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Abstract

If the half-spaces of the form {z € R™ : z; < ¢} are extremal in
the isoperimetric problem for the product measure u”, n > 2, then p
is Gaussian.

1 Introduction

Let p be a probability measure on the real line R, and let p™ be the n—fold
tensor product of u with itself. Let A be a Borel set in R™, and for any A > 0,
let A* be its open h-neighbourhood (with respect to the Euclidean metric),
ie., A» = {z € R" : ||z — a||s < h for some a € A}. The isoperimetric
problem for (R™, u™) consists in minimizing

ur(Am), (1.1)
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among all the Borel sets A of y"—measure greater or equal to p, where p €
(0,1) and A > 0 are fixed numbers.

When p is a Gaussian measure, (1.1) attains its minimum at any half-
space of measure p, and therefore, this can be expressed as the isoperimetric
inequality

Wn(AP) >y (B"), (1.2)

where B is a standard half-space {z € R™ : z; < ¢} of p"~measure p, where
h > 0 is arbitrary, and where clearly ¢ depends only on p. This deep property
of Gaussian measures was discovered by V.N.Sudakov and B.S.Tsirel’son [7]
and independently by C.Borell [3]. Their proofs are similar and rely on
the isoperimetric property of the balls on the sphere (the Lévy—Schmidt
theorem). It should however be noted here, that the first instance in which
isoperimetric methods are applied to study Gaussian processes appears in
Landau and Shepp [5]; and that they already relied on the Lévy—-Schmidt
theorem. They showed, there, the extremal property of the half-spaces in
another closely related problem of isoperimetric nature. Later a different
proof of the extremal property of the half—spaces in the isoperimetric problem
was given, using rearrangement techniques in Gauss space, by A.Ehrhard [4].

Theorem 1.1a Let n > 2. Let p be a probability measure on R such that
(1.1) attains its minimum at the standard half-spaces, for all p € (0,1) and
h > 0. Then, if it is not a unit mass at a point, u 1s Gaussian.

The case n = 1 essentially differs from the case n > 2, since on the real
line, many interesting measures satisfy (1.2). For example, when p has a
continuous positive density, necessary and sufficient conditions for (1.2) to
hold are known (see [2], Sec.13). In particular p has to be symmetric about its
median and has to have finite exponential moment. In fact, p possesses these
two properties without any further assumption (see Proposition 2.6 below).
Moreover, should g be symmetric about zero and with finite variance, the
hypotheses of Theorem 1.la can be weakened.

Theorem 1.1b Letn > 2 and let p = 1/2. Let p be a symmetric about zero
probability measure on R, with finite variance, and such that (1.1) attains its
mainimum at the standard half-spaces, for all h > 0. Then, if it is not a unit
mass at zero, p 1s Gaussian.
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It is worthwhile here to note the crucial role of the Euclidean distance
in this characterization. For example, if ||z — a||2 is replaced in the defini-
tion of the enlargement A* by the supremum distance ||z — al|oo, then (1.2)
holds for a wide family of log-concave distributions [1] (see also [2], Sec.15).
In connection with the concentration of measure phenomenon, inequalities
similar to (1.2) and for various types of enlargements have been studied by
many authors (see, e.g., M.Talagrand [8], M.Ledoux [6] and the references
therein).

Clearly, the inequality (1.2) becomes stronger when the dimension n
grows, so in essence, Theorem 1.la,b concern the case of the plane (n = 2).
Moreover, under the assumptions of Theorem 1.1b, one can derive from (1.2)
that u is Gaussian by applying (1.2) to the half-plane

A(t) = {(azl,mg) S t}, t=0.

V2

Proof of Theorem 1.1b. Indeed, let £ and 7 be independent random variables
defined on some probability space (2, F,P), with common distribution u.
Then, the minimal value of the right-hand side of (1.2) provided u(B) > 1/2
is attained at B = {z € R?: z; < 0} and is equal to P{{ < h}. Analogously,
the minimal value of the left-hand side of (1.2) provided p(A(t)) > 1/2 is
attained for ¢t = 0. Since (A(t))* = A(t + h), we have P{(é +7)/v2 < A} >
P{¢ < h}, for all A > 0. Therefore,

Etn _ , [teplEtT oo _
Var(\/§>_4/o P{W>h}hdh§4/o P{¢ > h} hdh = Var (¢).

But Var ((f —|—77)/\/§) = Var (¢), hence for almost all (with respect to

Lebesgue measure) o > 0, P {(f +1)/V2 > h} = P{¢ > h}. Therefore,

this equality extends to all A > 0, and thus the random variables (¢ +7)/v/2
and ¢ are identically distributed. That is, the characteristic function f of ¢
satisfies equation f?(t/v/2) = f(t), for all ¢ real. It is then easy to see that
this equation characterizes the Gaussian distributions.

Theorem 1.1b is thus proved. Now, in order to establish Theorem 1.1a, we

study the one-dimensional case and prove that (1.2) implies the assumptions
of Theorem 1.1b. We do not know if the assumption on the finiteness of the
variance can be removed in this result.
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2 Necessary conditions when n=1

Given a probability measure p on the real line R, we set

F(z) = p((—o0,z2]), = € (—o00,+00],

Im(F)={F(z)>0:z € (—o0, +o0]},

S(F)={z € (—00,+00]: F(y) < F(z), for all y < z},

F~Y(p) = inf{z € (—o0, +0] : F(z) > p}, pe€(0,1].
F~!(p) is the minimal quantile of order p of F', indeed, since the function
F' is right—-continuous, the above infimum can be replaced by minimum. In
particular, for p € Im(F), F~(p) is the least solution to F(z) = p. Thus,
F(F~'(p)) > p, whenever p € (0,1], and F(F~*(p)) = p, for all p € Im(F).
S(F) (without the point z = +00) is a subset of the (closed) support of p.
It is also easy to see that u(S(F)) = 1.

Lemma 2.1 F is an increasing bijection from S(F) to Im(F), and F~! re-
stricted to Im(F) is its inverse. Moreover, F~1 is left—continuous on (0,1).

Lemma 2.2 For all p € (0,1],
a) F(F7'(p)) = p <= p € Im(F).
b) z > F~(p) <= F(z) > p, whenever z € (—oco, +0o0];
c) z < F~'(p) < F(z) < p, whenever z € S(F),.

Both these lemmas are elementary and so their proofs are omitted. Now, let
F and G be the respective distribution function of the probability measures
p and v.

Lemma 2.3 The map U = G (F) transforms p into v if and only if
Im(G) C Im(F).

Proof. For the "if part”, one can restrict U to S(F'). Let p = F(z), z € S(F),
g = G(t), t € (—o0,+o0], so that p € Im(F), ¢ € Im(G), hence g € Im(F).
Hence, by lemma 2.2 b) and c):

U)=G ' (F(z)) =G (p) <t Gt)2pe F(z)<ge 2z < Fi(g).

Therefore, u{U < t} = F(F~'(q)) = q, since ¢ € Im(F). The "only if’

statement is trivial.

Lemma 2.4 Assume that, for all p € (0,1) and h > 0,

F(F™(p) + h) < G(G™(p) + h). (2.1)
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Then, the map U = G~ '(F) transforms u into v, and for all z € S(F),
h >0,
Uz + h)<U(z)+ h. (2.2)

Proof. Letting in (2.1) h — 0, gives

F(F~(p)) < G(G™'(p)), (2:3)

whenever p € (0,1). Since F(F~}(1)) = G(G™*(1)) = 1, (2.3) also holds for
p = 1. Let p € Im(G), then by lemma 2.2a), G(G™'(p)) = p, hence by (2.3)
F(F~(p)) < p. But, as noted before, F(F~!(p)) > p, and so F(F~(p)) = p.
Again by lemma 2.2a), we obtain p € Im(F'). Hence, Im(G) C Im(F), and
by Lemma 2.3, the map U transforms p into v. Now take z € S(F). By
Lemma 2.1, F~'(F(z)) = z. Applying (2.1) to p = F(z), it thus follows that

F(z + k) < GU(z) + h).
Since F(z + h) > F(z) > 0, and since G™' is non—decreasing, we therefore

get
G(U(z) + h)).

(
It now remains to show that G™!(G(U(z) + h)) < U(z) + h. First note that
G 1(G(y)) <y, for all y such that G(y) > 0. Also, in case y = U(z) + h, we
have G(y) > G(U(z)) = G(G'(F(z))) = F(z) > 0, since G(G~*(p)) > p,
for all p € (0, 1] and since F is positive on S(F'). Lemma 2.4 is proved.

Ulz+h) <G

Denote by my(-) the minimal quantile of order p of a random variable. We
are now ready to establish:

Proposition 2.5 Given two random variables £ and A, the inequality
P{} <my(A) + h} > P{{ < my(¢) + A} (2.4)

holds for all p € (0,1) and h > 0, if and only if there ezists a Lipschitz,
non—decreasing map (a contraction) U from R to R such that A and U(¢)
are identically distributed.

Proof. Assume that (2.4) is fulfilled, that is, assume that (2.1) is fulfilled for
F and G the respective distribution function of ¢ and A. By Lemma 2.4, the
map U = G7!(F) restricted to S = S(F)\ {+oo} transforms the distribution
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of ¢ into the distribution of A (recall that P{¢ € S} = 1). U is non—decreasing
and, according to (2.3), U is finite and Lipschitz on S, with Lipschitz constant
K < 1. By the Kirszbraun-McShane (Hahn-Banach) theorem, U can be
extended to the whole real line, without changing the Lipschitz constant K.
But it is clear that, on the real line, such an extension can be also chosen
non—decreasing. Indeed, in a unique way, and by continuity, U extends to
clos(S), so U is Lipschitz and non-decreasing on clos(.S). The complement
T = R\ clos(S) is open and therefore is the union of at most countably many
disjoint open intervals. If (a,b) is a finite interval from this decomposition of
T, define U on (a,b) linearly so that U(a™) = U(a), U(b™) = U(b). If (a,bd)
is infinite, say with, b = +o0, put U(z) = U(a) + (z — a), for all ¢ > a (U
is defined in a similar way when a = —o0). Clearly, this extension of U is a
Lipschitz, non—decreasing function on the whole real line. The proof of the
converse statement is elementary.

Finally, we prove:

Proposition 2.6 Let u be a probability measure on the real line R, such that
(1.1) attains its mintmum at the intervals A = (—o0, z|, for all p € (0,1) and
h > 0. Then, p 1s symmetric around its median and has finite exponential
moment.

Proof. First, write (1.2) for the minimal intervals A = [a, +o0), B = (—00, z]
of measure p, and get (2.4) for the random variable ¢ with law g and for
A = —¢£. Therefore, by Proposition 2.5, for some non—decreasing Lipschitz
function U, A and U(¢) are identically distributed. Hence, A and V()) are
identically distributed, where V(z) = U(—=) is also Lipschitz function. Let
A’ be an independent copy of A. Since |[V(X') — V()] < | — A|, and since
sides of this inequality are random variables with the same distribution, we
get |[V(z) —V(y)| = |z —y|, for almost all (z,y) with respect to v ® v, where
v is law of A. Now, by Fubini’s theorem, for some point yo, |V (z) — V(yo)| =
|z — yol|, for v—almost all z. Therefore, since V' is non—increasing, for some
real a, V(z) = —z — 2a, for v—almost all z. That is, the distributions of
A+ a and so £ — a are symmetric around 0.

To prove the exponential integrability, assume that p is non-degenerate,
symmetric around 0, and assume that the value

Ru(p) = inf u(4™), 0<p<l1, h>0, (2.5)
u(4)2p
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is attained at the interval A = (—o0, z|, where z = F~!(p), and where F' is
the distribution function of u. Since AP = (—oco,z + h), we have Rp(p) =
F(F~(p) + h — 0). Now, we show that for all A > 0, 0 < p,q < 1, such that
pt+qg<l,

Ru(p + q) < Ru(p) + Ru(9q). (2.6)
Indeed, let A = (—o0,z]| be the extremal set in (2.5) for p, and since p is
symmetric, one can take a set B = [y, 00) as extremal for g. The assumption
p+ g < 1 implies z < y. The case z = y is possible, but then AU B = R, so

Ru(p) + Ra(g) = u(A*) + p(B") > p(A) + u(B) > 1,

and so (2.6) is fulfilled. In case z < y, AU B has measure p + ¢, and via the
identity (A U B)* = A* U B", we obtain

Ru(p+4q) < p((AUB)") < u(A™) + u(B") = Ru(p) + Ru(q)

Next, we show that liminf, o+ Ry(p)/p > 1, for all A > 0 large enough.
Indeed, assume that, given A > 0, this liminf = 1. Then, for any ¢ > 0,
the set E, of all the points p € (0,1) satisfying Rn(p) < (1 + €)p is infinite,
and 0 € clos(E,). Therefore, for any p € (0,1), one can choose a sequence
pn € E. (it is possible for some elements of this sequence to coincide) such
that 7, =p1 4+ -+ + pn — p, as n — oo. Applying (2.6) to r,, we get

Ri(rn) < Ru(p1) + -+ Rulpn) < (L +e)(pr+ -+ +pn) < (1 +€)p.

Letting n — oo, and using the left—continuity of the function Rp, (via the last
statement of Lemma 2.1), we obtain Rp(p) < (1 + €)p, for all p. Since e > 0
is arbitrary, Rn(p) < p, hence Rn(p) = p, for all p € (0,1). But for A large
enough, this is clearly impossible. Indeed, since u is non—degenerate, taking
z,y € R such that 0 < F(z) < F(y), and then Rxn(p) > p, for p = F(z),
h >y — F~!(p) leads to a contradiction.

Therefore, one can find A > 0, po € (0,1), ¢ > 1, such that Ru(p) =
F(F~'(p) + A —0) > cp, for all p € (0,po] (of course, necessarily cpy < 1).
Thus, F(F~(p) + 2h) > cp, that is, F~'(cp) — F~(p) < 2h. In particular,
F~(ckp) — F~Y(cF1p) < 2h, for all k = 1,---,n, if *1p < po. Summing
over k gives F~!(c™p) — F~*(p) < 2nh. Applying this inequality to p = poc™
gives

F~Y(poc™) > —2nh + F~(po).

This easily implies that F/(z) > exp(az), for some a > 0, as ¢ — —o0.
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