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Abstract  

Long range planning of generation capacity is a complex and 

expensive task for electric utilities. Planning decisions are based on 

results from intricate models which incorporate key aspects of the 

generating environment, including uncertainties describing the final 

portion of the planning horizon. The critical nature of some of these 

terminal conditions have been examined analytically using the computer 

implementation of a nonlinear mixed integer programming generation 

expansion model. 



• An Analytic Study of Critical Terminal Conditions in 
Long Range Generation Expansion Planning 

for Electric Utilities 

Introduction  

Generation expansion planning (GEP) for electric utilities is a 

large scale and complex problem composed of many complicated and inter-

acting issues. In overview, GEP can be stated as the selection of 

types and sizes of electric generating units to construct over a speci-

fied long range planning horizon while respecting limitations imposed 

by construction budgets, demand requirements, and reliability guaran-

tees in order to minimize total discounted system cost. Models 

developed for the planning of investments in electric generating capa-

city are reviewed in the survey articles by Anderson [1972], Sassoon 

and Merrill [1974], and Knight, et. al. [1974]. 

Modeling approaches include linear programming (Anderson [1972], 

Masse' and Gibrat [1957], and Bessiere and Masse' [1964], mixed integer 

programming (Ammons [1982], Bloom [1983], Iwayemi [1975], Noonan and 

Giglio [1977], Rowse [1974], and Sawey and Zinn [1977]), nonlinear 

programming (Philips, et.al. [1969], Jenkins [1978], Bessiere [1970], 

and Paramantier [1979]), heuristics incorporating simulation (Booth 

[1971], Lansdowne, et.al. [1977], Marsh, et.al. [1975], and Jenkins 

and Joy [1974]), dynamic programming (Garver [1975], Henault, et.al. 

[1969], Irisari [1975], Morin and Jenkins [1981], Oatman and Hamant 

[1973], Peschon and Jamoulle [1975), and Peterson [1973]), and combina-

tions of these (Beglari and Laughton [1975], and Farrar and Woodruff 

[1973]). Solutions of GEP problems is expensive: development of a 

viable model may cost up to 1.5 million dollars, and one subsequent 

extensive study may cost upwards of $300,000. 
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The specification of a forecasted scenario is required for each 

GEP study, with resulting impact on the model's solution. The scenario 

is prescribed by data requirements which include (1) fixed and operat-

ing costs characteristics for existing and proposed generation units; 

(2) time windows for commissioning, construction time and cost schedule 

for proposed units; (3) financial considerations including capital 

expansion budget, inflation rates, long and short term rates of return; 

(4) reliability characteristics of current and proposed units and cor-

responding system reliability requirements for each time period; and 

finally, (5) electricity demand forecasts including expected peak load 

per time period in the planning horizon. 

Because the planning horizon may be of twenty to thirty years 

length, many of the forecasted quantities have uncertainty associated 

with them which greatly increases over the more distant future periods. 

Furthermore, different optimal solutions to CEP may be obtained for 

studies which differ only in the length of the planning horizon. In 

order to obtain the desired validity for solution results associated 

with the near future, studies of adequate length with appropriate ter-

minal conditions must be run. However, the length of a study is a 

crucial determinant of its cost: as years are added to the planning 

horizon, data costs escalate linearly and computational requirements 

exponentially. Thus, terminal conditions have a critical impact on 

both the solution outcome and cost of GEP. 

This paper presents the preliminary results for the analysis of 

terminal conditions in GEP. The next section develops inherent assump-

tions in GEP, followed by a discussion of uncertainty and complexity 
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issues. Finally, their impact on "optimal" expansion schedules is 

presented. 

Inherent Assumptions in Long Range GEP  

In both the modeling and data construction phases of long range 

GEP, explicit as well as hidden assumptions are required. Typically 

assumptions are generated for such reasons as model feasibility, compu-

tational tractibility, convenience in data assimulation, etc. However, 

inherent in the GEP planning process are certain assumptions which are 

not necessarily explicit nor apparent. These assumptions are related 

to trends which continue past the end of the planning horizon: trends 

in such areas as costs, demands, technologies, and the potential envi-

ronment. 

Trends in costs and financial factors  

Implicit in the modeling of long range GEP are critical assump-

tions concerning trends in costs and financial factors. As for costs, 

assumptions are required as to the behavior over time of the fixed 

costs associated with generating units. Also, the magnitude and func-

tional characteristics of the unit operating costs must be specified 

for the planning horizon. Trends and relationships in both fixed and 

variable costs then implicitly extend past the end of the planning 

horizon. 

Similarly, certain critical assumptions are required concerning 

the behavior of key GEP financial factors. Included in this category 

are trends in annual inflation rates, short and long term rates of 

return, magnitude of capital expansion budget and cash flow considera-

tions, and construction costs and schedules. Again, trends in these 

assumptions extend past the given planning horizon. 
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Studies have tried to assess the impact of these assumptions on 

the outcome of GEP solutions. Galloway, et.al. [1969] investigated the 

resulting plant mix structure when the cost of fossil and peaking steam 

plants were varied while the nuclear and gas turbine costs were held 

fixed. Similarly, Felak, et. al. [1977] varied unit characteristics 

(fixed and operating costs) in a simulation study to assess resulting 

financial impact. Garver [1975] shows the relationship of GEP plant 

mix added over a 20 year horizon as a function of the inflation rate. 

Effect of the discount rate upon expansion schedules has been studied 

by Rowse [1979]. These studies demonstrate the critical nature of cost 

and financial assumptions in GEP. 

Trends in demand  

Similar to the inherent assumptions associated with trends in 

costs and financial factors are those related to demand for electri-

city. Implicit in GE? models are trends in peak load growth, load 

duration curve shape, load management, etc. -- trends which are assumed 

to extend past the end of the planning horizon. These trends are cri-

tical assumptions because demand is the driver of GEP problems, forcing 

expansions to be incurred. 

Trends in technology  

Related to the trends in costs, financial factors, and demand are 

trends in the technical environment of electric power generation. 

These issues include such items as future hydro availability, the 

licensing/operating/political environment for nuclear production, emer-

gence of "new" sources such as solar, wind, tidal, etc., development of 

transmission modes with higher efficiencies, and coal/gas 
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availabilities in the future. By inclusion or omission in the modeling 

or data determination steps of GEP, trends in technologies are inherent 

assumptions. Impact studies on just the reliability sector of GEP have 

been performed for solar (Jordan, et.al. [1977]) and nuclear 

(Panichelli, et.al. [1977]) technologies, for load management 

(Billinton and Alam [1978]), and for load shape dynamics (Jordan, et 

al. [1976]). 

Length of planning horizon  

In addition to inherent assumptions associated with trends_in 

costs and financial factors, demand, and technologies, the selection of 

a planning horizon for GEP imposes other assumptions. Smaller planning 

horizons discriminate against units with large expansion costs because 

the benefits of their reduced operating costs may not be completely 

recovered within the planning horizon. A common assumption to overcome 

this problem uses the unit "extended costs" technique which assigns 

costs to each unit as though identical unit replications occur into an 

infinite extension period by assuming system status at the last year of 

the planning horizon will prevail forever (see Bloom [1978]). Often 

this assumption is required to assure computational tractability of the 

GEP model; however, the assumption has inevitable consequences upon 

unit selection, assumed trends, etc. Desired is the determination of 

"near planning horizons: as proposed for other simple planning problems 

(e.g., see Shapiro and Wagner [1967]). 

Uncertainty and Complexity Issues  

Interacting with the aforementioned trends and assumptions associ-

ated with planning horizon length are issues imposed by uncertainty and 
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complexity with GEP. Planning for the future induces uncertainty into 

GEP; this uncertainty combined with intricate relationships between 

various aspects of GEP enforces it. 

Uncertainty  

Certainly one of the most challenging and possibly the most 

studied issues in GEP is the dynamic nature of the electricity generat-

ing environment. For a planning horizon of twenty to thirty years, who 

can predict with any certainty the correct scenario for the last por-

tion of the planning horizon? Certain studies have focused on uncer-

tainty in demand (Mount and Chapman [1978], Borison, et. al. [1983]), 

which is a critical segment because demand growth forces expansion in 

GEP. However, also important is the uncertainty associated with every 

other factor (cost, capacity, reliability, etc.) pertinent to GEP. And 

the interaction of the uncertainty associated with these factors is 

critical. 

Factor interrelationships  

Currently there is a shift in GEP approaches to recognize "the 

phenomena of interest today are the complex interactions" of various 

aspects of the planning problem (p. 7, Taylor [1982j. See also p. 89, 

Graves [1982]). For example, an upward shift in the inflation rate 

will have a definite impact on the outcome of the solution to GEP be-

cause of its interelationship with other factors. Typically inflation 

rates in GEP are applied in a discounting fashion with an upward shift 

in inflation rate. The capital expansion budget should inflate accord-

ingly - but not necessarily uniformly  as is commonly modeled. Similar-

ly, construction costs, fixed costs, and production costs should 
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increase; but, in reality, all units may not inflate identically. An 

upward shift in inflation has uncertain responses in the corresponding 

behavior of short and long term rates of return, peak load demand, load 

duration curve shape, trends in peak management, etc. Therefore, 

because of the interaction of various aspects of GEP, parametric 

changes in one factor induce nonobvious yet critical changes in others. 

This significant interaction is magnified when the effects of inherent 

uncertainty are considered. 

Analysis  

Assessing the impact of terminal conditions in long range GEP for 

electric utilities involves recognition of the inherent assumptions and 

factors mentioned above in both the modeling and computational planning 

stages. The modeling step requires capturing explicitly the factor(s) 

of interest — as in the modeling of demand uncertainty by Borison, et 

al. [19821. However, realistically modeling all critical factors and , 

their intricate interactions is such a challenge that traditionally 

empirical studies employing parametric variation have been substituted. 

Also, modeling effort in this area is dependent upon the GEP approach 

employed. 

Some preliminary studies have been performed using data represen-

tative of a large Southeastern utility. The implementation is based 

upon the GEP mixed integer programming approach developed previously by 

the author (see Ammons [19821). As a brief overview, the model is 

given as follows: 
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where 

	

yj 	= zero-one valued integer variable indicating whether unit j 

is to be constructed 

xjit  = operation level of unit j in interval i of period t 

	

f. 	= sum of discounted fixed costs (taxes, maintenance, etc.) 

associated with unit j over the planning horizon 

V jt = discounted coefficients of quadratic production cost 

function for unit j in period t 

hit 
= number of hours in interval i of period t 

P
it 

= power demand level in interval i of period t 

L
jt 

= lower bound on production level on unit j in period t 

	

jt 
	= upper bound on production level on unit j in period t 
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= availability factor for unit j in period t, 0 4 a. < 1 ajt 	 jt 

= portion of capacity reserve margin required when peak 

demand occurs 

P
t 	

= peak demand during period t 

S
t 	

= construction budget funds unused in period t, S0  = 0 

r
t 	

= short term rate of return for period t 	 4 

cjt 
= construction funds required for unit j in period t 

B
t 	= additional construction budget funds available in period t 

LOLP
t
({y}) = the loss of load probability of system {y} during 

period t 

LOLPt
_m
ax = the maximum allowable loss of load probability during 

period t 

= set of indices belonging to mutually exclusive projects, 

e.g., generalized upper bounds, system structural 

constraints. 

P is a mixed integer nonlinear programming problem with a quadra-

tic objective function and linear and nonlinear constraints. In the 

objective function (1), to be minimized is the discounted sum of fixed 

and operating costs associated with the expansion projects that are 

constructed. Operating costs are quadratic as experienced in industry 

(see Kirchmayer [1958]). Constraints (2) assure demand satisfaction 

for every interval of the load duration curve. [The load duration 

curve is a familiar representation for system demand during a time 

period, where demand level is shown as a function of amount of time the 

load is incurred during the period, a set of (hit' Pit ) points. For 

more detail, see Anderson [1972]1. Constraints (3) insure that unit 

operation meets capacity bounds. Reserve margin, or the 
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assurance that enough capacity exists on the system to exceed peak 

demand when it occurs, is expressed in constraints (4). Construction 

budget limitations are explicit in (5). Constraints (6) represent the 

requirement that the system reliability, as measured by the loss of 

load probability, is guaranteed through the expansion schedule. Final-

ly, constraints (7) prohibit a prospective unit from being initiated in 

more than one year. 

Using a Benders' Decomposition approach, the model was implemented 

on a CDC 70/74-6400 as reported in the thesis. A base problem was 

constructed of 123 existing generating units and 25 potential expansion 

projects with 10 generalized upper bounds. Studies were performed over 

a planning horizon of 20 years. The base problem used twenty pcints to 

approximate the load duration curve points of 
(hit'Pit).  Criteria of 

0.10 was used each year for loss of load probability, (0.05) * (peak 

load) for expected deficit, and 0.25 for reserve margin. For the base 

problem, the inflation rate for every time period was set at 0.10, with 

short term rate of return on surplus construction funds being 0.09 for 

each time period. The long term rate of return used to discount all 

costs to the present was set at 0.12. For all test problems the size 

of the base problem, the core requirements were approximately 82k deci-

mal words. 

Because demand is the forcing function in GEP, issues regarding 

its representation, associated uncertainty, etc. must be acknowledged. 

Aggregation of demand representation is a significant issue, especially 

when one considers the tradeoff between computational requirements and 

accuracy of forecasts at the end of the planning horizon. Sawey and 

Zoraster [1981] have reported the impact of demand aggregation on unit 
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mix solution. For this base the problem, it was expected that as the 

number of points decreased, the total costs would be overestimated but 

that solution time would decrease. As Table 1 shows, the first antici-

pation was confirmed but the second was not. Hpon.eXamination of the 

results, the increase in solution time as the number of points decreas-

ed might be explained by convergence properties of the procedure. 

Identical optimal expansion schedules were obtained in each case. 

However, no change in optimal expansion schedule was obtained when 

Av4.1' the short rate of return in the base problem was varied from 0.00 to 

0.09. Similar results were obtained for parametric variation of the 

discount rate. For levels of inflation higher than 10%, no feasible 

solution could be found to the original problem. 

As anticipated, varying the length of the planning horizon yielded 

different optimal solutions. Table 2 shows the effect of varying the 

number of years in the planning cycle on execution time and solution 

value. As may be seen in Figure 1, the same construction schedule was 

obtained for planning horizon lengths of 9 anbd 10 years, while differ-

ent schedules were obtained for runs of 14 and 20 years respectively. 

Choice of additions seemed to follow logical tradeoffs between fixed 

and variable costs while respecting construction budgets. 

Summary  

CEP is an expensive and complex task for electric utilities. 

Planning decisions are based on results from intricate analytical 

models which attempt to capture key components of the generating 
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Table 1. 	Effect of Varying the Number of Points Used to Represent 
the Load Duration Curve 

BASE 
PROBLEM 

NUMBER OF POINTS 5 10 20 

Total executive time (cpu secs) 	89.744 84.041 79.159  

Optimal solution value(V i ) 	48,764,542. 48,061,484. 47,752,229. 

(Vi—V20)/V20 * 100% 2.1% 0.6% 0.0% 

Number of iterations run 3 3 3 

Execution time requirments (cpu secs) 

Problem initialization 2.540 2.648 2.599 

Initial feasible solution 37.638 38.369 35.460 

Master problem solution 50.156 43.132 40.783 

Subproblem solution 1.579 2.075 2.342 



Table 2. Effect of Varying the Number of Years in the Planning Horizon 

NUMBERS OF YEARS 9 10 14 

BASE 
PROBLEM 

. 	20 

Total execution time (cpu secs) 76.632 94.207 108.183 87.775 

Optimal solution value (V i ) .22358912x(10) 8  .24687944x(10) 8  .34105119x(10) 8  .4775229x(10) 8  

Number of iteration run 1 1 3 3 

Execution time requirments (cpu secs) 

Problem initialization 2.400 2.2400 2.5680 2.4240 

Initial feasible solution 6.1350 8.1360 17.6400 39.7910 

Master problem solution 69.0800 82.7630 81.5150 42.3920 

Subproblem solution 0.2810 0.3207 1.5280 2.6320 



environment. Included in these models are the inherent assumptions and 

crucial interrelationships described above, which impact critically on 

the "optimal" expansion schedule. Some of these factors may be expli-

citly included in the GEP model, but a more common approach is to per-

form parametric sensitivity analysis at a computational price. For 

illustration preliminary empirical results were presented for some 

simple one factor variation studies. 
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