
VIRTUAL TIME-AWARE VIRTUAL MACHINE SYSTEMS

A Dissertation
Presented to

The Academic Faculty

by

Srikanth B. Yoginath

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Computational Science and Engineering

Georgia Institute of Technology
August 2014

Copyright © 2014 by Srikanth B. Yoginath

VIRTUAL TIME-AWARE VIRTUAL MACHINE SYSTEMS

Approved by:

Dr. Kalyan S. Perumalla, Advisor
School of Computational Science and
Engineering
Georgia Institute of Technology

 Dr. Umakishore Ramachandran
School of Computer Science
Georgia Institute of Technology

Dr. Richard S. Fujimoto, Advisor
School of Computational Science and
Engineering
Georgia Institute of Technology

 Dr. George F. Riley
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. David A. Bader
School of Computational Science and
Engineering
Georgia Institute of Technology

 Date Approved: July 1, 2014

iii

ACKNOWLEDGEMENTS

First and foremost, I am extremely grateful to have Dr. Kalyan Perumalla as my

advisor at Oak Ridge National Laboratory (ORNL) and this thesis would not have been

possible without his guidance and support. I am highly impressed with his expertise,

enthusiasm and his ability to quickly glean the core of any given research problem.

Under his supervision, I have been exposed to wide range of very interesting research

projects and have learned a great deal by participating in them. I feel extremely fortunate

and blessed to have had an opportunity to work as his research student.

I am also extremely grateful to Dr. Richard Fujimoto, for being my advisor at

Georgia Tech. I am honored to work as his student and would like to express my deepest

gratitude for his support throughout my PhD endeavor. I would also like to thank Dr.

David Bader, Dr. George Riley and Dr. Umakishore Ramachandran for serving as my

thesis committee members, and for their insightful comments.

I am extremely grateful to ORNL for providing me with an opportunity and the

necessary financial support to pursue my PhD. At ORNL, I would like to thank

Computational Sciences and Engineering Division directors Dr. Brian Worley and Dr.

Shaun Gleason, and the Modeling and Simulation Group leaders Mr. David Hetrick and

Dr. Robert Morris for their continuous encouragement and support. I would also like to

thank Ms. Carolyn Ward at ORNL education assistance for making the logistic work

related to my PhD effortless. I am also grateful for the timely funding of our research

projects from Army Research Laboratory (ARL). I would like to thank Dr. Raju

Namburu and Dr. Brian Henz from ARL for their support.

 iv

At Georgia Tech, I would like to thank CSE graduate program advisors Mr.

Michael Terrell and Ms. Haley Mimi, who have been extremely helpful and supportive. I

would also like to thank Ms. Holly Rush for helping me make necessary arrangements for

my dissertation defense. I very much appreciate Ms. Lometa Mitchell and Ms. Phinisee

Della for their help.

Finally, I would like to express my sincere gratitude to my wife, kids, parents and

brothers for their continuous loving support throughout my PhD pursuit. Without their

support and encouragement this work would not have been possible.

 v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. iii	

TABLE OF CONTENTS ... v	

LIST OF TABLES .. xii	

LIST OF FIGURES ... xiii	

LIST OF ABBREVIATIONS ... xviii	

SUMMARY ... xx	

Chapter 1: INTRODUCTION ... 1	

1.1 Virtual Machine (VM) .. 1	

1.1.1 Virtual Machines History ... 2	

1.1.2 Virtualization of the X86 Architecture .. 4	

1.1.3 Current Trends in Virtualization Technology .. 5	

1.1.4 The Xen Hypervisor ... 7	

1.2 Virtual Time Systems (VTS) .. 8	

1.2.1 Background .. 8	

1.2.2 Parallel Discrete Event Simulation (PDES) ... 11	

1.2.3 PDES Models ... 14	

1.3 Problem Statement and Research Challenges .. 17	

1.3.1 VM within VTS ... 17	

1.3.2 VTS over VMs ... 18	

1.4 Research Contributions .. 20	

 vi

1.4.1 VM within VTS ... 20	

1.4.2 VTS over VM .. 24	

1.5 Thesis Organization .. 26	

Chapter 2: VM WITHIN VTS: CONCEPTS, DESIGN AND PROTOTYPE 28	

2.1 Network Simulation/Emulation Overview ... 28	

2.1.1 Background .. 28	

2.1.2 VM based Network Modeling ... 30	

2.1.3 VM-based Network Emulators .. 31	

2.1.4 VM-based Network Simulators ... 32	

2.2 NetWarp Simulator .. 34	

2.2.1 NetWarp Goals ... 34	

2.2.2 NetWarp Architecture .. 34	

2.2.3 NetWarp Core Conceptual Issues .. 36	

2.2.4 NetWarp Prototyping Approach .. 41	

2.3 Prototyping Virtual Time-ordered VM Execution .. 41	

2.3.1 Xen Scheduler .. 41	

2.3.2 NetWarp Scheduler for Xen (NSX) Data-structures .. 42	

2.3.3 Virtual Times of NetWarp ... 48	

2.3.4 Virtual Time Accounting ... 48	

2.3.5 Idle Time Accounting .. 49	

2.3.6 Global Virtual Time ... 51	

2.3.7 Modifying VM Time Slice Granularity ... 52	

2.3.8 Virtual Time-ordered Execution .. 52	

 vii

2.4 Prototyping Virtual-time Ordered Network Control .. 53	

2.4.1 Virtual Network in Xen ... 53	

2.4.2 Trapping Transiting Packets .. 54	

2.4.3 Enforcing Realistic Network Characteristics ... 55	

2.5 Prototype Evaluation .. 57	

2.5.1 Benchmark Scenario .. 57	

2.5.2 Hardware and Software .. 59	

2.5.3 Virtual Time-ordered VM Execution Test Results .. 60	

2.5.4 Virtual Time-ordered Network Control Results .. 66	

2.6 Summary .. 68	

Chapter 3: VM WITHIN VTS: SCALING STUDY .. 70	

3.1 Staggering of Virtual Time .. 70	

3.1.1 Virtual Time Evolution .. 70	

3.1.2 Virtual Time Staggering Test ... 71	

3.1.3 Virtual Time Staggering Test Results .. 72	

3.2 NetWarp Network Control .. 74	

3.2.1 Network Control Approach .. 75	

3.2.2 Network Control Design Alternatives ... 76	

3.2.3 NetWarp Network Control Design .. 80	

3.2.4 NetWarp Network Control Implementation .. 83	

3.3 Scaling Study: Methodology and Benchmarks .. 84	

3.3.1 Methodology .. 85	

3.3.2 Hardware and Software .. 86	

 viii

3.3.3 MPI Benchmarks ... 87	

3.3.4 Cyber Security Benchmark .. 91	

3.4 Scaling Study: Results .. 94	

3.4.1 MPI Simulation Results ... 94	

3.4.2 Cyber Security Simulation Results without NNC ... 102	

3.4.3 Cyber Security Simulation Results with NNC ... 106	

3.5 Summary .. 109	

Chapter 4: VM WITHIN VTS: APPLICATION CASE STUDIES 110	

4.1 Background and Related Work ... 110	

4.1.1 MANET Emulation .. 110	

4.1.2 NetWarp Simulation of MANET ... 111	

4.2 Instrumentation Specifics ... 115	

4.2.1 Ad-hoc Network Setup and Operation ... 116	

4.2.2 Network Control .. 118	

4.2.3 Virtual Mobility Support .. 120	

4.3 Benchmark Applications .. 121	

4.3.1 CND Benchmark .. 121	

4.3.2 Cyber Security Benchmark Application .. 124	

4.4 Performance Results ... 126	

4.4.1 Experimental Setup .. 126	

4.4.2 CND Benchmark Results ... 127	

4.4.3 Cyber Security Benchmark Results ... 130	

Chapter 5: VTS OVER VM: PERFORMANCE EVALUATION 135	

 ix

5.1 Problem Space ... 135	

5.1.1 Virtual Machines and Cloud Computing ... 135	

5.1.2 Problem Statement ... 135	

5.1.3 Study Approach ... 138	

5.1.4 Related Work ... 139	

5.2 Empirical Study Setup .. 139	

5.2.1 Performance Benchmarks .. 139	

5.2.2 Test Platforms .. 141	

5.3 Performance Study ... 143	

5.3.1 Local Test Platform (LTP) Results .. 143	

5.3.2 EC2 Cloud Computing Platform Results ... 150	

5.3.3 LTP vs. EC2 ... 154	

5.3.4 Cost-Value Evaluation on EC2 .. 156	

5.4 Summary .. 162	

5.4.1 Performance Summary ... 162	

5.4.2 Recommendations .. 163	

Chapter 6: VTS OVER VM: VIRTUAL TIME-AWARE SCHEDULING 165	

6.1 Problem Space ... 165	

6.1.1 VM Execution Platform ... 165	

6.1.2 Problem Statement ... 166	

6.1.3 Related Work ... 167	

6.2 Issues and Challenges ... 168	

6.2.1 PDES Characteristics ... 168	

 x

6.2.2 Non-linear Cost Structure .. 169	

6.2.3 Multiplexing Ratio ... 169	

6.2.4 Scheduling Problem ... 170	

6.2.5 Virtual Time-based Scheduling ... 170	

6.3 PDES Scheduler Design .. 171	

6.3.1 PDES Hypervisor Scheduler Architecture ... 172	

6.3.2 Deadlock-Free and Livelock-Free PDES Hypervisor Scheduler 174	

6.3.3 Implementation Approach VM Environment for PDES Execution 177	

6.4 Implementation ... 179	

6.4.1 Communicating LVT to Xen Scheduler .. 179	

6.4.2 Xen Scheduler Implementation .. 182	

6.5 Performance Evaluation ... 185	

6.5.1 Hardware and Software .. 185	

6.5.2 Performance Expectations with CSX ... 185	

6.5.3 Performance Comparison with PHOLD Benchmarks 188	

6.5.4 Performance Comparison with Disease Spread Benchmarks 191	

6.5.5 Performance Comparison with SCATTER Benchmarks 193	

6.5.6 Performance Relative to Native Linux .. 195	

6.5.7 Variance in Performance .. 197	

6.6 Summary .. 198	

Chapter 7: CONCLUSION AND FUTURE DIRECTIONS 200	

7.1 Conclusion ... 200	

7.1.1 VM within VTS ... 200	

 xi

7.1.2 VTS over VM .. 202	

7.1.3 Concluding Remarks .. 203	

7.2 Future Directions .. 205	

7.2.1 Outstanding Issues of Least-LVT First (LLF) Scheduling 205	

7.2.2 Outstanding Issues in NetWarp Network Control (NNC) 206	

7.2.3 NetWarp Simulator Spanning Multiple Physical Hosts 207	

7.2.4 Virtual Time Communication to Lower-Level Protocols 207	

7.2.5 Real life Application Performance Evaluation .. 208	

7.2.6 Outstanding Issues regarding CPU-Pools .. 208	

7.2.7 Scheduler Classification based on Interrelation between PDES Processes ... 209	

7.2.8 Outstanding Issues with Counter-Based Algorithm (Deadlock and Livelock)

 ... 210	

7.2.9 Hardware-Supported Network with VM-Based Virtual Network Comparison

 ... 211	

7.2.10 Sensor Network Simulations .. 211	

7.2.11 Reviving the Concept of a Time-warp OS ... 212	

7.2.12 GVT Synchronization within Hypervisor .. 213	

7.2.13 Realizing High-Fidelity Simulation Framework using Characteristically

Distinct Simulators .. 213	

7.2.14 Runtime Load Balancing ... 215	

7.2.15 Dynamic Load Balancing .. 215	

REFERENCES .. 217	

 xii

LIST OF TABLES

Table 1 Mean error with confidence intervals for 1 VCPU/DOM scenarios 60	

Table 2 Mean error with confidence intervals for 2 VCPU/DOM scenarios 62	

Table 3 Virtual time-order VM execution evaluation summary 66	

Table 4 Details of EC2 on-demand instances ... 156	

Table 5 Possible scheduling policies in PDES simulations .. 209	

 xiii

LIST OF FIGURES

Figure 1 Xen Hypervisor .. 7	

Figure 2 System model classification ... 9	

Figure 3 Illustration of timeline and events in discrete-event simulation 11	

Figure 4 Parallel execution of discrete-event simulation .. 11	

Figure 5 Real-time vs. virtual-time representations .. 21	

Figure 6 Network modeling classification and terminology ... 28	

Figure 7 VM-based network modeling classification ... 30	

Figure 8 NetWarp simulator design .. 35	

Figure 9 CSX and NSX scheduler interface ... 44	

Figure 10 CSX’s PCPU vs. NSX’s PCPU structures ... 45	

Figure 11 CSX’s VCPU vs. NSX’s VCPU structures .. 46	

Figure 14 Accounting for VCPUs with lagging LVTs ... 50	

Figure 15 Accounting for idle DOM time .. 51	

Figure 16 Virtual network using software bridge in DOM0 ... 54	

Figure 17 iptables rule added on creation of a new DOM .. 55	

Figure 19 Mean-error (y-axis in %) vs. tick-size (x-axis in µs), for single VCPU/DOM 61	

Figure 20 Runtime in seconds for the mean-error runs in single VCPU/DOM 62	

Figure 21 Percent mean-error against tick-size for 2 VCPUs/DOM 63	

Figure 22 Runtime in seconds for mean-error runs in 2 VCPUs/DOM 64	

Figure 23 Number of packets trapped and runtime plots for a given network delay 67	

Figure 24 Simulation time divergence test algorithm ... 71	

 xiv

Figure 25 Experimental results demonstrating simulation time divergence 72	

Figure 26 Functional schematics of NNC operation ... 81	

Figure 27 Algorithm for CND test benchmark ... 87	

Figure 28 Algorithm for VND test benchmark ... 89	

Figure 29 Interacting multi-service and multi-client scenario .. 92	

Figure 30 Worm infection and propagation .. 93	

Figure 31 CSX and NSX time-order errors for CND benchmark 95	

Figure 32 CSX and NSX runtimes from CND test runs ... 96	

Figure 33 CSX (with lower-tick size) and NSX time-order errors for CND benchmark . 97	

Figure 34 CSX (lower-tick size) and NSX runtime plots for CND benchmark 97	

Figure 35 CSX and NSX time-order errors for VND benchmark 99	

Figure 36 CSX and NSX runtimes for VND benchmark ... 100	

Figure 37 CSX (with lower tick size) and NSX time-order errors for VND benchmark 101	

Figure 38 CSX (lower-tick size) and NSX VND runtime plots 101	

Figure 39 Worm propagation curves with CSX ... 102	

Figure 40 Worm propagation curves with NSX ... 103	

Figure 41 Worm Propagation behavior from multiple runs of CSX and NSX 104	

Figure 42 Worm propagation plots for different CSX configurations, and NSX without

network control ... 105	

Figure 43 Runtime curves from cyber security benchmarks for both CSX configurations

and NSX without network control .. 105	

Figure 44 NNC verification results with cyber-security application benchmark 107	

 xv

Figure 46 Rate of increase in runtime and simulation time with increase in virtual packet

delay .. 108	

Figure 47 Plot of one-hop neighbors for the MANET topology 113	

Figure 48 Call failures and packet-loss vs. the number of calls in (a) Dedicated cluster (b)

CSX (c) NSX .. 114	

Figure 49 Network connectivity graph of MANET simulation scenario 117	

Figure 50 iptables rules enforcing non-connectivity and bandwidth 119	

Figure 51 iptables rules to aid NNC functioning .. 119	

Figure 52 MANET scenario with mobility support .. 121	

Figure 54 CSX and NSX receive-pattern comparison with theoretical expectations 127	

Figure 55 CSX and NSX errors in eunits .. 129	

Figure 56 CSX and NSX simulation time in static MANET with 95% CI 129	

Figure 57 CSX and NSX simulation time in mobile MANET with 95% CI 130	

Figure 58 Worm spreading from node-61 in static MANET scenario 131	

Figure 59 Worm spreading from node-61 in mobile MANET scenario 132	

Figure 60 Worm spreading in static and mobile MANET setups 133	

Figure 61 EC2 cost-value model ... 137	

Figure 62 Native, DOM0 and single DOMU performance comparison on LTP 144	

Figure 63 PSB runtime performance with 32 VMs for varying DOM0 weights 145	

Figure 64 DSB runtime performance with 32 VMs for varying weights of DOM0 146	

Figure 65 Performance comparison with increase in number of DOMs using PSB on LTP

... 147	

Figure 66 Performance comparison with increase in DOMs using DSB on LTP 147	

 xvi

Figure 67 Time per LBTS computation with increase in the number of VMs on LTP .. 150	

Figure 68 Runtime performance of PSB with conservative synchronization on EC2 151	

Figure 69 Runtime performance of PSB with optimistic synchronization on EC2 151	

Figure 70 Runtime performance of DSB on EC2 ... 153	

Figure 71 LTP and EC2 runtime comparison for PSB ... 155	

Figure 73 PSB runtime performance on EC2 ... 157	

Figure 74 DSB runtime performance on EC2 ... 159	

Figure 75 Overall cost of PSB on EC2 ... 160	

Figure 77 Cost and runtime of PSB 1000-NMSG, 50-LOC, CONS run on EC2 161	

Figure 78 Cost and runtime plots of DSB with LOC-50, OPT run on EC2 161	

Figure 79 The design of the PDES-customized scheduler .. 173	

Figure 80 LVT based hypervisor scheduler algorithm ... 174	

Figure 81 LVT based hypervisor algorithm to resolve deadlock 175	

Figure 82 LVT based hypervisor scheduler algorithm to resolve deadlock and livelock 176	

Figure 83 Modified shared_info data-structure .. 180	

Figure 84 VCPU and ps_private global data-structures in PSX 183	

Figure 85 PSX physical CPU-core specific data-structure maintained by PSX 184	

Figure 86 Drastic increase in runtime with CSX just beyond multiplexing ratio 186	

Figure 87 Runtime performance of PHOLD for varying time slices 188	

Figure 88 PSX and CSX comparison PHOLD with LA=1 .. 189	

Figure 89 PSX and CSX comparison PHOLD with LA=0.1 ... 190	

Figure 90 PSX and CSX performance comparison DSB with LOC=90 192	

Figure 91 PSX and CSX performance comparison DSB with LOC=50 192	

 xvii

Figure 92 Road network layout ... 193	

Figure 93 PSX and CSX performance for SCATTER vehicular traffic simulation 195	

Figure 94 PSX, CSX and Native performance with PHOLD, DSB and SCATTER 196	

Figure 95 PSX and CSX runtime variance with PHOLD for lookaheads 1 and 0.1 197	

Figure 96 Functional diagram of the software test framework for secure electric grid .. 214	

Figure 97 Vehicular traffic simulation plot of number of events against runtime 215	

 xviii

LIST OF ABBREVIATIONS

CI Confidence Interval

CND Constant Network Delay

CONS Conservative synchronization scheme for PDES

CPU Central Processing Unit

CSX Credit Scheduler of Xen

DES Discrete Event Simulation

DOM Domain or VM

DOM0 Domain-0 or Control VM

DSB Disease Spread Benchmark

GVT Global Virtual Time

LLF Least-LVT-First

LOC Locality

LP Logical Process

LVT Local Virtual Time

NLP Number of LPs

NMSG Number of Messages/LP

NNC NetWarp Network Control

NSX NetWarp Scheduler for Xen

OPT Optimistic synchronization scheme for PDES

OS Operating System

PCPU Physical CPU

PDES Parallel Discrete Event Simulation

PSB PHOLD Simulation Benchmark

 xix

PSX PDES Scheduler for Xen

VCPU Virtual CPU

VM Virtual Machine

VND Variable Network Delay

VTS Virtual Time Systems

 xx

SUMMARY

Discrete dynamic system models that track, maintain, utilize, and evolve virtual

time are referred to as virtual time systems (VTS). The realization of VTS using virtual

machine (VM) technology offers several benefits including fidelity, scalability,

interoperability, fault tolerance and load balancing. The usage of VTS with VMs appears

in two ways: (a) VMs within VTS, and (b) VTS over VMs. The former is prevalent in

high-fidelity cyber infrastructure simulations and cyber-physical system simulations,

wherein VMs form a crucial component of VTS. The latter appears in the popular Cloud

computing services, where VMs are offered as computing commodities and the VTS

utilizes VMs as parallel execution platforms.

Prior to our work presented here, the simulation community using VM within

VTS (specifically, cyber infrastructure simulations) had little awareness of the existence

of a fundamental virtual time-ordering problem. The correctness problem was largely

unnoticed and unaddressed because of the unrecognized effects of fair-share multiplexing

of VMs to realize virtual time evolution of VMs within VTS. The dissertation research

reported here demonstrated the latent incorrectness of existing methods, defined key

correctness benchmarks, quantitatively measured the incorrectness, proposed and

implemented novel algorithms to overcome incorrectness, and optimized the solutions to

execute without a performance penalty. In fact our novel, correctness-enforcing design

yields better runtime performance than the traditional (incorrect) methods.

Similarly, the VTS execution over VM platforms such as Cloud computing

services incurs large performance degradation, which was not known until our research

 xxi

uncovered the fundamental mismatch between the scheduling needs of VTS execution

and those of traditional parallel workloads. Consequently, we designed a novel VTS-

aware hypervisor scheduler and showed significant performance gains in VTS execution

over VM platforms. Prior to our work, the performance concern of VTS over VM was

largely unaddressed due to the absence of an understanding of execution policy mismatch

between VMs and VTS applications. VTS follows virtual-time order execution whereas

the conventional VM execution follows fair-share policy. Our research quantitatively

uncovered the exact cause of poor performance of VTS in VM platforms. Moreover, we

proposed and implemented a novel virtual time-aware execution methodology that

relieves the degradation and provides over an order of magnitude faster execution than

the traditional virtual time-unaware execution.

1

CHAPTER 1

INTRODUCTION

1.1 Virtual Machine (VM)

Starting from early 1960s, the concept of virtualization has been realized at many

levels of the computer systems architecture, and continues to receive considerable

attention even today, enabling novel computing solutions such as Cloud computing and

computing as a service.

At the operating system (OS) level, a type of virtualization called “OS-level

virtualization” can be realized, which is distinct from the hardware virtualization

technology in vogue today. The OS-level virtualization technology enables multiple

isolated execution environments within a single OS kernel. This instance or a container

works as a stand-alone server, which can be shutdown, rebooted, provide root-access,

instance-specific users, isolated memory, network (IP) address, processes, file systems,

etc., but does not support different kernel from different operating systems to run at the

same time. The concept of a virtual machine is completely absent in such virtualization.

OpenVZ [2], FreeBSD Jail [3] and Solaris Zones/Containers [4] are a few well-known

distributions that use OS-level virtualization.

At the user level, the applications can be run in a virtual execution environment,

thus making the application highly portable across wide range of operating systems. The

Java Virtual Machine (JVM) [1] is a popular example of such application-level

virtualization. The concept of “library virtualization” also falls in this category, such as

 2

the Wine system that provided a subset of Win32 API as a library to allowed windows

desktop applications to be executed in Linux environment.

At the hardware-level, two methodologies are used for virtualization, namely,

full-virtualization and para-virtualization. Although the two types are similar in

functionality, they differ in the underlying means used to realize virtualization. With the

support for virtualization at the hardware-level from the processor vendors eased up the

realizing certain characteristics of the hypervisor, their distinctions have continued to

remain. Both these approaches run on the top of the hardware by pushing the OS above

them and address thus address similar challenges. Both these approaches make use of

highly configurable virtual machines comprising virtual peripheral I/O components and

hence provide an isolated virtual machine environment for every guest OS hosted. Para-

virtualization differs from full-virtualization in requiring the modification of guest OS

kernel, while the full-virtualization can host OS without any modifications. VMware

ESX Server [5] hypervisor was principally designed to support full-virtualization, the

Xen [6][7] hypervisor started with the concept of para-virtualization but currently

supports full virtualization also and Microsoft Hyper-V hypervisor also supports full-

virtualization. In the entire thesis the virtualization at the hardware-level is discussed and

used.

1.1.1 Virtual Machines History

The concept of Virtual Machines (VM) existed even before Intel released their

first microprocessor 4004 in 1971. As early as the 1970s [8], there is mention of virtual

machine CP-67 on IBM 360/67, a mainframe model, and the formal requirements are

discussed for the third generation computer systems. Nevertheless, the significance of

 3

virtualization as a practical consumer technology was not realized till the end of the 20th

century, at time by which information technology (IT) services had effectively permeated

through almost all industry and business sectors.

Any modern computing machine comprises of physical hardware such as

processor, memory, hard-disk, network-cards, etc., along with low-level software called

drivers to interact with the hardware peripherals and these software elements are

generally bundled up with the operating system (OS). Thus, in all the current systems

lacking VM the OS is tightly coupled with the physical hardware. The VM with all its

virtual peripherals running the same OS is loosely coupled to the physical hardware in

such a way that it can detach from the executing physical hardware and migrate to

another even during its execution. Further, the loose coupling also helps to host multiple

instances of VMs of varying configurations, running same OS or different OSs, to run

concurrently by sharing resources of their physical hardware host. Hence, the basic

requirement in realizing a VM is to decouple the OS from the physical hardware and

make it interact with its virtual counterpart, and also to be able to multiplex many virtual

peripherals on to limited physical peripherals.

Popek and Goldberg [8] formally define and illustrate the requirements for VM.

They aptly define VM as an efficient, isolated duplicate of a real machine. They

elaborate on the concept of VM in the context of a Virtual Machine Monitor (VMM) also

commonly known as a hypervisor. VM is the environment created by the VMM such

that the software-based duplicate of real machine can function in isolation. They

specified three characteristics that the VMM should possess to realize a VM. First, the

VMM is expected to provide for programs an environment that is essentially identical to

 4

the physical machine; secondly, programs that are executed in such an environment

experience some decrease in speed; thirdly, the VMM is in complete control of the

system resources.

1.1.2 Virtualization of the X86 Architecture

Although virtualization technology existed for long time, it was not until the

virtualization of the 32-bit x86 architecture by VMware for Linux in 1999 that its true

power was realized by the industry and elsewhere. By then, the fourth generation

microprocessor-based computer systems had become an integral part of almost every

industry in one form or another. The OS that was working as the lowest level software

providing an easy interface to develop, deploy and use a wide range of applications, had

essentially grown the market for the computer systems. Further, this positive expanse of

computing systems gave way to several practical issues such as inefficient use of

resources, interoperability, reliability, security, OS migration, and so on. It was

discovered by the pioneers of x86 virtualization that the flexibility afforded by virtual

machine monitors could solve, simply and elegantly, a number of hard system software

problems by innovating at the hypervisor layer below operating systems [9].

To add the requisite level of indirection to the computer hardware, new

mechanisms were used to trap and emulate direct execution code for application software

and dynamic binary translation for system software. In the course of time, via steady

improvements to hardware technologies, such as carefully reworking the segment

protection mechanism, the system code was eventually made to run at near-native speeds

(comparable to non-virtualized execution), at least as far as the operating system

mechanisms are concerned. The approach taken was “top-down addressing

 5

virtualization” of a single OS. To virtualize the highly diverse I/O peripherals in x86

systems, multiplexing and emulated components were used. By multiplexing, the

physical hardware was shared in space and time across multiple VMs. Via emulation

techniques, hardware-simulation software was used to support a wide range of VMs with

different, largely unmodified, operating systems. For the BIOS, the VMM loaded into

VM’s ROM a copy of VMware BIOS (licensed from Phoenix Technologies) to serve as

the x86 platform-specific firmware that first initializes hardware and then loads system

software from the peripherals. The evolution of x86 architecture virtualization is well

documented in terms of the efforts, inherent problems, challenges and solution

approaches [9].

From that point on, there has been a dramatic increase in the research, application

and utilization of virtual machines for various innovative purposes. Similarly, various

techniques of virtualization have been proposed and realized at many levels in the

computer system, with a wide variety of benefits.

1.1.3 Current Trends in Virtualization Technology

Currently, the expanse of the applications based on virtualization technology

spans from a platform as small as a single user desktop to a massive system as huge as a

commercial data center such as that of Amazon. On the smaller end, virtualization allows

desktop users to concurrently host multiple OS on the same hardware. On a larger scale,

the fault tolerance and economical-hosting possibilities of virtualization can be exploited

because a VM has the capability to move from one hypervisor to another while running

and also move from one storage device to another. Such agility enables automatic load

balancing on a cluster of hypervisor servers, and, in combination with low-latency

 6

uptime, this technology addresses the fault-tolerance. Fault tolerant execution in case of

hardware failure allows the hosted servers to automatically restart a VM on another host

of a cluster.

A very attractive product for both business operators and users alike arose from

tapping the virtualization technology through the Internet services, which famously came

to be known as Cloud computing. The Infrastructure-as-a-Service (IAAS), Platform-as-a-

Service (PAAS), Software-as-a-Service (SAAS) and Network-as-a-Service (NAAS) are

prominent among the types of services offered currently by Cloud computing service

vendors [10]. IAAS offers a cluster of user-specified hypervisors along with additional

resources such as VM disk-image library, firewalls, load-balancers, IP-addresses, and so

on. The PAAS, one level higher than IAAS, allows users to choose VMs running certain

types of OS, with selected types of support for databases, programming languages, and so

on. The SAAS, one level higher over PAAS, provides users the choice of different types

of applications that they would like to use (e.g., Microsoft Office). With NAAS, the

users are provided options for VPN-enabled networked systems with varying

interconnect options, such as bandwidth, essentially creating a private cloud within a

commercial, shared cloud.

Except for IAAS, the other services are essentially oblivious to the physical

hardware they are executing on. Based on the reasonable assumption of the unlikeliness

of 100% resource utilization from all clients at all times, the Cloud operators multiplex

VMs on limited resources and hence are able provide easy accessibility to large compute

resources at compellingly competitive prices.

 7

1.1.4 The Xen Hypervisor

Figure 1 Xen Hypervisor

The Xen hypervisor is a popular open source industry standard for virtualization,

supporting a wide range of architectures including x86, x86-64, IA64, and ARM, and

guest OS types including Windows®, Linux®, Solaris® and various versions of BSD

OS. Figure 1 shows a schematic of guests running on the Xen hypervisor. Xen refers to

VMs as Guest Domains or DOMs. Each DOM is identified by its DOM-ID. The first

DOM, “DOM0,” affords special hardware privileges. Each DOM has its own set of

virtual devices, including virtual multi-processors called virtual CPUs (VCPUs). System

administration tasks such as suspension, resumption, and migration of DOMs are

managed via DOM0.

Xen differs from VMware ESX Server in that the hypervisor only virtualizes and

manages the CPU and memory resources, and delegates I/O operations, including the

device drivers, to a privileged virtual machine called DOM0. Microsoft’s Hyper-V

shares the same architecture as Xen in which the Windows root partition replaces Xen’s

 8

DOM0. The VMware’s ESX server uses vmkernel along with VMM. The vmkernel is

responsible for global resource management as well as I/O operations; in particular, the

vmkernel natively runs performance-critical device drivers [9].

1.2 Virtual Time Systems (VTS)

1.2.1 Background

A representation of a physical system, or more aptly a System Under

Investigation (SUI), which is abstracted in order to understand, reason or engineer the

subtle characteristics of the SUI, is called a model. Simulation is an imitative

representation of functioning of one system (SUI) by means of the functioning of the

model (which is typically a computer program). Together, modeling and simulation

approaches have been applied to address wide range issues arising in various disciplines

of science and engineering.

The system models can be broadly classified as deterministic and stochastic

models. The deterministic models are characterized by the absence of random variable

components while the stochastic models are characterized by their presence. For

example, stochastic computer network simulation models based on queuing models use a

variety of probability distributions for network packet-generation time, packet-processing

time, and so on. An example of a deterministic system model is digital circuit simulation,

where the output is deterministic for a given set of inputs.

 9

Figure 2 System model classification

Each of these system models (deterministic and stochastic) is further classified

into static and dynamic, based on the models’ dependence on the temporal component.

In static models, the temporal component is absent or is insignificant, while the dynamic

models are designed to imitate the evolution of the SUI over time. Monte Carlo

simulations are an example of static stochastic system models and linear programming is

an example of static deterministic system models. Regardless of being deterministic or

stochastic, the time component is tightly coupled with the dynamic systems and these

system models associate the characteristic change of the system model state to their time

component. To differentiate the time component of a system model from the wall-clock

time or real time of the computer executing the model, we refer to the time of the system

model as the virtual time. All system models that maintain and/or use virtual time for

simulation are referred to as Virtual Time System (VTS).

VTS models can be classified into two as (a) continuous and (b) discrete. In the

continuous system model, the state of the system model is perceived to change

continuously with the virtual time, while in the discrete system model, the system model

 10

is perceived to change the state at discrete points of virtual time. Although the principles

discussed are generic and could be applicable to other models, we restrict our discussions

to the discrete VTS models in this thesis.

Discrete event simulations are an example of the discrete VTS model. Discrete

event simulation of an SUI emulates the behavior of the SUI over time in terms of events

and state changes. An event is a discrete point in time that corresponds to an instant in the

evolution of the SUI. A state of the simulation model is a snapshot of the evolving SUI

at a given instant of time. Generally, an event is associated with a change in the state.

In discrete event simulations, the modeler defines the different states and events

of the SUI to be simulated during the modeling phase. This definition of states and

events varies with the specific goals of the simulation exercise. Thus, a discrete event

simulation comprises a set of states and events. To ensure that the transition across the

model states realistically emulates the SUI transitions over real time, the events generated

by the model must be executed in virtual time-order.

There are primarily three different worldviews for realizing discrete event

simulations: (a) activity scanning approach, (b) event oriented approach, (c) process

oriented approach. Conceptually, the worldviews address the same virtual time-ordered

execution issue via different execution techniques. Nevertheless, each worldview has its

advantages and disadvantages in realizing the discrete-event simulations [11].

Regardless of the worldviews, each event in the model would contain a specific

virtual time that is used for queuing the event in a Virtual Time-ordered Priority-Queue

(VTPQ). During processing of events, additional future events will be queued in VTPQ.

 11

Hence, a discrete-event simulation essentially involves continuously processing the

events from a VTPQ.

Figure 3 Illustration of timeline and events in discrete-event simulation

1.2.2 Parallel Discrete Event Simulation (PDES)

PDES involves execution of several serial sequential DES systems in parallel.

Usually the SUI to be simulated is spatially divided into a set of similar partitions and a

DES is used to simulate each such partition. The DES process in PDES is generally

referred to as a Logical Process (LP). Figure 4 depicts the parallel execution (involving 2

LPs) of the sequential discrete-event simulation model shown in Figure 3.

Figure 4 Parallel execution of discrete-event simulation

 12

As shown in Figure 4, each LP maintains its own simulation time line, and LPs

have the capability to schedule events on their peers’ time lines.

A verification measure, wherein the application running on the PDES framework

yields exactly same results as its sequential counterpart, is termed as the correctness of

parallel execution. Note that, with parallel execution, we lose the notion of a single

simulation time-line, and hence, to ensure correctness in execution, it becomes necessary

to enforce some form of a synchronization mechanism across LPs. Two distinct

synchronization mechanisms are popularly used in the PDES community namely, (a)

conservative synchronization [12] [13], and (b) optimistic synchronization [14].

Conservative synchronization approaches enforce a strict rule on each LP such

that any attempt to breach the virtual-time-ordered processing of events is thwarted. In

contrast, the optimistic synchronization approaches allow the LPs to (temporarily and

transitorily) breach virtual-time ordered processing or commit execution errors, and

provide mechanisms to revert back committed errors, if any, to eventually ensure

correctness. A large body of research work spanning past three decades has elaborately

addressed various facets of the synchronization issues in parallel discrete event

simulations and they are very well documented [12].

1.2.2.1 Lookahead

The amount of parallelism in PDES is directly dependent on the number of events

that can be concurrently processed by each processor. In sequential DES, the processing

of events generates more events for the future. The virtual time of any future event is

essentially a positive-time leap from the current virtual time. The time period between

these events (current and next virtual time) is specific to the SUI being modeled;

 13

furthermore, within a given SUI being modeled, it could span a wide range values. The

decomposition of timelines of DES into PDES results in a set of LPs that can schedule

events to themselves and/or to other LPs at a virtual time in future. The minimum virtual

time-period between the sending time and receiving time of any event is termed as the

lookahead of the LP.

This lookahead parameter plays an important role in the performance of PDES

execution. The larger the lookahead value, the greater the concurrency.

1.2.2.2 Lower Bound on Incoming Time Stamps (LBTS)

With the lookahead guarantee on the minimum value of timestamps generated at

any given moment, the LPs essentially guarantee a specified virtual-time period in

between the sequence of events they might schedule on other LPs. However, this

guarantee can only be used for event processing by an LP when the (lower bound of) the

virtual times of unprocessed events of its peer LPs are known. This globally minimum

virtual time, called LBTS, is computed by the PDES algorithms to guarantee that no LP

will schedule events with a virtual time lower than the LBTS. To segregate its local

events as safe or unsafe, each LP uses the LBTS value, thereby avoiding violating the

correctness criterion. Thus, the computation of successively larger LBTS values

dynamically is essential for conservative synchronization scheme to function in parallel.

1.2.2.3 Global Virtual Time (GVT)

The optimistic synchronization schemes ensure the correctness in the processing

of events in virtual time order in the distributed environment by rolling back out-of-order

events. Optimistic synchronization involves addressing issues such as: (a) the memory

limitation issues that arise from state-saving needs for rollbacks (b) handling of events

 14

that cannot be rolled back but are necessary, such as the I/O operations (c) ensuring the

regular global progress of simulation so that a straggler event in the future would not

revert back to the start of simulation, and (d) detecting simulation termination.

GVT, a property of an instantaneous global snapshot of the distributed system in

real time, is utilized in addressing all the aforementioned issues. GVT has many

equivalent definitions. Informally, it is the smallest “unprocessed” time stamp among all

the virtual clocks in the distributed system including transient messages. In other words,

it is the minimum among all the virtual times of all the scheduled-but-not-yet-executed

events in the system. It serves as a lower bound on the virtual times to which any process

can ever again rollback. It allows committing results of the events that cannot be reverted.

1.2.3 PDES Models

In PDES, the model is divided into distinct independent virtual timelines referred

to as Logical Processes (LPs). Each LP typically encapsulates a set of state variables of a

modeled entity. The timelines of LPs within and across processors are kept synchronized

by the PDES engine. The µsik [16] parallel/distributed simulation kernel built upon a

micro-kernel architecture is used for most of our experimentations. It is an optimized

implementation of a parallel discrete event simulation interface that provides the option

of conservative as well as optimistic synchronization. The synchronization protocols are

the blocking-based variant of the set of highly scalable global virtual time (GVT)

algorithms recently tested at very large scale on supercomputers [17]. The algorithms are

implemented using the blocking collective call of Message Passing Interface (MPI),

namely, the MPI_Allreduce()call, inside the iterations of the GVT algorithm to

account for all transient messages. This is a Mattern-style [18] epoch-based framework

 15

that colors messages and uses reduction-based counting of transient messages. The

parallel implementation of µsik [16] has previously been reported to be competitive with

sequential execution, with a high efficiency.

Three applications namely, PHOLD [19] (a synthetic PDES application generally

used for performance evaluation), Disease Spread Simulation [20] and SCATTER

[21][22] (reverse-computation-based vehicular traffic PDES application) are used in our

performance studies.

1.2.3.1 PHOLD

This is a widely used synthetic benchmark for performance evaluation by the

PDES research community. This PDES application randomly exchanges a fixed

population of events among the LPs. The µsik implementation of PHOLD allows

exercising a wide variety of options in its execution. In all of our PHOLD benchmarks,

we use a lookahead value of 1.0 and exercise combinations of the following parameters

for performance evaluation.

• Synchronization: optimistic (OPT) or conservative (CONS)

• Number of LPs per Federate (NLP) [for example: 10 NLP = 10 LPs/federate]

• Number of messages per LP (NMSG) [for example: 10 NMSG = 10 messages/LP]

• Destination locality of the LP generated message (LOC) specifies the percentages of

local and remote events. Values of 50, 90 and 100 suggest respectively that 50%,

90% and 100% of the messages generated by an LP are local to its federate. Hence, a

value of 50% for LOC involves more LP message exchanges across the network and

results in increased network traffic; a value of 90% results in a reasonable amount of

 16

inter-federate event traffic, and, 100% suggests an embarrassingly parallel PDES

application involving little inter-federate interaction except for GVT computations.

1.2.3.2 Disease Spread Simulation

As a second application, we use an epidemiological disease spread model that

defines a discrete event model for the propagation of a disease in a population of

individuals in groups called locations and aggregates of locations called regions. Each

region is mapped to a Federate. Multiple locations are contained in each region. Each

location is housed within an LP. Multiple individuals are instantiated at each location,

and they not only interact with individuals within the same location but also periodically

(conforming to an individual-specific time distribution function) move from one location

to another. Similar to PHOLD, the number of individuals per location is varied (e.g.,

1000 individuals/location), and the number of locations per region is also varied (e.g., 10

locations/region).

1.2.3.3 SCATTER

This application is a discrete-event formulation and a parallel execution

framework for vehicular traffic simulation. It uses the µsik library for parallel execution

and is amenable to both conservative (CONS) and optimistic (OPT) synchronizations. A

simulation scenario is set up by reading an input file that specifies the road network

structure, number of lanes, speed limit, source nodes, sink nodes, vehicle generation rate,

traffic light timings and other relevant information. Dijkstra’s shortest-path algorithm is

used to direct a vehicle to its destination.

 17

1.3 Problem Statement and Research Challenges

The relation of VTS with VMs, is two-fold: (a) VM within VTS, and (b) VTS

over VM. Hence, the problem statement, the research challenges and subsequently the

research contributions of this dissertation, also fall in two categories, as described in the

next two sub-sections.

1.3.1 VM within VTS

The use of VMs within PDES (discrete VTS) appears prominently in the field of

cyber-infrastructural and cyber-physical simulations, such as computer network

simulation/emulations, where fidelity, portability, performance and scalability define the

design criteria. Driven by the need to understand the dynamics of complex

parallel/distributed network application behaviors whose software cannot be easily

modeled without actually re-implementing them, network emulation platforms such as

Emulab were designed. However, in all traditional emulation approaches, virtual time

was intermixed with real time or wall-clock time, creating the possibility of pollution of

the notion of time in general.

Even if the VM technologies are used on physical machines with multiple

compute resources with each VM mapped to a single, distinct compute resource, the

correctness of the simulation/emulation cannot be guaranteed because the scheduler that

shares the physical compute-resources among virtual compute resources does not take

idle time of VMs into consideration, and, in the simulation, we can rarely expect all the

subsidiary parallel computing peripherals to be perfectly load-balanced. Even if this

issue can be resolved by strictly pinning every physical compute-resource to a particular

virtual compute-resource, a loss of performance in such case is unavoidable.

 18

These limitations of any emulation platform is due to its dependence on real-time

for determining the simulation time. Detaching the emulation’s reliance on real-time

resolves most of the above discussed problems but doing so involves addressing several

challenges. The disassociation with real-time puts the burden on the modeler to maintain

the simulation time. The following fundamental challenges will need to be addressed:

 How can the system take into account and maintain the simulation time?

 How can the execution ensure a global-simulation-time across all VMs?

 How can multiple VMs be handled in time-order with multi-core platforms?

 How can multiple VMs be scheduled to ensure correctness of simulation?

 How can multiple VMs of varying compute capacity (differing in number of

virtual compute cores) be accommodated?

 How can the correctness of the simulation system be measured?

 How can the correctness of the simulation be demonstrated?

 How can the correctness issues in complex network simulations be

convincingly identified?

 To what extent does the system performance get affected?

 How well does the system scale?

1.3.2 VTS over VMs

The rapidly changing landscape of computing due to the largely appealing

economical and technological advantages of VM technologies is bound to impact PDES

based simulations. While, the next generation computations will be realized and

accounted for in terms of resource utilization of VMs, the PDES adaptability is still

unexplored in this new execution environment that directly impacts its performance.

 19

A large portion of prior work on PDES targeted high-performance computing

platforms where dedicated compute units with high-bandwidth and low-latency networks

are assumed. On the contrary, the VM platforms alter the traditional assumptions about

the computing platform since the VM-based execution platforms share the compute

resources and might migrate to another physical node during execution. While, in the

HPC execution platform, the physical hardware is always precisely specified prior to

execution, that might not be the case in VM-based execution environments. Furthermore,

the physical hardware hosting the VM could change even during the run. Hence, one

basic challenge is to evolve some rules of thumb or guidelines to the PDES user in order

to efficiently utilize the VM-based execution platforms.

Despite the challenges that the VM execution environment poses, it also offers

several new capabilities for a PDES user. One important aspect to be noted about VMs is

that their execution parameters (such as VM-to-processor mapping) can be significantly

altered quite efficiently during runtime. PDES applications are generally characterized

by their highly dynamic and unbalanced computational loads on the LPs (and thereby on

the processors). Hence, performance-tuning opportunities arise with VM-based

execution platforms that can be flexibly controlled at runtime. In exploiting this

flexibility of VMs, the challenge is to realize a VM-based execution mechanism for

PDES applications that appropriately adapts the resource-sharing operations at runtime

based on the needs of the application, without the need for any user-monitoring and

intervention.

 20

1.4 Research Contributions

1.4.1 VM within VTS

1.4.1.1 Dissociating Virtual Time from Real Time

By efficiently addressing this issue, we not only dissociate the simulator from real

time for generic computer network systems but also open up new opportunities to realize

high-fidelity simulations based on VM technologies. For example, in sensor-network

simulations, the modeled sensor networks involve motes and these motes use processors

that are clocked far slower than the generic processors. Though the VM technologies

provide a means to host the OS used in sensors, the emulations pertaining to sensor

networks are not reliable since the clock frequency of the processors used by VMs is very

high compared to that of the motes. The dissociation of real-time from simulation time

can ensure faster than real-time simulations of sensor networks.

1.4.1.2 Multi-core VMs for simulation

Figure 5 shows our approach in relation to past approaches: (a) represents free-

running emulations with only real time-based clocks, (b) represents VMs integrated into

emulations via virtual clocks controlled via approaches such as time dilation [36], (c)

shows multi-core execution with one virtual clock per VM, and (d) shows a distinct

virtual clock for every entity down to the level of each virtual core (VCPU). We support

the capability to simultaneously schedule multiple single-core and/or multi-core VMs in

virtual-time order on native multi-core hardware. Our design maintains a separate virtual

clock for each virtual core (VCPU) of a multi-core VM to keep track of its virtual time.

 21

This is analogous to a Logical Process (LP) in PDES that maintains its own local virtual

time (LVT).

(a) Plain real time-based emulation with no
VMs

(b) Emulation with time-controlled VMs

(c) Simulation/emulation with time-
controlled VMs on multiple virtual CPUs

(d) Simulation with time-controlled VMs on
time-controlled virtual CPUs

Figure 5 Real-time vs. virtual-time representations

1.4.1.3 Virtual Time-ordered Execution of VMs

Dissociating the simulation-time from real-time enables the ability to multiplex

many VMs of varying capacities over a shared physical hardware and brings the

 22

traditional emulation system into the PDES conceptual framework. To ensure

correctness of the simulation, the concurrently running VMs (with independent

simulation times) need to adhere to the simulation-time-ordered execution of events of

PDES. To this end, we identify, propose, implement and evaluate a novel technique of

achieving time-ordered execution of the VMs by replacing the scheduling policy used by

the hypervisor in scheduling the VCPUs.

1.4.1.4 Deriving Global Virtual Time

With each VCPU accounting for the virtual time, we need to synchronize and

consolidate the timelines from each VCPU to a single global simulation time or a global

virtual time. A timer-based approach that consolidates the VCPU virtual timelines to VM

virtual timeline, and several VM virtual time lines into global virtual timeline, has been

proposed, implemented and tested.

1.4.1.5 Virtual Time-ordered Network Control

Virtual time-ordered network control is another critical component in realizing

correct models for high-fidelity cyber infrastructure/cyber-physical simulations. It

enforces a user-specified virtual time latency and bandwidth to the packets in transit.

Such virtual time-controlled inter-VM network communication is essential for virtual

time-ordered execution of the entire system. In this thesis, we identify, propose and

implement a novel, efficient design of a virtual time-controlled inter-VM network

communication. Our virtual time-ordered network control is capable of capturing,

buffering and delivering packets between VMs according to virtual time order of the

overall simulation.

 23

1.4.1.6 Synthetic Benchmarks to Measure Virtual Time-order Errors

To prove the existence of virtual time-order errors in traditional simulations when

a large number of VMs are multiplexed on a limited resource physical machine, and also

the absence of such errors in our virtual time-ordered systems, we designed and

developed multiple synthetic benchmarks. These benchmarks provide a controlled way

to detect if (and by how much) the simulation results deviate from theoretically correct

results in terms of virtual time-order errors. In other words, the benchmarks serve to

provide both qualitative as well as quantitative measures of simulation correctness in the

use of VM within VTS.

1.4.1.7 Metric to Quantify Virtual Time-order Errors

To measure the virtual time-order errors in PDES application benchmarks, we

invented an error-metric quantified in terms of a new concept we proposed, called eunits.

A generic formula to calculate such virtual time-order errors was presented.

1.4.1.8 Application Benchmarks

Benchmarks with based on PDES applications were designed and developed to

demonstrate the effects of virtual time-ordered execution of VMs. These benchmarks

serve towards understanding the time-ordered execution correctness directly in terms of

application-level phenomena, in contrast to the controlled variables of the synthetic

benchmarks

1.4.1.9 Prototyping and Scaling Studies

All the proposed concepts were prototyped and tested for time-order errors. Their

performance and scaling behaviors were also evaluated. We demonstrated a good

 24

runtime performance and excellent scaling behavior of our prototypes through the results

from the synthetic as well as application benchmark executions.

1.4.2 VTS over VM

1.4.2.1 Guidelines for Better PDES Performance in VM Execution Environments

In comparison to the current execution environments of PDES applications, the

Cloud computing services provide limited information about the actual hardware (host)

platform that the Cloud uses for hosting the VMs. Similarly, the range of new

configuration options provided by the Cloud to select and build a VM-based user cluster

can confound the traditional PDES user. This is because such options have not been

studied previously in the PDES literature, which had assumed a one-to-one mapping of

simulation loops to processors. A set of guidelines on the performance of PDES on

Cloud services was developed base on a detailed performance study, which is the first

ever conducted for multi-core VMs. The study included multiple diverse PDES

applications that exercised both optimistic and conservative synchronization techniques.

Performance-critical and cost-critical choices of VM selections for PDES executions

were highlighted, and the associated guidelines were provided. We were first to report

such a detailed performance study involving synthetic and real-life PDES application

benchmarks.

1.4.2.2 Identifying the Criticality of VM Scheduling for Performance

Although several Cloud-specific performance studies have been reported in the

literature, the performance implication of the VM scheduling policy on VTS has never

been studied. We were the first to highlight, demonstrate and associate the performance

 25

degradation of PDES applications executing on VM platforms to the scheduling policy of

the VM platforms. We also proposed, designed, implemented and tested a new Least-

LVT-First based scheduling policy for the VM hypervisor scheduler to address this

problem and efficiently handle PDES application loads.

1.4.2.3 Algorithm to Overcome Deadlock and Livelock Conditions

The Least-LVT-First Scheduling (LLFS) policy in scheduling VCPUs on to

PCPUs is necessary for efficiently hosting VTS applications on VM platform. However,

it is not sufficient because a purely LLFS policy suffers from susceptibility to deadlock

and livelock problems. We identified the presence of deadlock and livelock in a purely

LLFS execution and traced the source of their appearance to GVT computations in the

hosted PDES execution. We designed an efficient counter-based algorithm to overcome

the deadlock and livelock conditions.

1.4.2.4 Efficient Implementation of PDES-specific Hypervisor Scheduler

Our new, livelock-free and deadlock-free LLFS algorithm was implemented and

tested with multiple PDES application benchmarks. The implementation was

demonstrated to yield very good performance gains across all the benchmark

applications. Our implementation also demonstrated insignificant runtime variance in

comparison to the variance observed from the default scheduler. Although the scaling

behavior varies across application benchmark, our implementation demonstrated a good

scaling behavior (for both strong scaling as well as weak scaling). A very competitive

runtime performance in comparison to the native Linux-based (non-VM) PDES runs was

also observed.

 26

1.4.2.5 Order-of-magnitude Speedup from New VM Scheduling Policy

Based on the applications under consideration, PDES performance varies

dynamically during runtime across individual LPs. The application-computing load on

LPs depends on the event-processing rates that are highly dynamic in nature. We

hypothesized that, by communicating the least virtual time information from the PDES

application to the scheduler, the performance problem of the VM scheduling policy can

be solved. By using the PDES-supplied virtual time information in allotting compute

resource to the VMs that host LPs, the scheduler can efficiently address the dynamic

load-balancing problem from time-varying event workloads. We demonstrated this

critical aspect with our prototype implementation, which at its recorded best

demonstrated around 20-fold speedup compared to the VM platform that used traditional

fairness-based, general-purpose credit scheduler.

1.5 Thesis Organization

From Chapter 2 to Chapter 4, we discuss in detail the topics covering the use of

VMs within VTS. In Chapter 5 and Chapter 6, we discuss the topics covering VTS

execution over VMs.

Chapter 2 provides the concepts, issues, challenges, design, implementation and

performance evaluation of NetWarp, the cyber-infrastructural and cyber-physical

simulator that uses VM instances as end hosts. We also discuss the design,

implementation and testing of a virtual-time ordered network control module prototype.

In Chapter 3, we discuss the scaling, benchmarking, network control issues, and evaluate

the NetWarp system for correctness and performance in greater detail. In Chapter 4, we

 27

perform a case study in which, a large scale MANET simulations are used to evaluate the

NetWarp simulator.

In Chapter 5, we discuss the suitability of VM based execution platforms for

PDES applications, and analyze important performance-critical observations discovered

and provide recommendations for PDES users using VM-based execution platforms. In

Chapter 6, we discuss the important role played by the VM scheduler during the

execution of PDES applications. We design and develop a virtual time-aware hypervisor

that allows the applications to pass virtual time to the hypervisor. We design and

develop, a deadlock and livelock free algorithm Least-LVT-First (LLF) based hypervisor

scheduler algorithm. We demonstrate the performance efficiency of the LLF based

hypervisor scheduler in comparison with the default fair-share based hypervisor

scheduler using several simulation scenarios from diverse set of PDES applications.

We conclude with discussions on future directions after summarizing our research

work in Chapter 7.

 28

CHAPTER 2

VM WITHIN VTS: CONCEPTS, DESIGN AND PROTOTYPE

2.1 Network Simulation/Emulation Overview

2.1.1 Background

Simulations and emulations have played an important role in the growth,

sustenance and maintenance of networked systems of various kinds. Looking back at the

evolution of tools used for realizing simulation models of computer networks, they can be

broadly classified into two major groups as shown in Figure 6: (a) Network-centric and

(b) End-host-centric.

Figure 6 Network modeling classification and terminology

The network-centric simulation group mostly contributes to the design of

networks, understanding the dynamics of the interaction of end-node protocols, testing

new protocols, determining the bottlenecks, and engineering the protocols for better

resource utilization and flexibility, all of which are predominantly focused on the overall

network operation. On the other hand, the end-host-centric group largely concentrates on

 29

the impact of network characteristics (such as, bandwidth and latency) associated with

the dynamics of the communication protocols on the end-user application and porting

actual implementations of the applications/protocols onto the end-hosts. More

information on such a classification can be found in the literature [23].

Physical test-beds comprising networked computer systems spanning multiple

continents, such as the PlanetLAB system [24], or spanning a country (United States),

such as the GENI system [25], generally fall outside this classification since test-beds can

be used for either network-centric and end-host-centric studies.

The analytical models and the network simulation tools such as NS2 or NS3 [26]

and OPNET [27] fall under the network-centric category, where the abstraction of the

end-nodes for modeling the network under study was acceptable and also desirable to

achieve better scaling. The rapid growth in the size of internetworks and the Internet

resulted in the development of parallel computing network simulators such as GTNets

[28], SSFNet [29], GloMoSim [30], PDNS [31] and similar tools, to address the scaling

and runtime performance needs. One characteristic to note in almost all the network-

centric simulation tools is that the simulation time is completely different from real time

or wall-clock time.

On the contrary, the application-centric tools, based on their design goals, rely on

real-time. Tools such as dummy-net [32], ENTRAPID [33], ModelNet [34] and Emulab

[35] fall in this category. To differentiate from the network-centric simulation models,

they have been largely referred to as network emulation-tools or emulation-test beds in

previous literature.

 30

One apparent differentiating factor of these groups is their simulation time. The

network-centric simulation tools keep track and maintain their simulation time, while the

end-host-centric tools use the real-time as their simulation-time. We define the

simulation-time maintained by the network-centric simulation tools as virtual-time, as the

simulation time is common to both network-centric and end-host-centric models.

2.1.2 VM based Network Modeling

Figure 7 VM-based network modeling classification

The end-host-centric simulators such as Emulab have started using VMs to

address the scaling and capacity needs of tested applications. Concurrently, in the quest

to achieve higher fidelity and ease of protocol/application portability without losing

scalability, a few network-centric simulators such as NS2 started providing interfaces to

feed live packets into their network simulators. Thus, a natural trend in interfacing

network simulators with VMs to realize the goals of both network-centric and end-host-

centric simulators has been pursued by various research groups around the world. In the

context of this recent phenomenon of integrating VMs into cyber infrastructure

 31

simulations, several problems and challenges arise and remained to be addressed for

efficient utilization of the VM technology in the simulations.

With the overlapping of two earlier distinct views, the tools that were clearly

identified previously as either distinctly emulation-only or distinctly simulation-only

tools have now become difficult to classify as only one and not the other. Essentially, the

distinction begins to blur when the real-time aspects of VMs get mixed with the virtual

time-driven simulations. Most literatures reporting the development of the combination

of end-host-centric and network-centric simulation tools refer to them as network

simulation/emulation. However, the terminology for differentiating these two groups of

tools still continues based on the factors that previously qualified a system as either

simulation or emulation. That is, if the tool uses real-time as simulation-time then it is

referred to as emulator; if the tool maintains a virtual-time for simulation-time, it is

referred to as a simulator. The terminology built on this notion is consistently used

throughout the rest of this document.

2.1.3 VM-based Network Emulators

The concept of time dilation [36] was introduced in emulations, wherein a

higher/lower bandwidth communication network behavior could be emulated using the

same underlying network by simply manipulating the perceived time of the end-

nodes/operating systems. This is often referred to as time virtualization in subsequent

literature. Using resource virtualization from conventional hypervisors, augmented with

time virtualization from time dilation, various network emulation systems have been

proposed, such as V-eM [37], DieCast [38], VENICE [39], dONE [40] and Time-Jails

[41], allowing flexibility in configuring the emulation setup. Note that although time

 32

dilation alters the perception of time for the end nodes the execution pacing is still real

time based. This raises correctness issue when the total number of VCPUs hosted (across

all the VMs) is greater than the number of physical cores (PCPUs) of the physical node.

Even with total number of hosted VCPUs equaling the PCPUs, the problem of

correctness persist (due to scheduling) and this can be overcome by pinning VCPUs to

corresponding PCPUs.

2.1.4 VM-based Network Simulators

Unlike the network emulators that depend on real-time, the simulators using VMs

must maintain their own virtual-time, synchronize across multiple VMs and consistently

advance the simulation without committing any time-order errors. The tools that are

published in the literature can be classified as (a) Application-level network simulators

(b) OS-level network simulators, and (c) Machine-level network simulators.

ONE [42] can be considered as an application-level network simulator. It is

realized using kernel-level protocol implementations and a few relevant applications such

as FTP and Telnet software implementations, to generate a virtual application node.

Multiple such virtual application nodes are run in parallel using PDES synchronization

schemes. Specifically, they use null message-based conservative synchronization scheme

[12]. This approach might yield better scalability when compared to the other two

approaches but poses portability challenges as the code-base from the kernels and

applications need to be compiled. Additionally, the source code base is often not

available for all the OSs. Even when available, the instrumentation and maintenance of

multiple operating systems along with their version variations poses a significant hurdle

to using this approach.

 33

The OS-level network simulator uses an OS-level VM for realizing the network

simulator. The simulator presented in [43] using OpenVZ VMs is an example in this

category. The advantages arise from the fact that the OS instances run as processes on

the native OS, thus providing greater flexibility to exercise control, easy access to the

state information of the guest-OS. Since all the OS instances essentially use the same

kernel simulator, this approach is expected to scale well. However, since the VM in this

case is an OS level machine level, the virtual hardware customization of the VMs cannot

be handled. For example, it is not possible to realize simulations involving computing

systems with varying number of processing cores, NICs, etc. Also, the simulator cannot

host different types of OS kernels concurrently on the same physical machine using this

VM technology. The inability to specify the VM machine configuration details is

problematic as multicore architectures are widely prevalent, and single-core architectures

have essentially become obsolete.

The machine-level network simulator uses either “Para-VM” or “Full-VM”

virtualization techniques, as in the Xen or VMWare ESX server or MS-VServer

implementations. Configurability-wise, this type of simulator offers a wide range of

options to define the machine-specific details of a VM (number of cores, number of

NICs, etc.). Further, the configurability is independent of the physical host of the VM; it

also supports concurrent execution of different distributions of OS on the same physical

platform. The scalability of Para-VM simulator is comparable to that of OS-level VMs.

However, the guest OS instances are more isolated and the need to deal with the virtual

devices of the VMs is unavoidable. VM-based simulation tools, such as the SliceTime

[44] and our tool NetWarp, fall in this category.

 34

SliceTime does not provide clarity in virtual time-keeping to clearly separate real

time and virtual time for VMs (especially, multi-core VMs on multi-core hosts). Further,

it uses a specific solution based on UDP broadcast for inter-VM virtual-time

synchronization, while our approach provides a clear framework for virtualizing all

aspects of the simulated inter-VM network. Virtual time-ordered execution on multi-core

VMs needs a methodology to account for idle-time in simulations, which is lacking in the

implementation of SliceTime. Our NetWarp design incorporates the mechanisms needed

for accurate and efficient execution in the presence of idling VM cores.

2.2 NetWarp Simulator

2.2.1 NetWarp Goals

NetWarp is envisioned as a large-scale VM based high-fidelity network simulator

that is capable of simulating the behavior of parallel/distributed applications and

protocols. It envisions duplicating the operation of arbitrary configurations and

combinations of wired and wireless networks. It is intended to reduce the time and effort

involved in porting, configuring, instantiating, and executing network simulation

scenarios.

2.2.2 NetWarp Architecture

In computer network simulations, two logically complete and functionally

independent modules can be identified, namely, (a) the end-host module and (b) the

network module. The functional completeness of the end-host module presumes the

availability of actual implementations of the protocols/applications that need to be

exercised in the simulation. Similarly, the functional completeness of the network

 35

module presumes the connectivity specification between the end-hosts with/without the

specification of the bandwidth. With the functional completeness of the end-host and

network modules, a modeler can evaluate distributed applications or protocols. However,

this does not guarantee correctness because of time-order errors. The correctness of

simulation-based evaluation only builds on completeness of software implementation, but

additionally needs accurate time-ordered evolution of the system execution. The support

of virtual time-ordered execution of all the end-hosts along with time-ordered network

interaction that delivers packets to/from the end-hosts in the virtual time-order ensures

correctness in the simulation execution.

Figure 8 NetWarp simulator design

NetWarp is a network simulator geared toward cyber-infrastructural and cyber-

physical simulations, that utilizes a large number of virtual end-hosts realized as multi-

core VMs sustained on multi-core hosts in parallel. The execution architecture thus

presents two distinct components of time-controlled execution, namely, the control of

 36

intra-node pacing among VMs within a multi-core node, and the control of inter-node

pacing for virtual time coordination across multiple multi-core nodes.

This type of system model can be classified as a quasi discrete-dynamic-

deterministic system model because the mapping of the VCPUs onto multi-core PCPUs

might include minor randomness in virtual time-ordering making multiple runs deviate

from each other; however, this deviation can be arbitrarily reduced by reducing the

execution time slice, as will be described in greater detail in the rest of the document.

Although the granularity of the time slices can be reduced to control the randomness to

some extent, there is a trade-off with runtime performance because smaller virtual time

slices to the VCPUs result in more frequent context switching. Hence, we qualify the

NetWarp simulation system as a quasi-discrete-dynamic-deterministic system model.

2.2.3 NetWarp Core Conceptual Issues

In realizing a VM-based network simulator, the following conceptual issues need

to be addressed:

• Accounting for simulation-time of virtual end-hosts

• Accounting for idle-time of VCPUs

• System/node-level accounting of virtual time

• Virtual time-ordered scheduling of VMs

• Adjustable granularity of the VM scheduling time unit

• Design of virtual time-ordered execution benchmark tests

• Virtual time-ordered network communication control

• Accuracy testing mechanisms in virtual time-ordered execution of

applications.

 37

In this section, we discuss the core issues, their relevance and the approach to

realizing these concepts in VM-based simulators.

2.2.3.1 Accounting for Simulation Time

The network simulation platform is required to account for virtual time on each

VM. Our design supports VMs containing multiple-VCPUs with arbitrary combinations

of their composition (such as dual-core, quad-core, etc.). To support such heterogeneous

mixture, virtual-time needs to be maintained for each VCPU. Further, we also need to

consolidate the virtual times of VCPUs into VM-level virtual time periodically.

2.2.3.2 Accounting for Idle Time

During the course of a network simulation, within each multi-VCPU VM, not all

the VCPUs are active all the time; similarly, not all VMs are expected to be active all the

time in a large-scale network simulation. Hence, the idle time in the VCPU and VM

processor times must also be accounted along with the utilization time of active

processors participating in network simulations.

Within a VM, different VCPUs can be periodically synchronized to the largest

value of VCPU virtual times across all VCPUs of that VM to account for the idle time of

all VCPUs of the VM without actually burning the PCPU cycles for idle times.

Similarly, by pulling the virtual time across all VMs to their maximum value periodically

one can account for idle time of VMs across the simulation host node that houses all the

VMs being used as end-hosts in the simulated network scenario.

 38

2.2.3.3 System/Node Virtual Time

The progress of the entire network simulation comprising all the VMs running

within a single physical host is tracked using the concept of a “System/Node Virtual

Time,” or SYS_LVT for short, which is derived using the virtual times of each VM.

Virtual time within each VM can be accounted by taking the largest of virtual times

across all the VCPUs of that VM, thus accounting for both utilized time and idle time of

VCPUs. SYS_LVT at any point in the simulation is the minimum of local virtual times

(LVTs) of all the VMs.

2.2.3.4 Virtual Time-ordered Execution

Since hypervisors were created for general-purpose usage (as opposed to being

designed for network simulations alone), the host resources are shared fairly across all

hosted VMs and are optimized to best utilize the host resources. In network simulations,

the virtual time of a VM progresses with the actual utilization of the VM’s VCPUs. In

order to ensure virtual time-ordered generation and processing of events by VMs, the

VCPUs of the VMs must follow virtual time-order. Given the distribution of the load

across VMs can vary arbitrarily at runtime and that a large number of VCPUs will be

multiplexed among limited number of PCPUs, a fairness-based VCPU scheduler is bound

to generate virtual time order errors (as will be qualitatively and quantitatively

demonstrated later in this dissertation). With this in mind, careful, virtual time-aware

scheduling of VCPUs onto the PCPUs must be designed to control the LVT

advancement. By ensuring that only the VCPU with the least LVT is scheduled at every

scheduling opportunity, we can ensure virtual time-ordered execution of the simulation.

 39

2.2.3.5 Adjustable granularity of VM Scheduling Time Unit

A hypervisor by default uses a fixed time slice size for each VCPU (e.g., 10ms in

Xen). The larger the time slice provided to the VCPU of a VM, the greater is the

potential for the system to commit virtual time-order errors. However, smaller time

slices lead to a larger number of context switches of VMs (or VCPUs) and hence can

affect the runtime performance. Additionally, the granularity of the slices also constrains

the minimum delay that the inter-VM virtual network must enforce. This is because the

delay to be enforced cannot be smaller than the VCPU time slice. Hence, the VCPU time

slice needs to be adjustable at the hypervisor scheduler and be empirically studied to

observe the effects of lower time slices on correctness and performance.

2.2.3.6 Testing Virtual Time-ordered Execution

While the virtual time order errors and their importance for the correctness is well

understood in discrete-event simulations. Their occurrence, manifestation and effect on

the simulation results are not apparent and clear on the outset, in the absence of actual

implementation and experimentation. Conventional discrete event network simulations

based on models are associated with discrete events (such as packet-sent or packet-

received events). However, in VM based network simulations the virtual time is

essentially continuous as opposed to being discrete because there are no specifically

detectable discrete changes in time at the VM execution level. By making the virtual

time progress evenly amongst all the VMs, we ensure that the concerned events (such as,

packets sent and received) are correctly paced in virtual time. However, it becomes

necessary to qualify and quantify the virtual time-order errors in VM based network

simulators.

 40

Consider three VMs, say, VM1, VM2 and VM3, being used to model end-hosts of

a simulated scenario in which all point-to-point messages incur a fixed latency and all

VMs are hosted on the same machine. If VM1 sends two messages to VM3, one directly

and the other routed through VM2, two different ways of message arrivals at VM3 are

possible: (a) the message VM1 sent directly to VM3 reaches first followed by the

message routed through VM2, and (b) the message VM1 sent through VM2 reaches first

followed by message directly sent to VM3. With homogeneous network conditions

existing between VMs, it is possible to identify two modes of execution: (a) virtual time-

ordered, and (b) free-run ordered. Running this experiment multiple times and by

qualifying the observed correctness of the result in each case, we can statistically quantify

the virtual time-order execution behavior of the VM based network simulator.

2.2.3.7 Virtual Time-ordered Network Control

To ensure virtual time-ordered delivery of the communication packets across

VMs, we need to trap the packets in transit and ensure virtual time-order dispatch of the

intercepted packets to their respective destination. This is necessary to ensure correctness

and also to have an ability to control the inter-VM network characteristics. In a VM

environment on a single physical host, all the packets exchanged between the guest VMs

can be intercepted, delayed and forwarded or dropped at the privileged VM (e.g., DOM0

in Xen). This capability allows us to introduce user-specified latency or packet-loss

characteristic to any stream of packets in transit.

2.2.3.8 Virtual Time-based Execution of VM Applications

In a configuration where multiple VMs are hosted on a physical machine such

that the aggregate VCPU count of all hosted VMs is greater than the number of PCPUs,

 41

the simulation time progresses slower than the wall-clock time. Then, the applications

that use wall-clock timers for their operation (such as for TCP time-outs), are adversely

affected, resulting in an incorrect operation. To overcome this, we need to ensure that the

virtual time is used by the applications hosted by VM in place of the wall-clock time.

2.2.4 NetWarp Prototyping Approach

NetWarp can be broadly classified into two distinct functional modules namely,

(a) Virtual time-ordered execution of VMs (b) Virtual time-ordered network control of

inter VM network traffic. The former addresses all the virtual time maintenance and

evolution within and across VMs. Thus, it requires modifications to the hypervisor. The

latter is concerned with runtime-efficient realization of the desired (virtual) network

behavior by controlling the transfer of packets between VMs. This is addressed at the

application-level in DOM0 utilizing low-level operating system mechanisms.

2.3 Prototyping Virtual Time-ordered VM Execution

2.3.1 Xen Scheduler

The essential functionality of the Credit Scheduler of Xen (CSX) is to efficiently

multiplex many VCPUs onto a limited number of PCPUs for execution. Scheduling in

Xen shares some concepts with an operating system that provides an N:M threading

library. In such a system, the operating system kernel schedules N OS threads (typically

one per physical context). Within each OS thread, a user-space library multiplexes M

user-space threads. In Xen, the VCPUs are analogous to the OS threads, and the domains

are analogous to the user-space threads [6]. Essentially, there exist three scheduler tiers

in Xen, (1) user-space threading library maps the user-space threads to kernel threads

 42

(within a DOM), (2) user-DOM OS maps its kernel threads to VCPUs, and (3) hypervisor

maps each VCPU to a physical CPU (PCPU) dynamically at run time.

Scheduling involving dynamic mapping of the VCPUs on to the PCPUs is

discussed in this thesis. The strategy CSX uses for scheduling is based on the principle

of fair share and uses credits for every DOM, these credits are expended as the DOM’s

VCPUs are scheduled for execution. Based on the amount of credits expended the

VCPUs either become over_scheduled or remain under_scheduled, and these VCPU

states are used during scheduling to ensure fairness. The scheduler that we developed for

addressing the simulation concerns is called the NetWarp Scheduler for Xen (NSX),

whose underlying principle for scheduling is to ensure simulation time-order. Hence,

both CSX and NSX dynamically multiplex of VCPUs on to PCPUs using their respective

scheduling strategies.

2.3.2 NetWarp Scheduler for Xen (NSX) Data-structures

Using the modular design of Xen new schedulers such as NSX can be built to

replace the default CSX. The internal design of Xen prescribes a set of functions that

needs to be implemented and interfaced by the new scheduler.

By replacing the relevant function pointers to the scheduler’s interface variables,

our NSX scheduler functional implementations is integrated into Xen. For example, in

CSX the init_domain variable is a function pointer to csched_dom_init, which is used for

the initialization a DOM. In NSX the init_domain variable is instead set to

nwsched_dom_init, to initialize NSX. After integrating and booting with our scheduler,

Xen invokes our newly added routines to make scheduling decisions.

 43

Figure 9 shows the static object created for the NSX to interface with Xen.

Similar to CSX, we maintain four different data-structures in NSX, namely,

a. nw_pcpu – control data corresponding to each PCPU

b. nw_vcpu – control data corresponding to each VCPU

c. nw_dom – control data corresponding to each DOM

d. nw_private – a global data area shared by all DOMs.

The nw_pcpu data-structure as shown in Figure 10, comprises a VCPU queue

called runq, a timer, and a counter named tick that account for number of used ticks. The

number of instances of the nw_pcpu data structure corresponds to the number of

processor cores in the physical hardware. The next VCPU to schedule on a particular

physical core is chosen by the Xen scheduler from the runq list of the nw_pcpu object

corresponding to that physical core.

Figure 11 compares data-structures csched_vcpu and nw_vcpu (some variables

concerned with keeping a log of VCPU status in csched_vcpu data-structure are not

included in Figure 11 for clarity purposes). As seen, most of the variables in nw_vcpu are

the same as in csched_vcpu, except that the credit and pri (priority) variables of the

csched_vcpu are replaced by the nticks variable of nw_vcpu and the ref_time. The nticks

variable keeps track of a number of ticks that the VCPU has used up, and the ref_time

gives a reference-time from which nticks are tracked. The ref_time along with the nticks

gives the Local Virtual Time (LVT) as for a VCPU.

€

LVT = ref _ time + nticks × tick _ size()

 44

struct scheduler sched_credit_def = {
 .name = "SMP Credit Scheduler",
 .opt_name = "credit",
 .sched_id = XEN_SCHEDULER_CREDIT,
 .init_domain = csched_dom_init,
 .destroy_domain = csched_dom_destroy,
 .init_vcpu = csched_vcpu_init,
 .destroy_vcpu = csched_vcpu_destroy,
 .sleep = csched_vcpu_sleep,
 .wake = csched_vcpu_wake,
 .adjust = csched_dom_cntl,
 .pick_cpu = csched_cpu_pick,
 .do_schedule = csched_schedule,
 .dump_cpu_state = csched_dump_pcpu,
 .dump_settings = csched_dump,
 .init = csched_init,
 .tick_suspend = csched_tick_suspend,
 .tick_resume = csched_tick_resume,
};

struct scheduler sched_nw_def = {
 .name = "SMP Netwarp Scheduler",
 .opt_name = "nw",
 .sched_id = XEN_SCHEDULER_NW,
 .init_vcpu = nw_vcpu_init,
 .destroy_vcpu = nw_vcpu_destroy,
 .init_domain = nw_dom_init,
 .destroy_domain = nw_dom_destroy,
 .sleep = nw_vcpu_sleep,
 .wake = nw_vcpu_wake,
 .adjust = nw_dom_cntl,
 .pick_cpu = nw_cpu_pick,
 .do_schedule = nw_schedule,
 .init = nw_init,
 .tick_suspend = nw_tick_suspend,
 .tick_resume = nw_tick_resume,
};

Figure 9 CSX and NSX scheduler interface

Each element of runq of an nw_pcpu is of type runq_elem. As the runq_elem is

related to the runq of the nw_pcpu object, in a similar way as the active_vcpu_elem

object is related to the nw_dom’s (discussed next) active_vcpu queue. Both these data-

structures aid the inserting and removing, to and from their corresponding queues by

manipulating the prev and next pointer values.

 45

Figure 12 shows the CSX’s data-structure csched_dom and NSX’s nw_dom for

domains. The nw_dom comprises a list named active_vcpu, which is a list of nw_vcpu

belonging to this DOM. It contains a member-variable named active_sdom_elem, which

is initialized to point to self, and aids in the functioning and operation of the active_sdom

queue in the nw_priv global object of type nw_private. The nw_priv holds all the active

DOMs in this active_sdom queue.

struct csched_pcpu {
 struct list_head runq;
 uint32_t runq_sort_last;
 struct timer ticker;
 unsigned int tick;
};

struct nw_pcpu{
 struct list_head runq;
 struct timer ticker;
 unsigned int tick;
};

Figure 10 CSX’s PCPU vs. NSX’s PCPU structures

Xen maintains an object of type domain for each of the DOMs. The nw_dom’s

dom pointer points to this data-structure object. The nw_dom comprises an integer

variable that holds a record of active number of VCPUs in the DOM. It also has a

member variable dom_lvt to keep track of the DOM’s simulation time (max LVT value of

all the VCPU’s of this DOM) and a spin-lock used by the DOM’s VCPUs to update

dom_lvt. The dom_lvt variable is used periodically to coercively increase the LVT of

lagging VCPUs to keep all the VCPUs of the DOM in sync. Note that the nw_dom data-

structure does not need the weight and cap variables of the CSX.

 46

struct csched_vcpu {
 struct list_head runq_elem;
 struct list_head active_vcpu_elem;
 struct csched_dom *sdom;
 struct vcpu *vcpu;
 atomic_t credit;
 uint16_t flags;
 int16_t pri;
 …
};

struct nw_vcpu{
 struct list_head runq_elem;
 struct list_head active_vcpu_elem;
 struct nw_dom *sdom;
 struct vcpu *vcpu;
 uint16_t flags;
 atomic_t nticks;
 s_time_t ref_time;
};

Figure 11 CSX’s VCPU vs. NSX’s VCPU structures

struct csched_dom {
 struct list_head active_vcpu;
 struct list_head active_sdom_elem;
 struct domain *dom;
 uint16_t active_vcpu_count;
 uint16_t weight;
 uint16_t cap;
};

struct nw_dom{
 struct list_head active_vcpu;
 struct list_head active_sdom_elem;
 struct domain *dom;
 uint16_t active_vcpu_count;
 spinlock_t lock;
 s_time_t dom_lvt;
};

Figure 12 DOM variables in CSX vs. NSX

As mentioned previously, the scheduler contains an nw_priv object of type

nw_private. It contains a queue named active_sdom. The ncpus variable gives the

number of cores supported by the underlying hardware. Importantly the scheduler object

contains a time variable named sys_lvt that keeps track of the global LVT (the minima of

 47

all dom_lvts across all DOMs except for DOM0 and DOM 32767). The sys_lvt is

equivalent to the traditional concept in simulators of now in simulation time. The

sys_lvt_next holds the maxima of all dom_lvts.

struct csched_private {
 spinlock_t lock;
 struct list_head active_sdom;
 uint32_t ncpus;
 struct timer master_ticker;
 unsigned int master;
 cpumask_t idlers;
 uint32_t weight;
 uint32_t credit;
 int credit_balance;
 uint32_t runq_sort;
};

struct nw_private {
 spinlock_t lock;
 struct list_head active_sdom;
 uint32_t ncpus;
 struct timer master_all_lvt_ticker;
 struct timer master_lvt_ticker;
 struct timer master_ticker;
 unsigned int master;
 cpumask_t idlers;
 s_time_t sys_lvt;
};

Figure 13 CSX and NSX private data

The nw_priv maintains three timers. The first is the master_ticker used to update

the dom_lvt across all DOMs. The second is the master_lvt_ticker used to synchronize

the VCPUs corresponding to a DOM to their dom_lvt, thus artificially advancing the

LVTs of the lagging VCPUs in the DOM to dom_lvt. The third timer named

master_all_lvt_ticker synchronizes all LVTs of all VCPUs across all the DOMs to

sys_lvt_next, thus advancing the LVTs among all the VCPUs to the higher value.

 48

The variable named idlers keeps track of the idling VCPUs and the variable lock

is used for updating this global object. Figure 13 compares the global data-structure that

is csched_private of CSX and nw_private of NSX. Most of the CSX variables namely,

credit, weight, balance and runq_sort of the csched_private data-structure are removed,

while keeping the remaining others unchanged.

2.3.3 Virtual Times of NetWarp

As previously mentioned three conceptual timelines are maintained in the

NetWarp system and these are extensively used in the following discussions.

(1) Local Virtual Time (LVT): Timeline corresponding to each VCPU that advances in

discrete time as VCPU consumes PCPU cycles (measured in the units of ticks).

(2) DOM LVT (DOM_LVT): Timeline corresponding to each DOM or VM that is

calculated using the LVTs corresponding to its VCPUs and it advances in discrete

time as its corresponding VCPU LVTs advance.

(3) System or Node LVT (SYS_LVT): Timeline corresponding to the entire simulation

setup involving a hypervisor as a simulation host, with the DOMs as the end nodes

connected through the controlled virtual network of the hypervisor environment. This

advances in discrete time as the DOM_LVTs advances.

Both the critical issues, namely, (a) maintenance of a single simulation timeline, and (b)

time-ordered execution of VMs, can be addressed by replacing the scheduler of the Xen

hypervisor.

2.3.4 Virtual Time Accounting

A periodic timer named ticker corresponding to each core (in a multi-core

processor) is maintained in the nw_pcpu data-structure. This periodic timer goes off at

every tick, and when it goes off, the accounting service routine charges a tick to the

 49

current runnable VCPU. Additionally, a soft-interrupt for scheduling this VCPU is

raised on the physical core, which is selected either based on the provided VCPU-PCPU

affinity-map or on the consideration that the VCPU has most idling neighbors in it’s

grouping. Thus at every tick generated by the ticker timer from any of the nw_pcpu

objects corresponding to a PCPU, a VCPU is scheduled to run on that PCPU.

Another global timer named master_ticker is made to go off for every 10 ticks.

This calculates the DOM_LVT, which is the maximum of the LVT values among all its

VCPUs. This is carried out for every DOM and in each case the DOM_LVT is recorded

in its corresponding nw_dom object.

2.3.5 Idle Time Accounting

If left unchecked, the VCPUs run asynchronously. Even within a single DOM,

there could be differences in the LVT values of its VCPUs as this is dependent of the task

assignment of the guest OS on to its VCPUs. To limit these differences and their

subsequent propagation between the LVT values of the VCPUs within a single DOM, we

adjust the LVT values of all the VCPUs to the maximum of the LVT values among them

(i.e. DOM_LVT). This adjustment is carried out at regular intervals, the interval being a

simulation parameter, set to a default value of one minute. A periodic timer

master_lvt_ticker is used for this purpose. When this timer goes off, the Adjust_lvt

routine is called which adjusts the LVTs of all the VCPUs to the DOM_LVT.

 50

Figure 14 Accounting for VCPUs with lagging LVTs

The NSX scheduler enables us to address the issue of lost cycles that arises due to

idle cycling of the VCPUs in a multi-core DOM. Note that the idle VCPUs are not

charged and hence their LVT value remains stationary, while the LVTs of the active

VCPUs increase. This results in a staggering of LVT values for different VCPUs within

the same DOM as shown in the Figure 14. Since the behavior of VCPUs being either idle

or active is dependent on the guest OS’s scheduling and activity of the user applications

(inside the DOMs), the lagging VPCUs can only be detected dynamically at runtime, and

can be tracked with periodic updates. To illustrate, Figure 14 shows a DOM with 4 cores

and the LVT values of VCPUs staggered and being pulled to the DOM_LVT value during

periodic updates serviced by the Adjust_lvt routine.

Similarly, a master_all_lvt_ticker is used to synchronize the LVTs of the DOMs

periodically, as illustrated in Figure 15. The only difference is that the Adjust_all_lvt

routine that services this ticker checks if any of the DOMs are lagging beyond a period

(NW_MAX_DIFF) behind the maximum of DOM_LVTs. In our experiments, the

NW_MAX_DIFF was set to 10 ticks. This updating procedure of LVTs of all VCPUs

 51

across all DOMs accounts for the time of idle-DOMs during the network simulation. The

nw_priv data-structure object maintains all the necessary global timers.

Figure 15 Accounting for idle DOM time

2.3.6 Global Virtual Time

To fulfill simulation time ordering requirement, each VCPU in its corresponding

nw_vcpu data structure, keeps track of its utilized ticks of its execution using variables

nticks and ref_time (the reference time from which point nticks has elapsed). These two

values are used to calculate the LVT of the VCPU. The utilization of the VCPUs

increases as the interconnected DOMs execute any application and as they do, the

corresponding VCPU tick values increments. Hence the simulation time increases, as it

is dependent on the LVT values of VCPUs. The least value among the LVT values of the

VCPUs can be safely considered as the elapsed simulation time in a single core machine.

In a multi-core system, we use the maximum LVT among the VCPUs of a DOM as the

DOM_LVT, and the minimum of the DOM_LVTs is used as the SYS_LVT.

 52

2.3.7 Modifying VM Time Slice Granularity

The CSX uses a default time-slice of 30ms, which is much larger than the

network link latencies required in our simulation scenarios. Hence, for NSX we made

modifications so that the time-slice is specifiable in terms of values as low as a few

microseconds. Each time Xen needs to schedule a new VCPU, it invokes the

nw_schedule routine. This routine picks up the least LVT valued VCPU to execute and

provides a time-slice (number of ticks) for the VCPU to execute. The number of ticks in

a time-slice was kept at unity. Thus, by changing the tick size in the pre-processor

statements of the scheduler code, we were able to alter the tick size as needed.

2.3.8 Virtual Time-ordered Execution

The VCPU with the least LVT must always be scheduled for next execution. This

is ensured during the insertion of VCPU into the run-queue, which happens either when

nw_schedule is called or when the VCPU awakes from sleep (nw_wake). However, this

criterion is not sufficient to ensure Least-LVT-First scheduling property on host platforms

with multi-core processors, and the scheduling needs to be extended further as described

next. The scheduler maintains a run queue for every PCPU. When the nw_load_balance

routine is used, it safely steals the least LVT-valued VCPU from its peer PCPU’s

nw_pcpu’s runq and schedules it for execution. This functionality is very similar to that

carried out by the CSX. The only difference is that CSX looks for a VCPU with higher-

priority value, while the NSX looks for the lowest LVT value.

The overall scheduling behavior in NSX is summarized in this paragraph. The

master_ticker at every tick (same as time-slice in our implementation) increments the

LVT of the current VCPU by a tick size (in µs). It then raises a schedule software

 53

interrupt on the core that has the most idling VCPUs. This schedule interrupt is serviced

by the schedule service routine. Xen’s scheduling framework ensures that there is always

at least one VCPU in the run-queues of each PCPU. When the scheduler is interrupted,

the service routine in NSX inserts the current (currently being serviced VCPU) into the

run_queue of the PCPU that was interrupted. The VCPU with lowest LVT values is then

searched across the run_queues of all the PCPUs. The VCPU with lowest LVT is

removed from the run_queue and is scheduled to run next. The time-slice (number of

ticks) that this VCPU should run is also provided in this routine. The selected VCPU and

the time-slice are returned back from this service routine of NSX. Xen, during context

switching process, assigns the selected VCPU as current and the current VCPU is

executed on the actual physical core.

2.4 Prototyping Virtual-time Ordered Network Control

In this section the mechanisms necessary for realizing virtual time-controlled

communication between VMs is discussed.

2.4.1 Virtual Network in Xen

Xen provides various options to setup a virtual network among the DOMs using

software based network-bridge or network-router. Out of many options, the one most

suitable for secure simulation-specific scheduling is the private bridge configuration: a

virtual network-bridge in which all DOMs except DOM0 is connected. This

configuration provides the best levels of security for performing network experiments

because the virtual network is isolated from other (physical) networks connected to by

DOM0. A schematic of such a setup is shown in Figure 16. Whenever a DOMU sends a

message, it is forwarded from the DOMU’s local virtual network interface to the software

 54

bridge driver maintained by DOM0, which is then buffered by our modified functionality

for simulation delay and then routed to its destination network interface back through the

virtual network interface.

Figure 16 Virtual network using software bridge in DOM0

2.4.2 Trapping Transiting Packets

Every DOM specification file contains the details of the software bridge to which

it should connect to after its creation. When a new DOM is created, a virtual network

interface (referred to as vif in Figure 16) is also created in DOM0 and this interface is

added to the specified bridge. To ensure the forwarding of Layer 2 packets from one

virtual interface to the other Xen adds a new rule to the iptables [45] chain when a new

DOM is created. For example: if DOM1 is created and if vif1.0 were its corresponding

virtual interface created in DOM0, then the iptables rule shown in the last line of Figure

 55

17 is added to the iptables chain. The rule requests DOM0 to forward the Layer 2 packet

originating from the virtual interface of the DOM1.

-P INPUT ACCEPT
-P FORWARD ACCEPT
-P OUTPUT ACCEPT
-A FORWARD -m physdev --physdev-in vif1.0 -j ACCEPT

Figure 17 iptables rule added on creation of a new DOM

Such a rule is added for every newly created DOM. By appropriately altering this

rule we can trap, buffer and arbitrarily delay the packets transiting through the virtual

network. This method of controlling the transiting packets is efficient because the

transiting packets are not copied, are handled in kernel and results from a light-weight

analytical or packet-simulation tools can be use determine the fate of the packet at this

juncture in simulation execution. Interfacing with network simulators such as NS3 that

handles live packets is another method of enforcing desired network control, but this

makes the simulator unnecessarily heavy.

2.4.3 Enforcing Realistic Network Characteristics

Trapping the transiting packets only solves one part of the problem; enforcing

realistic network characteristics requires additional work. In the overall operation, we

envision a system such as ROSENET [46], a remote server based network emulation

system, for this purpose. For prototyping the network control, we only introduce a

tunable latency on the transiting packets.

As mentioned previously, we need to trap the transiting communication packets in

the DOM0 to introduce a desired network delay. Figure 18 shows how this is achieved

 56

by trapping packets at the virtual network interface. The existing iptables rules are

deleted that forward all the Layer 2 packets originating from virtual network interface

(physdev) vif1.0 (first-line in Figure 18). A new rule is then added to the table named

mangle to forward the packets coming from vif1.0 to a QUEUE (second line in Figure

18). The third command line in Figure 18 prints the iptables rules listed for different

actions in the table mangle. In the output we can see QUEUE as a target for packets

arriving from vif1.0.

#iptables -D FORWARD -m physdev --physdev-in vif1.0 -j ACCEPT
#iptables -t mangle -A FORWARD -m physdev --physdev-in vif1.0 -j
QUEUE
#iptables -t mangle -L
Chain PREROUTING (policy ACCEPT)
target prot opt source destination
Chain INPUT (policy ACCEPT)
target prot opt source destination
Chain FORWARD (policy ACCEPT)
target prot opt source destination
QUEUE all -- anywhere anywhere PHYSDEV match --physdev-in vif1.0
Chain OUTPUT (policy ACCEPT)
target prot opt source destination
Chain POSTROUTING (policy ACCEPT)
target prot opt source destination

Figure 18 iptables rule used to enforce communication control

The network utility library Libipq [47] provides a mechanism for passing IP

packets out of the stack for queuing to user-space. It also allows the privileged user to set

the verdict such as ACCEPT or DROP, on the trapped packet that are conveyed to the OS

kernel. The ACCEPT verdict tells the kernel to continue the default processing of the

packet (in our case the packet will be forwarded), while the DROP verdict would result in

discarding the trapped packet. Libipq uses the ip_queue kernel module for this purpose.

We developed a daemon service using the Libipq library functions for communication

 57

control for trapping and subsequently forwarding the packets transiting through the

software-bridge maintained by DOM0.

To introduce network delay over the transiting packets the daemon in DOM0 uses

the system-provided suspension procedure (usleep) over a high-resolution timer (in

microseconds). The daemon traps the packet and sleeps for the delay_time, which is

calculated using the arrival time of the packet and the current wall-clock time obtained

from gettimeofday at DOM0. Coming out of usleep, the daemon sets the verdict as

ACCEPT and sends it to the kernel, which forwards the trapped packet to its destination.

The daemon then picks the next queued trapped packet and continues the same process.

Note that the delay_time calculated using the arrival time of the packet and the current

wall-clock time takes into consideration the time spent by the packet in the queue.

2.5 Prototype Evaluation

The aforementioned functionalities was implemented as the NetWarp system, and

debugged and tested on Linux software platforms executed on Intel processor-based

hardware. We now describe the benchmark test scenarios and the runtime results

obtained in a performance study.

2.5.1 Benchmark Scenario

We implemented a simple parallel program using the Message Passing Interface

(MPI) [48] library to test and also to compare NSX against CSX. The parallel execution

is distributed across the user-DOMs such that exactly one process of the parallel

execution is run on each user-DOM. Three domains, DOM-A, DOM-B and DOM-C,

host three MPI processes of rank-0, rank-1 and rank-2, respectively, which participate in

multiple messaging rounds. In a messaging round, the rank-0 process sends a message to

 58

rank-1 process and a then message to rank-2. The rank-1 process that was waiting for

message from the rank-0 process receives it and then sends out a message to rank-2

process immediately. The message sent out using MPI_Send by rank-0 contains the

integer 0 as its data, and the message sent out by rank-1 contains the integer 1. We use

MPI_ANY_TAG and MPI_ANY_SOURCE while receiving MPI messages to ensure that

MPI_Recv does not interfere with the observed ordering in reception.

Note that the interacting parallel processes are running on different DOMs.

Hence, for an individual messaging round, if we were to model the simulated network

delay experienced by the communication message as the same between any pair of VMs,

and, if the DOMs are being scheduled in simulation time-order, then the causal order of

arrival of messages received by rank-2 (in DOM-C) must contain data 0 followed by one

(0-1). In other words, rank-2 must first receive the message from rank-0, before it

receives the message from rank-1. Note, the absence of any computation between the

send and receive MPI calls used in realizing the test-program largely reduces the time gap

between the direct message from rank-0 and the relayed message from rank 1, at rank-2.

This makes the test fine-grained and tight.

If we were to run multiple messaging rounds one after another, then the correct

time-ordered messaging sequence received by rank-2 will be a sequence of [0-1-0-1-0-

1…]. An occurrence of a break in this ordering is counted as a single breach in time

order or a unit error. We count all such errors committed in a large number of messaging

rounds to determine the error percentage from a single run. The mean or average of

several of these runs is used to obtain a mean-error-percentage value. In all of our

 59

experiments, the number of messaging rounds in each run was 1000, and the mean-error-

percentage value was obtained from averaging the error-percentage over 30 runs.

To record the run time of the experimental runs, the real-time of the parallel

execution on the DOM on which it was initiated (DOM-A) was recorded. The run time

was recorded for each of the 30 runs and their mean value is plotted.

2.5.2 Hardware and Software

The test setup comprised a Xen hypervisor v3.4.2, with Linux running as its

DOM0 and all the other three user-DOMs (DOM-A, DOM-B and DOM-C). Each of the

user-DOMs was assigned static IP address. In DOM0, a bridge named privatebr was

created using the brctl tool, for establishing network connections between the user-

DOMs. The DOM0 itself does not connect to privatebr and hence remains disconnected

from the network of user-DOMs. For the CSX readings, the weights for all the DOMs

were kept the same at 256, and none of the DOMs were capped to ensure maximum

fairness in functioning of CSX.

The setup and the test runs were carried out on a MacBook-Pro with Intel®

Core™ 2 CPU T7600 @ 2.33 GHz, with 3 GB memory, running OpenSUSE 11.1 Linux

over Xen 3.3.1. The source code of Xen 3.4.2 distribution was used for making scheduler

modifications. The resulting xen-3.4.2.gz was used to boot the hypervisor, and the boot-

loader grub configuration was changed to enable the selection of modified Xen during the

boot up. All the user-DOMs were configured to run OpenSUSE 11.1 Linux and they

were installed as para-virtualized DOMs for best performance. The test program was

written in the C programming language using MPI (OpenMPI v1.4.1) library.

 60

2.5.3 Virtual Time-ordered VM Execution Test Results

By default CSX maintains a tick size of 10ms and during scheduling every VCPU

is allotted a time-slice equal to thrice the tick size. Hence, in our experiments, the

maximum tick-size was set to 30ms, while a minimum to 30µs was exercised. Below

30µs, the interactivity suffers heavily (for both CSX and NSX), and the performance of

the user-DOMs deteriorates because of high context switching rate. The performance

was evaluated using two test-case scenarios. In the first scenario each DOM was

configured with single VCPU, whereas, in the second each DOM was configured with

two VCPUs.

2.5.3.1 Case 1: Single VCPU per DOM

Thirty runs with each run performing 1000 messaging rounds were carried out. In

Figure 19 the mean-error is plotted against the tick-size for the NSX, the CSX, the NSX

with 2x and 4x DOM0 tick sizes. Mean error was obtained from 30 runs with each run of

1000 messaging rounds in a 1-VCPU per DOM scenario. The corresponding runtime

plots in seconds vs. tick-size in micro-seconds are presented in Figure 20.

Table 1 Mean error with confidence intervals for 1 VCPU/DOM scenarios

 61

Figure 19 Mean-error (y-axis in %) vs. tick-size (x-axis in µs), for single VCPU/DOM

For NSX, we observe a dramatic reduction in the mean-error with the increase in

the tick-size. With CSX, the mean-error drops by a small amount initially and steeply

increase later with the increase in the tick size. From Figure 19, we see that as the tick

size increases from 30µs to 30ms, the mean error percentage decreases from 4% to 0%,

whereas CSX increases from 3% to 56%. Figure 20 shows almost the same runtime for

both NSX and CSX. However, the runtime of NSX suffers at lower tick sizes. The

increase in the runtime with increase in the tick size is as expected because the tick-size

allotted for every VCPU becomes larger than necessary, which essentially results in

wasted compute cycles.

 62

Figure 20 Runtime in seconds for the mean-error runs in single VCPU/DOM

2.5.3.2 Case 2: Multiple VCPUs per DOM

A similar reduction in the mean-error is observed in Figure 21. However, it does

not go down to absolute zero just as observed in the 1-VCPU plots, but stays around

0.04%. Similar to the 1-VCPU scenario, an increase in CSX’s mean-error with increase

in the tick size is observed. At a tick-size of 30ms, the error was observed to be 49%.

The runtime plot in Figure 22 shows a steep increase in the NSX runtime with increasing

tick size, which is decreased by increasing the DOM0 tick size.

Table 2 Mean error with confidence intervals for 2 VCPU/DOM scenarios

 63

Figure 21 Percent mean-error against tick-size for 2 VCPUs/DOM

2.5.3.3 Time-order Error in CSX

The CSX caps the over-scheduled VCPUs and chooses under-scheduled VCPUs

for scheduling; in doing so, it constantly re-orders the run_queue based on priority, and,

when all VCPUs become over-scheduled, the credits are re-assigned and this process

continues. In doing so, the CSX maintains fairness, but time-order suffers. This is

because the program execution and communications are asynchronous, and the loads on

the processes in the parallel program are usually not equal to each other. Capping one

VCPU while scheduling others increases the probability of committing time-order errors.

For example, capping the VCPUs of DOM-A holds back DOM-A from sending

message(s) to DOM-C in time as expected and the under-scheduled DOM-B VCPU given

more-cycles will be able to send message to DOM-C before DOM-A does, hence creating

a time-order error.

 64

Figure 22 Runtime in seconds for mean-error runs in 2 VCPUs/DOM

2.5.3.4 Time-order error in NSX

In NSX, VCPU’s cycles are always provided and are not blocked anytime.

However, the VCPU with the least LVT value in the run-queue will be executed first.

This results a staggered time line for each VCPU’s LVT, but they are adjusted

periodically as discussed earlier.

As seen in 1-VCPU and 2-VCPU case studies, the incidences of time-order errors

are mostly at lower tick-sizes. The error occurrences tend to increase as the tick size

decreases. The high-frequency context switching between the VCPUs is responsible for

the errors. This reasoning is supported by the runtime plots showing higher runtime at

lower tick sizes for executing the same set of experimental scenarios.

Since DOM0 manages the back-end drivers, network-bridge and also serves as

interaction interface, its starvation due to a higher context switching frequency aggravates

the error-rate. The error-rate can be significantly alleviated as seen in Figure 19 and

Figure 21, by providing larger tick sizes to the DOM0. In the experiments, we provided

 65

twice (2x) and four times (4x) tick sizes to DOM0. This also reduces the runtime as seen

in Figure 20 and in Figure 22, and, the impact of this change is clearly evident. As the

DOM0’s LVT does not affect the simulation time this change does not adversely impact

the error in the test-scenario.

2.5.3.5 Mean-error and Runtime at Lower Tick-sizes

The smallest supported tick-size is very essential to determine the lower limits in

the simulation of low-latency and high-bandwidth network simulation scenarios. Hence,

the lowest tick-size at which the simulation time-order errors and runtime performance

are acceptable is of importance. Empirically, at 20µs tick size, both CSX and NSX posed

interactivity problem; the lowest tick-size with which we could run the experiments was

30µs. For the 1VCPU/DOM scenario, Figure 19 and Figure 20, with 2x DOM0 indicate

the best error reduction; at 60µs, the error reduces to 0.1% and the runtime 0.86 seconds.

From Figure 21 and Figure 22, we see that in the 2 VCPU/DOM scenario the 2x DOM0

gives an overall best error reduction and better runtime. At 80µs, the error reduces to

0.18% and the runtime by 0.95 seconds.

 66

2.5.3.6 Result Summary

Table 3 Virtual time-order VM execution evaluation summary

Design requirements Implementation
Simulation Time

 Global virtual time
 Idle VCPU accounting
 Idle DOM accounting

 Achieved by sys_lvt
 Done periodically
 Done periodically

Causality
 Virtual time-order
 Time-order errors

 Ensured using LLF scheduling
 Reduced to < 1%

New DOM needs
 DOM add/remove
 Virtual time during VM boot

 Supported
 VCPU of new DOM is initialized to

sys_lvt

DOM0 needs
 Sufficient CPU cycles
 Increased CPU cycle requirements

of DOM0
 Starvation of DOMUs by DOM0

 DOM0 VCPUs maintained at sys_lvt
 Addressed by altering tick-size for

DOM0
 Absence verified by experimentation

Tick-size
1VCPU/DOM

 Smallest tick-size
 Time-order error < 1%
 Runtime for specified error

2VCPU/DOM
 Smallest tick-size
 Time-order error < 1%
 Runtime for specified error

 60µs
 0.1%
 0.86s

 80µs
 0.18%
 0.95s

2.5.4 Virtual Time-ordered Network Control Results

In the previous section, the tests were primarily concerned with the virtual time-

order execution without exercising network control. In this section, we introduce the

network control on the same test scenarios and analyze the corresponding runtime

behavior. We configured the network control program such that a constant finite delay is

 67

experienced by each of the packets transiting through the bridge. A single run

comprising 1000 messaging rounds was run with single VCPU per DOM for varying

constant-delays (10ms to 100ms in real-time) was introduced, and the NSX scheduler in

all the test cases maintained a tick size of 1ms.

Figure 23 Number of packets trapped and runtime plots for a given network delay

Figure 23 shows the number of packets trapped during 1000 messaging rounds,

with CND values ranging from 10ms to 100ms. The color-coding of the bar differentiates

between number of trapped packets experiencing CND and packets experiencing delay

greater than the specified CND. The curve represents the runtime.

As seen from Figure 23, most of the incoming messages incur additional delay in

terms of virtual network processing overhead. This is because the network control

daemon sleeps for delay time (calculated using arrival wall-clock time and current wall-

clock time); due to this inaction in packet forwarding during this delay period more

 68

packets tend to queue up. Hence, the chances of experiencing additional delay are higher

if many packets arrive almost simultaneously. Interestingly, for 50 and 100 millisecond

CND scenarios, the number of messages involved for the same set of runs has

considerably increased, which essentially suggests of packets being dropped. However,

the runtime curve shown in Figure 23 is in line with expectation, which increases the run

time with increase in the constant-delay value.

Over 75% of the transiting packets experienced additional packet delay in almost

all the test cases. Further, since this method of trapping and forwarding the packets

serializes the communication control, we observed negligible time-order errors in case of

CSX and no errors using NSX. Nevertheless, such a behavior cannot be guaranteed on

different test setup and larger parallel platform.

Note that the delay enforced on the transiting packets in this network control

prototype is not based on the virtual-time. However, the constant-delay based on real-

time is enforced in DOM0 is important because it reveals that this method of infusing

artificial delay on to the transiting packets are useless, unless queuing delays in FIFO are

circumvented.

2.6 Summary

We started by introducing the large area of network simulations and emulations.

The known simulators and emulators were broadly classified into two categories based on

their simulation goal as, end-host-centric and network-centric. Current state-of-the-art

VM based network simulators and emulators were introduced and a nomenclature to

identify and categorize them was provided. Within VM based network simulators a

classification based on the types of VMs used namely, application-level, OS-level and

 69

machine-level VM simulators was introduced. Further, the advantages and disadvantages

of each VM based simulator was discussed. Then the conceptual issues that one need to

address to realize VM based network simulators were discussed. This was followed by

the introduction to NetWarp Simulator, its goals, architecture and the implementation

approach. The implementation of the NetWarp prototype was discussed under two

sections namely, virtual time-ordered execution and virtual time-ordered network control.

To evaluate the NetWarp prototype, we designed a benchmark to qualitatively capture

time-order error and quantitatively measure the time-order errors. The results from the

benchmark runs evaluating for virtual time-ordered VM execution and virtual time-

ordered network control were presented and discussed. Major parts of this portion of

research work were published in [49].

 70

CHAPTER 3

VM WITHIN VTS: SCALING STUDY

In the last Chapter we dealt with the design concepts, prototyping and evaluation

of virtual time-ordered VM execution and network control of NetWarp. In this Chapter,

we focus on the scaling issues of the NetWarp system. We start with the discussions on

the instrumentations performed to the VM scheduler, and the design, development and

implementation of NetWarp Network Control (NNC). We then discuss the methodology

used for the scaling study along with the benchmarks that were specifically developed to

study correctness, runtime performance and scaling behavior of NetWarp. Finally, we

present the results from the benchmark runs.

3.1 Staggering of Virtual Time

3.1.1 Virtual Time Evolution

In the NetWarp design, each VCPU maintains a virtual clock that advances based

on the number of PCPU cycles it utilizes. We refer to this local virtual time maintained

by the VCPU as VCPU-LVT. Each DOM maintains a DOM-LVT variable, a maximum

of all VCPU-LVTs of the DOM’s VCPUs that is computed periodically. The scheduler

maintains a queue of VCPUs for each PCPU. After the exhaustion of the allotted time-

slice the VCPU is enqueued into a PCPU queue, which is dynamically chosen during

execution. To ensure virtual time-ordered execution, the NSX scheduler employs a

Least-LVT-first (LLF) scheduling policy, using which the scheduler picks the VCPU with

lowest VCPU-LVT (among all the VCPUs across all DOMs) for execution on a free

 71

PCPU. Due to the presence of multiple PCPU queues, the scheduling involves searching

of all the PCPU queues to pick the VCPU with lowest LVT value. LLF scheduling of

VCPUs ensures regular progress of DOM-LVTs within the host node. However, the

staggering of VCPU-LVT timelines during simulation results in the staggering of

corresponding DOM-LVT timelines.

3.1.2 Virtual Time Staggering Test

struct MSG{ int ID, counter; } msg;
void Staggering_LVTs()
{
 If(myrank == 0) {
 for(r = 1 to size-1) {
 recvfrom(ANY_RANK, msg);
 print msg.senderrank;
 }
 for(r = 1 to size-1) {
 sendto(r, msg);
 }
 } else {
 done = false;
 while(not done){
 sendto(rank-1, msg);
 recvfrom(ANY_RANK, msg);
 if (msg.sender==0) done=true;
 }
 }
}

Figure 24 Simulation time divergence test algorithm

To study the effects of staggering of unsynchronized DOM-LVT timelines, we

designed a test algorithm that introduces imbalanced load on the parallel processes.

Figure 24 gives the algorithm of our test program. The experimentation involves the

hosting and execution of a parallel process on a DOM, which essentially results in p

processes of a parallel task using p DOMUs. As per the algorithm, the parallel process

 72

with “rank” r sends a message to process with rank r-1 and waits to receive a new

message (originating from any source). The Lowest Ranked Process (LRP), i.e., r=0,

does not send any messages until it receives p-1 messages, where, p is the number of

processes in the parallel computing task. Thus, the Highest-Ranked Process (HRP) i.e.,

r=p-1 sends a single message before blocking on a receive call from LRP, while the

process with r=1 receives (p-2) messages, and sends (p-1) messages to LRP.

Consequently, the load (computation and communication) on the process ranks decreases

with increasing rank. We periodically (2 seconds) collected the minimum and maximum

DOM-LVT values in the hypervisor from DOM0 using Xen’s libxcutil library routines.

3.1.3 Virtual Time Staggering Test Results

Figure 25 Experimental results demonstrating simulation time divergence

 73

Two experimental cases, namely, Scheduling Free of Synchronization (SFS) and

Scheduling with Time Synchronization (STS) were evaluated to demonstrate the

staggering of the DOM-LVTs in SFS and its absence in STS. The STS resets the LVTs

of all the DOMs and their corresponding VCPUs to the maximum VCPU-LVT (max_lvt),

periodically. The periodicity of the synchronization was set to (NVCPUS × tick_size),

where NVCPUS is the total number VCPUs in the test environment (including DOM0

VCPUs), and tick_size was the time-slice duration. For example: for a tick_size of 100µs,

the periodic synchronization time for a test scenario comprising 64 single-VCPU DOMs

and DOM0 with 24 VCPUs will be ((64+24) × 100µs)= 8.8ms. The experiment was

performed over 64 single VCPU DOMUs and a DOM0 with 24 PCPUs (equivalent to

number of CPU-cores supported by the machine). The minimum (MIN) and maximum

(MAX) of sampled DOM-LVTs were collected periodically for both SFS and STS

scenarios.

Except for the startup time, which appears to be an artifact of parallel job

launching, the DOM-LVT values are observed to increase at uniform rate. At the end of

the experimental run the simulation time remained constant, and can seen as almost

vertical lines toward the end of test run, as shown in Figure 25. While two distinct curves

representing MIN and MAX DOM-LVT values can be observed in SFS case, the same

curves overlap in the STS, showing the need and the solution, respectively, for virtual

timeline synchronization. At the end of the experimental run the MIN and MAX

simulation time values in SFS were 4052ms and 4939ms, respectively. Note that the

4334ms, which is both MIN and MAX DOM-LVT values in STS falls in between the

MIN and MAX of SFS DOM-LVT values. The sampling for the DOM-LVTs

 74

periodically in wall-clock time also reveals the runtime behavior of the STS and SFS

setups. The plot from the Figure 25 suggests that the runtime of the STS method is better

than that of the SFS method. We also ran experiments to compare the virtual time-order

execution errors in the STS and SFS setups. We found that the errors from STS setup

were far lesser than the SFS. Hence, we incorporated STS mode of operation in

NetWarp.

3.2 NetWarp Network Control

In discrete-event network simulations, the arrival and departure of communication

packets from and to the network respectively, at the end-hosts are generally modeled as

events, since they determine the state-changes in the interacting nodes. Further, in

contrast to the network emulation, discrete-event simulations takes leaps in simulation

time as it processes the events, thereby potentially achieving faster-than-real-time

execution. With VMs, however, to realize the simulation method of capturing

communication activity as events, inter-VM communication must be virtualized. This

can be done by capturing the packet in transit, time-stamping the packet with the virtual

time, and delivering to the destination VM at a correct virtual time. In this section, we

discuss our virtual network control (i.e., controlling inter-VM network traffic)

methodology, design and implementation in conjunction with the virtual timelines

established in prior section.

The hypervisors provide a variety of means to setup a virtual network to support

the interaction across the hosted VMs. We use a private bridge that isolates the VMs

involved in the simulation from the privileged VM (DOM0). By controlling the network,

we would have the capability to introduce a specified virtual time-delay on any in-transit

 75

packet. This virtual time-delay can be specified based on the packet’s source and

destination addresses.

Since, we are aware of the virtual arrival-time of all the in-transit packets, by

processing them in their emit-time order, we can also leap in virtual time. To achieve

this, we provide the synchronization ability (as previously achieved by STS) to the

network control subsystem. In this section, we discuss the NetWarp Network Control

(NNC) subsystem design issues and the synchronization mechanism that it provides to

the NetWarp, allowing it to leap in simulation time.

The virtual network control is intended to provide the following:

• Introduce a virtual delay without explicitly making a (byte-)copy of the packet

buffer, or moving the transiting packets from kernel to user space

• Support the ability to introduce virtual time-delays that may be varied on a per

packet basis; the delay specification may be static (e.g., for wireline networks)

or dynamic (e.g., for mobie ad-hoc networks)

• Minimal overhead while processing the trapped in-transit packets

3.2.1 Network Control Approach

To establish a control on an in-transit packet, we should first be able to trap the

packets in transit. This can be achieved in the control domain as all communication

packets traverse through it as discussed in the previous Chapter.

The netfilter [50] a packet filtering framework inside Linux® kernel services is

used for network control. The iptables rules redirect the in-transit packets to a specific

netfilter queue (NFQ) maintained by the kernel packet filter, while the libnetfilter_queue

function-APIs are used to control the queued packets from the userspace. The

 76

libnetfilter_queue function APIs allows copying the packet from the NFQs in the kernel

space to a servicing process in the user space. The process in user space ultimately

decides the fate of the trapped packet by setting a verdict. The relevant verdicts that

could be used for our purpose are: NF_ACCEPT – releases the packet to continue its

journey toward its destination, NF_DROP – drops the packet, NF_QUEUE – inserts the

packet back into the same or other similar NFQs.

While using netfilter for the purpose of network control we need to be aware of

(a) the NFQs are FIFOs and are unaware of any virtual time (b) the service thread

processing packets from a NFQ must set a verdict on current packet before servicing the

next in NFQ.

3.2.2 Network Control Design Alternatives

In this section, we explore a range of possible strategies for network control using

netfilter. In the process, the infeasible and/or inefficient approaches are identified and are

discounted before arriving at a specific control mechanism that we finally adopt in NNC.

Let ST, SQ, MT and MQ stand for Single-Thread, Single-Queue, Multiple-

Threads and Multiple-Queues, respectively. The combination of single- vs. multi-

threaded processing and single vs. multiple queues provides four options.

In single-threaded operation, only one thread of control in DOM0 handles all

tasks in ordering tasks of all emitted packets from all VMs. In the multi-threaded

scheme, multiple threads share the task of introducing virtual time-delay on the incoming

packets, and emitting them to the destination when the destination reaches virtual time

equal to reception time of the packet.

 77

The number of queues, similarly, can be varied to delay the packets, while the

packet’s destination has not reached the appropriate virtual times. We do not discuss

Multiple Thread-processing using Single Queue (MT-SQ) approach, as it would not be a

feasible given the limitations in processing an NFQ in consideration with our

requirements, as discussed previously. As many as 64K queues can be put to work at

once using the iptables and libnetfilter_queue library.

3.2.2.1 Single Thread-processing using Single Queue (ST-SQ)

In this mode, all the VM-generated traffic is passed through a single NFQ and a

single service thread processes the packets in the order they are enqueued. By

processing, we mean that the service thread would determine the virtual emit time of the

packet based its source and destination, then sets an NF_ACCEPT verdict when the

simulation time catches up with the virtual emit time.

Considering that the arrival sequence of the packets would be virtual time-

ordered, if the delay to be enforced varies on every packet, the approach becomes

infeasible due to the limitation that the currently processed packet must be emitted before

processing the next. Further, even if we were to assume that the user just wants to

enforce a constant delay, this method suffers from queuing delay issues, wherein the

packets that arrive almost during same period of time due to the queuing nature of

processing incur significantly large additional delays based on its position in the queue

and the required magnitude of the delay. These delays increase with the increase in the

number of DOMs involved in the simulation.

An alternative to avoid queuing delay is to postpone the processing of the first

packet. Since, we must avoid packet copying to minimize runtime and memory

 78

overheads, we can use an NF_QUEUE verdict, which reinserts it back into the NFQ.

However, by this approach we lose the arrival order of the packet and hence this scheme

would not be correct for virtual network control purposes.

3.2.2.2 Single Thread-processing using Multiple Queues (ST-MQ)

Since netfilter allows usage of multiple NFQs, several different strategies of

enqueuing and processing can be designed. For example: packets can be enqueued,

based on their source or destination, into a specified NFQ, and processed as they arrive in

their respective NFQs. The libnetfilter_queue API based service thread servicing

multiple NFQs tries to handle all of them equally regardless of their queue size.

This method of processing is attractive because the order in which the packets are

processed can be adequately controlled. We can realize arrival time-ordered processing,

if NFQs are packet source based, i.e. enqueuing the trapped packet into a NFQ based to

its source. Similarly, the departure time-ordered processing can be realized with the

NFQs based on packet-destination. But, due to the presence of single service thread, we

need to deal with the queuing delay problem similar to ST-SQ, if our processing involves

waiting to release the packet till the simulation time catches up with the emit time of the

packet. Additionally, due to the presence of multiple queues, there will also be lapses in

the time-ordered processing of events as the service thread processing multiple NFQs

does not follow any time-order in processing. Hence, this also is not a feasible approach.

Alternatively, one can realize service thread processing the packets from the

multiple NFQs in an almost time-ordered fashion and also accommodate variable delays

on to the individual packets, if the strategy of enqueuing in multiple NFQs is altered. In

this approach, there is not a fixed NFQ on which a packet arrives as in the former

 79

approach; instead, each arriving packet sequentially moves from one NFQ to the other in

increasing order of the NFQ identifier (could also be decreasing order). The service

thread looks into the packet arriving at the NFQ for its emit time and if it is greater than

or equal to the simulation time, the packet is released by setting an NF_ACCEPT verdict;

otherwise NF_QUEUE verdict is used to enqueue the packet into a NFQ with next higher

identifier and by doing so the queuing delay is minimized. However, although the

processing ensures that a packet is released when the emit time catches up with

simulation time, we cannot be sure of maintenance of the virtual time-order as a single

thread services multiple queues. Additionally, in this approach, we do not know the

number of NFQs to create for a specific simulation and the means of handling the packet

in the last NFQ whose emit time is still ahead of simulation time.

3.2.2.3 Multiple Thread-processing using Multiple Queues (MT-MQ)

The MT-MQ approach utilizes multiple threads for processing packets from equal

number of queues. One relatively straight forward approach is allotting a queue for

packets based either on the source or destination of the packet. A service thread

corresponding to each queue processes the incoming packets in parallel. However, with

this approach, we will not be able to overcome the queuing delay problem similar to ST-

SQ and ST-MQ, but it would definitely be better in comparison to the latter because of

dedicated service threads per queue. Even if we were to ignore the queuing delay issues,

the introduction of variable delays can also be problematic. For example, the virtual emit

time of the processed packet can be greater than the virtual emit time of the next packet,

and hence, a service thread cannot wait for the simulation time to catch up with the

virtual emit time for the release of the packet being serviced. Such scenarios can occur

 80

regardless of whether the queues are source-specific or destination-specific.

Additionally, MT-MQ also introduces a large performance overhead because every

thread will be making hypercalls to obtain simulation time in regular intervals. With a

scenario involving 128 DOMs, 128 threads will be continuously burdening the hypervisor

in regular intervals for virtual time progress information.

3.2.3 NetWarp Network Control Design

Consider a method in which multiple queues are serviced by multiple threads

regardless of incoming packet’s source and destination (as discussed in ST-MQ). In such

an operation, the queuing delay can be minimized, and the varying delays on transiting

packets can also be realized. However, to ensure emit time-order and minimize the

performance overhead, the operation of multiple service-threads needs to be well

orchestrated. This strategy is used in the design of NNC.

Multiple NFQs along with their corresponding service-threads, equaling the

number of DOMs (specific to the simulation scenario) are used in NNC. The iptables

rules in the control domain (DOM0) are set such that all the in-transit packets are routed

to a single NFQ, with 0 queue identifier (qid). In Figure 26, this functionality is

schematically presented using directional pointers suggesting the path of packet

movement from a DOMU application to the front-end network device, and then to its

back-end counterpart before being enqueued in the NFQ with qid=0. The service-thread

(service-thread0) corresponding to this NFQ determines and marks the packet with the

emit time before setting a NF_QUEUE verdict on the packet that results the enqueuing of

the packet into a NFQ, with qid=1 (the next higher queue identifier). The first service-

 81

thread performs only this operation, and hence, it continuously processes the arriving

packets without introducing any additional delay other than the processing itself.

Figure 26 Functional schematics of NNC operation

Apart from service-thread0, all the other service-threads (corresponding to the

other NFQs) on receiving the packet query for the simulation time and checks if it is

greater than (emit time – INT_DELAY) value. If it is equal or greater then the packet is

released from the NNC subsystem by issuing NF_ACCEPT verdict, as shown by the third

service thread. If the desitnation DOM’s virtual time has not advanced to the emit time

 82

yet, then the corresponding service-thread generates an event with an event time of

(simulation time + INT_DELAY), inserts the event to the eventlist, and then blocks itself

waiting on a signal from the scheduler-thread. This interaction is schematically

presented in Figure 26, in which the solid-line represents the service-thread receiving and

subsequently processing of the transiting packet, while, the thin dotted-line represents

service-thread waiting for a signal from its peer.

The INT_DELAY mentioned previously refers to intermediate-delay in virtual

time and is computed as

Where, MIN_DELAY is a constant (usually 1) and MAX_DELAY is the

maximum of the range of delays to be enforced by NNC on an in-transit packet. With

segmented intermediate delays we ensure that an in-transit packet is released from NNC

before it reaches the last NFQ, and it also ensures that the specified delay is introduced in

its transit. Also, note that all delays are enforced in terms of virtual time. As mentioned

earlier, the simulation time is kept track in terms of the ticks, and in our implementation,

each tick corresponds to 100µs. For example, if we wish to enforce a MAX_DELAY of

10ms that correspond to100 ticks in virtual time on every transiting packet, and if our

simulation scenario were to use 128 DOMs, then (1+ceil(100/128))=2 ticks (200µs) will

be the INT_DELAY.

The scheduler-thread continuously processes the events in event time-order, and

signals the respective thread when the simulation time advances to the event time and

waits for a signal from the signaled service-thread before processing with next event. On

receiving the signal from the scheduler thread the service-thread enqueues the packet into

€

INT _DELAY = MIN _DELAY + ceil MAX _DELAY
NUM _DOMs −1

$
%

&

'
(

 83

a NFQ with next higher qid, using the NF_QUEUE verdict. Thus, at every NFQ, the

service thread either releases the packet or introduces a virtual time delay of

INT_DELAY. With this method, we can greatly minimize queuing delays, efficiently

process packets with varying delays, and release the packet from NNC in a perfect emit

time-order.

3.2.4 NetWarp Network Control Implementation

The virtual time on every DOM advances when its corresponding VCPUs use of

CPU cycles of the physical core and further the simualtion time advances as the DOM

timelines advance. However, when a DOM is waiting (for a packet) or waiting for a

signal from the scheduler (as in our NNC), the virtual time advance is very minimal as

there is no physical CPU usage. Since, the scheduler-thread does not signal the relevant

service-thread until the simulation time has advanced to the event time, during the

enforcement of large delays virtual time advancement almost creeps, resulting in

communication time-outs. This issue is resolved by leaping in simulation time in steps of

event time. This technique is desirable because it not only addresses the virtual time-

advancement issue in simulation experiments but also yields better performance.

Iptables rules in the DOM0 ensure that the packets on the virtual network are

routed to the NFQ with identifier 0, which is serviced by service-thread0. Each service-

thread is a posix thread developed using libpthread, lib_netfilterqueue, and libxcutil

library functions and they spawn off from the main process, which itself becomes the

scheduler-thread. A globally accessible singleton object comprising an eventlist

(priority-queue) and thread synchronization related data-structures such as, mutex-locks,

and conditional variables, is maintained. Each service-thread (except for thread-0)

 84

maintains a state-variable, which could be one of the following: processing,

wait_on_scheduler and wait_on_packet. The processing state suggests the thread is busy

processing a newly arrived packet, the wait_on_scheduler state means that the service

thread is busy waiting for a signal from scheduler and the wait_on_packet means that the

service thread is busy waiting for an arrival of new packet. The scheduler thread pulls

out a new event for processing only when the service threads (except thread-0) are not in

processing state. This ensures that all the to be handled events are in the eventlist and are

thus time-ordered, and the event that is removed from the eventlist is the one with

minimum event time. We use libxcutil library function interfaces to retrieve the

simulation time from the Xen hypervisor from DOM0.

With a few modifications to the NSX source code and the usage of libxcutil

library functions, we developed a feature using which a user program resets the

simulation time to a higher value. This is achieved by pulling forward the virtual time of

all the VCPUs (hence, their DOMs) whose current virtual time value is lesser than the

specified virtual time value. The scheduler thread in NNC uses this feature to advance

the simulation time during event processing. With this capability in place, periodic time

synchronization is unnecessary for maintaining a single time line, and hence, the

scheduler’s periodic time synchronization is unused with NNC.

3.3 Scaling Study: Methodology and Benchmarks

In the previous Chapter we examined the issues of virtual timelines and virtual

time-ordered execution; however, the scaling of our proposed solution to larger problem

sizes and its application for real-life network simulation scenarios were not discussed.

We gave preliminary evidence of the detrimental effects on the correctness of simulation

 85

results arising from the absence of explicit simulation-specific support in conventional

hypervisor schedulers, and proposed a solution based on maintaining a separate virtual

(simulation) time clock at the level of each virtual CPU core (VCPU). While it served as

proof-of-concept that was performed on a small two-core host machine, the issues of

scalability, correctness and efficiency on large numbers of guest VMs and host cores

remained unexplored.

In this section we extend the work presented in Chapter 2 by (a) porting our new

scheduler (NSX) based hypervisor environment onto a more powerful hardware platform,

(b) designing new Message Passing Interface (MPI) based benchmarks, (c) implementing

a cyber-security application with complex timing behaviors and messaging functionality

(d) performing a thorough analyses for scaling and accuracy.

An important objective here is to ascertain whether, and to what extent, virtual

time-based scheduling and networking, affects the correctness of VM-based simulations,

under heavy multiplexing conditions, and in the presence of complex messaging

dependencies.

3.3.1 Methodology

To increase the scope with respect to applications, we exercise our system with

three qualitatively very different benchmarks. The benchmarks are intended to reflect

sufficient complexity to overcome concerns of bias and generality, and sufficient in terms

of simplicity to make them manageable for verification and duplication. The applications

vary in terms of inter-entity dependencies and timing characteristics. The benchmarks

were logically designed to infer how well our new hypervisor scheduler would support

time-ordered execution, when compared to the default (fairness-oriented) hypervisor

 86

scheduler on the simulation host. In the first (MPI-based) benchmarks, the outcome from

a correct, time-ordered execution is known, which is quantified and used to observe the

extent to which untamed VM execution gives incorrect results. In the second (worm

propagation), the expected qualitative nature of the outcome is used as a determinant of

correctness; the degree of repeatability of the simulation is also compared in untamed and

virtual time-ordered modes. To increase the scope with respect to scale, we experiment

with varying number of VMs, from 1 to 128 (for a single simulator host node).

3.3.2 Hardware and Software

The experiments were performed on a Mac-Pro with two hex-core Intel® Xeon

processors at 2.66 GHz, 6.4 GT/s processor interconnect speed with 32G of memory.

With hyper-threading enabled, Xen sees 24 cores. With Xen creating 24 PCPUs to

handle this, all our experiments view this system as a 24-core machine. OpenSUSE 11.1

with Xen-3.3.1 and Xen-3.4.2 source code was used on this hardware. The test machine

is capable of hosting a maximum of 128 instances of OpenSUSE 11.1-based Linux VMs,

limited only by the memory with which we configured each VM.

We used the OpenMPI v1.4.3 distribution of MPI to implement our test programs,

in order to easily realize controlled point-to-point communications, for ease of

experiment initiation, termination, statistics gathering, and to easily facilitate reusability

and/or peer verification by the research community.

 87

3.3.3 MPI Benchmarks

3.3.3.1 Constant Network Delay (CND) Test

By this experiment we test how well the NSX and CSX schedulers support time-

ordered event execution when the communication structure and dynamics across the VMs

(DOMs) is deterministic and only the observed message generation order differs.

struct MSG{ int ID, counter; } msg;
void CND()
{
 If(myrank == size-1) {
 for(r = 1 to size-2) { //Initially populate
 msg.ID = r;
 sendto(r, msg);
 }
 } else if(myrank == 0) {
 for(r = 1 to size-2) {
 recvfrom(ANY_RANK, msg);
 print msg.ID; //Record observed ordering
 }
 } else {
 recvfrom(size-1, msg);
 sendto(0, msg);
 }
}

Figure 27 Algorithm for CND test benchmark

If r is the process rank and p is number of processes involved in the MPI test

application, the “high rank” process (HRP) with rank r=p-1, sends out messages to other

processes whose rank r>0 iteratively in ascending rank-order (from 1 to p-2). Upon

reception, every receiving process “forwards” (i.e., sends another message) to the “least

rank” process (LRP) with rank r=0. A single run of the test ends when the LRP receives

all (p-2) sent messages.

 88

With an assumption of constant delay incurred in the virtual network, the receive-

order at the LRP must follow the send-order of the HRP. For example, if 1-2-3-4-5 is the

message send-order, then the expected order in which the messages are received in a

system following time-ordered execution of events must also be 1-2-3-4-5, since, all the

sent messages experience the same network delay. We will refer to this test as the CND

test. The pseudo code for the test algorithm is shown in Figure 27.

3.3.3.2 Varying Network Delay (VND) Test

By this experiment we test how well the time-ordered execution is

supported/affected by NSX and CSX, when the generated messages vary both in their

generation order and the communication load experienced. The pseudo code of the

algorithm is shown in Figure 28. In this algorithm, the HRP generates p-2 messages;

each message is populated with a variable counter (msg_counter) and a constant identifier

(msg_id). In the first round, the HRP sends out the messages to processes whose rank

corresponds to their msg_id iteratively in ascending rank-order. When the processes

receive this message they decrement the counter and send it back to the HRP if the

msg_counter>0 in the received message; otherwise the message is forwarded to the LRP.

When the HRP receives the message back, it picks a random process rank from the set

ranging from (1 to p-2) and forwards the message to the random ranked process. This

continues until all (p-2) generated messages reach the lowest ranked process, at which

point the LRP sends an end signal to all the processes marking the completion of a single

run.

 89

struct MSG{ int ID, counter; } msg;
void VND()
{
 If(myrank == size-1){
 for(r = 1 to size-2){ //Initially populate
 msg.ID = r; msg.counter = r;
 sendto(r, msg);
 }
 done = false;
 while(not done){
 recvfrom(ANY_RANK, msg);
 if(msg type == ENDMSG) {
 done = true; //Terminate
 } else {
 //Forward to random destination
 sendto(RANDOM(1:size-2), msg);
 }
 }
 }
 else if(myrank == 0){
 for(r = 1 to size-2){
 recvfrom(ANY_RANK, msg);
 print msg.ID; //Record observed ordering
 }
 for(r = 1 to size-1){
 sendto(r, ENDMSG); //Signal termination
 }
 }
 else{
 done = false;
 while(not done){
 recvfrom(ANY_RANK, msg);
 if(msg type == ENDMSG) {
 done = true;
 } else if(msg.counter == 0) {
 sendto(0, msg);
 } else {
 msg.counter--; //Decrement
 sendto(size-1, msg);
 }
 }
 }
}

Figure 28 Algorithm for VND test benchmark

Again, the objective of this benchmark is to bring out the anomalies introduced by

any virtual time-unaware execution. In a correct, time-ordered execution, the receive

order in the LRP must be equal to the send order. This follows from the original order of

 90

message generation as well as from the number of hops that each message incurs. For

example, the message with msg_id=1 takes only 2 (i.e., 2 × msg_id) hops to reach the

LRP, whereas message with msg_id=n, takes (2×n) hops to reach the LRP. Under fixed

network latency in the interconnecting virtual network, the expected receive-order must

follow the message generation order.

3.3.3.3 Error Metric

The observed results from the parallel test programs can give a qualitative

evaluation of the presence or lack of time-ordered event execution. However, to quantify

the effect, we need an error metric. Hence, we define an error metric to characterize the

ordering behaviors, designed such that the smaller the number, the closer it is to an ideal

time-ordered execution.

Note that the benchmarks yield the expected (perfect) output ordering, if they

followed time-ordered execution. However, in the absence of time-ordered execution, a

different order would result. Thus, the observed order (O) in the output could be

different from the expected order (X). To be able to measure the disparity in the expected

and observed orderings, we introduce a notion of “eunit” as a unit measure of error, and

use the following metric, E, in eunits for measuring the time-order errors:

E = 1
n

Xij −Oij
j=1

m

∑
i=1

n

∑

where, n is the number of replicated runs, m is the number of parallel processes

(ranks), Xij is the expected identifier of the jth message in ith run, and Oij is the observed

identifier of the jth message in the ith run.

 91

The error calculation metric stresses on the positioning of the output sequence

elements such that the larger the gap between the expected and observed element values,

the greater will be the error incurred. Hence, the error calculation metric penalizes the

observed value that is too distant from the expected value.

3.3.4 Cyber Security Benchmark

To compare the performance of the NSX and CSX based simulation platforms

while simulating a more complex network application, we developed a test program

mimicking simple computer worm propagation; we will refer to this as the Worm

Propagation (WP) test. This experiment emulates the behavior of worm-infection and its

subsequent propagation across the service hosts in an interacting multi-server and multi-

client scenario, as shown in Figure 29. The propagation in the system proceeds as a

simple instance of the well-known “SI” epidemic model.

The experiment involves Vulnerable Services (VS) listening for requests from

legitimate or non-malicious clients, referred to as Legit-Clients (LC). Upon receiving a

request from any LC, a VS responds by spawning a service thread that would

subsequently transfer data of uniform-randomly distributed size ranging from 1 to 10KB.

Every LC generates requests to randomly selected service hosts, with inter-request

interval ranging uniformly randomly from 10ms to 100ms.

One instance of each VS and LC are spawned on each VM node in the

experiment. One among all the VSs is set to be initially in an infected state. The infected

VS spawns an independently running Shooting Agent (SA) embedded in the worm script.

The SA process, which is exactly similar to LC in its operation, picks a random VS to

infect and makes a request similar to an LC; in addition to the normal data-transfer, this

 92

malicious request also initiates the process of opening a backdoor-port for worm payload

transfer in the VS host, as shown in Figure 30. The payload file (4 KB) makes the VS

host infected and the spawned SA of this host subsequently starts infecting its peers

similar to the infected (seed) VS. Eventually, due to continuous interaction between the

hosts the worm infects the VSs on all the hosts.

Figure 29 Interacting multi-service and multi-client scenario

TCP/IP (Berkeley) sockets were used to realize the VS, LC and SA

communication operations. We conducted the experiments on 64 VMs and each VM

starts up an instance of VS and LC. All LCs and the very first SA spawned by the seed

VS are delayed by a 5-second sleep at their startup, to ensure all VSs are ready to accept

requests.

After being infected (i.e. after payload transfer), every VS sends out a message to

a pre-assigned VS, which, on reception, marks the sender as infected. When the pre-

assigned VS determines that the specified fraction (90%, in our experiments) of VSs are

 93

infected, it sends out messages to all VSs to terminate. Each VS in turn communicates

this message to the LC and SA hosted on the same VM by creating a end_process_file for

each process before self-termination. The LC and SA terminate themselves on the

detection of existence of their respective end_process_files after clean up. This ensures

smooth termination of the WP test.

Figure 30 Worm infection and propagation

In the NSX based simulation host the simulation time is maintained within the

scheduler data-structure, which is in the core of Xen hypervisor kernel. This simulation

time has to be communicated to the VMs so that they can record their infection time. To

accomplish this we developed a daemon named update_lvts, whose functionality is to get

the simulation time value from the Xen scheduler data-structure and update it in a

common data-structure that is accessible to all the VMs. We start up this daemon in

DOM0, and using the libxcutil functions, we are able to get the simulation time into the

 94

Xenstore [6], whose location is known and can be read by all the VMs. Hence, the VSs

that record the simulation time in the NSX setup make use of libxenstore library

functions to read simulation time from the Xenstore. For the CSX-based runs, the real

time value returned by gettimeofday function is used as the simulation time.

3.4 Scaling Study: Results

3.4.1 MPI Simulation Results

3.4.1.1 CND Test Results with 64 VMs

From Figure 31 the curves obtained for the CND tests for virtual time-ordered

scheduling (NSX) show its effectiveness in keeping the time-order errors at negligible

values of below 2 eunits for single VCPU/DOM test and below 2.5 eunits for 2

VCPUs/DOM test. In contrast, although untamed execution (CSX) starts out very well

with almost no errors for scenarios with 8 and 16 DOMs, it starts to perform very poorly

at 24 DOMs and higher. This is expected because of its poor behavior with multiplexing

more than one VM per core.

As long as the virtual resources match the physical host resources the fairness

also ensures time-ordered execution of events as well, but as the number of DOMs

increase the mismatch between virtual and physical resources plays significantly against

time-ordered event execution. This is clearly evident from the observed eunit plots. Note

also that it is indeed possible to get eunits down to zero, by reducing the time slice.

However, reducing the time slice to very small values only increases the run time

significantly; in practice, the errors become negligible even at time slice of 100 µs.

 95

The CSX, which does not use any notion of time in scheduling VCPUs, is bound

to yield increased time-order event errors with increased mismatch between virtual and

physical resources. Hence, the errors increase with the increase in the number of DOMs

in the test. For the 1-VCPU/DOM and 2-VCPU/DOM scenarios the error is 12-13 eunits

on average.

Figure 32, shows the wall clock time taken by NSX and CSX to complete the

same experiment. The run time is seen to be similar across the schedulers, showing that

the virtual time scheduling can be efficient with little runtime overhead.

Figure 31 CSX and NSX time-order errors for CND benchmark

In essence, for tests with constant network delay that differentiates the messages

from each other only based on the sent order the NSX scheduler maintains the expected

time-ordered execution better than the fair-share CSX, without significantly

compromising on the runtime performance. This characteristic of consistent maintenance

 96

of lower error-rate even with increasing number of DOMs in the tests demonstrates a

good scaling behavior of the NSX scheduler.

Figure 32 CSX and NSX runtimes from CND test runs

3.4.1.2 CND Test Results with 128 VMs

As observed from the error graph in Figure 33, the NSX scheduler for both

1VCPU/DOM and 2VCPU/DOM scenarios shows very low errors until the number of

DOMs in the test scenario increases from 64 to 128, at which point the 1VCPU/DOM

time-order errors are almost same as its peer CSX run. However, the runtime curves in

Figure 34 show that NSX provides significantly better runtime performance and hence

better scaling with increase in the number of DOMs in the experiments. CSX with lower

tick-size does not perform any better in controlling the time-order error or in terms of

runtime performance than its performance using the default setting in CND tests in

 97

Figure 32. The 2VCPU/DOM case with CSX performs poorly both in terms of errors and

runtime.

Figure 33 CSX (with lower-tick size) and NSX time-order errors for CND benchmark

Figure 34 CSX (lower-tick size) and NSX runtime plots for CND benchmark

 98

The DOM0 VCPUs are maintained at the minimum of all VCPU-LVTs in

between synchronizations and this contributes significantly in the reduction of time-order

errors in CND, where time-ordering only depends on the sent-order. From the CND error

plot it is clear that except for the scenario with 128 VMs sufficient PCPU time for all the

VCPUs is provided (despite being continuously subjugated by the 24 VCPUs of DOM0)

before the VCPUs time-order priorities are flattened due to periodic synchronization.

3.4.1.3 VND Test Results with 64 VMs

In this test, the message generation-order, in addition to the network transit

latency, plays an important role in the receive-order of the messages at the LRP. The test

results for scenarios with number of DOMs involved in the tests ranging from 8 to 64 are

shown in Figure 35. Similar to the CND results, the CSX scheduler in the VND tests

perform better when the DOM resources fall closer to the physical resource limit but

shoots up abruptly once it has been exceeded. Further, the runs carried out with 64

DOMs using CSX were very unstable, and only a few of them ran to successful

completion. The error readings plotted for VND in 1-VCPU/DOM scenario are from

averaging 20 runs, while all other runs are from averaging 50 runs. The VND with 2-

VCPUs/DOM using CSX failed to execute to completion.

 99

Figure 35 CSX and NSX time-order errors for VND benchmark

The NSX runs deliver almost negligible time-order error across all the test

scenarios with 8 to 64 DOMs. The error value is just 3 eunits with NSX as opposed to

110 eunits with CSX in 1VCPU/DOM runs. Further, NSX incurs just 6 eunits, while

CSX simply fails to complete a single run in 2VCPU/DOM scenario, because of the gross

mismatch between fair scheduling and time-ordered execution in this benchmark. For

both 1-VCPU/DOM and 2-VCPU/DOM test scenarios, the time-order errors remain

consistently smaller even as the number of DOMs in the test increases.

The runtime chart in Figure 36 shows NSX performing better than CSX especially

in the tests with higher number of VCPUs. One of the reasons why NSX runs faster than

CSX could be that CSX using credit based scheduling needs to update or re-sort the

PCPU queues often, which is not required by the NSX. Hence, as the number of VCPUs

increases, the efficiency of the CSX scheduler is reduced.

 100

Figure 36 CSX and NSX runtimes for VND benchmark

3.4.1.4 VND Test Results with 128 VMs

In the VND tests, the NSX scheduler for 2VCPU/DOM scenario perfectly keeps

both the time-order error rates and the run times low, even as the number of DOMs in the

test scenario increases as shown in Figure 37. On the other hand, NSX for 1

VCPU/DOM varies quite a bit in controlling time-order errors as the number of DOMs in

test scenario increases, worsening when the number of DOMs increases to 128.

However, it has the best run time performance among all the other runs. The CSX with

smaller tick-size performs better than its default setting performance in Figure 35 in

terms of controlling errors, however the runtime suffers in both 1 VCPU/DOM and 2

VCPU/DOM scenarios as seen in Figure 38.

 101

Figure 37 CSX (with lower tick size) and NSX time-order errors for VND benchmark

Figure 38 CSX (lower-tick size) and NSX VND runtime plots

Here too, the availability of PCPU time for all VCPUs in between

synchronization can be reasoned for the relatively widely varying NSX time-order errors

 102

across the scenarios. The relatively consistent lower time-order errors in NSX with

2VCPU/DOM wherein the interval between two synchronizations is almost twice

compared to 1VCPU/DOM for the same benchmark serves as strong evidence.

3.4.2 Cyber Security Simulation Results without NNC

Figure 39 and Figure 40 show the results from the runs of WP test with CSX and

NSX, respectively.

Figure 39 Worm propagation curves with CSX

These test results clearly highlight the importance of using time-ordered

scheduling. Out of ten consecutive runs with CSX, only four succeeded in completing

the WP test and of the successful ones, none achieved clean termination. The reason for

failures is the mismatch between fairness-based (or utilization-based) scheduling and the

 103

actual need for correct, time-based advances across VMs. Since resources are heavily

shared (64 VCPUs mapped on 12 CPUs), every incorrect choice in the scheduling

decision incurs a stiff runtime penalty. Since the worm propagation phenomenon takes

total activity that is quadratic in the number of nodes, the penalty of poor scheduling

decisions increases sharply with the number of nodes. On the other hand all NSX runs

were successful and achieved clean termination, without exception.

Figure 40 Worm propagation curves with NSX

It is well known from the classical simple epidemic model that the self-replicating

and propagation behavior of worms without recovery or the death of infected entity, the

spread of infection is a sigmoid curve very similar to the one observed in Figure 40. The

consistent expression of this behavior in a controlled WP test across several runs of NSX

(Figure 40) and its absence in the CSX (Figure 39) based simulation host environments

 104

strongly supports the necessity of time-ordered execution in the VM based network

simulations.

Figure 41 shows the curves from CSX and NSX of Figure 39and Figure 40 in a

single chart, allowing us to compare the behaviors directly. It is clear from Figure 41 that

the CSX curves are widely varying, and a poor representation of the phenomenon, while

the NSX curves show excellent simulation support with highly repeatable curves.

Note that the slight variability among multiple runs of NSX-based simulations is

within the margin of time slice of 100 µs. Similar to the previous MPI benchmarks, this

variability can be reduced as desired, by reducing the time slice further.

Figure 41 Worm Propagation behavior from multiple runs of CSX and NSX

 105

Figure 42 Worm propagation plots for different CSX configurations, and NSX without
network control

Figure 43 Runtime curves from cyber security benchmarks for both CSX configurations
and NSX without network control

 106

The plots in Figure 42 show the infection propagation curve using the cyber

security benchmark in a 64-DOM scenario. The CSX_DFLT and CSX_LTS refers to

CSX with default setup, and CSX with lower tick size, respectively. The NSX_NONW

refers to NSX using STS synchronization without network control. Note that CSX with

different tick-sizes provides different infection profiles, because CSX uses the wall-clock

time as the simulation time, and hence varies based on the run-time of the simulation. In

the runtime plots shown in Figure 43, for 64-DOM scenario, the run time of CSX_LTS is

greater than that of CSX_DFLT and hence the infection curve is laterally shifted in the

log plot shown in Figure 42.

This comparison reinforces the finding that the wall-clock time is not reliable,

especially when large numbers of DOMs are multiplexed on limited physical resource,

and hence, emulation methods fail at scale. Even if virtual time is tracked using an

alternative method as opposed to the NetWarp method of maintaining a virtual clock per

VCPU, the emulation/simulation methodologies using CSX_DFLT or CSX_LTS suffer

in run time as seen in Figure 43, especially in with large number of VMs.

3.4.3 Cyber Security Simulation Results with NNC

The curves in Figure 44 show the spread of infection across the connected nodes.

In the NNC_1ms_DELAY/PKT, NNC_10ms_DELAY/PKT and NNC_100ms_DELAY/Pkt

scenarios, the NNC subsystem introduces a virtual-time delay of 1ms, 10ms and 100ms,

respectively, on every in-transit packet in the virtual network. The lateral shift of the

curves to the right with the increase in enforced delay demonstrates that the NNC

subsystem is appropriately enforcing the specified delays.

 107

Figure 44 NNC verification results with cyber-security application benchmark

Figure 45 NNC runtime performance results with cyber-security application benchmark

In Figure 45, we plot the simulation time and the runtime, and these plots compare

the wall-clock time required to simulate a distributed computing cyber security

 108

application scenario involving 64 DOMs on a 12-core machine, whose runtime on 64

independent nodes (ignoring the simulation overhead) would at least be equal to

simulation time.

Figure 46 Rate of increase in runtime and simulation time with increase in virtual packet
delay

In Figure 46, we compare the rate at which the run time and the simulation time

increase with respect to their minimum values. In this case, their minimum values

correspond to 1ms of virtual delay/packet enforced by NNC. The proportion by which

the runtime increases is seen to be lesser than that by which the simulation time increases.

This is not possible in time-stepped simulation or emulation approaches, in which the

simulation time advances (due to VCPU accounting) in regular time steps. The reduction

in the runtime increase rate can thus be attributed to the discrete-event nature of operation

of NNC.

 109

3.5 Summary

Starting with a virtual time execution prototype of Chapter 2, we identified and

addressed the problem of staggering virtual time. We redesigned, discussed the design

alternatives and implementation specifics of the parallel computing virtual time-ordered

network control NNC. We designed the synthetic benchmarks and defined error metric

to quantify the virtual time order errors. We also designed real-life cyber security

application modeling the worm propagation in the computer networks. A detailed

performance and scalability studies involving synthetic benchmarks was carried out with

simulation scenarios using up to 128 VMs. The cyber security benchmark using 64 VMs

to demonstrate effect of virtual time ordered execution on real life applications and the

ability of NetWarp to scale was demonstrated using this real life application. The cyber

security application was also used to demonstrate the correct working of NNC and

NNC’s capability to run faster than time-stepped simulations by making intermediate

leaps in virtual time. Portions of this Chapter were published in [51] and [52].

 110

CHAPTER 4

VM WITHIN VTS: APPLICATION CASE STUDIES

The versatility of a NetWarp simulator lies in its ability to adapt for new

simulation applications to be modeled. In this section we present a case study, where in

NetWarp simulation system is adapted to simulate the behavior of a complicated and

extremely dynamic system of Mobile Ad-hoc NETworks (MANET).

4.1 Background and Related Work

In MANET, the mobile nodes form and break communication networks with their

peers as they move, and they do not need or utilize any infrastructural support to perform

such actions. The challenges involved in the simulation of a complex system such as

MANET can be found in [53]. In [54], the strengths and weaknesses of several MANET

simulators differentiated based on the simulation granularity are discussed. The

application of MANET simulations in defense sector can be found, in [55]. In this case

study our focus is on realizing a high-fidelity MANET simulation on NetWarp, and on

demonstrating the correctness of the MANET simulation results.

4.1.1 MANET Emulation

Ability to simulate/emulate large-scale MANET networks is of greater interest to

the military. Extensible Mobile Ad-hoc Network Emulator (EMANE) from DRS Cengen

[56] is used to realize emulations. EMANE contains a number of wireless network

emulation modules (NEM) that model the physical (PHY) and layer2 or MAC layers of

the network stack. For high-fidelity emulation purposes EMANE applications are hosted

 111

on VMs, and to maintain the real time as simulation time, the number of VMs (each with

single VCPU) hosted on the physical host is matched to the number of PCPUs of the

host. The connectivity and routing tables are computed at runtime using Optimized Link

State Routing (OLSR) [57]. The OLSR daemon (olsrd) [58], is hosted on each VM to

dynamically compute the routing in real time, as the routing paths need to vary

dynamically with the movement of MANET nodes and the geographical landscape. The

EMANE application highjacks the communication packets from VM network interfaces

and passes them through the physical and MAC layers to enforce the mobility

characteristics. However, to enforce emulation network conditions the path loss

information is periodically communicated to the relevant EMANE modules.

With this setup a wide range of distributed applications can be tested as EMANE

emulators are hosted on VMs that hosts a fully-blown operating system. Since, the

EMANE uses real-time as the simulation time, the issue of correctness of the emulation

runs arises. This is because, in addition to EMANE objects there are many independent

components that are communicating in real-time, which are artificial instrumentations

that do not exist in realistic scenario and their asynchronous runtime is inadvertently

accounted in the emulation. Such artificial instrumentations will definitely affect the

correctness of the emulation predictions. Note that these concerns are in addition to the

other correctness issues of VM-based cyber simulations that have been elaborately

discussed in the previous Chapters.

4.1.2 NetWarp Simulation of MANET

By porting MANET application scenario on to the NetWarp simulator, the

simulation time reliance on the real time as in case of EMANE based emulations is

 112

removed. This enables NetWarp to host far more VMs on a single machine without

compromising on the correctness of the simulation.

An initial experiment was conducted to compare a MANET scenario involving

voice-over-IP (VOIP) application on EMANE and NetWarp setups. The VoIP

application used Signal Initiation Protocol (SIP) [59] for initiation and termination of

calls. The RTP [60] protocol was used to transmit the actual audio packets. A recorded

voice message was transmitted between the nodes over VOIP. The out-of-box PJSIP [61]

application (that implemented SIP and RTP protocols) was used for interactions. The

changes in the network characteristics and the quality of the VOIP messages with the

increase in number of VOIP sessions were observed. This EMANE based emulation,

which did not involve mobile nodes were executed on a dedicated cluster to obtain

results. This static MANET experimental scenario with the EMANE hosted VMs

representing MANET nodes that were interconnected through ad-hoc networking form a

network graph, as shown in Figure 47.

This exact scenario was simplified to execute on our generic VM test platform

without EMANE. In our simplified model we directly used the virtual Ethernet devices

of the VMs instead of EMANE NEMs. The RF propagation path loss for the static

MANET scenario was read from file. This data along with the cutoff value of -94 dB

was used to generate the static network connectivity graph of MANET nodes. Using this

connectivity graph information, the olsrd executing on each VM created the same multi-

hop network as shown in Figure 47 on our generic VM test platform. The exact details of

utilizing the connectivity graph to setup a multi-hop MANET network of VMs is

discussed in the later sections. In our experiments, we compared the EMANE results

 113

with the results from our generic VM test platform that also exercised different

hypervisor schedulers (CSX and NSX).

For experimenting, the VoIP calls were initiated between two of the ad-hoc

wireless nodes (the ones numbered 57 and 49, in this case). Node 57 sent a recorded

message (wmv file) and 49 responded similarly. Once the files were transferred the test

ended. The number of simultaneous calls between the sender and receiver was varied (1

to 64) across runs.

Figure 47 Plot of one-hop neighbors for the MANET topology

 114

 (a)

(b)

(c)

Figure 48 Call failures and packet-loss vs. the number of calls in (a) Dedicated cluster (b)
CSX (c) NSX

 115

Figure 48 shows the packet loss and call failures on same of tests executed on the

(a) dedicated cluster using EMANE (b) CSX setup on a single 12-core MacPro running

Xen capable of hosting 64 VMs (c) NSX setup on the same hardware as in b. On

comparison of the curves from the three plots in Figure 48, we found that plots using

NSX setup was more similar to the results from the runs from EMANE emulation with

dedicated hardware. Comparatively, the runs from CSX setup show a greatly different

packet-loss curve with increase in the number of simultaneous calls. However, the call

failures curve more or less look similar in all the three plots. These results were

published in [51] and this methodology served as a preamble for a detailed case-study.

4.2 Instrumentation Specifics

To simulate MANET experimental scenarios on generic VM platforms without

using emulation software like EMANE, the following requirements should be met.

1. Virtual time-controlled execution of VMs

2. Virtual time-controlled communication of messages among VMs (latency)

3. Support for ad-hoc network setup and operation

4. Virtual network bandwidth control

5. Virtual mobility support

6. Benchmark applications

The first two requirements are generic and their significance in determining the

correctness of the simulation results has been elaborately discussed in the last two

Chapters. The remaining four requirements are specific to the MANET simulations on

NetWarp.

 116

Unlike wired computer networks, the MANET deals with mobile nodes that

interact with each other using ad-hoc networking protocols and this results in constant

change in their connectivity. OLSR was used for this purpose.

In MANET, the virtual network bandwidth varies based on the distance between

the mobile nodes and the surrounding environment. To enforce bandwidth specification

in the MANET scenario, we require the VMs utilized in MANET simulations to

communicate the bandwidth or throughput information to their virtual network interfaces,

and to ensure that they are enforced during simulation.

Simulating the mobility feature is one of the basic requirements of MANET

because by definition the interconnected nodes are mobile. This requires the VMs

utilized in MANET simulations to be able to dynamically tear down existing network

connections and form new network connections during the course of simulation, based on

a specified mobility pattern.

Benchmark applications are important because it is through these applications, the

correctness of the complex MANET simulations are evaluated. In the previous Chapters

we devised several benchmark applications to measure correctness and runtime. The

CND and the cyber security application benchmarks are used for evaluating MANET

simulations.

4.2.1 Ad-hoc Network Setup and Operation

Installation and execution of Olsrd on all VMs representing a mobile node in the

MANET simulation, results in single hop connectivity among all the VMs. In order to

enforce realize the characteristic connectivity pattern of the MANET simulation scenario,

an input file providing the RF bandwidth in between every pair of MANET nodes was

 117

used. A cutoff bandwidth was used to determine the existence and absence of

connectivity between any pair of MANET nodes.

After obtaining this connectivity graph as shown in Figure 49, the setup of a

multi-hop network in NetWarp involved two tasks, (a) communicating the connectivity

information to VMs and (b) enforcing connectivity.

Figure 49 Network connectivity graph of MANET simulation scenario

 118

To communicate the connectivity information to the VMs, a bit (0 or 1)

representing the existence of connectivity between all pairs of MANET nodes was

written in Xenstore. This data in the Xenstore is visible to all hosted VMs and, hence can

be read by all the VMs that represent the MANET nodes.

To enforce specified connectivity among the virtual network interfaces, every VM

on boot read the Xenstore, and executed necessary iptables rules specifying either to

accept or drop the packets originating from the peer VM network interfaces. The

connectivity graph shown in Figure 49 is actually constructed from the next-hop route

information collected from all 64 VMs involved in the MANET simulation scenario.

Except for very few modifications that were made to suit our study, this connectivity

graph is same as the MANET graph shown in Figure 47.

4.2.2 Network Control

4.2.2.1 Network Bandwidth Control

If connectivity existed between two VMs, then dropping packets from a peer that

exceeded specified arrival-rate threshold ensured bandwidth control. This threshold was

enforced by the VMs using iptables rules with limit module. If no connectivity existed

between a peer-node then the packets from that peer were just dropped. Thus, the VMs

running as MANET nodes enforced these iptables rules based on the connectivity

information read from the Xenstore. Figure 50, lists the necessary iptables rules that

were used for this purpose. Each VM enforces a definite rule for every other peer-node

involved in the simulation.

 119

#iptables rule to ensure no connectivity with mac address XXX
iptables -A INPUT -m mac --mac-source XXX -j DROP

#iptables rule for bandwidth controlled connectivity with mac
address XXX
iptables -I INPUT 1 -m limit --limit PKT_PER_SEC/sec -m mac --mac-
source XXX -j ACCEPT
iptables -I INPUT 2 -m mac --mac-source XXX -j DROP

Figure 50 iptables rules enforcing non-connectivity and bandwidth

4.2.2.2 Network Latency Control

The Netwarp Network Control (NNC) discussed in the last Chapter is used to

enforce delay on packets transiting from one MANET node to another. The NNC

executing in DOM0 utilizes iptables rules to trap the inter-VM packets and redirect them

to NNC, as done previously. Additionally, in case of ad-hoc networks the dynamic

connectivity of the mobile nodes are made possible due to periodic exchange of broadcast

packets (hello packets) between the nodes as per OLSR protocol. For performance

reasons we did not redirect the broadcast packets to NNC and hence, only the application

specific packets passed through NNC. Figure 51, lists the set of iptables rules enforced

in DOM0 for this purpose.

#iptables rule deleting the default rule of Xen for DOM0
iptables -D FORWARD -m physdev --physdev-in vifXXX –j ACCEPT

#iptables adding rule to accept the broadcast packets
iptables -A FORWARD -m physdev --physdev-in vifXXX -j –d
192.168.X.255 -j ACCEPT

#iptables rule to redirect the other non-broadcast packets to NNC
iptables –t mangle –A FORWARD -m physdev --physdev-in vifXXX -j –d
!192.168.X.255 -j NFQUEUE --queue-num 0

Figure 51 iptables rules to aid NNC functioning

 120

4.2.3 Virtual Mobility Support

With the iptables rules for connectivity and latency control of the inter-VM

packets as shown in Figure 50 and Figure 51, the setup requirements necessary for static

MANET scenarios was fulfilled.

In the mobility-feature supported MANET scenario considered for performance

analysis only node 61 was made mobile. As shown in Figure 52, the node 61 virtually

revolved around other static MANET nodes in anti-clockwise direction forming and

tearing the connection with the peripheral nodes in regular virtual time intervals. Note

that at any instance of simulation time the node 61 was only connected to only one peer-

node.

To support mobility feature, we developed an additional mobility module

executing in DOM0 that refreshed connectivity (based on physical positions) information

of MANET nodes at periodic virtual time intervals. To simulate the revolving behavior

of node 61 in NetWarp, the Xenstore was periodically updated with connectivity

information (at every t1 sec), and the VMs representing the MANET nodes read the

Xenstore periodically (at every t2 sec) and updated their iptables rules to reflect the

MANET connectivity at any instance of the virtual time. For this to work correctly, we

ensured t1>>t2.

 121

Figure 52 MANET scenario with mobility support

4.3 Benchmark Applications

4.3.1 CND Benchmark

We used the CND benchmark discussed in Section 3.3.3.1 for evaluating the

correctness of MANET simulator functioning on NetWarp. It can be recalled that in

CND the highest rank sends sequence of messages to the lowest rank, each of these

messages before reaching their destination made an intermediate hop. If the lowest rank

 122

were 0, the first message would hop on rank1 process, the second message would hop on

rank2 process and so on. This benchmark verified the correctness and measured the

errors in eunits using the message receive-order and the message sent-order. For perfect

correctness both sent and receive orders were same.

Figure 53 CND functional diagram

Note that CND was designed under the notion that every message made exactly

one hop (physical and logical) before reaching the destination. However, this notion was

invalid in the MANET scenario because, a single logical hop of a message at the

application level is not always equal to number of physical hops taken by the message in

a MANET network. The number of physical hops is actually dependent on the shortest

distance between the source and destination nodes. For example, even though the first

message passing from node64 (rank 63) to node1 (rank 0) logically makes a hop at node2

(rank 1), the message actually makes 3 physical hops to reach node2 from node64 and

makes a single hop from node2 to node1. In this particular example the message actually

takes 4 physical hops to fulfill one logical hop. Hence to evaluate the correctness, we

 123

first determined the correct receive-order of messages at the lowest rank for the given

MANET scenario.

Note that the CND application benchmark uses blocking MPI calls in

implementation. Hence, the MPI_Send would not return until the message sent were

buffered at the destination host as shown in Figure 53. As previously alluded, in

MANET setups a single hop can correspond to multiple physical hops. However, with

the shortest-path between the nodes as a distance measure, the correct receive-order for

the highly deterministic CND benchmark can be estimated. Using, the shortest-path, the

relative-time of packet arrivals at the lowest-rank can also be determined.

If 𝜏!
! corresponds to the first logical hop taken by the ith message to reach the ith

ranked process and 𝜏!! corresponds to the second logical hop taken from the ith ranked

process to the lowest rank (rank0). Then the reception time of the packet γ! for any ith

packet can be determined as,

γ! = τ!
! + 𝜏!!

 𝜏!
! = τ!

!
!

!!!

𝛾! = τ!
!

!

!!!

+ 𝜏!!

τ!
! 𝛼 𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝑃𝑎𝑡ℎ ℎ𝑖𝑔ℎ𝑒𝑠𝑡𝑅𝑎𝑛𝑘, 𝑖

τ!! 𝛼 𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝑃𝑎𝑡ℎ 𝑖, 𝑙𝑜𝑤𝑒𝑠𝑡𝑅𝑎𝑛𝑘

Note here that 𝜏!
! is the summation of all previous first logical hop times. This is

because we used blocking MPI routine to send out the message and hence every

generation of consecutive message suffers from this delay. In calculating 𝜏!!, which

 124

corresponds to every ith ranked process receiving and sending only one message does not

incur additional overheads. The number of physical hops in the shortest-path distance

required to perform one logical hop is used to determine the receive-order and to

calculate the relative receive time of the arriving packets.

In addition to the receive-order, approximate receive-time and hence the receive

pattern was obtained from this benchmark. The receive-order and receive-pattern of this

benchmark were utilized for verification of correctness in the static MANET scenario.

4.3.2 Cyber Security Benchmark Application

The cyber security benchmark simulates the spread of a Worm from an initially

infected vulnerable service to all of its connecting nodes. One major difference between

this benchmark and the benchmark discussed in Section 3.3.4 is, in this benchmark the

infection is spread only to the next-hop nodes.

The cyber security benchmark is a socket-based application using TCP/IP

protocol and is agnostic of ad-hoc (OLSR based) network underneath. The infection-

spread time, infecting nodes and the pattern of spread of worm over time are the study

aspects of this benchmark. Note that the entire software-stack starting from the cyber

security application to the lowest-level OLSRD were ported on to a VM without any

modifications to the source to suit the simulation purpose. Only exceptions were little

instrumentation that was performed for recording the virtual time and to support virtual

mobility.

The hypervisor scheduler ensured the virtual time-controlled execution and the

virtual time-ordered delivery of the packets were performed by the NNC daemon.

Hence, and rightly so, the cyber security application was completely unaware of both

 125

virtual time control and virtual network control. To utilize this benchmark in the

MANET scenario we slightly modified this benchmark.

The mobility had to be triggered at the start of simulation. To ensure this, the

benchmark application needs to communicate its readiness to the mobility module. This

was accomplished by the initial-infected service node, which informed the mobility

module about the setup readiness through the Xenstore. This communication to the

mobility module happens after all services on the VMs wait on a barrier before starting

the simulation.

In our benchmark scenario node61 was considered as the infected node for both

mobile and non-mobile MANET based cyber security benchmark scenarios. Note that

node61 was also the mobile node in the MANET scenario with mobility.

The infection spread in this benchmark happens in two phases, in the initial phase

a worm infects the vulnerable service hosted on its next-hop nodes and this results in

opening of the backdoor socket on the infected node. In the final phase the worm

transfers payload to the already infected service. Note that it is not necessary that the

same infecting node perform both initial and final phase infections. After the initial

infection the worm tries thrice to connect to the backdoor and transfer the payload, in

event of failure it moves on to infect the next node. If the backdoor is already open, some

other worm from a different node might complete the final phase of infection with

payload transfer, after which this node (a new resident for the worm) actively tries and

infects its neighbors.

This benchmark was utilized to verify the mobility operation. With node61 being

the infection start-point in both static and mobile MANET scenarios, one can expect

 126

node61 to infect only one node45 in static MANET scenario, while the same node61 can

be expected to perform more infections in the mobile MANET scenario.

4.4 Performance Results

4.4.1 Experimental Setup

The experiments were performed on the Mac-Pro hardware with two hex-core

Intel® Xeon processors at 2.66 GHz, 6.4 GT/s processor interconnect speed with 32G of

memory. With hyper-threading enabled, Xen sees 24 cores. With Xen creating 24

PCPUs to handle this, all our experiments view this system as a 24-core machine.

OpenSUSE 11.1 with Xen-3.3.1 and Xen-3.4.2 source code was used on this hardware.

The CSX setup was configured to use 4-VCPUs in DOM0 and each the weight of

DOM0 processors were maintained 10 times more than the other VCPUs. During

scheduling each VCPU was assigned a time-slice of 100µs. While, the bandwidth

restriction of 300 packets/sec per peer network device was enforced to all CSX runs, no

latency was introduced. The scaled wall clock time is used as the simulation time for the

CSX runs. The scaling factor was determined by ratio, !"#$%& !" !"!#$
!"#$%& !" !"#$%

= !"
!"

. For the

mobile scenarios one-second wall clock delay was used for the mobile node (node-61) to

hop from one peripheral node to another as shown in Figure 52.

The NSX setup was also configured to use 4-VCPUs in DOM0 and the time-

slices for DOM0 VCPUs were increased by 10 fold in comparison with other VCPUs,

which used 100µs time-slice. The bandwidth restriction same as CSX was enforced in

NSX setup and the NNC was used to ensure latency control. A 10ms delay was enforced

on every (non-broadcast) transiting packet. The virtual time was collected through the

 127

Xenstore interface as presented previously in Chapter 3. A virtual time equal to one

second was enforced for the mobile node (node61) to hop from one peripheral node to

another.

4.4.2 CND Benchmark Results

Figure 54 CSX and NSX receive-pattern comparison with theoretical expectations

Figure 54, shows the normalized arrival pattern of the packets at the VM hosting

the lowest-rank MPI process. As observed, the NSX-STATIC, i.e., the NSX runs for the

static MANET scenario have a very close correspondence to the theoretically derived

result, and in contrast the CSX runs show irregular pattern highly differing from

expectations. The errors measured from NSX and CSX runs in terms of eunits are

presented in Figure 55, which shows highly increasing errors with the increase in VMs,

0 10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 CSX_STATIC

NSX−STATIC
THEORETICAL EXPECTATION

VMs

NO
RM

AL
IZ

ED
 R

UN
TI

M
E

 128

while almost no errors were observed NSX runs. In Figure 56, the variability of the CSX

and NSX packet-receive simulation times with 95% confidence intervals are presented.

A high-variability in CSX and almost no variability in NSX runs can be observed.

While, we derived a means to theoretically determine the correct receive-order

and receive-pattern of the packets at the lowest rank and in the static network setup of

MANET. Similar, recognition of receive-order and receive-pattern in the mobile

MANET scenario is extremely difficult as one of the nodes is mobile. Hence, we present

only the runtime of CSX and NSX packet-receive simulation time with 95% confidence

intervals. Figure 57 shows a very low variability in the packet-receive simulation time of

NSX for internal MANET nodes, while a bit higher variability at the peripheral nodes,

which actually are affected by the mobile node-61. However, the trends of simulation-

time variability shows similar irregular, high variability trend as seen in the static

MANET scenario in Figure 56. Though the NSX readings show less variability, it plots

provide no insight on the verification of mobility feature or the correctness of the

readings.

 129

Figure 55 CSX and NSX errors in eunits

Figure 56 CSX and NSX simulation time in static MANET with 95% CI

20 30 40 50 60

0
50

10
0

15
0

20
0

NUMBER OF VMs

ER
RO

R
IN

 E
UN

IT
S

CSX_STATIC
NSX−STATIC

0 10 20 30 40 50 60

0
20

00
40

00
60

00
80

00
12

00
0

VMs

RU
N

TI
M

E
IN

 M
IL

LI
SE

C
O

N
D

S

CSX_STATIC
NSX_STATIC

 130

Figure 57 CSX and NSX simulation time in mobile MANET with 95% CI

4.4.3 Cyber Security Benchmark Results

With the cyber security benchmark results from NSX runs we verify the

correctness of mobility feature of the MANET scenario. As mentioned in Section 4.3.2,

the worm in the cyber security benchmark infects only the next-hop nodes. Hence, in the

static MANET scenario one can expect the worm from the vulnerable-service at node61

infecting its only neighbor node45 and then spreading of the worm from there on, as

observed in Figure 58.

0 10 20 30 40 50 60

0
20

00
40

00
60

00
80

00

VMs

RU
N

TI
M

E
IN

 M
IL

LI
SE

C
O

N
D

S

CSX_MOBILE
NSX_MOBILE

 131

Figure 58 Worm spreading from node-61 in static MANET scenario

Similarly, in the mobile MANET scenario, where the mobile node61 revolves

around the periphery of the MANET network as shown in Figure 52, one expects the

node61 to infect other peripheral nodes other than node45. This is observed in Figure 59,

the node61 not only infects node45 but also infects node59, node56, node53, node52,

node50 and node62. This verifies the correctness of the mobility feature in mobile

MANET scenario.

 132

Figure 59 Worm spreading from node-61 in mobile MANET scenario

In Figure 60, we plot the virtual time of infection across number of VMs for both

static and mobile MANET scenarios, with 95% confidence intervals. The curves show

the trend infection spreads in static and mobile scenarios. In analyzing the curves one

needs to keep in mind that that the infection spreads only through one-hop neighbors and

the infection spreads in two phases, and only after the second phase (after payload

transfer) the infected node actively infects others. Hence, if a MANET node has less

 133

number of neighbors the parent node aggressively try and quickly converts its neighbor

into a worm propagating node.

Figure 60 Worm spreading in static and mobile MANET setups

To understand the behavior of the static and mobile curves, we need to refer to all

the three Figure 58, Figure 59 and Figure 60. In Figure 58, we see that the infection

starts from node61 and infect all. In contrary, the Figure 59 although shows the

movement of node61 it also shows that it is not able to infect all its visited neighbors

successfully. Hence the static MANET seems to have a higher infection rate initially.

However, even with lower number of infected nodes (seven out of 16 visited neighbors)

the infection rate in the mobile scenario picks up at later stages of the simulation as

0 10000 20000 30000

0
10

20
30

40
50

60
NSX−STATIC
NSX−MOBILE

NU
M

BE
R

O
F

VM
s

RUNTIME IN MILLISECONDS

 134

shown in Figure 60. Hence, the spread of infection rate is dependent on the number of

neighbors the mobile node coverts into a worm propagator.

4.5 Summary and Conclusion

In this Chapter, we discussed the application of NetWarp in MANET simulations.

The details in realizing a highly complex MANET simulation application scenario in

NetWarp were discussed. A VM along with its virtual network interface together formed

a MANET node. On such a MANET network test-bed, desired complex applications can

be put to test without additional effort of porting the test-applications to a simulation

environment. We verified the correctness of MANET functioning using CND

benchmark. For this purpose, we first derived the theoretical expectation of the CND

behavior and compared our experimental results from CSX and NSX setups. From the

results we found that NSX results to be highly accurate. Further, we verified the mobility

feature using cyber security benchmark for mobile MANET scenario. We also compared

and analyzed the infection spread in static and mobile MANET scenarios.

 135

CHAPTER 5

VTS OVER VM: PERFORMANCE EVALUATION

5.1 Problem Space

5.1.1 Virtual Machines and Cloud Computing

Virtual Machine (VM) technology moves the traditional operating system (OS)

away from the actual hardware interface and transplants it to work over a software

interface. The decoupling enables entirely new modes of execution from a user’s point of

view, and provides many benefits such as flexibility, multiplexed use, fault tolerance,

dynamic migration, automated load balancing, and cost sharing. Anyone can exploit the

benefits of VM technology by deploying the VM implementations on their own

hardware. Cloud computing is a term generally used to refer to such installations that

provide the advantages of virtualized computing (and storage) interfaces. Due to

economies of scale, only large commercial, dedicated installations provide the most cost-

effective provisioning of VM technologies and make them accessible over the Internet

via Web-based interfaces for very attractive prices. They provide on-demand access to

compute resources without the burden of housing, installation, maintenance, and

upgrading needs.

5.1.2 Problem Statement

Historically, PDES has largely assumed the luxury of picking the highest-end

among the set of computer configuration choices one speeds on the chosen high-end

system. However, with the introduction of the Cloud platforms, the new dimension of

 136

price is introduced into consideration. Since there is a price one must pay for all compute

cycles used by the application, a “dollar value” is now attached to each PDES run. The

most interesting aspect about this new dimension is that the price variation is non-linear.

The user might have to pay more than double the price for double the performance.

Alternatively, doubling the cost does not guarantee double the performance.

Since commercial offerings of Cloud computing are profitable mostly due to the ability to

multiplex many smaller units of virtual hardware on larger units of physical hardware,

one can expect a price structure that permits the most flexibility for multiplexing. In

particular, the price structure favors smaller virtual units, and, more importantly for

PDES, charges a non-linearly larger price for the highest-end virtual units. Thus, virtual

machines whose resources (e.g., speeds and numbers of virtual processors) are close to

the capacity of the underlying physical hardware can be expected to be the most

expensive.

Figure 61 illustrates the cost model for the Amazon AWS-based EC2 Cloud

service [62] that is based on the allotted hardware resource sizes. Suppose the user

requires the Cloud for executing a parallel job, and further suppose the user’s application

enjoys an ideal parallel execution by which the runtime decreases in proportion to the

number of processors. The runtime for a parallel job is plotted against different

computational units offered by the Cloud platform. Along the abscissa, the size of each

indivisible virtual computational unit increases moving from left to right. On the left

ordinate, the ideal parallel runtime is plotted. On the right ordinate, the cost for the

computational unit is plotted. The non-linear aspect of the price is notable. Also,

additional non-linear effects can be expected due to shared-memory effects, shared

 137

network effects, scheduling effects, and inter-VM communication effects. Thus, unless

the parallel job is embarrassingly parallel in nature, it is rather difficult to predict the

trends of runtime and overall cost of parallel jobs, and an empirical study is inevitable for

properly understanding the overall tradeoffs.

Figure 61 EC2 cost-value model

In this new milieu, little is known about the price-performance features of PDES

execution on Cloud platforms, and about the configuration choices of PDES over VM

platforms in general. There are several questions that arise. What, if any, is the level of

performance penalty taken by a PDES application when moving from a traditional native

execution to a VM? Is there any performance gain obtained by insisting that the VM be a

privileged one versus the default, unprivileged mode of VMs? Does the highest-end

 138

VM/Cloud hardware configuration always deliver the least total execution time, and at

what overall cost? If the highest-end VM configuration is too expensive for the user,

what is the next best configuration to choose, considering overall cost? How well does a

Cloud platform designed primarily for embarrassingly parallel jobs execute tightly

coupled PDES applications? Are runtime and dollar value largely opposed to each other

as one might expect? In general, how does the total execution time and total cost vary

with different VM/Cloud instance configuration options?

5.1.3 Study Approach

Here, an empirical approach is undertaken to help answer such questions. Results

and findings are reported to understand the new configuration space for PDES enabled by

the introduction of new, Cloud-specific concepts such as abstracted speeds of virtual

processors, normalized units of processors and memories, price per packaged compute-

unit, and overall “bottom-line” cost. Using actual PDES application runs executed on a

Cloud platform and on high-end VM hosts, we study the configuration space to uncover

new insights, trends, and guidelines on the problem of economically executing PDES

applications in Cloud environments. For experimentation purposes, we chose the popular

Amazon AWS (EC2) Cloud computing platform, and gathered data from a variety of

configurations with varying price-performance characteristics. The empirical study

makes use of two benchmarks: one is the popular synthetic PHOLD benchmark, and the

other is a complex disease spread model at the individual level in a large population.

Both optimistic and conservative synchronization schemes are exercised, with varying

levels of locality of events.

 139

5.1.4 Related Work

Evaluating the HPC applications performance on Cloud infrastructure has been

reported in [63], but these applications are largely high-performance scientific

applications such as Community Atmospheric Model (CAM), and are not PDES

applications. Network performance on Amazon EC2 data-centers has been studied and

an evaluation of the impact of virtualization on network parameters such as latency,

throughput, and packet-loss was discussed in [64], again in non-PDES context. There is

a good overview and discussion of generic utilization of Cloud infrastructures for PDES

applications focusing on the advantages and challenges it poses [65], which also serves as

a good motivation and background for PDES on Cloud platforms. The Master-Worker

approach to distributed (and fault tolerant) PDES has been explored [66] [67] [68], and is

somewhat related, although it is different from the traditional PDES execution view in

which all processors are equal. Recently, an evaluation of a set of conservative

synchronization protocols on EC2 was reported [69]. Overall, the area is nascent, and

much additional research in PDES execution is needed to explore the space opened by the

new metrics of VM/Cloud computing beyond the raw speed execution.

5.2 Empirical Study Setup

5.2.1 Performance Benchmarks

Using the PDES applications listed in the previous section, four benchmark

applications, namely, conservative and optimistic executions for each of PHOLD

Simulation Benchmark (PSB) and Disease Spread Benchmark (DSB) were designed. In

all the benchmarks using PHOLD a lookahead of 1 was used.

 140

5.2.1.1 PHOLD Scenarios (PSB)

With PHOLD, we used scenarios with 100 LPs/Federate, 100 and 1000

messages/LP, with 32 Federates for 50% and 90% LOC values. With performance data

gathered for both optimistic and conservative synchronization scenarios, a total of 8 sets

of readings are gathered for this benchmark.

For 100 LPs/Federate and 100 messages/LP on 32 Federates, 3200 LPs are hosted

on 32 DOMs to simulate exchanges of 320,000 PHOLD messages over 100 units of

simulation time. Similarly, for 100 LPs/Federate and 1000 messages/LP on 32 Federates,

3200 LPs are hosted on 32 DOMs to simulate exchanges of 3,200,000 PHOLD messages

over 100 seconds of simulation time. With a locality value LOC of 50% half of the

messages generated are destined to LPs on remote Federates (outside the VCPU). With a

locality value LOC of 90%, only 10% are destined to LPs on remote Federates. Thus,

LOC 50 is much more taxing on the network than LOC 90.

5.2.1.2 Disease Spread Benchmark (DSB)

DSB simulates the disease spread across regions. Each Federate is mapped to a

region, which are formed of number of locations that are mapped to LPs. In the

experiments 32 Federates and 10 locations per Federate are instantiated (representative of

a small city sized scenario for disease propagation) and each such location has a

population of 1000 people. Hence the benchmark involves simulation of spread of

disease across 320 locations across a population of 320,000 for a simulation time of 7

days. The mobility of the population can be set to a certain percentage, similar to

PHOLD. In the DSB we experiment with 50% and 90%. The LOC 50 mobility suggests

that 50% of the trips tend to travel across regions, while LOC 90 suggests only 10% of

 141

the trips travel across regions. DSB is slightly I/O intensive generating around 32M of

output data compared to less than 200 KB of output data of PSB.

5.2.2 Test Platforms

We utilize two platforms for the VM-based experiments. One is a local high-end

machine in our laboratory, and the other is a commercial Cloud offering. The details of

these two platforms are provided next.

5.2.2.1 Local Test Platform (LTP)

LTP is our custom-built machine with a Supermicro® H8DG6-F motherboard

supporting two 16-core (32 cores in total) AMD® Opteron 6276 processors at 2.3 GHz,

sharing 256GB of memory, Intel Solid State Drive 240GB and a 6TB Seagate

constellation comprising 2 SAS drives configured as RAID-0. Ubuntu-12.10 runs with

Linux® 3.7.1 kernel runs as DOM0 and DOMUs, over Xen 4.2.0 hypervisor.

All DOMUs were para-virtual and networked using software bridge in DOM0.

DOM0 was configured to use 10GB of memory and the user-DOMs were configured to

use at least 1GB memories each, which were increased as necessitated by the application

benchmarks. Each user-DOM used 2GB of LVM-based hard disk created over SAS

drives, while the DOM0 uses an entire Solid State Drive (SSD). OpenMPI-1.6.3 (built

using gcc-4.7.2) was used to build the simulation engine and its applications. A machine-

file listing the IP addresses of the VMs was used along with mpirun utility of OpenMPI

to launch the MPI-based PDES applications onto VMs.

 142

5.2.2.2 EC2 Cloud Platform

We also ran our benchmarks on Amazon’s EC2 Cloud platform. We built a

cluster of para-virtual VM instances of Ubuntu 12.04 LTS. The following are the VM

clusters used to run the benchmarks (typical offerings available to Amazon EC2 users).

• m1.small is a single-core VM with compute power of 1-ECU and has a memory of

1.7 GB.

• m1.medium is a single-core VM with compute power of 2-ECUs and has a memory of

3.7 GB.

• m1.large is a 2-core VM with compute power of 4 ECUs and has a memory of 7.5

GB.

• m1.xlarge is a 4-core VM with compute power of 8 ECUs and has a memory of 1.5

GB.

• m3.2xlarge is an 8-core VM with compute power of 26 ECUs and has a memory of

30 GB.

• hs.8xlarge is a 16-core VM with compute power equivalent to 35 ECUs and has a

memory of 117 GB.

The term ECU here refers to a “EC2 Compute Unit,” which is an abstraction

defined and supported by Amazon as a normalization mechanism to provide a variety of

virtual computation units independent of the actual physical hardware support that they

use/maintain/upgrade without user intervention. OpenMPI-1.6.3 was built on the virtual

instance, which was used to build the simulation engine and all the PDES applications. A

machine-file listing the DNS names of the allotted instances was used to launch the MPI-

based PDES applications using mpirun.

 143

5.3 Performance Study

5.3.1 Local Test Platform (LTP) Results

PDES being a parallel computing application, two important factors, namely,

computation and communication, determine the overall application performance. The

hypervisor essentially virtualizes the hardware resources and hence a VM running over

hypervisor uses a VCPU and a virtual network interface for computation and

communication, respectively. The hypervisor essentially maps the VCPUs onto the

available CPUs, while networking is performed using front-end and back-end virtual

interfaces. Hence, the hypervisor essentially introduces some overhead due to its

presence.

5.3.1.1 Virtual Computational Performance

We know that the hypervisor is a necessity to realize Cloud computing. However,

this implies that native execution of PDES is not possible in the presence of a hypervisor,

which may introduce overheads such as context switching costs and system call (and

hypercall) trap costs. Hence, a performance comparison between the native and VM runs

is essential to determine the amount of degradation, if any, that PDES suffers simply for

the fact that the execution is moved from native to VM platforms.

In Figure 62, the performance results of both PSB and DSB benchmarks runs are

presented from Native, DOM0 and a single DOMU. The Native readings correspond to a

setup where Linux® runs directly over the hardware as usual, without the hypervisor.

The DOM0 readings correspond to a setup where the control- DOM with Linux® runs

over the Xen hypervisor as the only running instance and is configured to use all 32

CPUs. A single DOMU readings correspond to a setup where a user-DOM with Linux®

 144

runs in the presence of control-DOM (dOM0); however DOM0 is not loaded with any

load during performance runs. These results demonstrate how the presence of the

hypervisor affects the compute-performance of a PDES application. As seen from Figure

62, somewhat surprisingly, the results from all the three setups are almost identical across

all the runs, suggesting that the overhead of the Xen® hypervisor in delegating the CPU

resources is almost negligible.

This data is helpful in addressing the issue of native vs. VM-based performance of

PDES execution, and may encourage the community to move towards a Cloud

environment by allaying uninformed fears of incurring a significant performance penalty.

Figure 62 Native, DOM0 and single DOMU performance comparison on LTP

 145

5.3.1.2 Effects of Virtual Communication and I/O via DOM0

Figure 63 PSB runtime performance with 32 VMs for varying DOM0 weights

Since DOM0 is partially involved in servicing the network communication and

input/output (I/O) for all DOMU, DOM0 may need to receive sufficient number of CPU

cycles (or a higher priority weight). The need for higher DOM0 weights for better

performance was demonstrated in [70] using an older version (3.4.2) of the Xen

distribution. To understand such requirements in the current version, the weight assigned

to DOM0 relative to all DOMU is varied from 1 to 16. For example, a factor of 4 implies

that DOM0 has four times more credits than any DOMU. This provides an overburdened

DOM0 more CPU cycles compared to DOMUs.

The runtimes with varying weights are plotted in Figure 63 for the PSB, and in

Figure 64 for the DSB. The seemingly flat curves of Figure 63 suggest very slight or no

impact of higher weights for DOM0 on the runtime performance with the newer version

 146

of Xen. This change can be attributed to the incorporation of Netchannel2 [71] in Xen

networking, which transfers the burden of copying network data from DOM0 to the

DOMUs. However, for DSB, a good improvement in the performance as the weight of

DOM0 is doubled is seen in Figure 64. DSB being I/O intensive and also due to the fact

that DOM0 services the I/O, the additional weight provided for DOM0 helps significantly

in speeding up the I/O functionality during DSB runs.

Figure 64 DSB runtime performance with 32 VMs for varying weights of DOM0

5.3.1.3 Virtual Computation and Communication Performance

To study the impact of combined virtual computation and communication effects

on PDES applications, we ran the benchmarks on our LTP, varying the number of VMs

in the experiments from a single DOMU with 32 VCPUs to 32 DOMUs with 1 VCPU,

keeping the total number of VCPUs constant.

 147

Figure 65 Performance comparison with increase in number of DOMs using PSB on LTP

Figure 66 Performance comparison with increase in DOMs using DSB on LTP

Figure 65 and Figure 66 show the benchmark results obtained from varying the

number of DOMs hosted on LTP using PSB and DSB, respectively. For the same

 148

benchmark the figures show how the performance varies with the increase in the number

of DOMs. Note that as the number of DOMs running the benchmark increases, the

number of VCPUs within each DOM also decreases. Also note that in each of these

benchmark runs, the number of Federates is equal to the number VCPUs, i.e., Federates

have a 1:1 mapping to the VCPUs. Hence, in a fast network environment, we expect the

runtime across all types of DOM configurations to be largely identical, since the same

number of VCPUs are involved in the computation.

A very interesting and common trend across all the benchmark runs is the

degradation of performance with fewer numbers of VMs beyond 1, and its betterment

with the increase in number of VMs hosted. In other words, there is a steep rise in

runtime when moving from 1 VM to 2 VMs but a gradual drop from 2 to 32 VMs. The

effect is predominant in the cases where the network traffic is high (LOC=50), as seen in

both Figure 65 and Figure 66, for PSB and DSB, respectively.

This trend is counterintuitive to a general parallel-computing user because a better

performance is expected in scenarios involving VMs with more VCPUs. The intuition is

that the parallel processing libraries such as MPI generally use shared-memory to

communicate across processes within the same VM. Hence, one expects to observe

better performance by increasing the communication across Federates within a DOM

(shared memory) and reducing the inter-DOM messages by reducing number of DOMs.

The underlying reason for the counterintuitive trend is as follows. When a VM

contains many VCPUs, a bottleneck is created at the virtual network interface card (NIC)

because of serialization. Further, DOMUs doing most of the networking work as

observed in the Figure 63 in previous section adds on to this performance degradation.

 149

In real hardware, the communication is often highly optimized via direct memory

accesses, cache coherence mechanisms between NIC and CPU, and so on. However, in

the case of VMs, the NIC is a software implementation, and all synchronization is

performed in software, which significantly reduces the network speed. This degradation

increases in a quadratic nature with the number of VCPUs sharing the virtual NIC.

Unfortunately, there is little that can be done regarding this issue other than reduce the

network traffic generated per VCPU or reduce the number of VCPUs per VM.

As previously observed in Figure 61, the Cloud operators charge a lower price for

low-end machines and higher cost for high-end machines. The benchmark performance

results suggest that PDES applications can in fact take an advantage of the lower cost of

smaller sized VMs and gain lower execution time simply by moving to the other extreme

of 1 VCPU/VM, and greatly benefit from the existing cost model offered by the Cloud

infrastructures, such as EC2.

In Figure 67, we show the time that the simulator takes to compute a lower bound

on incoming timestamps (LBTS) for the most-affected PSB runs namely, 1000-

NMSG_50_LOC_CONS and 1000-NMSG_50_LOC_OPT runs along with LOC-

50_CONS and LOC_50_OPT DSB runs. However, the number of LBTS computations

remained the same across the same benchmark runs even while the number of VMs is

changed. Hence, within PDES, it is the prolonged LBTS computation that affects the

overall runtime of the simulation application.

 150

Figure 67 Time per LBTS computation with increase in the number of VMs on LTP

5.3.2 EC2 Cloud Computing Platform Results

To deal with possible variance of performance in the Cloud due to periodicity of

loads and other uncontrollable phenomena, each data point in the results is derived as an

average from three runs executed on three different days and times. Note that each

request for VMs from Cloud assigns a different set of machines and hence, the virtual

cluster built for every run is different from the other. This averaging for variance applies

to the Cloud performance results in Figure 68 through Figure 72.

Note also that all the machines that the EC2 provides are VMs. This provides the

Cloud operator an ability to multiplex multiple VMs more numerous than the available

hardware resources. However, by overloading the host machine, the compute cycles of

the physical machine are shared among the VM instances. By defining the Elastic

Compute Unit (ECU) that is always lesser or equal to the compute cycles offered by

 151

physical CPU-core, the Amazon EC2 is able to overload the host machine and still

guarantee the provision of the assured ECU worth of computational service.

Figure 68 Runtime performance of PSB with conservative synchronization on EC2

Figure 69 Runtime performance of PSB with optimistic synchronization on EC2

 152

With a Cloud infrastructure, the user is not guaranteed in advance specific details

of the physical hardware. The user is only assured of the ECU, number of cores and

amount of memory for an instance created. The performance unit of the CPU-core is

provided in terms of ECUs. For example: m1.small and m1.average are both single-core

VMs but with compute units of 1 ECU and 2 ECUs, respectively. The m1.small

instance’s assured compute cycles (in ECUs) can be compared to a low priority task that

can be migrated across physical nodes or multiplexed flexibly at the Cloud runtime’s

discretion. Hence, a good performance from m1.small instances is not guaranteed.

Since, we would not be able to characteristically determine a priori the hardware-specific

details of a physical CPU-core from the Cloud, the next best option is to choose the VM

configuration with a single core with high number of ECUs and use it as a baseline for

selecting multi-core machines, if needed.

To observe the performance trend observed with PSB and DSB benchmarks on

our LTP we use m1 set of machines comprising m1.small, m1.medium, m1.large and

m1.xlarge. Of this set the m1.medium, m1.large and m1.xlarge VMs are single, dual and

quad support VCPUs, respectively. Further, the compute cycles of these VMs increase

by a factor of 2; i.e., 2 ECUs, 4 ECUs and 8 ECUs in the same specified order. The

m1.small that provides 1ECU worth of compute cycles is not considered for this set of

runs because it is difficult to use it for a fair comparison with other configurations. We

built three virtual clusters using these VM instances. 32×m1.medium, 16×m1.large and

8×m1.xlarge are the 3 virtual clusters built using 32, 16 and 8 instances of m1.medium,

m1.large and m1.xlarge VMs, respectively.

 153

The conservative and optimistic synchronization-based PSB runtimes from EC2

runs are plotted in Figure 68 and Figure 69, respectively. Figure 70 presents the results

for DSB runs on EC2. Interestingly, similar to LTP results, we observe a consistent trend

across all the plots. The runtime in most of the cases is at its best with 8×m1.xlarge

virtual cluster, which worsens with 16×m1.large virtual cluster and gets better with

32×m1.medium virtual cluster runs. Note that in each of these benchmark runs the

number of Federates is equal to number VCPUs.

Figure 70 Runtime performance of DSB on EC2

VM m1.xlarge is the most powerful among all the other offered VMs in the m1

set. The observed counterintuitive behavior on the Cloud can be reasoned using our prior

understanding of the benchmark behavior on LTP, with m1.xlarge considered as the

physical node capacity on which the all VMs belonging to m1 can run. Given, the lack of

a priori guarantees about the physical hardware properties of machinery that hosts EC2

 154

VMs, this is a fair assumption for all m1 set of VMs. In this case, the runtime reduction

in the 8×m1.xlarge virtual cluster can be attributed to the very low involvement of the

virtual network as the quad-core VMs occupying entire physical node mainly use the

high-speed physical inter-connect during parallel computation. The increase in runtime

in 16×m1.large setup (instead of decrease as observed in LTP runs) can be attributed to

the presence and active utilization virtual-networking as more than one m1.large could

have been hosted on a physical node. The reduction in the runtime with increase in

number of VMs in the 32×m1.medium setup is consistent with our observations on our

LTP.

5.3.3 LTP vs. EC2

In comparing the results from LTP and EC2, note that all VMs running on LTP

use the virtual network, whereas an indeterminate combination of real and virtual-

network is typical of EC2 environment. While the LTP uses 32 CPU-cores of AMD

Opteron at 2.3 GHz, the m1 set of EC2 is perceived to use Intel Xeon CPU-cores at 2.6

GHz (cpuinfo of Cloud instance).

The PSB’s LTP and EC2 runtime comparisons using 32 VM scenarios are shown

in Figure 71; similar runtime comparisons for DSB are shown in Figure 72. An

important aspect of PSB plots in Figure 71 is the close similarities for the LTP and EC2

trends.

 155

Figure 71 LTP and EC2 runtime comparison for PSB

Figure 72 LTP and EC2 runtime comparison for DSB

However, the DSB runtime plot comparisons in Figure 72 differ from this view,

especially in 32 VM runs. Note that LTP runs are highly affected by network load as

 156

suggested by huge drop in runtimes as LOC value changes from 50 to 90. However, the

corresponding 32 m1.medium EC2 runs seem unaffected, essentially suggesting the

absence or minimal utility of virtual network. Further, 32 m1.medium EC2 runtime

during LOC 90 is greater than its LTP peer, suggesting EC2 performance being effected

by distribute I/O. The 8 m1.xlarge EC2 runtimes provide the best runtimes on EC2,

suggesting that distribute I/O affects VM dispersed across many nodes more than on

fewer nodes. This observation seems to be consistent with LTP, where runtimes are more

affected by network performance than I/O.

Finally, we note that these observations can be helpful in determining an upper

bound runtime on the Cloud environments utilizing processors of similar clock speeds.

5.3.4 Cost-Value Evaluation on EC2

Table 4 Details of EC2 on-demand instances

EC2 Instances Cost/hour
in
Dollars

Number
of VCPUs

Assured
Performance
in ECUs

m1.small 0.06 1 1
m1.medium 0.12 1 2
m1.large 0.24 2 4
m1.xlarge 0.48 4 8
m3.2xlarge 1.00 8 26
hs.8xlarge 4.60 16 35

In Table 4, the relevant details of on-demand VMs provided by the Amazon EC2

service are tabulated. For cost-value evaluation we selected set of VMs based on the

 157

specified ECU value. To run the PSB and DSB, we built 4 clusters of VM instances.

The cheapest VM instance for the least compute unit of 1-ECU is m1.small and a VM

cluster formed using 32 such instances is called 32×m1.small. Similarly, VM clusters of

16×m1.medium, 8×m1.large and 2×m3.2xlarge, are formed using 16, 8 and 2 instances

of m1.medium, m1.large, m3.2xlarge VMs, each of these VMs have an ECU of 2, 4 and

26, respectively. The hs1.8xlarge is the most powerful and most expensive VM that EC2

offers , and it assures an ECU of 35.

5.3.4.1 PSB and DSB Runtime Performance

Figure 73 PSB runtime performance on EC2

Figure 73 plots the runtimes of various PSB scenarios. While the runs with lower

network traffic are almost flat, the optimistic and conservative curves vary significantly

across different VM clusters. Three significant observations can be made from the

 158

1000_NMSG-50_LOC_CONS and 1000_NMSG-50_LOC_OPT runtime plots. They are

(a) contrary to the trend observed in the LTP runs the runtime of both OPT and CONS

curves worsen on 32×m1.small, (b) the runtime on high-end hs1.8xlarge VM, where the

Federates are hosted on a single node and in the absence of network utilization during

parallel computing, the runtime is the worst among all (c) the best performance across

almost all runs is obtained with 16×m1.medium cluster setup, where 32 Federates are

hosted on 16 instances of single-core VMs.

A VM with ECU 1 on a hypervisor running on CPU-cores whose compute

capacity is often multiple of ECUs, can be realized either in scenarios where m1.small

VMs are overloaded on the hypervisor or on nodes where it’s often run as VM with lower

weight and are generally capped so that they do not exceed their provision. Either of

these cases is detrimental for highly asynchronous parallel computing PDES applications.

Hence, the poor performance with 32×m1.small is expected.

Regarding the poor performance on hs1.8xlarge runs, note that the hs1.8xlarge is

a 16-core VM and is loaded with 32 Federates. In overloaded scenarios such as these the

hypervisor VCPU scheduler in quest of ensuring fairness in physical CPU utilization

among all VCPUs affects the performance. This is a known problem [70].

Further, good runtime performance can be expected from 16×m1.medium virtual

cluster runs based on our previous observations both on LTP and EC2.

Figure 74 plots the runtimes of various DSB scenarios. Here, the runtimes are

almost same on hs1.8xlarge, 2×m3.2xlarge and 16×m1.medium virtual clusters. Same

reason as stated for PSB explains the bad performance of DSB on 32×m1.small. The

readings for 8×m1.large are consistent with the observations seen with 16×m1.large

 159

virtual cluster runs shown in Figure 70 and the performance degradation can be attributed

to virtual-networking.

Figure 74 DSB runtime performance on EC2

5.3.4.2 Cost factoring to PSB and DSB Scenarios

After obtaining the runtime from the PSB and DSB runs and the cost-per-hour

from the EC2 specifications, we computed the overall cost for the PSB and DSB

scenarios. Figure 75 and Figure 76 plot the cost of execution in terms of dollars on

various virtual clusters. For most of the runs it was found that the 16×m1.medium virtual

cluster provided the best cost-value across almost all runs for both PSB and DSB

scenarios.

 160

Figure 75 Overall cost of PSB on EC2

Figure 76 Overall cost for DSB on EC2

 161

Figure 77 Cost and runtime of PSB 1000-NMSG, 50-LOC, CONS run on EC2

Figure 78 Cost and runtime plots of DSB with LOC-50, OPT run on EC2

To compare the runtime and costs, we pick the better-performing large-scale

scenarios with high-network traffic from PSB (100-NLP_1000-NMSG_50-LOC_CONS)

 162

scenario and DSB (LOC-50_OPT) scenario, as shown in Figure 77 and Figure 78,

respectively. The PSB plot in Figure 77 shows best runtime and best cost associated with

virtual cluster of decently compute-intensive instances of VM, i.e. 16×m1.medium, which

is against popular belief. The cost and runtime on the expensive high-end resource is far

higher than that on the 16×m1.medium cluster.

Similar to PSB, the DSB plot shown in Figure 78 also provides better runtime

performance and cost at 16×m1.medium. Although the runtime provided by the

expensive high-end compute resource compares well with runtime, the cost of

computation is higher than that of 16×m1.medium.

5.4 Summary

5.4.1 Performance Summary

From the benchmarks and scenarios, we find that VM-based execution can be as

fast as native execution, with little perceivable performance degradation. Also,

privileged and unprivileged VMs deliver the same runtime, indicating that it is not

worthwhile to elevate privileges with the goal of increasing performance for PDES runs.

On dedicated machines in which the number of virtual cores is exactly the same

as the number of physical cores, the fastest execution is obtained by using only a single

VM that contains all the virtual cores. However, such a dedicated allocation of virtual to

real cores is almost impossible to ensure in a typical Cloud environment because the

underlying physical machine is opaque and also subject to change. Thus, the fastest

execution that is competitive with native execution cannot be obtained on the Cloud. In

fact, due to complex scheduler artifacts that arise due to a fundamental mismatch between

virtual time order and fair scheduling order, the PDES execution on the highest end VM

 163

configuration in the Cloud suffers from degraded performance. To make matters worse,

since the computational cycles on the highest-end configuration also cost significantly

more than other lower end configurations, the overall cost can be much higher, hence less

competitive, than execution on lower end configurations. Thus, on the Cloud, it seems to

be more economical to choose some of the least expensive configurations (which have

only one or two virtual cores per VM), which deliver a dramatic reduction in cost coupled

with good runtime relative to the high-end configurations.

On dedicated VM hosts outside the Cloud, there is also an interesting tendency

towards the extremes: while the best runtime is obtained on one VM with all the virtual

cores, the next best is obtained on the other extreme of the spectrum in which each VM

has only one virtual core. In other words, to obtain the best performance, either 1xN or

Nx1 should be chosen (N is the number of physical cores), but all other configurations in

between should be avoided as they suffer from worse performance. This empirical

performance study presented in this Chapter was published in [72]

5.4.2 Recommendations

While PDES has largely focused so far on speed, a need to address the associated

dollar value can no longer be ignored when the PDES applications are executed in a

Cloud environment. From the performance study it is clear that low cost and small

runtime are not always opposed to each other, and that trade-offs exist.

On a node with N physical processor cores, the overheads of the virtual network

interface should be avoided either by using the entire physical node with a single-VM

using N VCPUs or or by using N VMs each with only one VCPU.

 164

When a PDES application is executed over a single VM (that uses the entire

physical node), the host node must avoid being overloaded with more VCPUs than

physical cores; i.e., the number of federates per VM should equal the number of VCPUs

(not the number of ECUs). This avoids the undesired effects of VM scheduling on PDES

performance.

 165

CHAPTER 6

VTS OVER VM: VIRTUAL TIME-AWARE SCHEDULING

6.1 Problem Space

6.1.1 VM Execution Platform

Newer parallel computing platforms, such as cloud computing, based on

virtualization technologies are maturing of late, and are seen as a good alternative to

native execution directly on specific parallel computing hardware. There are several

benefits to using the virtualization layer, making such platforms very appealing as an

alternative approach to execute parallel computing tasks. In the context of parallel

discrete event simulation (PDES), the benefits include the following:

• The ability of the virtualization system to simultaneously host and execute multiple

distinct operating systems (OS) enables PDES applications to utilize a mixture of

simulation components written for disparate OS platforms

• The ability to over-subscribe physical resources (i.e., multiplex larger number of VMs

than available physical compute resources) allows the PDES applications to

dynamically grow shrink the number of physical resources as the resources become

available or unavailable, respectively

• The dynamic imbalances in event loads inherent in most PDES applications can be

efficiently addressed using the process migration feature of the virtual systems

 166

• The fault tolerance features supported at the level of VMs in concert with the VM

migration feature also automatically helps in achieving fault-tolerance for PDES

applications.

6.1.2 Problem Statement

A critical component of the virtualized system is the hypervisor, which provides

the ability to host and execute multiple VMs on the same physical machine. To support

the largest class of applications, a fair-sharing scheme is employed by the hypervisor for

sharing the physical processors among the VMs. The concept of fair sharing works best

either when the VMs execute relatively independently of each other, or when the

concurrency across VMs is fully realized via uniform sharing of computational cycles.

This property holds in the vast majority of applications in general. However, in PDES,

fair-share scheduling does not match the required scheduling order, and, in fact, may run

counter to the required order of scheduling. This mismatch arises from the fundamental

aspect of inter-processor dependency in PDES, namely, the basis on the global simulation

time line.

In PDES the simulation time advances with the processing of time-stamped

simulation events. In general, the number of events processed in a PDES application

varies dynamically during the simulation execution (i.e., across simulation time), and also

varies across processors. This implies that the amount of computation cycles consumed

by a processor for event computation does not have any specific, direct correlation with

its simulation time. A processor that has few events to process within a simulation time

window ends up consuming few computational cycles. It is not ready to process events

belonging to the simulation-time future until other processors have executed their events

 167

and advanced their local simulation time. However, a fair-share scheduler would bias the

scheduling towards this lightly loaded processor (since it has consumed fewer cycles) and

penalize the processors that do in fact need more cycles to process their remaining events

within that time window. This type of operation works against the actual time-based

dependencies across processors, and can dramatically deteriorate the overall performance

of the PDES application. This type of deterioration occurs when conservative

synchronization is used. Similar arguments hold for optimistic synchronization, but, in

this case, the deterioration can also arise in the form of an increase in the number of

rollbacks. The only way to solve this problem is to design a new scheduler that is aware

of, and accounts for, the simulation time of each VM, and schedule them in a Least-LVT-

First (LLF) order.

6.1.3 Related Work

The Master-Worker approach to distributed (and fault tolerant) PDES [68] is also

a related but complementary approach, different from our support for the traditional

PDES execution view in which all processors are equal. We adopt a different approach

by focusing at the lowest level, i.e., at the level of the hypervisor itself. Incidentally, the

Time-Warp Operating System [73] of the 1980’s is one of the earliest works that

addressed PDES performance issues by realizing the simulation scheduler (and related

functionality) at the bottom-most hardware levels; however, this was limited to a single

operating system, as opposed to a hypervisor system.

There is also a superficial semblance with our own prior related work in VM-

based network simulations discussed in Chapter 2 to Chapter 4. However, VM-based

network simulations are fundamentally different from PDES execution over VM

 168

platforms. In VM-based network simulations, the simulation time of each VM is

determined by the hypervisor itself (in terms of computation time consumed by each VM,

tracked and accounted by the hypervisor), whereas in PDES over VMs, the virtual time

for scheduling is entirely determined by the user’s simulation model. The hypervisor

does not (in fact, cannot) have any way of influencing the virtual time at which the

simulator executes inside each VM. The virtual time can only be communicated from the

PDES engine to the hypervisor via the VM’s OS, and the hypervisor is obligated to

respect the value of the virtual time supplied by each VM (albeit, with the guarantee that

the global minimum of the times across all VMs will never decrease).

6.2 Issues and Challenges

6.2.1 PDES Characteristics

Parallel discrete event simulation (PDES) has traditionally assumed execution at

the highest-end of the computing platform available to the user. However, the choice is

not so straightforward in Cloud computing due to the non-linear relation between actual

parallel runtime and the total cost (charged to the user) for the host hardware.

For example, suppose a multi-core computing node has 32 cores on which a

PDES with 32 logical processors (i.e., 32 concurrent simulation loops) is to be executed.

Generally speaking, traditional PDES maps one logical processor (i.e., one simulation

loop) to one native processor. However, with Cloud computing, the monetary charge for

such a direct mapping (i.e., a virtual machine with 32 virtual cores) is typically much

larger than the total monetary charge for aggregates of smaller units (i.e., 32 virtual

machines each with only 1 virtual core).

 169

6.2.2 Non-linear Cost Structure

The non-linear cost structure is fundamentally rooted in the principles of

economies of scale -- the Cloud hosting company gains flexibility of movement and

multiplexed mapping of smaller logical units over larger hosting units, ultimately

translating to monetary margins. Moreover, a high-end multi-core configuration on

native hardware is not the same as high-end multi-core configuration on virtual hardware

because the inter-processor (inter-VM) network appears in software for VMs, but in

``silicon-and-copper'' for native hardware. The aggregate inter-processor bandwidth is

significantly different between the virtualized (software) network and in-silico

(hardware) network.

6.2.3 Multiplexing Ratio

Given that multiple VMs must be used to avoid the high price of a single many-

core VM, the performance of PDES execution now becomes dependent on the scheduling

order of the VMs (virtual cores) on the host (real hardware cores). This makes PDES

performance to be at the mercy of the hypervisor scheduler's decisions. When the

multiplexing ratio (ratio of sum of virtual cores across all VMs to the sum of actual

physical cores) even fractionally exceeds unity, the PDES execution becomes vastly sub-

optimal. In all Cloud offerings, this multiplexing ratio can (and will very often) exceed

unity dynamically at runtime. Thus, we have a conflict: one-to-one mapping

(multiplexing ratio of unity or smaller) incurs a higher monetary cost, but increasing the

multiplexing ratio incurs a scheduling problem, and increases the runtime, thereby

stealing any monetary gains.

 170

6.2.4 Scheduling Problem

The conflict arises due to the hypervisor scheduler: the default schedulers

designed for general Cloud workloads are a gross mismatch to PDES workloads. The

hypervisor is a critical component of the virtualized system, enabling the execution of

multiple VMs on the same physical machine. To support the largest class of applications

on the Cloud, a fair-sharing scheme is employed by the hypervisor for sharing the

physical processors among the VMs. The concept of fair sharing works best either when

the VMs execute relatively independently of each other, or when the concurrency across

VMs is fully realized via uniform sharing of computational cycles. This property holds

good for vast majority of applications in general. However, in PDES, fair-share

scheduling does not match the required scheduling order, and, in fact, it may run counter

to the required order of scheduling. This mismatch arises from the fundamental aspect of

inter-processor dependency in PDES, namely, the basis on the global simulation time

line.

6.2.5 Virtual Time-based Scheduling

In PDES the simulation time advances with the processing of time-stamped

simulation events. In general, the number of events processed in a PDES application

varies dynamically during the simulation execution (i.e., across simulation time), and also

varies across processors. This implies that the amount of computation cycles consumed

by a processor for event computation does not have any specific, direct correlation with

its simulation time. A processor that has few events to process within a simulation time

window ends up consuming few computational cycles. It is not ready to process events

belonging to the simulation-time future until other processors have executed their events

 171

and advanced their local simulation time. However, a fair-share scheduler would bias the

scheduling towards this lightly loaded processor (since it has consumed fewer cycles) and

penalize the processors that do in fact need more cycles to process their remaining events

within that simulation time window. This type of operation works against the actual

simulation time-based dependencies across processors, and can dramatically deteriorate

the overall performance of the PDES application. This type of deterioration occurs when

conservative synchronization is used. Similar arguments hold for optimistic

synchronization, but, in this case, the deterioration can also arise in the form of an

increase in the number of rollbacks. The only way to solve this problem is to design a

new scheduler that is aware of, and accounts for, the simulation time of each VM, and

schedule them in a LLF order.

A final twist in the tale is that a scheduling algorithm based solely on LLF-order

is susceptible to deadlock, and simple schemes to resolve the deadlock may suffer from

livelock (these issues are elaborated later). Thus, a new deadlock and livelock free

hypervisor-scheduling algorithm is needed for efficient execution of PDES on Cloud/VM

platforms. Also, its implementation must allow scalability with respect to the number of

VMs multiplexed by the hypervisor.

6.3 PDES Scheduler Design

In PDES, since LPs (and consequently, VMs) can have widely differing event

loads, they exhibit different ratios of simulation time to wall clock time. Event load

imbalance can arise across VMs, which is not only inherent but also hard to predict due

to its dynamic nature. Fundamentally, this dynamic, scenario-specific variation of the

ratio of simulation time to wall clock time is the critical factor that must be accounted for

 172

in the design of the PDES-specific VM scheduler. However, in PDES we do know that

the LP with the lowest value of local virtual time (LVT) affects the progress of its peers

and hence the entire simulation application. Hence, if the LVT of the LP were used as

the criterion in allocating processor time to VMs by the hypervisor (i.e., LPs with lower

LVT values are prioritized over those with higher LVT values), then the runtime

performance can be optimized. This can be achieved if the LPs running on different VMs

are able to communicate their LVT values to the hypervisor, and the hypervisor in turn

uses this information during the scheduling of VCPUs on to PCPUs. An additional

aspect in relation to global virtual time computation also becomes an important design

consideration.

6.3.1 PDES Hypervisor Scheduler Architecture

Figure 79 shows the system architecture of a hypervisor-based parallel computing

environment with a scheduler optimized for PDES execution. For simplicity of

explanation, let us assume that a single LP is hosted on each PDES federate and each VM

has a single VCPU (note that this is not a requirement or a limitation of our system, but it

simplifies understanding). As illustrated in Figure 79, the LVT of an LP is passed to the

VCPU of its DOM. The scheduler that performs the task of multiplexing VCPUs onto

PCPUs uses the VCPU-LVT and employs LLF scheduling. With a LLF order, the

scheduler gives the highest priority to the VCPU with least VCPU-LVT value, as

opposed to the default fair distribution of compute cycles across all the DOMs.

 173

Figure 79 The design of the PDES-customized scheduler

However, the passing of LVT from the application to the hypervisor and LLF

policy based scheduling, are not sufficient to ensure the scheduler execution. This is

because the VCPUs with lower VCPU-LVT values (i.e., having a higher scheduling

priority) would not allow the VCPUs with a higher VCPU-LVT to be chosen for

scheduling. This results in blocking the GVT computation at the application level, as

some of the LPs (with a higher LVT value) would never get a chance to respond during

GVT computation.

Hence, a deadlock and livelock free algorithm needs to be designed to ensure

proper working of the PDES scheduler. A preliminary version of this hypervisor

 174

scheduler design was discussed in [70] using a simplistic scheme of LVT toggling to

overcome deadlock issues in brute force fashion.

Note that the special VMs (DOM0 and Idle-DOM) in Xen do not participate in

the PDES simulation. The DOM0 is the privileged DOM, and the Idle-DOM is a Xen

mechanism to ensure that the PCPU run-queues are never empty.

6.3.2 Deadlock-Free and Livelock-Free PDES Hypervisor Scheduler

Input: Just executed VCPU (VCPUα)
Output: Next VCPU to be scheduled for execution (VCPUβ)

Read shared_info to update VCPUα LVT
Insert VCPUα on to local PCPU runq
VCPUβ = next VCPU from local PCPU runq
For all peer PCPU runqs do
 If (LVT of VCPUβ > LVT of any VCPUγ, in peer PCPU runq) then
 VCPUβ = VCPUγ
 end
end

Figure 80 LVT based hypervisor scheduler algorithm

In addition to event processing, the LPs also need to participate in periodic GVT

computation. This periodic computation is necessary to consolidate the independent

LVTs of each LP into a global GVT. With LLF scheduling as shown in algorithm in

Figure 80, the federate with higher LVTs never get past the federate with lower LVTs

and hence do not get any PCPU time to participate in GVT computation. Without

successful GVT computation, LPs cannot determine safely processable events. Without a

special consideration for GVT computations, a strict LLF based PSX does not allow

completion of GVT computation, hence the PDES execution deadlocks.

 175

6.3.2.1 Counter-based Algorithm to Resolve Deadlock

Deadlocks can be efficiently overcome using the counter-based GVT_Threshold

algorithm. According to this algorithm, anytime a VCPU is inserted into the PCPU runq

using least-LVT first principle, the gvt_counter variable of the peer VCPUs with higher-

lvt and that are already in the runq, is incremented. If a VCPU’s gvt_counter reaches

gt_threshold during this process, it is picked up for scheduling regardless of its LVT

value, by the scheduler. Doing this locally within each runq, we can get rid of the

deadlock problem. Further, the gvt_counter of the selected VCPU is reset to 0, when it is

picked up to schedule. The pseudo code of the algorithm in Figure 81 adds necessary

logic to resolve deadlock in the LVT-based SMP scheduler algorithm in Figure 80.

Input: Just executed VCPU (VCPUα)
Output: Next VCPU to be scheduled for execution (VCPUβ)

Read shared_info to update VCPUα LVT
Insert VCPUα on to local PCPU runq
Increment gvt_counter for all VCPUs with greater LVT than (VCPUα)
VCPUβ = NULL

For all VCPUδ in local runq do
 If (VCPUδ gvt_counter > gvt_threshold)
 VCPUβ = VCPUδ
 End
End

If (VCPUβ == NULL) then
 VCPUβ = next VCPU from local PCPU runq
 For all peer PCPU runqs do
 If (LVT of VCPUβ > LVT of any VCPUγ, in peer PCPU runq) then
 VCPUβ = VCPUγ
 Break loop
 End
 End
End

VCPUβ.gvt_counter = 0

Figure 81 LVT based hypervisor algorithm to resolve deadlock

 176

6.3.2.2 Counter-based Algorithm that Resolves Deadlock and Livelock

Input: Just executed VCPU (VCPUα)
Output: Next VCPU to be scheduled for execution (VCPUβ)

Read shared_info to update VCPUα LVT
Insert VCPUα on to local PCPU runq

/* start code to resolve deadlock */
Increment gvt_counter for all VCPUs with greater LVT than (VCPUα)
VCPUβ = NULL

For all VCPUδ in local runq do
 If (VCPUδ gvt_counter > gvt_threshold)
 VCPUβ = VCPUδ
 End
End
/* end code to resolve deadlock */

If (VCPUβ == NULL) then
 VCPUβ = next VCPU from local PCPU runq
 For all peer PCPU runqs do
 If (LVT of VCPUβ > LVT of any VCPUγ, in peer PCPU runq) then
 VCPUβ = VCPUγ
 Break loop
 End
 /* start code to resolve livelock */
 If (VCPUβ != next VCPU from local PCPU runq) then
 Increment gvt_counter for all VCPUs in the local PCPU runq
 End
 /* end code to resolve livelock */
 End
End

/* reset gvt_counter of the selected VCPU –required to resolve both
deadlock and livelock*/
VCPUβ.gvt_counter = 0

Figure 82 LVT based hypervisor scheduler algorithm to resolve deadlock and livelock

However, algorithm in Figure 81 does not address the livelock problem. In an

SMP scheduling using LLF policy, the lowest LVT VCPU is searched not only in local

runq but also on the peer runqs of different PCPUs. The livelock problem persists

because the gvt_counter of the VCPUs in local runq are left unaltered when the least-

LVT VCPU is picked from the peer PCPU runqs. This essentially leads to the runtime

 177

scenarios, where in the lower LVT VCPUs are continuously exchanged among PCPU

runqs without incrementing the gvt_counter and thus not allowing the higher-LVT

VCPUs any cycles for GVT computation.

This problem can be resolved by considering the act of picking of lower-LVT

VCPU from peer PCPU runq to be equivalent to an insertion in the local runq. In which

case, the scheduler needs to increment the gvt_counter of all the existing VCPUs in its

runq. The pseudocode for the least LVT first based SMP scheduling algorithm that

resolves both deadlock and livelock problems is given by the algorithm shown in Figure

82.

6.3.3 Implementation Approach VM Environment for PDES Execution

To realize the PDES scheduler for Xen (PSX) we need to address two issues

namely, (a) efficiently communicate the LVT of each LP (which is at the application

layer) to the hypervisor, and (b) efficiently utilize this LVT information from within the

hypervisor scheduler during scheduling, with minimal overheads (such as, avoiding

locking-based synchronization for LVT value transfer from the VM to the hypervisor

data structures).

6.3.3.1 Communicate LVT to Hypervisor

To communicate the LVT of an LP from the application layer to the hypervisor,

the LVT must first pass from the user-space of the PDES process to the kernel-space of

the guest-OS and then to the hypervisor data regions. One way to accomplish this is by

adding a system call to the guest-OS to enable the transit of user-space data to kernel-

space. However, to make this data accessible to the Xen hypervisor the guest kernel uses

a shared memory page named shared_info, which is used by the Xen hypervisor through

 178

out its runtime to retrieve information about the global state [6]. The shared_info

contains information that is dynamically updated as the system runs. In fact the Xen

hypervisor uses the shared_info for time-keeping functionality of its para-virtual guest-

OS. The LVT value from the guest-OS kernel-space is written into the shared_info, thus

making it available to the hypervisor.

6.3.3.2 Hypervisor Scheduler Modifications to use LVT

Next, we need to implement the hypervisor scheduler that employs a LLF policy

instead of the default credit-based fair scheduling strategy. Implementing the Xen

hypervisor scheduler for the application-specific requirements has been previously

accomplished and has been discussed elaborately in Chapter 2. Each PCPU maintains a

runq (priority-queue) in which the VCPUs requiring clock-cycles are en-queued. The

scheduler inserts the VCPUs into the PCPU runqs based on the LVT value. Hence, every

VCPU of a DOM that hosts the LPs is required to maintain a variable (VCPU-LVT)

representing LVT value of the LPs. Based on the VCPU-LVT value, the VCPUs are

inserted in the runq of the PCPU. With a LLF policy, the VCPU that the scheduler picks

for allotting PCPU cycles will have the lowest LVT among all its peers.

6.3.3.3 Specific Instrumentation to Accommodate GVT Computations

In addition to these two major requirements, it is also necessary to ensure that the

LPs receive sufficient number of computational cycles to participate in GVT computation

regardless of its LVT priority in relation to other LPs. The counter-based algorithm

resolving deadlock and livelock are to be incorporated in the VCPU scheduling algorithm

to accommodate GVT computations.

 179

6.4 Implementation

To realize the PDES-optimized hypervisor scheduler, we require (a) each µsik

kernel instance running on a VM to independently communicate its LVT value to the Xen

scheduler, and (b) a new Xen hypervisor scheduler implementation that utilizes the

communicated LVTs to optimize compute-resource sharing. These implementation

details are described next.

6.4.1 Communicating LVT to Xen Scheduler

The mechanisms for communicating the simulation time from the simulation LPs

at the user-level down to the scheduler data structures at the hypervisor level is

conceptually trivial but implementation-wise non-trivial, especially to keep the runtime

overheads low. The scheme involves modifications to the guest-OS kernel (Linux, in our

test implementation), and corresponding modifications to the simulation engine (µsik, in

our test implementation).

6.4.1.1 Linux Kernel Modifications

To send the LVT information from the application level, which is a µsik federate,

we define and implement a new system call for the Linux® OS. This system call is

invoked from within the simulation loop of the µsik library. This system call allows the

LVT information to transit from user-space to kernel-space; once reaching the kernel-

space, the LVT value is written into the shared-info data structure of the host VM. Thus

the information is made accessible to the hypervisor at runtime.

 180

struct shared_info {
 struct vcpu_info vcpu_info[MAX_VIRT_CPUS];
 unsigned long evtchn_pending[sizeof(unsigned long) * 8];
 unsigned long evtchn_mask[sizeof(unsigned long) * 8];
 uint32_t wc_version; /*Version counter: see vcpu_time_info_t.*/
 uint32_t wc_sec; /*Secs 00:00:00 UTC, Jan 1, 1970.*/
 uint32_t wc_nsec; /*Nsecs 00:00:00 UTC, Jan 1, 1970.*/
 uint32_t switch_scheduler;
 uint64_t simtime;
 struct arch_shared_info arch;
};

Figure 83 Modified shared_info data-structure

However, the para-virtual guest-OS kernel has to be re-built, after the addition of

a new system call and incorporation of the changes to the shared_info data-structure

(Figure 83). Two fields namely, simtime and switch_scheduler are added to the

shared_info data-structure. Each guest-OS maintains a shared_info page, which is

mapped on to memory by the hosting VM, during its creation. While simtime is used for

holding the LVT value of the federate mapped on to the VM, the switch_scheduler is a

flag, which indicates the switch between two different modes of the scheduler operation

namely, normal-mode and simulation-mode.

Using the system call, the µsik federate writes the LVT to simtime of the

shared_info along with a variable that either sets or unsets the switch_scheduler variable.

The switch_scheduler in shared_info is set to suggest that PDES scheduler is in

simulation-mode, and is maintained in this mode until the simulation ends. This flag is

also used as an indication for the scheduler to read the LVT values from the shared_info

of the DOMs into their VCPU and to use these values during scheduling. Note that the

PDES federate running on the guest-OS simply updates the shared_info and is

operationally independent of the shared_info variables usage by the hypervisor.

 181

6.4.1.2 µsik Library Modifications

In order to communicate the LVT value from the µsik federate to the hypervisor

scheduler, the µsik library was modified. It is required for the µsik library to indicate the

start and the end of the PDES run to the hypervisor scheduler so that the scheduler can

switch its mode of operation in accordance, from normal-mode to simulation-mode and

back. During µsik’s initialization, the switch_scheduler in shared_info of its host DOM

is set to true using the custom system call. The scheduler reads this variable to change its

mode of operation from normal-mode to simulation-mode. Similarly, during the

termination of simulation the switch_scheduler is set false to revert back to its normal-

mode of operation.

In µsik, the LPs hosted by the PDES federate are event-oriented, and during the

simulation run, the LP with the least LVT is chosen by the federate for event processing.

The simtime variable of the shared_info can always be kept updated to the LVT value of

the recently processed event by the federate. However, we limit the number of writes to

shared_info by updating it only when the subsequent changes in the federate LVT value

are greater than the lookahead value.

Every µsik federate maintains a variety of simulation times based on its event

processing state at any given moment. They are distinctly classified into four classes,

namely, committed, committable, processable and emittable [16]. In practice, we

observed that the use of the “earliest-committable-time-stamp” resulted in better

performance than the others, and hence, this is the simulation time value used in all our

experiments.

 182

6.4.2 Xen Scheduler Implementation

The PDES Scheduler for Xen (PSX) scheduler replaces the default Credit

Scheduler of Xen (CSX) in scheduling the virtual CPU (VCPUs) onto the physical cores

of CPU (PCPU). The strategy that we take to replace the scheduler is similar to the one

presented in [49].

6.4.2.1 PSX Data-structures

The switch_sched (corresponding to switch_scheduler in shared_info) is a field of

global ps_priv global variable, which is an instance of ps_private data-structure (shown

in Figure 84), and by default the value of switch_sched is false (normal-mode). The

scheduler regularly checks the shared_info associated with the user-DOM of the VCPU it

services. Hence, when the switch_scheduler value the shared_info of any user-DOM is

updated, the scheduler reads it from the shared_info, and writes it to switch_sched field

of ps_priv variable. The scheduler uses spin-locks in this process to avoid any un-

desirable race conditions during its SMP execution. Each VCPU reads the LVT value

from the shared_info into its sim_time variable. Figure 84, shows the sim_time and

switch_sched variables in the PSX’s VCPU and ps_private data-structures, respectively.

 183

struct ps_vcpu
{
 struct list_head runq_elem;
 struct list_head active_vcpu_elem;
 struct nw_dom *sdom;
 struct vcpu *vcpu;
 uint64_t sim_time;
 s_time_t sim_time;
 atomic_t gvt_counter;
 int switch_sched;
 ...
};

struct ps_private
{
 spinlock_t lock;
 struct list_head active_sdom;
 int switch_sched;
 uint32_t gvt_threshold;
 ...
};

Figure 84 VCPU and ps_private global data-structures in PSX

6.4.2.2 Scheduling in Normal-mode

The scheduler is referred to be in normal-mode if the switch_sched (ps_private

data-structure Figure 84) is false. This corresponds to the mode in which the VMs are

booted and operational, but no PDES run has been started (and hence LVT-based

scheduling is undefined). PSX by default maintains the sim_time (VCPU data-structure

Figure 84) of all DOM0 VCPUs lower than all the DOMUs. In the normal-mode all the

DOMU VCPUs will have their sim_time initialized to 1, while DOM0 VCPUs have their

sim_times initialized to 0. Only after the switch_sched is set true by PDES federate the

sim_time value of the relevant VCPU is updated after reading the shared_info. However,

the sim_time of VCPUs of DOM0 continues to be 0 even after switching to simulation-

mode.

 184

Note that the sim_time corresponding to the VCPUs of the DOM0 is always

maintained to be lower than that of other VCPUs regardless of the PSX’s mode of

operation. This guarantees that DOM0 VCPUs are always preferred over the other

VCPUs, which in turn ensures better performance during inter-DOM communications (as

all the virtual network traffic passes through DOM0) and a responsive user-interactivity

with DOM0 during simulation execution.

6.4.2.3 Scheduling in Simulation-mode

The hypervisor switches to the simulation mode after the PDES execution is

started on all the VMs. Each PCPU maintains a runq (priority-queue) as shown in Figure

85, and in the simulation-mode PSX en-queues the VCPUs to be scheduled in a

prescribed priority.

struct ps_pcpu
{
 struct list_head runq;
 struct timer ticker;
 ...
};

Figure 85 PSX physical CPU-core specific data-structure maintained by PSX

We use the LVT value as the VCPU priority – the lower the sim_time (VCPU

data-structure Figure 84), the higher is its priority in the runq, and hence the earlier it is

picked by PSX to allocate compute resource. Every PCPU schedules itself for every tick

using the timer named ticker. The PCPU performs accounting for the VCPU currently

being serviced by incrementing the vcpu_ticks, and updating the sim_time by reading the

shared_info. The PCPU also generates a schedule interrupt for the VCPU being serviced

 185

on a less loaded PCPU. During scheduling the SMP scheduler enqueues the VCPU being

serviced and picks the VCPU with least sim_time across all PCPU runqs to service. Our

implementation of the scheduler allots a tick size (1ms) of PCPU time for the VCPU

picked to service.

6.5 Performance Evaluation

6.5.1 Hardware and Software

We use the same custom-built Local Test Platform (LTP) that was used for PDES

performance evaluation in the Chapter 5. A 1ms tick size was used with both CSX and

PSX schedulers. Three PDES applications using µsik, namely, PHOLD (a synthetic

PDES application generally used for performance evaluation), Disease Spread Simulation

and SCATTER (a reverse-computation-based vehicular traffic PDES application) are

used in our performance studies.

6.5.2 Performance Expectations with CSX

6.5.2.1 Performance Deterioration CSX on PDES for Multiplexing Ratio > 1

To demonstrate the hypervisor scheduler effects on PDES performance, we

executed the synthetic PDES PHOLD benchmark for a wide range of application

parameter settings. To demonstrate the effects of VCPU scheduling on the PDES

application performance, we launch single VCPU VMs equal to remnant PCPUs (30) and

increase the number of VMs hosted until the number of VCPUs become 10% greater than

number of PCPUs. The Figure 86 plots the runtimes for varying PDES loads for a mere

10% increase in the number of hosted VCPUs.

 186

Figure 86 Drastic increase in runtime with CSX just beyond multiplexing ratio

The top two graphs in Figure 86 plot performance runs with lowest possible

computational load for varying communication loads and for varying lookaheads 0.1

(left) and 1.0 (right), these show the effects of fair-share based VCPU scheduling in

absence of significant computational load. The plots show a several orders-of-magnitude

of degradation in performance with negligible increase in load. These readings constitute

some of the worst possible performance that can be expected on a cloud platform.

 187

The bottom two graphs in Figure 86 plot performance runs with highest possible

computational load for varying communication loads and for varying lookaheads of 0.1

(left) and 1.0 (right). This set of readings represents one of the best performances that

PDES applications can expect on a cloud platform. Yet, based on the communication

load the performance varies significantly, at worst it is closer to an order-of-magnitude

for LOC=50% and low lookahead of 0.1.

The center two graphs in Figure 86 plot average computational load for varying

communication loads and for varying lookaheads 0.1 (left) and 1.0 (right). These set of

readings can be considered representative of an average PDES application behavior.

With the performance degrading by several folds with increase in VMs, especially with

increase in the communication load highlights the impact of scheduling on PDES

application performance.

6.5.2.2 PHOLD Performance with Reduced Tick-size

The time-slice provided for each VCPU during scheduling affects the

performance of the PDES application. Altering, the time-slice values are made easier in

the recent releases of Xen hypervisor using the xl tool. By default, CSX provides a time-

slice of 30ms in quantum of 10ms tick-size for each scheduled VCPU. The time-slice

can at most be reduced to 1ms using the xl tool. Figure 87 compares the runtimes of

PHOLD benchmark scenario (NLP=100, NMSG=100, LOC=95, LA=0.1 and

endtime=1e3) for CSX with default time-slice with CSX with 1ms time-slice. As seen in

the Figure 87, the conservative synchronization performs extremely well with reduced

time-slice as evident in 128 VM and 64 VM scenarios. Close to an order-of-magnitude

performance gain is in 128 VM scenario. However, the same is not true while using the

 188

optimistic synchronization case. In the 128 VM scenario using optimistic

synchronization 1ms time-slice makes no difference in runtime when compared to default

time-slice, further the performance suffers very badly in 64 VM scenario. This is because

high number of reversals (tens of millions) in case of 1ms time-slice runs compared to

lower (few hundred thousands) number of reversals, while using default time-slice. In

the absence of high reversals optimistic is expected to perform better than conservative.

Hence, in all the following performance runs using CSX a 1ms time-slice is used.

Figure 87 Runtime performance of PHOLD for varying time slices

6.5.3 Performance Comparison with PHOLD Benchmarks

For this set of performance results we used a PHOLD scenario with NLP=100,

NMSG=100, LOC=95 and we hosted one µsik Federate on a VM. NLP=100, ensured

40 60 80 100 120

0
50

00
10

00
0

15
00

0
20

00
0

NUMBER OF VMs

RU
NT

IM
E

IN
 S

EC
O

ND
S

csx_dflt−cons
csx_dflt−opt
csx_1ms−cons
csx_1ms−opt

 189

that each VM/Federate hosted 100 LPs. The NMSG=100, ensured that each LP

exchanged 100 messages amongst its peers. Thus at any instance in a simulation scenario

with 128 VMs exchanged 1.28 million messages among 12800 LPs. The locality (LOC)

was set to 95% suggesting 95% of the randomly generated messages were local, while

the 5% were sent to a random peer LP hosted on other VMs. Locality of 95% ensured

that the Federate had enough local events to process at any instant, hence the affect of

scheduling was minimal as observed in Figure 86. For all the PSX runs, a value of 10

was assigned to GVT_Threshold (GT).

Figure 88 PSX and CSX comparison PHOLD with LA=1

30 31 32 33 34 35 36

0
20

0
40

0
60

0

40 60 80 100 120

0
20

00
40

00
60

00
80

00

psx−cons
psx−opt
csx−cons
csx−opt

NUMBER OF VMs

RU
NT

IM
E

IN
 S

EC
O

ND
S

 190

Figure 89 PSX and CSX comparison PHOLD with LA=0.1

Figure 88 plots the conservative and optimistic curves for lookahead 1. As the

number of VMs hosted on the physical machine increases both optimistic and

conservative runtimes of PSX perform very well in comparison with their CSX

counterparts. The conservative runs of CSX perform extremely well in comparison with

the CSX optimistic runs. This is expected because of 95% locality and a higher

lookahead ensures sufficient local events in between GVT synchronization, while CSX

optimistic suffers due lot of reversals. The total number of reversals is over 6 million and

8 million in 64 and 128 VM scenarios, respectively).

Figure 89 plots the conservative and optimistic curves for lookahead 0.1. While

the PSX using conservative synchronization also suffers along with CSX runs (both

30 31 32 33 34 35 36

0
20

0
40

0
60

0
80

0

40 60 80 100 120

0
10

00
20

00
30

00
40

00
50

00 psx−cons
psx−opt
csx−cons
csx−opt

NUMBER OF VMs

RU
NT

IM
E

IN
 S

EC
O

ND
S

 191

conservative and optimistic synchronizations), the PSX using optimistic synchronization

performs well with increase in number of VMs.

The plots on left in both Figure 88 and Figure 89 are magnifications of the initial

set of data-points. They plot the behavior of PSX with respect to CSX when the

multiplexing ratio of VCPUs on to PCPUs is low. As observed, CSX performs best when

no mismatch between PCPUs and VCPUs exist and suffers significantly even due to a

slight mismatch. On contrary, PSX suffers in the absence of mismatch due to

unnecessary overhead of writing LVTs to hypervisor and performs better than CSX as the

mismatch grows, as expected.

6.5.4 Performance Comparison with Disease Spread Benchmarks

The µsik Federates mapped to the regions and the LPs are mapped to the locations

in the DSB scenarios. Each region (µsik Federate) hosted multiple locations (LPs). Each

region or Federate was hosted on a VM. Here, the DSB scenario comprised 100

locations per region and a population of 100 per each location. Thus in a scenario with

128 VMs, we simulated the disease spread across a population of 1,280,000 people

spread across 128 regions, each with 100 localities. The simulation scenario simulated

the disease spread among the population over a week. Two sets of runs were performed

based on the movement limitations of the population across regions. The first set limited

the movement of population to 10% (LOC=90%), while the second set limited it to 50%

(LOC=50%).

 192

Figure 90 PSX and CSX performance comparison DSB with LOC=90

Figure 91 PSX and CSX performance comparison DSB with LOC=50

30 31 32 33 34 35 36

0
20

40
60

80
10

0
12

0

40 60 80 100 120

0
50

0
10

00
15

00

psx−cons
psx−opt
csx−cons
csx−opt

NUMBER OF VMs

RU
NT

IM
E

IN
 S

EC
O

ND
S

30 31 32 33 34 35 36

0
20

0
40

0
60

0

40 60 80 100 120

0
10

00
20

00
30

00
40

00
50

00
60

00 psx−cons
psx−opt
csx−cons
csx−opt

NUMBER OF VMs

RU
NT

IM
E

IN
 S

EC
O

ND
S

 193

Figure 90 and Figure 91 plot the runtime curves for the first set and second set,

respectively. Both optimistic and conservative runs with PSX scheduler perform

extremely well as the number of VMs used in the experimental setup increases. As

expected a better performance is observed in LOC=50% (Figure 91 scenario where

interaction between across VMs is higher and consequently optimistic synchronization

performs slightly better when compared to the LOC=90% (Figure 90) scenario.

Similar, to the previous PHOLD plots, the left hand plots of Figure 90 and Figure

91 show the performance of PSX when the multiplexing ratios of VCPUs on to PCPUs

are low.

6.5.5 Performance Comparison with SCATTER Benchmarks

Figure 92 Road network layout

As opposed to the two prior benchmarks that exemplify weak-scaling (increase in

computational load with increase in number of VMs), this benchmark evaluates strong-

 194

scaling (computational load remained same across all scenarios, which varied in terms of

number of VMs used) behavior. The SCATTER benchmark simulated the vehicular

traffic evacuation scenario of 3.2 million vehicles originating from 256 sources. Each

vehicle made its way across 128×128 (16K) grid of intersections toward its destination

(one of the 256 sinks), using the djkstra's shortest path algorithm. The vehicles were

generated at the source at a rate of 50 vehicles/sink/hour for an hour. Vehicles were

injected through source-nodes placed on either side (left and right) and they moved

toward the sink-nodes (top and bottom) of the 128×128 grid. The same simulation

scenario was executed on 32, 64 and 128 VMs. The intersections, sources and sinks were

modeled as LPs of PDES. The spatial decomposition ensured that equal number of

intersection LPs, source LPs and sink LPs were allotted to each µsik Federate hosted on a

VM, as shown in Figure 92. The color-coding show the distribution scheme of LPs (i.e.

intersections, sources and sinks) on to two µsik Federates.

The corresponding performance plots are presented in Figure 93. The optimistic

curve of PSX remains almost same with the increase in number of VMs, the PSX

conservative also shows similar trend except when number of VMs hosted is 128, where

its runtime slightly increases. In comparison the CSX runtime curves suffer as the

number of VMs hosted increases. However, the CSX using optimistic synchronization is

able to curtail the performance degradation significantly in comparison with its

conservative synchronization.

 195

Figure 93 PSX and CSX performance for SCATTER vehicular traffic simulation

6.5.6 Performance Relative to Native Linux

In this section, we compare the performance benchmarks run on VM platform

with native Linux platform, on the same hardware device. For fair comparison, the

number of µsik Federates (processes) equivalent to number of VMs used is spawned on

Linux. The executions involving 128 VMs using PHOLD, DSB and SCATTER were

used for comparison. The best runtime regardless of the PDES synchronization scheme

was used for comparison. In particular, from the PHOLD benchmark we used 0.1

lookahead readings and from DSB benchmark runs we used LOC=50 readings. This is

just because runtimes of respective PHOLD and DSB are higher in the considered

scenarios.

40 60 80 100 120

0
20

00
60

00
10

00
0

NUMBER OF VMs

RU
NT

IM
E

IN
 S

EC
O

ND
S

psx−cons
psx−opt
csx−cons
csx−opt

 196

As seen in Figure 94 the PHOLD benchmark runtime on Linux using 128

processes is several order-of-magnitude faster than results from CSX and PSX. Though

PSX is able to alleviate the performance degradation to a certain extent it still is

inefficient because the PHOLD benchmark has very low computational load and very

high communication load due to low lookahead (0.1) requiring frequent synchronization.

This is despite of optimistic synchronization trying its best to keep the runtime lower.

However, the native runs are almost over an order of magnitude faster than VM

environment using PSX or CSX.

Figure 94 PSX, CSX and Native performance with PHOLD, DSB and SCATTER

For the DSB benchmark, the best runtime with CSX is extremely bad, however

PSX has been able to significantly boost the performance of DSB benchmark bringing it

closer to the native Linux performance. The DSB benchmark has higher computational

load in comparison with PHOLD, although the communication load (LOC=50) is higher,

 197

with efficient scheduling both conservative and optimistic synchronizations perform very

well.

For the Scatter benchmark, PSX performs extremely well. While CSX is only

few times slower than native Linux runtime, PSX is very close to the native runtime

performance. This is because Scatter scenario is computationally intensive, very well

load-balanced and optimistic synchronization with zero-rollbacks yields very good

performance and PSX with its LVT based scheduling further betters the performance.

6.5.7 Variance in Performance

Figure 95 PSX and CSX runtime variance with PHOLD for lookaheads 1 and 0.1

The CSX runtime show high variance when the number of VCPUs multiplexed

was greater than the number of PCPUs. Figure 95 plots the PSX and CSX runtimes with

40 60 80 100 120

0
50

00
15

00
0

25
00

0
35

00
0

psx−cons−1.0
psx−opt−1.0
csx−cons−1.0
csx−opt−1.0

40 60 80 100 120

0
50

00
15

00
0

25
00

0
35

00
0

psx−cons−0.1
psx−opt−0.1
csx−cons−0.1
csx−opt−0.1

NUMBER OF VMs

RU
NT

IM
E

IN
 S

EC
O

ND
S

 198

95% confidence intervals for PHOLD benchmark with lookaheads 1(left) and 0.1(right).

In our previous plots we have used the best runtimes obtained using CSX plots from

multiple runs for comparison with the runtimes of PSX. At worst the CSX readings are

several times (more than 5) slower than the readings plotted. This behavior can be

expected from CSX as a result of the strategy it uses for scheduling VCPUs. In contrast

to CSX the PSX readings very low variance regardless of the number of VMs

multiplexed by the hypervisor.

6.6 Summary

With the proliferation of Cloud and VM-based platforms for parallel computing, it

is now possible to execute parallel discrete event simulations (PDES) over multiple VMs,

in contrast to executing in native mode directly over hardware as has been traditionally

done over the past decades. However, while most VM-based platforms are optimized for

general workloads, PDES execution exhibits unique dynamics significantly different

from other workloads.

In this Chapter we presented the results that identify the gross deterioration of the

runtime performance of VM-based PDES simulations when executed using traditional

VM schedulers, quantitatively showing the bad scaling properties of the scheduler as the

number of VMs is increased. The mismatch is fundamental in nature in the sense that

any fairness-based VM scheduler implementation would exhibit this mismatch with

PDES runs.

To overcome the mismatch, a new algorithm was presented for PDES-specific

scheduling of VMs by a hypervisor. The algorithm schedules VMs primarily by their

local virtual time (LVT) order, and incorporates mechanisms that prevent deadlock and

 199

livelocks that are otherwise possible in a purely LVT-based scheduling. The new

scheduler has been implemented and exercised in an actual hypervisor system (Xen) that

is popularly used in major Cloud platforms worldwide. Experimental results have been

documented from detailed experiments with multiple discrete event models over a range

of scenarios (with different lookahead values, inter-processor event exchange

frequencies, and conservative and optimistic synchronization), all of which show (a) the

high variability and sub-optimality of the default credit-based VM scheduler that is

PDES-agnostic, and (b) the well-behaved scalability and significantly faster execution of

our new algorithm.

 200

CHAPTER 7

CONCLUSION AND FUTURE DIRECTIONS

7.1 Conclusion

Starting with the definitions of VM and VTS, we identified two broad fields,

wherein their combined symbiotic functioning holds a greater promise for the simulation

community. We referred to the two fields as (a) VM within VTS and (b) VTS over VM.

While the former strongly holds a promising future in realizing high-fidelity cyber

infrastructural and cyber physical simulations, the latter has an even wider applicability,

suggesting a paradigm shift in the execution platform for discrete event simulations as a

whole.

7.1.1 VM within VTS

We systematically addressed the challenges in utilizing the VMs for cyber

simulations, from the ground up. We started the discussion with the classification of

emulators and simulators as end-host centric and network-centric. We introduced the

current state-of-the-art VM based network simulators and emulators and a nomenclature

to identify and categorize them. The core conceptual issues falling under the two topics,

namely, (a) virtual time-order execution of VMs and (b) virtual time-order network

control, were discussed. A prototype for VM-based network simulation was designed

and developed to address the conceptual issues in an actual implementation. The

prototype implementation to realize virtual time-ordered execution of VM required

accounting, maintenance and synchronization of virtual time across the VMs, and a

 201

replacement of conventional hypervisor scheduler with a VTS-aware scheduler.

Similarly, the prototype implementation of the virtual network control involved new

methodology to trap and control the inter-VM communication.

The requirement of virtual time-ordered execution for correct simulation results

was uncovered, and the requirement of virtual time-ordered execution was demonstrated.

Specific performance benchmarks were designed and a methodology to quantify the

simulation errors was devised. With our prototype implementation of NetWarp and the

benchmarks, we categorically demonstrated that the simulations using default VM

platforms result in virtual time-order errors, and also demonstrated that such errors can be

controlled and made arbitrarily small using our NetWarp system. Further, we achieved

this without any appreciable loss in runtime performance.

Detailed scaling study and scaling-relevant instrumentation of NetWarp was

performed. We also developed a highly efficient virtual network control called Netwarp

Network Control (NNC) and, several new synthetic and real-life application benchmarks.

We demonstrated a good scaling, efficient runtime performance and greater time-order

error control of NetWarp with simulation scenarios involving 64 and 128 VMs on a 12-

core physical machines. We also demonstrated the efficient capability of NNC using

actual application codes.

This scaling work was followed by a detailed case study of simulating a complex

physical phenomenon of MANET on NetWarp. Instrumentations at application level to

support features, such as virtual mobility, virtual ad-hoc network creation, etc., were

performed to make NetWarp support MANET simulations. With the benchmarks, we

 202

demonstrated the correctness of the simulation results obtained from NetWarp. We also

tested the supported features using the benchmark applications.

The prototypes, benchmark applications, performance runs and the corresponding

results enable us to convincingly state that virtual time awareness is necessary and

sufficient for correct and efficient execution of VM based systems.

7.1.2 VTS over VM

Cloud computing services provide several desirable features such as ease of

resource accessibility, runtime migration capability for dynamic load-balancing, support

to fault tolerance, and maintenance-free resource usability. These features are useful to

exploit in the execution of VTS systems. To this end, we conducted a thorough

performance study of PDES execution on VM platforms. With this performance study,

we addressed several critical questions regarding the performance of PDES on VM

platforms. We demonstrated that VM-based executions could be as fast as native

execution; a privileged VM execution yielded the same performance as that of an

unprivileged VM, and the virtual network performance remained unaffected with

increase in DOM0 VM weights. We also observed and highlighted the counterintuitive

behavior of the VM platforms for PDES applications that had profound effect on the cost-

value aspect of the Cloud service. Based on the performance study results, we provided

recommendations and guidelines to the Cloud service user for PDES loads.

We found that the runtime performance of VM platform deteriorates as the

multiplexing ratio of VCPU to PCPU exceeds unity. In reasoning the cause for poor

runtime performance with increase in multiplexing ratio, we identified the hypervisor

scheduling policy mismatch with the PDES runtime execution dynamics as the

 203

underlying cause. To address this performance issue, we designed a new, virtual time-

aware hypervisor scheduler that allotted processor resources in coherence with the PDES

runtime dynamics. We devised a robust scheduling algorithm for this purpose, which is

built on a Least-LVT-First scheduling policy, with additional algorithmic components to

handle deadlock and livelock conditions. We tested the runtime performance of VM

execution platform with the new virtual time-aware simulation specific scheduler (PSX),

with the default VM scheduler (CSX) using several PDES applications, such as PHOLD,

disease spread simulations and vehicular traffic simulations. We demonstrated excellent

runtime performance and scaling behavior of PDES applications with PSX in comparison

to CSX using multiple simulation applications with varying scenario configurations. We

also compared the runtime performance of the application benchmarks from PSX and

CSX, with the native Linux platform and demonstrated that PSX runtime performance

always performed significantly better than CSX and approached the performance of the

native execution runtimes.

7.1.3 Concluding Remarks

In conclusion, we list highlights of this research findings.

 Virtual time-order VM execution and virtual time-order network control are

the two necessary and sufficient conditions that ensure correctness of the

simulation results, in the VM-based network simulators.

 Virtual time-order execution of VMs can be realized by changing the

hypervisor scheduler’s VCPU scheduling policy.

 Virtual time-order supporting hypervisor scheduler can be realized without

incurring any additional performance penalty.

 204

 Fairness based hypervisor schedulers are inappropriate for VM-based network

simulations.

 Virtual time-order errors can be measured and quantified on any VM-based

network simulation/emulation platform.

 By varying the time-slice allotted to the virtual CPUs during hypervisor

scheduling the virtual time-order errors can be controlled.

 It is possible to realize virtual time-order executions of multi-core VMs (with

varying number of cores) for VM-based network simulations.

 It is possible to obtain correct results from a VM-based network simulation,

even if the physical hardware platform is highly overloaded with VMs.

 The PDES simulations using VM execution platform with perfectly matched

virtual and physical compute resources yield same runtime performance as a

native platform. As even the virtual compute resources start to outnumber the

physical resources the PDES runtime performance quickly deteriorates.

 PDES performance on a VM execution platform is agnostic to the privileges

of the VM.

 A high-cost VM from a Cloud service might not necessarily yield better PDES

performance and similarly, low-cost VMs can yield better performance.

 Reduction of time-slices in default VM scheduler most often yields in better

PDES performance over VM execution platforms.

 The virtual-CPU scheduling policy (fairness-based) mismatch with the PDES

runtime execution dynamics is the reason for poor runtime performance of

PDES applications.

 205

 Virtual time-aware scheduling policy is necessary and sufficient to ensure

better runtime performance of PDES simulation workloads, over VM

execution platforms.

 Least-LVT-First based scheduling policy in a virtual time-aware VM

execution platform for PDES workloads, is prone to deadlock and livelock

conditions, which has to be overcome.

7.2 Future Directions

7.2.1 Outstanding Issues of Least-LVT First (LLF) Scheduling

One common principle of the schedulers of both VM within VTS and VTS over

VM paradigms is the LLF strategy used for scheduling. In the multi-core environments,

based on the number of PCPUs supported by the hardware, equal number of VCPU run-

queues is maintained. After the exhaustion of allotted time-slice of a PCPU and while

assigning the next VCPU to the PCPU, the scheduler reads the least-LVT VCPU from the

local PCPU run-queue and looks for a lower LVT VCPU than local least LVT VCPU in

the peer PCPU run-queues. The very first lower LVT VCPU found while searching peer

run-queues is picked next. If no lower LVT VCPU is found in other run-queues, prior

selected VCPU from the local PCPU queue is picked.

The search for the lower LVT VCPU starts from the local-queue and moves along

with its neighbor in a circular fashion. Although the incidence of situations wherein,

large number of VCPUs with lower LVTs are left behind while the one with higher LVT

is picked is very less, nevertheless, the LLF policy implementation is not pure. Hence,

the hypervisor schedulers used in both paradigms are not pure LLF implementations, as

 206

there could always be one another VCPU with lower LVT in other run queues than the

one picked for scheduling.

One other approach we tried was to insert lower LVT VCPU (obtained during

global search) into the local run queue instead of picking it for scheduling. Hence, after

searching all run queues the least-LVT VCPU from the local run queue is picked for

scheduling. However, this approach does not eliminate the possibility of existence of

lower LVT VCPU in the run queues. This is because while searching for other VCPUs in

the peer run queues, the local run queue has to be locked, and the peer run queue where a

lower LVT VCPU is found must also be locked. Further, when the scheduler is not able

to lock a peer run queue it moves on to the next. This essentially leaves the problem of

leaving lower LVT behind in a peer run queue while picking up higher LVT VCPU

unaddressed. The better among these techniques needs to be studied and reasoned.

However, pure LLF scheduling algorithm for hypervisor scheduler executing over a

multi-core physical hardware is still open for research.

7.2.2 Outstanding Issues in NetWarp Network Control (NNC)

NNC is a multithreaded application, which along with iptables captures network

packets in transit and allows simulation modeler to enforce desired network

characteristics in the network simulations. The iptables rules capture the transiting

packet and put them in a netfilterqueue.

The initial packet processing (IPP) thread determines the emit time from NNC and

pushes them into next netfilterqueue for further processing. To determine the emit time

the IPP thread requires the arrival time, which is considered as the virtual time when the

packet is pulled out of the first netfilterqueue. Although the thread is continuously

 207

processing the packets arrived and even though the processing is light (just involves

determination the emit time), the timing errors can occur. This is because the NNC

synchronizes the VCPU LVTs of all the VMs as necessary and if the packet were being

processed just after synchronization of VCPU LVTs, there would be a significant

difference in the actual-arrive-time of a packet and the read virtual time. Hence, the emit

time calculated based on such arrival time will also be erroneous.

Hence, to reduce the error one needs to ensure that the virtual time of the packet

on its arrival is recorded. This can be done using an additional netfilterqueue and an

additional thread that just continuously stamps the incoming packets with the virtual time

of the packet’s arrival. This packet is then sent to the next netfilterqueue that

continuously determines the emit time using the arrival time stamped on the packet.

7.2.3 NetWarp Simulator Spanning Multiple Physical Hosts

In the VM within VTS, all the discussions and experiments pertaining to VM

based network simulations was limited to a single physical machine that hosted multiple,

multi-core VMs. However, additional work is necessary to realize large-scale network

simulations spanning many physical machines. Outstanding problem is to maintain a

single simulation time line across multiple hypervisors on physically separate hardware.

Although synchronization algorithms from parallel discrete event simulations can be

utilized for this purpose. The synchronized advancement of VMs dispersed across

multiple physical systems is challenging.

7.2.4 Virtual Time Communication to Lower-Level Protocols

In NetWarp although each VM is provided cycles based on the virtual time and

progress in virtual time, the lower-level protocols such as, TCP/IP used currently utilize

 208

the wall clock time. We need to make these lower-level protocols use virtual time instead

of wall clock time. The process of making the application and lower-level protocols

adhere to virtual time is not complex and has been previously published. However, the

functioning of such model where, the protocols use the virtual time that does not evolve

continuously, might give way to some interesting problems.

7.2.5 Real life Application Performance Evaluation

NetWarp simulation environment has been extensively tested using the designed

synthetic benchmarks. Although, some benchmarks such as cyber security benchmarks

were realistic, they were not out-of-box commercial or real-life distributed applications.

We need evaluate the NetWarp with scenarios using real-life applications.

7.2.6 Outstanding Issues regarding CPU-Pools

Our implementation of PSX scheduler on the new version of Xen-4.2.0, built over

CPU-Pool functionality. Though our scheduler uses CPU-Pools all the resources PCPU

resources are maintained in a default Pool-0. We can currently boot with our scheduler,

create additional CPU-Pools using different schedulers, remove PCPUs from one CPU-

Pool and add CPU-Pools to other. However, additional work to resolve the failure when

DOMUs are created on particular CPU-Pool, is required.

The CPU-Pools is an important feature that needs to be supported because it is the

gateway for porting the currently developed, and future hypervisor schedulers on to

Cloud resources for simulation purposes. With this feature, the scheduler of the

hypervisor can be altered at the runtime for certain pools of PCPU cores. This can be

easily achieved, if a service option to choose the hypervisor scheduler is provided by the

Cloud service provider to the user.

 209

7.2.7 Scheduler Classification based on Interrelation between PDES Processes

Table 5 shows the set of possible scheduling policies that a physical hardware can

host concurrently using CPU-Pools. In the Table 5 four categories of scheduling policies

are mentioned.

If the processes hosted on VMs are both virtual time constrained, as in the general

case in PDES simulations that we have discussed, then the LLF scheduling scheme, as we

know works best.

If suppose, the PDES LP is constraining but not exactly constrained by its peer

process hosted on a different VM, as in the case of the LP which is not constrained by the

output/display process but is constraining the display process. A different scheduling

scheme needs to be adopted for optimal performance.

Another possibility is that a process hosted on VM is constraining the PDES LP

but not constrained by PDES LP. For example, the real-time concurrent input feeding

process, which is not constrained by PDES LP but actually is constraining PDES LP. An

optimal scheduling policy needs to be designed to accommodate such requirement.

Table 5 Possible scheduling policies in PDES simulations

PEER
SELF

Virtual time constrained Virtual time constraining
but not constrained

Virtual time constrained LP with respect to its peer
LP

LP with respect to
output/display process

Virtual time constraining but
not constrained

Concurrent input process
with respect to LP

Default fair-share
scheduling (credit) behavior

 210

Finally, if the peers are constraining but are not constrained by each other. One

example for such behavior is fairness, each process is constraining its peer to achieve

fairness but neither of the processes is constrained by their peer. The default credit-

scheduler, where the quantum of PCPU time is fairly divided among different VMs

works best for such a requirement.

These options lead to a design of schedulers tailored for particular task in

simulations. Since, the CPU-Pools allow concurrent execution of hypervisor schedulers

the area of research and development in this direction holds a promising future.

7.2.8 Outstanding Issues with Counter-Based Algorithm (Deadlock and Livelock)

We derived a counter-based algorithm to prevent deadlock and livelock conditions

during a load-balanced VTS over VM execution. However, the threshold value of the

counter that we used is an empirical in nature and hence, might yield varying

performance with change of applications, hardware and synchronization schemes.

Intuitively, a large threshold value could better application performance that is not

prone to deadlock and livelocks. Similarly, a small threshold value could better

applications prone to deadlock and livelock. Further, these threshold values are also

dependent on the dimension of the time-slices provided to the VCPUs during scheduling,

i.e., larger time-slices execute more concurrent events than smaller time slices. Also, the

deadlock and livelock are dependent on events computed, where as the threshold value

counts the exhausted time-slices of the PCPU.

Hence, future work needs a comprehensive study performance dynamics for

varying threshold values or a better PSX algorithm that does not rely on such empirical

value is necessary.

 211

7.2.9 Hardware-Supported Network with VM-Based Virtual Network Comparison

Efficient communication of event and time-stamps among the LPs in a PDES

application is an important factor that determines the performance of the application.

Hence, historically PDES applications have always relied on high throughput and low

latency interconnects in their execution platforms. As the community move towards the

Cloud Computing platforms, we need to deal with the software-based or hardware-

supported virtual interconnect components to understand the performance dynamics of

the PDES executions on Cloud. This especially becomes important, as cost is associated

for the resource utilization time.

While, we have identified that the packet loss at the software bridge heavily

determines runtime performance. The suitability of the software based networking

support provided by the hypervisor or hardware-assisted virtual interconnect for

executing wide range of PDES applications under varying multiplexing (VCPUs over

PCPUs) ratios and varying synchronization algorithms have not been very well studied

yet. We have found that overall bandwidth provided by hardware-assisted virtual

interconnect was over an order of magnitude higher than that provided by its software

counterpart on our LTP. However, even with this we have found that the runtime

performance observed using software based virtual network to be better than the

hardware-assisted interconnects for same scenarios, especially when using the default

scheduler (CSX) of Xen.

7.2.10 Sensor Network Simulations

High-fidelity sensor network simulations are hard to realize. For example,

although the OS used in the sensors or motes, such as the TinyOS, may be ported to work

 212

over Xen [74], the main challenge is the mismatch of the clock-cycles in the low-power

sensors and the processors on which simulations are executed. Sensors usually have very

low clock rates in comparison with the modern day processors. To realize high-fidelity

sensor network simulations, one has to maintain the clock rate, evolve in time-ordered

manner, and scale the utilized clock cycles appropriately in accordance to the sensors

being simulated. With in our NetWarp network simulation platform, we are able to fulfill

the aforementioned requirements of self-maintained virtual time line and virtual-time

ordered execution. In addition, the virtual time is recorded in terms of elapsed time slices

or tick sizes, which are based on the clock rates. For example: in most of our

experiments each tick size measures 100µs. This virtual time recorded in terms of tick

sizes can be easily scaled with appropriate factor to suit the sensors being simulated.

Further, with CPU-cores clocking faster than the sensors, we can achieve faster than real-

time sensor network simulations on hypervisor platforms, when the virtual to physical

multiplexing ratio 1.

7.2.11 Reviving the Concept of a Time-warp OS

The VM platforms provide a great opportunity to revive Time-warp OS, a

simulation based operating system for PDES applications. With the hypervisor we can

realize the simulation processes or PDES federates as an operating system rather than an

application running on an OS. The Xen hypervisor provides sufficient support to start in

this direction, for example: the Mini-OS distributed along with the Xen hypervisor

provides the capability to the user to over-ride the default initial process of the Mini-OS

with a user-specified function, which as well could be a simulation process. Such a

platform of PDES over a hypervisor platform would be highly advantageous, as it also

 213

leverages on other powerful features supported by the hypervisor. For example: runtime

migration of the PDES-OS, which would play a significant role in dynamic load

balancing and would enhance the fault-tolerance of the PDES application. Since, such an

OS forms a container, which one could positively expect that Cloud service providers to

host in future. If this happens the Cloud would prove to be a powerful execution

platform for PDES applications in the coming future.

7.2.12 GVT Synchronization within Hypervisor

By pushing the GVT synchronization algorithms to the level of hypervisor a

powerful simulation platform can be envisioned. Discrete event simulators developed to

function on particular operating system can be used to work with other, and similar

diverse simulators in parallel and synchrony. Further, this can be achieved by simple

instrumentation such as writing and reading its simulation time values to and from the

hypervisor. Thus creating a scalable platform for parallel execution of diverse discrete

event simulators that were developed for execution on equally diverse OS platforms.

7.2.13 Realizing High-Fidelity Simulation Framework using Characteristically

Distinct Simulators

The computing systems with relevant software are used to monitor, control and

analyze the complex industrial systems. For example the supervisory controls and data

acquisition (SCADA) units are used for such purposes in electric-grid. We envision a

simulation framework is required to assess the unwanted, unintentional and unanticipated

affects on the electric-grid due to the changes to the SCADA control software, as a future

work. This requires integration of electric grid simulator and the high-fidelity computer

network simulator as shown in Figure 96. Two distinct networks namely, electric grid

 214

and the networked SCADA units or telecommunication grid is seen in Figure 96. The

runtime dynamics involved in the electric grid is very different from that of the

telecommunication network and hence, their simulation models are different as well.

However, with the combination of using VM as execution platform for electric grid with

SCADA simulations and VMs as SCADA unit surrogates a framework for secure electric

grid can be realized. Although we use electric-gird domain in this discussion, the set of

design principles are equally valid for other industrial system.

Figure 96 Functional diagram of the software test framework for secure electric grid

 215

7.2.14 Runtime Load Balancing

The point of strength in PSX design discussed in Chapter 6 is, the application

characteristic that hints runtime behavior of a highly-dynamic parallel application is

rightly delegated to the compute resource allocator to reap performance benefits. This

particular aspect is not limited to PDES alone but can be applied to other similar dynamic

parallel applications. One offshoot of this work is in the direction applying this runtime

load-balancing concept to similar parallel dynamic systems after deriving the runtime-

characteristic determinant factor.

7.2.15 Dynamic Load Balancing

Figure 97 Vehicular traffic simulation plot of number of events against runtime

 216

In the PDES applications, compute cycles consumed directly corresponds to the

number of processed simulation events. In such scenarios the capability of a parallel

simulation execution environment to grow or shrink its physical compute resources as

necessitated by the varying workload is extremely beneficial for efficient utilization of

available resources. Figure 97 plots the results from vehicular traffic simulation

experimental setup comprising 64 VMs where, number of events processed by all

federates are plotted against the runtime. This figure also pictorially shows the potential

points (based on some number-of-processed-events threshold) at which simulation

execution environment could grow and shrink. One means to achieve the capability to

grow and shrink in physical resource utilization is via oversubscribing of virtual

resources at the beginning of the simulation, growing using process-migration of virtual

resources on to newly available physical resource, and shrinking by oversubscribing

again. The efficiency achieved and/or the hindrances to overcome in exercising this

advantageous technique for dynamic load balancing is another important direction of our

future work.

 217

REFERENCES

[1] Verners, B., Inside Java Virtual Machine. 1996, McGraw-Hill, Inc.

[2] Kirill K., Virtualization in Linux, 2006, http://download.openvz.org/doc/openvz-
intro.pdf

[3] Kamp, P.H. and R.N. Watson. Jails: Confining the omnipotent root. In Proceedings
of the 2nd International SANE Conference. 2000.

[4] Price, D. and A. Tucker. Solaris Zones: Operating System Support for Consolidating
Commercial Workloads. In LISA, vol. 4, pp. 241-254. 2004.

[5] VMware ESX Server User’s Manual,
http://www.vmware.com/pdf/esx_15_manual.pdf

[6] Chisnall, D., The Definitive Guide to the Xen Hypervisor. 2007: Pearson Education.

[7] Matthews, J.N., et al., Running Xen: a hands-on guide to the art of virtualization.
2008: Prentice Hall PTR.

[8] Popek, G.J. and R.P. Goldberg, Formal requirements for virtualizable third
generation architectures. Commun. ACM, 1974. 17(7): pp. 412-421.

[9] Bugnion, E., et al., Bringing Virtualization to the x86 Architecture with the Original
VMware Workstation. ACM Transactions on Computer Systems (TOCS), 2012.

[10] Mell, P. and T. Grance, The NIST Definition of Cloud Computing, US Department
of Commerce Special Publication 800-145.
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf

[11] Birta, L.G. and G. Arbez, Modeling and simulation: exploring dynamic system
behaviour. 2007: Springer.

 218

[12] Chandy, K.M. and J. Misra, Distributed Simulation: A Case Study in Design and
Verification of Distributed Programs. IEEE Transactions on Software Engineering,
1979. SE-5(5): pp. 440-452.

[13] Bryant, R.E., Simulation Of Packet Communication Architecture Computer
Systems. 1977, Massachusetts Institute of Technology.

[14] Jefferson, D.R., Virtual time. ACM Trans. Program. Lang. Syst., 1985. 7(3): pp.
404-425.

[15] Fujimoto, R.M., Parallel and Distributed Simulation Systems. 2000, 605 Third
Avenue, N.Y.: Wiley-Interscience.

[16] Perumalla, K.S., µsik-a micro-kernel for parallel/distributed simulation systems. In
the Workshop on Principles of Advanced and Distributed Simulation, PADS, 2005:
pp. 59-68.

[17] Perumalla, K.S., A.J. Park, and V. Tipparaju, GVT algorithms and discrete event
dynamics on 129K+ processor cores. In 18th International Conference on High
Performance Computing, 2011: pp. 1-11.

[18] Mattern, F., Efficient algorithms for distributed snapshots and global virtual time
approximation. Journal of Parallel and Distributed Computing, 1993. 18(4): pp. 423-
434.

[19] Fujimoto, R.M., Performance of time warp under synthetic workloads. 1990.

[20] Perumalla, K.S. and S.K. Seal, Discrete event modeling and massively parallel
execution of epidemic outbreak phenomena. Simulation, 2012. 88(7): pp. 768-783.

[21] Yoginath, S.B. and K.S. Perumalla, Parallel Vehicular Traffic Simulation using
Reverse Computation-based Optimistic Execution. In Proceedings of the 22nd
Workshop on Principles of Advanced and Distributed Simulation. 2008: pp. 33-42.

[22] Yoginath, S.B. and K.S. Perumalla, Reversible discrete event formulation and
optimistic parallel execution of vehicular traffic models. International Journal of
Simulation and Process Modelling, 2009. 5(2): pp. 104-119.

 219

[23] Liu, J., A primer for real-time simulation of large-scale networks. In 41st Annual
Simulation Symposium, ANSS, 2008.

[24] Chun, B. et al., Planetlab: an overlay testbed for broad-coverage services. ACM
SIGCOMM Computer Communication Review 33.3, 2003: pp. 3-12.

[25] Elliott, C., GENI-global environment for network innovations. LCN. 2008.

[26] Fall, K., Network emulation in the VINT/NS simulator. In Proceedings of IEEE
International Symposium on Computers and Communications: pp. 244-250.

[27] OPNET: www.opnet.com

[28] Riley, G.F., Large-scale network simulations with GTNetS. In Proceedings of
Winter Simulation Conference, 2003.

[29] Cowie, J., A. Ogielski, and D. Nicol, The SSFNet network simulator. Software on-
line: http://www. ssfnet. org/homePage. html, 2002.

[30] Zeng, X., R. Bagrodia, and M. Gerla. GloMoSim: a library for parallel simulation of
large-scale wireless networks. In Proceedings of Twelfth Workshop on Parallel and
Distributed Simulation, PADS. 1998.

[31] Fujimoto, R.M., et al. Large-scale network simulation: how big? how fast?. In 11th
IEEE/ACM International Symposium on Modeling, Analysis and Simulation of
Computer Telecommunications Systems, MASCOTS, 2003.

[32] Rizzo, L., Dummynet: a simple approach to the evaluation of network protocols.
SIGCOMM Comput. Commun. Rev., 1997. 27(1): pp. 31-41.

[33] Huang, X.W., R. Sharma, and S. Keshav. The ENTRAPID protocol development
environment. In the Proceedings of Eighteenth Annual Joint Conference of the IEEE
Computer and Communications Societies, INFOCOM, 1999.

[34] Vahdat, A., et al., Scalability and Accuracy in a Large-scale Network Emulator.
SIGOPS Oper. Syst. Rev., 2002. 36(SI): pp. 271-284.

 220

[35] White, B., et al., An Integrated Experimental Environment for Distributed Systems
and Networks. SIGOPS Oper. Syst. Rev., 2002. 36(SI): pp. 255-270.

[36] Gupta, D., et al., To Infinity and Beyond: Time-warped Network Emulation. In
Proceedings of the 3rd Conference on Networked Systems Design &
Implementation - Volume 3. USENIX Association: San Jose, CA, 2006.

[37] Apostolopoulos, G. and C. Hassapis, V-eM: A Cluster of Virtual Machines for
Robust, Detailed, and High-Performance Network Emulation. In Proceedings of the
14th IEEE International Symposium on Modeling, Analysis, and Simulation.
Washington DC, USA, 2006: pp. 117-126.

[38] Gupta, D., K.V. Vishwanath, and A. Vahdat, DieCast: Testing Distributed Systems
with an Accurate Scale Model. In Proceedings of the 5th USENIX Symposium on
Networked Systems Design and Implementation. USENIX Association: San
Francisco, California, 2008: pp. 407-422.

[39] Liu, J., R. Rangaswami, and M. Zhao, Model-driven network emulation with virtual
time machine. In Proceedings of the Winter Simulation Conference, WSC, 2010:
pp. 688-696.

[40] Bergstrom, C., S. Varadarajan, and G. Back, The Distributed Open Network
Emulator: Using Relativistic Time for Distributed Scalable Simulation. In
Proceedings of the 20th Workshop on Principles of Advanced and Distributed
Simulation. Washington DC, USA, 2006: pp. 19-28.

[41] Grau, A., et al., Time Jails: A Hybrid Approach to Scalable Network Emulation. In
Proceedings of the 22nd Workshop on Principles of Advanced and Distributed
Simulation, Washington, DC, USA, 2008: pp. 7-14.

[42] Duggirala, V. and S. Varadarajan, Open Network Emulator: A Parallel Direct Code
Execution Network Simulator. In Proceedings of the 2012 ACM/IEEE/SCS 26th
Workshop on Principles of Advanced and Distributed Simulation. 2012: pp. 101-
110.

[43] Yuhao, Z. and D.M. Nicol, A Virtual Time System for OpenVZ-Based Network
Emulations. In IEEE Workshop on Principles of Advanced and Distributed
Simulation, PADS, 2011.

 221

[44] Weingartner, E., et al. SliceTime: a platform for scalable and accurate network
emulation. In Proceedings of the 8th USENIX conference on Networked systems
design and implementation. 2011.

[45] Hoffman, D., D. Prabhakar, and P. Strooper. Testing iptables. In proceedings of the
conference of the Centre for Advanced Studies on Collaborative research. IBM
Press, 2003.

[46] Gu, Y., ROSENET: A remote server-based network emulation system. 2008,
Georgia Institute of Technology.

[47] Team, Netfilter Core. Libipq-Iptables Userspace Packet Queuing Library. (2006).
http://linux.die.net/man/3/libipq

[48] Gropp, W., E. Lusk, and A. Skjellum, Using MPI: portable parallel programming
with the message-passing interface. Vol. 1. 1999: MIT press.

[49] Yoginath, S.B. and K.S. Perumalla, Efficiently Scheduling Multi-Core Guest Virtual
Machines on Multi-Core Hosts in Network Simulation. In Proceedings of the IEEE
Workshop on Principles of Advanced and Distributed Simulation. 2011.

[50] Netfilter: Netfilter - Firewalling, NAT and Packet Mangling for LINUX,
http://www.netfilter.org, 2012.

[51] Yoginath, S.B., K.S. Perumalla, and B.J. Henz, Taming Wild Horses: The Need for
Virtual Time-Based Scheduling of VMs in Network Simulations. In IEEE 20th
International Symposium on Modeling, Analysis & Simulation of Computer and
Telecommunication Systems, MASCOTS, 2012.

[52] Yoginath, S.B., K.S. Perumalla, and B.J. Henz, Runtime performance and virtual
network control alternatives in VM-based high-fidelity network simulations. In
Winter Simulation Conference (WSC), 2012.

[53] Kurkowski, S., T. Camp, and M. Colagrosso, MANET simulation studies: the
incredibles. ACM SIGMOBILE Mobile Computing and Communications Review
9.4, 50-61, 2005.

[54] Hogie, L., P. Bouvry, and F. Guinand, An overview of MANET
simulation. Electronic notes in theoretical computer science, 150.1, 81-101, 2006.

 222

[55] Henz, B.J., et al. Large scale MANET emulations using U.S. Army waveforms with
application: VoIP. Military Communications Conference, MILCOM, 2011.

[56] EMANE User Manual 0.7.3, DRS Cengen, Bridgewater, NJ, 2012.

[57] Clausen T. and P. Jacquet, Optimized Link State Routing Protocol (OLSR)”. RFC
3626.

[58] OLSRD: www.olsr.org

[59] Rosenberg J., Schulzrinne H., Camarillo G., Johnston A., Peterson J., Sparks R.,
Handley M. and Schooler, E., SIP: Session Initiation Protocol. RFC 3261 (Proposed
Standard), June 2002. Updated by RFCs 3265, 3853, 4320, 4916, 5393, 5621, 5626,
5630, 5922, 5954, 6026, 6141.

[60] Schulzrinne H., Casner S., Frederick R. and Jacobson V., RTP: A Transport
Protocol for Real-Time Applications, RFC 3550 (Standard), July 2003. Updated by
RFCs 5506, 5761, 6051, 6222.

[61] PJSIP. Open source SIP stack and media stack for presence, instant messaging, and
multimedia communication, http://www.pjsip.org

[62] Amazon Elastic Compute Cloud User Guide,
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Welcome.html

[63] Jackson, K.R., et al., Performance Analysis of High Performance Computing
Applications on the Amazon Web Services Cloud. In IEEE Second International
Conference on. Cloud Computing Technology and Science, CloudCom, 2010: pp.
159-168.

[64] Wang, G. and T.S.E. Ng, The Impact of Virtualization on Network Performance of
Amazon EC2 Data Center. In Proceedings of the 29th Conference on Information
Communications, San Diego, California, USA, 2010: pp. 1163-1171.

[65] D'Angelo, G., Parallel and distributed simulation from many cores to the public
cloud. In International Conference on High Performance Computing and
Simulation, HPCS, 2011: pp. 14-23.

 223

[66] Fujimoto, R.M., A.W. Malik, and A. Park, Parallel and distributed simulation in the
cloud. SCS M&S Magazine, 2010.

[67] Malik, A.W., A. Park, and R.M. Fujimoto, An Optimistic Parallel Simulation
Protocol for Cloud Computing Environments. SCS M&S Magazine, 2010.

[68] Park, A.J., Master/worker parallel discrete event simulation. 2009, Georgia Institute
of Technology.

[69] Vanmechelen, K., S. De Munck, and J. Broeckhove, Conservative Distributed
Discrete Event Simulation on Amazon EC2. In IEEE/ACM Intl. Symposium on
Cluster, Cloud and Grid Computing, Washington, DC, USA, 2012: pp. 853-860.

[70] Yoginath, S.B. and K.S. Perumalla, Optimized hypervisor scheduler for parallel
discrete event simulations on virtual machine platforms, in Proceedings of the 6th
International ICST Conference on Simulation Tools and Techniques. 2013, ICST
(Institute for Computer Sciences, Social-Informatics and Telecommunications
Engineering): Cannes, France. pp. 1-9.

[71] Santos, J.R., et al., Netchannel 2: Optimizing network performance. Proceedings of
the XenSource/Citrix Xen Summit, 2007.

[72] Yoginath, S.B. and K.S. Perumalla, Empirical evaluation of conservative and
optimistic discrete event execution on cloud and VM platforms. In Proceedings of
the ACM SIGSIM conference on Principles of advanced discrete simulation,
Montreal, Qubec, Canada, 2013: pp. 201-210.

[73] Jefferson, D., et al., Time Warp Operating System. SIGOPS Oper. Syst. Rev., 1987.
21(5): pp. 77-93.

[74] Maclean, A. Xen Meets TinyOS, University of Glasgow, 2008.

