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NOMENCLATURE
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SUMMARY

Future missions to the surface of Mars will present new requirements for entry, descent,

and landing (EDL) based on the desire to achieve scientific goals and mitigate risk for

human explorers. These missions will have payload masses and landing elevations beyond

the capability of U.S. mission design heritage, driving the development of new decelerator

technologies. Future missions will also require precision landing with an uncertainty less

than 100 meters — two orders of magnitude smaller than current U.S. missions.

Landing uncertainty is the result of multiple sources that propagate across the duration

of EDL, but aerodynamic and control system uncertainty during entry are two of the largest

contributors. Entry vehicle aerodynamics in the hypersonic and supersonic regime are

complex and inherently unsteady. This is exacerbated by active control systems which

interact with the flow field or the flight dynamics. The interaction can result in diminished

attitude control authority or even control reversal. Operation of the entry controller causes

a short-term increase in uncertainty even as it works to eliminate error by the end of the

entry phase. This coupled, unsteady behavior has affected previous Mars entry vehicles

and continues to be a significant design consideration, even with extensive heritage.

The state-of-the-art design process accounts for this behavior indirectly. The aerody-

namic and control system models are developed as separate quasi-static databases, ignoring

all dynamic effects other than pitch and roll damping. The result is increased model fidelity

uncertainty, at the same time as design changes are introducing more volitional and phe-

nomenological uncertainty. By reducing the model fidelity uncertainty, designers can im-

prove the entry controller performance as they evaluate new architectures, thereby reducing
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the landing uncertainty. The objective of this dissertation is to formulate and implement

an entry controller tuning methodology that directly accounts for coupled, unsteady entry

vehicle aerodynamic and control system behavior.

Significant progress in modeling entry vehicle aerodynamics and flight dynamics has

been made over the past decade by coupling 6 degree-of-freedom rigid body dynamics

simulations with computational fluid dynamics flow solvers. The equations of motion are

solved simultaneously with the Navier-Stokes equations to produce a time-accurate flight

simulation. This work seeks to incorporate guidance and control system modeling into the

coupled simulation, allowing high-fidelity evaluation of an entry vehicle control system

design and accompanying entry controller.

However, the added cost of coupled simulation makes the state-of-the-art controller

tuning methodology impractical. Instead of finding a suitable controller using Monte Carlo

simulation, the proposed methodology uses multifidelity optimization. The coupled simu-

lation serves as the high-fidelity model, simulating an entry vehicle with open- or closed-

loop control for direct evaluation of a controller. The trajectory and aerodynamic data

produced by each run of the coupled simulation is used to train an aerodynamic surrogate

for fast, low-fidelity modeling.

The methodology was developed and evaluated through numerical experimentation us-

ing the NASA Supersonic Decelerator Flight Test entry vehicle equipped with a one-axis

internal moving mass actuator control system, simulating the tuning of an entry controller

for said vehicle. Comparisons to simulations using a baseline flight model with aerody-

namic database showed that the coupled model satisfactorily captures the unsteady, cou-

pled aerodynamic and control mechanism behavior. Further experimentation investigated

the implementation of key components for the multifidelity methodology: the low-fidelity

aerodynamic surrogate and the optimization method. It was found that the methodology

can use a feed-forward neural network as a low-fidelity aerodynamic surrogate and train

it with the time-accurate data output from the coupled model. A comparison was made
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between two multifidelity optimization methods: a filtering-based method akin to the state

of the art, relying on the quasi-hierarchical relationship between the coupled model and the

low-fidelity aerodynamic surrogate, and a fusion-based method that directly compared the

error between the controller performance predicted by the low-fidelity and coupled models.

Based on the similar level of performance between these two methods, the methodology

was implemented with a synthesis of the two, combining the stability of filtering-based

methods with the exploration and correction capabilities of the fusion-based method. The

completed multifidelity controller tuning methodology was successfully executed, yielding

an entry controller that performed better than a controller tuned using the state-of-the-art

methodology.
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CHAPTER 1

INTRODUCTION AND MOTIVATION

1.1 Overview of Atmospheric Entry, Descent, and Landing

Entry, Descent, and Landing (EDL) describes the flight and activities of a vehicle from

when it enters a planet’s atmosphere from space until it reaches the surface. Griffin and

French [1] state that “the atmospheric entry system must provide a controlled dissipation of

the combined kinetic and potential energy associated with the vehicle’s speed and altitude.”

The intent for a safe and survivable landing is also a critical part of this definition; they

further note that “the entry system must provide suitable provisions for surface contact,

usually with constraints on the landing location and vehicle attitude [1].” This distinguishes

EDL from deorbit disposal, where a spacecraft enters an atmosphere with the express goal

of destroying itself; or from the operation of a re-entry vehicle (RV), which is not intended

to survive impact.

Spacecraft have performed atmospheric entry on five bodies in the Solar System [1].

Many Earth orbital missions have returned payload or crew to the surface, and interplane-

tary probes have used EDL to land on Venus, Mars, Titan, and Jupiter1.

EDL is perhaps the most challenging and dangerous phases of spaceflight. Vehicles

experience massive changes to their energy over a span of minutes. Multiple systems must

operate and interact perfectly; no spacecraft has yet flown with the capability of aborting

after beginning EDL. The consequences for failure during EDL are also high. To date, three

crewed missions (Soyuz 1, Soyuz 11, and Columbia STS-107) have suffered fatalities as a

result of EDL failures, whereas one mission (Challenger STS-51-L) has suffered fatalities

during launch [1, 2]. Other crewed missions have suffered “close calls” during EDL, such

1The Galileo probe underwent entry and descent at Jupiter, though this spacecraft did not land.
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as Voskhod 2 [3], Columbia STS-1, and Atlantis STS-27 [2]. Multiple robotic missions

have suffered failures during EDL, such as the Mars Polar Lander [4] and Genesis sample

return capsule [5]. The challenges posed by EDL continue to be a factor in spacecraft

design; EDL risk was specifically identified as a factor in the decision to fly Artemis 1, the

first circumlunar flight of the Orion capsule, without crew [6].

1.1.1 Mars Mission Entry, Descent, and Landing

Atmospheric entry at Mars is by far the most challenging out of all the bodies in the Solar

System. Mars’s thin atmosphere, about 1.6% the density of Earth’s atmosphere at the

surface [7], barely provides enough drag for spacecraft to slow down from orbital velocities

before hitting the surface. However, this is still thick enough to require a thermal protection

system (TPS) and complicate the use of propulsion systems for landing and control.

To date, nine U.S. Mars missions have successfully landed on the surface [8]. Ta-

ble 1.1 lists the key characteristics of their entry vehicles. These vehicles have had a

shared and continuing design heritage, to the extent that multiple missions have even re-

used aeroshell and entry systems designs. Mars InSight and Mars 2020 reused the designs

from Mars Phoenix Lander (MPL) and Mars Science Laboratory (MSL), respectively, and

the Pathfinder (MPF) and Mars Exploration Rover (MER) capsules are nearly identical.

Entry Vehicle Configuration

The configuration of the MSL/Mars 2020 entry vehicle, shown in Figure 1.1, is representa-

tive of U.S. designs [10]. The entry vehicle is a rigid, blunt body with a 70◦ rounded conical

forebody and an afterbody created from conic sections. The vehicle is constructed as an

aeroshell consisting of a backshell and heatshield, which encapsulates the payload (in this

case the descent stage and rover). The primary decelerator is a disk-gap-band parachute,

mounted in the backshell. A cruise/orbiter stage provides power, communications, and

propulsion during the flight to Mars.
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Table 1.1: U.S. Mars mission entry vehicles (adapted from Dyakonov et al. [9])

Viking I/II Pathfinder
MER
A/B

MPL/
InSight

MSL/
Mars 2020

Launch 1975 1996 2003 2007/2018 2011/2020
Diameter (m) 3.5 2.65 2.65 2.65 4.5
Entry Mass (kg) 930 585 840 602 2,919
Payload Mass (kg) 603 360 539 364 1025
Ballistic Coeff. (kg/m2) 63.7 62.3 89.8 65.0 126.0
Entry Vel. (km/s) 4.5 7.6 5.5 5.9 5.4
Landing Alt. (km) -3.5 -1.5 -1.3 -3.5 +1.0
Landing Ellipse (km) 280×100 200×70 150×20 100×20 20×7
Trajectory Lifting Ballistic Ballistic Ballistic Lifting
Control RCS Spin Spin None* RCS

Cruise Stage

Backshell

Descent Stage

Rover

Heatshield

Parachute

Aeroshell
Shoulder 

Afterbody

Forebody

Figure 1.1: Mars 2020 entry vehicle configuration (adapted from Nelessen et al. [10])
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Some vehicles have a 3-degree-of-freedom reaction control system (RCS) for active

attitude control. RCS jets located on the afterbody generate roll, pitch, and yaw torque.

Figure 1.2 demonstrates possible RCS configurations; Phoenix has separate pitch/yaw and

roll jets clustered together near the shoulder, whereas MSL has four pairs of combined roll,

pitch, and yaw jets constrained further from the shoulder due to packaging concerns.

(a) Phoenix [11] (b) MSL [12]

Figure 1.2: RCS configuration

Hydrazine monopropellant RCS have thus far been the only active control systems used

for Mars entry vehicles. However, studies for future vehicles have proposed other systems,

such as aerodynamic control surfaces [13, 14] or internal moving mass actuators (IMMA)

[15]. Control surfaces move within the fluid flow in order to change the pressure distribu-

tion, and thus the center of pressure, relative to the center of gravity (CG) of the vehicle.

Rigid control surfaces have been flown on the Space Shuttle Orbiter [16], X-37 [17], and

IXV [18] for Earth entry. Conversely, IMMA systems move the CG relative to the center

of pressure [15].
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EDL Concept of Operations

Figure 1.3: EDL concept of operations (adapted from Way et al. [19])

Figure 1.3 illustrates the EDL phases and primary activities for a robotic mission to Mars.

Atmospheric entry starts at Entry Interface (EI), a point where the atmosphere is judged to

start affecting the vehicle [1]. Prior to EI, the spacecraft may configure itself by jettisoning

any cruise stage or service module, and orient itself for atmospheric entry [10]. During

entry, vehicles use aerodynamic drag to slow from orbital or interplanetary transfer speeds.

They must endure exterme aerodynamic heating and high acceleration as their kinetic and

gravitational potential energy is transferred to the atmosphere or converted into heat [1].

The demarcation between the atmospheric entry and descent phases is somewhat ar-

bitrary, and may depend on the specific mission architecture. It could be marked by the

deployment of a decelerator (e.g., a parachute) or activation of a propulsive landing sys-

tem, such that the aerodynamic forces on the vehicle body cease to dominate its flight

dynamics. During the descent phase, the vehicle decelerates to a survivable landing speed
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as it descends to reach the planet surface. Vehicles use propulsion or aerodynamic decel-

erator systems to control their descent (if the vehicle uses propulsion, descent may be split

into “unpowered” and “powered” phases).

The landing (or “touchdown”) is when the vehicle contacts the surface of the planet and

reduces its relative velocity to zero.

Entry Trajectory

Entry can be flown along either a ballistic or a lifting trajectory [20]. A ballistic trajectory

flies with approximately zero net lift. Without some form of active control or stabilization,

the vehicle’s attitude is free to oscillate and drift. Some missions used spin stabilization,

rolling the capsule at about 2 rpm, to cancel out lateral forces [21, 22]. Control systems

can also be used to damp pitch and yaw oscillation and achieve the same effect. However,

these trajectories are still essentially unguided after entry interface.

In a lifting trajectory, the vehicle flies at some angle of attack to produce lift. By

modulating the lift vector, the vehicle can control its “downrange” and “crossrange” motion

(parallel and perpendicular to the ground track at EI, respectively) [1]. By pointing the

lift vector up or down, the vehicle can be made to fly through lower- or higher-density

atmosphere, changing the drag and therefore the downrange velocity. Pointing the lift

vector to either side changes the crossrange velocity.

Vehicles can be designed with a CG offset to produce a trim angle of attack, minimizing

the control authority needed to generate lift. The direction of the lift vector is therefore

fixed relative to the vehicle, and its magnitude depends on the flight conditions. Control is

achieved by banking to rotate the lift vector as shown in Figure 1.4. The Viking capsules

flew a lifting trajectory, but simply maintained orientation to keep the lift vector pointed

upward [23]. MSL and Mars 2020 flew lifting trajectories with bank-to-steer to control

their descent [24]. Since the crossrange velocity is constantly being changed, pre-planned

bank reversal maneuvers are used to manage the crossrange error, as shown in Figure 1.5.
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Since this method of control relies on lift, it is most effective during the period of high

dynamic pressure.

Geometric axis 
of symmetry

Drag

C.G.
offset

Lift vector 
rotates

Vehicle 
banks Velocity

Figure 1.4: Bank-to-steer lift modulation [20]
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Figure 1.5: MSL bank reversals for crossrange management [24]

Guidance and Control

The entry guidance algorithm seeks to command vehicle motion to satisfy mission con-

straints. During flight, these constraints include surviving aerodynamic heating and de-

celeration, as well as specific orientation requirements for sensors, communications, or

decelerator systems [20]. The guidance algorithm also seeks to deliver the vehicle to the

terminal point with minimal downrange and crossrange error.
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MSL was the first mars entry vehicle to fly a lifting trajectory with closed-loop entry

guidance, derived from the Apollo entry guidance algorithm [25]. The guidance and control

architecture operates in two nested loops as shown in Figure 1.6.

Figure 1.6: Guidance algorithm flowchart (adapted from Mendeck et al. [25])

In the outer loop, the guidance algorithm controls the downrange and crossrange mo-

tion, attempting to minimize the error between the actual flight path and a reference tra-

jectory [25]. The algorithm calculates a commanded orientation to produce the desired lift

vector. The controller operates over the inner loop, attempting to minimize the error be-

tween the actual and commanded orientation [26]. Control surface deflection, jet activation

and duration, etc., are determined as functions of the error and current state.

For Mars entry vehicles, the control authority is small compared to the magnitude of

the aerodynamic moments [9]. The vehicle is allowed to oscillate about its trim point, with

the control system used to damp out angular rates and correct large errors [27].

1.1.2 New Challenges for Mars Entry, Descent, and Landing

The locations of the nine successful U.S. landings are shown in Figure 1.7 on a plot of the

Mars Orbiter Laser Altimeter (MOLA) elevations [28]. These landings were restricted to

the lower elevations of the northern hemisphere to take advantage of the slightly higher

surface atmospheric density and extra few kilometers of distance for decelerating [29].

The only U.S. missions to attempt landing in the southern hemisphere were the relatively

lightweight Mars Polar Lander and Deep Space 2 probes (both of which failed during EDL)
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[4].

Figure 1.7: Successful U.S. Mars landings

The most recent U.S. mission, Mars 2020, landed the record-breaking 1 metric ton Per-

severance rover on the surface [10]. However, Mars 2020 is reaching the limit of payload

capability for the Mars EDL heritage [29]. Future missions, especially human exploration

of Mars, will present significant new challenges for entry vehicles.

Figure 1.8 illustrates the gap between the current capability of Mars entry vehicles

and the desired capability for human missions. The red-shaded area represents the feasible

design space for a 4.5m entry vehicle delivered by a currently-available launch vehicle with

an entry velocity of 5.5 km/s. For an MSL-class vehicle, this limits the landing site to about

50% of the Martian surface. Human missions will require landers to deliver much higher

payload mass — up to 20-30 tons [30]. The desire to explore more of the planet’s surface

requires landing at elevations up to 2km [30, 29]. This desired capability, shown in the

blue-shaded area, would enable exploration of a greater portion of the surface, especially

in the southern hemisphere.

These requirements have led to the development of low-density decelerator systems,

9



existing
capability

desired
capability

Figure 1.8: Landing mass and land area distribution as functions of altitude

technologies that are designed to decrease the ballistic coefficient by increasing the drag

area of the vehicle while minimizing the increase in mass. Many are deployable; packaged

within the limited geometry of a fairing during launch, they can be extended while in space,

achieving larger diameters than are feasible for rigid aeroshells.

(a) ADEPT [13] (b) HIAD [31]

Figure 1.9: Decelerator technologies for human Mars landers

One promising technology is the Adaptive Deployable Entry and Placement Technol-

ogy (ADEPT) [32]. ADEPT is a mechanically-deployed, umbrella-like system with rigid

spokes covered with a flexible TPS material. Some configurations include asymmetric

spokes for center-of-lift offset, or flaps for aerodynamic control. Another technology is

the Hypersonic Inflatable Aerodynamic Decelerator (HIAD) [33]. HIAD is a series of in-

flatable tauri held in place by tension and covered in a flexible TPS material to form the
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forebody cone. Human-scale lander concepts using these technologies could have diam-

eters from 16 to 24 meters, over three times the diameter of the MSL entry vehicle [13,

31].

In addition to the change in scale, the configuration of these vehicles are a large de-

parture from Mars EDL heritage. The forebody would be flexible, designed to deform

under aerodynamic load. They also lack the regular backshell of heritage vehicles. Other

technologies being developed for large entry vehicles, like supersonic retropropulsion [34],

may not change the configuration of the vehicle, but they would significantly change how

those vehicles operate during entry.

Beyond the mass and elevation requirements discussed previously, human missions will

also require much greater landing precision and accuracy. Humans have a smaller accept-

able risk than robots for landing in dangerous terrain. Crewed missions will also likely

target specific geography to achieve scientific goals [35]. Critically, mission architectures

may require landing multiple payload elements in close proximity [36]. Payloads must

be landed close enough that humans can assemble a surface base and access their equip-

ment. The human missions being developed could require landing precision of less than

100 meters [31] — also beyond the capability of Mars EDL heritage.

Figure 1.10: Mars mission predicted landing footprint comparison
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Figure 1.10 shows the predicted landing footprint for the robotic Mars missions, cen-

tered on the landing position of MSL at Gale Crater [20]. The landing footprint is repre-

sented as an ellipse, within which the vehicle is predicted to land with a 99% probability.

Since 1976, increases in guidance and prediction capability has reduced the landing foot-

print from hundreds of kilometers to less than 10 km. The largest leap in precision was

achieved by MSL due to the use of active guidance during EDL [25], and improvements

made between MSL and Mars 2020 resulted in a further 40% reduction in landing ellipse

size [10]. However, human missions will require an increase in landing precision by a fur-

ther two orders of magnitude. For these reasons NASA has defined precision Mars landing

as a grand challenge [37]. At a conceptual level, an increase in precision is achieved by

decreasing the uncertainty. This forms the motivating objective for this work:

Motivating Objective: Reduce the predicted landing uncertainty for Mars entry, decent,

and landing.

In order to further this goal, a detailed examination must be made into the sources and

calculation of landing uncertainty.

1.2 Sources of Landing Uncertainty

The landing uncertainty is the distribution of predicted values for the touchdown error. This

is the horizontal distance between the landing target and the actual landing position of the

vehicle [38]. The landing footprint, described above, is a common figure of merit for the

landing uncertainty. This expresses what may be a complex uncertainty distribution as a

two-dimensional ellipse for ease of use.

Figure 1.11 categorizes the most important sources of uncertainty during EDL by phase

and discipline. For Mars entry vehicles, the uncertainty propagated during entry is the

largest contributor to the landing uncertainty [24, 39]. During atmospheric entry, the vehi-

cle is subject to a wide variety of uncertainties from many different disciplines.
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Figure 1.11: Sources of landing uncertainty (adapted from Wolf et al. [39])

Aerodynamics

Aerodynamic uncertainty concerns the magnitude of aerodynamic force and moment coef-

ficients acting on the entry vehicle [40].

As the vehicle flies through entry, it first experiences non-continuum flow at the edge

of the atmosphere. It then flies through the hypersonic and supersonic regimes, and may

reach transonic or subsonic speeds during entry depending on the conditions for deceler-

ator deployment. The flow features of an entry vehicle in high-speed flow are shown in

Figure 1.12. The flow is dominated by complex shock and expansion layer geometry [41].

As the flow passes from the forebody to the afterbody, it might separate or stay attached

depending on the flight conditions and the geometry. The flow might attach and separate

as the vehicle oscillates in pitch, greatly affecting the pressure distribution on the afterbody

[42]. Even if the orientation of the vehicle remained constant over time, the aerodynamics

would still be unsteady. Separated flow around the vehicle creates a region of low-pressure,

subsonic flow on the afterbody [43]. Unsteadiness in the recirculation is the primary con-

tributor to the uncertainty on the afterbody [43], and changes in the wake can have a signif-

icant effect on the stability of the vehicle in the low supersonic and transonic regimes [44,
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45]. The fundamentally unsteady nature of the aerodynamics is a significant contributor to

the uncertainty, and the uncertainty of individual coefficients can vary widely with flight

regime and vehicle state.

Figure 1.12: Entry vehicle flow features (adapted from Stern et al. [41])

Control Systems

Control system uncertainty represents uncertainty in the behavior of the physical control

systems [39]. This includes errors between the commands from the entry controller and

the actual authority, responsiveness, and state (e.g., control surface deflection, propulsive

thrust coefficient).

For an RCS, the direct effect of the jet due to the momentum transfer with the vehicle

will have some uncertainty, but uncertainty is largely driven by the jets’ interaction with

the aerodynamics. When a jet is activated, a large volume of flow is quickly ejected into

the wake of the vehicle [9]. The plume can disrupt the flow around the vehicle, causing an

attached flow to separate. Under other circumstances, however, the plume could cause a

separated flow to reattach [11]. Since the near portion of the wake is subsonic, the plume

can be communicated across the whole afterbody, significantly changing the pressure dis-

tribution even on the opposite side of the afterbody [12]. For all the same reasons that

the subsonic recirculation contributes to the aerodynamic uncertainty, the RCS plume con-
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tributes to the control system uncertainty. In turn, the expansion of the plume is affected

by the flight conditions and the flowfield of the vehicle [9]. Two (or more) members of a

system are considered to be “coupled” when they have mutual interaction [46, 47]. Thus,

the operation of an RCS is fundamentally coupled with the aerodynamics.

Aerodynamic control surfaces may also interact with the aerodynamics of the rest of

the vehicle. Shock-shock interactions may form between the control surface and the body,

changing with the deflection of the surface [48].

Based on the literature presented in this and the preceding section, the following obser-

vation can be made:

Observation 1.1: Entry vehicle aerodynamic behavior is inherently unsteady. For an entry

vehicle with an active control system that affects the fluid flow, the interaction between the

aerodynamics and control system is inherently coupled and unsteady.

Entry Guidance and Controller

Entry guidance uncertainty consists of targeting uncertainty and termination uncertainty

[39]. Targeting uncertainty is the result of errors in the vehicle’s understanding of the

desired entry trajectory. Termination uncertainty arises due to error in the deployment of

decelerator systems, determining when the entry phase ends [10].

Entry controller error, also referred to as tracking error, is the failure of the entry con-

troller to hold the vehicle at the commanded attitude [39].

Other Sources

Uncertainty in the mass properties can arise due to errors in the mass, center of gravity, and

inertia of the vehicle [39]. This can be the result of differences between the vehicle as built

and the design configuration, or from change in mass during flight (e.g., propellant usage).

Atmospheric uncertainty is the lack of knowledge about density, temperature, chemical
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composition, etc., of the atmosphere at the time of entry [49]. These properties vary over

time, by day and by season, and have different variations at different altitudes. Atmospheric

uncertainty affects the flight of the vehicle throughout EDL, but it is most important during

entry, where high dynamic pressure has a multiplicative effect on the variation.

Sensor measurement error occurs as the vehicle measures its acceleration, angular ve-

locity, pressures, and temperatures at the vehicle’s surface [39]. Navigation uncertainty

tracks the knowledge error of the vehicle’s initial state, especially attitude, and the integra-

tion of that state over time [50]. The Inertial Measurement Unit (IMU) integrates the forces

and moments as measured onboard and calculates the vehicle’s state. Any uncertainty will

be propagated forward in time as the calculations are updated. Sensor measurement and

IMU propagation uncertainty affect the vehicle across all phases of EDL [39].

1.3 Uncertainty Quantification

Uncertainty quantification (UQ) is the process of determining the relationship between the

true parameters of a system and its approximate representation in the model(s) [51]. UQ

is used to predict the landing footprint at various points during vehicle design and during

flight prior to EDL [52]. For this purpose a flight simulation framework is constructed to

simulate the vehicle as it flies through EDL, incorporating vehicle, planetary, and atmo-

spheric models [53]. Monte Carlo analysis is performed on this simulation, stochastically

dispersing input variables to represent the uncertainties in the system. By running thou-

sands of simulations allowing the uncertainties from various sources to affect the vehicle

and propagate over time, designers can generate a distribution of touchdown points, from

which the footprint is calculated.

Successful Guidance: Mars Science Laboratory

Figure 1.13 shows a prediction for the landing footprint of MSL made the day before land-

ing. In addition to calculating the touchdown footprint, UQ can be used to identify the
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Figure 1.13: MSL landing footprint prediction (adapted from Davis et al. [52])

contribution of each source of uncertainty over time. Figure 1.14 shows the contribution to

downrange and crossrange variance for MSL from entry to touchdown [50]2. Based on the

results from MSL and the supporting evidence in Section 1.2, the following observation

can be made:

Observation 1.2: Aerodynamic and control system uncertainty are primary contributors

to entry uncertainty.
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Figure 1.14: Contribution to MSL landing variance (adapted from Dutta et al. [50])

2The results for MSL using the velocity trigger are considered here over the results for Mars 2020’s range
trigger since MSL serves as the best example of a new vehicle configuration, with all of the risk-averse
decision-making that such a design process entails.
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The uncertainty growth over time can be examined in light of the physics and behav-

ior of the system as described above. The downrange variance is much larger than the

crossrange variance since the velocity is much higher in this direction. A large spike in

the downrange variance occurs during entry. The timing coincides with the period of high

dynamic pressure. The rise in aerodynamic uncertainty corresponds to the start of the range

control phase of active guidance, where the guidance algorithm starts commanding bank

reversals to control the crossrange position.

As an illustrating example, consider a vehicle flying along its reference trajectory when

the guidance system decides that it has exceeded the deadband for crossrange error. If it was

flying up to this point along the reference trajectory and the pitch and yaw oscillations were

within the deadband, the control system would not be actuated. Thus, the only contribution

to the uncertainty is due to the aerodynamics of the capsule. However, when the guidance

system commands a bank, suddenly the control system must be activated to roll the vehicle,

introducing control system uncertainty. Actuation of the control system might affect the

pressure distribution in the wake, altering the aerodynamic moments and changing the

oscillation of the vehicle. This could cause the controller to actuate the pitch and yaw jets

as well. This is borne out by the RCS activity of MSL during flight, where the actuation of

the pitch and yaw jets mostly coincide with the bank reversal maneuvers [54]. As a result,

multiple jets are firing in close proximity, in short-duration pulses, as the vehicle attitude is

rapidly changing, all of which has a significant effect on the uncertainty propagation.

The active guidance limits the growth of uncertainty due to atmospheric and aero-

dynamic variation. However, actuating the control system introduces uncertainty as the

plumes interact with the flow field. The system accepts the temporary increase in down-

range variance in order to control the crossrange variance. When the bank reversals are

complete, the guidance algorithm can again focus on controlling the downrange position.

Observation 1.3: Active control exacerbates aerodynamic/control system uncertainty growth

in the short term.
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Unsuccessful Guidance: Mars Phoenix Lander

Phoenix was developed with affordability and low risk in mind [55], reusing the entry

vehicle geometry from MER and the control system from the canceled Surveyor mission

[56]. It was also intended to be the first Mars surface mission since Viking to carry RCS for

control during entry. The budget and time constraints meant that, aside from historical data

and ground testing for other programs, analysis of the aerodynamics and control system

would be limited to computational experiments. During development, Computational Fluid

Dynamics (CFD) simulations were used to predict the interaction of the RCS jets with the

flow field around the vehicle in the hypersonic and supersonic regimes [11]. However, these

simulations resulted in large uncertainties, to the extent that the net sign of the effective

control moment could not be determined for some orientations. If the jets were commanded

to pitch the vehicle up for example, designers could not eliminate the possibility that they

might actually cause the vehicle to pitch down.

Given this high uncertainty of the CFD and the lack of physical testing for validation,

mission planners decided to increase the deadbands of the controller during flight, to pre-

vent the jets from firing for all but the most extreme movement. This effectively disabled

control during the entry phase, making Phoenix the first unguided, uncontrolled Mars entry

vehicle. Phoenix landed at the very edge of the 99th-percentile landing ellipse [57]. The

Mars InSight lander, with a near-copy of the Phoenix entry vehicle, was flown in 2018

using the same relaxed deadbands [58].

Sensitivity to Aerodynamics, Guidance, and Control System Uncertainty

Uncertainty propagation reveals that entry uncertainty is usually the largest contributor

to landing uncertainty. Furthermore, the uncertainty due to the aerodynamics and control

system are usually the largest contributors to entry uncertainty. The interaction between the

entry controller, aerodynamics, and control system has previously been identified, lending

importance to examining these sources together.
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Entry guidance corrects for error and mitigates uncertainty, but it relies on knowledge

of the aerodynamic and control system behavior of the vehicle. Figure 1.15 illustrates the

twofold effect that aerodynamic and control uncertainty have on the landing uncertainty.

Figure 1.15: Notional uncertainty growth during EDL

The solid black line represents cases like MSL, where the active guidance is successful

in limiting the growth of variance over time. The dashed line represents how a vehicle

without active guidance would have lower variance growth during the early stages of EDL,

but end up with a significantly increased downrange variance. The solid red line shows

a case where the guidance is unsuccessful, such as if Phoenix had flow without reduced

deadbands. Not only would an increase in these uncertainties be propagated forward, it

would also result in reduced effectiveness of guidance and control, compromising the abil-

ity to correct for uncertainty. This illustrates one reason why the controller deadbands were

increased for Phoenix: the use of the guidance was judged to result in higher uncertainty

than simply flying an unguided entry.

Observation 1.4: Entry controller success relies on accurate knowledge (i.e., low uncer-

tainty) of the aerodynamics and control systems.

Phoenix and MSL represent the most recent two unique Mars entry vehicle designs,

with heritage going back to the Viking landers. Phoenix suffered from uncertainty arising

from the control/aerodynamic interaction which essentially nullified the effectiveness of the

entry guidance. While Phoenix serves as an example of the deleterious effect of uncertainty
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on guidance, MSL demonstrates the effort required to eliminate these effects. Even with

the extensive heritage of Mars entry vehicles, aerodynamic/control interaction problems

persist and continue to affect entry guidance.

Observation 1.2 indicates that examining the aerodynamic and control system uncer-

tainty growth during entry could be a fruitful strategy for increasing landing precision.

Observations 1.3 and 1.4 describe a feedback cycle that could lead to failed guidance as

shown in Figure 1.15. Examining the converse of this scenario leads to the first statement

of the motivating hypothesis:

Motivating Hypothesis, Part 1: If the aerodynamic and control system uncertainty during

atmospheric entry can be reduced, the performance of the entry controller, and therefore

landing precision, can be improved.

This statement suggests investigating the process of accounting for and delivering the

aerodynamic and control system knowledge and uncertainty.

1.3.1 Disciplinary Models and Uncertainty

The disciplinary models for the aerodynamics and control system define the values and

uncertainties used during UQ. These models are constructed as databases of aerodynamic

coefficients as a function of the local conditions [42, 58, 56].

These models are traditionally provided as independent, self-contained modules which

are surrogates for one or more higher-fidelity models [53]. For example, the aerodynamics

model may provide the force and moment coefficients as a database [59, 42]. Interpolation

is used to calculate the aerodynamic coefficients at off-design points. These models achieve

a low computational cost by a reduction in fidelity, necessary due to the large number of

flight simulations that must be performed. Each model may be constructed by different

organizations at different stages of the design process [53].

The UQ methodology for Mars entry vehicles follows the pattern of continuous de-
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velopment from a common heritage. This heritage only extends back to Pathfinder, since

the methods for UQ and risk assessment used for Viking were poorly documented [40].

Korzun et al. [58] describe the process of UQ for the Mars InSight capsule, taking into

account “differences in fidelity and uncertainty in the underlying tools and methods used to

generate the nominal aerodynamic coefficients, as well as engineering judgement and post-

flight reconstruction on prior Mars EDL missions.” For vehicles which shared an aeroshell

geometry, the uncertainty model was used with no modification from the first vehicle [58].

Robertson [60] developed a taxonomy of uncertainty in the development of space and

launch vehicles which can be applied here to examine the components of uncertainty af-

fecting guidance development. This taxonomy, shown in Figure 1.16, can be considered for

each disciplinary uncertainty identified in Figure 1.11, such as aerodynamic uncertainty.����������	 
������	���������������� ������������������������������� ������������������������ ���������	
Figure 1.16: Taxonomy of uncertainty (adapted from Robertson [60])

Epistemic uncertainty is the lack of knowledge about the system, whereas aleatory un-

certainty is due to the inherent randomness in the system. Within the epistemic error,

sources that are within the control of designers are termed “endogenous”. Phenomenologi-

cal uncertainty results from a lack of knowledge about physical phenomena [60]. These are

the “unknown unknowns” that are present even at full design maturity. The Space Shuttle

Orbiter notably encountered differences in between predicted and actual hypersonic pitch-
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ing moment as a result of unanticipated Mach number and real gas effects during entry

[61, 62]. Design uncertainty results from lack of knowledge during the design process

[60]. Model uncertainty describes the lack of fidelity in the analysis tools used during de-

sign. This includes decisions made about the use of the model during design, such as the

selection of model inputs and outputs, and the use of surrogate models.

Whereas determining the measurement error is a fully quantitative process, state-of-the-

art3 accounting for phenomenological and model uncertainty is a partly qualitative process,

using “engineering judgment” based on the state of the art and historical missions. Eval-

uation of model uncertainty involves the comparison of the different sources of data and

evaluating their relative fidelity. In an evaluation of CFD sources, variability is assessed

based on the use of different codes, governing equations, turbulence models, grid resolu-

tions, etc., but this does not capture the limitations of the models themselves [12]. Their

fidelity is compared to physical experiments, where the “model” is a subscale object in

real, physical flow, with all the phenomenological uncertainty that entails. However, there

are still large differences in the model represented by a subscale wind tunnel experiment

performed in Earth atmosphere and full-scale flight conditions at Mars.

This phenomenological uncertainty remains a primary concern for designers. The de-

signers for MSL adopted a policy or robustness for setting the aerodynamic uncertainty

bounds [40]. They started with the chosen values for MER and Pathfinder, and adjusted

them based on engineering judgement of the differences in flight regime, the lifting trajec-

tory, and vehicle geometry. Decisions were made conservatively, such as the choice to use

the dynamic coefficient model that produced the most destabilizing behavior [63].

This database is considered to be quasi-static, since the only dynamic coefficient it con-

tains is pitch damping. This means that the uncertainty must account for the model fidelity

uncertainty due to ignoring the other unsteady behavior. The models for the aerodynamics,

control system, and guidance & control are also constructed independently. This means

3The term “state of the art” in this dissertation refers to U.S. Mars entry vehicle programs.
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that the interactions between these disciplines must also be accounted for using the un-

certainty. This is an indirect method of accounting for the coupled, unsteady behavior, as

opposed to a direct method that would include these effects within the model.

Observation 1.5: The state-of-the-art methodology indirectly accounts for coupled, un-

steady behavior through model uncertainty.

For future Mars missions, the interplay becomes more complex. The increased land-

ing precision necessary for human missions will require lower overall uncertainty. New

technological uncertainty is introduced by the use of low-density decelerator technologies.

The change in OML, TPS, etc., could also introduce phenomenological uncertainty. With

the phenomenological and technological uncertainty increasing at the same time that over-

all uncertainty must decrease, the only remaining area that can be managed is the model

uncertainty.

Observation 1.6: Overall uncertainty can be managed by reducing the model fidelity un-

certainty.

1.4 Thesis Objectives and Outline

Future Mars missions will require increased landing precision, which can be accomplished

by limiting the growth of uncertainty during EDL. This can be most effectively achieved by

using active guidance, but this also imposes requirements on the aerodynamic and control

system uncertainty during atmospheric entry. The uncertainty must be low enough that the

controller can effectively maintain the vehicle attitude, and that the uncertainty induced by

the active guidance does not outweigh its benefits.

Guidance development for Phoenix was hampered by model uncertainty. A lack of

fidelity in the CFD models meant that model uncertainty was too high to verify correct

behavior of the control system. Rather than attempting to reduce this uncertainty, designers
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opted to change the requirements, accepting a higher landing uncertainty.

The development of MSL demonstrates the effort necessary to meet these requirements.

MSL was a deviation from the Viking design heritage - incurring increased volitional un-

certainty by flying at a higher trim angle of attack and changing the position of the RCS jets,

even though it retained many similarities to the OML. In order to compensate, a rigorous

testing regime was run with physical and computational experiments to reduce the model

uncertainty. The landing of Mars 2020 demonstrates that the desired level of precision may

be within reach for the current Mars entry vehicle heritage, with 10 landing attempts over

the past 46 years.

However, future Mars missions will have more stringent payload and landing elevation

requirements, beyond the capabilities of the current heritage. New vehicle designs will

increase the volitional uncertainty, and new technologies will increase the technological

and phenomenological uncertainty at the same time as overall uncertainty must be reduced.

This leaves model uncertainty as the only other epistemic source of uncertainty within the

designers’ control. The best recourse is to reduce uncertainty by increasing the aerody-

namic, flight dynamic, and control model fidelity, and adapt the guidance development

to leverage that reduction in uncertainty. This was expressed in the first statement of the

Motivating Hypothesis, repeated below:

Motivating Hypothesis, Part 1: If the aerodynamic and control system uncertainty during

atmospheric entry can be reduced, the performance of the entry controller, and therefore

landing precision, can be improved.

Observation 1.1 notes that the behavior of entry vehicle aerodynamics and control sys-

tems are fundamentally unsteady. These have affected Mars entry vehicles in the past and

continue to be a critical design consideration, even with a common design heritage. How-

ever, Observation 1.5 finds that the state-of-the-art methodology uses the model fidelity

uncertainty to indirectly account for the effects of unsteady control/aerodynamic/flight dy-
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namics interaction. As noted in Observation 1.6, model fidelity uncertainty is the best

available tool for managing the overall uncertainty. A reduction could be achieved by ame-

liorating the compromise made in the state-of-the-art methodology. This forms the second

statement in the Motivating Hypothesis:

Motivating Hypothesis, Part 2: If the process of entry controller tuning directly accounts

for coupled, unsteady behavior, then the aerodynamic and control system uncertainty dur-

ing atmospheric entry can be reduced.

These two statements form a hypothetical syllogism relating back to the Motivating

Objective. The whole Motivating Hypothesis leads to the Research Objective for this work:

Research Objective

Develop an entry controller tuning methodology that directly accounts for coupled,

unsteady entry vehicle aerodynamic and control system behavior.

Figure 1.17 summarizes the motivation presented in this chapter that led to the Research

Objective.

The remainder of this dissertation is organized as follows:

• Chapter 2 presents a literature review of tools required for controller tuning as used

in historical missions and for other vehicles, along with alternative methods used in

similar problems.

• Chapter 3 presents an examination of the state-of-the-art controller tuning process,

and investigates how it could be adapted to use the model alternatives identified in

Chapter 2.

• Chapter 4 formulates research questions, hypotheses, and experiments to support the

investigation of the overarching research objective.
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Literature Review:
EDL, Mars Entry Vehicle Heritage, Uncertainty Quantification

Observation 1.2: Aerodynamic and 
control system uncertainty are the 
primary contributors during entry

Observation 1.3: Controller relies on 
knowledge of aerodynamic and 

control system uncertainty

Observation 1.4: Active control 
exacerbates aero/control uncertainty 

growth in the short term

Motivating Hypothesis, Part 1:
If aerodynamic and control system uncertainty during atmospheric entry can be reduced, 

then the performance of the entry controller, and therefore landing precision, can be improved

Motivating Objective:
Reduce landing uncertainty during Entry, Descent, and Landing (EDL)

Observation 1.1: Entry vehicle 
aero/control system behavior is 

inherently coupled and unsteady

Observation 1.5: Baseline model 
uncertainty indirectly accounts for 

coupled, unsteady behavior

Observation 1.6: Overall uncertainty 
can be managed by reducing model 

fidelity uncertainty

Research Objective:
Formulate and implement  an entry controller tuning methodology that directly accounts for 

coupled, unsteady entry vehicle aerodynamic and control system behavior

Motivating Hypothesis, Part 2:
If the process of entry controller tuning accounts for coupled, unsteady behavior, 

then the aerodynamic and control system uncertainty during atmospheric entry can be reduced

Figure 1.17: Summary of motivation and Research Objective

• Chapter 5 documents the technical approach, including the development of a coupled

modeling framework.

• Chapter 6 presents the selection of a vehicle, control mechanism, and control system

for the problem of interest.

• Chapters 7 through 10 document the experimentation, results, and findings.

• Chapter 11 presents the conclusions, primary contributions, and discusses opportu-

nities for future work.
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CHAPTER 2

MODELING AND SIMULATION

The overarching research objective presented at the end of Chapter 1 can be considered in

two parts. The first, and the subject of this chapter, is the “direct” accounting for coupled,

unsteady behavior. As is understood from Section 1.3.1, this occurs in the construction and

use of the disciplinary models. A series of guiding questions can be posed to direct the

literature search:

Guiding Question 1: What is the state-of-the-art methodology for creating the flight dy-

namics, aerodynamic, and control system models used for entry controller tuning?

A literature review for each of these disciplines will be presented, encompassing the

underlying physics, the experimental models, and the delivery of this data for flight simu-

lation. The perspective of this chapter primarily follows the state of the art in entry vehicles

for NASA missions. Studies for historic and contemporary entry vehicles are also consid-

ered. In addition to surveying the methods themselves, an evaluation must be made of their

performance:

Guiding Question 2: What are the limitations of this methodology with respect to the

physics of actively-controlled entry vehicle flight?

When examining the methodologies used for individual activites, a philosophy of in-

vestigating similar processes in other disciplines is applied to find opportunities for cross-

pollination of ideas:

Guiding Question 3: What alternative methods exist that could ameliorate these limita-

tions?

The literature search will be used to make broad and specific observations that serve to
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answer these guiding questions.

2.1 Flight Dynamics Model

The flight dynamics of historical Mars entry vehicles have been modeled according to

rigid body dynamics (RBD) [57, 19]. The vehicle is treated as a rigid body (i.e., its OML

does not deform) subject to external forces and moments including gravity, aerodynamics,

propulsion, etc., that are calculated as a function of the current vehicle state. In response,

the vehicle can move in six degrees of freedom (6DOF): three angular degrees (roll, pitch,

and yaw rotation), and three linear degrees (translation).

Equations of Motion

Etkin [64] gives the equations of motion for a rigid body with respect to an inertial reference

frame. The inertial frame I and body frameB are defined as shown in Figure 2.1. The body

frame is fixed to the vehicle with its origin at the center of mass, the x-axis pointing towards

the front of the vehicle, and the y- and z-axes forming a right-handed reference frame. The

vehicle state x̄ consists of: r̄I , its position vector of the center of gravity in the inertial

frame; v̄B and ω̄B, its body-frame linear and angular velocity vectors, respectively; and φi,

θi, and ψi, the roll, pitch, and yaw Euler angles, respectively.���� �� �� ��������	� 
�
Figure 2.1: Inertial and body frames
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The equations of motion govern changes to the vehicle state over time [64]:

˙̄vB =
1

m
(F̄B − ṁv̄B)− ω̄B × v̄B (2.1)

˙̄rI = RIB v̄B (2.2)

˙̄ωB = I−1
B (M̄B − ω̄B × (IBω̄B)− İBω̄B) (2.3)


φ̇i

θ̇i

ψ̇i

 =


1 sinφi tan θi cosφi tan θi

0 cosφi − sinφi

0 sinφi sec θi cosφi sec θi

 ω̄B (2.4)

F̄B and M̄B are the external force and moment vectors, respectively. The mass properties

of the vehicle are its mass m and inertia tensor IB. A dot over the variable represents

its derivative with respect to time. RIB is the rotation matrix defining the transformation

between the body and inertial frames:

RIB =


cosψi cos θi cosψi sinφi sin θi − cosφi sinψi sinφi sinψi + cosφi cosψi sin θi

cos θi sinψi cosφi cosψi + sinφi sinψi sin θi cosφi sinψi sin θi − cosψi sinφi

− sin θi cos θi sinφi cosφi cos θi


(2.5)

Together, Equations 2.1 to 2.4 form a set of 12 ordinary differential equations.
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Numerical Integration

Numerical integration is used to solve the equations of motion and propagate the vehicle

state forward in time according to the initial value problem in Equation 2.6 [65].

˙̄x = f(x̄, t), x̄(t0) = x̄0 (2.6)

A variety of numerical integration schemes are available depending on the class of problem

to be solved [66]. The Runge-Kutta 4th-order integration scheme (RK4) is widely used in

trajectory propagation [67, 68]. RK4 is a single-step method, using only the information

from the previously-calculated step. This integration scheme has been found to be suitable

for both smoothly- and non-smoothly-varying problems [67]. The RK4 scheme calculates

the update to the vehicle state based on a series of substeps [65]:

x̄t+∆t = x̄t +
∆t

6
(k1 + 2k2 + 2k3 + k4) (2.7)

where ∆t is the physical time step, and k1-k4 are the derivatives at each of the substeps:

k1 = f(x̄, t)

k2 = f(x̄+ ∆t
k1

2
, t+

∆t

2
)

k3 = f(x̄+ ∆t
k2

2
, t+

∆t

2
)

k1 = f(x̄+ ∆tk3, t+ ∆t)

(2.8)

Trajectory Simulation Environment

Since the flight dynamics model requires the inputs and outputs for the disciplinary models

and generates the updated vehicle state, it is natural to make this the core of a trajectory

simulation environment [69]. Verification and validation of Mars EDL relies almost en-

tirely on computer simulation. Therefore, the state of the art for Mars vehicle development
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includes the construction of a complete end-to-end (E2E) simulation environment for the

EDL activities. These environments can run continuously from entry interface all the way

to touchdown.

Way et al. provide a detailed overview of the E2E environment constructed for MSL

[19]. The simulation environment is constructed around a trajectory propagator that uses

numerical integration to solve the equations of motion. The propagator calls disciplinary

models to determine vehicle properties and manage simulated activities. Figure 2.2 shows

the disciplinary models present in the MSL E2E environment.
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Figure 2.2: MSL E2E simulation environment [52]

The disciplines include physical models such as the mass properties, aerodynamics,

propulsion, atmosphere and terrain, etc. The E2E simulation also includes simulations of

the flight software, sensors, and data collection. Communications to, from, and between

these models are handled by the trajectory propagator.

Predictions of landing uncertainty are made by performing Monte Carlo simulations

using the E2E environment. Each disciplinary model also includes uncertainty parameters

which are randomly dispersed. The MSL simulations, for example, contained 682 disper-
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sions [19].

The E2E environment is also used for designing and validating the guidance algorithm

and control law. Monte Carlo simulations are run over a shorter duration, with dispersions

on the uncertainty parameters and a design of experiments for exploring the space of control

gains.

The execution time for a 6DOF trajectory simulation is low enough that it can be used

directly in Monte Carlo simulations [38, 50]. While reduced-order models for trajectory

simulation might be used, they result in reduction of execution time by 1-2 orders of mag-

nitude [70].

Observations

The flight simulation framework is designed to handle general communication between

disciplinary models, and it is agnostic to the type of disciplinary models being used. The

communication is processed at each time step, meaning that if the disciplinary models have

the capacity, state-of-the-art flight dynamics models are capable of time-accurate commu-

nication with aerodynamic, guidance, and control system models.

Furthermore, the execution time necessary for the numerical integration is low. Even

adding the computation time necessary purely for communication with (but excluding the

execution times of) the disciplinary models does not significantly increase the cost.

Therefore, there is no reason that the state-of-the-art flight dynamics cannot be used,

provided that the rigid body assumption still holds valid. Further review will thus focus on

the aerodynamic and control system models.

2.2 Aerodynamic Models

An aerodynamic model provides an estimate of the effect of the fluid flow on the vehicle

surface. This can be found as a distribution of pressure and shear forces over the whole

surface, or integrated into forces and moments acting on a reference point. The force and
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moment coefficients acting on the vehicle are defined in Figure 2.3.
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Figure 2.3: Aerodynamic coefficients

This section details the flight regimes that are applicable during entry and the multiple

individual models that are used within these regimes (or a subset thereof).

2.2.1 Flight Regimes

As the vehicle enters the atmosphere at five to eight kilometers per second, it encounters

a wide variety of flight regimes as shown in Figure 2.4. The vehicle first experiences

non-continuous flow in the rarified atmosphere at high altitudes [71]. At lower altitudes

and higher densities, the flow transitions to continuous. The focus of this section is on

the hypersonic and supersonic regimes, where the dynamic pressure is high enough for the

aerodynamic and control uncertainty to produce significant dispersion, and where guidance

is most effective.

34



Mach Number 1 3 5 10 15 20 25 30 350 8

Altitude (km) 15025 5010 2015 1000

CFD

Flow Regime

Models

Transonic

Knudsen Number 0.001 10001Subsonic

Supersonic Transitional

Hypersonic Free Molecular

Governing
Equations

Euler

Navier-Stokes

Boltzmann

Wind Tunnels

DSMCBallistic Ranges

Figure 2.4: Atmospheric entry flight regimes

Hypersonic Flow

The hypersonic regime is defined on the upper end of speed and altitude by the transition to

continuous flow, where Knudsen number Kn � 1, equivalent to about Mach 35 on Mars.

The lower end of the scale is somewhat arbitrarily based on behavior and flow features,

with sources defining the transition to supersonic flow anywhere from Mach 15 [71] to

Mach 5, with some hypersonic behavior observed as low as Mach 3 [20]. Flight in the

hypersonic regime is dominated by the complex flow features shown in Figure 2.5. The

MSL entry vehicle is shown flying at an angle of attack α relative to horizontal freestream

flow. The forebody causes a bow shock, with expansion fan and lip shocks at the interface

with the afterbody [42]. The sonic line marks the boundary of the subsonic flow on the

surface of the forebody. The size of the shock layer is dictated by the vehicle geometry

and speed. The behavior of the flow is also specific to Mars’ CO2 atmosphere. Transition

across the shock and dissipation of kinetic energy by friction results in a high temperature

and pressure boundary layer [72]. These high temperatures can cause the flow to be in

thermochemical nonequilibrium due to the disassociation and ionization of atmospheric

gasses. The high temperature boundary layer is the reason for the use of TPS. With an

ablative TPS, the energy of the flow is absorbed into pyrolysis of the ablative material,

resulting in outgassing. The ablation causes additional chemical processes and nonuniform

changes to the shape of the forebody surface over time [73].
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Figure 2.5: Hypersonic flow features on MSL (adapted from [42])

The wake of the vehicle is the region downstream of the forebody within the bow shock

and expansion fan. Within the wake, the flow diverted by the forebody travels across the

afterbody. Changes in α cause different behavior on the windward and leeward side, with

flow separation and reattachment [74]. In the region of separated flow, a mixing layer of

lower-velocity, higher-pressure flow exists near the afterbody surface. The flow can meet

into a recompression shock with a central recirculation zone.

During the hypersonic regime, the pressure on the forebody is significantly higher than

on the afterbody [56]. Pressure forces also dominate over shear forces [42]. Thus, the lift

and drag forces and the pitching moment are almost entirely driven by forebody pressure

distribution. A negative α produces positive lift through the cosine of the axial force. The

magnitude of lift is much smaller than drag, with the MSL entry vehicle achieving a lift-

to-drag ratio of 0.24 at Mach 6 [40].

Unsteady effects occur as the vehicle oscillates and changes Mach number, driven by

real gas effects. Static aerodynamic instability occurs as the sonic line shifts across the

forebody, especially when it interacts with changing geometry at the nose and shoulder

[75].
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Supersonic Flow

Flight in the supersonic regime begins around Mach 5 to 8 and ends at about Mach 1.2.

As the vehicle transitions into the low hypersonic and the supersonic regimes, the wake

has an increasing affect on the aerodynamics. Figure 2.6 shows a visualization of the flow

in the supersonic regime, demonstrating the extent of the subsonic region of the wake in

comparison to the size of the MSL entry vehicle.

Figure 2.6: MSL supersonic flow visualization [41]

Subsonic recirculation allows for fluid communication across the wake and interaction

with the afterbody geometry. Subsonic flow can extend for multiple diameters aft of the

vehicle. The vehicle generates turbulence and 3D vorticial structures [9]. Afterbody pres-

sure distribution becomes significant at high supersonic speeds, primarily contributing to

the pitching moment. While pressure forces continue to dominate, the shear forces are not

negligible [42].

Capsule-shaped entry vehicles are generally known to be dynamically unstable in the

low supersonic and transonic regimes [76, 59, 77, 75]. Dynamic instabilities are driven

by the wake, particularly at low supersonic speeds [20]. Unsteady flow separation and

attachment as the vehicle oscillates continues to affect dynamics. It is important to note

that the areas closest to the shoulder where attachment changes have the largest moment
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arm about the center of gravity.

The aerodynamics of an entry vehicle are inherently unsteady, with highly sensitive

flow features. Figure 2.7 shows data from a ballistic range test of the MSL entry vehicle

as it decelerates through the supersonic regime. The plot of total angle of attack αT shows

the unsteady interaction between the vehicle’s aerodynamics and flight dynamics as it os-

cillates about its trim angle of attack. Note that the oscillation frequency and trim point are

changing with Mach number. Overlaid on the figure is a plot of pressure at a location on

the afterbody. The pressure is much more unsteady, operating with a time constant much

smaller than the dynamics.
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Figure 2.7: MSL ballistic range test (adapted from Schoenenberger et al. [78])

2.2.2 Model Nomenclature

Aerodynamic models are classified in literature based on their properties. The broadest

classification is the accounting of vehicle motion relative to the freestream. In a static

model, the vehicle does not rotate or accelerate, so it has a fixed attitude with respect to the

freestream. In a dynamic model the vehicle is free to move relative to the fluid freestream,

in one or more dimensions, over time.

Models can be classified based on time variance of the fluid flow variables. A time-

accurate model allows for unsteady flow, where the flow field variables measured at a fixed
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point can change with time [79]. Conversely, a steady model assumes the flow field vari-

ables at a fixed point do not change with time. By necessity the fluid flow in a dynamic

model must be time-accurate.

Models can also be classified based on their domain: physical or computational. Physi-

cal experiments are performed in the real world, physically manipulating a fluid and vehicle

to produce the aerodynamic effects. Computational experiments use a mathematical rep-

resentation of the fluid and vehicle, using numerical methods to obtain a flow solution.

All physical models inherently have time-accurate flow. Thus only computational aerody-

namic models can have steady flow1. Figure 2.8 provides a taxonomy of models with this

nomenclature, including examples of the types of models that can exist.

Aerodynamic Models

Static Dynamic

Physical
(Ballistic Range)

Computational
(CFD)

Time‐AccurateSteady‐State

Computational
(CFD)

Time‐Accurate

Physical
(Wind Tunnel)

Computational
(CFD)

Figure 2.8: Taxonomy of Aerodynamic Models

2.2.3 Static Models

Static aerodynamic models represent the most basic accounting of aerodynamic effects.

Wind Tunnel Experiments

For the Viking missions, launched in 1976, static aerodynamic modeling relied solely on

subscale, physical experiments. By using physical fluid flow, these models are inherently

time-accurate. Wind tunnel tests were performed with sting-mounted models at 2.75% to

1In the computational aerodynamics literature, the word “static” is sometimes used as the opposite of
“time-accurate” to refer to static, steady-state models. In order to eliminate confusion, models which can be
properly termed “time-accurate static” can be referred to as “time-accurate fixed-attitude.”
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8% scale, in both air and CO2 [80, 81, 59]. These tests collected lift and drag forces and

pitching moments from Mach 0.4 to 10.5 with angles of attack up to 25◦. Wind tunnel

tests can collect integrated forces and moments on the model through a sting balance, and

pressure ports can be installed on the model surface to record pressure on the surface at key

locations, such as the backshell.

Wind tunnel tests of the Orion capsule are illustrative of the measurement methodology

[82]. Measurements were taken at 30 Hz and averaged over a two-second window. This

time span is longer than the time constants in the flow, so the measurements will not dis-

tinguish unsteady aerodynamic effects. The range of these measurements, along with the

hysteresis and repeatability, form the basis of the uncertainty [83].

Present-day vehicles continue to use these physical experiments [42, 12, 63]. The ex-

perimental methods have remained mostly unchanged, except for updates in measurement

systems and the introduction of refinements such as pressure sensitive paint [84].

Steady Computational Fluid Dynamics Models

For the vehicles that followed Viking, physical experiments have also been supplemented

by computational experiments. The flow of viscous, Newtonian fluids is described by the

Navier-Stokes equations [72]. The Navier-Stokes equations are written using the arbitrary

Lagrangian-Eulerian (ALE) formulation in Equation 2.9 [85, 86]:

∂

∂t

∫
V
qdV +

∮
∂V

(F ∗ − FV) · n̂dS = 0 (2.9)

where q represents the conserved variables and V is the control volume, bounded by control

surface ∂V , with local control volume face velocity W̄ . F ∗ and FV are the convective and

diffusive fluxes of q, respectively. The flux through a moving control volume must account

for augmented or reduced flux through the control surface due to the local control surface
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speed:

F∗ = F − qW̄ T (2.10)

The ALE formulation allows for the prediction of unsteady aerodynamics as the vehicle

moves in time. A computational fluid dynamics (CFD) flow solver is used to solve these

equations. The volume is spatially discretized into a grid, with the convective fluxes com-

puted using a flux-splitting scheme [87]. Time-accurate models use temporal discretization

in both physical and pseudophysical time steps [88]. Steady calculations are achieved by

only advancing the pseudophysical time step.

For Pathfinder in 1996, CFD was used to calculate the pressure distribution over the

forebody [75]. Designers for each subsequent vehicle have made greater use of CFD as

flow solver capabilities have improved. For each vehicle since Pathfinder, CFD flow solvers

have been the primary modeling tool for static aerodynamics [89, 56, 42]. Multiple flow

solvers are used covering different flight regimes and areas of flow [40]. Validation of the

static aerodynamic model relies on physical experiments and the close heritage of each

capsule [42, 12, 63].

For computational experiments, the measurement error is based on the variability of the

coefficients by iteration [11]. Figure 2.9 demonstrates this variability: as the coefficients

converge with increasing iterations, the change in the value of the coefficient (and in the

residuals) each iteration will decrease until it meets some threshold where the solution

is considered to be converged. However, the coefficients will continue to change with

each iteration due to numerical precision. The uncertainty also incorporates differences

between the results from different CFD codes, the use of different flow solver settings, and

comparison to wind tunnel data.

2.2.4 Dynamic Models

Entry vehicle development has primarily relied on physical experiments to characterize

dynamic behavior.
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Figure 2.9: Steady-state coefficient solution history

Ground-based Experimentation

The Viking program used ballistic range and forced oscillation experiments to characterize

the dynamic behavior of the capsule, namely the pitch damping coefficient [90, 91]. Forced

and free oscillation tests are performed in a wind tunnel with the model on a pivot. This

provides one degree of freedom (1DOF) of angular motion, usually either in pitch or yaw.

Ballistic range tests model the free-flight behavior of scale models shot from a gun into

quiescent fluid [92]. A ballistic range model is free to move in six degrees of freedom

(6DOF) for full translation and rotation. The model is measured from fixed stations as it

flies down range, capturing the vehicle trajectory. Modern ballistic range tests can also

measure trajectory with an inertial measurement unit (IMU) embedded in the model [93].

Ballistic range tests eliminate interference due to a wind tunnel sting balance, but the dura-

tion is limited by the length of the range and the drop-off of the model due to gravity. The

models also generally use smaller scales than the static experiments; the Viking ballistic

range models used models at a scale of only 0.29% [90] compared to 2.75% for the smallest

wind tunnel tests.

Reconstruction techniques such as parameter estimation are used to determine the aero-

dynamic characteristics that would fit the trajectory [94]. Parameter estimation (or identi-

fication) is the process of fitting an aerodynamic surrogate model from a trajectory [95]. A

6DOF flight dynamics model is constructed by integrating the equations of motion shown
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in Equations 2.1-2.4. The external forces and moments are given a functional form using

aerodynamic coefficients. This model is fitted to the trajectory data, using the aerodynamic

coefficients as the unknowns. The aerodynamic model can then be used as a surrogate (de-

tails of the model form are discussed in Section 2.4.3). Parameter estimation is commonly

used to construct an aerodynamic model from ballistic range tests [96, 97, 78, 98]. In these

cases, the damping coefficients may be used in an aerodynamic database. Measurement

error for ballistic range tests includes error in the graphical determination of the position

and orientation of the model at each station [96]. Reducing the trajectory measurements to

aerodynamic coefficients also introduces model fit error [94].

Since Viking, innovation in dynamic testing has enabled 6DOF motion in wind tunnels.

A magnetic balance can be used to suspend the model for motion subject to fluid flow,

gravity, and the magnetic field [99]. Free-flight drop tests release a stationary model to fall

through a transverse flow (akin to an inverse of the ballistic range) [100]. These experi-

ments yield substantially similar results to ballistic range tests, albeit with differences in

cost and duration.

Flight Testing

Flight testing measures the characteristics of the vehicle while in real-world flight condi-

tions. For vehicles like fixed-wing aircraft, these tests might use the actual vehicle flying in

the design flight regimes, but for Mars entry vehicles, full-scale flight testing is infeasible.

Compromises are often made to use a subscale or boilerplate vehicle, or to fly through only

a subset of the design flight regimes. Flight tests have been performed for new decelera-

tor technologies, such as the Supersonic Inflatable Aerodynamic Decelerator (SIAD) [101]

and the Inflatable Reentry Vehicle Experiment (IRVE) [102], though these tests entered at

suborbital speeds, not from orbital or interplanetary speeds. Furthermore, these tests can

only be done on Earth, which has different atmospheric properties from Mars.

The only ’flight tests’ for Mars entry vehicles are the actual flights at Mars. The Viking
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landers, MSL, and Mars 2020 carried sensors to directly measure the aerodynamic envi-

ronment around the vehicle [103, 104, 10]. This data has been used to validate Earth-based

experimentation [105] and provide correction factors for forebody-only CFD experiments

[42].

Coupled CFD-RBD Models

Up through the development of MSL, modeling dynamic behavior still relied primarily

on physical experiments and historical data [98]. However, several factors are driving

the investigation of time-accurate CFD simulations as suitable replacements: the desire to

reduce experimental costs, declining availability of facilities, increases in CFD flow solver

fidelity, and increasing computational power [106, 107].

Time-accurate simulation is achieved by the flow solver executing dual time stepping:

the outer time step advances the simulation forward in time, while the inner time step. The

continuous integration of the flow field preserves flow history, which means that unsteady

aerodynamic effects are modeled.

While these simulations can be run with the vehicle state held constant, dynamic simu-

lations can be executed by including vehicle motion. Dynamic, time-accurate CFD models

are created by coupling the flow solver with a rigid body dynamics (RBD) simulation [67,

108, 109]. The governing equations for fluid flow are solved simultaneously with the equa-

tions of motion as the simulation steps forward in time. The physical time step of the RBD

model is chosen to be equivalent to (or an integer multiple of) the outer time step of the

CFD model. Figure 2.10 illustrates the high-level operation of the model. Aerodynamic

forces and moments calculated by the CFD are used to drive the motion of the vehicle,

which in turn changes the fluid flow around the vehicle.

The CFD flow solver must incorporate linear and angular velocity terms in the gov-

erning equations for time-accurate simulation in a non-inertial frame. A number of flow

solvers incorporate this capability, either strictly through rigid mesh movement or by gen-
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Figure 2.10: CFD-RBD flowchart

eralized mesh movement and deformation. Accurately resolving the flow requires high

mesh density both near the vehicle surface and in the wake. State-of-the-art grids for entry

vehicles can have on the order of 20 million cells [41, 110]. The simulations must use a

very fine discretization in time to achieve time-accurate fluid flow. As a result, coupled

CFD-RBD runs for entry vehicles are typically less than one second in simulated dura-

tion. However, advances in computing power and flow solver capabilities are continuously

increasing the feasibility of CFD-RBD simulation.

The use of free-flight CFD-RBD simulations is prevalent in other disciplines, such as

the analysis of aircraft stores and projectiles. Store separation relies heavily on CFD-RBD

simulation to determine whether a projectile or other object released by an aircraft might

be at risk of recontact [111]. Meakin developed some of the earliest simulations for time-

accurate Navier-Stokes coupled with 6DOF for modeling store separation [112].

CFD-RBD simulations are used regularly in the field of subsonic and supersonic projec-

tile design. Coupled simulations described as “virtual fly-out” have been used to estimate

aerodynamic coefficients [113, 114, 115]. In particular, they are useful for determining

pitch damping, roll damping, and magnus coefficients [116, 117]. Similarly to ballistic

range tests, parameter estimation has also been used to extract data from CFD-RBD simu-

lations [118, 110, 114]. These simulations have the advantage of directly measuring forces

and moments, making them available to be used in the parameter estimation.

In the field of aircraft and rotorcraft design, the CREATE program has led to the devel-

opment of a high-fidelity aircraft design toolset including Kestrel: a multidisciplinary, mul-

tiphysics flight simulation tool[119, 120, 121]. Morton et al. [122] demonstrate Kestrel’s
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CFD-RBD capability linked to the kAVUS flow solver for a gravity munition. Roget et al.

[123] demonstrate a similar CFD-RBD capablity in CREATE-AV Helios for rotorcraft.

Murman and Aftosmis modeled entry vehicles in CFD-RBD simulations with 1DOF

pitch oscillation [124]. Murman also expanded this work to simulate an inflatable deceler-

ator and the Orion crew module [125]. Their CFD-RBD models were developed with the

OVERFLOW solver, using overset grids for translation and rotation [126]. These 1DOF

simulations are the equivalent to the free- and forced-oscillation wind tunnel tests. Through

this and subsequent work, Murman demonstrated the sensitivity of CFD predictions to the

pitch rate of the vehicle [125].

Expanding on the 1DOF simulations, 6DOF simulations model flight dynamics in trans-

lation and rotation. The 6DOF simulations are a virtual equivalent to ballistic range exper-

iments. Stern et al. [108] constructed a CFD-RBD model using the US3D flow solver,

which they used to predict dynamic properties of the MSL entry vehicle. This model was

also used to predict surface pressure at sample points on the afterbody in order to provide

a comparison to flight instrumentation [41]. Brock et al. [110] used the same US3D-based

model to simulate the ballistic range tests for the Supersonic Flight Dynamics Test (SDFT).

These models used detached eddy simulation (DES) [127] to accurately resolve the turbu-

lence behavior for the subsonic wake. They were able to achieve excellent agreement with

the experimental trajectory and aerodynamic data. The US3D framework uses grid defor-

mation to achieve the angular degrees of freedom. An inner region of the grid is rotated

with fixed orientation to the surface, with an algebraic grid deformation transitioning to the

fixed outer region. This model has been validated for multiple entry vehicles [110, 128]

2.2.5 Observations

Between the various fundamental models for static and dynamic aerodynamics used in the

state-of-the-art methodology, the physics of unsteady fluid flow are accurately modeled.

The ballistic range experiments on their own provide a model that only significantly dif-
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fers from flight in terms of the scale and atmospheric conditions. The difficulty arises in

extracting information from this model. Measurement of the trajectory effectively pro-

vides a measurement of the integrated forces and moments, from which the instantaneous

aerodynamics must be calculated, incurring uncertainty propagation.

For this reason (among others such as cost), the ballistic range tests are supplemented by

the static models. Wind tunnel tests are easier to measure, but the measurement techniques

average out any unsteady fluid behavior and include the variation in the uncertainty. CFD

is used as the primary model for steady-state aerodynamics, though CFD is capable of

modeling time-accurate flow. Thus, the unsteady fluid behavior is inherently modeled, but

not sufficiently measured.

Observation 2.1: The fundamental aerodynamic models capture unsteady fluid behavior,

but model choice and the measurement process cause a reduction in fidelity.

As a result, the state-of-the-art methodology lacks instantaneous measurement for un-

steady fluid flow around an unsteady vehicle. However, in the same way that physical,

static aerodynamic models have been augmented by the use of CFD, research is ongoing to

augment physical, dynamic models with dynamic CFD models. This is due to two primary

factors: their recent introduction (and the need to validate these models), and their compu-

tational cost. The execution time for a CFD-RBD simulation may be orders of magnitude

higher than the cost of a static CFD solution.

Observation 2.2: Numerical, dynamic entry vehicle aerodynamic (CFD-RBD) models

exist, but are not yet used in the state-of-the-art methodology due to their computational

cost.
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2.3 Control System Models

The control system model provides an estimate of the effect of the control system on the

vehicle. This is found as a sum of forces and moments. The total contribution of an RCS

jet to the vehicle moment is modeled according to Equation 2.11:

M̄jet,net = ṁjetsjetr̄jet × n̂jet + M̄jet,interaction (2.11)

Similarly, the force is:

F̄jet,net = ṁjetsjetn̂jet + F̄jet,interaction (2.12)

where ṁjet and sjet are the jet’s mass flow rate and exhaust speed, respectively. r̄jet is

the moment arm of the jet about the center of mass and n̂jet is the thrust direction vector.

This first term is the contribution due to the momentum of the exhaust gasses, which is

easier to model since it is relatively insensitive to the aerodynamics. Therefore this dis-

cussion will primarily be concerned with modeling the interaction term. The second term,

M̄jet,interaction, is the contribution due to the interaction between the jet plume and the

vehicle aerodynamics. This is defined as:

M̄jet ,interaction = M̄jet ,on − M̄jet ,off (2.13)

where M̄jet ,on and M̄jet ,off are the net aerodynamic moments with the jet on and off, respec-

tively (note that this is a summation over the entire vehicle, including the nozzle plenum).

For an aerodynamic control surface, the interaction would be the only term, since there is

no net momentum transfer. Since the control surface is not removed from the vehicle, the

equivalent moments would be for the control surface in a deflected versus neutral position.
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2.3.1 RCS/Aerodynamic Interaction

The direct effect of the RCS jets is typically only a small fraction of net aerodynamic

moments [40]. As such, their authority in pitch and yaw is limited to rate damping. How-

ever, the plume of an RCS jet interacts with the aerodynamic flow field around the vehi-

cle. Whereas the direct effect of the RCS is calculated by the pressure distribution and

momentum transfer from within the nozzle, jet interaction causes changes to the pressure

distribution over the rest of the vehicle surface [12].

Figure 2.11 illustrates the flow features of an RCS jet interacting with attached, super-

sonic flow. Even though the jets are located on the afterbody of the vehicle, the high angle

of attack of the freestream means that the windward side may still experience attached

flow. Entrainment and recirculation near the exit of the jet causes a local decrease in the

surface pressure distribution [12]. Horseshoe shocks can cause an area of higher-pressure

stagnated flow upstream of the thruster. The jet flow lifts up the oncoming stream, increas-

ing the extent of separation. For jets that are more parallel to the surface, impingement

can cause a local increase in the pressure distribution. The effluent can interact with the

vorticial structures already present in the wake [9]. These effects are as dependent on the

flow history of the vehicle as on the current state. Interactions can have different behavior

in attached and separated flow.

(a) Side view (b) Orthographic view

Figure 2.11: RCS interaction features in attached flow (adapted from Ben-Yakar et al.
[129])
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Figure 2.12 shows how the exhaust can affect a large portion of the afterbody surface

since the wake is subsonic and the jets are under-expanded. The jet can also cause flow

separation and reattachment. These global changes can affect the surface pressure distri-

bution in ways that are very sensitive to freestream conditions and attitude. Figure 2.13

shows how the surface pressure changes when the jets are turned on. In addition to the net

changes, the plume recirculation can impact the surface on the opposite side of the capsule.

(a) Side view

(b) Aft view

Figure 2.12: Iso-surface of 1% exhaust in MSL wake with leeward engines firing. Mach
2.5, 19.7◦ angle of attack (adapted from Dyakonov et al. [12]).

For historical Mars entry vehicles, the aerodynamic moment caused by the interaction

can be on the same order of magnitude as the direct RCS effect. Depending on the pres-

sure distribution and moment arm on the vehicle, the interaction could yield increased or

reduced effectiveness, or even control reversal. The interaction can also be cross-channel

(e.g., actuation of the pitch jets could cause a yaw moment). Since the RCS interaction af-
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Figure 2.13: RCS interaction surface pressure [20]

fects the afterbody pressure distribution, its impact is greatest when the afterbody pressure

is highest: during high dynamic pressure. This is also when aerodynamic uncertainty is

most significant to landing uncertainty, and when entry guidance is most effective.

The RCS design for MSL went through four major iterations due to persistent chal-

lenges with control/aerodynamic interaction [63]. Design deviation from the Viking entry

vehicle heritage OML and RCS was sufficient to require extensive validation using both

physical and computational experiments [40]. The resulting interaction uncertainty was

large enough to raise concerns about negation of control authority and excess aerothermo-

dynamic heating.

Control System Operation

The mode of control system operation also contributes to the unsteady behavior of aerody-

namics and control system interaction. RCS jets are operated in short-duration pulses, with

a discrete startup time and commanded duration. These pulses can cause sudden changes

in pressure distribution [9]. Jet thrust is not a perfect step response; Figure 2.14 plots the

thrust response for an Apollo capsule RCS thruster, demonstrating the unsteady character-

istics of a jet pulse [130]. Starting from the time ton when the jet is commanded to activate,

the thrust can have a rise time trise to nominal thrust and a fall time tfall after commanded
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shutoff time tfall . Thrust might overshoot the nominal value on startup, and trail off after

shutoff. Figure 2.15 shows the activity of the roll RCS during MSL entry. MSL rcs had

most pulses between 50 and 150 milliseconds, clustered around the bank reversals [54].
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Figure 2.14: RCS thrust response (adapted from Foote et al. [130])
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Figure 2.15: Predicted and actual MSL roll RCS activity during entry (adapted from Schoe-
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2.3.2 Static Models

The definition of the interaction in Equation 2.11 is indicative of how it is modeled: the

aerodynamic forces and moments are measured with the RCS jet (or combination of jets)

on, and the difference is taken with the measurements taken when the jet is off.

Wind Tunnel Experiments

Wind tunnel tests for RCS interaction are performed with scaled jet nozzles integrated into

the model geometry [131]. Simulated exhaust gasses are fed through the sting balance to

be ejected through the scaled nozzles (hence ballistic range tests and magnetic levitation

tests are infeasible). Concessions must also be made to scalability and manufacturability

for these tests. Wind tunnel tests for the MSL RCS used simplified capsule outer mold

line (OML) geometry [63]. The nozzles were simplified to a cylindrical throat and axisym-

metric conical nozzle, resulting in a change of area ratio. The scaling of the nozzles was

chosen to match the plume shape and momentum ratio expected at flight conditions, but

at a different exit Mach number. Additionally, pure Nitrogen gas was used as the exhaust

for the nozzles instead of Hydrazine combustion products. Modifying the sting balance to

maintain the desired fluid conditions of the N2 resulted in increased interference with the

capsule body [63].

Static CFD Experiments

Since the exhaust from an RCS jet is also fluid flow, it can also be modeled using CFD. RCS

jets are modeled as an inflow boundary condition to the volume. This boundary is placed

in a location where the flow properties of the jet are known and well-behaved, such as the

nozzle plenum [12]. The pressure, temperature, mass flow rate, and chemical composition

of jets might be specified to match flight conditions [12] or to match wind tunnel tests for

validation [63].
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The Phoenix lander was the first entry vehicle for which CFD was used to predict the in-

teraction between RCS and the aerodynamics [11]. Analysis of the Phoenix RCS relied on

computational techniques and some ground testing from MSL development. Steady-state

CFD solutions were calculated for Phoenix with RCS on and off in the rarified, hypersonic,

and supersonic regimes. The desire to model RCS drove the need to include afterbody and

vehicle wake within the flow volume [9]. Analysis in the hypersonic regime was performed

using LAURA, a 3D Navier-Stokes flow solver that can solve laminar and turbulent flows

with thermochemical nonequilibrium [132]. Solutions in the supersonic regime were made

with FUN3D, another 3D Navier-Stokes flow solver [133]. Due to time constraints, there

were no purpose-built physical experiments for RCS validation [11].

Figure 2.16 shows the iteration history for afterbody moment in the presence of the

pitch jets, compared to the baseline afterbody moment and the ideal jet authority. The flow

in the wake is unsteady, with resulting oscillation in moment coefficient. This oscillation is

due to numerical effects as the solution converges.
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Figure 2.16: LAURA CFD iteration history of Phoenix afterbody moment, Mach 18.8
(adapted from Dyakonov et al. [11])

The variability by iteration is significant compared to the ideal authority of the jets,

especially in yaw. Figure 2.17 shows the interaction in yaw for the FUN3D solutions at

Mach 3, near peak dynamic pressure, with error bars representing the solution variability.
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Over the entire range of sideslip angles simulated, the error bars are significant compared to

the ideal moment of the yaw thrusters. At sideslip angles of 0◦ and 2◦, the mean coefficients

predict a control deficit larger than the yaw jet authority. This would result in control

reversal, where a commanded yaw in one direction would result in motion in the opposite

direction. The CFD solutions also predicted cross-channel interaction, between pitch and

yaw and between roll and pitch/yaw.
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Figure 2.17: FUN3D prediction of Phoenix yaw RCS interaction at Mach 3 (adapted from
Dyakonov et al. [11])

The MSL program used CFD as the primary tool for RCS development, with wind

tunnel tests for validation [63]. CFD experiments were able to ameliorate the scalability and

manufacturability issues with physical experiments. RCS jet configurations were evaluated

with the LAURA, DPLR, FUN3D, and OVERFLOW grids [12]. However, the CFD flow

solvers used were still subject to shortcomings in model fidelity for gas chemistry and wake

flows. Schoenenberger observes that the interaction results were sensitive to changes to the

grid and numerical schemes [63].

2.3.3 Dynamic Models

Dynamic models for RCS interaction have not been used for previous Mars entry vehi-

cles. Purpose-built physical, dynamic models for RCS interaction are not constructed for
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entry vehicles due to the manufacturability and scalability issues noted above for wind tun-

nel tests. Due to the small scale of the physical models, the propellants cannot be stored

on-board; jets must be fed through a mounting point, as is done with wind tunnel RCS

testing. The results from flight data are limited to “qualitative assessments” [54] for RCS

performance due to the high measurement uncertainty.

However, CFD simulations are capable of modeling jets in time-accurate flow. Korzun

et al. [134] modeled jets using time-accurate CFD to study supersonic retropropulsion for

future Mars entry vehicle concepts. Given that Dyakonov et al. [9] found that the jet inter-

actions were strongest when the exhaust direction was pointed against the oncoming flow,

the success in modeling time-accurate jets in these conditions supports its use in modeling

RCS jets in crossflow.

CFD-RBD-FCS Models

The “virtual fly-out” method introduced in Section 2.2.4 used for projectiles has been ex-

panded to include control system modeling. Sahu [135] simulated a rolling projectile with

open-loop control of a synthetic jet at the base of a projectile. The numerical simulation

demonstrated that the jet interacted with the separated flow region resulting in a change

to the dynamic behavior. Sahu et al. [136] investigated the same interaction for a jet in

crossflow.

Sahu et al. [137] developed the capability to add a flight control system model into

the CFD-RBD simulation, which was demonstrated by simulating a canard-controlled pro-

jectile during closed-loop roll and crossrange control maneuvers. Canard deflection was

modeled using overset or “chimera” meshing. Sahu and Fresconi validated simulations

of closed-loop roll control [138] and open-loop pitch control [139] against wind tunnel

experiments.

Sahu and Fresconi [140, 118] used the CFD-RBD-FCS model to investigate the de-

velopment of flight control algorithms. A canard-controlled projectile was simulated with
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open-loop control to generate aerodynamic data for parameter estimation. The simulations

captured interactions between the vortical structures shed from the canards on the fins. The

controller was then validated using closed-loop three-axis control simulations.

The capabilities of Kestrel have also been expanded to include control surface deflection

through mesh deformation [121, 141].

2.3.4 Observations

The most salient observations about control interaction models is that whole areas of mod-

eling are omitted:

Observation 2.3: The state-of-the-art methodology does not include dynamic control sys-

tem interaction or time-accurate control system actuation.

As noted in the above section, this deficit in physical experimentation is due to lim-

itations in manufacturability. As with the aerodynamic models, this suggests exploring

computational experimentation.

Examining the state-of-the-art modeling methods for control system interaction and

comparing it to the methods described in Section 2.2, it is interesting to note that the models

for aerodynamics and for control system interaction are the same. This is true in regards to

their actual utilization as well as to their capabilities and limitations. Comparing the static

models, the values are found from steady solutions, with time-accurate effects accounted

for in the model uncertainty. Indeed, comparing CFD-RBD simulations to CFD-RBD-FCS

simulations shows that the only difference in these numerical models is the inclusion of

logic to drive the control system (i.e. guidance and controller modeling), and the exercis-

ing of a capability that already exists in CFD to model inflow boundary conditions. The

literature demonstrates this for projectiles, leading to the observation about applying this

method to entry vehicles:

Observation 2.4: It is possible to expand entry vehicle CFD-RBD models to include guid-
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ance and control system modeling.

2.4 Surrogate Modeling

While the fundamental disciplinary models for aerodynamics and control systems have

been identified, these models are not used directly in the flight simulation framework. That

would be both cost- and time-prohibitive, and each individual model may not cover the

entire regime required for the flight simulation.

Instead, surrogate models must be constructed to combine the disparate models iden-

tified in the above sections. Queipo et al. [142] define a surrogate model as “[the] inverse

problem for which one aims to determine a continuous function of a set of design variables

from a limited amount of available data.” Giselle Fernandez-Godino et al. [143] note that

“[m]ost surrogates are algebraic models that approximate the response of a system based on

fitting a limited set of computationally expensive simulations in order to predict a quantity

of interest.” Given the wide range of definitions found in the literature, the term ’surrogate’

as used in this dissertation will be defined thusly:

Definition 1: Surrogate Model: An approximation that predicts the response of a model

continuously over the design space of the input variables, that is trained or fitted from a

limited number of executions of the original model.

Instead of evaluating the true response y, a surrogate model calculates the predicted re-

sponse ỹ. The use of these surrogates allows for rapid evaluation of the disciplines during

flight simulation. Whereas the measurement of a single data point in a wind tunnel exper-

iment might take between 2-30 seconds [144, 82], evaluation of a surrogate model might

take less than a millisecond. Factoring in the overhead for setup, the aerodynamic and con-

trol interaction surrogates might achieve a reduction of at least 4-6 orders of magnitude.

A wide variety of surrogate model forms have been developed and applied to aerody-

namic modeling [142]. Hiller [145] identifies a set of classifiers that can be applied to
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surrogate models:

Intrusive vs. Nonintrusive: ... Intrusive methods involve manipulation of a

system’s governing equations in identifying its dynamics, whereas nonintru-

sive methods rely on system identification techniques to replace the original

computational model with a smaller size system.

Parametric vs. Nonparametric: A parametric method assumes an explicit func-

tional form for the model of a system’s behavior and proceeds to define the co-

efficients of that particular model. A nonparametric method uses input-output

mappings to develop the best functional representation of a system.

Linear vs. Nonlinear: Linear methods assume that a system’s response is lin-

early dependent on the system’s inputs. Nonlinear methods assume a nonlinear

dependency on the inputs with the potential for cross-coupling of terms. The

distinction between linear and nonlinear models exists for both parametric and

nonparametric methods.

The following sections discuss the surrogates used in the state-of-the-art entry vehicle mod-

els, and identifies alternatives that are used in similar aerospace design problems.

2.4.1 State-of-the-Art Models

Aerodynamic data from the disparate modeling sources is compiled into a single surrogate

model for use during development. The most common form of surrogate used for entry

vehicles is a database of look-up tables [89, 56, 42, 58]. Databases are nonintrusive and

nonparametric, and, depending on their dimensionality, they may be nonlinear.

Aerodynamic Database

Table 2.1 demonstrates the general format of a database, where each row is an experimental

design point. The vehicle attitude is given in terms of angle of attack α and sideslip angle
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β, or in terms of the total angle of attack αT . In continuum flow, vehicle speed is given

either in absolute magnitude or by local Mach number M . The dependent atmospheric

properties are given in terms of altitude h or density ρ. The aerodynamic characteristics are

presented as coefficients for axial force (CA), normal force (CN ), pitching moment about a

reference point (CM ), and pitch damping (CMq ). The database may include yaw moment

and damping coefficients (CLN and CLNr), or if the capsule geometry is approximately

axisymmetric, the aerodynamics in pitch and yaw may be assumed to be identical [42,

56]. The damping coefficients usually calibrated to non-dimensional angular rates, with

the non-dimensional pitch rate q̂ calculated as an example:

q̂ =
q lref

2s
(2.14)

Table 2.1: Notional entry vehicle aerodynamic database

M h α β CA CN CM Cmq
x x x x x x x x
...

...
...

...
...

...
...

...
x x x x x x x x

Interpolation is used to calculate the aerodynamic coefficients at off-design points. An

efficient design of experiments (DoE) can be used to populate the database for the expected

flight regime with the minimum computational and physical cost. Figure 2.18 plots the pop-

ulation of design points for the Phoenix aerodynamic database [56, 80]. Figure 2.18a shows

how the design points are placed along the design trajectory. Information from physical and

computational experiments are used together to populate the database along the trajectory.

This is a basic form of data fusion, where the sources do not overlap. Different models

are used with different experimental designs for different flight regimes. Note also that the

static database includes data from Viking, which has a different OML to Phoenix.

The dynamic coefficients are a special case: these values are already calculated from a

surrogate model. Parameter identification was used to fit a parametric functional form for
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the aerodynamic coefficients based on the trajectory results [146]. The polynomial fit for

the damping coefficient was evaluated at the desired points to populate the database [56].

Though this surrogate also produces static coefficients, these are not used in the overall

surrogate model [146].

Figure 2.18b shows the sweep in αT at each of the Mach conditions. Experiments are

performed at each of these conditions for a sweep of αT . The bounds of αT are chosen

based on the vehicle’s trim angle of attack.
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Figure 2.18: Aerodynamic model design conditions for Phoenix database [56]

In the context of entry vehicle aerodynamic models, the uncertainty is delivered as a

set of bounds on the aerodynamic coefficients. The Aerodynamic uncertainty is itself a

model, with inputs from the vehicle state. Schoenenberger et al. document the static aero-

dynamic uncertainty model for MSL in [40]. Uncertainty for the aerodynamic coefficients

is implemented as a set of “adders” and “multipliers” as a function of Mach or Knudsen

number. The magnitudes of these values represent the 3σ limits of the nominal values,
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where σ is the standard deviation. The static aerodynamic coefficient uncertainty model

for MSL is shown in Table 2.2. The uncertainty of the axial force coefficient is given as

a single multiplier, and the other force coefficients include an adder. The pitch and yaw

moment coefficients use adders and multipliers, but the roll moment uncertainty is given as

a constant adder applied to the roll torque. MSL was the first Mars entry vehicle to have

quantified roll moment dispersions [40].

Table 2.2: MSL static aerodynamic coefficient uncertainties [40]

Regime CA CN , CY CM CLN CLL
Kn > 0.1 ±5% ±0.01, ±10% ±0.005, ±20% ±0.005, ±10% 0.0005
M > 10 ±3% ±0.01, ±10% ±0.006, ±20% ±0.003, ±10% 0.000219
M < 5 ±10% ±0.01, ±10% ±0.005, ±20% ±0.005, ±10% 0.00023

Uncertainties are applied to the coefficients in the Body frame. When the model is used,

a random value is chosen within the bounds from a Gaussian distribution, which is used

throughout the simulation. The dispersion force coefficients are found using the following

equations:

CA,disp = CA,nom(1 + UM
CA

) (2.15)

CY,disp = [CY,nom + UA
CY

](1 + UM
CY

) (2.16)

CN,disp = [CN,nom + UA
CN

](1 + UM
CN

) (2.17)

where UA
Cx

and UM
Cx

are the adder and multiplier terms. The dispersion of the moment

coefficients includes the uncertainty in the moments, as well as accounting for the offset in

C.G.

CM,cg,disp = [CM,MRP +
∆x

d
CN −

∆z

d
CA + UA

CM
](1 + UM

CM
) (2.18)

CLN,cg,disp = [CLN,MRP +
∆x

d
CY +

∆y

d
CA + UA

CLN
](1 + UM

CLN
) (2.19)
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CLL,cg,disp =
∆y

d
CN −

∆z

d
CY + UA

CLL
(2.20)

Schoenenberger et al. document the dynamic coefficient uncertainty model in [98]. In

the supersonic regime, the equations for pitch and yaw damping coefficient take the form:

CMq ,disp = (1 + UM
q )(CMq ,nom + 0.5)− 0.5 + UA

q (2.21)

where the multiplier and adder dispersion bounds are:

UM
q = 1± 0.5, UA

q = 0.05± 0.05 (2.22)

The multiplier and adder are selected using a Gaussian and uniform distribution, respec-

tively.

Control Interaction Database

The control interactions are delivered as a database of coefficients [11, 40]. These force

and moment coefficients are a correction to the static aerodynamic database. In addition to

the freestream properties and orientation inputs present for the aerodynamic database, the

interaction adds the inputs for control system actuation. Control surface actuation can be

given in terms of deflection angle δ, and RCS actuation can be given in terms of a thrust

coefficient CT . Table 2.3 demonstrates the general format of an RCS interaction database.

Table 2.3: General entry vehicle control interaction database

M h α β CT,1 CT,2 · · · CT,n ∆CA ∆CN ∆Cm,cg
x x x x x x · · · x x x x
...

...
...

...
...

... . . . ...
...

...
...

x x x x x x · · · x x x x

Figure 2.19 shows the CFD run matrix used for testing the MSL RCS interaction [63].

Wind tunnel tests were performed at a subset of the Mach 10 points, centered around β =
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0◦, with some tests at β = ±5◦.

0 1 2 3

Mach

-30

-20

-10

0

10

20

 (
de

g)

- roll
+ roll
- pitch
+ pitch
- yaw
+ yaw

0 1 2 3

Mach

0

10

20

30

40

 (
de

g)

Overflow FUN3D

Figure 2.19: MSL RCS CFD run matrix

Schoenenberg et al. document the uncertainty for control interactions in [63]. The

interaction model calculates the dimensional torque vector τττ as:

τττ = dA0FRCS (2.23)

where d is the vehicle diameter, FRCS is a vector of forces commanded for each jet, and A0

is a matrix of nondimensional interaction moments. Each item in A0 is calculated as:

A0,ij = ai
lij
d
R (2.24)

where lij is the nondimensional moment arm of the jet, and ai is the 3σ limit for the interac-

tion magnitude in roll, pitch, or yaw. R is selected randomly from a Gaussian distribution

with a mean of zero. For MSL, the bounds for pitch and yaw were ±40%, and the bounds

for roll were ±20%. These bounds are constant across Mach number, slip angles, and

backshell pressure.
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2.4.2 Observations

Quasi-static databases are the state-of-the-art for entry vehicle aerodynamic and control

interaction surrogate models. This is partly a result of the common heritage of Mars entry

vehicles from Viking all the way to Mars 2020. The MSL database included a pressure

correction term derived from the Viking flight data, and the Phoenix database included

Viking wind tunnel data. Since Mars 2020 has substantially the same OML as MSL, the

newest aerodynamic and control interaction databases date back to at least 2011. This helps

to explain why databases continue to be used even with a variety of alternative surrogate

methods.

The review of state-of-the-art surrogate models leads to observations about method-

ological gaps that can arise for future missions. In the process of compiling the data mea-

sured from the fundamental disciplinary models, the dynamic behavior is condensed to

the uncoupled angular rate damping coefficients. This ignores dependency of these coeffi-

cients on other variables, such as the difference between Cmq and Cmα̇ . This also ignores

cross-coupling stability derivative terms such as for the rolling moment, which could be

significant due to the noted sensitivity of the MSL controller to extraneous roll torque [40].

This is in addition to the reduction in fidelity in the fundamental disciplinary models, such

as the lack of measurement for damping coefficient in the control interaction models. In-

deed, current NASA research goals are aimed at constructing models that achieve a better

understanding of the underlying physics of entry vehicle dynamics, especially with respect

to pitch damping [147].

Observation 2.5: The state-of-the-art databases have reduced dynamic behavior model

fidelity compared to the fundamental disciplinary models.

In addition to Observation 1.5 which previously noted that the uncertainty takes on

the burden of the reduction in model fidelity, another gap concerns the construction of the

uncertainty model. While the magnitude of the unsteady behavior is represented in the
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uncertainty, it does not account for the variation of that behavior with time.

Observation 2.6: The state-of-the-art control interaction and aerodynamic uncertainty

models ignore the behavior’s time-accuracy.

Aside from these gaps, more general observations can be made about the process of

creating the surrogate models. Multiple fundamental disciplinary models cover different

subsets of the flight regime with a greater or lesser degree of overlap. Designers must

consider each model’s fidelity to the physics of the problem during construction of the

surrogate models. In most instances for the state-of-the-art methodology, models of higher

fidelity (e.g., wind tunnel experiments compared to static CFD) are used for validation and

uncertainty quantification. The state-of-the-art surrogate models are a fusion of data from

multiple models at multiple levels of fidelity. However defaulted the process is, designers

must be aware of the differences in fidelity driven by the choice of model, geometry, etc.

2.4.3 Alternative Surrogate Models

While historical Mars entry vehicles have all used databases as the form of the aerodynamic

and control interaction surrogate models, alternative model forms are available. In light of

the observations made about the capability gaps of the state-of-the-art surrogate models, a

literature search was conducted on surrogate model forms that are applied to similar prob-

lems of interest. A particular focus was placed on identifying models that can be trained

using time-series data, and models that can predict dynamic, time-accurate behavior.

Parametric Models

Parametric models are constructed using an explicit functional form with parameters or

coefficients that must be determined from the source models. One of the main advantages

of the parametric model is its predictable behavior in extrapolation. The prescribed nature

of the model form can also be a double-edged sword: terms can be intelligently added to the
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model based on expected behavior, but this also introduces the possibility that unexpected

behavior will be poorly captured.

Polynomial regression is a common form of parametric model that is often used in

parameter estimation. In a polynomial regression, the predicted response can be modeled

as a combination of a series of basis functions z with coefficients a [148]:

ỹ =
n∑
j=1

ajzj (2.25)

The form of the regression used can vary in complexity. Brown et al. [96] document

the aerodynamic data reduction from ballistic range testing for an early OML of MSL. The

polynomial expansion used for the aerodynamic coefficients and their 3-σ uncertainty have

the general form shown in Equation 2.26:

C = a0 +
3∑
i=1

ai sin
i α + b sin β (2.26)

where a0, ai and b are the regression coefficients for some aerodynamic coefficient C. The

coefficients may have one or more of these terms defaulted to zero. It was assumed that the

coefficients did not vary with Mach number over the span of Mach numbers in the ballistic

range test.

Wilder et al. [97] used parameter estimation to fit a regression to an entry vehicle bal-

listic range test. The regression used was a linear aerodynamic model calculated in the

CADRA program [94]. The aerodynamic coefficients were found as nonlinear polynomi-

als of Mach number and αT . Calculation of the drag coefficient is shown as an example in

Equation 2.27:

CD =[a0 + a1(M −Mref ) + a2(M −Mref )2] cosαT

+[a3 + a4(M −Mref ) + a5(M −Mref )2] sin2 αT

+[a6 + a7(M −Mref ) + a8(M −Mref )2] sin4 αT

(2.27)
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where each regression coefficient has a value and uncertainty. The form of the pitch mo-

ment and damping coefficients included higher-order and nonlinear terms:

CM = {[a1f + a2(1− f)]g + (a3 + a4f)(1− g)} sinαT ,

f = ea5(M−Mref ), g = ea6 sin2 αT

(2.28)

The pitch damping coefficient was fitted with multiple models since the form of each model

was not sufficiently validated [97]. One form was a function of the non-dimensional pitch-

ing rate q∗:

CMq =ge−fq
∗2

+ a1(1− e−fq∗2),

f = ea4(M−Mref ), g = he−(a2q∗)2 + a3(1− e−(a2q∗)2),

h = max[a5 + a6(M −Mref ), a7, a8 + a9(M −Mref )]

(2.29)

The other form was a function of q∗ and αT :

CMq =ge−fq
∗2

+ a1(1− e−fq∗2),

f = ea2(M−Mref ), g = he−a
2
3 sin2 αT + j(1− e−a23 sin2 αT ),

h = max[a4 + a5(M −Mref ), a6, a7 + a8(M −Mref )]

j = a9 + a10(M −Mref ) + a11(M −Mref )
2

(2.30)

Parametric models can also be constructed on include control system actuation. Sahu

and Fresconi [118] constructed a regression for a projectile with canard control. The model

was split into the contribution from the rigid and the four moving surfaces:

CA = a0 +
4∑
i=1

ai sin
i αT +

4∑
j=1

(
b0 +

4∑
i=1

bi sin
i αT,j

)
(2.31)

where αT,j is the local total angle of attack on surface j. Each of the regression coefficients

ai and bi were fitted as a function of Mach number.
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Cheng et al. [149] performed parameter identification for an entry vehicle with RCS us-

ing maximum likelihood identification. The RCS contribution was modeled as a correction

to the coefficients:

CN = CN,aero + a0
rjetδjet

QSrefLref cos θjet

(2.32)

where a0 is the coefficient relating the direct jet moment to the interference, θjet is the angle

between the jet thrust and the moment arm vectors, and δjet is the jet amplitude, calculated

according to a trapezoidal function:

δjet(t, ton , toff ) =



(t− ton)/trise , ton ≤ t < ton + trise

1, ton + trise ≤ t < toff

1− (t− toff )/tfall , toff ≤ t < toff + tfall

0, otherwise

(2.33)

where ton and toff are the values associated with the next firing of the jet. Hong et al.

[150] used a similar model for the RCS, except with the addition of a delay time td shifting

the entire trapezoidal function. These models were successfully used to extract the RCS

contribution to the aerodynamic coefficients.

Neural Networks

Artificial Neural Networks (ANN) are surrogates that are designed to mimic the construc-

tion of the organic brain [151]. ANNs are nonintrusive, nonparametric, and nonlinear. The

networks are constructed out of neurons which receive signals, integrate them and send

them out to other neurons [151]. The parameters of the network are determined by “train-

ing” the network using example sets of data, whereupon it can be used to “recall” the

generalized behavior for new inputs.

Many different ANN architectures have been developed, classified by the connectivity

between the neurons [151]. In a feedforward neural network (FFNN), the connections
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pass data in one direction from the inputs to the outputs. An example single-layer FFNN

architecture is shown in Figure 2.20. The design of a particular network can be varied by

changing the number of hidden layers, and changing the number of nodes in each hidden

layer. ������ ��������		
����������������� �
Figure 2.20: FFNN architecture

The architecture for a single perceptron neuron is shown in Figure 2.21. A set of signals

Sj are input into the neuron, where they are multiplied by weight coefficients wik and

summed. The activation function fk is evaluated with the sum and a neuron bias bk. The

output φk is passed to the next layer. The sigmoid function is one of the most commonly

used nonlinear activation functions [152]:

fk(x) =
1

1 + e−x
(2.34)������� ��������� �� 	�
�

Figure 2.21: Artificial neuron
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Linse and Stengel [153] trained an FFNN to model the normal force coefficient of an

aircraft from simulated flight data. They found that the feed-forward models were sufficient

to capture the coefficient using components of the vehicle and control state as inputs. Linse

and Stengel emphasized the importance of selecting the input data to span the design space,

as well as avoiding correlation between the input components. However, they did note that

the feed-forward networks had difficulty at high angles of attack, where the behavior of the

vehicle grew more nonlinear.

Singh and Ghosh [154] performed parameter estimation of a missile using an FFNN

trained using simulated longitudinal flight data. The state variables α, α2, q, and α2
T , along

with control deflection δ, were used as inputs for CN and CM responses. They experi-

mented with training these responses concurrently or separately, with the separate training

being more successful.

A time-delay neural network (TDNN) differs from the FFNN in that it includes recur-

rence of the inputs delayed over time. The response is a function of the input vector at the

current time step x(t) and its history over delays x(t − ∆1), ...,x(t − ∆j). The addition

of this delay layer is shown in Figure 2.22. TDNNs have the advantage of being universal

approximators for nonlinear, dynamical systems [155]. The memory of the past inputs ef-

fectively gives the model the ability to use high-order derivatives of the inputs. Choosing

the number and values of the delays massively increases the hyperparameter space of the

model. While the choice of delay is arbitrary, in practice for discrete data the delays are

often chosen as integer multiples of the time step to avoid interpolation. Each neuron can

use the same architecture and activation functions as described for the FFNN.

The connectivity of the network can be expanded to include recurrence of the output

to form a recurrent neural network (RNN). The response is now also a function of the

output vector history over delays y(t − ∆1), ..., y(t − ∆j). Including recurrence in the

TDNN forms a specific RNN architecture called a Nonlinear AutoRegressive model with

eXogenous variables (NARX) [156]. This model architecture is shown in Figure 2.23.
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Figure 2.22: RNN architecture

Between the input and output layers, the RNN functions as a feedforward network. The

output neuron has a feedback connection to one or more time delays, which then link back

to the input layer. The input also includes the exogenous input which adds new information

to the network. ������ �������	
�	��	�
�������
�������	��
�
�����	��
� ������

Figure 2.23: NARX architecture
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Ignatyev and Khrabrov [157, 158] used neural networks to model the characteristics

of an aircraft in forced oscillation at large angles of attack. This oscillation moved the

vehicle through regimes of flow separation and attachment. They compared an RNN and

an FFNN, finding the RNN to be favorable for its ability to capture the unsteady behavior

of flow separation and reattachment.

Wang et al. [159] created RNNs to model the lift and pressure distributions of an airfoil.

CFD was used to create time-accurate simulations of the airfoil pitching and plunging in

the transonic regime where it was subject to shock motion. They compared two RNN

architectures, NARX and Long Short-Term Memory (LSTM) [160], for predicting scalar

and distributed quantities trained using a set of time-series samples. They found that the

selection of the number and interval of the delays was critical to predicting scalar quantities.

The results for scalar quantities were found to achieve a higher smoothness and accuracy

than those of the distributed quantities.

2.4.4 Observations

The surrogate methods in the above section have a demonstrated history of use in modeling

problems similar to entry vehicles. The machine learning-based methods in particular have

been demonstrated for nonlinear dynamic effects such as shock motion and flow separation.

Considering that the potential use of these surrogate models would be as a substitute

for the state-of-the-art surrogates, their input/output characteristics are examined. It can

be assumed that their output can be made to be compatible with the requirements from

6DOF flight simulation framework, especially since many of these models are demon-

strated for this purpose. The inputs of these surrogates are time-series data from dynamic,

time-accurate models, which is consistent with some, but not all, disciplinary models re-

viewed in sections 2.2 and 2.3.
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2.5 Summary of Observations

The observations made throughout the literature review presented above can be used to

make a number of higher-level findings in response to the guiding questions introduced at

the beginning of this chapter.

State-of-the-art Methodology

The literature review conducted in sections 2.1 to 2.4 answer the first guiding question:

Guiding Question 1: What is the state-of-the-art methodology for creating the necessary

flight dynamics, aerodynamic, and control system models for entry controller tuning?

The static aerodynamics are modeled using steady-state CFD, with validation from

wind tunnel tests and corrections based on flight data. Dynamic behavior is modeled us-

ing ballistic range tests, with the dynamic coefficients extracted by parameter estimation.

The control system interaction is modeled using static, steady-state CFD as a correction

between the actated and non-actuated states. The data from the aerodynamic and control

system models are consolidated into aerodynamic databases for the nominal values and

the uncertainty. These databases are then used as the disciplinary surrogate models for the

flight simulation.

Suitability of the State-of-the-Art Methodology to Model Unsteady, Coupled Behavior

With an understanding of the state-of-the-art methodology, an assessment can now be made

about its capability as directed by the second guiding question:

Guiding Question 2: What are the limitations of this methodology with respect to the

physics of actively-controlled entry vehicle flight?

Entry vehicles experience highly unsteady flight during atmospheric entry. This was

previously noted in Observation 1.1 and expanded upon in Sections 2.2.1 and 2.3.1.
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The vehicle oscillates at a frequency related to the freestream conditions and its own

mass properties. Large-scale fluid structures are formed in the wake of the vehicle, com-

municating across the region of subsonic flow. These effects can operate over multiple

time constants. When the vehicle is free to move, the aerodynamics and flight dynamics

are fundamentally coupled.

For a vehicle with an active control system whose effects propagate outside of (or

change) the OML, the control system is fundamentally coupled with the aerodynamics.

The degree of coupling is different depending on the control system, with RCS being the

most coupled and control surfaces being less coupled. Separating these models out is an

artifact of the way these models are currently constructed. In reality, they are governed by

the exact same physics. RCS plumes can excite the subsonic region of the wake, which is

already a primary contributor to aerodynamic unsteadiness. The plumes can also interact

with the high-velocity flow around the vehicle, affecting separation and attachment. In turn,

the plume behaves differently in separated or attached flow. Furthermore, the actuation of

control systems depends on the guidance algorithm and control law, which in turn depends

on the vehicle motion calculated by the flight dynamics model.

Observations 2.5 and 2.6 indicate the limitations of the state-of-the-art methodology to

capture higher-order coefficients, as well as shorter time-constant behavior from the wake.

This could theoretically be solved by using more input dimensions in the database and

accepting the associated increase in cost to sample the higher-dimensional space. However,

this will still not be able to capture time-dependent effects.

Based on these observations, a formalized definition for unsteady, coupled behavior is

used throughout this dissertation2:

Definition 2: Unsteady, coupled behavior: The inherent, time-dependent flight dynam-

ics, control system, and aerodynamic behaviors of an actively-controlled entry vehicle, and

2Note that the definition of coupling describes interaction on the disciplinary level, not within it (e.g.,
pitch/roll cross-coupling).
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the interactions between them, that are not accounted for in the state-of-the-art aerodynamic

and control system surrogate models.

Alternate Forms of Surrogate Model

The final two findings respond to the third guiding question:

Guiding Question 3: What alternative methods exist that could ameliorate these limita-

tions?

If the state-of-the-art aerodynamic databases are unsuitable for modeling the unsteady,

coupled behavior of an entry vehicle with active control, it is possible to use a different form

of surrogate model. Section 2.4.3 surveys a subset of the model forms which have progeny

in aerospace applications. This includes a number of models that are used in parameter

estimation to fit data from ballistic range experiments, a process that is already used in

modeling entry vehicle aerodynamics. However, within the scope of entry vehicles, and

even for the same OML, there exists some variation in the specific format of model used.

The capability of these parametric models to capture the unsteady behavior and transients

from RCS interaction is unknown. Since the model assumes an explicit functional form, it

would be limited by the designer’s understanding of the system behavior and the inclusion

of applicable terms in the model.

As an alternative, nonparametric models could be used, such as neural networks. Since

they do not assume a functional form, they could be better suited to modeling the unsteady,

coupled behavior.

However, a key point about the use of surrogate models is that they still require a source

of training data. The surrogate model choice may also be dependent on the qualities of the

fundamental disciplinary models. Thus, the underlying models must still be capable of

modeling the desired behavior.
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Applicability of the Underlying Aerodynamic and Control Interaction Models

While the state-of-the-art surrogate models have a deficiency in modeling the unsteady,

coupled behavior, this is not necessarily the case for the underlying models used to populate

the surrogates.

Static wind tunnel tests accurately model the unsteady behavior of the wake, albeit with

added interference from the sting balance. Ballistic range tests accurately model the wake

for a vehicle in free-flight. As noted in Observation 2.1, it is the measurement process that

limits the application of these models to capture the unsteady, coupled behavior. Observa-

tion 2.2 shows that coupled CFD-RBD models ameliorate this issue, simulating the vehicle

in time-accurate free flight, with the ability to sample data with any desired precision. Even

though these models have not yet been used directly in a Mars entry vehicle aerodynamic

surrogate, they have been successfully validated against experimental data. The underlying

aerodynamic models are sufficient to capture the coupled behavior of aerodynamics and

flight dynamics.

For RCS interaction, wind tunnel experiments similarly model the unsteady behavior

with fixed vehicle attitude. However, the CFD models used in the state-of-the-art method-

ology are still limited to steady-state solutions. CFD flow solvers are capable of modeling

this behavior; the largest hurdle is the lack of validation to date for entry vehicles.

Figure 2.24 summarizes the literature review conducted for the modeling and simula-

tion, and the key observations that will contribute to the problem formulation in Chapter 4.

Literature Review:
Flight Dynamics, Aerodynamics, Control System Models, Surrogate Modeling

Observation 2.1: Unsteady fluid 
behavior is captured in the 

fundamental models, but not 
incorporated

Observation 2.3: The state-of-the-art 
methodology does not include 

dynamic control interaction or time-
accurate control actuation

Observation 2.5: The state-of-the-art 
databases reduce the fidelity of the 

dynamic behavior

Observation 2.6: The database 
uncertainty ignores the time-accuracy 

of the behavior

Guiding Question 1:
What is the state-of-the-art methodology?

Guiding Question 2:
What are the limitations of this methodology?

Guiding Question 3:
What alternatives can ameliorate these limitations?

Figure 2.24: Summary of modeling and simulation literature review
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CHAPTER 3

CONTROLLER TUNING

While Chapter 2 provides a foundation for addressing the first part of the overarching re-

search objective, Chapter 3 addresses the second: the utilization of a “direct” accounting

for coupled, unsteady behavior in the process of entry controller tuning. First the current

methodology must be understood:

Guiding Question 4: What is the state-of-the-art methodology for entry controller tuning

for a Mars entry vehicle?

The following chapter presents a literature review of the process of entry controller

tuning for atmospheric entry vehicles. Figure 3.1 identifies the high-level activities and

products used by designers for entry controller tuning.
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Figure 3.1: Baseline Entry Controller Tuning Process

A subset of the vehicle design process is shown, starting from an initial design or a

significant redesign. If disciplinary models do not yet exist, or have been invalidated by
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design changes, these models must be created or updated. For aerodynamics and control

system disciplines, one or more models may be consolidated into a surrogate model, as

found in Section 2.4. The aerodynamic, control system, flight dynamics, and additional

disciplinary models are used to construct the trajectory simulation environment. This serves

as a starting point for identifying the remaining processes shown. An investigation is made

into the controller and control law in order to determine the extent of the input variables to

the process of controller tuning.

Given this knowledge about the baseline methodology, the impact of potential changes

to the modeling methodology imposed on the tuning process must be identified:

Guiding Question 5: What limitations would be imposed on the entry controller tuning

process by accounting for coupled, unsteady behavior in the models?

3.1 Entry Controller Architecture

Before discussing the controller tuning process, the controller introduced in section 1.1.1

must be understood in more detail.

3.1.1 Attitude Controller

The guidance algorithm for MSL and Mars 2020 serve as the best examples for Mars entry

vehicles (the Viking landers, the only previous Mars entry vehicles with active control, used

a simpler guidance algorithm [161]). Brugarolas et al. [27, 162] describe the construction

of the entry-phase attitude controller for MSL. The controller operates within the guidance

algorithm as shown in Figure 3.2.

During the entry phase, the controller needs to stabilize the vehicle attitude. The actual

angle of attack needs to be stabilized at the predicted trim angle of attack, within a certain

deadband. Similarly, the actual sideslip angle must be stabilized about the predicted trim

sideslip angle, which is close to zero. The α and β deadbands are functions of the Mach
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Figure 3.2: MSL Entry Phase Guidance Functional Diagram [27]

number. The controller also responds to bank angle commands generated by the guidance

algorithm. During the bank reversal maneuvers, bank angle could change rapidly, but out-

side of these maneuvers the bank angle would be held constant. 80% of RCS propellant

was reserved for bank reversals, with the remaining 20% used for stabilizing the attitude

[27].

The entry controller operates in the control frame C, illustrated in Figure 3.3. the x-

and y-axes are aligned with the z- and y-axes of the body reference frame F , respectively.

The z-axis is opposite to the x-axis of F and offset by the trim angle of attack, making the

control frame non-orthogonal. Using the control frame separates the lateral and longitudi-

nal motion, so the entry controller can be constructed as three separate channels for α, β

and bank angle. �� ���� ����� 	
��� �� ����������
Figure 3.3: Control frame [27]
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The structure of the controller for each individual channel is shown in Figure 3.4 [27].

The controller includes both a feedback and feedforward path. The feedforward path is

primarily used for the bank reversals, when the commanded angles are changing rapidly.

The feedback path stabilizes the plant, using a proportional-derivative (PD) controller. Ear-

lier development of MSL considered the use of a phase plane approach or linear-quadratic

regulator [163]. In practice, the feedback primarily operates as a rate controller since the

attitude deadbands are set wide [162].��������	
��	��������	��������� ������ ��
��������� �!	
������" #$�������%	 ����������	���
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Figure 3.4: MSL single-axis controller functional diagram [27]

3.1.2 Control Law

The control law is the mathematical relationship between the measured vehicle state, the

desired state, and the control system inputs [164].

The MSL feedback controller used a phase plane formulation with attitude and rate

deadbands as shown in Figure 3.5 [162]. In the green region, the attitude error is considered

to be inconsequential, so the controller acts purely as a derivative controller. In the diagonal

blue-shaded region, the attitude error is increased, so the controller acts as a PD controller.
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Figure 3.5: MSL Feedback Path Controller [162]

The controller has the form of Equation 3.1:

ū = −Kx̄ (3.1)

where the control vector ū contains the commanded torque for each axis, K is a matrix of

feedback proportional gains, and x̄ is the state vector with the channel value and rate. For

example, the angle of attack error αerr is calculated as αcmd − α. In the state vector, this

error is modified according to the deadbands:

x̄ =




αerr − αdb αerr ≥ αedb

0 αdb > αerr > −αdb

αerr + αdb αerr ≤ αedb
α̇err − α̇db α̇err ≥ α̇db

0 α̇db > α̇err > −α̇db

α̇err + α̇db α̇err ≤ α̇db


(3.2)

Further calculation is performed downstream to convert this torque into the pulse width

and modulation frequency required for each jet. When the torque reaches saturation (rep-

resented by the light-shaded region), the jets will fire continuously, making the controller
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equivalent to a bang-bang controller [162].

The constants in this control law include the control gains and the values of the dead-

bands. Since the dynamic behavior of the vehicle changes with the flight conditions, these

values are scheduled based on flight conditions like Mach and dynamic pressure, as well

as phase and timing during entry [162]. Gain scheduling is a common and well-established

method of control [165]. To date, all Mars entry vehicles with active control have used

gain scheduling. The Viking landers used gain scheduling for roll control and pitch and

yaw damping [161]. MSL used a gain scheduled attitude controller for full 3-axis control

[26], and Mars 2020 uses an improved version of the same system [10]. Therefore, this

is considered to be the “state of the art” for controller development. Gain scheduling may

be preferred over more advanced techniques as its development process is considered to be

lower risk than the alternatives [166].

Controller architecture selection is somewhat dependent on the control system. Atkins

[167] develops a Linear Quadratic (LQ) controller with integral action for an entry vehi-

cle equipped with two-axis IMMA control. The control system operates by imparting a

force on the IMMAs, whose motion is modeled as a spring-mass-damper system. Etkin

was able to linearize the system about the equilibrium point. The control law is shown in

Equation 3.3:

ū = −K(x̄+ Rr̄cmd)−Kint x̄int (3.3)

The control vector ū consists of the forces applied to each IMMA. The controller tracks

commanded angle of attack and sideslip:

r̄cmd = [αcmd βcmd ]T (3.4)

The state vector x̄ consists of the angular velocity vector, orientation vector, slip angles,

and the velocity and acceleration of each of the IMMA masses. R and Kint are matrices

of feedforward control gains and feedback integral gains, respectively. Atkins also used

83



gain scheduling, based on atmospheric density.

More recent nonlinear control laws have been proposed for entry vehicles [168]. Van

Soest et al. [169] created a constrained model predictive controller for an entry vehicle with

aerodynamic control surfaces. They found that, in combination with feedback linearization,

the predictive controller performed better than a PID control, and that optimal control was

easier to develop. However, they noted that the process assumed a highly accurate aerody-

namic model.

Adaptive controllers have a mechanism that allows the controller to learn the vehicle

behavior in real time and update the control law [170]. This class of controller is useful

for problems with a high degree of uncertainty. Restrepo and Valasek [171] compared two

adaptive control schemes for a Mars entry vehicle through numerical simulation subject

to vehicle and environmental uncertainties. They compared a model reference adaptive

control commonly found in literature to a structured adaptive model inversion controller.

Both controllers were found to perform well for the problem, but differed in the difficulty

of implementation. They also investigated the effect of different learning rates. Steinberg

[170] notes that “proving stability and convergence of the total system is very challenging.”

3.1.3 Observations

Designers develop an entry controller format, which has some parameters that need to be

tuned. This can include parameters like gains and deadbands as in the MSL controller,

or learning rates for an adaptive controller. Some process is necessary to find satisfactory

values for these parameters.

The architecture of the controller itself is more dependent on the control system than the

control law. The baseline control law is compatible with multiple types of control systems,

including RCS, control surfaces, and IMMA.
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3.2 Controller Performance

Metrics must be established for determining the performance of the controller and con-

trol law relative to a set of requirements. Schoenwetter [172] documents the process for

measuring settling time and other characteristics for a generic value under control. These

metrics are visualized for the angle of attack in Figure 3.6, starting at some initial value α0

or perturbation, with a controller attempting to meet a commanded value.

���� ��
����	
��� ���������

	���������������������	�������
(a) In control

������ ������	
�� ��������������
(b) Out of control

Figure 3.6: Control Metrics

Figure 3.6a shows the response coming under control, whereas Figure 3.6b shows the

response failing to come under control. For a constant commanded value and acceptable

deadband, the controller seeks to bring the system under control from its initial condition.

Rise time is the duration between receiving the command and the system starting to re-

spond. Settling time is the duration required for the system to enter and remain within

the error band. Relative or absolute overshoot is the maximum error of the system with

opposite sign to the starting value.

Additional controller performance metrics are identified through the vehicle design lit-

erature. For an entry controller, the error measured over a short duration is called the

tracking error. This value is considered to be instantaneous compared to the long duration
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of the entry phase.

The MSL controller was also tuned with the desire to minimize fuel usage [162]. Re-

strepo and Valasek [171] identified control effort, defined as ūT ū, as a metric for controller

comparison. They also evaluated the integral of the control vector magnitude over time as

it is proportional to propellant usage. McNamara et al. [173] used phase and gain margin

requirements.

The controller performance must be evaluated over multiple initial conditions, result-

ing in distributions of the metrics defined above. As Marrison and Stengel [174] write,

“[a] probabilistic design metric is equally applicable to systems that are linear or nonlin-

ear, time-varying or time-invariant, continuous or discrete.” A set of control gains might

be evaluated at different initial attitude and angular velocity conditions, as well as uncer-

tainty, with the overall performance measured according to the probability that the con-

troller meets the performance requirements. The MSL controller in particular experienced

sensitivity to the uncertainty bounds. Schoenenberger et al. note that “the controller [had]

no way of identifying and correcting for a persistent roll torque explicitly” [40]. The con-

troller had a tendency to fail in a bank reversal near the peak dynamic pressure when the

persistent roll moment was too high. Thus, an overly-conservative estimate of roll moment

uncertainty could have artificially decreased the controller performance.

Controller requirements act as an interface between designers during development. For

the purposes of guidance development and testing, the entry controller must deliver a cer-

tain minimum of performance, measured according to some testing parameters. Thus, de-

signers are primarily concerned with the “worst-case” performance of a controller, subject

to uncertainties in mass properties, initial conditions, control mechanism performance, etc.

Since the controller must simply satisfy the requirements, as opposed to the necessity

of being the true optimum, at some point continuing the controller tuning activity would

serve no engineering purpose. If this work is to evaluate controller performance, a thresh-

old for significance must be established with respect to real-world applications. Literature
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that specifically cites an entry controller performance requirement is uncommon. Thus, un-

derstanding significance relies on abstraction of the UQ process. Queen et al. [175] present

the dispersion analysis for the Mars Polar Lander, which flew on an unguided ballistic tra-

jectory. The dispersion analysis included uncertainty due to lateral C.G. offset (from the

nominal exactly on the axis of symmetry). Considering that the offset in C.G. would result

in a trim angle of attack, the dispersion can be considered as a tracking error relative to the

commanded α = 0◦ Given the aerodynamic properties of the vehicle, the dispersion due to

tracking error can be calculated:

αe =
CA∆zcg

CMαd
=

1.628 · 0.0025

−0.0011 · 2.4
= −1.5731 (3.5)

Assuming that the maximum downrange landing error resulted from the maximum αtrim

(C.G. offset), the sensitivity of downrange landing error magnitude to tracking error is

5.9158km/◦. If the requirement for a precision landing within 100m was applied, a tracking

error of only 0.02◦ would result in excessive downrange landing error.

A similar analysis can be applied for a vehicle which uses a lifting trajectory. However,

since all flight vehicles that have used lifting trajectories have flow bank-to-steer trajecto-

ries, the results for angle of attack cannot be assumed to compound. Instead, the trajectory

simulations performed by Atkins [167] for an IMMA-equipped vehicle are used. This ve-

hicle modulated its lateral velocity by displacing the C.G., not by bank-to-steer. Therefore,

the same assumption used for the ballistic trajectory case can be applied.

The results for both trajectory types are listed in Table 3.1. As expected, the threshold

of significance for a guided, lifting trajectory is much larger than for an unguided, ballistic

trajectory. The lifting trajectory is much less sensitive to tracking error, since the guidance

algorithm can correct for persistent errors during entry.
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Table 3.1: Threshold of significant instantaneous tracking error for precision Mars landing

Ballistic trajectory Lifting trajectory
0.02◦ 0.17◦

Observations

Controller performance metrics that measure the properties of the controlled variable are

valid regardless of the control system architecture. While this may not be the case for other

variables, e.g., the consumables that are of interest for RCS, analogues such as control

effort can be used in their place.

Designers are concerned with the robustness of the controller to varying initial condi-

tions and to uncertainty in the disciplinary models. Therefore, a probabilistic approach is

taken to measuring the controller performance.

The performance metrics reviewed above can be determined by evaluating the time-

series vehicle and controller state data. These products can be produced through flight

simulation. The simulation duration necessary will be on the same order as any temporal

performance requirements. It is unnecessary to determine that a controller has failed be-

yond a certain threshold — as much may be learned about the problem from a controller

that failed a settling time requirement by 100% as from one that failed by 1,000%.

3.3 Controller Tuning

Controller or control law tuning is the process of finding the values of the parameters in the

control law, such as gains and deadbands, at one or more design conditions.

3.3.1 Linearized Control Problems

For systems that are linear or can be linearized about the area of interest, analytical methods

exist for finding optimal control gains [176]. McNamara et al. [173] document the process

of gain scheduling for the Orion launch abort vehicle controller. Considering the lack of
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sources for the gain scheduling process for historic Mars entry vehicles, this serves as an

example of a process used within NASA, for a vehicle that presents similar problems for

controller development, at a similar time to the development of MSL. The vehicle uses

jets for attitude control, and also encounters aerodynamic/jet interaction. It must perform

satisfactorily over a wide Mach number and altitude envelope, and it is unstable for most

of the flight regime.

The tuning process started with the construction of a linearized model [173]. The vehi-

cle is modeled as a rigid body, and the aerodynamic stability derivatives are found from a

database by using central differencing of small perturbations. This linear model, shown in

Equation 3.6, was used to tune the gains.

˙̄x = Ax̄+ Bū (3.6)

Multiple methodologies were considered for tuning, but the linear quadratic regulator (LQR)

was selected due to its simplicity in implementation considering the complexity of the aero-

dynamic behavior. LQR was also investigated during the initial design of the MSL entry

controller [27]. Atkins [167] also used LQR to determine IMMA controller gains.

The objective of LQR is to determine the control law as defined in Equation 3.1 that

minimizes the cost function shown in Equation 3.7 [177]:

J =

∫ ∞
0

(x̄TQx̄+ ūTRū)dt (3.7)

where Q and R are the state and control input weights, respectively. J has a global mini-

mum when Q is positive semi-definite and R is positive definite. The optimal control gains

are found using the equation:

K = R−1BTP (3.8)

89



where P is the solution to the algebraic Riccati equation [177]:

PA + ATP − PBR−1BTP + Q = 0 (3.9)

McNamara et al. [173] use Newton’s method to iterate on the weights until the con-

troller performance requirements were met. They defaulted some of the weights by setting

the ratio of the weights for some variables, such as α and β, to be larger compared to

other state variables. The gains were scheduled as a function of time (used as a surro-

gate for changing mass properties), Mach number, and altitude, with LQR applied at each

of the selected design conditions. Design of the schedule was concurrent with the tuning

process. Since the gains are interpolated at the flight conditions, care was taken to avoid

discontinuities in the gain designs. Tuning is initiated for all of the design conditions at

the same time, with further iteration at each design stopping when it is found to meet the

performance requirements.

Validation is performed for each of the designs using Monte Carlo simulation [173]. A

first assessment was made using simulations of the linearized model, with a final verifica-

tion performed using a 6DOF trajectory simulation. The Monte Carlo simulations included

dispersions for mass properties, aerodynamic coefficients, atmospheric parameters, and

initial state about the nominal trajectory.

3.3.2 Empirical Approach

Entry vehicles, especially those flying lifting trajectories, experience large ranges of αT and

can exhibit highly nonlinear behavior, as identified in Sections 2.2.1 and 2.3.1. The degree

of nonlinearity may also be exacerbated by new decelerator technologies. If linearization

is not feasible, gains must be determined empirically.

The tuning of an entry controller is a form of optimization problem. For an entry

controller that is designed to meet commanded angle of attack and sideslip αc and βc, the
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task of minimizing the settling time is written in standard form in Equation 3.10:

min
tset

tset = f(x̄0,K, αc, βc, Ū)

s.t. xi,0,min ≤ xi,0 ≤ xi,0,max

kj,min ≤ kj ≤ kj,max

− αtrim ≤ αc ≤ αtrim

− βtrim ≤ βc ≤ βtrim

um,min ≤ um ≤ um,max

(3.10)

where xi,0 is the value of the initial condition for i = 1...nx non-trivial initial conditions,

kj is the gain for j = 1...nk non-trivial gains, αtrim and βtrim are the maximum trim angle

of attack and sideslip, and um is the value of the uncertainty for m = 1..nu uncertainty

parameters. The function f represents the evaluation of the controller through flight sim-

ulation and the post-processing of the results to find the controller performance metrics.

In the worst-case scenario, this function must be treated as a black box. This function is

highly dimensional, with nx +nk +nu + 2 inputs. For the above example, the total number

of gains in each set is given by Equation 3.11

n = nu(nx + 2nr) (3.11)

where nu is the number of actuator state variables, nx is the number of state variables, and

nr is the number of commanded variables. Some of these gains can be defaulted to zero

based on assumptions of symmetry and low cross-channel interaction, but this can still

leave tens of gains that must be determined. The process of determining which gains are

non-trivial may also require evaluation in the flight simulation environment.

This function may be difficult to optimize because of the highly nonlinear nature. Mc-

Namara et al. [173] found that even “the LQR space is highly nonlinear and first derivative

information is unknown.” Furthermore, the settling time is undefined if the vehicle does not
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come under control. Depending on the choice of disciplinary models, the function could

also be non-deterministic. All of these attributes contribute to the complexity of the gain

optimization problem.

In reality, it is not necessary to find the optimal gains — it is sufficient to find a set

of gains that satisfy the performance requirements. Therefore, a method can be used to

simulate a large number of designs, evaluate the performance metrics, then filter the results

based on their conformity to the requirements [178]. At its most basic, this is equivalent

to a random search optimization algorithm. Each set of control gains requires experimen-

tation to determine its performance metrics. A similar process to that used for uncertainty

quantification for guidance system validation is applied. 6DOF trajectory simulations are

run with control in the loop, and the metrics are evaluated from the resulting trajectory.

There are two main points of difference with the process of guidance system validation.

First, instead of simulations over the entire duration of EDL, simulations only need be ex-

ecuted for a short duration, comparable to the time constants of the dynamic behavior, to

allow the vehicle to be brought under control. Second, the stochastic parameters include

not only the uncertainties, but also the gain design and initial conditions.

The controller can also be tuned using a more directed optimization methodology. Mar-

rison and Stengel [174] used a genetic algorithm (GA) and Monte Carlo simulations to

design a robust controller for a hypersonic vehicle. The genetic algorithm searched the

controller design space, and at each design a Monte Carlo simulation was run with 28 un-

certainty parameters for aerodynamics, atmosphere, etc. The designs were evaluated based

on 39 probabilistic performance metrics for stability, settling time, rise time, overshoot,

load factor, control input magnitude, etc. The GA executed several generations to find a

controller that met the requirements, evaluating over 20,000 designs. The algorithm was

also repeated eight times, yielding a range of minima, but produced a controller that per-

formed favorably compared to their baseline, achieving a 99.9% probability of meeting

their stability requirement.
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Miyazawa and Motoda [179] studied the feasibility of stochastic parameter tuning of a

reentry vehicle controller. Optimization was performed with the mean tracking technique

and with Monte Carlo simulation of the uncertainty parameters. Motoda et al. [180] also

investigated the use of simulated annealing for optimization, comparing this to the results

achieved using a downhill-simplex method.

Observations

In the general case where the degree of behavioral nonlinearity is unknown and the prop-

erties of the disciplinary models and flight simulation are unknown, the controller tuning

process can always be considered to be an optimization problem, seeking to optimize the

controller performance metrics to a required threshold.

Observation 3.1: Controller tuning is an optimization activity.

The tuning process is dependent on the complexity and behavior of the system. For

systems that are linearizable, analytical methods can be used. In some cases these methods

require access to the disciplinary models to produce a linearized model.

Observation 3.2: The controller tuning process can utilize a linearized model of the flight

simulation environment.

At the theoretical extremity, the vehicle behavior may be so complex as to require em-

pirical methods for controller tuning. In these cases, the trajectory simulation environment

might be used directly. Regardless of the controller tuning methodology used, the controller

must be validated to ensure that the performance is satisfactory in the highest available fi-

delity of flight simulation, and to ensure that the performance is robust to the uncertainty

parameters.

Observation 3.3: Controller validation is performed using a large number of 6DOF flight

simulations.
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3.4 Summary of Observations

State-of-the-art Controller Tuning Methodology

Based on the literature review for entry vehicles and closely related projects presented

above, Guiding Question 4 can be addressed with a reasonable degree of certainty:

Guiding Question 4: What is the state-of-the-art methodology for entry controller tuning

for a Mars entry vehicle?

The activities and products involved in the controller tuning process have been identi-

fied, filling in the flowchart in Figure 3.1. The process is considered here from the point

where a design decision has been made as to the format of the controller and control law.

With the format of the parameters known, the process of tuning can start. It requires the

availability of at least the flight simulation, but could possibly use the disciplinary models

directly or create a linearized model. The process produces a set or design of parameters.

This design is then validated using the flight simulation, where the controller performance

metrics are evaluated. If the metrics satisfy the requirements, then the controller is success-

fully tuned.

Continued Use of Gain Scheduling

The use of gain-scheduled controllers is likely to continue for future Mars entry vehicles.

Gain scheduling has been used for the entry controllers for each of the previous Mars entry

vehicles with active control, as well as for the Orion capsule. This heritage provides an

ease of implementation and large knowledge base that make its continued use attractive

for designers. Given that EDL is already one of the highest-risk phases of flight This

conservatism has been documented in the design of MSL, the last new Mars entry vehicle

OML that was developed. Designers elected to use a velocity trigger over a range trigger

for parachute deployment, accepting increased landing uncertainty “due to some perceived
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risk considerations” with the range trigger [50]. Controllers that are fully developed and

characterized a priori are (at least perceived to be) lower risk compared to adaptive or fuzzy

control schemes.

Use of Models with Multiple Levels of Fidelity

The controller tuning methods examined in section 3.3 generally utilize two models. One is

the flight simulation environment described in Chapter 2. The second is a linearized model

constructed from the aerodynamic and control system models. The linearized model can

be considered as a reduced-order model of the flight simulation environment, resulting in

a lower computational expense to tune a controller. However, this is achieved at the cost

of lower fidelity to the physics of the problem. This is why the controller must still be

validated in the higher-fidelity flight simulation environment. Since a more limited number

of controller designs are validated, the higher computational expense is not as much of a

concern.

Use of Many Trajectory Simulations

With this understanding of the baseline process, the final guiding question can be addressed:

Guiding Question 5: What limitations would be imposed on the entry controller tuning

process by accounting for coupled, unsteady behavior in the models?

The process of controller tuning relies on performing trajectory simulations, where the

number of simulations required depends on the tuning methodology used. For a system

that is easily linearized, although determination of the gains may be possible without tra-

jectory simulation, the controller still needs to be validated. Due to the need to validate the

controller under realistic flight conditions, these simulations are performed with the E2E

trajectory simulation environment (or its constituent models). As a result, thousands or tens

of thousands of simulations must be run.
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When considering the validation of the controller (as opposed to the guidance algorithm

as a whole), the simulation duration only needs to be on the order of the vehicle modes.

Thus, the simulations may only need to be executed for seconds or tens of seconds. In

summary, the controller tuning process relies on a large number of short-duration flight

simulations.

The controller tuning process is therefore sensitive to the execution time of the flight

simulation. If the computational cost of each run were to increase, it would have a multi-

plicative effect on the time required to tune and validate a controller.

Figure 2.24 summarizes the literature review conducted for the entry controller and

controller tuning process, and the key observations that will contribute to the problem for-

mulation in Chapter 4.

Literature Review:
Control Law, Controller Tuning, Controller Performance

Observation 3.1: Controller tuning is 
an optimization activity

Observation 3.2: The tuning process 
can utilize a linearized model of the 

flight simulation environment

Observation 3.3: Controller 
validation is performed using a large 
number of 6DOF flight simulations

Guiding Question 4:
What is the state-of-the-art controller tuning methodology?

Guiding Question 5:
What limitations would be imposed by the coupled model?

Figure 3.7: Summary of controller tuning literature review
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CHAPTER 4

PROBLEM FORMULATION

The following chapter uses the overarching research objective and the observations made

during the literature review to define major research questions and create hypotheses. For

each research question, experiments are proposed to validate the hypotheses.

4.1 Research Objective

Chapter 1 identified the need to reduce aerodynamic and control system uncertainty during

entry to support Mars precision landing. This uncertainty includes a significant contribu-

tion due to model fidelity choices; the unsteady behavior of entry vehicles, especially with

active control, is accounted for indirectly through uncertainty quantification. While this

methodology has proved mostly successful for the common heritage of Mars entry vehi-

cles, it could be compromised by the added uncertainty from new decelerator technologies

and stricter requirements for future missions. The motivation to reduce this uncertainty

and leverage the reduction for increased controller performance leads to the overarching

research objective, restated below:

Research Objective

Develop an entry controller tuning methodology that directly accounts for coupled,

unsteady entry vehicle aerodynamic and control system behavior.

This overarching objective can be achieved by successfully meeting the following sub-

objectives:

1. Develop a method for modeling the coupled, unsteady behavior of entry vehicle aero-
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dynamics, control system, flight dynamics, and guidance and control systems.

2. Develop a method for incorporating this model into the process of entry controller

tuning.

3. Quantify the change in entry controller performance between the proposed method-

ology and a baseline representing the state of the art.

The scope of the proposed work is subject to several assumptions to ensure feasibility

of the analysis tasks:

1. The first assumption is that the methodology created and evaluated in one particular

flight regime is similarly feasible across the whole range of continuum aerodynamics.

As documented in Section 1.1.1, control authority is negligible within the rarified and

transitional regimes due to low dynamic pressure.The entry phase will still end in the

low supersonic regime, even with new decelerator or propulsion technologies.The

literature review of aerodynamic models in Section 2.2 shows that the state-of-the-

art aerodynamics and control system modeling methodology (the use of CFD and

physical experiments) is consistent across this whole span. Therefore the proposed

work will be scoped to the low supersonic regime. This range can be selected based

on ease of model construction, capturing specific vehicle behavior, or matching the

availability of existing experimental data.

2. The second assumption is the investigation using a single, fixed configuration for

the vehicle and control system. The unsteady, coupled behavior of this system is

assumed to be categorically representative of the behavior exhibited by all of the

control systems identified in Section 1.1.1. As noted in Section 2.2.1, an entry ve-

hicle inherently excites unsteady aerodynamic behavior, so the primary rationale for

control system selection is the inclusion of interaction effects with either aerody-

namics or flight dynamics. In addition, the flexibility of the vehicle is assumed to
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be negligible, so that it can be modeled as a rigid body. This eliminates the need to

model aeroelastic effects, reducing the problem complexity.

3. The third assumption concerns the consideration of computational cost in the eval-

uation of the proposed methodology. It is recognized that computational costs for

coupled simulation exceeds the cost of the state-of-the-art methodology by orders of

magnitude. However, computational power is constantly increasing. Moore’s law

provides a simple empirical relationship that the number of transistors in an inte-

grated circuit will double every one to two years [181]. Therefore it can be expected

that the physical cost will eventually become feasible.

Continued advancements have been made in parallelization; planned exascale su-

percomputing systems will use GPU acceleration for increased throughput and effi-

ciency [182, 183, 184]. CFD software is already being adapted to leverage this next

generation of systems [185], and the capacity to run significant numbers of longer-

duration time-accurate CFD simulations is being anticipated by NASA stakeholders

[107]. Since the methodology is proposed for future use, an evaluation based on the

cost of current computer systems is inappropriate. Therefore, comparison to the state

of the art will be primarily based on performance. Where cost does come into focus,

the evaluation will consider relative computational cost between alternatives.

4. The fourth assumption is that the computational models will act as a source of truth.

This allows for the measurement of small absolute differences without measurement

uncertainty.

5. The fifth assumption is that the value for instantaneous tracking error is suitable as

a threshold of significance for the angular error results. During actual flight, the

guidance algorithm has the ability to correct for persistent errors This assumption is

made in addition to the assumptions involved in the caluculation of that value in ...

In the absence of more detailed simulation that can provide an understanding into
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the relationship between the instantaneous tracking error and the landing, the value

provides the most concrete estimate of that relationship available.

4.2 Research Questions and Proposed Methodology

Investigation of the overarching research objective is directed by the major research ques-

tions posed in the following sections. The proposed methodology is presented in tandem

with the research questions.

4.2.1 Modeling Unsteady, Coupled Behavior

Since the Research Objective seeks to modify the baseline entry controller tuning method-

ology, the first step to consider is the construction of the tools that are necessary for tuning,

namely the flight simulation framework and its constituent disciplinary models. An exam-

ination of the physics made in Sections 2.1, 2.2, and 2.3 showed that the unsteady, coupled

behavior of an entry vehicle are the result of the aerodynamics, control systems, and flight

dynamics disciplines. Therefore, the accounting (or lack thereof) for this behavior is ac-

complished in these disciplinary models. This motivates the search for a solution within

these disciplines as directed by Research Question 1:

Research Question 1

What is the appropriate methodology to model aerodynamics, control mechanisms,

and flight dynamics for an entry vehicle with unsteady, coupled behavior?

Chapter 2 presented a literature review into the construction of the aerodynamics, con-

trol system, and flight dynamics models, and their incorporation into a flight simulation

environment, from which several observations were made.

It was found that the baseline methodology cannot directly account for unsteady, cou-

pled behavior because of development choices made in constructing the fundamental disci-
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plinary models and the surrogate models. While the static aerodynamic models are capable

of capturing time-accurate behavior, the CFD models use steady-state solutions, and the

static wind tunnel models average out unsteady effects from the wake and control system

interaction in the measurement process. The static control interaction models have the

same limitation, but they also fail to measure the time-varying behavior of control system

actuation. Coupling between the aerodynamics and flight dynamics disciplines is modeled,

but control interaction is not modeled with dynamic flight. The surrogate models introduce

a further reduction in the fidelity of the dynamic behavior.

In examining the gap between the models used in the state-of-the-art methodology and

the actual physics of the problem, it becomes apparent that two fundamental changes must

be made. Capturing unsteady behavior in each discipline requires time-accurate models,

and capturing the interaction between the disciplines requires coupling between these mod-

els. Furthermore, it is apparent that the proposed methodology must use numerical simu-

lation due to the infeasibility of modeling the desired behavior with ground-based phys-

ical testing. While ballistic range simulations provide an accurate model for free-flight

behavior, they have no provision for modeling RCS control, the most common control sys-

tem used by entry vehicles. Subscale or full-scale flight tests are prohibitively expensive,

notwithstanding the fact that they can only be performed in Earth atmosphere.

However, it was also observed that among the disciplinary models, exist a subset of

models that are capable of capturing the desired behavior. CFD-RBD models, described in

Section 2.2.4, are capable of modeling the coupled time-accurate aerodynamics and 6DOF

flight dynamics. These “CFD-in-the-loop flight simulations” are already in use for similar

classes of vehicle, and are also being validated for entry vehicles. Furthermore, CFD can

be used to model the time-accurate interaction between aerodynamics and control systems.

Control surfaces can be modeled with overset meshes or mesh deformation, and propulsive

control can be modeled with inlet boundary conditions.

This enables the capability of driving the control system actuation based on a guidance
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system or controller. Incorporation of the control system into the coupled simulation has

been demonstrated by the “virtual fly-out” of projectiles. The problems faced by projec-

tiles are similar to those of an entry vehicle: unsteady behavior, and control/aerodynamic

interaction. This lends credence to the idea of using the same approach for entry vehicles.

This idea forms the basis of Hypothesis 1:

Hypothesis 1: If aerodynamics, flight dynamics, guidance and control mechanisms are

captured in a coupled, time-accurate model, then this model will simulate unsteady, coupled

entry vehicle behavior that is not captured in the baseline model.

This hypothesis can be decomposed into two sub-hypotheses considering the measure-

ment of the response from interactions between aerodynamics and flight dynamics, and

combined aerodynamics/flight dynamics/control mechanism interaction:

Hypothesis 1.1: If an entry vehicle is simulated in free flight in the coupled and base-

line models, then the difference in response due to unsteady, coupled behavior will be

quantified.

Hypothesis 1.2: If an entry vehicle is simulated in with open-loop control actuation in

the coupled and baseline models, then the difference in response due to unsteady, coupled

behavior with control system interaction will be quantified.

However, entry vehicles and projectiles may have very different OMLs and fly at dif-

ferent flight regimes, so a definitive answer cannot be found through the literature search;

the efficacy of the proposed method must be determined through experimentation.

Experiments 1.1 and 1.2 will compare the performance between flight simulations of an

entry vehicle using two flight simulation models: a “baseline” representing the state of the

art, and a “coupled” CFD-RBD-FCS model. The experiment is summarized below, with a

detailed description in Chapter 7.
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Experiments 1.1 and 1.2: Coupled Simulation Execution

As a prerequisite to Experiments 1.1 and 1.2, the baseline and coupled models must be con-

structed. The coupled model will be constructed from a CFD flow solver and a trajectory

propagator, linked together in a CFD-RBD-FCS framework. The baseline model will be

constructed as a representation of the state-of-the-art process for aerodynamic and control

system modeling, including design of experiments and database generation. The baseline

model is then executed using the trajectory propagator linked to these databases. Crucially,

both of these models will use the same flow solver and trajectory propagator as the source

of truth for the physics of the problem.

A series of four simulations will be run using the baseline and coupled models, listed

in Table 4.1. Experiment 1.1 consists of runs 1 and 2, and Experiment 1.2 consists of runs

3 and 4. Each of the runs will be initialized at the same freestream and initial conditions,

and executed for a duration of two times the natural oscillation period of the vehicle. Two

of the runs will have no control input, to establish the unsteady aerodynamic behavior

and its interaction with flight dynamics. The other two runs will have open-loop control.

Simulations with commanded open-loop control will characterize control interaction with

aerodynamics and flight dynamics. Trajectory results from the coupled simulation can also

be used to verify that control performance metrics can be calculated.

Table 4.1: Experiment 1 simulations

Run Model Control Command
1 Baseline None None
2 Coupled None None
3 Baseline Open-loop z-axis square wave
4 Coupled Open-loop z-axis square wave

The differences in the resulting trajectories can be examined directly. In addition, each

trajectory will be used to execute a forced motion simulation using the other model: the

trajectory results from the baseline simulation will be used to drive the motion of a time-
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accurate CFD simulation, and the coupled model trajectories will be used to interpolate

parameters from the baseline databases. This allows for the comparison of instantaneous

aerodynamic forces and moments at the same vehicle state and time.

The success criteria for the experiment are that significant differences are observed in

the trajectory components and aerodynamic parameters between the results from the cou-

pled and baseline models. Significance in the trajectory results is defined with respect to

the magnitude of controller performance metrics, such as overshoot and deadband, as de-

termined from the literature review. Significance in the aerodynamic coefficients is defined

with respect to the magnitude of aerodynamic and control interaction database uncertainties

described in Section 2.4.1.

Figure 4.1 summarizes the argumentation used to develop Research Question 1 and

Hypothesis 1.

4.2.2 Controller Tuning

A coupled trajectory simulation environment is proposed to replace the baseline environ-

ment, where the disciplinary models would be directly incorporated into the framework and

coupled together for time-accurate simulation. Assuming that Hypothesis 1 is retained, the

coupled model would provide higher-fidelity results than the baseline model. Any advan-

tage of the high-fidelity results from the coupled model must be realized by leveraging

the model for entry controller tuning. Figure 4.2 illustrates the proposed inclusion of the

coupled model in the tuning process (compared to the baseline shown in Figure 3.1).
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Literature Review:
Flight Dynamics, Aerodynamics, Control System Models, Surrogate Modeling

Observation 2.1: Unsteady fluid 
behavior is captured in the 

fundamental models, but not 
incorporated

Observation 2.3: The state-of-the-art 
methodology does not include 

dynamic control interaction or time-
accurate control actuation

Observation 2.5: The state-of-the-art 
databases reduce the fidelity of the 

dynamic behavior

Observation 2.6: The database 
uncertainty ignores the time-accuracy 

of the behavior

Guiding Question 1:
What is the state-of-the-art methodology?

Guiding Question 2:
What are the limitations of this methodology?

Guiding Question 3:
What alternatives can ameliorate these limitations?

Literature Review:
CFD-RBD models, CFD-RBD-FCS models

Observation 2.2: Entry vehicle CFD-
RBD models exist, but are not used in 
the baseline methodology due to high 

computational cost

Observation 2.4: Entry vehicle CFD-
RBD models can be expanded to 

include guidance and control system 
modeling

Research Question 1:
What is the appropriate methodology to model aerodynamics, control systems, and flight dynamics 

for an entry vehicle with unsteady, coupled behavior?

Hypothesis 1:
If aerodynamics, flight dynamics, guidance and control systems are coupled in a time-accurate 

model, then this model will simulate unsteady, coupled  entry vehicle behavior that is not captured 
in the baseline model.

Hypothesis 1.1:
If an entry vehicle is simulated in free flight in the 

coupled and baseline models, then the difference in 
response due to unsteady, coupled behavior will be 

quantified.

Hypothesis 1.2:
If an entry vehicle is simulated in with open-loop 

control actuation in the coupled and baseline models, 
then the difference in response due to unsteady, 

coupled behavior with control system interaction will 
be quantified.

Figure 4.1: Summary of problem formulation for Research Question 1
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Figure 4.2: Proposed “coupled” entry controller tuning process

The guiding questions posed in Chapter 3 were formed in anticipation of a potential

change in the tools used in the tuning process, and the subsequent literature review led to

several findings that are applicable here.

From a compatibility standpoint, coupled model has the same inputs and outputs as

the baseline model, meaning that it would be theoretically possible to substitute it into the

controller tuning process. However, Observation 3.2 noted that some tuning methods make

direct use of the disciplinary models for linearization, which is not possible for the coupled

model.

The problem of cost is also detrimental. It was found that a large number of trajectory

simulations are necessary to tune and/or validate a controller. This is feasible in the baseline

methodology because the aerodynamic and control system surrogate models are inexpen-

sive. However, Observation 2.2 noted that the execution time for CFD-RBD simulations

is many orders of magnitude higher, and adding control system coupling into the model

can only increase the execution time. Directly substituting the coupled simulation into the

controller tuning methodology would be impractical, even when anticipating advancements
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in computing power. Therefore, a significant change in controller tuning methodology is

required. This technical gap motivates Research Question 2:

Research Question 2

Given its increased cost, how can a coupled model viably be used to tune a controller for

an entry vehicle exhibiting unsteady, coupled behavior?

The problem posed here bears similarity to the baseline controller tuning process. It

was observed in Chapter 3 that the baseline flight simulation environment and the linearized

model, although not named as such, function as lower- and higher-fidelity models for the

controller tuning process.

In the literature, the desire to achieve high fidelity and low cost from a single model for

which those two attributes are mutually exclusive has led to the use of multifidelity data

fusion methods [186]. “Data fusion” methods combine multiple sources of data to perform

a single operation, and “multifidelity” methods are data fusion methods that specifically use

sources with different levels of fidelity. While multifidelity methods can use any number

of sources, the simplest architecture would use two models. These models are generally

referred to as “high-fidelity” and “low-fidelity.” In the discussion of multifidelity models

the descriptors “high” and “low” are relative terms, and may not reflect the actual fidelity

of these models in comparison to all other models.

By combining models of different levels of fidelity, multifidelity methods can achieve

both high accuracy and low cost where those attributes are most relevant. The cheaper,

low-fidelity model provides rapid exploration of the space, and the expensive high-fidelity

model provides an accurate response at specific regions of interest. The high-fidelity model

is almost always the same model that designers desire to use, capturing the physics of the

problem as completely as possible. The low-fidelity model is typically a simplification of

the high-fidelity model. It might use simpler physics or geometry; reduce the dimensional-
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ity or linearize the problem; or run with less refinement or partial convergence [187]. The

low-fidelity model could have completely independent progeny, or it could be a surrogate

of the high-fidelity model [143].

These observations suggest the possibility of formalizing the use of multifidelity meth-

ods for controller tuning. This would allow the use of the coupled model because it would

be supplemented by a lower-fidelity, lower-cost model. Therefore, Hypothesis 2 expresses

that mutltifidelity methods are a potential solution to the problem posed by Research Ques-

tion 2:

Hypothesis 2: If the controller tuning process uses models at multiple levels of fidelity,

then the coupled simulation can viably be used to tune a controller.

As noted in Observation 3.1, controller tuning is fundamentally an optimization activ-

ity. Multifidelity optimization is a commonly-used method in aerospace applications, for

multiple disciplines [188], with uncertainty [189], for robust design [190], etc. The field

is also well established outside of aerospace research [187, 186]. The following sections

formulate a methodology that incorporates multifidelity methods into the controller opti-

mization process.

Multifidelity Controller Tuning Algorithm

The architecture for a generic multifidelity optimization algorithm is shown in Figure 4.3

[191]. At any particular iteration of the optimization, the algorithm chooses which model

to run, how many times to run it, and what (sets of) inputs to use. The algorithm then

executes the high- or low-fidelity model (or both), which generate a high- or low-fidelity

response. These responses may then be combined by a data fusion method before being

used in the optimizer. The algorithm will check to see if the stopping criteria are met. If

the criteria are not met, then the optimizer will run to determine the guesses for the next

loop. It may use the combined response, or it may use the relationship between the high-
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Figure 4.3: Multifidelity optimization algorithm architecture

The coupled simulation framework will serve as the high-fidelity model. A black-box

representation of this model is shown in Figure 4.4. The model has inputs for initial state

x̄0, controller gains K, and commanded attitude angles αc and βc. In the paradigm of opti-

mization, the primary outputs of this model are the post-processed controller performance

metrics. Uniquely though, this model also outputs the time-series data for the trajectory

and aerodynamic coefficients. ���������	
��
�	������������������������������������������������������
Figure 4.4: High-fidelity model architecture

A “low-fidelity” model is needed to compliment the high-fidelity coupled model. The

strategy for creating this model depends on two decisions. First, the hierarchical nature

of the coupled simulation means that the low-fidelity model could be a wholesale replace-
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ment, or it could replace the disciplinary models. It has been observed that the flight dy-

namics and guidance models are reasonably inexpensive; there is little impetus to create

lower-fidelity models for these disciplines. Therefore, the most effective way to reduce

the computational cost of the low-fidelity model is to use lower-fidelity aerodynamic and

control system models.

Second, the low-fidelity model could either be a surrogate or a reduced-order model.

The use of an aerodynamic surrogate has three compelling factors: the aerodynamic re-

sponse is likely to be less complex than the function for the controller performance met-

rics, making it easier to create a surrogate; the field of aerodynamic surrogate models is

widely-explored, as was observed in Section 2.4, presenting a ready suite of alternatives;

and uniquely for this problem, a surrogate could be made for the secondary output of the

coupled model: the time-series aerodynamic and trajectory data. Whereas the output from

the baseline aerodynamic database yields no new data, each execution of the coupled model

creates new aerodynamic data — data that would otherwise be unused in the optimization

process.

A flowchart of this architecture is shown in Figure 4.5. The low-fidelity model would

operate like the coupled simulation, where the RBD and guidance models update the vehi-

cle and control system state. It would then run the surrogate model, which would output

the net aerodynamic coefficients. ���������������� 	
��������������
����������
����������������� �����!��"���#�� #
Figure 4.5: Low-fidelity model architecture
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The proposed multifidelity controller tuning process is shown in Figure 4.6. The opti-

mization algorithm, high-fidelity model, and low-fidelity model operate as described above.

However, when the high-fidelity model is called, it also makes the time-series aerodynamic

and trajectory data available to the low-fidelity surrogate. The low-fidelity surrogate can be

retrained whenever new data is available.
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Figure 4.6: Multifidelity controller tuning process

The high-fidelity model and the RBD/FCS models used for the low-fidelity model have

already been stipulated. To complete the process, a low-fidelity surrogate model and opti-

mization algorithm must be selected. This motivates Research Questions 2.1 and 2.2.

Surrogate Modeling

Research Question 2.1 directs the investigation to fill the technical gap of the low-fidelity

surrogate model. The requirements for the aerodynamic surrogate are driven by the quali-

ties of the data from the coupled model from which it must be fitted. This data will contain

the time-series aerodynamic coefficients, vehicle trajectory, and control system state. It can

be considred as effectively continuous data with much higher local density compared to a

space-filling pattern that might normally be used in a DOE to populate an aerodynamic

database. As a result, the regions of extrapolation will also be larger for an individual run.
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The differences between these types of data are illustrated in Figure 4.7, which compares

the free-flight simulation of an entry vehicle to an aerodynamic database.

Figure 4.7: Comparison of aerodynamic data from a coupled simulation vs. a database

The surrogate is also subject to requirements based on its usage in the controller tuning

process. The surrogate must be capable of accepting new data and being retrained during

the process. There is also a strong desire for the surrogate to capture the time-dependent

aerodynamics and control system interaction forces and moments. The error with respect

to the high-fidelity results must converge as the training set size increases (i.e., as controller

tuning proceeds).

Research Question 2.1

How can an aerodynamic surrogate model be constructed using time-series data from the

coupled model as it is generated during the tuning process?

The literature review of surrogate models in Chapter 2 identified a number of models

available as alternatives to the baseline aerodynamic database. Parameter estimation is con-

sidered due to its use in extracting data from dynamic experiments. However, the use of an

assumed functional form is a limiting factor, especially for modeling the unsteady behavior
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of the control system. In contrast, neural networks do not assume a functional form. Two

broad categories of ANN are considered: the feed-forward and recurrent networks.

As noted in Section 2.4.4, all of these models are trained with time-series data, match-

ing the output of the coupled model. An RNN includes feedback connections that allow

the time history of the response to be used as an input. Based on its universal approxima-

tion properties for dynamical systems, it is hypothesized that RNNs are the most suitable

surrogate.

Hypothesis 2.1: If a neural-network-based surrogate model is fitted with time-series

trajectory and aerodynamic data from the coupled simulation, then it will have improved

error convergence to the coupled model over a baseline database.

However, the literature review for RNNs does not include entry vehicle applications,

and recurrent networks are known to be sensitive to feedback error during training. There-

fore, these models must be evaluated experimentally. Experiment 2 is designed to evaluate

candidate surrogate model architectures based on their capability to model the unsteady,

coupled behavior, as well as to develop the best procedures for training the surrogate.

Experiment 2: Surrogate Model Development

Experiment 2 simulates the training of the low-fidelity surrogate as it would be used in the

multifidelity optimization methodology.

A set of eight coupled simulation runs are executed to provide a data set. These runs

will have random gain designs and initial conditions. This training set is used to evaluate

the different surrogate architectures.

For each surrogate architecture, a leave-k-out cross-validation is performed, splitting

the runs into training and validation sets. Each surrogate design is trained multiple times,

using an increasing fraction of the training set. The model fit error (MFE) and the model

response error (MRE) to the aerodynamic data can be evaluated as a function of training set
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size. This serves as an evaluation of the surrogate on its own. Each of the surrogates will

also be evaluated in the low-fidelity model by replicating the simulations used to build the

data set. This provides an evaluation of the predicted controller performance as a function

of training set size.

Model suitability will be evaluated based on the convergence toward the validation data.

The model that achieves the lowest error with respect to the high-fidelity simulation with

the smallest training set (i.e., number of high-fidelity runs required) will be judged to be

the best.

Multifidelity Method

Research Question 2.2 pertains to the technical gap of the optimization process. With the

high- and low-fidelity models identified, some multi-fidelity methodology is necessary to

manage the data, in the form of control performance metrics, produced by each. Multiple

architectures exist for multi-fidelity optimization, operating differently on the data pro-

duced by the models [191]. The key distinction is whether the methodology should adapt

or fuse the metrics directly via a surrogate, or whether it should rely solely on the training

connection between the high- and low-fidelity models.

Research Question 2.2

How can the multifidelity optimization method utilize the high- and low-fidelity controller

metrics to reduce the computational cost of controller tuning?

The selection of this major design choice can be made by evaluating two methods repre-

sentative of each architecture. A “default” architecture would use the results from the low-

and high-fidelity models independently, in sequence, to find a satisfactory set of gains. This

is akin to a filtering-based multi-fidelity method, a progression of the gain scheduling tech-

nique used in the state of the art. Convergence would rely on robustness of the gain designs,
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and the updated low-fidelity model after each optimization iteration.

As an alternative, a fusion-based method such as Cokriging would use information

about the relationship between the high- and low-fidelity models. The covariance between

the performance metrics outputs are calculated and used to develop the surrogate. The

information can also be used to predict the variance of the response at off-design points,

to determine the best design point to run to improve the model. Taking advantage of this

additional direction is hypothesized to allow the method to achieve higher efficiency:

Hypothesis 2.2: If a data-fusion-based multifidelity optimization method is used to

tune an entry controller, then it will have less computational cost than using a quasi-

hierarchical filtering-based method for an equal performance.

Experiment 3 will perform controller tuning using two multi-fidelity optimization tech-

niques, comparing their rate of convergence to a satisfactory set of control gains.

Experiment 3: Comparison of Multi-Fidelity Methods

Each of the multi-fidelity methods are executed to find a satisfactory set of control gains.

Each method will be executed using the same number of calls to the high-fidelity coupled

simulation for each gain design. Each run in the coupled simulation will be at the same

duration, even if the vehicle achieves control before the end of the run. The low-fidelity

surrogate will be re-fitted after each coupled simulation. The number of calls to the low-

fidelity model will be allowed to vary. The bounds for each control gain will be determined

by Monte Carlo results generated in Experiment 1. The control gains of the database-tuned

controller will be used as the initial guesses for both methods.

The convergence toward a satisfactory set of control gains will be compared between

both methods in terms of number of calls to the high-fidelity model. This is effectively

equivalent to the total computational cost. The superior method is the one that achieves a

satisfactory set of gains with the lowest number of runs.
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Experiment 3 will also test Hypothesis 2; if either method yields a tuned controller,

then Hypothesis 2 is retained.

Figure 4.8 summarizes the argumentation used to develop Research Question 2, its sub-

questions, and hypotheses.

Literature Review:
Control Law, Controller Tuning, Controller Performance

Observation 3.1: Controller tuning 
is an optimization activity

Observation 3.2: The tuning process 
can utilize a linearized model of the 

flight simulation environment

Observation 3.3: Controller 
validation is performed using a large 
number of 6DOF flight simulations

Guiding Question 4:
What is the state-of-the-art controller tuning methodology?

Guiding Question 5:
What limitations would be imposed by the coupled model?

Research Question 2:
Given its increased cost, how can a coupled model viably be used

to tune a controller for an entry vehicle exhibiting unsteady, coupled behavior?

Technical gap: The baseline controller tuning methodology runs many
short-duration, low-fidelity trajectory simulations, but computational cost makes it impractical to 

directly substitute the coupled model

Hypothesis 2:
If the controller tuning process uses models at multiple levels of fidelity, then the coupled 

simulation can viably be used to tune a controller.

Research Question 2.1:
How can an aerodynamic surrogate model be constructed using time-series 
data from the coupled model as it is generated during the tuning process?

Hypothesis 2.1:
If a neural-network-based surrogate model is fitted with time-series trajectory 

and aerodynamic data from the coupled simulation, then it will have 
improved error convergence to the coupled model over a baseline database.

Literature Review:
Surrogate Modeling Alternatives

Research Question 2.2:
How can the multifidelity optimization method utilize the high- and low-fidelity 

controller metrics to reduce the computational cost of controller tuning?

Hypothesis 2.2:
If a data-fusion-based multifidelity optimization method is used to tune an 

entry controller, then it will have less computational cost than using a quasi-
hierarchical filtering-based method for an equal performance.

Literature Review:
Multifidelity Optimization Methods

Figure 4.8: Summary of problem formulation for Research Question 2
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4.3 Demonstration of the Proposed Methodology

If Hypothesis 1 is retained, the coupled model proposed in Section 4.2.1 will be capable of

modeling the unsteady, coupled behavior of an entry vehicle with an active control system,

predicting significant differences in the behavior of the vehicle compared to the baseline

flight simulation model. This satisfies the first sub-objective of the overarching research

objective. From the surrogate model and multifidelity model alternatives proposed in Sec-

tion 4.2.2, the experimentation will identify which methods can be used to leverage the

coupled model in the controller tuning process. As a result, the proposed methodology will

be complete, satisfying the second sub-objective. To completely satisfy the overarching re-

search objective, the performance of the proposed methodology must be evaluated against

the baseline methodology:

Overarching Hypothesis: If the entry controller is tuned using a coupled, unsteady

aerodynamic and control system model, the performance of the entry controller will be

improved compared to a controller tuned using the state-of-the-art methodology.

Experiment 4 acts as a demonstration for the Overarching Hypothesis.

Experiment 4: Comparison of Entry Controller Performance

Entry controllers tuned using the baseline and proposed methodologies are evaluated in

both the coupled and baseline models by running the simulations listed in Table 4.2. The

goals for controller gain optimization are:

• Trim the vehicle at αtrim = −2.5◦.

• Minimize the root-mean-square (RMS) error between the α response and αcmd .

• Minimize the worst-case results from a multitude of initial orientation and angular

velocity conditions.
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Each simulation is initialized at the same sets of freestream and initial conditions (that are

distinct from those used in Experiment 1). The simulations are executed for a duration

of three times the natural oscillation frequency of the vehicle, with closed-loop control to

meet a commanded attitude. Post-processing of the trajectory results is used to find the

controller performance metrics.

Table 4.2: Experiment 4 simulations

Run Controller Model
1 Baseline Baseline
2 Baseline Coupled
3 Coupled Baseline
4 Coupled Coupled

Comparing the results from runs 1 and 3 will demonstrate that the baseline controller is

the best controller as evaluated by the baseline model, and that the performance improve-

ment of the coupled controller is not just due to it being universally better. Comparing runs

1 and 2 will demonstrate that the performance of the baseline controller decreases when it

is simulated in the coupled model. Finally, comparing runs 2 and 4 will demonstrate that

the performance increase of the coupled controller relative to the baseline controller. Meet-

ing these success criteria will demonstrate that the proposed controller tuning methodology

recoups the performance losses identified by using the coupled model.

Figure 4.9 presents a summary of the problem formulation, including the research ques-

tions, hypotheses, and experiments.
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CHAPTER 5

COUPLED AND BASELINE MULTIDISCIPLINARY MODELS

This chapter details the construction of both the coupled and baseline multidisciplinary

models to be used for flight simulation.

5.1 Coupled Model

A coupled CFD/RBD/FCS model is required for each of the experiments outlined in Chap-

ter 4. The two primary components of the model are the CFD flow solver and the trajectory

propagator. The description of the coupled model in Section 4.2.1 is decomposed into a set

of requirements for the flow solver:

1. The flow solver must be able to run time-accurate simulations of an entry vehicle with

the proper solver settings to model the flow features around the vehicle; namely, the

forebody shock structures, flow separation, and subsonic recirculation. Based on the

literature in Section 2.2.4, the proper model would use the Detached Eddy Simulation

(DES) modification of the Reynolds-Averaged Navier-Stokes (RANS) equations.

2. The flow solver must be able to account for rigid grid motion in the equations of

flow. In essence, the flow solver must use the arbitrary Lagrangian-Eulerian (ALE)

formulation of the equations to allow grid nodes to be moved in an arbitrary manner.

3. The flow solver must be able to model the effect of the control mechanism on the

OML (e.g., including propulsion inlet boundary conditions for RCS simulation).

4. The flow solver must be capable of starting a simulation with arbitrary initial vehicle

state conditions. At a minimum, this would include arbitrary orientation.
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The baseline model will also require the use of CFD to populate the aerodynamic surro-

gate. The maximum utility can be gained if the flow solver selected for the coupled model

is also used for the baseline model:

5. The flow solver must be capable of independent use for the calculation of static aero-

dynamic coefficients for an aerodynamic database.

Similarly, a set of requirements is composed for the trajectory propagator:

1. The trajectory propagator must be able to model 6DOF rigid body motion. At a

minimum, this must be with respect to a single inertial reference frame as specified

in Section 2.1.

2. The trajectory propagator must be able to model an entry controller with the func-

tionality as identified from the literature in Section 3.1.

3. The trajectory propagator must be able to model the physics of the control mechanism

that do not interact with the OML of the vehicle (e.g., the throttle lag and response

curve of a thruster for RCS simulation).

No existing CFD-RBD capability was identified from the literature that met all of these

requirements. The most significant technical gaps were the capability to model arbitrary

control mechanism actuation based on a GN&C model with the complexity expected for

entry vehicles. However, the search for software tools can be expanded if independent

flow solver and trajectory propagator tools are considered. Whereas existing CFD-RBD

capabilities (e.g., Kestrel or US3D FF-CFD) have already accomplished the tasks of com-

munication between the processes, the technical approach must also handle these tasks.

Thus, a derived set of requirements must be constructed. For the flow solver these are:

1. The flow solver must be capable of setting the grid motion based on the 6DOF rota-

tion and translation components from an external source at each time step.
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2. The flow solver must be capable of setting the control mechanism state from an

external source at each time step.

3. The flow solver must allow for the solver to be paused and restarted at the frequency

of one time step, in order to allow the simulation to wait for the execution of the RBD

model and the calculation of the new vehicle motion state.

4. The flow solver must be capable of communicating the net aerodynamic force and

moment loads to the trajectory propagator at each time step.

And for the trajectory propagator:

1. The trajectory propagator must be capable of communicating the vehicle motion state

in the reference frame required by the flow solver at each time step.

2. The trajectory propagator must be capable of communicating the control mechanism

state to the flow solver at each time step.

3. The trajectory propagator must allow for the propagation to be paused and restarted

at the frequency of one time step, to allow the simulation to wait for the flow solver

execution.

4. The trajectory propagator must be capable of reading the net aerodynamic loads from

the flow solver at each time step.

5. The trajectory propagator must allow for modification or alteration of the numerical

integration scheme to allow for monotonic increase of the simulation time within the

flow solver.

These sets of requirements were used for the selection of software tools.
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Figure 5.1: Coupled model architecture

5.1.1 Model Architecture

A high-level overview of model operation is shown in Figure 5.1.

The model uses independent CFD and trajectory propagator processes to perform the

CFD-RBD simulation. A Python3-based wrapper handles communication via network

sockets and performs data transformation.

The coupling is solved using a modified, staggered nonlinear block-Gauss-Seidel algo-

rithm [192]. Both codes operate using the same, constant physical timestep; at each time

step, FUN3D receives vehicle position and orientation from POST2, updates the mesh

transformation, and computes the flow state. The state update calculated by POST2 in the

previous step is held constant for the duration of the CFD iteration at this step (i.e., there

is no fluid-structure interaction iteration). POST2 receives the aerodynamic coefficients,

calculates the forces and moments, and uses numerical integration to update the vehicle

state.

123



5.1.2 Flow Solver

Fully Unstructured Navier-Stokes 3D (FUN3D) is a production flow analysis and design

tool developed by NASA Langley Research Center [193]. From its inception in the late

1980s, FUN3D has been developed into a suite of tools for flow analysis, mesh adaptation,

and design optimization [87, 194]. The flow solver is capable of solving the RANS or

Euler equations for steady-state or time-accurate flow. FUN3D uses a node-based finite-

volume discretization capable of solving unstructured or mixed-element meshes [193]. It

can model perfect gas or a generic gas with multiple chemical species; in compressible

or incompressible flows; at thermochemical equilibrium or non-equilibrium. FUN3D uses

a second-order-accurate spatial discretization, with options for first- to fourth-order tem-

poral discretization (with temporal error controllers). The software includes a variety of

turbulence models, including modification of RANS for DES, and flux splitting schemes

[193].

FUN3D was selected as the flow solver based on its capability to model the problem of

interest in the hypersonic and supersonic flight regime1. FUN3D has a long history of usage

in government and industry projects, including for analysis of the Phoenix [12] and MSL

entry vehicles [11], as well as for the ADEPT SR-1 flight test geometry [195]. FUN3D can

model boundary conditions for internal flow and propulsion simulation, including inlets

and nozzles. The flow solver can also be compiled with overset mesh capability to model

control surface actuation [196, 193].

FUN3D uses the ALE formulation of the governing equations defined in Section 2.2.3,

allowing for both rigid mesh movement and mesh deformation [86]. Under rigid mesh

movement, the points in the grid are transformed with a common rotation and translation.

For mesh deformation, unique transformations can be applied at every grid point. Rigid

motion and deformation can be combined in the same simulation. This grid motion ca-

pability allows for the results of the RBD model to be communicated to the flow solver.

1This work specifically uses FUN3D version 13.7.
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FUN3D also allows for fine control of the execution down to the individual time step using

a Python-based application programming interface (API) [193]. Thus FUN3D meets the

requirements for the flow solver specified above.

Reference Frames

FUN3D tracks calculations in two reference frames, defined in Figure 5.2. The first frame

is the body reference frame F , shown in Figure 5.2a in relation to the body frame B. The

frame is aligned to the mesh coordinates with the x-axis pointing aft, the y-axis pointing

right, and the z-axis pointing up. The origin is at an arbitrary point, conventionally the nose

of the vehicle. The second frame is the freestream frame O, shown in Figure 5.2b. The O

frame can be conceptualized as an inertial frame that moves along the freestream velocity

vector.

𝑥

𝑧

𝑦 𝑥

𝑧

𝑦

�̅�

𝐹

𝐵

(a) Body Reference frame

Δ�̅�
𝑥

𝑧

𝑦

𝐹

𝑥

𝑦

𝑧

(b) Freestream frame

Figure 5.2: FUN3D Reference Frames
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Nondimensionalization

Calculations in FUN3D are performed with non-dimensional quantities. Any parameters

input into FUN3D through file I/O or the Python API must be non-dimensionalized by

length and speed. For a length measurement x, the non-dimensionalized quantity xnd is

found by Equation 5.1:

xnd = x/(Lref /Lgrid) (5.1)

where Lref is the reference length of the grid in dimensional units, and Lgrid is the same

length expressed in grid units. For reference area Sref , the non-dimensionalization is:

Snd ,ref = Sref /(Lref /Lgrid)2 (5.2)

Time is non-dimensionalized by:

tnd = taref /(Lref /Lgrid) (5.3)

where aref is the reference speed of sound in dimensional units. Thus, a speed s is non-

dimensionalized by Equation 5.4:

snd = s/aref (5.4)

The density ρ, temperature T , and pressure P at a point in the flow can be non-dimensionalized

as:

ρnd = ρ/ρref Tnd = T/Tref Pnd = P/(Pref a
2
ref ) (5.5)

where ρref , Tref , and pref are the freestream reference quantities in dimensional units. The

Reynolds number per grid unit Rend is found by Equation 5.6:

Rend = Re/Lref =
ρref srefLref

µrefLgrid

(5.6)
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where sref is the reference speed and µref is the dynamic viscosity, both in dimensional

units.

Rigid Body Motion

General rigid body motion can be specified in FUN3D as a mapping between its position

and orientation at initialization and at time t. For a reference point at the initial position r̄F

in the body reference frame, a 4×4 transformation matrix performs translation and rotation

to the new position r̄O in the observer frame. The transformation matrix is expressed in

Equation 5.7: x̄O
1

 =

 ROF ∆x̄O

0 0 0 1


x̄F

1

 (5.7)

where the 3 × 3 submatrix ROF in the upper left is an orthonormal rotation about the

origin, and the upper-right column vector ∆x̄O defines a translation. The bottom row of

each matrix remains constant.

Specifying rigid body motion also requires updating the position of the body’s center

of gravity r̄cg,O, which is also used as the moment center for integrating the aerodynamic

coefficients. Given a schedule of transformation matrices and times, FUN3D uses linear

interpolation to find the position at the desired solution time. With the change in position

calculated at each time step, the velocity and acceleration of the body with respect to O is

implicitly defined.

Aerodynamic Coefficients

The axial, normal, and side force coefficients CA, CN , and CY are calculated by integrat-

ing the normal and shear stress along the x-, y-, and z-axes of the body reference frame,

respectively. Equation 5.8 shows the integration of CA as an example.

CA =

∫
S
[Pndnx + τx]dS

Snd ,refQnd ,ref

(5.8)
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where τx is the shear stress in the x-axis and Qnd ,ref is the non-dimensionalized reference

dynamic pressure. The moment coefficients CLL, CM , and CLN about the x-, y-, and z-

axes of the body reference frame, respectively, are calculated by integrating the normal and

shear stress multiplied by the moment arm about the moment center.

CM =

∫
S
[Pnd(rxnz − rznx) + rzτx − rxτz]dS

Snd ,refLgridQnd ,ref

(5.9)

Note that the coefficients are calculated with respect to the freestream dynamic pressure,

which may not be equal to the dynamic pressure on a body with relative velocity to the O

frame.

5.1.3 Trajectory Propagator and Control Mechanism Model

Although FUN3D can be compiled with a 6DOF RBD trajectory propagator [67], this RBD

code has limited capabilities in the selection of gravitational models, numerical integration

scheme, or initial conditions. It also does not allow for guidance and control simulation.

An alternative implementation uses an independent process to perform the RBD simulation

and drive the motion in the CFD flow solver. This allows the flow solver to be linked with

a state-of-the-art trajectory propagation software, with greatly expanded capability; it can

be coupled with other disciplines such as propulsion or guidance, navigation, and control

(GN&C).

The Program to Optimize Simulated Trajectories II (POST2) is a trajectory propagation

and optimization program developed at NASA Langley Research Center [197]. POST2

models the trajectory of one or more vehicles in flight about one or more attracting bod-

ies, inside or outside of an atmosphere. The propagator can solve problems in 3DOF by

integrating the translational equations of motion, or in 6DOF by integrating the rotational

equations of motion as well. The planetary model is generalized, with arbitrary rotation,

gravitational (oblateness), and atmospheric parameters. In addition, POST2 is capable of
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modeling complex vehicle mass properties, such as a composite vehicle with multiple, in-

ternal, time-varying masses.

POST2 is a state of the art trajectory propagation software, used for trajectory analysis

of orbital launch vehicles [198], and Earth and Mars entry vehicles [199, 50, 200]. POST2

is designed with great flexibility in enabling custom code modules. Simulations are run

with POST2 acting as the integrator for disciplinary models, such as aerodynamics, GN&C,

and propulsion that are specifically built for the vehicle under study [19]. This is the key

reason for which POST2 is used as the trajectory propagator in this work2. The trajectory

propagator models direct effects from the control system (including interaction between

the control system and flight dynamics), while the interaction between the control system

and aerodynamics are modeled in the flow solver. Thus POST2 satisfies the requirements

for the trajectory propagator specified above.

Reference Frames

The reference frames used in POST2 are shown in Figure 5.3. For most CFD-RBD models,

the inertial frame I is assumed to be the local horizontal frame in a “Flat Earth” model

with a uniform gravitational field. However for a spheroidal planetary model with nonzero

rotation, I represents the Earth-centered inertial (ECI) frame. The ECI frame is oriented

with the x-axis pointing through the equator and zero longitude at the epoch, the y-axis

pointing through the equator at a perpendicular direction, and the z-axis pointing through

the planet’s axis of rotation. As the planet rotates with angular velocity ωe it carries with it

the Earth-centered rotating frame E, whose x- and y-axes remain pointing through 0◦ and

90◦ longitude, respectively.

The local vertical frame V has its origin on the planet’s surface directly below the

vehicle. Its x- and y-axes lie in the horizontal plane with the x-axis pointing North. The z-

axis lies along the local vertical pointing inward towards the planet (note that for an oblate

2This work specifically used POST2 version 2.430D.
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spheroid this may not point directly at the planet’s center). The orientation of V with

respect to E is given in terms of the longitude λ and geodetic latitude Φ angles. POST2 is

configured to read the aerodynamic coefficients in the body reference frame F .

𝑥

𝑦

𝑧

𝑥 𝑦

𝑦

𝑥

𝑧

𝜔 𝑡

�̅�

𝜆

Φ

𝑧

Figure 5.3: POST2 reference frames

Numerical Integration

Time integration is performed using the Runge-Kutta 4th-order (RK4) method, with aero-

dynamic force and moment coefficients held constant during integration across the RK4

process each time step. Using RK4, or many other numerical integration schemes, as in-

tended would require resetting the vehicle to its state and time at the beginning of the

step, whereas the flow solver expects the flow history to be monotonic. Performing the

full numerical integration scheme requires expensive manipulation of multiple flow history

versions. Using constant aerodynamic forces and moments allows FUN3D to keep a sin-

gle flow field in memory and preserve the monotonic nature of the solution. While using

constant force and moment coefficients reduces the order of accuracy of the integration

scheme, the time step is orders of magnitude smaller than typical RBD time steps, mitigat-

ing the error propagation [65]. This is a common approach for CFD-RBD simulation [67,

108, 126].
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Guidance and Control Simulation

The guidance and control system model is built as a custom code module for POST2.

With the assumption of perfect navigation, the state variables can be read directly from

the trajectory propagator. The calculations for updating the guidance algorithm can be run

at the same time step as the simulation, or at a reduced frequency. A custom variable is

created to store the control system state vector, which is visible to other components in

POST2. The architecture of the guidance algorithm and controller are documented in the

next chapter.

5.1.4 Data Transformation

Transforming the vehicle state between POST2 and FUN3D requires calculations in each

of the reference frames defined in the sections above. The rotation, position, and angular

and linear velocity are calculated at each time step to update the transformation in FUN3D.

Similarly, the coefficients are transformed back into the POST2 reference frames at the end

of each time step.

Intermediary Frame

Translation and orientation are defined in FUN3D with respect to an observer frame O,

which moves at a constant velocity relative to the atmosphere. However, the orientation of

the O frame is arbitrary. It is therefore convenient to define an intermediary frame P as

shown in Figure 5.4. The origin of this frame is coincident with the initial local vertical

frame V0, with the x-axis pointing along the vehicle’s initial velocity vector v0,V0 and the

y-axis along the local horizontal. The orientation of P with respect to V0 is defined by

the azimuth angle Ψ and flight path angle γ. The O frame is defined as a 180◦ rotation

about the y-axis from the P frame. Using the intermediary frame decouples specification

of freestream conditions in FUN3D from the initial orientation within POST2, making it

possible to change the azimuth and flight path of the vehicle without having to recreate the
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initial flow field.
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Figure 5.4: Vertical, Intermediary, and Freestream frames

Angular Components

FUN3D requires the orientation of the vehicle to be input as a rotation matrix between the

O and F frames. This matrix is calculated using Equation 5.10:

ROF = ROPRPBRBF , ROP = RBF =


−1 0 0

0 1 0

0 0 −1

 (5.10)

where RPB is the transformation between the Intermediary and Body frames. RPB is

calculated using Equation 5.11:

RPB = RPV0RV0EREVRV B (5.11)
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RPV0 is the rotation matrix between the intermediate and initial vertical frames:

RPV0 =


cos Ψ cos γ cos γ sin Ψ − sin γ

− sin Ψ cos Ψ 0

cos Ψ sin γ sin Ψ sin γ cos γ

 (5.12)

where γ and Ψ are available from POST2. RV0E and REV are the 3-2 rotation matrices

calculated using the initial and current geodetic latitude & longitude, respectively.

RV0E =


− cosλ0 sin Φ0 − sin Φ0 sinλ0 cos Φ0

− sinλ0 cosλ0 0

− cos Φ0 cosλ0 − cos Φ0 sinλ0 − sin Φ0

 (5.13)

RV E =


− cosλ sin Φ − sin Φ sinλ cos Φ

− sinλ cosλ 0

− cos Φ cosλ − cos Φ sinλ − sin Φ

 (5.14)

RV B is the 3-2-1 rotation matrix calculated from the relative Euler angles φ, θ, and ψ,

with the same form as Equation 2.5. The Euler angles, latitude, and longitude are available

directly within POST2.

The angular velocity in the O frame is calculated using Equation 5.15:

ω̄rel ,O = ROPRPBω̄rel ,B (5.15)

where ω̄rel ,B is the angular velocity of the vehicle relative to the V frame, available directly

from POST2. This is calculated using Equation 5.16:

ω̄rel ,B = ω̄B −RBI [0 0 ωearth ]T −RBV ω̄ned (5.16)
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where ω̄ned is the angular velocity of the vertical frame relative to the E frame:

ω̄ned = [λ̇ cos Φ − Φ̇ − λ̇ sin Φ]T (5.17)

Linear Components

FUN3D requires a center of gravity position and a grid translation vector, both in the O

frame. POST2 provides the position vector in the I frame. The position in the ECR frame,

x̄E , is calculated using Equation 5.18:

x̄E = REI x̄I (5.18)

where REI is the transformation between the ECI and ECEF frames. This rotation matrix

is calculated as:

REI =


cosωeartht sinωeartht 0

− sinωeartht cosωeartht 0

0 0 1

 (5.19)

where ωearth is the magnitude of the planetary rotation rate and t is the time since epoch.

The displacement is calculated relative to the initial position:

∆x̄E = x̄E − x̄0,E (5.20)

Transforming the displacement into the observer frame must account for that frame’s ve-

locity. The position in the V0 frame is calculated using Equation 5.21:

∆x̄V0 = RV0E∆x̄E − v̄0,V0t (5.21)
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where v̄0,V0 is calculated as:

v̄0,V0 = s0[cos γ cos Ψ cos γ sin Ψ − sin γ]T (5.22)

where s0 is the initial freestream speed. The position in the O frame is calculated using

Equation 5.23:

∆x̄O = ROPRPV0∆x̄V0 + x̄cg,0,O (5.23)

where x̄cg,0,O is the initial position of the center of gravity in the O frame. The grid trans-

lation vector is calculated as:

∆x̄g,O = ∆x̄O −ROF x̄cg,F (5.24)

where x̄cg,F is the center of gravity in the body reference frame.

The velocity vector is calculated using Equation 5.25:

v̄O = ROE(REI v̄I − x̄E × [0 0 ωearth ]T ), ROE = ROPRPBRBE (5.25)

Aerodynamic Coefficients

FUN3D provides the axial, side, and normal force coefficients CA, CY , and CN in the Body

frame that POST2 expects, so no transformation is needed for the force coefficients. The

moment coefficients are calculated in the Body Reference frame, so these are transformed

into the Body frame using Equation 5.26:


CLL

CM

CLN


B

= RBF


CLL

CM

CLN


F

(5.26)
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These coefficients are non-dimensionalized according to the initial freestream conditions

in FUN3D. This non-dimensionalization remains constant throughout the run, whereas

POST2 expects coefficients scaled to the actual dynamic pressure. Each coefficient must

be corrected to the actual freestream conditions in POST2 using Equation 5.27:

CPOST2 =
Qref

Q
CFUN3D (5.27)

where Qref and Q are the reference and current dynamic pressures.

5.1.5 Communication

Communication between FUN3D and POST2 is handled via network sockets. The calcula-

tions for data transformation are split between the custom POST2 module and the Python-

based wrapper.

Custom POST2 Aerodynamic Module

The interface between POST2 and the Python-based wrapper is written in the POST2 user-

defined aerodynamic code module. Each time POST2 requires new values for the aero-

dynamic coefficients, it calls this custom module. Depending on the choice of numerical

integration scheme and the inclusion of disciplinary code modules, POST2 may require

updating the coefficients more than once per time step. Therefore, this module includes the

logic to call FUN3D only once at the beginning of each time step, passing stored values for

the coefficients in subsequent calls.

At the beginning of the first time step, the module records the initial state variables and

performs the calculations described in Section 5.1.4 that remain constant throughout the

run. The module then calls for the initialization of FUN3D. On subsequent time steps, the

module performs the reference frame transformations described above and passes the di-

mensional vehicle state in the observer frame. The state variables for the control system are
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also passed to the wrapper at this time. The module calls FUN3D and waits for it to com-

plete execution of one time step, then reads the aerodynamic coefficients. The coefficients

are calibrated to the actual dynamic pressure and returned for use within POST2.

Python-Based FUN3D Wrapper

The Python-based wrapper uses the FUN3D Python API to run FUN3D as a server. Each

time the POST2 aerodynamic module calls the FUN3D wrapper, it creates a client that

communicates over network sockets to the server. Network communication is also used to

gracefully shut down FUN3D at the end of the simulation. FUN3D is developed primarily

for operation on Linux, with parallelization using Message Passing Interface (MPI). Thus,

the wrapper must also manage communication from POST2 running on one processor to

all of the processors running FUN3D. The communication with POST2 is only run on one

processor.

On the first call, the wrapper initializes FUN3D, loading the input file, mesh, and flow

history. The wrapper then returns the coefficients as calculated from the startup flow field.

On subsequent time steps, the wrapper reads the current vehicle and control state and

performs the non-dimensionalization into grid units. These calculations are performed on

a single processor, and the results are broadcast to all of the other processors. The wrapper

updates the transformation matrix, sets the C.G. location in the inertial frame, and sets the

linear and angular velocities in the body reference frame. FUN3D is executed for one time

step, and post-processing is called to find the force and moment coefficients. Equation 5.27

is used to correct the coefficients to the current dynamic pressure as expected in POST2.

The coefficients are transformed into the body frame and communicated back to POST2.

5.1.6 Initialization

Since the coupled simulation uses the aerodynamic force and moment coefficients to update

the 6DOF equations of motion, these coefficients must be converged at the start of the
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coupled simulation. Otherwise, numerical instability could cause non-physical forces and

moments to be applied to the vehicle, affecting the trajectory or causing simulation failure.

In addition to meeting the threshold for convergence, the flow field must be accurate

to the desired initial conditions. However, while initializing the trajectory propagator with

the vehicle and control system state is sufficient, this does not ensure that the flow field

matches. Initializing from a steady CFD solution would result in a flow history that does

not capture the unsteady behavior that presumably leads to the desired initial conditions.

For example, consider the flow field around a vehicle at constant speed and slip angles.

The flow field around the vehicle would be different if it was at a nonzero angular velocity,

or if it were accelerating. Achieving the correct angular velocity conditions is especially

important given its effect on the stability characteristics of EDL vehicles [125]. Instead, a

forced motion initialization is performed to start the free-flight simulation with the vehicle

state and flow field at the desired initial conditions. Figure 5.5 illustrates the result of using

a forced-motion initialization. Both figures show the pressure distribution for a vehicle at

the same initial velocity and orientation. The vehicle in Figure 5.5b was initialized with

a forced motion trajectory, whereas the vehicle in Figure 5.5a was initialized with a time-

accurate simulation at fixed conditions. The differences in the net pressure and pressure

distribution will result in differences in both forces and moments on startup.

Starting from the initial conditions, a trajectory is back-propagated using the equations

of motion. The trajectory assumes no external forces. The trajectory is back-propagated

for a sufficient number of steps to achieve convergence of the residuals in the time-accurate

simulation. This trajectory is converted into a set of transformation matrices as described in

Equation 5.7. The first position and orientation serve as a set of “pre-initial conditions.” A

steady solution is executed in FUN3D at these new conditions, which is run for a sufficient

number of iterations to achieve convergence. The steady flow field is used to initialize the

forced motion run, which moves the vehicle along the back-propagated trajectory, using

the same flow solver settings and time step anticipated for the coupled simulation. The

138



(a) Fixed (b) Moving

Figure 5.5: SIAD backshell pressure distribution with moving vs. fixed time-accurate ini-
tialization

flow field at the end of the forced motion simulation is converged, with the flow history

and vehicle state matching the desired initial conditions. This flow field is used to ini-

tialize the coupled simulation. An example of initialization is shown in Figure 5.6, with

the convergence of the residuals during the steady and time-accurate initialization phases

demonstrated in Figure 5.7.
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Figure 5.6: Trajectory initialization example

5.1.7 Verification and Validation

Verification of the coupled model was performed by comparing its execution to an existing

CFD-RBD model, a 6DOF library that can be compiled with FUN3D [133, 67]. This cross-
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(a) Residuals (b) Force Coefficients

Figure 5.7: Initialization results

code verification was performed by running a simulation with the same vehicle, initial

conditions, flow solver settings, and initial flow history. The only differences were the

trajectory propagator and the method of communication between the disciplinary codes.

Verification Vehicle

The Army-Navy Finner (ANF) projectile was selected as the vehicle for the verification

activity due to its common usage for aerodynamic research in both physical [201, 202]

and computational [203, 204] experiments. The dimensions of the vehicle are shown in

Figure 5.8, and the mass properties are listed in Table 5.1.

Figure 5.8: Army-Navy finner projectile dimensions.

Table 5.1: ANF mass properties.

m, kg Ixx , kg·m2 Iyy and Izz , kg·m2

1.588 1.92526·10−4 9.87035·10−3
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Grid Generation

An unstructured, mixed-element, viscous grid was constructed for the ANF in Pointwise®

V18.0R2 [205] with double-precision format and combined anisotropic cells. Rectangular

farfield boundaries were spaced at a distance of 5 times the characteristic length in all

directions. A hexahedral boundary layer was generated with an initial wall spacing of

4 × 10−7m in order to ensure a y+ less than unity at the wall for freestream conditions

up to Mach 3.0. The surface and volume were generated for a quarter of the vehicle, then

mirrored into a full volume to ensure symmetry. The full grid had just over 7 million

volume nodes. Cross-sections of the ANF grid are shown in Figure 5.9.

(a) Full grid (b) Grid detail

Figure 5.9: ANF computational grid

Validation of the drag coefficient was performed against a set of ballistic range tests

conducted by Dupuis and Hathaway [202, 206], as well as CFD experiments performed by

Sahu and Heavey [203]. The comparison of axial results is shown in Figure 5.10a. The

results for the axial coefficient are a close match to both the physical and computational

experiments, especially in the supersonic regime. An examination of the other force and

moment coefficients are made for the same conditions, in order to verify that their residuals

are sufficiently small. The magnitude of the residuals for the off-axis coefficients are shown

in Figure 5.10b. The roll moment coefficient is resolved to less than 10−5, and all other

components are resolved to less than 10−6. This precision was judged to be sufficient for
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the use of this grid in 6DOF simulations.
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(a) Axial force coefficient.
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(b) Magnitude of off-axis residuals.

Figure 5.10: ANF Grid Validation Results, α = 0◦[207]

Verification Problem

The ANF projectile was simulated in a ballistic drop at Mach 2.0 at standard sea-level

conditions, with zero initial slip angles and angular rates.

The coupled model was set up in order to approximate the FUN3D 6DOF Library as

closely as possible. The 6DOF Library uses a “flat Earth” model with a uniform gravi-

tational field and inertial vertical frame. The flat Earth model is approximated in POST2

by simulating the vehicle around a non-rotating planet with a radius of 109 m and a grav-

itational constant chosen to keep the sea-level gravitational acceleration equal to the stan-

dard acceleration of gravity. The 6DOF Library also calculates forces and moments using

the flow solver reference quantities for density and speed, which are constant during the

simulation. Therefore, constant sea-level atmospheric conditions were enforced within

POST2. The 6DOF Library uses the same modification to the time integration scheme as

the FUN3D-POST2 framework, so no modification was necessary in that regard.

The flow solver used a k-omega turbulence model [208] with a low-diffusion flux-

splitting scheme. The boundary conditions consisted of a viscous, no-slip condition on

the projectile surface and a Riemann invariant farfield at the outside surfaces of the grid.

Both simulations were performed on the Aerospace Systems Design Laboratory computing
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cluster within the Partnership for an Advanced Computing Environment at the Georgia

Institute of Technology [209]. The simulations were run with ∆t = 0.44079ms for 200

steps, or about 44ms of simulation time.

Verification Results

A comparison of the coupled model (’POST’) and FUN3D 6DOF Library (’Library’) re-

sults for the ballistic drop are shown below in Figure 5.11. The results shown in Figures

5.11a and 5.11b describe a ballistic trajectory with pitch oscillation, which is the expected

behavior. Figures 5.11c and 5.11d show that nonzero but small lateral motion develops due

to computational precision. The error in each of the displacement components, shown in

Figure 5.11e, is small compared to the overall motion of the vehicle, and each is of about

the same order of mangitude. The orientation error plotted in Figure 5.11f shows that the

error in the roll angle is the largest, which is expected from the behavior identified during

grid validation.

Figure 5.12 plots the magnitude of the displacement and orientation errors by simu-

lation step. Both simulations are started from the same initial conditions, so the error is

initially zero. After the first step, the error in all components is on the order of 10−16.

The displacement error magnitude rises more sharply than the orientation, reaching be-

tween 10−8 and 10−7 for the duration of the simulation. The orientation error magnitude

increases more slowly but reaches between 10−7 and 10−4. Based on this rate of error

growth over time, the cross-code verification was judged to be successful.
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Figure 5.11: ANF cross-code verification results
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Figure 5.12: ANF cross-code verification error growth
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5.2 Uncoupled Model

Uncoupled models are required for multiple purposes for the experiments outlined in Chap-

ter 4. A “baseline” model, with construction representing the state of the art, is used as

a point of comparison to the coupled model. The low-fidelity model, described in Sec-

tion 4.2.2 that is used as part of the multi-fidelity controller tuning methodology, is also

be an uncoupled model. The only difference between the two as specified in Chapter 4

is the need to accommodate different aerodynamic models. Because the overarching form

of these models is the same, they can be considered to be a single uncoupled model with

multiple options for aerodynamic model.

POST2 will again be used as the trajectory propagator and control mechanism model,

as it has already been established to meet the requirements for the problem of interest. In

a similar manner to the custom module constructed to link POST2 with FUN3D, custom

aerodynamic modules can also be constructed to perform the calculations required by any

of the surrogate models considered in Section 2.4.
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CHAPTER 6

TEST CONFIGURATION

This chapter details the construction of the test configuration, in the form of a representative

vehicle and problem, that will be applied to the experiments.

6.1 Aeroshell

The work will model an entry vehicle equipped with a Supersonic Inflatable Aerodynamic

Decelerator (SIAD). SIAD is designed to be a lightweight decelerator for Mars entry ve-

hicles [210]. Similar to HIAD, the SIAD is an inflatable torus that extends around a rigid

nose, though the SIAD has a greater proportion of the vehicle surface covered with a con-

ventional heatshield. SIAD-R was one configuration of the Low Density Supersonic De-

celerator (LDSD) Project, developed in consideration for large robotic missions [210, 211].

Figure 6.1 details the SIAD-R in its stowed and deployed configuration.

The choice to use a vehicle with new decelerator technology anticipates the desire to

use these technologies on future Mars missions. With a nearly flat afterbody and complex

geometry around the shoulder, torus, and burble fence, SIAD exhibits a large unsteady

wake. However, it has more benign separation and attachment behavior than a traditional

cone body, since the entire afterbody is almost always in separated flow. The geometry

was found to be unstable at small αT in the supersonic regime [97]. Therefore, this vehicle

presents suitably unsteady behavior for evaluation in the coupled simulation.

Two flight tests of SIAD were performed on the Supersonic Flight Dynamics Test

(SFDT) vehicle in 2015 [101]. These flights tested SIAD deployment in Earth’s atmo-

sphere at speeds over Mach 3 and an altitude of 52km. In support of these flight tests, a

series of ballistic range tests were performed on SIAD models at the Hypervelocity Free-

Flight Aerodynamics Facility (HFFAF) at the NASA Ames Research Facility [97]. The
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Figure 6.1: Stowed and Deployed SIAD Configuration [97]

deployed-configuration ballistic range model geometry used in this work is shown in Fig-

ure 6.2. The selection of SIAD therefore allows this work to leverage the computational &

physical experimental data for establishing feasibility and validation.
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(b) Cross-section (dimensions in mm)

Figure 6.2: SIAD ballistic range model (adapted from Wilder et al. [97])
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6.1.1 Computational Grid

The deployed-configuration grid used in [110] has been provided by Joe Brock. This grid,

shown in Figure 6.3, was generated for the cell-centered US3D flow solver, and will be

adapted for use in the node-centered FUN3D solver. The hemispherical volume captures

the forebody out to 2 vehicle diameters, and the wake out to 4.5 diameters. The grid spacing

is 0.1 µm at the wall and 0.4mm in the wake to ensure a value of y+ less than unity in those

regions. The mesh was created as a quarter-symmetry, then mirrored about the xy- and

xz-planes to form the full grid. The full mesh is composed of about 22 million hexahedral

elements.

It is important to note that this grid was developed for use with mesh deformation in

the US3D-based CFD-RBD model. Therefore when undergoing rigid mesh movement,

the high density region of the grid aft of the vehicle can rotate out of the subsonic wake,

decreasing the resolution of any flow features. The satisfactory performance of this grid

with rigid motion must be determined by validation.

(a) Quarter-Symmetry Plane (b) Wake Detail

Figure 6.3: SIAD Ballistic Range Model Mesh
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6.1.2 Vehicle Properties

The vehicle geometry and mass properties are scaled for execution cost feasibility. Ta-

ble 6.1 compares the geometry and mass properties for MSL, SDFT, and the ballistic range

model which is used in this work. The table also lists the vehicle properties as modified

for this work. The vehicle mass is artificially doubled. This doubles the ballistic coeffi-

cient, so that the vehicle is more resistant to acceleration in the simulation, giving a longer

time at the desired conditions. The inertia products are kept the same so as to maintain the

oscillation frequency, thus preventing the required simulation duration from increasing.

Table 6.1: Comparison of entry vehicle characteristics

MSL [54, 42] SFDT [101] Model [97] Modified model
Diameter (m) 4.5 6.0 0.0356 0.0356
Entry Mass (kg) 2,919 1461 0.0462 0.0919
Ref. Area (m2) 15.90 28.27 9.931× 10−4 9.931× 10−4

CD at Mach 2 1.347 1.45 1.45 1.45
xcg,F/d 0.214 - 0.197 0.197
zcg,F/d 0.0134 0.0 0.0 0.0
B.C. 154.0 35.6 32.1 64.2
Ixx (kg m2) 3055 3149 5.568× 10−6 5.568× 10−6

Iyy (kg m2) 3952 1784 3.023× 10−6 3.023× 10−6

Izz (kg m2) 4836 1784 3.023× 10−6 3.023× 10−6

6.1.3 Aerodynamic Model

To perform the proposed work, it is critical to determine the correct settings for both the

CFD flow solver and the trajectory propagator. Setting the physical time step is chosen

to resolve the unsteady flow around the vehicle. The number of subiterations and CFL

settings are chosen such that the aerodynamic flow is resolved at the subiteration level for

each time step with proper numerical convergence to accurately determine the unsteady

forces and moments.

The FUN3D flow solver settings resulting from the validation activities are summarized

here. The simulation is run with compressible, calorically-perfect gas. Fully turbulent

149



flow is used with a Spalart-Allmaras-based DES model [212]. A stencil-based Van Albada

flux limiter [213] is used with a dissipative low-diffusion flux splitting scheme. For time-

accurate simulations, an optimized second-order backward differencing scheme is used for

temporal time integration [214]. The time-accurate simulations use a physical time step

of 2.354 × 10−5, which corresponds to a non-dimensional time step of 0.4773. This time

step was evaluated in a time step resolution study and determined to result in converged

trajectory responses [215]. Each time step used 75 subiterations with constant meanflow

and turbulence CFL numbers of 60.0 and 45.0, respectively. POST2 and FUN3D will

use the same physical time step, so no interpolation of the transformation matrix will be

performed by FUN3D.

6.2 Vehicle Model Validation

Validation was performed for the coupled model of the SIAD ballistic range test vehicle,

including the vehicle mesh, mass properties, flow solver & trajectory propagator settings.

Replications were made of a subset of ballistic range experiments performed at NASA

Ames Research Center’s Hypervelocity Free-Flight Aerodynamics Facility (HFFAF) [97].

Test shots were run from Mach 2 to 4, with the model impacting a sheet of paper to induce

αT oscillations up to 28◦. Replications of a subset of these ballistic range tests for the

deployed model were also conducted by Brock et al. in a coupled free-flight simulation to

validate the predictive capabilities of their US3D-based environment [110]. The conditions

for the test shots and the CFD replications are shown in Figure 6.4.

Determination of the flow solver settings was validated by performing a replication

of one of the US3D experiments. Further validation was performed by replicating three

ballistic range test shots and comparing the resulting trajectories.
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Figure 6.4: SIAD experiment conditions [215]

6.2.1 Replication of a US3D-based CFD-RBD Simulation

The initialization method used by Brock et al. is a development of the method used by Stern

et al. [41] expanded to allow nonzero initial pitch and yaw rates. The freestream conditions

and initial orientation were chosen to match the first experimental observation. With the

grid held at the initial orientation, time-accurate flow was run for long enough to eliminate

transients. As Stern et al. [41] point out, this results in an unrealistic flow field, but the

unphysical initial conditions are assumed to dissipate quickly in time-accurate simulation.

Brock et al. [110] obtained the initial Euler angle rates θ̇ and ψ̇ by fitting cosine functions,

with the form of Equation 6.1, to the experimental pitch and yaw data, then taking their

derivative at the first experimental observation.

f = a1 · cos (a2 + a3t) (6.1)

The initial roll angle φ and roll rate p were assumed to be zero. Therefore, the initial an-

gular velocity q and r components are approximately equal to the Euler angle rates θ̇ and

ψ̇, respectively. The angular velocity was applied instantaneously at the start of RBD sim-

ulation. v and w, the linear velocities in the y- and z-axes, were assumed to be negligible.
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The initial conditions are listed in Table 6.2.

Table 6.2: Shot 2623 Initial Conditions [110]

Shot u, m/s v, m/s w, m/s φ, ◦ θ, ◦ ψ, ◦ p, ◦/s q, ◦/s r, ◦/s
2623 728.88 0 0 0 -7.68 0.16 0 6790 -741

A comparison of the streamwise velocity flow fields at initialization is shown in Fig-

ure 6.5. The wake calculated in FUN3D is slightly shorter than the US3D results from

Brock et al., but the nearfield behavior is similar. In addition to the effects of the remaining

discrepancies between the simulations described above, differences will also arise due to

the stochastic nature of the flow in time-accurate simulation. Even with these differences,

the settings of the FUN3D simulation yielded a satisfactory replication of the initial flow

field.

(a) FUN3D (b) US3D [110]

Figure 6.5: Streamwise velocity flow field for initialization of Shot 2623

The validation simulations were executed on hardware provided by the Partnership for

an Advanced Computing Environment at the Georgia Institute of Technology [209] and the

K-cluster at NASA Langley Research Center1. The meanflow and turbulence residuals are

plotted in Figure 6.6 by time step. Figure 6.6a plots a detailed view of the residual con-

vergence over the first 20 time steps. The meanflow residuals drop by about two orders of

1Runs were executed on the K3 and K4 subclusters. The K3 subcluster has compute nodes with dual-
socket 8-core 2.60 GHz Intel E5-2670 Sandybridge nodes with 32GB of memory per node. The K4 subcluster
has compute nodes with dual-socket 20-core 2.40 GHz Intel Gold 6184 Skylake processors with from 96GB
to 384GB of memory per node.
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magnitude across the time step, reaching converged values over the second half of the step.

All of these residuals converge below 10−10, which is sufficiently small for this problem.

The turbulence residual converges by an average of about a half of an order of magnitude,

but the number of subiterations is not sufficient for it to approach a steady state. However,

the value of the residual is below 10−7, which is satisfactory for this problem. Figure 6.6b

plots the residuals at the final subiteration for the first 800 steps (approximately half of the

total run). This shows that each of the residuals is consistent across a wide range of time

steps, where the vehicle motion state moves significantly.
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(b) Residuals at final subiteration of each time
step

Figure 6.6: Residuals for replication of Shot 2623 computational simulation

The validation of the simulation is based on comparison of the resulting trajectory to

both sets of experiments. Figure 6.7 overlays the trajectory components for the FUN3D-

POST2 simulation, the Brock et al. simulation, and the ballistic range experiment. Figure

6.7a plots the x-axis displacement decrement xdec, calculated using Equation 6.2:

xdec = x− u0t (6.2)

where x is the displacement from the position of the first experimental measurement, u0 is

the x-axis velocity of the vehicle at the first experimental measurement, and t is the time

measured from the first experimental observation. This is equivalent to the displacement

relative to an inertial observer moving at the initial velocity. Both the FUN3D-POST2 and
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the Brock et al. simulations match the behavior of the ballistic range experiment, with a

maximum displacement error of less than 0.1% of the total displacement. The difference

between the simulations is plotted in Figure 6.7b. The difference grows smoothly and

gradually over time, which is expected due to the propagation of slight differences in axial

force.

Total angle of attack αT is plotted for both simulations and the experimental data in

Figure 6.7c. The difference in αT remains less than 0.4◦ throughout the simulation, and

less than 0.2◦ at its maximum amplitude. Evaluating the results of the differences in axial

decrement and αT demonstrates that the two simulations predict very similar behavior in

both linear and angular motion. Both simulations also have similar error with respect to the

experimental data. Even with the known differences in flow solver and RBD calculation

settings, the differences between the angular components of the simulated trajectories are

on the same order of magnitude as the experimental uncertainty. These results demonstrate

that the FUN3D-POST2 framework and the selected settings provide a satisfactory free-

flight simulation of the SIAD model.

However, an examination of the results for the pitch and yaw angles reveals additional

information. As shown in Figure 6.7f, both simulations deviate from the experimental

results, with the maximum error increasing over time. The failure to predict the amplitude

growth in the yaw oscillation is particularly noticeable.

Both simulations show a discrepancy between the accuracy of αT and the Euler angles.

While αT is close to the experimental measurements, when this is decomposed into pitch

and yaw, the error is increased. Amplitude growth is over- and under-predicted for pitch

and yaw oscillation, respectively. For an axisymmetric vehicle, the behavior in pitch and

yaw oscillation (i.e. damping) should be similar if the roll rate is negligible, which is the

assumption for both CFD simulations. However, the exchange of oscillation amplitude

in the pitch and yaw present in the experimental data suggests that the roll rate is nonzero.

This type of behavior can be observed in ballistic range tests of other axisymmetric vehicles
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[98]. While these deficiencies themselves prompt further investigation, this similarity in

behavior upholds the validation between the computational simulations.
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Figure 6.7: Replication of Shot 2623 computational simulation

In addition to comparisons of the trajectory results, the extracted aerodynamic behavior

was also compared. System identification was used to determine time-average aerodynamic

coefficients from the trajectory results for the FUN3D simulation, the US3D simulation by

Brock et al. [110], and the ballistic range data [97]. This establishes a like-to-like compar-

ison using only the measurements from this single shot. The time-average coefficients are

plotted in Figure 6.8. Figure 6.8a shows that both FUN3D and US3D slightly underpredict
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the axial force coefficient. The lift curve slope is plotted in Figure 6.8b (except for the

US3D results, for which the y and z trajectory data was not available). For the pitching

moment coefficient plotted in Figure 6.8c, both CFD simulations slightly overpredict the

magnitude. Results for the pitch damping coefficient plotted in Figure 6.8d show that the

CFD results are close to each other and close to the mean value extracted from the experi-

mental data. However, the large uncertainty resulting from the fit over a single experimental

run precludes a more detailed comparison. Overall, the average coefficients demonstrate

good agreement between the CFD models.
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Figure 6.8: Comparison of average aerodynamic coefficients

6.2.2 Recreation of Ballistic Range Shots

The three ballistic range shots indicated above were recreated by running free-flight simu-

lations of the vehicle using the initial conditions and freestream properties calculated and

measured from the experimental results. The freestream conditions and vehicle properties

are listed in Table 6.3. The exact mass properties of each shot are modeled in POST2,

but the computational mesh represents the nominal dimensions of the model. However,

the largest difference in diameter between any of the experiments and the nominal dimen-

sions is less than 0.25%. Therefore, the assumption is made to use the nominal dimensions

(equivalent to the surface dimensions used in the grid) for the simulations. The location

of the center of mass and center of moment from the nose are represented in POST2 and

FUN3D by multiplying the xcg/d by the nominal diameter of 35.56mm.
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The initial conditions are listed in Table 6.4. These were determined by fitting the mea-

sured trajectory results and back-propagating to the start of the range. Since the roll angle

of the vehicle was not measured, the roll rate was reconstructed from the other trajectory

components. For a detailed description of this process, see Reference [215].

Table 6.3: Freestream conditions and model properties for selected shots [97]

Shot Mach αT,max, ◦ Pres., kPa Temp., K d, mm Mass, g xcg/d

2623 2.12 18.4 22.58 292.8 35.51 45.93 0.161

2643 3.46 8.8 20.67 294.3 35.58 45.85 0.159

2638 3.93 11.7 19.87 294.2 35.52 45.93 0.160

Table 6.4: Initial conditions for selected shots [215]

Shot u, m/s v, m/s w, m/s φ, ◦ θ, ◦ ψ, ◦ p, ◦/s q, ◦/s r, ◦/s
2623 728.95 -0.48 -1.62 0 -7.85 0.18 -290. 6640 -601
2638 1351.0 -0.42 -0.45 0 -4.60 0.24 -91.3 8150 -153
2643 1188.9 -0.75 -0.11 0 -1.64 0.74 -1890 6100 -1030

The trajectory component results for Shot 2623 are plotted in Figure 6.9 along with the

measured experimental data. Figure 6.9a plots the x-axis decrement, showing the vehicle

decelerating over time. Figure 6.9b shows that the x-axis displacement has increasing de-

viation with the experiment over time, consistent with the behavior shown in Figure 6.7b.

However, the maximum error in displacement at the end of the run is less than 0.025%

the length of the range. The lateral position components are plotted in Figure 6.9c. Note

that the oscillatory behavior of the displacement is distinctly captured, even for such small

displacement magnitudes relative to the downrange motion. Figure 6.9d shows that the

lateral components remain on the same order of magnitude as the experimental uncertainty

bounds. The pitch and yaw angles are plotted in Figure 6.9e, along with the roll angle

showing the nonzero initial roll rate. Compared to the results in Figure 6.7f, the error plot-

ted in Figure 6.9f is much smaller, with the yaw angle entirely within the experimental

157



uncertainty bounds. Even considering the total angle of attack in Figure 6.9h, the orienta-

tion error remains on the same order of magnitude as the experimental uncertainty bounds.

Overall, the results for Shot 2623 show excellent agreement to the experimental data.

The quality of these results is largely repeated for the other two shots, Shot 2638 and

Shot 2643 (plotted in Figures 6.10 and 6.11, respectively). Both of these shots had larger

errors in the linear and angular components, but with each of the components remaining

within the same order of magnitude as the experimental uncertainty bounds. Shot 2638 had

the largest orientation error, as shown in Figure 6.10h, of slightly greater than 1◦.

Based on the overall close agreement between the recreations and the experimental

data, the coupled model of the SIAD vehicle was judged to be successfully validated. Fur-

thermore the results validate the use of the SIAD grid with rigid mesh rotation for total

angles of attack less than 18◦.
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Figure 6.9: Recreation of Shot 2623
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Figure 6.10: Recreation of Shot 2638
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Figure 6.11: Recreation of Shot 2643
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6.3 Control Mechanism

The control mechanism selection is motivated by the ease of implementation while still

meeting the requirements to use a system that exhibits unsteady interaction with aerody-

namics and flight dynamics.

Internal Moving Mass Actuators (IMMA) are an alternative control system studied for

entry vehicles. An IMMA moves masses within the vehicle to change the composite mass

properties or momentum. The mass can be translating along a linear or circular track, or

rotating about an axis (e.g., a spacecraft reaction control wheel). A translating IMMA

changes the composite center of gravity of the vehicle relative to the center of pressure.

This allows the vehicle to directly control the magnitude of the lift vector. By using two

masses oriented along the lateral axes of the vehicle as shown in Figure 6.12, the system

can have independent angle of attack and sideslip control. This would decouple control

over downrange and crossrange distance, eliminating the need for lifting trajectories to fly

through bank reversals. For larger vehicles like HIAD and ADEPT, IMMA control can

have favorable feasibility compared to RCS, considering the mass penalties for thrusters

and fuel [216].

Since all of the control apparatus is contained within the OML, there is no interaction

with the aerodynamic flow. However, the moving masses do interact with the flight dy-

namics. The acceleration of the masses must be accounted for by additional terms in the

equations of motion, and the inertia derivative will be nonzero. While there is still time-

dependent interaction within the system, for a comparable performance an IMMA will have

less complex interaction than an RCS.

IMMAs were proposed for roll control on RVs as early as 1967 [217]. Petsopoulos and

Regan developed a linear moving-mass roll control system for a fixed-trim, non-spinning

RV [218]. Their results showed that control was possible but that the system produced

dynamic and aerodynamic cross-coupling. Wang et al. analyzed the nonlinear dynamics of
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Figure 6.12: Two-axis IMMA configuration

such a system, showing that the stability of the system was sensitive to the location of the

moving mass [219]. In addition to roll control, they were able to develop a guidance law to

control the deceleration of the RV [220].

Robinett III et al. demonstrated an autopilot for an alternate control scheme, using a

translational IMMA control system with an axisymmetric, slow-spinning RV [221]. Menon

et al. developed a three-axis translational IMMA system for control of a kinetic warhead

inside and outside the atmosphere [222].

IMMA control systems have also been studied for entry vehicles. Balaram described

a system for a Mars entry vehicle using two masses sharing a single, circular track [223].

Mukherjee and Balaram developed a nonlinear controller using dynamic inversion [224].

Davis et al. analyzed guidance algorithm performance for HIAD and rigid aeroshell
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entry vehicles using CG offset control, compared to bank angle control [216]. This study

considered generalized movement of point masses, without specifying an actuation method.

Atkins and Queen developed a two-axis IMMA for the Mars Phoenix entry vehicle, mod-

ifying the Apollo Earth return terminal guidance algorithm to achieve precision guidance

[15]. The masses were actuated as damped, driven, harmonic oscillators with given damp-

ing and spring constants. They chose masses of about 7.7% the vehicle mass, achieving an

αT control authority greater than 10◦. Compare this mass fraction to the 6% allocated on

MSL for entry mass balance devices to achieve the desired αT (excluding mounting and

jettisoning hardware, and excluding the RCS hardware & fuel) [40]. Atkins has further de-

veloped IMMA control systems for HIAD with both translation and rotation configurations

[167].

In another parallel with the field of entry vehicles, IMMA control systems have also

been studied for projectiles. Murphy studied the influence of moving internal components

on the motion of spinning projectiles [225]. Rogers and Costello have extensively studied

spinning projectiles with a single moving mass. They demonstrated control for configu-

rations with the mass moving in the lateral [226] and longitudinal [227] axes, as well as

rotation at the end of a cantilever [228]. The actuation was modeled as a set of electromag-

netic actuators moving a permanent magnet. Control was achieved by dynamic effect, not

by changing center of pressure.

The difference between the activities for tuning a two-axis IMMA system compared to

a one-axis system amounts to a difference in scale. Therefore, the vehicle will be equipped

with a single translational IMMA for controlling angle of attack. Compared to RCS, this

system requires no modification of the grid geometry and density to include nozzles and

properly resolve the plume.

The vehicle mass is split into 97.5% static mass, and 2.5% moving mass. This means

the moving mass is 2.3g, or about 2.7% the static mass of the vehicle. The mass travels on a

32mm track aligned along the z-axis of the body frame. The IMMA track is constrained to
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within the OML of the stowed configuration of the vehicle, as shown in Figure 6.13. This

mechanism allows for a trim angle of attack up to ±4◦. The mass properties of the spring

and damper are assumed to be constant, and therefore are condensed into the body mass

properties.
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Figure 6.13: IMMA track dimensions on SIAD model (mm)

The actuation is modeled as a damped harmonic oscillator with an input driving force.

The state variables for the mass is:

H = (za, ża, z̈a)
T (6.3)

where za, ża, z̈a are the position, velocity, and acceleration of the z-axis mass. The equation

of motion is:

z̈a = (1/ma)(Fz − kaza − caża) (6.4)

where Fz is the driving force, ka is the spring coefficient, and ca is the damping coefficient.

The behavior of the mass is constrained at the end of the track such that:

−za,max ≤ za ≤ za,max (6.5)
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ża ≤ 0, za = za,max

ża ≥ 0, za = −za,max
(6.6)

z̈a ≤ 0, za = za,max

z̈a ≥ 0, za = −za,max
(6.7)

6.4 Guidance Algorithm and Entry Controller

The guidance algorithm commands a constant, chosen angle of attack αcmd . The algo-

rithm is relatively simple, since the short duration of the simulations would not be able to

demonstrate complex behavior like predictor-corrector algorithms or even reference trajec-

tory. The instantaneous operation of these algorithms can be represented by commanding

constant slip angles, assuming that the rate of change of the desired slip angles would be

small over the simulation duration.

uz = kz,0αcmd + kz,1α
2
cmd + kz,2αe + kz,3α̇ + kz,4αI + kz,5ż + kz,6z̈ (6.8)

The kz,0 and kz,1 terms manage the trim behavior of the vehicle. The kz,2, kz,3, and kz,4

terms form a PID controller to control the error relative to αcmd . Finally, the kz,5 and kz,6

terms allow for responsiveness to the IMMA state. These two terms were included based

on the example of Atkins [167].

6.5 Flight Conditions

The freestream conditions selected are equivalent to the conditions of ballistic range test

Shot 2623 [97]. This allows the flow solver settings to be largely unchanged from the

validation. The initial Mach number chosen as 2.1, with a simulation duration allowing the

vehicle to decelerate to about Mach 1.95. This small range of Mach number was chosen to

limit the computational cost and duration of simulations. While the small range represents
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a limitation to any results, this is a regime in which the ballistic range tests demonstrate

dynamic instability, a key characteristic of interest for this problem.

Table 6.5: Freestream conditions and model properties for selected shots [97]

Mach αT,max, ◦ Pres., kPa Temp., K d, mm Mass, g xcg/d

2.12 18.4 22.58 292.8 35.51 45.93 0.161
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CHAPTER 7

EVALUATION OF UNSTEADY, COUPLED BEHAVIOR (RESEARCH

QUESTION 1)

This chapter documents the investigation of Research Question 1 and its associated Hy-

pothesis 1, both of which are restated below:

Research Question 1

What is the appropriate methodology to model aerodynamics, control mechanisms,

and flight dynamics for an entry vehicle with unsteady, coupled behavior?

Hypothesis 1: If aerodynamics, flight dynamics, guidance and control mechanisms are

captured in a coupled, time-accurate model, then this model will simulate unsteady, coupled

entry vehicle behavior that is not captured in the baseline model.

As the capability of the coupled model to accurately capture bluff-body aerodynamics

was established in the literature review and validated in Chapter 6, the investigation must

determine the significance of the differences in behavior prediction for models that do and

do not capture the unsteady, coupled behavior identified in Section 2.2.1. To this end,

Hypothesis 1 is decomposed into two sub-hypotheses which are each tested through exper-

imentation. The objective of Experiment 1.1 is to test Hypothesis 1.1, which is restated

below:

Hypothesis 1.1: If an entry vehicle is simulated in free flight in the coupled and base-

line models, then the difference in response due to unsteady, coupled behavior will be

quantified.
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Once the behavioral differences that arise in free flight are quantified, further investiga-

tion is performed in Experiment 1.2 to test Hypothesis 1.2:

Hypothesis 1.2: If an entry vehicle is simulated in with open-loop control actuation in

the coupled and baseline models, then the difference in response due to unsteady, coupled

behavior with control system interaction will be quantified.

Section 7.1 documents the generation of the coupled free-flight simulations that will be

used for these and future experiments. Section 7.2 describes the construction of a baseline

aerodynamic database, a necessary prerequisite to both Experiments 1.1 and 1.2. Sections

7.3 and 7.4 document the procedures, execution, findings, and conclusions of Experiments

1.1 and 1.2, respectively. Based on these results, Section 7.5 draws conclusions that can be

applied to Hypothesis 1 as a whole.

7.1 Generation of Coupled Free-Flight Simulations

Free-flight simulations are required to provide trajectory and aerodynamic data for the in-

vestigation of aerodynamic surrogate model alternatives, and to serve as a comparison for

the baseline flight model. Assuming roughly sinusoidal motion, a Latin Hypercube design

was used to sample the space of pitch amplitude and phase, which were then used to gen-

erate initial conditions for pitch and pitch rate. A series of eight initial condition cases

were created, shown in Table 7.1. These conditions are designed, when used to execute

free-flight simulations, to provide persistent excitation [229]. There is only a single mode

of oscillation for bluff body entry vehicles, so achieving persistent excitation devolves into

adequate sampling of the flight condition space.

Forced-motion startup simulations were executed to develop consistent vehicle motion

states and flowfields in accordance with the procedure described in Section 5.1.6. Free-

flight simulations at each case were run in the coupled model for a duration of about 0.05
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Table 7.1: Coupled simulation initial conditions

Case Pitch (◦) Pitch Rate (◦/s) Pitch Amplitude (◦)
1 0.90 997 2.5
2 3.83 3322 9.2
3 8.98 2918 11.6
4 3.57 -2094 6.4
5 0.21 -468 1.4
6 3.23 -877 4.0
7 5.02 235 5.3
8 7.68 -582 7.7

to 0.06 seconds1. Each simulation was computed with 400 processors running for 144

hours on the NASA Langley Research Center K-cluster.

The Case 2 free-flight simulation is used as an example to demonstrate the results of

the coupled model. The simulation was run for 2,167 time steps, equivalent to about 50

ms. A sequence of four x-z-pane snapshots of the flowfield Mach number from this run are

plotted in Figure 7.1. Here the vehicle is at about α = 9◦ and a freestream Mach number

of 2.09. The freestream velocity is oriented directly from left to right. Each subfigure is a

snapshot taken two time steps apart. The figure clearly shows the behavior of the flowfield

around the vehicle: the bow shock, separated wake, and expansion shocks are all visible.

Of particular note is the variation of the wake between each shot, even with negligible

motion of the vehicle.
1Except for the run at case 8, which had a duration of about 0.03 seconds
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(a) t (b) t+ 2dt

(c) t+ 4dt (d) t+ 6dt

Figure 7.1: Case 2 free-flight simulation flowfield Mach number sequence starting at t =
3.625ms

Figure 7.2 plots the Mach number, showing the vehicle decelerating at a relatively con-

stant rate. The trajectory component history is plotted with respect to the Freestream refer-

ence frame in Figure 7.3. Figure 7.3a plots the x-axis decrement, which is calculated using

the formula:

xdec = rx − vx,0t (7.1)

The results show the vehicle accelerating away from the Freestream frame, equivalent to

deceleration for an atmosphere-fixed observer. Figure 7.3b plots the lateral displacement of

the vehicle. The z-axis displacement increases over time as a result of gravitational force,

with an added oscillatory component resulting from the aerodynamic normal force. The

y-axis displacement remains much smaller, and both y and z are many orders of magnitude

smaller than the x-axis displacement.

The pitch Euler angle, plotted in Figure 7.3c, shows the large-scale sinusoid-like oscil-
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latory behavior of the vehicle in the angular dimensions. The roll and yaw Euler angles are

plotted in Figure 7.3d. The yaw also shows oscillatory behavior, with amplitude increasing

over time. However, the maximum amplitude of about 0.45◦ at the end of the run is much

smaller than the pitch oscillation, allowing it to be ignored when considering motion in

pitch. Although the vehicle starts with zero initial roll rate, a slight roll rate develops over

the course of the simulation. However, since the maximum roll angle is less than 0.2◦, this

can also be ignored. Since the magnitude of the lateral velocity is small, the values of α

and β plotted in Figure 7.4 are essentially equivalent to the pitch and yaw Euler angles,

respectively.
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Figure 7.2: Case 2 free-flight simulation Mach number
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Figure 7.3: Case 2 free-flight simulation trajectory
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Figure 7.4: Case 2 free-flight simulation aerodynamic slip angles

Figure 7.5 plots the net aerodynamic coefficients2. The axial force coefficient plotted

in Figure 7.5a shows the unsteady response resulting from oscillation, along with higher-

frequency behavior resulting from recirculation in the wake. It is important to note that

the variation due to oscillation and the higher-frequency noise are both small relative to

the time-average magnitude of the coefficient. This shows similar behavior to the pres-

2All aerodynamic coefficient results are calibrated to the instantaneous dynamic pressure.
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sure results from the MSL ballistic range test in Figure 2.7. The side and normal force

coefficients plotted in Figure 7.5b show oscillatory behavior. The amplitude of the normal

force is much larger than the side force coefficient, commensurate with the difference in

magnitude between the pitch and yaw oscillation. Magnitudes for both lateral force coeffi-

cients are much smaller than the axial coefficient. While the high-frequency noise resulting

from the wake is still present, it has a much smaller effect relative to the amplitude when

compared with the axial coefficient.

Figure 7.5c plots the pitch moment coefficient. Once again, the behavior is mainly os-

cillatory, with the high-frequency noise still present, but small relative to the amplitude.

The yaw and roll moment coefficients are plotted in Figure 7.5d. Notably, the oscillatory

behavior of CLN appears to have a triangular pattern as opposed to the sinusoid-like be-

havior of all the other components. CLN also has a more pronounced high-frequency effect

due to the small magnitude of the component. The magnitude of CLL is much smaller than

CLN , and both are much smaller than CM .

The examination of the trajectory and aerodynamic components demonstrates that the

model results are behaving qualitatively as expected for a bluff-body entry vehicle that is

free to pitch, heave, and decelerate.

Figure 7.6 shows the coverage of these runs across the input dimensions for the database.

Given that the initial conditions are constrained to a single plane and the vehicle is axisym-

metric, the resulting motion is largely constrained to the same (vertical) plane. The range

of Mach numbers is covered in a generally uniform manner. Figure 7.6a demonstrates that

the overlapping results de-correlate the Mach and α inputs. The density of points in the

αT dimension decreases roughly linearly with increasing angle. However, this allows for a

generally even spacing of data in the dimensions of αT and the nondimensional pitch rate

q̂ as shown in Figure 7.6b. While the α and q̂ inputs remain correlated, the close spacing of

runs will help to mitigate any problems due to interpolation. These free-flight simulations

result in trajectory and aerodynamic data at about 17,000 total points.
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Figure 7.5: Case 2 free-flight simulation aerodynamic coefficient history
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Figure 7.6: Span of coupled free-flight simulations across database dimensions

7.2 Construction of the Baseline Aerodynamic Database

Experiments 1.1 and 1.2, as well as following experiments, rely on comparisons to a base-

line model constructed to represent the state of the art for entry vehicle aerodynamic mod-

els. This consists of an aerodynamic database that provides static and dynamic coefficients
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as a function of Mach and the slip angles. The data used to populate the database will be

generated using the FUN3D flow solver [133]. The flow solver is run with the same set-

tings as for the coupled model in Section 7.1. This allows the database to share its source

of truth with the coupled model.

7.2.1 Static Coefficients

The static aerodynamic coefficients will be found using time-accurate fixed-attitude FUN3D

solutions, acting as an analogue to static wind tunnel tests. A design of experiments (DOE)

spanning the range of Mach and angle of attack is created as shown in Figure 7.7. Since

the vehicle is axisymmetric, the results are also assumed to hold for total angle of attack.

The DOE uses a full-factorial design, consistent with the state of the art for Mars entry

vehicle aerodynamic databases as demonstrated by MSL [54]. The points are evenly dis-

tributed across the Mach 1.95-2.10 range specified in Chapter 6. The distribution of points

in the αT dimension is weighted toward the smaller values, within which the vehicle will

be able to achieve a trim angle of attack. The density of points is chosen to both a) ade-

quately describe the coefficients in the range of conditions, and b) provide enough points

to selectively change the density as required in Experiment 2. Table 7.2 compares the av-

erage density of points along each input dimension in the baseline static database to the

databases used for MSL and Phoenix, the two most recent unique development efforts for

Mars entry vehicles. The density of points in the baseline database is much higher in both

dimensions, satisfying the first requirement. The total number of points, 44, allows the

database to be constructed in increments of 4 points (Chapter 8 will demonstrate that the

computational expense of 4 static points is comparable to one coupled simulation). This

satisfies the second requirement.
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Table 7.2: Average density of static aerodynamic database in the vicinity of Mach 2

Model M αT (1/deg)

Phoenix [56] 1.000 0.200

MSL [54] 1.087 0.208

Baseline 20.00 0.718
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Figure 7.7: Static solution design of experiments

An example of the process is documented below for a single database point. First, a

steady solution is generated with 3000 iterations to resolve the gross features of the flow

field. The residuals for this run are plotted in Figure 7.8. The meanflow components

(density; momentum in the x, y, and z directions; and energy) drop by about an order of

magnitude to below 10−9, which is satisfactory for the steady solution. The turbulence

residual decreases initially, but then increases after about iteration 500 until it approaches

a steady state with a net decrease less than an order of magnitude. This behavior is due to

the use of the DES-based turbulence model in a steady simulation. Since the magnitude of

the resdual remains below 10−7, this is acceptable for a steady solution.
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Figure 7.8: Steady-state solution residuals

Figures 7.9a and 7.9b plot the static axial force and pitch moment coefficients, re-

spectively. The number of iterations is shown to be large enough for both coefficients to

converge.
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Figure 7.9: Steady-state coefficient history for M=2.05, α=5◦ database point

The converged steady flow field is then used to start a time-accurate simulation which

is run for 500 time steps, or a duration of 0.12s. This duration is about 70% of the vehicle’s

damped oscillation period at these conditions. Therefore, the time-accurate solution will be

long enough to capture the lowest-frequency steady-state behavior expected in the coupled

model. This approach is consistent with the methodology of Stern et al. [128] for the

generation of static coefficients.

The residuals are plotted in Figure 7.10 for the first 20 time steps. The initial time steps

show variations in the convergence, especially for the turbulence residual. These are both
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likely the result of transients due to the startup from a steady flow field solution. After

iteration 15, and for the rest of the simulation, the residuals behave in a similar manner to

that shown in Figure 6.6 for the validation simulations.
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Figure 7.10: Static solution residuals

The examination of Figures 7.8 and 7.10 demonstrate that the flow solver settings are

valid for the steady and time-accurate simulations.

Figures 7.11b and 7.11d plot the static axial force and pitch moment coefficient history

and their averages. The results show consistent behavior centered around the average,

indicating that the effect of the startup transients on the coefficients is negligible.

The time-accurate results can also be compared to the final 500 iterations of the steady

solution as shown in Figures 7.11a and 7.11c. The average values for both CA and CM are

different between the steady and time-accurate solutions. This amounts to about 0.5% for

the axial force and about 1.8% for the pitch moment. In addition, the variance of both of

the time-accurate results is also increased. These results demonstrate that even considering

only the change in fidelity between steady and time-accurate models results in a noticeable

change to the aerodynamic behavior.
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Figure 7.11: Static coefficient history for M=2.05, α=5◦ database point

7.2.2 Dynamic Coefficients

The baseline database must also include the effects of damping. The roll damping coeffi-

cient is ignored since no runs are planned with a significant initial roll rate, hence the only

term included will be the pitch damping coefficient CMq .

As identified in Section 2.4.1, the state-of-the-art models use parameter identification

to determine a fit for CMq from ballistic range tests. These fits are then evaluated at the

desired inputs to produce values for the database. Therefore, the free-flight simulations

generated in Section 7.1 will be used as an analogue to the ballistic range tests.

The model form for the pitch moment coefficient is based on examples from entry

vehicle literature [97, 96]. Given the general uncertainty about the form of the damping

coefficient in this flight regime, where little full-scale flight data exists for verification, the

forms identified from the literature are not used directly. Instead, promising model terms
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were included in Equation 7.2:

C̃M = (c0 + c1∆M) sinα + (c2 + c3∆M) sin3 α

+ (c4 + c5∆M) q̂ + (c6 + c7∆M) | sinα| q̂
(7.2)

where ∆M is the difference between Mach number and a chosen reference Mach num-

ber Mref , and q̂ is the nondimensionalized pitch rate. With eight coefficients, the model has

a complexity between those described in References [96] and [97].

The process of fitting the model takes advantage of the fact that the coupled simulation

provides direct measurements of the aerodynamic loads. This is done so as not to unfairly

burden the baseline database with error propagation that would result from the data re-

duction and parameter identification solely from the trajectory components. However as

a result, the lack of this error represents a deviation from the state-of-the-art which must

be considered when evaluating database performance. Substituting data points 1..n into

Equation 7.2 results in the overconstrained system of equations in Equation 7.3:


sα1 sα1∆M1 s3

α1
s3
α1

∆M1 q̂1 q̂1∆M1 |sα1 |q̂1 |sα1 |q̂1∆M1

...
...

...
...

...
...

...
...

sαn sαn∆Mn s3
αn s3

αn∆Mn q̂n q̂n∆Mn |sαn|q̂n |sαn|q̂n∆Mn



c0

...

c7

 =


CM1

...

CMn


(7.3)

where sαi = sinαi. The value of the coefficients are found using linear least squares

(which is equivalent to maximum likelihood estimation in this case). The data are split

into snippets of no greater than 200 continuous time steps, and 15% of these snippets are

randomly selected to be withheld from the fitting process to serve as validation points3.

The goodness of fit parameters for the pitch moment coefficient are plotted in Fig-

3This procedure is used since it allows for re-stratification while preserving the time-series nature of the
data, which will be necessary for some surrogate model alternatives evaluated through Experiment 2.
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ure 7.12. Figure 7.12a plots the actual value of the CM response against the value predicted

by the fit. The plot shows a tight line of data lying along the diagonal line with a slope of

1, which is an indication of a good fit.

Figure 7.12b plots the residual between the actual and predicted values, normalized by

the total range of the response. While there is some clumping in the response, this is a result

of highly dense time history of the data. Overall, the residual shows no distinguishable

patterns.

The model fit error (MFE) represents the residual for the points used to train the model

(i.e., it is a measure of how well the training data fits the surrogate model). The model rep-

resentation error (MRE) represents the residual for the validation data (i.e., it is a measure

of how well the surrogate model matches the actual response). These are plotted in Figures

7.12c and 7.12d, respectively, showing roughly normal distributions centered around zero.

Overall, the moment coefficient fit has a three standard deviation uncertainty of ±0.66%,

which is of a similar magnitude to the ±1.4% average error for the coefficient found by

system identification of the ballistic range tests on the same vehicle [97]. Based on the

similarity in the error magnitude compared to the ballistic range tests, the moment coeffi-

cient fit is judged to be a satisfactory representation.

The damping moment coefficient is found by using the last four terms of Equation 7.2.

Rather than using the equation to calculate CMq directly, the fit is sampled at the same

design points used to construct the static coefficient database. Interpolation is used to find

the coefficient at the desired conditions in the same manner as the static coefficients. This

reflects the way dynamic coefficients are incorporated into the state-of-the-art database

models in the literature.

7.2.3 Compilation of Results

The average coefficient results for the time-accurate simulations are shown in Figure 7.13.

The axial coefficient results plotted in Figure 7.13a demonstrates the variation in CA vs. α
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Figure 7.12: Baseline pitch moment coefficient surrogate goodness of fit metrics

as a function of Mach number. The maximum predicted axial coefficient is not at α = 0◦;

rather, it slightly increases until about α = 4◦ then starts decreasing.

Instead of directly using CN and CM, the database will store normal force and pitching

moment data as the coefficient slopes, CNα = CN/α and CMα = CM/α respectively.This

will allow for extrapolation from a small subset of points to be performed during the sim-

ulated training in Experiment 2 without an unacceptable breakdown of the model. The

lift-curve and pitch moment slopes are plotted in Figures 7.13b and 7.13c, respectively.

Note that the error bars decrease with increasing alpha as a result of the inverse performed

on the measured data. The model also assumes that the time-average static pitch moment

and normal force are zero at α = 0◦; hence, these values are not reported. Both CNα and

CMα vary measurably with Mach and α.

The pitch moment damping coefficient is plotted in Figure 7.13d. The coefficient has

a large variation in both Mach and α. It is beneficial to examine these values for pitch

damping in relation to the pitch damping for neutral stability (i.e., no amplitude growth).
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The predicted neutral stability is calculated for the vehicle assuming 3DOF motion and

linear aerodynamic coefficients. Schenenberger and Queen [230] present the equations of

motion for this case, along with an analytical solution:

α = Atµ cos (ν log t+ δ) (7.4)

where the coefficient µ controls the oscillation growth over time:

µ =
mL2

ref (CMq + CMα̇
)

4IyyCA
+ 1 (7.5)

Setting this coefficient to zero yields the pitch damping coefficient required for neutral

stability. Using an average value for the axial coefficient, the pitch damping coefficient for

neutral stability is about -0.14. The baseline model therefore predicts that the vehicle is

dynamically unstable as both Mach and αT decrease.

0 2 4 6 8 10 12 14

Angle of attack (deg)

1.33

1.34

1.35

1.36

1.37

1.38

1.39

C
A

M=1.95
M=2.00
M=2.05
M=2.10

(a) Time-average static axial coefficient

0 2 4 6 8 10 12 14

Angle of attack (deg)

4

4.5

5

5.5

6

6.5

C
N

10-3

M=1.95
M=2.00
M=2.05
M=2.10

(b) Time-average static lift curve slope

0 2 4 6 8 10 12 14

Angle of attack (deg)

-4

-3.8

-3.6

-3.4

-3.2

-3

C
M

10-3

M=1.95
M=2.00
M=2.05
M=2.10

(c) Time-average static pitch moment slope

0 2 4 6 8 10 12 14
Angle of attack (deg)

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

C
M

q

M=1.95
M=2.00
M=2.05

M=2.10
Neutral Stability

(d) Pitch moment damping coefficient

Figure 7.13: Database coefficient results
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Since the vehicle is symmetric, the models for C̃Y , C̃LN , C̃Yr , and C̃LNr are assumed

to take the same form as and use the same magnitude of coefficients as C̃N , C̃M , C̃Nq , and

C̃Mq , respectively. The completed aerodynamic database can now be used for the baseline

flight simulation model.

7.3 Comparison of Free-Flight Behavior in Baseline and Coupled Models (Experi-

ment 1.1)

7.3.1 Experimental Procedure

Experiment 1.1 will perform free-flight simulations of the vehicle using both the coupled

model documented in Section 5.1 and the baseline model documented in Section 5.2 (whose

aerodynamic surrogate is described in Section 7.2). This is achieved by using the baseline

model to replicate the Case 7 free-flight simulation shown in Section 7.2.2. This case has an

initial pitch amplitude that is close to the median of all the cases, at about 5.3◦. Case 7 was

also selected due to the fact that it will allow for maximum IMMA actuation in Experiment

1.2 without causing the pitch amplitude to exceed the bounds of the aerodynamic database.

The simulation will be run with the same initial conditions, freestream conditions, mass

properties, and trajectory propagator settings. The model will be run for the same simulated

duration.

Comparisons will be made based on instantaneous results (i.e., the aerodynamic model)

and the propagated results over time (i.e., the trajectory). The trajectory responses from

both simulations will be directly compared. The aerodynamic responses, however, will

not; since the aerodynamic parameters are a function of the trajectory, the results from two

different trajectories would also include error propagation. Instead, the trajectory from the

coupled simulation is input into the aerodynamic database to provide the response of the

baseline model. The aerodynamic results from the coupled simulation are then compared

to the baseline response for the exact same trajectory conditions. This eliminates the ef-

fect of error propagation on the trajectory that would result from directly comparing the
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aerodynamic results from the two simulations4.

Findings will be made based on observations of the time histories of the trajectory and

aerodynamic components. In addition, overall metrics will be calculated to quantify the

performance of the model.

The root-mean-square (RMS) value of the error is used as an overall measure of the

error between the predicted and actual results. It provides a measure of the total deviation

from the response. Equation 7.6 shows the formulation with normalization based on the

magnitude of the response (as is used for the axial coefficient above):

RMSE =

√√√√ 1

n

n∑
i=0

(
Ci − C̃i
Ci

)2

(7.6)

Equation 7.7 shows the formulation where the error is normalized by the range of the

response (as is used for the normal force and pitch moment coefficients):

RMSE =

√√√√ 1

n

n∑
i=0

(
Ci − C̃i

Cmax − Cmin

)2

(7.7)

The RMS error allows for a comparison that is insensitive to variations in the number of

data points in each simulation. The change in the formula between Equations 7.6 and 7.7

only precludes direct comparison of different components (e.g. comparison of the axial

to the moment coefficients). The RMSE will be evaluated for both the aerodynamic and

trajectory components.

The mean error is used as a second metric for the aerodynamic results as a measure of

the bias. This metric is considered due to the largely periodic behavior of the vehicle in

free flight. The deficiencies of a model with small bias might be more likely to have those

errors canceled out through propagation. Conversely, a net bias may be more detrimental

4The opposite comparison, i.e., running a time-accurate forced motion CFD simulation along the baseline
trajectory, was not performed because the CFD model would not be simulated over a substantially different
portion of the design space, nor would any different physical mechanisms be excited.
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to the trajectory results than a model with smaller bias yet a larger RMSE.

The trajectory components considered are the x-axis decrement, z-axis displacement,

and pitch Euler angle; the other three components are ignored since they are inconsequen-

tial to the longitudinal behavior. For the same reasoning only CA, CN , and CM are consid-

ered for the aerodynamic components.

7.3.2 Results

Aerodynamic Response

The coupled axial coefficient results are plotted with the baseline response in Figure 7.14.

Figure 7.14b shows that the magnitude of the error is small. However Figure 7.14a shows

qualitative differences in the behavior between the coupled and baseline models. First, the

coupled model shows high frequency noise, the result of the wake on the afterbody of the

vehicle. This behavior is not predicted in the baseline aerodynamic model.

However, there is another noticeable trend in the results: the lower-frequency response

of the baseline model sometimes moves in the opposite direction to the coupled model

(most noticeable around 45ms, which corresponds to an αT close to zero). Plotting this

error against the total angle of attack and pitch rate in Figure 7.15 shows a noticeable

pattern in each dimension. In addition, the axial coefficients from the coupled simulation

are being predicted for a relatively constant but nonzero acceleration - effectively some

dM/dt - whereas the baseline database assumes a dM/dt = 0.
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Figure 7.14: Free-flight axial force comparison
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(b) As a function of q̂

Figure 7.15: Free-flight axial coefficient error

For a single simulation of free-flight oscillation, it is not possible to de-correlate the

αT and q̂ inputs, but the omission of any dynamic component to CA, namely the effect of

pitch rate on the axial force coefficient CAq , is likely a significant cause. However even

for durations of small pitch rate (corresponding to αT ≈ 5◦ for this run), where conditions

in the runs used to produce the database should most closely match the conditions of the

dynamic simulation, there is a noticeable offset in the error. One possible explanation is

that the time spent at any particular amplitude is not long enough for the flow to develop to

the extent that it did in the static simulations.

The normal force coefficient results are plotted in Figure 7.16a, with the error plotted

in Figure 7.16b. As with CA, the coupled model captures high-frequency variation in the

moment coefficient as a result of the continuous integration of the unsteady flow field.
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The error again shows a clear oscillatory pattern. The error is plotted against αT and q̂ in

Figure 7.17, demonstrating a noticeable trend. As with the CA error, the variation with q̂ is

likely due to the omission of dynamic components of the coefficient.
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Figure 7.16: Free-flight normal force comparison
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(b) As a function of q̂

Figure 7.17: Free-flight normal coefficient error

The moment coefficient results are plotted in Figure 7.18. Figure 7.18b does not show

a strong oscillatory pattern with time, and there are no distinguishable patterns with αT or

q̂ as shown in Figure 7.19.
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Figure 7.18: Free-flight aerodynamic moment comparison
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Figure 7.19: Free-flight pitch moment error

The overall metrics for each coefficient are listed in Table 7.3.

Table 7.3: Free-flight aerodynamic prediction metrics

Coefficient Mean error (%) RMS Error (%)

CA 0.09 0.35

CN 0.08 2.14

CM -0.02 0.56

Trajectory Response

While the aerodynamic components serve as a measure of the instantaneous error, a com-

parison of the error propagated over time can also be made by considering the trajectory
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components. The x-axis decrement results are shown in Figure 7.20a. The results for the

coupled and baseline models are indistinguishable at full scale. Figure 7.20b shows that

the absolute error remains below 1mm over the duration of the run. As expected, the mag-

nitude of the error generally increases with time due to error propagation. The maximum

error is less than 0.003% of the total x-axis displacement of the vehicle.

The z-axis displacement is plotted in Figure 7.20c, with the error plotted in Figure 7.20d.

As with the x-axis, the z-axis displacement deviates over time due to error propagation.
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Figure 7.20: Free-flight translation comparison

The pitch angle results are plotted in Figure 7.21, showing good agreement between the

baseline and coupled models. Figure 7.21b shows that the error amplitude of the baseline

model increases over time. The plot of total angle of attack in Figure 7.22 more clearly

shows that the baseline model under-predicts the amplitude growth over time.
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Figure 7.21: Free-flight orientation comparison
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Figure 7.22: Total angle of attack comparison

The overall RMS values of the trajectory component errors are listed in Table 7.4. The

magnitudes of the errors are larger than for the aerodynamic components as a result of error

propagation over time.

Table 7.4: Free-flight trajectory prediction metrics

Component RMS Error (%)

xdec 2.75

rz 4.05

θ 0.80
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7.3.3 Findings

The comparison of free-flight simulations on the coupled and baseline models demonstrates

the difference in aerodynamic behavior. As expected from the literature review, the baseline

model does not capture the high-frequency noise due to the unsteady flow of the wake.

Distinguishable patterns in the axial force coefficient are observed as a result of the

differences between the coupled and baseline model. This is expressed in Finding 7.1:

Finding 7.1: The error in CA and CN predictions for the free-flight simulation both show a

measurable trend with q̂, reflecting the omission of dynamic components of the coefficients

from the state-of-the-art entry vehicle database.

However, Table 7.3 shows that the mean and RMS errors of CA and CN are small,

within the magnitude of uncertainty bounds for entry vehicle aerodynamic databases from

literature [97, 40].Therefore, this finding helps to inform the search for a replacement aero-

dynamic surrogate as stipulated by Research Question 2.1, but it does not impact Hypoth-

esis 1.1.

The most significant discrepancy in the trajectory results is the under-prediction of the

pitch amplitude growth by the baseline model. Even though no discernible pattern was

found in the pitch moment error, this nevertheless resulted in a change in the damping

behavior when the error was propagated over time:

Finding 7.2: The baseline model predicts more stable (less) pitch oscillation growth than

the coupled model for the free-flight simulation.

Aside from the behavioral findings specifically called out above, the experiment was

able to measure the error between the baseline and coupled simulation responses:

Finding 7.3: The results of Experiment 1.1 quantify the differences in aerodynamic and

trajectory component responses of the baseline and coupled models for free-flight simula-

tions.
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The angular errors were all less than 1%, and the largest linear error, the z-axis dis-

placement, was less than 5%. With a maximum difference of less than 0.15◦, the angular

error is not significant compared to the value of 0.17◦ for precision landing with active

guidance:

Finding 7.4: The RMS pitch error for the baseline free-flight simulation is not significant

compared to the threshold established for instantaneous tracking error.

7.3.4 Conclusions

On the basis of Finding 7.3, Hypothesis 1.1 is accepted. The difference in free-flight re-

sponse between the baseline and coupled models is measurable, but not significant for the

problem of interest. The comparison between these two runs establishes a threshold for the

trajectory and aerodynamic differences between the models for a free-flight simulation of

the SIAD vehicle (i.e., in the absence of control actuation).

7.4 Comparison of Open-Loop Control Behavior in Baseline and Coupled Models

(Experiment 1.2)

7.4.1 Experimental Procedure

Experiment 1.2 performs further investigation into the differences between the coupled and

baseline models. Two more runs are executed using the case 7 initial conditions, now with

identical open-loop control actuation. After t = 1ms, the z-axis IMMA is commanded

to deflect to -16mm, its maximum travel, and remain in this position for the rest of the

simulation. The commanded and actual deflection of the IMMA are plotted in Figure 7.23.

The IMMA driven by the simulated spring-damper system reached this position at t =

3.2ms. This actuation is representative of a command that might be made during active

guidance, to bring the vehicle to some specific αtrim .

This deflection corresponds to a static trim angle of attack of about 4.3◦. As a result,
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the vehicle is anticipated to have a significantly different pitch response, making direct

comparison to the free-flight simulations more difficult. However, there is no way to design

the experiment such that the vehicle flies through the same region of the input variables

while simultaneously exercising the control actuation to a significant degree.

Aside from the actuation of the control mechanism, the experimental procedure is iden-

tical to Experiment 1.1. However in addition to the comparison of results between the

baseline and coupled simulations (shown in Section 7.4.2), Experiment 1.2 will also com-

pare the change in error relative to the two free-flight simulations performed in Experiment

1.1 (shown in Section 7.4.3).
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Figure 7.23: z-axis IMMA position

7.4.2 Results

The axial and normal force coefficients plotted in Figure 7.24 show the same qualitative

behavior observed in the free-flight simulations, as do the moment coefficients plotted in

Figure 7.25a.
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Figure 7.24: Open-loop aerodynamic force comparison
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Figure 7.25: Open-loop aerodynamic moment comparison

The overall metrics for the open-loop aerodynamic prediction are listed in Table 7.5:
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Table 7.5: Open-loop aerodynamic prediction metrics

Coefficient Mean error (%) RMS Error (%)

CA 0.03 0.26

CN -0.01 1.87

CM 0.31 0.86

Figure 7.26 demonstrates that, as with the free-flight simulations, error in the x-axis

decrement and z-axis displacement is insignificant.

The pitch response of both simulations is shown in Figure 7.27. As with the free-flight

simulations, the largest difference is in the amplitude growth. In this instance the baseline

model predicts an amplitude growth, whereas the coupled model shows a slight decrease in

amplitude. The oscillation frequency also starts to deviate between the simulations.
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Figure 7.26: Open-loop translation comparison
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Figure 7.27: Open-loop orientation comparison

The overall metrics for the trajectory components are listed in Table 7.6:

Table 7.6: Open-loop trajectory prediction metrics

Component RMS Error (%)

xdec 0.00

rz 0.08

θ 3.47

7.4.3 Evaluation of the Impact of Control Actuation on Error

Evaluation of the open-loop simulations on their own yields little additional information

beyond the results from the free-flight simulations. Hwever by comparing the simulations

in the baseline and coupled model for both free-flight and open-loop control, an investiga-

tion can be made into the effect of control actuation on the propagated and instantaneous

error.

Aerodynamic Response

Figure 7.28a plots the coupled model responses for the free-flight and open-loop simula-

tions. A centered, 31-step moving average is applied to the errors in the figure to improve

readability. The figure demonstrates that the true behavior in these two responses is similar.
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Note that the apparent difference in frequency between the oscillatory behavior is due to the

different behavior of the αT oscillation (the open-loop response does not cross αT = 0, and

is therefore not reflected). Figure 7.28 plots a comparison of the error between the baseline

aerodynamic response for the free-flight and open-loop simulations against their respective

coupled responses. The open-loop CA error has smaller peaks than the free-flight error, but

in each the error is generally centered about zero.

The normal coefficients are plotted in Figure 7.28c, with the error plotted in Fig-

ure 7.28d. Figure 7.28c shows how the responses are closely overlaid before the IMMA

causes the C.G. to shift. Notably, the free-flight simulation has a much higher relative error,

even considering the large oscillation amplitude of the response.
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Figure 7.28: Comparison of predicted to actual force coefficient

Figure 7.29a plots the pitch moment coefficient about the C.G. of the vehicle, CM,cg ,

and Figure 7.29b plots the error for each simulation. Again, the responses closely match

before the IMMA actuation. The open-loop simulation shows consistently higher peaks in
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error magnitude, as well as a bias that trends away from zero with increasing time.

10 20 30 40 50

Time (ms)

-0.02

-0.01

0

0.01

0.02

C
oe

ffi
ci

en
t

Free-Flight, Coupled
Open-Loop, Coupled

(a) Pitch moment coefficient

10 20 30 40 50

Time (ms)

-2

-1

0

1

2

3

C
oe

ffi
ci

en
t e

rr
or

 (
%

)

Free-Flight
Free-Flight (Avg.)

Open-Loop
Open-Loop (Avg.)

(b) Pitch moment coefficient errors

Figure 7.29: Comparison of predicted to actual pitch moment coefficient

The values for the overall error metrics are compared in Tables 7.7 and 7.8. Table 7.7

shows that the mean error for both CA and CN are decreased for the open-loop simulation.

CM,cg is the only component that increases, but the increase is larger than any other change.

All of the mean errors fall under 0.5%. Table 7.8 shows similar behavior for the change in

RMS error: the error for the open-loop CA and CN prediction is decreased, while the CM,cg

error increases.

Table 7.7: Comparison of coefficient mean error

Simulation CA Error (%) CN Error (%) CM,cg Error (%)
Free-Flight 0.09 0.08 -0.02
Open-Loop 0.03 -0.01 0.31

Table 7.8: Comparison of coefficient RMS error

Simulation CA Error (%) CN Error (%) CM,cg Error (%)
Free-Flight 0.35 2.14 0.56
Open-Loop 0.26 1.87 0.86

Comparison of Baseline and Coupled Models at Similar Flight Conditions

While the aerodynamic comparison was performed in such a way that it eliminates the

effect of trajectory error propagation from each baseline and coupled simulation, the free-
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flight and open-loop runs have entirely different trajectories. Therefore an attempt is made

to compare the aerodynamic behavior at as close to the same flight conditions as possible.

The maximum difference in instantaneous Mach number between the runs is less than

0.0001, so the vehicle state will be considered based on pitch rate and angle of attack.

Figure 7.30 plots the angle of attack and pitch rate for the free-flight and open-loop

simulations run in the coupled model. A region is indicated where the these two input

variables are substantially similar. The region is bounded by 4.5◦ ≤ α ≤ 5.0◦ and 3.37 ×

10−3 ≤ q̂ ≤ 4.36 × 10−3, which are a small fraction of the total range spanned by the

simulations. The free-flight and open-loop coupled simulations have a similar number of

points within this region: 161 and 141 points, respectively5.
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Figure 7.30: Trajectory conditions

Figure 7.31a plots the absolute CA error as a function of Mach for time steps within

the region of comparison. The clustering of the data shows that the Mach number does

not change significantly within each individual snippet. The free-flight simulation has a

higher average error than the open-loop simulation, a deviation that increases with Mach

number. Since the vehicles pass through this region at different times, the Mach number

is slightly offset, but assuming that the behavior was the result of change in Mach number

would mean that the error oscillates with Mach — an unlikely rationale. Figure 7.31b

shows that the average absolute CN error is roughly equal between the two simulations,

with the difference being much smaller than the variance of each cluster.
5The similar region with negative q̂ values contains only half the number of open-loop data points as

free-flight points and is therefore not suitable for comparison.
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Figure 7.31: Force coefficient error comparison at similar flight conditions

Figure 7.32 shows the absolute CM,cg error as a function of Mach for time steps within

the region of comparison. Since the vehicles pass through this region at different times, the

Mach number is slightly offset, but for each snippet, the open-loop data trends higher than

the free-flight data.
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Figure 7.32: Absolute CM,cg error comparison at similar flight conditions

Figures 7.9 and 7.10 list the overall error metrics evaluated for this region. While the

RMS CM error has a similar magnitude to the average over the whole run, the mean CM

error is increased for both the free-flight and open-loop simulations. For both moment

coefficient metrics, the open-loop simulation has about twice the error as the free-flight

simulation.

202



Table 7.9: Comparison of coefficient mean error for region of similar flight conditions

Simulation CA Error (%) CN Error (%) CM,cg Error (%)
Free-Flight 0.54 -0.12 0.52
Open-Loop 0.32 -0.14 0.97

Table 7.10: Comparison of coefficient RMS error for region of similar flight conditions

Simulation CA Error (%) CN Error (%) CM,cg Error (%)
Free-Flight 0.55 0.18 0.58
Open-Loop 0.34 0.19 1.01

Trajectory Response

Figure 7.33b plots the x-axis decrement error between the free-flight simulations in the

coupled and baseline models, and compares this to the same error for the open-loop simu-

lations. The final error for the open-loop simulations is much smaller than for the free-flight

simulations, however both errors are still negligible compared to the total x-axis displace-

ment. Figure 7.33c plots the error in the z-axis displacement, which has a similar magnitude

between the two sets of simulations even though the magnitude of the open-loop response

is much larger than the free-flight simulation. The error in the free-flight simulation gener-

ally grows at a linear rate, whereas the open-loop simulation has a substantial increase in

error starting around 35ms.
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(b) Absolute x-axis decrement error
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(d) Absolute z-axis displacement error

Figure 7.33: Comparison of translation error between free-flight and open-loop simulations

The pitch response is examined in terms of the relative error in both frequency and am-

plitude of oscillation. The pitch response for all four simulations is plotted in Figure 7.34a,

showing the change in frequency of the baseline simulations to their respective coupled

simulations. The frequency, measured from peak to peak, of the baseline free-flight simu-

lation deviates by less than 0.25%, whereas the baseline open-loop simulation is about 2%

off after two full periods. Figure 7.34b plots the pitch error of each baseline simulation as a

fraction of the average amplitude of their respective coupled simulations. The relative error

of the open-loop simulation is significantly higher than for the free-flight simulation. While

the maximum error magnitude of the free-flight simulation is less than 2%, the open-loop

simulation error grows to over 8%, demonstrating that the open-loop simulation has a much

lower success in predicting the pitch damping.
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Figure 7.34: Comparison of pitch angle error between free-flight and open-loop simulations

The overall metrics for the trajectory component errors are compared in Table 7.11. The

open-loop simulation has substantially less error in the x and z axes. The change is larger

than observed for CA and CN shown in Tables 7.7 and 7.8, due to the compounding effect

of error propagation. However, the average pitch angle error is substantially increased.

Table 7.11: Comparison of trajectory RMS error

Simulation xdec Error (%) rz Error (%) θ Error (%)
Free-Flight 2.75 4.05 0.80
Open-Loop 0.00 0.08 3.47

7.4.4 Findings

Substitution of the baseline aerodynamic model for the coupled CFD-RBD model results

in errors in the trajectory and aerodynamics for a simulation with open-loop IMMA control

actuation, as was found for the baseline free-flight simulation:

Finding 7.5: The results of Experiment 1.2 quantify the differences in aerodynamic and

trajectory component responses of the baseline and coupled models for free-flight simula-

tions.

The remaining findings of Experiment 1.2 focus on the comparison of results between

Experiments 1.1 and 1.2.
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For the axial and normal force coefficients, the open-loop simulation actually yielded

smaller errors. A natural possibility is that since the open-loop simulation passes through

a different range of αT it encounters different magnitudes of error. Section 7.4.3 only

provides a direct comparison at similar flight conditions for a limited region of the data, but

this showed similar differences in the error.

The moment coefficient, in contrast, had increased error:

Finding 7.6: The aerodynamic moment response predicted by the baseline model for the

open-loop simulation had increased error to the coupled model compared to the free-flight

simulation.

The results for the whole simulation were again corroborated by the results for the

region of similar flight conditions. Both the mean and RMS error were increased. Never-

theless, the error is still about 1%, which cannot be judged to be significant on its own.

For the trajectory response, the translational components had decreased error, but the

pitch response had increased error. It was determined that the pitch error arises from the

pitch damping behavior:

Finding 7.7: The baseline model had increased error in pitch oscillation amplitude growth/decay

for the open-loop simulation compared to the free-flight simulation.

For the free-flight simulation, the difference in amplitude growth rate was measurable

but not significant; it cannot be stated that for a longer-duration simulation the models

would not arrive at the same stable frequency (assuming the deviation in Mach number is

negligible). In contrast for the open-loop simulation, the baseline model predicted ampli-

tude growth, whereas the coupled model predicted amplitude decay.

With a maximum difference of about 0.4◦ after only three oscillation periods, the an-

gular error is significant compared to the value of 0.17◦for precision landing with active
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guidance:

Finding 7.8: The RMS pitch error for the baseline open-loop simulation is significant

compared to the threshold established for instantaneous tracking error.

7.4.5 Conclusions

On the basis of Finding 7.5, Hypothesis 1.2 is accepted. Furthermore, the difference in the

pitch results was found to be significant, demonstrating that the angular results are the most

important for these short-duration simulations, because this has the greatest effect on the

outer guidance loop.

Finding 7.8 indicates that for a given stringency in the controller requirements, the

increase in error of the baseline model with the inclusion of the guidance and control sys-

tem could provide an engineering justification for the use of the coupled model. This

demonstrates the suitability of the problem of interest for the purpose of investigating the

remaining research questions.

7.5 Synthesis of Conclusions from Experiments 1.1 and 1.2

Research Question 1 (What is the appropriate methodology to model aerodynamics, control

mechanisms, and flight dynamics for an entry vehicle with unsteady, coupled behavior?)

can be answered for the problem of interest using the findings from Experiments 1.1 and

1.2.

The flight model with coupled aerodynamics and flight dynamics predicts unsteady

behavior similar to that measured in physical experiments for bluff bodies as identified in

the literature review, demonstrating the model’s suitability for the problem of interest. This

also supports the assumption that the coupled model can act as a source of truth for the

purposes of this work.

The baseline database has measurable deficiencies when compared to the coupled model.
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Using an aerodynamic database with the twin advantages of 1) a substantially higher den-

sity of points than is commonly found in the state of the art, and 2) directly using the results

of the coupled simulation for characterizing CMq , the baseline flight simulation model still

yielded results that were measurably different from the coupled model. As expected, the

baseline model is incapable of predicting the high-frequency fluctuations in force and mo-

ment coefficients that are captured in the coupled simulation. However, the magnitude of

their effects on the aerodynamics is small, as is their effect on the trajectory. The differ-

ence in the lower-frequency behavior does result in measurable differences in the free-flight

predictions of the baseline and coupled models. As hypothesized, these changes are also

exacerbated when simulating control actuation.

Based on these conclusions Hypothesis 1 is accepted. The coupled model is suitable

for modeling the problem of interest, and it achieves results that are significantly different

in some cases from the results of the baseline model.

The limitations of these experiments are rooted in the limitations on the problem of

interest. The unsteady aerodynamic behavior on its own (without control actuation) did not

result in significant differences to the baseline results. This is likely a result of the benign

separation and attachment behavior of the vehicle as discussed in Section 6.1. There is also

the possibility that significant differences in the free-flight runs could be achieved with a

wider range of freestream conditions. Greater differences might also have been achieved

by simulating open-loop runs at other initial condition cases with different pitch oscillation

amplitude. It is also possible that simulating a vehicle with RCS would exhibit larger

differences for the open-loop simulation. However while the real-world significance of

the differences between the models is small, the important point is that even for a control

mechanism as benign as an IMMA, the differences are measurable.

Figure 7.35 presents a summary of the investigation performed in order to answer Re-

search Question 1.
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Experiment 1.1 Conclusion:
The difference in free-flight response between the models is 

measurable for the problem of interest. Hypothesis 1.1 is 
accepted.

Experiment 1.2 Conclusion:
The difference in open-loop response between the models is 

measurable and significant for the problem of interest. Hypothesis 
1.2 is accepted.

Experiment 1.1:
Comparison of Free-Flight Simulations

Finding 7.1: 𝐶 behavior is 
qualitatively different, and 

the lack of effect due to 𝑞 is 
measurable

Finding 7.2: Baseline 
model predicts more stable 

behavior in pitch

Finding 7.3: Experiment 
1.1 quantifies the 

differences in aerodynamic 
and trajectory response for 

free-flight simulations

Experiment 1.2:
Comparison of Open-Loop Simulations

Finding 7.5: Experiment 
1.2 quantifies the 

differences in aerodynamic 
and trajectory response for 

open-loop simulations

Finding 7.7: Increased 
error in pitch oscillation 
amplitude growth/decay 
compared to free-flight 

simulation

Finding 7.6: Increased 𝐶
error bias compared to free-

flight simulation

Combined Exp. 1.1 and 1.2 Conclusion:
The coupled aerodynamics, flight dynamics, and control mechanism model is the correct model for 

an entry vehicle with unsteady, coupled behavior. Hypothesis 1 is accepted.

Hypothesis 1.1:
If an entry vehicle is simulated in free flight in the coupled and 

baseline models, then the difference in response due to 
unsteady, coupled behavior will be quantified.

Hypothesis 1:
If aerodynamics, flight dynamics, guidance and control systems are coupled in a time-accurate 

model, then this model will simulate unsteady, coupled  entry vehicle behavior that is not captured 
in the baseline model.

Hypothesis 1.2:
If an entry vehicle is simulated in with open-loop control actuation 

in the coupled and baseline models, then the difference in 
response due to unsteady, coupled behavior with control system 

interaction will be quantified.

Research Question 1:
What is the appropriate methodology to model aerodynamics, control systems, and flight dynamics 

for an entry vehicle with unsteady, coupled behavior?

Figure 7.35: Summary of investigation into Research Question 1
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CHAPTER 8

EVALUATION OF AERODYNAMIC SURROGATE MODEL ALTERNATIVES

(RESEARCH QUESTION 2.1)

This chapter documents the investigation of Research Question 2.1 and its associated Hy-

pothesis 2.1, both of which are restated below:

Research Question 2.1

How can an aerodynamic surrogate model be constructed using time-series data from the

coupled model as it is generated during the tuning process?

Hypothesis 2.1: If a neural-network-based surrogate model is fitted with time-series

trajectory and aerodynamic data from the coupled simulation, then it will have improved

error convergence to the coupled model over a baseline database.

Experiment 1 demonstrated the deficiencies of the baseline aerodynamic database for

modeling an entry vehicle with unsteady, coupled behavior. Therefore, a new surrogate

model must be identified for use in the multi-fidelity controller tuning methodology. An

aerodynamic surrogate model must be identified that satisfies the requirements developed

through this Research Question (i.e., the characteristics of the model required for use in the

multi-fidelity controller tuning process). These requirements are that the surrogate model

must:

1. Accept as training data the dense, continuous time-series trajectory and aerodynamic

response generated by the coupled model.

2. Incorporate and be re-trained/re-fitted with additional time-series data sets that are
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generated as the multi-fidelity controller tuning process iterates.

3. Converge in its aerodynamic and trajectory response prediction to those of the cou-

pled model as the training set size increases, in order to satisfy the assumptions made

about the quasi-adaptive nature of the controller tuning process.

The success criteria of the first two requirements are binary, and can be evaluated

through literature review. Therefore, Experiment 2 will serve as verification for these re-

quirements. The objective of Experiment 2 is to identify a surrogate model that satisfies

the last requirement, and assuming that multiple alternatives satisfy the requirement, to

determine which surrogate alternative has the best convergence.

The experimental procedure is to simulate the training scheme that the surrogate model

will undergo when used as part of the multi-fidelity controller tuning process. The data

generated for the experiment also allows for investigation into the relationship between

the convergence of instantaneous coefficient prediction and the convergence of the trajec-

tory prediction. Section 8.1 enumerates the surrogate model alternatives considered and

details their construction: a quasi-linear parametric model, a feed-forward neural network

(FFNN), and a time-dependent neural network (TDNN). Section 8.2 documents the experi-

ment, its results, and its findings. Section 8.3 revisits the analysis performed in Experiment

1 using the best surrogate model alternative identified through Experiment 2. Finally con-

clusions are made in Section 8.4.

8.1 Model Alternatives

Construction of the other model alternatives considered is described in the subsections

below. In general, each model is designed to produce coefficients in the Missile frame,

with POST2 automatically converting the results into the Body frame. This is valid since

the vehicle is axisymmetric.
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8.1.1 Database

The database model to be used as the basis for comparison has the form described in

Section 7.2: the static coefficients CA, CN , and CM are found using time-accurate fixed-

attitude CFD solutions, and the dynamic coefficients are found by fitting the aerodynamic

moment history from free-flight simulations.

8.1.2 Parametric Model

A quasi-linear parametric model is constructed for the coefficients. This type of model was

selected as an alternative due to its common use in aerodynamics for other vehicles and for

other uses, as identified in Section 2.4.3. The model form for each of the coefficients is

based on examples from entry vehicle literature [97, 96]:

C̃A = (c0 + c1∆M) cosαT + (c3 + c4∆M) sin2 αT + (c6 + c7∆M) ˆ̇αT (8.1)

C̃N = (c0 + c1∆M) sinαT + (c2 + c3∆M) sin3 αT + (c4 + c5∆M) ˆ̇αT (8.2)

C̃M = (c0 + c1∆M) sinαT + (c2 + c3∆M) sin3 αT

+ (c4 + c5∆M) ˆ̇αT + (c6 + c7∆M) | sinαT | ˆ̇αT

(8.3)

where ∆M is the difference between Mach number and a chosen reference Mach num-

ber Mref , and q̂ is the nondimensionalized pitch rate. By including ˆ̇αT as an input variable,

each of these three equations effectively includes both the static and dynamic components

of the aerodynamic loads. Note that Equation 8.3 is identical to Equation 7.2, the moment
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coefficient fit used for the baseline database. Based on the findings in Section 7.3 that the

omission of pitching terms in the baseline axial coefficient resulted in measurable errors to

the coupled model, ˆ̇α terms were included in Equation 8.1.

Nonlinearity is introduced by allowing the constants to effectively vary with Mach num-

ber. Given the small range of Mach numbers, a linear variation across Mach was judged to

be sufficient for each of the equations.

8.1.3 Feed-Forward Neural Network

The next model alternative considered will use single-layer feed-forward neural networks

(FFNN) to predict the net aerodynamic coefficients. The model will use the architecture

shown in Figure 8.1, with one hidden layer. Each hidden layer node will use a perceptron

neuron with a sigmoid activation function, a well-understood node design [151]. The out-

put layer node uses a linear activation function. Individual networks are trained for each

coefficient CA, CN , and CM . Each network uses the same inputs: M , αT , and ˆ̇αT .������ ��������		
����������������� �
Figure 8.1: FFNN architecture

A Levenberg Marquardt training algorithm [231] was used to minimize the mean squared
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error to the response. The data was randomly split into training, validation, and testing sets

of 70%, 15%, and 15%, respectively. The MATLAB® Deep Learning Toolbox™ was used

to train each of the networks [232].

For each coefficient, an exploration of the network design was performed in order to

identify the size of network that yielded the smallest MRE when trained with the whole set

of coupled free-flight simulations. The number of hidden layer nodes was the only hyper-

parameter varied for the FFNNs. Networks of varying sizes were repeatedly trained using

all the data sets in order to identify when the model would start suffering from over-fitting.

The exploration is shown for the CN surrogate in Figure 8.2. The error bars represent the

maximum and minimum error from the replications at each size. does not start to suffer

from overfitting until reaching about 22 nodes. The size of each network was found by

minimizing the average RMS error for the validation data, resulting in the designs listed in

Table 8.1. The total number of unknowns for each net includes the weights and biases for

each node that must be fitted. For CN and CM , this gives a ratio of about 163:1 between the

total number of training points and the number of unknowns, far above the rule-of-thumb

ratio of 10:1.
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Figure 8.2: CN FFNN size study

8.1.4 Time-Delay Neural Network

The third surrogate model alternative considered is a time-delay neural network (TDNN).

The architecture will use one hidden layer as shown in Figure 8.3. As with the FFNN, the
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Table 8.1: FFNN hyperparameters

Coefficient Hidden layer nodes Total unknowns
CA 8 41
CN 16 73
CM 16 73

hidden layer nodes of the TDNN will use perceptron neurons with the sigmoid activation

function, and the output layer node will use a linear activation function. Each of the 1..j

delay nodes is given a delay of j · dt . Again, individual networks are trained for each

coefficient CA, CN , and CM , each with M , αT , and ˆ̇αT as inputs.
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Figure 8.3: RNN architecture

Training of the TDNN was performed with the same tools, process, and settings as de-

scribed for the FFNN. A design exploration of the number of hidden layer nodes and the

number of delay nodes was made to determine the optimal network design. The hyperpa-

rameters identified are listed in Table 8.2.
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Table 8.2: Time-delay neural network design

Response Delay nodes Hidden nodes Total unknowns

CA 6 6 139

CN 6 12 277

CM 6 12 277

Although the size of the hidden layer is decreased for each coefficient compared to the

FFNN design, the total size of the networks increases due to the connectivity from the delay

nodes. However, the CN and CM networks still yield a training data to unknown ratio of

about 43:1.

The delays can recover the relationship dM/dt, which, assuming negligible changes in

atmospheric properties and small oscillation amplitudes, is proportional to the acceleration

dv/dt. Since the acceleration of the vehicle is largely driven by the axial force; in effect,

this creates a feedback loop within the CA net. The same mechanism exists with the CM

net and the ˆ̇αT input.

Execution of the TDNN requires initialization with the time history of the inputs in

order to populate the delay nodes on the first function call. This is achieved by using the

vehicle motion state history from the forced-motion startup runs described in Section 7.2.2

for α and ˆ̇αT . However, since the Mach number is held constant during the forced-motion

startup, the Mach number was instead back-propagated from the first free-flight time step,

assuming a constant deceleration as measured from finite differencing. Figure 8.4 demon-

strates the difference between this back-propagation and the actual trajectory flown in the

coupled model.
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Figure 8.4: Back-propagation of Mach number for TDNN initialization

8.1.5 Other Model Alternatives

In addition to the surrogate model alternatives discussed in the sections above, exploratory

investigation was performed on a number of other alternatives. These activities are briefly

discussed here.

In addition to the FFNN and TDNN architectures, a Nonlinear AutoRegressive model

with eXogenous variables (NARX) architecture was also considered. This adds connec-

tivity for the recurrence of the output as shown in Figure 8.5. This architecture was con-

sidered based on its use for aerodynamic modeling as identified in the literature review

in Section 2.4.3. The explicit feedback loop can exacerbate the problems discussed for

the TDNN. In practice, test models constructed using this architecture were too unstable,

quickly deviating into regions of extrapolation resulting in non-physical behavior. Explo-

ration was made into reducing the number of delay nodes, and independently changing the

number of input and response delay nodes, with little effect unless the number was reduced

to zero, effectively defaulting the model to a TDNN or FFNN. A complete set of results

was not able to be obtained for this model architecture. A more intelligent utilization of

this model might combine it with another model for the lower-frequency response, with the

TDNN providing bounded values for the higher-frequency response.

FFNN and TDNN models were also constructed for the coefficients directly in the Body

frame, using M , α, and q̂ as inputs. Since the vehicle is symmetric, the models for C̃Y and

C̃LN could be assumed to take the same form as and use the same magnitude of coefficients
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Figure 8.5: NARX architecture

as C̃N and C̃M , respectively, assuming small α and β.

While the quasi-linear model enforces symmetry about α = 0, the body-frame FFNN

and TDNN models do not. This means that negative values of α will uniquely affect the

training. The distribution of design points in the input dimensions, shown in Figure 7.6 for

αT , is actually much more sparse for α, forcing the neural network models to rely more

heavily on extrapolation. The results for both of these models were similar but inferior to

the FFNN and TDNN models that will be shown in Sections 8.2.2 and 8.2.3. Therefore,

these models were not considered.

8.2 Simulated Training of Aerodynamic Surrogate Models (Experiment 2)

8.2.1 Experimental Procedure

The procedure for Experiment 2 is to simulate the training of each surrogate model in turn

through the use of a common set (and order of inclusion) of training data. A series of eight

free-flight simulations are run in the coupled model to serve as the training data. These

are the same runs used to find the baseline database CMq in Section 7.2.2. The absence of

closed- or open-loop control mechanism actuation in the training data is acceptable due to

the design of the problem of interest. Since the IMMA does not interact with the fluid flow,
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its actuation does not result in any new flow physics being captured.

Given the small number of training sets, a leave-one-out cross-validation is performed

for each of the surrogate architectures [233]. A randomized order of the training sets is

chosen and maintained for all the surrogate models.

For each of the i = 1..8 data sets:

1. Run i is set aside to serve as validation data1, while the remaining seven runs are

used for the sequential training of the surrogate model. The order of these runs is the

same as for the outer loop (except for the removal of validation run i).

2. For j = 1..7 iterations:

(a) Runs 1..j of the sequential training set are used to train the aerodynamic sur-

rogate. Each of the models is trained directly using the aerodynamic data from

the coupled simulations, as opposed to the parameter identification method of

fitting simulated trajectories directly to the trajectory measurements.

(b) Metrics based on the aerodynamic coefficient error are calculated. The MFE

of the surrogate is calculated for the same runs used for its training, and the

coefficient MRE is calculated for the validation run i.

(c) The surrogate model is substituted into the low-fidelity model and used to sim-

ulate all eight coupled runs.

(d) Error metrics based on the trajectory components are calculated. The MFE is

calculated for the simulations of the sequential training runs, and the MRE is

calculated for the simulation of validation run i.

As a result of the above procedure, the surrogate models are trained with an average of

2,100 time steps added for each simulated iteration of the controller tuning methodology.

1Note that this validation data is not the same as the validation and testing sets used for the neural network
training - this validation set is entirely excluded from the training process.
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After the runs are completed the k-fold metrics are calculated using the formula below,

where the k-fold metric for the jth iteration is:

fj =
1

8

8∑
i=1

fi (8.4)

Comparison of the convergence of the surrogate model alternatives is performed by exam-

ining several metrics constructed from the MRE to the validation data. These are the same

metrics used for Experiment 1.1, documented in Section 7.3.1.

Equivalent Training Method for the Baseline Aerodynamic Database

The performance of the baseline aerodynamic database with increasing training cost can

be measured using a slightly modified procedure. The sequential training (the inner loop)

provides 4j static coefficients to populate the database2. The j coupled simulation runs are

only used to identify the pitch damping coefficient, as shown in Section 7.2.2. For example,

the database on the first iteration would contain data at four randomly-selected points, with

the damping coefficient calculated using parameter identification on a single time-series

run. On the second iteration, the database would contain a total of eight points, with the

damping coefficient calculated from two runs, and so forth. As evaluated in Table 8.3, even

for the first iteration, the density of points in the baseline database is comparable to the

state of the art for entry vehicles.

2As with the database constructed in Section 7.2, the normal and moment coefficients information is
stored as CNα

and CMα
so the model does not fail to extrapolate the restoring nature of the pitch moment for

the initial iterations
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Table 8.3: Average density of static aerodynamic database in the vicinity of Mach 2

Vehicle M αT (1/deg)

Phoenix [56] 1.000 0.200

MSL [54] 1.087 0.208

Baseline (Exp. 1) 20.00 0.718

Baseline (min. for Exp. 2) 6.667 0.167

Since the static database points were generated with the same CFD flow solver at the

same settings, the the cost per time step is substantially similar when run on the same com-

puting hardware. This allows for a comparison between the cost of the baseline database

and the surrogate model alternatives3.

8.2.2 Comparison of Aerodynamic Prediction Convergence

Axial Force Coefficient

Figure 8.6a plots the convergence of the normalized RMS error to the validation CA data,

with a detailed view of the same data plotted in Figure 8.6b. The points represent the k-

fold metric, with the error bars representing the maximum and minimum values from the

cross-validation.
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Figure 8.6: Convergence of axial force coefficient RMS error

3A direct comparison of computing time is precluded since runs were executed on different hardware,
different numbers of processors, and different memory allocations.

221



The database has relatively little change in performance with increasing training set

size, with the k-fold error reaching a minimum at iteration 3. However, the database does

provide the best result for the first iteration (with minimum training cost). Note that each

iteration of the database requires around two times the training data for the same itera-

tion of the other surrogate alternatives. The quasi-linear model has the worst initial per-

formance, but converges to about the same error as the database. Both the database and

the quasi-linear model do not account for dynamic components of CA, which could be a

contributing factor to their similar final performance. Both neural net models show good

convergence, with results that exceed the other two models. Since these models have no

specified functional form, they are capable of capture the dynamic contribution to CA. The

TDNN achieves the best performance overall, with about 50% of the k-fold error of the

FFNN. The TDNN has an increase in error on the 5th iteration, possibly as a result of

the stochastic nature of the training process. The uncertainty of the FFNN and the TDNN

on the final iteration are also both smaller than the uncertainty for the database and the

quasi-linear model.

Figure 8.7a plots the convergence of the meanCA error, with a detailed view of the same

data plotted in Figure 8.7b4. The figure shows that the baseline database has a measurable

bias that persists across each iteration with only a slight decrease. The quasi-linear model

has the worst initial performance, but converges to about the same level as the database.

Both the FFNN and TDNN show excellent convergence toward a mean of zero, and with

much smaller uncertainty than the baseline or quasi-linear models.

4The values of the points and error bar limits plotted for all of the mean error plots in this section are
multiplied by the sign of the mean value, so that the mean value is always plotted in the positive y-axis. This
simplifies comparison of the magnitude and k-fold variation from iteration to iteration.
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Figure 8.7: Convergence of axial force coefficient mean error

In all cases the models have converging RMS and mean error with increasing training

set size. On the final iteration, the neural network models provide the lowest RMS error

with very little bias in the mean error. They also have substantially smaller k-fold variation

than the quasi-linear and database models. The TDNN provides the best overall result.

Normal Force Coefficient

Figure 8.8a plots the convergence of the RMS CN error, with a detailed view of the same

data plotted in Figure 8.8b. The database provides the best initial result, with only a slight

decrease with increasing training set size. The quasi-linear model converges to about the

same performance as the database. Both the FFNN and the TDNN have substantial error on

the first iteration, but both rapidly converge. The FFNN has a worse final performance than

the database, but the TDNN yields the best result for the final iteration. As with CA RMS

results, the TDNN also has the smallest uncertainty bounds, but in this case the FFNN has

increased uncertainty.
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Figure 8.8: Convergence of normal force coefficient RMS error

Figure 8.9a plots the convergence of the mean CN error, with a detailed view of the

same data plotted in Figure 8.9b. The baseline database once again shows a bias that starts

relatively small, but decreases only slightly with increasing training set size. It has the

worst performance after its 3rd iteration, and the k-fold variation also remains larger than

that of the other models. The neural net models have the largest initial bias, but both quickly

converge to below the database model. The quasi-linear model has the lowest initial bias,

and outperforms all other models except for the TDNN on the final iteration.
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Figure 8.9: Convergence of normal force coefficient mean error

Each CN surrogate model converges in its error with increasing training set size. The

TDNN again provides the best overall result. Unlike with CA the two neural net models do

not have a similar level of performance; the FFNN provides worse performance than the

quasi-linear model.
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Pitch Moment Coefficient

Figure 8.10a plots the convergence of the RMS CM error, with a detailed view of the same

data plotted in Figure 8.10b. Again the database provides the best initial result, but does not

significantly improve with added training data. In fact, the mean result on the final iteration

is only slightly improved from the initial iteration, with the minimum at iteration 6. Both

the FFNN and the quasi-linear model converge, but do not achieve results as good as the

database. The variability of the FFNN is also larger than for the other models. Again, the

TDNN achieves the best final k-fold performance with the smallest variability.
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Figure 8.10: Convergence of pitch moment coefficient RMS error

Figure 8.11a plots the convergence of the mean CM error, with a detailed view of the

same data plotted in Figure 8.11b. For this metric, the database slightly diverges. The

FFNN has the worst performance across all iterations, with relatively substantial k-fold

variation. The TDNN and quasi-linear model have very small bias, with the quasi-linear

model providing the best performance across all iterations.
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Figure 8.11: Convergence of pitch moment coefficient mean error

Once again, the FFNN performs measurably worse than the TDNN for this coefficient.

The TDNN performs the best for the RMS error, and performs relatively equally to the

quasi-linear model in terms of the mean error.

Findings

For all of the models, the RMS and mean errors in the coefficients trend toward zero with

increasing iteration, so they can be considered to converge:

Finding 8.1: All four of the evaluated aerodynamic surrogate models have converging co-

efficient error with respect to the coupled simulation response as training set size increases.

The results from the final iteration of the training are presented for all four models in

Table 8.4. Overall, each of the models appears satisfactory from an engineering perspective.

The k-fold mean and RMS errors are all less than 1% on the final iteration. All of the

surrogate models achieve a maximum final error of less than 0.5% for CA and less than 1%

for CM .

226



Table 8.4: Iteration 7 k-fold aerodynamic coefficient error metrics

Axial Force Normal Force Pitch Moment

Model RMS (%) Mean (%) RMS (%) Mean (%) RMS (%) Mean (%)

Baseline 0.237 0.050 0.170 0.021 0.180 0.010

Quasi-linear 0.233 0.049 0.169 0.005 0.206 0.001

ANN 0.186 0.003 0.267 0.015 0.374 0.041

TDNN 0.080 0.002 0.101 0.002 0.124 0.007

The database and quasi-linear model generally perform better than the neural net mod-

els in the first few iterations (i.e., with a more limited training budget). The smaller the

training set, the more likely it is that the model is relying on extrapolation to predict the

validation response. Ae expected, the alternatives with prescribed functional form result in

less performance degradation in extrapolation. However, after a certain number of itera-

tions, the neural network models begin to outperform the other two. In addition, neither of

the neural net models, nor to some extent the quasi-linear model, appear to have reached

the asymptotic behavior which would indicate that they are fully converged.

Finding 8.2: With a sufficient training set size, the neural-network-based aerodynamic

surrogate models generally have better convergence than the models with an assumed func-

tional form.

The TDNN has the best result in all metrics except for the mean pitch moment error.

8.2.3 Comparison of the Trajectory Prediction Convergence

Evaluating the performance of the aerodynamic surrogates when implemented into the

flight simulation is important because it represents the models’ intended use in the mul-

tifidelity controller tuning methodology.

Figure 8.12a plots the convergence of the x-axis displacement, with a detailed view
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of the same data plotted in Figure 8.12b. Simulations with the database and the TDNN

actually result in a slight decrease in performance with increasing training set size. After

an initial convergence, both the quasi-linear and FFNN models also have increasing error

with increasing training set size. The TDNN model actually yields the best overall result

on the first iteration, however after the second iteration, the quasi-linear model yields the

best result for a given training set size. All of the models also have a similar magnitude of

variation after the initial few iterations.
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Figure 8.12: Convergence of the x-axis displacement RMS error

Figure 8.13a plots the convergence of the z-axis displacement, with a detailed view of

the same data plotted in Figure 8.13b. The quasi-linear model provides the best result for

all steps except for the final iteration. While both the FFNN and TDNN have very high

error on the initial iteration, these both quickly converge. The FFNN yields the best result

on the final iteration, and the FFNN and TDNN still appear to be converging at a significant

rate.
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Figure 8.13: Convergence of the z-axis displacement RMS error

Figure 8.14a plots the convergence of the pitch angle, with a detailed view of the same

data plotted in Figure 8.14b. Each of the models converges with increasing training set

size. The database converges at a consistent rate until the 5th iteration, where it appears

to converge around 2.4% error. The quasi-linear and FFNN models converge at a better

rate than the database for a given training set size, with the FFNN yielding the best overall

result at around 2%. The TDNN performs worst of all the models after the 2nd iteration.
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Figure 8.14: Convergence of the pitch angle RMS error

Findings

All models have decreasing RMS error for the z-axis displacement and pitch angle re-

sponses. The x-axis decrement is the only component for which all of the models do not

converge; the baseline and TDNN models show a slight increase in error. However even
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the worst result on the final iteration has an error of less than 0.4%, which is satisfactory

for the problem of interest.

Finding 8.3: All four evaluated models have satisfactory or converging x-axis decrement

error with respect to the coupled simulation responses. All four models have converging

z-axis displacement and pitch angle error with respect to the coupled simulation responses.

The final trajectory component error metrics are shown for all four models in Table 8.5

Table 8.5: Iteration 7 k-fold trajectory component RMS error

Model xdec (%) rz (%) θ (%)

Baseline 0.303 2.74 2.37

Quasi-linear 0.260 1.61 2.60

ANN 0.284 1.29 2.01

TDNN 0.285 1.96 4.60

In real-world terms, the differences between the models is only slight, as was found for

the evaluation of the aerodynamic components.

In the z-axis displacement and pitch results, the trend observed for the aerodynamic

components — that the database and quasi-linear models outperform the neural network

models for small training set sizes — continues, albeit with the TDNN as an outlier (the

trend in its convergence is similar, but it does not perform better than the quasi-linear

model).

Finding 8.4: With sufficient training set size, the FFNN-based aerodynamic surrogate

model general has better trajectory error convergence than the models with an assumed

functional form.

The best performing models are generally the quasi-linear and FFNN models. For both
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z and pitch, the FFNN performs best on the final iteration.

8.2.4 Investigating the Relationship between Instantaneous and Propagated Prediction

Error

In Section 8.2.2 it was found that the TDNN generally yielded the best results for the aero-

dynamic components. However in Section 8.2.3 this model was not found to yield the best

results for the trajectory components. Especially notable is the behavior in angular motion:

the TDNN had the best RMS error and nearly equal mean error in CM to the quasi-linear

model, but these models performed differently in pitch prediction, where the TDNN was

the worst model on the final iteration. Conversely, the FFNN, which had the worst perfor-

mance in CM , had the best performance in pitch prediction on the final iteration. While not

strictly relevant to the testing of Hypothesis 2.1, a comparison of the results is performed in

order to elucidate some relationship between the instantaneous and propagated prediction

error.

The RMS, mean, and standard deviation of error in CA, CN , and CM measured from

each individual (not k-folded) model design, are considered as the predictors (9 in total)

for the response of RMS error in pitch. The JMP® statistical sofware program was used

to execute a bootstrap forest model that calculates the contribution of each predictor to the

response [234]. The results are plotted for each model and for all models in Figure 8.15.
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Figure 8.15: Percent contribution of predictors to RMS error in pitch response
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The contributions for all models shows that after the standard deviation and RMS val-

ues of the CM error, the largest contributor is the CN RMS error. It is known that for a blunt

body, the pitch damping response changes considerably when it is modeled with and with-

out freedom of motion in the vertical direction [230]. The results could be an expression of

this phenomenon.

8.2.5 Surrogate Model Selection for Use in the Multifidelity Methodology

No surrogate alternative provides an optimal performance across every metric evaluated.

However, the results in pitch represent the most important characteristic of the response,

since it directly effects guidance & control throughout EDL. The FFNN provides the best

performance in pitch and z-axis displacement prediction along with an acceptable perfor-

mance in x-axis displacement. Therefore, in the absence of other considerations, the FFNN

would be the best surrogate (out of the alternatives evaluated) to use in the low-fidelity

model for the multifidelity controller tuning methodology.

8.3 Comparison of FFNN and Database Surrogates

As a final verification of the suitability of the FFNN, the procedures from Experiments 1.1

and 1.2 are repeated, substituting the FFNN in place of the database.

8.3.1 Free-Flight

Aerodynamic Coefficients

The axial force coefficient comparison plotted in Figure 8.16 shows that the FFNN model

is much better than the baseline at predicting the oscillatory behavior of the coefficient,

resulting in smaller peak error amplitudes. Examining the error as a function of αT and

q̂ in Figure 8.17 shows that the noticeable trend present in the baseline model results is

largely eliminated. However, the FFNN still does not predict the high-frequency behavior

due to the unsteady wake.
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Figure 8.16: Free-flight axial force comparison
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Figure 8.17: Free-flight axial coefficient error

Figures 8.18b and 8.19 show that the FFNN normal force prediction is similarly im-

proved over the baseline model.
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Figure 8.18: Free-flight normal force comparison
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Figure 8.19: Free-flight normal coefficient error

The pitch moment error plotted in Figure 8.20b shows that the FFNN still has similar

performance to the baseline model. Figure 8.21a reveals that the behavior of the error as a

function of αT remains substantially the same, although the FFNN yields some improve-

ment with respect to q̂ as shown in Figure 8.21b.
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Figure 8.20: Free-flight aerodynamic moment comparison
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Figure 8.21: Free-flight pitch moment error
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The overall error metrics for the aerodynamic predictions of Case 7 are listed in Ta-

ble 8.6. All of the error metrics for both models are relatively small. The FFNN yields

improvements in all metrics for CA, and negligible improvements for CN . The FFNN re-

sults for CM are mixed, with a slightly worse mean error magnitude and a slightly better

RMS error.

Table 8.6: Free-flight aerodynamic coefficient error comparison

Axial Force Normal Force Pitch Moment

Model RMS (%) Mean (%) RMS (%) Mean (%) RMS (%) Mean (%)

Baseline 0.350 0.088 2.142 0.083 0.556 -0.018

FFNN 0.186 -0.015 2.116 0.071 0.484 0.023

Trajectory Components

A comparison of the linear trajectory components is plotted in Figure 8.22. Both the xdec

and rz errors have about the same magnitude and propagation over time, though the FFNN

model yields slightly smaller final errors. The pitch responses plotted in Figure 8.23 show

that the FFNN yields slightly improved results, most notably after 35ms.
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Figure 8.22: Free-flight translation comparison
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Figure 8.23: Free-flight orientation comparison

A comparison of the trajectory component overall error metrics in Table 8.7 confirms

that the FFNN had slightly better results for all components, but both models have relatively

small error.
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Table 8.7: Free-flight trajectory component RMS error comparison

Model xdec (%) rz (%) θ (%)

Baseline 0.028 4.05 0.802

FFNN 0.020 2.61 0.684

8.3.2 Open-Loop

While the comparison of the free-flight simulation in Section 8.3.1 provides a further in-

vestigation into results that were captured in Experiment 2, the FFNN model has not been

trained using open-loop simulations.

Aerodynamic Coefficients

The plot of axial coefficient in Figure 8.24a shows that, as with the free-flight simulation,

the open-loop FFNN response better predicts the oscillatory behavior of the coupled sim-

ulation. However, Figure 8.24b shows that the FFNN prediction has a noticeable bias that

increases over time (i.e., with decreasing Mach number). Figure 8.25 shows that the normal

force coefficient error is relatively similar.
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Figure 8.24: Open-loop axial force comparison
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Figure 8.25: Open-loop normal force comparison

The moment coefficient results in Figure 8.26 show a measurable reduction in the error

for the FFNN model. The peak error amplitude is slightly reduced, but most notably the

bias is significantly reduced. This is especially noticeable after about 25ms.
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Figure 8.26: Open-loop aerodynamic moment comparison

The overall error metrics listed in Table 8.8 show that all the CA and CN metrics are

increased for the FFNN model, most significantly the mean CA error. However, the FFNN

does result in decreased CM error metrics, with the RMS error reduced and the mean error

almost entirely nullified.
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Table 8.8: Open-loop aerodynamic coefficient error comparison

Axial Force Normal Force Pitch Moment

Model RMS (%) Mean (%) RMS (%) Mean (%) RMS (%) Mean (%)

Baseline 0.259 0.031 1.87 -0.012 0.860 0.310

FFNN 0.298 -0.217 1.87 0.082 0.600 -0.012

Trajectory Components

Figure 8.27 shows that while the xdec and rz responses are relatively similar between the

two models, the FFNN model yielded increased error propagation over time as a result of

the increased biases of the aerodynamic components.
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Figure 8.27: Open-loop translation comparison

However, the largest change in the results from the two models is in the pitch angle,

plotted in Figure 8.28. The FFNN model has measurably decreased error compared to the
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baseline model. Figure 8.29 shows that the FFNN model more closely predicts both the

amplitude change and the frequency of oscillation.
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Figure 8.28: Open-loop orientation comparison

The overall error metrics are listed in Table 8.9. While the FFNN model had increased

translation error, the pitch error was decreased by about 2%.
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Figure 8.29: Total angle of attack difference to average trim angle of attack

Table 8.9: Open-loop trajectory component RMS error comparison

Model xdec (%) rz (%) θ (%)

Baseline 0.003 0.081 3.48

FFNN 0.067 0.132 1.66
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8.3.3 Findings

While the results of Experiment 2 demonstrate that the FFNN model has the best perfor-

mance in the aggregate, the replication of Experiments 1.1 and 1.2 provides greater detail

into the mechanisms by which the model is improved.

The aerodynamic results show that the FFNN prediction errors have weaker patterns

with respect to the input variables, correcting the most obvious deficiencies noted from

the baseline model. Even in cases where the error metrics increased, the qualitative trends

with the input variables were decreased. While this capability is known from literature,

Section 8.3 demonstrates that the effects are measurable for the problem of interest.

Finding 8.5: Without a prescribed functional form, the FFNN-based aerodynamic surro-

gate model better captures the response as a function of the input variables.

The most important result is that for the pitch response, the FFNN model had lower

error than the baseline model for both the free-flight and open-loop simulations. The base-

line model free-flight prediction was already below the threshold of 0.17◦ for precision

landing with active guidance, so any improvement thereupon is not significant. However,

the baseline model open-loop prediction did have significant error. The FFNN model has

reduced this error to below the threshold, demonstrating that in this case, the differences in

the model are significant.

Finding 8.6: The FFNN-based aerodynamic surrogate model provides error reduction in

the pitch response that can be significant compared to the threshold established for instan-

taneous tracking error.

8.4 Conclusions

Research Question 2.1 (How can an aerodynamic surrogate model be constructed using

time-series data from the coupled model as it is generated during the tuning process?) can
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be answered using the findings from Experiment 2. The question was designed to address

the character of the data output from the coupled model and how it differs from the data

used for a state-of-the-art model: much higher density along the trajectory responses, but

otherwise much more sparse. The results of Experiment 2 demonstrate that the quasi-

linear, FFNN, and TDNN models are capable of being trained with this data while yielding

satisfactory error in extrapolation (in the case of the FFNN and TDNN models this is true

once a certain threshold for the training set size has been passed).

Findings 8.1 and 8.3 prove that all of the surrogate models evaluated converge with the

coupled model response with increasing training set size, or that the components already

have satisfactory error with respect to the coupled model. Findings 8.2 and 8.4 prove that

the FFNN model has the best performance, ipso facto providing better error convergence

than the baseline model. On this basis, Hypothesis 2.1 is accepted. An advanced surrogate

model for the aerodynamics of the problem of interest was identified and found to perform

better than the baseline model.

However, the performance of the other neural network model, the TDNN, bears further

discussion. The TDNN did not perform better than the baseline model with respect to the

pitch angle, which is the most important component. While the FFNN was demonstrated to

be capable of using the time-series nature of the data, the training process treated the data

as completely independent of any temporal relationship. The TDNN was the only model

considered that directly utilized the time-series nature of the data.

Figure 8.30 presents a summary of the investigation performed in order to answer Re-

search Question 2.1.

The final question to be discussed is whether the FFNN merits use in the multifidelity

controller tuning process. Finding 8.5 proves that, from a scientific basis, the FFNN is

a better model to use. The surrogate model chosen does correct the deficiencies identi-

fied for the baseline aerodynamic database. Finding 8.6 demonstrates that the substitution

of the FFNN for the baseline model could yield significant results when used for tuning
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an entry controller. The execution of Experiment 2 revealed no disadvantages to using

a FFNN model that outweigh the potential improved accuracy. While the k-fold results

from Experiment 2 cannot be directly related to the threshold for tracking error signifi-

cance estabilished for entry vehicles with active guidance, the subsequent use of the FFNN

to repeat Experiment 1.2 did yield results that rose to that level of significance. Therefore,

the methodology will use the FFNN for the low-fidelity aerodynamic surrogate.

These conclusions, like those for Experiments 1.1 and 1.2, have limitations that derive

from the design of the problem of interest. It is possible that the surrogate model alter-

natives considered might not have been suitable for a vehicle with more complex aerody-

namic behavior. Similarly, training data over a wider range of flight conditions might have

revealed behavior which the alternatives might struggle to represent. The largest limitation

is that these surrogate architectures are tailored to the control mechanism of the problem of

interest. They would be incompatible with RCS actuation, for example.

The experimental procedure also results in the limitation that no control mechanism ac-

tuation was included in the training data. While this was acceptable for the problem of in-

terest, it would likely be insufficient for a vehicle with a more complex control mechanism.

The premise of the experiment, to provide aerodynamic and trajectory comparisons to the

baseline database, also limited the surrogate alternatives to the paradigm of linearized aero-

dynamics. Without the need for this comparison, more complex surrogate models could be

investigated.
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Research Question 2.1:
How can an aerodynamic surrogate model be constructed using time-series 
data from the coupled model as it is generated during the tuning process?

Hypothesis 2.1:
If a neural-network-based surrogate model is fitted with time-series trajectory 
and aerodynamic data from the coupled simulation, then it will have improved 

error convergence to the coupled model over a baseline database.

Experiment 2:
Simulated Training of Aerodynamic Surrogate Models

Finding 8.2: NN-based models 
have better convergence in aero. 

error than models with an 
assumed functional form

Finding 8.4: FFNN-based model 
has the best convergence in pitch 

response

Experiment 2 Conclusion:
A feed-forward neural network is capable of being trained with the data output 

of the coupled model with superior error convergence to the baseline 
database. Hypothesis 2.1 is accepted.

Finding 8.1: All model 
alternatives have converging 
aero. error as training set size 

increases

Finding 8.3: All model 
alternatives have converging 

trajectory error as training set size 
increases

Figure 8.30: Summary of investigation into Research Question 2.1
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CHAPTER 9

EVALUATION OF DATA FUSION FOR MULTIFIDELITY CONTROLLER

TUNING (RESEARCH QUESTION 2.2)

This chapter documents the investigation of Research Question 2.2 and its associated Hy-

pothesis 2.2, both of which are restated below:

Research Question 2.2

How can the multifidelity optimization method utilize the high- and low-fidelity controller

metrics to reduce the computational cost of controller tuning?

Hypothesis 2.2: If a data-fusion-based multifidelity optimization method is used to

tune an entry controller, then it will have less computational cost than using a quasi-

hierarchical filtering-based method for an equal performance.

The proposed methodology for tuning control gains subject to the unsteady behavior

and interactions captured by the coupled framework is dictated by the characteristics of

the simulation. The chief consideration, computational cost, has been discussed in Sec-

tion 4.2.2, motivating the shift from a Monte Carlo filtering activity to an optimization

activity. Further cost reduction can be gained by exploring multi-fidelity optimization

techniques, where a lower-cost, lower-fidelity model can be used to efficiently explore the

design space.

Effectively, the most important decision in the selection of the optimization algorithm

is whether to use data fusion methods to inform the optimizer. Experiment 3 is designed to

evaluate which method has the lowest computational cost. Both methods are used to tune
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a controller for the problem of interest, with the results tracked in comparison to a known

optimum. For reduced computational cost, the coupled model is substituted for a lower-

fidelity aerodynamic surrogate, with an even lower fidelity surrogate architecture created

to preserve the multifidelity nature of the problem.

As a prerequisite to the experiment, Section 9.1 details the extension of the problem

of interest given the new data made available through Experiments 1.1 and 1.2, and 2.

Section 9.2 describes the optimization method alternatives considered for Experiment 3,

including the common features and the different data fusion alternatives. Section 9.3 doc-

uments Experiment 3, including the procedure, results, and findings. The conclusions are

then presented in Section 9.4.

9.1 Controller Tuning Problem of Interest

In addition to the definitions of the vehicle and control mechanism for the problem of inter-

est in Chapter 6, a requirement for an entry controller must be defined that is representative

of the controller tuning design activity.

Since the literature review in Chapter 3 found that the instantaneous tracking error is a

primary concern for designers, the problem of interest will seek to minimize the α response

error with respect to αcmd . As observed from the literature review, tuning a controller for

multiple commanded conditions is achieved by extending or repeating the tuning method-

ology. As such, the problem of interest can use a single αcmd to serve as a functionally

complete example. An αcmd = −2.5◦ is selected because the value lies within the trim an-

gle of attack while being large enough to require driving the IMMA to a significant extent

of its travel.

Since the controller performance metric is only evaluated over a short duration, the

initial conditions that it may be expected to operate under can vary depending on when

during entry the controller is active. Thus, the performance will be tested for multiple sets

of initial conditions. A subset of the initial condition cases developed in Section 7.1 will
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be used. The selected cases, shown in Table 9.1, are the four cases with the lowest initial

amplitude. This will minimize the total computational cost of running the coupled model

until a controller achieves control.

Table 9.1: Coupled simulation initial conditions used for problem of interest

Case Pitch (◦) Pitch Rate (◦/s) Pitch Amplitude (◦)

1 0.90 997 2.5

5 0.21 -468 1.4

6 3.23 -877 4.0

7 5.02 235 5.3

From an engineering perspective, the designers of a vehicle seek to plan for a mini-

mum level of performance. As such, the requirements on an entry controller are written to

constrain the maximum tracking error subject to a set of testing conditions. Monte Carlo

simulation on the baseline model was performed while varying the initial conditions in

order to explore the controller gain design space. It was found that the performance is

most sensitive to the values of kz,3 and kz,6. Therefore, the other controller gains were de-

faulted at the optimum values determined from the baseline model. Thus, for the problem

of interest, the overall evaluation criterion (OEC) for controller performance is found by

Equation 9.1:

OEC = max
j=[1,5,6,7]

α̃ERMS ,LF (kz,3, kz,6, θ0,j, q0,j) (9.1)

The OEC is a complex function depending on four input variables, which is satisfactory

for the problem of interest.
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9.2 Optimization Methods

Two main optimization method alternatives will be evaluated. Before describing these

alternatives, the common characteristics are enumerated. The flowchart for the multifidelity

tuning methodology is reprinted in Figure 9.1, and both alternatives follow the steps listed

below.
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Figure 9.1: Multifidelity controller tuning process

1. The LF aerodynamic surrogate is “hot-started” by populating it with an initial set of

data. This also allows for an initial guess for controller design.

2. The multi-fidelity optimizer is executed, calling the high- and low-fidelity models as

dictated by the algorithm. Each time the optimizer calls the HF model, the following

steps are executed:

(a) The optimizer calls for some set of runs in the HF model. This can include runs

at multiple gain designs and initial conditions.

(b) The HF model is executed at for all of the specified runs for a set duration.

(c) Post-processing extracts the time-series vehicle and control system state and

aerodynamic coefficients. It calculates the net forces and moments on the vehi-
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cle, excluding gravitational forces and direct control system effects. This leaves

aerodynamic and control system interaction effects.

(d) The time-series vehicle state and net forces and moments are added to the pool

of data available for the low-fidelity model.

Each time the optimizer calls the LF model, the following steps are executed:

(a) A pre-processor checks to see if any new time-series data has been made avail-

able to the LF surrogate model. If so, the surrogate is re-trained using the

available data, subject to its own algorithm for partitioning the data into train-

ing, validation, and test sets. If the data set is the same, no change is made to

the surrogate model.

(b) The LF model is executed at the input initial conditions and commanded state.

The trajectory propagator settings are the same as those set for the HF model.

3. After execution of either the HF or LF model, post-processing is performed to calcu-

late the controller performance metrics, which are passed back to the optimizer.

4. The optimizer uses the output performance metrics data according to its own algo-

rithm to generate the next guess for the controller design.

5. The optimizer evaluates the results from the HF model and determines whether the

control performance requirements are satisfied. If so, then the optimization is termi-

nated, yielding the set of satisfactory control gains. If not, the optimization continues.

The differences between the Experiment 3 alternatives are constrained to within the

optimization algorithm. The following subsections discuss the notable features that are the

same between the two.
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Quasi-Hierarchical Relationship

Recall that in the multifidelity controller tuning methodology, every time the high-fidelity

model is called it produces new time-series aerodynamic and trajectory data. This data is

used to re-train the low-fidelity aerodynamic surrogate. Experiment 2 demonstrated that

the LF aerodynamic surrogate therefore provides converging error with respect to the high-

fidelity model. Since the model is adapted over time, the multifidelity method is considered

to be quasi-hierarchical even with no data fusion.

Low-Fidelity Error Metric Surrogate

For both methods, a surrogate model is made of the low-fidelity error metric. The surrogate

model predicts the RMS error:

α̃RMSE ,LF = f(kz,3, kz,6, θ0, q0) (9.2)

where kz,3 and kz,6 are the free controller gains and θ0 and q0 are the initial pitch and pitch

rate.

The model takes the form of a single-layer feed-forward neural network (FFNN). The

hidden layer uses perceptron neurons with a sigmoid activation function, the same as the

FFNN architecture described in Section 8.1.3. This LF surrogate1 provides a continuous

prediction for use by the optimizer.

To construct the LF surrogate, the low-fidelity model is sampled using a DOE that

spans the design space of controller gains, plotted in Figure 9.2. An outer, 40 × 40-point

grid design is used to explore a region identified in Section 9.1. This region contains the

minimum as evaluated in the baseline model constructed in Section 7.2 from the free-flight

coupled simulations. A higher-density Latin hypercube design with 800 points is used to

explore a smaller region around the minimum. The change in density is acceptable since

1Unless otherwise indicated, “LF surrogate” refers in this chapter to the low-fidelity surrogate of αRMSE
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the global minimum, which is the feature of interest, probably lies in this area. At each

controller design, the LF model is sampled at all four cases stipulated in the requirement,

for a total of 9,940 design points.
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Figure 9.2: DOE in controller gain dimensions for low-fidelity model sampling

An example of the training is shown for the LF surrogate produced on the first itera-

tion (which is the same for both alternatives). A LF surrogate with 75 hidden layer nodes

is trained using the Levenberg Marquardt training algorithm with the same settings as de-

scribed in Section 8.1.3. The goodness of fit metrics are plotted in Figure 9.3. Figures 9.3a

and 9.3b so not show any noticeable trends in the actual or residual values as a function

of the predicted value. The clumping along the predicted values is unavoidable since the

actual values are not evenly distributed. Figure 9.3c shows that the MFE has a mean close

to zero, with a standard deviation of 0.11◦, about 1.2% the total range of the response. The

MFE for the Latin hypercube design is shown in Figure 9.3d, demonstrating that the fit

is better for the region which probably contains the global minimum. Therefore the LF

surrogate is judged to be a good fit to the generated data.
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Figure 9.3: Goodness of fit metrics for LF surrogate

An example of the LF surrogate is shown in Figure 9.4. The RMSE surface is plotted

as a function of the controller gains for each initial condition case. For each case, the

largest driving factor is the value of kz,3. The RMSE is significantly decreased with values

increasing over zero.

The OEC is visualized in Figure 9.5, where the surface is colored according to which

input case is driving the OEC. The OEC is largely dominated by cases 5 and 7, and to a

lesser extent case 6 at the extremes of kz,6. Case 1 is not dominant within these bounds.

Within the region of interest, there are several local minima. The Monte Carlo simulation

performed in Section 9.1 to narrow the scope of the controller design show that these likely

include the global optimum for a wider range of kz,3 and kz,6.
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(a) Case 1 (b) Case 5

(c) Case 6 (d) Case 7

Figure 9.4: LF RMSE surfaces at input cases

Figure 9.5: OEC surface calculated from LF surrogate
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Initialization Procedure

Both optimization processes are started with the same initial guess for controller design.

The alternatives are also started with the same four high-fidelity runs to “hot start” the

aerodynamic surrogate.

Optimizer

Whenever the methods are searching for the minimum, they will use the same optimization

process. The optimizer minimizes the OEC, reprinted below:

OEC = max
j=[1,5,6,7]

α̃RMSE (kz,3, kz,6, θ0,j, q0,j) (9.3)

A genetic algorithm (GA) was selected to perform the optimization. A GA optimizer

allows for the exploration of the global minimum in the presence of many local minima

[191]. The MATLAB® Optimization Toolbox™ was used to execute the optimization [235].

The optimizer used generations of 50 individuals, with a crossover fraction of 0.8.

Within the optimization algorithms, the model choice and stopping criteria is also held

constant. Model selection alternates between sets of runs in the high- and low-fidelity

models. This is done because of the low cost of the LF model. There is no instance where

the algorithm, when calling the LF model, would not run it for as many points as possibly

desired. It also follows that the LF model would be called after every set of HF model

calls, to take advantage of the quasi-hierarchical relationship. Thus, one iteration of the

optimization algorithm is considered to include the calls to the LF model, then the HF

model.

The optimization algorithm will also sample all four cases, allowing the optimizer to

have completely accurate knowledge of the OEC at each design guess.
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9.2.1 Filtering-Based Method

The filtering-based approach is designed as an adaptation of the state-of-the-art gain schedul-

ing method. The optimizer performs the following steps:

1. The LF aerodynamic surrogate models are trained using the available HF results.

This new LF aerodynamic surrogate is then incorporated into the LF model.

2. A DoE of the LF model is performed to explore the control gain design space.

3. The LF surrogate is fitted using the LF model results.

4. The optimizer is run on the LF surrogate to find the controller design with the min-

inmum OEC.

5. The high-fidelity model is executed using the gain design selected from the previ-

ous step. The new high-fidelity results are added to the training data available for

the LF aerodynamic surrogate. The controller performance metrics are evaluated to

determine whether the design satisfies the requirements.

6. If the design does not satisfy the requirements, return to step 1. The algorithm can

also be stopped if it does not meet some threshold for improvement over a certain

number of iterations.

Each iteration of this methodology is equivalent to gain scheduling with the low-fidelity

model, the results of which are then validated using the high-fidelity model.

As iterations are executed, the new HF runs made available for training the aerodynamic

surrogate can be thought of as the decision to populate the low-fidelity model with more

data before performing the gain scheduling. However, the DoE for populating this data is

determined as a byproduct of the optimization, rather than an intentional design architecture

such as Latin hypercube. Thus it has no guarantee of sampling any particular new space,

but it could have a higher probability of sampling data in the region of interest.
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From the optimizer’s persepctive, the results of each iteration are independent from the

previous ones. Additional checks are therefore made to ensure that the optimizer does not

choose a design to run in the HF model that has already been used.

9.2.2 Fusion-Based Method

The fusion-based method applies a corrector to the LF surrogate in order to produce a

multifidelity (MF) surrogate of the controller performance. The use of a corrector function

was chosen due to the large number of LF design points. The number of points would

make a deterministic method such as co-Kriging much more computationally expensive.

An additive correction δMF was selected, giving the MF surrogate the form:

α̃RMSE ,MF = δMF (kz,3, kz,6, θ0, q0) + α̃RMSE ,LF (kz,3, kz,6, θ0, q0) (9.4)

Given the variation in magnitude of the response, an additive correction was chosen over a

multiplicative correction since it is predicted to result in a function with greater uniformity,

thus performing better in extrapolation.

δMF will use a Kriging model fitted against the error between the LF surrogate and

the HF response. Kriging is a common surrogate modeling method that represents the

response as a combination of mean behavior with deviations from the mean [236]. The

mean behavior is determined by a set of basis functions, and stochastic functions capture

deviations from the mean. Gaussian processes are commonly used stochastic functions.

Assume the response y is sampled at n points as a function of k independent variables.

For i = 1, ..., n, each response y(i) has the corresponding sample x(i) = (x
(i)
1 , ..., x

(i)
k ).

Kriging is used to find the approximate value of the response, ŷ, at an unsampled location

x∗ using the function:

ŷ(x∗) = µ+ ε (9.5)

where µ is the mean term, and ε is the error term.
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In Universal Kriging, µ is a linear combination of functions f0(x), ..., fk(x), each with

an estimated coefficient.

µ = f(x∗)T β̂ (9.6)

where f(x∗) is a (k + 1) × 1 vector of basis functions, and β̂ is a (k + 1) × 1 vector of

coefficients.

ε is normally distributed with zero mean and some variance σ2.

ε = c(x∗)TC−1(y − Fβ̂) (9.7)

where c(x∗) is an n× 1 vector of covariance between x∗ and all of the sample points, C is

an n × n covariance matrix between each of the sample points, and F is an n × (k + 1)

experimental matrix.

The covariance vector c(x∗) and matrix C rely on a function to calculate the correlation

between points. For example, the Gaussian correlation function for points u and v is:

d(u, v) =
k∏
i=1

exp

[
−
(
|ui − vi|

θi

)2
]

(9.8)

where θi is the weight for each dimension. Thus, c(x∗) and C are calculated as:

c(x∗) =

[
d(x∗, x1) d(x∗, x2) . . . d(x∗, xn)

]T
(9.9)

C =



d(x1, x1) d(x1, x2) . . . d(x1, xn)

d(x2, x1) d(x2, x2) . . . d(x2, xn)

...
... . . . ...

d(xn, x1) d(xn, x2) . . . d(xn, xn)


(9.10)
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The experimental matrix F is calculated as:

F =



f0 f1(x1
1) . . . fk(x

1
k)

f0 f1(x2
1) . . . fk(x

2
k)

...
... . . . ...

f0 f1(xn1 ) . . . fk(x
n
k)


(9.11)

β̂ is calculated by generalized least-squares estimate

β̂ = (F TC−1F )−1F TC−1Y (9.12)

Fitting the covariance requires inverting an n×n matrix, at a computational cost on the

order of O(n3), where n is the number of data points [237]. Since the number of HF points

is much more limited than the number of LF points, Kriging is feasible for the corrector

where it was not feasible for the LF surrogate.

The Design and Analysis of Computer Experiments (DACE) package for MATLAB®

is used to train and execute the Kriging model [238].

The fusion-based algorithm is executed using the following steps:

1. The LF aerodynamic surrogate models are trained using the available HF results.

This new LF aerodynamic surrogate is then incorporated into the LF model.

2. A Monte Carlo simulation of the LF model is performed to explore the control gain

design space.

3. The LF surrogate is fitted using the Monte Carlo results.

4. A Kriging surrogate model is trained using the error between the LF surrogate and the

available HF results. The fitted corrector is paired with the LF surrogate to produce

the MF surrogate.
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5. The optimizer is run on the LF surrogate to find the controller design with the min-

inmum OEC.

6. The algorithm alternates between exploration and exploitation of the space on each

iteration. On exploitation, the HF model is executed using the gain design selected

from the previous step. During exploration, the expected improvement function is

calculated for a region around the minimum. A space-filling Latin hypercube design

is generated that maximizes the sum of the expected improvement (in order to main-

tain similarity with the filtering-based method, the design is limited to four points).

The HF model is executed using these points. In both cases, the new high-fidelity

results are added to the training data available for the LF aerodynamic surrogate.

7. On the exploitation iterations, the controller performance metrics are evaluated to

determine whether the design satisfies the requirements. If the design does not satisfy

the requirements, return to step 1. The algorithm can also be stopped if it does not

meet some threshold for improvement over a certain number of iterations.

The fusion-based method utilizes the performance results from the low- and high-

fidelity models to select the next high-fidelity design point. The filtering-based method

does not use this information, relying solely on the adaptive update to the low-fidelity

model aerodynamics. By leveraging the additional information, the fusion-based method

is designed to result in a change in the computational expense for tuning the control gains.

9.2.3 Fusion-Based Method Without Updating Low-Fidelity Model

In addition to the two methods described in the sections above, optimization will also be

attempted with a method that does not use the quasi-adaptive nature of the LF model;

instead, it will rely solely on data fusion. This method will be the same as the fusion-

based method in Section 9.2.2 except that the LF aerodynamic surrogate, LF model, and

LF surrogate will not be updated after the first iteration. These will be held fixed while new
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HF runs are only used to update the correction.

By only updating the corrector, this alternative provides a point of comparison to the

fusion-based method. The effect of the changing LF response at each iteration can thereby

be investigated.

9.3 Simulated Performance of Multifidelity Methods (Experiment 3)

9.3.1 Experimental Procedure

The experimental procedure is to simulate the multifidelity optimization of a controller

design using each alternative. All of the methods are started with the same initial guess

and are allowed to proceed for 15 iterations, regardless of the stopping criteria described

in Sections 9.2.1 and 9.2.2. Cost will be evaluated in terms of the iteration, since each

alternative uses the same number of calls to the high-fidelity model on each iteration.

However the high cost of the coupled model makes it infeasible to perform the exper-

iment directly using the proposed methodology, or to perform further investigation. The

FFNN-based aerodynamic surrogate — what would nominally be the LF aerodynamic sur-

rogate — is used as an analogue to the coupled model. The critical factor in Experiment

3 is the investigation into the effectiveness of the optimization method given two models

with higher and lower fidelity. A reduction in the absolute fidelity is acceptable if a rel-

ative difference in fidelity can be preserved. Therefore, an aerodynamic surrogate design

must be selected that deliberately has lower fidelity than the previously-generated FFNN,

but still provides the same categorical capabilities (training with the time-series data and

convergence to the HF model with increasing training set size).

Low-Fidelity Aerodynamic Surrogate Model

The LF aerodynamic surrogate is constructed as an FFNN-based model with the same

architecture as described in Section 8.1.3, but with much smaller hidden node sizes. The

number of hidden layer nodes for each coefficient are listed for both models in Table 9.2.
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The LF model has a significantly reduced number of unknowns for each coefficient. This

will prevent the LF model from achieving the accuracy of the HF model.

Table 9.2: FFNN hidden layer nodes

Coefficient
High-fidelity model Low-fidelity model

Nodes Total unknowns Nodes Total unknowns
CA 8 41 1 6
CN 16 73 1 6
CM 16 73 2 11

Generation of High-Fidelity Data

The use of the FFNN-based model as the HF model also allows for the HF data to be

generated a priori. The model is executing using the same DOE constructed for the LF

surrogate in Figure 9.2. When calling the HF model at some guessed design xguess , the

data will be returned from the design point with the closest euclidian distance (normalized

by the ranges of kz,3 and kz,6). A contour plot of the HF OEC is shown in Figure 9.6, also

indicating the location of the true optimum. The surface is somewhat noisy, with individual

designs disrupting the general shape of the surface.
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Figure 9.6: High-fidelity OEC response

Initialization Procedure

As stated in Section 9.2, each alternative is started with the same HF runs used to train

the LF aerodynamic surrogate. Based on the results of Experiment 2, a set of four runs

was judged to provide sufficient training data such that the LF model would perform in a

physically believable manner, but would still insufficiently span the design space of flight

conditions, allowing for improvement on later iterations. The conditions four runs chosen

are listed in Table 9.3.

Table 9.3: Initial high-fidelity run conditions

kz,3 × 104 kz,6 × 103 Case θ0 (deg) q0 (deg/s)
-5.0 -2.0 5 0.21 -468
20.0 -2.0 1 0.90 997
-5.0 -2.0 6 3.23 -877
-5.0 4.0 7 5.02 235
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The initial runs include gains that bound the design space, and has one run from each

initial condition case. The resulting trajectories are plotted in Figure 9.7.
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Figure 9.7: Initial high-fidelity runs provided for optimization algorithms

Only one of these designs managed to bring the vehicle somewhat under control, while

the other three actually result in increased oscillation amplitude. Several of the runs exceed

the maximum αT of the coupled free-flight simulations. Since the accuracy of the behavior

relative to the coupled model is not strictly important in this experiment, the extrapolation

was judged to be acceptable.

9.3.2 Filtering-Based Method Execution

Figure 9.8 shows an example response generated by the HF model for all four input cases

for a design which achieves control. The α response is plotted in Figure 9.8a, which drives

the IMMA motion plotted in Figure 9.8b. Figure 9.8b shows that the IMMA travels to its

limits for each case except Case 5, which has the smallest initial error. The largest variation

in motion occurs at the start of the simulations, where the controller is working to damp out

the angular velocity. The initial oscillatory motion is damped out, and the angle of attack

comes under control around the αcmd . Note that small amplitude oscillations continue, as

the control mechanism has no means of imparting a moment to cancel out rotational motion

other than by moving the mass and therefore inducing rotational motion. Note also that the

oscillation period of about 4-5ms for the closed-loop simulation is much shorter than the

period measured for free-flight, at about 17ms. The responses for a single design run at all
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four cases span a large range of the α design space for higher Mach numbers due to the

initial conditions. However since α comes under control, the data spans a much smaller

region of the α design space for lower Mach numbers. .
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Figure 9.8: Aerodynamic coefficient RMS error history

The results of the filtering-based method are examined in the order in which they are

produced, starting with the LF aerodynamic surrogate. Coefficient errors are measured rel-

ative to the response of the FFNN surrogate being used for the HF model. The convergence

of the aerodynamic surrogates are plotted in Figure 9.9.
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Figure 9.9: Aerodynamic coefficient RMS error during filtering-based method execution

The RMSE of each coefficient surrogate on the first iteration is compared in Table 9.4 to

the k-fold results of the FFNN from Experiment 2 for the same number of runs. The error

magnitudes between the LF aerodynamic surrogate (with artificially-reduced fidelity) and

the FFNN is similar to the error between the FFNN and the coupled model. This provides

validation for the sizing of the LF aerodynamic surrogate made in Section 9.3.1.
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Table 9.4: Comparison of aerodynamic surrogate error

Coefficient Experiment 3 LF surrogate k-fold FFNN from Experiment 2

CA 0.27 0.65

CN 0.25 0.22

CM 0.17 0.27

Figure 9.9 shows that each of the coefficient surrogates have converging error with

increasing training set size. Both the CA and CN surrogates are largely converged by

iteration 6, although both have slight improvement through to the final iteration. While

CM does converge, there is more noise, including noticeable increases on iterations 4, 8,

and 11.

Figure 9.10 plots the RMS error of the LF surrogate with respect to the HF data. Two

measurements are included: one measured at every HF data point, and one measured for

the points within a certain region near the true optimum design. This region is defined as

being within 5% of the normalized range of the controller gains:

| kz,3 − kz,3,opt

kz,3,max − kz,3,min

| ≤ 0.05, | kz,6 − kz,6,opt

kz,6,max − kz,6,min

| ≤ 0.05 (9.13)

Figure 9.10 shows that the error in the region near the true optimum is about half that of the

error over the whole design space. However, neither measurement significantly decreases

with increasing iteration. The variation does not correlate with coefficient error, which is

consistent with the results from Experiment 2.
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Figure 9.10: LF surrogate RMSE during filtering-based method execution

The OEC response history is plotted in Figure 9.11, showing the value of the queried

response at each iteration as well as the cumulative minimum. Each predicted optimum

design from the filtering-based method yields some improvement on the initial guess. The

filtering-based method is able to obtain the true minimum on iteration 5. This equates to an

improvement in the OEC of 15.8%.
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Figure 9.11: Filtering-based method response history

Figure 9.12 plots the history of predicted optimum design over a contour plot of the HF

response. The figure shows how the predicted optimum does move circuitously towards the

true optimum, but then moves away. For the remainder of the iterations, the predicted op-

timum remains within the lowest contour on the plot, but does not converge on a particular

location.
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Figure 9.12: Filtering-based method predicted optimum design history. Lighter to darker
color of the points indicates increasing iteration.

Findings

The filtering-based method does successfully yield the optimum design within the number

of iterations tested in the experiment:

Finding 9.1: The filtering-based method succeeds in finding the optimum design.

Furthermore, the LF aerodynamic surrogate constructed at each iteration does converge

in error even though the ratio of model unknowns to data points is much higher than in

Experiment 2.

Finding 9.2: The filtering-based method yields an LF aerodynamic surrogate that has con-

verging error with increasing training set size.

While this provides validation for the specific problem developed for Experiment 3,
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further application of these results is limited to the finding that the results do not disprove

Hypothesis 2.1.

Examining the LF surrogate error results brings into question the efficacy of the filtering-

based method. Whereas in Experiment 2, the increasing training set size resulted in a

general convergence of error for both the aerodynamic and trajectory components, for the

filtering-based method the additional data does not increase the accuracy of the LF re-

sponse. As the LF model incorporates additional data, it moves the predicted minimum

away from the true minimum. Thus, it cannot be disproved that the filtering-based method

only succeeded in finding the true optimum due to random chance.

Finding 9.3: The filtering-based method does not yield an LF model that has converging

error against the HF response with increasing training set size.

9.3.3 Comparison of Fusion-Based Method Execution

The fusion-based method was executed, both with and without updating the LF aerody-

namic surrogate, to enable comparisons with the filtering-based method.

A comparison of the aerodynamic coefficient convergence for all three methods is plot-

ted in Figure 9.13. As expected, the fusion method with fixed LF aerodynamic surrogate

has constant error across all iterations. Figures 9.13a and 9.13b clearly show that the fusion-

based method with updating LF aerodynamic surrogate has better error convergence than

the filtering-based method for both the axial and normal coefficients. The results are similar

through iteration 6 (barring the outlier in CN on the 4th iteration), whereupon the fusion-

based results diverge. Figure 9.13c shows that the two methods yield results with similar

noisy behavior for CM , but the fusion-based method achieves the lowest error.
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Figure 9.13: Aerodynamic coefficient RMS error history

The LF surrogate error convergence is plotted in Figure 9.14, again measured across the

whole design space and in a region near the true optimum. Figure 9.14a shows that, as with

the filtering-based method, both fusion-based methods do not have converging error with

increasing iteration. In the case of the fusion-based method with updating LF aerodynamic

surrogate, this is in spite of the decreased error in the aerodynamic coefficients. However,

Figure 9.14b shows that in the region near the true optimum, the fusion-based methods do

have a slight decrease in error. The results are not monotonic, with particularly high values

on iteration 9.
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Figure 9.14: LF surrogate RMS error history

Examining the behavior of the MF correction shows a possible cause. Figure 9.15 plots

the MF correction for one initial condition case. The figure shows that while the surface

corrects the results at the known HF points, the Kriging surface extends across the whole

design space, with greater expected error as the distance from the sampled points increases.

This explains why, with an increasing number of HF points, the near region could improve

while causing no improvement when measured across the whole space. Furthermore, the

recalculation of the Kriging surface can result in changes to the response magnitude that

are significant with respect to the LF model response.

Figure 9.15: MF correction surface for Case 7, iteration 3
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Figure 9.16 plots the response history for each method. The fusion-based method with

fixed LF aerodynamic surrogate yielded the worst convergence, and yielded the worst re-

sults at the end of the execution. The convergence of the fusion-based method with updat-

ing LF aerodynamic surrogate was on par with the filtering-based method. However, the

fusion-based method did not achieve the true optimum.
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Figure 9.16: Response history

Figure 9.17 plots the history of predicted optimum design for each method over a con-

tour plot of the HF response. Both of the fusion-based methods had guesses that were

much farther away from the true optimum than the filtering-based method. As shown by

the contour plot, these were in areas with a significantly higher true response.
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Figure 9.17: Predicted optimum design history. Lighter to darker color of the points indi-
cates increasing iteration.

Findings

The results from both fusion-based methods do not achieve the true optimum within the

number of iterations executed for Experiment 3:

Finding 9.4: The fusion-based method achieves a minimum result that is worse than the

minimum result for the filtering-based method.

However, beyond the top-level results for the response convergence, the fusion-based

method had characteristics that could be more beneficial than the filtering-based method.

In terms of the aerodynamics, the fusion-based method resulted in simulations that better

spanned the flight condition design space, with a corresponding decrease in the aerody-
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namic coefficient error.

Finding 9.5: The fusion-based method yields decreased error in the LF aerodynamic sur-

rogate compared to the filtering-based method.

Furthermore, the use of data fusion in both fusion-based methods resulted in a slight

but measurable decrease in response error near the true optimum:

Finding 9.6: The fusion-based method has decreased error with respect to the HF data in

the region close to the true optimum compared to the filtering-based method.

9.4 Conclusions

Research Question 2.2 (How can the multifidelity optimization method utilize the high-

and low-fidelity controller metrics to reduce the computational cost of controller tuning?)

can be answered using the findings from Experiment 3.

Based on Findings 9.1 and 9.4, Hypothesis 2.2 is rejected. The fusion-based method did

not achieve an equal performance while tuning the PID-based controller when compared to

the filtering-based method, within the number of iterations executed in Experiment 3.

Findings 9.3 and 9.6 paint an unfavorable picture of the effectiveness of either opti-

mization method in their current implementations. The filtering-based method showed no

improvement in the response prediction, even with a large number of data points in the

viscinity of the true optimum. The fusion-based method did yield a slight but insignifi-

cant improvement in the knowledge about the response in the vicinity of the true optimum.

While both methods had lackluster performance, the results do indicate where improve-

ments can be made. Therefore, the multifidelity controller tuning methodology will use a

synthesis of the filtering- and fusion-based methods evaluated for Experiment 3. Note that

this is an improvement on the fusion-based method is selected for implementation rather

than the filtering-based method, even though the latter techically had better results. This
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is justified since the results of the filtering-based method were not substantially better than

for the fusion-based method.

First, Finding 9.5 indicates that the fusion-based method, by virtue of attempting to ex-

plore the design space, results in a significant improvement in the aerodynamic surrogates.

This is a beneficial result that should be kept. Based on the failures in extrapolation, the

size of the design space to be covered by the DoE can also be expanded. In addition, with-

out the need to maintain equivalence between the methods, the number of points queried

can be increased.

Second, the procedure of the filtering-based method — using the minimum of the LF

model — is, by definition, insensitive to the training of the multifidelity correction. During

the first few iterations, this model could be used to anchor the guess for optimum design,

and avoid the deviations that were caused by the extrapolation of the Kriging model.

Third, examining the relative results between the different initial condition cases shows

that the LF models are generally able to identify the relative importance of each case with

respect to the OEC. This information can be used to preferentially sample the input cases

that are driving the OEC, and sampling the dominated cases with some lower frequency so

as to maintain the accuracy of the relative predictions.

Figure 9.18 shows the multifidelity controller tuning process as it has been developed

through the conclusions made from Experiments 1.1, 1.2, 2, and 3.
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Figure 9.18: Multifidelity controller tuning process as implemented

The limitations of Experiment 3 arise from the problem of interest, the scope of the

alternatives considered, and the experimental procedure. The controller for the problem of

interest was selected base on literature review after establishing that it met the requirement

that it could bring the vehicle under control when simulated with the baseline model. There

are likely other control systems that could achieve better theoretical performance, allowing

the tuning methods to be exercised over a greater range of improvement. Defaulting all but

two of the controller gains has a similar effect.

The experiment is also limited by the fact that a large number of architectural choices

were defaulted for the two optimization methods considered. While the alternatives did test

the largest architectural difference, the explicit inclusion of data fusion, choices such as

the optimizer (e.g., investigating alternatives to the GA-based algorithm) could potentially

result in significant changes to the convergence. These design choices also include the

multifidelity surrogate architecture, method of adaptive sampling, etc.

The largest limitation of the conclusions is the decision to run the experiment using an

aerodynamic surrogate instead of the coupled model. While necessary to limit the compu-

tational cost, using the surrogate necessarily decreases the fidelity of the vehicle behavior.

This could also change the theoretical performance of the controller.
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Figure 9.19 presents a summary of the investigation performed in order to answer Re-

search Question 2.2.

Research Question 2.2:
How can the multifidelity optimization method utilize the high- and low-fidelity 

controller metrics to reduce the computational cost of controller tuning?

Hypothesis 2.1:
If a data-fusion-based multifidelity optimization method is used to tune an 

entry controller, then it will have less computational cost than using a quasi-
hierarchical filtering-based method for an equal performance.

Experiment 3:
Comparison of Multifidelity Optimization Methods

Finding 9.1: The filtering-
based method succeeds in 
finding the optimum design

Finding 9.4: The fusion-based 
method achieves an optimum 
result worse than the filtering-

based method

Finding 9.3: The filtering-
based method does not have 
converging metric error with 
increasing training set size

Finding 9.6: The fusion-based 
method yields decreased 

metric error compared to the 
filtering-based method

Experiment 3 Conclusion:
The filtering-based method had lower computational cost to achieve 

a better result than the fusion-based method. Hypothesis 2.1 is 
rejected.

Additional Experiment 3 Conclusion:
The fusion-based method resulted in better information about the 

controller performance and aerodynamic responses

Synthesis: Combining fusion-based method with features of filtering-based 
method to achieve better stability in controller performance prediction.

Figure 9.19: Summary of investigation into Research Question 2.2
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CHAPTER 10

EVALUATION OF A CONTROLLER TUNED USING THE COUPLED FLIGHT

MODEL (OVERARCHING RESEARCH QUESTION)

This chapter documents the testing of the Overarching Hypothesis, restated below:

Overarching Hypothesis: If the entry controller is tuned using a coupled, unsteady

aerodynamic and control system model, the performance of the entry controller will be

improved compared to a controller tuned using the state-of-the-art methodology.

Experiment 4 is designed as a numerical demonstration of the Overarching Hypothesis.

Two entry controllers are trained: one using the state-of-the-art methodology described in

Section 3.3, and one using the multifidelity methodology developed and in Chapters 7 to

9. These controllers will be simulated using the coupled CFD-RBD-FCS model developed

in Chapter 5 to establish their performance at the highest level of fidelity. The experiment

will also therefore demonstrate the implementation of the multifidelity controller tuning

methodology.

Section 10.1 describes the controller alternatives and their method of construction. Sec-

tion 10.2 documents the experiment, and Section 10.3 presents the conclusions.

10.1 Controller Alternatives

The two entry controllers will use the form described in Section 6.4, reprinted below:

uz = kz,0αcmd + kz,1α
2
cmd + kz,2αe + kz,3α̇ + kz,4αI + kz,5ż + kz,6z̈ (10.1)

The gains for each controller are listed in Table 10.1:
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Table 10.1: Controller gains

Gain DB-tuned MF-tuned

kz,0 −3.758× 10−3

kz,1 1.735× 10−5

kz,2 3.910× 10−4

kz,3 6.780× 10−4 6.565× 10−4

kz,4 1.213

kz,5 −1.779× 10−2

kz,6 −3.600× 10−4 −1.735× 10−4

10.1.1 Database-Tuned Controller

The “Database-tuned” (DB-tuned) controller is named as such because its tuning process

used the aerodynamic database constructed in Section 7.2. The process for tuning kz,0,

kz,1, kz,2, kz,4, and kz,5 is documented in Section 9.1. The remining gains, kz,3 and kz,6 (the

gains for which the performance was determined to be most sensitive), were tuned using a

separate Monte Carlo over the dimensional ranges established within the same section. A

histogram of the OEC results for this Monte Carlo are shown in Figure 10.1, demonstrating

that the selected design is likely to very close to the optimum within the design space.

0.7 0.8 0.9 1 1.1 1.2
Angle RMSE (deg)

LF Results
Minimum

Figure 10.1: LF Monte Carlo OEC results

Since the process and model are the same, this is equivalent to tuning all of the gains
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concurrently. It is also important to note that, since all of the gains were tuned, this con-

troller design is likely close to the true optimal according to the state-of-the-art methodol-

ogy.

10.1.2 Multifidelity-Method-Tuned Controller

The “Multifidelity-tuned” (MF-tuned) controller is named as such because it is tuned using

the multifidelity controller tuning methodology. Figure 10.2 shows the flowchart for the

process as it has been developed and implemented for Experiment 4.
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Figure 10.2: Multifidelity controller tuning process

First, a DoE was constructed to sample the design space for the generation of a set of

initial coupled simulations. The DoE is listed in Table 10.2. The designs explore the di-

mensions of kz,3 and kz,6, the free controller gains, as well as spanning the initial condition

cases listed in Table 9.1 The designs were chosen to include the extremes of the controller

gain design space for better performance of the Kriging correction. Thus, this DoE is de-

signed to ameliorate some of the problems noted with the Kriging correction in Experiment

3.
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Table 10.2: Initial high-fidelity run conditions

kz,3 × 104 kz,6 × 103 Case θ0 (deg) q0 (deg/s)

5.791 3.983 1 0.902 997

-5.000 4.000 1 0.902 997

2.031 -0.117 1 0.902 997

20.00 4.000 1 0.902 997

-2.380 -1.391 5 0.209 -468

19.83 0.070 5 0.209 -468

-5.000 -2.000 5 0.209 -468

1.321 1.392 5 0.209 -468

20.00 -2.000 5 0.209 -468

20.00 4.000 6 3.24 -877

-0.053 1.913 6 3.24 -877

2.720 1.787 6 3.24 -877

20.00 -2.000 7 5.03 236

20.00 4.000 7 5.03 236

The methodology was started using the DB-tuned gains as an initial guess. This means

that, in total, 18 HF simulations were available for initial training of the LF aerodynamic

surrogate and the MF correction. The revised procedure for each iteration is enumerated

below:

1. The available HF data is used to construct the LF aerodynamic surrogate — in this

instance, the FFNN model design chosen in Experiment 2. This model is used to

construct the LF model.

2. A DoE is executed using the LF model to explore the design space and generate the

LF response. A FFNN surrogate model is constructed for the LF response. The MF
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correction Kriging model is then fitted using the available HF data points, resulting

in the MF surrogate model.

3. The GA-based optimizer finds the minimum OEC for both the LF and MF mod-

els, resulting in two predicted minimums. If the Euclidian distance between the two

designs is greater than 20% of the normalized gain ranges, the LF prediction is sub-

stituted for the MF prediction. As noted in the Experiment 3 conclusions, this is

designed to limit the effect of a poorly-shaped MF correction.

4. The optimization loop proceeds using the alternating exploration/exploitation de-

scribed in Section 9.2.2.

(a) For each exploitation step, the predicted minimum is executed in the coupled

model at all four input cases.

(b) For each exploration step, a DoE of 8 designs is chosen to maximize the ex-

pected improvement function. The designs are centered around the predicted

minimum, with a range of ±10% of the normalized kz,3 and kz,6 ranges. Ini-

tial condition cases are chosen to favor runs with a higher predicted αRMSE .

For each DoE point, an input case is randomly selected. α̃RMSE is calculated

for each input case, and the probability of selecting each case is found using

Equation 10.2:

pi =
α̃RMSE ,i − 0.75α̃RMSE ,min∑

j=[1,5,6,7] (α̃RMSE ,j − 0.75α̃RMSE ,min)
(10.2)

Where α̃RMSE ,min is the minimum error:

α̃RMSE ,min = min
j=[1,5,6,7]

α̃RMSE ,j (10.3)

The adjustment by 75% of the minimum value more heavily weights the cases

away from the case with the lowest error. These designs are then executed in
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the HF model.

The optimization was executed for six iterations, for a total of 36 coupled simulations.

The resulting OEC surface is plotted in Figure 10.3. The HF points that lie on the OEC

surface are shown. These points are clustered around the intersection between the regions

of the OEC dominated by Cases 5 and 7, similar to the behavior found in Experiment 3.

This provides validation for the definition of the controller performance metric, which was

designed to ensure that the OEC would not be dominated by a single initial condition case.

Overall, the method achieved good coverage of the region around the minimum. 21 of

the qureied points appear on the OEC, including 75% of the exploration points.

Figure 10.3: Multifidelity predicted OEC surface. The OEC responses for the DB- and
MF-tuned controller designs are also indicated.

The final MF-tuned controller design is listed in Table 10.1. Recall that for the prob-

lem of interest, all gains except for kz,3 and kz,6 are defaulted to values found for the

DB-tuned controller. Thus, the MF-tuned controller is likely not the optimum controller
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design as evaluated in the coupled model, when accounting for the constraints instituted in

Section 9.1.

10.2 Evaluation of Controllers in Baseline and Coupled Models (Experiment 4)

10.2.1 Experimental Procedure

The experimental procedure is to execute both the DB- and MF-tuned controller designs

in two flight models: the baseline model constructed according to the state of the art (i.e.,

using a database as the aerodynamic surrogate model), and the coupled model. Each con-

troller is evaluated at all four initial condition cases listed in Table 9.1. Thus, the experiment

requires a total of eight coupled simulations and an equal number of runs in the baseline

model.

Three sets of comparisons can be made between these four sets of simulations. First,

comparing the results for the DB-tuned controller as executed in both the coupled and

baseline models will establish the change in performance for that controller when it is

evaluated with a higher-fidelity model than the one in which it was tuned. This comparison

will determine if the conclusions made about the difference in model fidelity between the

baseline and coupled models for both free-flight and open-loop simulations in Experiments

1.1 and 1.2 can be extended to include closed-loop simulations.

Second, comparing the performance of the DB- and MF-tuned controllers in the base-

line model will verify whether the DB-tuned controller is the better controller as evaluated

in that model. Since the MF-tuned controller design is not guaranteed to have been in-

cluded in the Monte Carlo run in Section 10.1.1, there exists a possibility that the MF-tuned

controller is simply dominant in both the baseline and coupled models, in which case no

findings can be drawn from the results.

Finally, the performance of the DB- and MF-tuned controllers will be evaluated in the

coupled simulation. This comparison will determine whether the multifidelity tuning pro-

cess yielded a controller with improved performance over the DB-tuned controller. The
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first two points of comparison are necessary but not sufficient to test the Overarching Hy-

pothesis; this point provides that final determination.

The coupled simulations required for this experiment are already completed as a result

of the multifidelity tuning process documented in Section 10.1.2. The DB-tuned controller

has already been run in the baseline model for Section 10.1.1, so the procedure only in-

cludes execution of the MF-tuned controller in the baseline model.

10.2.2 Comparison of Database-Tuned Controller as Evaluated in the Baseline and Coupled

Models

Figure 10.4 plots the α response for the DB-tuned controller executed in both the baseline

and coupled models. The qualitative behavior of the results is similar to the behavior noted

in Figure 9.8: the large-amplitude oscillation due to the initial conditions is damped out,

and the α response comes under control about αcmd with some remaining small-amplitude

oscillation at a higher frequency. The qualitative behavior of the baseline responses has

some differences to the coupled responses. Notably starting around 16ms the Case 6 re-

sponse appears to have no oscillatory component.
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Figure 10.4: Comparison of DB-tuned controller in baseline and coupled models

Figure 10.5 plots the IMMA displacement for each set of simulations. As noted previ-

ously, all of the simulations except for Case 5 result in the IMMA traveling to its limits.
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Figure 10.5: IMMA displacement of DB-tuned controller

The error between the responses predicted by the baseline model and the responses from

the coupled model are plotted in Figure 10.6. The error in each case begins to grow from

the start of the simulation due to error propagation, but each case shows a large increase

in error magnitude starting around 8ms, which roughly corresponds to the time when the

large-amplitude oscillatory motion gives way to the small-amplitude motion about αcmd .
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Figure 10.6: Error between baseline α prediction and coupled response for DB-tuned con-
troller

Table 10.3 lists the controller performance metrics for each simulation, along with the

difference between the baseline and coupled model responses. The results for Cases 1, 6,

and 7 show a slight improvement as evaluated in the coupled model, but the results for

Case 5 show a larger increase in error. The constraining runs were Case 7 and Case 5 in

the baseline and coupled models, respectively. As a result, the OEC for the coupled model

increased by 11.8%.
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Table 10.3: Performance of DB-tuned controller in baseline and coupled models

Case Baseline (◦) Coupled (◦) Change (◦) Change (%)

1 0.4987 0.4890 -0.0097 -1.95

5 0.6692 0.7565 0.0873 13.0

6 0.4136 0.3974 -0.0162 -3.92

7 0.6764 0.6455 -0.0309 -4.57

OEC 0.6764 0.7565 0.0801 11.8

The responses for the worst-case results are plotted in Figure 10.7.
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Figure 10.7: Cases driving OEC for DB-tuned controller in baseline and coupled models

Findings

The comparison of the two preceeding sets of runs shows that the DB-tuned controller does

have increased error in the coupled simulations:

Finding 10.1: The database-tuned controller exhibits a performance decrease from the

baseline model prediction when evaluated in the coupled model.

This conforms with the conclusions of Experiments 1.1 and 1.2, which showed a dis-

crepancy when simulating free flight and open-loop control, respectively1. However, the
1It is not possible to identify any findings regarding the relative magnitude magnitude of the error (as was

done between the results of Experiment 1.1 and Experiment 1.2) since the results of Experiment 4 follow a
significantly different trajectory.
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magnitude of this change is only 0.08◦, which is less than the 0.17◦ threshold of significance

for tracking error of an entry vehicle with active guidance during precision landing.

The change in the case dominating the OEC between the two models serves as an

indication that the construction of the problem of interest in Section 9.1 was successful

in ensuring that the tuning process will require querying at more than one set of initial

conditions.

It is also interesting to note that, as shown in Figure 10.6, the increase in the error be-

tween the two models occurs when the vehicle is largely under control (i.e., not during the

period of greatest IMMA motion). This indicates that it is possible the unsteady aerody-

namic behavior is still the largest driving in the difference in fidelity between the models,

as was indicated in Experiment 1.2 for open-loop simulations.

10.2.3 Comparison of Database- and Multifidelity-Tuned Controllers in the Baseline Model

The responses for the DB- and MF-tuned controllers in the baseline model are plotted in

Figure 10.8.
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Figure 10.8: Comparison of database- and MF-tuned controller in baseline model

The performance results for each simulation are listed in Table 10.4, and the responses

for the worst-case results are plotted in Figure 10.9. The MF-tuned controller has better

performance than the DB-tuned controller for Cases 1 and 6, but worse performance for

Cases 5 and 7. The worst-case results are both from Case 7, which shows a 12% increase in
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error for the MF-tuned controller. Figure 10.9b shows how change between the simulations

increases with increasing time.

Table 10.4: Performance of DB- and MF-tuned controllers in baseline model

Case DB-tuned (◦) MF-tuned (◦) Change (◦) Change (%)

1 0.4987 0.4915 -0.0072 -1.44

5 0.6692 0.6979 0.0287 4.28

6 0.4136 0.3565 -0.0571 -13.8

7 0.6764 0.7578 0.0814 12.0

OEC 0.6764 0.7578 0.0814 12.0
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Figure 10.9: Cases driving OEC for database- and MF-tuned controller in baseline model

Findings

The MF-tuned controller was found to have worse overall performance than the DB-tuned

controller:

Finding 10.2: The multifidelity-tuned controller exhibits worse performance than the database-

tuned controller when each is evaluated in the baseline model.

When combined with the Monte Carlo run in Section 10.1.1, the results provide further

verification that the DB-tuned controller is the optimum as evaluated in the baseline model.
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However, it is only necessary to prove that the DB-tuned controller does not have bad

performance due to incomplete optimization.

10.2.4 Comparison of Database- and Multifidelity-Tuned Controllers in the Coupled Model

The results for the DB- and MF-tuned controllers executed in the coupled model are shown

in Figure 10.10, with the performance values listed in Table 10.5.
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Figure 10.10: Comparison of database- and MF-tuned controller in coupled model

Table 10.5: Performance of DB- and MF-tuned controllers in the coupled model

Case DB-tuned (◦) MF-tuned (◦) Change (◦) Change (%)

1 0.4890 0.4229 -0.0661 -13.5

5 0.7565 0.6907 -0.0658 -8.69

6 0.3974 0.3174 -0.0800 -20.43

7 0.6455 0.6374 -0.0081 -1.25

OEC 0.7565 0.6907 -0.0658 -8.69

The MF-tuned controller achieves a reduced error for all four input cases, with the

greatest improvement in Case 6. Case 5 yielded the worst-case results for both controllers,

meaning that the MF-tuned controller achieved an OEC reduction of 8.69%. The plots of

the worst-case results in Figure 10.11 shows that the MF-tuned controller has a slightly

reduced error across the whole range of the metric evaluation period.
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Figure 10.11: Cases driving OEC for database- and MF-tuned controller in coupled model

Findings

The results show that the MF-tuned controller has reduced error compared to the DB-tuned

controller:

Finding 10.3: The multifidelity-tuned controller exhibits better performance than the database-

tuned controller when each is evaluated in the coupled model.

However, the magnitude of the improvement is about 0.066◦, which is less than the

0.17◦ established as the threshold for significance for precision landing.

The best controller is able to bring the α response under control within ±1◦ of αcmd .

While no Mars entry vehicles have flown with controllers that directly control the angle of

attack or sideslip, the performance is comparable in magnitude to the controllers developed

by Atkins and Queen for an IMMA-equipped MPL [15]. However regardless of the per-

formance of the controller, its capability of bringing the vehicle under control as simulated

in the coupled model verifies its suitability for the problem of interest, since the test of the

results is being made based on relative performance.

Since the DB-tuned controller design was used as the starting point for the optimization

in Section 10.1.2, this also demonstrates that the optimization process was successful. Ex-

periment 3 showed that the method could be successful with a lower-fidelity set of models,
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but Experiment 4 shows that the method is also able to utilize the coupled model:

Finding 10.4: The multifidelity controller tuning process was successful in optimizing an

entry controller while operating with the coupled model.

10.2.5 Sensitivity of Results to Perturbation of Overall Evaluation Criterion

The controller performance metric (and similarly the OEC) was defined in Section 9.1 as

a calculation of αRMSE over the interval t = ti..tf , where ti = 10ms and tf = 27ms. The

tf was selected to limit the simulation time necessary for each execution, but the ti was

selected arbitrarily (with no regard to the literature) in order to shape the OEC such that

the true optimum occurred in a region that would not be dominated by one single initial

condition case.

An investigation of the results was performed in order to validate the rationale that

adjustment of the metric definition could result in over-sensitivity to the initial conditions

(thus under-sensitivity to the α response when brought under control). The post-processing

for all of the runs performed in Experiment 4 was recalculated while varying ti from 0ms

to 20ms. At ti = 20ms, this leaves 7ms of simulation time for calculation of the OEC. At

this point, the duration of metric calculation is smaller than two times the average period

observed in the controlled closed-loop response.

No additional optimization was performed, nor were any additional coupled simulations

executed. Each of the coupled controllers evaluated during the optimization were simulated

in the baseline model. This resulted in a set of controller designs that have been simulated

in both the coupled and baseline models, shown in Figure 10.12. Thus, neither controller

will be the true optimum for any ti except ti = 10ms. Instead, they will be identified from

the best database and coupled results for these designs. A trend for the performance change

between the baseline and coupled models can then be found.
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The results of the perturbation are shown in Figure 10.13 in terms of the relative im-

provement from the identified DB-tuned to the MF-tuned controllers. The post-processing

calculations were performed in increments of 1ms over the range2. For each of the shown

OEC calculations, the existing data yielded an MF-tuned controller that had improved per-

formance over the best DB-tuned controller. The smallest change occurred for ti = 0ms

with 0.2%, and the largest change of 31.3% was found at ti = 20ms. Only three different

MF-tuned controller designs were found to be optimal for any calculation. “Design C” is

the design found for the MF tuning process in Section 10.1.2.

The figure shows that the relative change is small from ti = 0ms to 7ms. This shows

the region for which the results are dominated by the large-amplitude oscillatory motion

resulting from the initial conditions. After this point, the results trend toward a plateau

around 8% to 9% improvement up through ti = 16ms. Starting around 17ms, the results

show a sharp improvement in the performance. At ti = 20ms, the best available controller

selected from the coupled model results has an error reduced by about 30% from the best

available controller selected in the baseline model. This could be an indication that the

relative improvements identified by the use of the coupled model increase with increasing

ti. In absolute terms, the error for ti = 20ms is reduced by 0.18◦, in which case it would be

significant with respect to the threshold for instantaneous tracking error. However, this can

only be speculated since the optimization process was not re-executed for each OEC. The
2Results at ti = 12ms, 13ms, and 15ms are not shown because simulation failures meant that the optimal

simulation only had either Case 5 or 7 available, and thus the OEC could not be calculated
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general trend of the perturbation results indicate that an OEC that is engineered to focus

on the long-term error of the controller without regard for the settling time could result in

more significant differences in the baseline and coupled results. However investigating this

response would require additional simulation time beyond 27ms.
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Figure 10.13: Variation of performance change vs. metric calculation

The constraining initial condition case is plotted for each metric in Figure 10.14. As

expected, Case 7 is the constraint for small values of ti because it has the largest oscillation

amplitude. This gives way to OECs where Case 5, and some instances Case 1, are the

constraining factor. Note that this crossover point occurs between ti = 8ms and 10ms,

corresponding to the jump in performance in Figure 10.13.
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Figure 10.14: Variation of constraining input condition case vs. metric calculation

The results demonstrate that the selected controller performance metric, using ti =

10ms, is outside the range dominated by the initial conditions, and that the magnitude of

the results are typical for a range of metric calculation durations. Therefore, the suitability

of the chosen metric and OEC are validated.
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10.3 Conclusions

Finding 10.1 determined that the DB-tuned controller suffers from decreased performance

when evaluated in the higher-fidelity coupled model. This provides specific, numerical

evidence for the possibility that tuning a controller with the state-of-the-art methodology

could result in a discrepancy due to the difference in fidelity between the models used and

the source of truth, though in this instance the change was not determined to be significant.

Finding 10.3 established that the MF-tuned controller had better performance than the

DB-tuned controller when evaluated in the coupled model. Since Finding 10.2 verified

that the performance of the DB-tuned controller is better than the MF-tuned controller in

the baseline model, the resulting improvement in the coupled model must arise from the

multifidelity controller tuning process, rather than simply due to the DB-tuned controller

being sub-optimal.

The progression of design knowledge can also be considered, starting from the DB-

tuned controller and its performance prediction in the baseline model. This is the result

that would be delivered in the state-of-the-art methodology. Validating this result in the

coupled model reveals a performance that is 11.8% worse. By then applying the multifi-

delity controller tuning methodology, a controller design is found which recoups some of

that performance loss, with a decrease in error of about 8.7% from the true value. Though

the magnitudes of these changes do not meet the established threshold for significance,

the methodolgy results in a measurably improved controller performance over the state of

the art. There is also evidence to suggest that perturbation of the OEC could result in a

significant improvement.

The Overarching Hypothesis is accepted. When the controller for the problem of inter-

est was tuned using the multifidelity method developed from Experiment 3, the controller

had better performance than one trained using the baseline methodology. Figure 10.15

presents a summary of the investigation performed through the demonstration experiment.
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The limitations of the demonstration are largely due to the scope of the problem of in-

terest. As with the conclusions from Experiment 3, the selection of a controller architecture

and the defaulting of control gains limits the maximum performance that can be achieved.

Furthermore, the number of coupled simulations was limited. On one hand this prevents

the OEC perturbation from re-running the experiment at different definitions with opti-

mization, limiting the conclusions there to speculation. On the other hand it means that the

experiment could not determine that the MF-tuned controller was the true optimum, mean-

ing that the multifidelity method could have potentially resulted in more improvement.

Overarching Hypothesis:
If the entry controller is tuned using a coupled, unsteady aerodynamic and 

control system model, the performance of the entry controller will be improved

Experiment 4:
Demonstration of Controller Tuned with Multifidelity Methodology

Finding 10.1: The DB-tuned 
controller has decreased 

performance in the coupled model

Finding 10.2: The MF-tuned 
controller has worse performance 
than the DB-tuned controller when 

evaluated in baseline model

Finding 10.3: The MF-tuned 
controller has better performance 
than the DB-tuned controller when 

evaluated in the coupled model

Finding 10.4: The MF-tuned 
controller improvement was achieved 

by the optimization process

Experiment 4 Conclusion:
The multifidelity controller tuning process resulted in a controller that achieved 

better performance than a controller tuned using the state-of-the-art 
methodology. Overarching Hypothesis is accepted.

Figure 10.15: Summary of investigation performed through Experiment 4
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CHAPTER 11

CONCLUSIONS AND RECOMMENDATIONS

This chapter presents the conclusions of the dissertation. The conclusions from the numer-

ical experiments performed in previous chapters are summarized, and their consequences

to the overarching research objective are discussed. Also highlighted are the primary aca-

demic contributions from the development and implementation of this work. The chapter

ends with a discussion of future work that can extend the developed methodology or lever-

age the primary contributions.

11.1 Summary of Conclusions

Active guidance and control during EDL is a key enabler for reducing landing uncertainty

and achieving precision landing on Mars, especially with the advent of entry technologies

that will invalidate the heritage of Mars entry vehicle design. However the guidance algo-

rithm can be a double-edged sword: while it can correct for error propagation in downrange

and crossrange position, it is also susceptible to uncertainty in the unsteady behavior of the

aerodynamics, and interactions between the controller, the control system, the aerodynam-

ics, and flight dynamics.

Traditional methods for controller tuning have historically relied on aerodynamic and

control interaction models populated by quasi-static aerodynamic coefficients. The un-

certainty model is used as a catch-all for the time-dependent effects beyond the moment

damping coefficient, either from the naturally unsteady aerodynamics and control system

behavior, or from the unsteady control system operation as a result of commands from the

controller. While satisfactory for the common design heritage of Mars entry vehicles, this

runs contrary to the desire for reduced uncertainty when anticipating the development of

new vehicles with increased design and technological uncertainty.
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Coupled simulation of aerodynamics, flight dynamics, and guidance and control sys-

tems allows for the unsteady interaction to be directly modeled and evaluated. Advances

in computing power are constantly increasing the feasibility of running more and longer-

duration multiphysics simulations. However, this cost is still incompatible with the thou-

sands of runs necessary for the Monte Carlo simulations used to determine satisfactory

controller gains.

As such, multi-fidelity optimization is a key enabler for adapting the controller tun-

ing methodology to leverage these coupled simulations. The high-fidelity coupled simula-

tions provide quantitative information about controller performance, while a lower-fidelity

model is constructed to explore the design space. Conveniently, the byproducts of the

high-fidelity model — the trajectory and aerodynamic data — can be used to populate the

low-fidelity model.

The overarching research objective, which guided the problem formulation, is restated

below:

Research Objective

Develop an entry controller tuning methodology that directly accounts for coupled,

unsteady entry vehicle aerodynamic and control system behavior.

This overarching objective was decomposed into the following sub-objectives:

1. Develop a method for modeling the coupled, unsteady behavior of entry vehicle aero-

dynamics, control system, flight dynamics, and guidance and control systems.

2. Develop a method for incorporating this model into the process of entry controller

tuning.

3. Quantify the change in entry controller performance between the developed method-

ology and a baseline representing the state of the art.
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In order to achieve that overarching objective, a multifidelity controller tuning method-

ology was developed to feasibly enable the tuning of a controller using a model that coupled

high-fidelity aerodynamics, flight dynamics, control mechanism, and guidance & control

modeling. A series of numerical experiments was conducted to quantify the capability

gap, inform the implementation of the methodology, and quantify its performance for the

problem of interest.

Experiments 1.1 and 1.2, documented in Chapter 7, sought to verify the capabilities of

the coupled model to predict the unsteady, coupled behavior exhibited by a blunt-body entry

vehicle in the supersonic regime. This was achieved by running time-accurate simulations

of the vehicle both in free flight (Experiment 1.1) and with open-loop control actuation

(Experiment 1.2), and comparing the trajectory and aerodynamic results to the predictions

made in a baseline model designed to represent the current state of the art for atmospheric

entry vehicles.

Both experiments found that, for the problem of interest, the coupled model success-

fully modeled the unsteady, coupled behavior expected from the literature review. In gross

terms, the trajectories showed deceleration, heaving in the vertical direction, and pitch os-

cillation subject to changes in amplitude due to aerodynamic damping. Importantly, the

high-frequency behavior of the coefficients reflected the unsteady nature of the subsonic

wake on the afterbody of the vehicle. Comparisons of the trajectory and aerodynamic com-

ponents to the results of the baseline model showed deficiencies in the latter resulting from

the inability to represent the time-dependent behavior of the flow. In particular, prediction

of the effect of pitch damping — a significant concern for bluff bodies in the low supersonic

regime — was found to produce a significant enough difference in the pitch response to be

of potential impact on the precision of the guidance and control.

A comparison between the results of Experiments 1.1 and 1.2 found that the discrep-

ancies between the coupled and baseline models were exacerbated for the simulations with

open-loop control actuation, i.e., with the introduction of the control mechanism interac-
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tion with aerodynamics and flight dynamics. Thus the experiments provided confirmation

that the use of the coupled model could be beneficial for the problem of interest. Even for

a vehicle and control mechanism with a more benign interaction than is found in the litera-

ture (i.e., a vehicle with RCS), the discrepancies elicited between the coupled and baseline

models were measurable and could be evaluated in terms of their significance to real-world

landing precision criteria.

While Experiments 1.1 and 1.2 had demonstrated the capability of the coupled model to

support design activities, they did not address the issues of feasibility inherent in the use of

high-cost time-accurate CFD simulation for activities that require many flight simulations.

This would require the multifidelity methodology that paired execution of the high-fidelity

coupled model with a lower-fidelity model to allow inexpensive exploration of the design

space. The methodology itself prompted two research questions on its implementation: the

design of the low-fidelity model, and the method for using the multiple levels of fidelity

available to the optimizer.

Experiment 2 sought to answer the first question: how can the low-fidelity model ef-

fectively utilize the unique data products produced by the coupled model: the new, time-

accurate aerodynamic and trajectory data generated from each simulation? The experiment

investigated the performance of candidate aerodynamic surrogate models under the sim-

ulated process of training that they would experience in the multifidelity tuning method-

ology. A quasi-linear parametric model, a feed-forward neural network (FFNN), and a

time-dependent neural network (TDNN) were evaluated against the baseline aerodynamic

database in terms of their error in predicting the aerodynamic and (when paired with a flight

mechanics model) the trajectory response for free-flight simulations made in the coupled

model.

Each surrogate model was found to have error convergence with the coupled simulation

response, in cases with both interpolation and extrapolation in the flight conditions. General

characteristics were determined about the relative performance of the surrogate models.
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The neural-network-based models, being non-parametric, were found to have superior error

convergence in the aerodynamic predictions than the parametric quasi-linear and database

models, given a large enough set of training data. However, it was noted that with an

insufficient set of training data, the neural networks suffered from increased error in the

trajectory predictions due to extrapolation. Since, the pitch response was of paramount

importance for the problem of interest, the surrogate with the best performance for that

response, the FFNN, was selected for implementation into the methodology. This model

had the best balance between stability in terms of error propagation (a problem noted for

the TDNN) and leveraging the non-parametric nature. Subsequent evaluation of the FFNN

through its use in a repetition of Experiments 1.1 and 1.2 verified its suitability in both

free-flight and open-loop simulations for the problem of interest.

Experiment 3 was designed to answer the second of the research questions related to

the methodology of controller tuning: can the methodology effectively utilize the results

of two flight models — each with a different level of fidelity — to reduce the cost of

controller tuning? Expressed in another way: given a fixed number of optimization oper-

ations, which method would result in the better controller? The controller tuning process

was executed using two alternatives of the methodology: a filtering-based method which

relied on the quasi-hierarchical relationship between the two models (a relationship which

was validated in Experiment 2) to passively improve the accuracy of the controller perfor-

mance prediction, and a fusion-based method which combined the controller performance

responses from the high- and low-fidelity models to further correct the prediction .

The experiment found that both alternatives were able to tune the PID-based controller

selected for the problem of interest. The filtering-based method was determined to have

yielded a better result with fewer iterations than the fusion-based method. However, this

was found to be the result of the random nature of sampling, not due to the behavior of

the filtering-based method. The fusion-based method actually yielded a more accurate un-

derstanding of the controller gain design space within the region most heavily sampled by
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both methods. In addition, the fusion-based model also yielded a more accurate aerody-

namic surrogate model. Based on these results, a synthesis of the two alternatives was used

for implementation into the methodology: one which leveraged the ability of the fusion-

based method to explore the design space, but which had the stability of the filtering-based

method to account for sensitivity of the data fusion.

Based on the findings of Experiments 2 and 3, the components of the multifidelity

controller tuning methodology were identified and selected. This enabled the evaluation of

the methodology with respect to the overarching research objective.

Experiment 4 served as a demonstration of the methodology using the problem of inter-

est. Two entry controllers were tuned for the vehicle: the “DB-tuned” controller tuned us-

ing the state-of-the-art methodology (using an aerodynamic database and a filtering-based

method to identify the best design), and the “MF-tuned” controller tuned using the de-

veloped methodology. Each of these controllers was evaluated in both the coupled and

baseline models to compare their relative performance. The experiment found that, for

the selected performance requirement, the DB-tuned controller suffered from a decrease in

performance from the prediction made in the baseline model to the results of the coupled

simulation (thus extending the conclusions of Experiments 1.1 and 1.2 for simulations with

closed-loop control actuation). This performance loss was ameliorated by the MF-tuned

controller.

Since the multifidelity controller tuning methodology uses the coupled model, the method-

ology can be said to directly account for coupled, unsteady aerodynamic and control sys-

tem behavior that is exhibited by the IMMA-equipped SIAD vehicle. Furthermore, the

results of Experiment 4 show that the methodology yielded measurably better results than

the state-of-the-art methodology. Therefore, the overarching research objective has been

achieved, when applied to the problem of interest.

Beyond the conclusions reached within the bounds of the overarching research objective

and the assumptions laid out in Section 4.1, further discussion can be made for two points
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related to significance in real-world applications.

First, where the results of Experiments 1.1, 1.2, 2, and 4 can be directly evaluated

against the threshold for tracking error significance established from literature, only in Ex-

periments 1.2 and 2 was this threshold met. The perturbations in OEC performed alongside

Experiment 4 indicate that the results may be significant for evaluations that deemphasize

the initial conditions, but there is not enough evidence to prove that this is the case. How-

ever, if the complexity of the vehicle had resulted in a greater difference between the cou-

pled and baseline models, there is no indication that the developed methodology would not

be capable of converting that into performance benefits for an MF-tuned controller.

The second point is computational cost. The number of time-accurate CFD simulations

used in the demonstration of the methodology can be compared to the change in perfor-

mance from the state of the art. From an engineering standpoint, using the methodology

to tune a controller for the vehicle of interest is feasible but not affordable. However, the

results of the experimentation provide a quantified starting point using a vehicle with a rel-

atively benign aerodynamic/control mechanism interaction. This indicates that the method-

ology can be utilized for vehicles with more complex interactions, such as entry vehicles

with active RCS.

Figure 11.1 presents a summary of the experimental conclusions used to develop the

methodology, and the demonstration that verifies that the methodology meets the Overar-

ching Research Objective.

11.2 Contributions

The primary contributions resulting from the development of the technical approach and

execution of the experiments are listed below:

1. This work provided the first demonstration of the POST2/FUN3D coupled flight

model environment executing a simulation with trajectory-propagator-centric guid-

ance and control modeling. The improved functionality beyond CFD-RBD simula-
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Experiment 4 Conclusion:
The multifidelity controller tuning process resulted in a controller that achieved 

better performance than a controller tuned using the state-of-the-art 
methodology. Overarching Hypothesis is accepted.

Experiment 1.1 Conclusion:
The difference in free-flight 

response between the models 
is measurable but not 

significant for the problem of 
interest. Hypothesis 1.1 is 

accepted.

Experiment 1.2 Conclusion:
The difference in open-loop 

response between the models 
is measurable and significant 

for the problem of interest. 
Hypothesis 1.2 is accepted.

Experiment 3 Conclusion:
The filtering-based method had 

lower computational cost to 
achieve a better result than the 

fusion-based method. Hypothesis 
2.2 is rejected.

Experiment 2 Conclusion:
A feed-forward neural network is 
capable of being trained with the 
data output of the coupled model 

with superior error convergence to 
the baseline database. Hypothesis 

2.1 is accepted.

Combined Exp. 1.1 and 1.2 
Conclusion:

The coupled aerodynamics, flight 
dynamics, and control mechanism 
model is the correct model for an 

entry vehicle with unsteady, 
coupled behavior. Hypothesis 1 is 

accepted.

Complete implementation of multifidelity controller tuning methodology utilizing 
coupled aerodynamics, flight mechanics, and control mechanism model

Research Objective:
Formulate and implement  an entry controller tuning methodology that directly accounts for 

coupled, unsteady entry vehicle aerodynamic and control system behavior

Figure 11.1: Summary of experimental conclusions
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tion serves to demonstrate the usefulness of the environment for modeling problems

of interest in atmospheric entry.

2. An evaluation made into aerodynamic surrogate alternatives for entry vehicles found

that models without prescribed form achieved better trajectory and aerodynamic re-

sults, especially in pitch damping. The use of the surrogate models themselves is

possible, but this also provides evidence that further advantage can be made by ef-

fectively applying the methodology for a design activity that is less complex than

controller tuning.

3. Related to the construction of the aerodynamic surrogates, the work demonstrated

the sampling of a flight condition design space using combined free-flight, open-

loop, and closed-loop time-accurate simulations for entry vehicles.

4. A comparison was established between state-of-the-art flight simulation method and

coupled CFD-RBD-FCS model for entry vehicles with IMMA control mechanisms.

The measurement of the differences serves as a baseline for investigating more com-

plex control mechanism interaction (e.g., RCS).

5. The execution of the methodology demonstrated the adaptation of design activities

to enable the use of high-cost coupled simulation where it would previously have

been infeasible. This result furthers the goal of applying computational multiphysics

simulation laid out in the CFD Vision 2030 [106].

11.3 Recommendations for Future Research

The previously-discussed findings, conclusions, and limitations of the experimental cam-

paign form the basis of recommendations for future The coupled model and multifidelity

controller tuning methodology, in their current iteration, represent a minimum viable prod-

uct whose use has only been established for the problem of interest. As such, the recom-
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mendations for future work focus on tasks that can expand the scope and utility of these

two elements.

Evaluation of a Vehicle Exhibiting More Complex Behavior

A limitation noted in many of the experiments was the small magnitude in difference be-

tween the coupled and baseline models. This is understood to be the result of the vehicle

and control mechanism selection for the problem of interest. A logical continuation of the

work presented in this dissertation would be to investigate the application of the method-

ology to a vehicle with more complex interactions between aerodynamics, control mecha-

nism, and flight dynamics. As noted in Section 6.1, the flat afterbody of the SIAD results

in benign separation and attachment behavior, where a more traditional conical afterbody

would excite more complex dynamic attachment behavior. All currently proposed Mars

entry vehicles, as well as many Earth entry vehicles, use RCS for directional control and

oscillation damping. As found in the literature, the interaction between RCS plumes and

the fluid flow around the vehicle can result in complex behavior. As such, an RCS-equipped

vehicle could have a greater deficiency between the state-of-the-art modeling and the use

of coupled CFD-RBD-FCS models. Thus, an entry controller could have the potential to

be further improved by the multifidelity controller tuning methodology. This work would

also necessitate the investigation of new surrogate model alternatives that are compatible

with the RCS control mechanism state.

Refinement of Multifidelity Data Fusion and Optimization Methods

As noted in the Experiment 3 conclusions, in addition to the binary investigation made in

Experiment 3 of whether to use data fusion, the optimization methodology presents other

design choices that can be investigated. Even within the architecture proposed, there are

more design choices that can be explored: variation of the number of high- and low-fidelity

model executions, the choice in exploration/exploitation of the design space, or evaluation
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based on minimizing error in the aerodynamic responses in addition to the controller met-

ric response. Other multifidelity corrections can also be investigated; resolving the noted

deficiencies in the implementation of the Kriging-based corrector could increase the cost of

the optimization process. Beyond the architecture of the developed methodology, further

investigation can be made into other optimizers and multifidelity surrogate alternatives.

Application to Aerodynamic Surrogate Modeling Beyond Scalar Coefficients

As noted in the Experiment 2 conclusions, the chosen aerodynamic surrogate models were

limited to architectures that predicted the scalar aerodynamic coefficients. This scope was

applied to the alternatives in order to enable full comparison with the baseline aerodynamic

database. The true results of the coupled model — a fully converged flow volume at each

time step — were reduced to at most six coefficients. However, without this limitation,

the coupled model can be used to populate more complex reduced-order model forms. For

example, ROMs with proper orthogonal decomposition (POD) can be used to construct a

surrogate of the pressure and shear distribution over the surface of the vehicle, preserv-

ing the spatial relationships from the flow solution. The ROMs can be used to reconstruct

coherent structures , giving a much more physically relevant representation of flow phe-

nomena such as attachment/detachment, or impingement/entrainment due to RCS.

Leveraging Advanced Control Systems

As noted in the conclusions for Experiments 3 and 4, the controller architecture selected

for the problem of interest, while capable of controlling the vehicle, is not the optimum.

Beyond allowing all of the controller gains to be tuned, different controller architectures

can potentially provide more room for improvement and thus more significant differences

compared to a DB-tuned controller.

The motivation for the multifidelity tuning methodology lies in the need to reconcile

the high cost of the coupled model with the large number of simulations required by the
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state-of-the-art methodology for tuning the chosen controller architecture. However, more

advanced control systems may both inherently require fewer simulations, and have the

potential to extract more information out of each coupled simulation. Using an architecture

like model predictive control [169] could be tuned in a way that is more automatic and less

dependent on the expertise of controls engineers. Furthermore, adaptive control systems

could leverage the unique ability of the coupled simulation to run a high-fidelity simulation

with no a priori aerodynamic model. As an example, the methodology behind the Learn

to Fly development effort [239] could be extended, allowing the entry vehicle to determine

its own excitation of the control system in order to identify the system.
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APPENDIX B

INPUT FILE EXAMPLES

The following is an example of the input files used to execute a coupled simulation. Note

that the input file is configured for a 2-axis IMMA, though in all of the simulations the

y-axis mass was not actuated. The examples shown are for initial condition case 7 from

Table 7.1.

B.1 POST2 Input Files

B.1.1 POST2 .inp file

This is the main POST2 input file. It includes variables that are not changed with different

initial condition cases. It also models the controller and control mechanism.

srchm = 0, //no search or optimization
ioflag = 3, //use metric input//metric output
ipro = -1, //print final trajectory only
title=’SIAD IMMA’,

*declare CONST_G 9.80665, //gravitational accel, m/sˆ2

*declare CONST_SOS 343.349754, //speed of sound, m/s

*declare CONST_ATMDENS 0.269, //freestream density, kg/mˆ3

*declare CONST_ATMTEMP 292.8, //freestream temperature, K

*declare INP_MACH 2.1, //initial Mach number

*declare INP_TMAX 0.06, //maximum simulation time, s

*declare INP_DT 2.35381473e-05, //physical time step, s

*declare INP_XAEROD 0.1577, //aerodynamic reference
//point x-position/d

*declare INP_D 0.03556, //body diameter, m

*declare INP_MB 0.08727384, //body mass, kg

*declare INP_IXXB {5.52500E-06}, //body inertia components

*declare INP_IYYB {3.00700E-06},

*declare INP_XCGD 0.1577, //body xcg/d

*declare INP_MI 0.00229668, //IMMA mass
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*declare INP_XCGY 0.1527, //y-axis mass xcg/d

*declare INP_XCGZ 0.1627, //z-axis mass xcg/d

*declare INP_LIM 0.016, //movement limit of imma.

*declare INP_IXXM 6.7352472e-09, //imma inertia

*include ’SIADimma.dat’

*declare TRIM_ON 1, //turn on imma trim

*declare CONTROLLER_ON 1, //turn on imma controller

*declare INTER_MODEL_ON 1, //imma interaction model

*declare OPEN_LOOP_ON 0, //drive imma by open-loop

*declare AERO_ON 1, //turn on aero

event = 1, //event or phase number
fesn = 100, //final event number
maxtim = {INP_TMAX}, //maximum allowable time
dt = {1 * INP_DT}, //timestep (s)
altmax = 5.0e6, //maximum allowable altitude
pinc = {1 * INP_DT}, //print interval
prnc = {1 * INP_DT}, //plot interval, 0=dt
npc(2) = 1, //Integrator, 1=RK4
npc(19) = 1, //print input conditions
npc(24) = 1, //activate generalized integral vars
CIXXD = 1, //full effect of inertia

//derivative on c.o.a.m.
PRNT(97) = AMXB,AMYB,AMZB,CM,CLL,CW,CMQ,

XL,YL,ZL,VXL,VYL,VZL,ROLI,YAWI,PITI,OMGBD,
IXX,IYY,IZZ,IXY,IXZ,IYZ,IXXD,IYYD,IZZD,IXYD,
IXZD,IYZD,XCG,YCG,ZCG,DXCG,DYCG,DZCG,
GENVQ1,GENVQ2,GENVQ3,GENVQ4,GENVQ5,GENVQ6,
GENVQ7,GENVQ8,GENVQ9,GENVQ11,GENVQ12,GENVQ13,
GENVQ14,GENVQ15,GENVQ16,GENVQ21,GENVQ22,GENVQ23,
GENVQ24,GENVQ25,GENVQ26,GENVQ31,GENVQ32,
GENVQ100,GENVQ101,GENVQ102,GENVQ103,GENVQ104,
GENVQ105,GENVQ106,GENVQ110,GENVQ111,GENVQ112,
GENVQ113,GENVQ114,GENVQ115,GENVQ116,
GINT1,GINT2,GINT3,GINT4,GINT5,GINT6,
TMXBENG1,TMXBENG2,TMYBENG1,TMYBENG2,TMZBENG1,
TMZBENG2,THRFX1,THRFX2,THRFX3,THRFX4,THRFY1,
THRFY2,THRFY3,THRFY4,THRFZ1,THRFZ2,THRFZ3,THRFZ4,
TMXB,TMYB,TMZB,PSTOP//variables to be printed

c Input environmental characteristics
npc(5) = 1, //atmo model
prest = pres constant 0 2.2584809E+04, //pressure, Pa
atemt = atem constant 0 {CONST_ATMTEMP}, //atmo temp, K
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cst = cs constant 0 {CONST_SOS}, //sonic speed, m/s
denst = dens constant 0 {CONST_ATMDENS}, //density, kg/mˆ3
atmosk(1) = 4.026265490842E+02, //constant 1
atmosk(2) = 3.487441492199E-03, //constant 2

c Mass Properties
npc(30) = 4, //N-stage weight calculation
nstpl = 1, //(we have just one stage)
nstph = 3,
wstpd(1) = {INP_MB * CONST_G}, //body
xcgs1t = ’xcgs1t’,constant,0,{INP_XCGD * INP_D},
ixxs1t = ’ixxs1t’,constant,0,{INP_IXXB},
iyys1t = ’iyys1t’,constant,0,{INP_IYYB},
izzs1t = ’izzs1t’,constant,0,{INP_IYYB},
wstpd(2) = {INP_MI * CONST_G}, //y-axis mass
xcgs2t = ’xcgs2t’,constant,0,{INP_XCGY * INP_D},
ycgs2t = ’ycgs2t’,monovar,gint2,0,lin_inp,noxt,
{-INP_LIM},{-INP_LIM},{INP_LIM},{INP_LIM},
zcgs2t = ’zcgs2t’,constant,0,0.0,
ixxs2t = ’ixxs2t’,constant,0,{INP_IXXM},
iyys2t = ’iyys2t’,constant,0,{INP_IXXM},
izzs2t = ’izzs2t’,constant,0,{INP_IXXM},
wstpd(3) = {INP_MI * CONST_G}, //z-axis mass
xcgs3t = ’xcgs3t’,constant,0,{INP_XCGZ * INP_D},
ycgs3t = ’ycgs3t’,constant,0,0.0,
zcgs3t = ’zcgs3t’,monovar,gint4,0,lin_inp,noxt,
{-INP_LIM},{-INP_LIM},{INP_LIM},{INP_LIM},
ixxs3t = ’ixxs3t’,constant,0,{INP_IXXM},
iyys3t = ’iyys3t’,constant,0,{INP_IXXM},
izzs3t = ’izzs3t’,constant,0,{INP_IXXM},

c controller equations

*declare INP_CMDMAX {2 * INP_LIM} //maximum commanded zcmd

*declare INP_DB 0.5, //deadband for aoa error

*declare Kz00 -0.003758128376633,

*declare Kz01 1.735238577535138e-05,

*declare Ky00 0.0,

*declare Ky01 0.0,

genveqn(1) = "alpha - CMD_A" //aoa error
genveqn(2) = "beta - CMD_B" //beta error
gderv(5) = "genvq1" //alpha error integral
gderv(6) = "genvq2" //beta error integral
//state is aerr, berr, adot, bdot, aint, bint, dz, dy
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*if def TRIM_ON
//commanded trim position of masses
genveqn(11) = "Kz00*CMD_A + Kz01*sign(CMD_A*CMD_A,CMD_A)"
genveqn(21) = "Ky00*CMD_B + Ky01*sign(CMD_B*CMD_B,CMD_B)"

*endif

*if def CONTROLLER_ON
\\building controller gain states
genveqn(12) = "Kz02*genvq1"
genveqn(13) = "Kz03*alpdot"
genveqn(14) = "Kz04*gint5"
genveqn(15) = "Kz05*genvq116"
genveqn(16) = "Kz06*genvq115/1000"

genveqn(22) = "Ky02*genvq2"
genveqn(23) = "Ky03*betdot"
genveqn(24) = "Ky04*gint6"
genveqn(25) = "Ky05*genvq106"
genveqn(26) = "Ky06*genvq105/1000"

*endif

*if def OPEN_LOOP_ON
\\commanding open-loop IMMA actuation
genveqn(3) = "(time >= 0.001)? -0.016 : 0.0"
genveqn(4) = "(time >= 0.010)? -0.016 : genvq3"
genveqn(5) = "(time >= 0.035)? -0.016 : genvq4"
genveqn(7) = "genvq5"

*else
//if z mass is around trim position
genveqn(31) = "(abs(gint4-genvq11)<=(0.4*INP_LIM))? 1:0"
//if alpha error is within deadband
genveqn(32) = "(abs(genvq1)<=INP_DB)? 1 : 0"
//z cmd ramp for non-trim terms
genveqn(3) = "(genvq31*genvq32>0)? 1 : min(max(0.1/(

abs(genvq1)-0.4) - 0.025*abs(genvq1)
+ 0.0125,0.0),1.0)"

genveqn(4) = "1" //y cmd ramp for non-trim terms
//commanded z-mass position
genveqn(5) = "genvq11 + genvq3*(genvq12 + genvq13

+ genvq14 + genvq15 + genvq16)"
//commanded y-mass position
genveqn(6) = "genvq21 + genvq4*(genvq22 + genvq23

+ genvq24 + genvq25 + genvq26)"
//limiting maximum commanded values
genveqn(7)="sign(1.0,genvq5)*min(abs(genvq5),INP_CMDMAX)"
genveqn(8)="sign(1.0,genvq6)*min(abs(genvq6),INP_CMDMAX)"
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*endif

c IMMA equations
//force on y-imma
genveqn(100) = "(INP_K * (genvq8 - gint2) - INP_C * gint1)"
genveqn(101) = "genvq100 / INP_MI" //ddy ideal
//is y-mass at the limit?
genveqn(102) = "(abs(gint2) >= INP_LIM)? 1 : 0"
//do the signs of ddy and y match?
genveqn(103)="(sign(1.0,genvq101)*sign(1.0,gint2) > 0)? 1:0"
//do the signs of dy and y match?
genveqn(104) = "(sign(1.0,gint1) * sign(1.0,gint2) > 0)? 1:0"
genveqn(105) = "(genvq102 * genvq103 > 0)? 0 : genvq101"
genveqn(106) = "(genvq102 * genvq104 > 0)? 0 : gint1"
gderv(1) = ’genvq105’ // integrate to get dy
gderv(2) = ’genvq106’ // integrate to get y

//force on z-imma
genveqn(110) = "(INP_K * (genvq7 - gint4) - INP_C * gint3)"
genveqn(111) = "genvq110 / INP_MI" //ddz ideal
//is z-mass at the limit?
genveqn(112) = "(abs(gint4) >= INP_LIM)? 1 : 0"
//do the signs of ddz and z match?
genveqn(113) = "(sign(1.0,genvq111)

* sign(1.0,gint4) > 0)? 1 : 0"
//do the signs of dz and z match?
genveqn(114) = "(sign(1.0,gint3)

* sign(1.0,gint4) > 0)? 1 : 0"
genveqn(115) = "(genvq112 * genvq113 > 0)? 0 : genvq111"
genveqn(116) = "(genvq112 * genvq114 > 0)? 0 : gint3"
gderv(3) = ’genvq115’ // integrate to get dz
gderv(4) = ’genvq116’ // integrate to get z

c Engines to model internal reaction forces
npc(9) = 1, //finite-burn n-engine prop
neng = 4, //number of engines
iengmf(1) = 1 1 1 1,
iwdf(1) = 1 1 1 1,
ithrvec(1) = 1 1 1 1,
menstp(1) = 1 1 1 1,
mentnk(1) = 1 1 1 1,
gxp(1) = {INP_XCGY * INP_D} {(2*INP_XCGD-INP_XCGY) *INP_D}

{INP_XCGZ * INP_D} {(2*INP_XCGD-INP_XCGZ) *INP_D},
thrvecx(1) = 0 0 0 0,
thrvecy(1) = -1 1 0 0,
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thrvecz(1) = 0 0 -1 1,
thrclkvecx(1) = 1 1 1 1,
thrclkvecy(1) = 0 0 0 0,
thrclkvecz(1) = 0 0 0 0,
//create as table, zero because not accounting for fuel
wd1t = ’wd1t’ constant 0 0.0
wd2t = ’wd2t’ constant 0 0.0
wd3t = ’wd3t’ constant 0 0.0
wd4t = ’wd4t’ constant 0 0.0
ae1t = ’ae1t’ constant 0 0.0
ae2t = ’ae2t’ constant 0 0.0
ae3t = ’ae3t’ constant 0 0.0
ae4t = ’ae4t’ constant 0 0.0

*if def INTER_MODEL_ON
//thrust table
tvc1t = ’tvc1t’,monovar,genvq100,0,lin_inp,xtrap,
-1.0,0.5,1.0,-0.5,
tvc2t = ’tvc2t’,monovar,genvq100,0,lin_inp,xtrap,
-1.0,-0.5,1.0,0.5,
tvc3t = ’tvc3t’,monovar,genvq110,0,lin_inp,xtrap,
-1.0,0.5,1.0,-0.5,
tvc4t = ’tvc4t’,monovar,genvq110,0,lin_inp,xtrap,
-1.0,-0.5,1.0,0.5,
tvc1m(1) = 1,
tvc2m(1) = 1,
tvc3m(1) = 1,
tvc4m(1) = 1,

*else
tvc1m(1) = 0,
tvc2m(1) = 0,
tvc3m(1) = 0,
tvc4m(1) = 0,

*endif

c Input initial state
npc(4) = 2, //input position in spherical coords
gdalt = 0.0, //geodetic altitude
long = 0.0, //initial east long. w.r.t. prime meridian
gclat = 0.0, //initial geocentric latitude
npc(3) = 3, //input vel., azimuth, and flight path angle
vela = {INP_MACH * CONST_SOS}, //atmo-relative velocity
azvela = 0.0, //azimuth angle (from north)
gammaa = 0.0, //flight path angle (from horizontal)
dof = 6 //turn on 6-degree-of-freedom calculation
iguid(1) = -2 //type of guidance (-2 for no steering)
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iguid(12) = 3 //attitude initialization
iguid(22) = 1 //attitude rate (1=body rates)
rolr = 0 //initial attitude (deg)
yawr = 0.0
rolbd = 0.0 //initial attitude rate (deg/s)
yawbd = 0.0

c Aerodynamic Properties

*if def AERO_ON
npc(8) = 5, //custom aero module

*else
npc(8) = 1,

*endif
//aerodynamic reference point in body ref frame
xreft = xref constant 0 {INP_XAEROD * INP_D},
sref = {0.7853982 * INP_Dˆ2}, //ref area (mˆ2)
lref = {INP_D}, //ref length (m)
drefr = {INP_D}, //roll moment reference length
drefp = {INP_D}, //pitch moment ref. length
drefy = {INP_D}, //yaw moment ref. length

c *include ’aero_range.dat’
c *include ’aero_range_cmq_at.dat’
c c *include ’aero_range_cmq_qh.dat’

event = 100, //final event
critr = ’time’, //variable to initiate phase
value = {INP_TMAX}, //value of critr to start phase
endprb = 1, //end the problem
endjob = 1, //end the job

B.1.2 inputs.dat

This file contains the variables that are changed depending on the input condition case or

controller design.

*declare INP_K 10000, //IMMA spring constant, N/m

*declare INP_C 7.95, //IMMA damping constant, N*s/m

*declare CMD_A -2.5, //commanded AoA, deg

*declare CMD_B 0, //commanded bega, deg

*declare Ky02 0, //controller gains

*declare Ky03 0,
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*declare Ky04 0,

*declare Ky05 0,

*declare Ky06 0,

*declare Kz02 0.000390994,

*declare Kz03 0.000519268822586,

*declare Kz04 1.2132474121,

*declare Kz05 -0.017790936,

*declare Kz06 -0.000858182379027,
gint2 = 0, //y imma initial position, m
gint4 = 0, //z imma initial position, m
pitr = 5.024988627326E+00, //initial pitch, deg
pitbd = 2.356090702830E+02, //initial pitch rate, deg/s

B.2 FUN3D Input Files

B.2.1 fun3d.nml

The FUN3D namelist file specifies flow solver settings.

&project
project_rootname = ’SIAD’
/
&raw_grid
grid_format = ’aflr3’
/
&governing_equations
eqn_type = ’compressible’
viscous_terms = ’turbulent’
/
&reference_physical_properties
mach_number = 2.1
reynolds_number = 10545840.865
temperature = 292.8
angle_of_attack = 0
angle_of_yaw = 0
/
&force_moment_integ_properties
area_reference=9.931466590311E-04
x_moment_center=5.71711E-03
x_moment_length=3.556E-02
y_moment_length=3.556E-02
/
&turbulent_diffusion_models
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turbulence_model = ’des’
reynolds_stress_model = ’qcr2000’
/
&spalart
sarc = .true.
ddes = .false.
ddes_mod1 = .false.
cddes = 0.9750
/
&special_parameters
large_angle_fix = ’on’
/
&inviscid_flux_method
flux_limiter = ’hvanalbada’
flux_construction = ’dldfss’
first_order_iterations = 0
/
&nonlinear_solver_parameters
time_accuracy = ’2ndorderOPT’
schedule_iteration(1) = 1
time_step_nondim = 8.0818182E-03
subiterations = 75
schedule_iteration(2) = 75
schedule_cfl(1) = 60.0
schedule_cflturb(1) = 45.0
schedule_cfl(2) = 60.0
schedule_cflturb(2) = 45.0
temporal_err_control = .true.
temporal_err_floor = 0.1
/
&code_run_control
steps = 2000
restart_write_freq = 2000
restart_read = ’on’
/
&sampling_output_variables
primitive_variables = .true.
mach = .true.
temperature = .true.
/
&massoud_output
funtofem_include_skin_friction = .true.
/
&global
boundary_animation_freq=-1
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moving_grid = .true.
/
&boundary_output_variables
number_of_boundaries = 4
boundary_list = ’1,2,3,4’
primitive_variables = .true.
residuals = .true.
entropy = .true.
/

B.2.2 moving body.input

This file sets the FUN3D simulation to be driven by the Python-based API.

&body_definitions
n_moving_bodies = 1
body_name(1) = ’forced07’
body_frame_forces = .true.
dimensional_output = .true.
ref_velocity = 3.433498E+02
ref_density = 2.69E-01
ref_length = 1
n_defining_bndry(1) = 4
defining_bndry(1,1) = 1
defining_bndry(2,1) = 2
defining_bndry(3,1) = 3
defining_bndry(4,1) = 4
motion_driver(1) = ’external’
mesh_movement(1) = ’rigid’
output_transform = .true.
x_mc(1)=5.71711E-03
y_mc(1)=0.0
z_mc(1)=0.0
/
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