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NOMENCLATURE

Symbol Definition
A vector of coefficients for harmonics in C for nearby state
∆A vector of coefficients for harmonics in C
Ac beam cross-sectional area
α misalignment of the two interacting magnetic fields
B magnetic field strength
Bmagnet Magnetic field strength of the permanent magnet
Bexternal magnetic field strength of external field
BEM boundary element method
C vector of unit of harmonics
C capacitance between to objects
C0, C1, C2, C3 coefficients to describe shaped comb drive geometry
Ci1, Ci2 desired coefficients for C1 and C2
δy deflection of beam tip in y direction
∆ext extension of deflecting beam due to tip motion
∆bend change in beam length due to bending
Duffing Oscillator with linear and cubic stiffness
E elastic modulus
ε0 permissivity of free space
FEM finite element me1thod
h height of sensor and beams
H magnetic field near and object
HelmHoltz-Duffing Oscillator with linear, quadratic,

and cubic stiffness
HBNR Harmonic Balance Newton-Raphson
I polar moment of inertia of magnetic sensor
Icf inertia of comb finger supports
Id inertia of disk
IHB Incremental Harmonic Balance
Iy moment of inertia of beam cross-section relative to y-axis
Im inertia of magnet
Iz moment of inertia of beam cross-section relative to z-axis

iv



Symbol Definition
KC cubic coefficient of restoring torques within sensor
KCombC cubic contribution of a shaped comb drive
KCombL linear contribution of a shaped comb drive
KCombQ quadratic contribution of a shaped comb drive
KCp cubic coefficient of P
KCs cubic coefficient of S
KL linear coefficient of restoring torques within sensor
KLp linear coefficient of P
KLs linear coefficient of S
KQ quadratic coefficient of restoring torques within sensor
KQp quadratic coefficient of P
KQs quadratic coefficient of S
L beam length
LateralDeflection deflection in y-direction
M restoring torque to M0

M magnetization of a material
M0 moment at beam-disk interface
MA moment at the beam anchor support
MAC cubic coefficient of MA

MAL linear coefficient of MA

MAQ quadratic coefficient of MA

MC cubic coefficient of M0

MEMS microelectromechanical system
ML linear coefficient of M0

MQ quadratic coefficient due to M0

MP restoring torque due to lateral beam stiffness
MS restoring torque due to axial beam stiffness
µ damping coefficient with the sensor
µ0 permeability of free space
My moment on beam cross-section relative to y-axis
Mz moment on beam cross-section relative to z-axis
P lateral deflection force at beam-disk interface
Q-factor quality factor
R radius of central disk within sensor
Rm 7 radius of magnet
Rcf radius of comb finger supports
rhod density of silicon structure
rhom density of magnet
S - axial force at beam-disk interface
SQP Sequential Quadratic Programming
σbend bending stress
σaxial axial stress
Sens sensitivity of the magnetic sensor near α = ±π
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Symbol Definition
TE excitation torque due to comb drives
TL, TQ equivalent torque coefficients for shaped comb drives
tm thickness of the magnet
Tmag magnetic torque due to magnetic field misalignments
τ dimensionless variable for IHB solution
θ0 static equilibrium rotation of disk
θd dynamic rotation of disk due to excitation
θd0 Nearby steady-state solution to nonlinear vibration of system
∆θd incremental change in system response from nearby solution
u interim variable in the force-deflection derivation of a beam
Ue potential energy of an electrostatic field
V Voltage / potential
ν interim variable for force-deflection derivation for a beam
w beam width
W weight of magnet, central disk, and comb drives
ω0 linear natural frequency
ωnb nearby excitation frequency in IHB technique
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SUMMARY

While nonlinear behavior in mechanical systems typically degrades the behavior

and performance the devices, the presence of system nonlinearities can sometimes

improve the quality of the system. A reason for avoiding nonlinearities within a

device is the difficulty in controlling the device due to the effects of the nonlinearities

on system behavior. However, careful analysis of nonlinear systems can allow for one

to take advantage of the nonlinear behavior to improve system performance.

The objective of this thesis is to exploit the use of nonlinearities to enhance system

performance, specifically the sensitivity of a micromachined magnetic sensor. The

goal for the sensor is to detect the orientation and the strength of the earth’s magnetic

field, which is on the order of 30 µT . A device design will be presented that is

similar to a prototype that has been fabricated by a student within the Electrical and

Computer Engineering Department at Georgia Tech. The operating principle of the

device is that changes in the orientation and the strength of an external magnetic

field will result in changes in the dynamic behavior of the sensor. While previous

device provided a proof of the design concept, it was unable to achieve a sensitivity

that would allow for its use as a compass. Improvements in the sensitivity of the

sensor are achieved through the modeling and optimization of the magnetic sensor.

The optimization and redesign of the magnetic sensor will improve the quality of the

device and provide another step towards the commercialization of the sensor. A new

design that incorporates the use of variable force comb drives will be proposed that

will further improve the sensitivity of the device by modifying the dynamic behavior

of the sensor.

xiv



Another approach that is presented to exploit the nonlinear behavior of the mag-

netic sensor involves a frequency detection scheme that uses nonlinear vibrations to

characterize sensor behavior. Some benefits of this detection technique are that it

is insensitive to noise in the vibration of the sensor and is also independent of the

damping present within the system. Both of these effects limit the sensor resolution

that can be achieved with the use of conventional frequency detection methods. In

addition, the implementation of this sensing technique can be readily applied to va-

riety of sensors types without the redesign of a system or the addition of complex

components such as vacuum packaging or signal processing electronics.
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CHAPTER I

INTRODUCTION

Nonlinear behavior is seen in a variety of engineering systems and can sometimes be

detrimental to the behavior of the devices during operation. The design of devices to

operate in regions of nonlinearity is generally avoided due to the difficulty implement-

ing control schemes due to such things as the of multiple static equilibrium positions

and chaotic behavior in system response. One way to avoid the negative effects of

the nonlinearities is to design devices that operate in the regions of linear behavior.

While avoiding regions of nonlinear behavior can reduce the complexity of a device

model and behavior, some devices have been shown to achieve better performance by

taking advantage of the nonlinear system qualities in the system.

The presence of nonlinear behavior was shown to increase the ability of the adap-

tive controller to converge to the proper plant model in [31]. The use of nonlinear

behavior in automotive suspension systems has been shown to increase the perfor-

mance of shock absorbers as nonlinear dampers are more resistant to compression due

to stiffening of the system from the nonlinearities [2]. Adams proposed a method-

ology to the design of nonlinear system to ensure that the benefits of the nonlinear

properties are used to improve system performance as much as possible [2]. Through

smart design of the nonlinear behavior it was demonstrated that the consideration of

the nonlinearities could result in internal feedback to improve the controllability of

certain systems.

The goal of this thesis is to improve MEMS sensors by exploring and taking ad-

vantage the nonlinearities in device behavior to increase the resolution and sensitivity
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of these devices. The example studied in this thesis is a micromachined magnetic sen-

sor. A prototype was previously constructed in [28] that uses changes in the linear

natural frequency to detect changes in the orientation of external magnetic fields. The

primary goal of the sensor was to develop a low power magnetic sensor that could be

used as a compass to detect the orientation of earth’s magnetic field. However, the

resolution of the sensor was shown to be poor for resolution of .2618 radians, or 15◦,

when the sensor was excited to resonance with a voltage of 37.5 V. Increasing the

sensitivity of the sensor will allow for the device to be effectively used as a compass

to detect the orientation of the earth’s magnetic field. The improvement will come

through the optimization of system parameters from an improved system model and

the addition of a shaped comb drives to modify the nonlinear behavior of the sensor.

This thesis is organized as follows: Chapter 2 will provide a review of the benefits

of MEMS technology and present some examples of MEMS sensors that have been

developed. Chapter 3 will focus on the development of an analytical model of the

magnetic sensor. Chapter 3 will also provide an explanation of how to solve the sys-

tem model and analyze the response of the sensor to parametric excitation. Chapter

4 will show that increasing the nonlinearity of the sensor device will result in improve-

ments in the performance of the sensor. The chapter will address the optimization

of the beam geometry in the sensor to increase the contribution of nonlinearities to

system behavior. The addition of shaped comb drives to the sensor to increase system

nonlinearity and sensitivity will be presented in Chapter 5. Chapter 6 will look at

the use of nonlinear vibration of the sensor as a means to enhance the sensitivity of

MEMS resonators. Chapter 7 will summarize the work that is presented in this thesis

and present future tasks to be investigated.

Some expected contributions from this thesis are:

• The development of an analytical model of a micromachined resonant magnetic

2



sensor.

• The use of shaped comb drives to enhance the performance of the magnetic

sensor by increasing the nonlinear behavior of the sensor.

• Proposal of frequency sensing technique that uses nonlinear vibration as a means

of improving sensor resolution. The technique will make the system characterization

less sensitive to noise and also reduce the dependence of resolution on the damping

present in the system.
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CHAPTER II

MEMS SENSORS REVIEW

Substantial research is being conducted to make use of MEMS technology to im-

prove the performance of sensors by providing a higher precision of measurement

over current technology. This chapter will provide an overview of the benefits of the

application of MEMS technology to improve the ability to detect a wide variety of

physical properties over conventional macro-scale sensors. Many types of MEMS sen-

sors have been developed that are able to detect a wide range of physical properties

such as surface imaging [36], frequency-selective filters for communications applica-

tions [38], optical scanners [19], magnometers [5], and accelerometers [33]. A review

of magnetic resonators will also be presented to highlight the disadvantages of pursu-

ing further research in devices other than the sensor in [28] to increase performance

through improved modeling and optimization.

Because of the small dimensions of MEMS devices, they are often able to achieve

more precise measurements then their macro-scale counterparts. Due to their small

masses and feature sizes, MEMS sensors are able to detect very small changes in

system parameters such as the adhesion of individual molecules to their surface. A

further benefit of the small dimensions of MEMS devices is the ability to measure the

properties of macro-scale objects without significantly modifying the behavior of the

object due to their presence.

Additionally, MEMS technology possesses the ability to construct the mechani-

cal elements of a sensor on the same silicon chip as the electrical circuits that will

be used to process changes in the mechanical elements. By implementing comple-

mentary metal oxide semiconductor, CMOS, compatible principles and processes it
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is possible to construct the mechanical element of a MEMS device on the same chip

as the electrical components of the device [9]. The inclusion of mechanical structures

and electrical circuits on the same chip can reduce the overall complexity of the de-

vice and the manufacturing process required to fabricate the device. The ability to

fabricate both mechanical and electrical components on the same base also allows

for batch fabrication of MEMS devices which leads to further cost reductions in the

manufacturing of the devices.

Despite the potential for cost reductions, the current development of MEMS tech-

nology has required large investments in research and development in order to gain

insight and understanding on how devices work on the micro-scale. Due to the be-

havior of materials on the micro-scale it is often inefficient to scale down system

components from the macro-world for use in the MEMS devices. Different struc-

tures and techniques are often used instead of macro-scale concepts to achieve the

same type of system functionality on the micro-scale level. By designing components

specifically for the micro-scale, it is possible to exploit material and geometric be-

havior that would not be functional on the macro-scale. Brenner developed a new

type of MEMS torsional spring for use to measure small torques in MEMS devices

that would not be efficient if constructed on the macro-scale [10]. The unconven-

tional spring would be cumbersome and inefficient on the macro-scale; however on

the micro-scale it is more effective than the typical torsional springs used within

macro-scale systems. By implementing tensural pivots, Masters was able to develop

a new mechanism for use in micro-scale switching applications that would achieve the

same motion as a macro-scale pivot without the requirement for complex fabrication

techniques or performance reduction if the macro-scale pivot had been applied on the

micro-scale [34].
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2.1 MEMS resonators

Silicon resonators have been used in a wide variety of MEMS applications as sensors

for a variety of physical properties and have the potential for much higher sensitivity

than standard analog deformation sensors especially when applied to MEMS sensors

[44]. Another advantage of resonant sensors is that they can be readily integrated

with digital electronics and digital signal processing techniques because of the pe-

riodic nature of vibrations. One example of the use of MEMS resonators to detect

changes in the surrounding environment is use as a pressure sensor [14]. A variety of

MEMS chemical sensors have also been developed that measure changes in resonant

frequencies through changes in mass as molecules attach to the surface of the res-

onating device [47]. Vibration has also been used in position sensors to scan a surface

and characterize the features located on the surface [15]. Resonant behavior has also

been used in the development of quartz temperature sensors that use vibration as a

means of thermal detection [27].

2.2 MEMS Magnetic Sensors

Many different types of devices have been developed to detect the strength and direc-

tion of electromagnetic fields [30]. One device uses the Hall effect of plasma electrons

as a means of detecting magnetic field strength [43]. Another technique makes use

of Lorentz forces such that the external magnetic field interacts with a current car-

rying U shaped-cantilever loop and causes it to deflect. Strain gages located near

the cantilever anchors are used to measure the deflection caused by the external field

[5]. The main disadvantage of this sensor for commercialization is the large amount

of power required for deformation of the cantilever to occur. Another technique has

been presented that measures the static deformation of elements in the sensor due

to interactions of external fields with ferromagnetic materials within the device [5].

The advantage of this sensor is that no power is required to generate the magnet field
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located on the sensor and the signal processing circuit is the only portion of the device

that requires electrical power during operation. However, the resolution of the device

is fairly low due to the low sensitivity of the strain gages used to measure deflections.

2.2.1 MEMS Magnetic Resonators

Resonant techniques have also been applied to magnetic sensors to increase the sen-

sitivity of the devices and improve their resolution. A resonant detection technique

was used in [29] to measure the magnetic properties of an external magnetic field

that involved relating changes in the stiffness of a cantilever beam to properties of

the external field. This technique was shown to result in much higher resolutions

than with the detection of static deformation with strain gages [5]. The results of

the paper show that sensing changes in the resonant frequency of the sensor will re-

sult in dramatically improved sensor resolution over the direct measurement of static

deflection to detect variations in magnetic field properties.

The device presented in [8] makes use of magnetostrictive materials built into the

surface of a device to cause the deformation of the structure. A magnetostrictive

material is a material that elastically deforms in the presence of a magnetic field. By

subjecting the device to magnetic fields at different orientations, the authors were able

to vary the axial and torsional modes of vibration of the device. The disadvantage

of this application is that the external magnetic field properties will not consistently

affect the same mode of the device, which means that no precise comparison can be

made with the sensor behavior that directly relates to changes in the magnetic field

properties.

Another type of MEMS device that has been developed to sense magnetic proper-

ties through vibration makes use of a magnetized ferromagnetic bar supported by two

torsional beams [52]. When the permanent magnet is exposed to an external magnetic

field, the interaction causes a change in the angular orientation of the magnet which
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is directly related to the external magnetic field. The rotation of the magnet causes a

change in the strain of the beams which is detected through changes in the resonant

frequency of the system. Properties of the external magnetic field such as direction

and magnitude can be determined based upon the frequency response of the system.

A similar device was presented in [28] that used deflection of beams due to forces

applied to their tip instead of the torsional behavior of the beams within the magnetic

resonator. The advantages of this device are that it is simple to modify the stiffness

coefficients of the beams through changes in the length, width and height of the beams

and also to modify other parameters of the sensor through design. Further research

in the modeling and design of this device has been performed in order to improve its

sensitivity beyond what was achieved in [28].

A few of the benefits of the use of MEMS devices have been presented that show

the need to pursue improvements in the sensitivity of MEMS devices as sensors. At

the present time most devices within the literature are in the prototype phase and

suffer from complex fabrication processes and low performance that prevent the mass

commercialization of the devices.
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CHAPTER III

MAGNETIC SENSOR MODELING

Among various modeling and simulation approaches available, analytical models are

often preferred because of the physical insights one can quickly gain from them. By

investigating the analytical model of a system, one may quickly see the dependence

of system response on multiple variables and adjust them accordingly to achieve

desired performance improvement without the expense of running simulations. It is

particularly important to have an analytical model in the early stage of the design

process when the effects of different design parameters on system responses needs to

be determined quickly.

Generating analytical models for MEMS systems can prove to be difficult due

to the need for multi-physics modeling to analyze the performance of the devices.

It is not uncommon for a device to include the coupling of electrostatic, structural,

thermal and fluidic effects. One way to solve is through the use of finite element,

FEM, or boundary element methods, BEM. There are many commercial packages

available that are able to handle multi-physics problems of varying complexity. Some

are well suited to handle complex models with only a few physical effects are models

together such as thermal and fluidic analysis and also structural analysis coupled with

electromagnetics due to the techniques that are used to model and solve the FEM or

BEM simulations.

If individual components within a device do not experience coupling between

multiple physical properties, combining analytical models each of the components to-

gether can allow for their contributions on system behavior to be easily seen within an

analytical model. Another major advantage of this approach over numerical methods
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is the speed at which the solution for system behavior can be found. Due to the

reduction of variables used to describe system behavior, solutions can typically be

found faster with the use of analytical models than with FEM or BEM simulations.

Individual modeling of the various components within the magnetic sensor is pos-

sible because the coupling between different physical properties is weak. The tech-

nique can be applied since there are no components within the sensor that require

multi-physics modeling, but instead the component behaviors only involve structural,

electrostatic, and electromagnetic effects. By modeling the elements separately and

then combining the torsional effects of the elements together into a common dynam-

ics equation, it is possible to determine device behavior with fewer terms in the base

equation and quickly see how changes to different components of the model will affect

system performance.

The quicker simulation time is related to a reduction of the number of variables

within the system equation and the ability to evaluate the behavior of different com-

ponents separate from the overall system simulation. Since the behavior of system

components can be analyzed individually, a change in one component does not require

repeating the computations to determine the behavior of the rest of the components

within the model. This approach helps to speed up investigation of changes of system

parameters on the behavior of the device by reducing the number of computations

that must be performed during each simulation iteration.

By simplifying the model and developing an equation of torques on the system,

the sensor from [28] shown in Figure 1(a) can be modeled as a HelmHoltz-Duffing

oscillator [42]. The behavior of the sensor beams can be represented as nonlinear

springs within the sensor model. The electromagnetic effects of the magnetic field

interactions are modeled as a variable torques in the dynamic equation. The elec-

trostatics effects of the comb drives are represented as an excitation torque on the
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(a) Picture of Magnetic Sensor to be Modeled. (b) Magnetic Sensor Diagram.

Figure 1: Magnetic Sensor Example.

system. By solving for the complex behavior of the components separately and ap-

plying their solutions to a conventional dynamic equation, it is easier to solve for

system behavior through the use established techniques present in the literature.

3.1 Governing Equations

The magnetic sensor studied in this thesis uses the rotational mode of vibration

to detect the changes in the resonant behavior of the device due to changes in the

external magnetic field. To model the torsional mode of vibration for the sensor, the

rotation of the central disk will be used as the generalized coordinate for the model.

The dynamics equation for torsional motion of the sensor as shown in Figure 1(a) is:

I · dθ2

dt2
+ µ · dθ

dt
+ KL · θ + KQ · θ2 + KC · θ3 = TE (t) + Tmag (α, θ) , (1)

where KL is the linear stiffness, KQ is the quadratic stiffness coefficient, and KC is

the cubic stiffness coefficient due to the beams in the sensor. I is the polar moment

of inertia of the sensor, µ is the damping coefficient of the system and Tmag is torque

that is applied to the disk from magnetic field interactions and is a function of the

external field orientation, α, and the rotation of the sensor,θ. The magnitude of TE
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Figure 2: Example of MEMS Resonating Device.

is related to the actuation torque due to the comb drives used to excite the system

into vibration.

It is very difficult to model damping within engineering systems due to the many

sources of energy losses that are present. Structural damping within the silicon and

viscous damping from air are the main sources of energy loss within MEMS devices

and expected to effect the behavior of the magnetic sensor [9]. Thermal and acoustic

energy can also be lost as the system resonates and are also difficult to model both

analytically and numerically. Therefore the value for the damping coefficient µ will

be found experimentally.

3.2 Component Modeling

3.2.1 Beam Mechanics

3.2.1.1 Related Work

Clamped-clamped beams are commonly used as structural and spring elements within

MEMS and accurate modeling of nonlinear behavior of the beams is crucial in de-

termining the performance of MEMS devices. A unique feature about the beams

used in MEMS applications is that a geometrical nonlinearity is often present in the

behavior of the beams while the material still stays in the linear regime. One end of

the beam is often attached to a fixed anchor point while the other is attached to a

moving structure as shown in Figure 2.

The existing literature for beams primarily focuses on the study of cantilever

beams and few studies have been done to model the performance of beams with
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Figure 3: Beam Undergoing Deflec-
tion, Extension, and Rotation.

Figure 4: Free Body Diagram of
Beam in Deflection.

clamped-clamped boundary conditions. Bisshop used approximations of elliptic inte-

grals to solve for the large deflection behavior for a cantilever beam with a load at its

tip [7]. Changes in behavior for a beam that was initial deflected and extended was

investigated in [49]. Frisch-Fay developed an analytical model for a clamped-clamped

beam in deflection [18]. However, no consideration was taken for a change in rotation

of the beam at a boundary or an extension of the beam tip. There has been no work

present in the literature for an analytical model of a beam undergoing deflection,

extension and tip rotation concurrently. A model will be presented to describe the

behavior of a beam that undergoes the extension, rotation, and lateral deflection of

its moving tip which represents the behavior of the beams within the magnetic sensor.

3.2.1.2 Nonlinear Beam Model

Figure 3 shows a diagram of the beams from the magnetic sensor in [28]. Each

beam in the figure is simultaneously undergoing deflection, extension, and tip rota-

tion caused by the rotation of the disk. The linear model of force versus deflection

is sufficient when the beam undergoes deflections that are much less than its width.

However, when a beam undergoes deflection the same order as its width, a nonlinear

model must be developed to incorporate the contribution of axial forces to the defor-

mation of the beam. The coordinate that will used to describe the behavior of the

beams is the lateral deflection, δy, of the beam tip. This approach will allow for the
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development of a relationship between the moment, axial force, and lateral forces at

the beam tip with its linear deflection. In Section 3.3 the relationships will converted

for use with in describing beam behavior as it relates to the rotation of the sensor by:

δy = R · sin (θ) (2)

where R is the radius of the disk within the sensor that supports the magnet and θ

is the rotation of the disk.

A clamped-clamped beam that experiences deflection as shown in Figure 3 will

experience a larger axial force than a cantilever beam that undergoes similar deflection

[18]. Due to the small ratio between the deflection and the length of the beam, linear

elastic material properties are assumed and the Bernoulli-Euler model is used to

describe the deformation of the beam. Since the deflection of the beam is much

less than its length, superposition can be used to combine the effects of the force

required to deflect the beam tip and the moment needed to maintain the boundary

conditions. For deflections where axial deformation is negligible it is possible to

neglect the contribution of axial forces to beam curvature. The beam is modeled as

a prismatic beam that is composed of an isotropic, linear elastic material. The width

of the beam is much less than the length of the beam therefore it is assumed that the

there is no shear deformation in the planes of bending.

The equation of motion for the beam is developed from the free body diagram

shown in Figure 4, which is:

M0 = EIz
∂2δy

∂x2
= S·δy + MA − P (L− x), (3)

where Iz is the moment of inertia for the cross-section of the beam and δy is the

deflection of the beam in the y direction. The moment of inertia for a rectangular

cross-section of width w and height h is:

Iz =
1

12
· w · h3. (4)
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The beam is modeled as having clamped-clamped boundary conditions therefore

the rotation of the tip of the beam is the same as that of the disk. The boundary

conditions for the beam in Figure 3 are:

y (x)|x=L = 0 (5)

∂y
∂x

∣∣∣
x=L

= 0 (6)

y (x)|x=0 = δy (7)

∂y
∂x

∣∣∣
x=0

=
δy√

R2 − δ2
y

. (8)

The general solution to (3) is:

y(x) = C1· sinh (ν·x) +

C2· cosh (ν·x) +
P ·(L− x)−MA

S
(9)

where ν =
√

S
EI

.

By substituting boundary conditions into equation (9), the unknowns C1, C2, and

MA can be expressed in terms of δy, P , and S and an equation that relates δy, P ,

and S results through the solution of the unknowns. In order to obtain a relationship

solely between P and δy or S and δy, an additional equation that relates S, P , and δy

must be established. This equation is found by considering the relationship between

the axial forces, S, and the axial strain developed from deformation.

The length of the beam, L, after deformation can be calculated by applying the

arc length formula:

L =

L0+∆ext∫

0

√√√√1 +

(
dy

dx

)2

dx, (10)

where L0 is the original length of the beam and ∆ext is the horizontal displacement

of the tip caused by the rotation, which can be calculated as ∆ext = R −
√

R2 − δ2
y .

With the assumption of dy
dx

<< 1 the beam length can be approximated as:

L = L0 + ∆ext +
1

2

L0+∆ext∫

0

(
dy

dx

)2

dx. (11)
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Figure 5: ANSYS Simulation Results of a Beam Tip Deflecting, Extending, and
Rotating.

The third term in equation (11) is the change in the beam length due to bending.

It can be further simplified as

∆bend =
1

2

L0∫

0

(
dy

dx

)2

dx. (12)

Thus, the total change in beam length is:

∆ = ∆bend + ∆ext =
1

2

L∫

0

(
dy

dx

)2

dx + R−
√

R2 − δ2
y . (13)

S is modeled as acting through the centroid of cross-sectional area of the beam and

constant throughout the length of the beam, is related to the axial strain through the

following relationship:

S =
Ac · E ·∆

L
, (14)

where Ac is the area of the beam cross-section and E is the elastic modulus of the beam

material. This equation combined with the equation derived from (9) to generate a

relationship that is solely between P and δy. The relationships between S, M0, MA

and δy can then be found using the relationship for P that has been developed.

A simulation was developed in ANSYS to verify the developed analytical model.

Since ANSYS does not use beam behavior approximations in the same fashion as
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the analytical model, it is possible to investigate the error induced in the model due

to linear approximations by comparing beams of similar properties. The ANSYS

simulations made use of the large deflection static solver to develop the relationships

of P , S, and M0 with δy.

Multiple static simulations were run in ANSYS for a beam with dimensions

(h× w × L) of 140 µm× 20 µm× 2300 µm to compare with the analytical method.

The material used in the model has an elastic modulus of 4.5 GPa, which is similar

to Su-8 as used in [45]. To reduce the effect of numerical error on the solution results,

the beam was simulated on the micron scale and the beam dimensions were entered

as 140 × 20 × 2300. The elastic modulus was also scaled to the micron scale and

entered as 4.5 ∗ 103. The beam3 element was used in the simulation due to its ten-

sion, compression and bending simulation capabilities, which are the primary physical

effects within the beam. A convergence study was done to determine the minimal

amount of beam elements that would be needed in the simulation to simulate the

behavior of the beam. It was found once the beam was simulated with 100 elements

there was no noticeable change in the values for P , S, and M0 when the number

of elements was further increased. Therefore it was decided to use 100 elements to

simulate the beam since the solution time was found to greatly increase when the

number of elements increased. The beam tip attached to the stationary anchor was

modeled as ideally clamped and underwent no change in position or rotation during

the simulation. Within each ANSYS iteration, the deflection of the tip of the beam

was entered into the simulation and the value for P , S, and M0 required to achieve

the deflection were recorded. Figure 5 shows an example of the beam as simulated

within ANSYS and all dimensions are in microns.

The relationship of P to the lateral beam deflection δy was developed using the

data collected from the simulation and can be seen in Figure 6(a). A comparison

of the results for S versus δy and M0 versus δy are shown in Figures 6(b) and 7
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Figure 6: ANSYS Simluation versus Analytical Model.
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Figure 7: ANSYS Simluation versus Analytical Model: M0 vs. δy.

respectively. Even though the beam experiences linear elastic behavior of the material,

the nonlinear stiffness present in the beam can clearly be seen in the figures. The

maximum difference of between the lateral force P predicted by the two methods is

0.52%. The maximum differences are .7% and .12% for S and M0 respectively. Due to

the agreement of the analytical solution to the ANSYS simulation, this beam model

was used to generate a MATLAB function that would determine the coefficients for a

polynomial relationship of P , S, and M0 and δy for use in the magnetic sensor model

where:

P = KLpδy + KQpδ
2
y + KCpδ

3
y (15)
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S = KLsδy + KQsδ
2
y + KCsδ

3
y (16)

M0 = MLδy + MQδ2
y + MCδ3

y (17)

3.2.2 Inertia

Since the torsional mode of vibration is used within the magnetic sensor to sense

changes in the orientation of the external magnetic field, the rotational moment of

inertia is used in the dynamic equation of system behavior in place of sensor mass.

The rotational moment of inertia for the sensor is the sum of the moments from the

magnet, central disk, comb drives. The moment of inertia of the springs has been

calculated to be much smaller than the rest of the sensor and is ignored.

The moment of inertia for the magnet is based upon equation for a cylinder such

that [21]:

Im =
ρm · π

12
·R2

m · tm
(
3 ·R2

m + t2m
)
, (18)

where ρm is the density of the magnetic, Rm its radius, and tm is its thickness.

The moment of inertia of the disk supporting the magnet is:

Id =
ρd · π

2
· h ·R4, (19)

where ρd is the density of the silicon structure, h is the height of the structure, and

R is the radius of the central disk that supports the magnet.

The contribution of the comb drives to the moment of the inertia of the system

is found by analyzing the effects of the comb fingers separately from the comb finger

supports. The twelve comb drives located on the sensor are of equal radius and are

modeled together as 1
10

of a ring. The combined inertia for the comb drive supports

is:

Icf =
ρd · π
10

· h
(
R4

cf −R4
)
, (20)

where Rcf is the outer radius of the comb finger supports.
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Figure 8: Torque Diagram from Magnetic Field Interaction.

There are eighteen comb fingers in each comb drive and the effective moments of

inertia found in a fashion similar as the inertia to the supports such that:

18∑

I=1

IfI =
8 · ρd · π

15
· h

(
R4

oI −R4
iI

)
, (21)

where RiIand RoI are the inner and outer radii of each finger, and 8
15

is the portion

of a complete ring the the comb fingers represent when the contributions from the

eight comb drives are added together.

The total moment of inertia of the system is the sum of inertias of the components

and is:

I = Im + Id + Icf +
18∑

I=1

IfI (22)

3.2.3 Magnetism

The purpose of modeling the magnetic behavior in the system is to relate the magnetic

field interaction into mechanical torque that will modify the behavior of the sensor.

The magnetic field strength of an object is given by [26]:

B = µ0 (M + H) . (23)

In this equation µ0 represents the permeability of free space, M is the magnetization

material, and H is the magnetization of the object.

20



When the magnetic field of the magnet interacts with an external field a torque is

generated such that the sensor magnet attempts to align itself with the external field

such that:

Tmag = Bmagnet ·Bexternal · sin (α) = T sin (α− θ) (24)

where α is the angle between the two magnetic fields as shown in Figure 8. The

value of T can be calculated based upon the magnetic properties of the material

amd equation (23), but has shown substantially vary from the values found from

experiment [28]. Magnets of the same type as used in [28] will be used within the

magnetic sensor described in this thesis. Therefore for the purposes of modeling within

this thesis, a value of 7.2 ∗ 10−8 N ·m will be used to represent the magnitude of the

torque due to magnetic field interaction, which is the value that was experimentally

determined in [28].

3.2.4 Comb Drive Excitation

The excitation elements of the magnetic sensor that drive it into resonance and con-

stant force comb drives. The physical principle behind comb drive operation is that

the electrostatic attraction between two bodies of different charge will cause a force

to develop between them. The force from the interaction is related to the voltage

across the two bodies and can be derived from the stored potential energy in the

electrostatic field of the system such that [46]:

Ue =
1

2
· C · V 2 (25)

where C is the capacitance between the two bodies and V is the voltage. The force

exerted between the bodies is the gradient of (25) such that:

F = −∇UE (26)

For the lateral motion of the two body sets that are seen in a comb drive, the
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Figure 9: Geometry of a Constant Gap Comb Drive.

approximate force within for a comb drive is [51]:

F ≈ ε0
h · V 2

gap
(27)

where ε0 is the permissivity of free space, h is height of the overlap between the two

bodies, and gap is the perpendicular distance of the overlap. The variable h used to

describe the force of the comb drives is the same as the height of the disk within the

device due to the fabrication method used for the magnetic sensor. The analytical

model has been validated through both simulation and experiments in [25].

By applying a harmonic voltage across a comb drive, the resulting force generated

by the comb drive will also be harmonic. However, the frequency of the applied

force will vary from that of the input voltage. Frequency doubling will be seen when

a sinusoidal voltage is applied to the comb drive. This behavior can be seen by

substituting the sine signal into to equation(27) with the application of trigonometric

identity:

sin2 (ω · t) =
1

2
+

cos (2ω · t)
2

(28)

Therefore the excitation force of comb drive drive with constant gap can be modeled

as:

F (t) = ε0
h · sin2 (ω · t)

gap
= ε0

h · (1 + cos (2ω · t))
2 · gap

. (29)

The excitation torque is related to comb drive force and the radius of the central disk
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in the sensor such that:

TE (t) = F (t) ·R. (30)

3.3 Sensor Dynamics

Now that all of the components within the sensor have been modeled separately, the

results from each model can be combined into an equation to predict the dynamic

behavior of the magnetic sensor during harmonic excitation. The base equation for

the dynamics of the magnetic sensor with comb drive excitation is:

I · dθ2
d

dt2
+ µ

dθd

dt
+ 3 · (Tp + Ts + M0) = TE (t) + Tmag (α, θ0, θd) , (31)

where TP , TS, and M0 are the restoring torques in the system due to the beams within

the device and:

Tp =
[
KLpR sin (θ) + KQpR

2 sin2 (θ) + KCpR
3 sin3 (θ)

]
R cos (θ) (32)

Ts =
[
KLsR sin (θ) + KQsR

2 sin2 (θ) + KCsR
3 sin3 (θ)

]
R sin (θ) (33)

M0 = MLR sin (θ) + MQR2 sin2 (θ) + MCR3 sin3 (θ) (34)

The sources for KxP , Kxs, and Mx are the coefficients from the beams within the

sensor derived in Section (3.2.1.2).

For a specified magnetic torque, the system will reach an equilibrium angle, θ0,

such that the restoring torque of the beams will balance the torque exerted by the

magnetic field interactions. The equation to determine the static equilibrium angle

of the system is:

0 = T · sin (α− θ0)− 3 ·R ·
(
KL · (θ0) + KQ (θ0)

2 + KC · (θ0)
3
)
, (35)

where T is the magnitude of the magnetic torque and the values of KL, KQ, and KC

are the stiffness of the sensor related to the spring elements of the sensor through a

combination of the results from equations (32), (33), and (34).
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The value for θ0 that satisfies the equation can be found through a numerical root

finding technique such as the Bisection method, Fibonacci method, or the method

of Golden Sections [4]. The equation has been implemented in MATLAB with the

use of the fzero function which uses a combination of bisection, secant, and inverse

quadratic interpolation search techniques to solve for the equilibrium angle for a

specific orientation and magnitude of the external magnetic field [35].

The initial rotation of the disk modifies the behavior of the magnetic sensor and

its effects must be included in the dynamic equation for the sensor. The substitution

of θ=θd + θ0 is made in equation (31) to account for the effects of the static rotation

on the dynamic behavior of the sensor where θd is the rotation of the central disk

due to system excitation with respect to its static equilibrium position of θ0. The

dynamic equation of the sensor becomes:

I · dθ2
d

dt2
+ µ · dθd

dt
+ 3 · (TP + TS + M0) = TE (t) + Tmag (α, θ0, θd) . (36)

The corresponding values for the restoring torques in the sensor are:

Tp =
[
KLpR sin (θd + θ0) + KQpR

2 sin2 (θd + θ0) + KCpR
3 sin3 (θd + θ0)

]
R cos (θd + θ0)

Ts =
[
KLsR sin (θd + θ0) + KQsR

2 sin2 (θd + θ0) + KCsR
3 sin3 (θ)

]
R sin (θd + θ0)

M0 = MLR sin (θd + θ0) + MQR2 sin2 (θd + θ0) + MCR3 sin3 (θd + θ0)

Substitution of the new equations for Mp, Ms, and M into (36) will result in a

highly nonlinear equation containing many sine and cosine terms after full expansion

of the squared and cubic terms. The resulting equation is simplified through the

substitution of the Taylor series expansions of sine and cosine to the equation.

The Taylor expansion of sine is:

sin (x) =
∞∑

n=0

(−1)n

(2 · n + 1)!
x2·n+1 (37)

and the corresponding Taylor expansion of cosine is:

cos (x) =
∞∑

n=0

(−1)n

(2 · n)!
x2·n (38)
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The first two terms of the expansions are substituted in (36) and the values for

sine and cosine become:

sine (θ) = θ − θ3

3!

cosine (θ) = 1− θ2

4!

For small values of θd and θ0, higher orders θd and θ0 greater than cubics can

be ignored. However, the small angle assumption does not mean that nonlinearities

will not affect the dynamic behavior of the sensor. The final form of the dynamics

equation for the magnetic sensor is:

I · dθ2
d

dt2
+ µ · dθd

dt
+ KLθd + KQθ2

d + KCθ3
d = TE (t) + Tmag (α, θ0) (39)

where:

KL = KL3 · θ3
0 + KL2 · θ2

0 + KL1 · θ0 + KL0 + T cos (α) (40)

KQ = KQ3 · θ3
0 + KQ2 · θ2

0 + KQ1 · θ0 + KQ0 +
1

24
T sin (α) (41)

KC = KC3 · θ3
0 + KC2 · θ2

0 + KC1 · θ0 + KC0 − 1

6
T cos (α) (42)
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and

KL0= 3MLR + 3KLpR
2

KL1=6KLsR
2+6MQR2+6KQpR

3+T sin (α)

KL2= 9
(
KCsR

4− 1
36

MLR + KQsR
3− 7

18
KLpR

2+MCR3+KCpR
4 − 1

108
T cos (α)

)

KL3=−3
2
MQR2−5KQpR

3−3
2
KLsR

2 − 1
6
T sin (α)

KQ0= 3KQpR
3+3KLsR

2+3MQR2
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With the substitution of the coefficients into equation (39) the dynamic equation

of the sensor is in the form of a HelmHoltz-Duffing resonator and solution techniques

from the literature can be applied to solve for the vibration behavior of the sensor

[42].

3.4 Linear Vibration

When the sensor is excited by a very small excitation force, the amplitude of vibration

for the sensor will be very small and the device will experience linear vibration. For

sufficiently small rotations of θd, the contributions of the nonlinear terms due to θd

to the dynamic behavior of the system is negligible and the dynamic equation of the

system is no longer in the form of a HelmHoltz-Duffing resonator. Excitation of the

sensor will result in linear vibration and the equation for sensor dynamics becomes:

I · dθ2
d

dt2
+ µ · dθd

dt
+ KL · θd = TE (t) + Tmag (α, θ0) , (43)
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where the values for I, Tmag, and KL are calculated using the component models

presented in the previous sections. The linear natural frequency for the magnetic

sensor is:

w0 =

√
KL

I

where

KL = KL3 · θ3
0 + KL2 · θ2

0 + KL1 · θ0 + KL0 + T cos (α) . (44)

Even when the system experiences linear vibration, system nonlinearities contribute

to the vibration response through the coefficients KL3, KK2, and KL1. T represents

the magnitude of the magnetic torque due to Tmag.

The linear natural frequency of the sensor is then calculated to be:

w0 =

√
KL3 · θ3

0 + KL2 · θ2
0 + KL1 · θ0 + KL0 + T cos (α)

I
. (45)

The dependence of the linear natural frequency of the sensor upon the orientation of

the external magnetic field, α, can be seen along with the dependence on θ0, which

is functions of α and the stiffness of the spring elements within the sensor. It is

important to note that the nonlinear restoring torques in the sensor will affect the

system response even when it is excited into linear vibration. For the special cases

where α = 0 and α = π, the value for θ0 will be zero and the linear natural frequency

for the magnetic sensor will be:

w0|α=0 =

√
KL0 + T

I
=

√
3 ·MLR + 3 ·KLpR2 + T

I
(46)

w0|α=π =

√
KL0 − T

I
=

√
3 ·MLR + 3 ·KLpR2 − T

I
(47)

The linear natural frequency will be used in Chapters 4 and 5 to characterize the

sensitivity of the magnetic sensor to changes in α.
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3.5 Nonlinear Vibration

For large excitation forces, the magnetic sensor will enter the realm of nonlinear

vibration and a separate solution method is required to determine the response of the

system. The analysis of the nonlinear vibration behavior of the sensor is presented

here because it will be used in the proposal of a new frequency detection scheme in

chapter 6 to characterize the change in the sensor behavior due to changes in α.

Several techniques have been developed generate the frequency response curves

for nonlinear systems [37]. The analytical methods generally involve analyzing the

behavior of the system by perturbing the system over small increments, ε, of time.

The dynamic equation is modified through a variable transformation to generate a

set of linear differential equations that can be readily solved by hand. The primary

perturbation methods that are presented in literature are the Lindstedt-Poincare and

the Method of Multiple Scales [37].

Another technique that has been applied to solve for the response of nonlinear

systems to parametric excitation is the harmonic balance method. In this technique

the form of the solution is assumed to be a trigonometric series with multiple har-

monics. The assumed solution is substituted into the initial differential equation and

terms with a common harmonic are collected. The harmonic balance method lends

itself to the application of numerical computation and research has been conducted

to increase the efficiency of finding the series coefficients through the use of compu-

tational methods. A method that has been used to speed up the solution finding

process is to apply the Newton-Raphson Method to the algebraic equations, HBNR

[16]. By switching the order at which the Newton-Raphson and Harmonic Balance

methods are applied to the differential equation, the Incremental Harmonic Balance

method has been developed [12].
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3.5.1 Incremental Harmonic Balance Method

The method chosen to simulate the frequency response of magnetic sensor is the

Incremental Harmonic Balance Method, IHB, presented in [12]. This technique was

chosen due to the speed at finding the solution and the generality of the solution

procedure to all forms of nonlinear dynamic equations. The method presented in

[12] has been modified to include the quadratic nonlinearity that is seen in dynamic

model of the sensor. The solution procedure involves the application of the Newton-

Raphson procedure to the dynamic equation of the sensor followed by the application

of the Galerkin averaging method to find the solution of the differential equation. The

accuracy of the solution can be increased by the increasing the number of harmonics

that are present in the assumed solution for the response.

The first step in the IHB method is to perform a change of variables to transform

the equation from the time domain to a dimensionless domain with the substitution:

τ = ω · t. (48)

Equation (39) now takes the dimensionless time form of:

ω2 · I · dθ2
d

dτ 2
+ ω · µ · dθd

dτ
+

(
KL + KQ + KC

)
· θd = T · cos (τ) . (49)

The values of KQ and KC are:

KQ = KQ · θd (50)

KC = KC · θ2
d (51)

A substitution is then made for θ such that:

θd = θd0 + ∆θd (52)

ω = ωnb + ∆ω (53)

where θd0 is related to the response of a nearby state of excitation at ωnb and ∆θd is

the difference in the response between the two states when the excitation frequency

is changed by ∆ω.
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By substituting (52) and (53) into equation (49) the following incremental equa-

tion is derived.

ω0I
∂2∆θd

∂τ2 + ω0µ
∂∆θd

∂τ
+

(
KL + 2KQ + 3KC

)
∆θd = R−

(
ω0I

∂2θd

∂τ2 + µ∂θd

∂τ

)
∆ω (54)

R = T cos (τ)−
(
ω2

0 · I ∂2θd0

∂τ2 + ω0 · µ∂θd0

∂τ
+

(
KL + K Q + K C

)
· θd0

)
(55)

Higher order terms of ∆θ and ∆ω have been ignored since they are very small.

The steady state response of the magnetic sensor is assumed to be a Fourier series

expansion of Nth order harmonic terms:

θd0 =
N∑

k=0

ak cos (k · τ) +
N∑

j=1

bj sin (j · τ) (56)

∆θd =
N∑

k=0

∆ak cos (k · τ) +
N∑

j=1

∆bj sin (j · τ) (57)

The solution for system response is represented in vector form such that:

C =
[

1 cos (τ) cos (2τ) ... cos (Nτ) sin (τ) ... sin (Nτ)

]
(58)

A =
[

a0 a1 a2 ... aN b1 b2 ... bN

]
(59)

∆A =
[

∆a0 ∆a1 ∆a2 ... ∆aN ∆b1 ∆b2 ... ∆bN

]
(60)

(61)

where

θd0 = C ·A

∆θd = C ·∆A

The Galerkin procedure is then applied to (54) to develop the final equations that

will be used to determine the response of the sensor to different excitation frequencies.

The Galerkin method assumes that the system response can be accurately represented

by an approximate solution composed of trial functions. The trial functions satisfy

the boundary conditions of the problem and are then substituted into the original

differential equation. The terms in C are used as the both the trail and weighting
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functions in the implementation of the Galerkin procedure. The resulting differential

equation is then integrated over a period of as 0 < τ < 2π. The solution of integral is

a non-zero value that represents the residual error of the approximation. The scalar

coefficients of the trail functions are then adjusted iterively so that the residual error

in the approximation approaches zero. The adjustments can be made by using the

method of weighted residuals as described in [17].

With the implementation of the Galerkin procedure, the differential equation of

the system becomes:

2π∫
0

CT
{
w2

0 · I ∂2∆q
∂τ2 + ω0 · µ∂∆q

∂τ
+

(
KL + 2 · K Q + 3 · K C

)
∆q

}
dτ (62)

=
2π∫
0

CT
{
R−

(
2w0 ·M ∂2q0

∂τ2 + µ∂∆q
∂τ

)
∆ω

}
dτ, (63)

which can be simplified to:

Kmc∆A = R−Rmc∆ω. (64)

The values for the variables within (64) are:

Kmc = ω2
0M + ω0µ + K + 2 ·K2 + 3 ·K3 (65)

R = F−
(
ω2

0M + ω0Υ + KL + KQ + KC

)
A (66)

Rmc = (2 · ω0M + Υ)A (67)

M =

2π∫

0

CT M
··
Cdτ (68)

Υ =

2π∫

0

CT µ
·
Cdτ (69)

KL =

2π∫

0

CT KLCdτ (70)

KQ =

2π∫

0

CT
KQCdτ (71)

KC =

2π∫

0

CT
KCCdτ (72)
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T =

2π∫

0

CT T · cos (τ)dτ (73)

To begin the solution process an initial guess of the coefficients in A is entered

into (64) and the solution for ∆A is found. Since (64) is a system of linear equations

and Kmc is full rank, the values for ∆A can be found by multiplying both sides of

the equation by K−1
mc. The solution for ∆A are added A such that:

Ak+1 = Ak + ∆A, (74)

and another iteration is run. The process is stopped when the value for R is suffi-

ciently small. To generate the frequency response of the first system the value of ω is

increased and the previous solution for A is used as the initial condition for the next

set of iterations.

3.5.2 Mechanics Modeling Example

The device in Appendix (B.1) represents a fabricated the magnetic sensor without

the presence of a permanent magnet. The beams within the device have a length,

width, and height of 2000 µm, 14 µm, and 200 µm respectively. Analysis of this

structure will provide validation for the mechanics modeling of the inertia and beam

elements within the sensor. The equation of motion for the system was developed by

entering the dimensions and parameters of the device into the equations derived in

Section 3.2.

By inputting the system parameters into equation (22), the inertia of the device

was calculated to be 3.0863 ∗ 10−12Kg ·m2. The stiffness coefficients for the system

were derived using the procedure in Section 3.2.1 and were found to be:

TP =
[
17.8640 ·R sin (θ) + 6.0265 ∗ 104 ·R2 sin2 (θ) + 1.2141 ∗ 1011 ·R3 sin3 (θ)

]
R cos (θ)

TS =
[
24.8088 ·R sin (θ) + 1.878 ∗ 108 ·R2 sin2 (θ)

]
R sin (θ)

M0 = .0215 ·R sin (θ) + 65.8906 ·R2 sin2 (θ) + 5.8605 ∗ 107R3 sin3 (θ)
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From the model of comb drive behavior in equation (29), the excitation element

within the device is modeled to be:

TE (t) = Amp · cos (2 · ω · t) . (75)

The value for Amp of the excitation torque was found by curve-fitting an IHB

solution of a Duffing oscillator to the experimental data. A Duffing oscillator con-

tains cubic nonlinearities and no quadratic nonlinearities. A HelmHoltz-Duffing curve

fit was not applied due to the coupling of the effects from the quadratic and cubic

nonlinearities on the response of the system to parametric excitation. The cubic non-

linearities provide a spring stiffening effect on the system during excitation and cause

the response curve to lean to the right, while the quadratic nonlinearities provide a

spring softening effect that causes the curve to lean to the left. Since the quadratic

and cubic nonlinearities cause the opposite effects on system response, many different

combinations of cubic and quadratic coefficients will lead to the same system response.

Since the goal of the comparison was not to determine the cubic and quadratic coeffi-

cients, but instead the amplitude of the excitation torque and the damping coefficients

the application of a Duffing oscillator curve fit can be used to determine those val-

ues without address the issue of the multiple solutions for the quadratic and cubic

coefficients.

The damping coefficient µ was found by fitting an IHB solution to the experimental

data and varying the value of µ until the jump-down from the upper branch occurred

at the same frequency as seen in the experiment. The value for µ was determined to

be 30.90. The fit of Duffing solution also provided a means determining the linear

natural frequency of the device from experiment, since the variations in ω0 will shift

the location of frequency response curve to the left or right. The linear natural

frequency was found to be 5500 rad
sec

by adjusting the value of ω0 until the curve fit

and the experimental results were aligned. Finally, the value for the excitation torque

was found by varying the value for TE until the experimental results for the lower
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Figure 10: Example for Implementation of TE Curve Fitting.

steady-state amplitudes coincided as shown in Figure 10. The value for the excitation

torque was found to be 2000 N ·m.

By entering the coefficients into the dynamic equation of the sensor (36), the

following equation was derived to describe the dynamic behavior of the system:

3.0863 ∗ 10−12
··
θ +30.90

·
θ +1.18 ∗ 10−4θ + 4.53 ∗ 10−4θ2 + 4.74θ3 = 2000 · cos (2 · ω · t)

(76)

Figure (11) shows a comparison of the nonlinear vibration response of a device

from experiments to the results predicted by the analytical model. From Figure 11

it can be seen that the analytical model of the sensor without the magnet provides

a reasonably accurate prediction of the contribution of the nonlinear terms to the

vibration behavior of the sensor. The difference between two curves that is seen as a

shift of the entire frequency response curve is related to variations in the linear natural

frequency predicted by the model from the experimental results. The value for the

linear natural frequency found through a fit of an IHB solution to the experimental

results is ω0 = 5500 rad
sec

, while the theoretical value for ω0 is 5150 rad
sec

. The error
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Figure 11: Comparison of Analytical Model to Experimental Data.

between the theoretical and experimental linear natural frequency is 6.36%. The

difference is most likely related to an over prediction of the inertia properties of

the device in the analytical model that do not account for all possible variations in

dimensions of the device due to manufacturing.

The variation in the nonlinear behavior of resonator predicted by the model when

compared to experimental results is minimal, which provides validation for modeling

of the nonlinear system components presented in previous sections. The overall model

of the device compares well with the experimental results and validates that the

mechanical model can be used to predict the response of the system to excitation.

The mechanical model will be extended to include the effect of the magnet in the

sensor based upon the model for magnetic field interactions from the literature and

presented in Section 3.2.3.

3.5.3 Magnetic Sensor Example

A device similar in dimension to the one previously modeled was simulated with the

addition of a magnet. The properties of the magnetic field interaction were modeled

35



500 1000 1500 2000 2500 3000 3500 4000 4500
0

0.005

0.01

0.015

0.02

0.025

Excitation Freq (ω)
V

ib
ra

tio
n 

A
m

p 
(θ

)

Increasing Freq Sweep
Increasing Freq Sweep

Figure 12: Simulated Response of Magnetic Sensor.

based upon those presented in [28]. The magnet is composed of neodymium-iron-

boron and is assumed to be glued to the central disk in the device and cylindrical

in shape. The thickness of the magnet is 800 µm, radius of 800 µm, and a density

of 7440 g
cc

. The magnetic torque due to the interaction between the earth’s magnetic

field and that of the magnet is modeled as T = 7.2∗ 10−8 N ·m [28]. The inertia that

is added to the resonator because of the magnet is 2.5530 ∗ 10−12 N ·m. This value is

added to the overall inertia of the system which becomes 5.7955 ∗ 10−12 N ·m. The

excitation amplitude for TE in the simulation is 2000 N ·m.

Figure 12 shows the response of the modeled magnetic sensor to excitation when

the magnetic field of the magnet is aligned with that of the earth’s. This orientation

corresponds to the value of α equal to zero for the coefficients used in equation (39).

The nonlinear vibration behavior of the system can be clearly seen in the figure due

to the angle of the resonant peak and the dependence of the response on the direction

of the frequency sweep.

By analyzing the changes in the system variables of equation (39) with changes in

the external magnetic field properties, it possible to better understand the relationship

various parameters of the magnetic sensor lead to changes in the resonant behavior of

the sensor. Figure 13(a) shows a plot of the change in KC coefficient of equation (39)
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for the device. The value for KC decreases with increases in α, but more importantly

the figure shows that the coefficient does not significantly change with changes in α.

Figure 13(b) shows the behavior of KQ with changes in α and the same insensitivity

to α is seen. Therefore the coefficients KQ and KC will not be used in the detection

scheme for the sensor.

Figure 14 shows the change in KL versus changes in α and it can be seen that the

variable is far more sensitive to alteration of the properties of the external magnetic

field. The modifications to KL and therefore to ω0 will be discussed in the following

chapter along with the optimization of sensor beam dimensions.
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3.6 Conclusion

Analytical models for the system components within the magnetic sensor have been

developed. By combining the analysis of the static rotation of the central disk from

magnetic torque and the dynamic behavior of the sensor, a model has been developed

that can be used to predict the change in the resonant behavior of the device due

to changes in the orientation of an external magnetic field. The model of system

mechanics has been shown to compare well with experimental values as shown in

Figure 11. It is expected that the overall performance sensitivity of the sensor can

be improved as the dimensions of the beams are optimized. The modification of the

parameters in the dynamic equation of the sensor will be discussed in later sections

of this thesis.
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CHAPTER IV

DESIGN OF PASSIVE SENSOR COMPONENTS

To further improve the sensitivity of the sensor, the system parameters that directly

affect the linear natural frequency of the sensor shall be determined and optimized in

order to maximize the change in the linear natural frequency resulting from changes

in α. A study of magnetic sensor parameters will consider how variations in the

length, width, and height of the sensor beams will affect the sensitivity that can

be achieved by the device. Figure 15 shows a diagram of the beam model and the

labels for each of the beam dimensions used. The study will show that increasing the

nonlinear behavior of the sensor will increase its performance and can be achieved by

the design of the beam dimensions. The optimization of sensor geometry has been

termed the passive design since the sensitivity of the device will be improved through

the design of beams, which are non-powered sensor components. The methodology

used to optimize the dimensions of the beams in the magnetic sensor will also be

presented in this chapter along with simulation results to show the optimized design

will result in an increased sensitivity of what was previously achieved in [28].

4.1 Parameter Sensitivity Study

From Chapter 3 the equation for the linear natural frequency of the sensor is:

ω0 =

√
KL0 + KL1 · θ0 + KL2 · θ2

0 + KL3 · θ3
0 + T cos (α)

I
.

where KL0, KL1, KL2, and KL3 are components of the stiffness of the device and θ0 is

the static equilibrium rotation of the sensor due to the magnetic torque in the sensor.

The sensitivity of the linear natural frequency, ω0, and therefore the magnetic
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Figure 15: Diagram of Beam Dimensions.

sensor to changes in α is:

∣∣∣∣∣
∂ω0

∂α

∣∣∣∣∣ =
T sin (α)

2
√

I
√

T cos (α) + KL0 + KL1θ0 + KL2θ2
0 + KL3θ3

0

(77)

Since the linear natural frequency is currently being used as a means of detecting

the orientation of the external magnetic field, the sensitivity of the device can be

evaluated using equation (77) since it shows how changes in the value of α will result

in changes in the linear natural frequency of the device. From (77) it can be seen

that the sensitivity of the magnetic sensor can be increased by modifying the physical

properties of the magnet within the system. Increasing the magnetic torque of the

sensor will result in a scalar increase in the sensitivity of the sensor. The increase in

the torque can be achieved by increasing the size of the magnet or through use of a

material with increased the magnetic field strength as the permanent magnet in the

device.

A second way to increase the sensitivity of the sensor is by modifying the di-

mensions of the beams in the system to change the coefficients KL0, KL1, KL2, and

KL3. By inspection of (77) it is difficult to determine if increasing or decreasing the

coefficients will result in a decrease in the denominator of the equation due to the

coupling of θ0 and the beam dimensions with the stiffness coefficients. The change in
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sensitivity of the sensor due to variations in the beam parameters should be analyzed

through numerical simulation. It was shown in the [28] that the sensitivity decreases

in the regions near α = ±π
2
. Therefore the sensitivity of the sensor to changes in

α will be evaluated at α = π
2

since this location limits the sensitivity that can be

realized over the entire operating range by the magnetic sensor. The magnetic torque

used during the simulations is T = 7.6 ∗ 10−10 [28].

Figure 16 shows how the sensitivity of the natural frequency varies for various

combinations of beam heights and widths for a beam with length 2000 µm. From

the figure it can be seen that the height and width of the beams should be made as

small as possible to improve the sensitivity of the magnetic sensor to changes in the

external magnetic field orientation. The reduction in the cross-section of the beam

will greatly reduce the linear stiffness of the beam and will result in increases in

the static equilibrium angles for a given value of α. This can be seen in Figure 17,

which shows the value of θ0 for corresponding beam widths and heights as those in

Figure 16. Increases in the value for θ0 will cause beams to enter the region of large

deflection operation such that the deflection of the beams is approximately the same

as the beam width. Beams in this region exhibit highly nonlinear behavior and the

nonlinear stiffness plays a significant role in the resistance of the beam to bending.

Since sensitivity of the magnetic sensor is primarily based upon the nonlinear behavior

of the beams, improvements in sensitivity can be realized through reductions in the

width and height of the beams. Increasing the large deflection behavior will result

in an increase in the sensitivity of the sensor since changes in α will result in greater

changes in the linear natural frequency of the device.

The effect of varying the length of the beams on the sensitivity of the sensor is

shown in Figures 18 and 19 along variations in the height and width of the beams.

From the two figures it can be seen that an alternative way to increase the sensitivity

of the magnetic sensor is increase the lengths of the beams within the sensor. The
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increases in the beam length will further reduce the stiffness of the beam and allow

it to deflect such that the nonlinear stiffness of the beam will have a greater effect

on the restoring torque provided. The increase in the nonlinear behavior will result

in an increase in the sensitivity of the sensor similar to the reduction in the beam

cross-section.

4.2 Beam Geometry Optimization

An optimization routine was developed in MATLAB to find the optimal values of

beam height, width, and length that will maximize the sensitivity of the sensor.

Based upon the sensitivity analysis performed in Section 5.3.1, it was expected that

the optimal dimensions for the beams within the sensor would have a length as large

as can be achieved with the system constraints and a width of as small as allowable.

Therefore, the height of the device was expected to be the variable that would be

adjusted to satisfy the system constraints. An exhaustive search of the height variable

was implemented to search the design space of the variable.

The exhaustive search technique is appropriate for use when the objective func-

tion is not convex and there are many local minimums or maximums present within

the search space. The presence of local minimums or maximums severely limits the

effectiveness of many optimization techniques since multiple iterations of the algo-

rithms are often required with multiple starting points to ensure that the algorithm

will find the global optimization. Another benefit of an exhaustive search technique

is its ability to find the global solution in a single iteration of the algorithm.

4.2.1 Objective Function

While the main principle of the magnet sensor is to use changes in resonant frequency

to sense changes in α, the amount of change that is detectable can be limited by the

technique that is used to record the linear natural frequency of the sensor. To have
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a systematic approach for evaluating the sensitivity of the sensor that is independent

of the frequency detection method for the sensor, the sensitivity is defined by:

Sens =
f (α2)− f (α1)

α2 − α1

. (78)

The values used to evaluate the sensitivity of the sensor are α2 = π
2

and α1 = π
2
−0.1.

The sensitivity for the sensor is used as the objective function of the algorithm and

represents a numerical evaluation of equation (77).

Optimization routines are typically implemented to find the minimum of an objec-

tive function and it is common to convert maximization problems into minimization

by multiplying the objective function by −1. Since the goal of the algorithm is to

maximize the sensitivity of the sensor, the approach was used to be consistent with

the common practices in the optimization field. Therefore, the objective function of

the exhaustive search is:

Obj = −Sens. (79)

If the simulation of the magnetic sensor violated any of the optimization constraints,

the value for the objective function is:

Obj = 0. (80)

4.2.2 Constraints

The first constraint implemented in the optimization algorithm is the structural stress

of the beams at their anchor supports. Since the lateral deflection of the beam is much

less than the length of the beam, superposition has been used to analyze the effects of

shear, tensile stress and bending stress independently. From mechanics of materials,

the shear stress on the face of the beam is calculated as:

τyz =

√
P 2 + W 2

Ac

(81)

where P is the lateral force on the face of the beam-anchor interface, W is the weight

of the magnet and central disk region that must be supported by a single beam, and
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Figure 20: Beam Cross-Section with Bending Moments.

Ac is the cross-sectional area of the beam. The values τzx and τxy are zero since

forces P and W are applied to the beam-anchor interface only. The axial stress at

the beam-anchor interface is calculated based upon the axial stress that develops in

the beam due to deflection and rotation such that:

σaxial =
S

Ac

. (82)

where S is the axial force at the beam-anchor interface.

The bending stress at the interface is the resultant of the effects of the moment

on the face caused by disk rotation and the moment resulting from supporting the

magnet and central disk area as shown in Figure 20 as Mz and My respectively. The

bending stress at a position A in the figure is [20]:

σbend =
Myz

Iz

− Mzy

Iy

, (83)

where y and z are the distance of the point from the origin and

Iy =
1

12
· w · h3 (84)

Iz =
1

12
· h · w3 (85)
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Figure 21: Free-Body Diagram of a Beam in Z-Axis Bending.

The value for Mz is equal to the value for MA as discussed in Section 3.2.1.2 such

that:

Mz = MAL · (θ0 ·R) + MAQ · (θ0 ·R)2 + MAC · (θ0 ·R)3, (86)

where MAL, MAQ, and MAC are the coefficients for the moment at the beam anchor

supports as a function of beam deflection. My is found by determining the portion of

mass from the magnet and center section that must be supported by a single beam.

Linear beam theory is used to determine the value for My since the deflection

of the beam in the z direction will not approach the large deflection region due to

its increased stiffness. The weight of the magnet is modeled as equally distributed

among the three beams within the sensor. The equation for My is developed based

upon the free-body diagram shown in Figure 21:

My =
WL

3
+

WbeamL

2
(87)

The maximum bending stress in the cross-section is found by locating the point

on the perimeter of the cross-section that is furthest from the neutral axis, which

represents locations in the beam cross-section where the bending stress is zero. The

location of the neutral axis can by found setting (83) equal to zero:

0 =
Mzy

Iy

− Myz

Iz

. (88)

Thus, the rotation of the neutral axis from the y-z axis is found by:

tan (β) =
y

z
=

MyIz

MzIy

(89)
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A line search has been implemented in MATLAB to find ymax and zmax that represents

the point furthest from the neutral axis. A bracket search technique is used for the

line search due to its simplicity and efficiency.

The bending stress at the point furthest from the neutral axis is:

σbendmax =
Mzymax

Iy

− Myzmax

Iz

, (90)

which represents the maximum bending stress on the face and is the value used in the

evaluation of the stress constraint for a given beam combination. The location of the

maximum normal stress on the beam face will occur at the location of the maximum

bending stress and is calculated to be:

σx = σaxial + σbendmax. (91)

The values for the σy and σz are zero at the interface since the bending moments and

axial force only act on the beam-anchor interface.

The maximum stress at the beam-anchor interface is found by calculating the Von

Mises stress at the location of the maximum bending stress. The equation for the

Von Mises stress is [39]:

σV onM =

√√√√(σx − σy)
2 + (σy − σz)

2 + (σz − σx)
2 + 6

(
τ 2
xy + τ 2

yz + τ 2
zx

)

2
(92)

which when applied to the beam-anchor interface is simplified to be:

σV onM =

√√√√2 · (σx)
2 + 6 · τ 2

yz

2
(93)

The magnetic sensor will be constructed of polysilicon and due to the small ex-

pected dimension of the beam width, less than 10 µm, the properties of thin-films of

polysilicon are used to determine the allowable stress at the beam-disk interface. The

yield stress of thin-films of polysilicon that are a few microns in height is 698 MPa

[22]. A factor of safety of 2 was chosen to allow for unpredictable variations in beam
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behavior. Therefore the maximum allowable stress at the beam-anchor interface is:

σallow =
σyield

2
= 349 MPa (94)

and will be evaluated at the maximum value of θ0 which occurs at α = π
2
.

The implementation of the stress constraint in the optimization code is:

Constraint1 = σV onM − σallow (95)

and is satisfied when Constraint1 is less than zero.

The second constraint placed on the device was chosen to ensure that the frequency

of the vibration mode corresponding to motion of the central region of the sensor along

the z-axis is no less than 2.5 times greater than the linear natural frequency for the

torsional mode of vibration corresponding to α = π
2
. The constraint prevents the

excitation of the torsional vibration mode of the device from inducing out of plane

vibration in the z-direction that would affect the quality of the sensor oscillation.

By placing the constraint at a fraction instead of a whole number, the chance of the

torsional vibration mode exciting higher order harmonics of the z-axis vibration is

also reduced since the harmonics are integer multiples of the fundamental resonant

frequency.

Due to the requirement for a z-direction natural frequency that is significantly

higher than the torsional mode, it is expected that the deflection of the beams in the

z-direction will be much less than the height and linear beam deflection theory is used

to analyze the device behavior. The model of the z-direction motion of the sensor has

been simplified to a basic mass-spring resonator as shown in Figure 22. The dynamic

equation for the motion in the z of a three beam sensor is:

M
··
z +µz

·
z +3Kzz = F, (96)

where M is the mass of the central disk and magnet, z is the motion of the center of
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Figure 22: Diagram of Z-direction Sensor Motion.

Table 1: Magnetic Sensor Constraints
Constraints
ωz > 2.5 · ω0

σmax < σy

2
< 349MPa

L = 2000 µm
w = 5 µm

mass, and F is the excitation force. The spring stiffness for each beam is [18]:

Kz =
12 · E · Iy

L3
, (97)

where the value of Iy is the moment of inertia of the beam cross-section as presented

in equation (84). The linear natural frequency for vibration in the z-direction is:

ωz =

√
3 ·Kz

Mcenter

(98)

The implementation of the frequency constraint within the optimization algorithm

is:

Constraint2 = 2.5− ωz

ω0

, (99)

where ω0 is the linear natural frequency of the torsional vibration mode.

More constraints are placed on the dimensions of the beams within the system

through the implementation of upper and lower boundaries on the beam dimensions.
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Figure 23: Objective Function Results for Sensor Optimization of Beam Height.

The constraint that was placed upon the width of the beams is based upon the

fabrication procedures that are used to create the device in the Microelectronics

Research Center of Georgia Tech. Based upon the facilities used to construct the

device, a minimum dimension of 5 µm has been used to limit the minimum width

and height of the beams within the sensor.

A secondary goal of the sensor is to reduce the size of the device, despite increasing

the sensitivity. The upper limit for the maximum beam length, L, was chosen to be

2000 µm since the length of the beams within the device are dimension that directly

relate to the overall size of the device. The choice in the upper limit was arbitrary

and future work may show that a different type of length constraint may be more

suitable for use in the magnetic sensor. A full list of all of the constraints placed in

the optimization algorithm of the magnetic sensor is shown in Table 4.2.2.

4.3 Results and Conclusion

The exhaustive search algorithm of the design space was executed to determine the

beam height would result in the greatest increase of the sensitivity while also satisfying

the constraints placed on the system. The algorithm searched through values of height

from 100 µm to 140 µm since it was expected that the optimal dimension for the

beam height would occur within this region based upon previous investigations of

51



0 1 2 3 4 5 6
1200

1300

1400

1500

1600

1700

1800

α  (rads)

N
at

ur
al

 F
re

qu
en

cy
 (

ra
d/

s)

Analytical Model
Experiment

(a) Frequency Response of Magnetic Sensor
Fabricated in [28].

0 1 2 3 4 5 6
400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

α (rads)

N
at

ur
al

 F
re

qu
en

cy
 (

ra
d/

s)

(b) Frequency Response of Optimal Geome-
try.

Figure 24: Comparison of System Performance due to Beam Optimization.

beam optimization.

Other system variables were used to describe the magnetic sensor during optimiza-

tion routine and remained constant throughout the entire search of the workspace.

The radius of the central disk that supports the magnet and connects to the three

beams in the sensor is 1000 µm. The outer radius of the comb drives within the sys-

tem is 2400 µm. The magnet model used in the algorithm is cylindrical in geometry

with a diameter of 800 µm and thickness of 800 µm. The strength of the magnetic

field interaction is modeled as 7.2 ∗ 10−8 as presented in [28].

Figure 23 displays a plot of the objective function from the routine as it steps

through the work space. It is assumed that the manufacturing tolerance that can be

achieved during the fabrication of the magnetic sensor at Georgia Tech is ±0.5µm.

From the results shown in Figure 23, the optimal height of the beams is found to

be 120.5 µm. Further investigation of the system at this dimension shows that the

requirement that the limiting constraint on the optimal height of the beam is the

resonant frequency of the device in the z-direction. Through a more detailed analysis

of the coupling between the two vibration modes within the sensor, it may be possible

to relax the constraint and allow for greater increase the sensitivity of the device.

Figure 24(b) shows the response of the linear natural frequency for the optimized
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system versus changes in the external field orientation α. The sensitivity of the linear

natural frequency has the same general shape as the experimental results presented

in [28] as shown in Figure 24(a). While the experimental results do not match the

resonant frequencies predicted by the model for the device in [28], the modeling results

can still be used for comparison since it is expected that the same trend improvement

with the optimized device will be seen when it is fabricated.

Some sources of error between the model and experimental results from [28] are

the magnetic torque model used within the device and also the ideal clamped-clamped

boundary conditions used to model the beams within the sensor. The silicon that is

used within the optimized device is much stiffer than the Su-8 used in [28] and the

clamped-clamped boundary conditions have been shown through experiment to be

valid. The modeling of the nonlinear beam mechanics has also been shown to be an

acceptable match to the experimental results as shown in Section 3.5.2. Deviations

from the model seen in future experiments will most likely come from the modeling

of the magnetic torque in the sensor. The modeling of the magnetic torque was not

addressed in this thesis. Nonetheless, predicted improvements in resolution due to

the optimized sensor design should result in improvements in the resolution when the

devices are constructed and compared with the experimental results from [28].

To quantify the improvement in the sensitivity of the sensor due the redesign and

optimization, the resolution of the optimized device is compared with the sensitivity

predicted by the model for the sensor presented in [28]. The resolution of the sensor is

defined as the number of radians from α = π
2

that are required in order for a 1 radian
second

change in the linear natural frequency of the device. Table 4.3 provides a comparison

of the resolution predicted by the model for the device in [28] and the new magnetic

sensor design with optimal beam dimensions.

The improvement in the sensitivity of the sensor has occurred over the entire

working range of α and also in regions near α = π
2
. An increase of nonlinear behavior
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Table 2: Comparison of Sensor Resolutions.
Device Resolution (radians) Improvement
Model of Device in [28] .0656 0
Optimized Passive Design .0538 22 %

and therefore the sensitivity of the magnetic sensor via optimization of the beam

dimensions of the sensor have been shown to improve the performance of the magnetic

sensor.

It has been shown through simulation that driving the beam spring elements in

the system into large deflection behavior will result in an increase in the sensitiv-

ity of the magnetic sensor to changes in the orientation of external magnetic fields.

Improvements to the sensor sensitivity are coupled to increases in the nonlinear be-

havior and based upon the results from modeling. Improvements to the sensitivity of

the magnetic sensor have been realized through the optimization of beam geometry

to increase their nonlinear behavior. Through the implementation of the exhaustive

search of the design space for the heights of the sensor beams, the optimal beam

height was found to be 120.5 µm with a beam length and width of 2000 µm and

5 µm respectively. Other techniques to increase the nonlinear behavior of the sen-

sor will result in for further increases in the sensitivity that can be achieved by the

magnetic sensor.
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CHAPTER V

DESIGN OF ACTIVE SENSOR COMPONENTS

In this chapter the application of variable force, or shaped, comb drives to the mag-

netic sensor are proposed to improve the performance of the sensor. The use of shaped

comb drives is applied to the magnetic sensor in order to increase the nonlinear dy-

namics of the device beyond what can be achieved through the passive optimization

of the beams in the sensor. The comb drive will modify the dynamic behavior of the

sensor and lead to improved sensitivity of the device over what has been achieved

through the optimization of the beam dimensions.

5.1 Related Work

Comb drives are frequently used in MEMS devices as a means of exciting devices to

resonance and also to detect device behavior such as position or vibration. Figure 25

shows an example of a generic comb drive within a MEMS device. The force in the

comb drive acts in a direction parallel with the plates, or comb fingers of the drive.

Comb drives that generate forces that vary with insertion depth of the moving comb

finger have been developed to as a means of modifying the resonant frequency of

gyroscopes [40].

Further comb drive research has shown that shaping the geometry of the comb

drive finger will result in force profiles that are polynomial in form [51]. This approach

has been applied to resonating MEMS devices as a means of modifying the natural

frequency of a system by increasing or decreasing the linear stiffness of system [25].

Since the force generated by the shaped comb drive is dependent upon position, the

shaped comb drives act as spring elements in the system dynamics. The concept of
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Figure 25: Scanning Electron Microscope Picture of a Comb Drive Actuator [13].

Figure 26: Proposed Addition of Comb Drive Elements to Sensor Design.

using shaped comb drive actuators to further modify the nonlinear stiffness within

resonators has been presented in [3]. The authors found that the linear and nonlinear

stiffness of a system could be modified independently through the proper design of

the shaped comb drives. This approach will be used in the design of the shaped comb

drives to modify both the linear and nonlinear behavior of the magnetic sensor.

Figure 26 shows a diagram of how forces from the shaped comb drive elements

can be added to the magnetic sensor to modify its behavior. The force of the shaped

comb drives are dependent upon the rotation of the magnetic sensor and will modify

the system dynamics by acting as springs within the system to provide a restoring
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torque when central disk is rotated.

5.2 Principles of Shaped Comb Drives

The development of a model to describe the behavior of the shaped comb drives will

be presented in this section. As stated in Section 3.2.4, the approximate driving force

between the moving and stationary finger for a comb drive with a constant gap is:

F ≈ ε0 · h · V 2

gap
, (100)

In order to design a comb drive with a variable force that is a function of the

position of the moving finger, the gap between the two comb fingers or the voltage

across the comb fingers must be vary in relation to insertion depth of the moving

finger. Altering the voltage across the combs as a function of the position of the

moving finger is undesirable since it would require complex signal processing and a

feedback control for operation. Along with improving the sensitivity of the sensor

and reducing its size, another design goal for the sensor is to minimize the power

requirement of the sensor. Therefore varying the shape of the comb drive is chosen

as the technique to generate variable force profile comb drives to reduce the power

requirement.

To generate a comb drive with a force profile that varies with the insertion of the

moving finger in the form of a polynomial, the gap between the two fingers is modified

to be an inverse polynomial of the form [51]:

gap (x) =
1

C0 + C1 · x + C2 · x2 + C3 · x3
(101)

where x is insertion depth of the moving comb finger starting at zero from the tip of

the stationary finger as shown in Fig. 9. The coefficients Cz in (101) relate to the

force of the comb drive in (100) such that:

F (x) ≈ ε0 · h · V 2 ·
(
C0 + C1 · x + C2 · x2 + C3 · x3

)
. (102)
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Figure 27: Linear Comb Drive.

Table 3: System Parameters for a Linear Stiffening Comb Drive.
C0 1
C1 .3
Voltage 100 V
h 20 µm

To design a comb drive that generate a linear force profile, the gap of between the

moving and stationary fingers will take the form:

gap (x) =
1

C0 + C1 · x (103)

The value of C1 can be either positive or negative in order to create a linear stiffening

or linear softening shaped comb drive [25]. Figure 27(a) shows the a comparison of

force predicted by equation (102) for a linear stiffening shaped comb drive with the

results from numerical simulation. The geometry of the shaped comb drive can be seen

in Figure 27(b). The gap of the comb drive is in the form of(103) and the parameters

that specify the geometry of the shaped comb drive are shown in Table 5.2.

Figure 28(a) presents the force profile for the quadratic force profile comb drive

shown in Figure 28(b). The gap between the moving and stationary fingers is:

gap (x) =
1

C0 + C2 · x2
(104)

where the coefficients that determine system geometry are shown in Table 5.2.
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Figure 28: Quadratic Comb Drive.

Table 4: System Parameters for a Quadratic Stiffening Comb Drive.
C0 1
C2 .01
Voltage 100 V
h 20 µm

Figure 29(a) presents the force profile for the quadratic force profile comb drive

shown in Figure 29(b). The gap between the moving and unmoving fingers is:

gap (x) =
1

C0 + C3 · x3
. (105)

The coefficients that specify the system geometry are presented in Table 5.2.

From Figures 27(a), 28(a), and 29(b) it can be seen that the comb drive behavior

predicted by the analytical model compares well with numerical simulation. Therefore

the analytical model will be used to model the behavior of the shaped comb drives

within the magnetic sensor simulation. However, there are limits on comb drive

dimensions that affect how accurately the model will approximate the behavior of

the comb drive, primarily that the gap of the comb drive must be reasonably small.

Further limits on the accuracy of the analytical model will be discussed in the next

section.
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Figure 29: Cubic Comb Drive.

Table 5: System Parameters for a Cubic Stiffening Comb Drive.
C0 1
C3 .001
Voltage 100 V
h 20 µm

5.2.1 Analytical Model Limitations

Based upon the numerical simulation of the shaped comb drives, the boundaries

were developed to determine the comb drive characteristics that must be enforced

in order for the analytical model to represent the behavior of the comb set. The

example used to describe the limitations of the model is the constant force comb

drive shown in Figure 30(b). It can be seen in Figure 30(a) that the behavior of

the shaped comb fingers does not display the same behavior as predicted by the

analytical model until the moving finger has been inserted approximately 2 µm. The

parameters that describe the device are shown in Table 5.2.1. The insertion up to this

position represents a transition region where the in-plane fringing fields from the tips

of the moving and stationary fingers are changing, which results in a large change in

the electrostatic force of the comb drive. After the moving finger has been inserted

beyond the transition region, the one dimensional effects of the comb drive gap become
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Figure 30: Insertion Distance Limitation of the Analytical Model.

Table 6: System Parameters for a Constant Force Comb Drive.
C0 1
Voltage 100 V
h 20 µm

the dominant comb parameter that determines the change in the electrostatic force

between the moving and stationary comb fingers. The analytical model can then be

used to predict the behavior of the shaped comb drive with reasonable accuracy. As

the moving reaches full insertion, the fringing fields from the tip of the finger will

change again and will cause an increase in the electrostatic force of the comb finger

that is not addressed by the model. The shaped comb drives used within the sensor

will not be operated at full insertion, therefore only the transition region for the initial

insertion of the moving finger is considered when applying the analytical equation to

model the comb drive behavior.

Other geometry considerations that affect the validity of equation (102) for use

as an analytical model of comb drive behavior are the height of the comb drive and

the length of the fingers. The one dimensional model of the comb drive force assumes

that the height of the comb drive is much greater than the gap between the moving

and stationary fingers. If a poor aspect ratio of gap to height is used, the fringing
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Figure 31: Poor Height Aspect Ratio: Analytical Model versus Numerical Simula-
tion.

fields from out-of-gap interactions between the two bodies are no longer negligible

and the gap between the two bodies is no longer the dominate parameter that will

determine the electrostatic force between the two bodies. For such a comb drive, the

electrostatic force cannot be accurately predicted with equation (100).

Figure 31 shows how the comb drive model compares to the numerical simulation

for a comb drive with a gap to height aspect ratio of 2. The force calculated by

the model is less than the value from the numerical simulation due to the increased

influence of out-of-gap fringing fields on the force profile of the comb drive. By

maintaining an gap to height ratio of at least 10 for the shaped comb drives that

will be used within the magnetic sensor, the model can be used as an analytical

representation of the shaped comb drive element within the device simulations.

The ratio of the gap width to the length of the comb fingers is another factor

that must be considered when applying the analytical model to determine comb drive

behavior. As the ratio of the gap to the finger length decreases, the analytical model

no longer provides a good approximation for the behavior of the comb drive since

the moving finger no longer operates over a region where the change in the fringing

fields from the moving tip remains fairly constant. This type of behavior can be seen

in Figure 32(a) which represents the force on the moving finger for the comb drive
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Figure 32: Limitation of the Analytical Model due to Finger Length: Constant
Force Profile.

shown in Figure 32(b) with finger length to gap ratio of 5. By maintaining a ratio of

at least 40, as in Figure 30(b) the analytical equation will provide a good prediction

of the comb drive behavior as the gap between the two comb drive components will

be the dominant parameter that affects behavior of the comb drive.

5.3 Application to the Magnetic Sensor

Through the use of shaped comb drives, the dynamics of the magnetic sensor can be

modified to increase the sensitivity of the sensor by increasing the nonlinear behavior

of the device. By solving for the electrostatic behavior of the shaped comb drives

external to the dynamic equation of the magnetic sensor, the comb drive effects can

be represented by spring elements within the system equation in the same manner as

the beam elements presented in Section 3.2.1. Figure 33 shows a diagram of the sensor

presented as a mass-spring system with the inclusion of the shaped comb drive effects

where Kbeam and Kcomb terms are the effective stiffness of the beams and shaped comb

drives within the magnetic sensor. The dynamic equation incorporating the effects of
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Figure 33: Mass-Spring-Damper Representation of the Magnetic Sensor.

the comb drive will be:

I · dθ2
d

dt2
+ µ · dθd

dt
=





T sin (α− θd)− (KLθd + KQθ2
d + KCθ3

d)

−KCombLθd −KCombQθ2
d −KCombCθ3

d

(106)

where KL, KQ, and KC are stiffness coefficients from the beams within the sensor and

KCombL, KCombQ, KCombC are the stiffness coefficients from the shaped comb drives.

The comb drives provide a lateral resistance force to the rotation of the sensor and

are therefore incorporated as a modification to the lateral stiffness, P , of the beams

within the magnetic sensor model. Their contribution to dynamics of the sensor are

therefore modeled as

TP = (P + Fcomb) · R · sin (θd + θ0) , (107)

where P is the lateral stiffness coefficients from the beam and Fcomb is the effective

lateral stiffness due to the shaped comb drives.

5.3.1 Comb Drive Shape Sensitivity Study

A study of the shaped comb drive coefficients was performed to understand how

modifications to the different stiffness coefficients in the system would affect the

sensitivity of the sensor. The study was performed with the assumption that the

shaped comb drives would represent a change in the lateral stiffness of the beams as
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derived in equation (37). The values of KL, KQ, and KC , which represent the lateral

stiffness coefficients of the beams in the sensor were modified by scalar multiples.

Section 4 showed that increases in the static equilibrium angle θ0 is directly corre-

lated with increases in sensitivity of the magnetic sensor. Therefore it was expected

that a negative value for KCombL would improve system sensitivity since this would

allow the value of θ0 to increase due to a decrease in the linear stiffness of the system.

It was also expected that increasing the nonlinearity of the system through KCombQ

and KCombC would result in an increase in performance. However, it was not obvious

as to whether changes to the cubic stiffness or the quadratic stiffness would have the

greatest effect on the system sensitivity.

The magnitude of the magnetic torque used within the simulations is Tmag =

7.96 ∗ 10−10 N ·m. The beams used for the sensitivity study have a length, width,

and height of 2000 µm, 5 µm and 52 µm respectively. The coefficients used to describe

the lateral stiffness of a single beam are:

KL = 0.1823

KQ = 2.0320 ∗ 104

KC = 7.9802 ∗ 109

Figure 34(a) shows the variations in the linear natural frequencies for systems

containing linear profile comb drives. Improvements to the sensitivity of the system in

the region least sensitive to changes in α near π
2

cannot be clearly seen in Figure 34(a).

By displaying the change in natural frequency versus α as shown in Figure 34(b), the

effects of changes in the linear stiffness in the sensitivity of the sensor can be more

easily seen. The regions that experience the largest change in sensitivity from the

application of the linear comb drives are located near α = 0 and α = π. Even in the

region near α = π
2
, where the change in the sensitivity of the sensor is minimal, an

increase in the change in frequency can be seen.
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Table 7: Comparison of Sensitivity with Shaped Comb Drive Contributions
α KL Multiplier KQ Multiplier ∆ f % Improvement
0 1 1 .334 0.0
0 .5 1 .494 .160
0 1 1.5 .398 .060
0 .5 1.5 .588 .254
π
2

1 1 .059 0.0
π
2

.5 1 .089 .030
π
2

1 1.51 .068 .009
π
2

.5 1.5 .101 .042

From Figure 35(a) it can be seen that increases in the quadratic nonlinearity of

the lateral stiffness of the sensor will increase the natural frequency of the sensor over

the entire range 0 < α < π while maintaining the same natural frequency at α = 0

radians and α = π radians. The improvement of the sensitivity of the sensor due to

the application of the quadratic comb drive as shown in Figure 35(b) is similar that of

applying a linear comb drive in the region near π
2
, but the change is less in the regions

α = 0 radians and α = π radians. Figures 36(a) and 36(b) show that modifications of

the cubic stiffness of the system will not result in a significant change in the resonant

behavior of the system. Therefore it is not advisable to design shaped comb drives

with a cubic force profile.

The combination of softening linear and stiffening quadratic profiles in the same

comb drive will result in greater improvement in the system performance than the

application of a single type of force. A comparison of the improvements in the sensi-

tivity of the sensor due to the presence of the shaped comb drives is shown Figure 37.

Table 5.3.1 presents the change in natural frequency at two different values of α and

shows that the combination of the linear and quadratic force profiles within the same

system will result in an improvement in the sensitivity of the system that is greater

than what can be achieved through the individual application each force profile. This

behavior is due to the coupling between the increase of nonlinear behavior of the
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Figure 34: Variations in Linear Stiffness.
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Figure 35: Variations in Quadratic Stiffness.
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Figure 36: Variations in Cubic Stiffness.
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system from the increase of the quadratic stiffness and the reduction the linear stiff-

ness, which will all the system to quicker enter the region of where the effects of the

nonlinear stiffness are on the same order as the effects due to the linear stiffness.

If the method used to detect the frequency of the system is able to detect changes

in the natural frequency at a resolution of 1 Hz, then the application of a cubic and

linear comb drive would result in an increase in the resolution of the sensor from

±0.7156 radians to ±0.5061 radians. It is expected that the use of frequency detec-

tion techniques with resolutions higher than 1 Hz would show further improvements

in the calculated resolution of the magnetic sensor. Based upon the results of the

sensitivity study, the application of comb drives containing both negative KL and pos-

itive KQ stiffness would achieve the best improvement in the sensitivity and overall

performance of the magnetic sensor. With the application of shaped comb drives that

are able to modify the sensor dynamics to achieve even larger values of KQ and lower

values of KL, further performance increases in the magnetic sensor can be expected

over the improvements shown in this example.
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5.4 Design of a Variable Shaped Comb Drive

Now that the characteristics of the shaped comb drives and the limits of the applica-

bility of the model are known, shaped comb drives can be designed and added to the

model of the magnetic sensor as a means of improving the performance of the device.

In order to incorporate the shaped comb drives into the optimization of the magnetic

sensor, an algorithm was developed to optimize the comb drives that will represent

a sub-optimization problem within the optimization problem for the entire magnetic

sensor.

The gap profile of the shaped comb drives has been optimized to ensure that

each comb finger within the comb drive set has its maximum potential for modify-

ing the system behavior while maintaining the fabrication and operating constraints

that are placed on the drives. An optimization routine was developed in MATLAB

to determine the optimal gap values of C1 and C2 that would simultaneously maxi-

mize the quadratic force profile and minimize the negative linear force profile of the

shaped comb drive. The Fmincon function in MATLAB was used to optimize the

gap geometry of for each of the comb fingers within the comb drive and also maintain

the geometric constraints. The MATLAB function mimics Newton’s method for un-

constrained optimization and is based on an implementation of sequential quadratic

programming, SQP [35].

The SQP technique is an effective method of solving nonlinear optimization prob-

lems with nonlinear constraints and transforms the system into a series of quadratic

problems with linear constraints. The quadratic problem formulations and lineariza-

tion of the constraints are both done within the MATLAB function. The SQP method

is well suited for optimizing the comb finger sets due to the presence of nonlinearities

within the system. Another benefit of the method is its robustness to infeasible start

points that violate system constraints. This will allow for the maximum force pro-

file to be found for comb finger sets with a variety of constraints by using the same
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Figure 38: Gap Constraints for a Shaped Comb Finger.

starting point for the initial guess of the optimal shaped comb finger dimensions.

5.4.1 Shaped Comb Finger Constraints

A diagram of the gap constraints for each comb finger can be seen in Figure 38 and

each constraint will be described in the following section. By increasing the number

of comb finger sets in the comb drive, the force that can be applied by a comb drive

increases and the torque that can be applied by the comb drive greatly increases as

the additional comb finger sets are located farther and farther from the center of

rotation of the magnetic sensor. While it would be advantageous to allow for comb

drives with great lengths to increase the moment arm of each comb finger set, the

maximum length constraint was implemented to place an upper limit on the size of

the sensor. The first constraint implemented in the algorithm is that the length of the

comb drive cannot be greater than 2000 µm, which was also used as the constraint

for the maximum beam length during the optimization of the magnetic sensor in

Chapter 4. It is expected that future design iterations will decrease the length in

order to further reduce the size of the magnetic sensor.

The gap between the moving and stationary comb fingers at the start and end of

the operating range of the each comb finger set is the second constraint implemented

in the shaped comb drive optimization algorithm. The operating range of each comb

finger set represents the path that will be taken by the moving comb finger during

sensor operation. The start of the operating range represents the initial insertion of
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Figure 39: Diagram of Radius Evaluation for Comb Fingers.

the moving comb fingers from fabrication and was chosen to be 10 µm for all comb

finger sets within the comb drive. The reactive ion etching process that is used to

fabricate the device requires that the minimum gap between two objects within the

sensor is 1
15

of the height of the sensor. Therefore the constraint on gap at the start of

the operating range for all of the comb finger sets is 1
15

of the height or 3 µm, whichever

is greater. The constraint that the minimum gap at the start of the operating range

must be at least 3µm has been imposed to ensure that there will be a change in the

gap of at least 1 µm across the operating range of the comb finger set.

The end of the operating range of each comb finger set is found by simulating the

static response of the sensor to a magnetic torque. The maximum static equilibrium

angle, θ0max, of the device when the external magnetic field is at an orientation α = π
2

is used to determine the end of the operating range since θ0 is at its maximum at for

this value of α. Since each comb finger set in the comb drive is located at a different

distance from the center of rotation of the disk, the same value for θ0max will result

in different operating ranges for each set. The end of the operating range for each

comb finger set is based upon the distance of the moving comb finger from the center

of rotation of the sensor and θ0max such that:

OperatingRangeend = Ri · θ0max, (108)

where Ri is the radial distance of the moving finger in each comb finger set from the

center of the rotation as shown in Figure 39. The constraint imposed upon the system
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for the gap at the end of the operating range is that it must be greater than 2 µm to

ensure that there is no side-instability in the comb finger set. Side-instability could

lead to device failure if two fingers in a comb finger set come into contact during

operation, which will cause a short across the comb drive.

The width of the comb fingers will be designed as 10 µm. The maximum gap that

is allowed is based upon the initial gap at an insertion of zero and is chosen to be:

gapmax =
1

C0

+ 2.5µm, (109)

to ensure that the minimum feature size constraint of 5 µm is maintained.

5.4.2 Objective Function

The objective function and constraints are implemented to optimize each comb finger

set separately and determine the geometry that will result in the largest possible

quadratic stiffness coefficient and most negative linear stiffness coefficient for each

comb finger set within the shaped comb drive. Maximization of the quadratic stiffness

is achieved by maximizing the C2 coefficient used to determine the gap profile of each

shaped comb finger. The most negative linear stiffness is realized by minimizing

the C1 coefficient of the gap profile for each finger. Through the combination of a

negative C1 and a positive C2 in a single shaped comb finger, both terms can attain

more extreme values than if they were each applied to separate comb fingers.

The objective function to be minimized during the optimization the each shaped

comb finger is:

obj = (Ci1 − C1)
2 + (Ci2 − C2)

2 , (110)

where Ci1 and Ci2 are the initial coefficient guesses of −.1 and 10 respectively. The

initial guess that is used for C2 is much larger than what can be achieved and the

guess for C1 is much less than can be achieved with the application of the constraints.

This approach ensures that the initial guess for the gap profile of each comb finger is
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infeasible and can be used to optimize all of the comb finger sets within the shaped

comb drive. As the value for C1 and C2 approach the values for the initial guesses, the

objective function will decrease in value since it evaluates the difference between the

two sets of coefficients. By minimizing the objective function, the maximum value for

C2 and the minimum value of C1 for each shaped finger will be found. This will result

in maximizing the quadratic stiffness coefficient while also minimizing the negative

linear stiffness coefficient of each shaped finger. The order of the coefficients for the

linear and quadratic stiffness terms is different due the difference in the magnitude

of the two terms. The extra weighting of C2 is acceptable since modifications of

quadratic stiffness were shown in Section 5.3.1 to result in a greater increase in the

sensitivity of the magnetic sensor.

5.4.3 Optimization Routine

The final portion of the comb drive algorithm combines the profiles found with the

gap optimization for each comb finger to determine the total torque and force profiles

for the comb drive as a whole. The constant torque that is applied by the comb

drive due to existence of C0 has been shown to be negligible when compared with

other effects in the magnetic sensor so its contribution to the comb drive dynamics

is ignored. The coefficients for the comb drive are found by adding the coefficients

from each individual comb finger set such that:

TL =
n∑

i=1

C1 (i) · ε · h · V2 · (Rcomb (i))2 (111)

TQ =
n∑

i=1

C2 (i) · ε · h · V2 · (Rcomb (i))3 (112)

where the total torque that can be generated by the shaped comb drive is:

Torque = TL · θ + TQ · θ2. (113)

The values for TL, TQ are calculated based upon the force of each comb finger set in the

shaped comb drive by multiplying the shaped comb drive force from equation (102) by
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the radial distance, Ri of each comb finger set. The torque coefficients are converted

to lateral motion coefficients to allow for implementation within the sensor model as

a modification of the lateral stiffness coefficient for the beams within the magnetic

sensor. The conversion from torque coefficients to lateral stiffness coefficients is:

KCombL= TL · R−2 (114)

KCombQ= TQ · R−3 (115)

It is assumed that the number of shaped comb drives spring within the sensor is equal

the number of beams in the device so effects of shaped comb drives will be included

in the system model as a modification of lateral stiffness coefficients such that:

KLsys = KLp + KCombL

KQsys = KQp + KCombQ

where KLsys and KQsys substituted into the equations for the restoring torques in the

sensor calculated in (40), (41), and (42) in Chapter 3 in place of the lateral stiffness

coefficients of the beams KLp and KQp.

After the force profile of the shaped comb drive has been calculated, the algorithm

is run again to correct for the change in the operating range that will occur due to the

modification of the stiffness of the system. The changes in the operating range will

allow for further optimization of the stiffness coefficients of the comb drive. Once the

change in the comb drive forces between iterations is significantly small, the algorithm

terminates and the optimal solution for the comb finger set dimensions and the force

profile of shaped comb drive has been found. The lateral stiffness coefficients for the

comb drive and the geometry of each comb finger set within the comb drive are the

two outputs that are sent back to the main program after the optimization routine

is completed. Figure 40 shows a flowchart of the steps within the algorithm that are

taken to convert the input of the magnetic sensor parameters and the voltage of the
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Figure 40: Flowchart of Comb Drive Optimization Code.

Table 8: Shaped Comb Drive Objective Function and Constraints
Objective Function

obj = (Ci1 − Ci1)
2 + (Cd2 − C2)

2

Constraints

Maximum Gap < 5 µm
Minimum Gap: Start of Operating Range > 1

15
h or 3 µm

Minimum Gap: End of Operating Range > 2 µm
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Figure 41: Optimal Gap Profile for Sensor in Section 4.

Table 9: Comparison of Sensitivity with Shaped Comb Drive Contributions
Coefficient Source KL KQ KC

Beam 0.1823 2.0320 · 104 7.9802 · 109

Shaped Comb Drive -0.1428 8.9273 · 105 0
Change 78% 439.3% 0%

shaped comb drive into the optimal geometry profiles of each comb finger and the

optimal force profile of comb drive. The objective function and system constraints

are shown in Table 5.4.3.

Figure 41(a) shows the optimal gap profile for a comb drive attached to an example

device with beam dimensions of length, width and height of 2000 µm, 5 µm, and

52 µm respectively. The magnitude of the magnetic torque T used within the example

is 7.96 ∗ 10−10 and the value for C0 is 0.05. Through the implementation of the

fmincon optimization routine in MATLAB, the the optimal value of C1 for all of

the comb finger sets is found to be -0.01015 and the optimal value of C2 is 0.003845.

The initial guess for desired geometric profile corresponding to C1 and C2 for the

optimal comb drive profile is also shown in the Figure 41(a) and violates the geometric

constraints placed on the system since the gap is less than 2 µm at an insertion

distance of less than 1 µm.

76



The optimal force coefficients for a shaped comb drive with a voltage of 25V and

18 shaped comb fingers are presented in Table 5.4.3 along with the beam stiffness

coefficients that will be modified by their use. The maximum quadratic stiffness that

can be achieved without the negative linear stiffness is FQ = 6.5787 ∗ 104 which is

a 26% reduction in the quadratic stiffness that can be achieved by the shaped comb

drive with the inclusion of the linear stiffness.

It can be seen in Figure 41(a) that the optimal geometric profiles for all of the comb

finger sets within the comb drive are the same for this example. This result is due to

the gap at the start of the comb finger operating range acting as the limiting constraint

on the profile of each comb finger set. For a sensor with a stronger permanent magnet

or in the presence of a larger external magnetic field where T increases from 7.6∗10−10

to 7.6 ∗ 10−8 N ·m, the limiting constraint on the comb finger geometries is no longer

the gap at the start of the operating range, but is instead the gap at the end of the

operating range. The effect of the different value for T can be seen in Figure 41(b)

where the gap profile of the comb finger set nearest the center of rotation and the

farthest from the center of rotation are shown. The comb finger set nearest to the

center of rotation has a smaller operating range than that of furthest set and is able

to achieve a smaller overall gap and a larger quadratic force coefficient. This example

is shown to point out that under specific operating conditions, the optimization of

every comb finger set in the comb drive individually will allow for the comb drive to

cause a greater change in system performance than if all of the comb finger sets were

given the same uniform dimensions.

5.5 Results and Conclusion

The optimization algorithm presented in Chapter 4 was modified to include the

shaped comb drive elements within the design problem. Figure 42 shows a flow

chart of the optimization algorithm that was implemented within MATLAB. The sub
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Figure 42: Flowchart of Sensor Optimization.

optimization algorithm shown in Figure 40 is represented as the Comb Drive Opti-

mization block in Figure 42. The comb drive optimization is a sub-problem within the

magnetic sensor optimization and therefore inclusion of the shaped comb drive ele-

ments into the previous code did not require a change in the methodology of the brute

force search previously implemented to determine the optimal system dimensions.

Figure 43(a) shows the objective function for the optimization problem for a sys-

tem with a voltage of 25 V across the shaped comb drives. The figure has the same

shape as the objective function in Chapter 4 and has optimal beam dimensions with

a length, width, and height of 2000 µm, 5 µm, and 126 µm respectively. The same

constraint for the z-axis motion of the sensor limits minimum height of the beam ge-

ometry as in Chapter 4. The optimal beam height has increased due to the modified

stiffness of the magnetic sensor due to the application of the shaped comb drives.

The modified stiffness results in an increase in the resonant frequency for the in-plane
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Figure 43: Geometric Optimization with Shaped Comb Drives.

vibration of the sensor and the height of the beams must be increased to maintain an

out-of-plane vibration frequency that is 2.5 times higher.

Figure 43(b) shows a comparison of the sensitivity of the optimized magnetic

sensor with and without the implementation of shaped comb drives. The voltage

applied across the shaped comb drives is 25 V and there are 18 comb fingers within

each shaped comb drive. From Table 6.4 it can be seen that the improvement in

sensor resolution has increased with the application of shaped comb drives beyond

what was achieved through beam optimization. Increasing the voltage across the

shaped comb drives should result in further increases in the sensitivity of magnetic

sensor due to the shaped comb drives.

Table 10: Comparison of Sensor Resolutions.
Device Resolution (radians) Improvement
[28] .0656 0
Optimized Passive Design .0538 22%
Optimized Active Design .0508 29 %

Increases in the voltage applied across the comb drive will result in larger changes

in the quadratic stiffness and also decreases in the linear stiffness of the active comb

drives, both in a linear fashion. The scalar multiple of the coefficients that can be
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used to determine the increase in the shaped comb drive coefficients due to changes

in the voltage will change with changes in the voltage such that:

Scalar =
V 2

2

V 2
1

=
(V1 + ∆V )2

V 2
1

= 1 +
2V2∆V + ∆V 2

V 2
1

. (116)

In summary, this chapter has shown that the application of shaped comb drives

can improve the sensitivity of the magnetic sensor. Through the optimization of the

beam dimensions of the sensor and the inclusion of additional stiffness elements to

the device, the sensitivity of the sensor to changes in the orientation of the earth’s

magnetic field has been shown through simulation to increase when compared to the

device constructed in [28]. The improvement that can be realized is directly related

to the voltage that is applied across the comb drive. Further increases in the voltage

applied across the comb drive should result in further improvements in the sensitivity

of the magnetic sensor greater than what has been presented here since the shaped

comb drives will have provide a larger modification to the quadratic and linear stiffness

of the system.
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CHAPTER VI

SYSTEM CHARACTERIZATION THROUGH

NONLINEAR VIBRATION

This chapter will consider how to improve the sensitivity of the magnetic sensor

through the vibration characteristics of the device. Even though the optimization

of the magnetic sensor design has been shown to improve sensor performance, the

detection scheme used to determine the resonant frequency of the sensor is another

component that must be considered when determining its overall sensitivity. While

the type of frequency detection scheme was not considered for the development of the

mechanical components of the sensor, an analysis of the vibration characteristics of

the sensor will give insight on how to design frequency sensing devices and electronics

to maximize the sensitivity that can be realized with the magnetic sensor. Several

factors must be considered when determining how to effectively measure the frequency

of the sensor. They are: the presence of noise within the system, the effect of shock

impulses on device performance, and also the effect of damping on the quality factor

of the sensor.

In this chapter, it is proposed that increasing the amplitude of the excitation force

such that a resonator will exhibit nonlinear vibration behavior and the characteriza-

tion of the system through its nonlinear vibration behavior will result in improved

sensitivities of the resonator. The use of the nonlinear frequency response will be

shown to reduce the error in the sensing signal due to noise in the system and also

eliminate the effect of damping on the ability of the sensor output to show shifts in

the linear natural frequency, which is typically used in MEMS sensors.
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6.1 Related Work

Decreasing the size of sensors from the macro- to micro-scale increases the effect of the

noise on the quality of the vibration since the magnitude of system noise approaches

the same order as the resonant behavior of the device. The effects of temperature

changes, molecule absorption, drive power, and self-heating are just a few sources of

noise with MEMS devices that can degrade the quality of the resonant signal and the

ability of the frequency detection scheme to detect changes in the sensor behavior

[48].

A great deal of research has been performed to reduce the degradation of frequency

information due to the presence of noise with system. Han focused on changing the

proof-mass of the accelerometer to reduce the effect of mechanical noise within the

system [23]. Riehl reduced the effect of noise on the resonant frequency signal quality

by adding of capacitors to the resonating device in [41]. The addition of signal

processing electronics to the electrical sensing of the resonant behavior is another

technique that has been presented to reduce the effect of noise on the sensitivity

of sensors. By applying noise filters and optimizing the sensitivity of the electrical

circuit to match the sensitivity of the mechanical components the authors were able

to reduce the noise levels present within the sensor [6]. A disadvantage of the addition

of new components to a system in order to reduce the effect of noise on signal quality

is in the increased cost of fabrication for devices of increasing complexity.

Other problems that limit the sensitivity of the resonant sensors are related to the

mechanics of the resonator, primarily the quality factor, or Q-factor, of the resonator,

which is a measure of damping present in the device. It is well known that in order

to improve the performance and sensitivity of a device, the damping of the device

should be decreased as much as possible. Some sources of damping and energy loss

in MEMS devices are air damping, heat loss to the environment, self-heating, and

vibration transmission to anchor supports [50].
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For most MEMS devices, the primary source of damping is due to energy trans-

mission to the air surrounding the device. The operation of MEMS oscillators under

low pressure and vacuum conditions has been shown to greatly increase the sensitivity

of the device many magnitudes higher than what can be achieved at ambient pres-

sure [11]. Another technique that has been presented to improve the quality factor

of MEMS resonators is the implementation of a feedback control loop within the fre-

quency detection electronics [1]. The chief disadvantage of the controller addition to

the sensor is the added complexity in fabrication and the increased power requirement

of the device with the addition of the control system.

A passive technique to modify the behavior of the system would be preferred

in the magnetic sensor in order to maintain a low power requirement. Therefore,

a mechanically-based solution to improve the quality factor would be best. The

ideal approach would be to use a resonant sensing technique that would be able to

simultaneously deal with system noise and low Q-factor without the need for adding

extra components to a system. Both issues can be addressed by changing the type of

signal that is being detected by the electronics within the resonator rather the type

of system that is being analyzed.

One technique that has been implemented to simultaneously deal with the noise

and quality factor issues without modifications to the system itself is to detect the

behavior of the higher order harmonics present within the system instead of the

fundamental resonant frequency. This approach has been implemented in [32] to

determine the resonant frequency and Q-factor in a system with a large amount of

parasitic signal losses near the fundamental resonant frequency. While the technique

does provide a means of detecting the resonance of a device in a system with a

significant amount of noise and very low quality factor near the fundamental resonant

frequency, it does not provide a means for greatly improving the quality factor of the

device.
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Figure 44: Frequency Sweeping and Correlation to Jump Phenomena.

Another alternative method of detection which has been shown to improve the

Q-factor of resonant signal is to increase the amplitude of the harmonic excitation

force [32], [24]. By increasing the magnitude of the excitation force, the change in

the system response near the linear natural frequency is greatly increased. Further

increasing the magnitude of the excitation force will result in nonlinear vibration

of the system which will be shown to be more effective at isolating the frequency

response information from noise and the effects of Q-factor than with conventional

detection of linear vibration frequencies.

6.2 Nonlinear Vibration Analysis

The equation for the magnetic sensor is repeated here for use in the discussion of

nonlinear vibration in the following sections. The dynamics equation of the sensor

from Chapter 3 is:

I · dθ2

dt2
+ µ · dθ

dt
+ KL · θ + KQθ2 + KCθ3 = TE (t) + Tmag (α, θ0, θd) , (117)

A device undergoing nonlinear vibration will no longer have a single resonant peak

as with linear vibration, but will have a different system response due to direction

of sweeping the excitation frequency through the region of resonance. The cause for

the change in system response is that the initial conditions of the system are coupled
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with the forced response of the system to harmonic excitation. For certain frequencies

of excitation, the system has two steady-state amplitudes of vibration for which the

system will be stable. An increasing frequency sweep through the resonant region of

the device will result in a jump-down of the steady-state system response from on

stability curve to the next and a large reduction in the amplitude of vibration. A

jump-up frequency can be seen in the response during a decreasing sweep through

the resonant region of the device that will result in a large increase in the response of

the system over a small change in excitation frequency. Figure 44 shows an example

of a generic nonlinear system that has been excited into nonlinear vibration and the

jump-up and jump-down responses can be seen along with the required direction of

the frequency sweep to elicit each type of behavior.

The magnitude of the change in the jump-up frequency of the sensor has shown

to track the change in the linear natural frequency of the sensor. Therefore jump-up

frequency of the sensor can be used to detect changes in the orientation of external

magnetic fields instead of the linear natural frequency to take advantage of the ben-

efits of nonlinear vibration such as noise insensitivity and independence from system

damping. Figure 45(a) shows a comparison of the changes in the linear natural fre-

quency to the change in the jump-up frequency for a magnetic sensor with beams of

length, width, and height of 2000 µm, 14 µm, and 200 µm in a magnetic field such

that the magnetic torque is 7.96 ∗ 10−10 N ·m.

It can be seen in Figure 45(a) that changes in both the linear natural frequency

and the jump-up frequency are the same for variations in external magnetic field

orientation α over the majority of the region from α = 0 to π
2
. The change in the

jump-down frequency that corresponds to an increasing the excitation frequency to

sweep through the dynamic response range of the sensor is also shown in Figure 45(b).

The shift in the jump-down frequency due to changes in α are not as significant as the

change in the jump-up frequency and this response should not be used to characterize
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Figure 45: Frequency versus Orientation of External Field.

the system instead of the linear natural frequency.

6.3 Insensitivity to Noise

If the system was instead characterized based upon the linear natural frequency of

the device, small amounts of noise will have a greater affect on the ability of the

frequency detection scheme to detect the linear natural frequency of the device when

the magnitude of the noise present in the system is of the same order as the change in

the resonant behavior. In such a device, the sensitivity of the detection scheme would

directly affect the overall sensitivity of the sensor since noise in the system would

reduce the effective resolution of the sensor. The examples presented here are for a

magnetic sensor with beams with lengths of 2000 µm, widths of 7 µm, and height

of 100 µm. The nonlinear vibration response to harmonic excitation can be seen in

Figure 46(a) and corresponds to magnitude of the excitation torque of 2000 N ·m.

Figure 46(b) shows the linear vibration response of the same system with excitation

torque of 100 N ·m.

Figures 47(a) and 47(b) show the steady-state response of the system undergoing

linear vibration at excitation frequencies 1 and 2 of Figure 46(b). The locations

represent the system near resonance at an excitation frequency of 1135 rad
s

radians
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Figure 46: Vibration Response of Example to Parametric Excitation.

and at the linear natural frequency of 1140 rad
s

. The random noise seen in the system

is on the order of ±1.5∗10−2 and is introduced into response of the system such that:

θ (t) = SS (t) + 1.5 ∗ 10−2 · (.5− random) ,

where SS is the steady state response of the system for the fundamental frequency

and the first four harmonics and random is the rand function in MATLAB. While

the variations in the amplitude of vibration of the system cannot be clearly seen in

the system responses, the FFT analysis of the responses in Figures 48(a) and 48(b)

shows the presence of the fundamental harmonic in the response.

The boundaries of uncertainty shown in Figures 50(b) and 50(a) were determined

by running the simulation for 1000 runs with different random numbers and recording

the magnitude for the vibration amplitude at the resonating frequency. The maximum

peak that was found by the FFT and was set as the upper limit for the boundary

of uncertainty and the minimum peak was set as the lower boundary. The boundary

of uncertainties for each of the excitation frequencies overlap, the location of the

linear natural frequency cannot be determined with confidence and the amplitude

of vibration that is seen at the resonant frequency may be lower than at a nearby

excitation frequency.

Based upon the results from the simulation, the use of linear vibration cannot
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Figure 47: Steady-State Response near Resonance with Noise.
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Figure 48: FFT of Linear Vibration near Resonance with Noise.
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be used to determine a shift in resonance of the system due to the presence of noise

in the system and the resolution that can be realized through the linear vibration

characterization is reduced. Even though real world devices are not expected to

operate in such noisy environments as the example, there are still regions in the

linear vibration of all devices where the change in the linear vibration amplitude

will be on the same order as the noise in the system. The ability of the frequency

characterization method to detect changes in the harmonic behavior of the resonator

would become the limiting factor that would affect the final resolution of a sensor

if noise within the vibration signal is greater than the change in the response of the

system.

By utilizing the jump-up of frequency in the nonlinear vibration of the sensor to

characterize the system behavior instead of the linear natural frequency, improvement

in the sensitivity can be realized since the frequency measurement will be insensitive

to noise within vibration response of the device. The following example shows that

the use of nonlinear vibration to characterize the system will allow for increased

resolution over the use of linear vibration to characterize the resonant behavior of

devices.

It is important to note that in the region near the jump-up point for the nonlinear

vibration of the system, the steady-state vibration of the system varies dramatically

as the excitation frequency decreases. Since the nonlinear vibration response is de-

pendent upon the initial conditions of the system, an impulse in the system such as

a shock load could cause the vibration response to jump from the lower curve to the

upper one. However, a large change in the system conditions substantially greater

than typical noise sources is required in order to bump the solution from one stability

curve to the other since the system will return to the nearest stability curve in the

presence of transient noise. Due to the small change in system behavior typical to

noise sources, only changes in the excitation frequency will result in a jump from the
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lower stability curve to the upper one.

For points 1 and 2 in Figure 46(a) near the jump-up frequency, the vibration

amplitude changes from 2.95 ∗ 10−3 radians to 6.05 ∗ 10−3 radians, which is a change

of 200% and is significantly larger than the variations of the harmonic amplitudes

that can be expected due to typical mechanical noise sources within the sensor. In

order for the noise within the system to affect the detection of the jump, it would

have to be on the same order as the amplitude of the jump. Figures 49(a) and 49(b)

show the steady-state response for the system at each location. The random noise

seen in the system is the same the noise in the linear vibration example and is on the

order of ±1.5 ∗ 10−2 and is introduced into response of the system such that:

θ (t) = SS (t) + 1.5 ∗ 10−2 · (.5− random) ,

where SS is the steady state response of the system for the fundamental frequency

and the first four harmonics and random is the rand function in MATLAB. The insen-

sitivity of the jump frequency to large amounts of noise can be seen in Figures 50(a)

and 50(b) which show the FFT of the system as it jumps from position 1 of the lower

frequency response curve to position 2 of the upper frequency response curve. Since

the boundaries of uncertainty do not overlap, the presence of noise will not affect the

ability of the detection scheme to detect changes in the system behavior as it jumps

up from position 1 on the lower stability curve position 2 on the upper stability curve.

6.4 Insensitivity to Quality-Factor

The nonlinear vibration characterization technique also removes the dependence of

resolution on the damping and energy loss mechanisms within the system. It is

well known that energy loss due to damping will reduce the Q-factor of a device

and therefore the resolution that can be achieved by the device. Figure 51 shows how

variations in the value of µ, which relates to damping, will affect its dynamic response

of a linearly vibrating system. From the figure it can be seen that increasing in the
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Figure 49: Steady-State Response near the Jump-Up Frequency with Noise.
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Figure 50: FFT of nonlinear Vibration near the Jump-Up Frequency with Noise.
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Figure 51: Effect of Damping on Linear Vibration Behavior.

system damping will flatten out the resonant peak. This will result in more excitation

frequencies that have a similar dynamic response. With the addition of noise to the

vibration signal it will be more difficult to detect the linear natural frequency and

the resolution that can be achieved by the sensor will be reduced.

By using the jump-up frequency instead of the linear natural frequency to char-

acterize the sensor, the effects of damping to not have to be considered since the

jump-up frequency is independent of the system damping. Since the damping coeffi-

cient no longer is an element of the device that must be considered, there is no benefit

to adding complexity to a resonator design to package it within a low pressure envi-

ronment or within a vacuum. An example is given here for systems with variations in

damping to show the independence of the jump-up frequency to damping within the

device. The value for µ, which represents the system damping, was varied between

the three cases to demonstrate its insignificance to the jump-up frequency. The same

system used to display insensitivity to noise in the previous section is used as the

example of the effect of variations in the damping of the system through changes

in the damping value µ from equation (117), which is the dynamic equation for a

HelmHoltz-Duffing Oscillator as well as the magnetic sensor.

Table 6.4 shows the jump-up frequency for the three difference systems shown in
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Figure 52: Nonlinear Vibration Response of Example System with Variations in
Damping.

Table 11: Comparison of Jump-Up Frequencies.
µ Jump-Up
20 1507.8
40 1507.8
80 1507.8

Figures 46(a), 52(a), and 52(b) with µ equal to 21, 41, and 81 respectively. It is also

seen in the figures that the jump from the lower stability curve to the upper stability

curve is over a very short change in excitation frequency. When compared to a

measurement of the Q-factor of the system, the jump condition begins to approach the

idealized value of infinity due to the nearly instantaneous change in system behavior

at the jump-up frequency. Therefore the use of the jump-up frequency to characterize

the system results in an effective Q-factor that approaches infinity. The benefits of

such a high Q-factor are clear: the system would be less sensitive to noise and the

effects of damping within the system without adding complexity to a device.

6.5 Technique Applicability

Nonlinear vibration characterization technique does not require the addition of com-

plex system components in order to improve the quality of the sensor, but instead
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only requires increase in the amplitude of vibration for the system. Therefore this

technique can be applied in most types of present sensors without altering the me-

chanics or designs with the addition of extra components such as signal processing

circuits or vacuum packaging. The exact implementation of the technique, such as

excitation required to drive system to nonlinear vibration, must be determined on a

case-by-case basis.

This technique cannot be generically applied to all forms of resonant sensors since

there are a variety of ways that the resonance of the system is used to detect changes

in the environment. The technique can be applied for use within the magnetic sensor

since it is expected that the device will be operated to find an instantaneous orienta-

tion of an external magnetic field instead of a continuous measurement. A frequency

sweep to find the jump-up frequency could then be implemented and changes in the

jump-up frequency can be equated to changes in the orientation of the external mag-

netic field. Nonlinear vibration characterization requires a frequency sweep of the

system to characterize a system and is not applicable to sensors that require contin-

uous frequency knowledge since they do not have time to run a frequency sweep.

A second sensor requirement for nonlinear vibration characterization is that the

effect nonlinearity has on system’s behavior should be noticeable for reasonable exci-

tation amplitudes. This technique may not be applicable for sensors that are designed

such that the linear behavior of the device dominates the effects of nonlinearities on

the system response. Such a device would require very large excitation amplitudes

in order for the nonlinear system properties to become of the same magnitude as the

linear behavior so they will affect the vibration characteristics of the system. It is

much more effective to design a system to have sufficient nonlinearities so that this

technique will apply as opposed to the application of this technique to a system that

has been designed to only operate in regions of linear behavior.
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6.6 Conclusions

Nonlinearities are present in many MEMS resonant sensor but have not been utilized

to improve the resolution that can be achieved by the sensors. This approach can

be applied to a wide variety of sensors without requiring a redesign of the devices,

only increases in the amplitudes of the excitation forces used to drive the sensor into

resonance. By applying the use of the jump-up frequency to detect shifts in the

linear natural frequency of the sensors, the nonlinear behavior that is inherent in

many sensors can be exploited to improve the resolution of the sensor.

Noise within a system that uses the conventional linear vibration detection scheme

can make it difficult to detect the shifts in the linear natural frequency that is related

to changes in the environment. The nonlinear frequency detection technique can be

used as a way to improve the resolution of resonant sensors since the location of the

jump-up frequency can be detected even when large amounts of noise are present

in the system. The application of this technique to sensors in noisy environments

should allow the devices to increase their resolution without the need to add complex

components to filter the vibration information or isolate the sensor from the noise. It

has also been shown that damping within the system does not affect the sensitivity

of the nonlinear vibration characterization technique as with conventional methods

that characterize systems through their linear vibration. Damping greatly affects the

resolution of MEMS resonators that use linear vibration detection and the use of the

nonlinear vibration detection scheme will allow for increases in resolution without the

need to package the sensors in a vacuum environment. The application of nonlinear

vibration detection may lead to increases in sensor resolutions that will speed up

the development of MEMS sensors from prototype stages to sensor that can be sold

commercially.
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CHAPTER VII

CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

Sensors remain an important part of society and are integrated in areas such as man-

ufacturing processes, automobiles, and household appliances to name a few examples.

Advances in the sensitivity of sensors and device fabrication should lead to further

advances in technological development of society. This thesis has lead to improve-

ments in the modeling of a MEMS resonator for use as a magnetic sensor through

a development of an analytical model to represent the nonlinear system components

and their effects on the sensitivity of the magnetic sensor. The improved model pro-

vides a better understanding of how modifications of sensor parameters will affect the

behavior of the device and allows for improved optimization of the magnetic sensor

design.

Through the optimization of the sensor to increase the effects of nonlinearities

on device behavior, the sensitivity of the magnetic sensor should be increased. The

application of shaped comb drives to the magnetic sensor provided a means of in-

creasing the nonlinearity of the sensor by simultaneously reducing the linear behavior

of the system stiffness and increasing the quadratic nonlinear behavior of the sensor.

The methodology presented within this thesis to exploit nonlinearities of the sensor

can be applied to other MEMS devices where the nonlinearities affect the device be-

havior. By developing nonlinear models of other devices and determining how the

nonlinearities relate to the system response, improved performance may be realized

by exploiting the nonlinear behavior of the devices.
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The final contribution of this thesis is the proposal of a frequency sensing tech-

nique to improve the performance of resonant sensors through nonlinear vibration

characterization of system behavior. The implementation of nonlinear vibration to

detect changes in the sensor behavior is not limited for use with the magnetic sensor

and can be applied to other types of MEMS resonators that require the static mea-

surement of the vibration behavior. The use of the jump-up frequency to detect shifts

in the linear natural frequency of resonators should result in devices that are insen-

sitive to large amounts of noise and resolutions that are independent of the amount

of damping present in the resonating system.

7.2 Future Work

There are several areas of research that worth investigating in order to provide further

improvement in the design of the magnetic sensor and to expand the application of

nonlinear system behavior to other MEMS devices.

Further research to improve the strength of the magnet used within the sensor

should result in increases in the sensitivity of the system over what has been proposed

within this thesis. Increasing the magnetic torque will result in larger deflection of the

beams during sensor operation and should increase sensitivity of the sensor beyond

what can be achieved through the optimization of the mechanical elements of the

sensor and the application of shaped comb drives.

Exploration of new types of MEMS fabrication techniques for use in the creating

the magnetic sensor could result in improved performance if the minimum gap and

minimum feature size of the beam is reduced. Reduction of the minimum gap would

allow for the design of more powerful shaped comb drives that would allow for im-

proved performance or also allow for reduction in the voltage required to generate

forces. While the optimization of the magnetic sensor was done with the assumption

that the device would be fabricated with the facilities located at Georgia Tech, future
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work can be done on the optimization of the design for construction utilizing other

manufacturing facilities and procedures.

Manufacturing for the shaped comb drives was also not considered for the redesign

of the magnetic sensor within this thesis. The fabrication of variable gap comb drives

could lead to difficulties in manufacturing that may lead to additional design con-

straints that must be considered when optimizing the comb finger sets within the

shaped comb drives. Additional work in the development of the magnetic sensor

should determine the amount of power and the maximum voltage that can be used

by the shaped comb drives. While it is expected that the additional consideration of

the power requirement of the sensor should lead to an improved optimization of the

shaped comb drives and may result in further improvements in the sensor sensitivity.

The final area that could benefit from further research is the implementation of

nonlinear vibration characterization to other devices to further validate the advan-

tages of characterizing system behavior with this technique. The use of the jump-

frequency to detect changes in system behavior due the environment could result in

increased resolutions for pressure sensors, temperature sensors, and magnetic sen-

sors to name a few examples. New frequency detection schemes and devices should

be investigated in order to generate designs that are able to take full advantage of

the nonlinear vibration of the oscillators without a loss in frequency detection per-

formance. Further research in the design of the excitation elements could lead to

increases in the driving force for the system and also reductions in the power required

to drive the system into large deflection.

98



APPENDIX A

BEAM DEFLECTION CODE

The following is a list of Maple commands used to solve for P in Section 3.2.1.2 for

use to determine a relationship between P , S, M0 and δy.

restart;

y_x:=-(P*x+Mo-P*L)/S+C1*sinh(t*x)+C2*cosh(t*x);

Y_prime:=diff(y_x,x);

BC_xL_slope:=subs({x=L},Y_prime);

BC_x0_slope:=subs({x=0},Y_prime);

BC_x0_slope:=eval(BC_x0_slope);

Rot:=(delta)/(R^2-(delta)^2)^.5;

BC_x0_slope:=eval(BC_x0_slope)-Rot;

BC_xL:=-(P*L+Mo-P*L)/S+C1*sinh(t*L)+C2*cosh(t*L);

solve({BC_x0_slope,BC_xL,BC_xL_slope},{C1,C2,Mo});

The solutions for C1,C2, and Mo must then be stored as variables in the workspace.

The example for C1 is shown

C1:= (expression);

Y:=-(P*x+Mo-P*L)/S+C1*sinh(t*x)+C2*cosh(t*x);

Ymax_x0:=subs({x=0},Y);

Ymax_x0:=eval(Ymax_x0);

The following command solves for P as a function of R,δ, and S.

solve({Ymax_x0-delta},P);
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Dy_Dx:=diff(Y,x);

Dy_Dx_2:=(Dy_Dx)^2;

int_dy_dx:=int(Dy_Dx_2,x=0..L);

S_:=A*E/(2*L)*int_dy_dx+(R1-sqrt(R1^2-delta^2))*A*E/L;

S_:=solve({S_-S},P);

By defining P in the workspace similar to how C1 was defined, it is possible to display

a form of P that can be copied directly into MATLAB or other math computation

codes.
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APPENDIX B

EXAMPLE DEVICE DIMENSIONS

B.1 Resonator without Magnet

Figure (53) shows a drawing of the resonator used in Section 3.5.2 to compare the

analytical model of the MEMS resonator with an experimental device. The device

is similar to the magnetic sensor considered in this thesis, but without the magnet.

The primary dimensions of the resonator are:

Table 12: Significant Device Dimenions
Dimension Value
Beam Length 2000 µm
width 14 µm
height 200 µm
Disk Radius 1000 µm
Comb Drive Radius 2400 µm
ρ silicon 2.33 g

cc

E 131 GPa

B.2 Resonator with Magnet

The dimensions of the device used in Section 3.5.3 to analyze the behavior of the

magnetic sensor are:
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Figure 53: Autocad Drawing of Magnetic Sensor.

Table 13: Significant Device Dimenions
Dimension Value
Beam Length 2000 µm
width 16 µm
height 200 µm
Disk Radius 1000 µm
Comb Drive Radius 2400 µm
ρ silicon 2.33 g

cc
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APPENDIX C

OPTIMAL SHAPED COMB DRIVE

PARAMETERS

Table C presents the comb finger parameters for the optimal shaped comb drive

presented in Chapter 5. The equation used to translate the system parameters into

the shape of the comb drive gap is:

gap =
1

c0 + c1 · x + c2 · x2 + c3 · x3
µm

where x represents the insertion depth of the moving finger. Both values for x and

the gap are in microns.

103



Table 14: Gap Parameters for an Optimized Shaped Comb Drive.
Radius (µm) c0 c1 c2
1065 0.05 -0.00707 0.001904
1115 0.05 -0.00694 0.001840
1165 0.05 -0.00682 0.001779
1215 0.05 -0.00670 0.001721
1265 0.05 -0.00659 0.001666
1315 0.05 -0.00648 0.001614
1365 0.05 -0.00639 0.001564
1416 0.05 -0.00629 0.001517
1465 0.05 -0.00620 0.001472
1515 0.05 -0.00611 0.001428
1565 0.05 -0.00603 0.001387
1615 0.05 -0.00596 0.001348
1665 0.05 -0.005898 0.001310
1715 0.05 -0.00579 0.001273
1765 0.05 -0.00570 0.001238
1815 0.05 -0.00562 0.001204
1865 0.05 -0.00553 0.001172
1915 0.05 -0.00546 0.001141
1965 0.05 -0.00539 0.001111
2015 0.05 -0.00531 0.001082
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APPENDIX D

MAGNETIC SENSOR OPTIMIZATION CODE

WITH SHAPED COMB DRIVE

The following code was implemented in MATLAB to determine the height for the

magnetic sensor beams and the corresponding optimal gap profiles for the shaped

comb drives. The results from the code were discussed in Chapter 5.

Main Program Code:

clear all

global cd0 cd1 cd2 cd3 V e h pos1 pos2 ming maxg ming2

% Variables used to evaluate sensitivity

resWN=1;

resAlpha1=pi/2-.1;

resAlpha2=pi/2;

% Variables are the dimensions of the beam system

DensM=7440; %kg/m^3 Density of permanent magnet

Rm=800*10^-6; %m permanent magnet radius

Tm=800*10^-6; %m permanent magnet thickness

Vm=pi*Rm^2*Tm; % Volution of permanent magnet

R2=2000*10^-6; % External radius of comb drive supports

T=7.2*10^-8; % Magnitude of magnetic torque

comb=0;

R1=1000*10^-6; %Radius of central disk

rho=2330; %density of silicon

105



E=131e9; % elastic modulus of silicon

V=25; % Voltage across shaped comb drive

e=8.85*10^-12; % Permittivity of free space

L=2000e-6; % beam length

w=5e-6; % beam width

% for the purpose of this code, height and thickness are equivalent.

% h and t are also related to the height/thickness of the sensor

% beams

for hh=1:131

t=(.1*(hh-1)+45)*10^-6;

height(hh)=t

iteration = 0;

FL=0; % Initial shaped comb drive force profile

FQ=0; % Initial shaped comb drive force profile

FC=0; % Initial shaped comb drive force profile

Fprev=120;

OPTIONS=OPTIMSET(’Display’,’off’,’LargeScale’,’off’);

while (abs(FC-Fprev)> 1e-3)

Fprev=FC;

iteration = iteration +1;

% input comb drive parameters

Arm= 40e-6;% Distance from central disk to first moving comb

% finger center

gap0=20; % gap at X=0
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Center= (2*gap0+2*5)*10^-6; % Distance between centers of

% the comb drives

% This section calculates the equivalent moment arms for the

% Torque

Rlinear=0;

Rquad=0;

Rcub=0;

i=0;

n=0;

r=0;

rmax=2000e-6;

while (r < rmax)

i=i+1;

r=Radius + Arm + .5*Center + (i-1)*Center;

RR(i)=r;

n=n+1;

end

n=n; % Number of comb drive sets allowed in the comb drive.

% the value for n should be 18.

% Initial guesses for optimal gap profiles

cd0 = 1/gap0;

cd1 = -.1;

cd2 = 10;

cd3 = 0;
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% Determine stiffness coefficients due to the sensor beams

Coeff = beamcoeffind(L,t,w,E,R1);

% Deterimine the operating range of each comb drive

error = 1; % The tolerance of the computation in microns. Used

% as a safety factor for unpredictable device motion to prevent

% the gap from becoming less than 2 micron

Insertion = frequency(Rm,Tm,Vm,DensM,E,R1,R2,rho,t,w,L,T,n, ...

RR,Coeff,FL,FQ,FC) + error;

% Set values for gap profile constraints

maxg = gap0+3;

if (ceil(t/15) > 2)

ming=ceil(t/15);

else

ming=3;

end

pos1 = 10;

ming2 = 2;

% Determine the Maximum coefficents for each comb drive set

for kk=1:n

pos2 = Insertion(kk)+pos1; % end of operating range

pos22(kk)=pos2; % begin of operating range

x0 = [cd0,cd1,cd2,cd3]; % initial guess.

% but the program should figure it out

Lbnd = [0.05 -2 0 0];

Ubnd = [cd0 0 inf 0];
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[x,f]=fmincon(’GapF’,x0,[],[],[],[],Lbnd ...

,Ubnd,’GapCon’,OPTIONS);

c0(kk)=x(1);

c1(kk)=x(2);

c2(kk)=x(3);

c3(kk)=x(4);

end

% Convert from microns to meters

C0=c0*10^6;

C1=c1*10^12;

C2=c2*10^18;

C3=c3*10^24;

% Sum all of the contributions of each comb finger

% torque together.

T0=0;

TL=0;

TQ=0;

TC=0;

for j=1:n

T0=C0(j)*RR(j)*t*e*V^2+T0;

TL=e*t*V^2*C1(j)*RR(j)^2+TL;

TQ=e*t*V^2*C2(j)*RR(j)^3+TQ;

TC=e*t*V^2*C3(j)*(RR(j))^4+TC;

end

% Calculate equivalent lateral stiffness to be added to terms

% from the beam lateral stiffness

FL=TL/R1^2;
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FQ=TQ/R1^3;

FC=TC/R1^4;

Diff=FQ-Fprev;

end

% Evaluate new system stiffness coefficients

Ca=Coeff(1)+FL;

Cb=Coeff(2)+FQ;

Cc=Coeff(3)+FC;

Ma=Coeff(4);

Mb=Coeff(5);

Mc=Coeff(6);

Cax=Coeff(7);

Cbx=Coeff(8);

Ccx=Coeff(9);

I=1/12*t*w^3;

Inertia=(1/2*rho*t*pi*R1^4+rhom*pi*Rm^2*Tm*(1/12*(3*Rm^2+Tm^2)) ...

+(1/10*rho*t*pi*(R2^4-R1^4)));

Icomb=0;

% Eval inertia of comb fingers

for j=1:18

Icomb=8/15*rho*t*pi*((R1+40e-6+(40e-6)*(j-1))^4 - ...

(R1+20e-6+40e-6*(j-1))^4);

end

Inertia=Inertia+Icomb;

% Check system constraints

C=systemCon(t,E,L,w,Coeff,R1 ,T, R2, Vm, DensM, rho, Rm ,Tm);

if ((C(1)*C(2)) >0)
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options=optimset(’tolx’,eps/4);

% eval natural frequency at position 1

% Eval theta0max

theta=abs(fzero(’nonlinearTT_x_M’,resAlpha1/2,options,resAlpha1, ...

Ca,Cb,Cc,Cax,Cbx,Ccx,Ma,Mb,Mc,R1,T));

K10=3*Ma*R1+3*Ca*R1^2;

K11=6*(Cax*R1^2+Mb*R1^2+Cb*R1^3+ 1/6*T*sin( resAlpha1));

K12=9*(Ccx*R1^4-1/36*Ma*R1+Cbx*R1^3-7/18*Ca*R1^2+Mc*R1^3 ...

+Cc*R1^4-1/108*T*cos( resAlpha1));

K13=(-1.5*Mb*R1^2-5*Cb*R1^3-1.5*Cax*R1^2-1/6*T*sin( resAlpha1));

WnI1=sqrt((T*cos( resAlpha1)+K10 +K11*theta + K12*theta^2 ...

+K13*theta^3)/Inertia);

% eval natural frequency at position 2

% Eval theta0max

theta=abs(fzero(’nonlinearTT_x_M’,resAlpha2/2,options, ...

resAlpha2,Ca,Cb,Cc,Cax,Cbx,Ccx,Ma,Mb,Mc,R1,T));

K10=3*Ma*R1+3*Ca*R1^2;

K11=6*(Cax*R1^2+Mb*R1^2+Cb*R1^3+ 1/6*T*sin( resAlpha2));

K12=9*(Ccx*R1^4-1/36*Ma*R1+Cbx*R1^3-7/18*Ca*R1^2+Mc*R1^3 ...

+Cc*R1^4-1/108*T*cos( resAlpha2));

K13=(-1.5*Mb*R1^2-5*Cb*R1^3-1.5*Cax*R1^2-1/6*T*sin( resAlpha2));

WnI2=sqrt((T*cos( resAlpha2)+K10 +K11*theta + K12*theta^2 ...

+K13*theta^3)/Inertia);

% This section makes sure that resolution is met

Fdes=resWN/(resAlpha2-resAlpha1);

Ftemp=( WnI2- WnI1)/(resAlpha2-resAlpha1);
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’pass’

obj(hh)=-Ftemp

step=hh

else

’fail’

obj(hh)=0

end

end

figure(2);hold on;

plot(height,obj)

frequency.m

function Insertion = frequency(Rm,Tm,Vm,DensM,E,R1,R2,rho,t,w, ...

L,T,n,RR,Coeff,FL,FQ,FC)

% Convert Coeff to beam stiffness coefficients

T=T;

Ca=Coeff(1)+FL;

Cb=Coeff(2)+FQ;

Cc=Coeff(3)+FC;

Ma=Coeff(4);

Mb=Coeff(5);

Mc=Coeff(6);

Cax=Coeff(7);

Cbx=Coeff(8);

Ccx=Coeff(9);

Inertia=(1/2*rho*t*pi*R1^4+rhom*pi*Rm^2*Tm*(1/12*(3*Rm^2+Tm^2))+
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(1/10*rho*t*pi*(R2^4-R1^4)));

Icomb=0;

% Eval inertia of comb fingers

for j=1:18

Icomb=8/15*rho*t*pi*((R1+40e-6+(40e-6)*(j-1))^4 - ...

(R1+20e-6+40e-6*(j-1))^4);

end

Inertia=Inertia+Icomb;

% Determine maximum theta0 that will be experienced by the system.

% this occurs at alpha = pi/2.

alpha=pi/2;

options=optimset(’tolx’,eps/4);

Thetamax=fzero(’nonlinearTT_x_M’,alpha/2,options,alpha,Ca,Cb, ...

Cc,Cax,Cbx,Ccx,Ma,Mb,Mc,R1,T);

% Determine the insertion distance for each of the comb drives in

% microns. RR is in meters so it must be converted to microns.

for i=1:n

Insertion(i)=Thetamax*RR(i)*10^6;

end

System Constraints:

function C= systemCon(t,E,L,w,XX,R1 ,T, R2, Vm, DensM, rho, Rm ,Tm)

% This function contains the constraint equations for the system

Ca=XX(1);

Cb=XX(2);
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Cc=XX(3);

Ma=XX(4);

Mb=XX(5);

Mc=XX(6);

Cax=XX(7);

Cbx=XX(8);

Ccx=XX(9);

MLL=XX(10);

MLQ=XX(11);

MLC=XX(12);

alpha = pi/2;

options=optimset(’tolx’,eps/4);

Thetamax =fzero(’nonlinearTT_x_M’,alpha/100,options,alpha,Ca,Cb, ...

Cc,Cax,Cbx,Ccx,Ma,Mb,Mc,R1,T);

A=t*w;

Masscomb=0;

% Eval weight of comb fingers

for j=1:18

% Rout=(R1+80e-6+(80e-6)*(j-1))*1000

% Rin=(R1+60e-6+80e-6*(j-1))*1000

Masscomb=8/15*rho*t*pi*((R1+40e-6+(40e-6)*(j-1))^2 - ...

(R1+20e-6+40e-6*(j-1))^2);

end

% Eval weight of central region

MassC=DensM*Vm+R1^2*pi*t*rho + 1/10*rho*pi*t*((2430e-6)^2-(R1)^2) ...
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+Masscomb;

% Axial stress at Tip

S=Cax*Thetamax*R1+Cbx*(Thetamax*R1)^2;

Kax=S/A;

% Shear stress at the Tip

Fy = Ca*Thetamax*R1+Cb*(Thetamax*R1)^2+Cc*(Thetamax*R1)^3;

Kshear=sqrt(Fy^2+(Masscomb*9.81)^2)/A;

%Moment at tip

Mz=MLL*(Thetamax*R1)+MLQ*(Thetamax*R1)^2+MLC*(Thetamax*R1)^3;

% Moment to support the magnet and disk in the center

My=(1/3)*(MassC*9.81)*L+L/2*rho*9.81*L*t*w;

tanB=(My*w^2)/(Mz*t^2);

B=atan(tanB);

j=0;

z1=0;

L1=((w/2+z1*tanB)^2+(t/2-z1)^2)^.5;

A=t/2;

z3=z1+A;

L3=((w/2+z3*tanB)^2+(t/2-z3)^2)^.5;

psi=1*10^-12;

a=1;

while a>psi

j=j+1;

% bisection variable to keep decreasing distance between

% max and min points along search direction

a=A/(2^j);
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if L1<L3

z1=z1+a;

L1=((w/2+z1*tanB)^2+(t/2-z1)^2)^.5;

else

z3=z3-a;

L3=((w/2+z3*tanB)^2+(t/2-z3)^2)^.5;

end

end

z=t/2-z1;;

y=w/2+z1*tanB;

Kz=My*(z)/(1/12*w*t^3);

Ky=Mz*y/(1/12*w*t^3);

sigmax=abs(Ky+Kz+Kax);

Stress=sqrt((2*sigmax^2+6*Kshear^2)/2);

% Eval Stress Constraint

StressMax=349e6;

C(1)=(Stress-StressMax)/StressMax;

% Evaluate the linear natural frequency of the torsional mode of

% vibration

Inertia=1/2*rho*t*pi*R1^4+DensM*pi*Rm^2*Tm*(1/12*(3*Rm^2+Tm^2)) ...

+1/10*rho*t*pi*(R2^4-R1^4);

Icomb=0;

% Eval weight of comb fingers

for j=1:18

% Rout=(R1+80e-6+(80e-6)*(j-1))*1000

% Rin=(R1+60e-6+80e-6*(j-1))*1000
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Icomb=8/15*rho*t*pi*((R1+40e-6+(40e-6)*(j-1))^4 - ...

(R1+20e-6+40e-6*(j-1))^4);

end

Inertia=Inertia+Icomb

K10=3*Ma*R1+3*Ca*R1^2;

K11=6*(Cax*R1^2+Mb*R1^2+Cb*R1^3+ 1/6*T*sin( pi/2));

K12=9*(Ccx*R1^4-1/36*Ma*R1+Cbx*R1^3-7/18*Ca*R1^2+Mc*R1^3 ...

+Cc*R1^4-1/108*T*cos(pi/2));

K13=(-1.5*Mb*R1^2-5*Cb*R1^3-1.5*Cax*R1^2-1/6*T*sin( pi/2));

Wn=sqrt((T*cos(pi/2) + K10 + K11*Thetamax + K12*Thetamax^2 ...

+ K13*Thetamax^3)/Inertia)

% Eval natural frequency of vibration for the

zCa=(E*(w*t^3))/L^3;

Wz = sqrt(3*zCa/MassC)

Wmax=2.5;

C(2) = (Wmax - Wz/Wn)/Wmax

C=C

Objective Function for Shaped Comb Drives

function f= GapF(x)

% this function contains the objective function to be optimized

global cd0 cd1 cd2 cd3

c0=x(1);

c1=x(2);

c2=x(3);

c3=x(4);

f = (cd1-c1)^2 + (cd2-c2)^2;
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Shaped Comb Drive Constraints

function [C,Ceq]= GapCon(x)

% This function contains the constraint equations for the system

c0=x(1);

c1=x(2);

c2=x(3);

c3=x(4);

global pos1 pos2 ming maxg ming2

% minimum gap at a specified location

C(1) = c0 + c1*pos1 + c2*pos1^2 + c3*pos1^3 - 1/ming;

C(2)= -x(1);

% C(3)= -x(2);

C(4)= -x(3);

C(5)= -x(4);

C(6)= c0 + c1*pos2 + c2*pos2^2 + c3*pos2^3 - 1/ming2;

for i=1:maxg

C(i+6) = 1/maxg - (c0 + c1*(i/2) + c2*(i/2)^2 + c3*(i/2)^3);

end

C;

% gap must be greater than zero

Ceq=[];
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APPENDIX E

INCREMENTAL HARMONIC BALANCE CODE

The following code was used within MATLAB to determine the response of a nonlin-

early vibrating system using the incremental harmonic balance method. The coeffi-

cients

K3_bar, K2_bar, K1_bar, C_bar, and F_bar

are found in the differential equation used to describe the system.

% Generate equation for IHB

syms a0 a1 a2 a3 a4 a5 b1 b2 b3 b4 b5 tau w0 K3_bar K2_bar ...

K1_bar C_bar F_bar

% The general form of the equation is

% M_bar*xdd + C_bar*xd + k1_bar*x + k2_bar*x^2 + k3_bar*x^3 = ...

F_bar*cos( Omega*t)

M_bar=1;

Cs=[cos(0) cos(tau) cos(2*tau) cos(3*tau) cos(4*tau) cos(5*tau) ...

sin(tau) sin(2*tau) sin(3*tau) sin(4*tau) sin(5*tau)];

A=[a0;a1;a2;a3;a4;a5;b1;b2;b3;b4;b5];

S=[Cs];

Sd=diff(S,tau);

Sdd=diff(Sd,tau);

St=[[ 1]

[ cos((tau))]
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[ cos(2*(tau))]

[ cos(3*(tau))]

[ cos(4*(tau))]

[cos(5*(tau))]

[ sin((tau))]

[ sin(2*(tau))]

[ sin(3*(tau))]

[ sin(4*(tau))]

[sin(5*(tau))]];

Q=S*A;

K2_bar=K2_bar*Q;

K3_bar=K3_bar*Q*Q;

M=int(St*M_bar*Sdd,tau,0+pi/2,2*pi+pi/2);

C=int(St*C_bar*Sd,tau,0+pi/2,2*pi+pi/2);

K=int(St*K1_bar*S,tau,0+pi/2,2*pi+pi/2);

K2=int(St*K2_bar*S,tau,0+pi/2,2*pi+pi/2);

K3=int(St*K3_bar*S,tau,0+pi/2,2*pi+pi/2);

F=int(St*F_bar*cos(tau),tau,0+pi/2,2*pi+pi/2);

Rf=int(St*cos(tau),tau,0+pi/2,2*pi+pi/2);

Kmc=w0^2*M+w0*C+K+2*K2+3*K3;

R=F-(w0^2*M+w0*C+K+K2+K3)*A;

pts=300

adjust=0;

a1=0;

for i=1:pts

if (a1 < 1e-6)
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a1=1e-3;a0=0;a2=0;a3=0;a4=0;a5=0;

b1=0;b2=0;b3=0;b4=0;b5=0;

else

a1=a1;

end

w0=1000/pts*(i)+685

IHBwU(i)=w0;

% Implement interation loop

cont=1;

while(cont == 1)

Rh=eval(R);

Kmch=eval(Kmc);

Delta=Kmch^-1*Rh;

Delta(2);

cont=lt(1e-4,abs(Delta(2)));

a0=a0+Delta(1);

a1=a1 +Delta(2) ;

a2=a2+Delta(3);

a3=a3+Delta(4);

a4=a4+Delta(5);

a5=a5+Delta(6);

b1=b1+Delta(7);

b2=b2+Delta(8);

b3=b3+Delta(9);

b4=b4+Delta(10);

b5=b5+Delta(11);
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sqrt(a1^2+b1^2);

end

A0(i)=a0;

A1U(i)=sqrt(a1^2+b1^2);

A2U(i)=a2;

A3U(i)=a3;

A5U(i)=a5;

B2U(i)=b2;

B3U(i)=b3;

B4U(i)=b4;

B5U(i)=b5;

RRR(:,i)=Rh;

end
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