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SUMMARY 
 

  

 This thesis showcases a work that focused on developing processes with 

improved economic and environmental signatures.  It illustrates the strengths of 

chemists and chemical engineers working together towards sustainable solutions.  

The joint collaboration between Drs. Liotta and Eckert allows the combination of 

disciplines to overcome economic and environment obstacles.  This thesis depicts 

the application of chemical engineering and chemistry for industrial processes 

towards reducing cost and environmental impact. 

 In chapter 2, a synthetic sequence yielding a pharmaceutical precursor was 

optimized for continuous processing.  The precursor was for the pharmaceutical 

drug Ro 31-8959, which acts as a human immunodeficiency virus (HIV) protease 

inhibitor.  A continuous flow reactor was designed, built and utilized successfully 

for the two-step reaction of the diazoketone pharmaceutical precursor, (1-benzyl-

3-chloro-2-hydroxy-propyl)-carbamic acid tert-butyl ester. The best configuration 

for the continuous flow reactor involved a single and double coiled stainless steel 

reactor packed with glass beads.  The yield obtained for the diazoketone was 

quantitative.   

 In chapter 3, the cleavable surfactant (cleavable surfactants decompose in 

non-surface active ingredients upon stimulus), n-octyl thiirane oxide was 



 xix

synthesized, characterized and its surface activity and loss of surface activity upon 

heating was demonstrated.  The n-octyl thiirane oxide surfactant activity was 

measured using a dye, Suddan III, and compared to a commercially available 

surfactant sodium dodecyl sulfate.   

 In chapter 4, 5-amino-1H-tetrazole was synthesized using two novel 

synthetic routes starting from benign chemicals.  Both routes involved Sharpless 

click chemistry in the first step to form the tetrazole ring.  Both routes also used 

hydrogen transfer as the last step for the formation of the 5-amino-1H-tetrazole.  

These syntheses eliminated the use of highly toxic and/or explosive chemicals 

such as cyanamide, hydrazoic acid, and hydrazine.       

 Finally in chapter 5, phase transfer catalysis was used as a means to 

improve reaction rates and yields between a siloxylated reagent (in the liquid 

phase) and insoluble ionic reagents (in the solid phase). The activity of 

commercial phase transfer catalysts like tetra-n-butylammonium bromide was 

compared to the activity of two novel custom-made siloxylated phase transfer 

catalysts.  Surprisingly, the tetra-n-butylammonium resulted in superior rate 

constants to the custom made siloxylated phase transfer catalysts. 
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CHAPTER 1: INTRODUCTION 

 
The efficient technology transfer of a process from laboratory to industrial 

scale can only be done when chemists and chemical engineers work in synergy.  

Chemists and chemical engineers are trained in different but complementary 

ways and combining the two disciplines can allow for unique improvements that 

would not be possible with only one discipline. The relationship between the 

chemists and chemical engineers can help to overcome economic and 

environmental obstacles to make processes more sustainable.  Benefiting from 

the unique collaboration between Drs. Liotta and Eckert, this thesis involves 

developing processes that are relevant to industry and that minimize cost, waste 

production, energy consumption while optimizing product yield and quality.  The 

common theme throughout this thesis is joining chemists and chemical engineers 

to solve problems relevant to industry towards more sustainable processes. 

In chapter 2, a multi-step synthesis was optimized from a batch to a 

continuous flow reactor. Continuous flow reactors allow for excellent 

temperature control and safety capabilities, often resulting in higher yields, 

higher product quality, less by-products, less waste and lower costs.1 After much 

optimization, an optimal coiled flow reactor was designed and built.  This study 

was particularly successful: the model two-steps synthesis was carried out in the 
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coiled reactor, yielding the quantitative conversion of the L-boc-phenylalanine  

to the desired product, the corresponding diazoketone. 

Industry currently uses surfactants for a variety of processes like enhanced 

oil recovery and nanoparticles synthesis. However, separating the surfactants 

from the products remains both a cost- and waste- demanding step.    Cleavable 

surfactants are surfactants that decompose into non-surface active fragments 

upon application of an external stimulus, easing the product separation step 

drastically. In Chapter 3,  n-octyl thiirane oxide was synthesized and its ability to 

act as a cleavable surfactant was demonstrated. Its synthesis, surfactant activity, 

and loss of surfactant activity upon application of a stimulus are discussed.    

 Currently, 5-amino-1H-tetrazole is being utilized as a replacement for 

sodium azide in airbags and is a valuable starting material for the synthesis of 

pharmaceutical and explosive ingredients.2  Previous syntheses to prepare 5-

amino-1H-tetrazole have used hydrazoic acid, hydrazine, or cyanamide. These 

chemicals however are highly toxic and/or explosive.  Two synthetic routes to 

the 5-amino-1H-tetrazole that eliminated the use of these compounds was 

designed and explored.  Developing a safer process to synthesize 5-amino-1H-

tetrazole is very attractive to industry, along with minimizing cost, safety hazards 

and potential product contamination with toxic chemicals. 

 In chapter 5, phase transfer catalysis was explored as a means to improve 

reaction rate and yields between a siloxylated reagent (liquid phase) and 
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immiscible ionic reagents (solid phase).  Phase transfer catalysis is used to 

facilitate the reaction between reactants in different phases.3  Although 

siloxylated derivatives have many applications, phase transfer catalysis was 

never reported to facilitate reactions involving siloxylated and ionic reagents that 

are hindered by reagents being in two different phases. The syntheses of a 

siloxylated substrate and two novel siloxylated phase transfer catalysts are 

reported. The reaction between a siloxylated model compound and potassium 

acetate is reported in detail. Other ionic reagents like potassium cyanide, 

potassium thiocyanate and L-lysine were also investigated. Four phase transfer 

catalysts were tested: aliquot 336, tetra-n-butylammonium chloride and the two 

novel siloxylated catalysts. Surprisingly, the tetra-n-butylammonium chloride 

performed the best in various conditions.  

In summary, all of my projects have the potential to improving industrial 

processes.  Most of these improvements were obtained through the synergy of 

the disciplines of chemistry and chemical engineering.   

 
 
(1) Ehrfeld, W., Hessel, V., and  Lowe, H. Microreactors: New Technology 

for Modern Chemistry; Wiley-VCH: Weinheim, 2000. 
(2) Angew. Chem. Int. Ed 2008, 47, 3330-3347. 
(3) Starks, C. M., Liotta, Charles L., Halpern, Marc Phase Transfer Catalysis; 

Chapman & Hall Inc, 1994, p1-22. 
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2  CHAPTER 2: APPLICATION OF A KINETIC STUDY TO A SMALL 
SCALE CONTINUOUS REACTOR TO PRODUCE (1-BENZYL-3-

DIAZO-2-OXO-PROPYL)-CARBAMIC ACID ISOPROPYL ESTER, A 
DIAZOKETONE PHARMACEUTICAL INTERMEDIATE 

 
 
 

2.1 Introduction 

 Continuous flow reactors have been finding increased application in the 

pharmaceutical industry due to their superior heat transfer capabilities leading to 

reduced waste and improved product quality and safety.  This project focused on a 

synthetic sequence, which is a part of a multistep synthesis in the preparation of 

an active ingredient for the treatment of HIV.  Specifically, the sequence involved 

three reactions: 1) the formation of a mixed anhydride, 2) formation of the 

corresponding diazoketone and 3) the HCl hydrolysis yielding to the α-

chloroketone. First, the formation of the mixed anhydride was optimized. For 

analysis purposes, the temperature-sensitive mixed anhydride was quenched with 

an amine to form the corresponding amide.  The second part of the project 

involved forming the diazoketone from the mixed anhydride and trimethylsilyl 

diazomethane.   

 The reaction conditions were also altered and optimized to fit the needs of 

a continuous process. Four continuous flow reactors configurations were 
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designed, built and tested throughout the project in order to optimize the 

conditions to this specific synthesis.  

2.2 Background 

2.2.1 Advantages of Continuous Flow Reactors 

 Transforming a reaction from batch to a continuous process can have 

many benefits.  Although continuous flow reactors are often used for large scale 

processes, they can also be very small, either microreactor reactor scale or slightly 

larger.  In the literature, small continuous flow reactors have been shown to have 

characteristics similar to continuous flow reactors in several areas such as heat 

exchange, safety, and scale out ability.1,2  Microreactors are usually defined as 

miniaturized reaction systems with dimensions in the sub-micrometer to the sub-

millimeter range.3  Small scale continuous flow reactors, as we defined them, are 

slightly larger in the millimeter range.  First, both have a high surface area to 

volume ratio due to their small size.3  The high surface area then leads to a high 

heat-exchange efficiency, which results in rapid heating or cooling.4  The small 

volumes resulting from the small size makes it easier to control process 

parameters, decreasing the potential hazard of explosive or extremely exothermic 

reactions.  The small dimensions prevent the common mechanistic explosion 

pathways by suppressing radical chains and thermal build up.4,5  The use of 

stainless steel continuous flow reactors also allows for better containment of any 
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potential explosions.5  The increased safety of these systems is desirable with 

reactions that use diazomethane or other highly explosive compounds.6  Lastly, 

the scale out ability means that additional reactors can be added to increase 

production rather than having to scale up the reaction.1  This ability can not only 

save time, but also makes the process easier to adapt to production needs.      

 The reaction sequence involves a temperature unstable intermediate, a 

potentially explosive reagent (diazomethane) and reactions that can be highly 

exothermic.  The advantages of continuous flow reactors can overcome these 

reaction characteristics by significantly increasing heat transfer, mass transfer, 

safety and overall performances.   

2.2.3 Potential Applications of (1-Benzyl-3-chloro-2-hydroxy-propyl)-

carbamic acid tert-butyl ester 

 Human immunodeficiency virus (HIV), encodes three enzymes and the 

inhibition of these enzymes could be a possible route to treat acquired 

immunodeficiency syndrome (AIDS).  The product in Figure 2-1 is a precursor to 

a pharmaceutically active compound known as Ro 31-89597 that acts as a human 

immunodeficiency virus (HIV) protease inhibitor.  Modern HIV inhibitors use a 

central three-carbon piece that contains two chiral carbons.7,8  This synthesis uses 

the L-boc-phenylalanine  to set the chirality of the first carbon center and 

asymmetrically reduces the ketone to give the other chiral center. 
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Figure 2-1: Synthetic route previously used 8 
 

 

2.2.4 Trimethylsilyl diazomethane 

 The classic procedure used diazomethane as a reactant in the second step 

of the synthesis.  Diazomethane is extremely reactive, highly toxic, thermally 

labile, and potentially explosive.  In contrast, trimethylsilyl diazomethane has 

been used as a safer substitute for diazomethane because it is non-explosive, non-

mutagenic, and can be used by industry without hazard.9  In addition, it has been 

widely used as a diazomethane substitute for a variety of reactions.10  One specific 

example where trimethylsilyl diazomethane has been used as a diazomethane 

substitute is in the Arndt–Eistert synthesis.  This synthesis involves the of 

conversion of an activated carboxylic acids to diazoketones by the action of 

diazomethane, followed by a Wolff rearrangement.11  Currently, Cesar et al used 
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trimethylsilyl diazomethane in the synthesis in Figure 2-2.10  They were able to 

obtain a 78% isolated yield by using trimethylsilyl diazomethane compared to 

76% isolated yield using diazomethane.   
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Figure 2-2: Diazoketone synthesis from L-boc-phenylalanine 10 
  
 
 
 

2.3 Results and Discussion 

2.3.1 Optimize Model Reaction for Use in Continuous Flow Reactor  

 The first reaction to be optimized in the continuous flow reactor was the 

formation of the mixed anhydride from L-boc-phenylalanine and 

isobutylchloroformate in the presence of triethylamine in ethylacetate (Figure 2-

3). The mixed anhydride, however, is quenched with a primary amine instead of 

reacting with diazomethane to form the diazoketone (Figure 2-1).    
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 First, benzylamine was used as the primary amine for the quench of the 

mixed anhydride as shown in Figure 2-3 to obtain (1-benzylcarbamoyl-2-phenyl-

ethyl)-carbamic acid tert-butyl ester.  The reaction was run using the triethylamine 

as the HCl scavenger to determine the maximum yield of the mixed anhydride.  I 

made a 20 wt % solution of L-boc-phenylalanine (1 equiv) in ethyl acetate.  The 

reaction was cooled to -30ºC.  Isobutylchloroformate (1.3 equiv) and 

triethylamine (1.3 equiv) were added and allowed to stir at -30ºC for 1 hour, 

analogous to the industrial procedure.8  The benzylamine (1.3 equiv) was then 

added to quench the solution.  The product was characterized by 1H and 13C 

NMR, MS, and elemental analysis.     
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Figure 2-3: Previous reaction using benzylamine quench in place of 
continuing to the second step 
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 With this reaction, the triethylamine acts as an HCl scavenger and forms a 

salt that precipitates out of the reaction.  In a batch reaction, a salt that can be 

filtered is desirable because of the ease of removal for purification.  However, a 

precipitate could clog the continuous flow reactor because of the small tubing.  I 

needed to find a secondary or tertiary amine that would act as an HCl scavenger 

but would not precipitate out of the solution and would not quench the reaction.  

Pyridine, 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), piperidine, tripropylamine, 

tributylamine were tested by adding one mL of HCl (37% reagent grade) to a 

solution of the amine (1 g) in ethylacetate (10 mL).  All the amines except 

tripropylamine and tributylamine formed a precipitate that was visible to the eye.  

 The reaction to make (1-benzylcarbamoyl-2-phenyl-ethyl)-carbamic acid 

tert-butyl ester using the benzylamine quench shown in Figure 2-3 was then 

repeated using tripropylamine instead of triethylamine.  All the conditions were 

the same as previously mentioned except the substitution of the triethylamine with 

the tripropylamine (1.3 equiv).  However, the tripropylamine formed a precipitate 

visible to the eye under the reaction conditions.   

 The reaction to make (1-benzylcarbamoyl-2-phenyl-ethyl)-carbamic acid 

tert-butyl ester using the benzylamine quench shown in Figure 2-3 was repeated 

using tributylamine.  All the conditions were the same as previously mentioned 

except the substitution of the triethylamine with the tributylamine (1.3 equiv).  No 



 12

precipitate was formed. The starting material was not observed in an aliquot of the 

reaction solution by 1H NMR.   

2.3.2 Calibration for Batch Reaction Results 
 
 The reaction was to be monitored in the continuous flow reactor by LC-

UV to determine conversions.  In a batch setting, the reaction was allowed to 

proceed for one hour.  Calibration curves of the starting material, L-boc-

phenylalanine  and the product, (1-benzylcarbamoyl-2-phenyl-ethyl)-carbamic 

acid tert-butyl ester were prepared.  

 First, a calibration curve of the starting material, L-boc-phenylalanine , 

was made using the LC-UV as shown in Figure 2-4.   

 
 

 

Figure 2-4: Calibration curve of L-boc-phenylalanine  on LC-UV 
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The LC-UV of the pure product, (1-benzylcarbamoyl-2-phenyl-ethyl)-

carbamic acid tert-butyl ester showed no peak (at similar concentration that the 

concentration used for the starting material).  The UV maximum for (1-

benzylcarbamoyl-2-phenyl-ethyl)-carbamic acid tert-butyl ester was determined 

to be 229 nm and the LC-UV was run with diode array detector set at 229 nm 

wavelength. There was still no peak observed for the (1-benzylcarbamoyl-2-

phenyl-ethyl)-carbamic acid tert-butyl ester.  A GC-MS was run on the pure 

product (1-benzylcarbamoyl-2-phenyl-ethyl)-carbamic acid tert-butyl ester as 

well.  The sample contained a decane standard, (1-benzylcarbamoyl-2-phenyl-

ethyl)-carbamic acid tert-butyl ester product, and benzylamine.  The mole ratio of 

benzylamine to product was 1:1 and of product or benzylamine to decane was 1:4.  

However, the GC-MS area ratios were 1:12 product to decane while the 

benzylamine to decane ratio was 1:5 (Figure 2-5).  These ratios show that the 

product was decomposing in the GC-MS. Clearly, the product was difficult to 

analyze by the methods that we had available in our laboratory. 
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Figure 2-5: GC-MS of decane standard, benzylamine, and (1-
benzylcarbamoyl-2-phenyl-ethyl)-carbamic acid tert-butyl ester product 
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 The benzylamine was replaced by propylamine to now form (2-phenyl-1-

propylcarbamoyl-ethyl)-carbamic acid tert-butyl ester.  The reaction conditions 

were the same except the propylamine was substituted for the benzylamine (1.5 

equiv).  The TEA-HCl salt was filtered and the product was purified and isolated.  

The (2-phenyl-1-propylcarbamoyl-ethyl)-carbamic acid tert-butyl ester was 

characterized using 1H and 13C NMR and elemental analysis.  A peak in the LC 

(at 229 nm wavelength) was easily detected (Figure 2-6).  Therefore,  

propylamine was used consistently as the quench amine for the rest of the project.  

The (2-phenyl-1-propylcarbamoyl-ethyl)-carbamic acid tert-butyl ester was then 

synthesized using tributylamine rather than triethylamine as the HCl scavenger.  

The product was isolated, purified and characterized using 1H and 13C NMR and 

elemental analysis.  The characterization results of the (2-phenyl-1-

propylcarbamoyl-ethyl)-carbamic acid tert-butyl ester from the use of the 

triethylamine and the tributylamine were the same.   
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Figure 2-6: LC-UV calibration curve of product (2-phenyl-1-
propylcarbamoyl-ethyl)-carbamic acid tert-butyl ester 
 
 
 

2.3.3 Design and Use of 1st Generation Continuous Flow Reactor  

 The first continuous flow reactor was built using parts available in the 

laboratory.  It had two streams (A & B) entering the continuous flow reactor that 

would mix and go to C (Figure 2-7).  At C, the reactant stream would drip into a 

flask containing the propylamine quench in an ice bath.  
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Figure 2-7: Planned flow for continuous flow reactor setup 
 
 
 
 The reactants at A (L-boc-phenylalanine , tributylamine in ethylacetate) 

are pumped into the continuous flow reactor using an HPLC pump.  The L-boc-

phenylalanine  (0.75 g) and dry tributylamine (0.7 mL) were combined in dry 

ethylacetate (75 mL) to make a 0.04 M solution.  The reactant at B 

(isobutylchloroformate in ethylacetate) was added to the continuous flow reactor 

using an ISCO.  The isobutylchloroformate (2.4 mL) was combined with dry 

ethylacetate (450 mL) to make a 0.04 M solution.  The reagents, ISCO, and 

continuous flow reactor were kept cool using a chiller that circulated at 5 L/min 

set at -20ºC.  The same chiller was used throughout the project.  The reactants 

were combined at a T-fitting.  The continuous flow reactor itself was 6 ft long 

with an inner diameter of 0.06” and a thermocouple to measure the temperature at 

A = Boc-phenylalanine and 
tributylamine solution in 
ethylacetate 

B = Isobutylchloroformate 
solution in ethylacetate 

Product from continuous flow reactor  
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the end.  A picture of the 1st generation continuous flow reactor is shown in 

Figure 2-8.  The continuous flow reactor was run using a 0.04 M reactant 

solution, rather than the higher concentration of 0.75 M used in the batch reaction, 

due to concerns of the reaction being exothermic when the mixed anhydride is 

formed.  The quench solution, at the end of C in Figure 2-7, contained 

propylamine (0.16 mL) in ethylacetate (5 mL).  The propylamine amount is based 

on having 1.5 equiv after a 10 min run with a flow rate of 3.3 mL/min.  The flow 

rate for the ISCO was 3.3 mL/min to match the flow rate measured for the HPLC 

pump.  The product stream was analyzed using LC-UV and 1H NMR.  No product 

was observed for either run.  The thermocouple on the end of the continuous flow 

reactor read -7.3ºC compared to the initial temperature of -20ºC.  I calculated that 

the exotherm from the reaction was not this large so the cooling of the continuous 

flow reactor was not efficient.  It was originally hypothesized that the reason 

product was not observed was of the inefficient cooling.     
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Figure 2-8: 1st generation continuous flow reactor 
 
 
 

2.3.4 Design and Use of 2nd Generation Continuous Flow Reactor  

 The goal with the 2nd generation continuous flow reactor was to improve 

heat transfer.  I designed and built a more compact continuous flow reactor 

utilizing stainless steel tubing. The whole reactor could fit inside a chiller for 

higher temperature control (Figure 2-9).  I also added the quench stream directly 

to the continuous flow reactor by using a second HPLC pump.  This would give 

more control over the rate of the addition of the quench.  Another benefit of the 

2nd generation system was the addition of the thermocouple at the cross fitting, 

which was the mixing point of the two reagents streams, providing a more 

In-house continuous 
flow reactor  apparatus 

ISCO continuous flow 

Heating/ 
cooling 
system 

thermocouple 
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accurate reading of the potential exothermicity of the reaction. The inner diameter 

of the stainless steel tubing was 7 mm.  The lengths of tubing were chosen from a 

calculation of how long it would take for a room temperature liquid to cool to -

20ºC.  The tubing was coiled to enhance the mixing and to allow for placement in 

the chiller.  A picture of the 2nd generation continuous flow reactor can be seen in 

Figure 2-10.     

 

 

 

Figure 2-9: Specifications for 2nd generation continuous flow reactor 
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coiled 
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coiled 
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cm coiled 

Exit 
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 Previously, when the propylamine was added to the batch reaction, a white 

precipitate would form in ethyl acetate.  To avoid the formation of a precipitate,  

methanol was used as solvent.     

 

 
 

 

Figure 2-10: Picture of 2nd generation continuous flow reactor  
 
 
 

 The 2nd generation continuous flow reactor was run five times using 

conditions summarized in Figure 2-11 below.  Experiments were run with the 2nd 

generation continuous flow reactor placed within the chiller set at -20ºC.  The two 

reactant solutions of L-boc-phenylalanine , tributylamine in ethylacetate and 

isobutylchloroformate in ethylacetate were 0.04 M.  The propylamine quench was 

added in excess (0.3 M) for the first three runs and then at 1.5 equiv for run 4 and 

5 (adjusted for the difference in flow rate).  Runs 2-4 were rotavapped after they 
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were collected and analyzed using 1H NMR.  Run 5 was the only run that was 

worked up like the batch reactions, using a saturated aqueous sodium bicarbonate 

wash, water wash, and brine wash.  The flow rates of the L-boc-phenylalanine , 

tributylamine in ethylacetate solution and isobutylchloroformate in ethylacetate 

solution were set to match at 2.4 mL/min.  The quench of propylamine in 

methanol was set at 2.0 mL/min.  During run 2, the end solution was collected for 

6 minutes.  During run 3-5, the end solution was collected for 20 minutes.  

Regardless of the settings, the temperature at the mixing point of the two reagent 

streams did not change. 

 

 

 

  

Figure 2-11: 2nd generation continuous flow reactor runs 1-5 with 
concentrations and flow rates 

 
 
 
 The desired amide product was not seen by 1H NMR.  Interestingly, all the 

1H NMRs were consistent from batch to batch.  The 1H NMR of the product, (2-

phenyl-1-propylcarbamoyl-ethyl)-carbamic acid tert-butyl ester, and the 

Run Concentration (M) Flowrate (mL/min) Temp (C) Time 
Boc-PA TBA IBCF Propyla B+T IBCF Quench

1 0.04 0.04 0.04 0.3 2.4 2.4 2.0 -19.6 Pump broke 
2 0.04 0.04 0.04 0.3 2.4 2.4 2.0 -19.7 6 min
3 0.04 0.04 0.04 0.3 2.4 2.4 2.0 -19.7 20 min
4 0.04 0.04 0.04 0.072 2.4 2.4 2.0 -19.9 20 min
5 0.04 0.04 0.04 0.072 2.4 2.4 2.0 -20.2 20 min
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continuous flow reactor results are shown in Figure 2-12 and 2-13, respectively.  

The 1H NMR of the continuous flow reactor results shows the three places at 

which the spectrum is dissimilar by the boxes.     

 To determine why the continuous flow reactor and batch results were 

different, the reaction was run in batch mode with stainless steel tubing to 

determine if the stainless steel was interfering with the reaction.  I was able to 

obtain a yield of 52% for the 0.04 M concentration compared to the optimal 

isolated yield of 62% for the 0.04 M concentration. This was not a significant 

difference and therefore the stainless steel was not believed to interfere with the 

reaction’s reagents and/or intermediates. Another considerations was that the 

residence time in the continuous flow reactor might have been too short, not 

providing enough time for the reaction to take place. Therefore, the reaction time 

was studied on batch-mode reactions using the 0.04 M reaction concentration.   
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Figure 2-12: (2-Phenyl-1-propylcarbamoyl-ethyl)-carbamic acid tert-butyl 
ester 1H NMR 
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Figure 2-13: 2nd generation continuous flow reactor results by 1H NMR 
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 I made a solution of the L-boc-phenylalanine  (0.75 g), tributylamine (0.7 

mL), isobutylchloroformate (0.4 mL) in dry ethylacetate (75 mL), making a 0.04 

M concentration and cooled in a -30ºC bath under argon.  I made a separate 

solution of propylamine (0.1 mL, 1.5 equiv) in dry methanol (20 mL), for a 0.06 

M concentration.  I put 0.5 mL of the propylamine solution into 12 vials, which 

were all placed in an ice bath.  An 0.5 mL aliquot of the reaction solution was 

removed at various time intervals, 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 45, 60 minutes 

and added to the propylamine vials.  The quenched aliquots were analyzed on the 

LC-UV using the previously mentioned calibration curves to determine the 

product to starting material ratio.  I also analyzed the 4 minutes and the 30 

minutes samples by 1H NMR to confirm the LC-UV results.  A graph of the 

appearance of the product and disappearance of the starting material as a function 

of time is shown in Figure 2-14. 
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Figure 2-14: Percent of product and percent of starting material vs. time, 
Batch reaction at 0.04M quenched at various times and tested using LC-UV 

 
 
 
 After 30 minutes at 0.04 M, all the starting material had reacted and only 

product was observed.  Prior to 5 minutes, the analyses show only starting 

material. Since the residence time in the continuous reactor was estimated to be 

less than four minutes, it is possible that the reaction did not have time to take 

place.   Therefore, the reaction time was studied using solution at concentration of 

0.75 M (instead of 0.4 M).  The reaction was monitored as previously using the 



 28

LC-UV.  The appearance of product was observed after only fifteen seconds. 

Subsequently, the reaction was still monitored by LC-UV but the isolated yields 

were also obtained for each reaction time. The maximum yield was about 76% as 

shown in Figure 2-15.   
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Figure 2-15: Isolated yield vs. time of batch reaction from 0.75M at -30ºC 
 
 
 
 Experimentally, I made a stock solution (0.75 M) of L-boc-phenylalanine  

and tributylamine in dry ethyl acetate.  For each reaction, I used 2.8 mL of stock 

solution.  I added isobutylchloroformate (0.15 mL) to each reaction.  I let the 

reaction proceed for 5, 15, 30 seconds and 1, 5, 10, 20 minutes before adding the 

quench solution.  The quench solution was a 1.1 M propylamine in dry methanol.  
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I used 1.4 mL of the quench solution for each reaction.  Each experiment was run 

in triplicate.  The isolated yield was determined for each experiment.  Melting 

point and 1H NMR were used to confirm product purity.  I did not see any product 

formation at 5 seconds.  I observed incomplete reaction at 15 and 30 seconds for a 

20% and 30% isolated yield, respectively.  I was able to obtain the maximum 

yield of 76% after 1 minute of reaction time.   

 I calculated the tubing length needed for 1 minute of residence time with 

the current continuous flow reactor design to be 526 cm.  The tubing length was 

increased to 583 cm and three runs were performed. For each of the runs, the L-

boc-phenylalanine , tributylamine in dry ethyl acetate (0.75 M) were added by an 

HPLC pump.  The isobutylchloroformate in dry ethylacetate (0.75 M) was added 

by a second HPLC pump.  The propylamine in dry methanol (1.35 M, adjusted 

concentration for the different flow rate) was added downstream in the continuous 

flow reactor as the quench stream by an HPLC pump.  The reactants streams were 

run for 2 minutes through the continuous flow reactor before beginning collection.  

The reaction mixture was then collected for 5 minutes.  The chiller was set at -

20ºC for runs 1 and 2 and increased to -10ºC for run 3.  After run 1, the flow rate 

was decreased to 0.8 mL/min from 2.4 mL/min for the reactant streams to 

increase the residence time from 1 min to 3.4 min (Figure 2-16).  For the first 

time, product was detected  by 1H NMR for all three runs.  The isolated yield was 

2% with run 2.   
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Run Flow rate (mL/min) Temp (ºC) Residence time (min) 
1 2.4 -20 1 
2 0.8 -20 3.4 
3 0.8 -10 3.4 

Figure 2-16: 2nd generation continuous flow reactor runs 1-3 with 583 cm 
reaction tubing.  Product observed with all runs and best isolated yield was 

2% with run 2 
 

 

 In light of the last results, two options were considered to improve the 

formation of the product: 1) increase the tubing length (and therefore residence 

time) or 2) decrease the inner diameter of the tubing to be in a microreactor 

regime. A 3rd generation continuous flow reactor was built.   

2.3.5 Design and Use of 3rd Generation Continuous Flow Reactor  

 In building the 3rd generation continuous flow reactor, HPLC tubing with 

an inner diameter of 0.17 mm (compared to the 7 mm inner diameter for the 2nd 

generation) was used (Figure 2-17). HPLC tubing offered many advantages: their 

inner diameter is guaranteed by the manufacturer, they are very flexible and are 

cleaned of any particles, helping to minimize potential clogging. Also, a cleaning 

kit could be bought if a clog did occur. 
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Figure 2-17: Photo of 3rd generation continuous flow reactor  
 

 

 The basic schematic of the 2nd generation continuous flow reactor was 

retained for the 3rd generation continuous flow reactor (Figure 2-18).  The L-boc-

phenylalanine and tributylamine in ethyl acetate and the isobutylchloroformate in 

ethylacetate are both added by separate streams to the cross fitting.  There is a 

thermocouple in the cross fitting to measure the temperature at the mixing point.  

The propylamine quench in methanol is added by a third stream through a T-

fitting.  I originally started with 400 cm of tubing between the cross fitting where 

the reactants meet and the T-fitting where the quench is added.  At the beginning 

of the reactant stream tubing, I added an HPLC mixer, which contains stainless 

steel beads, to improve the mixing. 
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Figure 2-18: Schematic of 3rd generation continuous flow reactor 
 
 
 
 Since the HPLC pumps have a dial with number settings that do not 

always correlate with the flow rate, the flow rates of the three HPLC pumps were 

calibrated.  I then set the reactant pumps both to a 0.6 mL/min flow rate.  The 

quench pump was set to a flow rate of 1.0 mL/min.  With the pressure drop, the 

overall flow rate was measured to be 1.7 mL/min.  This flow rate resulted in a 5.4 

second residence time.  I then ran the continuous flow reactor using the 0.75 M 

combined concentration of the L-boc-phenylalanine, tributylamine, and 

isobutylchloroformate in dry ethylacetate and using a concentration of 1.5 M of 

propylamine in dry methanol as the quench.   I set the chiller at seven different 

temperatures, -20ºC, -10ºC, 0ºC, 10ºC, 20ºC, 25ºC, 50ºC to determine the effect 

of temperature on the yield.   The reactants and quench were flushed through the 
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continuous flow reactor for 2 minutes before each temperature change.  The 

product stream was collected in duplicate for each temperature.  The purity of the 

isolated product was confirmed using melting point and 1H NMR.  The -20ºC 

showed trace amounts of product in the 1H NMR.  The rest of the temperatures 

had measurable isolated yield and these results are summarized in the Figure 2-

19.  These results illustrate that isolated yield increases with increasing 

temperature for this continuous flow configuration.   
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Figure 2-19: 3rd generation continuous flow reactor isolated yield results 
with 5 sec residence time at various temperatures 
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 However, the increase in temperature from 25 to 50ºC brings an increase 

in yield that was within error whereas the increase in temperature from -20 to 25 

ºC resulted in a definitive and large increase in yield.  The ability to increase the 

reaction temperature above -20ºC is significant. In a batch reactor, the optimum 

temperature is -20ºC. This temperature effect is attributed to the fact that the 

mixed anhydride intermediate is very temperature sensitive.  Being able to 

perform the reaction at room temperature could reduce energy costs.  In addition, 

the yields of the 3rd generation continuous flow reactor are significantly better 

(about 25 %) than the yields of the 2nd generation continuous flow reactor (2%). 

However, the still low yield clearly indicates that the process was not yet fully 

optimized.  

 The length of tubing was increased from 400 cm to 720 cm (Figure 2-20).  

I ran experiments in the continuous flow reactor at 10ºC, 25ºC, and 50ºC using the 

0.75 M concentration and isolated the yields.  The reactants and product streams 

were flushed through the continuous flow reactor for 2 minutes for each 

temperature.  The product stream was collected in duplicate for three minutes at 

each temperature.  The isolated yields for the 720 cm continuous flow reactor 

were lower than the isolated yield for the 400 cm continuous flow reactor.  As an 

example, the yield at 50ºC for 720 cm was 18+/-5% compared with the 28+/-% 

isolated yield for 400 cm.  These results strongly suggested that other factors than 

tubing length were in play.  
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 First, the individual flow ratios of each stream were measured.  Alkanes 

were used as traces in each stream, namely, octane, nonane, and decane.  The exit 

stream was analyzed using GC-MS and the area of the hydrocarbon peaks to 

determine the ratios.  Theoretically, the relative ratio of the octane and nonane 

peaks should each be 25% and the decane, from the quench pump, should be 

50%.  Practically, the flows were adjusted to obtain octane 22%, nonane 28%, and 

decane 50%.   

 

 

 

Figure 2-20: Schematic of 3rd generation continuous flow reactor with 720 
cm tubing 

 
 
 
 After optimizing the pumps using traces of hydrocarbons, I resumed 

working with the reagent streams to which were added 1% by volume 
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hydrocarbon trace as an internal standard.  The difference in viscosity between the 

actual reactants and the pure hydrocarbons required me to optimize the pumps 

again at 25ºC by changing the settings five times to get 27% octane, 28% nonane, 

and 45% decane (Figure 2-21).   

 I ran experiments in the continuous flow reactor at 25ºC using the 

optimum flow rates and isolated the product.  One reactant stream was L-boc-

phenylalanine, tributylamine and octane (1% vol) in dry ethylacetate and the other 

reactant stream was isobutylchloroformate and nonane (1% vol) in dry 

ethylacetate which combined gave a concentration of 0.75 M.  The quench stream 

was propylamine and decane (1% vol) in methanol, giving a 1.5 M stream.  The 

residence time was measured at 19.2 seconds.  The continuous flow reactor was 

flushed with the quench and reactants for 3 minutes.  Then, 5 mL of the product 

stream was collected and this in duplicate.  The ratios of the hydrocarbons in the 

streams were systematically monitored by GC-FID and determined to be 26% 

(octane), 27% (nonane), and 47% (decane).  The isolated yield was 30 +/-5% 

compared to 20 +/- 5% for the 400 cm tubing and 5.4 sec residence time at 25ºC.  

Although the residence time was 4 times longer with this set-up, the yield only 

increased by 50%.  These results strongly suggested that the limiting factor was 

mixing.  
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Figure 2-21: Optimize pumps by flow rate ratios using a hydrocarbon trace 
 
 
 
 To improve the mixing, a HPLC column (25 cm) repacked with 3 mm 

glass beads (Figure 2-22) were introduced.  The tubular reactor was added after 

320 cm of tubing, approximately in the middle of the system.  The continuous 

flow reactor was run used the same concentrations, flow rates, and experimental 

procedures as mentioned previously.  The residence time was measured to be 10.2 

seconds and the hydrocarbon trace showed that the flow rates were 17% octane, 

23% nonane, and 60% decane.  The isolated yield was 40+/-5% compared to 

30+/-5% previously. 

 Literature reports have mentioned using sonication as a means to increase 

mixing in microreactors.12  The continuous flow reactor was placed in a sonicator. 

An experiment was run with the same conditions but with simultaneous 

sonication.   The isolated yield from the sonicator was 30+/-5%, which was not an 

improvement. This option was not investigated further. 
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 I also tried putting 0.5 mm glass beads in the cross fitting to improve the 

mixing where the streams first come into contact.  However, the beads clogged 

the system so this route was abandoned. 

 Smaller diameter beads (0.5 mm instead of 3 mm) were used to repack the 

tubular reactor. Smaller bead size could induce more turbulence and therefore 

better mixing.  The isolated yield increased to 47+/-5% at room temperature 

which was approximately a 5% improvement over the 3 mm glass beads. 

 

 
 

 

Figure 2-22: Schematic with tubular reactor added to the 3rd generation 
continuous flow reactor  
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 Since the tubular reactor filled with glass beads seemed to have the largest 

mixing effect, a second tubular reactor was added to the system (Figure 2-23).  

The tubular reactor was 15 cm long and had an inner diameter of 4 mm.  The 

silica inside an HPLC column was removed and the column was repacked with 

0.5 mm glass beads.  This tubular reactor was added after 240 cm of tubing and 

the first tubular reactor was moved to after 480 cm of tubing as seen in Figure 2-

23. Experiments in the continuous flow reactor were run with the same 

concentrations, flow rates, and experimental procedures mentioned previously.  

The flow rates were optimized for the system at room temperature and the best 

isolated yield of 60+/-5% was obtained using a 0.1 mL/min flow rate (Figure 2-

24).  The improvement from 0.3 mL/min to 0.1 mL/min was probably due to a 

longer residence time with the slower flow rate.  The improvement from 0.05 to 

0.1 mL/min is probably due to better mixing with the faster flow rate.  The 

balance between these two factors demonstrated the need to optimize both flow 

rate and mixing. 
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Figure 2-23: Continuous flow reactor schematic with 2 tubular reactors filled 
with 0.5 mm glass beads 
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Figure 2-24: Optimized flow rate for reactants for 2 tubular reactors 
continuous flow reactor system at room temperature 

 
 
 
 Bends have been shown to induce chaotic mixing in systems with laminar 

flow.13  One cm sharp bends to an 80 cm piece of HPLC tubing were created. The 

bent tubing was added after 160 cm of tubing and a flow rate of 0.3 mL/min for 

the reactants was used.  Experiments in the continuous flow reactor were run 

using the same concentrations and experimental procedures.  The isolated yield 

was 55+/-5% compared to 51+/-5% without the bent tubing at room temperature.  

The slight improvement in yields is not significant and is within experimental 

error.  

 Two additional tubular reactors were built, packed with glass beads and 

added to the system (Figure 2-25).  Both tubular reactors were 20 cm in length 
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and had an inner diameter of 4.6 mm.  They were filled with 0.5 mm glass beads 

and the beads were packed using a vibrator.  One tubular reactor was added after 

320 cm of tubing and the other tubular reactor was added after 560 cm of tubing.  

The original two tubular reactors were left on the system in their original position.  

Various flow rates between 0.1 and 0.4 mL/min were run and the product isolated 

(Figure 2-26).  The best flow rate was 0.2 mL/min, giving an isolated yield of 

53+/-5% at room temperature.  It was not expected that the yield would decrease 

upon extending residence time and increasing mixing. With a longer residence 

time, the product may start degrading.  When the experiments were repeated at 

lower temperatures of -20ºC and 0ºC, the isolated yields increased. This result 

was expected since at lower temperature the intermediate decomposition will 

indeed be minimized (Figure 2-27).  
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Figure 2-25: Continuous flow reactor schematic of 4 tubular reactor system 
filled with 0.5 mm glass beads 
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Figure 2-26: Flow rate vs. isolated yield for the 4 tubular reactor system with 
0.5 mm glass beads 
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Figure 2-27: Temperature vs. isolated yield on the 4 tubular reactor system 
 
 
 
 With the 4 tubular reactor system, the best isolated yield was 60+/-5% at 

0ºC.  The batch reaction was repeated at room temperature instead of -20ºC as it 

has been originally studied.  As shown in Figure 2-19, when the continuous flow 

reactor was tested at various temperatures, the yield increased as the temperature 

increased.  This trend was not expected and was attributed to the excellent heat 

transfer capabilities and mixing of the continuous flow reactor.  Nonetheless, 

reactions were repeated in a batch-mode at 25ºC instead of -20ºC.  The first 

reaction was quenched after 16 minutes to mimic the residence time of the 2 

tubular reactor continuous flow reactor and gave an isolated yield of 37+/-5%.  

The second reaction was quenched after 1 hour, like the original reaction 
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conditions, and gave an isolated yield of 27+/-5%.  The drop in isolated yield 

from 16 minutes to 1 hour confirmed that the mixed anhydride intermediate 

decomposed over time at room temperature.  This experiment clearly 

demonstrated that the 2 tubular reactor continuous flow reactor is superior to the 

batch reaction at 25ºC because the continuous flow reactor gave an isolated yield 

of 60+/-5%.   The unique heat transfer capabilities of the continuous flow reactor 

are clearly making a difference on the reaction performances when compared to a 

batch-mode process.  

 Finally, it is worth mentioning that increasing the equivalents of isobutyl 

chloroformate (2x and 3x excess) showed no effect on the isolated yield.     

2.3.6 Coiled Continuous Flow Reactor 

 The continuous flow reactor although performing well became quite 

complex throughout the generations. However, in light of the last results it was 

clear that the HPLC tubing was not playing a major role and could be eliminated. 

By designing a coiled continuous flow reactor, the performances were expected to 

be maintained yet the system will be simpler.  Besides keeping benefits like 

superior heat transfer and improved safety, other benefits like reduction in cost 

and clogging were added.  The coiled continuous flow reactor was made out of 

stainless steel tubing with 45 cm length with an inner diameter of 4.6 mm and 
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filled it with 0.5 mm diameter glass beads (Figure 2-28).  A photograph of the 

coiled continuous flow reactor can be seen in Figure 2-29. 

 

 

 

Figure 2-28: Schematic of coiled continuous flow reactor using propylamine 
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Figure 2-29: Photograph of the coiled continuous flow reactor 
 
 
 
 At this point the reaction was also to be carried out a step further, up to the 

formation of the diazoketone. Before doing any experiments in the continuous 

reactor, the reaction of the mixed anhydride with trimethylsilyl diazomethane was 

carried out in a batch mode. Originally, the synthesis used diazomethane, however 

we chose to use trimethylsilyl diazomethane, a safe alternative to diazomethane.  I 

used a procedure analogous to one reported in the literature, that first formed the 

mixed anhydride that then reacts with trimethylsilyl diazomethane to form a 

diazoketone (Figure 2-30).10  
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Figure 2-30: Diazoketone synthesis 
 
 
 
 The synthesis was first performed using L-boc-phenylalanine (1 equiv), 

isobutylchloroformate (1.3 equiv), tributylamine (1.3 equiv) in THF (0.2 M) then 

trimethylsilyl diazomethane (3 mL of 2.0 M solution in hexane) in acetonitrile 

(0.6 M).  I obtained a 32% isolated yield of the 1-(benzyl-3-diazo-2-oxo-propyl)-

carbamic acid tert-butyl ester.  I then changed various reaction conditions as 

shown in Figure 2-31.  The biggest effect was switching from using isobutyl 

chloroformate to ethyl chloroformate, resulting in a 78% isolated yield.  It was 

hypothesized that the increase in yield was due to the smaller size of the ethyl 

group versus the isobutyl group, reducing the steric hindrance and making it 

easier for addition from the trimethylsilyl diazomethane.  After obtaining a similar 

yield than reported in the literature (78%), I optimized the reaction for use in a 

coiled continuous flow reactor.  Again, the triethylamine was avoided and 

tributylamine was preferred as its hydrochloride salt would not crash out in the 
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reaction mixture.  I also changed the solvent to ethyl acetate since that is what I 

used for the previous mixed anhydride synthesis (Figure 2-32). 
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Figure 2-31: Variables changed in synthesis of diazoketone 
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Figure 2-32: Diazoketone synthesis with reactants used for batch reactions 
 
 
 
 

 Before running the reaction in the coiled continuous flow reactor, an 

estimation of the optimum reaction time was required to set up flow rates.  Since 
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the first step was changed from using isobutyl chloroformate to ethyl 

chloroformate, I needed to monitor both the first step with the propylamine 

quench and the second step with the addition of the trimethylsilyl diazomethane.  

As before, calibration curves on the LC-UV of the propylamine quench product, 

(2-phenyl-1-propylcarbamoyl-ethyl)-carbamic acid tert-butyl ester, and the 

diazoketone, (1-benzyl-3-diazo-2-oxo-propyl)-carbamic acid tert-butyl ester were 

prepared.  I tested the reaction with ethyl chloroformate and the propylamine 

quench at 16 and 30 minutes.  Both gave a peak on the LC-UV that correlated to 

the concentration that indicated 100% yield.  I then ran the first step on the coiled 

continuous flow reactor shown in Figure 2-28.  The ethyl chloroformate, anisole, 

an internal standard, and nonane in ethyl acetate in a 1.5 M solution were added 

by a pump to the cross fitting.  The coiled continuous flow reactor was run using 

the same experimental procedures and concentrations as mentioned previously. 

The cross valve was connected to the continuous flow reactor which was in a 

chiller set at 0ºC.  The results were monitored by LC-UV and the theoretical 

concentration was determined using the hydrocarbon trace ratios measured by 

GC-FID.  The residence time of the coiled continuous flow reactor was estimated 

to be 16 minutes.  With this system, the yield was quantitative (by LC-UV).  

 I monitored the reaction time of the diazoketone reaction using the LC-UV 

and sampling at various time intervals.  The maximum yield of 100% was 

obtained after 2 hours and plateaued after this point within error (Figure 2-33).  I 
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had been using the concentration (0.2 M) for the L-boc-phenylalanine, 

tributylamine, and ethyl chloroformate in ethylacetate in the literature, not the 

concentrations used for the previous mixed anhydride with the propylamine 

quench (0.75 M).  By increasing the concentration for the first step, I could 

accelerate the reaction.  I kept the concentration of the trimethylsilyl 

diazomethane in acetonitrile the same for safety considerations. 
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Figure 2-33: Diazoketone monitoring reaction by LC-UV for 0.2 M reactant 
concentration 

 
 
 



 52

 An experiment was run with the concentration of the reagents streams 

being 0.75 M. Aliquots were taken at 10, 20, 30, 45, 90, and 120 minutes and 

analyzed by LC-UV.  An internal standard, anisole, was added. Quantitative 

yields in the diazoketone product (within the 3% error) were obtained after as 

little as 10 minutes. 

 The continuous flow reactor, shown in Figure 2-28, was slightly modified 

to allow for the addition and reaction of the trimethylsilyl diazomethane.  Since 

the trimethylsilyl diazomethane needed a longer residence time for reaction than 

the propylamine quench, a second coiled reactor identical to the first reactor was 

built and added to the original set-up. I added this second reactor after the T-

fitting (Figure 2-34). 
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Figure 2-34: Continuous flow reactor added after T-fitting for addition of 
trimethylsilyl diazomethane 

 

 

 The L-boc-phenylalanine, tributylamine, and octane, as the hydrocarbon 

trace, in ethyl acetate in a 1.5 M solution were added by one pump.  The ethyl 

chloroformate, anisole, as an internal standard, and nonane in ethyl acetate in a 

1.5 M solution were added by another pump to the cross fitting.  Both coiled flow 

reactors were placed in the chiller at 4ºC.  The trimethylsilyl diazomethane and 

decane in acetonitrile in a 0.6 M solution were added by the T-fitting.  The results 

were monitored by LC-UV and the theoretical concentration was determined 

using the hydrocarbon trace ratios measured by GC-FID.  The residence time of 

each continuous flow reactor was estimated to be 16 minutes, for a total of 32 
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minutes.  For this system, the yield in diazoketone product was quantitative (by 

LC-UV).  This is remarkable as the simple design of two coiled continuous flow 

reactors allows for carrying out a two steps synthesis involving a very 

temperature-sensitive intermediate with quantitative yield.  

2.4 Conclusion 

 The reaction of L-boc-phenylalanine with alkyl chloroformate to form a 

mixed anhydride followed by reaction with trimethylsilyl diazomethane was 

explored in a continuous flow reactor. In a batch mode, the first step of the 

reaction is carried at the optimum temperature -20ºC because the mixed anhydride 

is temperature sensitive (and decomposes readily above 0ºC). The best overall 

yield reported in the literature for this sequence was 78 %.  During this research, 

several reactor configurations were built. The final configuration that involves 

two coiled continuous microreactors packed with glass beads is both simple and 

extremely efficient. The reaction sequence was carried out at 4ºC with 

quantitative yield in the diazoketone product.  This result is remarkable. It clearly 

demonstrates that the continuous process not only improves yields (and product 

quality) over a batch process, it also utilizes cheaper and safer reagents 

(ethylchloroformate vs. isobutylchloroformate and trimethylsilyl diazomethane vs. 

diazomethane), and reduces energy intake by eliminating the need for low 

reaction temperatures. 
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2.5 Experimental 

 All chemicals were ordered from Aldrich or VWR and used as received, 

unless noted.  1H and 13C NMR spectra were recorded using a Varian Mercury Vx 

400 spectrometer using residual CDCl3 peak as an internal reference.  Mass 

spectrometry samples were submitted to the mass spectrometry lab and used ESI-

MS.  GC-MS analysis was done on a HP GC 6890/ HP MS 5973.  GC-FID 

analysis was done on a HP GC 6890 with FID detector.  Elemental analyses were 

submitted to Atlantic Microlabs, Inc.  Melting points were determined on Mettler-

Toledo capillary apparatus and were uncorrected.  LC-UV analysis was done on 

an Agilent 1100 Series LC with UV detector.  UV-visible spectra were recorded 

on a Hewlett-Packard 8453 spectrometer.  All the error bars were calculated from 

the standard deviation.  The isolated yield of the propylamine quench were 

consistently +/-5% throughout the project. 

 

Synthesis of (1-benzylcarbamoyl-2-phenyl-ethyl)-carbamic acid tert-butyl ester 

using triethylamine 
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Figure 2-35: Triethylamine as HCl scavenger and benzylamine quench 
 

 

 L-Boc-phenylalanine (3.0 g, 0.0114 mol, 1 equiv) was added to dry 

ethylacetate (15 mL, 20 % wt solution).  The solution was put under nitrogen and 

in a CaCl2/ice/water bath (-30ºC).  To the cold solution, isobutyl chloroformate 

(1.8 g, 0.015 mol, 1.3 equiv) was added.  Then triethylamine (1.5 g, 0.015 mol, 

1.3 equiv) was added drop-wise and a white precipitate (TEA-HCl salt) formed 

during the addition.  The reaction was stirred for 1 hour at -30ºC.  Then 

benzylamine (1.5 mL, 1.2 equiv) was added to quench the reaction.  The reaction 

was allowed to warm to room temperature overnight.  To work up the reaction, 

the TEA-HCl salt was removed by filtration and washed with cold ethylacetate.  

The ethylacetate solution was washed with saturated aqueous NaHCO3, water, 

and saturated aqueous NaCl.  The solution was dried over magnesium sulfate and 

the solvent was removed under reduced pressure.  The white solid was 

characterized and used for a calibration curve to be used with the continuous flow 

reactor.  
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(1-Benzylcarbamoyl-2-phenyl-ethyl)-carbamic acid tert-butyl ester: 1H NMR 

(CDCl3) ppm: 1.39 (9, s), 3.06 (2, m), 4.37 (3, d), 5.02 (1, s), 6.01 (1, s), 7.10 (10, 

m).  13C NMR (CDCl3, ppm): 28.24, 38.52, 43.47, 44.73, 56.05, 126.96, 127.48, 

127.46, 127.67, 128.61, 128.73, 129.34, 137.62, 170.94.  GC-MS analysis was 

done on a HP GC 6890/ HP MS 5973.  MS(m/z): 281 (loss O-C(CH3)3).  EA: 

calculated C, 71.16%, H, 7.39%, N, 7.90%.  Found C, 71.27%, H, 7.46%, N, 

7.84%. 

 

Solubility test of amines 

 Pyridine, DBU, piperidine, tripropylamine, tributylamine were all tested to 

determine if they formed a visible precipitate upon the addition of HCl (37% 

reagent grade).  For all the amines, 1 g was added to 10 mL of ethylacetate.  Then 

1 mL of HCl was added drop wise and compared visibly to a control of 

triethylamine (1g), ethylacetate (10mL), and HCl (1mL).  Pyridine, DBU, 

piperidine all showed a significant amount of precipitate.  Tripropylamine and 

tributylamine did not show a precipitate upon the addition of HCl.   

 

Synthesis of (1-benzylcarbamoyl-2-phenyl-ethyl)-carbamic acid tert-butyl ester 

using tripropylamine 

 L-Boc-phenylalanine (0.5 g, 0.0019 mol) was dissolved in ethylacetate 

(2.5 mL) to make a 20 wt % solution.  The solution was put under nitrogen and 
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cooled in a CaCl2/H2O/ice bath (-30ºC).  To the solution, isobutylchloroformate 

(0.3 g, 0.0025 mol) was added.  Then the tripropylamine (0.36 g, 0.0025 mol) was 

added to the solution.  However, a white precipitate formed upon the addition of 

the tripropylamine so this synthetic method was not pursued further. 

 

Synthesis of (1-benzylcarbamoyl-2-phenyl-ethyl)-carbamic acid tert-butyl ester 

using tributylamine 

 L-Boc-phenylalanine  (0.5 g, 0.0019 mol) was dissolved in ethylacetate 

(2.5 mL) to make a 20 wt % solution.  The solution was put under nitrogen and 

cooled in a CaCl2/ice/water bath (-30ºC).  Isobutylchloroformate (0.3 g, 0.0025 

mol) was added to this solution.  Tributylamine (0.46 g, 0.0025 mol) was then 

added and a precipitate did not form.  The reaction was allowed to continue for 

one hour.  Then 7 mL of a 5 wt % solution of benzylamine in ethylacetate (1.0 g 

in 20 mL) was added to the reaction solution.  The reaction was allowed to warm 

to room temperature overnight.  No starting material was observed in 1H NMR.  I 

did not continue to purify because only wanted to confirm that a precipitate did 

not form in the first step. 

 

Calibration curve of L-boc-phenylalanine  

 Five different amounts (0.0152 g, 0.0422 g, 0.0740 g, 0.1107 g, 0.1418 g) 

of L-boc-phenylalanine  were used to make a calibration curve on the LC-UV at 
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wavelength 230 nm.  The method used was RCBoc and the L-boc-phenylalanine  

was dissolved in 1 mL of methanol.  A standard of 0.0646 g L-boc-phenylalanine  

in 1 mL of methanol was used to test the calibration curve.  The LC calibration 

curve gave 0.0687 g, which was determined to be close to the actual amount of L-

boc-phenylalanine  used. 

 

Synthesis of (2-phenyl-1-propylcarbamoyl-ethyl)-carbamic acid tert-butyl ester 

using triethylamine 

 L-Boc-phenylalanine (3 g) was added to dry ethylacetate (15 mL) to make 

a 20 wt % solution.  The solution was put under nitrogen and in a CaCl2/water/ice 

bath (-30ºC).  Triethylamine (2 mL, 1.3 equiv) and isobutylchloroformate (1.8 

mL, 1.3 equiv) were added to the solution.  The solution was stirred for 1 hour.  

The propylamine (1.4 mL, 1.5 equiv) was then added and the solution was stirred 

for another hour.  The reaction was then filtered and the solid, TEA-HCl salt, was 

washed with ethylacetate.  The organic phase was washed with saturated aqueous 

NaHCO3, water twice, saturated aqueous NaCl and dried over magnesium sulfate.  

The solvent was then removed under reduced pressure.  The white solid was 

stirred with cold hexane and filtered (76% yield). 

(2-Phenyl-1-propylcarbamoyl-ethyl)-carbamic acid tert-butyl ester using 

tributylamine: 1H NMR (CDCl3) ppm: 0.88 (3, m), 1.34 (11, m), 3.05 (4, m), 4.25 

(1, m), 5.11 (1, s), 5.74 (1, s), 7.25 (5, m).  13C NMR (CDCl3) ppm: 11.215, 22.56, 
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28.25, 38.76, 41.11, 56.09, 80.10, 136.89, 128.63, 129.30, 136.86, 155.370, 

170.94.  EA: calculated C, 66.64%, H, 8.55%, N, 9.14%.  Found C, 66.76%, H, 

8.61%, N, 9.12%. 

 

Calibration curve of (2-phenyl-1-propylcarbamoyl-ethyl)-carbamic acid tert-butyl 

ester  

 The LC-UV at 229 nm was used to make a calibration curve of the 

product.  The method name was RCMICROP.  Different amounts of product 

(0.356 g, 0.0527 g, 0.1028 g, 0.0744 g, 0.0148 g) were added to five vials and 0.5 

mL of methanol was added.  The concentration (0.2324 M, 0.3440 M, 0.6710 M, 

0.4856 M, 0.0966 M) was calculated and used to make the calibration curve.  The 

calibration curve was tested using a standard of 0.2304 M.  The calibration curve 

gave 0.231 M, which was within error to the known standard concentration. 

   

Synthesis of (2-phenyl-1-propylcarbamoyl-ethyl)-carbamic acid tert-butyl ester 

using tributylamine 

 L-Boc-phenylalanine (0.5 g, 0.0019 mol) was dissolved in dry ethylacetate 

(2.5 mL) to make a 20 wt % solution.  The solution was put under nitrogen and 

cooled in a CaCl2/ice/water bath (-30ºC).  Isobutylchloroformate (0.3 g, 0.0025 

mol) was added to this solution.  Dry tributylamine (0.46 g, 0.0025 mol) was then 

added.  The reaction was allowed to continue for one hour.  Dry propylamine 
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(0.23 mL, 0.0029 mol, 1.5 equiv) in dry ethyl acetate (1 mL) was added to the 

solution.  The reaction was allowed to warm to RT overnight.  The reaction 

solution was washed with saturated aqueous NaHCO3, water, and saturated 

aqueous NaCl solution.  The ethyl acetate layer was dried over magnesium sulfate 

and solvent was reduced under pressure.  The resulting white solid (76% yield) 

was characterized. 

(2-Phenyl-1-propylcarbamoyl-ethyl)-carbamic acid tert-butyl ester using 

tributylamine: 1H NMR (CDCl3) ppm: 0.88 (3, m), 1.34 (11, m), 3.05 (4, m), 4.25 

(1, m), 5.11 (1, s), 5.74 (1, s), 7.25 (5, m).  13C NMR (CDCl3) ppm: 11.215, 22.56, 

28.25, 38.76, 41.11, 56.09, 80.10, 136.89, 128.63, 129.30, 136.86, 155.370, 

170.94.  EA: calculated C, 66.64%, H, 8.55%, N, 9.14%.  Found C, 66.76%, H, 

8.61%, N, 9.12%. 

 

1st generation continuous flow reactor  

 The continuous flow reactor was run using 0.04 M solutions.  The L-boc-

phenylalanine  solution was L-boc-phenylalanine  (0.75 g) and dry tributylamine 

(0.7 mL) in dry ethylacetate (75 mL).  This solution was pumped into the system 

using an HPLC pump from a round bottom in the chiller. The 

isobutylchloroformate (2.4 mL) solution was in ethylacetate (450 mL) and was 

pumped into the system using an ISCO.  The propylamine solution was 

propylamine (0.16 mL) in ethylacetate (5 mL) which was based on having 1.5 
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equiv of propylamine after a 10 min run at 3.3 mL/min.  The chiller was set at -

20ºC.  The L-boc-phenylalanine solution alone was run through the system for 2 

minutes, giving a reading of -7.8ºC on the thermocouple.  The ISCO was set for 

3.3 mL/min to match the HPLC pump flow rate.  All the reactants were run 

through the continuous flow reactor for 2 min to flush the system.  Then the 

reactant solution was dripped into the flask containing the propylamine solution 

for 10 min.  The thermocouple reading increased to -7.3ºC during the run.  The 

propylamine solution with the reactants was put into a round bottom and the 

solvent was removed under reduced pressure, resulting in an oil.  The NMR peaks 

and the LC-UV retention time did not correlate with the product.  The experiment 

was repeated with the same results. 

 

2nd generation continuous flow reactor specifications 

 The cross fitting and T-fitting are HIP fittings made of stainless steel.  The 

tubing has an inner diameter of 7 mm and was made of stainless steel.  The HPLC 

pumps were from Eldex.  The tubing lengths can be seen in Figure 2-9. 

 

2nd Generation Continuous flow reactor 0.04M 

Run 2-3 (pump broke with run 1)  

 L-Boc-phenylalanine (0.75 g) and dry tributylamine (0.7 mL) were added 

to dry ethylacetate (75 mL) to make an 0.04 M solution.  Isobutylchloroformate 
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(0.6 mL) was added to dry ethylacetate (112 mL) to make an 0.04 M solution.  

Dry propylamine (2 mL) was added to dry methanol (75 mL) to make an 0.3 M 

solution which was a large excess of propylamine for the quench.  The chiller was 

set to -20ºC and the thermocouple read -19.7ºC.  The reactant flows were run and 

collected for 6 minutes for run 2 and for 20 minutes for run 3 and the solvent was 

removed under reduced pressure, giving an oil.  The NMR did not show any 

product formation.   

Run 4 

 The L-boc-phenylalanine  solution and the isobutylchloroformate solution 

are the same as for runs 1-3.  The propylamine concentration was reduced to 1.5 

equiv which was 0.072 M when corrected for the slower flow of the quench 

pump.  Propylamine (0.44 mL) was added to dry methanol (75 mL).  The system 

was flushed with all the reactants for 1 minute.  Then the solution was collected 

for 20 min and the solvent was removed under reduced pressure.  The NMR did 

not show any product formation. 

Run 5 

 The solutions were made the same way as run 4.  The system was flushed 

for 1 minute.  Then the solution was collected for 20 min.  The solution was then 

worked up the same way as the batch reaction, first the solution was washed with 

water, saturated aqueous NaHCO3, and saturated aqueous NaCl.  The organic 
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phase was dried over magnesium sulfate and solvent was removed under reduced 

pressure.  The resulting oil did not show any product by NMR. 

 

Batch reaction at 0.04 M  

 L-Boc-phenylalanine (0.75 g) was dissolved in dry ethylacetate (75 mL).  

The reaction was put under nitrogen and in a CaCl2/water/ice bath (-30ºC).  

Tributylamine (0.7 mL) and isobutylchloroformate (0.4mL) were added to make 

an 0.04 M solution.  The reaction was stirred for 1 hour.  Then dry methanol (20 

mL) and propylamine (0.1 mL) were added to have a 0.06 M solution of 

propylamine and the reaction was stirred at room temperature overnight.  To 

workup the reaction mixture, the organic phase was washed with saturated 

aqueous NaCO3, water twice, and saturated aqueous NaCl.  The organic phase 

was dried over magnesium sulfate and the solvent was removed under reduced 

pressure.  To purify the resulting white solid, the solid was washed with cold 

hexane and filtered.  The solid was pure by 1H NMR with a 62% yield.  

 

Batch reaction at 0.04 M with steel 

 The reaction conditions were the same as above except a small piece of 

stainless steel tubing was added to the round bottom.  This was to determine if the 

stainless steel was hindering the reaction in the continuous flow reactor.  The 

product was pure by 1H NMR with a 52% yield.   
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Test Reaction time using 0.04M batch reactions 

 L-Boc-phenylalanine (0.75 g) was dissolved in dry ethylacetate (75 mL).  

The solution was put under argon and in a CaCl2/water/ice bath (-30ºC).  

Tributylamine (0.7 mL) and isobutylchloroformate (0.4 mL) were added to the 

solution to form a concentration of 0.04 M.  A separate propylamine solution was 

made with propylamine (0.1 mL) in dry methanol (20 mL) to form a 0.06M 

concentration, which resulted in 1.5 equiv of propylamine.  Vials were made with 

the propylamine solution (0.5 mL) and placed in an ice batch.  At 1, 2, 3, 4, 5, 10, 

15, 20, 25, 30, 45, 60 minutes, the L-boc-phenylalanine  solution (0.5 mL) was 

removed and put into the vial containing the propylamine quench.  All the 

samples were run on the LC-UV.  The method used was RCMICROP.  In 

addition, the sample taken at 4 minutes and 30 minutes were tested by 1H NMR.  

The sample at 4 minutes showed partial conversion to the product.  The sample at 

30 minutes showed only product peaks in the 1H NMR.  

 

Test reaction time using 0.75M batch reactions (analysis by LC-UV) 

 L-Boc-phenylalanine (5 g) was dissolved in dry ethylacetate (25 mL).  The 

solution was put under argon and in a CaCl2/water/ice bath (-30ºC).  

Tributylamine (3.0 mL) and isobutylchloroformate (1.5 mL) were added to the 

solution to form a concentration of 0.75 M.  A separate propylamine solution was 
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made with propylamine (1.8 mL) in dry methanol (20 mL) to form a 1.1 M 

concentration which results in 1.5 equiv of propylamine.  Vials were made with 

the propylamine solution (0.5 mL) and placed in an ice batch.  At 1, 2, 3, 4, 5, 10, 

15, 20, 25 and 30 minutes, the L-boc-phenylalanine solution (0.5 mL) was 

removed and put into the vial containing the propylamine quench.  All the 

samples were run on the LC-UV.  The method used was RCMICROP.  Product 

began to appear in as little as 1 minute by LC-UV.   

 

Test reaction time using 0.75M batch reactions (isolated yield) 

 A stock solution was made with L-boc-phenylalanine  (5 g), tributylamine 

(6 mL), and dry ethylacetate (50 mL).  For each test, 2.8 mL of stock solution was 

used.  A separate stock solution of quench was made with propylamine (2.4 mL) 

and dry methanol (26 mL).  For each test, 1.4 mL of the quench stock solution 

was used.  To the 2.8 mL, isobutylchloroformate (0.15 mL) was added to form a 

0.75 M concentration. At 5, 15, and 30 sec, 1, 5, 10, and 20 minutes, the quench 

was added.  Each time was done in triplicate.  The solutions were worked up by 

washing with saturated aqueous NaHCO3, twice with water, and saturated 

aqueous NaCl.  The solutions were dried over magnesium sulfate and the solvent 

was removed under reduced pressure.  The 5 second time sample did not show 

any product formation by 1H NMR.  The 15 and 30 second time sample gave 20% 
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and 30% isolated yield, respectively.  Any time after 1 minute gave the maximum 

possible isolated yield of 76+/-5%.    

 

2nd generation continuous flow reactor 0.75M 

Run 1 

 L-Boc-phenylalanine (14.9 g) and tributylamine (13.3 mL) were added to 

dry ethylacetate (75 mL) to make an 0.75 M solution.  Isobutylchloroformate (7.3 

mL) was added to dry ethylacetate (75 mL) to make a second 0.75 M solution.  

Propylamine (8.3 mL) was added to dry methanol (75 mL) to make a 1.35 M 

solution so there were 1.5 equiv of propylamine in solution from the slower 

pump.  Both HPLC pumps were set to 1 and the ISCO, containing the 

isobutylchloroformate, was set to 2.4 mL/min.  The chiller was set to -20ºC.  The 

residence time was 1 min.  Three runs were performed with a 2 min flush of 

reactants then 5 min collecting product for each run.  The thermocouple read -

20.3ºC during the runs.  The three runs were then worked up using the same 

procedure as the batch reactions.  Trace amounts of product was seen by 1H 

NMR. 

Run 2 -3 

 The solutions were made the same way as with run 1.  The flow rates were 

reduced with this run to 0.8 mL/min for the HPLC pumps and the ISCO was set to 

0.8 mL/min.  The residence time was 3.4 minutes.  The chiller was set to -20ºC 
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for run 2 and -10ºC for run 3.  Two runs were collected for each temperature.  The 

continuous flow reactor was flushed with reactants for 5 min and was collected 

for 5 min for each run.  All of the runs were worked up using the same procedure 

as the batch reaction.  In run 2, 2% product was isolated.  In run 3, trace product 

was observed by 1H NMR.   

3rd generation continuous flow reactor specifications: 

 The HPLC mixer used was 6 cm long and the specifications stated that it 

could hold 420 µL.  The part number for the mixer was G1312-87330.  It 

contained stainless steel beads.  The tubing was purchased from Agilent.  Each 

piece was 80 cm in length, had an inner diameter of 0.17 mm, and was made of 

stainless steel. The cross fitting and T-fitting were HIP fittings made of stainless 

steel.  Three Eldex Recipro Model AA stainless steel pumps were used until 

partway through the 3rd generation system.  Then, two Eldex Recipro Optos 2SM 

pumps were used for the reactant streams and an Eldex Recipro Model A pump 

was used for the quench.   

 

3rd generation continuous flow reactor flow rates 

 All pumps were also tested individually to determine individual flow rates.  

The last setting with all three pumps combined was a 15% pressure drop.  At 0.01 

setting, the boc pump should pump 0.6 mL/min, at 0.25 setting the iso pump 
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should pump 0.6 mL/min, and the propyl pump should pump at 1 mL/min.  

Settings and flow rates in Figure 2-36. 
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Settings  
Flow 
rate   Settings  

Boc 
pump 

Iso 
pump mL min  

Boc 
pump propyl   

1 0.75 2.4 1  3 1 Flow rate  
  2.4 1    mL min
  2.4 1    6.8 1 
  2.4 1  1 1 6.8 1 
1 0.5 1.8 1    6.8 1 
  2 1    4.4 1 
  2.4 1  0.5 0.5 4.4 1 
  2.2 1    4.4 1 
  2.4 1    2.6 1 
0.5 1 1.4 1    2.6 1 
  1.4 1    2.6 1 
  1.4 1      
3 3 4.4 1      
  4.4 1      
  4.4 1      
Switch 
Iso and 
propyl 
pumps         

Settings  
Flow 
rate       

Boc 
New 
iso mL min    

0.01 0.25 0.8 1      
  0.8 1      

Settings   
Flow 
rate      

Boc  Iso propyl mL min     
0.01 0.25 0.02 1.2 1     
   1.2 1     
0.01 0.25 0.25 1.6 1     
   1.8 1     
raise 
propyl 
pump         
0.01 0.25 0.25 1.6 1     
   1.7 1    
   1.8 1     

Figure 2-36: Flow rate 3rd generation continuous flow reactor 



 71

3rd generation continuous flow reactor 400 cm tubing 

 L-Boc-phenylalanine (6 g) and tributylamine (5.4 mL) were added to dry 

ethylacetate (15 mL) to make a 1.5 M solution.  The isobutylchloroformate (2.9 

mL) was added to dry ethylacetate (15 mL) to make a 1.5 M solution.  The two 

solutions combined to make a 0.75 M solution of all the reactants.  Propylamine 

(2.8 mL) was added to dry methanol (30 mL) to make a 1.125 M solution, which 

was 1.5 equiv of propylamine compared to the L-boc-phenylalanine .  The L-boc-

phenylalanine  pump was set at 0.01 which correlates to a flow rate of 0.6 

mL/min.  The isobutylchloroformate pump was set at 0.25, which correlated to a 

flow rate of 0.6 mL/min.  The propylamine pump was set at 0.25 which correlates 

to a flow rate of 1.0 mL/min.  With the pressure drop, the overall flow rate should 

be 1.7 mL/min.  The chiller was set to -20ºC, -10ºC, 0ºC, 10ºC, 20ºC, 25ºC, and 

50ºC with the thermocouple reading -20.4ºC, -10.5ºC, -0.5ºC, 10.0ºC, 19.7ºC, 

24.8ºC, and 49.9ºC, respectively.  The reactants were flushed in the continuous 

flow reactor for 2 minutes before each temperature change.  For each temperature, 

the reactants were collected in duplicate for a 2 min run with -20ºC, -10ºC, 0ºC, 

and for a 3 min run with 10ºC, 20ºC, 25ºC and 50ºC.  The reactants were worked 

up as previously described.  The product was isolated and the melting point 

determined of each sample and compared to the product melting point of 111.4ºC.  

The -20ºC produced an oil but showed trace amounts of product.  The isolated 

yield of the -10ºC was 6 +/-5%, for 0ºC was 10+/-5%, for 10ºC was 17+/-5%, for 
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20ºC was 20 +/-5%, for 25ºC was 23+/-5%, and for 50ºC was 25 +/-5%.  See 

Figure 2-19 for the graph. 

 

3rd generation continuous flow reactor 720 cm tubing optimize pumps for pressure 

drop 

 The same quantities of all the reactants were used as for the 400 cm tubing 

length continuous flow reactor.  The L-boc-phenylalanine pump was set to 0.01 

for a flow rate of 0.6mL/min and the isobutyl chloroformate pump was set to 0.25 

for a flow rate of 0.6 mL/min.  The propylamine pump was set to 0.50 for a flow 

rate of 1.2 mL/min.  All of these flows should give a total flow rate of 1.8 mL/min 

with a 15% flow rate reduction.  The continuous flow reactor was flushed with 

reactants for 2 minutes before each temperature change and the reactants were 

collected in duplicate for 3 minutes each for the various temperatures.  The chiller 

was set to 10ºC, 25ºC, and 50ºC with the thermocouple reading 10.1ºC, 25.2ºC, 

and 50.3ºC, respectively.  The reactants were collected and worked up the same 

way as the batch reaction.  The isolated yield for the 10ºC was 6+/-5%, for 25ºC 

was 16+/-5%, for 50ºC was 18+/-5%.   
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3rd generation continuous flow reactor flow ratios: 

Pure hydrocarbon (at 25ºC)      
 pump settings  hydrocarbon ratios (average of 2 runs) 
 Boc Iso propyl octane nonane decane  
 0.02 0.25 0.2 23.5 13 63  
 0.01 0.25 0.1 27 16 57  
 0.01 0.25 0.05 26.5 30 43.5  
 0.01 0.27 0.08 21 34 45  
 0.01 0.25 0.09 22 31 47  
 0.01 0.23 0.09 22 28 50  
 0.01 0.24 0.09 22 29.5 48.5  
        
Reactants with 1%vol hydrocarbons (at 
25ºC)     
 pump settings  hydrocarbon ratios (average of 2 runs) 
 Boc Iso propyl octane nonane decane  
 0.01 0.23 0.09 11 32.5 56.5  
 0.01 0.2 0.09 10.5 30.5 59  
 0.03 0.2 0.09 17 32 51  
 0.05 0.2 0.09 24.5 35 40.5  
 0.04 0.2 0.09 27.5 39.5 33  

Figure 2-37: Hydrocarbon flow rates and pump settings 
 
 
 
 For the pure hydrocarbon flow ratios, octane was used with the L-boc-

phenylalanine  pump, nonane was used with the isobutylchloroformate pump, and 

decane was used with the propylamine pump.  For each setting, two samples were 

collected of 1 mL each and run on the GC-MS to determine the peak area.  The 

results are shown in Figure 2-37.  

 For the 1% vol hydrocarbon trace, L-boc-phenylalanine  (6 g), 

tributylamine (5.4 mL), and octane (0.15 mL, 1% vol) were added to dry 

ethylacetate (15 mL).  Isobutylchloroformate (2.9 mL) and nonane (0.15 mL, 1% 

vol) were added to dry ethylacetate (15 mL).  Propylamine (2.8 mL) and decane 
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(0.30 mL, 1% vol) were added to dry methanol (30 mL).  The continuous flow 

reactor was flushed for 2 min before each collection and two samples of 1 mL 

each were collected and run on the GC-FID to determine the ratios by the peak 

area.  The method used was MK-RC.  The results are shown in Figure 2-37. 

 

3rd generation continuous flow reactor: 720 cm tubing optimizing pumps with 

hydrocarbon trace 

 L-Boc-phenylalanine (6 g), tributylamine (5.4 mL), and octane (0.15 mL, 

1% vol) were added to dry ethylacetate (15 mL).  Isobutylchloroformate (2.9 mL) 

and nonane (0.15 mL, 1% vol) were added to dry ethylacetate (15 mL).  

Propylamine (2.8 mL) and decane (0.30 mL, 1% vol) were added to dry methanol 

(30 mL).  The chiller temperature was set to 25ºC.  The L-boc-phenylalanine  

pump was set to 0.04, the isobutylchloroformate pump was set to 0.15, and the 

propylamine pump was set to 0.09.  The continuous flow reactor was flushed with 

reactants for 3 minutes then 5 mL reactant was collected in duplicate.  The 

residence time was measured to be 19.2 sec.  The ratios of the octane, nonane, and 

decane were measured on the GC-FID to be 26%, 27%, and 47%, respectively.  

The duplicate runs were worked up using the same procedure as the batch 

reaction.  The isolated yield was 30+/-5%.  The product purity was measured by 

melting point and 1H NMR. 

 



 75

3rd generation continuous flow reactor: 720 cm tubing with sonicator 

 L-Boc-phenylalanine (6 g), tributylamine (5.4 mL), and octane (0.15 mL, 

1% vol) were added to dry ethylacetate (15 mL).  Isobutylchloroformate (2.9 mL) 

and nonane (0.15 mL, 1% vol) were added to dry ethylacetate (15 mL).  

Propylamine (2.8 mL) and decane (0.30 mL, 1% vol) were added to dry methanol 

(30 mL).  The L-boc-phenylalanine pump was set to 0.04, the 

isobutylchloroformate pump was set to 0.15, and the propylamine pump was set 

to 0.09.  The continuous flow reactor was placed in the sonicator for this run.  The 

sonicator temperature was measured using the thermocouple and was maintained 

between 24-27ºC by adding ice periodically.  The reactants were flushed through 

the continuous flow reactor for 5 min then 7 mL of reactants was collected in 

duplicate.  The ratios of the octane, nonane, and decane were measured on the 

GC-FID to be 19%, 28%, and 53%.  The duplicate runs were worked up using the 

same procedure as the batch reaction.  The isolated yield was 30+/-5% and 

melting point and 1H NMR were used to verify purity.   

 

3rd generation continuous flow reactor: 720 cm tubing with tubular reactor 

 L-Boc-phenylalanine (6 g), tributylamine (5.4 mL), and octane (0.15 mL, 

1% vol) were added to dry ethylacetate (15 mL).  Isobutylchloroformate (2.9 mL) 

and nonane (0.15 mL, 1% vol) were added to dry ethylacetate (15 mL).  

Propylamine (2.8 mL) and decane (0.30 mL, 1% vol) were added to dry methanol 
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(30 mL).  The L-boc-phenylalanine pump was set to 0.04, the 

isobutylchloroformate pump was set to 0.15, and the propylamine pump was set 

to 0.09.  The chiller was set to 25ºC.  The HPLC column was filled with 3 mm 

glass beads and added after 4-80 cm tubing connections.  The HPLC column 

dimensions are 25 cm long and 4.6 mm ID.   The continuous flow reactor was 

flushed with reactants for 5 min and 8 mL of reactants were collected in duplicate.  

The ratios of the octane, nonane, and decane were measured on the GC-FID to be 

15%, 20%, and 65%, respectively.  The residence time was measured to be 10.2 

sec.  The duplicate runs were worked up using the same procedure as the batch 

reaction.  The isolated yield was 40+/-5% and melting point and 1H NMR were 

used to verify purity.  

 

3rd generation continuous flow reactor: beads in cross fitting 

 I tried adding 0.5mm glass beads inside the cross fitting where the reactant 

streams of L-boc-phenylalanine, tributylamine, octane in ethylacetate and 

isobutylchloroformate and nonane in ethylacetate combined.  The beads were 

added to increase mixing at the addition point.  The beads clogged the system so 

this mixing option was abandoned.   

 

3rd generation continuous flow reactor: smaller beads in tubular reactor 
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 The 3 mm glass beads were removed from the tubular reactor and replaced 

with 0.5 mm glass beads.  The L-boc-phenylalanine and isobutylchloroformate 

pumps were set to 0.3 mL/min.  The propylamine pump was optimized using the 

GC-FID and hydrocarbon trace.  The optimization resulted in the propylamine 

pump being set at 0.03 for the decane to be 50%.  L-Boc-phenylalanine (6 g), 

tributylamine (5.4 mL), and octane (0.15 mL, 1% vol) were added to dry 

ethylacetate (15 mL).  Isobutylchloroformate (2.9 mL) and nonane (0.15 mL, 1% 

vol) were added to dry ethylacetate (15 mL).  Propylamine (2.8 mL) and decane 

(0.30 mL, 1% vol) were added to dry methanol (30 mL).  The chiller temperature 

was not set and was left at room temperature.  The thermocouple read 21.3ºC.  

The continuous flow reactor was flushed with the three streams for seven minutes.  

Three samples of 5 mL each were collected.  The samples took between 4 min 

and 4:30 min to collect.  One mL was removed from each sample to be run on the 

GC-FID to determine the percentage of octane, nonane, and decane.  The 

percentages for the three samples were 19% octane, 27% nonane, and 54% 

decane.  The remaining four mL of the product stream was worked up the next 

day the same way as the batch reaction.  The white solid was dried in a vacuum 

oven overnight and purity was confirmed by melting point and 1H NMR.  The 

average isolated yield was 47 +/-5%. 

 

3rd generation continuous flow reactor: bent tubing 
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 The tubular reactor containing 0.5 mm glass beads was left on the system.  

An 80 cm piece of 0.17 mm ID HPLC tubing was bent to have 1 cm sharp angles 

to induce chaotic mixing.  The bent tubing replaced the third section of unbent 

tubing. The L-boc-phenylalanine and isobutylchloroformate pumps were set to 

0.3 mL/min.  The propylamine pump was optimized using the GC-FID and 

hydrocarbon trace.  The optimization resulted in the propylamine pump being set 

at 0.03 for the decane to be 50%.  L-Boc-phenylalanine (6 g), tributylamine (5.4 

mL), and octane (0.15 mL, 1% vol) were added to dry ethylacetate (15 mL).  

Isobutylchloroformate (2.9 mL) and nonane (0.15 mL, 1% vol) were added to dry 

ethylacetate (15 mL).  Propylamine (2.8 mL) and decane (0.30 mL, 1% vol) were 

added to dry methanol (30 mL).  The chiller temperature was not set and was left 

at room temperature.  The thermocouple read 21.5ºC.  The continuous flow 

reactor was flushed with the three streams for seven minutes.  Three samples of 5 

mL each were collected.  The samples took between 4 min and 4:30 min to 

collect.  One mL was removed from each sample to be run on the GC-FID to 

determine the percentage of octane, nonane, and decane.  The percentages for the 

three samples were 21% octane, 28+/-2% nonane, and 51+/-2% decane.  The 

remaining four mL of the product stream was worked up the same way as the 

batch reaction. The white solid was dried in a vacuum oven overnight and purity 

was confirmed by melting point and 1H NMR.  The average isolated yield was 47 

+/-5%. 
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3rd generation continuous flow reactor: reduce flow 

 The bent tubing was removed and replaced with non-bent tubing in the 3rd 

position.  The tubular reactor was left on with 0.5 mm beads.  The L-boc-

phenylalanine and isobutylchloroformate pumps were set to 0.1, 0.01, and 0.05 

mL/min.  The propylamine pump set to its lowest setting of 0.01.  Since the 

propylamine pump pumps faster than the other two pumps at this setting, this 

resulted in a larger percentage of the propylamine stream.  I first tested if the 

quench propylamine stream would overwhelm the other two streams.  L-Boc-

phenylalanine (6 g), tributylamine (5.4 mL), and octane (0.15 mL, 1% vol) were 

added to dry ethylacetate (15 mL).  Isobutylchloroformate (2.9 mL) and nonane 

(0.15 mL, 1% vol) were added to dry ethylacetate (15 mL).  Propylamine (2.8 

mL) and decane (0.30 mL, 1% vol) were added to dry methanol (30 mL).  The 

chiller temperature was not set and was left at room temperature.  The 

thermocouple read 20.9ºC.  The continuous flow reactor was flushed with the 

three streams for four minutes.  Two samples of one mL each were collected to be 

run on the GC-FID.  For the 0.01 mL/min, the octane and nonane were not 

observed by GC-FID.  For the 0.05 mL/min, the percentages were 4% octane, 2% 

nonane, and 94% decane.  For the 0.1 mL/min, the percentages were 10% octane, 

12% nonane, and 78% decane. 
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 Since the 0.1 mL/min flow rate seemed to give acceptable percentages of 

the hydrocarbon trace, I ran the system using this flow rate.  The continuous flow 

reactor was flushed with the three streams for 20 minutes.  Triplicate samples of 

10 mL were collected with each taking between 14:30 to 15 min to collect.  One 

mL was removed from each sample to be run on the GC-FID to determine the 

percentage of octane, nonane, and decane.  The percentages for the first sample 

were 10% octane, 9% nonane, and 81% decane.  The percentages for the second 

and third samples were 11% octane, 15+/-1% nonane, and 74+/-1% decane.  

Because the percentages were not acceptable for the 1st sample, that sample was 

not worked up.  The remaining nine mL of the product stream was worked up the 

next day the same way as the batch reaction.  The white solid was dried in a 

vacuum oven overnight and purity was confirmed by melting point and 1H NMR.  

The average isolated yield was 48 +/-5%. 

 

3rd generation continuous flow reactor: Adding a second tubular reactor 

 A second HPLC column with the silica removed was added to the system.  

The HPLC column dimensions were 4 mm ID and 15 cm long.  The tubular 

reactor was filled with 0.5 mm glass beads.  This tubular reactor was added 

between the 3rd and 4th HPLC tubing in the continuous flow reactor.  The L-boc-

phenylalanine  and isobutylchloroformate pumps were set to 0.3 and 0.1 mL/min.  

The propylamine pump was put at the lowest setting of 0.01.  L-Boc-
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phenylalanine (6 g), tributylamine (5.4 mL), and octane (0.15 mL, 1% vol) were 

added to dry ethylacetate (15 mL).  Isobutylchloroformate (2.9 mL) and nonane 

(0.15 mL, 1% vol) were added to dry ethylacetate (15 mL).  Propylamine (2.8 

mL) and decane (0.30 mL, 1% vol) were added to dry methanol (30 mL).  The 

chiller temperature was not set and was left at room temperature.  The 

thermocouple read 21.2ºC.  The continuous flow reactor was flushed with the 

three streams for twenty minutes.  Three samples of 5 mL for the 0.3 mL/min and 

three samples of 10 mL for the 0.1 mL/min each were collected.  The samples 

took between 4:30 min and 4:38 min to collect for the 0.3 mL/min and 15:42 min 

for the 0.1 mL/min.  One mL was removed from each sample to be run on the 

GC-FID to determine the percentage of octane, nonane, and decane.  The 

percentages for the 0.3 mL/min were 19% octane, 29% nonane, and 51% decane. 

The percentages for the 0.1 mL/min were 10% octane, 16% nonane, and 74% 

decane.  The remaining four or nine mL of the product stream was worked up the 

same way as the batch reaction.  The white solid was dried in a vacuum oven 

overnight and purity was confirmed by melting point and 1H NMR.  The average 

isolated yield was 51 +/-5% for the 0.3 mL/min and 60+/-5% for the 0.1 mL/min. 

3rd generation continuous flow reactor: Adding a second tubular reactor with the 

bent tubing 

 The bent tubing was again added in place of the third piece of HPLC 

tubing.  The L-boc-phenylalanine and isobutylchloroformate pumps were set at 
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0.3 mL/min with the propylamine pump set at 0.01.  All other reaction conditions 

were the same as above.  Two samples of four mL were collected and worked up 

in the same method as above.  The percentages were 17+/-1% octane, 29+/-2% 

nonane, and 54+/-3% decane.  The isolated yield was 56+/-5%.  This was an 

improvement over the 51+/-5% isolated yield without the bent tubing. 

 

 3rd generation continuous flow reactor: Optimizing flow 

L-Boc-phenylalanine (6 g), tributylamine (5.4 mL), and octane (0.15 mL, 1% vol) 

were added to dry ethylacetate (15 mL).  Isobutylchloroformate (2.9 mL) and 

nonane (0.15 mL, 1% vol) were added to dry ethylacetate (15 mL).  Propylamine 

(2.8 mL) and decane (0.30 mL, 1% vol) were added to dry methanol (30 mL).  

The chiller temperature was not set and was left at room temperature.  The L-boc-

phenylalanine and isobutylchloroformate pumps were set using the flow rates 

below.  The propylamine pump was set at 0.01.  The flush times, amount of 

product stream worked up, collection times, percentages from the GC-FID and 

isolated yield were presented in Figure 2-38 and a graph in Figure 2-24.  The 

product stream was worked up and purified using the method described 

previously.  The purity was confirmed using melting point and 1H NMR.     
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Flow 
rate 
(mL/min) 

Flush 
(min) 

workup 
(mL) 

collect time 
(min) 

octane 
% 

nonane 
% 

decane 
% 

Isolated 
Yield 

0.05 60 25 60 8 9+/-2 83+/-2 48+/-5 
0.15 45 9 13:45-15 12 18 70 57+/-5 
0.125 45 9 14:16-14:58 11 17 72 57+/-5 
0.075 60 9 16:43-17:09 8 12 80 55 +/-5 

Figure 2-38: Optimizing flow rate on the 2 tubular reactor system 
 
 
 
3rd generation continuous flow reactor: Add two additional tubular reactors 

 Two additional tubular reactors were built and added to the continuous 

flow reactor.  Both tubular reactors were made of stainless steel, 20 cm in length, 

4.6 mm inner diameter, and were filled with 0.5 mm glass beads.  The glass beads 

were packed using a vibrator.  One tubular reactor was added after 320 cm of 

HPLC tubing and the other tubular reactor was added after 560 cm of tubing.  All 

the reaction conditions with the reagents were the same.  The propylamine pump 

was set at 0.01.  The L-boc-phenylalanine and isobutylchloroformate pumps are 

set at the same flow rate.  The chiller was left at room temperature and the 

thermocouple read 23.2ºC throughout the experiment.  The first tubular reactor 

(after 320 cm) was added and run at 0.1 mL/min giving an isolated yield of 49+/-

5%.  Then the second tubular reactor (after 560 cm) was added and run at 0.1 

mL/min, giving an isolated yield of 57+/-5%.  The flow rates were then 

optimized.  Reaction specifications were presented in Figure 2-39 and a graph in 

Figure 2-26.  The product stream was worked up and purified using the method 
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described previously.  The purity was confirmed using melting point and 1H 

NMR.     

 

 

Flow 
rate 
(mL/min) Flush workup 

collect 
time 

octane 
% 

nonane 
% 

decane 
% 

Isolated 
Yield 

0.1 60 m 9 mL 15:39 10 11 78 49+/-5 
0.1 60 m 9.5 mL 8:46 6 7 87 44+/-5 
0.2 60 m 9.5 mL 7:37 10 13 77 53+/-5 
0.3 30 m 9.5 mL 7:08 8 19 73 51+/-5 
0.4 30 m 9.5 mL 6:10 15 21 64 50+/-5 

Figure 2-39: Experimental Data for 4 tubular reactor system at room 
temperature 

 
 

3rd generation continuous flow reactor: Different temperatures on 4 tubular reactor 

system 

 The four tubular reactor system was used for these experiments.  All the 

reaction conditions with the reagents were the same.  The propylamine pump was 

set at 0.01.  The L-boc-phenylalanine and isobutylchloroformate pumps were set 

at the same flow rate of 0.2 mL/min.  The temperatures of the chiller were -20ºC 

and 0ºC.  The product stream was worked up and purified using the method 

described previously.  The purity was confirmed using melting point and 1H 

NMR. The details were listed in Figure 2-40 and a graph in Figure 2-27.    
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Temp 
(ºC) Flush  workup 

collect 
time 

octane 
% 

nonane 
% 

decane 
% 

Isolated 
Yield 

-20 35 min 9.5 mL 7:20 7 11 82 53+/-5 
0 35 min 9.5 mL 7:28 8 10 82 60+/-5 

Figure 2-40: Different temperatures on 4 tubular reactor system 
  

 
3rd generation continuous flow reactor: Different equivalents of isobutyl 

chloroformate 

 The four tubular reactor system was used for these experiments.  The L-

boc-phenylalanine, tributylamine, octane in ethyl chloroformate and the 

propylamine in methanol were the same as the previous experiments (1.5 M).  

Both reactant pumps were set at 0.2 mL/min and the propylamine pump was set at 

0.01.  The chiller was left at room temperature and the thermocouple read 21.2ºC.  

The isobutylchloroformate equivalents were 2 times excess and 3 times excess 

based on the L-boc-phenylalanine.  The product stream was worked up and 

purified using the method described previously.  The purity was confirmed using 

melting point and 1H NMR.  The reaction details were in Figure 2-41.   

 

Equivalents Flush workup 
collect 
time 

octane 
% 

nonane 
% 

decane 
% 

Isolated 
Yield 

2x excess 35 9.5 mL 7:53 8 9 83 54+/-5 
3x excess 35 9.5 mL 7:23 9 9 82 48+/-5 

Figure 2-41: Excess isobutylchloroformate used in the 4 tubular reactor 
system 

 
     

Batch propylamine quench at room temperature  
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 The same solutions as the continuous flow reactor of L-boc-phenylalanine, 

tributylamine in ethylacetate (1.5 M), isobutyl chloroformate in ethyl acetate (1.5 

M), propylamine in methanol (1.2 M) were used.  The L-boc-phenylalanine  

solution (2 mL) and isobutyl chloroformate solution (2 mL) were combined.  The 

quench solution (4 mL) was added after 16 minutes and 1 hour.  Each time was 

done in triplicate.  The product stream was worked up and purified using the 

method described previously.  The purity was confirmed using melting point and 

1H NMR.  The 16 minute quench time gave an isolated yield of 37+/-5% and the 

1 hour quench time gave an isolated yield of 27+/-5%.   

 

Diazoketone ((1-benzyl-3-diazo-2-oxo-propyl)-carbamic acid tert-butyl ester): 

From isobutylchloroformate  

 L-Boc-phenylalanine (0.8 g, 3 mmol) was dissolved in anhydrous THF (15 

mL), cooled to -15ºC, and put under argon.  Triethylamine (0.43 mL, 3.1 mmol) 

was added.  Isobutylchloroformate (0.4 mL, 3.1 mmol) was combined with 2.5 

mL anhydrous THF and added slowly to the solution.  The reaction was allowed 

to react for 30 minutes.  The triethylamine hydrochloride salt was filtered while 

keeping the filtrate cold.  The trimethylsilyl diazomethane (2.0 M in hexane, 3 

mL, 6 mmol) was combined with anhydrous acetonitrile (10 mL) and added 

slowly to the reaction solution.  The reaction was warmed to 4ºC and allowed to 

react for 24 hours.  The reaction was worked up by adding diethyl ether (40 mL), 
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washing 10% aqueous citric acid (30 mL), saturated aqueous NaHCO3 (30 mL), 

saturated aqueous NaCl (30 mL), and dried over magnesium sulfate.  The solvent 

was removed under reduced pressure.  The product was purified by a silica gel 

column was run using 1/2=ethylacetate/ hexane giving a yellow solid (32% yield).  

These results were repeated and gave the same yield.   

(1-Benzyl-3-diazo-2-oxo-propyl)-carbamic acid tert-butyl ester:  

1H NMR (CDCl3) ppm: 1.398 (s, 9H), 3.05 (m, 2H), 4.40 (br s, 1H), 5.10 (br s, 

1H), 5.20 (br s, 1H), 7.27 (m, 5H).  13C NMR (CDCl3) ppm: 28.2, 38.5, 54.4, 

58.4, 80.0, 126.9, 128.6, 129.3, 136.3, 155.1, 193.3.  MS(m/z) 290 (M+1) EA: 

calculated C, 62.27%, H, 6.62%, N, 14.52%.  Found C, 62.25%, H, 6.65%, N, 

14.32%. 

 

 

Isolated 
Yield Variable changed 
32% Standard reaction using isobutylchloroformate 

23% 
Trimethylsilyl diazomethane purchased as 2.0M in diethyl 
ether 

25% Trimethylsilyl diazomethane 3 equivalents (9 mmol) 
75% Ethyl chloroformate10 
66% Tributylamine with ethyl chloroformate 
61%  Ethyl acetate with ethyl chloroformate (instead of THF) 

Figure 2-42: Isolated yield obtained for diazoketone 
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Diazoketone ((1-benzyl-3-diazo-2-oxo-propyl)-carbamic acid tert-butyl ester): 

Using ethyl chloroformate10  

 L-Boc-phenylalanine (0.8 g, 3 mmol) was dissolved in anhydrous THF (15 

mL), cooled to -15ºC, and put under argon.  Triethylamine (0.43 mL, 3.1 mmol) 

was added.  Ethyl chloroformate (0.3 mL, 3.1 mmol) was combined with 2.5 mL 

anhydrous THF and added slowly to the solution.  The reaction was allowed to 

react for 30 minutes.  The triethylamine hydrochloride salt was filtered while 

keeping the filtrate cold.  The trimethylsilyl diazomethane (2.0 M in hexane, 4.5 

mL, 9 mmol) was combined with anhydrous acetonitrile (10 mL) and added 

slowly to the reaction solution.  The reaction was warmed to 4ºC and allowed to 

react for 24 hours.  The reaction was worked up by adding diethyl ether (40 mL), 

washing 10% aqueous citric acid (30 mL), saturated aqueous NaHCO3 (30 mL), 

saturated aqueous NaCl (30 mL), and dried over magnesium sulfate.  The solvent 

was removed under reduced pressure.  The product was purified by a silica gel 

column was run using 1/2 ethylacetate/ hexane giving a yellow solid (75+/-3% 

yield).   

Diazoketone ((1-benzyl-3-diazo-2-oxo-propyl)-carbamic acid tert-butyl ester) 

calibration curve 

 Pure diazoketone, (1-benzyl-3-diazo-2-oxo-propyl)-carbamic acid tert-

butyl ester, was dissolved in methanol to form various concentrations.  These 

solutions were run on the LC-UV to form a calibration curve.  The method used 
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was C18CMKA.  The solution concentration and areas were shown below in 

Figure 2-43.  The calibration curve was shown in Figure 2-44. 

 

sample Conc (M) area 
1 0.01 21747.7 
2 0.00648 15612.8 
3 0.00324 9609 
4 0.00162 6771.3 
5 0.00081 5052 

Figure 2-43: Calibration curve diazoketone concentration and area 
 

Diazoketone Calibration Curve 
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Figure 2-44: Calibration curve diazoketone, (1-benzyl-3-diazo-2-oxo-propyl)-
carbamic acid tert-butyl ester 
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2-Phenyl-1-propylcarbamoyl-ethyl)-carbamic acid tert-butyl ester calibration 

curve 

 Pure 2-phenyl-1-propylcarbamoyl-ethyl)-carbamic acid tert-butyl ester 

was dissolved in methanol to form various concentrations.  These solutions were 

run on the LC-UV to form a calibration curve. The method used was C18CMKA.    

The solution concentration and areas were shown below in Figure 2-45.  The 

calibration curve is shown in Figure 2-46. 

 

 

sample Conc (M) area 
1 0.0102 16600.2 
2 0.005106 10913.4 
3 0.002553 7986.4 
4 0.001277 5385.7 

Figure 2-45: Calibration concentration and area for 2-phenyl-1-
propylcarbamoyl-ethyl)-carbamic acid tert-butyl ester 
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Propylamine Quench Product Calibration Curve 
on LC-UV

y = 8E-07x - 0.0036
R2 = 0.9901

0

0.002

0.004

0.006

0.008

0.01

0.012

0 5000 10000 15000 20000

Peak Area on LC-UV

Co
nc

en
tr

at
io

n 
(M

)

 

Figure 2-46: Calibration curve for 2-phenyl-1-propylcarbamoyl-ethyl)-
carbamic acid tert-butyl ester 

 
 
 
2-Phenyl-1-propylcarbamoyl-ethyl)-carbamic acid tert-butyl ester: Ethyl 

chloroformate batch 

 A stock solution was made with L-boc-phenylalanine (2.5 g), 

tributylamine (1.5 mL), and dry ethylacetate (12.5 mL).  For each test, 2.8 mL of 

stock solution was used.  A separate stock solution of quench was made with 

propylamine (1.2 mL) and dry methanol (13 mL).  For each test, 1.4 mL of the 

quench stock solution was used.  To the 2.8 mL solution, ethyl chloroformate (0.2 

mL) was added to form a 0.75 M concentration.  The times tested were 1, 16, 30 

minutes.  Using the calibration curve of 2-phenyl-1-propylcarbamoyl-ethyl)-
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carbamic acid tert-butyl ester, the reaction solutions were run on the LC-UV. The 

method used was C18CMKA.  The area of the peak that corresponded to 100% 

yield was observed for 16 and 30 minutes.  The 30 minute sample was worked up 

by adding ethylacetate then washing with aqueous saturated NaHCO3, water, and 

brine.  The reaction solution was dried over magnesium sulfate and the solvent 

removed under reduced pressure.  The product was isolated using a silica gel 

column (2/1=hexane/ethylacetate) giving a white solid (49% yield). 

 

Diazoketone, (1-benzyl-3-diazo-2-oxo-propyl)-carbamic acid tert-butyl ester), 

monitoring reaction rate 

 L-Boc-phenylalanine (0.8 g, 3 mmol) was dissolved in anhydrous ethyl 

acetate (15 mL), cooled to -8ºC, and put under argon.  Tributylamine (0.7 mL, 3.1 

mmol) was added.  Ethyl chloroformate (0.3 mL, 3.1 mmol) was combined with 

2.5 mL anhydrous ethyl acetate and added slowly to the solution.  The reaction 

was warmed to -5ºC and allowed to react for 30 minutes.  The trimethylsilyl 

diazomethane (2.0 M in hexane, 3 mL, 6 mmol) was combined with anhydrous 

acetonitrile (10 mL) and added slowly to the reaction solution.  The reaction was 

warmed to 4ºC and was sampled at 15, 30, 45, 60 min, 2, 4, 22 hours.  A 50 µL 

sample was removed from the reaction solution and combined with 1.3 mL of 

methanol.  The samples were run on the LC-UV and the calibration curve of the 

diazoketone was used to determine the product concentration at various time 
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intervals. The method used was C18CMKA.    For this system, the quantitative 

yield was obtained after 2 hours and plateaued (Figure 2-31) (by LC-UV).   The 

points after two hours were within error of the maximum yield. 

 

Diazoketone, (1-Benzyl-3-diazo-2-oxo-propyl)-carbamic acid tert-butyl ester), 

monitoring reaction rate (0.75 M) 

 L-Boc-phenylalanine (0.8 g, 3 mmol) was dissolved in anhydrous ethyl 

acetate (4 mL), cooled to -8ºC, and put under argon.  Tributylamine (0.7 mL, 3.1 

mmol) and ethyl chloroformate (0.3 mL, 3.1 mmol) were added.  The reaction 

was warmed to -5ºC and allowed to react for 30 minutes.  The trimethylsilyl 

diazomethane (2.0 M in hexane, 3 mL, 6 mmol) was combined with anhydrous 

acetonitrile (10 mL) and added slowly to the reaction solution.  Anisole (1.6 mL, 

0.75 M) as an internal standard was added.  The reaction was warmed to 4ºC and 

was sampled at 10, 20, 30, 45, 60, 90, 120 minutes.  A 15 µL sample was 

removed from the reaction solution and combined with 1 mL of methanol.  The 

samples were run on the LC-UV and the calibration curve of the diazoketone was 

used to determine the product concentration at various time intervals. The method 

used was C18CMKA.  For this system, the yield was quantitative (by LC-UV).  

Times shorter than 10 minutes were not tested.   

 

Single coiled continuous flow reactor using ethyl chloroformate:  
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 L-Boc-phenylalanine (18 g), tributylamine (16.2 mL), and octane (0.45 

mL, 1% vol) were dissolved in dry ethyl acetate (45 mL) to make a 1.5 M 

solution.  Ethyl chloroformate (12.76 mL), anisole (4.4 mL), and nonane (0.66 

mL, 1% vol) were added to dry ethyl acetate (30 mL) to make a 3.3 M solution to 

compensate for the slower pump.  Propylamine (5.6 mL) and decane (0.6 mL, 1% 

vol) were added to dry methanol to make a 1.5 M solution.  A continuous flow 

reactor was constructed using of 45 cm length and 4.6 mm inner diameter 

stainless steel tubing (SS 314) and filled with glass beads (0.5 mm).  For the 

single and double coiled continuous flow reactors, an Eldex Recipro A pump 

made from chlorotrifluoroethylene (CTFE) was used for the 

isobutylcholoroformate stream, and the two Optos pumps were utilized for the 

other streams.  The CTFE was used because it is resistant to HCl which is formed 

from the acid chloride.  The tubing was packed using a vibrator and bent using a 

tubing bender.  The L-boc-phenylalanine pump and propylamine pumps were set 

at 0.2 mL/min and the ethylchloroformate pump was set at 1.0.  The chiller was 

set at 0ºC and the thermocouple read 0.2ºC.  The system was flushed with 

reactants for 30 minutes then 3 samples of 3.5 mL were collected.  For the GC-

FID, 0.5 mL sample was added to 0.5 mL methanol.  For the LC-UV, 10 µL of 

sample was added to 1 mL of methanol. The method used was C18CMKA.    The 

hydrocarbon trace from the GC-FID was used to calculate the maximum 

concentration of product.  For this system, the yield was quantitative (by LC-UV).   
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 Double coiled continuous flow reactor using trimethylsilyl diazomethane:  

 The same system as above was used as the first step of the reaction.  The 

same concentrations of the L-boc-phenylalanine and ethyl chloroformate solutions 

were used.  The propylamine solution was replaced with trimethylsilyl 

diazomethane (9 mL), decane (0.3 mL, 1 % vol) in dry acetonitrile (30 mL) for a 

0.6 M solution.  A second continuous flow reactor, identical to the 1st continuous 

flow reactor, was added after the T-fitting adding the trimethylsilyl diazomethane.  

The flow rates used were the same.  The chiller was set to 0ºC.  The system was 

flushed with reactants for 30 minutes then 2.5 mL samples were collected.  For 

the GC-FID, 0.5 mL sample was added to 0.5 mL methanol.  For the LC-UV, 10 

µL of sample was added to 1 mL of methanol.  The method used was C18CMKA.  

The hydrocarbon trace from the GC-FID was used to calculate the maximum 

concentration of product.  For this system, the yield was quantitative (by LC-UV).   
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3 CHAPTER 3: CLEAVABLE, N-OCTYL THIIRANE OXIDE, 
SURFACTANT AND REVERSIBLE SULFOLENE SURFACTANTS 

 
 
 

3.1 Introduction 
 

Cleavable surfactants are defined as surfactants that can irreversibly convert 

into fragment molecules with either reduced or virtually zero surface activity. In 

contrast, switchable surfactants can reversibly convert into fragment molecules 

with either reduced or virtually zero surface activity. In both cases, the 

conversion from the surfactant to the non-surface active fragments is typically 

accomplished by means of chemical, thermal or photochemical triggers.  

The synthesis of a novel cleavable surfactant was conducted, and its surface 

activity and cleavage ability were demonstrated. Attempted syntheses of a novel 

switchable surfactant are also reported. 

3.2 Background 
 
 Surface active agents (surfactants) are ubiquitous. Surfactants are present 

in many commercial products, such as paints, detergents, inks, adhesives, 

agrochemical formulations, tertiary oil recovery, and cosmetics.1 Surfactants are 

also key additives in the manufacture of many chemicals such as polymers by 

emulsion polymerization.2 The emerging nanotechnology field is also dependent 
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on surface active compounds since surfactants often control the size and size 

distribution of nanoparticles.3 

 Although surface active compounds are critical to many industries, they 

are sometimes difficult to separate from the products and to subsequently dispose 

of. Currently, most surfactants are removed from the desired product by repetitive 

washings.4  This creates a significant amount of contaminated waste water. In 

addition to the obvious economic disadvantages, surfactants have been targeted 

by environmental groups as a source of water-borne pollution.4 The desire to 

reduce waste and to facilitate the removal of surfactants from products has led 

several research groups to investigate the synthesis and use of cleavable and 

reversible surfactants.5 

 

3.2.1 Prior Art  

3.2.1.1 Cleavable Surfactants 
 

Cleavable surfactants can be irreversibly converted into one or more 

molecules with either reduced or essentially zero surface activity.  The 

“cleavability” property is conferred to the surfactant by incorporating cleavable 

bonds between the hydrophilic head group and the hydrophobic tail.5  The earliest 

example was in 1966 by Distler who reported the trimethyl-[2-(4-octyl-

phenoxysulfonyl)-ethyl]-ammonium methylsulfonate that displayed surfactant 



 99

properties under acidic or neutral conditions.6  However, in the presence of a base, 

such as sodium hydroxide, an elimination reaction took place to produce two 

fragments with reduced surface activity: ethenyl-4-octyl-phenylsulfonate and 

trimethylamine (Figure 3-1). Since, several other groups have developed 

cleavable surfactants and studied their surface tension, micelle formation, and 

decomposition.7-10  A range of possible “triggers” for the decomposition have 

been reported; these include pH7-10, ozone11, UV12-16, and heat17.   
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Figure 3-1: Distler’s cleavable surfactant. Decomposition into ethenyl-4-

octyl-phenylsulfonate  and trimethylamine. 
 
 
 

3.2.1.2 Switchable Surfactants  

Switchable surfactants have several advantages over cleavable surfactants.  

Switchable surfactants can change between active and inactive forms to stabilize 

then break emulsions.  In addition, their activity can be delayed until needed and 

then be recovered and reused.18  Two switchable surfactants (compounds 1 and 2 

in Figure 3-2) were reported by McElhanon et al.19 Their critical micelle 
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concentration ranges was reported 0.6-2.5mM and 1.4-9.3mM (respectively).  

Upon retro Diels-Alder the surfactants formed two non-surface active fragments. 

The retro Diels-Alder was triggered by heat (90ºC for a minimum of 1.5 hours).   

 
 

NO

O

O
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C12H25

hydrophobic
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Figure 3-2: Exo-4dodecyl-7-oxabicyclo-[2.2.1]hept-5-ene-2,3-dicarboxy-N-(4-
hydroxyphenyl)imide (1); exo-4dodecyl-7-oxabicyclo-[2.2.1]hept-5-ene-2,3-

dicarboxy-N-(4-carboxyphenyl)imide (2) 
 

 

 Recently, a surfactant that uses CO2 or air as the trigger to switch “on” or 

“off” was synthesized by the Jessop group as shown in Figure 3-3.18  The group 

used an amidine that would switch to a charged amidinium bicarbonate with the 

addition of water and carbon dioxide and switch back again by bubbling nitrogen 

or air through the neat solution.  The amidine system has negligible surface 

activity and water solubility while the amidinium bicarbonate has surfactant 

activity.   This switchable surfactant was used as a demulsifier for light crude oil 

and for an emulsion polymerization of latex.18 
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N
R

NMe2

Me

+ CO2 + H2O
N
H

R
NMe2

Me

-O2COH

R = C18H33 or C12H25  

Figure 3-3: Switchable surfactant using amidine motif by Jessop group 
 

 

The nature of the trigger for both cleavable and switchable surfactants can 

significantly limit their practical viability.  Triggers based on addition of acids, 

bases, or oxidants are economic and environmental costly. In addition, they can 

potentially lead to product contamination and/or undesired side reaction(s). The 

photochemical approach is often limited due to the opacity of many emulsions.     

3.3 Results and Discussion 

3.3.1 Cleavable Surfactants 

 Thiirane oxide can undergo a retro-cheletropic reaction with heat to give 

sulfur monoxide and an ethylene (Figure 3-4).  By incorporating an octyl alkyl 

chain onto the thiirane oxide ring the resulting molecule can act as a cleavable 

surfactant, containing a “built-in” thermal switch to turn “off” the surfactant 

activity.  The n-octyl thiirane oxide can decompose to form two products with 

essentially zero surface activity, 1-decene and sulfur monoxide (Figure 3-5).20,23    
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S

O

+  [SO]
Thiirane oxide ethylene sulfur

monoxide 

Figure 3-4: Thiirane oxide retro-cheletropic reaction to give sulfur monoxide 
and ethylene 

 
 

S

C8H17

O

C8H17

+ SO

n-octylthiirane oxide

∆

1-decene sulfur monoxide 

Figure 3-5: n-octyl thiirane oxide surfactant undergoing retro-cheletropic 
decomposition to 1-decene and the unstable sulfur monoxide (brackets to 

indicate sulfur monoxide disproportionate) 
 

 

The n-octyl thiirane oxide was first synthesized, according to literature as 

shown in Figure 3-6.21-23  The 1-decene underwent epoxidation using 

methyltrioxorhenium (MTO), hydrogen peroxide, and 2,2'-bipyridine-N,N'-

dioxide.  The thiirane ring was then formed upon reaction with sodium 

thiocyanate.  Then the thiirane oxide was prepared from the oxidation of the 

thiirane ring with m-chloroperoxybenzoic acid (mCPBA). Finally, the n-octyl 
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thiirane oxide was characterized by 1H NMR, 13C NMR, IR, MS, and elemental 

analysis. 
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Figure 3-6: Synthetic scheme for n-octyl thiirane oxide 
 
 
 

The critical micelle concentration (CMC)24 was determined by two 

methods: dye solubility and capillary rise. The dye solubility method monitors the 

concentration of Sudan III in the solution as a function of surfactant 

concentration. The Sudan III, a dye, is not soluble in aqueous media unless it is 

supported by micellar formation.18,25  Therefore, as soon as micelles form (above 

the CMC), the concentration of Sudan III in solution rises and allows the 
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determination of the CMC of the surfactant. Figure 3-7 plots the dye absorbance 

(right axis) versus concentration of n-octylthiirane oxide. An increase in 

concentration of Suddan III is observed at n-octylthiirane oxide concentration of 

6.4 mM.   
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Figure 3-7: CMC determination by capillary rise & dye solubility 
 

    

  Capillary rise uses the height of a solution in a capillary measured in mm 

and plotted versus the concentration of n-octylthiirane oxide (Figure 3-7, left 

axis).26  A sharp drop from 76 mm to 66 mm is observed at a concentration of 8.0 

mM. From the data of both methods, the critical micelle concentration range of n-

octylthiirane oxide was determined to be 6.4-8.0 mM.  Using the same methods of 

analysis, the commercially available surfactant sodium dodecylsulfate (SDS) 
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exhibited a critical micelle concentration of 6-8 mM consistent with the range 

reported in the literature.27 

 The rate of the retro-cheletropic reaction of n-octylthiirane oxide was 

studied by quantitative 13C NMR. The signal of the tertiary carbon in the thiirane 

oxide ring is seen at 50.3 ppm.  The signal of this same carbon in 1-decene, now a 

sp2 carbon, is observed at 140 ppm (Figure 3-8).   
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Figure 3-8: Retro-cheletropic decomposition noted with relevant chemical 
shift 
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Figure 3-9: Intensity of peak at 50.3 ppm vs. time.  (estimated 5% error 
shown) 

 
 
 
 A solution of n-octylthiirane oxide in d-chloroform was placed in a closed 

NMR tube, which was then introduced into the pre-heated NMR probe (70ºC). 

When the temperature of the solution inside the NMR tube reached equilibrium, the 

NMR spectrum was recorded every 16.6 min (996 seconds), and the peak intensity 

(at 50.3 ppm) was plotted versus time as shown in Figure 3-9. After 183 minutes, 

the 13C NMR showed that all of the n-octylthiirane oxide has fully decomposed. 

The resulting kinetic rate profile in Figure 3-9 is consistent with a reaction with an 

induction period or an autocatalysis reaction.   
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Figure 3-10: Dye solubility as a function of concentration. Triangle indicates 
dye solubility after heating at 90 °C 

 
 
 
 The loss of surface activity of n-octylthiirane oxide upon application of heat 

was then investigated. In Figure 3-10, the squares show the absorbance of the 

Sudan III aqueous emulsion versus the n-octylthiirane oxide surfactant 

concentration. At a concentration of 120 mM of surfactant (well above CMC), the 

emulsion of Sudan III was heated at 90ºC for one hour. As can be seen in Figure 3-

10, the absorbance drops from about 0.70 to close to zero (shown by the triangle) 

indicating the loss of the dye’s solubility in the water solution. It is known that 

emulsions can be broken solely by heat; therefore, we needed to compare the n-

octylthiirane oxide behavior with the already mentioned commercially available 

sodium dodecylsulfate (SDS).  The first two bars in Figure 3-11 correspond to the 

absorbance of the Sudan III and SDS saturated emulsion in water. Upon heating for 
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one hour, both the emulsions of the Sudan III in water with SDS (on the left in 

Figure 3-11) and n-octylthiirane oxide (in the middle in Figure 3-11) broke. 

However, once the mixtures were cooled down, both flasks were shaken/mixed 

again. The SDS-based emulsion re-formed instantaneously as seen by the second 

bar (white). In contrast, the emulsion did not reform in the flask which initially 

contained the n-octylthiirane oxide as seen by the second bar (white). This confirms 

the irreversible loss of the surface active character. On the right side of Figure 3-11, 

the same experiment was repeated with Sudan III, n-octylthirane oxide as 

surfactant, except that the heating lasted only 10 min instead of one hour.  The loss 

of surface active character was again observed. It should be noted that the time 

required to lose the surface activity may be even less than ten minutes, but has not 

yet been tested.  
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Figure 3-11: Dye solubility before (white) and after (black) heating at 90 °C 
and cooling.  SDS shown as a control 
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3.3.2 Switchable Surfactants 

 Upon heat, piperylene sulfone reversibly decomposes into two gas, 

piperylene and SO2 (Figure 3-12).  The recombination of piperylene and SO2 

allows for the reformation of piperylene sulfone. By analogy, it was hypothesized 

that an alkyl substituted sulfolene can act as a switchable surfactant (Figure 3-13).  
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Figure 3-12: Piperylene sulfone decomposes into piperylene and sulfur 
dioxide 
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Figure 3-13: Sulfolene surfactant decomposes into a butadiene with an ester 
or amide group and sulfur dioxide 
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Figure 3-14:  3-sulfolene to carboxylic acid then to ester or amide link with 
alkyl chain 

 
 
 
 The 3-sulfolene carboxylic acid was known in the literature.28  The 

strategy was therefore to prepare the 3-sulfolene carboxylic acid and subsequently 

form an ester as seen in Figure 3-14.  The 2,5-dihyrothiophene-1,1-dioxide-3-

carboxylic acid was synthesized using a literature procedure, shown in Figure 3-

15.28  The carboxylic acid was formed by reacting 3-sulfolene with carbon 

dioxide (50 psi) and DBU (2 equiv) to form the DBU salt of the carboxylic acid.  

The salt was then protonated by HCl to form 2,5-dihyrothiophene-1,1-dioxide-3-

carboxylic acid which was purified using a silica gel plug and acetone for a white 

solid with a 66% yield.  The 2,5-dihyrothiophene-1,1-dioxide-3-carboxylic acid 

was characterized using 1H NMR, 13C NMR in d-DMSO and elemental analysis 

and was consistent with the literature.28  The DSC/TGA of the 2,5-

dihyrothiophene-1,1-dioxide-3-carboxylic acid is shown in Figure 3-16.  The 

DSC shows an endothermic peak at 183ºC which indicates a melting point.  The 
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endothermic peak in the DSC occurs at the same temperature as when the weight 

loss begins in the TGA.  This indicates that the melting point is also the 

decomposition temperature.  The TGA first shows a weight percent loss of 

67.20% then a loss of 24.27%.  This seems to indicate that the carbon dioxide 

from the carboxylic acid is lost after the decomposition of the sulfolene. 
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Figure 3-15: Synthesis of 2,5-dihyrothiophene-1,1-dioxide-3-carboxylic acid 
 

  

 

   

 

Figure 3-16: DSC/TGA of 2,5-dihyrothiophene-1,1-dioxide-3-carboxylic acid 
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The 3-methoxycarbonyl-3-sulfolene was synthesized from 2,5-

dihyrothiophene-1,1-dioxide-3-carboxylic acid using PTSA (10 mol %), as the 

acid catalyst, and excess methanol at room temperature for 72 hours (Figure 3-

17).  The work-up yielded a white solid (yield 79%).  The 3-methoxycarbonyl-3-

sulfolene was characterized using 1H and 13C NMR, and DSC/TGA.  The 

DSC/TGA of the 3-methoxycarbonyl-3-sulfolene is seen in Figure 3-18.  The 

DSC shows an endothermic peak, indicating melting, at 62.25ºC which is 

consistent with the literature melting point.29,30  The TGA shows an initial weight 

loss of 89.47%.  The remaining weight percent could correlate with the methyl 

from the methyl ester.    
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Figure 3-17: Synthesis of 3-methoxycarbonyl-3-sulfolene  
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Figure 3-18: DSC/TGA of 3-methoxycarbonyl-3-sulfolene 
 

 

 The preparation of the octyl ester was attempted by means of 1) fisher 

esterification, 2) formation of the acid chloride followed by reaction with alcohol, 

3) reaction with alkyl halide under various basic conditions, 4) acid catalyzed 

trans-esterification from the methyl ester, and 5) trans-esterification from the 

methyl ester catalyzed by Candida Antarctica Lipase B. All attempts were 

unsuccessful and detailed procedures are reported in the experimental section.   

 The reaction dimethyl amine and sulfolene 3-carboxylic acid to form the 

dimethyl amide was reported as seen in Figure 3-19.31   By analogy, the reaction 
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of the 2,5-dihyrothiophene-1,1-dioxide-3-carboxylic acid with hexyl amine based 

on the reported procedure was attempted. The product however was the product 

of the acid-base reaction, the ammonium carboxylate salt of the amine and 

carboxylic acid. The ammonium carboxylate salt was characterized by 1H NMR, 

13C NMR, IR, DSC/TGA and elemental analysis. All attempts to form the amide 

were unsuccessful and are detailed in the experimental section.  
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Figure 3-19: Synthesis of amide from carboxylic acid in literature 
 
 
 

3.4 Conclusions 

 n-Octyl thiirane oxide was successfully synthesized and its surface active 

property was determined. The irreversible decomposition upon heating of n-octyl 

thiirane oxide to surface inactive fragments was demonstrated.  
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 The synthesis of a sulfolene based switchable surfactant was unsuccessful 

although the synthesis of the sulfolene methyl ester was successfully.    

3.5 Experimental 

All chemicals were ordered from Aldrich or VWR and used as received, 

unless noted.  1H and 13C NMR spectra were recorded using a Varian Mercury Vx 

400 spectrometer using residual DMSO peak as an internal reference.  Mass 

Spectrometry samples were submitted to Mass Spectrometry Lab and used 

Micromass Quattro LC to perform ESI-MS.  Elemental analyses were submitted 

to Atlantic Microlabs, Inc.  Thermal analyses studies were performed on TA 

instruments Differential Scanning Calorimeter (DSC) Model Q20 and 

Thermogravimetric Analyzer (TGA) Model Q50.  Samples were heated at 5°C/ 

min for both DSC and TGA analyses.  DSC experiments were performed in 

standard sealed pans.   

 

Synthesis of n-octyl epoxide:21  

 Methyltrioxorhenium (MTO) (12.4 g, 0.5 mmol) and bipyridine-N,N’-

dioxide (11.3g, 0.6 mmol) were added to CH2Cl2 (20 mL) in a flask flushed with 

nitrogen.  Then, 35 wt % H2O2 (7.0 mL, 0.08 mol) was added to the flask.  After 

allowing the solution to stir for five minutes, 1-decene (3) (10 mL, 0.053 mmol) 

was added.  The reaction was then stirred for sixteen hours at rt.  The reaction 
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mixture was washed with water (3 x 20mL), dried over magnesium sulfate, and 

filtered. Finally, the solvent was removed under reduced pressure to yield a 

yellow oil (96.2%).   

n-Octyl epoxide:  

1H NMR (ppm): 2.89 (m), 2.74 (m), 2.46 (m), 1.39 to 1.55 (m), 1.27 (br m), 0.85 

(t).  13C NMR (ppm): 52.4, 47.1, 32.5, 31.8, 29.5, 29.4, 29.2, 26.0, 22.6, 14.0.  

EA:  calcd: C 76.86, H 12.92; found: C 76.44, H 13.15.   

 

n-Octyl ethylene episulfide:22 

 Sodium thiocyanate (7.4 g, 0.09 mol) was added to a solution of ethanol 

and water (100 mL, 50/50 v/v).  The n-octyl ethylene epoxide (4) (7.94 g, 0.05 

mol) was slowly added to the solution over three hours and stirred over night at 

room temperature.  The reaction was extracted with CH2Cl2 (3x20 mL).  The 

organic phases were combined, dried over MgSO4, filtered and the solvent 

removed under reduced pressure to yield a yellow oil.  The oil was purified by 

silica gel column chromatography using hexane and ethyl acetate (50/50) (yield 

64%).   

n-Octyl ethylene episulfide: 

1H NMR (ppm): 2.87 (m), 2.50 (d), 2.15 (d), 1.39 to 1.54 (m), 1.27 (br m), 0.87 

(t).  13C NMR:  52.2, 46.9, 36.3, 31.6, 29.2, 29.1, 29.0, 25.7, 22.4, 13.9.  EA: 

calcd C 69.70 H 11.70 found: C 69.13 H 11.85.   
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n-Octyl thiirane oxide:23 

The n-octyl episulfide (4) (7.88 g, 0.046 mol) was added to CH2Cl2 (25 mL).  A 

solution of m-chloroperbenzoic acid (mCPBA) (11.34 g. 0.051 mol) in CH2Cl2 

(100 mL) was prepared and added to the episulfide solution over three hours at rt.  

The resulting solution was stirred for an additional hour. Gaseous anhydrous 

ammonia (6 mL, 0.5 mol) was condensed using a dry ice/acetone cooled 

condenser and added to the reaction mixture.  The precipitate of the ammonium 

salt formed from the benzoic acid by-product and ammonia was removed from the 

solution by filtration.  The solution was dried over magnesium sulfate.  After 

filtration, the solvent was removed under reduced pressure.  The product was 

purified by silica gel column chromatography using hexane and ethyl acetate 

(50/50) to yield a clear, colorless oil (79.7%).   

n-octyl thiirane oxide: 

1H NMR (ppm): 2.92 (m), 2.66 (dd), 1.99 (dd), 1.51 (m), 1.27 (m), 0.87 (t).  13C 

NMR: 50.3, 41.5, 31.7, 29.4, 29.2, 29.0, 28.9, 27.5, 22.5, 14.0. ESI-MS: m/z = 

189 (M+1).  EA: calcd: C 63.77, H 10.70; found C 63.63, H 10.86.  IR: 1067 cm-1 

(υS=O). 

CMC Determination 

 Six solutions of different concentrations of surfactant were made in water. 

Solutions of the surfactant in water were made gravimetrically; no stock solutions, 

or dilutions thereof, were made. 
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Dye Solublization/Sudan III 

McElhanon et al. have published this method.19 Samples of all concentrations 

were removed from the standards and placed in vials. Excess Sudan III was added 

to each of the dilutions in small vials. The vials were sonicated for 30 minutes, 

allowed to settle ft least two hours before filtering through a 0.2 µm, 13 mm 

PTFE syringe filter. Analysis by UV-vis spectroscopy gives an absorbance 

proportional to dye concentration. Experiments run in duplicate.  

 

Capillary Rise 

 5 µL capillary pipettes were placed in six standard vials.  The height of the 

liquid was marked and measured.  Experiments were run in triplicate with new 

capillaries each time. 

 

Synthesis of 2,5-Dihyrothiophene-1,1-dioxide-3-carboxylic acid28 

 A solution of 3-sulfolene (4.02 g, 34.0 mmol) in 1,8-

diazabicyclo[5.4.0]undec-7-ene (10.2 mL, 68.2 mmol) was placed in a pressure 

reactor apparatus.  The pressure reactor apparatus was purged three times with 

CO2 and dry DMSO (10 mL) was added to the reaction.  Approximately 50 psi of 

CO2 was added to the pressure vessel and stirred for 72 hours.  The product in the 

form of a DBU salt was precipitated using acetone (50 mL) and filtered.  The salt 
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was dissolved in methylene chloride (200 mL).  Dry HCl was bubbled through the 

solution until the pH reached four.  The solvent was removed under reduced 

pressure.  The resulting oil was dissolved in acetone (25 mL) and the solution was 

eluted through a silica plug.  The plug was then flushed with additional acetone 

(75 mL).  The solvent was removed under reduced pressure to give 2,5-

dihyrothiophene-1,1-dioxide-3-carboxylic acid as an off-white solid.  The solid 

was dried in a vacuum oven at 40ºC for 48 hours to remove any remaining water.  

The product was isolated as a white solid at 66% yield. 

2,5-Dihyrothiophene-1,1-dioxide-3-carboxylic acid:  

1H NMR (DMSO, ppm): 3.98 (m, 2H), 4.12 (m, 2H), 6.95(m, 1H), 13.22 (s, 1H).  

13C NMR (DMSO, ppm): 55.32, 58.24, 130.79, 134.99, 164.35.  EA: calculated, 

C, 37.03%, H, 3.73%, S, 19.77%; found C, 36.85%, H, 3.65%, S, 19.77%.  

DSC/TGA shown in Figure 3-16. 

 

Fisher Esterification: 

 For all the Fisher esterification methods tried, all the carboxylic acid was 

observed to be reacted by TLC and 1H NMR.  When a silica column was tried to 

isolate the product, the octanol was not successfully removed. 

 

Excess octanol and sulfuric acid 
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 An excess of dry octanol (5 mL) was added to dry 2,5-dihyrothiophene-

1,1-dioxide-3-carboxylic acid (0.5 g, 4.84 mmol).  To the solution, sulfuric acid 

(0.5 mL) was added dropwise.  The reaction was heated gradually to 60ºC and 

allowed to reflux for 48 hours.  When the reaction did not show product, 1,3-

dicyclohexylcarbodiimide (DCC) (1.0 g) was added as a drying agent.  To work 

up the reaction, ethyl acetate (50 mL) was added and the solution was washed 

with saturated NaHCO3 (3 x 75 mL).  The solution was then washed once with 

water and washed once with saturated NaCl.  The solution was then dried over 

magnesium sulfate and the solvent was removed under reduced pressure.  A silica 

column was packed using hexane and the solute was 90/10 hexane/EtOAc as 

solute.  The fractions collected still contained octanol.    

 

Octanol and PTSA 

 1,3-Dicyclohexylcarbodiimide (DCC) (1.5893 g, 1 equiv, 7.27 mmol) was 

added to a round bottom flask.  2,5-dihyrothiophene-1,1-dioxide-3-carboxylic 

acid (0.5 g, 4.85 mmol) was added.  The round bottom was put under argon and 

octanol (0.8 mL, 1 equiv) was added.  Then THF (5 mL) was added.  To this 

solution, the p-toluene sulfonic acid (PTSA) (0.15 g) was added.  The solution 

was heated gradually to 60ºC and was heated overnight.  To work up the reaction, 

ethyl acetate (40 mL) was added and the solution was washed with saturated 

sodium bicarbonate (2 x 50 mL), water (1 x 50 mL), and brine (1 x 50 mL).  The 
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solution was then dried over magnesium sulfate and the solvent was removed 

under reduced pressure.  No product was observed by 1H NMR.                    

                                                                

Acid chloride as step 1 then ester from alcohol and base 

2 equiv pyridine, 1 equiv octanol: 

 First, 2,5-dihyrothiophene-1,1-dioxide-3-carboxylic acid (0.5 g, 4.85 

mmol) was added to an excess of thionyl chloride (2 mL) at room temperature 

under argon.  The reaction was monitored by TLC.  After 2 hours, the excess 

thionyl chloride was removed under reduced pressure.  After the removal of the 

thionyl chloride, the reaction was put back under argon.  Anhydrous octanol (0.76 

mL, 1 equiv) was added to the solution at 0ºC.  Then, anhydrous pyridine (0.78 

mL, 2 equiv) was added dropwise to the solution at 0ºC and 5 mL of anhydrous 

THF was added after 30 minutes.  The solution was allowed to warm to room 

temperature over 1 hour.  The reaction was then heated to 50ºC overnight.  To 

work up the reaction, the solution was cooled to room temperature and ethyl 

acetate (40 mL) was added.  The solution was then washed with water (4 x 75 

mL), saturated aqueous NaHCO3 (2 x 75 mL), and brine (1 x 75 mL).  The 

solution was dried over magnesium sulfate, filtered and the solvent was removed 

under reduced pressure to give a dark brown solution.  From the 13C NMR, there 

was no carbonyl peak leading us to believe that no reaction occurred. 
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1.2 equiv pyridine, 1.2 equiv octanol:  

 First, 2,5-dihyrothiophene-1,1-dioxide-3-carboxylic acid (0.5 g, 4.85 

mmol) was added to an excess of thionyl chloride (2 mL) at room temperature 

under argon.  After 3.5 hours at 40ºC, the excess thionyl chloride was removed 

under reduced pressure.  After the removal of the thionyl chloride, the reaction 

was put back under argon.  To the reaction mixture, dry THF (10 mL) was added.  

Anhydrous octanol (0.76 mL, 1 equiv) was added to the solution at 0ºC.  Then, 

anhydrous pyridine (0.47 mL, 1.2 equiv) was added dropwise to the solution at 

0ºC.  The solution was allowed to warm to room temperature overnight.  To work 

up the reaction, the reaction mixture was poured onto dichloromethane (50 mL) 

and ice water (100 mL).  The dichloromethane layer was removed and the ice 

water mixture was extracted with more dichloromethane.  The dichloromethane 

layers were combined and washed with brine.  The solution was dried over 

magnesium sulfate and the solvent was removed under reduced pressure.  The 

resulting 1H NMR showed octanol but no carboxylic acid so it may have 

decomposed in the first step. 

1.2 equiv pyridine, 1.2 equiv octanol with the first step at 0ºC 

 First, 2,5-dihyrothiophene-1,1-dioxide-3-carboxylic acid (0.5 g, 4.85 

mmol) was added to an excess of thionyl chloride (2 mL) at 0ºC under argon.  

After 1 hour at 0ºC, the excess thionyl chloride was removed under reduced 

pressure.  After the removal of the thionyl chloride, the reaction was put back 
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under argon.  To the reaction mixture, THF (10 mL) was added.  Anhydrous 

octanol (0.76 mL, 1 equiv) was added to the solution at 0ºC.  Then, anhydrous 

pyridine (0.47 mL, 1.2 equiv) was added dropwise to the solution at 0ºC.  The 

solution was allowed to warm to room temperature overnight.  To work up the 

reaction, the reaction mixture was poured onto dichloromethane (50 mL) and ice 

water (100 mL).  The dichloromethane layer was removed and the ice water 

mixture was extracted with more dichloromethane.  The dichloromethane layers 

were combined and washed with brine.  The solution was dried over magnesium 

sulfate and the solvent was removed under reduced pressure.  The resulting 1H 

NMR showed octanol but no carboxylic acid so it may have decomposed in the 

first step. 

 

Base and Octyl Iodide 

Cesium carbonate 

 First, 2,5-dihyrothiophene-1,1-dioxide-3-carboxylic acid (0.5 g, 4.85 

mmol) was added under argon to dry THF (10 mL).  Then cesium carbonate 

(1.4205 g, 1.5 equiv) was added.  Then aliquot 336 (0.13 mL, 10 mol %), a phase 

transfer catalyst, was added   After 2 hours, the octyl iodide was added (1.05 mL, 

1.1 equiv) and allowed to react overnight at room temperature.  The reaction was 

filtered.  The reaction mixture was poured onto dichloromethane (50 mL) and ice 

water (100 mL).  The dichloromethane layer was removed and the ice water 



 125

mixture was extracted with more dichloromethane.  The dichloromethane layers 

were combined and washed with brine.  The solution was dried with magnesium 

sulfate and the solvent was removed under reduced pressure.  No reaction by 1H 

NMR. 

 

Pyridine  

 First, 2,5-dihyrothiophene-1,1-dioxide-3-carboxylic acid (0.5 g, 4.85 

mmol) was added under argon to 10 mL of THF from the still.  Then pyridine 

(0.41 mL, 1.05 equiv) was added.   After 1 hour, the octyl iodide was added (1.05 

mL, 1.1 equiv) and allowed to react overnight at 40ºC.  The reaction mixture was 

poured onto dichloromethane (50 mL) and ice water (100 mL).  The 

dichloromethane layer was removed and the ice water mixture was extracted with 

more dichloromethane.  The dichloromethane layers were combined and washed 

with brine.  The solution was dried over magnesium sulfate and the solvent was 

removed under reduced pressure.  No reaction by 1H NMR.  

 

DBU 

 First, 2,5-dihyrothiophene-1,1-dioxide-3-carboxylic acid (0.3876 g, 3.76 

mmol) was added under argon to dry THF (10 mL).  Then DBU (0.59 mL, 1.05 

equiv) in 5 mL of dry THF was added dropwise, forming a white precipitate.   

After 1 hour, the octyl iodide was added (0.75 mL, 1.1 equiv) and allowed to react 
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overnight at room temperature.  The reaction mixture was poured onto 

dichloromethane (50 mL) and ice water (100 mL).  The dichloromethane layer 

was removed and the ice water mixture was extracted with more dichloromethane.  

The dichloromethane layers were combined and washed with brine.  The solution 

was dried over magnesium sulfate and the solvent was removed under reduced 

pressure.  No reaction by 1H NMR.    

 

DBU salt carboxylic acid 

 A solution of 3-sulfolene (4.02 g, 34.0 mmol) in 1,8-

diazabicyclo[5.4.0]undec-7-ene (10.2 mL, 68.2 mmol) was placed in a pressure 

reaction apparatus.  The pressure reaction apparatus was purged three times with 

CO2 and dry DMSO (10 mL) was added to the reaction.  Approximately 50 psi of 

CO2 was added to the pressure vessel and stirred for 72 hours.  The mixture was 

diluted with acetone (50 mL) and filtered.  13C NMR (DMSO, ppm): 9.63, 14.63, 

22.78, 26.03, 28.59, 28.72, 29.27, 30.57, 31.91, 33.62, 55.16, 58.12, 65.63, 

135.67. Elemental analysis: calculated, C, 59.51%; H, 8.45%; N, 10.68%; found: 

C, 59.27%; H, 8.00%; N, 10.46%. 

 

DBU salt and 1.2 equiv octyl iodide 

 The DBU carboxylic acid salt was dried in a vacuum oven overnight at 

40ºC.  The DBU carboxylic acid salt (1.5 g) was dissolved in dichloromethane (50 
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mL).  Then octyl iodide (0.8 mL, 1.2 equiv) was added to the reaction mixture.  

The reaction was left overnight at room temperature.  No reaction by 1H NMR.  

 

DBU salt and 3.5 equiv octyl iodide 

 The resulting DBU carboxylic acid salt was dried in a vacuum oven 

overnight at 40ºC.  Then part of the resulting DBU carboxylic acid salt (1.5 g) 

was dissolved in 50 mL of dichloromethane.  Then octyl iodide (2.3 mL, 3.5 

equiv) was added to the reaction mixture.  The reaction was left overnight at room 

temperature.  No reaction by 1H NMR. 

 

Transesterification   

2,5-dihyrothiophene-1,1-dioxide-3-carboxylic acid methyl ester  

 An excess of methanol (5 mL) was added to dry 2,5-dihyrothiophene-1,1-

dioxide-3-carboxylic acid (0.1 g,  0.96 mmol) and PTSA (0.02 g, 10 mol %).  The 

reaction was put under argon at room temperature over the weekend.  The 

solution was then extracted using ice, saturated aqueous NaHCO3, and 

dichloromethane.  The solution was then dried over magnesium sulfate and the 

solvent was removed under reduced pressure.  The methyl ester was a white solid 

(0.0894g, 79 % yield). 

2,5-Dihyrothiophene-1,1-dioxide-3-carboxylic acid methyl ester: 1H NMR 

(DMSO, ppm): 3.72 (s, 3H), 4.03 (m, 2H), 4.14 (m, 2H), 7.04 (s, 1H).  13C 
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(DMSO, ppm): 52.31, 54.43, 57.36, 129.46, 135.25, 156.60.  mp = 62.25ºC.29,30  

The DSC/TGA is shown in Figure 3-18. 

 

Octyl ester from methyl ester using PTSA 

 An excess of octanol (5 mL) was added dropwise to dry 2,5-

dihyrothiophene-1,1-dioxide-3-carboxylic acid methyl ester  (0.3 g,  2.56 mmol) 

in dry THF (2 mL), molecular sieves, and PTSA (0.04 g, 10 mol %).  The reaction 

was put under argon at room temperature over 2 weeks.  The solution was then 

extracted with ice, saturated aqueous NaHCO3, and dichloromethane.  The 

solution was then dried over magnesium sulfate and the solvent was removed 

under reduced pressure.  No reaction by 1H NMR. 

 

Octyl ester from methyl ester using enzyme and excess octanol32  

 The 2,5-dihyrothiophene-1,1-dioxide-3-carboxylic acid methyl ester (0.11 

g) was added to anhydrous octanol (3 mL).  Molecular sieves and the enzyme 

Candida Antarctica Lipase B immobilized on resin (50 mg)  were added to the 

reaction.  The reaction was put under nitrogen, wrapped in foil, and heated to 

40ºC overnight.  No reaction by 1H NMR. 

 

Octyl ester from methyl ester using enzyme and 3 equiv octanol 
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 The 2,5-dihyrothiophene-1,1-dioxide-3-carboxylic acid methyl ester (0.1 

g, 0.85 mmol) was dissolved in distilled acetone (2 mL).  Molecular sieves (200 

mg) and the enzyme Candida Antarctica Lipase B immobilized on resin (50 mg) 

were added to the solution and the solution was put under nitrogen.  Octanol (0.4 

mL, 3 equiv) was added to the solution. The round bottom flask was covered with 

foil and heated to 40ºC.  After a week, 1H NMR showed no more starting material 

of the methyl ester.  The acetone was removed under reduced pressure.  Product 

was not observed by 1H NMR. 

 

Octyl ester from methyl ester using enzyme and 3 equiv methyl ester 

 The 2,5-dihyrothiophene-1,1-dioxide-3-carboxylic acid methyl ester (0.4 

g, 0.00227 mol, 3 equiv) was added to acetone (1 mL) and molecular sieves.  The 

reaction was put under nitrogen and the round bottom flask was covered with foil.  

The Candida Antarctica Lipase B (50 mg) was added.  The octanol (0.1 mL, 1 

equiv) was added.  The reaction was heated to 40ºC.  After 2 days, the NMR 

showed some possible product peaks and the octanol peak had disappeared by 

TLC (99/1 EtOAc/Hex), showing the reaction may be complete.  However, both 

the product and the methylester were on the baseline of the TLC.  The 

immobilized enzyme and molecular sieves were removed by filtration and washed 

with acetone.  The unreacted methylester seemed to precipitate out as a fine white 
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solid in the fridge.  However, after a week in the fridge not all of the methylester 

had precipitated out so this route was abandoned.   

 

Amide 

Amide synthesis in dichloromethane 

 Dry 2,5-dihyrothiophene-1,1-dioxide-3-carboxylic acid (0.3780 g, 0.00233 

mol) and 1,3-dicyclohexylcarboiimide (DCC) (0.37 g, 0.0018 mol) were 

combined and dichloromethane (12 mL) was added until all of the reactants 

dissolved.  The reaction solution was put under nitrogen and wrapped in foil.  The 

hexyl amine (0.2 mL, 0.0018 mol) was added to the reaction solution.  The 

reaction proceeded at room temperature and was monitored by NMR for 5 days 

until all of the starting material was reacted.  The dichloromethane was removed 

under reduced pressure.  Then ethylacetate (10 mL) was added and a white 

precipitate formed.  The precipitate (0.5725g) was removed and dissolved in 

chloroform (10 mL).  The chloroform was washed 3x with water.  An emulsion 

formed that made the extraction difficult.  The water layers were combined and 

back extracted with 3x chloroform.  No emulsion was formed during the back 

extraction.  Both the extractions were dried with magnesium sulfate and the 

solvent was removed.  NMR only showed hexyl amine in the ethylacetate filtrate.  

Tried fractional crystallization by adding ethylacetate until all the solid is 

dissolved, then added 2 drops more.  The solution was put into the fridge 
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overnight for 2 days and filtered.  The yellow oil was still impure by NMR.  The 

impurity is 1,3-dicyclohexyl-urea (DHU) which is the DCC reacted with the 

water.  To try to remove the DHU, the yellow oil was dissolved in ethylacetate (5 

mL) and washed with water (5 x 10 mL).  The water layer was then back 

extracted with ethylacetate (1 x 7 mL).  Both extractions were dried over 

magnesium sulfate and the ethylacetate was removed under reduced pressure.  

The resulting yellow solid was still impure with DHU and no clear product peaks 

were observed by 1H NMR. 

 

Amide in ether 

 Dry 2,5-dihyrothiophene-1,1-dioxide-3-carboxylic acid (0.5 g, 0.0031 

mol) and 1,3-dicylcohexylcarboimide (DCC) (0.5 g, 0.0024 mol) were combined 

in a round bottom flask.  To the reaction mixture, THF (15 mL) was added.  Since 

the reactants did not dissolve, ether (16 mL) was added.  Since the reactants, still 

did not dissolve, the reaction was heated to 35ºC but the reactants still did not 

dissolve so the heating was stopped.  The hexyl amine (0.24 g, 0.0024 mol) was 

added to the reaction solution, causing an increase in temperature of 1ºC (from 

26.6ºC to 27.7ºC).  The reaction was allowed to continue overnight.  In the 

morning, the NMR showed no more starting material carboxylic acid.  The 

solvent was removed under reduced pressure, giving a yellow solid.  The DHU 
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could not be successfully removed and we believe that the salt of the amine and 

carboxylic acid formed. 

 

2,5-Dihyrothiophene-1,1-dioxide-3-carboxylatehexyl-ammonium  

 The 2,5-dihyrothiophene-1,1-dioxide-3-carboxylic acid (0.25 g, 0.0015 

mol, 1.3 equiv) was dissolved in acetonitrile (15 mL).  The hexyl amine (0.15 mL, 

0.0012 mol) was added dropwise.  The reaction was put under nitrogen.  The 

reaction vessel was wrapped in foil and stirred at room temperature until solid 

formation was observed.  The solvent was removed under vacuum, resulting in a 

pure white solid with quantitative yield.  

2,5-Dihyrothiophene-1,1-dioxide-3-carboxylatehexyl-ammonium 1H NMR 

(DMSO, ppm): 6.35 (1H, s), 3.94 (2H, s), 3.78 (2H, s), 2.72 (2H, t), 1.48 (2H, m), 

1.26 (6H, m), 0.85 (3H, t).   13C NMR (DMSO, ppm): 13.91, 21.95, 25.56, 27.13, 

30.75, 38.61, 56.27, 57.88, 126.29, 128.51, 164.75. MS (M+1-SO2)  184.1.  EA: 

calculated C, 50.17%, H, 8.04%, N, 5.32%, S, 12.18%; found: C, 50.19%, H, 

8.07%, N, 5.32%, S, 12.16%.   

 

2,5-Dihyrothiophene-1,1-dioxide-3-carboxylateoctyl-ammonium 

The 2,5-dihyrothiophene-1,1-dioxide-3-carboxylic acid (0.5 g, 0.0031 mol, 1.3 

equiv) was dissolved in acetonitrile (30 mL).  The octyl amine (0.4 mL, 0.0024 

mol) was added dropwise.  The reaction was put under nitrogen.  The reaction 
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vessel was wrapped in foil and stirred at room temperature until solid formation 

was observed.  The solvent was removed under vacuum, resulting in a pure white 

solid with quantitative yield. 

2,5-Dihyrothiophene-1,1-dioxide-3-carboxylateoctyl-ammonium: 1H NMR 

(DMSO, ppm): 6.35 (1H, s), 3.94 (2H, s), 3.77 (2H, s), 2.72 (2H, t), 1.50 (2H, m), 

1.23 (6H, m), 0.84 (3H, t).   13C NMR (DMSO, ppm): 13.91, 21.95, 25.56, 27.13, 

30.75, 38.61, 56.27, 57.88, 126.29, 128.51, 164.75.  MS (octyl salt fragment) 

171.1.  EA: calculated C, 53.58%, H, 8.65%, N, 4.81%, S, 11.00%; found C, 

53.20%, H, 8.25%, N, 4.92%, S, 10.98%. 

 

Amide in acetonitrile and DCC 21 

The 2,5-dihyrothiophene-1,1-dioxide-3-carboxylic acid (0.5 g, 1 equiv) was 

dissolved in distilled acetonitrile (15 mL).  Hexyl amine (0.41 mL, 1 equiv) and 

1,3-dicyclohexylcarbodiimide (DCC) (0.8 g, 1.2 equiv) were added.  The reaction 

was put under nitrogen, wrapped in foil, and stirred at room temperature.  The 

reaction was performed twice with the reaction proceed for 24 hours and then for 

5 days.  Both reactions did not show evidence of product by 1H NMR but both 

showed formation of the 2,5-dihyrothiophene-1,1-dioxide-3-carboxylic acid and 

hexyl amine salt.     
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CHAPTER 4: SYTHESIS OF 5-AMINO-1H-TETRAZOLE 
 
 
 

4.1 Introduction 

5-Amino-1H-tetrazole is a gas-generating molecule and is a valuable 

starting material for the synthesis of many tetrazole derivatives used in 

pharmaceutical, pyrotechnique and propellant technologies.1-7  Commonly, the 5-

amino-1H-tetrazole is synthesized from amino guanidinium nitrate and nitrous 

acid or from cyanamide and hydrazoic acid or some modified procedure of these 

syntheses. In this chapter, two novel syntheses of 5-amino-1H-tetrazole are 

reported avoiding the use of hazardous and/or toxic materials. Efforts focused on 

providing a safer, cost-efficient synthesis that yields a high quality 5-amino-1H-

tetrazole product, free of potential toxic traces impurities.   

4.2 Background 

4.2.1 Uses of 5-Amino-1H-tetrazoles 

Tetrazoles are unsaturated 5-membered ring heterocycles containing four 

nitrogen atoms and one carbon atom. The hydrolysis of tetrazoles forms the 

corresponding carboxylic acid making tetrazoles a stable and water soluble mimic 

of carboxylic acid in the pharmaceutical field. From an energetic material 

standpoint, it is the high nitrogen content of tetrazoles that is the most attractive 
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feature. For example, the nitrogen content of the unsubstituted tetrazole is about 

80 wt.% while for the 5-amino-1H-tetrazole it is about 82 wt.%.  Upon 

decomposition tetrazole molecules produce two moles of N2 per tetrazole ring, 

making them attractive constituent for pyrotechnique, propellants and airbag 

compositions.  

Specifically, the 5-amino-1H-tetrazole is a replacement for sodium azide 

(NaN3) in the inflating airbag technology.8  In contrast with sodium azide, the 5-

amino-1H-tetrazole is aromatic and therefore is relatively stable, an advantage for 

processing, transport and storage. In addition, 5-amino-1H-tetrazole is a valuable 

starting material for the synthesis of many tetrazole derivatives used in 

pharmaceutical, pyrotechnique and propellant technologies.  

4.2.2 Previous Synthesis of 5-Amino-1H-tetrazole 

 Previously, 5-amino-1H-tetrazole was synthesized using sodium azide and 

cyanamide.  With the addition of acid, the sodium azide forms hydrazoic acid 

(HN3).  This reacts with the cyanamide to form 5-amino-1H-tetrazole as seen in 

Figure 4-1.9  The disadvantage of this synthesis was that the amount of hydrazoic 

acid was controlled only by the rate of the addition of the acid.  Hydrazoic acid is 

a gas, explosive, and toxic so it is advantageous to bypass its formation. 
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Figure 4-1: Previous Synthesis of 5-amino-1H-tetrazole by J.S.Mihina, 
R.M.Herbst 

 
 
 
 Another synthetic route for 5-amino-1H-tetrazole was developed in 1995.  

This synthesis built on the synthesis by Mihina and Herbst shown in Figure 4-1, 

using sodium azide and cyanamide with acid addition to form the 5-amino-1H-

tetrazole.10  The preferred acid was boric acid and the reaction solution was kept 

between a pH of 6-8.   After reaction completion, they were able to precipitate the 

5-amino-1H-tetrazole and control the crystal morphology by lowering the pH.  

The main difference from the previous synthesis was the use of neutral pH 

conditions during the reaction, which reduced the hydrazoic acid production.  

However, the use of hydrazoic acid was not eliminated so the procedure remained 

a high risk process.10   In 1997, a procedure was developed that eliminated the use 

of hydrazoic acid.  Instead it used cyanamide and hydrazine as reactants to form 

the aminoguanidine intermediate.  The aminoguanidine is diazotized using 

hydrochloric acid and sodium nitrite and cyclized upon addition of sodium 

hydroxide to form the 5-amino-1H-tetrazole, as seen in Figure 4-2.  Although the 
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procedure does eliminate the use of hydrazoic acid, it uses hydrazine and 

cyanamide which are also toxic chemicals.11  
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Figure 4-2: 1997 synthesis of 5-amino-1H-tetrazole by Masahiro 
 
 
 

It is important to emphasize that the synthesis that was designed in our 

laboratory was intended for potential industrial process. Considerations like 

safety, cost, and efficiency were inherent to the development of the synthesis. 

First, the use of highly toxic and/or explosive chemicals was avoided to lessen the 

safety hazards for personnel and the cost associated with handling such chemicals.  

For example, hydrazoic acid is highly explosive at concentration as little as a few 

percent (in the gas phase) and can cause convulsions, coma, pulmonary edema, 

severe hypotension (shock) at doses greater than 10 mg/kg. Cyanamide is reported 

unstable at temperatures above 104ºF (40ºC) potentially yielding to violent 

thermal decomposition.12,13    
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4.2.3 Click Chemistry and Tetrazole 

 Click chemistry is the joining together of small units with heteroatom 

linkers.14 The tetrazole is formed by [2,3] cycloaddition between organic azides 

and cyanides.  This synthesis is analogues to the direct Huisgen 1,3-dipolar 

cycloaddition used to synthesize triazoles.15  However, in the click chemistry 

cycloaddition, the electron withdrawing group bound to the cyanide lowers the 

activation barrier and makes the formation of the tetrarazole possible. This 

chemistry has been developed by Sharpless and was used to synthesize various 

tetrazole derivatives, an example is shown in Figure 4-3.  These reactions are 

usually quantitative in yield, solventless, and therefore do not need extensive 

purification.  In addition, the organic azide is substituted for increased 

reactivity.16,17 Click-chemistry was never applied for the synthesis of the 5-amino-

1H-tetrazole despite providing a distinctive opportunity to develop a benign yet 

efficient synthesis of the tetrazole ring.   
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Figure 4-3: Example of Click Chemistry by Sharpless 
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4.3 Results and Discussion 

4.3.1 Step-wise Synthesis Containing 1-Benzyl-5-benzylaminotetrazole 

 A three step synthesis for 5-amino-1H-tetrazole was developed that used 

click chemistry in the 1st step as seen in Figure 4-4.   
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Figure 4-4: Three step synthesis for 5-amino-1H-tetrazole 
 
 
 

In the first step, an equimolar mixture of benzyl azide and p-

toluenesulfonyl cyanide was reacted to form 1-benzyl-5-sulfonyltoluene tetrazole.  

Initially, the cycloaddition was attempted neat at 80oC as reported by Sharpless 

and Demko.16  However, in order to better control the viscosity and the heat 

diffusion, the cycloaddition reaction was then performed in toluene. The yields 

were identical although the reaction was slower (16 hour neat versus 24-30 hours 
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in toluene).  The reaction mixture was homogeneous at 80oC, however, the 1-

benzyl-5-sulfonyltoluene tetrazole precipitated upon cooling to room temperature, 

resulting in a very facile separation by filtration.   

 In the second step, the sulfonyl toluene group on 1-benzyl-5- 

sulfonyltoluene tetrazole was displaced with an amino benzyl group by using 

benzylamine as both the reactant and solvent to form 1-benzyl-5-

benzylaminotetrazole. The separation of the product was trivial since its 

precipitation was induced upon the addition of water and the 1-benzyl-5-

benzylaminotetrazole collected by simple filtration. Although the conversion was 

close to quantitative, the isolate yields were about 70 %—most probably due to 

the water solubility of the product.  Introducing a solvent to the reaction to reduce 

the excess of benzylamine for higher atom efficiency and reach higher isolated 

yields met limited success. The results are summarized in Table 4-1.  The 

conversions obtained in highly polar solvents like DMSO were high but 

unfortunately the isolation of the 1-benzyl-5-benzylaminotetrazole was extremely 

strenuous and difficult.  
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Table 4-1: Substitution by the aminobenzyl group in different solvents 
Solvent BnNH2 

(eq) 
Conversion 

(%) 
Yield 
(%) 

Benzylamine -- >95 65 
Toluene 15 -- 67 

Acetonitrile 5 0 -- 
Xylenes 2-5 0 -- 
DMSO 2-5 100 -- 
NMP 2-5 80 -- 
THF 2-5 0 -- 

  
 
 
  
 The Liotta-Eckert group has developed a volatile mimic of DMSO, 

piperylene sulfone, that can be decomposed by mild heating and therefore easily 

removed.18 Piperylene sulfone’s solvent properties being almost identical to 

DMSO, this reaction may take advantage of its easier separation ability. First, a 

solution of 1-benzyl-5-benzylaminotetrazole in piperylene sulfone was heated at 

110ºC to initiate decomposition. It was critical to verify that the tetrazole can 

sustain the decomposition temperature (110ºC) as tetrazoles are known to 

decompose with temperature. The 1H NMR showed that the piperylene sulfone 

was successfully removed without decomposition of the 1-benzyl-5-

benzylaminotetrazole.  Next, the reaction of 1-benzyl-5- sulfonyltoluene tetrazole 

with benzylamine in piperylene sulfone was performed at 50ºC.  After 24 hrs, an 

aliquot was taken and analyzed by 1H NMR.  Only the signals of the 1-benzyl-5-

sulfonyltoluene tetrazole starting material were observed.  The temperature was 

increased to 70ºC for 24 hrs and a second aliquot was taken and analyzed by 1H 
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NMR.  At this point, decomposition of the starting material was seen.  In addition, 

it appears that piperylene sulfone was undergoing a side-reaction.  Benzylamine 

was dissolved in piperylene sulfone and heated to 50ºC for 24 hrs.  A white 

precipitate was formed. Clearly, benzylamine and piperylene sulfone reacted with 

each other, precluding the use of piperylene sulfone in this case.  

 The deprotection of the 1-benzyl-5-benzylaminotetrazole to yield to the 5-

amino-1H-tetrazole was then investigated.  Finnegan et al. reported the 

hydrogenation of 1-methyl-5-benzylaminotetrazole in acetic acid using palladium 

oxide as the catalyst to produce the corresponding 1-methyl-5-amino-1H-

tetrazole.19  The Finnegan procedure was repeated with the 1-benzyl-5-

benzylaminotetrazole. Unfortunately, the conditions were ineffective on the 1-

benzyl-5-benzylaminotetrazole regardless of the time, solvent, catalyst load or 

hydrogen pressure. Several attempts were made using activated palladium on 

carbon as catalyst.  The catalyzed hydrogenation of the benzyl groups failed using 

either 5 % Pd/C or 10% Pd/C. Again, the modifications of solvents, time, and 

catalyst load did not affect the benzyl deprotection.  Heterogeneous catalyzed 

hydrogenations using either the activated palladium on carbon or the palladium 

oxide were repeated at 50ºC. None of these attempts were successfully concluded.  

 At that point, hydrogen transfer using 1,4-cyclohexadiene as a hydrogen 

source and activated palladium on carbon as the catalyst was investigated. The 

reaction appeared slow, but for the first time cleavage was observed. The reaction 
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was run in ethanol at reflux and was followed by 13C NMR. After one week under 

reflux with regular addition of 1,4-cyclohexadiene and catalyst, the 1-benzyl-5-

benzylaminotetrazole was quantitatively hydrogenated to yield the target product: 

5-amino-1H-tetrazole.   

  During this synthesis, each step was isolated and purified before 

proceeding on to the next step.  A “one-pot” synthesis it was then investigated.  

4.3.2 One Pot Synthesis Containing 1-Benzyl-5-benzylaminotetrazole 

 First, the optimum temperature for each steps was determined. The results 

are summarized in Table 4-2.  The optimum temperature was 100ºC for the first 

step (T1) and 90ºC for the second step (T2) giving the highest isolated yield of 

58% over the two steps. This yield is comparable to the isolated yield using the 

step wise synthesis (Figure 4-5 and Table 4-2).  

 

 

Bn N3 N

N
N

N

S

Bn

Bn NH2 N

N
N

N

NH

Bn

Bn

S

CN

O
O

O

O

T1 T2

 

Figure 4-5: One pot synthesis in toluene 
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Table 4-2: One pot synthesis in toluene 
 

  

 

 

 

 

 

  

  

 When adding the third step to the “one-pot” synthesis, the benzylamine 

present in large excess inhibited the cleavage of the benzyl groups.  Previously, 

water was added after the second step to cause the precipitation of the 1-benzyl-5-

benzylaminotetrazole. In the “one-pot” synthesis, the reaction mixture is 

composed of the 1-benzyl-5-benzylaminotetrazole, benzylamine, and toluene. As 

a consequence, the 1-benzyl-5-benzylaminotetrazole no longer precipitated from 

the reaction solution upon addition of water.   

 I tried various methods to selectively remove the benzylamine.  First, 

fractionated precipitation was explored. Upon addition of acid, amines form the 

corresponding ammonium hydrochloride salts that may be precipitated selectively 

based on their pKa. The pKa of benzylamine is 9.33 and the pKa of 5-amino-1H-

Temperature 
T1 (oC) 

Temperature 
T2 (oC) x eq BnNH2 Time (h) Yield % 

80 70-75 1.5 36 0 
80 80 7 48 38 
80 80 15 36 51 
80 120 15 24 35 
120 90 15 24 25 
100 100 15 36 34 
80 80 15 36 54 
100 90 15 48 58 
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tetrazole is 6.8.  Even with a careful control of pH upon addition of hydrochloric 

acid, the 1-benzyl-5-benzylaminotetrazole and the benzylamine co-precipitated.   

 Next, an excess of toluene was added to the reaction solution causing a 

precipitation.  However, this precipitation was also not selective because the by-

product, toluene-4-sulfonatebenzylammonium precipitated along with the product 

(Figure 4-6).  This un-desired salt is formed by the reaction of p-toluenesulfonic 

acid, which was formed along the product, with the benzylamine present in large 

excess.   

Finally, the toluene was simply removed under reduced pressure and the 

1-benzyl-5-benzylaminotetrazole was isolated by precipitation upon the addition 

of water, as was done in the step-wise synthesis.  I was able to obtain an isolated 

yield of 58% for the first two steps using this method. 
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Figure 4-6: Toluene-4-sulfonatebenzyl-ammonium by-product salt 
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 The three-step synthesis of the 5-amino-1H-tetrazole from benign and 

activated starting materials was successful. The product was synthesized in high 

purity with 48 % overall yield. Simple purifications were devised and the two 

first-steps could be combined in a “one-pot” step, without loss of yield. However, 

the last step was a hurdle. After optimization, the hydrogenation still takes a full 

week to proceed. This is a limitation for the potential transfer of this synthesis to a 

commercial process.  

 In the last step, the cleavage of the benzyl groups, it was observed that the 

first benzyl group was difficult to cleave. However, when the first cleavage takes 

place then the cleavage the second benzyl group was much faster. We 

hypothesized that steric effect may be detrimental for the reaction and that a 

benzyl-monosubstituted tetrazole intermediate may not exhibit such resistance to 

cleavage.  
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4.3.3 Alternative Synthetic Route Containing 5-Azido-1-Benzyltetrazole  

   

 
 

Tol SO2

CN

Bn N3

I

N

N
N

N

SO2

Bn

II

N

N
N

N

N3

Bn

N

N
N

N

NH2

H

[H2]

Solvent
Tol

NaN3

TBACl
toluene

5-Azido-1-benzyl-1H-tetrazole

 

Figure 4-7: New synthetic scheme for 5-amino-1H-tetrazole with 5-azido-1-
benzyltetrazole as the second step 

 
 
 

In the light of the findings from our previous synthesis, the synthetic 

scheme was modified. Namely, the sulfonyltoluene group of the intermediate I 

was displaced with an azide (in place of benzylamine previously) to form the 5-

azido-1-benzyltetrazole intermediate. Again, this intermediate can undergo 

hydrogenation to form the 5-amino-1H-tetrazole. The azide has several 

advantages, it is a good nucleophile, it is a cheap reagent and it is easily 

hydrogenated to form amines (generally at 1 atm within a couple of hours).   First,  

1-benzyl-5-sulfonyltolueneaminotetrazole was reacted with sodium azide in the 
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presence of tetrabutylammonium chloride, to act as a phase transfer catalyst, in 

toluene at 80ºC.  The reaction was monitored using 1H NMR and took 5 days for 

reaction completion.  The 1H NMR showed near quantitative conversion by 

disappearance of the starting material.  The 5-azido-1-benzyltetrazole was 

successfully synthesized and was characterized using 1H NMR, 13C NMR, IR, 

MS, and DSC/TGA.  A small amount of impurity (~1%) remained in the 

elemental analysis regardless the purifications method (water washes, cold water 

washes, or a silica-gel column using various solvent mixtures).   

 Deviating from the synthesis for a moment, the 1-benzyl-5-azide tetrazole 

was reacted with p-toluenesulfonyl cyanide in toluene to yield the bis-tetrazole 

derivative (Figure 4-8).  This was an interesting opportunity to form the bis-

tetrazole derivative, which has numerous applications in the inflating and 

energetic materials technologies.   
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Figure 4-8: 1-benzyl-5-azide tetrazole to form di-tetrazole 

 
 
 
 The reaction was run at 60ºC for 3 days.  The 1H and 13C NMR showed no 

reaction so the temperature was increased to 80ºC for 4 days.   The 1H and 13C 

NMR still showed no reaction the temperature was finally increased to 100ºC for 

7 days.  Regardless the changes, the reaction did not proceed. The steric hindrance 

and the electronic effect (the azide is deactivated by the tetrazole ring) are 

believed to be detrimental. In fact, both electronic and steric effects have been 

shown by Sharpless et al. to hinder the cycloaddition of substituted azides to the 

p-toluenesulfonyl cyanide.16  This reaction was not investigated further. 

 Finally, the 5-azido-1-benzyltetrazole was reacted using the same 

hydrogen transfer conditions as the 1-benzyl-5-benzylaminotetrazole to form the 

5-amino-1H-tetrazole.  The 5-azido-1-benzyltetrazole was combined with 1,4-

cyclohexadiene as a hydrogen source and activated palladium on carbon as the 
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catalyst.  The reaction was run in ethanol at reflux with regular addition of 1,4-

cyclohexadiene and catalyst. The reaction was monitored by 1H NMR. After one 

month, the benzyl peak was still present.  After isolating the product, it was seen 

that the azide, but not the benzyl, had undergone hydrogen transfer to form the 

amine.  The 5-amino-1-benzyl-tetrazole was characterized using 1H NMR, 13C 

NMR, IR, MS, and melting point.20  The 1H NMR showed near quantitative 

conversion by disappearance of the starting material. 

 Sajiki reported that adding mineral acid can facilitate the cleavage of the 

benzyl group in the presence of an amine.21  The paper stated that the acid needed 

to be strong enough to protonate the amine.  With this in mind, trifluoroacetic acid 

( pKa of 0.5) was added to the hydrogenation reaction (0.2 mL, 0.5 equiv).10   The 

pH of the solution was monitored during the reaction and remained constant 

throughout.  The reaction was again run in ethanol at reflux with regular addition 

of 1,4-cyclohexadiene and catalyst and followed using 1H NMR.  After three 

weeks, complete disappearance of the benzyl peak was observed in NMR and the 

5-amino-1H-tetrazole was isolated.  The 5-amino-1H-tetrazole was characterized 

by 13C NMR, MS, IR, and melting point.22  The 1H NMR showed near 

quantitative conversion by disappearance of the starting material.   
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4.4 Conclusions 

 In conclusion, 5-amino-1H-tetrazole was synthesized using two novel 

synthetic routes.  Both routes made use of Sharpless’ click chemistry to form the 

tetrazole ring.  By using not only masked but activated cyanide and azide 

derivatives, the 5-amino-1H-tetrazole was successfully synthesized in good 

yields.  This novel process allowed efficient reactions (with minimum by-product 

formation) and easy isolation of the intermediates. For the first time, the hydrogen 

transfer of the 1-benzyl-5-benzylaminotetrazole has been investigated and 

successfully concluded.  I also synthesized a novel compound, 1-benzyl-5-azido 

tetrazole.  The hydrogen transfer of the 5-azido-1-benzyltetrazole to form the 5-

amino-1-benzyl-tetrazole and the 5-amino-1H-tetrazole was successfully 

concluded.   The last step, the hydrogenation of the protecting groups, takes a 

week to go to completion in the first synthesis and three weeks in the second 

synthesis. This is a limitation for the potential transfer of this synthesis to a 

commercial process. Nonetheless, these syntheses minimized, if not eliminated, 

the potential contamination of the 5-amino-1H-tetrazole by toxic and/or un-

desired catalyst or by-products. It also showed improvements over the existing 

methods in terms of safety concerns.  



 154

4.5 Experimental 

 All chemicals were ordered from Aldrich or VWR and used as received, 

unless noted.  1H and 13C NMR spectra were recorded using a Varian Mercury Vx 

400 spectrometer using residual DMSO peak as an internal reference.  Mass 

Spectrometry samples were submitted to Mass Spectrometry Lab and used a 

Micromass Quattro LC to perform ESI-MS.  Elemental analyses were submitted 

to Atlantic Microlabs, Inc.  Melting points were determined on Mettler-Toledo 

capillary apparatus and were uncorrected. 

 

Synthesis of benzyl azide23  

 Benzyl chloride (10 g) was dissolved in ethanol (60 mL) and water (10.5 

mL) at 0ºC.  Sodium azide (5.13 g) was added to the reaction.  The reaction was 

allowed to warm to room temperature and then heated at 60ºC overnight.  To 

work up the reaction, the reaction was first allowed to cool to room temperature 

and filtered.  Dichloromethane was added to the organic phase and was washed 

with water three times and with saturated aqueous NaHCO3 one time.  The 

organic phase was then dried over magnesium sulfate and the solvent was 

removed under reduced pressure.  

Benzyl azide: 1H NMR (CDCl3, ppm): 4.35 (s, 2H), 7.37 (m, 5H).   

 

Synthesis of 1-benzyl-5- sulfonyltoluenetetrazole 



 155

 The benzyl azide (0.5 g, 4.06 mmol) was dissolved in toluene and then the 

p-toluene sulfonylcyanide (0.73 g, 1.0 eq) was added and the reaction mixture 

heated progressively to 80ºC. The reaction was run behind a blast-shield.  The 

reaction progress was followed by TLC or NMR ( H1 or C13).  Once complete, the 

reaction mixture was cooled to 0ºC and the resulting precipitate was filtered to 

give white needles of 1-benzyl-5-benzylaminotetrazole in 90-95 % yield.   

1-Benzyl-5-sulfonyltoluene aminotetrazole:16 mp = 136.5ºC. 1H NMR (CDCl3, 

ppm): 2.43 (s, 3H, CH3), 5.93 (s, 2H, CH2), 725-7.36 (m, 7H), 7.74 (d, 2H,). 13C 

NMR (CDCl3, ppm): 22.25, 53.42, 128.65, 129.26, 129.29, 129.36, 130.46, 

132.96, 134.31, 127.89, 155.00. IR (Toluene, cm-1): 1353 and 1157. MS(m/z): 

315.1 (M+1).  Elemental analysis: calculated C, 57.31, H 4.49, N 17.82, S 

10.20%; found C 57.50, H 4.73, N 17.58, S 10.01%.  IR (MeOH, cm-1): 1353.10, 

1157.57 (sulfones), 1080.63(tetrazole),   DSC/TGA is shown in Figure 4-9.   
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Figure 4-9: DSC/TGA of 1-benzyl-5-sulfonyltolueneaminotetrazole 
 

 

Synthesis of 1-benzyl-5-benzylaminotetrazole 

The 1-benzyl-5-sulfonyltoluenetetrazole (0.3 g, 0.95 mmol) was dissolved in 

benzylamine (5 ml). The reaction was allowed to react at 90ºC for 24h. After 

cooling the reaction mixture, water (5 ml) was added and the resulting precipitate 

was filtered off. The 1-benzyl-5-benzylaminotetrazole was isolated in 70% yield 

as a white powder.  

1-Benzyl-5-benzylaminotetrazole: 24  mp = 166.0ºC. 1H NMR (DMSO, ppm): 4.48 

(d, 2H, J= 6Hz, CH2), 5.42 (s, 2H, CH2), 7.19-7.35 (m, 9H), 7.62 (t, 1H). 13C 
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NMR (DMSO, ppm): 47.61, 48.37, 127.65, 127.88, 128.05, 128.57, 128.89, 

129.33, 135.89, 139.61, 156.15. IR (DMSO, cm-1):  1494.29, 1460.12, 1080.55. 

MS (m/z): 265 (M). 

 

Preparation of the 1-benzyl-5-benzylaminotetrazole (II)”one pot” procedure: 

 The benzyl azide (0.5 g, 4.06 mmol) was dissolved in toluene.  Then p-

toluene sulfonylcyanide (0.73 g, 1.0 eq) was added and the reaction mixture 

heated progressively to 100ºC. The reaction progress was followed by TLC or 

NMR (1H or 13C).  Once complete, the reaction was cooled to room temperature 

and benzylamine was added (6.51 g, 60.9 mmol, 15 equiv).  The reaction mixture 

was then heated progressively to 90oC.  The reaction progress was followed by 

NMR (1H or 13C).  Once complete, the reaction was cooled to room temperature 

and the toluene was removed by vacuum.  Then, 10 mL of water was added and 

the reaction was cooled overnight.  The resulting precipitate was filtered to give a 

white powder of 1-benzyl-5-benzylaminotetrazole in 58% overall yield.   

 

5-amino-1H-tetrazole: 
 
The 1-benzyl-5-benzylaminotetrazole (0.48 g, 1.81 mmol) was dissolved in 

ethanol (5 ml) and a slurry of 10 % Pd on activated carbon (0.1 g) in ethanol was 

added. Then 1,4-cyclohexadiene (0.51 ml, 3.0 eq) was added at 0ºC. The reaction 

mixture was progressively warmed to reflux.. The reaction was followed by 13C 
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NMR. Portions of 1,4-dicyclohexane (0.2 ml, 1.5 eq) were added every day. 

Additional catalyst (0.1 g) was added after 72 hours and again after 96 hours. 

After 7 days, the starting material was undetectable by NMR and only the 5-

amino-1H-tetrazole was observed. The reaction mixture was then cooled down 

and filtered on a celite pad. The filtrate was evaporated to dryness to give 5-

amino-1H-tetrazole as white powder (90 % yield).  

5-amino-1H-tetrazole:22 mp (decomp) =191.9 oC. 13C NMR (CDCl3, ppm) 

157.40.   

 

Synthesis  of 1-benzyl-5-benzylaminotetrazole in piperylene sulfone 

 1-benzyl-5-sulfonyltoluenetetrazole (0.1 g, 1 equiv) was dissolved in 

piperylene sulfone (2 mL).  Benzylamine (0.06 mL, 1 equiv) was added.  The 

reaction was put under nitrogen and heated to 50ºC overnight.  The reaction was 

tested by 1H NMR and no product was observed.  The reaction temperature was 

increased to 70ºC overnight.  The reaction was tested by 1H NMR and the starting 

material had decomposed and the piperylene sulfone had rearranged.  

 

5-azido-1-benzyltetrazole: 

1-benzyl-5-sulfonyltoluenetetrazole (0.05 g, 1 equiv) was dissolved in toluene (5 

mL).  Sodium azide (0.03 g, 3 equiv) and tetrabutylammonium chloride (0.0025 

g, 5% wt) were added.  Since the product and sodium azide are potentially 
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explosive, the reaction was done behind a blast shield.  The reaction was heated to 

80ºC and monitored by 1H NMR.  After 5 days, all the starting material was 

observed to be reacted.  To work up the reaction, the sodium azide was filter off 

and ether (20 mL) was added to the reaction mixture.  The organic phase was 

washed with water (3 x 20 mL) and dried over magnesium sulfate.  The 1H NMR 

showed near quantitative conversion by disappearance of the starting material. 

5-Azido-1-benzyltetrazole: 1H NMR (DMSO, ppm): 5.39(s, 2H), 7.31 (m, 3H), 

7.38 (m, 2H).  13C NMR (DMSO, ppm): 49.32, 127.77, 128.28, 128.66, 133.68, 

151.99. IR (Tolune, cm-1): 2150. MS(m/z): 202.1 (M+1).  DSC/TGA shown in 

Figure 4-10.  IR (MeOH, cm-1): 2150.06 (azide), 1109.58 (tetrazole).  
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Figure 4-10: DSC/TGA of 5-azido-1-benzyltetrazole 
 

5-amino-1-benzyltetrazole 

 The 5-azido-1-benzyltetrazole (0.96 g, 0.005 mol) in 15 mL of toluene 

was added to ethanol (5 ml) and a slurry of 10 % Pd on activated carbon (0.2 g) in 

ethanol was added. Then, 1,4-cyclohexadiene (1.4 ml, 3.0 eq) was added at 0ºC. 

The reaction mixture was progressively warmed up to reflux. Portions of 1,4-

dicyclohexane (0.7 ml, 1.5 eq) were added every day. Additional catalyst (0.1 g) 

was added every three days. After 20 days, the reaction was stopped. The reaction 

mixture was then cooled down and filtered on a celite pad. The filtrate was 
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evaporated to dryness to give 5-amino-1-benzyl-tetrazole.  The 1H NMR showed 

near quantitative conversion by disappearance of the starting material. 

5-Amino-1-benzyl-tetrazole:20 mp(decomp): 179ºC. 1H NMR (DMSO, ppm): 

5.344 (s, 2H), 7.334 (m, 5H).  13C NMR(DMSO, ppm): 47.48, 127.48, 127.88, 

128.650, 135.39, 155.50.  MS(m/z): 176.1 (M+1).  IR (DMSO, cm-1): 1004.90.  

 

5-amino-1H-tetrazole 

 The 5-azido-1-benzyltetrazole was in 70 mL of toluene and had an 

estimated mass of 0.96 g.  The exact mass was not determined since the 5-azido-

1-benzyltetrazole is not isolated except in small quantities.  Ethanol (5 ml) and a 

slurry of 10 % Pd on activated carbon (0.2 g) in ethanol were added. Then 1,4-

cyclohexadiene (1.4 ml, 3.0 eq) was added at 0oC. The reaction mixture was 

progressively warmed to reflux. The reaction was followed by 1H NMR. Portions 

of 1,4-dicyclohexane (0.7 ml, 1.5 eq) were added every day. Additional catalyst 

(0.2 g) was added every other day. After 21 days, the benzyl peak on the starting 

material was undetectable by 1H NMR. The reaction mixture was then cooled 

down and filtered on a celite pad. The filtrate was evaporated to dryness and 

recrystallized in water to give 5-amino-1H-tetrazole as white powder. The 1H 

NMR showed near quantitative conversion by disappearance of the starting 

material. 
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5-Amino-1H-tetrazole:22 mp (decomp) =201-203 oC. 13C NMR (DMSO, ppm) 

157.31.  MS(m/z): 85.8 (M+)  IR (DMSO, cm-1):  1004.80. 
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5  CHAPTER 5: HETEROGENEOUS REACTIONS BETWEEN 
NUCLEOPHILIC SALTS AND SILOXYLATED ELECTROPHILE 

UNDER PHASE TRANSFER CATALYSIS CONDITIONS.  
COMPARISION OF HYDROCARBON AND SILOXYLATED PHASE 

TRANSFER CATALYSTS  
 
 
 

5.1 Introduction 

 Phase-transfer catalysis (PTC) is a well-proven technique that facilitates 

reactions between reactants located in different phases.1-3 Classic phase-transfer 

catalysis generally involves immiscible liquid-liquid (e.g. organic-aqueous) or 

liquid-solid (e.g. organic-salt) phases. Quaternary ammonium salts, such as tetra-

n-butylammonium chloride, represent the most common types of phase-transfer 

catalysts.3 They have been found to operate effectively in a wide variety of 

heterogeneous processes including substitution, addition, elimination and 

polymerization reactions.3-5 Over the years, phase-transfer catalysts have been 

structurally customized to address specific reactions.3  In contrast to the wide 

variety of heterogeneous systems reported, phase transfer catalysis has never been 

reported for a system in which one of the phases was a partially or highly 

siloxylated medium and an immiscible solid phase. This is of great importance 

since siloxylated materials are useful in numerous applications, ranging from 

health products, such as lotions and make-up, to industrial fluids, such as 

surfactants and lubricants.6,7 However, the reaction of siloxylated reagents with 
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ionic substrates is difficult because these reactants are not sufficiently miscible 

with one another or in a common solvent. For example, the reaction of  p-[1&2-

(1,1,3,3,3-pentamethyldisiloxane)-ethyl]-benzyl chloride, 1A & 1B (called herein 

siloxylated benzylchloride) with L-lysine in an acetonitrile-methanol mixed 

solvent exhibited a slow reaction rate with only 70% conversion after 22 hours.  

The mass spectroscopy of the coupled product contained peaks of molecular mass 

corresponding to the mono, di-, tri- and tetra-substitution products (Figure 5-1).8 

In the present report, various phase transfer catalytic systems were investigated in 

order to improve reaction rates and conversions for the reaction of a siloxylated 

reagent and a series of ionic substrates. Specifically, a detailed investigation of the 

nucleophilic substitution of siloxylated benzyl chloride with potassium acetate is 

reported (Figure 5-2). Experiments dealing with inorganic ionic nucleophiles (i.e. 

potassium cyanide and potassium thiocyanate) and the amino acid L-lysine are 

also reported. Tetra-n-butylammonium chloride (TBACl) and two custom-made 

siloxylated phase-transfer catalysts (Figure 5-3) were tested.  It was anticipated 

that the siloxylated catalysts would facilitate the reaction between the siloxylated 

reagent in the liquid phase and the ionic substrate in the solid phase. A 

comparison of activity between the classic TBACl and the two custom designed 

siloxylated PTCs is reported.  
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Figure 5-1: Reaction of L-Lysine with Siloxylated Benzyl Chloride (1A & 1B) 
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Figure 5-2: Reaction of Potassium Acetate with Siloxylated Benzyl Chloride 

(1A & 1B) 
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Figure 5-3. Novel Siloxane PTCs: Left: Methyl-tris-[3-(1,1,3,3,3-pentamethyl-

disiloxanyl)-propyl]-ammonium chloride (2) and Right: Benzyl-tris-[3-
(1,1,3,3,3-pentamethyl-disiloxanyl)-propyl]-ammonium chloride (3) 

 

 

5.2 Background 

5.2.1 Phase Transfer Catalysis 

  Phase-transfer catalysis (PTC) is a well-proven technique that facilitates 

reactions between reactants located in different phases.1-3  The principle behind 

phase transfer catalysis is that “phase-transfer agents” facilitate the transport from 

one phase into another phase.  The most common type of phase-transfer catalysts 

are quaternary ammonium salts, such as tetra-n-butylammonium chloride.     
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Figure 5-4: Phase Transfer Catalyst 
 
 
 
 
 A symbolic illustration of how phase transfer catalysis works can be seen 

in Figure 5-4.  The Q+ represents the phase transfer catalyst.  The X- and Y- 

represent the anions being transferred between phases.  The M+ represents the 

counter cation.  The RY is the starting material and RX is the product.  The Q+ 

transfers the X- from the aqueous or solid phase into the organic phase.  When the 

Q+X- is in the organic phase, the X- can displace the Y and bond to R.   Q+ then 

transfers the displaced Y- to the aqueous or solid phase.  The Q+ undergoes an 

anion exchange to switch the Y- and X-.  The cycle then begins again with the Q+ 

transferring X- to the organic phase.  The transfer of Q+ with X- or Y- across the 

phase boundary and the anion exchange are reversible.    
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 Classic phase-transfer catalysis generally involves two immiscible liquid-

liquid (e.g. organic-aqueous) or liquid-solid (e.g. organic-salt) phases. I planned 

to use phase transfer catalysis for a siloxane liquid phase and an immiscible solid 

phase. Using phase transfer catalysis in this way has not previously been 

reported. 

5.2.2 Previous Work 
 
 In previous work, the siloxylated benzylchloride was coupled to L-lysine 

(Figure 5-5).  The reaction was performed in 1:1 (v:v) methanol:acetonitrile 

solvent mixture with equimolar reagents.  The L-lysine remained a separate solid 

phase with the siloxylated benzylchloride in the organic phase.  The reaction 

exhibited a slow reaction rate with only 70% conversion in 22 hours.8  We 

speculated the slow reaction rate was due to phase contact issues between the 

solid phase, L-lysine, and the organic phase, siloxylated benzylchloride.  The 

phase contact issues and slow reaction rate should be overcome by using a PTC.   
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Figure 5-5: Previous work coupling L-lysine with siloxylated benzylchloride 
without phase transfer catalyst 

 
 
 

5.2.3 Applications of Siloxylated Compounds 

 Siloxylated compounds are frequently used in personal care products such 

as soaps, deodorants, and cosmetics.  They are attractive for use in these products 

because of their low heat of vaporization and smooth, silky feel.9  In 1993, 89,000 

metric tons of polydimethylsiloxane (PDMS)-based elastomers were produced or 

imported in the United States, representing 50% of all organosilicon products.10  

The siloxylated benzylchloride coupled to L-lysine has potential use as an 

ingredient in personal care products.8  The siloxylated phase transfer catalysts (2 

and 3 in Figure 5-3) have potential applications as surface active agents, 

emulsions, and/or antimicrobial agents.11 
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5.3 Results and Discussion 

5.3.1 Synthesis of Siloxylated Phase Transfer Catalysts 

 The common siloxylated amine, tris-[3-(1,1,3,3,3-pentamethyl-

disiloxanyl)-propyl]-amine, was prepared by reacting the triallylamine with 

pentamethyl disiloxane in the presence of the catalyst, platinum(0)-1,3-divinyl-

1,1,3,3-tetramethyl disiloxane complex (3 wt % xylene) (DVDS-Pt) (Figure 5-

6).12  The two novel siloxylated ammonium quaternary salt phase transfer 

catalysts, 2 and 3, were synthesized from this common siloxylated amine.  

Methyl-tris-[3-(1,1,3,3,3-pentamethyl-disiloxanyl)-propyl]-ammonium chloride, 2 

was synthesized by reacting the tris-[3-(1,1,3,3,3-pentamethyl-disiloxanyl)-

propyl]-amine with methylchloride in THF under pressure (50 psi, 40ºC, 0.1 mol) 

with quantitative yields (Figure 5-7).  Benzyl-tris-[3-(1,1,3,3,3-pentamethyl-

disiloxanyl)-propyl]-ammonium chloride, 3 was synthesized by reacting the tris-

[3-(1,1,3,3,3-pentamethyl-disiloxanyl)-propyl]-amine with benzylchloride as the 

reactant and solvent at 65ºC for 5 days with quantitative yields (Figure 5-8).  The 

products were characterized using 1H and 13C NMR, MS, and elemental analysis.   



 171

 

N Si
O

Si

3

Me3SiOSiMe2H

3

N

DVDS-Pt
heptane

 

Figure 5-6: Tris-[3-(1,1,3,3,3-pentamethyl-disiloxanyl)-propyl]-amine 
synthesis 
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Figure 5-7: Synthesis methyl-tris-[3-(1,1,3,3,3-pentamethyl- disiloxanyl)-
propyl]-ammonium chloride 
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Figure 5-8: Synthesis benzyl-tris-[3-(1,1,3,3,3-pentamethyl-disiloxanyl)-
propyl]-ammonium chloride 
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Figure 5-9: Synthesis of p-[1 & 2-(1,1,3,3,3-pentamethyldisiloxane)-ethyl]-
benzyl chloride with both isomers (A & B) shown 

 
 
 
5.3.2 Synthesis of Siloxylated Reactant 

 The siloxylated reactant, p-[1 & 2-(1,1,3,3,3-pentamethyldisiloxane)-

ethyl]-benzyl chloride, was synthesized from 4-vinyl-benzylchloride using the 

same reaction conditions as the synthesis of tris-[3-(1,1,3,3,3-pentamethyl-

disiloxanyl)-propyl]-amine.12  The pentamethyl disiloxane was coupled to the 4-

vinyl benzylchloride using platinum (0)-1,3-divinyl-1,1,3,3-tetramethyldisiloxane 

(DVDS-Pt) in heptane as shown in Figure 5-9.  The synthesis resulted in two 

isomers as seen in Figure 5-9 which were used together for the kinetic studies.  

The two isomers were formed by the pentamethyl disiloxane coupling to the first 

and second carbons of the alkene.  I believe this did not occur with the triallyl 

amine because steric hindrance made the second inner carbon inaccessible.  
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Figure 5-10: Couple p-[1 & 2-(1,1,3,3,3-pentamethyldisiloxane)-ethyl]-benzyl 
chloride with potassium acetate as sample displacement 

 
 
 
5.3.3 Kinetic Studies  

 The nucleophilic substitution of the siloxylated benzyl chloride with 

potassium acetate was performed with and without phase-transfer catalysts 

(Figure 5-10). Other nucleophiles like potassium cyanide and potassium 

thiocyanate were tested. Because the reaction rates with these nucleophiles were 

similar although slightly slower to the one with potassium acetate, this chapter is 

focusing on the model case potassium acetate. The results for potassium 

thiocyanate and potassium cyanide are shown in Table 5-1 for both isomers.  The 

reactions were carried out in ethyl acetate with the tetra-n-butylammonium 
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chloride and the two siloxane-containing PTCs, 2 and 3.  Aliquat 336 was also 

tested (Table 5-1) but showed slower rates than the tetra-n-butylammonium 

chloride and was not investigated further.  The disappearance of the starting 

materials and the appearance of the products were monitored by GC-MS.  

 

 

Table 5-1: Pseudo-first order rate constants for the reaction of potassium 
acetate with siloxane electrophile and various PTCs at 70 °C and 900 rpm 

stirring.  Both isomers shown. 
  Pseudo-First Order Rate Constant * 105 (s-1) 

PTC (5%) KSCN isomer A KSCN isomer B KCN isomer A KCN isomer B 

None 0.80 ± 0.08 0.77 ± 0.05 No Rxn No Rxn 

TBACl 2.6 ± 0.1 2.7 ± 0.2 1.76 ± 0.05 2.5 ± 0.5 

Aliquat 336 2.6 ± 0.2 2.6 ± 0.2 0.18 ± 0.03 0.25 ± 0.04 

MeSiPTC (2) 1.9 ± 0.1 1.9 ± 0.2 0.12 ± 0.01 0.251 ± 0.006 

BnSiPTC (3) 1.17 ± 0.02 1.26 ± 0.03 0.75 ± 0.03 0.90 ± 0.03 

 
 

 

In the absence of catalyst, no reaction occurs (Table 5-2 and Figure 5-11). In 

contrast, reaction does take place using as little as 1 mol % of catalysts. However, 

the optimum catalyst loading for the reaction was 5 mol %. Table 5-2 and Figure 

5-11 also summarize the pseudo-first order rate constant for four catalyst 
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loadings: 0, 1, 5 and 10 mol %. The rate increases more dramatically with 

increasing the catalyst loading from 1 mol % to 5 mol % than with increasing the 

catalyst loading from 5 mol % to 10 mol % as seen in Figure 5-12. The 5 mol % 

optimum catalyst loading was used consistently afterward. The pseudo-first order 

rate plots in the cases of the three catalysts (TBACl, 2 and 3) are shown in Figure 

5-13 and the rate constants are listed in Table 5-3.  The rate constants for both 

isomers were identical.  

 

 

 

 

Table 5-2: Reaction of KOAc with siloxane electrophile and various amounts 
of TBACl PTC at 70°C and 900rpm  Ethyl acetate was the solvent. Rates for 

both isomers were identical. 
% TBACl Pseudo-first order 

rate constant (105, s-1) 

0 - 

1 16 ± 1 

5 65 ± 4 

10 120 ± 7 
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Figure 5-11: Effect of catalyst loading on conversion for reaction of KOAc 

with siloxane electrophile and various amounts of TBACl PTC at 70°C. Ethyl 
acetate was the solvent. Rates for both isomers were identical. 
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Figure 5-12: Time-dependent behavior for reaction of KOAc with siloxane 
electrophile and various amounts of TBACl PTC at 70°C and 900 rpm in 

ethyl acetate.  Rates for both isomers were identical. 
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Figure 5-13: Time-dependent behavior of potassium acetate with siloxane 
electrophile and various PTCs at 70 °C and 900 rpm stirring (■): TBACl, 

(▲): SiMePTC (2), (○): SiBnPTC (3).  Rates for both isomers were identical. 
 

   

Table 5-3: Pseudo-first order rate constants for the reaction of potassium 
acetate with siloxane electrophile and various PTCs at 70 °C and 900 rpm 

stirring.  Rates for both isomers were identical. 
 Pseudo-First Order Rate Constant * 105 (s-1) 

PTC (5%) KOAc 

None - 

TBACl 65 ± 4 

2 2.33 ± 0.04 

3 0.99 ± 0.04 
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 Inspection of the results in Table 5-3 and Figure 5-13 indicates that tetra-

n-butylammonium chloride significantly outperforms the siloxane-containing 

PTCs.  The tetra-n-butylammonium shows a thirty fold enhancement of the rate 

constant over the siloxylated PTCs.  Under these conditions, it seems that the 

siloxane electrophile does not benefit from the “like-like” interactions with the 

specialty catalysts. It was surprising that the siloxylated catalysts were 

outperformed by the classic TBACl.  In light of these results, it was concluded 

that ethyl acetate may generate a predominantly organic environment minimizing 

the influence of the siloxylated character of the substrate and specialty catalysts.  

Table 5-4 presents data for the KOAc displacement using 5% of various 

PTCs in ethyl acetate from 30-70°C.  At each temperature, the rate constants 

decreased in the order TBACl > methyl PTC > benzyl PTC.  The Arrhenius plots 

for these data are provided as Figure 5-14.  Activation energies ranged from 95 

kJ/mol for TBACl to 132 kJ/mol for the benzyl siloxylated PTC.  No conversion 

was observed in 1100 minutes without PTC. 
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Table 5-4: Reaction of KOAc with siloxane electrophile and 5% of various 
PTCs in ethyl acetate at various temperatures. 5x excess KOAc is used in all 

conditions. 

 Pseudo-First Order Rate Constant * 105 (s-1) 

Activation 

Energy 

(kJ/mol) 

PTC 

(5%) 30°C 50°C 60°C 70°C  

None No Rxn No Rxn No Rxn No Rxn  

TBACl 0.70 ± 0.06 6.59 ± 0.06 - 57 ± 3 95 

SiMePTC - 0.18 ± 0.02 1.46 ± 0.1 2.0 ± 0.2 116 

BnMePTC - 

0.047 ± 

0.005 

0.35 ± 

0.05 

0.80 ± 

0.03 132 
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Figure 5-14: Arrhenius plots for reaction of KOAc with siloxane electrophile 
and 5% of various PTCs in ethyl acetate at various temperatures. 5x excess 

KOAc is used in all conditions. 
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 I hypothesized that in a more siloxylated medium the differences in the 

phase-transfer catalyst structure (classic vs. siloxylated) may be more distinctive.  

In order to explore the effect of the siloxylated character of the solvent on the 

PTC process, three solvent systems were compared: 1) ethyl acetate (“organic”), 

2) 50 % ethylacetate/50 % PDMS (“50 % Si) and 3) 100% PDMS (“100% Si”).  

The pseudo-first order rate constants for tetra-n-butylammonium chloride, 2, and 

3 are shown in Figure 5-15 and Table 5-5.   

  Both Figure 5-15 and Table 5-5 show definitive changes in the rates for 

TBACl and the siloxylated PTC 2 when the siloxane-character of the organic 

phase changes. The activity of the siloxylated PTC 3 remained constant 

throughout.  As previously discussed for the organic case, TBACl has the highest 

rate with at least one order of magnitude improvement over 2 and 3.  With 50% 

PDMS, TBACl shows a drop in reaction rate, lowering by approximately two-

thirds of its original value.  At the same time, the siloxylated PTC 2 show a 6 fold 

increase in rate constant.  At 100% PDMS, the TBACl rate constant remains 

approximately equal to the 50 % PDMS case, while the rate constant for 2 is 

slightly reduced.   
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Table 5-5: Pseudo-first order rate constants for the reaction of potassium 
acetate with siloxane electrophile and various PTCs at 70 °C and 900 rpm 

stirring in various solvent systems.  The rates for both isomers were identical. 

  Pseudo-First Order Rate Constant * 105 (s-1) 
PTC (5%) EtOAc 50 % Si 100% Si 

TBACl 65 ± 4 18 ± 3 20 ± 3 
2 2.33 ± 0.04 12 ± 1 4.7 ± 0.6 
3 0.99 ± 0.04 1.4 ± 0.2 1.41 ± 0.06 
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Figure 5-15: Solvent dependence of SiBnCl and KOAc reaction at 70ºC and 
5% PTC  (■): TBACl, (▲): SiMePTC (2), (○): SiBnPTC (3).  The rates for 

both isomers were identical. 
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 Tetra-n-butylammonium bromide shows unexpected versatility to enhance 

the reaction between a siloxylated reagent in the liquid phase and ionic substrates 

in the solid phase. TBACl outperformed the custom-made siloxylated catalysts 

when the liquid phase was ethyl acetate. In a more siloxylated media like PDMS, 

TBACl and the siloxylated catalyst 2 exhibited closer activity.  In either case, the 

excellent performance of TBACl does not justify the use of a more sophisticated 

custom-made siloxylated catalyst.   

 Using the results from the reaction of the siloxylated benzyl chloride with 

potassium acetate, I explored the model reaction of siloxylated benzyl chloride 

with the amino acid L-lysine (Figure 5-16). Efficiently reacting siloxylated 

reagents with peptides would open access to many siloxylated compounds with 

wide applications such as personal care products. Up to now, however, the 

reaction is inhibited by the reagents, the siloxylated starting material and the 

peptide, being in different phases. The model reaction of siloxylated benzyl 

chloride with the amino acid L-lysine were carried out in ethyl acetate with the 

three phase-transfer catalysts previously reported (TBACl and the two specialty 

siloxylated PTCs).  The pseudo-first order rate constants for both isomers were 

the same and are enumerated in Table 5-6.   



 185

R1

Cl

HOOC

H2N

R1

COOH

H2N

HCl

+
+

NH2

NH

SiOSi

Isomers

1. R1 =                                          R2 = H

2. R1 = H                                      R2 = SiOSi

R2

R2PTC

70ºC, 900 rpm

 

Figure 5-16: Reaction of L-lysine and siloxylated benzylchloride 
 

 

Table 5-6: Pseudo-first order rate constants for the reaction of L-lysine with 
siloxane electrophile and various PTCs at 70 °C and 900 rpm stirring.  Rates 

for both isomers were identical. 
 Pseudo-First Order Rate Constant * 105 (s-1) 

PTC (5%) L-lysine 

None - 

TBACl 1.35 ± 0.01 

2 0.86 ± 0.01 

3 0.57 ± 0.08 
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In the absence of PTC, no reaction occurred between the L-lysine and the 

siloxylated benzyl chloride.  In contrast, under phase transfer catalysis conditions 

the reaction does take place. In this case, the tetra-n-butylammonium chloride 

slightly outperformed the siloxane-containing PTCs for the L-lysine.  The pseudo-

first order rate constants with tetra-n-butylammonium chloride is least 1.5 times 

the siloxylated PTCs pseudo-first order rate constants.   

A qualitative mass spectroscopy analysis suggested that the product 

distribution of the phase transfer-catalyzed reaction was comparable to the one 

reported when the reaction was run in a mixed methanol-acetonitrile solvent. 

Specifically, peaks of molecular mass corresponding to the mono, di-, tri- and 

tetra-substitution products were observed.  

 

5.4 Conclusion 
 
 Phase-transfer catalysis is an effective technique for coupling siloxane-

containing compounds with non-siloxylated reagents.  The model reaction 

between a p-[2-&1-(1,1,3,3,3-pentamethyldisiloxane)-ethyl]-benzyl chloride and 

potassium acetate and L-lysine was reported.  Three phase-transfer catalysts were 

tested: the commercially available tetra-n-butylammonium chloride and the two 

specialty siloxylated PTCs 2 and 3. Quite surprisingly, the tetra-n-

butylammonium chloride showed superior activity to the custom-made siloxylated 

compounds in a variety of solvents. When the siloxylated benzylchloride was 



 187

reacted with potassium acetate in ethyl acetate, TBACl drastically outperformed 

the siloxylated catalysts. However, in a siloxylated solvent like PDMS or with L-

lysine as reagent, the difference of activity between the three catalysts was slight. 

In each case, the unexpected performance and versatility of TBACl does not 

justify the need for a more expensive and less accessible siloxylated phase 

transfer catalysts.  

5.5 Experimental 
 
 All chemicals were ordered from Aldrich or VWR and used as received, 

unless noted.  1H and 13C NMR spectra were recorded using a Varian Mercury Vx 

400 spectrometer using the CDCl3 peak as an internal reference.  Mass 

Spectrometry were recorded using a HP GC 6890/ HP MS 5973 or were 

performed by Georgia Institute of Technology Bioanalytical Mass Spectrometry 

Facility using a Micromass Quattro LC to perform ESI-MS.  Elemental analyses 

were submitted to Atlantic Microlabs, Inc. 

 

Synthesis of tris-[3-(1,1,3,3,3-pentamethyl-disiloxanyl)-propyl]-amine  

 Tris-[3-(1,1,3,3,3-pentamethyl-disiloxanyl)-propyl]-amine was 

synthesized using a method from patent 5,654,374.12  A 250 mL round-bottom 

flask under argon was fitted with a magnetic stir bar, a reflux condenser and an 

addition funnel.  The flask was charged with triallyl amine (6.5 g, 0.47 mol) and 
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heptane (20 mL).  Platinum (0)-1,3-divinyl-1,1,3,3-tetramethyldisiloxane (DVDS-

Pt) 3% wt in xylenes complex (2.19 g, 1% wt based on amine) was added to this 

mixture, which was then heated to 85°C.  Pentamethyldisiloxane (21.12 g, 0.14 

mol) in heptane (20 mL) was added slowly through the addition funnel to the 

stirred mixture.  After the addition was complete, it was observed to be reddish-

brown in color.  The mixture was stirred for three hours at 70ºC.  After three 

hours, colloidal clay was added.  The reaction was allowed to cool to room 

temperature and stir overnight.  The reaction mixture was then filtered and the 

heptane removed under reduced pressure.  A short silica plug with hexane as the 

eluent was used to purify the product.  The product amine was a light yellow 

(35% yield).   

Tris-[3-(1,1,3,3,3-pentamethyl-disiloxanyl)-propyl]-amine: 1H NMR (CDCl3) 

ppm: 0.053 (45H, m, CH3-Si), 0.449 (6H, t, CH2-CH2-Si), 1.444 (6H, m, CH2-

CH2-CH2), 2.396 (6H, t, CH2-N).  13C NMR (CDCl3) ppm: 0.751, 2.428, 16.439, 

21.059, 57.980.  MS(m/z): 406 (M+-CH2CH2Si(CH3)2OSi(CH3)3).  EA: calculated 

C, 48.70%, H, 10.87%, N, 2.30%.  Found C, 48.47%, H, 10.66%, N, 2.47%. 

Synthesis of methyl-tris-[3-(1,1,3,3,3-pentamethyl-disiloxanyl)-propyl]-

ammonium chloride:  

 Tris-3-(1,1,3,3,3-pentamethyl-disiloxanyl)-propyl-amine (2.4187 g, 

0.0042 mol) was added to 10 mL of THF.  The solution was added to a pressure 

vessel with methyl chloride at 50 psi and 40ºC (5 g, 0.1 mol).  The reaction was 
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allowed to proceed for three weeks.  At the end of three weeks, the pressure 

vessel was vented to remove the methyl chloride and the THF was removed under 

reduced pressure. The crude was then dried in the vacuum oven at 40oC 

overnight.  The resulting thick brown liquid was quantitative in yield.   

Methyl-tris-[3-(1,1,3,3,3-pentamethyl-disiloxanyl)-propyl]-ammonium chloride: 

1H NMR (CDCl3) ppm: 0.045 (45H, m, CH3-Si), 0.528 (6H, m, CH2-CH2-Si), 

1.628 (6H, m, CH2-CH2-CH2), 3.319 (9H, m, CH2-N).  13C NMR (CDCl3) ppm: 

2.322, 15.339, 17.031, 48.960, 64.648.  MS (m/z): 596.4 (M+-Cl).  EA: calculated 

C, 47.45%, H, 10.51%, N, 2.21%.  Found C, 47.12%, H, 10.26%, N, 2.25%. 

 

Synthesis of benzyl-tris-[3-(1,1,3,3,3-pentamethyl-disiloxanyl)-propyl]-

ammonium chloride        

Tris-3-(1,1,3,3,3-pentamethyl-disiloxanyl)-propyl-amine (1.1205 g, 

0.001717 mol) was put under nitrogen.  To the amine, benzyl chloride (10 mL) 

was added to act as solvent and reactant.  The solution was heated gradually to 

65oC and allowed to react until 1H NMR showed reaction completion (five days).  

The resulting product was a brown thick liquid and yield was quantitative.  

Benzyl-tris-[3-(1,1,3,3,3-pentamethyl-disiloxanyl)-propyl]-ammonium chloride: 

1H NMR (CDCl3) ppm: 0.046 (45H, m, CH3-Si), 0.501 (6H, m, CH2-CH2-Si), 

1.800 (6H, m, CH2-CH2-CH2), 3.200 (6H, m, CH2-N), 4.568 (2H, s, benzyl CH2), 

7.355 (5H, m, benzyl ring). 13C NMR (CDCl3) ppm: 2.051, 15.417, 17.086, 
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46.284, 132.332, 128.539.  MS (m/z): 672.4 (M+-Cl).  EA: calculated C, 52.53%, 

H, 9.95%, N, 1.98%.  Found C, 52.79%, H, 9.56%, N, 2.35%. 

 

Synthesis of p-[1 & 2-(1,1,3,3,3-pentamethyldisiloxane)-ethyl]-benzyl chloride: 

The 4-vinyl-benzyl chloride (5.0 g, 0.0337 mol) was added to 20 mL of 

heptane under nitrogen.  The mixture was heated to 75ºC.  The catalyst 

platinum(0)-1,3-divinyl-1,1,3,3-tetramethyl disiloxane complex (3 wt % xylene) 

(DVDS-Pt) (1.7 g, 1%wt) was added to the solution.  The pentamethyl disiloxane 

(5.75 g, 0.0388 mol, 1.15 equiv) in heptane (5 mL) was added drop wise.  The 

solution changed from a light yellow to a dark brown upon addition and the 

addition was stopped whenever the reaction temperature increased by more than 

2ºC.  After the addition was complete, the temperature was reduced to 70ºC.  

After 3 hours at 70ºC, the reaction was allowed to cool to room temperature and 

was stirred overnight.  The heptane was removed under reduced pressure.  A 

column chromatography on silica gel with hexane as eluent was run and all the 

fractions combined.  The hexane was removed under reduced pressure to give a 

clear liquid.  Yield was 50% with two isomers.    

p-[2-(1,1,3,3,3-pentamethyldisiloxane)-ethyl]-benzyl chloride and p-[1-(1,1,3,3,3-

pentamethyldisiloxane)-ethyl]-benzyl chloride: 1H NMR (CDCl3) ppm: 0.1 (15H, 

m, CH3-Si), 0.9 (2H, m, CH2 isomer), 1.3 (3H, d, CH isomer), 2.3 (2H, q, CH3 

isomer), 2.7 (2H, m, CH2 isomer), 4.6 (2H, s, benzyl CH2), 7.2 (4H, m, benzyl 
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ring). 13C NMR (CDCl3) ppm: 1.516-2.156, 20.39, 29.2533; 46.49, 129.42-

127.44, 134.50, 145.56.  MS(m/z): 300 (M+).  EA: calculated, C, 55.87%, H, 

8.41%.  Found, C, 55.82%, H, 8.41%.  

 

Acetic acid 4-[2-(1,1,3,3,3-pentamethyl-disiloxanyl)-ethyl]-benzyl ester: 
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Figure 5-17: Acetic acid 4-[2-(1,1,3,3,3-pentamethyl-disiloxanyl)-ethyl]-
benzyl ester synthesized from KOAc and siloxane electrophile. 

 
 
 
 
 p-[1 & 2-(1,1,3,3,3-pentamethyldisiloxane)-ethyl]-benzyl chloride (0.4 g, 

1 equiv) was added to ethyl acetate (4 mL).  To the solution, tetrabutylammonium 

chloride (0.02 g, 5 mol %) and potassium acetate (0.7 g, 5 equiv) were added.  

The solution was heated to 60ºC for 48 hours.  The reaction was worked up by 
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washing with saturated aqueous NaHCO3, water and saturated aqueous NaCl.  

The organic phase was dried over magnesium sulfate and the solvent was 

removed under reduced vacuum.  The orange liquid was purified by silica gel 

chromatography ethyl acetate/hexane=1/9 to give a clear liquid.  Both isomers of 

the original p-[1& 2-(4-chloromethyl-phenyl)-ethyl]-1,1,3,3,3-

pentamethyldisiloxane were observed in the product. 

Acetic acid 4-[2-(1,1,3,3,3-pentamethyl-disiloxanyl)-ethyl]-benzyl ester: 1H NMR 

(CDCl3, ppm): 0.084 (15H, m, CH3-Si), 0.8 (2H, m, CH2 isomer), 1.4 (1H, m, CH 

isomer,), 2.1 (3H, s, CH3-C=O), 2.2 (3H, m, CH3 isomer), 2.6 (2H, m, CH2 

isomer), 5.1 (2H, s, benzyl CH2), 7.2 (4H, m, benzyl ring). 13C NMR (CDCl3, 

ppm):-1.73, -1.46, 0.28, 1.82, 1.98, 14.33, 20.32, 21.05, 29.15, 31.19, 66.29, 

66.34, 127.45, 127.99, 128.21, 128.50, 131.73, 133.00, 145.48, 145.57, 170.95. IR 

(CDCl3, cm-1): 1740.03 (C=O), 1046.06 (SiOSi). MS (m/z): 270 (M+-

COCH3+Na).  EA: calculated: C, 59.21%, H, 8.70%. Found: C, 59.49%, H, 

8.87%. 

 

Experimental Procedure – Kinetics 
 
 The siloxane electrophile, p-[1 & 2-(1,1,3,3,3-pentamethyldisiloxane)-

ethyl]-benzyl chloride were reacted with potassium acetate, potassium 

thiocyanate, potassium cyanide and L-lysine hydrate at 70ºC.  The reactions took 

place in ethyl acetate with four phase transfer catalysts, tetra-n-butylammonium 
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chloride, aliquat 336, methyl-tris-[3-(1,1,3,3,3-pentamethyl-disiloxanyl)-propyl]-

ammonium chloride and benzyl-tris-[3-(1,1,3,3,3-pentamethyl-disiloxanyl)-

propyl]-ammonium chloride.  The reactions were carried out in a 25 mL round 

bottom flask immersed in an oil bath at the appropriate temperature.  The system 

was stirred at 900 rpm with a Teflon coated magnetic stir rod.  A typical reaction 

consisted of 5 mol % PTC based on the electrophile, 0.1 mL siloxane electrophile, 

5 equivalents of nucleophile, 5 times excess potassium chloride (only salt 

reactions), 3 mL ethyl acetate, and 0.1 mL decane, as an internal standard.  The 

potassium chloride was included to maintain a constant concentration solution for 

accurate kinetics and the decane was added as an internal standard.  The reaction 

mixture was sampled at varying intervals by removing 0.05 to 0.075 mL aliquots, 

which were immediately quenched in ethyl acetate and analyzed by GC-MS.  The 

two isomers were measured using the same reactions but had different retention 

times on the GC-MS and occasionally different reaction rates.  The products of 

each reaction were isolated after reaction completion with three extractions with 

ethyl acetate.  The solution was evaporated under reduced pressure to remove the 

solvent and the resulting product was analyzed by NMR. The L-lysine products 

were confirmed by 1H NMR.  The salt products were confirmed by GC-MS and 

1H NMR. 

5.6 References 
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6 CHAPTER 6: CONCLUSIONS & RECOMMENDATIONS 
 

6.1 Conclusions & Recommendations for Chapter 2: Continuous Flow 
Reactor  
 
 The reaction of L-boc-phenylalanine with alkyl chloroformate to form a 

mixed anhydride followed by reaction with trimethylsilyl diazomethane was 

explored in a batch reactor and in a continuous flow reactor. In a batch mode, the 

first step of the reaction was carried at the temperature -20ºC because the mixed 

anhydride is temperature sensitive (and decomposes readily above 0ºC). 

Fundamental studies were accomplished on the batch reaction to determine the 

critical factors (i.e. reaction time, structures of reagents, reaction temperature, and 

solvents). The best overall yield reported in the literature for this sequence for the 

synthesis of the diazoketone was 78 %, which matched my best overall yield.  

During this research, several continuous reactor configurations were built. 

The final configuration that involves two coiled continuous microreactors packed 

with glass beads is both simple and extremely efficient. The reaction sequence 

was carried out at 4ºC with quantitative yield in the diazoketone product.  This 

result is remarkable. It clearly demonstrates that the continuous process that was 

developed in our laboratory improves yields (and product quality) utilizes cheaper 

and safer reagents (ethylchloroformate vs. isobutylchloroformate and 
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trimethylsilyl diazomethane vs. diazomethane), and reduces energy intake by 

eliminating the need for low reaction temperatures (4ºC vs. -20ºC). 

 Recommendations can be made from the results reported in this chapter. 

First, it was observed that the diazoketone product yield was quantitative by 

LCMS analysis. However the isolated yield was between 60-70 %. This 

discrepancy was attributed to the diazoketone decomposing during the 

purification, namely the silica-gel column. Although this diazoketone is not 

isolated in the real process, the potential decomposition could be confirmed by 

adding a silica column before the column on the LC-UV. Additionally, it would 

be very interesting to study the last step of the three-step sequence, the HCl step, 

yielding to the α-chloroketone by adding it onto the continuous flow reactor 

current process.  If this will be pursued, the corrosive character of concentrated 

HCl will be an important factor to take into consideration. Currently, the 

continuous reactor and the pump’s core are made of stainless steel that can be 

corroded by HCL and will need to be modified in order to sustain the use of 

concentrated HCl. Lastly, the benefits of the continuous flow reactor design that 

was developed could be used advantageously for different types of multi-step 

reactions. 
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6.2 Conclusions and Recommendations for Chapter 3: Cleavable, n-octyl-

thiirane oxide, Surfactant and Reversible Sulfolene Surfactants 

 n-Octyl thiirane oxide was successfully synthesized and its surface active 

property was determined. The irreversible decomposition upon heating of n-octyl 

thiirane oxide to surface inactive fragments was demonstrated and occurred in 

less than 10 min at 110ºC. .  

 The synthesis of a sulfolene based switchable surfactant was unsuccessful 

although the synthesis of the sulfolene methyl ester was successfully achieved.    

 The cleavable surfactant, n-octyl thiirane oxide may be useful in my 

research group synthesis of nanoparticles.  Currently, a reversible ionic liquid is 

being tested.  A comparison of the nanoparticle size resulting from the cleavable 

surfactant and the reversible ionic liquid may be interesting to study. 

 The synthesis of a reversible surfactant from the carboxylic acid to form 

an ester or amide would be very interesting (Figure 6-1).  I recommend that my 

research group continues to remain aware of new research that could overcome 

the synthetic hurdles so far encountered. 
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Figure 6-1: Synthesis of reversible surfactant 
 

6.3 Conclusions & Recommendations for Chapter 4: Synthesis of 5-
aminotetrazole 

 
 5-amino-1H-tetrazole was synthesized using two novel synthetic routes.  

Both routes made use of Sharpless’ click chemistry to form the tetrazole ring.  By 

using not only masked but activated cyanide and azide derivatives, the 5-amino-

1H-tetrazole was successfully synthesized in good yield (60%).  This novel 

process allowed efficient reactions (with minimum by-product formation) and 

easy isolation of the intermediates. For the first time, the hydrogen transfer of the 

1-benzyl-5-benzylaminotetrazole has been investigated and successfully 

concluded.  I also synthesized a novel compound, 1-benzyl-5-azido tetrazole.  The 

reduction reactions of the 5-azido-1-benzyltetrazole to form the 5-amino-1-

benzyl-tetrazole and the 5-amino-1H-tetrazole were successfully concluded.   The 

last step, the hydrogenation of the protecting groups, takes a week to go to 

completion in the first synthesis and three weeks in the second synthesis. This is a 
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limitation for the potential transfer of these syntheses to a commercial process. 

Nonetheless, these syntheses minimized, if not eliminated, the need and/or 

potential contamination of the 5-amino-1H-tetrazole by toxic and/or un-desired 

catalyst or by-products. It also showed improvements over the existing methods in 

terms of safety concerns.  

 A possible next step for this project could be the development and 

optimization of a “one-pot” synthesis with the 5-azido-1-benzyltetetrazole as the 

second step. Modifying conditions (phase transfer catalyst, stirring rate, solvent) 

for the phase transfer catalyzed nucleophilic displacement of benzylsulfonyl by 

the azide could improve a currently relatively slow reaction (few days).  In 

addition, the hydrogenation reaction to cleave the benzyl group is by far the main 

limitation for both syntheses. Although the reaction is quantitative, it can take as 

much as three weeks to reach completion. The hydrogenation can be attempted at 

higher pressure (up to 150 psi) and temperature up to 80ºC. Other metal catalysts 

like Raney nickel and solvent system can also be investigated.  After optimizing 

these steps, a “one-pot” synthesis could be then developed for the formation of the 

5-aminotetrazole.   

6.4 Conclusions and Recommendations for Chapter 5: Phase Transfer 
Catalysis for Reaction between a Siloxylated Electrophile and Insoluble 
Nucleophilic Salt 
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 Phase-transfer catalysis is an effective technique for coupling siloxane-

containing compounds with non-siloxylated reagents.  The model reaction 

between a p-[2-&1-(1,1,3,3,3-pentamethyldisiloxane)-ethyl]-benzyl chloride and 

potassium acetate and L-lysine was reported.  Three phase-transfer catalysts were 

tested: the commercially available tetra-n-butylammonium chloride and the two 

specialty siloxylated PTCs 2 and 3. Quite surprisingly, the tetra-n-

butylammonium chloride showed superior activity to the custom-made siloxylated 

compounds in a variety of solvents. When the siloxylated benzylchloride was 

reacted with potassium acetate in ethyl acetate, TBACl drastically outperformed 

the siloxylated catalysts. However, in a siloxylated solvent like PDMS or with L-

lysine as reagent, the difference of activity between the three catalysts was slight. 

In each case, the unexpected performance and versatility of TBACl does not 

justify the need for a more expensive and less accessible siloxylated phase 

transfer catalysts.  

 This project was done in collaboration with Dow Corning.  Since the 

project was successfully concluded, no future work is currently planned.  

Recommendations if this work was to continue will be to extend the work started 

with L-Lysine. L-lysine is the model for reaction of amino acids with siloxylated 

reagents by means of phase transfer catalysis. Preliminary data showed that 

multiple substitutions can take place. For future work, the regioselectivity of the 

reactions and the product distribution should be determined quantitatively. The 
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information from this model reaction (L-Lysine with siloxylated benzyl) can then 

be used to study reactions with more complex reagents like bipeptide and 

tripeptide. Phase transfer catalysis can open new avenues to prepare siloxylated 

substituted polypeptides and has yet been fully explored. In addition, a more 

siloxylated electrophile could be synthesized and tested with the siloxylated phase 

transfer catalysts.  A more siloxylated electrophile may show a better reaction rate 

when using a siloxylated phase transfer catalyst 
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7 APPENDIX A: HYDROLYZABLE AZIDES 
 

A.1. Introduction 

 Hydrolyzable azides have potential as an anti-biofouling agent.  The aim 

of this project was to synthesize various azides and test their hydrolysis in water 

and salt water to determine their usefulness as an anti-biofouling agent.    

A.2. Background 

 Marine biofouling occurs when barnacles attach to the hull or rudder of a 

boat.  Barnacles attach to the boat by producing an epoxy-like cement that can 

stick to even Teflon.  The barnacles increase corrosion and drag resistance 

causing a problem that costs the maritime industry billions of dollars a year.  One 

of the most recent treatments used tributyltin (TBT) which has been shown to be 

toxic to marine animals.  An ideal anti-biofouling agent would be easy to apply, 

inexpensive, nontoxic, and long lasting.  Currently sodium azide is used as a 

biocide in agricultural for pest control.  Since azides are already used as a biocide, 

it was thought that a hydrolyzable azide would be able to prevent biofouling.  The 

hydrolyzable azide would release the inorganic azide slowly, creating an azide 

layer around the marine vessel.   

A.3. Previous Work 

 Previously, the hydrolysis of various organic azides were tested by A. 

Szewczuk.1   Szewczuk found that the release of inorganic azide from organic 
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acid azide proceeded very slowly in an aqueous neutral solution at room 

temperature.  In Figure A-1, a table is given that showed the hydrolysis of organic 

azides as measured by absorptivity.  Of particular interest to my research were the 

compounds phenylacetyl azide, diphenylphosphoryl azide, and the 

phenylmethanesulfonyl azide.    

 

 

 

Figure A-1: Table of hydrolysis of various organic acid azides as shown by 
absorptivity with sodium azide as standard 1 
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A.4. Results and Discussion 

A.4.1. Synthesis of the Hydrolyzable Azides  

 For this project, I investigated the synthesis of two different hydrolyzable 

azides: an acyl and a sulfonyl.  The phenyl-acetyl azide synthesis was synthesized 

using a method from literature.2  The synthetic scheme is shown in Figure A-2.  

However, the phenyl-acetyl azide did not show complete reaction in 1H NMR, 

giving a ratio of 15:1 product to starting material and this avenue was not pursued 

further.   
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Figure A-7-1: Synthesis of phenyl-acetyl azide from phenyl acetic acid 
 
 
 

   The 4-methyl-benzenesulfonyl azide was synthesized using a method by 

McManus et al. (Figure A-3).3  The yield was quantitative and the product was 

characterized by 1H and 13C NMR and elemental analysis.  This compound was 

used for the rest of the experiments as a proof of principle.   
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Figure A-7-2: Synthesis of 4-methyl-benzenesulfonyl azide from p-toluene 
sulfonyl chloride 

 
 
 

A.4.2 Hydrolysis of Sulfonyl Azide 

 Since I planned on measuring the hydrolysis of the sulfonyl azide by LC-

UV, I first made a calibration curve of the sodium azide and of 4-methyl-

benzenesulfonyl azide at various concentrations. (Figure A-4 and Figure A-5, 

respectively) 
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Figure A-7-3: Calibration curve of sodium azide on LC-UV, UV at 230 nm 
 
 

 

Figure A-7-4: Calibration curve of 4-methyl-benzenesulfonyl azide on LC-
UV, UV at 230 nm 
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 By using a calibration curve, I was able to determine the concentration of 

4-methyl-benzenesulfonyl azide and released sodium azide during the hydrolysis.   

 Another important aspect to consider is that the mechanism of the release 

of azide will be different in pure water and in salt water.  The 4-methyl-

benzenesulfonyl azide should react with the water to release hydrogen azide. 

(Figure A-6)  Since this azide is acidic, the hydrolysis was also monitored using 

pH paper.  Due to the low concentrations of sulfonyl azide used, I did not 

anticipate that the acid would affect the pH.  However, if I had observed a rise in 

pH, I would have buffered the solution. 
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Figure A-7-5: Reaction of 4-methyl-benzenesulfonyl azide and water 

 

 In the salt solution, I believed that the sodium chloride should react with 

the 4-methyl-benzenesulfonyl azide first to form p-toluene sulfonyl chloride and 

sodium azide.  The sulfonyl chloride will then react with the water to form 
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hydrochloric acid.(Figure A-7)  Because this reaction should also form acid, I 

monitored the acidity of the reaction using pH paper and would have buffered the 

solution if the pH rose.   
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Figure A-7-6: Mechanism of 4-methyl-benzenesulfonyl azide with water and 
sodium chloride 

 
 
 

 To test the hydrolysis of the 4-methyl-benzenesulfonyl azide in water, a 

solution of water and 4-methyl-benzenesulfonyl azide was made.  Since the 4-

methyl-benzenesulfonyl azide formed a layer separate from the water, methanol 

was added until the two layers were miscible.  An aliquot was taken periodically 

and tested by LC-UV to determine the amount of hydrolysis (Figure A-8).  When 
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each aliquot was taken, the pH was also measured to confirm that there was not an 

excess of acid formation.  During the experiment, the pH remained neutral.   
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Figure A-7-7: Hydrolysis of sulfonyl azide in water at room temperature over 
35 days 

 
 
 
 During the experiment, the hydrolysis of the 4-methyl-benzenesulfonyl 

azide in water remained negligible.  In addition, after the 35 day, more samples 

were taken until the 75th day and still the hydrolysis of 4-methyl-benzenesulfonyl 

azide in water remained negligible.   
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 The hydrolysis of 4-methyl-benzenesulfonyl azide in sea water was 

performed in a similar way to the hydrolysis in water.  The 4-methyl-

benzenesulfonyl azide was added to a mixture of sea water and methanol until the 

phases are miscible.   An aliquot of the solution was taken periodically and 

measured by LC-UV (Figure A-9).  The pH was also monitored and remained 

neutral throughout the experiment.  Over the course of the thirty-five days, the 

change in concentration of the sulfonyl azide and thus the hydrolysis of the 4-

methyl-benzenesulfonyl azide remained negligible.  More samples were taken on 

this experiment until the 75th day with no change in results.  
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Figure A-7-8: Hydrolysis of 4-methyl-benzenesulfonyl azide in sea water at 
room temperature over 35 days 

 
 
 
 Due to the lack of positive results, this project was not pursued further.  

However, if this project were to be reinvestigated, the hydrolysis could be done 

with heating.  By heating the hydrolysis solution, the rate of hydrolysis can be 

calculated during a much shorter amount of time. 

A.5 Conclusion 

 This work investigated two potentially hydrolyzable organic azide 

compounds.  During this project, the hydrolysis of 4-methyl-benzenesulfonyl 

azide over a 75 day period in water and salt water was investigated.   
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A.6 Experimental 

  All chemicals were ordered from Aldrich or VWR and used as 

received, unless noted.  1H and 13C NMR spectra were recorded using a Varian 

Mercury Vx 400 spectrometer using the CDCl3 peak as an internal reference.  

Mass Spectrometry were recorded using a HP GC 6890/ HP MS 5973 or were 

performed by Georgia Institute of Technology Bioanalytical Mass Spectrometry 

Facility using a Micromass Quattro LC to perform ESI-MS.  Elemental analyses 

were submitted to Atlantic Microlabs, Inc.  LC-UV analysis was done on an 

Agilent 1100 Series LC with UV detector. 

Phenyl-acetyl azide:  

 Phenyl acetic acid (1 g, 0.0073 mol) was added to dry dichloromethane (5 

mL) under nitrogen.  Thionyl chloride (3.2 mL, 0.043 mol) was added slowly to 

the reaction solution.  The solution was heated to 45ºC and allowed to reflux for 

18 hours.  The solvent and excess thionyl chloride was removed under reduced 

pressure.  Dry acetone (3 mL) was added to the reaction solution.  Sodium azide 

(1.9 g) in water (10 mL) was added slowly to the solution at 0ºC.  The reaction 

was allowed to warm to room temperature overnight and a color change to orange 

was observed.  To work up the reaction, the solution was extracted using diethyl 

ether.  The organic layer was washed with water and brine, and then dried over 

magnesium sulfate.  The solvent was not removed under reduced pressure and 
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was stored in the fridge, wrapped in foil.  An aliquot was analyzed by 1H NMR 

and showed a ratio of 15:1 product to starting material.  This synthetic route was 

not pursued further. 

4-Methyl-benzenesulfonyl azide:  

 Sodium azide (0.44 g, 0.0068mol, 1.3 equiv) was dissolved in 3 mL water 

and cooled in an ice-salt bath under nitrogen.  p-Toluene sulfonyl chloride (1 g, 

0.0052 mol) was dissolved in 4 mL of a 95% acetone-water mixture.  The p-

toluene sulfonyl chloride solution was added slowly to the cold sodium azide 

solution causing the reaction to turn orange.  The resulting solution was stirred for 

30 min cold and 30 min at room temperature.  The reaction was then worked up 

by adding 5 mL of water and extracting with ether (2 x 25 mL).  The combined 

ether layers were washed with water (4 x 50 mL) and dried over magnesium 

sulfate.  The solvent was not removed for safety reasons.  The solution was stored 

in the fridge in a vial wrapped in foil.  

4-Methyl-benzenesulfonyl azide:  1H NMR (CDCl3, ppm): 7.93 (1H, d), 7.85 (1H, 

d), 7.42 (2H, d), 2.49 (3H, s).  13C (CDCl3, ppm): 130.62, 130.02, 114.13, 114.08, 

111.40, 110.92, 5.96.  Elemental analysis: calc: C 42.63, H 3.58, N 21.31, found: 

C 42.80, 3.58, 21.36. 

Calibration curve of 4-methyl-benzenesulfonyl azide: 
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 To make the calibration curve, five samples of the 4-methyl-

benzenesulfonyl azide with masses of 0.0326 g, 0.0390 g, 0.0651 g, 0.0854 g, 

0.1190 g were dissolved in 1 mL of methanol.  A standard of 0.0427 g in 1 mL 

methanol was tested using the calibration curve.  The LC-UV gave a reading of 

0.0416 g which demonstrated the accuracy of the calibration curve. 

Hydrolysis of 4-methyl-benzenesulfonyl azide:  

 The 4-methyl-benzenesulfonyl azide (0.49g) was added to 10 mL water 

and 45 mL of methanol for the water hydrolysis experiment.  The sulfonyl azide 

(0.47 g) was added to 10 mL of sea water from Aldrich and 46 mL of methanol.  

Both solutions were in closed containers and wrapped in foil.  The solutions were 

stirred at the same rate at room temperature.  Periodically, a 0.5 mL aliquot was 

removed and analyzed on the LC-UV.  Both were allowed to stir for 75 days.  The 

results are shown in Figure A-8 and A-9.     

   

A.7 Reference 

(1) Anal. Chem 1982, 54, 846-847. 
(2) J. Org. Chem. 2005, 70, 2701-2707. 
(3) J. Org. Chem. 1984, 49, 683-687. 
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2 APPENDIX B: GREEN METABOLOMICS: SILYLATED AMINO 
ACIDS FOR SEPARATION ON SUPERCRITICAL FLUID 

CHROMATOGRAPHY 
 
 

 

B.1 Introduction 

 The detection of metabolites can be used as an early disease diagnostic 

tool.  Unfortunately, the detection of metabolites is an immature field with a small 

upper range in detection and identification.  Currently, GC-MS and LC-MS are 

used for metabolite detection but using SFC coupled with a MS detector could be 

a potentially superior method.  SFC has higher efficiency and resolution but is 

limited by the solubility of the metabolites.  The primary issue is the lack of 

solubility in scCO2 of the polar amino acids.  To make SFC a more useful 

detection tool, the methodology needs to be modified to increase the solubility of 

the polar amino acids.  This could be done by changing the amino acid itself or by 

changing the SFC mobile phase.  The addition of a silyl group to an amino acid 

has been shown to increase its solubility in scCO2.  The addition of a co-solvent 

or additive has been shown to modify the SFC mobile phase to increase the 

solubility amino acids.  In this project, I pursued both avenues of increasing the 

solubility of amino acids for use in SFC separations.  This project was done in 

collaboration with Dr. Fernandez.   
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B.2 Background 

B.2.1 Metabolites 

 The term metabolomics (or metabonomics) began being used in the 1990s 

to describe approaches to measure metabolites.1  Metabolites are the end products 

of cellular regulatory processes.  They are present within a cell, tissue, or 

organism during a genetic modification or physiological stimulus.1  Metabolomics 

can reflect the pathological state of various organs and can aid in the early 

detection of disease.  For example, metabolites are sensitive to a number of subtle 

genetic modifications including a silent mutation in yeast.1  However, metabolite 

identification and quantification has an upper range in the order of hundreds.  

Comparing metabolomics to the thousands of proteins that can be analyzed by 

proteomic approaches, illustrates that the study of metabolomics is a less mature 

field and that there is a need for an increase in the development in tools to identify 

and quantify metabolites.   

B.2.2 Supercritical Fluid Chromatography (SFC) 

 Currently, metabolites are analyzed using liquid chromatography-mass 

spectrometry (LC-MS) or gas chromatography-mass spectrometry (GC-MS).1  

These techniques are usually used in conjunction with pattern recognition.  

Metabolites currently rely heavily on chemical separation.  Supercritical Fluid 

Chromatography (SFC) separates molecules based on their volatility in 
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supercritical carbon dioxide (scCO2).  Using SFC for molecule separation instead 

of LC or GC has several advantages which include higher efficiency and higher 

resolution.2  In addition, the reduced use of organic solvents minimizes waste and 

undesirable interferences with the mass spectrometry analysis.  The current 

problem with SFC is that it has been traditionally limited to relatively non-polar 

compounds.2  The SFC mobile and stationary phases do not allow the separation 

of ionic species which limits its use to hydrophobic peptides.  The insufficient 

solubility of polypeptides has resulted in the SFC currently being limited to 

separating polypeptides less than 5000 Da.2  There are three methods that have 

been used to modify the SFC mobile phase to allow the more polar molecules to 

be separated.  The first method is to use a more polar pure fluid such as SO2 or 

N2O, rather than CO2.  Another method involves adding a polar organic solvent 

(known as a modifier) to increase the solubility in scCO2.  Lastly, a highly polar 

or ionic compound (known as an additive) can be added to the mobile phase.  The 

last example has been done using trifluoroacetic acid (TFA) in a CO2/methanol 

mobile phase to elute 40 mer peptides.  The TFA suppresses deprotonation of the 

peptide carboxylic acid and protonates the amino groups.2  An alternative to 

changing the SFC mobile phase through use of a different gas, a modifier, or an 

additive is to change the metabolite or peptide itself to increase its solubility in 

scCO2. 
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B.2.3 Increase Solubility in SFC 

 Several functional groups, when added to a compound, can increase the 

CO2 solubility of that compound.  Those functional groups, known as CO2-philic, 

are fluoroether, fluoroalkyl, fluoroacrylate, and siloxane.3,4  Currently, silyl 

groups have been added to increase the volatility of the 18 common amino acids 

in gas chromatography.5  After the addition of a silyl group, several hydroxy and 

amino compounds that were previously nonvolatile and unstable at 200-300ºC 

have been successfully chromatographed.  The silyl group makes these 

compounds more volatile by replacing hydrogens that participate in hydrogen 

bonding.  This replacement reduces the polarity of the compound and decreases 

the hydrogen bonding which increases the volatility.  The silyl group has been 

added and analyzed without product isolation using gas chromatography (GC), 

mass spectrometry (MS), or a combination of the two.  The silyl group that has 

been the most useful for GC and MS is t-butyldimethyl silyl.  This silyl is usually 

added to a hydroxide using chloro(dimethyl)t-butyl silane in the presence of a 

base such as imidazole and pyridine in a solvent such as N, N-dimethyl 

formamide (DMF).  Having the t-butyldimethyl silyl group is preferred over the 

trimethyl silyl group because the t-butyldimethyl silyl ether is more stable to 

alkaline conditions, to hydrogenolysis, and to solvolysis than the trimethyl silyl 

ether.5,6 
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B.3 Results and Discussion 

B.3.1 Synthesis of Silylated Amino Acid        

 The first step of this project was to synthesize an amino acid derivatized 

with silylation reagents.  Since the SFC only has a UV-Vis detector, I needed to 

synthesize a UV-Vis active molecule.  This meant that I was either limited to UV-

Vis active amino acids such as tyrosine and phenylalanine or was limited to 

silylation reagents containing a UV active group. 
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Figure B-2-1: Synthesis of p-[1 & 2-(1,1,3,3,3-pentamethyldisiloxane)-ethyl]-

benzyl chloride with isomers A & B shown 
 
 
 
 
I began the project using the same synthesis as was used in the siloxylated phase 

transfer catalyst (PTC) chapter.  First, I synthesized p-[1 & 2-(1,1,3,3,3-

pentamethyldisiloxane)-ethyl]-benzyl chloride from 4-vinylbenzylchloride and 

pentamethyldisiloxane using platinum(0)-1,3-divinyl-1,1,3,3-tetramethyl 
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disiloxane complex (3 wt % xylene) catalyst (Figure B-1) by the same procedure 

that I developed for the PTC project.6  I reacted the p-[1 & 2-(1,1,3,3,3-

pentamethyldisiloxane)-ethyl]-benzyl chloride with cysteine (5 equiv) in 

ethylacetate in the presence of a commercially available PTC, tetra-n-

butylammonium chloride (10 mol %) at 70ºC for 48 hours (Figure B-2).  No 

reaction was observed so triethylamine (0.1 mL) was added to act as an HCl 

scavenger and allowed to react for 5 days.  I observed a shift in the benzyl CH2 

peak from 4.6 to 5.1 ppm in the 1H NMR.  I tried a silica column with using ethyl 

acetate and hexane which was unsuccessful.    I reacted the p-[1 & 2-(1,1,3,3,3-

pentamethyldisiloxane)-ethyl]-benzyl chloride with lysine (5 equiv) in 

ethylacetate in the presence of a commercially available PTC, tetra-n-

butylammonium chloride (5 mol %) at 70ºC for 24 hours (Figure B-3).  I observed 

the same shift in the 1H NMR of the benzyl CH2 peak.  I tried a silica-gel column 

using ethyl acetate and hexane which was unsuccessful.  In addition, I became 

concerned that the benzyl group and siloxane chain may hinder the volatility of 

the amino acid because of the large molecular mass.  I decided to shift the focus 

to a procedure in the literature that used distillation for purification and had a 

lower molecular mass.   
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Figure B-2-2: Cysteine + benzylchloride disiloxane 
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Figure B-2-3: Lysine + benzylchloride disiloxane 
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 I moved on to a modification of a procedure found in the Journal of 

Organic Chemistry, which involved combining chloro(methyl)diphenyl silane 

with cyclohexyl-methanol in the presence of imidazole in DMF.7   
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Figure B-2-4: Synthesis of 2-amino-3-(methyl-diphenyl-silanyloxy)-propionic 
acid 

 

 

 I tried to add chloro(methyl)diphenyl silane (1.1 equiv) to serine 

methylester hydrochloride (1 equiv) with imidazole (2 equiv) as an HCl scavenger 

in DMF at room temperature.  GC-MS result of the crude product showed 70% 

conversion.  The procedure used distillation to purify the product, however, I was 

unable to remove all trace amounts of the starting material.  The starting material 

observed in the GC-MS was methyl-diphenyl-silanol which is formed from 

reaction between the chloro(methyl)diphenyl silane and water during the workup.  
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I also tried switching the limiting reagent to the chloro(methyl)diphenyl silane (1 

equiv) and use an excess of the serine (1.5 equiv) which could be removed by a 

water wash.  However, the GC-MS results still showed starting material, methyl-

diphenyl-silanol, so this route was abandoned. 

 I then decided to change the amino acid to an UV active amino acid and 

use a lighter, non-UV active silane.  I hypothesized that a lighter silane would 

offer a more facile removal and product purification. 
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Figure B-2-5: Synthesis of 3-[4-(t-butyl-dimethyl-silanyloxy)-phenyl]-2-
formylamino-propionic acid methyl ester 
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 I used chloro(dimethyl)t-butylsilane since it forms a siloxane bond that is 

stable in water.  I reacted L-tyrosine methylester hydrochloride (1 equiv), 

chloro(dimethyl)t-butylsilane (2.2 equiv), and imidazole (3.3 equiv) in DMF at 

room temperature for 5 days (Figure B-5).  I used a procedure modified from a 

JOCs paper that reacts chloro(dimethyl)t-butylsilane with N-(tert-

butoxycarbonyl)-L-tyrosine.8  The reaction was worked up like the literature 

procedure but a short silica plug was needed to purify the compound (90/10= 

CH2Cl2/EtOAc to remove the silyl impurity, then a 100% ethylacetate flush to 

obtain pure product).  The tyrosine was found to have reacted with the DMF 

resulting in a new compound (Figure B-5).  The modification of the amine is not 

expected to be a problem because this should increase the CO2-philicity and 

volatility in the SFC by decreasing the hydrogen bonding from the amine.   

B.3.2 Rebuilding the Supercritical Fluid Chromatograph (SFC) 

 There is a SFC in the laboratory, but over the years it has been modified 

for use as a makeshift analytical instrument in other types of experiments, such as 

Taylor-Aris Dispersion.  The focus of this stage of the project was to rebuild the 

chromatograph and optimize the conditions for the separation of amino acids.  

The details of the rebuilding of the SFC are contained in the theses of Michelle 

Kassner and Stuart Terrett.9,10 
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B.3.3 Preliminary results 

 Initial injections of small aromatic molecules such as toluene were made 

into the SFC in an effort to test the ability of the detector and column before the 

amino acids were introduced. The analytes were detected by the UV-Vis detector, 

but were also seen on subsequent injections of pure methanol. The prolonged 

recurrence of these compounds implied that the analyte was strongly retained on 

the column during the experiments.  Multiple injections of methanol were 

required to clean the column in preparation for another analyte injection.  Mixed 

injections of small aromatic molecules, such as toluene and acetophenone, were 

performed in an effort to observe a separation. No separation was observed with 

these molecules, and the issue of the strong retention remained. Because the 

column was designed for amino acids and peptides, it was postulated that the 

small size of the molecules being used was one of the underlying issues, and for 

all subsequent trials amino acids were used exclusively. 

 

B.3.3 Initial injection and analysis of amino acids 

 Siloxylated tyrosine and neutralized tryptophan were injected into the SFC 

both alone and as a mixture. Peaks in the UV-Vis spectrum were detected for each 

compound. In two separate trials, a small separation was seen between the 

siloxylated tyrosine and tryptophan amino acids that were injected. The peak sizes 

for both of these compounds were much smaller than expected, implying a lower 
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solubility of the amino acids in scCO2 than expected. This implied a disparity 

between the actual pressure through the column and detector and the pressure that 

was measured by our pressure transducer at the inlet. This led to a closer 

inspection of the flow path of the SFC. 

 

B.3.4 Further Investigation of SFC Flow Path 

 On further investigation, a second pressure gauge was added to the flow 

path at the outlet of the detector. This pressure gauge showed a pressure drop of 

approximately 1800 psi from the inlet, where the original pressure gauge is 

located, to the outlet. The outlet pressure of approximately 600 psig under these 

conditions demonstrated that the CO2 at the outlet was not supercritical and cast 

doubts on the exact conditions of the mobile phase both in the detector itself and 

in the column during the separation. An effort was made to increase the outlet 

pressure of the mobile phase by increasing the inlet pressure to the ISCO’s 

maximum pressure of 3500 psig and by eliminating as much tubing and as many 

valves as possible to reduce the pressure drop. These measures increased the 

outlet pressure to approximately 1000 psig; however, CO2 must be in excess of 

1400 psi to ensure sufficient density to assume that the solutes stay in solution 

(Figure B-6).11  
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Figure B-2-6: Density and phase behavior of carbon dioxide at 40ºC. 11 
 

 
 
 After the outlet pressure increased to 1000 psig, an existing leak in the 

UV-Vis flow cell became both visibly and audibly present. This leak accounts for 

a significant amount of the pressure drop, but its location in the window of the 

cell required extensive repair or the fabrication of a new detector assembly. 

 

B.3.5 Fabricating a new detector 

 A new detector was fabricated in lab using fiber-optic UV-Vis light 

sources and detectors.  The design was originally created by Dr. Frank Bright, 

who we have collaborated before. The fiber-optics was mounted in a stainless 
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steel cross valve capable of withstanding the pressure of scCO2, and the signal 

was monitored via a software program on a stand-alone computer. The fiber-optic 

cables was mounted along one axis of the cross valve while the scCO2 and 

analytes flowed across the other axis. This is diagrammed in Figure B-7. 

 
 

 

Figure B-2-7:  Schematic of the fiber-optic UV-Vis detector apparatus 
 
 
 
 The actual UV-Vis detector, which was attached to the light out line above 

to detect the intensity of UV-Vis radiation after it passed through the sample, was 

provided by Ocean Optics, as was the software used to monitor the intensity. 

 

B.3.6 Injection and analysis of amino acids with new detector 

Epoxied within Fiber Proximal Face 
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 As an initial test of our new detector, I combined L-boc-phenylalanine, 

siloxylated tyrosine, and tryptophan in methanol (2 mL).  Since this was only an 

initial test to determine if the cell was holding pressure, the mass of the amino 

acids was not measured.  As can be seen in the Figure B-8 below, I was able to 

see peaks in the UV-Vis spectrum.  After obtaining this spectrum, I had several 

questions to answer: 1) Why did the base line shift upwards for the 215 nm 

wavelength? 2) What are the concentrations? 3) Can full separation be achieved 

4) What is the eluation order? 

 

 

 

 
Figure B-2-8: UV-Vis results from injecting L-boc-phenylalanine, siloxylated 

tyrosine, and tryptophan 
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 I tested the various amino acids separately to determine the elution order 

and the cause of the upward base line shift.  Tryptophan (0.06 g in 1 mL of 

methanol) was run through the SFC and gave a small peak in the UV-Vis 

spectrum as can be seen in Figure B-9.  L-Boc-phenylalanine (saturated in 1 mL 

of methanol) was run through the SFC and gave a peak in the UV-Vis spectrum as 

can be seen in Figure B-10.  The peak was not well resolved and a trailing peak 

could be seen as time continued.  The peak in the UV-Vis spectrum took over 600 

seconds to return to the base line.  The lack of resolution and the upward baseline 

shift indicated that the L-boc-phenylalanine was “sticking” to the column.  I also 

ran the siloxylated tyrosine (0.07 g in 1 mL of methanol).  As can be seen in 

Figure B-11, the siloxylated tyrosine did not show a UV-Vis peak using only 

scCO2 but did show a UV-Vis peak with the methanol wash.  Since the 

absorbance was above 0.1, the concentration of the siloxylated tyrosine was 

reduced by half (0.035 g siloxylated tyrosine in 1 mL of methanol) and run again 

on the SFC.  As can be seen in Figure B-12, the initial injection using scCO2 did 

not give a UV-Vis peak.  However with a methanol wash, a UV-Vis peak was 

observed.  A second methanol wash also showed a UV-Vis peak.  These results 

demonstrated that the siloxylated tyrosine was “sticking” to the column.  Since 

the siloxylated tyrosine came off the column with a methanol wash, this seemed 

to indicate that a co-solvent was needed and that scCO2 may not solubilize the 

siloxylated tyrosine sufficiently.  Another possibility was that the amino acids 
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were interacting with the ethylpyridine-bonded silica stationary phase in the 

column.  The UV-Vis spectrum of the L-boc-phenylalanine indicated that either 

the lack of solubility scCO2 or interaction with the column was also a problem 

with non-polar amino acids.  Due to the lack of solubility of both the modified 

and non-modified amino acids, it was decided that a co-solvent or additive was 

necessary to continue with this project.  The addition of a co-solvent made the 

silylation of the amino acids unnecessary because the polar amino acids were 

adequately soluble in scCO2 and a co-solvent such as methanol. 

 

 

 

Figure B-2-9: Tryptophan UV-Vis spectrum on SFC 
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Figure B-2-10: L-Boc-phenylalanine UV-Vis spectrum on SFC 
 

 

 
Figure B-2-11: Silyl tyrosine UV-Vis spectrum on SFC 

 
 
 



 233

 
 

Figure B-12: Silyl-tyrosine (reduced concentration) UV-Vis spectrum on SFC 

B.5 Conclusions 

 In conclusion, a new silylated amino acid was successfully synthesized, 

purified, and characterized.  The amino acid chosen was a tyrosine, allowing for 

UV detection on the SFC and the silyl group chosen was a t-butyl dimethyl to 

form a relatively stable siloxane bond.  The rebuilding of the SFC was also a 

substantial and successful part of this project.  The most important aspect that 

changed on the SFC was a new detector fabricated in lab using fiber-optic UV-

Vis light sources and detectors.  After rebuilding the SFC, three amino acids, L-

boc-phenylalanine, tryptophan, and siloxylated tyrosine were injected and 

analyzed.  All three amino acids demonstrated a trailing peak in the UV-Vis 

spectrum which could indicate that the amino acids were “sticking” to the 

column.  This was also demonstrated by injecting methanol after the injection of 
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the siloxylated tyrosine which resulted in a peak in the UV-Vis spectrum.  These 

results led us to conclude that the system needed a co-solvent or additive to 

increase the solubility of the amino acids in scCO2.  Since the addition of a silyl 

group to an amino acid was to increase the solubility in scCO2, the need of a co-

solvent or additive makes the use of the silyl group redundant.  At this point the 

silylation of amino acids for analysis by SFC was stopped while the project 

continued to investigate the use of co-solvents for increasing the solubility of 

amino acids in the mobile phase.   

B.6 Experimental 

 All chemicals were ordered from Aldrich or VWR and used as received, 

unless noted.  1H and 13C NMR spectra were recorded using a Varian Mercury Vx 

400 spectrometer using residual CDCl3 peak as an internal reference.  GC-MS 

analysis was done on a Hewlett-Packard GC 6890/ Hewlett-Packard MS 5973 

equipped with a HP-5MS (Agilent, 5% phenyl-methylpolysilane) column or were 

performed by Georgia Institute of Technology Bioanalytical Mass Spectrometry 

Facility using a Micromass Quattro LC to perform ESI-MS.  Elemental analyses 

were submitted to Atlantic Microlabs, Inc. 

 

Synthesis of p-[1 & 2-(1,1,3,3,3-pentamethyldisiloxane)-ethyl]-benzyl chloride:6 
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 The 4-vinyl-benzyl chloride (5.0 g, 0.0337 mol) was added to heptane (20 

mL) and put under nitrogen.  The mixture was heated to 75ºC.  The catalyst 

platinum(0)-1,3-divinyl-1,1,3,3-tetramethyl disiloxane complex (3 wt% xylene) 

(DVDS-Pt) (1.7 g, 1 %wt) was added to the solution.  The pentamethyl disiloxane 

(5.75 g, 0.0388mol, 1.15 equiv) in 5 mL of heptane was added slowly.  The 

solution changed from a light yellow to a dark brown upon addition and the 

addition was stopped whenever the reaction temperature increased by more than 

2ºC.  After the addition was complete, the temperature was reduced to 70ºC and 

the reaction was heated for 3 hours.  After 3 hours, the reaction was allowed to 

cool to room temperature and was stirred overnight.  To work up the reaction, the 

heptane was removed under reduced pressure.  A column of silica gel in hexane 

was run and all the fractions combined.  The hexane was removed under reduced 

pressure to give a clear liquid.  Yield was 50%.     

p-[1 & 2-(1,1,3,3,3-pentamethyldisiloxane)-ethyl]-benzyl chloride: 1H NMR 

(CDCl3, ppm): 0.1 (15, m), 0.9 (2, m), 1.3 (2, m), 2.3 (2, m), 2.7 (2, m), 4.6 (2, s), 

7.2 (4, m).  13C NMR (CDCl3, ppm): 1.516-2.156, 20.39, 29.2533; 46.49, 129.42-

127.44, 134.50, 145.56.    MS(m/z): 300 (M+).  EA: calculated, C, 55.87%, H, 

8.41%.  Found, C, 55.82%, H, 8.41%.  

 

Synthesis of 2-amino-3-{4-[2-(1,1,3,3,3-pentamethyl-disiloxanyl)-ethyl]-

benzylsulfanyl}-propionic acid: 
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 Cysteine (0.33 g, 5 equiv) and tetra-n-butylammonium chloride hydrate 

(0.014 g, 10 mol%) were added to ethylacetate (3 mL).  The solution was put 

under nitrogen.  p-[1 & 2-(1,1,3,3,3-Pentamethyldisiloxane)-ethyl]-benzyl 

chloride (0.3 mL) was added and the solution was heated to 70ºC for 48 hours.  

The reaction was tested by 1H NMR and no reaction was observed.  Triethylamine 

(0.1 mL) was added as an HCl scavenger and let run 5 more days until reaction 

was observed to be complete by 1H NMR.  To work up the reaction, the excess 

cysteine was filtered off.  The organic phase was washed with water three times 

and dried over magnesium sulfate.  The solvent was removed under reduced 

pressure.  The benzyl CH2 peak appears to have shifted from 4.6 to 5.1 ppm in the 

1H NMR.  However, I was unable to isolate the product by a silica gel column 

using 50/50 EtOAc/Hex and flushing using 100% hexane, 100% ethylacetate, and 

100% methanol.  

 

Synthesis of 2-amino-6-{4-[2-(1,1,3,3,3-pentamethyl-disiloxanyl)-ethyl]-

benzylamino}-hexanoic acid: 

 
p-[1 & 2-(1,1,3,3,3-Pentamethyldisiloxane)-ethyl]-benzyl chloride (1.2 mL) was 

added to ethylacetate (12 mL) and put under nitrogen.  L-Lysine hydrate (1.6 g, 5 

equiv) and tetra-n-butylammonium chloride (0.0494 g, 5 mol %) were added.  

The reaction was heated to 70ºC overnight.  To workup the reaction, the lysine 
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was removed by filtration.  The organic phase was washed with water three times 

and dried over magnesium sulfate.  The solvent was removed under reduced 

pressure.   The benzyl CH2 peak appears to have shifted from 4.6 to 5.1 ppm in 

the 1H NMR.  However, we were unable to isolate the product by a silica column 

using a 25/75 hexane and ethylacetate. 

 

Synthesis 2-amino-3-(methyl-diphenyl-silanyloxy)-propionic acid (Figure 6-4):  

 Serine methylester hydrochloride (0.5 g, 1 equiv) was dissolved in DMF 

(4 mL).  Imidazole (0.4 g, 2 equiv) and chloro(methyl)diphenylsilane (0.8 g, 1.1 

equiv) were added.  The reaction was put under nitrogen and stirred overnight at 

room temperature.  To work up the reaction, water (25 mL) was added to the 

reaction.  The water was extracted with ether (3 x 50 mL).  The ether layers were 

combined, washed with saturated aqueous NaCl, and dried over magnesium 

sulfate.  The solvent was removed under reduced pressure.  GC-MS showed 70% 

product, 2-amino-3-(methyl-diphenyl-silanyloxy)-propionic acid, (13 min) and 

30% starting material, chloro(methyl)diphenylsilane which becomes methyl-

diphenyl-silanol after a water wash.   The product and starting material mixture 

were distilled at 250ºC using vacuum.  The majority of the starting material was 

removed from the product but trace amounts of starting material could not be 

removed.   



 238

 Different ratios were used of the starting materials to make the 

chloro(methyl)diphenylsilane the limiting reagent since it was difficult to remove 

and the excess serine can be removed by a water wash.  Serine methylester 

hydrochloride (0.4 g, 1.5 equiv) was dissolved in DMF (6 mL) and put under 

nitrogen.   Imidazole (0.3 g, 2 equiv) and chloro(methyl)diphenylsilane (0.5 mL, 1 

equiv) were added.  The reaction was put under nitrogen and stirred overnight at 

room temperature.  To work up the reaction, water (25 mL) was added to the 

reaction.  The water was extracted with ether (3x50 mL).  The ether layers were 

combined, washed with saturated aqueous NaCl, and dried over magnesium 

sulfate.  The solvent was removed under reduced pressure.  The GC-MS still 

showed the starting material, methyl-diphenyl-silanol, so this route was 

abandoned. 

 

Synthesis of 2-amino-3-(4-trimethylsilanyloxy-phenyl)-propionic acid methyl 

ester: 

 L-tyrosine methylester hydrochloride (1.4 g, 1.5 equiv) was dissolved in 

DMF (6 mL).  Imidazole (0.5 g, 2 equiv) and chlorotrimethyl silane (0.5 mL, 1 

equiv) were added.  The reaction was put under nitrogen and stirred overnight at 

room temperature.  To work up the reaction, water (25 mL) was added to the 

reaction.  The water was extracted with ether (3 x 50 mL).  The ether layers were 

combined, washed with saturated aqueous NaCl, and dried over magnesium 
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sulfate.  The solvent was removed under reduced pressure.  Concern over the 

stability of the siloxane group in water caused us to try a different silane.  

 

Synthesis of 3-[4-(t-butyl-dimethyl-silanyloxy)-phenyl]-2-formylamino-propionic 

acid methyl ester  

 L-tyrosine methylester hydrochloride (0.5 g, 1 equiv) was dissolved in 

DMF (10 mL).  Chlorodimethyl t-butyl silane (0.7 g, 2.2 equiv) and imidazole 

(0.5 g, 3.3 equiv) were added.  The reaction was put under nitrogen and stirred at 

room temperature for 5 days.  The reaction solution turned yellow.  To work up 

the reaction, ether (40 mL) was added and was washed with water (5 x 50 mL).  

The organic phase was dried over magnesium sulfate and the solvent was 

removed under reduced pressure.  A silica gel plug of 90/10=CH2Cl2/EtOAc was 

used to remove the silyl impurity.  A 100% ethylacetate flush of the silica gel plug 

eluted the pure product, as a yellow oil (32% yield) without optimization. 

3-[4-(t-Butyl-dimethyl-silanyloxy)-phenyl]-2-formylamino-propionic acid methyl 

ester: 1H NMR (CDCl3, ppm): 0.18 (s, 6H), 0.97 (s, 9H), 3.1 (d, 2H), 3.73 (s, 3H), 

4.9 (m, 1H), 6.05 (s, 1H), 6.7 (d, 2H), 6.9 (d, 2H), 8.1 (s, 1H).  13C NMR (CDCl3, 

ppm): -4.46, 18.16, 25.62, 36.99, 51.86, 52.41, 120.19, 127.93, 130.22, 154.88, 

160.38, 171.57. MS(m/z): 338.0  EA: calculated C, 60.50%, H, 8.06%, N, 4.15%.  

Found C, 60.37%, H, 8.22%, N, 3.99%. 
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Experiments on SFC: 

 The separation column was a SFC 2-ethylpyridine column (150 mm 

length, 5 µm particle size, 4.6 mm ID) purchased from Princeton 

Chromatography.  L-Boc-phenylalanine, siloxylated tyrosine, and tryptophan 

(neutralized) were added to methanol (2 mL) and run on the SFC to determine if a 

UV-Vis spectrum can be obtained.  Tryptophan (0.06 g) was added to methanol (1 

mL) and run on the SFC to obtain a UV-Vis spectrum.  L-Boc-phenylalanine was 

added to methanol (1 mL) to the saturation point and run on the SFC to obtain a 

UV-Vis spectrum. 

 Siloxylated tyrosine (0.07g) was added to methanol (1 mL) and run on the 

SFC to obtain a UV-Vis spectrum.  Siloxylated tyrosine (0.035 g) was added to 

methanol (1 mL) and run on the SFC to obtain a UV-Vis spectrum.  The 

concentration was reduced by half because the absorbance was higher than the 

linear range of the UV-Vis detector.  Once the absorbance gets over 0.1, it 

becomes exponential and becomes hard to model.   
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