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+) are the fraction of the total (gas+particle) in the 
particle phase. For the data, a narrow range in 𝑊𝑊𝑖𝑖 (1-4 μg m-3) 
and T (-5 < T < 5 °C for T = 0 °C, 15 < T < 25 °C for T = 20 
°C) data were selected to be close to the analytical calculation 
input (i.e., 𝑊𝑊𝑖𝑖  = 2.5 μg m-3 and various T). For analytical 
calculations (S curves), 𝛾𝛾𝐻𝐻+𝛾𝛾𝑁𝑁𝑁𝑁4+  = 1 was applied; 
ISORROPIA-II predicted 𝛾𝛾𝐻𝐻+𝛾𝛾𝑁𝑁𝑁𝑁3−  0.06 (WINTER) and 
0.084 (CalNex 0.084, SOAS 0.078, SENEX 0.068) were used. 133 

Figure 5-1 Evaluation of the thermodyamic model. Comparison of 
measured NH3 to ISORROPIA-II predicted concentrations. 
Data are from SOAS (i.e., SEARCH CTR site) for 
measurements between June 11 and June 23 2013. NH3 was 
measured via a Chemical Ionization Mass Spectrometer 
(CIMS) [You et al., 2014a]. Orthogonal regression and the 
uncertainty in the measured NH3 1hr-avg data (10%) are 
shown. Fit parameter uncertainties are for 95% confidence 
intervals. The good agreement validates the model predictions 
of pH. 140 

Figure 5-2 Sensitivity of PM2.5 pH and RSO4 to gas phase ammonia (NH3) 
and PM2.5 sulfate (SO4

2-) concentrations. RSO4 is (NH4
+ − NO3

-

)/SO4
2- in unit of mol mol-1. The results are predictions from a 

thermodynamic analysis assuming equilibrium between the 
gas and particle phases for typical summer conditions in the 
southeastern US. Boxes define estimated concentration ranges 
over the previous 15 years and ranges expected in the future.  147 

Figure 5-3 Mean summer (June-Aug) trends in PM2.5 composition, NH3, 
RSO4, and predicted PM2.5 pH at the SEARCH-CTR site. NH3 
data are from the SEARCH rural sites Centreville (CTR, 
Alabama) and Oak Grove (OAK, Mississippi) and AMoN 
Georgia Station (GAS, Georgia) site. SOAS mean data (June 
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1 to July 15 2013) are also plotted. Error bars represent data 
ranges (standard errors). pH was estimated with ISORROPIA-
II run in the forward mode without gas phase species input, 
resulting in pH systematically low by approximately one unit  
[Guo et al., 2015]. Uncertainties: ions ± 15%, molar ratios ± 
26%, NH3 ± 15 to 40%. 

Figure 5-4 Predicted pH versus sulfate as a function of changes in 
concentrations of cations other than ammonium.  In this 
sensitivity analyses, NO3

- and Cl- are unchanged at 0.08 and 
0.02 µg m-3, respectively.  Na+, originally at 0.03 µg m-3 is 
increased by factors of 2 and 4.  The plot shows that the 
decrease in molar ratio (RSO4 = (NH4

+ − NO3
-)/SO4

2-) at lower 
sulfate is related to the other nonvolatile cations associating 
with sulfate. Note that even at significantly higher nonvolatile 
cation levels internally mixed with fine particles, pH remains 
below 1 until sulfate drops below roughly 0.3 µg m-3. 150 

Figure 5-5 Fraction of total nitric acid in the particle phase.  The 
partitioning of nitric acid between the condensed (NO3

-) and 
gas phase (HNO3), ε(NO3

-) = NO3
-/(NO3

- + HNO3), as a 
function of pH, assuming ideal solutions (activity coefficients 
of 1) for the average summer conditions during SOAS. The 
figure shows little nitrate aerosol when pH is below 
approximately 3, the pH observed in the southeastern US in 
the past and expected in the future. Lower temperatures shift 
the curve to the left, accounting for possibly higher ε(NO3

-) in 
colder seasons. 150 

Figure 6-1 Time series of various measured and ISORROPIA-predicted 
parameters and PM2.5 component concentrations for a select 
period of the SOAS study, with periods of rainfall removed. 
Thn charge balance (Na+ = 2SO4

2- + NO3
- + Cl- − NH4

+, μmol 
m-3; mean value of 0.28 ± 0.18 μg m-3) in green, measured Na+ 
blue, and zero Na+ in purple. All other inputs were the same. 
Na+ represents generic nonvolatile cations (NVC). Specific 
plots are as follows: (a) total ammonium (NHx = NH4

+ + NH3) 
to sulfate molar ratio (NHx/SO4

2-), (b) aerosol ammonium-
sulfate ratios (R = NH4

+/SO4
2-), (c) Na+ and NO3

-, (d) SO4
2-, 

(e) NH3, (f) NH4
+, (g) particle-phase fractions of total 

ammonium, ε(NH4
+), and (h) particle pH. 164 

Figure 6-2 Comparisons of predicted and measured particle phase 
fractions of total ammonium, ε(NH4

+) = NH4
+/(NH3 + NH4

+), 
for data from the 12-days of the SOAS study. NH4

+ was 
measured with a PILS-IC (PM2.5 cut size) and NH3 from a 
CIMS. (a) Prediction is based on an ISORROPIA input of 
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measured Na+, (NH4
+ + NH3), SO4

2-, NO3
-, Cl-; (b) Model 

input identical to (a), except that Na+ is set to zero; (c) Same 
model input, but Na+ inferred from an ion charge balance. 
Orthogonal distance regression (ODR) fits are shown and 
uncertainties in the fits are one standard deviation (SD). The 
uncertainty of measured ε(NH4

+) is derived from error 
propagation of NH4

+ (15%) and NH3 (6.8%) measurements. 
The best prediction of NH3-NH4

+ partitioning is achieved by 
using measured Na+ as input for the least deviation from a 1:1 
line. 

Figure 6-3 Comparison between ISORROPIA-predicted and PILS-IC-
measured PM2.5 R (RSO4 = NH4

+/SO4
2-, mol mol-1), where the 

model predictions are based on NVC-NH4
+-SO4

2--NO3
--Cl- 

system for the SOAS study. NVC (nonvolatile cation) was 
determined by an ion charge balance (color wave), that is, 
(2SO4

2- + NO3
- + Cl- − NH4

+) in units of μmol m-3. This results 
in 200% mole-equivalent concentrations of Na+ and K+ 
compared to Ca2+ and Mg2+ due to +1 versus +2 charges. 
NH4

+, SO4
2-, NO3

-, Cl- are observed PILS-IC mass 
concentrations. For each graph, NVC is set to be a single ion, 
shown as (a) Na+, (b) K+, (c) Ca2+, (d) Mg2+. Adding Na+ or 
K+ or Mg2+ results in predicted R (generally underpredicted) 
agreeing better with measured R, compared to predicted R 
equal or close to 2 with zero NVC input. Ca2+ doesn’t work at 
all as it precipitates out from the aqueous phase as CaSO4. The 
solubility of CaSO4 is only 0.2 g per 100 mL water at 20 °C. 
The average predicted particle liquid water Wi  (3.0 μg m-3) 
could only dissolve 0.006 μg m-3 Ca2+, a tenfold lower amount 
than the inferred Ca2+ of 0.23 μg m-3 from an ion charge 
calculation. ODR fits are shown and uncertainties in the fits 
are one SD. 169 

Figure 6-4 Effect of nonvolatile cations (NVC) on the PM2.5 ammonium-
sulfate molar ratio (R) and pH as a function of measured Na+ 
and organic aerosol (OA) concentrations. The orange circular 
points in plots (a) and (b) are for ΔR equal to ISORROPIA 
predicted R with measured Na+ included in the model input 
minus ISORROPIA predicted R without Na+ in the model 
input. ΔpH in plot (c) is determined in a similar way. The grey 
diamonds in plots (a) and (b) are for ΔR equal to the actual 
measured R minus 2. Note that ΔR should be negative since 
including Na+ in the thermodynamic model results in R lower 
than 2, whereas not including Na+ results in an R close to 2 (on 
average R predicted without Na+ is 1.97±0.02), a measured R 
is generally less than 2. Plot (a) is ΔR versus measured Na+, 
(b) ΔR versus measured OA mass fraction, and (c) ΔpH versus 
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measured Na+. Orthogonal distance regression (ODR) fits are 
shown and uncertainties in the fits are one standard deviation. 
A plot similar to (b), but versus OA mass concentration can be 
found as Figure 6-5 

Figure 6-5 Effect of nonvolatile cations (NVC) on the PM2.5 ammonium-
sulfate molar ratio (R) as a function of measured organic 
aerosol (OA) concentrations based on AMS data (SOAS). The 
orange circular points denote ΔR calculated from ISORROPIA 
predicted R with measured Na+ included in the model input 
minus ISORROPIA predicted R without Na+ in the model 
input. Grey diamonds are for ΔR equal to measured R minus 
2. Note that ΔR should be negative since including Na+ in the 
thermodynamic model results in R lower than 2, whereas not 
including Na+ results in an R close to 2 (on average R predicted 
without Na+ is 1.97 ± 0.02). 172 

Figure 6-6 Comparison between PM1 ISORROPIA-predicted RSO4 and 
AMS-measured RSO4 (RSO4 = (NH4

+ − NO3
-)/SO4

2-) (mol mol-

1), where the ISORROPIA-prediction is based on (a) NH4
+-

SO4
2--NO3

- aerosol and (b) Na+-NH4
+-SO4

2--NO3
- aerosol 

constrained by HNO3. All measurement data are from the 
WINTER study. NVC was determined by an ion charge 
balance with the molar concentration shown as the color wave. 
For this data, the average predicted Na+ concentration is 0.15 
μg m-3, comparable to the offline PILS fraction collector IC-
measured PM1 Na+ of 0.23 μg m-3. The one SD uncertainty 
range for the measured RSO4 is shown as gray error bars. The 
data points with low SO4

2- levels (<0.2 μg m-3; 9% of the total 
points) were excluded for high uncertainties. In both plots, the 
molar ratios are zero when concentrations of NH4

+ are near 
zero and NVC concentrations highest. In plot (a), as molar 
ratios approach 2, predicted NVC levels drop, but the effect of 
not including them in the thermodynamic model results in 
larger deviations in predicted versus measured RSO4. Error bars 
also increase due to subtraction of higher concentrations of 
nitrate and thus more subject to measurement error. As with 
the SOAS data, including NVC in the model results in 
agreement between predicted and measured ammonium-
sulfate molar ratios. 175 

Figure 6-7 Comparison between ISORROPIA-predicted and AMS-
measured PM1 RSO4, where the model predictions are based on 
NVC-NH4

+-SO4
2--NO3

-(-Cl-) system for the WINTER study. 
NVC (nonvolatile cation) was determined by an ion charge 
balance (color wave), that is, (2SO4

2- + NO3
- − NH4

+) in units 
of μmol m-3. This results in 200% mole-equivalent 
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concentrations of Na+ and K+ compared to Ca2+ and Mg2+ due 
to +1 versus +2 charges. NH4

+, SO4
2-, NO3

- are observed AMS 
mass concentrations. For each graph, NVC is set to be a single 
species, including (a) Na+, (b) K+, (c) Ca2+, (d) Mg2+. For K+, 
Ca2+, and Mg2+, the assumed trace amount of total chloride 
(0.01 μg m-3) doesn’t perturb normal calculations of pH or 
HNO3-NO3

- partitioning at all for only 0.0012 μg m-3 Cl- (12% 
of total chloride) predicted in the aerosol, but eliminates 
potential model errors. (Note that, Cl- is only assumed for 
ISORROPIA input but not included in the charge balance 
calculation. The predicted 0.0012 μg m-3 Cl- is negligible 
compared to NH4

+, SO4
2-, and NO3

-.) Adding Na+ and K+ 
results in predicted RSO4 agreeing with measured RSO4. Mg2+ 
also results in closer agreement, although some points deviate. 
Ca2+ doesn’t work at all as it precipitates out from the aqueous 
phase as CaSO4. The solubility of CaSO4 is only 0.2 g per 100 
mL water at 20 °C. An approximate calculation on CaSO4 
solubility shows that the average predicted particle liquid 
water Wi (2.0 μg m-3) could only dissolve 0.004 μg m-3 Ca2+, 
a tenfold lower amount than the inferred Ca2+ of 0.13 μg m-3 
from an ion charge calculation. ODR fits are shown and 
uncertainties in the fits are one SD. 

Figure 6-8 Predicted particle pH and molar ratios as a function of Na+, R 
= NH4

+/SO4
2- for SOAS and RSO4 = (NH4

+ − NO3
- )/SO4

2- for 
WINTER. In this sensitivity analyses, all model inputs are 
kept constant as the average SOAS or WINTER conditions 
and only Na+ concentration varies. For the SOAS 12-day 
period (June 11-23) ISORROPIA-II inputs are: 2.03 μg m-3 
SO4

2-, 1.14 μg m-3 (NH3 + NH4
+), 0.23 μg m-3 NO3

-, 0.03 μg 
m-3 Cl-, zero K+, Ca2+, Mg2+, and 68% RH, 298.2 K T. For the 
WINTER study, the inputs are: 1.02 μg m-3 SO4

2-, 0.50 μg m-

3 NH4
+, 2.21 μg m-3 (HNO3 + NO3

-), zero Cl-, K+, Ca2+, Mg2+, 
and 58% RH, 272.1 K T. Average inferred Na+ concentrations 
from the ion charge balance were 0.28 μg m-3 for SOAS and 
0.15 μg m-3 for WINTER, shown as the vertical dashed lines. 
In comparison, average measured Na+ was 0.06 μg m-3 in 
SOAS and 0.23 μg m-3 in WINTER. ODR fits are shown and 
uncertainties in the fits are one SD. Since the pH response to 
Na+ in the SOAS study becomes nonlinear above 0.6 μg m-3 
Na+, the fit is only applied to the range below. Ranges in pH 
and molar ratios (R and RSO4) in the eastern U.S. are shown as 
the purple marks. 179 

Figure 6-9 S curves illustrate the nonlinear response in particle phase 
fraction, ε(NH4

+) or ε(NO3
-), to variation in pH: (a) ε(NH4

+) 
and (b) ε(NO3

-) plotted vs. pH. The two S curves are calculated 
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based on T = 20 °C, particle liquid water level = 5 µg m-3, and 
ideal solution (i.e. γ = 1). The S curve equations can be found 
at Guo et al. [2017a]. Non-ideality only shifts the S curves but 
does not change the shapes. The 0.3 unit pH (SOAS) and 0.5 
unit pH (WINTER) variations (biases) are the upper limit 
values based on the difference between zero and inferred Na+ 
inputs (Figure 6-8) and indicated by paired red and blue sticks, 
respectively. The response of ε(NH4

+) or ε(NO3
-) to pH 

reaches maximum at 50% ε(NH4
+) or ε(NO3

-) (i.e., position 
(2), 0.3 unit pH change causes ~20% or 0.5 unit pH change 
causes ~30% shift in the particle phase fraction), but down to 
nearly zero when 100% or 0% ε(NH4

+) or ε(NO3
-) (e.g. 

position (1) or (3)). 

Figure 6-10 Mean summer (June–August) trends in (a) measured and 
predicted RSO4, (b) predicted PM2.5 pH, and (c) inferred Na+ 
(from ion charge balance of Na+-NH4

+-SO4
2--NO3

- aerosols) 
concentration and mole fraction at the SEARCH-CTR site. 
Model input includes the observational PM2.5 composition 
data (NH4

+, SO4
2-, NO3

-) and meteorological data (RH, T) at 
CTR. RSO4 and pH were estimated with ISORROPIA-II run in 
forward mode with an assumed NH3 level of 0.36 μg m-3, the 
mean concentration from the SOAS study (CTR site, summer 
2013), due to limited NH3 data before 2008. Historical NH3 
mean summer concentration at CTR were 0.2 μg m-3 (2004-
2007) [Blanchard et al., 2013] and 0.23 ± 0.14 μg m-3 (2008-
2013) [Weber et al., 2016]. 41 out of the total 609 (7%) daily 
mean RSO4 were observed above 3 due to measurement error, 
above the upper limit of RSO4 = 2, therefore, excluded in the 
model input. Error bars represent daily data ranges (SD). 
Linear regression fits are shown and uncertainties in the fits 
are one SD. In (a), based on regression slope, the observed 
RSO4 trend was –0.021 ± 0.007 at CTR versus a predicted value 
of –0.017 ± 0.006 unit yr-1 for ISORROPIA run with Na+ from 
the charge balance, and –0.003 ± 0.001 unit yr-1 for a constant 
Na+ of 0.03 μg m-3, used by Weber et al. [2016]. These results 
are consistent with the reported RSO4 trend of  –0.01 to –0.03 
yr-1 reported by Hidy et al. [2014] for SEARCH data set. In 
(b), the pH predictions with inferred Na+ or with limited Na+ 
of 0.03 μg m-3 shows a fairly stable PM2.5 pH in the last 15 
years. In (c), the inferred Na+ shows a general decreasing trend 
while the inferred Na+ mole fraction stays relatively stable 
around 15% (± 4%). 183 
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Figure 6-11 Comparison of the measured and predicted RSO4 (with inferred 
Na+ as input), summer means at CTR, as shown in the Figure 
6-10. 184 

Figure 7-1 Comparisons of predicted and measured NH3, NH4
+, ε(NH4

+) 
(ammonium particle phase fraction, NH4

+/(NH4
+ + NH3)), 

NO3
- for metastable mode (left: a-d) and stable mode (right: e-

h) runs in ISORROPIA-II. Data input are the average 
aerosol&gas concentrations and RH&T reported in Wang, et 
al. (8) (Table S1&S2) for Beijing (BJ) and Xi’an (XA) for 
clean, transition, and polluted periods. For HNO3-NO3

- 
partitioning, only NO3

- is plotted for lack of HNO3 data, which 
is predicted to be < 1% of NO3

- on condition of high pH in BJ 
and XA. Orthogonal distance regression (ODR) fits are shown 
and uncertainties in the fits are one standard deviation. 
Measurement uncertainties are shown as error bars. Since the 
Wang et al. [2016] and related papers didn’t specify the 
measurement uncertainties, a typical 35% AMS measurement 
uncertainty was used for Beijing PM1 data [Bahreini et al., 
2009], and a 10% measurement uncertainty assumed for Xi’an 
PM2.5 data based on the MARGA methodology [Makkonen et 
al., 2012; Rumsey et al., 2014]. NH3 was measured by 
MARGA in Beijing and Xi’an. According to Rumsey et al. 
[2014], an 23% measurement uncertainty is assumed for NH3. 
The uncertainties in ε(NH4)+ are calculated based on error 
propagation of the NH3 and NH4

+ measurements. 191 

Figure 7-2 Sensitivity of PM1 pH to gas-phase ammonia (NH3) and PM1 
sulfate (SO4

2-) concentrations. The results are predictions from 
a thermodynamic analysis assuming equilibrium between the 
gas and particle phases for typical winter conditions (RH = 
58%, T = 273.1K) in (a) the eastern U.S. with low total NO3

- 
(HNO3 + NO3

-) concentrations, 2.2 µg m-3, and (b) Beijing 
haze pollution periods with high total NO3

-, 26 µg m-3. Boxes 
define observed concentration ranges for the eastern U.S. and 
Beijing and open symbols represent mean NH3 and SO4

2- 
conditions. Average total NO3

- for eastern U.S., Beijing (BJ) 
clean, BJ transition, BJ polluted were 2.2, 6.6, 18, 26 μg m-3, 
respectively. Since total NO3

- during Beijing clean and 
transition periods were 6.6 µg m-3 and 18 µg m-3, respectively, 
graph (a) better represents the Beijing clean period and graph 
(b) better for the Beijing transition period. 195 

Figure 7-3 Equilibrium particle pH versus a wide range of ammonia 
(NH3) based on average aerosol and meteorological conditions 
(RH, T) at each site. The open symbols are the study mean pH 
and NH3, and shaded backgrounds show the upper limit of the 
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pH range for each study (shading color matches color of study 
line given in the legend). Note that Xi’an polluted and 
WINTER PM1 lines overlap showing inherent consistency 
between the two (also true for Beijing). For the WINTER 
study (the only aircraft data shown), the point represents a 
predicted NH3 level 0.1 μg m-3 (pH = 2), whereas the reported 
campaign average pH (0.8 ± 1.0) is lower due to lower pH 
aloft. 

Figure 7-4 Aqueous phase sulfate production by sulfur dioxide oxidation 
under characteristic conditions adapted from Cheng et al. 
[2016] and plotted with pH ranges calculated in this study. 
Lines represent sulfate production rates calculated for 
different aqueous phase reaction pathways with oxidants: 
hydrogen peroxide (H2O2), ozone (O3), transition metal ions 
(TMIs), and nitrogen dioxide (NO2). The gray-shaded area 
indicates characteristic pH ranges for aerosols during severe 
haze episodes in Beijing, calculated in this study. These 
conditions are contrasted to the lower pH of eastern US 
aerosol. The plot shows the NO2 pathway (red line) is not the 
main route for sulfate production. 205 

Figure A-1 A linear regression fit of measured RH vs. theoretical RH. 210 

Figure A-2 Predicted PM2.5 dry density diurnal profile. Median hourly 
density averages and standard error bars at local hour are 
plotted. 213 

Figure A-3 𝑔𝑔𝑔𝑔𝐷𝐷 plotted as a function of ambient RH based on the SOAS 
data set. 214 

Figure A-4 (a) A single spherical particle scattering efficiency (𝑄𝑄𝑠𝑠) over 
PM2.5 size range at λ = 530 nm; (b) 𝑄𝑄𝑠𝑠  ratio 
(𝑄𝑄𝑠𝑠,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎������������� 𝑄𝑄𝑠𝑠,𝑑𝑑𝑑𝑑𝑑𝑑��������� ) plotted versus 𝑔𝑔𝑔𝑔𝐷𝐷 for the average SOAS 
dry size distribution reported by Nguyen et al. [2014b]. 217 

Figure A-5 Comparison between 𝑓𝑓(𝑅𝑅𝑅𝑅)_water (Equation A-8) and LWC 
calculated based on 𝑄𝑄𝑠𝑠,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎������������� 𝑄𝑄𝑠𝑠,𝑑𝑑𝑑𝑑𝑑𝑑���������  at specified 𝑔𝑔𝑔𝑔𝐷𝐷 
(Equation A-10). ODR fits are shown. 218 

Figure A-6 𝑄𝑄𝑠𝑠,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎������������� 𝑄𝑄𝑠𝑠,𝑑𝑑𝑑𝑑𝑑𝑑���������  and LWC error are plotted as a function of 
RH. The size RH points (28.6%, 56.6%, 71.6%, 76.4%, 
82.8%, 92.0%) noted on the graph corresponds to 𝑔𝑔𝑔𝑔𝐷𝐷 = 1, 1.1, 
1.2, 1.24, 1.3, and 1.4, respectively. 218 
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Figure A-7 𝜅𝜅𝑜𝑜𝑜𝑜𝑜𝑜 diurnal variation. Median averages are plotted at local 
hours. 219 

Figure A-8 Filter-based campaign averaged inorganic composition in 
PM2.5 at SCAPE and SOAS sampling sites. The mean total 
concentrations of the listed ions are labeled to the right top of 
each PI chart. Filter sampling, each 23hrs, was parallel to 
AMS measurement. JST June 2012 is plotted instead of May 
2012 due to lack of filter data during this period. 220 

Figure B-1 Sulfate and nitrate comparisons between PM1 PILS-IC, PM1 
PILS with fraction collector, PM1 AMS, and PM4 filters for 
the complete WINTER study. Orthogonal distance regression 
fits are shown. 222 

Figure B-2 Comparison between AMS and PILS-IC NO3
- for the 

complete WINTER study at three RH ranges: (a) 20-40%; (b) 
40-60%; (c) 60-95%. Orthogonal distance regression fits are 
shown. Note that, the axis range in figure (a) is smaller. 223 

Figure B-3 Comparisons of stable (solid+liquid) aerosols vs. metastable 
(liquid) aerosol assumptions for predicted HNO3 (nitric acid), 
(NO3

-) (nitrate), and ε(NO3
-) (particle nitrate fraction of total 

nitrate) with data from the complete WINTER study: (a-c) 
PILS-IC anion with scaled AMS NH4

+ input; (d-f) AMS input. 224 

Figure B-4 Comparisons between predicted and measured ε(NO3
-) with 

data from the complete WINTER study (AMS aerosol data 
only) for different ambient RH ranges: (a) 20-40%; (b) 40-
60%; (c) 60-95%. 225 

Figure B-5 Predicted versus measured partitioning of nitrate as a function 
of total nitrate concentration (HNO3 + NO3

-) from the 
complete WINTER study. This figure can be contrasted with 
Figure 2f in the main text, which is similar, but shows the RH 
dependence. 225 

Figure B-6 Comparison between “AMS inorgNO3
-” and “AMS NO3

-” 
(i.e. complete WINTER data set). ODR fit is shown. 226 

Figure B-7 Comparisons of predicted and measured HNO3, NO3
-, and 

ε(NO3
-) with data from the complete WINTER study using 

AMS inorgNO3
-. ODR fits are shown. This plot is compared 

to Figure 3-2 in the text. 227 
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Figure B-8 Times series of WINTER Flight 6 PILS fraction collector 
NaCl mole fraction (NaCl to total input moles), Na+, Cl-, SO4

2-

, and predicted pH with and without NaCl. 228 

Figure B-9 Predicted particle pH as a function of assumed Na+ and Cl- 
mass loadings at the WINTER average condition of SO4

2- = 
1.02 µg m-3, NH4

+ = 0.50 µg m-3, (NO3
- + HNO3) = 2.21 µg m-

3, K+ = Ca2+ = Mg2+ = 0 µg m-3, RH = 57.5%, T = 272.1 K. 
ISORROPIA-II was run in forward mode. The field campaign 
average Na+ and Cl- mass loadings from PILS fraction 
collector and filter are labeled in the graph. Note that, PILS-
IC Cl- (0.07 ± 0.11 µg m-3) and AMS Cl- (0.02 ± 0.04 µg m-3) 
are much smaller than filter Cl- (0.69 ± 1.60 µg m-3). 229 

Figure B-10 Comparisons of predicted and measured HNO3, NO3
-, and 

ε(NO3
-) with the complete WINTER data when both Na+ and 

Cl- were above LOD: (a-c) AMS input (NH4
+, NO3

-, SO4
2-); 

(d-f) AMS input with PILS fraction collector Na+ and Cl- 
added. Orthogonal distance regression fits are shown. 231 

Figure B-11 Predicted 𝑊𝑊𝑖𝑖  versus AMS “sulfate + nitrate + chloride + 
ammonium” mass concentrations. 232 

Figure B-12 HYSPLIT 24 hours air mass back trajectory matrix at 0600 (a), 
0800 (b), 1000 (c) UTC time for WINTER Flight 6 and at 1000 
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SUMMARY 

Particle acidity is a critical but poorly understood quantity that affects many aerosol 

processes and properties, including aerosol composition and toxicity. In this study, particle 

pH and water (which affects pH) are predicted using a thermodynamic model and 

measurements of RH, T, and inorganic gas and particle species. The method was first 

developed during the SOAS field campaign conducted in the southeastern U.S. in summer 

(pH = 0.94 ± 0.59), and then extended to aircraft observations in the northeastern U.S. in 

winter (WINTER study; pH = 0.77 ± 0.96) and ground observations in the coastal 

southwestern US in early summer (CalNex study; PM1 pH = 1.9 ± 0.5 and PM2.5 pH = 2.7 

± 0.3). All studies have consistently found highly acidic PM1 with pH generally below 3. 

The results are supported by reproducing particle water and gas-particle partitioning of 

inorganic NH4
+, NO3

-, and Cl-. Nonvolatile cations may increase pH with particle size 

above 1µm depending on mixing state but have little effect on PM1 pH. Ion balance or 

molar ratio, are not accurate pH proxy and highly sensitive to observational uncertainties. 

Impacts of low particle pH were investigated, including the effects on aerosol nitrate trends 

and the role of acidity in heterogeneous chemistry. We found that PM2.5 remained highly 

acidic despite a ~70% sulfate reduction in the southeastern U.S. in the last 15 years, due to 

buffering by semivolatile NH3; that the bias in molar ratio predictions in past studies is 

linearly correlated to nonvolatile cations but not organics, challenging the organic film 

postulation that exclusively limits the gas-particle transfer of NH3; that recently proposed 

rapid SO2 oxidation by NO2 during China haze events may not be a significant source of 

sulfate due to relatively low pH (~4); and lastly that pH is also not highly sensitive to NH3, 



 xxxiv 

a 10-fold increase in NH3 only increases pH by one unit in various locations and seasons, 

which has implications for use of NH3 controls to reduce PM2.5 concentrations.  
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CHAPTER 1. INTRODUCTION 

1.1 Importance of atmospheric aerosols 

Aerosols, also known as particulate matters, are particles normally in forms of liquid or 

solid. Aerosols are found to be ubiquitous in atmosphere and often a major contributor to 

impaired air quality and visibility. Aerosols can suspend in air weeks long and be 

transported by wind across ocean, making long-lasting impacts on public health and global 

climate. Therefore, it is essential to understand aerosol chemistry and the links to health 

and climate, and to support policy making of controlling air pollution. 

Aerosols affect climate directly and indirectly. Depending on the chemical composition, 

particle size, mixture state, and morphology, atmospheric aerosols absorb or scatter solar 

radiation, altering the radiation balance of the Earth surface. Black carbon and brown 

carbon heat up atmosphere by absorbing solar radiation, whereas the most aerosol 

components (both organics and inorganics) cool down atmosphere by scattering solar 

radiation (e.g. [Pilinis et al., 1995; Haywood and Boucher, 2000; Chung and Seinfeld, 2002; 

IPCC, 2013]). Aerosols also have an indirect climate effect through modification of cloud 

properties, such as cloud albedo and lifetime, due to involvement in cloud formation as 

cloud condensation nuclei [Lohmann and Feichter, 2005]. The net radiative forcing from 

aerosols is estimated to be a cooling effect of 0.9 W m-2 [IPCC, 2013]. 

Ambient fine aerosols are a leading and fast-growing mortality risk factor (5th ranking), 

resulting in more than 4 million deaths in 2015 globally [Cohen et al., 2017]. Back in 2010, 

PM2.5 was the 9th ranking among 67 risk factors, causing 3.1 million deaths [Lim et al., 
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2012]. After inhalation, PM2.5 deposits in lung and may penetrate the alveoli, therefore, 

raises more health concerns than particles of larger sizes that cannot go as far [Rostami, 

2009; Kleinstreuer and Zhang, 2010]. Numerous epidemiological studies show that 

aerosols are positively correlated with cardiovascular, respiratory, and allergic diseases 

[Pope et al., 1995; Katsouyanni et al., 2001; Gauderman et al., 2004; Pope et al., 2004]. 

The aerosol components that cause varying adverse health outcomes are normally minor 

mass fractions, such as black carbon (BC), transition metal ions (TMIs), and polycyclic 

aromatic hydrocarbons (PAHs). 

A brief introduction on aerosol composition is followed since it is closely related to the 

impacts of aerosols on climate and health. 

1.2 Composition of atmospheric aerosols 

Fine particles (PM2.5) are complex mixtures of organic and inorganic species [Kanakidou 

et al., 2005; Sardar et al., 2005; Zhang et al., 2007a] often mixed with significant amounts 

of liquid water content (LWC) [Liao and Seinfeld, 2005; Carlton and Turpin, 2013]. 

Organic matters make up a large fraction of PM2.5 dry mass, typically in the range of 20-

60% and up to 90% in pristine forests [Kanakidou et al., 2005; Zhang et al., 2007a]. 

Organic aerosols (OA) are commonly classified into two groups: nonvolatile species 

emitted as aerosols (primary organic aerosol, POA), such as BC, and volatile organic 

compounds (VOCs) oxidized in gas phase and converted to low vapor pressure products, 

and then partition to the condensed phase (secondary organic aerosol, SOA) [Chung and 

Seinfeld, 2002; Ervens et al., 2011]. SOA is typically a substantial fraction of OA mass, 
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80% on a global scale [Kanakidou et al., 2005; Spracklen et al., 2011] and 50%-100% 

depending on season and location [Xu et al., 2015b]. 

Inorganic species are also significant fractions of PM2.5 dry mass. Sulfate (SO4
2-), 

ammonium (NH4
+), and nitrate (NO3

-) are typically the most abundant inorganic ions, with 

lower levels of sodium (Na+), chloride (Cl-), crustal elements (e.g. Ca2+, Mg2+, K+), and 

TMIs [Cabada et al., 2004; Sardar et al., 2005; Peltier et al., 2007a; Zhang et al., 2010; 

Fang et al., 2015; Guo et al., 2015]. Aerosol hydronium ion (H3O+, hereafter denoted as 

H+, but recognizing that the unhydrated hydrogen ion is rare in aqueous solutions) is 

difficult to quantify directly and often expressed as a logarithmic scale, pH (discussed 

further below). 

Although LWC is inorganic, it is not routinely measured as other inorganic ions. LWC is 

the most abundant particle species in the atmosphere, at least 2-3 times of the total aerosol 

dry mass on a global scale [Pilinis et al., 1995; Liao and Seinfeld, 2005]. It is a vital 

medium for aerosol aqueous chemistry, and it is mainly determined by relative humidity 

(RH), particle concentration and composition (i.e. hygroscopicity). 

1.3 Importance of particle pH 

pH is defined as the hydrogen ion activity in an aqueous solution [Stumm and Morgan, 

1996]. 

 
𝑝𝑝𝑝𝑝 = − log10 𝛾𝛾𝐻𝐻+𝐻𝐻𝑎𝑎𝑎𝑎+  (1-1) 

where 𝛾𝛾𝐻𝐻+ is the hydronium ion activity coefficient, 𝐻𝐻𝑎𝑎𝑎𝑎+  (mole L-1) is the hydronium ion 

concentration in particle water. pH varies considerably in natural liquid systems and pH of 
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7 indicates a neutrality at 25 °C. For examples, pH of seawater is between 7.4 and 9.6 

[Marion et al., 2011], pH of human blood is typically limited to a range between 7.34 and 

7.45 [Waugh and Grant, 2014], pH of normal rain is 5.6, pH of acid rain is usually lower 

between 3.5 and 5.0 [Menz and Seip, 2004], and pH of lemon juice is as low as 2. pH is an 

important liquid property in many fields, such as chemistry, biology, oceanography, and 

environmental science. Here we focus on how pH affects aerosol chemical and biochemical 

properties such as chemical reactions, equilibrium conditions, and biological toxicity. 

pH is involved in secondary aerosol formation, for the pH-sensitive aqueous reactions. H+ 

catalyzes heterogeneous reactions of organics such as hydration, polymerization, and 

carbonyl ring opening [Jang et al., 2002] and may play a key role in SOA formation. 

Laboratory chamber studies have shown the production rates of SOA from some biogenic 

volatile organic compound (BVOC) precursors, such as isoprene and α-pinene, are 

enhanced by acidic particle seeds [Jang et al., 2002; Gao et al., 2004; Edney et al., 2005; 

Surratt et al., 2007; Eddingsaas et al., 2010; Surratt et al., 2010; Han et al., 2016b]. 

Evidence for enhanced acid-catalyzed SOA formation in the ambient atmosphere have also 

been reported in several studies [Chu, 2004; Lewandowski et al., 2007; Zhang et al., 2007b; 

Tanner et al., 2009; Pathak et al., 2011; Lin et al., 2012; Budisulistiorini et al., 2013]. 

Sulfate is a ubiquitous inorganic aerosol species and is produced by aqueous and gas phase 

oxidation of sulfur dioxide (SO2) along well-established pathways. The competition 

between aqueous pathways depends on the pH level; ozone (O3) dominates under alkaline 

and hydrogen peroxide (H2O2) dominates under acidic conditions [Seinfeld and Pandis, 

2006]. 
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In addition to controlling certain aqueous reactions, pH affects particle concentrations and 

compositions directly through partitioning of both semivolatile weak (e.g. formic, acetic, 

and oxalic) and strong acids (e.g., nitric and hydrochloric). Low pH drives these acids to 

the protonated and volatile states, and hence into the gas phase. By impacting PM2.5 mass 

concentrations, particle pH can affect emission control priorities aimed at meeting air 

quality standards to protect human health [Lelieveld et al., 2015]. Furthermore, pH-

controlled partitioning of these acids and associated ammonium affects deposition patterns 

of both acids and nitrogen (nitric acid, ammonia) due to large differences in gas and particle 

deposition rates [Huebert and Robert, 1985; Duyzer, 1994; Schrader and Brummer, 2014] 

and particle nitrate potentially affects N2O5 heterogeneous reaction rates and NOx control 

[Wahner et al., 1998; Bertram and Thornton, 2009; Wagner et al., 2013]. 

pH also affects the solubility of TMIs found in aerosols, such as Fe [Meskhidze et al., 2003; 

Oakes et al., 2012; Longo et al., 2016]. Although mainly present as insoluble oxides, lower 

pH can dissolve these metals and convert them to soluble forms, such as metal sulfates 

[Oakes et al., 2012] and thereby significantly change the aerosol environmental impacts. 

For example, on global scales, metal mobility affects nutrient distributions [Duce and 

Tindale, 1991; Meskhidze et al., 2003; Meskhidze et al., 2005; Nenes et al., 2011; Ito and 

Xu, 2014; Myriokefalitakis et al., 2015; Myriokefalitakis et al., 2016] with important 

impacts on productivity [Meskhidze et al., 2005], carbon sequestration and oxygen levels 

in the ocean [Ito et al., 2016], whereas on regional scales soluble TMIs have been linked 

to aerosol toxicity or aerosol oxidative potential [Ghio et al., 2012; Verma et al., 2014; 

Fang et al., 2015]. Synergistic adverse health effects have also been observed between 

ozone and acidic aerosols [Last, 1991; Enami et al., 2008] and many epidemiological 
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studies have reported adverse health outcomes associated with strong aerosol acidity 

[Koutrakis et al., 1988; Thurston et al., 1994; Dockery et al., 1996; Raizenne et al., 1996; 

Gwynn et al., 2000; Lelieveld et al., 2015]. 

Besides the above effects on aerosol composition, aerosol morphology and phase 

transitions, including efflorescence and phase separation, is found to be pH-dependent 

[Losey et al., 2016]. 

1.4 Current understanding of particle pH 

Despite its importance, a direct measurement technique of particle pH is very limited. A 

recent indirect optical method that infers H+ activity based on the ratio of SO4
2- and HSO4

- 

was developed, but only applicable to determine pH for particle sizes larger than 10 μm 

and requires activity coefficient predicted by thermodynamic modeling [Rindelaub et al., 

2016]. Filter collected aerosols are widely extracted via de-ionized water with follow-up 

analysis in lab. The pH of the extracted solution measured via a pH probe or a pH test strip 

(not accurate as a probe) does not necessarily indicate the pH in aerosols for two reasons. 

First, aerosol water-soluble ions get completed dissociated in the very dilute extracted 

solution compared to the much more concentrated aerosol water, in which multiple forms 

of ions are possible and depend on pH (e.g., sulfate can be in the form of H2SO4, HSO4
-, 

or SO4
2-). Second, some originally water-insoluble ions may dissolve in the extraction and 

change the ion balance. 

The inability to directly measure fine particle pH has led to the use of measurable aerosol 

properties as acidity proxies, such as aerosol ammonium-sulfate ratio or ion balances (e.g. 

[Paulot and Jacob, 2014; Wang et al., 2016; Silvern et al., 2017]). Use of these pH proxies 
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may lead to inappropriate conclusions on pH’s effect because they do not capture the 

variability in particle water, ion activity coefficients, or partial dissociation of species in 

the aerosol phase (as discussed in the thesis). 

The method that best constrains aerosol pH is comparison between a thermodynamic 

analysis and observations of gas-particle partitioning of semivolatile species that are 

sensitive to pH at the given environmental conditions (i.e., gas-particle concentration ratios 

near 1:1). Based on this framework, particle pH was reported in the range of 2.5 to 3.5 for 

deliquesced sea-salts at Bermuda [Keene and Savoie, 1998], below 2 for acidified dust over 

the Yellow Sea [Meskhidze et al., 2003], and 2 to 3 in the northern Colorado U.S. [Young 

et al., 2013]. 

1.5 Overview of this study 

The scope of this work is to develop a pH prediction method based on a thermodynamic 

model that calculates ion interactions, gas-particle partitioning, and LWC at the in situ and 

non-ideal conditions of atmospheric aerosols. Compared to the previous work that predict 

particle pH, this work extensively evaluates the accuracies of the reported pH with a large 

suite of observational dataset from several field campaigns conducted in the US. The 

predicted pH is used for investigating the pH impacts on aerosol chemistry. This work also 

explains the historical observational trends and provides insights on the particle pH change 

in the future. 

The thesis is organized by the following structure: Chapter 2 presents a detailed 

development, validation, and uncertainty analysis of the new pH prediction method. NH3-

NH4
+ partitioning was used to constrain pH predictions. As LWC is essential for pH 
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calculation, we compared the modeled and measured LWC and found a good agreement. 

Although water associated with organics accounted for 35% the total LWC, it is fairly 

accurate to predict particle pH only by water associated with inorganics, expecting a minor 

bias of 0.15 to 0.23 for the conditions investigated. In the southeastern (SE) U.S., pH was 

found in a range of 0.5 to 2 in the summer and 1 to 3 in the winter, showing that aerosols 

were highly acidic throughout the year. Chapter 3 and 4 present the extended pH analysis 

to the northeastern (NE) U.S. and the southwestern (SW) U.S., respectively. A vertical 

profile of pH was shown for the first time that PM1 was highly acidic for altitudes up to 

5000 m, with a pH of 0.77 ± 0.96 (± SD) in the NE US in winter. The PM1 pH, 1.9 ± 0.5, 

in the SW US was about one unit higher than the SE, 0.94 ± 0.59, despite a similar 

temperature (T) and relative humidity (RH) ranges, and likely caused by much higher total 

nitrate concentrations relative to sulfate in the Los Angeles city (LA). The internally mixed 

sea-salts between 1 and 2.5 μm sizes further increase PM2.5 in LA to 2.7 ± 0.3. HNO3-NO3
- 

partitioning, LWC, and pH are found to be inter-related in complex ways and can only be 

captured and resolved with a thermodynamic model. Chapter 5 presents a sensitivity 

analysis of PM2.5 pH to sulfate and ammonia based on the historical 70% SO4
2- reduction 

in the SE US from 1998 to 2013. On contrary to the common expectations that aerosols are 

becoming more neutral and ammonium nitrate will replace ammonium sulfate as the 

dominant inorganics, we found nearly constant pH (~1) throughout the last 15 years and 

no increasing sign of ammonium nitrate. Chapter 6 focuses on the roles of nonvolatile 

cations (NVC) on model-predicted ammonium-sulfate molar ratio and pH. We found the 

error in molar ratio prediction is positively correlated with NVC and not organic aerosol, 

therefore, challenged the postulated ability of organic films to prevent ammonia from 
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achieving gas-particle equilibrium. We also found that inclusion of NVC resulted in 

predicted molar ratio agreeable to the 15 years observed decreasing trend as shown in 

Chapter 5, and the conclusion of consistently strong aerosol acidity despite large sulfate 

reduction remained robust. Chapter 7 presents a sensitivity analysis of pH to ammonia for 

a wide range of ammonia and various locations in U.S. and China. We showed that for a 

given set of meteorological conditions (T and RH), roughly a 10-fold decrease in NH3 

concentrations is required to drop pH levels by one unit, revealing an inherent consistency 

between vastly different aerosol systems. Most importantly, the China haze aerosol pH was 

found below 5, under the condition it is unlikely that NO2-mediated oxidation of SO2 is a 

major sulfate formation route. Chapter 8 talks about future work following the thesis work. 

Some companion works that are not included in the thesis but closely relevant to the topic 

of pH and pH affected aerosol properties are introduced here briefly. Utilizing the pH and 

LWC presented in Chapter 2, Xu et al. [2015a] found that isoprene derived organic aerosol 

(Isoprene-OA, 18-36% of OA) in the SE US was not limited by acidity or water, but rather 

linearly correlated with aerosol sulfate (R = 0.77), since sulfate provides both adequate H+ 

and water required in isoprene aqueous phase oxidation. Therefore, controlling sulfate also 

benefits from reducing Isoprene-OA in the SE US. Further evidence was found as enhanced 

Isoprene-OA formation in sulfur-rich power plant plumes [Xu et al., 2016]. Fang et al. 

[2017] presented a size-resolved pH analysis and hypothesized a possible link between 

sulfate and particle oxidative potential (OP) through solubilizing TMIs. Fine particles were 

found to be SO4
2--rich with pH generally below 2 and coarse particles (aerodynamic 

diameters ranging from 2.5 to 10 µm) with pH approaching 7 (neutrality) as size increases. 

Soluble metals and OP peaked at the intersection of the two particle modes and suggested 
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that sulfate played a key role in producing highly acidic fine particles capable of dissolving 

primary TMIs that contribute to aerosol OP. 
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CHAPTER 2. FINE PARTICLE WATER AND PH IN THE 

SOUTHEASTERN UNITED STATES 

2.1 Abstract 

Particle water and pH are predicted using meteorological observations (RH, T), gas/particle 

composition and thermodynamic modeling (ISORROPIA-II). A comprehensive 

uncertainty analysis is included, and the model is validated. We investigate mass 

concentrations of particle water and related particle pH for ambient fine mode aerosols 

sampled in a relatively remote Alabama forest during the Southern Oxidant and Aerosol 

Study (SOAS) in summer and at various sites in the southeastern U.S. during different 

seasons, as part of the Southeastern Center for Air Pollution and Epidemiology (SCAPE) 

study. Particle water and pH are closely linked; pH is a measure of the particle H+ aqueous 

concentration and depends on both the presence of ions and amount of particle liquid water. 

Levels of particle water, in-turn, are determined through water uptake by both the ionic 

species and organic compounds. Thermodynamic calculations based on measured ion 

concentrations can predict both pH and liquid water but may be biased since contributions 

of organic species to liquid water are not considered. In this study, contributions of both 

the inorganic and organic fractions to aerosol liquid water were considered and predictions 

were in good agreement with measured liquid water based on differences in ambient and 

dry light scattering coefficients (prediction vs. measurement: slope = 0.91, intercept = 0.46 

µg m-3, R2 = 0.75). ISORROPIA-II predictions were confirmed by good agreement 

between predicted and measured ammonia concentrations (slope = 1.07, intercept = −0.12 

µg m-3, R2 = 0.76). Based on this study, organic species on average contributed 35% to the 

total water, with a substantially higher contribution (50%) at night. However, not including 
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contributions of organic water had a minor effect on pH (changes pH by 0.15 to 0.23 units), 

suggesting that predicted pH without consideration of organic water could be sufficient for 

the purposes of aqueous SOA chemistry. The mean pH predicted in the Alabama forest 

(SOAS) was 0.94 ± 0.59 (median 0.93). pH diurnal trends followed liquid water and were 

driven mainly by variability in RH; during SOAS nighttime pH was near 1.5, while daytime 

pH was near 0.5. pH ranged from 0.5 to 2 in summer and 1 to 3 in the winter at other sites. 

The systematically low pH levels in the southeast may have important ramifications, such 

as significantly influencing acid-catalyzed reactions, gas-aerosol partitioning, and 

mobilization of redox metals and minerals. Particle ion balances or molar ratios, often used 

to infer pH, do not consider the dissociation state of individual ions or particle liquid water 

levels and do not correlate with particle pH. 

2.2 Introduction 

The concentration of the hydronium ion (H+) in aqueous aerosols, or pH, is an important 

aerosol property that drives many processes related to particle composition and gas-aerosol 

partitioning [Jang et al., 2002; Meskhidze et al., 2003; Gao et al., 2004; Iinuma et al., 2004; 

Tolocka et al., 2004; Edney et al., 2005; Czoschke and Jang, 2006; Kleindienst et al., 2006; 

Surratt et al., 2007; Eddingsaas et al., 2010; Surratt et al., 2010]. Measurement of pH is 

highly challenging and so indirect proxies are often used to represent particle acidity. The 

most common is an ion balance: the charge balance of measurable cations and anions 

(excluding the hydronium ion). Although correlated with an acidic (net negative balance) 

or alkaline (net positive balance) aerosol [Surratt et al., 2007; Tanner et al., 2009; Pathak 

et al., 2011; Yin et al., 2014], an ion balance cannot be used as a measure of the aerosol 

concentration of H+ in air (i.e., moles H+ per volume of air, denoted hereafter as 𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎+ ). 

This is due to two factors, first, an ion balance assumes all ions are completely dissociated, 
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but multiple forms are possible, depending on pH (e.g., sulfate can be in the form of H2SO4, 

HSO4
-, or SO4

2-). Secondly, pH depends on the particle liquid water content (LWC), as pH 

is the concentration of H+ in an aqueous solution. LWC can vary considerably over the 

course of a day and between seasons significantly influencing pH [Seinfeld and Pandis, 

2006]. Aerosol thermodynamic models, such as ISORROPIA-II [Nenes et al., 1998; 

Fountoukis and Nenes, 2007] and E-AIM [Clegg et al., 1998], are able to calculate LWC 

and particle pH, based on concentrations of various aerosol species, temperature (T), and 

relative humidity (RH) and offer a more rigorous approach to obtain aerosol pH [Pye et al., 

2013]. ISORROPIA-II calculates the composition and phase state of an NH4
+-SO4

2--NO3
-

-Cl--Na+-Ca2+-K+-Mg2+-water inorganic aerosol in thermodynamic equilibrium with water 

vapor and gas phase precursors. The model has been tested with ambient data to predict 

acidic or basic compounds, such as NH3, NH4
+, and NO3

- [Meskhidze et al., 2003; Nowak 

et al., 2006; Fountoukis et al., 2009; Hennigan et al., 2015]. 

LWC is a function of RH, particle concentration and composition, and is the most abundant 

particle-phase species in the atmosphere, at least 2-3 times the total aerosol dry mass on a 

global average [Pilinis et al., 1995; Liao and Seinfeld, 2005]. At 90% RH, the scattering 

cross-section of an ammonium sulfate particle can increase by a factor of five or more 

above that of the dry particle, due to large increases in size from water uptake [Malm and 

Day, 2001]. Because of this, LWC is the most important contributor to direct radiative 

cooling by aerosols [Pilinis et al., 1995], currently thought to be -0.45 W m-2 (-0.95 W m-

2 to +0.05 W m-2) [IPCC, 2013]. LWC plays a large role in secondary aerosol formation 

for inorganic and possibly organic species by providing a large aqueous surface for 

increased gas uptake and a liquid phase where aqueous phase chemical reactions can result 

in products of lower vapor pressures than the absorbed gases [Ervens et al., 2011; Nguyen 

et al., 2013]. In the eastern U.S., it has been suggested that the potential for organic gases 
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to partition to LWC is greater than the potential to partition to particle-phase organic matter 

[Carlton and Turpin, 2013], and partitioning of water soluble organic carbon (WSOC) into 

the particle phase becomes stronger as RH (i.e., LWC) increases [Hennigan et al., 2008a]. 

Thus LWC enhances particle scattering effects directly by increasing particle cross sections 

[Nemesure et al., 1995] and indirectly by promoting secondary aerosol formation [Ervens 

et al., 2011; Nguyen et al., 2013]. 

The behavior of inorganic salts under variable RH is well established both experimentally 

and theoretically. It is known that dry inorganic salts (or mixtures thereof) exhibit a phase 

change, called deliquescence, when exposed to RH above a characteristic value. During 

deliquescence, the dry aerosol spontaneously transforms (at least partially) into an aqueous 

solution [Tang, 1976; Wexler and Seinfeld, 1991; Tang and Munkelwitz, 1993]. In contrast, 

due to its chemical complexity that evolves with atmospheric aging, the relationship of 

organics to LWC is not well characterized and requires a parameterized approach [Petters 

and Kreidenweis, 2007]. Relationships between volatility, oxidation level, and 

hygroscopicity are not always straightforward and still remain to be fully understood 

[Frosch et al., 2011; Villani et al., 2013; Cerully et al., 2015; Hildebrandt Ruiz et al., 2015]. 

Despite the abundance and importance of LWC, it is not routinely measured. Thus 

typically, particle total mass concentration (that includes liquid water) is often not 

characterized. In general, LWC is measured by perturbing the in situ RH. The loss of 

particle volume when RH is lowered is assumed to be solely due to evaporated water. 

Approaches for LWC measurements are classified into single particle size probes and bulk 

size quantification [Sorooshian et al., 2008]. Single size particle probes provide more 

information (i.e., size resolved hygroscopic growth) and usually tend to be slow due to 

whole size range scanning. In contrast, bulk size measurements quantify the total water 
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amount directly. The LWC measurement presented in this paper by nephelometers is a bulk 

measurement. 

As part of the Southern Oxidant and Aerosol Study (SOAS), we made detailed 

measurements of particle organic and inorganic composition [Xu et al., 2015a], aerosol 

hygroscopicity [Cerully et al., 2015], and indirect measurements of particle LWC. These 

data are used to first determine the particle water mass concentrations, which are then 

utilized in a thermodynamic model for predicting pH. The fine particle LWC and pH data 

from this analysis are used in our other studies of secondary aerosol formation as part of 

SOAS and discussed in companion papers to this work [Cerully et al., 2015; Xu et al., 

2015a]. 

2.3 Data collection 

2.3.1 Measurement sites 

Aerosol measurements were conducted at the Southeastern Aerosol Research and 

Characterization (SEARCH) Centreville site (CTR; 32.90289 N, 87.24968 W, altitude: 126 

m), located in Brent, Alabama, as part of SOAS (Southern Oxidant and Aerosol Study) 

(http://soas2013.rutgers.edu). SOAS ground measurements were made from June 1 to July 

15 in the summer of 2013. CTR is a rural site within a large forested region dominated by 

biogenic volatile organic compound (VOC) emissions, with minor local anthropogenic 

emissions and some plumes transported from other locations (coal-fired electrical 

generating units, urban emissions, biomass burning, mineral dust). It is representative of 

background conditions in the southeastern U.S. and chosen to investigate biogenic 
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secondary organic aerosol (SOA) formation and its interaction with anthropogenic 

pollution transported from other locations. 

Additional measurements were also made at various sampling sites in and around the 

metropolitan Atlanta region from May 2012 to December 2012 as part of a large health 

study; the Southeastern Center for Air Pollution and Epidemiology (SCAPE). A map of all 

five sites is shown in Figure 2-1. The SCAPE measurement sites include: 

• A road-side (RS) site (33.775602 N, 84.390957 W), situated within 5m from the 

interstate highway (I75/85) in midtown Atlanta and chosen to capture fresh traffic 

emissions; 

• A near-road site (GIT site, 33.779125 N, 84.395797 W), located on the rooftop of 

the Ford Environmental Science and Technology (EST) building at Georgia 

Institute of Technology (GIT), Atlanta, roughly 30 to 40 m above ground level, 840 

m from the RS site; 

• Jefferson Street (JST) (33.777501 N, 84.416667 W), a central SEARCH site 

representative of the Atlanta urban environment, located approximately 2000 m 

west of the GIT site; 

• Yorkville (YRK) (33.928528 N, 85.045483 W), the rural SEARCH pair of JST, 

situated in an agricultural region approximately 70 km west from the JST, GIT and 

RS sites. 

More information on the SEARCH sites can be found elsewhere [Hansen et al., 2003; 

Hansen et al., 2006]. We first focus on the SOAS campaign data, where wide range of 

instrumentation was deployed (http://soas2013.rutgers.edu) to develop a comprehensive 

method of predicting LWC and pH, as well as assessing their uncertainties. The approach 
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is then applied to the SCAPE site data to provide a broader spatial and temporal assessment 

of PM2.5 pH in the southeastern US. 

 
Figure 2-1 Sampling sites in the southeastern U.S., consisting of two rural and three urban 
sites. 

 

2.3.2 Instrumentation 

2.3.2.1 PILS-IC 

PM2.5 or PM1 (particles with aerodynamic diameters < 2.5 or 1.0 µm at ambient conditions) 

water soluble ions were measured by a Particle-Into-Liquid-Sampler coupled to an Ion 

Chromatograph (PILS-IC; Metrohm 761 Compact IC). Similar setups are described in 

previous field studies [Orsini et al., 2003; Liu et al., 2012]. Metrosep A Supp-5, 150/4.0 

anion column and C 4, 150/4.0 cation column (Metrohm U.S., Riverside, FL) were used to 
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separate the PILS liquid sample anions (sulfate, nitrate, chloride, oxalate, acetate, formate) 

and cations (ammonium, sodium, potassium, calcium, magnesium) at a 20 min duty cycle. 

The PILS sample ambient air flow rate was 16.8 ± 0.4 L min-1. URG (Chapel Hill, North 

Carolina) cyclones were used to provide PM cut sizes of PM2.5 for the 1st half of field study 

(June 1 to June 22) and PM1 for the latter half (June 23 to July 15). Honeycomb acid 

(phosphoric acid)- and base (sodium carbonate)-coated denuders removed interfering gases 

before entering the PILS. The sample inlet was ~7 m above ground level and ~4 m long. 

The sampling line was insulated inside the trailer (typical indoor T was 25 °C) and less 

than 1m in length to minimize possible changes in aerosol composition prior to 

measurement. Periodic 1-hr blank measurements were made every day by placing a High 

Efficiency Particulate-Free Air (HEPA) filter (Pall Corp.) on the cyclone inlet. All data 

were blank corrected. The PILS-IC was only deployed for the SOAS study. 

2.3.2.2 AMS 

A High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS, Aerodyne 

Research Inc., hereafter referred to as “AMS”) provided real time, quantitative 

measurements of the non-refractory components of submicron aerosols [DeCarlo et al., 

2006; Canagaratna et al., 2007]. In brief, particles were first dried (RH < 20%) and then 

immediately sampled through an aerodynamic lens into the high vacuum region of the mass 

spectrometer, then transmitted into a detection chamber where particles impact on a hot 

surface (600°C). Non-refractory species are flash vaporized and then ionized by 70 eV 

electron impact ionization. The generated ions are extracted into the time-of-flight mass 
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spectrometer. Further details on the AMS setup and data processing can be found in Xu et 

al. [2015a]. 

2.3.2.3 CCNc 

The particle hygroscopic parameter, 𝜅𝜅 [Petters and Kreidenweis, 2007], used to infer the 

hygroscopic properties (liquid water associated with organics), was obtained from size-

resolved CCN measurements from a Droplet Measurement Technologies Continuous-Flow 

Streamwise Thermal Gradient Cloud Condensation Nuclei counter (CFSTGC, referred to 

hereafter as CCNc) [Roberts and Nenes, 2005; Lance et al., 2006]. The CCNc exposes 

aerosols to a known supersaturation, then counts the activated particles that grow rapidly 

to droplet size. Theory can be used to parameterize the water phase properties (here, 

expressed by 𝜅𝜅; [Petters and Kreidenweis, 2007]) of the organic aerosol, based on the size 

of particles that form CCN and their composition. A URG PM1 cyclone was installed for 

both AMS and CCNc. The details of the CCNc setup and data analysis procedure can be 

found in Cerully et al. [2014]. 

2.3.2.4 Ambient vs Dry Nephelometers 

PM2.5 (URG cyclones) aerosol light scattering coefficients (𝜎𝜎𝑠𝑠𝑠𝑠) were measured online with 

two different nephelometers (Radiance Research M903) to infer LWC. Both were operated 

at nominally 3 L min-1. Particle dry scattering was measured with a nephelometer located 

in the air-conditioned sampling trailer operated with a nafion dryer upstream that 

maintained an RH of 31.5 ± 1.9 % (study mean ± SD, n = 12464 based on 5-min averages). 

The other was situated in a small white 3-sided wooden shelter (one side covered by a loose 
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tarp) located a distance away from all buildings to provide a scattering measurement at 

ambient T and RH. Both PM2.5 cut cyclones were in ambient conditions, and both 

nephelometers were calibrated by CO2 prior to the SOAS field campaign. Typical 

uncertainty is 3% for scattering coefficients [Mitchell et al., 2009]. In addition, the 

nephelometer RH sensors were calibrated by placing the sensors in a closed container 

above aqueous saturated salt solutions that had reached equilibrium (measurements made 

in a thermally insulated container after a period of a few hours). Solution temperatures 

were monitored. Details on the calibration results are provided in the supporting materials 

A.1. Recorded RH was corrected by the calibration results. 

2.3.3 Determining LWC from nephelometers 

Particle water was inferred from the ratio of ambient and dry PM2.5 scattering coefficients 

(𝜎𝜎𝑠𝑠𝑠𝑠) measured by the two nephelometers (defined here as aerosol hygroscopic growth 

factor, 𝑓𝑓(𝑅𝑅𝑅𝑅) = 𝜎𝜎𝑠𝑠𝑠𝑠(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) / 𝜎𝜎𝑠𝑠𝑠𝑠(𝑑𝑑𝑑𝑑𝑑𝑑) , where 𝜎𝜎𝑠𝑠𝑠𝑠(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎)  and 𝜎𝜎𝑠𝑠𝑠𝑠(𝑑𝑑𝑑𝑑𝑑𝑑)  are particle 

scattering coefficients at ambient and dry RH conditions, respectively) following the 

method developed by other investigators [Carrico et al., 1998; Kotchenruther and Hobbs, 

1998; Carrico et al., 2000; Malm and Day, 2001; Sheridan et al., 2002; Magi and Hobbs, 

2003; Kim et al., 2006]. A difference between ambient and dry scattering coefficients is 

assumed to be caused solely by loss of water. Detailed derivations are provided in the 

supporting materials A.2. 𝑓𝑓(𝑅𝑅𝑅𝑅) is related to the particle scattering efficiencies (𝑄𝑄𝑠𝑠) and 

average particle diameter (𝐷𝐷𝑝𝑝����) by; 

 
𝐷𝐷𝑝𝑝,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎������������� = 𝐷𝐷𝑝𝑝,𝑑𝑑𝑑𝑑𝑑𝑑���������𝑓𝑓(𝑅𝑅𝑅𝑅)𝑄𝑄𝑠𝑠,𝑑𝑑𝑑𝑑𝑑𝑑�������� 𝑄𝑄𝑠𝑠,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎��������������  (2-1) 
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𝑄𝑄𝑠𝑠,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�������������, 𝐷𝐷𝑝𝑝,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎������������� are the average scattering efficiency and average particle diameter 

under ambient conditions, while 𝑄𝑄𝑠𝑠,𝑑𝑑𝑑𝑑𝑑𝑑��������, 𝐷𝐷𝑝𝑝,𝑑𝑑𝑑𝑑𝑑𝑑�������� represent dry conditions. The method is 

based on fine particle light scattering being mostly due to particles in the accumulation 

mode and can be related to scattering efficiencies and the diameter of average surface, for 

both ambient and dry particle size distributions. Assuming 𝑄𝑄𝑠𝑠,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎������������� = 𝑄𝑄𝑠𝑠,𝑑𝑑𝑑𝑑𝑑𝑑��������  (see 

supporting materials A.2 for justification and uncertainty analysis), it follows that 

 𝐷𝐷𝑝𝑝,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎������������� = 𝐷𝐷𝑝𝑝,𝑑𝑑𝑑𝑑𝑑𝑑���������𝑓𝑓(𝑅𝑅𝑅𝑅) (2-2) 

Since the LWC is equal to the difference between ambient and dry particle volume, we get 

 𝑓𝑓(𝑅𝑅𝑅𝑅)_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = [𝑓𝑓(𝑅𝑅𝑅𝑅)1.5 − 1]𝑚𝑚𝑝𝑝𝜌𝜌𝑤𝑤 𝜌𝜌𝑝𝑝�  (2-3) 

where 𝑚𝑚𝑝𝑝  and 𝜌𝜌𝑝𝑝  are dry particle mass and density, respectively; 𝜌𝜌𝑤𝑤  is water density 

(constant 1 g cm-3 is applied). For SOAS, dry PM2.5 mass concentrations were measured 

continuously by a TEOM (tapered element oscillating microbalance, 1400a, Thermo Fisher 

Scientific Inc., operated by Atmospheric Research & Analysis Inc., referred to hereafter as 

ARA). Particle density, 𝜌𝜌𝑝𝑝, was computed from the particle composition, including AMS 

total organics, ammonium, and sulfate, which accounted for 90% of the measured PM2.5 

(TEOM) dry mass (SOAS study mean). A typical organic density 1.4 g cm-3 is assumed 

[Turpin and Lim, 2001; King et al., 2007; Engelhart et al., 2008; Kuwata et al., 2012; 

Cerully et al., 2014], and the density of ammonium sulfate is assumed to be 1.77 g cm-3 

[Sloane et al., 1991; Stein et al., 1994]. 𝜌𝜌𝑝𝑝  was calculated to be 1.49 ± 0.04 g cm-3 (n = 

4,393) using mass fractions (𝜀𝜀) to dry particle mass: 

 𝜌𝜌𝑝𝑝 =
1

𝜀𝜀𝑁𝑁𝑁𝑁4++𝑆𝑆𝑆𝑆42− 1.77⁄ + 𝜀𝜀𝑂𝑂𝑂𝑂𝑂𝑂/1.4
 (2-4) 
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The time-resolved composition data shows that dry particle density did not have a 

significant diurnal variability (± 2.7%, SD/mean, Figure A-2). In the following we refer to 

the particle water calculated by this method as f(RH)_water. The uncertainty of f(RH 

)_water is estimated to be 15%, mainly caused by the calculation of  𝑄𝑄𝑠𝑠,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�������������/𝑄𝑄𝑠𝑠,𝑑𝑑𝑑𝑑𝑑𝑑�������� 

(LWC error of 10% from assuming 𝑄𝑄𝑠𝑠,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�������������/𝑄𝑄𝑠𝑠,𝑑𝑑𝑑𝑑𝑑𝑑�������� = 1, see supporting materials A.2), 

𝑚𝑚𝑝𝑝 (10%), 𝜎𝜎𝑠𝑠𝑠𝑠(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎)/𝜎𝜎𝑠𝑠𝑠𝑠(𝑑𝑑𝑑𝑑y) (4.2%) (uncertainty for a single 𝜎𝜎𝑠𝑠𝑠𝑠 measurement is 3%, 

Mitchell et al. [2009]), and 𝜌𝜌𝑝𝑝 (2.7%). Note that LWC error depends on RH, and for SOAS 

average composition aerosol could increase to 21% for RH > 90% (supporting materials 

Figure A-6). 

The deployment status of the above instruments at the SOAS and SCAPE sites are 

summarized in Table 2-1. 

 

Table 2-1 Deployment status of instruments at various sites. All the listed instruments or 
probes were operated at CTR for SOAS. 

Site Period (mm yyyy) PILS-IC AMS CCNc Nephelometer TEOM RH&T 

JST May&Nov 2012 No Yes No No Yes Yes 

YRK July&Dec 2012 No Yes No No Yes Yes 

GIT July-Aug 2012 No Yes No No Yes Yes 

RS Sept 2012 No Yes No No Yes Yes 

CTR June-July 2013 Yes Yes Yes Yes Yes Yes 

 
 

2.4 Modeling methods: Predicting LWC and pH from aerosol composition 
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In most studies, such as SCAPE, particle water was not measured and must be determined 

based on aerosol composition. Both inorganic and organic components contribute to uptake 

of water vapor, establishing equilibrium for the ambient RH and T conditions. Thus, LWC 

is controlled by meteorological conditions and by aerosol concentration and composition. 

Thermodynamic models, such as ISORROPIA-II, have been extensively used to predict 

LWC due to inorganic aerosol components [Fountoukis and Nenes, 2007]. Contributions 

to LWC by organic components are typically based on an aerosol hygroscopicity 

parameter, 𝜅𝜅, which is determined by CCN data. Here we refer to particle water associated 

with inorganics and organics as 𝑊𝑊𝑖𝑖 and 𝑊𝑊𝑜𝑜, respectively. Total particle water (𝑊𝑊𝑖𝑖 + 𝑊𝑊𝑜𝑜) is 

taken as the sum of water associated with individual aerosol chemical components (sum of 

ions and lumped organics) based on Zdanovskii-Stokes-Robinson (ZSR) relationship 

[Zdanovskii, 1936; Stokes and Robinson, 1966], with the assumption that the particles are 

internally mixed. 

2.4.1 LWC from inorganic species 

Particle water associated with inorganic species (𝑊𝑊𝑖𝑖) were predicted by ISORROPIA-II 

[Nenes et al., 1998; Fountoukis and Nenes, 2007]. ISORROPIA-II calculates the 

composition and phase state of a K+-Ca2+-Mg2+-NH4
+-Na+-SO4

2--NO3
--Cl--water inorganic 

aerosol in thermodynamic equilibrium with gas phase precursors. Chemical and 

meteorological data are necessary inputs. For our analysis at CTR, the inputs to 

ISORROPIA-II are the inorganic ions measured by the IC or AMS, RH measured by the 

outside nephelometer, and temperature from the SEARCH site (ARA) meteorological data. 
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2.4.2 LWC from organic fraction 

To determine the contributions to particle water by 𝑊𝑊𝑜𝑜 , in SOAS the organic 

hygroscopicity parameter (𝜅𝜅𝑜𝑜𝑜𝑜𝑜𝑜) was calculated based on the observed CCN activities of 

the organic fraction [Cerully et al., 2015]. In the following analysis, diurnal three-hour 

running averages are used in the calculation. (Diurnal plot is included in Figure A-7). 𝑊𝑊𝑜𝑜 

is calculated using the following equation [Petters and Kreidenweis, 2007]. 

 𝑊𝑊𝑜𝑜 =
𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝜌𝜌𝑤𝑤
𝜌𝜌𝑜𝑜𝑜𝑜𝑜𝑜

𝜅𝜅𝑜𝑜𝑜𝑜𝑜𝑜
�1

𝑅𝑅𝑅𝑅� − 1�
 (2-5) 

where 𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜 is the organic mass concentration from AMS [Xu et al., 2015a], 𝜌𝜌𝑤𝑤 is water 

density, and a typical organic density (𝜌𝜌𝑜𝑜𝑟𝑟𝑔𝑔) of 1.4 g cm-3 is used [Turpin and Lim, 2001; 

King et al., 2007; Engelhart et al., 2008; Kuwata et al., 2012; Cerully et al., 2014]. 

2.4.3 pH prediction 

The thermodynamic model, ISORROPIA-II [Fountoukis and Nenes, 2007], calculates the 

equilibrium particle hydronium ion concentration per volume air (𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎+ ), which along with 

the LWC is then used to predict particle pH. To correct for the LWC associated with the 

organic aerosol (not considered in ISORROPIA-II), we recalculate pH by considering 𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎+  

and total predicted water (𝑊𝑊𝑖𝑖 and 𝑊𝑊𝑜𝑜). The modeled concentrations are µg m-3 air for 𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎+  

and LWC. The pH is then, 

 
𝑝𝑝𝑝𝑝 = − log10 𝐻𝐻𝑎𝑎𝑎𝑎+ = − log10

1000𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎+

𝑊𝑊𝑖𝑖 + 𝑊𝑊𝑜𝑜
 (2-6) 

where 𝐻𝐻𝑎𝑎𝑎𝑎+  (mol L-1) is hydronium concentration in an aqueous solution.  
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ISORROPIA-II has been tested in previous field campaigns where a suite of both gas and 

particle components were measured [Nowak et al., 2006; Fountoukis et al., 2009]. The 

model was able to predict the equilibrium partitioning of ammonia [Nowak et al., 2006] in 

Atlanta and nitric acid [Fountoukis et al., 2009] in Mexico City within measurement 

uncertainty. For instance, NH3, NH4
+, HNO3, and NO3

- were within 10%, 20%, 80%, and 

20% of measurements [Fountoukis et al., 2009]. In this study, ISORROPIA-II was run in 

the forward mode for metastable aerosol. Forward mode calculates the equilibrium 

partitioning given the total concentration of various species (gas + particle) together with 

RH and T as input. Reverse mode involves predicting the thermodynamic composition 

based only on the aerosol composition. Here we use the forward mode with just aerosol 

phase data input because it is less sensitive to measurement error than the reverse mode 

[Hennigan et al., 2015]. The 𝑊𝑊𝑖𝑖 prediction remains the same (reverse vs forward: slope = 

0.993, intercept = –0.005, and R2 = 0.99) no matter which approach is used. Gas phase 

input does have an important impact on the 𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎+  calculation. ISORROPIA-II was tested 

with ammonia partitioning, which is discussed in more detail below. Here it is noted that 

we found that further constraining ISORROPIA-II with measured NH3 [You et al., 2014a] 

resulted in a pH increase of 0.8 at CTR and that the predicted NH3 matched the measured 

NH3 well (slope = 1.07, intercept = –0.12 µg m-3, R2 = 0.76). This also confirms that 

ISORROPIA-II predicts the pH in the ambient aerosol with reasonable accuracy, as 

inputting the total (gas + aerosol) ammonium results in predictions that agree with those 

observed. This is also in agreement with findings of Hennigan et al. [2015] and Fountoukis 
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et al. [2009], both of whom found that ISORROPIA-II reproduced the partitioning of 

ammonia and inorganic nitrate in Mexico City during the MILARGO campaign. 

2.4.4 Assumptions 

In the following analysis, we use bulk properties and do not consider variability in 

parameters with particle size. Particulate organic and inorganic species are assumed to be 

internally mixed in the liquid phase due to the high RH (73.8 ± 16.1%) typical of this study 

and because a large fraction of the ambient aerosol organic component is from isoprene 

SOA [Xu et al., 2015a], which are liquids at RH ≥ 60% [Song et al., 2015]. Particle liquid 

phase separations are not considered, although they have been measured in bulk extracts 

of aerosols from the southeast [You et al., 2012]. It is reported that liquid-liquid phase 

separation can occur when the O:C ratio of the organic material is ≤ 0.5. More experiments 

showed that it is possible to have phase separation for O:C ≤ 0.7, but not for O:C ≥ 0.8 

[Bertram et al., 2011; Song et al., 2012; You et al., 2013]. SOAS average O:C = 0.75 (± 

0.12) is in the transition between these two regimes. According to Figure 2 in Bertram et 

al. [2011], at RH typically > 60% and organic:sulfate mass ratio >1, it is not possible to 

have phase separation, which is the case for our sampling sites. Based on our basic 

assumption of no liquid-liquid phase separation, pH is homogeneous in a single particle. 

However, separated phases would likely have different pH if liquid-liquid phase separation 

occurs. In that case, pH should be calculated based on the amounts of water and 𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎+  in 

each phase. Gas-particle partitioning will change according, due to these separated phases. 

There are models that are set up to calculate these thermodynamics (e.g., AIOMFAC), but 

none is yet able to address the compositional complexity of ambient SOA [Zuend et al., 
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2010; Zuend and Seinfeld, 2012]. Although it is often true that non-ideal interactions 

between organic and inorganic species exist, good agreement between measured particle 

water and ammonia partitioning to predictions using the bulk properties (discussed below) 

suggests these assumptions are reasonable. 

2.5 Results 

2.5.1 Summary of meteorology and PM composition at SOAS and SCAPE sites 

For the SOAS study period, mean T and RH were 24.7 ± 3.3 ℃ and 73.8 ± 16.1% (mean ± 

SD), respectively. This resulted in a f(RH)_water level of 4.52 ± 3.75 µg m-3, with a 

maximum value of 28.41 µg m-3. In comparison, SOAS mean dry PM2.5 mass was 7.72 ± 

4.61 µg m-3, implying that the fine aerosols were roughly composed of 37% water, on 

average. Mean T and RH for SCAPE sites are listed in Table 2-3. Summer T means were 

all above 21℃, including CTR. RH means were all high (> 60%) for summer and winter, 

which is typical for the southeastern US. 

Of the sites in the southeastern US discussed in this paper, CTR was the least influenced 

by anthropogenic emissions having the lowest black carbon (BC) concentrations (measured 

by a MAAP, Thermo Scientific, model 5012). At CTR, the mean BC = 0.26 ± 0.21 µg m-3 

(± SD), whereas mean BC concentrations at the other rural site (YRK) was 0.36 µg m-3. 

The representative Atlanta site (JST) BC was on average 0.71 µg m-3, and higher for sites 

closer to roadways, 0.96 µg m-3 (GIT) and 1.96 µg m-3 (RS). 
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A more comprehensive suite of ions will provide a better prediction of 𝑊𝑊𝑖𝑖. However, in the 

southeastern US, inorganic ions are currently dominated by sulfate and ammonium. During 

SOAS, the PILS-IC provided a more comprehensive and accurate measurement of water-

soluble ions than AMS, which measured only non-refractory sulfate, ammonium, nitrate, 

and chloride. Refractory, but water soluble ions, such as sodium and associated chloride, 

and crustal elements including calcium, potassium, and magnesium were present in PM1, 

but in very low concentrations. Contributions of these ions are more important in PM2.5 

than for PM1, which tend to reduce aerosol acidity. For instance, Na+ has a significantly 

higher mean in PM2.5 at 0.056 µg m-3 (the 1st half of SOAS study) than 0.001 µg m-3 in PM1 

(the 2nd half of SOAS study). Four, one day-long, dust events (June 12, 13, 16, and 21) in 

the SOAS data set have been excluded from this analysis as assumptions relating to internal 

mixing of PM2.5 components are less valid in these cases. Excluding these days, the mean 

Na+ in PM2.5 drops to 0.024 µg m-3. 

If the fraction of the refractory ions (e.g., Na+, K+, Ca2+, Mg2+) is negligible compared to 

the SO4 (Note, SO4 stands for sulfate in all its possible forms, from free to completely 

dissociated), NH4
+, and NO3

-, the AMS data sufficiently constrains particle composition 

for thermodynamic calculations; this apparently is the case for most of the time in the 

southeast (supporting materials A.4). For PM1 SO4 and NH4
+, AMS and PILS-IC were in 

good agreement (SO4 slopes within 20 %, R2 = 0.90; NH4
+ within 1%, R2 = 0.81). Similar 

agreement was also found for AMS PM1 SO4 and NH4
+ versus PILS-IC PM2.5 SO4 and 

NH4
+. (See Figure 2-2 for comparison of complete data set). These data indicate little SO4 

and NH4
+ between the 1.0 and 2.5 µm size range (PM2.5 − PM1). Because of the agreement 
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between these dominant ions, ISORROPIA-II predicted 𝑊𝑊𝑖𝑖 for all ions measured with the 

PILS-IC throughout the study (includes both PM1 and PM2.5) agreed with 𝑊𝑊𝑖𝑖  based on 

AMS inorganic species (i.e., only ammonium and sulfate) having an orthogonal slope of 

1.18, Figure 2-2c. 

 
Figure 2-2 Comparisons of PM1 AMS sulfate, ammonium to PM1 and PM2.5 PILS-IC (i.e. 
complete SOAS study) and predicted 𝑊𝑊𝑖𝑖. Orthogonal distance regression (ODR) fits were 
applied. 

 

2.5.2 Results from the SOAS Centreville site 

2.5.2.1 LWC, pH, and ion balances at Centreville 

The diurnal variation of LWC contributed by 𝑊𝑊𝑖𝑖 and 𝑊𝑊𝑜𝑜, along with total measured water, 

ambient T, RH, and solar radiation at CTR is shown in Figure 2-3. Predicted and measured 

LWC trends were in good overall agreement, although the largest discrepancy was 

observed during the daytime when the LWC level was low and more difficult to measure 

and accurately predict. Nighttime RH median values were between 85% and 90% and 

resulted in significant water uptake that reached a peak just after sunrise near 7:30 am (local 



 

 

30 

time). The dramatic peak in LWC starting at roughly 5:00 am, reaching a maximum 

between 7:30 and 8:00 am is likely due to RH increasing above 90%, at which point uptake 

of water rapidly increases with increasing RH. The similar rapid hygroscopic growth before 

sunrise was also observed at GIT, RS, and JST (Nov) (Figure 2-11). After sunrise, rising 

temperatures led to a rapid drop in RH, resulting in rapid loss of particle water. LWC 

reached lowest levels in the afternoon ~2 µg m-3, only 20% of the peak value. 𝑊𝑊𝑜𝑜 varied 

more than 𝑊𝑊𝑖𝑖 diurnally; 𝑊𝑊𝑜𝑜 max/min ratio was 13.1 compared to 4.1 for 𝑊𝑊𝑖𝑖. 

 
Figure 2-3 CTR (SOAS) diurnal profiles of predicted and measured water, measured RH, 
T, and solar radiation. Median hourly averages are shown and standard errors are plotted 
as error bars. 

 

At CTR, the aerosol was highly acidic, with predicted mean pH = 0.94 ± 0.59 (± SD). The 

minimum and maximum pH were –0.94 and 2.23 respectively, and pH varied by 
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approximately 1 on average throughout the day (Figure 2-4a). That is, the 𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎+ /LWC ratio 

increased by a factor of 10 from night to day. LWC max/min ratio was 5, whereas 𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎+  

diurnal variation was significantly less (Figure 2-4b), indicating that the diurnal pattern in 

pH was mainly driven by particle water dilution. This is further demonstrated in Figure 

2-4d, which shows the diurnal variation in the NH4
+/SO4

2- molar ratio (the main ions 

driving pH), with only slightly lower ratios during the day. The study mean (± SD) 

NH4
+/SO4

2- molar ratio was 1.4 (± 0.5). As LWC is mainly controlled by RH and 

temperature, the pH diurnal variation was thus largely driven by meteorological conditions, 

not aerosol composition. 
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Figure 2-4 CTR (SOAS) diurnal patterns of calculated pH based on total predicted water 
(𝑊𝑊𝑖𝑖  + 𝑊𝑊𝑜𝑜 ) (a), 𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎+  predicted by ISORROPIA-II (b), ion balance (c), and NH4

+/SO4
2- 

molar ratio (d). Mean and median values are shown, together with 25% and 75% quantiles 
marked as non-filled circles. 

 

In part, because of the diurnal variation of LWC, a simple ion balance or NH4
+/SO4

2- molar 

ratio or per volume air concentration of aerosol hydronium ion (𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎+ ) alone cannot be used 

as a proxy for pH in the particle. Figure 2-5a shows a weak inverse correlation (R2 = 0.36) 

between ion balance and pH. An ion balance of an aerosol is usually calculated as follows 

(in unit of nmol equivalence m-3), for a NH4
+-Na+-SO4

2--NO3
--Cl--water inorganic aerosol. 

 Ion Balance =
[SO4

2−]
48

+
[NO3

−]
62

+
[Cl−]
35.5

−
[NH4

+]
18

−
[Na+]

23
 (2-7) 

where [SO4
2−], [NO3

−], [Cl−], [NH4
+], and [Na+] are concentrations of these ions in units of 

μg m-3 (per volume of air). An ion balance is also a bad indicator of pH because it poorly 

predicts the aerosol concentration of 𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎+ . An ion balance assumes all ions are completely 

dissociated, but multiple forms are possible, depending on pH (e.g., sulfate can be in the 

form of H2SO4, HSO4
-, or SO4

2-). For example, if aerosol sulfate remains in the free form 

of H2SO4, it doesn’t add protons. Thus, an ion balance usually overestimates protons and 

is only moderately correlated with  𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎+  (Figure 2-5b). 



 

 

33 

 
Figure 2-5 Comparison of ion balance to pH (a) and to 𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎+  (b) at CTR (SOAS). ODR fits 
were applied. 

 

2.5.2.2 LWC uncertainty:  

In estimating the water uncertainty, we consider 𝑊𝑊𝑖𝑖 and 𝑊𝑊𝑜𝑜 separately. The uncertainty of 

𝑊𝑊𝑖𝑖 is estimated by propagating the measurement uncertainty of ions and RH through the 

ISORROPIA-II thermodynamic model by finite perturbations about the model base state. 

Uncertainties of ions were estimated by difference between IC-ions and AMS-ions, as well 

as PILS-IC measurement uncertainty (Table 2-2). Na+ is excluded because it is not 

measured by the AMS. PILS-IC instrumental uncertainty is estimated to be 15% from the 

variability in standards (variability is calibration slopes), blanks, sample airflow rate, and 

liquid flow rate (one SD). The total ion uncertainties are listed in Table 2-2. SO4 has a 

higher uncertainty, at 25%, than the rest, which are at 15%. These combined uncertainties 

lead to an 𝑊𝑊𝑖𝑖 uncertainty of 25% (Figure 2-6), which is the same as the SO4 uncertainty. 
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SO4, one of the most hygroscopic ions [Petters and Kreidenweis, 2007], controls 𝑊𝑊𝑖𝑖 

uptake. 

 
Figure 2-6 𝑊𝑊𝑖𝑖 based on artificially perturbed ion data at upper and lower uncertainty limits 
is compared to 𝑊𝑊𝑖𝑖 at base level. The slopes indicate the 𝑊𝑊𝑖𝑖 uncertainty caused by ions. 

 

For the SOAS study, the RH probe in the ambient nephelometer (Humitter 50U, VAISALA 

Inc.) has a stated maximum uncertainty of 5% at RH = 90%. RH biases with respect to 

environment conditions can also occur due to placement of the probe. Based on RH 

comparisons between ARA, Rutgers [Nguyen et al., 2014b], and the Georgia Tech 

instrumentation, a systematic bias as large as 10% is found. Given this, we consider an RH 

probe factory uncertainty (5%) as a typical value and inter-comparison difference (10%) 

as an extreme condition. In this analysis, RH was adjusted by ± 5% and ± 10% and 𝑊𝑊𝑖𝑖 was 

recalculated (Figure 2-7). A ± 5% perturbation in RH leads to a 91% (slope − 1) error for 
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5% perturbation above the measured value (1.05RH) and 29% error for a perturbation 

below the measured value (0.95RH). We take 60% as average uncertainty. Higher 

uncertainty is introduced with increasing RH, owning to the exponential growth of LWC 

with RH and results in the asymmetric LWC uncertainty. Combining 𝑊𝑊𝑖𝑖 uncertainty from 

ions (25%) and RH (60%), the overall uncertainty is calculated as 65%. 

 
Figure 2-7 𝑊𝑊𝑖𝑖  based on artificially perturbed RH at upper and lower uncertainty limits 
compared to 𝑊𝑊𝑖𝑖 at base level. 1.10RH (i.e., RH increased by 10%) is not plotted because it 
results in much larger 𝑊𝑊𝑖𝑖  than the rest. Slopes and R2 indicate corresponding 𝑊𝑊𝑖𝑖 
uncertainty caused by variability (uncertainty) in RH. 

 

The uncertainty sources for 𝑊𝑊𝑜𝑜 are 𝜅𝜅𝑜𝑜𝑜𝑜𝑜𝑜, 𝜌𝜌𝑠𝑠, 𝑚𝑚𝑠𝑠, and RH (Equation 2-5). The uncertainties 

of these parameters are estimated to be 26% (details can be found in supporting materials 

A.3), 10%, 20%, and 5% (from above), respectively. In summary, the overall uncertainty 

of 𝑊𝑊𝑜𝑜 is 35%. 
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The total uncertainty of LWC can be expressed as a sum of 𝑊𝑊𝑖𝑖 and 𝑊𝑊𝑜𝑜 uncertainties, where 

𝜀𝜀𝑖𝑖 is the mass fraction. 𝜀𝜀𝑊𝑊𝑜𝑜 and 𝜀𝜀𝑊𝑊𝑖𝑖 were found to be 36% and 64% of the total LWC. 

 𝛿𝛿𝐿𝐿𝐿𝐿𝐿𝐿

𝐿𝐿𝐿𝐿𝐿𝐿
= ��𝜀𝜀𝑊𝑊𝑖𝑖

𝛿𝛿𝑊𝑊𝑖𝑖

𝑊𝑊𝑖𝑖
�
2

+ �𝜀𝜀𝑊𝑊𝑜𝑜

𝛿𝛿𝑊𝑊𝑜𝑜

𝑊𝑊𝑜𝑜
�
2

 (2-8) 

Given the above, 𝛿𝛿𝐿𝐿𝐿𝐿𝐿𝐿
𝐿𝐿𝐿𝐿𝐿𝐿

 is 43%. This method of assessing predicted LWC uncertainty can 

be applied to SCAPE sites as well. The specific predicted LWC at SCAPE sites were 

calculated and are listed in Table 2-3. 𝑊𝑊𝑖𝑖 uncertainty associated with ions is the same as 

noted above, 25%, because it is estimated by PILS-IC and AMS differences. Similar 

uncertainties in 𝑊𝑊𝑖𝑖 at the SCAPE sites are expected if RH uncertainties are similar at all 

sites. 

2.5.2.3 pH uncertainty: 

As pH is based on 𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎+  and LWC, the uncertainty of pH can be estimated from these two 

parameters. We applied the adjoint model of ISORROPIA, ANISORROPIA [Capps et al., 

2012], to quantify the sensitivity of predicted 𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎+  to the input aerosol species at the 

conditions of the thermodynamic calculations. pH uncertainty resulting from aerosol 

composition is then determined by propagating the input parameter uncertainties, using 

ANISORROPIA sensitivities, to the corresponding 𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎+  and pH uncertainty. 

We now assess how pH of PM2.5 is affected by using an incomplete measurement of ionic 

species by comparing the pH predicted based on the more complete suite of ions measured 

by the PILS-IC versus the AMS, during SOAS. Sensitivities of aerosol species to 𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎+  

were calculated by ANISORROPIA with PILS-IC data and presented as partial derivatives 
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(Table 2-2). Higher sensitivity values imply the inorganic ion is more important for 𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎+ . 

In the SOAS study, 𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎+  is most sensitive to SO4, and then NH4
+, as they were the major 

ions. Uncertainties of ions were estimated by the difference between IC-ions and AMS-

ions, as well as PILS-IC measurement uncertainty. Since Na+ is not measured by AMS, we 

cannot estimate the difference between PILS-IC and AMS. The loadings and sensitivities 

of NO3
- and Cl- were very low, so they are assumed not to contribute much to 

𝛿𝛿𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎
+

𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎
+ . Given 

this, 
𝛿𝛿𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎

+

𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎
+  is determined by; 

 𝛿𝛿𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎+
𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎+

= ��
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𝜕𝜕𝑆𝑆𝑆𝑆4

𝛿𝛿𝑆𝑆𝑆𝑆4
𝑆𝑆𝑆𝑆4

�
2

+ �
𝜕𝜕𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎+

𝜕𝜕𝑁𝑁𝑁𝑁4+
𝛿𝛿𝑁𝑁𝑁𝑁4+
𝑁𝑁𝑁𝑁4+

�
2

+ �
𝜕𝜕𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎+

𝜕𝜕𝑁𝑁𝑁𝑁+
𝛿𝛿𝑁𝑁𝑁𝑁+
𝑁𝑁𝑁𝑁+

�
2

 (2-9) 

Based on the input for Equation 2-9 (Table 2-2), 
𝛿𝛿𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎

+

𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎
+  is estimated as 14%. LWC is most 

sensitive to RH fluctuations, so it is considered the main driver of LWC uncertainty in the 

pH calculation. As discussed, we artificially adjusted RH by ± 5% and ± 10% (10% is 

considered an extreme condition). 𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎+ , 𝑊𝑊𝑖𝑖, 𝑊𝑊𝑜𝑜, as well as pH were all recalculated using 

90%, 95%, 105%, and 110% of the actual measured RH. RH + 5% and RH − 5% lead to 

12% and 6% variation in pH based on orthogonal regression slopes, respectively (Figure 

2-8). RH − 10% results in only 10% variation, however, RH + 10% results in a 45% 

variation, and the coefficient of determination (R2) between pH calculated based on RH + 

10% and original RH drops to only 0.78, while for all other cases R2 > 0.96. The 

disproportionately large effect of the positive uncertainty is caused by the exponential 

increase of LWC with RH, as RH reaches high levels (>90%). Assuming the stated 
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manufacturer uncertainty (5%) for our RH uncertainty, pH uncertainty is estimated to be 

6%-12%. We take 12% as 𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

𝛿𝛿𝐿𝐿𝐿𝐿𝐿𝐿 for further calculations. 

Table 2-2 Sensitivity of 𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎+  to ions from ANISORROPIA (2nd row) and contribution to 
uncertainty. Uncertainties of inorganic ions (𝛿𝛿𝐼𝐼𝐼𝐼𝐼𝐼

𝐼𝐼𝐼𝐼𝐼𝐼
) are calculated based on a combination of 

PILS-IC instrumental relative uncertainties (IC uncertainty, referred to as 𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖,𝐼𝐼𝐼𝐼
𝐼𝐼𝐼𝐼𝑛𝑛

, all 

estimated to be 15%) and the difference between PILS-IC and AMS (𝛿𝛿𝐼𝐼𝐼𝐼𝐼𝐼,𝐼𝐼𝐼𝐼−𝐴𝐴𝐴𝐴𝐴𝐴
𝐼𝐼𝐼𝐼𝐼𝐼

, defined 

as the (slope − 1) in Figure 2-2a & b) (3rd row), where 𝛿𝛿𝐼𝐼𝐼𝐼𝐼𝐼
𝐼𝐼𝐼𝐼𝐼𝐼

= ��𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖,𝐼𝐼𝐼𝐼
𝐼𝐼𝐼𝐼𝐼𝐼

�
2

+ �𝛿𝛿𝐼𝐼𝐼𝐼𝐼𝐼,𝐼𝐼𝐼𝐼−𝐴𝐴𝐴𝐴𝐴𝐴
𝐼𝐼𝐼𝐼𝐼𝐼

�
2
 

(4th row). Contribution of uncertainty is the ratio of ion uncertainty over 𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎+  uncertainty 

(
𝛿𝛿𝐻𝐻𝑎𝑎𝑖𝑖𝑟𝑟

+

𝐻𝐻𝑎𝑎𝑖𝑖𝑖𝑖
+ , calculated to be 14% by Equation 2-9) (5th row). 

PILS-IC ion 
concentratio
n, µg m-3 
(mean ± SD) 

SO4 NH4
+ Na+ NO3

- Cl- 

1.73 ± 1.21 0.46 ± 0.34 0.03± 0.07 0.08 ± 0.08 0.02 ± 0.03 

𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎+   
Sensitivity 
(mean ± SD) 

�
𝜕𝜕𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎+

𝜕𝜕𝑆𝑆𝑆𝑆4
� �

𝜕𝜕𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎+

𝜕𝜕𝑁𝑁𝑁𝑁4+
� �

𝜕𝜕𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎+

𝜕𝜕𝑁𝑁𝑁𝑁+
� �

𝜕𝜕𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎+

𝜕𝜕𝑁𝑁𝑂𝑂3−
� �

𝜕𝜕𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎+

𝜕𝜕𝐶𝐶𝐶𝐶−
� 

0.51 ± 0.34 0.32 ± 0.31 0.19 ± 0.27 0.002 ± 0.007 0.000 ± 0 

𝛿𝛿𝐼𝐼𝐼𝐼𝐼𝐼,𝐼𝐼𝐼𝐼−𝐴𝐴𝐴𝐴𝐴𝐴

𝐼𝐼𝐼𝐼𝐼𝐼
 

𝛿𝛿𝑆𝑆𝑆𝑆4,𝐼𝐼𝐼𝐼−𝐴𝐴𝐴𝐴𝐴𝐴

𝑆𝑆𝑆𝑆4
 

𝛿𝛿𝑁𝑁𝑁𝑁4+,𝐼𝐼𝐼𝐼−𝐴𝐴𝐴𝐴𝐴𝐴

-𝑁𝑁𝑁𝑁4+
 

𝛿𝛿𝑁𝑁𝑁𝑁+,𝐼𝐼𝐼𝐼−𝐴𝐴𝐴𝐴𝐴𝐴

𝑁𝑁𝑁𝑁+
 

𝛿𝛿𝑁𝑁𝑁𝑁3−,𝐼𝐼𝐼𝐼−𝐴𝐴𝐴𝐴𝑆𝑆

𝑁𝑁𝑁𝑁3−
 

𝛿𝛿𝐶𝐶𝐶𝐶−,𝐼𝐼𝐼𝐼−𝐴𝐴𝐴𝐴𝐴𝐴

𝐶𝐶𝐶𝐶−
 

20.5% 1.5% N/A* ** ** 

𝛿𝛿𝐼𝐼𝐼𝐼𝐼𝐼
𝐼𝐼𝐼𝐼𝐼𝐼

 

𝛿𝛿𝑆𝑆𝑆𝑆4
𝑆𝑆𝑆𝑆4

 
𝛿𝛿𝑁𝑁𝑁𝑁4+
-𝑁𝑁𝑁𝑁4+

 
𝛿𝛿𝑁𝑁𝑁𝑁+
𝑁𝑁𝑁𝑁+

 
𝛿𝛿𝑁𝑁𝑁𝑁3−
𝑁𝑁𝑁𝑁3−

 
𝛿𝛿𝐶𝐶𝐶𝐶−
𝐶𝐶𝐶𝐶−

 

25.4% 15.1% 15% 15% 15% 

Contribution 
to 𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎+  
uncertainty 

�𝜕𝜕𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎
+

𝜕𝜕𝑆𝑆𝑆𝑆4
� ∙
𝛿𝛿𝑆𝑆𝑆𝑆4
𝑆𝑆𝑆𝑆4

𝛿𝛿𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎+
𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎+

 
�𝜕𝜕𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎

+

𝜕𝜕𝑁𝑁𝑁𝑁4+
� ∙
𝛿𝛿𝑁𝑁𝑁𝑁4+
𝑁𝑁𝑁𝑁4+

𝛿𝛿𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎+
𝐻𝐻𝑎𝑎𝑖𝑖𝑟𝑟+

 
�𝜕𝜕𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎

+

𝜕𝜕𝑁𝑁𝑁𝑁+� ∙
𝛿𝛿𝑁𝑁𝑁𝑁+
𝑁𝑁𝑁𝑁+

𝛿𝛿𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎+
𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎+

 
�𝜕𝜕𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎

+

𝜕𝜕𝑁𝑁𝑁𝑁3−
� ∙
𝛿𝛿𝑁𝑁𝑁𝑁3−
𝑁𝑁𝑁𝑁3−

𝛿𝛿𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎+
𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎+

 
�𝜕𝜕𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎

+

𝜕𝜕𝐶𝐶𝐶𝐶− � ∙
𝛿𝛿𝐶𝐶𝐶𝐶−
𝐶𝐶𝐶𝐶−

𝛿𝛿𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎+
𝐻𝐻𝑎𝑎𝑖𝑖𝑖𝑖+

 

0.93 0.35 0.20 0.002 0.000 

* Na+ is not measured by AMS. 
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** �𝜕𝜕𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎
+

𝜕𝜕𝑁𝑁𝑁𝑁3−
� and �𝜕𝜕𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎

+

𝜕𝜕𝐶𝐶𝐶𝐶−
� are less than 1% of the other 𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎+  sensitivities, and the loadings of NO3

- and 

Cl- are less than 5% of the total inorganic ion mass. As a result, their contributions to 𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎+  
uncertainty are negligible. 

 
Figure 2-8 pH predictions by perturbing RH compared to pH at base level. 𝑊𝑊𝑖𝑖, 𝑊𝑊𝑜𝑜, and 
𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎+  were recalculated based on ± 5% and ± 10% original RH to investigate pH 
uncertainty. The slopes and R2 indicate pH uncertainty caused by RH. 

 

SO4 was found to contribute the most to 
𝛿𝛿𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎

+

𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎
+ . NH4

+ and Na+ followed. SO4 and NH4
+

 are 

the two most abundant inorganic components in aerosols and controlling aerosol acidity. 

Finally, the total pH uncertainty is the combination of LWC and the uncertainty associated 

with 𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎+ , which is computed from the definition of pH (Equation 2-6). 

 𝛿𝛿𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝

= ��
𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎+

𝛿𝛿𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎+ �
2

+ �
𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

𝛿𝛿𝐿𝐿𝐿𝐿𝐿𝐿�
2

 (2-10) 
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where 𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎

+  can be derived from Equation 2-6 as 

 
𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎+

= −
1

2.303
1
𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎+
𝐿𝐿𝐿𝐿𝐿𝐿

1
𝐿𝐿𝐿𝐿𝐿𝐿

= −
1

2.303
1
𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎+

 (2-11) 

From Equation 2-9 and the uncertainties of 𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎+  and LWC (Equation 2-7 and 2-8), we 

estimate the pH uncertainty for the SOAS dataset to be 13% (based on the specific 

uncertainties considering here). pH uncertainties at SCAPE sites were also assessed via 

this method. As discussed above, 
𝛿𝛿𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎

+

𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎
+  was found to be 14% for the SOAS study, due to 

IC and AMS data set differences and PILS-IC instrumental uncertainty. This same 

uncertainty is applied to SCAPE, where no PILS-IC data were available. Because aerosol 

composition at all sites is similar, based on filter IC analysis (Figure A-8, similar 

sensitivities of 𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎+  to ions are expected. However, actual uncertainty for each sampling 

period is possibly higher due to higher loadings of refractory ions at SCAPE sites due to 

contributions from urban emissions. Refractory ions not measured by the AMS (i.e. Na+, 

K+, Ca2+, Mg2+), have a minor effect on predicting LWC, but may have an important effect 

on pH (e.g., result in higher pH) in locations where they could substantially contribute to 

the overall ion balance. 

2.5.2.4 Model validation: Prediction of liquid water 

Several LWC measurements were made at CTR during SOAS. In addition to 𝑓𝑓(𝑅𝑅𝑅𝑅)_water 

(4.52 ± 3.75 µg m-3), particle water was quantified with a Semivolatile Differential 

Mobility Analyzer (SVDMA). With this method, a SOAS study mean particle water 

concentration of 4.27 ± 3.69 µg m-3 (± SD) was obtained [Nguyen et al., 2014b]. The 
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orthogonal regression between these two measurements (SVDMA water vs 𝑓𝑓(𝑅𝑅𝑅𝑅)_water) 

has slope = 0.91, intercept = –0.03, R2 = 0.35. Differences could be caused by differences 

in size-resolved composition (particle composition beyond PM1 that contributes LWC; 

SVDMA scans up to 1.1 µm, while 𝑓𝑓(𝑅𝑅𝑅𝑅)_water is based on PM2.5), instrument sample 

heating (i.e., the degree to which the instrument was close to ambient conditions, especially 

when ambient RH was high, and most sensitive to slight T differences), and differences in 

RH probe calibrations. 

CTR predicted total LWC, (𝑊𝑊𝑖𝑖 + 𝑊𝑊𝑜𝑜 ), was 5.09 ± 3.76 µg m-3 and agreed well with 

𝑓𝑓(𝑅𝑅𝑅𝑅)_water. The total predicted water was highly correlated and on average within 10% 

of the measured water, with slope = 0.91, intercept = 0.46, R2 = 0.75 (see Figure 2-9). Since 

excluding refractory ions and not considering gas phase species in the ISORROPIA-II 

calculations do not significantly affect the LWC prediction, its comparison across sites is 

less uncertain than pH. 
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Figure 2-9 Comparison between total predicted and measured water by nephelometers 
based on hourly averaged data at CTR (SOAS). An ODR fit was applied. Error bars for 
selected points are shown. 

 

2.5.2.5 Model validation: Prediction of pH 

ISORROPIA-II calculations of pH at CTR for the SOAS study were evaluated by 

comparing measured and predicted NH3. Although NH4
+ and NH3, along with other aerosol 

components, are input into the model, comparing ambient NH4
+ and NH3 to model 

predictions is not a circular analysis. For each observed data point, the model calculates 

total ammonia from the NH4
+ and NH3 input and then calculates the gas-particle ammonia 

partitioning assuming equilibrium. There are also other various assumptions/limitations 

associated with the model. Figure 2-10 shows the SOAS study time series of measured and 

predicted NH3 and the fraction of ammonia in the gas phase, NH3/(NH3 + NH4
+). Measured 

and predicted NH3 are in good agreement. Periods when almost all ammonia was in the gas 
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phase (ratio near 1) are related to precipitation events (June 10, 24, 28, July 03, 04) when 

aerosol concentrations were very low. Not including these events, the study mean (± SD) 

fraction ammonia in the gas phase was 0.41 (± 0.16) (median value is also 0.41). These 

results provide confidence in ISORROPIA-II calculations of particle pH and demonstrate 

the utility of including both measurements of particle and gas phases in these types of 

studies. 

When gas and particle data are not available, pH predictions are not as accurate [Hennigan 

et al., 2015]. Running ISORROPIA-II in the forward mode, but with only aerosol 

concentrations as input, may result in a bias in predicted pH due to repartitioning of 

ammonia in the model. In the southeast, where pH is largely driven by SO4 and NH4
+, the 

aerosol NH4
+ input will be partitioned in the model between gas and particle phases to 

establish equilibrium. Sulfate repartitioning does not occur since it is nonvolatile. Thus, 

NH4
+ will be lost from the particle and a lower pH predicted. At CTR ammonia partitioning 

has been included in all model runs, but as no NH3 was available for SCAPE. Assuming 

the average NH3/NH4
+ ratio from CTR applies to all SCAPE sites to estimate NH3, along 

with measured particle composition at each site, we got pH increases ranging from 0.87 to 

1.38. In the following, all pH reported for SCAPE are corrected for this bias (i.e., pH 

increase by 1 to simplify the correction). Note that ammonia partitioning does not 

significantly affect the LWC prediction (𝑊𝑊𝑖𝑖 predicted without NH3 vs 𝑊𝑊𝑖𝑖 predicted with 

NH3: slope = 1.00, intercept = –0.01 µg m-3, R2 = 0.98). 
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Figure 2-10 CTR (SOAS) time series of hourly averaged measured NH3, predicted NH3, 
NH3 fraction (i.e., measured NH3/(NH3 + NH4

+)) and precipitation. 

 

2.5.3 LWC and pH at other sites in the southeast (SCAPE sites) 

Seasonal trends 

The methods developed and verified at CTR are now applied to the SCAPE study where 

fewer species was measured. LWC predictions at all SCAPE sites are shown in Table 2-3, 

providing insights on seasonal trends of LWC in the southeast. The overall summer LWC 

mean was 5.02 µg m-3 and winter mean 2.22 µg m-3. 

At the SCAPE sites, JST, YRK, GIT, and RS, summer mean pH was between 1 and 1.3, 

similar to CTR (mean of 0.94). In winter the pH (mean between 1.8 and 2.2) was higher 

by ~ 1 unit. Although LWC was higher in summer, which tends to dilute 𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎+  and increase 

pH, summer pH was lower due to higher ion (i.e., sulfate) concentrations (Table 2-3). 

Similar diurnal pH patterns were seen at all sites in all seasons and follow the diurnal 
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variations of particle water (Figure 2-11). Overall the pH in the southeast is very low, 

between 1 and 2 (mean), in both rural and urban environments. pH values in summer at 

various sites were similar (1 to 1.3), suggesting a fairly homogeneous distribution of acidity 

due to spatially uniform sulfate in the southeastern U.S. [Zhang et al., 2012]. In winter the 

diurnal range in pH was roughly 2 units, while the diurnal range in summer was smaller, 

with pH varying by roughly 1. 

Recall at CTR, 10% RH uncertainty can result in a pH prediction error of up to 45% due 

to the high RHs observed during the study. We estimated pH uncertainty from 𝑊𝑊𝑖𝑖 and 𝑊𝑊𝑜𝑜 

by + 10% RH for each SCAPE site. As Table 2-3 shows, the pH uncertainty associated 

with RH is much lower in winter (only 1-3%) than summer (20-40%), although RH 

averages were similar, e.g., JST in May (67 ± 19%) and Nov (63 ± 19%), with even higher 

RH in winter at YRK. Total pH uncertainty at all SCAPE sites are calculated by the same 

method as CTR. Table 2-3 shows that higher RH and T result in larger pH uncertainty. In 

summer, pH uncertainty is mainly caused by RH; while in winter, it can be attributed 

mostly to uncertainty in ion concentrations. 
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Figure 2-11 LWC and pH diurnal variation at SCAPE sites: comparison between summer 
and winter. Median hourly averages and standard error bars at local hour are plotted. A 
bias correction of 1 pH unit is applied due to not considering ammonia partitioning. 
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The role of 𝑊𝑊𝑜𝑜 

𝑊𝑊𝑜𝑜 was significant, accounting for on average 29-39% of the total PM2.5 particle water for 

all our sites (Figure 2-12 and Table 2-3). Note that, 𝑊𝑊𝑜𝑜 at SCAPE sites were calculated by 

in situ AMS measurements at each SCAPE site and the mean 𝜅𝜅𝑜𝑜𝑜𝑜𝑜𝑜 (0.126) measured at 

CTR, due to lack of CCNc. Note that 𝜀𝜀𝑊𝑊𝑜𝑜 could be higher or lower at each site depending 

on the type of organics presented and the related 𝜅𝜅𝑜𝑜𝑜𝑜𝑜𝑜. Figure 2-12 shows that 𝑊𝑊𝑜𝑜 is related 

to the organic mass fraction. 𝑊𝑊𝑜𝑜 is comparable to 𝑊𝑊𝑖𝑖 at night. In contrast, it was only 33% 

of 𝑊𝑊𝑖𝑖  during the daytime (Figure 2-3). The significant fraction, even during daytime, 

indicates organic aerosol components will have a considerable contribution to aerosol 

radiative forcing. Although organics are less hygroscopic than ammonium sulfate, a large 

fraction of the PM2.5 (~70%) was organic, making 𝑊𝑊𝑜𝑜  contribution important. Of the 

organic factors associated with 𝑊𝑊𝑜𝑜, Cerully et al. [2014] showed that MOOOA (more-

oxidized oxygenated organic aerosol, also referred to as LVOOA, low-volatile oxygenated 

organic aerosol) and Isoprene-OA (isoprene derived organic aerosol) were twice as 

hygroscopic as LOOOA (less-oxidized oxygenated organic aerosol, also referred to as 

SVOOA, semi-volatile oxygenated organic aerosol). The LWC associated with MOOOA 

and Isoprene-OA account for ~60% and ~30% of total 𝑊𝑊𝑜𝑜 in the daytime, respectively. 
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Figure 2-12 𝑊𝑊𝑜𝑜 mass fraction (𝜀𝜀𝑊𝑊𝑜𝑜) plotted versus organic mass fraction at CTR (SOAS). 
Overall study mean and standard deviation is also shown. 𝜀𝜀𝑂𝑂𝑂𝑂𝑂𝑂 = 61 ± 14% and 𝜀𝜀𝑊𝑊𝑜𝑜 = 36 
± 14%. 

 

The effect of aerosol sources of particle water on pH can also be delineated. pH calculated 

just by 𝑊𝑊𝑖𝑖 alone will be affected by an underestimation of particle water, resulting in a 

slightly lower pH (Figure 2-13). 𝑊𝑊𝑜𝑜 is on average 29% to 39% of total water at all sites, as 

a result pH increases by 0.15 to 0.23 units when 𝑊𝑊𝑜𝑜 is included. Independent of the pH 

range, a 29% to 39% 𝑊𝑊𝑜𝑜 fraction always increases pH by 0.15 to 0.23 due to the logarithmic 

nature of pH. The effect of 𝑊𝑊𝑜𝑜  on pH can be simply denoted as log10(1 − 𝜀𝜀𝑊𝑊𝑜𝑜). For 

example, when 𝜀𝜀𝑊𝑊𝑜𝑜 is 90%, it shifts pH up by 1 unit. pH based on 𝑊𝑊𝑖𝑖 is highly correlated 

with pH for total water (𝑊𝑊𝑖𝑖 + 𝑊𝑊𝑜𝑜 ) (Slope = 0.94, intercept = –0.14, R2 = 0.97). This 

indicates that if organic mass and 𝜅𝜅𝑜𝑜𝑜𝑜𝑜𝑜 are not available, ISORROPIA-II run with only ion 

data will give a reasonable estimate of pH, since both 𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎+  and 𝑊𝑊𝑖𝑖  are outputs of 
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ISORROPIA-II, while 𝑊𝑊𝑜𝑜  is predicted based on organic mass and 𝜅𝜅𝑜𝑜𝑜𝑜𝑜𝑜 . Accurate 

temperature and RH are still necessary inputs, especially when RH is high. 

 
Figure 2-13 CTR (SOAS) pH diurnal profiles based on total predicted water and 𝑊𝑊𝑖𝑖 , 
respectively. Median hourly averages and standard error bars at local hour are plotted. 
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Table 2-3 Water and pH prediction for SCAPE sites. Means and SDs are listed, if not 
specified. Total ion concentration is counted as the sum of AMS inorganics (4th row). 𝜀𝜀𝑊𝑊𝑜𝑜 
is the mass fraction of 𝑊𝑊𝑜𝑜 to particle LWC (6th row). 

Site 
month/year 

JST 
05/2012 

YRK 
07/2012 

GIT 
08/2012 

RS 
09/2012 

JST 
11/2012 

YRK 
12/2012 

RH, % 67 ± 19 66 ± 21 71 ± 17 72 ± 20 63 ± 19 73 ± 21 

T, ℃ 23.1 ± 4.3 27.7 ± 4.4 26.3 ± 3.5 21.4 ± 3.8 11.5 ± 4.8 9.8 ± 5.2 

Total ion 
concentration, µg m-3 4.1 ± 2.1 4.5 ± 2.2 5.3 ± 2.6 4.1 ± 2.7 3.6 ± 2.1 2.3 ± 1.8 

𝛿𝛿𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝

 from 1.10RH 22.3% 21.4% 48.3% 22.1% 2.5% 1.4% 

Total 𝛿𝛿𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝

 23.9% 23.0% 49.0% 23.7% 8.8% 8.6% 

𝜀𝜀𝑊𝑊𝑜𝑜, % 34 ± 11 37 ± 8 33 ± 10 38 ± 11 39 ± 16 29 ± 15 

LWC, µg m-3 5.98 ± 6.28 8.14 ± 8.47 8.41 ± 7.67 7.81 ± 9.23 5.88 ± 8.69 3.24 ± 3.46 

pH* 1.3 ± 0.7 1.1 ± 0.6 1.1 ± 0.4 1.3 ± 0.7 2.2 ± 0.9 1.8 ± 1.0 

LWC, µg m-3 
(median) 3.74 ± 6.28 5.29 ± 8.47 6.06 ± 7.67 4.31 ± 9.23 2.14 ± 8.69 2.02 ± 3.46 

pH* (median) 1.2 ± 0.7 1.0 ± 0.6 1.0 ± 0.4 1.2 ± 0.7 2.3 ± 0.9 1.8 ± 1.0 

* A bias correction of 1 pH unit is applied due to not considering ammonia partitioning. See Section 2.5.2.5 
for details. 

 

2.5.4 Overall implications of low pH 

Highly acidic aerosols throughout the southeast during all seasons will affect a variety of 

processes. For example, aerosol acidity strongly shifts the partitioning of HNO3 to the gas 

phase resulting in low nitrate aerosol levels in the southeast during summer (the higher 

summertime temperature also plays a secondary role). Aerosol acidity also impacts the gas-

particle partitioning of semivolatile organic acids. Note, organic acids are not considered 

in our model, under these acidic conditions (pH = 1) their contributions to the 𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎+  (hence 

pH) are expected to be negligible. Because the pKa (pKa = – log10 Ka, Ka referred as acid 
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dissociation constant) of trace organic acids are > 2 (e.g., pKa of formic acid, one of the 

strongest organic acids, is 3.75, Bacarella et al. [1955]), low pH prevents dissociation of 

the organic acids. Since H+ is involved in aqueous phase reactions, low pH can affect 

reaction rates by providing protons. Investigators have found that Isoprene-OA formation 

is acid-catalyzed and sulfuric acid participates in the reaction as a proton donor in chamber 

studies [Surratt et al., 2007]. However, aerosol acidity appears not to be a limiting factor 

for Isoprene-OA formation in the southeastern US, owning to the consistently very low pH 

[Karambelas et al., 2014; Xu et al., 2015a]. Finally, low pH can affect the solubility of 

trace transition metals (e.g., mineral dust) such as Fe and Cu, which possibly increases the 

toxicity of the redox metals [Ghio et al., 2012; Verma et al., 2014] and may also have a 

long term effect on nutrient distributions in the region [Meskhidze et al., 2003; Meskhidze 

et al., 2005; Nenes et al., 2011; Ito and Xu, 2014]. 

2.6 Conclusions 

Particle pH is important and difficult to measure directly. However, the commonly used 

pH proxies of ion balances and NH4
+/SO4

2- molar ratios don’t necessarily correlate with 

pH. Therefore, predicting pH is the best method to analyze particle acidity. By combining 

several models, we present a comprehensive prediction method to calculate pH and include 

an uncertainty analysis. ISORROPIA-II is applied to calculate the concentration of 𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎+  

and 𝑊𝑊𝑖𝑖 from inorganic aerosol measurements, and CCN activity is used to predict 𝑊𝑊𝑜𝑜. The 

adjoint model of ISORROPIA, ANISORROPIA, is applied to determine sensitivities, 

which are used for propagating the measurement uncertainties to pH. We find that 𝑊𝑊𝑜𝑜 

should be included when predicting particle LWC when organic loadings are high (such as 
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in the southeastern U.S.). However, the pH prediction is not highly sensitive to 𝑊𝑊𝑜𝑜, unless 

𝑊𝑊𝑜𝑜 mass fraction to the total particle water is close to 1. Thus, in most cases particle pH 

can be predicted fairly accurately with just measurements of inorganic species and 

ISORROPIA-II. However, constraining ISORROPIA-II with gas phase species, such as 

NH3, as done in this work (or HNO3), is highly recommended, along with running 

ISORROPIA-II in the forward mode. ISORROPIA-II does not consider organic acids, but 

at the low pHs of this study, they do not contribute protons. However, for pH approaches 

7, the dissociation of organic acids cannot be neglected. Finally, the model was validated 

through comparing predicted to measured liquid water (𝑊𝑊𝑖𝑖 + 𝑊𝑊𝑜𝑜  to f(RH)_water) and 

predicted to measured NH3 concentrations. 

On average, for the SOAS and SCAPE field studies, particle water associated with the 

PM2.5 organic species (𝑊𝑊𝑜𝑜) accounted for a significant fraction of total LWC, with a mean 

of 35% (± 3% SD) indicating the importance of organic hygroscopic properties to aqueous 

phase chemistry and radiative forcing in the southeast US. Although organics are less 

hygroscopic than sulfate and ammonium, the larger mass fraction of organics than 

inorganics promotes 𝑊𝑊𝑜𝑜 uptake. Predicted LWC was compared to LWC determined from 

ambient versus dry light scattering coefficients and a TEOM measurement of dry PM2.5 

mass. In SOAS, the sum of 𝑊𝑊𝑖𝑖 and 𝑊𝑊𝑜𝑜 was highly correlated and in close agreement with 

the measured LWC (slope = 0.91, R2 = 0.75). LWC showed a clear diurnal pattern, with a 

continuous increase at night (median of 10 µg m-3 at 7:30 am) reaching a distinct peak 

when RH reached a maximum near 90% just after sunrise during the period of lowest daily 
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temperature, followed by a rapid decrease and lower values during the day (median of 2 

µg m-3 at 2:30 pm). 

In the southeastern US, pH normally varied from 0.5 to 2 in the summer and 1 to 3 in the 

winter, indicating that the aerosol was highly acidic throughout the year. The minimum 

and maximum pH were –0.94 and 2.2 at CTR, respectively and varied from a nighttime 

average of 1.5 to daytime average of 0.6, mostly attributable to diurnal variation in RH and 

temperature. Mean NH4
+/SO4

2- molar ratios were 1.4 ± 0.5 (SD) and roughly half the 

ammonia was in the gas phase (NH3/(NH3 + NH4
+) = 41 ± 16 %, mean ± SD). pH at other 

sites in the southeast (SCAPE study) was estimated based on a limited data set at an 

estimated uncertainty of 9-49% and a systematic bias of –1 since NH3 is not included in 

the thermodynamic model run in the forward mode. pH can still be predicted with only 

aerosol measurements, but an adjustment of one unit pH increase is recommended for the 

southeastern US. pH has a diurnal trend that follows LWC, higher (less acidic) at night and 

lower (more acidic) during the day. pH was also generally higher in the winter (~2) than 

summer (~1). The low pH has significant implications for gas-aerosol partitioning, acid-

catalyzed reactions including Isoprene-OA formation, and trace transition metal 

mobilization. 
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CHAPTER 3. FINE PARTICLE PH AND THE PARTITIONING 

OF NITRIC ACID DURING WINTER IN THE NORTHEASTERN 

UNITED STATES 

3.1 Abstract 

Particle pH is a critical but poorly constrained quantity that affects many aerosol processes 

and properties, including aerosol composition, concentrations, and toxicity. We assess PM1 

pH as a function of geographical location and altitude, focusing on the northeastern US, 

based on aircraft measurements from the Wintertime Investigation of Transport, 

Emissions, and Reactivity (WINTER) campaign (Feb 01 to Mar 15 2015). Particle pH and 

water were predicted with the ISORROPIA-II thermodynamic model and validated by 

comparing predicted to observed partitioning of inorganic nitrate between the gas and 

particle phases. Good agreement was found for relative humidity (RH) above 40%; at lower 

RH observed particle nitrate was higher than predicted, possibly due to organic-inorganic 

phase separations or nitrate measurement uncertainties associated with low concentrations 

(nitrate < 1 µg m-3). Including refractory ions in the pH calculations did not improve model 

predictions, suggesting they were externally mixed with PM1 sulfate, nitrate, and 

ammonium. Sample line volatilization artifacts were found to be minimal. Overall, particle 

pH for altitudes up to 5000 m ranged between –0.51 and 1.9 (10th and 90th percentiles) with 

a study mean of 0.77 ± 0.96, similar to those reported for the southeastern US and eastern 

Mediterranean. This expansive aircraft data set is used to investigate causes in variability 

in pH and pH-dependent aerosol components, such as PM1 nitrate, over a wide range of 

temperatures (–21 to 19 ºC), RH (20 to 95%), inorganic gas and particle concentrations and 

provide further evidence that particles with low pH are ubiquitous. 
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3.2 Introduction 

Fine particles (PM2.5) are complex mixtures of organic and inorganic species [Kanakidou 

et al., 2005; Zhang et al., 2007a] often mixed with significant amounts of liquid water 

[Carlton and Turpin, 2013]. Sulfate, ammonium, and nitrate are typically the most 

abundant inorganic ions, with lower levels of sodium, chloride, crustal elements, and trace 

metal cations, depending on location and season [Cabada et al., 2004; Sardar et al., 2005; 

Peltier et al., 2007a; Zhang et al., 2010; Fang et al., 2015; Guo et al., 2015]. Among the 

aqueous aerosol species, the hydronium ion (H3O+, hereafter denoted simply as H+, but 

recognizing that the unhydrated hydrogen ion is rare in aqueous solutions) quantified with 

a logarithmic scale, pH, drives many processes related to particle composition, gas-particle 

partitioning, and aerosol toxicity. 

H+ catalyzes heterogeneous reactions such as hydration, polymerization, and carbonyl ring 

opening [Jang et al., 2002] and may play a key role in secondary organic aerosol (SOA) 

formation. Laboratory chamber studies have shown the production rate of SOA from some 

biogenic volatile organic compound (BVOC) precursors, such as isoprene and α-pinene, 

can be enhanced by strongly acidic particle seeds [Jang et al., 2002; Gao et al., 2004; 

Iinuma et al., 2004; Tolocka et al., 2004; Edney et al., 2005; Czoschke and Jang, 2006; 

Kleindienst et al., 2006; Northcross and Jang, 2007; Surratt et al., 2007; Eddingsaas et al., 

2010; Surratt et al., 2010]. Evidence for enhanced acid-catalyzed SOA formation in the 

ambient atmosphere have been reported in some studies [Chu, 2004; Lewandowski et al., 

2007; Zhang et al., 2007b; Tanner et al., 2009; Pathak et al., 2011; Lin et al., 2012; 

Budisulistiorini et al., 2013], while others have observed no SOA enhancement [Takahama 
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et al., 2006; Peltier et al., 2007b; Karambelas et al., 2014]. Possible reasons for a lack of 

definitive evidence include varying SOA formation precursors and pathways and a range 

in particle pH, the latter dictating whether acidity is a limiting factor [Nguyen et al., 2014a; 

Budisulistiorini et al., 2015; Xu et al., 2015a]. The use of pH proxies to infer pH (e.g., ion 

balances, NH4
+/SO4

2- molar ratio, etc.) can also obscure the role of H+ since they are not 

uniquely related to pH  (discussed below) [Pathak et al., 2004; Guo et al., 2015; Hennigan 

et al., 2015; Weber et al., 2016]. 

In addition to altering the potential SOA pathways, pH affects particle mass concentrations 

directly through partitioning of both semivolatile weak (e.g. formic, acetic, and oxalic) and 

strong acids (e.g., nitric and hydrochloric). Low pH drives these acids to the protonated 

and volatile states, and hence into the gas phase. In the summer, we reported that PM2.5 

aerosol pH was consistently low, between 0.5 and 2 in the southeastern US [Guo et al., 

2015]. This leads to low concentrations of semivolatile acids in the particle phase. For 

example, PM1 inorganic nitrate (NO3
-) concentrations were on average 0.08 µg m-3 in 

summer in Centerville, Alabama [Guo et al., 2015], with typical summertime partitioning 

ratios, ε(NO3
-) = NO3

-/(HNO3 + NO3
-), of 24 ± 5% (Table 2 in [Blanchard et al., 2013]). 

By impacting PM2.5 mass concentrations, particle pH can affect emission control priorities 

aimed at meeting air quality standards to protect human health [Lelieveld et al., 2015]. 

Furthermore, pH-controlled partitioning of these acids and associated ammonium affects 

deposition patterns of both acids and nitrogen (nitric acid, ammonia) due to large 

differences in gas and particle deposition rates [Huebert and Robert, 1985; Duyzer, 1994; 

Schrader and Brummer, 2014] and particle nitrate potentially affects N2O5 heterogeneous 
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reaction rates and NOx control [Wahner et al., 1998; Bertram and Thornton, 2009; Wagner 

et al., 2013]. 

pH also affects the solubility of trace metals found in aerosols, such as Fe [Meskhidze et 

al., 2003; Oakes et al., 2012]. Although mainly present as insoluble oxides, lower pH can 

dissolve these metals and convert them to soluble forms, such as metal sulfates [Oakes et 

al., 2012] and thereby significantly change the aerosol environmental impacts. For 

example, on global scales, metal mobility affects nutrient distributions [Duce and Tindale, 

1991; Meskhidze et al., 2003; Meskhidze et al., 2005; Nenes et al., 2011; Ito and Xu, 2014; 

Myriokefalitakis et al., 2015; Myriokefalitakis et al., 2016] with important impacts on 

productivity [Meskhidze et al., 2005], carbon sequestration and oxygen levels in the ocean 

[Ito et al., 2016], whereas on regional scales soluble transition metals have been linked to 

aerosol toxicity or aerosol oxidative potential [Ghio et al., 2012; Verma et al., 2014; Fang 

et al., 2015]. Synergistic adverse health effects have also been observed between ozone 

and acidic aerosols [Last, 1991; Enami et al., 2008] and many epidemiological studies have 

reported adverse health outcomes associated with strong aerosol acidity [Koutrakis et al., 

1988; Thurston et al., 1994; Dockery et al., 1996; Raizenne et al., 1996; Gwynn et al., 

2000; Lelieveld et al., 2015]. 

These broad impacts of particle acidity motivate determining particle pH. Several studies 

[Guo et al., 2015; Hennigan et al., 2015] evaluated thermodynamic modeling approaches 

for calculating pH, including ISORROPIA-II [Nenes et al., 1998; Fountoukis and Nenes, 

2007] and E-AIM (Extended Aerosol Inorganics Model) [Clegg et al., 1998; Wexler and 

Clegg, 2002; Clegg et al., 2003], since an established analytical method that directly 
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determines aerosol pH does not exist. ISORROPIA-II and E-AIM have been shown to give 

similar results when both gas and particle phase are input (i.e., models run in the forward 

mode) [Hennigan et al., 2015]. These thermodynamic models calculate particle hydronium 

ion concentrations (moles of particle H+ per volume air, 𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎
+ ) and liquid water content that 

is associated with inorganic components (𝑊𝑊𝑖𝑖), based on particle and gas phase inorganic 

species concentrations and meteorological conditions (relative humidity, RH, and 

temperature, T). 𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎
+  and 𝑊𝑊𝑖𝑖 can then be used to calculate particle pH. Accuracy of model 

pH predictions can be assessed by comparing predicted to measured partitioning of 

semivolatile species (e.g., NH3-NH4
+, HNO3-NO3

-), which can be highly sensitive to pH, 

T, and RH (i.e., 𝑊𝑊𝑖𝑖) [Guo et al., 2015; Hennigan et al., 2015]. This paper extends our 

analysis of fine particle pH from the southeastern [Guo et al., 2015] to the northeastern US 

and presents some of the first data on pH as a function of altitude. 

3.3 Methods 

The Wintertime Investigation of Transport, Emissions, and Reactivity (WINTER) aircraft 

study was based out of NASA Langley Research Center (Hampton, Virginia) and focused 

mainly on the northeastern US. The National Center for Atmospheric Research (NCAR) 

C-130 aircraft conducted a total of 13 flights from Feb 01 to Mar 15 2015. The payload 

included a suite of instruments to measure gas and aerosol composition. Here we focus on 

gas-phase nitric acid and measurements of aerosol inorganic components. Method details 

are provided below. Ambient T, RH, and aircraft coordinates were provided by the 

Research Aviation Facility (RAF) as part of the C-130 instrumentation package 

(http://data.eol.ucar.edu/master_list/?project=WINTER). Aircraft data are typically 
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reported at a reference temperature and pressure; however, concentration data are reported 

here at ambient temperature and pressure because thermodynamic partitioning calculations 

need to be carried out at ambient conditions. 

3.3.1 Instrumentation 

PILS-IC: PM1 (particles with aerodynamic diameters < 1.0 µm at ambient conditions) 

water-soluble ions were measured with a Particle-Into-Liquid Sampler coupled with Ion 

Chromatographs (PILS-IC; Metrohm 761 Compact ICs) [Orsini et al., 2003; Hennigan et 

al., 2006; Sullivan et al., 2006; Peltier et al., 2007a; Liu et al., 2012; Guo et al., 2015]. 

Ambient aerosol was sampled from a submicron aerosol inlet (SMAI) [Craig et al., 2013a; 

Craig et al., 2013b; Craig et al., 2014; Moharreri et al., 2014] at a flow rate of 15.0 L min-

1. Residence time in the inlet and sample lines is estimated at 2 sec. Upstream of the PILS-

IC, a non-rotating micro-orifice impactor [Marple et al., 1991] with a 1.0 µm cut size (at 1 

atm and 273.15 K) restricted measurements to PM1 to be comparable with the Aerosol 

Mass Spectrometer (discussed below). Air temperature was measured just prior to the PILS 

with a calibrated thermocouple since changes in T (and thus also RH) from ambient can be 

significant when sampling from aircraft, and especially when ambient temperatures are 

low. Below we show that the particles did not have sufficient time to adjust to these 

changing conditions so the impactor cut size can be assumed to be for particles sizes under 

ambient conditions. (Note that the range in ambient pressures encountered in this study 

have minor effects on cut size; 10th percentile is 0.99 µm and 90th percentile is 1.00 µm). 

Therefore, no corrections for PILS-IC measured species are made due to the small 

deviation from nominal cut size. To eliminate gas interferences, phosphoric acid and 
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sodium carbonate coated honeycomb denuders were installed before the PILS. The liquid 

transport flow introduced at the top of the PILS impactor was spiked with lithium fluoride 

(LiF) and measured with the IC to account for sample liquid dilution. The liquid sample 

collected from the bottom of the PILS impactor was pumped into two ICs with 150 µL 

sample loops and operated at a chromatographic separation of 3 min for both the anions 

(chloride, sulfate, and nitrate) and the cation (lithium, ammonium, etc.). A Metrosep A 

Supp 15-50/4.0 anion column and a C4-50/4.0 cation column (Metrohm U.S., Riverside, 

Florida) were operated at an eluent flow rate of 1.05 mL min−1 and 1.0 mL min−1, 

respectively. Eluents used during this campaign were 12 mM Na2CO3 (sodium 

carbonate)/8.0 mM NaHCO3 (sodium bicarbonate) for anion exchange and 2.0 mM 

dipicolinic acid/3.0 mM HNO3 for cation exchange. The cation IC (without suppressor) 

exhibited higher baseline noise during the campaign than the anion IC, so lacked sufficient 

sensitivity for reliable measurements of NH4
+. Therefore, NH4

+ and other ambient cation 

data from this instrument are not used in the following analysis. For all flights, a valve 

upstream of the PILS diverted sampled air through a High Efficiency Particulate-Free Air 

(HEPA) filter (Pall corp.) to provide blank measurements during the first 10 mins after 

take-off. All data were blank corrected. Limits of detection (LOD) were estimated from the 

blank measurements (3×SD of blanks) as 0.06 µg m-3 (SO4
2-), 0.05 µg m-3 (NO3

-), and 0.12 

µg m-3 (Cl-) for a 3 min sampling time. The relative measurement uncertainty for the anions 

is estimated to be 20% based on uncertainty propagation of sample air flow, liquid flow 

variations and instrument precision, which is based on variability in calibrations with 

known liquid standards. 
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AMS: A high resolution time of flight aerosol mass spectrometer (HR-ToF-AMS, 

Aerodyne Research Inc., hereafter referred to as “AMS”) measured non-refractory 

components of PM1 at a rate of 1 sec in total aerosol mass mode. The general operation of 

the AMS has been described elsewhere [Jayne et al., 2000; DeCarlo et al., 2006; 

Canagaratna et al., 2007; Dunlea et al., 2009; Jimenez et al., 2009; Kimmel et al., 2011]. 

Particles were sampled through a NCAR High-Performance Instrumented Airborne 

Platform for Environmental Research (HIAPER) Modular Inlet (HIMIL) [Stith et al., 2009] 

at a flow rate of 10 L min-1, into a pressure controlled inlet operated at 325 Torr [Bahreini 

et al., 2008], then introduced into the high vacuum region of the mass spectrometer through 

an aerodynamic focusing lens, and transmitted to a detection chamber where particles 

impacted on a porous tungsten vaporizer (600°C). Non-refractory species are flash 

vaporized and then ionized with 70 eV electron impact ionization. The generated ions are 

then extracted and analyzed by time-of-flight mass spectrometry. Residence time from the 

tip of the HIMIL to the vacuum vaporizer was 0.5 sec. An estimated collection efficiency 

based on the algorithm proposed by Middlebrook et al. [2012] was applied to all data, and 

relative ionization efficiencies for sulfate, ammonium, and chloride were determined by 

multiple in-field calibrations. Typical detection limits during the WINTER campaign were 

0.02 µg sm-3 for sulfate, 0.01 µg sm-3 for ammonium, and 0.07 µg sm-3 for nitrate and 

chloride for a 1 sec sampling interval (sm-3 refers to standard cubic meters under 1 atm and 

273.15 K). Accuracy for AMS detection of inorganic species is estimated at 35% for 

aircraft operation [Bahreini et al., 2009]. More refractory species, such as NaNO3 (sodium 

nitrate) and Na2SO4 (sodium sulfate) are inefficiently detected by the AMS [Hayes et al., 
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2013]. AMS data are often used to estimate the fractions of inorganic and organic nitrates 

using the measured NO2
+/NO+ ion ratios in the AMS [Fry et al., 2013]. However, in this 

study, the presence of particulate nitrite and the likely partial detection of submicron 

NaNO3 made that method under-determined. For that reason, in addition to total measured 

nitrate, estimates were made of just inorganic nitrate concentrations based on comparisons 

of the AMS data to the IC-based instruments. 

CIMS: HNO3 concentrations at a rate of 1 sec were quantified by a high resolution time of 

flight chemical ionization mass spectrometer (CIMS), which used the I- reagent ion to 

selectively detect HNO3 [Slusher et al., 2004; Lopez-Hilfiker et al., 2012; Lee et al., 2014; 

Lopez-Hilfiker et al., 2016]. In a heated teflon flow tube at low pressure, iodide ions are 

produced to selectively cluster with HNO3 in ambient air. The ions from the flow tube enter 

a mass spectrometer, where they are detected. The estimated HNO3 measurement 

uncertainty is 15%. This includes the accuracy of NO2 calibration cylinder and in flight 

variability of continuous calibration source. Detection limit varies from flight to flight and 

more information regarding the CIMS operation can be found in [Lee et al., 2014; Lopez-

Hilfiker et al., 2016]. 

3.3.2 pH and partitioning calculations 

The ISORROPIA-II thermodynamic model [Fountoukis and Nenes, 2007] was used to 

determine the composition and phase state of an NH4
+-SO4

2--NO3
--Cl--Na+-Ca2+-K+-Mg2+-

water  (or a subset therein) inorganic aerosol in thermodynamic equilibrium with its 

corresponding gas phase. Using ISORROPIA-II, we have reported on a comprehensive 
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method for pH prediction, validation, and uncertainty analysis based on the 2013 Southern 

Oxidant and Aerosol Study (SOAS) [Guo et al., 2015; Weber et al., 2016]. Here, we follow 

the same approach. pH is defined as, 

 
𝑝𝑝𝑝𝑝 = − log10 𝛾𝛾𝐻𝐻+𝐻𝐻𝑎𝑎𝑎𝑎+ = − log10

1000𝛾𝛾𝐻𝐻+𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎+

𝑊𝑊𝑖𝑖 + 𝑊𝑊𝑜𝑜
≅ − log10

1000𝛾𝛾𝐻𝐻+𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎+

𝑊𝑊𝑖𝑖
 (3-1) 

where 𝛾𝛾𝐻𝐻+  is the hydronium ion activity coefficient (assumed = 1), 𝐻𝐻𝑎𝑎𝑎𝑎
+  (mole L-1) the 

hydronium ion concentration in particle liquid water, 𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎
+  (µg m-3) the hydronium ion 

concentration per volume of air, and 𝑊𝑊𝑖𝑖, 𝑊𝑊𝑜𝑜 (µg m-3) are particle water concentrations 

associated with inorganic and organic species, respectively. Guo et al. [2015] found that 

pH predicted solely with 𝑊𝑊𝑖𝑖 is fairly accurate; pH was 0.15-0.23 units systematically lower 

than pH predicted with total particle water (𝑊𝑊𝑖𝑖 + 𝑊𝑊𝑜𝑜) (R2 = 0.97). This is likely an upper 

bound on the error since organic aerosol mass fractions in that study were high (~60%, [Xu 

et al., 2015b]). A lower contribution from 𝑊𝑊𝑜𝑜 is expected in WINTER due to lower organic 

aerosol mass fractions (~40%); ΔpH was estimated to be +0.07 units including 𝑊𝑊𝑜𝑜 with 

assumed organic hygroscopic parameter 𝜅𝜅𝑜𝑜𝑜𝑜𝑔𝑔 as 0.13 [Cerully et al., 2015]. Given this, and 

that organic aerosol hygroscopicity was not measured, we determine pH only considering 

𝑊𝑊𝑖𝑖 since neglecting 𝑊𝑊𝑜𝑜 appears to cause only a minor effect on the pH characterization. 

The behavior of pure inorganic salts, under variable RH, including deliquescence and 

efflorescence, are well established both experimentally and theoretically [Tang, 1976; 

Wexler and Seinfeld, 1991; Tang and Munkelwitz, 1994]. The behavior of mixed inorganic 

and organic particles is more complex due to possible liquid-liquid or solid-liquid phase 

separation between organics and inorganics at lower RH and O:C ratio (organic aerosol 
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atomic O:C ratio) conditions [Bertram et al., 2011; Song et al., 2012; You et al., 2013; You 

et al., 2014b; You and Bertram, 2015]. Therefore, liquid or solid phases of atmospheric 

aerosols (deliquescence or efflorescence) depend on the RH and T history, and 

composition. To simplify the simulations, ISORROPIA-II was run assuming particles are 

“metastable”, with no solid precipitates (H+ is not stable in effloresced aerosol), although 

we did a sensitivity study assuming solid phases were present. Therefore, we excluded data 

with RH < 20%, a condition where aerosols are less likely to be in a completely liquid state 

[Ansari and Pandis, 2000; Malm and Day, 2001; Fountoukis and Nenes, 2007; Bertram et 

al., 2011]. Furthermore, at such a low RH range, uncertainties in the pH prediction are 

expected to be high due to highly uncertain activity coefficients associated with highly 

concentrated solutions [Fountoukis et al., 2009]. Data for RH > 95% was also excluded 

due to the exponential growth in particle liquid water with RH, which leads to high 𝑊𝑊𝑖𝑖 and 

subsequently large pH uncertainty due to propagation of RH uncertainties [Malm and Day, 

2001; Guo et al., 2015] and potential issues with inlet transmission losses. Between these 

extremes, thermodynamic predictions are also assessed for differing RH ranges. 

In running ISORROPIA-II to predict pH and semivolatile acid partitioning, it is also 

assumed that the particles are internally mixed, and that pH does not vary with particle size 

(so that bulk properties represent the overall aerosol pH) and that the ambient aerosols and 

gases are in thermodynamic equilibrium. For submicron aerosol (PM1), equilibrium states 

are typically achieved within 30 minutes under ambient conditions [Dassios and Pandis, 

1999; Cruz et al., 2000; Fountoukis et al., 2009]. The ISORROPIA-II input RH and T 

during the WINTER campaign were as low as 20% and –21°C. Therefore, the timescale of 
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equilibration could be much longer than 30 mins [Zobrist et al., 2008; Tong et al., 2011; 

Shiraiwa and Seinfeld, 2012], so thermodynamic calculations may deviate from observed 

partitioning of inorganic semivolatiles. Also, organic-containing aerosol may become 

semi-solid or glassy at low RH and T, which can further increase the equilibration timescale 

considerably. This potential impact is evaluated below. For conditions during the SOAS 

study in the southeastern US in summer (T = 25 ± 3 °C and RH = 74 ± 16%), Guo et al. 

[2015] found that thermodynamic calculations accurately predicted bulk particle water and 

ammonia partitioning over the complete T (18 to 33 °C) and RH (36 to 96%) ranges. 

3.4 Results 

3.4.1 Comparison between methods for measuring particle ionic composition 

Several instruments measured aerosol inorganic chemical composition during this study. 

For PM1, along with the PILS-IC and AMS, a second PILS was coupled to a fraction 

collector and the vials analyzed off-line by IC for water-soluble ions and carbohydrates 

(e.g., levoglucosan). A filter sampling system was used to collect nominally PM4 

[McNaughton et al., 2007], which were subsequently analyzed for water-soluble ions by 

IC. (Methods for PILS with fraction collector and the filter sampling system are described 

in the supporting materials B.1 [Dibb et al., 1999; Dibb et al., 2000; Sorooshian et al., 

2006]). A summary comparing sulfate and nitrate from these various instruments can be 

found in the Figure B-1. Good correlations were found between the various instruments for 

sulfate, with R2 between 0.72 and 0.83. However, systematic differences were observed, 

with orthogonal regression slopes between 1.05 and 1.52. On average, PILS-IC sulfate 
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(PM1) was the lowest and filter sulfate (PM4) the highest. Somewhat similar results were 

also found for nitrate, with R2 between 0.65 and 0.87 and slopes between 0.86 and 1.43. 

The two PILS measurements were most similar. The lowest correlation was observed 

between filter and both PILS (also for AMS) nitrate, which is likely due to nitrate 

associated with particles larger than PM1. The better agreement with sulfate between these 

instruments suggests the coarse fraction is mostly devoid of sulfate (with the exception of 

periods during Flight 13, which was conducted far offshore). We note that although the 

size cut is nominally the same (PM1) between PILS and AMS, there are differences 

between the actual cuts as they are imposed by very different physical devices and under 

different pressure conditions (see e.g. [DeCarlo et al., 2004]). During periods in which 

larger particles are present, this effect could lead to some measurement differences. 

Ammonium data are not compared since PILS-IC cation data were not available. In the 

subsequent analyses, we estimated an NH4
+ concentration that would be consistent with 

the PILS-IC by multiplying the AMS NH4
+, merged to PILS time-resolution, by a constant 

factor of 0.7 (the average of PILS-IC/AMS nitrate and sulfate slope, Figure B-1). 

In the following analyses of fine particle pH, we use both the PILS and AMS data to 

calculate pH, since each method has distinct advantages, and also to test the sensitivity of 

predicted pH using different methods for measuring ion concentrations. The PILS-IC (or 

any other IC analysis method) directly measures aerosol inorganic aqueous ion 

concentrations making the data directly applicable to pH calculations. (Note, in these 

methods the extractions result in highly dilute solutions so that ions are completely 

dissociated and measured by the IC). The AMS does not specifically measure ionic 
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concentrations, which can potentially raise a number of issues under certain circumstances. 

First, refractory species that are at least to some degree soluble (e.g., NaCl, NaNO3, 

Ca(NO3)2, Mg(NO3)2, MgSO4, KCl, KNO3, K2SO4, etc.) can have a large impact on pH, 

even at low concentrations, but are not efficiently detected by AMS. However, often these 

species are mostly found in the supermicron size fraction and have little influence on PM1 

pH (discussed in more detail in the section 3.4.8). 

The AMS also cannot readily distinguish between inorganic and organic forms of nitrate 

and sulfate. For example, evidence from AMS and PILS data (not shown) indicates that 

nitrites and organic nitrates are variably present during WINTER, and could explain some 

of the differences in nitrate observed between these instruments, especially when inorganic 

concentrations are low (Figure B-2). Similar interferences could occur for sulfate. Unlike 

the PILS-IC, the AMS provides higher time resolution and a more precise measurement of 

the suite of ions, as the same detector is used for anions and cations. These issues are 

pertinent to this study. Here, we analyze the data to utilize the PILS accuracy and AMS 

precision. We will show, that for this study, the AMS precision is more beneficial for 

assessing factors that influence pH, while the PILS accuracy is important for constraining 

the absolute value of pH, especially when there are nonvolatile cations present. 

3.4.2 Predicting pH 

For the WINTER data set and the full range of RH sampled (20-95%) we first predict pH 

with ISORROPIA-II using ambient T, RH, HNO3 and either i) PILS NO3
-, SO4

2-, and 

scaled AMS NH4
+, or ii) AMS NO3

-, SO4
2-, and NH4

+. Figure 3-1 shows that pH from these 



 

 

68 

two data sets are, on average, in agreement, slope = 1.08, but there is substantial scatter R2 

= 0.44. Also, although AMS sulfate and nitrate are systematically 52% and 43% higher 

than PILS-IC measurement (Figure B-1), these differences do not systematically influence 

the calculated pH since the difference likely applies to all species. We conclude that pH is 

not highly sensitive to systematic aerosol input differences, even up to 50%, as long as the 

ion ratios are scaled accordingly. 

 
Figure 3-1 Comparisons of PM1 pH predicted with aerosol phase input (NH4

+, NO3
-, SO4

2-

) from the AMS vs. PILS-IC anions and scaled AMS NH4
+. Gas phase HNO3 and ambient 

RH, T input are the same for the two predictions. Orthogonal distance regression (ODR) 
fit is shown. 

 

A potential limitation with the pH prediction with this data is lack of reliable gas phase 

ammonia (NH3). Not including NH3 is expected to result in an overestimation of particle 

acidity because the partitioning of NH3-NH4
+ is derived based on only the NH4

+ mass 

loadings; this means a fraction of the measured NH4
+ is partitioned as NH3 to the gas-phase 



 

 

69 

and releasing more particulate H+ in the process. NH3 was measured as part of the WINTER 

campaign, however, there were known uncertainties with detection limits and artifacts 

associated with the inlets/sampling system. When included in the thermodynamic model, 

it resulted in NO3
- overpredicted by 65% compared to the measurement and the R2 of 

predicted vs. measured ε(NO3
-) decreased from 0.70 to 0.40 (the modeling of HNO3-NO3

- 

partitioning will be discussed in the next section). Instead, to assess the effect of lack of 

NH3 data, we iterated ISORROPIA-II using the predicted NH3 data to calculate total 

ammonia (NH3 + NH4
+) as input for the next iteration, until NH3 predictions converge. A 

more straightforward method, predicting gas phase NH3 based on aerosol composition in 

ISORROPIA-II reverse mode, is not chosen because the prediction is highly sensitive to 

NH4
+ input (i.e., 35% instrument uncertainty can cause large errors [Hennigan et al., 

2015]). Based on the iteration method, predicted WINTER mean NH3 concentrations were 

0.10 µg m-3 (10th percentile = 0.0 µg m-3, 90th percentile = 0.25 µg m-3) and most of the 

ammonia partitions to the particle phase (ε(NH4
+) = 91 ± 22 %). Particle pH changed by 

only approximately 3% (slope = 0.97, R2 = 0.81), with a pH systematically ~0.2 pH units 

(regression intercept) higher for the iterated solution compared to not including NH3 data. 

Therefore, not including gas phase NH3 in the thermodynamic calculations for this study 

has a minor effect and reported pH is not corrected by the iterated NH3. 

3.4.3 Verification of the Thermodynamic Model: Comparison of nitric acid-nitrate 

partitioning 

Validity of thermodynamic model predictions may be assessed by comparing predicted and 

measured gas partitioning fractions of the semivolatile species. Comparing completely 
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nonvolatile or volatilized components is not a viable or useful test. The best semivolatile 

species for evaluation, however, depends on the pH levels of a given study. For example, 

in SOAS (summer in the southeastern US) the conditions were such that HNO3 was almost 

entirely in the gas phase, whereas NH3 was evenly distributed between phases, ε(NH4
+) = 

NH4
+/(NH3 + NH4

+) = 59 ± 16%, making it the better species to test the model [Guo et al., 

2015]. In this study (winter in the northeastern US), NH3 was estimated to be mainly in the 

particle-phase, as discussed above, and HNO3 was more evenly distributed between 

particle and gas, ε(NO3
-) = NO3

-/(HNO3 + NO3
-) = 31% PILS data and 39% AMS data,  

making it the better parameter to compare. Using predicted gas-particle partitioning 

concentrations is a valid test since when operating in forward mode, ISORROPIA-II 

calculates the gas-particle equilibrium partitioning concentrations based on the input of 

total concentration of a species (gas + particle). 
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Figure 3-2 Comparisons of predicted and measured HNO3 (nitric acid), (NO3
-) (nitrate), 

and ε(NO3
-) (particle nitrate fraction of total nitrate) for data from the complete WINTER 

study: (a-c) PILS-IC anion input with scaled AMS ammonium (NH4
+); (d-f) AMS input. 

Example error bars at three selected data points illustrate the uncertainty in measured 
ε(NO3

-) from combined HNO3 (15%) and NO3
- (35%) uncertainties. ODR fits are shown. 

Average conditions for each RH range are given in Table 3-1. 

 

A comparison of predicted HNO3 and NO3
- to measured values is shown in Figure 3-2. 

Overall, for the 20-95% RH data set, the model captures the observed HNO3 and NO3
-. 

Less scatter is seen when ISORROPIA-II is run with the AMS aerosol data, consistent with 

expectation that it is more precise than the combined PILS anions and AMS NH4
+ data set 

(Note that including predicted NH3 results in a better comparison between predicted and 

PILS-IC measured NO3
-, with the R2 increasing from 0.71 to 0.77, not shown). From Figure 

3-2, ISORROPIA-II predicted HNO3 and NO3
- are on average within 10% of the 

measurements and highly correlated. However, there is much more scatter for the ε(NO3
-) 

comparison, partly due to propagation of the uncertainties from both HNO3 and NO3
- 

measurements needed for the calculation. (Note, individual data below 2×LOD 

concentrations were excluded for ε(NO3
-), due to larger relative uncertainties). Not all the 

spread in ε(NO3
-), however, can be attributed to the impact of measurement errors or noise, 

as higher discrepancies tend to be associated with lower RH. 

Focusing on narrower RH ranges permits a more detailed exploration of the systematic 

biases. Figure 3-3 shows the predicted and measured HNO3 and NO3
- concentrations, and 

ε(NO3
-) for three RH ranges, 20-40%, 40-60%, and 60-95%. The least discrepancy is found 

for the 60-95% RH range, and the largest bias is found for 20-40% RH, which also has the 
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lowest total nitrate concentrations (Table 3-1). The larger discrepancy at lower RH may be 

due to a number of factors, including ignoring possible phase separations and measurement 

limitations. Each factor is considered below. 

 
Figure 3-3 Comparisons between predicted and measured HNO3, NO3

-, and ε(NO3
-) with 

data from the complete WINTER study (AMS aerosol data only) for different ambient RH 
ranges: (a-c) 20-40%; (d-f) 40-60%; (g-i) 60-95%. ODR fits are included in most plots. 
Note that for the concentrations, the axis ranges get smaller with decreasing RH. 

 



 

 

73 

Phase Separation:  Two types of phase separations are possible, solid-liquid and liquid-

liquid. Considering just the inorganic phase first, assuming solid salts precipitate from a 

supersaturated aqueous phase (i.e., ISORROPIA-II runs in stable mode instead of 

metastable) does not improve the predictions, but rather worsens them; NO3
- is much more 

substantially underpredicted by the model as RH decreases (Figure B-3), compared to 

metastable aerosol calculations. At high RH, there is little difference between the 

metastable and semi-solid assumptions because the inorganic salts (e.g., NH4NO3 and 

(NH4)2SO4) deliquesce. Overall, we find that running ISORROPIA-II in metastable mode 

over the 20-95% RH range agrees better with observations (although there are still 

discrepancies at lower RHs), thus solid-liquid phase separations of the inorganic species 

does not appear to explain the ε(NO3
-) discrepancies at low RH. 

 

Table 3-1 Summary of ambient temperature and PM1 organic aerosol (OA) atomic O:C 
ratio, OA to sulfate mass ratio, nitrate concentrations (all from AMS data), and gas-phase 
nitric acid concentrations for data binned by ambient RH. 

RH T, °C O:C OA:SO4
2- NO3

-, µg m-3 HNO3, µg m-3 Total NO3
-, µg m-3 Points # 

20 - 40% 0.0 ± 7.6 0.79 ± 0.20 1.36 ± 0.72 0.37 ± 0.36 1.04 ± 0.71 1.41 ± 0.75 272 

40 - 60% -1.6 ± 6.9 0.76 ± 0.16 1.54 ± 0.91 0.66 ± 0.79 0.99 ± 1.04 1.65 ± 1.65 1192 

60 - 95% -0.7 ± 5.3 0.78 ± 0.11 1.75 ± 0.79 1.40 ± 1.28 2.37 ± 2.40 3.77 ± 2.77 902 

 

Organic-inorganic liquid phase separations are also possible. Lab studies show that liquid-

liquid phase separation is always observed at aerosol O:C (organic aerosol atomic O:C 
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ratio) ≤ 0.5, whereas no phase separations occur for O:C ≥ 0.8 [Bertram et al., 2011; Song 

et al., 2012; You et al., 2013; You et al., 2014b]. Although these experiments were 

performed at temperatures between 17 and 27 ºC, the results should still be applicable to 

the WINTER study (minimum T of –21 ºC), since liquid-liquid phase separation is not a 

strong function of temperature for temperatures between –29 and 17 ºC [Schill and Tolbert, 

2013; You and Bertram, 2015]. To assess if conditions are conducive to liquid-liquid phase 

separation, T, O:C, OA:SO4
2- (organic-to-sulfate aerosol mass ratio), and nitrate mass 

loadings are contrasted for the three RH ranges (Table 3-1). Temperatures are similar with 

only 2 ºC difference in the means, and so likely not a cause for the ε(NO3
-) bias at low RH 

(also shown in Figure B-4). The O:C ratios are generally at the upper end of the range 

where phase separation can occur. Furthermore, for O:C in the “transition regime” 

(0.5<O:C<0.8), the case here, if OA:SO4
2- is larger than unity, phase separations are less 

likely [Bertram et al., 2011]. All OA:SO4
2- are on average above unity, suggesting no phase 

separations, but there is a trend with the smallest ratio (1.36 ± 0.72) coinciding with the 

20-40% RH bin, which is where the largest ε(NO3
-) bias is seen. Furthermore, in the O:C 

transition regime, the possibility of liquid-liquid phase separation increases as RH 

decreases. Thus, the trends are consistent with increasing likelihood of organic-inorganic 

phase separations at the lower RH range, but the conditions are not such that phase 

separation is definitively expected at the lowest RH range, as no clear dependence on O:C 

is observed in Figure 3-3c, f, and i. 

Organic-inorganic phase separations may lead to measured ε(NO3
-) (or 

NO3
- concentrations) larger than thermodynamic predictions. For example, during a drying 
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event, an organic semi-solid liquid coating formed over the inorganic aqueous phase (or 

possibly an inorganic solid core) containing the ions might inhibit gas-particle equilibrium, 

lowering the evaporation of semivolatile NO3
-. pH of the separate phases would also differ. 

The thermodynamic model predicts pH assuming all ions are only in the inorganic aqueous 

phase. However, if NO3
- is miscible in the organic-rich aqueous phase, and the pH higher 

than the inorganic aqueous phase, measured bulk aerosol NO3
- would be higher than the 

thermodynamic prediction. Whereas the inorganic phase pH was between –1 and 0 (25th 

and 75th percentiles), we estimate that an organic-rich phase pH of ~ 3 would increase 

NO3
- concentrations sufficiently to bring predicted ε(NO3

-) into closer agreement with 

observed. Higher organic-rich phase pH is possible because of the weaker organic acids 

compared to sulfuric acid. One of the strongest organic acid, formic acid, has a pKa of 3.75 

[Bacarella et al., 1955]. Bougiatioti et al. [2016] also found that organic-rich aged biomass 

burning aerosols sampled in the eastern Mediterranean had pH levels ~ 3, consistent with 

strong nitrate partitioning onto the aerosol. 

Uncertainties in measured inorganic nitrate at low concentrations: Another factor 

associated with increasing discrepancies between predicted and measured ε(NO3
-) with 

lower RH is that total nitrate concentrations were also lowest in this RH range (Table 3-1 

and Figure B-5). This can lead to discrepancies in two ways. First, at lower concentrations, 

the measurements have larger relative uncertainties. Secondly, we have used the AMS data 

for this analysis since it is more precise than the PILS-IC data, but AMS nitrate may also 

include some contributions from organonitrates. The relative contribution of organonitrates 

is likely to be higher when inorganic nitrate concentrations are lower, consistent with 
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higher observed nitrate compared to the model at lower RH. Because the PILS-IC only 

measures inorganic nitrate, we compared the PILS-AMS nitrate measurements for the three 

RH ranges. No evidence was found for AMS nitrate being systematically higher at lower 

RH (Figure B-2). An attempt was also made to account for the possibility of interferences 

in AMS-reported nitrate due to other forms of nitrate or to nitrite. On a flight-by-flight 

basis, AMS inorganic nitrate (inorgNO3
-) was estimated by scaling AMS NO3

- to PILS-IC 

NO3
- (see Figure B-6 comparing AMS inorgNO3

- to AMS NO3
-). This type of variable 

scaling factor resulted in thermodynamic-predicted nitrate for all data on average 24% 

higher than observed (Figure B-7), whereas for AMS total nitrate the slope was 0.99 

(Figure 3-2e). Comparison between predicted and measured NO3
- was also more scattered 

(R2 = 0.88 for estimated AMS inorgNO3
- versus R2 = 0.96 for AMS total nitrate). 

Therefore, in the following analysis, we simply use AMS total NO3
- instead of estimated 

AMS inorgNO3
-. 

Role of fine mode nonvolatile cations: If the particles are internally mixed and with 

uniform composition versus particle size, nonvolatile cations (NVCs) such as Na+, K+, 

Ca2+, Mg2+ can affect pH. These refractory cations have so far not been considered in the 

thermodynamic calculations. Including them in ISORROPIA-II does not significantly 

affect pH, until the concentrations become significant relative to the anions. For example, 

when NaCl is less than 50% of the aerosol ionic molar mass (Na+-NH4
+-SO4

2--NO3
--Cl-), 

including PILS-fraction collector PM1 Na+ and Cl- data with AMS NH4
+, NO3

-, SO4
2- in 

the ISORROPIA-II analysis does not significantly change the particle pH; the mean change 

in pH is +0.4 units. Although small, this change in pH can be important for the fraction of 
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total nitrate that partitions to the aerosol if in the pH-sensitive region (discussed below in 

section 3.4.6). The general small impact from the nonvolatile Na+ is because the aerosols 

were acidic enough so that H+ is a major ion in the system. However, when the NaCl 

becomes a significant fraction relative to the total ions (mole fraction > 50%), the pH can 

dramatically increase (Figure B-8). This is observed in the ambient data when there was a 

dramatic drop in PM1 sulfate and increase in PM1 Na+, resulting in an aerosol of mainly 

Na+-containing salts, where pH can change from near zero to above 3. For typical WINTER 

conditions, a sensitivity analysis shows that this transition occurs at Na+ greater than 0.5 

µg m-3, pH exceeds 2-3 and drives nitric acid partitioning to the aerosol (Figure B-9). 

However, including NaCl causes greater deviation between predicted and measured HNO3-

NO3
- partitioning (Figure B-10) suggesting that these other cations are likely not internally 

mixed with the PM1 NH4
+, NO3

-, and SO4
2-. Therefore, in the remaining analysis, the 

reported particle pH is calculated without any refractory ions present. The role of coarse 

mode salts is discussed below (Section 3.4.8). 

In summary, the overall good agreement between the model and measurements of nitric 

acid partitioning (HNO3 and NO3
- regression slopes deviate < 5%, and R2 > 0.9) suggests 

that when RH is greater than 40%, the assumption of a metastable aerosols (i.e., complete 

aqueous solution) with no phase separation appears reasonable for the conditions of this 

study. At lower RH, phase separation may occur and could account for the larger observed 

discrepancies (e.g., enriched nitrate in the organic phase with higher pH compared to the 

inorganic phase), although measurement uncertainty, size-cut differences, and/or 

interferences (e.g., organonitrates and nitrites that are part of AMS nitrate) may also 
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explain some of the differences. PM1 refractory water-soluble ions (e.g. Na+, K+, Ca2+, 

Mg2+) were generally either at too low concentrations or not internally mixed with NH4
+, 

NO3
-, SO4

2- such that they had little influence on bulk PM1 pH. Overall, the analysis based 

on the complete WINTER data shows that the predicted pH is accurate at RH > 40%; 

similar to what we found in the southeastern US (minimum RH was 36%) [Guo et al., 

2015]. 

3.4.4 Sample line heating effect 

During flight, aircraft cabin temperature was maintained at approximately 20 ºC. 

Combined with ram air heating, the temperature of sample air was substantially above 

ambient before it reached the measurement instrumentation. As a result, sampled air RH 

decreased, resulting in loss of particle water. Heating and loss of particle water leads to 

potential evaporation of semivolatile components, such as nitrate and ammonium, which 

would lead to an incorrect calculation of pH. For WINTER, the ambient T was on average 

–3.0 ± 8.6 ºC and the measured PILS sample line T was typically ~ 24 ºC higher. Sample 

line RH was calculated assuming conservation of water vapor under isobaric heating, a 

good assumption given the short residence time in the tubing (0.5 s for AMS, 2 sec for 

PILS-IC). Heating of air in the sample line lowered the RH to 23% from an ambient 

average of 75%.  

ISORROPIA-II was run with aerosol and gas-phase species at the sample line T and RH 

and compared to predictions from ambient T and RH. Figure 3-2 shows that using sample 

line T and RH at the PILS-IC inlet, the nitric acid partitioning is inconsistent with 
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observations. For example, predicted sample line ε(NO3
-) was 0.2 ± 0.3%, indicating that 

all nitrate was in the gas-phase, whereas measured ε(NO3
-) was 31 ± 23%, and nitrate 

concentrations were non-zero (1.16 ± 0.88 µg m-3). As noted above, using ambient T and 

RH resulted in good agreement between predicted and measured nitric acid partitioning, 

therefore we conclude that repartitioning of volatile inorganics did not substantially affect 

the measurements and attribute this to the limited residence time within the sample lines. 

Several studies on mass transfer rates indicate that it takes roughly 15 to 30 minutes for 

semivolatile components to reach partitioning equilibrium for particles up to 1µm [Dassios 

and Pandis, 1999; Cruz et al., 2000; Fountoukis et al., 2009], which is over two orders of 

magnitude longer than the estimated sampling line residence times of the aerosol 

instrumentation of this study (0.5-2 sec). Note, for a 2 sec residence time an upper limit 

volatilization loss of ~35% NH4NO3 was estimated with a thermo-kinetic model for diluted 

aircraft ambient sample [Shingler et al., 2016]. Since a sheath flow lacking gas-phase 

HNO3 causes more NO3
- evaporation, these results are not directly applicable to the non-

diluted AMS and PILS-IC measurement techniques used in this study. In the following 

analysis, we ignore any possible artifacts due to changes in aerosol during sampling and 

use ambient conditions in the thermodynamic calculations. 

 

Table 3-2 Comparisons between measurements of PM1 nitrate concentrations to 
thermodynamic simulations assuming ambient conditions (T, RH) and conditions in the 
sample line. Only periods when both ambient and sample line data were available and RH 
was in the 20-95% range are shown (i.e., data are a subset of the WINTER campaign, not 
a study average). Aerosol data shown in the table are from AMS measurements, and sample 
line T was measured just upstream of PILS-IC. Saturation water vapor pressures were 
calculated by Equation 21 in Alduchov and Eskridge [1996] to estimate sample line RH. 
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Ambient Sample line 

Measured Simulated Measured Simulated 

Points # 323 323 323 323 

T 4 ± 2 ºC N/A 21 ± 1 ºC N/A 

RH 75 ± 11%* N/A 23 ± 3%* N/A 

ε(NO3
-) 31 ± 23%** 23 ± 22% 31 ± 23%** 0.2 ± 0.3% 

NO3
-, µg m-3 1.16 ± 0.88** 0.87 ± 0.88 1.16 ± 0.88** 0.01 ± 0.02 

* RH < 20% was excluded. 
** Measured by instruments inside the C-130 aircraft. 

 

3.4.5 pH geographical and vertical distribution 

Research flights were conducted mainly in the northeastern US, with some flights 

extending into the southeast (Figure 3-4). Bulk PM1 pH was low, with a campaign average 

of 0.77 ± 0.96 (median of 0.91; 10th percentile of -0.51; 90th percentile of 1.9). Figure 3-4 

shows the geographical distribution of particle pH, particle nitrate, and ε(NO3
-). No clear 

systematic spatial distribution is observed in any of these parameters. Higher nitrate 

plumes, however, were usually observed simultaneously with higher ε(NO3
-), which were 

recorded in regions of higher particle pH, as expected. 
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Figure 3-4 WINTER all flight geographical distributions of PM1 particle (a) pH, (b) PILS-
IC NO3

- and (c) ε(NO3
-). The particle pH plotted is calculated based on aerosol phase inputs 

of PILS-IC anions and scaled AMS NH4
+. 

 

The pH vertical distribution is shown in Figure 3-5. Most measurements were below 2 km 

since WINTER focused on the lower atmosphere. The data points above 2 km are more 

scattered and uncertain due to low aerosol mass loading. Despite this, as with the 

geographical distribution, there is no obvious gradient in pH from about 1 to 5 km altitude, 

but the pH exhibited a broad variation and ranged between –1 and 2 (Figure 3-5a). 500m 

altitude-binned statistics show a uniform pH range of –0.5 to 2 below 3 km and a slightly 

lower pH range of –1 to 0.5 above 3km (Figure 3-5b). Very little PM1 nitrate aerosol was 

observed aloft. Below 1 km altitude, there was a somewhat similar range in pH as aloft, 

but a wide range in PM1 nitrate (0-8 µg m-3), with notably higher nitrate measured at higher 

predicted pH. To understand this observed nitrate variability, interactions between nitrate 

and pH are explored. 
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Figure 3-5 pH as a function of altitude above ground: (a) colored by the nitrate 
concentration for all WINTER data; (b) 500m-binned mean and median, and 10th, 90th 
percentiles. The particle pH plotted is calculated based on aerosol phase inputs of AMS. 

 

3.4.6 Nitrate dependency on pH, 𝑊𝑊𝑖𝑖, and T 

To study factors affecting nitric acid partitioning, and to test the validity of the 

thermodynamic model, we first investigate a simpler analytical prediction of ε(NO3
-) and 

compare to measurements and ISORROPIA-II predictions. Equilibrium between HNO3 

and NO3
- can be simplified as: 

 𝐻𝐻𝐻𝐻𝐻𝐻3(𝑔𝑔) ↔ 𝑁𝑁𝑁𝑁3
− +𝐻𝐻+,      𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻3

∗  (3-2) 

where 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻3
∗  (mole2 kg-2 atm-1) is the equilibrium constant and is equal to the 

“conventional” Henry’s law constant multiplied by the dissociation constant of nitric acid 

(𝐾𝐾𝑛𝑛1) [Clegg and Brimblecombe, 1990]. ε(NO3
-) can be directly calculated by the following 

equation: 

 𝜀𝜀(𝑁𝑁𝑁𝑁3−) =
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻3
∗ 𝑅𝑅𝑅𝑅𝑊𝑊𝑖𝑖×0.987×10−14

𝛾𝛾𝐻𝐻+𝛾𝛾𝑁𝑁𝑁𝑁3−𝐻𝐻𝑎𝑎𝑎𝑎
+ + 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻3

∗ 𝑅𝑅𝑅𝑅𝑊𝑊𝑖𝑖×0.987×10−14
 (3-3) 
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Note, this is similar to the Equation 6 in Meskhidze et al. [2003], but includes activity 

coefficients to account for solution non-ideality, and assuming that �
𝛾𝛾𝐻𝐻+𝛾𝛾𝑁𝑁𝑁𝑁3−

𝛾𝛾𝐻𝐻𝐻𝐻𝐻𝐻3
�𝐻𝐻𝑎𝑎𝑎𝑎+ � +

𝐾𝐾𝑛𝑛1� ≈ 𝐾𝐾𝑛𝑛1 where 𝛾𝛾𝐻𝐻𝐻𝐻𝐻𝐻3  is the activity coefficient of protonated HNO3 in the aqueous 

phase. This equation, plotted in Figure 3-6 (activity coefficients are assumed equal to one) 

for varying temperatures and particle water concentrations, illustrates the relationship 

between nitric acid partitioning and pH. From Figure 3-6 it can be seen that for a given 𝑊𝑊𝑖𝑖 

and T, it takes about four pH units to go from complete gas-phase to particle-phase 

partitioning. Dropping T by 20 °C shifts the partitioning fraction curve roughly one pH 

unit lower, which can result in a considerable shift in nitric acid to the particle phase, if pH 

and 𝑊𝑊𝑖𝑖 are constant. Likewise, more nitrate aerosol formation also occurs with increased 

𝑊𝑊𝑖𝑖; a factor of 10 increase in 𝑊𝑊𝑖𝑖 also shifts ε(NO3
-) to lower pH by approximately one 

unit. The dependence of nitric acid partitioning on T is directly related to the equilibrium 

constant, 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻3
∗ , which increases by 700% from 20 °C to 0 °C; the increase is mainly due 

to changes in the Henry’s law constant, thus the vapor pressure of HNO3. 
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Figure 3-6 Simulated ε(NO3

-) at –20 °C, 0 °C, 20 °C and various particle liquid water levels 
(1.25, 2.5, 5, 10 µg m-3) assuming ideal solutions. The WINTER average 𝑊𝑊𝑖𝑖 was 2.6 µg 
m-3; 1.25 and 10 µg m-3 are approximately 50% and 400% of the average 𝑊𝑊𝑖𝑖  levels, 
respectively. WINTER average temperature was –0.4 °C. 

  
Figure 3-7 The measured ε(NO3

-) versus predicted pH colored by ambient T for all 
WINTER data (AMS PM1 data). Data are restricted to particle liquid water content (𝑊𝑊𝑖𝑖), 
predicted by ISORROPIA-II from inorganic aerosol levels, in the range of 1.5 to 5 µg m-3. 
The S curve fits the selected data well and is calcualted based on T = 0 °C, 𝑊𝑊𝑖𝑖 = 2.5 µg m-

3, and the average activity coefficients in WINTER (𝛾𝛾𝐻𝐻+𝛾𝛾𝑁𝑁𝑁𝑁3
− = 0.06), using Equation 3-3. 
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WINTER data shows evidence for a similar temperature effect on nitric acid partitioning. 

In Figure 3-7 measured ε(NO3
-) is plotted versus particle pH, for data over a relatively 

narrow 𝑊𝑊𝑖𝑖 range (1.5 < 𝑊𝑊𝑖𝑖 < 5 µg m-3). For a given pH between 0 and 2, higher ε(NO3
-) 

was observed at a lower ambient T. There are differences between the measured ε(NO3
-) 

of Figure 3-7 and the analytical prediction of Figure 3-6. The S-curve in Figure 3-6 tends 

to shift one pH unit higher compared to the observed data (Figure 3-7) and is due to the 

ideal solution assumption (unity activity coefficients), whereas ISORROPIA-II calculates 

multicomponent activity coefficients [Fountoukis and Nenes, 2007]. Given that the 

WINTER mean particle ionic strength was as high as 38 mole L-1 (based on PILS-IC anions 

and scaled AMS NH4
+), the ideal solution assumption was invalid. ISORROPIA-II predicts 

that the mean activity coefficient of the 𝐻𝐻+-NO3
- ion pair, 𝛾𝛾𝐻𝐻+−𝑁𝑁𝑁𝑁3

− = 0.23. Given that, 

𝛾𝛾𝐻𝐻+−𝑁𝑁𝑁𝑁3
− =�𝛾𝛾𝐻𝐻+𝛾𝛾𝑁𝑁𝑁𝑁3

−, we have 𝛾𝛾𝐻𝐻+𝛾𝛾𝑁𝑁𝑁𝑁3
− = 0.06 [Meissner and Tester, 1972; Pitzer and 

Mayorga, 1973; Meier, 1982; Nenes et al., 1998]. Introducing this information in Equation 

3-3 shifts the ε(NO3
-) curves to lower pH by 1.2 units, much closer to ISORROPIA-II 

predicted ε(NO3
-), shown as the S curve in Figure 3-7. Although Figure 3-6 is somewhat 

inaccurate at identifying the exact pH at which nitric acids shifts between gas and particle 

phases, it provides the ideal conceptual framework for understanding how semivolatile 

partitioning is affected by pH, T, and RH. 

The influence of particle water on nitric acid partitioning is also evident. Figure 3-8 shows 

measured AMS NO3
- (PILS NO3

- shows a similar result, but with more scatter) versus 

particle pH for all WINTER flight data, segregated by predicted 𝑊𝑊𝑖𝑖. The figure shows that 
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NO3
- concentrations are affected by pH and 𝑊𝑊𝑖𝑖 , the latter controls much of the pH 

variability. These results are consistent with expectations. For example, in Figure 3-8, at a 

constant pH, more NO3
- is measured at higher 𝑊𝑊𝑖𝑖; whereas at a constant 𝑊𝑊𝑖𝑖, more NO3

- is 

measured at higher pH. 𝑊𝑊𝑖𝑖 depends primarily on RH and the hygroscopic aerosol mass, 

which in this case mainly consists of (NH4)2SO4, NH4HSO4, and NH4NO3 (i.e., not 

considering organic aerosol contributions). Nonlinear relationships are observed between 

NO3
- and pH because NO3

- constitutes part of the aerosol mass and is highly hygroscopic 

[Fountoukis and Nenes, 2007]. SO4
2- is the other major anion with high hygroscopicity in 

WINTER PM1. Since 𝑊𝑊𝑖𝑖 is predicted by ISORROPIA-II from the inorganic species mass 

concentrations, one would expect it to be proportional to particle inorganic anion mass 

(NO3
- + SO4

2-) and RH (mass loadings of the other AMS-measured anion, 0.02 µg m-3 Cl-

, were too small to affect 𝑊𝑊𝑖𝑖). Figure 3-9a shows that at a given RH, 𝑊𝑊𝑖𝑖 is nearly linearly 

related to the sum of nitrate and sulfate mass. (A similar graph plotted with the AMS-

measured total ions is shown in Figure B-11) 

 
Figure 3-8 Measured nitrate versus predicted pH for all WINTER data segregated by 
predicted inorganic liquid water content (𝑊𝑊𝑖𝑖) in the ranges of 0-2, 3-4, and >6 µg m-3. 
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ISORROPIA-II using AMS data is shown, excluding NO3
-, SO4

2-, and HNO3 
concentrations that were within 2×LOD. 

 
Figure 3-9 (a) Predicted 𝑊𝑊𝑖𝑖 versus AMS sulfate plus nitrate concentrations. Color scale 
shows RH dependence. (b) Measured NO3

-/2SO4
2-

 ratio (mole mole-1) versus predicted pH 
based on AMS data. NO3

- or SO4
2- dominant zone denotes NO3

-/2SO4
2- > 1 or < 1. For both 

plots the complete WINTER data is shown. 

 

To simplify the relationship between NO3
- and pH, which is affected by 𝑊𝑊𝑖𝑖 (Figure 3-8), 

the NO3
-/2SO4

2-
 ratio (mole mole-1) is plotted against pH (Figure 3-9b). From this figure it 

can be seen that when aerosol anionic composition was dominated by nitrate (NO3
-/2SO4

2- 

> 1), particle pH was generally above 1, whereas when dominated by sulfate (NO3
-/2SO4

2- 

< 1), particle pH was below 2 and could reach as low as –1.5. The relationship between 

NO3
-/2SO4

2-
 versus pH can be explained by the analytical prediction of ε(NO3

-) given in 

Equation 3-4. Neglecting non-ideality, NO3
-/2SO4

2-: 

 𝑁𝑁𝑁𝑁3
− 2𝑆𝑆𝑆𝑆4

2−⁄ =
𝑁𝑁𝑁𝑁3,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

2𝑆𝑆𝑆𝑆4
2− 𝜀𝜀(N𝑂𝑂3

−) =
𝑁𝑁𝑁𝑁3,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

2𝑆𝑆𝑆𝑆4
2−

1
𝑘𝑘𝑘𝑘𝑎𝑎𝑎𝑎

+ + 1
 (3-4) 
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where 𝑁𝑁𝑁𝑁3,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  is the sum of NO3
- and HNO3 (mole m-3) and 𝑘𝑘  represents 

1 �𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻3
∗ 𝑅𝑅𝑅𝑅𝑊𝑊𝑖𝑖×0.987×10−14�� . At low pH (𝐻𝐻𝑎𝑎𝑎𝑎

+  high), ε(NO3
-) is close to zero and NO3

-

/2SO4
2-

 is very small (i.e., very little nitrate aerosol). At sufficiently high pH (𝐻𝐻𝑎𝑎𝑎𝑎
+  low), 

ε(NO3
-) approaches unity, thus NO3

-/2SO4
2-

 is no longer a function of ε(NO3
-) and is simply 

equal to 𝑁𝑁𝑁𝑁3,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

2𝑆𝑆𝑆𝑆4
2−  (in this case, 𝑁𝑁𝑁𝑁3,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ≅ 𝑁𝑁𝑁𝑁3

− ). This explains why the NO3
-/2SO4

2-
 

increases dramatically at higher pH levels and is expected to asymptotically increase with 

increasing pH. When ε(NO3
-) is 1 (i.e., no HNO3) it lacks any dependence on pH (Equation 

3-4). At intermediate pH, the NO3
-/2SO4

2- is driven by both ε(NO3
-) and 𝑁𝑁𝑁𝑁3,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

2𝑆𝑆𝑆𝑆4
2− . Since 

NO3
-/2SO4

2- is not only driven by pH but also the total amount of nitrate (related to the 

sources and sinks of HNO3 and NO3
-), it is not a very accurate pH proxy (another pH proxy, 

ion equivalence ratio, will be discussed in Section 3.4.9). 

3.4.7 Low vs. high nitrate case studies 

Flights 6 and 8 were selected to contrast cases of low nitrate (Flight 6 mean: 0.15 ± 0.32 

µg m-3) vs. high nitrate loadings (Flight 8 mean: 0.88 ± 0.82 µg m-3), illustrating the 

relationships between NO3
-, HNO3, SO4

2-, 𝑊𝑊𝑖𝑖, T, and pH. Flights 6 and 8 covered similar 

geographical regions of coastal New York, New Jersey and Delaware (Figure 3-10). 

Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT) back 

trajectories suggest that Flight 8 measured outflow from the greater New York City 

metropolitan area, at some distance off-shore, and Flight 6 encountered outflow from a 

wider eastern coastal area. Back trajectory plots are shown in the supplementary material 

(Figure B-12). 
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Figure 3-10 pH geographical distributions for Flights 6 (a) and 8 (b). 

 

The time series of measured inorganic species, predicted pH, 𝑊𝑊𝑖𝑖, and T are shown in Figure 

3-11. Although plumes of high total nitrate (HNO3 + NO3
-) were intercepted on Flight 6 

(flight mean: 7.1 ± 3.2 µg m-3), observed NO3
- concentrations were low, but HNO3 

concentrations were high (flight mean: 6.9 ± 3.0 µg m-3), with measured ε(NO3
-) only 2 ± 

3%. In contrast, for Flight 8, plumes of high total nitrate were again observed (yellow 

shaded regions in Figure 3-11b), but in this case significant concentrations of NO3
- were 

also measured and ε(NO3
-) varied between 20%-60%. These differences can be attributed 

to pH and temperature. In Flight 6, pH was nearly two units on average lower (–0.2 ± 0.5) 

than within-plumes of Flight 8 (1.5 ± 0.4). Temperature also played a role. Flight 8 was on 

average 9 °C colder than Flight 6. Thus, the combination of higher pH and lower T resulted 

in substantially more HNO3 partitioning into the particle phase during Flight 8. 
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Figure 3-11 WINTER Flights (a) 6 and (b) 8 time series of altitude, measured NO3

-, HNO3, 
ε(NO3

-), SO4
2-, RH, T, NH4

+/(NO3
- + 2SO4

2-) ratio (mole mole-1) and predicted 𝑊𝑊𝑖𝑖, pH. For 
both plots PILS-IC anions and scaled AMS NH4

+ were used for the pH calculations. The 
yellow shaded area in (b) illustrates four high nitrate plumes. 

 

Note in Figure 3-11b that the NO3
-, 𝑊𝑊𝑖𝑖 and pH all peaked in the plumes of Flight 8. The 

cause for these peaks demonstrates the inter-relationships between these parameters. 

Nitrate is highly hygroscopic, so when more HNO3 partitions to the particle-phase due to 

high pH, the particle can take up more water (note, RH did not significantly change), this 

dilutes H+, raises the pH and further enhances HNO3 to NO3
- partitioning. The interactions 

between NO3
-, 𝑊𝑊𝑖𝑖, and pH are complex and nonlinear. In the case of Flight 6, the high 

sulfate concentrations led to higher predicted 𝑊𝑊𝑖𝑖 (Flight 6 𝑊𝑊𝑖𝑖 = 4.1 ± 2.6 µg m-3; Flight 8: 

𝑊𝑊𝑖𝑖 = 0.8 ± 0.7 µg m-3), which could potentially raise pH and allow more HNO3 dissolution, 

however, this effect did not compensate for the higher H+ contributed by sulfate, which 

prevented nitrate aerosol formation. 

3.4.8 Nitric acid and coarse mode cations 
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Overall, good agreement has been found between ISORROPIA-II predictions and 

observations, indicating that PM1 nitrate was in thermodynamic equilibrium. However, 

during the study, there were at times significant amounts of coarse mode ions (Na+, Cl-, 

etc.), as well as NO3
-. Here, coarse mode refers to particles with aerodynamic diameters 

between 1 and nominally 4 µm, the difference between the filter (PM4) and PILS or AMS 

(PM1) measurements. For the entire WINTER campaign, the PM1/PM4 ratios were on 

average ± SD: (AMS) NO3
- 82 ± 83%, SO4

2- 79 ± 26%, Cl- 13 ± 36%, NH4
+ 71 ± 52%. 

Other PM4 ions were also non-negligible; Na+ = 0.50 ± 0.88 µg m-3, Cl- = 0.69 ± 1.60 µg 

m-3, K+ = 0.03 ± 0.05 µg m-3, Ca2+ = 0.12 ± 0.12 µg m-3, Mg2+ = 0.07 ± 0.11 µg m-3. Not 

surprisingly, sodium and chlorine were the highest since many flights were made over or 

near coastal regions. The PM4 Cl-/Na+ molar ratio was 0.7 ± 0.6, indicating that some 

fraction of the Na+ had likely combined with acidic species (i.e. SO4
2-, NO3

-) resulting in 

depleted Cl- [Gard et al., 1998]. Flight 6 provides an example for comparing equilibrium 

predictions for fine and coarse modes. During flight 6, the coarse mode NO3
- fraction, (PM4 

− PM1)/PM4, was 76 ± 18%, more than four times that of the campaign average (18 ± 17%) 

and higher than the coarse mode SO4
2- and NH4

+ fractions, 14 ± 19% and 48 ± 21% 

respectively. A time series of PM1, filter PM4, and coarse mode NO3
- fraction is shown in 

Figure B-13. To contrast a thermodynamic analysis on the fine versus coarse mode ions of 

Flight 6, we assume internal mixtures within each of the modes, and that all the following 

ions were exclusively in the coarse mode: Na+, Cl-, Ca2+, Mg2+, K+. For the coarse mode 

there is largely disagreement between measured and predicted ε(NO3
-); more than half 

predicted ε(NO3
-) is nearly 100%, whereas observed ε(NO3

-) was between 0 and 20% 
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(Figure B-14). In contrast, ISORROPIA-predicted ε(NO3
-) agreed fairly well with 

predictions for equilibrium with the fine mode (predicted vs measured ε(NO3
-) regression, 

y = 0.64x – 0.01, R2 = 0.90), considering the low ε(NO3
-) range (all below 20%). In such 

cases, a small overestimation in HNO3 leads to amplified underestimation of NO3
- and it is 

more difficult for the model to accurately predict the smaller mass species (predicted vs 

measured HNO3 regression, y = 1.04x – 0.12, R2 = 1.00 vs. NO3
- regression, y = 0.63x – 

0.06, R2 = 0.92). The above fine vs. coarse mode results can be explained by the fine mode 

reaching equilibrium, but not the coarse mode as the latter process is kinetically limited 

[Dassios and Pandis, 1999; Cruz et al., 2000; Fountoukis et al., 2009]. Both modes 

compete for nitric acid. In this type of situation, over an extended period of time, the 

semivolatile fine mode ammonium nitrate and gas phase nitric acid will be depleted, 

impacting fine mode pH, and accumulate in the coarse mode in a nonvolatile form, such as 

sodium nitrate or calcium nitrate. However, because this process is slow, fine mode nitrate 

can persist and be accurately predicted by assuming thermodynamic equilibrium. 

3.4.9 Ion Equivalence Ratios and Particle pH 

Since running a thermodynamic model to predict pH is not necessarily straightforward, 

other proxies for particle acidity, based directly on measurement data, are often used 

instead. This includes ion balances, ammonium-sulfate molar ratios or cation-anion 

equivalence ratios. We have noted that this can lead to incorrect conclusions about particle 

pH and its effects, such as formation of nitrate [Guo et al., 2015; Hennigan et al., 2015; 

Weber et al., 2016]. Given that the thermodynamic calculations for PM1 were based solely 

on NH4
+, NO3

- and SO4
2- and accurately predicted the partitioning concentrations of HNO3 
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and NO3
-, we compare the NH4

+/(NO3
- + 2SO4

2-) equivalence ratio (mole mole-1) with the 

model-predicted pH to assess the utility of this commonly used pH proxy. In Figure 3-11, 

time-series of the equivalence ratio and pH are plotted for the two case studies, and a direct 

comparison of the data are shown in Figure 3-12a. These plots illustrate that although they 

may appear to track at times in Figure 3-11, there is not a simple unique relationship 

between the ratios and pH (Figure 3-12a). This is also true for the complete WINTER data 

set, Figure 3-12b, which shows the equivalence ratio vs pH for all WINTER data (40-95% 

RH). An equivalence ratio of unity is interpreted as a fully neutralized aerosol, while 

smaller ratios reflect a higher particle acidity. For this data set, although the ratio shows a 

general increasing trend with pH, it provides little overall insight on pH. Considering data 

for pH greater than approximately 1 (the flatter anvil region of the data points); pH can 

range from approximately 1 to 3, whereas NH4
+/(NO3

- + 2SO4
2-) always remained near 1, 

which would be interpreted as a neutral aerosol. For the other cluster of points, the opposite 

occurs, equivalence ratios span a range from approximately 0.8 to near 0, while pH remains 

between -1 and 1 indicating the aerosol is highly acidic at all times. There is a moderate 

correlation between the equivalence ratio and pH in this range, R2 = 0.32, but with near 

vertical slope, there is little predictive capability. Furthermore, it is often assumed that 

nitric acid partitions to the particle to form NO3
- only after the molar ratios reach 1. Figure 

3-12b shows an increasing trend with NO3
- mass concentration, but significant NO3

- is 

found at ratios less than one and a lack of sensitivity inhibits accurate NO3
- prediction in 

the flatter anvil region (equivalence ratio > 0.8). These results demonstrate that these forms 
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of particle acidity proxies should be employed with great care when used to infer particle 

pH and its impacts. 

 
Figure 3-12 Measured NH4

+/(NO3
- + 2SO4

2-) ratio (mole mole-1) vs. pH for (a) Flight 6 
(entire flight) and Flight 8 plumes (NO3

- > 0.5 µg m-3) and (b) for the entire WINTER data 
set. AMS data are used in the two plots. 

 

3.5 Conclusions 

Fine particle pH and the partitioning of HNO3 is characterized over a large geographical 

region and for altitudes up to 5 km based on an aircraft campaign conducted from Feb 01 

to March 15 2015 mainly in the northeastern US. PM1 pH was predicted from the 

thermodynamic model ISORROPIA-II based on a data set spanning a wide range of 

ambient conditions. The following results were found: 

1. Although there were differences of up to 50% between instruments measuring 

inorganic aerosol concentrations, this had a minor effect on overall predicted PM1 
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average pH. Generally, systematic errors for all measured ionic species do not 

have a large effect on predicted pH, although corrections that affect single 

components do adversely affect predicted pH. This means that thermodynamic 

calculations can provide an additional constraint for evaluating the consistency of 

datasets. 

2. Considering only the PM1 NH4
+, NO3

- and SO4
2-, ISORROPIA-II accurately 

predicted the partitioning of HNO3-NO3
- (HNO3 and NO3

- regression slopes 

deviate < 5%, and R2 > 0.9) over a broad range of RH (40 to 95%), T (–21 to 19 

ºC), and component concentrations (1-min average: HNO3, 0.05 to 12 µgm-3; 

SO4
2-, 0.02 to 11 µgm-3; NO3

-, 0.07 to 7.8 µgm-3; NH4
+, 0.01 to 3.3 µgm-3). Best 

agreement was observed at higher RH (60 to 95%), reasonable agreement was 

found in the 40 to 60% RH range, and significant discrepancies were observed for 

RH under 40%. The lowest RH range was also associated with the lowest HNO3, 

NO3
- and liquid water content. Discrepancies between observed and measured 

ε(NO3
-) could be due to: uncertainty in measured species at low concentrations, 

such as inclusion of organic acids in AMS-measured nitrate, division by small 

numbers when calculating ε(NO3
-), and organic-inorganic phase separations. No 

clear evidence that any effect single affect dominated the discrepancy was found. 

3. Substantial sample heating in the aircraft aerosol sample line did not appear to 

produce artifacts because the residence times (0.5-2 sec) in sample lines were 

insufficient to allow alteration of semivolatile aerosol components. This finding is 

applicable to other aircraft or ground measurements. 
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4. PM1 aerosol is highly acidic; for altitudes up to 5000 m pH ranged between –0.51 

and 1.9 (10th and 90th percentiles) with a study mean of 0.77 ± 0.96. The pH range 

is similar to those reported for the southeastern US (0.5 to 2 in summer, 1 to 3 in 

winter) [Guo et al., 2015] and the northern Colorado US (2 to 3 in winter) [Young 

et al., 2013]. These pHs are also similar to those reported in the Mediterranean, 

which ranged between 0.5 to 2.8 (highest pH was found in biomass burning 

plumes, which were not investigated here) [Bougiatioti et al., 2016]. 

5. Factors that affect ε(NO3
-) were investigated with ideal solution analytical 

calculations. A major factor was pH; ε(NO3
-) was sensitive to pH in the range of 

approximately –1 (all residing in the gas-phase) to 3 (all residing in the particle-

phase). As expected, increases in partitioning to the particle phase were observed 

at lower temperatures and higher particle liquid water concentrations. Lower 

temperatures shift the pH at which the transition occurs to lower values allowing 

NO3
- at lower pH. High liquid water contents dilute H+ and raise the pH. These 

factors are inter-related in complex ways and can only be captured and resolved 

with a thermodynamic model. 

6. PM1 ions other than NH4
+, NO3

-, SO4
2-, such as Na+, Cl-, did not change the 

predicted pH if included in the thermodynamic calculations (assumed to be 

internally mixed), for NaCl mole fractions (relative to all input aerosol ions) 

below 50%. Note that, the subtle pH variation (< 0.4 units) can be important for 

HNO3-NO3
- partitioning when ε(NO3

-) is close to 50%. At higher NaCl mole 

fractions (which were rare), pH was substantially increased. However, Na+ and 
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Cl- appear not to be completely internally mixed with NH4
+, NO3

-, SO4
2-, since 

larger deviation between predicted and measured HNO3-NO3
- partitioning is 

introduced. 

7. Occasionally, coarse mode (PM4 − PM1) cations and nitrate were found to be 

abundant. Large discrepancies between observed and predicted HNO3 and coarse 

mode NO3
- indicate a lack of thermodynamic equilibrium due to kinetic 

limitations. However, HNO3 and PM1 NO3
- partitioning were accurately 

predicted, indicating equilibrium. 

8. Traditional pH proxies, such as NH4
+/(NO3

- + 2SO4
2-) equivalence ratios were not 

uniquely related to pH and NO3
-, implying that their utility for predicting impacts 

of particle acidity on aerosol processes or properties is suspect. The NO3
-/2SO4

2- 

ratio was more closely related to particle pH in this study but lost sensitivity to pH 

when relatively low NO3
-/2SO4

2- ratios were present (e.g. 0.3). The same ratio is 

also sensitive to emissions of HNO3, so a universally-applicable correlation may 

not be possible. 

9. Particle pH should be explicitly determined to accurately assess its effects on 

aerosol mass, atmospheric processes, and other health and environmental impacts, 

including the partitioning of nitric acid between the gas and particle phases and 

sensitivities thereof to errors. 
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CHAPTER 4. FINE PARTICLE PH AND GAS-PARTICLE 

PHASE PARTITIONING OF INORGANIC SPECIES IN 

PASADENA, CALIFORNIA, DURING THE 2010 CALNEX 

CAMPAIGN 

4.1 Abstract 

pH is a fundamental aerosol property that affects ambient particle concentration and 

composition, linking pH to all aerosol environmental impacts. Here, PM1 and PM2.5 pH are 

calculated based on data from measurements during the California Research at the Nexus 

of Air Quality and Climate Change (CalNex) study from May 15 to June 15 2010 in 

Pasadena CA. Particle pH and water were predicted with the ISORROPIA-II 

thermodynamic model and validated by comparing predicted to measured gas-particle 

partitioning of inorganic nitrate, ammonium, and chloride. The study mean ± standard 

deviation PM1 pH was 1.9 ± 0.5 for the SO4
2--NO3

--NH4
+-HNO3-NH3 system. For PM2.5, 

internal mixing of sea-salt components (SO4
2--NO3

--NH4
+-Na+-Cl--K+-HNO3-NH3-HCl 

system) raised the bulk pH to 2.7 ± 0.3 and improved predicted nitric acid partitioning with 

PM2.5 components. The results show little effect of sea-salt on PM1 pH, but significant 

effects on PM2.5 pH. A mean PM1 pH of 1.9 at Pasadena was approximately one unit higher 

than what we have reported in the southeastern U.S., despite similar temperature, relative 

humidity and sulfate ranges and is due to higher total nitrate concentrations (nitric acid plus 

nitrate) relative to sulfate, a situation where particle water is affected by semivolatile nitrate 

concentrations. Under these conditions nitric acid partitioning can further promote nitrate 

formation by increasing aerosol water, which raises pH by dilution, further increasing nitric 

acid partitioning and resulting in a significant increase in fine particle nitrate and pH. This 
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study provides insights on the complex interactions between particle pH and nitrate in a 

summertime coastal environment and a contrast to recently reported pH in the eastern U.S. 

in summer and winter and the eastern Mediterranean. All studies have consistently found 

highly acidic PM1 with pH generally below 3. 

4.2 Introduction 

Ambient aerosol particles affect human health and climate [Lim et al., 2012; IPCC, 2013], 

and have many other environmental effects. Particle pH is linked to all of these by altering 

the fundamental aerosol properties of particle mass and chemical composition. For 

example, some important pathways leading to secondary organic aerosol (SOA) formation 

from biogenic volatile organic compounds (VOCs), such as isoprene and α-pinene, are 

catalyzed by H+ [Jang et al., 2002; Gao et al., 2004; Edney et al., 2005; Surratt et al., 2007; 

Eddingsaas et al., 2010; Surratt et al., 2010; Han et al., 2016a]. pH directly affects particle 

mass and composition through altering the partitioning of both semivolatile inorganic and 

organic acids between particle and gas phases [Guo et al., 2016]. pH affects the nitrogen 

cycle through gas-particle partitioning of nitric acid, ammonia and nitrate, ammonium, 

impacting deposition patterns due to large differences in gas versus particle dry deposition 

rates [Huebert and Robert, 1985; Duyzer, 1994; Schrader and Brummer, 2014]. 

Particle pH is linked to adverse health impacts, both directly and indirectly. Synergistic 

adverse health effects have been observed between ozone and acidic aerosols [Last, 1991; 

Enami et al., 2008] and epidemiological studies have reported adverse health outcomes 

associated with strong aerosol acidity [Koutrakis et al., 1988; Thurston et al., 1994; 

Dockery et al., 1996; Raizenne et al., 1996; Gwynn et al., 2000; Lelieveld et al., 2015]. 
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Low pH increases the solubility of transition metals, such as iron and copper [Meskhidze 

et al., 2003; Oakes et al., 2012; Longo et al., 2016; Fang et al., 2017], which have been 

linked to aerosol toxicity through aerosol oxidative effects [Ghio et al., 2012; Verma et al., 

2014; Fang et al., 2015; Fang et al., 2017]. Metal mobility also affects nutrient 

distributions with important impacts on photosynthesis productivity [Duce and Tindale, 

1991; Meskhidze et al., 2003; Nenes et al., 2011; Ito and Xu, 2014; Myriokefalitakis et al., 

2015; Li et al., 2017], carbon sequestration and ocean oxygen levels [Ito et al., 2016]. 

Due to limitations with direct particle pH measurement techniques, fine particle pH has 

often been indirectly inferred from aerosol composition based on ion balances or cation-

anion molar balances, e.g., ammonium to sulfate (NH4
+/SO4

2-) molar ratios. However, 

these are largely inaccurate pH proxies [Guo et al., 2015; Hennigan et al., 2015; Guo et 

al., 2016; Weber et al., 2016], which if used can provide misleading indications on the 

level of acidity present in the aerosol and pH-related properties. Alternatively, particle pH 

is more accurately calculated with a thermodynamic model, such as ISORROPIA-II [Nenes 

et al., 1998; Fountoukis and Nenes, 2007] or E-AIM [Clegg et al., 1998; Wexler and Clegg, 

2002; Clegg et al., 2003], which consider particle water, solution non-ideality, and variable 

dissociation of inorganic species in solution and equilibrium of semivolatiles between gas 

and aerosol (aqueous and solid) phases. In forward mode, which utilizes both gas and 

particle phase inputs, the accuracy of pH predictions can be assessed by comparing 

predicted to measured partitioning of semivolatile species, such as NH3-NH4
+, HNO3-NO3

- 

and HCl-Cl- pairs. The semivolatile species with the most information content about pH 



 

 

101 

depend on the conditions at a specific location (e.g., when the specific component is not 

completely in the gas or particle phase). 

This work adds to our investigation of particle pH in differing locations and under different 

emission characteristics. We have reported that ground level pH in the southeastern US is 

0.9 ± 0.6 (mean ± SD) in summer and 2.0 ± 1.0 in winter [Guo et al., 2015], and 0.8 ± 1.0 

in the boundary layer and lower free troposphere (< 5 km altitude) over broad regions of 

the eastern US in winter, based on aircraft data [Guo et al., 2016]. A pH of 1.3 ± 1.1 has 

also been reported in various air masses advected to Crete in the eastern Mediterranean 

[Bougiatioti et al., 2016]. This study focuses on particle pH in an urban coastal site, 

Pasadena, California, and investigates the reasons for significantly higher nitrate mass 

loadings compared to those of the southeastern US [Zhang et al., 2007a; Hand et al., 

2012b]. 

4.3 Methods 

4.3.1 Sampling site 

Aerosol and gas measurements were conducted on the California Institute of Technology 

campus in Pasadena, California (34.140582 N, 118.122455 W, altitude above sea level: 

235 m), as part of the 2010 California Research at the Nexus of Air Quality and Climate 

Change (CalNex) campaign from May 15 to June 15 2010 [Ryerson et al., 2013]. The 

CalNex ground site was located within the Los Angeles Basin and approximately 16 km 

northeast of the central Los Angeles city (hereafter referred to as LA), and 5 km south of 

the San Gabriel Mountains. With the dominant wind from the southwest, the site was 
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regularly impacted by emissions transported from the coast and central LA area 

[Washenfelder et al., 2011; Hayes et al., 2013]. Meteorological data used in the following 

analysis is from the National Oceanic and Atmospheric Administrations (NOAA) CalNex 

researchers meteorological station. 

4.3.2 Instrumentation 

PILS-IC: PM2.5 (particles with aerodynamic diameters < 2.5 µm at ambient conditions) 

water-soluble ions were measured with a Particle-Into-Liquid Sampler coupled with Ion 

Chromatographs (PILS-IC), similar to that described elsewhere [Orsini et al., 2003; 

Hennigan et al., 2006; Sullivan et al., 2006; Peltier et al., 2007a]. The operation details of 

PILS-IC during CalNex has been discussed by Liu et al. [2012] in detail. Ambient air was 

sampled through a URG (Chapel Hill, NC, U.S.) PM2.5 cyclone and mixed with near 100°C 

water vapor generated from deionized water. After growth, droplets were collected by 

impaction, producing a continuous liquid sample for online IC analysis. All ambient data 

were blank-corrected by periodically measuring filtered ambient air. PM2.5 anion data were 

available throughout the CalNex study, whereas cation data were only available for the last 

week (June 08-14). Since particle acidity predictions require both anion and cation data, 

discussions on PM2.5 pH will include only the last week of data. The measurement 

uncertainties of anions and cations, based on calibration variability, sample air flow rates, 

liquid flow rates, and field blanks, were estimated to be 13% for anions and 8% for cations. 

Detection limits were 0.015 µg m-3 SO4
2-, 0.03 µg m-3 NO3

-, 0.01 µg m-3 Cl- for anions, 

and 0.02 µg m-3 NH4
+, 0.02 µg m-3 Na+, 0.04 µg m-3 K+ for cations (Ca2+ and Mg2+ were 

not measured). 
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AMS: PM1 non-refractory inorganic and organic components were measured by a high 

resolution time of flight aerosol mass spectrometer (HR-ToF-AMS, Aerodyne Research 

Inc., hereafter referred to as AMS; DeCarlo et al. [2006]). The operation procedure of the 

AMS during this study has been described in Hayes et al. [2013] and measurement 

uncertainty estimated at 30% [Middlebrook et al., 2012]. The AMS detects non-refractory 

species in dried aerosols through an aerodynamic focusing lens, a detection chamber where 

aerosols are flash vaporized and ionized, followed by time-of-flight mass spectrometry. 

The comparison of AMS PM1 and PILS-IC PM2.5 measurements was summarized in Hayes 

et al. [2013] and is discussed further below. In the following analysis PM1 species are AMS 

data and PM2.5 species are PILS-IC data. 

PALMS: Single aerosol composition and size for diameters 0.15-3 µm were measured by 

an online Particle Analysis by Laser Mass Spectrometry (PALMS) [Murphy et al., 2006; 

Froyd et al., 2010]. In this method, individual aerosols scatter light from a continuous laser 

beam and trigger an excimer laser that ionize the single particle. The resulting ions are 

analyzed by a time of light mass spectrometer to generate a complete positive or negative 

mass spectrum per particle. In this study, PALMS data provides insights into the aerosol 

mixing state. 

QC-TILDAS: gas-phase NH3 was quantified using a Quantum Cascade Tunable Infrared 

Laser Differential Absorption Spectrometer (QC-TILDAS), developed by Aerodyne 

Research Inc. and described in details in Ellis et al. [2010]. QC-TILDAS uses a 

thermoelectrically cooled pulsed Quantum Cascade (QC) laser, which measures NH3 at 

967 cm-1 in the infrared regime. The laser beam is directed into an astigmatic Herriot 
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absorption cell, where it passes between two highly reflective mirrors before leaving the 

cell and arriving at a thermoelectrically cooled Mercury Cadmium Telluride (HgCdTe) 

infrared detector. A 12 m heated (40 ± 2°C) and insulated 0.95 cm PFA line (Clayborn 

Lab, Truckee, California, U.S.) connects a short (10 cm; 8 m above ground) custom-

designed quartz inlet to the QC-TILDAS. The inlet includes two ports for the introduction 

of calibration and background gas designed so that the flows follow the same path through 

the inlet as the ambient sample. Zero air measurements and ammonia calibrations were 

performed periodically during the CalNex campaign. The detection limit was 1.5 ppbv for 

1 sec data and decreased to 0.42 ppbv for 1 min averaging data. The overall NH3 

measurement uncertainty was 10%. 

NI-PT-CIMS: gas phase HNO3 and HCl measurements were made using a negative-ion 

proton-transfer chemical ionization mass spectrometer (NI-PT-CIMS; hereafter referred to 

as “CIMS”). Details of the NI-PT-CIMS design and operation during CalNex have been 

reported in Veres et al. [2008]. Acidic molecules are ionized by proton transfer with acetate 

ions and detected as conjugate anions with a quadrupole mass spectrometer. The CIMS 

was placed on top of an instrument trailer at 3 m height with a heated (75°C) 0.32 cm 

Teflon inlet, 1.3 m in length, sampling at 5 m relative to ground level. (Possible biases in 

measured HNO3 and HCl due to aerosol volatilization in the heated inlet is discussed in 

Section 4.5.1). In the field, instrument backgrounds were quantified every 190 min for a 

duration of 30 min. The detection limits were 0.080 ppbv for HNO3 and 0.055 ppbv for 

HCl. Overall measurement uncertainty was 35%. All gas-phase concentrations reported in 

ppbv were converted to µg m-3 at ambient conditions to be consistent with particle-phase 
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measurements and for thermodynamic calculations. In all cases, gas and particle 

concentrations are reported and utilized in the model using ambient conditions (i.e., all 

volumetric concentrations are at ambient temperature and pressure). 

4.3.3 pH and gas-particle partitioning modeling 

pH is defined as the logarithm of the hydronium ion (H3O+) activity in an aqueous solution. 

Hereafter we denote H3O+ as H+ for simplicity, while recognizing that the unhydrated 

hydrogen ion is rare in aqueous solutions. pH is given by, 

 
𝑝𝑝𝑝𝑝 = − log10 𝛾𝛾𝐻𝐻+𝐻𝐻𝑎𝑎𝑎𝑎+ = − log10

1000𝛾𝛾𝐻𝐻+𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎+

𝑊𝑊𝑖𝑖 + 𝑊𝑊𝑜𝑜
≅ − log10

1000𝛾𝛾𝐻𝐻+𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎+

𝑊𝑊𝑖𝑖
 (4-1) 

where 𝛾𝛾𝐻𝐻+ is the hydronium ion activity coefficient (in this case assumed = 1), 𝐻𝐻𝑎𝑎𝑎𝑎+  (mole 

L-1) the hydronium ion concentration in particle liquid water, 𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎+  (µg m-3) the hydronium 

ion concentration per volume of air, and 𝑊𝑊𝑖𝑖  and 𝑊𝑊𝑜𝑜  (µg m-3) the bulk particle water 

concentrations associated with inorganic and organic species, respectively. 𝑊𝑊𝑜𝑜  can be 

calculated by Equation 5 in Guo et al. [2015]. Both 𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎+  and 𝑊𝑊𝑖𝑖  are outputs of the 

thermodynamic model, ISORROPIA-II, which was used to determine the composition and 

phase state of an NH4
+-SO4

2--NO3
--water inorganic aerosol in thermodynamic equilibrium 

with its corresponding gases. (In some cases, Cl--Na+-K+ were also included). A similar 

approach has been used in several studies for contrasting summer and winter conditions in 

the eastern U.S. [Guo et al., 2015; Guo et al., 2016; Weber et al., 2016] and eastern 

Mediterranean [Bougiatioti et al., 2016; Bougiatioti et al., 2017]. 
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In previous studies, the effect of 𝑊𝑊𝑜𝑜 on pH has been investigated and found to be minor 

[Guo et al., 2015]. pH in that study based solely on 𝑊𝑊𝑖𝑖 was 0.15-0.23 units systematically 

lower than pH predicted with total particle water (𝑊𝑊𝑖𝑖 + 𝑊𝑊𝑜𝑜) and highly correlated (R2 = 

0.97). In this study, ΔpH of +0.12 and +0.19 units were estimated when including 𝑊𝑊𝑜𝑜 based 

on average and maximum organic hygroscopic parameter 𝜅𝜅𝑜𝑜𝑜𝑜𝑜𝑜  of 0.13 and 0.23, 

respectively [Mei et al., 2013]. Sensitivity of pH to effects of 𝑊𝑊𝑜𝑜 are smaller in CalNex due 

to smaller fractions of 𝑊𝑊𝑜𝑜 to total particle water (21%) compared to that found in SOAS 

(35%) (Southern Oxidant and Aerosol Study). Given this relatively small deviation (on 

average 0.12 unit), we report pH only considering 𝑊𝑊𝑖𝑖. 

ISORROPIA-II was run assuming particles were “metastable” with no solid precipitates 

(H+ is not stable in an effloresced aerosol); a reasonable assumption considering the high 

RH range observed during this study (mean ± SD of RH = 79 ± 17%). In our previous pH 

studies, we only considered data for RH between 20-95%. At low RH (e.g., < 20%), 

aerosols are less likely to be in a completely liquid state [Ansari and Pandis, 2000; Malm 

and Day, 2001; Fountoukis and Nenes, 2007; Bertram et al., 2011], and the “glassy” SOA 

may impede the partitioning of semivolatile species due to decreased diffusion in the 

particles [Ye et al., 2016], and uncertainties in predicted pH are expected to be large due to 

uncertain activity coefficients associated with highly concentrated solutions [Fountoukis 

et al., 2009]. At RH > 95%, large pH uncertainty is introduced due to the exponential 

growth in particle liquid water with RH and propagation of RH sensor uncertainties [Malm 

and Day, 2001; Guo et al., 2015]. The CalNex RH ranged from 22% to 100%, therefore 

periods for RH above 95% were excluded. 
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The model was also run in forward mode, which calculates the gas-particle equilibrium 

partitioning concentrations based on the input of total concentration of a species (i.e., gas 

+ particle). Use of total species as ISORROPIA-II inputs produces substantially better 

predictions compared with only particle phase concentration inputs in either forward or 

reverse mode since in the former cases (forward mode with only particle phase input), 

particle phase semivolatile species concentration is under-predicted due to some fraction 

repartitioned into the gas phase in the model, and in the latter cases (reverse mode), 

measurement errors often result in large model biases in pH [Hennigan et al., 2015]. 

The predicted gas or particle phase semivolatile compounds can be compared to 

measurements for validating the thermodynamic calculations. Possible partitioning pairs 

for ISORROPIA-II are HNO3-NO3
-, NH3-NH4

+, and HCl-Cl- (discussed in Section 

4.4.2&4.4.3). This method is effective when gas and particle phase components have 

substantial fractions in both the gas and particle phases. For example, in the southeastern 

US in summer, ammonia partitioning (gas/(gas + particle)) varied between 10 to 80%, 

whereas nitric acid partitioning was mostly near 80% and PM1 nitrate level close to the 

detection limit (larger uncertainty), making ammonia partitioning much more useful than 

nitric acid for evaluating thermodynamic models [Guo et al., 2015]. In contrast, nitric acid 

partitioning, ranged from 0% to 100% (average ~ 50%) and so was used to evaluate pH 

predicted in the northeastern US in the cold season [Guo et al., 2016]. 

Using gas-particle partitioning to constrain particle pH can be complicated by the presence 

of multiple phases within the particle, which may distribute inorganic species amongst 

multiple phases, each with their own water activity and hence inorganic concentration. Lab 
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studies show that liquid-liquid phase separations are always observed at O:C (organic 

aerosol atomic O to C ratio) ≤ 0.5, whereas no phase separations occur for O:C ≥ 0.8 

[Bertram et al., 2011; Song et al., 2012; You et al., 2013; You et al., 2014b]. The likelihood 

for phase separation decreases at higher RH and only has a weak dependence on T [Schill 

and Tolbert, 2013; You and Bertram, 2015]. For conditions during SOAS (O:C = 0.75 ± 

0.12, RH = 74 ± 16%, T = 25 ± 3°C), we found that thermodynamic calculations accurately 

predicted bulk particle water and ammonia partitioning over the complete T (18 to 33 °C) 

and RH (36 to 96%) ranges [Guo et al., 2015]. During the Wintertime Investigation of 

Transport, Emissions, and Reactivity (WINTER) aircraft study (O:C = 0.78 ± 0.11, T = 0 

± 8°C), we found that HNO3-NO3
- partitioning was accurately predicted for RH > 60% 

[Guo et al., 2016]. Compared to SOAS and WINTER (both in the eastern US), in this study 

the smaller O:C (0.52 ± 0.10) [Hayes et al., 2015] mean we cannot outright exclude the 

possibility of phase separation, but very high RH (79 ± 17%) makes it less likely. 

In running ISORROPIA-II to predict pH and semivolatile species partitioning, it is also 

assumed that the particles are internally mixed, that pH does not vary with particle size 

(i.e., bulk properties represent the overall aerosol pH), and that the ambient aerosols and 

gases are in thermodynamic equilibrium. For the WINTER study, which included 

measurements over coastal and marine areas, we found that PM1 pH was accurately 

predicted with only particle phase SO4
2-, NO3

-, NH4
+ (and gas phase HNO3); whereas sea-

salt components had some, but generally small, effects on the prediction of particle pH 

(except on rare occasions when the mole fraction of NaCl to total soluble inorganic ions 
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was greater than 50%) [Guo et al., 2016]. The mixing state of sea-salts with SO4
2-, NO3

-, 

NH4
+ is a critical issue in predicting particle pH in LA and is discussed below. 

4.4 Results 

4.4.1 PM1 and PM2.5 inorganic composition and gas-particle partitioning 

Time series for various measured parameters during CalNex are shown in Figure 4-1. 

CalNex T and RH were 18 ± 4°C and 79 ± 17% (mean ± SD). During the first half of the 

campaign, May 15 to May 29, daily maximum T was below 26°C and PM1 (AMS) and 

PM2.5 (PILS-IC) SO4
2-, NO3

-, NH4
+ showed a general decreasing trend (PM2.5 NH4

+ data 

was not available in this period). The second half of the campaign started with a warmer 

period (May 30 to June 7), with the highest T reaching 29°C. During this period, SO4
2-, 

NO3
-, NH4

+, and HNO3 were significantly higher than the first half and reached campaign 

maximums of 9.7 µg m-3 PM1 SO4
2-, 20.1 µg m-3 PM1 NO3

-, 9.6 µg m-3 PM1 NH4
+, and 

33.1 µg m-3 HNO3. The peak concentrations of combined PM1 inorganics alone exceeded 

The National Ambient Air Quality Standard (NAAQS) PM2.5 24-hour limit of 35 µg m-3 

(https://www.epa.gov/criteria-air-pollutants/naaqs-table), with the largest contribution 

from NO3
-. Gaseous components other than HNO3, such as NH3 and HCl, showed different 

patterns than the above species, indicating different sources and sinks. 

PM1 (AMS) SO4
2-, NO3

-, NH4
+ were highly correlated with PM2.5 (PILS-IC) 

measurements, with R2 between 0.8 and 0.9 (Figure C-1). PM1/PM2.5 mass ratios were 97.5 

± 5.4% for SO4
2-, 63.5 ± 22.1% for NO3

-, and 92.3 ± 9.9% for NH4
+. Note that, the mass 

fractions for SO4
2- and NO3

- are campaign averages, but NH4
+ mass fraction is only for the 
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last week when PM2.5 NH4
+ was available. Nearly 40% of the NO3

- was found between 1 

and 2.5 μm, whereas most SO4
2- and NH4

+ were associated with PM1. (Ratios based on 

regression slopes are shown in Figure C-1). Hence, the NO3
- for the 1 to 2.5 μm size range 

was likely associated with some nonvolatile cations, such as Na+ and K+ instead of NH4
+. 

The PM2.5 Cl-/Na+ molar ratio was 0.5 ± 0.2. Given that these species are mainly 

transported from the coastal regions in the form of sea-salts (NaCl), this indicates that 

roughly half of the Na+ had reacted with HNO3 resulting in depleted Cl- [Robbins et al., 

1959; Langer et al., 1997]. These results are consistent with the analysis of Hayes et al. 

[2013]. 

Measurements of semivolatile particle (NO3
-, NH4

+, Cl-) and corresponding inorganic 

gases (HNO3, NH3, HCl) are used to investigate partitioning. The gas-particle partitioning 

is described as the particle phase mass concentration divided by the total mass 

concentration (gas + particle), e.g., ε(NO3
-) = NO3

-/(HNO3 + NO3
-). The campaign average 

partitioning ratios were as follows; for PM1 ε(NO3
-) = 39 ± 16%, PM1 ε(NH4

+) = 56 ± 26%, 

PM2.5 ε(NO3
-) = 54 ± 10%, and PM2.5 ε(Cl-) = 39 ± 26%. All partitioning ratios are near 

50%, making them useful for assessing pH predictions by comparing measured versus 

ISORROPIA-predicted ratios. 
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Figure 4-1 CalNex campaign time series of meteorological conditions (T, RH), particle  
and gas phase inorganic compound mass loadings (SO4

2-, NO3
-, Cl-, NH4

+, Na+; HNO3, 
NH3, HCl), particle phase mass fractions of total (gas plus particle; ε(NO3

-), ε(NH4
+) based 

on PM1 and ε(Cl-) based on PM2.5, all denoted by grey color), and PM1 to PM2.5 mass 
fractions of SO4

2-, NO3
-, NH4

+ (all denoted by purple color). 
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4.4.2 PM1 pH prediction and verification 

PM1 pH was determined to be on average (± SD) 1.9 ± 0.5 for the complete study, for 

model inputs of PM1 inorganic AMS-measured components SO4
2-, NO3

-, NH4
+, and gases 

HNO3 and NH3. Although the CalNex ground site was influenced by sea-salt components, 

Na+ and Cl- were not included in the PM1 pH since NaCl is typically found mainly at sizes 

above 1 µm and the mixing states of PM1 NaCl with SO4
2-, NO3

-, NH4
+ remains to be 

investigated. PALMS single particle data indicated that for the particle size range with Dve 

(dry volume-equivalent diameter) between 0.15 and 780 nm (~1 µm), by number 27% of 

PM1 sea-salt particles (Na+-rich particles without crustal materials) had observable NO3
- 

signals and by mass only 12% of PM1 are sea-salt types (Table 4-1), suggesting external 

mixing of NaCl with NO3
- is the main form. For the 1 to 2.5 µm size range the number and 

mass fractions were 85% and 63%, respectively. 

 

Table 4-1 Number fraction of sea-salt particles with observable nitrate signals and mass 
fraction of sea-salt particles to total mass in two size ranges, 0.15-1 and 1-2.5 μm. Sea-salt 
particles are identified as Na+-rich particles without crustal elements. The number fraction 
was determined directly from the PALMS data and the mass fraction was calculated based 
on the number fractions and size distributions, assuming dry particle densities. 

Particle size, 
µm 

Number fraction of sea-salt particles with 
observable nitrate signal 

Sea-salt particles mass 
fraction to total 

0.15-1 27% 12% 
1-2.5 85% 63% 
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We assess predicted pH from the thermodynamic model by comparing predicted and 

measured gas-particle partitioning of NH3-NH4
+, HNO3-NO3

-. Comparison of HNO3-NO3
- 

and NH3-NH4
+ predictions to their measured values is shown as Figure 4-2. Gas phase 

HNO3, NH3 and particle phase NH4
+ are on average within 10% and highly correlated, R2 

> 0.8. Despite a high correlation (R2 = 0.76), ISORROPIA-II predicted particle phase NO3
- 

is systematically higher than observed, with a regression slope of 1.28. Two bands are 

observed that are related to RH or time of day (Figure 4-2b); for mid-range RH (50-70%) 

daytime data, ISORROPIA-II slightly underpredicts NO3
- and for high RH (~90%) 

nighttime data, NO3
- is overpredicted. This leads to a regression slope of 2 comparing 

predicted to measured ε(NO3
-) and a large intercept (Figure 4-2c, also see Figure C-5). In 

contrast, predicted versus measured ε(NH4
+) is close to 1:1 and highly correlated (R2 = 0.8, 

Figure 4-2f), and there is a much weaker systematic variability related to RH or time of 

day. 
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Figure 4-2 Comparisons of predicted and measured HNO3, NO3

-, and ε(NO3
-) (a, b, c) and 

NH3, NH4
+, and ε(NH4

+) (d, e, f) for data from the complete CalNex study. Particle phase 
data are all AMS PM1. Orthogonal distance regression (ODR) fits are shown and 
uncertainties in the fits are one standard deviation. 
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4.4.3 PM2.5 pH prediction and verification 

Predicting the bulk pH of PM2.5 is more complicated since the particles larger than 1 µm 

in the PM2.5 fraction are not necessarily in equilibrium due to increased timescale for 

equilibration (> 20-30 mins) [Fountoukis et al., 2009], especially in an environment with 

rapidly changing concentrations of key species (e.g. HNO3). This leads to greater 

uncertainty when predicting partitioning of semivolatile species. Furthermore, the pH 

analysis now needs to consider sea-salt components (SO4
2--NO3

--NH4
+-Na+-Cl--K+-HNO3-

NH3-HCl system). Whereas single particle PALMS data suggested that only a small 

fraction (27%) of the sea-salt particles less than 1 µm were internally mixed with nitrate, 

for sizes between 1 and 2.5 µm, the majority (85%) were. Overall, we find bulk PM2.5 pH 

considering sea-salt components higher than PM1 by 0.8 units on average. For data from 

the last week of the study (i.e., period of PILS data that includes measurements of sea-salt 

components), PM1 pH was 1.9 ± 0.4, similar to that of the complete study (1.9 ± 0.5), and 

in contrast to an average PM2.5 pH of 2.7 ± 0.3. A comparison of the pH is shown in Figure 

4-3. Addition of nonvolatile Na+ and K+ increases pH. Na+ is the more important cation in 

this case, as the Na+ levels were several times larger than K+ (0.77 ± 0.39 vs. 0.20 ± 0.09 

µg m-3, or 0.33 vs. 0.05 mol m-3). 
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Figure 4-3 Comparison of predicted PM2.5 particle pH assuming external versus internal 
mixing of Na+, Cl-, K+ with SO4

2-, NO3
-, NH4

+ for data from the last week of the CalNex 
study (i.e., SO4

2--NO3
--NH4

+-HNO3-NH3 system vs. SO4
2--NO3

--NH4
+-Na+-Cl--K+-HNO3-

NH3-HCl system). For these two cases, pH increased from 1.9 ± 0.4 to 2.7 ± 0.3 with the 
input of Na+, Cl-, K+. Figure 4-4 and Figure 4-5 show that for PM2.5, inclusion of Na+, Cl-, 
K+ provides better predicted portioning of nitric acid. 

 

To examine the effects of sea-salt components on the thermodynamic predictions, we 

compared the observed to measured partitioning of PM2.5 semivolatile species in Figure 

4-4. ISORROPIA-II was run with two differing inputs, one with Na+, Cl-, K+ and the other 

run without these ions. In both cases, only PILS-IC PM2.5 data are used. All other input 

parameters, including NH4
+, SO4

2-, NO3
-, RH, and T, were the same. Figure 4-4 shows that 

inclusion of Na+, Cl-, K+ improves the prediction of HNO3-NO3
- partitioning. For HNO3, 

NO3
-, and ε(NO3

-), predicted levels are somewhat closer to the measurements and the 

scatter in the data is reduced. However, like the PM1 analysis above, the slope between 

predicted and measured ε(NO3
-), 2.4, is significantly larger than 1. The deviation is again 

related to RH, resulting from a diurnal dependence. Unlike the HNO3-NO3
- partitioning, 

NH3-NH4
+ partitioning is not as sensitive to inclusion of Na+, Cl-, K+. Overall, ε(NH4

+) is 
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on average underestimated by 17% compared to measured (average ratio). HCl-Cl- 

partitioning is well captured by ISORROPIA-II with regression slopes of 1.05, 0.95, 1.14 

and R2 of 0.98, 0.84, 0.81 for HCl, Cl-, ε(Cl-), respectively. 
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Figure 4-4 Inter-comparisons of predicted and measured gas-particle phase partitioning for PM2.5 particles for two scenarios: 
ISORROPIA-II input without (left) and with (right) Na+, Cl- (and HCl), K+. The other input SO4

2-, NO3
-, NH4

+, NH3, HNO3, RH, and T 
are the same in the two cases. The PM2.5 data for the last week during CalNex study are shown above. ODR fits are applied.  
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An analytical calculation of HNO3-NO3
- partitioning can also be used to assess if one pH 

unit shift caused by Na+, Cl-, K+ is consistent with observed nitric acid partitioning for 

PM2.5. The analytical calculation is based on Equation 3 in Guo et al. [2016] and a detailed 

equation derivation can be found in the supporting materials C.2. To minimize the effects 

of T and 𝑊𝑊𝑖𝑖 variability on partitioning, and focus on the role of pH, data for a relatively 

small T (17-23°C) and 𝑊𝑊𝑖𝑖  (5-15 µg m-3) range were selected. Predicted activity 

coefficients, 𝛾𝛾𝐻𝐻+ and 𝛾𝛾𝑁𝑁𝑁𝑁3−, extracted from ISORROPIA-II, were input in the analytical 

calculation to account for solution non-ideality. The product of the activity coefficients, 

𝛾𝛾𝐻𝐻+𝛾𝛾𝑁𝑁𝑁𝑁3−, was on average 0.28 with Na+, Cl-, K+ in the model and 0.19 without Na+, Cl-, 

K+ (𝛾𝛾𝐻𝐻+𝛾𝛾𝑁𝑁𝑁𝑁3− is smaller without Na+, Cl-, K+ due to less predicted 𝑊𝑊𝑖𝑖, thus overall larger 

ionic strength). The analytical calculated S curves are plotted with the measurements and 

ISORROPIA-II predictions in Figure 4-5. As noted, including these components changes 

the activity coefficient 𝛾𝛾𝐻𝐻+𝛾𝛾𝑁𝑁𝑁𝑁3−  (as can be seen by the difference in the two curves in 

Figure 4-5) and also slightly increases the liquid water. But the most important effect is 

reducing H+, resulting in a shift to higher pH. This analysis also shows that the measured 

ε(NO3
-) comes into better agreement with its theoretical S curve for the SO4

2--NO3
--NH4

+-

Na+-Cl--K+-HNO3-NH3-HCl system (red points closer to red curve compared to blue points 

and blue curve). Similar to ε(NO3
-), measured ε(Cl-) is also found to be in good agreement 

with S curve (Figure C-2). 
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Figure 4-5 Comparison of measured ε(NO3

-) for PM2.5 (data points) to S curves, which are 
predicted from theory and include activity coefficients from ISORROPIA-II. The product 
of the activity coefficients, 𝛾𝛾𝐻𝐻+𝛾𝛾𝑁𝑁𝑁𝑁3− , was on average 0.28 with Na+, Cl-, K+ and 0.19 
without Na+, Cl-, K+. In both cases pH (data points) is predicted by ISORROPIA-II. 

 

4.4.4 Average diurnal trends 

PM1: The diurnal variations of T, RH, pH, LWC, HNO3-NO3
- and NH3-NH4

+ partitioning 

are shown together in Figure 4-6. Due to the inverse variation between T and RH diurnal 

patterns, predicted particle water (𝑊𝑊𝑖𝑖 ) reached a daily maximum before dawn and 

decreased rapidly with RH after sunrise. To be consistent with pH, particle water data is 

not plotted for RH above 95%. (For RH above 95%, particle water increased continuously 

at night until reaching the daily highest RH at 5:30). Between 13:00 and 20:00 local time, 

𝑊𝑊𝑖𝑖 stayed consistently low (~ 5 µgm-3). PM1 pH generally tracked liquid water. pH was 

lower in the daytime due to less liquid water, reaching a minimum value of 1.6 at 

approximately 16:00. After that, pH continued to increase to its daily maximum of 2.4 at 

midnight, tracking the liquid water concentrations. This pH diurnal pattern is similar to that 
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observed in the southeastern U.S. [Guo et al., 2015]. A very large peak in gaseous HNO3 

was observed during the day produced from rapid photochemical reactions of NOx with the 

hydroxyl radical in the LA outflows [Veres et al., 2011]. In contrast, NO3
- peaked at dawn 

under conditions of low T and high RH, which favored nitrate condensation (S curves 

shifted to lower pH, see Figure C-3 and Figure C-4), consistent with a previous study in 

Mexico City [Hennigan et al., 2008b]. There was also a small peak in NO3
- near midday 

when HNO3 peaked, simply due to the large amount of fresh HNO3, despite the trend of a 

continuous ε(NO3
-) decrease. The diurnal variation of ε(NO3

-) was similar to liquid water 

and pH. The PM1 NH4
+ trend followed NO3

- and all inorganic species (NH4
+, SO4

2-, NO3
-

), and exhibited a minor peak during the day. ε(NH4
+) had a similar diurnal pattern as 

ε(NO3
-). 

 



 

 

122 

 
Figure 4-6 Diurnal profiles of predicted pH, LWC and measured T, RH, particle and gas 
phase inorganic compound mass loadings (SO4

2-, NO3
-, NH4

+, HNO3, NH3), and particle 
phase fractions (ε(NO3

-), ε(NH4
+)). Data shown above are for the complete CalNex 

campaign, and particle phase data are AMS PM1. Mean hourly averages are shown and 
standard errors are plotted as error bars. 

 



 

 

123 

PM2.5: Figure 4-7 compares the diurnal trends of PM1 pH (AMS data, SO4
2-, NO3

-, NH4
+) 

and PM2.5 pH (PILS-IC SO4
2-, NO3

-, NH4
+, Na+, Cl-, K+) for the last week of the study. 

PM1 pH had a similar profile to that for the complete study; lower in the afternoon and 

followed the 𝑊𝑊𝑖𝑖 trend, whereas the PM2.5 diurnal pH trend was nearly flat. The difference 

was caused by more nonvolatile Na+ than volatile Cl- (PM2.5 Cl-/Na+ molar ratio was 0.5 ± 

0.2), which is related to the HNO3 and HCl trends. Sea-salt components in the 1 to 2.5 μm 

size range react with the daytime high HNO3 forming NO3
- and gas phase HCl (simplified 

as Cl- + HNO3  NO3
- + HCl) [Robbins et al., 1959; Langer et al., 1997]. This “chloride 

depletion” is a result of the higher volatility of HCl versus HNO3 in the deliquesced sea-

salt aerosol [Nenes et al., 1998; Fountoukis and Nenes, 2007]. The process can partly 

account for the large HCl peak and stronger Cl- depletion (wider gap between Na+ and Cl-

) during the day, coinciding with high HNO3 and low 𝑊𝑊𝑖𝑖 (evaporation of HCl occurs during 

evaporation of droplets). The slightly higher Na+ generally increased pH due to the added 

nonvolatile cations. These data are consistent with the discussion above indicating that bulk 

PM2.5 pH is higher due to the contributions of sea-salt aerosol components solely in the 1 

to 2.5 µm range. For smaller particles (PM1), these components don’t significantly affect 

the SO4
2--NO3

--NH4
+-HNO3-NH3 system resulting in a lower bulk PM1 pH. Size resolved 

particle pH and solubility of metals, reported in another study, are consistent with these 

findings [Fang et al., 2017]. (Note, an attempt to calculate pH in the PM1 to PM2.5 size 

range was not successful due to highly scatter data resulting from particle concentrations 

determined by difference from two separate measurements). 
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Figure 4-7 Diurnal profiles for the last week of CalNex of predicted pH and LWC, and 
measured T, RH, particle and gas phase inorganic compound mass loadings (SO4

2-, NO3
-, 

Cl-, NH4
+; HNO3, NH3, HCl), particle phase fractions (ε(NO3

-), ε(NH4
+), ε(Cl-)). Particle 

phase data are all PILS-IC PM2.5. Median hourly averages are shown, and standard errors 
are plotted as error bars. 

 

4.5 Discussion 
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4.5.1 Cause for bias in ε(NO3
-) 

The bias between ISORROPIA-predicted and observed nitrate partitioning may be a result 

of several causes. Since the ε(NO3
-) bias is seen for both PM1 (AMS-data) and PM2.5 (PILS-

IC data), the cause is apparently not associated with a specific aerosol measurement 

method. For the aerosol measurements, sampling artifacts associated with differences in 

indoor-outdoor temperatures that varied with time of day could be one cause for the biases. 

Sample heating is most likely to occur at night (indoor T > ambient T) and can cause 

semivolatile NO3
- loss, whereas sample cooling during the day (indoor T < ambient T) can 

lead to vapor condensation and higher NO3
-. Differences in observed versus predicted NO3

- 

are consistent with these trends (Figure C-5); measured NO3
- is lower than predicted at 

night (negative artifact) and higher than predicted during the day (positive artifact). The 

same will apply to NH3-NH4
+ partitioning, but to a lesser degree due to the addition of 

nonvolatile sulfate. Indoor temperatures were recorded to be fairly constant at ~25°C for 

the AMS trailer (Figure C-6, PILS trailer indoor temperatures are expected to be similar). 

Aerosol samples were heated by ~10°C at night and negligibly during the middle of the 

day (Table C-1). Possible biases due to effects of the altered RH and T on aerosol 

measurements were examined by comparing measurements to model results for 

partitioning of HNO3-NO3
-, NH3-NH4

+ using sample line versus ambient conditions 

(Figure C-7 and Figure C-8), with all other model inputs the same. We find that ambient 

RH and T result in better agreement for NO3
-, ε(NO3

-), NH4
+, ε(NH4

+), although some 

minor effect may be possible. We note that more extreme ambient to sample line 

temperature differences were experienced during the WINTER aircraft campaign (ΔT on 
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average +24°C). In that case, a similar analysis also found no evidence for nitrate loss due 

to sample line heating [Guo et al., 2016]. (Sample line residence times of 0.5 to 2 seconds 

are in a same range for both studies). 

The sampling systems for HNO3 and NH3 involved heated sample inlets, which could also 

lead to bias due to evaporation of aerosol components. Here we only focus on the CIMS 

sampling line heating (75°C) since it was more extreme than the NH3 (40°C). For the CIMS 

system, a 75°C inlet may cause particle nitrate and chloride evaporation, resulting in over-

measurement of HNO3 and HCl (the species measured by this instrument). To examine 

whether this is the cause for the differences in predicted and observed ε(NO3
-), we 

compared the partitioning of HNO3-NO3
-, NH3-NH4

+ based on “corrected” HNO3 

assuming 10%, 20% and 30% of the measured NO3
- evaporated in the CIMS inlet (the 

“corrected” HNO3 is lower by subtracting the various fractions of PM1 NO3
- from measured 

HNO3). Comparing the orthogonal regression fitting lines in the Fig. S8, only slight 

improvements in predicted to measured ε(NO3
-) are found for increased NO3

- loss (Fig. 

S8c), but all lines converge at the same intercept. At 30% evaporation, the comparison 

becomes worse for both ε(NO3
-) and ε(NH4

+). We conclude that potential inlet artifacts 

associated with the aerosol or gas phase sampling systems cannot explain the predicted 

versus measured ε(NO3
-) bias. 

Another possible cause of the ε(NO3
-) bias is the effect of a large sea-salt coarse mode on 

fine mode semivolatile species. For example, during nighttime when HNO3 concentrations 

are much lower relative to daytime, ISORROPIA-II may have overestimated NO3
- due to 

ignoring the presence of a larger more neutral coarse mode when calculating fine mode 
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aerosol concentrations assuming equilibrium. Various studies show the typical time for the 

fine mode to reach thermodynamic equilibrium is on the order of 20 minutes [Dassios and 

Pandis, 1999; Fountoukis et al., 2009], whereas time scales for the coarse mode to 

equilibrate are much larger. The mixing of fine particles with high concentrations of coarse 

mode, mainly sea-salt, particles could disrupt fine mode equilibrium by the mass transfer 

of volatile fine mode NO3
-, via HNO3, to the coarse mode, forming nonvolatile salts, such 

as NaNO3. This mechanism is consistent with the presence of high levels of sea-salt in the 

LA region and the anti-correlation of a NO3
- prediction bias with HNO3 concentration 

(Figure C-5). During the daytime, when HNO3 concentrations are high, this bias would be 

minimal, but at night when HNO3 concentrations are low, the model, which ignores the 

presence of the coarse mode, would overpredict NO3
- concentrations, by not considering 

fine mode nitrate loss to the coarse mode. Again, partitioning of NH3-NH4
+ would not be 

affected as much by this process since some fraction of the NH4
+ would be associated with 

SO4
2-. Of the various locations where we have investigated pH, this study has the highest 

coarse mode inorganic aerosol concentrations and is the only one where we have observed 

this bias [Guo et al., 2016]. 

4.5.2 Why is nitrate much higher in LA compared to other regions investigated? 

A comparison of pH and related statistics in five field studies is summarized in Table 4-2. 

The campaigns are CalNex, SOAS, SENEX, and WINTER, all conducted in the 

continental US. Also included are results from a study in the eastern Mediterranean (the 

campaign acronyms are given in Table 4-2). The SOAS (ground-based) and SENEX 

(aircraft-based) studies provide an interesting contrast with CalNex; that is between the 
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southeastern versus southwestern U.S. in summertime. WINTER aircraft data adds the 

dimension of seasonal variation (summer versus winter). The eastern Mediterranean data 

provides a remote European (Crete) and urban (Athens) perspective, and a case where air 

masses were known to be impacted by biomass burning (BB). All pH in Table 4-2 were 

calculated by ISORROPIA-II in forward metastable mode, but only the US data (SOAS, 

WINTER, CalNex) used gas-particle phase partitioning to constrain and verify the pH 

prediction for all the data analyzed. Lack of NH3 or HNO3 data for the eastern 

Mediterranean means that pH was likely underestimated by ~0.5 units [Bougiatioti et al., 

2016]. This was verified with a limited set of data when both aerosol and gas-phase data 

was available. It is noteworthy that in all studies, pH was low and on average below 3. The 

eastern U.S. regions are characterized with the lowest pH (~1) throughout the year, from 

ground level up to 5 km aloft [Guo et al., 2015; Guo et al., 2016; Xu et al., 2016]. The 

highest pH of 2.8 ± 0.6 was consistently observed in biomass burning impacted air masses, 

regardless of season in both the remote and urban eastern Mediterranean and attributed to 

an abundance of NH3 and fine particle K+ in biomass burning emissions, which raised pH 

and NO3
- concentrations significantly [Bougiatioti et al., 2017]. Biomass burning also 

accounted for the high pH, which approaches 3, in Athens during winter. 

Comparing LA (CalNex) to the other summertime measurements in the eastern US (SOAS, 

SENEX), Table 4-2 shows that the LA ground site had uniquely higher NO3
- and HNO3 

mass concentrations and NO3
- was the most abundant (by mass) inorganic ion for PM1 or 

PM2.5. In contrast, in the southeastern US in summertime, SO4
2- was the dominant ion, 

NO3
- was only 5-14% of the SO4

2- mass. The higher total NO3
- (HNO3 + NO3

-) in LA 
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indicates high local NOx relative to SO2 sources. LA also had roughly 1 unit higher PM1 

pH, and much higher NO3
- concentrations relative to SO4

2-. Total ammonia (NH3 + NH4
+) 

was also higher (Table 4-2). The ratio of total NO3
- and SO4

2- (sulfate is nonvolatile so total 

sulfate is equivalent to sulfate) was ~ 4 for CalNex, compared to 0.3 for SOAS and 0.8 for 

SENEX. The higher ratio of total NO3
- to SO4

2- can explain the higher LA pH through 

coupling of particle composition, hygroscopicity, and acidity. Consider the situation where 

there is initially a high HNO3 concentration. Some HNO3 will condense onto very acidic 

particles (e.g., even at low ε(NO3
-), with very high HNO3, some NO3

- can form). If this this 

NO3
- is significant relative to SO4

2-, it substantially increases the particle 𝑊𝑊𝑖𝑖, which dilutes 

the H+ and raises the pH, since NO3
- has a similarly high hygroscopicity as SO4

2- [Nenes 

et al., 1998]. Higher pH leads to more NO3
- formed. This positive feedback, which reaches 

equilibrium at some point, and along with the condition of higher abundance of NH3 

compared to the southeast (Table 4-2), may explain the higher NO3
- and one unit higher 

pH in LA. This feedback process only happens for semivolatile highly hygroscopic species. 

Sulfate will not have this effect since it is nonvolatile. It also can only happen when the 

semivolatile species contributes a large fraction to the particle 𝑊𝑊𝑖𝑖, hence high total NO3
- to 

SO4
2- ratios, which is why the effect is not seen in the eastern US in summertime. 
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Table 4-2 Comparisons between different studies for particle pH, major inorganic ions and gases and meteorological conditions. All pH 
values are from ISORROPIA-II run in forward mode. The campaign acronyms other than CalNex stand for Southern Oxidant and 
Aerosol Study (SOAS), Southeastern Nexus of Air Quality and Climate (SENEX), Wintertime Investigation of Transport, Emissions, 
and Reactivity (WINTER). 

Campaign CalNex SOAS SENEXc WINTER Studies in the eastern Mediterranean 
Type Ground Ground Ground Aircraft Aircraft Ground Ground (BB plumes)f 
PM cut size PM1 PM2.5

a PM1&PM2.5
b PM1 PM1 PM1 PM1 PM1 

Year 2010 2013 2013 2015 2012 2013-2014 2012-2014 
Season (Early) Summer Summer Summer Winter Summer-Autumn Winter Summer-Winter 
Region/Location SW US SE US SE US NE US Crete, Greece Athens, Greece Crete&Athens 
SO4

2-, μg m-3 2.86 ± 1.70 1.88 ± 0.69 1.73 ± 1.21 2.05 ± 0.80 1.02 ± 0.77 2.31 ± 1.61 2.31 ± 1.32 1.66 ± 1.49 
NO3

-, μg m-3 3.58 ± 3.65 3.74 ± 1.53 0.08 ± 0.08 0.28 ± 0.09 0.80 ± 1.03 0.12 ± 0.07 2.21 ± 2.02 1.79 ± 1.49 
HNO3, μg m-3 6.65 ± 7.03 4.45 ± 3.59 0.36 ± 0.14 1.35 ± 0.66 1.41 ± 1.83 \ \ 0.91 ± 0.39 
ε(NO3

-) 39 ± 16% 51 ± 18% 22 ± 16% 18 ± 6% 37 ± 28% < 20%e \ 65 ± 14% 
Total NO3

-, μg m-3 10.22 ± 9.74 8.19 ± 3.89 0.45 ± 0.26 1.63 ± 0.70 2.21 ± 2.21 \ \ 3.36 ± 2.08 
NH4

+, μg m-3 2.06 ± 1.67 1.79 ± 0.65 0.46 ± 0.34 1.06 ± 0.25 0.50 ± 0.43 0.81 ± 0.58 1.96 ± 1.30 1.02 ± 0.93 
NH3, μg m-3 1.37 ± 0.90 0.75 ± 0.61 0.39 ± 0.25 0.12 ± 0.19 \ \ \ \ 
ε(NH4

+) 55 ± 25% 71 ± 19% 50 ± 25% 92 ± 11% \ \ \ \ 
Total NH4

+, μg m-3 3.44 ± 1.81 2.54 ± 0.89 0.78 ± 0.50 1.17 ± 0.81 \ \ \ \ 
Na+, μg m-3 \ 0.77 ± 0.39 0.03 ± 0.07 \ 0.23 ± 0.46d 0.19 ± 0.43 0.13 ± 0.11 0.08 ± 0.05 
Cl-, μg m-3 \ 0.64 ± 0.48 0.02 ± 0.03 \ 0.34 ± 0.38d 0.22 ± 0.53 0.14 ± 0.19 0.20 ± 0.19 
RH, % 79 ± 17 87 ± 9 74 ± 16 72 ± 9 58 ± 19 57 ± 11 80 ± 9 68 ± 16 
T, °C 18 ± 4 18 ± 3 25 ± 3 22 ± 3 0 ± 8 27 ± 3 12 ± 3 20 ± 9 
pH 1.9 ± 0.5 2.7 ± 0.3 0.9 ± 0.6 1.1 ± 0.4 0.8 ± 1.0 1.3 ± 1.1 2.4 ± 0.8 2.8 ± 0.6 

Reference This study [Guo et al., 
2015] 

[Xu et al., 
2016] 

[Guo et al., 
2016] 

[Bougiatioti et al., 
2016] 

[Bougiatioti et 
al., 2017] 

[Bougiatioti et 
al., 2016, 2017] 
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a Only the last week of CalNex; b PM2.5 was sampled in the 1st half and PM1 sampled in the 2nd half of the study; various parameters were similar in both cases, 
crustal components were higher, but overall generally low so differences had minor effects, e.g., PM2.5 Na+ was 0.06 ± 0.09 and PM1 Na+ was 0.01 ± 0.01 μg m-3; 
c Only one flight (June 16 2013) statistic from the reference is shown; d Externally mixed, thus not included in pH calculation; e Estimated from offline measurement; 
f Averaged from identified biomass burning (BB) plumes from Crete and Athens studies due to the similar pH; K+ was 0.36 ± 0.38 μg m-3;
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To better understand the relationship between NO3
-, pH and T across different campaigns, 

S curves calculated from solubility and dissociation of a species in water, with activity 

coefficients included, provide a useful conceptual means for comparing pH predictions 

from the thermodynamic model to measurements of semivolatile species partitioning 

between gas-particle phases (see Figure 4-5). The inter-comparison between the various 

campaigns is shown in Figure 4-8. For each campaign, data are selected within a narrow 

range (see Figure 4-8 caption) to limit the effects of 𝑊𝑊𝑖𝑖 and T variations on gas-particle 

partitioning. (CalNex PM2.5 pH is not included in Figure 4-8 due to very limited points 

since CalNex PM2.5 𝑊𝑊𝑖𝑖  was much higher due to high inorganic mass loadings and an 

average RH of 87%). S curves are calculated based on a 𝑊𝑊𝑖𝑖 of 2.5 μgm-3 and T of 0 and 20 

°C for wintertime or summertime conditions, respectively. ISORROPIA-II predicted 

activity coefficients, 𝛾𝛾𝐻𝐻+𝛾𝛾𝑁𝑁𝑁𝑁3−, is included to account for aqueous solution non-ideality. 

Consider the nitrate partitioning case, ε(NO3
-), comparing SOAS to WINTER (Figure 4-8a 

versus b). Although the data pH ranges are similar in these studies (on average ~ 1), there 

is higher ε(NO3
-) in winter (T = 0 °C) due to the S curve shifting to lower pH (~1 unit) 

relative to summer (T = 20 °C), illustrating the effect of T (which is mainly through HNO3 

Henry’s law constant sensitivity to T). Considering only Figure 4-8b; as noted above, the 

temperature ranges were more similar for the SOAS, SENEX and Calnex studies, yet 

CalNex had higher particle pH (PM1) and more nitrate compared to SOAS and SENEX 

due to higher total NO3 relative to SO4
2-, which leads to more nitrate formation through 
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feed backs involving particle water and pH, as discussed above. This can also be seen in 

Figure 4-8b. 

ε(NH4
+) S curves and data from the field studies are shown in Figure 4-8c and d. Note that 

the ε(NO3
-) and ε(NH4

+) face opposite directions since acid versus base. NH3 data was not 

available during WINTER so no measured ε(NH4
+) points were plotted at 0°C and no 

comparisons as a function of T can be made. At 20°C, the ε(NH4
+) of CalNex, SOAS, and 

SENEX all converge around one S curve, which was calculated assuming 𝛾𝛾𝐻𝐻+𝛾𝛾𝑁𝑁𝑁𝑁4+ = 1. 

The lower pH of SOAS and SENEX relative to CalNex resulted in generally higher 

ε(NH4
+), more ammonia partitioned to the particle phase. The data and predicted ε(NH4

+) 

are in fairly good agreement. 

 
Figure 4-8 Analytically calculated S-curves of ε(NO3

-) and ε(NH4
+) and ambient data, 

plotted with ISORROPIA-predicted pH for CalNex, SOAS, SENEX, and WINTER 
studies. ε(NO3

-) and ε(NH4
+) are the fraction of the total (gas+particle) in the particle phase. 

For the data, a narrow range in 𝑊𝑊𝑖𝑖 (1-4 μg m-3) and T (-5 < T < 5 °C for T = 0 °C, 15 < T 
< 25 °C for T = 20 °C) data were selected to be close to the analytical calculation input 
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(i.e., 𝑊𝑊𝑖𝑖 = 2.5 μg m-3 and various T). For analytical calculations (S curves), 𝛾𝛾𝐻𝐻+𝛾𝛾𝑁𝑁𝑁𝑁4+ = 1 
was applied; ISORROPIA-II predicted 𝛾𝛾𝐻𝐻+𝛾𝛾𝑁𝑁𝑁𝑁3−  0.06 (WINTER) and 0.084 (CalNex 
0.084, SOAS 0.078, SENEX 0.068) were used. 

 

S curves have significant utility for understanding how T, RH, and pH affect partitioning 

(e.g., see Figure C-3 & Figure C-4), but we also note that they can be used to estimate 

activity coefficients based on partitioning data, which may be particularly useful in 

situations where the data is not available from literature (e.g., organic acids above a mixture 

of inorganic and organics). 

4.6 Conclusions 

pH of PM1 and PM2.5, and the semivolatile gas-particle partitioning of HNO3-NO3
-, NH3-

NH4
+ and HCl-Cl- in the Los Angeles basin during the 2010 CalNex study were 

investigated. As a coastal urban site impacted by high sea-salt aerosol components, and 

high total nitrate (HNO3 + NO3
-), and ammonia levels, this study provided a contrast to pH 

we have reported in the eastern US and eastern Mediterranean. 

PM1 single particle analysis showed that 73% (by number) of PM1 sea-salt particles did 

not contain nitrate and sea-salt type particles only contributed to 12% to PM1 mass. 

Therefore, PM1 pH was predicted solely on the SO4
2--NO3

--NH4
+-HNO3-NH3 system 

(ISORROPIA-II inputs). This approach provided good agreement between observed and 

model-predicted partitioning of NH3-NH4
+ and HNO3-NO3

-, although a bias in ε(NO3
-) was 

observed that depended on RH (day vs. night). Altering gas and particle temperatures from 

ambient due to the sampling configurations did not explain the bias. A likely cause is the 
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loss of fine mode NO3
- to coarse mode sea-salt, mainly at night when HNO3 concentrations 

are low, which is not considered by the thermodynamic model used to predict fine mode 

concentrations. 

The study mean (± SD) PM1 pH in the LA basin was 1.9 ± 0.5, roughly one unit higher 

than the average pH observed in summer in the southeastern US (0.9 ± 0.6 and 1.1 ± 0.4), 

despite similar RH and T ranges and both calculated for the SO4
2--NO3

--NH4
+-HNO3-NH3 

system. The cause may be much higher total nitrate concentrations (high NOx and 

proximity to locations of HNO3 formation) relative to sulfate in LA. For example, high 

levels of HNO3 can lead to at least some particulate NO3
-, even if conditions are such that 

NO3
- partitioning is low (e.g., ε(NO3

-) is small). NO3
- increase the particle water, which 

raises pH by dilution of H+, allowing more partitioning (i.e., increases ε(NO3
-)). When 

nonvolatile sulfate dominates over total nitrate, sulfate controls liquid water and this effect 

is not observed. The complex interactions between pH, LWC, T, and NO3
- are clearly 

illustrated by analytical (S curve) analyses. 

Single particle analysis showed that 85% by number of sea-salt particles in the 1 to 2.5 µm 

nominal range contained nitrate and that the model predicted partitioning of HNO3-NO3
- 

for PM2.5 agreed better with the observed partitioning when sea-salt components were 

included (SO4
2--NO3

--NH4
+-Na+-Cl--K+-HNO3-NH3-HCl system). Bulk PM2.5 pH was 2.7 

± 0.3, whereas for the same time period PM1 pH was 1.9 ± 0.4 and the diurnal pH profiles 

of PM1 and PM2.5 also differed, all apparently due to the influence of sea-salt aerosols. 



 

 

136 

The CalNex data provides unique contrast to pH reported in other regions and demonstrates 

the complex interactions between pH and emissions. It also supports the general application 

of SO4
2--NO3

--NH4
+-HNO3-NH3 system for predictions of PM1 pH and gas-particle phase 

partitioning without considering sea-salts or crustal elements, useful for regional or global 

modeling. It further illustrates that fine particles have surprisingly low pH in many 

locations, which has significant effects on the many environmental impacts of fine 

particles. 
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CHAPTER 5. HIGH AEROSOL ACIDITY DESPITE DECLINING 

ATMOSPHERIC SULFATE CONCENTRATIONS OVER THE 

PAST 15 YEARS 

5.1 Abstract 

Particle acidity affects aerosol concentrations, chemical composition and toxicity. Sulfate 

is often the main acid component of aerosols, and largely determines the acidity of fine 

particles under 2.5 µm in diameter, PM2.5. Over the last 15 years, atmospheric sulfate 

concentrations in the southeastern United States have decreased by 70%, whereas ammonia 

concentrations have been steady. Similar trends are occurring in many regions globally. 

Aerosols have been assumed to have increasing concentrations of ammonium nitrate 

compensating for decreasing sulfate, a result of anticipated increasing neutrality. Here we 

use a comprehensive set of observations collected at a rural southeastern U.S. site in June 

and July, 2013 and a thermodynamic model that predicts pH and the gas-particle 

equilibrium concentrations of inorganic species from observed gas and aerosol 

composition, humidity and temperature, to show that PM2.5 at the site is acidic. Moreover, 

pH buffering by partitioning of ammonia between the gas and particle phases has resulted 

in a relatively constant particle pH of 0-2 throughout the 15 years of decreasing 

atmospheric sulfate concentrations, and little change in particle ammonium nitrate 

concentrations. We conclude that the reductions in aerosol acidity widely anticipated from 

sulfur reductions, and potential benefits for human health and climate, are unlikely to occur 

until atmospheric sulfate concentrations drop to near pre-anthropogenic levels. 
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5.2 Introduction 

Trends of decreasing sulfur dioxide (SO2) and sulfate aerosol have been observed 

throughout the U.S. [Hand et al., 2012a] and are largely attributable to emission reductions 

from coal-fired electrical generating units through scrubbing and fuel switching. These 

trends are expected to endure as additional controls on SO2 are put in place to continue the 

decline of PM2.5 mass. In contrast, the source of the main fine particle acid-neutralizing 

agent, gas phase ammonia (NH3), is largely linked to agricultural activities, which have 

been relatively steady and are expected to remain so. These trends have led to a long-

standing and continuing belief that the aerosol will become increasingly neutral, shifting 

inorganic aerosol composition from ammonium sulfate to ammonium nitrate and 

minimizing the effectiveness of SO2 reductions on PM2.5 mass control [West et al., 1999; 

Pinder et al., 2007; Tsimpidi et al., 2007; Pinder et al., 2008; Heald et al., 2012]. This 

postulation has wide-ranging ramifications, from changing the emphases on what emission 

sources to control (e.g., agricultural) to protect human health [Lelieveld et al., 2015] to 

effects on aerosol radiative forcing [Bellouin et al., 2011]. Other environmental impacts 

linked to particle pH are also expected to change. For example, lower pH more effectively 

converts ubiquitous isoprene emissions by forested regions to PM2.5 through heterogeneous 

acid-catalyzed reactions [Xu et al., 2015a]. Low pH increases solubility of metals 

associated with mineral dust and anthropogenic sources, which can be either ecosystem 

nutrients [Meskhidze et al., 2003], or have detrimental health impacts through in vivo 

generation of reactive oxygen species [Ghio et al., 2012; Fang et al., 2017]. Particle strong 
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acidity has also been directly linked to adverse respiratory effects [Thurston et al., 1994; 

Raizenne et al., 1996]. 

Despite large investments in sulfur emission reductions, we show that the acidic/alkaline 

gas-particle system in the southeastern U.S. is buffered by the partitioning of semivolatile 

NH3, making it insensitive to changing SO2 levels. Counter to expectations, acidic pH 

effects on air quality will therefore remain largely unchanged. Although our analysis 

focuses on the southeastern U.S., it serves as a model, demonstrating the need for detailed 

thermodynamic analyses at locations globally to accurately evaluate the effects of sulfate 

reductions on particle acidity and aerosol composition. 

To assess if decreasing sulfate leads to substantial changes in aerosol pH, we investigate 

the sensitivity of pH in the southeastern U.S. to changes in sulfate (SO4
2-) and gas phase 

ammonia (NH3) levels, focusing on summertime data from a rural Southeastern 

background site, Centreville (CTR). The historical breadth of data collected at CTR, and 

the detailed observations of key aerosol and gas phase species measured during a recent 

intensive study at the site (SOAS), make it ideal for a thermodynamic analysis to predict 

and evaluate pH at high temporal resolution and for comparisons to historical trends.  

A detailed pH calculation that involves both gas and aerosol composition data was 

performed using average conditions from a subset of the CTR SOAS experiment (June 11 

to June 23 2013). This time period was selected because it excludes periodic precipitation 

and dust events, providing representative conditions consistent with the mean summertime 

aerosol state in the region. ISORROPIA-II predicted NH3 agreed with independently 
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measured concentrations (Figure 5-1), demonstrating that the thermodynamic analysis 

accurately represents the aerosol state, as deviations in predicted pH would lead to large 

biases in predicted NH3. 

 
Figure 5-1 Evaluation of the thermodyamic model. Comparison of measured NH3 to 
ISORROPIA-II predicted concentrations. Data are from SOAS (i.e., SEARCH CTR site) 
for measurements between June 11 and June 23 2013. NH3 was measured via a Chemical 
Ionization Mass Spectrometer (CIMS) [You et al., 2014a]. Orthogonal regression and the 
uncertainty in the measured NH3 1hr-avg data (10%) are shown. Fit parameter uncertainties 
are for 95% confidence intervals. The good agreement validates the model predictions of 
pH. 

 

Measurements at various SEARCH air quality monitoring network sites throughout the 

Southeast show that annual mean SO4
2- concentrations have dropped substantially from 

1999 to 2014, with concentrations going from roughly 6 to 2 µg m-3 [Hidy et al., 2014]. 

Historical NH3 concentrations are not as well known, however, data from SEARCH sites 

[Saylor et al., 2015] and the Ammonia Monitoring Network (AMoN) 
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(http://nadp.sws.uiuc.edu/amon/) show steady overall concentrations going back to 2004. 

Between 2008 and 2014, CTR mean summer concentration was 0.23 µg m-3, similar to 

measurements at CTR during SOAS (mean: 0.36 µg m-3) [You et al., 2014a]. Ammonia at 

other sites in the Southeast generally ranged between 0.1 and 2 µg m-3, with highest levels 

observed at sites more influenced by agricultural activities (e.g., at Yorkville, a rural 

SEARCH site, mean NH3 is 1.74 µg m-3). A mass balance analysis indicates that NH3 

concentrations are directly driven by NH3 emission rates (see Methods). Given this, and 

that emissions are relatively steady [Xing et al., 2013], NH3 concentrations have likely been 

at similar levels even further into the past. 

5.3 Methods 

The Site: Centerville is part of the SEARCH (Southeastern Aerosol Research and 

Characterization) air-quality monitoring network [Saylor et al., 2015]) and is located in 

rural Alabama (CTR; 32.90289 N, 87.24968 W; altitude: 126 m, Brent, Alabama). It was 

also the location of the intensive multi-investigator Southern Oxidant Aerosol Study 

(SOAS, June 1 to July 15, 2013). We have reported on a detailed analysis of pH as part of 

SOAS and have shown that pH throughout the southeast is fairly uniform [Guo et al., 

2015], similar to levels at CTR. More information on the site, instrumentation, 

thermodynamic calculations, including an uncertainty analysis, can be found in [Guo et al., 

2015]. 

Thermodynamic Model: Direct and accurate measurement of particle pH of the 

atmospheric aerosol is not currently possible. Measurements of semivolatile partitioning 

http://nadp.sws.uiuc.edu/amon/
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of key inorganic species (such as NH3/NH4
+, HNO3/NO3

-) coupled with thermodynamic 

models are the best approaches for predicting particle pH with a high degree of accuracy 

[Hennigan et al., 2015]. For this study we use ISORROPIA-II [Nenes et al., 1998; 

Fountoukis and Nenes, 2007], which computes the equilibrium composition of an NH4
+-

SO4
2--NO3

--Cl--Na+-Ca2+-K+-Mg2+-water inorganic aerosol. Proxies for pH, such as 

ammonium-sulfate molar ratios, NH4
+/SO4

2- (referred to R hereafter), have been used in the 

past. Although the molar ratio is commonly used as a measure of aerosol acidity, it is not 

uniquely related to pH, which is the parameter that truly describes acidity and its impacts 

[Hennigan et al., 2015]. Here we more narrowly define the ammonium-sulfate molar ratios 

as ammonium minus nitrate to sulfate molar ratio; (NH4
+ − NO3

-)/SO4
2- and refer to this 

ratio as RSO4. This is preferred to the simpler R (NH4
+/SO4

2-) as RSO4 excludes NH4
+ 

associated with NO3
- when calculating ratios based on bulk composition data (e.g., PM2.5), 

since ammonium sulfate and ammonium nitrate are typically associated with different sized 

particles. 

pH is defined as the hydrogen ion activity in an aqueous solution [Stumm and Morgan, 

1996]. 

 
𝑝𝑝𝑝𝑝 = − log10 𝛾𝛾𝐻𝐻+𝐻𝐻𝑎𝑎𝑎𝑎+  (5-1) 

where 𝛾𝛾𝐻𝐻+ is the hydronium ion activity coefficient (in this case assumed = 1), 𝐻𝐻𝑎𝑎𝑎𝑎+  (mole 

L-1) the hydronium ion concentration in particle liquid water. ISORROPIA-II computes the 

particle liquid water content due to water uptake by inorganic species, phase partitioning 

and chemical speciation, and makes the simplifying assumption that the hydrogen ion 
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activity is one (𝛾𝛾𝐻𝐻+  = 1). Details on how the model was run (e.g., forward mode), an 

extensive uncertainty analyses, and predictions of pH at various sites in the southeast, are 

discussed in [Guo et al., 2015]. In applying ISORROPIA-II, we assumed no compositional 

dependence on particle size, treating the measured chemical constituents as bulk PM2.5 

properties, and that the aerosol was internally mixed and always a single aqueous phase 

that contained the inorganic species, without phase separations that could affect pH (along 

with partitioning of semivolatile inorganic species).  The validity of these assumptions has 

been evaluated. We have shown that the fine particles contain significant levels of liquid 

water (water mass typically ranged from 1 to 5 µg m-3) [Guo et al., 2015]. Existence of one 

organic-inorganic phase is reasonable given that the measured organic aerosol oxidation 

state (average O/C ratio of ~ 0.7) [Cerully et al., 2015] and RH (mean ± SD of 74 ± 16%)  

[Guo et al., 2015] for this study are typically at levels for which separate phases are not 

observed [You et al., 2014a]. pH calculated under these assumptions (bulk properties, no 

phase separations, dissolved components in equilibrium with the gas phase) is supported 

by the ability of ISORROPIA-II to reproduce independently measured gas phase NH3 

concentrations (Figure 5-1). Furthermore, multiple studies in the past have shown the 

ability of ISORROPIA-II (under similar assumptions to what are used here) to reproduce 

the observed behavior of semivolatile inorganic aerosol in the southeast [Zhang et al., 

2002] and at other locations [Fountoukis et al., 2009].  

The approach for generating the contour plots of Figure 5-2 is as follows. Average SOAS 

data collected between June 11 and June 23 2013 (T = 297.9 K, RH = 73.8%, Na+ = 0.03 

µg m-3, NO3
- = 0.08 µg m-3, Cl- = 0.02 µg m-3), along with a selected sulfate concentration, 
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are input to ISORROPIA-II. Total ammonia (gas + particle) is left as the free variable. The 

equilibrium concentrations of various components (e.g., gas phase NH3, and particle phase 

NH4
+, SO4

2-, and NO3
-) and particle pH (along with other variables) are predicted by 

ISORROPIA-II. Data for the contour plots are generated by varying sulfate from 0.1 to 10 

µg m-3. 

Ammonia Mass Balance: Ammonia emissions can be linked to ambient concentrations 

through a mass balance analyses. Boundary layer ammonia levels can be estimated from 

emissions and losses by: 

 
𝑑𝑑[𝑁𝑁𝑁𝑁3]
𝑑𝑑𝑑𝑑

= 𝐸𝐸𝑁𝑁𝑁𝑁3 −  
𝑣𝑣𝑑𝑑
𝑁𝑁𝑁𝑁3

ℎ
[𝑁𝑁𝑁𝑁3] −

𝑣𝑣𝑑𝑑
𝑁𝑁𝑁𝑁4+

ℎ
[𝑁𝑁𝑁𝑁4+] (5-2) 

where [NH3] and [NH4
+] are the concentrations of gas ammonia and fine particle 

ammonium, 𝐸𝐸𝑁𝑁𝑁𝑁3  is the gas phase NH3 emission rate, 𝑣𝑣𝑑𝑑
𝑁𝑁𝑁𝑁3  the gas phase deposition 

velocity, 𝑣𝑣𝑑𝑑
𝑁𝑁𝑁𝑁4+  the particle phase deposition velocity, and h the boundary layer mixed 

depth. Since average values are being considered here, we assume steady state, in which 

case emissions are balanced by deposition losses. It follows then that for sulfate 

concentrations dropping below current levels (~2 µg m-3), loss of ammonia by deposition 

is largely controlled by gas phase losses, since 𝑣𝑣𝑑𝑑
𝑁𝑁𝑁𝑁3  is roughly an order of magnitude 

larger then 𝑣𝑣𝑑𝑑
𝑁𝑁𝑁𝑁4+, and ambient concentrations of NH4

+ and NH3 comparable  [Guo et al., 

2015]. For example, the dry deposition velocity of NH3 is about 1-2 cm s-1 over forests, 

agricultural, or mixed-use land, and 10 times that of ammonium [Duyzer, 1994; Schrader 

and Brummer, 2014]. For sulfate levels below ~2 µg m-3 (NH4
+ ~ 0.5 µg m-3, Figure 5-1) 
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and NH3 concentration of 0.1 to 1, the last term is relatively small and so ambient levels of 

NH3 are largely controlled by emissions, such that: [𝑁𝑁𝑁𝑁3] ≅
ℎ𝐸𝐸𝑁𝑁𝑁𝑁3
𝑣𝑣𝑑𝑑
𝑁𝑁𝑁𝑁3  . This shows that for 

the past, and into the future, gas phase NH3 concentrations are directly related to gas phase 

NH3 emissions rates. 

5.4 Discussion 

5.4.1 Conceptual model 

To test if these trends imply that the aerosol is becoming less acidic we first consider a 

simplified scenario of an isolated ammonium sulfate aqueous particle. At the average 

SOAS meteorological conditions, for this particle the equilibrium NH3 vapor concentration 

is approximately 160 µg m-3 (220 ppbv) and pH is near 3. However, for ammonium 

bisulfate the equilibrium NH3 concentration drops dramatically to approximately 0.06 µg 

m-3 (0.08 ppbv), and pH is near 0. Since typical observed NH3 concentrations range 

between 0.1 to 2 µg m-3, ambient NH3 concentrations will rarely ever reach the 160 µg m-

3 needed for equilibrium with pure ammonium sulfate, meaning that it will almost never 

exist. However, NH3 will always be present in the gas phase, even at very low pH. 

Furthermore, the dramatic drop in equilibrium NH3 when going from (NH4)2SO4 to 

(NH4)HSO4 (160 to 0.06 µg m-3) with a pH change of only 3 to 0, independent of sulfate 

concentrations, also demonstrates the low sensitivity of pH to NH3 concentrations.   

Now consider an ammonium sulfate solution that is aerosolized into pure air. The aerosol 

would reach equilibrium by some of the ammonia volatilizing, leaving an aerosol of mixed 
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(NH4)2SO4-NH4HSO4 with a pH between 0 and 3, and some ammonia in the gas phase.  If 

the volume of air were very large compared to the amount of ammonium sulfate originally 

present, the resulting aerosol would be predominantly ammonium bisulfate. (Ammonium 

sulfate molar ratios observed in the southeastern U.S. are in the range of 1.5 to 1.8, which 

is discussed more below). Although conceptually insightful, the full thermodynamic model 

must be run since pure aerosol species in isolation do not exist and a quantified pH is 

needed to assess the impacts of acidity.   

5.4.2 Sensitivity analyses with a full thermodynamic model 

We expand on the historical ranges of both NH3 and SO4
2- for a more comprehensive 

sensitivity analyses. Sulfate and total ammonia (gas + particle) were independently varied 

over 2 orders of magnitude and used as input to ISORROPIA-II. The resulting predicted 

equilibrium pH is shown in Figure 5-2. As seen above, these results indicate a very weak 

sensitivity of pH to a wide range of SO4
2- and NH3, suggesting that the observed decrease 

in SO4
2- should have little influence on pH. Our predictions are consistent with the 

historical summertime observations at CTR. Trends in fine particle SO4
2- and NH4

+ and 

gas phase NH3 are shown in Figure 5-3 and are similar to the general trends of the southeast 

[Hidy et al., 2014; Saylor et al., 2015], and likely much of the eastern US [Hand et al., 

2012a]. pH estimated from the CTR historical aerosol ionic composition dataset also 

demonstrates that summertime pH has remained remarkably constant and low (between 0 

and 1) throughout the last 15 years, similar to the range of roughly 0 and 2 predicted in the 

sensitivity analyses. 
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Figure 5-2 Sensitivity of PM2.5 pH and RSO4 to gas phase ammonia (NH3) and PM2.5 sulfate 
(SO4

2-) concentrations. RSO4 is (NH4
+ − NO3

-)/SO4
2- in unit of mol mol-1. The results are 

predictions from a thermodynamic analysis assuming equilibrium between the gas and 
particle phases for typical summer conditions in the southeastern US. Boxes define 
estimated concentration ranges over the previous 15 years and ranges expected in the 
future.  

 

A further assessment of the thermodynamics can be gained from ammonium-sulfate molar 

ratios, RSO4. [Hidy et al., 2014] reports RSO4 has ranged roughly between 1.5 and 1.8 at sites 

in the southeast, corresponding to a mixture of ammonium sulfate and ammonium bisulfate 

as the dominant salts. Surprisingly, RSO4 decreased by 0.01 to 0.03 units per year over the 

last 15 years.  This is counterintuitive since it shows that as sulfate is reduced and the NH3 

to neutralize it remains constant, the aerosol is increasingly enriched in acidic ammonium 

bisulfate, whereas the expectation is that the aerosol should become more neutral over time 

(i.e., RSO4 increasing and approaching 2). CTR RSO4 follows a similar decreasing trend 

(Figure 5-3) and the thermodynamic sensitivity analysis (Figure 5-2b) is consistent with 

these observations. 
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Figure 5-3 Mean summer (June-Aug) trends in PM2.5 composition, NH3, RSO4, and 
predicted PM2.5 pH at the SEARCH-CTR site. NH3 data are from the SEARCH rural sites 
Centreville (CTR, Alabama) and Oak Grove (OAK, Mississippi) and AMoN Georgia 
Station (GAS, Georgia) site. SOAS mean data (June 1 to July 15 2013) are also plotted. 
Error bars represent data ranges (standard errors). pH was estimated with ISORROPIA-II 
run in the forward mode without gas phase species input, resulting in pH systematically 
low by approximately one unit  [Guo et al., 2015]. Uncertainties: ions ± 15%, molar ratios 
± 26%, NH3 ± 15 to 40%.   
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All these results can be explained by the nonvolatility of sulfate and semivolatility of 

ammonia, meaning that only NH3 moves to establish equilibrium between the condensed 

aqueous and gas phase. For example, decreasing RSO4 occurs because particle phase 

ammonium roughly tracks SO4
2- (Figure 5-3), so at lower SO4

2- there is less ammonium 

available when establishing equilibrium with gas phase NH3. During equilibration, 

ammonium (NH4
+) is lost to the gas phase (NH3) releasing H+ in the aerosol and decreasing 

RSO4. Since a larger relative loss in ammonium occurs at lower SO4
2-, RSO4 is lower. The 

semivolatility of ammonium is also responsible for the remarkably weak sensitivity of pH 

to SO4
2-. Further evidence is that pH begins to rise in the sensitivity analyses (Figure 5-2a) 

for SO4
2- below roughly 0.3 µg m-3; the thermodynamic analysis suggests this is due to 

association of SO4
2- with other nonvolatile cations that starts to mitigate the buffering effect 

of NH3 partitioning, significantly increasing pH (see Figure 5-4). 

The sensitivity analysis (Figure 5-2a) does show a pH increase with increasing NH3, but it 

is relatively weak, a consequence of the buffering effect of semivolatile NH3 partitioning.  

For SO4
2- between 0.1 and 10 µg m-3, it is not until NH3 is over 10 µg m-3 (14 ppbv at STP) 

before pH approaches 3; the minimum pH roughly at which ammonium nitrate begins to 

form for conditions of this study (see Figure 5-5). In summary, for typical summer 

conditions the observed trends in pH and RSO4 are expected and due to gas-particle 

thermodynamic equilibrium, along with relatively constant NH3 levels that have been 

below a few µg m-3 over the past 15 years. 
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Figure 5-4 Predicted pH versus sulfate as a function of changes in concentrations of cations 
other than ammonium.  In this sensitivity analyses, NO3

- and Cl- are unchanged at 0.08 and 
0.02 µg m-3, respectively.  Na+, originally at 0.03 µg m-3 is increased by factors of 2 and 4.  
The plot shows that the decrease in molar ratio (RSO4 = (NH4

+ − NO3
-)/SO4

2-) at lower 
sulfate is related to the other nonvolatile cations associating with sulfate. Note that even at 
significantly higher nonvolatile cation levels internally mixed with fine particles, pH 
remains below 1 until sulfate drops below roughly 0.3 µg m-3. 

 
Figure 5-5 Fraction of total nitric acid in the particle phase.  The partitioning of nitric acid 
between the condensed (NO3

-) and gas phase (HNO3), ε(NO3
-) = NO3

-/(NO3
- + HNO3), as 

a function of pH, assuming ideal solutions (activity coefficients of 1) for the average 
summer conditions during SOAS. The figure shows little nitrate aerosol when pH is below 
approximately 3, the pH observed in the southeastern US in the past and expected in the 
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future. Lower temperatures shift the curve to the left, accounting for possibly higher ε(NO3
-

) in colder seasons. 

 

5.4.3 Future pH 

The thermodynamic sensitivity analyses was continued for SO4
2- down to 0.1 µg m-3, levels 

characteristic of remote regions [Heintzenberg, 1989]. As emissions of NH3 are decoupled 

from SO4
2-, linked mainly to agricultural and biogenic activities, in the foreseeable future 

one may expect this source to remain largely flat, or modestly increase as agricultural 

production follows population increases. This indicates that future gas phase NH3 

concentrations will not deviate considerably from current levels [Saylor et al., 2015]. The 

area of expected future conditions in Figure 5-2 shows that summertime pH will remain in 

the 0 to 2 range, similar to current levels and those of the past 15 years. The system 

insensitivity to NH3 implies that it is a poor indicator of fine aerosol pH. Furthermore, if 

the aerosol is in an aqueous phase the presence of NH3 does not necessarily imply a neutral 

aerosol, as often assumed [Kim et al., 2015], as some NH4
+ always needs to volatilize to 

achieve equilibrium. 

The sensitivity analysis also predicts changes in gas/particle portioning ratios with 

changing SO4
2- and NH3. Over the broad SO4

2- range of 0.1 to 10 µg m-3, the fraction of 

NH3 in the gas phase relative to total (gas + particle) varies from about 90 to 10%, indicting 

coupling of gas-particle ammonia concentrations across this SO4
2- range. In contrast, nitric 

acid is predicted to remain largely in the gas phase unaffected by SO2 controls due to the 

predicted low pH. Nitrate aerosol is only expected once pH is over 2 to 3, and so minimal 
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particle phase inorganic nitrate is expected for typical summer conditions; neither in the 

past as SO4
2- has decreased, and verified by the historical data (Figure 5-3), nor for some 

time into the future, given expected pH ranges (Figure 5-2). If there are no significant 

changes in future nonvolatile cation levels in the fine aerosol mode (e.g., increases in 

mineral dust due to land use changes or desertification, see next paragraph), summertime 

PM2.5 in the Southeastern U.S. will remain highly acidic until average sulfate levels 

approach those of very clean remote continental sites (~ 0.3 µg m-3) [Heintzenberg, 1989; 

Hand et al., 2012a] and particulate nitrate will not become an increasing air quality issue 

for a long time into the future, counter to expectations. 

The future aerosol pH scenario presented, although highly likely, can be affected by 

increases in suspended dust from land use changes, drought or other meteorological 

changes. High concentrations of alkaline mineral dust or transported sea-salt components, 

(carbonates and soluble salts of Ca2+, Mg2+, K+, Na+) would force the system to respond 

differently to sulfate reductions. The dust alkalinity can not only neutralize a larger fraction 

of acidic sulfate formed in the atmosphere, but also precipitate it out from the aqueous 

aerosol phase, primarily in the form of gypsum (calcium sulfate). Dust and sea-salt 

alkalinity raises pH at lower sulfate levels (see Figure 5-4) and favors the formation of 

nitrate, in the forms of Ca2+, Mg2+, K+ salts and NH4NO3. It is also noted that there are 

instances where the NH3 mass balance can be more complex, which we have not considered 

since our interest is on average summer conditions and long-term trends. For example, 

during cool (winter) or periods of very high relative humidity, significant levels of particle 

ammonium nitrate could be formed as pH increases due to uptake of substantial quantities 
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of water (e.g., resulting in H+ dilution). The NH3 balance would then need to include gas 

phase nitric acid production and ammonium nitrate deposition. Comprehensive simulations 

with chemical transport models (CTMs) that include emissions and losses of the major 

components involved, along with detailed size-resolved particle-gas interactions and 

aerosol chemistry, would provide greater details. More complex simulations will not 

change the findings of this work. 

Although our analysis focuses on the southeastern U.S., it applies to all locations that are 

impacted by SO2 emissions and which lack major sources of nonvolatile cations (e.g., sea-

salt or mineral dust); conditions commonly found in many regions globally. Although 

reductions in sulfur dioxide (SO2) and nitrogen oxides (NOx) will reduce sulfate, nitrate 

and ammonium aerosol concentrations, leading to improved air quality, we show that fine 

particles are highly acidic and will likely remain so despite substantial sulfate reductions.  

Furthermore, particle pH must be explicitly considered to accurately gauge its impacts on 

heterogeneous chemical processes, particle composition, mass concentrations and toxicity.  
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CHAPTER 6. THE UNDERAPPRECIATED ROLE OF 

NONVOLATILE CATIONS ON AEROSOL AMMONIUM-

SULFATE MOLAR RATIOS 

6.1 Abstract 

Overprediction of fine-particle ammonium-sulfate molar ratios (R) by thermodynamic 

models is suggested as evidence for an organic film that only inhibits the equilibration of 

gas-phase ammonia (but not water or nitric acid) with aerosol sulfate and questions the 

equilibrium assumption long thought to apply for submicron aerosol. The ubiquity of such 

organic films implies significant impacts on aerosol chemistry. We test the organic film 

hypothesis by analyzing ambient observations with a thermodynamic model and find that 

R and ammonia partitioning can be accurately reproduced when small amounts of 

nonvolatile cations (NVC), consistent with observations, are considered in the 

thermodynamic analysis. Exclusion of NVCs results in predicted R consistently near 2. The 

error in R is positively correlated with NVC and not organic aerosol mass fraction or 

concentration. These results strongly challenge the postulated ability of organic films to 

perturb aerosol acidity or prevent ammonia from achieving gas-particle equilibrium for the 

conditions considered. 

6.2 Introduction 

pH is a fundamental aerosol property that affects aerosol formation and composition 

through pH-sensitive reactions [Jang et al., 2002; Eddingsaas et al., 2010; Surratt et al., 
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2010] and gas-particle partitioning of semivolatile species [Guo et al., 2016; Guo et al., 

2017a]. Acidity also modulates aerosol toxicity and atmospheric nutrient supply to the 

oceans through changing solubility of transition metals [Meskhidze et al., 2003; Nenes et 

al., 2011; Longo et al., 2016; Fang et al., 2017]. Despite its importance, the inability to 

directly measure fine mode particle pH (e.g. Rindelaub et al. [2016] presents an indirect 

method that detects particle pH for sizes above 10 µm) has led to the use of measurable 

aerosol properties as acidity proxies, such as aerosol ammonium-sulfate ratio or ion 

balances (e.g. [Paulot and Jacob, 2014; Wang et al., 2016; Silvern et al., 2017]). Recent 

work has shown that acidity proxies are not uniquely related to pH, which in turn strongly 

questions any conclusions derived from its use. There are numerous reasons why acidity 

proxies do not represent pH well; they do not capture the variability in particle water 

content, ion activity coefficients, or partial dissociation of species in the aerosol phase [Guo 

et al., 2015; Hennigan et al., 2015; Guo et al., 2016]. The method that best constrains 

aerosol pH is comparison between a thermodynamic analysis and observations of gas-

particle partitioning of semivolatile species that are sensitive to pH at the given 

environmental conditions (i.e., gas-particle concentration ratios near 1:1) [Guo et al., 2015; 

Guo et al., 2016; Weber et al., 2016; Guo et al., 2017a]. NH3-NH4
+

, HNO3-NO3
-, and HCl-

Cl- pairs often meet this condition. The method has been utilized for a range of 

meteorological conditions (RH, T) and gas/aerosol concentrations demonstrating that 

model predictions are often in agreement with observations.  

It has been noted that thermodynamic models fail to accurately predict ammonium-sulfate 

molar ratios when just considering the NH4
+-SO4

2--NO3
- aerosol system in equilibrium with 
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the corresponding gas species [Kim et al., 2015; Silvern et al., 2017]. In the southeastern 

US, where total ammonium (NHx = NH3 + NH4
+) is observed to be in large excess of 

particle sulfate and observed NH4
+/SO4

2- molar ratios are in the range of 1-2 [Hidy et al., 

2014; Guo et al., 2015; Kim et al., 2015], thermodynamic models often predict very low 

pH (0.5 to 2) [Guo et al., 2015] and molar ratios close to 2 [Kim et al., 2015; Weber et al., 

2016; Silvern et al., 2017]. The molar ratio discrepancy has led to the hypothesis that 

thermodynamic predictions are incorrect, and particles are coated by organic films that 

inhibit the condensation of NH3 from the gas phase and give rise to the molar ratio 

discrepancy [Silvern et al., 2017]. Such kinetic limitations, if prevalent, opposes the 

validity of aerosol thermodynamic equilibrium and could significantly impact aerosol 

chemistry and acidity-mediated processes, given the large organic aerosol mass fractions 

worldwide [Zhang et al., 2007a] and expected increasing organic mass fractions in the 

future due to changing emission, such as SO2 emission reduction in the eastern US [Hand 

et al., 2012a; Attwood et al., 2014; Hidy et al., 2014]. The hypothesis of organic films, 

however, is in stark contrast to established literature showing that NH3, water vapor, and 

HNO3 equilibrate with organic-rich aerosols [Fountoukis et al., 2009; Guo et al., 2015; 

Guo et al., 2016; Guo et al., 2017a]. Such a film, as proposed by Silvern et al. [2017], 

selectively limits NH3, but not H2O and HNO3, molecules that are both larger than NH3 

hence more difficult to diffuse through media. At low temperature or low relative humidity, 

aerosols may be in semi-liquid or glassy state and have very low diffusivity of molecules 

throughout its volume [Tong et al., 2011; Bones et al., 2012]. This may severely limit gas-

particle mass transfer of all components and require much longer time scales to equilibrate. 
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However, we have not observed such an effect for the conditions in the eastern US, as there 

is good agreement between observed and predicted particle water, and partitioning of NH3-

NH4
+ and HNO3-NO3

- (the bias in NO3
- prediction becomes progressively worse when RH 

drops below 40%, likely owning to glassy states during the wintertime) [Guo et al., 2015; 

Guo et al., 2016]. 

Other reasons that are unrelated to organic films may drive the molar ratio discrepancy. 

One is related to the variation of aerosol composition with size, which may translate to a 

large range of acidity, hence equilibrium composition [Keene et al., 1998; Nenes et al., 

2011; Bougiatioti et al., 2016; Fang et al., 2017]. Another related issue is the presence of 

soluble nonvolatile cations (NVC, such as Na+, K+, Ca2+, Mg2+), which are often neglected 

in thermodynamic calculations because of their relatively minor contribution to aerosol 

mass or are not routinely included in aerosol composition measurements (e.g., those made 

with an aerosol mass spectrometer). Here we show that ignoring even small amounts of 

NVC as inputs to the thermodynamic model results in predicted NH4
+/SO4

2- molar ratios 

close to 2 due to the model criteria of electrical neutrality, but has a smaller effect on 

predicted pH, whereas including small levels of NVC brings model-predicted molar ratios 

into agreement with observed levels. 

6.3 Methods 

Molar ratios definition: Two ammonium-sulfate aerosol molar ratios are used in the 

following analysis, 
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𝑅𝑅 =

NH4
+

SO4
2− (6-1) 

 
𝑅𝑅SO4 =

NH4
+ − NO3

−

SO4
2−  (6-2) 

both are based on inorganic mole concentrations in units of μmol m-3. RSO4 is a more 

narrowly defined molar ratio that excludes NH4
+ associated with NO3

- because ammonium 

sulfate and ammonium nitrate are typically associated with different sized particles 

(externally mixed) [Zhuang et al., 1999] and molar ratios are calculated based on bulk 

composition data (PM2.5 or PM1). The upper limit for R and RSO4 is 2 for a particle 

composition of pure (NH4)2SO4, the lower limit is 0 for R when SO4
2- is associated with 

other cations instead of NH4
+ (e.g. Na2SO4) or if there is free H2SO4 in the aerosol. A 

negative RSO4 can occur for conditions of high NO3
- and low NH4

+, SO4
2- concentrations 

(e.g., NaNO3), but rare for ambient fine particles. R or RSO4 is typically observed in the 

range of 1 and 2 in the southeastern US (i.e., between NH4HSO4 and (NH4)2SO4) [Hidy et 

al., 2014; Guo et al., 2015; Weber et al., 2016]. In cases where NO3
- levels are low relative 

to SO4
2-, the two ratios, RSO4 and R, are equivalent, as is observed in the summertime 

southeastern US, where NO3
- is typically ~0.2 µg m-3, NH4

+ ~1 µg m-3, and SO4
2- ~3 µg m-

3 [Blanchard et al., 2013]. 

Observations: Two datasets are used for analysis, the Southern Oxidant and Aerosol Study 

(SOAS) and the Wintertime Investigation of Transport, Emissions, and Reactivity 

(WINTER). The SOAS study was conducted from June 1 to July 15 in the summer of 2013 

at a rural ground site in Centreville (CTR), Alabama, representative of the southeastern US 

background atmosphere in summer. The WINTER data was produced from 13 research 
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aircraft flights from Feb 1 to Mar 15 in 2015 mainly sampling over the northeastern US. 

Details of the campaigns and instruments, and calculations and verification of pH based on 

the observation datasets, have been described in Guo et al. [2015] and Guo et al. [2016], 

respectively. In the following analysis, we use R for summertime datasets with low NO3
- 

and RSO4 for wintertime datasets with high NO3
- concentration. Both datasets report highly 

acidic aerosols with average pH~1 [Guo et al., 2015; Guo et al., 2016]. At these pH levels, 

aerosol sulfate can be in the partially deprotonated form of HSO4
- instead of SO4

2-. For 

example, 14% sulfate is predicted to be HSO4
- and the rest as SO4

2- in the winter dataset 

[Guo et al., 2016]. Free form H2SO4, which requires even lower pH, is rare in the ambient 

aerosol. The SO4
2- in this study refers to the sum of total aqueous aerosol sulfate (SO4

2-, 

HSO4
-, and H2SO4), the same definition (i.e., S(VI)) used in Silvern et al. [2017], since 

aerosol instruments normally report total aqueous sulfate as just SO4
2-. The same applies 

to NH4
+ and NO3

-. The observation data are from two widely deployed aerosol instruments; 

a Particle-Into-Liquid-Sampler coupled with an Ion Chromatograph (PILS-IC) and a High-

Resolution Time-of-Flight Aerosol Mass Spectrometer (hereafter referred to as AMS). The 

PILS-IC detects aerosol water-soluble anions and cations collected and diluted by 

deionized water to the extent of complete deprotonation of H2SO4 in the aqueous sample 

[Orsini et al., 2003]. The AMS vaporizes aerosols and ionizes non-refractory species with 

a 70 eV electron impact ionization and cannot distinguish the dissociation states of 

inorganic ions [DeCarlo et al., 2006]. 

Thermodynamic analysis of observations: The thermodynamic model ISORROPIA-II 

[Fountoukis and Nenes, 2007] was used to determine the composition and phase state of 
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an NH4
+-SO4

2--NO3
--Cl--Na+-Ca2+-K+-Mg2+-water inorganic aerosol (or a subset therein) 

and its partitioning with corresponding gases. Using this model, we have developed a 

method for pH prediction that includes appropriate validation and uncertainty assessment 

[Guo et al., 2015] and applied the methods to several other locations [Bougiatioti et al., 

2016; Guo et al., 2016; Weber et al., 2016; Guo et al., 2017a; Guo et al., 2017b]. Here pH 

is defined following the same approach, 

 
pH = − log10 𝛾𝛾𝐻𝐻+𝐻𝐻𝑎𝑎𝑎𝑎+ = − log10

1000𝛾𝛾𝐻𝐻+𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎+

𝑊𝑊𝑖𝑖 + 𝑊𝑊𝑜𝑜
≅ − log10

1000𝛾𝛾𝐻𝐻+𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎+

𝑊𝑊𝑖𝑖
 (6-3) 

where 𝛾𝛾𝐻𝐻+  is the hydronium ion activity coefficient (assumed = 1), 𝐻𝐻𝑎𝑎𝑎𝑎+  (mol L-1) the 

hydronium ion concentration in particle liquid water, 𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎+  (µg m-3) the hydronium ion 

concentration per volume of air, and 𝑊𝑊𝑖𝑖 , 𝑊𝑊𝑜𝑜  (µg m-3) are particle water concentrations 

associated with inorganic and organic species, respectively. pH predicted solely with 𝑊𝑊𝑖𝑖 is 

fairly accurate; pH was 0.15-0.23 units systematically lower than and highly correlated to 

(r2 = 0.97) pH predicted with total particle water (𝑊𝑊𝑖𝑖 + 𝑊𝑊𝑜𝑜) in the southeastern U.S., where 

𝑊𝑊𝑜𝑜  accounted for 35% of total particle water [Guo et al., 2015]. For simplicity, we 

therefore use 𝑊𝑊𝑖𝑖 for the following pH calculations. 

ISORROPIA-II was run in forward mode to calculate gas-particle equilibrium 

concentrations based on the input of total concentration of various inorganic species (e.g., 

NH3 + NH4
+). The best agreement between model and observations were achieved 

assuming “metastable” particles with no solid precipitates (H+ is not stable in an effloresced 

aerosol). We also assumed that the particles were internally mixed, and that pH did not 

vary with size (so that bulk properties represent the aerosols, including pH) and gas-particle 
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partitioning was in thermodynamic equilibrium. For submicron aerosol (PM1), equilibrium 

states are typically achieved within 30 minutes under ambient conditions [Dassios and 

Pandis, 1999; Cruz et al., 2000; Fountoukis et al., 2009]. The prediction of gas-particle 

partitioning has been found to be in good agreement with observations when using particle 

bulk concentrations as model input [Guo et al., 2015; Guo et al., 2016; Guo et al., 2017a], 

although particle pH is size dependent. pH increases for particles above 1 µm as a result of 

NVC [Fang et al., 2017] resulting in particle mixing state becoming more important with 

increasing particle size [Guo et al., 2017a]. 

6.4 Discussion 

6.4.1 The cause for discrepancy between modeled and measured molar ratios (R) 

We first investigate the issue of R discrepancy using PILS-IC PM2.5 data from a 12-day 

period (June 11-23) of the SOAS campaign. The same period has been used to study pH 

sensitivity to sulfate and ammonia and shown to accurately predict NH3-NH4
+ partitioning 

compared to observations [Weber et al., 2016]. To test the sensitivity of ISORROPIA-II 

predictions we ran the model with the same input as Weber et al. [2016], (inputs include 

Na+, (NH4
++NH3), SO4

2-, NO3
-, Cl-, Ca2+, Mg2+, K+, RH, T, where Ca2+, Mg2+, K+ inputs 

were zero, NH4
+, SO4

2-, NO3
-, Cl- concentrations were from PILS-IC PM2.5 observational 

data, NH3 was from chemical ionization mass spectrometer measurements [You et al., 

2014a]) and tested three different Na+ levels: (1) Na+ determined from an ion charge 

balance by Na+ = 2SO4
2- + NO3

- + Cl- - NH4
+ (unit: μmol m-3); (2) measured PM2.5 Na+ 

from PILS-IC; (3) Na+ = 0.  
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Different Na+ concentrations were used to investigate the impact of Na+ on model output. 

The inferred Na+ was on average 0.28 ± 0.18 μg m-3, higher than the measured level of 

0.06 ± 0.09 μg m-3. Note that, the limit of detection (LOD) of PILS-IC Na+ in this study 

was 0.07 μg m-3, close to the reported average level. Unlike the standard procedure of 

reporting below LOD values as ½ LOD, we use the Na+ concentrations directly from the 

instrument, including those below the LOD because, as will be shown, R is highly sensitive 

to trace levels of NVC. Also, we note that all other NVC, such as Ca2+ and Mg2+, were 

generally below the PILS-IC LOD (therefore set to zero in the model input). The charge 

balance predicted Na+ should then be viewed, for this data set, as the concentration of 

generic NVC concentrations with a valence of 1. The charge balance predicted Na+ must 

be above zero; for calculated values below zero (8 out of 229 points, 3% of the data), due 

to combined measurement uncertainty, a small positive value of 0.005 μg m-3 is assigned.  

The concentration of H+ is also ignored in the ion charge balance calculation as it is 2-3 

orders of magnitude smaller than the major inorganic ions, even at these low pH (between 

0 and 2). For example, the average PM2.5 mole concentrations per volume of air for the 

ions measured by the PILS-IC were NH4
+ = 0.0354, SO4

2- = 0.0211, NO3
- = 0.0037, Na+ = 

0.0029, and Cl- = 0.00082 µmol m-3, compared to ISORROPIA-predicted H+ = 0.00031 

µmol m-3 for this period. The observed Na+ appeared to be mainly associated with NO3
-, 

and to a lesser degree with Cl-, based on high linear correlations, r2 = 0.82 and 0.64, 

respectively. A typical level of “chloride depletion” was observed as a Cl-/Na+ ratio of 0.24 

± 0.16 (mol mol-1), due to higher volatility of HCl versus HNO3 [Fountoukis and Nenes, 

2007]. In this case, Cl- input to ISORROPIA is negligible as it does not affect the 
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predictions of pH or molar ratios due to the measured Cl- concentration being small, 0.03 

± 0.04 μg m-3 (LOD = 0.01 μg m-3). 
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Figure 6-1 Time series of various measured and ISORROPIA-predicted parameters and 
PM2.5 component concentrations for a select period of the SOAS study, with periods of 
rainfall removed. Thn charge balance (Na+ = 2SO4

2- + NO3
- + Cl- − NH4

+, μmol m-3; mean 
value of 0.28 ± 0.18 μg m-3) in green, measured Na+ blue, and zero Na+ in purple. All other 
inputs were the same. Na+ represents generic nonvolatile cations (NVC). Specific plots are 
as follows: (a) total ammonium (NHx = NH4

+ + NH3) to sulfate molar ratio (NHx/SO4
2-), 

(b) aerosol ammonium-sulfate ratios (R = NH4
+/SO4

2-), (c) Na+ and NO3
-, (d) SO4

2-, (e) 
NH3, (f) NH4

+, (g) particle-phase fractions of total ammonium, ε(NH4
+), and (h) particle 

pH.  



 

 

165 

Figure 6-1 shows the time series of various parameters for the SOAS 12-day period 

investigated. From these data, the effect of Na+ (i.e., NVC) on ISORROPIA-predicted 

SO4
2-, NH4

+, NH3, R, and pH is investigated. Figure 6-1a and d show the overall behavior 

of total ammonium (NHx = NH3 + NH4
+) and sulfate. SO4

2- is nonvolatile so remains 

unchanged by the model, as does total ammonium and hence the NHx/SO4
2 molar ratio. 

Therefore, the discrepancy between modeled and measured R must result from the NH4
+ 

prediction. It is noteworthy that NHx/SO4
2- is generally above 2, indicating excess NHx 

compared to SO4
2-. Under such conditions, it is often interpreted that NH3 must completely 

neutralize SO4
2- [Kim et al., 2015; Silvern et al., 2017]. The thermodynamic model predicts 

otherwise; despite the excess NHx, PM2.5 is predicted to be highly acidic, with a pH range 

between 0 and 2 (Figure 6-1h), resulting from NH4
+ semivolatility and SO4

2- being virtually 

nonvolatile at any atmospherically-relevant concentration and acidity [Weber et al., 2016]. 

The predicted time series of NH3-NH4
+ partitioning agrees most with observations when 

measured Na+ is included in the model compared to model results with identical inputs, 

except with zero Na+ or inferred Na+ from ion charge balance (Figure 6-1e, f, g, and Figure 

6-2). For ISOROPPIA simulations with measured Na+ as input, the orthogonal linear 

regression of ISORROPIA-predicted versus measured particle-phase fractions of total 

ammonium, where ε(NH4
+) = NH4

+/NHx, is: ε(NH4
+)predicted = (1.00 ± 0.03) ε(NH4

+)observed 

+ (0.03 ± 0.02), with r2 = 0.76 and “±” is one standard deviation (SD). Mean ε(NH4
+)observed 

was 54 ± 13%, making the partitioning sensitive to pH [Guo et al., 2017a]. As the 

nonvolatile Na+ competes with semivolatile NH4
+, predicted NH4

+ decreases when higher 

levels of Na+ are input to the model, whereas predicted gas phase NH3 increases, for 
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conservation of input NHx. Thus, since the ion charge balance inferred Na+ is often higher 

than measured Na+ (Figure 6-1c), the lowest NH4
+ and ε(NH4

+) are predicted with the input 

of inferred Na+. In contrast, the highest NH4
+ and ε(NH4

+) are predicted with zero Na+ 

input, whereas the predicted values with measured Na+ as model input are between these 

two. For the period in Figure 6-1, measured Na+ was 0.06 μg m-3 and the inferred value 

was 0.28 μg m-3. 

 
Figure 6-2 Comparisons of predicted and measured particle phase fractions of total 
ammonium, ε(NH4

+) = NH4
+/(NH3 + NH4

+), for data from the 12-days of the SOAS study. 
NH4

+ was measured with a PILS-IC (PM2.5 cut size) and NH3 from a CIMS. (a) Prediction 
is based on an ISORROPIA input of measured Na+, (NH4

+ + NH3), SO4
2-, NO3

-, Cl-; (b) 
Model input identical to (a), except that Na+ is set to zero; (c) Same model input, but Na+ 
inferred from an ion charge balance. Orthogonal distance regression (ODR) fits are shown 
and uncertainties in the fits are one standard deviation (SD). The uncertainty of measured 
ε(NH4

+) is derived from error propagation of NH4
+ (15%) and NH3 (6.8%) measurements. 

The best prediction of NH3-NH4
+ partitioning is achieved by using measured Na+ as input 

for the least deviation from a 1:1 line. 
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R also depends on the input Na+ concentration. For the Figure 6-1 period, predicted R was 

on average 1.43 ± 0.32 for an ISORROPIA input with inferred Na+, 1.85 ± 0.17 for 

measured Na+ input, and the highest R at 1.97 ± 0.02 when zero Na+ was used as model 

input. The average measured R was 1.70 ± 0.23 by PILS-IC and 1.75 ± 0.20 by another 

PM2.5 water-soluble ion measurement [Allen et al., 2015]. Thus, model R with measure Na+ 

input was closest to the measured R. Under the meteorological conditions of the southeast 

in summertime (T = 25 ± 5 °C, RH = 68 ± 18 %), the thermodynamic model predicts R 

always near or equal to 2, when input NVCs are set to zero and the only other particle 

composition inputs are SO4
2-, NH4

+), and NO3
-, with paired gases NH3 or HNO3, indicating 

a particle composition of mainly (NH4)2SO4; expected for electroneutrality of the aerosol 

aqueous phase. These are the model inputs when particle composition are from an AMS 

(e.g. [Kim et al., 2015; Silvern et al., 2017]) and explains why ISORROPIA-predicted R 

disagreed with measured values, which is a basis for the organic film hypothesis [Silvern 

et al., 2017]. 

Contrasts between measured and predicted R for periods of differing model input Na+ 

levels can be seen in Figure 6-1. First, if the ambient Na+ mass concentration was higher 

than the PILS-IC LOD, such as the period of June 11-13 & 16, the predicted and measured 

R agree when measured Na+ is input. Inferred Na+ from the ion charge balance appears to 

be overestimated at these times, and this causes a noticeable bias in the prediction of R, 

NH3, NH4
+, and ε(NH4

+). The pH calculated based on the inferred Na+ also differs 

compared to the pH calculated from the measured Na+ for this period. During periods when 

ambient Na+ mass concentration was below the measurement LOD, but close to zero, no 
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discrepancy in R is found since both values are near 2 (e.g., around the time of June 16 

midnight). This results from negligible effects of NVC since concentrations are very low. 

When ambient Na+ concentrations were below LOD, but not zero, there is a discrepancy 

between predicted and observed R for ISORROPIA with input of measured Na+ or zero 

Na+, however, inferred Na+ results in better agreement. For instance, during the period of 

June 18-20 & 22-23, the predicted R with the inferred Na+ input follows (but is slightly 

lower than) observations; this is consistent with an overestimation of Na+ from the ion 

charge balance calculation. Overall, the time series analysis demonstrates how model-

predicted molar ratios are affected by measurement accuracy and LODs of NVC and the 

sensitivity of ISORROPIA-predicted R to NVCs input concentrations. Note that a few 

measured R points were above 2 (e.g. midnight of June 15), a result of measurement 

uncertainty and error propagation at low SO4
2- concentrations. 

6.4.2 Quantification of NVC effects on R and pH 

We have shown that the discrepancy in R can be resolved for this data set by adding small 

amounts of Na+, either measured (when near or above LOD) or inferred from an ion charge 

balance analysis when not measured or significantly below the measurement method LOD. 

However, due to propagation of SO4
2-, NH4

+, and NO3
- measurement errors, the uncertainty 

in inferred Na+ data may cause a noticeable bias in the prediction of R or pH, such as 

observed on June 11-13 (Figure 6-1b). Because of this, quantifying the sensitivities of R 

and pH to Na+, or any other NVC, is of interest. Here we use Na+ as an example since it 

was the highest NVC concentration measured in this study; K+ and Mg2+ have similar 
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effects. Ca2+ behaves differently due to CaSO4 solids precipitating out, shown as Figure 

6-3. 

 
Figure 6-3 Comparison between ISORROPIA-predicted and PILS-IC-measured PM2.5 R 
(RSO4 = NH4

+/SO4
2-, mol mol-1), where the model predictions are based on NVC-NH4

+-
SO4

2--NO3
--Cl- system for the SOAS study. NVC (nonvolatile cation) was determined by 

an ion charge balance (color wave), that is, (2SO4
2- + NO3

- + Cl- − NH4
+) in units of μmol 

m-3. This results in 200% mole-equivalent concentrations of Na+ and K+ compared to Ca2+ 
and Mg2+ due to +1 versus +2 charges. NH4

+, SO4
2-, NO3

-, Cl- are observed PILS-IC mass 
concentrations. For each graph, NVC is set to be a single ion, shown as (a) Na+, (b) K+, (c) 
Ca2+, (d) Mg2+. Adding Na+ or K+ or Mg2+ results in predicted R (generally underpredicted) 
agreeing better with measured R, compared to predicted R equal or close to 2 with zero 
NVC input. Ca2+ doesn’t work at all as it precipitates out from the aqueous phase as CaSO4. 
The solubility of CaSO4 is only 0.2 g per 100 mL water at 20 °C. The average predicted 
particle liquid water 𝑊𝑊𝑖𝑖 (3.0 μg m-3) could only dissolve 0.006 μg m-3 Ca2+, a tenfold lower 
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amount than the inferred Ca2+ of 0.23 μg m-3 from an ion charge calculation. ODR fits are 
shown and uncertainties in the fits are one SD. 

 

Differences in predicted R with and without measured Na+ are plotted against Na+ mass 

and organic aerosol mass fractions in Figure 6-4a; ΔR is defined as ISORROPIA predicted 

R with Na+ minus ISORROPIA predicted R without Na+. Figure 6-4a shows that ΔR is 

highly correlated with Na+ (r2 = 0.93). Based on an orthogonal linear regression ΔR = (–

1.74 ± 0.03) Na+ + (0.001 ± 0.003). From the regression slope, the average measured Na+ 

level of 0.06 μg m-3, a background level of PM2.5 Na+ in the southeast, causes a response 

of –0.10 in R. At a Na+ level of only 0.3 μg m-3, ΔR reaches –0.5, indicating a rapid decrease 

from R = 2 (no NVC) to R = 1.5 (with NVC) for these conditions. Thus, not only is ΔR 

highly correlated with Na+, it is also highly sensitive to Na+. This is not seen for the organic 

aerosol mass fraction, here used as a proxy for the film thickness because it constrains the 

organic volume per particle. A similar plot based on organic aerosol mass concentration is 

shown in Figure 6-5. In stark contrast to Na+, Figure 6-4a shows no correlation between 

ΔR and organic aerosol mass fraction. There is also no correlation when ΔR is plotted 

against OA mass concentration for data points ΔR = measured R − 2, and an inverse 

correlation is observed for some points between ΔR and organic aerosol mass concentration 

for ΔR = predicted R (with Na+) − predicted R (no Na+), see Figure 6-5. These results are 

inconsistent with the bias in R being linked to increases in mass fraction of organic species, 

as proposed by Silvern et al. [2017]. 
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In comparison to R, pH is less sensitive to inclusion of Na+, or other NVCs in general. ΔpH 

is only 0.07 for the average Na+ level of 0.06 μg m-3, and increases to 0.38 at 0.3 μg m-3 

Na+ (Figure 6-4). The magnitude of ΔpH is relatively small and consistent with our 

previous studies where we investigated the effects of sea-salt on pH [Guo et al., 2016; 

Weber et al., 2016]. ΔpH would be higher in regions with more abundant NVC. For 

instance, a ΔpH of 0.8 unit was found in Pasadena, California, where the average PM2.5
 

Na+ mass was 0.77 μg m-3 [Guo et al., 2017a]. Differences in sensitivity of R and pH to 

Na+ can be seen based on linear regressions. The magnitude of the ΔR-Na+ slope is –1.74 

compared to ΔpH-Na+ slope of 1.27. Sensitivities of pH and R (or RSO4) to Na+ are discussed 

further below, next we investigate NVC effects on R and pH for a different data set. 

 
Figure 6-4 Effect of nonvolatile cations (NVC) on the PM2.5 ammonium-sulfate molar ratio 
(R) and pH as a function of measured Na+ and organic aerosol (OA) concentrations. The 
orange circular points in plots (a) and (b) are for ΔR equal to ISORROPIA predicted R with 
measured Na+ included in the model input minus ISORROPIA predicted R without Na+ in 
the model input. ΔpH in plot (c) is determined in a similar way. The grey diamonds in plots 
(a) and (b) are for ΔR equal to the actual measured R minus 2. Note that ΔR should be 
negative since including Na+ in the thermodynamic model results in R lower than 2, 
whereas not including Na+ results in an R close to 2 (on average R predicted without Na+ 
is 1.97±0.02), a measured R is generally less than 2. Plot (a) is ΔR versus measured Na+, 
(b) ΔR versus measured OA mass fraction, and (c) ΔpH versus measured Na+. Orthogonal 
distance regression (ODR) fits are shown and uncertainties in the fits are one standard 
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deviation. A plot similar to (b), but versus OA mass concentration can be found as Figure 
6-5 

 
Figure 6-5 Effect of nonvolatile cations (NVC) on the PM2.5 ammonium-sulfate molar ratio 
(R) as a function of measured organic aerosol (OA) concentrations based on AMS data 
(SOAS). The orange circular points denote ΔR calculated from ISORROPIA predicted R 
with measured Na+ included in the model input minus ISORROPIA predicted R without 
Na+ in the model input. Grey diamonds are for ΔR equal to measured R minus 2. Note that 
ΔR should be negative since including Na+ in the thermodynamic model results in R lower 
than 2, whereas not including Na+ results in an R close to 2 (on average R predicted without 
Na+ is 1.97 ± 0.02). 

 

6.4.3 NVC effects on molar ratios and pH based on winter data 

The above discussion is based on data collected at a ground site in summertime (SOAS), 

we expand the investigation of the R discrepancy to a larger geographical scale and for a 

different season by performing a similar analysis with the WINTER study dataset collected 

in wintertime. In this study, NVCs were generally higher, especially when the aircraft 

sampled near coastlines (e.g. PM1 Na+ = 0.23 μg m-3). Also, PM1 nitrate was comparable 
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to sulfate, largely owing to lower temperatures (NO3
- 0.013 µmol m-3 vs. SO4

2- 0.011 µmol 

m-3) [Guo et al., 2016]. Therefore, RSO4 was calculated instead of R. In this case the aerosol 

inorganic composition data input for ISORROPIA-II is from an AMS. Since the AMS does 

not efficiently detect ions associated with refractory species, such as Na+ and associated 

Cl- from NaCl, in our past analysis of the WINTER aerosol pH, we only included NH4
+, 

SO4
2-, and total nitrate (NO3

- + HNO3) as input for ISORROPIA-II. (NH3 should be 

included, but was not measured, although in this case it was found to have a small effect 

on predicted pH: ~0.2 higher pH when including an NH3 concentration of 0.10 μg m-3 

determined from an iteration method). With these assumptions, we found good agreement 

between predicted and measured HNO3-NO3
- partitioning (average ε(NO3

-) = 39%), 

especially when RH was above 60% [Guo et al., 2016]. However, again Fig. 3a shows that 

the model overpredicted RSO4. Also, when concentrations of NVC were low, predicted and 

measured RSO4 was generally 2. (Note that the predicted RSO4 should be biased low since 

NH4
+ was underpredicted due to lack of NH3 data, resulting in some fraction of input 

particle phase NH4
+ repartitioned in the model to the gas phase). On average, predicted 

RSO4 was 1.68 ± 0.51 versus the measured value of 1.47 ± 0.43. In Figure 6-6a, the gray 

error bars show the propagated uncertainties for RSO4 based on a 35% AMS measurement 

uncertainty for NH4
+, SO4

2-, and NO3
- [Bahreini et al., 2009]. 

As in the SOAS data set, including NVCs also brings predicted and measured ammonium-

sulfate molar ratios into agreement (Figure 6-6). Here, the amounts of NVC needed for an 

ion charge balance involving NVC-NH4
+-SO4

2--NO3
- aerosols were calculated based solely 

on NVC assumed to be Na+. The thermodynamic results based on other NVCs are shown 
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in Figure 6-7. K+ and Mg2+ work similarly to Na+, while Ca2+ can precipitate sulfate in the 

form of CaSO4. Overall, Na+ is chosen as a proxy NVC in our dataset because it constitutes 

most of the NVC mass and does not precipitate out of solution. The choice of Na+ as a 

NVC proxy, although appropriate here, is not generally applicable; in regions with 

considerable dust contributions, treating NVC as “equivalent Na+” in the thermodynamic 

calculations can result in large prediction errors (e.g., [Fountoukis et al., 2009]). As done 

before, in this analysis, when the ion charge balance predicts negative Na+ concentrations 

(137 data points out of 3226, 4%), a small positive value of 0.005 μg m-3 is assigned. It is 

clear in Figure 6-6b that with the added NVC, the predicted RSO4 is in good agreement with 

the observation, with regression result RSO4,predicted = (1.05 ± 0.01) RSO4,observed + (–0.12 ± 

0.01), r2 = 0.99. Again, the molar ratio bias from the thermodynamic model is simply a 

matter of not including small amounts of NVC (e.g. 0.15 µg m-3 Na+ or 0.26 µg m-3 K+). 

The average amount of inferred Na+ from the ion charge balance in this case is smaller than 

what was measured offline during the study; PM1 Na+ of 0.23 μg m-3 [Guo et al., 2016]. 

The analysis using measured PM1 Na+ results in highly scattered data due to the high 

sensitivities of RSO4 to NVC and the significant Na+ measurement uncertainty at these low 

levels and the analytical method used in this study. 

Because molar ratios are sensitive to NVCs and NVC concentrations are often very low, 

use of molar ratios to test the thermodynamic model should be done with caution, but 

actually not recommended. Since NVC associated with sea-salt and crustal materials are 

normally very small fractions of the PM1 inorganic mass, it is typically reasonable to ignore 

these species when determining PM1 NH4
+ and NO3

- partitioning, or pH, using 
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ISORROPIA-II, as we have shown [Guo et al., 2016; Guo et al., 2017a]. Since the molar 

ratio is a pH proxy that is highly sensitive to small mass concentrations of NVCs, as well 

as measurement errors, and only provides limited insights on pH and its effects (see 

discussion in the Introduction), we view this as a minor issue since pH should be used 

instead [Guo et al., 2017a]. Alternatively, if accurate NVC data is not available, NVC can 

be estimated through an ion charge balance calculation with the measured NH4
+-SO4

2--

NO3
- data and include the resulting inferred NVC in the ISORROPIA input, which will 

produce a better estimate of R than setting NVC to zero in the model input. 

 
Figure 6-6 Comparison between PM1 ISORROPIA-predicted RSO4 and AMS-measured 
RSO4 (RSO4 = (NH4

+ − NO3
-)/SO4

2-) (mol mol-1), where the ISORROPIA-prediction is based 
on (a) NH4

+-SO4
2--NO3

- aerosol and (b) Na+-NH4
+-SO4

2--NO3
- aerosol constrained by 

HNO3. All measurement data are from the WINTER study. NVC was determined by an 
ion charge balance with the molar concentration shown as the color wave. For this data, 
the average predicted Na+ concentration is 0.15 μg m-3, comparable to the offline PILS 
fraction collector IC-measured PM1 Na+ of 0.23 μg m-3. The one SD uncertainty range for 
the measured RSO4 is shown as gray error bars. The data points with low SO4

2- levels (<0.2 
μg m-3; 9% of the total points) were excluded for high uncertainties. In both plots, the molar 
ratios are zero when concentrations of NH4

+ are near zero and NVC concentrations highest. 
In plot (a), as molar ratios approach 2, predicted NVC levels drop, but the effect of not 
including them in the thermodynamic model results in larger deviations in predicted versus 
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measured RSO4. Error bars also increase due to subtraction of higher concentrations of 
nitrate and thus more subject to measurement error. As with the SOAS data, including NVC 
in the model results in agreement between predicted and measured ammonium-sulfate 
molar ratios. 

 
Figure 6-7 Comparison between ISORROPIA-predicted and AMS-measured PM1 RSO4, 
where the model predictions are based on NVC-NH4

+-SO4
2--NO3

-(-Cl-) system for the 
WINTER study. NVC (nonvolatile cation) was determined by an ion charge balance (color 
wave), that is, (2SO4

2- + NO3
- − NH4

+) in units of μmol m-3. This results in 200% mole-
equivalent concentrations of Na+ and K+ compared to Ca2+ and Mg2+ due to +1 versus +2 
charges. NH4

+, SO4
2-, NO3

- are observed AMS mass concentrations. For each graph, NVC 
is set to be a single species, including (a) Na+, (b) K+, (c) Ca2+, (d) Mg2+. For K+, Ca2+, and 
Mg2+, the assumed trace amount of total chloride (0.01 μg m-3) doesn’t perturb normal 
calculations of pH or HNO3-NO3

- partitioning at all for only 0.0012 μg m-3 Cl- (12% of 
total chloride) predicted in the aerosol, but eliminates potential model errors. (Note that, 
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Cl- is only assumed for ISORROPIA input but not included in the charge balance 
calculation. The predicted 0.0012 μg m-3 Cl- is negligible compared to NH4

+, SO4
2-, and 

NO3
-.) Adding Na+ and K+ results in predicted RSO4 agreeing with measured RSO4. Mg2+ 

also results in closer agreement, although some points deviate. Ca2+ doesn’t work at all as 
it precipitates out from the aqueous phase as CaSO4. The solubility of CaSO4 is only 0.2 g 
per 100 mL water at 20 °C. An approximate calculation on CaSO4 solubility shows that the 
average predicted particle liquid water 𝑊𝑊𝑖𝑖 (2.0 μg m-3) could only dissolve 0.004 μg m-3 
Ca2+, a tenfold lower amount than the inferred Ca2+ of 0.13 μg m-3 from an ion charge 
calculation. ODR fits are shown and uncertainties in the fits are one SD. 

 

6.4.4 Effects of not fully considering NVC of pH 

The molar ratios and pH reported for SOAS [Guo et al., 2015] and WINTER [Guo et al., 

2016] may exhibit biases since NVCs were not fully considered. This was because the 

NVC (Na+, K+, Ca2+, Mg2+) concentrations were low, often close to or below the PILS-IC 

LOD during the SOAS study (the 1st half period measuring PM2.5 and the 2nd half period 

measuring PM1 with even lower NVC) and not measured by an AMS during the WINTER 

study. We have discussed the effect of NVC on R and RSO4 above, here we focus on the 

effect on pH and the implications. 

Here we use the inferred Na+ calculated from the ion charge balance as representative of 

generic NVCs (valence of one), to investigate the impacts on pH and molar ratios from 

NVCs if not fully considered. A varying Na+ input from 0 to 1 μg m-3 was applied to the 

average conditions of the SOAS and WINTER studies; all other model inputs, including 

composition and meteorological conditions (RH & T), were unchanged in the simulation. 

An upper limit of 1 μg m-3 Na+ was based on the maximum inferred levels in SOAS and 

WINTER studies, much higher than the measured levels of 0.1-0.2 μg m-3. Figure 6-8 
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shows that pH responds linearly to the added Na+ for a 0-0.6 μg m-3 Na+ range for SOAS 

and a wider range of 0-1 μg m-3 for WINTER. The sensitivities of pH and molar ratios to 

NVC and the linear ranges of pH are different between the two studies because of 

differences in aerosol mass concentration and composition. For instance, SOAS aerosol 

was mainly composed of (NH4)2SO4 and the WINTER aerosol was a mixture of (NH4)2SO4 

and NH4NO3, so adding Na+ only perturbs NH3-NH4
+ partitioning in SOAS, but also affects 

HNO3-NO3
- partitioning in WINTER. Note that, 0.6 μg m-3 Na+ accounts for 34% mole 

fraction of the average SOAS aerosol composition, a large number that can alter 𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎+  and 

𝑊𝑊𝑖𝑖 in the aerosol system. As a result, particle pH is changed accordingly. The RSO4 for 

WINTER decreases even below zero due to decreasing NH4
+ (due to competition with Na+) 

and increasing NO3
- (due to higher pH) trends when adding Na+ to the model input. Note 

that, RSO4 was typically observed above zero in the southeastern U.S. [Hidy et al., 2014], 

which in turn sets an upper limit of the Na+ as 0.48 μg m-3 that could be in the PM1. 

In our datasets, ion charge balance inferred Na+ (or K+, Mg2+) is an upper limit (for 

assuming complete dissociation; e.g., all sulfate is in the form of SO4
2-) on soluble NVC 

based on the observed NH4
+-SO4

2--NO3
- data, and satisfies the criterion of aerosol electrical 

neutrality. As shown above, H+ is negligible in ion charge balance calculation even at such 

low pH of 1. Using an inferred Na+ as a reference value, a worst case of zero NVC in the 

input results in an underestimation of pH by 0.32 for SOAS and 0.49 for WINTER, and 

overestimation of molar ratios by 0.58 for SOAS (R) and 0.62 for WINTER (RSO4), 

respectively. Using measured Na+ as input instead of zero NVC results in a difference in 

pH of –0.26 and 0.22, and in molar ratio of 0.46 (R) and –0.33 (RSO4), for SOAS and 
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WINTER, respectively. NVCs are seen to have a larger effect on molar ratios than pH 

based on the regression slopes (see Figure 6-4), and the effect is even more pronounced 

considering observed ranges in molar ratios (R or RSO4 from 0 to 2) are less than pH (from 

–1 to 3) (see Figure 6-8) [Guo et al., 2015; Guo et al., 2016]. 

 
Figure 6-8 Predicted particle pH and molar ratios as a function of Na+, R = NH4

+/SO4
2- for 

SOAS and RSO4 = (NH4
+ − NO3

- )/SO4
2- for WINTER. In this sensitivity analyses, all model 

inputs are kept constant as the average SOAS or WINTER conditions and only Na+ 
concentration varies. For the SOAS 12-day period (June 11-23) ISORROPIA-II inputs are: 
2.03 μg m-3 SO4

2-, 1.14 μg m-3 (NH3 + NH4
+), 0.23 μg m-3 NO3

-, 0.03 μg m-3 Cl-, zero K+, 
Ca2+, Mg2+, and 68% RH, 298.2 K T. For the WINTER study, the inputs are: 1.02 μg m-3 
SO4

2-, 0.50 μg m-3 NH4
+, 2.21 μg m-3 (HNO3 + NO3

-), zero Cl-, K+, Ca2+, Mg2+, and 58% 
RH, 272.1 K T. Average inferred Na+ concentrations from the ion charge balance were 
0.28 μg m-3 for SOAS and 0.15 μg m-3 for WINTER, shown as the vertical dashed lines. In 
comparison, average measured Na+ was 0.06 μg m-3 in SOAS and 0.23 μg m-3 in WINTER. 
ODR fits are shown and uncertainties in the fits are one SD. Since the pH response to Na+ 
in the SOAS study becomes nonlinear above 0.6 μg m-3 Na+, the fit is only applied to the 
range below. Ranges in pH and molar ratios (R and RSO4) in the eastern U.S. are shown as 
the purple marks. 
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As noted, NVC concentrations may be uncertain due to low concentrations, measurement 

uncertainties or not measured at all. Comparing observed and predicted partitioning of 

NH3-NH4
+ or HNO3-NO3

- provides insights on the accuracies of NVC concentrations used 

in the thermodynamic analysis. For example, as discussed above for the June 11-13 period 

in Figure 6-1, the model fairly accurately predicts NH3-NH4
+ partitioning with input of 

measured Na+, whereas inclusion of inferred Na+ does not produce as good a result. 

Overall, our previously reported pH for SOAS and WINTER studies appears sufficiently 

accurate for the majority of the data since the pH and predicted partitioning was in 

reasonable agreement with observed partitioning of NH3-NH4
+ or HNO3-NO3

- without ion 

charge balance inferred NVC as input. (For example, see the 12-day SOAS data (Figure 

6-2) and the WINTER data for periods of 60-95% RH [Guo et al., 2016]). However, during 

periods when a bias is observed between measured and predicted partitioning, including or 

slightly adjusting NVC concentrations can be tested as a possible cause (note that 

increasing NVCs always increases the pH). 

Even though the effect of NVC on pH may appear relatively small (e.g., difference of 0.2 

to 0.5 pH units) the impact on predicted partitioning of a semivolatile species can be 

significant due to the highly non-linear response of NH3-NH4
+ or HNO3-NO3

- partitioning 

to pH (i.e., S curve) [Guo et al., 2016; Guo et al., 2017a]. For example, for SOAS average 

conditions, a 0.3 unit pH bias (i.e., as noted above) results in ~ 20% bias in prediction of 

ε(NH4
+) or ε(NO3

-) when ε(NH4
+) or ε(NO3

-) = 50%, or no bias at all when the species are 

completely in one phase, ε(NH4
+) or ε(NO3

-) = 0% or 100%. For the WINTER data set, a 

0.5 (see above) unit pH bias causes up to 30% bias in ε(NH4
+) or ε(NO3

-) (illustrated in 
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Figure 6-9). These partitioning biases may constitute a significant source of bias for aerosol 

nitrate formation, especially if the total nitrate present in the gas-aerosol system is 

significant. In fact, the bias from the NVC may completely change the predicted response 

of nitrate to aerosol emissions and lead to errors in the predicted vs. observed trends in pH, 

such as was seen in the southeastern U.S. [Vasilakos et al., 2017]. 

 
Figure 6-9 S curves illustrate the nonlinear response in particle phase fraction, ε(NH4

+) or 
ε(NO3

-), to variation in pH: (a) ε(NH4
+) and (b) ε(NO3

-) plotted vs. pH. The two S curves 
are calculated based on T = 20 °C, particle liquid water level = 5 µg m-3, and ideal solution 
(i.e. γ = 1). The S curve equations can be found at Guo et al. [2017a]. Non-ideality only 
shifts the S curves but does not change the shapes. The 0.3 unit pH (SOAS) and 0.5 unit 
pH (WINTER) variations (biases) are the upper limit values based on the difference 
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between zero and inferred Na+ inputs (Figure 6-8) and indicated by paired red and blue 
sticks, respectively. The response of ε(NH4

+) or ε(NO3
-) to pH reaches maximum at 50% 

ε(NH4
+) or ε(NO3

-) (i.e., position (2), 0.3 unit pH change causes ~20% or 0.5 unit pH 
change causes ~30% shift in the particle phase fraction), but down to nearly zero when 
100% or 0% ε(NH4

+) or ε(NO3
-) (e.g. position (1) or (3)). 

 

In our past studies, we also investigated trends in pH and molar ratios over time periods of 

changing emissions. Our interest was on the lack of change in pH over the past 15 years of 

despite a 70% reduction in sulfate aerosol (Figure 6-10) [Weber et al., 2016] (CHAPTER 

5 in the thesis). For example, Weber et al. [2016] reported thermodynamic calculations 

based on an average PM2.5 and PM1 PILS-IC Na+ concentration of 0.03 μg m-3 from the 

SOAS study applied to all historical data (Fig. 2 in that paper). The Na+ concentration was 

uncertain due to being significantly below the Na+ measurement LOD (0.07 μg m-3) and 

substantially lower than period average Na+ of 0.28 μg m-3 calculated from a charge 

balance. This simplification did not consider historical Na+ trends (although there was no 

trend in Na+ mole fraction, see Figure 6-10). With a constant ISORROPIA Na+ input of 

0.03 μg m-3, predicted RSO4 does not follow the widespread observed trend of RSO4 

decreasing from 1998 to end of 2013 in the southeastern US, but instead was nearly 

constant at ~1.9. Repeating the calculations using Na+ inferred from the ion charge balance 

of Na+-NH4
+-SO4

2--NO3
-, determined for each daily data point, results in good agreement 

between observed and predicted RSO4; ISORROPIA-predicted RSO4 now reproduces the 

observed decrease RSO4 trend (Figure 6-10 & Figure 6-11). In contrast, using these different 

Na+ input concentrations did not change the trends in ISORROPIA-predicted pH, in both 
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cases it remained relatively constant (Figure 6-10), but as expected the pH was slightly 

higher with higher input Na+ concentrations (i.e., from ion charge balance). 

 
Figure 6-10 Mean summer (June–August) trends in (a) measured and predicted RSO4, (b) 
predicted PM2.5 pH, and (c) inferred Na+ (from ion charge balance of Na+-NH4

+-SO4
2--

NO3
- aerosols) concentration and mole fraction at the SEARCH-CTR site. Model input 

includes the observational PM2.5 composition data (NH4
+, SO4

2-, NO3
-) and meteorological 

data (RH, T) at CTR. RSO4 and pH were estimated with ISORROPIA-II run in forward 
mode with an assumed NH3 level of 0.36 μg m-3, the mean concentration from the SOAS 



 

 

184 

study (CTR site, summer 2013), due to limited NH3 data before 2008. Historical NH3 mean 
summer concentration at CTR were 0.2 μg m-3 (2004-2007) [Blanchard et al., 2013] and 
0.23 ± 0.14 μg m-3 (2008-2013) [Weber et al., 2016]. 41 out of the total 609 (7%) daily 
mean RSO4 were observed above 3 due to measurement error, above the upper limit of RSO4 
= 2, therefore, excluded in the model input. Error bars represent daily data ranges (SD). 
Linear regression fits are shown and uncertainties in the fits are one SD. In (a), based on 
regression slope, the observed RSO4 trend was –0.021 ± 0.007 at CTR versus a predicted 
value of –0.017 ± 0.006 unit yr-1 for ISORROPIA run with Na+ from the charge balance, 
and –0.003 ± 0.001 unit yr-1 for a constant Na+ of 0.03 μg m-3, used by Weber et al. [2016]. 
These results are consistent with the reported RSO4 trend of  –0.01 to –0.03 yr-1 reported by 
Hidy et al. [2014] for SEARCH data set. In (b), the pH predictions with inferred Na+ or 
with limited Na+ of 0.03 μg m-3 shows a fairly stable PM2.5 pH in the last 15 years. In (c), 
the inferred Na+ shows a general decreasing trend while the inferred Na+ mole fraction 
stays relatively stable around 15% (± 4%). 

 
Figure 6-11 Comparison of the measured and predicted RSO4 (with inferred Na+ as input), 
summer means at CTR, as shown in the Figure 6-10. The upper limit of RSO4 is 2 for a 
composition of (NH4)2SO4 in ambient aerosols. A few observed points above 2 are results 
of measurement uncertainties. 
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6.5 Conclusion 

Excluding minor amounts of submicron NVC in thermodynamic calculations results in 

predicted ammonium-sulfate molar ratios (R) near 2, which is generally higher than 

observed values. This results from the model criteria for aerosol electrical. Less absolute 

discrepancy is associated with predicted particle pH with or without NVC because pH is 

on a logarithmic scale of 𝐻𝐻𝑎𝑎𝑎𝑎+  and the range of pH is larger than that of R (or RSO4) in the 

eastern US. However, neglecting NVC can induce pH biases that imply important 

partitioning errors for semivolatile species like ammonium, nitrate, chloride, and even 

organic acids. An important finding is that including small amounts of NVCs in the 

thermodynamic model brings predicted and measured R into agreement. Because NVCs 

are often minor constituents of fine particles, especially PM1, implying low ambient 

concentrations and high measurement uncertainties, assessing thermodynamic model 

predictions through molar ratios is problematic. Good agreement between predicted (with 

measured NVC in SOAS model input and no NVC in WINTER input) and measured 

partitioning of NH3-NH4
+ [Guo et al., 2015; Weber et al., 2016] (and this work), HNO3-

NO3
- [Guo et al., 2016] and water vapor-aerosol liquid water [Guo et al., 2015] ideally 

with measured NVC as input, together with a lack of correlation of the bias with organic 

fraction discounts any influence of organic films and validates the thermodynamic 

equilibrium assumption for submicron aerosol. If organic films were limiting mass transfer, 

the discrepancy in R should worsen as the films become thicker. We find the opposite, the 

discrepancy in R is positively correlated with NVC and not correlated with the organic 

mass fraction or mass concentration. If NVCs were not measured, or significantly below 
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the measurement LOD, for the data sets investigated here, an ion charge balance could be 

used to inferred NVCs. Comparing measured and thermodynamic model predicted 

partitioning of semivolatile species provides insights on the importance of NVCs in the 

model predictions. Fully considering NVC doesn’t change the finding of nearly constant 

fine particle pH in the southeastern U.S. (summertime) despite a large sulfate reduction, 

the result supported by predicting a RSO4 decreasing trend agreeable to the 15 years’ 

observations. Overall, we find that the unique and non-intuitive behavior of pH reported in 

our past studies can be simply and consistently explained by thermodynamics without the 

need for organic films with selective ion transport properties.  
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CHAPTER 7. THE SENSITIVITY OF PARTICLE PH TO 

AMMONIA: CAN HIGH AMMONIA CAUSE LONDON FOG 

CONDITIONS? 

7.1 Abstract 

High levels of ammonia (NH3) have been suggested to elevate ambient particle pH levels 

to near neutral acidity (pH = 7), a condition that promotes rapid SO2 oxidation by NO2 to 

form aerosol sulfate concentration consistent with “London fog” levels. This postulation is 

tested using aerosol data from representative sites around the world to conduct a thorough 

thermodynamic analysis of aerosol pH and its sensitivity to NH3 levels. We find that 

particle pH, regardless of ammonia levels, is always acidic even for the unusually high 

NH3 levels found in Beijing (pH = 4.5) and Xi’an (pH = 5), locations where sulfate 

production from NOx is proposed. Therefore, major sulfate oxidation through a NO2-

mediated pathway is not likely in China, or any other region of the world (e.g., U.S., 

Mediterranean) where the aerosol is consistently more acidic. The limited alkalinity from 

the carbonate buffer in dust and sea-salt can provide the only likely set of conditions where 

NO2-mediated oxidation of SO2 outcompetes with other well-established pathways. The 

mildly acidic levels associated with excessive amounts of ammonia can promote high rates 

of SO2 oxidation through transition metal chemistry, this may be an alternative important 

aerosol chemical contributor to the extreme pollution events. 

7.2 Introduction 
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pH is a fundamental particle property that affects aerosol formation, composition, toxicity 

and nutrient delivery [Gwynn et al., 2000; Jang et al., 2002; Meskhidze et al., 2003; Guo 

et al., 2016; Longo et al., 2016; Fang et al., 2017]. Sulfate is a ubiquitous inorganic aerosol 

species that strongly regulates aerosol acidity and is produced by aqueous and gas phase 

oxidation of SO2 along well-established pathways. Aqueous pathways dominate depending 

on the pH level (O3 under alkaline and H2O2 under acidic conditions [Seinfeld and Pandis, 

2006]). Aqueous oxidation of bisulfite (HSO3
-) has recently been proposed as the major 

mechanism of haze formation in China but requires fine particle pH levels that are close to 

neutral (pH 6-7) or higher [Cheng et al., 2016; Wang et al., 2016]. It is well-known that 

upon emission, fresh dust or sea-salt particles can have a pH level that exceeds 6 

[Katoshevski et al., 1999; Stockdale et al., 2016], hence provide aerosol where NO2-

mediated oxidation of sulfate is possible; however, the acidic sulfate that forms upon these 

particles rapidly depletes their alkaline carbonate buffer and limits any substantial NO2-

mediated production of sulfate. Acidification is fast for submicron particles, since acidic 

gases (e.g., HNO3 and H2SO4) are rapidly scavenged by alkaline aerosols [Hanisch and 

Crowley, 2001; Meskhidze et al., 2005], dust and sea-salt are only minor ionic fractions 

compared to sulfate and nitrate [Fang et al., 2017], and equilibrium states with gases are 

typically achieved within 30 minutes under ambient conditions [Dassios and Pandis, 1999; 

Cruz et al., 2000; Fountoukis et al., 2009]. The good agreements between model and 

observation for the semivolatile species partitioning of NH3-NH4
+ and HNO3-NO3

- species, 

using aerosol bulk properties as model input, suggest the thermodynamic equilibrium states 

in many circumstances and that the ambient fine mode aerosol is consistently (and often 
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strongly) acidic [Fountoukis and Nenes, 2007; Guo et al., 2015; Guo et al., 2016; Guo et 

al., 2017a]. Unlike fine haze particles, fogs and cloud drops can have pH closer to neutral 

owing to dilution of H+ by the orders of magnitude more liquid water. 

Wang et al. [2016] and Cheng et al. [2016] argue that very high levels of NH3 from intense 

agriculture (e.g., up to 50-60 ppbv in Beijing and Xi’an, China) can sufficiently elevate pH 

in fine mode aerosol (PM1 and PM2.5) to promote rapid sulfate formation from NO2 

oxidation of SO2. We explore this by carrying out a thorough thermodynamic analysis with 

the ISORROPIA-II model [Guo et al., 2015] for conditions of aerosol and gas phase 

constituents that characterize a broad range of aerosol acidities and drivers thereof. We 

limit our analysis to fine mode (PM2.5) aerosol, as the majority of the sulfate mass resides 

in that fraction [Tian et al., 2014; Fang et al., 2017] (hence its pH being the most relevant 

for sulfate formation), and which is also the size range where thermodynamic analysis for 

acidity inference works best [Guo et al., 2015; Guo et al., 2016; Weber et al., 2016; Guo 

et al., 2017a]. 

7.3 Methods 

pH affects the equilibrated partitioning of semivolatile compounds, such as NO3
- and NH4

+, 

between gas and particle phases. Based on this sensitivity, the current most reliable method 

for fine particle pH is via prediction through a thermodynamic model, such as 

ISORROPIA-II, with gas and particle phase concentrations, and meteorological conditions 

(RH&T) as model input. ISORROPIA-II computes the equilibrium composition of an 
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NH4
+-SO4

2--NO3
--Cl--Na+-Ca2+-K+-Mg2+-water inorganic aerosol (available online at 

http://isorropia.eas.gatech.edu) [Nenes et al., 1998; Fountoukis and Nenes, 2007]. 

 
𝑝𝑝𝑝𝑝 = − log10 𝛾𝛾𝐻𝐻+𝐻𝐻𝑎𝑎𝑎𝑎+ = − log10

1000𝛾𝛾𝐻𝐻+𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎+

𝑊𝑊𝑖𝑖 + 𝑊𝑊𝑜𝑜
≅ − log10

1000𝛾𝛾𝐻𝐻+𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎+

𝑊𝑊𝑖𝑖
 (7-1) 

pH is defined as the hydrogen ion activity in an aqueous solution [Stumm and Morgan, 

1996], where 𝛾𝛾𝐻𝐻+  is the hydronium ion activity coefficient (assumed as one; discussed 

further below), 𝐻𝐻𝑎𝑎𝑎𝑎+  (mole L-1) is the hydronium ion mole fraction in particle liquid water, 

𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎+  (µg m-3) is the hydronium ion concentration per volume of air, and 𝑊𝑊𝑖𝑖 and 𝑊𝑊𝑜𝑜 (µg m-

3) are the bulk particle water concentrations associated with inorganic and organic species, 

respectively. 𝑊𝑊o needs to be calculated independently by Equation 5 in Guo et al. [2015], 

while both 𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎+  and 𝑊𝑊𝑖𝑖 are the outputs of ISORROPIA-II. Particle liquid water (𝑊𝑊𝑖𝑖 + 𝑊𝑊𝑜𝑜), 

which is essential for pH calculation, is well predicted compared to the measurement [Guo 

et al., 2015]. Due to a small bias between 0 and −0.2 pH often found without considering 

𝑊𝑊𝑜𝑜 in the pH calculation (the logarithmic nature of pH) [Guo et al., 2015; Guo et al., 2016; 

Guo et al., 2017a], in this study we only calculate pH based on 𝑊𝑊𝑖𝑖, a reasonable assumption 

given the lower organic mass fraction reported in Beijing (on average 20-60%) [Cheng et 

al., 2016; Wang et al., 2016] compared to the southeastern U.S. (on average 60%) [Xu et 

al., 2015a] resulting in an even smaller effect of organic particle water on pH. 

http://isorropia.eas.gatech.edu/
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Figure 7-1 Comparisons of predicted and measured NH3, NH4

+, ε(NH4
+) (ammonium 

particle phase fraction, NH4
+/(NH4

+ + NH3)), NO3
- for metastable mode (left: a-d) and 

stable mode (right: e-h) runs in ISORROPIA-II. Data input are the average aerosol&gas 
concentrations and RH&T reported in Wang et al. [2016] (Table S1&S2) for Beijing (BJ) 
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and Xi’an (XA) for clean, transition, and polluted periods. For HNO3-NO3
- partitioning, 

only NO3
- is plotted for lack of HNO3 data, which is predicted to be < 1% of NO3

- on 
condition of high pH in BJ and XA. Orthogonal distance regression (ODR) fits are shown 
and uncertainties in the fits are one standard deviation. Measurement uncertainties are 
shown as error bars. Since the Wang et al. [2016] and related papers didn’t specify the 
measurement uncertainties, a typical 35% AMS measurement uncertainty was used for 
Beijing PM1 data [Bahreini et al., 2009], and a 10% measurement uncertainty assumed for 
Xi’an PM2.5 data based on the MARGA methodology [Makkonen et al., 2012; Rumsey et 
al., 2014]. NH3 was measured by MARGA in Beijing and Xi’an. According to Rumsey et 
al. [2014], an 23% measurement uncertainty is assumed for NH3. The uncertainties in 
ε(NH4)+ are calculated based on error propagation of the NH3 and NH4

+ measurements. 

 

ISORROPIA-II assumes 𝛾𝛾𝐻𝐻+ as unity, however, the activity coefficients of the other water-

soluble ions are calculated as ionic pairs (including H+, e.g. H+-NO3
-). The pH calculated 

from this method is proven to be similar to models that specifically calculate 𝛾𝛾𝐻𝐻+, such as 

E-AIM [Hennigan et al., 2015], and observed and predicted gas-particle partitioning of 

semivolatile species are in good agreement [Guo et al., 2016; Guo et al., 2017a]. We note 

that it is difficult to retrieve activity coefficients in concentrated aqueous solutions. The 

ISORROPIA-II has been tested by several ambient particle datasets with strong ionic 

strength, for example, the mean ionic strength 38 mole L-1 in the eastern U.S. [Guo et al., 

2016]. The ionic strength in Beijing haze polluted period (36 mole L-1) is on the same 

magnitude despite the much higher particle mass loadings (i.e. more particle water). 

Details on how the model was run (e.g., forward mode, metastable aerosols), an extensive 

uncertainty analyses, and predictions of pH at various sites in the southeastern US are 

discussed in Guo et al. [2015]. The pH predictions are accurate to a high degree based on 

the consistency between the predicted and measured partitioning of NH3-NH4
+ or HNO3-

NO3
- examined in a number of studies in various locations from summer to winter 
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conditions [Guo et al., 2015; Hennigan et al., 2015; Bougiatioti et al., 2016; Guo et al., 

2016; Weber et al., 2016; Bougiatioti et al., 2017; Guo et al., 2017a]. The thermodynamic 

model results are further supported by a single pair of semivolatile partitioning calculation, 

which appears as “S curves” and are thoroughly discussed in the section 3.6 of Guo et al. 

[2016] and in the section 4.2 of Guo et al. [2017a], respectively. In applying ISORROPIA-

II, we assumed no compositional dependence on particle size, treating the measured 

chemical constituents as bulk PM1 or PM2.5 properties, and that the aerosol (NH4
+, SO4

2-, 

NO3
-) was internally mixed and composed of a single aqueous phase that contained the 

inorganic species, without phase separations that could affect pH (along with partitioning 

of semivolatile inorganic species). In Beijing and Xi’an, the large amounts of nitrates 

present in the aerosol (which exhibit very low efflorescence relative humidity) and other 

dissolved electrolytes and organics that further depress crystallization [Seinfeld and 

Pandis, 2006] strongly favor the presence of a single aqueous phase. pH calculated under 

these assumptions (bulk properties, no phase separations, dissolved components in 

equilibrium with the gas phase) is supported by the ability of ISORROPIA-II to reproduce 

independently measured gas and particle phase semivolatiles concentrations (e.g. NH3, 

HNO3, HCl). It should be noted that Wang et al. [2016] heavily relied on the usage of 

aerosol molar ratios as a proxy of acidity, which have been shown to not represent pH well 

[Guo et al., 2015; Hennigan et al., 2015; Guo et al., 2016; Weber et al., 2016]. pH levels 

reported in that study were carried out with ISORROPIA-II but in stable mode and were 

evaluated only by predicted equilibrium NH3 levels by the model. Evaluation of model pH 

based on predicted NH3 (or HNO3) alone is insufficient because gas phase predictions are 
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insensitive to pH errors (Figure 7-1; also shown as Figure B-3 for HNO3). Particle phase 

concentrations, such as NH4
+, NO3

-, Cl-, are however sensitive to the assumption of phase 

state assumed by ISORROPIA-II and should be used for evaluation purposes (Figure 7-1), 

which were not carried out by Wang et al. [2016]. When carrying out such an evaluation 

(Figure 7-1), the metastable option reproduces aerosol NH4
+, NO3

-, Cl-  considerably better 

than assuming a stable aerosol, hence pH calculations from the metastable option of the 

model are more consistent with observed thermodynamic partitioning, hence used here. 

Comparing measured and predicted particle-phase fractions (e.g. ε(NH4
+) = NH4

+/(NH4
+ + 

NH3)) provides a means for evaluation of the predicted pH. Cheng et al. [2016] also carried 

out estimates of aerosol pH using ISORROPIA-II with the assumption of metastable 

aerosol, but a combination of forward and reverse-mode calculations were used; the strong 

dependence of pH with size [Fang et al., 2017] and the extreme sensitivity of ammonia 

equilibrium vapor pressure to small errors in aerosol NH4
+ when pH approaches neutral 

conditions [Hennigan et al., 2015] also makes pH assessments subject to considerable 

uncertainty. 

The approach for generating the contour plots of Figure 7-2 is as follows. Average RH, T, 

and total NO3
- (HNO3 + NO3

-) for the eastern US or Beijing in wintertime, along with a 

selected sulfate concentration, are input to ISORROPIA-II. Total NH4
+ (NH3 + NH4

+) is 

left as the free variable. The equilibrium concentrations of various components (e.g., gas 

phase NH3, and particle phase NH4
+, SO4

2-, and NO3
-) and particle pH (along with other 

variables) are predicted by ISORROPIA-II. Data for the contour plots are generated by 

varying sulfate from 0.1 to 100 µg m-3 while equilibrated NH3 covers from a wide range 
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between 0.1 and 1000 µg m-3 (0.13 - 1333 ppbv at STP). The calculation of the sensitivity 

lines in Figure 7-2 utilizes a simpler approach than the above due to fixed sulfate 

concentration at the reported campaign averages, which can be found in Table 7-1. 

 
Figure 7-2 Sensitivity of PM1 pH to gas-phase ammonia (NH3) and PM1 sulfate (SO4

2-) 
concentrations. The results are predictions from a thermodynamic analysis assuming 
equilibrium between the gas and particle phases for typical winter conditions (RH = 58%, 
T = 273.1K) in (a) the eastern U.S. with low total NO3

- (HNO3 + NO3
-) concentrations, 2.2 

µg m-3, and (b) Beijing haze pollution periods with high total NO3
-, 26 µg m-3. Boxes define 

observed concentration ranges for the eastern U.S. and Beijing and open symbols represent 
mean NH3 and SO4

2- conditions. Average total NO3
- for eastern U.S., Beijing (BJ) clean, 

BJ transition, BJ polluted were 2.2, 6.6, 18, 26 μg m-3, respectively. Since total NO3
- during 

Beijing clean and transition periods were 6.6 µg m-3 and 18 µg m-3, respectively, graph (a) 
better represents the Beijing clean period and graph (b) better for the Beijing transition 
period. 
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Table 7-1 The study average aerosol composition and meteorological conditions for Figure 2 ISORROPIA-II input. The reported 
concentrations and RH, T are based on field measurements unless noted specifically. Total NH4

+ (NH3 + NH4
+) is left as the free variable 

for ISORROPIA-II calculations. The high pH predicted at Beijing and Xi’an indicate > 99% total NO3
- (HNO3 + NO3

-) is NO3
-, so no 

report of HNO3 data causes negligible bias.  

Region/Location SE US NE US SW US Greece Beijing, China Xi’an, China 
Campaign SOAS WINTER CalNex (Biomass burning)d (Clean) (Polluted) (Clean) (Polluted) 
Sampling type Ground Aircraft Ground Ground Ground Ground Ground 
PM cut size PM1&PM2.5

a PM1 PM1 PM2.5
c PM1 PM1 PM2.5 

Year 2013 2015 2010 2012&2014 2013 2013 
Season Summer Winter (Early) Summer Summer&Winter Winter Winter 
Na+, μg m-3 0.03 0 0 0.77 0.08 0 0 3.6 4.2 
SO4

2-, μg m-3 1.73 1.02 2.86 1.88 1.66 4.2 14 5.9 38 
Total NH4

+, μg m-3 0.78 0.50 3.44 2.54 1.02 9.5 33.5 13 44.3 
Total NO3

-, μg m-3 0.45 2.21 10.22 8.19 3.36 6.6 18 8.7 33 
Cl-, μg m-3 0.02 0 0 0.64 0.20 0.8 1.6 4.0 14 
Ca2+, μg m-3 0 0 0 0 0 0 0 1.6 2.3 
K+, μg m-3 0 0 0 0 0.36 0 0 1.3 4.6 
Mg2+, μg m-3 0 0 0 0 0 0 0 0.2 0.3 
RH, % 74 58 79 87 68 40e 56 46 68 
T, °C 25 0 18 18 20 0.4 0.9 5.7 4.1 
NH4

+, μg m-3 0.46 0.50 2.06 1.79 1.02 4.7 20 4.0 25 
NH3, μg m-3 0.39 0.10b 1.37 0.75 \ 4.8 13.5 9.0 17.3 
NO3

-, μg m-3 0.08 0.80 3.58 3.74 1.79 6.6 18 8.7 33 
HNO3, μg m-3 0.36 1.41 6.65 4.45 0.91 \ \ \ \ 
Reported pH 0.9 ± 0.6 0.8 ± 1.0 1.9 ± 0.5 2.7 ± 0.3 2.8 ± 0.6 \ \ \ \ 

Reference [Guo et al., 
2015] 

 [Guo et al., 
2016] [Guo et al., 2017a] [Bougiatioti et al., 

2016, 2017] [Wang et al., 2016] 

ISO
R

R
O

PIA
-II input 
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a PM2.5 was sampled in the 1st half and PM1 sampled in the 2nd half of the study; various parameters were similar in both cases, crustal components were higher in 
PM2.5, but generally low so differences had minor effects, e.g., PM2.5 Na+ was 0.06 ± 0.09 μg m-3 and PM1 Na+ was 0.01 ± 0.01 μg m-3; b Prediction based on 
iteration; c Only the last week of CalNex; d Averaged from the identified biomass burning plumes from Crete and Athens studies due to the similar pH; e  The 
reported 21% RH was too low for a completely aqueous aerosol, therefore, not suitable for discussion on pH and pH affected aqueous reactions in this study. An 
assumed 40% RH is applied, as the efflorescence RH of ammonium sulfate is right below 40% [Tang and Munkelwitz, 1994]. 
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7.4 Results 

To understand the major drivers of aerosol acidity, we explore pH levels for aerosol of 

increasing chemical complexity, and its sensitivity to NH3 levels found throughout the 

world; we focus on two well-characterized “extremes” of anthropogenic influence: the 

relatively clean southeastern US and the heavily polluted regions of Beijing and Xi’an, 

China. In our analysis, we first focus on the simplest possible composition that is 

atmospherically relevant: aerosol dominated by NH4
+, HSO4

-/SO4
2-, i.e., where the effects 

of NO3
-, Cl- or nonvolatile cations (Na+, K+, Ca2+, Mg2+) is negligible. The summertime 

southeastern US meets this criteria, and was thoroughly studied by Weber et al. [2016]; the 

same study predicted that large amounts of NH3, ~ 160 µg m-3 (220 ppbv), is required for 

equilibrium with a deliquesced ammonium sulfate aerosol. Under such conditions, aerosol 

pH is equal to 3.2. The pH drops to about 0.1 for aerosol composed of deliquesced 

ammonium bisulfate, requiring a low gas-phase NH3 level of 0.06 µg m-3 (0.08 ppbv) to be 

in equilibrium. The transition from NH4HSO4 to (NH4)2SO4 aerosol increases equilibrium 

NH3 by 2700 times and aerosol acidity by roughly 3 pH units, regardless of SO4
2- level in 

the range of 0.1-10 µg m-3. Expanding the thermodynamic analysis to include the effects 

of other minor inorganic constituents and organic water found in the southeastern US 

aerosol do not change this finding; hence a 10-fold increase in NH3 increases aerosol pH 

by about one unit over a wide range of ambient NH3 and SO4
2- concentration (0.1-10 µg 

m-3) [Weber et al., 2016]. 

For a more chemically-complex aerosol, where pH is controlled by the NH4
+, HSO4

-/SO4
2- 

and NO3
- system (wintertime Beijing and Xi’an meet this criteria; [Cheng et al., 2016; 
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Wang et al., 2016]), co-condensation of gas phase NH3 occurs with HNO3 to form NH4NO3 

aerosol if the ambient temperature is low enough and sufficient liquid water content is 

present [Guo et al., 2015]. This co-condensation also reduces the concentration of 

hydronium ions in the aerosol aqueous phase (i.e., increases pH) because the salts formed 

are less acidic than sulfate, and the additional condensed aerosol water further dilutes the 

aqueous phase [Guo et al., 2016; Guo et al., 2017a]. The response of pH to NH3 in this 

more complex aerosol may differ from the simpler NH4
+, HSO4

-/SO4
2 system discussed 

above. To study this, we carry out pH calculations for T and RH conditions representative 

of the eastern US and Beijing during wintertime (~0°C and 58% RH; [Guo et al., 2016; 

Wang et al., 2016]) under conditions of “low” (HNO3 + NO3
- = 2.2 µg m-3, characteristic 

of eastern US), and “high” (HNO3 + NO3
- = 26 µg m-3; characteristic of Beijing haze) total 

inorganic nitrate levels. The results of the simulations are shown in Figure 7-2a and b, 

respectively. Regardless of total NO3
- concentration, at any SO4

2- concentration from 0.1 

to 100 µg m-3, a 10-fold increase in NH3 raises pH by one unit over a wide range of NH3 

concentrations (0.1 to 1000 µg m-3). In Figure 7-2a, a weak sensitivity of pH to SO4
2- is 

predicted for SO4
2- above 10 µg m-3, similar to the situation found in the southeastern US 

in summer [Weber et al., 2016]. For this SO4
2- range, SO4

2- mass is high enough to 

dominate over any effect of NO3
- on water uptake and pH, and maintains aerosol pH at 2.5 

or below; for lower SO4
2-

 concentrations, NO3
- becomes increasingly important (for 

constant NH3) and pH increases accordingly to levels that may range between 3 and 4.5 for 

atmospherically-relevant levels of NH3. At higher levels of total nitrate (Figure 7-2b), the 

transition from SO4
2--controlled acidity (pH < 2.5) and NO3

--dominant acidity (pH > 3) 
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occurs at levels above 100 μg m-3 SO4
2-. Therefore, for conditions of modest sulfate and 

high ammonia and total nitrate levels, acidity in Beijing tends to be reduced compared to 

the southeastern US and is largely controlled by a “nitrate-dominated” pH level. 

Based on the above, the important question on what controls aerosol pH can be seen to be 

the relative amounts of HNO3 + ΝΟ3
-, SO4, and NH3 + NH4

+ of the system considered. The 

boxes indicated in Figure 7-2 define characteristic areas corresponding to eastern US and 

Beijing aerosol (similar RH and T in winter); the pH levels inside these boxes then 

characterize the inherent particle acidity level of each location. The NH3 in the eastern US 

normally ranges between 0.1 and 2 µg m-3 with some extremes as high as 3-4 µg m-3 

according to field measurements [You et al., 2014a], and the Ammonia Monitoring 

Network (AMoN, http://nadp.sws.uiuc.edu/amon) [Puchalski et al., 2015]. NH3 levels in 

Beijing were observed to be much higher, up to 38 µg m-3 (51 ppbv), during a heavy haze 

event in 2015 (Table S2 in Wang et al. [2016]). SO4
2- concentration in the same event 

reached a maximum of 38 µg m-3. The lowest pH is predicted for the eastern US due to the 

lower NH3 and SO4
2- compared to Beijing in Figure 7-2. However, for a wide range in NH3 

and SO4
2-, particle pH for Beijing during clean, transition, and polluted periods are all 

around 4, and do not exceed 5. Although an extreme maximum of 300 µg m-3 SO4
2- was 

reported in another wintertime in Beijing in 2013 [Cheng et al., 2016], the weak 

dependency of pH on SO4
2- (> 10 µg m-3) results in a somewhat lower pH but still within 

the sub-100 µg m-3 SO4
2- ranges discussed above. 

The main conclusions derived from Figure 7-2 do not change when the thermodynamic 

analysis is expanded to include a broader temperature range or the small amount of fine 

http://nadp.sws.uiuc.edu/amon
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mode nonvolatile cations found in each region. This is shown in Figure 7-3, which presents 

the equilibrium particle pH versus ammonia for summertime (T ~20 °C) and wintertime (T 

~0 °C) conditions at different locations. Partitioning of NH3 and HNO3 towards particle-

phase NH4
+ and NO3

- is enhanced in lower temperatures, which as expected tends to 

increase particle pH. All lines become parallel for > 20 µg m-3 NH3, exhibiting a sensitivity 

of roughly one unit pH unit increase per 10-fold increase in NH3. The slope of the eastern 

US summertime line (green) is constant throughout the entire NH3 range due to negligible 

effects of NO3
- or other nonvolatile cations on pH. The lowest range of NH3 and pH (0.9) 

is also found in the eastern US in summer. Due to the impact of high HNO3 and NO3
- 

observed in the southwestern US, the lines shift to higher pH levels, despite a T, RH, and 

NH3 range similar to the eastern U.S. In that case the study mean PM2.5 pH (2.7) is nearly 

one unit higher than PM1 pH (1.9) owing to nonvolatile cations from sea-salt being 

internally mixed with PM2.5, confirmed by particle mixing states measurements and 

thermodynamic simulations [Guo et al., 2017a]. The difference between the southwestern 

US PM1 (red line) and PM2.5 (orange line) decreases with NH3, as the influence of seasalt 

on particle pH decreases as more and more ammonium nitrate forms. Biomass burning 

plumes observed in Greece reached the highest PM1 pH (2.8) from the effects of K+ and 

NH3 co-condensation with HNO3 [Bougiatioti et al., 2016; Bougiatioti et al., 2017] and the 

corresponding sensitivity line (yellow) converges with the southwestern US Some extreme 

concentrations of NH3 (e.g. 10 µg m-3) in the US would increase pH to 3.5 in summer 

conditions. In winter conditions, although the eastern U.S. line (purple) is very close to the 

Beijing lines (blue) and Xi’an polluted (black) line, the actual pH is much lower in the 
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eastern US due to a tenfold or more lower NH3 concentration (on the level of 0.10 µg m-

3); by comparison, Beijing observed on average NH3 4.8 µg m-3 and 12.8 µg m-3 during 

clean and polluted periods respectively, and Xi’an observed even higher NH3 levels at 9.0 

µg m-3 and 17.3 µg m-3 for clean and polluted periods. Owing to the high levels of NH3, 

the PM1 pH of Beijing is predicted to be 4.2 regardless of the air quality condition (clean 

or polluted), and the PM2.5 pH of Xi’an are predicted to be 4.6 and 5.4. The highest pH in 

Xi’an is caused by a large fraction of nonvolatile cations (Na+, Ca2+, K+, Mg2+; 31% to total 

aerosol ions by moles); given however that Xi’an data corresponds to PM2.5, and that the 

mixing state between the PM1 and PM2.5 can cause pH to vary up to 3 units [Fang et al., 

2017], it is likely that the aerosol pH in Xi’an exhibits a strong size-dependence that is not 

reflected in a simple bulk measurement and thermodynamic analysis used here. The 

maximum NH3 in Beijing and Xi’an increase pH up to 4.5 and 5.0, respectively, while the 

maximum NH3 in the southwestern US increases pH up to 3.3 in the summertime. 
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Figure 7-3 Equilibrium particle pH versus a wide range of ammonia (NH3) based on 
average aerosol and meteorological conditions (RH, T) at each site. The open symbols are 
the study mean pH and NH3, and shaded backgrounds show the upper limit of the pH range 
for each study (shading color matches color of study line given in the legend). Note that 
Xi’an polluted and WINTER PM1 lines overlap showing inherent consistency between the 
two (also true for Beijing). For the WINTER study (the only aircraft data shown), the point 
represents a predicted NH3 level 0.1 μg m-3 (pH = 2), whereas the reported campaign 
average pH (0.8 ± 1.0) is lower due to lower pH aloft. 

 

7.5 Implications for sulfate formation mechanism 

The sensitivity of pH to NH3 is found to be similar between China and eastern US, despite 

the 10-fold or higher mass loadings of aerosols and gases of the former during intense haze 

pollution events. We show that for a given set of meteorological conditions (temperature 

and RH), roughly a 10-fold decrease in NH3 concentrations is required to drop pH levels 
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by one unit, revealing an inherent consistency between vastly different aerosol systems. 

The pH levels between the eastern US, Beijing and Xi’an can indeed be related to the 

inherently different concentrations of NH3 found in each environment. The average pH of 

Beijing PM1 is predicted to be 4.2 (the same in clean and polluted periods), and the highest 

pH is about 4.5 for the maximum NH3 levels observed. Nonvolatile cations do not appear 

to considerably affect PM2.5 pH at Xi’an (12% mole fraction to total ions for the polluted 

period) compared to Beijing PM1, except when these cations become a large fraction of 

PM2.5 (31% mole fraction found during the clean period). Overall, Xi’an PM2.5 may reach 

a slightly higher maximum pH (5.0) than Beijing, due to even higher NH3 levels than 

Beijing. However, for all the pH ranges we find, none are in the range to provide consistent 

and sufficient alkalinity for the NO2 oxidation pathway to overwhelm sulfate formation 

(Figure 7-4) based on the model of Cheng et al. [2016]. Given this, and that most of the 

sulfate forms where particles are most acidic (PM1 or PM2.5), it is unlikely that NO2-

mediated oxidation of SO2 is a major SO4
2- formation route. Under conditions where 

alkalinity is sufficient to promote NO2 oxidation, it does not form due to the large amounts 

of NH3, but rather only from the presence of nonvolatile cations, such as those found in 

mineral dust and sea-salt and associated carbonates that maintain pH at levels above 6. 

Because these species are generally limited to particles sizes larger than 1 µm diameter 

[Fang et al., 2017], this route is highly unlikely to contribute to PM1 sulfate production, 

including in Beijing [Tian et al., 2014]. 
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Figure 7-4 Aqueous phase sulfate production by sulfur dioxide oxidation under 
characteristic conditions adapted from Cheng et al. [2016] and plotted with pH ranges 
calculated in this study. Lines represent sulfate production rates calculated for different 
aqueous phase reaction pathways with oxidants: hydrogen peroxide (H2O2), ozone (O3), 
transition metal ions (TMIs), and nitrogen dioxide (NO2). The gray-shaded area indicates 
characteristic pH ranges for aerosols during severe haze episodes in Beijing, calculated in 
this study. These conditions are contrasted to the lower pH of eastern US aerosol. The plot 
shows the NO2 pathway (red line) is not the main route for sulfate production. 

 

The mildly acidic levels associated with excessive amounts of ammonia, however, could 

promote high rates of oxidation through transition metal chemistry, which overwhelms all 

other oxidation pathways for pH levels up to 4.5 (Figure 7-4). The observed high levels of 

soluble transition metals that coincide with sulfate at the particle level in the PM2.5 range 

in US urban air masses [Fang et al., 2017] and polluted air masses sampled off the coast 

of China [Bougiatioti et al., 2017] supports that this may be an important pathway for 

explaining the high sulfate production rates, provided that the aerosol pH persists at the 
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levels predicted here for sufficient time for the slow acid dissolution process of recalcitrant 

species such as iron [Meskhidze et al., 2003]. Our analysis shows that aerosol with neutral 

pH is highly unlikely to be driven by excessive amounts of NH3; measurements of gas-

phase and PM1/PM2.5 aerosol composition at rapid temporal resolution however are still 

required to show the frequency at which pH exceeds 4.5 during peak haze events, and 

whether it is possible to approach or exceed the pH 7.6 level in Beijing reported by Wang 

et al. [2016]. Our analysis also suggests this may not be likely, but measurements of size-

resolved aerosol composition (including soluble transition metals) and gas-phase 

constituents at sufficient temporal resolution will provide the definitive observational 

constraints. We have shown that increasing NH3 does not lead to a substantially more 

neutral aerosol, minimizing the importance of a proposed SO2-NOx sulfate formation route. 

An alternative explanation for the recent China winter haze events is changes in weather 

patterns that have strengthened stagnation conditions [Zou et al., 2017]. 
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CHAPTER 8. FUTURE WORK 

The thesis presents the current most reliable method to quantify fine particle pH via a 

thermodynamic modeling with accurate observational aerosol and gas, RH and T data. pH 

is well constrained by sensitive gas-particle partitioning pairs, not completely in the gas or 

particle phase. The method shows agreement between predicted and observed particle 

liquid water, required for pH calculation. pH proxies, such as ion balance and molar ratio, 

have been widely used in the past analysis of particle acidity for lack of methods to retrieve 

particle pH. However, we have shown that those pH proxies are not reliable and don’t 

necessarily correlate with pH. Improper use of pH proxies may lead to misunderstanding 

of particle acidity and its impacts on health and climate. The new pH prediction method 

allows a more accurate analysis either in lab or in field. The past analysis using pH proxies 

or measuring particle pH in dilute extracted solutions (not accurate, e.g., [Last, 1991]) to 

investigate particle acidity should be revisited. The new method also shows high potential 

of application in exploring unknowns, since the formation and evolution of aerosols are 

complex and not fully understood. For example, the haze events in China has caused severe 

and adverse impacts on public health and visibility but the mechanisms of haze formation 

have not been elucidated. The Chapter 7 presents the particle pH in China haze events and 

the production rate of aerosol sulfate is highly pH dependent. Therefore, pH is an important 

particle property that needs to be understood for effectively controlling haze in China. 

We have two ongoing research projects following the thesis work. First, aerosol nitrate 

reduction has been a hot topic in areas with high nitrate abundance, such as Europe. Several 
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studies using regional or global models suggest that controlling ammonia that is mainly 

produced from agricultural activities is the key to reduce nitrate (e.g. [Bauer et al., 2016; 

Pozzer et al., 2017]). The conclusions require validations as the models used in those 

studies often have issues in predicting nitrate and nitric acid accurately. Our pH prediction 

method has shown the unique ability to accurately predicting HNO3-NO3
- partitioning and 

to concisely explain the interactions between the partitioning, pH, 𝑊𝑊𝑖𝑖 , T, and activity 

coefficients by S curves in Chapter 3 and 4. The sensitivity of pH to ammonia has been 

extensively discussed in Chapter 5 and 7, showing an inherent consistency between vastly 

different aerosol systems: roughly 10-fold increase in ammonia is required to increase pH 

by one unit. Therefore, we have linked nitrate and ammonia via pH in the thesis work. We 

plan to look closely into the observational dataset collected in Cabauw, the Netherlands 

[Schlag et al., 2016] and provide scientific evidence for nitrate reduction policies. Second, 

we focus on the gas-particle partitioning of inorganic species in the thesis and plan to 

investigate the organic acids that are also affected by pH and not well understood. Organic 

acids (e.g. formic acid and oxalic acid) are typically semivolatile and weaker than inorganic 

acids (e.g. sulfuric acid and nitric acid). Low particle pH in the SE US in summer time is 

expected to drive most organic acids into gas phase, but whether those organic acids are 

affected by pH and whether they are in thermodynamic equilibrium states require further 

investigation. The activity coefficients of organic acids are not well determined as 

inorganic acids, making the organic acids studies difficult, but could be constrained by S 

curves. Investigating organic acids may provide us insights on secondary organic aerosol 

formations. For example, oxalate is a product of many aqueous phase organic reactions. 
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One limitation with the new pH prediction method is the assumption of gas-particle 

equilibrium, that means it only works for fine particles that are in equilibrium but not for 

coarse particles that are probably not due to kinetic limitations. It also doesn’t work for 

freshly formed fine particles that have not equilibrated with gas phase yet. The other 

limitation is that the new method is based on bulk aerosol properties input. Therefore, it 

captures the bulk (i.e., average) pH but cannot tell the pH variation range at a particle size. 

The new method should be compared to direct particle acidity measurements for further 

evaluation. However, that is not possible at the current stage due to limitation in 

measurement techniques. A recently developed and indirect method, that infers H+ activity 

based on the ratio of SO4
2- and HSO4

- ions, is only applicable to determine pH for particles 

larger than 10 μm and requires activity coefficients calculated by thermodynamic modeling 

[Rindelaub et al., 2016]. In the future, I look forward to developing new technique to 

directly measure single fine particle pH and comparing to thermodynamic modeling 

results. 
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SUPPORTING MATERIALS FOR CHAPTER 2 

A.1  Nephelometer RH sensor calibration 

The nephelometer RH sensors were calibrated by placing the sensors in a sealed container 

above aqueous saturated salt solutions at known temperatures for an accurate prediction of 

equilibrium RH [Greenspan, 1977]. More than 3hrs were allowed for each salt solution to 

reach water vapor saturation. 

 

Table A-1 Theoretical and measured RH for saturated salt solution at 20℃. 

Compound Equilibrium RH, % Measured RH, % 

K2CO3 43.16 ± 0.33 40.39 ± 0.47 

NaCl 75.47 ± 0.14 71.00 ± 0.00 

KCl 85.11 ± 0.29 80.21 ± 0.38 

KNO3 94.62 ± 0.66 88.60 ± 0.47 

 
Figure A-1 A linear regression fit of measured RH vs. theoretical RH. 
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A.2  LWC measurement principle by nephelometers 

Particle water was indirectly measured by two nephelometers. The difference between 

ambient and dry scattering coefficients (𝜎𝜎𝑠𝑠𝑠𝑠) is assumed to be caused by the loss of water. 

The ratio between ambient scattering coefficient and dry scattering coefficient is referred 

to as 𝑓𝑓(𝑅𝑅𝑅𝑅). 

 𝑓𝑓(𝑅𝑅𝑅𝑅) =
𝜎𝜎𝑠𝑠𝑠𝑠(𝑎𝑎m𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)
𝜎𝜎𝑠𝑠𝑠𝑠(𝑑𝑑𝑑𝑑𝑑𝑑) =

∫𝜋𝜋4𝑄𝑄𝑠𝑠,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐷𝐷𝑝𝑝,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
2𝑁𝑁(𝐷𝐷𝑝𝑝)𝑑𝑑𝐷𝐷𝑝𝑝

∫𝜋𝜋4 𝑄𝑄s,𝑑𝑑𝑑𝑑𝑑𝑑𝐷𝐷𝑝𝑝,𝑑𝑑𝑑𝑑𝑑𝑑
2𝑁𝑁(𝐷𝐷𝑝𝑝)𝑑𝑑𝐷𝐷𝑝𝑝

 (A-1) 

where 𝑄𝑄𝑠𝑠,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  and 𝑄𝑄𝑠𝑠,𝑑𝑑𝑑𝑑𝑑𝑑  are scattering efficiencies in ambient and dry conditions, 

respectively. 𝑁𝑁(𝐷𝐷𝑝𝑝) is the particle number distribution function. If 𝑁𝑁𝑡𝑡 is the total number 

concentration, and 𝐷𝐷𝑝𝑝���� is the diameter of average surface, and 𝑄𝑄𝑠𝑠,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎������������� and 𝑄𝑄𝑠𝑠,𝑑𝑑𝑑𝑑𝑑𝑑�������� are 

average scattering efficiencies, then, 

 𝜎𝜎𝑠𝑠𝑠𝑠(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎)
𝜎𝜎𝑠𝑠𝑠𝑠(d𝑟𝑟𝑟𝑟)

=
𝜋𝜋
4𝑄𝑄𝑠𝑠,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�������������𝐷𝐷𝑝𝑝,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�������������2𝑁𝑁𝑡𝑡

𝜋𝜋
4𝑄𝑄𝑠𝑠,𝑑𝑑𝑑𝑑𝑑𝑑��������𝐷𝐷𝑝𝑝,𝑑𝑑𝑑𝑑𝑑𝑑��������2𝑁𝑁𝑡𝑡

=
𝑄𝑄𝑠𝑠,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�������������𝐷𝐷𝑝𝑝,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�������������2

𝑄𝑄𝑠𝑠,𝑑𝑑𝑑𝑑𝑑𝑑��������𝐷𝐷𝑝𝑝,𝑑𝑑𝑑𝑑𝑑𝑑��������2
 (A-2) 

 𝐷𝐷𝑝𝑝,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎������������� = 𝐷𝐷𝑝𝑝,𝑑𝑑𝑑𝑑𝑑𝑑���������𝑓𝑓(𝑅𝑅𝑅𝑅)𝑄𝑄𝑠𝑠,𝑑𝑑𝑑𝑑𝑑𝑑�������� 𝑄𝑄𝑠𝑠,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎��������������  (A-3) 

We assume: 

 
𝑄𝑄𝑠𝑠,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�������������

𝑄𝑄𝑠𝑠,𝑑𝑑𝑑𝑑𝑑𝑑�������� ≈ 1 (A-4) 

Combining Equations A-3 and A-4, we get, 

 𝐷𝐷𝑝𝑝,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎������������� = 𝐷𝐷𝑝𝑝,𝑑𝑑𝑑𝑑𝑑𝑑���������𝑓𝑓(𝑅𝑅𝑅𝑅) (A-5) 

LWC is then equal to the differences between ambient particle volume and dry particle 

volume. 
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 𝐿𝐿𝐿𝐿𝐿𝐿 = �
𝜋𝜋
6
𝐷𝐷𝑝𝑝,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�������������3𝑁𝑁𝑡𝑡 −

𝜋𝜋
6
𝐷𝐷𝑝𝑝,𝑑𝑑𝑑𝑑𝑑𝑑��������3𝑁𝑁𝑡𝑡� 𝜌𝜌𝑤𝑤 (A-6) 

where 𝜌𝜌𝑤𝑤 is water density (constant 1 g cm-3 is applied). Furthermore, 

 𝐷𝐷𝑝𝑝,𝑑𝑑𝑑𝑑𝑑𝑑��������3 =
𝑚𝑚𝑝𝑝

𝜋𝜋
6 𝜌𝜌𝑝𝑝𝑁𝑁𝑡𝑡

 (A-7) 

where 𝑚𝑚𝑝𝑝 is dry PM2.5 mass concentration and 𝜌𝜌𝑝𝑝 is the density of dry aerosol. For SOAS, 

dry PM2.5 mass concentrations were measured by a TEOM (tapered element oscillating 

microbalance, 1400a, Thermo Fisher Scientific Inc., operated by Atmospheric Research & 

Analysis Inc.). Combining Equations A-5, A-6, and A-7 gives 

 
𝑓𝑓(𝑅𝑅𝑅𝑅)_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = [𝑓𝑓(𝑅𝑅𝑅𝑅)1.5 − 1]𝑚𝑚𝑝𝑝𝜌𝜌𝑤𝑤 𝜌𝜌𝑝𝑝⁄  (A-8) 

where 𝑓𝑓(𝑅𝑅𝑅𝑅)_water refers to the particle water calculated by the above method. 𝜌𝜌𝑝𝑝 was 

estimated from the particle composition including AMS total organics, ammonium, and 

sulfate, which accounted for 90% of the measure PM2.5 dry mass (TEOM) based on the 

SOAS study average. A typical organic density 1.4 g cm-3 is assumed [Turpin and Lim, 

2001; King et al., 2007; Engelhart et al., 2008; Kuwata et al., 2012; Cerully et al., 2014], 

and the density of ammonium sulfate is assumed to be 1.77 g cm-3 [Sloane et al., 1991; 

Stein et al., 1994]. 𝜌𝜌𝑝𝑝  is calculated to be 1.49 ± 0.04 g cm-3 (n = 4,393) using the following 

relation. 

 
𝜌𝜌𝑝𝑝 =

1
𝜀𝜀𝑁𝑁𝑁𝑁4++𝑆𝑆𝑆𝑆42− 1.77⁄ + 𝜀𝜀𝑂𝑂𝑂𝑂𝑂𝑂/1.4

 (A-9) 

where 𝜀𝜀(𝑥𝑥) is the mass fraction of the species 𝑥𝑥 in dry aerosol. The diurnal variation of 

aerosol dry density is shown in Figure A-2. 
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Figure A-2 Predicted PM2.5 dry density diurnal profile. Median hourly density averages 
and standard error bars at local hour are plotted. 

 

Equation A-4 is a simplified assumption that introduces error in the calculated LWC. To 

quantify this, we first need to determine the actual 𝑄𝑄𝑠𝑠,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎������������� 𝑄𝑄𝑠𝑠,𝑑𝑑𝑑𝑑𝑑𝑑���������  and from the 

relationship of liquid water, 𝑓𝑓(𝑅𝑅𝑅𝑅) and scattering efficiency 

 𝐿𝐿𝐿𝐿𝐿𝐿 = ��
𝑓𝑓(𝑅𝑅𝑅𝑅)

𝑄𝑄𝑠𝑠,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎������������� 𝑄𝑄𝑠𝑠,𝑑𝑑𝑑𝑑𝑑𝑑���������
�
1.5

− 1�𝑚𝑚𝑝𝑝𝜌𝜌𝑤𝑤 𝜌𝜌𝑝𝑝⁄   (A-10) 

we can estimate the LWC error associated with using Equation A-4 in place of the actual 

𝑄𝑄𝑠𝑠,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎������������� 𝑄𝑄𝑠𝑠,𝑑𝑑𝑑𝑑𝑑𝑑��������� . 

To determine the actual 𝑄𝑄𝑠𝑠,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎������������� 𝑄𝑄𝑠𝑠,𝑑𝑑𝑑𝑑𝑑𝑑��������� ,  we need to compute the scattering efficiency 

for the dry and humidified particles. For this, we need to determine the dry and wet particle 

size distributions and their corresponding refractive indices. Dry size distributions are 

obtained from in situ measurements [Nguyen et al., 2014b], while the corresponding 

humidified distributions were calculated for predetermined values of the particle diameter-
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based growth factor,  𝑔𝑔𝑔𝑔𝐷𝐷 = 𝐷𝐷𝑝𝑝,𝑤𝑤𝑤𝑤𝑤𝑤 𝐷𝐷𝑝𝑝,𝑑𝑑𝑑𝑑𝑑𝑑⁄ , applied to the dry distribution. The mass 

composition of wet and dry aerosol is related to 𝑔𝑔𝑔𝑔𝐷𝐷 as follows: 

 𝑔𝑔𝑔𝑔𝐷𝐷 = �(𝑚𝑚𝑝𝑝,𝑤𝑤𝑤𝑤𝑤𝑤 𝜌𝜌𝑝𝑝,𝑤𝑤𝑤𝑤𝑤𝑤⁄ )
(𝑚𝑚𝑝𝑝 𝜌𝜌𝑝𝑝⁄ )�

3
  (A-11) 

where 𝑚𝑚𝑝𝑝,𝑤𝑤𝑤𝑤𝑤𝑤 and 𝜌𝜌𝑝𝑝,𝑤𝑤𝑤𝑤𝑤𝑤 are particle mass concentration and density at humidified (i.e., 

dry aerosol + water) condition, respectively. From observations of particle dry mass (i.e. 

TEOM) and the liquid water content calculation outlined in the main text, we can obtain 

values of 𝑔𝑔𝑔𝑔𝐷𝐷 as a function of RH (Figure A-3). In SOAS, the observed campaign-average 

𝑔𝑔𝑔𝑔𝐷𝐷 = 1.24 ± 0.15. 

  
Figure A-3 𝑔𝑔𝑔𝑔𝐷𝐷 plotted as a function of ambient RH based on the SOAS data set. 

 

The particle refractive index (𝑚𝑚𝑟𝑟) for wet and dry aerosol is determined as the volume-

average (𝑚𝑚𝑟𝑟����) of the refractive indices of all aerosol components [Seinfeld and Pandis, 

2006], 
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 𝑚𝑚𝑟𝑟���� = �𝑚𝑚𝑟𝑟,𝑖𝑖𝑓𝑓𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 (A-12) 

where 𝑚𝑚𝑟𝑟,𝑖𝑖 is the refractive index of component i, and 𝑓𝑓𝑖𝑖 is its volume fraction, and n is the 

number of constituents (including water) contained in the aerosol. The refractive indices 

of four major aerosol constituents in SOAS aerosol are listed in Table A-2 (NH4
+/SO4

2- 

molar ratio was 1.4 ± 0.5, so NH4HSO4 was assumed to be the dominant form of 

ammonium and sulfate). 𝑓𝑓𝑖𝑖  was calculated based on the mean mass loadings with or 

without LWC. LWC was computed from the particle dry mass and diameter-based growth 

factor (𝑔𝑔𝑔𝑔𝐷𝐷). 

 𝑚𝑚𝑤𝑤 =
𝑚𝑚𝑝𝑝𝜌𝜌𝑤𝑤
𝜌𝜌𝑝𝑝

(𝑔𝑔𝑔𝑔𝐷𝐷3 − 1) (A-13) 

where 𝑚𝑚𝑤𝑤, 𝜌𝜌𝑤𝑤 are LWC mass concentration and density, respectively; 𝑚𝑚𝑝𝑝, 𝜌𝜌𝑝𝑝 are the dry 

PM2.5 mass and density, respectively. From the above, we obtain 𝑚𝑚𝑟𝑟 = 1.539 − 0.023i (𝑔𝑔𝑔𝑔𝐷𝐷 

= 1, i.e. dry particle), 𝑚𝑚𝑟𝑟 = 1.488 − 0.017i (𝑔𝑔𝑔𝑔𝐷𝐷 = 1.1), 𝑚𝑚𝑟𝑟 = 1.452 − 0.013i (𝑔𝑔𝑔𝑔𝐷𝐷 = 1.2), 

𝑚𝑚𝑟𝑟 = 1.441 − 0.012i (𝑔𝑔𝑔𝑔𝐷𝐷 = 1.24), 𝑚𝑚𝑟𝑟 = 1.427 − 0.010i (𝑔𝑔𝑔𝑔𝐷𝐷 = 1.3), and 𝑚𝑚𝑟𝑟 = 1.408 − 

0.008i (𝑔𝑔𝑔𝑔𝐷𝐷 = 1.4). 
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Table A-2 Refractive indices (𝑚𝑚𝑟𝑟 = 𝑛𝑛 + 𝑖𝑖𝑖𝑖 ), densities, and mass loadings of particle 
components. 

species n k ρ, g cm-3 mean concentration, 
µg m-3 𝑚𝑚𝑟𝑟 source 

H2O 1.333 0 1.0 4.50 [Seinfeld and Pandis, 2006] 

NH4HSO4 1.473 0 1.77 2.19 [Seinfeld and Pandis, 2006] 

Organics 1.55 0 1.4 3.32 [Stelson, 1990; Hand and 
Kreidenweis, 2002] 

Black carbon 1.96 −0.66 2 0.26 [Stelson, 1990] 

Note: 𝑚𝑚𝑟𝑟,𝐻𝐻2𝑂𝑂 and 𝑚𝑚𝑟𝑟,𝑁𝑁𝑁𝑁4𝐻𝐻𝐻𝐻𝑂𝑂4 refer to the refractive indices at λ = 589nm. 

 

The size distributions and the refractive indices calculated as a function of 𝑔𝑔𝑔𝑔𝐷𝐷 are then 

introduced into Mie Theory [Wiscombe, 1980; Graaff et al., 1992] and subsequently 

integrated over the dry and humidified size distributions via the MiePlot Version 4.4 

(http://www.philiplaven.com/mieplot.htm) software to determine the respective scattering 

efficiencies. The light scattering calculations are carried out based on a single wavelength 

(λ = 530 nm) at which the nephelometer operates and assuming a temperature at the SOAS-

average value of 24.7°C. 

http://www.philiplaven.com/mieplot.htm
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Figure A-4 (a) A single spherical particle scattering efficiency (𝑄𝑄𝑠𝑠) over PM2.5 size range 
at λ = 530 nm; (b) 𝑄𝑄𝑠𝑠 ratio (𝑄𝑄𝑠𝑠,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎������������� 𝑄𝑄𝑠𝑠,𝑑𝑑𝑟𝑟𝑟𝑟��������� ) plotted versus 𝑔𝑔𝑔𝑔𝐷𝐷 for the average SOAS dry 
size distribution reported by Nguyen et al. [2014b]. 

 

On average, we find that the actual 𝑄𝑄𝑠𝑠,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎������������� 𝑄𝑄𝑠𝑠,𝑑𝑑𝑑𝑑𝑑𝑑���������   =1.06, associated with the average 

SOAS 𝑔𝑔𝑔𝑔𝐷𝐷 of 1.24 (Figure A-4b). From the correlations between RH and 𝑔𝑔𝑔𝑔𝐷𝐷 (Figure A-3) 

and between 𝑄𝑄𝑠𝑠,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎������������� 𝑄𝑄𝑠𝑠,𝑑𝑑𝑑𝑑𝑑𝑑���������   with 𝑔𝑔𝑔𝑔𝐷𝐷 (Figure A-4b), we can then apply Equation A-10 

to determine the LWC. 𝑓𝑓(𝑅𝑅𝑅𝑅)_water is then compared against LWC (Figure A-5) to 

quantify the LWC bias associated with application of Equation A-4. From the above, the 

LWC error is 10% at 𝑔𝑔𝑔𝑔𝐷𝐷 = 1.24 (RH = 76.4%), but increases to 21% at RH = 90% (Figure 

A-6). Note that the particle dry size distributions from Nguyen et al. [2014b] ranged from 

6nm to 1µm. The particles in the size range between 1µm and 2.5µm also contribute to 

particle scattering (as found by Bergin et al. [2001], but may be negligible in this case, 

since 90% PM2.5 mass was found in PM1) and make 𝑄𝑄𝑠𝑠,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎������������� 𝑄𝑄𝑠𝑠,𝑑𝑑𝑑𝑑𝑑𝑑���������  closer to 1, because 

they have similar 𝑄𝑄𝑠𝑠, as shown in Figure A-4a). 
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Figure A-5 Comparison between 𝑓𝑓(𝑅𝑅𝑅𝑅)_water (Equation A-8) and LWC calculated based 
on 𝑄𝑄𝑠𝑠,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎������������� 𝑄𝑄𝑠𝑠,𝑑𝑑𝑑𝑑𝑑𝑑���������  at specified 𝑔𝑔𝑓𝑓𝐷𝐷 (Equation A-10). ODR fits are shown. 

 
Figure A-6 𝑄𝑄𝑠𝑠,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑡𝑡������������� 𝑄𝑄𝑠𝑠,𝑑𝑑𝑑𝑑𝑑𝑑���������  and LWC error are plotted as a function of RH. The size RH 
points (28.6%, 56.6%, 71.6%, 76.4%, 82.8%, 92.0%) noted on the graph corresponds to 
𝑔𝑔𝑔𝑔𝐷𝐷 = 1, 1.1, 1.2, 1.24, 1.3, and 1.4, respectively. 

 

A.3  Particulate organic hygroscopic parameter, 𝜅𝜅𝑜𝑜𝑜𝑜𝑔𝑔 

Overall 𝜅𝜅𝑜𝑜𝑜𝑜𝑜𝑜 had a study mean (± SD) of 0.126 ± 0.059 [Cerully et al., 2014]. However, 

𝜅𝜅𝑜𝑜𝑜𝑜𝑜𝑜 data were not available during the first 20 days of SOAS field study. Therefore, 
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diurnal hourly average 𝜅𝜅𝑜𝑜𝑜𝑜𝑜𝑜 was calculated and median values are plotted in Figure A-7. 

Because 𝜅𝜅𝑜𝑜𝑜𝑜𝑜𝑜  median averages were scattered, 3-hr running averages were used to 

calculate 𝑊𝑊𝑜𝑜. 

The uncertainty of 𝜅𝜅 at 0.4% supersaturation, which was used to determine the values of 

𝜅𝜅𝑜𝑜𝑜𝑜𝑜𝑜 (representative of SOAS ambient particles), was 0.033, mentioned in Section 3.2.1 in 

Cerully et al. [2014]. Thus, dividing the absolute uncertainty of 0.033 by the mean 𝜅𝜅𝑜𝑜𝑜𝑜𝑜𝑜 

gives a relative 𝜅𝜅𝑜𝑜𝑜𝑜𝑜𝑜 uncertainty of 26%. 

 
Figure A-7 𝜅𝜅𝑜𝑜𝑜𝑜𝑜𝑜 diurnal variation. Median averages are plotted at local hours. 

 

A.4   Filter based IC analysis at all sites 

High-volume PM2.5 filters, sampled in parallel to the AMS measurement, were analyzed 

by a DIONEX IC (UTAC-ULP1 concentrator column, AG11 guard column and AS11 

anion column) to provide chemical information of the refractory ions (Na+, K+, Mg2+, Ca2+, 

PO4
3-). Filter-based nitrate is excluded due to potential artifacts [Hering and Cass, 1999; 
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Chang et al., 2000]. The PM2.5 inorganic compositions at various sites were similar, all 

dominated by SO4 (64-74%) and NH4
+ (22-31%). We found that less than 5% of the total 

PM2.5 inorganic mass was refractory ions, except RS had the highest fraction as 9%. 

 
Figure A-8 Filter-based campaign averaged inorganic composition in PM2.5 at SCAPE and 
SOAS sampling sites. The mean total concentrations of the listed ions are labeled to the 
right top of each PI chart. Filter sampling, each 23hrs, was parallel to AMS measurement. 
JST June 2012 is plotted instead of May 2012 due to lack of filter data during this period. 
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SUPPORTING MATERIALS FOR CHAPTER 3 

B.1  Instrument intercomparison for measurement of particle ionic composition 

The PILS-IC and AMS methods are explained in the main text; the other two particle ionic 

composition measurement techniques onboard the C-130 are as follows: 

PILS with a fraction collector and off-line analysis by IC for PM1: This PILS set-up was 

similar to the PILS-IC, except with a higher liquid flow rate of 0.72 mL min-1 over the 

impactor to allow collection of the PILS liquid sample into 2 mL polypropylene fraction 

collector vials. The principle of the PILS fraction collector can be found in Sorooshian et 

al. [2006]. A vial was collected every 2 min continuously during each flight. The vials 

were analyzed for carbohydrates following the method of Sullivan et al. [2014]. Inorganic 

ions were analyzed using two Dionex DX-500 ICs with a gradient pump, conductivity 

detector, and self-regenerating anion or cation SRS-ULTRA suppressor. Anion separation 

was performed using a Dionex AS-11HC analytical (4×250 mm) column using a sodium 

hydroxide gradient at a flowrate of 1.5 mL min-1. The injection volume was 600 µL and 

analysis time was 65 min. A Dionex IonPac CS12A analytical column (3×150 mm) using 

20 mM methanesulfonic acid at a flowrate of 0.5 mL min-1 was used for the cation 

separation. The injection volume and analysis time were 50 µL and 17 minutes, 

respectively.   

Filters: Fine and coarse mode water-soluble inorganic chemical species were collected via 

9 cm diameter and 1 mm thick Millipore Fluoropore Teflon filters. Filters were 
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subsequently processed using procedures described by Dibb et al. [1999; 2000]. 

Concentrations of chloride, nitrate, sulfate, oxalate, sodium, ammonium, potassium, 

magnesium, and calcium in the aqueous extracts of the teflon filters were determined by 

IC. The cut size for the filter aerosol sampling is ~ PM4. 
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Figure B-1 Sulfate and nitrate comparisons between PM1 PILS-IC, PM1 PILS with fraction 
collector, PM1 AMS, and PM4 filters for the complete WINTER study. Orthogonal distance 
regression fits are shown. 
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Figure B-2 Comparison between AMS and PILS-IC NO3

- for the complete WINTER study 
at three RH ranges: (a) 20-40%; (b) 40-60%; (c) 60-95%. Orthogonal distance regression 
fits are shown. Note that, the axis range in figure (a) is smaller. 

 

B.2  Predicted HNO3-NO3
- partitioning for semi-solid versus liquid phase aerosol states 

The ISORROPIA-II calculation presented in the main text is based on the assumption of 

“metastable” aerosols; no solid precipitate is allowed to form. Since semi-solid aerosols 

are more likely to form at low RH and T, a comparison between predicted allowing a semi-

solid phase state (ISORROPIA-II runs in stable mode) and predicted only allowing liquid 

phase state HNO3/NO3
- is shown below. Note that, all of the ISORROPIA-II input are kept 

the same as the metastable phase state calculations (show in Figure 3-2). 
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Figure B-3 Comparisons of stable (solid+liquid) aerosols vs. metastable (liquid) aerosol 
assumptions for predicted HNO3 (nitric acid), (NO3

-) (nitrate), and ε(NO3
-) (particle nitrate 

fraction of total nitrate) with data from the complete WINTER study: (a-c) PILS-IC anion 
with scaled AMS NH4

+ input; (d-f) AMS input. 

 

B.3  Predicted versus measured ε(NO3
-) colored by temperature and total nitrate 

Figure B-4 is identical to Figure 3-3c, f and i in the main text, other than the color wave. 

Figure 3-3c, 3f and 3i are colored by O:C ratio, whereas Figure B-4 is colored by T. No 

conclusive dependence of a temperature effect on the discrepancy between predicted and 

measured ε(NO3
-) is observed. 
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Figure B-4 Comparisons between predicted and measured ε(NO3

-) with data from the 
complete WINTER study (AMS aerosol data only) for different ambient RH ranges: (a) 
20-40%; (b) 40-60%; (c) 60-95%. 

 

Figure B-5 shows that greater discrepancy is generally associated with lower total nitrate 

mass loading. 

 
Figure B-5 Predicted versus measured partitioning of nitrate as a function of total nitrate 
concentration (HNO3 + NO3

-) from the complete WINTER study. This figure can be 
contrasted with Figure 2f in the main text, which is similar, but shows the RH dependence. 

 

B.4  Thermodynamic simulations based on AMS inorgNO3
- 
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The AMS inorgNO3
- was determined by scaling AMS NO3

- (i.e., AMS total nitrate, which 

may include some nitrite, organonitrate, and sodium nitrate) to PILS-IC NO3
- 

concentrations on a flight-by-flight basis. 

 
Figure B-6 Comparison between “AMS inorgNO3

-” and “AMS NO3
-” (i.e. complete 

WINTER data set). ODR fit is shown. 

 

The input is kept the same as the AMS input in the text, other than using AMS inorgNO3
- 

instead of AMS NO3
-. Figure B-6 shows that AMS inorgNO3

- is on average 72% of AMS 

NO3
-. ISORROPIA-II was again run in “Metastable” mode with the results summarized in 

Figure B-7. 
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Figure B-7 Comparisons of predicted and measured HNO3, NO3

-, and ε(NO3
-) with data 

from the complete WINTER study using AMS inorgNO3
-. ODR fits are shown. This plot 

is compared to Figure 3-2 in the text. 

 

B.5  Thermodynamic simulations with refractory ions 

PM1 refractory species, such as Na+, K+, Ca2+, Mg2+, were not detected by the AMS, but 

were measured by the PILS-fraction collector with subsequent off-line analysis by IC. 

Comparing the model simulations with and without the ions shows their impacts on HNO3-

NO3
- partitioning and particle pH. To start, we ran ISORROPIA-II with AMS NH4

+, NO3
-

, SO4
2- and PILS fraction collector Na+, Cl- for periods where the data was above the LOD 

(0.01 µg m-3). 68% of Na+ and 93% of Cl- were above detection limits. For the complete 

WINTER campaign, the mean ± SD concentrations were Na+ = 0.23 ± 0.36 µg m-3 and Cl- 

= 0.34 ± 0.38 µg m-3. Most NaCl were likely from sea-salt recorded during periods when 

the C-130 flew within and near coastal regions. 

With the assumption of internally mixing, including NaCl in the ISORROPIA-II input 

doesn’t shift particle pH until NaCl concentrations are comparable or higher than sulfate. 

This is shown in Figure B-8 for data from WINTER Flight 6. Particle pH increases more 
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than two units only when the sulfate concentration drops dramatically and NaCl levels 

increase, as the aerosol changes to mainly Na+-containing salts (e.g., Na2SO4, NaNO3). 

When sulfate (or nitrate) is low, a small amount of refractory cations can have large impacts 

on the particle pH. However, when sulfate (or nitrate) is high, a small amount of refractory 

cations (up to 50% mole fraction) do not significantly modify the particle pH. 

 
Figure B-8 Times series of WINTER Flight 6 PILS fraction collector NaCl mole fraction 
(NaCl to total input moles), Na+, Cl-, SO4

2-, and predicted pH with and without NaCl. 

 

Sensitivity of pH to cations:  If the nonvolatile cations (Na+, Ca2+, etc.) get fully dissolved 

and internally mixed with other aerosol components, given enough time, the equilibrated 

particle pH will increase (Figure B-9). The simulation was run based on WINTER average 

condition of SO4
2-, NH4

+, total NO3
-, RH, and T with varying Na+ and Cl- mass loadings. 
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The concentrations of Ca2+, Mg2+, K+ are assumed to be zero, because the roles of these 

nonvolatile cations can be roughly represented by Na+. Figure B-9 shows that if the filter 

measured PM4 NaCl (Na+ = 0.50 ± 0.88 µg m-3, Cl- = 0.69 ± 1.60 µg m-3) becomes 

internally mixed, the particle pH would increase from 1.1 to 2.2. More pH increase is 

expected with higher nonvolatile cations being dissolved. For WINTER campaign, PM1 

pH is largely not affected by NaCl, because of very low PM1 Cl- mass loadings and 

probably low Na+ (PILS-IC Cl- 0.07 ± 0.11 µg m-3 and AMS Cl- 0.02 ± 0.04 µg m-3). 

 
Figure B-9 Predicted particle pH as a function of assumed Na+ and Cl- mass loadings at the 
WINTER average condition of SO4

2- = 1.02 µg m-3, NH4
+ = 0.50 µg m-3, (NO3

- + HNO3) 
= 2.21 µg m-3, K+ = Ca2+ = Mg2+ = 0 µg m-3, RH = 57.5%, T = 272.1 K. ISORROPIA-II 
was run in forward mode. The field campaign average Na+ and Cl- mass loadings from 
PILS fraction collector and filter are labeled in the graph. Note that, PILS-IC Cl- (0.07 ± 
0.11 µg m-3) and AMS Cl- (0.02 ± 0.04 µg m-3) are much smaller than filter Cl- (0.69 ± 
1.60 µg m-3). 
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Figure B-10 shows that adding NaCl makes the predicted vs. measured HNO3/NO3
- more 

scattered, but the slopes are nearly the same, except for ε(NO3
-). Larger NaCl mass and 

mole fraction are consistently observed with larger discrepancies between predicted and 

measured HNO3-NO3
- partitioning, indicating PM1 NaCl are probably not internally mixed. 

In conclusion, the effects of refractory ions on the pH prediction can be significant when 

these ions contribute significantly to the aerosol moles and are internally mixed. However, 

larger discrepancy observed in reproducing HNO3-NO3
- partitioning when NaCl is 

included in the thermodynamic calculations suggests that these refractory ions are probably 

not internal mixed with PM1 nitrate, sulfate and ammonium. Thus, the predicted particle 

pH presented in this study is largely accurate despite not including these cations, but may 

be biased at very low sulfate concentrations if some fraction of refractory ions become 

internally mixed and the dominant ions. 
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Figure B-10 Comparisons of predicted and measured HNO3, NO3

-, and ε(NO3
-) with the 

complete WINTER data when both Na+ and Cl- were above LOD: (a-c) AMS input (NH4
+, 

NO3
-, SO4

2-); (d-f) AMS input with PILS fraction collector Na+ and Cl- added. Orthogonal 
distance regression fits are shown. 

 

B.6  Predicted Particle Water versus AMS Total Ionic Mass 

The following graph is similar to Figure 3-9 in the main text. The difference is that x-axis 

was changed to the AMS total ionic mass. 
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Figure B-11 Predicted 𝑊𝑊𝑖𝑖 versus AMS “sulfate + nitrate + chloride + ammonium” mass 
concentrations. 

 

B.7  HYSPLIT back trajectories of Flights 6 and 8 

Flight tracks of Flights 6 and 8 are shown in Figure 3-10 in the main text. The transport of 

the observed plumes were calculated using the NOAA HYSPLIT model 

(http://ready.arl.noaa.gov/HYSPLIT_traj.php), shown as Figure B-12 below. The selected 

back-trajectory analysis area covers the majority of the flight routes, where back 

trajectories are calculated at 2 hour intervals. Starting heights are set at 500 m (Flight 6) 

and 100 m (Flight 8), respectively, close to the C-130 pressure altitudes for each flight. 

Figure B-12 shows that the plumes encountered by Flight 6 passed over a wide region of 

the east coast, from Pennsylvania in the north to North Carolina in the south. Flight 8 

encountered plumes from a narrower region that mainly included the greater New York 

City area. 
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Figure B-12 HYSPLIT 24 hours air mass back trajectory matrix at 0600 (a), 0800 (b), 1000 
(c) UTC time for WINTER Flight 6 and at 1000 (d), 1200 (e), 1400 (f) UTC time for 
WINTER Flight 8. Starting heights are set to be 500 m for Flight 6 and 100 m for Flight 8. 

 

B.8  Nitric Acid to Coarse Mode Nitrate Partitioning 

The overall good agreement between ISORROPIA-II predications and observations 

indicates that PM1 nitrate was in a thermodynamic equilibrium state with nitric acid. 

However, during the WINTER study there were at times significant amounts of coarse 

mode ions (NO3
-, Na+, Cl-, etc.). Figure B-13 shows a 5-hour time series of AMS and Filter 
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NO3
-, as well as coarse mode NO3

- fraction, which was on average 76 ± 18%, more than 

four times the campaign average of 18 ± 17%. To investigate the partitioning between nitric 

acid and coarse mode particles, we compare the ISORROPIA-II thermodynamic results 

between fine mode coarse mode inputs (Figure B-14). 

 
Figure B-13 Times series of WINTER Flight 6 AMS and filter NO3

-, and the coarse mode 
NO3

- fraction (1 − AMS NO3
-/Filter NO3

-). 
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Figure B-14 Comparisons of predicted and measured HNO3, NO3

-, and ε(NO3
-) for a 5-

hour period in Flight 6. Aerosol phase ISORROPIA-II inputs are: (a-c) AMS SO4
2-, NO3

-, 
NH4

+ with Na+ = Cl- = Ca2+ = Mg2+ = K+ = 0; (d-f) Filter minus AMS (coarse mode) SO4
2-

, NO3
-, NH4

+ with filter Na+, Cl-, Ca2+, Mg2+, K+ (assuming all of the Na+, Cl-, Ca2+, Mg2+, 
K+ is in the coarse mode). HNO3, T, and RH are the same for (a-c) and (d-f). Orthogonal 
distance regression fits are shown. Note that, the axis range is smaller in (c) compared to 
(e). 
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SUPPORTING MATERIALS FOR CHAPTER 4 

C.1  Comparisons of inorganic species measurements between AMS (PM1) and PILS-

IC (PM2.5) 

Consistency (R2 ≥ 0.8) between AMS and PILS-IC are observed. AMS measured 

nominally PM1, whereas PILS-IC measured PM2.5. These results are consistent with similar 

inter-comparisons reported elsewhere [Hayes et al., 2013]. A larger difference in slope for 

nitrate than sulfate is thought to be due to higher nitrate concentrations in the 1 to 2.5 µm 

size range. PM1/PM2.5 mass ratios, reported in the main text, differ from slopes shown 

below due to differences in contributions of lower concentrations to these parameters (ratio 

vs. slope). 

 
Figure C-1 Sulfate and nitrate comparisons between PM1 PILS-IC, PM1 PILS with fraction 
collector, PM1 AMS, and PM4 filters for the complete WINTER study. Orthogonal distance 
regression fits are shown. 

 

C.2  The dependencies of nitrate, ammonium, and chloride on pH, 𝑊𝑊𝑖𝑖, and T (S curve 

equation derivations) 
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C.2.1  HNO3-NO3
- partitioning 

The S curve of ε(NO3
-) has been discussed explicitly and compared to observations from 

WINTER aircraft campaign in Guo et al. [2016]. Here we show the detailed derivation of 

Equation 3 in that paper. Equilibrium between gaseous HNO3 and particle-phase NO3
- 

involves two processes, first dissolution of HNO3 into aqueous phase (assuming particles 

are liquids) and second dissociation of dissolved HNO3 into H+ and NO3
-. The two 

processes are reversible and often reach thermodynamic equilibriums at ambient conditions 

(RH, T) for fine particles. 

1𝑠𝑠𝑠𝑠    𝐻𝐻𝐻𝐻𝐻𝐻3(𝑔𝑔) ↔ 𝐻𝐻𝐻𝐻𝐻𝐻3,    𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻3 

 2𝑛𝑛𝑛𝑛   𝐻𝐻𝐻𝐻𝐻𝐻3 ↔ 𝑁𝑁𝑁𝑁3− + 𝐻𝐻+,    𝐾𝐾𝑛𝑛1 

for which reaction equilibriums are expressed as follows, 

 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻3 = 𝛾𝛾𝐻𝐻𝐻𝐻𝐻𝐻3[𝐻𝐻𝐻𝐻𝐻𝐻3] 𝑝𝑝𝐻𝐻𝐻𝐻𝐻𝐻3⁄  (C-1) 

 𝐾𝐾𝑛𝑛1 =
𝛾𝛾𝑁𝑁𝑁𝑁3−[𝑁𝑁𝑁𝑁3−]𝛾𝛾𝐻𝐻+[𝐻𝐻+]

𝛾𝛾𝐻𝐻𝐻𝐻𝐻𝐻3[𝐻𝐻𝐻𝐻𝐻𝐻3]  (C-2) 

where 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻3 is HNO3 Henry’s law constant, 𝐾𝐾𝑛𝑛1 is HNO3 acid dissociation constant, 𝛾𝛾 

represents activity coefficient, 𝑝𝑝𝐻𝐻𝐻𝐻𝐻𝐻3 is partial pressure of HNO3 in atmosphere, and [x] 

represents aqueous concentrations (mole L-1). From Equations C-1 and C-2 we get the total 

dissolved HNO3 or total particle-phase nitrate (𝑁𝑁𝑁𝑁3T) as 

 
�𝑁𝑁𝑁𝑁3T� = [𝐻𝐻𝐻𝐻𝐻𝐻3] + [𝑁𝑁𝑁𝑁3−] = 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻3𝑝𝑝𝐻𝐻𝐻𝐻𝐻𝐻3 �

1
𝛾𝛾𝐻𝐻𝐻𝐻𝐻𝐻3

+
𝐾𝐾𝑛𝑛1

𝛾𝛾𝑁𝑁𝑁𝑁3−𝛾𝛾𝐻𝐻+[𝐻𝐻+]
� (C-3) 

Ideal gas law gives 
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 𝑐𝑐(𝐻𝐻𝐻𝐻𝐻𝐻3) =
𝑝𝑝𝐻𝐻𝐻𝐻𝐻𝐻3
𝑅𝑅𝑅𝑅

 (C-4) 

where 𝑐𝑐(𝑥𝑥) represents concentration per volume of air (mole m-3). Therefore, the particle-

phase fraction of nitrate is 

 𝜀𝜀(𝑁𝑁𝑁𝑁3T) =
𝑐𝑐(𝑁𝑁𝑁𝑁3𝑇𝑇)

𝑐𝑐(𝐻𝐻𝐻𝐻𝐻𝐻3) + 𝑐𝑐(𝑁𝑁𝑁𝑁3𝑇𝑇)
=

[𝑁𝑁𝑁𝑁3𝑇𝑇]𝑊𝑊𝑖𝑖

𝑐𝑐(𝐻𝐻𝐻𝐻𝐻𝐻3) + [𝑁𝑁𝑁𝑁3𝑇𝑇]𝑊𝑊𝑖𝑖
 (C-5) 

where 𝑊𝑊𝑖𝑖 is the particle liquid water content associated with inorganic species (µg m-3; 

mass per volume of air) (here the organics associated liquid water is not considered). 

Taking Equations C-3 and C-4 into C-5, we get 𝜀𝜀(𝑁𝑁𝑁𝑁3T) as 

 

𝜀𝜀(𝑁𝑁𝑁𝑁3T) =
�
𝛾𝛾𝑁𝑁𝑁𝑁3−𝛾𝛾𝐻𝐻+

𝛾𝛾𝐻𝐻𝐻𝐻𝐻𝐻3
[𝐻𝐻+] + 𝐾𝐾𝑛𝑛1�𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻3𝑊𝑊𝑖𝑖𝑅𝑅𝑅𝑅

𝛾𝛾𝑁𝑁𝑁𝑁3−𝛾𝛾𝐻𝐻+[𝐻𝐻+] + �
𝛾𝛾𝑁𝑁𝑁𝑁3−𝛾𝛾𝐻𝐻+

𝛾𝛾𝐻𝐻𝐻𝐻𝐻𝐻3
[𝐻𝐻+] + 𝐾𝐾𝑛𝑛1�𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻3𝑊𝑊𝑖𝑖𝑅𝑅𝑅𝑅

 (C-6) 

At 298 K, 𝐾𝐾𝑛𝑛1=12 mole L-1 [Fountoukis and Nenes, 2007] often >> 
𝛾𝛾𝑁𝑁𝑁𝑁3−𝛾𝛾𝐻𝐻+
𝛾𝛾𝐻𝐻𝐻𝐻𝐻𝐻3

[𝐻𝐻+], so we 

assume �
𝛾𝛾𝑁𝑁𝑁𝑁3−𝛾𝛾𝐻𝐻+
𝛾𝛾𝐻𝐻𝐻𝐻𝐻𝐻3

[𝐻𝐻+] + 𝐾𝐾𝑛𝑛1�≈𝐾𝐾𝑛𝑛1. Thus, a simplified equation is 

 
𝜀𝜀�𝑁𝑁𝑁𝑁3T� ≅

𝐾𝐾𝑛𝑛1𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻3𝑊𝑊𝑖𝑖𝑅𝑅𝑅𝑅
𝛾𝛾𝑁𝑁𝑁𝑁3−𝛾𝛾𝐻𝐻+[𝐻𝐻+] + 𝐾𝐾𝑛𝑛1𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻3𝑊𝑊𝑖𝑖𝑅𝑅𝑅𝑅

 (C-7) 

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻3𝐾𝐾𝑛𝑛1 is denoted as 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻3
∗  (mole2 kg-2 atm-1) hereafter, which is equilibrium constant 

of the combined dissolution and deprotonation processes as, 

𝐻𝐻𝐻𝐻𝐻𝐻3(𝑔𝑔) ↔ 𝑁𝑁𝑁𝑁3− + 𝐻𝐻+,   𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻3
∗  

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻3
∗  can be easily calculated by Equation 40 in Clegg and Brimblecombe [1990] for T 

dependence and converted from unit atm-1 (mole fraction based) to mole2 kg-2 atm-1 
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(molality based) by Equation 5 also in that paper. To be consistent with SI units, we have 

the following equation ready for users’ input, 

 
𝜀𝜀�𝑁𝑁𝑁𝑁3T� ≅

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻3
∗ 𝑊𝑊𝑖𝑖𝑅𝑅𝑅𝑅×0.987×10−14

𝛾𝛾𝑁𝑁𝑁𝑁3−𝛾𝛾𝐻𝐻+[𝐻𝐻+] + 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻3
∗ 𝑊𝑊𝑖𝑖𝑅𝑅𝑅𝑅×0.987×10−14

=
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻3
∗ 𝑊𝑊𝑖𝑖𝑅𝑅𝑅𝑅×0.987×10−14

𝛾𝛾𝑁𝑁𝑁𝑁3−𝛾𝛾𝐻𝐻+10−𝑝𝑝𝑝𝑝 + 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻3
∗ 𝑊𝑊𝑖𝑖𝑅𝑅𝑅𝑅×0.987×10−14

 
(C-8) 

Note that 0.987 comes from the conversion from 1 atm to 1 psi and 𝑊𝑊𝑖𝑖 unit is µg m-3. 

Equation C-8 describes the dependence of HNO3-NO3
- partitioning on pH, T, and 𝑊𝑊𝑖𝑖 

(determined by RH and aerosol composition). Based on ideal and non-ideal aqueous 

particles, several 𝜀𝜀(𝑁𝑁𝑁𝑁3−) S curves at atmosphere relevant conditions are plotted together 

with 𝜀𝜀(𝐶𝐶𝐶𝐶−) and 𝜀𝜀(𝑁𝑁𝑁𝑁4+) in Figure C-3 and Figure C-4, respectively. 

𝜀𝜀�𝑁𝑁𝑁𝑁3T� is equivalent to 𝜀𝜀(𝑁𝑁𝑁𝑁3−) in the main text, since NO3
- is practically 100% of 

NO3
T based on 𝐾𝐾𝑛𝑛1 ≫

𝛾𝛾𝑁𝑁𝑁𝑁3−𝛾𝛾𝐻𝐻+
𝛾𝛾𝐻𝐻𝐻𝐻𝐻𝐻3

[𝐻𝐻+] (also under atmospheric condition). The fraction of 

NO3
- over NO3

T can be given as 

 [𝑁𝑁𝑁𝑁3−]
�𝑁𝑁𝑁𝑁3T�

=
𝐾𝐾𝑛𝑛1

𝐾𝐾𝑛𝑛1 +
𝛾𝛾𝑁𝑁𝑁𝑁3−𝛾𝛾𝐻𝐻+

𝛾𝛾𝐻𝐻𝐻𝐻𝐻𝐻3
[𝐻𝐻+]

 (C-9) 

 

C.2.2  HCl-Cl- partitioning 

Following the same derivation procedure as HNO3-NO3
- partitioning, we have ε(Cl-) as 
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 𝜀𝜀(𝐶𝐶𝐶𝐶−) ≅
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻∗ 𝑊𝑊𝑖𝑖𝑅𝑅𝑅𝑅×0.987×10−14

𝛾𝛾𝐶𝐶𝐶𝐶−𝛾𝛾𝐻𝐻+[𝐻𝐻+] + 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻∗ 𝑊𝑊𝑖𝑖𝑅𝑅𝑅𝑅×0.987×10−14

=
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻∗ 𝑊𝑊𝑖𝑖𝑅𝑅𝑅𝑅×0.987×10−14

𝛾𝛾𝐶𝐶𝐶𝐶−𝛾𝛾𝐻𝐻+10−𝑝𝑝𝑝𝑝 + 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻∗ 𝑊𝑊𝑖𝑖𝑅𝑅𝑅𝑅×0.987×10−14
 

(C-10) 

where 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻∗  (mole2 kg-2 atm-1) is the equilibrium constant and is equal to the “conventional” 

Henry’s law constant multiplied by the acid dissociation constant of hydrochloric acid. 

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻∗  can be calculated by Equation 22 in Carslaw et al. [1995] to account for T’s variation. 

𝐻𝐻𝐻𝐻l(𝑔𝑔) ↔ 𝐶𝐶𝐶𝐶− + 𝐻𝐻+,   𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻∗  

A comparison of 𝜀𝜀(𝐶𝐶𝐶𝐶−) S curve with a subset of CalNex data is shown in Figure C-2. The 

selected CalNex data are all in a small range of T 15.5 to 19.5 ºC (around campaign average 

T) and 𝑊𝑊𝑖𝑖 10 to 20 µgm-3, while the S curve is calculated based on the average condition 

of these data as T = 17.5 ºC, 𝑊𝑊𝑖𝑖 = 15 µgm-3, 𝛾𝛾𝐶𝐶𝐶𝐶−𝛾𝛾𝐻𝐻+ = 0.66. The distribution of the 𝜀𝜀(𝐶𝐶𝐶𝐶−) 

points close to S curve validates the PM2.5 pH prediction and demonstrates the usage of S 

curve. 

 
Figure C-2 The comparison of S curve and measured ε(Cl-) with predicted particle pH by 
ISORROPIA-II. Cl- is from PM2.5 PILS-IC measurements. 
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C.2.3  NH3-NH4
+ partitioning 

The derivation of NH3-NH4
+ partitioning is a bit different from the above two acidic gases. 

Equilibrium between gaseous NH3 and NH4
+ can be described simply as 

𝑁𝑁𝑁𝑁3(𝑔𝑔)+𝐻𝐻+ ↔ 𝑁𝑁𝑁𝑁4+,    𝐻𝐻𝑁𝑁𝑁𝑁3
∗  

(𝐻𝐻𝑁𝑁𝑁𝑁3
∗  is equivalent to the “conventional” Henry’s law constant of NH3 divided by the acid 

dissociation constant of NH4
+) or described by the follow two reversible reactions 

assuming water activity as unity. 

1𝑠𝑠𝑠𝑠    𝑁𝑁𝑁𝑁3(𝑔𝑔) ↔ 𝑁𝑁𝑁𝑁3,          𝐻𝐻𝑁𝑁𝑁𝑁3 

 2𝑛𝑛𝑛𝑛   𝑁𝑁𝑁𝑁3+𝐻𝐻+ ↔ 𝑁𝑁𝑁𝑁4+,    1/𝐾𝐾𝑎𝑎 

for which reaction equilibriums are described as 

 𝐻𝐻𝑁𝑁𝑁𝑁3 = 𝛾𝛾𝑁𝑁𝑁𝑁3[𝑁𝑁𝑁𝑁3] 𝑝𝑝𝑁𝑁𝐻𝐻3⁄  (C-11) 

 1/𝐾𝐾𝑎𝑎 =
𝛾𝛾𝑁𝑁𝑁𝑁4+[𝑁𝑁𝑁𝑁4+]

𝛾𝛾𝑁𝑁𝑁𝑁3[𝑁𝑁𝑁𝑁3]𝛾𝛾𝐻𝐻+[𝐻𝐻+]
 (C-12) 

where 𝐻𝐻𝑁𝑁𝑁𝑁3  is NH3 Henry’s law constant, 𝐾𝐾𝑎𝑎  is NH4
+ acid dissociation constant, 𝛾𝛾 

represents activity coefficient, 𝑝𝑝𝑁𝑁𝑁𝑁3  is partial pressure of NH3 in atmosphere, and [x] 

represents aqueous concentrations (mole L-1). Please note that the 2nd reaction is usually 

written in another form [Fountoukis and Nenes, 2007] as 

2𝑛𝑛𝑛𝑛   𝑁𝑁𝑁𝑁3 + 𝐻𝐻2𝑂𝑂 ↔ 𝑁𝑁𝑁𝑁4+ + 𝑂𝑂𝑂𝑂−,    𝐾𝐾𝑤𝑤/𝐾𝐾𝑎𝑎 

where 𝐾𝐾𝑤𝑤 is water dissociation constant. Equations C-11 and C-12 give the total dissolved 

NH3 or total particle-phase ammonium (𝑁𝑁𝑁𝑁4T) as 

 
[𝑁𝑁𝑁𝑁4𝑇𝑇] = [𝑁𝑁𝑁𝑁3] + [𝑁𝑁𝑁𝑁4+] = 𝐻𝐻𝑁𝑁𝑁𝑁3𝑝𝑝𝑁𝑁𝐻𝐻3 �

1
𝛾𝛾𝑁𝑁𝑁𝑁3

+
𝛾𝛾𝐻𝐻+[𝐻𝐻+]
𝛾𝛾𝑁𝑁𝑁𝑁4+𝐾𝐾𝑎𝑎

� (C-13) 
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Combining with ideal gas law, that is 

 
𝑐𝑐(𝑁𝑁𝑁𝑁3) =

𝑝𝑝𝑁𝑁𝐻𝐻3
𝑅𝑅𝑅𝑅

 (C-14) 

where 𝑐𝑐(𝑥𝑥) represents concentration per volume of air (mole m-3). We have the particle-

phase fraction of ammonium as 

 
(𝑁𝑁𝑁𝑁4T) =

𝑐𝑐(𝑁𝑁𝑁𝑁4𝑇𝑇)
𝑐𝑐(𝑁𝑁𝑁𝑁3) + 𝑐𝑐(𝑁𝑁𝑁𝑁4𝑇𝑇)

=
[𝑁𝑁𝑁𝑁4𝑇𝑇]𝑊𝑊𝑖𝑖

𝑐𝑐(𝑁𝑁𝑁𝑁3) + [𝑁𝑁𝑁𝑁4𝑇𝑇]𝑊𝑊𝑖𝑖
 (C-15) 

With Equations C-13 and C-14, the above equation is transformed into 

 

𝜀𝜀(𝑁𝑁𝑁𝑁4T) =
�𝛾𝛾𝐻𝐻+[𝐻𝐻+]
𝛾𝛾𝑁𝑁𝑁𝑁4+

+ 𝐾𝐾𝑎𝑎
𝛾𝛾𝑁𝑁𝑁𝑁3

�
𝐻𝐻𝑁𝑁𝑁𝑁3
𝐾𝐾𝑎𝑎

𝑊𝑊𝑖𝑖𝑅𝑅𝑅𝑅

1 + �𝛾𝛾𝐻𝐻+[𝐻𝐻+]
𝛾𝛾𝑁𝑁𝑁𝑁4+

+ 𝐾𝐾𝑎𝑎
𝛾𝛾𝑁𝑁𝑁𝑁3

�
𝐻𝐻𝑁𝑁𝑁𝑁3
𝐾𝐾𝑎𝑎

𝑊𝑊𝑖𝑖𝑅𝑅𝑅𝑅
 (C-16) 

At 298 K, 𝐾𝐾𝑎𝑎 = 5.69×10-10 mole L-1 [Clegg et al., 1998] results in 𝐾𝐾𝑎𝑎
𝛾𝛾𝑁𝑁𝑁𝑁3

 ≪
𝛾𝛾𝐻𝐻+[𝐻𝐻+]
𝛾𝛾𝑁𝑁𝑁𝑁4+

 as long 

as the solution is not too basic. Neglecting 𝐾𝐾𝑎𝑎
𝛾𝛾𝑁𝑁𝑁𝑁3

 part and taking 
𝐻𝐻𝑁𝑁𝑁𝑁3
𝐾𝐾𝑎𝑎

= 𝐻𝐻𝑁𝑁𝐻𝐻3
∗ , we have 

 

𝜀𝜀(𝑁𝑁𝑁𝑁4T) ≅

𝛾𝛾𝐻𝐻+[𝐻𝐻+]
𝛾𝛾𝑁𝑁𝑁𝑁4+

𝐻𝐻𝑁𝑁𝑁𝑁3
∗ 𝑊𝑊𝑖𝑖𝑅𝑅𝑅𝑅

1 + 𝛾𝛾𝐻𝐻+[𝐻𝐻+]
𝛾𝛾𝑁𝑁𝑁𝑁4+

𝐻𝐻𝑁𝑁𝑁𝑁3
∗ 𝑊𝑊𝑖𝑖𝑅𝑅𝑅𝑅

 (C-17) 

To be consistent with SI units, the Equation C-17 is then presented as 

 
𝜀𝜀�𝑁𝑁𝑁𝑁4T� ≅

𝛾𝛾𝐻𝐻+[𝐻𝐻+]
𝛾𝛾𝑁𝑁𝑁𝑁4+

𝐻𝐻𝑁𝑁𝑁𝑁3
∗ 𝑊𝑊𝑖𝑖𝑅𝑅𝑅𝑅×0.987×10−14

1 + 𝛾𝛾𝐻𝐻+[𝐻𝐻+]
𝛾𝛾𝑁𝑁𝑁𝑁4+

𝐻𝐻𝑁𝑁𝑁𝑁3
∗ 𝑊𝑊𝑖𝑖𝑅𝑅𝑅𝑅×0.987×10−14

=

𝛾𝛾𝐻𝐻+10−𝑝𝑝𝑝𝑝
𝛾𝛾𝑁𝑁𝑁𝑁4+

𝐻𝐻𝑁𝑁𝑁𝑁3
∗ 𝑊𝑊𝑖𝑖𝑅𝑅𝑅𝑅×0.987×10−14

1 + 𝛾𝛾𝐻𝐻+10−𝑝𝑝𝑝𝑝
𝛾𝛾𝑁𝑁𝑁𝑁4+

𝐻𝐻𝑁𝑁𝑁𝑁3
∗ 𝑊𝑊𝑖𝑖𝑅𝑅𝑅𝑅×0.987×10−14

 

(C-18) 
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where the 0.987 comes from the conversion from 1 atm to 1 psi and 𝑊𝑊𝑖𝑖 unit is µg m-3. 

𝐻𝐻𝑁𝑁𝑁𝑁3
∗ (atm-1) can be calculated from Equation 12 in Clegg et al. [1998]. Note that, the mole 

fraction based 𝐻𝐻𝑁𝑁𝑁𝑁3
∗  has the same numerical value as its molality based form. ε(NH4

T) is 

equivalent to ε(NH4
+) presented in the main text, since NH4

+ is the dominant form of 

dissolved NH3 based on 𝐾𝐾𝑎𝑎
𝛾𝛾𝑁𝑁𝑁𝑁3

 ≪
𝛾𝛾𝐻𝐻+[𝐻𝐻+]
𝛾𝛾𝑁𝑁𝑁𝑁4+

 and under atmospheric conditions. 

Summary: with the equations of ε(NO3
-), ε(Cl-), and ε(NH4

+), S-shaped curves of these 

three gas-particle partitioning can be easily calculated with pH, T, 𝑊𝑊𝑖𝑖 , and activity 

coefficients. We simulate two set of results, Figure C-3 assuming activity coefficients to 

be one (ideal solution) and Figure C-4 with practical activity coefficients from CalNex, 

WINTER, and SOAS. 

  



 

 

244 

 
Figure C-3 Simulated ε(NO3

-), ε(NH4
+), ε(Cl-) at −20 °C, 0 °C, 20 °C and various particle 

liquid waterlevels (1.25, 2.5, 5, 10 µg m-3) assuming ideal solutions. 

 
Figure C-4 Simulated ε(NO3

-), ε(NH4
+), ε(Cl-) at −20 °C, 0 °C, 20 °C and various particle 

liquid water levels (1.25, 2.5, 5, 10 µg m-3) with activity coefficients obtained from CalNex 
campaign. 𝛾𝛾𝐻𝐻+𝛾𝛾𝑁𝑁𝑁𝑁3− = 0.078, 𝛾𝛾𝐻𝐻+𝛾𝛾𝐶𝐶𝐶𝐶− = 0.66, and 𝛾𝛾𝐻𝐻+/𝛾𝛾𝑁𝑁𝑁𝑁4+ assumed to be 1. Note that, 
𝛾𝛾𝐻𝐻+𝛾𝛾𝑁𝑁𝑁𝑁3−  is calculated from ISORROPIA-predicted ionic pair activity coefficient, 
𝛾𝛾𝐻𝐻+−𝑁𝑁𝑁𝑁3

−, by 𝛾𝛾𝐻𝐻+𝛾𝛾𝑁𝑁𝑁𝑁3− = �𝛾𝛾𝐻𝐻+−𝑁𝑁𝑁𝑁3−�
2
. 
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C.3  Investigation of the cause for bias in ε(NO3
-): sample line heating? 

As Figure C-5 shows, NO3
- and ε(NO3

-) are both overpredicted during the nighttime and 

underpredicted during the daytime. The deviations from measurements are anti-correlated 

with nitric acid. The deviation between predicted and measured HNO3 also has a diurnal 

pattern, reverse to that of NO3
-. 

 
Figure C-5  Diurnal profiles of measured and predicted HNO3, NO3

-, and ε(NO3
-). Data 

shown above are for the complete CalNex study and particle-phase data is AMS PM1. Mean 
hourly averages are shown and standard errors are plotted as error bars. 
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Table C-1 Summary of temperature differences in sample lines and ambient and sample 
line residence time for the AMS and CIMS. AMS indoor T was 25°C. CIMS inlet was 
heated to 75°C. 

Instrument Inlet residence 
time, sec Time of the day Temperature 

differences, °C 

AMS 2.1 
Day ~0 

Night ~ +10 

CIMS 0.32 
Day ~ +50 

Night ~ +60 

 

For the AMS sample line located indoors, particle heating was most likely to occur at night 

(indoor T > ambient T), which may cause semivolatile NO3
- loss. There were no 

temperature differences during the day (Table C-1). To examine the possible sample line 

heating/cooling effect, we first determined sample line RH (Equation C-19) by 

conservation of water vapor under isobaric condition and following saturated water vapor 

pressure equation 𝑒𝑒𝑠𝑠 = 6.11×10�
7.5𝑇𝑇

237.5+𝑇𝑇� (T unit as °C) [Alduchov and Eskridge, 1996]. 

The inferred sample line RH is plotted with measured ambient RH in Figure C-6b. Sample 

line RH was lower (~50%) than ambient (~90%) at midnight and close to ambient (~60%) 

in the afternoon since temperatures were similar. 

 
𝑅𝑅𝑅𝑅2 = 𝑅𝑅𝑅𝑅110��

7.5𝑇𝑇1
237.5+𝑇𝑇1

�−� 7.5𝑇𝑇2
237.5+𝑇𝑇2

�� (C-19) 
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Figure C-6  Diurnal profiles of (a) temperature difference between AMS indoor and 
outdoor and (b) corresponding ambient and RH predicted in the sample line due to the T 
difference. Mean hourly averages and standard deviations are shown. 

 

ISORROPIA-II was run with aerosol and gas-phase species at the AMS sample line T and 

RH and compared to predictions from ambient T and RH and measurements. Figure C-7 is 

discussed in the main text section 4.5.1. 

 
Figure C-7 Diurnal profiles of measured and predicted (a) NO3

-, ε(NO3
-) and (b) NH4

+, 
ε(NH4

+). Predictions are based on ambient or sample line RH and T for AMS inlet. Data 
shown above are for the complete CalNex study in the 20-95% RH range and particle-
phase data is AMS PM1. Mean hourly averages are shown. ISORROPIA run with ambient 
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data show that the predicted partitioning between the particle and gas phase is in better 
agreement with observations than runs using sample line T and RH. Note that in both runs, 
only T and RH differ since total nitrate and ammonium input are the same. 

 

CIMS inlet heating is similar for day (~50°C) and night (~60°C). Potential bias in the HNO3 

or HCl then mainly depends on the mass loadings of NO3
- or Cl-. Here we focus only on 

the possible bias due to over-measurement of HNO3. ISORROPIA-II was run at ambient 

RH and T with a “corrected” HNO3 at three assumed lower levels of HNO3 to compensate 

for an assumed positive nitrate artifact of 10%, 20%, 30% (i.e., assuming 10, 20 or 30% of 

the nitrate measured by the AMS or PILS was evaporated in the CIMS inlet leading to an 

over-measurement of HNO3. 10% to 30% particle NO3
- was subtracted from the measured 

CIMS HNO3). Only HNO3 is modified, all other inputs are kept the same. Results are 

shown in Figure C-8.  Evaporation of 30% of the measured nitrate is expected to be an 

extreme upper limit. For instance, 66% of PM1 nitrate evaporated at a temperature of 75oC 

in a thermal denuder upstream of the AMS at the CalNex site, consistent with previous 

results at other urban sites in the LA area and elsewhere [Huffman et al., 2009]. The 

residence time on the thermal denuder was ~ 12 sec, while that of the CIMS inlet was ~0.32 

sec, so the extent of evaporation in the CIMS inlet assumed to be substantially lower than 

that in the thermal denuder. 
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Figure C-8 Comparisons of predicted and measured HNO3, NO3
-, and ε(NO3

-) (a, b, c) and 
NH3, NH4

+, and ε(NH4
+) (d, e, f) for data from the complete CalNex study based on 

“corrected” HNO3 data due to assumed PM1 nitrate evaporation in the heated CIMS inlet. 
The other inputs are kept the same. Only the ODR fits are shown. “0% NO3

- loss” condition 
is the same as Figure 4-2 in the main text. 
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