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Abstract

This paper considers the problem of flow identification for supporting resource
reservation. We propose several hashing-based schemes for flow identification and
present a quantitative analysis of their performance and scalability limits. Of the
hash functions we studied using simulation with real traffic traces, 32-bit CRC and
XOR-folding of the five-tuple demonstrate excellent performance, both on the mem-
ory requirement for a collision rate target, and on the number of collided flows on
average and in the worst-case. Our findings show that, with hashing-based schemes,
it is feasible to implement flow identification at high speeds to support hundreds of
thousands of reserved flows.
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1 Introduction

Over the last several years there has been considerable interest in multimedia commu-
nications over the Internet. Unlike the traditional data applications such as TELNET,
FTP and email, real-time applications such as video conferencing and Internet tele-
phony usually have stringent delay and jitter requirements; they do not work well over
the best-effort Internet where delay and losses can not be easily controlled.

In response to the new challenges of supporting real-time applications in the Internet,
the Internet Engineering Task Force (IETF) has standardized the Integrated Services
model [2], which allows explicit end-to-end resource reservation. The RSVP protocol [3]
has been developed to signal resource requirements and install reservation state inside
the network.

To support the Integrated Services in the network, an IP router has to implement two
key functions: flow identification and packet scheduling [2]. When the RSVP protocol
installs a reservation, it adds an entry to the reservation table. In the packet forwarding
path, routers must examine every incoming packet and decide if the packet belongs
to one of the reserved RSVP flows. An IP flow is identified by the five-tuple in the
packet header (source IP address, destination IP address, protocol ID, source port and
destination port). To determine if a packet is from one of the reserved flows, the flow
identification module has to compare the five-tuple of the incoming packet with the
five-tuples of all flows in the reservation table. If there is a match, the corresponding
reservation state is retrieved from the reservation table, and the packet is dispatched
to a queue specifically set up for that flow. Some variation of weighted fair queuing
algorithms can be used to guarantee delay and bandwidth committed to the flow [4, 6, 1].

Most Internet backbones currently operate at the OC12 (622 Mbps) speed and are
expected to upgrade to OC48 (2.5 Gbps) soon. A single backbone trunk can easily have
tens of thousands of concurrent flows [7]. Performing flow identification at wire-speed
with a large number of RSVP flows is a non-trivial task. Because of this, there have been

debates about the scalability of the Integrated Services and RSVP; some people believe



that routers are simply not able to support end-to-end reservation in the backbone.
However, we have not seen any quantitative studies in the literature on the scalability
issues of implementing end-to-end reservation.

In this paper we address one of the issues for end-to-end reservation, specifically,
the problem of flow identification, and present a quantitative analysis on its scalability
limits. We propose a hashing-based approach for flow identification and evaluate the
performance and scalability limit of several hashing-based schemes, both analytically
and using simulation based on real traffic traces. Of the hash functions we studied, 32-
bit CRC and XOR-folding of the five-tuple demonstrate excellent performance, both on
the memory requirement for a collision rate target, and on the number of collided flows
on average and in the worst-case. Our findings show that, with hashing-based schemes,
it is feasible to implement flow identification at high speeds to support hundreds of
thousands of reserved flows.

The rest of the paper is organized as follows. The next section discusses the key
issues in implementing flow identification. In Section 3, we describe several hashing-
based schemes. We present the detailed simulation results in Section 4. Section 5

concludes the paper.

2 Flow Identification in Routers

The basic problem of flow identification can be summarized as the following: Given
the five-tuple of an incoming packet and a reservation table with five-tuples of reserved
flows, we want to determine if an incoming packet matches one of the flows in the
reservation table, and if so, retrieve the reservation information of the matched flow
(Figure 1).

Flow identification has to be performed on every packet, thus it is essential that the
operation be very fast and complete within the amount of time available for processing
a packet; at high speed the per-packet processing time is extremely small (e.g., about 1

microsecond for a 64 bytes [P packet at OC12 speed).
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Figure 1: Flow Identification

There are a number of possible approaches for implementing flow identification,
all involving speed versus space tradeoffs. One extreme is a direct memory lookup,
requiring only a single memory access. But this approach is not practical as the five-
tuple is 104-bit long.

The other extreme is binary search. Binary search has the most efficient memory
usage but is relatively slow. For example, to support 64K reserved flows, 17 memory
accesses and comparisons may be needed to identify a flow.

In this paper, we examine hashing-based schemes for flow identification. Hashing
offers a good tradeoff between speed and memory requirements. Hashing-based flow
identification is simple to implement. It involves the calculation of a hash function and
a small number of comparisons if there is a collision.

The performance of a hashing-based scheme depends on the collision rate. Generally,
increasing the size of hash table reduces the collision rate. This gives us a knob to fine
tune the tradeoff between speed and space based on the actual memory and speed
requirements.

The main objective of this paper is to study the performance of different hash
functions, the tradeoff between speed and space, and the scalability of the hashing-

based approaches. Specifically, we try to address the following questions:

e Which hash functions produce good performance
e How much memory is needed for a reasonable collision rate target

e Is it possible to support hundreds of thousands of reserved flows at high speeds



In the next two sections, we first present several hashing-based schemes, and then

present the details of our findings.

3 Hashing-Based Approach
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Figure 2: Hashing-based Flow Identification

Figure 2 illustrates a hashing-based system for flow identification. When a RSVP reser-
vation is made, a router applies a hash function to the five-tuple of a packet that
identifies the reserved flow. If the output hash value has not been used by other re-
served flows, the router can simply associate all reservation state (e.g., bandwidth etc.)
with that hash value. If other flows have been hashed into the same position, we need
to resolve the collision. A simple approach is to set up a collision resolution table to
hold the five-tuples of all collided flows with the same hash value.

In the packet forwarding path, the router applies the same hash function to the
five-tuple of each incoming packet. If the hash value has no collision, it can be used to
retrieve the reservation state for the flow. Otherwise, the router needs to compare the
five-tuple of the incoming packet with all flows in the collision resolution table in order
to find the exact match. Once the reservation state is retrieved, the packet is dispatched
to the scheduler.

The average performance of the system depends on the average collision rate, and



the worst case performance is determined by the maximum number of flows that may
have the same hash value. If the collision rate is very low, it may be acceptable to skip
the collision resolution step; this is a possible engineering tradeofl between precision

and speed.
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Figure 3: 104-bit 5-Tuple as Flow 1D

We now describe the four hash functions and one double hashing that we consider
in our study. To reduce the implementation complexity, the first two hash functions
only use two fields from the five-tuple for hash computation. The other two use the

five-tuple as a 104-bit string (Figure 3).
3.1 XOR-Folding of Source and Destination IP Addresses

This hashing scheme concatenates source and destination [P addresses into a 64-bit
string and performs XOR-folding according to the hash table size. The computation
is very simple and does not need access to the layer four information in the packet.

Mathematically, it can be expressed as:

HHO)=A10A:&---d A,

where A;’s are [-bit long for a hash table size 2! and the concatenation of A;’s forms the
64-bit source and destination IP addresses plus zero paddings at the end for [-bit-wise
alignment. For example, if the hash table has 1M entries, the hash function can be

implemented in the following code:

hash_index = srcIP >> 12;

temp = (srcIP << 8) | (destIP >> 24);
hash_index "= temp;

temp = destIP >> 4;

hash_index "= temp ~ (destIP << 16);



return hash_index;
3.2 XOR-Folding of Destination IP Addresses and Destination Port

For many streaming applications, data is delivered from the server towards the client.
In such cases, the destination address and port number tend to be more effective in
distinguishing a flow from others. Thus, we also look at a simple variation of the previous
hash function, by replacing the source address with destination port number. The XOR-

folding of destination IP address and destination port number can be expressed as:

HO)=A10A:&---d A,

where A;’s are [-bit long for a hash table size 2! and the concatenation of A;’s forms the
48-bit (destination IP addresses, destination port number) plus zero paddings at the

end for [-bit-wise alignment.
3.3 XOR-Folding of Five-Tuple

This hash function concatenates all bits of the five-tuple into a 104-bit string, and
performs XOR-folding according to the hash table size. For example, when the hash

table address is 20-bit long, the hash function can be implemented in the following code:

hash_index = srcIP >> 12;

temp = (srcIP << 8) | (destIP >> 24);
hash_index "= temp;

temp = destIP >> 4;

hash_index "= temp;

temp = (destIP << 16) | srcPort;
hash_index "= temp;

temp = (destPort << 4 ) | (proto >> 4);
hash_index "= temp;

temp = protocol & OxF;

hash_index "= temp;



return hash_index;

The five-tuple contains all information for identifying a flow, thus we expect this
scheme to perform better than the previous two. The interesting question is how much

the improvement will be.
3.4 32-bit CRC

The 32-bit CRC algorithm, as defined by ISO 3309, is known to be able to exploit the
randomness in traffic well, thus it could be a good hash function for flow identification.
However, the 32-bit CRC (also called CRC32) is much more complex compared to the
previous hash functions we have described, and thus it should be considered only when
it can add significant improvement.

The CRC polynomial employed is':
232 4 26 4 223 4 022 4 006 L 12 01 4 00 L 08 L T L 05 L 4y a2

The hash table index is computed by applying the CRC32 algorithm to the five-tuple

of the incoming packet modulo the hash table size N.
3.5 Double Hashing

We also consider the technique of double hashing [5], where a second hash value is
computed with a different hash function if the first hashing causes a collision. In double
hashing, a collision occurs when a collision is observed on both hash functions. The
probability of a collision with two different hash functions is likely to be substantially
smaller than that with one hash function. However, the extra complexity has to be
justified with substantial increase in performance.

In the simulation, we use hash function XOR-folding of full five-tuple as the first
hash function Hy, and use XOR-folding of source and destination IP addresses as the

second one, i.e., Hs.

' A sample CRC implementation can be found at http://www.w3.org/TR/REC-png#CRC-algorithm.
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3.6 Performance of Perfect Hashing

Before we present our simulation results in the next section, let us first look at the
theoretic performance limits of hashing-based schemes. For the purpose of evaluating
the performance of hashing-based flow identification, we define the collision rate as the
proportion of total active flows that are hashed into places already occupied.

Assume that we have a perfect hash function that can uniformly map random flows
into a hash table. Let N be the size of hash table and m be the number of distinguished
flows that are hashed into the table. We show in the Appendix that collision rate can
be expressed as
N (R

m

Cr=1-

Figure 4(a) shows the relationship between the collision rate (C'r) and the hash table
size N for a given number of active flows m. The collision rate decreases quickly when
the hash table size increases. The drop in the collision rate starts to level off after the
hash table size is about 10 times larger than the number of flows.

Figure 4(b) shows the relationship between the collision rate (C'r) and the number of
active flows (m) for a given hash table size. The collision rate increases almost linearly

with the number of flows.
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Figure 4: Collision rate versus flow number and hash table size



In practice, hash functions typically will not be able to match the performance of the
perfect hash function we have described. The distribution of the bits in the five-tuple
is not completely random, and the port numbers in particular tend to concentrate on a
small number of values (e.g., 80 for web servers). However, a good hash function should

be able to exploit all inherent randomness in flow identifiers, i.e., the five-tuples.

4 Simulation Results

We now present the simulation results on the performance of hashing-based flow iden-
tification. Our simulation is based on real packet traces collected on a major Internet
backbone (over one OC12 trunk and one OC3 trunk) during the summer of 1998. The
four sets of traces contain complete packet headers and timing information of about 8
million packets. Traces 1 and 3 came from an OC12 trunk, while traces 2 and 4 came
from an OC3 trunk.

There are 164K, 112K, 173K, and 117K different flows in the four sets of traces. It
is unlikely that all flows would require reservation. However, in order to examine the
scalability limits of the schemes, we assume in our study that all flows are reserved flows.
The four sets of traces were collected over four intervals of approximately 14 seconds
each. Given the relatively short duration, we also assume that all flows in the traces
are active during the simulation; no garbage collection on the hash table is performed.

We used a trace-based simulation tool to generate the collision rates and the maxi-

mum number of collided flows for hash table sizes ranging from 256K and 4M.

4.1 Collision Rate

Figure 5 shows the collision rate with the first four hash functions we described in
Section 3, together with that of the perfect hashing. Both the CRC32 and the XOR-
folding of the five-tuple perform extremely well, close to the curve of perfect hashing;
the performances of the XOR-folding of source and destination addresses and the XOR-

folding of destination address and destination port number are rather poor. The results
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Figure 5: Collision rate with four single hashing

are very consistent across all four sets of traces. For CRC32 and XOR-folding of five-

tuple, the amount of memory needed to reach a small collision target is very reasonable.

We then compared the CRC32 and double hashing in a close-up examination. While
the CRC32 and double hashing both show excellent performance, double hashing based

on less complex functions outperform CRC32, although the difference is not significant

(see Figure6).
4.2 Worst-Case Number of Collided Flows

For collided flows, it is important to know how many flows that have been hashed to
the same hash table address. In particular, the worst-case number of collided flows

determines the maximum number of comparisons needed to perform to find the exact
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Figure 6: Collision rate with 32-bit CRC and double hashing

match. To achieve wire-speed forwarding, routers have to be designed to deal with

the worst-case. Therefore, the worst-case number is a good indication of the schemes’

scalability.

Table 1 shows the average and worst-case number of collided flows. For the average

numbers, all four hash functions perform well, although CRC32 and the XOR-folding of

five-tuple are slightly better than the other two. For the worst-case numbers, however,

the difference between the worst and the best is significant; CRC32 and XOR-folding of

five-tuple have the worst-case numbers consistently below 7, while XOR-folding of source

and destination addresses, and XOR-folding of destination address and destination port

have the worst-case numbers over 1000.

One may notice that the worst-case numbers for XOR-folding of source and desti-
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Table Average Worst Case
Size(k) | SrcDestIP | Dest | 5-tuple | CRC32 | SrcDestIP | Dest | 5-tuple | CRC32
Trace 1 256 3.00 2.05 | 1.348 1.350 1284 2353 7 6
512 2,84 1.81 1.166 1.166 1284 2350 5 6
1024 2.76 1.71 1.081 1.080 1284 2350 4 5
2048 2.72 1.66 1.042 1.040 1284 2350 4 5
4096 2.70 1.64 | 1.022 1.020 1284 2351 4 4
Trace 2 256 3.45 278 | 1.255 1.249 4601 3277 6 6
512 3.34 2.53 1.124 1.120 4601 3277 5 5
1024 3.27 2.46 1.062 1.060 4601 3277 4 4
2048 3.25 243 | 1.032 1.030 4601 3277 4 3
4096 3.23 2.42 1.016 1.014 4601 3277 3 3
Trace 3 256 3.06 2.01 | 1.372 1.369 1076 1390 7 7
512 2.89 1.74 | 1.177 1.174 1076 1390 5 6
1024 2.80 1.62 | 1.087 1.084 1076 1390 5 4
2048 2.76 1.56 1.044 1.041 1076 1390 4 4
4096 2.74 1.53 1.022 1.020 1076 1390 4 4
Trace 4 256 3.35 2.70 1.247 1.241 1242 3898 6 6
512 3.24 244 | 1.117 1.118 1242 3898 5 5
1024 3.18 2.38 1.057 1.058 1242 3898 4 4
2048 3.15 2.36 | 1.030 1.029 1242 3898 4 3
4096 3.14 2.35 1.015 1.014 1242 3898 3 3

Table 1: Average and worst-case numbers of collided flows

nation addresses, and XOR-folding of destination address and destination port remain

unchanged when the hash table size is increased. A close examination of the simulation

logs reveals that the worst-case numbers are approximately the numbers of flows that

have the same source/destination addresses and destination address/destination port

numbers. Thus, hashing with the two fields as input cannot distinguish them.

We also compared double hashing and CRC32 on worst-case numbers of collided

Table Size
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Table 2: Worst-case numbers of collided flows for CRC32 and double hashing

12




flows. The result is shown in Table 2. It indicates that double hashing improves the

worst-case number slightly.

5 Conclusion

In this paper, we proposed and evaluated several hashing-based schemes for flow identi-
fication. Our simulation results, based on real traffic traces from OC12/0C3 backbone
trunks, show that CRC32 and XOR-folding of the five-tuple perform, consistently, ex-
tremely well. Moreover, double hashing demonstrates it can offer even better perfor-
mance at minimum cost.

Based on our findings, we conclude that, with hashing-based schemes, it is feasible
to implement flow identification at gigabit speeds with several hundreds of thousands

of reserved flows.
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A The Proof of Hashing Collision Rate

Hashing random flows into a hash table is equivalent to randomly dropping balls into

buckets. In the following conjecture and proposition, we assume N > k.

Conjecture A.1 Consider dropping k balls randomly into N buckels. Let My be the
average number of buckets that the k balls occupy. Then, E(Myy1) = E(My) X % +
E(My) x X=EM),

Proof: Simplify the above assertion,

B = B0t P8 4 gy N )
— B(My)(1 - %) +1.

Let P,i be the probability that k& balls are dropped into ¢ buckets of the total NV
buckets. When the (k4 1)th ball is to be dropped, it is either dropped into one of the m
buckets occupied by the first & balls, or it is dropped into one of the other unoccupied

N — m buckets. Therefore,

k AN ]V ]V k
E(Mpyy) = Pk +Pk—2+ Pf ~EEP P} ¥ 2+P,€2 N 254 P} (k+1)
- N(Pk(QN )—|—Pk(3N—2)—|—...+P,f((k—|—1)N—k))
1
= ﬁ((N—1)(P,§2+P,§3+...+P,§(k+1))+Pkl+P,§+...+P,§).
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Note that 3%, P =1 and S5, Pii = E(My),

E(Mys1) = %((N—1)((P,€11—|—P,32—|—...+Pfk)+1)—|—1)

4

= E(M)(1- %)H

which proves the conjecture. a

We define the average collision rate C, as the proportion, on average, of balls that
are dropped in buckets already occupied. The following proposition reveals the relations
among C,, N and k.

N1k
Proposition A.1 C. =1 — w

Proof: From Conjecture A.1, E(M;) = E(My_1)(1 — %) + 1. Note that we have

boundary condition £/(AM;) = 1. Solving the series, we have

B(My) = N(1 - (=—)").

The average collision rate C'. then can be calculated as

k — E(My)
k
N (YY)

C, =

= 1-
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