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2 s.g bobkov and c. houdr�eamong all the Borel sets A of �n{measure greater or equal to p, where p 2(0; 1) and h > 0 are �xed numbers.When � is a Gaussian measure, (1.1) attains its minimum at any half-space of measure p, and therefore, this can be expressed as the isoperimetricinequality �n(Ah) � �n(Bh); (1:2)where B is a standard half{space fx 2 Rn : x1 � cg of �n{measure p, whereh > 0 is arbitrary, and where clearly c depends only on p. This deep propertyof Gaussian measures was discovered by V.N.Sudakov and B.S.Tsirel'son [7]and independently by C.Borell [3]. Their proofs are similar and rely onthe isoperimetric property of the balls on the sphere (the L�evy{Schmidttheorem). It should however be noted here, that the �rst instance in whichisoperimetric methods are applied to study Gaussian processes appears inLandau and Shepp [5]; and that they already relied on the L�evy{Schmidttheorem. They showed, there, the extremal property of the half{spaces inanother closely related problem of isoperimetric nature. Later a di�erentproof of the extremal property of the half{spaces in the isoperimetric problemwas given, using rearrangement techniques in Gauss space, by A.Ehrhard [4].Theorem 1.1a Let n � 2. Let � be a probability measure on R such that(1:1) attains its minimum at the standard half{spaces, for all p 2 (0; 1) andh > 0. Then, if it is not a unit mass at a point, � is Gaussian.The case n = 1 essentially di�ers from the case n � 2, since on the realline, many interesting measures satisfy (1.2). For example, when � has acontinuous positive density, necessary and su�cient conditions for (1.2) tohold are known (see [2], Sec.13). In particular � has to be symmetric about itsmedian and has to have �nite exponential moment. In fact, � possesses thesetwo properties without any further assumption (see Proposition 2.6 below).Moreover, should � be symmetric about zero and with �nite variance, thehypotheses of Theorem 1.1a can be weakened.Theorem 1.1b Let n � 2 and let p = 1=2. Let � be a symmetric about zeroprobability measure on R, with �nite variance, and such that (1:1) attains itsminimum at the standard half{spaces, for all h > 0. Then, if it is not a unitmass at zero, � is Gaussian.



A CHARACTERIZATION OF GAUSSIAN MEASURES 3It is worthwhile here to note the crucial rôle of the Euclidean distancein this characterization. For example, if kx � ak2 is replaced in the de�ni-tion of the enlargement Ah by the supremum distance kx � ak1, then (1.2)holds for a wide family of log-concave distributions [1] (see also [2], Sec.15).In connection with the concentration of measure phenomenon, inequalitiessimilar to (1.2) and for various types of enlargements have been studied bymany authors (see, e.g., M.Talagrand [8], M.Ledoux [6] and the referencestherein).Clearly, the inequality (1.2) becomes stronger when the dimension ngrows, so in essence, Theorem 1.1a,b concern the case of the plane (n = 2).Moreover, under the assumptions of Theorem 1.1b, one can derive from (1.2)that � is Gaussian by applying (1.2) to the half{planeA(t) = ((x1; x2) : x1 + x2p2 � t) ; t = 0:Proof of Theorem 1.1b. Indeed, let � and � be independent random variablesde�ned on some probability space (
;F ;P), with common distribution �.Then, the minimal value of the right{hand side of (1.2) provided �(B) � 1=2is attained at B = fx 2 R2 : x1 � 0g and is equal to Pf� < hg. Analogously,the minimal value of the left{hand side of (1.2) provided �(A(t)) � 1=2 isattained for t = 0. Since (A(t))h = A(t+ h), we have Pf(� + �)=p2 < hg �Pf� < hg, for all h > 0. Therefore,Var � + �p2 ! = 4Z +10 P(� + �p2 > h) hdh � 4Z +10 Pf� > hg hdh = Var (�) :But Var �(� + �)=p2� = Var (�), hence for almost all (with respect toLebesgue measure) h > 0, Pn(� + �)=p2 > ho = P f� > hg. Therefore,this equality extends to all h > 0, and thus the random variables (�+ �)=p2and � are identically distributed. That is, the characteristic function f of �satis�es equation f2(t=p2) = f(t), for all t real. It is then easy to see thatthis equation characterizes the Gaussian distributions.Theorem 1.1b is thus proved. Now, in order to establish Theorem 1.1a, westudy the one-dimensional case and prove that (1.2) implies the assumptionsof Theorem 1.1b. We do not know if the assumption on the �niteness of thevariance can be removed in this result.



4 s.g bobkov and c. houdr�e2 Necessary conditions when n=1Given a probability measure � on the real line R, we setF (x) = �((�1; x]); x 2 (�1;+1],Im(F ) = fF (x) > 0 : x 2 (�1;+1]g,S(F ) = fx 2 (�1;+1] : F (y) < F (x); for all y < xg,F�1(p) = inffx 2 (�1;+1] : F (x) � pg; p 2 (0; 1].F�1(p) is the minimal quantile of order p of F , indeed, since the functionF is right{continuous, the above in�mum can be replaced by minimum. Inparticular, for p 2 Im(F ), F�1(p) is the least solution to F (x) = p. Thus,F (F�1(p)) � p, whenever p 2 (0; 1], and F (F�1(p)) = p, for all p 2 Im(F ).S(F ) (without the point x = +1) is a subset of the (closed) support of �.It is also easy to see that �(S(F )) = 1.Lemma 2.1 F is an increasing bijection from S(F ) to Im(F ), and F�1 re-stricted to Im(F ) is its inverse. Moreover, F�1 is left{continuous on (0; 1).Lemma 2.2 For all p 2 (0; 1],a) F (F�1(p)) = p() p 2 Im(F ).b) x � F�1(p)() F (x) � p, whenever x 2 (�1;+1];c) x � F�1(p)() F (x) � p, whenever x 2 S(F ),.Both these lemmas are elementary and so their proofs are omitted. Now, letF and G be the respective distribution function of the probability measures� and �.Lemma 2.3 The map U = G�1(F ) transforms � into � if and only ifIm(G) � Im(F ).Proof. For the "if part", one can restrict U to S(F ). Let p = F (x), x 2 S(F ),q = G(t), t 2 (�1;+1], so that p 2 Im(F ), q 2 Im(G), hence q 2 Im(F ).Hence, by lemma 2.2 b) and c):U(x) = G�1(F (x)) = G�1(p) � t, G(t) � p, F (x) � q, x � F�1(q):Therefore, �fU � tg = F (F�1(q)) = q, since q 2 Im(F ). The "only if"statement is trivial.Lemma 2.4 Assume that, for all p 2 (0; 1) and h > 0,F (F�1(p) + h) � G(G�1(p) + h): (2:1)



A CHARACTERIZATION OF GAUSSIAN MEASURES 5Then, the map U = G�1(F ) transforms � into �, and for all x 2 S(F ),h > 0, U(x+ h) � U(x) + h: (2:2)Proof. Letting in (2.1) h! 0, givesF (F�1(p)) � G(G�1(p)); (2:3)whenever p 2 (0; 1). Since F (F�1(1)) = G(G�1(1)) = 1, (2.3) also holds forp = 1. Let p 2 Im(G), then by lemma 2.2a), G(G�1(p)) = p, hence by (2.3)F (F�1(p)) � p. But, as noted before, F (F�1(p)) � p, and so F (F�1(p)) = p.Again by lemma 2.2a), we obtain p 2 Im(F ). Hence, Im(G) � Im(F ), andby Lemma 2.3, the map U transforms � into �. Now take x 2 S(F ). ByLemma 2.1, F�1(F (x)) = x. Applying (2.1) to p = F (x), it thus follows thatF (x+ h) � G(U(x) + h):Since F (x + h) � F (x) > 0, and since G�1 is non{decreasing, we thereforeget U(x+ h) � G�1(G(U(x) + h)):It now remains to show that G�1(G(U(x) + h)) � U(x) + h. First note thatG�1(G(y)) � y, for all y such that G(y) > 0. Also, in case y = U(x) + h, wehave G(y) � G(U(x)) = G(G�1(F (x))) � F (x) > 0, since G(G�1(p)) � p,for all p 2 (0; 1] and since F is positive on S(F ). Lemma 2.4 is proved.Denote by mp(�) the minimal quantile of order p of a random variable. Weare now ready to establish:Proposition 2.5 Given two random variables � and �, the inequalityPf� � mp(�) + hg � Pf� � mp(�) + hg (2:4)holds for all p 2 (0; 1) and h > 0, if and only if there exists a Lipschitz,non{decreasing map (a contraction) U from R to R such that � and U(�)are identically distributed.Proof. Assume that (2.4) is ful�lled, that is, assume that (2.1) is ful�lled forF and G the respective distribution function of � and �. By Lemma 2.4, themap U = G�1(F ) restricted to S = S(F )nf+1g transforms the distribution



6 s.g bobkov and c. houdr�eof � into the distribution of � (recall thatPf� 2 Sg = 1). U is non{decreasingand, according to (2.3), U is �nite and Lipschitz on S, with Lipschitz constantK � 1. By the Kirszbraun{McShane (Hahn{Banach) theorem, U can beextended to the whole real line, without changing the Lipschitz constant K.But it is clear that, on the real line, such an extension can be also chosennon{decreasing. Indeed, in a unique way, and by continuity, U extends toclos(S), so U is Lipschitz and non{decreasing on clos(S). The complementT = Rnclos(S) is open and therefore is the union of at most countably manydisjoint open intervals. If (a; b) is a �nite interval from this decomposition ofT , de�ne U on (a; b) linearly so that U(a+) = U(a), U(b�) = U(b). If (a; b)is in�nite, say with, b = +1, put U(x) = U(a) + (x � a), for all x > a (Uis de�ned in a similar way when a = �1). Clearly, this extension of U is aLipschitz, non{decreasing function on the whole real line. The proof of theconverse statement is elementary.Finally, we prove:Proposition 2.6 Let � be a probability measure on the real line R, such that(1:1) attains its minimum at the intervals A = (�1; x], for all p 2 (0; 1) andh > 0. Then, � is symmetric around its median and has �nite exponentialmoment.Proof. First, write (1.2) for the minimal intervals A = [a;+1), B = (�1; x]of measure p, and get (2.4) for the random variable � with law � and for� = ��. Therefore, by Proposition 2.5, for some non{decreasing Lipschitzfunction U , � and U(�) are identically distributed. Hence, � and V (�) areidentically distributed, where V (x) = U(�x) is also Lipschitz function. Let�0 be an independent copy of �. Since jV (�0) � V (�)j � j�0 � �j, and sincesides of this inequality are random variables with the same distribution, weget jV (x)�V (y)j = jx� yj, for almost all (x; y) with respect to � 
 �, where� is law of �. Now, by Fubini's theorem, for some point y0, jV (x)�V (y0)j =jx � y0j, for �{almost all x. Therefore, since V is non{increasing, for somereal a, V (x) = �x � 2a, for ��almost all x. That is, the distributions of�+ a and so � � a are symmetric around 0.To prove the exponential integrability, assume that � is non{degenerate,symmetric around 0, and assume that the valueRh(p) = inf�(A)�p �(Ah); 0 < p < 1; h > 0; (2:5)



A CHARACTERIZATION OF GAUSSIAN MEASURES 7is attained at the interval A = (�1; x], where x = F�1(p), and where F isthe distribution function of �. Since Ah = (�1; x + h), we have Rh(p) =F (F�1(p) + h� 0). Now, we show that for all h > 0, 0 < p; q < 1, such thatp + q < 1, Rh(p + q) � Rh(p) +Rh(q): (2:6)Indeed, let A = (�1; x] be the extremal set in (2.5) for p, and since � issymmetric, one can take a set B = [y;1) as extremal for q. The assumptionp+ q < 1 implies x � y. The case x = y is possible, but then A [B = R, soRh(p) +Rh(q) = �(Ah) + �(Bh) � �(A) + �(B) � 1;and so (2.6) is ful�lled. In case x < y, A[B has measure p+ q, and via theidentity (A [B)h = Ah [Bh, we obtainRh(p+ q) � �((A [B)h) � �(Ah) + �(Bh) = Rh(p) +Rh(q):Next, we show that lim infp!0+ Rh(p)=p > 1, for all h > 0 large enough.Indeed, assume that, given h > 0, this lim inf = 1. Then, for any " > 0,the set E" of all the points p 2 (0; 1) satisfying Rh(p) � (1 + ")p is in�nite,and 0 2 clos(E"). Therefore, for any p 2 (0; 1), one can choose a sequencepn 2 E" (it is possible for some elements of this sequence to coincide) suchthat rn = p1 + � � �+ pn ! p, as n!1. Applying (2.6) to rn, we getRh(rn) � Rh(p1) + � � �+Rh(pn) � (1 + ")(p1 + � � �+ pn) � (1 + ")p:Letting n!1, and using the left{continuity of the function Rh (via the laststatement of Lemma 2.1), we obtain Rh(p) � (1 + ")p, for all p. Since " > 0is arbitrary, Rh(p) � p, hence Rh(p) = p, for all p 2 (0; 1). But for h largeenough, this is clearly impossible. Indeed, since � is non{degenerate, takingx; y 2 R such that 0 < F (x) < F (y), and then Rh(p) > p, for p = F (x),h > y � F�1(p) leads to a contradiction.Therefore, one can �nd h > 0, p0 2 (0; 1), c > 1, such that Rh(p) =F (F�1(p) + h � 0) � cp, for all p 2 (0; p0] (of course, necessarily cp0 < 1).Thus, F (F�1(p) + 2h) � cp, that is, F�1(cp) � F�1(p) � 2h. In particular,F�1(ckp) � F�1(ck�1p) � 2h, for all k = 1; � � � ; n, if cn�1p � p0. Summingover k gives F�1(cnp)�F�1(p) � 2nh. Applying this inequality to p = p0c�ngives F�1(p0c�n) � �2nh+ F�1(p0):This easily implies that F (x) � exp(ax), for some a > 0, as x!�1.
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