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ABSTRACT 

This report summarizes the work performed during the first six months of the 

NASA LANGLEY research program (Grant Number NAG 1-133) entitled "Development of 

an Analytical Technique for the Optimization of Jet Engine and Duct Acoustic Liners". 

Contained in this report is a brief summary of the development of the special integral 

representation of the external solutions of the Helmholtz equation which forms the basis 

for the analytical method developed under this contract. A detailed description of the 

new analytical technique for the generation of the optimum acoustic admittance for an 

arbitrary axisymmetric body is also presented along with some numerical procedures and 

some preliminary results for a straight duct. 
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I. INTRODUCTION 

The object of this research project is the development of an analytical technique 

which is capable of generating an optimum admittance distribution for a duct liner for 

maximum sound suppression. This analytical technique should yield this optimum 

distribution without iteration or the need for the calculation of many separate solutions. 

It is based upon a special integral representation of the external solutions of the 

Helmholtz equation previously developed here at Georgia Tech. The particulars of this 

method are presented in Section II. 

The new analytical method itself is presented in Section III and some of the numerical 

procedures used in implementing the method are presented in Section IV. Briefly, the 

method entails the use of simple source solutions on the admittance surface of the body 

which are summed, using the linear superposition theorem for solutions of linear 

equations, to generate a general solution over the liner surface of the body. This general 

solution, is then substituted into the power equation and subsequently optimized with 

respect to the complex coupling constants, used in the linear superposition for the general 

solution, for maximum power lost to the liner surface. 

The independent simple source solutions required for this method can be gotten by 

only solving the problem once due to the special form that the integral equation technique 

assumes when certain classes of simple boundary conditions are applied. This is gone into 

in more detail in Section IV which deals with numerical procedures. 
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II. BACKGROUND 

In previous research conducted for the Air Force Office of Scientific Research 1 ' 2 

a special integral representation of the external solutions of the Helmholtz equation 

V 
2
c,o + k

2
cp = 0 
	

( 1 ) 

where k is the wave number and cp is the acoustic potential, was developed. 3 This 

integral formulation is special because unlike the straight forward formulation of the 

problem 4  it can generate unique solutions at all wave numbers. In subsequent research, 

the formulation and computer codes were specialized for axisymmetric bodies 5  but 

retained the capability of generating solutions for tangential acoustic modes greater than 

zero. It is this cylindrically symmetric formulation of the acoustic radiation problem that 

is used in this research. For the sake of completeness and to help define some of the 

nomenclature used in subsequent sections, the highlights of this development are 

presented below. 

The classical integral representation of the external solutions of the Helmholtz 

equation is presented below 4 where S represents the surface of the body, the point Q is on 

the body, the point P lies outside the body, a 	represents the normal derivative .n 
anq 	 q q 

(where nq  is the unit outward normal to the body at the point Q), and G(P,Q) is any 

fundamental solution of the Helmholtz equation which satisfies the Sommerfeld radiation 

conditions at infinity. 

J 
	cp (Q) 	— G(P,Q) 	dS

q  = 479 (P) 
6G(P,Q)  

a n 
	 (2) 
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The simplist form that G(P,Q) can take for this problem is the free space Green's function 

which is 

G(P,Q) = r(P,Q) 

where r(P,Q) represents the distance between the points P and Q (See Fig. 1.). 

e
ikr(P,Q) 

(3) 

7'1 P 

r (P ,Q) 

Figure 1. Body showing Q and P points and the distance between them r(P,Q). 

From Eqn. (2) it follows that if the acoustic potential p and the normal acoustic 

velocity 	are known on the surface of the body, (i.e., at the Q points) then the 
an 

acoustic potential may be calculated anywhere in the field outside the body (i.e., at any P 

point). A similar equation can be developed for the normal acoustic velocity with an 

arbitrary normal specified in the field and is presented below. 

1 is { m(Q)  a 
2

G CP +q)  _ aG(P,4) act)(4)  
an an 	an 	an 	dS = 4 7 

bcP  

611 

S 	 P q 
(4) 

Thus, if the acoustic quantities are known on the body, they may be calculated anywhere 

in the field. 

'4 



To obtain the acoustic quantitites on the surface of the body, equations must be 

developed that contain only surface quantities. To do this, we let the field point P 

approach the surface of the body; then, taking the proper limits we obtain 

S 

(P(Q) 
aG(P,Q)  - G(P,Q) 	dS = 2 rrcp(P) { On 	 q 	q 

(5) 

from Eqn. (2). With the proper boundary conditions (i.e., p, acp/on or Y = 	/ 
on 

known at each point on the surface of the body Eqn. (5) may be solved for the unknown 

acoustic quantities. From here on, Y shall be referred to as the effective ac:oustic 

admittance; also, it is related to the specific acoustic admittance p by the relationship 

Y = - 	 (6) 

where 13 is defined with an inward normal and Y is defined with an outward normal. 

The problem with Eqn. (5) is that it does not yield unique solutions for all wave 

numbers. This can be traced to the internal acoustic eigenvalue problem which when 

formulated in the same way is governed by an equation similar to Eqn. (5) except that the 

sign of the R. H. S. is negative. This being the case, it is found that Eqn. (5) does not yield 

unique solutions at the eigenvalues (i.e., resonant wave numbers) of the internal acoustic 

problem. Various methods have been proposed in the literature for overcoming this 

problem 5-8  however, all of these methods have their problems. This is discussed in detail 

in Ref. 3. 

To overcome this uniqueness problem, the method of Burton and Miller 8 
was used 

as a starting point. They were able to solve external radiation problems in two 

dimensions; however, the extension to three dimensions required some new mathematical 

identities before it could be made to work as the 3-D formulation contained a strongly 

singular integral. Briefly, the method consisted of solving a sum of equations (i.e., Eqn. 

(5) and the surface analog of Eqn. (4)) coupled with a complex coupling constant a 

4 



j j T(Q) t(iPm - 	G(P,Q) 1  dS q  

a G(P,Q)  _  P(Q) aG(P,Q) 	dS m(Q) an 	,1-1 	an 	6n  
P q 	

q 

= 2 rr cp(P) + 	
anp 	 (7) 

Burton and Miller were able to show that Eqn. (7) always had the unique, correct solution 

if ci were chosen properly; specifically: 

Im (a) 	0 when k is real or imaginary 

Im (a) = 0 when k is a complex number 	 (8) 

The problem arises in three dimensions that the first term of the second integral is 

strongly singular and cannot be directly integrated; that is: 

2 

j  cP(Q) "(PM  an an 
P q 

S 

1  

dS q  (y( r(P,Q) 
(9) 

which is singular as Q 	P on the surface of the body. 

Stallybrass 9  was able to show that this integral is equivalent to 

cp(Q) (n 
P

• n 
q

) 
P

. V q  G(P,Q) dS q  

+ 	cp(Q) (n p  x nq) • (v p  x vq  G(P,Q)) dS q 
	 (1 0) 

- 	co(Q) nq • 	pq  x (np  x Grp  G(P,Q)) 	dS q  

S 

+ 

S 

5 



and that the last term, which contains the singular component of the integral in Eqn. (9), 

can be represented as 

S (nq  x Vq (Q) ) 	(np  x vp  G(P,Q)) dS 
q 

S 

which is regular. Although the singular integral has been regularized, this form is not 

suitable for numerical calculations as it contains tangential derivatives of the acoustic 

potential on the surface of the body. 

After some manipulation, it can be shown that this integral (See Eqn. (11).) can be 

rewritten as 

q3(Q) - tp(P) 	nq  • Vq  x (n
P 
 x ap  G(P,Q)) dS q 	 (12) 

S 

which presents no computational difficulties. Thus, the singular integral has been shown 

to have a regular representation which can be easily integrated numerically. The 

remaining practical problem was now the specification of a reasonable value for a 

subject to the constraints in Eqn. (8). Since no analytical method of determining the 

value of ce could be found, its specification is the result of computational 

considerations. Specifically, it can be shown that the most significant term of the first 

integral in Eqn. (7) is proportional to the wave number k and that the most significant 

term of the second integral increases as k 2 . So to keep the two integrals in Eqn. (7) in 

balance numerically as the wave number is increased, the complex coupling constant a 

is chosen to be 

= i/k 	 (13) 

6 



It is shown in Ref. 10 though the use of many examples, that this is indeed the optimum 

value of a from a computational point of view. 

Having developed the general three dimensional equations, the specialization of 

these equations for axisymmetric bodies is straight forward
10 

and therefore will not be 

repeated here. Efficient computer codes have been written for the solution of these 

equations and the results of these computer codes have been compared with both 

theoretical "exact" solutions in Ref. 10 and with experimental results in Ref. 11. In both 

cases, very good agreement was observed. 

7 



III. THE ANALYTICAL METHOD 

The object of this research project is the development of an analytical method 

and attendant computer programs for the determination of the optimum admittance 

distribution of a liner for maximum sound suppression for a specific body and acoustic 

excitation without iteration. This method will contain two advances over previous 

methods 12 
for finding the optimum admittance for liners: 1) this new method will not 

require iteration in order to generate the optimum solution of the problem and 2) the 

optimum solution generated will yield a pointwise continuous distribution of admittance 

values which should demonstrate better sound suppression than optimum constant or 

segmented liners. To generate the point source solutions necessary for this method to 

work, the cylindrically symmetric form of the theory developed in the previous section'
° 

 is used as most bodies of interest (e. g. jet engine inlets and straight circular ducts) are 

axisymmetric. This will be gone into in greater detail in subsequent sections. 

Since the objective of this research is to minimize the energy radiated from a 

body under specific acoustic excitation through the use of an acoustic liner, the problem 

can be turned around so that the objective is to maximize the acoustic energy absorbed by 

the liner. Contained in the problem statement are the implicit assumptions that: 1) the 

placement of the liner is fixed; 2) the specific acoustic excitation is fixed by the 

assumption of a distribution of acoustic potential ( i.e., the same as the specification of 

the acoustic pressure), and 3) the liner can be represented by an acoustic admittance 

(i.e.,it is a surface of local reaction). 13  This being the case, the acoustic energy absorbed 

by the liner can be represented as 

E = - 	pc k YI 	cp 2  dS 	 (14) 

where the subscript ,t refers to the liner surface and the superscript I denotes the 

8 



"imaginary part of." Using the definition Y = 
an 

(See Eqn. (6).) this can be written as 

cc  E 	
R 

J J L an 	
(I) 	dS 	 (15) 

where the superscript R denotes the "real part of and all values are assumed to be R. M. S. 

The analytical optimization procedure entails the maximization of E as defined 

in Eqn. (15) where the acoustic quantities are represented in terms of a general solution 

consisting of a combination of simple source solutions on the surface of the body. The 

development of this general solution is presented below wherein the body of interest is 

assumed to have three distinct regions on its surface (See Fig. 2.), 

S
D 

(DRIVER) 

(LINER SURFACE) 

Figure 2. The three distinct types of regions on the body. 

These regions do not necessarily have to be contiguous however for the sake of 

clarity they are presented as such here. 

9 



To form the general solution we first must consider the effect of the driver 

surface (s). To do this we solve for the acoustic quantities on the surface of the body 

subject to the boundary conditions 

tP(Q) = tP D
(Q) 
	

on S
D 

a(Q) = 0 
6n 	

on SH 
 and S 

 

(16) 

— 
where pp  (Q) is some specified function of the acoustic potential on the driver. Solving 

this problem we obtain the driver solution; that is: 

on S
D 

on S
H 

and S (17) 

Next, the liner surface (s) is divided up into N finite regions as in Fig. 3. 

S
D 

Figure 3. Liner surface divided into N finite regions. 

1 0 



.°A.) = 1 j = an 1,...,N 1 
(18) 

= o 

on S
t 

Then N independent solutions are generated which represent the effect of N simple acoustic 

velocity sources on the liner using the boundary conditions given below. 

T(Q) = 0 on SD 

t(Q) = 0 on SH  

The N solutions thus generated are given by 

an j(Q) 	
on S

D 

P j  (Q) 	on S
H 
	 (19) 

T j  (Q) 	on S 

If we now sum these solutions multiplied by some arbitrary coupling constants designated 

by a., which we can do as the problem is linear, we generate a general solution which has 

the form 

W(Q) = ec;(4) 

apD 	
N 	ap. 

.(Q) 	
an 	 an 

(Q) + E 
an 	

a . 	(Q) 
1 J   i= 

on S D (20)  

N 
tP(Q) = P D (4) + 	a. T. (Q) 

j=1 on SH 
(21)  

a
n (Q) = 0 

11 



(pm = PD  (Q) aicP
j

(Q) 
J=1  

j 

	

) = a
j 	

j = 1 , 	,N 	 on 	 (22) 
an  

	

an (Qj ) = 0 	i 	j 

It will be noted here that the above solution has some interesting properties in that the 

acoustic potential on the driver surface (See Eqn. (20).) and the normal acoustic velocity 

on the hard walled surface (See Eqn. (21).) are not dependent upon the choice of the 

coupling constants ar  Also, strictly speaking all possible values of the effective 

admittance Y are not possible on the liner surface. To demonstrate this, let us look at the 

point j = 1 on the liner surface where 

acP (Cy 

Y(Q 1 )  - 	an 	/ cP(Q 1 )  

 

a l 

 

OD (Q 1 ) + 
C
N 

 a . P (4 ) 1 
i=1 

(23) 

Solving for a l , we obtain 

N 

Y (Q 1 ) 	ai P i (Q1)  i=2 
al - 	1 - Y (Q 1 ) 1  (Q 1  ) 	 (24) 

where it can be seen that if we want Y(Q )- 	yve must have a
l 

cannot generate the solution where the effective admittance Y .
(Ql) 	

1 	
Q ) 

- 	 with 
1  `P1 (Q 1 )  

1 	
- 	. Thus, we 

( 

finite values for the complex coupling constants a.. 

12 



If we now substitute the expressions for the acoustic quantities on the liner surface (See 

Eqn. (22).) into the equation for the power lost to the admittance surface Eqn. (15) and 

treat the surface integral as a sum we obtain 

N 	laR in  r aR 	In  R aI 	1 1 

E LseD 

j= 1  
L 
1=1 

L `'.j/ 	J J 

I E 
aj LcPD (Q j ) 	2- L a iR cP i

R  
 (Qj) 	(Qj ) 	i} Ast,  (Qj ) 

i=1 
(25) 

If we now want to maximize the power lost to the admittance surface with 

respect to the real and imaginary parts of the complex coupling constants we must take 

the derivatives of Eqn. (25) with respect to the constants: 

a 
aaR.  {Eqn. (25) 	= 0 

j = 1,...,N 	 (26) 

aaI {Eqn. (25) 	= 0 , 

and set them equal to zero. Doing this we get 

N 

tPD 
IR 

( 	+ 	La.1  coIi (Qj)  ) + a.
I 

I  co. (Q .1.) I 	(Q j ) ) 
i=1  

(Q i ) 	AS ,t,  (Q 1 ) = 0 r a.R. cpI.  (Q.) - I R 
Li ] 

i=1 

a 

N 

j = 1,...,N 	 (27) 

13 



r  
{ - 

D 

 (Q . ) - E La.
R  co.R 

 (Q . ) — a . 	(Q . ) 	AS (Q ) 
1 	 j 

i=1 

N E  EaR _R. (Q  ) 	aI. 91. (Q  ) 	As (Q 	= 0  

i=1 
	] } .2; 

which upon rearrangement becomes: 

N r  
Lal.‘ T ... (Q j ) 	ct) I!-  (Q j ) 	ASt(Q  . ) 

i=1 

N r 
R c•0  • 	

I 
Lai I (Q • ) 	ai

I 	
(Q ) 16st 	

J 
(Qi ) = - (Pp  (Q . ) 	(Q

J 
 ) 

J  1=1 

j = 1 	, N 	 ( 28) 

N 
E 
i=1 

 [aR 
	R 

 (Q . ) 

	

I 	I 
- 	a . 	cp. (Q . ) 31 I 

LIS A  (Q j  ) 

+ 1, La
R 

 . et) .
R 
 (Q.) + 

a .I I 
(Q.) 	LSD 	D (Q. ) = ep R  (Q .) AS S 	( Q  (Q.) 

i=1 	1  J 	J  

If we now define the complex conjugates of the original variables as: 

= a. - 

(29) 

R 	. I 
9-= 	- 

/'° D 

14 



the two sets of real equations in Eqn. (28) can be reformulated as one complex set of 

equations given by 

- 	 [a
1 
 . Cp.(Q.

.3J
) 	(q.) + 	[a. p. (Q.)] boSt (Q 1 ) 	

(30) 

j = 1,...,N 

where the
al 

 . are now the unknowns. As can be seen, Eqn. (30) represents N complex 

equations in N complex unknowns and can therefore be solved by straight forward 

numerical means. Once the optimum values of the complex coupling constants are 

calculated, the optimum surface distributions of the acoustic quantities may be found 

through the use of Eqns. (20) - (22). Then the power radiated to the field may be found 

using Eqns. (2) and (4) to calculate the acoustic quantities in the field on an imaginary 

sphere surrounding the body and then using Eqn. (14) to calculate the power. 

15 



IV. NUMERICAL PROCEDURES 

The method outlined in the previous section requires not only the generation of a 

driver solution for the body of interest but also the generation of many simple source 

solutions on the admittance surface. If each of these solutions had to be generated 

separately, the present method would be no more attractive from a computational stand 

point than the method of Ref. 12 where many separate solutions are also necessary to find 

the optimum conditions. Thus, a way had to be found to generate the required source 

solutions efficiently. 

The main computational advantage of the present method can only be realized 

when the method is coupled with the integral solution technique set forth in the Section II. 

In solving Eqn. (7) for the surface quantities, the coefficients of the unknowns are placed 

in a matrix while the knowns ( i.e., the boundary conditions) are collected into an 

inhomogeneous vector. Thus, each simple source solution requires the solution of a liner 

set of equations. 

If the boundary conditions are chosen correctly, only the inhomogeneous vector 

changes and therefore the matrix of coefficients for the unknowns only has to be inverted 

once. A special matrix solving routine was then written to take advantage of this which 

solves a system of linear equations with multiple inhomogeneous vectors very efficiently. 

This being the case, the multiple simple source solutions and the driver solution necessary 

for the optimization method can be generated all at once using little more computing time 

than it takes to calculate the driver solution alone. 

One of the potential problems that had to be checked for was if the integral 

solution technique was capable of generating simple source solutions. Normally when Eqn. 

(7) is discretized the non-zero boundary conditions (e.g., the potential on the driver 

surface) are specified on a number of successive points on the body. Since relatively large 

errors have been found to exist where boundary conditions change abruptly when using the 

16 



integral solution procedure, it was of concern that accurate source solutions might not be 

gotten using this method. This was checked by first generating a number of simple source 

solutions on a body and summing them, using the linear superposition principle, and then 

comparing this result with one generated specifying all the points on the body together. 

Excellent agreement was found between the two solutions generated in this way which was 

considered to be justification that accurate simple source solutions could indeed be 

calculated using the integral equation techniques 

Once the computer program is written to generate the independent solutions 

necessary for the optimization procedure, the generation of the optimum admittance 

distribution on the body is straight forward. Substituting the independent solutions into 

Eqn. (30) another system of linear, complex equations is generated which can be solved by 

sstraight forward Gaussian elimination for the complex coupling constants ( i.e., the a.' s ) 

Having done this, the optimum admittance on the liner surface can be directly calculated 

from Eqn. (22). 

17 



V. SOME PRELIMINARY RESULTS 

The test body being used for verification of the method is a straight duct with a 

rounded lip, an external wall thickness of 0.15a where a is the non-dimensional distance 

(i.e., the radius at the driver plane) and an L/a of 2.0 where L is the length of the duct 

(See Fig. 4.). Also, the liner surface is considered to run from a/2 to 3a/2 on the inner 

wall of the duct and the duct is terminated by an ellipse whose ratio of major to minor 

axis is 2.0. For the test case, plane wave input is assumed with an acoustic mode of M 

(0,0) and a non-dimensional wave number of ka = 1.0. It will be noted here that this simple 

case is being used as a test case only and that more complicated cases, that is a true inlet 

shape at a higher wave number with a more complicated modal input, can easily be run 

without changing the computer codes; only the input files need to be changed. 

For the numerical calculations, the straight duct is broken into 92 separate line 

segments along the body: 20 of these are on the driver and 25 are on the admittance 

surface. Also, in carrying out the numerical integrations necessary in the tangential 

direction (recall that a cylindrically symmetric formulation of the problem is used) a 32 

point Gauss-Legendre formula is used. 

Using the Georgia Tech CDC-CYBER 70/74, the generation of the driver solution 

and the 25 independent source solutions on the admittance surface required only 3 minutes 

of computing time. This compares favorably with the time required to calculate one 

single solution using the same body and number of points which takes Di minutes. 

Once these have been gotten the next program requires only 30 seconds to calculate the 

complex coupling constants and the optimum solution. 

The hard wall (or driver) solution radiates a power of P = 1.91 out of the duct 

where the power is calculated at the driver plane using 

• 

P  = J J 	
I R 

 acon 	- 	
T 

) (ka)dSD 

SD 

(31) 

18 



a :To 

F< 0.5a 

     

0.075a 

 

a 

   

    

    

LINER SURFACE 
..." 

.." 

...." 

.." 

.." 

.." ..... 

...- ...- ..., ...., 

..... 

...- 
DRIVER SURFACE .." 

...., 
.., 

-- 

..." 

,- 

.." 

..-- 

...- 

.-- 

--- 

..." 

--..., 

I---- 0.575a 	  L 

Figure 4. Straight Duct Geometry (L/a = 2.0). 



where it will be noted that the wave number dependence has been kept (although in the 

present case ka = 1.0). This number should be used for comparison purposes. 

The optimum admittance calculation for this case yielded a power lost to the 

admittance surface of P = 143.44. To get the power lost to the admittance surface Eqn. 

(31) was used except that the integration was performed over the admittance surface. To 

obtain the power radiated out of the duct, the power out of the driver plane must be 

recalculated as changing the admittance surface from a hard wall to an admittance 

distribution changes the driver. Doing this, it was found that the power out of the driver 

rose to P = 287.96 so that the power out of the duct was increased from P = 1.91 kn the 

hard walled case to P = 144.52. As can be seen, this is not what we had hoped for but: upon 

review it is exactly what we asked for; that is, find the solution ( i.e., the admittance 

distribution on the liner surface) which yields the greatest power lost to the liner surface. 

The above results show that just maximizing the power lost to the admittance 

surface does not necessarily minimize the power out of the duct. This is thought to be the 

result of the fact that the effect of the liner on the driver was not taken into account in 

the present formulation. This being the case, a reformulation of the problem has been 

accomplished which takes into account the effect the admittance on the liner surface has 

on the power output of the driver. This alternative formulation is presented in the next 

section. 
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VI. AN ALTERNATIVE FORMULATION 

In the original formulation of the problem, the effect of changing the admittance 

on the liner surface on the power output of the driver was not taken into account. Since 

subsequent calculations have shown that the admittance on the liner surface can 

significantly effect the power output of the driver, an alternative formulation of the 

problem has been developed which includes the driver surface in the power calculation. In 

short this new formulation seeks to minimize the power out of the combination of the 

driver and admittance surfaces rather than simply maximizing the power lost to the liner 

surface. This formulation should yield the minimum power out of the duct rather than the 

maximum power lost to the admittance surface. 

If we develop an equation for the power radiated out of the driver surface 

(similar to Eqn. (25) for the liner surface) we obtain 
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from Eqns. (15) and (20) where K and M are the beginning and ending points on the driver 

surface (recall the admittance surface goes from 1 to N). Carrying out the operation of 

Eqn. (26) on Eqn. (32) we obtain in complex notation 
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Adding this to Eqn. (30) we obtain 

a. (i). (Q.) kes ,t, (Qi  ) + N L a i  co.3  (Q.)] ast(Q i ) 

j = 1,...,N 

which a set of N simultaneous linear equations for the a d 's. This reformulation of the 

problem is now being programmed. 
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VII. CHECK CASES 

In order to check the results of the new method optimum constant liner results 

are necessary for the specific geometrys and wave numbers used in this study. To obtain 

these results, computer programs have been written and checked out which calculate the 

power radiated from an axisymmetric body with an acoustic liner. These programs are 

based on the integral equation technique presented in Section II and will employ the 

method of Ref. 12 which entails the calculation of many separate solutions. The optimum 

constant liner admittance will be calculated for each body and for each modal input (i. e., 

at each wave number) for which the optimum admittance calculation is run. 
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VIII. SUMMARY 

During the first six months of this research project, the computer programs were 

written and checked out which are necessary to implement the new analytical method for 

the calculation of the optimum liner admittance for sound suppression in a duct. This 

analytical method was designed to maximize the power lost to the admittance surface 

which it accomplished very well. Unfortunately, since the effect of the liners admittance 

on the power output of the driver was not considered, this scheme did not optimize for the 

minimum power out of the duct. In fact, the sound power out of the duct was increased 

drastically over the hard walled case. Thus, a new theoretical method was developed 

which is designed to minimize he power out of the duct by considering both the power 

output of the driver and the power loss to the admittance surface. The computer 

programs are currently being modified to handle the extra terms this method requires. 

To generate the required optimum admittace check cases, computer programs 

have been written and checked out which can calculate the power output of a duct under 

specific excitation conditions with a liner surface in the duct. These programs are 

currently being run to find the optimum constant admittance for sound suppression for 

each configuration of interest. 
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ABSTRACT 

This report summarizes the work performed during the NASA LANGLEY 

research program entitled "Development of an Analytical Technique for the 

Optimization of Jet Engine and Duct Acoustic Liners." This research program ran 

for one year (3/1/81-2/28/82) and carries the NASA number NAG 1-133. Detailed 

results of the work performed during the first six months of this contract are 

presented in the NASA LANGLEY SEMI-ANNUAL STATUS REPORT (3/1/81-

8/31/81) for NAG 1-133 and thus will not be repeated here in its entirety. 

During the past six months, a new method was developed for the 

calculation of optimum constant admittance solutions for the minimization of the 

sound radiated from an arbitrary axisymmetric body. This method utilizes both the 

integral equation technique used in the calculation of the optimum non-constant 

admittance liners and the independent solutions generated as a by product of these 

calculations. The results generated by both these methods are presented for three 

duct geometries: (1) a straight duct; (2) the QCSEE inlet; and (3) the QCSEE 

inlet less its centerbody. 
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I. INTRODUCTION 

The object of this research program was the development of an analytical 

technique for the determination of the optimum admittance distribution along the 

wall of an axisymmetric duct for the minimization of sound radiated from the duct 

given a specific source of acoustic radiation in the duct. The results of this method 

were to be checked against calculations performed for constant admittance liners 

to see if better results could be obtained with the new method. Finally, a 

parametric study was to be done, based on wave number, for at least two 

geometries in which the optimum constant and distributed admittance liners were 

to be calculated. 

The formulation of the problem which has been used in the parametric 

study is presented in detail in Chapter IV of the previous six month status report 

for this grant (See Reference 1.). This being the case, the precise mathematical 

formulation of the method will not be repeated. Instead, only a brief overview of 

the method will be presented here. 

The method itself is based upon a special integral formulation of the 

external solutions of the Helmholtz equation. The basic formulation of the 

governing equations for three dimensions is given in great detail in Reference 2. 

This formulation can be specialized for axisymmetric bodies 3  and it is this form of 

the equations which is used in this study. 

These integral equations govern the acoustic quantities on the surface of 

the body and take into account the Sommerfeld radiation conditions at infinity in 

the field so that only outgoing, decaying solutions are considered. To solve these 

equations, the surface of the body is discretized into many small areas and since 



the problem is elliptic in nature a boundary condition is applied over each small 

area. The boundary condition specified may be either the acoustic potential which 

is directly related to the acoustic pressure, the normal acoustic velocity, or a ratio 

of these two quantities referred to as the effective acoustic admittance at each 

point. 

When this is done, a system of linear equations can be developed in which 

the acoustic potential or the normal acoustic velocity is the unknown at each point 

on the body depending on which boundary condition is specified there. The 

boundary conditions themselves contribute to the inhomogeneous term in each equa-

tion and in some cases the diagonal term of the matrix. 

Since the resulting equations are linear, the solutions may be 

superimposed. Also, if the boundary conditions are chosen appropriately they do 

not effect the matrix coefficients, only the inhomogeneous vector terms. It is 

these two characteristics of this formulation which are exploited in both the 

calculation of the optimum varying admittance for a duct and the optimum 

constant admittance. 

Normally to find the optimum constant admittance for a duct, a 

parametric study must be done in which the real and imaginary parts of the 

admittance of the liner are varied. Usually, this means that a complete, separate 

solution must be generated for each admittance value; however, a method has been 

developed which utilizes the same independent solutions on the admittance surface 

which were generated for the calculation of the optimum varying admittance 

solution. This new method greatly reduces the amount of computing time required 

for the generation of constant admittance solutions and is presented in detail in the 

following section of this report. 



Having developed both the theory and the computer codes for the 

generation of both optimum constant and varying admittance liners for general 

finite axisymmetric ducts, a parametric study was performed on three separate 

duct geometries. The three duct geometries are: (1) a straight duct with a 

rounded lip; (2) the NASA QCSEE inlet of Reference 4; and (3) the NASA QCSEE 

inlet less its centerbody. The results of this parametric study are presented at six 

wave numbers for each geometry at which both the constant and varying optimum 

admittance liners are calculated for both constant acoustic potential and constant 

normal acoustic velocity drivers. 



II. CALCULATION OF OPTIMUM CONSTANT ADMITTANCE LINERS 

In this section, we will briefly go over the generation of the independent 

solutions on the surface of the body. Then, the development of constant 

admittance solutions will be discussed in detail. Since the development of the 

special integral formulation of the external solutions of the Helmholtz equation is 

given in References 1-3, only the final form of the equations will be presented 

here. It will be noted that although this form of the equations has been specialized 

for axisymmetric geometries, that any cylindrically symmetric acoustic mode may 

be calculated. 

Firstly, let us define the geometrical variables that we will use on a 

surface of revolution. In Fig. 1, the coordinate system employed on the body S is 

given (p , Z,0 ) along with an outward normal from the body, n+, and an element of 

area on the surface of the body, p dsd O. The variable s is the distance along the 

generating line of the surface of revolution and is assumed to go from o at one end 

of the body to 9, at the other. 

We now assume that the acoustic potential on the surface of a body of 

revolution can be written as 

(1) ( p, Z, 0 ) = 4)(s) cos (m9) 

and similarly that the normal acoustic veloticy on the surface of the body can be 

written as 

3 (I)(p, Z, 0) 
	

V(s) cos (m 0 ) 

3n 



In doing this we have incurred no loss in generality. Since all of the equations are 

linear, any acoustic radiation pattern may be generated as a sum of these simple, 

cylindrically symmetric patterns. Also, the variable m is commonly referred to as 

the tangential acoustic mode number. 

In order to write the equation in compact form we now define three sets 

of functions: 

Influence functions: 
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where rpq  is the distance between points P and Q and n p  and nq  are the outward 

normals from the points P and Q, respectively (See Fig. 2.). Also, G(P,Q) is the 

free space Green's function 

ikr 
G(P,Q) - e pq 

rpq  (6) 

where k is the wave number and a is the complex coupling constant for this 

particular formulation which is found to be 

a= 1 	 (7) 

It will be noted that in evaluating K 2  and F 2  the point at which Op= eq  is excluded 

from the integration as it constitutes a strong sigularity. 

Using the above definitions and equations, the special integral formulation 

of the external solutions of the Helmholtz equation may be written as 
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In this particular formulation of the problem the s and 0 coordinate directions 

have been uncoupled so that the solution of the problem has been reduced to the 

evaluation of line integrals on the surface of the body. 

Equation (8) represents a relationship between the acoustic pressure and 

normal acoustic velocity at any given point on a body (i.e., point P) to all of the 

values everywhere else on the body (i.e., at the Q points). If this equation is 

applied at each point on the body, along with the boundary condition at each point, 

a system of linear algebraic equations is obtained for the unknown variables at each 

point on the body. Thus, if there are N points on the body, a system of N complex 

equations in N complex unknowns is developed. 

In the numerical integration of the functions (See Eqns. (3) - (5).) a Gauss- 

Legendre integration formula is used. For the integration in the s direction, a 

simple two point integration is employed such that the point P is never actually 

equal to any of the integration points (i.e., the Q points). Also, when the body is 

divided into N points in the s direction, both the acoustic potential el) and the 

normal acoustic velocity V are assumed to be constant over each element even 

though there are two integration points per element. 

For the development of the independent solutions on the surface of the 

body let us assume that the body is divided into three distinct regions as in Fig. 3. 

These regions do not necessarily have to be contiguous however, for the sake of 

clarity they are presented as such here. The first solution which we must consider 

is the driver solution. To calculate it we must solve for the acoustic quantities on 

the surface of the body subject to the boundary conditions 

ci,(Q) 	(Q) 	on SD  

(9) 

V(Q) = 0 
	

on S
H and S

L 
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where 4)
D 

(Q) is some specified function of the acoustic potential on the driver. 

Solving this problem, we obtain the driver solution 

VD (Q) 	on SD  

ckl)(Q) 	on S
H 

and S
L 
	 (10) 

Next, the liner surface(s) is divided up into M finite regions as in Fig. 4. Then M 

independent solutions are generated which represent the effect of M simple 

acoustic velocity sources on the liner using the boundary conditions given below 
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The M solutions thus generated are given by 
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If we now sum these solutions multiplied by some arbitrary coupling constants 

designated by a.
J' 
 which we can do as the problem is linear,we generate a general 

solution which has the form 
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It will be noted here that the above solution has some interesting properties in that 

the acoustic potential on the driver surface (See Eqn. (13).) and the normal acoustic 

velocity on the hard walled surface (See Eqn. (14).) are not dependent upon the 

choice of the coupling constants a.. 

In this study we are interested in the effective acoustic admittance Y 

which is defined as 

a0 

an 	
V 
	 (16) 

This being the case, we can now represent the effective acoustic admittance at any 

point on the admittance surface as 

If we now specify that the effective acoustic admittance at all points on the 

admittance surface is to be the complex number C we obtain 

i=1 
a- et,  (Q.) —  C 	D a• = 	(Q.), 	

(18) 
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which represents a system of M linear complex equations for the M complex 

coupling constants, . a.
J 
 Using this method many constant admittance solutions can 

be generated very economically once the independent solutions on the surface of 

the body are known. Since the independent solutions have already been calculated 

for the generation of the optimum varying admittance, a relatively small amount of 

extra computing time is required for the determination of the optimum constant 

admittance solution. 

To find the optimum constant admittance solution for a specified 

geometry, driver and wave number, the values of C are chosen in a grid pattern and 

a solution is generated for each value. Once the surface solution is known it is an 

easy job to calculate the acoustic power radiated from the driver and the acoustic 

power lost to the admittance surface using
1
' 5  

Ea 55 [(1) R  (Q) VI  (Q) - 1 (Q) VR  (Q) dS(Q) 

	 (19) 

S
L  

where E is the acoustic energy radiated out of a surface and the superscripts R and 

I refer to the "real and imaginary part of", respectively. When the solution having 

the minimum radiated power is found, the region may be further subdivided to 

"home in" on the optimal value of the admittance. 

It is of interest to note here that strictly speaking all possible values of 

the effective admittance Y are not possible at each point on the liner surface. To 

demonstrate this, let us look at the point j=1 on the liner surface where 

MI ) = a
l 

 

M 

D(Q1)
i=
/

1 
ai 4i  (Q1) 

(20) 



we cannot generate the solution where 

1 )= 	1 
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Solving for a l  we obtain 
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with a finite value for the complex coupling constant, a.. 
J 
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III. SOME GENERAL COMMENTS 

The problem of acoustic radiation from a duct, as formulated for this 

study, is strictly elliptic so that only one boundary condition may be specified on 

any part of the body. Thus, either the acoustic potential (i.e., pressure) or the 

normal acoustic velocity may be specified on the driver but not both. This leads us 

to an interesting problem when trying to compare the results of this method to any 

other as other methods utilize the mathematical artifice of a semi-infinite dluct. 6 

This artifice allows them to keep the driver power and modal input constant while 

varying the acoustic properties of a liner. This tends to neglect any possible effect 

the acoustic properties of the liner could have on the amount or modal content of 

the power coming out of the driver. 

In the problem, as formulated for this study, the driver power and more 

importantly the radial modal output of the driver cannot be fixed as this would 

overspecify the problem. This being the case, there are two possible optimum 

constant admittance liners possible, one a relative measure of the percent of the 

driver power attenuated by the liner and the other an absolute measure of the 

power coming out of the duct. Both were calculated at each wave number for each 

geometry and are presented as such (i.e., Relative and Absolute optimum constant 

admittances). Also, since either the acoustic potential or the normal acoustic 

velocity could be specified on the driver runs were done with each and are noted as 

such. For the runs where the normal acoustic velocity is specified on the driver, 

the acoustic potential is specified on the admittance (i.e., liner) surface and vice 

versa (See Eqns. (9) and (11).). 
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IV. NUMERICAL CONSIDERATIONS 

The special integral formulation of the external solutions of the 

Helmholtz equation 2 ' 3  which is used as the basis for all of the calculations done in 

this study requires a closed body. Thus, all three of the ducts used in this 

study: the straight duct with the rounded lip; the NASA QCSEE inlet; and, the 

NASA QCSEE inlet less its centerbody were terminated with a 2:1 ellipse (See Figs. 

5-7.). Also, for the three geometries investigated the total height to the inner wall 

of the duct at the driver plane was normalized to one and the outer wall of the duct 

was 1.15. All of the ducts have an L/a of 2.0 

For the numerical calculations , points were spaced evenly along the inner 

walls of the ducts with a nominal spacing of 0.05a. On the outer walls of the ducts, 

the points were systematically spaced at larger and larger intervals as it has been 

found that the outer walls of ducts and their terminations have little effect on the 

total power radiated and the radiation pattern in the forward half plane. The total 

number of points used on the three geometries in the s direction for the 

calculations performed for this study were: 92 points for the straight duct; 108 

points for the NASA QCSEE inlet; and, 100 points for the NASA QCSEE inlet less 

its centerbody. For the 0 integration, a 32-point Gauss-Legendre integration 

formula was used in all cases. 

For all three of the ducts, the admittance surface consisted of 25 points 

or intervals over which the optimum admittance distributions were to be generated 

and ran from 0.4a to 1.6a in the Z direction along the inner walls of the ducts. 



Thus, a hard wall or driver solution and 25 independent source solutions were 

calculated for each geometry, wave number and type of driver specified (i.e., 

potential or velocity). 



V. RESULTS 

Each of the geometries was run with a plane wave as input on the driver 

for non-dimensional wave numbers of 1, 2, 3, 5, 7, and 10. That is, in all of the 

cases run, the tangential mode number was taken as zero. Although a plane wave 

was input, a plane wave driver did not necessarily result since only one variable 

could be specified at a time. 

The results for all of the straight duct runs are presented in Tables I-VI 

and in Figs. 8-13. In the Tables, the power radiated out of the driver and the power 

radiated into the field are tabulated along with their values, for the optimum 

distributed admittance and for the optimum absolute and relative constant 

admittances. In all the Tables, the power values are relative as they have been 

normalized by the power out of the hard walled configuration. Also, each table 

contains the results for one wave number for both the constant acoustic pressure 

and normal acoustic velocity drivers. 

It will be of interest to note here that for the lower wave numbers, the 

power out of the driver is negative (i.e., it is damping). This necessarily means that 

the liner surface is driving since the formulation of the integral equations only 

allows for the case where there is a net flow of power out of the body (i.e., no 

incoming waves). If the imaginary part of the effective admittance Y (See Eqn. 

(16).) is positive, this denotes driving; that is, an active suppressor. The relative 

optimum constant admittance must always be a damping admittance since it is 

determined as the smallest ratio of power out of the driver, to the power lost to 

the admittance surface. 



In general, it is found that the lowest power output is obtained from the 

optimum admittance distribution. Also, the relative constant admittance usually 

has the highest power output as measured in the field surrounding the duct. 

Each Figure constitutes a set of 6 plots for each wave number. The first 

group of three plots in each set are for the case where a constant acoustic pressure 

is specified on the driver and the second group is for the case where a constant 

normal acoustic velocity was specified. The first plot in each group (e.g., Figs. 8a 

dt d), contains a plot of the optimum admittance distribution on the inner wall of 

the duct from the driver end Z.0.4a (inner), to the open end, Z.1.6a (outer). As, can 

be seen even at the low wave numbers where there are a more than sufficient 

number of points on the body to generate an accurate solution, the effective 

admittance distribution is not very smooth. This is because it is a ratio of two 

functions on the surface of the body which tends to make it less continuous than 

either generating function. Of course, more points could be taken on the surface of 

the body to obtain a smoother function for the effective admittance; however, this 

would not substantially change the overall accuracy of the solution (i.e., the power 

output). At the higher wave numbers, the solution does become suspect however, 

and more points should probably have been used for the cases where ka.7 and 10. 

This should not detract from the overall validity of the method however. 

It will be noted that at the lower wave numbers, the distributed 

admittance found for the minimum power out of the body is totally driving. As the 

wave number gets higher, the optimum admittance distribution becomes mixed 

(i.e., some of the liner surface drives and some of it damps) and finally at some of 

the higher wave numbers, the distributed admittance is almost totally passive. This 



is probably due to the fact that at the higher wave numbers, the wave structure in 

the duct becomes more complicated so that interference patterns are more 

difficult to set up. Since an active suppressor damps out sound through the setting 

up of interference patterns, these types of suppressors are probably only useful at 

lower wave numbers where the wave patterns are less complicated. Also, since it 

is more difficult to set up interference patterns with the constraint of a constant 

admittance liner, the optimum absolute constant admittance liner transition from 

driving to damping occurs sooner. 

In the second plot in each group of three, is a plot of the absolute power 

out of the duct as a function of the admittance (constant) on the liner surface 

which is expressed in dB. The admittance value for which the minimum power out 

of the duct is obtained is marked with a large dot. Again, these values are 

tabulated in the tables (See Tables I-VI.). 

In the final plot in each group of three, is a plot of the relative power out 

of the duct as a function of admittance (constant) on the liner which is also 

expressed in dB. Only negative values of the imaginary part of the admittance are 

considered in this case as the power out of the duct is referrenced to the power 

out of the driver. As with the previous plot, the admittance value, for which the 

minimum percent power is radiated, is marked with a large dot and those values 

also are tabulated in the Tables. 

The results for the QCSEE inlet are presented in Tables VII-XII and in 

Figs. 14-19. As with the straight duct, the tables contain the results for the six 

wave numbers run, one wave number per table. The results at a non-dimensional 

wave number of ka=7.0 for the case where the acoustic potential is specified on the 

driver are not included since the optimum values for the absolute and relative 



constant admittances, fell outside of the initial search pattern. This pattern ran 

from -10 to 10 in increments of 1 for both the real and imaginary parts of the 

admittance. This is not to imply that they couldn't be calculated, just that they 

were not, since this would have required modification of the computer programs 

used for all of the other cases run. 

As with the straight duct, each figure for this geometry consists of the six 

plots done for each wave number. As before, the optimum admittance distribution 

for both the constant acoustic pressure and the constant normal acoustic velocity 

drivers are presented along with the contour power plots for the constant absolute 

and relative admittance liners. Again, the optimum values are marked with dots in 

these plots and are tabulated in the Tables. It will be noted in Fig. 18a and b that 

these points are not marked since they fell outside the range of the plots. 

The results for the QCSEE inlet less its centerbody are presented in 

Tables XIII-XVIII and in Figs. 20-25. The reason for running the cases for this 

particular geometry was to see if any trends could be established in going from the 

straight duct geometry to the full inlet geometry. At the lower wave numbers, the 

optimum admittance values calculated for it, seem to fall between those for the 

other two geometries as one would intuitively expect; however, this trend is not 

maintained at the higher wave numbers. 



VI. SUMMARY AND CONCLUSIONS 

During the past year, a method was developed for the calculation of 

optimum distributed admittance duct liners. This method is based upon a special 

integral representaiton of the external solutions of the Helmholtz equation which is 

valid (i.e., can be used to generate the correct, unique solutions) at all wave 

numbers. The equations used had been specialized for axisymmetric geometries but 

this is not a restriction on the method itself. 

As a by-product of this method, a procedure was developed for the 

identification of optimum constant admittance duct liners. This procedure utilizes 

solutions already developed for the optimum distributed admittance calculation. 

At present, it entails the use of a simple search pattern for the optimum constant 

admittance; however, it is believed that this could be refined if time allowed. 

To give some idea of the time involved in calculating these results , some 

typical computing times are presented below. These runs were done on the Georgia 

Tech CDC CYBER 760 and the programs are written in Fortran V. For the case 

where 100 points were used on the body in the s direction, a 32 point Gauss-

Legendre integration formula was used in the 0 direction (See Fig. 1.), and there 

were 25 points on the liner surface, the calculation of the 26 independent solutions 

required for the optimization procedure took 185 seconds of CPU time. The 

generation of the optimum distributed admittance then took an additional 10 

seconds and the identification of the optimum constant admittances took 390 

seconds. As can be seen, the calculation of the constant admittance solutions is 

slow compared to the calculation of the optimum distributed admittance. The 

contour plots of the sound radiated for each constant admittance chosen on the 



liner surface were done with the GPCP (General Purpose Contour Plotting) package 

which we have available here at Georgia Tech. It was developed originally for 

plotting contour maps but was found to be very useful in this research program. 

In conclusion, an effective, efficient method has been developed for the 

calculation of both optimum distributed and constant admittance liners for general 

geometries. It was found through the use of this method that even very similar 

geometries may have vastly different optimum liners associated with them. Also, 

it was found that at low wave numbers often the most efficient liners for the 

reduction of the sound radiated are active and not passive. At the higher wave 

numbers, the optimum distributed admittances are found to be almost always a 

combination of both active and passive elements. 
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TABLE I 

STRAIGHT DUCT 

Relative power normalized with respect to the hard 
walled radiated power 

ka = 1.0 

Constant Phi 	 Constant Velocity 
on the Driver 	 on the Driver 

OPTIMUM ADMITTANCE 
DISTRIBUTION 

POWER OUT OF 	 -0.57 
THE DRIVER 

TOTAL POWER 	 0.000017 
IN FAR FIELD 

-0.67 

0.000042 

ABSOLUTE CONSTANT 
ADMITTANCE 

POWER OUT OF 
THE DRIVER 

TOTAL POWER 
IN FAR FIELD  

(-0.18, 4.88i) 

-0.64 

0.0014 

(-1.32, 4.60i) 

-0.53 

0.00063 

RELATIVE CONSTANT 
	

(-1.30, -3.40i) 
	

(-1.34, -3.33i) 
ADMITTANCE 

POWER OUT OF 
	

0.87 
	

0.65 
THE DRIVER 

TOTAL POWER 
	

0.0015 
	

0.0012 
IN FAR FIELD 
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TABLE II 

STRAIGHT DUCT 

Relative power normalized with respect to the hard 
walled radiated power 

ka = 2.0 

Constant Phi 	 Constant Velocity 
on the Driver 	 on the Driver 

OPTIMUM ADMITTANCE 
DISTRIBUTION 

POWER OUT OF 
THE DRIVER 

TOTAL POWER 
IN FAR FIELD 

	

-0.65 	 -0.61 

	

0.00012 	 0.00014 

ABSOLUTE CONSTANT 
ADMITTANCE 

POWER OUT OF 
THE DRIVER 

TOTAL POWER 
IN FAF. FIELD 

(-2.95, 3.05i) 

-0.89 

0.00034 

(-2.70, -2.90i) 

0.75 

0.00054 

RELATIVE CONSTANT 
ADMITTANCE 

POWER OUT OF 
THE DRIVER 

TOTAL POWER 
IN FAR FIELD 

(-2.64, -3.14i) 

0.91 

0.00088  

(-2.65, -3.131) 

0.78 

0.00068 
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TABLE III 

STRAIGHT DUCT 

Relative power normalized with respect to the hard 
walled radiated power 

ka = 3.0 

Constant Phi 	 Constant Velocity 
on the Driver 	 on the Driver 

OPTIMUM ADMITTANCE 
DISTRIBUTION 

POWER OUT OF 	 -0.23 	 -0.016 
THE DRIVER 

TOTAL POWER 	 0.000075 
	

0.00011 
IN FAR FIELD 

ABSOLUTE CONSTANT 
ADMITTANCE 

POWER OUT OF 
TEE DRIVER 

TOTAL POWER 
IN FAR FIELD 

(-2.71, -2.38i) 

0.77 

0.00072  

(-2.65, -2.33i) 

0.13 

0.00014 

RELATIVE CONSTANT 
	

(-2.70, -2.39i) 
	

(-2.65, -2.32i) 
ADMITTANCE 

POWER OUT OF 
	

0.77 
	

0.13 
THE DRIVER 

TOTAL POWER 
	

0.00079 
	

0.00013 
IN FAR FIELD 
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TABLE IV 

STRAIGHT DUCT 

Relative power normalized with respect to the hard 
walled radiated power 

ka = 5.0 

Constant Phi 	 Constant Velocity 
on the Driver 	 on the Driver 

OPTIMUM ADMITTANCE 
DISTRIBUTION 

POWER OUT OF 	 -0.0011 
	

0.0075 
THE DRIVER 

TOTAL POWER 
	

0.00084 
	

0.000011 
IN FAR FIELD 

ABSOLUTE CONSTANT 
	

(-3.48, -1.66i) 
	

(-4.61, -2.29i) 
ADMITTANCE 

POWER OUT OF 
	

1.00 
	

0.043 
THE DRIVER 

TOTAL POWER 
	

0.37 
	

0.010 
IN FAR FIELD 

RELATIVE CONSTANT 
	

(-4.13, -1.77i) 
	

(-4.44, -2.38i) 
ADMITTANCE 

POWER OUT OF 
	

1.06 
	

0.043 
ThE DRIVER 

TOTAL POWER 
	

0.37 
	

0.010 
IN FAR FIELD 
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TABLE V 

STRAIGHT DUCT 

Relative power normalized with respect to the nard 
walled radiated power 

ka = 7.0 

Constant Phi 	 Constant Velocity 
on the Driver 	 on the Driver 

OPTIMUM ADMITTANCE 
DISTRIBUTION 

POWER OUT OF 
	

0.066 
	

0.014 
THE DRIVER 

TOTAL POWER 
	

0.00064 
	

0.054 
IN FAR FIELD 

ABSOLUTE CONSTANT 
	

(-5.17, -1.95i) 
	

(-4.72, -0.8Si) 
ADMITTANCE 

POWER OUT OF 
	

1.29 
	

0.016 
TUE DRIVER 

TOTAL POWER 
	

0.43 
	

0.0078 
IN FAR FIELD 

RELATIVE CONSTANT 
	

(-5.56, -1.30i) 
	

(-3.97, -1.76i) 
ADMITTANCE 

POWER OUT OF 
	

1.42 
	

0.019 
THE DRIVER 

TOTAL POKER 
	

0.42 
	

0.0086 
IN FAR FIELD 
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TABLE VI 

STRAIGIjI DUCT 

Relative power normalized with respect to tne hard 
walled radiated power 

ka = 10.0 

Constant Phi 	 Constant velocity 
on the Driver 	 on tree Driver 

OPTIMUM ADMITTANCE 
DISTRIBUTION 

POWER OUT Of 
THE DRIVER 

TOTAL POWER 
IN FAR FIELD 

0.050 

0.0049 

0.00066 

0.00016 

ABSOLUTE CONSTANT 
ADMITTANCE 

POWER OUT OF 
TEL DRIVER 

TOTAL PCWER 
IN FAR FIELD 

(-5.65, -2.80i) 

1.02 

0.48  

(-4.89, -2.69i) 

0.010 

0.0051 

RELATIVE CONSTANT 
	

(-5.41, -2.751) 
	

(-5.02, -2.83i) 
ADITTANCE 

POWER OUT OF 
	

1.02 
	

0.010 
ThE DRIVER 

TOTAL POWER 
	

0.43 
	

0.0051 
IN FAR FIELD 
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TABLE VII 

NASA QCSEE INLET 

Relative power normalized with respect to the hard 
walled radiated power 

ka = 1.0 

Constant Phi 	 Constant Velocity 
on the Driver 	 on the Driver 

OPTIMUM ADMI'T'TANCE 
DISTRIBUTION 

POWER OUT OF 	 -1.91 	 -2.45 
THE DRIVER 

TOTAL POWER 
	

0.00012 	 0.00012 
IN FAR FIELD 

ABSOLUTE CONSTANT 
ADMITTANCE 

POWER OUT OF 
THE DRIVER 

TOTAL POWER 
IN FAR FIELD 

(-0.64, 4.03i) 

-1.25 

0.0015  

(-0.65, 4.11i) 

-0.74 

0.00082 

RELATIVE CONSTANT 
	

(-0.47, -3.78i) 
	

(-0.53, -3.77i) 
ADMITTANCE 

POWER OUT OF 
	

1.27 
	

0.79 
THE DRIVER 

TOTAL POWER 
	

0.0019 
	

0.0011 
IN FAR FIELD 
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TABLE VIII 

NASA QCSEE INLET 

Relative power normalized with respect to tne hard 
walled radiated power 

ka = 2.0 

Constant Phi 	 Constant Velocity 
on the Driver 	 on the Driver 

OPTIMUM ADMITTANCE 
DISTRIBUTION 

POWER OUT OF' 	 -1.11 	 -0.70 
THE DRIVER 

TOTAL POWER 
	

0.00011 	 0.000060 
IN FAR FIELD 

ABSOLUTE CONSTANT 
ADMITTANCE 

POWER OUT OF 
THE DRIVER. 

TOTAL POWER 
IN FAR FIELD 

(-2.99, 3.91i) 

-0.79 

0.00074  

(-3.06, 3.581) 

-0.53 

0.00025 

RELATIVE CONSTANT 
	

(-2.35, -3.91i) 
	

(-2.36, -3.93i) 
ADMITTANCE 

POWER OUT OF 
	

0.82 
	

0.59 
THE DRIVER 

TOTAL POWER 
	

0.0013 
	

0.00094 
IN FAR FIELD 
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TABLE IX 

NASA QCSEE INLET 

Relative power normalized with respect to the hard 
walled radiated power 

Constant Velocity 
on the Driver 	 on the Driver 
Constant Phi 

OPTIMUM ADMITTANCE 
DISTRIBUTION 

POWER OUT OF 
THE DRIVER 

-0.050 -3.69 

0.0096 0.000049 TOTAL POWER 
IN FAR FIELD 

ABSOLUTE CONSTANT 
ADMITTANCE 

POWER OUT OF 
THE DRIVER 

TOTAL POWER 
IN FAR FIELD 

(-3.'00, 

048 

0.00'020 

(-3.10, -3.20i) 

0.69 

0.00045 

RELATIVE CONSTANT 
ADMITTANCE 

POWER OUT OF 
THE DRIVER 

TOTAL POWER 
IN FAR FIELD 

(-3.04, -3.20i) 

0.69 

0.00061 

(-3.05, -3.16i) 

0.18 

0.00015 
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TABLE X 

NASA QCSEE INLET 

Relative power normalized with respect to the hard 
walled radiated power 

= 5.0 

Constant Phi 	 Constant Velocity 
on the Driver 	 on the Driver 

OPTIMUM ADMITTANCE 
DISTRIBUTION 

POWER OUT OF 
	

-0.023 	 0.00059 
THE DRIVER 

TOTAL POWER 
	

0.00040 	 0.000031 
IN FAR FIELD 

ABSOLUTE CONSTANT 
ADMITTANCE 

POWER OUT OF 
THE DRIVER 

TOTAL POWER 
IN FAR FIELD 

(-4.20, -1.80i) 
	

(-4.57, -1. 89i) 

	

0.80 
	

0.040 

	

0.13 
	

0.0065 

RELATIVE CONSTANT: 
ADMITTANCE 

POWER OUT OF 
THE DRIVER 

TOTAL POWER 
IN FAR FIELD 

(-4.26, -1.96i) 
	

(-4.37, -1.87i) 

	

0.81 
	

0.041 

	

0.13 
	

0.0066 
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TABLE XI 

NASA QCSEE INLET 

Relative power normalized with respect to the hard 
walled radiated power 

ka = 7.0 

Constant Phi 	 Constant Velocity 
on the Driver 	 on the Driver 

OPTIMUM ADMITTANCE 
DISTRIBUTION 

POWER OUT OF 	 0.56 
	

0.0066 
THE DRIVER 

TOTAL POwLR 	 0.13 
	

6.06013 
IN FAR FIELD 

ABSOLUTE CONSTANT 
ADMI1TANCE 

POWER OUT OF 
THL DRIVER 

TOTAL POWER 
IN FAR FIELD 

(-5.42, -2.57i) 

0.018 

0.0022 

RELATIVE CONSTANT 
ADMITTANCE 

POWER OUT OF 
THE DRIVER 

TOTAL POWER 
IN FAR FIELD 

   

i) 	 (-5.28, -2.56i) 

0.018 

0.0022 
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TABLE XII 

NASA QCSEE INLET 

Relative power normalized with respect to tne hard 
walled radiated power 

ka = 10.0 

Constant Phi 	 Constant Velocity 
on the Driver 	 on the Driver 

OPTIMUM ADMITTANCE 
DISTRIBUTION 

POWER OUT OF 
	

0.29 
	

0.010 
THE DRIVER 

TOTAL POWER 
	

0.00075 
	

0.000064 
IN FAR FIELD 

ABSOLUTE CONSTANT 
	

(-4.32, -3.83i) 
	

(-4.02, -3.56i) 
ADMITTANCE 

POWER OUT OF 
	

0.94 
	

0.610 
TEL DRIVER 

TOTAL POWER 
	

0.22 
	

0.0026 
IN FAR FIELD 

RELATIVE CONSTANT 
	

(-4.27, -3.78i) 
	

(-4.05, -3.601) 
ADMITTANCE 

POWER OUT OF 
	

0.94 
	

0.010 
TEE DRIVER 

TOTAL POWER 
	

0.22 
	

0.0026 
IN FAR. FIELD 
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TABLE XIII 

QCSEE INLET LESS CENTERBODY 

Relative power normalized with respect to the hard 
walled radiated power 

ka = 1.0 

Constant Phi 	 Constant Velocity 
on the Driver 	 on the Driver 

OPTIMUM ADMITTANCE 
DISTRIBUTION 

POWER OUT OF 
	 -1.20 	 -1.78 

THE DRIVER 

TOTAL POWER 
	

0.000025 	 0.000072 
IN FAR FIELD 

ABSOLUTE CONSTANT 
ADMITTANCE 

POWER OUT OF 
THE DRIVER 

TOTAL POWER 
IN FAR FIELD 

(0.81, 4.68i) 	 (-0.75, 4.72:L) 

	

-1.19 	 -1.06 

	

0.0021 	 0.00091 

RELATIVE CONSTANT 
	

(-0.73, -3.49i) 
	

(-0.79, -3.44i) 
ADMITTANCE 

POWER OUT OF' 
	

1.71 
	

1.33 
THE DRIVER 

TOTAL POWER 
	

0.0029 
	

0.0023 
IN FAR FIELD 
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TABLE XIV 

QCSEE INLET LESS CLNTERBODY 

Relative power normalized with respect to the hard 
walled radiated power 

ka = 2.0 

Constant Phi 	 Constant Velocity 
on the Driver 	 on the Driver 

OPTIMUM ADMITTANCE 
DISTRIBUTION 

POWER OUT OF 
	

-0.56 	 -0.50 
THE DRIVER 

TOTAL POWER 
	

0.000044 	 0.000049 
IN FAR FIELD 

ABSOLUTE CONSTANT 
	

(-2.99, 3.73i) 
	

(-2.99, 3.41i) 
ADMITTANCE 

POWER OUT OF 
	

-0.74 
	

-0.65 
THE DRIVER 

TOTAL POWER 
	

0.00058 
	

0.00025 
IN FAR FIELD 

RELATIVE CONSTANT 
	

(-2.42, -3.78i) 
	

(-2.45, -3.791) 
ADMITTANCE 

POWER OUT OF 
	

0.76 
	

0.71 
THE DRIVER 

TOTAL POWER 
	

0.0011 
	

0.00093 
IN FAR FIELD 
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TABLE XV 

QCSEE INLET LESS CENTERBODY 

Relative power normalized with respect to the hard 
walled radiated power 

ka = 3.0 

Constant Phi 	 Constant Velocity 
on the Driver 	 on the Driver 

OPTIMUM ADMITTANCE 
DISTRIBUTION 

POWER OUT OF 
	 -0.41 	 -0.024 

THE DRIVER 

TOTAL POWER 
	

0.000084 	 0.000032 
IN FAR FIELD 

ABSOLUTE CONSTANT 
ADMITTANCE 

POWER OUT OF' 
THE DRIVER 

TOTAL POWER 
IN FAR FIELD 

(-3.06, 2.94i) 	 (-2.88, -3.02i) 

	

-0.67 	 0.13 

	

0.000087 	 0.000094 

RELATIVE CONSTANT 
	

(-2.90, -3.07i) 
	

(-2.91, -2.97i) 
AMITTANCE 

POWER OUT OF 
	

0.69 
	

0.13 
THE DRIVER 

TOTAL POWER 
	

0.00047 
	

0.000063 
IN FAR FIELD 
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TABLE XVI 

QCSEE INLET LESS OENTERBODY 

relative power normalized with respect to tne hart 
walled radiated power 

ka = 5.0 

Constant Phi 	 Constant Velocity 
on the Driver 	 on the Driver 

OPTIMUM ADnITTANCE 
DISTRIBUTION 

POWER OUT OF 
	

0.098 
	

0.00b9 
THE DRIVER 

TOTAL POWER 
	

0.00077 
	

0.0000071 
IN FAR FIELD 

ABSOLUTE CONSTANT 
	

(-3.89, -1.65i) 
	

(-3.93, -2.39i) 
ADMITTANCE 

POWER OUT OF 
	

0.74 
	

0.044 
THE DRIVER 

TOTAL POWER 
	

0.20 
	

0.0042 
IN FAR FIELD 

RELATIVE CONSTANT 
ADMITTANCE 

POWER OUT OF 
THE DRIVER 

TOTAL POWER 
IN FAR FIELD 

(-3.87, -1.98i) 

0.77 

0.21  

(-3.88, -2.24i) 

0.044 

0.0042 
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TABLE XVII 

QCSEE INLET LESS CENTERBODY 

Relative power normalized with respect to the hard 
walled radiated power 

ka = 7.0 

Constant Phi 	 Constant Velocity 
on the Driver 	 on the Driver 

OPTIMUM ADMITTANCE 
DISTRIBUTION 

POWER OUT OF 
	

0.14 
	

0.0091 
THE DRIVER 

TOTAL POWER 
	

0.0016 
	

0.00028 
IN FAR FIELD 

ABSOLUTE CONSTANT 
ADMITTANCE 

POWER OUT OF 
THE DRIVER 

TOTAL POWER 
IN FAR FIELD ,  

(-4.77, -2.07i) 

1.02 

0.29 

(-7.32, -1.671) 

0.020 

0.0058 

RELATIVE CONSTANT 
	

(-4.87, -2.06i) 
	

(-6.84, -1.57i) 
ADMITTANCE 

POWER OUT OF 
	

1.02 
	

0.021 
THE DRIVER 

TOTAL POWER 
	

0.29 
	

0.0062 
IN FAR. FIELD 
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TABLE XVIII 

QCSEE INLET LESS CENTERBODY 

Relative power normalized with respect to the hard 
walled radiated power 

ka = 10.0 

Constant Phi 	 Constant Velocity 
on the Driver 	 on the Driver 

OPTIMUM ADMITTANCE 
DISTRIBUTION 

POWER OUT OF 
	

0.33 	 0.00060 
THE DRIVER 

TOTAL POWER 
	

0.16 	 0.000060 
IN FAR FIELD 

ABSOLUTE CONSTANT 
ADMITTANCE 

POWER OUT OF 
THE DRIVER 

TOTAL POWER 
IN FAR FIELD 

(-5.27, -3.01i) 

0.97 

0.36  

(-4.38, -3.18i) 

0.010 

0.0039 

RELATIVE CONSTANT 
	

(-5.05, -2.91i) 	 (-4.49, -3.30i) 
ADMITTANCE 

POWER OUT OF 
	

0.98 
	

0.010 
THE DRIVER 

TOTAL POWER 
	

0.36 
	

0.0039 
IN FAR FIELD 
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Figure 1• ( P, Z, 0 ) coordinate system for a body of revolution 



Figure 2. Body S showing P and Q points, the distance between 

them r and their outward normals 
Pq 
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Figure 3. The three types of regions on the body 
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Figure 4. Liner surface divided into M finite regions. 
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