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SUMMARY 

To manage the growing challenge of remaining competitive in today’s saturated market, 

businesses in the manufacturing industry often turn to lean manufacturing practices. The 

layout design process, a lean technique, has the potential to provide a manufacturer with 

significant reductions in operating and capital costs. The major challenge for layout 

designers is then ensuring these benefits can not only be maximized, but also realized 

when implemented in practice. Guaranteeing this realization requires both the real-life 

behavior and characteristics of the environment as well as the market and business model 

conditions to adequately be captured.  

Unfortunately though, after an extensive literature review, it is identified that 

current methods fail to accurately capture real-life considerations such as flow path 

feasibility while evaluating a layout design’s performance, consider continuous 

representations of evolving layout designs subject to financial restrictions and 

uncertainty, and moreover provide sufficient insight into the design of an environment 

subject to evolving and uncertain conditions. It therefore became the objective of this 

research to establish an improved methodology for exploring the design space of a 

detailed evolving environment, enabling more informed and collaborative design 

decisions to be made in the presence of evolving and uncertain market and business 

model conditions. 

In the process of achieving this goal, critical gaps in the literature are identified 

and systematic approaches subsequently formed to provide closure to said gaps. A 

methodology, titled LIVE, is formed during this process. Along with its formation an 
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extensive array of novel methods, revolutionary optimization techniques, and new 

applications of existing genetic operators are developed in addition to a detailed 

performance model; all to facilitate the effective solution to the uniquely complex and 

arduous formulation of the layout problem requiring solution in this dissertation. The 

composition of these methods, approaches, and models form, what is collectively referred 

to as, the bi-model multi-stage solution approach. It is then believed, if the problem of 

designing an environment subject to evolving and uncertain market and business model 

conditions was to be solved with this LIVE methodology then, designers would be 

capable of making more informed and collaborative decisions on its design. 

Substantiation of this is then pursued following the formation of this methodology 

and further the development of the bi-model multi-stage solution approach deployed by 

it. The methodology, and the approaches it deploys, are subsequently systematically 

tested according to an experimental approach. In the first stage of the solution approach, 

whereby a quadratic assignment problem, unstructured, sequence-pair model is leveraged 

to represent the layout, the novel feasible sequence-pair promoting method developed to 

handle the unique characteristics of the problem relating to constrained objects in the 

space is tested. It is shown to be effective at promoting the more frequent discovery of 

feasible designs in comparison to the standard random assignment method of the 

literature. It is further shown that it enables problems otherwise unsolvable to then 

become solvable. Following this testing, the importance of considering flow path 

feasibility while designing a layout is proven to be crucial. Failure to do so confirms that 

sub-optimal designs would be produced by the layout design process. It is further 

demonstrated that the novel advanced flow distance method developed to provide such 
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consideration was effective in doing so, leading to designs far better representative of 

reality and thus more optimal. 

Next, the two stages of the developed bi-model multi-stage solution approach are 

examined for their effectiveness in providing solution. Optimization parameter studies 

are performed to identify the settings of the parameters that best facilitate effective 

solution. It is demonstrated that different setting should be deployed depending on the 

problem type being solved; dynamic vs. static. Ultimately, the best settings to deploy are 

identified leveraging main effects plots, an analysis-of-variance, and a weighted average 

approach to balance key metrics where applicable. 

Finally, while applying the LIVE methodology to a real-world layout design 

problem, it is shown that the methodology effectively facilitates improved insight and 

potential collaboration into the layout design process. The implemented performance 

model proves significant in enabling new insights to be drawn and further for a richer 

understanding of the operations and layout design to be gained. Overall, the methodology 

demonstrates its ability to provide an improved layout design process that can effectively 

handle design problems subject to uncertain and evolving conditions; enabling strategic 

business decisions to be considered in parallel to the design of the layout.  
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CHAPTER 1 

– 

INTRODUCTION 

A major challenge faced by businesses globally is remaining competitive in today’s 

saturated market. To manage this challenge, some seek entrance to new or emerging 

markets while others implement business strategies to improve their operational 

effectiveness. By reducing operating costs, businesses can choose either to absorb the 

larger profits that result or reduce costs for their customers. The latter of these scenarios 

enables the business to appear more affordable and therefore more appealing to 

consumers. As one can predict, this appeal is vital to remaining competitive in a saturated 

market. In addition to these two measures, some may also alter their business model, 

going through periods of restructuring or production redistributions. Dawar and Frost 

observed the necessity for this in stating that when “globalization pressures are strong, 

managers can’t just build on their company’s local assets; they will have to rethink their 

business models” [53]. More often than not, businesses will be required to perform one or 

multiple of these measures in order to remain competitive. In the manufacturing industry, 

businesses often turn to lean manufacturing practices to manage this growing challenge. 

 A Paradigm Shift in the Manufacturing Industry 

In the early 1950’s the Toyota Motor Company, inspired by the simple waste elimination 

concepts developed by Henry Ford in the early 1900’s, implemented (what are 

considered to be by most) the first advanced forms of lean manufacturing [1,2]. The 

success Toyota had incorporating these techniques caught the attention of the industry, 
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inspiring a paradigm shift in how manufacturer’s approached operations. This paradigm 

shift from the previous approach of batch production to that of lean production was 

further aided in 1990 by Roos, Jones, and Womack’s publication of the book “The 

Machine That Changed the World” [172]. Their book highlighted MIT’s five-year, five-

million-dollar study on the future of the automobile industry and further made lean 

production a worldwide known term. The lean production approach focuses on the 

systematic elimination of all waste (i.e., inefficiencies) related to an organization’s 

operations. Since its initial acceptance, and as estimated by Tompkins, White, Bozer, and 

Tanchoco in their textbook Facilities Floorplanning, on an annual basis since 1955 about 

8% of the gross national product (GNP) in the United States has been delegated towards 

the development of new, more efficient facilities [163]. 

1.1.1 The Value of Lean Manufacturing 

These early lean manufacturing strategies implemented by the Toyota Motor Company 

have since been advanced and expanded, forming what are now commonly recognized as 

the eight core techniques of lean manufacturing. They include the kaizen rapid 

improvement process, 5S (sort, set in order, shine, standardize, sustain), total productive 

maintenance, cellular manufacturing, just-in-time production, six sigma, pre-production 

planning, and lean enterprise supplier networks [1]. 

Implementation of any one or several of these techniques concurrently can 

provide several benefits.  It is widely observed that performance improvements in the 

range of 30 to 70 percent can be achieved through practicing lean manufacturing [1]. In 

general, lean techniques help reduce operational costs through improved performance, as 
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just observed, and capital manufacturing costs by enabling profitable consolidation 

options and minimal initial facility investments to be identified. The latter cost has never 

been better exemplified than by Goodrich Aerostructures’ use of lean methods to 

facilitate the consolidation of their operations while concurrently increasing production 

output. Furthermore, consolidation of their operations enabled them to recover initial 

capital investment costs through the sale of previously required properties [43]. 

 Reductions in these costs have the major advantage of resulting in reduced 

overhead and increased profit margins. They also have the added benefit of improving the 

environmental performance of the manufacturer’s production flow [1]. As such; these 

techniques can make a manufacturer more competitive and increase their likelihood of 

entering new or emerging markets with success. These substantial benefits have led to 

such lean techniques becoming adopted by manufacturers at an accelerating rate [1]. As a 

result, the following assertion can be made: 

Assertion 1: As more companies begin to adopt and benefit from these 

techniques, transitioning to lean production has become less about improving 

one’s competitiveness and more about a necessary action to remain competitive in 

the national and global markets. 

1.1.2 Benefits of Layout Design 

Of the eight core lean techniques, cellular manufacturing, a subset of the broader concept 

of layout design, produces some of the most significant performance improvements and 

capital savings for the general manufacturer. This is a result of it being the first of the 

methods that produces a major adjustment in operations making it a key enabler for 
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increased production velocity and flexibility [2]. This is achieved by adjusting the design 

of the environment with the goal of improving the overall operational flow of material as 

is notionally demonstrated in Figure 1. This improvement in the operational flow and 

thus performance can quantifiably be observed as reductions in operating costs. With that 

said, to what degree or frequency the environment can realistically be adjusted is limited 

by several factors including financial restrictions. 

 

Figure 1 – Example of implementing cellular manufacturing to improve flow [2] 

Although a disruptive technique, as production must be halted to adjust the layout 

of the environment, the reward is high. Material handling costs represents anywhere from 

20-50% of a manufacturer’s operating costs and 15-70% of the total cost of 

manufacturing a product [163]. Therefore, even marginal improvements to the design of 

the layout can yield large savings over time. In fact, it has been estimated that anywhere 

between 10-30% annually can be saved through the reduction of operating costs with 

effective layout design [71]. Layout design also has the benefit of providing potential 

capital cost reductions as it enables consolidation options and minimal facility size 

requirements to be identified. As observed before, Goodrich Aerostructures is an example 

of how implementing cellular manufacturing enables manufacturers to consolidate and 

reduce capital costs. Its implementation enabled them to consolidate their operations into 
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two facilities from five while simultaneously doubling output. They were in turn able to 

sell the remaining three facilities thereby reducing their initial capital costs [43]. 

1.1.3 Importance of Addressing Layout Design in Manufacturing 

Given the paradigm shift, the observed importance of layout design, and the earlier 

observation regarding the percentage of GNP in the United States being delegated 

towards new facilities (8%), it is reasonable to then assume that more than 250 billion is 

spent annually on layout or relayout processes [100].  With such a large sum of capital 

being invested in layout design each year it is hard to ignore the problems relevance. The 

importance of addressing layout design as it pertains to the manufacturing industry in 

particular can be understood by acknowledging the role that it plays in the economy.  

According to the Bureau of Economic Analysis, manufacturers contributed 2.17 

trillion dollars to the U.S. economy in 2015, a statistic that since 2009 has been 

continually rising. Furthermore, the manufacturing industry accounted for over 12 

percent of the gross domestic product in the U.S. economy in 2015 [40]. The 

manufacturing industry also retains one of the higher economic multiplier’s in that for 

every $1 spent in manufacturing, another $1.81 is added to the economy as a whole [40]. 

These statistics demonstrate how important the manufacturing industry is to the health of 

the U.S. economy. With layout design acting as the primary enabler to more effective 

operations and therefore performance of the U.S. manufacturing industry as a whole, 

layout design in manufacturing becomes a topic of great importance. 

 In addition to these noteworthy statistics it should also be acknowledged that the 

majority of manufacturing businesses in the U.S. are relatively small in size. As of 2013, 
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of the 251,857 manufacturing businesses, all but 1.46% where considered to be small 

businesses (i.e. having less than 500 employees). Furthermore, just a quarter of the other 

248,155 firms had over 20 employees [166], meaning that over 70% of the manufacturing 

businesses in the U.S are very small businesses. These businesses must rely on lean 

manufacturing strategies to remain afloat and competitive against not only the giants in 

their market, but also the substantial number of other small business present. For this 

large percentage of businesses, layout design becomes that much more important to their 

success in the market. 

 The Layout Design Problem 

The extent to which these manufacturers can potentially benefit from layout design has 

since been established as being quite significant; however, the most effective layout must 

first be identified before any of these benefits can be realized. Identifying this layout is 

achieved by solving, what literature classifies as, the layout problem (LP). The quality of 

this problem’s solution becomes imperative to ensuring the maximum benefit is achieved 

from performing this layout design process. 

Besides the solution method’s ability to establish this desired solution, two other 

factors greatly contribute to the degree of benefit that can be realized from the layout 

design process. One is how well the problem formulation captures the necessary detail of 

the environment to accurately establish a solution of realistic viability: more accurately 

the model captures the real-life behavior of the environment, the more viable the design 

will be when actually implemented in practice. The second is how well the solution 

process accounts for the market and business model conditions the environment will 
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experience during operation: the better these conditions are captured, the better suited the 

solution established by the design process will be at ensuring the maximum benefit is 

achieved.  

1.2.1 Major Layout Design Challenges 

These two factors also coincidentally correlate to the two major challenges faced by 

manufacturing layout designers. The first of these challenges relates to how accurately 

the real-life behavior of the environment is captured by the problem formulation. In an 

attempt to ensure the realistic viability of the layout can be adequately assessed, it has 

required that the problem formulation become significantly more complex. The solution 

difficulty is proportional to this complexity however. Therefore, the more realistic the 

problem formulation is, the more complex the problem becomes and the more difficult it 

then is to solve. As such, balancing how accurately the problem formulation captures the 

real-life behavior and detail of the environment with the problem’s solvability is a 

challenge often faced by designers. As observed before however, the benefit that can be 

realized from layout design is directly influenced by how well the environment is 

modeled. If one seeks to achieve the maximum benefit from the layout design process, 

then sacrificing the model accuracy becomes unwise. Therefore, the major challenge for 

designers then becomes how to preserve the problem’s computational tractability as the 

layout detail and design capability requirements increase. 

The second of these challenges relates to ensuring that the conditions the 

environment will ultimately face are adequately captured. Operating conditions, or more 

fundamentally market and business model conditions, are often highly unpredictable and 
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prone to fluctuations with time. Therefore, a major challenge faced by designers is how to 

accurately define the forecasts of these conditions such that the designed layout remains 

effective when implemented. 

It should be understood that manufacturing designers are not the only designers 

facing these challenges, designers across several industries are also having to manage 

these challenges. Designers of VLSI (Very-Large-Scale-Integration) circuits, ships, 

houses, airports, hospitals, and many others are also experiencing these challenges, more 

so with respect to the second of the two challenges. For this reason, solution to the layout 

design problem and the development of more effective methods is relevant and useful 

across many industry applications, not just that of the manufacturing industry and the 

design of manufacturing environments.  

1.2.2 Managing These Challenges 

1.2.2.1 Evolution of the Problem Formulation 

Since its original formulation, the layout problem has continually evolved, becoming 

more complex and difficult to solve. Demands for improved design capabilities and 

greater layout detail have in large part driven this evolution. These demands have, more 

often than not, been derived from the desire to maximize the benefit that can be realized 

from performing the layout design process. Early efforts focused on very basic models of 

the environment that encapsulate a limited degree of detail. These models represent 

layouts discretely where the departments of the environment are either stacked upon each 

other or more often, placed in an apriori prescribed set of possible locations. Furthermore, 

they neglect details such as interior obstructions (pillars, walls, safety zones, etc…), 
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inputs and output points of the departments, and flexible departments (i.e. departments 

whose size can change) to name a few. Even to this day, a majority of the research 

focuses on these basic models of the environment due to their solution being considerably 

more manageable compared to formulations that provide more layout detail. 

 In recent years however, research has begun to shift towards formulations that 

better represent the environment’s actual characteristics and behavior as designers seek 

improved design viability. These formulations employ continuous representations of the 

layout, which provide designers with improved design capabilities. The inclusion of the 

aforementioned layout details has also accompanied this, further providing designers with 

a more realistic depiction of the environment. Though such formulations improve a 

designer’s ability to establish realistic designs, the added complexity and difficulty of 

their solution has prevented such problems from being extensively studied in the 

literature. Researchers that have entertained such a problem formulation have had to 

manage the challenge of keeping such a problem computationally tractable. This has 

often required effective solution methods to be developed. The limited research present in 

the literature regarding the effective solution of such a detailed problem formulation is 

the first of the noteworthy gaps present. As will be observed, this gap only widens as 

other characteristics of the problem are coupled with such a problem formulation. 

1.2.2.2 Presence of a Major Gap in the Assessment of a Layout Design 

The performance metrics that establish a given design’s effectiveness also contribute to 

the capability of establishing realistically viable layout designs. Performance metrics that 

inadequately account for the real-life behavior of the environment can lead to inferior 
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layout designs. Across the literature the standard measure of a manufacturing layout’s 

performance is its material handling cost. This is comprehensible given the earlier 

observation of how largely material handling contributes to the operating and total 

manufacturing costs.  

The majority of research implements rudimentary methods of establishing the 

material flow distances for the segments of a process performed in the environment, 

which when coupled with unit process segment flow costs, enables the material handling 

cost to then be defined. These methods typically neglect flow path feasibility when 

determining these distances present in the environment. An extremely limited amount of 

research has considered the importance of addressing this flow path feasibility, which, 

from the author’s previous observations, can greatly impact the design deemed most 

effective. In some cases, this yields a design that is over thirty-five percent less effective 

in practice than one generated while considering such flow feasibility. As such, this 

presents a noteworthy gap in the literature that required addressment in this dissertation. 

1.2.2.3 An Unpredictable and Evolving Landscape 

As noted before and also observed by Kulturel-Konak in his comprehensive review of 

approaches to uncertainty in the LP, capturing the dynamics of the global economy is 

another major challenge faced by layout designers [100]. The dynamics of the market are 

often volatile, unpredictable, and consistently evolving. This makes it not only difficult, 

but also highly unrealistic, to capture the precise market conditions that the environment 

will experience over the span of its planned lifetime. Furthermore, the models that 

businesses employ, often to account for these changes in the market, are also likely to 
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evolve. Dawar and Frost, recognized this parallel evolution when stating that “not only 

will managers find their strategies likely to evolve over time, but the nature of their 

industry may change as well” [53]. With so much ambiguity present, it becomes a 

principle concern of designers, seeking a layout design with long-term viability, to 

establish accurate methods of accounting for said uncertainty and evolution in the market 

conditions and business model. 

1.2.2.3.1 Manufacturing Uncertainties 

As it applies to the manufacturing industry, there are two categories of uncertainties. The 

first of these are uncertainties associated with internal disturbances such as equipment 

breakdowns, queuing delays, and rework. The second of these are uncertainties derived 

from external forces such as product demand levels, product mixes, product market 

values, manufacturing costs, layout restructures, and equipment changes [100,152]. 

Addressing uncertainties pertaining to internal disturbances is often the main objective of 

what is referred to in the literature as the scheduling problem. On the other hand, 

addressing uncertainties associated with external forces is often the primary concern of 

the layout problem. These external uncertainties collectively address variations in the 

aforementioned market and business model conditions and for this reason the following 

assertion can be made: 

Assertion 2: Accounting for these uncertainties in the layout design process is 

essential to accurately designing a layout that will remain effective over the 

course of its planned lifetime and as market conditions and business practices 

evolve.  
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1.2.2.3.2 Addressing Uncertainty and Evolution of the Conditions 

Too often, the difficulty of establishing methods that adequately account for the 

uncertainty and evolution in these conditions and further the solution of such problems 

has discouraged researchers in the field of manufacturing layout design. As such, far less 

research has been performed in this area. In recent years however, researchers have 

begun to acknowledge the value and more often the necessity of such an endeavor.  

1.2.2.3.3 Accounting for the Evolutionary Nature of the Conditions 

To account for the likely evolution of market conditions and business strategies, 

researchers have entertained allowing the layout design itself to evolve concurrently. 

Nicoli and Hollier established the importance of such an approach to the problem when 

identifying that at least a third of a manufacture’s key operations are replaced in just over 

three years, with nearly half of the companies surveyed having replacement occur in two 

years or less [130]. With operations changing so frequently, the layout’s performance will 

understandably be affected, necessitating the need for the environment to evolve 

accordingly before the end of its planned lifetime. 

Often such evolving approaches partition the planned lifetime into periods of 

shorter length where the layout is allowed to evolve (i.e. be rearranged) from one period 

to the next to provide a more effective layout design for the ensuing period of expected 

conditions. Too frequently however, these partitions are defined in a uniform and 

structured manner with evolution occurring at the onset of each period. This can be 

limiting to the understanding of the evolving layout design problem and further are 
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poorly representative of actual planning schedules. This presents yet another, albeit 

minor, gap in the literature that must be addressed. 

1.2.2.3.4 Growth of the Overarching Problem Gap 

This evolving approach to the problem, as one can postulate, further increases not only 

the solution space, but also the difficulty of the problem. A good amount of research has 

addressed this approach, but only a marginal percentage has considered such an approach 

coupled with a detailed problem formulation. Observation of this acknowledges the 

growth of the overarching problem gap mentioned earlier.  

For the layout to be capable of rearranging under this approach, sufficient 

financial resources must also be available at the time of this evolution. This places an 

additional constraint on the problem, one that is often neglected by researchers in the 

literature. To the author’s knowledge, only a few [17,48] have accounted for this capital 

resource restriction on the evolution of the layout, despite its importance in establishing 

evolving layout designs that are viable. Furthermore, none of this research overlaps with 

a detailed problem formulation and dynamic approach to the problem. This subsequently 

establishes the aforementioned gap as a major one in the literature that had to be 

addressed in this dissertation. 

1.2.2.3.5 Accounting for the Uncertain Nature of the Conditions 

Evolution of the conditions is also accompanied by uncertainty, where this uncertainty is 

expected to grow the further downstream the layout is planned for. As noted before, 

establishing the precise forecasts of these conditions is unrealistic. To overcome this 
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challenge, researchers, in recent years, have begun to adopt stochastic approaches to the 

layout design problem that focus on providing designs that are robust to the unpredictable 

nature of these conditions. The value of such a robust approach has caused it to become 

the focal point of research in this century. As demonstrated in Figure 2, researchers have 

more often adopted this concept of robustness while completely abandoning the outdated 

one of dominance (i.e. optimality) in the 21st century.  Solution to the problem that 

incorporates a detailed problem formulation, dynamic approach, as well as robustness has 

scarcely been performed in the literature. The difficulty of the problem’s solution has 

largely contributed to this gap in the literature despite such a problem providing the 

designer with extensive design flexibility and accuracy. 

 

Figure 2 – Adoption of designing a layout for robustness this century [100] 

Instead of defining the forecasts deterministically, as has often been done in the 

past, researchers have begun to define them stochastically in order to establish layout 

designs that will remain effective over a range of different potential conditions. In other 

words, layout designs which are robust. Conventionally, either a scenario based or 

statistical modeling-based method is employed to capture this uncertainty in the problem. 

Scenario based methods rely on a predefined set of discrete scenario representations of 
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the conditions. A given design is then evaluated according to each of these collectively to 

assess its overall effectiveness. Statistical modeling based methods on the other hand 

represent the uncertainty continuously by modeling the conditions as random variables of 

known distribution parameters.  

In each of these methods, the uncertainties in these conditions are infused directly 

into the solution procedure. As a byproduct of this, each of these techniques suffers from 

a lack of problem transparency. The impact that these conditions have on the 

performance of the design cannot be directly observed by a designer, which greatly 

impedes the designer’s ability to understand the influence that these conditions have on 

the design of the environment. This in turn inhibits the designer’s ability to make more 

informed decisions regarding its design. From this and the observation of the 

aforementioned gaps in the literature, the following assertion can be made: 

Assertion 3: A systematic and efficient methodology is needed to enable the 

exploration of a large combinatorial design space, support quantitative trade-off 

analyses, and improve problem insight to facilitate a more informed and 

collaborative selection of a realistically viable layout design in the presence of 

highly uncertain and evolving conditions. 

 Improving the Layout Design Process 

As observed before, there remains much room for improvement in how environments 

subject to unpredictable and evolving market conditions and business models are 

designed. To ensure the maximum benefit is achieved by performing the layout design 

process, the process of designing the environment must adequately account for the 
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evolution and uncertainty associated with the operating conditions of the environment. 

Furthermore, the process must adequately model the environment’s real-life behavior and 

characteristics. Failure to do so on either account will diminish the benefit provided by 

performing the layout design process and therefore reduce the company’s competiveness 

in the market. The focus of this dissertation is therefore to improve the layout design 

process with the goal of enabling more realistically viable designs to be identified and 

more informed decisions regarding its design to be made, all with the intention of 

maximizing the benefit that can be attained by performing this process.  

To facilitate the establishment of more realistically viable designs, this 

dissertation addresses the detailed problem formulation. Details such as layout 

boundaries, interior obstructions (pillars, walls, safety zones, etc…), inputs and output 

points of the assets, and layout continuity are collectively addressed to ensure the 

environment’s real-life characteristics are adequately accounted for. Inclusion of layout 

boundaries further enables existing building redesigns to be performed while including 

input and output points in the formulation helps provide more accurate material handling 

cost assessments. Additionally, the aforementioned major gap regarding the assessment 

of this material handling cost is addressed and an advanced flow distance method that 

ensures flow feasibility pursued. The intent is for this advanced flow distance method to 

supplement a detailed cash-based performance model, which will provide access to 

additional performance data beyond that of what is conventionally provided by methods 

implemented in the literature to solve the layout problem. It is believed that access to this 

additional data will enable more informed and strategic business designs to be made 

regarding the design of the layout and moreover the system as a whole. 
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Another focus of this dissertation is in identifying a viable solution method that 

will be effective in solving the problem formulated in this manner and moreover will 

provide effective solution in the presence of evolving and uncertain operating conditions. 

A major emphasis is on providing improved transparency to the designer regarding the 

impact that the evolution and uncertainty associated with these conditions has on the 

design of the environment. To facilitate this, a flexible approach to considering the 

evolution of the design and its robustness to uncertain operating conditions is pursued. 

Pursuit of such an approach in conjunction with the aforementioned detailed problem 

formulation attempts to fill the aforementioned overarching gap in the literature, i.e. 

provide effective solution to the robust, evolving, and detailed layout problem. Though it 

is unlikely that a rapid solution of such an intractable problem will be attainable, the 

layout planning process is rarely a time sensitive action. Typically, layout planning is a 

process that occurs over several months, thus solving such an involved characterization 

of the problem at the expense of considerably larger computational solution times is not 

all that concerning. A synthesis of these goals and observations establishes the following 

objective of the research: 

Research Objective: To establish an improved and robust methodology for 

exploring the design space of a detailed evolving manufacturing layout, enabling 

more informed and collaborative design decisions to be made under evolving and 

uncertain market and business model conditions. 

Though the application and thus focus of this research is on designing manufacturing 

layouts and analyzing system level business decisions relating to this application, it is 

intended that the robustness of this methodology will enable it to be applied to other 
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layout design applications and accompanying layout performance related business 

decisions. This declared research objective then leads to the first major research question:  

Research Question 1: How does one effectively design a manufacturing 

environment subject to evolving and uncertain market and business model 

conditions? 

Sub Question 1:  How are manufacturing environments modeled? 

Sub Question 2:  How is the evolution and uncertainty associated with these 

conditions accounted for? 

Sub Question 3:  What defines a well performing layout design? 

Sub Question 4:  How are such layout designs established (i.e. solved for)? 

In the section that follows, the literature is explored in an attempt to more thoroughly 

acknowledge the previously observed gaps. Furthermore, it seeks to provide further 

motivation as to why a robust, evolving, detailed layout problem must be solved to ensure 

realistically viable layout designs are established in the presence of unpredictable and 

evolving conditions. This motivation will be established as each of the sub-questions of 

Research Question 1 are explored and subsequently answered. 
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CHAPTER 2 

– 

MOTIVATION AND BACKGROUND 

As it pertains to the problem of this dissertation, this chapter provides an expansive 

survey of the literature on the layout problem. As the chapter progresses and the problem 

is more thoroughly understood, the scope of the research discussed will narrow 

accordingly such that only research of direct relevance and general applicability to the 

problem is observed. The densely researched nature of the layout problem makes this 

narrowing essential to prevent this document from becoming excessively long and 

nothing more than a survey of the problem, which is not the intent of this dissertation. 

Furthermore, as the chapter progresses the aforementioned Research Question 1 of how 

to effectively design a manufacturing environment subject to evolving and uncertain 

conditions will be answered by addressing each of its sub-questions stated before. Before 

diving into addressing these sub-questions an understanding of the layout problem itself, 

general relevance, and characteristics is required.  

 The Layout Problem 

The layout problem (LP) is a combinatorial optimization problem (COP) that attempts to 

identify the position of objects relative to one another within a layout for which a 

predefined measure of layout performance is maximized. Said problem has been 

extensively researched with a wealth of it having studied the use of different formulation 

and solution methods. These studies span across several fields and applications which 

include, but are not limited to, ship, building room, VLSI circuit board, and 
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manufacturing facility design with the latter two being the most commonly studied 

[108,30,47,87,21]. 

Research on the LP can often be categorized according to two fundamental 

problem characteristics; brown versus green and rough versus detailed layouts where a 

complete formulation encompasses at least one characteristic of each of the divisions 

(e.g. a rough green LP). The brown versus green characteristic establishes whether the 

problem is constrained or unconstrained with the latter being representative of a green 

LP. A green LP, such as the one demonstrated in Figure 3a, does not have external 

boundaries that constrain its dimensions and therefore the outer dimensions of each 

solution to the problem are likely to be different [154]. Brown LPs, like the constrained 

example in Figure 3b, differ from green LPs in that they are confined to a fixed area. 

 

Figure 3 – A (a) rough green layout problem [47] (b) detailed brown layout problem 

[21] 

The second division; rough versus detailed, is representative of the level of detail 

being considered. The rough LP is only concerned with achieving a relative block layout, 

as demonstrated in Figure 3a where the blocks are simply packed together. The detailed 

                  
 (a)                                                                       (b) 
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LP, on the other hand, simultaneously accounts for characteristics such as I/O points, 

aisles, and infeasible regions when solving the problem [21]. Research on the detailed LP 

is far less extensive as it is often more computationally expensive and difficult to solve. 

Constructing the LP requires formulating the problem and identifying a suitable solution 

method. Both of the divisions identified above greatly contribute to the formulation 

required and solution method that will be most effective in solving said problem. 

As was established in the preceding section, researchers have sought capturing 

more layout detail in their formulations as the demand for improved design capabilities 

has grown considerably since the LP’s initial inception. Varying levels of detail have 

been captured by researchers. Types of layout detail studied in the literature include, but 

are not limited to, fixed boundary constraints or its variant, fixed aspect ratio boundary 

constraints (brown vs green distinction), flexible non-rectangular and same size objects, 

input and output points (I/O points) of objects, multi-floor layouts, aisle and routing 

paths, fixed objects (pillars, interior walls, stations, etc…), and safety buffers (additional 

spacing about objects) [21,30,47,87,108]. In general, the ordering of this list also 

corresponds to the relative frequency of implementation, where boundary constraints are 

the most often addressed and details such as aisle and routing paths, fixed objects, and 

safety buffers are those less often studied. How these details are captured in the problem 

formulation is directly influenced by the model implemented to represent the layout. This 

observation acknowledges the first of the sub-question, Research Question 1.1, 

regarding how layouts are modeled? 

 Approaches to Modelling the Layout 
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There are three main model formulations of the LP. These include formulating it as a 

quadratic assignment (QAP), a mixed integer programming (MIP), or a graph theory 

problem where the latter is the less commonly implemented and as such will not be 

discussed further. For information on graph theory and studies performed using it in 

relation to the LP readers may refer to Foulds and Hassan and Hogg [70,86]. Of the two 

more common models implemented, the QAP formulation of the problem has dominated 

the research focus. Recently though this focus has shifted more towards the MIP 

formulation as the desire for improved layout representation and analysis capabilities has 

grown. The major differentiation between these two models is in their continuity 

property. As will be observed, the QAP is capable of only discrete layout representation 

whereas the MIP can represent continuous layouts, or in other words layouts in which the 

coordinate positions of the objects can take any value between a range of boundary 

values and are defined independently of one another [127,100]. This distinction becomes 

important when addressing the problem of this dissertation. 

2.2.1 The Quadratic Assignment Problem Formulation 

The most general formulation of the LP is as a QAP. The original mathematical model 

for the QAP was introduced by Koopmans and Beckmann in 1957 to solve the problem 

of allocating indivisible economic resources [97]. In other words, they sought to allocate 

a set of facilities to a set of locations, thereby establishing the relative position of each to 

one another. This is nothing more than the LP in its simplest form. Despite being the 

most basic form of the LP, it remains a difficult problem to solve. The problem maintains 

an NP-hard solution complexity and as such, no exact algorithm can solve problems that 

are larger than twenty objects in size to optimality [154,149,41,103]. The mathematical 
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model proposed by Koopmans and Beckmann and applied generally to the LP is as 

follows [97,41]: 

𝑚𝑖𝑛
𝜑∈𝑆𝑛

∑∑𝑓𝑖𝑗𝑑𝜑(𝑖)𝜑(𝑗)

𝑛

𝑗=1

𝑛

𝑖=1

+∑𝑏𝑖𝜑(𝑖)

𝑛

𝑖=1

 

where f represents the presence of flow between facilities (discrete: 0 or 1), d the distance 

between the facilities, b the cost of facility placement, and n the number of facilities and 

locations. As can be observed, the model structure is discrete in nature. It provides a 

purely binary or integer representation of the variables and for this reason only discrete 

layouts can be evaluated [154]. This inherent discreteness leads to the following 

important observation: 

Observation 1: QAP models are fundamentally incapable of representing 

continuous layouts. 

2.2.1.1 Topological Representations of the Layout 

To represent a layout in a binary or integer string structure that can then be efficiently 

manipulated, a topological mapping between this representation and the physical layout is 

required [47]. Topological representations facilitate this mapping or characterization of 

the physical layout. Some of these representations are more effective than others and 

some more flexible. Topological representations can be divided into two groups, 

structured and unstructured representations.  

Structured topological representations will from here forth be referred to as 

QAP/S formulations of the problem with the S denoting the structured nature of the 
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formulation. This type of representation correlates to the binary string format where the 

location in which objects can be allocated are predefined and known. Under this 

condition the problem embodies precisely that of Koopmans and Beckmann’s original 

formulation where the object is or either is not placed in a given location. This is limiting 

as one must a priori know the potential locations of the objects in the environment. As 

one can then visualize, such a representation forms a gridded skeleton or structured 

layout of the objects, which is how it gets its structured distinction. Such a formulation is 

highly constraining to the problem making it less than ideal for application to the problem 

of this dissertation. With that said, the majority of research on the LP has been on such a 

model. This is a result of these restrictions producing more tractable problems that 

researchers can more easily manage. 

Unstructured topological representations, which will be referred to as QAP/U 

formulations of the problem going forward, remove these restrictions on the physical 

layout and do not require a priori definition of the object location in the environment.  

Instead these representations maintain a discrete data structure that models the 

geographical relationships among entities (e.g. left, right, below, above relations) through 

the implementation of stacking based rules [170]. Several variants of these unstructured 

representations have been proposed in the literature. Normalized polish expressions, 

B*Tree, and sequence-pair representation are among the most popular. Others include 

Corner Block List (CBL), Twin Binary Sequences (TBS), Transitive Closure Graph 

(TCG), TCG-S, O-Tree, Corner Sequence (CS), BSG, and Adjacent Constraint Graph 

(ACG) [170]. 
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A normalized polish expressions representation is a skewed binary tree model that 

implements pruning measures to prevent redundant mappings from existing [170]. This 

representation characterizes the layout by slicing it horizontally or vertically. The B*-

Tree representation is also a binary tree model, but its tree is ordered.  The benefit of this 

structure is that it guarantees a unique B*-Tree to physical layout mapping and the 

presence of an area-optimal solution [47,170]. The latter relates to its inherent packing 

nature making it ideal for solving green layout designs where a minimal area design is 

often desired. As shown in Table 1, the contour data structure of the B*-Tree allows for 

the evaluation process to be performed in amortized linear-time [170]. 

The last representation, the sequence-pair, is the most flexible, or put another way 

the least rigid, of the three. Its meta-grid data structure enables it to retain more 

information than the prior representations are capable of retaining. As such it can 

represent general layout designs rather than just sliced or compact ones. This overall 

layout flexibility is a result of the ordered sequence-pair (SP) model this representation 

employs to characterize the layout [170,128,129,160].  

Table 1 – Comparison of popular topological representations [170] 

Representation Solution Space Packing Time Flexibility 

Normalized Polish Expression O(n!23n/n1.5) O(n) Slicing 

B*-Tree O(n!23n/n1.5) O(n) Compacted 

Sequence-Pair (n!)2 O(n log log n) General 

As is often the case, the added flexibility that the SP representation provides 

comes at a cost. Even with the longest common subsequence (LCS) technique formulated 
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by Tang, Tian, and Wong implemented (the most efficient approach in the literature) to 

evaluate the SP in O(n log log n) time, this evaluation time that is required to 

pack/unpack the SP remains greater than that of the other two popular methods [160]. 

Despite the added computational time associated with the SP representation, from here 

forth referred to as the QAP/U-SP formulation of the problem, and its larger solution 

space, as shown in Table 1, its ability to characterize a general layout design makes it the 

best topological representation option of the three for solving the problem of this 

dissertation. As such the following assertion can be made: 

Assertion 4: Of the QAP layout models and as it pertains to the problem of this 

dissertation, the sequence-pair representation (QAP/U-SP) is the most suitable. 

2.2.1.2 The Sequence-Pair Representation (QAP/U-SP) 

Murata, Fujiyoshi, Nakatake, and Kajitani (1995) proposed the first formulation of the P-

admissible guaranteeing sequence-pair representation and an algorithm evaluating said 

representation for the VLSI layout design problem [128,129]. The P-admissible 

characteristic of the representation requires that the space be finite, every solution be 

feasible, evaluation time be polynomial, and a representation that corresponds to the 

optimal solution exists. The requirement for every solution being feasible in the space is 

imperative to ensuring proper convergence by heuristics as it maintains continuity 

amongst the solutions.  

Murata et al.’s (1995) original formulation relied on a longest path algorithm for 

vertex weighted directed acyclic graphs to evaluate a SP representation in O(n2) time and 

obtain the physical layout [128]. Takahashi built upon this original formulation by 
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proposing an algorithm capable of evaluating a sequence-pair in O(n log n) time [156]. 

The major shortcoming of his algorithm was that it could provide the height and width of 

the layout, but not the actual individual block positions.  

Tang et al. later sought to provide an algorithm that could not only provide the 

block positions, but furthermore improve the algorithms evaluation time of the SP. They 

improved the algorithm for evaluating a sequence-pair by proposing what they titled the 

Fast-SP [160]. Their algorithm, which relies on a longest common subsequence (LCS) 

technique to facilitate the unpacking of the SP, is capable of O(n log log n) evaluation 

times. This evaluation time includes both establishing the layout dimensions, as 

Takahashi was able to achieve earlier, as well as the block positions in the physical 

layout. In a continuation of this work, Tang, as part of his dissertation, and Tang and 

Wong extended the formulation to encompass the handling of placement constraints 

while retaining the same evaluation time as noted before. These constraints included that 

of fixed block placements, block range placements, and layout boundaries [161,159]. 

Table 2 – Capability of Tang and Wong’s SP formulation in modeling key 

characteristics of the layout 

Characteristic Capability 

Layout Boundaries Yes 

Overlap Avoidance Yes 

Fixed Objects Yes 

Flow Feasibility Quasi 

Layout Continuity No 
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QAP/U model formulations of the problem inherently guarantee that the blocks 

do not overlap in the space. This is the result of the relative relationships (left, right, 

above, below) these representations employ to characterize the layout. Coupling this with 

Tang and Wong’s formulation of the sequence-pair representation, which further 

accounts for layout boundaries and fixed objects in the space, such a formulation of the 

problem enables layout solutions that are realistically viable to be established. 

Establishing layout designs that are more realistically viable is one of the main objectives 

of the dissertation, which makes this formulation of the problem promising. Flow path 

feasibility throughout the layout is yet another characteristic of a layout that distinguishes 

its realistic viability. If the appropriate spacing for material to flow about the blocks is 

accounted for by expanding each blocks spatial footprint, then said formulation of the 

problem can in a quasi-way account for flow feasibility. By expanding each blocks 

spatial footprint, it indirectly accounts for flow feasibility by ensuring that material can 

flow between each and every block. In reality however, it may be more beneficial to 

account for this spacing between only certain blocks and that is where this formulation 

becomes limited. 

Although a QAP/U-SP model is the most capable of the QAP formulations in 

accounting for the majority of the essential layout characteristics of the problem, 

Observation 1 acknowledges that such a formulation remains insufficient in 

characterizing a continuous layout due to its fundamental mathematical construct. This is 

reflected in Table 2 which summarizes the characteristics that such a formulation can 

sufficiently capture. Understanding this limitation, the following conclusion can be made: 
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Conclusion: Although a SP representation (QAP/U-SP) is the most suitable, its 

inability to represent continuous layouts establishes the need for a more flexible 

modeling approach. 

Despite the QAP/U-SP model’s inadequacy in characterizing the layout, its discrete data 

structure does make it more conducive to a solution. As such, the following question is 

posed: 

Question 1.1.1: Could a QAP/U-SP model be leveraged during the solution 

procedure to reduce computational times where the layout continuity property is 

not as imperative? 

As concluded above, a more flexible modeling approach is required to sufficiently 

characterize the layout of this dissertation. For improved model flexibility and the ability 

to capture layout continuity, which the QAP formulations are incapable of achieving, 

researchers have turned to MIP model formulations of the problem.  

2.2.2 The Mixed Integer Programming Formulation 

It is commonly acknowledged that George Dantiz was the first to introduce the linear 

programming model in 1947 along with his simplex algorithm for solving said problem 

effectively [31,169]. Years later, Martin Beale and R.E. Small initiated the development 

of the first mixed-integer form of the LP/90/94 code, later completed by Max Shaw in the 

late 1960’s [31]. The introduction of the MIP model has been instrumental in enabling 

researchers over the years to overcome the limitations stated before regarding the QAP 

model of the LP. The MIP formulation can overcome these limitations as it permits a 
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mixed variable structure consisting of both continuous and discrete (binary or integer) 

variables. The model’s ability to handle continuous variables in addition to discrete 

variables makes it an extremely versatile model and more importantly one that is capable 

of representing continuous layout designs. The generic mathematical formulation of the 

MIP model is as follows [15]: 

min
𝑥,𝑦 

𝑓(𝑥, 𝑦)    

𝑠. 𝑡.       𝑔(𝑥, 𝑦) ≤ 0

              ℎ(𝑥, 𝑦) = 0
   𝑥 ∈ 𝑿

                 𝑦 ∈ 𝒀 integer

 

where f is the objective function of the problem (e.g. material handling cost), g are 

inequality constraints (e.g. budget constraints where the readjustment of an existing 

layout has an upper limit), h are equality constraints, x are continuous variables belonging 

to the domains defined in the vector X, and y are discrete variables (integer or binary) 

with ranges defined in the vector Y. 

 Depending on the linearity of the f, g, and h functions the MIP model can be 

further classified as either a mixed integer linear programming (MILP) or mixed integer 

nonlinear programming (MINLP) problem.  The distinguishing characteristics between 

the two is that MINLP has nonlinearities in the objective function and/or constraints, 

whereas the MILP form of the problem does not [42,131]. As will be observed later while 

discussing solution methods, often the LP is either formulated directly as a MILP 

problem or the MINLP problem is linearized prior to solution. The MILP formulation of 

the problem can be effectively solved by linear programming as originally done by 
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Dantiz. This is the main motivation behind why researchers have handled the linear form 

of the problem more often. Regardless of the specific form solved, the MIP model is of 

NP-hard solution complexity just like that of the QAP model [7]. Generally speaking 

though, solving the MIP problem is more difficult. This is a byproduct of its mixed 

variable structure and constraints which often conflict with one another. 

 The MIP formulation of the LP was first introduced by Montreuil in 1990 [125]. 

Since then the MIP formulation of the LP has evolved steadily. This evolution has been 

driven primarily by the need for enhanced design capabilities and improved layout detail. 

Montreuil’s formulation modeled a continuous rectangular layout composed of fixed area 

flexible departments. Montreuil, in his formulation, did not address the location of 

departmental I/O points and this is where Kim and Kim sought to extend the formulation. 

Kim and Kim proposed a MIP formulation for determining the best placement of the 

department I/O points for a provided department layout [91]. Although their formulation 

established the placement of the department I/O points it did not establish the department 

positions themselves in the layout. Barbosa-Póvoa, Mateus, and Novais (2000) proposed 

a more generic MIP formulation for the detailed LP that simultaneously considered the 

placement of the departments in the continuous layout and the placement of the I/O 

points within the rectangular departments [20]. In continuation of this work, Barbosa- 

Póvoa et al. (2001) extended their original MIP formulation to handle the presence of 

irregular shaped rectangular departments [21].  

Barbosa-Póvoa et al.’s (2001) MIP formulation for the detailed LP, considers 

each of the layout characteristics essential to designing layouts of realistic viability. It 

accounts for boundary constraints, maintains overlap avoidance by imposing the 
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appropriate constraints, can handle objects fixed in the layout space, and most 

importantly captures layout continuity. Capturing layout continuity by representing 

department placements continuously in the layout also enables said formation to directly 

account for flow feasibility throughout it. Considering that the formulation proposed by 

Barbosa-Póvoa et al. (2001) captures many of the most essential layout characteristics to 

ensuring designs of realistic viability are established, the following observation is made: 

Observation 2: A MIP formulation such as that employed by Barbosa-Póvoa et 

al. (2001) is a viable modeling approach for this problem, where viability is 

defined as the flexibility required to characterize the layout adequately. 

With the first of the sub-questions regarding how to mathematically model a layout 

such that characteristics essential to establishing layout designs of realistic viability are 

captured, discussions can now turn towards addressing the second sub-question, 

Research Question 1.2 about how evolution and uncertainty pertinent to the LP has been 

captured by researchers in the literature. 

 Capturing Evolution and Uncertainty in Conditions 

As was well established before with Assertion 2, accounting for uncertainties in market 

conditions and business practices is imperative to designing layouts that will continue to 

perform well in the future. As aforementioned, there are two categories of manufacturing 

uncertainties, those associated with internal disturbances and those accompanying 

external forces, with the latter off these encompassing uncertainties in demand levels, 

product mixes, product profit margins, layout restructures, and equipment changes 

[100,152]. These uncertainties, which are interdependent, collectively address variations 
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in both the market and business model conditions. As such, both must be accounted for in 

parallel to design a layout capable of remaining viable long term.  

Demand levels and product profit margins (combination of manufacturing costs 

and selling value) can be grouped under the market conditions envelope while 

restructures, equipment changes, and product mixes can be placed under the business 

model envelope. Addressing the uncertain and evolving nature of each of these groups 

leads to two further characterizations of the layout problem. Often to capture the 

evolution of these conditions, researchers introduce the idea of a planning horizon. 

Depending on this horizon’s structure, the layout problem can then become either a static 

or a dynamic problem. Furthermore, the problem can be characterized as one that is 

deterministic or stochastic. This characterization is often the result of researchers 

attempting to capture uncertainties in these conditions in order to design a robust layout. 

In the sub-sections to follow, a further exploration of these two problem characterizations 

and their roles in facilitating the infusion of evolution and uncertainty into the layout 

problem will be addressed. 

2.3.1 The Role of the Planning Horizon 

A planning horizon encompasses the duration of time considered while solving the layout 

problem. Depending on the length of this horizon, market conditions and business models 

can dramatically evolve rendering an otherwise well performing layout obsolete. To more 

effectively account for this evolution in conditions, a parallel evolution of the layout may 

be considered in an attempt to maintain operational performance. In the layout problem, 

researchers partition the planning horizon into periods in order to encourage this layout 
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evolution. This partitioning of the planning horizon constitutes the differentiation 

between a static and a dynamic LP [127,100].  

2.3.1.1 The Static Layout Problem 

As observed by Benjaafar, Heragu, and Irani, relayout “can be expensive and disruptive, 

especially when factories must shut down” and production stopped. [26]. When such an 

evolution of the layout would become too costly, adopting a static layout approach may 

prove more advantageous. For the static layout problem (SLP), the planning horizon 

consists of just a single forecast period that spans the entire duration of the horizon. As 

such, the layout remains fixed over this entire horizon and the objective of the problem is 

to establish the best layout under these conditions. Given the layout does not evolve over 

the horizon, such a problem is often solely concerned with minimizing the total material 

handling cost (MHC). It does not need to be concerned with costs associated with layout 

rearrangement or losses in income due to production stoppage. A problem of this form is 

most appropriate for scenarios where market conditions and business models do not 

change dramatically over the horizon. When any one of these scenarios does not hold 

true, which is often the case, a different approach to the problem is required. This is 

where formulating the problem as a dynamic layout problem (DLP) becomes imperative. 

2.3.1.2 The Dynamic Layout Problem 

Rosenblatt was the first to introduce the DLP, which entertains that it may be desirable 

for the layout to evolve over time [146]. Unlike that of the SLP, who’s planning horizon 

consist of just a single forecast period, the horizon of a DLP is partitioned into multiple 

periods in order to encourage the layout to evolve throughout. With the presence of now 
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multiple periods, the DLP must consider a series of sequential forecast periods with the 

goal of establishing the best layout plan under these collective conditions of the horizon. 

When considering such a compilation of multiple layouts deployed over the planning 

horizon, the term layout design will be used to more broadly describe this collection, or 

plan, going forth in this dissertation.  The DLP in many ways can be thought of as the 

simultaneous solution of a SLP for each period in the horizon [106]. The cost of layout 

evolution, or in other words rearrangement costs (RCs) from one period to the next, is 

what couples these SLPs and requires them to be solved simultaneously as opposed to 

independently. As one can imagine, this further complicates the solution of the problem. 

As observed before and restated here, Lacksonen and Enscore establish that the 

DLP is “required when one must balance the tradeoff between increased flow of 

inefficient layouts and added rearrangement costs” [106]. While layout performance for a 

period is only a function of its characteristics, rearrangement costs are dependent upon 

both the preceding and succeeding period layouts. This is because any alteration to the 

layout in the current period would then result in a change in how much the layout need be 

rearranged to achieve the current layout from that of the previous one and likewise to 

achieve the succeeding period layout from that of the current one. Under the DLP 

formulation, if the decrease in the layout performance (i.e. increase in MHC) does not 

outweigh the cost of this rearrangement, the layout will remain unaltered. On the other 

hand, if conditions change enough to result in an increase in MHCs that surpasses the 

cost of rearrangement to maintain a better performing layout, the layout may undergo this 

evolution. The magnitude of this evolution again will depend on the tradeoff between 

improved performance and the costs to achieve this improvement. In the upper limit 
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where a consistent evolution is beneficial, each period of the multi-period planning 

horizon could potentially yield a unique layout. 

Rearrangement of the layout requires an upfront capital investment however. The 

observation of this requirement can further prevent the layout from evolving from one 

period to the next despite a rearrangement being favorable. If at the time, insufficient 

funds are available to perform said rearrangement, the layout will again remain unaltered. 

The decrease in the layout performance will then have to be accepted and the diminished 

profit margin absorbed until the next period rolls around where sufficient funds for 

rearrangement are available. More likely, a partial evolution of the layout, which 

maximizes the improvement in the layout performance for the funds available at the time, 

would occur. This capital investment restriction and the affect it has on the evolution of 

the layout in the DLP has been captured by only a few researchers, including that of 

Balakrishnan et al. (1992) and Conway and Venkataraman, through the implementation 

of budget constraints [17,48]. These constraints represent the funds available (e.g. from 

profits reinvested in the company or capital raised from stock offerings) to restructure the 

layout in order to maintain operational performance and therefore sustain competitive 

profit margins. Conway and Venkataramanan’s formulation extends Balakrishnan et al.’s 

(1992) original budget constrained DLP formulation by accounting for scenarios where 

left over budget resources from preceding periods may be used to further facilitate the 

evolution of the layout [48]. 

2.3.1.3 The Benefit of Formulating the Problem as a Dynamic Layout Problem 
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One of the major advantages of the DLP is that it can handle scenarios involving the 

integration of a new asset into the environment, whereas a SLP cannot. The integration of 

a new asset inherently requires the environment to be restructured, something the SLP 

cannot consider as the layout remains fixed throughout the planning horizon. 

Furthermore, in the absence of changes in market conditions and the business model, the 

DLP reduces to just that of the SLP where the layout remains unchanged throughout the 

horizon. In other words, the DLP formulation has the capability of representing both a 

static and a dynamic problem simultaneously making it a more versatile approach to the 

LP. Note that the terms environment and layout are not used interchangeably. While 

layout refers to the physical configuration of the objects in the space, environment more 

broadly encapsulates this as well as other characteristics of the referred period (e.g. 

process present, market conditions, etc.). This subtle distinction is important to 

understand from here forth in this dissertation. Now in consideration of the preceding 

discussions, the following assertion can be made. 

Assertion 5: To design a layout that will continue to perform well in the presence 

of evolving conditions, the LP must be structured as a DLP. 

2.3.2 Defining a Planning Horizon for the DLP 

So far it has been established that in order to design a layout that will continue to perform 

well in the presence of evolving market conditions and business models, a layout design 

that evolves according to a planning horizon consisting of several periods is imperative. 

What has yet to be established is the structure of the periods composing the planning 

horizon and what factors can influence this structure. 
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2.3.2.1 What Drives the Structuring of the Periods? 

In general, market conditions directly drive the evolution of the layout design and 

therefore the planning period structure. The only exception to this is where a new asset is 

integrated into the environment. In order to accommodate said asset the layout inherently 

needs to be rearranged. With that said, market conditions still indirectly drive this 

business decision. Observations of market trends may indicate the integration of the asset 

would provide a fiscal benefit to the company. For example, said asset may enable the 

company to enter a profitable sector of the market (i.e. one that is either growing or 

marginally competitive). To fully understand how the conditions of the market drive this 

evolution, their influence on layout performance must first be observed.  

2.3.2.2 The Impact of Market Conditions on Layout Performance 

The performance of a layout changes under three scenarios. The first relates to the earlier 

scenario involving the integration of a new asset into the environment. In addition to the 

requirement that the layout undergo a rearrangement to accommodate said asset, its 

integration also requires that the business alter its product mixes. With the new asset, 

additional products can be manufactured and furthermore new process flows become 

relevant, all of which will affect the layout’s performance.  

The second is a byproduct of demand levels for products changing. Once more, as 

demand levels change, product mix ratios change and thus the performance of the layout 

will likely diminish as a result. In response to this, a business may consider redistributing 

their production loads (product mixes) to mitigate this impact. Regardless of this, the 

performance of the layout remains suboptimal without restructuring.  
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The third scenario relates to changes in costs to manufacture products (MHC for 

various processes, labor costs, etc...) and market values of products. Just like the previous 

two scenarios this one may encourage a business decision to be implemented that 

involves altering the product mix in order to adjust to these changes. For example, if a 

product is no longer yielding a reasonable profit (decrease in market value or increase in 

cost to manufacturer) while another product’s profit margin has grown, it may become 

advantageous to alter the production distribution accordingly. This redistribution of the 

production would in turn place a larger emphasis on a product line that otherwise didn’t 

have as much emphasis before. As a result, MHCs will increase, leading to a poorer 

performing layout. If the business does not respond to this change, the performance of the 

layout still changes. For example, if a product with a longer flow path experiences a large 

increase in the cost to manufacture (i.e. increase in MHC) while also experiencing a 

decrease in its market value, the performance of the layout will degrade. 

According to the preceding discussion of potential scenarios affecting layout 

performance, the evolution of the layout can be beneficial under scenarios where business 

decisions related to the integration of a new asset and/or alteration to production 

distributions (i.e. product mixes) are implemented. Furthermore, changes in market 

conditions (i.e. demand levels, costs of manufacturing, and product market values) in the 

absence of a decision to alter the business model accordingly can too warrant a favorable 

evolution of the layout. Therefore, planning periods in theory should be structured such 

that partitions between periods align with such occurrences. Establishing where these 

period partitions should fall is an arduous task however, especially in the presence of 

uncertainty. Often to avoid solving this sub-problem of the DLP, researchers have relied 
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on broad assumptions to make establishing the planning period structure more 

manageable. 

2.3.2.3 Conventional Approach to Planning Period Structuring in the Literature 

One assumption often implemented by researchers is to define the planning periods 

according to uniform durations of time. Although there is no restriction on the lengths of 

these periods, a year in length is often chosen. The justification of this assumption is 

likely that it aligns with the common business practice of performing a business plan 

review annually. With these reviews reconsidering current business strategies based on 

past performance and addressing future strategies according to market forecasts, it is 

reasonable to assume that at each of these reviews, business decisions regarding product 

mixes and asset integrations would be made. As observed before, alterations to product 

mixes to account for changes in market conditions and asset integrations drive the 

evolution of the layout. Therefore, aligning the period partitions according to these 

annual reviews is a reasonable assumption. 

Unfortunately, this subsequently assumes that all such business decisions are 

implemented at the onset of this period, including layout rearrangements. None of these 

assumptions alone are all that unreasonable, except when coupled together. Assuming 

that layout rearrangement is performed at the beginning of the period and that these 

periods are uniformly spaced to be a year in length is extremely limiting. Additionally, it 

is very likely that the best solution to the problem will not be achieved. For example, it 

may be more advantageous to restructure mid-year during a stint of low production 

demand. Several situations can make this so including, but not limited to, production 
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demands being too high at the beginning of the year to stop production, presence of a less 

favorable budget available then, or a marginal change in conditions that do not warrant 

such a restructuring.  

These assumptions coupled together result in uniform and rigid restructuring 

schedules which are not well representative of actual ones. To avoid this limitation, some 

researchers such as Yang and Peters have considering first solving the period structuring 

problem before proceeding to then solve the DLP associated with this established 

planning horizon [173]. Yang and Peters implemented a heuristic procedure for 

establishing the best period lengths for a given planning horizon. To solve the sub-

problem of identifying the best set of planning periods to implement, Yang and Peters 

employed a procedure motivated by the Silver-Meal lot-sizing heuristic developed by 

Silver and Peterson [173,153].  Solving this problem first not only enables the best 

restructuring schedule to be identified, but also has the advantage of reducing the 

dimensionality of the DLP that then needs to be subsequently solved. For example, 

market conditions may dictate that only two restructures would be beneficial during a 

five-year planning horizon. In this case, a DLP of just three periods would need to be 

solved as opposed to one of five periods if the earlier annual period structuring was 

adopted. As will be observed later, this has a significant impact on the solution time.  

Although this approach avoids the drawbacks accompanying uniform and rigid 

planning period structures and is capable of more effectively identifying the best 

evolution of the layout, it lacks the necessary transparency required to make informed 

decisions regarding such evolutions. This is because with the approach identifying the 

best planning period structure internal to the solution of the DLP itself, the designer 



 42 

cannot observe potential alternative schedules nor the schedule’s sensitivity to further 

fluctuations in market conditions. This is a crucial gap that must be closed. As such, the 

following assertion can be established: 

Assertion 6: An approach to establishing the planning period structure of the 

horizon that provides the necessary transparency to make more informed 

decisions regarding the design of evolving layout designs is required.   

2.3.3 Designing for Robustness 

The preceding discussion observed how the evolution of these aforementioned conditions 

can be captured, but not the uncertainty associated with them. These conditions and their 

evolution can be highly uncertain and the further into the future they are forecasted, the 

less certain they will become. To account for this uncertainty, researchers often rely on a 

stochastic approach to the problem. Under this characterization, the behavior of the 

product mix, product demands, manufacturing costs, and product market values are 

assumed to be stochastic in nature [100,127]. In the absence, or more often neglection, of 

uncertainty these conditions are instead assumed to be deterministic and known with 

certainty across the span of the planning horizon. In other words, a single evolutionary 

path of the conditions dictates the design of the environment. This is a rather risky 

approach to designing an environment for the future. If the conditions deviate from this 

path, the performance of the designed environment could degrade substantially. 

 To mitigate this risk, the idea of designing an environment for robustness is 

proposed. Generically, a robust environment or layout is one that behaves well over a 

variety of scenarios, or in other word a series of evolutionary paths of the conditions. 
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Others such as Rosenblatt and Lee and Kouvelis, Kurawarwala, and Gutierrez defined 

robustness more thoroughly as the frequency the layout falls within a prescribed 

percentage of the optimal solution for different sets of product demands [147,99]. 

Generalizing this to all such conditions more adequately defines a robust manufacturing 

layout design.  

Solving the problem according to this approach characterizes it as a robust layout 

problem (RLP). It should be understood that the RLP differs from another stochastic 

variant, referred to as the flexible layout problem. This problem attempts to establish a 

layout that can most readily adapt to changes without significant loss in performance. 

This is achieved by considering multiple routings of process flows [100]. As observed 

before in the introduction and in Figure 2, research this century has shifted towards 

solving the RLP and for good reason. Conditions are difficult to predict and highly 

uncertain, therefore solving the RLP has the key advantage of establishing a layout that 

will continue to perform adequately regardless of the conditions it is subjected to. Such 

an approach reduces the risk associated with designing a layout for the future making it 

an attractive option for companies.  

2.3.3.1 Establishing Robustness 

Defining the set of conditions, or condition scenarios that will establish the robustness of 

a layout is an important task. All potential scenarios that could be encountered by the 

layout need to be spanned by this set to ensure the layout will remain robust under all 

conditions of potential relevance. Such a scenario-based approach to the problem assesses 

the robustness of a layout according to this predefined set of discrete scenario 
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representations of the conditions. In other words, these scenarios collectively represent 

the uncertainty associated with the conditions. The layout that collectively performs best 

across these scenarios is then deemed as the most robust layout. Researchers like that of 

Kouvelis et al. implemented such a scenario based approach to solve the QAP formulated 

DLP under product mix and demand uncertainty [99].  

Others like that of Pillai, Hunagund, and Krishnan have established robust layouts 

considering just an average scenario for this set [139]. Pillai et al. assumed that the 

average product demands, mix, and other conditions were known throughout the horizon 

for this average scenario. To compare their adaptive DLP approach to defining a robust 

layout (i.e. one that remains fixed across all periods of the horizon) to traditional DLP 

solutions and test the suitability of the layout’s robustness, Braglia, Simone, and 

Zavanella’s Total Penalty Cost (TPC) function was applied posterior. This function 

establishes the minimum re-layout cost acceptable to support an agile strategy, where a 

layout with a TPC under fifteen percent is deemed acceptable [36]. Results of their 

approach proved effective in establishing a layout with acceptable robustness when 

compared to the DLP solutions to the same scenario set, which was chosen to be 

Balakrishnan and Cheng’s (2000) 48 DLP test problems. 

An alternative to the scenario-based approach is the statistical modeling approach. 

The statistical modeling approach establishes a robust layout in a more generalized 

manner. Instead of relying on a discrete set of scenarios to represent the uncertainty, this 

model assumes that the conditions are random variables with known distribution 

parameters (expected value and variance) [100,127]. Forghani, Mohammadi, and 

Ghezavati have proposed such an approach where it is assumed that only uncertainty in 
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the demand is present [69]. Using an approach developed by Sim, they solved the discrete 

optimization SLP subject to uncertain demands. In Sim’s formulation, a decision 

variable, affecting the range of scenarios or demand deviations from the nominal value 

considered, is implemented to provide the designer with the added ability to adjust the 

degree of conservatism of the robust solution [69]. 

Norman and Smith, to establish a robust block layout subject to production 

uncertainty, considered more directly product forecast uncertainty using normal 

distributions with expected values and standard deviations [132]. This representation of 

the uncertainty has the major advantage of continuously assessing a range of production 

scenarios as opposed to a subjectively defined set of them as is done in the scenario based 

approach. Furthermore, their approach accounts for individual product variability and 

thus indirectly the product mix. Individual representation of the product variabilities 

enables well-established products with low forecast uncertainties to be differentiated 

from those of new products that may have higher uncertainty. Using a statistical 

percentile approach to the definition of the MHC objective function enables Norman and 

Smith to effectively identify robust layout designs and furthermore demonstrate the 

layout design can change dramatically depending on the level of uncertainty considered 

by the designer. 

Norman and Smith’s observation of how significantly the layout can change given 

the presence of varying degrees of uncertainty in the conditions coupled with the almost 

certain likelihood of this uncertainty being prevalent in real-life applications, the 

following statement can be made: 
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Assertion 7: To design a layout that will continue to perform well in the presence 

of uncertain conditions, the LP must be solved stochastically for robustness. 

 Establishing the Performance of a Layout Design 

With the characterization of the layout problem having since been well established in the 

preceding sections, the focus of this section is on answering the question of what defines 

a quality or well-performing layout, in other words Research Question 1.3. As observed 

before, changes in layout performance encourage its evolution. Therefore, establishing 

what constitutes a layout as being well performing is important. Just as importantly, are 

the methods implemented to model the qualities that define this layout performance. 

Until now, a generic perspective on the LP has been entertained. Going forward though, a 

focus on what establishes a manufacturing layout in particular as being well performing 

will be discussed. 

 Most often in the literature, researchers have defined a quality manufacturing 

layout design as one that does well in managing the MHCs and/or rearrangement costs 

(RCs). For SLPs and RSLPs where the layout remains fixed throughout the planning 

horizon, the primary objective is to minimize the MHCs. The MHCs is of such 

importance as it represents 20-50% of operating cost and 15-70% of the total cost of 

manufacturing a product [72]. When the layout design is allowed to evolve throughout 

the planning horizon, as is the case for DLPs and RDLPs, RCs must too be considered in 

addition to the MHCs. For such problems the primary objective is then to minimize the 

sum of the MHCs and RCs across the entire horizon. The best solution then becomes the 

one that best balances these two manufacturing costs.  
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2.4.1 Rearrangement Cost 

RCs account for all costs associated with the rearrangement of assets on the floor from 

one period to the next. This can include the physical movement of the asset, rerouting of 

necessary conduit, and profit loss due to production stoppage of affected processes. A 

variable horizon cost approach is the standard across the literature and establishes that the 

RCs can change throughout the planning horizon or in other words from one period to the 

next, which would often be the case in real-life. How these costs change within a 

planning period can either be discrete or continuous. The former is the preferred method 

as it aligns well with the assumption noted before of restructuring the layout at the onset 

of a period. Methods of defining these variable horizon RCs in the literature are further 

classified as either constant or distance based methods [12]. This distinguishes RC 

methods that rely on a discrete modeling of the cost functions from those that use a 

continuous model.  

A discrete or constant method assumes, independent of how far an asset is 

relocated from its previous location, that the costs of rearrangement will remain the same. 

This method has the advantage of being relatively simple to implement and as such is the 

method most often employed by researchers in the literature while solving the QAP/S 

formulated DLP [23,121,148]. The discrete nature of this problem formulation makes this 

a reasonable method, which is why it is so often implemented. The method’s inability to 

accurately establish differences between switching neighboring assets with that of assets 

at opposite ends of the layout space is its major drawback however. This drawback 

results in a poor representation of the RCs while handling a MIP formulation of the DLP, 

where assets are continuously located throughout the space. To overcome this drawback 



 48 

and provide an improved representation of the actual RCs, a distance based continuous 

model is generally implemented. 

A continuous or distance-based method no longer assumes that the RCs are 

independent of how far an asset is moved. Instead, the RCs become a function of this 

distance moved in the continuous space from one period to the next. This representation 

provides a much better depiction of real-life RCs with only a marginal increase in 

additional computational overhead. This overhead is the result of having to compute the 

move distance, which is often determined according to a Euclidean or rectilinear 

approach in the literature. While handling the continuous layout MIP formulation of the 

DLP, this is the more accurate approach to defining the RCs. Given that the MIP 

formulation of the DLP has been less entertained in the literature, so too has the distance-

based method of defining the RCs. 

As observed, the aforementioned distance-based method represents costs directly 

associated with the movement of the asset. This includes both the physical movement of 

the asset and any necessary rerouting of conduit to properly support the asset (power, 

exhaust, etc…). It does not however encapsulate the loss of production cost due to the 

interruption of processes associated with moved assets. This cost is independent of 

distance and as such is often handled separately and according to a fixed cost method 

[118]. The value for this cost can be established by accounting for production volumes 

(via the product mix at the time of rearrangement) and the profit margins of the products 

(via cost to manufacture and market value of products) yielded by said interrupted 

processes. Given the preceding discussion on methods of defining RCs, the following 

assertion can be made: 
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Assertion 8: To most realistically define the rearrangement costs, a distance-

based variable horizon cost approach will be required. The cost of asset 

movement and support conduit rerouting must be a function of the distance each 

asset is moved in the space. Furthermore, a constant cost method for establishing 

the loss of production cost will be required to completely define the costs 

associated with rearrangement. 

2.4.2 Material Handling Cost 

In addition to RCs, costs associated with the flow of material throughout the environment 

must also be accounted for. This cost is often referred to as the material handling cost 

(MHC). As observed earlier, MHCs play a major role in establishing the performance of 

a layout design. Therefore, the method implemented to represent said costs can have a 

substantial impact on establishing which layout design is considered best. To ensure the 

best realistic design is deemed superior, the method to represent the MHCs should be 

chosen wisely. MHC methods are composed of two components, the unit cost of handling 

the product per unit length (flow cost) and the length of distance the product is handled 

(flow distance). 

2.4.2.1 Defining Flow Costs 

Flow costs are product-dependent and furthermore stage dependent, where the latter is in 

reference to the stage in the manufacturing process the product is in (i.e. between which 

two assets the product is being handled). With this structure, a flow cost matrix can be 

formed with each row representing a specific product and each element in this row 
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representing the product’s flow cost for a specific flow segment in its manufacturing 

process, or in other words a segment between two sequential assets in its process.  

Furthermore, these process segment flow costs can change with time. As such, a 

series of flow cost matrices, one for each period in the horizon, can be constructed. In 

most applications in the literature the flow costs are assumed to be discrete across the 

entire period, despite this being less than representative of reality. In this case the process 

segment flow costs in each period would remain fixed. Few have considered the more 

accurate representation, by implementing a continuous representation of the process 

segment flow costs within each period [132]. Such an approach enables cyclic yearly 

fluctuations among others that may occur within a period to be more accurately captured. 

In turn, this approach can enable more realistic MHCs to be defined. 

2.4.2.2 Determining Flow Distances 

To completely define MHCs, flow costs must be coupled with flow distances. Just like 

that of the flow costs, flow distance matrices can be formed for each period. Since flow 

distances are just a function of the physical layout and a layout remains fixed within a 

period, the flow distance matrices will only ever be discrete across the entire period. To 

establish the process segment flow distances in these matrices, rectilinear or Euclidian 

distance methods are often employed in the literature. A rectilinear method defines the 

flow distance as the summation of the absolute differences in the geometrical coordinates 

between the start and end point of each segment. The Euclidean method on the other hand 

defines the flow distance as the linear distance between the start and end point of each 

segment. 
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Both methods have the major advantage of maintaining a continuous and linear 

cost function. With such a cost function, the DLP can be made linear and thus partially 

solvable by linear programming. As will be observed later, this is essential to the efficient 

solution of MIP formulated problems. In addition to maintaining a linear and continuous 

function, rectilinear and Euclidean methods can populate the flow distance matrices 

rapidly. The combination of these two advantages, coupled with batch production 

environments typically being of upmost concern by researchers, has resulted in their 

frequent implementation in the literature to define the flow distances. The major 

disadvantage of such methods however, is their inability to ensure flow feasibility. Such 

methods ignore assets boundaries often providing paths that bisect assets or other internal 

layout boundaries. Not only is this not well representative of reality, but it also can lead 

to suboptimal solutions for variable production environments where several interrelated 

processes are occurring concurrently.  

 

Figure 4 – Process flows from B-A and C-A (a) optimal solution using a rectilinear 

approach (b) better solution when path feasibility is considered 

To demonstrate this, consider the basic example as shown in Figure 4 of such an 

environment where two processes, B to A and C to A, have a common station (station A). 

Figure 4a provides what would be identified as the optimal solution for a rectilinear or 

 

       
(a)                                           (b) 
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Euclidean method whereas (b) considers path feasibility. If path feasibility was enforced 

for the 4a configuration the path would have to go around the right end of station A in 

order to connect the two I/O points, represented by the blue diamonds. This results in an 

overall flow distance that is now longer than that of the (b) layout making it a suboptimal 

solution. As such, the following observation is verified: 

Observation 3: Failure to account for flow feasibility can result in the 

identification of suboptimal layout designs. 

Additionally, this example enables the following assertion to be made: 

Assertion 9: To accurately evaluate and subsequently design variable production 

environments with several concurrent interrelated processes, a distance-based 

method that considers flow path feasibility is imperative. 

The few researchers in the literature, who have considered such flow path 

feasibility while determining the flow distances, have implemented Dijkstra’s algorithm. 

One such example is Lee, Roh, and Jeong’s use of it while solving the QAP formulated 

multi-floor SLP and applied specifically to the multi-deck ship design problem [108]. 

Although such a flow distance method ensures flow path feasibility thereby avoiding the 

limitation noted before with regards to rectilinear and Euclidean methods, it presents its 

own disadvantages. Firstly, it requires the a priori definition of the graph nodes. In the 

above noted example, structured aisles/passages about the ship were already well defined 

making it simple to assign such nodes in the space. For unstructured layouts, where 

aisles/passages are to be a derived layout characteristic, the a priori definition of the 

graph nodes is an impossible task. In addition to this, population of the flow distance 
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matrices is significantly more time consuming. Determining each flow distance requires 

an exhaustive solution procedure to guarantee the best feasible flow solution is identified. 

Furthermore, such a method no longer maintains a linear and continuous cost function; 

rather the function is more likely to be non-smooth and discontinuous. As one can 

postulate, this only further contributes to the difficulty of solving the overarching LP.  

2.4.2.3 Importance of Considering Path Feasibility in Layout Design 

Despite the less than favorable consequences that accompany implementing a flow path 

feasibility guaranteeing method such as Dijkstra’s algorithm, neglecting to account for 

such feasibility, as is done by rectilinear and Euclidean methods, is potentially disastrous. 

As was observed before, failure to account for flow feasibility can lead to suboptimal 

layout designs. An inferior performing layout design is highly detrimental to a 

manufacturer as it can substantially reduce their potential profit margin as observed 

before. Based on observations this could be up to 0.18M for a company with current 

operating costs of 1.2M dollars. This number is derived from the earlier observations that 

MHCs constitute up to fifty percent of the operating cost and additionally with effective 

layout planning, MHCs can be reduced anywhere from ten to thirty percent [72]. With 

less capital derived from profits available to reinvest in the company, this can 

subsequently diminish the business’ growth rate and adaptability to unforeseen future 

events (e.g. the need to purchase a new asset and/or restructure the layout). Moreover, 

this can contribute to the business becoming less competitive in the market, which, as 

observed before, is imperative to success. 

2.4.2.4 Effectively Considering Path Feasibility 
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Of the shortcomings that Dijkstra’s algorithm has in determining the flow distances, its 

requirement to a priori define the graph nodes is especially troublesome when 

considering the problem that must be solved in this dissertation. With the expectation that 

an unstructured approach to the layout design will inherently yield the desirable flow 

aisles/passages, defining the graph nodes a priori becomes impossible. Furthermore, and 

more generally, the computational overhead associated with guaranteeing flow feasibility 

is unavoidable, but manageable to some extent. An efficient method of determining the 

feasible flow distances can minimize this overhead. Unfortunately, the failure to maintain 

both continuity and linearity in the cost function is an unavoidable outcome of ensuring 

flow feasibility. Therefore, regardless of the method implemented to do so, this property 

will have to be accepted as an unavoidable outcome of the more realistic flow distances 

obtained. 

The requirement to account for flow feasibility coupled with the incompatibility 

of Dijkstra’s algorithm to the problem of this dissertation establishes a noteworthy gap in 

the literature. The following assertion can then be derived: 

Assertion 10: A more robust alternative to the Dijkstra’s algorithm that ensures 

flow feasibility, yet is not as limited by its shortcomings, is required to effectively 

provide realistic flow distances for defining the MHCs. 

Subsequently, the following question also arises: 

Question 1.3.1: How can unstructured layouts that accurately consider flow path 

feasibility be evaluated in a reasonable duration of time? 
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2.4.2.5 A Novel Flow Distance Method 

Fortunately, preliminary research performed by the author has addressed this very gap in 

the literature [123]. In this research a more robust flow feasibility guaranteeing 

alternative to Dijkstra’s algorithm has been proposed. Furthermore, it directly addresses 

the aforementioned question of how unstructured layout flow distances can be obtained 

effectively.  

In this research, an advanced flow distance method leveraging a branch and 

bound optimization technique tailored to the problem, which effectively identifies the 

shortest feasible process segment flow distances, was proposed. Infeasible region 

bisections (assets, internal building structures, safety zones, etc…) by the parent segment 

path were used to identify potential branches while the maximum and minimum of these 

violations were used as the splitting procedure. The algorithm’s pruning step was 

implemented by comparing the best discovered feasible segment path to each of the 

potential paths. Once each of the process segment flow distances were determined, the 

flow distance matrices became fully populated and the MHCs were then defined.  

 This advanced flow distance method, which guarantees flow feasibility when 

defining the flow distances, demonstrated that it could effectively handle identifying such 

flow distances for unstructured layout designs while mitigating the computational 

overhead of ensuring flow path feasibility. As demonstrated in Figure 5, the layouts 

generated using both a rectilinear and the advanced method to define the flow distances 

are starkly different. Even for a very basic environment such as this, which is composed 

of a single fixed station, five movable stations, and just two interrelated process flows 
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equally weighted in terms of importance (i.e. a 50/50 product mix), the differences in the 

layouts are noticeable. 

 

Figure 5 – Optimized layout using (a) a rectilinear approach and (b) the proposed 

advanced approach to evaluate the handling cost 

In addition to the clear visual difference, a difference in the total flow distance is 

also present. As shown in Table 3, when the rectilinear method is implemented to 

generate the solution, the result is a suboptimal layout when considering flow feasibility. 

In fact, a nearly 35 percent less optimal layout is achieved, which is quite significant. 

Additional studies identified scenarios where layout designs up to 230% less optimal 

resulted from the use of a non-flow feasibility guaranteeing method to generate the flow 

distances. 
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Table 3 – Material handling cost results 

 

These results demonstrate the sheer importance of using a flow feasibility 

guaranteeing method such as the proposed advanced method implemented in this 

research. The advanced method further demonstrated its capability of guaranteeing this 

flow feasibility in a reasonable duration of time and for unstructured layouts. As observed 

here the following hypothesis can then be stated: 

Hypothesis 1: If an advanced flow distance method that ensures flow feasibility 

is implemented to define the MHCs, then improved layout designs that are better 

representative of reality can be established for variable production environments 

where several interrelated processes are occurring concurrently. 

2.4.3 Other Measures of Performance 

Although MHCs and RCs have been the primary focus of researchers solving the DLP in 

the literature, and justifiably so given their considerable contribution to layout 

performance, it is useful to acknowledge that other measures of layout performance have 

too been considered in the literature. Other, both quantitative as well as qualitative, 

measures of performance have been addressed.  

Lin and Sharp provide a brief overview of both types in the plant layout problem 

[112]. Qualitatively, Lin and Sharp observe several criteria, which they categorize as 

Approach foptimizer frectilinear ffeasible 

Rectlinear 47.02 --- 74.09 

Advanced 55.42 59.86 55.42 

  Difference 34% 
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either surrounding or environment quality related concerns of the designer. Under the 

environment quality group, these concerns range from HVAC quality and ergonomics to 

the complexity and compatibility of material handling equipment. Quantitatively, they 

discuss measures ranging from clearness, which addresses how clear a layout is of fixed 

or permanent building obstructions to aisle arrangement, which addresses how effectively 

the aisle placements promote the flow of material and personnel throughout the space. 

Not surprisingly, Lin and Sharp also observe the MHC measure as one of the quantitative 

measures. Other frequently encountered quantitative measures of layout performance 

include flexibility, spatial utilization, and work-in-progress.  These three measures are 

reviewed in more detail in Appendix A. 

2.4.3.1 Concluding Remarks on Other Measures of Layout Performance 

Although quantitative measures, such as flexibility, spatial utilization, and work-in-

progress (WIP), along with qualitative measures, such as those observed by Lin and 

Sharp and others in the literature, are important and should, without question, be 

considered in addition to MHCs and RCs, these measures are often better evaluated 

manually by the designer. Additionally, apart from WIP, these measures are extremely 

difficult to quantify in a cost function format like that of the MHCs and RCs. One of the 

primary goals of this dissertation is to quantitatively evaluate the layout design on a 

monetary basis such that business decisions can be analyzed in a management friendly 

way. Thus, the focus going forth remains on that of assessing layout performance 

according to the conventional method of considering the combination of MHCs and RCs. 

With that said, this is not to say that a designer could not a-posteriori apply such 

measures to further evaluate a potential layout design. In fact, this could easily become an 
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extension of the work performed in this dissertation if desired. As for WIP, the eventual 

formulation of the problem in this dissertation will render measuring WIP mute as a 

products throughput will be characterized by the most constraining time value (travel or 

process time) in its flow path. Thus, inclusion of WIP will not be considered as part of 

the cost function at this time, though it could be in the future if desired.  

2.4.4 Methods of Computing Production Costs 

The measures of MHCs and RCs deal with quantifying the indirect costs associated with 

production. They do not however account for direct costs of production or in other words, 

those costs that are incurred to alter the physical form of the product. Up until now, such 

costs have, for the most part, been overlooked. The goal of this dissertation is to enable 

more informed decisions to be made regarding the design of a layout and moreover to 

observe how the design impacts decisions pertaining to product introduction and mix. To 

accomplish this goal, completely defining the cost function becomes imperative. 

Therefore, the discussion that follows, attempts to elaborate on how direct production 

costs and manufacturing costs in general are modelled in the literature. The goal here is to 

gain a high-level understanding of how such costs could be estimated when eventually 

establishing the complete cost function that will be employed in this dissertation to 

evaluate a given design’s performance. 

 A variety of cost estimation methods have been implemented in the literature [34, 

83,96,73,145,111,164,133,93] and commercially [35,51,3,25,4]. As observed by Layer et. 

al. in their review of trends in cost estimation, these methods can be grouped into three 

distinct quantitative cost estimation categories. These include those that employ statistical 
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models, generative-analytical models, or alternatively, analogous models to estimate 

costs. While statistical models rely on historical data and data analytics to establish costs, 

generative-analytical models leverage a more analytical, physics-based approach. 

Contrary to these, analogous models leverage functional and physical commonalities to 

establish costs from similar known cost structures (i.e. similarly known part and/or 

feature costs) [107].  

Each of these approaches has its own advantages and similarly drawbacks. For 

example, while generative-analytical models can provide extensive cost granularity, they 

require an immense degree of detailed data and information to achieve this [107]. Ashby 

et. al. depicted such a generative-analytical cost model in their textbook. To generate cost 

estimations the model required knowledge of material costs, basic overheads, capital 

write-off times, load factors, dedicated tool costs, capital costs, batch rates, and 

furthermore tool lives for each process present in the environment [10]. As one can 

imagine, collecting and defining all this data would be an arduous task, especially given 

how detailed and extensive a list it is. Furthermore, establishing values for data such as 

“dedicated tool costs” is likely to be an estimation itself. This then raises the question of 

accuracy and subjectivity of the estimation. An over-optimistic estimation of its cost 

could then lead to inaccurate conclusions downstream by the designer and/or 

management. Despite these cautionary observations, many in the literature have still 

implemented such generative-analytical models to estimate costs with success 

[102,68,92,93,133,134]. 

Statistical models are a viable alternative to generative-analytical models as they 

can maintain the necessary level of cost granularity while avoiding the requirement for 
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such detailed input data. As such, and as observed by Layer et. al. [107], several 

statistical model-based approaches and computer-aided engineering (CAE) techniques 

have been implemented in the literature to estimate costs [138,82,34,24]. Of the statistical 

cost estimation models identified by Layer et. al. [107] and discussed by Boehm et. al. 

[35], SEER from Galorath Inc. [51] could be an attractive option for estimating the 

manufacturing costs in this research. SEER is a widely trusted, commercially available 

tool, backed by over two decades of research and experience, for estimating 

manufacturing costs [107, 51]. Galorath Inc. has an array of products which offer a range 

of cost estimation capabilities to its customers. SEER products rely on parametric cost 

functions, which are continually updated and based on historical data from various 

enterprises and empirical examinations, to estimate manufacturing costs.  

One of these products is SEER for Hardware, Electronics, and Systems (SEER-H) 

[50]. SEER-H is a comprehensive weight-based cost estimation tool for mechanical, 

electrical, electronic, structural, and hydraulic hardware project applications [76]. Cost 

estimations of development and production (indirect and direct) on the system, 

subsystem, and system of systems level are provided along with operation, support, and 

life-cycle costs. Like Galorath’s other cost estimation products, SEER-H leverages 

“sector-specific mathematical models derived from extensive project histories, 

behavioural models, and metrics” as well as knowledge bases to provide these 

aforementioned costs from a user provided product weight [51]. While an attractive cost 

estimation option, SEER-H’s generalized weight-based models are better suited for rough 

estimations of the product costs as opposed to more refined estimations. 
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A process-based cost estimation alternative to SEER-H’s weight-based estimation 

is another Galorath product titled SEER for Manufacturing (SEER-MFG), formerly 

SEER-DFM [50,77]. Unlike that of SEER-H, SEER-MFG provides just direct production 

costs. Being process-based, SEER-MFG can provide far greater cost granularity and 

accuracy compared to SEER-H, which makes it not only an attractive, but also very 

viable direct production cost estimation option going forth in this research. Like that of 

the generative-analytical models discussed earlier, SEER-MFG does however require a 

far greater number of inputs, compared to SEER-H (weight and size predominately), to 

generate cost estimations. SEER-MFG requires detailed information regarding the 

product (beyond that of just weight and size) and the processes involved in 

manufacturing the product. The benefit gained from using SEER-MFG, over say SEER-

H, is directly proportional to how detailed and accurate the designer is in defining the 

process models. The more detailed the model is, the more accurate the cost estimations 

will be, assuming of course these details remain accurate. In total, SEER-MFG has over 

seventy-five manufacturing process modelled. An obvious limitation to statistical models, 

like that of SEER-MFG, are their inability to evaluate costs for manufacturing processes 

that are unknown and for which data is unavailable. For novel manufacturing processes 

or in the case of SEER-MFG, for processes outside of the seventy-five where this is the 

case, one would need to resort to an analytical approach to categorize the costs for these 

process [33]. 

This concludes the brief review of cost estimation methods. For a more thorough 

review of cost estimation methods implemented in the literature and developed 

commercially, one may refer to Layer et. al. [107] and Boehm et. al. [35], where the latter 
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focuses on providing a comprehensive review of software cost estimations models and 

techniques. At this point, a discussion of the dominant indirect costs (MHCs and RCs), 

other measures of performance (e.g. flexibility), and direct production cost methods have 

been reviewed. All bases for evaluating a layout design have been covered and as such 

the conversation now turns toward discussing the difficulty of solving the required 

problem formulation of this dissertation. 

 Compounding Difficulty of the Problem 

Preceding discussions have established the need to address a MIP formulation of the 

stochastic robust dynamic layout problem (RDLP). Such a problem formulation is the 

most versatile of the LP formulations. The added capabilities and accuracy it provides 

comes at the cost of the problem becomingly considerably more intractable to solve. 

Figure 6 provides a characterization of the LP as discussed in length before and 

notionally demonstrates the relative difficulties between different definitions of the 

problem at each level of its characterization. 
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Figure 6 – Characterizations of the layout problem 

Regardless of the formulation used, the LP is NP-hard, which identifies that as the 

size of the problem increases, the time it takes to solve the problem to optimality 

increases exponentially [154,103]. As observed before though, solving a MIP formulation 

of the LP is significantly more difficult than that of a QAP formulated one. This is 

especially true when said MIP formulation cannot be linearized and solved by linear 

programming techniques. The inability to linearize the problem was also established 

earlier when it was identified that a flow distance method that ensures flow feasibility 

was not only required to provide realistic layout designs, but would also result in a MHC 

function that was likely to be non-smooth and discontinuous.  

Furthermore, it was observed that such a flow feasibility method would be 

considerably more computationally extensive than other more rudimentary methods. In 
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fact, this guarantee requires a form of the traveling salesman problem to be solved for 

each process flow segment. The traveling salesman problem generally has a NP-hard 

complexity itself [85]. This implies that for each NP-hard LP that must be solved, a large 

sum of NP-hard sub-problems defining the MHCs will need to additionally be solved. 

The magnitude of this can be understood as follows: for every layout assessed during the 

LPs solution, n number of NP-hard flow distance sub-problems will need to be solved 

where n defines the number of unique process flow segments present. This, as one can 

imagine, presents an exponential increase in the solution difficulty. 

It was also established prior, that to effectively account for evolving market 

conditions and business models, an evolving layout design would be required. This only 

further contributes to the difficulty of the problem as solving a DLP involves the 

simultaneous solution of multiple SLPs. This subsequently implies that for the complete 

assessment of a single layout design, as just described, it would now require t x n NP-

hard flow distance sub-problems to be solved where t defines the number of periods 

implemented to adequately define the planning horizon for the evolving layout, which 

could theoretically be different for each of these periods. Furthermore, having to balance 

two competing cost functions and t times as many variables and constraints, could prove 

more difficult.  

Lastly, it was recognized that to design a layout that would remain effective in the 

presence of uncertain conditions a robust stochastic approach would be necessary. 

Statistical model-based approaches to establishing a robust design have the advantage of 

more effectively capturing the range of uncertainties present as well as being more 

computationally manageable (remains a single NP-hard LP). The drawback to this 



 66 

approach is that the infusion of the uncertainty into the solution procedure results in a 

loss of problem behavior transparency. This is where scenario-based approaches are 

better suited. Their drawback however, is that by maintaining this behavior transparency, 

it requires a series of NP-hard LPs to be evaluated, one for each scenario in the scenario 

set defined a priori by the designer. In the context of the preceding discussion, this then 

implies that a series of these DLPs would need be solved, further compounding the 

difficulty and time intensive nature of the overall problem. 

The majority of the time, a solution to the RLP has focused on the identification 

of the most robust static layout where the layout remains fixed throughout the planning 

horizon. From here forth this form of the problem will be referred to as the robust static 

layout problem or RSLP. On the other hand, few have solved the more generic robust 

dynamic layout problem (RDLP). As has been observed by the preceding discussion, this 

is due to how overwhelmingly difficult such a characterization of the problem is. 

Although more difficult to handle, this problem is the most general form of the problem 

and as such provides a designer with the greatest degree of flexibility and understanding 

of how to design the layout such that it will remain effective in the presence of evolving 

and uncertain conditions. As such, the following summarizing assertions can be made: 

Assertion 11: To effectively design a layout subject to evolving and uncertain 

market conditions and business models, the problem must be structured as a 

robust dynamic layout problem (RDLP). 

Assertion 12: To handle the difficult and time intensive nature of the RDLP, 

identifying an efficient solution method is imperative. 
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To gain improved insight on how the layout problem can been solved, the section that 

follows explores the literature in an attempt to identify viable methods for effectively 

solving the prior established form of the problem. The LP has been densely studied and to 

provide a complete survey of the literature would be an insurmountable task, but more 

importantly an unconstructive one as it pertains to understanding the problem of this 

dissertation. As such, the literature presented is not an exhaustive survey. Rather, it is a 

thorough review of the literature most relevant to the problem and for which solution 

novelty or exemplary results were achieved. This section attempts to answer the final 

sub-question of Research Question 1, on how the layout problem of this dissertation can 

be solved effectively. 

 Solving the Layout Problem 

Over the last few decades, researchers have solved the LP in a number of different ways. 

These range from exact to meta-heuristic and more recently hybrid methods. This 

diversity in how researchers have been solving the problem is directly related to the 

variety of ways the LP has been formulated and to the identification of more effective 

solution methods. Here effectiveness can be understood as being how robust (consistent) 

and efficient (quick) the method is at achieving the desired solution results.  

To follow in this section, the solution approaches implemented in the literature 

are categorized into four core groups: exact methods, heuristics, metaheuristics, and 

hybrid and evolutionary approaches. Each of these categories will be discussed briefly 

while a more comprehensive review of each of these solution approach categories applied 

in the literature can be found in Appendix A. To provide motivation in identifying a 
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suitable solution approach to the layout problem being studied in this research, the 

association between solution method and problem formulation and its effectiveness will 

be observed. Although it has since been established that a DLP formulation will be 

required, the discussions will encapsulate both relevant static and dynamic formulations 

of the problem. Understanding SLP solution methods in addition to those applied to the 

DLP is important to the fundamental understanding of how the LP can be solved. 

Furthermore, the DLP is, for the most part, an extension of the SLP, hence it is not 

inconceivable that a method applied to the SLP could not also be extended to the DLP. 

2.6.1 Exact Methods 

Exact methods are solution algorithms that guarantee optimality. This is the major 

attraction of such methods of solution and the primary reason why they were so prevalent 

early in the problem’s history. Optimality assurance comes at a cost though. In order to 

ensure optimality, an exhaustive search of the design space is required. For problems of 

small size such a search can be managed by partial/selective enumeration algorithms. 

However, as the size of the problem increases, the computational time required to achieve 

optimality grows exponentially until eventually becoming unreasonable. As such, exact 

methods are useful approaches when optimality is of the upmost importance and the LP is 

relatively small in size. Both of these characteristics were of major relevance initially as 

researchers were handling smaller LPs and most concerned with solving said problems to 

optimality, as observed by Kulturel-Konak [100]. 

A few of the more prominent exact methods implemented in the literature to solve 

the LP include branch and bound (B&B), dynamic programming (DP), and direct 
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methods, with the dynamic programming being the typical method implemented to solve 

the DLP. Each of these methods are discussed at length in Appendix A and relevant 

works highlighted for context.  

2.6.1.1 Applicability of Exact Methods to the Problem 

As is stressed in Appendix A while presenting the such exact methods of solution, the 

major draw of exact methods is their ability to guarantee optimality. Guaranteeing 

optimality requires an extensive search of the design space however. For larger sized 

problems, searching this space becomes intractable. The inability of exact methods to 

solve problems of large size is one of its major drawbacks. The literature has 

demonstrated, at best, the ability to solve MIP formulated DLPs of size twelve 

departments by three periods within a reasonable duration of time. This was achieved by 

Lacksonen (1994) where solutions were generated in just over 5.5 minutes [104].  

In addition to this, exact methods such as B&B and DP are better suited to 

handling QAP formulations of the DLP that are purely integer-based. With the exception 

of researchers such as Lacksonen, solving the MIP formulation of the DLP using B&B or 

DP has rarely been entertained by researchers as a result of this less than ideal 

compatibility. Even Lacksonen’s (1994) research implements an initial stage that first 

solves the QAP formulation of the problem to reduce the size of the MILP problem that 

then needs to be solved by B&B and linear programming [104].  

This observation brings up yet another important point. To solve the MILP 

formulation of the LP (static or dynamic) a direct method, such as linear programming, is 

required to completely solve the problem. In other words, B&B or DP alone are not 
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capable of solving such a problem that captures layout continuity by continuous 

departmental locations. By definition a continuous variable has an infinite number of 

possible values [124]. For this reason, the full enumeration of such a continuous layout 

would be impossible. This is where the implementation of direct methods, such as linear 

programming, become necessary to solve the problem effectively. The major limitation, 

that has yet to be explicitly stated, of using direct methods, is their requirement that the 

problem be completely linear or at a minimum continuous. In each of the research cited 

before that addressed the continuous layout representation, the MIP formulation was 

either formulated directly or linearized to be a MILP formulation of the LP before 

solution. This presents a major roadblock to potential application to the LP of this 

dissertation given the need to account for flow feasibility in the model. A flow path 

feasibility guaranteeing distance-based objective function is anticipated to not be 

continuous let alone linear. 

 The less than capable nature of exact methods in solving larger problems is itself 

not a deciding factor in the applicability of exact methods to solve the proposed LP. The 

inability of exact methods to effectively handle the MIP formulation of the problem and 

potentially non-continuous functions is, however. The following assertion is then made: 

Assertion 13: Exact methods of solution are not capable of solving the layout 

problem of interest in this dissertation. 

Next, the role that heuristics have played in solving the LP is observed. 

2.6.2 Heuristic Approaches 
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Before the advent and maturation of metaheuristic techniques, heuristics provided the 

best alternative to exact methods. Overcoming the limitations that accompany exact 

methods has been the principal purpose of implementing heuristics techniques to 

facilitate more effective solution of the LP. Of these, the ability to solve larger problems 

more effectively has by far been the most prominent motivator to their implementation. 

This was no better demonstrated than by Rosenblatt, who himself implemented heuristics 

in his original QAP/S formulation of the DLP to enable larger problems to be solved by 

DP [146]. A complete review of heuristic techniques in the literature is presented in 

Appendix A, Section A.2.2. 

 Although heuristics enabled larger LPs to be solved in a reasonable duration of 

time early on, room for improvement remained. The problem-dependency that 

accompanies these heuristic approaches greatly limits their applicability to other variants 

of the problem. Furthermore, their often greedy and hyper focused tendencies often 

inhibit them from identifying the global optimum of the space effectively. The advent and 

maturation of metaheuristics to solve COPs, including that of the LP, provided 

researchers with a viable alternative to heuristics. As such, metaheuristic techniques 

become the focus of discussions going forward. 

2.6.3 Metaheuristic Approaches 

The more problem-independent and less greedy solution tendencies of metaheuristic 

approaches enable them to avoid the limitations stated before regarding the 

implementation of heuristics alone to solve the LP. Several metaheuristics techniques 

have been proposed in the literature to solve the LP. These include simulated annealing 
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algorithms as well as intelligent approaches. Intelligent approaches consist of 

evolutionary algorithms such as genetic algorithms and other approaches like that of 

particle swarm optimization, ant colony optimization, tabu search, and colonal selection 

algorithms. Of the metaheuristics implemented in the literature, simulated annealing and 

genetic algorithms are the two most prominent methods of solution to the LP. As such, 

both algorithms will be observed here and further discussed thoroughly in Appendix A. 

In addition to these two metaheuristics approaches to the solution of the problem, hybrid 

approaches implementing one, both, or neither of these two metaheuristics have recently 

become the choice of researchers to solve the problem. Therefore, hybrid as well as other 

intelligent approaches will also be discussed. 

2.6.4 Simulated Annealing 

Simulated annealing has often been used by researchers to solve the LP. Simulated 

annealing (SA) is a probabilistic method, based on outcomes of statistical mechanics, for 

discovering a function’s approximate global optimum, where said function may too 

contain local optima [29,59]. Simulated annealing was first introduced by Kirkpatrick et. 

al. (1983) and independently by Cerny (1985) to emulate the process of gradually cooling 

a physical system to its minimum energy state [94,44]. A comprehensive review of the 

literature pertaining to the application of simulated annealing to the layout problem is 

presented in Appendix A. The section to follow provides a summary and analysis of this 

review, particularly in regard to the potential viability of applying SA to the LP of 

interest in this research. 

2.6.4.1 Applicability of SA Approaches to the Problem 
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Given the survey of the literature conducted on SA and presented in Appendix A, several 

observations and assertions can be stated. First and foremost, SA has proven consistently 

that it is an effective method of solution for the QAP formulated LP. Its predominate 

application to the QAP formulation of the LP is a testament to this. Coupling this with 

SA being an effective local search mechanism [137], the following assertion can be 

stated: 

Assertion 14: Simulated annealing should be implemented to facilitate the 

effective solution of a QAP formulated LP. 

Furthermore, Tang’s research demonstrated SAs capability of handling the QAP/U-SP 

form of the static problem. Furthermore, Sahin et al. demonstrated its ability to solve the 

budget constrained DLP problem. Coupling the two of these together, the following 

statement becomes reasonable. 

Conclusion: Simulated annealing has the capability of effectively solving the 

QAP/U-SP formulated budget constrained DLP. 

Provided the earlier assertion made in the modeling section that the sequence-pair 

was the most suitable of the QAP models to the problem at hand, the above assertion and 

conclusion acknowledge that a SA approach should be implemented if a QAP/U-SP 

model is used to characterize the layout at any point during the solution process. 

The literature survey also enabled a preferred annealing schedule for the SA 

algorithm to be established. Chen and Chang’s proposed Fast-SA schedule demonstrated 

on average a 12x speedup in finding configurations of similar quality to that of the 
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Classical and TimberWolf schedules [47]. Figure 7 provides a comparison between the 

three popular annealing schedules implemented in the literature as applied to a layout 

problem where the goal was to minimize dead space. Its superior performance and overall 

robustness, as demonstrated in Figure 7, enables the following assertion to be made: 

Assertion 15: The Fast-SA annealing schedule should be implemented as the 

preferred schedule for the SA algorithm. 

 

Figure 7 – Comparison of popular annealing schedules in solving a minimal dead 

space layout problem [47] 

Furthermore, the literature provides insight into the appropriate heuristics required 

to perturb the configuration effectively. McKendall et al.’s perturbation scheme 

incorporating a look-ahead/look-back strategy demonstrated improved performance over 

the standard method implemented by many researchers for the DLP. Although an 

attractive method, alteration to the heuristics would be required in order to both account 

for machine addition/removal scenarios that may occur from one period to the next and 

further to encapsulate a sequence-pair model structure. The latter can be achieved by 
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adoption of Tang’s swapping procedure after the period of swap is chosen whereas the 

former will require the development of new heuristics. Furthermore, the perturbation 

schemes implemented by researchers, including McKendall et al., fail to account for 

fixed-entities and their impact on configuration feasibility, with Tang’s research being 

one of the few exceptions to this. Although fixed entities were accounted for by his 

formulation, the perturbation heuristics remained unaltered. To handle the presence of 

fixed entities and their inhibiting effect on sequence-pair feasibility, new perturbation 

heuristics will be required. The inhibiting effect that fixed entities have on sequence 

feasibility will be detailed later. This concludes the discussion on the applicability of SA 

to the problem of this dissertation. 

2.6.5 Genetic Algorithm 

The genetic algorithm is another metaheuristic technique often implemented in the 

literature to solve the LP. The genetic algorithm (GA) is an evolutionary algorithm, based 

on C. Darwin’s 1859 theory of natural selection [52] and the role it plays in biological 

evolution, that is capable of solving complex and difficult to solve COPs [58]. 

Popularized in 1989 after D. E. Goldberg’s publication of “Genetic Algorithms in Search, 

Optimization and Machining Learning” [80], the advancement and application of genetic 

algorithms to engineering COPs has grown exponentially [58]. A comprehensive review 

of the literature pertaining to the application of genetic algorithms to the layout problem 

is presented in Appendix A. The section to follow provides a summary and analysis of 

this review, particularly focusing on the potential viability and application of GA to the 

LP of interest in this research. 
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2.6.5.1 Applicability of GA Approaches to the Problem 

As can be observed from the expansive survey of the literature conducted and presented 

in Appendix A, the GA has proven to be a suitable approach to solving the LP of various 

formulations. The GA’s ability to effectively handle problems involving non-linearity, 

non-convexity, multiple objective functions, as well as side constraints makes it an ideal 

choice for solving the budget constrained DLP formulated as either a QAP or MIP. The 

GA is also highly parallelizable. This is a major advantage of it and one that could prove 

essential to handling a computationally burdensome problem such as the one of this 

dissertation. 

 The literature provides several viable reproduction options for effectively 

evolving the population of the GA.  Although observed in Appendix A have their own 

advantages, some present more promising behavior and applicability to the problem 

being addressed in this dissertation. It is evident from the literature presented that 

proportionate roulette wheel selection is the preferred method of selection. The major 

attraction of this selection operator is it provides a fitness driven approach to selecting the 

parents. Researchers including Conway and Venkataramanan, Ulutas and Islier, 

Baykasoglu et al., and even that of Mazinani et al. while solving the MILP DLP, 

implemented this as their selection operator. From this, it can be concluded that a roulette 

wheel selection operator should be implemented to facilitate the selection of parents for 

reproduction by the GA when solving either a QAP or MIP formulated DLP. As for the 

replacement operator, the approach employed by Balakrishnan et al. (2003), which 

ensures population uniqueness when selecting the next generation of individuals, is an 

entertaining option for future implementation, should a GA be used to solve the problem. 
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 Also universal to either the solution of a QAP or MIP formulation of the problem 

by GA, the inclusion of a jumping gene operator (JGO) to further facilitate improved 

evolution of the population should strongly be considered. As observed by Tang et al. 

(2008) and Tang et al. (2011), the introduction of the JGO to solve the DLP improved the 

likelihood of achieving better convergence and diversity of the population and 

furthermore helps to avoid premature convergences [157,158]. These improved solution 

properties are a direct byproduct of the JGO’s ability to better explore and exploit the 

search space as a result of it horizontally transmitting genes. Crossover and mutation 

variation operators are only capable of introducing vertical transmissions of genes from 

generation to generation. Therefore, regardless if a QAP or MIP formulation of the DLP 

is being solved, if a GA is implemented to facilitate solution, a JGO should be included 

as a supplementary reproduction operation in addition to crossover and mutation 

operations. Ripon et al.’s application of this operator to the QAP/S problem could 

relatively easily be altered to handle the position-pair ordered structure of the QAP/U-SP 

problem. On the other hand, application to the MIP DLP would require a more complex 

adaption of the operator. Novel procedures for performing the cut and paste and copy and 

paste operations on a vector string of real numbers would need to be developed. The 

benefits that the JGO can provide make this development a worthwhile investment 

though. 

 As for crossover and mutation operators, these are more specific to the 

formulation of the problem. While handling a QAP/U-SP formulation of the problem, Liu 

and Meller’s approach to reproduction is ideally suited, unlike some of the other works 

reviewed, as it was specifically applied to such a position-pair structured problem 
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formulation. Adoption of their uniform crossover and mutation technique would first 

require extension to the DLP. Extension of the uniform crossover operator takes little 

effort and would in many ways just be a fusion of Liu and Meller’s crossover for the SLP 

and Mazinani et al.’s for the DLP. As has been done by most researchers while handling 

the DLP, appending a step for randomly selecting a period to perform mutation upon can 

enable Liu and Meller’s mutation operator to be extended to the DLP. Another viable 

alternative to this method of mutation is Pourvaziri and Naderi’s mutation operator that 

randomly swaps two period layouts of the offspring. Either of these options are suitable 

to the encoding representation of an individual characterized by a QAP/U-SP model. On 

the MIP side of the problem, Mazinani et al.’s use of a continuous uniform crossover 

operator and three independent mutation operators is an intriguing option. With their 

approach proving quite effective in solving both the QAP and MIP, implementing their 

approach in the solution of the LP being addressed in this dissertation should be strongly 

considered. 

 A summary of the preceding observations regarding reproduction strategies for 

solving the DLP with GA enable the following assertions to be made should a GA be 

chosen as the primary solution method to the DLP. 

Assertion 16: Should a GA be employed, the following reproduction strategies 

should be implemented to effectively evolve the population and therefore solve a:  

QAP formulated DLP 

1. Ulutas and Islier’s roulette wheel selection method 
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2. Liu and Meller’s modified uniform crossover and mutation operators 

adapted to the DLP structure 

3. Alternatively, Pourvaziri and Naderi’s mutation operator 

MIP formulated DLP 

1. Mazinani et al.’s roulette wheel selection, continuous uniform operator, and 

tri-mutation operator approach 

Either a QAP or MIP formulated DLP 

1. Balakrishnan et al.’s (2003) uniqueness guaranteeing replacement scheme 

2. Ripon et al.’s JGOs adapted to a QAP/U-SP or MIP representation of the 

layout respectively  

In addition to potentially viable reproduction strategies, another notable 

observation from the literature on GAs is Liu and Meller’s use of a multi-modal (QAP/U-

SP and MIP) solution procedure for solving the MIP formulated SLP. Although their 

approach proved to be an effective method in reducing the solution space for the GA to 

search by leveraging the fundamental properties of SP, it also implemented linear 

programming to facilitate solution of the MIP for each QAP/SP solution evaluated by the 

GA. The ability to leverage linear programming to solve the MILP portion of the problem 

was this approach’s major advantage. As observed at the beginning of this section on 

solving the layout, it was noted that direct methods such as linear programming were not 

a viable option for the problem at hand due to the non-linearity of the problem 
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formulation required to adequately characterize a layout. In other words, the major 

advantage of the aforementioned procedure no longer pertains to such a problem as the 

linear programming would need to be exchanged for another heuristic solution technique. 

Again, although an attractive approach, said method is not viable for application to the 

problem formulation required in this dissertation. 

2.6.6 Hybrid and Intelligent Approaches 

In addition to SA and GA approaches there are hybrid approaches, which implement a 

combination of metaheuristic techniques or the combination of a metaheuristic technique 

and another solution method such as dynamic programming to solve COPs such as the 

LP. Every solution method has its own areas of expertise where they provide superior 

performance compared to others. An example of this was noted before in establishing the 

effectiveness of SA as a local search mechanism. Compared to GA, SA demonstrates 

superior local search performance. As such, one can postulate combining the two in order 

to leverage the superior performance of SA at searching the space locally while allowing 

GA to more effectively search the space globally. The result of this fusion is often a 

superior performing solution method with more robust characteristics as each solution 

method infused can be leveraged for what they are best at.  
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Figure 8 – Recent dominance of hybrid and meta-heuristics approaches to the 

solution of the problem [100] 

The recognition that such an approach can provide substantial advantages, such as 

superior performance (solution results and times) and overall robustness, has in recent 

years led the large majority of researchers to employ hybrid approaches to solve the LP 

subject to evolution and uncertainty (DLP and RLP). Kulturel-Konak, as demonstrated in 

Figure 8, observed this paradigm shift in solving the DLP and RLP in his extensive 

review of the topic [100]. In addition to hybrid approaches, researchers recently have also 

entertained other intelligent approaches to solve the DLP. Provided in Appendix A is a 

review, brief in comparison to Konak or Moslemipour et al. [127,100] more expansive 

review, of some of the more notable applications of hybrid and intelligent approaches to 

the layout problem, specifically the DLP. 

2.6.6.1 Applicability of Hybrid and Intelligent Approaches to the Problem 
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An assessment of the literature on hybrid and intelligent approaches revealed an 

assortment of viable solution methods for solving the LP. Of these though, one outshined. 

Although applied to just the QAP/S formulation of the DLP, Pourvaziri and Naderi’s 

introduction of a hybrid multi-population GA with SA enhancement to the solution of the 

problem demonstrated highly attractive performance characteristics that should be 

translatable to other formulations of the problem. The robustness and ability of their 

approach to provide effective solution to the DLP within a reasonable duration of time is 

promising. Having also used GA to provide this solution performance, selection of GA to 

solve the problem of this dissertation becomes further justifiable.  

The combination of evolving multiple populations concurrently and infusing SA 

are the main drivers of this superior performance. Both of these can be easily adaptable to 

other formulations of the problem solved by GA. To populate the initial sub-populations 

of Pourvaziri and Naderi’s approach to the MIP formulation of the DLP, solution first to 

the QAP/U-SP formulation, which is far less computationally burdensome, could be 

performed. Adoption of Liu and Meller’s GA approach extended to the DLP and 

simplified to just the QAP/U-SP portion of the problem (i.e. removing the internal MIP 

formulation solution procedure by linear programming), can facilitate not only the 

solution of said problem, but further enable the best region and non-promising region 

sub-populations to be populated. Furthermore, this GA could be hybridized by 

implementing SA, more specifically FSA, just as Pourvaziri and Naderi did for their 

QAP/S problem. 

It has also since been established that should a GA be used to solve the MIP 

formulation of the DLP, Mazinani et al.’s GA approach should be implemented. 
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Mazinani et al.’s approach could presumably be enhanced further by altering the GA 

structure of their algorithm to encapsulate the multi-population procedure proposed by 

Pourvaziri and Naderi. As noted before, the sub-populations could then be populated with 

the results of the aforementioned solution to the QAP/U-SP formulation of the problem. 

Furthermore, hybridizing the GA by infusing SA to further enhance the best solution for 

each generational loop, as done by Pourvaziri and Naderi, could provide further 

improvement to the performance of the solution method. 

As observed before, Liu and Meller’s approach coupled with Yang et al.’s 

approach to solving the MIP formulations of the problem using bi-model approaches of 

sorts demonstrates the potential for employing such a hybrid model approach to solve the 

MIP problem of this dissertation. Bi-model here is representative of either the 

simultaneous solution of both QAP and MIP models fused together and as done by Liu 

and Meller, or the sequential solution of the two to solve the problem in its original form. 

The latter of these two definitions relates to the discussion above that considers solving 

first the QAP/U-SP problem in order to then populate the sub-populations of the GA 

solving the MIP problem. 

Assertion 17: A bi-model hybrid approach, where a QAP/U-SP model is solved 

to some extent initially to then sufficiently populate the multi-populations, as 

defined by Pourvaziri and Naderi, of the Mazinani et al.’s GA approach to the 

MIP formulated DLP, enhanced to encompass this multi-population structure and 

inclusion of SA, should be implemented to solve the MIP formulated DLP most 

effectively. 
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 Summary of the Literature 

The preceding survey of the literature on modeling approaches, the addressment of 

evolving and uncertain conditions, measures of layout effectiveness, and solution 

methods for solving the problem have led to a series of observations and assertions that 

can be graphically observed in Figure 9. The assertions made prior collectively establish 

the overarching characterization of the problem that ensures a realistically viable layout 

that would remain effective in the presence of evolving and uncertain conditions could be 

designed. Furthermore, conclusions on potentially viable approaches to the solution of 

this well-established problem are made. The chapter that follows acknowledges the 

assertions and conclusions established in this chapter to formulate the methodology that 

will be required to effectively design a realistically viable layout subject to evolving and 

uncertain conditions. Furthermore, notable assertions, conclusions, and questions posed 

during this survey of the literature will be once again revisited later when recapitulation 

of the problem is provided before presenting the results of this work. 

 

Figure 9 – Hierarchal representation of the problem  
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CHAPTER 3 

– 

METHODOLOGY FORMULATION 

In the preceding chapter, a thorough understanding of the problem was gained and 

several observations, conclusions, and assertions were established as the literature on the 

layout problem was surveyed. These acknowledgements collectively motivate the need to 

solve such a robust dynamic layout problem and further address key gaps within the 

literature. Closure of these gaps is required for an environment subject to evolving and 

uncertain conditions to be designed effectively. Furthermore, these observations, 

conclusions, and assertions acknowledge potential formulations that adequately 

characterize such evolving detailed layout designs as well as viable strategies for 

effectively solving such an arduous problem formulation.  

The proposed methodology of this dissertation provides closure to the identified 

gaps and leverages these potential formulations and strategies to effectively solve the 

problem of designing layouts subject to uncertain and evolving conditions. The proposed 

methodology encompasses three steps. The first step involves initializing the problem(s) 

to be solved, the second, then solving these problem(s), and finally third, visualizing the 

layout design(s) and leveraging the data generated by the implemented performance 

model to then make more informed and collaborative design decisions.  

 Overarching Methodology Framework 

The overarching framework of the proposed methodology, titled Layout DesIgn 

Visualization Environment (LIVE), is composed of three steps as mentioned before. This 
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framework and the three steps can be observed in Figure 10, which provides a pictorial 

representation of the framework. The first of the steps encompasses initializing the 

problem(s) to be solved. In this step the overarching problem is decomposed such that a 

series of scenarios for which layout designs are to then be established for are defined. 

Each of these N scenarios is composed of a unique combination of market and business 

model conditions as prescribed by the designer.  

 

Figure 10 – Overarching framework of the LIVE methodology 

In the second step, each of these N scenario layout design problems established by 

the designer are solved, producing then N layout designs for consideration. Taking the 

scenario conditions as inputs; costs, demands, rearrangement plans, etc. are defined and 

each (locally robust) dynamic layout problem is solved to identify the best or most locally 

robust layout design under the provided scenario conditions. As each of these scenarios is 

solved, the layout design space is then populated, and the performance results recorded. 

With the layout design space completely populated and all the scenario layout 

problems solved, the final step of the proposed methodology is to then visualize these 
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designs and analyze the performance results. It is proposed that an analytical cost model, 

which infuses operation management concepts, be implemented to provide improved 

insight into the performance of the layout design and the system it is a part of, where the 

system is defined as the layout design plus the conditions it is subject to. It is believed 

that the access to the additional data this model provides will enable designers to make 

more informed and strategic business decisions regarding the design of the system and 

the layout design itself. It is intended for the results to eventually be exhibited in a 

parametric environment. Though the development of this GUI environment is not within 

the scope of this dissertation, it is intended for it to be a future extension of the work. 

This environment would enable the designer to more easily observe the behavior of the 

layout design in the presence of such market and business model conditions and 

furthermore make more informed and collaborative decision on the final design of the 

layout and the system as a whole. The environment could further enable a rapid 

assessment of the design space, allowing designers to adjust market conditions and alter 

business model decisions to see the effect it has on the layout design from both a physical 

and quantitative business perspective (costs, production revenues, profits, utilizations, 

etc.). Now that the proposed methodology’s framework has been presented, each of the 

three steps are outlined further. 

 Step 1: Problem Initialization 

The first step of the proposed LIVE methodology is to initialize the individual scenarios 

layout problems. First though, the overarching problem or study to be considered must be 

decomposed in order to establish the combinations of market and business model 

conditions that define each of the scenarios. 
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3.2.1 Decomposing the Problem 

As was observed before in the background section of this dissertation, poor problem 

transparency is one of the major shortcomings most existing methods that account for 

evolving and uncertain conditions suffer from. Most existing methods provide the 

designer with a single robust design that without clarity accounts for the relevant 

fluctuations and uncertainties of the problem. Scenario based methods for establishing 

robustness have the greatest potential for providing the required insight to enable more 

informed decisions to be made. With such approaches decomposing the uncertainty into a 

set of scenarios, the sensitivity associated with various market conditions can directly be 

observed by the designer. Unfortunately, too often these scenarios are collectively 

addressed within the solution procedure. As a result, a singular layout design remains the 

outcome without any understanding of how the conditions affect the design. As such, 

instead of directly incorporating fluctuations and uncertainties in the market conditions 

within the solution algorithm, as has often been done before, it is proposed that these be 

handled external to the solution procedure to an extent. The outcome of this approach 

then yields solutions to a series of condition scenarios, which can then be inspected 

manually by a designer in a layout design exploration environment. Such an environment 

enables a more thorough understanding of a design’s behavior to the various condition 

forecasts. 

Although this approach provides improved transparency, none of these designs 

themselves are technically robust, as their solution would be attained without 

consideration of the alternative scenarios it may encounter. Thus, it is proposed that a 

localized robustness approach employing Norman and Smith’s method be implemented 
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to provide robustness about the provided condition scenario. This local robustness would 

be established internal to the solution procedure and would therefore yield a design that is 

locally robust about the provided scenario’s projected condition forecasts. This local 

robustness concept is illustrated in Figure 11, below. In these graphs, the dotted lines are 

representative of the projected condition forecasts for each of the M conditions 

composing each of the N independent scenarios being evaluated in the study. The solid 

lines on the other hand characterize the upper and lower bounds of uncertainty about 

these projected forecasts. This range of uncertainty, varying with time, is, as mentioned, 

to be captured by the implementation of Norman and Smith’s distribution-based 

robustness method. 

 

Figure 11 – Local robustness concept visualized 
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As noted before, the condition evolutions and uncertainties are to be handled 

externally to an extent. The general uncertainty of the projected condition forecasts are 

captured in the N independent scenarios, each of which generates a layout design for 

manual consideration in the design exploration environment. The evolution of each of the 

conditions is captured in the projected forecasts being time dependent, meaning the 

projected value can change over the layout design’s planning horizon. This is 

demonstrated in Figure 11, where the nominal dotted line changes over the span of the 

planning horizon (2022 in this notional example). In other words, this is the portion of 

uncertainty that is handled externally, that is, external to the solution procedure. On the 

other hand, the uncertainty that accompanies these prescribed nominal projections is 

captured by the local robustness method, which is implemented internal to the solution 

procedure. In other words, each of the N scenario layout designs then becomes locally 

robust to fluctuations in the conditions about the nominal projected forecasts. The 

uncertainty in the expected value of each of the conditions is then captured in the 

definition of the scenarios whereas the uncertainty bounds about these expected values is 

captured by the local robustness method and thus within the solution procedure. 

The benefit to this strategy is that it enables situations where the evolution of the 

market condition’s nominal values is more likely known, but the fluctuations about these 

values less so. This situation is also depicted in Figure 11, where in the upper left graph 

the actual forecast of the condition is graphed as the gray stochastic behaving curve, 

which fluctuates about the nominal projected forecast, yet remains, for the most part, 

bounded by the uncertainty bounds prescribed by the local robustness method. Naturally 

these bounds will grow the further out into the future the layout is designed for and the 
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conditions projected. This growing uncertainty is captured by the local robustness 

method, which defines the distributions of uncertainty about the expected or nominal 

condition value as a function of time. The further into the future the projection is, the 

more spread the distribution has and vice versa. The major advantage of this localized 

robustness approach is that it provides the designer with the ability to more thoroughly 

understand how the locally robust layout design changes as the market conditions 

nominally evolve over time. The sensitivity of the layout design to uncertainties in the 

nominal condition forecasts are now directly observable through this approach, whereas 

before, they were not.  

Such an approach also has the added benefit of reducing the RDLP to just that of 

a DLP, making the problem more computationally tractable to solve. This would be the 

case when the local robustness strategy is not activated by the designer when studying the 

problem. Instead the designer may choose to completely enumerate the potential 

evolutions of the market conditions within the scenarios he/she defines to completely 

capture these uncertainties. Posterior, one may then apply Braglia et al.’s TPC function to 

each of the scenario layouts to establish the most robust design. Similarly, the designer 

may visually inspect the layout design space to identify regions in which the design does 

not vary significantly in order to establish robustness. 

It was also acknowledged in Assertion 6, that existing methods of defining the 

planning period structure, which encourages the evolution of the environment, are 

limiting and often result in structured uniform planning period horizons that are poorly 

representative of real-life schedules. Although the aforementioned external scenario-

based approach has considered just the evolution of the market conditions so far, these 
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scenarios can too encapsulate the evolution and uncertainty associated with the business 

model. This provides designers with the ability to answer a vast array of design questions 

pertaining to the business model and operations that otherwise cannot be answered with 

traditional methods. For example, designers can define these business scenarios 

strategically to answer the following more prominent design questions: 

• Which asset between a series of options would provide the most benefit to 

the company in the long term? Furthermore, when during the planning 

horizon should this integration occur? 

• What is the best evolution schedule for the environment to maintain the 

best layout effectiveness and/or robustness?  

• Is it wise to perform layout rearrangement at the onset of a period or 

sometime else when production demands may not be as high and a more 

favorable budget available? 

The ability to answer questions such as these can greatly benefit a company and 

contribute largely to its ability to effectively design its environment with long term 

viability in mind. Answering questions such as (1-3) can also enable a company to 

maximize their potential for success in the market by making more informed and 

strategic business decisions. In addition to these questions, many others regarding the 

business model and its impact on the design of the environment can be answered. 

Furthermore, many useful questions with regards to the market conditions can too be 

answered as a result of this approach. This approach also has the added benefit of 

emulating Yang and Peters approach to reducing the dimensionality of the DLP that 
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needs to be solved while avoiding the loss of transparency that accompanies their 

approach. For example, if the scenario only calls for one rearrangement to occur over a 

five-year planning horizon, then only a DLP of two periods needs to be solved, which is 

far easier achieved compared to a five-period problem (i.e. a period for each year of the 

five-year horizon). 

The flexibility and insight into the problem that such an approach to capturing the 

evolution and uncertainty associated with the business model and market conditions has, 

is a major benefit. It enables designers to make more informed decisions regarding the 

design of environments subject to unpredictable and evolving conditions, which is the 

core goal of this dissertation’s overarching research objective. With this decomposition of 

the problem established, a couple overarching assumptions regarding how these scenarios 

are to be defined is presented.  

3.2.2 Accounting for Evolution and Uncertainty in the Conditions 

As described before, evolution and uncertainty in the macro market (nominal projections) 

and business model conditions are to be captured by the scenarios defined a priori by the 

user in the first step of the methodology. In this research, two major assumptions are 

made. They are as follows: 

1) A designer/business would be capable of populating a business model 

decision morphological matrix of the following: 

2) Asset integrations 

3) Product addition/subtractions  
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4) Layout rearrangement schedules 

5) Product production rates 

where each of the first three would have a value and time of change associated with it. 

Each of these may have more than one value and more than one possible time of change. 

The product production rates would be defined across the horizon with a range of discrete 

nominal values and variances. The latter property is to be leveraged by the proposed 

robustness method to account for uncertainty about the nominal values prescribed. 

6) Market forecasts are established and known by the designer (through 

predictive analytics, insight, etc.) for the following: 

7) Rearrangement costs 

8) Product market values 

9) Manufacturing costs 

where each are defined across the horizon and have a range of discrete nominal values. 

In other words, a series of market and business model condition scenarios would 

be readily available to the designer to populate a design of experiments or a matrix of 

condition scenarios to then study.  

3.2.2.1 Notional Example of a Business Model Decision Morphological Matrix 

Before continuing to discuss the second step of the framework, that is how to effectively 

solve the scenario layout problems that are defined in this first step, clarity on the concept 
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of establishing a business model decision morphological matrix and how it relates to the 

definition of the restructuring schedule is to be provided. The idea of a business model 

decision morphological matrix mirrors the concept of a decision tree. A decision tree, in 

operations, is a hierarchal representation of decisions and their associated consequence(s) 

[144]. This representation resembles that of a tree in nature. At each intersection of 

branches a decision is made and depending on this decision a different branch path is 

followed. This branch path is nothing more than the resulting consequence of the 

decision. As more decisions are encountered, the tree continues to expand outward. This 

outward expansion from the origin decision (first made in the sequence) continues until 

reaching an outcome (leaf in the tree). This analogy is important as it depicts the various 

outcome scenarios and how they come to occur. Considering the possibility that decisions 

may overlap with one another, each of the unique scenarios can be understood to be a 

unique path from the root decision node (root of the tree) to that of an outer leaf node. As 

alluded to before, this hierarchal representation can be leveraged to identify beneficial 

strategies for success and further establish all possible decision paths. 

In the context of this problem, the decisions of interest (branch intersections) are 

those relating to asset integrations (when and which), layout restructures (when and how 

many), and alterations to the business’s production mix (additions, subtractions, and 

redistributions of resources). Each of these decisions then has a series of potential 

responses or in morphological matrix terminology, a series of possible alternatives. To 

best establish a thorough understanding of the concept, a notional example is presented 

below in Table 4. 
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 In this notional example, it can be observed that the designer established two 

growth stages of the business. This is indicated by the first two decisions, which address 

expanding the business’s operational capabilities by investing in additional machinery. 

Under these two decisions several potential responses are acknowledged, including the 

choice to not invest in a 2nd machine all together. Accompanying these are the decisions 

as to when each shall be purchased and integrated into the environment. The designer in 

this situation opted to consider a few options around the one-year mark for the first 

machine, while for the second machine a broader range about the second-year mark was 

to be considered in the study. It should be acknowledged that in situations where a new 

machine is integrated into the environment, product mix declarations must also 

accompany these decisions and furthermore must correlate to the same point in time that 

the integration occurs. This is where the compatibility of decisions becomes important 

and where the orange filled cells becomes relevant in this discussion.  

Table 4 – Notional example of a business model decision morphological matrix 

Decision Variations of Decision 

1st Machine to Purchase Machine A Machine B Machine C  

2nd Machine to Purchase Machine A Machine B Machine C No Purchase 

Integration Date of 1st Machine Month 9 Month 12 Month 15  

Integration Date of 2nd Machine Month 18 Month 24 Month 30  

1st Layout Restructure Month 12 Month 18   

2nd Layout Restructure Month 24 Month 30   

3rd Layout Restructure Month 36 Month 42 Month 48  

Product Mix @ Month 0 Option A Option B Option C  

Product Mix @ Month 12* Option A Option B   
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Table 4 (continued) 

Product Mix @ Month 18 Option A Option B Option C Option D 

Product Mix @ Month 24 Option A Option B   

Product Mix @ Month 30* Option A Option B Option C Option D 

Product Mix @ Month 36 Option A Option B Option C  

Product Mix @ Month 48 Option A Option B Option C  

Product Mix @ Month 60 Option A Option B   

* = product mix definitions required as a result of a chosen machine integration 

The orange filled cells in Table 4 represent a unique series of decisions made (a 

path in the decision tree), or in the context of this problem, a distinct scenario that would 

become a part of the design of experiments or matrix of condition scenarios to be studied. 

It can be observed that the designer in this notional example chose to define a product 

mix on an annual basis (likely to align with annual business review cycles). Additionally, 

the designer opted to examine a restructuring schedule involving three preordained 

evolutions of the layout. These three restructures need not overlap with a machine 

integration decision, though they can. In fact, in this distinct scenario, this is the case as 

the second preordained restructure aligns with the integration date of the second machine. 

Further, anytime machine integration occurs it is inherently assumed that restructuring 

must too ensue or at a minimum be entertained. Thus, in this example scenario, the true 

restructuring schedule for the defined scenario resembles the timeline provided in Figure 

12, which as depicted indicates four distinct evolutions of the layout design (each dot on 

the timeline). The fourth is a result of the first machine’s integration not aligning with a 

preordained restructuring yet requiring a restructuring to accommodate the integration of 
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the new machine. The designer should be aware of this logic when establishing the 

restructuring schedules for each scenario. As one can observe, there is much design 

freedom in this approach, enabling the designer to tailor the study to their specific needs, 

requirements, and level of granularity. 

 

Figure 12 – True restructuring schedule for the notional example scenario 

 Step 2: Effectively Solving the Layout Problem 

The second step of the methodology considers the actual solution of each of the 

scenarios, which in turn define a layout problem. As was well established in Section 2.5, 

solution to either a dynamic layout problem or a robust dynamic layout problem is a time 

intensive and difficult endeavor. Assertion 12 acknowledged the importance of 

identifying an efficient solution method to such problems as a byproduct. Furthermore, 

the scenario approach defined before requires solution to a series of these problems and 

as such, the viability of this methodology becomes contingent upon being able to 

efficiently solve such problems. Fortunately, and as observed by Liu and Meller, layout 

planning is not a real-time decision process [115]. In light of this, solution quality should 

be the biggest concern so long as achieving said solution can be performed in a 

reasonable duration of time. Consequently, the following proposed solution method seeks 

to effectively solve the robust dynamic layout problem in a reasonable duration of time. 

Implement Machine B 
(Month 12)

Restructure Layout 
(Month 18)

Implement Machine A 
(Month 30)

Restructure Layout 
(Month 48)
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To achieve this, it is proposed that a bi-model multi-stage hybrid solution 

approach be implemented to solve these budget constrained (locally robust) dynamic 

layout problems. Question 1.1.1 which questions whether a more simplified model in 

that of a QAP could be leveraged during the solution process, is entertained by 

implementing a bi-model approach (QAP/MINLP), where the more tractable QAP/U-SP 

model can be leveraged to refine the solution space and enhance the solution of the 

MINLP formulation of the problem, thereby reducing computational times and improving 

solution quality. Furthermore, the implementation of a hybrid optimization approach 

enables the superior niche capabilities of different solution techniques to be leveraged. As 

observed in Section 2.6.6, a byproduct of this is improved solution performance, which is 

highly favorable in this application. 

The proposed bi-model multi-stage hybrid approach is to be partitioned into two 

distinct stages. Inspired by the work of Pourvaziri and Naderi and those who have 

attempted to solve similar MIP formulated LPs, solution to the MINLP formulated RDLP 

is assisted by the initial solution of a more tractable form of the problem. In this case, that 

would be a QAP/U-SP formulation of the problem. In the proposed approach, the first 

stage is then to provide solution to this formulation while in the second stage, the 

outcome of the first is leveraged to stimulate its solution to the overarching MINLP 

formulation of the problem. 

3.3.1 Stage One: Solution to the QAP/U-SP RDLP 

To populate the initial populations of Stage Two’s GA, it is proposed that the QAP/U-SP 

formulation of the problem be solved to some extent, which fully acknowledges 
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Assertion 17. A by-product of this proposition is the second of the major research 

questions. It is as follows: 

Research Question 2: To what extent does the QAP/U-SP formulated problem of 

Stage One need to be solved to adequately populate the initial populations of 

Stage Two, such that the MINLP formulated problem can be solved most 

effectively? 

It is anticipated that answering this question will require a balance between 

computational time and the quality of the designs provided to Stage Two to initialize the 

populations. It may not necessarily be useful to solve stage one to convergence given that 

the goal is to only populate the initial populations with good solutions, not necessarily 

converged solutions. With that said, such an approach enables the designer to neglect 

Stage Two all together in favor of a more rapidly attainable result procedure and a more 

“conceptual” understanding of the environment’s design if he/she chooses. This can be 

achieved by solving just the QAP/U-SP formulation of the problem in stage one to 

convergence and neglecting the second stage completely. Although not an original 

intention of this work, this is a ancillary benefit of this approach. 

3.3.1.1 Mathematical Representation of the Layout 

The proposition that stage one solves the QAP/U-SP formulation of the problem was well 

established before by Assertion 4. As observed, it is the most capable of the discrete 

models at adequately characterizing the environment especially when Tang and Wong’s 

version is adopted. Furthermore, such an approach has the major advantage, when 

coupled with the appropriate buffer added to each object, of providing solutions that are 
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guaranteed to be feasible in the MINLP formulation of the problem. This implies that 

solutions are both feasible on the basis of all constraints (including overlap constraints 

which are typically troublesome to deal with stochastically for a continuous formulation) 

and path flow feasibility. In this case, the inability of the QAP formulation to characterize 

continuous layouts is an advantage. A further advantageous by-product of this outcome is 

that the advanced flow method could potentially be replaced with a rectilinear method 

without sacrificing too much accuracy, yet gaining substantial reductions in solution 

time. As was the case before, Tang and Wong’s formulation will require alteration to 

encompass the (locally) robust dynamic nature of the problem and the objective function 

unique to the developed performance model of this dissertation. 

3.3.1.2 Solution Approach 

It is also proposed that this QAP/U-SP RDLP be solved using a hybridized GA with SA, 

specifically FSA implemented to enhance the solution procedure. McKendall et al.’s 

perturbation scheme incorporating a look-ahead/look-back strategy is to be implemented 

in the FSA algorithm, but with new heuristics to account for the unique nature of this 

dissertations layout problem formulation. 

 To provide effective evolution of the population, it is proposed that the strategies 

provided in Table 5 for a QAP problem formulation be implemented. Liu and Meller’s 

unique application of GA to the QAP/U-SP data structure [115] makes their strategies 

ideally suited as they already account for the position-pair nature of the data structure. 

They will however require slight alteration to account for the DLP structure of the 

problem. This will involve the implementation of a preceding random selection of a 
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period to perform the operations on. Ripon et al.’s jumping operations [143] will also 

require adaption despite their QAP application. The position-pair data structure of the SP 

representation differs from QAP/S data structure considered by Ripon et al., which was 

used to construct the original jumping gene operations. 

 An anticipated challenge of handling this problem formulation involves the 

effectiveness of these reproduction strategies and also the perturbation scheme of the 

FSA technique to generate feasible sequence-pairs. As has been observed before by the 

author, ensuring sequence-pair feasibility in the presence of constrained objects in the 

space is an arduous task that can greatly inhibit the effectiveness of the perturbation 

scheme and therefore the performance of the solution method. Liu and Meller also 

observed this difficulty of identifying feasible sequence-pairs when handling a highly 

constrained layout (i.e. high area utilization) with a GA. To combat this, they 

incorporated a 5% increase in the facility area along with a penalty function to account 

for the sequence-pairs with marginal violation of the true boundaries. This proved to 

greatly reduce solution times [115]. As such it is proposed that a novel method 

incorporating new heuristics be developed to handle this situation and better ensure 

sequence-pair feasibility during the perturbation and genetic reproduction processes. 

 Finally, after having performed some preliminary tests of the SP formulation 

subject to constrained objects in the space and additionally attained a more thorough 

understanding of the SP representation’s fundamental principles, it was discovered that a 

strong correlation existed between the placement of the constrained object in the space 

and its placement in the sequences of the feasible sequence-pairs. This correlation was a 

by-product of the fundamental construct of the representation’s sequence ordering 
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relative to the corresponding diagonal line that bisects the space. It is therefore proposed 

that a method exploiting this behavior be implemented to promote the more efficient 

discovery of feasible sequence-pairs by these perturbation schemes and reproduction 

strategies. This method will be expanded on in the implementation chapter to follow. 

Table 5 – Proposed genetic reproduction strategies 

 Model 

QAP/U-SP MINLP 

Selection 

Operators 

Selection: 
Liu and Meller’s / Ulutas and Islier's roulette wheel selection 

[115,167] 

Elitism: 

Liu and Meller's k best with 

revised improvement heuristics 

[115] 

Traditional k best 

Variation 

Operators 

Crossover: 

Liu and Meller's modified 

uniform operator adapted to the 

DLP structure [115] 

Mazinani et al.'s continuous 

uniform operator [118] 

Mutation: 

Liu and Meller's mutation 

operator adapted to the DLP 

structure [115] 

Mazinani et al.'s tri-mutation 

operator approach [118] 

Jumping Gene: 
Ripon et al.'s cut and paste and copy paste operations adapted 

[143] 
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3.3.2 Stage Two: Solution to the MINLP RDLP 

3.3.2.1 Mathematical Representation of the Layout 

To solve the MINLP formulated RDLP for each condition scenario, the MINLP 

formulations itself must first be established. As observed before in Chapter 1, the more 

accurate the model captures the real-life behavior and general characteristics of the 

environment, the more realistically viable the design will be in practice. This is in turn is 

imperative to effectively designing an environment such that the largest benefit from 

performing the layout design process can then be realized, which encompasses a major 

goal behind this dissertation.  To achieve this goal and adequately model the environment 

it is proposed that Barbosa-Póvoa et al.’s (2001) non-linearized MIP formulation be 

adopted with some alteration (Observation 2) in Stage Two. These alterations will be 

outlined in the subsequent section when the proposed approach to evaluating the 

performance of each layout design is presented. 

3.3.2.2 Solution Approach 

To solve this MINLP formulated RDLP, it is proposed that a GA be adopted as the 

evolutionary algorithm due to its prior proven success in solving the general LP, its 

ability to effectively handle problems involving non-linearity, non-convexity, multiple 

objective functions, as well as side constraints (e.g. budget constraints), and its 

parallelizability. The latter of these will become essential to solving the problem in a 

reasonable duration of time.  
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To facilitate effective evolution of the population and thus solution, it is proposed 

that the reproduction strategies established in Assertion 16, for MIP formulated 

problems, be adopted. For completeness and clarity these strategies, acknowledged in 

Assertion 16, are provided in Table 5. As can be observed, for the most part Mazinani et 

al.’s GA reproduction approach is adopted. Except for Ripon et al.’s jumping gene 

operations, the other genetic operators are directly applicable given their original 

application to such a MIP formulated problem. The jumping gene operations however 

will require adaption to the MIP data structure as Ripon et al.’s original application was 

to that of a QAP/S data structure of the DLP. 

It is further proposed that Pourvaziri and Naderi’s tri-population GA structure be 

adopted. The observed robustness and performance improvements of its solution to a 

QAP/S formulated DLP are encouraging. The adoption of Pourvaziri and Naderi’s tri 

population approach however, presents a major challenge of establishing an effective 

method of populating these three populations for a MIP formulation of the problem. This 

challenge is overcome however by the inclusion of the proposed Stage One solution to 

the simplified form of the problems. As observed, this stage solves, to an extent, a more 

fundamental version of the problem such that Stage Two’s initial populations can then be 

effectively populated and moreover done so reasonably fast. 

 Step 3: Evaluating the Layout Design 

To evaluate the performance and feasibility of the layout designs generated during the 

solution procedures outlined before, it is proposed that a cash-based performance model 

be developed to determine how well each layout design performs and that a constraint 
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model, encompassing a wide range of constraint factors, be developed to determine its 

feasibility. In the end, it is these models that determine which design is considered to be 

the best solution to the provided problem(s) by the solution algorithms outlined before.  

 It is proposed that the performance model be comprehensive and yet not overly so 

such that defining the necessary input costs, revenues, etc. proves too difficult for a 

designer. It is also proposed that a cash-based objective function be leveraged to provide 

a performance metric that all stakeholders involved in the design decision-making 

process can easily comprehend. This model shall consider three distinct cost categories. 

They include indirect and direct costs of production as well as capital expenditures.  

The indirect costs of production component can be decomposed further into RCs, 

and other indirect costs associated with production. Using Barbosa-Póvoa et al.’s (2001) 

formulation as a baseline, alterations to it are required to encapsulate the evolving nature 

of the layout and furthermore the budget constraints associated with this evolution. 

Barbosa-Póvoa et al.’s (2001) formulation is of a SLP; therefore, extension of it to the 

DLP by the inclusion of RCs in addition to the MHCs is required. These RCs are to be 

defined according to a distance-based variable horizon method along with a loss of 

production cost method as established by Assertion 8. In addition to these RCs, budget 

constraints are to be incorporated such that financial resource restrictions on layout 

evolution can be considered as well.  

 The RCs are only one portion of the indirect costs of production component. 

Other indirect production costs, which do not fall under these two cost umbrellas, need to 

be estimated as well. To provide estimates of the other indirect costs, a method that 
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allocates indirect costs on a product-basis and according to a percentage (value based on 

the nature of the processes involved in manufacturing the products) of the product’s 

direct costs of production is proposed. The direct cost of production must first be known 

for each of the products in order to establish these estimates. As such, how these direct 

costs are estimated in this research is addressed next. 

In addition to the indirect costs of production component, there are also the direct 

costs of production that must be considered. Establishing estimations of the direct 

production costs is essential. Not only does it enable estimations of the other indirect 

costs as noted, but it also provides closure to the cash-based performance model’s 

formulation which seeks to establish the performance of a layout design on a cost and 

profit margin-basis. Assessing a layout design on these two fronts is beneficial as these 

quantitative figures are often those managers base their decision from, but are also those 

that can be leveraged to design a layout from a mathematical programming perspective. 

As observed in Section 2.4.4, SEER-MFG provides the necessary direct production cost 

granularity needed to complement the indirect cost formulations (MHCs, RCs, and other) 

defined before. An intimate knowledge of each process involved in the manufacturing of 

the various products is required by this approach. A SEER-MFG model of the 

manufacturing environment has to be constructed and the process information noted prior 

used to define each of the individual process sub-models that compose it. Once the 

SEER-MFG model has been constructed, direct production cost estimations can then be 

generated, subsequently enabling the other indirect costs to also be defined as noted 

before. Though a promising approach, it is proposed that instead a generative-analytical 

model developed by the author be developed. This model shall encompass all the same 
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costs that SEER provides, but do so with fewer inputs and more simplified models. 

Models in which would be validated on a per case-basis. Instead, linear cost models 

based on designer estimated cost forecasts will be leveraged to define the direct 

production costs. The motivation behind this approach, rather than leveraging SEER, is 

that it allows the LIVE tool to remain open-source and does not require access to the 

SEER software package. Furthermore, it reduces the upfront effort for the designer of 

having to learn SEER. It also reduces the effort by no longer requiring an elaborate SEER 

model to be built. It was for these reasons, that it is proposed that the analytical model be 

developed rather than going the SEER model direction. This is not to say that SEER 

could not be implemented in an extension of this dissertation.  

It is also important to note that the SEER software package also does not 

characterize the MHCs to the level of detail that is required in this dissertation. Now 

although Barbosa-Póvoa et al.’s (2001) formulation, adopted as a mathematical 

programming foundation, includes a MHC method, it too requires not only modification 

to account for the dynamic nature of the problem, but also to account for flow path 

feasibility considerations. As established by Assertions 9 and 10, their rudimentary 

rectilinear method needs to be substituted for a method that defines the flow distances 

such that flow feasibility is guaranteed. As such, the novel flow distance method 

previously developed by the author and discussed briefly in Section 2.4.2.5 is to be 

leveraged. Furthermore, infusion of Norman and Smith’s robustness parameters into the 

MHCs and also the RCs noted before is required to allow for the formulation to 

encapsulate the local robustness method proposed earlier. If the designer chooses not to 
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incorporate such an approach, a switch to be implemented can effectively render these 

parameters inactive within the formulation. 

Two of the three cost components have since been established leaving just the 

capital expenditures component undefined. This cost component is included to account 

for capital expenditures that occur during the planning horizon. For example, purchasing 

a new machine in year two would become a capital expenditure of that period in the 

planning horizon. This expenditure and that of the cost to rearrange will be compared to 

the budget of the firm to evaluate feasibility. To establish a value for the acquisition and 

installation cost of a machine, an estimation provided by the designer for this cost is 

required under this proposed formulation. A major advantage of considering the capital 

expenditure costs, in addition to the other cost, is that it enables designers to begin to 

evaluate potential investment opportunities for their firm with this methodology and 

performance model. 

To provide closure to the performance model, estimations of the product market 

values will be required. Provided that the designer can supply estimates of these, the 

revenue for the system can then be identified. With the revenue known and costs also 

known, the performance of the layout design and the system as a whole can be evaluated 

with its profitability at the core of the cash-based performance model. 

In addition to the performance model, several constraints are to be considered as 

part of the proposed constraint model. As mentioned before, budgetary constraints are to 

be considered, which will provide restrictions on the evolution of the layout design. In 

addition to these, boundary, access to the I/O points of the stations, and object overlap 
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avoidance constraints are all to be considered to evaluate layout designs for feasibility. 

Many of these are encapsulated in Barbosa-Póvoa et al.’s (2001) formulation; however 

all will require alteration to encompass a, unique to this dissertation, multi-spacing 

interaction as well as the DLP structure. The multi-spacing interaction will attempt to 

inherently capture the appropriate degree of spacing as specified by safety guidelines for 

moving about the objects in the space as well as for required maintenance procedures that 

need be performed on each object without obstruction. The former will be instrumental in 

dictating the MHCs whereas the latter will be more relevant in determining how closely 

packed the objects can be without violation of the overlapping constraints. It is also 

proposed that a cash-based penalty function be implemented to account for any violations 

of the boundary constraints and budgetary constraints.  

 Concluding Remarks on the Proposed Methodology 

The outlined approach to solving the individual layout problems defined by the scenario 

set, synthesizes the best performing strategies proposed in the literature coupled with new 

novel techniques for enhancing further the solution process and the formulation. It is this 

synthesis and further enhancement that makes the following hypothesis possible: 

Hypothesis 2: If the proposed bi-model multi-stage hybrid solution approach is 

implemented to solve the MIP formulated RDLP, then the problem will be solved 

most effectively, in terms of solution quality. 

 Additionally, the overarching LIVE methodology proposed, which encapsulates 

the aforementioned proposed approach to the formulation and solution of the layout 

problems, further improves upon the existing methods of capturing evolving and 
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uncertain conditions. The proposed implementation of a local robustness method and an 

external handling of the scenarios describing the evolution of the market and business 

model conditions provide designers with the ability to answer many important questions 

regarding the design of an environment. The improved problem insight and transparency 

that this methodology as a whole can provide leads to the following overarching 

hypothesis of this research: 

Overarching Hypothesis: If the problem of designing an environment subject to 

evolving and uncertain market and business model conditions is solved with the 

proposed LIVE methodology, then designers will be capable of making more 

informed and collaborative decisions on its design. 

This overarching hypothesis directly addresses the research objective of this dissertation. 

It acknowledges that a highly involved methodology is required to achieve an improved 

layout design process. 
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CHAPTER 4 

– 

METHODOLOGY IMPLEMENTATION 

With the LIVE methodology’s overarching formulation established in the preceding 

chapter, attention turns now toward the technical implementation of the methodology. 

The chapter is broken into four sections. Combining the middle two sections, the format 

mirrors the three steps to the methodology. In the first section of this chapter, the first 

step of initializing the problem(s) is discussed. Following this, the second section focuses 

on Stage One and how layout designs are first defined and subsequently altered in pursuit 

of alternative, potentially superior, designs. In other words, an overview of the Stage One 

solution procedure is discussed. The third section is much like that of the second, the 

difference being that now the focus is on Stage Two. The composition of the second and 

third sections encompasses step two in the methodology. The fourth and final section 

details the models developed to evaluate the performance and feasibility of the layout 

designs established as a by-product of the procedures outlined in sections two and three. 

It is these models that can then be leveraged to make more informed decisions on the 

design of the layout. This provides a brief overview of the proceeding sections of this 

chapter and with that a more in-depth outline of the first section is provided. 

 Before though, a few terms require definition. For future reference when referring 

to a layout it implies a singular arrangement of the objects in the space. A layout design 

on the other hand refers more broadly to the compilation of layouts that form a series of 

object arrangements. The term layout design can be synonymous to that of the term 

layout in the case where such a series consists of only a singular period and thus layout. 



 113 

Now when referring to an environment this refers to a layout arrangement and the 

conditions it is subject to. These conditions include operational properties such as 

capacities, labor availability, production rates, processes, costs, etc. A system differs from 

an environment in that it is a compilation of the layout design as well as the operational 

properties across the entire planning horizon of the layout design. In other words, a 

system is a compilation of environments. Like before with the layout design, a system 

can be synonymous to that of an environment when the layout design consists of only a 

single arrangement of the objects. These subtle distinctions are important to understand 

before going forward. 

 Step 1: Problem Initialization 

Initialization of the problem is not only the first step in the methodology, but it is also one 

of the most critical. In the LIVE methodology, the initialization of the problem 

constitutes more than just establishing the unique scenarios (i.e. market and business 

model conditions) to run as was outlined before in the preceding chapter. It also 

constitutes establishing the approaches/methods to deploy during the solution procedures 

and further the definition of the optimization parameters, which directly impact the 

solution performance. Moreover, it also establishes the physical properties of the layout 

such as the objects present (stations and regions) and outer mold line (OML) of the layout 

in each of the scenarios. 

4.1.1 Defining the Structures of the Scenarios 

Before any of these inputs (properties, parameters, or conditions) can be defined for a 

scenario, the structure of each of the scenarios must first be established. In this LIVE 
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methodology, these inputs are all dependent on this structure. This structure is a 

composition of the planning horizon length, forecasting intervals to be leveraged, and the 

restructuring schedule to be examined in the scenario.  

4.1.1.1 Establishing the Planning Horizon 

First the planning horizon length and its segment composition are to be established by the 

designer. The segment composition is nothing more than the forecasting intervals. These 

intervals include both the frequency at which the designer desires to establish the 

forecasts of the market conditions, but also the timing of strategic business decisions 

relating to the production rates (i.e. when the production rates should change). This could 

be the result of a new machine and thus process-line or product added to the system or 

simply a desire to redistribute the production mix. Therefore, if a three-year horizon is to 

be analyzed in a yearly decomposition of the market condition forecasts and production 

rate decisions, then the horizon would be defined by a monthly scaled timeline 

resembling that provided below in Figure 13. 

 

Figure 13 – Example of a planning horizon 

4.1.1.2 Establishing the Restructuring Schedule 

In parallel to the planning horizon’s definition, the restructuring schedule to be examined 

in the scenario is also established. The restructuring schedule, as defined by the designer, 

Month 0
Current Conditions

Month 12
Forecasted Conditions

Month 24
Forecasted Conditions

Month 36
Forecasted Conditions



 115 

constitutes the specific timings for when restructuring of the layout design is to be 

performed. In addition to these prescribed restructures, any time in which a new or 

existing asset is added or removed from the environment, a restructuring must at least be 

considered. In other words, a restructuring must accompany such an event. The concept 

of a business model decision morphological matrix, outlined before, can be leveraged by 

the designer to appropriately define the scenario’s restructuring schedule given this logic. 

Like the planning horizon, the restructuring schedule is defined on a monthly scale. An 

example of a restructuring schedule whereby the designer requires for a restructure to 

occur in year two and that it is anticipated that a machine be purchased and added to the 

environment 6 months from now yields the restructuring schedule shown in Figure 14. 

Establishing the restructuring schedule also establishes the nature of the problem to then 

be solved. In this case, since two restructures are to occur, it establishes that a three 

period DLP is to then be solved in this scenario. 

 

Figure 14 – Example of a restructuring schedule 

4.1.1.3 Establishing the Scenario Structure 

Once the planning horizon and restructuring schedule have been defined for a specific 

scenario, the two are then joined to establish the unique points in time correlating to a 

restructuring, a condition forecast, business decision, or all three. Joining the two together 

then yields the scenario structure. Continuing the examples from before, the planning 

Month 0 
Current Layout 

Month 6 
Implement Machine 
Restructure Layout 

Month 24 
Restructure Layout 

Month 36 
End of Horizon 
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horizon and restructuring schedule when joined resembles that demonstrated in Figure 

15. Colors on the timeline have been added to distinguish the three distinct periods of the 

DLP. The first of these periods spans from the start to the 6th month point where the 

machine is to be implemented thereby requiring a restructure to occur, the second from 

month 6 to month 24 where just a prescribed restructuring is then to proceed, and finally 

the third period running from this 24th month point to the end of the horizon (i.e. 36 

months out). With the inclusion of the 6th month restructuring event, an additional 

forecast point for the conditions at this 6th month point must be defined by the designer. 

The simplest way to define the conditions at this extra forecasted point would be to use 

linear interpolation. As will be highlighted later, this aligns with the assumed behavior of 

these conditions across the forecast segments. 

 

Figure 15 – Example of a scenario structure 

Now with this scenario structure established the inputs are then able to be defined by the 

designer. The order in which these are then defined is not important in this 

implementation as they are independent of one another. The remainder of these scenario 

inputs will be presented in an order in which the author believes to be the most 

comprehensible and logical, however. 

4.1.2 Defining the Physical Properties of the Layout 

Month 0 
Current Conditions 

Month 6 
Forecasted Conditions 

Month 24 
Forecasted Conditions 

Month 36 
Forecasted Conditions 

Month 12 
Forecasted Conditions 

Period 1 Period 2 Period 3 
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Defining the physical properties of the layout is the first action following the 

establishment of the scenario structure. These properties include the OML of the layout, 

the relevant spacing properties, and the stations and regions composing the objects to be 

placed in the environment each period along with their associated properties. With a 

rectangular OML assumed in this dissertation, the OML is defined by its lower-left 

corner (defaulted to be 0, 0) and its upper-right corner (xmax, ymax). In addition to these, 

the walking and maintenance spacing for the boundaries of the space are defined. 

 The next task is to establish the objects present in each of the periods (i.e. 

restructuring segments; three in the earlier example). All the region and station objects 

implemented across the entire scenario set are to be established by the designer and 

imported in the form of csv files (one for the regions and one for the stations). It is from 

these collections that the specific regions (if any) and stations to be included in the 

current scenario can be selected from. For each period of the scenario the relevant regions 

and stations are defined by indexing the appropriate one in the imported datasets. These 

datasets encompass a variety of object specific properties including, but not limited to, 

their dimensions, maintenance spacing, and installation/uninstallation times when 

applicable. One may refer to Appendix C for a comprehensive list of these properties for 

each of the datasets. Once the necessary regions and stations for each of the periods of 

the scenario have been indexed, all the data provided in the datasets is automatically 

populated into data structures which can be easily referenced later when evaluating the 

performance of the layout designs and determining their feasibilities with the 

performance and constraint models. 
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 Now that the regions (if applicable) and stations have been indexed for each 

period, their placements are to be defined. The regions, by default are fixed in the space 

as they represent pillars, walls, or other inaccessible areas. As such, the designer must 

physically establish their positions in each period layout. Often, this will be as simple as 

defining the positions and orientation in one period and then copying them over to the 

other periods as these regions are likely to remain throughout the planning horizon. That 

is, unless it is expected that a structural pillar or wall will be removed, which as one can 

imagine, is unlikely. The stations on the other hand can have one of two distinctions. 

Stations can either be movable or fixed within the period layouts and they need not be 

one distinction throughout the horizon. For each period the indexed stations are labeled as 

one of these two distinctions. For those labeled as being fixed, they require their positions 

and orientations to be established. As for the movable objects, the designer can establish 

their initial position if desired, though it is not necessary. If evaluating an existing layout 

however, these initial placements are required in order to eventually evaluate the 

rearrangement costs in the first period as the layout would need to be rearranged from its 

existing state to the one of the first period. It is recommended that these initial placements 

be established with what is believed to be a good configuration since the solution 

algorithms implemented consider this initial provided one while searching for the best 

solution. 

 For each of the stations, additional data is also to be provided by the designer. 

Like before with the station and region datasets, another dataset is imported and provides 

a complete list of all personnel or potential personnel. The composition and format of this 

dataset is elaborated on in the Appendix C. Now for each of the stations, the relevant 
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number of workers manning those stations are assigned from this personnel list to the 

stations. This assignment also brings along their wage rates, whereby if there is more than 

one worker their average rates can be automatically established. These labor rates for 

each of the stations and number of workers manning the stations are later leveraged when 

computing direct production costs in the performance model. Additionally, the number of 

dedicated material handlers of each period must be defined by the designer. This will 

later be leveraged by the performance model to establish the material handler utilizations 

in the system. 

4.1.3 Defining the Market and Business Model Conditions 

Defining the market and business model conditions is the next step in the process of 

initializing the scenario problems. These conditions encapsulate a variety of inputs that 

will be later leveraged by the performance model to compute the manufacturing costs, 

revenues, and utilization levels of the system. These inputs have a range of different 

formats. These formats will be noted as the inputs are presented. 

4.1.3.1 Period-Based Conditions 

The first of these inputs to be defined by the designer is the processes present in the 

system, which is analogous to saying the products to be produced in each period. These 

processes or products are defined on a period-basis to account for the common 

occurrence of a restructuring being triggered by the inclusion of a new, or exclusion of an 

old, station (i.e. a machine for example) in the system.  With such an event, the processes 

present inherently change as any associated with this new or old station are then added or 

removed from the system respectively. First the designer is required to establish all 
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potential processes present in each period of the scenario. This entails establishing for 

each process its process flow. In other words, the ordered sequence of station objects that 

each product visits as it passes through the environment going from that of a raw input to 

a finished good. Once this collection of processes is established, the designer can then 

index the relevant processes to include in each period of the scenario.  

 The other two period-based inputs to be defined are the capital expenditures and 

budget constraints. The capital expenditures are defaulted to zero unless an event such as 

a new station is purchased in a specified period. In the case where a new station is 

purchased, the capital expenditure for the relevant period is established as the total cost to 

purchase and install the station. This is a positive value to match the definition of 

expenditures. If instead a station is removed from the space and say sold, its estimated 

salvage value would be recorded as a negative capital expenditure to indicate a gain as 

opposed to a capital loss. The budget constraint parameter is defined as a percentage of 

the previous period’s cash flow. Given that the first period does not have such a reference 

cash flow, an initial income flow must also be defined by the designer.  

4.1.3.2 Horizon-Based Conditions 

In addition to the period-based conditions, there are several conditions that are horizon-

based. Horizon-based here denotes the modified horizon that results from the union of the 

original horizon and restructuring schedule. In other words, the scenario structure of 

before. These conditions are defined across the entire horizon and as such at each of the 

unique event time stamps of the modified horizon, [0, 6, 12, 24, 36] in the example from 

earlier. This means that at each of these time stamps, the conditions are to be defined by 
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the designer. This data structure is where the nominal evolution of the conditions is 

captured. This is often where the scenarios will greatly deviate from one another 

assuming the designer desires to consider different conditions across the scenario set. 

Figure 16 below provides a graphical depiction of the production rate’s definition, by the 

designer, for the example scenario structure presented earlier.  

 

Figure 16 – Horizon-based condition definition example 

In this case, the standard deviation of the production rate condition has been 

overlaid to illustrate how the independent definition of these two conditions combines to 

define how the local uncertainty about the production rate is captured by the developed 

robustness model. The solid dark vertical lines indicate period, or evolution, boundaries 

while the dotted lines sandwiching the solid expected forecast line depict the 6σ ranges 

for the production rates. The other horizon-based conditions do not have such ranges as 

there are no standard deviations defined for them in the developed performance model. 

As demonstrated by the solid dots, at each of these forecasting points, expected values for 
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the conditions are prescribed by the designer, thereby defining the conditions across the 

entire horizon. The linear solid lines between the values depict how the production rate 

and all other conditions behave across the forecasting segments. In this research, it is 

assumed that, apart from a few conditions, the conditions behave linearly across the 

segments. This assumption was implemented to simplify the mathematical integration of 

these conditions across the horizon, which will be discussed when the performance model 

is presented later. The conditions being the exception to this assumption are the 

following: the labor cost adjustment factor, work days per week, and work hours per day. 

These conditions are assumed to be discrete across the segments where the value at the 

beginning of the segment defines the value across the segment.  

As for those conditions that do behave linearly, they also are defined on a 

product-basis. In other words, for each product-process included in the scenario and as 

defined before, the following conditions are to be defined by the designer across the 

entire horizon: the desired expected production rates, the coefficient of variations of the 

production rates (i.e. ratio of the standard deviations to the expected production rates), the 

setup rates (if applicable), the market value, the estimated total manufacturing cost, and 

the direct consumable cost of producing the product. Again, for each product present in 

the defined scenario, a forecast such as that depicted in Figure 16 is required. An 

explanation of each of these conditions, along with their unit definition can be found in 

Appendix C. Definition of the production rates in this fashion enables the designer to 

control not only the total production rates of the products, but also the relative mix of the 

products and moreover which products are to be produced. Additionally, it is worth 

noting that the production rates coefficient of variances establishes a core input of the 
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local robustness method to be highlighted later in this chapter while presenting the 

performance model developed in this research. 

There are also three additional conditions that are defined on a horizon-basis. 

These conditions however are defined on a station-basis as opposed to a product-basis. 

Moreover, these conditions are defined discretely across the segments, just like that of the 

work days, hours, and labor adjustment factors. These conditions include the fixed costs 

of installing a station, the cost of displacing a station by a unit distance, and the cost of a 

station’s support conduit. These conditions are to be later leveraged when establishing the 

costs of rearranging the layout. An explanation of each of these conditions can be found 

in Appendix C. 

4.1.3.3 Process-Based Conditions 

There are several process-based conditions that must also be defined by the designer for 

each scenario. These conditions are defined for each unique process present across the 

entire scenario (i.e. all periods). These conditions are decomposed into two types, those 

associated with the between-station segments of the process and those at the stations of 

the processes. The first type, those associated with the between-station segments, or 

handling segments of the processes, are defined on a segment-basis. For each segment in 

each process the following inputs require definition: the handler flow-rate capacity, 

average handler labor rate, number of handlers, and other per unit handling costs. As an 

example, if a process consists of a product visiting three stations, then two segments 

would need definition by the designer for the above input conditions.  
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As for the second type, those associated with the stations themselves, these are 

defined on a process-station-basis. These inputs include the following: the capacity of 

each station to produce each relevant product and the setup capacity of each station. 

Remember, these are defined on a unique process-basis which correlates to a specific 

product. As a result, the designer under this approach has the capability to define the 

setup capacity and station capacity more-or-less on a product-basis too. For a more 

expansive coverage of these conditions the reader can refer to Appendix C. 

With the designer’s definition of these process-based conditions, the market and 

business model condition inputs encapsulated in the LIVE methodology are complete. 

Moreover, the definition of the scenario itself is completed. Though it may seem like 

several inputs are required, most of these inputs should be able to be defined relatively 

easily by the designer. Many of the inputs are high level and easy to quantify by 

observing the system or the market. 

4.1.4 Analysis Parameter Definition 

Before the scenario problem can become completely defined, how the analysis of the 

system should be performed needs to be established by the designer. In the LIVE 

methodology, the designer has the choice of several different options pertaining to how 

the analyses of the performance and constraint models should be performed. Many of 

these enable the designer to consider additionally business-strategies while establishing 

the scenarios that will ultimately be leveraged to decide on the layout design to 

implement and moreover the operational approach. 
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 The first option available is whether to run an analysis of the system or an 

optimization for the defined scenario. As a designer it may be useful to analyse the 

baseline layout design for the expected conditions before running any sort of 

optimization. Perspective can be gained by doing so and moreover a baseline for 

comparison can be established. Insights on utilization levels and layout performance can 

also help inform the need for additional scenarios. As such, this option was implemented 

to provide the designer with this capability. It is also one that will be leveraged later in 

this dissertation during the experimentation. 

 In the case where the optimization mode is chosen by the designer, which is the 

default one for running the scenarios, the designer also has a choice as to whether to run 

the first optimization stage only, the first and second stages sequentially, or even the 

option to load already established Stage One results and then proceed to just run Stage 

Two. As will be observed later, it may be useful for a designer to only run Stage One to 

more quickly solve the set of scenarios and populate the design space.  

 The designer also has the option to select whether the analysis should assume an 

existing layout, whereby it must be restructured to achieve the first period layout, or if no 

such layout exists and a completely new facility is being designed. This option provides 

the designer with the ability to solve what the literature refers to as either a brown or 

green layout problem. 

 The LIVE methodology also provides the designer with the ability to consider 

different analysis methods and solution techniques. The first and most relevant one is the 

ability to define the material handling costs by either a traditional rectilinear or the novel 
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advanced flow distance method which will be covered later in this chapter. Moreover, the 

designer has the flexibility of prescribing which to deploy in both solution stages of the 

methodology. As such, the designer can choose to leverage the rectilinear approach in the 

first stage while employing the advanced method in the second stage. This combination 

also happens to be the default and moreover recommended as will be established later 

during the experimentation.  In addition to the option to deploy different MHCs methods, 

the designer may also choose how to handle budgetary and boundary constraint 

violations. These options will be elaborated on more when the developed constraint 

model is discussed. Lastly the designer also has the option of defining how the 

performance model should handle situations where the system cannot sustain the defined 

production rates of before. This option relates to how the developed model dynamically 

adjusts the production rates to account for this. This will too be elaborated on later when 

the performance model is presented. 

4.1.5 Optimization Parameter Definition 

The last of the inputs that requires definition by the designer are the optimization 

parameters. These include the parameters associated with the genetic algorithm of the 

first stage and the tri-population genetic algorithm of the second stage along with the fast-

simulated annealing algorithm implemented in the Stage One genetic algorithm to 

enhance its performance. Recommendations on how these parameters should be set is 

provided in a later chapter. Two experiments provide context on how to best establish 

these parameters under different problem characteristics and design choices. The full list 

of the optimization parameters can be found in Appendix C.  
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With the conditions for each scenario defined along with the analysis and 

optimization parameters, which will be used in solving each of the scenario problems, the 

next step in the methodology is to solve each of the scenario layout design problems as 

defined by the designer. The algorithms developed to achieve this solution and identify 

the best layout designs for each of the scenarios is presented next; starting with the first 

stage of the bi-model multi-stage approach developed in this dissertation. 

 Step 2: Solution Procedures of Stage One 

This section outlines the developed algorithms and methods of Stage One. It begins with 

a brief overview of the mathematical model leveraged in Stage One to represent the 

layouts, followed by an understanding of how the physical layout is established from this 

model’s data structure. The design variables of Stage One are then established followed 

by a detailed discussion on how the model’s data structure was exploited to improve how 

the solution procedure searches through combinations of these design variables such that 

feasible layout designs are identified more efficiently. This discussion details the novel 

feasible sequence-pair promoting method (FSPPM) and its construction. Lastly, an 

expansive discussion on how improved layout designs are sought and subsequently 

discovered through the manipulation of the design variables is presented. This more 

broadly encapsulates the GA solution procedure developed to solve the layout problem of 

Stage One. This discussion consists of the following: how the GA’s population is 

initialized by leveraging the novel FSPPM, how this population is then evolved through 

the employment of genetic operators tailored to the mathematical model employed, and 

lastly how FSA is implemented to provide improved solution performance. With the 

model chosen to mathematically define the layout being at the core of how all other 
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elements of Stage One were constructed, the mathematical model deployed in Stage One 

is first presented. 

4.2.1 Mathematical Representation of the Layout 

To represent the layout mathematically (i.e. establishing the position of the objects in the 

space) in Stage One, Tang et. al.’s Fast Sequence Pair (Fast-SP) QAP mathematical 

model is implemented [160,161]. As mentioned before in the background section of this 

dissertation, such a discrete representation of the layout can be leveraged in Stage One 

since the primary objective here is merely to adequately populate the initial populations 

of Stage Two’s GA solution procedure, rather than accurately capturing continuity in the 

layout. To follow, a brief outline of Tang’s Fast-SP model is presented, which highlights 

only the elements necessary for a fundamental understanding of the model deployed. 

These fundamentals will become important to understanding later derived methods, such 

as the FSPPM, employed in this research. For a more thorough expansion of the 

formulation, one may refer to [159-161].  

4.2.1.1 Mapping a Sequence Pair to a Physical Layout 

As mentioned in Section 2.2.1.2, the sequence-pair representation is a QAP formulation 

of the layout problem employing a meta-grid data structure. As the name implies, this 

data structure consists of a pair of sequences of n objects, with each representing a unique 

object to be placed in the space. The following encoding relationships are imposed upon 

this structure to establish the relative positioning of blocks to one another and ultimately 

their positions in the physical space: 
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(〈. . 𝑏𝑖. . 𝑏𝑗 . . 〉, 〈. . 𝑏𝑖. . 𝑏𝑗 . . 〉)

(〈. . 𝑏𝑗 . . 𝑏𝑖. . 〉, 〈. . 𝑏𝑖. . 𝑏𝑗 . . 〉)

→
→

𝑏𝑖 𝑖𝑠 𝑙𝑒𝑓𝑡 𝑜𝑓 𝑏𝑗
𝑏𝑖 𝑖𝑠 𝑏𝑒𝑙𝑜𝑤   𝑏𝑗

 (1) 

where the first bracketed sequence in the parenthesis denotes the positive sequence and 

the second, the negative sequence of the order-based sequence-pair ( 〈𝛤+〉 , 〈𝛤−〉 ). Such an 

encoding scheme in turn creates relationships among the objects that follow horizontal 

𝐺ℎ(𝑉, 𝐸) and vertical constraint graphs 𝐺𝑣(𝑉, 𝐸). As an example, construction of the 

horizontal constraint graph is as follows where (𝑉: vertex set, 𝐸: edge set): 

• 𝑉 = {𝑠ℎ} ∪ {𝑡ℎ} ∪ {𝑣𝑖|𝑖 = 1, … , 𝑛}, where 𝑣𝑖 corresponds to an object, 𝑠ℎ is 

the source node representing the left boundary and 𝑡ℎ is the sink node 

representing the right boundary  

• 𝐸 = {(𝑠ℎ, 𝑣𝑖)|𝑖 = 1,… , 𝑛} ∪ {𝑣𝑖, 𝑡ℎ|𝑖 = 1,… , 𝑛} ∪ {𝑣𝑖 , 𝑣𝑖| 𝑖 is left of 𝑗} 

where the weight of the vertex in the graph is equal to the width of the object 𝑖 for vertex 

𝑣𝑖, but zero for 𝑠ℎ and 𝑡ℎ. The vertical constraint graph can similarly be constructed, the 

only difference being the weight would instead be the height of the object rather than its 

width. Furthermore, both constraint graphs then become vertex weighted, directed, and 

acyclic in nature.  

As a result of this outcome of the constraint graphs, it can then be shown that the 

length of the longest path to each object node from the source in each of the constraint 

graphs defines the coordinate positions of the objects. It can further be shown that the 

weighted sequence-pair enables more efficient placement of the objects to be achieved by 

leveraging a longest common subsequence (LCS) algorithm [160,161]. The length of the 
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identified longest common subsequence of the SP in each dimension (i.e. x and y) then 

establishes the coordinate position of the objects. An example of this for the horizontal 

constraint graph is shown below in Figure 17. The oblique grid of the sequence pair 

(〈 4  3  1  6  2  5 〉, 〈 6  3  5  4  1  2 〉) is graphed in Figure 17 along with all possible 

common subsequence paths from the source node to the sink node. In this situation, the 

highlighted path 𝑠ℎ → 4 → 1 → 2 → 𝑡ℎ corresponds to the common subsequence 

〈 4  1  2 〉 of the sequence pair. Identifying the longest of these common subsequences 

enables the coordinate positions of each object to then be established for the provided 

sequence-pair. This process of identifying the LCS, and as a by-product the coordinate 

positions, is known in the literature as the placement algorithm.  

 

Figure 17 – Horizontal constraint graph with the path for the common subsequence 

〈𝟒 𝟏 𝟐 〉 of the SP = (〈 𝟒  𝟑  𝟏  𝟔  𝟐  𝟓 〉, 〈 𝟔  𝟑  𝟓  𝟒  𝟏  𝟐 〉) highlighted 

This approach to mapping a sequence-pair to a physical layout using LCS was 

first theorized and subsequently proved viable by [160,161]. Titled Fast-SP, Tang et. al.’s 

algorithm can determine the x and y coordinates of each object in the physical space in a 

literature best, O(n log log n) time. Furthermore, the Fast-SP algorithm, as they 
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formulated it, is capable of handling constraints such as boundaries and fixed placed 

objects in the space. It is for these reasons that Tang et. al.’s Fast-SP approach was 

deployed in this dissertation to establish the coordinate positions of each object in the 

space from that of its sequence-pair. For a detailed mathematical decomposition of Tang 

et. al.’s placement algorithm one may refer to [160,161]. A slightly modified version of 

their placement algorithm was deployed in this dissertation. The algorithm was adjusted 

to enable extra control of where the bottom-left stacking origin position was located. In 

Tang et. al.’s formulation they assumed this to be the absolute origin (0,0), whereas in the 

formulation of this dissertation it can be placed elsewhere if desired. Moreover, the 

widths and heights supplied to the algorithm were defined not as the physical boundaries 

of the objects, but instead as a boundary that accounts for additional spacing about them. 

These adjustments were made to implicitly account for spacing restrictions about objects 

as well as boundaries. The importance of the latter adjustment will be acknowledged later 

when the performance and constraint models of this dissertation are presented. 

4.2.1.2 Design Variables of Stage One 

Position Variables: 

With the coordinate positions established relative to a provided sequence-pair, the 

sequence-pair itself then becomes the positional design variable in this stage. It is then 

the sequence-pair itself that is manipulated by the optimizer in Stage One to perturb the 

design of the layout in pursuit of the best available design(s). Remember, the sequence-

pair is composed of two distinct sequences of length n, where n equals the number of 

objects in the space. Each object present in the layout constitutes two variables, one in 
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each sequence. Thus, the optimizer has control over a total of 2(n-1) position design 

variables, where the minus one is a result of the last object to be placed, having no choice 

but to be placed in the last remaining position in the sequence. As such, increasing the 

number of objects in the space effectively increases the number of design variables in a 

linear (slope of two) fashion. For example, adding one additional object increases the 

number of design variables by two (as anticipated), two objects increase it by four, three 

by six, and so on and so forth. Though the constrained objects have fixed positions in the 

space, positioning in the sequence-pair is defined on a relative-basis. Thus, the 

constrained object variables must too be controlled by the optimizer. Assurance that these 

constrained objects fall appropriately in the space is a task partially handled by the 

assignment of dummy blocks in the placement algorithm that act in artificially shifting 

such objects, when allowed, to their fixed position in the space and also by the posterior 

constraint evaluation, which will be discussed later in section three of this chapter where 

the modeling of these constraints are detailed. 

  In general, after the optimizer has manipulated the position variables of the 

sequence-pair, the placement algorithm can then be executed to establish the coordinate 

positions of the objects in the physical space. This process of manipulating the sequence-

pair and subsequent construction of the physical layout through the employment of the 

placement algorithm is notionally demonstrated in Figure 18 below. In this example, the 

two objects in the positive sequence-pair, highlighted red, are exchanged by the optimizer 

to produce the resulting sequence-pair shown to the right of the optimizer block in the 

figure. This effectively alters the oblique grid, though marginally as demonstrated. With 

the exchange occurring only in the positive sequence, the two objects exchange positions 
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in the upper-left to bottom-right diagonal direction while remaining on the same grid line 

in the bottom-left to upper-right direction. In turn, when the LCS is discovered by the 

placement algorithm for this new graph, the resulting placement of the objects in the 

physical space is that shown in the bottom right of the figure. In this scenario, by 

exchanging the two objects in only the positive sequence, it can now be observed that in 

both sequences the number five object precedes the number two object. From the 

established encoding relationships defined earlier, it is known that when this occurs, the 

object that comes first in both sequences is to the left of the other object. In this case, 

object five comes first, therefore this relationship establishes that object five is then left 

of object two. As demonstrated in the figure, this is the case as object two has shifted 

from atop object five to now being right of it in the physical space. 

 

Figure 18 – Notional example of altering the layout by sequence-pair manipulation 
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Orientation Variables: 

In addition to the optimizer in Stage One having control over the relative positions of the 

objects in the space through the manipulation of the layout’s sequence-pair, it also has 

control over the orientation of the objects. Further, since the orientations of the objects 

define their dimensions in the coordinate directions, the orientation of the objects must 

first be established before then deploying the placement algorithm detailed before. If 

rotated, the width and heights could be interchanged depending on the orientation of said 

objects. 

As for the orientation of the objects, each object has four distinct orientations 

under the formulation of this research. In addition to the default orientation, which 

corresponds to a rotation of zero, there is a 90-degree, a 180-degree, and finally a 270-

degree rotation of the object that is possible. To characterize these four possible 

orientations, each object has an orientation-pair, consisting of two binary variables, 

representing its physical orientation. Unlike that of the sequence-pair, the orientation-pair 

consists of variable pairs (two binary variables for each object) that are independent of 

one another. As such, objects whose orientations are constrained (i.e. constrained 

objects), need not be a concern of the optimizer’s. Therefore, though there are 2n 

orientation variables describing the orientations of the n objects, the true number of 

orientation variables controlled by the optimizer is equal to just twice the number of 

free/movable objects in the space. At most there could be 2n for the optimizer to control, 

this being the case where all objects are free/movable in the space. 
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An assumption of this formulation is that the I/O point of each object is assumed 

to be on the bottom edge of the object in its default 0-degree rotation state, as shown in 

the top-left illustration in Figure 19. As the object is rotated through the orientation 

variables, this point remains on this original edge. As such, each orientation is unique. 

For example, although the top-left orientation is identical to the bottom-right orientation 

in terms of its dimensions in each coordinate direction, the I/O points fall on opposite 

sides of the object. In the absence of including I/O points, only a single orientation 

variable would be sufficient in characterizing these orientations as the two diagonally 

opposite orientations would collapse into a single unique orientation. This is not the case 

in this formulation, thus why a pair of orientation variables for each object are required. 

How the I/O point positions and the object properties of height and width are derived 

from that of the design variables, one may refer to Appendix D. 

 

Figure 19 – Possible orientations of the objects and their corresponding orientation-

pairs 

 The sequence and orientation pairs collectively constitute the design variables of 

the Stage One optimization. Manipulation of these variables by the optimizer enables the 

layout to be altered in pursuit of alternative and ideally better performing layout 
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design(s). In total, and at most, there are 2n+2(n-1) variables that the optimizer must 

handle. An addition of any objects to the space increases the dimensionality of the 

problem linearly by a factor of four, though it could be by just two if these added objects 

are to be constrained in nature. This concludes the discussion of the design variables that 

define the layout design geometrically in Stage One. With that the discussion turns now 

towards how the optimizer can more frequently establish the sequence-pairs such that the 

resulting translated design is feasible from a constrained object placement perspective. 

4.2.1.3 The Difficulty of Identifying Feasible Sequence Pair Designs 

Traditionally when handling the sequence-pair formulation of the problem, unguided (i.e. 

random) search methods are employed to perturb the design (i.e. alter the sequence-pair). 

For example, Tang in his research uses a purely random placement method when 

generating neighboring sequence-pair designs [159]. What is most problematic with such 

approaches is that as the layout white space decreases, the number objects with fixed 

placements increases, and the total number of objects increases, these approaches start to 

labor in discovering the very limited number of feasible designs that are available. This in 

turn leads to them becoming extremely inefficient as will be demonstrated through 

experimentation presented later in this research. Again, this is intuitive as the procedure 

is effectively attempting to discover a few needles in a haystack while at the same time 

being blind folded. Without a systematic approach to more frequently identifying feasible 

sequence-pairs, such approaches lack an informed direction and therefore waste ample 

time searching without discovering. As a result, excessive search times are observed. 

Furthermore, failure to discover feasible designs efficiently can lead to subpar 

optimization performance, especially when subject to restrictions in run time.  
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It is for these reasons that an improved method of discovering feasible sequence-

pairs more effectively was originally sought. It was believed that a method, which could 

promote the discovery of feasible sequence-pairs more frequently, would both improve 

convergence properties (e.g. reduced search times) and optimality discovery. This belief 

was the root motivation behind the development of the Feasible Sequence-Pair Promoting 

Method, or FSPPM, to be outlined next. 

In the preceding section, placement of the objects in the physical space, from that 

of the sequence-pair, was discussed from a high-level perspective, intentionally avoiding 

the more mathematical details behind the process. The reverse process of mapping a 

physical layout to a sequence-pair is also important to understand, as in doing so one 

gains insight into how the Feasible Sequence-Pair Promoting Method, FSPPM, was 

derived. This process is detailed in Appendix B. 

4.2.2 A Novel Feasible Sequence-Pair Promoting Method 

To construct the Feasible Sequence-Pair Promoting Method (FSPPM), the outcomes of 

the gridding rules and preliminary observations outlined in Appendix B were leveraged. 

With the constrained objects in the space being one of the root causes which limits the 

number of sequences that are feasible, the FSPPM’s emphasis is on first assigning these 

objects to the SP before then placing the free, or movable, objects. Considering the 

observations cited in Appendix B regarding the placement of said constrained objects, a 

statistical distribution approach was adopted in order to establish the placement of each 

constrained object in the sequences of the SP. The question that needed answering was 

then, how were these placement distributions (i.e. expected values and variances) to be 
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defined for each constrained object? To answer this question, it was first assumed that 

said placement distributions would behave normally, an assumption supported by an 

earlier noted observation and one in which will be validated in a later experiment. A 

normal distribution avoids inducing any placement bias about the expected placement 

position in the sequences making it a favorable assumption. With the normal assumption 

in place, methods for defining the expected placement and variation about this expected 

placement were all that were then required to define said distributions. It is these 

distributions that will then be later leveraged to generate feasible sequence-pairs more 

efficiently.  

4.2.2.1 Establishing the Distribution Variations 

To define the variation about the expected placement, a global standard deviation 

parameter was implemented that would apply to all constrained objects in the space. This 

parameter is user defined and can be altered as desired, enabling the user to retain control 

over the diversity of the method. Prescribing a lower sigma value will force the 

distribution to be tighter about the expected value and therefore diminish diversity while 

a larger sigma will do just the opposite, instead promoting more diversity and 

exploration.  A recommended value for this sigma parameter will be provided later 

during the experimentation, which analyzes how to define this parameter appropriately. 

With the method for defining the variation of the distributions since established, the 

method developed for defining the expected placement positions of the constrained 

objects within the sequences is now outlined. 

4.2.2.2 Determining the Expected Placement of the Constrained Objects 
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The method developed for determining the expected placement positions of each of the 

constrained objects within the sequences leverages the observations and implication of 

the gridding rules highlighted in Appendix B. In light of these, it was concluded that the 

distribution’s expected value (i.e. expected placement position in the sequences) be a 

function of the constrained object’s normal distance to the appropriate bisecting diagonal 

of the physical space. Further, it was observed that this function should be structured such 

that as an object’s normal distance to the appropriate bisecting diagonal approaches that 

of the absolute corner normal distance, the probability of the object being placed at the 

associated end of the corresponding sequence becomes greater and vice versa. 

Additionally, placement in the negative sequence should be based upon the normal 

distance to the upper-left to bottom-right corner bisecting diagonal line where as the 

placement in the positive sequence should be relative to the bottom-left to upper-right 

bisecting diagonal line. This relationship is notionally demonstrated below in Figure 20, 

where SPP and SPN denote the positive and negative sequences of the SP respectively. 
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Figure 20 – Physical placement versus placement in the sequence-pair 

Now that the general behavior and characteristics of the expected placement 

function have been revisited, the actual method developed to emulate this behavior is 

discussed. The method for defining the expected placement position in the sequences 

leverages the user-prescribed coordinate centroid positions (established during the initial 

problem setup process) of the constrained objects as reference points for defining the 

normal distances for each object to the respective bisecting diagonals of the space. With 

the corner points of the space known (C0, C1, C2, C3), equations for the two bisecting 

diagonal lines can easily be formed as a function of these points. Then, the explicit 

equation for the distance between a line and a point can be leveraged to calculate the 

SPP

SPN
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normal distances. This equation can be generalized to be a function of the end and start 

points of the bisecting line (P, Q respectively) and the coordinated centroid position (R) 

of the constrained objects as demonstrated below in Equation (2). 

 
𝑁𝐷 = 

|(𝑄𝑥 − 𝑃𝑥)(𝑃𝑦 − 𝑅𝑦) − (𝑃𝑥 − 𝑅𝑥)(𝑄𝑦 − 𝑃𝑦)|

√(𝑄𝑥 − 𝑃𝑥)2 + (𝑄𝑦 − 𝑃𝑦)
2

 
(2) 

where P and Q would be set equal to C3 and C1 respectively when calculating the normal 

distance to the negative bisecting diagonal line and to C2 and C0 respectively when 

calculating the normal distance to the positive bisecting line. The definition of these 

corner points relative to the physical space is as follows: C0 is the bottom-left corner, C1 

the top-left, C2 the top-right, and C3 the bottom-right. 

With the normal distances from each constrained object’s centroid position to 

both diagonal lines of the space computed, yielding a total of 2Nf normal distances where 

Nf is the number of constrained objects present, the mostly likely to appear position of 

each object in the space from that of the two diagonals is effectively known. In order to 

transform these into expected placement positions in the sequence pairs, which are non-

dimensional ordered sequences, these dimensional distances needed to then be 

normalized and subsequently translated before the expected placement positions in the 

sequences can become known.  

Normalization of these distances is achieved by determining the normal distances 

from each bisecting diagonal to the two remaining and opposite corner points of the space 

(i.e. those two points not a part of the bisecting lines definition). For example, if 
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computing the negative bisecting diagonals corner point distances, the corner points of 

C2 and C0 would become the two opposite corner points and in turn the reference points 

used to compute the normal distances using Equation (2). Note, R would then become the 

corner points of the space rather than the constrained object centroid positions. Due to the 

nature of the rectangular space assumed in this research, these corner points are also 

effectively the maximum normal distances from the bisecting diagonals, in other words 

the absolute corner normal distances. Adding the normal distances on each side of the 

diagonals together then yields the maximum normal distance (MND) between the two 

corners. This maximum normal distance becomes the normalizing constant which 

reduces the constrained object normal distances found earlier to non-dimensional 

quantities. Before normalization can be performed though, the constrained object normal 

distances earlier need to be modified to align with the data structure of the sequence array 

variables. 

The sequences of the SP are arrays of gene positions ranging from 1 to N. For the 

negative sequence, the first gene position can be thought of as aligning with the bottom-

left corner of the space and the last with the top-right corner as notionally demonstrated 

in Figure 21 where the middle of the sequence array aligns with the negative bisecting 

diagonal line. This overlay is an accurate visualization of the conclusions made earlier 

regarding the relationship between the normal distances to the bisecting diagonal lines to 

that of the placement of the constrained objects in the sequences. For example, a 

constrained object placed in the top-right corner of the space would likely fall in the fifth 

position of the negative sequence, likewise objects falling about the negative bisecting 

diagonal line would be expected to appear in the second through fourth positions, i.e. 
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middle positions. Now with the first position of the negative sequence being 

representative of an object placed in the bottom-left corner (positive sequence being the 

top-left) of the physical space, the normal distance-based function needed to be anchored 

accordingly before normalization could be performed. 

 

Figure 21 – Placement in negative sequence relative to negative bisecting diagonal 

To anchor appropriately, the constrained object normal-distances computed prior 

are used to then compute the normal distances to the anchor points. The FSPPM 

determines this distance by using the normal distances to the bisecting diagonal lines, 

which are absolute values, along with a method of defining the direction the object is 

located relative to the diagonal line and combines it with half the maximum normal 

distances just found. The method of defining the direction the object is relative to the 

diagonal line leverages the sign function below (Equation (3)), which effectively 

produces a value of negative one when the object is placed on the side of the anchor point 

and a value of one when not.  

 𝑆 =  𝑠𝑖𝑔𝑛 ((𝑄𝑥 − 𝑃𝑥)(𝑅𝑦 − 𝑃𝑦) − (𝑄𝑦 − 𝑃𝑦)(𝑅𝑥 − 𝑃𝑥)) (3) 

Negative Sequence

Negative Bisecting Diagonal
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The reason for this sign function is such that when combining the constrained 

object normal distances with that of half the maximum normal distances, the constrained 

object normal distances would be appropriately added or subtracted from half the 

maximum normal distances thereby yielding the correct normal distances from the 

object’s centroid position to that of the anchor points. When the object is on the anchor 

side of the diagonal, the sign is negative and thus the normal distance would then be 

subtracted from half the maximum normal distance as it should be and vice versa. 

Conversion of the constrained object normal distances to that of the normal 

distances to the anchor point is done for two reasons. First, the normal distances now 

span from zero (when an object is constrained at the anchor point corner) to the 

maximum normal distance values (when an object is constrained at the opposite point of 

the anchor point, or anti-anchor point. The major advantage of this is that by then 

dividing the object normal distances to the anchor points by that of the respective 

maximum normal distances (i.e. normalization constants), the resulting quantities are 

then normalized normal distances (NND) that range from zero to one. The second reason 

is that objects constrained near the anchor or anti anchor point will yield a normalized 

normal distance of zero or one, meaning they would fall at the beginning or end of the 

range. As is understood from earlier, this is analogous to saying the beginning or end of 

the sequence which aligns with earlier observations. This conversion of the constrained 

object normal distances (ND) to that of the normalized normal distances (NND) is 

mathematically depict below in Equation (4). 
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 𝑁𝑁𝐷 =  
1
2
𝑀𝑁𝐷 + 𝑆 ∙ 𝑁𝐷

𝑀𝑁𝐷
 (4) 

where the appropriate MND and combination of S and ND are used for each constrained 

object and sequence. 

Before the expected placement positions of the constrained objects can be 

determined though, there remains one final step. The normalized normal distances, 

ranging from zero to one must be converted to range from one to N so as to align with the 

sequence data structure noted before. This is achieved with the equation shown below 

whereby the by-product is the expected placement position in the sequences. 

 𝜇 =  𝑁𝑁𝐷(𝑁 − 1) + 1 (5) 

Where (N-1) provides the span of positional values that make up the sequences and the 

+1 provides a shift such that the beginning of the range starts at one, i.e. at the first gene 

positions of the sequences. For each constrained object there are two NNDs, one for the 

positive and one for the negative sequence. This in turn yields a μ for both the positive 

and negative sequence. 

4.2.2.3 Defining the Placement Distributions 

Now that the expected value and variation of the constrained object placements in the 

sequences are known, the FSPPM generates normal distributions for each constrained 

object’s placement in both sequences of the SP.  These distributions are further modified 

by the FSPPM in order to improve its ability to generate feasible sequence-pairs more 
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frequently. After establishing the likelihood of placing each constrained object in each 

position of the two sequences, the placement probabilities are modified in two ways by 

the FSPPM when applicable.  

These modifications seek to emulate two prior observations. Both pertain and 

therefore are only applicable to, objects appearing at or near the absolute corners. In these 

scenarios, the expected position would fall at or near the ends of the appropriate 

sequence. When near, but not at the absolute corner, a portion of the distribution will 

extend beyond the bounds of the sequence-pair. In other words, given the provided 

expected value and variation, the object could have a 25% probability of placement 

outside the bounds of the sequence pair (i.e. below a position of 1 or above a position of 

N). Since this is infeasible, it is remedied by placing this 25% likelihood of placement 

then on the nearest feasible position (which would either be at the 1 position or the N 

position). This emulates the observation that the closer an object is to the absolute 

corners, the more likely it is to appear at the ends of the appropriate sequences. 

The second modification to the distributions relates to situations in which a 

constrained object falls at the absolute corners or the space. In this scenario, it was earlier 

observed that in the appropriate sequence, the constrained object would appear at the 

appropriate end of the sequence with 100% probability. For example, if a constrained 

object was positioned in the absolute bottom-left corner of the space, then it should 

appear at the beginning of the negative sequence 100% of the time. As such, for such 

constrained objects, the FSPPM further modifies the placement probabilities by placing 

100% of the probability in the appropriate end position (would be the first position of the 

negative sequence in the previous example).  
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4.2.2.4 Placing the Constrained Objects in the Sequences 

With these newly modified placement distributions at its disposal, the FSPPM can then 

place the constrained objects in the sequences. By placing said objects in the sequence 

first and moreover in positions within the sequences that they are more likely to appear 

in, there isn’t the chance that movable, or free, objects could occupy said positions. As a 

result, it has the expected advantage of enabling feasible sequence-pairs to be discovered 

more frequently. Once the constrained objects are placed only then are the movable, or 

free, objects assigned to the remaining sequence positions of the sequences. The process 

of fully generating a sequence-pair from scratch by leveraging the FSPPM will be 

outlined when the section on initializing the population for the hybrid GA implemented 

in this research is presented in a subsequent section. Provided that the computations are 

dependent on only properties known from the problem initialization step, it is important 

to note that the determination of the constrained object placement distributions can be 

performed directly following the problem initialization and more importantly prior to 

performing an exhaustive search of the design space using the hybrid GA. This saves 

substantial computational effort whereby the distributions can be computed once upfront 

rather than having to be continually computed each time a new sequence-pair is to be 

formed. This concludes the discussion on how the mathematical model’s data structure 

was exploited to construct the FSPPM with the goal of improving how the GA solution 

procedure eventually searches through combinations of the sequence-pair and orientation 

design variables such that feasible layout designs are identified more efficiently. 

4.2.3 Architecture of the Implemented Hybrid Genetic Algorithm 
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Until now the focus has been on discussing how the sequence-pair is converted into a 

physical layout design and further how the sequence-pair data structure was exploited to 

construct the FSPPM, which can form these sequence-pairs with a greatly likelihood of 

them being feasible once converted to a physical layout design.  Attention is now turned 

towards how these feasible sequence and orientation-pairs, i.e. designs, are formed by 

leveraging the FSPPM and further evolved to discover the most optimal design. In this 

research and as was noted in the previous chapter, a hybrid GA was implemented in 

Stage One to achieve this search for optimality. 

The goal of the implemented hybrid GA solution procedure of Stage One, and any 

GA, is to form and search for new and feasible designs in the pursuit of more optimal, or 

in other words, superior performing designs. The sections that follow outline the 

procedures developed to initialize the population, subsequently evolve the population, 

and finally identify the most optimal solution, i.e. design. Before diving into each of these 

phases that compose the hybrid GA developed, the general process flow of the hybrid GA 

of this research is presented. 

 As is the case with any GA, the first phase in the GA is to initialize the 

population, or put alternatively, populate the initial population that will then be evolved. 

In the hybrid GA of Stage One the same is true. The FSPPM method is leveraged to 

better generate an initial population that is rich with feasible designs. Once the initial 

population is generated, the population is evolved through an evolutionary process. The 

developed evolutionary process deploys three genetic operators to evolve the designs of 

the population. To further improve the performance of the evolutionary process and GA, 

a fast-simulated annealing (FSA) technique was implemented. The FSA is applied to the 
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fittest design in the evolved population to further alter it in the pursuit of further 

improvement of the design. It is the implementation of the FSA that makes the GA a then 

hybrid GA. Once the FSA is applied, the final phase in the developed hybrid GA 

involved establishing the presence of convergence. This phase considers time constraints, 

generational limits, and solution improvement to establish the state of convergence. 

When a state of convergence has been met, the process of evolving the population from 

one generation to the next is terminated and the current best solution is then identified as 

the “optimal” solution. Now that a high-level understanding of the developed hybrid 

GA’s sequence of events has been provided, each of these three phases will be elaborated 

on in more detail. 

 

Figure 22 – Stage One genetic algorithm solution procedure 

4.2.4 Initializing the Population 

The first phase of the hybrid GA is to generate an initial population. Provided that the 

process of discovering the best solution via the hybrid GA originates from this initial 
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population, it is imperative that it be populated with designs that will best enable the 

implemented hybrid GA to perform well. As a reminder, the importance of populating 

this initial population to the GA’s performance was well established in the background 

section of this document. It was identified that the characteristics of this initial population 

can have a substantial impact on the performance of the GA. The most important 

characteristics cited were diversity and optimality. For this application a third, in that of 

feasibility, was also important to consider. As such, the method implemented to populate 

the initial population, for the Stage One hybrid GA, sought to balance simultaneously the 

diversity, optimality, and feasibility of the designs comprising this initial population.  

To achieve this, the method developed leverages the FSPPM discussed earlier, 

random assignment techniques, and other measures to ensure this balance. The 

implemented process for generating this population consists of two segments. The first 

segment attempts to populate a user-defined percentage of the population with only 

feasible designs (those abiding by the spatial constraints, constrained placement 

constraints, among others) given a time restriction. The time restriction was implemented 

to avoid situations where an excessive, and potentially endless, amount of time could be 

spent in the population initialization phase of the hybrid GA process. This was 

implemented after observation of such situations during experimentation.  

The second segment then populates the remainder of the population with designs 

that may or may not be feasible. In this segment the FSPPM is still leveraged; however, 

instead of requiring that the design be feasible in order to be assigned to the population, 

any design feasible or not is allowed. This effectively results in the first p designs being 

placed into the population, where p is the number of designs remaining to be assigned to 
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the population following the first phase. Some of these designs may be feasible by 

chance, but there is no guarantee. Under conditions where the space is highly constrained, 

a large portion of these designs are likely not to be feasible. While the first segment 

ensures enough feasibility in the initial population, the second ensures diversity. 

 Now, regardless of the segment, a method for generating designs that could then 

be considered for assignment to the initial population was required. Up until this point, it 

has only ever been noted that the FSPPM was leveraged to generate said designs. How 

the FSPPM is leveraged in this research to generate new sequence-pairs is now finally 

discussed. Additionally, how the orientation-pairs are generated by the developed method 

to completely form a new design is also examined. 

4.2.4.1 Generating Sequence and Orientation-Pair Designs 

The method developed to generate a new design leverages the placement distributions 

generated by the FSPPM to establish the sequence-pair portion of the design’s definition 

while the orientation-pair is established more generically using a simple random 

assignment technique. The method deployed for assigning the objects to the sequence and 

orientation-pair design variables is as follows: 

1) First, a random sampling method is used to assign the constrained objects to 

the sequences of the sequence-pair using the placement distributions 

generated by the FSPPM, which establishes the probability of placement at 

each of the positions in the sequences 
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2) Then, the remaining sequence positions, or gene positions, are filled randomly 

with the movable objects 

3) Lastly, the sequences of the orientation-pair are generated by random binary 

sequence generation 

The usage of the FSPPM method to assign the constrained objects to the 

sequence-pair has the benefit of improving the discovery of feasible sequence-pairs 

thereby helping to sufficiently populate the initial population with feasible designs. At the 

same time, the random assignment of the movable objects and the binary sequences 

comprising the orientation-pair has the advantage of promoting diversity within the 

population. This concludes the discussion of how the initial population of the hybrid GA 

is generated and further how the FSPPM was leveraged to do so. 

4.2.5 The Evolutionary Process of Stage One 

Once the initial population has been formed, the developed hybrid GA then progresses 

into its evolutionary process, also often referred to in the literature as the generational 

loop. This generational loop constitutes the second phase in the developed GA process 

outlined earlier. In this phase, the initial population is evolved using several genetic 

operators. Given that the designs of Stage One are represented by a sequence and 

orientation-pair where the former is order-based, the genetic operators deployed needed 

to be designed to accommodate this chromosome representation, or data structure. 

 The evolutionary process of the developed Stage One GA consists of a sequence 

of six operations. Five of these operations are genetic operators, while the sixth is the 
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FSA technique noted earlier. Of the five genetic operators, two are selection while the 

remaining three are variation operators. The sequence of operations comprising the 

evolutionary process begins with first the execution of an elitism selection operator. 

Inclusion of this operator is meant to provide global generational selection, by 

transferring, unaltered, a specified number of the fittest designs from the previous 

generation to the current one.  

Following the execution of the elitism operator the reproductive process begins. 

This process consists of the remaining operators (one selection and three variation 

operators) and continues until the next generation has been fully populated. First in the 

process the reproduction selection operator is executed whereby parent designs (i.e. sets 

of sequence and orientation-pairs) from the previous generation’s population are selected 

for evolution via the variation operators. With parent designs selected a novel adaptation 

of the jumping gene operator is first applied to these designs to alter their compositions. 

Once applied these altered parent designs are then further modified via the more 

traditional GA variation operators of crossover and mutation. Not always are all three of 

these variation operators applied to the parent designs. Sometimes just one will be 

applied while other times two or all three may be applied. Each has a user-defined 

probability of occurrence. A study regarding how these probabilities should be prescribed 

will be presented later. Once the variation operators have or have not been applied, the 

new designs are evaluated for their feasibility and performance, both of which will be 

discussed in detail later. Designs that satisfy the feasibility property, i.e. constraints of the 

problem, are added to the current generation’s population. This reproductive process 

continues until the generation is fully populated of feasible designs. 
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Once the reproductive process finishes the developed GA applies FSA to the 

fittest, i.e. best performing, design of the current population. After this fittest design has 

been potentially further improved by the FSA technique and then placed back in the 

current population, the evolutionary process for the current generation ends only to be 

repeated in the following generation. This complete sequence of operations comprising 

the implemented evolutionary process is depicted visually in Figure 23 below. Each of 

these operations and their applications to the problem considered in this dissertation are 

now detailed in ordered succession. 

            

Figure 23 – Evolutionary process of the Stage One genetic algorithm 

4.2.5.1 Elitism Operator 

As mentioned before in the background, the elitism operator’s primary function is to 

ensure the best individual(s) survive from one generation to the next. Since De Jong’s 

(1975) original introduction of elitism, others such as Mitchell (1999) have established its 

ability to improve the GA’s performance [126,127]. It is for this reason it was included in 
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the developed hybrid GA of Stage One. As discussed and established in Table 5 of the 

preceding chapter, and represented in Table 6 below, to employ the elitism concept, Liu 

and Meller’s k best pair-wise exchange heuristic approach applied to the SLP was 

adapted to the DLP for use in the Stage One GA’s evolutionary process. 

Table 6 – Stage One implemented genetic reproduction strategies 

 Model 

QAP/U-SP 

Selection 

Operators 

Selection: 

Liu and Meller’s / Ulutas and 

Islier's roulette wheel selection 

[115,167] 

Elitism: 

Liu and Meller's k best with 

revised improvement heuristics 

[115] 

Variation 

Operators 

Crossover: 

Liu and Meller's modified 

uniform operator adapted to the 

DLP structure [115] 

Mutation: 

Liu and Meller's mutation 

operator adapted to the DLP 

structure [115] 

Jumping Gene: 

Ripon et al.'s cut and paste and 

copy paste operations adapted 

[143] 

4.2.5.1.1 Elitism Process 

Liu and Meller’s elitism operator initiates by first selecting the k best individual(s) from 

the previous generation (if the first generation, then these come from the initial 

population) before then applying the pair-wise exchange improvement heuristic to the 
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best individual of these k individual(s). This potentially improved best individual and the 

other k-1 best individual(s) are then copied to the next generation [74]. The elitism 

operator deployed in this research mirrors this process employed by Liu and Meller. The 

difference between it and Liu and Meller’s lies in how the pair-wise exchange heuristic 

proceeds in improving the most fit individual. 

4.2.5.1.2 Pair-wise Exchange Improvement Heuristic 

Liu and Meller’s approach was originally applied to the SLP and as such utilized a gene-

based pair-wise exchange improvement heuristic. After attempting all possible 

exchanges, the most improved of these becomes the basis for which all possible 

exchanges are then again considered, constituting yet another pass of the exchange 

procedure. This process continues until no further improvement of the design is 

discovered. Adopting this same approach to the DLP requires significantly more 

overhead however, as gene-based exchanges would then need to be performed across 

each of the P periods comprising the DLP. The number of exchanges required given a 

DLP of D departments and P periods is equivalent to the equation provided in the second 

column of Table 7 for the exchange method labeled “Liu and Meller’s.” With this 

number becoming exponentially larger as the number of periods, P, increases, an 

alternative approach was required given the potential overhead associated with evaluating 

each of the designs yielded by these exchanges. 

To adapt this procedure, several alternative exchange methods were considered. 

Option one being, to perform gene-based pair-wise exchanges on each of the periods 

independently. This approach reduced the number of exchanges from scaling 
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exponentially with the number of periods to scaling just linearly. Although a noticeable 

improvement in comparison to Liu and Meller’s approach the number of required 

exchanges to be evaluated remains quite high, however. The second alternative, option 

two, was to perform gene-based pair-wise exchange on a period selected randomly or 

based on each period’s proportional contribution to the cost function with the larger 

contributor being selected. This exchange approach effectively reduces the application of 

the operator to that of an SLP thereby matching the number or required exchanges Liu 

and Meller’s original formulation had to perform for the SLP they considered.  

The latter selection process has the advantage of focusing efforts where they are 

most needed making it the preferred of the two variants noted thus far. This focus is also 

its major drawback. Such a focus can prevent it from providing global improvement of 

the design. This leads to the last option, option three, which attempts to provide more 

global improvement of the design compared to option two. Option three was to perform a 

period-based pair-wise exchange procedure. Operating on a period-basis effectively 

interchanges the D’s in option two’s equation with P’s. Since it is more likely for the 

period count, typically five, to be fewer than the department count, this approach further 

reduces the overhead associated with the elitism operator. This approach is independent 

of department count size which is advantageous at it will not scale as the problem size 

increases in this dimension, which is more likely to be the case. Although better at more 

effectively improving the design in a cross-period global sense compared to option two, it 

lacks the ability to improve the design beyond that of the period level and is therefore 

limited in that sense. 
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Table 7 – Overhead of elitism exchange approaches 

Exchange Approach Number of Exchanges 

Nominal Example: 

Exchanges 

Nominal Example: 

CPU Time (s) 

Liu and Meller’s (
𝐷(𝐷 − 1)

2
)

𝑃

 > 184.5 million > 1.8 million 

Option 1 
𝐷(𝐷 − 1)𝑃

2
 225 2.25 

Option 2 
𝐷(𝐷 − 1)

2
 45 0.45 

Option 3 
𝑃(𝑃 − 1)

2
 10 0.1 

For a notional example of five periods and ten departments, a relatively small 

sized problem, the number of exchanges required at each pass of the various exchange 

heuristics are provided in column three of Table 7. Additionally, assuming evaluation of 

an exchange takes one thousandth of a second, the total CPU overhead that would result 

is provided in column four. As can be observed, Liu and Meller’s approach would be 

intractable and therefore impractical to implement. Option one is far more reasonable, 

however, with more than one exchange pass procedure being required and further this 

operator being executed at each generation of the GA, even it would be impractical to 

implement. Ultimately, a procedure employing the combination of both options two and 

three was deployed. Combining the two enabled the superior global improvement of 

option three to be leveraged while also retaining option two’s ability to improve the 

design where improvement was most needed. The process for the exchange improvement 

heuristic deployed in this research for Stage One is as follows: 
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1) The basis is set to be the best individual of the k best individual(s) 

2) A pass of period-based pair-wise exchanges is first performed with the basis 

as the baseline individual, accepting the exchange with the most improvement 

3) The basis is then set to be this newly accepted individual 

4) Steps 2-3 are repeated until no further improvement is identified 

5) Using the result of Steps 1-4, the basis is set to be this resulting individual 

6) The period that contributes most significantly to the cost function is then 

determined 

7) A pass of gene-based pair-wise exchanges on this period with the basis as the 

baseline individual is performed, accepting the exchange with the most 

improvement 

8) The basis is then set to be this newly accepted individual 

9) Steps 7-8 are repeated until no further improvement is identified 

The resulting improved design of this pair-wise exchange improvement heuristic 

procedure then replaces the original best design of the k best individual(s) as noted 

before. This completes the discussion of the developed process employed by the elitism 

operator of this research for the Stage One’s GA. Following this operator, the 

evolutionary process enters the genetic reproductive cycle, or reproduction process as 

established before. 
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4.2.5.2 Selection Operator 

In the evolutionary process flow, the reproduction process follows the elitism operator 

and within this reproduction process the selection operator initiates the reproduction 

cycle. The selection operator’s function is to select the individuals from the population 

generated in the previous generation that will then become parents for genetic 

reproductive purposes. As established before and presented in Table 6, Liu and Meller’s, 

and similarly Ulutas and Islier's, roulette wheel proportionate selection technique 

employing linear scaling was deployed in this research to select the parents for 

reproduction. The method deployed to perform the selection process is as follows:  

1) With the population established by the preceding generation as the basis, the 

best performing design from this population is identified and its fitness value, 

i.e. objective function, retrieved 

2) The fitness values of the basis population’s designs are then linearly scaled by 

subtracting each design’s fitness value from that of the best performing 

design’s fitness value identified in Step 1 

3) Next, the summation of all the designs scaled fitness values is obtained 

4) Then, using this summation, each scaled fitness value is divided by it in order 

to establish each design’s likelihood of selection via a roulette wheel approach 

The preceding portion of the selection process is executed once each generation and just 

prior to the reproductive process outlined before. This is to avoid unnecessary and 

redundant executions of these computations each time new parents are to be selected 
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within the reproductive process loop. The second portion of the selection process, and 

one that is executed each time at the start of the reproductive process, leverages the 

probabilities established in Step 4 above to then deploy the roulette wheel selection 

process to select two new parents from the basis population (i.e. previous generation’s 

population). This selection is achieved by randomly selecting two parents from the basis 

population according to the probabilities of selection established in Step 4. Those designs 

of the basis population with superior performance characteristics (i.e. a higher fitness 

value), have a higher probability of selection and vice versa. 

4.2.5.3 Jumping Gene Operator 

With two parents selected for reproduction, the reproduction process continues with the 

deployment of a jumping gene operator (JGO) before then deploying the more 

conventional genetic operators of crossover and mutation. The JGO is executed with a 

user-defined probability. In other words, it may not always be applied to the parents to 

promote evolution.  

Since McClintock’s first observation of the jumping gene phenomenon in nature, 

researchers, having observed its usefulness in promoting diversity and population 

evolution, have constructed GA operations that emulate this phenomenon. Its promotion 

of genetic diversity and evolution of the population through the horizontal transmission, 

in addition to the conventional GA’s vertical transmission, of genes amongst two parents 

[94] enables a larger portion of the design space to be searched within a single 

generation. This in turn improves the evolution of the population and therefore 
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performance of the GA. It is for this reason that the jumping gene operator was 

implemented in this research. 

4.2.5.3.1 Jumping Gene Process 

To emulate the jumping gene behavior, Ripon et. al.’s JGO applied to the QAP/S DLP 

was adapted to the QAP/U-SP formulated DLP subject to evolutionary changes in 

genome length (i.e. unequal number of objects present from one period to the next or put 

alternatively a scenario involving the introduction of a new asset into the environment). 

Ripon et. al.’s operator employs two jumping gene operations, cut and paste and copy 

and paste, both of whose concepts are adopted in this research for deployment in the 

Stage One GA. The general execution process is also adopted directly from Ripon et. al. 

and deployed as follows: 

1) A copy and paste or cut and paste operation is randomly selected to be 

executed 

2) The appropriate variant of the chosen operation, based on the parents selected 

for reproduction by the selection operator process, is then performed 

As indicated in step two, two variants exist for each operation. One of these variants is 

employed if by chance the two parents selected are identical to one another, while the 

other is employed when the parents are found to be different from one another. 
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4.2.5.3.2 Assumptions 

Before elaborating on the deployed operations, a few overarching assumptions and 

terminologies first need to be presented. The assumptions that govern the behaviour of 

the redeveloped operations of this work are synonymous to those presented by Ripon et. 

al., but with the first assumption having a subtle difference in wording to account for the 

potential evolutionary changes that are unique to the problem of this research. The 

assumptions are as follows: 

1) A single transposon represents a single period 

2) Transpositions can be made within the same chromosome (i.e. parent 

individual) or a different one AND can be more than one period in length 

3) Transposition inserting positions are restricted to the starting gene of the 

period genome, genome being the collection of genes that make up a design 

Assumptions (1) and (3) combine to result in the cut and copy operations working on a 

period-genome-basis not a gene-basis. In other words, period layout designs are swapped, 

shifted, etc. as a whole. This is an important concept to understand going forward. 

Furthermore, in presenting the operations, the format will look much the same as 

Ripon et. al.’s formulation; however, there is one important difference. Unlike that of 

Ripon et. al.’s formulation, which was applied to the QAP/S formulation of the DLP, the 

letters presented in the diagrams represent sequences of both position pairs and 

orientation pairs (i.e. design variables) that define the layout design of that given 

evolution (cell). For complete understanding going forward, the first cell of the string of 
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cells (i.e. a chromosome) is equivalent to the first evolution, the second cell equivalent to 

the second evolution, and so on and so forth. Similarly, the letters in the cells represent 

the sequences of both position and orientation-pairs defining the layout design, which is 

also referred to as a genome, and as defined in their origin chromosome. The latter will 

become clearer as examples of the individual operations composing the deployed JGO 

are demonstrated. 

4.2.5.3.3 Cut and Paste Transposition Process 

The following section details the cut and paste transposition operations implemented in 

this research. These processes are performed only when the cut and paste operation has 

been selected by the jumping gene process to provide variation. 

Same Chromosome: 

In the scenario when the selected parents are identical, the following process is performed 

to just one of the chromosomes: 

1) First, the transposon length, whose max length can be up to T-1, where T is 

the number of period evolutions for the problem, is randomly selected 

2) Then, a collection of sequential evolutions in the chromosome are randomly 

selected to represent this transposon 

3) Next, an insertion position not encapsulated by the collection (choosing one 

within the collection will just reinsert the transposon in the same position it 

was originally, resulting in no alteration) is randomly selected 
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4) Then, the transposon is removed from the chromosome and the genomes 

between the transposon and the insertion position are shifted accordingly to 

fill the created gap made by the removed transposon 

5) Finally, the transposon is inserted into the chosen insertion position 

This altered chromosome, along with the other unaltered parent chromosome, then 

become the new parents. These new parents are those then used by subsequent genetic 

operators (i.e. crossover and mutation) to provide genetic variation within the population. 

Figure 24 below demonstrates the above process for a chromosome consisting of 

seven periods, labeled a through g. In this example the transposon length was randomly 

chosen to be of length two and consisting of the sequential evolutions starting with d. In 

other words, evolutions d and e, as demonstrated in the first string of cells labeled PRT1 

and denoting parent one, became the transposon. Next, the insertion point was randomly 

chosen to fall between evolutions a and b, but could have alternatively been chosen as 

preceding a, between b and c, between f and g, or following g. It could not however, have 

been chosen to be between c and d, between d and e, or between e and f, as it would 

result in no alteration as one can intuitively visualize. Then the transposon (d and e) is 

removed from the chromosome. To fill the gap created between it and the insertion point, 

the designs of b and c are shifted to the right by the transposon length (two here and 

coincidentally into the d and e design’s original position). If the insertion point were to lie 

right of the transposon, then the shift would occur in a leftward or upstream direction. 

Finally, the newly formed gap created by the shifted designs by inserting the transposon d 

and e as demonstrated by the brackets and arrow from PRT1 to PRT2 below is filled in. 
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The result of this is the altered parent, now defined as PRT 2. PRT 1 would then just be 

the original chromosome, or in other words the other identical parent of the pair selected 

by the selection operator. 

 

Figure 24 – Cut and paste transposition process for identical parent chromosomes 

Different Chromosomes: 

In the scenario where the selected parents are different from one another, the process is 

much the same as that described before, the major difference being that it operates across 

two parent chromosomes. The process is as follows: 

1) Like before, the transposon length, whose max length can be up to T-1, where 

T is the number of period evolutions for the problem, is randomly selected 

2) Then, a collection of sequential evolutions in each parent chromosome are 

selected randomly to represent the transposons 
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3) Next, insertion positions, not encapsulated by the respective collections in 

each chromosome (the preceding insertion point is acceptable though here), 

are randomly selected 

4) Then the transposons from each chromosome are removed the genomes 

between the transposons and insertion positions of each chromosome are filled 

accordingly to fill the gaps created by the removed transposons 

5) Finally, for each, the transposon of the other chromosome is inserted into its 

own insertion position 

Just as before, these altered chromosomes become the new parents for future genetic 

operators to operate upon. 

 The figure below demonstrates the above process for the same problem as before. 

Note that here each evolution of the two parents has their own unique letter identifier, 

PRT1 spanning from a to g and PRT2 spanning from t to z. In this example, once again a 

transposon length of two was coincidentally chosen. Collections of b and c in PRT1 and v 

and w in PRT2 were chosen as well as insertion points preceding f and following z in 

PRT1 and PRT2 respectively. Here the insertion points are right of the transposons in 

each chromosome so the designs between the transposons and the insertion points are 

shifted leftward, or upstream, as was revealed in the previous example. In PRT1, d and e 

shift into the original positions of the transposon designs of b and c whereas in PRT2 x, 

y, and z all shift to the left by two evolutions, with x and y replacing the original 

transposon designs v and w. Then as the arrows demonstrate, the transposon from PRT1, 

b and c, is inserted into the insertion point of PRT2, following the shifted z design. 
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Likewise, the transposon of PRT2, v and w, is inserted into the insertion point of PRT1, 

that being preceding f. These altered parents then become the new parents going forward.  

 

Figure 25 – Cut and paste transposition process for different parent chromosomes 
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The following section details the copy and paste transposition operations deployed in this 

research. These processes are performed when the copy and paste operation has been 

selected, over that of the previously detailed cut and paste operation, to provide variation. 

Same Chromosome: 

In the scenario where the selected parents are identical, the following process is 

performed to just one of the chromosomes: 

1) Same as before, the transposon length, whose max length can be up to T-1, 

where T is the number of period evolutions for the problem is randomly 

selected 

PRT1: a b c d e f g

PRT2: t u v w x y z

P1 Transposon

P2 Transposon

Shift

Insertion Point

Before After

PRT1: a d e v w f g

PRT2: t u x y z b c

P2 Pasted Transposon

P1 Pasted Transposon
Insertion Point

Shift
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2) Then, the collection of sequential evolutions in the chromosome, that will 

represent the transposon, is selected randomly 

3) Next, an insertion position in the chromosome that is not exactly encapsulated 

by the collection (choosing one within the collection will just reinsert the 

transposon in the same position it was originally, resulting in no alteration) is 

selected at random 

4) Finally, the transposon is inserted at the insertion position, overwriting those 

genomes (or designs) and maintaining the transposon at its original location 

unless otherwise overwritten as part of the pasted transposon 

The resulting altered chromosome and the original then become the new parents for use 

by future genetic operators. 

 The figure below, Figure 26, demonstrates the above process visually. Since the 

first few steps remain the same as those detailed in previous explained examples, to avoid 

redundancy they will not be restated here. In this example f and g were chosen as the 

transposon of length two and the insertion point as preceding genome b. The last step is 

then to paste this chromosome into the insertion point as demonstrated, overwriting the b 

and c genomes (i.e. those designs for evolutions two and three) with f and g genomes 

while retaining the f and g genomes in their original locations. In this example, this is 

analogous to saying that after pasting, evolutions two and six have the same layout design 

and so too do evolutions three and seven. This PRT2 along with the unaltered (i.e. other 

identical parent) chromosome become the new parents going forward.  
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Figure 26 – Copy and paste transposition process for identical parent chromosome 

Different Chromosomes: 

In the scenario where the selected parents are different from one another, the process is 

much the same as that described before, the major difference being that it pastes the 

transposon of one parent into the second. The process is as follows: 

1) Again, the transposon length, whose max length can be up to T-1, where T is 

the number of period evolutions for the problem, is randomly selected 

2) Then, it is randomly selected from which of the two chromosomes the 

transposon will be taken from 

3) Next, the collection of sequential evolutions in the selected chromosome 

identified in the previous step is randomly selected to represent the transposon 

4) Now, the insertion position in the other chromosome (no restriction on those 

points not encapsulated by the transposon as pasting in the same position, but 

in the other chromosome will still result in alteration) is selected at random 

PRT1: a b c d e f g

PRT2: a f g d e f g
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5) Finally, the transposon is inserted at this insertion position overwriting those 

genomes while leaving the transposon derived chromosome unaltered 

These two chromosomes then become the new parents going forward just like before. 

 The above process is demonstrated visually in Figure 27 for the same example 

problem defined several times before. Here the transposon was chosen once more to be of 

length two and moreover to be taken from PRT1. The insertion point was also chosen to 

be preceding x (i.e. evolution five) in PRT2. As demonstrated the transposon consisting 

of b and c was copied to that of PRT2 replacing x and y. In this situation, PRT2 now has 

the layout designs of evolutions two and three from PRT 1 in its (PRT 2) evolutions five 

and six, while its other evolutions remain unaltered. This chromosome (altered PRT2), 

along with the unaltered chromosome (PRT1) become the new parents going forward. 

 

Figure 27 – Copy and paste transposition process for different parent chromosomes 

4.2.5.3.5 Genome Repair Process 

Under the problem formulation originally solved by Ripon et. al., the above processes, 

which have been adapted to the QAP/U-SP formulation, would alone suffice. In Ripon et. 
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al.’s formulation, it was implicitly assumed that no evolutionary changes in genome 

length occurred throughout the planning horizon. This establishes that each period 

evolution consists of the same number of objects. In other words, the length of the SP 

defining the a genome is the same length as the b genome, c genome, … , t genome, u 

genome, etc. This assumption, however, no longer applies to the unique formulation of 

the problem in this research where changes in these genome lengths can potentially 

occur. For example, if in the third evolution the decision was made to purchase a new 

asset, which would enable the business to expand their capabilities, this would result in 

the a and b genomes having a length one less than that of the c, d, e, f, and g genomes in 

PRT1. Same goes for t and u genomes versus the others in PRT2. 

 As one can foresee, these implemented jumping gene operations, which elicit 

alteration in the parents on a period evolution-basis, can potentially result in occurrences 

of inconsistent period genome length. This would be the case if during one of the 

transposition processes; two genomes of inconsistent length were exchanged. In the 

previous example, if the b genome was pasted over or in place of say the d genome or y 

genome of the other chromosome (arbitrary selections for demonstration), this would 

result in the genome of that period evolution having a length one fewer than what is 

required to sufficiently describe all objects present in the layout design for that period. In 

this case, where the transposon genome length is shorter than the original genome, the 

scenario of insufficient genetic material arises. On the contrary, the opposite can too 

occur, where the transposon genome length exceeds that of the original genome. This 

case characterizes the scenario of additional genetic material. 
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Again, these scenarios arise as a unique by-product of this research considering 

the assessment of evolving business models in parallel with an evolving layout design. To 

the best of the author’s knowledge, no such application of the JGO to a QAP/U-SP DLP, 

or any DLP for that matter, with such evolutionary changes has been performed. As such, 

the development of a novel genome repair process was required to handle such 

occurrences. The process developed and subsequently deployed consists of two sub-

processes, one for each repair scenario mentioned before. Before continuing, it should be 

observed that only the pasted genomes of the copy and paste operations and all shifted 

and pasted genomes of the cut and paste operations need be inspected for repair. 

Amongst these, only those resulting in inconsistent genome length need be repaired by 

the appropriate repair process that follows. 

Additional Genetic Material Genome Repair Process: 

The additional genetic material repair process is invoked in scenarios where excessive 

genetic material results as a by-product of a pasted transposon genome exceeding, in 

length, what is required to sufficiently define the objects present for that period evolution. 

Repairing this genome to be consistent in length with the original genome is a relatively 

straightforward process as all the necessary genetic material is already present, it merely 

needs to be systematically trimmed of unnecessary genes to match with what is required 

for that evolution. When repair of such a genome is required, the following process is 

performed for each period: 
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1) First, the additional genes in each of the genome sequences are identified (i.e. 

object indicator numbers greater than the original genome’s maximum object 

indicator value in both the positive and negative sequences) 

2) Then, these additional genes from the genome sequences are removed 

3) Next, the remaining genes are shifted leftward in each sequence of the 

sequence pair to fill the created gaps formed by the removal of the additional 

genes in the previous step 

4) Finally, removal/shift of the same genes within the orientation pair sequences 

is performed 

The resulting genome is one that is consistent with the original genome length and thus 

with what is necessary to adequately define the layout design of the current period 

evolution. Further, the shifting in a leftward fashion aligns well with the general concept 

of packing a layout into the bottom-left corner of the space. 

 An example of this genome repair process is demonstrated in Figure 28, where the 

transposon genome was discovered to be of length six, two more than that of the original 

genome (i.e. length required to sufficiently define the period layout design). The object 

indicator numbers greater than the original genome’s maximum object indicator value 

(genes with greater values defining them), four for four objects, were first identified in 

both the positive and negative sequences of the position pair. These include object 

pointers of values five and six as shown highlighted below in gray. Next, these genes 

were removed, and the remaining genes shifted leftward. For example, the first gray gene 
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with the value of five is removed resulting in a gap in which all genes right of it then shift 

to the left one place. The shift results in the one-numbered gene now being assigned to 

the first evolution of the new genome, the two-numbered gene to the second evolution, 

and so on and so forth. The outcome of each removal and subsequent shift in the 

sequences, results in the new genome, as shown, now consistent with what is required to 

sufficiently describe the layout design of that period evolution. Extension to the 

orientation sequences follows in parallel.  

 

Figure 28 – Example of the additional genetic material genome repair process 

Insufficient Genetic Material Genome Repair Process: 

The insufficient genetic material repair process is invoked in scenarios where insufficient 

genetic material results as a by-product of a pasted transposon genome lacking, in length, 

what is required to sufficiently define the objects present for that period evolution. 

Repairing this genome, unlike that of the previous repair process, is far more difficult as 

additional genetic material must first be transferred from another source before the 
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genome can become adequately populated to define all the objects present in the given 

period evolution. The question that then arose was, from what external source does one 

transfer this additional genetic material from? The answer to this question was to retrieve 

the additional information from the original genome. This was the most logical choice as 

the original genome would not only have the necessary genetic material to do so, but also 

the most up-to-date information for those additional objects. The repair process to rebuild 

the transposon genome of insufficient genetic material is thus as follows: 

1) First, the required additional genetic material, genes, from the original 

genome are transferred into the new genome according to the position these 

genes appear in each of the original genome’s position pair sequences  

2) Then, the remaining genes of new genome are filled with the transposon 

genetic material, slotting the genes into the new genome according to the 

relative order they appear in the transposon genome 

3) Finally, the same process is repeated for the orientation pair sequences 

The resulting genome, once again, will have now become consistent with the original 

genome length and thus with what is necessary to sufficiently define the layout design of 

the current period evolution. Further, the strategic transfer of the additional data required 

from that of the original genome has the advantage of transferring the data that is most 

crucial to ensuring feasibility of the SP design. Since the constrained objects are those 

indexed last in each evolution, these are likely to be the missing indices when insufficient 

genetic material is experienced. The major benefit of then transferring and subsequently 

placing the additional genes in the new genome first is that it maintains that these, which 
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are likely to be constrained objects, remain placed in a position they are most likely to 

appear in the sequences. Provided the original genome is one that is feasible, which is 

ensured given the construction of the GA solution procedure implemented, the 

subsequent genome would then too have a high probability of also being a feasible 

design. 

 An example of this genome repair process in practice is demonstrated in Figure 

29, where the transposon genome was discovered to be of length four, two fewer than 

that of the original genome (i.e. length required to sufficiently define the period layout 

design). Starting with a new genome that is empty and of length six, the five and six 

genes, those that are absent in the transposon genome are transferred from the original 

genome into the new empty genome according to their original positions as demonstrated 

by the grayed genes. Next, the remaining genes are transferred from the transposon 

genome into the new genome slotting them into the open positions. As demonstrated in 

the positive sequence, positions three and five have already since been filled leaving 

positions one, two, four, and six open. The order of the genes in the transposon genome is 

two, four, one, and three. As such, gene two is slotted into position one of the new 

genome, gene four into position two, gene one into position four, and finally gene three 

into position six. The same process is repeated for the negative sequence as well before 

then also repeating both this and the one before for the orientation pair sequences using 

the same transferring and slotting orders. The result of this is then the new genomes of 

both position pairs and orientation pairs that are consistent in length with that which is 

required to sufficiently describe the layout design of the period evolution. 
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Figure 29 – Example of the insufficient genetic material genome repair process 

4.2.5.4 Crossover Operator 

After the probabilistic execution of the jumping gene operator, the developed 

reproduction process, as noted, then turns to more traditional genetic operators, the first 

being crossover, to induce further variation in the population. As mentioned back in the 

background chapter, the crossover’s primary function is to vary the genetic composition 

of the population from one generation to the next by transferring different segments of 

genetic material from each parent to the offspring the process reproduces. Of the various 

crossover methods employed in the literature, the uniform crossover method is the most 

commonly applied method in the literature [129]. Thus, such a method was also deployed 

in this research. As discussed, and established in Table 6, Liu and Meller’s modified 

uniform order-based crossover method, already designed exclusively for the QAP/U-SP 
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data structure (order-based), was adapted to the DLP given its original application was to 

that of a SLP. To adapt their method to the DLP, extension of the method simply required 

performing the processes to be observed next for each period evolution of the DLP. 

4.2.5.4.1 Sequence-Pair Crossover Process 

The crossover process for the sequence-pair design variables is decomposed into two 

stages. In Stage One the appropriate genetic material is transferred from the parents to the 

offspring genomes. Stage Two then performs a relative order assignment procedure to 

assign the remaining unassigned genes in each offspring. These two stages are explained 

below and follow the same procedure employed by Liu and Meller. 

Stage 1 – Transfer of Genetic Material from Parent 

1) First, a binary bit string (BS), equal to the genome length, is generated for 

position pair selection 

2) Then, position pair genes aligning with “1” bits in the BS are copied from 

PRT1 to OSP1, which denotes offspring one 

3) Next the position pair genes aligning with “0” bits in the BS are copied from 

PRT2 to OSP2 

This process is demonstrated in Figure 30, where a binary bit string, BS, for a six 

gene genome was first randomly generated. The result was a BS of  [0,0,1,1,1,0]. With 

this BS, the position-pairs of the c, d, and e genes where transferred from PRT1 to OSP1 

as they aligned with the “1” bits in the BS. Then, the positon-pairs of the a, b, and f genes 
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were transferred from PRT2 to OSP2 as they aligned with the “0” bits in the BS. This 

process is no different from the conventional uniform crossover method employed in the 

literature. Following this though, Stage Two of the crossover process deviates from the 

conventional method in order to accommodate the order-based nature of the sequence-

pair data structure. Before continuing though, one should understand that the (3,5) in the 

a gene of PRT1 establishes that object three lies in the first gene position of the positive 

sequence and likewise, object five lies in the first gene position of the negative sequence 

of PRT1. This terminology is important to understand before proceding. 

 

Figure 30 – Stage One of the sequence-pair crossover process 

Stage 2 – Relative Order Assignment of Remaining Unassigned Genes 

1) First, the relative order of the unassigned gene positions (i.e. letters) of OSP1 

are identified as they appear in that of PRT2 for both the Γ_+ and Γ_− 

sequences independently and per the sequential ordering of the object 

indicator numbers, or simply SP numbers, found in those genes (this will be 

made clearer with the example that follows) 

a b c d e f

PRT1: (3,5) (6,3) (2,2) (4,6) (1,4) (5,1)

BS: 0 0 1 1 1 0

OSP1: (2,2) (4,6) (1,4)

PRT2: (2,4) (4,3) (1,6) (5,1) (6,2) (3,5)

BS: 0 0 1 1 1 0

OSP2: (2,4) (4,3) (3,5)

a b c d e f

OSP1: (2,2) (4,6) (1,4)

PRT2: (2,4) (4,3) (1,6) (5,1) (6,2) (3,5)

a b c d e f

 + PRT2 Order: [ 2, 4, X, X, X, 3, ] → [ a, f, b ]

 − PRT2 Order: [ 4, 3, X, X, X, 5 ] → [ b, a, f ]

OSP1: (3,3) (6,1) (2,2) (4,6) (1,4) (5,5)

 + OSP1 Unassigned: [ 3, 5, 6 ]

 − OSP1 Unassigned: [ 1, 3, 5 ]
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2) Next, the missing SP numbers in the Γ_+ and Γ_− sequences of OSP1 are 

identified, then placed in sequential order 

3) The remaining unassigned SP numbers in both sequences of OSP1 are 

assigned per the relative orders of the unassigned gene positions defined in 

step one 

4) Steps 1-3 are repeated for OSP2 and PRT2 to populate OSP2 completely 

The above process can be confusing to understand at first, so an example of the 

steps detailed above is provided in Figure 31 to make things clearer. The example 

provided is a continuation of the example described before in demonstrating the 

procedures of Stage One. First, one identifies that the a, b, and f gene positions are 

unassigned in OSP1, or in other words, empty in OSP1. Next, by examining the Γ_+ 

sequence of PRT2, and more specifically the unassigned gene positions just identified, it 

is found that the SP number two is found in the a gene, four in the b gene, and finally 

three in the f gene. Coupling these pairs together (i.e. a with two, b with four, f with 

three) and then sorting by the SP numbers from smallest to largest, the relative order of 

the unassigned gene positions then becomes a, f, and then b as demonstrated. Likewise, 

for the Γ_− sequence, the ordering becomes b, a, and then f. This completes step one of 

the process. Next, attention is turned back to the OSP1 genome, where it is identified that 

the Γ_+ sequence already contains SP numbers of one, two, and four, meaning that the 

SP numbers of three, five, and six are missing from OSP1. Similarly, the SP numbers of 

one, three, and five are missing from the Γ_− sequence. Finally, aligning this order of 

missing SP numbers to the ordered unassigned gene position found in step one, the SP 
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number of three is assigned to the a gene, five to the f gene, and six to the b gene of the 

Γ_+ sequence. The same is done for the Γ_− sequence and once finished, the result is the 

completely populated OSP1 genome shown at the bottom of the figure. This process is 

then repeated to populate OSP2 using PRT1 in place of PRT2 to complete the crossover 

operator process. Note the definition of PRT1 and PRT2 doesn’t necessarily need to be 

that of the parents selected during the selection operator procedure. If the JGO has been 

executed PRT1 and PRT2 would be then the resulting altered parents of this process. 

 

Figure 31 – Stage Two of the sequence-pair crossover process 

4.2.5.4.2 Orientation Crossover Process 

In Liu and Meller’s formulation, rotation of the objects in the space, in addition to their 

positions, was not considered and therefore their method did not encompass a means of 

providing crossover amongst the orientation pair genes of the parents. As such, a method 

of performing this crossover needed to be constructed. Unlike the sequence-pair 

crossover process defined above, the process developed follows the traditional method of 

a b c d e f

PRT1: (3,5) (6,3) (2,2) (4,6) (1,4) (5,1)

BS: 0 0 1 1 1 0

OSP1: (2,2) (4,6) (1,4)

PRT2: (2,4) (4,3) (1,6) (5,1) (6,2) (3,5)

BS: 0 0 1 1 1 0

OSP2: (2,4) (4,3) (3,5)

a b c d e f

OSP1: (2,2) (4,6) (1,4)

PRT2: (2,4) (4,3) (1,6) (5,1) (6,2) (3,5)

a b c d e f

 + PRT2 Order: [ 2, 4, X, X, X, 3, ] → [ a, f, b ]

 − PRT2 Order: [ 4, 3, X, X, X, 5 ] → [ b, a, f ]

OSP1: (3,3) (6,1) (2,2) (4,6) (1,4) (5,5)

 + OSP1 Unassigned: [ 3, 5, 6 ]

 − OSP1 Unassigned: [ 1, 3, 5 ]
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uniform crossover given the non-order-based nature of the orientation pairs. The process 

is as follows: 

1) First, a binary bit string equal in length to the genome length is randomly 

generated 

2) Next, if the bit is a “1,” PRT1’s orientation pair is transferred to OSP1 and 

likewise PRT2’s orientation pair to OSP2 

3) Then to completely populate the offspring genomes, the orientation pairs for 

the “0” bit genes from PRT2 to OSP1 and similarly PRT1’s to OSP2 are 

transferred over 

The result after both processes have been performed is then two reproduced 

offspring genomes. As mentioned before, this process as well as the one discussed before 

for the sequence-pair design variables are performed for each genome of the chromosome 

to provide crossover across the entire chromosome. In other words, these processes are 

performed for each layout design period evolution of the DLP. This concludes the 

discussion of the uniform crossover method deployed in this research to provide effective 

evolution of the population. Furthermore, this complete crossover process is performed 

probabilistically per a user-defined probability. 

4.2.5.5 Mutation Operator 

The last genetic operator to be implemented is mutation. Implementation of the mutation 

operator is important to maintain genetic diversity within the population from one 

generation to the next. This is often achieved through the random alteration of an 
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individual, in some capacity, of the population. As discussed, and identified in Table 6, 

Liu and Meller’s application of mutation to the QAP/U-SP SLP is once more leveraged. 

In this research’s deployment of mutation, their pair-wise exchange mutation method is 

adapted to the DLP through the adoption of Ripon et. al.’s initial random period selection 

process. The deployed process is as follows: 

1) First, a period evolution genome is randomly selected to mutate (Ripon et. 

al.), this effectively reduces the problem to an] SLP for which Liu and 

Meller’s approach can then be applied 

4.2.5.5.1 Sequence-Pair Process: 

2) Then, select two position-pair genes in the SP randomly, without bias as to 

whether the pairs contain moveable or constrained objects, to exchange 

3) The two position-pair genes are then exchanged 

Selection without prejudice as to the nature of the objects encapsulated in the 

position-pairs is important to promote exploration outside of the more confined 

placement of constrained objects in the space that occurs as a by-product of the 

developed FSPPM. This further aids the algorithm in avoiding becoming trapped in local 

minimums. The sequence-pair mutation process is demonstrated for a two period DLP 

consisting of genomes of length six in Figure 32. As demonstrated, between the first step 

and second, the first period genome is chosen, followed by the random selection of two 

genes, position genes two and six. These selections are denoted by the grayed cells. Then 

the two genes are swapped resulting in the generation of a mutated offspring individual. 
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Figure 32 – Sequence-pair mutation process 

Since neither Liu and Meller nor Ripon et. al. considered the rotation of the 

objects in the space in addition to their positions, a process for mutating the orientation-

pairs of the randomly selected genome was defined and subsequently developed. The 

orientation mutation process developed and subsequently deployed is as follows: 

4.2.5.5.2 Orientation Process: 

2) With the genome since selected, a movable object in the space is randomly 

selected to rotate 

3) Then, the object is rotated to one of the other three possible positions without 

bias as to which one 

OSP1: (3,3) (6,1) (2,2) (4,6) (1,4) (5,5) (2,4) (4,3) (1,6) (5,1) (6,2) (3,5)

Period 1 Period 2

OSP1: (3,3) (6,1) (2,2) (4,6) (1,4) (5,5) (2,4) (4,3) (1,6) (5,1) (6,2) (3,5)

Gene 1 Gene 2

Switch

OSP1: (3,3) (5,5) (2,2) (4,6) (1,4) (6,1) (2,4) (4,3) (1,6) (5,1) (6,2) (3,5)

OSP1: (3,3) (5,5) (2,2) (4,6) (1,4) (6,1) (2,4) (4,3) (1,6) (5,1) (6,2) (3,5)
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The selection of only movable objects to rotate was strategic. The reason for this 

is as follows, rotation of a constrained object is inherently useless as its inherent fixed 

nature prevents its rotation. Therefore, orientation mutation is only considered for 

movable objects in the space. As mentioned before, the above processes of sequence-pair 

and orientation mutation are applied probabilistically to each offspring individual 

generated by the upstream reproductive process operations, described in length before. 

With the completion of this operator, the reproduction process, or reproductive cycle, 

deployed in this research in the Stage One GA is complete. As established before, this 

reproductive cycle continues until the current generation’s population has been 

completely populated with feasible individuals. Once this occurs, the genetic algorithm 

then proceeds to seeking further improvement through the implementation of FSA 

applied to the current generation’s most fit individual. 

4.2.5.6 FSA Improvement 

With the fittest individual generated from the elitism process and reproductive cycle 

outlined before (i.e. the current generation) as the initial layout design configuration, FSA 

can then be applied to further improve this individual’s fitness. The FSA algorithm 

deployed in this research leverages Chen and Chang’s original FSA annealing schedule. 

Since, their annealing schedule was discussed in length in Chapter 2; one can refer to this 

earlier discussion for a complete understanding of the annealing schedule. The other key 

component to the FSA is the perturbation scheme for generating neighboring layout 

design configuration. The perturbation method developed is a synthesis of several 

approaches from the literature along with newly developed heuristics to account for 

unique problem setup of this research. Additionally, the FSPPM is leveraged within the 
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algorithm to improve its effectiveness. The perturbation method developed and 

subsequently deployed to generate a neighbor design is as follows:  

1) First, the current design is set as the origin design 

2) Second, an evolution (i.e. period) of this design is randomly selected 

3) Third, between the positive and negative sequence, a sequence of the selected 

evolutions sequence-pair is selected at random 

4) Then according to a user-defined probability of reassignment, the positions of 

the fixed objects in the selected sequence are reassigned leveraging the 

placement distributions generated by the FSPPM (step mirrors that of Step 1 

in Section 4.2.4.1) 

5) Next, the remaining positions of the sequence are filled by slotting in the 

movable objects according to their pervious order, i.e. in the order they appear 

in the origin design 

6) Then according to a user-defined probability of swapping, two movable 

objects are selected at random to have their positions in the sequence pair 

swapped 

7) Next, according to a user-defined probability of rotation, a random movable 

object is selected for rotation 

8) Now, of the two binary orientation bit variables defining this object’s 

orientation, one is selected at random to be altered 
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9) Finally, the current binary value is identified and subsequently switched to its 

counter value 

This procedure is performed each time a neighboring solution is to be generated 

for evaluation by the algorithm. Note instead of randomly placing the movable objects 

into the remaining position of the sequence-pair as was done before during the population 

initialization and outlined in Section 1.17.4.1, the movable objects are assigned according 

to their original order. This strategy helps to maintain that the design changes only 

marginally, i.e. remains a neighbor of the original design. Now when deploying the 

modified version of McKendall et al. [78] look-ahead / look-back strategy (LA/LB) in 

this research, this perturbation method is virtually identical except that the evolution, 

sequence, object selections, and occurrence of the various alterations are mandated by the 

overarching LA/LB procedure. In other words, the evolution is no longer selected at 

random, nor the sequence, nor whether the fixed objects are to be reassigned, nor whether 

swapping occurs or which are swapped if so, whether rotation occurs, and furthermore 

which movable object is rotated and by which binary bit variable. All these decisions are 

controlled no longer by chance, but rather by the LA/LB procedure which establishes 

each of these. Recall that this is the basis of the LA/LB. This strategy, outlined in detail 

in the background, looks to consider applying the adjustments made by the perturbation 

method outlined above to the other evolution period layout designs and not by random 

selection. This is meant as a means of propagating the adjustment throughout the other 

evolutions of the design to further improve it. In order to fully understand how the 

LA/LB strategy is deployed in the algorithm, the general sequence of operations is 

presented next. 
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4.2.5.6.1 Architecture of the Implemented FSA 

The implemented FSA begins by first determining the initial cooling temperature for the 

annealing schedule. The initial cooling temperature is determined by deploying the 

standard perturbation method outlined before for a user-defined number of samples. 

Based on the number of uphill moves and the total uphill change for this sampling along 

with the user-defined probability of accepting an uphill move, the initial temperature is 

then established. With the initial temperature defined the annealing process then 

commences. Using the best design from this initial sampling, which includes the 

originally supplied fittest individual from the GA population, the annealing process 

perturbs this design to form a new neighbor for a user-defined number of samples. The 

new neighbor is formed by first deploying the standard perturbation method described 

before to the current best design. After being evaluated, if and only if it is accepted by the 

algorithm (either a downhill move or per the metropolis criteria), the modified LA/LB 

strategy is deployed. Using this perturbed design as the basis, the LA/LB method then 

applies the same perturbation to each of the other evolutions of the design accepting only 

those that produce a down-hill move, i.e. improvement. It is important to point out that 

the original formulation by McKendall et. al. also applied the metropolis algorithm here, 

thereby accepting inferior solutions by chance. Observations during implementation 

proved this approach to be disadvantageous. The chance of accepting an inferior solution 

often negated prior improvements, or worse yet, produced a design that was then 

infeasible. As such it was decided that the metropolis criteria not be implemented and 

moreover only designs that remained feasible could then be considered for selection. 
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Following the execution of the FSA, the operations of the current generation and further 

the second phase of the hybrid GA concludes. 

4.2.6 Convergence Criteria 

The final phase, phase three of the developed hybrid GA, is tasked with determining the 

algorithm’s convergence. The method developed and deployed considers three criteria in 

order to do so. These criteria encapsulate time constraints, generation limits, and the 

continual improvement of the solution. When either one of these criteria are satisfied, a 

state of convergence is established. Once established the process of evolving the 

population from one generation to the next is terminated and the current best solution is 

then identified as the global best solution. 

 The first criteria deployed to establish convergence by the algorithm is an overall 

time constraint. This time constraint has two functions. The first is that it acts in 

preventing the algorithm from running for eternity; second it enables the user to dictate a 

specified duration of execution. The latter may be relevant when computational time 

limits are encountered and only a finite amount of time is available to solve each layout 

problem. The duration of the timing spans from the initiation of the GA’s reproductive 

cycle, in other words just after the completion of the population initialization phase. 

 The second criterion is a limit on the number of generations the algorithm 

performs to evolve the population. A counter was implemented to track the number of 

generations executed by the algorithm. At the end of each generation this counter is 

compared to the user-defined, maximum number of generations, parameter. Once the 
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counter exceeds this limit a state of convergence is met, and the reproductive cycle 

terminated. 

 While the first two criterions establish convergence based on limits in time or the 

number of generations executed, the third and final criterion implemented focuses on the 

algorithm’s identification of the global optimum to establish convergence. Convergence 

in this sense, is established when no further solution improvement is possible by the 

algorithm. One way of establishing this is to enforce what is called a stall limit. This stall 

limit dynamically counts the number of sequential generations for where the best solution 

has not changed. If the algorithm is to find a better solution, the count is then restarted. 

Once the algorithm encounters the situation where it has not found improvement in the 

solution for a user-defined number of stall generations, a state of convergence is 

established by this criterion.  

 After each reproductive cycle, or generation, the three-criterion described above 

are assessed for convergence. If any one of them is met, the algorithm terminates the 

evolutionary process, thereby establishing the optimum solution for the problem as the 

current best solution in the population. This concludes the discussion on the third and 

final phase of the developed hybrid GA for Stage One. Now a summary and a few 

closing remarks on the Stage One hybrid GA are presented. 

4.2.7 Summary of Stage One 

As outlined in preceding discussions, in Stage One a hybrid genetic algorithm that 

incorporates a FSA technique to enhance its performance, to solve a QAP/U-SP 

formulation (i.e. designs defined by a sequence and orientation-pair) of the problem was 



 192 

developed. A novel FSPPM was also developed and leveraged throughout to aid the 

algorithm in discovering feasible designs more frequently, thereby reducing 

computational time and potentially improving solution quality. Additionally, novel 

methods were developed and implemented for many of the various genetic operators of 

its evolutionary process as well as for the perturbation method deployed by the FSA 

technique. This novelty and innovation was required to handle the unique nature of the 

mathematical representation, i.e. model, deployed in Stage One to characterize the 

physical layout design. 

4.2.8 The Link Between Stage One and Stage Two 

Before proceeding into the next section on the solution procedures developed for Stage 

Two, it is important to revisit the overarching goal of this first stage in the LIVE 

methodology. As was established in the preceding chapter on the formulation of the 

methodology, the overarching goal of this stage was to solve this slightly simplified 

model, in that of the QAP/U-SP representation of the layout, to then adequately and 

efficiently populate the initial populations of the GA implemented in Stage Two. This is 

achieved in practice by the implemented algorithm retaining all feasible designs 

generated during both the population initialization and evolutionary process phases. This 

collection includes that of the best solution and is passed to Stage Two to define the 

initial populations of its GA. 

Though in the LIVE methodology, Stage One, as described, can be considered 

nothing more than an advanced population initialization method for Stage Two, the 

implementation in this work is robust enough that if the designer so chooses, the result of 
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Stage One can become the final solution while Stage Two becomes then inactive. This 

decision may be the result of limited computational resources (Stage One takes a lot less 

time to solve than Stage Two), the need for only an initial more conceptual layout design 

(e.g. one that does not provide a continuous layout design solution), or the desire to more 

rapidly visualize the design space topography whereby a specific region may then be 

identified for further exploration using Stage Two. 

Regardless of the reason, this decision requires a few user-defined parameters to 

be defined more appropriately for this goal. For starters, it is recommended that the 

convergence related parameters be adjusted accordingly. This means extending the time 

limit and increasing the generation limit as to ensure the algorithm completely converges 

on the best solution. Remember the goal of Stage One by default is not necessarily to find 

this best solution, but rather to provide Stage Two with a good sampling of designs to 

initialize its populations with. As such, Stage One by default is likely to sacrifice some 

optimality for speed. This not only comes in the form of limiting the extent to which the 

problem is solved via the convergence parameters, but also through that of the population 

size. A smaller population is likely to be used by default to expedite the Stage One 

process; however, it is recommended that this population size be increased to enable 

better solution performance albeit at the expense of a longer solution time. A study on the 

extent to which Stage One should be solved and how to establish the population size will 

be presented when the experiments performed are presented later. With the link between 

Stage One and Stage Two reestablished, the focus now turns towards the solution 

procedures of Stage Two and how these procedures leverage the results of Stage One. 
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 Step 2: Solution Procedures of Stage Two 

This section begins with a brief overview of the mathematical model deployed in Stage 

Two to characterize the layout design along with the design variables that define it. Then, 

an expansive discussion on how improved layout designs are sought/discovered through 

the manipulation of the design variables is presented. This more broadly encapsulates the 

GA solution procedure implemented to solve the layout problem of stage two. This 

discussion consists of the following: how the GA’s population is initialized by leveraging 

the collection of designs produced by Stage One, how this population is then evolved 

through the deployment of genetic operators tailored to the mathematical model 

leveraged, and how convergence of the algorithm is established. With the model chosen 

to mathematically define the layout being at the core of how all other elements of Stage 

Two are constructed, the mathematical model deployed in Stage Two is first presented. 

4.3.1 Mathematical Representation of the Layout 

As was established in the preceding chapter, a MINLP model, resembling that of 

Barbosa-Póvoa et al.’s (2001) non-linearized MIP formulation of the static layout 

problem variant, was implemented in Stage Two to geometrically model the layout. This 

model differs from the model of Stage One in one critical way; the continuity property. 

Unlike that of the Stage One QAP/U-SP model, where placement is discrete and 

stacking-based, the model of Stage Two is continuous. This is because Stage Two 

operates directly on the coordinate centroid positions of the object rather than on that of 

sequence-pairs, as was done in Stage One. 

4.3.1.1 Design Variables of Stage Two 
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In Stage Two, placement of the objects is instead defined as the synthesis of the object 

coordinate centroid positions and their orientations. Just as was the case in Stage One, the 

orientation design variables remain as being defined by an orientation-pair, or pair of 

binary bit sequences. Contrary to Stage One though, the position design variables, before 

an order-based sequence-pair, now become the non-order-based coordinate centroid 

positions, defined by an x and y coordinate, of the objects. These are further normalized 

by their ranges (defined according to the OML of the layout). This was done as to avoid 

issues during the reproductive process of the GA where positions were being exchanged 

and modified by the evolutionary genetic operators.  

This synthesis of continuous and binary integer variables is what makes the model 

MIP, or mixed-integer, in nature. Provided this representation, manipulation of the design 

is controlled in Stage Two by directly altering the x, y coordinate positions of the objects 

along with the object orientations. While the sequence-pairs of Stage One were discrete 

in nature, the coordinate centroid positions are continuous. By directly operating on these 

centroid positions to place the objects in the space, a continuous layout design is then 

able to be considered. As was noted before, this is critical to being capable of adequately 

characterizing the layout and therefore why such a MIP model was deployed here. Now 

that the design variables of Stage Two have since been established, the algorithm 

implemented to manipulate these variables in search of the optimal layout design is now 

discussed. 
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4.3.2 Architecture of the Implemented Tri-Population Genetic Algorithm 

To perform this search for the optimal layout design to the provided problem, a tri-

population genetic algorithm, mirroring the one originally developed by Pourvaziri and 

Naderi, was deployed in Stage Two. The sections that follow outline the solution 

procedures deployed by the tri-population GA to achieve this optimal layout design 

discovery. How the implemented tri-population GA initializes the population, 

subsequently evolves this population, and finally how it identifies when the most optimal 

design has been discovered is detailed. Before diving into each of these, the general 

process flow of the implemented tri-population GA is first presented. 

 As is the case with any GA, the first phase in the implemented tri-population GA 

is to initialize the population or put alternatively, populate the initial population that will 

then be subsequently evolved. In this implementation the same is true, though instead of 

initializing a single population of designs, three distinct populations are constructed. 

These three populations are formed from the collection of designs generated by Stage 

One. This three-population structure is what gives the tri-population GA its name. Once 

these three populations have been formed, each is independently evolved through an 

evolutionary process. The evolutionary processes performed on each of these populations 

are fundamentally identical. These populations are evolved for a user-defined period of 

isolation, unless solution convergence occurs first. The isolation period can represent the 

time or number of generations each population is evolved for before being then merged to 

form a single population. The convergence criteria deployed inherently account for this 

isolation period consideration along with the solution convergence. Therefore, the 

convergence block presented in Figure 33 encapsulates both these. This process of 
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simultaneously evolving the three distinct populations until convergence comprises the 

second phase of the algorithm. After the isolation period, the three populations are 

merged into a single population through a migration process. This migration process 

constitutes phase three of the algorithm. This single merged population is then evolved 

through the same evolutionary process deployed in phase two to evolve the three initial 

populations. Similarly, the same convergence criteria in phase three are leveraged in 

phase five to identify convergence for the merged population. This tri-population 

procedure mirrors Pourvaziri and Naderi’s implementation in the literature. 

Now that the developed tri-population GA’s procedures have been outlined, the 

unique concepts of the sequence will be presented in detail. Since the evolutionary 

processes of phase two are identical to that of phase four and the convergence criteria of 

phase two are identical to that of phase five, this leaves only three unique concepts to 

discuss. These include the population initialization procedure deployed to construct the 

three initial populations, the evolutionary process leveraged to evolve the four 

populations, and finally the criteria used to establish when the algorithm has converged. 
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Figure 33 - Architecture of the implemented Stage Two genetic algorithm 

4.3.3 Initializing the Populations 

The process of initializing the populations in Stage Two is significantly different from 

that of Stage One. Beyond the obvious in that three initial populations are to be formed 

rather than just one, the method implemented to initialize the populations also does not 

require any designs to be generated. This is because such designs are already available as 
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a by-product of the collection of designs generated by Stage One. It is from this 

collection, or design pool, that designs are selected for assignment to each of the three 

populations. It was decided, like that of Pourvaziri and Naderi’s formulation, that these 

three distinct populations would be initialized as follows. The first population is 

composed of the best designs from the collection, while the second population is the 

antithesis of this in that it is composed of nothing but the worst designs of the collection. 

The third and final population is constructed by randomly selecting designs from the 

provided collection. Provided that the collection is insufficient in size to completely 

populate any one of the populations, duplicate designs from the pool are selected at 

random to make up the difference. Furthermore, each of the three populations can be 

sized differently. The population sizes of each are defined by three independent user-

defined population size parameters. This enables the user to have control over the size of 

each and furthermore enables a study to later be performed to determine the best 

combination of sizes to deploy for different problem types. 

It was believed that this best, anti-best, and random structuring of the three 

populations would provide a healthy balance of elitism and diversity in the algorithm and 

that this balance would then propagate downstream into the merged population following 

the isolation period where the three populations are evolved independent of one another. 

Having now established how the collection of designs generated by Stage One are 

leveraged to establish the three initial populations of Stage Two, a discussion on how the 

implemented evolutionary process evolves these populations as well as the merged 

population is now discussed. 

4.3.4 The Evolutionary Process of Stage Two 
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The evolutionary process deployed, in phases two and five of the algorithm, to evolve the 

populations of Stage Two leverages the same genetic operators that were deployed in 

Stage One to do so. Given that the designs of Stage Two are now represented by the 

coordinate centroid positions of the objects, which are continuous and non-order-based, 

and an orientation-pair, the genetic operators implemented to vary the designs in Stage 

Two needed to be designed to accommodate this new chromosome representation, or 

design variable composition. 

 The evolutionary process of the developed Stage Two GA is structured identically 

to that of the Stage One process, with the exception being that Stage Two does not deploy 

FSA to enhance the most elite design of the population. Provided that the sequence and 

composition of operations is the same in Stage Two as it is in Stage One, only a brief 

overview of the sequence will be presented here. If one desires, an in-depth discussion of 

the sequence can be found in Section 4.2.5 on page 152. The sequence of operations 

comprising the evolutionary process begins with first the execution of an elitism selection 

operator. Following its execution, the reproductive process begins. This process is 

comprised of the following operators in order of their execution in the algorithm: 

reproduction selection, jumping gene, crossover, and finally a mutation operator. Once 

execution of these has occurred, the new offspring design is evaluated for its performance 

and feasibility. Just like before, designs that satisfy the feasibility property, i.e. 

constraints of the problem, are added to the current generation’s population. This 

reproductive process continues until the generation is fully populated of feasible designs. 

This complete sequence is visually depicted in the right image of Figure 23 provided 

before. The only difference being that the FSA block in the figure would be removed. 
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Table 8 – Stage Two implemented genetic operator strategies 

 Model 

MINLP 

Selection 

Operators 

Selection: 

Liu and Meller’s / Ulutas and 

Islier's roulette wheel selection 

[115,167] 

Elitism: Traditional k best 

Variation 

Operators 

Crossover: 
Mazinani et al.'s continuous 

uniform operator [118] 

Mutation: 
Mazinani et al.'s tri-mutation 

operator approach [118] 

Jumping Gene: 

Ripon et al.'s cut and paste and 

copy paste operations adapted 

[143] 

 

4.3.4.1 Elitism Operator 

As was the case before in Stage One, the concept of elitism was also implemented in the 

Stage Two algorithm to improve its performance. As established in the preceding chapter 

and re-presented above in Table 8, to employ the elitism concept, a traditional k, best 

transfer method was deployed to ensure that the best designs of the preceding generation 

survived. The method selects the most elite k, unique designs from the previous 

generation population and then assigns them, unaltered, to the current generation’s 

population.  



 202 

4.3.4.2 Selection Operator 

Following the execution of the elitism operator outlined above, the evolutionary process 

enters the reproduction process where the remaining Npop – k designs are then assigned to 

the population. These designs are formed by first selecting designs from the previous 

population to act as parents and then combining/modifying these parents to form 

offspring designs for consideration. Selection of these parents is the function of the 

selection operator. As outlined in Table 8, a roulette wheel proportionate selection 

method was deployed to systematically perform this selection. This is the same selection 

method deployed in the evolutionary process of Stage One and outlined in Section 4.2.5.2 

on page 160. To avoid redundancy, one may refer to this cited section for a complete 

understanding of how the selection operator is constructed and how it selects parents for 

reproduction. 

4.3.4.3 Jumping Gene Operator 

Now that two parents have been selected for reproduction, the process continues with the 

deployment of a jumping gene operator (JGO). Same as before, the implemented JGO is 

executed with a user-defined probability. In other words, it may not always be applied to 

the parents to promote evolution. As highlighted in Stage One, the JGO’s ability to 

promote genetic diversity and furthermore evolution of the population, is the core reason 

behind its deployment once more here in Stage Two. The JGO deployed in Stage Two 

employs the same general process and assumptions as in Stage One. Furthermore, the 

transposition processes deployed by it are also identical to those in Stage One. To avoid 

redundancy, neither the overall process, assumptions, nor transposition processes will be 
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outlined here. Instead, how the JGO of Stage Two differs from that of the one deployed 

in Stage One will be examined and the necessary differing elements elaborated on. If one 

desires a recap of the overall process, the assumptions, or the transposition processes they 

may refer to Section 4.2.5.3 on page 161. 

 The major reason why the two do differ lies in the nature of the design variables 

of the stages. In Stage One, the position variables were that of an order-based sequence-

pair. In Stage Two though, these are replaced by the continuous non-order-based 

coordinate centroid positions of the objects.  As a result, the letters presented in the 

diagrams before now represent coordinate centroid positions and orientation pairs that 

define the layout design of that given evolution (cell/gene). This is important to 

understand as it is for this reason that the genome repair processes of Stage Two differ 

from those in Stage One. Additionally, unlike in Stage One where the complete genome 

was operated on, only the portions of the genomes that are representative of the movable 

objects in the space are operated on in the implemented JGO of Stage Two. As a 

reminder, the genome repair processes are unique to this research and a required measure 

as a result of the problem formulation considered in this research. 

4.3.4.3.1 Genome Repair Process 

As a by-product of the unique formulation of this dissertation, the genomes (i.e. periods) 

making up a layout design can have differing lengths to account for the addition or 

potential subtraction of objects from the environment. Managerially speaking, this is 

representative of situations where a new or old out-dated asset is added or removed from 

the environment respectively. With the transposition processes altering the compositions 
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of the parent designs by shuffling the genomes around, situations of inconsistent period 

genome length can arise. In this case, where the transposon genome length is shorter than 

the original genome, the scenario of insufficient genetic material arises. On the contrary, 

the opposite can too occur, where the transposon genome length exceeds that of the 

original genome. This case characterizes the scenario of additional genetic material. 

Again, these scenarios arise as a unique by-product of this research which 

considers the assessment of evolving business models in parallel with an evolving layout 

design. The novel genome repair process developed consists of two sub-processes, one 

for each repair scenario mentioned before. It should be once more observed that only the 

pasted genomes of the copy and paste operations and all shifted and pasted genomes of 

the cut and paste operations need be inspected for repair. Amongst these, only those 

resulting in inconsistent genome length need be repaired by the appropriate repair 

process. 

Additional Genetic Material Genome Repair Process: 

The additional genetic material repair process is invoked in scenarios where excessive 

genetic material results as a by-product of a pasted transposon genome exceeding, in 

length, what is required to sufficiently define the objects present for that period evolution. 

Repairing this genome to be consistent in length with the original genome is a relatively 

straightforward process as all the necessary genetic material is already present, it merely 

needs to be systematically trimmed of unnecessary genes to match with what is required 

for that evolution. When repair of such a genome is required, the extra genetic material is 

simply trimmed from the end of the genome.  
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The rationale for trimming from the end rather than the start of the genome is as 

follows. The excess genes are likely to be the result of objects added to the environment. 

Provided that the genomes consist of only the movable objects and moreover that added 

objects are, in this implementation, appended to the end of the sequences, it is logical to 

trim these first from the sequences. By doing so the added objects are effectively 

removed from the space, leaving just the original movable objects, where original means 

those native to that period. Furthermore, removal of these and then the subsequent direct 

transfer without alteration of the remaining genes is advantageous as it has a then high 

probability of yielding a feasible design as the transposon period genome is inherently 

feasible. 

 An example of this genome repair process is demonstrated in Figure 34, where the 

transposon genome was discovered to be of length six, two more than that of the original 

genome (i.e. length required to sufficiently define the period layout design). For 

reference, the decimals in the cells are the normalized coordinate positions of the object 

centroid positions and are similarly that of the orientation pairs when repairing the 

orientation sequences. As demonstrated the last two genes, grayed, are simply trimmed to 

create the new period genome. As briefly mentioned, the orientation variable sequences 

are also trimmed in this same manner. 
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Figure 34 – Example of the additional genetic material genome repair process 

Insufficient Genetic Material Genome Repair Process: 

The insufficient genetic material repair process on the other hand, is invoked in scenarios 

where insufficient genetic material results as a by-product of a pasted transposon genome 

lacking, in length, what is required to sufficiently define the objects present for that 

period evolution. Since supplemental genetic material must first be transferred from 

another source before the genome can be completely populated, this repair process is a 

significantly more involved. In the developed method, the source of the additional 

information is that of the original genome just like before in Stage One. This was a 

sensible choice as it has both the necessary genetic material but also has the most up-to-

date information for these additional objects. The repair process to rebuild the transposon 

genome of insufficient genetic material is thus as follows: 

1) First, the additional genetic material, genes, from the end of the original 

genome are transferred into the same end positions of the new genome 

Transposon 
Period 
Genome

𝑥𝑛: .2 .6 .4 .5 .9 .3

𝑦𝑛: .7 .4 .2 .1 .6 .8
Before

After

New
Period 
Genome

𝑥𝑛: .2 .6 .4 .5

𝑦𝑛: .7 .4 .2 .1

Repair to match original 
period length (4 here)



 207 

2) Then, the remaining genes of the new genome are filled according to the 

following equation: 

 𝑔′ = 𝑔𝑂 + 𝑐(𝑔𝑇 − 𝑔𝑂) (6) 

where g represents the gene variable (x, y), ‘ superscript represents the new period 

genome gene value, O superscript represents the original period genome value, T 

represents the transposon period genome value, and finally c represents a coefficient of 

adjustment whose range is from zero to one. This adjustment coefficient determines the 

degree to which the original genome value is adjusted in the direction of the transposon 

value. It is recommended that this value be relatively low as to not excessively alter the 

design from that of the original genome, which is inherently feasible. Overly adjusting in 

the direction of the transposon will result in a higher probability of the yielded design 

then becoming infeasible. Maintaining a relatively low c value can be thought of as 

providing a localized adjustment of the original genome in the direction of the 

transposon. A value of less than 0.25 is highly recommended especially for problems that 

are highly constrained. For such problems it is further recommended that this value be set 

much lower than that of 0.25. A value of 0.1 would be a good starting value. A visual 

example of this repair process, applied to the position variables and using a c value of 

0.2, is provided in Figure 35. Note, step two and this equation only applies to the 

coordinate position variables which are continuous. The orientation variables, being 

binary, are treated differently, though step one remains the same. To repair the orientation 

variables, the remaining unfilled genes are filled by directly transferring the genes, i.e. 

orientation-pair binary bits, from the transposon to the new period genome. 
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The resulting genome, once again, will have now become consistent with the 

original genome length and thus with what is necessary to adequately define the layout 

design of the current period evolution. 

 An example of this genome repair process in practice is demonstrated in Figure 

35, where the transposon genome was discovered to be of length four, two fewer than 

that of the original genome (i.e. length required to sufficiently define the period layout 

design). Starting with a new genome that is empty and of length six, the five and six 

genes, those that are absent in the transposon genome, are transferred from the original 

genome into the new empty genome as demonstrated by the grayed genes. Next, the 

remaining genes are transferred from the transposon genome into the new genome. The 

result of this is then the new genomes of both coordinate centroid positions and 

orientation-pairs that are consistent in length with that which is required to sufficiently 

describe the layout design of the period evolution. 
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Figure 35 – Example of the insufficient genetic material genome repair process 

4.3.4.4 Crossover Operator 

After the probabilistic execution of the jumping gene operator, a crossover operator is 

leveraged to vary the genetic composition of the modified parents produced by the JGO 

or the selection operator if the JGO was by chance not executed. The deployed cross-over 

operator is a direct adoption of Mazinani et. al.’s continuous uniform method already 

applied to the DLP. Note, like before, only the portions of the chromosome representative 

of the movable objects in the space, are operated on in this implementation. This is to 

ensure that the constrained objects in the space remain unaltered and therefore in their 

required positions. This helps to ensure feasibility, relative to such objects, is maintained 

by the algorithm. This nuance is unique to this dissertation’s implementation and is a 

result of the unique problem formulation considered. The deployed process for generating 

two offspring from that of the parent chromosomes is as follows:  

New
Period 
Genome

𝑥𝑛
′ : .18 .54 .4 .26 .9 .5

𝑦𝑛
′ : .54 .10 .56 .74 .4 .7
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Period 
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𝑥𝑛
𝑂: .2 .6 .3 .2 .9 .5

𝑦𝑛
𝑂: .5 .1 .6 .9 .4 .7

EQUATION
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1) First, a random uniformly distributed bit string equal in length to the period 

genome is generated as notionally demonstrated below for a genome 

consisting of four genes each 

2) Then, the coordinate centroid positions for the offspring are generated 

according to the following equations: 

 
𝑔𝑖
𝑂1 = 𝜆𝑖𝑔𝑖

𝑃1 + (1 − 𝜆𝑖)𝑔𝑖
𝑃2

𝑔𝑖
𝑂2 = 𝜆𝑖𝑔𝑖

𝑃2 + (1 − 𝜆𝑖)𝑔𝑖
𝑃1 (7) 

where i represents the gene of the bit string or genome, 𝑔𝑖
𝑂1 and 𝑔𝑖

𝑂2 represent the gene 

value (x or y coordinate position) of object i's coordinate centroid position for offspring 

one and two respectively, 𝜆𝑖 the bit string of step one, and 𝑔𝑖
𝑃1 and 𝑔𝑖

𝑃2 the gene values of 

parent one and two respectively. The process continues with the orientations as follows: 

3) First, a random binary bit string equal in length to the genome is generated 

4) Next the orientation gene values from parent one are transferred to the first 

offspring from the first parent for genes aligning with bits in the binary string 

having a value of one 

5) Then similarly, the orientation gene values from parent two are transferred to 

the first offspring from the second parent for genes aligning with bits in the 

binary string having a value of zero 
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6) Steps 2 and 3 are repeated for the second offspring except that now genes 

from parent one are transferred for zero bits and from parent two for one bits 

(i.e. simply the inversion of before) 

The above process is performed for each genome of the chromosome or put 

alternatively, each period of the layout design. The result of this is then two reproduced 

offspring genomes. This concludes the discussion of the uniform crossover method 

deployed to effectively evolve the populations of Stage Two. 

4.3.4.5 Mutation Operator 

The last genetic operator deployed is mutation. As mentioned several times before, the 

mutation operator facilitates genetic diversity in the populations. The mutation operator 

deployed in Stage Two to provide this diversity, adopts Mazinani et. al.’s tri-mutation 

scheme with alteration to method one of their scheme. This scheme employs three 

different mutation methods to alter the provided offspring design. Note, in this 

deployment, mutation is applied to each offspring with a very small probability. Also, 

these three methods operate only on the coordinate centroid position variables of the 

design variables and furthermore only for those objects that are movable, or free, in the 

space. A separate method is deployed to provide orientation mutation in the design.  

The first mutation method is a continuous localized adjustment of a single gene, 

the second a pair/tri-wise exchange of selected genes in a period, while the third is a pair-

wise exchange approach applied to all genes of a selected period. The process starts by 

first randomly selecting which of these three methods will be deployed to alter the 

design. The mutation method selected is then performed producing a slightly mutated 
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offspring design to then be considered for assignment to the current generation 

population. The three methods leveraged to mutate the offspring design are now outlined, 

starting with the continuous localized adjustment method. 

4.3.4.5.1 Method I – Continuous Localized Adjustment Method: 

The process deployed for mutating the offspring design in method one is as follows: 

1) First a gene (gi) in the chromosome is randomly selected for mutation 

2) Then a standard normal number, z, is randomly generated 

3) Finally, the gene selected in Step 1 is redefined according to the following 

function: 

 𝑔𝑖
′ = {

𝑔𝑖 + (𝑔𝑖
𝑈 − 𝑔𝑖) tanh(𝑘𝑧) , tanh(𝑘𝑧) ≥ 0

𝑔𝑖 + (𝑔𝑖 − 𝑔𝑖
𝐿) tanh(𝑘𝑧) , tanh(𝑘𝑧) < 0

 (8) 

where 𝑔𝑖
′ is the redefined gene value, 𝑔𝑖 the original gene value, 𝑔𝑖

𝑈 and 𝑔𝑖
𝐿 the gene’s 

upper and lower bounds, k a user-defined coefficient that controls the degree of closeness 

the redefined value is to the original, and z the randomly generated standard normal 

number from Step 2. This function is slightly different from Mazinani et. al.’s original 

formula. Mazinani et. al. applied a similar formula but applied to the flexible bay layout 

design problem. Therefore, to account for this difference in problem formulations, the 

bay ranges of the function were replaced with the continuous variable bounds. This 

substitution provided the same effect of promoting mutation in the neighbourhood of the 

original gene while preventing extreme changes from occurring. Steps two and three are 
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effectively executed twice, once for the x variable and once for the y variable of the 

randomly selected gene 𝑔𝑖. The redefined gene values overwrite the original gene values 

to form the newly mutated offspring design. 

4.3.4.5.2 Method II – Pair/Tri-wise Exchange Method: 

The process deployed for the second implemented method leverages the exchange of 

genes in the chromosome to mutate the offspring design. The process deployed is as 

follows:  

1) A genome, or period, of the chromosome is randomly selected 

2) Next, three genes in the selected genome are selected at random 

3) Then the pair-wise and tri-wise exchange of the three genes selected in Step 2 

is performed 

The exchange in Step 3 yielding the greatest improvement in the design’s performance is 

then accepted as the newly mutated offspring design.  

4.3.4.5.3 Method III – Pair-wise Exchange Method: 

The process deployed for the third implemented method is very similar to that of the 

second. It differs in that only pair-wise exchanges are considered. Additionally, instead of 

selecting only three genes of a randomly selected genome, or period, all genes are 

considered for exchange. The exact process is as follows: 

1) A genome, or period, of the chromosome is randomly selected 
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2) Pair-wise exchange of this periods genes is then performed 

Just like in method two, the exchange in Step 2 yielding the greatest improvement in the 

design’s performance is then accepted as the newly mutated offspring design. 

4.3.4.5.4 Orientation Mutation Method: 

The mutation methods outlined prior are applied only to that of the coordinate centroid 

position variables of the design. To provide diversity on an orientation-basis the 

following procedure was developed and subsequently deployed:  

1) A genome, or period, of the chromosome is randomly selected 

2) Next a gene in this selected genome is random selected 

3) Then, one of the two binary bit variables defining the gene is selected at 

random to be switched from its current value to its alternative (e.g. if its value 

is 0 it would be switched to 1) 

Once the offspring has been mutated by one of the randomly selected methods from 

earlier and then this orientation method, the resulting mutated offspring is passed on for 

potential assignment, by the algorithm, to the current population baring it is found to be a 

feasible design (i.e. one that abides by all constraints of the problem formulation). This 

reproductive cycle off selecting parents, evolving them to produce offspring, and finally 

mutating these offspring continues until the current generation’s population has been 

completely populated with feasible individuals, or designs. Once achieved the 

evolutionary process begins again for the next generation and continues this cycle until 
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convergence is achieved. How the implemented algorithm of Stage Two registers 

convergence is now discussed. 

4.3.5 Convergence Criteria 

The convergence criteria deployed to establish the convergence of the Stage Two 

populations, the three of phase two and the merged one of phase five, leverages the same 

criterion as was deployed in Stage One to establish convergence. As a review, these 

include a time constraint, maximum generation limit, and a continual solution 

improvement check in the form of a generation stall measure. To avoid redundancy in 

this document, one may refer to Section 4.2.6 on page 190 for a complete discussion of 

these criterion. A discussion on how these constraints, limits, and stall measures are 

leveraged in Stage Two, will however be provided. 

 In Stage Two, and more specifically that of phase two where the three initial 

populations are evolved independently, the time constraint and maximum generation 

limit are leveraged to enforce the isolation period discussed earlier. If it is desired that the 

isolation period last for a specified duration of time, the time constraint criteria can be 

leveraged to ensure that once this time spent in isolation is met, the populations would 

then be merged. It is recommended that if this be the case, then one should define the 

maximum generations appropriately to allow for the time constraint to be met without 

first reaching the generational limit resulting in the populations being merged 

prematurely. Similarly, if it is desired that the isolation period last for a prescribed 

number of generations before the merger, then the generation limit can be prescribed 

accordingly, taking care, like before, to prescribe the time constraint appropriately. This 
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logic only applied for the populations of phase two. As for the merged population it is 

recommended that the convergence criteria be defined appropriately to ensure the 

algorithm can completely converge on the best design for the provided layout problem. 

4.3.6 Summary of Stage Two 

As discussed earlier, Stage Two leverages a tri-population genetic algorithm to solve the 

MINLP formulation of the problem (i.e. designs defined by continuous centroid positions 

and binary orientation-pairs). Solution to such a formulation has since been established as 

being imperative to being able to assess a continuous layout and further adequately 

characterize real-life viable designs. The tri-population structure was implemented to 

provide improved and more robust solution performance. These initial populations are 

initialized by leveraging the collection of feasible designs generated throughout the 

solution procedures of Stage One. Novel methods were developed for several of the 

genetic operators deployed in the evolutionary process of the algorithm to handle the 

unique nature of the problem formulation of this research.  

Before proceeding, it is important to revisit the overarching goal of this second 

stage in the LIVE methodology. As was established in the preceding chapter on the 

formulation of the methodology, the goal of Stage Two is to solve the detailed 

formulation of the continuous dynamic layout problem. Due to the complexity of such a 

formulation, the outlined algorithm and methods of Stage Two were developed to achieve 

solution to the problem most efficiently. With the developed solution procedures of Stage 

One and Two now thoroughly detailed, the next section elaborates on how the designs 

generated throughout these stages are evaluated for their performance and feasibility. 
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 Step 3: Evaluating the Performance of a Layout Design 

Preceding sections have focused on how the layout problems are initialized and 

subsequently solved in the LIVE methodology. A major component of this dissertation, 

and one that is critical to how the best solution is defined for the problem, has yet to be 

discussed though. This component relates to how the designs are evaluated for 

performance and feasibility. The focus of this section is thus on how the feasibility and 

performance of each of the designs generated and considered throughout Stages One and 

Two are established in this dissertation. This section is decomposed into two sub-

sections. The first reviews the performance model developed to evaluate a design’s 

quality, or fitness, while the second reviews the constraint model developed to determine 

the feasibility of a design. 

The performance model developed applies across both stages and the constraint 

model largely does as well, though there are some key differences. These differences 

relate to the inherent nature of the Stage One formulation and more specifically that of 

the sequence-pair model deployed in it to represent the layout. Further, despite the design 

variables defining the layouts of Stage One differing from that of Stage Two, the 

performance and constraint models developed are mathematically identical. This is 

because though Stage One operates on sequence-pairs to establish the position of the 

objects in the space, the placement algorithm, outlined in Section 4.2.1.1 on page 128, 

can be leveraged to map these sequence-pairs to object x, y coordinate positions in the 

space. Once mapped, the designs of Stage One and Two are identically represented by a 

combination of x, y coordinate positions and orientation-pairs, which are then used in the 
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models to establish design performance and feasibility. How the performance of a layout 

design is established in this dissertation is now presented. 

4.4.1 Performance Model 

A major emphasis of this dissertation was to provide a medium in which more informed, 

collaborative, and effective design decisions could be made. The performance model 

developed in this dissertation, to evaluate designs, was instrumental in realizing this goal. 

In an era were “data is power” or put alternatively, “data is knowledge and knowledge is 

power,” access to information is a necessity [49]. The developed performance model 

provides this access in the layout design process thereby enabling more informed and 

effective data-based decisions to be made. This access is ever more important when 

tackling the design of layouts subject to evolving and uncertainty conditions.  

In the developed model, key performance metrics are made transparent to the 

designer to help aid in the decision-making process. Additionally, rather than aggregating 

these performance metrics into a utility function, with no physical meaning, to define a 

design’s overall performance (i.e. objective function in the optimization algorithms of 

before), a different approach was taken in this dissertation. Instead a cash-based model 

was deployed to define the performance of the layout design and more generally the 

system. Leveraging a cash-based model also has an added benefit of promoting 

collaboration, another pillar of this dissertation’s overarching goal. 

Defining layout performance on a cash-basis provides a metric that designers, 

engineers, and management alike can comprehend. Too often can valuable insight and 

information be lost during interactions involving these stakeholders. While a utility 
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function is a common concept for engineers, it is less likely a concept known and 

comprehensible to management. This creates a language chasm between the stakeholders, 

which not only makes it difficult for information to effectively pass between them, but 

also inhibits effective collaboration. Leveraging a cash-based model bridges this gap, 

providing a common language in which all stakeholders can comprehend. This in turn 

helps to ensure that more effective communication and collaboration can occur between 

all stakeholders. Furthermore, it is management that holds the decision-making power. 

Managerial decisions almost always consider costs. Often management relies on metrics 

such as profit, net income, and retained earnings, to name a few, to inform their 

decisions. As such, a cash-based model was an ideal choice to deploy in this dissertation 

to evaluate the performance of a layout design. Moreover, these managerial accounting 

metrics of profit, net income, and retaining earnings are leveraged to form the foundation 

of the developed cash-based performance model.  

The developed model summarizes the overall performance of a layout design with 

the accounting equation for retained earnings in the absence of dividends, provided 

below: 

 𝑅𝐸𝑡 = 𝑅𝐸𝑡−1 + 𝑁𝑒𝑡 𝐼𝑛𝑐𝑜𝑚𝑒𝑡 (9) 

where 𝑅𝐸𝑡 defines the returned earnings at the end of the current period, 𝑅𝐸𝑡−1 the 

returned earnings at the beginning of the period or end of the previous one, and 

𝑁𝑒𝑡 𝐼𝑛𝑐𝑜𝑚𝑒𝑡 the net income for the current period. Retained earnings is an account that 

records the accumulated profits of a business [64]. Therefore, the returned earnings 
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account value, at the end of the planning horizon, is representative of the system’s 

cumulative performance over the entire horizon. As such, this ending balance becomes 

the objective function in the optimization algorithms of Stage One and Two. The goal of 

the algorithms is to then maximize this returned earnings metric. The design yielding the 

greatest retained earnings is then considered the best design of the provided scenario 

layout problem.  

The net income component in the above equation represents the performance of 

the system, or design, in each of the periods of the planning horizon. Net income is 

synonymous to that of the systems profit. Elaborated, it is defined as the total revenue 

less all operating costs, business expenses, interest, and taxes paid out in a given period 

[65]. The developed model deploys the following equation to define the net income each 

period: 

 𝑁𝑒𝑡 𝐼𝑛𝑐𝑜𝑚𝑒𝑡 = 𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑡 − 𝐶𝑜𝑠𝑡𝑠𝑡 − 𝜙𝑡 (10) 

where 𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑡 is the revenue for the current period, 𝐶𝑜𝑠𝑡𝑠𝑡 the costs for the current 

period, and 𝜙𝑡 is a cost penalty function, subtracted from the net income, to account for 

constraint violations in the current period. This penalty function will be elaborated on 

later when the constraint model of this dissertation is presented. For now, understand that 

this penalty function can be a form of an interest expense, business expense, or both. It is 

assumed though that there are no other prior or current debts other than those 

encapsulated in the penalty function, which is why there is no dedicated term for interest 

expenses in the above equation. Furthermore, it is assumed that taxes do not apply. 
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Inclusion of either of these would be relatively easy provided the modular nature in 

which the performance model was implemented. The above assumptions are a few of 

those implemented in this dissertation to simplify the analysis. More will be presented in 

subsequent sections and as needed. This, for now, is enough to gain an appreciation for 

the granularity of the implemented performance model. 

Now, if there is no penalty for the current period, the net income equation 

simplifies to the equation for earnings before interest and taxes, also known as EBIT. In 

other words, EBIT for each period is just the revenue generated by the system 

(𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑡) less the costs incurred (𝐶𝑜𝑠𝑡𝑠𝑡) to generate such revenue. The revenue 

generated each period is defined in this model as the value generated from the system 

producing products, where the specific products produced by the system and their 

associated market values are defined during the problem initialization step of the LIVE 

methodology outlined before. The costs component of the equation then is a compilation 

of several different costs associated with producing said products. Most of the costs 

considered in this dissertation are direct, in other words, direct costs of production. 

Included in this category are the material handling costs (MHCs); the metric often used in 

the literature to define the performance of a layout design. MHCs are only one of many 

costs that establish the cost of production though. As will be observed later when the 

costs accounted for in the model are presented, many other costs contribute to the cost of 

production. As mentioned before, data is knowledge and knowledge is power. Inclusion 

of such costs not only provides a more detailed evaluation of a layout design’s 

performance, but also provides more data and therefore more power to make the correct 
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design decisions down the road. In addition to the direct costs, indirect costs such as 

rearrangement costs and capital expenditures are also accounted for by the model.  

Now before either of these revenue or cost functions can be outlined, two relevant 

discussions must precede to provide full closure to their formulations. The first of these 

addresses how the material handling distances, which are later leveraged to define the 

MHCs mentioned before, are established in this dissertation. This discussion also then 

consequently addresses the first major research gap identified in the beginning of this 

dissertation. The second is a presentation of the implemented process flow analysis. This 

analysis requires presentation before the revenue and cost functions as it establishes the 

system’s actual production rates and therefore the overall revenue and costs. Before the 

process flow analysis or method of determining the material handling distances can be 

presented, a brief overview of how the objects physically interact with one another in the 

space is required to provide context to subsequent discussions. 

4.4.1.1 Object Interactions 

A multiple spacing interaction, unique to this dissertation, is deployed to simulate the 

difference between the space required to move about the objects in the environment and 

the space required to perform any necessary maintenance procedures on each object. The 

first, labeled as the walking spacing from here on out, identifies the closest distance to 

each object at which one can safely pass by. As a result, this walking spacing becomes 

integral in determining the flow distances between two objects. This is because the 

advanced method of determining the flow distances, which will be presented next, is built 

on the premise of providing the shortest path that does not violate such safety boundaries 
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about the objects. The walking spacing is in turn used to simulate said boundaries of each 

object in the flow distance method. Additionally, it is these simulated walking boundary 

distances that are leveraged in Stage One to define the widths and heights of the objects 

in the placement algorithm. Defining the boundaries of the objects in Stage One 

according to these walking boundaries presents a major benefit when considering the 

constraints of the problem. This benefit will be observed when the constraint model is 

presented later.  

The maintenance spacing on the other hand, represents the hard boundary 

constraint between two objects. In other words, two objects cannot be any closer than the 

summation of their individual maintenance spacing’s. The maintenance spacing is object 

specific whereas the walking spacing is uniform across all objects. The maintenance 

spacing for infeasible regions, such as those representing interior walls, pillars, and those 

used to define arbitrary shaped facility layouts, are uniformly set to zero in this model. 

Further, an important restriction is placed on these spacing’s relative to one another. This 

restriction is that the maintenance spacing be less than the walking spacing for every 

object. This, in conjunction with the walking boundaries being applied in Stage One, 

provides an added benefit when considering the constraints in the first stage. The only 

other restriction placed on both spacings is that they at least be greater than or equal to 

zero to ensure these boundaries fall outside the object’s physical boundaries. The 

relationship between these different spacing boundaries is depicted in Figure 36. Note, in 

this and all subsequent figures the object’s physical, maintenance, and walking 

boundaries are represented by black solid, dotted black, and red solid lines respectively 

and the I/O points by blue solid diamonds. The inclusion of this multiple spacing 
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interaction concept required the inclusion of additional constraints; however, it also 

improves the detail of the formulation. It enables aisles to become a derived characteristic 

of the layout and a more accurate layout evaluation to be achieved, which was a core goal 

of this dissertation. Now that the object interactions have been outlined, the method 

developed to address the first research gap and define the material handling distances in 

this dissertation is presented. 

 

Figure 36 – Station spacing interactions 

 

4.4.1.2 Advanced Material Handling Distance Method 

As was mentioned before, MHCs are one of several direct costs accounted for by the 

developed model. The importance of the MHCs was also documented during the 

background and motivation chapter of this dissertation. As a reminder, it was identified 

that MHCs can contribute up to 50% of the operating costs and 70% of the total cost of 
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producing a product [72]. Because of its importance, accurately modelling these MHCs is 

crucial. Moreover, it was identified in Observation 3 that failing to account for flow 

feasibility when determining the material handling distances can result in suboptimal 

layout designs in practice. Then as was established later in Assertion 9, a material 

handling distance method that considers flow path feasibility was to be imperative to 

accurately evaluating a layout design such that suboptimal designs were avoided. With no 

such method implemented in the FLP literature, this presented the first major research 

gap. Therefore, an advanced flow distance method ensuring flow path feasibility was 

developed and deployed in this dissertation to provide closure of this gap. This advanced 

flow distance method is now presented. 

The primary objective of the advanced flow distance method developed is to 

ensure flow feasibility in order to improve the accuracy of the layout evaluation. By 

using a branch and bound method, tailored to the problem, to determine the optimal 

feasible path distance (𝐷𝑖𝑗), this can be achieved. Such a method is sufficient since the 

problem is of relatively small size and the variables are discrete (e.g., the corners of the 

walking boundaries of each object). The developed tailored branch and bound method 

consists of three steps: the generation of initial candidate paths, a branching step which 

uses a splitting procedure to provide exploration, and a pruning step that systematically 

discards sub-optimal paths.  

To generate the initial candidate solutions, or branches, a straight line is drawn 

between the two I/O points of a connection and all objects that are intersected by this line 

(i.e., violated) are identified. Understanding that to avoid violating the stations, the path 

must round the objects corner points that result in the largest deviation to each side of the 
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line (i.e., largest normal distances to each side of the line), two branches can be formed 

per violated or bisected object. In other words, if two objects are bisected by this initial 

straight line, four candidate branches consisting of three points (the two connection 

points sandwiching the maximum violation point) are generated. Likewise, if three are 

bisected, six initial branches will be generated.  

This process of taking the maximum normal distance points of the violated 

objects becomes the basis of the splitting procedure of the algorithm. This is visually 

demonstrated, in a limited capacity, in Figure 37. The next level of branches now has two 

segments that make up its potential path. Each one of these is evaluated independently 

and new branches are generated in a combinatorial manner where each branch contains 

the integration of a path deviation from each violated segment. This process continues for 

each subsequent branch until they are no longer in violation, thereby becoming a leaf, or 

until they are pruned. At every branch level the distances for each potential path are 

calculated by summing the direct distances of each of their segments as follows: 

 𝐷𝑖𝑗 =∑√(𝑥𝑘 − 𝑥𝑘−1)2 + (𝑦𝑘 − 𝑦𝑘−1)2
𝑛

𝑘=2

 (11) 

where n defines the number of points that make up the path (which is one greater than the 

number of segments), k defines the leading point of the segment, and k-1 the trailing 

point. For example, the feasible paths generated in Figure 37 consist of two segments 

(i.e., n = 3). Determining the flow distance, Dij, becomes the summation of the two 

segment lengths in this example. 
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Figure 37 – Splitting procedure visualization for the optimal feasible path 

generation algorithm 

The splitting procedure, detailed above, is based on the premise of deviating from 

a straight line; therefore, each subsequent split can only further increase the path distance. 

As a result, this enables the inclusion of elitism to be implemented in the form of a 

pruning step, which is only active in this formulation once the first feasible path is 

discovered. Once a feasible path is found, which is analogous to a leaf in this 

formulation, all other branches can be compared to this discovered path by comparing 

their distance as found using Equation (11). Any of these potential paths that fail to have 

a more optimal path distance are pruned from the search. This is possible since the basis 
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of the formulation is that each subsequent branch can be no better than its parent branch 

as it incorporates a path deviation. This greatly improves the algorithm by systematically 

avoiding unnecessary computations. 

The algorithm is also improved by upfront eliminating all corner points that are 

infeasible, which includes those falling outside the outer boundary, within infeasible 

regions, or within the walking boundaries of other objects. Additionally, to avoid 

unnecessary computations related to the duplication of paths, which are unavoidable 

occasionally, a check for paths that are the subset of others already established is 

included. 

Inclusion of this flow distance method required additional constraints to be 

accounted for which act in avoiding unnecessary executions of this formulation when a 

feasible path is unachievable. For example, if an I/O point falls in an infeasible region 

then it would not be accessible. This inaccessibility would result in the algorithm 

persisting until it terminates at the implemented maximum branch generation limit that is 

included in the formulation. Although an infinite loop is avoided by this limit, excessive 

time would be spent performing computations that could be avoided upfront. These 

additional constraints help to accomplish this avoidance upfront. These constraints, along 

with others will be detailed later when the constraint model is presented.  

The algorithm outlined above is executed for each unique process flow segment 

(object to object transfer of the products) present within each period of the layout design. 

Once all the material handling distances have been determined the process flow analysis 

of the system can then be performed. 
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4.4.1.3 Process Flow Analysis 

The way revenue is generated is by transforming inputs (raw materials, labor, capital, 

etc.) into outputs (i.e. products in this case) which can then be sold in the market for a 

profit [101]. To provide this transformation, activities add value as the product proceeds 

through its process in the system. As it pertains to the problem of this dissertation, these 

activities and their capacities are known following the problem initialization step of the 

LIVE methodology. For reference, these activities occur at the station objects, which can 

be workstations, machines, staging areas, etc., but also between the stations when the 

products are being handled. It was also assumed in the initialization step that the products 

to be produced by the system each period of the planning horizon are known and thus 

defined. Furthermore, the process flows of each of these products, analogous to the 

sequence of station objects visited by the products, are also established in this step. 

Moreover, the distances between the station objects have since been determined with the 

deployment of the developed advanced distance method previously outlined.  With the 

process flows and the capacities of the activities composing these processes known, a 

process flow analysis of the system is nearly possible.  

The last remaining property that needs definition is the production rates of each of 

these products throughout the planning horizon. Fortunately, these production rates are 

another property defined during the initialization of the problem. Recall though, these 

production rates were defined before as desired production rates. This distinction was 

strategic. These production rates are those the designer chooses/hopes to achieve, not 

necessarily the rates in which the system can sustain. To know what the system can 

sustain and whether these rates are achievable is where the integration of the process flow 
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analysis in this dissertation became necessary. Its inclusion also has the benefit of 

providing added insight into the system and the operations. Operation-based data such as 

the bottlenecks of the system and the utilizations throughout become available data, 

which can then be leveraged by the designer and management to make more informed 

decisions regarding the design of the layout. 

  The function of the process flow analysis in the performance model is thus 

twofold. It first functions in identifying if the provided production rates are feasible 

according to the system’s capacity. If the current design of the system (i.e. layout design, 

assets present, labor capacity, etc.) cannot meet the prescribed production rates the 

process analysis then performs its second function of then determining what the actual 

production rates should be such that the system is operating at its maximum capacity. 

Determining these actual production rates is instrumental in ensuring that the layout 

designs considered in Stage One and Two are accurately evaluated. 

 In the developed model, the system’s current operating capacities are determined 

by establishing the utilization levels of all the stations as well as the handlers of the 

system. The latter is important as it directly considers the layout design. Layout’s that are 

better configured, and assuming all else constant, will produce lower handler utilization 

levels and vice versa. The general equation deployed to determine the utilization of each 

station and the handlers is as follows: 

 𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 (𝑈) =
𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝐻𝑜𝑢𝑟𝑠

𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝐻𝑜𝑢𝑟𝑠
 (12) 
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where the available hours are defined as the number of work hours per day (WH) and the 

production hours is the required production time needed, in a given day, to sustain the 

production rates provided.  

4.4.1.3.1 Station Utilizations 

For a specific station, this production time constitutes the time it takes to produce, at the 

provided rate, all products for which it is involved in producing (i.e. all product-process 

for which it is a part of the process-flow) and for which is present (different depending on 

the scenario and period of the layout design). The equation implemented to establish the 

production time for each relevant station is as follows: 

 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝐻𝑜𝑢𝑟𝑠 =  ∑
𝑃𝑅𝑗

𝐶𝐴𝑆𝑗
𝑗

 (13) 

where j are the processes for which the station of interest is a part of, PR are the current 

production rates, and CAS are the station’s capacities for each of the j product-processes. 

The ratio of PR to CAS can be understood as being each product-processes contribution 

to the station’s production hours. The summation then establishes the number of hours 

then needed in each day to sustain that provided PR. Dividing this by the work hours per 

day, as established in Equation (12), provides the utilization level of the station. This 

computation is performed for each relevant station in a given period of the layout design 

and moreover, at each forecasting point of the scenario structure defined for the problem. 

WH is defined at each of these forecasting points and so too is the PR. Any stations 

having a utilization level exceeding a value of one, or when converted to a percent, a 

value of a hundred (100%), is indicative that the station cannot sustain the provided 
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production rates (PR) and action must then be taken to remedy this violation of the 

system’s maximum capacity. 

4.4.1.3.2 Handler Utilizations 

Likewise, the production time for the handlers constitutes the time it takes to move each 

product throughout the space (i.e. from station to station) per the provided production 

rates. The equation implemented to establish this production time is as follows: 

 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝐻𝑜𝑢𝑟𝑠 =  ∑
𝑃𝑅𝑗

𝐶𝐵𝑆𝑗
𝑗

 (14) 

where PR are the production rates like before and where CBS is the capacity between-

station for product-process j (i.e. process flow segment), which is defined as follows: 

 
𝐶𝐵𝑆𝑗 = 

1

∑
1

𝐶𝐵𝑆𝑆𝑗𝑘𝑘

 
(15) 

where CBSS is the capacity of a between-station segment k of the product-process j and is 

a function of the segment handling distance as follows: 

 𝐶𝐵𝑆𝑆𝑗𝑘 = 
𝐶𝐻𝑗𝑘

𝐷𝑗𝑘
 (16) 

where 𝐶𝐻𝑗𝑘 is the handler flow-rate capacity for segment k of product-process j and 𝐷𝑗𝑘 is 

the segment flow distance as established by the material handling method outlined 

before. It is relevant to note that in this developed model, the between processes were 

assumed to be independent of each other (i.e. two products with the same between 
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process do not share transport between, i.e. two separate carts are required). Though this 

assumption is perhaps far from ideal, especially in the case of job shop environments, it 

was implemented to reduce the complexity of the model. 

Now the inverse of the inverse summation in Equation (15) enables the capacities 

of each individual segment of the j product-process to be joined to establish the overall 

capacity of the product-process j. Dividing this then from the production rates enables the 

handling production hours for each product-process to be determined and subsequently 

the utilization levels of the handlers. Like before with the stations, any product-process 

yielding a handler utilization exceeding a value of one or a hundred percent is indicative 

that the prescribed production rates cannot be sustained by the handlers between the 

stations. Just like before, this requires addressment. 

4.4.1.3.3 Dynamic Adjustment of the Production Rates 

Now for any situation where the station or handler utilizations exceed that in which is 

possible per the system’s capacities, the production rate requires adjustment in order to 

bring the system back in line with what is possible. Not doing so would result in a design 

appearing far better than it actual would be in practice; therefore, it was paramount that 

such situation were addressed and this problem remedied. In the developed model, a 

method of dynamically adjusting the production rates such that the system’s maximum 

capacities were then met was implemented. To perform this adjustment, only those 

product-processes (j) associated with station or handler violations (i.e. utilizations 

exceeding 100%) are adjusted. Those not associated; do not need adjustment as their 

respective stations or handlers are not operating beyond maximum capacity as it is. 
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Adjustment to them would be counterproductive as it would only reduce the profitability 

of the system. For the product-processes that are associated with violated handlers or 

stations the production rates of these can be adjusted in one of two ways depending on 

how the designer has established how to handle such situations while defining the 

scenario in step one of the LIVE methodology.  

The first option is to adjust the production rates of these relevant product-

processes while maintaining the originally prescribed product-process production rate 

ratios. In other words, if three processes are to be adjusted and their relative rates are 

eight, four, and two respectively, then the ratios would be 4:2:1. The three processes 

would then be adjusted according to these ratios until every one of these processes meet 

the system’s capacities. In other words, the utilizations of the handlers and/or stations 

coupled to these product-processes all are then less than or equal to hundred percent. The 

second option is to adjust the production rates while maintaining the most profitable 

product-processes. In this case, the least profitable product-processes are decreased or 

eliminated first before the more profitable ones are. This is done until the system 

capacities are met by all stations and/or handlers associated with these processes. The 

estimated manufacturing cost and market value inputs defined earlier in step one of the 

LIVE methodology, are leveraged in this option to identify the order of these relevant 

processes from least profitable to most profitable. Regardless of which option is deployed 

by the designer, MATLAB’s fmincon function is leveraged to efficiently adjust these 

production rates of the product-processes until the system’s maximum capacities are met. 

Now because the computations are dependent on scenario inputs conditions that 

change across the horizon, this utilization check is performed at each of the distinct 
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scenario horizon forecasting points. Furthermore, because the handler utilizations are a 

function of the handling distances, which are a function of the placements of the stations 

in the space (i.e. layout configuration), these computations need be performed for each 

unique layout design. The utilizations for each station and the handlers on a product-

process-basis are recorded and therefore accessible to the designer. Moreover, the 

original and adjusted production rates are retained for the designer to review posterior. 

The availability of this data can help better inform the designer on the performance of the 

layout design(s) and strategic business decisions considered in the scenario. With the 

production rates adjusted to meet the systems capabilities, the revenues and costs can 

then be computed for the system. 

4.4.1.4 Revenue and Costs Functions 

The revenue and cost components of Equation (10) and the functions implemented in the 

model to define them are now presented. The discussion that follows provides an 

understanding of how the revenue and costs for each period were defined in this model, 

while the mathematical integrations of the lower level functions are omitted provided 

their simplistic forms.  

The implemented functions are product-process based. In other words, each 

product-process uniquely contributes to the bottom-line of the system. Such an approach 

is a key enabler to allowing process changes to be analysed by the designer. The 

capability to analyse process introductions, eliminations, changes, and fluctuating 

production demands enables a wide range of strategic business decisions regarding the 
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design of the system and layout to be considered. Before proceeding, two overarching 

assumptions of the implemented functions are as follows: 

1) A year consists of 52 weeks, each week consisting of 7 days 

2) All conditions either behave discretely or linearly across the forecasting 

segments of the horizon 

4.4.1.4.1 Revenue Function 

The implemented revenue function is product-process-based as mentioned before. As 

such, determining the revenue for a given period t requires the contribution of each 

product-process to be established. Moreover, each period t can span one or multiple 

segments of the forecasting horizon. This dependency is demonstrated in Equation (17), 

which defines the revenue for a given period t: 

 𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑡 = ∑∑𝑅𝑖𝑗
𝑗𝑖

 (17) 

where i are the horizon segments in which period t spans, j are the relevant product-

processes of the period, and 𝑅𝑖𝑗 is the contribution of a product-process j in segment i to 

the revenue of the period. Recall, that while within a period the layout configuration 

remains unchanged, the conditions are likely not to. Given that the conditions are likely 

to change, the revenue, being a function of these conditions, across each segment i will 

too vary. Now in the case where the period spans exactly one of the forecasting horizon 

segments, Revenuet becomes equivalent to the summation of each product-processes 
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contribution across the segment (∑ 𝑅𝑗𝑗 ). Figure 38, below, is a recreation of the example 

provided back in the problem initialization section when defining the format of the input 

conditions. This figure has been supplemented here whereby the horizon segments that 

the above summation would encompass for period two, t = 2 are labelled. In this specific 

example, two segments would be spanned. 

 

Figure 38 – Segment indexing example for production rate condition 

 The equation for each product-process j’s contribution to the revenue in segment i 

of the period t is as follows: 

 𝑅𝑖𝑗 = ∫ 𝑀𝑉𝑗(𝑡) ∙ 𝑃𝑅𝑗(𝑡) ∙ 𝑑𝑡
𝑡𝑖+1

𝑡𝑖

 (18) 

where the revenue is just a function of two conditions: the market value, MV, of the 

product-process j, which was defined in step one of the methodology, and its production 
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rate, PR, which was either confirmed as being possible or altered accordingly in the 

process analysis outlined before. Note, 𝑡𝑖 is the time at the start of the segment, 𝑡𝑖+1 the 

time at the end of the segment. The integration in Equation (20) would be carried out 

twice for the prior example where period two was being evaluated. The functional forms 

of these two conditions across the segments are as follows:  

 𝑀𝑉𝑗(𝑡) = 𝑀𝑉𝑖𝑗 +
𝑀𝑉𝑖+1,𝑗 −𝑀𝑉𝑖𝑗

𝑡𝑖+1 − 𝑡𝑖
(𝑡 − 𝑡𝑖) (19) 

 𝑃𝑅𝑗(𝑡) =
52𝑊𝐷𝑖
12

 [𝑃𝑅𝑖𝑗 +
𝑃𝑅𝑖+1,𝑗 − 𝑃𝑅𝑖𝑗

𝑡𝑖+1 − 𝑡𝑖
(𝑡 − 𝑡𝑖)] (20) 

where WD is the work days per week (defined in the problem initialization) and defined 

discretely across the segment and according to the value at the start of the segment. The 

leading term in the production rate function ensures that it is converted appropriately 

from units/day to units/month to align with the monthly scale of the planning horizon and 

scenario structure. Integrating these functions, multiplied together, across the segments 

and for each product-process yields the revenue for the period.  

As can be observed, the functional form of these conditions is linear. As was 

established before, the behaviour of the conditions across the forecasting segments is 

assumed to be linear in this dissertation. With that said, the implementation is modular 

enough that if one were to choose a different functional form, the integration could be 

performed without major changes to the underlying model. In future discussions of the 
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cost function, this depth of discussion will not be achieved. Note though that the forms of 

the low-level functions are all linear in the model. 

4.4.1.4.2 Cost Function 

With the implemented revenue functions defined, the costs associated with generating the 

revenue and moreover those costs captured in the developed model are presented. The 

implemented cost function encapsulates a variety of costs, including direct and indirect 

costs of production as well as capital expenditures. The summarizing cost function of the 

model is presented below: 

 𝐶𝑜𝑠𝑡𝑠𝑡 = 𝐷𝐶𝑃𝑡 + 𝐼𝐶𝑃𝑡 + 𝐶𝐴𝑃𝐸𝑋𝑡 (21) 

where DCPt are direct costs of production, ICPt the indirect costs of production and 

CAPEXt the capital expenditures for the period. In the developed performance model, the 

ICPt are a function of the DCPt and as such will be presented first.  

4.4.1.4.2.1 Direct Costs of Production 

The direct cost of production component, DCPt, encompasses several different costs 

associated with producing the products. Each of these costs vary as a function of the 

forecasting segment and thus, like before, must be summed across any segments 

encompassed by the given period as follows: 

 𝐷𝐶𝑃𝑡 = ∑𝐶𝑖
𝑖

 (22) 



 240 

where i is the forecasting segments encompassed by the period and Ci the cumulative cost 

of each segment. This cumulative cost of each segment can be further decomposed as 

follows: 

 𝐶𝑖 = 𝑀𝐶𝐴𝑆𝑖 + 𝑀𝐶𝐵𝑆𝑖 (23) 

where MCASi are the manufacturing costs at stations and MCBSi the manufacturing costs 

between-stations. The former is related to the activities performed at the stations to 

transform the product while the latter relates to the handling activities performed to move 

products from one station to the next. 

 The costs at stations can even further be decomposed into the core costs of the 

cost model as follows: 

 𝑀𝐶𝐴𝑆𝑖 = 𝐷𝐿𝑃𝐶𝑖 + 𝐷𝐿𝑆𝐶𝑖 + 𝐷𝐶𝐶𝑖 (24) 

where DLPCi is the cumulative direct production labor costs, DLSCi the cumulative 

direct setup labor costs, and DCCi the cumulative direct consumable costs for segment i. 

Each of these are summed across the relevant product-processes for the current period t 

just as was done before with the revenue. Moreover, the DLPCi and DLSCi are summed 

over each of the stations associated with each of these product-processes. This 

mathematically is as follows: 

 𝐷𝐿𝑃𝐶𝑖 = ∑∑𝐷𝐿𝑃𝐶𝑖𝑗𝑠
𝑠𝑗

 (25) 
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 𝐷𝐿𝑆𝐶𝑖 = ∑∑𝐷𝐿𝑆𝐶𝑖𝑗𝑠
𝑠𝑗

 (26) 

 𝐷𝐶𝐶𝑖 = ∑𝐷𝐶𝐶𝑖𝑗
𝑗

𝐷𝐶𝐶𝑖 = ∑𝐷𝐶𝐶𝑖𝑗
𝑗

 (27) 

where j is the relevant product-process of the segment, s the stations of the product-

process j and as such DLPCijs and DLSCijs are the direct production and setup labor costs 

associated with station s producing product j. DCCij is then the direct consumable cost 

associated with producing product j. These costs are defined by the following integration 

equations: 

 𝐷𝐶𝐶𝑖𝑗 = ∫ 𝐷𝐶𝐶𝑗(𝑡) ∙ 𝑃𝑅𝑗(𝑡) ∙ 𝑑𝑡
𝑡𝑖+1

𝑡𝑖

 (28) 

 𝐷𝐿𝑃𝐶𝑖𝑗𝑠 = ∫
𝑁𝑊𝑠 ∙ 𝐿𝐶𝐴𝑆𝑠

𝐶𝐴𝑆𝑗𝑠
∙ 𝐿𝐶𝐴(𝑡) ∙ 𝑃𝑅𝑗(𝑡) ∙ 𝑑𝑡

𝑡𝑖+1

𝑡𝑖

 (29) 

 𝐷𝐿𝑆𝐶𝑖𝑗𝑠 = ∫
𝑁𝑊𝑠 ∙ 𝐿𝐶𝐴𝑆𝑠

𝑆𝐴𝑆𝑗𝑠
∙
𝐿𝐶𝐴(𝑡) ∙ 𝑃𝑅𝑗(𝑡)

𝑆𝑅𝑗(𝑡)
∙ 𝑑𝑡

𝑡𝑖+1

𝑡𝑖

 (30) 

where DCCj is the direct consumable cost to produce a single product j, 𝑁𝑊𝑠 are the 

number of workers at station s, 𝐿𝐶𝐴𝑆𝑠 is the average labor rate of a workers at station s, 

𝐶𝐴𝑆𝑗𝑠 the capacity of station s in producing product j, 𝑆𝐴𝑆𝑗𝑠 in a similar fashion the setup 

capacity of station s in setting up for product j production, 𝐿𝐶𝐴 the labor rate adjustment 
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factor, and 𝑆𝑅𝑗(𝑡) the setup frequency of product j across each segment. Recall, all these 

properties were defined during the problem initialization step of the LIVE methodology. 

Their elaborated definitions, units, and uses are outlined in Appendix C. Integrating these 

functions over the segment for each process and further station, when necessary, 

establishes the direct costs of production at the stations for the segment. 

Before continuing, it is relevant to note that as demonstrated in Equation (30), the 

setup times are allocated on a daily-basis. Though in some cases it may not be necessary 

or practical to setup production for a product on a daily-basis, a simplifying assumption 

was made. It was assumed that setups be distributed across the time segments. It was 

believed that this would more accurately account for the setup costs within the segment 

and furthermore enable the impact that setup frequency has on the costs and personnel 

utilization (time associated with setup) to be observed.  

 Continuing with the direct costs of production component of the summarizing 

cost function, the direct costs of production between the stations, 𝑀𝐶𝐵𝑆𝑖 accounts for the 

costs associated with handling the products. It is decomposed further into two 

components as follows: 

 𝑀𝐶𝐵𝑆𝑖 = 𝐷𝐿𝐻𝐶𝑖 + 𝑂𝐻𝐶𝑖 (31) 

where 𝐷𝐿𝐻𝐶𝑖 is the cumulative direct handling labor costs and 𝑂𝐻𝐶𝑖 the cumulative 

other handling costs, more commonly referred to in the literature as the material handling 

costs (MHCs). In this model, the traditional MHC function is broken into two different 

components for more cost granularity. It should be noted that reducing the labor costs to 
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zero will render the first component of Equation (31) irrelevant leaving just the second 

component which can then be leveraged to emulate the literature standard MHC function 

as both these are a function of the material handling distances as will be observed. Both 

these cumulative costs are a function of the product-process and handling segment of the 

process flow. These are summed across these dimensions as follows: 

 𝐷𝐿𝐻𝐶𝑖 = ∑∑𝐷𝐿𝐻𝐶𝑖𝑗𝑘
𝑘𝑗

 (32) 

 𝑂𝐻𝐶𝑖 = ∑∑𝑂𝐻𝐶𝑖𝑗𝑘
𝑘𝑗

 (33) 

where j as always is the relevant product-processes of the segment and k is the handling 

segment of the product-process j. As such, 𝐷𝐿𝐻𝐶𝑖𝑗𝑘 and 𝑂𝐻𝐶𝑖𝑗𝑘 are then the direct 

handling labor cost and other handling cost for segment k of product-process j in segment 

i. To obtain these costs, the following integration equations are deployed: 

 𝐷𝐿𝐻𝐶𝑖𝑗𝑘 = ∫
𝑁𝐻𝑗𝑘 ∙ 𝐿𝐶𝐵𝑆𝑗𝑘

𝐶𝐵𝑆𝑆𝑗𝑘
∙ 𝐿𝐶𝐴(𝑡) ∙ 𝑃𝑅𝑗(𝑡) ∙ 𝑑𝑡

𝑡𝑖+1

𝑡𝑖

 (34) 

 𝑂𝐻𝐶𝑖𝑗𝑘 = ∫ 𝑂𝐻𝐶𝑗𝑘 ∙ 𝐷𝑗𝑘 ∙ 𝑃𝑅𝑗(𝑡) ∙ 𝑑𝑡
𝑡𝑖+1

𝑡𝑖

 (35) 

where 𝑁𝐻𝑗𝑘 is the number of handlers for segment k of product-process j, 𝐿𝐶𝐵𝑆𝑗𝑘 the 

average handler labor cost for segment k of product-process j, 𝑂𝐻𝐶𝑗𝑘 the other handling 
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cost per unit product for each handling segment k of product-process j, 𝐷𝑗𝑘 the handling 

distance for segment k of product-process j, and 𝐶𝐵𝑆𝑆𝑗𝑘 the capacity of a between station 

segment k, which is the same one used before when computing the utilizations in the 

process analysis. This property is a function of the handling distance making then the 

direct handling labor costs also a function of the handling distances. As such, a layout 

better configured will yield lower handling labor costs and furthermore lower other 

handling costs, if relevant. Integrating these functions over the segment for each process 

establishes the direct costs of production between the stations, 𝑀𝐶𝐵𝑆𝑖, for the forecasting 

segment. Moreover, with its establishment, all direct costs of production accounted for in 

the model are then defined, thereby making 𝐷𝐶𝑃𝑡 of the summarizing cost function 

provided in Equation (21) known. 

4.4.1.4.2.2 Indirect Costs of Production 

The indirect cost of production component, ICPt of Equation (21), encompasses two 

subcategories of costs in the model. These include the costs associated with 

rearrangement (unique to the DLP) as well as those associated with the direct production 

of the products. This is mathematically depicted as follows: 

 𝐼𝐶𝑃𝑡 = 𝐼𝐿𝐶𝑡 + 𝑃𝑅𝐼𝐶𝑡 + 𝑅𝐶𝑡  (36) 

where 𝑃𝑅𝐼𝐶𝑡 is established in the model by leveraging the direct costs of production 

outlined before. The production related indirect costs (PRIC) are established as a 

percentage of the direct costs of production on a product-processes-basis as follows:  
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 𝑃𝑅𝐼𝐶𝑡 = ∑∑𝑝𝑗𝐶𝑖𝑗
𝑗𝑖

 (37) 

where 𝑝𝑗 is the percentage of the product-process j’s direct costs of production 𝐶𝑖𝑗 for 

segment i of the horizon. 𝐶𝑖𝑗 is the same as 𝐶𝑖 before just not aggregated across the 

product-process in the lower level functions provided earlier (Equations (28) - (30), (34), 

and (35)). These indirect costs account for expenses related to utilities usages, rent (based 

on the space of the floor that the product-process encompasses), a portion of the 

insurance costs and other indirect costs on a product-process-basis. It should be noted that 

though administrative and selling expenses are not directly captured in the model they 

can be accounted for in this cost category. Adjusting the percentage to include such 

selling and administration expenses associated with each product j enables these expenses 

to be accounted for and furthermore enables the designer to consider such expenses on a 

product-process-basis. This allocated approach provides an accurate account for such 

costs which can vary based on the product (e.g. some products are harder to sell than 

others).  

 The second component in Equation (36), 𝐼𝐿𝐶𝑡, represents the indirect labor cost. 

In other words, the costs associated with workers sitting idle and not contributing to value 

adding activities. This indirect labor cost is established as follows: 

 𝐼𝐿𝐶𝑡 =∑𝑇𝐿𝐶𝑖 − 𝐷𝐿𝐶𝑖
𝑖

 (38) 
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where 𝐷𝐿𝐶𝑖 and 𝑇𝐿𝐶𝑖 are defined as follows and represent the direct and total labor costs 

across a forecasting segment: 

 𝐷𝐿𝐶𝑖 = ∑𝐷𝐿𝑃𝐶𝑖𝑗 + 𝐷𝐿𝑆𝐶𝑖𝑗 + 𝐷𝐿𝐻𝐶𝑖𝑗
𝑗

 (39) 

 𝑇𝐿𝐶𝑖 =∑𝑇𝐿𝐶𝑖,𝐻𝑅
𝐻𝑅

 (40) 

where direct labor costs, 𝐷𝐿𝑃𝐶𝑖𝑗, 𝐷𝐿𝑆𝐶𝑖𝑗, and 𝐷𝐿𝐻𝐶𝑖𝑗 from earlier are leveraged to 

establish the direct labor costs of the segment and 𝑇𝐿𝐶𝑖,𝐻𝑅 is the total labor cost across 

the segment and is defined as: 

 𝑇𝐿𝐶𝑖,𝐻𝑅 = ∫
52 ∙ 𝑊𝐷𝑖 ∙ 𝑊𝐻𝑖

12
∙ 𝐿𝐶𝐻𝑅 ∙ 𝐿𝐶𝐴(𝑡) ∙ 𝑑𝑡

𝑡𝑖+1

𝑡𝑖

 (41) 

where 𝐿𝐶𝐻𝑅 is the total labor cost for all personnel of the system and where it was 

assumed that all personnel on average work the standard number of work days per week 

and work hours per day as defined by the designer during the problem initialization step.  

The other indirect costs accounted for in the model are those associated with the 

rearrangement of the layout from one period to the next. This cost is decomposed into 

two components. The first is the cost associated with physically moving the stations in 

the space and the second is the loss of production that comes as a by-product of having to 

cease the production of any product-processes that are affected by this rearrangement. In 
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other words, any product-processes involving stations which are to be moved. The 

summarizing function for these rearrangement costs are as follows: 

 𝑅𝐶𝑡 = 𝑀𝑉𝐶𝑡 + 𝐿𝑃𝐶𝑡 (42) 

where 𝑀𝑉𝐶𝑡 is the movement cost and 𝐿𝑃𝐶𝑡 the loss of production cost for the period. 

Unlike the costs presented before, the movement costs are solely a function of how the 

layout configuration has changed and therefore does not require integration across any 

forecasting segments. The equation implemented to define the movement cost is as 

follows: 

 𝑀𝑉𝐶𝑡 = ∑((𝐶𝑀𝑠 + 𝐶𝑅𝑆𝐶𝑠) ∙ 𝑑𝑠 + 𝐶𝐼𝑠 ∙ 𝑟𝑠)

𝑠

 (43) 

where s represents all common stations between the previous and current period layouts,  

𝑑𝑠 the rectilinear distance change of station s, 𝑟𝑠 the station’s rearrangement state,  𝐶𝑀𝑠 

the cost of moving the station on a unit distance-basis,  𝐶𝑅𝑆𝐶𝑠 the cost of rerouting any 

supporting conduit of the station on a unit distance-basis, and 𝐶𝐼𝑠 the cost of uninstalling 

and reinstalling station s. The magnitudes of 𝐶𝑀𝑠 and 𝐶𝑅𝑆𝐶𝑠 both depend on the distance 

moved, which is why it is multiplied by the change distance 𝑑𝑠, while 𝐶𝐼𝑠 is only 

dependent on the rearrangement state 𝑟𝑠. This state has a value of zero when the station 

remains unchanged both from a position and orientation standpoint while if either its 

position or orientation changes it will have a value of one. In practice the movement of a 

station requires that the station be uninstalled and reinstalled (e.g. a CNC machine 
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unbolted and bolted back down to the floor after being moved). This component accounts 

for this occurrence. 𝐶𝑀𝑠 and 𝐶𝑅𝑆𝐶𝑠 account for the labor and equipment costs associated 

with picking up and moving the station to another location (e.g. forklift and operator cost) 

along with the need to reroute supporting conduit (e.g. HVAC, electrical wiring, network 

cables, etc.) to the station’s new location in the layout.  

 The other component of the rearrangement costs is the loss of production, 𝐿𝑃𝐶𝑡, 

that results as a by-product of the rearrangement. The loss of production cost accounts for 

the potential profit lost from operations that have to be shut down temporarily while the 

layout is rearranged. It was assumed that only those product-processes associated with a 

station that is displaced in any way (moved or rotated), need be halted during the 

rearrangement phase. Several additional assumptions regarding this rearrangement phase 

were also made. First, it was assumed that rearrangement is to occur at the onset of the 

period. Second, the duration of this rearrangement phase was assumed to be equivalent to 

the longest rearrangement time amongst the stations being rearranged. In other words, all 

influenced product-processes are halted for the same duration of time, that time being 

equal to the maximum time amongst the impacted stations. This assumption was made to 

simplify the process of computing the loss of production cost. Another assumption made 

was that this rearrangement time be based on the number of working days per week (WD) 

and the working hours per day (WH) at the start of the rearrangement. Provided that the 

rearrangement occurs at the onset of the period, these conditions coincide with the start of 

the period and thus a known forecast segment point (i). It was also assumed that 

rearrangements are sufficiently spread apart such that operations can restart after 

rearrangement and before the next one commences. 
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 Now to determine this rearrangement duration, the rearrangement times for each 

station first require definition. These times are determined as follows: 

 𝑇𝑠 = 𝑡𝑖𝑛𝑠𝑡𝑎𝑙𝑙,𝑠 + 𝑡𝑢𝑛𝑖𝑛𝑠𝑡𝑎𝑙𝑙,𝑠 +
𝑑𝑠

𝑀𝑉𝑅𝑠
 (44) 

where 𝑡𝑖𝑛𝑠𝑡𝑎𝑙𝑙,𝑠 is the time to reinstall the station in the new location, 𝑡𝑢𝑛𝑖𝑛𝑠𝑡𝑎𝑙𝑙,𝑠 the time 

to uninstall the station in the old location, 𝑑𝑠 the rectilinear distance moved (same as in 

Equation (43)), and 𝑀𝑉𝑅𝑠 the nominal rate in which the station can be safely moved. The 

last term allows the rearrangement time to then become distance-based. Like before, 

these are known from the problem initialization step of the LIVE methodology. To then 

determine the rearrangement duration for all impacted product-processes, Equation (45) 

is deployed: 

 𝑡𝑟 = max
𝑠
(𝑇𝑠) (45) 

where the maximum station rearrangement time is found, and the rearrangement duration 

set to this time. With the rearrangement duration for all impacted product-processes the 

same, per the earlier noted assumption, the loss of production for these impacted 

processes can then be determined. The summarizing equation for computing this loss of 

production cost is as follows: 

 𝐿𝑃𝐶𝑡 = 𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑡𝑟 − (𝐷𝐶𝑃𝑡𝑟 + 𝑃𝑅𝐼𝐶𝑡𝑟) − 𝑇𝐿𝐶𝑡𝑟 (46) 
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where t is the current period and the 𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑡𝑟, , 𝐷𝐶𝑃𝑡𝑟, 𝑃𝑅𝐼𝐶𝑡𝑟, and 𝑇𝐿𝐶𝑡𝑟 are the 

revenues, direct costs of production, indirect costs of direct production, and total idle 

labor costs for the impacted product-processes and stations over the rearrangement 

duration 𝑡𝑟. The above components are fundamentally the same as those presented before 

with subscripts t. The only difference is, instead of integrating across all segments of the 

period, the integrations proceed only over those segments encompassed by the 

rearrangement duration. If the rearrangement occurs within the first segment and this 

rearrangement corresponds to the i=1 forecasting point, then the integrations would 

proceed from  𝑡𝑖=1 to 𝑡𝑖=1 + 𝑡𝑟. Additionally, these equations are only summed over 

those product-processes, j, that are impacted by the rearranged stations. In light of this 

understanding, the  𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑡𝑟 can be observed as only the revenue generated over the 

duration for just the impacted product-processes. The term in the parenthesis can be 

understood as being the direct and indirect costs of production that are coupled to these 

product-processes. The joining of these two components can be viewed as the profit lost 

from these halted product-processes. The last term is a rather important addition. This 

term accounts for the idle labor costs associated with these product-processes. As 

workers attached to these stations sit idle as the rearrangement occurs, they are not 

contributing any added value to the system, yet they are remaining paid. This last term 

accounts for such idle labor. With the loss of production for the period (𝐿𝑃𝐶𝑡)_defined, 

the indirect cost component, 𝐼𝐶𝑃𝑡,of the summarizing cost function is then also defined. 

4.4.1.4.2.3 Other Valuable Cost Metrics 
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In addition to the above outlined costs, other valuable metrics, based on these are also 

computed in the developed performance model for added insight into the system and its 

operational performance. The first is the utilization level of human resources, i.e. 

workers. This utilization is established as follows: 

 𝑈𝐻𝑅,𝑖 =
𝐷𝐿𝐶𝑖
𝑇𝐿𝐶𝑖

 (47) 

With the revenue and costs, with the exception of CAPEX, established, the profit margin 

on a period, forecasting segment, and product-process-basis can be defined as follows: 

 𝑃𝑀𝑡|𝑖|𝑗 = 𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑡|𝑖|𝑗 − 𝐶𝑜𝑠𝑡𝑠𝑡|𝑖|𝑗 (48) 

Where when evaluating Equation (48) on a forecasting segment i and product-process-

basis j the cost function above excludes those costs associated with rearrangement and 

moreover any CAPEX. On the other hand, when evaluating on a period t basis, the 

rearrangement costs are included. Furthermore, it also includes the CAPEX component of 

the cost function, which is the focus of the next discussion. 

4.4.1.4.2.4 Capital Expenditures (CAPEX) 

The last component yet to be defined of the summarizing cost function is CAPEX, or the 

capital expenditures of the period. This cost is unique to the dynamic layout problem 

considered in this dissertation and accounts for expenditures related to the acquisition or 

sale of a station (machine, workstation, equipment, etc.). It is assumed in the model, that 

this is the only form of capital expenditures present. Moreover, the acquisition cost 
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includes all costs related to the acquisition and initial installation of the station while the 

salvage value is that received for a station less the costs associated with removing the 

station from the environment. The capital expenditure for each period is thus as follows: 

 𝐶𝐴𝑃𝐸𝑋𝑡 =∑𝐴𝑞𝑢𝑖𝑠𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡𝑠𝑎
𝑠𝑎

+∑𝑆𝑎𝑙𝑣𝑎𝑔𝑒 𝑉𝑎𝑙𝑢𝑒𝑠𝑠
𝑠𝑠

 (49) 

where sa are the stations acquired at the onset of the period, ss the stations sold following 

the previous period, and where the salvaged values are subtracted from the acquisition 

costs to indicate a gain in capital. 

Another assumption made here is that the total cost of acquiring and installing a 

station is applied all at once in the period in which it is originally acquired. 

Conventionally, this acquisition cost would be realized only as the station depreciates 

over its life. In other words, the cost would be realized over a span of time, not all at 

once. This assumption was made as a result of the planning horizon being finite in length 

and as such the total acquisition cost, if applied in this manner, could potentially not be 

realized completely within the analysis of the horizon. This assumption however ensures 

that regardless of the stations life span, the full cost of the station would be accounted for 

when considering the performance of the layout across the provided horizon, thereby 

providing an accurate evaluation of the system and layout design. With the CAPEX 

component of the cost function now defined for the model, the summarizing cost function 

implemented is completely established and therefore so too are two of the three 

components of the system performance summarizing net income equation presented 
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earlier, Equation (10). The third will be presented later when the developed constraint 

model is discussed. 

4.4.1.5 Local Robustness to Production Uncertainty 

The above discussion highlights the developed performance model’s fundamental 

structure, assumptions, and equations as it pertains to defining the nominal revenues and 

costs of the net income equation presented before. Until now, the implementation of the 

localized robustness method has yet to be addressed, and for good reason, as its 

implementation leverages all the prior equations. In the model, Norman and Smith’s 

statistical method was implemented to account for production uncertainty. Though the 

fundamentals of their method were adopted, much the rest is different as a result of the 

much more detailed performance model developed here. In Norman and Smith’s 

implementation, the objective function was defined using a statistical percentile of the 

rectilinear-based material handling cost metric as follows: 

 𝐿(П) =∑𝑃𝑅𝑗 ∙ 𝑀𝐻𝐶𝑗
𝑗

+ 𝑧𝑝√∑𝜎𝑗
2 ∙ 𝑀𝐻𝐶𝑗

2

𝑗

 (50) 

where 𝐿(П) is the objective function for layout П, 𝑃𝑅𝑗 is the production rate of product j, 

𝑀𝐻𝐶𝑗 is the material handling cost per unit of product j, 𝜎𝑗
2 the production variance of 

the production rate, and  𝑧𝑝 the standard normal z value for percentile p. The first term in 

this equation can be understood as being the expected value of the material handling costs 

while the square root portion of the second term the standard deviation of the material 

handling costs for layout П. Considering this, Equation (50) can be presented as follows: 
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 𝐿(П) = 𝐸(П) + 𝑧𝑝𝑠(П) (51) 

where 𝐸(П) is the expected term and 𝑠(П) the standard deviation term mentioned before. 

Extending to the dynamic form of the layout problem produces the following variant of 

this equation: 

 𝐿𝑡(П𝑡) = 𝐸𝑡(П𝑡) + 𝑧𝑝𝑠𝑡(П𝑡) (52) 

where t is representative of the equation applying on a period-basis. Further extension of 

this statistical percentile approach requires the terms of this equation to be redefined to 

account for the significantly more comprehensive performance model of this dissertation. 

Instead of 𝐸(П) being the expected value of just the material handling costs, it now 

becomes the expected value of the layout design’s net income and similarly, 𝑠(П) its 

standard deviation for the provided period. In other words, 𝐸𝑡(П𝑡) is synonymous to 

𝑁𝑒𝑡 𝐼𝑛𝑐𝑜𝑚𝑒𝑡, which is calculated by leveraging Equation (10) from before. As such, in 

the absence of uncertainty, Equation (52) reduces to that of Equation (10) and the 

performance model of before remains as is. In the presence of uncertainty however, an 

additional term is, by extension, effectively appended to the summarizing retained 

earnings objective function presented at the beginning of this section, Equation (9) for 

reference. This additional term can be understood as accounting for the uncertainty 

associated with the production rate and is the second term on the right-hand side of 

Equation (52). 
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 Now as this applies across a period and not just on a per unit time-basis, this 

𝑠𝑡(П𝑡) term is expanded to encapsulate the time spanned for the provided period as 

follows: 

 𝑠𝑡(П𝑡) =∑𝑠𝑖(П𝑡)

𝑖

 (53) 

where, like before, i is the forecasting segments spanned by period t and 𝑠𝑖(П𝑡) is the 

standard deviation of the net income for segment i. 

 𝑠𝑖(П𝑡) = ∫ 𝑠(П𝑡, 𝑡) ∙ 𝑑𝑡
𝑡𝑖+1

𝑡𝑖

 (54) 

where 𝑠(П𝑡, 𝑡) is the standard deviation of the net income as a function of time and thus 

integrated across the time range of segment i (𝑡𝑖   to 𝑡𝑖+1). As was assumed before to 

simplify the performance model, it is again assumed here that 𝑠(П𝑡, 𝑡) behaves linearly 

across the segment and can thus be defined as follows: 

 𝑠(П𝑡, 𝑡) =
52𝑊𝐷𝑖
12

 [𝑠(П𝑡, 𝑡𝑖) +
𝑠(П𝑡 , 𝑡𝑖+1) − 𝑠(П𝑡, 𝑡𝑖)

𝑡𝑖+1 − 𝑡𝑖
(𝑡 − 𝑡𝑖)] (55) 

where 𝑠(П𝑡, 𝑡𝑖) and 𝑠(П𝑡 , 𝑡𝑖+1) are the standard deviation of the net income at forecasting 

segment i and i+1 respectively. To understand how these are then defined in the 

developed model, Equation (50) is revisited where it is observed that this standard 

deviation term is a function of both the production rate variances and material handling 

costs per unit of product j squared. Extending this then to the performance model of this 
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dissertation requires that the latter be redefined as the profit margin per unit of product j 

squared as follows: 

 𝑠(П𝑡, 𝑡) = √∑𝜎𝑗(𝑡)2 ∙ 𝑃𝑀𝑗(𝑡)2

𝑗

 (56) 

where t would be either 𝑡𝑖 or 𝑡𝑖+1, 𝜎𝑗(𝑡)
2  the production rate variance at time t (not to be 

confused with period t), and 𝑃𝑀𝑗(𝑡)
2 the profit margin per unit of product j squared at 

time t, which can be determined by leveraging a modified version of the product-process 

j variant of Equation (48) from before. Note that as was mentioned before, this equation 

when in this form excludes the rearrangement and CAPEX cost terms in the cost function 

thereby allowing it to accurately define the profit margin of product-process j related 

activities. A modified version of this equation is required as in its original form, Equation 

(48) yields the profit margin of product-process j on a cumulative-basis (multiplied by the 

production rate, PRj) not a per unit-basis as is needed here. Moreover, the lower level 

integrations of the cost function across the segments are not to be performed. This is 

because the desire is to define the profit margin on a per unit basis at a specific point in 

time, where these points in time correlate to the forecasting points in the horizon as is 

depicted for an example problem in Figure 39. With this understanding, 𝑃𝑀𝑗(𝑡) is then 

defined as follows: 

 𝑃𝑀𝑗(𝑡)  = 𝑀𝑉𝑗(𝑡)  − 𝑀𝐶𝑗(𝑡)  (57) 
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where 𝑀𝑉𝑗(𝑡) is nothing more than the designer supplied input market value condition 

and 𝑀𝐶𝑗(𝑡) the calculated manufacturing cost for a single unit of product-process j at 

time t in the horizon. The former is then like 𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑗 in Equation (48) while the latter 

is like that of 𝐶𝑜𝑠𝑡𝑠𝑗. If both these were to be multiplied by the production rate, 𝑃𝑅𝑗, and 

then integrated over a segment they would then be equivalent to these terms in Equation 

(48). An easier way of achieving this without the need to alter the equations outlined 

before is to assign the production rate to unity for all product-processes and then not 

perform the integration, rather instead evaluating only at the forecasting points in order to 

establish 𝑀𝐶𝑗(𝑡) at time t (i.e. 𝑡𝑖, 𝑡𝑖+1, …). 

 

Figure 39 – Example problem 

 Now as for the production rate variances, 𝜎𝑗(𝑡)
2, these are defined by leveraging 

the designer supplied coefficient of variances for the production rates, noted at the 
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beginning of this chapter when the problem initialization step of the LIVE methodology 

was outlined. The definition of the production rate variances are then as follows: 

 𝜎𝑗(𝑡)
2 = (𝑐𝑣𝑗(𝑡) ∙ 𝑃𝑅𝑗(𝑡))

2

 (58) 

where 𝑐𝑣𝑗(𝑡) are the coefficients of variance across the planning horizon for the 

production rates, as established by the designer. The advantage of leveraging coefficients 

of variance is that they are a standardized measure of dispersion that provides the 

variability in relation to the expected production rate [5]. Mathematically a coefficient of 

variance is characterized as 𝑐𝑣 = 𝜎 𝜇⁄  where in this example the expected production rate 

replaces 𝜇. In other words, the coefficients characterize the volatility of the production 

rates on a percentage-basis. For example, a coefficient of 10% (or 0.1) indicates that the 

standard deviation for a production rate of 10 units per day would then be 1 unit per day. 

Defining the uncertainty in this manner is advantageous as it allows for the standard 

deviation to then scale as the expected production rate scales. 

 Now that Equation (52) has been completely defined, it can be observed that this 

function enables production uncertainty to be explicitly considered on a localized 

continuous-basis. Additionally, said variability is provided on a product-basis (j 

subscript) enabling products to contribute differently. It is important to understand that 

for different values of 𝑧𝑝 different designs will perform better by this equation. This 

outcome, as Norman and Smith concluded in their work, enables a robustness metric to 

be established by examining the performance of the design over a designer specified 

range of percentiles, p-values. As Norman and Smith identified, integrating Equation (52) 
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over a range of p values (𝑝𝐿 to 𝑝𝑈) results in the following robustness metric (slightly 

modified to be on a period-basis): 

 𝑅𝑀𝑡(П𝑡) = 𝐸𝑡(П𝑡)(𝑝𝑈 − 𝑝𝐿) +
𝑠𝑡(П𝑡)

√2𝜋
[

1

𝑒
(𝛷−1(𝑝𝐿))

2

2

−
1

𝑒
(𝛷−1(𝑝𝑈))

2

2

] (59) 

where 𝑝𝑈 is the upper percentile, 𝑝𝐿 the lower percentile, 𝛷−1(𝑝𝑈/𝐿) the inverse 

cumulative normal function evaluated at p, and 𝑅𝑀𝑡(П𝑡) the robustness performance 

metric. Like that of Equation (52), the first term in Equation (59) is representative of the 

expected net income for the period t as computed before in Equation (10) while the 

second term is the contribution due to production uncertainty. To encapsulate this 

robustness metric, the summarizing objective function presented earlier, Equation (9) is 

revised as follows: 

 𝑅𝑅𝑡 = 𝑅𝑅𝑡−1 + 𝑅𝑀𝑡(П𝑡) (60) 

where the design with the largest 𝑅𝑅𝑡, or retained robustness, come the end of the last 

period t is then identified as being the design that performs best over the horizon and for 

the range of p values. In other words, it is deemed the most robust design for the provided 

conditions. 

 Now for closure, let’s consider some unique cases. In the absence of production 

uncertainty, the designer has several options in which he can deploy to emulate this 

provided this outlined implementation. One option is to set the coefficient of variances to 
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zero, this effectively eliminates the uncertainty contribution term, i.e. standard deviation 

term, which then leads to Equation (60) reducing to the original nominal retained 

earnings function from before,  Equation (9). Another option would be to set 𝑝𝐿 = 0 and 

𝑝𝑈 = 1. In this scenario, the bracket portion of the second term in Equation (59) reduces 

to zero thereby effectively cancelling out that term and moreover reducing Equation (59) 

to just that of the nominal net income computed leveraging Equation (10). Another 

available option is to set 𝑝𝐿 = 𝑝𝑈 = 0.5. When doing this the developed model 

automatically leverages the statistical percentile equation, Equation (52), to define the 

performance metric, albeit no longer a robustness performance metric. In this case the 

50% percentile coincides with a z value of 𝑧0.5 = 0, thereby reducing the formulation 

once more to just that of the original definition of the expected or nominal net income 

value defined before in Equation (10). Either of these options reduces Equation (60) 

above to that of Equation (9), which can then be leveraged to sufficiently define the 

performance of the layout under no production uncertainty. Under this same logic, the 

designer, by setting the two percentiles equal, can also evaluate the problem at different 

percentile values if they so choose. Additionally, if a six-sigma evaluation is desired the 

designer can set 𝑝𝐿 = 0.001 and 𝑝𝑈 = 0.999 which emulates the 6σ ranges shown in 

Figure 39. This concludes the presentation of the statistical robustness method 

implemented in the developed model to provide robustness to localized production 

uncertainty. 

4.4.2 Constraint Model 

Having since established the model developed in this dissertation to determine the 

performance of layout designs, and the systems they are a part of, attention turns towards 
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the model developed to establish the feasibility of these designs. Every design generated 

by the algorithms of Stage One and Two may not be feasible when applied in the real-

world. The developed constraint model of this dissertation is thus tasked with 

distinguishing between a feasible and non-feasible design. To achieve this, the model 

needed to consider a variety of different constraints to handle the unique problem 

formulation of this dissertation. In general, the developed model includes five distinct 

constraint groups. These include object overlap avoidance, closed loop avoidance, I/O 

point accessibility, boundary, and finally budget constraints. These five constraint groups 

are further decomposed into two constraint types: hard and soft. The five constraint 

groups, their constraint type assignment, and their applications in the two solution stages, 

outlined earlier, are provided in Table 9. 

Before addressing the individual constraint groups and their applications in each 

stage, an understanding of the two constraint types must first be established. While the 

avoidance (overlap and closed loop) and accessibility constraints are characterized as 

hard constraints, the boundary and budget constraints are not. Instead these constraints 

were strategically defined as soft constraints, whereby decision logic and penalty 

functions were implemented to account for the cost a layout design would incur from 

violating said constraints.  

The differentiation between these two types has to do with how absolute the 

constraint is. In the case of the hard constraints, violation of any degree warrants rejection 

of the layout design in the algorithms of Stage One and Two. In other words, any design 

that does not abide by each of first three hard constraint groups is labeled infeasible and 

discarded by the solution algorithms as a result. For the first three constraint groups this 
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hard distinction is quite logical. For example, in the case of the overlap avoidance 

constraints, two objects can’t occupy the same space, period, as otherwise this would be a 

violation of physics. Likewise, in the case of I/O point accessibility and closed loop 

avoidance constraints, which are unique to the constraint model developed for this 

dissertation and required as a result of the advanced flow distance method and multiple 

spacing interaction considered; if the input/output points of the stations cannot be 

accessed (i.e. reached) by the handlers, then this constitutes a break in the process flow 

and would thereby inhibit operations. As a result, these three constraint groups had to be 

established as hard constraints whereby when any one was violated, the layout design 

would be considered infeasible. 

In the case of the soft constraints, the boundary and budget constraints, violation 

could potentially be permitted. With that said, violation, when allowed, to any degree 

would require a cost of violation to be incurred by the design. This cost then represents 

the penalty incurred, or the penalty function, 𝜙𝑡, established earlier in this section when 

the net income equation of the summarizing objective function of the developed 

performance model was presented (Equation (10)). As noted, the layout design, despite 

violating one or both of these constraint groups could still yield a design that is 

considered feasible. There are specific circumstances that allow these constraints to be 

soft in nature and this to be true. When such circumstances are not so, these constraints 

default to being hard like that of the avoidance and accessibility constraints. 

The circumstances that lead to these two constraint groups being soft in nature 

depends on the choices made by the designer/management regarding these constraints 

when establishing the scenarios in the problem initialization step of the LIVE 
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methodology. Decision logic was implemented to enable designers/management to have 

control over whether these two constraints should be rendered hard or soft. This approach 

has a couple noteworthy advantages. The first is it enables strategy level decisions 

regarding these two soft constraints to be made by the designer/management, which 

could have a significant impact on the design deemed best by the performance model 

outlined before.  

The second advantage of this approach is it enables all designs of Stage One to be 

potentially viable, depending on the executive strategy decisions made a priori by the 

designer/management. In the case where both the boundary and budget constraints, 

remain soft and the penalty functions thus active, every design yielded by the solution 

algorithm in Stage One will be viable by the complete set of constraints. This is because 

the hard constraints (overlap avoidance, closed loop, and I/O point accessibility) are 

inherently captured by how Stage One was formulated and the sequence-pair 

mathematical model deployed to represent the layout designs in this stage. As a brief 

review, this model is a stacking rule-based algorithm, comparable to the game Tetris, 

whereby the objects are stacked upon each other. This approach, when coupled with this 

dissertation’s application of the walking spacing boundaries as the object’s stacking 

boundaries, inherently ensures that objects cannot be overlapping and moreover that the 

I/O points will always remain accessible. In other words, all generated designs by the 

procedures of Stage One will be viable by these three hard constraints. This leaves only 

the soft constraints that need be satisfied for the design to be deemed feasible. If these 

soft constraints are in fact soft by design, the problem in Stage One effectively becomes 

unconstrained, thereby greatly improving the tractability of the problem in Stage One. 
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Regardless, even in the case where the soft constraints are rendered hard per the 

designer’s choice, the constraint dimensionality in Stage One is greatly reduced to only 

the latter two constraint groups. Moreover, in Stage One only the top and right 

boundaries need be considered due once more to the stacking nature of the sequence-pair 

representation of Stage One. This in lies the major advantage of formulating the 

constraints in this fashion. The application of the constraint groups for both stages is 

again provided in Table 9 for reference. 

At this point, the question becomes, how were the penalty functions of these soft 

constraints defined such that the objective function remained cost-based and additionally 

how were the hard forms of the five constraint groups defined in the developed constraint 

model? As for the latter question, a presentation of the mathematical implementation and 

further elaboration on these hard constraints is provided, for reference, in Appendix E. 

The former question of how the soft constraint penalty functions of the constraint model 

were defined is the focus of the discussion that follows. Note that all constraints and 

penalty functions are applied on a period-basis as they are dependent of only the layout 

configuration (i.e. placement of the objects) which is constant across the span of the 

period. 
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Table 9 – Constraint summary table 

 

4.4.2.1 Penalty Function 

The penalty functions implemented for the soft boundary and budget constraints needed 

to resemble realistic costs in order to align with the cash-based objective function of the 

performance model. The summarizing cost penalty function is composed of the two 

constraint group contributions as follows: 

 𝜙𝑡 = 𝜙𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦,𝑡 + 𝜙𝑏𝑢𝑑𝑔𝑒𝑡,𝑡 (61) 
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where t is the period, 𝜙𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦,𝑡 is the total cost incurred for violating the boundary 

constraints and 𝜙𝑏𝑢𝑑𝑔𝑒𝑡,𝑡 the total cost incurred for violating the mandated budget 

constraints in period t. 

4.4.2.1.1 Boundary Violation 

To model the boundary violation penalty function, a layout expansion cost model was 

implemented. This model characterizes the cost incurred by an object placed outside the 

OML of the layout as a function of how much the boundaries of the space would need to 

be expanded to accommodate this placement. This penalty function is as follows: 

 𝜙𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦,𝑡 = 𝑆𝑄𝐴𝐶 ∙∑𝐴𝑠
𝑠

 (62) 

where s are the violating stations, SQAC is the square area cost of construction (a 

property provided by the designer in the first step of the LIVE methodology), and 𝐴𝑠 is 

the square area expansion of the OML required to encapsulate the station s. SQAC is a 

relatively easy property to define based on a survey of local contractors and the market 

rate. A default value of 25 dollars per square foot is a good average starting cost. This 

penalty approach enables designers/management to consider the cost of expanding their 

existing facility to encapsulate what could be a more advantageous configuration of the 

objects. Sometimes though, such expansion is not an option (e.g. buildings adjacent to the 

facility) and when this is the case the boundary constraints become hard and resemble 

those provided in Appendix E. 
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 In implementing this approach, the boundary constraints for the constrained 

objects had to remain hard regardless of the designer’s choice on how to prescribe these 

constraints. This was done to restrict designs such that the constrained objects remained 

in their assigned locations. By not doing so, it was observed that the algorithm ran the 

risk of identifying optimal and viable designs whereby the fixed objects were not placed 

in their required positions. This was a result of the above outlined soft constraint penalty 

function, although penalizing the misplacement of the constrained objects, not penalizing 

severely enough to render the design suboptimal. To combat this, the constrained object’s 

boundary constraints are mandated as always being hard (i.e. absolute). 

Because of this implemented penalty function, modification to the advanced 

material handling distance algorithm was required to account for the potential relaxed 

nature of the boundary constraints. This was to enable feasible paths to still be searched 

for and found by the algorithm even when objects and their I/O points fell outside the 

original OML boundaries. The modification encompassed a design switch leveraging the 

OML boundaries to be observed by the algorithm as being pass-through in nature and 

further retaining consideration by the advanced algorithm even while not viable by the 

hard boundaries. 

4.4.2.1.2 Budget Violation 

Now to model the budget constraint penalty function, a financial business strategy model 

is leveraged. Implementing a penalty function to capture violations of the budget 

constraints is beneficial as such constraints do not necessarily have to be absolute in 

practice. These are more so strategic guidelines. In other words, operational changes such 
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as a layout rearrangement are not purely contingent on the budgetary restrictions set forth 

initially. In theory, management could decide to make up any difference through 

financing. In the business accounting space, this is what is called debt financing, or in 

other words, financing through loans or the issuance of bonds to gain the necessary 

capital to enact such a strategic plan (e.g. layout restructuring). This financing comes at a 

cost however and it is this cost or cost of debt that becomes part of the model deployed in 

this dissertation to define the budget constraint penalty function.  

In the developed model there is also an added option to leverage retained earnings 

when the budget, based on a percentage of the net income, is not enough alone. Since net 

income contributes to retained earnings, this option can be viewed as an extension of the 

budget. This is because whether it is retained earnings used directly or a larger percentage 

of the net income used, in the end the latter will effectively reduce the retained earnings 

by the same amount if the former was deployed. Now these two strategic options 

available to the designer/management to finance through debt or leverage retained 

earnings (i.e. extend the budget) can be jointly deployed or deployed individually. 

Moreover, neither can be deployed, which results in the budget constraints becoming 

hard and resembling those provided in Appendix E. When this is not the case and one of 

the options is deployed by the designer/management when initializing the problem, the 

remaining debt to be financed after applying the budget is computed as follows: 

 

𝐷𝐸𝐵𝑇𝑡

= {
𝑅𝐶𝐶𝑡 + 𝜙𝑏𝑢𝑑𝑔𝑒𝑡,𝑡 − 𝑝𝑏 ∙ 𝑁𝑒𝑡 𝐼𝑛𝑐𝑜𝑚𝑒𝑡−1, 𝑁𝑒𝑡 𝐼𝑛𝑐𝑜𝑚𝑒𝑡−1 > 0

𝑅𝐶𝐶𝑡 + 𝜙𝑏𝑢𝑑𝑔𝑒𝑡,𝑡, 𝑁𝑒𝑡 𝐼𝑛𝑐𝑜𝑚𝑒𝑡−1 ≤ 0
 

(63) 
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where 𝑅𝐶𝐶𝑡 are only the capital costs associated with rearrangement (i.e. neglecting loss 

of production discussed in the last section when the cost function was presented), 

𝜙𝑏𝑢𝑑𝑔𝑒𝑡,𝑡 is the boundary violation penalty cost defined before, 𝑝𝑏 is the budget as a 

percentage of the previous period’s 𝑁𝑒𝑡 𝐼𝑛𝑐𝑜𝑚𝑒𝑡−1 as established by the performance 

model outlined earlier. Note, net income can be negative (e.g. when the firm loses 

money), which is why when such is the case the budget is not subtracted from the capital 

costs. Additionally, the budget constraint penalty must also consider the cost of violating 

the boundary constraint (𝜙𝑏𝑢𝑑𝑔𝑒𝑡,𝑡) so the two are order dependent and the boundary 

constraint cost penalty function outlined before must first be calculated. With the debt 

associated with the rearrangement known, the penalty function associated with each 

unique combination of the two strategic decision options available can be defined. 

When debt financing is an option (as defined by the designer/management during 

the problem initialization), but leveraging retained earnings is not, the budget constraint 

penalty function becomes the following: 

 𝜙𝑏𝑢𝑑𝑔𝑒𝑡,𝑡 = {
𝐼𝑅 ∙ 𝐷𝐸𝐵𝑇𝑡 , 𝐷𝐸𝐵𝑇𝑡 > 0

0, 𝐷𝐸𝐵𝑇𝑡 ≤ 0
 (64) 

where IR represents the firms borrowing interest rate, a property easily established by a 

firm and thus defined during the problem initialization step of the LIVE methodology. If 

the 𝐷𝐸𝐵𝑇𝑡 is less than or equal to zero, there is no budget constraint penalty as the budget 

alone can sustain the costs of the rearrangement. Now when such is not the case, the 

penalty becomes the cost of debt associated with financing the difference between what 

the budget can sustain and what is required. Moreover, the capital costs of rearrangement 
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and the boundary penalty themselves are not included in this penalty as they are already 

accounted for in the costs each period. 

Now when leveraging retained earnings and debt financing, the rearrangement is 

first financed through the retained earnings only to then be debt financed if required. The 

budget constraint penalty function in this case becomes: 

 𝜙𝑏𝑢𝑑𝑔𝑒𝑡,𝑡 = {
0, 𝑅𝐸𝑡−1 ≥ 𝐷𝐸𝐵𝑇𝑡

𝐼𝑅 ∙ (𝐷𝐸𝐵𝑇𝑡 − 𝑅𝐸𝑡−1), 𝑅𝐸𝑡−1 < 𝐷𝐸𝐵𝑇𝑡 
 (65) 

where 𝑅𝐸𝑡−1 is the retained earnings after any budget has been applied. This is because 

the budget, as demonstrated before, is based on the net income which contributes to the 

retained earnings. Not subtracting said budget from the retained earnings first would 

make it appear that more funds are available when there are not. Now when the retained 

earnings are enough to fund the remaining debt after the budget is applied, then the cost 

penalty function is zero as the cost function outlined before accounts for these costs 

already. When retained earnings are not enough, the remaining debt after the available 

retained earnings are applied is then debt financed as demonstrated in the second 

condition in Equation (65). In the case where  𝑅𝐸𝑡−1 < 0, it is set to zero in the above 

equation and all debt must be financed. 

 Now in the scenario where retained earnings is an option, but debt financing is 

not; if the debt is greater than zero and retained earnings are not enough to cover the debt, 

then the rearrangement cannot be supported. In this case the budget constraint effectively 
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becomes hard whereby the design is then deemed infeasible. In effect, the costs 

associated with rearrangement and the new layout cannot be absorbed by the business. 

 The decision by the designer/management regarding which of these options to 

deploy can be fundamental to the business’ success going forth.  For example, the 

decision to leverage debt financing impacts the firm’s debt to equity ratio. For a publicly 

traded company, this can influence investor’s perception of the firm and thus indirectly 

can impact the firm’s access to equity. In most cases, the firm’s business strategy will 

dictate the approach deployed (i.e. how these options are established for each scenario 

during the problem initialization). With that said the ability to assess how different 

business strategies can impact which layout design is best to implement is valuable 

insight. Such a capability, enabled by the developed constraint model, creates substantial 

value for designers and management. At this point, the developed performance and 

constraint models of this dissertation have been thoroughly presented. Before a summary 

of the implementation of this dissertation is provided, a brief recap of the performance 

and constraint models is provided. 

4.4.3 Summary of the Developed Performance and Constraint Models 

The developed performance and constraint models of this dissertation, outlined above, 

establish the performance and feasibility of each layout design, and the system it is a part 

of. The performance model incorporates a cash-based objective function, which aids in 

bridging the language chasm that often exists between stakeholders involved in the layout 

design process. By bridging this gap, improved collaboration can occur. The performance 

model also consists of a comprehensive analytical model that considers several costs 
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associated with the system’s operations and the restructuring of the layout. An advanced 

flow distance method that guarantees flow path feasibility was implemented to provide 

closure to a major research gap observed in this dissertation. The inclusion of this method 

provides improved material handling cost estimations that are better representative of the 

costs likely to be experienced in practice. A process flow analysis, leveraging the concept 

of utilization, was implemented to ensure production rates remain achievable relative to 

the system’s capacity. A localized robustness method was also implemented to ensure 

robustness relative to production rate uncertainty.  

The developed constraint model considers several constraints that ensure the layout 

design’s real-life feasibility. Strategically defined penalty functions were incorporated to 

account for boundary and budget constraint violations when applicable. The developed 

method of deploying these penalty functions enables varying business-strategies to be 

evaluated by the LIVE methodology. The combination of the performance and constraint 

models provide improved insight into the performance and feasibility of designs. 

Supplementary data on the operations is accessible to the designer and management, 

which it is believed will facilitate collaboration and enable more informed decisions to be 

made regarding the design of layouts subject to unpredictable and evolving conditions.  

 Implementation Summary 

The LIVE methodology is composed of three steps: problem initialization, whereby the 

scenario layout problems are established, problem solution, whereby each of the 

scenario’s layout problems are solved and the best design identified, and finally analysis, 

whereby the designs are evaluated for performance and feasibility which ensures that the 
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best performing, and feasible design is identified during the solution step. In step one, the 

designer and management establish a series of scenarios that range the design space they 

desire to investigate. This design space encompasses changing conditions as well as 

differing business strategies. For each of the scenarios the conditions and business 

decisions the layout design will be subject to are established by the designer and 

management.  

Once established, the LIVE methodology proceeds into solving each of these 

scenario layout problems using a novel bi-model multi-stage hybrid solution approach. 

This approach consists of two stages, both of which deploy genetic algorithm-based 

optimization techniques. In Stage One a QAP/SP-U model is deployed to represent the 

layout. A novel feasible sequence-pair promoting method (FSPPM) was developed to 

promote the discovery of feasible sequence-pair designs during the optimization process. 

Additionally, novel methods were developed for many of the various genetic operators 

(e.g. a novel genome repair process) as well as for the perturbation method deployed by 

the FSA technique. In Stage Two a MINLP model is deployed to represent the detailed 

layout. The results of Stage One are leveraged to initialize a tri-population scheme and 

like that of Stage One, novel methods were developed for many of the genetic operators, 

specifically that of the jumping gene operator. Collectively, these efforts contribute 

greatly to advancing both that of the optimization portion of the layout problem literature, 

but also that of the mathematical programming literature. The mathematical 

programming techniques developed here apply beyond the scope of this problem 

application and universally advance solution to similarly structured combinatorial 

optimization problems. 
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In the last step of the LIVE methodology, the performance and feasibility of a 

design is evaluated using a comprehensive cash-based performance model. This model 

deploys an analytical cost model to characterize the system costs. In computing these 

costs a novel advanced flow distance method was developed, which provides closure to 

another major research gap of this dissertation. A localized robustness method was also 

implemented to provide design performance robustness relative to production 

uncertainty. Rounding out the implementation, a constraint model which considers 

several constraints was developed to ensure real-life design feasibility. A flexible penalty 

function was implemented to consider boundary and budget violations thereby enabling 

designers and management to consider different business strategies when establishing the 

scenarios in step one of the methodology. With that, a very brief summary of the LIVE 

methodology has been provided.  

Before examining how the outlined implementation fairs in providing closure to 

the key research gaps identified and moreover substantiation of the hypotheses proposed 

before, the next chapter provides a reminder of salient observations from the literature 

review, the motivating research objective, the overarching hypothesis, and other notable 

hypotheses formed in this dissertation. Furthermore, the experimental approach deployed 

to test each hypothesis will be outlined before then presenting the results of the 

experiments.  
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CHAPTER 5 

– 

RECAPITULATION AND PROPOSED EXPERIMENTS 

The goal of this chapter is to restate the research objective, the overarching hypothesis of 

this dissertation, and the secondary hypotheses formed as a result of major research gaps 

identified and insightful observations made up until this point. In addition to this 

recapitulation, the proposed experimental approach to substantiating these hypotheses is 

presented whereby a brief overview of each experiment in this approach is provided. 

Now as a reminder, the motivating research objective of this work was as follows: 

Research Objective: To establish an improved and robust methodology for 

exploring the design space of a detailed evolving manufacturing layout, enabling 

more informed and collaborative design decisions to be made under evolving and 

uncertain market and business model conditions. 

This research objective was established after a comprehensive survey of the 

literature was performed whereby several key research gaps were identified. The first of 

these major research gaps pertained to the absence of a method to account for flow path 

feasibility when considering the material handling costs; the standard layout evaluation 

metric in the literature. Conventionally, rectilinear or Euclidean distance methods, which 

do not account for flow path feasibility, are deployed in the literature to establish these 

costs. Preliminary results had however demonstrated the importance of this flow path 

feasibility consideration when establishing the material handling costs. Observation 3 

identified that failure to account for such flow path feasibility can result in the 
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identification of suboptimal layout designs. Given the significant contribution of these 

costs to a system’s total production costs and therefore performance, closure of this gap 

became a requirement of this dissertation. Hypothesis 1, the first secondary hypothesis of 

this dissertation, was formed as a by-product of this observation and research gap: 

Hypothesis 1: If an advanced flow distance method that ensures flow feasibility 

is implemented to define the MHCs, then improved layout designs that are better 

representative of reality can be established for variable production environments 

where several interrelated processes are occurring concurrently. 

In addition to the aforementioned research gap, another growing gap was 

observed as the problem formulation required to accurately define a layout was formed 

through numerous assertions and observations cited during the literature review. Through 

these observations and assertions, specifically the synthesis of Observation 2 and 

Assertion 11, it was identified that to effectively design a layout subject to evolving and 

uncertain market conditions and business models, the problem must be structured as a 

budget constrained stochastic robust dynamic layout problem (RDLP) modeled under a 

continuous detailed mixed integer programming (MIP) approach. As a reminder, robust 

refers to a layout being robust to fluctuations in the conditions and dynamic refers to a 

layout that evolves over time (i.e. is rearranged periodically over the planning horizon). 

Now in reaching this conclusion, it was further identified that such a unique formulation 

has never been pursued in the literature, which forms the second major research gap. As 

postulated before, much of this gap can be attributed to the difficult nature of such a 

problem formulation. 
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In relation to Hypothesis 1 it was further observed that such an advanced flow 

distance method would require solution to a NP-hard difficult problem (a variant of the 

traveling salesman problem) for each unique flow connection in the system. As such, the 

inclusion of such a method only further contributes to the difficulty of the problem 

formulation of this dissertation. Observation of this led then to Assertion 12 stating that 

to handle the difficult and time intensive nature of such a problem formulation, 

identifying an efficient solution method was imperative. 

After exploring the literature pertaining to the solution of such a problem, it was 

then identified that to most effectively solve such a difficult and complex problem 

formulation that a bi-model multi-stage hybrid solution approach should be leveraged to 

accomplish this. Assertion 17 was established, in response to Question 1.1.1, stating that 

a simplified QAP/U-SP model of the problem formulation could be solved initially to 

provide partial solution to the overarching problem and better initialize the populations 

of a multi-population hybrid GA algorithm that ought to then be leveraged to provide 

solution to the MIP formulated version of the RDLP. This assertion and the observations 

that led to it provided the basis for the structure of the then proposed bi-model multi-

stage solution approach developed in this dissertation. Later while formulating the LIVE 

methodology proposed in this dissertation, it was further established that a synthesis of 

identified literature best techniques and most applicable models, modified to encompass 

the unique nature of the problem formulation of this dissertation, be implemented to form 

the foundations of the models and solution techniques leveraged in this proposed bi-

model multi-stage solution approach to solving the MIP formulated RDLPs. As was 

outlined, Stage One of this approach leverages the more tractable QAP/U-SP model to 
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generate solutions to then initialize Stage Two through the partial solution of the RDLP 

using a hybrid GA algorithm deploying FSA to enhance solution quality. With the results 

of Stage One forming the initial tri-populations of the GA algorithm of Stage Two, the 

more complex and difficult to solve MIP model is then solved to completion. Considering 

that observed in the literature and the proposition of this approach, Hypothesis 2, the 

second secondary hypothesis of this dissertation, was formed: 

Hypothesis 2: If the proposed bi-model multi-stage hybrid solution approach is 

implemented to solve the MIP formulated RDLP, then the problem will be solved 

most effectively, in terms of solution quality. 

Now as noted earlier, the core objective of this research was to establish an 

improved methodology that could enable more informed and collaborative layout design 

decisions to be made in the presence of evolving and uncertain market and business 

model conditions. In light of observations made while reviewing the literature, such a 

methodology, which enables more informed layout design decisions to be made by 

providing adequate transparency into how the layout design performs in relation to the 

evolving and uncertain nature of the conditions, was not available. This in turn motivated 

the development of the proposed LIVE methodology of this dissertation.  

Consisting of three steps, the LIVE methodology attempts to enable more 

informed layout design decisions to be made by the stakeholders involved in the process 

(designer, management, etc.). To achieve this the LIVE methodology uniquely handles 

the evolution of the market and business model conditions external to the solution 

procedure thereby enabling the designer to effectively observe how different condition 
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forecasts impact the design of the layout and system. A series of RDLP scenarios, 

encompassing the various condition forecast combinations of interest, are formed by the 

designer. The bi-model multi-stage solution approach proposed before is leveraged to 

provide effective solution to each of these RDLP scenarios. A localized robustness 

method is infused to provide designs that remain robust to localized production 

uncertainty. To enable more collaboration amongst the stakeholders involved in layout 

design process, an analytical performance model was proposed to bridge the language 

chasm often present between the stakeholders involved in such a process. The proposition 

of this methodology then led to the overarching hypothesis of this dissertation: 

Overarching Hypothesis: If the problem of designing an environment subject to 

evolving and uncertain market and business model conditions is solved with the 

proposed LIVE methodology, then designers will be capable of making more 

informed and collaborative decisions on its design. 

The Overarching Hypothesis is dependent on both Hypothesis 1 and 2. As such, if 

Hypothesis 1 and 2 are substantiated through experimentation, then the overarching 

hypothesis has the potential to be proven true. Substantiation of Hypothesis 1 proves that 

more optimal designs can be discovered when considering flow path feasibility while 

substantiation of Hypothesis 2 proves that the unique and difficult RDLP formulation of 

this dissertation can be effectively solved. Effective solution is a key component of the 

LIVE methodology. As such, proof of this acknowledges that the methodology can 

provide a designer with a medium to effectively design a layout subject to evolving and 

uncertain conditions. Complete substantiation of the Overarching Hypothesis will require 

further experimentation though. Substantiation of this hypothesis can only be achieved by 
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application to a real-world problem whereby the methodology can be assessed for how 

capable it is at enabling designers to make more informed and collaborative decision 

regarding the design of a layout subject to evolving and uncertain conditions. 

 Experimental Approach 

The experimental approach to substantiating the above restated hypotheses is composed 

of three distinct experiment sets. The experiments of these sets build upon each 

culminating in the final experiment, which applies the LIVE methodology to a real-world 

case study to observe the effectiveness of the methodology.  

A representative 52 Problem Test Set is constructed and leveraged in Experiment 

Set A and B to substantiate Hypothesis 1 and 2. In Experiment Set A, the developed 

FSPPM, advanced flow distance method, and FSA integration in Stage One of the bi-

model multi-stage solution approach are analysed. Comparison of the first two to the 

literature baseline methods is examined while in the latter the necessity of integrating 

FSA in Stage One is considered. The outcomes of Experiment Set A are then leveraged in 

Experiment Set B. In Experiment Set B, the effectiveness of the proposed bi-model 

multi-stage solution approach is evaluated. Optimization parameter studies are performed 

to identify the best configuration of optimization parameters to deploy. The results of 

these studies are then leveraged by the last experiment. In Experiment Set C, the 

overarching hypothesis of this dissertation is substantiated by applying the LIVE 

methodology to a real-world layout design problem. 
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5.1.1 Experiment Set A: Validation of Methods 

Purpose: Test the effectiveness of the FSPPM in promoting the discovery of feasible 

designs. Test the advanced flow distance methods ability to ensure flow path feasibility 

and discover optimal designs that are better representative of reality. Test the need to 

infuse FSA into the first stage of the bi-model multi-stage solution approach. 

To perform these tests, Experiment Set A is decomposed into three distinct experiments; 

Experiments 1, 2, and 3.  

In Experiment 1, a modified version of the 52 Problem Test Set is leveraged to 

examine the FSPPM’s ability to more frequently establish feasible designs. Before 

examining the performance of the method across the modified 52 Problem Test Set, 

validation of the assumptions implemented to construct the FSPPM is first established. 

This is to be achieved by examining the number of designs that would need to be 

generated before 100 feasible designs are discovered for a standard problem. For the 

modified 52 Problem Test Set, it will be shown that deployment of the FSPPM provides 

significant CPU time savings by identifying feasible designs more frequently and 

moreover enables problem sizes that would otherwise be unsolvable to become then 

solvable.  

 In Experiment 2, the advanced flow distance methods ability to ensure flow path 

feasibility and discover optimal designs that are better representative of reality is tested 

across the 52 Problem Test Set. It will be shown that designs generated in Stage One 

leveraging the advanced flow distance method to determine the material handling costs 

are notably different from those generated when the literature standard rectilinear method 
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is deployed. It will also be shown that it is of the upmost importance to consider flow 

path feasibility when optimizing the final layout design. In demonstrating this importance 

Hypothesis 1 will be substantiated by proving that the advanced flow distance method 

enables designs that are better representative of reality and therefore more effective in 

practice to be identified. Additionally, a comparison of the Stage One CPU times using 

both methods versus the populated unique design set to pass to Stage Two will also be 

examined. From this examination it will be shown that although the two methods differ 

from an optimality perspective, the CPU savings and similar diversity characteristics of 

the unique design set associated with using the traditional rectilinear method makes its 

use in Stage One a viable strategy. 

 In Experiment 3, the necessity of infusing the developed FSA technique in Stage 

One of the proposed bi-model multi-stage solution approach is tested, once more 

leveraging the 52 Problem Test Set problems to do so. In this experiment it will be shown 

that though the FSA technique better ensures optimality is achieved, the additional time 

required to provide solution does not warrant its inclusion in Stage One when acting in 

initializing the Stage Two algorithm. When acting in providing final solution to the 

problem however, its implementation is recommended. 

5.1.2 Experiment Set B: Optimization Performance Study 

Purpose: Test the effectiveness of the Stage One and Two solution procedures of the 

proposed bi-model multi-stage solution approach to solving the complex layout 

formulation of this dissertation. Test different optimization parameter combinations to 
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identify the appropriate parameter sets to deploy to most effectively solve said layout 

problems 

To perform these tests, Experiment Set B is decomposed into two experiments; 

Experiment 4 and 5. The two experiments are split between the two stages of the 

proposed solution approach. 

In Experiment 4, the developed Stage One solution procedures are tested, and the 

best optimization parameter sets identified. The solution procedures of Stage One are 

tested for the 52 Problem Test Set. As will be shown, depending on the end goal of the 

Stage One algorithm (optimality vs. Stage Two initialization), a different parameter set 

ought to be deployed. Moreover, it will also be shown that these best parameter sets 

differ depending on the problem type being solved. That is whether solving a static or 

dynamic problem. Much like Experiment 4, in Experiment 5, the proposed Stage Two 

solution procedures are tested, and the optimization parameter set that best provides 

optimality identified. As will be shown, once more the best parameter set to deploy to 

provide optimality will depend on the problem type being solved. The synthesis of these 

two experiments provides substantiation to Hypothesis 2. 

5.1.3 Experiment Set C: Real World Case Study 

Purpose: To test the LIVE methodology by applying it to a real-world layout design 

problem and to test its ability to enable designers and stakeholders to make more 

informed and collaborative decisions. 
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To perform these tests, the final experiment, Experiment 6, examines the operations of an 

aerospace parts warehouse, the effectiveness of the current layout configuration, and the 

redesign of it. The study performed, examines the performance over a forecasted three-

year period and for a multitude of different changes in the market conditions and business 

model. Robustness relative to production uncertainty is examined during the process of 

identifying the best redesign which will maximize profit over the three-year planning 

horizon. As will ultimately be shown in performing this study, the LIVE methodology 

enables more informed decisions to be made regarding the design of the layout and the 

operations of the system. Moreover, the integration of the detailed performance model 

will demonstrate its usefulness in enabling such decisions to be made and additionally 

providing expanded insight into the layout design process. 
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CHAPTER 6 

– 

EXPERIMENT SET A: VALIDATION OF METHODS 

The goal of this chapter is to present the results of the Experiment Set A. This set consists 

of three distinct experiments as outlined before. As a reminder, the purpose of this 

experiment set is to test the following: 

Purpose: Test the effectiveness of the FSPPM in promoting the discovery of feasible 

designs. Test the advanced flow distance methods ability to ensure flow path feasibility 

and discover optimal designs that are better representative of reality. Test the need to 

infuse FSA into the first stage of the bi-model multi-stage solution approach. 

 Experiment 1: FSPPM Validation and Testing 

In Experiment 1, the novel Feasible Sequence-Pair Promoting Method (FSPPM) 

developed to improve the discovery of feasible sequence-pairs is tested. The methods 

ability to more frequently establish feasible designs is examined along with the 

assumptions implemented to construct it. This experiment has three parts. In the first, the 

FSPPMs construction and assumptions are validated. In the second, the FSPPMs ability 

to more frequently establish feasible designs relative to the literature standard purely 

random assignment method is examined. In the third, a 52 Problem Test Set is solved 

provided several different options including one in which the FSPPM method is not 

deployed, replaced instead by a purely random method that is most often leveraged in the 

literature to establish sequence-pairs. Before examining the results of this 52 Problem 

Test Set solution, the FSPPM fundamental construction is first justified. 
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6.1.1 Experiment 1.A: FSPPM Validation 

The goal of Experiment 1.A was to validate the assumptions and construction of the 

developed FSPPM. 

6.1.1.1 Apparatus Setup 

To test the fundamental construction of the novel FSPPM, a problem consisting of two 

constrained objects in the physical space was leveraged. These two constrained objects 

are two of a hundred objects present in the space. The physical boundaries of the space 

were defined as encompassing a square space of 105 x 105 unit-distance in size. The 

dimensions of the objects were randomly generated to range between 2 to 7 in length and 

width. The constrained objects were specified as having a size of 5 x 4 and 4 x 4 

respectively, and both non-rotated. The 5 x 4 object, Object A, was placed in the absolute 

bottom-left corner of the space (xy = 2.5, 2) while the 4 x 4 object, Object B, was placed 

near the top-right corner of the space (xy = 93, 103).  

 With this physical setup in place, a hundred feasible sequence-pairs were 

generated leveraging a purely random assignment method identical to the standard 

method deployed in the literature. In other words, each object is placed randomly in the 

sequence-pair apart from the last one to be placed, which by default must be placed in the 

only remaining unassigned sequence-pair position. After generating these hundred 

feasible sequence-pairs, the resulting negative and positive sequences of them were 

processed and the placement distributions (mean and standard deviation) of the two 

constrained objects in both these sequences were established. Additionally, the FSPPM 

was deployed and the bisecting diagonal distance (BDD) property of each of these 
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constrained objects was determined. This BDD property directly establishes the most 

likely position in the sequence-pair the FSPPM would place the object (i.e. the mean 

position). The BDD property is equivalent to the right-hand side of Equation (5) noted 

before when the construction of the FSPPM was first outlined. The results of this test 

apparatus are now presented. 

6.1.1.2 Testing Results and Analysis 

Figure 40 provides the resulting sequence placement distributions of Experiment 1.A in a 

histogram format for the constrained objects, Objects A and B, in both sequences of the 

sequence-pair. The blue bars indicate the frequency of placement in the sequence position 

at the left edge of the bar and as defined on the x-axis. The red curves represent fitted 

normal distributions to the data. As observed, in the positive sequence, both Object A and 

Object B fall relatively close to the middle of the sequence. This mirrors expectations 

given their positions in the physical pace. This result is expected because in the physical 

space they fall close to the positive bisecting diagonal line. Object A falls exactly on the 

diagonal while Object B, is just to the left of it. Provided observations made regarding the 

placement of objects in the physical space relative to their placements in the sequences 

and this bisecting line (Appendix B), this result aligns well with such observations 

thereby confirming expectations. In the negative sequence, Object A, as demonstrated, 

absolutely falls in the first position of the sequence with zero deviation from this position. 

Object B on the other hand falls near the end of the sequence and centred about the 96th 

position in the sequence. Like before, this mirrors that in which is expected. Apart from 

Object A’s placement in the negative sequence, which is a special circumstance, the 

distributions have standard deviation in the range of roughly 0.7 to 0.9. 
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Figure 40 – Sequence placement distributions of Experiment 1.A 

With the BDDs of each sequence defining the mean placement positions of the 

objects in the FSPPM, by directly comparing it to the mean of the distribution created by 

the hundred randomly generated sequence results, the method deployed by the FSPPM to 

define the mean of the placement distributions can be validated. In theory if the BDD of 

the FSPPM matches or is reasonably close to that of the mean of the randomly generated 

distributions, then the developed method to defining the mean of the constrained object 

distributions according to this BDD property is confirmed. As is demonstrated in Table 

10, the computed BDD, or mean, by the FSPPM nearly identically matches the mean of 

the randomly generated distribution result. In fact, if one computes the difference 
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between these, they would find that the BDD method of defining the mean, which is 

deployed by the novel FSPPM, is on average within 0.3% of the true expected value in 

this example. 

Table 10 – Placement distribution statistics 

Statistic Positive Sequence   Negative Sequence 

  Object A Object B   Object A Object B 

FSPPM’s BDD 50.75 45.60  1 95.10 

Mean (μ) 50.62 45.52  1 95.86 

Sigma (σ) 0.90 0.88   0 0.77 

 

6.1.1.3 Key Insights and Conclusions 

Considering these results several key insights can be established: 

1) The bisecting diagonal distance (BDD) property, or mean, derived by the FSPPM 

mirrors that of the true expected value of placement 

2) The distributions about the expected value are normal 

3) The standard deviation falls in the proximity of 0.7-0.9 

4) Objects at the extreme corners always fall at the end of the respective sequence 

These takeaways in turn enable several conclusions to be made regarding the 

implemented assumptions and approaches of the FSPPM. First, it can be concluded that 

the FSPPM derived BDD property for defining the mean placement position aligns 

extremely well with the true distribution mean. Second, the assumption implemented in 
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the FSPPM to define the placement distributions normally was confirmed by observation 

of the random results forming normal distributions about the expected value. Moreover, 

recall that in the developed FSPPM, a secondary rule was also implemented in response 

to a placement observation relating to takeaway four above. In the developed FSPPM, if a 

constrained object were to fall at an extreme corner, the object without uncertainty would 

fall within the appropriate sequence at the end of the sequence. In the deployed method, 

the standard deviation was overwritten to be zero and the object’s expected value 

assigned to be this corresponding end position in the sequence. This was proven not only 

to be a justifiable rule, but also a perfect mandate after observation of Object A’s 

placement in the negative sequence. Having been placed at the absolute bottom-left 

corner of the space, it was always to then fall at the beginning of the negative sequence. 

As demonstrated, thanks to this implemented rule, the BDD perfectly matches that of the 

true mean and moreover, the overwritten sigma value of zero.  

The results and conclusions presented before enable it to then be concluded that 

the assumptions and general construction of the FSPPM are reasonable and provide 

accurate depictions of the true placement distributions of constrained objects in the 

physical space. 

6.1.2 Experiment 1.B: FSPPM vs. Random Sampling Method Comparison 

The goal of Experiment 1.B was to examine and moreover confirm the FSPPMs ability to 

more frequently establish feasible designs relative to a purely random assignment method 

often implemented in the literature. 
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6.1.2.1 Apparatus Setup 

To test the novel FSPPMs ability to more frequently discover feasible designs in the 

presence of constrained, i.e. fixed, objects in the space, four distinct problem setups of 

varying characteristics and dimensionality were leveraged. These four problems can be 

decomposed into two setups relating to the total number of objects in the space. In the 

first problem setup, a problem size of six total objects is the focus. Two distinct problems 

compose this setup; one where there are four unconstrained and two constrained objects 

and the other where there are three unconstrained and three constrained objects. In the 

second setup, a larger problem size of 12 total objects is the focus. This setup consists of 

two problems; one consisting of ten unconstrained and two constrained objects, and the 

other of eight unconstrained and four constrained. In addition to these four problems, the 

4/2 and 10/2 (unconstrained/constrained) problems are considered under two different 

boundary conditions. These setups were strategically defined such that the FSPPMs 

ability to more effectively generate feasible designs across different problem sizes and 

number of constrained objects could be assessed. Moreover, consideration of different 

boundary conditions enables the FSPPMs relative capability to be examined for different 

layout white spaces. Table 11 provides a summary of these problems.  

Table 11 – Problem characteristics of Experiment 1.B. 

Setup Problem Unconstrained Objects Constrained Objects 
White 

space 

Setup I 

(6 objects) 

A 4 2 46% 

B 3 3 46% 

C 4 2 19% 
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Table 11 (continued) 

Setup II 

(12 objects) 

D 10 2 46% 

E 8 4 46% 

F 10 2 26% 

 For each of the six unique problems, a hundred feasible designs are generated 

using both the FSPPM and the purely random assignment method of the literature. In 

identifying these hundred feasible designs, the total number of generated designs required 

to do so is recorded. For each problem, five replications are performed leveraging each 

sampling technique (FSPPM vs. random) in order to establish an average number of total 

designs required before a hundred feasible ones are identified. The results of this testing 

are outlined next. 

6.1.2.2 Testing Results and Analysis 

The results for the testing apparatus and procedure are provided in Table 12 below. The 

values in the table are for the average number of designs generated by the sampling 

technique before identifying a hundred feasible designs (orientation and sequence pairs) 

across five replications of the sampling techniques. In addition to these values, a 

reduction factor and the percentage of samples required by the FSPPM relative to the 

random method are provided. Asterisks in the table represent results that needed to be 

extrapolated due to the inability of the random method to discover feasible designs in any 

sort of a reasonable duration of time. For these, the number of generated designs required 

to find a single feasible one was extrapolated for each of the five replications, then the 

average taken. In these instances, it took on the order of half a day to find just a single 
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feasible design, which is what necessitated the need for extrapolation to remain capable 

of comparing the two sampling methods effectiveness relative to one another.  

Table 12 – Sampling results of Experiment 1.B. 

Layout Properties A B C 

Random Sampling 3,485,839 25,732 143,641 

FSPPM Sampling 54,530 978 635 

Reduction Factor 63.9 26.3 226.2 

(Samples Required) 1.6% 3.8% 0.44% 

Layout Properties D E F 

Random Sampling *215,020,300 1,084,027 *314,258,200 

FSPPM Sampling 1,820,519 10,444 8,147 

Reduction Factor 118.1 103.8 38573 

(Samples Required) 0.85% 0.96% 0.00% 

 The overarching observation from these sampling results is that the FSPPM 

outperforms the conventional random assignment method across the board, by identifying 

a hundred feasible designs in far fewer required samples (i.e. generated designs). This is 

easily identifiable by observation of the reduction factors and percentage of samples 

required by the FSPPM in Table 12. In each of these, the reduction factor is far greater 

than one and the percentage well below 5%. The provided results also demonstrate 

improvement relative to several different problem characteristics, whereby improvement 
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is defined as the FSPPMs ability to discover feasible designs at a faster rate than that of 

the random method.  

From the results, it can be identified that the FSPPMs improvement over the 

random method is proportional to the total number of objects in the space. As the total 

number increases, the FSPPMs advantage over a random method grows. Observation of 

either columns two, three, or four independently in Table 12 demonstrates this relative 

proportional improvement. Looking specifically at column three (results for Problems B 

and E) one can observe that while the number of fixed objects remains the same, and so 

too does the white space, the reduction factor, and thus improvement increases from a 

factor of 26.3 to 103.8, a nearly four times improvement over the random sampling 

method. The reason for why this is as follows. With more objects present, the sequences 

in the sequence-pair become longer resulting in there being more potential design 

permutations. At the same time, only a select number of these would result in the 

constrained objects being placed appropriately in the sequences such that a feasible 

design is yielded. This is like the needle in a haystack analogy whereby the haystack has 

grown making it only that much more difficult to find the very few needles. As such, the 

likelihood of by chance placing the constrained objects in the correct position in the 

sequence diminishes. This is why, as the total number of objects increases, it takes 

considerably more samples for the random method to identify a hundred feasible designs 

when compared to the FSPPM, which is far less impacted by this occurrence. In the six-

object case, there are far fewer permutations and thus the gap between the two methods is 

reduced, yet still noticeable.  
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It can also be observed that the relative improvement is inversely proportional to 

the white space. In other words, as the white space available to place objects decreases, 

the improvement of the FSPPM over the random method increases. This relationship is 

demonstrated by observation of columns two and three in setup one or setup two. While 

both noticeably have more difficulty finding feasible designs, due to the limited white 

space constricting the combinations of sequence placement and orientation that would 

allow all objects to then fall within the bounds of the space, the random method struggles 

noticeably more. In fact, as observed by the results in setup two, the random method 

results had to be extrapolated due to the method taking excessively long to produce even 

a single feasible design. This in lies an instrumental advantage of the FSPPM over the 

standard random method. While the random method could barely identify a single 

feasible design, the FSPPM remained capable of identifying a hundred such designs in a 

very respectable duration of time and number of required samples (1.8 million in the 

most constraining case, Problem D). The consequence of this observed outcome will be 

further explored as the next part of the experiment, Experiment 1.C, is presented. The 

implication of this will be explicitly established in this part of the experiment. For now 

though, it is important to merely understand the relationship between the white space and 

the ability of the two methods to a) identify feasible designs and b) the FSPPMs ability to 

noticeable outperform the random method. 

Another notable observation of these results is as follows. The relative 

improvement of the FSPPM over that of the random method is proportional to the 

number of constrained objects. In effect, as the number of constrained objects increases, 

and all else remaining constant, the gap in performance between the FSPPM and random 
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method increases whereby the FSPPM is far superior in identifying feasible designs. This 

can be observed by viewing columns three and four for either the setup one or two 

problems. As demonstrated, as the number of constrained objects increases from two to 

three and two to four, the reduction factor increases by an order of magnitude or 

significantly more in the case of the setup two problems. Note, like before, the random 

method required extrapolation to provide comparison. The method again struggled to 

identify feasible designs. This can be understood as being a by-product of having to 

appropriately place a greater number of constrained objects in the space. If even one is to 

be placed errantly, the design is deemed infeasible. As such, there is a greater likelihood 

for the random method to fail in establishing a feasible solution as the number of 

constrained objects increases. What is more interesting is while the random method 

becomes significantly less effective as the number of constrained objects increases, the 

FSPPM does the complete opposite, in effect identifying the hundred feasible designs in 

fewer required samples. The reason for this is as follows.  

As the number of constrained objects increases, the dimensionality of the problem 

effectively decreases. Recall, the FSPPM handles the placement of these constrained 

objects in the sequence-pair before then randomly inserting the remaining unconstrained 

objects. As such, it is these constrained objects that must be strategically placed in the 

space such that when the stacking-based QAP/U-SP model maps the sequence-pair to the 

physical placements in the space, these objects fall at their required placement positions. 

With the FSPPM, by its construction, having a high likelihood of appropriately placing 

them such that a feasible design is generated, the more constrained objects there are, the 

fewer unconstrained objects there are that then need to be placed accordingly by the 
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method to then ensure that a feasible design is completely generated. Though not an 

entirely shocking observation, it remains a noteworthy one provided its implication, 

which will be discussed later. 

Now among these three observations, the impact that each have relative to one 

another on the improvement of the FSPPM over the random method of the literature is as 

follows. The increase in the number of constrained objects effectively produces the most 

significant improvement. Much of this is likely the result of the two methods behaving 

inversely. While the FSPPM becomes more effective, reducing the number of required 

designs, the random method does the contrary, requiring not only more, but a 

significantly greater number of required designs. After the number of constrained objects, 

the total number of objects has the next greatest impact on the improvement gap between 

the two methods. This is likely the result of the exponential increase in possible 

permutations of the sequences. Finally, although having the least impact of the three, the 

white space available produces a noticeably growing gap in performance between the two 

methods as the white space decreases. 

6.1.2.3 Key Insights and Conclusions 

Considering these results and observations, several summarizing insights can then be 

established: 

1) The FSPPM consistently outperforms the traditional random assignment 

method of the literature 
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2) The performance gap between the FSPPM and random method grows as the 

number of objects increase, the number of constrained objects increase, and as 

the white space decreases 

3) The FSPPM enables larger sized and thus more difficult problems to remain 

tractable, problems that are intractable for the random method 

The latter of these insights is a theme that will continue into the last part of Experiment 1 

which follows. In this part of Experiment 1 however, it was observed that despite the 

increasing number of constrained objects that were present in the space, the FSPPM 

became more effective in generating feasible designs. This outcome implies that despite 

the problem increasing in constraint dimensionality (in the form of constrained objects) 

and thus difficulty, the FSPPM remains more than effective in generating feasible 

sequence-pair designs. Moreover, it seemingly thrives under such conditions. This 

combined with the other derived insights and result observations made before; the 

following conclusion can then be made. The developed FSPPM, effectively promotes the 

more frequent generation of feasible sequence-pairs designs when presented with a space 

consisting of constrained objects. 

6.1.3 Experiment 1.C: 52 Problem Test Set Comparison 

Having since validated the assumptions implemented to construct the FSPPM and 

moreover confirmed the FSPPMs ability to effectively promote the more frequent 

generation of feasible sequence-pairs in the preceding sub-experiments; the goal of 

Experiment 1.C was to then examine the FSPPMs ability to work in tandem with the 

Stage One optimization techniques to promote the discovery of feasible designs and in 
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turn, provide more effective solution to problems. Furthermore, identification of the 

appropriate sigma value to deploy going forward was another secondary goal of 

Experiment 1.C.  

6.1.3.1 Apparatus Setup 

To test the FSPPMs ability to promote the discovery of feasible designs and therefore aid 

the optimization technique of Stage One, a modified variant of the 52 Problem Test Set 

outlined in the Appendix F is leveraged. This test set is modified by altering the test 

problems with a 75% white space to have that of a 46% white space by means of altering 

the boundary dimensions. This was done to better observe the differences between the 

two methods. Other than this, the problem setups are identical to those provided in 

Appendix F. Only the problems consisting of constrained objects are examined provided 

that the FSPSPMs purpose is to facilitate the placement of such objects. This refines the 

52 Problem Test Set to a set of 32 problems (6-13, 19-26, 32-39, 45-52). These problems 

are solved using the baseline random assignment method along with the FSPPM for four 

different sigma values (0.6, 0.7, 0.8, and 0.9). For each of these five sampling method 

approaches, five replications of the 32 problems are solved. Each problem was solved for 

a fixed number of 100 generations such that a direct comparison on both a time and 

solution quality perspective could be made. The input parameters used in this experiment 

for the Stage One solver are provided for reference in Table 13. The raw results are also 

provided in Appendix G, Section G.2 for further reference. 
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Table 13 – Input optimization parameters of Experiment 1.C. 

Optimization Parameter Value 

Population Size 200 

Percent Elite 0.05 

Percent Jumping Gene 0.4 

Percent Crossover 0.7 

Percent Mutation 0.05 

Percent Feasible 0.8 

Max Pop Initial Time 360 

Max Generations 100 

Max Stall Generations 100 

 

6.1.3.2 Testing Results and Analysis 

To directly compare the influence the FSPPM has on the solution performance relative to 

the more traditional random method, the results for the four FSPPM sigma value 

approaches are aggregated to form a singular result representative of the FSPPM for 

comparison purposes. The results that follow are a further refinement of the 32 problems 

noted before and are subject to no budgetary constraints or robustness considerations. 

Only the single period problems (6-13 and 19-26) are encapsulated in these numbers. The 

reason for this is that the random method was unable to solve the large sized dynamic 

problems of the set. Without solution, a direct comparison was thus impossible. This is 

again a direct observation of the random methods inability to frequently identify feasible 
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solutions. For such sized problems this sampling method struggled to find a single 

feasible solution despite an exhaustive duration of time spent initializing the problem. 

With an initial population void of feasible solutions, the GA was virtually helpless in 

providing solution to the problem. It effectively entered an infinite loop in the first 

generation as it attempted to discover feasible solutions from infeasible parents. As 

alluded to before, the major implication of this is that without the FSPPM, larger sized 

problems subject to constrained spatial properties and constrained objects become 

unsolvable. With that established, the results of these single period problems are 

provided. Note that since the techniques used to generate a sample by both methods 

translate across periods, by extrapolation the differences between the two methods 

demonstrated below would only become greater as the number of periods is increased (if 

the random method could solve such problems to begin with). 

The major performance metrics of time spent in the GA, time spent initializing the 

population (where the sampling method is directly leveraged), optimal objective value, 

and the unique solutions generated by the methods are examined for both methods in 

Table 14 and Table 15. Recall, that with Stage One initializing the populations of the 

Stage Two algorithm, these metrics will directly influence the Stage Two’s performance 

and it is for this reason that the two methods are compared across these dimensions. The 

average result of these solution performance metrics for the two approaches is provided 

in Table 14. Along with it, the standard deviations of these metrics for each unique 

problem then averaged across the 16 single period problems examined, are provided in 

Table 15.  
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Table 14 – Random vs. FSPPM mean performance comparison 

Method Obs. 
Time in GA 

(sec) 

Time Initializing 

Population (sec) 

Optimal 

Objective 

Unique 

Solutions 

Random 80 160.19 177.27 468527.78 1730.75 

FSPPM 320 131.50 33.00 508718.75 1760.47 

 

Table 15 – Random vs. FSPPM standard deviation performance comparison 

Method 
Std. Dev. 

Time in GA 

Std. Dev. 

Time Initializing 

Std. Dev. 

Opt. Objective 

Std. Dev. 

Unique Solutions 

Random 24.28 4.54 22357.98 303.44 

FSPPM 14.09 2.65 21901.65 411.99 

As observed, the FSPPM provides significant CPU time savings while initializing 

the population in Stage One. A difference of over 5 times less than that of the random 

method was observed on average. Additionally, the FSPPM provided improved CPU 

speed within the GA evolutionary process, reducing the time to solve the problems by 

about 30 seconds on average. The improved time within the GA is likely a by-product of 

the FSPPMs more refined placement of the objects. This makes reproduced offspring 

more likely to be feasible thereby speeding the process of populating the next generation 

and thus problem solution.  

The FSPPMs faster solution did come at a cost though. Its greediness in placing 

the constrained objects resulted in it, on average, producing suboptimal solutions across 

the 16 problems examined. Interestingly though, the FSPPM on average outperformed 
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the random method in discovering unique solutions, albeit fractionally (1.6% more 

designs). This difference could be attributed to the low sample size or it may be the result 

of the FSPPMs combined random and guided technique facilitating the more effective 

discovery of derivative, yet unique, solutions.  

Now not surprisingly, the FSPPM is more consistent, i.e. robust, in terms of its 

GA time, initialization time, and objective function value. Its greater inconsistency in 

terms of the unique solution can be attributed to the greediness of the FSPPM. In some 

instances, it may become too localized in the design space, getting stuck in an overly 

refined area of the space thereby producing a more limited number of unique solutions. 

At the same time its localized approach enables it to find more derivative solutions. The 

interplay between these two competing behaviours is likely what leads to this greater 

spread in the unique solution results for the FSPPM. At the same time, the random 

method remains capable of avoiding such interplay and thus has a smaller spread relative 

to this metric. 

Despite the observable inferior solution quality and greater spread in these 

performance metrics, the FSPPMs notable CPU time savings, more consistent solution 

speed, and optimal solution value makes it the preferred method in Stage One for 

initializing the population. Moreover, the random methods inability to solve problem 

sizes exceeding a single period makes it a rather limited and ineffective sampling method 

to deploy. As such, going forward, the FSPPM will be leveraged to provide solution in 

proceeding experiments. Having now established the FSPPM as the preferred method, 

identifying which sigma value to deploy to define the placement distribution of the 

constrained objects became the focus. To identify this value the results of the four 
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different sigma value options tested were compared. The results of this comparison are 

provided in Table 16 and Table 17 below. 

Table 16 – FSPPM sigma value mean performance comparison 

FSPPM 

Sigma Value 
Obs. 

Time in GA 

(sec) 

Time Initializing 

Population (sec) 

Optimal 

Objective 

Unique 

Solutions 

0.6 80 129.65 32.70 511775.00 1730.09 

0.7 80 129.87 32.12 505412.50 1738.54 

0.8 80 130.93 33.08 509037.50 1780.53 

0.9 80 135.55 34.09 508650.00 1792.73 

 

Table 17 – FSPPM sigma value standard deviation performance comparison 

FSPPM 

Sigma Value 

Std. Dev. 

Time in GA 

Std. Dev. 

Time Initializing 

Std. Dev. 

Opt. Objective 

Std. Dev. 

Unique Solutions 

0.6 11.57 2.77 20272.10 376.78 

0.7 11.79 2.90 24018.97 428.15 

0.8 11.95 2.25 18851.30 414.15 

0.9 21.05 2.67 24464.22 428.87 

Overall, not a significant degree of differentiation between the different sigma 

values used in the FSPPM to define the placements of the constrained objects in the space 

is observed. With that said, there are some observable differences. While a sigma value 

of 0.6 produced the fastest GA solution times, it sacrificed a lot of optimality in doing so. 

Not surprisingly, it also generated fewer unique solutions. Such a low sigma value led to 

it being overly greedy, which is also what likely resulted in its inferior optimality 
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discovery performance compared to the other options studied. It is also observed that as 

the sigma value increases the number of unique solutions increases, as can be expected. A 

higher sigma value means that the placement of the constrained object about its expected 

position is less known, or in this context, has a larger chance of being placed about it 

rather than right at it. This leads to a greater potential of discovering alternative solutions 

whereby the constrained object does not fall exactly at the expected position. This 

explains why the larger sigma options were able to find more unique solutions. 

Interestingly though, on average, this did not translate to finding a more optimal solution. 

In general, it can also be observed that as the sigma value decreases the time to initialize 

the population (i.e. find X number of feasible solutions) also decreases. This is intuitive. 

With the placement about the expected position becoming less uncertain, there is a 

smaller chance of not placing the constrained objects at their expected position and thus a 

smaller chance of finding an infeasible solution. A smaller chance of finding an infeasible 

solution translates to fewer executions of the generational loop and sampling method 

which then translates to CPU time savings. 

 Now, looking at the standard deviations of the performance results, which were 

taken across the five replications of each unique problem and then averaged across the 

problems for each sigma value option, there is once again not any major differences with 

regards to the solution times. The consistency of the options in generating unique and 

optimal solutions does however present more noteworthy differences. As observed, the 

0.6 sigma option produced the lowest unique solution standard deviation, the second 

lowest relative to the optimal solution, and lowest with respect to time spent in the GA. 

Much of this can be attributed to its refined placement of the constrained objects, making 
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it more consistent in these metrics. The sigma option of 0.8 produced the most consistent 

optimal solution discovery across the problem set tested and moreover was the most 

consistent in terms of its time spent initializing the solution. The sigma option of 0.7 was 

one of the least consistent options in terms of optimality discovery. 

The goal of performing this study was to identify a suitable sigma option to 

deploy in subsequent experiments across the 52 Problem Test Set. In light of these results 

and observations, a case could realistically be made for either a sigma value of 0.7 or 0.8. 

The other two options of 0.6 and 0.9 tend not to have any discernible advantages over 

that of the other two and thus are removed from the conversation. While the sigma option 

of 0.8 was more consistent in its optimal solution value, this optimal solution on average 

was less optimal than that produced by the 0.7 option tested. On average the 0.8 option 

also tended to produce a greater number of unique solutions. Despite this, the sigma 

option of 0.7 was ultimately chosen, as on average, it was faster in solving the problems 

and discovered optimality better than that of the 0.8 option all while only producing less 

than 2% fewer unique solutions. With the goal of Stage One primarily being to most 

rapidly generate unique solutions, the sigma option of 0.7 was chosen going forward as a 

result. Again though, a case could be made for either option as outlined before. 

6.1.3.3 Experiment Summary and Conclusions 

After an analysis of these results, the following conclusion can be made. For smaller 

problems the best strategy may be to deploy a purely random sampling method, while for 

larger less tractable problems the FSPPM would prove the better option. The results 

demonstrate that for smaller problems of dimensionality less than 6 objects, the random 
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method was capable of more frequently discovering superior solutions while the FSPPM 

method did not perform as well, though still reasonably well. For such small problems, 

the random method remained capable of finding feasible solutions at a fast-enough rate 

that it remained able to fully populate the next generation in a reasonable duration. At the 

same time, the random nature of the method enabled it to discover alternative solutions, 

outside of what the FSPPM could discover, leading to the superior convergence 

performance. While this was true, it was noticeably slower in doing so which in lies its 

shortcoming while tackling larger sized problems. For larger problems, the random 

method simply could not generate feasible solutions at a reasonable rate for such a 

constrained and difficult problem formulation considered in this dissertation. In fact, for 

problem sizes greater than 6 and 12 objects and only a single period, it struggled to make 

it past the population initialization stage of the solution algorithm. Once entering the first 

generation it proved virtually impossible for the random method to discover enough 

feasible solutions to populate the next generation, essentially leading the algorithm to 

becoming stalled as it endlessly searched for feasible solutions. With few feasible 

solutions present to begin with, it made it only that much more unlikely that such a 

random method would find feasible solutions. This, however, was less a shortcoming of 

the FSPPM and truly where it began to shine.  

While larger problems were unsolvable by the random method, the FSPPM 

enabled such problems to remain tractable. So, although the FSPPM may have been 

sacrificing some potential optimality, it had the major benefit of remaining capable of 

solving such larger and less tractable problems.  Between the time savings and ability to 

solve larger problems, it can then be concluded that the FSPPM method is more effective 
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at generating feasible solutions and therefore should be deployed going forward. 

Moreover, a sigma value of 0.7 should be leveraged when deploying the FSPPM to 

provide the most effective placement of the constrained objects. 

 Experiment 2: Advanced Flow Distance Method Testing 

In Experiment 2, the novel advanced flow distance method developed in this research, 

which ensures flow path feasibility thereby providing closure to a major research gap, is 

tested. The advanced method is directly compared to the traditional rectilinear distance 

method to establish the importance of considering flow path feasibility when evaluating a 

layout design. This comparison is performed across the 52 Problem Test Set and the 

results of this examination are provided next.  

6.2.1 Apparatus Setup 

To test the difference between a rectilinear distance method and the advanced distance 

method developed as part of this dissertation work to evaluate a layout design, the 52 

Problem Test Set provided in Appendix F was leveraged. Each unique problem of this set 

was solved using both the rectilinear distance method and the advanced method to 

determine the material handling distances. Within the developed performance model, all 

other costs (such as those at station) were rendered zero, apart from the other handling 

costs, in order to focus just on the impact that the different handling distance methods 

have on the cost function. Moreover, the capacities were set high enough in the problems 

of the 52 Problem Test Set such that the dynamic production rate method implemented 

would not skew the results by reducing the rates and thus the costs. Five replications of 

each of these problem and method solution combinations were performed to enable an 
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average result to be established. Furthermore, the rectilinear results were post-processed 

by applying the advanced method to both the best layout solution identified and the entire 

layout design set generated in Stage One (i.e. all feasible layout designs found). This was 

done to enable the difference between the two methods to be observed on a layout-basis. 

The Stage One optimization parameters provided in Table 13, and used in Experiment 1, 

were once more used here in Experiment 2 to produce the results presented. Additionally, 

the conclusions of Experiment 1 were leveraged here in Experiment 2. In other words, in 

solving the problems, the FSPPM was deployed along with a sigma value of 0.7. Less 

aggregated results, from that in which are presented next, are provided in Appendix G, 

Section G.2 for further reference. First though, a noteworthy observation made while 

producing the results of this experiment is presented. 

6.2.2 A Notable Observation 

While initially generating the results of this experiment, difficulties initializing the Stage 

One population were observed for the larger 12 object problems. While the algorithm was 

able to initialize the SLPs of just one period relatively easily, being capable of finding 

160 solutions in a matter of seconds, initialization of the DLPs of three periods was a 

struggle, taking over 6 mins to find just 6 feasible solutions on average. This created a 

major roadblock. Because the DLPs were populated with so few feasible solutions, the 

GA then struggled to evolve the population. When the GA would select parents, there 

was a very high probability that one or both designs selected would themselves then be 

infeasible. In fact, there was just a 3% chance of selecting a feasible solution as opposed 

to an 80% chance (80% feasible designs were mandated for the initial population as an 

optimization parameter in Stage One) for the static variant of the same problem. As such, 
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after the genetic operators passed the infeasible genetic material onto the offspring, there 

was a very marginal chance that the produced offspring would themselves be feasible. 

This is turn led to the GA spinning its wheels, so to speak, as it searched exhaustively and 

with little hope of creating offspring that would be feasible.  

Interestingly though, it was observed that it took only 4.5 seconds or so to 

initialize the 12 object SLPs (i.e. generate 160 feasible solutions). This result spurred 

further investigation, which then identified that the reason for the difference has to do 

with the dimensionality of the problem being substantial less. For the DLPs, the 

algorithm had to simultaneously find sequence-pair and orientation-pairs that were 

feasible, not only in the first, but also second and third periods. So, while the first and 

third period may be feasible, if the second was not the whole design was considered 

infeasible. The SLPs on the other hand simply needed to establish a single layout, rather 

than three simultaneously, that were feasible. This spurred the question of how could this 

reduced dimensionality be leveraged going forward when initializing the DLPs?  

With the literature and the concept behind a slot machine as inspiration, a revised 

approach to initializing the Stage One populations for DLP types was formed. Since it 

took only 4.5 seconds to generate the 160 required feasible solutions for one period, each 

period layout design could be independently initialized to retain a roughly linear time 

increase with respect to the number of periods forming the DLP, allowing feasible layout 

designs to then be formed at a faster rate.  

The revised population initialization procedure then redeveloped for Stage One 

was as follows. Only for problems of the DLP type, a method resembling a slot machine 
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was to be deployed. Once the first period layout design had been identified by the 

sampling method as feasible, just the second period design was then generated using the 

FSPPM method, just as before, until a feasible layout is discovered. Once this period was 

then found to be feasible, the algorithm continued to the next and so on and so forth until 

all periods contained feasible layout designs. This revised initialization approach to the 

DLP variants, yielded significant computational savings as can be observed in Table 18. 

The results presented are average CPU times for five replications of initializing the 

population of Stage One (200 population size, 160 feasible designs) for the 12 object 

problems of the 52 Problem Test Set. Because for the original method, generating the 

required 160 feasible solutions was not achievable in the time frame allotted, the 

provided result is an extrapolation of the number of feasible solutions generated in the 

allotted six-minute time frame allowed to initialize the population in Stage One. In this 

time frame the average number of feasible designs was just six, so extrapolated to 160 

designs yields the 9600 second figure provided below. As can be observed, the resulting 

revised initialization method created a reduction in CPU time of over 520 times, 

ultimately allowing the 160 feasible designs to be discovered in just under 20 seconds, 

which is far below the allotted 6 minutes mandated for initializing the Stage One 

population. In addition to these dramatic time savings in initializing the population, the 

fully populated initial population of 160 feasible designs subsequently enabled the GA 

evolutionary process to perform significantly better. The process was observed as no 

longer becoming stalled in the first generation, nor had difficulty in identifying feasible 

designs as it evolved the population. 
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Table 18 – Revised Stage One population initialization procedure CPU time 

comparison 

Approach   SLPs DLPs 

Original Method  4.41 9600.00 

Revised Method   4.41 18.40 

Reduction Factor     521.80 

Considering the substantial improvements gained in solution performance (time 

and optimality) by deploying this revised Stage One initialization procedure for the 

DLPs, this approach was then deployed from here forth in all subsequent experiments as 

well as in the results of this experiment. By leveraging this revised approach, it allowed 

problems that were before occasionally unsolvable, to now always be solvable.  

6.2.3 Testing Results and Analysis 

With the revised Stage One initialization procedure deployed, the results of Experiment 2 

are now presented. Before presenting the results of this experiment, a few approach 

definitions and their symbolic representations must be summarized. Throughout this 

experiment, three distinct approaches are leveraged to establish the objective function 

values presented in the results to follow. The first approach leverages the simple 

rectilinear method in the performance model to establish the material handling costs and 

thus objective function value, provided the setup outlined before for this experiment. This 

approach in turn optimizes according to this rectilinear-based objective function. An 

adjacent approach to this, leverages these resulting layout designs of this previous 

approach and then applies posterior the advanced flow distance method to each design to 

enable a direct comparison between the two methods to be achieved. The final approach 
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deployed in this experiment leverages the advanced flow distance method to establish the 

material handling costs and thus objective function value while solving the 52 problems 

of the test set. This approach allows the best layout design according to the advanced 

method to be directly compared to the best layout design according to the rectilinear 

method. This then enables the potential profit loss to be observed when a rectilinear 

method, which does not account for flow path feasibility, is used while optimizing. These 

outlined approaches and their symbol representations are summarized in Table 19. 

Table 19 – Experiment two symbol definitions 

Symbol  Approach 

R  Optimized with rectilinear 

A  Optimized with advanced 

RA  Optimized with rectilinear, advanced post-applied 

To test the novel advanced flow distance method, which ensures flow path 

feasibility, against the standard method in the literature, a rectilinear method, the two 

methods are first directly compared for the same layout designs. This is achieved by 

comparing the rectilinear optimization results (R) to these resulting layout designs 

posterior evaluated with the advanced flow distance method (RA). The results for the 12 

problem SLPs are presented in Table 20. In these results, those for the population mean 

are the average objective function value across every design discovered to be feasible 

during the optimization process (in some cases this was over five thousand unique 

designs) whereas the optimal solution results are for just that of the best identified 

solution by the approach. Here the percent difference columns represent how much 
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higher the design(s) costs are when the advanced method is posterior applied to the 

design(s). 

Table 20 – Rectilinear vs. rectilinear post-processed with the advanced method for 

the twelve object SLPs 

Problem Characteristics  Optimal Solution    Population Mean   

      R RA % Difference   R RA % Difference 

14 

Non-

constrained 

 162600 186800 14.9%  416400 1438000 245.3% 

15  161200 235500 46.1%  434200 1404000 223.4% 

16  168200 238750 41.9%  468400 804200 71.7% 

17  156800 170400 8.7%  415600 399000 -4.0% 

18  175600 217000 23.6%  459000 777400 69.4% 

19 

Constrained 

Higher White 

space 

 532200 455800 -14.4%  701600 1219000 73.7% 

20  596000 532800 -10.6%  920600 1074400 16.7% 

21  507200 445000 -12.3%  666600 587600 -11.9% 

22  609400 533200 -12.5%  908200 797000 -12.2% 

23 

Constrained 

Lower White 

space 

 423200 392000 -7.4%  616400 822600 33.5% 

24  475400 435500 -8.4%  926400 1382200 49.2% 

25  410000 367250 -10.4%  584800 1319000 125.5% 

26   469600 428500 -8.8%   791000 1278000 61.6% 

Average         3.9%       72.5% 

 As can be observed, the major takeaway from these results is that across all the 

layouts discovered, i.e. the population mean, on average, the rectilinear method 

underestimates the material handling costs by over 70%. In other words, the costs for 

these designs are over 70% greater when flow path feasibility is considered. Such a 

difference in costs could dramatically impact a business’s bottom-line, which is why 

accurately defining these costs using the advanced method is imperative.  
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For the optimal solution, on average the resulting costs are 4% higher. Most of 

this is a by-product of the unconstrained problems producing significantly higher costs, 

thereby outweighing the lower costs found for the other constrained problems. These 

lower costs for the constrained problems are a result of the advanced method creating 

direct paths that become shorter than the rectilinear distance. With the advanced method, 

a path can traverse from point to point in a direct line which, by Pythagorean Theorem, is 

shorter than the collective x and y changes, which is how the rectilinear method 

establishes the distances. It is for this reason, that for these solutions the direct shortest 

route results in a shorter distance and thus lower costs. Moreover, in these problems the 

fixed objects are placed so as to stretch the layout across the entire space. This stretching 

allows for more opportunity to shorten the path by traversing directly as opposed to in a 

rectilinear fashion. Regardless, this result still demonstrates that a notable difference 

exists between the two methods. On average for the optimal solutions, the two methods 

produce costs that are nearly 17% different (figure established by taking the average of 

the absolute of the percent difference column results). This difference only widens as you 

look across the entire population.  

Now that the two methods have been compared directly and the differences 

established, how do the rectilinear optimized results then posterior evaluated for flow 

path feasibility with the advanced method (RA) compare to the advanced optimized 

results (A) for this same set of problems? This is answered by the comparison provided 

below in Table 21. The percent difference column here indicates how much lower of a 

cost the advanced method optimized layout design produces when compared to the 

rectilinear method layout design. Comparing these two results demonstrates that if the 
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rectilinear method was to be deployed to establish the performance of the layout, how 

much inferior the resulting layout design would be if implemented in practice. In other 

words, how less efficient the design would be when compared to that design identified by 

the advanced method as being the best solution. 

Table 21 – Rectilinear vs. advanced method for the twelve object SLPs 

Problem Characteristics  Optimal Solution    Population Mean   

      RA A % Difference   RA A % Difference 

14 

Non-

Constrained 

 186800 163800 -12.3%  1438000 398000 -261.3% 

15  235500 171200 -27.3%  1404000 406600 -245.3% 

16  238750 171000 -28.4%  804200 471400 -70.6% 

17  170400 171200 0.5%  399000 400200 0.3% 

18  217000 159600 -26.5%  777400 418400 -85.8% 

19 

Constrained 

Higher White 

space 

 455800 430800 -5.5%  1219000 626400 -94.6% 

20  532800 509400 -4.4%  1074400 802200 -33.9% 

21  445000 419400 -5.8%  587600 600800 2.2% 

22  533200 502400 -5.8%  797000 811200 1.8% 

23 

Constrained 

Lower White 

space 

 392000 359200 -8.4%  822600 558000 -47.4% 

24  435500 398000 -8.6%  1382200 777400 -77.8% 

25  367250 333600 -9.2%  1319000 523200 -152.1% 

26   428500 387800 -9.5%   1278000 774800 -64.9% 

Average         -11.6%       -86.9% 

Except for a single outlier, Problems 17, across these 13 problems of the 52 

Problem Test Set, the best solution identified by Stage One is consistently inferior when 

flow path feasibility is not accounted for by the performance model. In other words, the 

rectilinear optimization results produce designs that are on average nearly 12% 

suboptimal in comparison to those identified by the Stage One algorithm when the 
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advanced method was leveraged. Twelve percent may not seem significant until you 

consider that for a company with manufacturing costs on the order a million dollars. 

Twelve percent then becomes $120,000 in savings. Furthermore, this inferiority extends, 

in fact greatly widens, when viewed across the entire population set of Stage One (i.e. 

population mean results). As can be observed from the population mean results, on 

average across all replications and problems of this set examined, the designs identified 

are over 86.9% inferior when compared to the set produced during the optimization using 

the advanced method. Some of this can likely be attributed to the advanced optimization 

generating more unique solution in the local vicinity of the global optimum thereby 

reducing the population mean average. Regardless, this result once more establishes the 

distinct difference between the two methods and the clear inferior nature of the layout 

designs generated by the standard rectilinear method of the literature. In the case of the 

general population, the resulting design set is inferior by over 80%. That translates to an 

average cost of $800,000 more for a firm with costs of one million dollars. This only 

further justifies the need to consider flow path feasibility when designing a layout.  

For comparison purposes, let’s observe the resulting difference in the best layout 

designs generated by the two methods for Problem 18. The resulting layout designs are 

demonstrated below in Figure 41, Figure 42, and Figure 43. Figure 41 is the design of the 

five rectilinear replications of Problem 18 that was the most optimal whereas Figure 43 

provides the most optimal of the advanced replications of the same problem. 
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Figure 41 – Best layout design generated by the rectilinear method with direct paths 

 

Figure 42 – Best layout design generated by the rectilinear method with flow 

feasible paths 
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Figure 43 – Best layout design generated by the advanced method 

 As you can be observed by viewing Figure 41 or Figure 42 against Figure 43, the 

two layout designs identified as the best solution by the two methods are distinctly 

different. Also, the major flaw of the rectilinear method in evaluating the layout design is 

directly observable in this example. Observing Figure 41 and the direct paths shown (blue 

lines), many of these paths traverse directly through other objects. Objects 1, 11, and 2 

are all vertically oriented to leverage its shorter dimension to effectively reduce the 

distance between I/O points. Doing so though forces the flow to then have to flow about 

their long dimension in order to get around to the opposing sides to then make 

connections between it and other objects when flow feasibility is considered (i.e. not 

traversing through another physical object in the space). This is directly observed in 

Figure 42 whereby the same layout design is posterior evaluated with the advanced 

method and as shown, the paths must travel about the ends of these objects. This is the 
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major flaw of the rectilinear or Euclidean methods of the literature and is what originally 

motivated the development of the advanced flow distance method at the start of this 

research. By not accounting for such flow path feasibility, the resulting design that is 

considered best is ultimately significantly inferior to the design that, when implemented 

in practice, would be the most effective, i.e. that shown in Figure 43. In this example, the 

design identified as the best by the rectilinear method was over 30% less optimal than it 

could have been had the optimization procedure considered flow path feasibility. This 

means a layout design that is less effective and by extension, one that would yield lower 

production profit margins due to higher material handling costs. 

Having since established the difference between the two methods and moreover 

the importance of considering flow path feasibility via the advanced method, a broader 

look at the comparison across the entire problem set is presented next. The difference 

between the population means of the rectilinear and rectilinear results post-processed 

with the advanced method are provided in Table 22, distinguished on a problem type and 

size-basis as well as overall. The percent difference results represent how much the 

objective function increases by applying the advanced method that ensures flow path 

feasibility or put alternatively, how much the rectilinear method underestimates the true 

material handling costs for the layout design. As can be observed, the rectilinear method 

on average greatly underestimates the material handling distances and thus costs, more so 

for the larger sized problems of 12 objects. This is likely because there are more objects 

the material must flow about, which effectively increases the material handling distance 

and therefore costs. On average across the two problem sizes the rectilinear method 

underestimates costs by nearly 40, that is for the SLPs.  
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The results of the DLPs can be misleading. The reason for why the 6 object 

problems produces a population mean with lower costs is not because the rectilinear 

method overestimates the costs on average. Instead, this result is likely the by-product of 

the DLPs not converging to the extent that the SLPs had due to the added dimensionality 

of the problem. By not converging sufficiently, the population mean would effectively be 

higher as fewer neighbouring designs about the global optimum would be found, which 

would effectively reduce the population mean. With so many unique layout designs 

generated for each replication of each problem and furthermore multiple layouts to be 

processed for each period of each layout design, this meant processing millions of 

designs for the 12 object DLPs. As such, the results of the 12 object DLPs post-processed 

with the advanced method were unfortunately too computationally burdensome to 

process and as such could not be provided here as a direct comparison. It is believed that 

had this post-processing been achievable, a similar result to that observed for the 6 object 

DLPs would too have been observed. Overall, across the two problem types, the 

rectilinear method still significantly underestimates the costs at about 25%.  

Table 22 – Average difference between rectilinear and rectilinear post-processed 

advanced distance method population mean values 

Problem Characteristics  Difference   

Type Size   Size + Type Type Overall 

SLP 
6  6.17% 

39.31% 

24.09% 
12   72.45% 

DLP 
6  -6.35% 

-6.35% 
12     
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In addition to this examination, the difference between the post-processed 

rectilinear population mean results and the advanced population means results are 

provided and summarized in Table 23. A similar outcome is observed here whereby the 

percent differences now indicate how much lower, on average, the population layout 

designs discovered while using the advanced method are in comparison to those 

discovered while using the rectilinear method. As such, a negative number here 

symbolizes how much lower the advanced method results are. As demonstrated in the 

table, for the SLPs the advanced method results in a population with a cost objective of 

nearly 50% less than that of the rectilinear population with most of this difference being 

attributed to the 12 object SLPs. These, on average, have populations with an average 

cost nearly 90% less than that of its rectilinear counterpart. Once more, the 6 object DLPs 

demonstrate the contrary. Again, likely due to a lack of adequate convergence when 

compared to the lower dimensionality SLPs. Regardless, on average across both problem 

types, the difference still remains such that the advanced method produces designs that 

are on average about 30% more optimal or put alternatively, the rectilinear method 

produced designs that are on average 30% less ideal when put into practice whereby flow 

path feasibility must be considered. 

Table 23 – Average difference between rectilinear and advanced distance method 

population mean values 

Problem Characteristics  Difference   

Problem Type Problem Size   Size + Type Type Overall 

SLP 
6  -8.26% 

-47.57% -29.84% 
12   -86.89% 
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Table 23 (continued) 

DLP 
6  5.63% 

5.63%  

12     

At this point, the importance of considering flow path feasibility and thus of the 

novel advanced flow distance method developed as part of this dissertation has since 

been well established, thereby providing substantiation of Hypothesis 1. Now though, 

attention is turned towards whether this necessitates the need to implement the advanced 

method during the first stage of the proposed bi-model multi-stage solution approach. To 

consider this, comparisons of the rectilinear results post-processed with the advanced 

flow distance method are compared to that of the advanced results across the problem set 

on a problem type and size-basis. A summarization of these results relative to the best 

identified layout designs solutions objective function value (Optimal Obj.) the number of 

unique designs identified, and the time required to solve the problems are provided in  

Table 24. Positive values in this table for the differences indicate how much better the 

metric result is for the rectilinear method relative to the advanced method. A lower 

objective value, a higher number of unique solutions generated, and a faster/lower 

solution time are all better. In that sense, anytime a positive value is observed in the table, 

it indicates the preference lying with that of the rectilinear method (i.e. the rectilinear 

performs better in that dimension). 
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Table 24 – Comparison of methods across the metrics of interest in Stage One 

Approach Problem Type Problem Size   Optimal Obj. Unique Time (min) 

RA SLP 6  125307 2757 2.0 

  12  372877 5790 2.3 

 DLP 6  451969 8508 3.9 

    12   1253754 11253 5.5 

A SLP 6  123868 2707 12.0 

  12  321338 5222 90.1 

 DLP 6  430277 8164 39.4 

    12   1192103 6352 185.7 

Difference SLP 6  -12.9% 1.7% 10.0 

  12  -14.5% 8.9% 87.8 

 DLP 6  -15.9% 7.0% 35.5 

    12   -12.3% 107.6% 180.2 

 From the provided results it became quite evident that in terms of true optimality, 

the rectilinear method consistently underperformed that of the advanced method 

approach. The advanced method, as expected provided its consideration of flow path 

feasibility, identified layout designs that on average were over 12%, across all problem 

types and sizes, better configured for efficiency. In other words, an over 12% reduction in 

costs can be realized by considering flow path feasibility when optimizing the design. 

While this is true, the rectilinear consistently outperformed the advanced method in terms 

of identifying unique designs and problem solution. Most notably the rectilinear method 

produced over 107.6% more feasible designs than did the advanced method for that of the 

larger 12 object DLPs (average value on an instance basis). The reason why this result 

was so much more significant compared to the others has to do with the added 

dimensionality of the problem. Due to the size of these problems, the algorithm did not 
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converge to the level in which the others had, resulting in fewer solutions identified 

throughout the process. Much of this can be attributed to the stark difference in 

computation time required to solve the problems across all problem types and sizes. 

 As is evident, the rectilinear method consistently outperforms the advanced 

method in terms of computational speed. Being that the advanced method is solving a 

variant of the traveling salesman problem for each unique flow connection in the design, 

this is not all that surprising. The difference is solution time is quite stark, which further 

fuels the debate as to whether the advanced method needs to be implemented when only 

initializing Stage Two. As shown, while across all problem types and sizes the rectilinear 

method can solve the problems in five and half minutes or less, even the smallest sized 

problem could not be solved in less than 10 minutes when the advanced method was 

used. Moreover, the difference between the two methods solution times only further grew 

as the problem size grew, whereby growth was mostly linear relative to both the number 

of objects and number of periods (SLP, a single period; DLP, three periods). While the 

largest problems, the 12 object DLPs, could on average be solved in just five and half 

minutes with the rectilinear method, it took the advanced method over three hours to 

provide solution to the same problems. This created a difference in time of over 180 

times. In other words, it took the advanced method over 180 times longer to provide 

solution to the problems. 

6.2.4 Experiment Summary and Conclusions 

As a reminder, the purpose of this experiment was to test the difference between using 

the rectilinear distance method of the literature and the advanced distance method 
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developed in this dissertation. Additionally, the experiment sought to demonstrate the 

importance of considering flow path feasibility when evaluating a layout design in order 

to substantiate Hypothesis 1. As a reminder Hypothesis 1 was as follows: 

Hypothesis 1: If an advanced flow distance method that ensures flow feasibility 

is implemented to define the MHCs, then improved layout designs that are better 

representative of reality can be established for variable production environments 

where several interrelated processes are occurring concurrently. 

As was well established throughout this experiment, leveraging the novel advanced flow 

distance method consistently provided improved layout designs that were better 

representative of reality. This was demonstrated by comparing the results of the 

rectilinear method to that of the advanced method across the 52 Problem Test Set and 

noting the differences between the two. It became evident that in order to most accurately 

design a layout, the novel flow distance method was required. The rectilinear method 

consistently underestimated the true material handling costs by underestimating the 

handling distances. 

 Though the advanced method is necessary to identify the most optimal layout 

design in practice, its necessity in Stage One was further examined. When Stage One is 

functioning as a means of initializing the Stage Two algorithm, and more complex layout 

model representation, optimality is not the only metric that should be considered. In the 

last part of the experiment, the performances of both the rectilinear and advanced method 

were examined across the entire problem set and relative to all three-key metrics. While, 

as demonstrated before, the rectilinear method underperformed the advanced method in 
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terms of optimality, it outperformed the advanced method in terms of both unique designs 

identified as well as solution time. The rectilinear method more than just outperformed 

the advanced method; it significantly outperformed it relative to solution time, yielding 

solution times, in some cases over 80 times faster. Instead of taking hours to run a 

problem, it took mere minutes to do so. This was always a well understood drawback of 

considering flow path feasibility, but as established before, a necessary one to ensure a 

layout design is accurately evaluated.  

With that said, the stark CPU time savings yielded by leveraging the rectilinear 

method in Stage One to initialize Stage Two, and additionally the larger unique 

population sets generated, both collective outweigh giving up roughly 12% in optimality 

that occurs when not considering flow path feasibility via the advanced method. With a 

main goal of the Stage One being to rapidly generate feasible designs to enable Stage 

Two to then be initialized effectively, this sacrifice seems reasonable. As such, going 

forth it is recommended that when Stage One is functioning as a means of initializing the 

Stage Two algorithm, the rectilinear method ought to be leveraged to provided effective 

and fast solution to the problems. This conclusion will be leveraged going forth in later 

experiments. On the other hand, when Stage One is to function as the end of the layout 

design process, the advanced method must be deployed to ensure that the resulting design 

yielded via the optimization will in fact be the best one when implemented in practice. 

 Experiment 3: FSA Implementation in Stage One 
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In Experiment 3, the FSA technique of Stage One is tested, and its requirement in the bi-

model multi-stage solution approach examined. Once more, this examination and testing 

is performed across the 52 Problem Test Set. 

6.3.1 Apparatus Setup 

To test the FSA method and establish its need for inclusion in the bi-model multi-stage 

solution approach, the 52 Problem Test Set provided in Appendix F was leveraged once 

more. Additionally, the conclusions of the preceding experiments, Experiment 1 and 2 

are leveraged. In other words, the FSPPM method with a sigma value of 0.7 is deployed 

and the rectilinear method implemented to define the flow distances. The Stage One 

optimization parameters summarized in Table 13, and used in Experiment 1 and 2, were 

once more used here in Experiment 3 when solving the problems. This was done to 

enable a direct comparison to be performed between the results for when the FSA 

technique is included and for when it is not (i.e. those generated in Experiment 2). Five 

replications of each of the 52 problems of the set are solved with the FSA technique 

applied in Stage One to the fittest solution each generation. The purely rectilinear results 

(R) from the proceeding experiment are leveraged here to provide comparison. In 

implementing the FSA technique, the FSA parameters provided in Table 25 were 

deployed to generate the results that will be discussed next. 
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Table 25 – FSA optimization parameters 

Optimization Parameter Value 

Maximum Number of Iterations 15 

Sample Size 500 

Probability of Uphill Move Acceptance 0.9 

Probability of Reassigning Fixed Object 0.7 

Probability of Swapping Adjacent Objects 0.8 

Probability of Rotating Unconstrained Objects 0.9 

c Coefficient (higher = more greedy search) 100 

k Coefficient (higher for larger problems) 3 

McKendall Method Option (ON/OFF) ON 

 

6.3.2 Testing Results and Analysis 

Deploying the FSA optimization parameters noted above and applying the FSA technique 

to the further refinement of the best solution each generation in the Stage One GA yields 

the results presented in Table 26 when compared to those results found before in 

Experiment 2 for when FSA was not applied. The results presented in Table 26 are for 

the yielded solution objective values and run times after 100 generations or until the max 

time limit of 3 hours and 20 minutes (i.e. 200 minutes) was achieved. Additionally, the 

CPU time per generation is also provided to enable a better comparison to be made 

between the two approaches as it removes any dependency on the number of generations 



 330 

executed and thus the impact the time limit may have had. This limit became relevant 

when solving the DLPs of the problem set, as will be observed. 

Table 26 – Comparison of Stage One results with and without FSA included 

Problem Characteristics  Difference in Metrics 

Type Size   Optimal Obj. (%) Run Time (mins) Time/Generations (sec) 

SLP 6  -10.4% 36 11 

 12  -3.3% 56 17 

DLP 6  -2.5% 206 78 

  12   -6.1% 208 108 

Average      -5.57% 126 53 

 Observation of the results in Table 26 sheds great insight into the need to deploy 

the FSA technique while solving the problems in Stage One. On one hand, deploying the 

FSA each generation on the best solution enables improved solution optimality to be 

achieved by the Stage One GA. On average across the 52 problems tested, the 

improvement in optimality was over 5.5%. This improvement was more prominent in the 

6 object SLPs. The improved optimality can certainly be attributed to the further 

refinement of the solution. It was often observed in the non-FSA results that while the 

object placements were well positioned for optimality, the rotations sometimes did not 

follow suit. It is believed that because the FSA technique was deployed with such a high 

probability of rotation (90%), this is likely the major reason for the improved optimality 

that was yielded by deploying the FSA technique in Stage One.   

While optimality discovery was by far a major advantage of deploying the FSA 

technique, it came at a cost, and a major one at that. As can be observed, when FSA was 
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deployed, the Stage One algorithm was noticeably slower regardless of the characteristics 

of the problem. In the case of the DLPs, the algorithm terminated often well before 

reaching 100 generations as the maximum time limit was reached. At the same time, 

when not deployed, the algorithm breezed through the 100 generations, on average, in 

under 6 minutes, even for that of the DLPs. The time per generation results really 

demonstrate the difference between the two approaches and the amount of time the FSA 

contributes to the run time. Since all else remained the same to when the FSA was not 

deployed, the difference provided in Table 26 demonstrates the added time per generation 

that can be attributed solely to the FSA techniques execution. Moreover, this result is for 

just that of 15 iterations and a sample size of 500 deployed, both of which arguably are 

on the low end of what could be considered sufficient for solution by the FSA technique. 

Increasing either would only further increase the difference between the two approaches. 

 In post-processing the results of this experiment, many of the FSA convergences 

were observed to be very abrupt, whereby the final optimal solution was achieved well in 

advance of the algorithm terminating, whether be it after 100 generations or once the time 

limit was reached. With all convergence data having been saved, and thus available, this 

occurrence was further studied. Given the improved optimality performance, yet abrupt 

convergence behavior and thus many stalled generations present (i.e. generations where 

no further improvement in solution was achieved), it was of interest to see how the FSAs 

solution time would compare to the time it took to achieve a solution at least as optimal 

as the result yielded when FSA was not deployed. With per generation times along with 

the optimal solution value each generation available, this comparison was possible. 
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Taking the number of generations to achieve optimality by each approach and 

multiplying it by the per generation time, yielded the results provided below in Table 27. 

Table 27 – Time to optimality comparison 

Problem Characteristics  Time to Optimality (mins)  Difference 

Type Size   FSA Off FSA On    

SLP 6  23.9 1.2  22.7 

 12  45.2 2.0  43.2 

DLP 6  166.0 3.3  162.7 

  12   197.7 5.3  192.4 

Average   
  108.2 3.0  105.2 

 As can be observed in Table 27, though the FSA technique was able to, on 

average, reach optimality sooner than when the algorithm terminated, it still took on 

average, across the problems, close to 2 hours to do so. At the same time the FSA took on 

average a mere 3 minutes, creating a difference of over an hour and forty minutes 

between the two approaches. What about the time the FSA approach took to achieve the 

optimality of the FSA excluded approach, however? The results answering this question 

are provided in Table 28. As can be observed, that while the FSA approach is able to 

reach the optimal solution of the FSA excluded approach about 10 minutes (108.2 from 

previous table subtracted by 95.8 here) sooner than reaching its own optimal solution, it 

still takes considerably longer for this approach to reach the same level of optimality 

discovery; over an hour and half longer in fact. Even for the smallest problem size 

examined, it still took over 20 minutes longer to achieve the same level of optimality. 
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Table 28 – Time to FSA Off optimality when FSA On 

Problem Characteristics  Time (mins) 

Type Size     

SLP 6  21.5 

 12  44.1 

DLP 6  160.7 

  12   156.9 

Average      95.8 

 

6.3.3 Experiment Summary and Conclusions 

The results of this Experiment 3 provide clear insight into whether the FSA technique 

needs inclusion in Stage One. While it was demonstrated that the FSA technique clearly 

improved solution optimality, achieving this optimality came at a cost. This cost was an 

algorithm in Stage One that provided solution at a much slower rate, taking noticeably 

longer per generation. If optimality is the only objective of Stage One, in other words, the 

designer is solving the problem to finality using just Stage One, then it would be 

imperative to deploy the FSA technique. The longer solution times in this case would be 

acceptable provided that a better solution would then likely be found by the algorithm.  

Since Stage One acts in its primary function as a means of initializing the Stage 

Two algorithm, more than just the solution optimality metric must be considered. As was 

the case before in Experiment 2, here the substantially longer solution times that 

accompany the FSAs deployment, make it non-ideal for inclusion while acting in 

initializing Stage Two. With the algorithm not only taking longer, but also often not 
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reaching completion of all 100 generations; the algorithm has fewer opportunities to 

identify other potential solutions, thereby reducing the set of solutions that can be 

provided to Stage Two and moreover reducing the diversity of this solution set.  

Between the FSA techniques significantly longer solution times and reduced 

diversity of the design set passed to Stage Two, the combination of the two outweigh the 

FSAs ability to provide, on average, 5.5% more optimal solutions. As it was also 

recommended that the rectilinear method be deployed, and it itself also lacks optimality 

with respect to flow path feasibility and thus true optimality, this is not such a sacrifice. 

Overly optimizing for optimality based on the rectilinear result could do more harm than 

good. As such, when initializing Stage Two, the FSA technique should not be deployed. 

This result will be leveraged going forth in subsequent experiments. 

 Summarizing Statements of Experiment Set A 

As a reminder, the purpose of Experiment Set A was to test the effectiveness of the 

FSPPM, the novel advanced flow distance method, and the need to infuse FSA into the 

first stage of the proposed bi-model multi-stage solution approach. In Experiment 1, it 

was demonstrated that the FSPPM performs far better than the traditional random 

assignment method of the literature. The FSPPM demonstrated its ability to discover 

feasible layout designs at a far faster rate and as such, made problems before unsolvable 

to then become solvable.  

In Experiment 2, it was demonstrated that the novel advanced flow distance 

method does well in ensuring flow path feasibility. It was also demonstrated that there 

exists a distinct difference between the traditional rectilinear result and that generated 
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when deploying the advanced method. Moreover, it was proven that optimizing relative 

to the rectilinear result yields noticeably inferior layout designs compared to when the 

advanced method is used. These results provided substantiation to Hypothesis 1: 

Hypothesis 1: If an advanced flow distance method that ensures flow feasibility 

is implemented to define the MHCs, then improved layout designs that are better 

representative of reality can be established for variable production environments 

where several interrelated processes are occurring concurrently. 

In the final experiment, Experiment 3 of this set, it was demonstrated that while infusing 

the FSA technique provides improved optimality, the substantial time cost associated 

with its execution deters its application in Stage One when initialization of Stage Two is 

the goal. 

 Overall, it was concluded that the FSPPM ought to be deployed with a sigma 

value of 0.7 regardless of the goal of Stage One (initialization or final solution). In the 

case of initialization, it was concluded that the rectilinear method be deployed and FSA 

not. On the other hand, when final solution and thus optimality is the goal of Stage One, 

the advanced flow distance method and FSA ought to both be deployed to ensure the best 

layout design is identified by the Stage One algorithm. 
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CHAPTER 7 

– 

EXPERIMENT SET B: OPTIMIZATION STUDIES 

The goal of this chapter is to present the results of the Experiment Set B. This set consists 

of two distinct experiments, Experiments 4 and 5, as outlined before. As a reminder, the 

purpose of this experiment set is to test the following: 

Purpose: Test the effectiveness of the Stage One and Two solution procedures of the 

proposed bi-model multi-stage solution approach to solving the complex layout 

formulation of this dissertation. Test different optimization parameter combinations to 

identify the appropriate parameter sets to deploy to most effectively solve said layout 

problems. 

Additionally, it should be acknowledged that the experiments build upon each 

other, whereby the resulting conclusions of the preceding experiments are leveraged in 

future experiments. From the preceding experimental results and the conclusions formed, 

the FSPPM with a sigma value of 0.7 is leveraged, a rectilinear material handling 

distance method deployed in Stage One, and the FSA technique turned off in the 

experiments of this Experiment Set B. 

Note, that without solution to a comparable layout formulation to compare to in the 

literature, the solution procedures cannot be compared to other solution procedures to 

establish effectiveness relative to a baseline. Many of the procedures developed in this 

dissertation are tailored to the advanced and uniquely formulated, layout problem 

addressed in this dissertation research. As such, comparison across other formulations is 
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not possible. The best alterative was then to establish a literature standard baseline for 

such a formulation, then establish a new problem set to test the procedures upon, and 

finally perform optimization parameter studies to then identify the most effective 

approach to solving said problems. 

 Experiment 4: Stage One Optimization Study 

In Experiment 4, the effectiveness of the developed Stage One solution procedure is 

tested, and the best optimization parameter sets identified. To test the Stage One solver’s 

effectiveness, its ability to solve the 52 Problem Test Set is examined. The 52 Problem 

Test Set problems are solved using different optimization parameter combinations to 

identify both the parameter set that provides the best optimality discovery (to deploy 

when only Stage One is to be executed) and a set that will provide the second stage with 

the best population set to initialize its populations with (to be referred to as the 

initialization set going forth). The latter directly address the posed question of to what 

extent the first stage needs to be solved to adequately initialize the Stage Two 

populations. 

7.1.1 Apparatus Setup 

To achieve this parameter set identification, an L18 orthogonal array screening design of 

experiment (DOE) was leveraged to identify the best combination of Stage One 

optimization parameters for optimality and initialization. The following Stage One 

optimization parameters were examined: population size, elite, jumping gene, crossover, 

mutation, and initial population feasible solution percentages, as well as the number of 

generations to be performed. Table 29 outlines these DOE factors considered (i.e. 
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optimization parameters) and their associated factor levels (i.e. settings) that were tested 

in the experiment.  

Table 29 –Factor table for Stage One optimization parameter study 

Factor  Levels 

Symbol Description   Level 1 Level 2 Level 3 

A Population Size  50 100 200 

B Percent Elite  0.05 0.1  

C Percent Jumping Gene  0.4 0.6  

D Percent Crossover  0.7 0.9  

E Percent Mutation  0.05 0.15  

F Percent Feasible in Initial Population  0.8 1  

G Number of Generations   50 75 100 

Table 61, found in Appendix G, Section G.5, provides the L18 orthogonal array 

leveraged to perform the optimization parameter study for Stage One. For each of these 

experiments, five replications of the 52 Problem Test Set problems were solved for a total 

of 5 replications x 18 experiments x 52 problems = 4680 solution instances. An L18 array 

was chosen provided that the number of degrees of freedom totalled 9 and additionally a 

complete full factorial design of these factors would have taken on the order of months to 

run across several machines. Therefore, a more selective and efficient approach was 

required.  

Once each of these 4680 solutions were generated, the results were then post-

processed. Post processing entailed transforming the performance metrics to a relative 

percentage deviation (RPD), which effectively normalized the data for cross comparison 

purposes and such that they could then be subsequently transformed into signal-to-noise 
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(S/N) ratios. The relative percentage deviation equation leveraged to establish the RDP 

value for each problem of each experiment was as follows: 

 𝑅𝐷𝑃𝑝 = mean
𝑟

(
𝑀𝑒𝑡𝑟𝑖𝑐𝑝,𝑟 − 𝐿𝐵𝑝

𝐿𝐵𝑝
) (66) 

where p is each problem of the 52 Problem Test Set, r the replication, 𝑀𝑒𝑡𝑟𝑖𝑐𝑝,𝑟 the 

metric value for replication r of problem p, and 𝐿𝐵𝑝 the minimum discovered metric 

value across all replications and experiments for problem p. With the RDP values for 

each of the 52 problems determined for each of the 18 experiments tested, the S/N ratios 

were then computed. The metrics of optimal objective value, solution time, and unique 

solutions generated were all examined as these three-solution metrics directly impact the 

quality of the solution set provided to Stage Two and moreover, to the Stage One’s 

solution effectiveness. 

Provided that these three-performance metrics of interest: optimal objective value, 

solution time, and number of unique solutions generated each have differing preferred 

values, the appropriate S/N ratio equation needed to be applied to each. For the optimal 

objective value and solution time, smaller is better, but for the unique solution metric, 

larger is better. The appropriate S/N ratio provided below was applied to each metric 

result: 
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where M are the number of problems and k is the trial experiment. 

These S/N ratios were then leveraged to establish the S/N ratios for each level of 

each factor tested by taking the average S/N ratio across those experiments consisting of 

that factor level. Doing so enabled the main effect of each factor to be established and 

subsequently examined to identify the appropriate factor level to deploy for each 

optimization set sought. Based on how the developed jumping gene operator was 

designed, which works on a period-basis, the operator is rendered unexecuted for the 

static single period problems of the test set. As such, inclusion of the static problems 

would skew the results. Thus, to avoid this, the two distinct problem types were 

separated, and individual analysis performed for each of them. For the static layout 

problems, the results of the first 26 problems of the 52 Problem Test Set results were 

examined (i.e. problems 1-26). For the dynamic problems, the last 26 problems of the test 

set results were examined (i.e. problems 27-52). The jumping gene factor result in the 

SLP results can be neglected given its non-application to such a problem type. 

7.1.2 Testing Results and Analysis 

The computed S/N ratios for each of the metrics of interest for the 26 SLPs and the 26 

DLPs are provided in Table 68 in Appendix G, Section G.5. 
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Leveraging the S/N ratio results of Table 68, the S/N ratios are averaged for each 

level of the control factors and plotted against them. Below in Figure 44 and Figure 45 

the results for the optimal objective mean S/N ratios values across the two problem types 

(SLP vs. DLP) are plotted. Those for the other two metrics of interest are provided in 

Figure 84, Figure 85, Figure 86, and Figure 87 in Appendix G, Section G.5.  Since the 

aim is to maximize the S/N ratio, the level with the highest S/N ratio is considered the 

factor level that produces the best metric value, in this case the optimal objective value. 

In other words, the factor levels that best discover optimality. Observation of these main 

effects plots of the control factors indicates positive relationships relative to population 

size, percent mutation, and the number of generations in the SLP dataset while negative 

relationships are observed relative to the other factors, though many of them are 

marginally negative and thus could be considered neutral. As for the DLP dataset, 

population size and number of generations once more have distinct positive relationships, 

but interestingly, the mutation percentage is negative, while the percent elite is now 

positive. With respect to population size and number of generations across both, 

diminishing returns can be observed across each problem type, apart from population size 

in the SLPs where an increasing return in optimality is observed as the population size 

increases. Considering these results, the optimal parameter settings that enable the 

solution procedures of Stage One to best discover optimality across both problem types 

are identified and provided in Table 30. 
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Figure 44 – Mean optimal objective S/N ratio for each level of the control factors for 

the SLPs in Stage One 
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Figure 45 – Mean optimal objective S/N ratio for each level of the control factors for 

the DLPs in Stage One 

Table 30 – Best control factor settings to achieve optimality in Stage One 

Factor Description   SLP Best Levels DLP Best Levels 

A Population Size  200 200 

B Percent Elite  0.05 0.10 

C Percent Jumping Gene  0.60 0.40 

D Percent Crossover  0.70 0.70 

E Percent Mutation  0.15 0.05 

F Percent Feasible in Initial Population  0.80 0.80 

G Number of Generations   100 100 

Not surprising, the optimal settings leverage the highest levels of both the number 

of generations and population size across both problem types. An 80% feasible initial 

population is preferred along with a lower level of crossover and jumping gene operation 

execution (neglect in the SLPs). While a large amount of mutation is desired in the SLPs, 

a lower amount is preferred in the DLPs; a rather interesting result. This could be a result 

of the added dimensionality resulting in non-feasible solution discovery occurring with 

this added variability. In the SLPs, the larger mutation likely enables the algorithm to 

avoid becoming stuck within local minimums and likewise a low elite percentage in these 

SLP is preferred which follows this same logic. It may prefer to be higher in the case of 

the DLPs to home in on the optimal solution faster and before reaching the maximum 

number of generations. 

These results were further analysed by leveraging a multifactor analysis of 

variance technique (ANOVA). The ANOVA analysis enables the relative importance of 
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each control factor’s main effects on the response variable, S/N ratio of the optimal 

objective value in this instance, to be identified. The results of the ANOVA analysis for 

both the SLP and DLP datasets are provided in Table 69 and Table 70 respectively and 

can be found in Appendix G, Section G.5. Observation of the P-value statistics indicates 

that population size and number of generations are the two most significant factors in 

both problem types. While this is true, the relative importance of each of these is flipped 

between the two problem types. In the case of the SLPs, the population size is the most 

significant factor, attributing to over 64% of the variation, followed by the number of 

generations, which contributes just a bit over 11%. The contrary is the case in that of the 

DLPs. In the DLPs, the number of generations is now the most significant, attributing 

over 60% to the variation while the population size is less so at only about 18%. This 

could be the result of the added dimensionality in the DLPs, whereby it requires 

additional generations to converge to optimality. In the case of the SLPs and their lower 

dimensionality, the greater population size is more important in allowing the algorithm to 

cover the complete design space effectively. Both control factors being the most 

significant is also expected and therefore provides a good confirmation of expectations. 

In either of the problem types the combination of these two control factors attribute to 

over 75% of the variation in the datasets (84% in the SLPs, 77% in the DLPs). 

Additionally, and as expected, the jumping gene control factor was the least significant in 

the SLPs. Recalling that in this problem type the jumping gene factor is irrelevant, this 

result validates expectations. Interestingly though, even in the DLPs dataset, the jumping 

gene control factor is the least significant factor of the set attributing to only about 0.1% 

of the variation in the data. This result will be leveraged going forth into Experiment 5 
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when the optimization parameters chosen as control factors in the Stage Two 

optimization parameter study are to be established. 

Having since identified the best parameter set to provide optimality discovery, the 

parameter set that generates the best population set for initializing the second stage’s 

initial populations is now examined. The mean S/N ratios across all three metrics of 

interest, optimality, solution time, and unique solutions generated, for each level of the 

control factors are leveraged to do so. Once more, this analysis is performed individually 

for the SLP and DLP datasets. The results plotted in Figure 44, Figure 84, and Figure 85 

for the SLPs along with those plotted in Figure 45, Figure 86, and Figure 87 are 

simultaneously leveraged to identify such a parameter set that would best initialize Stage 

Two. Instead of observing just the optimal objective metric, as was done before, a more 

balanced approach is required to establish this set. A multi-criterion weighted average 

approach was deployed for a series of weighting schemes applied to each of the three 

metrics of interest. The results of these weighting schemes are provided in Table 31 and 

Table 32 for the SLP and DLP problem datasets respectively. 

Table 31 – Preferred factor levels for different weighting schemes for the SLPs in 

Stage One 

Metric Weights         

Objective 0.45 0.40 0.30 0.00 0.00 

Time 0.10 0.30 0.50 1.00 0.00 

Unique 0.45 0.30 0.20 0.00 1.00 

            

Factor Preferred Levels       

A 200 200 100 50 200 

B 0.10 0.10 0.10 0.05 0.10 
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Table 31 (continued) 

C 0.60 0.40 0.40 0.40 0.40 

D 0.90 0.90 0.90 0.70 0.90 

E 0.15 0.15 0.15 0.05 0.15 

F 0.80 0.80 0.80 1.00 0.80 

G 75 50 50 50 75 

 

Table 32 – Preferred factor levels for different weighting schemes for the DLPs in 

Stage One 

Metric Weights         

Objective 0.45 0.40 0.30 0.00 0.00 

Time 0.10 0.30 0.50 1.00 0.00 

Unique 0.45 0.30 0.20 0.00 1.00 

            

Factor Preferred Levels       

A 200 200 100 50 200 

B 0.10 0.10 0.10 0.10 0.10 

C 0.60 0.60 0.60 0.60 0.60 

D 0.90 0.90 0.90 0.70 0.90 

E 0.05 0.05 0.05 0.05 0.15 

F 0.80 0.80 0.80 0.80 0.80 

G 100 100 50 50 100 

The weighting schemes presented in Table 31 and Table 32 are only a few 

considered. Observation of these, as well as others, demonstrated that for the preferred 

population size to ever change from 200, at least a weight of 50% had to be applied to the 

time metric in either problem type to result in the swing to the second factor level. This is 

due to both the objective and unique solution metrics preferring the higher factor level to 

maximize its performance relative to these two metrics. Looking at the second to last 
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column, the best time scheme, not surprisingly the number of generations and population 

size are at the lowest levels. In the last column, best unique solutions generated scheme, 

as expected the population size is preferred to be at the highest level tested. Interestingly 

though, the number of generations is preferred to be at the middle factor level of 75 

generations in the case of the SLPs, which goes against intuition. Looking further at the 

data, the difference in the S/N ratios relative to this metric from factor setting two to three 

(75 to 100) was relatively small. As such, either factor would be acceptable here. In the 

case of the SLPs, this is likely a result of diminishing returns on unique design discovery 

as the optimizer surpasses 75 generations. At this point, the algorithm has sufficiently 

converged, likely leading to it not finding many new unique solutions in the additional 25 

generations. As for the DLPs, the added generations provide the algorithm with more 

opportunities to discover unique solutions across the larger design variable 

dimensionality that is present in the DLPs. This explains why the higher factor setting is 

preferred for that problem type. 

Ultimately, a balanced approach between the objective and unique solution metric 

was chosen as the best set to deploy when initializing Stage Two. Since the observed 

solution times for the 52 problems were all quite reasonable, more emphasis was placed 

on the other two metrics. The split was chosen to be 45/10/45 as demonstrated in the first 

weighting scheme provided in Table 31 and Table 32. This approach balances both 

optimality and diversity in the population set that is provided to the second stage yet does 

not completely neglect the time factor. Moreover, all these solutions will be feasible. As 

such, optimality, diversity, and feasibility are all well balanced in the population set 

provided to Stage Two to initialize the populations with this weighting scheme. As noted, 



 348 

this balance in the initial population is paramount to the success of not only the genetic 

algorithm of this dissertation, but that of any genetic algorithm. The best Stage One 

optimization parameter set values to deploy when initializing Stage Two are thus 

summarized in Table 33. 

Table 33 – Best control factor settings when initializing Stage Two 

Factor Description   SLP Best Levels DLP Best Levels 

A Population Size  200 200 

B Percent Elite  0.10 0.10 

C Percent Jumping Gene  0.60 0.60 

D Percent Crossover  0.90 0.90 

E Percent Mutation  0.15 0.05 

F Percent Feasible in Initial Population  0.80 0.80 

G Number of Generations   75 100 

As is demonstrated in Table 33 by the setting for the number of generations, 

overly solving Stage One should be avoided when solving SLPs. This is a direct 

acknowledgement of the prior proposed question of to what extent Stage One should be 

solved when initializing Stage Two. As is evident, the preferred option falls in the middle 

of the range considered at 75 generations for the SLPs. At this level, a sufficient 

population set can be constructed by Stage One to then adequately populate the Stage 

Two solution procedure. At the same time, when solving DLPs, a greater number of 

generations should be leveraged to provide additional convergence and unique solution 

discovery. This outcome validates expectations. 

 



 349 

7.1.3 Experiment Summary and Conclusions 

As was observed above, it can be concluded that to most effectively solve problems in 

Stage One, the end goal of Stage One should be considered along with the problem type 

before defining the best parameter settings to deploy. If the end goal is to solve the 

problems leveraging only that of Stage One, then the optimality parameter sets provided 

in Table 30 should be deployed. This configuration of parameter settings yields the best 

optimality discovery on average across the 52 Problem Test Set examined in this 

experiment. When the goal of Stage One is to initialize Stage Two rather than just solving 

the problem to optimality however, the parameter sets yielding the best balance of time, 

optimality, and unique solution generation are presented in Table 33. Though the two 

parameter sets are very similar they do have some notable differences such as the number 

of generations (in the case of the SLPs) and many of the reproductive factor settings to 

deploy. While the optimality set prefers lower levels of jumping gene and crossover, the 

initialization set prefers higher. Considering these results, the parameter sets best for 

initializing Stage Two, and provided in Table 33, are then leveraged going forward in 

subsequent experiments. 

 Experiment 5: Stage Two Optimization Study 

In Experiment 5, the effectiveness of the developed Stage Two solution procedure is 

tested, and the optimization parameter sets that best result in optimality identified. To test 

the Stage Two solver’s effectiveness, its ability to solve the 52 Problem Test Set is once 

more examined. Like before in Experiment 4, the 52 Problem Test Set problems are 

solved using different optimization parameter combinations to identify the parameter set 
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that provides the best optimality discovery. With Stage Two being the last solution 

procedure of the proposed bi-model multi-stage solution approach, optimality is the core 

and moreover only objective of this solution procedure. 

7.2.1 Apparatus Setup 

Before the Stage Two solution procedures could be tested, Stage One first needed to be 

executed to establish the generated population sets to then be leveraged to initialize the 

populations of Stage Two. With the identified Stage One optimization sets not being 

exactly one of the 18 experimental trials tested, five replications of the 52 Problem Test 

Set problems were first solved with the optimization parameter set values identified 

before for initializing Stage Two and provided in Table 33. As was the case before in 

Experiment 4, the same FSPPM setup, material handling, and FSA configurations noted 

at the beginning of this chapter were deployed in generating these results. Once the 

solutions to these 260 instances (52 problems x 5 replications) were obtained, the Stage 

Two solution procedures were then able to be tested. 

 A notable difference in testing Stage Two compared to the testing of Stage One 

performed in the preceding Experiment 4, is that in solving the 52 Problem Test Set in 

Stage Two and in performing the optimization study, the advanced flow distance method 

was deployed to calculate the material handling distances in place of the rectilinear 

method. Doing so allows Stage Two then to solve the overarching problem formulation 

of this dissertation, a MILP modelled DLP solved with a flow distance method ensuring 

flow path feasibility. 
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Now to achieve this parameter set identification in Stage Two, an L18 orthogonal 

array screening design of experiment (DOE) was once again leveraged to identify the 

best combination of Stage Two optimization parameters for optimality across both 

problem types (SLP and DLP). Given the dimensionality of the optimization parameters 

available in Stage Two with the tri-population GA scheme deployed, the parameters to 

consider needed to be selected strategically to avoid the computational time from 

becoming unmanageable.  

Recall that in Stage Two, four distinct populations are evolved. For each of these, 

individual optimization parameter values could in theory be defined for each of the 

parameters. These four populations are outlined below in Table 34, which includes their 

symbol representation, title, general description, and period of the Stage Two GA in 

which their solution occurs within. As observed, the first three populations are directly 

initialized from that of the results generated in Stage One, while the fourth is a merged 

population occurring after the isolation period and consisting of a combination of the 

three isolation populations. The symbol representations in this table will be leveraged 

going forward to distinguish which population the control factors are associated with. 

Table 34 – Stage Two control factor symbol definitions 

Symbol Title Description Period 

1 Population 1 Stage I Best Designs Isolation 

2 Population 2 Stage I Anti-Best Designs Isolation 

3 Population 3 Stage I Random Designs Isolation 

M Population Merged Migrated of Isolation Populations Post-Isolation 
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The following Stage Two optimization parameters were examined in the study: 

population size, jumping gene, crossover, mutation, isolation generations, merged 

generations, as well as the migration rate (i.e. how the merged population is formed from 

the isolation populations). Table 35 outlies these DOE factors considered (i.e. 

optimization parameters) and their associated factor levels (i.e. settings) tested.  

Table 35 –Factor table for Stage Two optimization parameter study 

Factor  Levels 

Symbol Description   Level 1 Level 2 Level 3 

A Population Size (1 | 3)  100 200 300 

B Population Size (2 | M)  50 100 200 

C Percent Jumping Gene (1 | 2 | 3 | M)  0.2 0.4  

D Percent Crossover (1 | 2 | 3)  0.7 0.9  

E Percent Crossover (M)  0.7 0.9  

F Percent Mutation (1 | 2 | 3)  0.1 0.15  

G Percent Mutation (M)  0.1 0.15  

H Isolation Generations (1 | 2 | 3)  15 35  

I Merged Generations (M)  50 75 100 

J Migration Rate   (0.1, 0.3, 0.6) (0.3, 0.3, 0.4) (0.6, 0.1, 0.3) 

 As can be observed, the elite percentage was not one of the selected parameters. 

This decision was based on its relative contribution to the variation observed in 

Experiment 4, where it was not a major contributor. Inclusion of the jumping gene 

control factor was included provided its unique application in this dissertation. With that 

said, provided that the jumping gene was the least significant factor in Stage One across 

either problem type, the factor became an aggregated parameter that was applied 

uniformly across all populations in Stage Two. Two separate factors were applied to the 
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four populations whereby the sizes of the one and three populations were combined into a 

single factor while the two and merged populations were combined into another. This 

grouping was done as in the developed solution approach the merged population size is 

dictated by the minimum population size of the isolation populations. In this case, that 

would often likely be population two, which consists of the anti-best solutions from Stage 

One and had previously been observed in prior literature research as being a less 

desirable population of the three in contributing to the performance of the algorithm. 

Both the crossover and mutation percentages were separated on an isolation and post-

isolation population-basis to observe how the two may contribute differently whether 

being applied in each period of the algorithm. The number of isolation generations 

became another factor along with that of the merged number of generations. Being a 

significant factor in Experiment 4, it was appropriate to consider two distinct factors here. 

Moreover, an understanding of how long the isolation period should proceed for is useful 

knowledge to obtain and can be done so with this approach. The migration rate, or the 

composition of the merged population from that of the isolation populations, became the 

last control factor in the study. This was done to observe which distribution would result 

in the best performance of the algorithm. Note, the first decimal value relates to the 

fraction of the merged population that is taken from population one, the second from two, 

and the third from the third population, as defined before in Table 34. 

Table 71, found in Appendix G, Section G.6, provides the L18 orthogonal array 

leveraged to perform the optimization parameter study for Stage Two relative to the 

established control factors. For each of these experiments, five replications of the 52 

Problem Test Set problems were solved for a total of 5 replications x 18 experiments x 52 
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problems = 4680 solution instances in total. An L18 array was chosen provided that the 

number of degrees of freedom totalled 14 and additionally a complete full factorial 

design of these factors would have taken on the order of months to run, which is why a 

more selective and efficient approach was chosen. 

Like before in Experiment 4, once each of these 4680 solutions were generated, 

the results were then post-processed. Post processing entailed transforming the optimal 

objective metric (i.e. objective function) to a relative percentage deviation (RPD) and 

then to a S/N ratio using Equations (66) and (67) outlined before. Only the optimal 

objective value was analysed here as it is the only metric of importance in Stage Two. 

7.2.2 Testing Results and Analysis 

The computed S/N ratios for the objective function for the 26 SLPs and the 26 DLPs, 

which make up the 52 Problem Test Set, are provided in Table 74. Table 74 can be found 

in Appendix G, Section G.6.  

Leveraging the S/N ratio results of Table 74, the S/N ratios are averaged for each 

level of the control factors, and then plotted against these factor levels. Below in Figure 

46 and Figure 47, the results for the optimal objective mean S/N ratios values across the 

two problem types (SLP vs. DLP) are plotted. Since the aim is to maximize the S/N ratio, 

the level with the highest S/N ratio is considered the factor level that produces the best 

optimal objective value. In other words, the factor levels that best enables the algorithm 

to discover optimality.  
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Figure 46 – Mean optimal objective S/N ratio for each level of the control factors for 

the SLPs in Stage One 
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Figure 47 – Mean optimal objective S/N ratio for each level of the control factors for 

the DLPs in Stage One 

Observation of these main effects plots of the control factors indicates very 

different behaviours across the two problem types. While a distinct positive relationship 

is observed relative to population size of the 1 | 3 populations in both datasets, the 

population size of 2 | M have a distinct positive relationship in the case of the DLPs but a 

rather neutral one in the SLPs. A positive relationship is observed in the DLPs, which is 
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contrary to what was observed in Stage One. A distinct negative relationship is observed 

in relation to both crossover factors for the SLPs, while in the DLPs they are rather 

neutral with the merged crossover factor demonstrating a slight positive relationship 

thereby indicating that more crossover is preferred. Common among both problem types, 

more mutation is preferred, which generally aligns with what was observed before in 

Stage One for the SLPs (mostly neutral in the DLPs), and more isolation generations are 

preferred, which is to be expected.  

The number of merged population generations show distinctly different trends. 

While in the SLPs the relationship is generally negative, the relationship is distinctly 

positive in the DLPs whereby more generations are preferred. This could be a result of 

the added generations providing additional exploration and convergence, which is 

beneficial with the higher design variable dimensionality of the DLPs. The preferred 

migration rate is also very different between the two problem types. In the case of the 

SLPs, the first factor level is clearly the preferred one whereby more of the merged 

population should be composed of designs from the random design isolation population 

(60% from population 3). On the other hand, factor level three is the preferred in the case 

of the DLPs. The preference in this case is for the merged population to consist of 60% 

from that of the best design isolation population (population 1). This result confirms the 

earlier observation regarding the second population (anti-best designs) contributing the 

least to the performance of the tri-population algorithm. Observation of these results 

enables the optimal parameter settings that allow the solution procedures of Stage Two to 

best discover optimality across both problem types to then be identified. The optimal 

settings are summarized below in Table 36. 
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Table 36 – Best control factor settings to achieve optimality in Stage Two 

Description   SLP Best Levels DLP Best Levels 

Population Size (1 | 3)  300 300 

Population Size (2 | M)  200 200 

Percent Jumping Gene (1 | 2 | 3 | M)  0.20 0.4 

Percent Crossover (1 | 2 | 3)  0.70 0.7 

Percent Crossover (M)  0.70 0.9 

Percent Mutation (1 | 2 | 3)  0.15 0.1 

Percent Mutation (M)  0.15 0.15 

Isolation Generations (1 | 2 | 3)  35 35 

Merged Generations (M)  50 100 

Migration Rate   (0.1, 0.3, 0.6) (0.6, 0.1, 0.3) 

Not surprising, the optimal settings leverage the highest levels of both the 

population size control factors across both problem types. Moreover, in general a higher 

level of the mutation factors and isolation generations are preferred, which meets 

expectations. Generally, a lower level of crossover is preferred, that is except for the 

merged populations of the DLPs where a larger amount is desired to best provide 

optimality. This is likely a result of the higher crossover providing improved alteration 

across the multiple periods of the DLP layout designs (i.e. higher design variable 

dimensionality). As mentioned before, the preferred migration rates differ across the two 

problem types. A merged population consisting of more random population designs is 

preferred in the SLPs while a merged population consisting of more best population 

designs is preferred in the case of the DLPs. 

These results were further analysed by leveraging a multifactor analysis of 

variance technique (ANOVA) like was done before in Experiment 4. The results of the 
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ANOVA analysis for both the SLP and DLP datasets are provided in Table 75 and Table 

76 respectively and can be found in Appendix G, Section G.6. Observation of the P-value 

statistics for the SLPs indicates that the most significant factors are that of the migration 

rate, followed by the population size of 1 | 3, and then that of the crossover in the 

isolation populations (1 | 2 | 3). These three factors account for about 50% of the variation 

in the data. Interestingly, the population size of 2 | M, followed by the merged generation 

factor, are the two least significant factors. In general, the remaining factors account for 

the remainder of the variation, each contributing less than 10%. As for the DLP dataset, 

the population size of 1 | 3 factor accounts for over 45% of the variation followed by the 

isolation generations (1 | 2 | 3) which account for another 27%. That means that over 70% 

of the variation in the data is associated with these two factors making them the most 

significant of those tested. Add to these the contribution of the population size of 2 | M, 

and over 85% of variation in the data is accounted for by the population size and the 

isolation generations factors. This result is not at all surprising and aligns well with 

preceding observations made in this experiment and Experiment 4 from earlier. 

Interestingly in the DLP dataset, the crossover and mutation factors collectively account 

for less than 1% of the variation, making them the least significant of the factors tested. 

7.2.3 Experiment Summary and Conclusions 

As was observed before, it can be concluded that to most effectively solve problems in 

Stage Two, the problem type should be considered before defining the best parameter 

settings to deploy. To best solve the problems to optimality, the parameter sets provided 

in Table 36 ought to be deployed. These configuration of parameter settings yield the best 

optimality discovery, on average, across the 52 Problem Test Set examined in this 
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experiment, which as a reminder, covers a range of different problem characteristics and 

conditions. 

 Summarizing Statements of Experiment Set B 

Recall, the purpose of Experiment Set B was to test the effectiveness of the solution 

procedures developed as part of the bi-model multi-stage solution approach proposed for 

solving the complex layout problem formulation of this dissertation. Additionally, 

identifying how to most effectively solve said layout problems was another core element 

of the experiment set. In performing these tests, Hypothesis 2 was in turn directly 

substantiated. As a reminder Hypothesis 2 was as follows: 

Hypothesis 2: If the proposed bi-model multi-stage hybrid solution approach is 

implemented to solve the MIP formulated RDLP, then the problem will be solved 

most effectively, in terms of solution quality. 

Without a directly applicable problem formulation available in the literature to compare 

to, the best alternative was then to set a literature standard and moreover identify how to 

best tune this solution approach to best solve the uniquely formulated problems of this 

dissertation. To this extent, an extensive optimization parameter set was performed across 

the constructed 52 Problem Test Set of this dissertation. The best settings for the tested 

parameters were identified as a result of these experiments performed. The results 

establish that to most effectively, in terms of solution quality  (i.e. optimality), solve the 

uniquely formulated and complex problems of this dissertation, the Stage One and Two 

parameter settings provided in Table 33 and Table 36 respectively should be deployed. 

Furthermore, if the simplified formulation, yet still considerably complex and moreover 
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unique one of Stage One is to be solved most effectively, in terms of solution quality (i.e. 

optimality), then the optimal settings summarized in Table 30 should then be deployed. 
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CHAPTER 8 

– 

EXPERIMENT SET C: CASE STUDY 

The goal of this chapter is to present the results of Experiment Set C. This set consists of 

the final experiment, Experiments 6, which builds upon the previous experiments 

conducted in an attempt to then provide substantiation to the overarching hypothesis of 

this dissertation. As a reminder, the purpose of this experiment set is as follows: 

Purpose: To test the LIVE methodology by applying it to a real-world layout design 

problem and to test its ability to enable designers and stakeholders to make more 

informed and collaborative decisions. 

The focus of the experimentation to this point has been in testing and validating the novel 

methods and solution procedures developed exclusively to handle the unique problem 

formulation of this dissertation. Having since well tested these, attention is now turned 

towards examining the LIVE methodology’s (enabled by these methods and procedures) 

ability to provided solution to a real-world layout design problem. In doing so, the sheer 

power of the methodology and the value it creates for designers and stakeholders alike is 

then able to be observed. 

Now as noted before, Experiment 6 builds upon the previous experiments 

performed. As such, in solving the problems of this set, the conclusions of Experiment 

Set A and B are leveraged to ensure the most effective solution is achieved with the 

proposed bi-model multi-stage solution approach in the LIVE methodology. This means, 

in stage one solution is achieved by leveraging the FSPPM, performed without FSA 
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infused, deploying the simple rectilinear flow distance method, and finally assigning the 

optimization parameters best for initialization as identified in Experiment 4. In Stage 

Two, the advanced flow distance method is deployed and the optimization parameters 

identified in Experiment 5 to best establish optimality are deployed. 

 Experiment 6: A Real-World Case Study 

In Experiment 6, the developed LIVE methodology is applied to the redesign of an 

aerospace parts storage and distribution warehouse layout. The study considers both the 

restructuring of operations and reconfiguration of the existing layout design. The 

operations and layout of a 53,000 square foot warehouse area are examined. This 

warehouse area falls between two attached buildings, each over quadruple the square 

footage and which act primarily as storage facilities for the parts; stacked in rows of 30-

foot-tall racks lining the buildings. At the center of these two buildings, and where this 

study focuses its efforts, the core receiving, part storage preparation, and distribution 

operations occur. The baseline configuration of the current layout is provided in Figure 

48 to give the reader an appreciation for the scale of the problem examined and the 

general setup of the facility. 
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Figure 48 – Baseline configuration of the current layout 

The facility consists of a multitude of different sized objects (to be referred to as 

stations or regions from here forth) along with a large white space, as is observable in 

Figure 48. Building A and C doors lead to the two storage buildings noted before. The 

bottom two doors represent the receiving and shipping docks where the parts are load 

onto or removed from UPS, FEDEX, and other shipping company trucks. The black 

regions are representative of regions whereby stations cannot be placed. The top-left 

region is an area of more part racks, the bottom-right and top-right both sales and 

management office spaces. As can be observed, small (relative to the rest of the space 

and objects present), structural pillars are littered in a 40’ x 40’ gridded structure 

-50 0 50 100 150 200 250

0

50

100

150

200

250



 365 

throughout the space. At the center of the space lies a horseshoe layout of workstations 

surrounded by a manual roller conveyor belt. This is where the primary operational 

activities occur. This horseshoe is referred to as the cross-dock. Finally, a staging area for 

large parts is situated left of this cross-dock. All remaining white space is unused, but 

available for use. All doors and regions are assumed non-movable. 

8.1.1 Operational Landscape 

In this environment, several operations are occurring simultaneously and moreover 

spread across the twenty-one current workstations of the cross-dock system (excluding 

the non-manned staging area and door stations). Parts are being received, shipped, 

inspected, packaged, staged, and in some instances retrieved from Building A (left door 

in baseline figure presented earlier).  

After studying the system and, the cross-dock operations, it was identified that the 

operations could be decomposed into five distinct processes types. These process types 

were labelled as purchase orders (PO), sales orders (SO), repair order inbound to be 

shipped (ROIS), repair order inbound to be inventoried (ROII), and finally repair order 

outbound (ROO) processes. This decomposition is summarized in Table 37. Going forth 

each of these processes will be referred to by their acronym. An understanding of each of 

these five distinct process types and their flow throughout the space enabled a clear 

grouping to become apparent based on the stations and ordering thereof in each process. 

It was found that PO and ROIS processes have identical process flow characteristics, 

whereby parts are received, processed in, inspected, processed out, and then packaged 

and staged, when applicable, before being shipped. These process flows along with the 
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others present in the system are presented in Figure 49. Due to the nature of this process 

flow, the synthesis of the PO/ROIS processes were then labelled as pure cross-dock 

processes as these parts originate from the receiving door and end at the shipping door. In 

the system under study, the goal was for these parts to have a one-day turnaround, 

whereby parts were to be received and shipped within one business day.  

In parallel to these two processes, it was identified that the SO and ROO 

processes shared common characteristics, whereby parts were retrieved from Building A, 

inspected, then packaged and staged, when necessary, before being then being shipped. 

The ROII process is, in many ways, the reverse of this, whereby the parts are received 

and then inspected before being sent to the racks in Building A. Due to the nature of these 

process flows, the synthesis of the SO/ROO/ROII processes were labeled as rack 

processes since the parts originates or end at the Building A rack door (i.e. in the racks). 

The SO/ROO processes are further grouped provided they have identical process flows, 

which are distinctly different from that of the ROII process flow. 

Table 37 – Process definitions 

Acronym  Process Definition 

PO  Purchase Order 

SO  Sales Order 

ROIS  Repair Order Inbound to be Shipped 

ROII  Repair Order Inbound to be Inventoried 

ROO  Repair Order Outbound 
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Figure 49 – Processes flows of the various processes present in the system 

Going forward the PO/ROIS and SO/ROO process groupings are leveraged to 

reduce the dimensionality of the problem and provide a more aggregated approach to 

evaluating the performance of the system. This analysis was required to enable the 

processes, process flows, and characteristics thereof present in the system to be defined 

as part of the first step of the LIVE methodology. By the methodology requiring such 

definition, it effectively facilitated a better understanding of the operations and the 

process flows present as a by-product. This improved understanding constituted the first 

of the benefits to be yielded from applying the LIVE methodology to this problem. 

8.1.1.1 Baseline Operational Characteristics  

Having since observed the general characteristics of the system, those of the current 

operations are presented. From a human resource point of view, not all twenty-one 

workstations are manned in the current state of the operations. Eight of the twelve 
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inspection stations are manned; two of the four receiving and shipping stations each are 

manned, along with the packaging station for a total of 13 actively manned stations. Each 

station consists of a single worker. Current operations also do not leverage independent 

material handlers and thus, the workers of each station must retrieve and pass along parts 

after processing occurs at the worker’s station. 

In terms of the processes, all five have their volumes (i.e. parts per day) 

distributed across each of the manned stations. As such, the process flows observed 

before in Figure 49 are only representative of the general process flow. Each of these 

becomes enumerated based on the stations present and manned. For example, for the 

cross-dock processes (PO/ROIS) the number of unique process flows in which parts of 

this type can take as they pass through the system is totalled at 64 provided the current 

stations manned. This total is achieved by multiplying the number of receiving stations 

(2) by the number of inspection stations (8) by the number of shipping stations (2) by the 

packaging station (1) and finally by the staging vs. non-staging split (2). This latter split 

constitutes parts that are oversized and need to be staged until pickup. These parts and 

thus process flows are then assumed to need forklift handling as opposed to a manual 

handler. This enumeration is present across each of the three condensed groups of 

processes provided the stated distributed operational approach currently deployed. 

8.1.2 Layout Concepts Considered 

After observing the three distinct groups of processes (PO/ROIS, SO/ROO, and ROII), 

three unique operational concepts were formed for subsequent analysis.  

8.1.2.1 Concept 0: Baseline Layout Configuration 
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In the first of these concepts, the current baseline configuration is assumed to remain 

unchanged over the planning horizon (to be defined in the proceeding section) and thus, 

only a pure analysis of the layout design going forward would be tested (i.e. optimization 

was not required). This approach enables a baseline layout design performance to be 

established, whereby others can then be compared to it to establish either superiority or 

inferiority. This layout configuration was presented before in Figure 48.  

For this baseline configuration, two process distribution approaches are 

considered. The first is the current one, whereby the process volumes are distributed 

across all manned stations. This approach effectively represents the case where nothing 

with the current operational structure or layout is altered over time. The second approach 

considers splitting the distribution on a cross-dock, rack process-basis. In other words, 

certain manned stations are dedicated to each of these process groups. For example, with 

two receiving stations manned, one would be dedicated to processing the PO/ROIS cross-

dock process parts while the other would only process SO/ROO/ROII rack-process parts 

where necessary. This approach was formed after observation of how the two process 

flows were uniquely distinct from one another. Again, for both approaches, the layout 

design is assumed unaltered over the entire planning horizon and remains identical to the 

baseline configuration presented before. 

8.1.2.2 Concept 1: Current Operational Space, Revised Operational Strategy  

The second concept considered is a derivative of the second approach outlined before. 

Like this approach, the workload is distributed on a cross-dock, rack process-basis. 

Contrary to before however, in Concept 1, the layout design is not required to remain 
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fixed across the horizon. As such, in this concept the impact that layout restructuring has 

on performance is consider and this is achieved through optimizing the layout via the 

proposed bi-model multi-stage solution approach. It is required however, that the 

operations remain located in the general area in which they are currently located in the 

warehouse space. Additionally, to reduce the complexity of the problem, the space was 

refined to just the area starting at the rack region in the baseline configuration and 

spanning width-wise to the start of the top-right offices. In reducing the space, the 

Building A, receiving, and shipping doors were appropriately relocated to be well-

representative of where flows would intersect this refined area. This layout space is 

provided below in Figure 50 such that a clearer understanding of this setup can be gained. 

The bottom-left station in this space is the relocated Building A door and then working 

rightward along the bottom edge, the shipping door then receiving door. To the left of the 

left boundary lies the storage racks of the original layout and to the right of the right 

boundary, the sales offices. 
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Figure 50 – Concept 1 layout boundaries and setup 

 

8.1.2.3 Concept 2: Revised Operational Space, Revised Operation Strategy 

In the third and final concept considered, Concept 2 entertains more than just a splitting 

of the process distributions on a station-basis. In Concept 2, the operations are split on a 

layout area-basis as well. Based on the unique difference between the cross-dock and 

rack processes, it was believed that these two groups could be segregated in the available 

space to provided improved operational flow. With the rack-process originating from the 

Building A door in the bottom-left corner of the warehouse area and ending at the 
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shipping door, also at the bottom of the warehouse area, any motion north of the rack 

door can be viewed as wasted motion. In the current operational landscape, all parts of 

these rack processes must traverse across and up the space before then backtracking 

down to the shipping door. This observation motivated the consideration of this approach, 

whereby this wasted motion could be eliminated by relocating the rack-processes to the 

currently unutilized space present at the front-left of the warehouse. To enable efficient 

flow, another receiving door, also currently unutilized at the bottom-left corner near the 

Build A door, was to then be utilized as part of this operational concept. At the same 

time, the cross-dock processes were assumed to remain in the current operational area 

such that an up and back motion for the PO/ROIS processes remained. 

 To study this concept, the layout was then split according to this premise, 

whereby the rack-processes and associated stations would be optimized in the front-left 

white space of the warehouse while in tandem the cross-dock processes and associated 

stations would be optimized in the current cross-dock area. This split is represented 

below in Figure 51 and Figure 52 which represent the cross-dock and rack-process layout 

setups respectively. A synthesis of these two layout spaces, and associated layouts, 

produces the overall operational performance of the system and layout design. This 

concept directly considers the costs of relocating the stations from the current cross-dock 

space to this new unutilized space in the front of the warehouse. The cross-dock area as 

shown in Figure 51 is similar to that of the one tested in Concept 1, except that now the 

rack door is removed (as no cross-dock processes include it in their process flows) and in 

place of this removal, the left boundary is shifted in toward the backside of the staging 

area to refine the space and reduce the difficulty of the problem solution. As can also be 
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observed in the rack-process layout, Figure 52, the staging area in the rack-process layout 

was assumed to be located near the receiving and shipping doors along the right 

management office wall (right of this boundary). 

 

Figure 51 – Concept 2A cross-dock process layout boundaries and fixed stations 
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Figure 52 – Concept 2B rack process layout boundaries and fixed stations 

 Each of these defined concepts and the associated process distribution approaches 

are summarized below in Table 38. Each row in the table can be thought of as a unique 

set of problems. In Concept 0 there are two, one with distributed processes and one with 

split. In Concept 1 a single set while in Concept 2, there are two, one for the cross-dock 

processes layout and one for the rack processes layout. As a reminder, in Concept 0, only 

an analysis is to be performed whereas in the others, an optimization is performed for 

each of these problems of the set to be defined next. 
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Table 38 – Process distributions vs. concept 

Concept Processes Approach 

0 
PO, ROIS, SO, ROO, ROII Distributed 

PO, ROIS | SO, ROO, ROII Split 

1 PO, ROIS | SO, ROO, ROII Split 

2 
PO, ROIS 

Split 
SO, ROO, ROII 

 

8.1.3 Business Model and Market Conditions Examined 

With the physical layout properties defined and process compositions established in each, 

a good portion of the scenario problem definitions have since been established. In 

addition to these properties, and as one may recall from the problem initialization step of 

the LIVE methodology outlined in Section 4.1, additional properties still require 

definition before complete scenario problems can be formed. The major one that remains 

undefined is the scenario structure. While for this study a fixed planning horizon 

structured in 12 month forecasting intervals and spanning 36 months (i.e. 3 years) was 

deployed across all scenarios, the same was not true for the restructuring schedule. This 

was the first of the business model conditions in this study considered as a design factor. 

A variety of different restructuring schedules were considered. Among these, static single 

period layout designs were considered along with two period and three period dynamic 

layout designs. In addition to these restructuring forms, different implementation timings 

of these restructures were also considered. Those considered in the study are outlined in  
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Table 87 provided in Appendix G, Section G.7.2 whereby the timings were chosen in a 

mostly arbitrary manner. 

Two additional human resource related design factors were also considered in this study 

when defining the scenario problems. The first was the manned stations. This design 

factor directly considers the addition of labor at the stations over time and thus enables 

the study to examine how the work force ought to evolve over time. Moreover, when 

coupled with the restructuring schedule, the timing of these additions can be assessed. 

Several station manning options, or evolutions, were considered in this study. In all 

considered, the number of manned stations grew to align with the assumed growth in 

production over time; however, the distribution of the manned stations across the two 

process groups (PO/ROIS and SO/ROO/ROII) varied over these different options 

examined. Given these properties are defined on a period-basis, the evolutions needed 

definition across the three distinct forms of the restructuring schedules considered. Note 

that these evolutions were established such that consistency was maintained for the most 

part for the options across each restructuring option. That is in the sense of distribution 

between the two process groups and moreover this distribution over the planning horizon. 

These options span considerations such as an equal distribution of stations as well as 

skewed options whereby more active stations are assigned to each of the two process 

groups. This was done to demonstrate, when in conjunction with the PPD and the 

distribution options studied, the system can become station constrained, whereby there is 

not enough station capacity to maintain production levels. This then effectively reduces 

the profitability of the system, as will be observed later. Again, the manned station 

distributions studied can be found in Appendix G for reference ( 
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Table 87). 

In addition to this design factor, the number of material handlers available to 

move parts throughout the space was also considered. This consideration constituted a 

major change in the existing operations whereby no dedicated handlers were present to 

move product. Instead, the workers at the stations were responsible for this duty. This 

consideration deploys the industry concept of a water-spider, whose sole duty is to 

facilitate the movement of the product between stations. For this design factor, a couple 

different handling options were considered. Definition of the required handlers was 

defined after observing the utilization levels of the baseline configuration during initial 

testing. In order to demonstrate how handler availability or capacity can impact the 

design and profitability of the system, these options were chosen strategically such that in 

some situations, when coupled with a high PPD option, the system may become material 

handler constrained. In turn, the profitability would then suffer, as will be observed later 

when the results of this study are analyzed. This design factor, along with the manned 

station factor, restructuring factor, and operational concepts discussed before, compose 

the business model conditions considered in this study.  

In conjunction with these business model conditions, several market conditions 

were also considered as design factors in this study. The most notable of these were the 

year-over-year parts per day (YOY PPD) and distribution option factors. The coupling of 

these two, establishes the production rate to be considered in each scenario problem. 

Three YOY PPD options were considered ranging from 60% to 80%, which were 

established based on observed projected increases in the operations of the system since 

having been established just three years ago. The starting PPD was set to be 30 PPD, 
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matching the current average volume of the system. Several distribution options were 

also considered in parallel. Since the PO and SO processes alone compose 95% of the 

current operations, and this is likely not to change going forward, this percentage of the 

PPD associated with these two processes was maintained across the horizon. With the 

current operational distribution being 65% PO and 30% SO, this distribution was 

maintained as the starting distribution for all distribution options considered. One option 

considered this ratio maintaining over the horizon while the other two options examined a 

shift in operations towards SO related parts becoming more prominent. This was done as 

the goal of the firm was to begin leveraging e-commerce to boost profitability. This shift 

only impacts SOs, which is why the remaining two options considered in the study 

examine two different shifts in this distribution, one being more aggressive over this 

three-year planning horizon than the other. One considered reaching a roughly equal split 

at 45/50 come year three while the other considered a more dramatic 25/70 shift, both in 

favor of more SO related parts being processed per day. Coupling these redistributions in 

process volumes with the human resource design factors of before enables the 

implemented dynamic production adjustment technique to become active in situations 

where production cannot be sustained provided the combination of YOY PPD, the 

number of active stations available, and handler availability. The exact distributions and 

their evolutions across the planning horizon for these distribution options may be found 

in Table 92 in Appendix G, Section G.7.2. 

In addition to both these factors, the coefficient of variances for the two process 

groups, PO/ROIS and SO/ROO/ROII, were also considered as design factors. Both these 

factors are directly associated with the local robustness method implemented and thus 
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directly enable robustness relative to the production uncertainty of each of these to be 

considered. While only a single level was considered for the PO/ROIS processes and set 

at 10%, two were considered for the SO/ROO/ROII processes and set at a 10% or 20% 

YOY increase provided the higher variability associated with the success of the firm in 

the e-commerce space. Both factors’ applicability depends on the design choice factor 

considered. One choice appropriately defines the percentile ranges to consider just the 

nominal production levels and thus the system’s performance in the absence of 

uncertainty. This option, if one recalls, effectively renders these coefficient of variance 

terms irrelevant provided how the local robustness method was implemented in the 

performance model developed as part of this dissertation. The other option considered 

robustness over the percentile range of 30 to 70%, whereby the coefficient of variance 

factors then become relevant as robustness relative to these production uncertainties are 

considered when optimizing the layout design. 

These factors and their variability (options) are summarized in Table 39, whereby 

the business model related conditions, market related conditions, and single design 

decision are grouped to provide complete closure for the reader on these noted factor 

distinctions. Once more, for those factors with options presented in Table 39, one may 

refer to Appendix G, Section G.7.2 for the expanded definitions of these factor options. 

Table 39 – Factor table of conditions considered in the case study 

Factor    Levels        

Condition Description   Level 1 Level 2 Level 3 Level 4 Level 5 

Business 

Conditions 

Concept  0 1 2A 2B  

Restructuring Option  1 2 3 4 5 
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Table 39 (continued) 

 
Station Manning Option  1 2 3 4  

Handler Option  1 2    

Design 

Decision 
Percentile Option  (0.5, 0.5) (0.3, 0.7)    

Market 

Conditions 

YOY PO/ROIS Cv Increase  10%     

YOY SO/ROO/ROII Cv Increase  10% 20%    

YOY Parts/Day Increase  60% 70% 80%   

Distribution Option   1 2 3    

A full-factorial design of experiments (DOE) was leveraged to cover the entire 

design space and consider all combinations of these conditions when establishing the 

scenario problems. In total the number of unique business, market, and operational 

concepts examined was 3,312. In other words, 3,312 unique scenario problems were 

considered (solved and subsequently examined) in this study. Each experimental trial of 

the DOE defines, when coupled with the process and physical layout definitions from 

before, the necessary input properties to completely define a scenario problem. Note, this 

complete scenario set quantity is less than what one would compute leveraging the levels 

provided above and for a full factorial design (5,760 in total). The difference is accounted 

for by several filters being applied. First, Concept 0 only applies when restructuring 

option one is chosen, the remainder apply across all restructuring options however. When 

the design choice is set to level one, the YOY SO/ROO/ROII Cv increase factor only 

needs be executed for a single option due to a non-robust evaluation being performed. 

Furthermore, since Concept 2A (the PO/ROIS layout) does not consider SO/ROO/ROII 

related processes (Concept 2B does this) it does not need to be evaluated for both 
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SO/ROO/ROO Cv increase factor levels. These filters effectively reduce the number of 

scenario problems that require solution from 5,760 to the noted 3,312. 

For the remaining properties leveraged in this study to define the scenarios, one 

may refer to Appendix G, Section G.7.2 for these property definitions and any 

accompanying assumptions made regarding their definitions. With that said, one notable 

property definition, which requires definition here is that of the market values per part. 

Since such information was not available, it was assumed that on average a part yields a 

market value of $75 and moreover, this is consistent across all part types (PO, SO, etc.).  

Though a rather significant underestimation provided the parts being processed by the 

system (aerospace parts), this assumed market value was enough to outweigh the 

observed average manufacturing costs per part in the system. This enabled a positive 

profit margin to then be observed. Note, all subsequent results are based on this market 

value assumption. Moreover, with it well understood that the average market values for 

the studied system are far more significant than this assumed value, the results that are to 

be demonstrated and the differences observed would only become more extenuated with 

a larger, better representative, market value input provided to the performance model. 

As for the optimization and analysis parameters, these have since been established 

according to the results of the previous experiments performed. Boundary constraints are 

considered hard in this study while budgetary constraints are soft, allowing for debt 

financing to occur when required to enable a restructure to occur. At this juncture, the 

physical layout properties, processes, market and business model conditions, optimization 

parameters, and analysis options have all been defined across all the scenario problems 

considered in this study. This complete definition of the scenario problems, and thus 



 382 

scenario set to examine, concludes the first step of the LIVE methodology’s application 

to the problem. The results of the second (solution) and third step of the methodology 

(performance model analysis) are presented and discussed next. In yielding the results of 

this study, a few noteworthy observations were made regarding the performance of the 

developed FSPPM. The observations and actions taken in response are highlighted in 

Appendix G, Section G.7.1. 

8.1.4 Down-Selection of Business Models to Examine Going Forward 

Following these actions, effective solution to the scenario problems defined before was 

then possible. As such, Stage One solution of the scenario problems was then performed 

leveraging the optimization parameter sets established earlier in Experiment 4. 

As noted before, the first stage of the proposed bi-model multi-stage solution 

approach can act as a way of providing a more rapid formation of the design space all 

while proceeding towards the final solution to the individual scenario problems. Once 

formed, the design space can then be evaluated before proceeding into the second stage 

of solution. This capability of the LIVE methodology, and the solution approach it 

deploys, was leveraged when performing this study. The design space was able to be 

previewed and suitable business models, which maximize profit, identified for further 

consideration going forward in the design process.  

This down-selection is advantageous as some business models (i.e. synthesis of 

business conditions factors considered and discussed before) will consistently be inferior 

to others and as such do not need to be considered going forward in the design process. 

Business decisions (i.e. design factor choices in this study) such as hires, restructures, 
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process changes, etc. can be thought of as forming a decision tree, whereby each branch 

represents a different business model and combination of decisions. Each of these 

branches will have a length representative of its performance across the market condition 

factors considered in the study. Those branches that are consistently longer, i.e. better 

performing, can be viewed as those falling on the pareto optimal frontier. It becomes 

productive then to prune, or filter out, those business models that fall inside this frontier 

as they will consistently underperform the others from a profitability standpoint for each 

of the market condition forecasts. To be capable of performing this down-selection, an 

intimate understanding of the design space was first required. The results of the Stage 

One solution to these scenarios and this design space exploration follow. 

8.1.4.1 Design Space Exploration 

Before the performance results could be compared, the concepts needed to first be post 

processed, whereby Concepts 1 and 2 were converted back to the original warehouse 

layout, not the refined areas they were optimized and evaluated for. This was necessary 

so that a direct comparison could be made between them and the Concept 0 results. The 

conversion did not change the relative positions of the workstations; rather it only 

changed the relative position to the doors in these concepts, thereby effectively altering 

the material handling distances and associated costs. In the case of Concept 2, only 

Concept 2A required conversion as Concept 2B had the doors located in the same 

locations they would be in the otherwise converted warehouse area. Moreover, while 

post-processing, the advanced flow distance method was applied to each of the found 

optimal designs of the Stage One algorithm to provide a better comparison going forward 

when such an evaluation would then occur in Stage Two to further optimize the layout 
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designs. Finally, the performance results of Concept 2A and 2B were combined by 

summing across the performance metrics apart from the utilization levels, which were 

averaged provided these are unique to the individual layout and those stations. As such, 

they cannot be justifiably summed like the other metrics to form the Concept 2 results. 

8.1.4.1.1 Holistic Overview 

With the results post-processed for comparison purposes, the design space was then 

examined first by leveraging the scatterplot matrix presented in Figure 53 of the relevant 

nominal system metrics versus the various business model and market conditions 

considered in the study. These results observe the nominal performance of the designs 

encapsulated in the solution of the scenario problems. The results of the robustness 

metrics and relevant design factors follow many of the same trends observed here and 

thus are omitted to avoid redundancy.  Blue dots represent Concept 2 results, green 

correspond to Concept 1 results, red to Concept 0 with a distributed process approach, 

while purple indicate results for Concept 0 with a split approach. 

As can be observed in Figure 53, strong positive relationships exist between YOY 

PPD and that of the profit, direct labor costs (DLC), retained earnings (RE), and direct 

retained earnings (RE DIRECT) metrics. This is to be expected given that as production 

volume increases, more direct labor would be required to sustain such workloads and 

more production equates to higher profits and thus retained earnings. Additionally, as 

production rises, indirect labor costs shift to becoming direct labor costs, which explains 

the negative relationship observed between that of the indirect labor costs (ILC) and 

YOY PPD. This trade will become a common theme of discussions going forth and 
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furthermore, becomes a key factor is establishing the most suitable, i.e. best, business 

model going forward. Also related to the ILCs, it is evident that Concept 1 (green) 

consistently has lower ILC in comparison to Concept 2 (blue). This is not because 

Concept 1 is more efficient however; it is quite the contrary. Concept 1 consistently has 

lower ILCs because overall the layout designs are inferior from a material handling 

perspective. Large handling distances correlate to less idle handler time and therefore 

lower ILCs but higher DLCs in return. 

As also expected, provided the setups of the concepts, Concept 2 incurs the 

greatest amount of rearrangement costs (RC) while Concept 0, which remains fixed at the 

current configuration, experiences the least at zero dollars. Concept 1 falls between these 

two concepts. The widening spread in the data points with increasing restructuring option 

can be attributed to both more rearrangements being considered and thus higher RCs as 

well as the interplay between these higher restructuring options consisting also of 

associated station options and handler options that change more frequently over the larger 

number of considered rearrangement periods (both physical layout and operations). This 

interplay between these factors will become important going forward in understanding 

the behaviours of some of the later results. In doing so however, great insight can be 

derived as a by-product, as will be shown. 

Also, more green dots (Concept 1) appear at the low end of the DLCs. This does 

not indicate that Concept 1 is preferred from this stand point. The reason for this is as 

follows. These cases are those in which, because of how Concept 1 is configured, the 

production level is being capped by insufficient handler availability, which effectively 

decreases the production level and thus DLC and in turn profit. The appearance of these 
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at the low end of the profit metric confirms that these low direct labor cost cases are 

simply those limited by capacity restrictions. Such a case will be presented next. 

  

 

Figure 53 – Nominal system metrics versus conditions 

 

Red: Concept 0/D        Purple: Concept 0/S        Green: Concept 1        Blue: Concept 2

Strong relationships 

relative to YOY PPD 

Increasing rearrangement 

costs with more restructures 

Timing of operational changes 

and rearrangements is important 
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8.1.4.1.2 Utilization Constrained Examples 

Having previewed the design space holistically, a deeper dive into the scenarios and some 

of these behaviours observed before was warranted in order to gain a deeper 

understanding of the interplay between the business conditions, market conditions, and 

the layout design itself. In doing so, improved insight into the design problem could then 

be gained and further value could be derived by deploying the LIVE methodology to 

solve such a layout design problem. 

 The first scenario examined was that of handler constrained case. In this case a 

two-period layout design structure was considered (restructure option two) with the 

higher handler option deployed, evaluated for a YOY PPD of 80% (highest level) and 

with the lowest manned station option of 10 inspection stations (5,5 split), and 4 

receiving/shipping (2,2 split). Despite this lower active station quantity, the system is 

material handler constrained. This is demonstrated in Figure 54 below, whereby the 

utilization level of the handlers (blue bar) has reached 100%, fully utilized by time the 

end of the planning horizon was reached (Month 36). At the same time, the other stations 

maintain a margin of available capacity. The inspection stations, to no surprise provided 

their higher processing times, follow closely at 90% utilization. While the utilizations are 

relatively high at the end of the planning horizon considered, all stations and handlers are 

substantially underutilized in the earlier stages of the planning horizon (first year or 

twelve months of time). Only after the first twelve months do they then experience a 

more dramatic up rise in utilization as a result of the continued upswing in PPD. In this 

case, the restructure occurred at the twelve-month mark and came with an increase in 

active stations, which is why at that point the utilization did not jump then but did 
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afterwards at month twenty-four. This upswing in PPD, but then no further increase in 

active stations at month twenty-four, lead to the ratio between the stations and handlers 

shifting from being overly idle (60% of the time) to becoming more active (over 80% in 

some cases). As one can image, underutilization in the earlier months leads to high ILC 

experienced early on with these ILC then shifting to DLC latter in the horizon. A more 

optimal strategy would then be to reduce the number of active stations earlier on when 

the PPD is lower, and then gradually increase as PPD increases downstream. This would 

keep utilizations higher earlier on, thereby avoiding high ILC, which only diminish the 

profitability of the firm. Care would need to be taken to avoid getting behind in adding 

active stations (i.e. workers) as it would otherwise then lead to a capacity limited system 

which would also diminish profitability. 

 

Figure 54 – Handler capacity constrained scenario 
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considered along with the highest station option, a YOY PPD of 70%, the mid-range shift 

in PO/SO process distribution levels over time, and the lower handler availability option. 

This case is interesting as it demonstrates a scenario whereby the system shifts from 

being capacity constrained by the receiving station to then being handler constrained as a 

result of changes in the operations going from period two (Month 18-24) to period three. 

This is a unique example of the interplay between these different design factors. Entering 

the last period, there are too few receiving station to meet the production demand while 

there remains just enough handler availability to do so (97% utilized). Once the new hires 

were made, and therefore new receiving stations became active, the system switched 

from having such stations as the bottleneck of the system to then the handlers becoming 

the bottleneck as the PPD continued to rise at a rate of 70% YOY. 

 

Figure 55 – Example of the system bottleneck changing 
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become the bottleneck of the system despite station option four being deployed, which by 

all means considers the greatest number of active stations along with option two. The 

question becomes why are the remaining stations well underutilized while the inspection 

stations are completely utilized, thereby limiting the production level sustainable by the 

system? 

Recall, that for this Concept 1 example, the utilization levels are the mean values 

between the two distributed process groups. Since distribution option one was considered 

in this scenario, effectively indicating the process mix would remain at a 65% PO / 30% 

SO split in volume. The majority of the PPD, increasing at a YOY PPD of 80% in this 

case, were then of the PO type. Station option four, while considering the greatest amount 

of active stations, also considers allocating more of these to the SO group. This 

effectively pairs the highest PO PPD case with the lowest number of PO active inspection 

stations. As such, there are far too few active stations in the PO/ROIS line to sustain the 

high level of production considered for the scenario. This is thus a perfect example of 

how matching distributions of active stations and the process distribution mixes becomes 

critical to a well performing system and overall design.  
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Figure 56 – Inspection station capacity constrained scenario 

 The final constrained case examined is one of the most severe cases observed 

while investigating the design space. In this case, a similar scenario to that just described 

was encountered except, the bottleneck was then that of the receiving stations. In fact, 

throughout the planning horizon they were the most utilized and therefore bottleneck in 

the system throughout. In Figure 57, the considered PPD for the scenario, or PPD 

expected, and the actual PPD are overlaid on top of the utilization bar chart so as to 

directly observe the implemented dynamic production adjustment technique at work and 

moreover, the relationship between these utilizations and the PPD that can be processed 

by the system. As one can see, due to the station decomposition and restructuring 

schedule considered in this business model coupled with the distribution of the process 

volumes and YOY PPD of this scenario, the system became capacity constrained within 

the first eighteen months of operation. In this case, the system was constrained by an 

insufficient number of active receiving stations to sustain such high production volumes.  
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Figure 57 – Example of a severely capacity constrained system 

Becoming capacity constrained so early on also severely diminishes the 

profitability of this business model. As can be observed by the lines of expected PPD and 

actual PPD, once the receiving stations reached 100% utilization the actual PPD that was 

sustainable deviated from the expected. At that point, it became constant across the 

remainder of the horizon given no further changes in active station quantities was to be 

considered in this business model beyond this point in time. One may consider that the 

area between the two PPD lines indicates the lost production volume experienced by the 

system by being capacity constrained by the receiving stations. The receiving stations are 

not alone in being over-utilized. All other stations and handlers are well above 80% 

utilized. Given the 80% YOY PPD increase of this scenario, in order to achieve the 

expected PPD at month thirty-six, all stations would have been over-utilized by that 

point, not just that of the receiving stations. As such, adding just receiving stations would 
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only have the effect of switching which station the system is then capacity constrained 

by. Given the graph shown, if receiving stations were to then be added in this business 

model, the system would then just become handler constrained (next highest utilization 

level at roughly 88%).  

8.1.4.1.3 Concept Comparison 

Having since acquired an intimate understanding of the design space and the interplay 

between different design factors and their impact on the performance metrics of the 

system, a comparison between the various concepts considered was sought to begin to 

down-select towards the best business model to consider going forward. This was done 

first by returning to the scatterplot presented before of the design space and examining it 

further, but now on a concept-basis. 

For the nominal scenario conditions (no robustness considered), it becomes 

evident, by highlighting the Concept 0 cases (purple and red in Figure 58), that this 

business model is consistently suboptimal across all metrics except for the rearrangement 

costs (RC). Recall, that Concept 0 cases are those in which the original layout 

configuration is maintained across the horizon despite changing conditions. As such, this 

is not at all surprising since all other concepts consider rearrangement. Provided that 

these other cases outperform that of those associated with Concept 0, it then becomes 

clear that the rearrangement of the current layout is needed, and furthermore beneficial. It 

is also evident that such a business model would result in lower profitability for the 

business. This is can be observed directly by these highlighted cases in Figure 58 clearly 

falling below what other concept cases can achieve across the conditions in the profit 
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(PROFIT) and retained earnings (RE) metrics. One should not be confused by such cases 

producing notably lower ILCs. The reason for this outcome is as follows. Due to the 

inefficient nature of the layout configuration, material handlers are more active provided 

the longer material handling distances they must travel as a result. As such, one can 

expect to see that the lower ILCs are only a by-product of such costs being reallocated to 

that of the DLC metric due to material handlers being then less idle and instead more 

active. By inspection, this is in fact observed in the DLC metric. Such a theme was also 

observed before when the design space was explored more holistically.  

Now, the one situation where Concept 0 does come close to competing with the 

other concepts considered is for that of the first restructuring option. Under this option 

the other designs only consider a singular rearrangement at the start of the planning 

horizon. After which, these designs then remain unaltered much like that of the Concept 0 

cases. Provided that these other concepts then incur a rearrangement cost, as 

demonstrated in the upper-left most box in Figure 58, the gain in having then lower 

material handling costs via an improved layout design is somewhat mitigated by such 

costs. As demonstrated though, not entirely, they still maintain a marginal advantage 

from a direct retained earnings perspective.  
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Figure 58 – Performance of Concept 0 across the design space 

As for why this performance gap (higher RE, lower ILC, etc.) yielded by other 

concepts grows as different restructuring options are considered, one must in parallel 

understand that these restructuring options are also coupled to changes in manned stations 

and handler availability, as was observed and well discussed before while presenting the 
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utilization constrained examples. As such, this growing difference can be attributed to 

such changes being more effective than simply maintaining a constant number of manned 

stations or handlers across the horizon. This outcome demonstrates the need to evolve the 

system on these fronts over the planning horizon. Moreover, the difference in 

performances between different restructuring options, whereby the higher options (more 

rearrangements and changes in human resources) aren’t necessarily advantageous, 

establishes that such operational changes and rearrangements must be strategically 

chosen and furthermore timed. These are both observations that before would not be 

observable with the current approaches in the literature to the layout design process. 

Furthermore, such observations provide substantial insight into the effectiveness of the 

layout design and additionally the performance of the firm across these different business 

strategies. All this insight creates great value for the designer and stakeholders alike 

during the design process, enabling more informed and data-based decisions to be made 

and in turn strategies to be formed. To no surprise, the robustness results demonstrated a 

similar outcome, whereby the Concept 0 business models were consistently less ideal in 

comparison to the other two concepts considered in this study. 

A direct comparison of the concepts across all other business model design factors 

and market conditions is provided in Figure 59 on a retained robustness and retained 

earnings perspective (the main objective functions of the optimization). The chart 

provides the average performance of each concept across all remaining conditions, both 

business and market. As demonstrated, Concept 0, to no surprise, is on average the least 

optimal of the three concepts. While Concept 1 and 2 are comparable, Concept 2 is 
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slightly more optimal, which can be attributed to the redesigned operational landscape it 

deploys, which enabled it to reduce the material handling costs of the system. 

 

Figure 59 – Average performance of the concepts across all other conditions 

 Taking these average performance results for each concept and comparing them 

against each other enabled Table 40 to then be formed. The table is segregated by the 

diagonal whereby the upper-triangle compares the concepts on a retained earnings-basis 

while the lower-triangle compares them on a retained robustness-basis. The upper-

triangle is read as the cell value indicating the column concept’s percent superiority over 

the row concept while the lower-triangle indicates the row concept’s percent superiority 

over the column concept. As shown, across both metrics, Concept 1 and 2 on average 

outperform Concept 0 by nearly 15%. In the case of retained earnings, Concept 1 

achieves 14.7% higher earnings over the three-year planning horizon when compared to 
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Concept 0, while Concept 2 achieves even more at nearly 18%. Comparing Concept 1 

and Concept 2, one can observe that on average Concept 2 achieves 2.8% greater 

earnings over the same planning horizon than Concept 1. In the retained robustness 

metric, this difference effectively doubles to that of 5.6%. Considering these results, it 

became evident that Concept 2 was the preferred concept of the three. 

Table 40 – Comparison of the concept’s average relative profitability 

  Retained Earnings 

  0 1 2 

Retained 

Robustness 

0 … 14.7% 17.9% 

1 14.2% … 2.8% 

2 20.7% 5.6% … 

 

8.1.4.2 Final Business Model Selection 

Prior observations indicate that the preferred business strategy going forward should 

consist of an operational landscape described by Concept 2. To establish the remaining 

strategic business decisions to deploy in the business model (design factor options), a 

look across the performance landscape relative to the remaining business model 

conditions was performed to identify the most suitable complete business model, i.e. best 

performing one, on average, across the market conditions considered. This was 

performed within this Concept 2 operational landscape since it had since been established 

as the preferred. To do so, for each unique business model (i.e. combination of business 
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conditions design factors) of the Concept 2 space, the average performances of these 

potential models across the unique market condition scenarios were then plotted against 

the remaining business model design factors as demonstrated in Figure 60. 

 In Figure 60, the robustness results are provided, though note that the nominal 

results follow suit, leading to the same result that will derived from the analysis that 

follows. The results are plotted with several of the business models yielding the best RR 

direct results highlighted. As can be seen, though many of the two and four station 

options appear at the top of this metric, when translated to the RR metric, they become 

noticeably inferior compared to other points not highlighted. The reason this occurs is 

that for these models, they may be effective in sustaining the production levels; however, 

they are very inefficient when it comes to labor utilization. The noticeably lower RR 

result, which accounts for indirect labor, indicates that for these models, they effectively 

are underutilizing human labor, or put alternatively, they have too many workers for what 

the production level is and as such, too much idle labor. This interplay is important to 

grasp. As mentioned before, the maximization of human labor utilization (minimizing 

ILC) without sacrificing production by having insufficient capacity, will be what enables 

one business model to then stand above the rest and as such, be identified as the best 

business model to consider going forth in the study. 
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Figure 60 – Concept 2 business model performances 

 Observing then just the average RR result, the best business model, on average, 

across those considered was identified as indicated below in Figure 61. As shown, the 

best two models both deploy restructuring option three, whereby a two-period structure 

with restructuring occurring at month eighteen (or half way through the planning horizon) 

is deployed. Moreover, both these deploy the associated station option one for this 

restructuring schedule deployed. The difference between them lies in the material handler 

option, whereby it is evident that neither option is all that preferred over the other from a 

performance perspective (option one is slightly superior). This result mirrors earlier 

observations where it was observed that, in general, the apex in performance occurred at 

restructuring option three, with diminishing performance onward at higher restructuring 



 401 

options. This business model was then established as the best model of those considered 

in this study and recorded as being one to then be consider going forward for eventual 

solution in Stage Two of the proposed bi-model multi-stage solution approach of the 

LIVE methodology. 

 

Figure 61 – Overall most robust business model across all market conditions 

Though the best design had since been established, a purely static design was also 

sought, for both comparison purposes and to enable a purely static robust layout design to 

be further evaluated going forward. Selection of the business models deploying a 

restructuring option of one, and further identifying the best performing one of those, 

yielded the result shown in Figure 62. As one can observe, this model also deploys the 

same handler option and station option of the previously identified best overall business 

model. These options across the two models deploy effectively an equal distribution of 

the stations allocated across the two process groups. Provided that the distribution options 
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of the study considered an even split as well as two biased splits in favour of each process 

group, this result is not at all surprising. Though such an approach may not always be 

capable of sustaining production levels, on average, it will outperform the others thanks 

to the human labor utilization being collectively superior. Now it is also clear that the 

static models noticeably underperform the dynamic ones such as the best one identified 

before. So why do such models consistently underperform these dynamic ones? 

 

Figure 62 – Most robust static business model across all market conditions 

To answer this question, one can understand this outcome by examination of the 

utilization levels for the two cases that have since been established as those to consider 

going forward. With one being static and the other dynamic, yet both deploying the same 

business model factor levels outside of the restructuring schedule, a direct comparison of 

the two can shed insight into why this is exactly so. The reason has to do with a recurring 

theme observed in prior discussions of the results. A comparison of the business model’s 

average utilization levels across the considered market conditions is presented in Figure 
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63. As a general note, the best overall identified business model, the one deploying the 

option three restructuring schedule, will be referred going forward as the best dynamic 

business model whereas the other will intuitively then be referred to as the best static 

business model. 

 

 

 

Figure 63 – Average utilization levels across the planning horizon 
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As can be observed in the plots of Figure 63, except for the inspection stations 

utilization in the back half of the planning horizon, the dynamic model consistently has 

higher utilization levels while avoiding becoming over utilized.  Most notably, this is so 

in the early months where the receiving and shipping stations are considerably more 

utilized. This can be attributed to the dynamic model starting with fewer active stations 

(i.e. workers) and then adding additional stations downstream to handle the growing PPD 

the system experiences. By adding workers strategically to the system, the dynamic 

model can maintain lower indirect labor costs in the earlier months, and as demonstrated 

in Figure 64. Though in the last year of the planning horizon the static model boasts 

lower indirect costs (a result of the dynamic model adding additional workers), this is 

outweighed by the model yielding over $200,000 more in indirect costs over the first year 

of operation. 

 

Figure 64 – Indirect labor costs across the planning horizon 
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The static model produces a largely linear decrease in its indirect costs as a result 

of not adding any more workers to the system, yet experiencing increases in PPD.  At the 

same time, the dynamic model produces indirect costs across the horizon segments that 

are far more level. This is a result of this model adding workers to compensate for 

increases in PPD at the right times. Moreover, it indicates that such a model does a better 

job at efficiently utilizing human labor in comparison to the static model. At the end of 

the day, the dynamic business model chosen outperforms the static model thanks to it 

evolving over time. The ability to observe these differences, behaviours and moreover, 

understand how such business decisions regarding restructures, adjustments in human 

resources, and changes in operational design impacts the performance of the system and 

layout design directly confirms the ability of the LIVE methodology to enable more 

informed and strategic decisions to be made. 

As a reminder, going forward, the business models chosen for further 

investigation and thus optimization in Stage Two of the solution approach are 

summarized in Table 41, whereby the business condition design factors associated with 

the chosen models are established. 

Table 41 – Final business models chosen for further study 

Factor    Business Model 

Condition Description   Static Dynamic 

Business 

Conditions 

Concept  2 2 

Restructuring Option  1 3 

Station Manning Option  1 1 

Handler Option  1 1 

 



 406 

8.1.5 Final Layout Design Results 

With the final business models chosen for further study established, the associated 

scenarios deploying such models were then solved in Stage Two of the proposed bi-

model multi-stage solution approach of the LIVE methodology to establish final designs 

for potential implementation. The optimization parameter set identified in Experiment 5 

was deployed while solving said scenario problems. In total, 54 scenario problems were 

subsequently solved in Stage Two leveraging the results of the earlier executed Stage 

One of the solution approach. 

To establish the best designs for implementation, the designs generated after 

performing the Stage Two optimization were individually previewed and further post-

processed. A unique design was generated from each scenario further examined in Stage 

Two. This meant one for each unique market condition scenario, i.e. combination of the 

market condition design factors considered in the study, multiplied by the two business 

models considered. For each of these generated layout designs, the other market 

conditions for which it was not originally designed for were then post-applied to this 

design and the result recorded. The designs to be presented next were those that yielded 

the best average performance across these market conditions scenarios for each business 

model and from a retained earnings perspective. A few of the alternative designs 

generated by the Stage Two optimization are presented in Appendix G, Figure 94 in 

particular. The best identified designs, after visual inspection and considering their 

performances across all market conditions of this study, are presented next.  
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For the static business model, the SO/ROO/ROII and PO/ROIS designs are 

presented in Figure 65 and Figure 66 respectively. Joining these in the warehouse space 

can be understood as the area represented in Figure 65 falling at the bottom-left portion 

of Figure 66. The design of the SO/ROO/ROII space follows expectations where the 

stations are placed in sequential order relative to the process flows of this group (door, 

receiving, inspection, shipping, pack, then door in the case of the SO/ROO process). The 

ROII handling paths can be observed as going over to the inspection station and then 

back to the Building A Door. This behavior effectively pulls against the stations wanting 

to come down and to the right towards the shipping door. Also, the advanced flow 

distance method has forced groups of stations to form (overlapping red boundary lines). 

Since some flows need to pass between these stations, two pass-through alleys form in 

the layout as demonstrated by the three bottom-left stations (two receiving and one 

inspection) and then the two inspection stations in the middle of the layout forming 

groups and maintaining gaps between themselves and other groups/stations. This is a 

unique outcome of the advanced flow distance method, one that would not be observed 

with the traditional rectilinear method deployed. A main artery has also formed down the 

middle of these stations going left to right, effectively maintaining that the parts continue 

to flow in a productive manner from their input doors towards the output door of the 

system. This design also is conducive to enabling the flow of parts coming from the 

PO/ROIS cross-dock layout, represented in Figure 66. There remains a clear and wide 

path leading directly to the input/output doors of the system from where this PO/ROIS 

layout is located up and to the right of the SO/ROO/ROII layout provided in Figure 65. 
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Figure 65 – Layout design for the SO/ROO/ROII operations under the static 

business model 

The PO/ROIS layout, provided in Figure 66, shows a compact configuration 

whereby the stations are placed in a way that parts can flow about all sides of the stations. 

It is also observable that the receiving stations fall near the bottom-right corner of the 

configuration (nearest to the receiving door) while the packaging station falls on the left 

near the staging area and maintains a direct line of flow towards the shipping door. In this 

configuration, one can visualize the flow of parts as moving in a counterclockwise 

motion starting at the bottom-right and ending at the bottom-left. This is like the baseline 

cross-dock configuration’s flow (horseshoe pattern). Inspection stations are 

understandably then mostly situated in the upper-right corner since they fall in the middle 

of the process flows of these processes (receiving, inspecting, packaging, ship in that 

order as a reminder). 
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Figure 66 – Layout design for the PO/ ROIS operations under the static business 

model 

 In the case of the dynamic business model, the best resulting design can be found 

in Figure 67 for the SO/ROO/ROII layout design and Figure 68 for the PO/ROIS layout 

design. For this business model there exists an additional two inspection stations that 

becomes active in the second period (months eighteen to thirty-six). Despite being 

inactive in the first period, the stations are strategically placed such that they need not be 

further moved, nor do that of any of the other stations to accommodate them. In this case, 

the dynamic layout remained the same from the first period to the next, which is why 

only a single layout design is presented. In this instance, it was more beneficial to 

maintain the same layout, but rather construct it to be decent across both periods. The 

benefit of this approach is that it then avoids the cost of rearrangement. This would 

explain this result. Given the costs of rearrangement observed before while exploring the 

design space, this is not surprising. Also, since distributions within the processes flows of 
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this operational space remained proportionate; there is no need to restructure to 

accommodate such changes.  

 

Figure 67 – Layout design for the SO/ROO/ROII operations under the dynamic 

business model 

In general, it can be observed that the resulting design did not come to complete 

convergence. Just from a visual inspection of the layout, some slight improvements could 

be made to further improve the layout design. This is a result of the increased 

dimensionality of the problem and indicates the need to further refine the Stage Two 

algorithm to provide better convergence. With that said, it remains a good initial design 

in which could be adjusted further manually if desired. Moreover, this sixteen-object, 

two-period problem is relatively large for how complex the formulation is and for the 

number of constraints thus present. Additionally, this problem and all those considered in 

this study must evaluate well over 100 unique process flows, which has the impact of the 

algorithm requiring more computational time per generation to evaluate each layout 
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design. This translated to fewer generations being able to be run over the allotted twenty-

four hour run time limit set for each scenario problem evaluated in Stage Two. 

Regardless, the generated design still provides a good initial design to then further 

improve through designer input. 

These observed themes continue into that of the PO/ROIS layout design for the 

dynamic business model, demonstrated in Figure 68, where the top layout is for the first 

period and the bottom for the second. Like before, the design remains the same from a 

configuration stand point. With further inspection though, one can observe the addition of 

new process flows as new stations become active in the second period. In the first (top 

layout), the bottom-right most receiving station is inactive during the first eighteen 

months of the planning horizon before then becoming manned with new hires being made 

at this point (four in total: one receiver, one shipper, and two inspectors). The same is 

also true for the shipping station located in the middle of the configuration as well as the 

bottom-left and right most inspection stations. This can be observed by the new handling 

paths (blue lines) forming between these stations and others in going from the presented 

period one layout design (top) to the period two layout design (bottom). 

As expected, receiving stations can generally be found at the bottom-right of the 

configuration while the shipping and packaging station are located closer to the end of the 

counter-clockwise directional flow loop and near the staging area. Further examination 

highlights that, for the most part, the initially inactive stations have been strategically 

placed near the outskirts of the configuration (bottom-left and bottom-right). Since they 

are inactive in the first half of the planning horizon, placement elsewhere would only lead 

to them getting in the way of the parts flowing to and from those stations that are active. 
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Placement in this manner allows the configuration to not change, thereby avoiding 

rearrangement and loss of production costs, while at the same time remaining relatively 

effective from a material handling cost perspective. Though it may be hard to see, this 

configuration in general maintains the horseshoe flow that was present in the baseline 

configuration. This is particularly true in that of the first period layout design. In this 

configuration the receiving station comes first, then the four active inspection stations 

(those four located above the receiving station), then the single active shipping station 

whose input/output point coincides with the packaging station. From there, the flow can 

split to either the adjacent staging area or traverse nearly straight down to the shipping 

door of the system. This configuration facilitates an efficient flow of the parts throughout 

the system. 
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Figure 68 – Layout design for the PO/ROIS operations under the dynamic business 

model (top – period one, bottom – period two) 

Now, had more staging areas been desired they could easily have been placed in 

the layout as additional staging areas in the process flows of the individual processes (PO 

and ROIS in this case). Also, if a more distinct horseshoe design was desired by the 

designer, these stations could have been strategically constrained in the space in such a 

formation to force the design to then form about these constrained staging areas in such a 

fashion. With that said and as demonstrated, the same formation may have been 

inherently captured by the bi-model multi-stage solution approach and deployed 

performance model of the LIVE methodology had it been considered. 

Regardless of which business model is deployed, another notable outcome of 

these two proposed redesigns of the warehouse layout and operations is the more 

compact nature of them. As demonstrated in Figure 69, the redesign creates over 10,000 
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cross-dock operations (baseline configuration presented in Figure 48). Note that the upper 

50 feet of that shown in Figure 69 was already empty as shown in Figure 48, otherwise 

this area would have been 15,000 square feet in size as opposed to only the noted 10,000. 

With industry averages for leasing warehouse space falling anywhere from $4 to $7 per 

square foot, this redesign and extra storage space could by extension establish that this 

redesign constitutes an additionally savings of anywhere between $40,000 and $70,000 

for the firm in just a year of time. Over the three-year planning horizon considered here, 

that extrapolates to over $200,000 in three years on the upper end of that range. This 

outcome demonstrates that more than just the benefits of reduced material handling costs 

and thus higher margins can be realized by redesigning the layout and operations of this 

system. Recall, this benefit was directly observed before during the beginning of this 

dissertation while introducing the problem and the importance of the layout design 

process. Then, it was acknowledged that layout design process could facilitate 

consolidation efforts such as that experienced by Goodrich Aerostructures [43]. 
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Figure 69 – Extra storage space now available as a result of the redesign 

 How these discussed redesigns then compare to the baseline configuration and 

operational landscape can be found in Table 42 and Table 43. The Concept 0, distributed 

process operational setup results were leveraged to represent the baseline. Again, as a 

reminder, Concept 0 entertained the unaltered baseline configuration as presented in 

Figure 48 earlier. In Table 42, a comparison is made from an overall retained earnings 

perspective, whereby all costs are considered in this metric. As one can observe, while 

the dynamic model outperforms the baseline configuration dramatically at over 30%, the 

static model underperforms that of the baseline model. This result can be attributed to the 

baseline configuration a) not incurring the same rearrangement and loss of production 

costs the static model is subject to as a result of its initial rearrangement and b) the 

baseline model considering the distribution of the volumes across all the same active 

stations, rather than split. This dispersed workload enables it to perform better on average 

across the different distribution options considered. As the SO PPD increases relative to 
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the PO parts, this has no impact on the utilization of the active stations since both process 

groups are distributed across all stations. Therefore, the PPD experienced by the stations, 

regardless of the distribution, will always remain the same. This translates to a design that 

can maintain higher production rates overall as it is less prone to becoming capacity 

constrained as a result of the non-distributed volume approach considered in the static 

and dynamic models. 

 While this translates then to a higher overall retained earnings achieved by the 

baseline model, when compared to the static model (10% higher), this advantage 

disappears when one looks at the direct retained earnings. This occurs since indirect costs 

are not considered and instead only that of the direct costs are with this metric. The direct 

retained earnings metric can be thought of as metric in which focuses more on the 

material handling costs, whereby a less optimally configured layout would then yield 

higher material handling costs and therefore a lower profit margin per part. This would in 

turn lead to then lower direct retained earnings. In this case, the higher sustainable 

production level it can achieve as a by-product of its distributed approach is outweighed 

by the baseline configuration being less optimally configured in comparison to either the 

static or dynamic model designs. The baseline is then 4% less optimal than the static 

model and 11% less optimal than the dynamic model. This translates to roughly $100,000 

and $250,000 in reduced costs to the firm over the three-year period of time considered in 

this study (based on the assumed market value of $75/part). 
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Table 42 – Comparison of the redesigns to the baseline design on a retained 

earnings-basis 

Business Model RE $ Difference % Difference 

Baseline $1,062,889   

Static $956,576 -$106,313 -10% 

Dynamic $1,387,111 $324,222 31% 

 

Table 43 – Comparison of the redesigns to the baseline design on a direct retained 

earnings-basis 

Business Model RE Direct $ Difference % Difference 

Baseline $2,382,222   

Static $2,486,000 $103,778 4% 

Dynamic $2,637,000 $254,778 11% 

 In either metric, the dynamic model noticeably outperforms the baseline 

configuration. In the case of the retained earnings, the dynamic business model and 

adjustments to the operations enable it to then better utilize its human capital, which 

translates to lower ILCs. This explains why the dynamic model was able to remain 

advantageous over the baseline configuration in this metric while the static model did not. 

As such, this difference can then largely be considered a by-product of a better formed 

business strategy. 

It is also important to note, the difference in the retained earnings relative to the 

static model would be less while the dynamic one would only widen as the current 

operations do not deploy a material handler, as was considered in Concept 0. This would 

take capacity away from the system given that the station worker’s processing times 

would need to also then include the time to pick up and drop off products at the next 
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station in the process flow. This would effectively diminish the system’s ability to sustain 

higher levels of production, which would have the effect of then reducing the retained 

earnings metric for the baseline. As such, this 10% difference would likely be less, if 

anything at all, if compared exactly to the current operational landscape. Some of this 

effect may however be mitigated by then such operations not incurring the costs of labor 

associated with the handler(s). 

8.1.6 Concluding Remarks 

As was well observed and documented, a redesign of the current configuration and 

moreover the firm’s operations are necessary to ensure profits can be maximized going 

forward. In the course of the study, it was established that management must be strategic 

in both the strategies they deploy and even more so the timing in which they are 

implemented. As was also discovered, the effective utilization of labor is paramount to 

maximizing profit and thus the firm’s retained earnings after the three years of operations 

considered in this study. Senselessly hiring new labor was proven to be non-beneficial in 

some instances. Consideration of material handler utilization was also identified as being 

essential to properly evaluating the system and its capabilities to yield profits. It was also 

established that a redesign of the operations, which considers segregating the two unique 

process groups (cross-dock vs. rack processes) in the warehouse, can be of great value to 

the firm as it enables the material handling costs of the system to be significantly 

reduced. It also has an ancillary benefit of providing floor foremen with more 

transparency into operations, given the distinct process lines that are formed. Considering 

these observations and conclusions, the best business model or set of strategic business 
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decisions was then identified given the considered market conditions the system could 

potentially be subject to going forward.  

In addition to this best business model, being dynamic in nature, the best 

performing static model across the considered market conditions was also identified. For 

each of these two business models, two layout redesigns were generated and proposed 

going forward for implementation to improve the operational effectiveness of the firm. 

These designs and numerous insights into the operations and performance of the system 

were facilitated by application of the LIVE methodology to the investigated layout design 

problem. With that stated, this concludes the presentation of Experiment 6 and thus the 

experimentation performed in this dissertation. 
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CHAPTER 9 

– 

SUMMARY AND CONCLUSIONS 

This dissertation has provided a new method for designing environments, specifically 

manufacturing environments, subject to evolving and uncertain market and business 

model conditions. The methodology, referred to as LIVE, provides a new and systematic 

approach to considering strategic business decisions concurrently with the layout design 

of a system, thereby enhancing the benefits that can be yielded during the layout design 

process. The LIVE methodology is represented graphically in Figure 70. 

 

Figure 70 – LIVE methodology framework 

The purpose of this research was to continually pose questions that would help 

facilitate the identification and subsequent formation of an improved way of exploring 

the design space of a detailed evolving environment such that more informed and 

collaborative design decisions could be achieved despite the presence of evolving and 

uncertain market and business model conditions. In the process of doing so, critical gaps 
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in the literature were identified and then systematic approaches formed to provide closure 

to said gaps. Innovative methods were developed in the course of this research to handle 

unique challenges encountered while attempting to both provide closure to identified 

gaps and moreover handle the unique and complex problem characteristics considered in 

this dissertation. Several hypotheses were formed throughout this process with the 

overarching hypothesis of this dissertation stated as follows: 

Overarching Hypothesis: If the problem of designing an environment subject to 

evolving and uncertain market and business model conditions is solved with the 

proposed LIVE methodology, then designers will be capable of making more 

informed and collaborative decisions on its design. 

In addition to the overarching hypothesis, two other secondary hypotheses were 

formed in response to the gaps identified during the literature review and formulation of 

the problem requiring solution. The first was in response to the identified gap in the 

literature relating to the potential generation of suboptimal layout designs. This was a 

result of the current flow distance methods failing to consider flow path feasibility when 

establishing the material handling costs of the system; a major cost factor, as has been 

well established in the literature. The resulting hypothesis was then presented: 

Hypothesis 1: If an advanced flow distance method that ensures flow feasibility 

is implemented to define the MHCs, then improved layout designs that are better 

representative of reality can be established for variable production environments 

where several interrelated processes are occurring concurrently. 
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The second of these secondary hypotheses, Hypothesis 2, was then formed in 

response to both this hypothesis as well as the unique and rather complex problem 

formulation that was identified as requiring solution in order to accurately evaluate and 

subsequently establish layout designs in practice. To handle such a problem, Hypothesis 

2 was stated as follows: 

Hypothesis 2: If the proposed bi-model multi-stage hybrid solution approach is 

implemented to solve the MIP formulated RDLP, then the problem will be solved 

most effectively, in terms of solution quality. 

An overview of the experiments then performed to provide substantiation to these 

hypotheses is presented next, along with the resulting outcomes of the experiments. 

 Review of the Experiments 

9.1.1 Experiment Set A: Validation of Methods 

The goal of Experiment Set A was to test the effectiveness of the developed FSPPM, the 

novel advanced flow distance method, and the need to infuse FSA into the first stage of 

the proposed bi-model multi-stage solution approach. Throughout this experiment set, a 

uniquely designed 52 Problem Test Set was leveraged as a testing platform. The FSPPM, 

novel advanced flow distance method, and infusion of FSA in the Stage One GA 

algorithm were all tested across this problem set. 

In Experiment 1, it was demonstrated that the FSPPM performs far better than the 

traditional random assignment method of the literature. The FSPPM demonstrated its 

ability to discover feasible layout designs at a far faster rate and as such, made problems 
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before unsolvable to then become solvable. Additionally, it was identified that the best 

sigma value to deploy, while leveraging the FSPPM, is that of a value of 0.7. 

In Experiment 2, it was demonstrated that the novel advanced flow distance 

method does well in ensuring flow path feasibility is maintained throughout the layout. It 

was also demonstrated that there exists a distinct difference between the traditional 

rectilinear result and that generated when deploying the advanced method. Moreover, it 

was proven that optimizing relative to the rectilinear result yields noticeably inferior 

layout designs compared to when the advanced method is deployed to establish the 

material handling distances and subsequently the material handling costs. It was observed 

that optimizing relative to the advanced method, which considers flow path feasibility, 

identified layout designs that, on average, we over 12% superior in comparison to those 

generated using a rectilinear method, only to then consider flow path feasibility after the 

fact. This outcome in turn provided direct substantiation to Hypothesis 1 whereby it was 

proven that such an advanced method, which considers flow path feasibility, is necessary 

during the layout design process. 

In the final experiment, Experiment 3 of this set, it was demonstrated that while 

infusing the FSA technique provides improved optimality, the substantial time cost 

associated with its execution deters its application in Stage One when merely initializing 

the Stage Two GA of the bi-model multi-stage solution approach. 

 Overall, the testing performed in Experiment Set A, established that the FSPPM 

should be deployed with a sigma value of 0.7 regardless of the goal of Stage One 

(initialization or final solution) and in the case of initialization, it was also concluded that 
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the rectilinear method should be deployed and FSA not. With that said, when final 

solution, and thus optimality, is the goal of Stage One, the advanced flow distance 

method and FSA should both be deployed to ensure the best layout design is identified by 

the Stage One algorithm. 

9.1.2 Experiment Set B: Optimization Studies 

The goal of Experiment Set B was to leverage the outcomes stated before in Experiment 

Set A to then test the effectiveness of the solution procedures developed as part of the bi-

model multi-stage solution approach proposed for solving the complex layout problem 

formulation of this dissertation. Additionally, identifying how to most effectively solve 

said layout problems was another core element of the experiment set. In performing these 

tests, Hypothesis 2 was in turn directly substantiated. 

Without a directly applicable problem formulation available in the literature to 

compare to, the best alternative was then to set a literature standard and moreover 

identify how to best tune this solution approach to solve the uniquely formulated 

problems of this dissertation. To this extent, extensive optimization parameter studies 

were performed across the constructed 52 Problem Test Set of this dissertation in 

Experiment’s 4 and 5. In the course of these studies it was identified that of the 

optimization parameters tested, population size and number of generations contributed 

most to the performance of the Stage One algorithm while population size, crossover 

percentage, and migration rate were the major contributors in Stage Two. 

The best settings for the tested parameters were also identified as a result of these 

experiments performed. The results establish that to most effectively, in terms of solution 
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quality (i.e. optimality), solve the uniquely formulated and complex problems of this 

dissertation, the Stage One and Two parameter settings provided in Table 33 and Table 

36 respectively should be deployed. Furthermore, if the simplified formulation, yet still 

considerably complex and moreover unique one of Stage One is to be solved most 

effectively, in terms of solution quality (i.e. optimality), then the optimal settings 

summarized in Table 30 should then be deployed. 

9.1.3 Experiment Set C: Case Study 

Building on the outcomes of Experiment Set A and B, Experiment Set C sought to test 

the proposed LIVE methodology by application to a real-world layout design problem. 

The LIVE methodology was leveraged to examine the operations of an aerospace parts 

warehouse, the effectiveness of the current layout configuration, and the redesign of it. 

The study performed, examined the performance over a forecasted three-year period and 

for a multitude of different market and business model conditions. Robustness relative to 

production uncertainty was also considered during the process of identifying the business 

strategies and layout design that would maximize profits over the three-year planning 

horizon considered in the case study. 

In applying the LIVE methodology, the sheer power of it and the value it creates 

for designers and stakeholders alike was observed consistently throughout the design 

process. The informative discussions while presenting the results of the Experiment 6 

case study were all facilitated and moreover enabled by the LIVE methodology and the 

solution approach and performance model deployed by it. The observations made 

throughout the study, all enabled by the LIVE methodology, shed great insight into the 
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layout design problem and additionally the resulting performance of the firm across 

differing business strategies. In the absence of such a methodology, such would not have 

been the case. A far more limited understanding of the system and the interplay between 

both business strategy and the layout design would have been achievable.  

The methodology also proved capable of enabling non-uniform unstructured 

restructuring schedules to be considered in conjunction with human resource adjustments, 

such as labor allocations and new hires. The ability of the LIVE methodology to facilitate 

this analysis then enabled the impact that such strategic decisions have on the system to 

be better understood. All of this created great value during the design process and as was 

demonstrated, enabled more informed decisions to be made regarding both the design of 

the firm’s layout and operations. Moreover, the integration of the detailed performance 

model proved exceedingly useful in facilitating enhanced insight into the operations of 

the firm, which would have otherwise been unachievable by layout design process 

currently deployed in the literature.  Most notably, its inclusion of utilization metrics 

proved useful in enabling the strategic business decisions to be well understood from a 

capacity perspective. 

The LIVE methodology’s ability to provide this enhanced understanding of the 

operations and layout design thereby enabled more informed decisions to be made in the 

presence of uncertain market and business model conditions, which directly substantiates 

the Overarching Hypothesis of this dissertation. Furthermore, this case study affirmed 

an overarching motivation of the dissertation. That being that 10-30% annually can be 

saved through the reduction of operating costs with effective layout design [71]. 
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 Forward Looking Future Improvements 

Though the work of this dissertation was extensive, and the LIVE methodology provided 

to be a significant advancement in the area of how the layout design process is 

performed, there is always room for further improvement to the methodology and the 

solution procedures it deploys to facilitate solution to the complex layout problem 

formulation considered. 

9.2.1 Solution Procedure Improvements 

While the developed solution procedure of Stage One outperformed expectations, the 

procedure of Stage Two fell somewhat short. With that said, the solution procedure did 

perform admirably despite being tasked with solving such a complex and arduous 

problem formulation. Considering this, a major focus of future improvements to the 

methodology should be on improving the performance of the Stage Two solution 

procedures.  

It is believed that one such improvement could include pushing the rectilinear 

method of computing the material handling costs into Stage Two whereby it is leveraged 

during the isolation period of the GA. The rectilinear method would greatly expedite the 

solution process in this period where it effectively solves, though only partially, the MIP 

problem three times in the form of three separate populations. Though it was proven that 

the rectilinear method can lead to suboptimal solutions, like in Stage One, it could be 

leveraged to provide partial solution in Stage Two during the isolation period where 

exploration is more prominent. Further, because the algorithm merges these isolated 

populations only to continue to search for the best solution leveraging the advanced flow 
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distance method; it should avoid such a pitfall. Even after the conclusion of the first 

generation it would identify such suboptimal designs and in turn eventually drop them 

from the population. It would then then instead converge on the true optimal solution that 

accounts for flow path feasibility. This proposed improvement of the Stage Two solution 

procedures, at a minimum, could provide significant computational time savings for the 

overall methodology, but more specifically during Stage Two. With that said, great care 

would need to be taken to avoid overly converging, thereby eliminating designs that 

would in fact be better if flow feasibility was considered during the isolation period. 

 It is also believed that improvement of either the evolutionary process or 

initialization of the populations in Stage Two could yield improved convergence 

behavior. It is believed that the advantage of leveraging the QAP/U-SP formulation in 

Stage One to generate an abundance of diverse and feasible designs may have come at a 

cost though. Due to the stacking nature of this formulation, altering the designs through 

the implemented genetic operators of Stage Two proved to be difficult as was observed 

on occasion throughout the course of this research. For example, if an operator attempts 

to switch the positions of object a and object b, but object a and b are distinctly different 

in size or perhaps the same size, but rotated differently (assuming they’re non-square), 

then because of the stacked nature of the configurations, such a switch would effectively 

cause the objects to then be overlapping. This in turn would then render the design 

infeasible. Think of it as trying to fit a car through a house door, it simply will not work. 

This outcome likely led to some of Stage Two’s less than stellar performance 

characteristics, especially from a feasible design discovery and therefore computational 

time stand point.  
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As such, it is believed that there are two viable options for remedying this 

occurrence and they are as follows. One, while initializing the tri-populations, via the 

layout design set provided by Stage One, only a portion, say 25%, of the population 

should be established from this set for each population. In other words, if the population 

size is to be 200, 50 unique designs from the set would be selected. Then the remaining 

150 designs would be established by deploying a heuristic technique that randomly 

selects one of these 50 designs and then alters it by spreading the objects apart. With the 

QAP/SP-U model effectively packing the objects in a compact fashion, this heuristic 

would effectively force these objects to be spread apart from one another. The stacking 

rules outlined earlier in this dissertation could be leveraged to achieve this. One can think 

of this technique as resembling that of an exploded view of the configuration, much like 

what you would see in computer-aided design or engineering drawings for an assembly 

spread apart. Such spreading could be dispersed between the objects randomly. While the 

50 selected designs would provide global diversity, this approach would effectively 

create local diversity about the 50 designs. It is believed that this approach would then 

enable the genetic operators implemented in the Stage Two algorithm to then evolve the 

populations more effectively. More effectively evolution would then lead to improved 

convergence properties and solution quality by the Stage Two algorithm. The second 

option, by extension would be to apply this same heuristic as a genetic operator in the 

evolutionary process. The synthesis of the two could yield compounding benefits if 

considered in the future. 

 Yet another potential advancement of the current approach is to infuse in the first 

stage GA a cross pollination technique. It is proposed that during this stage the 
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simultaneous solution of like problems could be considered to enhance the performance 

of the stage. In early generations, the GA has yet to focus on the region of optimality; 

instead the time is spent exploring the space. It is believed that this property could be 

leveraged early on in Stage One’s progression, where exploration is more highly valued 

in comparison to optimality, to enhance the solution process. Because like problems have 

the same structure, they can easily share layout designs for individual periods or across 

all periods as all physical conditions of the layout remain the same. Sharing explored 

designs could enable a larger search space to be explored in a shorter duration of time and 

furthermore reduce the computational overhead associated with determining flow 

distances. This would be especially advantageous if the advanced method is employed 

rather than a rectilinear one. For example, for five like problems, a population size of 10 

each can enable 250 designs to be evaluated overall amongst these five problems (50 

each problem) while the advanced flow method would only need to be performed 50 

times to achieve this analysis. 

 Provided this, a future proposition is that a cross pollination function, based on 

the diversity of the individual problem populations, be employed to regulate this cross 

pollination that occurs between the problems collectively solved. As the diversity of a 

problem’s population decreases (i.e. it narrows its scope towards its own optimal region) 

the amount of cross pollination occurring would decrease until eventually none would be 

performed. The problems involved will maintain their own populations, but after each 

generation the populations of each of the problems will be pooled and evaluated 

according to everyone’s conditions. The cross pollination would then dictate how many, 

if any, of the other problems supplied population individuals would then be selected for 
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replacement relative to its own. If none of these provide superior solutions, then no cross 

pollination would result. This population cross pollination technique could prove highly 

advantageous to reducing solution times and improving the performance of the solution 

process. 

 This concept of cross pollination is not a revolutionary one. There exists an 

optimization technique in the literature referred to as the flower pollination algorithm 

(FPA). Proposed by Xin-She Yang back in 2012, FPA emulates the pollination process of 

plants to solve single and multi-objective optimization problems [18,175,176]. Although 

the pollination process emulated in this algorithm differs rather substantially from the 

concept behind the proposed technique, inspiration in forming the proposed technique’s 

function could be gained from observing the flower pollination algorithm’s fundamental 

premise. 

 This technique would however require a large degree of memory and further a 

revision to the current data management scheme deployed in the current LIVE 

methodology. As such, implementation of this concept going forth would be a substantial 

effort if it were to be pursued. 

9.2.2 FSPPM Improvements 

Another improvement to the developed methods was observed while performing 

Experiment 6. As was acknowledged then, a future extension of this work should focus 

on further developing the novel FSPPM. Such efforts should attempt to account for 

sparse, high white space layout characteristics, constrained objects with small areas 

relative to the other objects and the space itself, along with the general positioning of the 
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constrained objects relative, not only to the diagonal line, but also their vicinity to the 

boundaries. Dependencies on these characteristics should be built into the functions that 

define the expected position and sigma of the individual constrained object distributions. 

The following forward-looking hypothesis was made considering this: 

If the FSPPM is further developed to encapsulate an algorithm defining the 

expected position and sigma values of the constrained objects on an individual-

basis and moreover encapsulating the above acknowledged dependencies, then 

better placement performance by the FSPPM would be observed under such 

layout characteristics. 

9.2.3 Platform Improvements 

Before any of these improvements are likely to be made though, the next step for the 

author is to develop an extensive GUI that can facilitate the data analysis and layout 

visualization presented in Experiment 6 in a user-friendly platform. This platform would 

act in further facilitating collaboration among stakeholders during the layout design 

process. Moreover, a conversion from MATLAB scripting language to python is desired 

to enable the LIVE methodology and tools developed to become completely open source. 

 Closing Remarks 

This dissertation began with the goal of improving the layout design process under 

uncertain and evolving conditions by providing a more accurate representation and 

evaluation of the design. In the process of accomplishing this goal, the LIVE 

methodology was formed. Along with its formation an extensive array of novel methods, 



 433 

performance models, optimization techniques, and new applications of existing genetic 

operators were developed. The novel QAP/U-SP model developed, the revolutionary 

application of a genetic algorithm to the DLP variant of the problem, the original 

application of the jumping gene operator to such a model, and the novel heuristics 

developed for the various genetic operators and FSA perturbation schemes deployed in 

Stage One are noteworthy contributions to the literature. The novel FSPPM method 

developed to more effectively handle the QAP/U-SP formulated problem under 

constrained object scenarios is yet another notable contribution. Moreover, the novel 

application of the jumping gene operator and the novel repair processes developed for 

both the Stage One QAP/U-SP model and Stage Two MINLP model of the layout under 

evolving asset landscapes provides a substantial advancement of the literature pertaining 

to the LP. Collectively, these efforts contribute greatly to advancing both that of the 

optimization portion of the layout problem literature, but also that of the mathematical 

programming literature. The mathematical programming techniques developed here 

apply beyond the scope of this problem application and universally advance solution to 

similarly structured combinatorial optimization problems.  

This work also demonstrated that the LIVE methodology effectively facilitates 

improved insight and potential collaboration into the layout design process. The 

methodology demonstrated its ability to provide an improved layout design process that 

can effectively handle design problems subject to uncertain and evolving conditions; 

enabling strategic business decisions to be considered in parallel to the design of the 

layout. It is the author’s sincere hope, that the work performed in the dissertation can help 
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advanced not only the field of lean manufacturing and layout design, but also the fields of 

operations management and mathematical programming. 
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APPENDIX A 

– 

COMPREHENSIVE REVIEW OF THE LAYOUT PROBLEM 

This appendix focuses on providing expanded, more comprehensive reviews of various 

topics covered in Chapter 2 where the background on the overarching topic of this 

dissertation (i.e. the layout problem) is presented.  

A.1 Review of Other Layout Performance Measures 

This portion of the appendix focuses on providing a more comprehensive review of the 

other layout performance measures considered in the literature and briefly cited in 

Chapter 2.  

A.1.1 Flexibility 

Neglecting the quantitative measures of material handling costs (MHCs) and 

rearrangement costs (RCs), flexibility is likely the next most frequently considered 

measure of performance in the literature. As it pertains to the facility layout problem, 

flexibility is traditionally defined as the layout’s ability to efficiently adapt to evolving 

and uncertain customer demands and internal disturbances without a substantial 

degradation in operational performance [98,165,135,171,173]. As observed by Koste and 

Malhotra, as well as others, there are several important dimensions of flexibility in the 

facility environment. As they note, those of most importance include, flexibility with 

respect to volume, product mix, new product introduction, product modification, machine 

capabilities, labor, material handling, routing, operations (i.e. product process 

alternatives), and facility expansion [98,165,135]. Explicit definitions of each of these 
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can be found in [98]. Before proceeding, it shall be acknowledged that given its similarity 

to the concept of layout robustness, the two are often coincidently established in the 

literature. This is despite the two being subtly different from one another. Considering 

this, it shall not be surprising that crossover be observed between the following 

discussion and the one provided in Chapter 2 on robustness. 

Establishing a quantitative measurement of layout flexibility has been approached 

in various ways by researchers in the literature. Many in the literature have measured 

flexibility as the layout which performs, most consistently on a MHCs basis, the best 

across a series of scenarios. These scenarios often address flexibility in the product-based 

dimensions, noted above, by encapsulating variations in product production demand 

across the planning horizon [171,173,39,84,116]. Rosenblatt and Lee, considered a 

slightly different form of this flexibility notion. Though still MHC-based, they opted to 

define the flexibility instead as the layout which most frequently fell within a pre-defined 

percentage of the layouts with optimal MHC across the scenario set [147].  

Malakooti and D’Souza took a rather different approach to defining flexibility. 

They measured flexibility as the ease by which the layout could be arranged and 

rearranged. Using a ranking scheme to establish the importance of various department 

proximities, they were able to capture flexibility in this rearrangement dimension [116].  

Raman et. al. took yet a different approach to quantitatively defining flexibility. 

They argued that defining flexibility solely based on MHCs, as often was done, was 

unwise as it neglected other significant factors that also contribute to the flexibility of the 

layout [141,142]. Ultimately, they considered additional significant factors which they 
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then grouped under the three flexibility dimensions of expansion, volume, and routing. 

Acknowledging that many decisions associated with these factors are knowledge-based 

and qualitatively made by designers, Raman et. al. opted to implement a complementary 

knowledge-based measurement approach to solve for the flexibility. Using fuzzy rule-

based system (FRBS) to quantify these factors, Raman et. al. were able to capture 

flexibility with respect to all three dimensions noted above.  

Provided here is only a brief overview of the literature pertaining to measuring 

flexibility in the facilities layout problem. A more comprehensive review would surely 

uncover additional methods of quantifying flexibility beyond that of those discussed. Not 

being a focus of this dissertation, the discussion on flexibility ends here and we move on 

to discussing another often-observed measure of layout performance in the literature. 

A.1.2 Spatial Utilization 

Spatial utilization, also sometimes referred to as space utilization, area utilization, or 

productive area utilization (PAU), is another common measure of layout performance 

considered in the literature. Spatial utilization addresses the concern of layout designers 

regarding how effectively the layout space is being used by operations. Variation in how 

this is quantitatively measured exists in the literature.  

Often, a measurement of the free space of the layout is leveraged to define the 

space utilization metric. Lin and Sharp for example, used the ratio between the free area 

available in the space divided by the total layout area in addition to the concentration of 

the free space in the layout to characterize space utilization [112]. Raman et. al. however, 

contest that this approach to quantifying utilization is flawed given it focuses on the 
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notion of free space rather than that of utilized space [141,142]. Though they concede 

that such an approach would be helpful in assessing future expansion potential (i.e. 

expansion flexibility discussed in the preceding section), they maintain that it provides a 

poor characterization of utilization. In fact, they argue that to effectively define space 

utilization, one must consider the idea of value adding and non-value adding utilized 

space to sufficiently characterize the space utilization metric. If this concept seems 

familiar, that is because Raman et. al. drew inspiration from the lean manufacturing 

concept of waste minimization in establishing this perspective. Furthermore, just like that 

of lean manufacturing seeking to minimize waste, their approach seeks to minimize the 

area utilized for non-value adding elements [142]. To define the PAU, Raman et. al. used 

an Analytical Hierarchy Process (AHP) method to quantify the qualitative estimations of 

value adding vs non-value adding proportions of a given element in the space. The PAU 

under their approach is in turn defined as the ratio of value adding space to that of the 

total utilized productive area excluding all free space. 

A.1.3 Work-In-Process 

Another frequently addressed measure of layout performance in the literature is work-in-

process (WIP). Work-in-process, by definition, is the collective cost of all partially 

unfinished products in production at a given moment in time [63]. One can easily see the 

value in addressing such a measure and furthermore seeking to minimize it. WIP, as a 

byproduct of Little’s Law, can be related to the throughput of a product [109,8,114,27]. If 

operations are ineffective and products are often being held up along the way or taking a 

long time in transit, WIP will be observably higher than if they were flowing through 

unimpeded. This alludes to the issue of congestion in the environment. Benjaafar, having 
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acknowledged this dependency between WIP and congestion, sought to mitigate 

congestion by leveraging WIP as the primary measure of a layout’s performance [27]. 

Building on the work of Fu and Kaku, who years earlier also addressed WIP in 

the layout design problem [74,75], Benjaafar found that reducing overall distances 

between departments can, though counterintuitive, increase WIP. Additionally, they 

discovered that the performance of a layout can be affected by non-material handling 

factor such as utilization levels, department processing time variations, and further 

product demand variations. To measure WIP, Benjaafar implemented a probabilistic 

queuing network approach. Benjaafar’s approach was capable of characterizing the 

expected WIP allocated to each department individually and further to the material 

handling system by probabilistically assessing product travel times (loaded and empty 

trips). Leveraging Little’s law, Benjaafar was further able to establish total expected flow 

times of individual products in the system. 

A.2 Review of Layout Problem Solution Approaches 

This portion of the appendix focuses on providing a comprehensive review of solution 

approaches deployed in the literature to solve variations of the layout problem (LP). This 

appendix begins by observing exact methods of solution, followed by heuristic, meta-

heuristic (simulated annealing techniques and genetic algorithms), and finally hybrid 

intelligent approaches deployed in the literature to solve variations of the layout problem. 

A.2.1 Exact Methods 
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As noted in Chapter 2, a few of the more prominent exact methods implemented in the 

literature to solve the LP include branch and bound, dynamic programming, and direct 

methods. Each of these methods and relevant works are discussed in detail here in the 

sections that follow.  

A.2.1.1 Branch-and-Bound 

The branch-and-bound (B&B) method was originally developed to solve discrete 

optimization problems [38]. B&B solves combinatorial optimization problems (COPs) 

like that of the LP through a recursive process where at each iteration the problem is 

branched intelligently into sub-problems of reduced size [7]. Implementing bounding 

techniques helps to avoid a complete enumeration of the problem, allowing problems of 

reasonable size to remain solvable. Without such techniques a structured static layout 

formulated by QAP/S of size 7 would require 5040 layouts and generalizing to an 

unstructured static layout formulated by a QAP/U model such as SP would require a 

burdensome 25.4 x 109 layouts to be evaluated before optimality could be guaranteed. 

Imagine now extending this to a multi-period dynamic problem and the solution space 

would become so large that it would be intractable to solve even a small sized DLP 

without the aforementioned bounding techniques.  

Branch-and-bound methods have been implemented to solve a variety of LP 

formulations, with most being applied in the static QAP domain as solutions remain 

achievable in a reasonable amount of time for moderately sized problems. One notable 

application of B&B to the LP was Kim and Kim’s use of it to identify the optimal I/O 

point placement that minimizes the total transportation distance for a given block layout. 
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Using linear programming and heuristics to establish the lower and upper bounds for 

their B&B algorithm respectively, they were able to solve problems involving 30 

departments effectively [91]. Like most researchers in the literature implementing linear 

programming to solve sub-problems, Kim and Kim used CPLEX, originally developed 

by Robert E. Bixby and now continually developed under IBM [32,31]. Although Kim 

and Kim solved a 30-department problem, their method assumed a given layout was 

known. In other words, they only solved a sub-problem of the LP with B&B.  

In the dynamic domain, very few have entertained the use of B&B due to the 

solution complexity that accompanies it. One of the few to implement B&B to solve the 

DLP has been Lacksonen (1994). Lacksonen (1994) proposed a two-stage approach to 

solve the Montreuil inspired MILP formulation of the DLP [125,106]. The first stage of 

Lacksonen’s (1994) approach solved the QAP formulation of the DLP to generate good 

approximate layouts by a heuristic cutting plane routine. The second stage then solved a 

modified version of Montreuil’s MILP formulation of the DLP using a B&B approach 

combined with the optimization subroutine library (OSL) subroutines. The solutions of 

Stage One enabled the number of integers present in Stage Two to effectively be reduced 

thereby enabling problems of moderate size to remain tractable. Their approach improved 

solutions to SLPs and solved DLPs that had yet to be solved in the literature at the time 

[104].  

A.2.1.2 Dynamic Programming 

With the exception of Lacksonen and very few others, most researchers have leveraged 

dynamic programming (DP) to solve the DLP to optimality. Much like that of B&B, DP 
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decomposes the problem into sub-problems, storing their solutions as they are solved 

recursively in order to gain solution to complex optimization problems [110]. Rosenblatt, 

being the first to propose and subsequently solve the DLP, leveraged DP to solve the 

QAP/S formulation of the deterministic (product demands are known and constant for 

each period) problem. In his formulation each stage of the DP characterized a period of 

the planning horizon and each layout a state of the DP. Rosenblatt was able to achieve 

solutions to problems involving six departments and five periods [146].  

Like that of B&B, DP can solve the DLP to optimality for only small sized 

problems due to solution complexity. To emphasize this, consider the QAP/S model case 

where there are N departments in the layout and a total of T periods in the planning 

horizon. To solve said DLP to optimality would require (N!)T layout plans to be explicitly 

or implicitly evaluated. For a problem of just six departments and five periods, like that 

solved by Rosenblatt, 1.93 x 1014 layout plans must first be evaluated. Therefore, solving 

larger problems becomes unrealistic without the use of heuristics to reduce the 

combinations that must be evaluated. Rosenblatt among others have suggested and since 

implemented such heuristics to enable problems of larger size to remain tractable 

[146,13]. It should be noted however, that in doing so, there is no longer a guarantee of 

optimality for the DLP. The implementation of heuristics to solve the LP and more 

specifically that of the DLP, becomes the focus of the proceeding section. First though, a 

discussion of gradient and simplex based direct methods is presented. 

A.2.1.3 Direct Methods 
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The implementation of direct solution methods has largely been motivated by the need to 

handle problems involving flexible modules (i.e. blocks that can change in size) and/or 

continuous layout representations. Up until now discussions have, for the most part, 

focused on solving QAP formulations of the problem. Direct solution methods, however, 

enable MIP, more specifically MILP formulations of the LP to be solved effectively. As 

such, most of the proceeding literature applies to MIP formulations of the problem.  

The effectiveness of said methods in solving dimensioning problems (i.e. flexible 

modules LP) was no better demonstrated than by Bhowmik’s use of an improved move 

limit method of sequential linear programming to solve the nonlinear programming 

building design optimization problem [30]. Others like Sutanthavibul and Shragowitz, 

more generally solved this same dimensioning LP, but while also simultaneously 

determining the optimal position of said flexible modules [155]. Their detailed SLP, 

formulated as a MIP and capturing layout continuity, layout boundary restrictions, 

flexible module characteristics, and module rotations, was first linearized forming a 

MILP. The then linear nature of their problem enabled them to implement LINDO, a 

commercial linear programming software, to solve their problem to optimality [150]. 

Much like that of Sutanthavibul and Shragowitz’s formulation, Barbosa-Póvoa et 

al. (2000, 2001) also solved the detailed SLP as a MILP with commercial linear 

programming software [20,21]. Their formulation differed slightly from Sutanthavibul 

and Shragowitz’s in that it did not encapsulate flexible module design. Instead they 

supplemented the formulation by considering irregular shaped rectangular departments 

and department I/O points. Furthermore, instead of using LINDO, Barbosa-Póvoa et al. 

relied on the CPLEX optimization package (v6.5) in conjunction with the Generic 
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Algebraic Modeling System to solve the problem [37]. Despite the added complexity of 

their formulation, they were able to solve an 11 department, 22 I/O point design to within 

5% margin of optimality in an acceptable duration of time, just over 11 minutes [20,21].  

Unlike those previously mentioned, Balakrishnan et al. (1992) sought to solve the 

QAP formulation of the DLP using a direct method. Furthermore, they were the first to 

address the often present constraint on financial resources available for rearrangement, by 

considering the budget constrained problem. Motivated additionally by the desire to 

compare the ability of network-based algorithms to efficiently solve said problem to that 

of DP, they proposed a simplex-based constrained shortest path (CSP) algorithm. Their 

algorithm proved to perform better than DP with heuristics implemented, except for when 

the problem size was small and/or tightly constrained. Furthermore, they identified that 

selection of candidate static layouts with a mix of best and random layouts provided 

solution results that were close to or even surpassed that of a purely best layout 

population of candidates [17]. 

Few others such as Zhan, Feng, and Sapatnekar have employed gradient based 

methods to solve the LP. Zhan et al. implemented a multistage (rough floorplanning and 

floorplan legalization stage) conjugate gradient method with reasonable success to solve 

the flexible module boundary constrained SLP [177]. Solution of the SLP via this method 

requires several challenges to be overcome in order to ensure proper convergence. For 

example, the initial condition has to be feasible, the solution quality is highly dependent 

of the initial condition, and constraints (e.g. the object boundaries) must be smooth to 

ensure proper convergence. Zhan et al. addressed these challenges by using bell shaped 
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functions to represent objects (overlap constraints) and a recursive method of evaluating 

several different initial layout conditions [177]. 

This concludes the survey of relevant research implementing direct methods to 

solve the LP. Next, the heuristics approaches to solving the LP is now discussed in detail. 

A.2.2 Heuristic Approaches 

As noted in Chapter 2, overcoming the limitations that accompany exact methods has 

been the principal purpose of implementing heuristics techniques to facilitate more 

effective solution of the LP. Of these, the ability to solve larger problems more 

effectively has by far been the most prominent motivator to their implementation in the 

past. As observed by Rosenblatt however, the implementation of heuristics to reduce the 

number of states that need be considered by DP or any other approach for that matter, 

results in a solution method that can no longer guarantee optimality [146]. Reducing the 

number of states is analogous to reducing the search space. By choosing to consider only 

a limited number of the possible layouts in each period, there is the possibility that the 

layout yielding the best collective layout plan could be left out from consideration. In the 

case of DP however, the computational time is exponentially a function of the number of 

states. Therefore, reducing the number of states by heuristics procedures can enable 

larger problems to become solvable. Without heuristics, only relatively small problems 

on the order of ten to fifteen departments are computationally tractable [146]. As such, 

researchers like Rosenblatt have had to weigh the tradeoff between guaranteed optimality 

and computational effectiveness.  
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 Like that of Rosenblatt, researchers have often favored computational 

effectiveness over that of guaranteed optimality. Rosenblatt’s heuristic, which is similar 

to that of Ballou’s procedure applied to the warehouse location problem [19], considers 

only the best t x n layouts as states for each period, or stage of DP. The best layouts are 

determined first by solving optimally the SLP for each period and then selecting the best 

n from each period, t. Any duplicate layouts (states) are discarded accordingly resulting 

in < t x n states that need be considered. This approach provided reasonably optimal 

results (within 1.2% of optimal), for the selection of just the best four layouts from each 

of the five periods for a total of 20 layout states for consideration in each stage (period) 

of the DP [146]. Rosenblatt’s success in implementing heuristics to solve the DLP 

inspired others like Urban to do the same. 

Urban proposed a steepest-descent pair-wise exchange heuristic, a multi-period, 

rearrangement cost considering equivalent to Buffa et. al.’s Computerized Relative 

Allocation of Facilities Technique (CRAFT), to solve the QAP/S formulated DLP [168]. 

CRAFT is a heuristic improvement algorithm that considers all pair-wise exchanges 

between each department location and every other one in the layout configuration for a, 

or several, supplied initial layouts [9]. Figure 71 demonstrates graphically the data 

dependencies of each period layout and these pair-wise exchanges that occur from one 

period to the next in a forward pass behavior. Urban’s heuristics avoided the 

computational overhead associated with DP approaches, like that implemented by 

Rosenblatt earlier, while performing better than said DP approaches and only slightly 

worse than optimal. 
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Figure 71 – Urban’s pair-wise exchange heuristic [168] 

Building on Urban’s research, Balakrishnan, Cheng, and Conway proposed two 

heuristic methods [14]. The first was an improved multi-pass pair-wise exchange 

heuristic. Urban’s heuristic is forward pass in nature. Once a layout for a period is 

established it never changes downstream. As they observed, the implication of this is the 

quality of later period layouts is strictly dependent upon its predecessors. This is 

obviously a significant disadvantage of Urban’s approach and Balakrishnan et al. (2000) 

understood this. To address this shortcoming, they implemented a backward pass pair-

wise exchange procedure after first solving the DLP by Urban’s heuristic to further 

improve the solution. Starting from period tmax-1 and continuing until period one is 

reached the process as demonstrated in Figure 72 is performed.  
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Figure 72 – Balakrishnan et al.'s (2000) backward pass pair-wise exchange 

procedure [14] 

With the backward pass operating on the layout plans generated from Urban’s forward 

pass heuristic, it is guaranteed that the backward pass will never produce a plan worse 

than that of the forward pass plan. 

 Balakrishnan et al.’s (2000) second method fused Urban’s heuristic with 

Rosenblatt’s DP procedure. The layouts generated for each of the m forecast windows 

(where m equals the number of periods, t, in the planning horizon) by Urban’s heuristic 

become the states in Rosenblatt’s DP procedure discussed earlier [14]. With Urban’s 

heuristic embedded in the DP, it is guaranteed to produce a solution at least as good as 

that in which Urban’s heuristic alone can provide. Furthermore, the overhead associated 

with using DP is not too substantial since the states that must be considered remains 

reasonable (at most t2). For a series of problems, both of Balakrishnan et al.’s approaches 

implementing heuristics, to solve the QAP/S formulated DLP demonstrated improved 

results over that of Urban’s approach alone. Included was a problem of thirty departments 

and ten periods, a respectable sized problem [14]. 
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 Erel, Ghosh, and Simon later proposed a novel heuristic scheme based on the idea 

of viable layouts to solve the QAP/S formulated DLP introduced by Rosenblatt nearly a 

decade earlier [67]. Much like that of those before, Erel et al.’s approach arrives at the 

best layout plan by implicitly enumerating over a subset of the possible layouts. Erel et 

al. observed that the DLP could be regarded as a shortest path problem on a multi-stage 

(each planning period), directed, acyclic network with costs on both nodes (all possible 

layouts) and arcs (moves between one period to the next). Leveraging this, Erel et al. 

proposed converting the DLP into a shortest path problem before then using a DP 

procedure to solve it. Furthermore, they proposed a new heuristic that relied on weighted 

flow data from each period to generate viable layouts to constitute the states for the DP 

procedure. Their implementation of heuristics in conjunction with DP proved a viable 

one, demonstrating results that were computationally competitive to other solution 

methods found in the literature at the time. Erel et al. also acknowledged that the shortest 

path problem could be solved by network programming if desired. 

 Balakrishnan and Cheng more recently extended the work of Balakrishnan et al.’s 

(2003) by addressing the DLP with rolling planning horizons and under uncertainty [16]. 

Prior, only fixed planning horizons, which are not representative of how companies 

actually plan, had been considered. Balakrishnan and Cheng observed no significant 

difference between using a five versus a ten-period planning horizon. They in turn 

concluded that when the acquisition of additional data is too costly or too difficult it may 

be more beneficial to implement just a five-period planning horizon. It was also 

discovered that algorithms with self-adjusting capabilities performed best when rolling 

horizons were considered. This is not a characteristic that DP poses, making it a less than 
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ideal solution method for such problems.  Furthermore, it was observed that forecast 

uncertainty does not significantly affect the performance of heuristic/DP-based 

algorithms developed without consideration of uncertainty. In some cases, this impact 

was even observed to have been beneficial to their performance. This outcome is an 

important one to note as it indicates that an algorithm applied to the non-stochastic DLP 

may remain effective should it be applied to the DLP under uncertainty. 

One of the few researchers to have applied heuristics to the MIP formulation of 

the DLP has been Yang and Peters [173]. Yang and Peters sought to address the flexible 

LP, a problem that differs from that of a DLP in that the periods forming the planning 

horizon are not apriori defined. Instead, the period lengths are chosen by the solution 

procedure to be such that the total costs are minimized. The heuristic balances the trade 

between increasing the planning window time thereby reducing rearrangement costs and 

increasing MHCs that are a result of a less efficient layout. As observed by Lacksonen 

and Enscore and stated before, the requirement to formulate the problem as a DLP is 

driven by the need to balance these two attributes [104]. The relationship between these 

two attributes is demonstrated in Figure 73 and is verified by experimental data collected 

by Afentakis, Millen, and Solomon [6]. The longer the duration between rearrangement 

occurs, the higher the MHC becomes as a result of the layout become far less suited (i.e. 

effective) for the changing conditions.  
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Figure 73 – Correlation between number of rearrangements and MHCs [173] 

The implementation of this heuristic significantly improves the computational 

efficiency of the solution procedure as it effectively reduces the dimensionality of the 

overarching problem by reducing the number of layout plans that need be considered. To 

illustrate this point, consider the scenario where the heuristic identifies that the layout can 

be maintained for two additional periods following the first for a five-period problem. In 

this case, the heuristic reduces the DLP to one of just three planning windows with one 

being three periods in length. A DP procedure, if chosen to solve the problem, would then 

have to solve a problem with just three stages as opposed to five. From earlier discussion, 

it is understood that this would provide substantial computational time savings. To solve 

their problem, Yang and Peters adapted their previously developed adjacency 

graph/integer program formulation instead of using DP [104,136]. Their approach 

implemented a structured hexagonal adjacency graph adopted from the Spiral Procedure 

proposed by Goetschalckx [79]. Next, a review of the literature pertaining to the 

application of metaheuristic approaches is presented.  

A.2.3 Metaheuristic Approaches 
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Of the metaheuristics implemented in the literature, simulated annealing (SA) and genetic 

algorithms (GA) are the two most prominent methods of solution to the LP. As such a 

comprehensive review of these approaches are presented here. First a review of the 

simulated annealing algorithm and the literature pertaining to the application of simulated 

annealing to the solution of the layout problem is presented.  

A.2.4 Simulated Annealing 

A.2.4.1 Fundamental Premise of the Algorithm 

The simulated annealing algorithm is based on two fundamental outcomes of statistical 

mechanics. These observed outcomes are as follows [59]: 

1. When the thermodynamic balance is achieved at a given temperature, T, in the 

physical system, the distribution of the energy states becomes a Boltzmann 

distribution at this temperature. 

2. As absolute zero temperature is approached, the physical system approaches 

its minimum energy configuration. 

A.2.4.1.1 The Metropolis Algorithm 

The algorithm emulates the first of these outcomes through the implementation of the 

Metropolis algorithm [122]. At each iteration the Metropolis algorithm produces a 

sequence of solely predecessor-dependent configurations (i.e. a Markov chain) that 

approach the system’s thermodynamic balance at the current temperature, T, being 

considered. Applied to the LP, this is analogous to the generation of a sequence of 
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layouts or layout plans that approach a Boltzmann distribution of the layouts or layout 

plans for that temperature [59]. From here forth, anytime that configuration appears it can 

be understood as being analogous to stating layout or layout plan. 

 The Metropolis algorithm achieves this sequence using a probabilistic hill-

climbing technique, which enables it to escape from regions of local optima by accepting 

neighboring solutions (S’), inferior or superior, with the following probability: 

𝑃{𝑆 → 𝑆′} =  {
1

𝑒−∆𝑄/𝑇
if ∆Q ≤ 0
if ∆Q > 0

(downhill move)

(uphill move)
 

where Q is the objective function that defines a configuration’s quality, ΔQ the difference 

between the neighboring configuration and the current configuration’s (i.e. neighbors 

predecessor) quality, and T the current temperature [170]. The sequence is constructed 

through the repeated perturbation of the predecessor configuration and subsequent 

observation of this Metropolis rule of acceptance [59]. 

According to this rule of acceptance, any neighbor configuration that is of 

superior quality to the current configuration (i.e a downhill move) is accepted. The rule 

also establishes that the probability of accepting a neighbor configuration of inferior 

quality (i.e. an uphill move) is non-zero and instead a function of both the current 

annealing temperature, T, and the quality degradation, ΔQ, that would result from such a 

move.  

The rule’s dependency on quality degradation is as follows. For a neighbor 

configuration yielding a large degradation in quality, the probability of its acceptance is 

diminished. This bears a strong resemblance to the philosophy of natural selection where 
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a less inferior configuration would have a better chance at reproducing offspring than 

would a more inferior one.  

Its temperature dependency on the other hand is as follows. A high temperature 

would yield a probability of accepting an inferior configuration close to unity. As such, 

the algorithm would then accept the majority of moves with only a marginal bias towards 

accepting superior configurations. Under this temperature condition, the algorithm 

randomly walks through the configuration space, therefore encouraging exploration. On 

the contrary, a low temperature produces a near zero probability of accepting an inferior 

configuration. Under this temperature condition, the algorithm discourages exploration 

and instead encourages the continual improvement of the configuration’s quality. At 

intermediate temperatures, the algorithm alternates between exploring the space and 

refining the configuration allowing for the algorithm to identify and escape regions of 

local optima effectively. From this discussion, it can be understood that the evolution of 

the temperature will contribute significantly to how effective the algorithm is at searching 

the configuration space for the global optimum. 

A.2.4.1.2 The Role of the Annealing Schedule 

The second of these statistical mechanic outcomes is emulated through the 

implementation of an annealing schedule, which also addresses how the aforementioned 

temperature should evolve. The annealing schedule, or temperature control scheme, 

provides convergence towards the global optimum configuration by adjusting the 

temperature intelligently as the algorithm proceeds. The search time required for this 
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convergence and furthermore its accuracy are direct byproducts of how the annealing 

schedule is constructed. 

A.2.4.2 Annealing Schedules 

A.2.4.2.1 The Classical Annealing Schedule 

The initial formulation of the SA algorithm incorporated the classical annealing schedule, 

which applies a linear temperature reduction scheme. In its basic form, the annealing 

temperature evolves according to the following relationship:  𝑇𝑖 = 𝜆𝑇𝑖−1 where 𝜆 is a 

fixed ratio (always less than unity to ensure a monotonically decreasing temperature) and 

is often recommended by the literature to be set to a value of 0.85 [170]. For the initial 

temperature, 𝑇0, it is set according to the following relationship: 𝑇0 = ∆𝑈𝐻𝑎𝑣𝑔 ln 𝑃⁄  

where ∆𝑈𝐻𝑎𝑣𝑔 is the average uphill quality change for the initial series of uphill 

configuration moves and 𝑃 is the initial probability of accepting inferior configurations, 

which is chosen to be a value close to unity, but certainly not unity [34]. 

The larger the fixed ratio is, the longer the annealing process will take. This 

presents a dilemma. On the one hand, a longer annealing process will often produce more 

accuracy convergence results as it has more time at higher temperatures to explore the 

space and avoid becoming trapped in a local optima region as discussed earlier. On the 

other hand, a longer annealing process is analogous to a longer running time before 

convergence. The excessive convergence times produced by the classical annealing 

schedule is its major drawback and why researchers have since sought annealing 

schedules that improve the SA algorithms overall effectiveness [170]. Two of the more 
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proponent schedules proposed in the literature for controlling the temperature include the 

TimberWolf SA algorithm and the Fast-SA algorithm. 

A.2.4.2.2 TimberWolf SA Algorithm 

Sechen and Sangiovanni-Vincentelli improved upon the classical approach with his 

TimberWolf SA algorithm, which implements a non-linear version of the classical 

annealing scheme [151]. They generalized the aforementioned relationship to 𝑇𝑖 =

𝜆𝑖𝑇𝑖−1, allowing the ratio defining the rate of temperature reduction to be dynamically 

altered as the algorithm proceeds towards convergence. By increasing this ratio from its 

lowest value of 0.8 to its highest value of around 0.95 when the objective function was 

decreasing most rapidly before then progressively returning it to its lowest value, Sechen 

and Sangiovanni-Vincentelli were able to achieve substantial improvements in both 

convergence speed and accuracy [151]. This scheme effectively reduces convergence 

times, yet maintains accuracy by reducing the time spent at the extremes of the 

temperature range (high and low), and instead spending more time in the intermediate 

temperatures where there is a favorable balance between both exploring the space and 

improving the configuration. The success and robustness of this scheme have made it one 

of the more popular annealing schedules implemented in the general application of SA to 

the solution of combinatorial optimization problems. 

A.2.4.2.3 Fast-SA Algorithm 

More recently, Chen and Chang proposed a Fast-SA scheme (FSA) that has three 

annealing stages to further improve the convergence performance of SA. Their scheme 

was originally developed while attempting to solve the QAP-B*Tree formulated LP more 
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efficiently by reducing the number of accepted uphill moves in the early stages. The three 

stages of their scheme are as follows [47]: 

1. An initial high-temperature random search stage  

2. An intermediate pseudogreedy local-search stage 

3. A concluding hill-climbing search stage 

The first stage of their algorithm sets the temperature to a large value as to avoid 

the algorithm from becoming trapped in a local optima region [47]. This allows it to 

perform a random search of the configuration space to more effectively discover the 

global optimum. In the second stage, the temperature is allowed to approach zero so as to 

perform a pseudogreedy local-search of the configuration space [47]. By accepting 

increasingly fewer inferior configurations it promotes the improvement of the 

configuration towards that of the global optimum. In the third and final stage, the 

temperature is abruptly increased then gradually reduced until convergence. It has already 

been well-established that at higher temperatures the algorithm is more capable of 

exploration as it will accept more inferior configurations. As such, the goal of this abrupt 

temperature rise is to facilitate the search for better configurations. With the initial stages 

reducing the number of iterations to explore the configuration space, more time can be 

sent in this third and final stage to help improve convergence accuracy while also 

reducing convergence times [47]. To capture this three-stage scheme, Chen and Chang 

defined the annealing schedule as follows: 
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𝑇𝑛 =  

{
 
 

 
 

   

∆𝑈𝐻𝑎𝑣𝑔

ln 𝑃
  𝑛 = 1        

𝑇1〈∆𝑎𝑣𝑔〉

𝑛𝑐
2 ≤ 𝑛 ≤ 𝑘

𝑇1〈∆𝑎𝑣𝑔〉

𝑛
𝑛 > 𝑘        

 

where 𝑛 is the number of iterations, ∆𝑈𝐻𝑎𝑣𝑔 and 𝑃 (the latter set as 0.9 in Chen and 

Chang’s study) are defined identically to before, 𝑇1 is the initial temperature, 〈∆𝑎𝑣𝑔〉 is 

the normalized average quality change for the current temperature, and 𝑐 and 𝑘 are user-

specified parameters.  

The first iteration (𝑛 = 1) makes up the first stage, which is none other than the 

classical and TimberWolf SA method of defining the initial temperature. The second 

stage follows and proceeds until the 𝑘th iteration (2 ≤ 𝑛 ≤ 𝑘). The function of 𝑐 is to 

control how low the temperature is during this stage. Since a temperature that approaches 

zero is desired, for reasons stated before, its value should be chosen to be large (a value 

of 100 was used in their research). The duration of this stage is dictated by the users 

choice of 𝑘. Its value is directly proportional to the problem size and therefore can be 

determined accordingly. The smaller the problem size is, the smaller the 𝑘 value can be, 

such that it doesn’t impact the algorithm effectiveness. In Chen and Chang’s application 

of the algorithm to the LP, they set 𝑘 = 7 with great success for problem sizes ranging 

from 100 to 300 blocks [47].  

Upon completion of the second stage, the temperature jumps up as the 

temperature control parameter, 𝑐 is dropped from the temperature updating function. In 

the last two stages the 〈∆𝑎𝑣𝑔〉 acts as the temperature reduction ratio. When this average 
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change is significant, the ratio becomes larger and the temperature reduces at a slower 

rate. On the contrary, when the average change is smaller the ratio is reduced and the 

temperature reduction accelerated. This is a favorable behavior as it enables more time to 

be spent during periods of large improvement and less time during those with little. 

 Since Chen and Chang’s introduction of FSA, it has become a particularly 

popular choice by researchers solving the QAP formulated LP, due in large part to its 

frequently observed improved performance over the classical and TimberWolf SA 

algorithms in solving said problem. Although its original application was in association 

with the QAP-B*Tree formulation of the LP, it has since been applied to other 

formulations of the LP and other COPs in general with great success. 

A.2.4.3 Perturbation Schemes for Generating Neighboring Configurations 

In addition to the cooling schedule, the heuristic rules implemented to generate 

neighboring configurations also play an important role in the algorithms effectiveness in 

discovering the global optimum configuration. The heuristics implemented vary slightly 

and according to the underlying model structure and problem formulation.  

All perturbation schemes implemented by researchers in the literature include 

swapping of some form. Swapping refers to the act of interchanging the position of any 

two blocks. In a structured formulation, the cells in which blocks appear are swapped 

whereas in the more generic unstructured formulation, the position in which the two 

blocks appear in the representation sequence are swapped. Two of the more relevant 

implementations in the literature that demonstrate the latter are Chen and Chang’s and 

Tang’s applications of SA to the SLP [47,159]. Chen and Chang’s QAP-B*Tree 
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formulation implemented a swapping procedure that involved node swaps of two 

randomly selected nodes in the representation. Tang’s QAP/U-SP formulation 

implemented a similar swapping procedure for the SP structure that first required one of 

the sequences in the pair to be selected with equal probability, before a block was then 

randomly selected and it and an adjacent block swapped. As observed, the heuristics are 

much the same, but the procedures differ slightly as a result of the underlying model 

structure. Both performed this swapping procedure with a predefined fixed probability for 

swapping two selected blocks whose selections were performed without bias (i.e. each 

block had an equal probability of selection). 

To further facilitate perturbation of the configuration, both also implemented a 

rotation procedure. Rotations are unique to unstructured layout formulations involving 

non-square blocks and/or I/O point present designs. The relevance of rotation in the 

former case is easy to understand by inversion. Rotating a square does not result in a 

spatial change in the layout as all sides are equal. As such, the centroid will remain in the 

same position and all other blocks present uninfluenced. In the case of a non-square 

block, this no longer holds true. The latter’s relevance can be understood by recognizing 

that when an I/O point is present each rotated position, regardless of whether it is square 

or not, will result in a unique I/O point position and therefore MHC value. Both Tang and 

Chen and Chang sought to handle VLSI designs with non-square blocks present, 

therefore rotation procedures were also required for complete optimization of their 

respective problems [47,159]. Rotation for both involved randomly selecting a block, and 

in the case of Tang’s formulation selecting an unconstrained block, for rotation and then 
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rotating said block with a predefined fixed probability. Tang also established that the 

probability of swap should be greater than that of rotation [159]. 

Handling a DLP problem requires the above procedures to be extended to 

encapsulate the now multi-period nature of the problem. Baykasoglu and Gindy, being 

the first to adapt SA to the DLP, established the standard swapping procedure for the 

QAP/S formulation of the DLP. They proposed a random descent pairwise exchange 

swapping procedure. In this procedure, an unbiased period selection forgoes the then 

unbiased random selection of two blocks for a predefined fixed probability of swap [23]. 

Sahin et. al. also implemented such a perturbation scheme for the budget constrained 

problem [148].  

McKendall, Shang, and Kuppusamy proposed a more complex derivative of this 

perturbation scheme that implemented a look-ahead/look-back strategy. In the scenario 

that the neighbor configuration is accepted by the algorithm, the procedure then proceeds 

to consider accepting the same block swap in preceding and succeeding periods (t-1 and 

t+1), once more according to the metropolis rule of acceptance. For each swap that is 

accepted the process continues backward or forward in time respectively until either a 

swap is not accepted or the first or last period is reached [121].  

Their perturbation scheme demonstrated best in class performance for the 

literature’s standard 48 test problems at the time, consistently outperforming SAs 

implementing the basic scheme noted before. Furthermore, they observed that the 

improved convergence properties did not come at a computational cost. The reduced 

randomness of their heuristic enabled it to outperform the basic heuristic perturbation 
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scheme while requiring the same or less computational time despite the added 

computational overhead associated with the additional interchange evaluations required 

at each iteration by the look-ahead/look-back procedure. The superior performance of 

McKendall et al. perturbation scheme for the DLP formulated as a QAP and relative ease 

of implementation makes it an attractive option for future implementation in this 

dissertation. 

Due to the increasing difficulty of solution, little research has applied SA to the 

QAP/U DLP problem and less so to the MIP DLP problem. The former can be relatively 

easily handled by fusing the work of Tang and Chen and Chang discussed earlier with 

that of the more recently discussed work performed by McKendall et al. to capture both 

the unstructured and dynamic nature of the problem. The latter on the other hand requires 

a fresh set of heuristics to handle the continuous nature of the layout. Dong et al. have 

been one of a few to tackle the development of the necessary heuristics required to solve 

such a MIP DLP problem. They proposed a free-space searching rule that identifies space 

available for machine placement by searching the space from the top-left to the bottom-

right corner according to fixed step lengths no larger than the machine edge length. 

Furthermore, they implemented machine adding and removal heuristics to address new 

asset integration scenarios [57]. Their procedure proved to be a viable approach to 

solving the MIP DLP problem. With few researchers having studied the MIP DLP 

problem in the literature, this gap is one the current research intends to address and 

further explore. 

A.2.4.4 Applications of Simulated Annealing to the LP 
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Having since developed a thorough understanding of the simulated annealing algorithm, 

the role that the annealing schedule and perturbation scheme have in the optimization 

process, and furthermore the various forms of these implemented in the literature, a 

survey of the more notable applications of SA to the LP will be presented. On the static 

side of the problem, Tang used a SA approach implementing a classical annealing 

schedule to solve the VLSI problem formulated as a QAP/U-SP. Although using the less 

effective classical annealing schedule, Tang achieved acceptable convergence for a 

boundary constrained problem size of 49 blocks with range fixed blocks in under 30 

seconds [159]. Chen and Chang similarly solved the VLSI problem formulated as a 

QAP/U, but with a B*Tree representation and in the absence of fixed blocks. They 

introduced the Fast-SA algorithm to solve the VLSI problem with great success, 

demonstrating the superior performance of the Fast-SA algorithm over existing annealing 

schedules [47].  

As noted earlier, Baykasoglu and Gindy were the first to adapt SA to the DLP. 

They adopted a variant of the TimberWolf’s annealing schedule that employed Bennage 

and Dhingra’s definition for the cooling rate [28]. Like the TimberWolf annealing 

schedule, the cooling rate as defined by Bennage and Dhingra changes as the 

optimization progresses. The major difference is that theirs does so dynamically 

according to the final acceptance probability after each iteration. In other words, the more 

neighboring configurations that are accepted after each iteration, the higher the final 

acceptance probability will be. At the time, Baykasoglu and Gindy’s work based on 

Lacksonen and Enscore’s formulation of the non-budget constrained LP [106] was best in 
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class, outperforming both Rosenblatt’s DP and Conway’s GA methods for the literature’s 

benchmark 48 DLP test problems [23].  

Later McKendall et al. employed the same annealing schedule, but with updated 

perturbation heuristics. These updated perturbation heuristics enabled them to achieve 

best solutions for 35 of the 48 DLP test problems, 12 more than the next best heuristic 

solution method at the time (2006). It outperformed, in terms of solution quality, the likes 

of Baykasoglu and Gindy’s SA and Erel et al.’s DP methods as well as the hybrid GA 

and hybrid ACO methods used by Balakrishnan et al. (2003) and McKendall and Shang 

respectively [121].  

Sahin et. al extended the Lacksonen and Enscore formulated DLP to encapsulate 

budget constraints thereby matching Baykasoglu et al.’s formulation of the same problem 

[148]. Being one of only a few to have addressed the budget constrained DLP and after 

consistently outperforming Bayaksoglu et al.’s ACO solution method for the same 

problem, it remains best in class in solving the 48 DLP test problems under budget 

constraints. As such, their method will become the QAP formulated baseline for the 

current research.  

Dong et al. extended the DLP, however in a different capacity from Sahin et al. 

and Bayaksoglu et al. Instead of incorporating budget constraints, they addressed two 

additional gaps in the literature. They first addressed the absence of machine 

addition/removal in each period, thereby accounting for scenarios of asset expansion or 

downsizing. Furthermore, they addressed solving the DLP as a MIP. This in turn enabled 

them to evaluate continuous layout representations. Both these characteristics furthered 
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the complexity of the DLP significantly, requiring them to develop advanced heuristics 

for perturbing the layout configuration. Converting the problem into a shortest path 

problem and then solving it with an auction algorithm internal to the SA algorithm 

allowed them to achieve reasonable results for the non-budget constrained MIP DLP 

[57]. Dong et al.’s research concludes those applications of SA to the LP that are of most 

relevance to the problem being addressed in this research. This concludes the discussion 

of applications of SA to the LP. Next, a review of the genetic algorithm and the literature 

pertaining to its application to the solution of the layout problem is presented. 

A.2.5 Genetic Algorithm 

A.2.5.1 Fundamental Premise of the Algorithm 

To solve optimization problems, genetic algorithms evolve a population of individuals 

belonging to the problem’s search space. Evolution of the individuals in the population 

emulates Darwin’s principle of natural selection. In other words, individuals in the 

population that are of superior fitness have a better chance of being selected for 

reproduction of offspring individuals or of surviving to become a member of the next 

generation’s population. This process of evolution is simulated as successive iterations, 

called generations, until a termination, or convergence, criterion is met. If evolution of 

the population is performed effectively the algorithm will arrive at the fittest (i.e. best) 

individual in the problem’s search space. 

 To facilitate the evolution of the population from one generation to the next, a 

series of genetic operations are performed on the individuals of the population. 

Individuals that these genetic operators are performed on are referred to as parents and 
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individuals produced as a byproduct are referred to as its/their offspring. As operations 

are applied, resulting offspring can potentially become parents of the next operation. This 

process constitutes the procedure, often referred to as genetic reproduction, for 

facilitating the evolution of the population by the algorithm. The genetic algorithm as a 

whole can be decomposed into three phases. The phases composing the GA are as 

follows: 

Basic Stages of a Genetic Algorithm 

1. Population Initialization 

2. Genetic Reproduction (Genetic Operators) 

a. Selection Operator 

b. Variation Operator 

i. Crossover 

ii. Mutation 

3. Termination 



 467 

 

Figure 74 – Notional genetic algorithm [58] 

The middle phase of the algorithm constitutes the evolutionary process. In 

conjunction with the termination phase they comprise what is often referred to as the 

generational loop. This loop applies the genetic operators to the population in an iterative 

process, where each iteration establishes a new evolutionary generation, until a desired 

termination criterion is met. Figure 74 graphically demonstrates the algorithms structure 

including the generational loop, which is represented by all that falls within the dotted 

rectangle [58]. 

A.2.5.1.1 The Importance of the Data Structure Representing an Individual 

Before the above described procedure can be performed to solve the problem, the data 

structure representing an individual in the population, or also referred to as encoding 

must be defined intelligently.  Conway and Venkataramanan stressed the importance of 

establishing this encoding by stating that “the data structure chosen to represent the 

population member (i.e. individual) is essential for effective convergence of the method” 
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[48]. Furthermore, the encoding of the individual closely dictates how the variation 

operators modify an individual of the population [58]. As such, selection of the encoding 

often precedes defining the variation operations methods of alteration. 

Encoding of an individual usually takes the form of either a binary string or vector 

of integers or real numbers. A binary string representation is the popular choice as it 

provides the maximum number of schemata per bit [137]. The choice of researchers 

solving the LP is often the vector representation however, as it is most compatible with 

the format of the data that must be represented. In solving the QAP formulation of the 

LP, a vector of integers is often implemented, with each bit of the vector representing the 

placement in the layout and the integer value assigned to it the object placed there. With a 

QAP/U formulation of the LP where rotations of the object may need to be accounted for, 

additional bits representing the rotational representation of the objects are included. 

When handling the MIP formulation of the LP, the vector may become a mixture of 

integers and real numbers, where the integer bits may correspond to rotational 

representations and the real numbers, the continuous positions of the objects in the 

layout. Observing how the underlying problem modeling impacts the encoding, a better 

understanding of the prior stated variation operators’ dependency on the encoding 

structure can be established. 

A.2.5.1.2 Phase I: Population Initialization 

Initialization of the population is also essential to effective convergence by the GA. 

When little is known of the problem, the initial population is often formed by randomly 

generated individuals [137]. Diversity of the population is an important quality and the 
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random generation method inherently excels at this. In evaluating the impact that 

population diversity has on the performance of GA, Diaz-Gomez and Hougen have 

observed that the major drawback of this approach is that when most of the solutions fall 

in the neighborhood of a local optimum the GA will become trapped in this region. As 

such, they declared that diversity alone is not enough, but rather a healthy or “good” 

diversity in the search space is essential to avoid poor performance by the GA [56].  

 Diversity in the initial population is not the sole attribute of importance. In fact, 

too much diversity can lead to excessive run times by the GA. Individual viability and 

global optimality are also essential attributes to consider. With a purely random 

generation method being less than effective at ensuring these, many researchers have 

sought to employ a priori knowledge of the problem to generate an initial population. The 

major limitation of this approach is that the necessary knowledge of the problem must 

first be known, but in the presence of said knowledge the benefit of leveraging it to 

generate a well-formed initial population can be substantial. As has been observed, 

convergence is often faster for populations generated by this method due to the GA being 

supplied with a better formed initial population [137]. Care must be taken in ensuring that 

this population does not become too diversity-deprived by generating a population that is 

dominated by a particular region of the search space. 

Some researchers have implemented a hybrid approach that combines these two 

methods in an attempt to further improve the performance of the GA. Leveraging the 

random methods superior diversity property and the improved viability/global optimality 

properties of the knowledge-based methods, some researchers have diverged from the 

conventional single population GA in favor of a multi-population one. This approach 
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both initializes with multiple populations and also evolves each of these sub-populations 

independently making the GA more capable of exploring far reaching solutions in the 

search space [46]. The effectiveness of this approach over other methods was proven by 

Toledo, Ribeiro de Oliveira, and Franca while implementing such a hybrid multi-

population GA to solve sets of hard and large lot sizing problems with backlogging [162]. 

Despite its notable advantages (superior solution quality and convergence times), few, 

with the exception of Pourvaziri and Naderi, have applied a hybrid multi-population to 

the DLP [140]. A contributing reason for this scarcity of application to the problem can 

be acknowledged as being the result of the concepts relatively short history, being 

introduced only recently. 

A.2.5.1.3 Phase 2: Genetic Reproduction (Genetic Operations) 

Evolution of the population from its initial state by the application of genetic operations 

plays a significant role in the GA’s effectiveness in solving the problem. To facilitate this 

evolution, selection and variation operators establish how this evolution will proceed and 

therefore directly impact the GA’s ability to converge on the global optimum and do so 

efficiently. 

A.2.5.1.3.1 Selection Operators 

The primary functions of selection operators are to establish the individuals for 

reproduction and survival [58]. The former function, more commonly referred to as just 

selection, determines which individuals in the population will reproduce and how 

frequently. The latter function, defined as simply replacement, regulates the population 
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size from generation to generation by determining which individuals will become 

members of the next generation [58].  

 Selection operations (selection or replacement) are generally driven by the fitness 

of an individual relative to all others in the population. As such, an individual’s tendency 

of being chosen for reproduction or survival is dependent on its relative fitness to the 

remainder of the population. How this tendency is determined depends on the selection 

operation technique implemented. Three common selection techniques implemented in 

the literature are proportionate (roulette wheel selection and stochastic universal sampling 

methods), tournament (deterministic and stochastic), and truncation selection with the 

latter also being capable of acting as a replacement technique. Replacement techniques 

include, generational, truncation, and steady state replacement. Elitism also often falls 

under this category as it functions in a selective manner. Many elitism strategies exist, 

where the common practice among them is to copy a desired amount of most fit 

individuals to the next generation. If desired, one may refer to the appendix for a 

discussion summarizing the various types of selection and replacement techniques 

generically employed in the literature. 

A.2.5.1.3.2 Variation Operators 

The function of variation operators is to promote effective evolution by transforming the 

individuals of the population such that the search space is sufficiently explored and areas 

of optimality are thoroughly exploited. In their absence, the population would converge 

to a population of identical individuals of just that of the best individual present in the 

initially supplied population. To facilitate transformation in an attempt to more 
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thoroughly search the space for better individuals, variation operators that are classified 

as either crossover or mutation operators are implemented.  

Crossover operators emulate the biological process of reproduction by generating 

one or multiple offspring through a combination of two or several parents chosen by the 

earlier described selection operations. The offspring generated inherit partial 

characteristics from each parent involved. Mutation operators encourage diversity in the 

population as these operators modify an individual to form another that is often within its 

proximity [58]. Mutation can considerably improve the quality of individuals discovered 

compared to crossover when in the vicinity of the optimum. Furthermore, its preservation 

of diversity enables it to stave off the negative effects that both a strong selection 

pressure and genetic drift can have. Establishing an effective mutation rate is essential as 

too high a rate can lead to an evolution that is no more guided than a random walk of the 

space. In the opposite extreme, too little diversity in the population can greatly reduce the 

chances of sufficiently searching the design space and accurately identifying the global 

optimum. 

As noted before, the method of variation implemented is dependent on the 

encoding structure of the individuals in the population. For binary or integer vectors there 

exists three crossover techniques. These include, single point, two points, and uniform 

crossover. On the mutation front, bits of the string are modified randomly with a low 

probability on the order of 0.01 to 0.1 per individual [58]. Commonly implemented 

mutation techniques include deterministic or bit-flip mutation. When handling real 

vectors, the techniques become more involved. In the general sense the binary crossovers 

above can be extended by exchanging the real components of the parents involved. These 
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are often referred to as discrete recombination methods. The limitation of this would be 

that the domains of both those exchanged would need to be the same, if not the unit value 

in each domain could be exchanged instead. Additional crossover techniques include 

voluminal BLX-α and linear BLX-α (also referred to arithmetic crossover or intermediary 

recombination). Mutation approaches include uniform, Gaussian, Gaussian and the 1/5 

rule, and self-adaptive Gaussian mutation with the latter being the preferred method [58]. 

Ordinal representations (integer vectors), much like that in which would be observed 

while handling the QAP/U-SP formulation of the problem, implement methods of 

crossover and mutation similar to the binary representation procedures, but with the 

added requirement of sequence uniqueness. Ensuring that a vector sequence is feasible is 

an important task as will be discussed later in this dissertation 

A.2.5.1.4 Phase 3: Termination 

Termination of the GA simply involves identifying when the GA has converged 

sufficiently close to the expected optimum value. Many methods have been implemented 

in the literature to establish convergence.  

A.2.5.2 Genetic Reproduction Methods Applied in the Literature 

Several genetic reproduction methods have been applied to facilitate the solution of the 

LP by GA. For the most part the majority of these reproduction methods implement both 

crossover and mutation variation operators to promote the effective evolution of the 

population and in turn the convergence of the algorithm towards the global optimum 

solution for the LP being studied. As will be observed, with time these methods have 

themselves improved, becoming more effective at evolving the population. 
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 Conway and Venkataramanan, being the first to adapt GA to the QAP/S 

formulated DLP, set the standard for evolving the population. Conway and 

Venkataramanan implemented a genetic reproduction scheme employing crossover as the 

primary variation operator. To select individuals to perform crossover on, roulette wheel 

proportionate selection was implemented. Once individuals were selected, a splicing 

position was randomly chosen and the string split. Substrings to the right of the splice 

point were then swapped. If the split occurred in the middle of a period layout, then the 

stronger of the two strings was retained with the weaker string filling in the unassigned 

bits of the string such that layout feasibility remained unviolated. Mutation was also 

implemented, but in a rather limited capacity. For every so many cross-breedings one of 

the parents was slightly altered before breeding occurred. Furthermore, Conway and 

Venkataramanan implemented elitism by allowing for the most fit individual, or as they 

called it the queen bee, of the population to survive into the next generation [48].  

 Balakrishnan and Cheng’s approach to reproduction sought to increase search 

space exploration and population diversity. To increase search space exploration 

Balakrishnan and Cheng implemented a point-to-point crossover technique. After 

randomly selecting two individuals in the population to become parents, 2(nt-1) offspring 

are generated by interchanging the departments in the parents position by position in a 

successive compounding manner until the last position in the vector is reached. Here n 

defines the number of departments and t the number of periods. After eliminating all 

illegal offspring (those that have duplicate departments in the same period), the best 

viable child is then selected to replace the worst parent in the population. To improve 

diversity, mutation of this best cross-bred child is performed with a low probability. A 



 475 

random selection of the period and two departments for interchange encompass their 

method of mutation. To further facilitate diversity in the population, a replacement 

scheme that periodically replaces the least fit individuals in the population with randomly 

created new individuals before proceeding onto the next generation is implemented [13]. 

 Balakrishnan, Cheng, Conway, and Lau proposed a reproduction scheme for the 

QAP/S LP that infused heuristics and DP to facilitate improved evolutionary properties. 

In Balakrishnan et al.’s (2003) implementation, tournament selection was employed to 

first select s individuals from the population to become members of a crossover parent 

pool. They observed that an s equal to ten was sufficient for effective performance. After 

selection, each individual’s string was then cut at the period joints into P (# of periods) 

parts (i.e. layouts) and any duplicates were discarded. After collecting all the unique 

parts, DP was implemented to generate the best combination from these parts, the result 

becoming the offspring of the crossbreeding. To promote diversity, the offspring was 

mutated according to a random Bernoulli test and with a low probability. To mutate the 

offspring, Computerized Relative Allocation of Facilities Technique (CRAFT) was used 

to heuristically improve a randomly chosen period of the offspring by performing pair-

wise exchanges of the department locations. The replacement technique implemented by 

Balakrishnan et al. (2003) considered uniqueness by only replacing the weakest parent in 

the parent pool with offspring if it were to be a unique individual in the parent pool [15]. 

 Much like that of Conway and Venkataramanan, Ripon et al. employed a single 

point crossover method and furthermore a mutation technique resembling that of 

Balakrishnan and Cheng’s implementation. In addition to these two variation operations, 

Ripon et al introduced the concept of jumping genes to the solution of the QAP/S DLP 
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[143]. Emulating the biological occurrence observed in chromosomes by Nobel Laureate 

Barbara McClintock and first proposed as another variation operator of GAs by Man et 

al. [119,117], this operator employs cut and paste and copy and paste transposition 

operations to enable the population to evolve more effectively. To apply these operations, 

two individuals in the population are first selected randomly along with which of the 

transposition operations will be applied. Additionally, the selection of the individuals is 

not limited to two unique individuals, the same individual can be chosen twice. In the 

latter case, the operations are simplified given they are applied to just one individual as 

depicted in Figure 75. Figure 75 depicts the general process involved depending on which 

of the operations is chosen [143]. 
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Figure 75 – Jumping gene transpositions [143] 

Pourvaziri and Naderi proposed a novel crossover method that generates only 

feasible offspring. Their method has the significant advantage of no longer needing to 

perform a check of feasibility, as has always been required by those before. To achieve 

this, first two individuals and a cross point for each period are randomly selected. Then at 

each of these cross points the sequence preceding the cross point are copied from the first 

parent to the offspring. Then the remaining bits in the offspring are assigned according to 

the order that the departments not copied over from parent one appear in parent two. This 

crossover is depicted in Figure 76 and demonstrates its ability to guarantee feasibility. To 

induce diversity in the population, Pourvaziri and Naderi implement a mutation operation 

that interchanges two randomly chosen periods [140].  
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Figure 76 – Example of Pourvaziri and Naderi's feasible offspring guaranteeing 

crossover method [140] 

 Liu and Meller, in solving a MIP formulation of the SLP by combining it with a 

QAP/U-SP model, proposed a modified order-based uniform crossover operator to handle 

the position-pair based encoding scheme of the QAP/U sequence pair model 

representation that the GA would operate upon [115]. The first stage of the method 

follows that of the unmodified uniform cross operator where a randomly generated binary 

bit string is used to distinguish which pairs from parent one are copied to the first 

offspring (those with a bit value of one) and which from parent two are copied to the 

second offspring (those with a bit value of zero). The second stage diverges from the 

unmodified operator in order to account for the position-pair encoding structure. Just like 

that of the unmodified procedure, the new position-pairs for the remaining genes in each 

offspring are determined by their relative orders in the other parent. Instead of directly 
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copying these to the voids in the offspring, the remaining position-pair genes are defined 

according to its parent’s positions for these relative orders before then being assigned. 

The process is quite involved; as such, to avoid an exhaustive discussion of its nuances 

one may refer to Liu and Meller’s original paper, if desired. Furthermore, a modified 

form of this process is adopted as part of this dissertation’s implementation so one may 

also refer to this later discussion for some further insight into Liu and Meller’s process. 

Liu and Meller also implemented a mutation operator by randomly exchanging two 

chosen position-pairs for a selected individual [115]. 

 Up until this point, reproduction methods applied to the QAP formulated DLP 

have been discussed. GAs have also been applied to the MIP formulation of the LP. For 

that reason, researchers have developed methods of handling such a problem formulation 

and the real vector representations that accompany them. Dunker, Radons, and 

Westkamper are one such example of researchers who applied GA to the MIP formulated 

DLP. To evolve the population, Dunker et al. (2003) applied a version of Chan and 

Tansri’s order crossover operator [45]. After selecting two individuals as parents, two cut 

positions are randomly selected and the genes falling between these positions are copied 

from one parent to one of the offspring. The remainder of the genes are filled with the 

numbers from the other parent not already in the offspring and according to the order 

they appear in the other parent. The same procedure, but with opposite parents, is 

performed to create the other offspring. To improve diversity of the population Dunker et 

al. (2003) implement a mutation operator that exchanges two random genes in a 

randomly selected parent for each of the position vectors independently (x and y position 

vector strings) [61]. 
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Mazinani, Abedzadeh and Mohebali also developed reproduction methods for a 

GA applied to a MIP DLP. Mazinani et al. applied a continuous uniform crossover 

operator to evolve the population. Using a roulette wheel selection method two parents 

are selected to perform crossover on. After the random generation of bit string whose 

length matches that of the individuals and whose bits are uniformly distributed between 

zero and unity, the two children are created. The first child is assigned its genes as the 

positions that are at the bit value between the two parent positions and the second at the 

position one minus the bit value between the two parents. For mutation, Mazinani et al. 

applied three separate mutation operators. The first replaces a randomly selected gene 

with a value in its domain according to a predefined function. The second involves 

randomly selecting three genes in a period and performing binary and triple exchanges 

until a most fit individual is established. This resembles that of the CRAFT heuristic, but 

with triple exchanges. The third method randomly selects a period and performs pair-

wise exchange, much like that of CRAFT, to establish the most improved individual 

[118]. 

The preceding sections summarize several different reproduction techniques 

employed in the literature to solve the LP for a variety of formulations (QAP/S, QAP/U, 

and MIP). As was established prior and supported here, the method of variation is driven 

by the problem formulation, more specifically the encoding structure employed to 

represent an individual in the population. The sub-section to follow will explore those 

applications of GA as the sole method of solution to the LP and that employ some of the 

aforementioned reproduction techniques. These are not an expansive list of those that 
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have been proposed in the literature, but these are those that have demonstrated superior 

performance and, at the time, novelty to solving the LP. 

A.2.5.3 Applications of Genetic Algorithm to the LP 

Several researchers over the years have applied a genetic search heuristic, or simply a 

GA, to solve the LP. Motivated by the need to handle multiple constraints (e.g. budget 

constraints) and non-linear or non-convex objective functions, Conway and 

Venkataramanan became the first to adapt GA to the DLP. Conway and Venkataramanan 

sought to solve the budget constrained DLP formulated as a QAP/S using a GA 

employing roulette wheel selection, single point crossover, mutation, and elitism. This 

genetic reproduction scheme along with GA proved to be an effective method of solving 

such a LP, after producing solutions within 1.05% of optimality on average using a 

randomly generated initial population. This was on par with Rosenblatt’s DP reported 

1.1% for the same experiment involving nine departments [48]. 

Balakrishnan and Cheng sought improved GA performance in solving the QAP/S 

formulated non-budget constrained DLP using mutation in a larger capacity compared to 

Conway and Venkataramanan and by implementing a diversity promoting generational 

replacement approach. Furthermore, a new crossover operator was proposed to promote 

better search space exploration. Implementing a point-to-point crossover technique, a best 

cross-bred offspring mutation method, and a periodic replacement technique, they were 

able to effectively solve the DLP for a set of 48 DLP test problems. These 48 problems 

consisted of 6 series of 8 problems, which consisted of 6, 15, and 30 departments by 5 

and 10 periods [13]. These 48 problems proposed by Balakrishnan et al. (2000) have 
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become the benchmark for QAP formulated DLP solution methods in the literature. For 

these 48 problems, Balakrishnan et al.’s (2000) GA outperformed Conway and 

Venkataramanan on most of the problems with the exception of the 15 department, 10 

period problem set, interestingly [13]. Overall though, Balakrishnan et al.’s GA proved to 

be quite effective in solving the problem.  

Dunker et al. (2003) were a few of the earlier researchers to have applied GA to a 

MIP formulation of the DLP. Employing a two-point crossover operator and basic 

mutation operator for the DLP, Dunker et al. (2003) were able to outperform previous 

methods solving such a problem at the time. They also, further extended the problem and 

their GA to encapsulate grouping of departments into areas by solving both the grouping 

problem and the sub-problem of determining the best layout for the departments in each 

group. Dunker et al. (2003) concluded that the approach had a genuine ability to solve 

large size problems within a reasonable duration of time [61]. 

Liu and Meller later combined a QAP/U-SP model with GA to efficiently solve 

the MIP formulation, based on Sherali et al.’s model, of the SLP. The design of Liu and 

Meller’s GA evolved the SP model population by genetic variation operators formulated 

specifically for the position-pair structure of the SP encoding. For each of these SP 

encoded individuals searched by the GA, the binary variable values in the MIP model are 

set [115]. This greatly reduces the effort then required to solve the MIP formulation of 

the problem as with all binary variables set, the problem can then be reduced to a linear 

programming problem. As observed earlier while discussing exact methods, solving a 

MIP formulation of the LP with linear programming is a highly effective approach. 

Solving the linear programming model to optimality then provides the optimal layout for 
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the SP that is also MIP compliant and optimal for the set binary variables (optimal on a 

positioning basis). By searching the SP space with GA and solving the MIP problem as 

described above, Liu and Meller were able to achieve reasonable optimality results for 

small problems while greatly improving the solution quality and times for larger 

problems when compared to other heuristic approaches available at the time [115]. 

In addition to Liu and Meller’s and Dunker et al.’s (2003) applications of GA to a 

MIP formulation of the problem, Mazinani et al. also applied GA to such a formulation. 

Modeled as an extension of Konak et al.’s MIP SLP formulation with flexible bays and 

by implementing a continuous uniform crossover and three mutation operators, Mazinani 

et al.’s GA based solution procedure was able to outperform Konak et al. [95] and others 

for a series of SLPs. Furthermore, their GA performed as well or better in solving the 

discrete DLP that Conway and Venkataramanan’s GA and Baykasoglu and Gindy’s SA 

algorithm. Comparisons to the General Algebraic Modeling System (GAMS) solution to 

the flexible bay MIP DLPs further demonstrated the sheer effectiveness of their GA to 

solve MIP formulated DLPs [118]. 

The work of Mazinani et al. concludes the research of direct relevance to the 

problem being studied in this dissertation and for which the GA was the sole method of 

solution. As can be observed, some of the research discussed before in establishing GA 

reproduction methods to solve the LP were not encapsulated in this section. The reason 

for this is that these reproduction methods were applied to a GA that was also coupled 

with another solution method. This coupling results in it becoming categorized as a 

hybrid approach, which is the subject of the section that follows. As such, the 
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accomplishments of the research in which these reproduction methods were implemented 

will be encapsulated in said section. 

A.2.6 Hybrid and Intelligent Approaches 

A.2.6.1 Applications of Hybrid and Intelligent Approaches to the LP 

Early on Balakrishnan et al. (2003) observed the need to hybridize the GA in order to 

achieve improved performance in solving the QAP/S formulated DLP. To improve the 

effectiveness of the GA as the main solution method, Balakrishnan et al. (2003) infused 

DP and heuristics into the reproduction process to facilitate better evolution of the 

population. Using DP to discover the best combination of parents from a pool as the 

crossover operator and leveraging CRAFT to heuristically improve the period layout of 

an offspring as the mutation operator, Balakrishnan et al. (2003) were able to achieve 

results on par with Baykasoglu and Gindy’s SA for a series of DLP. They were also able 

to solve a 30 department 10 period problem in a fifth of the time of their SA. With that 

said, Balakrishnan et al.’s (2003) approach did not outperform Baykasoglu and Gindy’s 

SA from a solution quality perspective for these problems. Though true, it’s solutions, 

where the initial population was generated using Urban’s method, continued to 

outperform considerably Conway and Venkataramanan and Balakrishnan and Cheng’s 

(2000) purely GA approaches [15]. This result demonstrates the benefit of combining GA 

with another solution method, DP in this case, to form a hybrid approach to solve the 

DLP. Although it did not outperform Baykasoglu and Gindy’s SA for the larger 

problems, it did consistently provide superior results for the small and medium sized 

problems. Furthermore, during their investigation, Balakrishnan et al. (2003) 
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acknowledged Grefenstette’s [81] suggestion that a mutation rate of 5% or less be 

implemented in order to provide a healthy balance of diversity in the population [15]. 

 Baykasoglu, Dereli, and Sabuncu sought to solve the budget constrained DLP 

formulated as a QAP/S using an ant colony optimization (ACO) algorithm. ACO is an 

optimization technique that emulates the natural behavior of ants in finding their way 

from their nest to food sources in the most efficient manner allowable by a collective 

knowledge of the pheromone trails present. To simulate the artificial ants search of food 

sources (i.e. local optima), Baykasoglu et al. opted to choose a period and the first 

department for interchange, randomly. The second department was chosen according to a 

method resembling that of roulette wheel proportionate selection in GA. A comparison of 

their ACO approach to solving the non-budget constrained DLP to the literature for the 

48 DLP test problems introduced by Balakrishnan and Cheng was performed. For these 

problems their approach provided competitive solutions and, from a solution time 

perspective, outperformed SA approaches it was compared to for larger problems. Since 

budget constrained DLP results were unavailable to them at the time, no comparison to 

the literature was possible [22].  

 A refined evolutionary approach called colonal selection algorithm (CSA) has 

also been applied to the solution of the QAP/S formulated DLP. Ulutas and Islier 

entertained applying CSA to such a DLP after observing Engin and Doyen’s successful 

application of CSA to COPs [66]. CSA is a biological random search method inspired by 

the human immune system’s self-organizing and distributed response to affinity 

maturation, or in other words, its production of antibodies in response to antigens [55]. 

To artificially simulate this type of response in the setting of the DLP, Ulutas and Islier 
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applied a generational cloning process that employed a roulette wheel selection method 

based on the antibody’s (i.e. individual’s) affinity, or fitness, value to identify two 

antibodies for cloning. Following cloning, the affinity maturation process is emulated by 

subjecting the antibodies of this cloned population to an inverse mutation and 

subsequently a pair-wise interchange mutation operator. The former simply inverts the 

order of the individual’s sequence between two randomly chosen bits and then, if this is 

not accepted, the latter mutation operator is applied, which simply swaps two random bits 

in the sequence [167]. Mutation is performed at a higher rate in this application than in 

the application of mutation in the earlier GA applications [54]. Comparison of this 

approach to the literature at the time demonstrated superior performance while solving 

larger problems, improving upon the best known results for 15 of the 16, 30 department 

problems of the 48 DLP test problem set. After observing reasonable solution times to 

these larger problems, Ulutas and Islier concluded that the CSA is not only an effective, 

but also fast method of solution to the DLP [167]. 

 Hoping to improve the effectiveness of GA as the primary solution method to the 

QAP/S formulated DLP, Ripon et al. proposed a novel hybrid GA. Their approach 

incorporated jumping gene operations in addition to the standard crossover and mutation 

variation operators and furthermore a modified backward pass pair-wise exchange 

heuristic influenced by Urban’s forward pass heuristic [143]. The implementation of the 

jumping gene operation and benefits of it were acknowledged earlier while discussing 

GA reproduction methods implemented in the literature. As such to avoid reiteration one 

may refer to Section A.2.5.2 for more details on the reproduction scheme they employed. 

Ripon et al.’s approach first employs GA to generate the initial solutions of what would 
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have been before those produced in the forward pass by Urban’s method. Then, the 

modified backward pass heuristic uses these solutions to enhance the solution by only 

exchanging genes with a common boundary if they provide improvement. Just like that of 

Balakrishnan et al.’s (2000) backward-pass approach such an approach can only yield a 

solution as good as, or better than, that in which they achieved using their GA with the 

JGO implemented. Their hybrid GA demonstrated that it is capable of outperforming 

other hybrid and evolutionary approaches with respect to solution quality for the 48 DLP 

test problems [143].  

 Azimi and Charmchi addressed the solution of the QAP/S formulated budget 

constrained DLP in a different manner than those discussed to this point. They proposed 

solving said problem using discrete event simulation. By first converting the nonlinear 

DLP to a linear pure integer problem (PIP), the PIP could then solved to optimality using 

Lingo 8.0 [113]. The solutions to this sub-problem then provided the empirical 

distributions for assigning a department to a location during each period. These 

distributions were then used to discover the best solution to the original problem 

formulation using discrete event simulation, which was facilitated by Enterprise 

Dynamics 8.1 [89]. Azimi and Charmchi concluded that the method of solution was a 

viable approach to solving the budget constrained DLP and does so without requiring any 

nonrealistic assumption regarding the problem be made [11]. 

 Hosseinin-Nasab and Emami employ yet a different evolution based intelligent 

algorithm to solve the QAP/S formulated DLP. They proposed a hybrid particle swarm 

optimization (PSO) approach to solve said problem [88]. PSO is, like other evolution 

based algorithms, a population based stochastic optimization technique developed by Dr. 
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Eberhart and Dr. Kennedy in 1995, which solves COPs by emulating the social behavior 

of a birds in a flock [90]. Since PSO operates in a continuous space, Hosseinin-Nasab and 

Emami first formulated a way of uniquely mapping the discrete QAP space into a 

continuous one. Internal to the PSO, they also included SA to further improve the best 

solution found so far at the conclusion of each iteration of PSO. The implementation of 

PSO with SA applied to enhance its effectiveness proved to be successful as they were 

able to achieve the best solution to 37 of the 48 DLP test problems. Compared to the 

literature on the DLP up until 2006 they outperformed all for the most part, especially for 

larger problems [88]. 

  Pourvaziri and Naderi also employed SA as a means of improving the best found 

solution at each iteration of an evolutionary algorithm. Instead of PSO as the evolutionary 

algorithm, they implemented GA to solve the QAP/S formulated DLP modeled after 

Mckendall et al.’s formulation. Pourvaziri and Naderi for the first time introduce to the 

DLP the concept of evolving multiple populations. They employ a tri-population scheme 

where one population is generated randomly, one from individuals of the best region, and 

the other from individuals from the non-promising region. The latter two populations are 

generated by first solving the problem converted to a nonlinear programming model and 

then solving with CONOPT [60]. The solutions gathered then form empirical 

distributions for assigning departments to locations in each period. The best region 

population is then generated directly from these probability distributions and the non-

promising from the inverse distributions. These populations are then evolved 

independently by the GA for a duration of generations referred to as the isolation time 

before being combined to form a main population that is then further evolved by the GA. 
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At each iteration of GA, SA is applied to the fittest individual in the population so as to 

more exhaustively search the local region for further improvement. Testing of their 

hybrid multi-population GA with SA enhancement demonstrated the sheer robustness 

that it poses in solving a wide range of period sizes and this robustness compared to other 

known methods in the literature becomes greater as the problem size increases. These 

other methods include that of Baykasoglu et al.’s ACO, Baykasoglu and Gindy’s SA, 

McKendall et al.’s SA, Balakrishnan et al.’s (2003) hybrid GA, as well as some others 

employing Tabu and DP to solve the DLP [140].   

 Until now, the literature observed has been that in application to the QAP 

formulation of the DLP. The majority of research on the topic is on such a formulation of 

the problem due in large part to the already difficult nature of the problem as addressed 

before. Solving the MIP formulation of the problem only further increases the difficultly. 

This is why few have tackled such a formulated DLP. Although true, some have in fact 

tackled this challenging problem using hybrid and evolutionary approaches. A summary 

of a few notable works in this domain of the LP will now be provided. 

 Improving upon their work a couple years earlier, Dunker et al. (2005) hybridized 

their GA by incorporating DP to solve the Yang and Peters (1998) MILP formulated 

DLP. Employing DP in both a forward and backward direction, the fitness of the 

individuals in the population are evaluated. Their approach improved upon the results 

obtained by Yang and Peters and has the major advantage over the work of Montreuil and 

Laforge [126] and Lacksonen (1997) [105] in not restricting the layout to a skeleton 

structure [62]. 
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 Although not a DLP, in this same year Yang, Peters, and Tu proposed a hybrid 

approach for solving the detailed flexible SLP formulated as a MILP. They first solved 

the traditional QAP/S formulation of the problem using a combination of SA and 

spacefiling curve (SFC). Their SA employed a random interchange of two departments to 

facilitate perturbation of the layout. The resulting flow sequence and relative positions 

from the solution of this simpler problem were then used to solve the detailed flexible 

SLP formulated as a MILP using CPLEX [174]. Yang et al. in many ways solve the 

MILP SLP in a similar fashion to Liu and Meller, just with different methods of solution. 

Their implementation demonstrated effective solution to the detailed flexible SLP. 

 McKendall Jr. and Hakobyan, in addition to Dunker et al. (2005), also sought 

solution to the MILP formulation of the DLP with un-equal sized departments. To solve 

the problem they employed a boundary search technique accompanied by tabu search 

(TS) for further solution improvement. First a boundary search (construction) heuristic 

(BSH) places the departments on the boundaries of already placed ones with the 

placement determined according to the flow data. Departments with a higher cumulative 

flow get placement priority. Once an initial layout plan is obtained using BSH, TS is 

employed to improve the layout plan. McKendall and Hakobyan’s BSH/TS approach 

performed well, especially for larger problems, relative to the literature for both solution 

to the DLP and SLP formulation of the problem, proving that such a method is a viable 

one [120]. 
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APPENDIX B 

– 

MAPPING A PHYSICAL LAYOUT TO A SEQUENCE PAIR 

Mapping a physical layout to a sequence-pair requires the employment of gridding rules, 

which dictate the generation of the object step-lines. In the literature [129,129], these are 

defined as module step-lines, however, to maintain consistency with the terminology 

used in this document these will be referred to as object step-lines from here forth. With 

that said, there are two object step-lines (one that is denoted as positive and another as 

negative) just as there are two sequences in the sequence-pair. The composition of the 

positive and negative object step-lines form the sequences,  𝛤+ and 𝛤−, form the 

sequence-pair. To generate these object step-lines the following rules are enforced: 1) 

boundaries of objects cannot be crossed by step-lines nor can the layout boundary itself 

be crossed and 2) no two positive or negative step-lines can cross one another, but they 

may both run parallel.  

B.1 Generating an Object’s Step-lines 

The process of forming the object step-lines according to the aforementioned gridding 

rules is as follows. The positive object step-line of an arbitrary object is defined as the 

union of the horizontal bisecting line of the object of interest and its up-right (UR) and 

down-left (DL) step-lines. The UR step-line, beginning at the right end of the horizontal 

bisecting object line, moves in an alternating up and right direction, as the name implies, 

until reaching the top-left corner of the space all while adhering to the previously noted 

rules. Likewise, the DL step-line is formed by starting at the left end of the bisecting line 
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and moving in an alternating down and left direction until reaching the bottom-left corner 

of the space. Joining these positive object step-lines forms the positive sequence. The 

negative sequence can likewise be formed through the composition of the negative object 

step-lines, which may be formed in a similar manner. The negative object step-lines are 

instead formed through the union of the vertical bisecting lines of each object and their 

corresponding left-up (LU) and right-down (RD) step-lines. Figure 77 provides an 

example of the outcome of this process for a notional layout composed of six objects. 

 

Figure 77 – Object step-lines of a physical layout and their correlation to the 

sequence-pair of the layout 

B.2 Implication of the Gridding Rules 

Until now a significant implication of the gridding rules has been overlooked. The 

aforementioned rules have the effect of producing positive and negative object step-lines 

that form linearly-ordered pairs of object sequences (𝛤+ and 𝛤−), alternatively called a 
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sequence-pair. The positive sequence (𝛤+) is ordered according to the positive object 

step-lines and starting from the upper-left whereas the negative sequence (𝛤−) is ordered 

according to the negative object step-lines and starting from the lower-left. This ordering 

and composition of the object step-lines to form the sequences is demonstrated in Figure 

77 where the object step-lines are drawn out and the corresponding ordered sequences are 

provided. As demonstrated in the positive sequence diagram, object a’s step-line is the 

upper, left most step-line relative to the rest. As such, it becomes the first object in the 

positive sequence. In the negative sequence, it is fourth from the lower left and as such 

falls in the fourth position of the negative sequence.  

 A couple noteworthy outcomes of the aforementioned implication and general 

observations shall now be discussed as they become important to the derivation of the 

FSPPM. First, sequence-pairs are structured such that the objects located at the corners of 

the physical layout have a higher probability of appearing at the ends of the appropriate 

sequence. Objects at the top-left and bottom-right corners of the space will always appear 

near the beginning and end of the positive sequence respectively. Similarly, objects at the 

bottom-left and top-right will always appear near the beginning and end of the negative 

sequences respectively. In both these scenarios, if an object is located at an absolute 

corner of the physical layout space, it won’t just likely appear near the end/beginning of 

the appropriate sequence, but rather is will definitely appear at the absolute end/beginning 

of the sequence. These outcomes are a direct result of the gridding rules and thereby the 

linearly-order nature of each sequence.  

The second outcome is such, the further the object is from the bisecting diagonals 

(i.e. line connecting complete opposite corners of the physical space, two of these 
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diagonals), the more likely it will appear at the beginning/end of the corresponding 

sequence in the sequence-pair. This mirrors the previous observed outcome, but in a more 

generalized sense. First, let’s consider the bisecting diagonal that traverses from the top-

left to the bottom-right corner of the space. The further an object’s centroid is from this 

diagonal (normal distance) the closer it will appear to the beginning/end of the negative 

sequence. If the object falls on this diagonal in the space or near it, then it is likely to 

appear in or near the middle of the negative sequence. The same is true for the opposite 

bisecting-diagonal and the positive sequence. Let’s also return to the observation that 

objects at the absolute corners of the physical space will appear, and without uncertainty, 

at the absolute ends of the sequences. Relating this to the second outcome stated, this 

situation can be conceptually thought of being the result of the object’s placement 

probability becoming hundred percent for its placement at the absolute beginning/end of 

the sequence. Being at the absolute corner of the physical space, the object is in theory 

the furthest it can be from one of the bisecting diagonals. Not only is it the furthest 

possible, but it is also the furthest amongst all other objects. As such, it has the highest 

probability of appearing at either the end or beginning of the appropriate sequence (all 

depending on which bisecting-diagonal is being considered).  

Previous experience with the SP formulation led to several other key 

observations. These observations, in addition to the aforementioned outcomes, were 

instrumental to the construction of the FSPPM and thus highlighted here. The first 

notable observation is in regard to the nature of an object’s appearance in the sequences. 

This observation was such; there is no discernable bias as to where the object appears 

relative to the most frequent position it appears in the sequence (mean position). Put 
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alternatively, the appearance of the object in the sequence behaves normally about its 

expected position. 

 Another observation made was the following, identifying feasible sequence-pairs 

is often more difficult when solving highly constrained problems, such as those 

considered in this research. This difficulty was observed to be dependent upon three 

dominating factors. The first factor was the amount of white space available in the layout. 

The less white space there was, or in other words the more restricting the boundary 

constraints were, the more difficult it was to identify feasible sequence-pairs. This is 

quite intuitive.  With less white space available there is less placement and orientation 

freedom and therefore fewer combinations of orientation and sequence-pairs that will 

yield a feasible design (i.e. one that when stacked remains within the bounds of the 

space). The more white space, the more flexibility there is to place and orient the objects 

in the layout without violating the boundary constraints. The second factor was the 

presence of objects in the layout with fixed placements. Like that of the white space, the 

presence of objects with fixed placements greatly restricts the number of orientation and 

sequence-pair combinations that result in feasible layouts (i.e. those that do not violate 

the fixed placement constraints and thus have the constrained objects placed 

appropriately in the space). Furthermore, the difficulty of discovering such feasible 

layouts (i.e. combinations of orientation and sequence-pairs), is directly proportional to 

the number of these constrained objects. The more that were present, the fewer feasible 

combinations there were and thus the more difficult it was for traditional placement 

procedures to discover them. In parallel to this, the third and final factor had to do with 

the total number of objects in the space. With more objects to place in the space, the 
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greater number of potential combinations of orientations and sequence-pairs there were. 

This meant having to search through more combinations before finding those that yielded 

feasible designs. 
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APPENDIX C 

– 

PROBLEM INITIALIZATION INPUT CONDITION DATA 

C.1 Input Station, Region, and Personnel Data 

C.1.1 Station Data 

The designer is required to establish the following properties provided in Table 44 for 

each of the potential stations. The table provides the property and its units or, where 

relevant, an example string.  

Table 44 – Station input data 

Station ID “Station 1” 

Type “WORKSTATION” 

Width (x) feet 

Height (y) feet 

Depth (z) feet 

Maintenance Spacing feet 

I/O X-offset feet 

I/O Y-offset feet 
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Table 44 (continued) 

Installation Time hours 

Uninstallation Time hours 

Move Rate feet / hour 

The width and height depict the non-rotated dimensions of the stations in the x and y-

dimensions respectively. The depth is provided only if in the future it is desired for the 

layouts to be visualized in 3D. The maintenance spacing characterizes the closest 

distance another object can be placed to it. The I/O offset dimensions are automatically 

calculated based on the height and width. By default, the x-offset is zero while the y-

offset is half the height. Installation and uninstallation times are in hours and are required 

to compute the rearrangement times in the performance model. Likewise, the move rate is 

to be provided in feet/hour. Definition of this property, like the installation times, 

contributes to the definition of the rearrangement time in the performance model. 

C.1.2 Region Data 

The designer is also required to establish the following properties provided in Table 45 

for each of the regions. The table provides the property and its units or, where relevant, 

an example string.  
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Table 45 – Region input data 

Region ID “Region A” 

Width (x) feet 

Height (y) feet 

Depth (z) feet 

Maintenance Spacing feet 

Width and height are defined identically to that of the station data whereby they are the 

non-rotated dimensions. The maintenance spacing is also the same as before when 

defining the station data.  

C.1.3 Personnel Data 

The designer is also required to establish the following personnel properties provided in 

Table 46. The table provides the property and its units, or where relevant, an example 

string for each condition. 

Table 46 – Personnel data 

Personnel ID “John Doe” 

Pay Rate $ / hour 

Unit “Receiving Station” 
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The personnel data includes: the worker title, their nominal pay rate, and the station type 

they are associated with. The latter aligns with the station type provided in the station 

data table outlined above. 

C.2 Problem Initialization Input Conditions 

C.2.1 Horizon-Based Discrete Conditions 

Each of the condition inputs presented in Table 47 are defined at each forecasting point 

of the horizon. In other words, the condition is defined at each of the dots shown in 

Figure 78 for a notional example problem. This example is the same one leveraged 

throughout the implementation chapter of this dissertation to reinforce key concepts. 

 

Figure 78 – Example of a horizon-based condition definition 
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Table 47 – Horizon-based discrete condition inputs 

Labor Cost Adjustment Factor [ ] 

Work Days days / week 

Work Hours hours / day 

 

C.2.1.1 Labor Cost Adjustment Factor 

The labor cost adjustment factor in the implemented model represents an input that 

enables the labor rates of the workers to be adjusted as time passes. This factor, when 

assigned a value of one, indicates no adjustment while a value greater than one, a positive 

inflation of the pay rates. This adjustment factor was implemented to enable the designer 

to have control over the pay rate with time and therefore be able to simulate worker pay 

raises. Simulating this can then enable the designer to evaluate how raising pay rates may 

impact their bottom-line. 

C.2.1.2 Work Days and Hours 

The work days and work hours provide the designer with the capability of adjusting how 

many days a week the average worker works and the average number of hours per day 

worked. If a decision to change the work days from five to seven along with an increase 

in work hours from eight to ten is to be evaluated, these inputs enable such a decision to 

be simulated.  

C.2.2 Horizon-Product-Based Linear Conditions 
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Each of the condition inputs presented in Table 48 are defined at each forecasting point 

of the horizon and for each product. Therefore, it there are four unique products present 

in a scenario problem then there would be four condition forecasts established, where 

each forecast is composed of however many forecasting points are to be defined. 

Table 48 – Horizon-product-based linear condition inputs 

Desired Expected Production Rate units / day 

Production Rate Coefficient of Variance % 

Setup Rate units / setup 

Market Value $ / unit 

Estimated Manufacturing Cost $ / unit 

Direct Consumable Cost $ / unit 

 

C.2.2.1 Desired Production Rate 

The desired production rate is implemented in this methodology to enable the designer to 

adjust the production rates of each of the products. With direct control over these rates, 

the designer can analyse a variety of different production scenarios. Production mix, 

production quantity, and production inclusion/exclusion can be assessed by the designer 

in the scenario set as a result of this input. 

C.2.2.2 Standard Deviation of the Production Rate 
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The standard deviation input provides, for each product and at each forecasting point, the 

standard deviation of the production rate. This input enables the uncertainty about the 

expected desired production rate to be modelled, but also control across the entire horizon 

on a product-basis. The designer can control how the uncertainty grows with time and 

vary the magnitude across the different products. This input is directly leveraged by the 

performance model and local robustness method. 

C.2.2.3 Setup Rate 

The setup rate input captures costs and production time associated with setups at the 

stations on a product-basis. Not all products require a setup as frequently as others and 

some not at all, which is why this setup rate is defined on a product-basis. If no setups are 

required, the setup rate can be set to zero which forces the setup costs to be neglected in 

the performance model. 

C.2.2.4 Market Value 

The market value input provides the primary means, along with the production rate, of 

establishing the revenue in the performance model. The market value is the value of each 

product in the market, i.e. what it sells for. Adjustment of these enables a designer to 

consider scenarios where a product may become more valuable or also less value and 

how this occurrence may impact the bottom-line. 

C.2.2.5 Estimated Manufacturing Cost 

The estimated manufacturing cost of a single unit of a product is just that. It only 

provides an estimate from which the relative profit margin ratios can be established. 
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These are potentially leveraged to dynamically adjust the prescribed production rates if 

needed during the process analysis portion of the performance model. These 

manufacturing costs will effectively be updated once the performance model has been 

executed at which point, they are rendered mute. 

C.2.2.6 Direct Consumable Cost 

The direct consumable cost per unit of each product is a provided estimate of the 

consumables used during the process of transforming a product from raw inputs to its 

finished state. This input accounts for consumables such as electricity and materials. 

C.2.3 Horizon-Station-Based Discrete Conditions 

Each of the condition inputs presented in Table 49 are defined at each forecasting point 

of the horizon and for each station. 

Table 49 – Horizon-station-based discrete condition inputs 

Installation Cost $ 

Displacement Cost $ / unit distance 

Support Conduit Displacement Cost $ / unit distance 

 

C.2.3.1 Installation Cost 

The installation cost input defines, for each station, the fixed cost of installing a station. 

This can account for the cost to level a machine, bolt it down, etc. or for the cost to setup 
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a workstation after it has been broken down and moved. Any station that experiences a 

change in position after a rearrangement will incur this cost. 

C.2.3.2 Displacement Cost 

The displacement cost provides the cost to displace a station over a specified distance, as 

would be known after rearrangement occurs. This can account for the cost of hiring a 

forklift or large machinery moving company to move a machine from one spot in the 

layout to another. 

C.2.3.3 Support Conduit Displacement Cost 

The support conduit displacement cost is one that is often overlooked. This cost input 

accounts for the costs of rerouting supporting conduits that are required for a moved 

station to operate in its new location. These can include electrical lines, water lines, 

HVAC, network lines, etc.  This input is defined on a distance-basis to account for the 

cost per foot of pipe or cable, both of which are easy value to establish from market 

research. 

C.2.4 Process-Based Conditions 

Each of the condition inputs presented in Table 50 are defined for each station or each 

segment of each product-process flow. These inputs become instrumental in analysing the 

system’s capacity in the performance model. 
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Table 50 – Process-based condition inputs 

Station Capacity units / hour 

Setup Capacity setups / hour 

Handler Flow-Rate Capacity units dist / hour 

Handler Labor Rate $ / hour 

Number of Handlers  

Other Handling Costs $ / dist unit 

 

C.2.4.1 Station Capacity 

The station capacity input establishes the number of units of the product that can be 

produced in an hour at each of the stations that it visits. Each station encompasses a 

different activity which adds value to the product and transforms it towards being a 

finished good. As such, each activity is likely to have different processing times and 

therefore capacities. This definition of the station capacities for producing the product 

enables the different stages of the process (i.e. activities at the stations) to be accurately 

modelled.  

C.2.4.2 Setup Capacity 

The setup capacity establishes the rate at which the activities at each station can be setup. 

Inverting this property enables the setup time to be defined. More often it is this property 
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that the designer will easily be able to estimate. As such, inverting it enables the designer 

to define this input. 

C.2.4.3 Handler Flow-Rate Capacity 

The handler capacity is much like that of the station capacity, however, instead of being 

applied on a station-basis it is applied on a between-station segment-basis. The handler 

flow rate capacity establishes the number of units that can be moved one-unit distance per 

hour. Dividing this by the distance the handler must travel for each segment yields the 

conventional capacity for each segment, in other words, the number of products that can 

be transferred in an hour. This input becomes relevant when the material handler 

utilizations of the system are evaluated.  

C.2.4.4 Handler Labor Rate 

The handler labor rate defines the average labor rate for a segment’s handler.  

C.2.4.5 Number of Handlers 

This input defines, for each segment, the number of handlers that are moving products. 

Multiplying this by the handler labor rate above establishes the total handling cost for the 

segment. 

C.2.4.6 Other Handling Costs 

The other handling costs input accounts for additional costs of handling that do not relate 

to the labor costs. This could be leveraged to account for the cost of operating a fork lift. 

This other handling cost can also be leveraged by the designer to simulate a traditional 
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MHC objective function. To do this, the designer would need to default many of the other 

inputs, such as the labor rates and market values, to zero.  

C.2.5 Optimization Parameters 

The optimization parameters available in this dissertation’s implementation are provides 

below in Table 51, Table 52, and Table 53. 

Table 51 – Optimization parameters of Stage One 

Stage One 

Population Size 

Elite Percentage 

Jumping Gene Probability 

Crossover Probability 

Mutation Probability 

Percent Feasible of Initial Population 

Maximum Population Initialization Time 

Number of Generations 

Time Limit 

Maximum Stall Generations 

 

Table 52 – FSA parameters of Stage One 

FSA 

Maximum Number of Iterations 

Sample Size 

Probability of Uphill Move Acceptance 
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Table 52 (continued) 

 

Probability of Reassigning Fixed Object 

Probability of Swapping Adjacent Objects 

Probability of Rotating Unconstrained Objects 

c Coefficient (higher = more greedy search) 

k Coefficient (higher for larger problems) 

McKendall Method Option (on/off) 

 

Table 53 – Optimization parameters of Stage Two 

Stage Two 

Population 1 Size 

Population 2 Size 

Population 3 Size 

Population Merged Size 

Elite Percentage 

Jumping Gene Coefficient - Population 1 

Jumping Gene Coefficient - Population 2 

Jumping Gene Coefficient - Population 3 

Jumping Gene Coefficient - Population Merged 

Jumping Gene Probability - Population 1 

Jumping Gene Probability - Population 2 

Jumping Gene Probability - Population 3 

Jumping Gene Probability - Population Merged 
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Table 53 (continued) 

 

Crossover Probability - Population 1 

Crossover Probability - Population 2 

Crossover Probability - Population 3 

Crossover Probability - Population Merged 

Mutation Probability - Population 1 

Mutation Probability - Population 2 

Mutation Probability - Population 3 

Mutation Probability - Population Merged 

Mutation Adjustment Coefficient - Population 1 

Mutation Adjustment Coefficient - Population 2 

Mutation Adjustment Coefficient - Population 3 

Mutation Adjustment Coefficient - Population Merged 

Number of Isolation Generations 

Number of Merged Generations 

Maximum Isolation Stall Generations 

Maximum Merged Stall Generations 

Isolation Time Limit 

Merged Time Limit 

Migration Rate 
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APPENDIX D 

– 

DESIGN VARIABLE DERIVED PROPERTIES 

Several station properties are dependent on the definition of the design variables. For 

example, the orientations of the stations are established using the combination of the 

binary orientation design variables os1 and os2. Four unique combinations are represented 

which map to the four discrete orientations of each station (0, 90, 180, 270°), as 

demonstrated in Figure 80. The physical orientation impacts the placement of the 

input/output point positions of the station and moreover, the length (x-coordinate 

direction) and depth (y-coordinate direction) of the station, where the length and depth 

properties are that of the rotated dimensions. 

Mapping the binary variable combinations to the I/O points is performed for every 

s station (i.e., ∀ 𝑠 = 1,… ,𝑁𝑠) as follows, where ∆𝑥𝑠,𝑜𝑖 and ∆𝑦𝑠,𝑜𝑖 are the I/O points 

relative position with respect to its geometrical center as shown in Figure 79: 

 𝑠𝑠 = (𝑑𝑠)𝑤𝑠 + (1 − 𝑑𝑠)𝑚𝑠𝑠 (68) 

 

𝑥𝑠,𝑜𝑖 = 𝑥𝑠 + 𝑜𝑠1[(∆𝑦𝑠,𝑜𝑖 + 𝑠𝑠)(1 − 𝑜𝑠2) − (∆𝑦𝑠,𝑜𝑖 + 𝑠𝑠)𝑜𝑠2]

+ (1 − 𝑜𝑠1)[(∆𝑥𝑠,𝑜𝑖)(1 − 𝑜𝑠2) − (∆𝑥𝑠,𝑜𝑖)𝑜𝑠2] 
(69) 

 

𝑦𝑠,𝑜𝑖 = 𝑦𝑠 + 𝑜𝑠1[(∆𝑥𝑠,𝑜𝑖)(1 − 𝑜𝑠2) − (∆𝑥𝑠,𝑜𝑖)𝑜𝑠2]

+ (1 − 𝑜𝑠1)[−(∆𝑦𝑠,𝑜𝑖 + 𝑠𝑠)(1 − 𝑜𝑠2) + (∆𝑦𝑠,𝑜𝑖 + 𝑠𝑠)𝑜𝑠2] 
(70) 
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where ds is a binary switch defined by the user to change between using the double 

spacing interaction formulation and a single spacing formulation and ss is the spacing 

from the physical boundary to the I/O point. The horizontal and vertical lengths, lo and do 

respectively, of the objects, based on their binary orientation variables and its x- and y- 

direction dimensions when not rotated (i.e.,  𝛼𝑜 and 𝛽𝑜), are found to be: 

 𝑙𝑜 = 𝛼𝑜(1 − 𝑜𝑜1) + 𝛽𝑜𝑜𝑜1 ∀ 𝑜 = 1,… ,𝑁 (71) 

 𝑑𝑜 = 𝛼𝑜 + 𝛽𝑜 − 𝑙𝑜 ∀ 𝑜 = 1, … ,𝑁 (72) 

 

Figure 79 – Geometrical center coordinates and I/O point offsets (positive 

convention shown) of station s 
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Figure 80 – Binary orientation variables [oo1, oo2] versus physical orientations 
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APPENDIX E 

– 

CONSTRAINT CONSIDERATIONS 

There are five hard constraint groups considered in this dissertation. The first three 

presented: avoidance of overlapping objects in the space, I/O point accessibility, and the 

avoidance of objects creating closed loops are always hard in nature and thus always take 

the forms presented here. The other two constraints presented: object confinement to the 

building OML boundaries and budgetary restriction on the evolution of the layout design 

can be soft in nature. Therefore, only under certain circumstances will the constraint 

forms presented here be applicable for these. These circumstances, and the resulting form 

of these constraints when soft, are encapsulated in the implementation section of this 

document. Such circumstances and forms of these two constraints are outlined in Section 

4.4.2.1. The five hard constraint forms of the constraint groups are presented as they were 

noted above starting with the overlap avoidance constraint group. 

E.1 Overlap Avoidance Constraints 

The object overlap avoidance constraint group addresses the notion of two objects 

overlapping one another. This can include two stations or a station and an infeasible 

region overlapping one another. The avoidance of overlap can be identified as the 

activation of any one of the below inequalities. In this constraint group, the maintenance 

spacings are applied given that they are the absolute physical constraint margin between 

the physical boundaries of the objects. These inequalities are performed for every s, o 

such that o > 1 (i.e., ∀  𝑠 = 1,… ,𝑁𝑠, 𝑜 = 𝑠 + 1,… ,𝑁). 



 515 

 𝑥𝑠 − 𝑥𝑜 ≥
𝑙𝑠 + 𝑙𝑜
2

+𝑚𝑠𝑠 +𝑚𝑠𝑜 (73) 

 𝑥𝑠 − 𝑥𝑜 ≥
𝑙𝑠 + 𝑙𝑜
2

+𝑚𝑠𝑠 +𝑚𝑠𝑜 (74) 

 𝑦𝑠 − 𝑦𝑜 ≥
𝑑𝑠 + 𝑑𝑜
2

+𝑚𝑠𝑠 +𝑚𝑠𝑜 (75) 

 𝑦𝑠 − 𝑦𝑜 ≥
𝑑𝑠 + 𝑑𝑜
2

+𝑚𝑠𝑠 +𝑚𝑠𝑜 (76) 

These inequalities form the non-overlapping disjunctive conditions where, if any single 

one is active, overlap is avoided for the object combination s ,o. When all combinations 

contain at least one active condition, no objects in the space are overlapping and the 

layout design is deemed feasible per this constraint group.  

E.2 I/O Point Accessibility Constraints 

To ensure that the I/O points remain accessible (i.e., outside of all stations and infeasible 

regions and within all boundaries) additional constraints must be included. The first 

series of constraints ensure that the I/O points fall within the outer boundaries. The four 

constraints in Eq. (77) provide this assurance. It may be observed that there is no factor of 

two on the walking spacing term in the below constraints. This is because the walking 

spacing associated with station s is built into the I/O point coordinates, 𝑥𝑠,𝑜𝑖 and 𝑦𝑠,𝑜𝑖, as 

was established in Eq. (69) and Eq. (70). 



 516 

 

𝑥𝑠,𝑜𝑖 ≥ 𝑠𝑏
𝑦𝑠,𝑜𝑖 ≥ 𝑠𝑏

𝑥𝑠,𝑜𝑖 + 𝑠𝑏 ≤ 𝑥𝑚𝑎𝑥
𝑦𝑠,𝑜𝑖 + 𝑠𝑏 ≤ 𝑦𝑚𝑎𝑥

              ∀ 𝑠 = 1, … ,𝑁𝑠 (77) 

 𝑠𝑏 = (𝑑𝑠)𝑤𝑠 + (1 − 𝑑𝑠)𝑚𝑠𝑏 (78) 

where ds is the binary switch, which switches between a double and a single spacing 

interaction formulation, ws is the walking spacing, and msb the boundary maintenance 

spacing.  

I/O point accessibility is also dependent on the points falling outside of all other 

stations and infeasible regions. In other words, objects, as is not the case presented in 

Figure 81. In other words, overlap avoidance constraints similar to those established in 

Equations (73) – (76) must be implemented. The four disjunctive inequality conditions 

below ensure that the I/O points fall outside all other stations and infeasible regions. 

These inequalities are evaluated for every s, o (i.e., ∀  𝑠 = 1,… ,𝑁𝑠, 𝑜 = 1,… ,𝑁).  

 𝑥𝑠,𝑜𝑖 − 𝑥𝑜 ≥
𝑙𝑜
2
+ 𝑤𝑠 (79) 

 𝑥𝑜 − 𝑥𝑠,𝑜𝑖 ≥
𝑙𝑜
2
+ 𝑤𝑠 (80) 

 𝑦𝑠,𝑜𝑖 − 𝑦𝑜 ≥
𝑑𝑜
2
+ 𝑤𝑠 (81) 
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 𝑦𝑜 − 𝑦𝑠,𝑜𝑖 ≥
𝑑𝑜
2
+ 𝑤𝑠 (82) 

where if any one of these four are active, the I/O points remain accessible for the s, o 

object combination. When all combinations of objects have at least one active constraint 

in this set of disjunctive conditions as well as abide by the boundary constraints presented 

before, the layout design is deemed feasible.  

  

Figure 81 – I/O point overlapped by a station or infeasible region 

 Introduction of these additional constraints are a joint by-product of the multi-

spacing and advanced flow distance formulations considered. These constraints also 

provide the added benefit of improving the performance of the formulation as excessive 

computations involving the path generation procedure may be avoided. For example, if 

an I/O point is inaccessible the path generation algorithm would proceed until the 

maximum limit number of branches is met as no feasible path could ever be achieved. 

The inclusion of these constraints in turn enables these unproductive computations to be 

avoided upfront. These act as an indicator, which triggers the use of the traditional 
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rectilinear approach with a scaling factor to provide the objective function with a path 

distance value that is also reflective of the circumstances. 

E.3 Closed Loop Avoidance – Preventing Inaccessible Regions 

Using the I/O point accessibility assurance constraints, discussed above, as a way of 

identifying if an arrangement provides path feasibility is not adequate, however. 

Situations, such as that demonstrated in Figure 82, can occur where inaccessible regions 

are formed by a series of adjoined objects (i.e., stations or infeasible regions) and where 

these accessibility constraints remain unviolated. 

 

Figure 82 – Artificially created inaccessible regions 

Objects can become adjoined and still avoid violating the overlap avoidance constraints 

defined in Equations (73) – (76) when only their walking boundaries (i.e., physical 

boundaries adjusted to encompass the walking spacing), and not their maintenance 

boundaries, overlap. In this situation, to get to the other side of the adjoined stations, one 

must go around the end, as cutting between the two stations is no longer feasible, which 
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is denoted by the adjoined property of the two stations. If enough elements become 

adjoined, closed loops can form, as demonstrated in Figure 82 with station’s A-D. These 

closed loops in turn can create fenced regions. This is emphasized by the rectangular 

green hashed area in Figure 82. If an I/O point falls within one of these regions, like that 

of station A or B, accessing it from outside becomes impossible. Furthermore, these 

situations do not violate the I/O point accessibility constraints defined in Equations (79) – 

(82) as they are not overlapped by an infeasible region or another station. Since the 

advanced flow distance method implemented in this dissertation is built on the premise 

that a feasible path is present, there is no point in executing such a computationally 

expensive procedure when no such path is achievable. 

Determining if closed loops are present among a group of adjoined objects is not a 

trivial task. Doing so requires the use of advanced techniques such as graph theory. The 

problem of identifying the presence of closed loops is classified as the Hamiltonian cycle 

problem and in this application would be that for an undirected graph. This problem itself 

is NP-complete so solving it requires an exhaustive method [78]. Solving such a problem 

for every layout of a layout design, whose solution is a problem that is itself NP-hard, 

becomes computationally unmanageable and unrealistic.  

To avoid this computational dilemma a less expensive approach was implemented 

that is based on a series of logical criteria. Note that outer boundaries are computationally 

modeled as infeasible regions. These boundary regions are only active if directly in 

contact with either a station or infeasible region. The criterion is based on a binary 

connection matrix for the adjoined objects, which establishes each object’s direct 

connections (i.e., objects in which their walking boundaries overlap). Each object is 
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identified in the matrix as being adjoined to itself for easier identification of some of the 

below criteria when implemented in a coding context. The following criteria identify 

adjoined configurations that do not produce inaccessible regions:  

1) Groups of less than or equal to three objects 

2) Groups of four objects where two are ends 

3) Groups of four objects where all four are directly linked 

4) Groups of n objects where at least n-3 are ends (n-3 rule) 

5) Groups of n objects where n-r are directly connected to the same objects and r 

objects are ends 

where ends are easily identified as those objects with only a single connection (i.e., a 

single non-zero row object in the matrix). Connections to the same object are identified 

by evaluating the columns of the matrix. Figure 83 provides a few example object 

configurations that fall under these criteria.  It is understood that these criteria alone may 

not encompass all configurations that are acceptable, however, it should be noted that the 

first four criteria do completely cover all acceptable six object configurations.  
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Figure 83 – Examples of acceptable configurations (a) criterion two active (b) 

criterion one active (c) criterion three active (d) criterion five active 

 In practice, grouping too many independent objects together may not be practical. 

Doing so could reduce the safety profile of the layout as emergency exit paths could 

become excessively long. Additionally, several objects grouped together could produce 

high temperatures and poor air flow, which would degrade the performance of both the 

machines and the workers. As a result, limiting the number of objects that can be grouped 

together can indirectly account for factors not being explicitly captured in this 

formulation. Therefore, the inclusion of a limiting group size is implemented such as to 

enable additional trades to be performed and user control to be provided. 

    

               (a)                                            (b) 

   

               (c)                                             (d) 
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 Implementing these criteria and using them in combination with the I/O point 

accessibility constraints, Equations (73) – (76) and Equations (79) – (82), enables 

configurations for which path feasibility can be identified. If any of these constraints are 

violated or none of the above criteria apply, then the configuration is labeled as 

infeasible. This labeling acts as an indicator that, as mentioned earlier, triggers the use of 

the more traditional rectilinear approach to determine the path distances. A scaling factor 

is applied to said path distances to enable these infeasible cases to be identified. The 

inclusion of this approach to the formulation greatly improves its performance by 

ensuring that executions of the more computational expensive advanced flow distance 

method are avoided for cases where a feasible path will never be achievable. 

 The inclusion of the soft constraints, and more specifically the potential to allow 

violation of the boundaries under certain circumstances, required slight modification to 

this process of established the presence of closed loops. When violation of the boundaries 

is allowed, the boundary regions are set inactive, regardless if in contact with either a 

station or infeasible region. This again is a unique consequence of the implemented 

penalty function approach to defining the soft boundary constraints. 

E.4 Outer Layout Boundary Constraints 

Bounding the coordinate centroid position of each object is addressed by considering 

each object’s relative position to the outer rectangular boundary (0, 0) and (𝑥𝑚𝑎𝑥, 𝑦𝑚𝑎𝑥), 

or outer mold line (OML) of the space. These constraints are the first of the soft 

constraints to be discussed. The discussion to follow establishes the hard form of the 

boundary constraints, or in other words, when the designer/management deems such 
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constraints as being absolute, whereby violation of them (i.e. placement of objects 

outside the OML of the layout) is not allowed. Bounding the objects was achieved by 

implementing the set of inequalities provided below, where the first two address the left 

and bottom boundaries respectively, whereas the last two address the right and top 

boundaries respectively.  

 

𝑥𝑠 ≥
𝑙𝑠
2
+𝑚𝑠𝑠 +𝑚𝑠𝑏

𝑦𝑠 ≥
𝑑𝑠
2
+𝑚𝑠𝑠 +𝑚𝑠𝑏

𝑥𝑠 +
𝑙𝑠
2
+𝑚𝑠𝑠 +𝑚𝑠𝑏 ≤ 𝑥𝑚𝑎𝑥

𝑦𝑠 +
𝑑𝑠
2
+𝑚𝑠𝑠 +𝑚𝑠𝑏 ≤ 𝑦𝑚𝑎𝑥

              ∀ 𝑠 = 1, … , 𝑁𝑠 (83) 

Here the maintenance spacing’s are applied as the constituent of the absolute 

margin between the outer boundary and the objects. In other words, the objects cannot 

fall any closer to the boundary than the summation of the two maintenance spacings. 

Though the coordinate centroid position variables are bounded by ranges in the Stage 

Two algorithm, these ranges are only approximate and therefore are not enough alone to 

ensure all objects fall within the OML of the layout. This is a result of these ranges being 

dependent on the object’s current orientation. Implementation of these constraints 

therefore ensures feasibility with respect to all objects falling within the OML of the 

layout regardless of orientation. Further, in Stage One the first two constraint equations 

are inherently guaranteed by the fundamental nature of the sequence-pair model 

employed. Instead, only the latter two equations for the top and right boundaries need be 

met to establish feasibility of the design. 
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E.5 Budget Constraints 

The budget constraints are the second soft constraint type. Establishing financial 

feasibility when these constraints are rendered hard relies on observing the debt 

remaining after the prescribed budget is applied. The debt is determined as follows: 

 

𝐷𝐸𝐵𝑇𝑡

= {
𝑅𝐶𝐶𝑡 + 𝜙𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦,𝑡 − 𝑝𝑏 ∙ 𝑁𝑒𝑡 𝐼𝑛𝑐𝑜𝑚𝑒𝑡−1, 𝑁𝑒𝑡 𝐼𝑛𝑐𝑜𝑚𝑒𝑡−1 > 0

𝑅𝐶𝐶𝑡 + 𝜙𝑏𝑢𝑑𝑔𝑒𝑡,𝑡, 𝑁𝑒𝑡 𝐼𝑛𝑐𝑜𝑚𝑒𝑡−1 ≤ 0
 

(84) 

This is the same as Equation (63) provided when the budget penalty function was 

presented in the implementation section of this document. If the budget completely 

covers the costs associated with rearranging the layout and the boundary penalty cost, 

then the resulting debt would be negative. When the following condition applies, the 

restructuring is feasible. When true for each period then the layout design is deemed 

feasible. 

  



 525 

APPENDIX F 

– 

REPRESENTATIVE PROBLEM TEST SET 

In this appendix, the 52 Problem Test Set leveraged throughout much of the 

experimentation is defined. This test set was formed strategically to exercise the 

developed solution techniques and methods across a range of different problem 

characteristics, some generic, others unique to the formulation of this dissertation. 

 Table 54 provides the high-level problem setup characteristics for the 52 

problems composing the 52 Problem Test Set. The description column indicates first the 

boundary characteristics, U for unconstrained and C for constrained, and then the nature 

of the objects in the layout, U for all objects being movable and C for the presence of 

constrained objects in the problem. To simulate an unconstrained problem, the 

boundaries were set sufficiently large. Xmax and Ymax indicate the boundary unit 

distance lengths. Nm and Nf indicate the number of movable and fixed, i.e. constrained, 

objects in the problem respectively. The definition of the sizes of these objects was done 

randomly. They were assigned to have dimensional integer lengths between 2 and 7 unit 

lengths. The placement of the constrained objects was largely random, though some 

strategic placements were manually established to force the designs, once tested in Stage 

Two, to ideally break away from a tightly packed configuration. This was achieved by 

placing fixed objects at opposite ends or corners of the space and then defining them in 

the process flows as the start/end points of the processes. Np indicates the number of 

processes considered in the problem.  Finally, WS and AR represent the problem’s white 

space and aspect ratio. As one can observe, a variety of problem sizes varying both in 
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number of objects and number of periods are considered in this test set. Additionally, 

varying white spaces and aspect ratios are considered to enable the performance of the 

solution techniques to be evaluated over such varying conditions. Lastly, different 

numbers of constrained objects are considered in this test set, which is a notably unique 

consideration of this test set. The definition of this test set was strategic. It enabled the 

developed FSPPM and the solution procedures to be tested over a range of varying 

characteristics. 

Table 54 – 52 Problem Test Set 

Problem Description Objects Periods Xmax Ymax Nm Nf Np WS AR 

1 U + U 6 1 100 100 6 0 3 98.25 1 

2 C + U 6 1 17.53 26.3 6 0 3 75.05 1.5 

3 C + U 6 1 14.6 21.9 6 0 3 64.06 1.5 

4 C + U 6 1 19.6 19.6 6 0 3 75.05 1 

5 C + U 6 1 17.88 17.88 6 0 3 64.06 1 

6 C + C 6 1 17.53 26.3 5 1 3 75.05 1.5 

7 C + C 6 1 17.53 26.3 4 2 3 75.05 1.5 

8 C + C 6 1 19.6 19.6 5 1 3 75.05 1 

9 C + C 6 1 19.6 19.6 4 2 3 75.05 1 

10 C + C 6 1 14.6 21.9 5 1 3 64.06 1.5 

11 C + C 6 1 14.6 21.9 4 2 3 64.06 1.5 

12 C + C 6 1 17.88 17.88 5 1 3 64.06 1 

13 C + C 6 1 17.88 17.88 4 2 3 64.06 1 

14 U + U 12 1 100 100 12 0 6 97.35 1 

15 C + U 12 1 26.6 39.9 12 0 6 75.05 1.5 

16 C + U 12 1 22.16 33.24 12 0 6 64.06 1.5 

17 C + U 12 1 32.6 32.6 12 0 6 75.05 1 

18 C + U 12 1 27.15 27.15 12 0 6 64.06 1 

19 C + C 12 1 26.6 39.9 10 2 6 75.05 1.5 

20 C + C 12 1 26.6 39.9 8 4 6 75.05 1.5 

21 C + C 12 1 32.6 32.6 10 2 6 75.05 1 

22 C + C 12 1 32.6 32.6 8 4 6 75.05 1 

23 C + C 12 1 22.16 33.24 10 2 6 64.06 1.5 

24 C + C 12 1 22.16 33.24 8 4 6 64.06 1.5 

25 C + C 12 1 27.15 27.15 10 2 6 64.06 1 

26 C + C 12 1 27.15 27.15 8 4 6 64.06 1 

27 U + U 6 3 100 100 6 0 3 98.25 1 



 527 

Table 54 (continued) 

28 C + U 6 3 17.53 26.3 6 0 3 75.05 1.5 

29 C + U 6 3 14.6 21.9 6 0 3 64.06 1.5 

30 C + U 6 3 19.6 19.6 6 0 3 75.05 1 

31 C + U 6 3 17.88 17.88 6 0 3 64.06 1 

32 C + C 6 3 17.53 26.3 5 1 3 75.05 1.5 

33 C + C 6 3 17.53 26.3 4 2 3 75.05 1.5 

34 C + C 6 3 19.6 19.6 5 1 3 75.05 1 

35 C + C 6 3 19.6 19.6 4 2 3 75.05 1 

36 C + C 6 3 14.6 21.9 5 1 3 64.06 1.5 

37 C + C 6 3 14.6 21.9 4 2 3 64.06 1.5 

38 C + C 6 3 17.88 17.88 5 1 3 64.06 1 

39 C + C 6 3 17.88 17.88 4 2 3 64.06 1 

40 U + U 12 3 100 100 12 0 6 97.35 1 

41 C + U 12 3 26.6 39.9 12 0 6 75.05 1.5 

42 C + U 12 3 22.16 33.24 12 0 6 64.06 1.5 

43 C + U 12 3 32.6 32.6 12 0 6 75.05 1 

44 C + U 12 3 27.15 27.15 12 0 6 64.06 1 

45 C + C 12 3 26.6 39.9 10 2 6 75.05 1.5 

46 C + C 12 3 26.6 39.9 8 4 6 75.05 1.5 

47 C + C 12 3 32.6 32.6 10 2 6 75.05 1 

48 C + C 12 3 32.6 32.6 8 4 6 75.05 1 

49 C + C 12 3 22.16 33.24 10 2 6 64.06 1.5 

50 C + C 12 3 22.16 33.24 8 4 6 64.06 1.5 

51 C + C 12 3 27.15 27.15 10 2 6 64.06 1 

52 C + C 12 3 27.15 27.15 8 4 6 64.06 1 

 In addition to these problem characteristics several other assumptions were 

required so as to reduce the performance model to a more simplistic model that was more 

comparable to literature approaches that only consider material handling costs as their 

objective function. These assumptions are as follows: 

1) Assumed that changes in assets from one period to the next did not need to be 

assessed, i.e. the same objects were to appear in all periods of the dynamic 

problems 
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2) With no additions of stations, capital costs are assumed to be zero across all 

periods 

3) Assumed the labor cost adjustment factor was constant across the planning 

horizon and at a value of one 

4) Assumed five work days in a week and eight-hour work days 

5) Market values were assumed to be zero, effectively forcing the performance 

model to focus on costs 

6) Direct consumable costs were assumed to be zero 

7) Setup were assumed to be absent, i.e. set to zero 

8) Worker labor rates (handlers and station workers) were set to zero and other 

handling costs to $1/unit distance travelled, which effectively reduces the 

performance model to just considering material handling costs like that of the 

literature 

9) Assumed a production volume of 10 units/day in total and distributed evenly 

among the processes in the first evolution, then distributed randomly 

throughout the other evolutions (applicable for the dynamic problems) 

10) Assumed no process changes (i.e. the same process flows were present across 

all periods and unit costs the same and as specified in assumption eight above) 

11) Processes were generated mostly randomly, though start and end stations were 

sometimes strategically chosen as stated before 
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12) Processes varied in length, i.e. the number of objects visited 

13) The capacity of the between station handlers was assumed to be sufficiently 

high such that the dynamic production rate would not alter the relative 

distributions of the production volumes across the processes, which would 

have the effect of skewing results and voiding the ability to make comparisons 

14) Likewise, the capacities of stations were also assumed sufficiently high as to 

avoid the same occurrence as noted before 

15) Number of handlers were set to one, though with their zero labor rates and 

high capacities they were rendered all but non-relevant; this still needed to be 

done such that handler utilization levels never exceeded 100% and thus the 

dynamic adjustment technique could be avoided 

16) Costs of station uninstallation and installation were set to $0.10 (rotated, but 

unmoved) 

17) Costs of station movement (i.e. rearrangement) were set to $1/unit distance 

18) Assumed that the walking distances were zero, effectively matching literature 

approaches 

19) Assumed the number of periods matched the number of horizon segments for 

simplicity 

20) Assumed no regions, however fixed, i.e. constrained, stations create the same 

effect from a constraint perspective 
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21) Assumed a green facility design, whereby no initial rearrangement costs 

would be present in defining the first period design 

22) Assumed the objective function would be that of direct retained earnings to 

focus on operational improvement from a material handling perspective 

provided the earlier assumptions implemented in defining the problems of the 

test set 

23) Assumed boundary constraints were hard 

24) Assumed that budget constraints were inactive to facilitate different designs 

being formed across the periods of the dynamic periods without restriction 

Though many assumptions were made in in designing these test set problems, many of 

these were only made to simplify the model developed to a form more comparable to the 

literature. Moreover, since this 52 Problem Test Set was primarily created to facilitate the 

testing of the developed methods and solution techniques, and not that of the performance 

model itself, this simplification was more than justifiable. The performance model is 

extensively tested in the final Experiment 6 of this dissertation. 
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APPENDIX G 

– 

EXPERIMENTAL RESULTS 

G.1 Initial Optimization Observations 

Initial testing of the solution algorithm revealed that using the retained earnings at the end 

of the horizon as the overall objective function produced poor optimization performance. 

It was believed that part of the reason for this was that the retained earnings, as it is 

defined in this formulation, encapsulated all direct and indirect costs. In the case where 

personnel are being underutilized, most of these costs become indirect (from idle labor, 

i.e. workers not contributing to value adding activities). Since indirect labor costs are 

purely a function of workable hours, it remains unchanged regardless of the layout 

design. As such, it skews the objective function in effect diminishing the impact that 

changes of the layout have on the overall objective function. The result is a suboptimal 

performing optimization algorithm. To correct this, a “direct” retained earnings figure, 

which neglected the production related indirect costs and indirect labor costs (𝐼𝐿𝐶𝑡 +

 𝑃𝑅𝐼𝐶𝑡 in Equation (36)) was implemented to avoid this problem and capture the impact 

more appropriately. The result, was a far better performing algorithm, generating 

improved result optimality. 
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G.2 Experiment I 

Table 55 – Experiment 1.C. raw results 

Problem Case Replication GA Time PopInt Time Unique Objective 

6 1 1 94.612 20.152 1568 121000 

6 1 2 101.080 19.857 1076 142000 

6 1 3 120.360 18.864 1348 118000 

6 1 4 125.550 22.095 1338 123000 

6 1 5 130.070 21.198 1400 151000 

6 2 1 88.073 3.109 1700 144000 

6 2 2 105.960 2.932 1684 125000 

6 2 3 111.300 3.080 916 136000 

6 2 4 120.050 3.035 1145 136000 

6 2 5 128.610 2.914 886 132000 

6 3 1 88.374 3.053 1274 144000 

6 3 2 106.410 3.059 1801 130000 

6 3 3 114.570 2.808 1199 132000 

6 3 4 120.670 2.933 1272 123000 

6 3 5 126.480 3.183 1106 139000 

6 4 1 88.157 2.972 1672 144000 

6 4 2 105.880 2.600 1666 136000 

6 4 3 114.960 3.289 1794 121000 

6 4 4 120.150 2.935 1106 144000 

6 4 5 131.610 3.216 1247 123000 

6 5 1 90.074 3.210 1203 142000 

6 5 2 504.620 3.009 1216 131000 

6 5 3 113.540 3.138 1103 123000 

6 5 4 119.430 3.181 857 141000 

6 5 5 128.400 3.218 1028 139000 

7 1 1 89.619 85.155 1144 155000 

7 1 2 103.790 120.520 1152 146000 

7 1 3 116.650 121.700 1245 146000 

7 1 4 117.690 113.400 1223 146000 

7 1 5 132.020 93.388 1100 146000 

7 2 1 90.663 2.286 932 155000 

7 2 2 103.320 2.221 1344 155000 

7 2 3 111.390 2.331 836 155000 

7 2 4 121.700 2.456 821 158000 

7 2 5 133.060 2.250 1137 147000 

7 3 1 89.374 2.374 1331 147000 

7 3 2 103.000 2.283 1315 146000 

7 3 3 113.280 2.479 903 155000 
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Table 55 (continued) 

7 3 4 122.530 2.104 1111 155000 

7 3 5 130.360 2.339 1170 147000 

7 4 1 89.518 2.233 1130 155000 

7 4 2 102.720 2.502 1118 147000 

7 4 3 117.260 2.693 1080 155000 

7 4 4 127.470 2.271 1155 155000 

7 4 5 133.060 2.684 1559 137000 

7 5 1 91.643 2.438 1444 154000 

7 5 2 106.520 2.525 1377 146000 

7 5 3 112.710 2.648 1022 155000 

7 5 4 120.860 2.396 995 155000 

7 5 5 128.770 2.886 1112 146000 

8 1 1 93.198 32.732 1163 128000 

8 1 2 110.720 32.909 1231 136000 

8 1 3 121.770 32.441 1074 144000 

8 1 4 125.360 32.006 772 149000 

8 1 5 135.000 34.691 1036 143000 

8 2 1 92.572 4.130 840 166000 

8 2 2 105.570 4.535 931 148000 

8 2 3 115.970 3.588 699 160000 

8 2 4 123.490 3.971 936 141000 

8 2 5 132.290 4.476 792 145000 

8 3 1 93.529 4.708 958 136000 

8 3 2 111.510 4.079 883 148000 

8 3 3 121.360 4.107 1298 145000 

8 3 4 120.980 4.075 738 160000 

8 3 5 136.800 3.816 916 137000 

8 4 1 95.138 4.049 1082 142000 

8 4 2 109.570 4.623 858 155000 

8 4 3 119.710 4.275 954 144000 

8 4 4 125.790 3.922 1118 154000 

8 4 5 134.580 3.789 1127 137000 

8 5 1 94.814 4.353 976 143000 

8 5 2 104.190 4.655 663 149000 

8 5 3 114.710 4.576 720 161000 

8 5 4 123.400 3.797 763 165000 

8 5 5 136.020 4.792 1040 169000 

9 1 1 98.175 181.830 649 157000 

9 1 2 107.790 170.440 1018 159000 

9 1 3 120.000 154.270 860 152000 

9 1 4 123.670 154.180 817 143000 

9 1 5 139.080 152.130 788 152000 
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Table 55 (continued) 

9 2 1 92.650 2.751 892 159000 

9 2 2 107.650 2.738 1059 164000 

9 2 3 120.360 2.892 719 157000 

9 2 4 127.730 2.701 835 168000 

9 2 5 131.890 2.805 698 172000 

9 3 1 93.825 2.986 721 156000 

9 3 2 109.120 2.869 962 159000 

9 3 3 118.720 2.949 974 159000 

9 3 4 129.030 2.835 1020 168000 

9 3 5 134.320 2.828 911 152000 

9 4 1 94.879 3.074 831 159000 

9 4 2 115.220 3.069 1088 157000 

9 4 3 125.640 2.839 1076 159000 

9 4 4 124.430 3.417 1042 159000 

9 4 5 139.270 2.982 1149 159000 

9 5 1 97.442 3.258 769 164000 

9 5 2 108.080 3.321 710 160000 

9 5 3 116.030 2.764 698 157000 

9 5 4 122.200 3.141 799 164000 

9 5 5 129.730 3.181 652 159000 

10 1 1 94.332 7.490 2009 149000 

10 1 2 106.190 7.584 1973 134000 

10 1 3 117.060 7.294 2116 149000 

10 1 4 127.310 7.259 1733 146000 

10 1 5 130.290 7.110 3036 147000 

10 2 1 95.701 1.562 2641 145000 

10 2 2 104.330 1.545 1241 157000 

10 2 3 116.410 1.506 1394 137000 

10 2 4 123.880 1.631 2116 118000 

10 2 5 126.880 1.573 2127 149000 

10 3 1 92.336 1.494 1629 140000 

10 3 2 106.370 1.626 2132 170000 

10 3 3 113.030 1.581 1349 167000 

10 3 4 121.640 1.618 1873 151000 

10 3 5 127.840 1.587 1755 163000 

10 4 1 95.065 1.463 2128 127000 

10 4 2 105.110 1.464 1639 154000 

10 4 3 113.720 1.534 2842 142000 

10 4 4 124.620 1.562 2456 142000 

10 4 5 132.270 1.686 1258 144000 

10 5 1 93.157 1.605 1991 160000 

10 5 2 104.440 1.591 1806 157000 
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Table 55 (continued) 

10 5 3 114.910 1.566 1290 147000 

10 5 4 124.250 1.591 2331 154000 

10 5 5 130.800 1.616 2430 155000 

11 1 1 95.850 32.054 1373 181000 

11 1 2 108.690 39.422 1446 181000 

11 1 3 117.830 32.339 1970 181000 

11 1 4 125.110 38.964 1369 190000 

11 1 5 130.850 32.127 2012 179000 

11 2 1 96.193 1.460 2263 186000 

11 2 2 107.050 1.451 1310 190000 

11 2 3 113.740 1.452 1280 190000 

11 2 4 123.640 1.477 1535 190000 

11 2 5 129.750 1.494 1584 190000 

11 3 1 94.176 1.534 1171 194000 

11 3 2 105.040 1.463 1557 190000 

11 3 3 116.370 1.451 1684 178000 

11 3 4 129.080 1.480 2481 169000 

11 3 5 128.900 1.517 1828 181000 

11 4 1 94.932 1.457 1573 183000 

11 4 2 108.110 1.527 1484 185000 

11 4 3 114.370 1.403 1354 185000 

11 4 4 124.690 1.471 1290 198000 

11 4 5 131.310 1.401 2652 183000 

11 5 1 95.834 1.470 1751 198000 

11 5 2 109.030 1.480 1545 194000 

11 5 3 117.290 1.441 1825 173000 

11 5 4 125.930 1.501 1817 192000 

11 5 5 130.510 1.472 1245 191000 

12 1 1 98.038 6.876 2647 153000 

12 1 2 107.390 7.246 1639 163000 

12 1 3 116.100 6.555 2068 163000 

12 1 4 127.750 7.148 1773 162000 

12 1 5 131.050 7.199 1543 160000 

12 2 1 98.940 1.470 2793 162000 

12 2 2 111.090 1.487 2654 161000 

12 2 3 116.540 1.433 2115 153000 

12 2 4 126.830 1.483 2052 169000 

12 2 5 133.160 1.504 2650 176000 

12 3 1 95.308 1.523 1504 168000 

12 3 2 107.820 1.475 1709 163000 

12 3 3 119.690 1.516 2505 173000 

12 3 4 127.230 1.542 2290 177000 
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Table 55 (continued) 

12 3 5 130.310 1.418 2401 144000 

12 4 1 96.765 1.491 1838 170000 

12 4 2 110.270 1.448 2987 168000 

12 4 3 117.920 1.544 2343 175000 

12 4 4 126.950 1.451 1996 165000 

12 4 5 134.500 1.464 2077 162000 

12 5 1 100.520 1.509 2264 153000 

12 5 2 108.530 1.562 2032 190000 

12 5 3 115.810 1.444 2437 162000 

12 5 4 124.760 1.483 2031 164000 

12 5 5 133.270 1.502 2397 153000 

13 1 1 98.310 32.156 1627 204000 

13 1 2 109.240 23.552 1964 200000 

13 1 3 118.920 27.132 1688 195000 

13 1 4 129.720 32.659 2034 204000 

13 1 5 133.800 28.118 1932 187000 

13 2 1 97.783 1.274 2356 208000 

13 2 2 109.370 1.310 2712 218000 

13 2 3 115.410 1.258 2335 218000 

13 2 4 129.340 1.286 2514 178000 

13 2 5 130.330 1.324 1613 209000 

13 3 1 96.751 1.359 1582 209000 

13 3 2 109.600 1.331 1844 214000 

13 3 3 116.660 1.335 2765 208000 

13 3 4 126.160 1.284 2289 195000 

13 3 5 136.020 1.312 2602 182000 

13 4 1 97.002 1.334 1630 208000 

13 4 2 108.160 1.334 1551 213000 

13 4 3 116.120 1.319 1529 205000 

13 4 4 127.040 1.303 2210 188000 

13 4 5 132.460 1.360 1964 208000 

13 5 1 99.001 1.321 2235 208000 

13 5 2 112.490 1.303 2483 199000 

13 5 3 117.140 1.288 1689 205000 

13 5 4 125.850 1.345 2196 208000 

13 5 5 131.620 1.328 2322 200000 

19 1 1 155.760 361.310 872 745000 

19 1 2 164.730 361.410 928 731000 

19 1 3 153.520 361.290 783 766000 

19 1 4 158.380 361.310 932 725000 

19 1 5 167.420 361.320 1279 729000 

19 2 1 132.130 14.735 1649 723000 
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Table 55 (continued) 

19 2 2 140.110 14.946 1233 775000 

19 2 3 134.850 14.430 995 730000 

19 2 4 131.760 17.292 999 725000 

19 2 5 137.300 14.293 912 848000 

19 3 1 138.200 16.956 1489 755000 

19 3 2 140.060 17.551 1044 750000 

19 3 3 134.230 16.333 884 729000 

19 3 4 143.040 15.883 1694 712000 

19 3 5 138.060 17.959 1875 742000 

19 4 1 129.570 15.865 1282 703000 

19 4 2 157.260 16.776 1250 769000 

19 4 3 137.350 18.330 950 767000 

19 4 4 136.430 15.301 993 761000 

19 4 5 138.620 14.539 968 787000 

19 5 1 133.170 16.404 1024 790000 

19 5 2 148.380 17.761 1299 738000 

19 5 3 136.160 14.074 1454 699000 

19 5 4 131.120 16.620 953 855000 

19 5 5 141.710 16.967 876 774000 

20 1 1 128.050 289.190 362 745000 

20 1 2 147.880 333.870 689 731000 

20 1 3 129.430 305.710 365 766000 

20 1 4 131.890 360.420 377 725000 

20 1 5 137.850 319.420 464 729000 

20 2 1 128.050 289.190 362 844000 

20 2 2 147.880 333.870 689 815000 

20 2 3 129.430 305.710 365 876000 

20 2 4 131.890 360.420 377 843000 

20 2 5 137.850 319.420 464 855000 

20 3 1 130.000 307.820 374 839000 

20 3 2 149.100 322.280 499 829000 

20 3 3 144.310 281.170 728 821000 

20 3 4 133.560 360.410 430 838000 

20 3 5 133.240 295.170 362 944000 

20 4 1 136.100 334.800 387 919000 

20 4 2 143.970 317.310 418 934000 

20 4 3 141.030 332.200 380 964000 

20 4 4 147.630 360.460 559 893000 

20 4 5 151.070 310.930 444 803000 

20 5 1 148.560 337.860 444 846000 

20 5 2 161.340 351.480 547 746000 

20 5 3 146.450 286.740 446 841000 
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Table 55 (continued) 

20 5 4 152.590 360.440 590 805000 

20 5 5 162.000 328.240 716 818000 

21 1 1 169.100 361.390 1118 733000 

21 1 2 159.130 361.370 1611 715000 

21 1 3 160.520 361.620 1017 788000 

21 1 4 154.170 361.290 2273 697000 

21 1 5 154.730 361.290 1084 793000 

21 2 1 133.860 9.569 1291 775000 

21 2 2 135.330 9.063 1256 722000 

21 2 3 132.090 9.236 1242 728000 

21 2 4 148.370 11.518 1128 775000 

21 2 5 160.560 11.979 1650 717000 

21 3 1 129.880 9.912 1404 727000 

21 3 2 127.350 11.852 1026 716000 

21 3 3 131.710 9.661 1404 690000 

21 3 4 156.210 11.153 1523 693000 

21 3 5 150.300 11.410 1340 797000 

21 4 1 137.870 12.344 1622 706000 

21 4 2 146.400 10.822 1512 733000 

21 4 3 128.720 10.609 1222 742000 

21 4 4 135.670 10.455 1591 702000 

21 4 5 123.340 11.871 869 692000 

21 5 1 134.670 10.815 1581 707000 

21 5 2 132.150 11.121 979 778000 

21 5 3 129.040 12.275 1165 772000 

21 5 4 134.000 14.475 1483 734000 

21 5 5 135.220 11.375 1634 674000 

22 1 1 444.190 361.430 378 890000 

22 1 2 520.710 361.480 428 831000 

22 1 3 444.190 361.430 378 860000 

22 1 4 444.190 361.430 428 769000 

22 1 5 520.710 361.480 428 841000 

22 2 1 153.080 119.490 652 822000 

22 2 2 140.580 122.100 647 805000 

22 2 3 156.640 101.520 837 827000 

22 2 4 158.650 123.010 819 767000 

22 2 5 167.830 104.340 839 756000 

22 3 1 157.570 120.780 982 735000 

22 3 2 142.130 114.460 654 791000 

22 3 3 139.730 121.420 536 842000 

22 3 4 144.930 112.250 359 839000 

22 3 5 164.680 98.093 521 811000 
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Table 55 (continued) 

22 4 1 141.540 121.620 582 831000 

22 4 2 140.500 98.328 447 837000 

22 4 3 153.010 109.290 637 822000 

22 4 4 159.030 113.440 610 765000 

22 4 5 155.280 125.840 484 756000 

22 5 1 137.940 138.080 441 880000 

22 5 2 144.400 115.810 637 838000 

22 5 3 147.400 122.770 534 747000 

22 5 4 150.000 124.040 504 782000 

22 5 5 175.190 126.980 659 781000 

23 1 1 137.670 360.320 3865 805000 

23 1 2 134.410 360.500 3505 801000 

23 1 3 128.290 358.850 3509 863000 

23 1 4 133.020 310.940 3900 878000 

23 1 5 136.750 359.790 3535 836000 

23 2 1 134.810 2.940 4385 884000 

23 2 2 136.740 2.704 3211 840000 

23 2 3 145.190 2.622 5601 875000 

23 2 4 147.190 2.840 2727 924000 

23 2 5 159.410 2.770 5093 890000 

23 3 1 138.850 2.936 3652 874000 

23 3 2 138.620 2.808 6122 820000 

23 3 3 143.820 2.874 2770 861000 

23 3 4 148.390 2.974 4347 888000 

23 3 5 153.990 2.501 3257 915000 

23 4 1 135.380 2.835 2483 855000 

23 4 2 136.450 2.774 6187 866000 

23 4 3 141.370 2.760 2164 870000 

23 4 4 155.330 2.739 3396 882000 

23 4 5 156.490 2.782 4363 868000 

23 5 1 139.340 3.031 6800 828000 

23 5 2 136.400 2.924 3695 848000 

23 5 3 144.630 2.778 3894 840000 

23 5 4 147.150 2.550 3579 857000 

23 5 5 153.850 2.650 2875 869000 

24 1 1 262.230 361.490 800 902000 

24 1 2 421.850 361.480 896 933000 

24 1 3 327.770 361.480 875 1080000 

24 1 4 218.420 361.480 825 998000 

24 1 5 249.380 361.430 1290 988000 

24 2 1 154.980 17.209 1491 972000 

24 2 2 144.100 16.293 1664 1010000 
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Table 55 (continued) 

24 2 3 156.310 15.699 1081 982000 

24 2 4 153.060 15.913 881 1030000 

24 2 5 155.920 16.095 1029 1060000 

24 3 1 153.100 17.820 1952 976000 

24 3 2 144.920 14.214 1186 959000 

24 3 3 165.050 14.617 1479 924000 

24 3 4 156.460 14.475 836 964000 

24 3 5 162.660 14.869 1433 1060000 

24 4 1 143.210 16.762 1961 975000 

24 4 2 150.410 14.299 2169 983000 

24 4 3 169.130 14.217 2735 1020000 

24 4 4 155.140 14.112 2120 984000 

24 4 5 158.630 16.790 1113 1010000 

24 5 1 143.600 15.599 1032 1070000 

24 5 2 150.560 17.447 2629 931000 

24 5 3 165.200 16.577 3335 909000 

24 5 4 157.520 14.981 2409 1000000 

24 5 5 159.430 16.232 1265 943000 

25 1 1 129.640 201.840 3743 864000 

25 1 2 136.570 215.470 4948 873000 

25 1 3 133.540 214.320 5357 818000 

25 1 4 134.960 210.390 3523 860000 

25 1 5 132.040 215.840 3512 856000 

25 2 1 132.780 2.152 3788 843000 

25 2 2 131.260 1.978 4199 850000 

25 2 3 137.950 2.074 3700 869000 

25 2 4 146.600 2.002 4456 843000 

25 2 5 153.470 2.044 5157 852000 

25 3 1 135.130 1.983 5035 836000 

25 3 2 134.110 1.860 3323 848000 

25 3 3 138.520 2.002 3810 921000 

25 3 4 151.850 2.053 6291 829000 

25 3 5 151.800 2.048 4935 827000 

25 4 1 137.970 2.219 4900 842000 

25 4 2 135.610 1.928 5207 851000 

25 4 3 139.360 1.872 4252 827000 

25 4 4 152.880 2.011 5726 849000 

25 4 5 149.870 2.040 4001 859000 

25 5 1 137.700 2.046 5680 880000 

25 5 2 134.050 1.857 3653 924000 

25 5 3 143.090 1.922 5368 848000 

25 5 4 149.000 2.060 6508 853000 
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25 5 5 152.910 1.982 4837 860000 

26 1 1 285.170 361.500 2199 970000 

26 1 2 458.790 361.490 859 1010000 

26 1 3 227.050 361.410 1911 1060000 

26 1 4 299.730 361.370 1303 1000000 

26 1 5 254.210 361.430 1602 911000 

26 2 1 150.030 22.208 2734 993000 

26 2 2 140.650 24.937 1281 1030000 

26 2 3 154.490 23.040 2274 931000 

26 2 4 160.840 25.497 1858 1030000 

26 2 5 167.260 18.980 2304 979000 

26 3 1 146.420 23.595 1673 938000 

26 3 2 143.640 23.557 1493 962000 

26 3 3 148.630 19.866 1490 1000000 

26 3 4 157.690 18.710 1436 1000000 

26 3 5 163.090 20.105 2622 957000 

26 4 1 156.870 18.715 2266 890000 

26 4 2 151.010 18.898 2100 973000 

26 4 3 153.460 16.933 2366 970000 

26 4 4 162.200 19.545 1571 1020000 

26 4 5 166.790 18.561 1502 996000 

26 5 1 149.070 17.600 1301 1040000 

26 5 2 146.260 17.910 1570 1010000 

26 5 3 144.950 18.704 1016 1020000 

26 5 4 165.810 18.075 3104 982000 

26 5 5 163.440 19.651 1638 989000 
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G.3 Experiment II 

Table 56 – Population mean and optimal solution objective function values for the 

various approaches 

Problem  Optimal Solution    Population Mean Solutions 

    R RA A   R RA A 

1  78751 98424 92673  294000 314200 290600 

2  85895 132594 92056  315400 499000 315800 

3  88070 120400 95301  358200 373600 361200 

4  83630 109011 88043  292400 299000 305000 

5  82041 104247 88411  319400 328000 315800 

6  116200 133989 129800  340600 391600 332600 

7  188600 183750 166000  374000 377600 352800 

8  149000 164600 141600  350600 342200 334000 

9  181800 182000 157800  346200 331000 322800 

10  122800 121600 125600  366600 380000 358800 

11  159800 142800 142000  378600 363400 367600 

12  133400 138800 141400  354600 352600 355600 

13  159000 162400 149600  376000 367000 359200 

14  162600 186800 163800  416400 1438000 398000 

15  161200 235500 171200  434200 1404000 406600 

16  168200 238750 171000  468400 804200 471400 

17  156800 170400 171200  415600 399000 400200 

18  175600 217000 159600  459000 777400 418400 

19  532200 455800 430800  701600 1219000 626400 

20  596000 532800 509400  920600 1074400 802200 

21  507200 445000 419400  666600 587600 600800 

22  609400 533200 502400  908200 797000 811200 

23  423200 392000 359200  616400 822600 558000 

24  475400 435500 398000  926400 1382200 777400 

25  410000 367250 333600  584800 1319000 523200 

26  469600 428500 387800  791000 1278000 774800 

27  339200 448200 330000  798800 834200 766400 

28  330600 407200 324800  855600 820800 807200 

29  307800 380200 322200  767000 712000 807800 

30  298000 367200 307800  753400 750400 766400 

31  305200 410600 333800  715200 676600 818600 

32  457200 480200 437000  907400 849400 884800 

33  692600 638800 557400  1024600 935600 911800 

34  518400 585200 493200  951600 910400 860200 

35  632600 591600 563600  927000 869800 927200 

36  422400 476400 438800  831400 755600 945000 



 543 

Table 56 (continued) 

37  553800 528800 512400  928600 799200 949000 

38  458800 529600 441800  910200 825200 864400 

39  559000 557800 530800  961600 846200 943600 

40  744200 798600 1020000  1430000  1593333 

41  650200 1956200 952333  1286000  1810000 

42  663400 742200 844000  1276000  1900000 

43  682600 784200 907667  1268000  1596667 

44  598400 605000 763333  1160000  1463333 

45  1710000 2693333 1486667  2116000  1953333 

46  1916000 1726000 1593333  2380000  2163333 

47  1644000 1476000 1473333  2020000  1983333 

48  1948000 1664000 1586667  2344000  2046667 

49  1370000 1318000 1210000  1742000  1773333 

50  1534000 1336667 1256667  2108000  1960000 

51  1322000 1186000 1123333  1716000  1606667 

52   1516000 1364000 1280000   2078000   1683333 

 

Table 57 – Solution times and unique designs generated for the various approaches 

Problem  Solution Times    Unique Solutions   

    R RA A   R RA A 

1  115 na 807  4751 na 3970 

2  120 na 851  3692 na 4104 

3  121 na 738  2312 na 2514 

4  121 na 778  3507 na 3355 

5  120 na 883  2598 na 2581 

6  119 na 537  3431 na 2844 

7  119 na 612  2155 na 2278 

8  119 na 860  2490 na 3014 

9  118 na 603  2705 na 2353 

10  122 na 754  2069 na 2355 

11  119 na 623  1686 na 1731 

12  121 na 735  2408 na 2083 

13  119 na 550  2033 na 2006 

14  133 na 10716  9731 na 8283 

15  138 na 7603  5698 na 6797 

16  139 na 5951  4917 na 4324 

17  137 na 7749  8466 na 7049 

18  141 na 5767  4545 na 5372 

19  140 na 5992  8497 na 7195 

20  143 na 2586  3723 na 4541 
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Table 57 (continued) 

21  141 na 5636  8947 na 6158 

22  143 na 2100  3225 na 3145 

23  139 na 5627  5602 na 5272 

24  141 na 2450  1857 na 2106 

25  136 na 5852  7412 na 5323 

26  147 na 2252  2645 na 2321 

27  222 na 3306  13540 na 11201 

28  224 na 3299  8839 na 9481 

29  235 na 2607  7881 na 6667 

30  228 na 3317  8987 na 9143 

31  237 na 2245  7791 na 5736 

32  231 na 2534  8151 na 9711 

33  230 na 1692  10460 na 9980 

34  225 na 2350  7040 na 9964 

35  225 na 1682  9319 na 8039 

36  231 na 1976  8692 na 5650 

37  232 na 1720  6941 na 6120 

38  242 na 2051  6502 na 8006 

39  245 na 1923  6457 na 6431 

40  308 na 12971  15625 na 3386 

41  316 na 12742  12810 na 3526 

42  323 na 12645  8448 na 2930 

43  314 na 12882  13687 na 4019 

44  320 na 12688  10713 na 6170 

45  321 na 11932  14140 na 10957 

46  348 na 8201  9859 na 8037 

47  316 na 12741  15031 na 7776 

48  344 na 5570  9591 na 7937 

49  343 na 12678  12004 na 7715 

50  343 na 7287  5046 na 4803 

51  333 na 12762  13252 na 8631 

52   340 na 9759   6088 na 6693 
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G.4 Experiment III 

Table 58 – Solution times and optimal value for FSA on and off approaches 

Problem  Optimal Solution  Solution Times 

    FSA On FSA Off   FSA On FSA Off 

1  77596 78751  2259 115 

2  75141 85895  2266 120 

3  78166 88070  2220 121 

4  73081 83630  2202 121 

5  71569 82041  2205 120 

6  107600 116200  2250 119 

7  185600 188600  2294 119 

8  122000 149000  2281 119 

9  176400 181800  2325 118 

10  109600 122800  2279 122 

11  151200 159800  2321 119 

12  110400 133400  2275 121 

13  161000 159000  2329 119 

14  150400 162600  3454 133 

15  171800 161200  3451 138 

16  143800 168200  3434 139 

17  152000 156800  3401 137 

18  156600 175600  3319 141 

19  541800 532200  3388 140 

20  595200 596000  3366 143 

21  511200 507200  3634 141 

22  601600 609400  3599 143 

23  433400 423200  3593 139 

24  462000 475400  3574 141 

25  403800 410000  3551 136 

26  473600 469600  3520 147 

27  322600 339200  12655 222 

28  289200 330600  12512 224 

29  284600 307800  12060 235 

30  301800 298000  12610 228 

31  304200 305200  12661 237 

32  470000 457200  12677 231 

33  688600 692600  12659 230 

34  501200 518400  12688 225 

35  642400 632600  12741 225 

36  395800 422400  12213 231 

37  582400 553800  12709 232 
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Table 58 (continued) 

38  454600 458800  12654 242 

39  574200 559000  12670 245 

40  715000 744200  12782 308 

41  578400 650200  12675 316 

42  563400 663400  12692 323 

43  568200 682600  12733 314 

44  581600 598400  12764 320 

45  1688000 1710000  12706 321 

46  1890000 1916000  12872 348 

47  1618000 1644000  12776 316 

48  1918000 1948000  12961 344 

49  1350000 1370000  12705 343 

50  1480000 1535000  13105 343 

51  1294000 1322000  12680 333 

52   1468000 1516000  12838 340 

 

Table 59 – Time to optimality and time per generations for FSA approaches 

Problem  Time to Optimal (sec)  Time/Generation (sec) 

    FSA On FSA Off   FSA On FSA Off 

1  1360 80  11.29 0.58 

2  1312 85  11.33 0.61 

3  1507 76  11.10 0.62 

4  1232 88  11.01 0.61 

5  1804 74  11.03 0.61 

6  1579 97  11.25 0.61 

7  1552 70  11.47 0.61 

8  1251 68  11.40 0.60 

9  1664 68  11.63 0.60 

10  1418 69  11.40 0.62 

11  1273 63  11.61 0.61 

12  1391 72  11.38 0.61 

13  1299 65  11.65 0.60 

14  3082 126  17.27 0.68 

15  2954 129  17.26 0.70 

16  2775 134  17.17 0.71 

17  2706 130  17.01 0.70 

18  2786 126  16.60 0.72 

19  2497 126  16.94 0.71 

20  2509 107  16.83 0.75 

21  2952 121  18.17 0.72 
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Table 59 (continued) 

22  2485 119  17.99 0.75 

23  2549 107  17.96 0.71 

24  2351 117  17.87 0.79 

25  2893 110  17.76 0.69 

26  2690 117  17.60 0.79 

27  11667 204  98.53 1.13 

28  9816 193  64.27 1.14 

29  9475 214  60.30 1.20 

30  9614 211  69.34 1.16 

31  9995 211  65.00 1.21 

32  10014 203  79.64 1.18 

33  10754 189  98.93 1.17 

34  10275 171  87.39 1.14 

35  11333 198  103.77 1.15 

36  8106 213  61.07 1.18 

37  9261 171  82.25 1.18 

38  8737 180  72.93 1.23 

39  10434 206  88.12 1.25 

40  12131 305  163.02 1.56 

41  12001 295  101.43 1.62 

42  12159 311  96.64 1.66 

43  12227 305  99.07 1.60 

44  12059 299  107.76 1.63 

45  11268 294  109.12 1.64 

46  12355 350  106.46 1.87 

47  11825 296  115.12 1.61 

48  12296 339  108.37 1.84 

49  11574 298  107.13 1.76 

50  11648 381  102.26 2.14 

51  12173 303  107.16 1.70 

52   10477 344  97.67 1.96 
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Table 60 – Time to FSA off optimality for the FSA on approach 

Problem  Time (sec) 

1  1627 

2  1257 

3  1346 

4  1244 

5  1426 

6  1435 

7  1627 

8  506 

9  1552 

10  1362 

11  1213 

12  407 

13  1804 

14  2501 

15  3266 

16  1770 

17  3000 

18  2368 

19  2965 

20  2569 

21  3162 

22  2236 

23  3293 

24  2252 

25  2423 

26  2602 

27  10608 

28  7974 

29  8074 

30  10029 

31  8270 

32  11290 

33  10864 

34  9443 

35  11053 

36  6472 

37  10075 

38  9666 

39  11562 

40  10652 

41  9847 
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Table 60 (continued) 

42  7903 

43  8739 

44  11342 

45  10692 

46  11058 

47  10620 

48  9428 

49  9397 

50  7652 

51  9051 

52   5998 
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G.5 Experiment IV 

Table 61 - L18 orthogonal array leveraged for parameter screening in Stage One 

 Control Factors 

Exp. No. A B C D E F G 

1 1 1 1 1 2 2 1 

2 1 2 2 2 1 1 1 

3 1 1 2 2 1 1 2 

4 1 2 1 1 2 2 2 

5 1 1 2 1 1 2 3 

6 1 2 1 2 2 1 3 

7 2 1 1 2 2 1 1 

8 2 2 2 1 1 2 1 

9 2 1 1 2 1 2 2 

10 2 2 2 1 2 1 2 

11 2 1 2 1 2 1 3 

12 2 2 1 2 1 2 3 

13 3 1 2 2 2 2 1 

14 3 2 1 1 1 1 1 

15 3 1 1 1 1 1 2 

16 3 2 2 2 2 2 2 

17 3 1 1 1 1 1 3 

18 3 2 2 2 2 2 3 

 

Table 62 – RDP and S/N ratios for the optimal objective value Stage One results 

across the 26 SLPs 

Exp No.   Witness               S/N Ratio 

    RPD 1 RPD 2 RPD 3 … RPD 24 RPD 25 RPD 26     

1  0.404 0.151 0.388 … 0.111 0.071 0.100  9.250 

2  0.327 0.798 0.573 … 0.142 0.088 0.050  8.669 

3  0.437 0.383 0.647 … 0.099 0.076 0.066  8.819 

4  0.241 0.609 0.796 … 0.078 0.153 0.076  9.991 
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Table 62 (continued) 

5  0.492 0.507 0.394 … 0.049 0.155 0.230  9.546 

6  0.046 0.432 0.881 … 0.047 0.009 0.075  10.570 

7  0.582 0.129 0.300 … 0.059 0.052 0.036  10.955 

8  0.364 0.568 0.390 … 0.123 0.130 0.125  10.850 

9  0.567 0.568 0.343 … 0.045 0.073 0.050  11.400 

10  0.315 0.317 0.572 … 0.113 0.091 0.063  11.134 

11  0.224 0.269 0.209 … 0.079 0.092 0.077  13.325 

12  0.510 0.201 0.846 … 0.086 0.055 0.053  10.611 

13  0.280 0.279 0.343 … 0.055 0.068 0.063  12.023 

14  0.316 0.352 0.424 … 0.076 0.027 0.042  11.612 

15  0.087 0.148 0.293 … 0.042 0.047 0.068  15.846 

16  0.326 0.337 0.318 … 0.033 0.010 0.062  12.914 

17  0.249 0.093 0.333 … 0.037 0.054 0.052  13.101 

18   0.252 0.291 0.246 … 0.048 0.049 0.021   16.753 

 

Table 63 – RDP and S/N ratios for the solution time Stage One results across the 26 

SLPs 

Exp No.   Witness               S/N Ratio 

    RPD 1 RPD 2 RPD 3 … RPD 24 RPD 25 RPD 26     

1  0.637 0.092 0.187 … 0.276 0.272 0.335  10.126 

2  0.211 0.065 0.166 … 0.243 0.287 0.342  9.086 

3  0.841 0.705 0.843 … 0.922 0.949 1.027  -0.569 

4  0.834 0.732 0.896 … 0.986 1.031 1.082  -0.780 

5  1.835 1.484 1.615 … 1.577 1.776 1.777  -5.434 

6  1.927 1.552 1.705 … 1.649 1.794 1.825  -5.698 

7  1.373 1.077 1.107 … 0.768 0.745 0.788  0.025 

8  1.360 1.050 1.096 … 0.721 0.739 0.723  0.350 

9  2.864 2.417 2.397 … 1.572 1.678 1.649  -6.320 

10  2.879 2.507 2.377 … 1.542 1.653 1.614  -6.272 

11  4.589 3.980 3.809 … 2.405 2.643 2.574  -10.221 

12  4.615 4.051 3.776 … 2.297 2.617 2.540  -10.128 

13  3.733 3.184 2.980 … 1.563 1.454 1.633  -6.863 

14  3.692 3.151 2.965 … 1.407 1.435 1.472  -6.609 

15  6.529 5.618 5.424 … 2.675 2.697 2.677  -11.819 

16  6.617 5.679 5.569 … 2.764 2.744 2.842  -11.963 

17  9.688 8.551 7.835 … 4.029 4.056 4.039  -15.319 

18   10.021 8.733 8.096 … 4.234 4.313 4.363   -15.715 
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Table 64 – RDP and S/N ratios for the unique solution Stage One results across the 

26 SLPs 

Exp No.   Witness               S/N Ratio 

    RPD 1 RPD 2 RPD 3 … RPD 24 RPD 25 RPD 26     

1  0.376 1.305 0.148 … 0.262 0.553 3.442  -15.751 

2  0.706 0.158 0.434 … 1.797 0.930 5.391  -8.543 

3  0.707 1.614 0.266 … 2.839 1.726 4.615  -11.349 

4  0.956 1.698 0.603 … 1.173 1.341 6.666  -6.655 

5  0.006 0.657 0.029 … 0.157 0.058 0.647  -34.617 

6  1.864 1.574 1.179 … 2.561 2.770 7.538  3.336 

7  3.946 4.313 3.522 … 8.183 5.539 23.121  11.627 

8  0.905 1.510 1.573 … 1.065 2.551 4.825  3.206 

9  2.957 3.014 2.077 … 3.165 3.938 26.100  9.595 

10  2.740 5.445 2.421 … 1.280 3.230 10.919  9.218 

11  3.455 7.034 4.985 … 3.632 4.266 6.925  11.448 

12  3.940 4.670 2.362 … 5.406 5.349 23.394  11.265 

13  8.351 14.844 9.190 … 5.904 12.789 37.075  19.012 

14  4.885 6.881 5.829 … 5.239 7.959 15.958  13.378 

15  5.794 8.476 6.242 … 11.509 10.567 14.477  14.904 

16  13.482 15.424 8.497 … 17.606 18.072 60.440  21.187 

17  4.197 9.362 4.281 … 18.986 8.051 18.675  14.520 

18   8.506 18.454 12.509 … 14.239 20.652 43.053   22.008 

 

Table 65 – RDP and S/N ratios for the optimal objective value Stage One results 

across the 26 DLPs 

Exp No.   Witness               S/N Ratio 

    RPD 27 RPD 28 RPD 29 … RPD 50 RPD 51 RPD 52     

1  0.659 0.359 0.669 … 0.110 0.070 0.138  8.836 

2  0.844 0.668 0.730 … 0.075 0.070 0.116  7.965 

3  0.134 0.446 0.529 … 0.075 0.102 0.079  10.365 

4  0.270 0.511 0.195 … 0.086 0.084 0.146  11.686 

5  0.241 0.597 0.440 … 0.073 0.012 0.089  11.356 

6  0.046 0.591 0.473 … 0.056 0.059 0.052  11.297 

7  0.538 0.806 0.575 … 0.119 0.144 0.118  8.085 

8  0.314 0.517 0.460 … 0.081 0.084 0.118  10.686 

9  0.362 0.469 0.418 … 0.071 0.064 0.167  11.235 

10  0.544 0.426 0.186 … 0.066 0.016 0.051  12.512 

11  0.241 0.288 0.345 … 0.045 0.050 0.033  13.948 

12  0.347 0.357 0.131 … 0.048 0.054 0.072  12.644 

13  0.877 0.441 0.673 … 0.107 0.067 0.094  8.355 

14  0.334 0.480 0.452 … 0.086 0.048 0.078  11.282 
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Table 65 (continued) 

15  0.217 0.120 0.637 … 0.036 0.016 0.108  13.387 

16  0.196 0.639 0.370 … 0.066 0.064 0.091  11.028 

17  0.096 0.182 0.336 … 0.053 0.029 0.061  15.859 

18   0.200 0.164 0.133 … 0.018 0.050 0.038   15.243 

 

Table 66 – RDP and S/N ratios for the solution time Stage One results across the 26 

DLPs 

Exp No.   Witness               S/N Ratio 

    RPD 27 RPD 28 RPD 29 … RPD 50 RPD 51 RPD 52     

1  0.285 0.858 0.788 … 0.554 0.536 0.396  1.880 

2  0.249 0.714 0.874 … 0.623 0.578 0.429  4.989 

3  0.880 1.871 1.787 … 1.362 0.990 1.120  -2.171 

4  0.919 1.723 1.684 … 1.270 1.019 1.026  -2.528 

5  1.556 2.401 2.625 … 1.971 1.851 1.629  -5.893 

6  1.595 2.527 2.650 … 2.041 1.935 1.702  -6.233 

7  0.688 1.732 2.046 … 1.657 1.246 1.317  -3.579 

8  0.691 1.661 1.934 … 1.469 1.150 1.182  -2.799 

9  1.499 3.270 3.713 … 2.716 2.231 2.232  -8.599 

10  1.493 3.244 3.410 … 2.420 2.227 2.016  -8.356 

11  2.340 4.687 4.792 … 3.470 3.276 3.107  -11.590 

12  2.389 4.724 5.023 … 3.676 3.467 3.056  -11.842 

13  1.487 3.746 4.702 … 3.852 2.800 3.324  -10.672 

14  1.433 3.535 4.194 … 3.013 2.534 2.641  -9.892 

15  2.667 5.948 6.628 … 4.597 4.219 3.989  -14.272 

16  2.705 6.458 7.138 … 5.518 4.560 4.903  -14.941 

17  3.991 8.404 9.105 … 6.431 6.007 5.597  -17.362 

18   4.217 8.077 9.665 … 7.579 6.604 5.929   -17.915 

 

Table 67 – RDP and S/N ratios for the unique solution Stage One results across the 

26 DLPs 

Exp No.   Witness               S/N Ratio 

    RPD 27 RPD 28 RPD 29 … RPD 50 RPD 51 RPD 52     

1  0.034 0.020 0.363 … 0.195 0.111 0.113  -38.268 

2  0.268 0.342 0.427 … 1.110 0.464 0.554  -11.853 

3  0.571 0.414 0.234 … 3.946 0.759 0.846  -12.260 

4  0.538 0.297 0.316 … 2.021 0.599 0.244  -12.797 

5  0.134 0.088 0.213 … 2.300 1.528 0.481  -14.139 

6  1.352 1.372 0.741 … 2.611 1.573 0.569  1.526 



 554 

Table 67 (continued) 

7  1.534 1.699 2.037 … 2.943 1.700 1.259  5.118 

8  1.295 1.357 1.367 … 4.507 1.469 1.184  2.955 

9  2.554 2.729 2.839 … 3.615 3.089 2.345  8.983 

10  2.558 2.404 1.831 … 2.808 2.332 2.731  7.174 

11  2.652 3.840 1.106 … 6.100 4.255 3.319  9.106 

12  3.859 3.760 1.340 … 13.157 4.095 4.657  10.492 

13  4.167 4.522 6.834 … 13.392 4.987 7.832  14.590 

14  3.468 2.971 2.785 … 3.659 3.545 4.677  10.897 

15  5.404 4.079 3.540 … 5.503 4.842 3.367  13.214 

16  6.629 7.147 6.424 … 13.627 7.934 8.167  17.725 

17  5.831 3.869 2.318 … 12.990 6.799 4.083  13.733 

18   9.219 7.891 9.815 … 23.258 10.598 15.938   20.178 

 

Table 68 – S/N ratios for the Stage One metrics of interest 

Exp. No.   S/N Ratios (26 SLPs)   S/N Ratios (26 DLPs)   

    Objective Time Unique   Objective Time Unique 

1  9.250 10.126 -15.751  8.836 1.880 -38.268 

2  8.669 9.086 -8.543  7.965 4.989 -11.853 

3  8.819 -0.569 -11.349  10.365 -2.171 -12.260 

4  9.991 -0.780 -6.655  11.686 -2.528 -12.797 

5  9.546 -5.434 -34.617  11.356 -5.893 -14.139 

6  10.570 -5.698 3.336  11.297 -6.233 1.526 

7  10.955 0.025 11.627  8.085 -3.579 5.118 

8  10.850 0.350 3.206  10.686 -2.799 2.955 

9  11.400 -6.320 9.595  11.235 -8.599 8.983 

10  11.134 -6.272 9.218  12.512 -8.356 7.174 

11  13.325 -10.221 11.448  13.948 -11.590 9.106 

12  10.611 -10.128 11.265  12.644 -11.842 10.492 

13  12.023 -6.863 19.012  8.355 -10.672 14.590 

14  11.612 -6.609 13.378  11.282 -9.892 10.897 

15  15.846 -11.819 14.904  13.387 -14.272 13.214 
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Table 68 (continued) 

16  12.914 -11.963 21.187  11.028 -14.941 17.725 

17  13.101 -15.319 14.520  15.859 -17.362 13.733 

18   16.753 -15.715 22.008   15.243 -17.915 20.178 
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Figure 84 – Mean solution time S/N ratio for each level of the control factors for the 

26 SLPs in Stage One 
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Figure 85 – Mean unique solutions S/N ratio for each level of the control factors for 

the 26 SLPs in Stage One 
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Figure 86 – Mean solution time S/N ratio for each level of the control factors for the 

26 DLPs in Stage One 
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Figure 87 – Mean unique solutions S/N ratio for each level of the control factors for 

the 26 DLPs in Stage One 
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Table 69 – ANOVA of the optimal objective S/N ratio for the SLPs in Stage One 

Factor    ANOVA Statistics       

Symbol Description   DOF SS F-ratio P-value Pct. Contr. 

A Population Size  2 53.960 12.601 0.003 64.436 

B Percent Elite  1 0.136 0.064 0.807 0.163 

C Percent Jumping Gene  1 0.013 0.006 0.940 0.015 

D Percent Crossover  1 0.328 0.153 0.706 0.391 

E Percent Mutation  1 2.604 1.216 0.302 3.109 

F Percent Feasible Int. Pop.  1 0.061 0.029 0.870 0.073 

G Number of Generations  2 9.512 2.221 0.171 11.359 

Error   8 17.128   20.454 

        

Sum     17 83.742     100 

 

Table 70 – ANOVA of the optimal objective S/N ratio for the DLPs in Stage One 

Factor    ANOVA Statistics       

Symbol Description   DOF SS F-ratio P-value Pct. Contr. 

A Population Size  2 15.592 8.188 0.012 17.729 

B Percent Elite  1 1.376 1.446 0.264 1.565 

C Percent Jumping Gene  1 0.108 0.113 0.745 0.123 

D Percent Crossover  1 9.334 9.804 0.014 10.614 

E Percent Mutation  1 0.327 0.344 0.574 0.372 

F Percent Feasible Int. Pop.  1 0.282 0.296 0.601 0.321 

G Number of Generations  2 53.310 27.996 0.000 60.616 

Error   8 7.617   8.661 

        

Sum     17 87.947     100 
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G.6 Experiment V 

Table 71 - L18 orthogonal array leveraged for parameter screening in Stage Two 

 Control Factors 

Exp. No. A B C D E F G H I J 

1 1 1 1 1 1 2 2 2 1 1 

2 1 1 2 2 2 1 1 1 1 1 

3 1 2 1 2 2 1 1 2 3 3 

4 1 2 2 1 1 2 2 1 3 3 

5 1 3 1 2 1 1 2 1 2 2 

6 1 3 2 1 2 2 1 2 2 2 

7 2 1 1 1 2 2 1 1 3 2 

8 2 1 2 2 1 1 2 2 3 2 

9 2 2 1 1 2 1 2 2 2 1 

10 2 2 2 2 1 2 1 1 2 1 

11 2 3 1 2 1 2 1 2 1 3 

12 2 3 2 1 2 1 2 1 1 3 

13 3 1 1 2 2 2 2 1 2 3 

14 3 1 2 1 1 1 1 2 2 3 

15 3 2 1 1 1 1 1 1 1 2 

16 3 2 2 2 2 2 2 2 1 2 

17 3 3 1 1 1 1 1 1 3 1 

18 3 3 2 2 2 2 2 2 3 1 

 

Table 72 – RDP and S/N ratios for the optimal objective value Stage Two results 

across the 26 SLPs 

Exp. No.   Witness               S/N Ratio 

    RPD 1 RPD 2 RPD 3 … RPD 24 RPD 25 RPD 26     

1  0.227 0.142 0.139 … 0.029 0.031 0.018  21.410 

2  0.262 0.111 0.139 … 0.030 0.035 0.021  17.853 

3  0.238 0.142 0.139 … 0.016 0.034 0.010  18.033 

4  0.194 0.129 0.139 … 0.023 0.034 0.025  18.851 
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Table 72 (continued) 

5  0.223 0.139 0.111 … 0.030 0.027 0.026  18.686 

6  0.171 0.140 0.139 … 0.017 0.022 0.014  18.960 

7  0.191 0.124 0.139 … 0.020 0.020 0.021  19.128 

8  0.231 0.140 0.139 … 0.016 0.032 0.016  19.033 

9  0.219 0.128 0.139 … 0.018 0.028 0.024  19.591 

10  0.225 0.123 0.139 … 0.016 0.028 0.020  19.443 

11  0.244 0.103 0.139 … 0.021 0.031 0.015  19.277 

12  0.210 0.142 0.132 … 0.022 0.020 0.024  19.299 

13  0.216 0.125 0.139 … 0.012 0.023 0.014  18.975 

14  0.200 0.091 0.139 … 0.016 0.020 0.016  19.547 

15  0.181 0.124 0.139 … 0.016 0.018 0.022  19.860 

16  0.209 0.096 0.139 … 0.016 0.024 0.023  19.788 

17  0.190 0.135 0.139 … 0.006 0.031 0.006  20.232 

18   0.211 0.117 0.119 … 0.011 0.024 0.014   20.433 

 

Table 73 – RDP and S/N ratios for the optimal objective value Stage Two results 

across the 26 DLPs 

Exp. No.   Witness               S/N Ratio 

    RPD 27 RPD 28 RPD 29 … RPD 50 RPD 51 RPD 52     

1  0.045 0.063 0.181 … 0.014 0.140 0.072  20.752 

2  0.045 0.063 0.189 … 0.019 0.152 0.117  20.040 

3  0.045 0.063 0.085 … 0.001 0.109 0.110  22.369 

4  0.045 0.063 0.130 … 0.003 0.099 0.057  21.762 

5  0.045 0.056 0.197 … 0.006 0.118 0.077  20.863 

6  0.045 0.059 0.132 … 0.012 0.124 0.077  22.171 

7  0.045 0.063 0.138 … 0.010 0.113 0.098  21.465 

8  0.045 0.050 0.098 … 0.007 0.126 0.063  22.691 

9  0.043 0.063 0.048 … 0.006 0.123 0.057  23.097 

10  0.045 0.063 0.140 … 0.008 0.119 0.104  21.604 

11  0.045 0.062 0.026 … 0.004 0.085 0.087  23.276 

12  0.045 0.063 0.118 … 0.005 0.131 0.089  22.694 

13  0.045 0.063 0.153 … 0.006 0.119 0.079  21.896 

14  0.036 0.063 0.023 … 0.006 0.136 0.072  23.954 

15  0.045 0.063 0.159 … 0.010 0.119 0.052  21.836 

16  0.045 0.063 0.065 … 0.003 0.099 0.077  23.879 

17  0.045 0.063 0.050 … 0.002 0.125 0.050  23.176 

18   0.045 0.063 0.021 … 0.002 0.090 0.037   24.941 
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Table 74 – S/N ratios optimal objective metric in Stage Two 

Exp. No.   S/N Ratios (26 SLPs)   S/N Ratios (13 DLPs) 

    Objective   Objective 

1  21.410  20.752 

2  17.853  20.040 

3  18.033  22.369 

4  18.851  21.762 

5  18.686  20.863 

6  18.960  22.171 

7  19.128  21.465 

8  19.033  22.691 

9  19.591  23.097 

10  19.443  21.604 

11  19.277  23.276 

12  19.299  22.694 

13  18.975  21.896 

14  19.547  23.954 

15  19.860  21.836 

16  19.788  23.879 

17  20.232  23.176 

18   20.433   24.941 

 

Table 75 – ANOVA of the optimal objective S/N ratio for the SLPs in Stage Two 

Factor    ANOVA Statistics       

Symbol Description   DOF SS F-ratio P-value Pct. Contr. 

A Population Size (1 | 3)  2 2.151 3.577 0.161 17.449 

B Population Size (2 | M)  2 0.154 0.256 0.789 1.250 

C Pct. Jmp. Gene (1 | 2 | 3 | M)  1 0.265 0.881 0.417 2.149 

D Pct. Crossover (1 | 2 | 3)  1 1.931 6.422 0.085 15.662 

E Pct. Crossover (M)  1 1.232 4.097 0.136 9.992 
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Table 75 (continued) 

F Pct. Mutation (1 | 2 | 3)  1 1.149 3.822 0.146 9.321 

G Pct. Mutation (M)  1 0.938 3.121 0.176 7.611 

H Iso. Generations (1 | 2 | 3)  1 0.944 3.141 0.175 7.660 

I Merged Generations (M)  2 0.480 0.798 0.527 3.892 

J Migration Rate  2 2.182 3.628 0.158 17.696 

Error   3 0.902   7.316 

        

Sum     17 12.329     100 

 

Table 76 – ANOVA of the optimal objective S/N ratio for the DLPs in Stage Two 

Factor    ANOVA Statistics       

Symbol Description   DOF SS F-ratio P-value Pct. Contr. 

A Population Size (1 | 3)  2 11.571 45.483 0.006 45.625 

B Population Size (2 | M)  2 3.370 13.246 0.032 13.288 

C Pct. Jmp. Gene (1 | 2 | 3 | M)  1 0.735 5.781 0.096 2.900 

D Pct. Crossover (1 | 2 | 3)  1 0.074 0.581 0.501 0.291 

E Pct. Crossover (M)  1 0.059 0.467 0.544 0.234 

F Pct. Mutation (1 | 2 | 3)  1 0.031 0.241 0.657 0.121 

G Pct. Mutation (M)  1 0.065 0.512 0.526 0.257 

H Iso. Generations (1 | 2 | 3)  1 6.861 53.934 0.005 27.051 

I Merged Generations (M)  2 1.366 5.370 0.102 5.387 

J Migration Rate  2 0.847 3.331 0.173 3.341 

Error   3 0.382   1.505 

        

Sum     17 25.361     100 
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G.7 Experiment VI 

G.7.1 Initial Solution Observations 

After an initial testing of the concepts had been performed, a few important observations, 

which hadn’t been observed before, were made regarding the performance of the 

developed FSPPM. Though the method performed well under the conditions it was tested 

for in the 52 Problem Test Set, its limitations became more noticeable while tackling the 

complex case layouts of the case study, which had more diverse layout characteristics. 

With some constrained objects in the space (e.g. pillars) having significantly smaller 

footprints relative to the other objects in the space and moreover a sparsely populated, 

high aspect ratio, high white space layout considered, led to the method performing less 

than ideally when compared to before. Despite this, it remained more effective than the 

baseline random method of the literature, which as demonstrated before, would not be 

capable of solving such a complex and sized problem to begin with. 

 After testing the solution of the scenario problems in Stage One of the solution 

approach and observing clearly non ideal layouts being generated, such as those 

demonstrated below in Figure 88 for Concept 2A, it was concluded that a future 

extension of this work should focus on further developing the FSPPM. Such efforts 

should attempt to account for such sparse, high white space layout characteristics, 

constrained objects with small areas relative to the other objects and the space itself, 

along with the general positioning of the constrained objects relative not only to the 

diagonal line, but also their vicinity to the boundaries. As can be observed, due to the 

current nature of the developed FSPPM, designs generated, such as those presented in 
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Figure 88, often placed even fixed stations incorrectly (e.g. design on the left where the 

receiving station was actually placed above the first pillar in the space). Moreover, due to 

the placement of the pillars and largely sparse space, stations were often placed well 

away from the input/output doors of the space, which is less than ideal from a handling 

perspective. This result is due to the station objects needing to be placed between or after 

these constrained pillar positions in the sequence-pairs. This is why in both designs 

provided, both an inspection and shipping station are placed above the upper most pillar. 

This pillar, based on its diagonal distance, required placement in the sequence two from 

the end thereby requiring two such stations to then be placed after it and therefore above 

it in the physical space. 

 

Figure 88 – Inferior layout designs generated for Concept 2A 
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In light of these observations, it is also believed that the method for defining the 

expected position of placement in the sequences could additionally be made a function of 

the characteristics noted before (white space, aspect ratio, relative size, position relative 

to the boundaries); that is, in addition to its position relative to the diagonal bisecting 

lines as it is currently defined in the FSPPM deployed. It is also believed that a better 

approach to defining the sigma value would be to define it as a function of such 

characteristics as well and moreover, have it defined individually for each constrained 

object in the layout. 

 The following examples of dependency were formed following a testing of how 

the positions of the constrained and unconstrained objects in Concept 2A and 2B were 

placed for different combinations of mean and sigma values defined on an individual 

constrained object-basis. First, constrained objects falling in the middle of the space (i.e. 

near the bisecting diagonals) should in general have a higher sigma value and moreover, 

such objects having small relative sizes should have yet a higher sigma property. This is 

because as small as their footprint is, they can easily be inserted into small openings 

between objects. As such, they need be less rigidly defined within the sequence-pairs. In 

fact, it could be beneficial to place such small objects, such as that of the pillars in this 

example, randomly. This could be achieved by having the sigma value be a function of its 

relative size, whereby it could become so large that it effectively has equal probability of 

placement across a larger range of positions in the sequence.  

Second, objects falling near the boundaries of the space should also have lower 

sigma values and additionally, their placements should be pushed towards the end of the 

sequences. In retrospect, this makes sense. It is a result of how the step lines are formed, 
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which map a physical layout to a sequence-pair. In the provided Concept 2B example in 

Figure 89, the receiving PO door, though falling near the negative bisecting diagonal line, 

was actually found, due to its vicinity to the lower boundary, to fall within roughly the 

fourth position in the negative sequence, coming after that of the rack door, receiving SO 

door, and shipping SO door (in that order). As such, it is believed that if the placement 

algorithm was modified to establish the position of the object relative to the ratio between 

its normal distance to the bisecting line (like before) to that of the normal distance to the 

closest boundary (rather than the maximum corner distance), better placement could then 

be achieved. In Figure 89, this would be from the negative bisecting diagonal line to the 

lower boundary point whose normal line passes through the centroid of the receiving PO 

door. Continuing with the negative sequence and the provided example in Figure 89, 

these objects falling on the left and bottom boundaries should then be ordered 

accordingly. Objects on the left boundary and at the top should be placed at the very 

beginning, then working inward in the negative sequence the order should be those then 

on the left boundary, then those in the bottom-left corner, then finally those along the 

bottom edge before finally that of the receiving PO door near the right end of the bottom 

boundary. This ordering is demonstrated by the arrow direction in Figure 89, whereby the 

source of the arrow coincides with the start of the negative sequence. This ordering aligns 

with the fundamental construct of the SP model and further aligns with observations 

made while investigating the placement in each of the various concept setups. Moreover, 

it was observed that this ordering always produced a design where these constrained door 

stations fell appropriately when mapped to the physical layout. By extension, the same 
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logic can be applied for the other end of the negative sequence as well as the ends of the 

positive sequence. 

 

Figure 89 – Concept 2B placement ordering in the negative sequence 
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diagonal line, was placed by the FSPPM well from the end of the negative sequence. This 

effectively forces some of the movable objects to then be placed right or above it, thereby 

leading to an expanded layout configuration, as demonstrated in Figure 88. Implementing 

a white space dependency, coupled with the relative size of the movable objects and 

moreover, the position of the constrained object (e.g. being in the top right), would 

effectively push this constrained pillar towards the end of the negative sequence. This 

would then allow those objects falling to the right and top to then fall to left and below it, 

which would produce a more compact and ideal design configuration. The following 

forward-looking hypothesis is made in light of these observations: 

If the FSPPM is further developed to encapsulate an algorithm defining the 

expected position and sigma values of the constrained objects on an individual-

basis and moreover, encapsulating the above acknowledged dependencies, then 

better placement performance by the FSPPM would be observed under such 

layout characteristics as experienced in this layout problem. 

As a result of this performance, it was decided that the pillar objects in the space 

would be neglected. Given their size relative to the other objects, this is a reasonable 

simplification. Moreover, after examining the placements of the constrained objects in 

each concept, sets of sigma and mean values appropriate for each of the constrained 

objects in each of the concepts were further defined and enforced in the FSPPM. Their 

definitions are provided in Table 77, Table 78, and Table 79. N in the tables represents 

the total number of objects in the space. This action was taken to facilitate a better 

performing algorithm in the absence of the forward looking more sophisticated FSPPM 

proposed. 
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Table 77 – Concept 1 constrained station sigma and mean sequence-position 

placements 

` Property  Enforced Values     

      Staging Receiving Shipping Rack 

Negative 
Sigma   0.1 0.1 0.1 0.1 

Mean   2 4 3 1 

Positive 
Sigma  0.2 0.5 0.7 1.0 

Mean   1 N-1 N-4 8 

 

Table 78 – Concept 2A constrained station sigma and mean sequence-position 

placements 

Sequence Property  Enforced Values   

      Staging Receiving Shipping 

Negative 
Sigma   0.1 0.1 0.1 

Mean   1 3 2 

Positive 
Sigma  0.1 0.2 0.2 

Mean   1 N N-1 

 

Table 79 – Concept 2B constrained station sigma and mean sequence-position 

placements 

Sequence Property  Enforced Values       

      Staging PO Rec. Shipping Rack SO Rec. 

Negative 
Sigma   0.1 0.2 0.2 0.2 0.1 

Mean   N 4 3 2 1 

Positive 
Sigma  0.3 0.1 0.5 0.2 0.2 

Mean   1 N-1 N-4 8 8 

After enforcing the sigma and mean sequence-position placements provided in the 

above tables, the FSPPM performed significantly better. This is demonstrated by the far 
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more optimally placed stations and layout designs then yielded by the algorithm and 

illustrated in Figure 90 below. Moreover, the FSPPM generated designs with the 

constrained stations nearly always placed appropriately in the space. 

 

Figure 90 – More effectively placed stations by the FSPPM 
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3) ROII parts constitute a constant 1.5% of PPD, ROIS 1.5%, and ROO the 

remaining 2% of the allotted 5% not attributed to the PO and SO processes 

4) Indirect production costs were assumed to be 30% of the direct costs 

5) Direct consumable costs (DCC) were assumed to be $0.75/part human 

handled and $1.25/part when forklift handled 

6) Setups are neglected (reflected in the setup rates and capacities defined below 

as zero) 

7) Number of handlers per part is assumed to be one 

8) Budget was set to 100% of the previous period’s net income 

9) Capital costs were considered to be zero provided the system had all the 

necessary stations at its disposal already 

10) Assumed cost to install receiving, inspection, shipping, and packaging stations 

were $7/hr while the staging areas and fixed stations don't matter so were set 

to $0/hr 

11) Assumed cost move receiving, inspection, shipping, and packaging stations 

was $2.5/ft while the staging areas and fixed stations don't matter so were set 

to $0/ft 

12) Assumed cost to reroute supporting items for receiving, inspection, shipping, 

and packaging stations was $10/ft to account for network cables and electrical 
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conduit required to run the computers at the stations while the others were 

assumed to be $0/ft 

13) Staging area capacities were set to a large value so as to avoid such stations 

from becoming the bottleneck of the system when they only act as a holding 

place for parts 

Table 80 – Case study station input data 

Stations: Type: Width (ft) Height (ft) Depth - 3D (ft) Spacing (ft) Manning 

Receiving Station WORKSTATION 6.5 6 3 0 1 

Inspection Station WORKSTATION 6.5 6 3 0 1 

Shipping Station WORKSTATION 6.5 6 3 0 1 

Packaging Station WORKSTATION 6.5 8 3 0 1 

Scan Station WORKSTATION 3 2.5 3 0 1 

Staging Area PO STAGING 30 15 3 0 0 

PO Receiving Door DOOR 22 2 3 0 0 

SO Receiving Door DOOR 9 2 3 0 0 

Shipping Door DOOR 9 2 3 0 0 

Building A Door DOOR 20 2 3 0 0 

Building C Door DOOR 20 2 3 0 0 

Staging Area SO STAGING 25 15 3 0 0 

 

Stations: Type: I/O Xoffset (ft) I/O Yoffset (ft) Install Time (hr) Uninstall Time (hr) Move Rate (ft/hr) 

Receiving Station WORKSTATION 0 3 0.5 0.2 5280 

Inspection Station WORKSTATION 0 3 0.5 0.2 5280 

Shipping Station WORKSTATION 0 3 0.5 0.2 5280 

Packaging Station WORKSTATION 0 4 0.5 0.2 5280 

Scan Station WORKSTATION 0 1.25 0.5 0.2 5280 

Staging Area PO STAGING 0 7.5 0.1 0.1 16368 

PO Receiving Door DOOR 0 1 0 0 0 

SO Receiving Door DOOR 0 1 0 0 0 

Shipping Door DOOR 0 1 0 0 0 

Building A Door DOOR 0 1 0 0 0 

Building C Door DOOR 0 1 0 0 0 

Staging Area SO STAGING 0 7.5 0.1 0.1 16368 
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Table 81 – Case study region input data 

Regions: Width (ft) Height (ft) Depth - 3D (ft) Spacing (ft) 

Racks 60 215 10 0 

Office Space (Side) 40 160 10 0 

Office Space (Front) 55 40 10 0 

Building Pillar 0.75 0.75 10 0 

 

Table 82 – Case study personnel data 

Personnel ID Labor Rate ($/hr) Unit 

Receiver $16.75 Receiving Station 

Shipper $16.75 Shipping Station 

Inspector $24.00 Inspection Station 

Packager $16.75 Packaging Station 

Handler $14.00 Handling 

 

Table 83 – Case study horizon-based discrete condition inputs 

Condition Value Unit Notes 

Labor Factor 1 [] Constant across the planning horizon 

Work Day 5 days/week Constant across the planning horizon 

Work Hours 8 hours/day Constant across the planning horizon 
 

Table 84 – Case study horizon-product-based linear condition inputs 

Condition Value Units 

Setup Rate 0 units / setup 

Market Value 75 $ / unit 

Estimated Manufacturing Cost 10 $ / unit 
 

Table 85 – Case study process-based condition inputs 

Condition Value Units 

Setup Capacity 0 setups / hour 

Handler Flow-Rate Capacity 2 unit mph 

Forklift Flow-Rate Capacity 2.8 unit mph 

Handler Labor Rate 14 $ / hour 

Other Handling Costs (Handlers) 0 $ / ft unit 

Other Handling Costs (Forklift) 0.1 $ / ft unit 
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Table 86 – Case study station capacities 

Station Capacity Value Units 

Inspection 5 units/hr 

Receiving 1.5 units/hr 

Shipping 6 units/hr 

Packaging 20 units/hr 

Staging 6000 units/hr 

 

Table 87 – Restructuring schedule options 

Option Periods Restructuring Schedule 

1 1 M0 

2 2 M0, M12 

3 2 M0, M18 

4 3 M0, M12, M18 

5 3 M0, M12, M24 

 

Table 88 – Manned station decomposition option definition for restructuring option 

one 

Option  Period 1 

    Inspection Receiving Shipping 

1  10 (5,5) 4 (2,2) 4 (2,2) 

2  12 (5,7) 4 (2,2) 4 (2,2) 

3  10 (4,6) 4 (2,2) 4 (2,2) 

4   12 (7,5) 4 (2,2) 4 (2,2) 

 

Table 89 – Manned station decomposition option definition for restructuring 

options two and three 

Option  Period 1  Period 2 

    Inspection Receiving Shipping  Inspection Receiving Shipping 

1  8 (4,4) 2 (1,1) 2 (1,1)  12 (6,6) 4 (2,2) 4 (2,2) 

2  10 (5,5) 2 (1,1) 2 (1,1)  12 (6,6) 4 (2,2) 4 (2,2) 

3  8 (4,4) 2 (1,1) 2 (1,1)  12 (4,8) 4 (1,3) 4 (1,3) 

4   10 (5,5) 2 (1,1) 2 (1,1)   12 (5,7) 4 (2,2) 4 (2,2) 
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Table 90 – Manned station decomposition option definition for restructuring 

options four and five 

Option  Period 1  Period 2  Period 3 

    Inspection Receiving Shipping  Inspection Receiving Shipping  Inspection Receiving Shipping 

1  8 (4,4) 2 (1,1) 2 (1,1)  10 (5,5) 2 (1,1) 2 (1,1)  12 (6,6) 4 (2,2) 4 (2,2) 

2  8 (4,4) 2 (1,1) 2 (1,1)  12 (6,6) 4 (2,2) 4 (2,2)  12 (6,6) 4 (2,2) 4 (2,2) 

3  8 (4,4) 2 (1,1) 2 (1,1)  10 (4,6) 2 (1,1) 2 (1,1)  12 (4,8) 4 (1,3) 4 (1,3) 

4   8 (4,4) 2 (1,1) 2 (1,1)   11 (5,6) 4 (2,2) 4 (2,2)   12 (5,7) 4 (2,2) 4 (2,2) 

In the above tables, the 10 (5,5) form indicates the total number of stations then 

the assignment of these across the two process groups as follows (PO/ROIS stations, 

SO/ROO/ROII stations). Some of these manned station decomposition options 

considered, start with the current operational structure (i.e. number of active stations / 

workers) while others consider hiring at the start. As can be observed, several assignment 

distributions are considered and for the most part across the different restructuring forms, 

these distributions are maintained for the option levels. 

Table 91 – Handler options considered 

Option  Period Structure 

    Single Double Triple 

1  (0.25,) (0.25, 0.25) (0.25, 0.25, 0.5) 

2   (0.5,) (0.25, 0.5) (0.25, 0.375, 0.5) 

These handler quantities, being less than one, indicate a portion of a handler’s 

time. After studying the current configuration, it was identified that, based on the 

standard 2mph human movement rate that was assumed, a full handlers time each day 

would be excessive regardless of what PPD option was considered. Since it was desired 

for handler constrained cases to be observed on occasion for demonstration purposes, 

these were adjusted to below a single worker to effectively force such situations to arise 
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on occasion. Note also that for Concept 2, these handler ratios are evenly split across the 

two concept layouts provided that the processes were segregated in this considered 

concept. 

Table 92 – PPD distribution options considered 

Option Process  Planning Horizon 

      M0 M12 M24 M36 

1 
PO  60% 60% 60% 60% 

SO  35% 35% 35% 35% 

2 
PO  60% 55% 50% 45% 

SO  35% 40% 45% 50% 

3 
PO  60% 45% 25% 25% 

SO   35% 50% 70% 70% 
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G.7.3 Case Study Supplementary Results 

 

Figure 91 – Distribution of RE and RR for Concept 0 
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Figure 92 – Distribution of RE and RR for Concept 1 
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Figure 93 – Distribution of RE and RR for Concept 2 
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Figure 94 – Alternative layout designs 
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