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ψ [L] Fracture length scale 
Ω [-] Normalized fracture width 
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SUMMARY 
 
 
 

 In recent years, hydraulic fracturing has led to a dramatic increase in the 

worldwide production of natural gas. In a typical hydraulic fracturing treatment, millions 

of gallons of water, sand and chemicals are injected into a reservoir to generate fractures 

in the reservoir that serve as pathways for fluid flow. Recent research has shown that both 

the effectiveness of fracturing treatments and the productivity of fractured reservoirs can 

be heavily influenced by the presence of pre-existing natural fracture networks. This 

work presents a fully implicit hydro-mechanical algorithm for modeling hydraulic 

fracturing in complex fracture networks using the two-dimensional discontinuous 

deformation analysis (DDA). Building upon previous studies coupling the DDA to 

fracture network flow, this work emphasizes various improvements made to stabilize the 

existing algorithms and facilitate their convergence. Additional emphasis is placed on 

validation of the model and on extending the model to the stochastic characterization of 

hydraulic fracturing in naturally fractured systems.  

 To validate the coupled algorithm, the model was tested against two analytical 

solutions for hydraulic fracturing, one for the growth of a fixed-length fracture subject to 

constant fluid pressure, and the other for the growth of a viscosity-storage dominated 

fracture subject to a constant rate of fluid injection. Additionally, the model was used to 

reproduce the results of a hydraulic fracturing experiment performed using high-viscosity 

fracturing fluid in a homogeneous medium. Very good agreement was displayed in all 

cases, suggesting that the algorithm is suitable for simulating hydraulic fracturing in 

homogeneous media. 
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 Next, this work explores the relationship between the maximum tensile stress and 

Mohr-Coulomb fracture criteria used in the DDA and the critical stress intensity factor 

criteria from linear elastic fracture mechanics (LEFM). The relationship between the 

criteria is derived, and the ability of the model to capture the relationship is examined for 

both Mode I and Mode II fracturing. The model was then used to simulate the LEFM 

solution for a toughness-storage dominated bi-wing hydraulic fracture. Good agreement 

was found between the numerical and theoretical results, suggesting that the simpler 

maximum tensile stress criteria can serve as an acceptable substitute for the more 

rigorous LEFM criteria in studies of hydraulic fracturing. 

 Finally, this work presents a method for modeling hydraulic fracturing in 

reservoirs characterized by pre-existing fracture networks. The ability of the algorithm to 

correctly model the interaction mechanism of intersecting fractures is demonstrated 

through comparison with experimental results, and the method is extended to the 

stochastic analysis of hydraulic fracturing in probabilistically characterized reservoirs. 

Ultimately, the method is applied to a case study of hydraulic fracturing in the Marcellus 

Shale, and the sensitivity of fracture propagation to variations in rock and fluid 

parameters is analyzed. 
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1 INTRODUCTION AND LITERATURE REVIEW 
 

 

1.1 Introduction 

 Over the past six decades, hydraulic fracturing has emerged as a widely used 

technique for stimulating wells in unconventional reservoirs. First applied experimentally 

in 1947 and commercially in 1950, “fracking” has been used to enhance production in 

over 2.5 million wells, with over a million of those in the United States alone [1]. 

Worldwide, there are a large number of unconventional reservoirs that may not be 

produced economically using conventional drilling techniques. These reservoirs, among 

them tight sands, shales, and coalbed methane deposits, store large quantities of oil and 

gas that cannot flow due to the reservoirs’ low permeability. Hydraulic fracturing makes 

production from these formations profitable by increasing their permeability and allowing 

wells within the formations to produce greater volumes of oil and gas. In the past 15 

years in particular, advances in hydraulic fracturing technology and horizontal drilling 

have led to a boom in oil and gas production throughout the United States. With 

horizontal drilling, vast areas within a formation may be contacted by a single well, as 

each well can extend on the order of kilometers along the length of the formation. With 

traditional vertical wells, however, the area contacted by the well is limited by the height 

of the formation, which typically ranges on the order of tens to hundreds of meters. 

Economically, the results of this surge in oil and gas production have been increased 

wealth, jobs, and more energy independence for the nations developing their 

unconventional gas resources. In addition, the technology has found additional uses in 



2 

 

geothermal applications, wastewater disposal, and as a tool for measuring reservoir 

properties, all of which implies that hydraulic fracturing is here to stay. 

 Hydraulic fracturing of a reservoir begins after a well has been drilled, and steel 

pipe and well casing have been inserted to protect the overlying formations. The well 

casing is perforated in the targeted reservoirs, allowing the fracturing fluid to be injected 

and to contact the gas bearing rock. Eventually, the rate of injection will exceed the rate 

of fluid absorbed by the rock formation, causing the fluid pressure to build. Once the 

fluid pressure has reached the breakdown pressure of the formation, the highly 

pressurized fluid will create new fissures and open pre-existing ones in the impermeable 

rock. Proppant injected along with the fluid will flow into the fractures, helping to keep 

them open and maintain their width, while chemical additives help the water and 

proppant reach the reservoir and penetrate into the formation. In a typical procedure, 

water makes up 98% to 99% of the fracking fluid mixture, sand or other proppant about 

1.0% to 1.9%, and additives make up the remainder of the potentially millions of gallons 

of fluid injected into each well [1]. Currently, a wide debate is raging as to the impacts 

that hydraulic fracturing and the associated industry are having on the environment. 

Below the surface, questions arise concerning the ultimate fate of the injected fluids and 

concerning the potential for methane and other gases to migrate out of fractured 

reservoirs. If either the chemicals in fracturing fluid or the gas from targeted formations 

managed to migrate into drinking water reservoirs during a fracturing treatment, the 

resulting contamination could prove very detrimental to public health. Additionally, both 

the injection of fracturing fluid and the re-injection of wastewater are being investigated 

as sources of increased seismic activity near areas with heavy fracturing. Above the 
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surface, concern exists regarding the disposal of wastewater, air pollution during the 

production process, and noise pollution and road degradation caused by the heavy 

industry associated with hydraulic fracturing. Tying all of these together is the concern 

for the impacts of these processes on public health. 

 As fracking and the concerns associated with it have grown more widespread, so 

too has the need for accurate models of hydraulic fracturing. Historically, modeling 

hydraulic fracturing has proven to be a very difficult task. A complete model of hydraulic 

fracturing in its current form requires the coupling of rock and fracture mechanics with 

the analysis of multiphase fluid mechanics, heat transfer, fluid leakoff and transport 

dynamics. Adding to the complexity is the inherent uncertainty of subsurface systems, in 

which stress differentials and natural fractures can lead to very different hydraulic 

fracture geometries. The purpose of this thesis is to develop a new hydro-mechanical 

model for hydraulic fracturing that is able to evaluate these uncertainties in a more 

systematic manner. In particular, this work focuses on the improvement and validation of 

an existing fully implicit algorithm for hydraulic fracturing, and on the algorithm’s 

extension to the stochastic analysis of hydraulic fracturing in naturally fractured 

reservoirs. To put the new model into context, this first chapter provides a brief history 

and review of the hydraulic fracturing models currently available in the literature. 

   

1.2 Planar Analytical and Semi-Analytical Models 

 Accurate modeling of hydraulic fracturing requires consideration of a few key 

processes. First, for a purely hydro-mechanical model, a method is required for modeling 

the deformation of the rock matrix as a response to fluid pressure. Generally, it is 



4 

 

assumed that the matrix deformation is linear elastic, such that linear elastic fracture 

mechanics (LEFM) can be used to describe the distribution of stress and displacement  

around the fracture. Second, a fracture propagation criteria needs to be included to 

account for the formation of new fractures within the system. In typical hydraulic 

fracturing models, fracturing of new rock is considered to occur in Mode I only, although 

in hot dry rock geothermal modeling, Mode II fracturing is considered the dominant 

mechanism (Figure 1.1) [2]. Third, fluid mechanics must be considered, either within the 

fractures alone, or as a combination of flow within the fractures and flow within the rock 

matrix. For flow within the fractures, Reynold’s lubrication equation and fluid continuity 

are generally used. For flow in the rock matrix, Darcy flow and fluid continuity are used 

for the fluids, while Biot’s poromechanics equations are used to model the rock matrix’s 

response to the fluid pressure. Introducing the next level of complexity adds proppant 

into the model and requires the analysis of proppant transport, its effect on fluid flow and 

the effects of the proppant on fracture deformation. Typically, it is assumed that the fluid-

proppant slurry behaves as one fluid for transport modeling, such that the viscosity and 

physical properties of the combined mixture are used to solve the mass and momentum  

 

 
 

Figure 1.1: Fracturing Modes. Mode I fractures occur in tension, while Modes II and III 
occur in shear. Mode II fractures are defined as in-plane shear fractures, while Mode III 
fractures occur out of plane. 
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continuity equations, rather than just the properties of the original fluid [3]. Finally,  

chemical and heat processes may be added in, in particular when looking at fracturing 

models for waste storage or geothermal production. The complexity of the model and its 

solution are directly dependent on the dimensionality of the original problem, the number 

of processes modeled, and the level of detail being considered.   

 Due to the complexity of considering all of these processes, most models rely on a 

number of simplifications. The earliest models for hydraulic fracturing considered only 

the elastic response of the rock matrix to fluid pressure, and are based on the assumption 

of a bi-wing fracture propagating symmetrically away from an injection well. Each of 

these models finds its roots in fracture mechanics problems from LEFM [4]. For a 

reservoir with known Young’s Modulus (E), Poisson’s ratio (ν) and far-field stress (σ0) 

perpendicular to the fracture, their goal was to determine the geometry of the fracture 

subject to a given fluid injection rate (Q0) or pressure at the wellbore (Figure 1.2). The 

first of these models was introduced by Khristianovich and Zheltov [5] and later 

expanded on by Geertsma and de Klerk [6], and is often referred to as a ‘KGD fracture’ 

in their honor. In the KGD model, plane strain conditions are assumed to exist in the 

horizontal plane perpendicular to the injection well. The hydraulic fracture is assumed to 

be of uniform width along the height of the fracture and is assumed to propagate within a 

two-dimensional (2D) plane. Generally, the KGD model is suitable for situations in 

which the height of the fracture is significantly greater than its length. The KGD model 

assumes constant pressure along the length of the fracture except at the fracture tip, 

giving the fracture an elliptical cross section plane perpendicular to the well. At the 

fracture tip, the pressure is artificially set to zero to account for both the no flow-
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condition out of the fracture and for the stress singularity that arises when modeling a 

fracture using LEFM. In the vertical plane, the fracture is assumed to have a rectangular 

cross section. Daneshy [7] later extended these results for the case of power-law fluids, or 

fluids for which shear stress is not directly proportional to shear rate. 

 A second analytical solution was developed soon afterward by Perkins and Kern 

[8], and later expanded on by Nordgren [9], and is referred to as a ‘PKN fracture’ in their 

honor (Figure 1.2). For a PKN fracture, plane strain conditions are assumed in the 

vertical plane, parallel to the injection well. Fluid pressure is constant in the vertical cross 

sections perpendicular to the direction of fracture propagation, giving the vertical cross 

sections an elliptical shape with maximum width in the center. Along the direction of 

propagation, the pressure is a function of the fracture width and falls off at the fracture tip. 

The PKN model is appropriate when considering a fracture with a significantly larger 

horizontal extent than height. A third analytical solution investigated by numerous 

authors ([6, 8, 10, 11]) is that of a radially symmetric fracture, also called a penny-shaped 

fracture (Figure 1.2). The analytical solutions for penny shaped fractures are generally  

 

 

Figure 1.2: Hydraulic fracture geometries for the first-generation analytical solutions. 
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applicable when the fracture medium and stresses surrounding the injection well are 

homogeneous, and when the size of the fracture is small relative to the size of the 

formation. Additionally, penny shaped fractures can occur when the hydraulic fracture 

occurs near the ground surface, where the primary compressive stress is horizontal. 

Together, these models represent the most basic descriptions of hydraulic fracturing, and 

are also the most easily solved. The assumptions required to generate these models, 

however, are frequently too limiting to allow for their use in actual design problems. 

 Various authors have sought to make these analytical solutions more rigorous by 

incorporating additional phenomena into the models. An initial (and ongoing) area of 

research in this direction has been better characterization of the processes occurring near 

the tips of hydraulic fractures. Interest in this region developed through the consideration 

that the fluid pressure changes most rapidly near the tips of propagating fractures, due in 

part to the square root singularity that occurs in the rock’s stress field at the fracture tip. 

Desroches et al. [12] developed an initial solution for the width and pressure near the tip 

of the fracture in the case of no fracture toughness and no fluid leakoff, when viscosity 

effects dominate the rate of propagation. Using the lubrication equations for a power-law 

fluid, they found that the stress singularity at the fracture tip for a propagating hydraulic 

fracture is weaker than the classical inverse square root stress singularity predicted at 

fracture tips by LEFM.  They denote their solution as an intermediate asymptotic solution, 

applicable in the region in between the main body of the crack and the fluid lag zone that 

may develop at the crack tip. Lenoach [13] extended this solution by adding in leakoff. 

He found that near the crack tip, leakoff processes will dominate and cause a stronger 

pressure and stress singularity than in the impermeable case, though still weaker than that 
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obtained by classical LEFM.  Garagash and Detournay [14] added in the effects of 

fracture toughness and fluid lag. They found that in the presence of fluid lag, the inverse 

square root stress singularity at the crack tip predicted by LEFM is restored. For small 

values of toughness, the LEFM solution is contained fully within the lag, while at larger 

values it can extend beyond the fluid lag. As the fracture grows to infinity, however, their 

solution becomes independent of toughness and converges to the zero-toughness solution 

from [12]. As a final addition, Detournay and Garagash [15] extended [14] to account for 

porous flow in the rock matrix, which can be used to set the proper boundary conditions 

for pressure at the fracture tip, and derive the conditions under which cavitation might 

take place ahead of the propagating fracture.  

 A second area of research has been the characterization of dimensionless groups 

to generalize the solution of hydraulic fracturing problems. Spence and Sharpe [16] 

pioneered this effort by developing self-similar solutions for penny shaped and KGD 

fractures that incorporated the fracture toughness of the rock matrix and allowed the 

results to be given in terms of dimensionless parameters. Their work paved the way for a 

large set of studies that sought to characterize hydraulic fracture propagation using 

dimensionless parameters under a variety of propagation regimes. Using this idea, Hu and 

Garagash [17] outlined four asymptotic regimes for hydraulic fracture growth based on 

competing regulatory mechanisms. The first mechanism is based on the manner in which 

energy is dissipated during fracture growth. As the fracture propagates, energy can be lost 

both by fracturing of the rock matrix and through viscous dissipation within the 

fracturing fluid. When fluid viscosity is high and fracture toughness is low, energy is lost 

primarily to viscous dissipation within the fluid. Conversely, when fluid viscosity is low 
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and fracture toughness is high, most of the energy is spent fracturing the rock. The 

second mechanism is based on conservation of fluid mass. As the fracture propagates, 

fluid can either be stored within the fracture, or it can leak off into the rock matrix. When 

the leakoff coefficient of the rock matrix is large, the fracture is leakoff dominated, and 

fracturing is limited by the rate of fluid leakoff into the formation. When the leakoff 

coefficient is small, the fracture is storage dominated and all of the fluid stays within the 

propagating fracture. These competing mechanisms can be conceptualized as shown in 

Figure 1.3 [17]. Each corner of Figure 1.3 corresponds to an asymptotic regime in which 

the storage and dissipation mechanisms are dominated by only one process. The solutions 

for these asymptotic regimes have each been derived by various authors. The storage-

viscosity solution (no leakoff, no toughness) was given in [18, 19], the leakoff-viscosity 

solution (no toughness, infinite leakoff) in [20], the storage-toughness solution (no 

leakoff, zero viscosity) in [21, 22], and the leakoff-toughness solution (zero viscosity,  

 

 

 

Figure 1.3: Diagram showing the different possible propagation regimes for bi-wing 
fractures. 
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infinite leakoff) in [21]. Typical applications of these models include gaining insight into 

the fundamental mechanisms behind hydraulic fracturing, as well as their use as 

benchmarks for testing numerical hydraulic fracturing simulators.  

 

1.3 Pseudo-3D and Planar-3D Models 

 Initially, hydraulic fracturing treatments were small and were used primarily to 

determine the in situ stresses of targeted formations. Hydraulic fracturing to increase well 

production was not common until the 1960s and was first applied without modeling. 

Significant increases in well production were observed as a result of fracturing, though 

proppants would frequently “screen out” and lodge themselves within the fracture, unable 

to move freely. Proppant transport was soon incorporated into the KGD and PKN models 

to help characterize this problem, as the incorporation of proppant transport allowed for 

the calculation of the fluid injection rates needed to prevent proppant screen out. While 

these models continued to be refined through the 1970s, however, the size of fracturing 

treatments drastically increased, and it became apparent that new methods were needed to 

account for conditions encountered in large fracturing treatments [3]. In that decade, the 

price of gas greatly increased, prompting new research into larger hydraulic fracturing 

treatments for accessing gas in low-permeability formations. The existing PKN and KGD 

solutions proved unsuitable for these new treatments, as they did not consider the effects 

of different layers and confining stresses within the larger reservoirs. 

 To evaluate the impact of different fracture layers, the PKN model was extended 

into three dimensions (3D) and developed into the Pseudo-3D (P3D) model. P3D models 

retain the bi-wing fracture geometry of the PKN model but allow the rock parameters to 
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vary in layers along the height of the fracture. These models can be used to evaluate the 

height growth of the fracture in different layers, unlike the PKN and KGD models which 

assume the height ahead of time. Incorporating different layers into the P3D model 

changes the cross-section of the fracture such that it will no longer be elliptical. Layers 

with higher elastic moduli, Poisson’s ratio, confining stress, fracture toughness and fluid 

loss will tend to have narrower cross-sections than layers with lower values of these 

parameters. Furthermore, large values of these parameters, in particular the confining 

stress, will lead to shorter fractures, as opening of the fracture requires more energy [23]. 

Simonson et al. [24] were among the first to capture the effects of multiple fracture layers 

within a model. They developed a model for fracturing of a three-layered system, in 

which the top and bottom layers were symmetric. Their work was later extended by Fung 

et al. [25] for the cases of non-symmetric and multi-layered fractures. The general P3D 

model was first introduced by Settari and Cleary [26] and later by Morales [27]. A key 

distinction seen in their work between the P3D models and the PKN model is that the 

P3D models can account for vertical fluid flow within the fracture. Vertical flow is 

modeled using pre-defined streamlines for the path taken by the fluid, under the 

assumption that the fracture length is much greater than its height. Layers are assumed to 

be perfectly bonded within P3D models, such that shearing between layers is not 

considered. Generally, P3D models are considered more accurate than their 2D 

counterparts, and are still solvable within a relatively short amount of time. 

  The next step in the evolution of planar bi-wing fracture models was the 

development of Planar-3D models (PL3D), first introduced by Clifton and Abou-Sayed 

[28]. These models allow for rock property variations along the length and height of the 
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fracture, using a 2D mesh to solve for the fluid pressure and fracture geometry within the 

fracture. They allow for a more refined description of the background stresses, and are 

useful for cases when parameters do not vary monotonically within the same layer. 

Additionally, situations in which the propagating fracture may result in an hourglass 

shape, or when the upper and lower layers are less stiff than the middle layers are better 

suited to a PL3D model [3]. Like the P3D models, rock layers in PL3D models are 

perfectly bonded and shearing is not considered. Pressure and fracture width are again 

coupled within these models via the elasticity equation for rock deformation and the 

equations for 2D fluid flow in a plane. For PL3D models, the fracture system is typically 

discretized using a mesh of triangles or rectangles which can be fixed, be moving, or be 

remeshed to track the growth of the fracture. To model the background rock matrix, 

various options are available. One option is to discretize the matrix into finite elements, 

which allows for the consideration of heterogeneities in the rock matrix. Use of the fully 

3D finite element method (FEM), however, will lead to very large algebraic systems 

requiring large amounts of computational time to solve. As an alternative, the boundary 

element method (BEM) may be applied. With this method the elasticity equations are 

expressed as integral equations over the surface area of the fracture, and are derived as a 

function of the unknown fracture opening displacements. The integral equations are 

generally difficult to solve analytically. Instead, they can be discretized as lines (for 2D) 

or surfaces (for 3D), effectively decreasing the dimensionality of the problem by one and 

resulting in a much smaller algebraic system than would be generated using the FEM. 

The computational requirements of the BEM are generally smaller than those for the 

FEM. The only caveat is that the BEM tends to result in a fully populated elastic stiffness 
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matrix, while the matrices developed using the FEM are relatively sparse. The vast 

majority of the PL3D methods developed though the 1980s used the boundary integral 

technique to solve the equations of elasticity [23]. 

 Among the models that rely on moving meshes or remeshing, Advani et al. [29] 

generated a moving mesh PL3D model that solves for multi-layered crack growth using 

the superposition of solutions from a bi-layered system. The number of nodes in the mesh 

in their system remains constant, but the mesh is allowed to deform at a rate that balances 

the fluid pressure in the fracture with the amount of energy required to move the fracture 

forward.  A limitation of their bi-layered superposition method is that the layers must be 

around the same size for the model to function correctly. Siebrits and Pierce [30] 

developed a planar 3D model that relies on a fixed rectangular mesh, allowing for 

efficiency in computation time in comparison with moving mesh methods. Their 

algorithm keeps track of the fracture geometry by assigning one of six different geometry 

flags to each mesh cell, corresponding to whether or not the cell is fractured and if so, at 

what angle each cell is fractured. Fluid flow is not specifically considered, but rather a 

constant pressure is prescribed on the interior of the fracture. A useful feature of their 

model is its flexibility in dealing with layers of varying thickness, in that very thin layers 

can be placed next to very thick layers without leading to loss of convergence. A more 

recent example of a PL3D model, along with a useful literature review of these and other 

planar hydraulic fracturing models, may be found in [3]. Additional descriptions and 

comparisons of 2D, P3D and PL3D models may be found in [31]. 
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1.4 Fully 3D Models 

 Up to this point, all of the models discussed have considered only fracture 

propagation within a specific plane, ignoring any processes occurring within the rock 

matrix and ignoring the potential for the fracture to propagate out of plane. The 

assumption of a perfectly planar fracture is valid when the hydraulic fracture is initialized 

and propagates perpendicular to the direction of minimum confining stress. In many 

applications, however, drilling a well can modify the local stress field within a reservoir. 

Fractures initiated from these wells will initially propagate away from the well in one 

direction, then turn to align themselves with the minimum confining stress once they 

have escaped the modified stress field. If the fracture turns too sharply or becomes too 

tortuous, the flow of proppant can become hindered in the near-well region and the well’s 

productivity can be significantly impaired. This phenomenon is observed particularly 

with deviated well bores. To accurately model fracturing from deviated wells, and to 

understand the effects of heterogeneities in the rock matrix and the physics of non-planar 

fracture growth, various authors have developed fully 3D simulators for hydraulic 

fracturing. In the literature, many of the models labeled as 3D models are in fact either 

P3D or PL3D models, so some care must be taken in their classification. 

 Cleary et al. [32] developed one of the first models to consider three dimensional 

fractures, using a boundary element representation for the elasticity equations. A key 

novelty of their work was the development a numerical technique for solving the 3D form 

of these equations. Fluid flow within the fracture was considered using a 2D finite 

element mesh. At the fracture boundaries, the authors simplified the problem by defining 

a process zone of fixed length at the fracture edge, which they use to derive relationships 
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for flux and pressure gradient at the fracture edge. Fracture propagation is then 

determined by simple mass conservation of the fracturing fluid. Lam et al. [33] validated 

the model against the PKN solution and against a laboratory example of fracturing in a 

cement specimen with regions of varying confining stress. The capability of the model to 

consider field applications was demonstrated by simulating a fracturing treatment using 

high-viscosity fluid over several hundreds of feet, though the ability to model out of 

plane effects was not explicitly demonstrated. 

 Vandamme’s model [34, 35] was one of the first models to account for a 

completely arbitrary fracture geometry. Elasticity was modeled using the displacement 

discontinuity (DD) technique, which is a special form of the boundary integral method. 

With the DD technique, a fundamental solution is used to describe the state of stress at a 

point in an infinite medium occurring as a result of a unit strength DD. The fracture can 

be considered as a series of unknown DDs, and the principle of superposition can be 

applied to evaluate the stress field in the elastic medium as a function of those unknowns. 

The equations for fluid flow were not discretized in time, but rather were modeled as 

always being at steady state as a function of the amount of fluid injected. Fracture 

propagation was considered by incrementing the fracture geometry, then injecting fluid 

until the Mode I stress intensity of the fracture matched the critical stress intensity of the 

rock. Propagation direction was controlled by using the maximum circumferential tensile 

stress. Using this model, Vandamme simulated the growth of two penny shaped fractures 

occurring along the same wellbore and found that the fluid pressures were larger and the 

widths at the wellbore smaller than would have been predicted by a single fracture.  
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 Sousa et al. [36] examined how power-law fluids affect 3D fractures. Elasticity 

was considered using the BEM, while fluid flow was modeled using the FEM. An 

effective viscosity was used to model the power law fluid. The model begins by 

considering the solution for a Newtonian fluid, then iterates over pressure, flow rate and 

effective viscosity until convergence is reached for the non-Newtonian fluid. They 

provided numerous examples using their model, two of which bear mention here. In the 

first, they modeled an elliptical crack propagating at an angle of 75° to the principal 

stresses. As the fracture propagated, it quickly distorted to realign itself planar to the 

minimum principal stress. In the second, they compared the results of using a Newtonian 

fluid with those of a power-law fluid in a small well perforated at four locations. They 

found little difference between the results for the Newtonian and the power-law fluid, due 

to the small flowrates used in the simulation. They speculated that for higher flowrates 

and larger fractures, the type of fluid may prove more significant. 

 Carter et al. [37] developed a fully 3D fracturing model to examine near-wellbore 

dynamics by coupling the FRANC3D fracturing model with an in-house fracture flow 

solver. FRANC3D is a fracture mechanics code capable of solving multiple non-planar 

fractures in complex structures. For speed, the software uses a boundary element method 

similar to that used by Vandamme [35]. In their method, an influence matrix is generated 

to describe the response of the overall structure to both the background stress and 

changes in fluid pressure. As opposed to the fixed and moving mesh methods typically 

used for fracture propagation, which propagate as a function of injection pressure, 

FRANC3D models fracture growth by first adding extra elements to the edges of the 

fracture, then by solving for the amount of injected fluid corresponding to the new 
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fracture geometry. In addition to the regular lubrication equations for fluid flow, they 

extended the linear elastic hydraulic fracturing solutions developed by the SCR 

Geomechanics group [38] and implemented them at the fracture front. Using this model, 

Hossain and Rahman [39] performed parametric studies of fracture growth near 

perforated wellbores. They found that fractures initiated in non-preferred directions 

relative to the background stress field will quickly deviate out of plane, and that well 

perforations in non-preferred directions will lead to fracture twisting and turning. 

Additionally, they found that the initiation of multiple fractures along the wellbore will 

lead to higher treating pressures and reduced fracture volume relative to single fractures, 

and that multiple fractures can be generated at the base of the same perforation. As a 

result, the well trajectory and the perforation directions must be optimized to avoid 

treatment failures resulting from fracture twisting and turning. 

  

1.5 Reservoir and Poroelastic Models 

 Beyond examination of the fracture itself, many attempts have been made to 

model the coupled interaction between the growing fracture and the rest of the reservoir. 

Generally, coupled reservoir models seek to simulate three distinct stages of well 

production: 1) the initial generation of the fracture geometry, 2) clean-up of the fracture, 

and 3) long-term well production. The complexity and computational expense in these 

models is typically higher than in PL3D models, as in these the rock and fluid mechanics 

in the reservoir must be modeled directly. Early editions of these models considered 

conditions in plane strain only, such that the reservoir could be considered as a 2D grid of 

cells, while flow in the fracture could be considered in one dimension (1D). Their goal 
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was to simulate hydraulic fracturing in medium- to low-permeability reservoirs, with 

better accounting for the effects of leakoff into the rock matrix. In these models, stress 

and strain within the reservoir are governed by Hooke-Biot’s law for stresses and strains 

in poroelastic media, the addition of which changes the response of the rock matrix to the 

hydraulic fracture. Incorporation of Hooke-Biot’s law leads to the following effects: 1) 

the stiffness of the rock matrix will change with time, due to the difference between 

reservoir properties when the reservoir is drained vs. when it is full; 2) Mechanical 

deformation of the fracture will be altered, due to the diffusion of pore pressure; and 3) 

the apparent fracture toughness of the material can change as a function of the rate of 

fracture propagation [40]. 

 In the first iteration of reservoir models, the hydraulic fracture was considered as 

a 2D planar element, while the reservoir was modeled using the BEM. Hagoort et al. [41] 

developed one of the first reservoir models for hydraulic fracturing. In their model, 

pressure in the fracture was treated as a constant, while pressure in the reservoir varied 

along a rectangular grid. The elasticity equations were treated in a manner similar to that 

used in the 2D analytical solutions, and were not explicitly solved within the reservoir. 

Hagoort et al.’s method relied on an iterative coupling between the reservoir flow 

equations, the fracture flow equations and the fracture geometry equations which limited 

the maximum time step allowed. In a later work, Settari [42] extended this model to 

incorporate heat transfer, two-phase flow, and the presence of other injection and 

production wells within the reservoir. Nghiem et al. [43] introduced a fully implicit 

simulator which did not require limitations on the size of the time step. The reservoir 

flow equations, fluid flow equations and elasticity equations were solved simultaneously 
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using Newton iterations on a fixed grid. Fracture propagation was required to occur over 

discrete intervals along the grid, with the assumption that an opened fracture would never 

close once the hydraulic fracture had propagated into it. Boone and Ingraffea developed a 

2D reservoir model which emphasized numerical efficiency using partitioned methods 

[40]. They applied an explicit dynamic relaxation method to solve the finite element 

equations of poroelasticity along with an implicit, tri-diagonal solver for the fluid flow 

equations. Addition of a variable time step option allowed for optimal time steps to be 

selected, again reducing computation time. Increasing in complexity, Ji et al. [44] 

developed a reservoir simulator which fully discretized the reservoir using FEM. Their 

model coupled finite difference multi-phase fluid flow in the reservoir with a 3D finite 

element geomechanical simulator. Coupling between the two simulators occurred through 

the porosity and flow properties of the reservoir. Their model considered multiphase flow 

through the use of the extended black-oil model, which incorporates equations for water, 

an oil phase and a gas phase to represent the composition of the reservoir fluid. The 

applications in their work included a waterfrac simulation within 16 different layers, 

three of which were overburden, three underburden, and the rest were pay zones. 

 Outside of the reservoir models mentioned, various authors have applied 

poroelastic effects to smaller 3D models to better understand the physics of hydraulic 

fracture formation. Ghassemi et al. [45] developed a 3D model for hydraulic fracturing 

which incorporated poroelastic effects to study the potential for rock failure not just at the 

tip of the fracture, but also in the surrounding vicinity. Rock media was modeled using 

the BEM, while the FEM was used for flow within the fracture. Using maximum tensile 

stress and Mohr-coulomb fracture criteria for failure in the surrounding rock, they found 
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that the dominant failure mode in the area close to the fracture walls will be tensile, 

beyond which shear failure becomes dominant over a much larger distance. Injection of a 

more viscous fluid was found to reduce the extent of the failure zone near the fracture, 

while rocks with higher moduli of elasticity were found to have larger failure zones. 

Secchi and Schrefler developed a 3D model for hydraulic fracturing in a fully saturated 

media [46], extended from the 2D model discussed in [47]. Unlike the other methods 

discussed, their model was not designed for well production, but rather as a general 

method for modeling the creation of fluid driven fractures. They assume that the media is 

saturated with the same fluid being used for fracturing, and flow in the media is modeled 

using Darcy’s Law. Fracture propagation in their work occurred using a remeshing 

strategy, with propagation controlled by a cohesive law similar to that used by Camacho 

and Ortiz [48]. Rock media was simulated using the FEM. To validate their model, they 

compared their solution to fracture propagation occurring at the base of a concrete dam as 

a wave passes over it. They found that the propagation direction of the crack could not be 

easily predicted, and thus a remeshing strategy is beneficial over the use of a fixed mesh 

strategy. Li et al. [49] developed a fully 3D model using a parallel FEM solver for the 

rock media, Darcy flow for the fluid in the mesh and Biot’s poroelastic theory for the 

coupling between them the media and the fluid. Rock failure was modeled using a 

damage evolution model for failure, based on the maximum tensile stress and Mohr-

Coulomb fracture criteria. A benefit of this formulation is that initial fractures do not 

need to be assumed at the start of the simulation, but rather will develop naturally. 

Probability was introduced into the model by sampling mechanical parameters for the 

rock from a Weibull distribution. A key benefit of their work is the use of parallel 
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processors, which allows them to model very small rock elements over large areas. With 

very small elements, the number of elements fractured can be treated as representative of 

the acoustic emissions associated with fracturing [50]. Results from their study were 

similar to those developed by Hossain and Rahman [39]. They found that both local 

heterogeneity in the rock matrix and macro-scale stress fluctuations caused by 

heterogeneity in rock properties are the major cause of twisting and turning of fractures. 

Increases in fracture tortuosity led to decreases in fracture volume and required higher 

fluid pressures to continue propagation of the fracture. 

 

1.6 Boundary Element Network Models   

 A primary limitation of the models already mentioned is their restriction on the 

number of fractures, as all of the models mentioned focus on at most a few fractures 

propagating out from a single well. In the field, however, hydraulic fractures can branch, 

and propagating fractures will frequently intersect existing natural fractures to form 

complex fracture networks. As these networks can greatly increase the area of a reservoir 

impacted by a single fractured well, methods are needed to model them. Typically, 

fracture network models have relied on coupling between a discrete fracture network 

(DFN) form of the fluid flow equations and either continuous or discontinuous methods 

for rock mechanics modeling. The nature of hydraulic fracturing precludes the use of a 

Representative Elementary Volume (REV) for a fully continuous version of the fluid 

flow equations, as the pathways induced by hydraulic fracture flow can have 

conductivities orders of magnitude higher than the surrounding rock matrix, making the 

determination of an REV extremely difficult. Fracture network models can be categorized 
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based on the number of dimensions considered. Models can range from zero-dimensional 

approximations borrowing resistance concepts from electrical engineering to fully 3D 

simulators that attempt to replicate the most prominent features of the coupled system. 

Most hydraulic fracturing simulators are solved at the minimum using a 2D spatial field, 

and in most applications, the dimensionality of the fracture network is one less than that 

of the rock matrix. For example, if the rock matrix is modeled by a 2D finite element 

mesh, the fractures would be modeled as one-dimensional (1D) channels with varying 

widths. Similarly, if the rock matrix is considered in 3D, the fracture network would 

consist of a 2D network of intersecting planes. A side effect of using these smaller 

dimensions for the fracture network is that the tortuosity of the actual fracture network 

cannot be captured, although some of its effects may be captured by adjusting the 

conductivities of the network. As such, the DFN approach used in these models is at best 

an approximation of the real system. 

 In many respects, the network flow models are very similar to the previous 

models discussed. Rock mechanics are typically treated using either the FEM or BEM, 

although various models based upon discrete element methods (DEM) have begun to 

emerge. All of the models described in this section are based upon a form of the BEM, 

which saves computational costs compared to the FEM and DEM at the price of 

resolution of the stress field in the rock matrix. Mass balance for fluid flow is considered 

through continuity at fracture junctions, while flow between junctions is described using 

Poiseuille’s Law. A key difference between these models and their predecessors, 

however, is that network models must account for the interaction of propagating 

hydraulic fractures with existing natural ones. In particular, the model must determine if 
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propagating fractures will cross, arrest or open natural fractures as they are encountered 

(Figure 1.4). To address this problem, Renshaw and Pollard [51] developed a commonly 

used criterion for fractures that meet at 90° angles, based on the tensile strength and the 

coefficient of friction of the natural fracture. Gu et al. [52] later extended this criterion to 

fractures that meet at non-orthogonal angles. Both criteria were validated experimentally. 

 Among the various models published, the unconventional fracture model 

developed at Schlumberger and described in Kresse et al. [53] and Weng et al. [54] is one 

of the more advanced. Based on the work by Olson and Dahi-Taleghani [55], their model 

simulates the fracture network using 2D vertical fractures with variable height. For the 

limiting case of uniform in situ stress and constant height, the fractures reduce to those of 

a PKN model. Otherwise, they are similar to those for a P3D model. Fracture height is 

evaluated by equalizing the stress intensity factors at the top and bottom of the fractures 

with the apparent fracture toughness in the vertical direction. Fracture branching is 

controlled by the intersection criteria developed by Gu et al. [52]. The rock matrix itself 

is not explicitly modeled, but rather is treated through the elasticity equation as with 

 

 

Figure 1.4: Potential interaction modes when a propagating fracture intersects a natural 
fracture. 

Arresting CrossingOpening
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simple planar methods, resulting in faster computation times. To account for the changes 

in rock matrix stress caused by fracturing, they apply the boundary element stress shadow 

method developed by Crouch and Starfield [56]. The stress shadow method relates the 

normal and shear stresses acting on one fracture element to the normal and shear stresses 

acting on all other elements through superposition. In [57], Cipolla et al. demonstrated a 

workflow for calibrating the unconventional fracture model with microseismic 

measurements. They found that the complexity of the fractured system is dependent on 

the stress differential between the maximum and minimum stresses. In their experiments, 

a stress differential of 500 psi or less resulted in the opening of pre-existing natural 

fractures, while a stress differential of 1000 psi resulted in a single propagating fracture. 

Additionally, they found an inverse relationship between the connectivity of the fracture 

system and the surface footprint of the propagating fracture. As the connectivity of the 

system increased, the footprint of the fractures decreased as fluid was diverted into 

natural fractures. 

 Due to the complexity of modeling fully 3D network systems, many authors use 

simplified representations of the fractured reservoir to save on computation time. Du et al. 

[58] introduced a model for network modeling based around the concept of a dual-

porosity fracture system. In dual porosity models, fracture networks are approximated by 

a regularized grid with much higher conductivity than the surrounding rock matrix. Dual 

porosity models tend to require significantly less CPU time than single porosity models 

with embedded fractures, but they may struggle to capture the physics of fracture 

initiation and propagation at non-orthogonal angles or with irregular fracture spacing. Du 

et al. calibrated their dual porosity model by taking injection and microseismic event data 
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from a fracturing treatment and using it to generate the model’s reservoir properties. They 

performed a case study of a single horizontal well and used the calibrated model to 

evaluate the impact of different size proppants on the generated fracture volume. In 

addition, they performed a sensitivity analysis of rock, fracture and micro-seismic 

parameters on cumulative well production and found that the degree of fracture 

connectivity had the greatest impact on well production of the parameters tested. Rogers 

et al. [59] developed a simplified DFN model for hydraulic fracturing, which eschewed 

many of the complicated geomechanical relationships discussed previously in favor of 

computational speed for simulating large numbers of fractures. Their model allowed for 

the solution of a fully 3D system, with no assumptions placed on the orientation of the 

fractures. In their model, stress shadow effects are ignored, and fluid flow is governed by 

a standard transient DFN flow simulation. Fracture volumes are estimated using the 

elastic solution for elliptical cracks, and fracture propagation into a natural fracture is 

assigned based on distance from the injection point through the network, the angle of the 

new fracture with the existing fracture, and the fracture aperture. Fracture propagation 

into the rock matrix is not considered. The key advantage of their model is its speed, as 

the examples they considered involved the use of significantly more fractures than those 

in the other models discussed. 

 Smith et al. [60] developed a hydraulic fracture model based on percolation 

theory to examine the likelihood of caprock failure during carbon dioxide sequestration. 

Flow and geomechanical modeling was performed using the ECLIPSE simulator 

developed by Schlumberger [61]. ECLIPSE is a poroelastic reservoir simulator based on 

the three-phase black oil equations. To simulate fracturing, Smith et al. first modeled the 
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injection of carbon dioxide in a sample aquifer to generate a stress distribution using 

ECLIPSE. Next, they overlaid a fracture network on top of the distribution and examined 

if the fractures would fail using maximum tensile strength and Mohr-coulomb fracture 

criteria. Finally, they evaluated the fracture system to see if a percolating network was 

produced through the caprock. Probability was introduced by generating numerous 

fracture networks for each realization of the aquifer stress distribution, and evaluating the 

number of networks that percolated. A key limitation of this work is that the effects of the 

fracture network on the system are not incorporated into ECLIPSE. However, their model 

was capable of evaluating the potential for fracturing in a domain with a depth of 3000 m 

and a width of 400 km, which represents a domain very much larger than can be 

reasonably considered with the other network models described in this paper. 

 

1.7 Finite and Discrete Element Network Models 

 Unlike the previous models, in which the elastic response of the rock matrix was 

coupled to the fluid pressure through the use of boundary integrals or other methods, the 

models in this section model the matrix response using discretized elements. These works 

may be divided into two different types. In the first, the rock matrix is discretized using a 

continuum representation and is modeled using a form of the finite element method 

(FEM). In the second, the matrix is discretized using discontinuous elements with a form 

of the distinct element method (DEM). In the DEM, elements are allowed to deform and 

separate independent of each other, while unfractured elements are kept together by a 

series of simple rules. In both methods, fractures may grow only along element 

boundaries, limiting the potential directions for fracture propagation. One benefit of these 
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models is that they tend to be partitioned into different solvers, which allows for a degree 

of interchangeability between the different model components. 

 Zhang and colleagues [62, 63] used a 2D FEM simulator to examine the different 

interaction mechanisms that occur when a propagating fracture intersects a natural 

fracture. In particular, they examined the parameters that influence whether a propagating 

fracture will cross a frictional confining layer to escape from a targeted reservoir. They 

found that propagation across interfaces is more likely to occur when the fracture 

propagates out of a “stiffer” layer with higher Young’s Modulus into a “softer” layer with 

lower Young’s Modulus. Additionally, they found that low-viscosity fluids are less likely 

to penetrate into the confining layer in the case of high in situ stress. Dahi-Taleghani and 

Olson [64] developed a similar model for testing fracture interaction mechanisms. Rather 

than the regular FEM, however, they used a version of the extended finite element 

method (XFEM) to allow for fracturing within mesh cells.  

 Fu and colleagues [65, 66] developed a 2D fully coupled hydraulic fracturing 

network simulator based around the FEM. Typically, to characterize the stress intensity 

factors required by LEFM, finite element solvers rely on special quarter-point elements, 

in which two of the nodes are located not at the midpoint of the element edges, but rather 

three-fourths of the distance along the open fracture. These elements are limited in their 

ability to model surface tractions along fractures, and require a priori knowledge of the 

locations of fractures, as discussed in [67]. As such, they are not suited for modeling 

dynamic hydraulic fracture problems. To overcome these problems, The FEM solver 

developed by Fu and colleagues uses six node triangular isoparametric elements to 

discretize the rock matrix with nodes at the endpoints and midpoints along the edges of 
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the triangles. Fracturing of these nodes is regulated by the stress intensity factor criteria, 

using the generalized displacement correlation method developed in [67]. The fluid 

system is discretized into finite volume cells centered at the junctions of fractures. Both 

the rock and fluid solvers are discretized explicitly in time, requiring the use of small 

time steps and relatively fine mesh for the rock matrix. Fu et al. validated their model 

against the KGD solution for fracture growth in a toughness dominated regime, and 

against the experiments by Blanton [68] for the interaction of a propagating hydraulic 

fracture with a pre-existing natural fracture. Additionally, they demonstrated the ability 

of their model to simulate fracturing in a 200 m x 100 m medium with numerous pre-

existing natural fractures. 

 Of the authors who used discontinuous methods, Galindo Torres and Muñoz 

Castaño [69] developed a 2D model for hydraulic fracturing based upon the explicit form 

of the DEM. Discretization of the rock mesh was performed using a Voronoi tessellation, 

which produces irregular-shaped polygons with variable numbers of sides. Fracturing 

was controlled by the maximum tensile stress and Mohr-Coulomb criteria. Fluid pressure 

in the fracture was considered using a simplified relationship between the amount of fluid 

injected and the total volume opened between the rock elements. This pressure was 

further coupled with Darcy flow to solve for fluid pressure within the rock. The mesh size 

considered by the authors was fairly coarse, and consisted of a domain of 25 x 25 

polygons with an average side length of 2.1 m. Their model was able to capture three 

different stages of a fracturing simulation, corresponding to the pressure buildup before 

initial fracturing, pressure drop upon initiation of fracturing, and finally pressure 

stabilization as the fracture volume grew with a power-law dependence on time. Nagel 
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[70] developed a 3D hydraulic fracturing simulator based around the DEM, using the 

commercial software 3DEC. To discretize the rock matrix, 3DEC represents the rock 

domain as an assembly of 3D discrete blocks of varying shape. Discrete fracture 

networks may be imported into 3DEC to define blocks around a pre-existing fracture 

network. All of the equations used for analysis were those already included in 3DEC. 

Nagel tested the sensitivity of the rate of tensile and shear fracturing to changes in 

injection rate and fluid viscosity in a DFN of 350 fractures over a domain of hundreds of 

feet. He found that increasing the injection rates greatly increased the number of fractures 

that failed in tension, though it did not have a clear effect on the number of fractures that 

failed in shear. Increasing the viscosity of the fracturing fluid did not lead to many 

changes in the number of tensile failures. It did, however, dramatically increase the 

number of fractures which failed in shear. 

 A final model under development based on discontinuous methods is the 2D 

fracturing model developed by Ben and colleagues [71-73]. Their model is based on the 

implicit form of the distinct element method, called the discontinuous deformation 

analysis (DDA) [74], which also is the rock mechanics solver used in the current work. 

The DDA has the advantage of removing the limitation on time step size inherent to the 

explicit form of the DEM. As a result, it requires fewer time steps to model a given 

simulation time. However, the computation time required to compute each time step is 

significantly larger, thus it is not immediately obvious which method will result in faster 

computation times. The rock matrix in their work was discretized using square elements, 

with fracturing controlled by the maximum tensile stress and Mohr-Coulomb criteria. 

Fluid flow is modeled using an implicit finite volume formulation, similar to that in [65]. 
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Like Galindo-Torres [69], they demonstrated the ability of their model to capture three 

stages of fracturing. Further, they applied their model to a test case of fracturing over a 

250 m x 250 m grid and demonstrated its ability to model fracture propagation 

perpendicular to the direction of minimum in situ stress. Some limitations of their model 

exist, however, which aim to be addressed in the current work. Among these are 

assumptions regarding the initial state of closed fractures (all are initially opened to fluid), 

issues concerning the convergence of the algorithm (equilibrium is decided a priori after 

a certain number of iterations), and a lack of verification examples for their solver. 

 

1.8 The Current Model 

 In this thesis, an algorithm for modeling hydraulic fracturing in complex fracture 

geometries is presented and verified. The method builds upon the existing methods for 

modeling hydraulic fracturing with the DDA, using the DDA for consideration of the 

rock mechanics and a finite volume fracture network model for simulation of 

compressible fluid flow in fractures. Improvements are made to the fluid, contact and 

coupling components of the existing algorithm to increase its accuracy and stability, and 

additional theory is provided to relate the criteria used for fracturing in the DDA with 

LEFM criteria. Chapter 2 of the thesis provides the model formulation, while Chapter 3 

verifies the coupling of the model through comparison with analytical solutions and 

experimental results for hydraulic fracturing. Chapter 4 relates the maximum tensile 

stress and Mohr-Coulomb criteria used in the DDA with the LEFM criteria more 

commonly used in fracturing models and verifies the relationship for hydraulic fracturing 

through comparison with the semi-analytical solution for bi-wing fracture propagation in 
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a storage-toughness regime. Chapter 5 demonstrates the statistical application of the 

model and develops a method for predicting the likelihood of hydraulic fracture 

propagation to any given location within a reservoir. Finally, Chapter 6 summarizes the 

findings and implications of this work and provides direction for future research. 
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2 MODEL DERIVATION 
 

 

 Hydraulic fracturing is a complex process. As mentioned in the previous chapter, 

accurate modeling of hydraulic fracturing requires the consideration of a few key 

mechanisms to characterize the coupled rock and fluid system. First, fluid mechanics 

must be considered, either within the fractures alone, or as a combination of flow within 

the fractures and flow within the rock matrix. Second, a method needs to be selected for 

modeling the deformation of fracture walls as a response to fluid pressure, and finally, a 

mechanism needs to be included to account for the formation of new fractures within the 

system. In this section, the model used in this work (the HFDDA) is derived in detail. 

Particular attention is given to the description of each of these processes as they occur in 

the current model, as well as to the methods used to couple the various processes together. 

 

2.1 Fluid Flow Model  

 The fluid-flow module in the HFDDA is derived using a finite volume fracture 

network form of the conservation equations for fluid mass and momentum, and is similar 

to the method applied by Jing et al. in [75] and Ben and colleagues in [71-73]. The 

network is comprised of fluid nodes connected by fractures (Figure 2.1), which form the 

spaces between rock blocks. For a fluid node i, conservation of mass is given by the 

equation 

 ( ) ,
1

k

i i ij L i i
j

V Q Q C
t

ρ
=

∂ = + +
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where k is the number of nodes j connected to node i, ρi is the fluid density, Vi is the 

volume of node i, Ci is the mass injection rate, QL is the leakoff into the fracture  
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formation, and Qij is the flow rate along fracture ij . For 1D flow, the flow rate along the 

fracture may be expressed by Poiseuille’s Law using the well-known cubic law 
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where wij is the fracture width, Lij is the length, hij is the depth (equal to unity for plane-

strain conditions), µij is the fluid viscosity (assumed constant), pi is the pressure in node i, 

ρij is the density in fracture ij , and ijη represents the transmissivity of the fracture. The 

fracture density and fracture widths may be approximated as the average of the densities 

and widths at nodes i and j, respectively. Leakoff of the fluid may be expressed using 

Carter’s leakoff coefficient (CL) and the area opened along the walls of each fracture 

using the expression 
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where QLV,i is the volumetric rate of leakoff from node i, t is the simulation time and t0 is 

the time at which fluid first arrives at the node from fracture ij . Substituting Equations 

(2.2) and (2.3) into Equation (2.1) yields 

 

Figure 2.1: Example of fluid and rock system showing components within the HFDDA. 
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Using a forward discretization in time, Equation (2.4) can be discretized as 
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For compressible flow, fluid density is a function of pressure by the definition 
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where cf  is the fluid compressibility, and ρ0 and p0 are a reference density and pressure, 

respectively. Substitution of Equation (2.6) for ρi and rearranging yields the final form of 

the fluid flow equation for each node 
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Note that this equation differs from the similar equations in [75] and [71, 72], as it 

accounts for leakoff and uses a fully implicit method to describe the change in pressure 

resulting from the change in volume of the node itself. For all of the nodes in the fracture 

system, Equation (2.7) can be rewritten as the matrix system 

 =Ap B  (2.8) 

where p is the vector of unknown pressures at time t t+ ∆ , A is the matrix of coefficients 

for the unknown pressure vector, and B includes the terms on the right hand side of 

Equation (2.7). In Equation (2.8), for a given rock geometry, all of the terms in A and B 

are known except for the average fracture density ijρ , which is part of ijη  in the matrix A, 

and is dependent on the fluid pressures by the relationship in Equation (2.6). Thus for a 
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given fracture geometry determined by the DDA, Equation (2.8) must be solved 

iteratively to reconcile the average densities ijρ  in A at time t t+ ∆  with the pressures at 

time t t+ ∆ . 

 A question that arose while deriving Equation (2.7) was whether or not the model 

could be built using an incompressible fluid. For an incompressible fluid, 0fc = and 

Equation (2.7) becomes 

 ( ) ( )( )0 ,
1 1

k k
t t t t t t t t t t t t t t t
ij i ij j i i LV i i

j j

t p t p V V tQ tCη η ρ+∆ +∆ +∆ +∆ +∆ +∆ +∆

= =

   
∆ − ∆ = − − ∆ + ∆   
   
∑ ∑  (2.9) 

If the volume of each node remains constant in time ( )t t t
i iV V +∆= and no leakoff is 

occurring( ), 0t t
LV iQ +∆ = , the equation becomes the same as that used to solve for flow in 

pipe networks (e.g., [76]). For pipe network problems, some knowledge of the 

background conditions at each node is required. First, at every node, either the pressure 

head or the mass flowrate (into or out of the system) must be known. Second, to solve the 

system, at least one pressure head must be prescribed. Using the incompressible form of 

the fluid flow equations for hydraulic fracturing results in the same requirements, and 

makes the equation suitable for modeling fracturing in an existing pressurized network 

with a prescribed boundary pressure. Using the compressible form of the equations, 

however, removes the second requirement, as the system pressure is no longer 

determined by the a priori specification of a boundary pressure head, but rather by the 

degree of fluid compression at each node. As a result, the compressible form of the 

equations is more general, as it no longer requires the system to be connected to a pre-

existing fracture network. Since many of the examples tested in this work involve the 
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formation of new fractures in previously intact rock, only the compressible form of the 

equations is used.  

 One difficulty that arises when solving Equation (2.8) is that there is no constraint 

on the pressures in the system to be positive. If the void volume at a fluid node increases 

beyond the volume of fluid contained within it, the pressure at that node will become 

negative, a situation which would not happen physically. Two methods were attempted in 

this work to remedy this problem. First, if a node has a negative pressure in the HFDDA 

after the solution of Equation (2.8), a zero pressure boundary condition can be assigned to 

that node, and Equation (2.8) can be resolved. However, to ensure conservation of mass, 

the amount of fluid that flows into these boundary nodes must also be calculated (Figure 

2.2). Returning to Equation (2.7), when a zero pressure condition is assigned to a node, 

the volume of fluid in the node at the new time (t t
iV +∆ ) becomes an unknown variable. 

Equation (2.7) can be rearranged to solve for t t
iV +∆ , which will then ensure conservation 

of mass. 

 A second option for solving the problem is to iterate not just on the volume of the 

negative pressure node, but rather on the length, width and transmissivity of each fracture  

 

 

Figure 2.2: Geometry demonstrating the void space and fluid volume at fluid nodes 
where zero pressure bounds are assigned.  
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that connects to the node as well. In this method, the tip of the fluid front within each 

fracture may be tracked more accurately, as the transmissivity and geometry terms in 

Equation (2.7) would better reflect the volume of fluid actually contained within each 

fracture. During testing of the algorithm, however, adding in iterations on the 

transmissivity and geometry terms greatly increased the amount of time required for 

convergence, without significantly impacting the results. Furthermore, in practice the 

exact location of the fluid front within each fracture is less important than its location in 

the overall system. Thus for all of the simulations discussed in this paper, only the first 

method is used. 

 Two final aspects of the fluid algorithm also bear mention. First, if a fracture is 

open to fluid at the end of a time step, that fracture will remain open to fluid throughout 

the rest of the simulation. To model this process, each fracture is assigned a minimum 

width ( minw ) once it has been opened. Physically, this mechanism corresponds to the fact 

that fractures will be unable to fully close once they have been opened, as a result of 

roughness generated along the fracture surface when the fracture is first formed. As the 

overall width of a fracture is calculated using the average of the fracture’s width at each 

end, the width at each end of an open fracture is evaluated separately against the 

minimum width criteria. Unless otherwise noted, fractures connected to fully open nodes, 

or nodes with more than two contacts opened, were assigned a minimum width of 0.5 µm. 

Fractures connected to nodes with only one or fewer nodes opened (corresponding to the 

fracture tips) were assigned a minimum width of 0.1 µm. Second, to facilitate 

convergence, the HFDDA requires that fractures close gradually, and that once opened, 

the width of a fracture may decrease by no more than 5% within each time step. The end 
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result of these mechanisms is that once a fracture opens, it will remain in contact with the 

overall fracture network and will never become fully isolated from the main body of the 

fracture. 

 

2.2 Rock Mechanics Model 

 For this work, the discontinuous deformation analysis (DDA) was selected to 

model the rock and fracture mechanics, and was implemented using the open-source 

software “DDA for Windows” [77].  The DDA is a fully implicit method for analyzing 

the motion of discrete rock blocks, first developed by Shi in [74]. A review of the 

theoretical details of the DDA is beyond the scope of this paper, but a summary of the 

methodology for the two-dimensional DDA, as found in [78], is given here. Similar to the 

FEM for rock deformation analysis, the DDA solves for deformation and motion of a 

system of rocks by minimizing the total potential energy of the entire system. As opposed 

to the continuum representation used in the FEM, rocks are represented in the DDA as 

individual blocks which are allowed to deform and separate. For a single block, a first 

order approximation of its displacement can be given by  

( ) ( )

( ) ( )

0 0 0 0

0 0 0 0

1

2

1

2

xx xy

yy xy

u u x x y y r

v v x x y y r

ε γ

ε γ

 = + − + − − 
 

 = + − + − − 
 

 (2.10) 

where u and v are the displacements in an (x,y)-coordinate system of the block at point 

(x,y), u0 and v0 are the rigid body motion at the block’s centroid (x0,y0), εxx and εyy are the 

axial strains in the x and y directions, γxy is the shear strain, and r0 is the rigid body 
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rotation around (x0,y0), expressed in radians. In matrix notation, Equation (2.10) may be 

written for block i as   

i i i=U TD  (2.11) 

where ��
� = ���, 	�, 
�, ���, � , ���, �� = ��, 	�, and T i is the displacement 

transformation matrix, which contains the coefficients from Equation (2.10) for each term 

in Di. The vector Di contains the unknowns for the motion of each rock block i and is 

solved for in each time step. To find them, the total potential energy of the system is 

minimized, using the equation 

=KD F  (2.12) 

where D is a vector containing ( )6 1×  subvectors for the displacement unknowns of each 

block; F is a vector containing ( )6 1×  subvectors of the resultant general forces acting on 

each block; and K  is the symmetric positive definite global “stiffness matrix,”  composed 

of ( )6 6×  submatrices that correspond to the physical constraints of each block. The on-

diagonal submatrices K ii represent the material properties of block i, while the off-

diagonal submatrices K ij �� ≠ �� represent the contributions of contacts between blocks i 

and j. K  and F are generated by minimizing the sum of all forms of potential energy in 

the system, including stresses, external or body forces, strain energy, displacement 

constraints at the block contacts, and so forth. Terms in K  are generated using the second 

derivative of the potential energy, while terms in F are generated using the negative of 

the first derivative evaluated at zero displacement. As an example, the potential energy 

( )Π  from strain in each block i is given by 
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2

Ti
i i i

AΠ = D E Dɶ  (2.13) 

where A is the area of the block at time t, iD  is the ( )6 1× subvector of block 

displacements from time t to time t t+ ∆ , and Eɶ  is a ( )6 6× matrix of material constants. 

The second derivative of the potential energy from strain gives 
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d d d d

∂ ∏ ∂  = = = ∂ ∂ ∂ ∂  
D E D Eɶ ɶ  (2.14) 

where nid  represents the displacement unknown n in block i, and i iAEɶ  forms a ( )6 6×  

submatrix which is added back into K . The first derivative of the potential energy gives 

 ; 1,...,6
2 2

Ti i
i i i i i

ni ni

A A
n

d d

∂ ∏ ∂  − = − = − = ∂ ∂  
D E D E Dɶ ɶ  (2.15) 

which when evaluated at zero displacement ( )i =D 0  results in no contribution to F. As 

with the strain energy, every contribution to the total potential energy will generate a 

term that may be added into the global K  and F, which may then be used to solve the 

system of displacement unknowns in Equation (2.12) and the displacement of each block 

in Equation (2.11). For more information on the derivation of each term in K  and F, see 

[74]. 

 

2.3 Contact and Fracture Model 

A unique feature of the DDA is the manner in which it simulates contacts between 

rock blocks. Within the DDA, blocks are not allowed to inter-penetrate, nor are they 

allowed to be in tension beyond the tensile or the shear strengths of the bonds holding 

them together. For the DDA, these conditions are collectively referred to as the no-
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tension and no-penetration constraints, and can be expressed between two contacting 

blocks by the expressions [79] 

 
0 0

No penetration : 0

No tension : , tanc c

N

N L T S L C N φ
≥

≤ ≤ +
 (2.16) 

where N and S are the normal and shear forces between the blocks along the contact, 0T  

and 0C are the tensile and cohesive strengths of the contact, respectively, Lc is the length 

of the contact, and φ is the friction angle between the two blocks. For the no-tension 

constraints, the tensile constraint is more generally known as the maximum tensile stress 

or Rankine fracture criteria, while the shear restraint is referred to as the Mohr-Coulomb 

fracture criteria. 0T  and 0C only exist along contacts that have not yet been broken; if the 

normal force or shear force exceeds the strength of the bond, the bond breaks and 0T  and 

0C  are set to zero.  

 In the original DDA, these no-tension and no-penetration constraints are enforced 

using a penalty method (PM). Contacts are represented mechanically by springs (Figure 

2.3), which serve to penalize penetration and tension in the solution of the equations of  

 

 

 

Figure 2.3: Use of springs to represent block contacts in the DDA. 
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motion. Fracture contacts can have one of three states: locked (normal and shear springs), 

sliding (normal spring) or open (no springs). To determine which contacts require springs, 

“open-close” iterations are performed in which springs are systematically applied and 

removed until the no-tension and no-penetration conditions are approximately satisfied.  

With the PM, the potential energy from the normal and shear contact springs is given by 

 2 2,
2 2
N S

N N S S

k k
d dΠ = Π =  (2.17) 

where Π is the potential energy of the spring, Nd  and Sd are the normal and shear 

displacements of the penetration point 1P  along the reference line 2 3P P  (Figure 2.3), and 

Nk  and Sk are the spring constants of the normal and shear springs. To evaluate the no-

tension and no-penetration constraints, the contact forces are given by   

 ,N N S S
N S

N k d S k d
d d

∂Π ∂Π   = = = =   ∂ ∂   
 (2.18) 

A key limitation of the PM is that the solution is highly dependent upon the values 

selected for Nk  and Sk . This dependence can be overcome through the use of an 

Augmented Lagrangian Method (ALM) [79]. With the ALM, forces between contacts are 

calculated iteratively using the equation updates 

 1 1,m m m m m m
N N S SN N k d S S k d+ += + = +  (2.19) 

where m is the iteration counter. As the iteration m increases, the influence of the terms 

m
N Nk d  and m

S Sk d  becomes negligible. The contribution for each contact to the potential 

energy of the system is given by 

 2 2,
2 2
N S

N N N S S S

k k
Nd d Sd dΠ = + Π = +  (2.20) 
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Incorporation of the normal potential energy terms into the equations of motion (Equation 

(2.12)) is detailed in [79], while incorporation of both the normal and shear terms is 

discussed in [80]. More information regarding the original form of the contact constraints 

and how they are incorporated into the global equations of motion may be found in [81] 

and [82]. 

 To apply the DDA to hydraulic fracturing simulations, some adjustments were 

needed in the existing contact algorithm. In their application to the DDA, these 

adjustments are unique to this work and are specific to the problem of hydraulic 

fracturing, as they might not apply for general DDA simulations. In particular, they seek 

to reproduce the Mode I fracture propagation typically observed in hydraulic fracturing 

experiments. The adjustments include: 

 

i. In LEFM models of hydraulic fracturing, it is generally assumed that fractures will 

only propagate from pre-existing fractures, rather than forming new nucleation sites 

within the rock media. Further, in large scale fracturing models, it is typically 

assumed that any fluid lag between the fracture tip and the fluid is minimal. Thus an 

added constraint is that locked contacts may only be released if they are connected to 

an open contact along the same fracture or at the same node, and if they are adjacent 

to a node that is pressurized. As a result, some fractures may stay closed longer than 

would be predicted by their tensile or cohesive strengths alone. 

ii.  Because hydraulic fracturing typically occurs in Mode I, contacts are required to fail 

in tension before they are allowed to shear. This is accomplished by setting the 

cohesive strength of every fracture to a very large number. Once the fracture has 
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failed in tension, the cohesive strength is set to zero and the fracture is allowed to 

shear. 

iii.  Occasionally at the tip of the propagating fracture, two or more contacts will fail at 

the same time in tension. To select the proper propagation direction, the contact with 

maximum normal stress ( /N cN Lσ = ) is allowed to fail, while the other remains shut. 

After selection of the propagation direction, another open-close iteration is performed 

to test for convergence. In the event that the maximum normal stresses are nearly 

equal, the fracture is allowed to split. In this work, this event was defined as occurring 

when the maximum stresses were within 0.1 percent of each other.  

iv. Because the system is highly compressed, it is not expected that large displacements 

will occur in the locations of the rock blocks. As a result, the list of potential contacts 

between blocks is generated only once, and is kept constant throughout the simulation. 

In the original DDA, the list of potential contacts is refreshed every time step. 

v. In the original DDA, contacts were divided into three different types: vertex-vertex, 

vertex-edge and edge-edge (Figure 2.4). A recognized problem with spring-based  

 

 

Figure 2.4: Three contact types used within the DDA, in which the upper block 
penetrates the lower block.  

Edge-Edge Vertex-Edge Vertex-Vertex
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vi. penalty methods is that vertex-vertex contacts can lead to the inaccurate displacement 

of blocks by requiring the specification of a single reference line for penetration (e.g. 

[83-85]) (Figure 2.5). Additionally, it was found that unfractured vertex-vertex 

contacts would frequently struggle to converge when using the ALM, as the 

penetration distance and force across both reference lines of the contact would be 

very small. While some efforts have been made to resolve the first of these issues 

within the DDA by using a trajectory-based method for the initial selection of the 

reference line ([84, 85]), a fully implicit method for resolving both problems remains 

elusive. In an effort to minimize these issues, vertex-vertex contacts remain open in 

the current work until the penetration grows greater than some tolerance, here set at 1 

µm. Application of this method requires that the blocks be tightly constrained such 

that vertex-vertex contacts do not develop independent of other vertex-edge contacts, 

as is the case in hydraulic fracturing. 

vii.  In the original DDA, edge-edge contacts are decomposed into two vertex-edge 

contacts. When the edges share the same endpoints, the springs are divided between  

 

 

 

Figure 2.5: Variability of reference line selection in vertex-vertex contacts. 
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the two contacting blocks, with one spring assigned to each block (Figure 2.6). It was 

found during testing that using just one spring at each endpoint could cause the 

fractures to rotate asymmetrically and ultimately lead to the failure of the simulation 

to converge. A solution for this problem is shown in Figure 2.6. In the new 

configuration, edge-edge contacts that share endpoints are decomposed into four sets 

of springs rather than two. To preserve the total energy of the system relative to the 

original DDA, the energy contribution from each set of springs is averaged. At one 

vertex-edge pair, the new energy contribution from the normal and shear springs 

becomes 
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( )
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 (2.21) 

 where i and j are the springs on either side of the contact. The ALM forces are 

calculated using Equation (2.19) on each individual spring. Using this configuration, 

the calculation of the contact forces in the no-tension and no-penetration constraints 

(Equation (2.18)) is modified to become 
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2.4 Coupling Algorithm 

 In the HFDDA, simulation of the coupled rock and fluid system proceeds in two 

iterative steps, dubbed inner iterations and outer iterations. Inner iterations are used to 

solve the global system of equations, while outer iterations are used to resolve the open-

close state of the rock contacts and the fractures. Within the inner iteration cycle, fixed-

point iterations are used to solve for the rock displacements and the pressure distribution. 

Fluid pressures are applied to the rock blocks using a trapezoidal pressure distribution [75, 

86], which is applied as a single equivalent force onto each rock block adjacent to an 

open fracture. The applied pressure forces will lead to displacement of the rock blocks, 

which will cause the geometry of the fracture network to change. New fracture 

geometries will lead to new estimates of the fracture volume and width, which will in 

turn cause the pressure distribution to change. The coupling of Equations (2.12) and (2.8) 

may be expressed by  

 

Figure 2.6: Modification of edge-edge contact springs along edges with the same 
endpoints. The image shows how springs are applied in the original DDA for edge-edge 
contacts along an unbroken fracture, as well as how they are applied in the HFDDA. 
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where m is the iteration counter. The terms in parentheses represent the inter-dependence 

of the system variables. Due to the highly nonlinear dependence of pressure on 

displacement, small changes in rock displacement were found to cause wide variation in 

the system’s pressure distribution. Small fracture openings would cause the fluid pressure 

to become very large, which would lead to wide fracture openings on the next iteration. It 

was found upon experimenting with the solution of the system that without some form of 

stabilization, in most cases Equation (2.23) was unable to converge.  

 To stabilize the system, Equation (2.23) was modified by the addition of stability 

constants Rλ  and Fλ , changing the system to 
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; ; 1 ; ;

t t m t t mt t m
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t t m t t m t t m t t m
F F

λλ
λ λ

+∆ +∆+∆ +
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 ++  
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F p DI K 0 D
0 I A D p B D p

 (2.24) 

where I is the identity matrix. When ; 1 ;t t m t t m+∆ + +∆≈D D  and ; 1 ;t t m t t m+∆ + +∆≈p p , the 

contribution of Rλ  and Fλ to the global solution will cancel out, and the original Equation 

(2.23) will remain. An additional benefit of the stability constants is that their inclusion 

can greatly improve the condition number of the matrices K  and A, thus allowing for a 

more stable iterative solution. This improvement is particularly necessary in K , as the 

DDA is known to suffer from problems of ill-conditioning based on the penalty 

formulation of the contacts. Rλ  and Fλ  do not need to remain constant during a 

simulation, and may be changed if the inner iterations begin to diverge or oscillate.      
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 For the inner iterations, two sets of convergence criteria are employed. The first 

ensures that the solution in the current iteration is close to the solution to the previous 

iteration ( ; 1 ;t t m t t m+∆ + +∆≈D D and ; 1 ;t t m t t m+∆ + +∆≈p p ), while the second ensures that each 

equation is being solved accurately ( ; 1t t m+∆ + ≈KD F and ; 1t t m+∆ + ≈Ap B ). The first set of 

criteria is given by 
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while the second set is given by 
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where in both sets of equations Dε and pε are error tolerances for the displacements and 

pressures. For each time step, the rate of convergence of the inner iterations was found to 

be highly dependent on the values of the stability constants. Small values lead to 

divergence, while large values greatly increase the number of iterations required for 

convergence, and can even prevent convergence if they are too large. A limitation of the 

current method is that there is no predefined way of selecting the optimal value for Rλ  

and Fλ , such that their selection must at first be determined through trial and error.  

 Figure 2.7 shows a flowchart of the steps involved in the solution of one time step 

of the coupled solver. Steps 2-8 correspond to the sequence of inner iterations used to  

solve Equation (2.24), while steps 2, 9 and 10 correspond to the outer iterations. For the 

inner iterations, a direct LU solver with the Cholesky factorization is used to solve the 
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rock mechanics equation =KD F . Because K  is symmetric positive definite, the matrix 

can be decomposed into 

 T=K LL  (2.27) 

where L  is a lower triangular matrix and TL is its conjugate transpose. With the Cholesky 

factorization, only one copy of the matrix L  needs to be stored, saving on memory. 

Additionally, K  only needs to be factorized once for each outer iteration, as all of the 

terms in K  are based on variables at the start of the time step. Factorizing K  only once 

saves greatly on computation time, as the equation =KD F must be solved anew any time 

the pressure changes and any time the contact forces are updated. For the fluid equation

=Ap B , similar gains in speed cannot be achieved as the matrix A depends on the 

geometry at the end of the time step and must be refactored after every inner iteration. In 

the problems tested, however, the speed of the algorithm used to solve the fluid equations 

proved negligible, as A tended to be a very small matrix relative to the size of K . For a 

problem with ~2000 blocks, no more than 100 fractures would typically open, resulting 

in a ( )12,000 12,000×  matrix for K , but no greater than a ( )100 100×  matrix for A.  

Because the size of A was so small relative to the size of K , the speed of the algorithm 

used to solve the equation =Ap B  was not a significant factor in the performance of the 

overall algorithm. 

 For the outer iterations, step 9 refers to the DDA’s open-close iterations described 

previously, while step 10 refers to the open-close iterations for the fluid within the 

fractures. The algorithm for determining if fractures are open or closed for fluid (Figure 

2.8) begins with the open-close iterations within the DDA. Each fracture is represented 

by an edge-edge contact, which may be decomposed into two sets of vertex-edge contacts,  
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Figure 2.7: Flowchart for solution of one time step of the HFDDA. Steps 2-8 represent 
the inner iterations of the solution, while steps 2, 9 and 10 represent the outer iterations in 
which the open-close (OC) states of the rock and fluid are resolved. 
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one at either end of the fracture. The vertex-edge contacts and the fracture may open 

independently, such that one end will generally open before the other. If the DDA 

determines that a vertex-edge contact along a fracture is locked or sliding, then it is 

assumed to be closed to fluid flow. If the contact is open, then the fracture becomes a 

potential candidate for fluid flow. Once a fracture has become a candidate based on the 

DDA, it is next evaluated based on its proximity to the fluid already in the system. At the 

end of each fracture lies a fluid node, which will either be pressurized or not pressurized, 

depending on if the fluid has reached that location. Fractures open based on the DDA are 

included in the solution of Equation (2.8) only if the candidate for opening is directly 

adjacent to a fluid node that is already pressurized as part of another open contact. 

Generally, this means that the fluid will propagate until it reaches either fractures that 

remain locked based on the DDA, or until it leads to negative pressures at the end of a 

partially-full fracture. Once negative pressures are reached at a fracture tip and a zero 

pressure condition is assigned, the fluid and fracture cannot propagate from that tip until 

 

 

Figure 2.8: Flowchart of open-close selection for fluids in fractures. VE = vertex-edge. 
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the fracture is fully pressurized and the zero pressure condition is removed. For the outer 

iterations, convergence is reached when there are no more changes in the open-close state 

of the block contacts and no more changes in the open-close state of the fluid-filled 

fractures.  

 

2.5 Model Application 

 Ultimately, a primary goal of the current work is the development of a model for 

hydraulic fracturing in reservoirs with pre-existing natural fractures. As will be 

demonstrated, pre-existing natural fractures can be introduced into the HFDDA both 

deterministically and stochastically, allowing for the solution of problems in which the 

fracture location is known with certainty, and for problems in which the fracture 

characteristics can only be approximated probabilistically. Introduction of a stochastic 

element into the model allows for a probabilistic assessment of fracture propagation, 

which in turn will be used to characterize some of the risk associated with hydraulic 

fracturing. Before diving into the application of the HFDDA to deterministic and 

stochastic fracture networks, however, the accuracy of the model must first be verified, as 

will be demonstrated in the following chapters. 
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3  MODEL VALIDATION 
 
 

 Before the HFDDA can be used to analyze hydraulic fracturing problems, the 

algorithm must first be verified. In this chapter, the coupling of the algorithm is verified 

through comparison with different sample problems for hydraulic fracturing. First, the 

algorithm is compared against the solution for a Griffith crack opening under constant 

pressure. Second, the algorithm is compared to the semi-analytical solution for a KGD 

fracture in the limiting regime of no toughness and no leakoff. Third, the method is tested 

against the experimental results of a fracturing experiment in an impermeable medium. 

Finally, the logic of the algorithm is examined through a series of numerical experiments 

which evaluate the model’s ability to predict hydraulic fracturing in simple systems.  

 

3.1 Constant Pressure Opening 

 Before attempting to model a propagating hydraulic fracture, it is worth 

examining the simpler problem of a Griffith crack of constant length opening under 

constant pressure (Figure 3.1) [4]. This problem has previously been used by Kim et al. 

[86] to validate their coupled DDA-fluid flow solver. For this problem, it is assumed that  

 

 

Figure 3.1: Geometry of the constant pressure problem. 
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the rock is infinite and homogeneous, the system is in plane-strain, and the fluid pressure 

distribution is constant throughout the length of the fracture. Note that in this problem, 

the fluid pressure distribution is not a function of time, and thus it is a good benchmark 

problem for testing the steady-state behavior of the rock mechanics method and the 

coupling of the fluid solver. It does not, however, provide any information on the 

transient nature of the solution. At steady-state, the analytical solution for the fracture 

opening width is given by  

 ( ) ( )( )2
0 2 2

4 1
1

fp L
w x x L

E

ν σ− −
= −  (3.1) 

where w is the fracture opening width, E is the rock modulus, ν  is the Poisson’s ratio of 

the rock matrix, fp  is the absolute fluid pressure, 0σ  is the background stress, L is the 

half-length of the fracture, and x is the distance along the fracture, measured from its 

center point.  

 To simulate this problem, an idealization for the rock system was generated 

consisting of a 36 m x 24 m inner domain contained within a 100 m x 100 m outer 

domain. A 20 m fracture (L = 10 m) was generated at the center of the domain, with 

fractures spaced 1 m apart. For this example, two different versions of the geometry 

idealization were used: one in which the rock matrix was first discretized into 

quadrilaterals, and one in which those quadrilaterals were further sub-discretized into 

triangles. In each simulation, a background stress of 5 MPa was applied as force loads 

along the upper and lower boundaries of the rock matrix, while an internal pressure of 

9.81 MPa was assigned to each fluid node within the fracture. Table 3.1 provides the 

other simulation parameters used in this analysis. In this and all other simulations,  
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Table 3.1: Constant pressure model parameters 

Rock Parameters 
Initial Density, ρr 2,650 kg/m3 

Young’s Modulus, E 25.0 GPa 
Poisson’s Ratio, ν 0.25 [-] 
Fluid Parameters 
Reference Density, ρf 1000 kg/m3 

Fluid Bulk Modulus, Kf 2.2 GPa 
Viscosity, µ 1 mPa-s 
Carter’s Leakoff Coefficient, CL 0.0 m/s 
Fracture Parameters 
Friction Angle, φ  30.0° 
Tensile Strength, T0 0.0 MPa 
Numerical Parameters 
Normal Spring Constant, kn 100*E 
Shear Spring Constant, ks 100*E 
Time Step, dt 1.0 s 
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background stresses were applied as force loads along the upper and lower boundaries. 

Each simulation was allowed to continue until the solution reached steady-state, which 

occurred after two time steps.  

 Figure 3.2 shows the results of the simulation using different formulations of the 

geometry idealization and the contact enforcement technique. The first observation from 

the results of this benchmark problem is that the quadrilateral discretization of the system 

geometry does not produce the correct fracture opening profile, for both the PM and the 

ALM case, while the triangular discretization is able to produce the correct profile. A 

recognized limitation of finite element based methods with linear displacement functions 

is that quadrilateral or higher-order polygons are unable to resolve correctly the stress and 

strain within elements [75]. Triangular elements, on the other hand, can correctly resolve 

the strains. As a result, triangular elements should be used in DDA simulations in which 

strain is the primary mechanism of rock displacement. For the triangular elements, slight 

differences were observed between the PM and ALM solutions, but both displayed very  

 
 

 
 
Figure 3.2: Comparison between the HFDDA solution and the analytical solution for 
fractures widths generated by the constant pressure problem. 
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good agreement with the analytical solution. The second observation is that the addition 

of the tolerance for the application of vertex-vertex contacts (item v. of Section 2.3) did 

not affect the accuracy of the solution. Of particular note is that with the ALM, no vertex-

vertex contacts were ever activated. Rather, the normal and shear forces generated by the 

vertex-edge contacts alone were sufficient to prevent penetration and hold the mesh 

together. With the PM, however, these forces were not iterated upon and many of the 

vertex-vertex contacts were activated. These results suggest that when using the ALM, 

vertex-edge contacts are sufficient to characterize the interior mesh of unfractured rock. 

With the PM, however, vertex-vertex contacts are required to prevent unrealistic 

penetration. Based on these results, the ALM was used in the remaining simulations in 

this work to allow the solution to be independent of the normal and shear spring constants. 

 

3.2 Viscosity-Storage KGD Fracture 

 The next benchmark problem selected is that of a bi-wing hydraulic fracture 

propagating under plane-strain conditions in an infinite homogeneous medium. As 

mentioned in the literature review, this problem was first analyzed by Khristianovich and 

Zheltov [5], and later by Geertsma and De Klerk [6], and is typically referred to as a 

KGD fracture in their honor (Figure 3.3). The solution consists of finding the fracture 

half-length ( )l t , the fracture aperture( ),w x t , and the net pressure distribution within the 

fracture, ( ),p x t  (the difference between the absolute fluid pressure ( ),fp x t  and the far 

field compressive stress 0σ ). In this problem, x is the distance along the fracture away 

from the injection point and t is the time. The primary processes that govern the 

development of a KGD fracture include the viscous flow of fluid within the fracture,  
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Figure 3.3: Geometry of the KGD problem. 
 
 
 
leakoff of the fluid into the rock formation, the propagation of the fracture and the 

deformation of the rock formation. Using Linear Elastic Fracture Mechanics (LEFM), 

these processes are found to be dependent on five problem parameters, namely the 

volumetric fluid injection rate 0Q  and the four material parameters 
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 (3.2) 

where ICK  is the fracture toughness, and the other parameters are as defined previously 

[17].  

 Recently, a number of studies have been conducted examining semi-analytical 

solutions for the KGD problem under varying asymptotic conditions of viscosity, 

toughness, storage and leakoff (see [17] and references therein). At one extreme, 

propagation of the fracture is governed by the viscosity of the fluid ( )0K ′ → , while at 

the other extreme, propagation is governed by the toughness of the rock matrix ( )0µ′ → . 

Similarly, fluid volume balance can be governed either by storage within the fracture 

( )0C′ → or by leakoff into the rock matrix ( )C′ → ∞ . Four different propagation 

regimes may be generated from these extremes, as identified in [17]. In each of these 
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regimes, two of the above four processes are negligible, while the other two dominate 

their respective mechanisms. For benchmarking purposes, a test of the HFDDA with no 

leakoff ( )0LC = and no tensile strength ( )0 0T =  should be comparable to the KGD 

solution for the limiting case of no leakoff  ( )0C′ →  and no toughness ( )0K ′ →  [19]. 

The HFDDA results can be compared to the semi-analytical solution for half-length of 

the fracture and the pressure and fracture width at the injection point, all with respect to 

time. For this problem, the semi-analytical solutions are given by the expressions 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ); , , ; , ,l t t t w x t t t t p x t t E tψ ζ ψ ξ ζ ξ′= Γ = Ω = Φ  (3.3) 

where Γ  is the normalized crack half-length, Ω  is the normalized crack opening, Φ  is 

the normalized pressure and x lξ = is the normalized distance along the fracture. For the 

no leakoff, no toughness regime, the solutions for Γ , Ω  and Φ  are each self-similar and 

may be stated independent of time. At the injection point, Ω  takes on the value of 

0 1.8302Ω ≃  and Φ is given as 0 0.54495Φ ≃ . For a Newtonian fluid, 0.61524Γ ≃ . The 

dimensionless parameter ( )tζ  and fracture length scaling  ( )tψ  are given by 

 ( ) ( )
1 61 3 3

2 30,
'

E Q
t t t

E t

µζ ψ
µ
′′   = =   ′   

 (3.4) 

 To model the KGD solution, a rock idealization was generated using a 64 m x 

60 m inner domain, contained within a 160 m x 160 m outer domain. Fluid was allowed 

to propagate up to 24 m along the horizontal fracture leading away from the injection 

point. For these simulations, it was desired to see how changes to the mesh refinement 

and the time discretization would affect the HFDDA’s ability to reproduce the semi-

analytical solution. First, four different mesh discretizations (dx = 4.0 m, 2.0 m, 1.0 m 
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and 0.5 m) were produced, in which the rock mesh along the fracture propagation path 

was made progressively finer. In each simulation, a fluid injection point was placed at the 

origin, and a flowrate of 0 4.0 kg/sQ = was applied continuously. To initialize each 

simulation, the two fractures on either side of the injection point were initially opened. 

Where applicable, the same physical parameters used in the constant pressure benchmark 

problem were used here.  

 The results for , ,  and p w l from the semi-analytical solution are compared with 

the values from the HFDDA at different mesh refinements in Figure 3.4 and Figure 3.5. 

Two different cases are presented. Figure 3.4 shows the results for the case of no 

background stress (0 0 MPaσ = ), while Figure 3.5 shows the results in the presence of 

background stress (0 5 MPaσ = ). For all of these examples, a time step of 0.5 s was used 

over 10 s of total simulation time. For both cases, when the mesh discretization was fine 

(dx = 0.5 m), good agreement was observed between the results of the HFDDA and the 

semi-analytical solution. As the discretization increased in size, however, the results in 

the absence of background stress continued to show good agreement, but those in the 

presence of background stress did not. With no background stress, the pressure and width 

at the injection point matched the semi-analytical solution very well, and the only 

deviation occurred in the results for the fracture half-length. This deviation results from 

the fact that fractures can only propagate in discrete intervals within the HFDDA. Thus 

when the discretization is large, the fracture half-length may increase only in large 

increments, creating the stair-step pattern observed in Figure 3.4.A. The results do show, 

however, that even at larger discretizations, the fracture moved forward at the time 

predicted by the semi-analytical solution. When 0 5 MPaσ = , the agreement between the  
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Figure 3.4: Evaluation of the KGD solution for different levels of discretization with no 
background pressure. A shows the half-length of the fracture, B shows the pressure at the 
injection point, and C shows the width of the fracture at the injection point. 
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Figure 3.5:  Evaluation of the KGD solution for different levels of discretization with 
background pressure of 0 5 MPaσ = . A shows the half-length of the fracture, B shows 

the pressure at the injection point, and C shows the width of the fracture at the injection 
point. 
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HFDDA and the semi-analytical solution worsened as the discretization increased. In this 

case, the fracture did not propagate as quickly as predicted by the semi-analytical solution. 

The relative slowness of the propagation caused the pressure and width of the fracture at 

the injection point to increase beyond the values predicted, with the effect growing worse 

as the discretization coarsened. Again, the deviation from the semi-analytical solution is a 

function of the discrete fracture propagation used in the HFDDA. In the presence of a 

large background stress, the fluid must generate significantly more pressure to overcome 

the background stress and move the fracture 4.0 m than to move it 0.5 m. When no  

background stress is applied and the fracture has no tensile strength, no additional force 

must be overcome in moving the extra distance. Furthermore, in the analytical solution, 

the additional pressure burden on unbroken fractures from background stress does not 

appear to be accounted for directly, but instead is only incorporated into the calculation 

of a net fluid pressure within the fracture. Thus the 0 0 MPaσ = solutions show good 

agreement across a wide range of mesh refinement, while those for 0 5 MPaσ =  exhibit 

greater deviation as the mesh refinement grows larger. 

 Figure 3.6 provides a comparison of the results for , ,  and p w l from the semi-

analytical solution with the values from the HFDDA using different discretizations in 

time (dt = 2.0 s, 1.0 s, 0.5 s and 0.25 s). All of these simulations were performed using a 

mesh discretization of dx = 0.5 m.  In general, as the size of the time step increased, the 

net pressure and aperture at the well bore decreased while the length of the fracture 

increased. As the time discretization grew, the effect of pressure on the geometry of the 

fracture was smeared out over a larger time step. As a result, the high pressures observed  
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Figure 3.6:  Evaluation of the KGD solution using different discretizations of time. A 
shows the half-length of the fracture, B shows the pressure at the injection point, and C 
shows the width of the fracture at the injection point. 
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in the initial time step led the fracture to propagate further than would occur in shorter 

time steps, in which the pressure and geometry are adjusted more frequently over the 

same time period. Increases to the length of the fracture led to decreases in the pressure 

and width, resulting in the trends observed in Figure 3.6. Generally, however, the 

HFDDA results demonstrated good agreement with the analytical results, with the 

exception of the largest time step used. 

 

3.3 Experimental Verification in Impermeable Media 

 To further verify the HFDDA, the model was also compared against the results of 

a hydraulic fracturing experiment performed by Rubin [87] using a high-viscosity 

fracturing fluid in an impermeable material. The experimental setup for Rubin’s 

experiment is shown in Figure 3.7. The setup consisted of three layers of polymethyl 

methacrylate (PMMA) bound together with chloroform, of which the center layer was to 

be fractured. The chloroform bonding between the layers allowed the center layer to fail 

in plane strain. A wellbore was drilled into the top and middle pieces, and the well in the 

top layer was cased with a steel tube of 6.35 mm outer diameter, leaving only the middle 

layer exposed to the well. Additionally, two 0.56 mm notches were introduced along 

opposite sides of the borehole, such that the fracture would begin propagating along the 

longitudinal axis of the layer. For injection fluid, Rubin used high-viscosity Dow Corning 

200 silicone fluid that had a kinematic viscosity of 100,000 centistokes. The high 

viscosity fluid allowed the hydraulic fracture to propagate quasi-statically. Within the 

center layer, pressure gauges were installed at points A, B and D, and an additional gauge 

was included at point E, from which the pressure in the borehole (point F) was derived.  
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Figure 3.7: Experimental setup used in Rubin’s experiment. In addition to the 
dimensions shown, each layer was 96 mm wide. Pressure was recorded at points A, B, 
D, and E, while width was recorded at point C. 
 
 
.  
To evaluate the geometry of the fracture, a linear variable differential transducer (LVDT) 

was used at point C to measure the fracture’s width. The experiment was also 

photographed at 24 frames per second to record the fracture’s length at each end as it 

propagated away from the borehole.  

 Hydraulic fracturing of the center layer was performed in two phases. First, the 

center layer was prefractured using a hand pump, which initiated the fracture a short 

distance to each side and brought it into contact with pressure gauges A and B. The main 

fracture was then generated using a motorized pump that injected fluid at a constant rate 

of 73.2 mm3/s. Fracturing fluid was injected into the center layer until the pressure 

gauges bottomed out and were unable to record further pressure changes, yielding about 

70 seconds of data. Fracture propagation occurred symmetrically, as evidenced by the 

similar pressures observed at gauge A and B (Figure 3.8), and by the similar propagation 

lengths at either end of the fracture (Figure 3.9). Furthermore, it was observed that the 
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Figure 3.8: Comparison of HFDDA pressure results with experimental results of Rubin 
experiment. A shows the pressure at the borehole, B shows the pressure at gauge A 
(x = -15 mm), C shows the pressure at gauge B (x = 15 mm), and D shows the pressure at 
gauge D (x = 41 mm). 
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Figure 3.9: Comparison of HFDDA geometry results with experimental results of Rubin 
experiment. A shows the width at point C (x = 28 mm), B shows the distance that the 
fracture traveled to the left of the borehole, C shows the distance that the fracture traveled 
to the right of the borehole, and D shows the average distance traveled ( )1 2 / 2X X− + . 
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resulting hydraulic fractures propagated outward from the two original notches in the 

borehole and curved slightly, rather than remaining perfectly planar. 

 To model the fracture propagation using the HFDDA, a 305 mm x 96 mm inner 

area was first generated with two fractures to account for the width of the borehole and 

the initial notch carved into it. The curved pattern taken by the experimental fracture was 

approximated by two lines emanating from the ends of the notches at an angle of 5° to the  

horizontal (Figure 3.10). The PMMA was discretized using a constrained Delaunay mesh 

generator which restricted the area of each triangle within the mesh to no greater than 30 

mm2, resulting in just over 1800 triangular blocks (Figure 3.11). To simulate the 

restraining effect of the upper and lower PMMA blocks, an outer boundary of blocks was 

placed around the inner area and was fixed at the corners. The Poisson’s ratio of these 

outer blocks was set equal to zero, and their Young’s Modulus was set equal to 1/10 the 

Young’s Modulus of the inner area. Parameter values for the PMMA and the fracturing 

fluid are included in Table 3.2. PMMA properties were taken from [87] and [88], while 

fracturing fluid properties were taken from [87] and [89]. The tensile strength of the 

PMMA was selected based on the breakdown pressure of the PMMA sample observed in  

 

 

Figure 3.10: Fracture approximation used to generate the mesh for simulation of 
Rubin’s experiment in the HFDDA.  
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Table 3.2: Parameters for simulation of Rubin’s experiment 

Rock Parameters - PMMA 
Mass Density, ρr 1,185 kg/m3 

Young’s Modulus, E 2.0 GPa 
Poisson’s Ratio, ν 0.367 [-] 
Fluid Parameters – 100,000 cSt fluid 
Reference Density, ρf 977 kg/m3 

Fluid Bulk Modulus, Kf 1.725 GPa 
Viscosity, µ 97.7 Pa-s 
Injection Rate, Q0 1.33 cm3/s 
Carter’s Leakoff Coefficient, CL 0.0 m/s 

Fracture Parameters 
Friction Angle, φ  28.4° 
Tensile Strength, T0 6.0 MPa 
Numerical Parameters 
Normal Spring Multiplier, kn 30*E 
Shear Spring Constant, ks 30*E 
Time Step, dt 1.0 s 
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the experiment. In the absence of background stress and pore pressure, the breakdown 

pressure and the tensile strength should be the same. Additionally, the original injection 

rate was normalized by the height of the center layer, as the HFDDA assumes a 1 m 

height in its derivation. To account for the initial prefracturing performed by Rubin, the 

fracture was opened 15 mm to either side of the injection point and was given an initial 

width of 0.1 cm filled with fluid at 0.08% compression by mass (Figure 3.10 and Figure 

3.11). To model the delay observed between the time the pump was turned on and the 

time pressure began to rise in the system, fluid injection was initiated in the HFDDA after 

10 seconds.  

 The results of the HFDDA are compared with the experimental data for pressure 

in Figure 3.8 and for the fracture geometry in Figure 3.9. All of the experimental data 

comes from tabular data provided in [87]. In general, the results from the HFDDA 

 

 

Figure 3.11: Approximation of Rubin’s experiment for simulation in the HFDDA. The 
white triangular mesh represents the middle PMMA layer fractured in the experiment, 
while the surrounding mesh of gray triangles is used to approximate the restraining effect 
of the upper and lower PMMA layers. The black line at the center shows the fractures 
initially open to fluid, while the black triangles at the four corners represent fixed points 
that cannot move. The injection point is shown by the black circle at the origin. 



73 

 

showed very good agreement with the experimental results. The HFDDA successfully 

reproduced the propagation pattern of the experiment by generating a hydraulic fracture 

which propagated at 5° to the horizontal and did not open any other fractures (Figure 

3.12). The pressures at all four points showed very good agreement between the HFDDA 

and the experiment, though differences did occur as the pressure wave first reached each 

point. At gauges A and B, the pressure did not quite reach the maximum pressure 

observed at those points, but quickly came into agreement after the fracture had 

propagated a short distance. At gauge D, the pressure in the HFDDA did not increase 

until 20 st = , when the propagating fracture reached the gauge. In the experiment, all of 

the gauges were initially pressurized with fracturing fluid independent of the main 

fracture, resulting in the constant pressure observed at gauge D up until 20 st = . The 

oscillations in the pressure observed at gauges A, B and D are due to the discrete length 

change that occurs each time the fracture propagates. As the fracture tip moved farther 

away from each gauge, the change in pressures grew smoother. For the geometry, the 

value recorded for the width at point C was extremely close to that observed in the 

HFDDA, with the only difference occurring in the first value, before the fracture had 

reached point C. For the length of the fracture, agreement between the experimental and 

HFDDA results was close initially, but deviated slightly as the fracture propagated, 

possibly a result of the simulation’s inability to capture the heterogeneity in the PMMA 

sample that led the fracture to curve. Generally, however, the agreement between the 

solutions is very good, and the HFDDA is able to capture the trends for pressure, width 

and length observed within the experimental results, in addition to reproducing the 

propagation direction and approximate shape of the experimental fracture. 
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Figure 3.12: Fracture geometry at the end of the HFDDA simulation of Rubin’s 
experiment. The thick grey line shows the open joints within the triangulated mesh, while 
the superimposed black line shows the path taken by the fracture in the original 
experiment. 
 
 

3.4 Fracturing Verification in Symmetric Media  

 To further verify the model, additional numerical tests were conducted examining 

the HFDDA’s ability to solve simple problems in symmetric and asymmetric media. All 

of these examples except one use the same numerical mesh, which is composed of a 40 m 

x 40 m inner domain contained within a 48 m x 48 m outer domain fixed at each corner. 

Unless otherwise mentioned, horizontal and vertical fractures occur in the inner domain 

at 2 m intervals, forming squares which are further subdivided into triangles. Injection of 

fluid occurs at the origin at a flowrate of 0 1.0 kg/sQ = , and the two horizontal fractures 

adjacent to the injection point are initially open, as in the KGD example. Unless 

otherwise noted, these examples use the same parameters provided in Table 3.1.  

 The first set of examples test the algorithm’s ability to model fracture propagation 

in homogeneous media. Included in this set are four cases which each verify different 
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aspects of the model. In the first case, a tensile strength of 0 1 MPaT = is assigned to each 

joint, and the fracture is free to propagate in any direction. In the second case, the 

fractures above and below the injection point are also initially opened, forming a cross 

pattern at the injection point. For the third case, the fractures are artificially restrained 

such that they may only propagate along the diagonals of the mesh. In the fourth case, the 

fractures are once more free to propagate in any direction, but leakoff is added along each 

open fracture, using a relatively modest Carter’s leakoff coefficient of 1/20.02 mm/sLC = . 

Two different simulations were performed for each case except the one with leakoff, 

using background stress differentials of 0 MPaσ∆ = and 5 MPaσ∆ = , respectively. 

When 0 MPaσ∆ = , background compressive stresses of 5 MPa were applied along all 

sides of the inner domain. When 5 MPaσ∆ = , compressive stresses of 5 MPa were 

applied along the left and right boundaries of the domain, while stresses of 10 MPa were 

applied along the top and bottom boundaries. To limit the influence of the outer domain 

on the applied stresses, the blocks in the outer domain were given a Poisson’s ratio equal 

to zero and a Young’s Modulus equal to 1/25 that of the inner domain. 

 The fracture propagation pattern generated by the first case is shown in Figure 

3.13. For clarity, in this and all other figures, only the 40 m x 40 m inner domain is 

shown, and the injection point in each figure is marked by a black circle. The purpose of 

both this case and the next is to demonstrate the algorithm’s ability to select the proper 

direction for fracture propagation. In this example, the fracture was free to propagate in 

any direction. In the absence of a stress differential, the fracture proceeded straight 

outward from the tips of the initially opened fractures, following the same path predicted 

by a KGD fracture. In the presence of a stress differential, however, the fractures 
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immediately turned away from the originally opened fractures. After 6.0 s, the fractures 

had completely realigned themselves to propagate perpendicular to the direction of 

minimum compressive stress. It is well known that fractures will turn to propagate 

perpendicular to the direction of minimum compressive stress [65], and this phenomenon 

was observed both in this test case and in all of the other cases in which background 

stress was applied.  

 For the second case, the fractures immediately above and below the injection 

point were also opened, forming a cross pattern. The propagation pattern generated by 

this case is shown in Figure 3.14. In the absence of a stress differential, the fractures 

proceeded symmetrically away from the origin in four directions, once more proceeding 

straight outward from the initially opened fractures. However, because propagation was 

occurring down four fractures rather than just two, each branch of the fracture contained 

only half as much fluid as in the previous example. As a result, each fracture propagated 

 
Figure 3.13: Fracture propagation after 30 s when the fracture is allowed to propagate in 
all directions. A shows the pattern when 0 MPaσ∆ = , while B shows the pattern when

5 MPaσ∆ = . Open nodes and fractures are noted in black. 
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a distance of only 8 m away from the origin, rather than the 12 m observed in the first 

case when 0 MPaσ∆ = . In the presence of a stress differential, the fracture only 

propagated perpendicular to the direction of minimum compressive stress. Notably, the 

original two horizontal fractures did not propagate beyond the distance to which they 

were initially opened, leaving propagation only in the vertical direction.  

 The fracture propagation pattern generated by the third case is shown in Figure 

3.15. The purpose of this case was to verify the algorithm’s ability to evaluate fracture 

branching, using the criteria mentioned in item iii. of Section 2.3. In this example, the 

fractures were free to propagate only along the diagonals of the mesh. In the absence of a 

stress differential, the fractures diverged symmetrically away from the initially open 

fractures. Once each fracture began to travel down a diagonal, it continued in that 

direction for the duration of the simulation. In the presence of a stress differential, the 

fractures again propagated perpendicular to the direction of minimum compressive stress, 

 
Figure 3.14: Fracture propagation after 30 s when fractures were initially opened in a 
cross pattern. A shows the pattern when 0 MPaσ∆ = , while B shows the pattern when 

5 MPaσ∆ = . Open nodes and fractures are noted in black. 
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albeit in a zigzag pattern. Because the fractures were limited to diagonal propagation, 

they were unable to realign themselves perpendicular to the direction of minimum 

compressive stress at the scale of individual fractures. At the scale of the overall domain, 

however, the trend of the fractures was in the correct direction, suggesting that the 

direction of fracture propagation will be independent of the mesh discretization at 

sufficiently large scales. Additionally, it is worth noting that this third case was the one 

that demonstrated the need for the modification of the edge-edge constraints discussed in 

item vi. of Section 2.3. With the edge-edge contact method from the original DDA, 

artificial asymmetry would appear on the blocks in the inner domain, and after a few time 

steps two of the four diagonal branches would close. Using the modified edge-edge 

method prevented this artificial asymmetry. 

 The fourth test using the symmetric mesh sought to demonstrate the algorithm’s 

ability to model leakoff. In this case, a Carter’s leakoff coefficient of 1/20.02 mm/sLC =

 
Figure 3.15: Fracture propagation after 30 s when the fractures were limited to diagonal 
propagation. A shows the pattern when 0 MPaσ∆ = , while B shows the pattern when 

5 MPaσ∆ = . Open nodes and fractures are noted in black. 
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was used, and the fracture was once more allowed to propagate in all directions. Because 

the primary purpose of this test was to demonstrate the model’s ability to conserve mass, 

only the results when 0 MPaσ∆ = are provided.  The propagation pattern generated by 

the simulation is shown in Figure 3.16. When leakoff was applied, the fractures did not 

propagate as far as they did for the case of no leakoff, which is to be expected. In the 

absence of a stress differential, the half-length of the fracture extended to only 10 m, as 

opposed to the 12 m half-length generated without leakoff. Figure 3.17 displays the 

algorithm’s ability to conserve mass in the presence of leakoff. In this figure, the sum of 

all the mass stored in every fracture is plotted at each time step, as well as the cumulative 

mass lost to leakoff at each time step. The sum of these two lines gives the total mass in 

the system. Exact agreement is seen between the total system mass and the cumulative 

mass injected, indicating that the algorithm is able to conserve mass in the presence of 

leakoff. 
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Figure 3.16: Fracture propagation after 30 s when fluid was allowed to leak into the 
surrounding formation.  
 

 

 

Figure 3.17: Demonstration of conservation of mass in the presence of leakoff, 
corresponding to the leakoff simulation when 0 0 MPaσ = . 
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3.5 Fracturing Verification in Asymmetric Media 

 In this next set of examples, the ability of the algorithm to correctly model 

asymmetric media is considered. Three cases are provided for this set, each modeled in  

the absence of a background stress differential. In the first case, fracture propagation is 

limited to the diagonals of the mesh, but different values of the tensile strength are used 

depending on the orientation of the fractures. Fractures oriented at an angle of 45° from 

the positive x-axis retained the tensile strength of the previous examples (0 1 MPaT = ), 

while fractures oriented -45° from the positive x-axis were assigned a weaker tensile 

strength of 0 0.1 MPaT =  (Figure 3.18). The fracture propagation pattern for this case is  

 shown in Figure 3.19. When injection began, the fracture initially propagated along the 

diagonals oriented at 45° and along those oriented at -45°. After a few seconds, however,  

the fracture stopped propagating along the direction of stronger joints, but instead 

continued down only the weaker joints, which appears reasonable. 

 
 
 

 
 
Figure 3.18: Tensile strength distribution when asymmetric tensile strengths were 
applied along the mesh diagonals. 
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Figure 3.19: Fracture propagation after 30 s when the rock matrix had asymmetric 
values of tensile strength along the diagonals. 
 
 
 
 For the second case, the regular grid of the previous examples was eschewed in 

favor a random triangular grid generated using the Delaunay triangulation program 

“Triangle” [90]. To generate the triangulation, two initial fractures 2 m long were placed  

horizontally on either side of the injection point, and each triangle in the resulting grid 

was constrained to have a maximum area no greater than 1.5 m2. Both the generated 

mesh and the results of the simulation are shown in Figure 3.20. The first observation 

from the triangular grid is that the fracture generated is no longer symmetric. The fracture 

propagated a distance of 14.0 m to the left of the injection point, but only a distance of 

9.1 m to the right. Further, the path taken by the fracture was no longer a straight line, but 

rather varied along the paths available with the discretization. Overall, however, the  

fracture did not deviate too far away from the horizontal, and instead followed a path 

similar to that observed for the first symmetric case in the absence of a stress gradient.  

These results again suggest that the fracture pattern at the scale of the rock domain will 

be mesh independent, though variation at the scale of independent fractures will occur. 
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Figure 3.20: Fracture propagation after 30 s when a Delaunay triangulation was used 
to discretize the rock matrix. 
 
 
 

 For the final case, the regular grid was again applied, but two different moduli 

were used for the rock matrix above and below the x-axis (Figure 3.21). For all rocks 

above the x-axis, the original Young’s Modulus of E = 25 GPa was used. Below the x-

axis, however, a modulus of E = 5.0 GPa was used. Furthermore, fracturing in this case 

was limited to the interface between these two domains. The propagation pattern for this 

case is shown in Figure 3.22, in which the fracture can be seen to propagate along the 

interface. Figure 3.23 shows a close-up view of the fracture generated as a result of this 

case. Note the difference in scales along the x and y axes, and that the x axis forms the top 

boundary of the figure. Two key results may be taken from this figure. First, because the 

lower domain had a lower Young’s Modulus than the upper domain, the boundary stress 

applied along the top and bottom of the media compressed the lower domain to a greater 

extent than the upper domain, effectively moving the interface between the two areas 

down by approximately 5 mm. Second, again because of the disparity between the 

Young’s Moduli of the two domains, the fracture opened to a greater extent in the domain 



84 

 

with a smaller Young’s Modulus. Both of these observations are in keeping with the 

expected results from this simulation. Together, all of these simulations demonstrate that 

the HFDDA can reliably reproduce basic test cases of hydraulic fracturing.  

 
 

 
 
Figure 3.21: Asymmetric Young’s Moduli applied in the final asymmetric test case. 
 
 
 
 

 
 
Figure 3.22: Fracture propagation after 30 s when the rock matrix had asymmetric values 
of Young’s modulus. 
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Figure 3.23: Close-up representation of the fracture opening for the case of asymmetric 
values of Young’s Modulus. Note that the y-axis is shown in millimeters, while the x-axis 
is shown in meters. 
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4  COMPARISON OF FRACTURING CRITERIA 
 
 

 In Chapter 3, the coupling algorithm in the HFDDA was verified, along with its 

ability to correctly predict fracture propagation direction and branching in simple 

geometries. In this chapter, the maximum tensile stress and Mohr-Coulomb fracturing 

criteria used in the HFDDA are investigated and related to the Linear Elastic Fracture 

Mechanics (LEFM) criteria commonly used in hydraulic fracturing models. The 

theoretical relationship between these criteria and the LEFM criteria is discussed, and the 

relationship between the two sets of criteria is demonstrated using the DDA alone. 

Additionally, the ability of the HFDDA to reproduce the toughness dominated, no-leakoff 

asymptotic regime for the KGD hydraulic fracturing solution is considered. 

 

4.1 Relationship between the HFDDA and LEFM Criteria 

 In the HFDDA, fracturing occurs when the normal or shear stress along a joint 

exceeds a certain threshold. In DDA terminology, the criteria for determining the onset of 

fracturing are frequently referred to as the no-tension constraints and are described for 

each joint contact by the equations 

 0 0, tanc cN L T S L C N φ≤ ≤ +  (4.1) 

where all of the terms are as defined previously. In Equation (4.1), the normal stress 

criteria is also known as the maximum tensile stress or Rankine failure criterion, and is 

characterized by the tensile strength of the joint, 0T . The shear criterion is known as the 

Mohr-Coulomb failure criteria, characterized by the cohesive strength ( )0C  and the 

friction angle ( )φ  of the joint. In this work, these criteria are collectively referred to as 
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the HFDDA fracture criteria. Typically, the maximum tensile stress and Mohr-Coulomb 

failure criteria are used to define the failure envelope of unfractured materials and to 

describe the stresses at which new fractures will nucleate. The LEFM criteria, on the 

other hand, are more commonly used to define the conditions under which an existing 

fracture will propagate. Unlike the maximum tensile stress and Mohr-Coulomb criteria, 

which are based on the stresses along each fracture, the LEFM criteria are energy-based, 

implying that both the stress near the fracture tip and the distance over which it acts will 

influence fracture propagation. In LEFM, fracturing is determined by the strain energy 

release rate ( )G  of the fracture, which is defined as the energy released as the fracture 

propagates per unit of new fracture surface area. When the strain energy release rate at 

the tip of a fracture is greater than a critical value ( )cG , fracturing will occur. Generally, 

this criterion is evaluated by examining the stress intensity near the tip of the fracture. For 

any fracture, a stress intensity factor ( )K  may be defined as a function of the stress field 

near the fracture tip. Using a polar coordinate axis with its origin at the crack tip (Figure 

4.1), the stress distribution near the tip of the fracture ( )ijσ  may be defined as [91] 

 
 

 
 

Figure 4.1: Definition of the coordinate axis and stresses at the tip of a fracture.  
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 ( ) ( ), higher order terms
2

ij ij

K
r f

r
σ θ θ

π
= +  (4.2) 

where K is the stress intensity factor with units of stress x length1/2, and ijf  is a 

dimensionless function of θ  that depends on the system load and geometry. In what is 

commonly referred to as the square-root singularity for LEFM, Equation (4.2) states that 

stress near the fracture tip will increase proportional to1/ r , with the result that as 

0r → , the stress approaches infinity. Due to this singularity, stress intensity factors at 

the fracture tip are found by taking the limit of the stress distribution with respect to the 

distance away from the fracture. Typically, stress intensity factors are defined based on 

the mode of loading. For Modes I and II (the only modes applicable in a 2D environment), 

the stress intensity factors are given by the equations 

 ( ) ( ) ( ) ( ) ( ) ( )
0 0

lim , lim
2 2

I I II III II
ij ij ij ij

r r

K K
f f

r r
σ θ σ θ

π π→ →
= =  (4.3) 

In plane strain conditions, the stress intensity factors can be related to the strain energy 

release rate by the relations 

 
2

2 1
IG K

E

ν −=  
 

 (4.4) 

for pure Mode I loading, and by  

 
2

2 1
IIG K

E

ν −=  
 

 (4.5) 

for pure Mode II loading. When fracturing is imminent, cG G=  for both loading modes. 

The critical value for each stress intensity factor beyond which fracturing will occur in 

each loading mode may therefore be given by 
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IC IIC

G E
K K

ν
= =

−
 (4.6) 

where ICK  and IICK  represent the Mode I and Mode II fracture toughness of the material, 

respectively. When fracturing occurs in tension, the propagation direction for the fracture 

may be determined by finding the direction which maximizes IK .  

 In the HFDDA, a key benefit of the maximum tensile stress and Mohr-Coulomb 

criteria is their simplicity. The normal and shear stress at each contact can quickly be 

calculated using the Penalty Method (PM) or the Augmented Lagrangian Method (ALM), 

resulting in an easily-applied technique for discrete elements of arbitrary shape. 

Calculation of the stress intensity factors in finite element and discrete element models, 

on the other hand, is a computationally demanding task, requiring the fine resolution of 

the stress, strain and displacement fields near the tip of each fracture. To properly 

evaluate these terms, the mesh at the fracture tip can be refined, or six- to eight-node 

mesh elements can be used, as opposed to the three-node elements employed in the 

HFDDA. Calculation of stress intensity factors with six- to eight-node elements is 

complicated by the fact that two of the mid-side nodes of each element must be shifted to 

a quarter-point position near the fracture tip (though an alternative approach based on 

unmodified six- to eight-node elements was recently explored in [67]). Without a priori 

knowledge of the fracture propagation path, methods based on mesh refinement and 

quarter-point mesh elements are both very expensive computationally, and as a result 

prove unsuitable for modeling hydraulic fracturing problems in which the fracture may 

propagate across the entire domain. In light of these observations, it is desired to see if 

the simpler stress-based HFDDA fracture criteria serve as an appropriate substitute for 
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the more complicated LEFM fracture criteria frequently used to evaluate crack 

propagation problems. The key goals of this chapter, therefore, are to relate the HFDDA 

fracture criteria to the LEFM criteria, and to evaluate the ability of the DDA and the 

HFDDA to solve LEFM-based problems of fracture growth from pre-existing cracks.  

 Before examining the relationship between these fracture models, however, it is 

worth discussing a third method which combines aspects of the previous two. The 

Cohesive Zone Model (CZM) for fracture separation, whose origins can be traced to the 

strip-yield model developed by Barenblatt [10] and Dugdale [92], combines the criteria 

for both the initiation and propagation of fractures into one comprehensive model. In the  

CZM, separation of the rock media is modeled using a fracture process zone, which 

develops as the fracture is nucleating and propagating (Figure 4.2). The separation is 

governed by a stress-displacement curve which can take various shapes, such as the 

bilinear model shown in shown in Figure 4.3  [93]. In the bilinear model, the stress-

displacement curve has two distinct stages. First, during the hardening stage, as the sides 

of the fracture begin to separate, the stress holding the fracture together steadily increases 

until it reaches a maximum (0T ). Once the maximum is reached ( )0d d= , as separation  

 
 

 

Figure 4.2: Fracture process zone for the cohesive zone model. 
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Figure 4.3: Bilinear stress-displacement curve for the cohesive zone model.  
 
 

continues the tractions begin to decrease until the separation is complete ( )cd d=  and the 

crack is fully formed, in what is referred to as the softening stage. In the softening stage, 

any deformation that occurs is plastic and will lead to decreases in the slope of the 

hardening stage (1k ′ ) and tensile strength (0T ′ ) if the load driving the fractures is released.  

For every stress-displacement curve, the area under the curve represents the critical strain 

energy release rate ( )cG  from LEFM. If only the hardening stage of the bilinear curve is 

used, in which the contact force is steadily increasing with distance, the algorithm 

becomes the same as the penalty method employed by the original DDA for Mode I 

fracturing. The slope of the line is equivalent to the spring constant for the PM, and the 

maximum stress is equivalent to the maximum tensile stress fracture criteria. Given the 

similarities between these methods, fracture criteria based on the CZM have been applied 

in various algorithms, including penalty-based FEM methods (e.g. [94]) as well as a 

method using the DDA [95].  

  In light of the benefit that comes from a model explicitly designed to consider 

both fracture initiation and propagation, implementation of the CZM within the HFDDA 
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was attempted as part of the current work. Difficulties in the application of the method 

quickly became apparent, however. First, it was unclear how the stress-displacement 

curve of the CZM should be implemented using the ALM for the contacts, as opposed to 

the original PM. With the ALM, the contact forces are iteratively updated, with each  

update reducing the separation distance between the contact surfaces until the distance 

approaches zero. Applying the ALM would effectively remove the hardening stage of the 

stress-displacement curve, resulting in a curve similar to that in Figure 4.4. Second, in 

what is arguably the larger problem, application of the the softening phase of the CZM  

as derived by Jiao et al. in [95] can cause the DDA’s stiffness matrix to lose its positive 

definiteness. If the stiffness matrix loses its positive definiteness, the Cholesky-based LU 

solver employed in the original DDA no longer functions, and it is no longer guaranteed 

that the stiffness matrix is invertible. To work around this problem, Jiao et al. [95], never 

actually applied the terms that would arise from the softening side of the CZM in their 

paper, but instead used only terms based on an iteratively modified spring constant for 

the hardening side. Using this method in the HFDDA would dramatically increase the  

 
 

 

Figure 4.4: Potential stress-displacement curve when applying the Augmented 
Lagrangian Method within the cohesive zone model. 
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amount of CPU time required for each simulation, as the DDA’s stiffness matrix would 

need to be refactorized after each inner iteration, rather than only after each outer 

iteration. Such a change would require the stiffness matrix to be refactorized hundreds of 

times each time step, rather than the fewer than ten times currently needed. Note that this 

issue of refactorization is not, however, a problem for explicit solvers such as that in [94], 

as the displacements in those solvers are not iterated upon in each time step. In light of 

the difficulties mentioned with application of the CZM to the DDA, the CZM was not  

pursued any farther as part of the current work. 

 

4.2 Mode I Fracture 

 To begin the comparison of the HFDDA fracture criteria and the LEFM fracturing 

criteria, this section examines the stress at which fracturing begins for a pre-existing 

crack in an infinite plane under Mode I loading. The derivation in this section follows a 

similar derivation contained in [96], which developed the relationship using circular 

particles for a DEM model of hydraulic fracturing. Using LEFM, for a fracture with half-

length a in an infinite isotropic plane subject to a far-field stress fσ , under linear elastic 

conditions (Figure 4.5), the normal stress (yyσ , Figure 4.1) near the fracture tips (r a<< )  

is given by [97] as 

 / 2yy f a rσ σ=  (4.7) 

where r is the radial distance away from the fracture tips. Along the plane of the fracture, 

the total normal force (nF ) acting between any two points 1x  and 2x  may be found by 

integrating the stress between them, yielding  
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Figure 4.5: Fracture of half-length a in an infinite field under Mode I loading. 
 
 
 

 ( )2

1
2 1/ 2 2

x

n f fx
F a rdr a x xσ σ= = −∫  (4.8) 

Consider an implementation of the DDA with a joint of length L parallel and adjacent to 

the fracture tip. Using Equation (4.8), the normal force along this joint may be given as 

 ( )2 0 2n f fF a L aLσ σ= − =  (4.9) 

Using LEFM, for this problem the mode I stress intensity factor IK  may be given as [97] 

 I fK aσ π=  (4.10) 

Substitution of Equation (4.10)  into Equation (4.9) yields 

 2 /n IF K L π=  (4.11) 

For the two-dimensional plane strain DDA, using the maximum tensile stress criterion, 

the maximum tensile force sustainable along the joint adjacent to the fracture is given by  

 max
0nF T L=  (4.12) 

where 0T  is the ultimate tensile strength of the joint. Just before failure occurs at the 

fracture tip, max
n nF F=  and I ICK K= , where ICK is equal to the critical mode I stress 

2a

σf
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intensity factor. Using equations (4.11) and (4.12), the relationship between ICK  and 0T  

may be expressed as  

 ( )0 / 2ICK T Lπ=  (4.13) 

Using this relationship, the maximum far-field tensile stress that can be applied before 

fracturing occurs is given by  

 max
0 2f

L
T

a
σ =  (4.14) 

At this point, only the conditions for initiating failure have been discussed, and not those 

for propagation. Once the fracture has been initiated, LEFM predicts that the fracture 

should continue to propagate unstably. Consider the case for when the fracture has 

successfully opened the fracture adjacent to the crack, extending it to half-length a L+

subject to the maximum far field tensile force. At this new length, the new normal force 

at the crack tip ( nF ′ ) will be given by 

 ( ) ( )max 2 0n fF a L Lσ′ = + −  (4.15) 

which can be reduced to 

 ( ) ( )max max2 1 1n f n
L LF aL Fa aσ′ = + = +  (4.16) 

By Equation (4.16), the new force at the crack tip after propagation should be greater 

than the force which initiated propagation, and the crack should continue to propagate 

unstably, as predicted by LEFM. 

 Given this derivation, it was desired to see how well the Mode I failure criteria in 

the DDA would reproduce the fracture propagation behavior predicted by these equations. 

For given values of 0T  and L, a fracture in an infinite plane modeled with the DDA 
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should fail at the value of fσ  predicted by Equation (4.14). To test this theory, a 160 m x 

160 m rock domain was generated to represent the infinite plane. The plane for this 

example (and for all others in this chapter) was characterized by a Young’s Modulus of 

25 GPa, Poisson’s ratio of 0.25, and a rock density of 2,650 kg/m3. Cracks of initial half 

lengths ranging from 0.0 m (unfractured) to 5.0 m were placed at the center of the domain, 

and were allowed to fracture up to 24 m to either side. The mesh along the 24 m was 

discretized at two different levels (L = 0.5 m and L = 1.0 m), which were separately 

tested using two different tensile strengths (0T = 1 MPa and 0T = 5 MPa). At the 

boundaries of the domain parallel to the fracture, tensile stresses were applied and slowly 

incremented until the fracture exhibited complete failure, defined as when more than 75% 

of the 24 m half-length had opened. When 0T = 1 MPa, the stress was incremented in 

units of 2 kPa, while increments of 10 kPa were used when 0T = 5 MPa. Each simulation 

continued until the fracture exhibited complete failure, after which the tensile stress at 

which failure occurred was recorded.  

 The results of these tests are shown graphically in Figure 4.6. In each subplot, the 

final tensile force at which failure occurred in the DDA simulations is shown, as well as 

the values predicted from the theoretical derivation combining LEFM with the maximum 

tensile stress criterion. As a testament to the fact that the maximum tensile stress criterion 

worked as intended, when there was no initial flaw present, the tensile force at which 

failure occurred was exactly the same as the tensile strength of the rock, independent of 

the mesh size. When an initial flaw was present, the DDA was able to match the values 

predicted theoretically by Equation (4.14). The agreement between the two improved as 

the mesh discretization decreased relative to the length of the initial flaw. When L = 
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0.5 m, for both 0T = 1 MPa and 0T = 5 MPa, the DDA values were very close to the 

theoretical values for a = 2.0 m a 0T nd beyond. For half-lengths smaller than a = 2.0 m, 

the DDA values were less than those predicted theoretically, but still within a reasonable 

range. Similarly, when L = 1.0 m, for both = 1 MPa and 0T = 5 MPa, the DDA values 

were very close to the theoretical values for a = 3.0 m and beyond. Before a = 3.0 m, the 

joint discretization is still similar to the fracture half-length, and the agreement is still 

good, but not quite as close as after the discretization becomes significantly smaller than 

the initial crack length. Regarding the theoretical prediction that fractures will continue 

propagating once initiated, it was observed that complete fracturing tended to occur over 

a small range of the applied tensile stress, as opposed to occurring all at once. The 

magnitude of this range was always small, however, relative to the magnitude of the 

applied tensile stress. When 0T = 1 MPa, the difference in far field tensile stress between  

the initiation of fracture and its completion was no greater than 10 kPa, while for 0T = 5 

MPa, the difference was no greater than 50 kPa. From these results, it appears that the 

DDA fracture criteria are consistent with the concepts of LEFM, at least for these basic 

Mode I tensile problems.  

 An interesting observation for Figure 4.6 is that when an initial flaw is present, 

the far field tensile stress at which fracture occurred changed as a function of the mesh 

discretization in both the numerical and theoretical solution. When the discretization was 

smaller, the stress was smaller for the same initial crack half-length. For instance, in 

looking at the values from the theoretical derivation, when a = 1.0 m and 0T = 1 MPa,

fσ  = 0.5 MPa when L = 0.5 m, but fσ  = 0.707 MPa when L = 1.0 m. These differences 
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suggest that the tensile strength of the rock domain will not by itself determine the stress 

at which fracturing begins, but rather that fracturing is a function of both the tensile 

strength and the discretization of the rock domain. The fact that the discretization has an  

effect on the onset of fracturing suggests that the maximum tensile stress criterion as 

applied in the DDA behaves similarly to the Mode I critical stress intensity factor 

criterion employed in the LEFM. If discretization did not have an effect, the theoretical 

relationship derived between 0T  and ICK  in Equation (4.13) would be invalid. A 

limitation of using the maximum tensile stress criterion, however, is that two parameters 

appear to control the extension of existing fractures, as opposed to the single stress 

  

Figure 4.6: Comparison of the DDA results and theoretical results for the far field tensile 
stress at which failure occurs under Mode I loading. A shows the results when 0T = 1 

MPa, while B shows the results when 0T = 5 MPa. 
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intensity factor criteria used with LEFM. Thus changes to the discretization of a problem 

in the DDA may have a significant effect on the onset of fracture propagation, even if all 

of the material parameters remain the same. 

 

4.3 Mode II Fracture 

 Building upon the previous section, this section examines the stress at which 

fracturing begins for a pre-existing crack in an infinite plane under Mode II loading. 

Using LEFM, for a fracture with half-length a in an infinite isotropic plane subject to a 

far-field shear stress fτ  (Figure 4.7), under linear elastic conditions, the shear stress (xyτ ) 

near the fracture tips (r a<< )  is given by [97] as 

 
2xy f

a

r
τ τ=  (4.17) 

Along the plane of the fracture, the total shear force ( sF ) acting between any two points 

1x  and 2x  may be found by integrating the stress between them, yielding  

 ( )2

1
2 1/ 2 2

x

s f fx
F a rdr a x xτ τ= = −∫  (4.18) 

Using Equation (4.18) and an implementation of the DDA with a joint of length L as 

before, the shear force sF along this joint may be given as 

 ( )2 0 2s f fF a L aLτ τ= − =  (4.19) 

Using LEFM, for this problem the mode II stress intensity factor IIK  may be given as [97] 

 II fK aτ π=  (4.20) 

Substitution of Equation (4.20) into Equation (4.19) yields 
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Figure 4.7: Fracture of half-length a in an infinite field under Mode II loading. 
 
 
 

 2 /s IIF K L π=  (4.21) 

 For the two-dimensional plane strain DDA, the maximum shear force sustainable along 

the joint adjacent to the fracture is given by  

 max
0 tansF C L N φ= +  (4.22) 

where 0C  is the cohesive strength of the joint, φ  is the friction angle and N is the normal 

force acting along the joint. Just before failure occurs at the fracture tip, max
s sF F=  and 

II IICK K= , where IICK is equal to the critical mode II stress intensity factor. Using 

equations (4.21) and (4.22), the relationship between IICK  and 0C  may be expressed as  

 ( ) ( )0 tan / 2IICK C L N Lφ π= +  (4.23) 

Using this relationship, the maximum far-field shear stress for given values of cohesive 

strength, coefficient of friction, discretization and fracture half-length is given by 

 
( )0max tan

2
f

C L N

aL

φ
τ

+
=  (4.24) 
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τf
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 Similar to the test of the Mode I criteria in the DDA, it was desired to see how 

well the shear failure criteria in the DDA would reproduce the propagation behavior 

predicted by these equations.  For given values of 0C , φ , and L, a fracture in an infinite 

plane modeled with the DDA should fail at the value of fτ  predicted by Equation (4.24). 

To examine this relationship, the same 160 m x 160 m rock domain from the Mode I 

analysis was generated to represent the infinite plane. As before, cracks of initial half 

lengths ranging from 0.0 m to 5.0 m were placed at the center of the domain, and were 

allowed to fracture up to 24 m to either side. Two different levels of mesh discretization 

(L = 0.5 m and L = 1.0 m) were again tested, each using two different cohesive strengths 

( 0C = 1 MPa and 0C = 5 MPa). The friction angle for these problems was set to zero, as 

no additional compressive forces are applied at the boundaries and the fractures are 

loaded purely in shear. At the boundaries of the domain, shear stresses were applied and 

slowly incremented until the fracture exhibited complete failure, using increments of 2 

kPa when 0C = 1 MPa and increments of 10 kPa when 0C = 5 MPa. The simulations were 

continued until the fracture exhibited complete failure, defined as when over 75% of the 

available fracture had sheared, and the shear stress at which failure occurred was 

recorded. 

 The results of these tests are shown graphically in Figure 4.8. Again, as testament 

to the fact that the cohesive criteria and shear portion of the ALM are working properly, 

in the absence of an initial fracture the domain failed at the cohesive strength of the joints. 

Also as before, the shear stress at which fracture occurred changed as a function of the 

mesh size. When the mesh size was smaller, the shear stress at failure was smaller for the 

same initial crack half-length, as required by Equation (4.24). Unlike for Mode I fractures, 
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however, the fit between the DDA and the values predicted theoretically for Mode II 

fractures was not as good. While the relative gap between these values did appear to 

improve as the size of the initial crack increased relative to the discretization, and the 

overall trend between the two sets was the same, the DDA values were consistently  

different from the predicted values. This phenomenon may stem from the DDA’s manner 

of sharing the tensile and cohesive strengths of joints between the two contacts at 

opposite ends of each joint. In the DDA, each contact is assigned a contact length equal 

to half of the joint length, resulting in the tensile and cohesive strength being split 

between the two contacts. For both the Mode I and Mode II fractures, the joint half 

immediately adjacent to the fracture tip would fail early in the simulation, leaving only 

 

 

Figure 4.8: Comparison of the DDA results and theoretical results for the far field shear 
stress at which failure occurs under Mode II loading. A shows the results when 0C = 1 

MPa, while B shows the results when 0C = 5 MPa. 
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the second half of the joint to support the far field load. It is unclear, however, why the 

second half of the Mode I fracture failed at the value predicted theoretically while the 

Mode II fracture failed earlier. Even with the discrepancy for Mode II fracture, the 

general trends for the far field stress with respect to discretization and initial crack half-

length are consistent between the DDA and the theoretical results, suggesting that the  

Mohr-Coulomb criterion can serve as a reasonable replacement for the LEFM criteria in 

shear for frictionless contacts, or for contacts that are not undergoing significant 

compressive stress. In the presence of friction, however, shear fracturing becomes a 

function of both the normal compressive force on the contact and its cohesive strength. In 

this case, the comparison between the Mohr-Coulomb criteria and the LEFM criteria falls 

apart, from the observation that the Mode II critical fracture toughness, a material  

property in LEFM, would be dependent on the stress field (Equation (4.23)) , which is a 

function of the load. While these differences will prove significant when shear is a 

dominant mechanism for fracture propagation, they are not expected to be significant in 

the current application, as hydraulic fracturing is expected to occur primarily in Mode I. 

 

4.4 Mode I Fracture in Mixed-Mode Loading 

 As a final test of the relationship between the HFDDA and the LEFM fracture 

criteria, it was desired to see how well the DDA could reproduce characteristics of a 

Mode I LEFM fracture undergoing mixed-mode loading. To create a mixed-mode stress 

field, far-field tensile stress can be applied to a crack oriented at an angle β  to the stress 

plane (Figure 4.9.A). When 0β ≠ , the crack is subject to both Mode I and Mode II 

loading. To facilitate modeling, an equivalent stress system can be defined for a 
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horizontal crack by using a new coordinate axis that coincides with the angled crack. 

Using the new coordinate system, the original far-field stress can be resolved into its 

normal and shear components, as shown in Figure 4.9.B. In general, for stresses applied 

in an x-y coordinate system, an equivalent set of stresses may be defined in a new x’-y’ 

coordinate system at an angle β  to the original using the definitions 
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In the current problem, 0xxσ = , 0xyτ = , and yy fσ σ= . Substitution of these expressions 

into Equation (4.25) yields 
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For the mixed-mode loading shown in Figure 4.9.B, the stress intensity factors may be 

given by [97]  

 

Figure 4.9: Crack in an infinite plane oriented at an angle β  to the stress plane. A shows 
the original crack, while B shows an equivalent loading on a horizontal crack. The inset 
on B shows the definition used for the propagation angle α  relative to the crack tips. 
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For fractures subject to mixed loading, the so-called G-criterion can be used to determine 

the onset of Mode I failure in the component body. In two dimensions, the G-criterion 

can be expressed as  

 2 2 2
IC I IIK K K= +  (4.28) 

Using the relationship for KIC and T0 as given in Equation (4.13) and the stress intensity 

definitions in Equation (4.27), Equation (4.28) may be rewritten as 

 ( ) ( ) ( ) ( )
2 2 2

2
0 / 2 cos sin cosf fT L a aπ σ β π σ β β π     = +    

 (4.29) 

Given this relationship, for a defined T0 and L, Mode I fracture should occur when 
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 To simulate the mixed-mode loading in the DDA, a new mesh was generated 

containing 1 m x 1 m blocks in an inner 30 m x 20 m mesh, surrounded by a coarser 160 

m x 160 m outer mesh. Each block in the inner mesh was subdivided into four triangles, 

and horizontal cracks of half-lengths ranging from 0.0 m to 5.0 m were placed in the 

center. The background stress field was set to correspond to a crack oriented at an angle 

of 30β = ° . Using the maximum strain energy release rate criteria as discussed in [97], 

propagation from a fracture oriented at 30β = °  should initiate at an angle of 45α = − °  

from the fracture tip (Figure 4.9.B, inset), down the diagonals of the inner domain. For 

these simulations, Mode I fracturing was allowed along any fracture within the inner 

domain, and Mode II fracturing was restricted through the use of a large cohesive 
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strength. Two different tensile strengths (0T = 1 MPa and 0T = 5 MPa) were given to the 

fractures in the inner domain. At the boundaries of the domain, tensile and shear stresses 

were applied using the expressions in Equation (4.26).  The far-field stress fσ  was 

incremented in units of 2 kPa when 0T = 1 MPa and in units of 10 kPa when 0T = 5 MPa, 

and was applied to the system until the fracture propagated, defined here as the far field 

stress at which the first joint fully failed on both sides of the initial crack. 

 The results of the tests for the mixed-mode stress field are shown graphically in 

Figure 4.10. In each subplot, the equivalent far field tensile force at which failure 

occurred in the DDA simulations is shown, as well as the values predicted theoretically in 

Equation (4.30). In each case, fracturing initiated at an angle of -45° to the horizontal, in 

 

 

Figure 4.10: Comparison of the DDA results and theoretical results for Mode I fracturing 
of a crack in a mixed-mode stress field at different tensile strengths. A shows the results 
when 0T = 1 MPa, while B shows the results when 0T = 5 MPa. 
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accordance with LEFM. As with the horizontal Mode I fractures, the fit between the 

DDA values and the values predicted theoretically was very good for both 0T = 1 MPa 

and 0T = 5 MPa. Indeed, in this case the fit was actually better for smaller half-lengths 

than that observed when the horizontal fracture was fully perpendicular to the direction of 

the far field stress, while the agreement at larger half-lengths was comparable.  

 To tie together the results of these three sections, it would appear that the 

maximum tensile stress criterion as implemented in the DDA yields very similar results 

to the values that would be predicted by LEFM in Mode I. For each example of Mode I 

fracturing, when the mesh size was small relative to the size of the initial crack, very 

good agreement was observed between the DDA and the predicted theoretical values. For 

Mode II fracturing, the agreement between the DDA and the theoretical values was not as 

close, but both methods displayed similar trends in the shape of the far field stress curve 

in the absence of friction. When friction is present, the Mohr-Coulomb criterion in the 

DDA and the LEFM criteria are inherently incompatible, due to the Mohr-Coulomb 

criterion’s dependence on normal stress. Together, these results suggest that the fracture 

criteria in the HFDDA can serve as a reasonable surrogate for LEFM criteria in studies of 

Mode I fracture propagation, as is the case for hydraulic fracturing. 

 

4.5 Toughness-Storage KGD Fracture 

 Having established the relationship between the HFDDA fracture criteria and the 

stress intensity fracture criteria used in LEFM, it was next desired to see how well the 

fracture criteria in the HFDDA extended to LEFM models of hydraulic fracturing. In 

Chapter 3, the HFDDA was validated against the analytical solution for a viscosity-
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storage dominated hydraulic fracture, or one for which the rock matrix has no tensile 

strength. In this section, the HFDDA is compared against the solution for a toughness-

storage dominated KGD fracture [22], or one for which the toughness of the rock matrix 

is the dominant control of fracture propagation. In particular, it was desired to see if the 

relationship derived for KIC and T0 in Equation (4.13) would continue to apply during 

simulations of hydraulic fracturing. 

   In the toughness-storage dominated regime, the viscosity of the fluid approaches 

zero( )0µ → and no leakoff occurs through the fracture walls ( )0LC = . As with the 

storage-viscosity KGD fracture, the solution is defined by the fracture half-length ( )l t , 

the fracture aperture ( ),w x t , and the net pressure distribution ( ),p x t , where x  is the 

distance along the fracture away from the injection point and t  is the time. The HFDDA 

results can be compared to the semi-analytical solution for half-length of the fracture and 

the pressure and fracture width at the injection point, which are given by 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ); , , ; , ,l t t t w x t t t t p x t t E tψ ζ ψ ξ ζ ξ′= Γ = Ω = Φ  (4.31) 

where all variables are as defined previously. For the no-leakoff, no-viscosity regime, the 

solutions for Γ , Ω  and Φ  are each self-similar and may be stated independent of time. 

At the injection point, Ω  takes on the value of 0 0.7323Ω ≃  and Φ is given as 

0 0.1831Φ ≃ . For a Newtonian fluid, 0.9324Γ ≃ . The dimensionless parameter ( )tζ  

and the fracture length scaling ( )tψ  are given by 

 ( )
( )

( )
4 3

2 3

0
1 4

0

,
'

E Q tK
t t

KE Q t
ζ ψ

  ′′  = =    ′   
 (4.32) 

where again all variables are as defined previously. 
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Table 4.1: KGD toughness-storage parameters 

Rock Parameters 
Initial Density, ρr 2,650 kg/m3 

Young’s Modulus, E 25 GPa 
Poisson’s Ratio, ν 0.25 [-] 
Fluid Parameters 
Reference Density, ρf 1000 kg/m3 

Fluid Bulk Modulus, Kf 2.2*109 Pa 
Injection Rate, Q0 4.0 kg/s 
Viscosity, µ 1*10-3 Pa-s 
Carter’s Leakoff Coefficient, Cf 0.0 m/s 
Numerical Parameters 
Normal Spring Multiplier, kn 100*E 
Shear Spring Constant, ks 100*E 
Time step, dt 0.5 s 
Total time, t 10.0 s 

 
 
 

 

 For the HFDDA simulation, a grid was generated consisting of a 144 m x 60 m 

inner mesh surrounded by a 200 m x 180 m outer mesh. Fracturing was limited to the 

horizontal line passing through the center of the grid, and was confined to the inner mesh.  

As in the tests between the HFDDA and the LEFM criteria, two different levels of 

discretization (L = 0.5 m and L = 1.0 m) were tested against two different tensile 

strengths (0T = 1 MPa and 0T = 5 MPa). To approximate the zero-viscosity condition, the 

viscosity was set to 1/1000 the viscosity of water, or 1*10-3 mPa-s. All other simulation 

parameters are provided in Table 4.1.  

 Figure 4.11 and Figure 4.12 show the results of the HFDDA simulations for the 

different combinations of mesh discretization and tensile strength. Additionally, the 

analytical solutions from Equation (4.31) are given, with K ′  derived using the 

relationship for KIC and T0 developed in Equation (4.13). As may be seen, all four cases 

displayed relatively good agreement between the HFDDA and the analytical solutions for  
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Figure 4.11: Numerical and analytical results for the toughness-storage KGD solution 
when  T0 = 1 MPa  at different levels of discretization. A shows the half-length of the 
fracture, B shows the pressure at the injection point, and C shows the width of the 
fracture at the injection point. 
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Figure 4.12: Numerical and analytical results for the toughness-storage KGD solution 
when  T0 = 5 MPa  at different levels of discretization. A shows the half-length of the 
fracture, B shows the pressure at the injection point, and C shows the width of the 
fracture at the injection point. 
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injection pressure, fracture width and fracture length. When the tensile strength was 

lower ( 0T = 1 MPa), the fracture progressed to a farther length and the fracture width was 

narrower compared with the fracture geometry using a higher tensile strength of (0T = 5 

MPa). Some discrepancies exist between the HFDDA results and the analytical solution, 

however, which in general may be explained as the result of the discretization required in 

the HFDDA, and as a result of the constant growth assumption employed by the 

analytical solution. In all four HFDDA simulations, the length of the fracture grows in a 

stair-step pattern which grows increasingly pronounced as the simulation progresses. In 

Section 4.2, it was demonstrated that the force necessary to continue the propagation of a 

fracture will be less than the force required to initiate it. In the KGD solution, at later 

times when the fracture has grown large, each incremental change to the fracture length 

results in a proportionately smaller change in the pressure magnitude. Once the pressure 

has risen sufficiently to initiate fracturing at later times in the HFDDA, multiple fractures 

may open rather than just one, as the pressure may remain high enough to open multiple 

fractures despite incremental growth in the fracture length. In the analytical solution, it 

was assumed that the fracture would propagate smoothly as a function of time.  

 A second discrepancy observed in the HFDDA solutions is that the pressure and 

width from each simulation oscillate around the values predicted by the analytically. In 

both the HFDDA and in the analytical solution, as the fluid viscosity goes toward zero, 

pressure within the fracture becomes more uniform. Because the fluid is modeled as a 

compressible fluid in the HFDDA, the uniform pressure that develops in the fracture is a 

direct function of the volume available for the injected fluid. As a result of the discrete 

nature of the HFDDA, the HFDDA solution cannot grow as smoothly as the analytical 
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solutions, and as mentioned will cause the fracture length to propagate in discrete 

intervals. As a result, if the fracture in the HFDDA has propagated slightly beyond the 

distance predicted by the analytical solution, the width and pressure will each be lower,  

while if the fracture has not traveled as far, the width and pressure will be greater. 

Interestingly, this pressure oscillation is not observed in the storage-viscosity solution 

from Section 3.2, in part because the fracture pressure in that solution decreases over the 

length of the fracture, rather than remaining uniform across the fracture length as in the 

toughness-storage solution. These results suggest that the HFDDA is better able to model 

situations when viscosity is the main determinant of fracture propagation, rather than 

fracture toughness, though the results for fracture toughness dominated simulations are 

still very good. 

 Beyond the relative agreement of the solutions, the key observation for these 

simulations is to note that for a constant T0, both the analytical and numerical solutions 

will change based solely on the discretization. When 0T = 1 MPa and L = 0.5 m, the 

fracture traveled a distance of almost 45 m, while when 0T = 1 MPa and L = 1.0 m, the 

fracture traveled just over 35 m, an 8 to 9 m difference. Again, the physical interpretation 

of these results is that by Equation (4.13), the Mode I fracture toughness changes as a 

function of both the tensile strength of a joint and the discretization of the fracture. These 

results suggest that the HFDDA can correctly reproduce problems based on LEFM, but 

that the solution will be dependent on both 0T  and L.  

 Given this dependence, it was desired to see if the same value of KIC would 

produce the same results for the KGD solution using different values of L and T0. To test 

this idea, two additional simulations were performed, using values of KIC derived to 
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match those used in the simulations in which (0T = 1 MPa, L = 0.5 m) and (0T = 5 MPa, L 

= 0.5 m). For the first simulation, KIC was equal to 0.886 MPa-m1/2, while for the second,  

KIC was equal to 4.33 MPa-m1/2. For these new simulations, the mesh was generated 

using a discretization of L = 1.0 m, leading to tensile strengths of 0.707 MPa and 3.536 

MPa respectively. Figure 4.13 and Figure 4.14 show the results for the new simulations  

and compare them both with the results of the simulations for L = 0.5 m and with the 

theoretical results. In general, the results match well with the analytical solution and are 

not significantly different than those from the original simulations using L = 0.5 m. The 

agreement observed when KIC = 0.886 MPa-m1/2 was slightly better than that when KIC = 

4.33 MPa-m1/2, just as the agreement was better for the original simulations when the 

lower value of tensile strength was used in comparison with the larger. Thus it may be 

said that for the same value of KIC, derived using different combinations of T0 and L, the 

results generated using the HFDDA will be similar, with the solutions growing closer as 

the value of T0 becomes smaller. Altogether, these findings suggest that the fracture 

criteria applied in the HFDDA are suitable for comparison with hydraulic fracturing 

problems based on LEFM. 
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Figure 4.13: Numerical and analytical results for the toughness-storage KGD solution 
when KIC = 0.886 MPa-m1/2 for two different combinations of discretization and tensile 
strength. A shows the half-length of the fracture, B shows the pressure at the injection 
point, and C shows the width of the fracture at the injection point. 
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Figure 4.14: Numerical and analytical results for the toughness-storage KGD solution 
when KIC = 4.33 MPa-m1/2 for two different combinations of discretization and tensile 
strength. A shows the half-length of the fracture, B shows the pressure at the injection 
point, and C shows the width of the fracture at the injection point. 
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4.6  Summary 

 In this chapter, the maximum tensile stress and Mohr-Coulomb model of 

fracturing as applied in the DDA and the HFDDA was demonstrated to agree well with 

the LEFM model of fracturing. Additionally, the HFDDA was shown to be capable of 

reproducing toughness dominated LEFM solutions for hydraulic fracturing, even when 

the toughness of the rock medium is not explicitly considered as an input parameter. In 

demonstrating these relationships, it is shown that the HFDDA is compatible with other 

existing models of hydraulic fracturing based upon LEFM fracturing criteria, and that the 

maximum tensile stress and Mohr-Coulomb criteria, which are much more easily 

implemented within distinct element methods than the LEFM criteria, are adequate for 

hydraulic fracture modeling. Together with the verification studies from the previous 

chapter, this analysis confirms the suitability of the HFDDA for hydraulic fracturing in 

homogeneous media and paves the way for the study of hydraulic fracturing in pre-

fractured media, which will be seen in the next chapter.    



118 

 

5  HYDRAULIC FRACTURING IN NATURALLY FRACTURED RESERVOIRS 
 

 

 

 In this Chapter, the HFDDA is extended to model hydraulic fracturing in the 

presence of pre-existing natural fractures. First, the theory behind the interaction of 

natural fractures and propagating hydraulic fractures is discussed. Changes to the 

algorithm needed to accommodate natural fractures are detailed and verified through 

comparison with the results of the interaction of a propagating hydraulic fracture with a 

single natural fracture. Finally, the application of the HFDDA in the context of stochastic 

fracture networks is considered, and the algorithm is applied to a case study of hydraulic 

fracturing in the Marcellus Shale. 

 

5.1 Hydraulic Fracturing in Naturally Fractured Reservo irs 

 Up until this chapter, hydraulic fracturing was considered primarily within the 

context of unfractured, homogeneous media. In practice, however, natural gas reservoirs 

are frequently interspersed with pre-existing natural fractures which serve as conduits for 

fluid flow. These natural fractures can have a dramatic impact on the geometry of 

propagating fractures. Rather than the bi-wing fractures predicted for homogeneous 

media, pre-existing natural fractures can lead to the formation of complex fracture 

networks during hydraulic fracturing treatments, as evidenced by microseismic 

monitoring of fracture propagation (e.g. [57]). These complex networks will have very 

different fracture “footprints” than their bi-wing counterparts, which will result in very 

different flow and production properties for targeted reservoirs. Frequently, the presence 

of natural fractures will serve to greatly enhance reservoir production. For example, in 
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recent years particular attention has been given to the production of natural gas from the 

Marcellus Shale, a highly fractured formation within the Appalachian Basin in the 

Northeastern United States (Figure 5.1). Encompassing over 100,000 square miles from 

New York to Tennessee, the Marcellus currently holds one of the largest volumes of 

recoverable natural gas in the United States. This gas was largely thought to be 

unrecoverable prior to 2008, as new wells drilled into the Marcellus would quickly dry up 

and gas flows could not be sustained. New advances in horizontal drilling and hydraulic 

fracturing, however, have allowed the Marcellus to be produced economically and have 

led to a dramatic increase in natural gas production from the formation. In 2007, the 

Marcellus region was producing just over one billion cubic feet of natural gas per day 

(bcf/d). As of September 2014, that number had exceeded 16 bcf/d [98].  

 Two primary joint sets exist in the Marcellus Shale, both of which serve to 

increase the reservoir area contacted during any given stimulation treatment of  the 

formation [99]. Due to a unique geological coincidence, one of the primary joint sets in 

the Marcellus lies almost parallel with the direction of the maximum compressive stress 

in the region. To maximize production, horizontal wells can first be drilled perpendicular 

to this joint set, allowing fluid to be drained from each joint intersected by the well. 

Hydraulic fracturing can then be performed throughout these horizontal wells, causing 

fractures to propagate perpendicular to the direction of minimum compressive stress and 

intersect the joints in the second set, greatly increasing the formation area drained during 

the treatment. Given the potential impact of natural fractures on hydraulic fracture 

propagation and  reservoir production, the study of fracturing in naturally fractured 

reservoirs and the uncertainties involved deserves further attention. Before diving into  
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Figure 5.1: Location of the Marcellus Shale in the Northeastern United States. Image 
adapted from [100]. 
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these topics, however, it is worth looking at the effect that an individual natural fracture 

might have on a propagating hydraulic fracture. 

 At the level of individual fractures, various theoretical, numerical and 

experimental studies (e.g., [68, 101-103]) have shown that hydraulic fractures 

propagating in two dimensions will interact with natural fractures in one of three different 

ways. The propagating hydraulic fracture can 1) cross the existing natural fracture, 2) 

open the existing fracture, or 3) shear at the intersection with the existing fracture and 

arrest (Figure 5.2). A fourth option, which may be viewed as a combination of the others 

can occur when the hydraulic fracture opens the natural fracture but then crosses it at an 

offset point. In the first option, when the hydraulic fracture crosses the natural fracture, 

no branching occurs and the hydraulic fracture will continue to grow. In the second case, 

if the fracture opens the natural fracture, the hydraulic fracture will change direction and 

potentially form multiple branches, leading to the formation of a complex fracture 

network. For the third option, if the fracture is arrested, the propagating fracture is 

effectively stopped and further injection serves only to widen the fracture. As a result, 

arresting fractures can lead to poorer production rates for a reservoir, as premature 

 

 
 

Figure 5.2: Potential opening modes when a hydraulic fracture intersects a natural 
fracture.  

Arresting CrossingOpening
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arresting of the propagating fracture will prevent the hydraulic fracture from propagating 

and contacting more of the reservoir. 

 To accurately model the interaction of hydraulic fractures with natural fractures 

within the HFDDA, some changes were required to the contact algorithm. Up to this 

point, only tensile fracturing had been considered, as hydraulic fracturing in unfractured 

rock is generally expected to occur in tension. To model the arrest of hydraulic fractures 

with natural fractures, however, failure in shear must also be considered. Shear failure 

was incorporated into the HFDDA as follows: First, in all of the current simulations, 

shear failure of the rock was allowed only along the natural fractures. Confining shear 

failure to just the natural fractures is enforced by using an extremely high cohesive 

strength along any contacts forming part of the rock body. Second, in the same manner 

previously established for tensile fractures, shear failure is allowed only at pressurized 

nodes and at nodes where another contact has already failed, either in an opening or a 

sliding mode. Introduction of this criteria localizes any shear failure along a fracture to 

the fracture tip, rather than allowing multiple contacts along a natural fracture to slide all 

at the same time. When shear failure was not localized at the fracture tip, convergence 

difficulties were encountered during testing. 

 Addition of shear failure into the HFDDA increased the complexity of the contact 

method, and was found to have a direct impact on the algorithm’s ability to converge. To 

allow the program to converge successfully, a few adjustments were required. When 

using the version of the algorithm discussed up to this point, it was found that the open-

close contact iterations could prove unable to converge, in particular when the 

propagating hydraulic fracture encountered a junction that consisted of multiple natural 
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fractures. When the hydraulic fracture reached this type of junction, the contact states 

would occasionally enter a cycle from which they could not exit and the algorithm would 

stall. In the original version of the DDA, stalling in the open-close iterations was dealt 

with by lowering the time step. It was found that in the HFDDA, however, the inability of 

the open-close states to converge was more a function of the discrete nature of the contact 

states rather than the time step size, and as a result, lowering of the time step did not lead 

to improved convergence. To deal with this problem, a workaround was introduced. In 

the current version of the algorithm, each successive open-close state of the contacts is 

stored, up to the 50 most recent. After each open-close iteration, the previous states are 

checked for cycling. If it is determined that the contact states are cycling, the algorithm 

will search all of the previous contact states for each contact contained within the cycle 

and find the one that is the most open (no contact springs is more open than only a 

normal spring, which is more open than a normal and shear spring). Each contact is then 

assigned the most open state that it had achieved, and the DDA is solved again using 

these contact states. Upon convergence of the inner fluid-structure iterations, 

convergence of the new open-close state is not checked, but rather the algorithm proceeds 

to the next step, checking the convergence of the fractures open to fluid. The obvious 

limitation of this method is that when invoked, the algorithm can move forward with a 

non-converged contact state. It was found, however, that the contact states would 

generally resolve after a subsequent time step or two, once more fluid was injected into 

the system and fluid pressures were able to rise.  

 The second change made to the algorithm deals with the application of the 

Augmented Lagrangian Method (ALM). During testing, it was noticed that resolving the 
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external forces on shearing contacts could lead to very long convergence times for the 

ALM. Frequently, pairs of shearing forces would develop in which positive gains to one 

force were offset by losses to another, leading to the inability of the ALM force updates 

to converge. To resolve this problem, a two-tiered approach was introduced for the 

contact forces. Previously, the ALM was used to solve for all of the contact forces. For 

the simulations involving pre-existing fractures, however, the ALM is used to solve only 

those contacts that exist at un-fractured joints. For all other contacts (sliding contacts, and 

any contacts that opened and have since closed again), the original penalty method is 

used and the contact forces at these contacts are not iterated. This change to the contact 

algorithm resulted in drastic improvements to the speed of the HFDDA, with only a 

marginal effect on the accuracy of the overall solution. 

 The final problem that arose dealt with the closing of open fractures and affected 

the convergence of the inner iterations. If a fracture closed suddenly during a simulation, 

its volume and transmissivity would sharply decrease, causing the pressure to drastically 

increase at that node. Very large pressures coupled with very small fracture volumes and 

transmissivities led to the failure of the inner iterations to converge, as the fluid iterations 

in the affected nodes came to be dominated by their stability constants, rather than by the 

governing fluid flow equations. Two different solutions were developed for this problem. 

The first, which was applied to all of the natural fractures in general, was to use different 

values of the stability constant for those nodes on the main fracture branch and those off 

of it. As before, nodes on the main fracture branch were defined as those having at least 

two contacts fully open, while those off of the main fracture branch have less than two. 

For the following simulations, nodes off of the main branch were given a stability 
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constant of 0.01 times the stability constant for the nodes on the main branch. The second 

solution developed for this problem was to allow the width of a fracture to close only 

gradually, as mentioned in Chapter 2. 

 

5.2 Experimental Comparison 

 To verify these proposed changes, and to verify the HFDDA’s ability to model 

correctly the interaction between hydraulic and natural fractures, the HFDDA was 

compared against the results of a hydraulic fracturing experiment published by Blanton in 

[68]. In numerous studies of hydraulic fracture interaction with natural fractures ([68, 101, 

102]), the interaction mechanism between the propagating hydraulic fracture and the pre-

existing natural fracture was found to be heavily dependent on the differential 

background stress (σ∆ ) and the angle of approach (θ ) between the two fractures. In 

Blanton’s experiment, the influence of these terms on the interaction mechanism of  

 
 

 
 

Figure 5.3: Geometry for Blanton Experiment. 
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intersecting fractures was examined using 11 blocks of hydrostone, each formed with a 

single pre-existing fracture set at varying angles within the block (Figure 5.3). Various 

combinations of σ∆  and θ  were applied to each block, and the resulting interaction 

mode of the natural and hydraulic fracture was observed. To create the pre-existing 

fracture in each block, hydrostone was poured into a 12 in. x 12 in. x 15 in. mold with the 

long dimension horizontal, tilted at the angle desired for the natural fracture. After 

pouring the hydrostone to a level approximately 1 in. below where the central borehole 

would be drilled, the mold was righted and the rest of the mold was filled. A 1/8 in. 

central borehole was drilled to a depth of 8 in. and cased with 7 in. of steel tubing, 

leaving a 1 in. area open at the center of the block. Each block of hydrostone was placed 

into a triaxial load frame and hydraulically fractured subject to varying degrees of 

background stress. Fracturing fluid was injected into the blocks at a constant rate of 0.05 

in3/s until the propagating hydraulic fracture interacted with the natural fracture, and the 

interaction mechanism observed in each block was recorded.     

 To recreate Blanton’s experiments using the HFDDA, simulation parameters were 

applied as shown in Table 5.1. Of the rock parameters listed in Table 5.1, only the 

Young’s Modulus and Poisson’s ratio of the rock were given explicitly in [68], though all 

other parameters fall within a reasonable range. The tensile strength of hydrostone was 

estimated as 6.0 MPa, which is approximately 1/10 the magnitude of the material’s 

advertised compressive strength of 69 MPa [104]. For the natural fractures formed within 

the hydrostone, Blanton estimated that their friction coefficient was between 0.5 and 0.75 

[ ]( )26.56,36.86θ = . Additionally, it was assumed that the natural fractures did not have 

any cohesive or tensile strength as a result of the forming process, and that they had a  
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Table 5.1: HFDDA parameters used to reproduce Blanton’s experiment 

Rock Parameters 
Initial Density, ρr 2,650 kg/m3 

Young’s Modulus, E 10 GPa 
Poisson’s Ratio, ν 0.22 [-] 
Tensile Strength, T0 6.0 MPa 
Friction Angle, ϕ 35° 
Fluid Parameters 
Reference Density, ρf 1000 kg/m3 

Fluid Bulk Modulus, Kf 2.2 GPa 
Viscosity, µ 20 mPa-s 
Carter’s Leakoff Coefficient, Cf 0.0 m/s 
Injection Rate, Q0 2.16 cm3/s 
Natural Fracture Parameters 
Tensile Strength, T0 0.0 MPa 
Cohesive Strength, C0 0.0 MPa 
Natural Fracture Width, w0 1.0 µm 
Friction Angle,  ϕ 35° 
Numerical Parameters 
Normal Spring Constant, kn 30*E 
Shear Spring Constant, ks 30*E 
Time Step, dt 1 min 30 s 
Simulation Time 1 hr 7.5 min 
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uniform initial width of 1 µm. For the fluid parameters, the injection rate of the fluid was 

derived for plane strain conditions by normalizing the injection rate used in the 

experiments by the depth of the rock blocks (38.1 cm). The viscosity of the fluid was not 

specified by Blanton, and as such a viscosity characteristic of a medium-viscosity 

fracturing fluid was used. Geometrically, the hydrostone blocks used by Blanton were 

simulated as 30 cm x 30 cm blocks in plane strain, surrounded by a boundary of blocks 

with fixed points in each corner which served to stabilize the simulation. Natural 

fractures were placed such that they passed about 4 cm beneath the injection point, 

slightly farther than the 2.5 cm mentioned by Blanton. The extra 1.5 cm was used to 

accommodate the initially open fractures required in the HFDDA. Rock blocks were 

discretized using a constrained Delaunay triangulation generated by the program Triangle 

[90],  with the area of each triangle limited to be no greater than 2 cm2.  

 The results from Blanton’s experiments and the HFDDA numerical results are 

given in Table 5.2. In general, the HFDDA results showed excellent agreement with the 

interaction modes observed in Blanton’s experiments, as each HFDDA experiment was 

able to reproduce the interaction mode observed by Blanton. The interaction modes were 

found to be strongly dependent on the angle of approach and the differential stress 

applied to the block sample, as demonstrated graphically in Figure 5.4. At lower angles 

of approach and lower values of differential stress, the natural fracture would open when 

the propagating fracture intersected it. At moderate values of these parameters, the 

propagating fracture would arrest, while at larger values, the propagating fracture would 

cross over the natural fracture. Occasionally in the HFDDA results, there was some 

overlap between the opening and arresting modes. For instance, in simulation CT14, the  
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Table 5.2: Results from Blanton’s experiments compared with the HFDDA results 
 

Test ID θ (°) σmax (MPa) σmin (MPa) ∆σ (MPa) Blanton HFDDA 
CT9 30 20 5 15 Arrest Arrest 
CT7 30 19 10 9 Opening Opening 
CT11 45 20 5 15 Arrest Arrest 
CT12 45 18 5 13 Arrest Arrest 
CT13 45 16 5 11 Arrest Arrest 
CT14 45 14 5 9 Arrest Arrest (+1 

Opening) 
CT22 45 10 5 5 Opening Opening 
CT8 60 20 5 15 Crossing Crossing 
CT21 60 14 5 9 Arrest Arrest 
CT4 60 12 10 2 Opening Opening 
CT20 90 14 5 9 Crossing Crossing 

 
 
 
 

      

 
 

Figure 5.4: Interaction modes observed in Blanton’s experiment for different 
combinations of differential stress and angle of approach. The HFDDA was able to 
simulate each of these interaction modes correctly.  
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propagating fracture eventually arrested, but only after opening one joint along the pre-

existing natural fracture. At higher stress differentials for the same fracture angle, the  

 joint remain closed. Ultimately, the results of this verification experiment demonstrate 

the ability of the HFDDA to model accurately the interaction of propagating hydraulic 

fractures with natural fractures, and lay the foundation for hydraulic fracturing modeling 

in complex fracture networks. 

 

5.3 Fracture Networks 

 To apply the HFDDA to hydraulic fracture modeling in complex fracture 

networks, the first challenge lies in characterizing the pre-existing fracture systems that 

may exist within a reservoir. In typical discrete fracture network (DFN) models, the 

spacing and geometry of each fracture in a fracture set is generated stochastically, using 

different density functions for the length, width and location of the fractures. Fractures 

are “grown” from points distributed throughout the rock domain, resulting in 2D fracture 

maps similar to that in Figure 5.5. Fractures can be spaced very close together as a result 

of this procedure and rarely will intersect precisely. A triangular mesh generated using 

fractures sampled as in Figure 5.5 would result in widely different block sizes throughout 

the mesh, as pockets of small blocks will be formed in the interior of closely spaced 

fractures and at any location where the end of a fracture is close to, but not exactly 

coincident with another joint. In testing, it was found that these pockets of small blocks 

greatly hamper the algorithm’s speed and ultimately can prevent its convergence. 

Attempts were made to address these issues by adjusting the length and intersection angle 

of problematic joints, but ultimately were abandoned, as artificial changes to the length  
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Figure 5.5: Sample 2D discrete fracture network created using typical stochastic methods 
for network simulation. 

 

and intersection angle of fractures would remove the underlying statistical properties of 

the fracture network. 

 To counter these difficulties, a different method for defining fracture sets was 

developed for the HFDDA. In this method, the rock matrix is first discretized into a 

Delaunay triangulation with initial fractures placed at each fluid injection point. Next, 

each fracture set within the domain is assigned a pre-defined azimuth relative to the 

domain’s y-axis. All of the joints in the Delaunay triangulation that occur at this azimuth, 

plus or minus a small range, are then marked as potential candidates for the fracture set. 

To generate individual fractures, a percentage of these joints are selected as seeds by 

sampling a value for each joint from a uniform distribution ranging between zero and one. 

If the sampled value is lower than the specified percentage, the fracture is marked as a 
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seed. Next, a random length is sampled for each seed fracture from a range defined for 

the joint set. In the following examples, lengths are sampled using a uniform distribution, 

though any distribution may be assigned. Once the length is selected, each seed fracture 

is “grown” by adding in the joint adjacent to the seed with an azimuth closest to that of 

the fracture set. Joints are continually added onto the ends of each growing fracture until 

every fracture in the set has reached its sampled length.  

 Four examples of fracture patterns generated using this method are shown in a 

250 m x 250 m domain in Figure 5.6 - Figure 5.9. In each figure, the blocks forming the 

mesh were constrained to be no greater than 25 m2 in area. Two fracture sets were 

generated for each domain, one having a primary azimuth of 45° and the other with an 

azimuth of 135°. For the generation of these sets, any fracture within ±5° of the azimuth 

was taken as a candidate fracture. For the first two figures, 12% were selected as seed 

values from which fractures were grown. For the fracture lengths, both sets were assigned 

uniform distributions with minimum length of 20 m and maximum length of 40 m.  

Figure 5.6 and Figure 5.7 represent two different realizations of the fracture domain using 

these parameters. As seen in both figures, the fractures produced using this method 

generally follow the azimuth direction predicted for each set, and have lengths that fall 

within the uniform range assigned. Occasionally, however, the fractures effectively grew 

into each other, resulting in fractures with lengths larger than those given by the 

distribution. In the next two figures, Figure 5.8 shows a realization of the network in 

which the length distribution of each fracture set was halved relative to the values for the 

first two sets, while Figure 5.9 shows a realization of the network in which the percentage 

of selected candidate fractures was halved. In both instances, the connectivity of the  
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Figure 5.6: Sample fracture pattern generated from two fracture sets oriented at 45° and 
135°. Both fracture sets have minimum and maximum lengths of 20 m and 40 m, and 
were generated using a fracture density of 12%. 

 

 
 

Figure 5.7: Second sample fracture pattern generated using the same fracture set 
parameters, but a different seed value than the network in Figure 5.6. 
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Figure 5.8 Fracture pattern generated using the same fracture set parameters and seed 
value as those used in Figure 5.6, but with the minimum and maximum fracture lengths 
reduced to 10 m and 20 m respectively. 

 

 
 

Figure 5.9 Fracture pattern generated using the same set parameters and seed value as 
those from Figure 5.6, but with the percentage of selected fractures reduced to 6% . 
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network was greatly reduced. Having shorter fractures decreases the likelihood that each 

fracture would intersect another fracture, while decreasing the number of candidate 

fractures creates fewer fractures in the system overall. 

 Notably, there are a few key limitations of this method relative to actual systems. 

First, the uniform distributions used for fracture location and length are atypical for 

discrete fracture network simulations. Uniform distributions were chosen for their 

simplicity, though other distributions may be used instead. Second, and perhaps more 

importantly, fractures can be no shorter than the length of a side of a Delaunay triangle, 

and they can be spaced no closer together than allowed by the triangulation. Thus, very 

small fractures and very close fractures can be considered only on fine meshes which 

may prove too expensive computationally for large reservoirs. For large reservoirs, 

therefore, the current algorithm may best be considered as an approximation of the 

dominant fracture features in a domain, as opposed to an exact representation of the 

reservoir’s fracture distribution. If one or two fractures are known to be dominant in a 

reservoir, or if the effects of hydraulic fracturing on a large feature such as a fault are 

under consideration, these can be included explicitly by incorporating them into the 

Delaunay triangulation. 

 To demonstrate the HFDDA’s ability to model the hydraulic fracturing of 

complex fracture networks, fracturing was simulated in two different hypothetical 

reservoirs. The first reservoir used the natural fracture pattern shown in Figure 5.6, while 

the second used a network with similar parameters, but with fracture sets generated with 

azimuths of 0° and 90°. Two simulations were performed for each reservoir, one with 

0 MPaσ∆ = , and the other with 12 MPaσ∆ = . As before, when 0 MPaσ∆ = , stresses  
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Table 5.3: Parameters used in fracture network simulations 

Rock Parameters 
Initial Density, ρr 2,650 kg/m3 

Young’s Modulus, E 10 GPa 
Poisson’s Ratio, ν 0.22 [-] 
Tensile Strength, T0 6.0 MPa 
Friction Angle,  ϕ 35° 
Fluid Parameters 
Reference Density, ρf 1000 kg/m3 

Fluid Bulk Modulus, Kf 2.2 GPa 
Carter’s Leakoff Coefficient, Cf 0.0 m/s 
Viscosity, µ 20 mPa-s 
Injection Rate, Q0 1000 cm3/s 
Natural Fracture Parameters 
Tensile Strength, T0 0.0 MPa 
Cohesive Strength, C0 0.0 MPa 
Natural Fracture Width, w0 100.0 µm 
Friction Angle,  ϕ 35° 
Numerical Parameters 
Normal Spring Constant, kn 30*E 
Shear Spring Constant, ks 30*E 
Time Step, dt 1 min 
Simulation Time 1 hr 
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of 5 MPa were applied to all sides of the reservoir. When 12 MPaσ∆ = , a stress of 5 

MPa was applied as the minimum principal stress, and a stress of 17 MPa as the 

maximum.  In these and all remaining simulations, the stress differential between the 

maximum and minimum stress was examined as an input parameter rather than the ratio 

of the maximum and minimum stress, in keeping with the analysis of fracture interaction 

modes from the experimental studies of fracturing mentioned previously ([68, 101, 102]). 

Other parameters common to all of the simulations are given in Table 5.3, and the 

fracture patterns generated as a result of these simulations are shown in Figure 5.10 – 

Figure 5.13. In these figures, natural fractures are shown by the thin black lines, joints 

with at least one open contact by the thick gray lines, and joints for which both contacts 

are locked or sliding, but which have also been invaded by fluid, are shown by the thin 

gray lines. When a joint contains at least one open contact, the rock has separated and the 

hydraulic fracture has successfully propagated along that joint. If both contacts remain 

locked or sliding, the blocks along the joint are closed, but fluid may still invade the joint, 

either because the joint is part of a natural fracture, or because the joint was open and 

then closed at a later point in the simulation, leaving behind a residual width as discussed 

in Chapter 2. 

 When 0 MPaσ∆ = , the direction of fracture propagation was predominantly 

influenced by the azimuth of the natural fracture sets. With no background stress 

differential to govern the direction of fracture propagation, the hydraulic fracture tended 

to open any contacted natural fractures and subsequently propagate outward from their 

tips. In the network generated using fracture sets oriented at 45° and 135°, the bulk of the 

hydraulic fracture propagated parallel to the 135° fracture system, as the first natural 
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fracture intersected occurred at 135° (Figure 5.10). When the propagating fracture 

intersected a natural fracture oriented at 45°, however, the natural fracture largely 

remained closed, due to the stress exerted upon it by the fluid in the main fracture branch 

and the applied background stress. For the network generated using fracture sets oriented 

at 0° and 90°, the direction of fracture propagation was again dominated by the 

orientation of the natural fractures (Figure 5.11). Below the injection point, the fracture 

intersected a natural fracture and opened it, changing direction by 90° from the direction 

of the initially opened fractures. As the fracture continued to propagate, it changed 

direction once more after hitting a second natural fracture. In both simulations, the 

orientation of the natural fracture network was the primary determinant of the fracture’s 

propagation direction. 

 It is interesting to note that for these simulations, even though the stress 

differential was set to zero, not all of the natural fractures opened. Rather, a primary 

fracture branch is clearly seen to develop in both simulations, while most of the adjacent 

natural fractures remain closed. Significantly, these results suggest that even in the 

presence of natural fractures, one primary fracture branch will still develop, as opposed to 

a web of interlocking fractures. Natural fractures attached to the main branch may still be 

invaded by fluid, however, allowing the fracturing fluid to spread a sizeable distance 

away from the main fracture branch. This observation runs contrary to what may have 

been expected based on Blanton’s experiment, in which the mode was found to be 

independent of the fracture orientation relative to the propagating fracture as 0σ∆ → . 

Possibly, the creation of a main fracture branch is an artifact of the algorithm itself, as 

fractures are generally required to open one-at-a-time at the tips of the fractures, as  
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Figure 5.10: Fracture pattern generated for fracture sets oriented at 45° and 135° when 
∆σ = 0 MPa, µ = 20 mPa-s, and Q0 = 1 kg/s. Natural fractures are shown by thin black 
lines, open fractures by thick dark gray lines, and unopened fractures invaded by fluid by 
lighter thick gray lines. 



140 

 

 
 
Figure 5.11: Fracture pattern generated for fracture sets oriented at 0° and 90° when ∆σ 
= 0 MPa, µ = 20 mPa-s, and Q0 = 1 kg/s. Natural fractures are shown by thin black lines, 
open fractures by thick dark gray lines, and unopened fractures invaded by fluid by 
lighter thick gray lines. 
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discussed in Chapter 2. Given that some of the natural fractures were able to open off of 

the main fracture branch, however, it appears likely that the phenomenon is not artificial. 

As a result, these findings are therefore significant in that they suggest that even in a 

naturally fractured reservoir, most of the fracturing will occur along one primary path.  

 For the next pair of simulations, in which 12 MPaσ∆ = , the propagation 

direction in the system was dominated by the differential stress. While many of the 

natural fractures intersected by the hydraulic fracture opened to some degree, fracturing 

of unbroken rock tended to occur perpendicular to the direction of minimum compressive 

stress, as opposed to along the natural fractures. In the network with fractures oriented at 

45° and 135°, most of the natural fractures connected to the main fracture remained 

closed (Figure 5.12). Only the natural fracture immediately below the injection point 

opened along most of its length, likely a result of the small approach angle between the 

natural fracture and the propagating one. In the network with fractures oriented at 0° and 

90°, very few of the natural fractures opened and propagation occurred almost entirely 

perpendicular to the direction of minimum compressive stress (Figure 5.13). Interestingly, 

the propagating hydraulic fracture crossed three of the natural fractures located below the 

injection point, but opened the natural fracture encountered above the injection point. 

Further, in both simulations, it did not appear that any of the fractures arrested in shear, in 

contrast to what may have been expected from Blanton’s experiment. Based on that 

experiment, fractures oriented at 45° to the propagating fracture subject to a differential 

stress of 12 MPa should arrest, as seen in Figure 5.4. Thus it may be said that the 

experimental results observed by Blanton for individual fracture interaction modes are 

not generalizable to fracture sets. Rather, the interaction mode appears to be determined 
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locally, and is subject to the stress conditions created by the background stress, the 

propagating fracture, and the pressure generated from fluid invasion into nearby natural 

fractures. 

  From the results of these four simulations, it would appear that the differential 

stress is the dominant factor determining the direction of fracture propagation, even 

within a reservoir with an extensive natural fracture network. When the differential stress 

was high, the propagation paths taken by the hydraulic fractures were very similar. These 

results are in stark contrast to those observed when differential stress was low. For those 

simulations, the fracture propagation path was highly dependent on the orientation of the 

natural fracture networks. These results are very similar to those observed by Cipolla et al.  

[57], in which fractures propagating in high differential stress fields were much more 

independent of the fracture network than those in low differential stress fields. Notably, 

these results may be particularly relevant during treatments involving multiple fractures 

initiated from the same well. In high differential stress fields, each initiated fracture may 

be more likely to remain separate from the other fractures. In low differential stress fields 

with a high degree of fracture connectivity, however, the fractures may be more likely to 

travel down natural fractures and merge, which may lead to less overall area contacted 

during the treatment.   

 Beyond the analysis of the reservoir characteristics, it was also desired to see what 

impact changes to the fluid design parameters would have on the fracture propagation 

pattern. First, the impact of viscosity was examined by increasing the viscosity of the 

fracturing fluid to 100 mPa-sµ = . Two simulations were performed using this new  
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Figure 5.12: Fracture pattern generated for fracture sets oriented at 45° and 135° when 
∆σ = 12 MPa, µ = 20 mPa-s, and Q0 = 1 kg/s. Natural fractures are shown by thin black 
lines, open fractures by thick dark gray lines, and unopened fractures invaded by fluid by 
lighter thick gray lines. 
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Figure 5.13: Fracture pattern generated for fracture sets oriented at 0° and 90° when ∆σ 
= 12 MPa, µ = 20 mPa-s, and Q0 = 1 kg/s. Natural fractures are shown by thin black lines, 
open fractures by thick dark gray lines, and unopened fractures invaded by fluid by 
lighter thick gray lines. 
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viscosity, both using the fracture network shown in Figure 5.6. In the first, 0 MPaσ∆ = , 

while in the second 12 MPaσ∆ = . All other parameters are the same as those used in 

Table 5.3. The results of these simulations are shown in Figure 5.14 and Figure 5.15. 

With a higher viscosity fluid, it is expected that the fluid will not flow as readily, with the 

result that the fluid will be less able to invade natural fractures and may be concentrated 

closer to the fluid’s source. In the first simulation, when 0 MPaσ∆ = , the fracture 

pattern generated using the higher viscosity fluid was not significantly different than that 

generated using the lower viscosity fluid. The only observable change that occurred 

relative to the lower viscosity fluid is that the fracturing fluid did not invade as far into 

the natural fracture system below the injection point, but rather stayed closer to the main 

fracture branch. Similarly, when 12 MPaσ∆ = , the higher viscosity fluid did not invade 

as deeply into the unopened natural fracture networks surrounding the main fracture 

branch, but the main fracture branch remained unchanged. Based on these results, it 

would appear that with the viscosities and tensile strengths tested in these simulations, 

propagation in this system is governed more by the tensile strength of the rock matrix 

than by the viscosity of the fluid. Had the system been governed by the viscosity, the 

viscosity should have had a greater effect on the length to which the main fracture 

propagated, as seen for the viscosity-dominated fracture in Chapter 3. Thus, these results 

suggest that the primary impact on propagation pattern of lower-viscosity fluids in 

systems with significant tensile strength is to govern the degree to which fluid will invade 

the natural fractures. As a design parameter, using a higher-viscosity fluid would 

therefore be more likely to keep the fracturing fluid closer to the main fracture branch in  
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Figure 5.14: Fracture pattern generated for fracture sets oriented at 45° and 135° when 
∆σ = 0 MPa, µ = 100 mPa-s, and Q0 = 1 kg/s. Natural fractures are shown by thin black 
lines, open fractures by thick dark gray lines, and unopened fractures invaded by fluid by 
lighter thick gray lines. 
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Figure 5.15: Fracture pattern generated for fracture sets oriented at 45° and 135° when 
∆σ = 12 MPa, µ = 100 mPa-s, and Q0 = 1 kg/s. Natural fractures are shown by thin black 
lines, open fractures by thick dark gray lines, and unopened fractures invaded by fluid by 
lighter thick gray lines. 
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these systems, which would prevent it from escaping down natural fractures and leaking 

off into the rest of the reservoir. 

 Next, it was desired to see how flowrate might affect the results. The impact of 

flowrate was examined by doubling the flowrate to 0 2 kg/sQ = , applied to the same 

fracture network as before. For this simulation, only the background stress of 

0 MPaσ∆ = was considered. The simulation time was halved to 30 min, such that the 

simulation reflects the same total mass of injected fluid as used previously, and the time 

step was halved such that the same mass is injected in each time step as in the previous 

simulations. With this combination of parameters, doubling the fluid injection rate was 

found to have very little impact on the propagation pattern generated for the system 

(Figure 5.16). Relative to the results from the very first simulation, in which 0 1 kg/sQ = , 

dt = 1 min and the simulation time is equal to 1 hr (Figure 5.10), the only difference in 

the propagation pattern is that the fluid penetration into the natural fractures was slightly 

less than that observed when 0 1 kg/sQ = . 

 Taken together, these results suggest that the fluid design parameters will play a 

much less important role than the differential stress and fracture network orientation in 

determining the direction of fracture propagation, at least in an impermeable system such 

as the one modeled. It is worth noting, however, that based on experimental evidence (e.g. 

[105]), both of these properties can have a strong impact on the propagation of hydraulic 

fractures. The discrepancy between the results observed here vs. the experimental results 

is largely due to the assumption of an impermeable material in the HFDDA. For a 

permeable material, both viscosity and injection rate will control the rate at which fluid 

leaks off into the rock matrix. While leakoff can be modeled with the HFDDA using  
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Figure 5.16: Fracture pattern generated for fracture sets oriented at 45° and 135° when 
∆σ = 0 MPa, µ = 20 mPa-s, and Q0 = 2 kg/s and dt = 30 s. Natural fractures are shown by 
thin black lines, open fractures by thick dark gray lines, and unopened fractures invaded 
by fluid by lighter thick gray lines. 
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Carter’s Leakoff coefficient as discussed in Chapter 2, a key limitation of the algorithm is 

that the effect of leakoff on the pore pressure of fluid in the surrounding rock is not 

considered. Thus, the results observed in this section are only applicable for highly 

impermeable systems, in which any pore pressure in the surrounding rock is largely 

disconnected from the propagating fractures. 

 

5.4 Hydraulic Fracture Simulation of the Marcellus Shale 

 As a case study, the method described in Section 5.3 was used to simulate 

hydraulic fracturing in the Marcellus Shale. First, an approximation for the two primary 

joint sets (J1 and J2) in the Marcellus was generated using the fracture generation method 

described at the start of this section. As mentioned previously, characterization of the 

exact stochastic properties of a joint system is not feasible with the current method. 

Rather, joint set parameters are selected to provide an approximation of the actual field. 

In the Marcellus Shale, the first joint set (J1) is oriented from the southwest towards the 

northeast [99] across the entire region. The second set (J2), on the other hand, displays 

more variation, but generally is oriented from the northwest towards the southeast. 

Furthermore, as mentioned previously, the direction of the maximum compressive stress 

happens to run parallel to the orientation of the J1 fracture set. To approximate this 

system, the simulation region is rotated such that the J1 fracture set and the maximum 

compressive stress run parallel to the x-axis (Figure 5.17). Using this orientation for the 

reservoir system, the J2 fracture set is approximated as running parallel to the y-axis, 

along with the minimum compressive stress. To represent the high degree of fracturing in 

the Marcellus Shale, the fracture length distributions for each set were made 
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comparatively long, using a minimum of 50 m and a maximum of 100 m. To 

approximate the fracture density, 20% of the J1 fractures and 15% of the J2 fractures were 

selected from the candidate fractures, representing the field observation that the J1 

fractures are more closely spaced in the black shales in the northwest part of the 

Appalachian Basin where the Marcellus lies [99]. Figure 5.18 shows one realization of 

this fracture system in a 250 m x 250 m area, generated using a triangular mesh with grid 

cells no larger than 25 m2. Both the J1 set and the J2 set are clearly seen, resulting in a 

system that is very highly fractured.   

 Hydraulic fracturing was simulated in the system using the parameters provided 

in Table 5.4. Parameters characterizing the rock were taken from various sources in the 

literature, and were selected to correspond with an approximate reservoir depth of 800 m. 

All of the parameters from [106] were calculated based on average values from 

Appalachian black shale samples taken at this depth, while parameters from [107] were  

estimated based on other values for black shales in the literature. As before, the natural 

 

 

Figure 5.17: Approximate geographic orientation of primary joint sets and principal 
stresses in the Marcellus Shale, and reorientation for modeling in the HFDDA. 
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fractures were not assigned any tensile or cohesive strength, and an initial width of 100  

 µm was assumed for each fracture. For simplicity, no leakoff was assumed in the 

formation, and the same fluid and numerical parameters were used as in the first example 

in this section. For this study, the initial fractures in the reservoir were oriented along the 

x-axis such that fracturing is initiated parallel to the direction of maximum principal 

stress. 

 The fracture pattern generated at the end of the simulation time is shown in Figure 

5.19. As in the theoretical examples, the first observation from this simulation is that 

despite the extensive natural fracture network, Figure 5.19 clearly shows the development 

of one primary fracture branch, largely oriented perpendicular to the direction of 

minimum compressive stress. To the right of the injection point, the propagating fracture 

 

Figure 5.18: One realization of the fracture sets used to approximate fracturing in the 
Marcellus Shale. 
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is seen to contact a natural fracture from the J1 set, which caused it to deviate slightly out 

of plane. Once this natural fracture was opened, all further propagation appeared to occur 

to the right of the injection point as the natural fracture was progressively opened. Due to 

the large stress differential between the maximum and minimum compressive stress, very 

few of the contacted natural fractures from the J2 fracture set opened. Even though many 

of these natural fractures did not open, however, the fracturing fluid was still seen to 

invade the natural fractures extensively. As a result, the overall “footprint” of the 

fracturing treatment is rather large, with the result that production from this system would 

likely be much higher than that from the theoretical examples in which the natural 

fracturing was less dense. By crossing over the joints from the J2 fracture system, all of 

the fluid initially contained in these fractures, in the adjacent fractures, and in the nearby 

rock matrix would be able to flow into the wellbore. Furthermore, these results represent 

the potential impact of hydraulic fracturing from only one injection point. If a well was 

drilled horizontally along the y-axis of this system and multiple hydraulic fractures were 

generated, the well and fractures would intersect multiple joints from both the J1 and J2 

sets and the resulting footprint of the overall system would be very large. Thus, it is 

apparent that production in the Marcellus greatly benefits from the numerous natural 

fractures in the reservoir, as has already been observed in the field.       

  



154 

 

Table 5.4: Parameters used for simulation of fracturing in the Marcellus Shale 
 

Rock and Reservoir Parameters 
Initial Density, ρr 2,500 kg/m3 [106] 
Young’s Modulus, E 33.47 GPa [106] 
Poisson’s Ratio, ν 0.17 [-] [107] 
Tensile Strength, T0 9.02 MPa [106] 
Friction Angle,  ϕ 30° [107] 
Max. Compressive Stress, σ1 32.0 MPa [106] 
Min. Compressive Stress, σ3 10.0 MPa [106] 
Fluid Parameters 
Reference Density, ρf 1000 kg/m3 

Fluid Bulk Modulus, Kf 2.2 GPa 
Carter’s Leakoff Coefficient, Cf 0.0 m/s 
Viscosity, µ 20 mPa-s 
Injection Rate, Q0 1000 cm3/s 
Natural Fracture Parameters 
Tensile Strength, T0 0.0 MPa 
Cohesive Strength, C0 0.0 MPa 
Natural Fracture Width, w0 100.0 µm 
Friction Angle,  ϕ 30° [107] 
Numerical Parameters 
Normal Spring Constant, kn 30*E 
Shear Spring Constant, ks 30*E 
Time Step, dt 1 min 
Simulation time 1 hr 
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Figure 5.19: Fracture pattern generated after one hour of fracturing simulation for the 
Marcellus Shale. Natural fractures are shown by thin black lines, open fractures by thick 
dark gray lines, and unopened fractures invaded by fluid by lighter thick gray lines.  
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5.5 Monte Carlo Analysis of Fracture Networks 

 In the previous section, it was demonstrated how hydraulic fracturing in a 

stochastic fracture network might be modeled using the HFDDA. In this section, that 

method is extended to create a probabilistic assessment of fracture propagation as a 

method of characterizing the uncertainty in subsurface systems. Two primary 

applications are intended for this method. First, in geothermal engineering, hydraulic 

fracturing is frequently performed to increase the connectivity of naturally fractured 

reservoirs. For the geothermal system to operate, a pathway of connected fractures is 

needed between the injection and extraction wells, and thus it is desired to quantify the 

likelihood that hydraulic fracturing will produce a connected pathway. Second, in gas 

production and wastewater injection applications, hydraulic fracturing can occur in 

reservoirs with complicated systems of pre-existing faults, and potentially in areas where 

other wells have already been drilled. Application of the current method will provide an 

estimate of the likelihood of propagating hydraulic fractures intersecting or avoiding 

other features in the subsurface, be they pre-existing faults or pre-existing wells. In both 

cases, the probabilistic assessment of fracture propagation better characterizes the 

uncertainty involved with fracturing and allows for better design decisions to be made 

regarding the location of injection wells and the properties of the fracturing fluid. 

 In the subsurface, the location and dimensions of fractures and the material 

properties of a reservoir are difficult to evaluate precisely across an entire domain of 

interest. Typically, estimates for the rock and fracture properties are taken at individual 

sampling sites, and values for the rest of the domain are extrapolated from these points. 

To account for the uncertainty inherent in this process, the Monte Carlo method may be 
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employed, in which multiple simulations are performed over different realizations of the 

same reservoir data. With the Monte Carlo method, the material properties of the 

reservoir are assigned distributions rather than discrete values, and the distributions are 

individually sampled for each simulation performed using the HFDDA. Additionally, 

each simulation uses a new realization for the natural fracture network, generated using 

the method outlined in Section 5.3. For the rock blocks, the Young’s Modulus and 

Poisson’s ratio are both assigned triangular distributions, in which the maximum, 

minimum and mode for each variable are required. For the fractures, triangular 

distributions were selected for the friction angle of all of the joints, while lognormal 

triangular distributions were assigned for the tensile strengths and widths of the fractures, 

as these parameters can vary over orders of magnitude. In each case, triangular 

distributions were used to reflect reservoirs for which limited sample data is available, 

based on an available maximum and minimum, as well as an estimate of the modal value.  

 As an example application of the method, the algorithm was applied to a reservoir 

 
Table 5.5: Triangular distribution parameters for the Monte Carlo Analysis 

 
Rock Parameters 

 Mode Min Max 
Initial Density, ρr 2,650 kg/m3 2,650 kg/m3 2,650 kg/m3 

Young’s Modulus*, E 10 GPa 8 GPa 12 GPa 
Poisson’s Ratio, ν 0.22 [-] 0.20 [-] 0.25 [-] 

Tensile Strength, T0 6.0 MPa 5.0 MPa 7.0 MPa 
Friction Angle,  ϕ 30° 25° 35° 

Natural Fracture Parameters 
Tensile Strength, T0 0.0 MPa 0.0 MPa 0.0 MPa 

Cohesive Strength, C0 0.0 MPa 0.0 MPa 0.0 MPa 
Natural Fracture Width, w0 100.0 µm 80.0 µm 200.0 µm 

Friction Angle,  ϕ 30° 25° 35° 
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with the parameter distribution provided in Table 5.5, using the fracture network 

properties described in Section 5.3 for the fracture sets oriented at 45° and 135°. With the 

exception of the friction angle, the modal value of each stochastic parameter is the same 

as the discrete value used in the previous simulations. Each realization of the fracture 

network was based upon a constant underlying triangular mesh within a 250 m x 250 m 

domain with injection occurring at the center. For speed, the maximum size of any given 

triangle was increased to 50 m2. The distributions were sampled for 50 realizations of the 

reservoir, and all distributions were sampled using pre-defined seeds such that the results 

were reproducible. Unless otherwise mentioned, all other parameters are as described in 

Table 5.3. For this simulation, a constant background stress differential of 0 MPaσ∆ =

was applied to the system. As opposed to the previous simulations, when stresses of 5 

MPa were applied along all sides, for this simulation no stresses were applied to allow for 

maximum growth of the fracture. Each simulation was applied to 1 hr of simulation time, 

using a constant time step of dt = 1 min. Evaluation of the results occurs probabilistically. 

Because the same underlying mesh was used for each realization of the reservoir, the 

likelihood that the fracturing fluid might open any given joint may be found by averaging 

the number of realizations in which the joint opened over the total number of realizations. 

Using this method, the probability of each joint being open at the end of 1 hr is shown in 

Figure 5.20. For this simulation, the vertical fractures immediately above and below the 

injection point opened with very high probability, as indicated by the darkest lines in the 

figure. A well-defined main fracture extended with very high probability to a distance of 

approximately 17 m above the injection point and approximately 40 m below it. Outside 

of this main fracture, however, the likelihood of any given fracture opening is markedly 
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lower and decreases with the distance away from the injection point. The pattern formed 

by these fractures roughly corresponds to the 45° and 135° azimuths of the natural 

fracture sets, as fracturing occurred more frequently along joints oriented at those angles 

compared with joints oriented more parallel to the axes. 

 To find the likelihood of fracture propagation at any point within the system, a 

few challenges exist. First, the probability of fracture propagation must somehow be 

evaluated over the points not explicitly covered by a joint. Second, the method must 

somehow account for the density of fractures within the system. As seen in the results for 

individual fractures, the propagating hydraulic fractures in the HFDDA tend to develop 

along a primary fracture branch. Increasing the density of joints in the system would 

therefore decrease the likelihood that any particular joint would open, leading to lower 

estimates of fracture probability. To resolve these issues, a new method is proposed in 

which the likelihood of propagation for a given area is defined based on the number of 

realizations in which the area is intersected by an open fracture. For each realization of 

the reservoir, a grid is placed over the reservoir domain, and each grid cell receives a 

value of one if it contains an open fracture and a value of zero if it does not. After all of 

the simulations have been completed, the results are averaged over the total number of 

realizations to determine the likelihood of fracture propagation within each cell. Use of 

this method accounts for the points not explicitly covered by a fracture and serves as a 

method for normalizing the fracture probabilities relative to the density of the joints in the 

system. A limitation of this method, however, is that the cell size will have a very strong 

impact on the likelihood of propagation for each cell. The larger the cell, the more likely  
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Figure 5.20: Likelihood of individual fracture propagation for fracture sets oriented at 
45° and 135°, subject to background stress of 0 MPaσ∆ = . 

 
 

 
 
Figure 5.21: Likelihood of fracture propagation within a defined grid for fracture sets 
oriented at 45° and 135°, subject to background stress of 0 MPaσ∆ = . 
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that it will be intersected by an open fracture, and the less that can be said about which 

specific locations within the domain are prone to fracturing.  

 The results of this method using a grid of 10 m x 10 m cells are shown in Figure 

5.21. Each grid cell has an area of 100 m2, double the size of the largest possible triangle 

in the mesh. Thus, each cell will contain multiple joints. The likelihood distribution 

displayed in this figure closely mirrors the distribution for fracture propagation shown in 

Figure 5.20. Effectively, this method serves to smear out the linear information from the 

first figure over a 2D area. To better analyze the domain, the results of this method can be 

used to create contours for the likelihood of fracture propagation over time. In Figure 

5.22 - Figure 5.25, the likelihood of fracture propagation for the previous simulation is 

shown in contours after every 15 minutes of simulation time. In these figures, white 

contours signify any area that has less than a 1% probability of being reached by the 

hydraulic fracture, while black signifies any area with a probability greater than 50%. 

Again, the high-probability areas are seen to be located near the injection point and 

proceed vertically away from it. As seen in Figure 5.22, the fracturing in this area largely 

occurred within the first 15 minutes, in which fracturing was concentrated relatively close 

to the injection point. Interestingly, almost all of the fracturing that occurred with 

medium to high probability (greater than 25%) happened within the first 15 minutes. As 

time proceeded, the variability in the fracture location grew, and the footprint of areas 

potentially intersected by the hydraulic fracture greatly increased. Almost all of the area 

reached by the fracture in the last 45 minutes remained within the lowest quartile of 

fracture propagation. As mentioned, these results may be used in two ways. For 

geothermal wells, or any situation in which a particular feature is desired to be intersected  
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Figure 5.22: Contours for likelihood of fracture propagation after 15 minutes for fracture 
sets oriented at 45° and 135°, subject to background stress of 0 MPaσ∆ = . 
 
 
 

 
 

Figure 5.23: Contours for likelihood of fracture propagation after 30 minutes for fracture 
sets oriented at 45° and 135°, subject to background stress of 0 MPaσ∆ = . 
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Figure 5.24: Contours for likelihood of fracture propagation after 45 minutes for fracture 
sets oriented at 45° and 135°, subject to background stress of 0 MPaσ∆ = . 
 
 
 

 
 

Figure 5.25: Contours for likelihood of fracture propagation after 60 for fracture sets 
oriented at 45° and 135°, subject to background stress of 0 MPaσ∆ = . 
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by the propagating fracture, these results suggest that the feature should be located 

relatively close to the injection point in naturally fractured reservoirs with minimal 

differential stress. Further, the well should be located along the plane in which the 

hydraulic fractures are initiated, as these areas had the highest probability of being 

fractured. If, however, the feature in question needed to be avoided, these results suggest 

that the lateral expansion of the hydraulic fracture may be significant, and care must be 

taken in locating the injection well far from the feature of interest. 

 Having examined the results of a Monte Carlo simulation in the absence of 

background stress, it was next desired to see how they would change in the presence of 

background stress. For these examples, the same 50 realizations of the reservoir and 

fracture network were produced as before, but in these a background stress differential of 

 

 

Figure 5.26: Likelihood of individual fracture propagation for fracture sets oriented at 
45° and 135°, subject to background stress of 12 MPaσ∆ = . 
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12 MPaσ∆ = was applied. The probability of fracture propagation along each joint is 

shown in Figure 5.26. A few distinctions are immediately apparent between the results 

when 12 MPaσ∆ =  and the results when 0 MPaσ∆ = . First, the propagation pattern 

when 12 MPaσ∆ =  is much tighter than that when 0 MPaσ∆ = . Almost all of the 

fracturing was localized to within 25 m on either side of the injection point, compared 

with the growth of greater than 50 m to either side observed when 0 MPaσ∆ = . Second, 

a primary fracture branch developed more clearly in this example than in the previous. 

Above and below the injection point, high-probability fractures occurred symmetrically, 

and a fracture branch with moderately high likelihood of fracturing grew up to 75 m 

above the injection point and down to 50 m below it. The higher likelihood of a distinctly 

vertical fracture branch developing away from the injection point may more clearly be 

seen in Figure 5.27 - Figure 5.30, which show the growth of the fracture in 15 min 

intervals. These figures were generated using the same area-normalizing procedure with 

10 m x 10 m grid cells as before. Unlike the results when 0 MPaσ∆ = , when 

12 MPaσ∆ = the mid- and upper- quartiles continue to grow with time. Between the 15th 

and 60th minute, the 25% - 50% contour expanded from 25 m to 85 m above the injection 

point, and from -25 m to -45 m below it. These results are in contrast with those from the 

first simulation, in which minimal growth was observed over the same period.  

 From these results, it may be determined that in reservoirs with a higher stress 

differential, the direction and extent of fracture propagation may be determined with 

more certainty than in those with a low stress differential. Again, these results are similar  

to those observed for individual fractures. With individual fractures, the presence of a 

high background stress differential caused the fracture to propagate largely independent  
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Figure 5.27: Contours for likelihood of fracture propagation after 15 minutes for fracture 
sets oriented at 45° and 135°, subject to background stress of 12 MPaσ∆ = . 

 
 
 

 
 
Figure 5.28: Contours for likelihood of fracture propagation after 30 minutes for fracture 
sets oriented at 45° and 135°, subject to background stress of 12 MPaσ∆ = . 
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Figure 5.29: Contours for likelihood of fracture propagation after 45 minutes for fracture 
sets oriented at 45° and 135°, subject to background stress of 12 MPaσ∆ = . 
 
 
 

 
 
Figure 5.30: Contours for likelihood of fracture propagation after 60 minutes for fracture 
sets oriented at 45° and 135°, subject to background stress of 12 MPaσ∆ = . 
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from the existing natural fracture network. When evaluated probabilistically, the result is 

a fracture pattern that occurs with much greater regularity than that when the differential 

stress is low and the system is heavily influenced by variations in the fracture pattern and 

other reservoir properties. For geothermal wells, these results signify that extraction wells  

may be placed farther from the injection well with a higher probability of establishing a 

connection between the two when the differential stress is high. With extra distance 

between the wells, the fracture footprint between them will be greater, allowing for 

greater production from the system. For oil and gas wells, the results signify that features 

to the left and right of the injection well are much less likely to be intersected by the 

propagating fracture, allowing fracturing to proceed with more certainty in the presence 

of pathways that may lead out of the targeted formation. 

 In a final series of tests, it was desired to see what effect variation in the fluid 

design parameters might have on the outcome. Two Monte Carlo simulations were 

performed to test the fluid parameters. In both simulations, triangular distributions were 

assigned to both the fluid viscosity and the injection range. For viscosity, the modal value 

was set to 20 mPa-s, the minimum to 1 mPa-s, and the maximum to 100 mPa-s. For 

injection rate, the modal value was set to 1 kg/s, the minimum to 0.5 kg/s, and the 

maximum to 2 kg/s. Because these values are design parameters, in an actual hydraulic 

fracturing operation there would be little uncertainty in their values. Applying a 

distribution to these parameters, however, allows for a range of values to be simulated 

and provides an indication of both the likelihood of fracture propagation across the entire 

range and the effect that variability in these parameters might have on the system. In both 

simulations, 50 realizations were generated using the distributions for the reservoir and 
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fluid parameters. For the first Monte Carlo simulation, the reservoir properties were held 

constant by sampling the rock and fracture distributions only once and using the same 

sampled values in all 50 realizations. The fluid parameters, however, were sampled 

individually for each realization. For each realization of the fluid parameters, the HFDDA 

was run for 120 minutes of simulation time, using a time step of 1 minute. To allow for 

an accurate comparison with the previous simulations, injection was halted for each 

realization after 60 kg of fluid had been injected. The likelihood pattern generated for this 

Monte Carlo simulation is shown in Figure 5.31 and the contour plot at the end of the 

simulation time is shown in Figure 5.32. For the 50 realizations performed of the fluid 

parameters, very little variability was observed when the reservoir parameters were held 

constant. A primary fracture branch above and below the injection point opened in each 

of the simulations, resulting in these joints opening with very high probability. Some 

variability was observed at the tips of the fracture, in particular toward the left of the 

injection point, where a rather large offshoot of the fracture was contacted by the fluid in 

approximately 15% of the realizations. 

  Possibly, the variability observed is an artifact of the algorithm. Because the fluid 

injection rate changes but the time step remains constant, the amount of mass injected 

into the system within each time step will vary widely. As a result, the pressure will 

increase much more rapidly when the injection rate is large, as opposed to when the 

injection rate is small. As more of the system becomes highly pressurized, the likelihood 

that any given contact will open increases, with the result that the fracture will propagate  

further when the injection rate is larger. A solution to this problem would be to change 

the time step such that the fluid injected within each time step remains constant, as in  
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Figure 5.31: Likelihood of individual fracture propagation after all fluid has been 
injected based on a reservoir sampled once and fluid parameters sampled many times. 
 
 
 

 
 

Figure 5.32: Contours for likelihood of fracture propagation after all fluid has been 
injected based on a reservoir sampled once and fluid parameters sampled many times. 
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Section 5.3. During testing, however, it was found that changing the time step can affect 

the ability of the algorithm to converge, as the stability constants used for the rock and  

fluid matrices are sensitive to changes in the time step.  Because there was no way to 

automate the selection of these constants to ensure convergence, they could not be varied 

for different values of the injection rate, and a constant time step was required for each 

realization of the system. Even including this possibility, however, little variability was 

observed in the propagation pattern using the applied distributions for the fluid 

parameters, relative to the variability seen in the previous Monte Carlo simulations. 

These results are consistent with those observed for individual fractures in Section 5.3. 

 For the second Monte Carlo simulation, both the reservoir parameters and the 

fluid parameters were sampled individually for each of the 50 realizations. To sample the 

reservoir parameters, the same initial seed values were used as those in the initial Monte 

Carlo simulation, in which the fluid parameters were held constant. The likelihood 

pattern generated for this simulation is shown in Figure 5.33, and the contour plot 

generated at the end of the simulation time is shown in Figure 5.34. When compared with 

the fracture pattern (Figure 5.20) and contour plot (Figure 5.25) from the first simulation, 

very little difference is observed between the results of this Monte Carlo simulation and 

the results of the first one. Some variability may be seen at the tips of the fractures, but in 

general the joints opened with roughly the same probability as they did in the first 

simulation, particularly among those joints that opened with high probability. As a result, 

it would appear that for the range of parameter values tested, variability in the fluid 

parameters had little impact on the variability of the fracture network. Again, these 

results corroborate those from the individual fracture simulations, and suggest that in  
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Figure 5.33: Likelihood of individual fracture propagation after all fluid has been 
injected based on repeated sampling for both the reservoir and fluid parameters. 
 
 
 

 
 
Figure 5.34: Contours for likelihood of fracture propagation after all fluid has been 
injected based on repeated sampling for both the reservoir and fluid parameters. 
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impermeable media with significant tensile strength, the fluid design parameters will be 

of secondary importance to the reservoir parameters in determining the extent and 

direction of the propagating fracture.  

 

5.6 Monte Carlo Analysis of Hydraulic Fracturing in the Marcellus Shale 

 As a final test of this method, the Monte Carlo analysis developed above was 

applied to the Marcellus Shale system detailed in Section 5.4. As before, the distribution 

parameters were selected to represent a black shale system at a depth of approximately 

800 m, and are provided in Table 5.6. For each of the triangular distributions, the mean of 

the values provided in the reference was selected as the distribution’s mode. Additionally, 

triangular distributions were also applied to the maximum and minimum compressive 

stress on the system. For these simulations, the length, azimuth and percentage of 

candidate fractures selected in the J1 and J2 fracture sets were characterized using the 

 
Table 5.6: Parameters for  the Monte Carlo analysis of fracturing in the Marcellus Shale 

 
Rock Parameters 

 Mode Min Max Reference 
Initial Density, ρr 2,500 kg/m3 2,500 kg/m3 2,500 kg/m3 [106] 

Young’s Modulus*, E 33.47 GPa 31.2 GPa 34.2 GPa [106] 
Poisson’s Ratio, ν 0.17 [-] 0.16 [-] 0.18 [-] [107] 

Tensile Strength, T0 9.02 MPa 12.4 MPa 5.7 MPa [106] 
Friction Angle,  ϕ 30° 25° 35° [107]* 

Max. Comp. Stress, σ1 32 MPa 28 MPa 36 MPa [106] 
Min. Comp. Stress, σ3 10 MPa 8 MPa 12 MPa [106] 

Natural Fracture Parameters 
Tensile Strength, T0 0.0 MPa 0.0 MPa 0.0 MPa Estimated 

Cohesive Strength, C0 0.0 MPa 0.0 MPa 0.0 MPa Estimated 
Natural Fracture Width, w0 100.0 µm 80.0 µm 200.0 µm Estimated 

Friction Angle,  ϕ 30° 25° 35° [107]* 
*Only the mode was given in the reference, max and min are estimates. 
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same values as before. For simplicity, the same fluid and numerical parameters provided 

in Table 5.4 for the simulation of a single fracture were used in this simulation as well. 

Fifty realizations of the system were made, using a triangular mesh discretized such that 

each triangle was no greater than 50 m2 in area. Fracturing was simulated for one hour of 

injection time, and the likelihood of fracturing at the end of all 50 simulations was 

observed using the methods described above. 

 Figure 5.35 shows the likelihood of fracture propagation at the end of the 

simulation for individual fractures, while Figure 5.36 displays a contour plot generated 

from this data. In both figures, very little variation is observed in the path taken by the 

propagating fracture. Due to the high stress differential between the maximum and 

minimum compressive stresses (∆σ ≈ 22 MPa), the hydraulic fracture propagated almost 

exclusively to the left and right of the injection point, forming a very narrow band in 

which fracturing was observed. Notably, the width of the band in this simulation was 

comparable to that observed previously when ∆σ = 12 MPa. These results suggest that 

despite the high degree of natural fracturing in the Marcellus, the high stress differential 

of the background stress will ensure that the fracture propagates fairly linearly. 

Furthermore, because the fracture propagates linearly, these results suggest that a bi-wing 

fracture model may be sufficient for characterizing the growth of individual fractures in 

the Marcellus, or in any other reservoir in which the stress differential is particularly high. 

 In addition to the likelihood of fracture propagation in the Marcellus, it was also 

desired to evaluate the extent to which fracturing fluid would penetrate into the natural 

fractures surrounding the main fracture. Figure 5.37 shows the likelihood of each  
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Figure 5.35: Likelihood of individual fracture propagation after one hour of fracturing in 
the Marcellus Shale. 

 

 

 

Figure 5.36: Contours for likelihood of fracture propagation after one hour of fracturing 
in the Marcellus Shale. 
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Figure 5.37: Likelihood of fluid invasion in hydraulic and natural fractures after one hour 
of fracturing in the Marcellus Shale. 

 

 

 

Figure 5.38: Contours for likelihood of fluid invasion in hydraulic and natural fractures 
after one hour of fracturing in the Marcellus Shale. 
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individual joint being invaded by fluid, and Figure 5.38 shows a contour plot generated 

from this data. In these figures, the footprint of the area invaded by the fracturing fluid is 

clearly much larger than the footprint of the propagating fracture. Fluid invasion occurs 

in a band over 100 m wide, while fracture propagation occurs in a band approximately 30 

m wide. Critically, these results suggest that in heavily fractured reservoirs, fracturing 

fluid has the potential to migrate far from the location of the main hydraulic fracture. 

Furthermore, if monitoring is not performed, this migration has the potential to go 

unnoticed, and the fluid may migrate into faults or fractures that lead out of the targeted 

formation.  

 To solve this problem, the impacts of the fluid design criteria available in the 

HFDDA were examined. First, the Monte Carlo simulations for the Marcellus Shale were 

performed a second time using a high-viscosity fracturing fluid. Each of the 50 

realizations of the reservoir was generated exactly as before. In Section 5.5, it was shown 

that changing the viscosity from 20 mPa-s to 100 mPa-s did not lead to significant 

changes in the area impacted by invading fluid. As a result, for this application a 

fracturing fluid of 1000 mPa-s was applied. Contours of the likelihood of fracture 

propagation throughout the reservoir using this higher-viscosity fluid are shown in Figure 

5.39, while contours showing the likelihood of fluid invasion are shown in Figure 5.40. 

From these results, the fracture propagation contours observed with the high-viscosity 

fluid were not noticeably different than those observed with the low-viscosity fluid. Both 

simulations led to relatively narrow contours of fracture propagation oriented 

perpendicular to the direction of minimum principal stress. Regarding fluid invasion, 

however, the high-viscosity greatly limited the extent of fluid invasion relative to that  
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Figure 5.39: Contours for likelihood of fracture propagation after one hour of fracturing 
in the Marcellus Shale using a high-viscosity fracturing fluid. 

 

 

 
 

Figure 5.40: Contours for likelihood of fluid invasion in hydraulic and natural fractures 
after one hour of fracturing in the Marcellus Shale using a high-viscosity fracturing fluid. 
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observed with the low-viscosity fluid. With the low-viscosity fluid, fluid invasion was 

observed up to 75 m above and below the injection point. With the high-viscosity fluid, 

fluid invasion was largely restricted to the 25 m above and below the injection point. 

Crucially, these results suggest that high-viscosity fracturing fluids can serve to greatly 

limit the extent of fluid invasion into a surrounding fracture network while still allowing 

for the production of sizeable hydraulic fractures within a reservoir. 

 After evaluating the impacts of a high-viscosity fluid, it was next desired to see 

how changes to the injection rate might impact fracture propagation and fluid invasion 

throughout the reservoir. For this simulation, the same 50 realizations of the Marcellus 

reservoir were generated as before. In this case, the fluid injection rate was doubled to 

2 kg/s, while the fluid viscosity was returned to 20 mPa-s. Each realization of the system 

was fractured for 30 minutes using a time step of 30 seconds, such that the same mass of 

fluid was injected within each time step as in the previous simulations. Contour plots of 

the likelihood of fracture propagation and fluid invasion for this simulation are shown in 

Figure 5.41 and Figure 5.42, respectively. Once again, fracture propagation was confined 

to a narrow band oriented perpendicular to the direction of minimum principal stress. For 

fluid invasion, in this simulation the fluid invasion pattern appeared similar to that 

observed in the first Monte Carlo simulation for the Marcellus Shale, in which µ = 20 

mPa-s and Q0 = 1 kg/s. Some differences may be observed, however, in that the fluid 

invasion in this simulation generally remained within a 50 m band above or below the 

injection point, as opposed to the 60 to 75 m band that occurred in the first simulation. 

Furthermore, fluid invasion did not occur as prominently at the corners of the band, 

suggesting that the larger flowrate used in this simulation did limit the invasion of fluid  
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Figure 5.41: Contours for likelihood of fracture propagation after thirty minutes of 
fracturing in the Marcellus Shale using an injection rate of 2 kg/s. 

 

 

 

Figure 5.42: Contours for likelihood of fluid invasion in hydraulic and natural fractures 
after thirty minutes of fracturing in the Marcellus Shale using an injection rate of 2 kg/s. 
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throughout the domain. From the results of these simulations, therefore, it would appear 

that the fluid design parameters can have a notable impact on the extent of fluid invasion 

throughout a reservoir, even if their impact on the likelihood of fracture propagation is 

less pronounced. 

 As a final test for the Marcellus Shale, triangular distributions were applied to the 

fluid design parameters to see how fracturing might vary within a parameter range. For 

both the viscosity and the injection rate, the maximum and minimum of each parameter 

was selected to correspond with the values used in the previous simulations. For the fluid 

viscosity, the minimum was set to 20 mPa-s, the maximum to 1000 mPa-s, and the mode 

to 100 mPa-s. For the injection rate, the minimum was set to 1 kg/s, the maximum to 2 

kg/s, and the mode to 1.5 kg/s. As before, the same 50 realizations were used for the 

Marcellus reservoir. A time step of 1 min was used for each realization, and injection was 

allowed to continue in each realization until 60 kg of fluid had been injected. Contour 

plots of the likelihood of fracture propagation and fluid invasion for these simulations are 

shown in Figure 5.43 and Figure 5.44. Once more, the fracture propagation contours for 

this simulation were very similar to those from the previous Marcellus Shale simulations, 

again suggesting that the fluid parameters will not have a marked effect on fracture 

propagation, at least over the range of parameters tested. The fluid invasion contours in 

this simulation remained within a band extending approximately 35 m above and below 

the injection point and were likely controlled primarily by the fluid viscosity, as the range 

of fluid viscosity parameters applied was significantly wider than the range of injection 

rates. As before, these results show that the fluid parameters may have only a secondary 

impact on the likelihood of fracture propagation throughout the reservoir, but will have a  
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Figure 5.43: Contours for likelihood of fracture propagation in the Marcellus Shale when 
a triangular distribution is applied to the fluid design parameters. 

 

 

 

Figure 5.44: Contours for likelihood of fluid invasion in the Marcellus Shale when a 
triangular distribution is applied to the fluid design parameters. 
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strong impact on the likelihood of fluid invasion throughout the reservoir when the 

reservoir is characterized by an extensive pre-existing natural fracture network. 

 

5.7 Summary 

 In this chapter, it was demonstrated that the HFDDA can effectively model 

hydraulic fracture propagation in networks of natural fractures. The HFDDA was 

successfully able to reproduce the fracture interaction mechanisms observed by the 

intersection of a propagating hydraulic fracture with a natural fracture seen in the 

experiment performed by Blanton. When elevated to the level of fracture networks, the 

HFDDA showed that both the angle of approach of the propagating fracture and the 

differential stress applied to the system will continue to have a strong influence on the 

direction taken by the propagating fracture. Additionally, for individual realizations of a 

reservoir, it was demonstrated that both the fluid viscosity and the injection rate can 

influence the extent to which a fracture will propagate. In the Monte Carlo simulations, 

however, it was demonstrated that variability in the fluid parameters will have less of an 

effect on fracture propagation than variation in the reservoir parameters and differential 

stress. The results of this section are particularly relevant when locating injection wells 

for hydraulic fracturing, and can be used to facilitate proper well placement in the 

presence of faults, extraction wells or other pre-existing features in the subsurface. 

Finally, the methods described in this chapter were applied to a case study of hydraulic 

fracturing in the Marcellus Shale. In this analysis, it was demonstrated that the high 

differential stress in the Marcellus will lead to relatively linear fracture propagation, 

despite the high degree of fracturing already present in the formation. The numerous 
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natural fractures, however, can allow fracturing fluid to travel far from the main fracture, 

suggesting that care must be taken when fracturing highly fractured reservoirs to prevent 

the unwanted migration of fluid. 
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6  CONCLUSION 
 

 

 In this chapter, the work of the previous chapters is summarized and presented in 

a unified context. The primary findings of each chapter are highlighted and their 

significance is discussed. The limitations of the model are also analyzed, and 

recommendations for further research are provided. 

 

6.1 Thesis Summary and Key Findings 

 When work began on this research, many models of hydraulic fracturing already 

existed in the literature. At the most fundamental level were the various analytical and 

semi-analytical solutions for bi-wing fracture propagation, which analyzed the effect of 

different fluid and reservoir parameters on the fluid pressure and geometry of a 

propagating hydraulic fracture. Refinement of these models led to the discretization of 

the bi-wing fracture into individual cells, and eventually into coupled analyses of bi-wing 

fractures with reservoir simulators. Recently, various authors had begun to examine 

hydraulic fracturing in complex networks using a variety of techniques for characterizing 

the interaction between the rock and fluid components of the reservoir system. It was 

found upon examining these existing models, however, that very little work had been 

performed in developing a fully implicit model for hydraulic fracturing in complex 

fracture networks. Unlike with explicit models, implicit models have no theoretical 

limitations on the size of time steps or rock elements needed for convergence. While a 

few studies had been conducted examining fluid flow and hydraulic fracturing implicitly 

[71-73, 75], a great deal of work remained to stabilize these algorithms and demonstrate 
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their validity for actual hydraulic fracturing problems in which rock and reservoir 

parameters are only known stochastically. Thus, the purpose of this thesis was to build 

upon these studies by stabilizing and validating the existing algorithm, and to extend the 

algorithm to more accurately account for the uncertainty in hydraulically fractured 

reservoirs. In this work, the new algorithm generated was labeled the HFDDA.  

 The first step in the current work was to build upon the existing algorithm 

developed in [71-73, 75]. In Chapter 2, improvements to the algorithm were made in a 

few key areas, the vast majority of which were implemented to help the algorithm 

converge. Among these, the most significant was the introduction of stability constants 

into the coupled equation system. These terms were directly responsible for the 

convergence of the fluid pressures and rock displacements, as without them small 

changes in the geometry of the fractures would cause very large changes to the fluid 

pressures which would in turn cause the algorithm to fail. Another key development was 

the order used for the steps in the overall algorithm. The solution steps in the algorithm 

were arranged such that each change to the open-close state of the joint contacts and the 

fractures occurred incrementally. This arrangement helped prevent the oscillation of the 

open-close iterations and ensured that fractures propagated incrementally away from the 

injection point. Additionally, the open-close logic of both the contacts and the fluid was 

adjusted to account for issues specific to hydraulic fracture modeling. Among these 

changes was the requirement that fracturing of the rock matrix occur in tension adjacent 

to fluid, the use of four sets of springs rather than two for edge-edge contacts, and the 

restriction on vertex-vertex contacts allowing them to develop only when the penetration 

distance of the contact exceeded a certain tolerance. Other improvements to the algorithm 
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included an iterative method to solve for the mass stored in fluid nodes in which the 

pressure dropped to zero, and the various changes implemented in Chapter 5 to facilitate 

convergence in the presence of natural fractures. While each of these steps was small by 

itself, every one of these changes proved instrumental in stabilizing the algorithm and 

improving its accuracy in the various examples tested. 

 Upon completion of the model, the next step was to demonstrate its accuracy by 

validating it against various theoretical and experimental examples of hydraulic 

fracturing. In Chapter 3, the accuracy of the coupled algorithm was shown through the 

simulation of two analytical solutions for hydraulic fracturing. Using the solution for the 

opening of a Griffith fracture subject to constant pressure, it was demonstrated how 

triangular elements are required to accurately model stress and strain when using first-

order expressions for displacement. While this requirement had already been established 

previously [75], many works currently in the literature continue to incorrectly use non-

triangular elements with first-order displacement functions, resulting in incorrect 

estimates of the strain in the system. Next, the algorithm’s ability to model bi-wing 

fracturing was demonstrated by simulating the semi-analytical solution of a viscosity-

dominated KGD fracture. In this example, it was demonstrated how the HFDDA solution 

was largely independent of both spatial and time discretization when no background 

stress was applied to the system. In these tests, the results of the HFDDA simulation 

largely matched the analytical solutions for fracture length, fracture width, and fluid 

pressure at the injection point regardless of the discretization applied. Critically, these 

findings demonstrate one of the primary motivations for using an implicit method, 

namely the ability of the solution to converge to the appropriate result independent of the 
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system discretization in time and space. When background stress was applied, however, 

the HFDDA results diverged from the analytical solution as the fracture discretization 

grew. The divergence appeared largely to be a result of the discretization size, as larger 

fractures received proportionally more of the background stress and required greater 

pressures in the system to cause them to open. Because the semi-analytical solution does 

not directly account for any extra stress on unbroken contacts, however, the divergence 

observed in this example was not a cause for concern.  

 After validating the coupled algorithm against analytical solutions, it was next 

desired to see how well it would perform against experimental results. For this task, the 

HFDDA was tested against an experiment developed by Rubin [87] for bi-wing fracture 

growth in a homogeneous medium. Using the data provided for fracture length, width, 

and pressure at various points along the fracture, the HFDDA was shown to successfully 

reproduce the experimental results for all of these variables. Notably, these results 

suggested that the algorithm is suitable for modeling hydraulic fracturing in 

homogeneous media and is able to reproduce the propagation path of a particular fracture, 

provided that the path exists within the mesh discretization. In the final section of 

Chapter 3, various aspects of the algorithm were examined in simple examples. In this 

section, it was demonstrated that the algorithm was able to conserve fluid mass, model 

symmetric fracture propagation and fracture splitting, correctly predict the fracture 

propagation direction in the presence of background stress, and account for asymmetry in 

the different parameters that define the reservoir. Taken together, all of these examples 

served to demonstrate both the reliability of the algorithm and its robustness for modeling 

different types of reservoir systems.  
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 In Chapter 4, the Mohr-Coulomb and maximum tensile stress fracturing criteria 

employed within the DDA and HFDDA were related to the LEFM criteria more generally 

used in hydraulic fracturing studies. Implementation of the Mohr-Coulomb and 

maximum tensile stress criteria in discontinuous studies is much simpler than 

implementation of the LEFM criteria, as these criteria can be applied to mesh elements of 

any shape. In the first part of the chapter, an analysis similar to that in [96] was 

performed to relate the Mode I stress-intensity criteria from LEFM to the tensile failure 

criteria used in the DDA. In this analysis, it was revealed that the critical stress intensity 

factor for a joint could be derived as a function of the joint’s tensile strength and its 

length. The validity of this relationship was demonstrated by gradually applying a far-

field tensile load to an infinite plane containing fractures of different initial lengths. The 

load was gradually incremented until failure occurred, after which the failure load was 

compared to the theoretical failure load derived using LEFM. Excellent agreement was 

observed in these results, suggesting that the DDA is able to model Mode I fracture 

propagation as considered by LEFM, even without explicitly evaluating the stress 

intensity at each contact. Similarly, in an analysis of Mode I fracturing in a Mixed-Mode 

stress field, the DDA correctly evaluated both the propagation direction of the tensile 

fracture and the failure load, again suggesting that the DDA is suitable for modeling the 

propagation of tensile fractures, as based on LEFM. When this analysis was extended to 

Mode II fracturing, however, the agreement between the DDA and the theoretical 

predictions was not as close. In Mode II, the DDA was observed to shear with 

significantly less background shear applied than was predicted theoretically. The reasons 

for the discrepancy were not immediately clear, as the DDA was correctly able to model 
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Mode II failure in the absence of an initial fracture. Because, however, hydraulic 

fracturing is typically expected to occur in Mode I, the inability of the DDA to reconcile 

exactly with the theoretical results for Mode II hydraulic fracturing is of only secondary 

importance in the current application. To complete the study of this relationship, the 

ability of the HFDDA to model a toughness-dominated Mode I KGD fracture was also 

considered. In this section, it was demonstrated that the HFDDA was able to match the 

theoretical results for a toughness-dominated LEFM fracture. The critical observation 

from this example is that in the HFDDA, the geometry and fluid pressure in the fracture 

can change solely based upon the system discretization even if the Mohr-Coulomb tensile 

criteria is held constant. While this trait allows the HFDDA to accurately reflect LEFM 

models for hydraulic fracturing, it also signifies that the propagation observed in the 

HFDDA simulation will be a direct function of the mesh size. This trait is somewhat 

undesirable, as in most numerical methods it is typically expected that the algorithm 

should converge to a constant solution as the mesh becomes finer. 

 Taken together, Chapters 3 and 4 thoroughly validate the model and its various 

components for hydraulic fracturing simulation in homogeneous media. The next step in 

the study was to extend the model into the simulation of non-homogeneous media 

characterized by pre-existing natural fracture networks, as discussed in Chapter 5. In this 

chapter, the interaction mechanisms of propagating fractures with natural fractures were 

discussed, and shear failure was re-introduced into the analysis to allow for the arrest of 

hydraulic fractures. A few adjustments were made to the initial algorithm to account for 

the added complexity of natural fractures, most notably changes to the application of the 

Augmented Lagrangian Method and an ad hoc approach for dealing with contact 
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oscillation. These changes were validated by using the HFDDA to model a series of 

experiments performed by Blanton in [68], which examined the effect of differential 

background stress and angle of approach on the interaction mechanism of intersecting 

fractures. Next, a method was demonstrated for modeling fracturing in networks of 

natural fractures within the HFDDA. Each fracture set in a sampled reservoir was defined 

stochastically using parameter distributions for the length and relative frequency of the 

fractures, along with a definition of their orientation within the domain. Individual natural 

fractures were then placed and “grown” along the edges of the triangular mesh until each 

fracture had reached its assigned length. Various examples of fracture networks simulated 

using this method were demonstrated, and the impact of different parameters on 

hydraulic fractures propagating in these networks was studied. In this section, it was 

found that the results of Blanton’s experiments are not generalizable to networks of 

fractures. For instance, in situations in which no background stress differential was 

applied to the system, many of the natural fractures were observed to remain closed 

despite being contacted by fluid. Another observation from this section was that the fluid 

viscosity and injection rate were of secondary importance to the reservoir parameters in 

determining the fracture propagation pattern when the rock matrix had significant tensile 

strength. In these simulations, variation in the fluid parameters led to only negligible 

variation in the propagation pattern of the hydraulic fracture, while variation in the 

background stress differential and pre-existing fracture network had a much stronger 

influence on propagation. Further, it was observed that the background stress differential 

was of greater importance for determining the propagation pattern than the orientation of 

the fractures. When the method was applied to a case study of fracturing in the Marcellus 
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Shale, fracture propagation largely occurred perpendicular to the direction of minimum 

compressive stress, despite the high density of natural fractures already present in the 

reservoir. The initial fracture network did, however, cause the fracturing fluid to migrate 

far from the main fracture, suggesting that natural fractures can significantly widen the 

footprint of area contacted by the fracturing fluid, even if they are not part of the main 

fracture. 

 Each of these results for single hydraulic fractures was further confirmed in the 

Monte Carlo analysis of fractured systems. For the Monte Carlo simulations, a method 

was demonstrated for evaluating the likelihood of fracture propagation to any point 

within a reservoir. It was found that for naturally fractured reservoirs in which the applied 

differential stress was lower, the reservoir area potentially contacted by the fracture was 

much greater than that when the applied differential stress was higher. When the stress 

differential was higher, however, the direction of fracture propagation could be known 

with greater certainty. Both of these observations are very relevant when selecting a 

potential location for a new well, depending on if other features in the reservoir need to 

be contacted or avoided by the propagating fracture. Additionally, the Monte Carlo 

simulations confirmed that variation in the fluid parameters will not lead to large 

variations in fracture propagation in impermeable systems with significant tensile 

strength. When applied to the case study of the Marcellus Shale, the Monte Carlo 

simulations demonstrated propagation occurring almost exclusively perpendicular to the 

direction of minimum compressive stress, such that a bi-wing fracture model may be 

applicable in that system or in others characterized by very high differential stress. 

Furthermore, the Monte Carlo simulations demonstrated that fracturing fluid can migrate 
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away from the main fracture with very high likelihood, even if the stress differential in 

the reservoir is high. As a result, care must be taken when fracturing in highly fractured 

reservoirs to prevent the leakoff and migration of fracturing fluids into the surrounding 

formation. 

 

6.2 Limitations of the Study 

 The primary limitations of this study center around two key areas. First are the 

limitations of the model itself, and second are the limitations of the insights gleaned over 

the course of this thesis. Regarding the model itself, while the innovations discussed in 

this thesis represent a significant improvement to the existing algorithm, some notable 

issues remain. Of these, the most prominent is the computational time required to 

simulate systems using the HFDDA. When choosing between explicit vs. implicit models, 

it is frequently unclear which type of algorithm will ultimately prove faster. With explicit 

methods, small time steps are required for convergence, but iteration is not required to 

move the algorithm forward. With implicit methods, however, the time steps used can be 

large, but the computational time required to move the algorithm forward within each 

time step will likely be extensive. In this work, it was found that increasing the number of 

blocks within the mesh drastically increased the time required for simulation once the 

number of blocks had grown to a certain magnitude. With the desktop computers used for 

each simulation, meshes of around 2250 blocks would require roughly between 3 to 5 

hours of computational time, depending on the specific computer used. Doubling the 

number of blocks to 4500 required anywhere from 12 to 24 hours of computation time. 

Notably, the rapid growth in computational requirements makes the use of very fine 
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meshes computationally infeasible, even when required by the physical problem under 

consideration. This problem is particularly exacerbated by the Monte Carlo simulations, 

in which multiple realizations are required to find the likelihood of fracture propagation 

within the system. Thus, it is questionable how useful the model may be in actual field 

simulations in which the reservoir domain is relatively large, but fractures must be 

characterized on a smaller scale. 

 Limits on the minimum size of elements in the mesh will have two primary 

impacts on the algorithm. First, as discussed in Chapter 5, the size and location of pre-

existing natural fractures are directly affected by the discretization. The technique used to 

generate natural fractures automatically places limits on their length and density, as any 

fracture smaller than a joint cannot be modeled, nor can fractures be spaced closer 

together than the mesh allows. To represent an actual fracture system, the parameters of 

the fracture network would somehow need to be upscaled to be modeled using the current 

method. At best, the method developed for characterizing natural fractures serves only as 

an approximation of the existing fracture system. Secondly, as discussed in Chapter 4, the 

stress at which fractures are initiated in the HFDDA is influenced by the mesh 

discretization. The fact that the characteristics of the propagating fracture are dependent 

on the mesh size is troubling, as the discretization size is tied to a number of other 

characteristics, including algorithm speed. If the tensile strength and critical stress 

intensity factor of a system are both established a priori, then the discretization must 

automatically be selected by the relationships used in Chapter 4. As a result, this 

limitation may result in systems which are computationally infeasible to model if both the 

tensile strength and the critical stress intensity factor must be considered directly. 
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 Beyond the limitations of the model itself, care must be taken in interpreting the 

results of the various simulations. In its current form, the HFDDA is able to consider 

two-dimensional fracturing under plane-strain conditions. Leakoff can be incorporated 

into the analysis, but the poromechanical response of the rock to the leakoff fluid is not 

considered, nor is the effect of pore pressure in the interior of the mesh elements 

considered with regard to flow in the fractures. Furthermore, the transport of proppant 

and its effects on fluid flow and the ability of the fractures to stay open are not considered. 

Additionally, there are a myriad of other processes not considered that remain important 

to the analysis of propagating fractures, including geothermal effects, chemical effects, 

and added tortuosity from fracture propagation in three dimensions. Incorporation of 

these processes would change the output of the model, in particular regarding the 

conclusions drawn for natural fracture networks in Chapter 5. Notably, in this chapter the 

fluid injection rate and viscosity were found to have very little impact on the fracture 

propagation pattern observed in each simulation. Had porous flow within the rock mesh 

been considered, the results likely would have been very different. Additionally, if 

applying the HFDDA for locating wells in geothermal applications, thermal effects could 

potentially affect the propagation pattern for the fractures in ways not predicted by the 

current model. Thus, it is recommended that the HFDDA in its current form only be 

applied to nearly impermeable reservoirs, in which the processes not considered in the 

HFDDA are negligible relative to the overall outcome.   
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6.3 Directions for Future Research 

 Based on the limitations of the current version of the HFDDA, numerous potential 

directions exist for future research. First and foremost, research into improving the 

algorithm’s speed would be instrumental to facilitating its widespread use. In particular, a 

method for optimizing the value of the stability constants used in the coupled rock and 

fluid equations would lead to significant improvements in computation time. Currently, 

these constants are assigned through trial-and-error as the user gains experience with the 

model. Additionally, it would be useful to better understand the properties of these 

constants, which would allow for better convergence of the algorithm. As mentioned in 

Chapter 2, the algorithm may fail to converge if the stability constants are too low or too 

high, and thus an upper and lower bound on the parameters would be very useful. Further 

areas for future study could be the application of more rapid numerical methods for the 

solution of the coupled equations, or for improvements in the logic of each algorithm step 

which requires iteration to converge.  On the topic of speed, another area of research 

would be a direct comparison between the HFDDA and various explicit methods for 

complex fracture modeling, both to evaluate the relative speed of the algorithms and to 

determine if the results for each method are similar. 

 Secondly, refinements are still needed to the logic for the open-close contact 

iterations and the open-close iterations for the fractures adjacent to fluid. In Chapter 5, it 

was mentioned that the contacts and fractures open to fluid would occasionally oscillate 

at the fracture tips when the propagating fracture reached an intersection with numerous 

natural fractures. To resolve this issue, an ad hoc algorithm was implemented that 

selected the most open state of fractures and subsequently allowed the simulation to 
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move forward. Ideally, the open-close algorithms would be refined such that these 

oscillations were either not observed or were treated in a more rigorous manner. 

Additionally, as mentioned in Chapter 2, vertex-vertex contacts are largely avoided in the 

current work by allowing them to occur only if the penetration distance of the contact 

exceeds some pre-defined tolerance. A better solution to this problem would be an 

implicit form of an area-based algorithm for vertex-vertex contacts, as described for 

explicit algorithms in [83].  

 With the algorithm in its current form, the most immediate need is for 

demonstration of the HFDDA’s ability to simulate field-scale applications. As part of this 

work, a method would need to be developed for upscaling an existing fracture network 

and redefining it as a system that could be modeled using the mesh limitations within the 

HFDDA. Alternatively, the HFDDA itself could be used to solve fine-scale fracturing, 

and the results could somehow be extrapolated to account for the entire reservoir. Either 

way, however, a method is needed for solving large-scale reservoirs without requiring a 

fine-scale mesh, as the computational requirements would prove too burdensome for the 

HFDDA in its current form. Validation against a field-scale fracturing study would come 

next, after which the model could be used for further parametric studies or for actual 

field-scale design problems. The final step in the model’s development would be the 

addition of the various processes discussed in Section 6.2. Each of these processes would 

add to the computational burden of the model, however, and would need to be addressed 

through further improvements in the algorithm’s speed.  
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6.4 Concluding Remarks 

 In closing, the research presented in this work represents a significant 

development in the evolution of hydraulic fracture models. The improvements discussed 

in this work greatly enhanced the stability and convergence properties of the existing 

implicit hydraulic fracturing methods based on the DDA, and the validation examples 

demonstrated for the first time the methods’ accuracy. Furthermore, the algorithm 

developed for modeling stochastic natural fracture networks represents a significant 

extension of the existing methods, and the insights taken from these studies may prove 

useful in locating fracturing wells. Ultimately, this work provides better understanding of 

many of the issues faced in complex network modeling, and can be used as a stepping-

stone for further studies of fracture propagation in naturally fractured reservoirs. 
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