CORRELATION-BASED BOTNET DETECTION
IN ENTERPRISE NETWORKS

A Thesis
Presented to
The Academic Faculty

by

Guofei Gu

In Partial Fulfillment
of the Requirements for the Degree
Doctor of Philosophy in the
College of Computing

Georgia Institute of Technology
August 2008

Copyright(© 2008 by Guofei Gu

CORRELATION-BASED BOTNET DETECTION
IN ENTERPRISE NETWORKS

Approved by:

Dr. Wenke Lee, Advisor
College of Computing
Georgia Institute of Technology

Dr. Mustaque Ahamad
College of Computing
Georgia Institute of Technology

Dr. Nick Feamster
College of Computing
Georgia Institute of Technology

Dr. Jonathon Giffin
College of Computing
Georgia Institute of Technology

Dr. Chuanyi Ji

School of Electrical and Computer
Engineering

Georgia Institute of Technology

Date Approved: July 3, 2008

To my dear family:

Thank you for all of your love, support and encouragements.

ACKNOWLEDGEMENTS

During my Ph.D. study, | have been extremely lucky to havepsup encouragement, and
inspiration from many people; without them, this work woualat have been possible.

My sincere and deep gratitude goes to my advisor, Dr. Wenkefoe his kind guidance
and consistent support. He led me on this journey, guidedomarts the right direction,
influenced me as an active thinker, and provided me with m&igand inspiring advice
throughout my entire Ph.D. study. He has had an enormouscingmamy professional
development, and | hope to guide my students as well as heundadgme.

| would also like to thank other members of my committee, Drusthque Ahamad,
Dr. Nick Feamster, Dr. Jonathon Giffin, and Dr. Chuanyi Ji tfeir interest in my work.
Their insightful comments have significantly improved thelity of my work.

| have also been very fortunate to be a member of a great secesearch team in our
lab at Georgia Tech. | wish to thank Xinzhou Qin, David Dag¥nan Huang, Prahlad
Fogla, Monirul Sharif, Oleg Kolesnikov, Mohamad Kone, Take Takahashi, Roberto
Perdisci, Bryan Payne, Paul Royal, Kapil Singh, Junjie Zh&vobert Edmonds, Abhinav
Srivastava, Manos Antonakakis, Martim Carbone, Artem DBumg, Long Lu, Ying Li,
Jennifer Stoll, Ikpeme Erete, and Claudio Mazzariello thair valuable assistance on my
research and for their contribution to the wonderful andgaiple graduate experience |
have had at Tech. They have enriched my life at Georgia Tedhreade it happy and
memorable. Their friendship has been my best fortune.

| would also like to thank Phillip Porras and Vinod Yegnesavafor mentoring me
during my summer internship at SRI International.

| would patrticularly like to thank my family. Always suppor¢ and encouraging, my

parents are my foundation. | know | owe them my life. Finathere are no words to

express my love and appreciation to my wife, Jianli. Her pkoaal kindness and love

makes everything worthwhile.

TABLE OF CONTENTS

DEDICATION iii
ACKNOWLEDGEMENTS iv
LISTOF TABLES X
LISTOF FIGURES e e Xi
SUMMARY . . . e e Xiii
I INTRODUCTION e e e 1
1.1 Botnets: Current Largest Security Threat 2
1.2 Botnet Detection: Research Challengesand OurGoals 6
1.3 SolutionOverview 8
1.4 Thesis Contribution and Organization 12
[l RELATED WORK e e e 14
2.1 Intrusion and Malware Detection 14
2.2 Alert Correlation and IDS Cooperation 18
2.3 Botnet Measurement and Honeypot-based Tracking. 21
2.4 Existing Work on Botnet Detection 22
2.5 A Taxonomy of Botnet Detection Techniques 24

Il BOTHUNTER: DIALOG CORRELATION-BASED BOTNET DETECTION 28

3.1 BotlInfection DialogModel 03
3.1.1 Understanding Bot Infection Sequences30
3.1.2 Modeling the Infection Dialog Process 32

3.2 BotHunter: System Design and Implementation. 35

3.2.1 A Multiple-Sensor Approach to Gathering Infectionidénce . . 37

3.2.2 Dialog-based IDS Correlation Engine a4

3.3 Evaluating Detection Performance 48
3.3.1 Experiments in aim situ Virtual Network 48
3.3.2 SRl Honeynet Experiments 50

Vi

3.3.3 An Example Detection in a Live Deployment 54

3.3.4 Experiments in a University Campus Network b5
3.3.5 Experiments in an Institutional Laboratory 57
3.4 DISCUSSION 58
3.5 BotHunter Internet Distribution 60
3.6 Summary e e 61
BOTSNIFFER: SPATIAL-TEMPORAL CORRELATION-BASED BOTNEDE-
TECTION . . . 63
4.1 Botnet C&C and Spatial-Temporal Correlation 65
4.1.1 Case StudyofBotnetC&C 66
4.1.2 Botnet C&C: Spatial-Temporal Correlation and Simijya. . . . 67
4.2 BotSniffer: Architecture and Algorithms 69
421 MonitorEngine 70
4.2.2 CorrelationEngine L oo 72
4.2.3 Single Client C&C Detection Under Certain Conditions . . . 80
4.3 Experimental Evaluation L. 81
431 Datasets 81
4.3.2 Experimental Resultsand Analysis 84
4.4 DISCUSSION 87
4.4.1 Possible Evasionsand Solutions 87.
4.4.2 Improvementsto BotSniffer 90
45 SUMMAIY oot e e e e e 91
BOTMINER: HORIZONTAL CORRELATION-BASED, PROTOCOL- AND BRUCTURE-
INDEPENDENT BOTNET DETECTION 92
5.1 Problem Statementand Assumptions a5
5.2 BotMiner: Architecture, Design and Implementation 97
5.2.1 BotMiner Architecture 97
5.2.2 TrafficMonitors 99
5.2.3 C-planeClustering 101

Vil

VI

VIl

524 A-planeClusteringo 107

5.2.5 Cross-plane Correlation 910
5.3 Experiments 111
5.3.1 Experiment Setup and Data Collection 111
5.3.2 EvaluationResults 114
5.4 Limitations and Potential Solutions 117
5.4.1 Evading C-plane Monitoring and Clustering 117
5.4.2 Evading A-plane Monitoring and Clustering119
5.4.3 Evading Cross-plane Analysis 191
55 Summary e 120
BOTPROBE: CAUSE-EFFECT CORRELATION-BASED BOTNET C&C DE
TECTION USING ACTIVE TECHNIQUES 121
6.1 Problem Statement and Assumptions 124
6.2 Active Botnet Probing: Architecture and Algorithms 127
6.2.1 ArchitectureDesign 127
6.2.2 Design Choices of Active Probing Techniques129

6.2.3 Algorithm Design for Botnet Detection Using ActiveoBmng . . 132

6.2.4 Evaluating User Disturbance and Detection Accuraegdoff . 136

6.3 Experiments with BotProbe 371
6.3.1 BotProbe: a Prototype Active Botnet Probing System 137
6.3.2 In Situ Experimental Evaluation 139
6.3.3 User Study on Normal ChatProbing 144

6.4 DIisSCUSSION 146
6.4.1 LegalConcerns 146
6.4.2 Limitations and Potential Solutions147

6.5 Summary 149

LESSONS LEARNED AND A FUTURE BOTNET DETECTION SYSTEM . 16
7.1 SummaryofBot*Systems 150

7.2 LessonsLearned e 152

viii

7.3 Combining Multiple Techniques in a Future Botnet DetetBystem . . 154

VIl CONCLUSION AND FUTUREWORK 158
8.1 Conclusion 158
8.2 Futurework. 160

REFERENCES e 162

VITA 172

aa A W N P

10
11
12
13

14

LIST OF TABLES

Selective well-known botnets in history. 3
Performance comparison of 1-gram PAYL and SLADE. 43
Estimated regression coefficients as initial weighting. 46
BotHunter detection and dialog summary of virtual netwiafkections. . . 50
Dialog warnings (raw alerts) of BotHunter in 4-month opierain CoC
network. 56
Normal traces statistics (left part) and detection resight columns) in
BotSniffer evaluation. L L 28
Botnet traces statistics and detection results in BoSrelaluation. 83

Collected botnet traces in BotMiner evaluation, covetiRgG, HTTP and
P2P based botnets. Storm and Nugache share the same file stattbtics

of the whole file arereported. 211
C-plane traffic statistics, basic results of filtering, &flows in BotMiner
evaluation. 114
C-plane and A-plane clustering results in BotMiner eaan. 115
Botnet detection results using BotMiner.116
BotProbe teston SpybotandRbot. 141

User study of performing P1 and P2 probing, using InteddeBinary-
Response-Hypothesis algorithm. Most users are detecteorasl in two
orthreerounds. 145

Summary of our Bot* detectionsystems. 150

© 00 N o o b~ w N P

e e e =
w N Rk O

14

15
16

17
18

19
20
21
22

23

LIST OF FIGURES

Botnet: a typical structure. 2
Our correlation-based botnet detection framework. 8
Simplified bot infection lifecycle. 26
Phatbot infection dialog summary. 31
Botinfectiondialogmodel. 33
BotHunter system architecture. 36
BotHunter network dialog correlation matrix. 45
Scoring plot from expectationtable. 46
Scoring plot: 2019 real bot infections. 47
Honeynet interaction summary for W32/IRCBot-TO. b2
Corresponding BotHunter profile for W32/IRCBot-TO. 53
Extended bot infection dialogmodel. 60
Centralized botnet command and control: two represeatstyles and an
IRC-basedexample.. 66
Spatial-temporal correlation and similarity in bot reisges (message re-
sponse and activity response). e 69
BotSniffer architecture. oL o 70
0(q), the probability of crowd homogeneity withresponding clients, and
thresholdt. 77
Probability of two independent users typing similar léngf messages. . . 78
E[N|H,|, the expected number of crowd rounds in case of a botnet (vary
00(2),q, cand fix@=0.01). 80
Possible C&C structures of a botnet: (a) centralizedpéar-to-peer. . . . 96
Architecture overview of our BotMiner detection framewo. 98
C-plane clustering. 011

Visit pattern (shown in distribution) tGoogl e from a randomly chosen
normalclient. 103

Scaled visit pattern (shown in distribution)@ogl e for the same client
INFigure 22. 104

Xi

24
25
26
27

28

29
30

31

Two-step clusteringof C-flows. 105

A-planeclustering. Q71
Example of hierarchical clustering for botnet detection 111
Two-layer architecture of using active techniques faniifying botnet

Example active probing techniques. Hered’ means a modified com-
mand packetseq’ means modification is needed on the sequence/acknowledge
number to keepthe TCP session. 130

Disturbance to normal user and the effect on detection.. 137

Click configuration for BotProbe. The figure shows a comfgan for
black-box testing on existing bot binaries. If BotProbe épldbyed as a
middlebox into a real network, we can remove the IRC SenierpeRe-

sponder, and DNSResponderelements. 138
Example combination of multiple techniques in a futurénbb detection
SYSIEM. . . . e e e 154

Xil

SUMMARY

Most of the attacks and fraudulent activities on the Inteame carried out by malware.
In particular, botnets, as state-of-the-art malware, lmeme a primary “platform” for
attacks on the Internet. A botnet is a network of compromas®dputers (i.e., bots) that
are under the control of an attacker (i.e., a botmasterytiir@ome command and control
(C&C) channel. It typically contains tens to hundreds ofubands of bots, but some even
had several millions of bots. Botnets are now used for dhisted denial-of-service (DDoS)
attacks, spam, phishing, information theft, distributotger malware, etc. With the mag-
nitude and the potency of attacks afforded by their combivetdwidth and processing
power, botnets are now considered asléngestthreat to Internet security.

Counteracting this emerging threat requires better dete¢echniques that identify
botnets (bots and/or their C&C servers) so that we can néitieeir damage and defend
against them. In this thesis, we focus on addressing theebdgtection problem in an
enterprise-like network environment. We present a caiorlebased framework for bot-
net detection consisting of detection technologies ajred@monstrated in four systems:
BotHunter, BotSniffer, BotMiner, and BotProbe. Among theystems, BotHunter and
BotProbe focus on detecting tledividual behavior of bots, while BotSniffer and Bot-
Miner are targeted to detect tgeoupbehavior of bots. A common thread of these systems
is correlation analysis, i.e., vertical (dialog) corr@at horizontal correlation, and cause-
effect correlation. BotHunter presentsrtical correlation or dialog correlation a new
kind of network perimeter monitoring strategy that exarsitiee behavior of eadthistinct

internal host and focuses on recognizing the infection aratdinationdialog occurring

Xiii

during a successful malware infection. BotSniffer and Bioi present another comple-
mentary network perimeter monitoring strategy, ib@rizontal correlationwhich focuses
on recognizing behavioral similarities and correlatiaasoss multiple hostsBotSniffer

is designed mainly to captureentralizedbotnet C&C channels using multiple rounds
of spatial-temporal correlation, while BotMiner providesnoregeneralframework for
protocol- and structure-independent botnet detectiongusliustering analysis of network
traffic; thus, BotMiner can be effective even when botnetsngfe their C&C techniques
(e.g., protocols and structures). Finally, different fribva abovepassivemonitoring strate-
gies, which usually require a relatively long time to obgeseveral rounds/stages of botnet
communications/activities, BotProbe ussdive botnet probindechniques in a middle-
box to achieve sufficient confidence otause-effect correlationaused by the command-
response pattern of botnet C&C, and only requires obsetimgost onegound of actual
C&C interaction. In short, we build a comprehensive cotrefabased framework for
multi-perspective botnet detection, and implement difércorrelation techniques in dif-
ferent systems that complement each other.

All these Bot* systems have been evaluated in live networidda real-world net-
work traces. The evaluation results show that they can atelyrdetect real-world botnets
for their desired detection purposes with a very low falseifpe@ rate. These systems
are already starting to make an impact in the real world. kample, BotHunter is avail-
able to the publicatt t p: / / www. cyber - t a. or g/ Bot Hunt er / ,and in the first five
months after its public release, it amassed more than 6,0@0ldads.

We find that correlation analysis techniques are of padicuélue for detecting ad-
vanced malware such as botnets. Dialog correlation canfeetiee as long as malware
infections need multiple stages. Horizontal correlatian be effective as long as malware
tends to be distributed and coordinated. In addition, ad@¢hniques can greatly comple-
ment passive approaches, if carefully used. We believe xpereence and lessons are of

great benefit to future malware detection.

Xiv

CHAPTER|

INTRODUCTION

During the last few decades, we have witnessed the explase®f the Internet and the
applications based on it to the point at which they have becamintegral part of our
lives. While providing tremendous convenience, the grgweliance on the Internet also
presents a number of great security challenges. Internatisethereby has become more
and more important to those who use the Internet for workinless, entertainment, or
education.

Most of the attacks and fraudulent activities on the Inteane carried out by malicious
software, i.e., malware, which includes viruses, trojaofms, spyware, and recently bot-
nets. Such malware has risen to become a primary source dfahtie scanning [94],
distributed denial-of-service (DDoS) activities [71]relit attacks [11], and fraudulent ac-
tivities [25, 63, 84] taking place across the Internet. Bheternet malware keeps evolving
in their forms, e.g., from worms to botnets. Among all thenfierof malware, botnets, in
particular, have recently distinguished themselves aptihgary “platform” [63] on which
cyber criminals create global cooperative networks to etpe ongoing growth of crim-
inal attacks and activities such as DDoS, spam, phishirgyirdarmation theft.

In this chapter, we first introduce the botnet problem andamwhy it is a serious
security threat. We then outline the research challengelsdimet detection, which is es-
sential for further botnet mitigation and defense, andfgléine goals we want to achieve in
our solution. Next, we provide an overview of our solutiortaarelation-based framework
and the Bot* series of systems for botnet detection. Finalgypresent the contributions of

the thesis and the organization of the remaining chapters.

1.1 Botnets: Current Largest Security Threat

We begin with the definitions of “bot” and “botnet,” the key mwig of the thesis. A bot
is a software robot, or more precisely in the context of ogeagch, a malware instance
that runs autonomously and automatically on a compromisachime without the user’s
consent. The bot code is usually professionally writtendyea (funded) criminal groups
and includes a rich set of supported functionalities [1&jay out many malicious attacks
and activities. Sometimes, we may also use the term “boteterrto the bot-infected
computer (or, “zombie” computer). A botnet (short for rolmatwork) is essentially a
network of bots that are under the control of an attackergliysteferred to as “botmaster”
or “botherder”). In the remainder of the thesis, we more falfyndefine a botnet as “a
coordinated group of malware instances (bots) that areaiéed by a botmaster via some
command and control (C&C) channél.We may also refer to a botnet as “a bot army.”

Figure 1 illustrates a typical structure of a botnet.

bot N
] N
B~ —_
bot @‘_ - _E botmaster
: 7 C&C
' /
: /
(A
=i

Figure 1: Botnet: a typical structure.

As a state-of-the-art malware form, a bot typically usesmalmoation of existing ad-
vanced malware techniques. For example, a bot can use kgyltechniques (to record a
user’s keyboard input such as password) and rootkit teclesi¢to hide its presence in the
system). In addition, like the previous generation of maisaich as worms, a bot can self-

propagate on the Internet to increase the size of the bot, &gy infect remote vulnerable

IWe will revisit this definition in Chapter 5.

hosts through direct exploitation, or propagate througlied@ngineering approaches such
as email and instant message. Recently, in one emerging, toetmasters use compro-
mised Web servers to infect those who visit the websitesutiirarive-by download [81].
By using multiple propagation vectors, the botmaster caruremany victims. Currently,

a botnet typically contains tens to hundreds of thousandsotd, but some had several
millions of bots [61].

All bots distinguish themselves from the previous malwamenfs by their ability to
establish a command and control (C&C) channel through wtiiely can be updated and
directed by a botmaster. Once collectively under the cbwofra botmaster, bots form a
botnet To control the bot army, a botmaster can use several camgohanisms in terms
of protocols and structures. The Internet Relay Chat (IR@jqgeol is the earliest, and
still the most widely used C&C channel at present. HTTP is alsed because Web traffic
is generally allowed in most networks. Although centradio®ntrol was very successful
in the past, botmasters are also exploring distributedrobirt order to avoid the single
point of failure problem. For example, they can use a pegreter structure to organize
and control a bot army [44,52, 64,106, 112]. We will discugeorelated background on
botnet C&C mechanisms when we present our detection systelaier chapters.

Within the last decade, many infamous botnets have atttatesiderable media cov-

erage. Table 1 lists several examples of such well-knowndistand briefly describes their

features.
Table 1: Selective well-known botnets in history.
Date Name C&C Protocol | Structure Distinguishing Description
04/1998 | GThot IRC Centralized | First widely spreading IRC bot using mIRC executables amigtsc
04/2002 | SDbot IRC Centralized | First stand-alone and open-source IRC bot
10/2002 | Agobot IRC Centralized | Very robust, flexible, and modular design
04/2003 | Spybot IRC Centralized | Extensive feature set based on Agobot
2004 Rbot/rxbot | IRC Centralized | SDbot descendant, code base wildly distributed
03/2004 | Phatbot WASTE pP2P Experimental P2P bot using WASTE protocol
05/2004 | Bobax HTTP Centralized | First well-known spambot using HTTP as C&C
04/2006 | Nugache Self-defined pP2P First “practical” P2P bot connecting to predefined peers
01/2007 | Storm Kademlia P2P Famous large-scale P2P botnet mainly used to send spam
04/2008 | Kraken Self-defined Centralized | Large botnet penetrating into at least 50 of the Fortune B@@panies

Unlike previous malware such as worms, which are probélohydriven botnets are

targeted for real financial gain, i.e., they are trplpfit-driven Recently, Vint Cerf, “the
father of the Internet,” likened the botnet scourge to a pamd and speculated that up to
a quarter ofall computers on the Internet may be participating in bete&tted activities
[116]. The magnitude of bot armies and the potency of attatfksded by their combined
bandwidth and processing power have led to a recognitiorotfdis as théargestthreat
to Internet security [63]. Currently, botnets are the ranise of many Internet attacks and

illicit activities [12, 25, 84], listed as follows.

e DDoS attacks. A bot army can be commanded to launch a targdistibuted
denial-of-service attack against any single Internetesysgtervice (e.g., a website)
in an attempt to consume the resources (e.g., bandwidtheaytstem so that it can-
not properly serve its intended users. Nowadajld)DoS attacks are launched from
botnet platforms. Although simple in principle and techugga DDoS attack is very
effective because of the magnitude and the accumulatednhidiindof the botnet,
and it is very hard to prevent and defend against. As a recelttikwown example,
such a DDoS attack was launched against the Estonian gogatrand commercial

websites in May 2007 [33].

e Spam production. More than 95% of email on the Internet isssfdd 4], accounting
for several billion spam messages in Internet traffic dailgt ustrating, confusing,
and annoying e-mail userdostof these spam messages are actually sent from bot-
nets. Although the detailed percentage of spam sent fromeboinay vary according
to different statistics (e.g., 80% in 2004 [65]), many peoptlieve it accounts for
more than 95% now. A number of well-known botnets have beed usainly for
sending spam, including Bobax [96], an early spambot usifgas its C&C, and
Storm worm (a.k.a. Peacomm) [44, 52], another infamous R2Reb aggressively

conducting spam activities.

e Click fraud. A botmaster can easily profit by driving the baing to click on on-
line ads (i.e., issue HTTP requests for advertiser web pdgethe purpose of per-
sonal or commercial gain. For example, as reported by Gaohbé Quality and
Security Teams [32]Cl i ckbot . Ais a botnet that controls 100,000 machines to
execute a low-noise click fraud attack through syndicaeadch ads. According to
ClickForensicsit t p: / / ww. cl i ckf or ensi cs. com, click fraud accounted
for 27.8% of all pay-per-click advertisements in the firsagar (Q1) of 2008. Bot-
nets are boosting click fraud, e.g., click fraud traffic gaed from botnets in Q1

2008 was 8% higher than that in Q4 2007.

¢ Information theft. Bots are actively used to steal semnsitiformation such as iden-
tities, credit card numbers, passwords, or product keys oseas local machine.
By using keyloggers and screen capture, a bot can also essdl/the password of
an online banking account. This is becoming a very seriooblpm. For exam-
ple, in 2005, the FBI estimated that botnets caused 20 mitmllars in losses and
theft [20], “including one scheme that bilked a Midwest fingah institution out of

millions.”

e Phishing. Botnets are widely used to host malicious phgskites. Criminals typi-
cally send out spam messages (e.g., using botnets) to s&k to visit fake phishing
sites (usually financial related), so that they can obtaersisensitive information
such as usernames, passwords, and credit card numbersealtfigancial websites.
The independent research and advisory firm Financial Itsih estimated that in
2004, global financial institutions experienced more thé0imillion in fraud losses
from phishing. U.S. businesses lose an estimated $2 bdliggar as their clients be-

come phishing victims.

e Distributing other unwanted software, e.g., adware/spgwaotnets are naturally

a good platform on which a botmaster can distribute manyrdtrens of malware.

According to a recent report [105], a discovered botneegdllly installed adware
on hundreds of thousands of computers in the U.S., inclustimge belonging to the

military.”

Botnets can launch several other forms of attacks or ibiciivities. A detailed analysis
of these and the impact of malware, particularly botnetstheninternet economy can be
found in a recent report [7] from OECD (Organization for Eeomnc Co-operation and

Development) and APEC (Asia Pacific Economic Co-operation)

1.2 Botnet Detection: Research Challenges and Our Goals

To counter botnet attacks, the current largest securitgathiwe first need to detect the
existence of botnets (bots and/or their C&C servers) withimonitored network in order
to effectively mitigate and defend against them. Botneeckin has become a daunting

task because botnets, as state-of-the-art malware, piesesiderable challenges:

e Bots are stealthy on infected machines. Since they are wsddrfg-term purpose
to make profits, unlike some previous malware such as viraisésvorms, bots usu-
ally do not aggressively consume CPU/memory/bandwidtbuees nor perform
noticeable damage to computers in order to avoid the awsseanfethe user. They
can disable existing anti-virus tools and use rootkit téphes to protect them from
being detected at a local host. Thus, a host-based soluagmuot be very effective.

In this thesis, we thereby focus primarily on a network-blasaution.

e Bot infection is usually a multi-faceted and multi-phasedgess, incorporating sev-
eral computing assets, multiple bidirectional network 8pwand different infection
stages. Thus, looking at only one specific aspect (or, estade), as many existing
solutions do, may be not effective; it may lead to more falsgifjves and false neg-
atives. In contrast, looking at multiple aspects is moreaisbland likely to reveal the

big picture of a bot infection.

e Bots are dynamically evolving. For example, they can frediyeupdate their bina-
ries as directed, more quickly than a user updates his ans-gignature base. Thus,

static and signature-based approaches may not be effective

e Botnets can have a very flexible design of C&C channels. Tleyuse different
protocols such as IRC or HTTP. They can encrypt the contegt, (@ommands) in
a C&C communication. They can even use a different strusttoeorganize and
control the bot army, e.g., using P2P techniques. Thus,uignlvery specific to a

certain botnet C&Gnstances not desirable.

Because of these challenges, existing techniques sucladiidnal anti-virus tools
cannot sufficiently handle the botnet detection problenChapter 2, we provide a detailed
overview of various related work (e.g., intrusion/malwdegection, honeypot-based botnet
tracking, and existing botnet detection approaches) aridguexplain why these existing
solutions are not adequate for botnet detection.

In this thesis, we propose our network-based solution fomdtadetection. When de-

signing the solution, we have the following four goals in thin

1. Our solution should be guided by sound principles thatwephe fundamental in-

variants of botnet behavior rather than symptoms (e.gnrsng).

2. Our solution should provide complementary techniques@ver multiple stages,

dimensions, and perspectives.

3. Our solution should be general and extensible. By geneialmean the solution
should not be restricted to a specific botnet instance orraep® on a specific symp-
tom. By extensible, we mean the solution should provide @&m@md flexible frame-

work that can easily incorporate new user-provided comptsfiglug-ins.

4. Our solution should provide practical prototype systémas can work in real-world

networks. By practical, we mean that the detection systeansaccurately detect

real-world botnets for their desired detection purposeshave a low false positive

rate in real-world normal traffic as well as reasonable resmusage.

1.3 Solution Overview

We propose aorrelationbased framework for effective network-based botnet dietem

an enterprise-like network environment such as a uniyecsinpus network, a regular en-
terprise network, or simply a local area network (LAN). Viitkthis framework, we present
three different correlation techniques: vertical (diglogrrelation, horizontal correlation,
and cause-effect correlation. Based on these techniquebuild four anomaly/behavior-
based detection systems: BotHunter [46], BotSniffer [#&]tMiner [45], and BotProbe.
These four systems can be deployed at the network edge touternitor through traffic;
they will issue alerts when detecting some internal hostsigs (indicated by IP addresses)

as suspicious bots/botnets.

Passive Monitoring Active Monitoring A
5 E Horizontal Enterprise-like
Correlation Network
| < (BotSniffer,
BotMiner)
I \ \
! Cause-Effect
I Correlation \ /
! X \
I (BotProbe)
i \
\ Vertical o
\!/ - Correlation
im
time (BotHunter)
(W J - / J

Figure 2: Our correlation-based botnet detection framework.

Figure 2 illustrates our correlation-based botnet detectiamework and four detec-

tion systems. Among these systems, BotHunter uses vecticedlation, and BotSniffer

and BotMiner use horizontal correlation. While these tlegsiems use passivemonitor-

ing strategy, BotProbe uses aotive monitoring strategy and the cause-effect correlation
technique. These Bot* systems have two different detedtionses: BotHunter and Bot-
Probe are used to detect tineividualbehavior of bots, while BotSniffer and BotMiner are
used to detect thgroupbehavior of a botnet.

BotHunter [46] presents vertical correlation, a new kinchefwork perimeter moni-
toring strategy that examines the behavior history of eastindt host. It recognizes a
correlated dialog trail (or, evidence trail) consistingnadiltiple stages and representing a
successful bot infection. Therefore, this strategy is edderred to as “dialog correlation.”
BotHunter is designed to track two-way communication floesaeen internal assets and
external entities, and recognize an evidence trail of dathanges that match a state-based
infection sequence model. BotHunter consists of a coroglagngine driven by several
malware-focused network detection sensors, each chargbddatecting specific stages
and aspects of the malware infection process, includinguntd scanning, exploit usage,
egg downloading, outbound bot coordination dialog, anboumd attack/propagation. The
BotHunter correlator then links the dialog trail of inbounttusion alarms with those out-
bound communication patterns that are highly indicativa sticcessful local host infec-
tion. When a sequence of evidence matches BotHunter'stiofedialog model, a consol-
idated report is produced to capture all the relevant evaamdsevent sources that played a
role during the infection process. More details of BotHumte discussed in Chapter 3.

BotHunter has some limitations. It is restricted to fhredefinedinfection life cy-
cle model, and at some stages such as C&C communicationsréntly provides only
signature-based sensors. Thus, to complement BotHungeprepose another two sys-
tems, BotSniffer [48] and BotMiner [45], which do not necadly require the observation
of multiple differentstages on an individual host, nor require botnet-specifjnatures.
Unlike BotHunter’s vertical correlation, BotSniffer anco®/iner present another com-

plementary novel network monitoring strategy, “horizért@arrelation,” which examines

the correlation and similaritgcrossmultiple hosts. This horizontal correlation technique
is inspired by the observation that, because of the prerpnogned activities related to
C&C under the control of a botmaster, bots within the samadtotvill likely demon-
strate spatial-temporal correlation and similarity. Fmaraple, they engage in coordi-
nated/similar communication, propagation, and attackfeanetulent activities. However,
normal independent hosts (even the previous generatigolated malware instances) are
unlikely to demonstrate such correlated malicious adtisit By using horizontal correla-
tion and anomaly detection techniques, both systems doeqpiirea priori knowledge
of botnets such as captured bot binaries and hence the sagnetures, and C&C server
names/addresses.

BotSniffer [48], designed to detect mainly centralized C&@nnels, monitonsultiple
rounds of spatial-temporal correlation and similarity cfseage/activity responses from a
group of hosts that share some common centralized serveecbon (e.g., IRC or HTTP).
Using statistical algorithms, it can achieve theoreticalids on the false positive and false
negative rates within a reasonable detection time (quittieer BotMiner). More details of
BotSniffer are discussed in Chapter 4.

An important limitation of BotSniffer is that it is restrietl to the detection of botnets
mainly usingcentralizedC&C channels. BotMiner [45] presents a mayeneraldetec-
tion framework that is independent of botnet C&C protocal atructure. We start from
the definition and essential properties of botnets. As défirefore, a botnet is eoordi-
nated groupf malwareinstances that areontrolledby a botmaster via some C&C chan-
nel. The essential properties of a botnet are that the baotsntmicate with some C&C
servers/peers, perform malicious activities, and do sosmalar or correlated way. Ac-
cordingly, BotMiner clusters similar communication trafand similar malicious traffic,
and performs cross cluster correlation to identify the sittsat share both similar commu-
nication patternandsimilar malicious activity patterns. Therefore, thesetbase consid-

ered bots in the monitored network. More details of BotMiaex discussed in Chapter 5.

10

While BotHunter, BotSniffer, and BotMiner usepassivemonitoring strategy, which
usually requires a relatively long time to observe multgtieges/rounds of botnet commu-
nications/activities, BotProbe usesativemonitor strategy to shorten the detection time.
It can actively participate in a network session (e.g., ®isus IRC chatting session), if
necessary, by injecting some well-crafted packets to tiemicWithin the monitored net-
work. We call this technique “active botnet probing.” Our timation is that, for a large
portion of botnet C&C channels (e.g., those using chatiilkeyprotocols such as IRC,
which is currently used bgnostof the existing botnets), a C&C interaction has a determin-
istic command-response pattern. By using active botndiipgoin a middlebox, we can
gain enough confidence of tltause-effect correlationaused by this command-response
pattern. Although controversial and clearly limited, Batbe demonstrates effectiveness
on real-word IRC-based botnet detection, and requiresreingeat most oneround of
C&C interaction. This is very useful in a real-world situatiin which IRC botnets are still
the majority and their C&C interaction is usually infrequielore details of BotProbe are
discussed in Chapter 6.

Our correlation-based framework and Bot* systems meet our flesign goals. We
provide a brief explanation here and leave the details ®ré¢maining chapters:

First, each correlation analysis captures some perspegtithe invariants of botnet
behavior, i.e., infection dialog (dialog correlation) asmmmand-response pattern (cause-
effect correlation) within the individual host, and coatd behavior within the group (hor-
izontal correlation). We believe that the idea of correlatanalysis can potentially capture
the behavior invariants of future malware.

Second, most correlation techniques by themselves involyéple detection sensors
covering different stages/aspects. For example, BotHert®loys several sensors cov-
ering multiple different infection stages. In additionfferent correlation techniques and
detection systems complement each other quite well. Ftanoe, some focus andivid-

ual bot detection, while some focus on the detection ofrtbevorkof bots. Furthermore,

11

each system may have its own limitations and coverage. Hemvexhen combined, they
can complement each other to enlarge the detection cové@mgenultiple different per-
spectives. We show the architecture of combining our mieltgchniques in a future botnet
detection system in Chapter 7.

Third, our framework and systems are general and extensibldesign, they target
a certainclassof botnets. In other words, they are not restricted to a vpscsic bot-
netinstance Even BotProbe, although it appears to target an IRC boimetpplicable
to a general class of botnets that have deterministic,aotme C&C (e.g., chatting-like
communication such as IRC or instant message). In additi@se systems are open and
extensible. That is, they are amenable to the adding of négctien sensors. We provide
a concrete example in Chapter 3.

Finally, our systems are practical and can work in the realdvd his will be discussed

in detail throughout the remainder of the thesis.

1.4 Thesis Contribution and Organization

In this thesis, we make the following main contributions:

1. We propose a correlation-based framework for multiqpecsive botnet detection.
In this framework, we introduce several new and complenrgntatwork monitor-
ing and correlation analysis techniques, i.e., verticall¢d)) correlation, horizontal
correlation, and cause-effect correlation. Each of thesestation techniques pro-
vides a relatively sound principle that captures some foretdal behavior invariant
of botnets to guide our anomaly-based detection schemesle Wértical correla-
tion captures the dialog nature in the multi-stage bot indedife cycle, horizontal
correlation captures the coordination and similarity natwithin the same botnet.
The cause-effect correlation captures the non-humanrgrileterministic command-
response pattern of a certain class of botnet C&C channetsbéNeve the general

principles behind these correlation analysis techniquesdcalso be applicable to

12

detecting future advanced malware.

2. We provide four practical botnet detection prototypeeys (i.e., BotHunter, Bot-
Sniffer, BotMiner, and BotProbe) that use our correlatiechniques. These sys-
tems are evaluated on real-world network traffic and showadturately detect
botnets with a low false positive rate. Our work is startingriiake an impact in
the real world. For example, BotHunter, available to thelioudt ht t p: / / www.
cyber-ta. org/ Bot Hunt er/ , has amassed more than 6,000 downloads in the

first five months since its public release.

The remainder of this thesis is organized as follows. Chdpietroduces related work
and explains why the existing work cannot adequately sdigdbtnet detection problem.
In particular, we present a taxonomy of botnet detectiohrgies and show the difference
and coverage of existing detection approaches. Chaptezsgipts the motivation of dia-
log correlation and the detailed design, implementatiowl, @/aluation of the BotHunter
system. Chapter 4 presents the motivation of using sp@tmaporal correlation, and the
design, implementation, and evaluation of the BotSniffetem, as well as a discussion
on the limitations and further improvement. Chapter 5 idtrces the BotMiner system,
explains its unique feature of protocol- and structurespehdence, presents the design,
implementation and evaluation of BotMiner, and then disesdts limitations. Chapter 6
presents BotProbe system, including the motivation, aesigplementation and evalua-
tion. Chapter 7 summarizes the lessons learned from the 8attems and presents an
architecture that combines multiple discussed techniquaduture botnet detection sys-

tem. Finally, Chapter 8 concludes the thesis and describegtions for future work.

13

CHAPTER I

RELATED WORK

In the previous chapter, we identified the research chadiemgr botnet detection. In this
chapter, we will answer the following questions: Why aresérp techniques not sufficient
for botnet detection? How are they related to or differeatrfrour solution? In particular,

to compare existing solutions, we propose a taxonomy ofdiataetection techniques and

clarify the coverage of different approaches.

2.1 Intrusion and Malware Detection

Existing intrusion and malware detection techniques caegely be categorized into host-
based or network-based solutions. Host-based detectbnitgies are very important to
recognize malware binaries (e.g., viruses) and host-eaveinaly behavior (e.g., a certain
system call invoked, a certain registry key created). Amth&ge techniques, anti-virus
tools are useful for traditional virus detection for a lonme [99]. Another typical ex-
ample of host-based intrusion detection techniques igesysall-based monitoring [39].
However, when facing the botnet issue, these purely hastebdetection techniques have
several problems. First, traditional anti-virus tools based on signatures and essentially
requiring a comprehensive, precise, and frequently upldgitmature base. However, bot-
nets can easily evade signature-based detection by ugdagmselves more frequently
than users update their signature base. Second, host-Oassdion systems are at the
same privilege level as bots on the same host. Thus, botsisable anti-virus tools in
the system and/or use rootkit techniques to protect themesdétom detection at the lo-
cal host. Actually, as state-of-the-art malware, numetmits have already used all these
tricks. Indeed, the detection rate of bots is relatively lmmpared to that of traditional

malware. For example, Kraken was reported to be undetegt@d% of the commercial

14

anti-virus tools on the market [62]. In 2007, a study from &arabs [4] found that even
with correctly installed up-to-date protection (e.g.,iatus tools), a significant portion
of PCs (22.97%) still became infected by malware. Considetine fact that millions or
even 1/4 of Internet PCs are related to botnet activitie§]lthe actual percentage could
be higher. Finally, behavior-based host level realtime itooimg usually contributes to
significant system performance overhead, so these sadutiecome even less attractive to
normal users.

Therefore, in the scope of this research, we care more aledwbrk-based detection
solutions and consider host-based techniques orthogooalietwork-based approaches.
In the remainder of this chapter, we limit our focus to the tmet¢evant work, mainly
network-based studies.

Network-based intrusion detection research has proposet techniques and sys-
tems. Snort [86] and Bro [74] are two representative misagesignature) based intrusion
detection systems (IDSs). They rely on a large signature pakich precisely describes
what attacks look like) to recognize intrusion attemptseatwork traffic. The fundamen-
tal weakness of these signature-based IDSs, similar tatitmaal anti-virus tools, is that
they cannot detect new attacks because they have never éeereafore, and thus have
no signatures. Anomaly-based IDSs can solve this limitalyp describing whahormal
traffic looks like, and any significant deviation from the mal is considered aanomaly
Two examples of such IDSs are PAYL [110, 111] and Anagram [[2®Bich examine the
payload of an inbound packet, perform n-gram analysis, aed tletect exploits (e.qg.,
shellcode) in the payload. The main weakness of such an dpdrased solution is that it
may cause more false positives.

Prior to the prevalence of botnets, worms were the typicdimar@ form. A worm
is essentially a self-propagating malware instance thateplicate itself through network
infection (or sometimes through social engineering treiksh as email or instant message).

The main difference between worms and botnets is that woonsod have a command

15

and control (C&C) channel. Thus, botnets are fundamentatiye flexible than worms.
Another difference could be their motivation. Whereas woare more likely fun-driven,
launched by attackers who want to have fun or show off in tHaclkhat” community,
botnets are more profit-driven, launched by attackers foiitpr

There is numerous work on worm detection. Since worms géparse scanning,
which provides a quick and automatic way to propagate [98]pat all of the worm detec-
tion approaches focus on the detection of scanning tradfaior. Moore [70] proposed
the use of distributed “network telescopes” for early wagnii.e., using a reasonably large
fraction of dark address space to observe security events aiworm scanning traffic
occurring on the Internet. Provos [80] and Dagon et al. [3@ppsed to use honeypot
techniques to gather and identify worm attacks. Zou et @7 proposed a Kalman filter-
based detection algorithm, an approach that detects the drfellegitimate scans to a large
unused IP space. Wu et al. [120] proposed a victim counteedaetection algorithm
that tracks the increasing rate of newly infected outsid#imis. Jung et al. [57, 58] and
Weaver et al. [115] proposed worm detection approachesdbasdéhe observation that
scanning worms usually cause a high failed connection.r&io et al. [47] proposed the
Destination-Source Correlation (DSC) algorithm for woretettion by using an anomaly
detection technique that considers both the infection ggapion nature and the scanning
activity of worms.

While some of the above existing intrusion and malware detet¢echniques can be
helpful in recognizing some anomaly aspect of botnets, #reynot by themselves well-

suited for botnet detection for the following reasons:

e Most detection systems focus on examining mainly (or oimigpundnetwork traf-
fic for signs of malicious point-to-point intrusion atterapfThey have the capacity
to detect initial incoming intrusion attempts, and the fiofrequency with which

they produce such alarms in operational networks is welidwmnted [91]. However,

16

distinguishing asuccessfubcal host infection from the daily myriad scans and intru-
sion attempts is as critical and challenging a task as amy tsfaetwork defense. In
addition, because of recent advances in malware, pantigike botnet, it is harder
to accurately detect when it initially penetrates the nmameid network, as machines
can be infected by botnets using many ways other than toaditiremote exploita-
tion. For example, an internal user may click on a maliciongiéattachment and
get infected, or a user may visit a website and get infectadixive-by downloads,
which is now occurring quite frequently [81]. Moreover, dready infected laptop
may be carried in and connected to the monitored network.h $4amples have
compelled us to develop a detection capability for alreamygromised machines
inside monitored networks regardless of how they have h&ented. Therefore, we
must monitor both inbound and outbound network traffic iadtef just incoming

traffic.

e A botnet is very flexible, and its infection life cycle can st of several different
stages and aspects. However, existing approaches exanyngome certain symp-
toms such as scanning, so they are less likely to detecttsoffileey can cause false
positives if a non-bot machine (probably a normal host oeptbrms of malware)
has scanning-like activities. They can also cause falsativeg if a bot does not scan,
or although still does scan, it evades the specific scantitmt@¢echnique. Therefore,
we still need new techniques that are more suitable for baoletection and ideally,

that follow the four design goals we have proposed.

Finally, we agree that traditional intrusion and malwargusion detection techniques
are still useful for recognizing certain aspects of botnAswe show later in our detailed
solution in the following chapters, some of these existexhhiques can be the building
blocks for a new system that combines them with our detedgohniques following a

systematic correlation strategy.

17

2.2 Alert Correlation and I DS Cooperation

A significant amount of related work has investigated alertalation and IDS cooperation
techniques that combine multiple alerts, events, or aspdatetwork intrusion detection.
These techniques enable an analyst to obtain higher-letegpretations of network detec-
tor alert streams, thereby alleviating noise-level issuidéls traditional network IDS.

The main purpose of alert correlation is for log reductiontirstep attack detection,
and attack intention recognition. In particular, the teghes used to recognize multi-
stage attacks share some similarities with our verticalédj) correlation technique used
in BotHunter. We address their differences as follows.

One approach to capture complex and multi-step attacks éxphicitly specify the
stages, relationships, and ordering among the variouditoergs of an attack. As an il-
lustration, USTAT [54] and NetSTAT [104], two IDSs based dates transition analysis
techniques, specify computer attacks as sequences ohadtliat cause transitions in the
security state of a system. In addition, Valeur et al. [10&ifgrmed multi-step attack
correlation according to attack scenarios specifigdtiori using STATL [36], a language
for expressing attacks as states and transitions. Otharssistems are JIGSAW [100], a
system that uses notions of concepts and capabilities fdelimy complex attacks, and a
system proposed by Ning et al. [73], which provides a formainfework for alert correla-
tion, and CAML [22], a language framework for defining andei¢ihg multi-step attack
scenarios. Unlike BotHunter, all of these techniques asetbanstrict causal relation-
ships e.g., pre-conditions and post-conditions, ostact temporal sequencef attacks.
One of their obvious limitations is that the dependenciesseguences need to be manu-
ally specifieda priori for all attacks, yet such dependencies/sequences areusfkerown
or very loose. Moreover, a missing event in the dependeseggénces will fail the entire
correlation. With regard to botnet detection, although ib&ctions do regularly follow
a series of general stages, we find it rare to accurately etesteps, and find it equally

difficult to predict the order and time-window in which thesents are recorded. Thus, the

18

above alert correlation techniques are not suitable fanddatetection. In contrast, BotH-
unter does not have a strict restriction in causal depergeoctemporal sequences, and
can tolerate missing events during the infection flow.

Another IDS, GrIDS [95], aggregates network activity intmusal graphs that can be
used for analyzing causal structures and identifying goliolations. Ellis et al. [37] and
Jiang et al. [56] describe behavioral-based systems fectiety network worms based on
tracking propagation graph. In contrast to the above systewed on a global causal graph
or a propagation graph, BotHunter focuses on the problenobdétection and uses local
infection dialog correlation as a means to define the prabsét of events that indicate a
bot infection.

Sommer et al. [91] described contextual Bro signatures asanmfor producing ex-
pressive signatures and weeding out false positives. Tgigeatures can capture two di-
alogs and precisely define multi-step attacks. BotHunfégrdidue to the requirement that
several flows be simultaneously monitored across manycijaatits (e.g., infection source,
bot victim, C&C, propagation targets) and that the evidetna#-based approach loosely
specifies bot infections.

Alert correlation modules such as CRIM [26] provide the iéptb cluster and correlate
similar alerts. The system can extract higher-level cati@h rules automatically for the
purpose of intention recognition. Alert fusion techniquas greatly reduce log size by
clustering similar events under a single label [102]. Theilgirity is usually based upon
either attributing multiple events to a single threat agemroviding a consolidated view
of a common set of events that target a single victim. ValaesZkinner [102] proposed
a two-step probabilistic alert correlation based on attaokads and alert fusion. We con-
sider this line of work to be complementary to BotHunter,,itbese fusion techniques
could be integrated into our detection systems as a pregsogestep in a multi-sensor
environment.

The main purpose of IDS cooperation is to collect informafrom multiple sources/IDSs

19

in order to detect distributed and coordinated attacks asetorm propagation. Such tech-
niques share some similarities with our horizontal cotrefetechniques used in BotSniffer
and BotMiner. We address their differences as follows.

Several work, including EMERALD (Event Monitoring EnaldjiResponses to Anoma-
lous Live Disturbances) [78], AAFID (Autonomous Agents Fatrusion Detection) [15],
DIDS (Distributed Intrusion Detection System) [90], and RIBS (Coordinated Attack Re-
sponse & Detection System) [123], proposed distributeditectures that combine multi-
ple monitors/detectors/agents for intrusion detecticsh @sponse capability. These tech-
niques provide a distributed, architectural-level sanfior tracking distributed and coordi-
nated attacks across multiple machines. In another rehaidd Abad et al. [9] proposed to
correlate data among different sources/logs (e.g., syBtewall, netflow) to improve final
intrusion detection accuracy. All these techniques arferdiht from BotSniffer/BotMiner
in that they merely provide an abstract, high-level, agattitral solution as a general hy-
brid IDS instead of providing concrete detection algorithamd techniques for concrete
attacks such as botnets. However, these architecturdl@wicould be complementary to
our work.

Xie et al. proposed Seurat [122], which can detect aggrdgatemalous events such
as worm propagation by correlating host file system changesa space and time. Malan
[67] proposed to use collaborative groups of machines tbaxge summaries of recently
executed system calls, in order to detect commonly propdgaglware (e.g., worm) within
the network. These two approaches are similar to our hait@orrelation used in Bot-
Sniffer/BotMiner. However, fundamentally different froBotSniffer/BotMiner, they re-
quire deploying a host-based sensor to monitor system flegds or system call sequences
on everymachine in the network. First of all, these host-based mositan cause signif-
icant performance overhead on a local machine. Second,gidehscale installation on
every machine is costly and generally not very realisticird;fas discussed before, these

host-based monitors can be disabled or fooled by advandedBotSniffer and BotMiner,

20

however, using a network-based solution, avoid the aboakmesses. Although similar
in concept, the detailed correlation and detection algor# also differ. Finally, we note
that because their features (file system change and systieseqaence) are different from
those of BotSniffer/BotMiner, Seurat [122] and the tecles from Malan [67] can po-

tentially complement our solution.

2.3 Botnet Measurement and Honeypot-based Tracking

Much of the research on botnets has focused on gaining a baderstanding of the na-
ture and full potential of the botnet threat, e.g., on the sneament study, collection, and
tracking issues.

Measurement studies can help us understand the botnet. tieake et al. [25] con-
ducted several basic studies of botnet dynamics. Dagon[8tldlproposed using the DNS
sinkholing technique for botnet study and pointed out tlabgl diurnal behavior of bot-
nets. Barford and Yegneswaran [16] examined the bot soodeto provide an inside look
at the botnets. For example, they analyzed the structuralesities, defense mechanisms,
and command and control capabilities, of major bot famili@sllins et al. [24] presented
their observations of the relationship between botnetssaadning/spamming activities.

For effective botnet collection and tracking, researcleeramonly use honeypot tech-
niques. Freiling et al. [40], using honeypots to track btgnprovided an early report for
understanding the phenomenon of botnets. Nepenthes [B3pis-interaction honeypot
that simulates several vulnerabilities and automatesaheation of malware binaries. Ra-
jab et al. [82] conducted a multi-faceted approach to coledts and track botnets, and
provided an in-depth study of current botnet activities. lByng honeypot techniques to
collect and track botnets, researchers can analyze battand behavior, and then extract
signatures for content-based detection or C&C servermmdbion for response (e.g., DNS
sinkhole [31]).

Although honeypots are effective tools for collecting aratking botnets, they have

21

several limitations. First, low-interaction honeypotglsuas Nepenthes [13] can capture
attacks from only a limited number of known exploits thatythaithfully emulate, and
high-interaction honeypots can neither implement all ises/nor deal with the problem
of scaling. Second, honeypots are mainly designed to caphaware that propagates
via scanning for remote vulnerabilities, so they cannotlyaapture malware using other
propagation methods such as email and Web drive-by dowplwduich are probably two
of the most widely used propagation vectors [6,81]. Thileré is no guarantee on the
frequency or volume of malware captured using this apprbachuse a honeypot can only
wait and hope for the malware to contact it. Fourth, malwaey rmavoid scanning the
networks with “known” honeypots [17], and it can detect wat machine environments
commonly used for honeypots [41,50,128] and alter its beihéy evade analysis. Finally,
honeypots report infections on only their decoy machinlesy generally cannot directly
tell which non-decoy machines in the enterprise networknaeenbers of a botnet. These

weaknesses limit the capability of honeypots as effed@tectionsystems.

2.4 Existing Work on Botnet Detection

Botnet detection is a relatively new area. Recently, séyapers have proposed various
approaches for detecting botnets.

Binkley and Singh [18] proposed combining both IRC statssand TCP work weight
(i.e., anomaly scanning activity) for detecting IRC-babethets. Their approach is useful
only for detecting certain botnet instances, i.e., IRC ltiods perform scanning.

Ramachandran et al. [85] proposed using DNSBL (DNS blaglid@munter-intelligence
to locate botnet members that generate spam. The basic pissuf this approach is that
botmasters may use DNSBL to query the status of their botsaamachine that queries
many others but that is rarely queried by others is suspsci®his heuristic may be useful

in some cases, but not generally valid and can cause mamydatstives. As a result, this

1Recent advance of client-side honeypot techniques likeefionkey [113] and web-based honey-
pots [89] could partially relieve this limitation.

22

approach is restricted to limited instances of spam botnets

Rishi [43] is a signature-based IRC botnet detection systerhmatches known nick-
name patterns of IRC bots. Similar to a typical signaturgeldaanti-virus tool or IDS,
this approach is accurate only if a comprehensive and gretigmature base is available,
but possesses the inherent weaknesses of signature-lmhisohs such as its inability to
detect bots without using known nickname patterns.

Livadas et al. [66, 98] proposed a machine learning baseaapip for botnet detection
using some general network-level traffic features (e.gedyper second) of chatting-like
protocols such as IRC. Karasaridis et al. [59] studied ngtlow level detection of IRC
botnet controllers for backbone networks. The above twaahes are similar to our
BotMiner’'s work in C-plane clustering but different in mamyys. First, they are used
to detectlRC-basedbotnets (by matching a known IRC traffic profile, e.g., lowurok,
chatting-like, or having a PING-PONG pattern), while Botldr does not have the as-
sumption of using known C&C traffic profiles. Second, they datect botnets using only
a centralized structure, while BotMiner can detect any C&Gdures such as P2P. Third,
BotMiner uses a different traffic feature set based on a nemnmonication flow (C-flow)
data format instead of traditional network flows. FinallgtBliner uses full knowledge in
both C-plane and A-plane information instead of only (ormhgi C-plane network flow
records.

Stinson and Mitchell proposed BotSwat [97], a host-basadt@cking system to iden-
tify programs that use received network data (from an uhtrorthy external source) in
some system call argument without intended local user inpekplicit permission (e.g.,
whitelist), an attempt to identify thpotentialremote control behavior of bots. This ap-
proach may cause non-negligible false positives (becawsg hegitimate programs may
also use a portion of network traffic in some of their systetharguments) and a perfor-
mance penalty (taint propagation analysis is very heavig,isgenerally used only for the

purpose of analysis instead of detection).

23

Yen and Reiter proposed TAMD [124], a system that detpotential malware (in-
cluding botnets) by aggregating traffic that shares the saxternal destination, similar
payload, and that involves internal hosts with similar egieg systems. The concept of
traffic aggregation is similar to the horizontal correlatistrategy used in BotSniffer and
BotMiner. TAMD'’s aggregation method based on destinatietworks focuses on net-
works that experience an increase in traffic as compared istarical baseline. In addi-
tion, this aggregation method is limited to aggregate bsitsgia centralized C&C structure
(i.e., bots that share a common destination server), sdlitikgly fail on P2P-based bot-
nets. Different from BotSniffer and BotMiner, which focua botnet detection, TAMD
aims to detect a broader range of potentially suspiciousshas long as they share the
same external destination, similar payloads, and simig&ap@tforms; hence TAMD could
cause a higher false positive rate than BotSniffer/BotMiB@ce the aggregation features
of TAMD differ from those of BotSniffer/BotMiner, they caromplement one another in

botnet and malware detection.

2.5 A Taxonomy of Botnet Detection Techniques

In this thesis, we propose four new botnet detection systéBosHunter [46], BotSnif-
fer [48], BotMiner [45], and BotProbe. We leave the detailgh®e techniques of each
system for the following chapters. Here, to provide the eeaslith quick and system-
atic knowledge of the features, relationships, and diffees among all existing detection
techniques including ours, we present a taxonomy of boteietction methods from seven
dimensions.

Our first dimension is whether the solution is based on hasttwork. We have already
discussed the advantages and disadvantages of each soldtrnong botnet detection
systems/techniques we have introduced, BotSwat [97] isthehost-based solution; the
others, including our Bot* systems, are network-basedriegles.

Our second dimension is whether the solution is based oasignor behavior/anomaly.

24

For this dimension, Rishi [43] is the only signature-bas#dtson; the others, including our
Bot* systems, are behavior/anomaly-based techniquesadv@ntages and disadvantages
of both solutions have already been discussed before. VWehawe, although mainly us-
ing behavior/anomaly-based techniques, our Bot* systeswnge bbeen carefully designed
by combining various techniques covering different aspethin each system anaicross
different systems to complement each other. Therefore,ameachieve a very low false
positive rate, as shown in the following chapters.

Our third dimension is whether the solution is passive owvactAll the above tech-
niques/systems are passive, i.e., they passively mohearétwork traffic or system behav-
ior, except BotProbe, which uses activemonitoring strategy and which may participate
in a botnet communication by inserting or modifying somé&itaif necessary. Compared
with an active strategy, the advantage of a passive oneas:dkeis safe because it does
not interfere existing communication/activity. Howeuarany such passive solutions may
require monitoring a relatively longer time to observe nplét stages/rounds/instances of
botnet communications/activities in order for accurateeckon. An active approach such
as BotProbe can compensate for this limitation. For exapaé&robe only requires ob-
servingat most oneound of C&C interaction. By performing active botnet pnodpseveral
times, BotProbe can gain enough confidence ofiase-effect correlationaused by the
command-response pattern of botnet C&C. Nevertheless;tawe approach such as Bot-
Probe is still controversial and clearly limited. Thus, amework includes both passive
and active approaches that complement each other.

The fourth dimension we consider is the detection phase. ifffieetion life cycle of
a bot has roughly two phaséspreparation and operation. In the preparation phase, an
innocent host becomes a bot by a remote infection or by thtak@s execution of some
malicious executable (e.g., in an email attachment), aagdgres to be controlled through

C&C. A host starts its preparation phase when it is initiatiacked, and completes this

°Note, later in Chapter 3, we further split the infection kifgcle into more detailed stages.

25

Preparation

Attacked

Controlled
4

Remedied Operation

Figure 3: Simplified bot infection life cycle.

phase when the full functional bot binary is executed. W lhot attempts to connect
to a C&C channel, it begins its operation phase, when it caditeeted by a botmaster
to perform any activities. Thus, we can classify a botneed@&in technique according
to which phase alerts can be issued, during the preparatiasepor during the operation
phase. All introduced botnet detection systems/techsigeieept BotHunter, work only in
the operation phase. BotHunter can issue alerts eitheeiprparation phase (detecting
early bots during penetration time) or in the operation pHdgtecting bots when they are
already there regardless of how they penetrated into tiveonie).

The fifth dimension we consider is the detection target, drether the target is an
individual bot or anetwork/groupof bots. Livadas et al. [66, 98], Karasaridis et al. [59],
TAMD, BotSniffer, and BotMiner focus on the detection of gps of bots, while others
focus on detecting individual bots. These two kinds of sohg are fundamentally com-
plementary. While the group-based approach requires wbgemore bots (e.g., at least
two) for detection, it could discover an anomaly that mayl®hoticeable at an individual
host level. Our framework includes both individual-basBdtHunter and BotProbe) and
group-based (BotSniffer and BotMiner) approaches.

Our sixth dimension relates to the detection assumptidra,is, whether a solution
requires other out-of-band information (e.g., DNSBL) ot.rimong introduced solutions,
some (Ramachandran et al. [85]) requires information frémeiosources such as DNSBL,

and some (Karasaridis et al. [59]) requires bootstrapgegtustering analysis from alert

26

information (e.g., scanning activity) provided by othestgyns. Except for these two, other
techniques/systems require no out-of-band informationeyTare relatively independent
and capable of working directly on network traffic or a hosteyn.

Our final dimension is whether a solution is restricted toepehdent on some certain
C&C technique (e.g., protocol and structure). Many exgapproaches work for only a
certain C&C protocol or structure. Rishi [43] and the apptohy Binkley and Singh [18]
are designed for only IRC-based botnets. Likewise, appesby Livadas et al. [66, 98]
and Karasaridis et al. [59] are shown to detect IRC botndtsdim papers. Their techniques
could be used to detect other chatting-like C&C. Howeveythre still restricted to a cen-
tralized structures, and both require knowledge of the Cé&ffit profile. TAMD [124]
is not restricted to C&C protocols, however, its aggregabyg destination is restricted to
centralized C&C structures only. Similarly, our BotSniffecuses on centralized botnet
C&C detection. BotSwat [97], the solution by Ramachandraal.g85], BotHunter and
BotMiner are independent of the botnet C&C techniques. HewdotSwat [97] is a host-
based solution, and the solution by Ramachandran et alig&&hdamentally limited to
the detection of specific spambots. In addition, BotHurdgedteépendent on the infection
model. Only BotMiner is a fundamentally general networlsdzhbotnet detection frame-
work independent of botnet C&C protocols or structures.

In the following chapters, we will introduce the details ofr@ot* systems one by one

and then provide a comprehensive summary of the four systems

27

CHAPTER Il

BOTHUNTER: DIALOG CORRELATION-BASED BOTNET
DETECTION

We have introduced the botnet problem, and explained whyigue work cannot suffi-
ciently counter this current largest security threat. is tthapter, we introduce our dialog
(vertical) correlation-based detection system, BotHunte

New Approach: We introduce an “evidence-trail” approach to recognizingcess-
ful bot infections through the communication sequences dlcaur during the infection
process. We refer to this approach as the infeati@tog correlationstrategy. In dialog
correlation, bot infections are modeled as a set of loosglgred communication flows ex-
changed between an internal host and one or more exteritgé®n$pecifically, we model
all bots as sharing a common set of underlying actions thairaturing the infection life
cycle: target scanning, infection exploit, binary egg dtmaad and execution, command
and control channel establishment, and outbound attamdgation. We assume neither
that all these eventare requiredby all bots nor that every evemiill be detectedby our
sensor suite. Instead, our dialog correlation system asllan evidence trail of relevant
infection events per internal host, looking for a threshadahbination of sequences that
will satisfy our requirements for bot declaration.

New System: To demonstrate our methodology, we introduce a passiveankwon-
itoring system calledot Hunt er , which embodies our infection dialog correlation strat-
egy. The BotHunter correlator is driven by Snort [86] withustomized malware-focused
ruleset, which we further augment with two additional bpéaific anomaly-detection plug-
ins for malware analysis: SLADE (Statistical payLoad Andyraetection Engine) and

SCADE (Statistical sCan Anomaly Detection Engine). SLADiplements a lossy n-gram

28

payload analysis of incoming traffic, targeting byte-disition divergences in selected pro-
tocols that are indicative of common malware intrusionsABE performs several parallel
and complementary malware-focused port scan analysesthoifmmming and outgoing
network traffic. The BotHunter correlator associates imzbacan and intrusion alarms
with outbound communication patterns that are highly iathe of successful local host
infections. When a sufficient sequence of alerts is found atchnBotHunter’s infection
dialog model, a consolidated report is produced to captuteearelevant events and event
participants that contributed to the infection dialog.

Contributions:

e We introduce a new network perimeter monitoring strategy fbbcuses on detecting
malware infections (specifically bots/botnets) througB4driven dialog correlation.
We present an abstraction of the major network dialog sempsstnat occur during a

successful bot infection, which we call dowt infection dialog model.

e Based on this model, we introduce BotHunter, which inclutiese bot-specific sen-
sors and our IDS-independent dialog correlation engingHButer is thefirst real-
time analysis system that can automatically derive a profitee entire bot detection
process, including the identification of the victim, thedction agent, the source of
the egg download, and the command and control center. Adthour current sys-
tem implements a classic bot infection dialog model, onedifine new models in
an XML configuration file and add new detection sensors. Ouretattor is IDS-

independent, flexible, and extensible to process new med#isut modification.

e We also present our evaluation of BotHunter against mora @00 recent bot
infection experiences that we compiled by deploying Bottéuboth within a high-
interaction honeynet and through a VMware experimentatiatiorm using recently
captured bots. We validate our infection sequence modeEbyomstrating how our

correlation engine successfully maps the network traceswifle variety of recent

29

bot infections into our model.

Chapter Organization: In Section 3.1, we present our understanding and modeling
of the bot infection dialog. In Section 3.2, we detail theigesand implementation of
BotHunter. In Section 3.3, we describe the evaluation tesiflBotHunter in several real-
world networks. In Section 3.4, we discuss several prdctioasiderations and potential
solutions. We introduce the Internet distribution of Botter system in Section 3.5 and

summarize the chapter in Section 3.6.

3.1 Bot Infection Dialog Model

3.1.1 Understanding Bot Infection Sequences

Understanding the full complexity of the bot infection ldgcle is an important challenge
for future network perimeter defenses. From the vantagetdithe network egress po-
sition, distinguishing successful bot infections from tlentinual stream of background
exploit attempts requires an analysis of the two-way didlog that occurs between the
internal hosts of a network and the Internet. On a well-adstened network, the threat
of a direct-connect exploit is limited by the extent to whigditeway filtering is enabled.
However, contemporary malware families are highly velsati their ability to attack sus-
ceptible hosts through email attachments, infected P2Ranadd drive-by download in-
fections. Furthermore, with the ubiquity of mobile laptag®d virtual private networks
(VPNSs), direct infection of an internal asset need not nesély occur across an adminis-
tered perimeter router. Regardless of how malware enteosia bnce established inside
the network perimeter, the challenge remains to identiyitiiected machine and remove
it as quickly as possible.

For this study, we focus on a relatively narrow aspect of latavior. Our objective
is to understand the sequence of network communicationslaradexchanges that occur
between a victim host and other network entities. To illtgtithe stages of a bot infection,

we outline an infection trace from one example bot, a varidithe Phatbot (aka Gaobot)

30

family [1]. Figure 4 presents a summary of communicatiorhaxges that were observed

]

during a local host Phatbot infection.

TCP connections: 2745/Beagle; 135,1025/DCOM1,2; 139,445/NetBIOS;
3127/MyDoom; 6129/Dameware; 5000/UPNP

Attacker

Open backdoor (port 17509)

Egg download

// \\AWnnectlon (port 6668)

Outbound scanning: \ C&C server
5 TCP 2745,135,1025,139,445,3127,6129,5000

DCERPC Exploit (pow//

Victim

Figure 4: Phatbot infection dialog summary.

As with many common bots that propagate through remote @xpjection, Phatbot
first (step 1) probes an address range in search of explemivork services or responses
from Trojan backdoors that may be used to enter and hijacknfbeted machine. If Phat-
bot receives a connection reply to one of the targeted pores loost, it then launches an
exploit or logs in to the host using a backdoor. In our experital case, a Windows work-
station replies to a 135-TCP (MS DCE/RPC) connection retyestablishing a connection
that leads to an immediate RPC buffer overflow (step 2). Onigeied, the victim host is
directed by an upload shell script to open a communicati@mehil back to the attacker to
download the full Phatbot binary (step 3). The bot insedslitinto the system boot pro-
cess, turns off security software, probes the local netdariadditional NetBIOS shares,
and secures the host from other malware that may be loaddteandchine. The infected
victim next distinguishes itself as a bot by establishing@anection to a botnet C&C server,
which in the case of Phatbot is established over an IRC cléstep 4). Finally, the newly

infected bot establishes a listen port to accept new binaaates and begins scanning other

31

external victims on behalf of the botnet (step 5).
3.1.2 Modeling the Infection Dialog Process

While Figure 4 presents an example of a specific bot, the sv@mimerated are highly
representative of the life cycle phases that we encountessthe various bot families
that we have analyzed. Our bot propagation model is prigndriVen by an assessment of
outbound communication flows that are indicative of behaagsociated with botnet coor-
dination. Whenever possible, we seek to associate suclhwutbcommunication patterns
with observed inbound intrusion activity. However, thigda activity is not a requirement
for bot declaration. Neither are incoming scan and explaitas sufficient to declare a suc-
cessful malware infection, as we assume that a constaatswéscan and exploit signals
will be observed from the egress monitor.

We model an infection sequence as a composition of partitspgand a loosely ordered
sequence of exchanges: Infectibn=< A,V,E,C,V’, D >, whereA = Attacker,V =
Victim, £ = Egg Download Location¢’ = C&C Server, and’’ = the Victim’s next prop-
agation targetD represents an infection dialog sequence composed of tiidinal flows
that cross the egress boundary. Our infection didldg composed of a set of five potential
dialog transactionsg1, E2, E3, E4, ER* some subset of which may be observed during

an instance of a local host infection:

— E1: External to Internal Inbound Scan

— E2: External to Internal Inbound Exploit

— E3: Internal to External Binary Acquisition

— E4: Internal to External C&C Communication

— E5: Internal to External Outbound Attack/Propagation

Note, here we have extended the two-phase (preparationpamdtmn) infection proposed in Chapter 2
and Figure 3 into five steps. Here, the preparation phasesteid E1, E2 and E3, and the operation phase
consists of the rest two steps, E4 and ES5.

32

E2: Inbound
Infection

E1: Inbound
Scan

E3: Egg
Download

E5: Outbound
Attack/
Propagation

E4: C&C
Communication

Figure 5: Bot infection dialog model.

Figure 5 illustrates our bot infection dialog model useddssessing bidirectional flows
across the network boundary. Our dialog model is similahéonhodel presented by Rajab
et al. in their analysis of 192 IRC bot instances [82]. Howetlee two models differ in
ways that arise because of our specific perspective of egmssdary monitoring. For
example, we incorporate early initial scanning, which itenfa preceding observation
that occurs usually in the form of IP sweeps that target divelst small set of selected
vulnerable ports. We also exclude DNS C&C lookups, whicheRat al. [82] include as a
consistent precursor to C&C coordination, because DNSupslare often locally handled
or made through a designated DNS server via internal packétaages that should not
be assumed visible from the egress position. Further, wiei@zdocal host modifications
because these are also events that are not assumed to be frizh the egress point.
Finally, we include internal-to-external attack/propéga, which Rajab et al. [82] exclude.
While our model is currently targeted for passive networknitaring events, it will be
straightforward to include host-based or DNS-based ID&s ¢hn augment our dialog
model.

Figure 5 is not intended to provide a strict ordering of esghtt rather to capture a

typical infection dialog (exceptions to which we discuskig. In the idealized sequence

33

of a direct-exploit bot infection dialog, the bot infectibagins with an external-to-internal
communication flow that may encompass bot scanning (E1) areatdnbound exploit

(E2). When an internal host has been successfully compeahfise observe that many
compromise attempts regularly end with process dumps tesyseezes), the newly com-
promised host downloads and instantiates a full malicionary instance of the bot (E3).
Once the full binary instance of the bot is retrieved and atest, our model accommo-
dates two potential dialog paths, which Rajab et al. [82ré&d as the bot Type | versus
Type Il split. Under Type 1l bots, the infected host proceal€&C server coordination

(E4) before attempting attack/propagation. Under a Typet| the infected host immedi-
ately moves to outbound scanning and attack propagation@&iresenting a classic worm
infection?

We assume that bot dialog sequence analysis must be robtst &lbsence of some
dialog events, must allow for multiple contributing caratiels for each of the various dia-
log stages, and must not require strict sequencing on thex oravhich outbound dialog is
conducted. Furthermore, in practice, we have observeddhaype Il infections, time de-
lays between the initial infection events (E1 and E2) andgsgbent outbound dialog events
(ES3, E4, and E5) can be significant—sometimes on the ordevefal hours. Furthermore,
our model must be robust to failed E1 and E2 detections, plyssile to insufficient IDS
fidelity or due to malware infections that occur through awesother than direct remote
exploit.

One approach to address the challenges of sequence ordararidmission is to use a
weighted event threshold system that captures the mininegmssary and sufficient sparse
sequences of events under which bot profile declaration®earnggered. For example,
one can define a weighting and threshold scheme for the agppmaof each event such

that a minimum set of event combinations is required befotalbtection. In our case, we

2|t is important for BotHunter to capture and report any reatmw infection; thus, even though a Type |
bot may very well be just a classic worm, it is still includedtihe model.

34

assert that bot infection declaration requires a minimum of

Condition 1: Evidence of a local host infection (E2), AND evidence of ocaita/bot
coordination or attack/propagation (E3-E5); or

Condition 2: At least two distinct signs of outward bot coordination daek/propagation
(E3-ED).

In our description of the BotHunter correlation engine irci8m: 3.2.2, we discuss a
weighted event threshold scheme that enforces the abovienoimrequirement for bot

declaration.

3.2 BotHunter: System Design and | mplementation

We now turn our attention to the design of a passive monigosiystem capable of recog-
nizing the bidirectional warning signs of local host infeats, and correlating this evidence
against our dialog infection model. Our system, referreaist8otHunter, is composed of a
trio of IDS components that monitor inbound and outbountlitriows, coupled with our
dialog correlation engine that produces consolidatedipast of successful bot infections.
We envision BotHunter to be located at the boundary of a ndgtwaroviding it a van-
tage point to observe the network communication flows thatiobetween the network’s
internal hosts and the Internet. Figure 6 illustrates themanents within the BotHunter
package.

Our IDS detection capabilities are composed on top of then gmairce release of
Snort [86]. We take full advantage of Snort’'s signature eagincorporating an exten-
sive set of malware-specific signatures that we developednally or compiled from the
highly active Snort community (e.g., [19] among other sesjc The signature engine en-
ables us to produce dialog warnings for inbound exploit asagg downloading, and C&C
patterns, as discussed in Section 3.2.1.3. In addition,ave tHeveloped two custom plug-

ins that complement the Snort signature engine’s abiliyréaluce certain dialog warnings.

35

Statistical payLo_ad e2: Payload Anomalies
Anomaly Detection >
Engine (SLADE) 54’ S
[} -~
g el: Inbound Malware Scans H 5
8- Statistical sCan > o1 Java 2 3
= D . B
é a Anomaly Detection e5: Outbound Scans _ 2 botHunter H >
T ™ Engine (SCADE) > — w g
cc Correlator B
= + [a]
o 3 o
v c — 9] <
- Rule-based | botHunter e2: Exploits a 5
Detection Ruleset e3: Egg Downloads —¥
e4: C&C Traffic

Snort *

bot Infection Profile:
¢ Confidence Score
e Victim IP
e Attacker IP List (by prevalence)
¢ Coordination Center IP (by prevalence)
e Full Evidence Trail: Sigs, Scores, Ports
¢ Infection Time Range

Figure 6: BotHunter system architecture.

We refer to the various IDS alarms dmlog warningsbecause we do not intend the indi-
vidual alerts to be processed by administrators in searddoodr worm activity. Rather,
we use the alerts produced by our sensors as input to drivieckdbag correlation analysis,
the results of which are intended to capture and report ttersaand evidence trail of a
complete bot infection sequence.

Our two custom BotHunter plugins are called SCADE (StatsdtsCan Anomaly De-
tection Engine) and SLADE (Statistical payLoad Anomaly éxibn Engine). SCADE,
discussed in Section 3.2.1.1, provides inbound and outbsoan detection warnings that
are weighted for sensitivity toward malware-specific stagpatterns. SLADE, discussed
in Section 3.2.1.2, conducts a byte-distribution paylaamhaaly detection of inbound pack-
ets, providing a complementary non-signature approaatbiound exploit detection.

The BotHunter correlator, discussed in Section 3.2.2 9paasible for maintaining an
assessment of all dialog exchanges, as seen through owar sksl®g warnings, between
all local hosts communicating with external entities asrti®e Internet. The BotHunter
correlator manages the state of all dialog warnings pradipee local host in a data struc-

ture we refer to as theetwork dialog correlation matrixFigure 7). Evidence of local host

36

infection is evaluated and expired from BotHunter cor@lamntil a sufficient combination
of dialog warnings (E1-E5) crosses a weighted thresholdewhe bot infection threshold
is crossed for a given host, we produce a bot infection prfilestrated in Figure 11).
Finally, our correlator also incorporates a module thaivedl users to report bot infec-
tion profiles to a remote repository for global collectiordavaluation of bot activity. For
this purpose, we utilize the Cyber-TA privacy-enabled tatklivery infrastructure [79].
Our delivery infrastructure first anonymizes all sourcealoaddresses reported within the
bot infection profile, and then delivers the profile to ouradegpository through a TLS-
over-TOR [35] (onion routing protocol) network connectiorhese profiles will be made
available to the research community, ideally to help in #rgé-scale assessment of bot
dialog behavior, the sources and volume of various bot tidies, and for surveying where

C&C servers and exploit sources are located.

3.2.1 A Multiple-Sensor Approach to Gathering Infection Evidence
3.2.1.1 SCADE: Statistical sCan Anomaly Detection Engine

Recent measurement studies suggest that modern bots &egpdavith around 15 exploit
vectors on average [82] to improve opportunities for explaon. Depending on how the
attack source scans its target, we are likely to encounteedailed connection attempts
prior to a successful infection.

To address this aspect of malware interaction, we have wedi§CADE, a Snort pre-
processor plug-in with two modules, one for inbound scaeat&n (E1 dialog warnings)
and another for detecting outbound attack propagationsl{@&@6g warnings) once our lo-
cal system is infected. SCADE E1 alarms provide a poterdidyéoound on the start of an
infection, should this scan eventually lead to a succesgsfeittion.

Inbound Scan Detection: SCADE is similar in principle to existing scan detection
techniques like [57,86]. However, SCADE has been spedyieatighted toward the de-

tection of scans involving the ports often used by malwaris.dlso less vulnerable to DoS

37

attacks because its memory trackers do not maintain perreattsource-IP state. Similar
to [119], SCADE tracks only scans that are specifically ted¢o internal hosts, bounding
its memory usage to the number of inside hosts. SCADE alseshitsE1 scan detection
on failed connection attempts, further narrowing its pesteg. We define two types of
ports: s (high-severity) ports representing highly vulnerable aachmonly exploited ser-
vices (e.g., 80/HTTP, 135,1025/DCOM, 445/NetBIOS, 5000NP, 3127/MyDoom) and
Ls (low-severity) ports. Currently, we define 26 TCP and 4 UDR ports and mark all
others ass ports. We set different weights to a failed scan attempt tiemrint types of
ports. An E1 dialog warning for a local host is produced basedn anomaly score that is
calculated as = w, I}, + ws Fjs, Wherel),, and Fj, indicate numbers of cumulative failed
attempts at high-severity and low-severity ports, respelgt
Outbound Scan Detection:SCADE’s outbound scan detection coverage for E5 dialog

warnings is based on a voting scheme (AND, OR or MAJORITYhoéé parallel anomaly

detection models that track all outbound connections gernal host:

e Outbound scan rates(): Detects local hosts that conduct high-rate scans acrags lar

sets of external addresses.

e Outbound connection failure rate): Detects abnormally high connection fail rates,
with sensitivity toHs port usage. We calculate the anomaly scare= (w;Fs +

woFis)/C, whereC' is the total number of scans from the host within a time window

e Normalized entropy of scan target distributiosy). Calculates a Zipf (power-law)
distribution [10] of outbound address connection patteasiniformly distributed
scan target pattern provides an indication of a potentitdaund scan. We use an
anomaly scoring technique based on normalized entropyettifg such candidates:

53 = % where the entropy of scan target distributiodtis= — >_." | p; In(p;), m

3The setting is based on data obtained by analyzing vulngyatg@ports, malware infection vectors, and
analysis reports of datasets collecteshi el d. or g and other honeynets.

38

is the total number of scan targets, ands the percentage of the scans at taiget

Each anomaly module issues a sub-alert when t;, wheret; is a threshold. SCADE
then uses a user-configurable “voting scheme,” i.e., AND, @RIAJORITY, to combine
the alerts from the three modules. For example, the AND ridtks that SCADE issues
an alert when all three modules issue alerts. The user cavselep proper combination

depending on the desired false positive rateé}.
3.2.1.2 SLADE: Statistical PayLoad Anomaly Detection Bagi

SLADE is an anomaly-based engine for payload exploit detectt examines the payload
of every request packet sent to monitored services and sugpualert if its lossy n-gram
frequency deviates from an established normal profile.

SLADE is similar to PAYL [110], which is an anomaly detectisocheme based on 1-
gram payload byte distribution. PAYL examines the 1-granelgystribution of the packet
payload, i.e., it extracts 256 features each represermgdcurrence frequency of one of
the 256 possible byte values in the payload. A normal pradil@fservice/port, e.g., HTTP,
is constructed by calculating the average and standardti@viof the feature vector of the
normal traffic to the port. PAYL calculates deviation distarof a test payload from the
normal profile using a simplified Mahalanobis distantte, y) = 370 (| —vi|) /(oi+a),
wherey; is the meang; is the standard deviation, amdis a smoothing factor. A payload
is considered as anomalous if this distance exceeds a predeéd threshold. PAYL is
effective in detecting worm exploits with a reasonabledaissitive rate as shown in [110,
111]. However, it could be evaded by a polymorphic blendittgck (PBA) [38]. As
discussedin [38,76,111], a generic n-gram version of PA¥y imelp to improve accuracy
and the hardness of evasion. The n-gram scheme extractie rsbguence information
from the payload, which helps in constructing a more pregiséel of the normal traffic

compared to the single-byte (i.e., 1-gram) frequency-dasedel. In the n-gram scheme

the feature space in use is not 256, Pod”. It is impractical to store and compute in a

39

256" dimensional space for a full n-gram scheme when n is large.

SLADE makes the n-gram scheme practical by using a lossgtateiwhile still main-
taining approximately the same accuracy as the originehfgram version. We use a fixed
vector counter (with size) to store a lossy n-gram distribution of the payload. Whem pr
cessing a payload, we sequentially scan n-gram substtingpply some universal hash
functioni(), and increment the counter at the vector space indexéd dty) mod v. We
then calculate the distribution of the hashed n-gram irgdiai¢hin this (much) smaller vec-
tor spaces. We defineF as the feature space of n-gram PAYL (with a tota2d6™ distinct
features), an@’ as the feature space of SLADE (wittfeatures).

This hash function provides a mapping frénto F’ that we utilize for space efficiency.
We require onlyv (e.g.,v = 2,000), whereas n-gram PAYL needs6” (e.g., even for a
small n=3256 = 22* ~ 16). The computational complexity in examining each payload
is still linear (O(L), whereL is the length of payload), and the complexity in calculating
distance i3D(v) instead o256". Thus, the runtime performance of SLADE is comparable
to 1-gram PAYL. Also note that although both using hash teqpies, SLADE is different
from Anagram [109], which uses a Bloom filter to store all mgrsubstrings from normal
payloads. The hash function in SLADE is for feature compogsand reduction, however
the hash functions in Anagram are to reduce the false pesit¥ string lookup in Bloom
filter. In essence, Anagram is like a content matching schéinbelilds a huge knowledge
base of all known good n-gram substrings using efficienagi®@and query optimizations
provided by bloom filters, and examines a payload to detexwimether the number of its
n-gram substrings not in the knowledge base exceeds a thdesh

A natural concern of using such a lossy data structure isstbgei of accuracy: how
many errors (false positives and false negatives) may Ibedated because of the lossy

representation? To answer this question, we perform thevfslg simple analysié. Let

“We consider our analysis not as an exact mathematical pobabdfan analytical description about the
intuition behind SLADE.

40

us first overview the reason why the original n-gram PAYL catedt anomalies. We use
~ to represent the number of non-zero value featurels far a normal profile used by
PAYL. Similarly, v is the number of non-zero value featureg-irfior a normal profile used
by SLADE. For a normal payload déngth = L, there is atotalof = (L —n + 1)
n-gram substrings. Among theseubstrings,l — (3, percent substrings converge 10
distinct features in the normal profile, i.e., these subggishare similar distributions as
the normal profile. The remaining (small portigs)) percent of substrings are considered
as noise substrings that do not belong tottfieatures in the normal profile. For a malicious
payload, if it can be detected as an anomaly, it should havedatarger portion of noise
substringss, (5, > 5,.).

We first analyze the false positives when using the lossg&tre representation to see
how likely SLADE will detect a normal (considered normal bygram PAYL) payload as
anomalous. For a normal payload, the hashed indices ef 8, portion of substrings (that
converge toy distinct features i for the normal profile of PAYL) should now converge
in the new vector space (intg distinct features i’ for the normal profile of SLADE).
Because of the universal hash function, hashed indice®gf tportion of noise substrings
are most likely uniformly distributed inté’. As a result, some of the original noise sub-
strings may actually be hashed to thiedistinct features in the normal profile of SLADE
(i.e., they may not be noise in the new feature space now)s,Time deviation distance
(i.e., the anomaly score) can only decrease in SLADE. Hemee;onclude that SLADE
may not have a higher false positive rate than n-gram PAYL.

Now let us analyze the false negative rate, i.e., the likalththat SLADE will treat
a malicious payload (as would be detected by n-gram PAYL)aamal. False negatives
happen when the hash collisions in the lossy structure k&atg map a3, portion of noise
substrings into the’ features (i.e., the normal profile) for SLADE. By using thévensal
hash function, the probability for a noise substring toifatib 1’ out of v space |s”;— Thus,

the probability for all thé 3, noise substrings to collide into theé portion is abou(%')lﬁa.

41

For example, if we assume= 2, 000,~’ = 200, /3, = 100, then this probability is about
(200/2000)1% = 10719 ~ (. In practice, the probability of such collisions for paktia
noise substrings is negligible. Thus, we believe that SLAIDES not incur a significant
accuracy penalty compared to full n-gram PAYL, while sigrafitly reducing its storage
and computation complexity.

We measured the performance of SLADE in comparison to 1-gPANL by using
the same data set as in [76]. The training and test data sedswere from the first and
following four days of HTTP requests from the Georgia Teampas network, respectively.
The attack data consists of 18 HTTP-based buffer overfloackst, including 11 regular
(nonpolymorphic) exploits, 6 mimicry exploits generated ®LET, and 1 polymorphic
blending attack used in [38] to evade 2-gram PAYL. In our expent, we setr = 4,v =
2,048.°

Table 2 summarizes our experimental results. Here, DFReisl¢isired false positive
rate, i.e., the rejection rate in the training set. RFP is‘thal” false positive rate in our
test data set. The detection rate is measured on the attéelselaand is defined as the
number of attack packets classified as anomalous dividetidoyotal number of packets
in the attack instances. We conclude from the results th&C#_performs better with
respect to both DFP and RFP than the original PAYL (1-gramsjesy. Furthermore, we
discovered that the minimum RFP for which PAYL is able to detdl attacks, including
the polymorphic blending attack, is 4.02%. This is usuatipsidered intolerably high for
network intrusion detection. On the other hand, the mininRia®P required for SLADE
to detect all attacks is 0.3601%. As shown in [76], 2-gram PAloes not detect the
polymorphic blending attack even if we are willing to toleran RFP as high as 11.25%.
This is not surprising given that the polymorphic blenditigiek we used was specifically

tailored to evade 2-gram PAYL. We also find that SLADE is comapée to (or even better

50One can also choose a randerno better defeat evasion attacks like PBA. Also one may usiépteu
different hash functions and vectors for potentially bedtecuracy and hardness of evasion.

42

than) a well-constructed ensemble IDS that combines 1lctass SVM classifiers [76],
and detects all the attacks, including the polymorphicdilegattack, for an RFP at around
0.49%. SLADE also has the added advantage of more efficisatiree utilization, which

results in shorter training and execution times when coethtr the ensemble IDS.

Table 2: Performance comparison of 1-gram PAYL and SLADE.

DFP(%) 0.0 0.01 0.1 1.0 2.0 5.0 10.0
PAYL RFP(%) 0.00022| 0.01451| 0.15275| 0.92694| 1.86263| 5.69681| 11.05049
Detected Attacks | 1 4 17 17 17 18 18
Detection Rate(%) 0.8 17.5 69.1 72.2 72.2 73.8 78.6
SLADE RFP(%) 0.0026 | 0.0189 | 0.2839 | 1.9987 | 3.3335 | 6.3064 | 11.0698
Detected Attacks | 3 13 17 18 18 18 18
Detection Rate(%) 20.6 74.6 92.9 99.2 99.2 99.2 99.2

3.2.1.3 Signature Engine: Bot-Specific Heuristics

Our final sensor contributor is the Snort signature engiries hodule plays a significant
role in detecting several classes of dialog warnings frombmt infection dialog model.
Snort is our second sensor source for direct exploit dete¢i2), and our primary source
for binary downloading (E3) and C&C communications (E4). @Wganize the rules se-
lected for BotHunter into four separate rule files, coveti®g6 E2 rules, 71 E3 rules, 246
E4 rules, and a small collection of 20 E5 rules, for total 083 3euristics. The rules are
primarily derived from the Bleeding-Edge [19] and SourceBiregistered free rulesets.

All the rulesets were selected specifically for their retes@ato malware identification.
Our rule selections are continually tested and reviewedlssasperational networks and our
live honeynet environment. It is typical for our rule-bagesliristics to produce less than
300 dialog warnings per 10-day period monitoring an openratii border switch space port
of approximately 130 operational hosts (SRI Computer S&draboratory).

Our E2 ruleset focuses on the full spectrum of external terivel exploit injection at-
tacks, and has been tested and augmented with rules demracekperimentation in our
medium and high interactive honeynet environment, whereaveobserve and validate

live malware infection attempts. Our E3 rules focus on (naaéy executable download

43

events from external sites to internal networks, coveriggrany indications of (mali-
cious) binary executable downloads and download acknambetit events as are in the
publicly available Snort rulesets. Our E4 rules cover imadly-initiated bot command and
control dialogs, and acknowledgment exchanges, with afgignt emphasis on IRC and
URL-based bot coordinatiochAlso covered are commonly used Trojan backdoor commu-
nications, and popular bot commands built by keyword seagchcross common major
bot families and their variants. A small set of E5 rules iafgorporated to detect well-
known internal to external attacks and backdoor sweep3e\WdGADE provides the more

in-depth hunt for general outbound port scanning.
3.2.2 Dialog-based IDS Correlation Engine

The BotHunter correlator tracks the sequences of IDS diafaignings that occur between
each local host and those external entities involved iretdedog exchanges. Dialog warn-
ings are tracked over a temporal window, where each coméigbto an overall infection
sequence score that is maintained per local host. We inteodwata structure called the
network dialog correlation matrixwhich is managed, pruned, and evaluated by our cor-
relation engine at each dialog warning insertion point. @urelator employs a weighted
threshold scoring function that aggregates the weightedescof each dialog warning,
declaring a local host infected when a minimum combinatibdiaog transactions occur
within our temporal pruning interval.

Figure 7 illustrates the structure of auetwork dialog correlation matrixEach dynamically-
allocated row corresponds to a summary of the ongoing diadagnings that are raised
between an individual local host and other external estiti®@he BotHunter correlator
manages the five classes of dialog warnings presented ir8&cl (E1 through E5), and
each event cell corresponds to one or more (possibly aggdgsensor alerts that map into

one of these five dialog warning classes. This correlatiotrirndynamically grows when

E4 rules are essentially protocol, behavior and payloaterisignature, instead of a hard-coded known
C&C domain list.

44

new activity involving a local host is detected, and shrinkgen the observation window
reaches an interval expiration. The memory usage of theletion matrix is very efficient

because the matrix is bounded by the size of total activenatéosts.

Int. Host Timer E1 O E2 E3 E4 ES
192.168.12.1 Aa...Ap

192.168.10.45

192.168.10.66
192.168.12.46

Ac...Aq Ac...Ag

GGG O
>

An...Ai | Ap...A

192.168.11.123| © € A Anm...Ap A,

Figure 7: BotHunter network dialog correlation matrix.

In managing the dialog transaction history we employ amualebased pruning algo-
rithm to remove old dialog from the matrix. In Figure 7, eadalay may have one or
two expiration intervals, corresponding tesaft prune timerthe open-faced clocks) and
a hard prune timer(the filled clocks). The hard prune interval represents alfteenporal
interval over which dialog warnings are allowed to aggregand the end of which re-
sults in the calculation of our threshold score. The sofhprinterval represents a smaller
temporal window that allows users to configure tighter pmgrinterval requirements for
high-production dialog warnings (inbound scan warningsexpired more quickly by the
soft prune interval), while the others are allowed to acclateuthrough the hard prune
interval. If a dialog warning expires solely because of & pofine timer, the dialog is
summarily discarded for lack of sufficient evidence (an eplens row 1 in Figure 7 where
only E1 has alarms). However, if a dialog expires becausehafd prune timer, the dialog
threshold score is evaluated, leading either to a bot deaaror to the complete removal
of the dialog trace should the threshold score be found fiicgerit.

To declare that a local host is infected, BotHunter must agsnp sufficient and mini-
mum threshold of evidence (as defined in Section 3) withipnising interval. BotHunter
employs two potential criteria required for bot declarati@) an incoming infection warn-

ing (E2) followed by outbound local host coordination or lkexippropagation warnings

45

(E3-ED), or 2) a minimum of at least two forms of outbound bataty warnings (E3-E5).
To translate these requirements into a scoring algorithnenwploy a regression model to
estimate dialog warning weights and a threshold value, hed test our values against a
corpus of malware infection traces. We define an expectaiole of predictor variables
that match our conditions and apply a regression model wihereestimated regression
coefficients are the desired weights shown in Table 3.
Table 3: Estimated regression coefficients as initial weighting.

Coefficients| Standard Errof
El 0.09375| 0.100518632

E2 rulebase 0.28125| 0.075984943
E2 SLADE 0.09375| 0.075984943

E3 0.34375| 0.075984943
E4 0.34375| 0.075984943
ES 0.34375| 0.075984943

LA L]

Ly

Li L L

L B e el
M m P . O

Rk ik L
AL

0.4

Computed BotHunter Score

!
= R

] 0.2 0.4 0.6 0.8 1 1.2
Initial Expectation

Figure 8: Scoring plot from expectation table.

These coefficients provide an approximate weighting systemmatch the initial expec-
tation table’ We apply these values to our expectation table data to éstadbkhreshold

between bot and no-bot declaration. Figure 8 illustratesesults, where bot patterns are

“In our model, we define E1 scans and the E2 anomaly score (@edday SLADE) as increasers to
infection confidence, such that our model lowers their weiigiuence.

46

at X-axis value 1, and non-bot patterns are at X-axis 0. Botescare plotted vertically
on the Y-axis. We observe that all but one non-bot patterosesioelow 0.6, and all but
2 bot patterns score above 0.65. Next, we examine our scoraugl against a corpus of
BotHunter IDS warning sets produced from successful botvemiuin infections captured
in the SRI honeynet between March and April 2007. Figure $spiloe actual bot scores
produced from these real bot infection traces. All obséowatproduce BotHunter scores

of 0.65 or greater.

F)
1.4 (T LR EE 1T S 1Y E
1.2 E
=
1 T vsimeme vy e 2
@
0.8 " e W - E
e Y — L —) W
0.6 =
-
0.4 =
=
Ry
0.z [T
=

|:| T T T T
o 500 1000 1500 2000 2500

Bot{1) or Non-Bot {0) Indicator

Figure 9: Scoring plot: 2019 real bot infections.

When a dialog sequence is found to cross the threshold fatdadaration, BotHunter
produces dot profile. The bot profile represents a full analysis of roles of theadjalar-
ticipants, summarizes the dialog alarms based on whicbgligdhsses (E1-E5) the alarms
map, and computes the infection time interval. Figure 1Yiples an example of a bot pro-
file produced by the BotHunter correlation engine. The bofiler begins with an overall
dialog anomaly score, followed by the IP address of the iefittarget (the victim ma-
chine), infector list, and possible C&C server. Then it aut$the dialog observation time
and reporting time. The raw alerts specific to this dialogliated in an organized (E1-E5)

way and provide some detailed information.

a7

3.3 Evaluating Detection Performance

To evaluate BotHunter’s performance, we conducted segerdtolled experiments as well
as real world deployment evaluations. We begin this sedfitim a discussion of our de-
tection performance while exposing BotHunter to infecsidrom a wide variety of bot
families usingin situ virtual network experiments. We then discuss a larger setuaf
positive and false negative results while deploying Bottdurto a live high-interaction
honeynet. This recent experiment exposed BotHunter tod7Zances of Windows XP
and Windows 2000 direct-exploit malware infections frore thternet. We follow these
controlled experiments with a brief discussion of an exang#tection experience using
BotHunter during a live operational deployment.

Next, we discuss our broader testing experiences in twoarktenvironments. Here,
our focus is on understanding BotHunter’s daily false pasitf' P) performance, at least
in the context of two significantly different operationav@onments. A false positive in
this context refers to the generation obat profilein response to a non-infection traf-
fic flow, not to the number of IDS dialog warnings produced by BotHunter sensors.
As stated previously, network administrators are not etqueto analyze individual IDS
alarms. Indeed, we anticipate external entities to rejupaobe and attack our networks,
producing a regular flow of dialog warnings. Rather, we dgs@&d validate) that the dia-
log combinations necessary to cause a bot detection sheuatély encountered in normal

operations.
3.3.1 Experiments in anin situ Virtual Network

Our evaluation setup uses a virtual network environmenti&Efe VMware guest systems.
The firstis a Linux machine with IRC server installed, whisluged as the C&C server, and
the other two are Windows 2000 instances. We infect one o¥Whmelows instances and
wait for it to connect to our C&C server. Upon connection Bisament, we instruct the

bot to start scanning and infecting neighboring hosts. \Wa #wait the infection and IRC

48

C&C channel join by the second Windows instance. By momtpthe network activity of
the second victim, we capture the full infection dialog. Simethodology provides a useful
means to measure the false negative performance of BotHunte

We collected 10 different bot variants from three of the mwgesit-known IRC-based bot
families [12]: Agobot/Gaobot/Phatbot, SDBot/RBot/UrBditXBot, and the mIRC-based
GTbot. We then ran BotHunter in this virtual network and tiedi its correlation focus on
the victim machine (essentially we assume the HOMENET is/ttigm’s IP). BotHunter
successfully detected all bot infections (and producedhdfiles for all).

We summarize our measurement results for this virtual neétivdection experiment
in Table 4. We use Yes or No to indicate whether a certain dialarning is reported
in the final profile. The two numbers within brackets are thebar of generated dialog
warnings in the whole virtual network and the number invodyour victim, respectively.
For example, for Phatbot-rls, 2,834 dialog warnings areegged by E2[rb] ([rb] means
Snort rule base, [sl] means SLADE), but only 46 are relevarmtur bot infection victim.
Observe that although many warnings are generated by tls®rseronly one bot profile
is generated for this infection. This shows that BotHunten significantly reduce the
amount of information a security administrator needs tdyaea In our experiments almost
all sensors worked as we expected. We do not see E1 event8firkecause the RBot
family does not provide any commands to trigger a verticahgor all infection vectors
(such as the “scan.startall” command provided by the Agéthattbot family). The bot
master must indicate a specific infection vector and poretmh scan. We set our initial
infection vector to DCOM, and since this was successful ttecking host did not attempt
further exploits.

Note that two profiles are reported in the gt-with-dcom cdsethe first profile, only
E2[rb],E2[sl] and E4 are observed. In profile 2, E4 and E5 &seoved (which is the case
where we miss the initial infection periods). Because thisdtion scenario is very slow

and lasts longer than our 4-minute correlation time windéurthermore, note that we do

49

Table 4: BotHunter detection and dialog summary of virtual netwarfections.

E1l E2[rb] E2[sl] E3 E4 E5
agobot3-priv4 Yes(2/2) Yes(9/8) Yes(6/6) | Yes(5) Yes(38/8) | Yes(4/1)
phat-alpha5 Yes(14/4) | Yes(5,785/5,721)| Yes(6/2) | Yes(3/3) | Yes(28/26) | Yes(4/2)
phatbot-rls Yes(11/3) Yes(2,834/46) | Yes(6/2) | Yes(8/8) | Yes(69/20) | Yes(6/2)
rbot0.6.6 No(0) Yes(2/1) Yes(2/1) | Yes(2/2) | Yes(65/24) | Yes(2/1)
rxbot7.5 No(0) Yes(2/2) Yes(2/2) | Yes(2/2) | Yes(70/27) | Yes(2/1)
rx-asn-2-re-workedv2 No(0) Yes(4/3) Yes(3/2) | Yes(2/2) | Yes(59/18) | Yes(2/1)
Rxbot-ak-0.7-Modded.by.Uncanny No(0) Yes(3/2) Yes(3/2) | Yes(2/2) | Yes(73/26) | Yes(2/1)
sxtbot6.5 No(0) Yes(3/2) Yes(3/2) | Yes(2/2) | Yes(65/24) | Yes(2/1)
Urx-Special-Ed-UltrA-2005 No(0) Yes(3/2) Yes(3/2) | Yes(2/2) | Yes(68/22) | Yes(2/1)
gt-with-dcom-profile1 No(1/0) Yes(5/3) Yes(6/2) No(0) Yes(221/1) | No(4/0)
gt-with-dcom-profile2 No(1/0) No(5/0) No(6/0) No(0) Yes(221/44) | Yes(4/2)
gt-with-dcom-10min-profile No(1/0) Yes(5/3) Yes(6/3) No(0) Yes(221/51) | Yes(4/2)

not have any detected E3 dialog warnings reported for theciion sequence. Regard-
less, BotHunter successfully generates an infection profihis demonstrates the utility of
BotHunter’s evidence-trail-based dialog correlation elodVe also reran this experiment
with a 10-minute correlation time window, upon which BotHemalso reported a single

infection profile.
3.3.2 SRI Honeynet Experiments

Our experimental honeynet framework has three integralpoomants.

e The first componenDrone manageris a software management component that is
responsible for keeping track of drone availability andvarding packets to various
VMware instances. The address of one of the interfaces®fritel Xeon 3 GHz dual
core system is set to be the static route for the unused /Wibriet The other interface
is used for communicating with the high-interaction horetyfPacket forwarding is
accomplished using network address translation. One itapiorequirements for this
system is to keep track of infected drone systems and to leeapinfected systems.
Upon detecting a probable infection (outbound connecjioms mark the drone as
“tainted” to avoid reassigning that host to another soufi@nted drones are saved
for manual analysis or automatically reverted back to pneviclean snapshots after
a fixed timeout. One of the interesting observations duringstudy was that most

infection attempts did not succeed even on completely eheatWindows 2000 and

50

Windows XP systems. As a result, a surprisingly small nunolb®M instances was

sufficient to monitor the sources contacting the entire @fdvork.

e The second component is thegh-interaction-honeynetystem, which is hosted in
a high-performance Intel Xeon 3 GHz dual core, dual CPU systéth 8 GB of
memory. For the experiments listed in this chapter, we ajpjican the system with
9 Win-XP instances, 14 Windows 2000 instances (with twoedéht service pack

levels), and 3 Linux FC3 instances. The system was modgnatiézed in this load.

e The final component is thBNS/DHCP serverwhich dynamically assigns IP ad-

dresses to VMware instances and also answers DNS quenedHese hosts.

Over a 3-month period between May and July 2007, we analyzethbof 7,204 suc-
cessful WinXP and Win2K remote-exploit bot infections. Bacalware infection instance
succeeded in causing the honeypot to initiate outbound agmwations related to the in-
fection. Through our analysis of these traces using Botetus¢nsor logs, we were able
to very reliably observe the malware communications assediwith the remote-to-local
network service infection and the malware binary acquisifegg download). In many in-
stances we also observed the infected honeypot proceethtbigis C&C communications
and attempt to propagate to other victims in our honeynetodgh some of this experi-
ment, our DNS service operated unreliably and some C&C doation events were not
observed due to DNS lookup failures.

Figure 10 illustrates a sample infection that was detecseuguhe SRI honeynet, and
Figure 11 shows its corresponding BotHunter profile. W32m®t-TO is a recent (re-
leased January 19, 2007) bot that propagates through op&arkeshares and affects both
Windows 2000 and Windows XP systems [92]. The bot uses thesH(e to connect to
the SRVSVC pipe and leverages the MS06-40 exploit [69], which is a udterflow that
enables attackers to craft RPC requests that can execittaaribode. This mechanism is

used to force the victim to fetch and execute a binary namé&atipeexe from the system

51

6 <-> <infector-ip> TCP 2971 - <honey-i p> 445 [SYN, SYN, ACK]

13 -> SMB Negotiate Protocol Request

14 <- SMB Negotiate Protocol Response

17 -> SMB Session Setup AndX Request, NTLMSSP_AUTH, User: \

18 <- SMB Session Setup AndX Response

19 -> SMB Tree Connect AndX Request, Path: \\<honey-ip>\I1PC $

20 <- SMB Tree Connect AndX Response

21 -> SMB NT Create AndX Request, Path: \browser

22 <- SMB NT Create AndX Response, FID: 0x4000

23 -> DCERPC Bind: call_id: 0 UU D SRVSVC

24 <- SMB Wite AndX Response, FID: 0x4000, 72 bytes

25 -> SMB Read AndX Request, FID: 0x4000, 4292 bytes at offset O
26 <- DCERPC Bind_ack

27 -> SRVSVC NetrpPat hCanoni cal i ze request

28 <- SMB Wite AndX Response, FID: 0x4000, 1152 bytes

29 -> SMB Read AndX Request, FID: 0x4000, 4292 bytes at offset 0O

Initiating Egg downl oad
30 <-> <honey-ip> TCP 1028 - <infector-ip> 8295 [SYN, SYNACK]
34-170 114572 byte egg downl oad ...

Connecting to | RC server on port 8080
174 <-> <honey-i p> TCP 1030 - 66.25. XXX. XXX 8080 [SYN, SYNACK]
176 <- NI CK [2K| USA| P| 00| eOpOgkl c]\ r\ nUSER 2K- USA
177 -> :server016. z3nnet. net NOTI CE AUTH
cxxx Looking up your hostnane...\r\n'’' ...
179 -> ... PING : B203CFB7
180 <- PONG : B203CFB7
182 -> Wl cone to the z3net |RC network ...

Joi ni ng channel s and setting node to hidden
183 -> MODE [2K| USA| P| 00| eOpQOgkl c] +x\r\nJO N ##RWN irt 3hrwn\r\n

Start scanning 203.0.0.0/8

185 ->scan.stop -s; .scan.start NETAPI 40 -b -s;
.scan.start NETAPI 203.x.x.x 20 -s;
.scan.start NETAPI 20 -a -s;.scan.start SYM40 -b -s;
.scan.start MSSQL 40 -b -s\r\n...

191 -> 203.7.223.231 TCP 1072 > 139 [SYN

192 -> 203.199.174.117 TCP 1073 > 139 [SYN] scan, scan...

Figure 10: Honeynet interaction summary for W32/IRCBot-TO.

folder. The infected system then connects to the z3net IR@ark and joins two chan-
nels upon which it is instructed to initiate scans of 203@® network on several ports.
Other bot families successfully detected by BotHunterudeld variants of W32/Korgo,
W32/Virut.A and W32/Padobot.

Overall, BotHunter detected a total of 7,190 of these 7,2@®&eassful bot infections.
This represents 89.8% true positive rate. Most malware instances observed duhisg
period transmitted their exploits through ports TCP-443GP-139. This is a very com-
mon behavior, as the malware we observe tends to exploit ibteviilnerable port that
replies to a targeted scans, and ports TCP-445 and TCP-#3%sanlly among the first
ports tested.

This experiment produced 14 bot infections that not produce bot profiles, i.e., a
0.002% false negative rate. To explain these occurrences we mgrexdmined each

bot infection trace that eluded BotHunter, usiigpdunp and Et her eal . The main

52

Score: 1.95 (>= 0.80)

Infected Target: <honey-ip>

I nfector List: <i nfector-ip>

C & C List: 66. 25. XXX. XXX

Observed Start: XX/ XX/ 2007 23: 46: 54. 56 PST
Gen. Tine: XX/ XX/ 2007 23:47:13.18 PST

| NBOUND SCAN <unobser ved>

EXPLO T
event =1: 2971 tcp E2[rb] NETBI OS SMB-DS | PC\ $
uni code share access 445<-2971 (23:46:54.56 PST)
event =1: 99913 tcp E2[rb] SHELLCODE x86 0x90
uni code NOOP 445<-2971 (23:46:54.90 PST)

EXPLO T (sl ade)
event =552: 5555002 (15) tcp E2[sl] Sl ade detected suspicious
payl oad exploit with anomaly score 1843. 680342.

EGG DONNLOAD
event =1: 5001683 tcp E3[rb] W ndows executabl e
sent potential malware egg 1028<-8295 (01:45:56.69 EST)

C&C TRAFFIC
event =1: 2002023 tcp E4[rb] BLEEDI NG EDGE TRQJAN
| RC USER command 1030->8080 (23:47:01.23 PST)
event =1: 2002024 tcp E4[rb] BLEEDI NG EDGE TRQJAN
IRC NI CK command 1030->8080 (23:47:01.23 PST)
event =1: 2002025 tcp E4[rb] BLEEDI NG EDGE TRQJAN
IRC JON comand 1030->8080 (23:47:03.79 PST)

QUTBOUND SCAN
event =1: 2001579 tcp E5[rb] BLEEDI NG EDGE Behavi oral Unusual Port
139 traffic, Potential Scan or Infection 1089->139 (01:46:06 EST)
event =555: 5555005 tcp E5[sc] scade detected scanning of 21 |Ps
(fail ratio=0:0/21): 0->0 (01:46:06 EST)

Figure 11: Corresponding BotHunter profile for W32/IRCBot-TO.

reason for these failed bot detections is simply becaus#a&dtion failures, i.e., the exploit
apparently led to instability and eventual failure in théeated host. More commonly, we
observed cases in which the infected victim attempted tonttead the egg or “phone
home,” but the connection request received no actual rapbs(likely the remote host
such as C&C server was down).

Lessons:In an earlier evaluation, we had a higher false negative rate example,
previously in a 3-week period between March and April 200@tHRinter missed 99 out
of 2,019 successful infections, i.e., a 4.9% false nega#itee However, when we investi-
gated the reasons, we found that they were not due to thetideteapability of BotHunter.
In addition to infection failures in bots as discussed befove identified some honeynet
implementation, setup and policy failures. We observetidha NAT mechanism did not
correctly translate application-level address requests.,(ftp PORT commands). This

prevented several FTP egg download connection requestsgdroceeding, which would

53

have otherwise led to egg download detections. In addisome traces were incomplete
due to errors in our honeypot recycling logic which integfééwith our observation of the

infection logic. Some implementation bugs in honeypot amdrie manager also caused
corruption in network traffic data. We then fixed these protdend re-evaluated BotH-

unter, as showed above.

Discussion:In addition to the above false negative experiences, weratsmnize that
other reasons could potentially prevent BotHunter froneditg infections. A natural ex-
tension of thanfection failuress for a bot to purposely lay dormant once it has infected a
host to avoid association of the infection transmissiomwit outbound egg download or
coordination event. This strategy could be used succégstutircumvent BotHunter de-
ployed with our default fixed pruning interval. While we falisome infected victims failed
to phone home, we could also envision the egg download sewergually responding to
these requests after the BotHunter pruning interval, oguaisimilar missed association.
Sensor coverage is of course another fundamental conceamyodetection mechanism.
Finally, while these results are highly encouraging, thedymet environment provided a
low-diversity in bot infections, in which attention was ¢ered on direct exploits of TCP-
445 and TCP-139. We did not provide a diversity of honeypatls various OSs, vulnera-
ble services, or Trojan backdoors enabled, to fully exartiieebehavioral complexities of

bots.
3.3.3 An Example Detection in a Live Deployment

In addition to our laboratory and honeynet experiences, ae lalso fielded BotHunter
to networks within the Georgia Tech campus network and widn SRI laboratory net-

work. In the next sections we will discuss these deploymantsour efforts to evaluate
the false positive performance of BotHunter. First, we Wiilefly describe one example
host infection that was detected using BotHunter within@aorgia Tech campus network

experiments.

54

In early February 2007, BotHunter detected a bot infectiat produced E1, E4 and
E5 dialog warnings. Upon inspection of the bot profile, weestaed that the bot-infected
machine was scanned, joined an IRC channel, and began sgasthier machines during
the BotHunter time window. One unusual element in this expee was the omission
of the actual infection transmission event (E2), which isarlved with high-frequency in
our live honeynet testing environment. We assert that thehadile represents an actual
infection because during our examination of this infectieport, we discovered that the
target of the E4 (C&C Server) dialog warning was an addrestswhs blacklisted both by
the ShadowServeh{t p: / / ww. shadowser ver . or g/) and the botnet mailing list

as a known C&C server during the time of our bot profile.
3.3.4 Experiments in a University Campus Network

In this experiment, we evaluate the detection and falseipegierformance of BotHunter
in a production campus network (at the College of Computidgorgia Tech). The time
period of this evaluation was between October 2006 and Bepa007.

The monitored link exhibits typical diurnal behavior andwstained peak traffic of
over 100 Mbps during the day. While we were concerned that swatfic rates might
overload typical NIDS rulesets and real-time detectiorieays, our experience shows that
it is possible to run BotHunter live under such high traffiesausing commodity PCs. Our
BotHunter instance runs on a Linux server with an Intel Xedh GHz CPU and 6 GB
of memory. The system runs with average CPU and memory atiiiz of 28% and 3%,
respectively.

To evaluate the representativeness of this traffic, we nahdsampled packets for anal-
ysis (about 40 minutes). The packets in our sample, whicke aknost evenly distributed
between TCP and UDP, demonstrated wide diversity in présoaacluding popular pro-
tocols such as HTTP, SMTP, POP, FTP, SSH, DNS, and SNMP, dtabomtive appli-
cations such as IM (e.g., ICQ, AIM), P2P (e.g., Gnutella, iday, bittorrent), and IRC,

55

which share similarities with infection dialog (e.g., tw@y communication). We believe
the high volume of background traffic, involving large numsef hosts and a diverse ap-
plication mix, offers an appealing environment to confirnm detection performance, and
to examine the false positive question.

First, we evaluated the detection performance of BotHunténe presence of signif-
icant background traffic. We injected bot traffic capturedhie virtual network (from the
experiments described in Section 3.3.1) into the capturedr@a Tech network traffic.
Our motivation was to simulate real network infections fdneh we have the ground truth
information. In these experiments, BotHunter correctltedeed all 10 injected infections
(by the 10 bots described in Section 3.3.1).

Table 5: Dialog warnings (raw alerts) of BotHunter in 4-month openain CoC network.

Event El E2[rb] E2[sl] E3 E4 ES5
Alert# || 550,373| 950,112| 316,467| 1,013| 697,374| 48,063

Next, we conducted a longer-term (4 months) evaluationleéfalarm production. Ta-
ble 5 summarizes the number of dialog warnings generatedabiuhter for each event
type from October 2006 to early February 2007. BotHuntessesgenerated about 2,563,402
(more than 20,000 per day) raw dialog warnings from all the &vent categories. For
example, many E3 dialog warnings report on Windows exeteitadwvnloads, which by
themselves do not shed light on the presence of exploitabfesxabilities. However, our
experiments do demonstrate that the alignment of the bettieh conditions outline in
Section 3.1 rarely align within a stream of dialog warningsf normal traffic patterns. In
fact, only 98 profiles were generated in 4 months, less tharpenday on average.

In further analyzing these 98 profiles, we had the followingliings. First, there are no
false positives related to any normal usage of collabagapplications such as P2P, IM, or
IRC. Almost two-thirds (60) of the bot profiles involved assé¢o an MS-Exchange SMB
server (33) and SMTP server (27). In the former case, the lodilgs described a NET-

BIOS SMB-DS IPC$ unicode share access followed by a windewsigable downloading

56

event. Bleeding Edge Snort’s IRC rules are sensitive to d&@ecommands (e.g., USER)
that frequently appear in the SMTP header. These issued easily be mitigated by

additional whitelisting of certain alerts on these serv@itse remaining profiles contained
mainly two event types and with low overall confidence scofeklitional analysis of these

incidents was complicated by the lack of full packet tracesur high-speed network. We
can conservatively assume that they are false positiveshemdby our experiments here
provide a reasonable estimate of the upper bound on the mwohfase alarms (less than

one) in a busy campus network.
3.3.5 Experiments in an Institutional Laboratory

We deployed BotHunter live on a small well-administereddoction network (a lightly
used /17 network that we can say with high confidence is iitedtee). Here, we describe
our results from running BotHunter in this environment. @uotivation for conducting
this experiment was to obtain experience with false pasgpikoduction in an operational
environment, where we could also track all network tracekfalty evaluate the conditions
that may cause the production of any unexpected bot profiles.

BotHunter conducted a 10-day data stream monitoring test the span port posi-
tion of an egress border switch. The network consists of myuy30 active IP addresses,
an 85% Linux-based host population, and an active user baggpooximately 54 people.
During this period, 182 million packets were analyzed, extirgy of 152 million TCP pack-
ets (83.5%), 15.8 million UDP packets (8.7%), and 14.1 onliCMP packets (7.7%). Our
BotHunter sensors produced 5,501 dialog warnings, congpafsk 378 E1 scan events, 20
E2 exploit signature events, 193 E3 egg-download signaveats, 7 E4 C&C signature
events and 3,904 E5 scan events. From these dialog warnirgg8otHunter correlator
produced just one bot profile. Our subsequent analysis gbdlckets that caused the bot
profile found that this was a false alarm. Upon packet inspecit was found that the

session for which the bot declaration occurred consistedlo® GB multifile FTP transfer,

57

during which a binary image was transferred with content thatched one of our buffer
overflow detection patterns. The buffer overflow false alavas coupled with a second
MS Windows binary download, which caused BotHunter to cassdetection threshold

and declare a bot infection.

3.4 Discussion

Several important practical considerations present ehgéls in extending and adapting
BotHunter for arbitrary networks in the future.

Extending BotHunter to Other NIDS: The correlation engine for BotHunter is com-
pletely oblivious to Snort’s internal structures, intediage representations, or alert format
specifics. The only input to BotHunter is metadata for cfasion of alerts into their
respective E1-E5 categories. Developing similar plugiam®ther NIDS such as Bro [74]
is straightforward. In fact, we assume that critical infrastures would necessarily run
multiple sensors to reduce false negatives. BotHuntersgdimlessly merge and correlate
events from these diverse alert streams to produce a uniitaditector.

Adapting to Emerging Threats and Adversaries: Network defense is a perennial
arms racgand we anticipate that the threat landscape could evolavieral ways to evade
BotHunter. First, bots could use encrypted communicati@moels for C&C. Second, they
could adopt more stealthy scanning technigues. Howewefatit remains that hundreds of
thousands of systems remain unprotected, attacks stildrajm the clear, and adversaries
have not been forced to innovate. Detection systems suclotéuBter would raise the
bar for successful infections. Moreover, BotHunter cowdceltended with anomaly-based
“entropy detectors” for identification of encrypted chalsnéVe have preliminary results
that are promising and defer deeper investigation to futtoek. We also plan to develop
new anomaly-based C&C detection schemes (for E4).

It is also conceivable that if BotHunter is widely deployadyersaries would devise

8In this race, we consider BotHunter to be a substantial t@dyical escalation for the white hats.

58

clever means to evade the system, e.g., by using attacks tuBtr's dialog history
timers. One countermeasure is to incorporate an additrandlom delay to the hard prune
interval, thereby introducing uncertainty into how longtBanter maintains local dialog
histories.

Incorporating Additional State Logic: The current set of states in the bot infection
model was based on the behavior of contemporary bots. Aselotse, it is conceivable
that this set of states would have to be extended or othemistified to reflect the cur-
rent threat landscape. This could be accomplished with Isimpnfiguration changes to
the BotHunter correlator. We expect such changes to be fafilequent as they reflect
fundamental paradigm shifts in bot behavior.

Nevertheless, here we show an example of our recent exte[i&ip on BotHunter’s
infection dialog model to support detecting P2P spam bstsigth as Storm worm [44,52].
This extension is still compatible with the original infest dialog model, which means it
does not affect the detection of bots following the originaddel. We added two new
specific types of events into the infection dialog model, i@cal asset attack preparation

and peer coordinatioh.

e EG6: attack preparation. This communication stage reptesea locally infected vic-
tim performing activities that are indicative of preparifog attack propagation. For
example, a high number of contacting multiple mail host IBradses (e.g., directly
connecting to external SMTP port, or issuing DNS MX querieg)a non-SMTP

server local asset is a potential precursor action for sgamhition.

e E7: peer coordination. A P2P-based bot solicits and resateerdination instruc-
tions from a community of peers within the larger botnet. Pinetocol is used to
synchronize bot actions and accept commands from a hiddetnotler. For ex-

ample, in Storm, peer coordination occurs via communioatibat are overlaid on

SActually, it is better to think that we splited the originab Ento three specific events, E5-E7, including
the two additional events and outbound attack/propagation

59

the eDonkey UDP P2P protocol. The Storm overlay peer comeation has some

unique aspects that can be identified by some signature [77].

E2: Inbound
Infection

E1: Inbound
Scan

E3: Egg
Download V-to-C

A-to-

E6: Attack
Preparation

E7: Peer
Coordination

Communication

E5: Outbound
Attack/
Propagation

Figure 12: Extended bot infection dialog model.

The extended dialog model is shown in Figure 12. In additiva, added several
signature-based rules for E6 and E7, and then simply chatigeXML configure file
for BotHunter correlator to support the extension. We eatdd the extended BotHunter

on real-world captured Storm traces, and successfullyctiteStorm bots.

3.5 BotHunter I nternet Distribution

We are making BotHunter available as a free Internet digtiob for use in testing and
facilitating research with the hope that this initiativewla stimulate community develop-
ment of extensions.

A key component of the BotHunter distribution is the Javadshcorrelator that by

default reads alert streams from Snort. We have tested ateraywith Snort 2.6.* and

60

it can be downloaded fromt t p: / / www. cyber - t a. or g/ bot Hunt er / .1° A note-
worthy feature of the distribution is integrated support‘targe-scale privacy-preserving
data sharing.” Users can enable an option to deliver sequsayanous bot profiles to
the Cyber-TA security repository [79], the collection of iatn we will make available to
providers and researchers. The repository is currentlyabipeal and in beta release of its
first report delivery software.

Our envisioned access model is similar to that of DShiletd (o: / / ww. dshi el d.
or g) with the following important differences. First, our regpiory is blind to who is sub-
mitting the bot report and the system will deliver alerts VlsS over TOR, preventing an
association of bot reports to a site via passive sniffingoB8ecour anonymization strategy
obfuscates all local IP addresses and time intervals in tbilg database but preserves
C&C, egg download, and attacker addresses that do not ma&tdefined address prox-
imity mask. Users can enable further field anonymizationthag require. We intend to
use contributed bot profiles to learn specific alert sigmapatterns for specific bots, to

track attackers, and to identify C&C sites.

3.6 Summary

We have presented the design and implementation of BotiHwatetwork perimeter mon-
itoring system for the real-time detection of Internet magvinfections. The cornerstone
of the BotHunter system is a multi-sensor dialog corretatmgine that performs alert
consolidation and evidence trail gathering for the ingggion of putative infections. We
evaluated the system’s detection capabilities inrasitu virtual network and a live hon-
eynet demonstrating that the system is capable of accuflghing both well-studied and
emergent bots. We also validated low false positive ratesibging the system live in two
operational production networks. Our experience dematesrthat the system is highly

scalable and reliable (very low false positive rates) evéh wnot-so-reliable (weak) raw

101n the first five months after its public release, BotHuntes lseady more than 6,000 downloads.

61

detectors. BotHunter is also tifiest example of a widely distributed bot infection profile
analysis tool. We hope that our Internet release will endidBecommunity to extend and

maintain this capability while inspiring new research direns.

62

CHAPTER IV

BOTSNIFFER: SPATIAL-TEMPORAL CORRELATION-BASED
BOTNET DETECTION

We have described our first detection system, BotHuntemritdetect bots that follow an
infection model consisting of several infection stagesl iasan potentially issue alerts in
the early phase of bot infections before bots are fully auletd to perform further ma-
licious activities. However, BotHunter also has some latidns. It is restricted to the
predefinednfection model. In addition, at some stages such as C&C conication, it
currently provides only signature-based sensors. In thagter, we present a new botnet
detection system, BotSniffer. This new system does notsseciy require the observation
of multiple differentstages on an individual host, and it does not require bapetific
signatures.

New Approach: We focus on a new perspective, i.e., horizontal correlaiomss
multiple machines. In particular, since we focus on a spehbifirizontal correlation that
considers both spatial locality (groups of machines) amgptaral synchronization (multiple
rounds of similar behavior), we refer to this correlatiorattgy aspatial-temporatorre-
lation in the remainder of the chapter. We observe that thewibhin a botnet demonstrate
spatial-temporal correlations and similarities due to nléure of their pre-programmed
response activities to control commands. This invariatgdhes identify C&C within net-
work traffic. For instance, at a similar time, the bots withibotnet will execute the same
command (e.g., obtain system information, scan the neiveortt report the progress/result
of the task to the C&C server (These reports are likely to belar in structure and con-
tent.) Normal network activities are unlikely to demonstrauchsynchronizear corre-

latedbehavior. Using a sequential hypothesis testing algorithihen we observe multiple

63

instances of correlated and similar behavior, we can caoledat a botnet is detected with
a high probability.

New System: We develop the BotSniffer system to detect maicéntralizedbotnet
C&C channels based on spatial-temporal correlation anagusetwork anomaly detec-
tion techniques. In particular, we focus on the two commardgd botnet C&C mech-
anisms, namely, IRC- and HTTP-based C&C channels. For P2kebdetection (e.g.,
Nugache [64] and Peacomm [44]), we leave this task to BotMiaeother new system
we will describe in the next chapter. BotSniffer monitor®tkinds of possible botnet re-
sponses, i.e., message response (e.g. ARC/MSG message) and activity response (e.g.,
scan, spam, binary downloading). When there are a group ohimes that both share
a common IRC or HTTP server connection and demonstrate preultistances of similar
response behavior, itis likely to be a botnet. BotSniffexas statistical technique (sequen-
tial probability ratio testing) and designs two algorith(Response-Crowd-Density-Check
and Response-Crow-Homogeneity-Cheftk spatial-temporal correlation analysis to de-
tect botnets within a bounded (pre-defined) false positegdative rate.

Contributions:

e We study two typical styles of control used in centralizethed C&C. The first is the
“push” style, in which commands are pushed or sent to botexample of the push
style is IRC-based C&C channels. The second is the “pulléstyp which commands
are pulled or downloaded by bots. An example of the pull Sg/lTTP-based C&C
channels. Observing the spatial-temporal correlationsamilarity nature of these
botnet C&Cs, we provide a set of heuristics that disting@&t traffic from normal

traffic.

e We propose anomaly-based detection algorithms that fgeadth IRC- and HTTP-
based C&Cs in a port-independent manner. Our algorithmsdecthe following
advantages: (1) They do not require prior knowledge of C&&exs or content

signatures; (2) They are able to detect encrypted C&C; (ZyTdo not require a

64

large number of bots to be present in the monitored netwaord,raay even be able
to detect a botnet with just a single member in the monitoetdork in some cases;

(4) They have bounded false positive and false negative.rate

e We develop théBotSnifferprototype system based on our proposed anomaly detec-

tion algorithms. We have evaluated BotSniffer using reattd/network traces. The
results show that it has high accuracy in detecting realdiwstnets using IRC- and

HTTP-based C&Cs with a very low false positive rate.

Chapter Organization: In Section 4.1, we provide a background on botnet C&C and
the motivation of our botnet detection approach. In Secti@we present the architecture
of BotSniffer and describe its detection algorithms in deta Section 4.3, we report our
evaluation of BotSniffer on various datasets. In Sectieh we discuss possible evasions
to BotSniffer, the potential corresponding solutions, &mdire improvement work. We

summarize in Section 4.5.

4.1 Botnet C&C and Spatial-Temporal Correlation

Botnets are different from other forms of malware such aswgin that they use command
and control (C&C) channels. It is important to study thisrimitcharacteristic so as to
develop effective countermeasures. First, a botnet C&Qblais relatively stable and
unlikely to change among bots and their variants. Seconid,tite essential mechanism
that allows a “botmaster” (who controls the botnet) to ditbe actions of bots in a botnet.
As such, the C&C channel can be considered the weakest lirklmdtnet. That is, if
we can take down an active C&C or simply interrupt the comrmoaitidn to the C&C,
the botmaster will not be able to control his botnet. Moreptiee detection of the C&C
channel will reveal both the C&C servers and the bots in a toogd network. Therefore,
understanding and detecting the C&C has great value in title lpgainst botnets.

In this section, we first use case studies to provide a baakgron two detailed botnet

C&C mechanisms, then discuss the invariants of botnet C&T riotivate our detection

65

algorithms.
4.1.1 Case Study of Botnet C&C

As shown in Figure 13(a), centralized C&C architecture carcditegorized into “push” or

“pull” style, depending on how a botmaster's commands reletbots.

bot IRC C&C server
Server . loginuserpassword
IRC)
Bot Master -
Bots @H@ Password accepted
@]COF”T?.,--H-"-"' W
—UTesponse
(|) C&C: Push style Phatbot3 (Alpha 1) "Release" on "Win32"
.bot.sysinfo
YWyhat's current command? C&C 4’y/d
Server -]
@] HTTP) Cpu: ...ram: ... 0S:
Bots S Bot Master ot
@3‘_’@1 . scanstat
I ——
command CSendFile(0x46E46A28h): Transfer to X.X.X.X finished
(I C&C: Pull style

(a) Two styles of botnet C&C. (b) An IRC-based C&C communication exam-
ple.

Figure 13: Centralized botnet command and control: two represemtatiyles and an
IRC-based example.

In a push style C&C, the bots are connected to the C&C servgr, @ IRC server),
and wait for commands from the botmaster. The botmasteessaiwommand in the chan-
nel, and all the bots connected to the channel can receinegti-time. That is, in a push
style C&C the botmaster has real-time control over the kotheC-based C&C is the
representative example of push style. Many existing betasé IRC, including the most
common bot families such as Phatbot, Spybot, Sdbot, RobtR& TBot [16]. A botmas-
ter sets up an (or a set of) IRC server(s) as C&C hosts. Aftestastnewly infected, it
will connect to the C&C server, join a certain IRC channel arait for commands from
the botmaster. Commands will be sent in IRRI VMSGmessages (like a regular chatting
message) or 30PI C message. The bots receive commands, understand what the bot

master wants them to do, and execute and then reply with shétse Figure 13(b) shows

66

a sample command and control session. The botmaster fifgraidates himself using

a username/password. Once the password is accepted, hesaarcommands to obtain
some information from the bot. For example ot . about ” gets some basic bot infor-
mation such as version, $ysi nf 0” obtains the system information of the bot-infected
machine, and."scan. st art ” instructs the bots to begin scanning for other vulnerable
machines. The bots respond to the commands in pre-progrdiasieions. The botmaster
has a rich command library to use [16], which enables the asten to fully control and
utilize the infected machines.

In a pull style C&C, the botmaster simply sets the commandfiteat a C&C server
(e.g., an HTTP server). The bots frequently connect backdd the command file. This
style of command and control is relatively loose in that tlénmaster typically does not
have real-time control over the bots because there is a dedtayeen the time when he
“issues” a command and the time when a bot gets the commanete Hne several bot-
nets using HTTP protocol for C&C [23, 32,53, 96]. For exam@ebax [96] is an early
HTTP bot designed mainly to send spams. The bots of this bparedically connect to
the C&C serverwitha URL such&d t p: / / host nane/ reg?u=11111111&v=114,
and receive the command in an HTTP response. The commanaieiof the six types,
e.g.,prj (send spamsycn (scan others)upd (update binary). Botnets can have fairly
frequent C&C traffic. For example, in a CERT report [53], @@shers report a Web based
bot that queries for the command file every 5 seconds and ttezutes the commands.

Because of its proven effectiveness and efficiency, we expatcentralized C&C (e.g.,

using IRC or HTTP) will still be widely used by botnets in theanr future.
4.1.2 Botnet C&C: Spatial-Temporal Correlation and Similarity

Botnet C&C traffic is known difficult to detect because: (1fatlows normal protocol
usage and is similar to normal traffic, (2) the traffic voluradow, (3) there may be very

few bots in the monitored network, and (4) may contain eneygommunication.

67

However, we identify several invariants in botnet C&C retjess of the push or pull
style. We explain these invariants as follows, which prewide intuition for our detection
solution.

First, bots need to connect to C&C servers in order to obtammands. They may
either keep a long connection or frequently connect backither case, we can consider
that there is a (virtually) long-lived session of C&C chalhhe

Second, bots need to perform certain tasks and respond tedbiged commands. We
can define two types of responses observable in networkctraimelymessageesponse
and activity response. A typical example of message response is IRGHBRRIVVEG
reply as shown in Figure 13(b). When a bot receives a commiand|l execute and
reply in the same IRC channel with the execution result (@tusfprogress). The activity
responses are the network activities the bots exhibit whey perform the malicious tasks
(e.g., scanning, spamming, or binary update) as directetthéypotmaster's commands.
According to [126], about 53% of botnet commands observdationsands of real-world
IRC-based botnets are related to scan (for spreading or QRbSut 14.4% are related to
binary download (for malware updating). Also, many HTTRdxhbotnets are mainly used
to send spam [96]. Thus, we will observe these maliciouvifctiesponses with a high
probability [24].

If there are multiple bots in the channel to respond to a conineost of them are
likely to respond in a similar fashion. For example, the b&#ad similar messages or
activity traffic at a similar time window, e.g., sending spasin [83]. Thus, we can observe
aresponse crowaf botnet members responding to a command, as shown in Figure
Such crowd-like behavior is consistent with all botnet C&@ranands and throughout
the life-cycle of a botnet. On the other hand, for a normalvwoeékt service (e.g., an IRC

chatting channel), it is unlikely that many clients conesmly respond similarly and at a

1We consider a session live if the TCP connection is live, @hiwia certain time window, there is at least
one connection to the server.

68

-7
M M *
13 i
T i il o
Time Time
M T
L i
—> Time
Time T n i
i
L] T
I I I bmm — e
i Activity R t k i
|] 1 Time M ctivity Response (network scanning)
il Activity Response (sending spam)
Message Response (e.g., IRC PRIVMSG) I Activity Response (binary downloading)
(a) Message response crowd. (b) Activity response crowd.

Figure 14: Spatial-temporal correlation and similarity in bot respes (message response
and activity response).
similar time. That is, the bots have much stronger (and monsistent) synchronization
and correlation in their responses than normal (human}uker

Based on the above observation, our botnet C&C detectioroapp is aimed at recog-
nizing the spatial-temporal correlation and similariire®ot responses. When monitoring
network traffic, as the detection system observes multied-like behavior, it can de-
clare that the machines in the crowd are bots of a botnet wierma¢cumulated degree
of synchronization/correlation (and hence the likelihaddot traffic) is above a given

threshold.

4.2 BotSniffer: Architecture and Algorithms

Figure 15 shows the architecture of BotSniffer. There ai@ nvain components, i.e., the
monitor engine and the correlation engine. The monitormag deployed at the perime-
ter of a monitored network. It examines network traffic, gabtes connection record of
suspicious C&C protocols, and detects activity respon$@ader (e.g., scanning, spam-
ming, and binary downloading) and message response bel{awpo, IRCPRI VMSG) in

the monitored network. The events observed by the monitginenare analyzed by the
correlation engine. It perforngroup analysiof spatial-temporal correlation and similar-

ity of activity or message response behavior of the clielné tonnect to the same IRC

69

or HTTP server. We implemented the monitor engines as dguaarocessor plug-ins on
top of the open-source system Snort [86], and implemenieddirelation engine in Java.
We also implemented a real-tirmessage responserrelation engine (in C), which can
be integrated in the monitor engine. The monitor enginedeadistributed on several net-

works, and collect information to a central repository tofpen correlation analysis. We

Network
Traffic

Monitor Engine

Malicious Activity

Message Recor

Activity
Response
Detection
Scan
Spam
Binary
Preprocessing Downloading
(WhiteList |—p
WatchList) HTTP/IRC
Protocol Connection
Matcher Records
HTTP
IRC
Message
] Response
Network Traffic of Detection
IRC PRIVMSG
Incoming

PRIVMSG Analyze

Outgoing

PRIVMSG Analyze

V/
l///

%

Reports

T

Correlation
Engine

Activity Log

> Reports

Figure 15: BotSniffer architecture.

describe each BotSniffer component in the following setgio

4.2.1 Monitor Engine

When network traffic enters the BotSniffer monitor enginet®iffer first performs pre-
processing to filter out irrelevant traffic to reduce theficafolume. Preprocessing ot
essential to the detection accuracy of BotSniffer but cgarave the efficiency of BotSnif-

fer.

C&C communications, such as ICMP and UDP, are filtered. Weusana (hard) whitelist

to filter out traffic to normal servers (e.dzpogl e andYahoo!) that are less likely to

4.2.1.1 Preprocessing

70

For C&C-like protocol matching, protocols that are unlik@r at least not yet) used for

serve as botnet C&C servers. A soft whitelist is generatedhiose addresses declared
“normal” in the analysis stage, i.e., those clearly deddirot botnet”. The difference
from a hard list is that a soft list is dynamically generatgal] a soft white address is valid
only for a certain time window, after which it will be remové&adm the list.

For activity response detection, BotSniffer can monitbtaaal hosts or a “watch list”
of local clients that are using C&C-like protocols. The walist is dynamically updated
from protocol matchers. The watch listis not required, batk is available it can improve
the efficiency of BotSniffer because its activity responstedtion component only needs

to monitor the network behavior of the local clients on tist. li
4.2.1.2 C&C-like Protocol Matcher

We need to keep a record on the clients that are using C&Cglikéocols for correla-
tion purpose. Currently, we focus on two most commonly ugetigols in botnet C&C,
namely, IRC and HTTP. We developed port-independent pobtoatchers to find all sus-
picious IRC and HTTP traffic. This port-independent propéstimportant because many
botnet C&Cs may not use the regular ports. We discuss in@eété the possible exten-
sions.

IRC and HTTP connections are relatively simple to recognizer example, an IRC
session begins with connection registration (defined in RFEO) that usually has three
messages, i.ePASS, NI CK, andUSER. We can easily recognize an IRC connection using
light-weight payload inspection, e.g., only inspecting fhist few bytes of the payload at
the beginning of a connection. This is similar to HIPPIE [B]TTP protocol is even easier
to recognize because the first few bytes of an HTTP requesttiodve ‘GET,” “ POST,” or
“HEAD.”

4.2.1.3 Activity/Message Response Detection
For the clients that are involved in IRC or HTTP communicasioBotSniffer monitors

their network activities for signs of bot response (messagponse and activity response).

71

For message response, BotSniffer monitors the FHRCVMSG messages for further corre-
lation analysis. For scan activity detection, BotSniffsesi approaches similar to SCADE
(Statistical sCan Anomaly Detection Engine) that we haweeldgped for BotHunter [46].
Specifically, BotSniffer mainly uses two anomaly detectinadules, namely, the abnor-
mally high scan rate and weighted failed connection ratéSBiffer uses a new detector for
spam behavior detection, focusing on detectifXg DNS query (looking for mail servers)
and SMTP connections (because normal clients are unlikedygt as SMTP servers). We
note that more malicious activity response behavior carefieed and utilized in BotSnif-
fer. For example, binary downloading behavior can be detegsing the similar approach

as PEHunter [118] and the egg detection method in BotHuA&r [
4.2.2 Correlation Engine

In the correlation stage, BotSniffer first groups the clestcording to their destination IP
and port pair. That s, clients that connect to the same siilldoe put into the same group.
BotSniffer then performs group analysiof spatial-temporal correlation and similarity. If
BotSniffer detects any suspicious C&C, it will issue botaletrts. In the current implemen-
tation, BotSniffer uses thiResponse-Crowd-Density-Chedgorithm (discussed in Section
4.2.2.1) forgroup activity responsanalysis, and thResponse-Crowd-Homogeneity-Check
algorithm (discussed in Section 4.2.2.2) fpoup message responanalysis. Any alarm
from either of these two algorithms will trigger a botnetréleport.

BotSniffer also has the ability to detect botnet C&C even miteere is only one bot
in the monitored network, if certain conditions are satafidhis is discussed in Section

4.2.3.

72

4.2.2.1 Response-Crowd-Density-Check Algorithm

The intuition behind this basic algorithm is as follows. eaich time window, we check
if there is adenseresponse crowd. Recall that a group is a set of clients that connect
to the same server. Within this group, we look for any messagectivity response be-
havior. If the fraction of clients with message/activityhlagior within the group is larger
than a threshold (e.g., 50%), then we say these respondargsform adenseresponse
crowd. We use a binary random varialdgto denote whether thi&h response crowd is
dense or not. Let us denoté, as the hypothesis “botnetf, as “not botnet.” We define
Pr(Y;|H,) = 6, and Pr(Y;|Hy) = 6y, i.e., the probability of theth observed response
crowd is dense when the hypothesis “botnet” is true and faéspectively. Clearly, for a
botnet, the probability of a dense crowd] X is high because bots are more synchronized
than humans. On the other hand, for a normal (non-botneg), ¢hs probability ;) is
really low. If we observe multiple response crowds, we carelaahigh confidence that the
group is very likely part of a botnet or not part of a botnet.

The next question is how many response crowds are neededen tar make a final
decision. To reduce the number of crowds required, we atdiSPRT (Sequential Prob-
ability Ratio Testing [108]) algorithm, which is also knows TRW (Threshold Random
Walk [57]), to calculate a comprehensive anomaly score witeserving a sequence of
crowds. TRW is a powerful tool in statistics and has been us@ort scan detection [57]
and spam laundering detection [121]. By using this techmigqune can reach a decision
within a small number of rounds, and with a bounded falsetpesiate and false negative
rate.

TRW is essentially a hypothesis testing technique. Thawéwant to calculate the
likelihood ratio A,, given a sequence of crowds obserdéd..., Y,,. Assume the crowds

Y;s’ are i.i.d. (independent and identically-distributedé have

2We only check when there is at least one client (within theugydhat has message/activity response
behavior.

73

A —n Pry,.... YolHy) _ 1L Pr(Yilth) _ 3 | Pr(Yi[H,)
Pr()/lv 7Yn|HO) Hi PT(}/;|H0) p Pr(}/;|HO)

According to the TRW algorithm [57, 108], to calculate thlkelihood A,,, we are es-
sentially performing a threshold random walk. The walktstiiom the origin (0), goes up

with step IengtHng—; whenY; = 1, and goes down with step Iengllﬂn}:z; whenY; = 0.

Let us denoter and 3 the user-chosen false positive rate and false negativerespec-
tively. If the random walk goes up and reaches the threshold In %, this is likely a
botnet, and we accept the hypothesis “botnet,” output ar, @ed stop. If it goes down
and hits the threshold = In %, itis likely not a botnet. Otherwise, it is pending and we
just watch for the next round of crowd.

There are some possible problems that may affect the agcaf#iais algorithm.

First, it requires observing multiple rounds of responsawvds. If there are only a
few responses, the accuracy of the algorithm may suffer.rditige, we find that many
common commands will have a long lasting effect on the a@iwiof bots. For example,
a single scan command will cause the bots to scan for a long, tamd a spam-sending
“campaign” can last for a long time [24, 83]. Thus, at leastdctivity response detection,
we can expect to observe sufficient response behavior togwoet detection accuracy.

Second, sometimes not all bots in the group will respondiwitie similar time win-
dow, especially when there is a relatively loose C&C. Onaitsmh is simply to increase
the time window for each round of TRW. Section 4.2.2.2 presan enhanced algorithm
that solves this problem.

To conclude, in practice, we find this basic algorithm worlelyespecially foractivity
response correlation. To further address the above pedsibtations, we next propose an

enhanced algorithm.

74

4.2.2.2 Response-Crowd-Homogeneity-Check Algorithm

The intuition of this algorithm is that, instead of lookingtlhe density of a response crowd,
it is important to consider theomogeneityf a crowd. Ahomogeneousrowd means that
within a crowd, most of the members have very similar respsnsor example, the mem-
bers of a homogeneous crowd have message responses witlr simicture and content,
or they have scan activities with similar IP address diatidn and port range. We note that
we currently implement this algorithm only faressage respons@alysis. Buctivity re-
sponseanalysis can also utilize this algorithm, as discussed @ti@®4.4. In this section,
we usemessage respons@alysis as an example to describe the algorithm.

In this enhanced algorithnY; denotes whether thih crowd ishomogeneousr not.
We use a clustering technique to obtain the largest clugsmilar messages in the crowd,
and calculate the ratio of the size of the cluster over the sfzhe crowd. If this ratio is
greater than a certain threshold, we $ay= 1; otherwiseY; = 0.

There are several ways to measure the similarity betweemtegsages (strings) for
clustering. For example, we can use edit distance (or ED;twikidefined as the minimum
number of elementary edit operations needed to transfoerstsimg into another), longest
common subsequence, and DICE coefficient [21]. We requaettie similarity metric
take into account the structure and context of messages, Weuchoose DICE coefficient
(or DICE distance) [21] as our similarity function. DICE dbeent is based on n-gram
analysis, which uses a sliding window of lengihto extract substrings from the entire
string. For a string X with length, the number of n-grams {ggrams(X)| =1 —n+ 1.
Dice coefficient is defined as the ratio of the number of n-grdinat are shared by two
strings over the total number of n-grams in both strings:
2|ngrams(X) N ngrams(Y)|

Dice(X,Y) =
ice(X,Y) Ingrams(X)| + [ngrams(Y)|

We choose: = 2 in our system, i.e., we use bi-gram analysis. We also use plsim

75

variant of hierarchical clustering technique. If there@oéients in the crowd,we compare
each of the(g) unique pairs using DICE, and calculate the percentage oEDliStances
that are greater than a threshold (i.e., the percentagendbsimessages). If this percent-
age is above a threshold (e.g., 20%), we say:therowd is homogeneous, ang = 1;
otherwiseY; = 0.

Now we need to sef; and#,. These probabilities should vary with the number of
clients @) in the crowd. Thus, we denote thein(q) andfy(q), or more generally(q).
For example, for a homogeneous crowd with 100 clients sensimilar messages, its
probability of being part of a botnet should be higher thaat #f a homogeneous crowd
of 10 clients. This is because with more clients, it is leksl\i that by chance they form
a homogeneous crowd. Let us denpte 0(2) as the basic probability that two messages
are similar. Now we have a crowd qf clients, there aren = (g) distinct pairs, the
probability of havingi similar pairs follows the Binomial distribution, i.eBr(X = i) =
("™)p'(1—p)™". Then the probability of having more tharsimilar pairs isPr(X > k) =
S (Mpi(1 — p)™i. If we pick k = mt wheret is the threshold to decide whether a
crowd is homogeneous, we obtain the probabdity) = Pr(X > mt).

As Figure 16 shows, when there are more than two messages @énd¥vd and we pick
p > 0.6, the probabilityd(q) is above the diagonal line, indicating that the value isdarg
thanp. This suggests that when we ug2) > 0.6, we haved, (¢) > 6,(2). That is, if
there are more messages, we will more likely have a highdrgitty of ;. This confirms
our intuition that, if it is a botnet, then having more clierftnessages) is more likely to
form a clustered message group (homogeneous crowd). Atso,the figure, if we pick
a smallp < 0.3, we will haved(q) < p. This suggests that when choosifig2) < 0.3,
we will have much lower probability,(¢) when having multiple messages. Again this

confirms the intuition that, for independent users (not aéoi it is very unlikely for them

3Within a certain time window, if a client sends more than omssage, the messages will be concatenated
together.

76

+o}4 &

IS

BLLL
(6]

Figure 16: 0(q), the probability of crowd homogeneity with responding clients, and
thresholdt.

to send similar messages. If there are more users, theregssunlikely they will form a
homogeneous crowd because essentially more users wilvenwmoore randomness in the
messages. In order to avoid calculatitig) all the time, in practice one can pre-compute
these probabilities for differentvalues and store the probabilities in a table for lookup. It
may be sufficient to calculate the probabilities for onlya tevalues (e.g.q = 3, ..., 10).
Forg > 10, we can conservatively use the probability wjth- 10.

For the hypothesis “not botnet,” for a pair of users, the piolity of typing similar
messages is very low. To estimate how low this probabilitwis first show the probability
of typing two similarlength(size) messages from two chatting users.

Let us use the common assumption of Poisson distributiothitength of messages
typed by the user [34] at duration P(X = i) = e—AlT(*;—fp)i. Then for two independent

users, their joint distribution

, _e—)\lT—)\gT()‘lT)i(AlT)j
N ilj!

77

And
P(|X —Y|<=90)
= > P+ P(i,i+1)
+... 4>, Pli,i+0)
+ > P(ii— 1) + ..+ >, P(iyi — 6)

(1)

For example,

P(X — Y| <=1)
= S, P(i,i)+ 3, PG i+ 1)+ 3, Piyi — 1))

_ _ MT) (N T)? i
e—MT ,\QTZi(1 ()i!§22)(1+A2T_|_>\2_T)

i+1

=1)
=2)

P(IX-Y|<
P(IX-Y|<

2 2 AT 2 : 2 AT

0o 1 [N

(a) Probability of P(| X — Y| <=1) (b) Probability of P(| X — Y| <= 2)

Figure 17: Probability of two independent users typing similar lengtimessages.

Figure 17 illustrates the probability of having two similangth messages from two
different users at different settings &f’, the average length of message a user types during
T'. Figures 17(a) and (b) show the probabilities when two ngesshave length difference
within one character and two characters, respectively. emegal, this probability will
decrease quickly if the difference betwegnand)\, increases. Even if two users have
the same), the probability will also decrease (but slower than thevimes case) with
the increase oh. Since two independent users are likely to have diffepenalues, the

probability of typing similar length messages for them m.ld~or example, if\;7 = 5

78

and\,T" = 10, the probabilityP(| X — Y| <= 2) is only around).24. If \;7 = 5 and
AT = 20, this probability will further decrease th0044.

Essentially, if the probability of having two simildé&ngthmessages is low, then the
probability of having two similarcontentis even much lower. In correlation analysis,
we pick a reasonably conservative value (e.g., 0.15) toneséi the probability of typing
similar messages. Even though this value is not precise, grgbably higher than the
actual value, the only effect is that the TRW algorithm takdésw more rounds to make a
decision [57,108].

In order to make a decision that a crowd is part of a botnete#pected number of

crowd message response rounds we need to observe is:

B — 1-6
EIN|H,] = Bln 7= + (1 —3)In—

C G+ (1—6)In =5

wherea andg are user-chosen false positive and false negative pratoedirespectively.
Similarly, if the crowd is not part of a botnet, the expectednber of crowd message

response rounds to make a decision is:

(1—oz)ln%+ozln%
0o In Gt + (1 — 6p) In

These numbers are derived according to [108].

E[N|Ho] =

1-64
1—6o

Figure 18 illustrates the expected number of walk$X|H;]) (i.e., the number of
crowd response rounds need to observe) when the crowd i©parbotnet. Here we
fix 5 = 0.01 and vary6,(2), 6,(2), anda. We can see that even when we have only
two clients, and have a conservative settinggd2) = 0.2 andfy(2) = 0.7, it only takes
around 6 walks to reach the decision. When we incréa&®) and decreasé,(2), we
can achieve better performance, i.e., fewer rounds of wdlkthere are more than two
messages (clients), we can have shorter detection timethiegacase of having only two
messages. It is obvious that having more clients in the bot@ans that we can make a

decision quicker. For example, when= 4, 6,(2) = 0.7, andf,(2) < 0.15, the expected

79

14} | T 61(2)=O.8,q=2,0(=0.005
-~ 61(2)=0.7,q=4,0(=0.005
12| | 61(2)=0.8,q=4,0(=0.005
-0~ 61(2)i0.7,qi6,0(i0.005
— 61(2)—0.8,q—6,0(—0.005
* 61(2)20.8,q:6,a20.0001

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
8,(2)

Figure 18: E[N|H;], the expected number of crowd rounds in case of a botnet ¢y&2y,
q, o and fix3 = 0.01).

number of crowd rounds is less than two.
4.2.3 Single Client C&C Detection Under Certain Conditions

Group correlation analysis typically requires having nplét members in a group. In some
cases, there is only one client (e.g., the first infectedmaicin the group. We recommend
a distributed deployment of BotSniffer (as discussed irtiSeal.4) to cover a larger net-
work space, and thereby potentially have more clients inoaigr Orthogonally, we can

use techniques that are effective even if there is only onmalmee in the group, if certain

conditions are satisfied.

For IRC communication, a chatting message is usually bextdd in the channel.
That is, every client can see the messages sent from otleert<lin the same channel
(which is the normal operation of IRC chatting service). $hevery bot should expect to
receive the response messages from all other clients. §bissentially similar to the case
when we can monitor multiple message responses from nailtignts in the group. We

can use the same TRW algorithm here. The only differenceais thstead of estimating

80

the homogeneity of the outgoing message responses froniptauttients, we estimate
the homogeneity of incoming messages (from different Qigera single client. We also
implemented BotSniffer to perform this analysis becausmihplements the algorithms
we described in Section 4.2.2.1 and Section 4.2.2.2, edpeifithere is only one client in
the monitored network. Of course, this will not work if thetbaster uses a modified IRC
softwares to disable broadcasting messages to every<iretite channel.

For HTTP-based C&C, we notice that bots have strong peradisiting patterns (to
connect back and retrieve commanddhder this conditionwe can include a new signal
encoding and autocorrelation (or self-correlation) apphoin BotSniffer to detect such
kind of C&C. We describe this technique in the appendix o1 [48

Finally, we note that although these two single client dedecschemes work well
on existing botnet C&C, they are not as robust (evasiorieesj as the group analysis

algorithms discussed in Section 4.2.2.1 and Section 2.2.2.

4.3 Experimental Evaluation
To evaluate the performance of BotSniffer, we tested it weis# network traces.
4.3.1 Datasets

We have multiple network traces captured from our universitmpus network. Among
those, eight are just port 6667 IRC traffic captured in 20@®62 and 2007. Each IRC
trace lasts from several days to several months. The totatida of these traces is about
189 days. They were labeled as IRC-n (i,=..,8). The other five traces are complete
packet captures of all network traffic. Two of them were abel in 2004, each lasting
about ten minutes. The other three were captured in May acdrbleer 2007, each lasting
1 to 5 hours. We labeled them as All-n (nl= .., 5). The primary purpose of using these
traces was to test the false positive rate of BotSniffer. itale basic statistics (e.g., size,

duration, number of packets) of these traces in the leftgfarable 6.

81

Table 6: Normal traces statistics (left part) and detection requigdht columns) in Bot-
Sniffer evaluation.

Trace | trace size duration Pkt TCP flows| (IRC/Web) servers FP
IRC-1| 54MB 171h 189,421 10,530 2,957 0
IRC-2 | 14MB 433h 33,320 4,061 335 0
IRC-3| 516MB | 1,626h | 2,073,587 4,577 563 6
IRC-4| 620MB 673h | 4,071,707| 24,837 228 3
IRC-5| 3MB 30h 19,190 24 17 0
IRC-6 | 155MB 168h | 1,033,318 6,981 85 1
IRC-7| 60MB 429h 393,185 717 209 0
IRC-8| 707MB | 1,010h | 2,818,315| 28,366 2,454 1
All-1 4.2GB 10m | 4,706,803 | 14,475 1,625 0
All-2 6.2GB 10m 6,769,915 28,359 1,576 0
All-3 7.6GB 1h 16,523,826 331,706 1,717 0
All-4 15GB 1.4h | 21,312,841 110,852 2,140 0
All-5 | 24.5GB 5h 43,625,604 406,112 2,601 0

We also obtained several real-world IRC-based botnet C&€els from several differ-

ent sources. One was captured at Georgia Tech honeyneter2006. This trace contains

about eight hours of traffic (mainly IRC). We labeled it asB3-G. The IRC channel has

broadcast on and we can observe the messages sent from othén the channel. The

trace does not contain the initial traffic, so we did not héasedommand. From the replies

of the clients, it seems like a DDoS attack because bots tegbourrent bandwidth usage

and total offered traffic. Besides B-IRC-G, we also obtaitveal botnetl RClogs (not net-

work traces) recorded by an IRC tracker in 2006 [82]. In tHegs, there are two distinct

IRC servers, so there are two different botnets. We labélehtas B-IRC-J-n (n=1, 2). In

each log, the tracker joined the channel, and sat there imgtthe messages. Fortunately,
the botmaster here did not disable the broadcast, thudieathessages sent by other bots
in the channel were observable.

In addition to these IRC botnet traces, we modified the sotwdes of three common
bots [16] (Rbot, Spybot, Sdbot) and created our versiondites (so that the bots would
only connect to our controlled IRC server). We set up a vimedwork environment using

VMware and launched the modified bots in several Windows KRi2tual machines. We

82

instructed the bots to connect our controlled C&C server @aqutured the traces in the

virtual network. For Rbot, we used five Windows XP virtual himes to generate the

trace. For Spybot and Sdbot, we used four clients. We laltblesk three traces as V-

Rbot, V-Spybot, and V-Sdbot, respectively. Most of theseds contain both bot message
responses and activity responses.

We also implemented two botnets with HTTP-based C&C compaititin according
to the description in [53, 96]. In the first botnet trace, B-HPFI, bots regularly connects
back to the C&C server every five minutes for commands. Weaandlients in the virtual
network to connect to an HTTP server that acted as a C&C sereeiding commands
such asscan andspam The four clients are interleaved in time to connect to C&€E., i
although they periodically connect, the exact time is défe because they are infected
at different time. In the second trace, B-HTTP-II, we imptated a more stealthy C&C
communication. The bot waits a random amount of time for t&et iconnection to the
C&C server. This may easily evade the simple autocorrelai@sed approach on single
client analysis. We wanted to see how it would affect the atete performance of group
correlation analysis. These two traces contain bot agtresponses.

Table 7 lists some basic statistics of these botnet tradéeileft part. Because B-IRC-

J-1/2 are not network traces, we report only the number esl{jpackets) in the logs.

Table 7: Botnet traces statistics and detection results in Bot&néfaluation.

BotTrace | trace sizg duration Pkt TCP flow || Detected
B-IRC-G 950k 8h 4,447 189 Yes
B-IRC-J-1 - - 143,431 - Yes
B-IRC-J-2 - - 262,878 - Yes
V-Rbot 26MB 1,267s | 347,153 103,425 Yes
V-Spybot 15MB 1,931s | 180,822| 147,921 Yes
V-Sdbot 66KB 533s 474 14 Yes
B-HTTP-I 6MB 3.6h 65,695 237 Yes
B-HTTP-II 37MB 19h 395,990 790 Yes

83

4.3.2 Experimental Results and Analysis

4.3.2.1 False Positives and Analysis

We first report our experience on the normal traces. We listdetection results in the
right part of Table 6. Basically, we list the number of TCP ftof@ther than TCP flows, we
did not count UDP or other flows) and distinct servers (onlZi®eb servers are counted)
in the traces. We show the number of IP addresses identifibdtagt C&C servers by
BotSniffer (i.e., the numbers of false positives) in théntigost column. Since these traces
were collected from well administrated networks, we presdrthat there should be no
botnet traffic in the traces. We manually verified the rawtalgenerated by BotSniffer's
monitor engine and also ran BotHunter [46] to confirm thaséhare clean traces.

The detection results on the IRC traces are very good. Shesettraces only contain
IRC traffic, we only enablednessage respons®rrelation analysis engine. On all eight
traces (around 189 days’ of IRC traffic), BotSniffer only geated a total of 11 FPs on
four of the IRC traces. We investigated these alerts andddliem all real false positives.
There was no false positive (FP) resulted from group aralyail were generated due
to single client incoming message response analysis (#e4tR.3). The main reason of
causing false positives was that, there is still a small @bdliy of receiving very similar
messages in a crowd from different users engaging in nofR@Hctivity. For example, we
noticed that in an IRC channel, several users (not in the toi@d network) were sending
“ QoaaadD . . " messages at similar time (and the messages were broadcestiee
channel). This resulted in several homogeneous messggengescrowds. Thus, our TRW
algorithm walked to the hypothesis of “botnet,” resultingR While our TRW algorithm
cannot guaranteeo FP, it can provide a pretty good bound of FP. Weeet 0.005, 5 =
0.01 in our evaluation and our detection results confirmed thendsare satisfied because
the false positive rate was 0.0016 (i.e., 11 out of 6,848e38)ywhich is less than =
0.005).

On the network traces All-n, we enabled baittivity respons@ndmessage response

84

group analysis engine, and we did not observe false positiver All-1 and All-2, since the
duration is relatively short, we set the time window to ond &mo minutes, respectively.
None of them caused a false positive, because there werdeverandom scanning activ-
ities, which did not cause TRW to make a decision on “botrieds All-3, All-4 and All-5,
we set the time window to 5, 10, and 15 minutes, respectivgin, we did not observe
any false positive. These results showed that our actiesponse correlation analysis is

relatively robust.
4.3.2.2 Detection Accuracy and Analysis

Next, we ran BotSniffer on the botnet traces in two modes)cs&one and mixed with
normal traces. It successfully detected all botnet C&C oleénin the datasets. That is, it
has a detection rate @H0% in our evaluation.

BotSniffer detected B-IRC-G using only message respons@d:homogeneity evi-
dences because the trace did not contain activity respor@ese the bots kept sending
reports of the attack (which were similar in structure andtent) to the C&C server, Bot-
Sniffer observed continuous homogeneous message reSpromsEs.

On two IRC logs, we had to adapt our detection algorithmske gatext line as packet.
In trace B-IRC-J-1, there were a lot of bots sending simimponse messages and these
were broadcasted in the IRC channel. BotSniffer easilyaietithe C&C channel. In trace
B-IRC-J-2, although the messages were less often, there hwardred of bots responded
almost at the same time, and thus, BotSniffer was able tetiéte C&C channels.

On trace V-Rbot, BotSniffer reported botnet alerts becaigbe groupmessage re-
sponsédiomogeneity detection aragttivity responséscanning) density detection. Actually,
even only one client is monitored in the network, BotSniffeuld still detect the botnet
C&C because in this case each client could observe messagesther clients in the same
botnets. Similarly, BtSniffer also successfully deted®&C channels in traces V-Spybot

and V-Sdbot with message responses and/or activity reepons

85

For traces B-HTTP-I and B-HTTP-II, BotSniffer detected @fllthe botnets according
to activity response group analysis. The randomizatioroahection periods did not cause
a problem as long as there were still several clients peif@ractivity responses at the

time window.
4.3.2.3 Summary

In our experiments, BotSniffer successfully detected athbts and generated very few
false positives. In addition, its correlation engine geted accurate and concise report
rather than producing alerts of malicious events (e.gnrsog, spamming) as a traditional
IDS does. For instance, in trace All-4, the monitor enginedpced over 100 activity
events, none of which is the indication of actual botnetg.(e¢hey are false positives),
while the correlation engine did not generate a false pa@sitin another case, e.g., in V-
Spybot, there were over 800 scanning activity events predlby the monitor engine, and
the correlation engine only generated one botnet repar fiositive), which was a great
reduction of work for administrators.

In terms of performance comparison with existing botneedigbn systems, we can
mainly do a paper-and-pencil study here because we couldbtain these tools, except
BotHunter [46]. Rishi [43] is a relevant system but it is sagure-based (using known
knowledge of bot nicknames). Thus, if IRC bots simply chatiggr nickname pattern
(for example, many of botnets in our data do not have regutkname patterns), Rishi
will miss them. However, such changes will not affect Boffénibecause it is based on
the response behavior. Another relevant work is the BBNesyd66, 98]. Its detection
approach is based on clustering of some general netwoekti@ffic features (such as du-
ration, bytes per packet). Such approach is easy to evadenpyyshanging the network
flows. It can potentially have more false positives becaldeas not consider the temporal
synchronization and correlation of responses. BotHudi@}if a bot detection system us-

ing IDS-based dialog correlation according to a user-ddfive infection live-cycle model.

86

It cannot detect bots given only IRC communication. Its entrC&C detection module
relies on known signatures, and thus, it fails on some bdtaees (e.g., B-IRC-G, B-
HTTP-I). The anomaly-based IRC botnet detection systeri8ihas the similar problem
as BotHunter. Without considering tiggoup spatial-temporal correlation and similarity
these systems may also have a higher false positive rat@tht&miffer.

Although BotSniffer performed well in our evaluation, itrcéail to detect botnets in
several cases. We next discuss these issues and the pesdiliiens, as well as future

work on improving BotSniffer.

4.4 Discussion

As we have stated, BotSniffer can still have false positiflesrmal hosts happen to behav-
ior very similarly at a similar time, though this probabjlis very low. In the experiments,
we have shown such examples. There might be other exammed]ash crowds. That is,
the same set of hosts visit the same website (glgashdot . or g) and then download the
same binary (probably from other websites) at a similar tithihis occurs several rounds,
BotSniffer is likely to trigger an alert. However, we enwsisuch cases to be rare and we
can use a white list to effectively reduce such false passtiv

Next, we discuss more important issues related to falsetivega
4.4.1 Possible Evasions and Solutions

Evasion by misusing the whitelist: If a botmaster knows our hard whitelist, he may at-
tempt to misuse these white addresses. For example, heedmens as third-party proxies
for C&C purpose to bypass the detection of BotSniffer. Hosvedas we discussed earlier,
a whitelist is not essential to BotSniffer and mainly serigegnprove its efficiency. Thus,
whitelists can be removed to avoid such evasions. In an@vesion case, an adversary
controlling the C&C server may attempt to first behave nolyreaid trick BotSniffer to de-
cide that the C&C server is a normal server and put the seddress in the soft whitelist.

After that, the adversary begins to use the C&C server to canahthe bots to perform real

87

malicious activities. To defeat this evasion, for each adslibeing added to soft whitelist,
we can keep aandomand short timer so that the address will be removed when it ti
expires. Thus, the adversary’s evasion attempt will notsed consistently.

Evasion by encryption: Botnets may still use known protocols (IRC and HTTP) that
BotSniffer can recognize, but the botmasters can encrgatdmmunication content to at-
tempt to evade detection. First of all, this mayly misleadmessage responserrelation
analysis, butannotevadeactivity responseorrelation analysis. Second, we can improve
message responserrelation analysis to deal with encrypted traffic. Forrapée, instead
of using simple DICE distance to calculate the similarityt@b messages, we can use
information-theoretic metrics that are relatively resili to encryption, such as entropy, or
normalized compression distance (NCD [14, 117]), whichasda on Kolmogorov com-
plexity.

Evading protocol matcher: Although botnets tend to use existing common protocols
to build their C&C, they may use some obscure protocols on eveate their own proto-
cols? It is worth noting that “push” and “pull” are the two represaiive C&C styles. Even
when botnets use other protocols, the spatial-temporetledion and similarity properties
in “push” and “pull” will remain. Thus, our detection algtrms can still be used after
new protocol matchers are added. We can develop a genericliR&@rotocol matcher
that uses traffic features such as BPP (bytes per packet)(lBf& per second), and PPS
(packet per second) [66, 98] instead of relying on protoegihkords. This protocol match-
ing approach is based on the observation that there areiggraterns in botnet C&C
traffic regardless of the protocol being used. For examp&C @affic is typically low
volume with a just a few packets in a session and a few bytegarcket. Ultimately, to

overcome the limitations of protocol matching and protesycific detection techniques,

“However, a brand new protocol itself is suspicious alreddyotnet could also exploit the implementa-
tion vulnerability of protocol matchers. For example, if i&&C matcher only checks the first ten packets in
a connection to identify the existence of IRC keywords, thertaster may have these keywords occur after
the first ten packets in order to evade this protocol matcher.

88

we have developed a next-generation botnet detectionnsyB@tMiner, which is indepen-
dent of the protocol and network structure used for botne€CC&s will be described in the
next chapter.

Evasion by using very long response delay: A botmaster may command his bots
to wait for a very long time (e.g., days or weeks) before penfag message or malicious
activity response. In order to detect such bots using B&feSnive have to correlate IRC
or HTTP connection records and activity events within atneddy long time window. In
practice, we can perform correlation analysis using migtijpne windows (e.g., one hour,
one day, one week, etc.). However, we believe that if botdaeed to use aery long
response delay, the utility of the botnet to botmaster isiced or limited because the
botmaster can no longer command his bots promptly and teli#or example, the bot-
infected machines may be powered off or disconnected frairternet by the human
users/owners during the delay and become unavailable tmthgaster. We can also use the
analysis ofactivity response crowd homogeng$ge Section 4.4.2) to defeat this evasion.
For example, if we can observe over a relatively long timedeim that several clients are
sending spam messages witdry similarcontents, we may conclude that the clients are
part of a botnets.

Evasion by injecting random noise packet, injecting randongarbage in the packet,
or using random response delay: Injecting random noise packet and/or random garbage
in a packet may affect the analysis miessagaesponse crowd homogeneity. However,
it is unlikely to affect theactivity response crowd analysis as long as the bots still need
to perform the required tasks. Using random messagefgctesponse delay may cause
problems to th&kesponse-Crowd-Density-Cheadlgorithm because there may not be suffi-
cient number of responses seen within a time window for onad®@f TRW. However, the
botmaster may lose the reliability in controlling and cdoading the bots promptly if ran-
dom response delay is used. We can use a larger time windosptare more responses.

Similar to evasion by long response delay discussed aboveyésion by random response

89

delay, a better solution is to use the analysiadivity response crowd homogeneisge
Section 4.4.2).

In summary, although it is not perfect, BotSniffer greathhances and complements
the capabilities of existing botnet detection approackesther research is needed to im-

prove its effectiveness against the more advanced andveastinets.
4.4.2 Improvements to BotSniffer

Activity response crowd homogeneity check: We have already discussed homogene-
ity analysis ofmessage response crowdSection 4.2.2.2. We can perform similar check
on the homogeneity odctivity response crowd For instance, for scanning activity, we
consider two scans to be similar if they have similar disttitm or entropy of the target
IP addresses and similar ports. A similarity function of tsygam activities can be based
on the number of common mail servers being used, the numbsgash messages being
sent, and the similarity of spam structure and content,(éhg@. URLs in the messages).
A similarity function of two binary downloading activitiesan be based on the byte value
distribution or entropy of the binary or binary string dista. By includingResponse-
Crowd-Homogeneity-Chedan activity responses, in addition to the similar check osme
sage responses, we can improve the detection accuracy $hifet and its resilience to
evasion.

Combine more features in analysis: As with other detection problems, including
more features can improve the accuracy of a botnet deteatgnrithm. For example,
we can check whether there are any user-initiated querigs V0, WHO S, LI ST, and
NANMES messages, in an IRC channel. The intuition is that a bot i&elglto use these
commands like a real user. To detect an IRC channel thatlds&loadcast (as in the
more recent botnets), we can consider the message exchatigedefined as':, i.e.,
the ratio between the number of incomiR&l VMSG messagesng;) and the number of

outgoingPRI VMSG messagesi,). The intuition is that for a normal (broadcasting) IRC

90

channel, most likely there are multiple users/clients ia thatting channel, and a user
usually receives more messages (from all other users) thaemds. On the other hand,
in the botnet case with broadcast disabled, the number ofimgy messages can be close
to the number of outgoing messages because a client careiaEve the messages sent
by other clients. The number of incoming messages can alsoladler than the number
of outgoing messages, for example, when there are severis&esponses from a bot
corresponding to one botmaster command, or when the bamastot currently online
sending commands. In addition, we can consider other grionifasity measures on traffic
features, e.g., duration, bytes per second, and packesepend.

Distributed deployment on Internet: Ideally, BotSniffer deployment should be scal-
able, i.e., it should be able to handle a large volume of traffid cover a large range of
network addresses. We envision that BotSniffer can beiloligad in that many monitor
sensors can be deployed in distributed networks and reparténtral repository that also

performs correlation and similarity analysis.

4.5 Summary

Botnet detection is a relatively new and a very challengasgarch area. In this chapter, we
presented BotSniffer, a network anomaly based botnet tigtesystem that explores the
spatial-temporal correlation and similarity propertiesatnet command and control activ-
ities. Our detection approach is based on the intuitiongimate bots of the same botnet run
the same bot program, they are likely to respond to the bdarimssommands and conduct
attack/fraudulent activities in a similar fashion. BotfB#i employs several correlation and
similarity analysis algorithms to examine network traffidddentifies the crowd of hosts
that exhibit very strong synchronization/correlationhieit responses/activities as bots of
the same botnet. We reported an experimental evaluationt&riffer on many real-world
network traces and showed that it has very promising deteetccuracy with a very low

false positive rate.

91

CHAPTER YV

BOTMINER: HORIZONTAL CORRELATION-BASED,
PROTOCOL- AND STRUCTURE-INDEPENDENT BOTNET
DETECTION

Botnets are evolving and quite flexible. We have witnessatttte protocols used for C&C
evolved from IRC to others (e.g., HTTP [23, 32,53, 96]), ahd s$tructure moved from
centralized to distributed (e.g., P2P [44, 64]). Furtherenduring its lifetime, a botnet can
also frequently change its C&C server address, e.g., uasteflux service networks [51].

Previously, we have described BotHunter and BotSniffertHBioter [46] is capable
of detecting bots regardless of the C&C structure and ndtwootocol as long as the
bot behavior follows gre-definedinfection life-cycle dialog model. However, it may
fail as soon as botnets change their infection model(s)SBiffer is designed mainly for
detecting botnets usingentralizedC&C protocols such as IRC or HTTP. Similarly, many
other existing approaches such as [18,43,59, 66, 98, 184gatricted to detecting botnets
usingcentralizedC&C, and mostly only for IRC-based botnets. Thus, the afertoned
detection approaches may become ineffective against tsadnee they evolve their C&C
techniques.

In this chapter, we introduce a new detection system, Bogiliwhich is based on a
concept of horizontal correlation similar to that of Botfer to detecta group of com-
promised machines inside the monitored network that aregbar botnet. However, we
propose a more general technique framework that can deittbntralized an&2P bot-
nets.

Revisit the Definition of Botnet: To design a general detection approach that can

resist the evolution and changes in botnet C&C techniquesieed to study thtrinsic

92

botnet communication and activity characteristics thataim detectable with the proper
detection features and algorithms. We thereby revisit #ftiion of a botnet, i.e., “@o-
ordinated groupof malwareinstances (bots) that amontrolledby a botmaster via some
command and control (C&C) channel.” The term “malware” ngetrese bots are used to
performmalicious activitiesFor example, according to [126], about 53% of botnet agtivi
commands observed in thousands of real-world IRC-basetetsoare related to scan (for
the purpose of spreading or DDoSjnd about 14.4% are related to binary downloading
(for the purpose of malware updating). In addition, most dfTIR-based and P2P-based
botnets are used to send spam [44, 96]. The term “controleefins these bots have to
contact their C&C servers to obtain commands to carry outides, e.g., to scan. In other
words, there should beommunication between bots and C&C servers/péetsch can

be centralized or distributed). Finally, the term “coomtigd group” means that multiple
(at least two) bots within the same botnet will perfosimilar or correlatedC&C commu-
nications and malicious activities. If the botmaster comdsaeach bot individually with

a different command/channel, the bots are nothing but seoiated/unrelated infections.
That s, they do not function as a Inetaccording to our definition and are out of the scope
of this work?

New Approach and System: We develop the BotMiner detection system based on
the above essential properties of botnets. BotMiner matothwho is talking to whom
that may suggest C&C communication activities aviwb is doing whathat may suggest
malicious activities, and finds@ordinated group patterim both kinds of activities. More
specifically, BotMiner clusters similar communicationiaities in theC-plane(C&C com-

munication traffic), clusters similar malicious activgim theA-plane(activity traffic), and

1For spreading, the scans usually span many different hastisirf a subnet) indicated by the botnet
command. For DDoS, usually there are numerous connectiempts to a specific host. In both cases, the
traffic can be considered as scanning related.

20ne can use our complementary systems such as BotHuntetettidéividual bots.

93

performs cross-cluster correlation to identify the hos&t share both similar communica-
tion patternsand similar malicious activity patterns. These hosts, aceaydo the botnet
definition and properties discussed above, are bots in tmétaned network.

Contributions:

e We develop a novel, general, horizontal correlation-bdssdet detection frame-
work that is grounded on the definition and essential praggedf botnets. Our de-
tection framework is independent of botnet C&C protocol atrdcture, resistant to
changes in the location of the C&C server(s), and requirea pdori knowledge
(e.g., C&C addresses/signatures) of specific botnets.nlidegect both centralized

(e.g., IRC,HTTP) and current (and possibly future) P2Reddmtnets.

e We define a new “aggregated communication flow” (C-flow) rdatata structure to
store aggregated traffic statistics, and design a new ldydustering scheme with
a set of traffic features measured on the C-flow records. ustaring scheme can
accurately and efficiently group similar C&C traffic pattermhe technique is also
independent of the content of the C&C communication. Thatvis do not inspect
the content of the C&C communication, because C&C could lweypted or use a

customized (obscure) protocol.

e We build the BotMiner prototype system based on our genertalation framework,
and evaluate it with multiple real-world network tracesluaing normal traffic and
several real-world botnet traces that contain IRC-, HT et B2P-based botnet traf-
fic (including Nugache and Storm). The results show that Bo#vihas a high de-

tection rate and a low false positive rate.

Chapter Organization: In Section 5.1, we describe the problem statement and as-
sumptions of BotMiner. In Section 5.2, we describe the aechire, detection algorithms
and implementation. In Section 5.3, we describe our evianan various real-world net-

work traces. In Section 5.4, we discuss current limitatiand possible solutions. We

94

conclude the chapter in Section 5.5.

5.1 Problem Statement and Assumptions

In order for a botmaster to command a botnet, there needs &0#£C channel through
which bots receive commands and coordinate attacks anduient activities. The C&C
channel is the means by which individual bots form anlettCentralized C&C structures
using the Internet Relay Chat (IRC) protocol have beenzetiliby botmasters for a long
time. In this architecture, each bot logs into an IRC chanaedl seeks commands from
the botmaster. Even today, many botnets are still designiedviay. Quite a few botnets,
though, have begun to use other protocols such as HTTP [233326], probably because
HTTP-based C&C communications are more stealthy given\Wedi traffic is generally
allowed in most networks. Although centralized C&C struetiare effective, they suffer
from the single-point-of-failure problem. For examplethke IRC channel (or the Web
server) is taken down due to detection and response effoetdotnet loses its C&C struc-
ture and becomes a collection of isolated compromised mashiRecently, botmasters
began using peer-to-peer (P2P) communication to avoidibékness. For example, Nu-
gache [64] and Storm worm [44,52] (a.k.a. Peacomm) are tmesentative P2P botnets.
Storm, in particular, distinguishes itself as having itéelca large number of computers on
the Internet and effectively becoming one of the “world’s smper-computers” [61] for the
botmasters.

Figure 19 illustrates the two typical botnet structuresnaly centralizedand P2P.
The bots receive commands from the botmaster usipgshor pull mechanism [48] and
execute the assigned tasks.

The operation of a centralized botnet is relatively easyiandtive [48], whereas this
is not necessarily true for P2P botnets. Therefore, hererigéybillustrate an example of
a typical P2P-based botnet, namely Storm worm [44,52]. ¢feoto issue commands to

the bots, the botmaster publishes/shares command filest®/&2P network, along with

95

-
C&C or peer
communication

-———

Malicious
activity

Figure 19: Possible C&C structures of a botnet: (a) centralized; (leype-peer.

specific search keys that can be used by the bots to find thespelicommand files. Storm
bots utilize a pull mechanism to receive the commands. 8pakty, each bot frequently
contacts its neighbor peers searching for specific keysderdo locate the related com-
mand files. In addition to search operations, the bots abguintly communicate with
their peers and seriéep-alivenessages.

According to the botnet definition given before, a botnetharacterized by both a
C&C communication channel (from which the botmaster’'s cands are received) and
malicious activities (when commands are executed). Soimer ddrms of malware (e.g.,
worms) may perform malicious activities, but they do notrmect to a C&C channel. On
the other hand, some normal applications (e.g., IRC cliantsnormal P2P file sharing
software) may show communication patterns similar to a d&isrC&C channel, but they
do not perform malicious activities.

In both centralized and P2P structures, bots within the dzotreet are likely to behave
similarly in terms of communication patterns. This is ldyggue to the fact that bots are
non-human driven, pre-programmed to perform the samet@@&C logic/communication
as coordinated by the same botmaster. In the centralizectste, even if the address of
the C&C server may change frequently (e.qg., by frequentinging theA record of a Dy-
namic DNS domain name), the C&C communication patterns irennachanged. In the

case of P2P-based botnets, the peer communications @esgatch for commands or to

96

sendkeep-alivemessages) follow a similar pattern for all the bots in thenbgtalthough
each bot may have a different set of neighbor peers and maynooimate on different
ports.

Regardless of the specific structure of the botnet (cemér@lor P2P), members of the
same botnet (i.e., the bots) are coordinated through the €l&@nel. In general, a bwet
is different from a set ofsolatedindividual malware instances, in which each different
instance is used for a totally different purpose. Althouglam extreme case a botnet can
be configured to degenerate into a grougsoflated hoststhis is not the common case.
In this work, we focus on the most typical and useful situatiowhich bots in the same
botetperform similar/coordinated activities. To the best of kmowledge, this holds true
for most of the existing botnets observed in the wild.

To summarize, we assume that bots within the same botndievilharacterized by sim-
ilar malicious activities, as well as similar C&C commurtioa patterns. Our assumption
holds even in the case when the botmaster chooses to dividimetlntosub-botnetsfor
example by assigning different tasks to different sets ¢$.bim this case, each sub-botnet
will be characterized by similar malicious activities an&@ communications patterns,
and our goal is to detect each sub-botnet. In Section 5.4 exd® a detailed discussion

on possibleevasivebotnets that may violate our assumptions.

5.2 BotMiner: Architecture, Design and | mplementation
5.2.1 BotMiner Architecture

Figure 20 shows the architecture of our BotMiner detectistesn, which consists of five
main components: C-plane monitor, A-plane monitor, C-plelustering module, A-plane
clustering module, and cross-plane correlator.

The two traffic monitors in C-plane and A-plane can be deplatehe edge of the net-

work examining traffic between internal and external nekspsimilar to BotHunter [46]

97

A-Plane Monitor

Scan
spam A-Plane
inary "| Clustering
Downloading
Exploit T
|
—— |
S ! Cross-Plane Report
Network q]) eports
Traffic I Correlation
|
C-Plane Monitor
C-Plane

w Clustering

Figure 20: Architecture overview of our BotMiner detection framework

and BotSniffer [48F They run in parallel and monitor the network traffic. The G
monitor is responsible for logging network flows in a formaitable for efficient storage
and further analysis, and the A-plane monitor is respoagir detecting suspicious activ-
ities (e.g., scanning, spamming, and exploit attemptsg. Giplane clustering and A-plane
clustering components process the logs generated by tHarn@-pnd A-plane monitors,
respectively. Both modules extract a number of features fitte raw logs and apply clus-
tering algorithms in order to find groups of machines thatstery similar communication
(in the C-plane) and activity (in the A-plane) patterns. &fliy) the cross-plane correlator
combines the results of the C-plane and A-plane clusteniaignaakes a final decision on
which machines are possibly members of a botnet. In an ideti®n, the traffic mon-
itors should be distributed on the Internet, and the morndgs are reported to a central
repository for clustering and cross-plane analysis.

In our current prototype system, traffic monitors are impdabed in C for the purpose
of efficiency (working on real-time network traffic). The stering and correlation anal-
ysis components are implemented mainly in Java antitR : / / ww. r - pr oj ect .

or g/), and they work offline on logs generated from the monitors.

3All these tools can also be deployed in LANSs.

98

The following sections present the details of the designiammementation of each

component of the detection framework.
5.2.2 Traffic Monitors

C-plane Monitor. The C-plane monitor captures network flows and records iméion
on who is talking to whomMany network routers support the logging of network flows,
e.g., Cisco\mw. ci sco. con) and Juniperfyww. j uni per . net) routers. Open source
solutions like Argus (Audit Record Generation and Utilisat Systemht t p: / / wwww.
gosi ent . cont ar gus) are also available. We adapted an efficient network flomuoapt
tool developed at our research lab, ifecapt ur e,* which is based on the Judy library
(http://judy. sourceforge. net/). Currently, we limit our interest to TCP and
UDP flows. Each flow record contains the following informatitime, duration, source IP,
source port, destination IP, destination port, and the rarmabpackets and bytes transfered
in both directions. The main advantage of our tool is thatatkg very efficiently on high
speed networks (very low packet loss ratio on a network w@N\8bps traffic), and can
generate very compact flow records that comply with the reguent for further processing
by the C-plain clustering module. As a comparison, our flopteang tool generates
compressed records ranging from 200MB to 1GB per day frontrétfic in our academic
network, whereas Argus generates around 36GB of compréssan; flow records per
day on average (without recording any payload informati@ur tool makes the storage

of several weeks or even months of flow data feasible.

A-plane Monitor. The A-plane monitor logs information omho is doing whatlIt ana-
lyzes the outbound traffic through the monitored networkiamdpable of detecting several
malicious activities that the internal hosts may perforor. €&le, the A-plane monitor

is able to detect scanning activities (which may be used falkvare propagation or DoS

4This tool will be released in open source soon.

99

attacks), spamming, binary downloading (possibly usedfalware update), and exploit
attempts (used for malware propagation or targeted aftadkese are the most common
and “useful” activities a botmaster may command his botsetéopm [24, 84, 126].

Our A-plane monitor is built based on Snort [86], an openrseuntrusion detection
tool, for the purpose of convenience. We adapted existitrgsion detection techniques
and implemented them as Snort preprocessor plug-ins catsiggs. For scan detection we
adapted SCADE (Statistical sCan Anomaly Detection Engiwhjch is a part of BotH-
unter [46] and available at [27]. Specifically, we mainly &&® anomaly detection mod-
ules: theabnormally-high scan ratand weightedailed connection rate We use arOR
combination rule, so that an event detected by either ofwlenhodules will trigger an
alert. In order to detect spam-related activities, we usschdar plug-in developed in Bot-
Sniffer [48]. We focused on detecting anomalous amountsih® Queries folMX records
from the same source IP and the amount of SMTP connectiaret@d by the same source
to mail servers outside the monitored network. Normal ¢tieme unlikely to act as SMTP
servers and therefore should rely on the internal SMTP séovesending emails. Use of
many distinct external SMTP servers for many times by theesiaternal host is an indica-
tion of possible malicious activities. For the detectiorP&f (Portable Executable) binary
downloading we used an approach similar to PEHunter [118]BotHunter’s egg down-
load detection method [46]. One can also use specific expilgs in BotHunter to detect
internal hosts that attempt to exploit external machinethefstate-of-the-art detection
techniques can be easily added to our A-plane monitoringpared its ability to detect
typical botnet-related malicious activities.

Itis important to note that A-plane monitoring alone is ndftisient for botnet detection
purpose. First of all, these A-plane activities are not @siekely used in botnets. Second,
because of our relatively loose design of A-plane monitor éxample, we will generate
a log whenever there is a PE binary downloading in the netwegkrdless of whether the

binary is malicious or not), relying on only the logs from skeeactivities will generate a lot

100

of false positives. This is why we need to further perform lARg clustering analysis as

discussed shortly in Section 5.2.4.
5.2.3 C-plane Clustering

C-plane clustering is responsible for reading the logs gead by the C-plane monitor and
finding clusters of machines that share similar commurocgpiatterns. Figure 21 shows

the architecture of the C-plane clustering.

Basic White .
Flow S - Aggregation Feature
Record Filtering Listing (C-Flow) Extraction
(F1,F2) (F3)

Feature Coarse-grain Refined FE: Iustetr
Reduction Clustering Clustering eports

Figure 21: C-plane clustering.

First of all, we filter out irrelevant (or uninteresting) ffia flows. This is done in two
steps: basic-filtering and white-listing. It is worth n@ithat these two steps are not critical
for the proper functioning of the C-plane clustering mod®netheless, they are useful
for reducing the traffic workload and making the actual &@usig process more efficient. In
the basic-filtering step, we filter out all the flows that arédicected from internal hosts to
external hosts. Therefore, we ignore the flows related tonconications between internal
host$ and flows initiated from external hosts towards internalt¢fiiter rule 1, denoted
asF1). We also filter out flows that are not completely establistidtr rule 2, denoted
asF2), i.e., those flows that only contain one-way traffic. These/dl are mainly caused
by scanning activity (e.g., when a host sends SYN packetsowitcompleting the TCP
hand-shake). In white-list filtering, we filter out those flowhose destinations are well
known as legitimate servers (e.Ggoogl e, Yahoo!) that will unlikely host botnet C&C

servers. This filter rule is denoted BS. In our current evaluation, the white list is based

5If the C-plane monitor is deployed at the edge router, thesféic will not be seen. However, if the
monitor is deployed/tested in a LAN, then this filtering canused.

101

on the US top 100 and global top 100 most popular websites Aloexa. com

After basic-filtering and white-listing, we further reduttee traffic workload by ag-
gregating related flows into communication flows (C-flowsjaews. Given an epocli
(typically several hours), ath TCP/UDP flows that share the same protocol (TCP or UDP),
source IP, destination IP and port, are aggregated intoaime -flowe; = {f;}=1.m.
where eacly; is a single TCP/UDP flow. Basically, the sgt;},—, ,, of all then C-flows

observed during’ tells us “who was talking to whom,” during that epoch.
5.2.3.1 Vector Representation of C-flows

The objective of C-plane clustering is to group hosts thatretsimilar communication
flows. This can be accomplished by clustering the C-flows. rttento apply clustering
algorithms to C-flows we first need to translate them in a bletaector representation.
We extract a number of statistical features from each C-figvand translate them into
d-dimensional pattern vectofs € R%. We can describe this task as a projection function
F : C-plane— R. The projection functior is defined as follows. Given a C-flowy, we

compute the discrete sample distribution of (currentlyyfimndom variables:

1. the number of flows per hour (fph¥ph is computed by counting the number of

TCP/IP flows inc; that are present for each hour of the epéth

2. the number of packets per flow (ppbpf is computed by summing the total number

of packets sent within each TCP/UDP flowdn

3. the average number of bytes per packets (bp) each TCP/UDP flow; € ¢; we
divide the overall number of bytes transfered witlfijrby the number of packets sent

within f;.

4. the average number of bytes per second (bppkis computed as the total number

of bytes transfered within eacf) € ¢; divided by the duration of;.

102

An example of the results of this process is shown in Figuren2i2re we select a random
client from a real network flow log (we consider a one-day épand illustrate the features

extracted from its visits t&oogl e.

20 T T T 18
161
151 1 14F
121
1Y %)
101
510— 1 H
pes = 8
o
5] a
1 {
N [il ENETIR TR
0 1 2 3 4 5 0 50 100 150 200 250
(a) fph (b) ppf
4 ‘ : : 2 ‘ ‘ :
3.5F
3r] 1.5
2.5¢
1] [
32 31
H* H*
1.5r
1t 0.5
0.5F
GO 200 400 600 800 1000 00 2000 4000 6000 8000 10000 12000 14000
(c) bpp (d) bps

Figure 22: Visit pattern (shown in distribution) tGoogl e from a randomly chosen nor-
mal client.

Given the discrete sample distribution of each of these fandom variables, we
compute an approximate version of it by means of a binningrtiegie. For example,
in order to approximate the distribution §fh we divide the x-axis in 13 intervals as
[0, k1], (K1, k2], ..., (K12, 00). The values:, .., k1o are computed as follows. First, we com-
pute the overall discrete sample distributionfef. considering all the C-flows in the traf-
fic for an epoch®. Then, we compute the quantiesy,, ¢109, G159, G20% G25%, G30% s 10%
q50% 960% > 470% » 480%» Qoo Of the obtained distribution, and we sat= g5y, k2 = q1o%,

ks = qi5%, etc. Now, for each C-flow we can describefjil (approximate) distribution as

5The quantiley;y, of a random variablé is the valueg for which P(X < q) = 1%.

103

a vector of 13 elements, where each elemeapresents the number of timigd assumed
a value within the corresponding interv@i_,, k;]. We also apply the same algorithm for
ppf, bpp, andbps and therefore we map each C-floywnto a pattern vectay; of d = 52 el-
ements. Figure 23 shows the scaled visiting pattern extdorm the same C-flow shown

in Figure 22.

25 T T T T T T T T T T T T T 18

20r

15-

flows
flows

o N S (o)) ©
T T T T

101

1 2 3 45 6 7 8 9 1011 12 13 12 3 45 6 7 8 9 1011 12 13

(a) Scaled fph (b) Scaled ppf

flows
flows

o N S 2] [e2)
T T T T

1 2 3 45 6 7 8 9 1011 12 13 1 2 3 45 6 7 8 9 1011 12 13

(c) Scaled bpp (d) Scaled bps

Figure 23: Scaled visit pattern (shown in distribution) @ogl e for the same client in
Figure 22.

5.2.3.2 Two-step Clustering

Since bots belonging to the same botnet share similar beh@om both the communica-
tion and activity points of view) as we discussed before,aljective is to look for groups
of C-flows that are similar to each other. Intuitively, pattgectors that are close to each
other inR? represent C-flows with similar communication patterns @e@plane. For ex-

ample, suppose two bots of the same botnet connect to twaretiff C&C servers (because

104

O step 1

—step 2

Figure 24: Two-step clustering of C-flows.

some botnets use multiple C&C servers). Although the canmes from both bots to the
C&C servers will be in different C-flows because of differeatirce/destination pairs, their
C&C traffic characteristics should be similar. That isRify these C-flows should be found
as being very similar. In order to find groups of hosts thateskamilar communication pat-
terns, we apply clustering techniques on the dat&set {p; = F'(¢;)}i=1., Of the pattern
vector representations of C-flows. Clustering techniquefopm unsupervised learning.
Typically, they aim at finding meaningful groups of data gsim a given feature spade
The definition of “meaningful clusters” is application-agment. Generally speaking, the
goal is to group the data into clusters that are both compatieell separated from each
other, according to a suitable similarity metric definedhe teature spade [55].

Clustering C-flows is a challenging task beca|f3g the cardinality ofD, is often large
even for moderately large networks, and the dimensiondliy the feature space is also
large. Furthermore, because the percentage of machinesatwark that are infected by
bots is generally small, we need to separate the few boatetied C-flows from a large
number of benign C-flows. All these make clustering of C-flaxesy expensive.

In order to cope with the complexity of clustering®f we solve the problem in several
steps (currently in two steps), as shown in a simple form gufé 24. At the first step,
we perform coarse-grained clustering on a reduced feapaee®R? , with ' < d, using a

simple (i.e., non-expensive) clustering algorithm (wel @¥plain below how we perform

105

dimensionality reduction). The results of this first-stéystering is a se{C;},—1 -, of 1
relatively large clusters. By doing so we subdivide the skett® into smaller datasets (the
clustersC!) that contain “clouds” of points that are not too far from leather.

Afterwards, we refine this result by performing a secong-siestering on each dif-
ferent datasef; using a simple clustering algorithm on the complete desonpof the
C-flows inR? (i.e., we do not perform dimensionality reduction in theset:step cluster-
ing). This second step generates a sef,afmaller and more precise clustérg’},—; ., .

We implemented first- and second-step clustering usingXhmeans clustering al-
gorithm [75]. X-means is an efficient algorithm based BAmeans [55], a very popular
clustering algorithm. Different fromk-means, theX-means algorithm does not require the
user to choose the numb&rof final clusters in advanceY-means runs multiple rounds of
K-means internally and performs efficient clustering vdlaausing the Bayesian Infor-
mation Criterion [75] in order to compute the best valudwfX-means is fast and scales
well with respect to the size of the dataset [75].

For first-step (coarse-grained) clustering, we reduce imemksionality of the feature
space fromi = 52 features (see Section 5.2.3.1) info= 8 features by simply computing
the mean and the variance of the distributionfa, ppf, bpp, andbpsfor each C-flow.
Then we apply theX-means clustering algorithm on the obtained represemtatfoC-
flows to find the coarse-grained clust¢€s},—; ,,. Since the size of the clustef§;},—; .,
generated by first-step clustering is relatively small, &e now afford to perform a more
expensive analysis on each Thus, for second-step clustering, we use all dhe: 52
available features to represent the C-flows, and we applytheeans clustering algorithm
to refine the results of first-step clustering.

Of course, since unsupervised learning is a notoriousliycdlit task, the results of
this two-step clustering algorithm may still be not perfe&s a consequence, the C-flows
related to a botnet may be grouped into some distinct clsistenich basically represent

sub-botnets Furthermore, a cluster that contains mostly botnet ordre-flows may

106

also contain some “noisy” benign or botnet C-flows, respetti However, we would
like to stress the fact that these problems are not nechseatical and can be alleviated
by performing correlation with the results of the activilane (A-plane) clustering (see
Section 5.2.5).

Finally, we need to note that it is possible to bootstrap tlustering from A-plane
logs. For example, one may apply clustering to only thosdshiteat appear in the A-
plane logs (i.e., the suspicious activity logs). This magaglly reduce the workload of
the C-plane clustering module, if speed is the main concgimilarly, one may bootstrap
the A-plane correlation from C-plane logs, e.g., by momigonly clients that previously
formed communication clusters, or by giving monitoringfprence to those clients that
demonstrate some persistent C-flow communications (assgpinotnets are used for long-

term purpose).
5.2.4 A-plane Clustering

In this stage, we perform two-layer clustering on activiigs. Figure 25 shows the clus-

tering process in A-plane. For the whole list of clients thatform at least one malicious

Cluster according
to activity features

Cluster according Scan cluster 1
to activity type scan activity P
Scan cluster n
Client list spam activity
with
malicious binary
activity downloading
exploit
activity

Figure 25: A-plane clustering.

activity during one day, we first cluster them according ®types of their activities (e.qg.,
scan, spam, and binary downloading). This is the first lajestering. Then, for each

activity type, we further cluster clients according to spea@ctivity features (the second

107

layer clustering). For the scan activity, features coutdude scanning ports, that is, two
clients could be clustered together if they are scanningstimee ports. Another candi-
date feature could be the target subnet/distribution, @igether the clients are scanning
the same subnet. For spam activity, two clients could beaeied together if their SMTP
connection destinations are highly overlapped. This migiitbe robust when the bots
are configured to use different SMTP servers in order to edatiection. One can further
consider the spam content if the whole SMTP traffic is cajptul® cluster spam content,
one may consider the similarity of embedded URLs that arg Megly to be similar with
the same botnet [125], SMTP connection frequency, contandgy, and the normalized
compression distance (NCD [14,117]) on the entire emaiidsdFor outbound exploit
activity, one can cluster two clients if they send the sanpe tyf exploit, indicated by the
Snort alert SID. For binary downloading activity, two clisrould be clustered together if
they download similar binaries (because they download frimensame URL as indicated
in the command from the botmaster). A distance function betwtwo binaries can be any
string distance such as DICE used in [48].

In our current implementation, we cluster scanning adgisiaccording to the destina-
tion scanning ports. For spam activity clustering, becdabsee are very few hosts that
show spamming activities in our monitored network, we synguster hosts together if
they perform spamming (i.e., using only the first-layer tdusg here). For binary down-
loading, we configure our binary downloading monitor to captonly the first portion
(packet) of the binary for efficiency reasons (if necessagy,can also capture the entire
binary). We simply compare whether these early portionfefltinaries are the same or
not. In other words, currently, our A-plane clustering iemplentation utilizes relatively

weak cluster features. In the future, we plan to implemenstering on more complex

In an extreme case that bots update their binaries fronrdiffdJRLs (and the binaries are packed to be
polymorphic thereby different from each other), one shaulgack the binary using tools such as Polyun-
pack [87] before calculating the distance. One may alscctlr@pply normalized compression distance
(NCD [14,117]) on the original (maybe packed) binaries.

108

feature sets discussed above, which are more robust agaasbn. However, even with
the current weak cluster features, BotMiner already demnatezl high accuracy with a low

false positive rate as shown in our later experiments.
5.2.5 Cross-plane Correlation

Once we obtain the clustering results from A-plane (agéisipatterns) and C-plane (com-
munication patterns), we perform cross-plane correlafidre idea is to cross-check clus-
ters in the two planes to find out intersections that reirdac¢idence of a host being part
of a botnet. In order to do this, we first compute a botnet setg for each host: on
which we have witnessed at least one kind of suspiciousigctiWe filter out the hosts
that have a score below a certain detection threstadahd then group the remaining most
suspicious hosts according to a similarity metric that $akéo account the A-plane and
C-plane clusters these hosts have in common.

We now explain how the botnet score is computed for each host.// be the set
of hosts reported in the output of the A-plane clustering ubedandh € H. Also, let
A" = {A;}ii ., be the set ofn;, A-clusters that contain, andC™ = {C;}i—1.,, be

the set ofn;, C-clusters that contaih. We compute the botnet score foras

_ , VAN A (AN Gy
s = > wlu(A)Fr+ D wd) ®3)

i ik
§>i
t(Ai)#t(Ay)

whereA;, A; € A® andCy, € CW, t(4;) is the type of activity cluster, refers to (e.g.,
scanning or spamming), and A;) > 1 is anactivity weightassigned to4;. w(A4;) assigns
higher values to “strong” activities (e.g., spam and expland lower values to “weak”
activities (e.g., scanning and binary download).

A hosth will receive a high score if it has performed multiple typdsospicious ac-
tivities, and if other hosts that are clustered witlalso show the same multiple types of
activities. For example, assume tigperformed scanning and then attempted to exploit a

machine outside the monitored network. L&tbe the cluster of hosts that were found to

109

perform scanning and were grouped withn the same cluster. Also, let; be a cluster
related to exploit activities that includésand other hosts that performed similar activi-
ties. A larger overlap betweedA; and A, would result in a higher score being assigned
to h. Similarly, if » belongs to A-clusters that have a large overlap with C-ehgstthen
it means that the hosts clustered together wighare similar activities as well as similar
communication patterns.

Given a predefined detection threshé)dve consider all the hostsc H with s(h) > 6
as (likely) bots, and filter out the hosts whose scores do xa#exid. Now, letB C H
be the set of detected botd(®) = {A;},_, .., be the set of A-clusters that each contains
at least one bot € B, andC'® = {C;};_,.,., be the set of C-clusters that each contains
at least one bot € B. Also, letK® = A® U B = (K"},y (nping be an
ordered union/set of A- and C-clusters. We then describle leait: € B as a binary vector
b(h) € {0, 1K1 where the-th element; = 1if h € K*, andb; = 0 otherwise. Given

this representation, we can define the following similaiween boté, andh; as

mp mp+npg
sim(hi hy) =Y I =b)+1(> 10 =b)) > 1), 4)
k=1 k:mB—i-l

where we usé) = b(h;) andbl) = b(h;), for brevity. I(X) is the indication function,
which equals to one when the boolean argumgnis true, and equals to zero wheh

is false. The intuition behind this metric is that if two h®stppear in the same activity
clusters and in at least one common C-cluster, they shouttliseered together.

This definition of similarity between hosts gives us the apynaty to apply hierarchical
clustering. This allows us to build a dendrogram, i.e., a tilee graph (see Figure 26) that
encodes the relationships among the bots. We use the DBwiddin (DB) validation
index [49] to find the best dendrogram cut, which producesntibst compact and well
separated clusters. The obtained clusters group botslir)(satnets. Figure 26 shows a
(hypothetical) example. Assuming that the best cut suggdst the DB index is the one at
height 90, we would obtain two botnets, naméhg, hs, hs}, and{hy, he, hg, ha, hq, h7}.

110

Dendrogram

140
| | |

Height

0O 20 40 60 80 100
1

o

[]

~
k=

1

© (=2} N
< = R

h8
h3

Figure 26: Example of hierarchical clustering for botnet detection.

In our current implementation, we simply set weightA4;) = 1 for all i andé = 0,
which essentially means that we will consider all hosts dipgtear in two different types of
A-clusters and/or in both A- and C-clusters as suspiciondickates for further hierarchical

clustering.

5.3 Experiments

To evaluate our BotMiner detection framework and prototgpstem, we have tested its
performance on several real-world network traffic traceduding both (presumably) nor-

mal data from our campus network and collected botnet data.
5.3.1 Experiment Setup and Data Collection

We set up traffic monitors to work on a span port mirroring akbaoe router at the cam-
pus network of the College of Computing at Georgia Tech. Th#i¢ rate is typically
100Mbps-300Mbps at daytime. We ran the C-plane and A-plaowtors for a continuous
10-day period in late 2007. A random sampling of the netwoake shows that the traffic
is very diverse, containing many normal application protscsuch as HTTP, SMTP, POP,
FTP, SSH, NetBios, DNS, SNMP, IM (e.g., ICQ, AIM), P2P (e@nutella, Edonkey, Bit-
Torrent), and IRC. This serves as a good background to te$tlbe positives and detection

performance on a normal network with rich application pcols.

111

We have collected a total of eight different botnets covgtRC, HTTP and P2P. Ta-

ble 8 lists the basic information about these traces.

Table 8: Collected botnet traces in BotMiner evaluation, coveriRg) HTTP and P2P
based botnets. Storm and Nugache share the same file, satthicst of the whole file are

reported.

Trace Size Duration Pkt Flows Botnet clients| C&C server
Botnet-IRC-rbot 169MB 24h 1,175,083| 180,988 4 1
Botnet-IRC-sdbot 66KB 9m 474 19 4 1
Botnet-IRC-spybot | 15MB 32m 180,822 147,945 4 1
Botnet-IRC-N 6.4MB 7m 65,111 5635 259 1
Botnet-HTTP-1 6MB 3.6h 65,695 2,647 4 1
Botnet-HTTP-2 37MB 19h 395,990 9,716 4 1
Botnet-P2P-Storm 1.2G 24h 59,322,490 5,495,223 13 P2P
Botnet-P2P-Nugache 1.2G 24h 59,322,490| 5,495,223 82 P2P

We re-used two IRC and two HTTP botnet traces introduced &, [@e., V-Spybot,
V-Sdbot, B-HTTP-I, and B-HTTP-II. In short, V-Spybot andSdbot are generated by
executing modified bot code (Spybot and Sdbot [16]) in a fodptrolled virtual network.
They contain four Windows XP/2K IRC bot clients, and lastese¥ minutes. B-HTTP-I
and B-HTTP-Il are generated based on the description of bésled C&C communications
in [53,96]. Four bot clients communicate with a controlledver and execute the received
command (e.g.,spant). In B-HTTP-I, the bot contacts the server periodicallypgat
every five minutes) and the whole trace lasts for about 3.6hda B-HTTP-II, we have
a more stealthy C&C communication where the bot waits a rantime between zero to
ten minutes each time before it visits the server, and thelevtnace lasts for 19 hours.
These four traces are renamed as Botnet-IRC-spybot, BiR@sdbot, Botnet-HTTP-1,
and Botnet-HTTP-2, respectively. In addition, we also gatezl a new IRC botnet trace
that lasts for a longer time (a whole day) using modified Rb@t fource code. Again this
is generated in a controlled virtual network with four Windoclients and one IRC server.
This trace is labeled as Botnet-IRC-rbot.

We also obtained a real-world IRC-based botnet C&C tracewlas captured in the
wild in 2004, labeled as Botnet-IRC-N. The trace contairsuald-minute IRC C&C com-

munications, and has hundreds of bots connected to the IRC $&8ver. The botmaster set

112

the command.“scan. st art al | ”in the TOPIC of the channel. Thus, every bot would
begin to propagate through scanning once joining the chamhey report their successful
transfer of binary to some machines, and also report the imeskthat have been exploited.
We believe this could be a variant of Phatbot [16]. Although ebtained only the IRC
C&C traffic, we hypothesize that the scanning activitieseasy to detect given the fact
that bots are performing scanning commands in order to gaipa Thus, we assume we
have an A-plane cluster with the botnet members because wetwaee if we can still
capture C-plane clusters and obtain cross-plane cowelatsults.

Finally, we obtained a real-world trace containing two P2ihbts, Nugache [64] and
Storm [44,52]. The trace lasts for a whole day, and there ardl@jache bots and 13
Storm bots in the trace. It was captured from a group of hooesypunning in the wild
in late 2007. Each instance is running in Wine (an open soimpéementation of the
Windows API on top of Unix/Linux) instead of a virtual or phgal machine. Such a
set-up is known as winobot [29] and is used by researchemsati botnets. By using a
lightweight emulation environment (Wine), winobots cam hundreds and thousands of
black-box instances of a given malware. This allows one ttigipate in a P2P botnetn
mass Nugache is a TCP-based P2P bot that performs encrypted gnitations on port 8.
Storm, originating in January of 2007, is one of the very fewkn UDP-based P2P bots. It
is based on the Kademlia [68] protocol and makes use of then@tvaetwork [8] to locate
related data (e.g., commands). Storm is well-known as a fymnet with a huge number
of infected hosts [61]. In the implementation of winobotyesal malicious capabilities
such as sending spam are disabled for legality reason, tausmwnot observe spam traffic
from the trace. However, we ran a full version of Storm on a Y¥&ed honeypot (instead
of Wine environment) and easily observed that it kept sem@drhuge amount of spam
traffic, which makes the A-plane monitoring quite easy. &nly, when running Nugache
on a VM-based honeypot, we observed scanning activity to drecause it attempted

to connect to its seeding peers but failed a lot of times (b&edhe peers may not be

113

available). Thus, we can detect and cluster A-plane aigs/for these P2P botnets.
5.3.2 Evaluation Results

Table 9 lists the statistics for the 10 days of network dataigexl to validate our detection
system. For each day there are around 5-10 billion packé&l® @nd UDP) and 30-100
million flows. Table 9 shows the results of several stepstefifilg. The first step of filtering
(filter rule F1) seems to be the most effective filter in terms of data voluadkiction.
F1 filters out those flows that are not initiated from internastsoto external hosts, and
achieves about 90% data volume reduction. The is becaudefitbe flows are within the
campus network (i.e., they are initiated from internal Bdstvards other internal hosts).
F2 further filters out around 0.5-3 million of non-completedgtablished flowd=3 further
reduces the data volume by filtering out another 30,000 fléMiter applying all the three
steps of filtering, there are around 1 to 3 million flows left day. We converted these
remaining flows into C-flows as described in Section 5.2.8| @lntained around 40,000

TCP C-flows and 130,000 UDP C-flows per day.

Table 9: C-plane traffic statistics, basic results of filtering, anfld@vs in BotMiner eval-

uation.
Trace Pkts Flows Filtered byF1 Filtered byF2 Filtered byF3 Flows after filtering C-flows (TCP/UDP)
Day-1 5,178,375,514 23,407,743 20,727,588 939,723 40,257 1,700,175 66,981 /132,333
Day-2 7,131,674,165 29,632,407 27,861,853 533,666 25,758 1,211,130 34,691 /96,261
Day-3 9,701,255,613 30,192,645 28,491,442 513,164 24,329 1,163,710 39,744 /94,081
Day-4 14,713,667,172| 35,590,583 33,434,985 600,901 33,958 1,520,739 73,021/167,146
Day-5 11,177,174,133| 56,235,380 52,795,168 1,323,475 40,016 2,076,721 57,664 /167,175
Day-6 9,950,803,423 75,037,684 71,397,138 1,464,571 51,931 2,124,044 59,383/176,210
Day-7 10,039,871,506| 109,549,192 105,530,316 1,614,158 56,688 2,348,030 55,023 /150,211
Day-8 11,174,937,812| 96,364,123 92,413,010 1,578,215 60,768 2,312,130 56,246 /179,838
Day-9 9,504,436,063 | 62,550,060 56,516,281 3,163,645 30,581 2,839,553 25,557 /164,986
Day-10 | 11,071,701,564| 83,433,368 77,601,188 2,964,948 27,837 2,839,395 25,436/ 154,294

We then performed two-step clustering on C-flows as destrib&ection 5.2.3. Ta-
ble 10 shows the clustering results and false positives feurof clusters that are not
botnets). The results for the first 5 days are related to bR &and UDP traffic, whereas
in the last 5 days we focused on only TCP traffic.

It is easy to see from Table 10 that there are thousands aisieck generated each day.
In addition, there are several thousand activity logs gaedrfrom A-plane monitors. Since

we use relatively weak monitor modules, it is not surprighmgt we have this many activity

114

Table 10: C-plane and A-plane clustering results in BotMiner evaarat

Trace Step-1 C-clusters| Step-2 C-clusters|| A-plane logs | A-clusters || False Positive Clusters FP Rate
TCP/UDP

Day-1 1,374 4,958 1,671 1 0 0 (0/878)
Day-2 904 2,897 5,434 1 1 0.003 (2/638)
Day-3 1,128 2,480 4,324 1 1 0.003 (2/692)
Day-4 1,528 4,089 5,483 4 4 0.01 (9/871)
Day-5 1,051 3,377 6,461 5 2 0.0048 (4/838)
TCP only

Day-6 1,163 3,469 6,960 3 2 0.008 (7/877)
Day-7 954 3,257 6,452 5 2 0.006 (5/835)
Day-8 1,170 3,226 8,270 4 2 0.0091 (8/877)
Day-9 742 1,763 7,687 2 0 0(0/714)
Day-10 712 1,673 7,524 0 0 0 (0/689)

logs. Many logs report binary downloading events or scagactivities. We cluster these
activity logs according to their activity features. As exiped earlier, we are interested
in groups of machines that perform activities in a similaoi@inated way. Therefore, we
filter out the A-clusters that contain only one host. This@efiltering rule allows us to
obtain a small number of A-clusters and reduce the overak faositive rate of our botnet
detection system.

Afterwards, we apply cross-plane correlation. We assuraethie traffic we collected
from our campus network is normal. In order to verify thisuaeption we used state-of-
the-art botnet detection techniques like BotHunter [4&] BotSniffer [48]. Therefore, any
cluster generated as a result of the cross-plane cormelisticonsidered asfalse positive
cluster It is easy to see from Table 10 that there are very few suse fabsitive clusters
every day (from zero to four). Most of these clusters contaily two clients (i.e., they
induce two false positives). In three out of ten days no falssitive was reported. In
both Day-2 and Day-3, the cross-correlation produced dse faositive cluster containing
two hosts. Two false positive clusters were reported in elaghfrom Day-5 to Day-8. In
Day-4, the cross-plane correlation produced four falsétigexlusters.

For each day of traffic, the last column of Table 10 shows theefpositive rate (FP
rate), which is calculated as the fraction of IP addresgasrted in the false positive clus-

ters over the total number of distinct normal clients apipggin that day. After further

115

analysis we found that many of these false positives areechlog clients performing bi-
nary downloading from websites not present in our whitellstpractice, the number of
false positives may be reduced by implementing a betterpigavnloading monitor and
clustering module, e.g., by capturing the entire binary padorming content inspection
(using either anomaly-based detection systems [88] oasige-based AV tools).

In order to validate the detection accuracy of BotMiner, wertaid botnet traffic to
normal traffic. We consider one botnet trace at a time andl@yérto the entire normal
traffic trace of Day-2. We simulate a near-realistic scanlyi constructing the test dataset
as follows. Letn be the number of distinct bots in the botnet trace we want tslay to
normal traffic. We randomly selegatdistinct IP addresses from the normal traffic trace and
map them to the IP addresses of the bots. That is, we replacéBrof a normal machine
with the 7 P; of a bot. In this way, we obtain a dataset of mixed normal artddidraffic
where a set ofi machines show both normal and botnet-related behaviote Tdbreports

the detection results for each botnet.

Table 11: Botnet detection results using BotMiner.

Botnet Number of Bots | Detected?| Clustered Bots| Detection Rate| False Positive Clusters/Hosts FP Rate
IRC-rbot 4 YES 4 100% 1/2 0.003
IRC-sdbot 4 YES 4 100% 1/2 0.003
IRC-spybot 4 YES 3 75% 1/2 0.003
IRC-N 259 YES 258 99.6% 0 0
HTTP-1 4 YES 4 100% 1/2 0.003
HTTP-2 4 YES 4 100% 1/2 0.003
P2P-Storm 13 YES 13 100% 0 0
P2P-Nugache 82 YES 82 100% 0 0

Table 11 shows that BotMiner is able to detect all eight bistné/e verified whether
the members in the reported clusters are actually bots oiFeo®6 out of 8 botnets, we ob-
tained 100% detection rate, i.e., we successfully idedtdiethe bots within the 6 botnets.
For example, in the case of P2P botnets (Botnet-P2P-NugatieBotnet-P2P-Storm),
BotMiner correctly generated a cluster containing all tbénet members. In the case of
Botnet-IRC-spybot, BotMiner correctly detected a clusiebots. However, one of the
bots belonging to the botnet was not reported in the clusteich means that the detector

generated a false negative. Botnet-IRC-N contains 259ksits. BotMiner was able to

116

identify 258 of the bots in one cluster, whereas one of the vais not detected. Therefore,
in this case BotMiner had a detection rate of 99.6%.

There were some cases in which BotMiner also generatedefalstive cluster con-
taining two normal hosts. We verified that these two normaksian particular were also
responsible for the false positives generated during thé/ais of the Day-2 normal traffic
(see Table 10).

As we can see, BotMiner performs quite well in our experimgsihowing a very high

detection rate with relatively few false positives in read¢ld network traces.

5.4 Limitations and Potential Solutions

Like any intrusion/anomaly detection system, BotMiner s perfect or complete. It can
have false positives similar to the cases of BotSniffer beeahey both use horizontal
correlation. It is also likely that once adversaries know detection framework and im-
plementation, they might find some ways to evade detectign, ley evading the C-plane
and A-plane monitoring and clustering, or the cross-plasreetation analysis. We now

address these limitations and discuss possible solutions.
5.4.1 Evading C-plane Monitoring and Clustering

Botnets may try to utilize a legitimate website (e @oogl e) for their C&C purpose in

attempt to evade detection. Evasion would be successfhisicase if we whitelisted such
legitimate websites to reduce the volume of monitored traiffid improve the efficiency of
our detection system. However, if a legitimate website,Gagygl e, is used as a means to
locate a secondary URL for actual command hosting or binawntbading, botnets may
not be able to hide this secondary URL and the correspondimgrainications. Therefore,
clustering of network traffic towards the server pointed g secondary URL will likely

allow us to detect the bots. Also, whitelisting is just aniopal operation. One may easily
choose not to use whitelisting to avoid such kind of evasttenapts (of course, in this case

one may face the tradeoff between accuracy and efficiency).

117

Botnet members may attempt to intentionally manipulate temmunication patterns
to evade our C-plane clustering. The easiest thing is tockwid multiple C&C servers.
However, this does not help much to evade our detection kecswch peer communica-
tions could still be clustered together just like how we tBu$2P communications. A more
advanced way is to randomize each individual communicataitern, for example by ran-
domizing the number of packets per flow (e.g., by injectingdian packets in a flow),
and the number of bytes per packet (e.g., by padding randdes bya packet). However,
such randomization may introduce similarities among botmembers if we measure the
distribution and entropy of communication features. Algos randomization may raise
suspicion because normal user communications may not heverandomized patterns.
Advanced evasion may be attempted by bots that try to mineicéimmunication patterns
of normal hosts, in a way similar to polymorphic blendingaakts [38]. Furthermore, bots
could use covert channes [2] to hide their actual C&C comeations. We acknowledge
that, generally speaking, communication randomizatiamiory attacks and covert chan-
nel represent limitations for all traffic-based detectigpr@aches, including BotMiner’s
C-plane clustering technique. By incorporating more deiacfeatures such as content
inspection and host level analysis, the detection systeynmake evasion more difficult.

Finally, we note that if botnets are used to perform multipkks (in A-plane), we may
still detect them even when they can evade C-plane mongain analysis. By using
the scoring algorithm described in Section 5.2.5, we cafoparcross clustering analysis
among multiple activity clusters (in A-plane) to accumal#ite suspicious score needed to
claim the existence of botnets. Thus, we may ewvetrequire C-plane analysis if there is
already astrongcross-cluster correlation among different types of malisiactivities in A-
plane. For example, if the same set of hosts involve sewgpabtof A-plane clusters (e.g.,
they send spams, scan others, and/or download the saméb)néney can be reported
as botnets because those events together are highly suspamd most likely indicating

botnet behavior [46, 48].

118

5.4.2 Evading A-plane Monitoring and Clustering

Malicious activities of botnets are unlikely or relativéigrd to change as long as the bot-
master wants the botnets to perform “useful” tasks. Howdkierbotmaster can attempt to
evade BotMiner’s A-plane monitoring and clustering in saeVevays.

Botnets may perform very stealthy malicious activities idey to evade the detection
of A-plane monitors. For example, they can scan very sloelg.(send one scan per hour),
send spam very slowly (e.g., send one spam per day). Thigvatle our monitor sensors.
However, this also puts a limit on the utility of bots.

In addition, as discussed above, if the botmaster commaaas leotrandomly and
individually to perform different task, the bots are not different froraypous generations
of isolated, individual malware instances. This is unkkdie way a batetis used in
practice. A more advanced evasion is to differentiate this had avoid commanding
bots in the same monitored network the same way. This wilseadditional effort and
inconvenience for the botmaster. To defeat such an evasiercan deploy distributed
monitors on the Internet to cover a larger monitored space.

Note, if the botmaster takes the extreme action of randomliridividualizing both the
C&C communications and attack activities of each bot, thersé bots are probably not
part of a bohet according to our specific definition because the bots are edbiming
similar/coordinated commanded activities. Orthogonalhehorizontal correlationap-
proaches such as BotMiner to detect anagtwe can always use complementary systems
like BotHunter [46] that examine the behavior historydigtincthost for a dialog (vertical)

correlation-based approach to detiectividual bots.
5.4.3 Evading Cross-plane Analysis

A botmaster can command the bots to perform an extremelye@kask (e.g., delayed for
days after receiving commands). Thus, the malicious dietsvand C&C communications

are in different days. If only using one day’s data, we mayh®able to yield cross-plane

119

clusters. As a solution, we may use multiple-day data ansisccbeck back several days.
Although this has the hope of capturing these botnets, it alsy suffer from generating
more false positives. Clearly, there is a tradeoff. The lastier also faces the tradeoff
because a very slow C&C essentially impedes the efficienayoirirolling/coordinating
the bot army. Also, a bot-infected machine may be discomaeirtbm the Internet or be
powered off by the users during the delay and become unblaiiathe botmaster.

In short, while it is possible that a botmaster can find a wagxmloit the limitations of
BotMiner, the convenience or the efficiency of botnet C&C #redutility of the botnet also
suffer. Thus, we believe that our protocol- and structadependent detection framework
represents a significant advance in botnet detection. Ifubuire work, we will study new
techniques to monitor/cluster communication and actipig§terns of botnets, and these

techniques are intended to be more robust to evasion atempt

5.5 Summary

Botnet detection is a challenging problem. In this chapter,proposed a novel network
anomaly-based botnet detection system that is indepemdéhé protocol and structure
used by botnets. Our system exploits the essential defiratial properties of botnets, i.e.,
bots within the same botnet will exhibit similar C&C commaation patterns and similar
malicious activity patterns. In our experimental evaloiaton many real-world network
traces, BotMiner shows excellent detection accuracy oowatypes of botnets (including
IRC-based, HTTP-based, and P2P-based botnets) with a exrfalse positive rate on
normal traffic. BotMiner is promising because it can pot&htiresist the evolution and

changes in botnet C&C techniques in the future.

120

CHAPTER VI

BOTPROBE: CAUSE-EFFECT CORRELATION-BASED BOTNET
C&C DETECTION USING ACTIVE TECHNIQUES

We have introduced BotHunter, BotSniffer, and BotMinere$é three systems use a pas-
sive strategy to monitor the network traffic. A limitationsich a passive approach is the
relatively longer time in collecting enough evidence fotadtion. For example, BotMiner
is an offline correlation technique that performs analysisally on one day’s C-plane
data. BotSniffer is quicker than BotMiner, but generallyymaquire observing several
rounds/instances of message/activity responses for énoufidence of spatial-temporal
correlationt BotHunter tracks the bot infection dialog and requires olieg multiple
stages. The main reason for the aforementioned systemka@ teelatively long time for
detection is because thegssivelywait to observe enough events/evidences. It is possible
that these events may occur infrequently. For example rfoR&-based botnet, the actual
C&C interaction is rare because the botmaster cannot alb@gsline to command the bot
army.

In this chapter, we study botnet detection using activertegles toactively collect
evidences and thereby shorten the monitor and detecti@) &ind present a new botnet de-
tection system, BotProbe. We want to answer the followingstjons: Assume we observe
only one round of botnet C&C interactidrgan we still detect bots with a high probabil-
ity? What if we observeeroround of interaction? We will show that BotProbe can achieve
the detection goal for many real-world botnets that usetititatike C&C protocols such

as IRC, and improve the effectiveness and efficiency condp@rexisting techniques in

Lif there are enough bots monitored, BotSniffer only needsbserve one round.
20ne round of C&C interaction is defined as a typical commdmeresponse interaction. We further
clarify this command-response pattern of botnet C&C antbuartypes of response in Section 6.1.

121

many cases.
Key Observation: A typical way to detect bots by observing one C&C communarati
interaction is to use a signature-based approach. Howawer,an approach is complicated
by a recent trend among bots to use an obfuscated (obscur@)cGBamunication. In this
chapter, we explore the feasibility of usiagtivetechniques to assist with the C&C detec-
tion challenge. We posit that instead of passively inspgativo-way network flows, one
could engage in the active manipulation of selected susjgcsessions to better identify
botnet dialog. Our detection strategy, which we ¢altnet probingis based on two ob-
servations. First, a typical botnet C&C interaction hasemctcommand-response pattern,
and thereby a stateless bot will tend to behave deternaalbfi to dialog replays, whereas
interaction with a human-controlled end point will be notatministic. Second, bots are
pre-programmedo respond to the set of commands they receive, and unlikehsnbots
have limited tolerance for typographical errors in conaéons (aka the Turing test [101]).
New Approach and System: In this work, we focus on a specific class of botnets us-
ing chatting-like C&C protocols such as IRC, which is the ineislely used C&C protocol
in present botnets. Based on the above observations, wéogexeset of active prob-
ing techniques to detect stateless botnet communicatiegardless of whether the botnet
communications are protected using obfuscation. At a flesiag, these active techniques
may be aggressive and controversial because of the irdaderthey may introduce to
normal benign communications/chatting. While a legitien@ncern, we propose to ame-
liorate this interference in multiple ways. First, we prbia set of candidate filters that
use heuristics to filter out a large class of well-behavedeotions. Second, we provide
a hypothesis testing framework that enables network adtnators to tune the level of ex-
pected interference with detection rates. Finally, we ardpat limited interference might
be acceptable in pure IRC-like chatting channels on whictritical applications are built,

and certain deployments such as military scenarios, pdatiy if users are educated about

3Examination of popular bot source code and binaries revieatsnost bot communications are stateless.

122

the presence of such probing monitors. We develop the Bb&Ppoototype system to
demonstrate this active technique. By actively probinghbts for several times, we can
accumulate enough evidence of cause-effect correlatiosecbby the command-response
pattern of botnet C&C. We only need to observe one or even menod of actual C&C
interaction before probing. Thus, we can greatly shorterditection time compared to a
passive approach.

Contributions:

e We propose active botnet probing based on cause-effealaton as a novel ap-

proach to complement existing botnet C&C detection.

e We present a hypothesis testing framework for detectingrdenistic communica-

tion patterns. This helps us to achieve bounded false pesitid false negative rates.

e We develop BotProbe, a prototype system implementatiorhefftamework that
validates our approach with contemporary IRC-based batls as Sdbot, Phatbot,
Rbot, RxBot, Agobot, Wargbot, and IRCBot.

e We show with a real-world example that BotProbe can alsstgsih automating a

chosen-ciphertext attack to break the encryption of soneeh&&C.

e We conduct a real user study on approximately 100 users toaesafalse positive

rates.

Chapter organization: In Sections 6.1, we present the problem statement and our
assumptions. In Section 6.2, we provide an overview of tbhitacture, and describe our
probing techniques and detection algorithms. In Secti@) e present our prototype
system and experimental results with botnet probing. Weuds concerns and limitations

in Section 6.4 and summarize our findings in Section 6.5.

123

6.1 Problem Statement and Assumptions

A unique property of a botnet that separates it from othewaad families is the command
and control (C&C) channel, which the botmaster uses to comarttze bot army to perform
different tasks. The detection of this C&C channel is fundatal to the identification of
compromised victims and tear down of C&C servers. Althoughdevelopers have the
option of devising novel protocols for C&C, most contempgitaot C&C communications
are overlaid onto existing client-server protocols suclR3. This prevailing tendency to
overlay botnet C&Cs omxistingprotocols may have several plausible explanation¥: (
existing intrusion detection systems are trivial to evaglg.(using obfuscation schemes
discussed shortly) and have not provided sufficient ingerfor botnets to innovatep)
existing protocols provide greater flexibility in using dable server software and installa-
tions; () existing protocols invoke less suspicion than neoteritqaols.

In this work, we limit our focus on botnet C&Cs usikatting-likeprotocols such as
IRC and Instant Messaging [72], which count for a large portif contemporary botnets.
IRC is still the most prevailing communication channel agn@otnets. Except for a few
HTTP botnets (e.g., Bobax [96]) and P2P botnets (e.g., Nug§@4] and Storm [44]),
most of the discovered haétsare IRC-based. In [72], the feasibility of using some instan
messaging protocols such as AIM is also discussed.

While botnets still chooses to use chatting-like commuiocg(e.g., IRC) as the under-
lying C&C protocol, the message/content portion of the evsations can be obfuscated
(e.g., using a custom dialect, a foreign language, or a reaieeyption technique such as
simple XOR, substitution or hashing) to evade signatusetantrusion detection systems
and to protect botnet C&Cs from being spied by honeypot-dhaseking approaches [82].
Actually, we have observed a lot of new generation of IRC btsttilizing such obscure
C&Cs (real-world examples will be showed in Section 6.3)isErg botnet detection ap-
proaches rely heavily on signatures, which are of limiteldeavhen even unobfuscated

C&C protocols and key word exchanges are easily and rapltdyeal. The need fonew

124

methods to detect both obfuscated and rapidly changing G&@htunication channels is
dire.

Behavior-based detection approaches such as our BotkiBot&niffer, and BotMiner
can detection botnets through behavior anomaly. Nevesbekls discussed earlier, sys-
tems like BotHunter still use signature-based componan€C&C communication detec-
tion. More importantly, these passive monitoring systemslly require a relatively longer
time to observe sufficient communication/activity/beloafor accurate detection. Real-
world IRC-based botnet C&C communications, however, Uguwan be quite, i.e., they
have infrequent C&C interactions because the botmastentigalways online. Our goal
here is to evaluate the feasibility of detecting botnet C&amnels usingctive network
traffic inspection strategies, given observing only liditeumber of C&C interactions,
thereby to shorten the detection time. By active, we meanviieaassess traffic for sus-
picious traffic sessions, which may lead us to dynamicaljganpackets that will probe
the internal client to determine whether that side of the mamicating/chatting session is
being managed by a human or a bot.

To achieve the goal, first we need to examineitivariant that can be used to differ-
entiate a bot from human chatting. We observe that botp@-g@rogrammed to respond
to certain received commands, and these responses arsteohsicross command repe-
tition. Different from normal human chatting, the above eoamd-response pattern has
a strong cause-effect correlation, i.e., the command sahseresponse in a deterministic
way. This is the key intuition we use in designing our aldorit In addition, we observe
that bots are different from humans in tolerating typogreglrerrors, i.e., if the command
is altered by even one character, bots are not likely to gottee command properly. This
auxiliary intuition helps us design one of our detectioroaihms. Before introducing our
algorithms and system in detail, we present the adversadgmioe., or more precisely, the
detailed communication patterns that we seek to identifgrwadversaries communicate

with compromised machines inside our network perimeter.

125

Adversary Assumption: Botnet C&C communications are well-structured duplex flows
similar to a command-response protocaol, i.e., a bot shaddand when it receives a pre-
defined command in a reasonable time. The network-levebrespof a bot to an (ob-
fuscated) command might be either message response atyasponse, or both [48]. A
typical example of message response is an BRCVMSGmessage. For example, when the
botmaster issues a $ysi nf 0” command? each bot replies with Rl VM5G message
telling its host system information, such as CPU, memorg,sftware version. There are
three most common activity responses: scan response (otme network scan or DoS
attack), third-party access (e.g., bot connects to a ceaddress to download/update its
binary), and spam response (bot sends spams). For instahen,the botmaster issues a
scanning command (e.g.,8can. st art al |), the bots usually perform network scan-
ning and reply with the scanning progress and/or any newnvicthey have infected. This
involves both an activity response (scan) and a messagenssp One may define other
possible responses, but from our observation of live baadtdns, these aforementioned
types of responses are highly representative and reg@adyuntered.

Fortunately, the assumption of command-response pattadds in almost all exist-
ing botnets, because the botmaster needs the bots to pestorma (malicious) activity,
and usually requires feedback to track the bot-infectedhnacinformation and execu-
tion progress/result from its bot army. Thus, we can obsergesage/activity responses
corresponding to most botnet commands. According to a htdgchnical report [126],
about 53% of botnet commands observed in thousands of @d-WRC-based botnets
are scan-related (for propagation or reconnaissance)landa 44.4% are related to binary
download (for malware update). Also, many HTTP-based hstage primarily used for
sending spam [96]. Thus, for most infections, we can exaaibserve (malicious) activity

responses with a high probability [24].

4We assume the botmaster could obfuscate the C&C channelsisiple encryption or substitution, e.g.,
say ‘hel | 0” instead of “ sysi nfo.”

126

Detection Assumption: We now discuss the design assumptions used in defining our

architecture for actively probing and detecting botnet C&@annels:

¢ Input PerspectiveOur assumed solution will reside at the network egress fama
middlebox), where it can observe all flows that cross the odtwerimeter. Further-
more, the system is in-line with the communication, and hasuthority to inject or

modify inboundpackets, as necessary.

e Chatting Protocol Awarenes®©ur solution incorporates knowledge of the standard
(chatting) protocols that botnets use to overlay their C&Inmunications. For
example, in the case of IRC-based bots, we can comprehenckég@ords and

PRI VMSGmessage exchanges.

e C&C Grammar AgnosticWe do not assume aa priori understanding of the syn-
tax and semantics of the botnet C&C grammar that is overlaigtandard network

protocols.

6.2 Active Botnet Probing: Architecture and Algorithms
6.2.1 Architecture Design

Our botnet C&C detection architecture has two integral congmts, as shown in Figure

27.
Filtering, . .
Protocol matching, HAcg\t/ﬁezirsl?g;%’n
Sampling yp 9

Networli Traffic Networi Traffic

Figure 27: Two-layer architecture of using active techniques for tdgimg botnet C&Cs.

127

The first component performs benign traffic filtering, pratematching (selects proto-
cols often exploited for C&C transmissions, e.g., IRC), od sampling. Thus, it leaves
only a small portion of highly suspicious candidates worhgieeper examination. Benign
(chatting-like) traffic filtering modules can be implemeanhtesing a general traffic feature
vector (e.g., duration of the flow, average bytes per paeket,age bytes per second) sim-
ilar to [59, 66, 98]. Or, in the case of IRC-based C&C detattiwe can use the following

protocol matching policies to perform detection in a podependent fashion:
1. A traffic filter removes non-TCP flows.

2. Port-independent IRC protocols are keyword matched," ®&gCK,” “ USER,” “ PRI VMSG”
This analysis occurs on the first few packets of establist@&e flows (which indicate

the beginning of an IRC session [5]).

3. A volume filter that mainly focuses on infrequent chattlR{ channels (because

overly chatty IRC channels are unlikely to be used for boG%&C).

4. A message filter finds a candidate list of command-like pecRCPRI VVSGand

IRC TOPI C) that can cause client responses.

Once we have completed the above down-selection to our datedflows, we then
focus our analyses on ti€@PI CandPRI VMSGmessage packets, where the overlay C&C
commands/responses typically reside. In addition, onenzamporate any other behavior-
based logic into these filters.

The second component implements what we refer to aBotRrobe analysischeme.
To illustrate the scheme, let us suppose we have a candidspecous IRC session and
we need to further identify whether there is another layeowarlay C&C-like protocol.
We observe a command-then-response-like packet pai.) whereP. is a short packet

from the server, and. is a response from the client immediately after the recgidh

128

P..> We hypothesize that this command-response pattern is frioot iastead of a human.
However, observing only this likely command-response mimot enough to make the
claim, because it could be caused by chahéée want to make sure whether there is truly
a cause-effect correlation between the command and therrespwhich is a distinguishing
feature between botnet C&C and human chatting. To achievddtection goal with high
accuracy, we perform several rounds of active probing amdausequential hypothesis
testing technigue to obtain enough confidence. Next seuatilbdetail the design space of

active probing techniques.
6.2.2 Design Choices of Active Probing Techniques

We investigate the design choices of active probing stieseand illustrate several probing
techniques in Figure 28. This is by no means a complete lisptovides a good coverage
and demonstration of active probing techniques. BotPrabeuse one or a combination of
these techniques.

PO (Explicit-Challenge-Response)An example explicit-validation mechanism is one
in which educated users participate in the BotProbe schemawikgly. For example, a
BotProbe system may prompt users to perform a reverse Ttesigwhen a new IRC
session among two IP addresses is first encountered by BetPrbhe in-line monitor
could request that the internal human IRC participant asitebsite to read and translate
a CAPTCHA [107]. Alternatively, BotProbe can inject a simgduzzle for the internal
participant to solve. Although simple and effective, sudb@hnique requires user aware-
ness, compliance, and tolerance to be successful. We fuideiss our experience of this
technique in an actual user study in Section 6.3.3.

P1 (Session-Replay-Probing).The BotProbe monitor may spoof the address of the

server and insert additional TCP packets that replay thes sgplication commang, to

SSometimes there is no such a message response gackeit rather a activity response. We still uBe
to stand for this activity response.

5The false positive rate can be higher particularliifis only a message response packet because it could
be just a normal prompt chatting message from a human.

129

Serve A
Q Q
- 3)
tme S g ° ¥
3 .

=¥ - g g
Middlebox|\ © o L o g Q
S 3
g\ % e R\ ¥ AW
Client @ ® % resl % resl' ﬁ _
Regular round PO P1 P2
K I
Explicit- Session- Session- e:&;eg: : n
Challenge- Replay- Byte- M'\i/l(?(;]l-(;nl;rgg)?;lg

Response Probing Probing
(a) P0,P1,P2,P4: Active probing by injecting packets in exgsttonnection.

Server
5 - ‘Ll -
time e § ¢ OE 2,
- —
2 ' R R
Middlebox \ © = B \),_/
Client
Regular round Login as
another user

Session-Replay-Probing Session-Byte-Probing

(b) P3: Active probing by establishing new connection.

Figure 28: Example active probing techniques. Hered’ means a modified command
packet,seq’ means modification is needed on the sequence/acknowledgieendo keep
the TCP session.

the client several times. If the remote end point is a bot likely provide responses that
are deterministic (with respect to both content and timing)

P2 (Session-Byte-Probing). The BotProbe monitor may randomly permute certain
bytes of the application commandf the client is a bot, then we expect it to be highly sen-
sitive to modifications of commands and hence to respondréifitly or drop the modified
packet. However, a human user in an IRC chatting channeldioale a higher tolerance
for typographical mistakes in an IRC message. We may repedest as many times as

necessary by interleaving strategies P1 and P2, until we fisficient evidence to validate

’Since many common botnet command names (edgs, . scan) are embedded in the initial bytes
of IRC PRI VMSG or TOPI C message packets, we recommend biasing the byte modifiagorithm to
choose the early bytes with higher probability.

130

our hypothesis. We describe the algorithm (InterleavathBji-Response-Hypothesis) in
more detail in Section6.2.3.

Note that strategies Pland P2 may break existing connsdfyninjecting new pack-
ets) if subsequent C&C communications occur in the same ToiRection. To recover
from this, our in-line botnet probing system should adjustTCP sequence/acknowledge
numbers and checksums to account for the new packets thatimesduced because of
the probes. Also, the above two probing strategies intrediaene amount of interference
into existing sessions at the application level. Fortugatee find that, for our targeted
chatting-like protocols, we have an alternate probingnegpie (P3), which does not dis-
turb existing sessions.

P3 (Client-Replay-Probing). Chat protocols like IRC and IM allow users to directly
message each other. In such instances, we can instantiat® aser that logs into the
channel and sends the observed commang(s) the selected client (pretending to be the
botmaster). By doing this, we do not break existing conoesti but may achieve an effect
similar to that above. Figure 28(b) illustrates this scanar

P4 (Man-In-The-Middle-Probing). The above techniques do not directly intercept a
new command packet. However, in some cases (as discussectiorts.4) such as highly
stateful C&Cs where simple replaying may not work, we caaricegpt thenewcommand,
and launch a man-in-the-middle-like chatting messageiigse.

P5 (Multiclient-Probing). The above techniques discuss probing sessions from a sin-
gle client. However, when there are multiple likely-infedtclients in the monitored net-
work that are communicating with the same C&C server, we ¢stniloute the probes into
multiple clients, and reduce the number of probing roundsi@ed to test our hypothesis,

as briefly discussed in Section 6.4.

131

6.2.3 Algorithm Design for Botnet Detection Using Active Pobing

Based on the active probe techniques, we now describe $sirapde detection algorithms
for isolating deterministic botnet communication patteinom human chatting dialog with
controlled accuracy (i.e., to achieve a desired false pesitegative rate). We will use
a sequential probability ratio testing (SPRT [108]) tecjua, which has been applied in
several other scenarios such as port scan detection [SBatehiffer [48]. To illustrate the
algorithm, we start with a basic description of how to apphypothesis testing framework
using our six probing strategies (P0-P5). We anticipatedhdhe probing strategies can
be iterated through the following testing strategy.

Let us assume that we are given a (suspicious) IRC sessionenant to differentiate
whether it is more likely a botnet C&C channel or a human a¢hatsession. We perform
one or more rounds of PO probing (i.e., inject a challengé&é¢octient, ask the local par-
ticipant (within our network boundary) to solve a puzzle) @Wénotel; as the hypothesis
“botnet C&C,” H, as the hypothesis “normal chat.” Let a binary random vagidabtenote
whether we observe wrongreply for a challenge from the client or not (that I3, = 1
means an incorrect reply). We also denéte= Pr(D = 1|H,),0y = Pr(D = 1|H,).

If the client is a bot, we presunt® ~ 1, assuming that bots are unable to reliably solve
arbitrary puzzles on demand. For a human, such a puzzleyseasnswer, i.e.fy, ~ 0.
If we want to have very high accuracy for the hypothesis (tlanoter, 5 as the false

positive rate and false negative rate we want to achievefangerform several rounds of

_ Pr(Ds,...,.Dn|H1) D

probing. Then, after observingrounds, we get a likelihood ratibd,, = PriDr Do) D

represents our independent identical distribution ().i@bservation result from our client

probe test. We defing,, = In % =3 In ﬁ:gg}g;; To calculate this likelihood

A,,, we are essentially performing a threshold random walk. viakk starts from origin

1-64
1—6o

(0), goes up with step Iengﬂmg—; when D; = 1, and goes down with step lengtn
whenD; = 0. If A,, is greater than a threshold = In % we declaref; to be true,.e.,

it is a botnet C&C. IfA,, is less than another threshald= In %, this indicates a normal

132

IRC dialog. If A, is in betweent; andt, we proceed with additional rounds of testing.
A nice property of this SPRT/TRW algorithm is that it can asl& bounded false positive
and false negative rates as desired, and it usually neegsdelv rounds to reach a deci-
sion [108]. We call our first extension of the algoritfiring-Test-Hypothesisbecause it
uses explicit challenge response. This algorithm even doe®quire observing any actual
botnet C&C interaction.

Similarly, we can adapt the algorithm to use the P1 technigquery round. LetP.
be a suspicious command packet from the server to the clidmteplayP. in each round
and we denoté to indicate whether or not a response from the client is olese\We call
this Single-Binary-Response-Hypothesialgorithm because this test considers the probe
response as a binary outcome. Depending on the responsesee/e{IRCPRI VMSG
message, scanning, spamming, or third-party access)evegdtthe TRW process at differ-
ent scales, becausg 6, (the corresponding probability associated with a bot or &ois
different for different responses. For example, a humavedrnRC session is very unlikely
to perform scanning when receiving a chatting message., WWaignprove our confidence
when we observe a scanning response corresponding to thgedgcommand) message.
If we receive multiple different types of responses coroesjing to the same command,
we choose the one that provides greater confidence (walkgex tep). The exact number
of rounds we need in this case is discussed in the next sedtigyeneral, Single-Binary-
Response-Hypothesis is very effective if the replayed caminpacket is scan,spam or
binary download related. As shown in Section 6.2.4, we magmlyoneextra replay in
addition to the original command, i.e., totally two roundsietect a botnet.

In addition to performing binary response testing, we cath@r evaluate whether the
response isimilar to the previous response observed, because bot respongestrize
perfectly identical across multiple command replays. Wpdtlgesize that for bot C&C
communication, responses to the same command will be the,samvery similar (in

structure and content). We can design a new hypothesisthligothat inspects whether a

133

response is correlated to previous responses using a sadipldistance metric or a DICE
metric as in [48]. We call this extensi@orrelation-Response-Hypothesiglgorithm.

Finally, we introducdnterleaved-Binary-Response-Hypothesisalgorithm. In each
round, we perform interleaved P1 and P2 probing, i.e., y@pdathe original P. packet,
and then replaying a modifiefl. packet. D = 1 denotes the observation of a response
from the replayedP., and no response from modifige). The assertion is that bots will
reliably respond taP., but will not recognize the modified command. This occureeisc
then observed a® = 1. To a human user, these two are similar (a modifieds just
like a typographical error (typo), and in chatting, a typan@mal and generally not a
problem). It is hard to predict how normal users may respohenthey receive these two
replayed IRCPRI VMG messages, but the probability of obtaining repeatableoresys
from replayedP. and no responses from modifigel should diminish with rounds. A
naive assumption is that the human responses to tamperketpace uniformly random,
0o = Pr(D = 1|Hy) = 1/4. In reality, normal users would quickly lose patience upon
receiving multiple similar IRC messages and hence thisgiiity 6, should be lower than
the uniformly random case. Our later user study (in Secti@B§ also confirms thd, is
very low.

One benefit of the Interleaved-Binary-Response-Hyposhaigjorithm is that we can
have ageneralway to detect dhird-party accessesponse and do not rely on content sig-
natures (e.g., PE signature as used in BotHunter [46] tatetg downloading). This has
the advantage when we do not have signatures for detecisg third-party access, e.g.,
the access is not for a PE executable, or the access cormdots not yield a successful
download of a PE executable. We begin by building a suspscamgess set containing ad-
dresses (most likely, HTTP addresses) that appear aftél. et not after the modified..
Then for each subsequent round, we asgigsa 1 if we see an address from the suspicious
set still appear upon replay &f., but not upon sending of the modifiégl.

We have introduced several different detection algorithikeewv we discuss the typical

134

selection of proper algorithms in practice when facinget#ht type of response or differ-
ent combination of responses. We think that for a normal imoshatting, the probability
of performing a certain (malicious) activity response (esgan, spam) is lower than per-
forming a message response. The general principle we nédelioiw here is to choose the
algorithm that favors the response with the lowest prolitgiaihd thereby makes the fewest
probing and the largest walk in the thresholded random walkhe following analysis we
assumeProb(scan) ~ Prob(spam) < Prob(3rd — party — access) < Prob(message)

in the case of a normal chatting client.

If we observe a scan/spam response associated with a con{thanel might be other
responses such as an IRRl VMSGmessage), we chooSengle-Binary-Response-Hypothesis
algorithm on the scan/spam response, and ignore othermespoUsually, we only need
another active probing (using P1) to declare a botnet assihm®ection 6.2.4 and 6.3.2.
It is possible that these scan/spam responses are lonmgglase., we still observe the re-
sponse to the original command after we perform P1 (a reglagenmand). However,
we do not consider this as a problem, because in any way Wwelatdct the bot. Here
our detection performance is at least no worse than the appes that issue alerts when
observing the combination of IRC events and scan eventsaa[d8] and BotHunter [46].

If we observe a third-party access (by matching a PE sigepaissociated with a com-
mand (there might be some message response, but no scanég@nses), we choose
Single-Binary-Response-Hypothegligorithm on the third-party access response.

For the rest combination of responses (e.g., a messagensespad a third-party ac-
cess response without PE signature capturing) or only aagesgsponse, we can choose
Interleaved-Binary-Response-Hypothedgorithm. If there are both a message response
and a third-party access observed, to make a walk in theitdgorwe always pick the type

of response that can make a larger step (third-party ace¢bsicase).

135

6.2.4 Evaluating User Disturbance and Detection Accuracy radeoff

We now describe how the above algorithms can be adaptedde tifd user disturbance
with system performance. For benign IRC chat sessionsayem or modifying some
byte is essentially equivalent to receiving a duplicatesags or receiving a message with
a typo: humans have natural resilience to at least limitediwences of these events. The
Client-Replay-Probing technique, which establishes a session, is even less harmful.
Nevertheless, we acknowledge that active modificationsén LRC sessions may impose
some degree of cost to human users. We leave a more detasieasslion on the legal
concerns of using active techniques in Section 6.4.

As discussed earlier, in order to have a high confidence obtimgsis testing, we may
need/N rounds of probing. If we are concerned about the disturbareeference to nor-
mal users, we could use the number of rounds (packets maodéeayed) by active prob-
ing as a means to quantify the degree of disturbance. Cléaskydisturbance means fewer
rounds, smalle®V, which on the other hand, may affect the performance of tieted-or-
tunately, because of the use of SPRT, the average numbért@imake a decision is quite
small. To produce a botnet C&C declaration, the expectedbeuraf rounds we need is

[108] , ,
— 1-5
E[N|H,] = Bln 7= + (1 —3)In—

SOl G+ (1—6)In =5

Similarly, to produce a human user IRC channel declaratios expected number of

rounds is
(l—a)lnL +alnts

0o In G + (1 — 6p) In {=¢¢

E[N|H0] =

Figure 29 shows the average number of rounds we need to declaormal user (a)
or bot (b). For example, if we set parametéys= 0.99, 6, = 0.15, and our desired false
positive/false negative rates ate= 0.001, 5 = 0.01, then the average number of rounds
to declare a botnet is abot; = 3.7. Likewise, the average number of rounds to declare

a human user is less than 2 for IRC (approximat&ly= 1.3). If we observe some scan

136

-8 6,=0.9,a=0.001
v 6,=0.99,4=0.001
—&— 6,=0.999,0=0.001
-0 6,=0.9,a=0.01
—+ 6,=0.99,0=0.01

-2~ 6,=0.9,a4=0.001
-y~ 6,=0.99,a=0.001
— 6,=0.999,0=0.001
-0~ 6,=0.9,a=0.01
4] 4 6,=0.99,4=0.01

~

(2]

—, | % 6,=0.999,4=0.01 5| % 6,70999.0=0.01
Ly 2
i War

2,

3,

1t ol

0 ‘ ‘ ‘ ‘ ‘ 1@ ‘ ‘ ‘ ‘ ‘

0 0.05 0.1 0.15 0.2 0.25 0 0.05 0.1 0.15 0.2 0.25

e0 eO

(a) Average number of rounds to detect normal(b) Average number of rounds to detect botnet
IRC user. C&C.

Figure 29: Disturbance to normal user and the effect on detection.

response, we can use a lower probabilitygpfe.g.,05«" = 0.01, then it will take less than
two rounds (i.g., one extra replay) to detect bots on average

In practice, our system could be bolstered by an IRC chanhigiist to minimize user

disturbance (i.e., once an IRC server/channel is validateavill not disturb other users for

a certain time window, and the time window could be randodiz€&inally, the BotProbe

strategy should be viewed as one input among a broader seteatt tindicators that can

be applied for detecting internal botnet infections. Faaraple, the results produced by

the BotProbe hypothesis testing framework could be inaaed into systems such as

BotHunter [46], which considers the full set of potentiatiet-related infection indicators,

such as exploit usage, egg download events, and inbounduindumd attack behavior.

6.3 Experimentswith BotProbe
6.3.1 BotProbe: a Prototype Active Botnet Probing System

We have implemented a prototype middlebox system calle@®bie for the purpose of

evaluating our active probing techniques. BotProbe is@manted as a collection of Click

routing elements [60]. Click provides a C++ software frarogwfor packet processing,

with impressive scaling performance and a flexible configomaanguage, that makes it

137

ideal for building software routers and middleboxes.

o}
§e]
c
i
b m—>p
nd
o
(v
<
— =y
% g ks o) 3 & :d:j
= = S > 3 = S
= (o} o e = >3 s
e/ i -g = \»%E»»%E»»%E»M/ :E»»h}’
3 o T g, 2|8 > > 03 %
=P > E—>p = ks a4
FEREIEE g S
= S B -
o
: 5 | S {41

Markl PHeader

{onsponer 14][]

Figure 30: Click configuration for BotProbe. The figure shows a configarafor black-
box testing on existing bot binaries. If BotProbe is deptbgs a middlebox into a real
network, we can remove the IRC Server, SimpleRespondeDal8Responder elements.

The architecture shown in Figure 30 is implemented in 2,50€sl of C/C++ code.
The key elements in Figure 30 that we developed are WatchlR&Matcher, and Ac-
tiveProbe. WatchList is a Click “information” element tHaeps track of live TCP flows
and IRC records. The IRCMatcher uses a WatchList to maisiféomw records and exam-
ines incoming packets to identify IRC flows. The ActivePrabement monitors all IRC
flows, performs active probing if the IRC channel is deemexpmious, and modifies TCP
sequence/acknowledge numbers and checksums when ngcessar

To simplify black-box testing on existing bot binaries, wecsimplemented the follow-
ing elements: 4) an IRCServer element, which plays the role of a simple IR@esg (i)

a SimpleResponder that handles all non-IRC connectionskyoavledging every packet
it receives, andi{i;) a DNSResponder that answers DNS queries with a local agldtes

BotProbe is deployed in-line as a middlebox into a real ndtywave can simply remove

138

these three elements.
6.3.2 In Situ Experimental Evaluation

We evaluate the detection performance in a virtual netwovirenment with several mali-
cious IRC bots including Sdbot, Phatbot, Rbot, RxBot, Agoldargbot, and IRCBot that
we obtained from our bot source code repository and honesaptre in the wild. The
purpose is to test the false negative rate, i.e., how man@€&Qts are missed by BotProbe?
We answer this question usimgsitu VMware testing of real-world bot binaries described
below. We also need to test the false positive rate, i.e., fnequently could normal chat-
ting sessions be mislabeled as botnet C&C using BotProltmipaes. We explore this

through a user study described in Section 6.3.3.
6.3.2.1 Detection Performance and Analysis

We begin our analysis by conducting a seriesno$itu experiments to evaluate the false
negative rate. We proceed by executing the bot in a Window8Rvare guest) instance
and monitoring with BotProbe running on the Linux host maehi Initially, BotProbe
essentially acts as a faithful NAT middlebox interposinigcammunications between the
infected host and the Internet. If the IRCMatcher elemeanidies an IRC session, the
flow will be forwarded to the IRCServer element that handled eesponds to all IRC
requests. The ActiveProbe element resides between thdidt @nd the IRCServer ele-
ment, monitoring chatter and introducing active probegpatapriate time (e.g., when the
channel is idle on a suspicious session). While the IRC8eteenent has the actual botnet
commands, we do not assume the ActiveProbe element knowstm@ands, as BotProbe
runs in the realistic scenario.

Note, in real-world IRC based botnets, we observe most ottimemands are in IRC
TOPI C messages. This is because that botmasters are not onlitie diime. In order
to instruct bots even when they are not online, botmastarallysput the commands in

the TOPI C of the channel. Thus, whenever a bot joins the channel, ituntdlerstand the

139

commands inTOPI C and execute (without authentication). In such cases winemne tis
no PRI VMSG message from the server but client responses are still pealjwe can pre-
sume theTOPI Cis the command and play the probing game by manipulatingreéde
TOPI Cmessages (332). We use this trick in our experiments, inraodiaithfully repli-
cate real-world scenario. In addition, as discussed eanli8ection 6.2.3, BotProbe per-
forms Single-Binary-Response-Hypothesis or InterleaBedhry-Response-Hypothesis al-
gorithm in our experiments depending on what kind of (corabon of) response(s) it
observes.

We evaluate BotProbe on several real-world IRC bots thatbeagrouped into three

classes.

1. Open-source bots with obfuscated communication. Our first case study is an “open
source” (as described in the bot documentation) IRC bogd&lpybot, which was released
in 2003. Being open source, many variants of this bot are errternet, making it one
of the more popular botnet families [16, 40]. Spybot is algoipped with a command en-
cryption option that obfuscates C&C communication. Thegption method implemented
is a simple byte shift scheme. We recompiled the Spybot sowith the encrypt option
enabled and tested the binary using BotProbe.

In evaluation, we configured the IRCServer to issue a setrofieonly used commands
listed in Table 12 (one command in each test). We set the measnof the hypothesis
testing algorithm to bé; = 0.99, 6, = 0.15 giving expected false positive (FP) and false
negative (FN) rates of 0.001 and 0.01, respecti¥éhe set);«*" = 0.01, because the prob-
ability that a normal chatting client has scan responsengthouch lower than an IRC mes-
sage response). Similarly, for a third-party access resgame sefy™ /7"~ — () (2,

We used this parameter setting in our entire experimentthdiest on Spybot, BotProbe

8This 4, is for the case of Interleaved-Binary-Response-Hypostmsimessage response only.

140

took two probes when the command was “scan” (Single-BifRegponse-Hypothesis al-
gorithm was automatically performed), two probes when th@mand was “download”
(Interleaved-Binary-Response-Hypothesis algorithmawaematically performed because
we do not use any PE signature to identify access responmsgjoar probes when using
commands such as “info” and “passwords” (Interleaved-BifResponse-Hypothesis al-

gorithm was automatically performed).

Table 12: BotProbe test on Spybot and Rbot.

Bot Original cmd Obfuscated cmd IRC response Activity response No. rounds
Spybot | info otlu Version:... cpu:... -

passwor ds vgyy}uxjy Error operation failed -
scan 192... yi gt &7?847<>477<4<&79?&7 Portscanner startip:... scan
downl oad http:... ju}trugj &zzv@5oxi . . . downl oad http:... 3rd-party access
Rbot cid - [MAIN]: Bot ID: rxO1. -
.sysinfo - [SYSINFO : [CPU: ... -
.scan 192... - [SCAN]: Port scan started... scan

NBBNDNBD S

2. Bot binaries with clear-text communication. We tested a few other bots, e.g., Phat-
bot, Rbot, Rxbot, Sdbot [16], in our controlled network. hese experiments, C&C ex-
changes are in clear text by default. However, we noticetitieasource code for these
bots includes encryption and decryption functions, shatlecencodings, and support for
polymorphism. It is straightforward to enable the use o$thencryption routines for com-
mand obfuscation. The performance of BotProbe on thesewssdentical to Spybot,

i.e., it took two or four rounds of probes, depending on thac@and.

3. Bot binaries with obfuscated communication. Next, we tested on a recent bot binary
(W32.Wargbot as labeled by Symantec) captured in the wa{l [Bhe botmaster put an en-
crypted command (shown below) in the IROPI Cmessage for bots to execute upon join.
Subsequently, BotProbe automatically performed Singtexy-Response-Hypothesis al-
gorithm, and it took only one extra probe to declare the boabee the bot had background

scanning behavior.

'Q ;\\| ! Q <W Z<Z=B=B=>; P; E; E<[=; <Y=>=: <S<U<W D<U===; ; E<V<[=@WU=B===@G, E<V
<[=@1;ONOEGGNGI HL GOHQMJ; F K D\\=><Y

141

We then enabled Interleaved-Binary-Response-Hypotlaégsithm on the same bot.
Again BotProbe took two total rounds to declare the bot, &isltimes it reported observ-
ing a third-party access response (the bot initiated an HBEF request when it received
the TOPI C command), which was suppressed in the previous test be@uniBPeobe au-
tomatically chose Single-Binary-Response-Hypothestedtobserved scanning behavior
(which yielded a larger walk in TRW than the case observirfgraparty access response,
as discussed in Section 6.2.3). This third-party acceg®rse is interesting because it es-
tablished some mapping between the obfuscated commandhamdtresponding visited
URL. By intentionally changing different portion of the alsitated command and watching
the corresponding URL, we can perform a chosen-ciphertiadlato crack the obfuscation
scheme. BotProbe again demonstrated its extra utility toraating the informed active
probing and collecting the mapping for our analysis, in &ddito detecting the bot. By
interrogating the bot with single byte modifications usirgBrobe we were able to reverse

engineer the encoding scheme used by the bot. The actual aodwafter decoding is

" F|" e http://inmg2. freei magehosting. net/ upl oads/ 03bd27490b. j pg

Here the original obfuscateldQ , (") is likely to be a command prefix and is a
separator between commands. We are unsure about the mexrting translated F”
command, but suspect that™is a download command followed by a URL. Breaking the
encoding/decoding scheme is interesting because it enabl® decode other commands
we observe for different variants of this botnet. In our horet, we have observed at least
two other commands issued by the same botnet (with diffdrenbinariesf. The changes
in commands reflected relocation of binary hosting websites file names. Apparently,
the original hosting sitenfedi a. pi xpond. com) was no longer available, so the botmas-
ter switched to two other websitdsgpl ace. comandi ng2. f r eei magehost i ng.

net).

9We know that it is the same botnet because the binaries usathe C&C channel.

142

Although we successfully launched a chosen-cipherteathktio break the encryption
scheme of some botnets with the assistance of BotProbe, déinerstill some cases where
we could not break the scheme. However, these instancesallstecessfully detected as
botnet C&C by BotProbe. In June 2007, we captured a bot inRid8neynet, which is la-
beled as Trojan.Dropper.Sramler.C by several AV toolss Dbt uses C&C obfuscation and
it makes several DNS requests, which all translated to theedB address, demonstrating
multiple degrees of stealthiness. The command we obseshedv(below’ is apparently
an update/download command because BotProbe succesdrlyfied a third-party ac-
cess response (using Interleaved-Binary-Response-Hggistalgorithm and probing only

two rounds), i.e., a download froht t p: / / 220. 196. X. 107/ packed_7711. exe.

=xAgVM 81RvN+xBBhG+xXwt t pTsaSBf Weekv Mk VNcbo20j Zvimk Co7 CUUbRsdRPzz6w S10
Y8pcXg3d9ucVuf q2bgQLmvh+90BIDW uwlk CanPaw+2j w CTaW/QRj r X8XI 21 ph

In September 2007, we captured a new variant of this bot, wisitabeled as Back-
door.Win32.IRCBot.aby by several AV tools. We verified tHas is essentially the same
botnet as the aforementioned botnet, as they both contdeasdme IRC server 220.196.X.226,
The bot observed in June contacted port 3938 while the latecdntacted the server on

port 2234 with the following commantt:

=YXCdnBNMDxhnDoBo3aSr xy p83pMby ZRnQVt 80+nVxmBbwid 77 Ahc 6KWKVNn/ DWI+ACn4nT pT
j 6US+yXi e37W PaymOnit bkx PUVB2JaMwdAVokDxgsbj xnPl qpj ed h

It turns out that this is actually an access2®0. 196. X. 107/ kk. exe, and Bot-
Probe took only two rounds to flag this as a botnet C&C comnatimn. To conclude,
BotProbe has a 100% detection rate in recognizing IRC-bhasttet C&Cs, despite the

presence of obfuscated communication.

10At a first glance, this looks like a BASE64 encoded string. ldeer, we verified that this is not the case,
at least not a pure BASE64 scheme.

1The fact that the same IP address remained as the C&C seneeio3 months suggests that obfuscated
botnets might be more resilient to detection.

143

6.3.3 User Study on Normal Chat Probing

We report on the results of a user study that simulates thadtrgf active probing tech-
niques on human chat sessions. This study was conductegl Gettrgia Institute of Tech-
nology.

Study design and ethical guideline€Since we are not allowed ttirectly alter live net-
work flows on campus, we recruited human users to go onlinechatiwith real users at
diverse channels on multiple networks. During the chatisessour human users peri-
odically sent crafted messages that simulate the effecowufeb probing. Our goal was
to confirm our hypothesis about human response to tamperedages and evaluate the
degree to which simulated BotProbe techniques affect nlousexrs, e.g., how many ac-
tual rounds would we need on average to detect a normal uséiife Br current study
is limited to two different chat platforms, IRC amebo. com(a website providing in-
stant messaging and chat room capabilities), we belieuveotiraresults hold across chat
platforms because they simply capture basic human response

Our study protocol was reviewed and approved by the ingiitat review board (IRB)
of Georgia Tech. To alleviate any privacy concerns, we anongd usernames and IP ad-
dresses and recorded only the following necessary infeomamessages exchanged and
timestamps. Furthermore, although we introduced additinatwork flows, our method-
ology caused no interference to existing IRC network flows.

Participant selectionWe logged into different IRC/meebo sites/channels andaary
selected active chat users who were exchanging chat massage channel when we
logged in. We started engaging them in conversations jstlormal users. The users we
contacted were not aware of the study or the active probictgiigques/algorithms that we
employed. This was necessary to ensure the fairness ofsiingerocedure.

Study procedureWe designed six different question sets to test on 123 diffieusers.
Our question set includes simple messages like “what’s tp¢e weather,” “you like

red?”*How may | help you?” “English only! | play nice fun” an@uring test messages

144

such as “what’s 3+6=?" As we conversed with a user on a clgattr@nnel/room using a
random question set, we deliberately introduced probirggetin predefined points. We
then measured the user’s responses to these tampered esesJdg conversations we
recorded could be broken down into two classes.

First, although we randomly chose a user who seemed to e atthe chats room/channel,
there is always a chance that the user does not respond teentui@s. Such cases occurred
26 times (no active replies to our messages). We discouse tteeses from subsequent anal-
ysis. Second, if the user was willing to pursue a conversatiy responding to our first
guestion, we followed by sending two or three rounds of reggegquestions that interleave
original and slightly tampered messages (by introducingpa tn the first few bytes of
the message). Some examples of tampered messages inclagks“wp,” “noce weather,”
“aou like red?” “Bow may | help you?” “Eaglish only! | play recfun.” This simulates the
behavior of BotProbe performing P1/P2 probing. We recottedxchanged messages for
evaluating Interleaved-Binary-Response-Hypothesisrdtym. In addition to P1/P2 prob-
ing, we subjected the user to PO probing using Turing-Tegtdthesis algorithm described

above.

Table 13: User study of performing P1 and P2 probing, using InterldeBmary-
Response-Hypothesis algorithm. Most users are detectearasl in two or three rounds.
meebo chats| IRC chats || Total
Detected in 2 rounds | 63 (75%) 10 (77%) || 73 (75.3%)
Detected in 3 rounds | 8 (9.5%) 1(7.7%) || 9(9.3%)
Pending after 3 rounds13 (15.5%) | 2 (15.3%) || 15 (15.4%)

| Total | 84 | 13 | 97 |

User study of Interleaved-Binary-Response-Hypothesistn total, we tested 97 dif-
ferent users, 84 on meebo and 13 on IRC. A simulated BotPrabeletect most of the
normal users (75.3%) in just two rounds and 9.3% in threedsuithe rest (about 15%)
are marked still pending. We provide a summary of our resuttsrespective breakdowns
for meebo and IRC in Table 13. We set our probing to be threadsuo limit annoy-

ancel/interference to chat users. We further believe that ofdhe pending sessions can be

145

easily declared as normal users by sending additional pr(he selectively verified this
on a few cases). Finally, we did not encounter any false ipesi{misclassifying a normal
user as a bot) in our limited testing.

User study of Turing-Test-Hypothesis: In addition to P1 and P2 probing, we tested
PO, i.e., injecting Turing test messages (but without udacation). We performed tests on
30 different users in meebo. The basic question/puzzle mtes@vhat’s 3+6=7" Although
all users provided the correct answer upon repeated igf&tion, we found it difficult to
get a direct answer the first time the question is posed. Thsses tend not to answer
this in a correct way, possibly because they thought it migghtinnatural to receive such
Turing questions in the chatting channels (they perceiigetthbe some sort of a joke).
We conclude that if users are not educated to be familiar sutth Turing tests or have
an unusually strong desire to be in a channel, it is difficuibérform generic Turing tests
on IRC or meebo networks. This also illustrates that altlnoR@ probing seems simple
and effective (if users are educated), there is still a needalternative and transparent

techniques that require no explicit user education (likeRiL+P5 techniques).

6.4 Discussion

6.4.1 Legal Concerns

Legitimate “bots”: It is likely that in some cases there are legal “bots,” e gms client-
side legitimate programs or automatic scripts that buikertlpplication logic over the
chatting protocols such as IRC. For instance, some chdibigy[42] can also be detected
by BotProbe. A possible solution is to whitelist these liegdgtte applications if they are very
important and critical, and do not want to be disturbed (wgeek such applications to be
very few). However, we think probing a pure chatting bot isvery critical, and arguably,
the detection of such a chatting bot is not considered asea faisitive. Furthermore, there
are several heuristics that can help differentiate thesdtioly bots from real malicious

bots. For example, unlike malicious bots, chatting botsnartdikely to generate activity

146

responses (e.g., scan response). In addition, we can eorssigroup property (similar
to the group analysis in BotSniffer [48]) to differentiatenalicious botnet, where clients
in the same channel are mostly bots, from a normal humanictathannel with mostly

human and very few chatting bots.

Legal implications: Our active probe techniques might be deemed controversial b
cause they alter network flows to human users, and may repddigious commands. In
Section 6.2, we have discussed the tradeoff between dmiestcuracy and disturbance to
human users and various means to mitigate interferencel@gitimate chat sessions. We
now consider potential legal implications of replaying atgntially malicious command
packet.” First, we argue that to minimize liability issuésg only packets that should be
tampered with by BotProbe are packets that are inbound totlaénetwork. Second, this
potentially malicious command has already been transthitte our network and executed
on the local host prior to our probing. Third, if the purpo$¢he command is information
gathering (e.g., sysi nf 0), then we argue that the first command-response already leak
enough information, and our further replay most likely doesleak more information or
perform more harm. In short, although controversial, wésvelthat the benefits of actively

probing suspicious sessions could outweigh the potenisaidbance.
6.4.2 Limitations and Potential Solutions

As stated in Section 6.1, BotProbe has clear assumptiomsitats application to certain
class of botnets that use chatting-like C&C. Next, we déscsome possible evasiotts,
though we have not observed real examples yet, and discugstantial solutions.

Strong encryption: Active probing techniques cannot identify botnet C&C chalan
that use strong encryption schemes (e.g., SSH, SSL) mahkerg tesilient to replay at-
tacks. Note, however, passive perimeter monitoring gjresecannot detect, too, and most

contemporary IRC bots avoid or use weak encryption scheAies.minimum, BotProbe

2Most of these evasions are against Single-Binary-Respdgpethesis and Interleaved-Binary-
Response-Hypothesis algorithms. That is, Turing-Tegtdtlyesis algorithm could still work.

147

raises the bar and forces all botnets to adopt strongly ptenlycommunications. This is
also an important area for future work. We envision that coinlyg host-based monitoring
could be helpful.

Timer-based evasions: Knowledgeable adversaries could design bots to have pro-
grammed timers that greatly delay the response time, ot timinumber of commands of
the same type that could be issued to the bot in a certain tinaow. By using such timers,
a bot can potentially evade our Single-Binary-Responspsithesis algorithm. Note, how-
ever, that this would also reduce the efficiency of the bdbeetuse the botmaster cannot
command the botnet promptly, or to repeat the same task fertaic time. Our potential
solution against such an attack is to randomize the delagrimeand replays.

Stateful C&C protocols: Our P1 and P2 probing technigues assume a stateless C&C
protocol, i.e., we can replay the observed command severatf and the bot always re-
sponds similarly to the same command. In the future, boenashay create a stateful
command processor that can detect duplicate commandghggsing a timestamp or se-
guence numbers with every command sent, making simpleyrampddfective. Note, most
contemporary IRC botnet command-response protocols atelests and deterministic. In
addition, our PO probing can still work even in this evasigloreover, to counter this possi-
ble future evasion, we describe a potential solution ifélee multiple command-response
rounds and multiple clients in the monitored network. Iadt®f replaying packets, we
could intercept and modify chatting packets sent to subestoglients by using P4 and P5
probing techniques. By intentionally modifying the comrmda®nt to some clients while
leaving commands to other clients untouched, we could nmedlse difference in response
between messages, which would be analogous to replayirmgthmand to the same client
several times in an Interleaved-Binary-Response-Hysigtest:®

Finally we remark that future work is definitely needed irsthrea. While imperfect

and clearly limited, active techniques such as BotProbegecaatly complement existing

3Here we assume the C&C is one-to-many, i.e., one commandng oli@nts in the network.

148

passive detection techniques, at least for a large porfiogad-world botnets.

6.5 Summary

In this chapter, we propose the idea of using active probéehriiques to detect botnet
C&C communications that use chatting-like protocols. Bguieing the observation of
at most ongound of actual C&C interaction and then applying activebjmg, this ap-
proach, unlike existing passive approaches, can actiwalgat evidence and shorten the
detection time. We have developed a hypothesis testingefranrk and a prototype system
implementation that effectively separates determintstinet communication from human
conversations, while providing control over false pog$iand detection rates. We validate
our system on several malicious IRC bots and conduct an lagcsea study on approxi-
mately 100 users. Our experimental results, while prelamnjnare encouraging. BotProbe
is not intended to replace existing passive detection amhies, but to complement them
from a new perspective.

This work represents the first feasibility study of the usadaifve techniques in botnet
research; thus, we hope to inspire new thought and dirextiothe research community.
While controversial and clearly limited, BotProbe has dastmted its effectiveness in
detecting a large portion of contemporary real-world btstnkn future work, we will study
robust, practical, and less controversial extensions fetechniques for a more general
class of botnet C&C detection. In addition to detectionivactechniques can be used for
other purposes, e.g., probing the server side, and ingeatatermarks to trace the location
of a botmaster. We plan to investigate these new poteniidiag of active techniques in

the future.

149

CHAPTER VII

LESSONS LEARNED AND A FUTURE BOTNET DETECTION
SYSTEM

We have introduced four Bot* systems: BotHunter, BotSnjf@otMiner, and BotProbe.
In this chapter, we plan to answer the following questionswkare Bot* systems related
to and different from each other? What lessons have we lddmeen designing these
systems? How can we design a future botnet detection systanrcombines multiple

techniques we have used in the Bot* systems?

7.1 Summary of Bot* Systems

Table 14 provides a brief summary of our Bot* systems undertéxonomic study we

proposed in Chapter 2.

Table 14: Summary of our Bot* detection systems.

| [[BotHunter | BotSniffer | BotMiner | BotProbe
Host or network based? network network network network
Signature or behavior based? behavior behavior behavior | behavior
Passive or active? passive passive passive active
Detection phase preparation, or operation operation operation | operation
Detection target individual group group individual
Require out-of-band information? no no no no
Restriction on botnet C&C techniqug general centralized structure general chatting-like C&C
Correlation technique vertical (dialog) horizontal horizontal | cause-effect
Offline or online correlation? both both offline online

These systems have similar features. A common thread inesétsystems is the use of
correlation analysis, i.e., vertical (dialog) correlatio BotHunter, horizontal correlation
in BotSniffer and BotMiner, and cause-effect correlatio®BbtProbe. In addition, all Bot*
systems are network-based and behavior-based approaokdbiey do not require out-of-
band information.

Despite the above similarities, these systems differ ird\wdimensions. Unlike the

150

other three systems, which use a passive monitoring syaBegProbe uses an active ap-
proach. BotHunter can detect a successful bot infectiorntireeits preparation phase or
its operation phase, while the other three systems cantdatéxin only their operation
phase. BotHunter and BotSniffer detect bots from thlividual behavior, while Bot-
Sniffer and BotMiner detect botnets from thgimoup behavior. Regarding restrictions on
botnet C&C techniques, BotSniffer focuses on the effed®ction of centralized Botnet
C&C channels, and BotProbe focuses on the fast detectiootoieBs that use chatting-like
C&C protocols. BotHunter is independent of botnet C&C teghes, though it depends on
the bot infection dialog, and its current C&C sensor is masignature-based. BotMiner
is truly independent of botnet C&C techniques among the Bgstems.

Each of these systems has its own advantages and disacesn®gtHunter is good
at detecting bots that follow an infection model consistiigeveral infection stages, and
it can potentially issue alerts in the early phase of the bfgction before bots are fully
controlled to perform further malicious activities. Hoveeyit is restricted to the prede-
fined infection model (although this model is relatively gead and unlikely to change
dramatically, and we also provide an open and flexible fraonkvior easy extension) and
at some stages such as C&C communication, it currently gesvonly signature-based
sensors. BotSniffer does not necessarily require the waisen of multipledifferentstages
on an individual host, and it does not require botnet-spesifinatures. Moreover, it can
detect botnets within a reasonable time (quicker than Bo#ias long as multiple in-
stances/rounds of botnet communications/activities bsewed. However, it is limited to
the detection of botnets mainly using centralized C&C cledsmrBotMiner overcomes the
weakness of relying on a certain botnet C&C technique byigiog a general protocol-
and structure-independent botnet detection scheme. Herma@n resist the modification
and evolution of botnet C&C techniques. However, its catieh analysis is offline and
slow because current clustering features on C-flows arallmsmainly statistical distribu-

tion within a long time window (e.g., several hours), thegr&dking a relatively longer time

151

for correlation and detection. BotProbe overcomes the nesk of the passive approach,
which usually requires the observation of multiple insesitounds/stages of botnet com-
munications/activities. It shortens the detection timedmuiring the observation at most
one round of actual botnet C&C interaction. FurthermordéikerBotHunter's C&C sensor,

it does not use a signature-based approach for recogni&y Bowever, it is limited to

a certain type of C&C that uses chatting-like protocols. &twless, this weakness can
be complemented by the other three systems. As we can deayglit these systems have
their advantages and disadvantages, they greatly comptesaeh other by being united,
and provide a relatively comprehensive and multi-perspecbrrelation-based framework

for botnet detection.

7.2 LessonsLearned

As we have highlighted earlier regarding the challenge®tndt detection, botnet is so far
the most advanced and flexible malware form, evading detetitat uses simple symptoms
or single perspective. From the failure of previous detectipproaches (as discussed in
Chapter 2) and the success of our designed systems in tlmieda&letection scope, we
have learned the following important lessons.

Evidence-trail collection and dialog-based correlation aalysis can be effective for
detecting advanced malware infections that incorporate miltiple stages.Malware can
evolve quickly in forms, becoming more and more complex aiwbaced. However, at
the same time, successful malware infections involve moceraore stages. For exam-
ple, compared with previous simple infections, a bot intectypically also involves egg
downloading (to have a rich-functional binary) and C&C coumications (to be fully con-
trolled). In addition, in the operation phase, a bot tygicphrticipates in multiple tasks.
An evidence-trail- and dialog-based correlation appraamit as BotHunter can effectively
collect sufficient evidence to detect such kind of advancetiare. This general “dialog

correlation” principle could be applicable to future matea

152

Horizontal correlation analysis can be effective for deteting distributed and coor-
dinated malware infections/attacks.A trend of malware attacks is to become distributed
and coordinated so that the attacks can be more robust aretfobworizontal correlation
is an effective way to achieve a big picture of such attacksdiyelating the similarities
across multiple hosts. Sometimes, it is possible that byguaihorizontal view, one can
identify malware infections/attacks that are otherwisedlyanoticeable at an individual
host. We believe this general “horizontal correlation'ngiple could be applicable to de-
tecting future malware that incorporates distributed aswtdinated behavior.

Active techniques can greatly complement passive technigs, but they should be
carefully used. As we have shown, compared with passive approaches, ae attategy
has unique advantages such as shortening the detectionfimage advantages make it very
effective for detecting a large portion of real-world IR@ded botnets. We believe active
techniques can have broader applicable areas in future amaldetection and defense.
However, such active techniques should be carefully desigecause of their controversial
nature, and sometimes they should be coupled with user ednead awareness.

An effective botnet detection solution should capture somivariants (rather than
symptoms) of botnets, design detection sensors/technicquacross multiple events (or
stages, aspects), and then combine them for a collectivefoelative view. Each of
our designed Bot* systems follows this principle, and eagétesn correlates multiple
events/stages/aspects for a final detection decision.primsiple/lesson can be applicable
to situations across the Bot* systems. We know that botrietctien is very difficult and,
at present, ngingletechnique that perfectly detecti botnets is available. Even our de-
signed Bot* systems are effective only within their odesired or defined detection scope
However, we can combine multiple techniques to cover mlelfje@rspectives so as to im-
prove the detection coverage of botnets, similar to the casdich we combine multiple
perspectives in designing each single Bot* system. Thisish@ovides our experience in

designing different techniques and systems for botnettetefrom a certain perspective.

153

We have also explained why our Bot* systems are different@rdplementary. In the
next section, we discuss how these techniques may be codhtuiregeate a future botnet

detection system.

7.3 Combining Multiple Techniques in a Future Botnet Detection Sys-
tem

As we have discussed before, our Bot* systems complement aher very well. Fig-

ure 31 shows the architecture of an example design of a fottreet detection system that

incorporates the complementary techniques we have desguss

A-Plane Monitoring Correlation Analysis

Heavy-weight
Activity Monitor BotHunter Analysis
- "| (Dialog Correlation)
Binary Download
T Exploit f
cac |
,—lprotocol.l-\/;atcher \ BotProbe Analysis
'] (Active Probing)
‘: ‘\ 7 BotSniffer Analysis
N Light-weight |\) (Spgtial-'ll'emp)oral ~ Reports
etworl ivi i orrelation
- Activity Monitor / \ .
Traffic S{an /\ N/ BotMiner
) «—» A-Plane Clustering
Spam // \ f
/ \\ 1 BotMiner
1 / AN 1 Cross-Plane
T .
Light-weight BotMiner / Correlation
L Flow/C-flow » C-Plane Clustering
Monitor (on C-flow Features)

C-Plane Monitoring

Figure 31: Example combination of multiple techniques in a future lebietection sys-
tem.

The new system is divided into two main parts: monitoring poments and correlation
analysis components, similar to the general design prieop the Bot* systems. The
monitoring and correlation components cover both the @gl@ommunication plane) and
the A-plane (activity plane). The role of (online) monitogicomponents is to monitor real-
time network traffic and generate flow/activity logs thattcae “who is talking to whom”
(C-plane monitoring) and “who is doing what” (A-plane mamihg). These logs are then

further analyzed by correlation components (either ontineffline) to identify “who the

154

bots are within the same botnet because they share botrasicoinmunication patterns
and similar activity patterns (BotMiner analysis), or besa they are doing similar and
synchronized activities multiple times (BotSniffer arg$),” and “who a bot is because it
has performed a sequence of activities that follow an irdaatlialog model (BotHunter
analysis), or because it has a command-response C&C pattdrrstrong cause-effect
correlation (BotProbe analysis).”

The C-plane monitor is the same component as in BotMines.usually a light-weight
network monitor that simply captures flow-level informattimr recording “who is talking
to whom,” and our C-flow statistic features will further caga “talking in what kind of
patterns.”

The A-plane monitor, for capturing “who is doing what,” igtiver divided into heavy-
weight and light-weight components according to whetheigpming deep packet inspec-
tion or not. The light-weight A-plane monitoring componemainly look at the packet
header information. Scan detection (e.g., SCADE) is a gip&le of such a light-
weight activity monitor component because it only needsdokt information such as the
number of (failed) connections. Spam detection is anotkeemgle that looks for the num-
ber of SMTP (port 25) connections and the number of DNS MX igser In contrast,
heavy-weight A-plane activity monitoring components ulsuaeed to inspect the deep
payload to find specific fields or patterns, e.g., to detect iR&r downloading, exploit,
or C&C. They can be based on signature (e.g., rule sets in Bu#H) or anomaly (e.qg.,
SLADE). In particular, we include protocol matchers to ltecspecific interested protocols
such as IRC/HTTP in a port-independent way, and this prét@cognition can be further
used by BotSniffer or BotProbe analysis.

After the monitoring stage, flow logs and activity logs areqassed by various corre-
lation engines in parallel. Flow records are converted tto@-statistical feature records
and further clustered by the BotMiner C-plane clusteringnponent. Similarly, activity

logs are clustered. Then, BotMiner cross-plane correlaitirexamine groups of hosts

155

that share both similar communication patterns and siragtvity patterns. The BotMiner
correlation analysis is usually offline mainly because theversion of C-flow features re-
quires statistical distribution information within a reéely long period, and the clustering
process on numerous C-flow records is also slow.

To complement the slow processing of botMiner, we also perfBotSniffer spatial-
temporal correlation on the activity clustering and usectbrenection information provided
by protocol matchers. Thus, if we observe that groups ofshbave multiple rounds of
similar behavior and share a common (IRC/HTTP) server cctiorg we can reach a con-
clusion of botnets more quickly than BotMiner (because wendbneed to wait for the
clustering results of C-plane communication patterns).

The above two correlation analysis components can idewtifgh groups of hosts that
are likely bots within a botnet. At the same time, if there méycone bot in the monitored
network, we may miss detection. Therefore, we need BotHsrd&log correlation tech-
nique so that even if there is only one bot, we can still dedigby observing its infection
dialog. Although this detection is costly because it tyfljceequires deep packet inspec-
tion, it can detect a bot more quickly than BotMiner and pdeva relatively complete
profile on the bot infection dialog.

Furthermore, to overcome the weakness of the longer timeatarorg requirement
of BotSniffer (which needs to observe multiple roundsanses of botnet communica-
tions/activities), BotMiner (which needs to observe a Itinge window of botnet commu-
nication), and BotHunter (which needs to observe multipient infection stages), we
also perform BotProbe analysis. If we identify suspiciobatting-like communications
such as IRC (reported either from an IRC protocol matcheranfa general traffic profile
matcher from flow records, as mentioned in Section 4.4), wefggher apply an active
botnet probing technique that detects the existence ofduotkly. Such behavior-based
detection can further contribute to the C&C detection stagBotHunter and a more com-

plete profile of the bot infection dialog. In addition, Bot®e is the only technique among

156

the Bot* systems that can detect a bot when only one commespabnse message interac-
tion occurs in a botnet C&C channel without any activity r@sge.

The dashed lines in Figure 31 deppaissibleworkflow. A dashed arrow line connect-
ing two components usually indicates that a certain comptocen be bootstrapped from
another for efficiency purposes. For example, both C-pldunstering and A-plane clus-
tering can be bootstrapped from each other, as mentioneedito8 5.2.3. Bootstrapping
C-plane clustering from A-plane is particularly useful &ese it can greatly reduce the
amount of work for clustering by focusing on only a small de€eflows that involve hosts
that have demonstrated malicious activities in the A-plane

Here, we illustrate another example of using efficient biajpsto work in a high-speed
network in which we may not afford to perform deep packet @tsipn onall traffic. We
can start from light-weight monitoring such as flow captgremd scan/spam detection.
Hosts reported by light-weight activity monitoring com@mts can be fed into heavy-
weight activity monitoring. At the same time, if our C-placlestering component locates
a group of hosts that has very similar communication pattem@ can further ask heavy-
weight activity monitor components to examine these hosts.

To conclude, although botnet detection is generally diffjone can develop a rela-
tively comprehensive solution by combining multiple cosrpkntary detection techniques

to achieve a multi-perspective view, as shown in this sactio

157

CHAPTER VIII

CONCLUSION AND FUTURE WORK

8.1 Conclusion

Botnets are considered as the largest threat to Internetigetoday. Millions of comput-
ers are compromised on the Internet, and they can be cadrbll botmasters to launch
Internet-wide attacks and fraudulent activities. Thus,usgently need solutions for the
detection of botnets to further mitigate and defend agdinesn.

In this thesis, we have proposed a correlation-based framkefor botnet detection in
an enterprise-like network environment. Our frameworHKudes three correlation tech-
niques (vertical/dialog correlation, horizontal cortada, and cause-effect correlation) and
four prototype detection systems (BotHunter, BotSnifwtMiner, and BotProbe). We
have discussed the techniques used in each system, suradthedessons we have learned,
and presented an example architecture for combining tleaplementary techniques into
a future botnet detection systems.

Our botnet detection solution meets the four design goalsqsed in Chapter 1:

First, each Bot* system is guided by a sound correlationyasmaprinciple that captures
some fundamental invariant of botnet behavior. Verticataation (used in BotHunter)
captures the dialog nature in the multi-stage bot infectifencycle. Horizontal corre-
lation (used in BotSniffer and BotMiner) captures the camation and similarity nature
within the same botnet. Cause-effect correlation (usedatPBbe) captures the non-
human driven, deterministic command-response patterredéio class of botnet C&C
channels. We believe the principles of using correlaticalysis can also be applicable to
detecting future malware.

Second, our solution provides four complementary techesgand covers multiple

158

stages, dimensions, and perspectives. BotHunterveséisal (dialog) correlationto ex-
amine the behavior of eadhstinctinternal host and then recognize a bot infection dialog.
BotSniffer and BotMiner use another complementary stsategrizontal correlation to
recognize behavioral similarity and correlatiaoross multiple hostsin particular, Bot-
Sniffer focuses on capturing multiple rounds of spatiamperal correlation behavior to
detectcentralizedbotnet C&C channels, while BotMiner provides a mgeneralframe-
work for protocol- and structure-independent botnet daiec Unlike the abovepassive
monitoring strategy, which usually requires a relativeinder detection time, BotProbe
usesactive botnet probindechniques in a middlebox to obtain enough confidence of a
cause-effect correlatiocaused by the command-response pattern of botnet C&C, dnd on
requires observingt most oneround of actual C&C interaction. Each system has ad-
vantages and disadvantages, and works well in its desiredtom scope. We combine
these different correlation strategies and differentct&ia techniques/systems to provide
a comprehensive and complementary correlation-baseefvank for multiple-perspective
botnet detection.

Third, our solution is general and extensible. In designohesystem is not restricted to
a specific botneinstance but instead, it targets a certastassof botnets. As a represen-
tative example, BotMiner can detect a very general clasotfdis using different C&C
techniques. Even BotProbe, although looks like specifi€io botnets, is applicable to a
general class of botnets that have deterministic, inte@at&Cs (e.g., chatting-like com-
munications such as IRC or instant message). In additibthede systems are open and
extensible, so adding a new detection sensor to an existsigrm is quite easy. For exam-
ple, in Section 3.4, we have shown that new detection mod@esasily be incorporated
into the BotHunter system.

Finally, our systems are practical and capable to work irr¢laé world. Our systems
are evaluated on real-world network traces and/or in litevagk operations. Experimental

results are promising, showing that our systems can a&yrdétect real-world botnets

159

with a very low false positive rate on real-world normal netlwtraffic. Our work has
already begun to make an impact in the real world. For exanBatHunter is available to
the public atht t p: / / www. cyber - t a. or g/ Bot Hunt er/ , and it has amassed more

than 6,000 downloads in the first five months since its pulkliease.

8.2 Futurework

In the future, we plan to study the following directions:

e Improvements on the efficiency and robustness of existimgpoments in the Bot*
systems. We plan to study new techniques to improve theesifigiand increase the
coverage of existing monitoring and correlation composgeahd such techniques

are intended to be more robust against evasion attempts.

e Botnet detection in high-speed and large-scale networkspMh to develop a new
generation of real-time detection systems combining e&rind horizontal correla-
tion techniques seamlessly, using a layered design, alites@mpling strategy, and
a highly scalable distributed scheme, and intending to woxery high-speed (e.g.,

up to 10G bps) and very large (e.g., up to ISP level) netwovirenments.

e More robust and less controversial active techniques witlemapplicable areas. As
mentioned before, we plan to investigate the practicakytf active techniques for

more areas in botnet research.

e Cooperative detection combining host- and network-bagstems. Host-based ap-
proaches can provide different information/views thatvwek-based approaches can-
not. The combination of these two complementary approachesotentially pro-
vide better detection results, e.g., possibly for detgctimighly evasive botnet that
uses strongly encrypted C&C. We plan to develop new hostdapproaches and

study new cooperative techniques in the future.

160

e Botnet mitigation and defense. Once we detect bots/bqtadtgjical question that
follows is how we mitigate, respond to, and defend agairenthWe plan to investi-

gate effective and efficient techniques for achieving tloial gn the future.

161

REFERENCES

[1] “Agobot (computer worm).’htt p: // en. wi ki pedi a. or g/ wi ki / Agobot .

[2] “A guide to understanding covert channel analysis ofstied systems, version
1" NCSC-TG-030, Library No. S-240,572, National Compu8acurity Center,
November 1993.

[3] “Financial insights evaluates impact of phishing onarketfinancial institu-
tions worldwide.” CRM Today.htt p: // www. cr nRday. cont news/ cr nf
Epl Al ZI EVFj AwhYI kt . php, 2004.

[4] “Malware infections in protected systems.” Researchud$t of Pandalabs,
http://research. pandasecurity. con bl ogs/i nages/ wp_pb_
mal ware_i nfections_in_protected systens. pdf,2007.

[5] “Hi-performance protocol identification enginehtt p:// hi ppi e. oof | e.
coni , 2008.

[6] “Internet security threat report - Symantec Corpf't p: // ww\. symant ec.
conm t hreatreport/,2008.

[7] “Malicious software (malware): A security threat to timternet economy.ht t p:
/ I www. oecd. or g/ dat aoecd/ 53/ 34/ 40724457. pdf , 2008.

[8] “Overnet’htt p://en.w ki pedi a. or g/ w ki / Over net , 2008.

[9] ABAD, C., TAYLOR, J., ENGUL, C., YURCIK, W., ZHOU, Y., and RPOWE, K.,
“Log correlation for intrusion detection: A proof of condépn Proceedings of the
19th Annual Computer Security Applications ConferenceSAC03) (Washing-
ton, DC, USA), p. 255, IEEE Computer Society, 2003.

[10] ApAaMIC, L. A. and HUBERMAN, B. A., “Zipf’s law and the internet,Glottomet-
rics, vol. 3, pp. 143-150, 2002.

[11] ANAGNOSTAKIS, K., SIDIROGLOU, S., AKRITIDIS, P., XINIDIS, K., MARKATOS,
E., and KEROMYTIS, A., “Detecting Targeted Attacks Using Shadow Honeypots,”
in Proceedings of the 14th Usenix Security Symposium (Sg€a&ijt (Baltimore,
Maryland), August 2005.

[12] BACHER, P., HoLz, T., KOTTER, M., and WICHERSKI, G., “Know your enemy:
Tracking botnets.ht t p: / / ww. honeynet . or g/ paper s/ bot s/, 2005.

162

[13] BAECHER, P., KOETTER, M., HOLZ, T., DORNSEIF M., and REILING, F., “The
nepenthes platform: An efficient approach to collect maéyian Proceedings of
International Symposium on Recent Advances in Intrusioteden (RAID’06)
(Hamburg), September 2006.

[14] BAILEY, M., OBERHEIDE, J., ANDERSEN J., MaO, M., JAHANIAN, F., and
NAZARIO, J., “Automated classification and analysis of internetwaag,” in Pro-
ceedings of International Symposium on Recent Advancestrumsion Detection
(RAID'07), 2007.

[15] BALASUBRAMANIYAN , J. S., QRCIA-FERNANDEZ, J. O., BACOFF, D., SPAF-
FORD, E., and 2MBONI, D., “An architecture for intrusion detection using au-
tonomous agents,” iRroceedings of the 14th Annual Computer Security Applica-
tions Conference (ACSAC’'98Washington, DC, USA), p. 13, IEEE Computer So-
ciety, 1998.

[16] BARFORD, P. and YEGNESWARAN, V., “An Inside Look at Botnets.” Special Work-
shop on Malware Detection, Advances in Information Segufpringer Verlag,
2006.

[17] BETHENCOURT J., FRRANKLIN, J., and \ERNON, M., “Mapping internet sensors
with probe response attacks,” Rroceedings of the 14th USENIX Security Sympo-
sium (Security’06)2006.

[18] BINKLEY, J. R. and 8\GH, S., “An algorithm for anomaly-based botnet detection,”
in Proceedings of USENIX SRUTI'0pp. 43—48, July 2006.

[19] BLEEDING EDGE THREATS, “The Bleeding Edge of Snorthtt p:// www.
bl eedi ngsnort.com , 2007.

[20] BOHN, K., “Teen questioned in computer hacking probe.” CNiXt p: / / www.
cnn. com 2007/ TECH 11/ 29/ f bi . bot net s/ i ndex. ht m , 2007.

[21] BREW, C. and McKELVIE, D., “Word-pair extraction for lexicography,” ifro-
ceedings of NeMLaP '96pp. 45-55, 1996.

[22] CHEUNG, S., FONG, M., and LUNDQVIST, U., “Modeling multistep cyber attacks
for scenario recognition,” ifroceedings of DARPA Information Survivability Con-
ference and Exposition (DISCEX [J2003.

[23] CHIANG, K. and LLoYD, L., “A case study of the rustock rootkit and spam bot,” in
Proceedings of USENIX HotBots’0Z007.

[24] COLLINS, M., SHIMEALL, T., FABER, S., ANIES, J., WEAVER, R., SHON, M. D.,
and KADANE, J., “Using uncleanliness to predict future botnet addrgssin Pro-
ceedings of ACM/USENIX Internet Measurement Confereh€’Q7), 2007.

163

[25] COOKE, E., RHANIAN, F., and McPHERSON D., “The zombie roundup: Under-
standing, detecting, and disrupting botnets,Pioceedings of USENIX SRUTI'05
2005.

[26] CuPPENS F. and MEGE, A., “Alert correlation in a cooperative intrusion detexcti
framework,” inProceedings of IEEE Symposium on Security and Priv2@92.

[27] CYBER-TA, “BotHunter Free Internet Distribution Pagehtt p:// www.
cyber - ta. or g/ Bot Hunt er, 2008.

[28] CYBER-TA, “SRI Honeynet and BotHunter Malware Analysifit t p: / / www.
cyber-ta. org/ Honeynet/, 2008.

[29] DAGON, D., Gu, G., LEE, C., and LEg, W., “A taxonomy of botnet structures,”
in Proceedings of the 23 Annual Computer Security Applicati@anference (AC-
SAC’07) 2007.

[30] DAGON, D., QN, X., Gu, G., LEE, W., GRIZZARD, J., LEVINE, J., and QVEN,
H., “HoneyStat: Local worm detection using honeypots,Pioceedings of the 7th
International Symposium on Recent Advances in Intrusioteden (RAID’04)
September 2004.

[31] DAGON, D., Zou, C., and LEE, W., “Modeling botnet propagation using time-
zones,” inProceedings of the 13th Annual Network and Distributedeéys$ecurity
Symposium (NDSS’0gyebruary 2006.

[32] DAswANI, N. and SopPPELMAN, M., “The anatomy of clickbot.a,” ilProceedings
of USENIX HotBots’0,72007.

[33] Davis, J., “Hackers take down the most wired country in europe. RBD MAG-
AZINE: ISSUE 15.09,http://ww. wi red. conf politics/security/
magazi ne/ 15- 09/ ff _est oni a, 2007.

[34] DEGROOT, M. H. and SHERvVISH, M. J., Probability and Statistics Addison-
Wesley, 2002.

[35] DINGLEDINE, R., MATHEWSON, N., and VERSON, P., “TOR: the second gen-
eration onion router,” ilProceedings of the 13th USENIX Security Symposium (Se-
curity’04), 2004.

[36] ECKMANN, S. T., VIGNA, G., and KEMMERER, R. A., “Statl: An attack language
for state-based intrusion detectiodgurnal of Computer Securityol. 10, 2002.

[37] ELLIS, D. R., AKEN, J. G., ATwoo0D, K. S., and ENAGLIA, S. D., “A Behav-
ioral Approach to Worm Detection,” iRroceedings of WORNM2003.

[38] FOGLA, P., $1ARIF, M., PERDISCI, R., KOLESNIKOV, O. M., and LEE, W., “Poly-
morphic blending attack,” ifProceedings of the 15th USENIX Security Symposium
(Security’06) 2006.

164

[39] FORREST S., HOFMEYR, S., SSMAYAJI, A., and LONGSTAFF, T., “A sense of self
for unix processes,” ifProc. IEEE Symposium on Security and Privapg. 120—
128, 1996.

[40] FREILING, F., HoLz, T., and WCHERSKI, G., “Botnet Tracking: Exploring a
Root-cause Methodology to Prevent Denial of Service Agdak Proceedings of
10th European Symposium on Research in Computer SecUBQRIECS’'05)2005.

[41] GARFINKEL, T., ADAMS, K., WARFIELD, A., and RRANKLIN, J., “Compatibility
is Not Transparency: VMM Detection Myths and Realities,Aroceedings of the
11th Workshop on Hot Topics in Operating Systems (HotOSMKély 2007.

[42] GIANVECCHIO, S., XIE, M., Wu, Z., and WANG, H., “Measurement and classi-
fication of humans and bots in internet chat,”"Rmoceedings of the 17th USENIX
Security Symposium (Security’02p08.

[43] GOEBEL, J. and HbLz, T., “Rishi: Identify bot contaminated hosts by irc nicknam
evaluation,” inProceedings of USENIX HotBots’0Z007.

[44] GRIZzARD, J. B., SHARMA, V., NUNNERY, C., KANG, B. B., and D:GON, D.,
“Peer-to-peer botnets: Overview and case studyPiioceedings of USENIX Hot-
Bots’07, 2007.

[45] Gu, G., FERDISCI, R., ZHANG, J., and [EE, W., “BotMiner: Clustering analy-
sis of network traffic for protocol- and structure-indepentibotnet detection,” in
Proceedings of the 17th USENIX Security Symposium (Sg@@)jt 2008.

[46] Gu, G., PORRAS, P., YEGNESWARAN, V., FONG, M., and LEE, W., “BotHunter:
Detecting malware infection through ids-driven dialogretation,” in Proceedings
of the 16th USENIX Security Symposium (Security’2@D7.

[47] Gu, G., HARIF, M., QIN, X., DAGON, D., LEE, W., and RLEY, G., “Worm de-
tection, early warning and response based on local victioramation,” in Proceed-
ings of the 20th Annual Computer Security Applications €mrfce (ACSAC’04)
(Washington, DC, USA), pp. 136-145, IEEE Computer Soczip4.

[48] Gu, G., ZHANG, J., and IEE, W., “BotSniffer: Detecting botnet command and
control channels in network traffic,” iRroceedings of the 15th Annual Network and
Distributed System Security Symposium (NDS$SZ&)8.

[49] HALKIDI, M., BATISTAKIS, Y., and \VAZIRGIANNIS, M., “On clustering validation
techniques,J. Intell. Inf. Syst.vol. 17, no. 2-3, pp. 107-145, 2001.

[50] HoLz, T. and R\WYNAL, F., “Detecting honeypots and other suspicious environ-
ments,” inSixth Annual IEEE Systems, Man and Cybernetics (SMC) Iratoom
Assurance Workshop (IAW’Q3)005.

165

[51] HoLz, T., GORECKI, C., RECK, K., and REILING, F. C., “Detection and mitiga-
tion of fast-flux service networks,” iRroceedings of the 15th Annual Network and
Distributed System Security Symposium (NDSSZ&)8.

[52] HoLz, T., STEINER, M., DAHL, F., BEERSACK, E., and REILING, F., “Measure-
ments and mitigation of peer-to-peer-based botnets: Astasly on storm worm,” in
Proceedings of the First USENIX Workshop on Large-Scalddiisgand Emergent
Threats (LEET’08)2008.

[53] IANELLI, N. and HACKWORTH, A., “Botnets as a vehicle for online crime.”
http://www.cert.org/archive/pdf/Botnets.pdf, 2005.

[54] IGLUN, K., KEMMERER, R. A., and ®RRAS, P. A., “State transition analysis: A
rule-based intrusion detection systehEE Transactions on Software Engineering
vol. 21, 1995.

[55] JaIN, A. K., MURTY, M. N., and FEYNN, P. J., “Data clustering: a reviewACM
Computer Survewol. 31, no. 3, pp. 264-323, 1999.

[56] JANG, X. and Xu, D., “Profiling Self-Propagating Worms Via Behavioral Foot
printing,” in Proceedings of ACM WORM’Q&006.

[57] JUNG, J., RXSON, V., BERGER A. W., and BALAKRISHNAN, H., “Fast Portscan
Detection Using Sequential Hypothesis Testing,1BHEE Symposium on Security
and Privacy 2004(Oakland, CA), May 2004.

[58] JUNG, J., SHECHTER S. E., and BRGER A. W., “Fast detection of scanning
worm infections,” inProceedings of RAID’20Q45eptember 2004.

[59] KARASARIDIS, A., REXROAD, B., and HDEFLIN, D., “Wide-scale botnet detection
and characterization,” iRroceedings of USENIX HotBots’0Z007.

[60] KOHLER, E., MORRIS, R., CHEN, B., JANNOTTI, J., and KRASHOEK, M. F.,
“The click modular router,ACM Transactions on Computer Systerd. 18, no. 3,
pp. 263-297, 2000.

[61] KREBS, B., “Storm worm dwarfs world’s top supercomputerstitt p:
/' bl og. washi ngt onpost. com securityfix/ 2007/ 08/ storm_
worm dwarfs_worlds top_s_1.html,2007.

[62] KREBS, B., “Kraken spawns a clash of the titans.” Washington Rostp:
/ 1 bl og. washi ngt onpost. com securityfix/ 2008/ 04/ kraken_
creates_a_clash_of the. htnl,h 2008.

[63] LEE, W., WANG, C., and DAGON, D., Botnet Detection: Countering the Largest
Security Threat (Advances in Information Securitgecaucus, NJ, USA: Springer-
Verlag New York, Inc., 2007.

166

[64] LEMOS, R., “Bot software looks to improve peerageFttp:// ww.
securityfocus. conf news/ 11390, 2006.

[65] LEYDEN, J., “Zombie pcs spew out 80% of spam.” The Regidtér, p: / / www.
t heregi st er. co. uk/ 2004/ 06/ 04/ troj an_spam st udy/ , 2004.

[66] LIvADAS, C., WALSH, R., LAPSLEY, D., and SRAYER, W. T., “Using machine
learning techniques to identify botnet traffic,” HRroceedings of the 2nd IEEE LCN
Workshop on Network Security (WoNS’2Q08)06.

[67] MALAN, D. J.,Rapid detection of botnets through collaborative netwarkgeers
PhD thesis, Harvard University, Cambridge, MA, USA, 2007.

[68] MAYMOUNKOV, P. and MAzZIERES, D., “Kademlia: A peer-to-peer information
system based on the XOR metric,"Rnoceedings of the 1st International Workshop
on Peer-to-Peer Systems (IPTPS’02002.

[69] MITRE CORPORATION “CVE-2006-3439.” http://cve.mtre.org/
cgi - bi n/ cvenane. cgi ?nanme=CVE- 2006- 3439.

[70] MOORE, D., “Network telescopes.htt p://wwv. cai da. or g/ out reach/
present ati ons/ 2002/ useni x_sec/ ,2002.

[71] MOORE, D., VOELKER, G., and 3VAGE, S., “Inferring Internet Denial-of-Service
Activity,” in Proceedings of the 10th USENIX Security Symposidl.

[72] MYERS, L., “Aim for bot coordination,” inVirus Bulletin Conference2006.

[73] NING, P., Qu1, Y., and REEVES, D. S., “Constructing attack scenarios through cor-
relation of intrusion alerts,” iProceedings of the 9th ACM Conference on Computer
& Communications Security (CCS’Q2002.

[74] PaxsoN, V., “Bro: A System for Detecting Network Intruders in Reahie,” in
Proceedings of the 7th USENIX Security Symposii888.

[75] PELLEG, D. and MoORE, A. W., “X-means: Extending k-means with efficient es-
timation of the number of clusters,” roceedings of the Seventeenth International
Conference on Machine Learning (ICML'Q@Ban Francisco, CA, USA), pp. 727—-
734, Morgan Kaufmann Publishers Inc., 2000.

[76] PERDISCI, R., GU, G., and LEE, W., “Using an ensemble of one-class svm clas-
sifiers to harden payload-based anomaly detection systeamBroceedings of the
IEEE International Conference on Data Mining (ICDM’Q&ecember 2006.

[77] PORRAS, P., SAIDI, H., and YEGNESWARAN, V., “A multi-perspective analysis of
the storm (peacomm) worm,” tech. rep., Computer Scienceizbry, SRI Interna-
tional, October 2007.

167

[78] PORRAS, P. A. and NEUMANN, P. G., “EMERALD: Event monitoring enabling
responses to anomalous live disturbancesPiioc. 20th NIST-NCSC National In-
formation Systems Security Conferenme. 353—-365, 1997.

[79] PORRAS, P., “Privacy-enabled Global Threat MonitorinZEE Security and Pri-
vacy Magazingvol. 4, pp. 60-63, Nov/Dec 2006.

[80] PrRovoOs, N., “A virtual honeypot framework,” irProceedings of 13th USENIX Se-
curity Symposium (Security’04August 2004.

[81] PROVOS, N., MAVROMMATIS, P., RAJAB, M., and MONROSE F., “All your
iframes point to us,” ifProceedings of the 17th USENIX Security Symposium (Secu-
rity’08), 2008.

[82] RAJAB, M., ZARFOSS J., MONROSE F., and ERzISs, A., “A multi-faceted ap-
proach to understanding the botnet phenomenonpProceedings of ACM SIG-
COMM/USENIX Internet Measurement Conference (IMC'O@razil), October
2006.

[83] RAMACHANDRAN, A., FEAMSTER, N., and \EMPALA, S., “Filtering spam with
behavioral blacklisting,” ifProceedings of ACM Conference on Computer and Com-
munications Security (CCS’072007.

[84] RAMACHANDRAN, A. and FEAMSTER, N., “Understanding the network-level be-
havior of spammers,” iProceedings of ACM SIGCOMM’Q2006.

[85] RAMACHANDRAN, A., FEAMSTER, N., and DA\GON, D., “Revealing botnet mem-
bership using DNSBL counter-intelligence,” Rroceedings of USENIX SRUTI'06
2006.

[86] ROESCH M., “Snort - lightweight intrusion detection for networks Proceedings
of USENIX LISA'991999.

[87] RoYyAL, P., HALPIN, M., DAGON, D., EDMONDS, R., and LEE, W., “Polyunpack:
Automating the hidden-code extraction of unpack-exegutmalware,” inProceed-
ings of the 22nd Annual Computer Security Applications €amice (ACSAC’06)
(Washington, DC, USA), pp. 289-300, IEEE Computer Soc296.

[88] ScHuLTZ, M. G., ESKIN, E., ZADOK, E., and SOLFO, S. J., “Data mining meth-
ods for detection of new malicious executables,Pimceedings of the 2001 IEEE
Symposium on Security and Priva@p01.

[89] SMALL, S., MASON, J., MONROSE F., RROvVOS, N., and SUBBLEFIELD, A., “To
catch a predator: A natural language approach for elicitiadjcious payloads,” in
Proceedings of the 17th USENIX Security Symposium (Sg@@)jt 2008.

[90] SNAPR S. R., BRENTANO, J., DAS, G. V., GoAN, T. L., HEBERLEIN, L. T., LIN
Ho, C., LEviTT, K. N., MUKHERJEE, B., SMAHA, S. E., QRANCE, T., TEAL,

168

D. M., and MANSUR, D., “DIDS (distributed intrusion detection system) - moti
vation, architecture, and an early prototype,”Rroceedings of the 14th National
Computer Security Conferend@Vashington, DC), pp. 167-176, 1991.

[91] SOMMER, R. and RXsoON, V., “Enhancing byte-level network intrusion detection
signatures with context,” iRroceedings of ACM Conference on Computer and Com-
munication Security (CCS’03{Washington, DC), October 2003.

[92] SopPHOSINC., “W32/IRCBot-TO.”ht t p: / / ww. sophos. com vi r usi nf o/
anal yses/ w32i rcbotto. ht m ,2007.

[93] STANIFORD, S., RRXON, V., and N.WEAVER, “How to Own the Internet in Your
Spare Time,” inProceedings of 2002 USENIX Security Symposinig2.

[94] STANIFORD, S., HOAGLAND, J., and MCALERNEY, J., “Practical Automated De-
tection of Stealthy Portscans,” #ournal of Computer Securit2002.

[95] STANIFORD-CHEN, S., (HEUNG, S., RAWFORD, R., DILGER, M., FRANK, J.,
HOAGLAND, J., LEVITT, K., WEE, C., YIP, R., and ZRKLE, D., “Grids—a graph
based intrusion detection system for large networks19th National Information
Systems Security Conferend896.

[96] STEWART, J., “Bobax trojan analysis.htt p://ww. secur ewor ks. com
resear ch/ t hreat s/ bobax/ , 2004.

[97] STINSON, E. and MTCHELL, J. C., “Characterizing bots’ remote control behavior,”
in Proceedings of the 4th Gl International Conference on Date®f Intrusions and
Malware, and Vulnerability Assessment (DIMVA'0ZD07.

[98] STRAYER, W. T., WALSH, R., LIVADAS, C., and lAPSLEY, D., “Detecting botnets
with tight command and control,” iProceedings of the 31st IEEE Conference on
Local Computer Networks (LCN'062006.

[99] SzoR, P.,The Art of Computer Virus Research and Defensddison-Wesley Pro-
fessional, 2005.

[100] TEMPLETON, S. and LEVITT, K., “A requires/provides model for computer at-
tacks,” inNew Security Paradigms Worksh&®00.

[101] TURING, A., “Computing machinery and intelligence,”ind, Vol.59, pp 433-460
1950.

[102] VALDES, A. and XINNER, K., “Probabilistic alert correlation,” ifProceedings
of International Symposium on Recent Advances in IntruSietection (RAID’01)
pp. 5468, 2001.

[103] VALEUR, F., VIGNA, G., C.KRUEGEL, and KEMMERER, R., “A Comprehensive
Approach to Intrusion Detection Alert CorrelatiohEZEE Transactions on Depend-
able and Secure Computingpl. 1, pp. 146-169, July-September 2004.

169

[104] VIGNA, G. and KEMMERER, R., “NetSTAT: A Network-based Intrusion Detection
Approach,” inProceedings of the4** Annual Computer Security Applications Con-
ference (ACSAC’9811998.

[105] VIJAYAN, J., “Teen used botnets to push adware to hundreds of thou-
sands of pcs.’http://ww. conputerworl d. confaction/article.
do?conmand=vi ewArti cl eBasi c&articl el d=9062839, 2008.

[106] VOGT, R., Arcock, J., and AcoBsON, M., “Army of botnets,” inProceedings of
the 14th Network and Distributed System Security Sympa®isS’07) 2007.

[107] VON AHN, L., BLuM, M., HOPPER N., and LANGFORD, J., “CAPTCHA: Using
hard Al problems for security,” ifPfroceedings of Eurocryppp. 294-311, 2003.

[108] WALD, A., Sequential AnalysiDover Publications, 2004.

[109] WANG, K., PAREKH, J. J., and $OLFO, S., “Anagram: A content anomaly detector
resistant to mimicry attack,” iProceedings of International Symposium on Recent
Advances in Intrusion Detection (RAID’Q&006.

[110] WANG, K. and SOLFO, S., “Anomalous payload-based network intrusion detec-
tion,” in Proceedings of International Symposium on Recent Advandesrusion
Detection (RAID’04,)2004.

[111] WANG, K. and SOLFO, S., “Anomalous payload-based worm detection and signa-
ture generation,” irProceedings of International Symposium on Recent Advances
Intrusion Detection (RAID’05)2005.

[112] WANG, P., S’ARKS, S., and Du, C. C., “An advanced hybrid peer-to-peer botnet,”
in Proceedings of USENIX HotBots’0Z2007.

[113] WANG, Y.-M., BECK, D., JANG, X., ROUSSEV R., VERBOWSKI, C., CHEN, S.,
and KING, S., "“Automated web patrol with strider honeymonkeys: kigdveb sites
that exploit browser vulnerabilities,” iRroceedings of the 13th Annual Network and
Distributed System Security Symposium (NDSSB&)ruary 2006.

[114] WARD, M., “More than 95% of e-mail is ’junk’’ht t p: / / news. bbc. co. uk/
1/ hi/technol ogy/ 5219554. st m 2006.

[115] WEAVER, N., STANIFORD, S., and RXSON, V., “Very fast containment of scan-
ning worms,” inProceedings of 13 USENIX Security Symposium (Security®e)
tober 2004.

[116] WEBER, T., “Criminals 'may overwhelm the web’htt p: // news. bbc. co.
uk/ 1/ hi / busi ness/ 6298641. st m 2007.

[117] WEHNER, S., “Analyzing worms and network traffic using compressialournal
of Computer Securityol. 15, no. 3, pp. 303—320, 2007.

170

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

WERNER, T., “PE Hunter” http://honeytrap. macol | ect. org/
pehunt er, 2007.

WHYTE, D., VAN OORSCHOT P., and KRANAKIS, E., “Exposure maps: Remov-
ing reliance on attribution during scan detection,”"Rroceedings of 1st USENIX
Workshop on Hot Topics in Security (HotSec’&)06.

Wu, J., VANGALA, S., (A0, L., and KwiAT, K., “An efficient architecture and
algorithm for detecting worms with various scan technigues Proceedings of
NDSS’2004February 2004.

XIE, M., YIN, H., and WANG, H., “An effective defense against email spam laun-
dering,” in Proceedings of ACM Conference on Computer and Communic&&s
curity (CCS’06) 2006.

XIE, Y., KIM, H.-A., O'HALLARON, D., REITER, M. K., and ZHANG, H., “Seu-
rat: A pointillist approach to anomaly detection,” Rroceedings of International
Symposium on Recent Advances in Intrusion Detection (RA)2004.

YANG, J., NNG, P., WANG, X. S., and 4JODIA, S., “CARDS: A distributed sys-
tem for detecting coordinated attacks,”Pnoceedings of IFIP TC11 Sixteenth An-
nual Working Conference on Information Security (SEXDPO.

YEN, T.-F. and RITER, M. K., “Traffic aggregation for malware detection,” in
Proceedings of the Fifth GI International Conference ondagbn of Intrusions and
Malware, and Vulnerability Assessment (DIMVA'03)08.

ZHUANG, L., DUNAGAN, J., SMON, D. R., WANG, H. J., GsIPKoV, I|., HULTEN,
G., and YGAR, J., “Characterizing botnets from email spam recordsPrioceed-
ings of the First USENIX Workshop on Large-Scale Exploits Bmergent Threats
(LEET’08), 2008.

ZHUGE, J., HoLz, T., HAN, X., Guo, J., and ©u, W., “Characterizing the irc-
based botnet phenomenon.” Peking University & Universitylannheim Technical
Report, 2007.

Zou, C. C., &0, L., GONG, W., and TowsLEY, D., “Monitoring and early warn-
ing for internet worms,” irProceedings of ACM CCS’200@ctober 2003.

Zou, C. C. and @NNINGHAM, R., “Honeypot-aware advanced botnet construc-
tion and maintenance,” iinternational Conference on Dependable Systems and
Networks (DSN’06)2006.

171

VITA

Guofei Gu was born in Changshu, JiangSu Province, Chinad00,2he received his bach-
elor’'s degree in computer science from Nanjing Universitf{Posts and Telecommunica-
tions, Nanjing, China. In 2003, he was awarded master’sadeigr computer science from
Fudan University, Shanghai, China. Subsequently, he goihe Computer Science Ph.D
program in the College of Computing at the Georgia Institit€echnology in Fall 2003.

During his Ph.D. study, he conducted research under theseahent of Dr. Wenke Lee
in the area of network and system security, in particulaiirusion detection, malware
detection, defense, and analysis. He was also collabovéatbdSRI International during

summer internships.

172

