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SUMMARY

This dissertation consists of two problems in the �eld of Mathematical Physics.

The �rst part of our dissertation deals with a celebrated conjecture by Villani (See

[22]). Taking ideas that were presented in [4] one step forward we manage to give an

upper bound to the entropy production, showing that Villani's conjecture is true for

all practical purposes.

The second part of our dissertation deals with developing a new trace inequality

for the fractional Laplacian. We show that the new inequality is sharp and continue

to give a complete characterization for the functions who minimize it, along with the

space where it is most natural.

viii



Chapter I

INTRODUCTION

The Journal of Mathematical Physics de�nes 'Mathematical Physics' as 'The appli-

cation of mathematics to problems in physics and the development of mathematical

methods suitable for such applications and for the formulation of physical theories'.

I �nd that this de�nition is a good phrasing of my own views. Mathematics has gone

a long way since the 17th century and the scienti�c revolution, and while at our stage

of knowledge and specialty Mathematics is a world of its own I still �nd that my

mathematical intuition and understanding rely heavily on my ability to relate the

problem to some physical situation.

This dissertation deals with two di�erent problems in the �eld of Mathematical

Physics. As such, it consists of two main chapters, each dedicated to one problem,

and an Appendix for additional proofs.

The second chapter is dedicated to an almost solution of Villani's conjecture, a

known conjecture related to a Statistical Mechanics model invented by Kac ([16]) in

1956, dealing with equilibrium of a system with large amount of particles. In 2003

Villani conjectured that the time it will take the system to equilibrate is proportional

to the number of particles in the system. Our main result of the chapter is a proof of

that conjecture, up to an ε, showing that for all practical purposes we can consider

it to be true. This result have been published in the Kinetic and Related Models

Journal (See [8]).

The third chapter is dedicated to a newly developed trace inequality connecting

between the fractional Laplacian of a function and its restriction to the intersection

of the hyperplanes xn = 0, . . . , xn−j+1 = 0, where 1 ≤ j < n. In this chapter
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not only will we manage to prove the inequality, but also show that it is sharp, and

classify completely all the functions that attain equality. The results in this chapter

are the product of a joint work with Prof. Michael Loss and will be published in the

Proceedings of the American Mathematical Society Journal (See [9]).

The structure of the dissertation will be as followed:

Chapter 2 is divided into seven sections. Sections 2.1 to 2.3 are devoted to back-

ground material, motivation, and a small summary of known results including Villani's

conjecture. Section 2.4 describes the properties of an important function that will be

used thoroughly throughout the chapter. Section 2.5 is the main theoretical section

of this chapter, consisting of a central limit theorem that will allow us to get an

asymptotic approximation which will play a key role in our proof. Section 2.6 is the

main computational section of the chapter. Following ideas presented in Section 2.3

and results from Sections 2.4 and 2.5 we will present an proof to Villani's conjecture,

up to an ε. The last section of the chapter, Section 2.7, is dedicated to a few last

remarks about the material presented in the chapter.

Chapter 3 is divided into eight sections. Sections 3.1 and 3.2 set the background

tone and motivation for our investigation of the new trace inequality. Section 3.3

consists of our main inequality, and an initial investigation of it. In Section 3.4

we will extend the class of functions we're allowed to use in the inequality, and

classify the functions that will attain equality. Section 3.5 will introduce another

trace inequality, that while similar in nature to our main inequality, still posses some

interesting features. Section 3.6 will discuss an important boundary case and Section

3.7 will contain a few last remarks on the material presented in the chapter.

Without further ado, let us begin!
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Chapter II

VILLANI'S CONJECTURE AND KAC'S MODEL

2.1 The Boltzmann Equation and Kac's Model

One of the most important equations in non-equilibrium statistical mechanics is the

Boltzmann equation, describing the time evolution of the density function f(−→x ,−→v , t),

where f(−→x ,−→v , t) is de�ned as the number of particles in an in�nitesimal rectangle

of volume d−→x d−→v about (−→x ,−→v ) at time t, where −→x and −→v represent position and

velocity respectfully. The time evolution of the density function is given by

∂f

∂t
(−→x ,−→v , t)+−→v ◦∇−→x f(−→x ,−→v , t)+

−→
F (−→x ,−→v , t)

m
◦∇−→v f(−→x ,−→v , t) =

df

dt
|collision(−→x ,−→v , t)

where
−→
F (−→x ,−→v , t) is the external force acting on the system of particles and m is

the mass of the particles. This follows from the fact that at time t + dt the position

and velocity of the particles is given by −→x + −→v dt and −→v +
−→
F
m
dt respectfully. The

real problem is specifying what df
dt
|collision(−→x ,−→v , t) is. Boltzmann determined the

collision term resulting solely from collisions of two particles that are assumed to be

uncorrelated prior to the collision ('Stosszahlanastz' as coined by Boltzmann, also

known as the 'molecular chaos assumption'). The e�ect of the collisions is expressed

in terms of a function σ(Ω, |−→v1 − −→v2 |) representing the di�erential scattering cross

section, describing the probability for the change of velocities (−→v1 ,
−→v2) → (

−→
v′1 ,
−→
v′2),

where Ω denoted the relative orientation of the vectors (
−→
v′2 −

−→
v′1) and (−→v2 −−→v1). The

collision term is given by

ˆ
dΩ

ˆ
d−→v1σ(Ω, |−→v1 −−→v2 |)|−→v1 −−→v2 |

(
f(−→x ,

−→
v′1 , t)f(−→x ,

−→
v′2 , t)− f(−→x ,−→v1 , t)f(−→x ,−→v2 , t)

)
In 1956 Marc Kac developed a linear model from which a simple version of the

spatially homogenous Boltzmann equation appeared under certain conditions. In [16]
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Kac considered a system ofN particles in one dimension that interact through random

binary collisions: if v1, . . . , vN are the velocities of theN particles, a collision can occur

between any two particles, leaving the rest unperturbed. If the ith particle and the jth

particle collided, their velocities change from (vi, vj) to (vi cosϑ+ vj sinϑ,−vi sinϑ+

vj cosϑ), where ϑ is a random angle. While this model doesn't conserve momentum,

it does conserve the total kinetic energy.

Given a probability density for 'scaterring' in an angle ϑ, this Possion-like process

yields a time evolution equation for the density function F . In the case of a constant

density, and a spatially independent density function the equation is given by

∂F

∂t
(v1, . . . , vN , t) = −N(I −Q)F (v1, . . . , vN , t) (2.1.1)

where

QF (v1, . . . , vN)

=
1

2π

 N

2


∑
i<j

ˆ 2π

0

F (v1, . . . , vi cosϑ+ vj sinϑ, . . . ,−vi sinϑ+ vj cosϑ, . . . , vN) dϑ

We note that a beautiful probabilistic explanation to (2.1.1) and the entire process

can be found in [3].

Next in his paper, Kac noticed that if he de�ned the marginals

fn(v1, . . . , vn) =

ˆ
∑N
i=n+1 v

2
i=E−

∑n
i=1 v

2
i

F (v1, . . . , vN) dsN−n

where E is the �xed total energy and dsN−n is the uniform measure on SN−n−1
(√

E −
∑n

i=1 v
2
i

)
,

then equation (2.1.1), which was coined as 'Kac's Master Equation', implies a similar

equation to the Boltzmann equation for the the �rst marginal f1! To get the exact
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Boltzmann equation we must have

fn(v1, v2, . . . , vn, t) ≈ f1(v1, t) · · · · · f1(vn, t)

in some sense. The above observation prompted Kac to de�ne what he called 'The

Boltzmann Property': thinking of each particle as of unit energy particle, a sequence

of density functions FN(v1, . . . , vN) on SN−1(
√
N) is said to have the Boltzmann

property if

lim
N→∞

f
(N)
k (v1, . . . , vk) = lim

N→∞
Πk
i=1f

(N)
1 (vi)

in some weak sense, where f
′(N)
k is the kth marginal of FN . In his original paper, Kac

didn't de�ne the convergence rigorously. A complete explanation with the right type

of convergence can be found in [4].

Intuitively 'The Boltzmann property' means that as the number of particles get

larger, each given k particles become more and more independent. Kac proceeded

to prove that if FN(v1, . . . , vN , t) is the solution to the master equation (2.1.1) with

initial condition FN(v1, . . . , vN , 0) = FN(v1, . . . , vN) where FN(v1, . . . , vN) has the

Boltzmann property, then FN(v1, . . . , vN , t) will have the Boltzmann property for any

t. This is now known as 'Propogation of Chaos'. Moreover, in this case the time

evolution equation that f1(v, t) = limN→∞ f
(N)
1 (v, t) satis�es is

∂f

∂t
(v, t) (2.1.2)

= 1
2π

´
R dω

´ 2π

0
dϑ (f1 (v cosϑ+ ω sinϑ, t) f1 (−v sinϑ+ ω cosϑ, t)− f1(v, t)f1(ω, t))

which is the Boltzmann equation in the spatially homogeneous, no external force case.

2.2 Kac's Conjecture and the gap problem

Another observation made by Kac was that any solution to the master equation will

converge to the equilibrium state, represented by the constant function, as the time

goes to in�nity. This is not hard to see since the operator Q, given in the master
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equation (2.1.1), is self adjoint, bounded, satis�es Q ≤ I and dim ker (Q− I) = 1.

Indeed, the solution to the master equation with initial condition F (v1, . . . , vN , 0) =

F (v1, . . . , vN) is given by

F (v1, . . . , vN , t) = e−N(I−Q)tF (v1, . . . , vN)

That along with the fact that Q has a one dimensional eigenspace for the eigenvalue 1

and Q ≤ I shows that in a weak sense FN(v1, . . . , vN , t) will converge to a function in

the above eigenspace. The fact that the eigenspace for the eigenvalue 1 is spanned by

the constant function shows the equilibrium convergence. Normalizing the measure

implies FN(v1, . . . , vN , t) will converge weakly to the function 1.

Since every solution converges in a weak sense (L2
(
SN−1(

√
N)
)
sense) a natural

question to ask is how quickly will the convergence occur? This prompted Kac to

de�ne the spectral gap

∆N = inf
{
〈ϕ,N(I −Q)ϕ〉 | ϕ ∈ L2

(
SN−1(

√
N)
)
, 〈ϕ, 1〉 = 0, 〈ϕ, ϕ〉 = 1

}
Any solution of the master equation satis�es

‖F (v1, . . . , vN , t)− 1‖L2(SN−1
√
N) ≤ e−∆N t ‖F (v1, . . . , vN , 0)− 1‖L2(SN−1

√
N) (2.2.1)

(See Lemma A.1.1 in the Appendix).

In hope for an exponential convergence rate Kac conjectured that

lim inf
N→∞

∆N > 0

which will give a uniform bound in the exponent. The conjecture turned out to be

true as was �rst proved by Janvresse in [14]. Her proof, however, didn't reveal what

the spectral gap is. Later on the same year Carlen, Carvalho and Loss managed to

�nd the exact value of ∆N and showed it to be

∆N =
N + 2

2(N − 1)
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as well as �nding a function attaining the above value (See [3]).

After 44 years Kac's conjecture was proved. Is it enough? Unfortunately the

answer is no.

While the exponent appearing in the relaxation estimation is not a�ected by N ,

the initial condition can, and in most natural cases, is. A density function which

satis�es F (v1, . . . , vN , 0) ≈ ΠN
i=1f(vi) would generate a very large L2

(
SN−1(

√
N)
)

norm. Indeed, one can �nd many sequences of density functions that satisfy

‖F (v1, . . . , vn)‖L2(SN−1(
√
N)) ≥ CN

where C > 1. This implies that the estimation (2.2.1) would yield time proportional

to N and not the desired exponential decay Kac wanted.

2.3 Entropy and Vaillani's Conjecture

Seeing how Kac's conjecture didn't help in showing a fast relaxation time, a di�er-

ent approach was taken. In many subjects related to Statistical Mechanics a good

quantity to investigate is the entropy:

Given a density function FN(v1, . . . , vN) on SN−1(
√
N) we de�ne

HN(f) =

ˆ
SN−1(

√
N)

FN(v1, . . . , vN) log (FN(v1, . . . , vN)) dσN

where dσN is the uniform probability measure of SN−1(
√
N).

A well known inequality by Csiszar, Kullback, Leibler and Pinsker asserts that

∥∥FNdσN − dσN∥∥2

Total Variation ≤ 2HN(FN)

Given FN(v1, . . . , vN , t) that solves the master equation we �nd that

∂HN(FN)

∂t
=

〈
∂FN
∂t

FN
, FN

〉
+ 〈log (FN) , N(Q− 1)FN〉

= −〈N(I −Q)FN , 1〉+ 〈log (FN) , N(Q− 1)FN〉

= N 〈FN , (Q− I)1〉+ 〈log (FN) , N(Q− 1)FN〉 = 〈log (FN) , N(Q− 1)FN〉

7



In a similar way to the spectral gap we de�ne the entropy production

ΓN = inf
〈log (ψ(v1, . . . , vN)) , N(I −Q)ψ(v1, . . . , vN)〉

HN(ψ(v1, . . . , vN))

where the in�mum is taken over all density functions ψ ∈ L2
(
SN−1(

√
N)
)
which are

symmetric in all their variables.

Much like (2.2.1), the entropy production gives us a relaxation estimation:∥∥FN(v1, . . . , vN , t)dσ
N − dσN

∥∥2

Total Variation ≤ 2e−ΓN tHN(FN(v1, . . . , vN , 0))

(2.3.1)

but with one crucial di�erence: The extensivity of the entropy. Intuitively speaking,

if FN(v1, . . . , vN , t) ≈ ΠN
i=1f(vi, t) then

HN (FN(v1, . . . , vN , t)) ≈
ˆ
SN−1(

√
N)

ΠN
i=1f(vi, t)

(
N∑
k=1

log f(vk, t)

)
dσN

= N

ˆ
SN−1(

√
N)

ΠN
i=1f(vi, t) logϕ(v1, t)dσ

N ≈ N

ˆ
R
f(v1, t) log

ϕ(v1, t)

γ(v1)
dv1

= N ·H(f(v, t)|γ(v))

where γ(v) is the standard Gaussian. While being informal, the above property is

indeed satis�ed in the constructions related to the desired proofs. The extensivity of

the entropy implies that∥∥FN(v1, . . . , vN , t)dσ
N − dσN

∥∥2

Total Variation ≤ 2Ne−ΓN tH(f(v, 0)|γ(v))

and so if we can prove that ΓN ≥ C > 0 independently of N , we will manage to

achieve a far superior relaxation rate than that of the spectral gap!

Unfortunately, the evaluation of the entropy production is far more di�cult and

delicate than that of the the spectral gap. In [22] Villani managed to show that

ΓN ≥
2

N − 1

and proceeded to conjecture that this is of optimal order, i.e.

ΓN = O

(
1

N

)

8



This will, of course, be disastrous for the relaxation time (as it will still imply a

relaxation time of order N) but poses an interesting mathematical question.

A step towards the proof of the conjecture was done in 2010 by Carlen, Carvalho,

Le Roux, Loss, and Villani. They managed to show that

Theorem 2.3.1. (Carlen, Carvalho, Le Roux, Loss and Villani) For any c > 0 there

is a probability density f(v) on R with
´
R vf(v)dv = 0 and

´
R v

2f(v)dv = 1, and a

family of functions {FN}N∈N that have the Boltzmann property with f1(v, 0) = f(v)

such that

lim sup
N→∞

〈log (FN) , N(I −Q)FN〉
HN(FN)

≤ c

In particular, for each c > 0 the density function f is smooth, bounded and has

moments of all orders.

(See [4]). While the theorem doesn't give us an expression for ΓN , it does prove

that

lim
N→∞

ΓN = 0

as expected. The main result of this chapter is an upper bound for ΓN that, while

it, doesn't prove the exact conjecture, gets as close as possible to it:

Theorem. Let 0 < η < 1. There exists a constant Cη depending only on η such that

ΓN ≤
Cη
Nη

(See Theorem 2.6.9 in Section 2.6).

Before we venture into the calculation and proof, we take a moment to shortly

explain how Carlen, Carvalho, Le Roux, Loss and Villani proved Theorem 2.3.1.

While our proof uses di�erent computations, the idea behind the two proofs is the

same.

The Boltzmann Equation arising from Kac's model (equation (2.1.2)) has a very

natural stationary state, which is very common in Statistical Mechanics: the maxwellian

9



function Ma(v) = e−
v2

2a√
2πa

. In [2] Bobylev and Cercignani exploited the maxwellians to

create a one variable density function which is a superposition of two stationary states

fδ(v) = δM 1
2δ

(v) + (1− δ)M 1
2(1−δ)

(v)

for a given �xed δ. The idea behind this is that each part in fδ has the same energy

ˆ
v2δM 1

2δ
(v)dv =

ˆ
v2(1− δ)M 1

2(1−δ)
(v)dv =

1

2

while obviously δM 1
2δ

(v) represents far less 'mass' than (1 − δ)M 1
2(1−δ)

(v) when δ is

small. The attempt to equilibrate a large 'mass' and a small 'mass' with the same

amount of energy is exactly the situation which will create the low entropy production.

Carlen, Carvalho, Le Roux, Loss and Villani de�ned the N particle function

FN(v1, . . . , vN) =
ΠN
i=1fδ(vi)

ZN(f,
√
N)

where ZN(f,
√
N) is the normalization function

ZN(f, r) =

ˆ
SN−1(r)

ΠN
i=1fδ(vi)dσ

N
r

and dσNr is the uniform probability measure on SN−1(r). Using an asymptotic ex-

pression to ZN(f,
√
N) (a central limit theorem) the authors showed that

lim sup
N→∞

〈log (FN) , N(I −Q)FN〉
N

≤ −2δ log δ + log π + 4δ2 (2.3.2)

lim
N→∞

HN(FN)

N
= H(fδ|γ) =

ˆ
R
fδ(v) log

fδ(v)

γ(v)
dv (2.3.3)

where γ(v) is the standard Gaussian, and

lim
δ→0

H(fδ|γ) =
log 2

2
(2.3.4)

Combining (2.3.2), (2.3.3) and (2.3.4) along with a suitable choice for δ gives

Theorem 2.3.1.

Our proof will follow the same route, but will allow the parameter δ to be depen-

dent in N .

We start by discussing several properties of the normalization function ZN(f, r).
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2.4 The normalization function ZN(f, r)

The key to the computation of the entropy production lies with the normalization

function ZN(f, r). The probabilistic nature of the subject prompts us to use prob-

abilistic techniques in order to understand ZN(f, r) better. The main goal of this

section is to �nd a formula for ZN(f, r) that will serve us in the following sections.

The results presented in this section can also be found in [4].

Lemma 2.4.1. Let f be a density function for the real valued random variable V .

Then the density function for the random variable V 2 is given by

h(u) =
f(
√
u) + f(−

√
u)

2
√
u

for u > 0.

Proof. For any continuous function ϕ = ϕ(|x|) = ϕ(r) we �nd that

Eϕ =

ˆ ∞
0

ϕ(r) · (f(r) + f(−r)) dr

On the other hand

Eϕ =

ˆ ∞
0

ϕ
(√

t
)
h(t)dt =

ˆ ∞
0

ϕ(r) · 2r · h
(
r2
)
dr

Since ϕ was arbitrary we �nd that

2r · h
(
r2
)

= f(r) + f(−r)

or

h(u) =
f(
√
u) + f(−

√
u)

2
√
u

Next we extend Lemma 2.4.1 to �nd the interpretation of ZN(f, r).

Lemma 2.4.2. Let V1, . . . , VN be independent real valued random variables with iden-

tical density function f(v). Then the density function for SN =
∑N

i=1 V
2
i is given by

sN(u) = |SN−1|
2

u
N
2
−1ZN(f,

√
u).

11



Proof. The proof follows the same route as Lemma 2.4.1. For any continuous ϕ =

ϕ (|(v1, . . . , vN)|) = ϕ(r) we �nd that

Eϕ =

ˆ
RN
ϕ(v1, . . . , vN) ·ΠN

i=1f(vi)dv1 . . . dvN =

ˆ ∞
0

ϕ(r)

(ˆ
SN−1(r)

ΠN
i=1f(vi)ds

N
r

)
dr

=

ˆ ∞
0

ϕ(r)|SN−1|rN−1

(ˆ
SN−1(r)

ΠN
i=1f(vi)dσ

N
r

)
dr =

ˆ ∞
0

ϕ(r)|SN−1|rN−1ZN(f, r)dr

On the other hand

Eϕ =

ˆ ∞
0

ϕ(
√
t)sN(t)dt =

ˆ ∞
0

ϕ(r) · 2r · sN
(
r2
)
dr

Since ϕ is arbitrary

2r · sN
(
r2
)

= |SN−1|rN−1ZN(f, r)

or

sN(u) =
|SN−1|

2
u
N
2
−1ZN(f,

√
u)

Lastly, we combine the above lemmas to get a formula for the normalization

function.

Lemma 2.4.3. Let f be a density function on R, then

ZN(f,
√
r) =

2h∗N(r)

|SN−1|rN2 −1

where h
∗N

is the N-fold convolution of h, de�ned in Lemma 2.4.1.

Proof. Thinking of f as the density function for N independent random variables

V1, . . . , VN we �nd from Lemma 2.4.2 that

ZN(f,
√
r) =

2sN(r)

|SN−1|rN2 −1

where sN is the density function for SN =
∑N

i=1 V
2
i . On the other hand we know

that V 2
1 , . . . , V

2
N have the same density function, given by h from Lemma 2.4.1, and

12



as V1, . . . , VN are independent a known result in probability theory (See for instance

[7]) tells us that

sN(u) = h∗N(u)

where h
∗N

is the N -fold convolution of h. We thus conclude that

ZN(f,
√
r) =

2h∗N(r)

|SN−1|rN2 −1

Armed with the formula for the normalization function we're now ready to �nd

its asymptotic behavior.

2.5 A Central Limit Theorem

In order for us to be able prove our main result the asymptotic behavior for ZN(f, r)

is needed. The formula given in Lemma 2.4.3 ties the function ZN(f, r) to the N -fold

convolution of the density function h (given in Lemma 2.4.1). As such we'll employ

techniques involving the Fourier transform in order to evaluate the normalization

function.

Unlike many other central limit theorems, the theorem we'll present here gives

us a uniform estimation on the convergence of the N -fold convolution of the density

function to the Gaussian function, along with an explicit error estimation. The

explicit error estimation is crucial to our main theorem as it will allow to change the

'one particle generating function' f as N changes and still get the same result. The

only other similar convergence theorems we're aware of appear in [4] and in [12]. Our

own starting point is much the same, though as the proof progresses the di�erence

become very substantial.

The speci�c N particle function we'll construct as a test function for the entropy

production has the property that the Fourier transform of the function h associated

to its 'one particle generating function' f splits the line into two natural domains:

13



One where we can use analytic expansion, and one where the decay is dominated

by an exponential function. The radius of the separating circle would depend on a

parameter δ = δN that we'll exploit later on to get the �nal conclusion. While this

is the case arising in our speci�c construction, we believe that it's a natural way to

view the problem. Even though we have yet to attempt any di�erent test functions

we think that similar situation would happen in a larger class of functions created

from one particle function. As a result, we tried to make the Theorems of this section

as general as we can make them.

Before we begin with the 'heavy' computations we'll state a few technical lemmas

whose proofs can be found at the Appendix and that would serve us throughout this

section.

Lemma 2.5.1. For any a, η > 0 we have that

√
2π

a
·
√

1− e−aη
2

2 ≤
ˆ
|x|<η

e−
a2x2

2 dx ≤
√

2π

a
·
√

1− e−a2η2

and ˆ
|x|>η

e−
a2x2

2 dx ≤
√

2π · e−a
2η2

2

a

Lemma 2.5.2. For any a > 0 and k0,m ∈ N we have that

m∑
k=k0+1

e−
a2k

2

√
k
≤
√

2π · e−
a2k0

2

a

m∑
k=k0+1

1√
k
≤ 2
√
m

(See Lemmas A.1.2 and A.1.3 in the Appendix)

While continuing to read this section, please keep in mind the following: the

function g will represent the Fourier transform of the function h, connected to the

one particle generating function f via Lemma 2.4.1. We'll start by exploring the

domain outside the radius of analiticity, and then point our attention to the domain

14



where analytic expansion is possible. The parameter δ itself should be thought of as

a function of N that goes to zero as N goes to in�nity.

We'll denote by γ1(ξ) = e−2πiζ · e−2π2ξ2Σ2
δ , where Σδ is a function of δ which we'll

introduce later on.

Lemma 2.5.3. Let gδ(ξ) be such that

(i) for |ξ| > cδ |gδ(ξ)| ≤ 1− α(δ), where 0 < α(δ) < 1.

(ii) |gδ(ξ)| ≤ 1 for all ξ.

Then ˆ
|ξ|>cδ

∣∣gNδ (ξ)− γN1 (ξ)
∣∣ dξ

≤ 2

ˆ
|ξ|>cδ

|gδ(ξ)|N−1 dξ +
(1− α(δ))

N
2
−1

πcδΣ2
δ

+
1

πcδΣ2
δ

· e−(1+N)π2c2δ2Σ2
δ

Proof. We have that

ˆ
|ξ|>cδ

∣∣gNδ (ξ)− γN1 (ξ)
∣∣ dξ =

ˆ
|ξ|>cδ

|gδ(ξ)− γ1(ξ)| ·

∣∣∣∣∣
N−1∑
k=0

gN−k−1
δ (ξ)γk1 (ξ)

∣∣∣∣∣ dξ
Since |γ1(ξ)| = e−2π2ξ2Σ2

δ ≤ 1 we �nd that

ˆ
|ξ|>cδ

∣∣gNδ (ξ)− γN1 (ξ)
∣∣ dξ ≤ 2

ˆ
|ξ|>cδ

N−1∑
k=0

∣∣gN−k−1
δ (ξ)

∣∣ ∣∣γk1 (ξ)
∣∣ dξ

≤ 2

ˆ
|ξ|>cδ

|gδ(ξ)|N−1 dξ + 2
N−1∑
k=1

(1− α(δ))N−k−1

ˆ
|ξ|>cδ

e−2kπ2ξ2Σ2
δdξ

The last inequality is valid due to (i).

We notice that as k gets larger the expression (1− α(δ))N−k−1 gets bigger while
´
|ξ|>cδ e

−2kπ2ξ2Σ2
δdξ gets smaller, and vice versa as k gets smaller. As such we proceed

to divide the sum from k = 1 to k = N − 1 to two sums, each with a de�nite

dominating small element, and a sum we can estimate easily.

ˆ
|ξ|>cδ

∣∣gNδ (ξ)− γN1 (ξ)
∣∣ dξ ≤ 2

ˆ
|ξ|>cδ

|gδ(ξ)|N−1 dξ

15



+2

[N2 ]∑
k=1

(1− α(δ))N−k−1

ˆ
|ξ|>cδ

e−2kπ2ξ2Σ2
δdξ+2

N−1∑
k=[N2 ]+1

(1− α(δ))N−k−1

ˆ
|ξ|>cδ

e−2kπ2ξ2Σ2
δdξ

≤ 2

ˆ
|ξ|>cδ

|gδ(ξ)|N−1 dξ

+2 (1− α(δ))N−[N2 ]−1

[N2 ]∑
k=1

ˆ
|ξ|>cδ

e−2kπ2ξ2Σ2
δdξ + 2

N−1∑
k=[N2 ]+1

1 ·
ˆ
|ξ|>cδ

e−2kπ2ξ2Σ2
δdξ

Using Lemma 2.5.1 and 2.5.2 we conclude that

N−1∑
k=k0

ˆ
|ξ|>cδ

e−2kπ2ξ2Σ2
δdξ ≤

N−1∑
k=k0

√
2π · e−

4kπ2c2δ2Σ2
δ

2√
4kπ2Σ2

δ

=
1√

2πΣ2
δ

·
N−1∑
k=k0

e−
4kπ2c2δ2Σ2

δ
2

√
k

≤ 1

2πcδΣ2
δ

· e−2k0π2c2δ2Σ2
δ

Hence ˆ
|ξ|>cδ

∣∣gNδ (ξ)− γN1 (ξ)
∣∣ dξ ≤ 2

ˆ
|ξ|>cδ

|gδ(ξ)|N−1 dξ

+
2 (1− α(δ))N−[N2 ]−1

2πcδΣ2
δ

· e−2π2c2δ2Σ2
δ +

1

2πcδΣ2
δ

· e−2([N2 ]+1)π2c2δ2Σ2
δ

≤ 2

ˆ
|ξ|>cδ

|gδ(ξ)|N−1 dξ +
(1− α(δ))

N
2
−1

πcδΣ2
δ

+
1

πcδΣ2
δ

· e−(1+N)π2c2δ2Σ2
δ

which is the desired result.

Lemma 2.5.4. Let gδ(ξ) be such that

(i) there existM0,M1,M2 > 0, independent of δ, such that sup|ξ|<cδ |gδ(ξ)− γ1(ξ)| ≤(
M0

δ2 + M1

δ
+M2

)
|ξ|3.

(ii) for cδ1+β < |ξ| < cδ |gδ(ξ)| ≤ 1 − αβ(δ) where 0 < αβ(δ) < 1, β > 0 and

0 < δ < 1.

(iii) |gδ(ξ)| ≤ 1 for all ξ.

Then ˆ
|ξ|<cδ

∣∣gNδ (ξ)− γN1 (ξ)
∣∣ dξ ≤ c4δ2 (M0 +M1δ +M2δ

2)

2
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+
c3δ
√
N (M0 +M1δ +M2δ

2) (1− αβ(δ))
N
2
−1

√
πΣδ

+
c3δ1−β (M0 +M1δ +M2δ

2) e−π
2(N−1)c2δ2+2βΣ2

δ

2πcδΣ2
δ ·
√

1− e−2π2Nc2δ2Σ2
δ

+
2c3 (M0 +M1δ +M2δ

2)
√
Nδ1+3β√

2πΣ2
δ

Proof. Just like Lemma 2.5.3 we have that

ˆ
|ξ|<cδ

∣∣gNδ (ξ)− γN1 (ξ)
∣∣ dξ ≤ N−1∑

k=0

ˆ
|ξ|<cδ

|gδ(ξ)− γ1(ξ)| |gδ(ξ)|N−k−1 |γ1(ξ)|k dξ

≤
ˆ
|ξ|<cδ

(
M0

δ2
+
M1

δ
+M2

)
|ξ|3 |gδ(ξ)|N−1 dξ

+
N−1∑
k=1

ˆ
|ξ|<cδ

(
M0

δ2
+
M1

δ
+M2

)
|ξ|3 |gδ(ξ)|N−k−1 |γ1(ξ)|k dξ

Since |gδ(ξ)| ≤ 1 ˆ
|ξ|<cδ

∣∣gNδ (ξ)− γN1 (ξ)
∣∣ dξ (2.5.1)

≤
ˆ
|ξ|<cδ

(
M0

δ2
+
M1

δ
+M2

)
|ξ|3dξ+

N−1∑
k=1

ˆ
|ξ|<cδ

(
M0

δ2
+
M1

δ
+M2

)
|ξ|3 |gδ(ξ)|N−k−1 |γ1(ξ)|k dξ

=
c4δ2 (M0 +M1δ +M2δ

2)

2
+
N−1∑
k=1

ˆ
cδ1+β<|ξ|<cδ

(
M0

δ2
+
M1

δ
+M2

)
|ξ|3 |gδ(ξ)|N−k−1 |γ1(ξ)|k dξ

+
N−1∑
k=1

ˆ
|ξ|<cδ1+β

(
M0

δ2
+
M1

δ
+M2

)
|ξ|3 |gδ(ξ)|N−k−1 |γ1(ξ)|k dξ

Using (ii) and a similar idea of sum separation as in Lemma 2.5.3 yields

N−1∑
k=1

ˆ
cδ1+β<|ξ|<cδ

(
M0

δ2
+
M1

δ
+M2

)
|ξ|3 |gδ(ξ)|N−k−1 |γ1(ξ)|k dξ

≤ c3δ
(
M0 +M1δ +M2δ

2
)N−1∑
k=1

(1− αβ(δ))N−k−1

ˆ
cδ1+β<|ξ|<cδ

e−2kπ2ξ2Σ2
δdξ

= c3δ
(
M0 +M1δ +M2δ

2
) [N2 ]∑
k=1

(1− αβ(δ))N−k−1

ˆ
cδ1+β<|ξ|<cδ

e−2kπ2ξ2Σ2
δdξ

+c3δ
(
M0 +M1δ +M2δ

2
) N−1∑
k=[N2 ]+1

(1− αβ(δ))N−k−1

ˆ
cδ1+β<|ξ|<cδ

e−2kπ2ξ2Σ2
δdξ
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≤ c3δ
(
M0 +M1δ +M2δ

2
)

(1− αβ(δ))N−[N2 ]−1

[N2 ]∑
k=1

ˆ
|ξ|<cδ

e−2kπ2ξ2Σ2
δdξ

+c3δ
(
M0 +M1δ +M2δ

2
) N−1∑
k=[N2 ]+1

ˆ
cδ1+β<|ξ|<cδ

e−2kπ2ξ2Σ2
δdξ

Using Lemma 2.5.1 and 2.5.2 gives

N−1∑
k=1

ˆ
cδ1+β<|ξ|<cδ

(
M0

δ2
+
M1

δ
+M2

)
|ξ|3 |gδ(ξ)|N−k−1 |γ1(ξ)|k dξ

≤ c3δ
(
M0 +M1δ +M2δ

2
)

(1− αβ(δ))
N
2
−1

[N2 ]∑
k=1

√
1− e−4π2kc2δ2Σ2

δ√
2πΣ2

δk

+c3δ
(
M0 +M1δ +M2δ

2
) N−1∑
k=[N2 ]+1

(ˆ
|ξ|<cδ

e−2kπ2ξ2Σ2
δdξ −

ˆ
|ξ|<cδ1+β

e−2kπ2ξ2Σ2
δdξ

)

≤ c3δ
(
M0 +M1δ +M2δ

2
)

(1− αβ(δ))
N
2
−1

[N2 ]∑
k=1

1√
2πΣ2

δk

+c3δ
(
M0 +M1δ +M2δ

2
) N−1∑
k=[N2 ]+1

(√
1− e−4π2kc2δ2Σ2

δ −
√

1− e−2π2kc2δ2+2βΣ2
δ

)
√

2πkΣ2
δ

≤ c3δ (M0 +M1δ +M2δ
2) (1− αβ(δ))

N
2
−1√

2πΣ2
δ

·

√
4

[
N

2

]

+
c3δ (M0 +M1δ +M2δ

2)√
2πΣ2

δ

N−1∑
k=[N2 ]+1

1√
k
· e−2π2kc2δ2+2βΣ2

δ − e−4π2kc2δ2Σ2
δ(√

1− e−4π2kc2δ2Σ2
δ +

√
1− e−2π2kc2δ2+2βΣ2

δ

)
≤ c3δ

√
N (M0 +M1δ +M2δ

2) (1− αβ(δ))
N
2
−1√

πΣ2
δ

+
c3δ (M0 +M1δ +M2δ

2)√
2πΣ2

δ

N−1∑
k=[N2 ]+1

1√
k
· e−2π2kc2δ2+2βΣ2

δ√
1− e−4π2kc2δ2Σ2

δ

≤ c3δ
√
N (M0 +M1δ +M2δ

2) (1− αβ(δ))
N
2
−1√

πΣ2
δ

+
c3δ (M0 +M1δ +M2δ

2)√
2πΣ2

δ ·
√

1− e−4π2([N2 ]+1)c2δ2Σ2
δ

N−1∑
k=[N2 ]+1

e−2π2kc2δ2+2βΣ2
δ

√
k
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≤ c3δ
√
N (M0 +M1δ +M2δ

2) (1− αβ(δ))
N
2
−1√

πΣ2
δ

+
c3δ (M0 +M1δ +M2δ

2)√
Σ2
δ ·
√

1− e−2π2Nc2δ2Σ2
δ

· e
−2π2[N2 ]c2δ2+2βΣ2

δ√
4π2c2δ2+2βΣ2

δ

≤ c3δ
√
N (M0 +M1δ +M2δ

2) (1− αβ(δ))
N
2
−1

√
πΣδ

+
c3δ1−β (M0 +M1δ +M2δ

2) e−π
2(N−1)c2δ2+2βΣ2

δ

2πcδΣ2
δ ·
√

1− e−2π2Nc2δ2Σ2
δ

so
N−1∑
k=1

ˆ
cδ1+β<|ξ|<cδ

(
M0

δ2
+
M1

δ
+M2

)
|ξ|3 |gδ(ξ)|N−k−1 |γ1(ξ)|k dξ (2.5.2)

≤ c3δ
√
N (M0 +M1δ +M2δ

2) (1− αβ(δ))
N
2
−1

√
πΣδ

+
c3δ1−β (M0 +M1δ +M2δ

2) e−π
2(N−1)c2δ2+2βΣ2

δ

2πcδΣ2
δ ·
√

1− e−2π2Nc2δ2Σ2
δ

Also, since |gδ(ξ)| ≤ 1 we have that

N−1∑
k=1

ˆ
|ξ|<cδ1+β

(
M0

δ2
+
M1

δ
+M2

)
|ξ|3 |gδ(ξ)|N−k−1 |γ1(ξ)|k dξ

≤ c3
(
M0 +M1δ +M2δ

2
)
δ1+3β ·

N−1∑
k=1

ˆ
|ξ|<cδ1+β

e−2kπ2ξ2Σ2
δdξ

≤ c3
(
M0 +M1δ +M2δ

2
)
δ1+3β ·

N−1∑
k=1

√
1− e−4kπ2c2δ2+2βΣ2

δ√
2πkΣ2

δ

≤ c3 (M0 +M1δ +M2δ
2) δ1+3β√

2πΣ2
δ

·
N−1∑
k=1

1√
k

≤ 2c3 (M0 +M1δ +M2δ
2)
√
Nδ1+3β√

2πΣ2
δ

so
N−1∑
k=1

ˆ
|ξ|<cδ1+β

(
M0

δ2
+
M1

δ
+M2

)
|ξ|3 |gδ(ξ)|N−k−1 |γ1(ξ)|k dξ (2.5.3)

≤ 2c3 (M0 +M1δ +M2δ
2)
√
Nδ1+3β√

2πΣ2
δ

Combining (2.5.1), (2.5.2) and (2.5.3) gives the desired result.

Now that we have proved Lemma 2.5.3 and 2.5.4 we can turn our attention to the

main theorem of this section, giving us the tool to approximate ZN(f, r).
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Theorem 2.5.5. Let hδ(x) = hδN (x) be a continuous L1 (R) function such that

gδ(ξ) = ĥδ(ξ) satis�es

(i) for |ξ| > cδN |gδN (ξ)| ≤ 1− α(δN), where 0 < α(δN) < 1.

(ii) there existM0,M1,M2 > 0, independent of δN , such that sup|ξ|<cδN |gδN (ξ)− γ1(ξ)| ≤(
M0

δ2
N

+ M1

δN
+M2

)
|ξ|3.

(iii) for cδ1+β
N < |ξ| < cδN |gδN (ξ)| ≤ 1 − αβ(δN) where 0 < αβ(δN) < 1 and

0 < β < 1.

(vi) |gδN (ξ)| ≤ 1 for all ξ.

and if

(a) δN , α(δN) and αβ(δN) are of order of a negative power of N .

(b) α(δN)N −→
N→∞

∞.

(c) αβ(δN)N −→
N→∞

∞.

(d) Σ2
δN
δ2+2β
N N −→

N→∞
∞.

(e) δ1+3β
N N −→

N→∞
0.

(f 0)
√
NΣδN

´
|ξ|>cδN

|gδN (ξ)|N−1 dξ −→
N→∞

0.

(g) δ
3
2

(1−β)

N ΣδN is bounded.

Then

sup
u

∣∣∣∣∣∣∣h∗NδN (u)− 1√
NΣδN

· e
− (u−N)2

2NΣ2
δN

√
2π

∣∣∣∣∣∣∣ ≤
ε(N)√
NΣδN

(2.5.4)

where h∗NδN (x) is the N-fold convolution of hδN and ε(N) −→
N→∞

0. Moreover if for a

�xed j ∈
{

0, 1, . . . ,
[
N
2

]}
we have that

(f j)
√
N − jΣδN

´
|ξ|>cδN

|gδN (ξ)|N−j−1 −→
N→∞

0.

instead of condition (f 0) then

sup
u

∣∣∣∣∣∣∣h∗N−jδN
(u)− 1√

N − jΣδN

· e
− (u−N+j)2

2(N−j)Σ2
δN

√
2π

∣∣∣∣∣∣∣ ≤
εj(N)√
N − jΣδN

(2.5.5)

where εj(N) −→
N→∞

0.
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Proof. We start by noticing that

̂
1√
NΣδ

· e
− (x−N)2

2NΣ2
δ

√
2π

(ξ) =
1√

2πNΣδ

ˆ
R
e
− (x−N)2

2NΣ2
δ · e−2πiξxdx

=
y= x−N√

NΣδ

1√
2π

ˆ
R
e−

y2

2 · e−2πiξ(
√
NΣδy+N)dy =

e−2πiNξ

√
2π
· e

(2πiξ
√
NΣδ)

2

2

ˆ
R
e−

(y+2πiζ
√
NΣδ)

2

2 dy

=
(
e−2πiξ · e−2π2ξ2Σ2

δ

)N
= γN1 (ξ)

Since (2.5.4) follows from (2.5.5) for j = 0 we'll only prove the second part of the

theorem. Using Lemma 2.5.3 and 2.5.4 we �nd that

sup
u

∣∣∣∣∣∣∣h∗N−jδN
(u)− 1√

N − jΣδN

· e
− (u−N+j)2

2(N−j)Σ2
δN

√
2π

∣∣∣∣∣∣∣
≤
ˆ
R

∣∣∣gN−jδ (ξ)− γN−j1 (ξ)
∣∣∣ dξ

=

ˆ
|ξ|<cδ

∣∣∣gN−jδ (ξ)− γN−j1 (ξ)
∣∣∣ dξ +

ˆ
|ξ|>cδ

∣∣∣gN−jδ (ξ)− γN−j1 (ξ)
∣∣∣ dξ

≤ 1√
N − jΣδN

c4

√
(N − j)δ1+3β

N δ
3
2

(1−β)

N ΣδN (M0 +M1δN +M2δ
2
N)

2

+
c3δN(N − j) (M0 +M1δN +M2δ

2
N) (1− αβ(δN))

N−j
2
−1

√
π

+
c3
√
N − jδ1−β

N (M0 +M1δN +M2δ
2
N) e

−π2(N−j−1)c2δ2+2β
N Σ2

δN

2πcδNΣδN ·
√

1− e−2π2(N−j)c2δ2
NΣ2

δN

+
2c3 (M0 +M1δN +M2δ

2
N) (N − j)δ1+3β

N√
2π

+ 2
√
N − jΣδN

ˆ
|ξ|>cδN

|gδN (ξ)|N−j−1 dξ

+2 (1− α(δN))
N−j

2
−1 ·

√
N − j

2πcδNΣδN

+

√
N − j

πcδNΣδN

· e−(1+N−j)π2c2δ2
NΣ2

δN

)
=

εj(N)√
N − jΣδN

Conditions (e) and (g) imply that√
(N − j)δ1+3β

N δ
3
2

(1−β)

N ΣδN ≤
√
Nδ1+3β

N δ
3
2

(1−β)

N ΣδN −→
N→∞

0
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Conditions (a), (c) and the fact that j ≤ N
2
imply that

δN(N − j) (1− αβ(δN))
N−j−2

2 = δN(N − j)
(

(1− αβ(δN))
1

αβ(δN )

)αβ(δN )(N−j−2)

2

≤ δNN
(

(1− αβ(δN))
1

αβ(δN )

)αβ(δN )(N−4)

4

−→
N→∞

0

Also by condition (d):

(N − j)δ2
NΣ2

δN
≥ (N − j − 1)δ2+2β

N Σ2
δN
≥

(N − 2)δ2+2β
N Σ2

δN

2
−→
N→∞

∞

and so along with condition (a) we have that

(N − j)δNe−π
2(N−j−1)c2δ2+2β

N Σ2
δN ≤ NδNe

−π2(N−j−1)c2δ2+2β
N Σ2

δN −→
N→∞

0

δ1+β
N ΣδN

√
N − j ·

√
1− e−2π2(N−j)c2δ2

NΣ2
δN −→

N→∞
∞

which implies

c3
√
N − jδ1−β

N (M0 +M1δN +M2δ
2
N) e

−π2(N−j−1)c2δ2+2β
N Σ2

δN

2πcδNΣδN ·
√

1− e−2π2(N−j)c2δ2
NΣ2

δN

=
c3(N − j)δN (M0 +M1δN +M2δ

2
N) e

−π2(N−j−1)c2δ2+2β
N Σ2

δN

2πcδ1+β
N ΣδN

√
N − j ·

√
1− e−2π2(N−j)c2δ2

NΣ2
δN

−→
N→∞

0

We also notice that conditions (e) and (f j), along with the fact that j ≤ N
2
imply

that

(N − j)δ1+3β
N ≤ Nδ1+3β

N −→
N→∞

0√
N − jΣδN

ˆ
|ξ|>cδN

|gδN (ξ)|N−j−1 dξ −→
N→∞

0

Conditions (a), (b), (d) and the fact that j ≤ N
2
show that

(1− α(δN))
N−j

2
−1 ·

√
N − j

2πcδNΣδN

=
(N − j)δβN

(
(1− α(δN))α(δN )

)α(δN )(N−j−2)

2

2πc
√
N − jδ1+β

N ΣδN

≤
NδβN

(
(1− α(δN))α(δN )

)α(δN )(N−4)

4

√
2πc
√
Nδ1+β

N ΣδN

−→
N→∞

0
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Lastly,

√
N − j

πcδNΣδN

· e−(1+N−j)π2c2δ2
NΣ2

δN =
(N − j)δβN

πc
√
N − jδ1+β

N ΣδN

· e−(1+N−j)π2c2δ2
NΣ2

δN

which we saw converges to zero.

Combining all the information presented we �nd that εj(N) −→
N→∞

0.

Remark 2.5.6. Conditions (a) to (g) were designed so that εj(N) will converge to

zero. Looking over the proof of Theorem 2.5.5 we see that the constants M0,M1 and

M2 play a role in the convergence. For instance: if M0 = 0 then many terms in the

expression for εj(N) would have an extra factor of δN - making the convergence faster

and allowing us to weaken conditions (a) to (h). Unfortunately, this is not the case

in our constructed sequence (to appear in the next section) but it may be the case

for a di�erent type of construction.

We are now ready to construct our sequence of density functions that will yield

an upper bound to the entropy production, proving Villani's conjecture, up to an ε.

2.6 The main result: A Proof of Villani's Conjecture, up to

an ε

The route we'll take in this section was outlined in Section 2.3.

We de�ne our one particle generating function to be

fδ(v) = δM 1
2δ

(v) + (1− δ)M 1
2(1−δ)

(v)

whereMa(v) = e−
v2

2a√
2πa

and 0 < δ < 1. SinceMa is a density function and fδ is a convex

combination of two Ma-s, we conclude that fδ itself is a density function.

Let

hδ(u) =
fδ(
√
u) + fδ(−

√
u)

2
√
u

for u > 0.

We'll start this section with �nding properties of hδ.
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Theorem 2.6.1. Let hδ be de�ned as above. Then

(i) hδ is a continuous density function on (0,∞).

(ii)
´∞

0
uhδ(u)du = 1.

(iii)
´∞

0
u2hδ(u)du = 3

4δ(1−δ) .

(iv) ĥδ(ξ) = δ√
1+ 2πiξ

δ

+ 1−δ√
1+ 2πiξ

1−δ

.

Proof. Clearly hδ is continuous on (0,∞) as fδ is smooth on R. Next we see that
ˆ ∞

0

umhδ(u)du =
1

2

ˆ ∞
0

umfδ(
√
u)√

u
du+

1

2

ˆ ∞
0

umfδ(−
√
u)√

u
du

using the substitution v =
√
u in the �rst integration and v = −

√
u in the second

integration yields

ˆ ∞
0

umhδ(u)du =

ˆ ∞
0

v2mfδ(v)dv +

ˆ 0

−∞
v2mfδ(v)dv =

ˆ
R
v2mfδ(v)dv (2.6.1)

For m ≥ 1 we have that

ˆ
R
v2mMa(v)dv =

1√
2πa

ˆ
R
v2me−

v2

2a dv =
x= v√

a

am√
2π
·
ˆ
R
x2me−

x2

2 dx

=
am√
2π
· x2m−1 ·

(
−e−

x2

2

)
|∞−∞ +

am√
2π
· (2m− 1)

ˆ
R
x2m−2e−

x2

2 dx

=
am√
2π
· (2m− 1)

ˆ
R
x2m−2e−

x2

2 dx = · · · = am√
2π
· (2m− 1) · (2m− 3) · · · · 1 ·

ˆ
e−

x2

2 dx

= (2m− 1) · (2m− 3) · · · · 1 · am

We �nd that

ˆ ∞
0

umhδ(u)du = δ

ˆ
R
v2mM 1

2δ
(v)dv + (1− δ)

ˆ
R
v2mM 1

2(1−δ)
(v)dv

= (2m− 1) · (2m− 3) · · · · 1
(
δ ·
(

1

2δ

)m
+ (1− δ) ·

(
1

2(1− δ)

)m)
Hence

ˆ ∞
0

hδ(u)du = δ

ˆ
R
M 1

2δ
(v)dv + (1− δ)

ˆ
R
M 1

2(1−δ)
(v)dv = δ + (1− δ) = 1
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ˆ ∞
0

uhδ(u)du =

(
δ ·
(

1

2δ

)
+ (1− δ) ·

(
1

2(1− δ)

))
= 1

ˆ ∞
0

u2hδ(u)du = 3

(
δ ·
(

1

2δ

)2

+ (1− δ) ·
(

1

2(1− δ)

)2
)

=
3

4

(
1

δ
+

1

1− δ

)
=

3

4δ(1− δ)

which proves (i), (ii) and (iii).

In order to prove (iv) we notice that due to fact that Ma is a Schwartz class

function we have that

d

dξ

ˆ
R
Ma(u) · e−2πiξu2

du =

ˆ
R

(
−2πiu2

)
Ma(u) · e−2πiξu2

du

(di�erentiation under the sign of integration is allowed)

Also since d
du
Ma(u) = −u

a
Ma(u) we �nd that

d

dξ

ˆ
R
Ma(u) · e−2πiξu2

du =

ˆ
R

(
2πiau · e−2πiξu2

)
· d
du
Ma(u)du

= 2πiau · e−2πiξu2 ·Ma(u)|∞−∞ − 2πia

ˆ
R

(
1− 4πiξu2

)
Ma(u) · e−2πiξu2

du

= −2πia

ˆ
R
Ma(u) · e−2πiξu2

du− 4πiξa · d
dξ

ˆ
R
Ma(u) · e−2πiξu2

du

Thus

d

dξ

ˆ
R
Ma(u) · e−2πiξu2

du =
−2πia

1 + 4πiaξ

ˆ
R
Ma(u) · e−2πiξu2

du

For a > 0 the initial value problem

d

dξ
ϕ(ξ) =

−2πia

1 + 4πiaξ
ϕ(ξ), ξ ∈ R

ϕ(0) = 1

has a unique solution, which must be
´
RMa(u) ·e−2πiξu2

du by the above computation.

Since

d

dξ

(
1√

1 + 4πiaξ

)
=

−4πia

2 (1 + 4πiaξ)
3
2

=
−2πia

1 + 4πiaξ
·
(

1√
1 + 4πiaξ

)
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(notice that the root is well de�ned as Re (1 + 4πiaξ) = 1), and(
1√

1 + 4πiaξ

)
|ξ=0 = 1

we conclude that ˆ
R
Ma(u) · e−2πiξu2

du =
1√

1 + 4πiaξ

Finally we have that, similarly to (2.6.1)

ĥδ(ξ) =

ˆ ∞
0

hδ(u)e−2πiξudu =

ˆ
R
fδ(u)e−2πiξu2

du

= δ

ˆ
R
M 1

2δ
(u) · e−2πiξu2

du+ (1− δ)
ˆ
R
M 1

2(1−δ)
(u) · e−2πiξu2

du

=
δ√

1 + 2πiξ
δ

+
1− δ√
1 + 2πiξ

1−δ

concluding the proof of (iv).

Next on the list is �nding an asymptotic expression to ZN(fδN .r). In order to do

that we need to check that the conditions of Theorem 2.5.5 pertaining to hδN are true.

Before we begin, we need to specify what Σ2
δ is, as γ1(ξ) = e−2πiζ · e−2π2ξ2Σ2

δ depends

on it. Since it is a central limit theorem we're after, the natural selection would be

the variance of the random variable with density function hδ, which is exactly what

we'll choose.

We de�ne

Σ2
δ =

ˆ ∞
0

u2hδ(u)du−
(ˆ ∞

0

uhδ(u)du

)1

=
3

4δ(1− δ)
− 1

Theorem 2.6.2. Let gδ(ξ) = ĥδ(ξ) where δ < 1
2
. Then

(i) for |ξ| > δ
4π
|gδ(ξ)| ≤ 1− δ

(
1− 4

√
4
5

)
+ ρ1(δ) where ρ1(δ)

δ
−→
δ→0

0.

(ii) there existM0,M1,M2 > 0, independent of δ, such that sup|ξ|< δ
4π
|gδ(ξ)− γ1(ξ)| ≤(

M0

δ2 + M1

δ
+M2

)
|ξ|3.

(iii) for 0 < β < 1 and δ1+β

4π
< |ξ| < δ

4π
we have that |gδ(ξ)| ≤ 1 − δ1+2β

16
+ ρ2(δ)

where ρ2(δ)
δ1+2β −→

δ→0
0.
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(iv) |gδ(ξ)| ≤ 1 for all ξ.

(v) for a �xed j < N − 3 we have that

ˆ
|ξ|> δ

4π

|gδN (ξ)|N−j−1 dξ ≤

(
1− δ

(
1− 4

√
4
5

)
+ ρ1(δ)

)N−j−1

π
+

2

π(N − j − 3)

.

Proof. (i) Since
∣∣√1 + ix

∣∣ =
√
|1 + ix| = 4

√
1 + x2 for any x ∈ R we �nd that for

|ξ| > δ
4π

|gδ(ξ)| ≤
δ∣∣∣∣√1 + 2πiξ

δ

∣∣∣∣ +
1− δ∣∣∣√1 + 2πiξ

1−δ

∣∣∣
=

δ

4

√
1 + 4π2ξ2

δ2

+
1− δ

4

√
1 + 4π2ξ2

(1−δ)2

≤ δ

4

√
5
4

+
1− δ

4

√
1 + δ2

4(1−δ)2

Using the expansion

1
4
√

1 + x
= 1− x

4
+ x2 · η(x)

where η is analytic in |x| < 1
2
, and the fact that for 0 < δ < 1

2
we have that

δ2

4(1− δ)2
<

δ2

4
(
1− 1

2

)2 = δ2 <
1

4

We �nd that

|gδ(ξ)| ≤ 4

√
4

5
· δ + (1− δ)

(
1− δ2

16(1− δ)2
+

δ4

16(1− δ)4
· η
(

δ2

4(1− δ)2

))

= 1− δ

(
1− 4

√
4

5

)
+ ρ1(δ)

where ρ1(δ)
δ
−→
δ→0

0.

(ii) Using the expansions

1√
1 + x

= 1− x

2
+

3

8
x2 + x3 · φ(x)

ex = 1 + x+
x2

2
+ x3 · ψ(x)
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where φ(x) is analytic in |x| < 1
2
and ψ(x) is entire. we �nd that

gδ(ξ) = δ

(
1− πiξ

δ
− 3π2ξ2

2δ2
− 8π3iξ3

δ3
φ

(
2πiξ

δ

))

+(1− δ)
(

1− πiξ

1− δ
− 3π2ξ2

2(1− δ)2
− 8π3iξ3

(1− δ)3
φ

(
2πiξ

1− δ

))
= 1−2πiξ− ξ2

(
3π2

2δ
+

3π2

2(1− δ)

)
−8π3iξ3

(
1

δ2
· φ
(

2πiξ

δ

)
+

1

(1− δ)2
· φ
(

2πiξ

1− δ

))
= 1− 2πiξ − 2π2ξ2

(
Σ2
δ + 1

)
− 8π3iξ3

(
1

δ2
· φ
(

2πiξ

δ

)
+

1

(1− δ)2
· φ
(

2πiξ

1− δ

))
and

γ1(ξ) = e−2πiξ · e−2π2ξ2Σ2
δ

=
(
1− 2πiξ − 2π2ξ2 − 8π3iξ3ψ (−2πiξ)

)
·
(
1− 2π2Σ2

δξ
2 + 2π4Σ4

δξ
4 − 8π6Σ6

δξ
6ψ
(
−2π2Σ2

δξ
2
))

= 1− 2πiξ − 2π2ξ2
(
Σ2
δ + 1

)
+ 4π3iξ3Σ2

δ + 2π4ξ4
(
Σ4
δ + 2Σ2

δ

)
−4π5iΣ4

δξ
5 − 4π6Σ4

δξ
6 − 8π3iξ3ψ (−2πiξ) · e−2π2ξ2Σ2

δ − 8π6Σ6
δξ

6ψ
(
−2π2Σ2

δξ
2
)
· e−2πiξ

From the above we conclude that

|gδ(ξ)− γ1(ξ)| ≤ |ξ|3
(

8π3

δ2
·
∣∣∣∣φ(2πiξ

δ

)∣∣∣∣+
8π3

(1− δ)2
·
∣∣∣∣φ( 2πiξ

1− δ

)∣∣∣∣
+4π3Σ2

δ + 2π4|ξ|
(
Σ4
δ + 2Σ2

δ

)
+4π5Σ4

δ|ξ|2 + 4π6Σ4
δ|ξ|3

+8π3 |ψ (−2πiξ)|+ 8π6Σ6
δ|ξ|3

∣∣ψ (−2π2Σ2
δξ

2
)∣∣)

Denoting Mφ = sup|x|≤ 1
2
|φ(x)| and Mψ = sup|x|≤ 1

2
|ψ(x)| and noticing that for

|ξ| < δ
4π

and δ < 1
2
we have

Σ2
δ <

3

4δ(1− δ)
<

3

2δ∣∣∣∣2πiξδ
∣∣∣∣ < 1

2∣∣∣∣ 2πiξ

1− δ

∣∣∣∣ < 4π|ξ| < δ <
1

2
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we �nd that

8π3

δ2
·
∣∣∣∣φ(2πiξ

δ

)∣∣∣∣ ≤ 8π3Mφ

δ2

8π3

(1− δ)2
·
∣∣∣∣φ( 2πiξ

1− δ

)∣∣∣∣ ≤ 32π3Mφ

4π3Σ2
δ <

6π3

δ

2π4|ξ|
(
Σ4
δ + 2Σ2

δ

)
≤ π3δ

2

(
9

4δ2
+

3

δ

)
=

9π3

8δ
+

3π3

2

4π5Σ4
δ|ξ|2 ≤

π3δ2

4
· 9

4δ2
=

9π3

16

4π6Σ4
δ|ξ|3 ≤

π3δ3

16
· 9

4δ2
=

9π3δ

64
<

9π3

128

We also have that

|−2πiξ| < δ

2
<

1

4∣∣−2π2Σ2
δξ

2
∣∣ ≤ δ2

2
· 3

2δ
=

3δ

4
<

3

8
<

1

2

And as such

8π3 |ψ (−2πiξ)| ≤ 8π3Mψ

8π6Σ6
δ|ξ|3

∣∣ψ (−2π2Σ2
δξ

2
)∣∣ ≤ π3δ3

8
· 27

8δ3
·Mψ =

27π3

64
Mψ

De�ning M0 = 8π3Mφ, M1 = 6π3 + 9π3

8
and M2 = 32π3Mφ + 3π3

2
+ 9π3

16
+ 9π3

128
+

8π3Mψ + 27π3

64
Mψ gives us

sup
|ξ|< δ

4π

|gδ(ξ)− γ1(ξ)| ≤
(
M0

δ2
+
M1

δ
+M2

)
|ξ|3

(iii) Much like the proof of (i), for |ξ| > δ1+β

4π

|gδ(ξ)| ≤
δ

4

√
1 + 4π2ξ2

δ2

+
1− δ

4

√
1 + 4π2ξ2

(1−δ)2

≤ δ

4

√
1 + δ2β

4

+
1− δ

4

√
1 + δ2+2β

4(1−δ)2

Since δ2β

4
< 1

4
and δ2+2β

4(1−δ)2 < δ2+2β < 1
4
we �nd that

|gδ(ξ)| ≤ δ

(
1− δ2β

16
+
δ4β

16
· η
(
δ2β

4

))
+(1− δ)

(
1− δ2+2β

16(1− δ)2
+

δ4+4β

16(1− δ)4
η ·
(

δ2+2β

4(1− δ)2

))
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= 1− δ1+2β

16
+ ρ2(δ)

where ρ2(δ)
δ1+2β −→

δ→0
0.

(iv) Since hδ is a density function we have that for all ξ

|gδ(ξ)| ≤ ‖hδ‖L1(R) =

ˆ
R
hδ(u)du = 1

(v) For a �xed j

ˆ
|ξ|> δ

4π

|gδN (ξ)|N−j−1 dξ ≤
ˆ
|ξ|> δ

4π

 δ

4

√
1 + 4π2ξ2

δ2

+
1− δ

4

√
1 + 4π2ξ2

(1−δ)2

N−j−1

dξ

=

ˆ
δ

4π
<|ξ|< 1

2π

 δ

4

√
1 + 4π2ξ2

δ2

+
1− δ

4

√
1 + 4π2ξ2

(1−δ)2

N−j−1

dξ

+

ˆ
|ξ|> 1

2π

 δ

4

√
1 + 4π2ξ2

δ2

+
1− δ

4

√
1 + 4π2ξ2

(1−δ)2

N−j−1

dξ

Using (i) we have that

ˆ
δ

4π
<|ξ|< 1

2π

 δ

4

√
1 + 4π2ξ2

δ2

+
1− δ

4

√
1 + 4π2ξ2

(1−δ)2

N−j−1

dξ (2.6.2)

≤
ˆ

δ
4π
<|ξ|< 1

2π

(
1− δ

(
1− 4

√
4

5

)
+ ρ1(δ)

)N−j−1

dξ

≤

(
1− δ

(
1− 4

√
4
5

)
+ ρ1(δ)

)N−j−1

π

Also ˆ
|ξ|> 1

2π

 δ

4

√
1 + 4π2ξ2

δ2

+
1− δ

4

√
1 + 4π2ξ2

(1−δ)2

N−j−1

dξ

≤
ˆ
|ξ|> 1

2π

(
δ

2
3

√
2πξ

+
(1− δ)

3
2

√
2πξ

)N−j−1

dξ

=
2
(
δ

2
3 + (1− δ)

3
2

)N−j−1

(2π)
N−j−1

2

ˆ ∞
1

2π

ξ−(N−j−1
2 )dξ
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=
2
(
δ

2
3 + (1− δ)

3
2

)N−j−1

(2π)
N−j−1

2

·

(
−2ξ−(N−j−3

2 )

N − j − 3

)
|∞1

2π

=

4
(
δ

2
3 + (1− δ)

3
2

)N−j−1

(2π)
N−j−1

2

 · (2π)
N−j−3

2

N − j − 3
=

2
(
δ

2
3 + (1− δ)

3
2

)N−j−1

π(N − j − 3)

For 0 < δ < 1 we have that δ
2
3 + (1− δ)

3
2 ≤ δ + (1− δ) = 1 and as such

ˆ
|ξ|> 1

2π

 δ

4

√
1 + 4π2ξ2

δ2

+
1− δ

4

√
1 + 4π2ξ2

(1−δ)2

N−j−1

dξ ≤ 2

π(N − j − 3)
i (2.6.3)

Combining (2.6.2) and (2.6.3) we get that

ˆ
|ξ|> δ

4π

|gδN (ξ)|N−j−1 dξ ≤

(
1− δ

(
1− 4

√
4
5

)
+ ρ1(δ)

)N−j−1

π
+

2

π(N − j − 3)

as required.

Now that we've checked that hδ is a good candidate to use Theorem 2.5.4 we can

present the asymptotic behavior of the normalization function under some conditions

on δN .

Theorem 2.6.3. Let fδN (v) = δNM 1
2δN

(v) + (1 − δN)M 1
2(1−δN )

(v) where 0 < δN < 1
2

and

(a′) δN is of order of a negative power of N .

(b′) δ1+2β
N ·N −→

N→∞
∞.

(c′) δ1+3β
N N −→

N→∞
0.

Then for a �xed j ∈
{

0, 1, . . . ,
[
N
2

]}
, j < N − 3 and any 0 < β ≤ 2

3
we have that

ZN−j
(
fδN ,
√
u
)

=
2

√
N − j · ΣδN · |SN−j−1|uN−j2

−1

e−
(u−N+j)2

2(N−j)Σ2
δN

√
2π

+ λj(N − j, u)


where supu∈R |λj(N − j, u)| ≤ εj(N) and limN→∞ εj(N) = 0.
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Proof. We'll check the conditions of Theorem 2.5.5: Property (i) in Theorem 2.6.1

shows that hδN is continuous and in L1 (R). Properties (i) to (iv) of Theorem 2.6.2

corresponds to conditions (i) to (vi) of Theorem 2.5.5 with

α(δN) = δN

((
1− 4

√
4

5

)
− ρ1(δN)

δN

)

αβ(δN) = δ1+2β
N

(
1

16
− ρ2(δN)

δ1+2β
N

)
and c = 1

4π
. Next we check conditions (a) to (g):

Condition (a) is satis�ed due to condition (a′) and the de�nition of α(δN) and

αβ(δN).

Condition (b) is satis�ed since

α(δN)N = NδN

((
1− 4

√
4

5

)
− ρ1(δN)

δN

)

≥ Nδ1+2β
N

((
1− 4

√
4

5

)
− ρ1(δN)

δN

)
−→
N→∞

∞

by condition (b′).

Condition (c) is satis�ed since

αβ(δN)N = Nδ1+2β
N

(
1

16
− ρ2(δN)

δ1+2β
N

)
−→
N→∞

∞

by condition (b′).

Condition (d) is satis�ed since Σδ =
√

3
4δ(1−δ) − 1 and

Σ2
δN
δ2+2β
N N =

(
3

4(1− δN)
− δN

)
δ1+2β
N N −→

N→∞
∞

by condition (b′).

Condition (e) is satis�ed due to condition (c′).

Condition (f j) follows immediately from property (v) of Theorem 2.6.2 and a

similar computation to that presented in the proof of Theorem 2.5.5.
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Condition (g) is satis�ed since

δ
3
2

(1−β)

N ΣδN =

√
3δ2−3β
N

4(1− δN)
− δ3(1−β)

and δN goes to zero while 0 < β ≤ 2
3
.

Since all the conditions are met, Theorem 2.5.5 assures us that

sup
u

∣∣∣∣∣∣∣h∗N−jδN
(u)− 1√

N − jΣδN

· e
− (u−N+j)2

2(N−j)Σ2
δN

√
2π

∣∣∣∣∣∣∣ ≤
εj(N)√
N − jΣδN

where εj(N) −→
N→∞

0. De�ning λj(N − j, u) =
√
N − jΣδNh

∗N−j
δN

(u)− e

− (u−N+j)2

2(N−j)Σ2
δN√

2π
and

using the expression for ZN(f,
√
u) from Lemma 2.4.3 we �nd that

ZN−j(f,
√
u) =

2h∗N−j(u)

|SN−j−1|uN−j2
−1

=
2

√
N − j · ΣδN · |SN−j−1|uN−j2

−1

e−
(u−N+j)2

2(N−j)Σ2
δN

√
2π

+ λj(N − j, u)


Clearly supu |λj(N − j, u)| ≤ εj(N) and so the claim is proved.

With the asymptotic expression in hand we're �nally ready to estimate the entropy

production.

De�ning

FN(v1, . . . , vN) =
ΠN
i=1fδN (vi)

ZN(fδN ,
√
N)

we will show that

〈logFN , N(I −Q)FN〉
N

≤ Ctype−δ (−δN log δN)

and

lim
N→∞

´
SN−1(

√
N)
FN (v1, . . . , vN) logFN (v1, . . . , vN) dσN

N
= lim

N→∞

HN (FN)

N
=

log 2

2

where Ctype−δ is a constant depending only on the behavior of δN . In order to do that

we will need the next technical lemma whose proof can be found in the Appendix

(See Lemma A.1.5 in the Appendix)
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Lemma 2.6.4. Let f (v1, . . . , vj) and g (vj+1, . . . , vN) be continuous functions on Rj

and RN−j respectively. Then

ˆ
SN−1(r)

f (v1, . . . , vj) · g (vj+1, . . . , vN) dσNr

=
|SN−j−1|
|SN−1|rN−2

ˆ
∑j
i=1 v

2
i≤r2

f (v1, . . . , vj)

(
r2 −

j∑
i=1

v2
i

)N−j−2
2

(ˆ
SN−j−1

(√
r2−

∑j
i=1 v

2
i

) gdσN−j√
r2−

∑j
i=1 v

2
i

)
dv1 . . . dvj

Theorem 2.6.5. Let FN =
ΠNi=1fδN (vi)

ZN (fδN ,
√
N)

where 0 < δN < 1
2
, 0 < β ≤ 2

3
and δN

satis�es conditions (a′) to (c′) in Theorem 2.6.3. Then there exists a constant ctype−δ

depending only on the behavior of δN such that

〈logFN , N(I −Q)FN〉
N

≤ ctype−δ (−δN log δN)

Proof. Denoting

Ri.j(ϑ) (v1, . . . , vN) = (v1, . . . , vi−1, vi(ϑ), vi+1, . . . , vj−1, vj(ϑ), vj+1, . . . , vN)

where

vi(ϑ) = vi cosϑ+ vj sinϑ

vj(ϑ) = −vi sinϑ+ vj cosϑ

we have that

N(I −Q)FN (v1, . . . , vN)

= N · 1

2π
· 1 N

2


∑
i<j

ˆ 2π

0

(FN (v1, . . . , vN)− FN (Ri,j(ϑ) (v1, . . . , vN))) dϑ

=
1

π(N − 1)

∑
i<j

ˆ 2π

0

(FN (v1, . . . , vN)− FN (Ri,j(ϑ) (v1, . . . , vN))) dϑ
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=
1

π(N − 1)ZN(fδN ,
√
N)

∑
i<j

ˆ 2π

0

(
ΠN
k=1,k 6=i,jfδN (vk)

)
·(fδN (vi)fδN (vj)− fδN (vi(ϑ))fδN (vj(ϑ))) dϑ

(the operator Q was de�ned in Section 2.1). Also

logFN =
N∑
l=1

log (fδN (vl))− logZN(fδN ,
√
N)

Remembering that for any constant function c we have

〈c,N(I −Q)FN〉 = 〈N(I −Q)c, FN〉 = 〈0, FN〉 = 0

(See Section 2.2), we �nd that

〈logFN , N(I −Q)FN〉 =
N∑
l=1

〈log (fδN (vl)) , N(I −Q)FN〉

=
1

ZN(fδ,
√
N)(N − 1)π

N∑
l=1

∑
i<j

ˆ
SN−1(

√
N)

log fδN (vl)

·
(ˆ 2π

0

(
ΠN
k=1,k 6=i,jfδN (vk)

)
· (fδN (vi)fδN (vj)− fδN (vi(ϑ))fδN (vj(ϑ))) dϑ

)
dσN

For a �xed i, j we �nd that if l 6= i.j then by Lemma 2.6.4

ˆ
SN−1(

√
N)

ˆ 2π

0

log fδN (vl)
(
ΠN
k=1,k 6=i,jfδN (vk)

)
·(fδN (vi)fδN (vj)− fδN (vi(ϑ))fδN (vj(ϑ))) dϑdσN

=
|S1|

|SN−1|N N−2
2

ˆ 2π

0

ˆ
∑N
m=1,m 6=i,j v

2
m≤N

log fδN (vl)
(
ΠN
k=1,k 6=i,jfδN (vk)

)
(ˆ

S1
(√

N−
∑N
m=1,m 6=i,j v

2
m

) (fδN (vi)fδN (vj)− fδN (vi(ϑ))fδN (vj(ϑ))) dσ2√
r2−

∑N
m=1,m 6=i,j v

2
m

)
dv1 . . . dvN−2

Since S1 with the uniform measure is invariant under rotation, we have that for a

given ϑ ˆ
S1
(√

N−
∑N
m=1,m 6=i,j v

2
m

) fδN (vi)fδN (vj)dσ
2√
r2−

∑N
m=1,m 6=i,j v

2
m

=

ˆ
S1
(√

N−
∑N
m=1,m 6=i,j v

2
m

) fδN (vi(ϑ))fδN (vj(ϑ))dσ2√
r2−

∑N
m=1,m 6=i,j v

2
m

We conclude that only l = i or l = j contribute to the sum. Hence

〈logFN , N(I −Q)FN〉
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=
1

ZN(fδ,
√
N)(N − 1)π

∑
i<j

ˆ
SN−1(

√
N)

(log fδN (vi) + log fδN (vj))

·
(ˆ 2π

0

(
ΠN
k=1,k 6=i,jfδN (vk)

)
· (fδN (vi)fδN (vj)− fδN (vi(ϑ))fδN (vj(ϑ))) dϑ

)
dσN

Next we notice that by renaming i as j and vice versa

∑
i<j

ˆ
SN−1(

√
N)

log fδN (vi)

·
(ˆ 2π

0

(
ΠN
k=1,k 6=i,jfδN (vk)

)
· (fδN (vi)fδN (vj)− fδN (vi(ϑ))fδN (vj(ϑ))) dϑ

)
dσN

=
∑
j<i

ˆ
SN−1(

√
N)

log fδN (vj)

·
(ˆ 2π

0

(
ΠN
k=1,k 6=i,jfδN (vk)

)
· (fδN (vj)fδN (vi)− fδN (vj(−ϑ))fδN (vi(−ϑ))) dϑ

)
dσN

=
ϑ=−ϑ

∑
j<i

ˆ
SN−1(

√
N)

log fδN (vj)

·
(ˆ 2π

0

(
ΠN
k=1,k 6=i,jfδN (vk)

)
· (fδN (vi)fδN (vj)− fδN (vi(ϑ))fδN (vj(ϑ))) dϑ

)
dσN

As such

〈logFN , N(I −Q)FN〉 ==
1

ZN(fδ,
√
N)(N − 1)π

N∑
i=1

∑
j 6=i

ˆ
SN−1(

√
N)

log fδN (vi)

·
(ˆ 2π

0

(
ΠN
k=1,k 6=i,jfδN (vk)

)
· (fδN (vi)fδN (vj)− fδN (vi(ϑ))fδN (vj(ϑ))) dϑ

)
dσN

For a given i, the transformation that replaces v1 with vi and vice versa is invariant

under the uniform measure, and so

〈logFN , N(I −Q)FN〉 =
1

ZN(fδ,
√
N)(N − 1)π

N∑
i=1

∑
j 6=1

ˆ
SN−1(

√
N)

log fδN (v1)

·
(ˆ 2π

0

(
ΠN
k=1,k 6=1,jfδN (vk)

)
· (fδN (v1)fδN (vj)− fδN (v1(ϑ))fδN (vj(ϑ))) dϑ

)
dσN

=
N

ZN(fδ,
√
N)(N − 1)π

∑
j 6=1

ˆ
SN−1(

√
N)

log fδN (v1)

·
(ˆ 2π

0

(
ΠN
k=1,k 6=1,jfδN (vk)

)
· (fδN (v1)fδN (vj)− fδN (v1(ϑ))fδN (vj(ϑ))) dϑ

)
dσN
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Using the same argument with vj and v2 we �nd that

〈logFN , N(I −Q)FN〉 =
N

ZN(fδ,
√
N)π

ˆ
SN−1(

√
N)

log fδN (v1)

·
(ˆ 2π

0

(
ΠN
k=3fδN (vk)

)
· (fδN (v1)fδN (v2)− fδN (v1(ϑ))fδN (v2(ϑ))) dϑ

)
dσN

Using Lemma 2.6.4 we conclude that

〈logFN , N(I −Q)FN〉 =
N

ZN(fδ,
√
N)π

· |SN−3|
|SN−1|N N−2

2

ˆ 2π

0

ˆ
v2
1+v2

2≤N
log fδN (v1) (fδN (v1)fδN (v2)− fδN (v1(ϑ))fδN (v2(ϑ)))

(
N − v2

1 − v2
2

)N−4
2

(ˆ
SN−3

(√
N−v2

1−v2
2

) (ΠN
k=3fδN (vk)

)
dσN−2√

N−v2
1−v2

2

)
dv1dv2dϑ

=
|SN−3|N

|SN−1|N N−2
2 π

ˆ 2π

0

ˆ
v2
1+v2

2≤N
log fδN (v1) (fδN (v1)fδN (v2)− fδN (v1(ϑ))fδN (v2(ϑ)))

·
(
N − v2

1 − v2
2

)N−4
2

ZN−2

(
fδN .

√
N − v2

1 − v2
2

)
ZN(fδN ,

√
N)

dv1dv2dϑ

and here we �nally use Theorem 2.6.3. For N ≥ 4 (which means we're allowed to use

j = 2)

ZN−2

(
fδN .

√
N − v2

1 − v2
2

)

=
2

√
N − 2 · ΣδN · |SN−3| (N − v2

1 − v2
2)

N−4
2

e
−

(−v2
1−v

2
2+2)

2

2(N−2)Σ2
δN

√
2π

+ λ2

(
N − 2, N − v2

1 − v2
2

)


ZN(fδN ,
√
N) =

2
√
N · ΣδN · |SN−1|N N−2

2

(
1√
2π

+ λ0(N,N)

)
And so

|SN−3|N
|SN−1|N N−2

2

·
(
N − v2

1 − v2
2

)N−4
2

ZN−2

(
fδN .

√
N − v2

1 − v2
2

)
ZN(fδN ,

√
N)

=

√
N

N − 2
·N · e

−
(−v2

1−v
2
2+2)

2

2(N−2)Σ2
δN +

√
2πλ2 (N − 2, N − v2

1 − v2
2)

1 +
√

2πλ0 (N,N)
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which allows us to rewrite

〈logFN , N(I −Q)FN〉 (2.6.4)

=
N

π
√

1− 2
N

ˆ 2π

0

ˆ
v2
1+v2

2≤N
log fδN (v1) (fδN (v1)fδN (v2)− fδN (v1(ϑ))fδN (v2(ϑ)))

·e
−

(2−v2
1−v

2
2)

(N−2)Σ2
δ +

√
2πλ2 (N − 2.N − v2

1 − v2
2)

1 +
√

2πλ0(N,N)
dv1dv2dϑ

Using the invariance of {v2
1 + v2

2 ≤ N} under rotation, and the notation (f ⊗ g) (x, y) =

f(x)g(y), f⊗2 = f ⊗ f we �nd that

ˆ
v2
1+v2

2≤N
log fδN (v1) (fδN (v1)fδN (v2)− fδN (v1(ϑ))fδN (v2(ϑ)))

·e
−

(2−v2
1−v

2
2)

(N−2)Σ2
δ +

√
2πλ2 (N − 2.N − v2

1 − v2
2)

1 +
√

2πλ0(N,N)
dv1dv2

=

ˆ
v2
1+v2

2≤N
log (fδN ⊗ 1) (v1, v2)

(
f⊗2
δN

(v1, v2)− f⊗2
δN

(v1(ϑ), v2(ϑ))
)

·e
−

(2−v2
1−v

2
2)

(N−2)Σ2
δ +

√
2πλ2 (N − 2.N − v2

1 − v2
2)

1 +
√

2πλ0(N,N)
dv1dv2

=

ˆ
v2
1+v2

2≤N
log (fδN ⊗ 1) (R1,2,−ϑ (v1, v2))

(
f⊗2
δN

(R1,2,−ϑ (v1, v2))− f⊗2
δN

(R1,2,−ϑ(v1(ϑ), v2(ϑ)))
)

·e
−

(2−v2
1(−ϑ)−v2

2(−ϑ))
(N−2)Σ2

δ +
√

2πλ2 (N − 2.N − v2
1(−ϑ)− v2

2(−ϑ))

1 +
√

2πλ0(N,N)
dv1dv2

=

ˆ
v2
1+v2

2≤N
log fδN (v1(−ϑ)) (fδN (v1(−ϑ))fδN (v2(−ϑ))− fδN (v1)fδN (v2))

·e
−

(2−v2
1−v

2
2)

(N−2)Σ2
δ +

√
2πλ2 (N − 2.N − v2

1 − v2
2)

1 +
√

2πλ0(N,N)
dv1dv2

Thus, by using the substitution −ϑ = ϑ and combining the above with (2.6.4) we

see that

〈logFN , N(I −Q)FN〉 (2.6.5)

=
N

π
√

1− 2
N

ˆ 2π

0

ˆ
v2
1+v2

2≤N
log fδN (v1(ϑ)) (fδN (v1(ϑ))fδN (v2(ϑ))− fδN (v1)fδN (v2))
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·e
−

(2−v2
1−v

2
2)

(N−2)Σ2
δ +

√
2πλ2 (N − 2.N − v2

1 − v2
2)

1 +
√

2πλ0(N,N)
dv1dv2dϑ

We also notice that if we replace v1 with v2 in (2.6.4) we �nd that

〈logFN , N(I −Q)FN〉 (2.6.6)

=
N

π
√

1− 2
N

ˆ 2π

0

ˆ
v2
1+v2

2≤N
log fδN (v2) (fδN (v1)fδN (v2)− fδN (v1(ϑ))fδN (v2(ϑ)))

·e
−

(2−v2
1−v

2
2)

(N−2)Σ2
δ +

√
2πλ2 (N − 2.N − v2

1 − v2
2)

1 +
√

2πλ0(N,N)
dv1dv2dϑ

and similarly to (2.6.5)

〈logFN , N(I −Q)FN〉 (2.6.7)

=
N

π
√

1− 2
N

ˆ 2π

0

ˆ
v2
1+v2

2≤N
log fδN (v2(ϑ)) (fδN (v1(ϑ))fδN (v2(ϑ))− fδN (v1)fδN (v2))

·e
−

(2−v2
1−v

2
2)

(N−2)Σ2
δ +

√
2πλ2 (N − 2.N − v2

1 − v2
2)

1 +
√

2πλ0(N,N)
dv1dv2dϑ

Combining (2.6.4), (2.6.5), (2.6.6) and (2.6.7) gives us

〈logFN , N(I −Q)FN〉 =
N

4π
√

1− 2
N

(2.6.8)

ˆ 2π

0

ˆ
v2
1+v2

2≤N
(log fδN (v1) + log fδN (v2)− log fδN (v1(ϑ))− log fδN (v2(ϑ)))

· (fδN (v1)fδN (v2)− fδN (v1(ϑ))fδN (v2(ϑ)))

·e
−

(2−v2
1−v

2
2)

(N−2)Σ2
δ +

√
2πλ2 (N − 2.N − v2

1 − v2
2)

1 +
√

2πλ0(N,N)
dv1dv2dϑ

=
N

4π
√

1− 2
N

ˆ 2π

0

ˆ
v2
1+v2

2≤N
(log (fδN (v1)fδN (v2))− log (fδN (v1(ϑ))fδN (v2(ϑ))))

· (fδN (v1)fδN (v2)− fδN (v1(ϑ))fδN (v2(ϑ)))

·e
−

(2−v2
1−v

2
2)

(N−2)Σ2
δ +

√
2πλ2 (N − 2.N − v2

1 − v2
2)

1 +
√

2πλ0(N,N)
dv1dv2dϑ
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Due to the monotonicity of the logarithm we know that

(log x− log y) (x− y) ≥ 0

for any x, y > 0. That along with the fact that supu∈R |λj(N − j, u)| ≤ εj(N) and

〈logFN , N(I −Q)FN〉 ≥ 0 (See Lemma A.1.6 in the Appendix) shows us that

〈logFN , N(I −Q)FN〉 = |〈logFN , N(I −Q)FN〉|

≤ N

4π
√

1− 2
N

ˆ 2π

0

ˆ
v2
1+v2

2≤N
|log (fδN (v1)fδN (v2))− log (fδN (v1(ϑ))fδN (v2(ϑ)))|

· |fδN (v1)fδN (v2)− fδN (v1(ϑ))fδN (v2(ϑ))|

·e
−

(2−v2
1−v

2
2)

(N−2)Σ2
δ +

√
2π |λ2 (N − 2.N − v2

1 − v2
2)|∣∣1 +

√
2πλ0(N,N)

∣∣ dv1dv2dϑ

≤ N

4π
√

1− 2
N

· 1 +
√

2πε2(N)∣∣1 +
√

2πλ0(N,N)
∣∣

ˆ 2π

0

ˆ
v2
1+v2

2≤N
(log (fδN (v1)fδN (v2))− log (fδN (v1(ϑ))fδN (v2(ϑ))))

· (fδN (v1)fδN (v2)− fδN (v1(ϑ))fδN (v2(ϑ))) dv1dv2dϑ

Much like (2.6.8) we can 'untangle' the above expression and get that

〈logFN , N(I −Q)FN〉 ≤
N

π
√

1− 2
N

· 1 +
√

2πε2(N)∣∣1 +
√

2πλ0(N,N)
∣∣ (2.6.9)

ˆ 2π

0

ˆ
v2
1+v2

2≤N
log fδN (v1) (fδN (v1)fδN (v2)− fδN (v1(ϑ))fδN (v2(ϑ))) dv1dv2dϑ

=
N

π
√

1− 2
N

· 1 +
√

2πε2(N)∣∣1 +
√

2πλ0(N,N)
∣∣

ˆ 2π

0

ˆ
v2
1+v2

2≤N
(− log fδN (v1)) (fδN (v1(ϑ))fδN (v2(ϑ))− fδN (v1)fδN (v2)) dv1dv2dϑ

Remembering that fδ = δM 1
2δ

+ (1− δ)M 1
2(1−δ)

and noticing that

Ma(v1(ϑ)) ·Ma(v2(ϑ)) =
1

2π
e−

v2
1(ϑ)

2a · e−
v2
2(ϑ)

2a =
1

2π
e−

v2
1(ϑ)+v2

2(ϑ)

2a
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=
1

2π
e−

v2
1+v2

2
2a = Ma(v1) ·Ma(v2)

and

fδ(x)fδ(y) = δ2M 1
2δ

(x)M 1
2δ

(y) + δ(1− δ)M 1
2δ

(x)M 1
2(1−δ)

(y)

δ(1− δ)M 1
2δ

(y)M 1
2(1−δ)

(x) + (1− δ)2M 1
2(1−δ)

(x)M 1
2(1−δ)

(y)

we �nd that

fδ(v1(ϑ))fδ(v2(ϑ))− fδ(v1)fδ(v2) (2.6.10)

= δ(1− δ)
(
M 1

2δ
(v1(ϑ))M 1

2(1−δ)
(v2(ϑ))−M 1

2δ
(v1)M 1

2(1−δ)
(v2)

)
+δ(1− δ)

(
M 1

2δ
(v2(ϑ))M 1

2(1−δ)
(v1(ϑ))−M 1

2δ
(v2)M 1

2(1−δ)
(v1)

)
≤ δ(1− δ)

(
M 1

2δ
(v1(ϑ))M 1

2(1−δ)
(v2(ϑ)) +M 1

2δ
(v2(ϑ))M 1

2(1−δ)
(v1(ϑ))

)
Also, since the logarithm is an increasing function and Ma is a positive function

we �nd that

− log fδ(v1) = − log
(
δM 1

2δ
(v1) + (1− δ)M 1

2(1−δ)
(v1)

)
(2.6.11)

≤ − log
(
δM 1

2δ
(v1)

)
= − log

(
δ

3
2

√
π
e−δv

2
1

)
= −3 log δ

2
+

log π

2
+ δv2

1

≤ −3 log δ

2
+

log π

2
+ δ

(
v2

1 + v2
2

)
= −3 log δ

2
+

log π

2
+ δ

(
v2

1(ϑ) + v2
2(ϑ)

)
and since

fδ(v) =
δ

3
2

√
π
e−δv

2

+
(1− δ) 3

2

√
π

e−(1−δ)v2 ≤ δ
3
2

√
π

+
(1− δ) 3

2

√
π

(2.6.12)

≤ δ√
π

+
1− δ√
π

=
1√
π
< 1

we have that − log fδ(v1) > 0. Combining this with (2.6.9), (2.6.10) and (2.6.11)

yields

〈logFN , N(I −Q)FN〉 ≤
N

π
√

1− 2
N

· 1 +
√

2πε2(N)∣∣1 +
√

2πλ0(N,N)
∣∣
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ˆ 2π

0

ˆ
v2
1+v2

2≤N

(
−3 log δN

2
+

log π

2
+ δN

(
v2

1(ϑ) + v2
2(ϑ)

))
·δN(1− δN)

(
M 1

2δN

(v1(ϑ))M 1
2(1−δN )

(v2(ϑ)) +M 1
2δN

(v2(ϑ))M 1
2(1−δN )

(v1(ϑ))
)
dv1dv2dϑ

Using the rotation invariance of the the disc along with its invariance under the

transformation switching v1 and v2, we �nd that

〈logFN , N(I −Q)FN〉 ≤
2N

π
√

1− 2
N

·
(
1 +
√

2πε2(N)
)
δN(1− δN)∣∣1 +

√
2πλ0(N,N)

∣∣
ˆ 2π

0

ˆ
v2
1+v2

2≤N

(
−3 log δN

2
+

log π

2
+ δN

(
v2

1 + v2
2

))(
M 1

2δN

(v1)M 1
2(1−δN )

(v2)
)
dv1dv2dϑ

=
4N√
1− 2

N

·
(
1 +
√

2πε2(N)
)
δN(1− δN)∣∣1 +

√
2πλ0(N,N)

∣∣
ˆ
v2
1+v2

2≤N

(
−3 log δN

2
+

log π

2
+ δN

(
v2

1 + v2
2

))(
M 1

2δN

(v1)M 1
2(1−δN )

(v2)
)
dv1dv2

Increasing the domain of integration from {v2
1 + v2

2 ≤ N} to R2 only increases the

above expression, and so

〈logFN , N(I −Q)FN〉 ≤
4N√
1− 2

N

·
(
1 +
√

2πε2(N)
)
δN(1− δN)∣∣1 +

√
2πλ0(N,N)

∣∣
ˆ
R2

(
−3 log δN

2
+

log π

2
+ δN

(
v2

1 + v2
2

))(
M 1

2δN

(v1)M 1
2(1−δN )

(v2)
)
dv1dv2

=
4N√
1− 2

N

·
(
1 +
√

2πε2(N)
)
δN(1− δN)∣∣1 +

√
2πλ0(N,N)

∣∣[(
−3 log δN

2
+

log π

2

) ˆ
R

ˆ
R
M 1

2δN

(v1)M 1
2(1−δN )

(v2)dv1dv2

+δN

ˆ
R

ˆ
R
v2

1M 1
2δN

(v1)M 1
2(1−δN )

(v2)dv1dv2

δN

ˆ
R

ˆ
R
v2

2M 1
2δN

(v1)M 1
2(1−δN )

(v2)dv1dv2

]
Since

´
RMa(v)dv = 1 and

´
R v

2Ma(v)dv = a (See the proof of Lemma 2.6.1) we

conclude that

〈logFN , N(I −Q)FN〉 ≤
4N√
1− 2

N

·
(
1 +
√

2πε2(N)
)
δN(1− δN)∣∣1 +

√
2πλ0(N,N)

∣∣
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(
−3 log δN

2
+

log π

2
+ δN ·

1

2δN
+ δN ·

1

2(1− δN)

)
Put di�erently

〈logFN , N(I −Q)FN〉
N (−δN log δN)

≤ 4√
1− 2

N

·
(
1 +
√

2πε2(N)
)

(1− δN)∣∣1 +
√

2πλ0(N,N)
∣∣

·
(

3

2
− log π

2 log δN
− 1

2 log δN
− δN

2(1− δN) log δN

)
Since δN satis�es conditions (a′) of Theorem 2.6.3 and |λ0(N,N)| ≤ ε0(N) −→

N→∞
0

we conclude that

4√
1− 2

N

·
(
1 +
√

2πε2(N)
)

(1− δN)∣∣1 +
√

2πλ0(N,N)
∣∣ −→

N→∞
4

3

2
− log π

2 log δN
− 1

2 log δN
− δN

2(1− δN) log δN
−→
N→∞

3

2

and thus there exists a constant c̃type−δ, depending only on the behavior of δN such

that

4√
1− 2

N

·
(
1 +
√

2πε2(N)
)

(1− δN)∣∣1 +
√

2πλ0(N,N)
∣∣ ·

(
3

2
− log π

2 log δN
− 1

2 log δN
− δN

2(1− δN) log δN

)

≤ c̃type−δ

This proves that for all N ≥ 4 (which was needed for the approximation of ZN−2)

〈logFN , N(I −Q)FN〉
N

≤ c̃type−δ (−δN log δN)

Adding the cases N = 2, 3 leads us to �nd a constant ctype−δ such that

〈logFN , N(I −Q)FN〉
N

≤ ctype−δ (−δN log δN)

for all N ≥ 2, as was claimed.

Theorem 2.6.6. Let FN =
ΠNi=1fδN (vi)

ZN (fδN ,
√
N)

where 0 < δN < 1
2
, 0 < β ≤ 2

3
and δN satis�es

conditions (a′) to (c′) in Theorem 2.6.3. Then

lim
N→∞

´
SN−1(

√
N)
FN (v1, . . . , vN) logFN (v1, . . . , vN) dσN

N
=

log 2

2
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Proof. We have that

ˆ
SN−1(

√
N)

FN (v1, . . . , vN) logFN (v1, . . . , vN) dσN

=
1

ZN(fδN ,
√
N)

ˆ
SN−1(

√
N)

ΠN
i=1fδN (vi)

(
N∑
k=1

log fδN (vk)− logZN(fδN ,
√
N)

)
dσN

=
N∑
k=1

1

ZN(fδN ,
√
N)

ˆ
SN−1(

√
N)

(
ΠN
i=1fδN (vi)

)
log fδN (vk)dσ

N

− logZN(fδN ,
√
N) · 1

ZN(fδN ,
√
N)

ˆ
SN−1(

√
N)

ΠN
i=1fδN (vi)dσ

N

=

(
N∑
k=1

1

ZN(fδN ,
√
N)

ˆ
SN−1(

√
N)

(
ΠN
i=1fδN (vi)

)
log fδN (vk)dσ

N

)
− logZN(fδN ,

√
N)

For a �xed k, switching between vk and v1 is invariant under the uniform measure

and as such

N∑
k=1

1

ZN(fδN ,
√
N)

ˆ
SN−1(

√
N)

(
ΠN
i=1fδN (vi)

)
log fδN (vk)dσ

N

=
N

ZN(fδN ,
√
N)

ˆ
SN−1(

√
N)

(
ΠN
i=1fδN (vi)

)
log fδN (v1)dσN

Using Lemma 2.6.4 we �nd that

ˆ
SN−1(

√
N)

(
ΠN
i=1fδN (vi)

)
log fδN (v1)dσN

=
|SN−2|

|SN−1|N N−2
2

ˆ √N
−
√
N

fδN (v1) log fδN (v1)
(
N − v2

1

)N−3
2

(ˆ
SN−2

(√
N−v2

1

) (ΠN
i=2fδN (vi)

)
dσN−1√

N−v2
1

)
dv1

=
|SN−2|

|SN−1|N N−2
2

ˆ √N
−
√
N

fδN (v1) log fδN (v1)
(
N − v2

1

)N−3
2 · ZN−1

(
fδN ,

√
N − v2

1

)
dv1

Using Theorem 2.6.3 for N ≥ 4 and j = 0, 1 we have

ZN−1

(
fδN .

√
N − v2

1

)
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=
2

√
N − 1 · ΣδN · |SN−2| (N − v2

1)
N−3

2

e
−

(−v2
1+1)

2

2(N−1)Σ2
δN

√
2π

+ λ1

(
N − 1, N − v2

1

)


ZN(fδN ,
√
N) =

2
√
N · ΣδN · |SN−1|N N−2

2

(
1√
2π

+ λ0(N,N)

)
Thus

|SN−2|
|SN−1|N N−2

2

·
(
N − v2

1

)N−3
2 ·

ZN−1

(
fδN ,

√
N − v2

1

)
ZN(fδN ,

√
N)

=

√
N

N − 1
· e
−

(−v2
1+1)

2

2(N−1)Σ2
δN +

√
2πλ1 (N − 1, N − v2

1)

1 +
√

2πλ0(N,N)

and as such ˆ
SN−1(

√
N)

FN (v1, . . . , vN) logFN (v1, . . . , vN) dσN (2.6.13)

=
N√

1− 1
N

ˆ √N
−
√
N

fδN (v1) log fδN (v1) · e
−

(−v2
1+1)

2

2(N−1)Σ2
δN +

√
2πλ1 (N − 1, N − v2

1)

1 +
√

2πλ0(N,N)
dv1

− logZN(fδN ,
√
N)

Next we notice that

|SN−1| = 2π
N
2

Γ
(
N
2

) =
(2πe)

N
2

√
πN ·N N−2

2

(
1 +O

(
1√
N

))
and as such

ZN(fδN ,
√
N) =

2 ·
√
πN ·N N−2

2

(
1 +O

(
1√
N

))
√
NΣδNN

N−2
2 (2πe)

N
2

(
1√
2π

+ λ0(N,N)

)

=

√
2
(

1 +O
(

1√
N

))
ΣδN (2πe)

N
2

(
1 +
√

2πλ0(N,N)
)

which implies

logZN(fδN ,
√
N) = log

(√
2

(
1 +O

(
1√
N

))(
1 +
√

2πλ0(N,N)
))

(2.6.14)

−N
2

log (2πe)− 1

2
· log

(
3

4δN(1− δN)
− 1

)
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Combining (2.6.13) and (2.6.14) yields

´
SN−1(

√
N)
FN (v1, . . . , vN) logFN (v1, . . . , vN) dσN

N
=

1√
1− 1

N

(
1 +
√

2πλ0(N,N)
)

(2.6.15)

ˆ √N
−
√
N

fδN (v1) log fδN (v1)

e− (−v2
1+1)

2

2(N−1)Σ2
δN +

√
2πλ1

(
N − 1, N − v2

1

) dv1

−
log
(√

2
(

1 +O
(

1√
N

)) (
1 +
√

2πλ0(N,N)
))

N
+

1

2
log (2πe)+

1

2N
·log

(
3

4δN(1− δN)
− 1

)
We'll show that each term in (2.6.15) converges as N goes to in�nity.

ˆ √N
−
√
N

fδN (v1) log fδN (v1)

e− (−v2
1+1)

2

2(N−1)Σ2
δN +

√
2πλ1

(
N − 1, N − v2

1

) dv1

ˆ
R
fδN (v1) log fδN (v1)χ[−

√
N,
√
N ](v1)

e− (−v2
1+1)

2

2(N−1)Σ2
δN +

√
2πλ1

(
N − 1, N − v2

1

) dv1

Since 0 < fδN < 1 (See (2.6.12) in the proof of Theorem 2.6.5) and supu∈R |λ1(N − 1, u)| ≤

ε1(N) we have that∣∣∣∣∣∣∣fδN (v1) log fδN (v1)χ[−
√
N,
√
N ](v1)

e− (−v2
1+1)

2

2(N−1)Σ2
δN +

√
2πλ1

(
N − 1, N − v2

1

)
∣∣∣∣∣∣∣

(2.6.16)

≤ −fδN (v1) log fδN (v1)
(

1 +
√

2πε1(N)
)

The logarithm is an increasing function and Ma is a positive function, and so

− log fδN (v1) = − log
(
δNM 1

2δN

(v1) + (1− δN)M 1
2(1−δN )

(v1)
)

≤ min
(
− log

(
δNM 1

2δN

(v1)
)
,− log

(
(1− δN)M 1

2(1−δN )
(v1)

))
which implies

−fδN (v1) log fδN (v1) = δNM 1
2δN

(v1)·(− log fδN (v1))+(1−δN)M 1
2(1−δN )

(v1)·(− log fδN (v1))
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≤ −δNM 1
2δN

(v1) log
(
δNM 1

2δN

(v1)
)
− (1−δN)M 1

2(1−δN )
(v1) log

(
(1− δN)M 1

2(1−δN )
(v1)

)
De�ne

gN(v1) = −δNM 1
2δN

(v1) log
(
δNM 1

2δN

(v1)
)
−(1−δN)M 1

2(1−δN )
(v1) log

(
(1− δN)M 1

2(1−δN )
(v1)

)
Since δN −→

N→∞
0 from condition (a′) of Theorem 2.6.3 we conclude that

δNM 1
2δN

(v1) =
δ

3
2
N√
π
· e−δNv2

1 −→
N→∞

0 (2.6.17)

(1− δN)M 1
2(1−δN )

(v1) =
(1− δN)

3
2

√
π

· e−(1−δN )v2
1 −→
N→∞

e−v
2
1

√
π

= M 1
2
(v)

and as such

gN(v1) −→
N→∞

−M 1
2
(v1) log

(
M 1

2
(v1)

)
(2.6.18)

pointwise. On the other hand, since

1

2a

ˆ
R
Ma(v) log

(
Ma(v)

2a

)
dv =

1

2a

ˆ
R
Ma(v) log

(
1

√
π · (2a)

3
2

· e−
v2

2a

)
dv

=
−3 log(2a)− log π

4a

ˆ
R
Ma(v)dv − 1

4a2

ˆ
R
Ma(v)v2dv

=
−3 log(2a)− log π

4a
− 1

4a
=
−3 log(2a)− log π − 1

4a

(the last equality is due the computation in the proof of Lemma 2.6.1), we �nd that

ˆ
R
gN(v1)dv1 = −

δN

(
−3 log

(
1
δN

)
− log π − 1

)
2

−
(1− δN)

(
−3 log

(
1

(1−δN )

)
− log π − 1

)
2

(2.6.19)

=
δN (−3 log δN + log π + 1) + (1− δN) (−3 log(1− δN) + log π + 1)

2

−→
N→∞

log π + 1

2
= −
ˆ
R
M 1

2
(v1) log

(
M 1

2
(v1)

)
dv1

Lastly (2.6.17) tells us that

fδN (v1) log fδN (v1)χ[−
√
N,
√
N ](v1) −→

N→∞
M 1

2
(v1) log

(
M 1

2
(v1)

)
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pointwise, and since |supu λ1(N − 1, u)| ≤ ε1(N) −→ 0
N→∞

and

NΣ2
δN

= N

(
3

4δN(1− δN)
− 1

)
−→
N→∞

∞

we have that

fδN (v1) log fδN (v1)χ[−
√
N,
√
N ](v1)

e− (−v2
1+1)

2

2(N−1)Σ2
δN +

√
2πλ1

(
N − 1, N − v2

1

) (2.6.20)

−→
N→∞

M 1
2
(v1) log

(
M 1

2
(v1)

)
pointwise. Combining (2.6.16), (2.6.18), (2.6.19), (2.6.20) and the generalized Domi-

nated Convergence Theorem gives

ˆ √N
−
√
N

fδN (v1) log fδN (v1)

e− (−v2
1+1)

2

2(N−1)Σ2
δN +

√
2πλ1

(
N − 1, N − v2

1

) dv1 (2.6.21)

−→
N→∞

ˆ
R
M 1

2
(v1) log

(
M 1

2
(v1)

)
dv1 = − log π + 1

2

Next we notice that since |λ0 (N,N)| ≤ ε0(N) −→
N→∞

0

log
(√

2
(

1 +O
(

1√
N

)) (
1 +
√

2πλ0(N,N)
))

N
−→
N→∞

0 (2.6.22)

Also,

1

2N
· log

(
3

4δN(1− δN)
− 1

)
=

1

2N
log

(
1

δN

)
+

1

2N
log

(
3

4(1− δN)
− δN

)

= − 1

2NδN
· δN log δN +

1

2N
log

(
3

4(1− δN)
− δN

)
= − δ2β

N

2Nδ1+2β
N

· δN log δN +
1

2N
log

(
3

4(1− δN)
− δN

)
Using condition (b′) of Theorem 2.6.3 we �nd that

1

2N
· log

(
3

4δN(1− δN)
− 1

)
−→
N→∞

0 (2.6.23)
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Finally, (2.6.15), (2.6.21), (2.6.22), (2.6.23) and the fact that λ0(N,N) −→
N→∞

0

show that ´
SN−1(

√
N)
FN (v1, . . . , vN) logFN (v1, . . . , vN) dσN

N

−→
→∞
− log π + 1

2
+

1

2
log (2πe) =

log 2

2

which is the desired result.

The last two theorems allow us to conclude the following:

Theorem 2.6.7. Let FN =
ΠNi=1fδN (vi)

ZN (fδN ,
√
N)

where 0 < δN < 1
2
, 0 < β ≤ 2

3
and δN

satis�es conditions (a′) to (c′) in Theorem 2.6.3. Then there exists a constant Ctype−δ

depending only on the behavior of δN such that

〈logFN , N(I −Q)FN〉´
SN−1(

√
N)
FN (v1, . . . , vN) logFN (v1, . . . , vN) dσN

≤ Ctype−δ (−δN log δN)

In particular

ΓN ≤ Ctype−δ (−δN log δN)

Proof. This follows immediately from Theorems 2.6.5 and 2.6.6. Since´
SN−1(

√
N)
FN (v1, . . . , vN) logFN (v1, . . . , vN) dσN

N
6= 0

(See Lemma A.1.6 in the Appendix) and it converges to log 2
2

we know that it is

bounded from below by a positive constant α. As such

〈logFN , N(I −Q)FN〉´
SN−1(

√
N)
FN (v1, . . . , vN) logFN (v1, . . . , vN) dσN

≤ ctype−δ
α

(−δN log δN)

where ctype−δ is the constant found in Theorem 2.6.5. This concludes the �rst part of

the theorem.

Since

ΓN = inf
〈logψN , N(I −Q)ψN〉´

SN−1(
√
N)
ψN (v1, . . . , vN) logψN (v1, . . . , vN) dσN

where ψN is a density function on SN−1(
√
N) we �nd that

ΓN ≤
ctype−δ
α

(−δN log δN)

which is the second part of the theorem.
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Theorem 2.6.8. Let FN =
ΠNi=1fδN (vi)

ZN (fδN ,
√
N)

where δN = 1
N1−2β , and β > 0. Then there

exists a constant Cβ depending only on β such that

〈logFN , N(I −Q)FN〉´
SN−1(

√
N)
FN (v1, . . . , vN) logFN (v1, . . . , vN) dσN

≤ Cβ logN

N1−2β

In particular

ΓN ≤
Cβ logN

N1−2β

Proof. Without loss of generality we can assume that β < 1
6
.

Since

− log

(
1

N1−2β

)
· 1

N1−2β
=

(1− 2β) logN

N1−2β

this will follow immediately from Theorem 2.6.7 if we can show that conditions (a′)

to (c′) of Theorem 2.6.3 are satis�ed.

(a′) is obviously true since δN is a negative power of N .

For (b′) we notice that

δ1+2β
N N =

N

N1−4β2 = N4β2 −→
N→∞

∞

For (c′) we have that since 0 < β < 1
6

δ1+3β
N N = N−(1+3β)(1−2β) ·N = N6β2−β = Nβ(6β−1) −→

N→∞
0

Obviously δN < 1
2
for N ≥ 3 and the addition of the case N = 2 may only change

the constant Cβ slightly.

Theorem 2.6.9. Let 0 < η < 1. There exists a constant Cη depending only on η

such that

ΓN ≤
Cη
Nη

Proof. Given any 0 < η < 1 we can �nd ε > 0 such that η < 1
1+ε

(for instance

ε = 1
2

(
1
η
− 1
)
). Choose

β =
1− η(1 + ε)

2
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By Theorem 2.6.8, we can �nd a constant Cβ(η) such that

ΓN ≤
Cβ(η) logN

N1−2β

Since 1− 2β = η(1 + ε) we have that

ΓN ≤
Cβ logN

Nηε
· 1

Nη

and since the ηε > 0 we can �nd another constant Dη such that logN
Nηε ≤ Dη for all

N ≥ 2. Thus

ΓN ≤
Cβ(η)Dη

Nη

which is the desired result.

The last section of this chapter will be devoted to a few last remarks.

2.7 Last Remarks

For all practical purposes Theorem 2.6.9 tells us that the entropy production approach

is not better than that of the spectral gap. We'll still have to wait time almost

proportional to N in order to see every system of N particles equilibrate. Is there no

hope? A careful look at our results raises the following question:

Problem. In our result, as in [4] , the fourth moment of the one particle generating

function played a major role via the central limit theorem. In both, the sequence of

test functions had the property that its fourth moment, ΣδN , was unbounded as N

went to in�nity. Will we get a better estimate on ΓN if we restrict ourselves to the

case where the fourth moment of the test functions is bounded uniformly in N?

We still don't have any ideas if the above is true or false. Another, more academic,

question is also natural:

Problem. Can the methods we employed in this chapter be used to prove or disprove

Villani's conjecture?

51



To this question we believe the answer is no. The purpose of the the technique we

developed was to estimate the entropy production via a known sequence δN . Hoping

to be able to use some negative power of N as δN proved to be possible but with

restriction: conditions (b′) and (c′) from Theorem 2.6.3

δ1+2β
N ·N −→

N→∞
∞

δ1+3β
N N −→

N→∞
0

This gives a very tight choice on possible δN 's and we feel we exploited it to the

fullest. There is a chance that one can pick a better one particle generating function,

and by that get di�erent function α(δ), αβ(δ) in an equivalent Theorem to Theorem

2.6.2, leading to a possible better upper bound, but we believe that our functions are

very natural and optimize the problem. We feel that in order to prove or disprove

Villani's conjecture new techniques are needed, and we hope to be able to see the

conjecture settled in the near future.
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Chapter III

TRACE INEQUALITY FOR THE FRACTIONAL

LAPLACIAN

3.1 Relativistic Energy and the Fractional Laplacian

The beginning of the 20th century was �lled with great discoveries in the world of

Physics. One of the biggest and most in�uential, emerging in 1925, was Quantum

Mechanics. Quantum Mechanics provided a description to the dual wave-particle

properties of matter and investigated the subatomic level with incredible accuracy.

The combination of ideas from Statistical Mechanics, Classical Mechanics, Probability

Theory and the Physics of Waves resulted in a robust theory capable of explaining

and predicting many unexplained and unknown phenomena.

One of the crucial ideas in Quantum Mechanics is the introduction of the state

function ψ(x), whose square is the density function for probability to �nd the particle

at position x. Due to wave-particle duality, the square of its Fourier transform, ψ̂(p),

represents the density function for probability to �nd the particle the at momentum

p.

The main tool to understand phenomena in QuantumMechanics is the Schrodinger

equation, which is the 'wave equation' for the state function ψ(x). The roots of the

equation lie in the classical energy equation

E =
p2

2m
+ U

where p2

2m
is the kinetic energy term and U is the potential energy term.

Incorporating this into Quantum Mechanics we �nd that the correct expression
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for the kinetic energy in Quantum Mechanics is:

1

2m

ˆ
Rn
|p|2

∣∣∣ψ̂(p)
∣∣∣2 dp

The fact that for nice enough function f , for instance Schwartz class, we have that

〈f, (−∆)f〉 = (2π)2

ˆ
Rn
|p|2

∣∣∣f̂(p)
∣∣∣2 dp (3.1.1)

insinuates that we should connect the kinetic term p2

2m
to the operator 1

2m
(−∆), which

is indeed what Schrodinger did in his equation.

In 1928 Quantum Mechanics took another leap forward by integrating Einstein's

special relativity into itself, resulting in the celebrated Dirac Equation. The main

point behind the equation was that in relativity the kinetic energy is not given by

E = p2

2m
but by E = |p|c, where c is the speed of light. Dirac equation is far more

complicated than Schrodinger's, but it managed to include a new property of matter

and energy called 'Spin'. It also managed to correctly explain some matter-energy

phenomena that were a mystery until then. For our discussion though, the interesting

part is that the new kinetic energy expression is

c

ˆ
Rn
|p|
∣∣∣ψ̂(p)

∣∣∣2 dp
The resemblance with the classical kinetic energy, and its interpretation as a partial

di�erential equation related to the Laplacian, prompts us to de�ne the operator
√
−∆

as 〈
f,
√
−∆f

〉
= 2π

ˆ
Rn
|p|
∣∣∣f̂(p)

∣∣∣2 dp (3.1.2)

or ̂(√−∆f
)
(p) = |p|f̂(p).

Mathematically speaking, the language of Schrodinger's equation is the language

of the Sobolev space H1 (Rn): The space of all L2 (Rn) function that have weak

derivative in L2 (Rn). The language of Dirac's equation is a that of the fractional

Sobolev space H
1
2 (Rn): The space of all L2 (Rn) function f such that their Fourier
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transform f̂ satis�es the condition
´
Rn |p|

∣∣∣f̂(p)
∣∣∣2 dp <∞. This is the �rst and simplest

example of the fractional Laplacian.

In general we can de�ne the fractional Laplacian of power α as the operator

̂(−∆)α f(p) = |p|2αf̂(p) (3.1.3)

when the right hand side makes sense. This operator, besides being a natural gener-

alization of the classical and relativistic operators, has its own merits: it is connected

to fractal stochastic process and stable Levy process (and as such to �nances), it is

connected to nonlinear di�usion processes and in pure mathematics it is an exam-

ple for a pseudo- di�erential operators, arising naturally in the subject of Harmonic

Analysis.

In this chapter we will keep the de�nition of the fractional Laplacian as in (3.1.3)

when we can. Also, motivated by (3.1.1) and (3.1.2) we de�ne

〈f, (−∆)αf〉 = (2π)2α

ˆ
Rn
|p|2α

∣∣∣f̂(p)
∣∣∣2 dp (3.1.4)

This chapter is devoted to a new trace inequality connected to the fractional

Laplacian. Before we begin with our new results, we will mention what have been

done so far.

3.2 Known Sharp Trace Inequalities connected to Fractional

Laplacian

Trace inequalities are very common in Mathematics and provide a way to connect

between 'boundary values' of a function and 'interior values' of its derivatives - usually

in an integral form. Sharp trace inequalities pose a far greater tool, as they distill the

inequality to its truest form, usually with the classi�cation of possibilities to attain

equality in the inequality. Physically speaking, sharp trace inequality can re�ect a

connection between some sort of density of charge on the boundary and the total
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energy inside the domain, it is connected to capacitance problems, and many more

examples.

A prime example for such sharp inequality is the inequality found by Jose' F.

Escobar in [10] showing that

(ˆ
Rn−1

|τf(x)|
2(n−1)
n−2 dx

) n−2
(n−1)

≤ 1√
π · (n− 2)

·

{
Γ (n− 1)

Γ
(
n−1

2

) } 1
n

·
ˆ
Hn
|∇f(x, t)|2 dxdt

(3.2.1)

whereHn = {(x, t) |x ∈ Rn, t > 0} and τf is the trace of the function on the boundary

of Hn. Escobar managed to show that the inequality is sharp and completely classify

the functions which give equality. Di�erent proofs for (3.2.1) were found by Beckner

in [1], Carlen and Loss in [5] and Maggi and Villani in [20] whose approach to the

problem has been generalized by Nazaret in [21].

In view of such inequality a desire to try and �nd a similar one for the fractional

Laplacian is natural. In [24] Xiao managed to show that for α ∈ (0, 1)

(ˆ
Rn−1

|g(x)|
2n

n−2α dx

)n−2α
n

≤ 21−4α

πα · Γ (2− 2α)
·
Γ
(
n−2α

2

)
Γ
(
n+2α

2

) ·{ Γ (n)

Γ
(
n
2

)} 2α
n

·
ˆ
Hn
|∇f(x, t)|2 t1−2αdxdt

(3.2.2)

where f(x, t) = e
√
−∆tg(x). The right hand side can be rewritten as 〈g, (−∆)α g〉 (up

to a constant), which gives the connection with the fractional Laplacian. However,

this implies that (3.2.2) is nothing more than a Sobolev inequality for the fractional

Laplacian on Rn−1 (one that can be found in [6]) and not a true trace inequality.

The inequality we develop here is closer in spirit to Escobar's inequality.

3.3 The Main Trace Inequality

We start this section with two known results that will play a major role in our

discussion. The �rst is the case of equality in Hardy-Littlewood-Sobolev inequality,

originally proven by Lieb in [18], and the second is the Fourier transform of |x|α−n.

Proves for both theorems can be found in [19].
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Theorem 3.3.1. (Hardy-Littlewood-Sobolev inequality) Let 0 < λ < n, q = 2n
2n−λ and

f, h ∈ Lq (Rn) . Then∣∣∣∣ˆ
Rn

ˆ
Rn

f(x)h(y)

|x− y|λ
dxdy

∣∣∣∣ ≤ π
λ
2 ·

Γ
(
n−λ

2

)
Γ
(

2n−λ
2

) ·(Γ
(
n
2

)
Γ(n)

)λ−n
n

‖f‖Lq ‖h‖Lq (3.3.1)

The inequality is sharp and there is equality in (3.3.1) if and only if h = const · f and

f(x) =
A

(γ2 + |x− a|2)
2n−λ

2

for some A ∈ C, 0 6= γ ∈ R and a ∈ Rn.

Theorem 3.3.2. If 0 < α < n
2
and if f ∈ Lq (Rn) with q = 2n

n+2α
, then f̂ exists.

Moreover, with cα =
Γ(α2 )
π
α
2
, the function g = cn−α|x|α−n ∗ f is in L2 (Rn) and

cα
f̂(p)

|p|α
= ĝ(p)

in that case we have

c2α

ˆ
Rn

∣∣∣f̂(p)
∣∣∣2

|p|2α
dp = cn−2α

ˆ
Rn

ˆ
Rn

f(x)f(y)

|x− y|n−2α
dxdy

We are now ready to state our main trace inequality, at least for nice functions.

Theorem 3.3.3. Let 1
2
< α < n

2
. For any f ∈ S (Rn) de�ne τf (x′) = f (x′, 0) where

x′ ∈ Rn−1. Then

‖τf‖2

L
2(n−1)
n−2α

≤ Cα,n 〈f, (−∆)α f〉 (3.3.2)

where

Cα,n =
1

22απα
·

Γ
(
n−2α

2

)
Γ
(

2α−1
2

)
Γ (α) Γ

(
n+2α−2

2

) ·(Γ(n− 1)

Γ
(
n−1

2

) ) 2α−1
n−1

Proof. We start by noticing that the inversion formula for Fourier transform states

that

τf (x′) = f (x′, 0) =

ˆ
Rn
f̂ (p′, p′′) e2πi(x′,0)◦(p′,p′′)dp′dp′′

Since f̂ ∈ S (Rn) we have

τf (x′) =

ˆ
Rn−1

(ˆ
R
f̂ (p′, p′′) dp′′

)
e2πix′◦p′dp′
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Clearly
´
R f̂ (p′, p′′) dp′′ ∈ L2 (Rn−1) ∩ L1 (Rn−1) since for every k ∈ N there exists

Ck such that ∣∣∣f̂ (p)
∣∣∣ ≤ Ck(

1 + |p|2
)k

An easy result from Fourier Analysis shows that

τ̂ f (p′) =

ˆ
R
f̂ (p′, p′′) dp′′

(See Theorem A.2.1 in the Appendix).

Let g ∈ S (Rn−1). We have

|〈τf, g〉|2 =

∣∣∣∣ˆ
Rn−1

(τf) (x′) g (x′)dx′
∣∣∣∣2 =

∣∣∣∣ˆ
Rn−1

τ̂ f (p′) ĝ (p′)dp′
∣∣∣∣2

=

∣∣∣∣ˆ
Rn−1

(ˆ
R
f̂ (p′, p′′) dp′′

)
ĝ (p′)dp′

∣∣∣∣2 ≤ (ˆ
Rn

∣∣∣f̂ (p′, p′′)
∣∣∣ |ĝ (p′)| dp′dp′′

)2

=

(ˆ
Rn

∣∣∣f̂ (p′, p′′)
∣∣∣ |p|α |ĝ (p′)|

|p|α
dp′dp′′

)2

Using the Cauchy-Schwarz inequality we get

|〈τf, g〉|2 ≤
(ˆ

Rn

∣∣∣f̂(p)
∣∣∣2 |p|2α dp)(ˆ

Rn

|ĝ (p′)|2(
|p′|2 + (p′′)2)αdp′dp′′

)
(3.3.3)

=
〈f, (−∆)αf〉

(2π)2α

(ˆ
Rn

|ĝ (p′)|2(
|p′|2 + (p′′)2)αdp′dp′′

)
Since α > 1

2
we have that

ˆ
R

1(
|p′|2 + (p′′)2)αdp′′ =

p′′=|p′|u

|p′|
|p′|2α

ˆ
R

du

(1 + u2)α
=

2

|p′|2α−1 ·
ˆ ∞

0

du

(1 + u2)α
(3.3.4)

=
t=u2

1

|p′|2α−1 ·
ˆ ∞

0

t−
1
2 (1 + t)−α dt =

1

|p′|2α−1 ·
ˆ ∞

0

t
1
2
−1

(1 + t)
1
2

+ 2α−1
2

dt

=
B
(

1
2
, 2α−1

2

)
|p′|2α−1 =

Γ
(

1
2

)
Γ
(

2α−1
2

)
|p′|2α−1 Γ (α)

=

√
π · Γ

(
2α−1

2

)
|p′|2α−1 Γ (α)

As such

ˆ
Rn

|ĝ (p′)|2(
|p′|2 + (p′′)2)αdp′dp′′ = √π · Γ

(
2α−1

2

)
Γ (α)

·
ˆ
Rn−1

|ĝ (p′)|2

|p′|2α−1 dp
′ (3.3.5)
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Since 0 < 2α− 1 < n− 1 and g ∈ S (Rn−1), we can conclude from Theorem 3.3.2

that
ˆ
Rn−1

|ĝ (p′)|2

|p′|2α−1 dp
′ =

c(n−1)−(2α−1)

c2α−1

ˆ
Rn−1

ˆ
Rn−1

g(x)g(y)

|x− y|(n−1)−(2α−1)
dxdy (3.3.6)

=
Γ
(
n−2α

2

)
π
n−2α

2

· π
2α−1

2

Γ
(

2α−1
2

) ˆ
Rn−1

ˆ
Rn−1

g(x)g(y)

|x− y|(n−1)−(2α−1)
dxdy

=
π2α

π
n+1

2

·
Γ
(
n−2α

2

)
Γ
(

2α−1
2

) ˆ
Rn−1

ˆ
Rn−1

g(x)g(y)

|x− y|(n−1)−(2α−1)
dxdy

Combining (3.3.3), (3.3.5) and (3.3.6) gives us

|〈τf, g〉|2 ≤ 〈f, (−∆)αf〉
(2π)2α ·

√
π ·

Γ
(

2α−1
2

)
Γ (α)

(3.3.7)

· π
2α

π
n+1

2

·
Γ
(
n−2α

2

)
Γ
(

2α−1
2

) ˆ
Rn−1

ˆ
Rn−1

g(x)g(y)

|x− y|(n−1)−(2α−1)
dxdy

Using Theorem 3.3.1 with n − 1 as the dimension and λ = (n − 1) − (2α − 1) we

conclude from (3.3.7) that

|〈τf, g〉|2 ≤ 〈f, (−∆)αf〉
(2π)2α ·

√
π ·

Γ
(

2α−1
2

)
Γ (α)

· π
2α

π
n+1

2

·
Γ
(
n−2α

2

)
Γ
(

2α−1
2

) · (3.3.8)

·π
n−2α

2 ·
Γ
(

2α−1
2

)
Γ
(

(n−1)+(2α−1)
2

) ·( Γ
(
n−1

2

)
Γ(n− 1)

)− 2α−1
n−1

· ‖g‖2

L
2(n−1)

(n−1)+(2α−1)

=
1

22απα
·

Γ
(
n−2α

2

)
Γ
(

2α−1
2

)
Γ (α) Γ

(
n+2α−2

2

) ·(Γ(n− 1)

Γ
(
n−1

2

) ) 2α−1
n−1

· 〈f, (−∆)αf〉 · ‖g‖2

L
2(n−1)
n+2α−2

Thus, for every g ∈ S (Rn−1)∣∣∣∣∣
〈
τf,

g

‖g‖
L

2(n−1)
n+2α−2

〉∣∣∣∣∣
2

≤ 1

22απα
·

Γ
(
n−2α

2

)
Γ
(

2α−1
2

)
Γ (α) Γ

(
n+2α−2

2

) ·(Γ(n− 1)

Γ
(
n−1

2

) ) 2α−1
n−1

· 〈f, (−∆)αf〉

and since n+2α−2
2(n−1)

+ n−2α
2(n−1)

= 1 and S (Rn−1) is dense in Lq (Rn−1) for all q ≥ 1 we have

that

‖τf‖2

L
2(n−1)
n−2α

= sup
g∈S(Rn−1)

〈
τf,

g

‖g‖
L

2(n−1)
n+2α−2

〉2

≤ 1

22απα
·

Γ
(
n−2α

2

)
Γ
(

2α−1
2

)
Γ (α) Γ

(
n+2α−2

2

) ·(Γ(n− 1)

Γ
(
n−1

2

) ) 2α−1
n−1

· 〈f, (−∆)αf〉

which is the desired result.
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A careful look at the proof reveals a few things. For starters, we didn't really

need the requirement that f is a Schwartz class function, far weaker conditions would

have worked. Secondly, we see that the inequalities we used to show (3.3.2) are all

sharp inequalities that can be attained with a speci�c choice of functions (which we

call minimizers for obvious reasons). This leads us to hope that our trace inequality

is actually a sharp one and that we can classify its minimizers. Indeed,

� In order to get equality in the Cauchy-Schwarz inequality (3.3.3) we must have,

up to a constant,

f̂(p) =
ĝ (p′)

|p|2α

� In order to get equality in the Hardy-Littlewood-Sobolev inequality (3.3.8) g

must be of the form

g (x′) =
A(

γ2 + |x′ − a′|2
)n+2α−2

2

for some A ∈ C, 0 6= γ ∈ R and a′ ∈ Rn−1.

It is not so hard to notice that the function we've constructed is not a Schwartz

function, and actually in many cases, not even an L2 (Rn) function. As such, our �rst

goal will be to extent our trace inequality for a larger class of function, hoping to �nd

the right space where the inequality is both natural and attainable.

Before we continue to do just that we notice that Theorem 3.3.3 can easily be

extended to traces of an intersection on several hyperplanes in the following way:

Theorem 3.3.4. Let 1 ≤ j < n and j
2
< α < n

2
. For any f ∈ S (Rn) we de�ne

τjf (x′) = f (x′, 0) where x′ ∈ Rn−j. Then

‖τjf‖2

L
2(n−j)
n−2α

≤ Cj,α,n 〈f, (−∆)α f〉 (3.3.9)

where

Cj,a,n =
1

22απα
·

Γ
(

2α−j
2

)
Γ
(
n−2α

2

)
Γ (α) Γ

(
n+2α−2j

2

) {Γ (n− j)
Γ
(
n−j

2

) } 2α−j
n−j

60



Proof. The idea and proof are exactly like those of Theorem 3.3.3. We will repeat

the steps for completion.

If f ∈ S (Rn) then τjf ∈ S (Rn−j) and f̂ ∈ S (Rn). As such

τ̂jf (p′) =

ˆ
Rj
f̂ (p′, p′′) dp′′

Let g ∈ S (Rn−j). We �nd that

|〈τjf, g〉|2 =

∣∣∣∣ˆ
Rn−j

(ˆ
Rj
f̂ (p′, p′′) dp′′

)
ĝ (p′)dp′

∣∣∣∣2 ≤ (ˆ
Rn

∣∣∣f̂ (p′, p′′)
∣∣∣ |ĝ (p′)| dp′dp′′

)2

Using Cauchy-Schwartz inequality we �nd that

|〈τjf, g〉|2 ≤
(ˆ

Rn

∣∣∣f̂(p)
∣∣∣2 |p|2α dp)(ˆ

Rn

|ĝ (p′)|2(
|p′|2 + (p′′)2)αdp′dp′′

)
(3.3.10)

Denoting Dj,α =
´
Rj

1
(1+|y|2)α

dy we have that

ˆ
Rn

|ĝ (p′)|2(
|p′|2 + |p′′|2

)αdp′dp′′ = ˆ
Rn−j
|ĝ (p′)|2

(ˆ
Rj

1(
|p′|2 + |p′′|2

)αdp′′
)
dp′ (3.3.11)

=
p′′=|p′|y

ˆ
Rn−j

|ĝ (p′)|2

|p′|2α−j

(ˆ
Rj

1(
1 + |y|2

)αdy
)
dp′ = Dj,α

ˆ
Rn−j

|ĝ (p′)|2

|p′|2α−j
dp′

Since g ∈ S (Rj) and 0 < 2α− j < n− j Theorem 3.3.2 assures us that

ˆ
Rn−j

|ĝ (p′)|2

|p′|2α−j
dp′ =

c(n−j)−(2α−j)

c2α−j

ˆ
Rn−j

ˆ
Rn−j

g(x)g(y)

|x− y|(n−j)−(2α−j)dxdy (3.3.12)

=
π

2α−j
2 Γ

(
n−2α

2

)
π
n−2α

2 Γ
(

2α−j
2

) ˆ
Rn−j

ˆ
Rn−j

g(x′)g(y′)

|x′ − y′|n−2α
dx′dy′

Using Theorem 3.3.1 with n− j as the dimension and λ = (n− j)− (2α− j) we �nd

that ˆ
Rn−j

ˆ
Rn−j

g(x′)g(y′)

|x′ − y′|n−2α
dx′dy′ (3.3.13)

≤ π
n−2α

2 ·
Γ
(

2α−j
2

)
Γ
(
n+2α−2j

2

) { Γ
(
n−j

2

)
Γ (n− j)

}− 2α−j
n−j

‖g‖2

L
2(n−j)
n+2α−2j

Combining (3.3.10), (3.3.11), (3.3.12) and (3.3.13) we conclude that

|〈τjf, g〉|2 ≤
Dj,α

22απ
2α+j

2

Γ
(
n−2α

2

)
Γ
(
n+2α−2j

2

) {Γ (n− j)
Γ
(
n−j

2

) } 2α−j
n−j

· 〈f, (−∆)α f〉 · ‖g‖2

L
2(n−j)
n+2α−2j

61



Using the density of S (Rn−j) in L
2(n−j)
n+2α−2j (Rn−j) and the fact that n−2α

2(n−j)+
n+2α−2j

2(n−j) =

1, we conclude that

‖τjf‖2

L
2(n−j)
n−2α

≤ Dj,α

22απ
2α+j

2

Γ
(
n−2α

2

)
Γ
(
n+2α−2j

2

) {Γ (n− j)
Γ
(
n−j

2

) } 2α−j
n−j

〈f, (−∆)α f〉 (3.3.14)

We only need to compute Dj,α in order to �nish the proof. We notice that in the

proof of Theorem 3.3.3 we showed that D1,α =
√
π · Γ( 2α−1

2 )
Γ(α)

. For j > 1 we have that

Dj,α =

ˆ
Rj

1

(1 + |y|2)α
dy =

ˆ
Rj−1

(ˆ
R

1(
1 + |y′|2 + (y′′)2)αdy′′

)
dy′

=
y′′=
√

1+|y′|2t

ˆ
Rj−1

1

(1 + |y′| 2)α−
1
2

(ˆ
R

1

(1 + t2)α
dt

)
dy′

= D1,α

ˆ
Rj−1

1

(1 + |y′| 2)α−
1
2

dy′ = D1,α ·Dj−1,α− 1
2

Thus

Dj,α =

(
√
π ·

Γ
(

2α−1
2

)
Γ (α)

)
·

√π · Γ

(
2(α− 1

2)−1

2

)
Γ
(
α− 1

2

)
·· · ··

√π · Γ

(
2(α− j−1

2 )−1

2

)
Γ
(
α− j−1

2

)
 = π

j
2 ·

Γ
(

2α−j
2

)
Γ (α)

Plugging this in (3.3.14) we conclude that

‖τjf‖2

L
2(n−j)
n−2α

≤ 1

22απα
·

Γ
(

2α−j
2

)
Γ
(
n−2α

2

)
Γ (α) Γ

(
n+2α−2j

2

) {Γ (n− j)
Γ
(
n−j

2

) } 2α−j
n−j

which is the desired result.

From this point onward we'll deal with the more general inequality (3.3.9).

3.4 The space Dα (Rn)

As discussed in the previous section, our goal is to �nd the most natural space where

(3.3.9) is not only true, but attainable. While the fractional Sobolev space Hα (Rn),

de�ned as the space of all L2 (Rn) functions f such that
´
Rn

∣∣∣f̂(p)
∣∣∣ |p|2αdp <∞, might

seem right we must go a di�erent route.
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De�nition 3.4.1. The space Dα (Rn), where 0 < α < n
2
, is the space of all tempered

distributions f ∈ S ′ (Rn) whose Fourier transform (in the distributional sense) f̂ is a

function in L2 (Rn, |p|2αdp).

Theorem 3.4.2. The space Dα (Rn) is a Banach space under the norm

‖f‖Dα =
∥∥∥f̂∥∥∥

L2(|p|2αdp)

Proof. We start by noticing that ‖·‖Dα is indeed a norm since ‖·‖L2(|p|2αdp) is, and

f̂ = 0 if and only if f = 0. The completeness is the only thing we really need to show.

Let fk ∈ Dα (Rn) be a Cauchy sequence in ‖·‖Dα(Rn). This means that f̂k(p)|p|α is a

Cauchy sequence in L2 (Rn). Since L2 (Rn) is complete we can �nd F (p)|p|α ∈ L2 (Rn)

such that ∥∥∥f̂k(p)− F (p)
∥∥∥
L2(|p|2αdp)

−→
k→∞

0

In order to �nish the proof we need to construct a distribution f ∈ S ′ (Rn) with

f̂ = F . Given any g ∈ S (Rn) Theorem 3.3.2 assures us that ĝ(p)
|p|α ∈ L2 (Rn). We

de�ne

〈f, g〉 =

ˆ
Rn
F (p)ĝ(p)dp =

ˆ
Rn
F (p)|p|α · ĝ(p)

|p|α
dp

By Theorems 3.3.2 and 3.3.1 we �nd that

ˆ
Rn

|ĝ(p)|2

|p|2α
dp = π2α−n

2 ·
Γ
(
n−2α

2

)
Γ (α)

·
ˆ
Rn

g(x)g(y)

|x− y|n−2α
dxdy (3.4.1)

≤ π2α−n
2 ·

Γ
(
n−2α

2

)
Γ (α)

· π
n
2
−α · Γ (α)

Γ
(
n+2α

2

) ·{ Γ (n)

Γ
(
n
2

)} 2α
n

· ‖g‖2

L
2n

n+2α

= πα ·
Γ
(
n−2α

2

)
Γ
(
n+2α

2

) ·{ Γ (n)

Γ
(
n
2

)} 2α
n

· ‖g‖2

L
2n

n+2α

Also, for any r > 1 we have that(ˆ
Rn
|g(x)|rdx

) 1
r

=

(ˆ
|x|≤1

|g(x)|rdx
) 1

r

+

(ˆ
|x|>1

|g(x)|rdx
) 1

r

≤ ‖g(x)‖∞ |B
n|

1
r + ‖|x|n · g(x)‖∞

(ˆ
|x|>1

dx

|x|nr

) 1
r
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= ‖g(x)‖∞ |B
n|

1
r + ‖|x|n · g(x)‖∞

(
|Sn−1|

ˆ ∞
1

|x|n−1d|x|
|x|nr

) 1
r

= ‖g(x)‖∞ |B
n|

1
r + ‖|x|n · g(x)‖∞

(
|Sn−1|

ˆ ∞
1

d|x|
|x|n(r−1)+1

) 1
r

Since n(r− 1) > 0 we have that the second term converges and we can conclude that

for any r > 1 there exists Cr,n such that

‖g‖Lr ≤ Cr,n (‖g(x)‖∞ + ‖|x|n · g(x)‖∞)

From this, and (3.4.1) we �nd that∣∣∣∣ˆ
Rn
F (p)ĝ(p)dp

∣∣∣∣ ≤ ‖F‖L2(|p|2αdp) ·

√ˆ
Rn

|ĝ(p)|2

|p|2α
dp

≤

√√√√
πα ·

Γ
(
n−2α

2

)
Γ
(
n+2α

2

) ·{ Γ (n)

Γ
(
n
2

)} 2α
n

· ‖F‖L2(|p|2αdp) · C 2n
n+2α

,n (‖g(x)‖∞ + ‖|x|n · g(x)‖∞)

i.e. 〈f, g〉 =
´
Rn F (p)ĝ(p)dp indeed de�nes a distribution f ∈ S ′ (Rn). For any

g ∈ S (Rn) 〈
f̂ , g
〉

= 〈f, ǧ〉 =

ˆ
Rn
F (p)g(p)dp = 〈F, g〉

Thus, f̂ = F and the proof is complete.

Remark 3.4.3. The proof of Theorem 3.4.2 shows us more than the fact that Dα (Rn)

is a Banach space. It gives us an identi�cation between it and L2 (Rn, |p|2αdp). Indeed,

the map

f 7−→ f̂

is an isometry by the de�nition of ‖·‖Dα . On the other hand, the proof of Theorem

3.4.2 showed that for any F ∈ L2 (Rn, |p|2αdp) we can �nd f ∈ Dα (Rn) such that

f̂ = F , i.e. the above map is an isometric isomorphism.

Before we can establish the trace inequality for Dα (Rn) we'll need to know a few

more things about the space.
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Theorem 3.4.4. Let f ∈ Lq (Rn) where 1 ≤ q ≤ 2. If f̂ ∈ L2 (Rn, |p|2αdp) then

f ∈ Dα (Rn).

Proof. Clearly we can consider f as a tempered distribution since it's an Lq (Rn)

function. The only thing we need to show is that the distributional Fourier transform

is the same as the regular Fourier transform. In order to show that we prove that for

any g ∈ S (Rn)

〈f, g〉 =

ˆ
Rn
f̂(p)ĝ(p)dp

Let {fk}k∈N be a sequence of Schwartz functions that converges to f in Lq (Rn). From

the theory of Fourier transforms on Lq (Rn), when 1 ≤ q ≤ 2, we know that there

exists Cq > 0 such that ∥∥∥ĥ∥∥∥
Lp(Rn)

≤ Cq ‖h‖Lq(Rn)

where 1
p

+ 1
q

= 1 (See [17]). As such,
{
f̂k

}
k∈N

converges to f̂ in Lp (Rn) and

〈f, g〉 = lim
k→∞
〈fk, g〉 = lim

k→∞

ˆ
Rn
f̂k(p)ĝ(p)dp =

ˆ
Rn
f̂(p)ĝ(p)dp

Now, if we denote by f̂d the distributional Fourier transform we �nd that for any

g ∈ S (Rn) 〈
f̂d, g

〉
= 〈f, ǧ〉 =

ˆ
Rn
f̂(p)g(p)dp =

〈
f̂ , g
〉

so f̂d = f̂ , and the proof is complete.

Theorem 3.4.5. The space S (Rn) is dense in Dα (Rn).

Proof. We'll start by showing that Hα (Rn) is dense in Dα (Rn). Theorem 3.4.4 as-

sures us thatHα (Rn) ⊂ Dα (Rn). Given f ∈ Dα (Rn) we de�ne f̂k(p) = χ[ 1
k
,k] (|p|) f̂(p).

We have that ˆ
Rn

∣∣∣f̂k(p)∣∣∣2 |p|2αdp ≤ ˆ
Rn

∣∣∣f̂(p)
∣∣∣2 |p|2αdp <∞

and ˆ
Rn

∣∣∣f̂k(p)∣∣∣2 dp =

ˆ
1
k
≤|p|≤k

∣∣∣f̂k(p)∣∣∣2 dp ≤ k2α

ˆ
1
k
≤|p|≤k

∣∣∣f̂k(p)∣∣∣2 |p|2αdp
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= k2α

ˆ
Rn

∣∣∣f̂k(p)∣∣∣2 |p|2αdp ≤ k2α

ˆ
Rn

∣∣∣f̂(p)
∣∣∣2 |p|2αdp <∞

Thus f̂k ∈ L2 (Rn) and has an inverse Fourier transform which we denote by fk.

Clearly from the above fk ∈ Hα (Rn).

Since
∣∣∣f̂k(p)∣∣∣2 |p|2α ≤ ∣∣∣f̂(p)

∣∣∣2 |p|2α ∈ L1 (Rn) and
∣∣∣f̂k(p)∣∣∣2 |p|2α −→

k→∞

∣∣∣f̂(p)
∣∣∣2 |p|2α

pointwise we �nd by the Dominated Convergence Theorem that

‖fk − f‖Dα =

ˆ
Rn

∣∣∣f̂k(p)− f̂(p)
∣∣∣2 |p|2αdp −→

k→∞
0

concluding that Hα (Rn) is dense in Dα (Rn).

Given any ε > 0 and f ∈ Dα (Rn) we can �nd fε ∈ Hα (Rn) such that ‖fε − f‖Dα <
ε
2
. Using the fact that S (Rn) is dense in Hα (Rn) (See Lemma A.2.2) we can �nd

gε ∈ S (Rn) such that

‖gε − fε‖Hα =

√
‖gε − f‖2

L2 + ‖gε − f‖2
Dα <

ε

2

We have that

‖gε − f‖Dα ≤ ‖fε − f‖Dα + ‖gε − fε‖Dα

<
ε

2
+ ‖gε − fε‖Hα < ε

which concludes the proof.

Theorem 3.4.5 immediately implies our trace inequality

Theorem 3.4.6. Let 1 ≤ j < n and j
2
< α < n

2
. There exists a continuous linear

operator τj : Dα (Rn)→ L
2(n−j)
n−2α (Rn) such that

‖τjf‖2

L
2(n−j)
n−2α

≤ Cj,α,n 〈f, (−∆)α f〉

where

Cj,a,n =
1

22απα
·

Γ
(

2α−j
2

)
Γ
(
n−2α

2

)
Γ (α) Γ

(
n+2α−2j

2

) {Γ (n− j)
Γ
(
n−j

2

) } 2α−j
n−j

Moreover, for any f ∈ S (Rn), τjf (x′) = f (x′, 0) where x′ ∈ Rn−j.
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Proof. This follows immediately from Theorem 3.3.4 and 3.4.5.

Surprisingly enough, Theorem 3.4.5 tells us more than only the trace inequality -

it implies that Dα (Rn) is actually a function space and not an abstract distribution

space. While we don't need this in order to show that (3.3.9) is sharp and attainable

in Dα (Rn), we decided to include this in our discussion as it will give us another

attribute of Dα (Rn) and, as will be mentioned later, gives an alternative proof to our

main inequality.

We begin with a Sobolev type theorem. This was originally proved in [6] but we

repeat it here due to its simplicity and relevance.

Theorem 3.4.7. Let 0 < α < n
2
and f ∈ S (Rn) then

‖f‖
L

2n
n−2α

≤ cα,n ‖f‖Dα (3.4.2)

where

cα,n =

√√√√
πα ·

Γ
(
n−2α

2

)
Γ
(
n+2α

2

) ·{ Γ (n)

Γ
(
n
2

)} 2α
n

Proof. The proof is similar to proofs presented in chapter 8 of [19] and our proof of

Theorems 3.3.3 and 3.3.4. Given g ∈ S (Rn) we �nd that

|〈f, g〉|2 =

∣∣∣∣ˆ
Rn
f̂(p)ĝ(p)dp

∣∣∣∣2 ≤ ‖f‖2
Dα ·
ˆ
Rn

|ĝ(p)|2

|p|2α
dp

Using the (3.4.1) from the proof of Theorem 3.4.2 we �nd that

|〈f, g〉|2 ≤ ‖f‖2
Dα · π

α ·
Γ
(
n−2α

2

)
Γ
(
n+2α

2

) ·{ Γ (n)

Γ
(
n
2

)} 2α
n

· ‖g‖2

L
2n

n+2α

Since n+2α
2n

+ n−2α
2n

= 1 and S (Rn) is dense in all Lq (Rn) spaces the result follows.

The following is an improvement to the above theorem:

Theorem 3.4.8. If f ∈ Dα (Rn) then f ∈ L
2n

n−2α (Rn) and

‖f‖
L

2n
n−2α

≤ cα,n ‖f‖Dα

where cα,n was de�ned in Theorem 3.4.7.
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Proof. Given f ∈ Dα (Rn) we can �nd a sequence of functions {fk}k∈N ∈ S (Rn) such

that

‖f − fk‖Dα −→
k→∞

0

(this is due to Theorem 3.4.5). As such, {fk}k∈N is Cauchy in Dα (Rn) and (3.4.2)

implies that {fk}k∈N is Cauchy in L
2n

n−2α (Rn). Since L
2n

n−2α (Rn) is complete we can

�nd hf ∈ L
2n

n−2α (Rn) such that

‖hf − fk‖
L

2n
n−2α

−→
k→∞

0

We'll now show that f = hf . The proof of Theorem 3.4.2 and Remark 3.4.3 showed

that

〈f, g〉 =

ˆ
Rn
f̂(p)ĝ(p)dp =

ˆ
Rn
f̂(p)|p|α · ĝ(p)

|p|α
dp

for any g ∈ S (Rn). Since ĝ(p)
|p|α ∈ L

2 (Rn) (as seen in (3.4.1)) and ‖f − fk‖Dα −→
k→∞

0

we can conclude that

〈f, g〉 = lim
k→∞

ˆ
Rn
f̂k(p)|p|α ·

ĝ(p)

|p|α
dp = lim

k→∞

ˆ
Rn
f̂k(p)ĝ(p)dp = lim

k→∞
〈fk, g〉 = 〈hf , g〉

which shows that f = hf and can be considered as a function. We also have that

‖f‖
L

2n
n−2α

= lim
k→∞
‖fk‖

L
2n

n−2α
≤ lim

k→∞
cα,n ‖fk‖Dα = cα,n ‖f‖Dα

and the proof is complete.

We turn our attention to the study of the minimizers, if there are any. The next

technical Lemma is crucial in our discussion and is motivated by the proof of Theorem

3.3.4.

Lemma 3.4.9. Let 1 ≤ j < n and j
2
< α < n

2
. For any g ∈ L

2(n−j)
n+2α−2j (Rn−j) and

f ∈ Dα (Rn) we have that

〈τjf, g〉 =

ˆ
Rn
f̂ (p′, p′′) ĝ (p′)dp′dp′′

where p′ ∈ Rn−j.
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Proof. We start by noticing that since j
2
< α < n

2
we have that

1 <
2(n− j)

n+ 2α− 2j
< 2

so g has a Fourier transform, and the righthand side makes sense. The main idea be-

hind the proof of this Lemma is using approximation by Schwartz functions, similar to

the steps taken in the proof of Theorem 3.4.4. Let f ∈ S (Rn) and g ∈ L
2(n−j)
n+2α−2j (Rn−j).

Since S (Rn−j) is dense in L
2(n−j)
n+2α−2j (Rn−j) we can �nd a sequence of Schwartz func-

tions {gk}k∈N such that ‖gk − g‖
L

2(n−j)
n+2α−2j

−→
k→∞

0. We know that

Φf (g) = 〈τjf, g〉

is a bounded linear functional on L
2(n−j)
n+2α−2j (Rn−j) and so

〈τjf, g〉 = lim
k→∞
〈τjf, gk〉 = lim

k→∞

ˆ
Rn
f̂ (p′, p′′) ĝk (p′)dp′dp′′

Using Fubini's Theorem we �nd that

ˆ
Rn
f̂ (p′, p′′) ĝk (p′) dp′dp′′ =

ˆ
Rn−j

(ˆ
Rj
f̂ (p′, p′′) dp′′

)
ĝk (p′)dp′

Since ĝk −→
L

2(n−j)
n−2α

ĝ and
´
Rj f̂ (p′, p′′) dp′′ ∈ L

2(n−j)
n+2α−2j (Rn−j) (same explanation as

given in the proof of Theorem 3.3.3) we conclude that

lim
k→∞

ˆ
Rn−j

(ˆ
Rj
f̂ (p′, p′′) dp′′

)
ĝk (p′)dp′ =

ˆ
Rn−j

(ˆ
Rj
f̂ (p′, p′′) dp′′

)
ĝ (p′)dp′

Using Fubini's Theorem again we see that

〈τjf, g〉 =

ˆ
Rn
f̂ (p′, p′′) ĝ (p′)dp′dp′′

for all f ∈ S (Rn) and g ∈ L
2(n−j)
n+2α−2j (Rn−j).

Next, given f ∈ Dα (Rn) and g ∈ L
2(n−j)
n+2α−2j (Rn−j) we can �nd a sequence of

Schwartz functions {fk}k∈N such that

‖fk − f‖Dα −→
k→∞

0
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(this is true due to Lemma 3.4.5). By the de�nition of τj we have that

τjf = lim
k→∞

τjfk

in the L
2(n−j)
n−2α (Rn−j) sense, and so

〈τjf, g〉 = lim
k→∞
〈τjfk, g〉 = lim

k→∞

ˆ
Rn
f̂k (p′, p′′) ĝ (p′)dp′dp′′

= lim
k→∞

ˆ
Rn
f̂k (p′, p′′) |p|α ĝ (p′)

|p|α
dp′dp′′

We notice that
ˆ
Rn

|ĝ (p′)|2

|p|2α
dp =

ˆ
Rn−j
|ĝ (p′)|2

(ˆ
Rj

dp′′

|p|2α

)
dp′ = π

j
2 ·

Γ
(

2α−j
2

)
Γ (α)

ˆ
Rn−j

|ĝ (p′)|2

|p′|2α−j
dp′

as was shown in the proof of Theorem 3.3.4. Using Theorem 3.3.2 with n− j as the

dimension and 2α− j replacing 2α, the fact that g ∈ L
2(n−j)
n+2α−2j (Rn−j) and j

2
< α < n

2

implies that ĝ(p′)

|p′|α−
j
2

∈ L2 (Rn−j). Thus

ˆ
Rn

|ĝ (p′)|2

|p|2α
dp <∞

i.e. ĝ(p′)
|p|α ∈ L

2 (Rn). Since f̂(p)|p|α = limk→∞ f̂k(p)|p|α in the L2 (Rn) sense (by the

de�nition) we conclude that

〈τjf, g〉 = lim
k→∞

ˆ
Rn
f̂k (p′, p′′) |p|α ĝ (p′)

|p|α
dp′dp′′ =

ˆ
Rn
f̂ (p′, p′′) |p|α ĝ (p′)

|p|α
dp′dp′′

=

ˆ
Rn
f̂ (p′, p′′) ĝ (p′)dp′dp′′

which is the desired result.

The above theorem is the key to showing that (3.3.9) is sharp and attainable in

Dα (Rn).

Theorem 3.4.10. If f ∈ Dα (Rn) is a minimizer for (3.3.9) then f̂ must be of the

form

f̂(p) =
ĝj,HLS (p′)

|p|2α
(3.4.3)

where p′ ∈ Rn−j and gj,HLS (x′) = A

(γ2+|x′−a′|2)
n+2α−2j

2

for some A ∈ C, 0 6= γ ∈ R and

a′ ∈ Rn−j.

70



Proof. Assume that f ∈ Dα (Rn) is a minimizer for (3.3.9). Let g ∈ L
2(n−j)
n+2α−2j (Rn−j) =(

L
2(n−j)
n−2α (Rn−j)

)∗
be such that ‖g‖

L
2(n−j)
n+2α−2j

= 1 and

〈τjf, g〉 = ‖τjf‖
L

2(n−j)
n−2α

We �nd that by Lemma 3.4.9

‖τjf‖2

L
2(n−j)
n−2α

= |〈τjf, g〉|2 =

∣∣∣∣ˆ
Rn
f̂ (p′, p′′) ĝ (p′)dp′dp′′

∣∣∣∣2

=

∣∣∣∣∣
ˆ
Rn
f̂ (p′, p′′) |p|α ĝ (p′)

|p|α
dp′dp′′

∣∣∣∣∣
2

From this point we continue word to word as the proof of Theorem 3.3.4. Using

Cauchy-Schwartz inequality and Theorem 3.3.2 we �nd that

‖τjf‖2

L
2(n−j)
n−2α

≤
(ˆ

Rn

∣∣∣f̂(p)
∣∣∣2 |p|2α dp)(ˆ

Rn

|ĝ (p′)|2

|p|2α
dp

)

=
Γ
(

2α−j
2

)
Γ
(
n−2α

2

)
22α · π n

2 Γ (α) Γ
(

2α−j
2

) · 〈f, (−∆)α f〉 ·
ˆ
Rn−j

ˆ
Rn−j

g(x′)g(y′)

|x′ − y′|n−2α
dx′dy′

Using Theorem 3.3.1 and the fact that ‖g‖
L

2(n−j)
n+2α−2j

= 1 we �nd that

‖τjf‖2

L
2(n−j)
n−2α

≤ 1

22απα
·

Γ
(

2α−j
2

)
Γ
(
n−2α

2

)
Γ (α) Γ

(
n+2α−2j

2

) { Γ
(
n−j

2

)
Γ (n− j)

}− 2α−j
n−j

· 〈f, (−∆)α f〉

= Cj,α,n 〈f, (−∆)α f〉 = ‖τjf‖2

L
2(n−j)
n−2α

This implies that we must have had equality in every step of the way. Thus,

equality in the Cauchy-Schwartz inequality implies that

f̂ (p) |p|α = C · ĝ (p′)

|p|α

for some C ∈ C, and equality in the Hardy-Littlewood-Sobolev inequality for g implies

that g must be of the form gj,HLS. Since the constant C can be 'swallowed' in the

general form of gj,HLS we obtain the desired result.
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Finding what might be a minimizer is only half the story. Are functions of the

form (3.4.3) in Dα (Rn)?

In order to show that it is indeed the case we need the next technical lemma:

Lemma 3.4.11. Let gj(x
′) =

(
1

1+|x′|2

)n−2j+2α
2

where x′ ∈ Rn−j. Then

(i) gj ∈ Lq (Rn−j) for all q ≥ 1 when j
2
< α < n

2
. In particular gj ∈ L

2(n−j)
n+2α−j (Rn−j)

and by Theorem 3.3.2

ˆ
Rn−j

|ĝj (p′)|2

|p′|2α−j
dp′ =

π2α−jΓ
(
n−2α

2

)
π
n−j

2 Γ
(

2α−j
2

) ˆ
Rn−j

ˆ
Rn−j

gj(x
′)gj(y

′)

|x′ − y′|n−2α
dx′dy′

(ii) for j
2
< α < n

2
, ĝj decays faster than any polynomial at in�nity. As such,

along with (ii) we conclude that ĝj ∈ L1 (Rn−j) ∩ C (Rn−j).

Proof. To prove (i) we notice that gj ∈ C∞ (Rn−j), and so for any q ≥ 1 we have that

ˆ
Rn−j
|gj(x)|qdx =

ˆ
|x|≤1

|gj(x)|qdx+

ˆ
|x|>1

|gj(x)|qdx ≤ ‖g‖q∞·
∣∣Bn−j∣∣+ˆ

|x|>1

|gj(x)|qdx

where |Bn−j| is the volume of the n−j dimensional unit ball Bn−j. We conclude that

the convergence or divergence of
´
Rn−j |gj(x)|qdx depends solely on the behavior 'at

in�nity'. We also know that on Rk

ˆ
|x|≥1

dx

|x|β
= |Sk−1|

ˆ ∞
1

|x|k−1

|x|β
d|x| = |Sk−1|

ˆ ∞
1

d|x|
|x|β−k+1

so convergence will occur if and only if β − k > 0, i.e. β > k.

Since

|x′|n+2α−2j
gj(x

′) −→
|x′|→∞

1

we know that gj will be in L
q (Rn−j) if and only if 1

|x′|n+2α−2j ∈ Lq (Rn−j \Bn−j). This

happens if and only if

q (n+ 2α− 2j) > n− j

Indeed, since j
2
< α < n

2
we have that for any q ≥ 1

q (n+ 2α− 2j) ≥ n+ 2α− 2j > n− j > 0
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Also, j
2
< α < n

2
implies that 1 < 2(n−j)

n+2α−j < 2 and so gj ∈ L
2(n−j)
n+2α−j (Rn−j) which

proves the second part of (i).

The �rst part of (ii) follows from the observation that gj ∈ C∞ (Rn−j) and all of

its derivatives are L1 (Rn−j) functions, along with known facts about the decay of the

Fourier transform (see [13]). Indeed, if we have

f(x) =
P (x)

(1 + |x|2)β

where P is a polynomial then for any 1 ≤ i ≤ n

∂f

∂xi
(x) =

∂P
∂xi

(x)

(1 + |x|2)β
− 2βP (x)

(1 + |x|2)β
· xi

1 + |x|2

Since deg
(
∂P
∂xi

(x)
)
≤ deg (P (x))− 1 and |x1|√

1+|x|2
≤ 1 we conclude that the behavior

at in�nity of ∂f
∂xi

is 'better' than that of f (in the sense of integral convergence). Thus,

if f ∈ L1
(
Rk
)
so would ∂f

∂xi
and by induction all the derivatives. This is our case with

P (x) = 1 and β = n+2α−2j
2

.

The second part of (ii) follows immediately from the fact that gj ∈ L1 (Rn−j),

which implies that ĝj ∈ C (Rn−j).

We're �nally ready to show that Dα (Rn) is indeed the right space.

Theorem 3.4.12. Let f̂(p) =
̂gj,HLS(p′)

|p|2α where p′ ∈ Rn−j and gj,HLS (x′) = A

(γ2+|x′−a′|2)
n+2α−2j

2

for some A ∈ C, 0 6= γ ∈ R and a′ ∈ Rn−j. Then f̂ is the distributional Fourier

transform of some f ∈ Dα (Rn) and f is a minimizer for (3.3.9).

Proof. We start by noting that with the notations of Theorem 3.4.10 and Lemma

3.4.11 we have

gj,HLS (x′) =
A(

γ2 + |x′ − a′|2
)n+2α−2j

2

=
A

|γ|n+2α−2j
· 1(

1 +
∣∣∣x′−a′γ

∣∣∣2)n+2α−2j
2

=
A

|γ|n+2α−2j
· gj
(
x′ − a′

γ

)
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so gj,HLS satis�es all the conclusions of Lemma 3.4.11.

We have that

ˆ
Rn

∣∣∣f̂(p)
∣∣∣2 |p|2αdp =

ˆ
Rn

∣∣ĝj,HLS (p′)
∣∣2

|p|2α
dp = π

j
2 ·

Γ
(

2α−j
2

)
Γ (α)

·
ˆ
Rn−j

∣∣ĝj,HLS (p′)
∣∣2

|p′|2α−j
dp′

Using Theorem 3.3.1, Theorem 3.3.2 and the fact that gj,HLS is the minimizer for

the Hardy-Littlewood-Sobolev inequality we see that

ˆ
Rn

∣∣∣f̂(p)
∣∣∣2 |p|2αdp =

π2αΓ
(
n−2α

2

)
π
n
2 Γ (α)

ˆ
Rn−j

ˆ
Rn−j

gj,HLS(x′)gj,HLS(y′)

|x′ − y′|n−2α
dx′dy′

= πα ·
Γ
(
n−2α

2

)
Γ
(

2α−j
2

)
Γ (α) Γ

(
n+2α−2j

2

) { Γ
(
n−j

2

)
Γ (n− j)

}− 2α−j
n−j

‖gj,HLS‖2

L
2(n−j)
n+2α−2j

= (2π)2αCj,α,n ‖gj,HLS‖2

L
2(n−j)
n+2α−2j

<∞

i.e. f̂ ∈ L2 (Rn, |p|2αdp). From Theorem 3.4.2 and Remark 3.4.3 we conclude that

there exists f ∈ Dα (Rn) such that f̂ is its distibutional Fourier transform.

In order to show that f is indeed a minimzer we note that by Lemma 3.4.9 and

the above computation we have that

‖τjf‖2

L
2(n−j)
n−2α

≥

∣∣∣∣∣
〈
τjf,

gj,HLS
‖gj,HLS‖

L
2(n−j)
n+2α−2j

〉∣∣∣∣∣
2

=
1

‖gj,HLS‖2

L
2(n−j)
n+2α−2j

∣∣∣∣ˆ
Rn
f̂(p)ĝj,HLS (p′)dp

∣∣∣∣2

=
1

‖gj,HLS‖2

L
2(n−j)
n+2α−2j

·

(ˆ
Rn

∣∣ĝj,HLS (p′)
∣∣2

|p|2α
dp

)2

=

(´
Rn

∣∣∣f̂(p)
∣∣∣2 |p|2αdp)2

‖gj,HLS‖2

L
2(n−j)
n+2α−2j

(2π)2αCj,α,n

ˆ
Rn

∣∣∣f̂(p)
∣∣∣2 |p|2αdp = Cj,α,n · 〈f, (−∆)α f〉

which concludes our proof.

Before we �nish this chapter we'd like to show two more things:

� Why Hα (Rn) isn't the right space.

� Inequality (3.3.9) is actually sharp in S (Rn), though equality is unattainable.
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Theorem 3.4.13. Let j
2
< α < n

2
and f̂(p) =

̂gj,HLS(p′)

|p|2α where p′ ∈ Rn−j and

gj,HLS (x′) was de�ned in Theorem 3.4.10. Then f ∈ Hα (Rn) if and only if α < n
4
.

Note that as Hα (Rn) is contained in Dα (Rn) Theorem 3.4.10 tells us that a function

in Hα (Rn) can attain equality in (3.3.9) if and only if it's of the form (3.4.3). As

such, the above theorem tells us that for many choices of α we won't have a minimizer

in Hα (Rn).

Proof. Since α > j
2
we have that 2α > j

2
and as shown in Theorem 3.3.4

ˆ
Rn

∣∣∣f̂(p)
∣∣∣2 dp =

ˆ
Rn

∣∣ĝj,HLS (p′)
∣∣2

|p|4α
dp = π

j
2 ·

Γ
(

4α−j
2

)
Γ (2α)

·
ˆ
Rn−j

∣∣ĝj,HLS (p′)
∣∣2

|p′|4α−j
dp′

= π
j
2 ·

Γ
(

4α−j
2

)
Γ (2α)

·
ˆ
|p′|≤1

∣∣ĝj,HLS (p′)
∣∣2

|p′|4α−j
dp′ + π

j
2 ·

Γ
(

4α−j
2

)
Γ (2α)

·
ˆ
|p′|>1

∣∣ĝj,HLS (p′)
∣∣2

|p′|4α−j
dp′

Due to property (ii) in Lemma 3.4.11 we �nd that
´
|p′|>1

|̂gj,HLS(p′)|2
|p′|4α−j dp′ <∞. Since

ĝj,HLS is continuous (property (ii) again) and ĝj,HLS (p′) −→
p′→0

ĝj,HLS (0) = A
|γ|n+2α−2j ·∥∥∥gj ( ·−a′γ )∥∥∥

L1
6= 0 when gj,HLS 6= 0, we �nd that

´
|p′|≤1

|̂gj,HLS(p′)|2
|p′|4α−j dp′ will converge if

and only if
´
|p′|≤1

dp′

|p′|4α−j converges.

ˆ
|p′|≤1

dp′

|p′|4α−j
= |Sn−j−1| ·

ˆ 1

0

|p′|n−j−1

|p′|4α−j
d |p′| = |Sn−j−1| ·

ˆ 1

0

d |p′|
|p′|4α−n+1

which will converge if and only if 4α− n < 0 or α < n
4
.

Thus, if α < n
4
we have that f̂ is in L2 (Rn) and as such has an inverse Fourier

transform f . We know that f̂ ∈ L2 (Rn, |p|2αdp) (from Theorem 3.4.12) and as such

f ∈ Hα (Rn).

Conversely, if f ∈ Hα (Rn) then f ∈ L2 (Rn) and so α must satisfy α < n
4
.

Theorem 3.4.14. Let 1 ≤ j < n and j
2
< α < n

2
. For any ε > 0 there exists

fε ∈ S (Rn) such that

‖τjfε‖2

L
2(n−j)
n−2α

≥ (1− ε)Cj,α,n · 〈fε, (−∆)α fε〉
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Proof. This is a direct result of the density of S (Rn) in Dα (Rn), but we'll show it

for completion. Let f ∈ Dα (Rn) be a minimzer for (3.3.9). Since S (Rn) is dense in

Dα (Rn) we can �nd a sequence of functions in fk ∈ S (Rn) such that

‖fk − f‖Dα −→
k→∞

0

As such

〈fk, (−∆)α fk〉 =

ˆ
Rn

∣∣∣f̂k(p)∣∣∣2 |p|2αdp −→
k→∞

ˆ
Rn

∣∣∣f̂(p)
∣∣∣2 |p|2αdp = 〈f, (−∆)α f〉

By the de�nition of τj we have that τjf = limk→∞ τjfk in the L
2(n−j)
n−2α (Rn−j) sense

and so

‖τjfk‖2

L
2(n−j)
n−2α

−→
k→∞

‖τjf‖2

L
2(n−j)
n−2α

Thus, we can �nd kη such that

〈
fkη , (−∆)α fkη

〉
≤ (1 + η) 〈f, (−∆)α f〉

and ∥∥τjfkη∥∥2

L
2(n−j)
n−2α

≥ (1− η) ‖τjf‖2

L
2(n−j)
n−2α

which implies

∥∥τjfkη∥∥2

L
2(n−j)
n−2α

≥ (1− η) ‖τjf‖2

L
2(n−j)
n−2α

≥ (1− η)Cj,α,n · 〈f, (−∆)α f〉

≥ 1− η
1 + η

· Cj,α,n ·
〈
fkη , (−∆)α fkη

〉
For a given ε > 0 picking η such that 1−η

1+η
> 1− ε concludes the proof.

In the next section we will develop another trace type inequality, using similar

methods to those we used to prove (3.3.9).
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3.5 Another trace inequality

Our main trace inequality (3.3.9) connects the fractional Laplacian of a function

to some Lq (Rn) norm of its restriction to the intersections of the hyperplanes xn =

0, . . . , xn−j+1 = 0. A di�erent possibility we can investigate is an inequality connect-

ing the fractional Laplacian of a function to the fractional Laplacian of appropriate

order of its restriction to the intersection of the hyperplanes xn = 0, . . . , xn−j+1 = 0.

As usual, we start with S (Rn).

Theorem 3.5.1. Let 1 ≤ j < n and j
2
< α < n

2
. For any f ∈ S (Rn) we have〈

τjf, (−∆)α−
j
2 τjf

〉
≤

Γ
(

2α−j
2

)
2j · π j

2 · Γ (α)
· 〈f, (−∆)α f〉 (3.5.1)

where τjf was de�ned in Theorem 3.3.4.

Proof. As in the proof of Theorem 3.3.4 given f ∈ S (Rn), g ∈ S (Rn−j) we have that

|〈τf, g〉|2 ≤ 〈f, (−∆)αf〉
(2π)2α · π

j
2 ·

Γ
(

2α−j
2

)
Γ (α)

·
ˆ
Rn−j

|ĝ (p′)|2

|p′|2α−j
dp′ (3.5.2)

On the other hand

|〈τf, g〉|2 =

∣∣∣∣ˆ
Rn−j

τ̂ f (p′) ĝ (p′)dp′
∣∣∣∣2 =

∣∣∣∣∣
ˆ
Rn−j

τ̂ f (p′) |p′| α−
j
2 · ĝ (p′)

|p′| α− j2
dp′

∣∣∣∣∣
2

(3.5.3)

Denoting ĥ (p′) = ĝ(p′)

|p′|α−
j
2

we �nd that ĥ ∈ L2 (Rn−j). Indeed, since ĝ ∈ S (Rn−j)

we have that
´
|p′|≥1

|ĝ(p′)|2

|p′|2α−j dp
′ < ∞. Also,

´
|p′|<1

|ĝ(p′)|2

|p′|2α−j dp
′ ≤ ‖ĝ‖2

∞ ·
´
|p′|<1

dp′

|p′|2α−j =

‖ĝ‖2
∞ · |Sn−j−1|

´ 1

0
dp′

|p′|2α−n+1 , which will be �nite since α < n
2
.

(3.5.2) and (3.5.3) can be rewritten as∣∣∣∣ˆ
Rn−1

τ̂ f (p′) |p′| α−
j
2 · ĥ (p′)dp′

∣∣∣∣2 ≤ π
j
2 · Γ

(
2α−j

2

)
(2π)2α Γ (α)

〈f, (−∆)α f〉 ·
∥∥∥ĥ∥∥∥

L2
(3.5.4)

It is easy to show that functions of the form ĝ(p′)

|p′|α−
j
2

where g ∈ S (Rn−j) are dense

in L2 (Rn−j) (See Lemma A.2.3 in the Appendix). As such (3.5.4) is valid for any

ĥ ∈ L2 (Rn−j). This implies that τ̂ f (p′) |p′| α− j2 ∈ L2 (Rn−j) and

ˆ
Rn−j

∣∣∣τ̂jf (p′)
∣∣∣2 |p′|2α−j dp′ ≤ π

j
2 · Γ

(
2α−j

2

)
(2π)2α Γ (α)

〈f, (−∆)α f〉
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or 〈
τjf, (−∆)α−

j
2 τjf

〉
≤

Γ
(

2α−j
2

)
2j · π j

2 · Γ (α)
〈f, (−∆)α f〉

which is the desired result.

The advantage of inequality (3.5.1) over (3.3.9) lies in its proof: we only used the

Cauchy-Schwarz inequality, removing a restriction on possible minimizers imposed

by the Hardy-Littlewood-Sobolev inequality! Indeed, we note the following theorem

whose proof we'll leave to the Appendix:

Theorem 3.5.2. Let 1 ≤ j < n and j
2
< α < n

2
. Given g ∈ C∞c (Rn−j \ {0}), de�ne

f̂(p) = g(p′)
|p|2α . Then f̂ ∈ Lq (Rn) for any q ≥ 1 and as such f = f̌ is well de�ned.

Moreover, f ∈ L2 (Rn) ∩ C (Rn) and〈
τjf, (−∆)α−

j
2 τjf

〉
=

Γ
(

2α−j
2

)
2j · π j

2 · Γ (α)
· 〈f, (−∆)α f〉

Before continuing to the next section we'd like to observe that the trace inequality

we developed here along with the Sobolev type inequality found in Theorem 3.4.7

can be combined together to give an alternative proof of our main inequality (3.3.9).

We've decided not to take that path since we wanted a simple way to see what the

minimizers were, and felt that proving (3.3.9) from scratch was more enlightening.

Our last theoretical section will investigate the case α = j
2
.

3.6 The case α = j
2

Throughout this chapter we always demanded that α be bigger than j
2
. Our com-

putations showed why it was necessary - we had many integrals whose convergence

depended on it. In this short section we'll see that it wasn't just a technicality for a

tricky proof. We will show that no inequality of the form (3.3.9) is possible even for

Schwartz functions when α = j
2
. Before we start we notice that when α = j

2

2(n− j)
n+ 2α− 2j

= 2
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Theorem 3.6.1. For any M > 0 there exists f ∈ S (Rn) such that

‖τjf‖2
L2 > M

(
f, (−∆)

j
2 f
)

Proof. Let β > j
2
and ĝ ∈ C∞c (Rn−j \ {0}). De�ne f̂β,m(p) = ĝ(p′)

|p|2β · ωm (|p′′|), where

p = (p′, p′′) and ωm ∈ C∞c (0,∞) be such that ωm|[ 1
m
,m] = 1, suppωm ⊂

[
1

2m
, 2m

]
and

0 ≤ ωm(x) ≤ 1 for all x ∈ (0,∞). f̂β,m ∈ C∞c (Rn) and as such it has an inverse

Fourier transform in S (Rn). As shown in the proof of Theorem 3.3.4

τ̂jfβ,m (p′) =

ˆ
Rj
f̂β,m (p′, p′′) dp′′

and by Plancherel's equality

‖τfβ,m‖2
L2 =

ˆ
Rn−j

(ˆ
Rj

ĝ (p′)

|p|2β
ωm (|p′′|) dp′′

)2

dp′ =

ˆ
Rn−j
|ĝ (p′) |2

(ˆ
Rj

ωm (|p′′|)
|p|2β

dp′′
)2

dp′

Since 0 ≤ ωm(|p′′|)
|p|2β ≤ 1

|p|2β ,
´
Rj

dp′′

|p|2β =
π
j
2 ·Γ( 2β−j

2 )
Γ(β)

· 1
|p′|2β−j and ωm(|p′′|)

|p|2β −→
m→∞

1
|p|2β

pointwise we can use the Dominated Convergence Theorem to conclude that

lim
m→∞

‖τfβ,m‖2
L2 =

(
π
j
2 · Γ

(
2β−j

2

)
Γ (β)

)2 ˆ
Rn−j

|ĝ (p′) |2

|p′|2(2β−j)dp
′

On the other hand,

ˆ
Rn
|p|j
∣∣∣f̂β,m(p)

∣∣∣2 dp =

ˆ
Rn

|ĝ (p′) |2

|p|4β−j
ω2
m (|p′′|) dp

a similar discussion shows that

lim
m→∞

ˆ
Rn
|p|j
∣∣∣f̂β,m(p)

∣∣∣2 dp =

ˆ
Rn

|ĝ (p′) |2

|p|4β−j
dp = π

j
2 ·

Γ
(

4β−2j
2

)
Γ (4β − j)

ˆ
Rn−j

|ĝ (p′) ||2

|p′|2(2β−j)dp
′

Since ζΓ(ζ) −→
ζ→0

1 we have that

2β − j
4
·

Γ2
(

2β−j
2

)
Γ
(

4β−2j
2

) −→
β→ j

2

1

and so, for a given M > 0, we can �nd βM > j
2
such that

π
j
2 · Γ2

(
2βM−j

2

)
Γ (4βM − j)

Γ2 (βM) Γ
(

4βM−2j
2

) > 2 (2π)
j
2 ·M
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For the �xed βM we can �nd kM such that

‖τfβM ,kM‖
2
L2

(2π)
j
2
´
Rn |p|j

∣∣∣f̂βM ,kM (p)
∣∣∣2 ≥

1

2
· lim
k→∞

‖τfβM ,k‖
2
L2

(2π)
j
2
´
Rn |p|j

∣∣∣f̂βM ,k(p)∣∣∣2
=

1

2 (2π)
j
2

·
π
j
2 · Γ2

(
2βM−j

2

)
Γ (4βM − j)

Γ2 (βM) Γ
(

4βM−2j
2

) > M

Which concludes the proof.

The last section of this chapter will be devoted to a few last remarks.

3.7 Last Remarks

A thing we may notice, looking at all the theorems presented in this chapter, is that

we choose to restrict the original function f to the intersection of the hyperplanes

xn = 0, . . . , xn−j+1 = 0. However, this seems more of a convenience than an actual

necessity. Indeed, looking at all our formulas and remembering that

̂f (· − a)(p) = e−2πia◦pf̂(p)

we conclude that we can easily replace τj by τj,a′′ where

τj,a′′f (x′) = f (x′, a′′)

for x′ ∈ Rn−j and a′′ ∈ Rj, and still obtain the same results. The fact that the set

of minimizers we obtained is translation invariant (in the spatial sense) is not a big

surprise!

Lastly, while we feel that we've exploited everything we can from (3.3.9) we still

think that there is much more to be done concerning the fractional Laplacian, and

are eager to learn more and think more on the subject.
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Appendix A

HELPFUL ADDITIONS

In this Appendix we present proofs to several results we used in our main chapters,

but felt they would hinder the �ow of reading.

A.1 Additional Proofs to Chapter 2

Lemma A.1.1. Any solution of the master equation (2.1.1) satis�es

‖F (v1, . . . , vN , t)− 1‖L2(SN−1
√
N) ≤ e−∆N t ‖F (v1, . . . , vN , 0)− 1‖L2(SN−1

√
N)

Proof. We know that F (v1, . . . , vN , 0) is a density function, and as such (F (v1, . . . , vN), 1) =

1. Since F (v1, . . . , vN , t) solves the master equation we have that

d

dt
(F (v1, . . . , vN , t), 1) =

(
∂F

∂t
(v1, . . . , vN , t), 1

)
= −N ((I −Q)F (v1, . . . , vN , t), 1)

= −N (F (v1, . . . , vN , t), (I −Q)1) = 0

and hence (F (v1, . . . , vN , t), 1) = 1 for all t. Next we notice that

d

dt
‖F (v1, . . . , vN , t)− 1‖2

L2(SN−1
√
N) = 2

〈
∂ (F − 1)

∂t
, F − 1

〉
= −2 〈N(I −Q) (F − 1) , (F − 1)〉

and since (F − 1, 1) = 1− 1 = 0 we �nd that

d

dt
‖F (v1, . . . , vN , t)− 1‖2

L2(SN−1
√
N) ≤ −2∆N ‖F (v1, . . . , vN , 0)− 1‖2

L2(SN−1
√
N)

and so

e2∆N t ‖f(v1, . . . , vN , t)− 1‖2
L2(SN−1

√
N) ≤ ‖f(v1, . . . , vN)− 1‖2

L2(SN−1
√
N)

which is the desired proof.
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Lemma A.1.2. For any a, η > 0 we have that

√
2π

a
·
√

1− e−aη
2

2 ≤
ˆ
|x|<η

e−
a2x2

2 dx ≤
√

2π

a
·
√

1− e−a2η2

and ˆ
|x|>η

e−
a2x2

2 dx ≤
√

2π · e−a
2η2

2

a

Proof. We have that

ˆ
|x|<η

e−
a2x2

2 dx =

√ˆ ˆ
|x|,|y|<η

e−
a2(x2+y2)

2 dxdy ≤

√ˆ ˆ
x2+y2<2η2

e−
a2(x2+y2)

2 dxdy

=

√ˆ 2π

0

ˆ √2η

0

re−
a2r2

2 drdϑ =
√

2π ·
√

1− e−a2η2

a2

And

ˆ
|x|<η

e−
a2x2

2 dx ≥

√ˆ ˆ
x2+y2<η2

e−
a2(x2+y2)

2 dxdy =
√

2π ·

√
1− e−aη

2

2

a2

Similarly

ˆ
|x|>η

e−
a2x2

2 dx =

ˆ
R
e−

a2x2

2 dx−
ˆ
|x|<η

e−
a2x2

2 dx =

√
2π

a
−
ˆ
|x|<η

e−
a2x2

2 dx

≤
√

2π

a

(
1−

√
1− e−a

2η2

2

)
=

√
2π · e−a

2η2

2

a

(
1 +

√
1− e−a

2η2

2

) ≤ √2π · e−a
2η2

2

a

Lemma A.1.3. For any a > 0 and k0,m ∈ N we have that

m∑
k=k0+1

e−
a2k

2

√
k
≤
√

2π · e−
a2k0

2

a

m∑
k=k0+1

1√
k
≤ 2
√
m
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Proof. Since f(x) = e−
a2x

2√
x

is a positive decreasing function on (1,∞) we have that

m∑
k=k0+1

e−
a2k

2

√
k
≤
ˆ m

k0

e−
a2x

2

√
x
dx =

y=a
√
x

2

a

ˆ a
√
m

a
√
k0

e−
y2

2 dy ≤ 2

a

ˆ ∞
a
√
k0

e−
y2

2 dy

=
1

a

ˆ
|y|>a

√
k0

e−
y2

2 dy ≤
√

2π · e−
a2k0

2

a

where we used Theorem A.1.2 in the last inequality. Similarly

m∑
k=k0+1

1√
k
≤
ˆ m

k0

dx√
x

= 2
(√

m−
√
k0

)
≤ 2
√
m

Lemma A.1.4. Let f (v1, . . . , vN) be a continuous function on RN then

ˆ
SN−1(r)

fdσNr =
1

|SN−1|rN−2
·
∑

ε={+,−}

ˆ
∑N−1
i=1 v2

i≤r2

f

(
v1, . . . , vN−1, ε

√
r2 −

∑N−1
i=1 v2

i

)
√
r2 −

∑N−1
i=1 v2

i

dv1 . . . dvN−1

Proof. We start by noticing that

ˆ
SN−1(r)

fdσNr =
1

|SN−1|rN−1

ˆ
SN−1(r)

fdsNr

where dsNr is the uniform measure on SN−1(r) induced from the regular measure on

RN . Next we see that since we can think of the upper hemisphere, SN−1
+ (r), as the

graph of the function γ(v1, . . . , vN−1) =
√
r2 −

∑N−1
i=1 v2

i . Thus, we can compute the

surface element using the parametrization:

Γ(v1, . . . , vN−1) = (v1, . . . , vN−1, γ(v1, . . . , vN−1))

with the domain D =
{∑N−1

i=1 v2
i ≤ r2

}
.

As such

∂Γ

∂vi
=

0, . . . , 0, 1︸︷︷︸
ith position

, 0, . . . , 0,
∂γ

∂vi
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The last vector we'll need for the surface element is a unit normal to SN−1
+ (r).

This is easily seen to be

n̂ =
1√

|∇γ|2 + 1

(
− ∂γ
∂v1

,− ∂γ
∂v2

, . . . ,− ∂γ

∂vN−1

, 1

)
Thus, the surface element is given by

ds =
1√

|∇γ|2 + 1
· det



1 0 0 . . . 0 ∂γ
∂v1

0 1 0 . . . 0 ∂γ
∂v2

...
...

...
...

...
...

0 0 0 . . . 1 ∂γ
∂vN−1

− ∂γ
∂v1

− ∂γ
∂v2

− ∂γ
∂v3

. . . − ∂γ
∂vN−1

1



=
1√

|∇γ|2 + 1
· det



1 0 . . . 0 ∂γ
∂v2

...
...

...
...

...

0 0 . . . 1 ∂γ
∂vN−1

− ∂γ
∂v2

− ∂γ
∂v3

. . . − ∂γ
∂vN−1

1



+
(−1)N−1 · ∂γ

∂v1√
|∇γ|2 + 1

· det



0 1 0 . . . 0

...
...

...
...

...

0 0 0 . . . 1

− ∂γ
∂v1

− ∂γ
∂v2

− ∂γ
∂v3

. . . − ∂γ
∂vN−1


Since

det



0 1 0 . . . 0

...
...

...
...

...

0 0 0 . . . 1

− ∂γ
∂v1

− ∂γ
∂v2

− ∂γ
∂v3

. . . − ∂γ
∂vN−1


= (−1)N−2 det



1 . . . 0 0

...
...

...
...

0 . . . 1 0

− ∂γ
∂v2

. . . − ∂γ
∂vN−1

− ∂γ
∂v1



= (−1)N−1 · ∂γ
∂v1

· det



1 . . . 0 0

...
...

...
...

0 . . . 1 0

− ∂γ
∂v2

. . . − ∂γ
∂vN−1

1


= (−1)N−1 · ∂γ

∂v1
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we conclude that

ds =
1√

|∇γ|2 + 1
· det



1 0 . . . 0 ∂γ
∂v2

...
...

...
...

...

0 0 . . . 1 ∂γ
∂vN−1

− ∂γ
∂v2

− ∂γ
∂v3

. . . − ∂γ
∂vN−1

1


+

(
∂γ
∂v1

)2

√
|∇γ|2 + 1

Continuing in the same way we �nd that

ds =
1√

|∇γ|2 + 1

det

 1 ∂γ
∂vN−1

− ∂γ
∂vN−1

1

+
N−2∑
i=1

(
∂γ

∂vi

)2

 =

√
|∇γ|2 + 1

In our particular case, ∂γ
∂vi

= − vi√
r2−

∑N−1
i=1 v2

i

and so

ds =

√ ∑N−1
i=1 v2

i

r2 −
∑N−1

i=1 v2
i

+ 1 =
r√

r2 −
∑N−1

i=1 v2
i

Thus

ˆ
SN−1

+ (r)

fdsNr =

ˆ
∑N−1
i=1 v2

i≤r2

rf

(
v1, . . . , vN−1,

√
r2 −

∑N−1
i=1 v2

i

)
√
r2 −

∑N−1
i=1 v2

i

dv1 . . . dvN−1

In the same way

ˆ
SN−1
− (r)

fdsNr =

ˆ
∑N−1
i=1 v2

i≤r2

rf

(
v1, . . . , vN−1,−

√
r2 −

∑N−1
i=1 v2

i

)
√
r2 −

∑N−1
i=1 v2

i

dv1 . . . dvN−1

Combining the two gives

ˆ
SN−1(r)

fdσNr =
1

|SN−1|rN−2
·
∑

ε={+,−}

ˆ
∑N−1
i=1 v2

i≤r2

f

(
v1, . . . , vN−1, ε

√
r2 −

∑N−1
i=1 v2

i

)
√
r2 −

∑N−1
i=1 v2

i

dv1 . . . dvN−1

Lemma A.1.5. Let f (v1, . . . , vj) and g (vj+1, . . . , vN) be continuous functions on Rj

and RN−j respectively. Then

ˆ
SN−1(r)

f (v1, . . . , vj) · g (vj+1, . . . , vN) dσNr
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=
|SN−j−1|
|SN−1|rN−2

ˆ
∑j
i=1 v

2
i≤r2

f (v1, . . . , vj)

(
r2 −

j∑
i=1

v2
i

)N−j−2
2

(ˆ
SN−j−1

(√
r2−

∑j
i=1 v

2
i

) gdσN−j√
r2−

∑j
i=1 v

2
i

)
dv1 . . . dvj

Proof. By Lemma A.1.4

ˆ
SN−1(r)

f (v1, . . . , vj) · g (vj+1, . . . , vN) dσNr

=
1

|SN−1|rN−2
·
∑

ε={+,−}

ˆ
∑N−1
i=1 v2

i≤r2

f (v1, . . . , vj) · g
(
vj+1, . . . , vN−1, ε

√
r2 −

∑N−1
i=1 v2

i

)
√
r2 −

∑N−1
i=1 v2

i

dv1 . . . dvN−1

=
1

|SN−1|rN−2

ˆ
∑j
i=1 v

2
i≤r2

f (v1, . . . , vj)√
r2 −

∑j
i=1 v

2
i

·

 ∑
ε={+,−}

ˆ
∑N−1
i=j+1 v

2
i≤r2−

∑j
i=1 v

2
i

√
r2 −

∑j
i=1 v

2
i · g

(
vj+1, . . . , vN−1, ε

√(
r2 −

∑j
i=1 v

2
i

)
−
∑N−1

i=j+1 v
2
i

)
√(

r2 −
∑j

i=1 v
2
i

)
−
∑N−1

i=j+1 v
2
i

· dvj+1 . . . dvN−1) dv1 . . . dvj

=
1

|SN−1|rN−2

ˆ
∑j
i=1 v

2
i≤r2

f (v1, . . . , vj)√
r2 −

∑j
i=1 v

2
i

(ˆ
SN−j−1

(√
r2−

∑j
i=1 v

2
i

) gdsN−j√
r2−

∑j
i=1 v

2
i

)
dv1 . . . dvj

=
|SN−j−1|
|SN−1|rN−2

ˆ
∑j
i=1 v

2
i≤r

f (v1, . . . , vj)

(
r2 −

j∑
i=1

v2
i

)N−j−2
2

(ˆ
SN−j−1

(√
r2−

∑j
i=1 v

2
i

) gdσN−j√
r2−

∑j
i=1 v

2
i

)
dv1 . . . dvj
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Lemma A.1.6. For any continuous density function on SN−1(
√
N), FN , we have

that

〈FN , (I −Q)FN〉 ≥ 0

Moreover, 〈FN , (I −Q)FN〉 = 0 if and only if FN is constant.

Proof. Using the de�nition of Q (given in Section 2.1) and the notation presented in

Theorem 2.6.5 we �nd that

〈FN , N(I −Q)FN〉

= N

ˆ
SN−1(

√
N)

logFN (v1, . . . , vN)

·


FN (v1, . . . , vN)− 1

2π

 N

2


∑
i<j

ˆ 2π

0

FN (Ri,j,ϑ (v1, . . . , vN)) dϑ


dσN

=
N

2π

 N

2


∑
i<j

ˆ
SN−1(

√
N)

logFN (v1, . . . , vN)

·
ˆ 2π

0

(FN (v1, . . . , vN)− FN (Ri,j,ϑ (v1, . . . , vN))) dϑdσN

By the same argument that led us to equation (2.6.5) in Theorem 2.6.5 in Section

2.6 we �nd that

1

2π

ˆ 2π

0

ˆ
SN−1(

√
N)

logFN (v1, . . . , vN) (FN (v1, . . . , vN)− FN (Ri,j,ϑ (v1, . . . , vN))) dϑdσN

=
1

2π

ˆ 2π

0

ˆ
SN−1(

√
N)

logFN (Ri,j,ϑ (v1, . . . , vN)) (FN (v1, . . . , vN)− FN (Ri,j,ϑ (v1, . . . , vN))) dϑdσN

And so

〈FN , N(I −Q)FN〉
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=
N

4π

 N

2


∑
i<j

ˆ 2π

0

ˆ
SN−1(

√
N)

(logFN (v1, . . . , vN)− logFN (Ri,j,ϑ (v1, . . . , vN)))

· (FN (v1, . . . , vN)− FN (Ri,j,ϑ (v1, . . . , vN))) dϑdσN

Since (log x− log y) (x− y) ≥ 0 (as mentioned in Theorem 2.6.5) we attain the

desired result. Moreover, 〈FN , N(I −Q)FN〉 = 0 if and only if

FN (v1, . . . , vN) = FN (Ri,j,ϑ (v1, . . . , vN))

for each i, j and ϑ which implies that FN is constant.

A.2 Additional Proofs to Chapter 3

Theorem A.2.1. Let g ∈ L2 (Rn) ∩ L1 (Rn) and de�ne

f(x) =

ˆ
Rn
g(p)e2πix◦pdp

Then f ∈ L2 (Rn) ∩ C (Rn) and f̂ = g.

Proof. We notice that by the de�nition

f(x) = ĝ(−x)

Using known properties of the Fourier transform (See for example [17]) we have

that f ∈ L2 (Rn) ∩ C (Rn).

Let gn ∈ S (Rn) be such that ‖gn − g‖L2 −→
n→∞

0. De�ne fn = ĝn(−x). fn ∈ S (Rn)

and since the Fourier transform is an isometry on L2 (Rn) we have that

‖fn − f‖L2 = ‖ĝn − ĝ‖L2 = ‖gn − g‖L2 −→
n→∞

0

Again, using the fact that the Fourier transform is an isometry and that for

g ∈ S (Rn), ̂̂g(−x)(p) = g(p) we �nd that

f̂(p) = lim
n→∞

f̂n(p) = lim
n→∞

̂̂gn(−x)(p) = lim
n→∞

gn(p)
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in L2 (Rn). But

lim
n→∞

gn(p) = g(p)

in L2 (Rn) which implies that f̂ = g.

Lemma A.2.2. Hα (Rn) is a Hilbert space with the inner product

〈f, g〉Hα =

ˆ
Rn
f̂(p)ĝ(p)dp+

ˆ
Rn
f̂(p)ĝ(p)|p|2αdp

Moreover, S (Rn)is dense in Hα (Rn) as well as H l (Rn) for any l ≥ α, l ∈ N.

Proof. We have that

〈f, f〉Hα =

ˆ
Rn

∣∣∣f̂(p)
∣∣∣2 dp+

ˆ
Rn

∣∣∣f̂(p)
∣∣∣2 |p|2αdp ≥ ‖f‖2

L2 > 0

which implies that 〈f, f〉Hα only if f = 0. Given f, g and h in Hα (Rn), α, β ∈ C it is

clear that

〈f, g〉Hα = 〈g, f〉Hα

and

〈f, αg + βh〉Hα = α

(ˆ
Rn
f̂(p)ĝ(p)dp+

ˆ
Rn
f̂(p)ĝ(p)|p|2αdp

)
+β

(ˆ
Rn
f̂(p)ĥ(p)dp+

ˆ
Rn
f̂(p)ĥ(p)|p|2αdp

)
= α 〈f, g〉Hα + β 〈f, h〉Hα

Thus 〈·, ·〉Hα is an inner product. Next we'll show completeness. Given a Cauchy

sequence {fk}k∈N in the induced norm ‖·‖Hα we �nd that

‖fk − fm‖Hα ≥ max

(ˆ
Rn

∣∣∣f̂k(p)− f̂m(p)
∣∣∣2 dp,ˆ

Rn

∣∣∣f̂k(p)|p|α − f̂m(p)|p|α
∣∣∣2 dp)

implying that
{
f̂k(p)

}
k∈Rn

and
{
f̂k(p)|p|α

}
k∈Rn

are Cauchy sequences in L2 (Rn).

Since L2 (Rn) is a Hilbert space there are f̂ , ĝ ∈ L2 (Rn) such that
∥∥∥f̂k(p)− f̂(p)

∥∥∥2

L2
−→
k→∞
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0 and
∥∥∥f̂k(p)|p|α − ĝ(p)

∥∥∥2

L2
−→
k→∞

0. By passing to subsequences we can assume that

the convergence is also pointwise almost-everywhere. This implies that

ĝ(p) = lim
k→∞

f̂k(p)|p|α = f̂(p)|p|α ∈ L2 (Rn)

Proof. We can conclude that f ∈ Hα (Rn) and

‖fk − f‖Hα =

ˆ
Rn

∣∣∣f̂(p)− f̂k(p)
∣∣∣2 dp+

ˆ
Rn

∣∣∣f̂k(p)|p|α − f̂(p)|p|α
∣∣∣2 dp −→

k→∞
0

i.e. Hα (Rn) is a Hilbert space.

Next, given any l ≥ α, l ∈ N we have that for any f ∈ H l (Rn)

ˆ
Rn

∣∣∣f̂(p)
∣∣∣2 |p|2αdp =

ˆ
|p|<1

∣∣∣f̂(p)
∣∣∣2 |p|2αdp+

ˆ
|p|≥1

∣∣∣f̂(p)
∣∣∣2 |p|2αdp

≤
ˆ
|p|<1

∣∣∣f̂(p)
∣∣∣2 dp+

ˆ
|p|≥1

∣∣∣f̂(p)
∣∣∣2 |p|2ldp

≤
ˆ
Rn

∣∣∣f̂(p)
∣∣∣2 dp+

ˆ
Rn

∣∣∣f̂(p)
∣∣∣2 |p|2ldp <∞

This implies that H l (Rn) ⊂ Hα (Rn) and

‖f‖2
Hα =

ˆ
Rn

∣∣∣f̂(p)
∣∣∣2 dp+

ˆ
Rn

∣∣∣f̂(p)
∣∣∣2 |p|2αdp (A.2.1)

≤ 2

ˆ
Rn

∣∣∣f̂(p)
∣∣∣2 dp+

ˆ
Rn

∣∣∣f̂(p)
∣∣∣2 |p|2ldp ≤ 2 ‖f‖2

Hl

To prove density we de�ne f̂k(p) = f̂(p)χ[0,k] (|p|) for a given f ∈ Hα (Rn). We

notice that
∣∣∣f̂k(p)∣∣∣ ≤ ∣∣∣f̂(p)

∣∣∣ and so fk ∈ L2 (Rn). Let fk =
ˇ(
f̂k

)
where ǧ is the inverse

Fourier transform of g. We have that

ˆ
Rn

∣∣∣f̂k(p)∣∣∣2 |p|2sdp ≤ |k|2s ˆ
Rn

∣∣∣f̂k(p)∣∣∣2 dp ≤ |k|2s ˆ
Rn

∣∣∣f̂(p)
∣∣∣2 dp <∞

and so fk ∈ Hs (Rn) for any s ∈ R+. Moreover, since
∣∣∣f̂k(p)− f̂(p)

∣∣∣ ≤ 2
∣∣∣f̂(p)

∣∣∣ and
f̂k(p) −→

k→∞
f̂(p) pointwise, the Dominated Convergence Theorem implies that

‖fk − f‖Hα =

ˆ
Rn

∣∣∣f̂(p)− f̂k(p)
∣∣∣2 dp+

ˆ
Rn

∣∣∣f̂k(p)|p|α − f̂(p)|p|α
∣∣∣2 dp −→

k→∞
0
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which shows the density for H l (Rn) when l ≥ α, l ∈ N.

To show the density of S (Rn) in Hα (Rn) we use the known result that S (Rn)

is dense in H [α]+1 (Rn) (See [11]). Given f ∈ Hα (Rn) and ε > 0 we can �nd

fε ∈ H [α]+1 (Rn) such that ‖fε − f‖Hα < ε
2
. Next we �nd gε ∈ S (Rn) such that

‖fε − gε‖H[α]+1 < ε
2
√

2
. Using (A.2.1) we conclude that

‖gε − f‖Hα ≤ ‖fε − f‖Hα + ‖fε − gε‖Hα ≤
ε

2
+
√

2 ‖fε − gε‖H[α]+1 < ε

completing the proof.

Lemma A.2.3. The set
{
g(p)
|p|β | g ∈ S (Rn)

}
is dense in L2 (Rn) for any β < n

2
.

Proof. Since g ∈ S (Rn) we know that
´
|p|≥1

|g(p)|2
|p|2β dp <∞. Also,

ˆ
|p|<1

|g(p)|2

|p|2β
dp ≤ ‖g‖2

∞

ˆ
|p|<1

dp

|p|2β
<∞

since β < n
2
. This implies that

{
g(p)
|p|β | g ∈ S (Rn)

}
⊂ L2 (Rn). Given f ∈ L2 (Rn)

we can �nd a function fε ∈ S(Rn) such that ‖fε − f‖L2 < ε
2
. Let ωm be as de�ned

in Theorem ??. We have that fε,m(p) = fε(p)ωm (|p|) ∈ C∞c (Rn \ {0}), |fε,m(p)| ≤

|fε(p)| and fε,m(p) −→
m→∞

fε(p) pointwise. Using the Dominated Convergence Theorem

we conclude that ‖fε,m − fε‖L2 −→
m→∞

0. We can �nd mε such that ‖fε,mε − fε‖ < ε
2

and conclude that ‖fε,mε − f‖L2 < ε. De�ning gε(p) = |p|βfε,mε(p) we �nd that

gε ∈ C∞c (Rn \ {0}) ⊂ S (Rn) and∥∥∥∥gε(p)|p|β
− f(p)

∥∥∥∥
L2

= ‖fε,mε(p)− f(p)‖L2 < ε

which is the desired result.

Theorem A.2.4. Let 1 ≤ j < n and j
2
< α < n

2
. Given g ∈ C∞c (Rn−j \ {0}), de�ne

f̂(p) = g(p′)
|p|2α . Then f̂ ∈ Lq (Rn) for any q ≥ 1 and as such f = f̌ is well de�ned.

Moreover, f ∈ L2 (Rn) ∩ C (Rn) and〈
τjf, (−∆)α−

j
2 τjf

〉
=

Γ
(

2α−j
2

)
2j · π j

2 · Γ (α)
· 〈f, (−∆)α f〉
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Proof. Since qα ≥ α > j
2
we �nd that

ˆ
Rn

∣∣∣f̂(p)
∣∣∣q dp =

ˆ
Rn

|g (p′)|q

|p|2qα
dp = π

j
2 ·

Γ
(

2qα−j
2

)
Γ (qα)

ˆ
Rn−j

|g (p′)|q

|p|′2qα−j
dp′

as was shown in the proof of Theorem 3.3.4. Since g ∈ C∞c (Rn−j \ {0}) we have that
´
Rn−j

|g(p′)|q
|p|′2qα−j dp

′ converges, and so f̂ ∈ Lq (Rn) for any q ≥ 1. This implies that f = f̌

is well de�ned and is indeed in L2 (Rn) ∩ C (Rn).

Using the inversion formula, we have that

f(x) =

ˆ
Rn

g (p′)

|p|2α
e2πix◦pdp

By continuity we �nd that

τjf (x′) =

ˆ
Rn

g (p′)

|p|2α
e2πi(x′,0)◦pdp =

ˆ
Rn

g (p′)

|p|2α
e2πix′◦p′dp

Since g(p′)
|p|2α ∈ L

1 (Rn) we have by Fubini's Formula that

τjf (x′) =

ˆ
Rn−j

(ˆ
Rj

g (p′)

|p|2α
dp′′
)
e2πix′◦p′dp = π

j
2 ·

Γ
(

2α−j
2

)
Γ (α)

ˆ
Rn−j

g (p′)

|p′|2α−j
e2πix′◦p′dp

(again we used the fact that α > j
2
). g ∈ C∞c (Rn−j \ {0}) and as such g(p′)

|p′|2α−j ∈

Lq (Rn−j) for all q ≥ 1. An easy result from Fourier Analysis shows that τjf ∈

L2 (Rn−j) ∩ C (Rn−j) and

τ̂jf (p′) = π
j
2 ·

Γ
(

2α−j
2

)
Γ (α)

g (p′)

|p′|2α−j
=

(ˆ
Rj

g (p′)

|p|2α
dp′′
)

=

(ˆ
Rj
f̂ (p′, p′′) dp′′

)
(See Lemma A.2.1 in the Appendix).

From all the above we can the steps in Theorem 3.5.1 are valid and〈
τjf, (−∆)α−

j
2 τjf

〉
≤

Γ
(

2α−j
2

)
2j · π j

2 · Γ (α)
· 〈f, (−∆)α f〉

On the other hand〈
τjf, (−∆)α−

j
2 τjf

〉
= (2π)2α−j

ˆ
Rn−j

∣∣∣τ̂jf (p′)
∣∣∣2 |p′|2α−j dp′

= (2π)2α−j ·

(
π
j
2 ·

Γ
(

2α−j
2

)
Γ (α)

)2

·
ˆ
Rn−j

|g (p′)|2

|p′|2α−j
dp′
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and

〈f, (−∆)α f〉 = (2π)2α ·
ˆ
Rn

|g (p′)|2

|p|2α
dp = (2π)2α · π

j
2 ·

Γ
(

2α−j
2

)
Γ (α)

·
ˆ
Rn−j

|g (p′)|2

|p′|2α−j
dp′

which leads to

〈
τjf, (−∆)α−

j
2 τjf

〉
=

Γ
(

2α−j
2

)
2j · π j

2 · Γ (α)
· 〈f, (−∆)α f〉
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