

|∂l
λ(Mν+1 −Mν)|Dν+1×Oν+1

≤
ν∗
∑

ν=0

c0γ
n+1
0 µνζν ≤ γn+1

0

ν∗
∑

ν=0

µ
1
4∗

2ν+1
≤ γn+1

0 µ
1
4∗ < µ

1
4∗ ,

max
|k|>0

∑

|j|>0

e(|k|−|j|)ξ(rν∗+1)|Mν∗+1
kj − M0

kj |Oν∗+1

≤
ν∗
∑

ν=0

max
|k|>0

∑

|j|>0

e(|k|−|j|)ξ(rν+1)|Mν+1
kj − Mν

kj |Oν+1

≤
ν∗
∑

ν=0

c0γ
n+1
0 µνζ2

ν ≤ γn+1
0

ν∗
∑

ν=0

µ
1
4∗

2ν+1
< µ

1
4∗ .

Thus, H3)-H5) also hold for ν = ν∗ + 1.
Above all, H1)-H10) hold for all ν = 0, 1, · · · , i.e., the KAM step described in

Section 3 is valid for all ν = 0, 1, · · · . Now, part 4) of the lemma easily follows
from Lemma 3.6. Also, using (4.14), part 3) of the lemma follows from Lemma
3.4; (4.7) follows from Lemma 3.8; (4.2) and (4.4) follow from Lemma 3.5 1); (4.6)
follows from Lemma 3.7. Finally, (4.1), (4.3) and (4.5) follow from (4.2), (4.4) and
(4.6) respectively, and, part 2) of the lemma follows from an inductive application
of (3.10). This completes the proof. �

5. Proof of Theorems 1 and 2

We first consider Theorem 2 1). By making µ∗ = µ∗(r, s) small in Theorem 2,
we obtain the following sequences

Ψν = Φ0 ◦ Φ1 ◦ · · · ◦ Φν : D̃ν+1 ×Oν+1 → D̃0,

H ◦ Ψν = Hν = Nν + Pν ,

Nν = eν + 〈Ων , y〉 +
1

2
〈
(

y

z

)

,Mν

(

y

z

)

〉 + h0(x, y, z, λ),

ν = 0, 1, · · · , which satisfy all properties described in Lemma 4.1.
Let

O∗ =

∞
∏

ν=0

Oν , G∗ = D(
r0

2
,
β0

2
) ×O∗.

Then O∗ is a Cantor-like set consisting of non-resonant frequencies, and moreover, a

measure estimate similar to that in [24] (also [4, 13]) yields that |O\O∗| = O(γ
1

n∗−1

0 ).
By Lemma 4.1 1), it is clear that eν and Ων converge uniformly on O∗, and,

Mν converges uniformly on D( r0

2 )×O∗. We denote their limits by e∞, Ω∞, M∞,
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respectively. Then M∞ is real analytic in x, and, it follows from the Whitney’s ex-
tension theorem ([17]) that these limits are also Hölder continuous in ω. Moreover,
by Lemma 4.1 1), we have that

|e∞ − e0|O∗ = O(γ
2(n+1)
0 µ

1
2∗ ),

|Ω∞ − Ω0|O∗ = O(γ
2(n+1)
0 µ

1
2∗ ),

|M∞ −M0|D(
r0
2 )×O∗

= O(γn+1
0 µ

1
4∗ ).

Thus, Nν converges uniformly on G∗ to

N∞ = e∞ + 〈Ω∞, y〉 +
1

2
〈
(

y

z

)

,M∞
(

y

z

)

〉 + h0(x, y, z, λ).

To show the convergence of Ψν on G∗, we note that

Ψν − Ψν−1 = Φ0 ◦ · · · ◦ Φν − Φ0 ◦ · · · ◦ Φν−1

=

∫ 1

0

D(Φ0 ◦ · · · ◦ Φν−1)(id + θ(Φν − id))dθ(Φν − id).

It follows from Lemma 4.1 3) that

|D(Φ1 ◦ · · · ◦ Φν−1)(id + θ(Φν − id))|
≤ |DΦ1(Φ2 ◦ · · · ◦ Φν−1)(id + θ(Φν − id)))| · · · · |DΦν−1(id + θ(Φν − id))|

≤ (1 +
µ

1
4∗

2
) · · · (1 +

µ
1
4∗

2ν−1
) ≤ e

µ

1
4
∗
2 +···+ µ

1
4
∗

2ν−1 ≤ eµ
1
4
∗ ,

and

|Φν − id|G∗ ≤ µ
1
4∗

2ν
.

Hence,

|Ψν − Ψν−1|G∗ ≤ e
µ

1
4∗

2ν
,

which implies the uniform convergence of Ψν . Let Ψ∞ be the limit of Ψν . Then,
Ψ∞ is uniformly continuous in λ ∈ O∗ and analytic in (x, y, z) ∈ D( r0

2 , β0

2 ), and
moreover,

|Ψ∞ − id|G∗ = O(µ
1
4∗ ).

Using Lemma 4.1 3) and a similar argument as above, we can further show the
uniform convergence of DΨν , D2Ψν to DΨ∞, D2Ψ∞, respectively, on G∗. Hence,
on G∗,

Pν = H ◦ Ψν − Nν , DPν , D2Pν

converge uniformly to

P∞ = H ◦ Ψ∞ − N∞, DP∞, D2P∞,

respectively. Clearly, these limits above are uniformly continuous in λ ∈ O∗ and
analytic in (x, y, z) ∈ D( r0

2 , β0

2 ).
Note that

|Pν |Dν
≤ γn+1

ν s2
νµν .

It follows from Cauchy’s estimate that, for any λ ∈ O∗, j ∈ Zn
+, k ∈ Z2m

+ with
|j| + |k| ≤ 2,

|∂j
y∂k

z Pν |D(rν+i,
1
2 sν) ≤ γn+1

ν µν .
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Since, by (4.9), the right hand side of the above converges to 0 as ν → 0, we have
that

∂j
y∂k

z P∞|(y,z)=0 = 0

for all x ∈ T n, λ ∈ O∗, j ∈ Zn
+, k ∈ Z2m

+ with |j| + |k| ≤ 2.
Thus, for each λ ∈ O∗, the perturbed system (1.3) possesses an analytic, quasi-

periodic, invariant torus with the Diophantine toral frequency Ω∞(λ). Since, by
Lemma 4.1 2),

(Ων(λ))i = ωi(λ), λ ∈ Ων , i = 1, 2, · · · , n0,

we have that

(Ω∞(λ))i = ωi(λ), λ ∈ O∗, i = 1, 2, · · · , n0,

i.e., the perturbed toral frequencies also preserve the first n0 components of their
corresponding ones. This proves part 1) of Theorem 2.

Theorem 1 and part 2) of Theorem 2 are almost immediate consequences of
part 1) of Theorem 2 with respect to n0 = 0 and n0 = n respectively. In the
case that n0 = 0, we can modify the arguments in Section 3 by choosing y∗ = 0,
U0 = U = ∅, diag(In0 , O) = O, and, diag(O, In−n0 ) = In. In the case that n0 = n,

we let Ôγ be the set of λ ∈ O0 such that Ω0(λ) is Diophantine of Diophantine type
(γ, τ) for a fixed τ > n − 1. It is clear that U 0 = [A0], U = [A], diag(In0 , O) = In,

and, diag(O, In−n0 ) = O. Hence, Ων ≡ Ω0 and Oν = Ôγ for all ν = 0, 1, · · · , i.e.,

Ω∞ ≡ Ω0 and O∗ = Ôγ .
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