
- 22 -

7. W. Kunz and H. Rittel, Issues as Elements of Information Systems, Working Paper 131,
Inst. Urban and Regional Devt., Univ. Calif. at Berkeley, 1970.

8. N. Goldman, ‘‘Three Dimensions of Design Development’’ Proc. AAAI, 1983
9. C. Potts, ‘‘Software Engineering Research Revisited,’’ IEEE Software, September, 1993,

in press.
10. K. Mani Chandy and J. Misra Parallel Program Design: A Foundation, Addison-Wesley,

1988.
11. R. Schank and R. Abelson, Scripts, Plans, Goals and Understanding: An Inquiry into

Human Knowledge Structures, Lawrence Erlbaum Associates, 1977.
12. A. Dardenne, S. Fickas and A. Van Lamsweerde, ‘‘Goal-directed Requirements

Acquisition,’’ Science of Computer Programming, to appear.
13. S. Fickas and R. Helm, ‘‘Knowledge Representation and Reasoning in the Design of

Composite Systems,’’ IEEE Trans. Software Eng., 18(6): 470-482, 1992.
14. J. Lee, ‘‘Extending the Potts and Bruns Model for Recording Design Rationale,’’ Proc. 13th

Int. Conf. Software Eng., IEEE Comp. Soc. Press, 1991
15. B. Boehm, Software Engineering Economics, Prentice-Hall, 1981.
16. J. Wood and D. Silver, Joint Application Design, Wiley, 1989.
17. C. Potts, ‘‘.Supporting Software Design: Integrating Design Methods, and Design

Rationale’’ in T. Moran and J. Carroll (eds.) Design Rationale: Concepts, Techniques, and
Use, Lawrence Erlbaum Associates, 1994, in press.

- 21 -

ments analysis. We chose a commercial document processor for our case study over a proto-

type tool that we had developed ourselves [1]. That tool, which was based on Emacs, was not

very usable. To follow an inquiry-based approach, we believe that the user needs to have ac-

cess to an effortless annotation environment. We are currently reimplementing and enhanc-

ing the functionality of our Inquiry Cycle support tool in HyperCard and MetaCard. This ver-

sion, Suiko, will provide a more transparent annotation environment. We are comparing re-

trieval or browsing strategies with a ‘bird’s-eye’ (network) view versus a ‘turtle’ (node-based)

view [17] of the requirements documentation and discussions. Suiko also supports agenda

management and progress tracking.

(b) Scenario types. We are investigating the representation and value of different types of

scenarios. We are also investigating goal-based heuristics that suggest what scenarios to an-

alyze and which of those to elaborate further.

(c) Transition to design. Following work in the OOA/OOD communities [2, 6], we are look-

ing at the transition from scenario-based requirements analysis to object identification and

responsibility-driven design.

References
1. C. Potts and K. Takahashi, ‘‘An Active Hypertext Model for System Requirements,’’Proc.

7th Int. Workshop Software Specification and Design, IEEE Comp. Soc. Press, 1993, to
appear.

2. I. Jacobson, Object-Oriented Software Engineering: A Use-case Driven Approach, Addison-
Wesley, 1992.

3. J. Karat and J.L. Bennett, ‘‘Using Scenarios in Design Meetings—A Case Study
Example,’’ in J.Karat (ed.) Taking Software Design Seriously: Practical Techniques for
Human-Computer Interaction Design, Academic Press, 1991.

4. K. Benner, M. Feather, W.L. Johnson and L. Zorman, ‘‘Utilizing Scenarios in the Software
Development Process,’’ Proc. IFIP WG8.1 Working Conf. Inf. Sys Development Process,
North-Holland, 1993.

5. M. Lubars, C. Potts and C. Richter, ‘‘Developing Initial OOA Models,’’Proc. 15th Int. Conf.
Software Eng., IEEE Comp. Soc. Press, 1993.

6. K. Rubin and A. Goldberg, ‘‘Object Behavior Analysis,’’ Comm. ACM, 35(9): 48-62,
September, 1992.

- 20 -

The reasons for elaborating a requirement are often useful to know later when implement-

ing or maintaining the system. Because discussions are attached to requirements or scenario

components and may be consolidated into rationale objects [1], we assume that the rationale

for requirements should be fairly easy to retrieve. However, our emphasis has been on keep-

ing track of ephemeral reasoning to improve the requirements analysis process, not to justify

reasoning for subsequent implementors. We have not evaluated the subsequent use of record-

ed requirements discussions.

Effort
Our estimate of effort spent in the case study is in line with commercial practice. A full

elaboration of the all 16 scenarios for the meeting scheduler, several iterations of the inquiry

cycle, and a formal revision process would take on the order of 500 to 1,000 person-hours.

If the resulting product were developed following what Boehm calls a ‘semi-detached’ de-

velopment mode and delivered about 32,000 lines of code, his Basic COCOMO model esti-

mates a project effort of 146 person-months [15]. Since a semi-detached project typically

spends seven percent of its total development effort in requirements and planning, about half

of which is actually spent doing requirements analysis, the requirements effort would require

4.7 person-months, or about 750 person-hours.

Another sanity-check is to compare our projected effort with that required to perform a

JAD session [16]. If the session lasts for one week and involves ten stakeholders full-time,

with two person-weeks of preparation and two of follow-up, then the total effort would be 800

person-hours.

Obviously, these estimates are only very rough. However, the fact that the numbers are

in rough agreement shows that following an Inquiry Cycle approach does not require inordi-

nate effort.

Future Work
Our ongoing work emphasizes three directions:

(a) Tool support. Although our emphasis is on process, not tools, our experience shows

that tool support is an important factor in the successful application of inquiry-based require-

- 19 -

We have only begun to investigate different forms of scenario analysis and their effective-

ness in clarifying and improving requirements. We are especially interested in comparing the

value of general, thematic descriptions of scenarios with detailed, instantiated scenarios. In-

tuition suggests that increased detail is more appropriate once one knows more about the sys-

tem. Paradoxically, however, our preliminary work suggests that fully instantiated scenarios

are equally useful early in the requirements analysis process. Perhaps the effort required to

construct them forces stakeholders to surface and discuss assumptions that would otherwise

be hidden for longer. A team of stakeholders may even go as far as role-playing a concrete sce-

nario (as we did in the case of Annie Out Of Town).

The Inquiry Cycle and its Shortcuts
Our practical experience convinces us that the Inquiry Cycle vocabulary is expressively

adequate for the types of discussions held during requirements analysis. Intelligent tool sup-

port would require a more explicit and formal model of the domain (e.g. meeting scheduling)

and a richer ontology of speech acts and transformations (e.g. [14]). However, increased for-

mality would defeat the object of using the Inquiry Cycle as a foundation for directing and

systematizing exploratory thought during the requirements phase.

Since our goal is to devise methodological guidelines and principles that help in the anal-

ysis of requirements for real systems, we conclude that the Inquiry Cycle exhibits an appro-

priate level of structure. We have striven to achieve a balance between regimenting an inher-

ently informal and situated activity, and providing no guidance at all.

The Inquiry Cycle facilitates the recording of discussion information in two ways:

(a) It is artifact-based. Unlike most idea-generation and issue-based methods, the Inquiry

Cycle is directed at reviewing existing artifacts. Therefore, discussion always centers around

the stated requirements and missing requirements that emerge from analyzing scenarios

(b) Short-cuts are always possible. For example, a stakeholder may record an assumpt-

tion about implementation constraints by annotating the appropriate requirement without

having to raise a spurious question first.

- 18 -

pant has not responded by the drop-dead date, the scheduler prepares a list of possible meeting

times based on the replies it has received.’’

A non-functional requirement change request, on the other hand, is a change to the re-

quirements document. Here, the change is expressed as the addition of a clarification or def-

inition. By adding the definition, the system is further constrained and potential ambiguities

are removed. However, the original intent is not changed. An example is: Add clarification

about conflict resolution mechanisms—‘‘All resolution strategies can be applied to weak con-

flicts. All but asking the participants to revise their preferences apply to strong conflicts.’’ (In

a weak conflict participants’ preferences conflict; in a strong conflict their availabilities do.)

An editorial change request is a request to re-word or rewrite some requirement. It is not

intended to remove ambiguity, but to correct grammatical or spelling errors or to introduce

constistent terminology. An example: Change ‘‘potential attendee’’ to ‘‘potential participant.’’

Following the analysis, 31 changes were made to the requirements documentation (28 to

the requirements, three to scenarios). About two-thirds of these changes (65 percent) were

part of a full inquiry cycle consisting of questions, answers, reasons and a change. Of the short

cuts to the inquiry, about half (54percent) of the discussions omitted questions, the changes

in these cases resulting from assumptions that were attached directly to the requirements

document or scenario. The rest (56 percent) omitted answers, too. The changes in these cases

arose directly from an analysis of the requirements. Despite the number of changes, the num-

ber of requirements increased by only one, from 38 to 39.

Discussion and Conclusions
Scenarios

There is little doubt that scenarios can be useful for elaborating requirements. Our evi-

dence shows that some questions about requirements are not easily answered except by re-

sorting to scenario analysis and that at least half the improvements to a set of requirements

can come from analyzing scenarios, not the requirements documents themselves.

- 17 -

question. Consider the question: Is an important participant’s attendance vital—i.e. can a

meeting go ahead without an important participant? This suggests immediately the follow-on

question: Is an active participant’s attendance vital? These can both be generalized into a sec-

ond follow-on question: What are the preconditions for holding a meeting?

The Nature of Assumptions
Stakeholders often make assumptions—that is, they answer a tacit question about the re-

quirements without articulating the question. For example, an assumption about the meet-

ing scheduler's communication medium could be construed as an answer to the question:

What is the nature of the communication medium?

Stakeholders seldom justify their assumptions or consider alternatives (we did not). As-

sumptions, like answers to explicit questions, may be retracted. Given the insidious nature of

unrecognized but false assumptions and their tentative nature, the stakeholder should flag

all assumptions carefully and make an extra effort to justify and authorize assumptions, con-

sider alternatives, and reconsider them occasionally.

Assumptions seem commonest when discussing implementation constraints or the sys-

tem's environment, or when discussion cannot otherwise continue. Some assumptions belong

in both categories. For example, the meeting scheduler requirements imply, but do not state,

that the system is mediated by electronic mail. We went further and made the scheduler

agent itself an e-mail participant. An equally valid interpretation of the requirements, how-

ever, would be to have the scheduler be invoked by a single user (the initiator) who would be

responsible for sending messages and interpreting replies.

Requirements Evolution
We find qualitatively different goals for three types of change requests: mutation re-

quests, restriction requests, and editorial requests.

 A mutation request calls for a change or addition to the requirements themselves. Thus,

when such a change is enacted, the system being described changes, for example: Add new

requirement ‘‘The initiator specifies a drop-dead date when calling the meeting. If a partici-

- 16 -

(e) When questions ask about the timing constraints on some event or events. For exam-

ple: If a potential meeting attendee does not respond, at what time should the scheduler go

ahead and schedule the meeting? In the meeting scheduler, the meeting cannot be scheduled

until at least some of the potential attendees have made known their schedules, but the

scheduling cannot be delayed until after the meeting should be held. Answering this when

question led us to the concept of the drop-dead date, the time when the scheduler makes its

best schedule on the information available.

(f) Relationship questions ask how one requirement is related to another. The drop-dead

date just mentioned has implications for the interpretation of other requirements, for exam-

ple: Are there constraints on the drop-dead date, given the current date and the initiator’s pro-

posed date range for the meeting?

Although most of the questions raised were about the term or idea that was the object of

analysis at the time, we also encountered many instances where analyzing one requirement

or scenario suddenly prompted a question about something else. It is not practical to untangle

the train of thought in most such cases, and we do not try. The results of the train of thought,

however, are very useful and should not be lost. We call these serendipitous discussion ele-

ments parenthetical insights.

Questions that led to parenthetical insights were raised in the following two ways, both

of which occurred equally often when analyzing the requirements directly and when analyz-

ing scenarios:

(a) What-if questions. A particularly fruitful heuristic is to ask about cases where an ac-

tion could go wrong or its preconditions be unsatisfied. Pursuing this type of question often

leads to insights about apparently unrelated features of the system, for example: What would

happen if the late-comer responds with preferences after the meeting has already been sched-

uled, and the preferences conflict with the schedule?

(b) Follow-on questions stem from other pending questions. An important category of fol-

low-on question is where one question generalizes another. The answer to the new, broader

question, may lead to changes in the requirements in places other than the one that led to the

- 15 -

Recording questions definitely helps keep track of open issues. All of the questions were

answered, one of them directly by a scenario, the others by answers. Most answers (94 per-

cent) explicitly answered questions, rather than being assumptions or facts attached to re-

quirements.

Most of the discussion consisted of raising possibilities that were not covered by the exist-

ing requirements, rather than deliberating among alternatives or arguing about the rationale

for decisions. The average question had only 1.3 answers suggested. Only about one-third of

the recorded answers represented alternatives that had been rejected. Reasons were given for

about half the answers (43 percent of the selected answers, 50 percent of the rejected ones).

Kinds of Questions
Requirements discussions are triggered by several distinct types of question.

(a) What is questions request more information about a requirement. They challenge re-

quirements, not scenarios, and are usually resolved by a definition. An example is: What does

‘keeping participants involved’ mean?(The requirement demands that the system keep meet-

ing participants ‘involved’ in the scheduling process.)

(b) How-to questions ask how some action is performed. They arise from requirements

and scenarios and may be resolved by analyzing a scenario. For example: How does the orga-

nization specify how to resolve conflcts?

(c) Who questions request confirmation about the agent responsible for performing some

action or achieving some goal. They are resolved by analyzing scenarios— specifically, by en-

tries in the agent columns of scripts. Scenarios especially help clarify policy issues and the

division of responsibility between the system and users. One such question challenges the re-

quirement that there are three types of participant (ordinary, active and important): Who de-

termines who is active and important?

(d) What-kinds-of question request further refinements of some concepts. It is not clear

from the meeting scheduler requirements, for example, what types of meeting should be sup-

ported.

- 14 -

analyzing the requirements document itself could not be answered except by constructing and

analyzing scenarios.

The Inquiry Cycle
The number of nodes and links of the various types for the meeting scheduler are shown

in Figure 4.. This shows the number of instances of each node and the number of transitions

from node to node. The requirements document is less than two pages long. By assigning

numbers to all paragraphs and sub-paragraphs, we can count 38 distinct requirements.

Requirements Discussion
Scenarios were at least as effective as the requirements document itself in prompting

questions about the requirements. About half (55 percent) of the questions were raised while

analyzing or constructing scenarios.

Figure 4: Number of different typers of nodes in the case study with frequencies of transitions
between Inquiry Cycle states. In addition to Inquiry Cycle transitions, the diagram shows the
frequencies of ‘short-cuts’.

Questions
33

39

Reasons
38

Revised
Requirements

Answers
40

13

41

5

11

4

13

29

28 49

Requirements
38

Scenarios
16

3Changes
38

4
22

- 13 -

tendance of Annie (active), Kenji (important), and Colin (ordinary). The meeting must be held

next week, but Kenji and Colin can make it only on days when Annie is out of town. This is a

much more concrete scenario than the others.

In our experience, instantiating scripts doubles their size. Single actions in the generic

scenarios translate into multiple action instances in the instantiated scenario. (There are 51

actions in the script for Annie Out Of Town, compared to the total of 21 actions in the rel-

evant episode definitions.) Compare the initiation episode of Figure 3 with the detailed script

in Table 4.

Whether more detail is effective in raising questions and accelerating convergence are

questions that we are actively pursuing.

Scenario Use
Analyzing scenarios helps stakeholders raise questions about requirements and answer

questions that have already been raised. Over half our changes to the meeting scheduler re-

quirements (58 percent) stemmed from analyzing scenarios rather than reviewing the re-

quirements document itself. About a quarter (28 percent) of the questions that arose while

Table 4: Detailed script for instantiated scenario Annie Out Of town

Agent Action

Esther Creates new meeting

Esther Determines that Kenji is an important participant

Esther Determines that Annie will be presenting

Esther Determines that Colin is an ordinary participant

Esther Types meeting description

Esther Sets date range to be Mon-Fri next week (it’s Wednesday p.m. now)

Esther Determines drop-dead date is Friday noon

Scheduler Sets timeout to be Fri 9am

Scheduler Sends boilerplate message to Colin requesting constraints

Scheduler Sends boilerplate message to Kenji requesting constraints and preferred
location

Scheduler Sends boilerplate message to Annie requesting constraints and equipment
requirements

- 12 -

Scenario Detail
Scenarios may be more or less detailed. For example, the episode Scheduling, during

which the scheduler determines the time and location for the meeting, must cover three cases.

(See Table 3, in which the variants correspond to the episode of Figure 3.) Two are successful

cases: the case where there is one feasible meeting time, and the case where there are multi-

ple times. In the unsuccessful case there is no feasible schedule.

Related to detail is the genericity of a scenario. The scenarios presented so far are all ge-

neric, because their agents are agent types. When agents of the same type interact, or when

several agents of one type interact with one of another, it may be better to instantiate them..

Returning to the date conflict scenario, consider a specific case, Annie Out Of Town, in

which a particular meeting has been scheduled by an initiator, Esther, that requires the at-

Table 3: Action tables for Scheduling episode

(a) No conflict; several possibilities

Agent Action

Scheduler Find meeting times and locations that are in preference set and not in
exclusion set

Scheduler Notify initiator of available times

Initiator Select time and location

(b) No conflict; one possibility

Agent Action

Scheduler Find meeting times and locations that are in preference set and not in
exclusion set

Scheduler Notify initiator of scheduled meeting time and location time

(c) Scheduling conflict

Agent Action

Scheduler Find meeting times and locations that are in preference set and not in
exclusion set

Scheduler Notify initiator of conflict

- 11 -

the form of episode names (e.g. Initiation, Responding). Episodes are themselves con-

structed out of actions (see Figure 3).

Finally, instead of representing scenarios as temporal sequences of actions or episodes,

scenarios could be represented as goal-directed plan executions. Such an approach has been

adopted in AI research on story understanding [11] and provides a potential bridge to require-

ments analysis processes based on goal refinement [12, 13].

Figure 3: Episodic structure of use case 8 (Date conflict; initiator extends date range) and
the action structure of each episode.

Episode 1: Initiation

1.1 Initiator determines important, active and other participants

1.2 Initiator prescribes date range
1.3 Initiator asks for exclusion & preference set from potential participants
1.4 Initiator asks active participants for equipment requirements

1.5 Initiator asks important participants for location preferences

Episode 2: Responding

2.1 Participants respond to request for exclusion & preference sets, equipment require-
ments (for active participants) & preferred locations (for important participants).

Episode 3: Scheduling

3.1 Scheduler chooses meeting time

3.2 Scheduler chooses location

Episode 4: Reserving and
Notification
4.1 Scheduler reserves room

4.2 Scheduler reserves equipment

4.3 Scheduler notifies participants of meeting

4/4 Scheduler notifies initiator of meeting

Episode 5: Extending Date Range

5.1 Initiator determines extended
date range

- 10 -

Scenarios may be represented as specific cases or as families of cases. When scenarios

stand for families of cases, they must distinguish between common and different parts. In

Slow Responder (Figure 2), there are three sub-cases depending on whether the tardy par-

ticipant is ordinary, active or important. These cases share common fragments, yet have dif-

ferent outcomes. This sharing of common fragments demonstrates that scenarios may be

composed, because the outcomes in cases a and b depend on the definition of other scenarios.

One may go further in recognizing the episodic structure of scenarios by making episodes

the building blocks of scenarios. Episodes are ‘phases’ of activity, a role that is reflected in

Figure 2: Actions for use case 2 (Slow Responder) variants (a) Ordinary Partic-
ipant, (b) Active Participant, and (c) Important Participant.

Scenario 2: Slow Responder

1: Initiator determines important, active & other participants

2: Initiator prescribes date range

3: Initiator asks for exclusion & preference sets from potential participants

4: Initiator asks active participants for equipment requirements

5: Initiator asks important participants for location preferences

6: Some participants respond

7: Scheduuler recognizes that the timeout has expired and reminds late
participant (& copes intiator)

a8: Scheduler recognizes that the
drop-dead date has passed &
chooses meeting time (& loca-
tion)

a9: Scheduler books room

Scenario 2a: Slow
Responder
(Ordinary Participant)

b8: Scheduler recognizes that the
drop-dead date has passed
(minus some warning interval) &
warns initiator

Substitute active participant

Scenario 2b: Slow
Responder
(Active Participant)

Meeting canceled

c8: Scheduler recognizes that the
drop-dead date has passed
(minus some warning interval) &
warns initiator

Scenario 2c: Slow
Responder
(ImportantParticipant)

- 9 -

This discovery strategy seems quite general: whenever a membership-changing action oc-

curs, stakeholders should consider whether similar changes are covered by the requirements,

and, if not, analyze scenarios that explore them.

Scenario Representation
Scenarios may be represented in several ways. Natural language summaries are at the

extreme of informality. More formal are tabular representations (see Table 2, which shows

the script for scenario 1). Tables, unlike natural language, encode temporal sequence direct-

ly.

Table 2: Script (Action Table) for No Conflicts scenario

No. Agent Action

1 Initiator Request meeting of a specific type, with meeting info. (e.g.
agenda/purpose) and date range

2 Scheduler Add default (active/important) participants, etc.

3 Initiator Determine 3 participants

4 Initiator Identify 1 presenter as active participant

5 Initiator Identify initiator’s boss as important participant

6 Initiator Send request for preferences

7 Scheduler Send appropriate e-mail messages to participants (incl. additional
requests to boss and presenter)

8 Ordinary
participant

Respond with exclusion and preference set

9 Active par-
ticipant

Respond with exclusion and preference sets and equipment
requirements

10 Scheduler Request required equipment

11 Important
participant

Respond with exclusion and preference sets and possibly location
preference

12 Scheduler Schedule meeting based on responses, policies and room avail-
ability

13 Scheduler Send confirmation message to all participants and meeting initia-
tor

- 8 -

coming participant, it is the initiator's inclusion of the person in the participant set. In

both cases, the recovery action is to reschedule.

We found that looking for analogies of this type is an effective way to identify important

scenarios. The driving question each time is: ‘What can go wrong with this action?’

Another example of scenario discovery is provided by Self-appointed active par-

ticipant. That scenario is not covered by the requirements, but a similar scenario—Substi-

tute active participant—is. In Substitute active participant, a new active par-

ticipant substitutes for someone else after scheduling has commenced. This scenario suggests

Self-appointed active participant, in which a new active participant is added to the

existing ones. The difference between the scenarios is that in the first the new active partici-

pant is substituted, whereas in the the second, he or she is added.

Table 1: Scenarios

No. Use case

1 No conflicts

2 Slow responder

3 Late-coming participant

4 Dropout

5 Substitute active participant

6 Self-appointed active participant

7 Participant changes preferences before meeting is scheduled

8 Date conflict; initiator extends date range

9 Date conflict; participants exclude fewer dates

10 Date conflict; participants withdraw

11 Weak date conflict; participants extend preferred times

12 Room conflict

13 Scheduled meeting bumped by more important meeting

14 Participant tries to double-book

15 Conflict arises after meeting scheduled

16 Meeting canceled

- 7 -

Scenarios
Several issues arise when introducing scenario analysis into the requirements analysis

process.

(a) Where do the scenarios come from and how are they identified?

(b) What is the appropriate level of detail and instantiation for scenarios?

(c) How should scenarios be represented?

(d) What types of analysis discussions are facilitated by scenarios?

To address these issues, we first consider specific examples from the meeting scheduler

and then return to the issues.

Use Cases and Scenarios in the Meeting Scheduler
We identified 16 scenarios for the meeting scheduler, which are given in Table 1In this

paper, we consider three of these in more detail: use cases 1 (No Conflict), 2 (Slow Re-

sponder), and 8 (Date conflict; initiator extends date range)..

No Conflict is the simplest case, in which the participants’ schedules do not conflict,

and meetings do not contend for the same room. Slow Responder is the case in which a po-

tential attendee does not respond in time for the meeting to be scheduled. Because the re-

quirements do not stipulate how long the scheduler should wait, nor what actions it should

take to remind the tardy participant or the initiator, we had to explore alternatives in the

Date conflict; initiator extends date range scenario. In that scenario, the initi-

ator resolves a scheduling conflict by suggesting other times.

Scenario Identification
The requirements were sufficiently detailed to give rise to most of the scenarios (14 of the

16). The remainder arose while considering other scenarios. For example, Late-coming

participant is not covered by the requirements, but arose from analyzing Slow respond-

er, in which a participant ignores the initiator's request for preferences. As inSlow re-

sponder, an action that affects an agent is delayed, requiring the system to recover. In the

case of Slow responder, the delayed action is the participant's response, whereas inLate-

- 6 -

such a computational approach ignores many of the factors that make a workgroup support

system succeed or fail.

The meeting scheduler helps people schedule rooms and equipment for meetings. Each

meeting is called by an initiator and may have ordinary, active and important participants.

The requirements do not clearly define these terms. We assume that presenters are active

participants and may have special equipment requests. We further assume that an important

participant’s attendance is more important than that of an ordinary participant should a

scheduling conflict arise. The initiator proposes some time constraints for the meeting and

the potential attendees respond with their available and preferred times. Sometimes the

scheduler can schedule the meeting; sometimes there are conflicts.

We assume that the reader has attended meetings, has a busy schedule, and has some ex-

perience using personal information managers. Armed with this near-universal knowledge

and the above summary, it should be possible to follow the requirements analysis for the case

study.

Analysis Process
We jointly performed a requirements analysis for the meeting scheduler. Using the Inqui-

ry Cycle as a framework, we met regularly to review the requirements document and scenar-

ios we constructed. To simplify the data gathering and data analysis, we maintained electron-

ic copies of the requirements, a discussion document (consisting of questions, answers and

reasons), a change request list, and a collection of use cases and scenario scripts. We produced

these using FrameMaker, taking care to cross-reference related text objects together. Some

of the documentation and modification was done during meetings. Mostly, however, we re-

sorted to printed notes, updating the documents between meetings.

Meetings lasted 30-90 minutes and were held two or three times per week for ten weeks.

Much of this time was spent in the elaboration of scenarios (part of a related investigation),

and discussions about available and planned tool support. Thirty person-hours therefore

seems a reasonable estimate for the analysis.

- 5 -

ideas and not just their validation [9], we have conducted a preliminary case study of a small-

scale requirements document.

The case study is an exploratory analysis. We investigate the types of questions that are

naturally asked about a set of written requirements, how those questions tend to be an-

swered, and the role that scenarios play in this process. The Inquiry Cycle provides a frame-

work for addressing these research questions.

Overview of Paper
In the next section we describe the example system and how we analyzed its require-

ments. Next, we discuss some issues that arise in scenario analysis, presenting illustrations

from the case study. Then we go into further detail about the Inquiry Cycle as it applies to

the example. Finally, we present our conclusions, discuss tool requirements, and present di-

rections for future work.

Applying the Inquiry Cycle to a Case Study
The Meeting Scheduler Example

As a case study, we consider the problem of automatically scheduling meetings. Axel van

Lamsweerde and his students have written a short requirements document for a meeting

scheduler system1. We chose it for several reasons:

(a) The research community has adopted it as a benchmark.

(b) The requirements illustrate problems typical of requirements for real systems: they

specify policies that may not work well in every organization, there is ample opportunity to

dispute different interpretations, and many important issues are left unresolved.

(c) Specialized domain knowledge is not necessary to understand the case study.

(d) The example hides many interesting contextual factors. Although it is possible to treat

meeting scheduling as a straightforward optimization problem (see [10] for such a treatment),

1. A. Van Lamsweerde, R. Darimont, Ph. Massonet, The Meeting Scheduler Problem: Preliminary Definition.
Copies may be obtained from Prof. Van Lamsweerde, Universite Catholique de Louvain, Unite d’Informa-
tique, Place Sainte-Barbe, 2, B-1348 Louvain-la-Neuve, Belgium. (avl@info.ucl.ac.be)

- 4 -

We call this shared information requirements documentation. We assume that the require-

ments documentation may include use cases and scripts for scenarios.

A requirements discussion consists of of three kinds of elements: questions, answers, and

reasons. Most discussions start because a stakeholder has a question about a requirement. By

answering questions and justifying answers, stakeholders develop a clearer understanding of

the requirements, and notice ambiguities, missing requirements, and inconsistencies. An an-

swer describes a solution to a question or set of questions. A reason is a justification given for

an answer.

The ultimate effect of a requirements discussion is a commitment to freeze a requirement

or change it. A change request may be traced back to a discussion, which constitutes its ratio-

nale, and traces forward to the changed requirement once it has been acted upon.

Our purpose in developing the Inquiry Cycle has not been to propose a rigid process model

that stakeholders must follow. Short-cuts are always possible. For example, a requirement

may be changed after little or no discussion. An ‘answer’ may be given to an unstated ques-

tion, as often happens when stakeholders articulate assumptions that are not explicitly doc-

umented in the requirements. Choices may lack rationale, because stakeholders may judge

the reasons for some answers to be obvious. A change request may be executed directly with-

out a recorded discussion.

It is the integration of requirements documentation, discussion and evolution that distin-

guishes the Inquiry Cycle from speech-act models such as IBIS [7] or taxonomies of design

transformations [8]. For a more detailed exposition and justification of the Inquiry Cycle mod-

el, see [1]. In this paper, we describe the model through the form of an example requirements

analysis process.

Purpose of the Case Study
Although direct project experiences and empirical investigations led us to develop the In-

quiry Cycle model and emphasize scenario elaboration, we have not yet validated our specific

formulations of these ideas against large-scale system development projects. As a step in this

direction and an attempt to incorporate practical experiences into the development of the

- 3 -

The Inquiry Cycle
The Inquiry Cycle is a cyclical model of the requirements elaboration process involving

three components: requirements documentation, requirements discussion, and requirements

evolution.

We assume the participants in the conversation are stakeholders—those with a stake in

the system outcome. Stakeholders may include such diverse groups as end users, indirect us-

ers, other customer representatives, and developers. We do not enshrine these conventional

roles or job titles in the model itself. Throughout this paper, we use the neutral term ‘stake-

holder’ where ‘analyst’ might more normally be used.

Stakeholders share information about the system in the form of requirements documents

(if any exist), background information about the problem domain and implementation con-

straints, and additional information produced during the requirements elaboration process.

Figure 1: The Inquiry Cycle.Requirements documentation, consisting of require-
ments, scenarios and other information, is discussed through questioning, answer-
ing and justification of choices. Choices may lead to requested changes, which in
turn modify the requirements documentation.

Requirements

∆
Requirements

Reason

Question?
Answer

!

Requirements

Challenge

Decide

Change Documentation

Discussion
Evolution

- 2 -

Introduction
The Inquiry Cycle is a framework for describing and supporting discussions about system

requirements [1]. It divides requirements analysis into three intertwined processes: propos-

ing or writing requirements, challenging or discussing them, and refining or improving them.

Although the Inquiry Cycle does not require a specific method, it is especially compatible with

the use of scenario analysis.

In this paper, we present an extended example of the Inquiry Cycle in operation, catego-

rize the types of requirements discussion that occur in practice, and suggest some heuristics

for analyzing requirements. We also explain how concrete scenarios improve analysis.

Scenarios
When people write requirements or discuss a requirements document they are imagining

a system that does not yet exist. To ensure that they are describing the imagined system fully,

it is always useful to ask 'what if' questions about specific cases or situations. These cases and

the sequences of events that result are known as scenarios.

Using scenarios to test detailed requirements is accepted practice. Less well understood

is the role that scenarios play in helping to understand informal requirements and to specify

them in the first place. Recently, there has been much interest in the systematic use of sce-

narios in discovering and refining requirements [2, 3, 4, 5].

By ‘scenarios’ different authors mean different things. Some mean sequences of events [5,

6]; others mean more general 'use cases' [2]. Some use tabular or diagrammatic notations to

describe scenarios [6, 5]; others present user interface storyboards [3] or prose descriptions

[2]. We define a scenario as one or more (usually several) end-to-end transactions involving

the required system and its environment. Use cases are short, informal descriptions of scenar-

ios (perhaps, just a phrase to describe it). Scripts are more detailed definitions in a tabular or

diagrammatic form. Our scripts are linear traces of event occurrences

In this study, we investigate the effectiveness of differing levels of detail and how scenar-

ios of different types help in the discussion of specific requirements.

- 1 -

 Inquiry-Based Scenario Analysis of System Requirements

 Colin Potts1

 Kenji Takahashi2
 Annie Anton1

 GIT-CC-94/14

 January 1994

Abstract
The Inquiry Cycle is a formal structure for describing and
supporting discussions about system requirements. It divides
requirements analysis into three intertwined processes:
proposing or writing requirements, challenging or discussing
them, and refining or improving them. In this paper, we present
an extended example (a meeting scheduler) of the Inquiry Cycle
in operation, categorize the types of requirements discussion
that occur in practice, and suggest some heuristics for analyzing
requirements. We also explain how concrete scenarios improve
analysis.

1. Full address: College of Computing, Georgia Institute of Technology, Atlanta, GA 30332-0280, USA.
{potts, anton}@cc.gatech.edu
2. Full address: NTT Software Laboratories, NTT Shiragwa Twins Bldg., 1-9-1 Kohnan Minato-ku, Tokyo,
Japan. kenji@nttspe.ntt.jp

