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SUMMARY

A model is developed to describe the mean output of a group of
machines or work stations which are arranged in series and subject to
breakdowns or interruptions, and the effects on this output of varying
the amount and location of storage space between the work stations,

The model assumes nc runouts in the initial supply, exponentially
distributed service and repair times, Poisson distributed bréakdown ar-
rival times, and immediate removal of material from the system on com-
pletion of service at the last station. The system is considered as
a steady state queueing process, and material moves through the series
of stations in order. No unit may leave the system until it has com-
pleted service at all stations.

General expressions are derived for determining the mean output
of a two machine series with any amount of in-process storage capacity.
In this case it is found that Pn, the steady state probability that
there are n units of material in the storage space betweam the two
machines, is equal to Po’ the steady state probability that there are
no units in this space, multiplied by a ratio which has been raised to
the nth power, This ratio is the ratio of the product of the mean pro-
duction rate of the first machine when it is producing and the propor-
tion of the time it is not broken down {unity minus the ratio of its
mean breakdown rate to its mean repair rate) to the same product for

the second machine. This ratio must be less than unity because of the
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assumption of a steady state. This relation holds for any value of
n and for any capacity of the storage space.

No general expressions were derived when there are three or
more machines, but a procedure is developed for writing the specific
expressions for any specified number of machines and capacity and
arrangement of storage space. Specific expressions are derived for
the case of three machines in series and all possible combinations
of five or fewer units of storage space.

The rapidly increasing complexity of the expressions as the size
of the system increases suggests that economical application of the re-
sults may be limited to fairly simple systems,

It iIs suggested that the procedure developed may be of use in
the development of future decision rules for coptimum in-process storage

capacities and arrangements,



CHAPTER 1
INTRODUCTION

Background.--With the advent of production line and assembly line manu-
facturing methods in the past century, problems have arisen in arranging
systems of.facilities and furnishing equipment to accommodate a complex
manufacturing process which is subject to interdependence among the
elements of the system and to varving conditions imposed upon it, some
by design and some by chance. Many graphical and analytical techniques
have been devised to assist in designing and evaluating such systems;
perhaps the most familiar are the Gantt chart and its modifications, the
use of scale models and templates in layout work, and the conventional
methods of machine shop and production estimating. These methods have
proved highly successful in industry, as is witnessed by their contin-
ued widespread use more than half a c¢entury after their introduction.
They do, nowever, have some fundamental limitations. One of the most
important of these is that, while the methods describe the situations
under normal conditicns and can accommodate most of those changes that
are intenticnally imposed, they do not consider random or chance fluc-
tuations within the system., In actuality, of course, such systems are
dynamic in nature and involve continuous small changes. The traditional
manner of handling these small changes is to allow a straight percentage

or "safety factor" to provide for them.



More recently, particularly since World War II, efforts have
been made to evaluate the effects of these chance fluctuations. This
work has largely fallen into two categories. The first is that of
system simulation; this approach is often used where the problems are
too complex or cumbersome to be handled in a mathematical model at a
reasonable cost in time or money and when full-scale manipulations of
the system are not feasible. The simulation may be physical, numerical,
or by some other means such as by an analogue computer,

The second approach, and that used in this study, is that of
the mathematical analysis of congestion. The early work in this area
was done by Erlang (1) in the 1920's on the problems related to the
switching of calls in a large telephone exchange. More recently this
approach has been applied to many other problems, and the general area

of knowledge has come to be known as "queuing'" theory.*

The Specific Problem.--When a group of machines or work stations is ar-

ranged in serles as in a normal production line, the entire line becomes
interdependent in the serdse that a malfunction, breakdown, or other dis-
ruption at any station can disrupt the entire system. This can happen
in two ways: the stations following the stopped station can run out of
work while those before it can be "blocked," that is, they have no place
in which to dispose of their finished material and cannot undertake more
work until the path is cleared. In either case the consequence is lost

producticn time.

*Other approaches (which were not used in this study) have also
shown considerable success. Among these the most widely known are vari-
ous modifications of the "critical path" technique.



Part of the cost of this lost production time is unavoidable.

At the present state of technology, machinery, even with the best of
maintenance, is subject to breakdowns., Even if machinery could be

built that would never break down, no one has yet proposed a workable
way tc eliminate all the disruptions and irregularities inherent in

any activity where the human element is present, although much progress
has been made, particularly in the area of automated production facili-
ties. It may be, however, that some of the effects of these occurrences
can be minimized. The effects are, again, the blocking of stations be-
fore the station which is stopped and the run out of work of theose fcl-
lowing it. It is the specific objective of this study to develop a
mathematical model which, in certain cases and within specified limi-
tations, will describe the output of a series of machines subject to
breakdowns and interruptions, and will show how varying the amount and
location of in-process storage spaéé will affect this output. The model
may be useful in further studies for developing decision rules for
economically optimum arrangements of facilities.

In the remainder of this thesis, in order to provide more con-
cise terminology, the word "machine" will be used to describe "work
station" regardless of the physical arrangement of the station; and
the word "breakdown" will be used to indicate "stoppage or interrup-
tion." This should present no difficulty if the assumptions regard-

ing the nature of the distributions ¢f "breakdown," repair *times, and

operation service times are carefully noted.



General Considerations.--This study is not an engineering study to

determine the output of actuazl manufacturing plants, but is instead
intended as an analytical attempt to develop a mathematical model which
will approximate certain characteristics of such plants. As such, it
is subject to many limitations, and many real features of such plants
must be neglected in order tc provide expressions which may be solved
with any reasonable amount of effert. Certain of these limitations are
concerned with the distributions assumed for service times, arrival of
breakdowns, and repair times. These are explained in Chapter III.
Others will be mentioned in the following paragraphs.

A characteristic of machines in series 1s that each machine must
have an average output rate less than or equal to that of the machine
immediately following it. If this were not so and the system were run
for a long time, there would eventually be a large quantity of material
which had been finished by one machine waiting for service by the next.
If material were not regularly removed from the system, this amount
would continually increase, and, in theory at least, would eventually
reach infinity. The normal procedure (2) is to combine the operations
so that the ﬁime needed at each station is as close as possible to the
longest operation time so that faster operations will not be blocked
by slower ones. In most cases it is impossible tc "balance" the line
exactly in this manner and the stations capable of faster coperation
must reduce thelr average output to that of the slowest station. This
utilization of less than full capacity leads to real and significant
costs ("balance loss"}, but these costs are not considered in this

thesis.



Another limitation of the model is that it deals only with the
steady state behavior.of the machine system. In effect this requires
that the system has been running for a considerable period of time and
has settled into steady behavior. This precludes consideration of lead
times in setting up machines in order or of any other feature of the
process which is dependent on the length of time since the process was
started.

In practice there are, of course, many causes of interrupted pro-
duction, including such things as actual breakdown of machinery, tool
changes, temporary absence of the operator, and many others. The model
here assumes that all of these causes of "breakdowns" produce a net
result which can be characterized by a single Poisson distribution, and
that the times required for restoration of service can be described by
a single exponential distributicn.

In effect, the model descrikes an i1dealized process where all the
assumptions mentioned are satisfied, in which no machine produces faster
than the machine following it, and which has been operating continuously
for a long enough period of time to have settled into a steady behavior

independent of conditions which existed when the process was started.



CHAPTER II
LITERATURE SURVEY

A search of the literature indicates that considerable work has
been done in areas related to the topic of this research. One of the
areas most thoroughly studied is that of the prcblem of machine inter-
ference., This problem has been studied by Jones (3), Palm {4), Benson
and Cox (5), Naor (6), and others. The problem is similar in that groups
of machines are subject to random breakdown or stoppage, bui the machines
work independently or in parallel rather than in series. Loss beyond
that time required to repair a machine arises because there may be more
machines stopped at one time than there are repairmen . available to serv-
ice them. The stoppage of one machine can affect the producticn of
another only by reducing its probability of immediate service if it
should break down. Solutions are given in terms of overall production
from the groups of machines and of average number of repairmen occupied
or per cent utilization of repairmen's time for different assignments of
repairmen to machines.

A problem more closely related to that considered in this thesis
is that considered by Jackson (7). He assumes a system of k service
stations 1n series and allows there to be r different identical serv-
ers (machiqes) at the 1" station, each of which can service incoming
unjts. Service times are exponentially distributed with mean By at

the ith station, and queues of any length are allowed before each



station. Units arrive at the first staticn at random with mean arrival
rate X and proceed through the system where they must be served by one

of the servers at each station in order. The solution is limited to the
A

.p,.
iri
the queues before each station and derives the steady-state solution

steady state where <1 for all 1 . He studies the behavicr of

P(nl, Mgy weey nk) = P(0) TT b(nj)

where

.EiT (ﬁ;)nj, for nj < r,

J
b(nj) =
I, Ns-TI.
= ()7 )7 Y fer gy 2 I3,
SIS Mo R
th

n; is the number of units at the j  station, and P(0) = P(0, O, ...,0)

is found from the normalizing equation
Zp(nl, na, «ony nk) = l

in the following manner. -

The b(nj) are all positive and E: b(nj) is a convergent

ns=o
series (j =1, 2, ..., k); hence
o o co k k o
LoLt LLTeepl = T LY »ep),
n,=o ngo n=o J=1 J=1 nj"—‘o
whence writing
P
}: b(nj) = Aj, J=1, 2, +oay ky



it follows that

k
P(0) = ] azt.
j=r

The main differences between Jackson's problem and that considered in
this thesis are that Jackson is concerned with the behavior of the gueues
in the system, the in-process inventory and not the output, which in his
steady-state solution is bound to have the same average rate as the input,
He is not concerned with the effects of breakdowns and does not consider
them, instead dealing with the system in normal operation.

He alsc makes some assumptions different from those which will
be made here. He allows unbounded queues in front of every station,
thus eliminating bklecking, and more than one service channel at each
station. He also assumes Poisson input to the system, while here it
will be assumed that no runouts are allowed in the initial supply. This
is often the case in industrial situations.

Hunt (8) considers three situations of interest. He treats
service stations in series and allows blocking, but does not consider
breakdowns. As measures of effectiveness he uses the average number
of units in the system (again the in-process inventory) and maximum
possible utilization in the steady state; which 1s defined as the ratio
of mean arrival rate to mean service rate. Poisson arrivals teo the
system and exponential service times are assumed. Since in the steady
state of such a system the average output rate will be the same as the
mean input rate and since the denominator of the utilization ratio is

known, the output can be readily determined.



Hunt's first case is the same as that treated by Jackson; where
unbounded queues are allowed before each station. As before; no block-
ing can gccur, and in the steady state which exists if the mean input
rate is less than or equal to the mean service rate the cutput equals
the input. In Hunt's terminology this is expressed by saying the maxi-
mum possible utilization is unity.

The second case is that in which an unbounded queue is allowed
before the first station, but no queues are allowed before any others.
Hunt finds expressions for the maximum possible utilization for two and
three stations in series with unequal service rates and actual values
of the maximum possible utilization for two, three, and four stations
when all service rates are equal. The expressions for unequal service
rates are:

For two stations,

For three stations,

where

= + 4 4 3 + 3 + 122 2 i
N bk gk, lJ'3)(”1 U PP S ST

o B+ o el 2 e pd), and

D o= pdu2 +pp_ +u®) +pd(ud + 5+ 5 02+ 38 4
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where By is the mean service rate at the ithlﬁtation. For the special

cases where all service rates are equal, the values of are:

pmax

For two stations,

Pmax = % b
For three stations,
p-max - %% )
For four stations,
Prax = 0.5115 .

Hunt's third case allows an wnbounded queue before the first
station and finite queues before each of the remaining stations. This
system does not guarantee the absence of runouts in the initial supply,
and it allows unlimited storage space before the first machine. Except
for the‘assumptioq_of Poisson input and the lack of consideration of
breakdowns, this is the problem considered in this thesis. For two

stations, Hunt finds the maximum possible utilization

qti +1

. Bylp, = - ug )

max gta2 gte
By 7By
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where g - 1 1is the length of the queue allowed before the second
station. For three.stations only the case where qgueues of length one
are allowed to form before the second and third stations and where all
service rates are e€qual is considered. The maximum utilization is
given as approximately 0.6705,

It might be noted that Hunt has not derived a general expressicn
for N stations in series except in the first case, where no blocking
can occur. Instead, he has proceeded in a step-by-step appreach, adding
one machine at a time, and it may be that this is the only possible
appreach., It is also worthwhile to note,ﬁhat he states

In the general N-stage problem, blocking occurs more freguently

in the first stage than in any succeeding stage, and the maxi-

mum possible utilization for the first stage is the maximum pos-

sible utilization for the entire system. In the remainder of

this work we shall refer to this quantity as Prmax’ the maximum

possible utilization, but it should be remembered that Pmax

really refers only to the first stage.
While this statement is not supported by analysis it seems intuitively
correct, and can logically be extended to cases where breakdowns are
considered and where an infinite supply to the first stage is assumed.
This is so because blocking can occur at all stations except the last
and blocking at any station will affect all preceding stations. Since
a steady state is assumed and no material is allowed to leave the sys-
tem until it has passed through all stations, the average output of
any machine will be the same as that of any other. It is therefore
clear that the overall output of the system will be the same as the

average output of the first station during the time it is neither

blocked or broken down.
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White and Christie (8) consider the case where there is a single
service station and more than one priority class of units arriving for
service, each class having its own Poisson arrival rate and exponential
service rate. When a unit of higher priority class than the unit in
service arrives it preempts the service facility and the unit in serv-
ice is returned teo the head of the queue for items of its class, where
it must wait until service is completed on the preempting unit, or
even longer if any other units of higher priority arrive in the mean-
time. A unit may therefore be repeatedly displaced by units of higher
priority classes. The authors point out that a regular service faci-
lity servicing only one type of customer, but subject to breakdown,
can be considered as a system of two priority classes with the break-
downs treated as a higher priority class with preemptive privileges.
They make the assumption that the arrival process of breakdowns is
cut off for the duration of repair periods so that "no latent break-
downs can build up at the facility when it is under repair.” The sys-
tem can then be treated as one of two priority classes with z maximum
of one higher priority unit present at a time. They derive steady
state equations for the queue length and average time in the system.
In this steady state the output would again have the same average rate
as the input. The case of several such stations in series with only
finite queues allcwed is not considered.

A valuable feature of this work is the author's discussion of
the effects of preemption on service time distributions Since some
units are preempted they have to enter service repeatedly, and there

is a possibility that the exponential service rates for each class in



isolation might not characterize the situation when several classes
are considered together. The critical assumption is, of course, that
the probability of a unit in service completing service in the next
interval At 1is a constant regardless of the time the item has been
in service and the gueue length. One might intuitively expect units
requiring long service times to be overrepresented since they have a
greater probability of being preempted, and the mean of the distribu-
tion could be expected to depend on queue length, since a long queue
could imply that the unit at the head of the queue is likely to be one
requiring long service which has been displaced repeatedly (and needs
as much time to complete service as it did on its first entry).

The authors consider the extreme possibilities. At one extreme
all units are alike and the exponential service distribution results
from the unpredictability of the server, as in the case of waiting for
a particle from a constant radiocactive source to strike or for-an in-
different clerk to stamp a form. In this case, obviously all units
have identical service time characteristics whether entering for the
first time or after preemption. The other extreme is that the server
operates at a constant rate on units whose intrinsic service require-
ments are exponentially distributed. This extreme has two alternatives,
depending on whether service is started at the beginning of a unit each
time it reenters or whether it is resumed at the point where it was
interrupted. The authors show that in the latter case the service
time characteristics are unchanged, but in the former case the mean of

the service time distribution does in fact depend on queue length.
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To meet the requirements of the critical assumption, it is necessary
that all the entries from each queue length have exponentially dis-
tributed remaining service times independent of queue length. They
show, however, that the service time distribution averaged over all
queue lengths is exponential, and they use the inverse ¢of this dis-
tribution, the service rate of the lower class in isolation minus the
arrival rate of the higher class, as the effective service rate of the
lower class when the two are considered together. For the purposes of
this study this should not be a critical point, sinc¢e in most indus-
trial situations one would expect service to be resumed at the point
where it was interrupted.

Bedworth (10) has attacked a problem similar to the cne con-
sidered here, although his approach is one of simulation rather than
analysis. He has designed and built a simulator tc simulate a sys-
tem of four machines in series with three interconnecting conveyors,
all subject to breakdown, and an infinite supply to the first machine.
Distributions of breakdowns and of service times are taken as desired
and this information is fed into the simulator on punched paper tape.
Counters keep track of the number of units in each queue and con-
tinuous recordings of the cutput and the queue states can be made on
an oscillograph., A test program is provided ito assure proper opera-
tion of the simulator before actual programs are run. The simulator
effectively employs a Monte Carlo technique, giving a continucus re-
cording of a queuing problem having been fed punched tapes prepared

with the probability distributions desired by computers. The
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information sought is of the same type as that sought here. The dif-
ferences are that the approach is one of simulaticn, that no limits

are set on the size of the QUeues, that no more than four machines in
series can be considered, and that Bedworth's simulator can use any
distributions desired, even empirical distributions, while the analytical
solution attempted here will be limited to Poisson arrivals of failures

and exponential repair times and service times.



CHAPTER III
THE MODEL

Description of the Process.--A group of machines is arranged in series

and raw material is fed to the first machine. No runouts are allowed
in this initial supply, so the first machine will always have material
when it is otherwise able to undertake work. Once a unit enters the
system it must proceed through the entire series ip order. Finite stor-
age space 1s provided between each two machines. When a unit finishes
service in a machine it proceeds immediately to the next machine where
it commences service at once if the machine is in operating condition
and there are no units ahead of it; otherwise it must wait in a queue
in the storage space provided. When a queue reaches the capacity of
its storage space the machine feeding into it is shut off so that no
machine may complete a unit when there is no room in which to dispose
of it. The capacity of each storage space includes the space repre-
sented by the unit which may be in service in the machine following
that storage space. The last machine in the series can always dispose
of its production, so it is never blocked. The service times in each
machine are exponentially distributed.

Each machine is subject to random bfeadkdown, and the arrival
times of breakdowns are Poisson distributed for each machine and thus
are independent of the number of units waiting, number of other ma-

chines broken down, or any other considerations. A machine may break
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down while working or while idle but operable, but the Poisson arrival
process of breakdowns is cut off while the machine is broken down, so

that no latent breakdowns build up while the machine is under repair.

The repair times for each machine are exponentially distributed.

In order for a steady state to exist it is also necessary that
the average.production rate of each machine multiplied by the mean pro-
portion of time that it is not broken down be less than or equal to
the average production rate of the following machine;, multiplied by the
mean proportion of the time it is operable. Otherwise there would be
no time-independent solution, but instead the queue between the two
machines would continuously increase if unbounded. If it were bounded
it would tend to remain at its capacity whenever the first machine was
not broken down, and the first machine would complete a unit each time
the second machine did. This assumption is also made. This is similar
to the requirement, mentioned in the introduction, that all machines
must reduce their output to that of the slowest machine. Here, though,
we allow faster operation as long as the effects of breakdown reduce
the overall output of the faster machines to that of the slowest one.
The maximum production possible from the system is the lowest value
of production rate times the proportion of time operable when all ma-

chines are considered.

Method of Attack.--Since each machine is either broken down or operable,

there are 2" possible arrangements of broken down and operable ma-
chines when n machines are arranged in series; the probability that

any particular combination exists at any given time is independent of
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the number of units waiting before any of the machines and is in fact
dependent only on the breakdown and repair rates. The states of the
individual machines may be further classified to indicate whether
they are blocked or run out of material.

The overall production rate of the system may be determined by
analyzing the behavior of the queues between the machines to determine
the proportion of time that runout and blocking will occur. The proba-
bilities of increases or decreases in queue lengths from any given
lengths, given the conditions of all the machines, may be calculated,
and since the probabilities of the machine conditions are known and
independent of queue states, the total probability of any transition
in queue state may be expressed as a sum of conditional probabilities.
The derivatives with respect to time of the queue state probabilities
may then be set equal to zero for the steady state, and the resulting
expressions solved for all queue state probabilities in terms of any
one of them. The final absclute probabilities are then determined
by use of the normalizing equation which requires the sum of all prob-
abilities to be unity. This general procedure will be followed and

explained in detail in the work which follows.

Notaticn.~-~The following notation will be used:

Bs = the mean service rate of the ith machine
A, _ .th s
i = the mean breakdown rate of the i~ machine
M, = the mean repair rate (reciprocal of mean repair time)

of the ith machine
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A,
Ri = ﬁl = the mean proportion of time the ith machine is
i
broken down
. s . .th
n, = the number of units waiting in the queue between the 1
and 1 + lSt machines
: ) . th
Ni = the maximum capacity of the queue between the i and
i+ lSt machines
E = the queue state where there are n, units

nl,nz, .ll, nz_.l
waiting in the first queue, n, units waiting in the second queue, ...,

and n._, units waiting in the z - lSt queue; n, = 1,2, veey Ni and

i=1,2, vve, z - 1 when there are z machines in the serles.

In addition, the condition of all machines is shown by the ma-

chine condition symbol C(ml momo . mz); m. € 1, Oy by x, my

describes the condition of the ith machine, and

1 = normal operation

0O = run out but not broken down
b = blocked but not broken down
x = broken down .

The following characteristics of the machine conditions may

be seen:
(a} m, = O is impossible, since the first machine is never
run oute.
(b) m, = O (i > 1) only if the queue is in state
En n n with n, = 0.
1’ ..., i-l’ i’ '.', nz_l l 1
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(c) mz = b 1is impossible since the last machine is never
blocked.
(d) mo = b (i < z) only if the queue is in state
E n’ N with n, = N..
nl, sesy i, "oy z-1 1
(e} m. = b when m, = 0 1is impossible because a machine
i i+:

cannot be Rhlocked and the next machine run out simultaneously.

(f) m. = 1 (1 <i<z) only if the queue is in state
En »osery M5 Myy eeey 0 with ny_, # 0 and M1 # Ny-

(g) mo= 1 only if the queue is in state
Enl’ o0, with n #N .

(h) m, = 1 only if the queue is in state
Enl’ e with n,_, # O.

(1) m; = x 1is possible for all values of i and in any

queue state.

Figure 1 1is a schematic diagram of the model.
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CHAPTER IV
THE TWO MACHINE CASE

Transitions.--It will be assumed for the present that the capacity of
the gueue between the two machines is greater than two units. This re-
striction will later be relaxed. It may immediately be seen that only
machine conditions C{11), ¢{10), <(1x}, cC{x1), c{bl}, C{bx},
C{x0), and C(xx) can exist, since the first machine never runs out,
the second is never blocked, and C(bQ) is impossible. Furthermore,
given any queue state Enl’ only four of these eight machine condi-
tions can exist; one corrésponds to the first machine being broken down,
another to the second, a third to both, and the fourth to neither broken
down. Since the probability of a machine being broken down is independ-
ent of the gueue state we can list the probabilities of the various ma-
chine conditions given the queue state. These are tabulated in Table 1.

Table 1. Possible Machine Conditions Given Queue States
with Their Probabilities

Queue State Probability of

E, Eni(l <ny; $N,-1) EN1 Machine Condition
c{10} c(11) c(bl) l-R, -R, +RR,
c(1x) C{1x) C(bx) Ra - R1R2
C(x0 C -

(x0) (x1) C(x1) R -RR
C{xx) C{xx) C{xx) R,R

12




23

Given the queue state and machine condition, only certain tran-
sitions in machine condition are possible, and the probabilities of
these transitions can be calculated. It is first noted that during a
time interval At, the probability that the ith machine will complete
a unit is B ot if it is working on a unit at the start of the interval,
the probability that it will break down is AiAt if it is not broken
down, and the probability that it will cqmplefe repairs 1f it is broken
down is MiAt. In calculating the transition probabilities, it is as-
sumed that the probability of two or more breakdowns, completions of
repairs, or completions of service during time At 1is negligible, and
these probabilities are ignored. Thils assumption is implicit in the
assumption of Poisson and exponential distributions, and is here justi-
fied by a quotation from Saaty (11), referring to a Poisson process with
parameter \:

+ . « we note that, during a time interval ¢, the probabilit¥
of no arrivals is ,~* and that of a single ival i At
o gle arrival is y3o "3

hence the probability of more than one arrival is

- - ! 12
1-(e}‘t+)\te)‘t) = 1~ {[1-xrt+ ;:‘ - o]

2
+at[1 - At + 2 ==+ 11
2!

2
.L?\'_t)_.}. Er— O(ta)
21

a function which behaves at t=.

;

Thus if t is small, terms with t® are negligible compared
with terms without t or with the first power of t. Hence for
small t the prebability of more than one arrival is negligible.

« « «y let us assume these properties, i.e., that the probabil-
ity of a single arrival during a small interval At is XAt and
that of more than a single arrival during At 1is negligible; then
we can derive the Poisson distribution, which of course has these
properties.
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To illustrate the calculations, consider the case where the
gueue is in state Enl with n, greater than 1 and less than Nl-l.
It is first‘noted that of the eight possikle machine conditions, it
is impossible to reach C(10), C(bl), C(bx), or C(x0) with only one
completion of service, and the probability cf two or more comple-
tions in time At 1is considered negligible. Considering the remain-
ing four machine conditions and starting in C(ll), in order to remain
in C(11) neither machine may break down and the prohability of this
is (1 - A 8t)(1 - Agat) 21 - AjAt - AjAt. To accomplish a transition
to C(lx), the first machine may not break down but the second must,
and this probability is (1 - AiAt)(AEAt) = A at. The probability of
a transition to C(x1) is (A At)(1 - AAt) = Aght, and to Clxx) it
is (A At)(A At) = 0, The sum of these probabilities is unity, which
provides a check. Additional sample calculations for starting queue
state En:L with 1 < n,K N, -1 and starting machine conditions C(lx),
C(x1), and C(xx} and for starting queue state E, with starting
machine conditions C{11) and C(l1x) are given in Appendix A. By
similar calculations the machine condition transition probabilities
in Tables 2 through 6 were derived.

Table 2. Transition Probabilities from
Starting Queue State EO

Starting Final Machine Condition
Machine c(11) c(10) Cc(1x) C(x1) C(x0) C{xx)
Condition
c{10) B At LA At-A At ANt 0 A, at 0

7 -, At
c{1x) 0 M, At 1-AAt-MAt O 0 Ay At
C(x0) 0 M, At 0 O 1-M,At-A At AgAt
C{xx) 0 0 M, At 0 My At 1- MyAt - MyAt




Table 3., Transition Probabilities from

Starting Queue State E1

ﬁzii§igg Final Machine Condition
i C
Condition c(11) €{10) C{1x) C(x1) (x0) C(xx)
c(11) l—Alﬂt—Azﬂt-pzAt bt Aot A1At 0 0
C(1x) M, At 0 1 - AyAt - MyAt 0 0 A, At
C(x1) M,at 0 0 L - MyAt - AgAt- poAt  poat Ayat
C(xx) 0 0 M, At M, At 0 1 - MjAt - M At
Table 4. Transition Probabilities from Starting
Queue State E (1 <n <N -1)
Starting Final Machine Condition
Machine c(11) Cc{1x) C(x1) C{xx)
Condition
C(11) L - A At - AjAt A At A At 0
C(1x) My At 1 - AJAt - Myat 0 A Bt
C{xl) M, At 0 1 - M At - AyAt ApAt
C (xx) 0 M,At M, At 1 - MAt - M At

¢



Table 5. Transition Probabilities from

Starting Queue State Ey, -1

zzzizézg Final Machine Condition
Condition c(11) C(1x) C{b1)  C(bx) C(x1) C{xx)
C(11) 1 - A At - ANt - b, At Aot _ by Ot 0 A At 0
C{ix} M_ At 1 - Ast - MAt - p At 0 p, Ot 0 A At
C(x1) M, At 0 0 0 1 - MAt - At Aot
C{xx) o M, At 0 0 M At 1 - M,At - MyAt

Table 6. Transition Probabilities from

Starting Queue State EN1

Starting Final Machine Condition
Machine
Condition c{11) c(1x) C(b1) Clbx) C(x1) C(xx)
C{b1) Bt O 1 - AAt - AgAt - poAt A At A At 0
C(bx) 0 0 Mt N . 0 N At
C(x1) 0 0 M, at 0 1 - MAt - A At A At
C{xx) 0 0 0 M, At M, At 1 - MAt - MoAt

9¢
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The conditicnal probabilities for all possible transitions,
given the initial queue state and machine condition, have now been
derived. The machine conditions must now be eliminated sc that the
transition probabilities between queue states may be determined. In
transitions to machine conditions where the first machine is blocked
or the second is run out, the resultant queue state is fixed. In some
other transitiong the resultant gueue state i1s also fixed, as for ex-
ample in the transition from E, and C(xl} to C(xl}. Here the
gueue state must remain E, since the first machine did not complete
repairs and could not have completed a unit and the second machine has
net run out and so must still! be working on the unit that was in the
queue before the transition. In still other transitions there are two
or more possible resultant queue states, but their probabilities can
be calculated. It may be noted that changes of more than cne unit in
gqueue state involve terms of order (At)2 and higher, so their prob-
abilities are negligible.

To illustrate the methodrof calculating queue state transition
probabilities, consider the case where the initial queue state is El
and the initial machine condition is C(l1). The probability of this
machine condition, given El’ is, from Table 1, 1 - Ri - Ra + R1R2.
From Table 3, the possible machine conditions after transition are
determined, along with their probabilities. The transitions to C{11)

and C(x1) can result in queue states of E, or E the transition

2l

or E and the transiticn to

to C(lx) can result in E,s E 2

l,

C(10} must result in EO. Given that a transition to C(11) or C(xl1)
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has occurred, the probability that state E, resulted is (1 - u,At),
the probability that the first machine did not complete a unit, while
the probability that state Ez resulted is W, At Given that a tran-
sition to C(1x) occurred, the probability of state E1 resulting is
(wyot) (poat) + (1 - g at) (1 - pyat) 51 - pyAt - pyAt, the probability
of E_ 1is (poot) (1 - pat) = Byot, and the probability of E = is
(plat)(l - p2At) = p,At. Therefore, the probability of remaining in
state E  given that the initial conditions were E, and c(11) is
the sum of the probabilities of the transitions to each machine condi-
tion, each multiplied by the respective probablility that state E1
resulted given that the transition to that machine condition occcurred.

In this example, the probability of a transition to state EO is

p2dt, the preobability of remaining in E1 is

(1 - p,at)(1 - AAt - AAL - uPt) + (1 - p At - paAt)(AgAt)

+

(1 - p1At)(AlAt)

= 1 - pAt - At

and the probability of a transition to E, 1is

~

(plAt)(l - At AAt - paAt) + (plAt)(AEAt) + (plAt)(Alﬂt) TR

This process is then extended over the remaining possible machine condi-
tions in state Ei’ and the probabilities of the transitions from E1
to other states are derived using the principles of conditional proba-

bility.,
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By definition the conditional probability that an event, A,
will occur, under the assumption that a second event, B, has occurred,
denoted P(A|B), 1is equal to the probability that A and B occur
together, denoted P(A,B), divided by the unconditional probability of
B, provided that the probability of B is not zero. If it is zero,

P(A|B) is undefined. This definition can therefore be written

P(a,B) = P(A|B) P(B), so Z:P(A,Bi) = E:P(A|Bi) P(Bi) .
i i

The unconditional probakility of A, P{A), can be written

P(A) = E:P(A,Bi)

i
if the events Bi are exhaustive and mutually exclusive, that is, 1f
the sum of their unconditional probabilities is unity and the occurrence
of any one of them precludes the occurrence of any of the remaining

events at the same time. If these conditicns are met, then

P{A) = Z:P(A|Bi) P(Bi) .
{

Since there are four possible machine conditions in each queue
state and these machine conditions are mutually exclusive and exhaus-
tive, the absolute probability of a transition from any queue state to
any other can be expressed as the sum of the conditional probkabilities
for all four machine conditions that the transition in question will
occur under the assumption that a particular machine condition 1s in

effect at the start of the period At, each multiplied by the
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unconditional probability that that particular machine condition is in
fact in effect. For example, the transition probability from E1 to

E denoted Pygs is expressed

2’

= E: (pia | initial machine condi-
i=C(11),C(1x),C{x1),C(xx)

Piso

tion i) P{initial machine condition 1i).

Poo and Py, are calculated below.

Poo = (1-Ry-Ry+ RR)IL(1-N 1AL - Apat -pyat) + Apat(l - pgat) + Ajat]
+ (Rg R RIIMuAt + (1 -4 At -M,at) (1 -p at) + (A at) (1 -p,4t)]
+ (R, - RiRz)[M1At + 1 - M At - Ayat + AgAt]
+ (RR)L(MMAL)(1 - p at) + M At + 1 - M At - Mat]

Poo = 1 - R0t +Rp At = 1- u1At(l - Ri)

Py = (1 -R, -R +RR)[pat+ (Aat)(pat)] + (R- RR)(p 4t)
+ (R, - R,R,)(0) + (R R )p, at) (M at)

P, = KAt~ Rlp;at = pot{l -R)

As a check on the calculations, it may be seen that p_ _+ = 1,

e]a] pOl

=1 - pght(l - Ry) - p,at{1-R,),

Similarly, p, = kpat(l - Ry), py,

p12= [.Llﬁ‘t(l - Rl)’ and Pio + pll + p12 = 1.
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Upon extending this procedure to all other initial queue states
and machine conditions, the transition probabilities are determined to

be

1 - plat(l - Rl)

e
1l

00

p,At(l - Ry)

o
i

c1

N

1 - p,at(1 - R,) - pgat(l - Ry)

Nigsy
= - < -
Pry,ng-a pBAt(l RE) 1<n SN -1
= At{l - R
Pnl,n1+1 l'1'1 ( 1)
Py N = 1l-p at{l -R)
g2y 2 2

The transition probabilities between all queue states have now been
derived. They were, however, derived under the assumption that N1
is greater than two units. This restriction will now ke relaxed, and
it will be shown that this relaxation does not affect the probabilities.
First consider the case where N1 = 2, Here transitions starting in
E, and E_ (E, = ENi) are not affected and their probabilities are
the same as those where Ni is greater than 2. Transitions starting
in E, are affected, however, since El is now also ENl_lg and all
the machine conditions which could previously be reached from either
E, (Table 3) or EN1_1 (Table 5) can now be reached from E,. Using

the same procedure as before, the machine condition probabilities

starting from E1 are derived and shown in Table 7.



Table 7. Transition Probabllities from Starting

Queue State E1 when N1 =2

Final Machine Condition

Starting
Machine
Condition c(11) c(10) c(1x) C(b1) C(bx) C(x1) C(x0) C{xx)
c(11) 1 = AjAt - AgAt poAt Ay At byt 0 AgAt 0 0
- pzAt - pzAt
C(1x) M, At 0O 1 - AAt - MAt 0 p,At 0 0 AyAt
- ppit
C(x1) M, At 0 0 0 O 1 - MAt - MMt u oAt Ayt
- pyAt
C(xx) 0 0 M, At 0 0 M, At O 1 - MAt - MAt

[A
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By a comparison of Table 7 and Table 3 it can be seen that with
N, greater than two units, only machine conditions c(11), c(10),
C(1x), and C{xl) could be reached from E, and C(11), but with
N1 = 2, C(bl) can also be reached. The probability of remaining in
C{11) is reduced by W, AL, which is also the probability of a tran-
sition to C(bl). The probabilities of transitions to all other machine
conditions remain unchanged. The resultant queue state probabilities
for transitions to C(10) and C{xl) are unchanged, but a transition
to C(11) now fixes the queue state at Ei’ and EO and E; are
now the only possible resultant gueue states for transitions to C{lx},
since E, would lead to C(bx). The probability of E, resulting
from a transition to C(11} 1is now p,At, and of E,, (1 - pyAt).
The sum of the probabilities of all transitions to EO is now
Ot + (pzAt)(Azﬂt) = pgdt, as it was with N, greater than 2, and
similarly the probabkility of remaining in E1 remains 1 - plAt - paAt
‘and that of a transition to Ea remains plAt. By extending this pro-
cess to all the other possible initial machine conditions in E,, it
is found that similar changes occur, but that the total probabilities
of remaining in El, making a transition to Eo’ or making a transi-
tion to E, remain the same.

When N, =1 there are only two possible queue states, Eo
and E,, and machine condition C(11) does not exist. Passible
initial machine conditions in E_ are c(10), c{1x), C({x0), and
C(xx). In E_ they are C(bl), C(bx), C{xl), and C{xx). Again

1

using the same procedure, machine condition transition probabilities
-

starting from EO and El were derived and tabulated in Table 8 and

Table 9.



Table 8. Transition Probabilities from Starting
Queue State Eo when N =1

Starting Fingl Machine Condition
Machine c(10) c(1x) c(bl) C(bx) C(xl1) C(x0) C(xx)
Conditieon
c(10) 1 - A6t - AAt A At W At 0 0 A Bt 0

- p1At
C{1x) MyAt 1 - A\At - MAt 0 B At 0 0 A At

- ulAt

C(x0) M At 0 0 0 0O 1 -MAt - ANt -
C{xx) 0 M, At 0 0 0 M At 1 - MAt - M At

Table 9. Transition Probabilities from Starting
Queue State E when N, =1

1 1

Starting Final Machine Condition
Machine c(10) c(1x) c(bl) C(bx) C{x1} C{x0) C(xx)
Condition
C(b1) WAt 0 L - A At - A At At Ay At 0 0

- Bt
C{bx) 0 0 M, At 1 - AjAt - MyAL 0 0 A At
C(x1) 0 0 M, At 0 1 - MJAt - AAt poAt A At

- pyht

Cl{xx) 0 0 0 M At M At 0 1 - M At - MAt

143
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Upon examining the case where the initial conditions are EO
and C(l0), one may see that the resultant queue state will be E, when
transitions are made to machine states C(10), C(1x), and C{xQ), and
E, when transitions to C(bl) are made. The probability of remaining
in E0 given initial conditions of EO and C{10) 1is therefore
1 - AlAt - AEAt - ulﬂt + AEAt + AlAt =1 - plat, and when multiplied
by lr- R1 - Rz + RlRa’ the probability of C(10) given Eo’ it be-
comes (1 - p, at)(1 - R, - R, + Rle). The probability of a transition

1
C(x0) or C(xx) all possible final machine conditions result in queue

to E_ is (p.lm)(l - R, - R, + RR)). With initial machine condition

state Eo’ so the probability of remaining in EO in this way is
simply the sum of their original probabilities, Ry - R1R2 + RlR2 = Rl'
With initial machine condition C{1x), transitions to C(10) and C{1x)
lead to resultant gueue state Eo’ those to C{bx) result in El, and
those to C(xx) to E, with probability {1 - plAt) and to E, with
probability p,At. Upon multiplying these by Rz,' Rle, the proba-
bility of C{lx) given Eo’ and combining all terms, Poo is seen to
be p1At(l - Rl), the same as it was when N, was 2 or greater.
Similar calculations show that Po1 remains the same and Pio and

p,, are the same as le Nl'i and le’Nl when N1 is 2 or greater.
The gqueue state transition probabilities which were derived under the

assumption that N1 was greater than 2 are thus valid for all values

of Nl.

The Equations and Their Solution.--Letting Pn(t) denote the probabil-
ity that the queue is in state En at time +t, we write the equations

for the probabilities of each gueue state:
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p
N,-1,N;.
These equations are solved recursively for all state probabilities in

terms of PO in the following manner.

P(t+at) = P(t)[L - (woat)(1 -R)]+ Pl(t)(uzﬂt)(l - Rz)

Upon rearranging terms and taking the limit as At appreoaches zerc, the

result is

Po(t + At) - Po(t)

lim _ _ _
At o Y = Po(t) pl(l Rl) + Pl(t) pz(l Rg)
) d Po(t)
dt

The derivative with respect to time is set equal to zero, eliminating
dependence on time, and the time-independent or steady state probabil-

ities, denoted Pn, are then determined.
- P p,{l1 -RO+P p (1 -R) = 0O

w1 - R,)
P, = ——— p_,
1 LL2(1 - Rg) ©
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p,(1 -RD) "
Further recursive solutions will indicate that P = —————0 P
n o}
kol - Ry)

for all values of n. However, starting with the result that

w,(l - Ry 1
P = — Po’ an inductive proof is given to establish the
poll - Ry)

general case for all values of n including N, -

For any value of n greater than one, the derivative with re-

spect to time of n - 1, when set equal to zero, is

! = - =
pn-; = P Pn-z,n-1 + pn-l[pn—l,n—l 1]+ P Pn,n-1 0.
Then
T
———— Puf{l-R)+ —m——— Plp(l1-R)-p(l-R
b1 - Ry O TR Ry o et TR TR T
+ pn pa(l - Ra) = 0
and
n-g n-
5 po{1-R) p(1-R) py(1-R,) p(1-R)+p,(1-R)
2 - ———p + P
n pa(l _Ra) 0 pa(l -Rz) pe(l -RE) ) pa(l - Ra)
n-1 N n-1
b P’l(l - Rl) p P'l(l - Rl) I-l'l{l - Rl)
= - — + + ——————= P
n Ball - Ry) "o " py(l - Ry Po pa(l - Ry) o

Hl(l = Rl) ;

= P .
n p‘z(l - R2) ©
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The probabilities for all values of Pn in terms of PO for
any value of N1 may now be calculated, and the absclute values of all

state probabilities may be found by use of the normalizing equation,

Ny

Pp o= 1.

n=o
It may be noted that Ai and Mi do not appear in the expression for
queue state probabilities, but only their ratio, R; . It 1s not neces-
sary to know the exact values of Ai and Mi as long as Ri is known,
but it should be pointed cut that the model assumes that they are Pols-
son and exponentially distributed, respectively. When the queue state
probabilities are known the output of the system may be computed by the

procedure used in the example in the next section.

An Example.--Two machines are to be arranged in series. The first has
a capacity of 150 units per hour when operating, breaks down on the
average once every two and a half hours, and reguires an average of
15 minutes repair time. The second has a capacity of 200 units per
hour, averages a breakdown every hour and a guarter, and requires an
average of 15 minutes repair time. It is desired to determine the op-
timum storage capacity between the two machines. It has been established
that the cost of providing an additional unit of capacity will be jus-
tified if that unit increases the output of the system by at least three
units per hour.

It is seen that Ay = 0.4 breakdowns per hour and M1 = 4

repairs per hour, so Rj = 0.10. Similarly, Rp = 0.20. ps(1-R)= 135



units per hour and p (1 - Ry) = 160 units per hour, so the maximum

. . . pi{l - Ry) _
capacity of the system 1s 135 units per hour. ——— "~ = 0.844,
“'2(]- = Ra)
and the powers of 0.844 are listed below:
(0.844)% = 0.712 {0.844)5 = 0,428
(0.844)3 = 0.601 (0.844)6 = 0,361
(0.844)% = 0,507 (0.844)7 = 0,304

The queue state probabilities are now computed when N1 takes on

values of 1 through 7.

N, =1 N, =2 N, =3
_ 1.844 2.556
1.844 P = 1.0 0.712 0.601
2.566 P = 1.0 3.157 P = 1.0
P = 0.542 P = 0.391 P = 0.317
(0] O o]
P, = 0.457 P, = 0.330 P, = 0.264
P, = 0.278 P, = 0.226
P = 0.191
3
N, = 4 N, =5 N, =6
3.157 3.664 4,092
0.507 0,428 0.361
3.664 P, = 1.0 4092 P = 1.0 4.453 P, = 1.0
P = 0.273 P = 0.244 P = 0.225
o] 0 o]
P, = 0.230 P, = 0.206 P, = 0.190
P, = 0.194 P, = 0.174 P, = 0.160
P, = 0.164 P, = 0.147 P, = 0.135
P, = 0.138 P, = 0.124 P, = 0.114
P_ = 0.104 P = 0,09



N, o= 7
4,453
0.064
4,758 PO = 1.0
P = 0,210
o)
Pl = 0.177
P2 = 0.150
P, = 0.12
p4 = 0.106
= 0,090
5
P6 = 0.076
= 0.064
7

It may already be seen that each additional unit of capacity decreases
the probability of machine 1 being blocked (PN ) and of machine 2
running out (PO), but that each additional Un;t reduces these probabil -
itfes less than the unit before it. To determine the optimum point the
actual output of the system must be calculated.

Since in the steady state the production that goes through
either machine must also go through the other, the output of either
machine can be calculated to determine the output of the system. In
this example, however, the production of both machines will be calcu-
lated to illustrate the method and also to provide a check.

The output of the first machine is by times the proportion of
time it is not broken down or blocked. The probability that it is
broken down is Rl, and the probability that it is blocked is PNl.

These conditions are not mutually exclusive; the machine can be

blocked and broken down at the same time, Therefore, the total



Page missing from thesis
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The calculations for machine 2 confirm theose for machine 1.
In this example the optimum plan is to provide six units of storage
capacity (including the space for the unit in machine 2) between the
two machines, since the seventh unit fails to increase the production

by the desired three units per hour.



CHAPTER V

THE THREE MACHINE CASE

Transitions.--With three machines there are eight general classes of ma-
chine conditions, each class corresponding to a different arrangement
of broken down and operable machines. These classes, together with their
absolute probabilities and the possible machine conditions in each; are
ligted in Table 10.

Table 10. Machine Condition Classes, Their Probablilities,

and Their Possible Machine Conditions:
Three Machine Case

Class Probability Possible Machine Conditions
1. RR_ - RRR, C(xlx}, C(xOx), C(xbx)
2. RR, -RRR_ C(xxl), C(xx0)
3. R R,R. C{xxx)
4. R - Rle -RR +RRR_ C(x11), C(x10), C(x01), C{x00), C{xbl)
5 R ,-RR -RR +RRR_ Cc(11x), c(10x), C(1bx), C{blx}, C{bbx)
6. R, -RR -RR +RRR_ C{1x1), C({1x0)}, C(bxl}, C(bx0O}
7. RyRy - RyR,R, C(1xx), C(bxx)
8. l1-R -R,-R;+RR, c(111), c(110), c(101), C(100),
+ RR,+ RR, - RRR, c(1lbl), C(bll), C(bl0}, C(bbl)

The queue states here are denoted by E and with one ex-

ni,fg?

ception there is one and only one machine condition from each class which
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may exist with any given queue state. The excepticn is in queue state
Eo,NE' Here conditions C(xOx) and C(xbx), C(x0l) and C(xbl),
C(10x) and C{lbx), and C(101) and C{lbl) exist simultaneously
in pairs since in Eo,Ng the second machine is both blocked and run
out., This presents no real problem, but it does necessitate the intro-
duction of some additional terminolcgy for this particular state. The
new initial machine states C(x|;|x), C(x|g\l), C(l|g|x); and
C(l|g|l), possible only in Eo,Ng are here defined, The same proce-
dure that was used in the twc machine case may then be used to calcu-
late the machine condition transition probabilities. Consideration
must be given here to the fact that from these "ambigucoug" conditiecns,
transitions may be made to the same or other ambiguous conditions or
to an "unambiguous" condition which may have been represented in the
initial ambiguous condition. For example, transitions possible from
C(x|g|l) include the ones to C(x|g|x), to C(xlgll), and also to
C(x01) with machine 2 no longer blocked, If all such possibilities
are recognized the original procedure may be used in a straightfor-
ward manner to determine all machine condition transition probabili-
ties. In the same manner as before, the machine conditions are then
eliminated by calculating the conditionai prcbabilities of resultant
gueue states given initial queue states and machine conditions and
taking the queue state transition probabilities as sums of conditional
probabilities.

The derivation proceeds by first assuming N, and N, both

greater than two units and determining the queue state transitien

probabilities, then relaxing the restrictions on N, and N, and
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showing that the probabilities are not affected. Sample calculations
are given in Appendix B for machine condition transition probabilities
starting in Enl:ne with 1 < n, < N1 -1 and 1 X n2< Nz— 1.

Appendix C gives sample calculations for resultant queue state proba-
bilities with initial conditions E”l:”g {1 < n, <N,- 1), (1 - n, < N2-D
and C{xxl}. The queue state transition probabilities are found to be

as follows:

= - <N d ze therwise
pn19n25n1+1:n2 plat(l Rl) for n, , and zero otherwise,

1l

poot{l - Ry) for 1<n, <Ny ng <N

p e - >
NysNgsn, 1,n2+1

and zero otherwise,

pn1’n25n1’n2-1 = pgat(l - Ry) for n, >0 and zero otherwise,

p . :l-(
N sn 3N N, P

+p
n ,n ;n +1,n n ,n_jn -i,n_+
1? 2?1 1 2 ' e? 1s 2

i

tp

n1’n2;n1’n2-1) *

The relations between transition probabilities may be more
readily seen with the aid of a diagram. Figure 2 shows the possible
transitions between queue states when N1 = 3 and N2 = 3. For mere
concise terminology, let a =p,{1 -R;), b=p (1 -Ry), and
c = ps(l - Rg). The probabilities of the various transitions are
shown on the arrows indicating the transition. The probability of

remaining in any state is unity minus the sum of the probabilities
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of the transitions which may be made from it. For example, the proba-
bility of remaining in E,, is 1 - alAt - cAt, the probability of
remaining in an is 1 - bAt, and the probability of remaining in

Eaz is 1 - aAt - bAt - cAt.

Figure 2. Possible Queue State Transitions
when N, =3 and N, = 3.

Although Figure 1 shows the case where Nl and N2 are both
three, it alsc describes the general Ny Nz case. It may be seen

that the transition froem n n to n1+l, n, may be made from any

1! 2

state where n, # Ni’ the transition from n;s n, to nl—l, n2+ 1

may be made from any state where ng #0 and n, # N2, and the

transition from nl, na to nl,na -1 may be made from any state

where n, # 0.
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The Eguations and Their Solution.--Unfortunately, the three machine

case is considerably more complex than the two machine case. In the
latter it was possible to derive a general expression for P in terms
of PO regardless of the value of Nl. In the three machine case,
though, the addition of a unit of capacity in either queue changes the
relationships between the previously existing probabilities, so no
general expression can be written. It 1s possible, however, to derive
a particular expression for any specific arrangement of capacities,

and the method will be indicated. Particular expressions for certain
selected arrangements will be derived.

The method of solution is to express the steddy state proba-
bilities in terms of the probabilities of cther gueue states, then by
a series of eliminations and substitutions tc express all probabili-
ties in terms of one of them, and finally to apply the normalizing
equation. Once the basic relationships between the states are under-
stood the initial expressions may be written by inspection. This may
be seen by noting that the probability of being in any state at time
t + At 1Is the probability of being in that state at time t times
the probability of remaining in that state during At, plus the sum
of the probabilities of being, at time +t, in each of the states from
which the state in guestion can be reached in a single transition,
each multiplied by the probability of such a transition. Since the
probability of remaining in any state is always of the form 1 - Z,
where Z 1s the sum of one, two, or three of the terms aAt, bAt,

and cAt, the derivative with respect to time of the probability of
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any queue state can always be expressed as -Z/At plus the sum of
probabilities of states from which the state in question may be reached,
each multiplied by the probability of transition to that state and di-
vided by At. Upon setting the derivative equal to zero, Z/At times
the probability of the state in question is seen to equal the sum just
mentioned. To illustrate, consider the state E23 in Figure 1. Here,

Z = (abt + cAt), and Z/8t = a + ¢; E,, can be reached from E,,

with probability aAt and from E32 with probability bAt. By in-

spection this indicates that
(a + c)P = aP + bP .

23 13 32

Similarly, for state Ell, Z = (abt + bAt + cit), and

(a+ b+ c)P = aP +bP + cP .
11 01 20 12

To arrive at these values analytically, the following steps would be

necessary:
23(t t) P23(t) p23;23 Psa(t) p32;23 pls(t) p13;23
= - - +
P23(t + At) st(t)(l abt - cAt) Pis(t) aht + Pse(t) At

. P (t+At) -P_ (1)
lim _=238 23 _ d _ .
At o At = gt Fes = 0= (a+c) PoataP gt oP g
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N

P11(t4'At) pll(t) p11;11+'P01(t) p01;114-P20(t) p20;114'P12(t) Pi2;11

)

P 1(t+m,)

. P 1(t)(l- aAt - bAt - cAt)+P01(t) abt+P, bAt+P . bt

1

Py (t+ot) =P (8)
lim = gp Py = 0= - (atb+c)P, +aP,, TbPyo+ Py

(a+ b+ c) P, = aP  +DbP, +cP ..

Using this method, expressions for all state probabilities will

be derived for the cases N =1 and N =1, N1 =1 and Ne = 2,
1 2
N,=2 and Ny=1, N =2 and N;=2, N =1 and N, =3, N =3

2 2
1 and Nz =4, N =4 and Ng =1, Nl =2 and

]

and N2 =1, N1

I
1]

N =3, and N1 The expressions for any other speci-

2
fic case may be drived in the same manner. Although the desired end is

3 and N2

to express all queue state probabilities in terms of one of them, the
expressions in this form become extremely complicated., It is more
practical, both in deriving the expressions and in the numerical compu-
tation, to express each queue state probabllity in terms of other pre-
viously derived probabilities, which in turn have been expressed in
terms of the one desired. This allows step-by-step computaticn of the
probabilities with simpler equations, fewer substitutions, smaller
numbers, and fewer opportunities for error. The expressions will accord-
ingly be given in such a form.

Figure -3 represents the case N1 =1, Nz = 1l. By inspection

and substitution,



apoo = Cpol’
(a+c)pP = bP
Py = gy

= =P

p01 ¢ oo’
_ 4+ c

Plo - b pOl’
- 2

p11 T ¢ Po1

Figure 3. Transition Probabilities
when

N
1

=1 and N2 =1

ait

Figure 4. Transition Probabilities

when

Figure 4 represents the case

seen immediately that

01

It is then necessary to eliminate

P
11

No=1, N, =2

2

N =1, N2 = 2. Here it may be

from the equations

50
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(a + c) Poz-an = 0

- cP11+ bPlO- aPOO = 0

by multiplying the first by ¢ and the second by -b and adding them.

This yields Pos in terms of P10 and poo' Upon substituting this

value of P,p 1in the equation

(a + ) Poy =PPio - Cpoz =0
P is found in terms of P and P
10 ol 00
= _(a + ¢)® _a
p1o ~ bla+b+c) P01 i tbte Poo ‘

Then, from the eqguation

bP10 = aPOO + cP11 s
P11 is seen to be:
- b a
P147 ¢ Pio - c Poo
From {a + ¢) P02 = bPll, P02 is found:
_ b
poe T a+tec p11 .
By inspection cP = aP and
Y insp 1ons 1z .a o2’
p = 2p |
12 c 02
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Figure 5. Transition Probabilities
when N, =2, N, =2
Figure 5 represents the case Nl = 2, Na = 2, Here it is
immediately seen that
- &
Po, = Poo .

By suing the two equations

(a +¢c) Pyy - bPyg - cPyy = O
and

(a +b) P,y - aPyg - cP,, = O,
multiplying the first by (a + b) and the second by b, adding them,

and substituting Q—%—E - PDB for P, in the result, the expression
for P02 is obtained:
. {atbl{atec) - ab b
o2 c (Pa+b+¢c) o1 c(2a+b+c) oo

The expressions for Pll

and P
10

are obtained immediately as:
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_ atec
Py = b o2’
and
= —a c
pJ.o ath poo + a+bh pll !

It is then necessary to eliminate le from

(a+c¢c)P -aP -DbP = 0
12 02 21

and

+ - - =
(b + c) P, -aP  -cP, o}

and to substitute £ P for P in the result to obtain
a gz 12

2 2
_ af(b + ¢) P+ a®b p

22 c{a+ c)(b+¢c)-abc %2 (3 + c)(b+ c) - abe

11’

The remaining expressions then follow immediately as:

- £

P12 a3 Paz
_ a C

P21 T b+ P11 + b+ ¢ Paz
- | £

Pao T b Plo s p21 .

The expressions for the queue state probablilities in the remain-

ing cases solved are derived by a similar procedure. They are:

= = 3:
For N1 1 and N2

P =
13

o o
o

i
+
[]

p12 b 03
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o2

11

o1

co

10

3 and Ng = 1:

R e}
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ol
o)
Q

o
as)

O lw
vl

o [}
0
o

O o

24

12 "3 P13
C
oz b Pos
-=P
11 a 12
c
=P
b 11
01
-&p
10 ¢ 00
a
- =P
11 b o1
4a
20 ~ ¢ plO
C
=P
b 31
o4
¢
13 3 Pia
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For N1 =2 and N_ = 3:
_ a_t ¢
12 b Fos
_ a(b + ¢c) ab
Pig = (a+c)(b+¢c) - ab Poa ¥t {a + c)(b+ ¢c) - ab Pig
_ gt c _ 2
Paz - b Pia b pos
a
paa T ¢ Pis
_ f(a+c)(a+t b+ g) C .
P:a1_ b(a + b + 2¢) p2+(a+b+20)P22
) clate) o ac p
b{a + b+ 2c) 13 bla+b+2c) o3
. btec _ £
p11 - a P21 a Pzz
_ b C
pop_, T a+c 11" a+CPo,3
_ bla + b+ c) be
Por = ab ¥ ala +c) 11 ab+ ala + ¢) (le * Pla)
C
+ a+ b+ c o2
_ a+te¢c _ L
plO - b Pol b poz
' - £
Poo ~ a P01
- & &
pzo b Plo + b Pal
For N =3 and N = 2:
1 2
- 2
P01 T ¢ Poo
p - {atb)fatc) ) ab
02 c(2a+ b+¢c) o1 c(2a+tbt 47 00
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_at c
p11 - b Poz
— a C
‘ plo T a+b poo + at+hbh Pll
p - {at+tbi(a+b+ c) b4 a P - ab P
12 c{?a + b + ¢} 11  2a+ b+ c 02 c(2athtc) 10
. —alath)
c(2a + b+ ¢c) o1
p - atc -2p
21 b 12 b p2
- a c
pzo T a+b plo a+b Pal
P, = albt el . p . b P
22 (a + c)(b + c) - ab "12 {a + 6ftb +c) - ab 21
p. = 2p
32 ¢ =2
Par = p4+cPartgacPas
_ a <
Pao ~ b Pao + b Pgy

An Example.=--A third machine is to be added in series following the
two machines of the example of Chapter IV. The third machine has a
capacity of 200 units per hour when operating, breaks down on the
average once an hour, and requires an average of six minutes to re-
pair. This gives Aa and 1.0, M3 as 10.0, and Rs as 0,10.

¢ = ps(l - Ra) = 180 units per hour, and from Chapter IV, a =
pl(l - Rl) = 135 units per hour and b = p2(1 - Ra) = 160 units

per hour. The average production rate of the system for all possible

combinations of five or less total units of storage capacity will be

calculated.
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Here again the lowest value of pi(l - Ri) is 135 units per hour,
and this is the maximum possible output of the system. As before, the
output of any machine is the same as the output of the system, but the
outputs of all three machines will be separately calculated as a check
and to illustrate the method. The average output of the first machine is
again the probability that it is neither blocked nor broken down, multi-

plied by its production rate when operating. This may be expressed as
N
- - - « Th tput of th
Hy [l Rl (1 Rl) Z:PNl’nz ] The average output o e second
n,=o
machine is the probability that it is neither broken down, blocked, nor

run out, multiplied by its preduction rate when operating, or

Nl N2
e 5 + Vo :) J . The output of the

bp [1 =Ry = (=R () n)sN, L Fony

nl:l l"l2—0 Nl
third machine is, similarly, p [1-R-(1-R,) E: P 1. The calculations

M0
n{=o '
are shown below, the results in Table 11. 1 For: Nl =1 and N2==1:
3.790 Py, = 1.0
P = 1.000 p = 0.264
ng = 0.750 pgg = 0.198
Pls = L.477 B0 = 0.390
PI) = 0.563 B = 0.149
3.790

150 [1 - 0.10 - 0,90(0.390 + 0.149}] = 62.3 units
er hr.
200 [1 - 0.20 - 0.80(0.264 + 0.198 + 0.390) = 62.3

Output, machine 1

n

Output, machine 2

Output, machine 3 200 [1 - 0.10 - 0.90(0.264 + 0.390)] = 62.3



(VL]
-3
—
-1
-3

U 'u'dy oy
== O OQ
NENOWw O

[ L T L TR

For N, =

1

Pog = 1
1.000
0.7500
1.2634
0.1895
0.3730
0.1421

3.7177

Output, machine 1 =

Qutput, machine 2

Output, machine 3

15

200 [1

200 [1 - 0.10 - 0.90(0.2690 + 0.3398)] = 70.43

1 and N2 = 2
.0
P = 0.2690
ng = 0.2018
Poo = 10.3398
Poo = 0.0510
Poo = 0.1003
Pdo = 0.0382

0[1 - 0.10 - 0.90(0,3398 + 0.1003 + 0.0382)] = 70.43

For N, = 2 and N, = 1:

1

8.808 pOO = 1.0

00
01
10
11
521

20

o 'd ‘oo

o~
-3
o
lop
(WS

= e e e~ B~ Ne Mg~ Ma= My,
MNME N OOD
RN ORFEN~O

o
o
o

T I S 1A L O | IR VA 1

1.000
0.750
1.477
1.670

1.253
2.658

&.808

For Nl

Poo =
1.0000
0.7500
0.4380
0.8623
0.9837
0.3397
0.4529
0.5222
1.4175

6.,7663

o

o0
Q0
00
00

‘o' v ‘oo

00

= 1
W'y 'y v vy o o'y .
[sleReoReNoNolNeNe] o
OCOOCOO OO0 N

Q
o

o

a

(L I L I O T I T T I ]

0.114
0.086
0.168
0.1%0
0.143
0.303

nd N2 =

0.1478
0.1109
0.0647
0.1274
0.1454
0.0502
0.0669
0.0772
0.2095

Output, machine 1
Qutput, machine 2

Output, machine 3

Qutput, machine 1
Output, machine 2

Output, machine 3

I

Il

0.20 - 0.80(0.2690 + 0.2018 + 0.0510
+ 0.0382)] = 70.43

74.85
74,80

74.80

89.52
89.52
89.52
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For Nl
72.4231 Py, =
P = 1,0000
p?g = 0.7500
P12 = 1.9688
P = 3.9584
Py] = 6.7213
Pyl = 14.3026
Pop = 19.0701
PlO = 23.6519

74,4231

For Nl
18,2056 Poo
p = 1,0000
pgf = 0.7500
Plp = 1.4766
P, = 1.6700
Prg = 2.6551
Py = 3.2439
Py = 2.4330
pBO = 4.9771

18,2056

For Nl
251.7588 P04
p = 1.0000
p?i = 0.7500
pl3 = 1.9688
PO3 = 13,9585
P12 = 6.6683
Pho = 14.1691
P/] = 23.4421
Poy = 50.1483
Plg = 82.7893
POO = 66.8644

251.7588

= 1 and N2 =

1.0
P = 0.0140
ng = 0.0105
PO3 = 0.0276
P03 = 0.0554
PO3 = 0.0941
PO3 = 0.2002
PO3 = 0.2670
PO3 = 0.3311

= 3 and N2_ =

= 1.0
P = 0.0549
ng = 0.0412
pOO = 00,0811
POO = 0.0917
POO = 0.1458
POO = 0.1781
pOO = 0,133
POO = 0.2732

= 1 and N2 =

= 1.0
P = 0.00397
pgi - 0.00298
P04 = 0.00782
PO4 = 0.01572
PO4 = 0.02647
POA = 0.05625
P04 = 0.09307
PO4 = 0.19909
PO4 = 0.32867
PO4 = 0.26545

3:

Output, machine 1
Output, machine 2

Output, machine 3

Qutput, machine 1
Qutput, machine 2

Output, machine 3

Output, machine 1
Qutput, machine 2

Qutput, machine 3

1]

72.45
72.46
72.40

80.09
80.08

80.10

73.034
73.046
73.058
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For Nl
35.9639 POO =
P = 1.0000 -
Pg? = 0,7500
Plo = 1.4766
Pi; = 1.6700
P20 = 2.6550
le = 3.,2438
P3O = 4.9771
PBl = 6.1656
p41 = 4.6242
pAO =  9,4016

35.9639

For Nl =
37.54R25 PO3 =
P = 1.00000
p‘fg —  1.96875
P13 = 1.03420
Poy = 1.19233
P23 = 0,77565
P21 = 2.34708
Pll = 4.32139
Pop = 2.76641
p01 = 4.23163
Plo = 5.21881
Pog = 5,64217
P2O = 7.04383

37.54225

For Nl =
10.49751 Poo =

= 1.00000
8‘1’ = 0.75000
s 0.43801
1 " 0.86233
1o = 0.98372
12 = 0.73189
51 = 1.07133
50 = 1.10386
e T 0.66355
2 = 0.49766
3 = 0.68884
30 = 1.70632

CRCRC R R R s B R = e v g~ g =

10.49751

= 4,

1.0

Y Yo 'udoddad
[eNsNeolNoRoNoNoNe
OO OCOO0OO0O OO
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N
-

—
.
o

03
03
03
03
03
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03
03
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oo oo

3,

1.0

00

co
o[0)
00
00
810
00
00
00
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e

o g o

o0

L T 1 I [t I T O T |

L 1 S O 1 I B VO VO

=

[T YT 1 T 1 I £ [ T IO 0

5 = 1

0.02780
0.02085
0.04105
0.04643
0.07381
0.09018
0.13836
0.17140
0.12855
0.26136

0.02663
0.05243
0.02754
0.03175
0.02066
0.06250
0.11508
0.07367
0.11269
0.13898
0.15025
0.18758

0.09526
0.07145
0.04172
0.08215
0.09371
0.06972
0.10205
0.10515
0.06321
0.04741
0.06542
0.16254

Output, machine 1
Qutput, machine 2

Qutput, machine 3

Qutput, machine 1
Qutput, machine 2

Qutput, machine 3

Qutput, machine 1
Qutput, machine 2

Qutput, machine 3

il

82.362
82.368

82.372

94,164
94,.170

94174

97.799
97.796

97.802
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Table 11 shows the performance of the system for the various
arrangements of storage capacities, and Table 12 indicates the best
arrangement for any given value of total storage capacity up to five

units, and the gain by adding an additional unit.

Table 11. Qutput of Three Machine System

for Various Values of N1 and N2

Nl N2 Qutput Total Units Capacity
1 1 62.3 2
1 2 70.4 3
2 1 4.8 3
2 2 89.5 4
1 3 2.4 4
3 1 80.1 4
1 4 73.0 5
4 1 82.4 5
2 3 94.2 p)
3 2 97.8 5

Table 12. Best Values of Qutput for Individual

Values of Total Storage Capacity

Total Capacity Nl N2 Cutput Gain
pd 1 1 62.3 -
3 2 1 7.8 12.5
4 2 2 89.5 14.7
5 3 2 97.8 8.3
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Here the addition of a unit of capacity does not necessarily increase the
output, unless the unit is placed in the correct location; a change from

a total of three units capacity, two in the first queue and one in the
second, to four units, one in the first queue and three in the second,
actually reduces the average output of the system. In evaluating the
effects of a proposed addition of capacity, all possible combinations must

be evaluated to determine the optimum position for it to be placed.



CHAPTER VI
THE GENERAL CASE

It has been shown that in the two machine case it is possible
to derive a general expression for Pn in terms of PO for all values of
n, but that this is not possible in the three machine case. It may be
deduced that it would also be impossible when four or more machines
are involved, again because the addition of a unit of capacity in any
queue will change the relationships between the other queue state proba-
bilities. Expressions similar to those derived in Chapters IV and V for
queue state transition probabilities could be derived by the same proce-
dure for a series of any number of machines, and queue state probabilities
for any given values of queue capacities could be calculated using the
algebraic methods of Chapter V. This procedure is extremely laborious,
however. A pattern has occurred in the two and three machine cases which
may considerably reduce the labor of obtaining the transition probabili-
ties. This will eliminate much, though by no means all, of the work of
solving for the queue state probabilities for any specific arrangement.
The findings of the first two cases will be summarized to illustrate the
nature of these cases and to extend certain features to the general case.
Other features which may be reasonably expected to be generalized will be
indicated. It may be helpful to the reader to refer to Fig. 1l at this
point.

Aside from "transitions" involving no change, there are three

types of transitions which may occur in the first two cases. These are:
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Type I: An increase of one unit in the first queue with no
changes in any other queue. The vertical arrows in
Fig. 1 represent Type I transitions.

Type II: A decrease of one unit in any gqueue except the last,

a simultaneous increase of one unit in the next queue,
and no changes in any other queue. The diagonal arrows
in Fig. 1 represent Type II transitions.

Type I1I: A decrease of one unit in the last queue, with no

changes in any other queue. The horizontal arrows in
Fig. 1 represent Type III transitions.
Only Type I and Type IIT transitions occur in the two machine case,
since the first queue is also the last queue.

The general case will alsc be limited to these three types of
transitions, since any other type of transition would involve either
the completion of more than one unit by a single machine or completions
of units by more than one machine during time At. The probabilities of
these occurrences are of order (At)2 or higher and are taken as negli-
gible.

Type I transitions can occur from any queue state where the first
machine is not blocked; they can occur from any state where ny # Nl'

Type 11 transitions can occur from any queue state except those
where the queue which is to increase is not already at its capacity, or
where the queue which is to decrease is already at zero.

Type III transitions can occur from any queue state where the
last machine is not run ocut.

It is apparent from the physical nature of such systems that these
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limitations on queue states from which the various types of transitions
can originate must apply to the general case as well as to the two par-
ticular cases solved.

Given that the initial queue states are ones from which the transi-
tions in question can coriginate, the probability of a Type I transition'
is plAt(l - Rl), the probability of a Type II transition invelving the
queues before and after the ith machine istﬁpt(l - Ri), and the proba-
bility of a Type III transition is pzAt(l - RZ) when there are z machines
in the series,

There is apparently no way to prove that these probabilities
extend to the general case. However, they might reasonably be expected
to be valid in the general case because any transition must be caused by
a completion of service. Since the probabilities derived in the two
cases solved are simply the probability that a machine will complete
service in the next interval At, given that it is operating, multiplied
by the prokability that it is in fact operating, it seems logical that
these probabilities would alse hold in the general case.

If the reader is not willing to assume that these probabilities
extend to the general case on the basis of this justification, the trans-
ition probabilities for any specific case may be derived by an extension
- of the procedure of Chapters IV and V and the relations between gueue
states then obtained by the inspection procedure introduced in Chapter
V. If he is willing to make the assumption, the relations may be written
immediately using the inspection procedure. The general rule may be

expressed:
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The steady state probability of any queue state, multiplied
by unity minus the probability of remaining in that state
and then divided by At, is equal to the sum of the steady
state probabilities of all states from which the state in
question may be reached in a single transition, each mul-
tiplied by the product of the mean production rate and the
mean proportion of time that the machine is operable which
must complete an operation to effect the transition to the
state in question.

The probability of remaining in any state is unity minus the sum of the
probabilities of all transitions which can be made from it. Assuming z

machines in series and a state E which can be reached by
Ny sMoseesn, o

all three types of transitions and from which all three types can origi-

nate, the expression for the general form may be written symbolically:

l_R + l_R +---l-|-ol+ l_R p -
[“l( l) “2( 2) IJ‘z( z)] Ny sNgyeeen g

p,l(l-Rl)Pn + p2(l—R2)Pn -1

+l,n.-1,n

1

l_l’n2’n3’°°°nz—l 5

n soall
3’747 z

+ p,3(1-33)pn

1 + ceienseranrasissenasnes T

l,n2+l,n3-—l,n

...rl -
4’ z

+ p_z_l(l—Rz_l)P + l’nz—-l -1+ p.z(l—Rz) p“r

nl,n2,....nz_2 n2,n3,...,nz_l+l

For states from which Type I transitions cannot occur, the first term in
the coefficient of the left side becomes zero; if Type III transitions
cannot occur the last term becomes zero. If it is impossible to leave

the state in question by some or all of the Type II transitions, remaining
terms corresponding to the impossible transitions become zero. Similarly,
the first, last, and some or all of the intermediate terms of the right
side become zero if it is impossible to reach the state in question by
Type I, Type III, or some or all of the type II transitions, respectively.

Regardless of which procedure is used to obtain the relations
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between the queue state probabilities, a series of eliminations and sub-
stitutions is then necessary to place the expressions in a sultable form
for seolving them one at a time in terms of any selected queue state pro-

bability. The normalizing egquation is then applied.



CHAPTER VII
CONCLUSTIONS AND RECOMMENDATIONS

Findings.--It was the original purpose of this study to develop a deci-
sion process for determining the optimum amount and location of in-process
storage capacity for the general case when any number of machines or

work stations are arranged in series. When the amount of work involved

in such an undertaking became apparent, this was revised and it was
decided instead to attempt to develop a procedure for describing the out-
put of such a series. The procedure could then be used in the development
of future decision processes. A general expression was derived to des-
cribe the state probabilities, and eventually the steady state average
output, when the series is limited to two machines. No general expres-
sion could be derived when there are three or more machines in the series,
but a method was developed by which the particular expressions for any
specific case can be derived and the steady state average output deter-
mined. Specific expressions were derived in terms of one selected queue
state probability for a three machine series with all possible combina-
tions of five or fewer units of storage capacity.

Limitations and Areas of Applicabilitv.—-The findings are not limited to
systems of machines in the strict sénse; they may be applied to systems

of assembly stations or to any other activity where operations are con-
ducted in series. Care must be taken, of course, to insure that the serv-

ice times and repair times are exponentially distributed and that the
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arrival times of breakdowns or interruptions are Poisson distributed.
The breakdowns may be any type of interruption, and the repair times
simply the times taken to restore operation. The requirement for Poisson
and exponential distributicons is a definite limitation, but these distri-
butions are not rare in practice, and the model should find useful appli-
cations. The limitations discussed in Chapter I should also be kept in
mind. In particular, this model, like any other mathematical model of
an actual system, must ignore many real features of the system modeled,
and the results must be used with caution. It should be remembered that
only steady state conditions are described, and a system that exhibits
transient or time-dependent behavior is not described by this model.

Two other features which limit the usefulness of the model are
the relative magnitudes of the numbers involved in actual computation
and the labor involved in deriving the expressions for the queue state
probabilities. To illustrate the first of these limitations, consider the
example in Chapter V where N, = 1 and N, = 4. Here the results included

1
251.7588 P,, = 1.0 and P,, = 0.00298. Three places left of the decimal

04 14

point were used and five to the right, and even then there was a varia-
tion of almost three figures in the second column right of the decimal
point in the output results because of roundoff error. This limitation
becomes more pronounced in more complex systems because there are more
possible queue states. The second limitation, the labor in deriving the
expressions, becomes even more critical as the complexity of the system
increases, although once the expressions have been derived they may be

used for any production rates and proportions of time operable. For

example, in a six machine series with a capacity of five units in each
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gueue there are (5)5 or 3125 possible queue states. The addition of
another unit of capacity anywhere in the system would increase this by
6/5 or 1.20, and there are five possible places where the additional
unit could be placed!

Another limitation is that it is necessary that each machine's
production rate multiplied by its mean proportion of time operable be
equal to or greater than the corresponding product for the machine before
it in order that a steady state solution may exist.

Because of these limitations the model as it now stands will
probably be limited in application to fairly simple systems. With
improvements in the model and improved computational techniques in the
future, this basic approach might find more extensive application. At
present, even with fairly simple systems the amount of labor involved
may often make its use uneconomical where in-process storage facilities
are relatively inexpensive tc provide in relation to the value of in-
creased production, as in cases where the units produced are small and
the volume is high. It could find application in systems where a few
large and relatively expensive assemblies are brought together or simi-
lar operations are performed, where production is relatively low, and
where in-process storage facilities are expensive.. It might also be
applied to more complex systems which can be broken down into a series
of subsystems, if the service rates, interruptions, and operation restor-
ation times for the subsystems follow the assumed distributions. Examples
might be found in the military facilities which overhaul routinely a
particular aircraft model in production line fashion. A possible limi-

tation here is that the model assumes all blocked or Tun out time is lost,
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while in practice the personnel and facilities might be put to some auxil-
lary or déferrable work,

Recommendatjons for Further Study.--Since the expressions for queue state
probabilities in terms of one of them, once derived, may be used for any
values of production rates and proportion of time idle, it would be

useful to have these derived and tabulated for more arrangements than
were given here. General computer programs could then be developed to
determine the average output of each arrangement. It appears likely that
this approach could only be applied to fairly simple systems. Because of
the labor of derivation and computation, simulation may be a better
approach for more complicated arrangements, and an extension of Bedworth's
{10) work would be useful.

For the simpler systems, models similar to this one but assuming
Poisson, Erlangian, or other inputs rather than the infinite input might
be useful, since these distributions also occur frequently in practice.

Other modifications of this model which would be useful would be
to allow for deferrable work which might be performed by the operators
or even the machines when the normal path is blocked or when normal werk
is not available, and to allow for scrap losses or rejections at each
station instead of assuming that all material goes completely through the
system.

The model developed in this study or any of the suggested modifi-
cations may prove useful in future studies aimed at the development of
economic decision rules or processes for determining optimum amounts and

locations of in-process storage space.
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APPENDIX A

SAMPLE CALCULATIONS OF MACHINE CONDITION TRANSITION
PROBABILITIES, TWO MACHINE CASE
Starting in queue state E_ with (1 < n, <N; - 1):

1
The probability of a transition from C(1x) to c(11) is (1 - Alﬂt)(MEAt) =

MOt

From C(1x) to C(lx): (1 - A8t)(1 - MAt) = 1 - AAt - MyAt
From C{1x) to C(x1): (aAt)(MAt) = O

From C(1x) to C(xx): (A 8t)(1 - Mat) = A bt

From C{x1) to C{11): (Mfﬁt)(l - A2At) = MOt

From C(x1) to C{1x): (MAt)(Ant) = O

From C(x1) to C(x1): (1 - MAt)(1 - AAt) = 1 - MAt - ALt
From C{xl) to C{xx): (1 - M,At) (ALL) = At

From C{xx) to C(11): (MlAt)(MEAt) = 0

From C{xx) to C{lx): (Mrﬂt)(l - MBAt) = Mt

From C{xx) to C{x1): (1 - M5t)(MAL) = MjAt

From C{xx) to Clxx): (1 - M;At)(1 - MAt} = 1 - MAt - MpAt

Starting in queue state [E,:

From C(11) to C(11): (1 - A At)(2

Azﬂt)[ulﬂt + {1 - p ) (1 - pgtt)]

= (1 - At - ABE) (R At 4 1 - p At - pAt) = 1 - AL - ABt-p Ot

From C(11) to C(10): (1 - AAt)(1 AAE) (W At) (1 - p At) = p At

From C(11) to C{1x): (1 - h1At)(A2At) = At



From C(11)
From C(11)
From C(11)

From C(1lx)

From C(lx)
From C{1x}
From C{1x)
From C({1x)

From C(1x)

to C(x1):
to C(x0):
to Cxx):

to C{11):

to C{10):

)
to C(1x):

)

)

(AA1)(1 - A8t)[p At + (1 - pat)] = ALt
(A at) (1 = A8 (1 - pAt) (pat) = O
(A1) (aAt) = O

(1 - aat)(Mat)p ot + (1 - pAt)]

= (MAt) (At + 1 - p At} = MAt

(1 - a8t (M) (p,ot) = 0O

(1 - A6t)(1 - MAL) = 1 - ANt - MOt
(%gﬂo%aﬂ(l-pgn) = 0

(A, 01) (Mat) (1 - pbt + 1 - p L) = 0

(%pﬂ(l-mgn) = ABt
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SAMPLE CALCULATIONS OF MACHINE CONDITION TRANSITION

PROBABILITIES, THREE MACHINE CASE

Starting in gqueue state

En n with 1 - n

13Ng 1

- N1 - land 1l < n2< Né—l:

The probability of a transition from C(xlx) to C{xlx) is (1 - M At)

(1 -
From

From C{x1x)

From C(xlx)

From C(x1x)

From C(xlx)

From C(x1x)

From C{xlx)

From C(xxl)

From C(xxl)

From C{xx1)

From C(xxl)

From C(xxl)

From C{xxl)

From C{xx1)}

From C{xxl)

ABT)L - M AL
SO - )

C(x1x) to C(xxl):

to Clxxx):
to C(x11):
to C(11x):
to C(1xl):
to C{1lxx):
to C(111):
to Cxlx):
to Clxxl):

to Clxxx):

to C{x11):
to C(11x):
to C(1x1):
to C{lxx):

to C{111):

1 - MAt - A At - M AL
1 2 3

(1 - Mpat) (Aht) (ML) = O
(1 - At (A A1) (1 - ML) =
(1 - Mat) (1 - nat)(Mght) =
(M At} (1 - AAL)(1 - ML) =
(M,8t) (A0t) (MAL) = O
(Myat) (Ap0t) (1 - Mght) = O
(Mat) (1 - Aat) (Mgat) = O
(1 - MlAt)(MaAt)(Aaﬁt) = 0

(1 - MAat) (1 - MAE)(1 - At)

- MOt - ANt

(1 - Mat)(1 - mat)(agpt) =

(1 - MAt) (MA)(1 - AAL) =

(MAt) (Mat) (Apt) = O

(mat) (1 - MAL) (1 - ApE) =

(Mat) (1 - MAt)(AAL) = O
= 0

(MlAt)(Maat)(l - ASAt)

AEAt
M At

M At
1

=1 - MAt

At

MBAt

Mlﬂt
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APPENDIX C

SAMPLE CALCULATIONS FOR RESULTANT QUEUE STATE PROBABILITIES WITH

INITIAL CONDITIONS En

Lon (1< n; < N;-1}, (1 < ngy < Ny-1} AND Clxx1}

Final machine condition C(xxl):
The probability of this transition is 1 -~ Mj&t - MgAt - Aght,

and the possible resultant queue states are En n with probability
1,2

I - pght and Enl’nz'l with probability pAAt.

Final Machine Condition Clxxx):
The probability of this transition is ASAt, and the possible
resultant queue states are E with probability 1 - u/At, and
Nisng k)

. AU At
Enl’na’l with probability A0t

Final machine condition C(x11):

The probability of this transition is My,A0t, and the possible

resultant gqueue states are En1,n2 with probability 1 - pzﬂt - psAt,
with probabilit At nd E ith probabilit
Nnysng=1 proba Y Bghts @ n,=1,n,%1 W proba Y
pBAt.

Final machine condition C(1x1):
The probability of this transition is M At, and the possible

resultant gueue states are E with probability 1 -p At - p At
NisNg 1 3
E ,n -1 with probability pt, and E_ #1,n with probability
172 1 2
At,
Hy
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The original probability of C(xxl), given E is RR-RRR

120y’ 12 3
50 the probability of the resultant queue state En n.? given initial
1202

conditions E and C(xxl), is
n N,

- - pb - M At - M At - ANt + A AL
(RlRa RleRB)[(l pLt (1 - Mot At - ALE A

P (L= st - A + (1 - p At - A (MADT

or
(1 - ppt)(RR, - RRR)
The probability of the resultant queue state E is
Nysng =1

(RlRB - RlRBRs)[(NSAt)(l - MOt - MAL - AAL AN+ MAL 4 MAt),

or
ut(RyRy - RyRGRS)

The probability resultant queue state E is

ny-1,n,%1

(Rle- RlRERS)(HBAt)(Mzﬂt) =0,

and the probability of resultant queue state E is
n +i,n

1 2

(Rle - RR R ) (u Aty (MAL) = 0.

This process is continued for all possible initial machine
conditions in the initial queue state. The resultant queue state
probabilities, given the initial queue state and machine condition

are multiplied by the probability of the initial machine conditicn
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given the initial queue state, and added to give the probability of
each resultant qﬁeue state given the initial queue state, These are
the transition probabilities sought. In this example, it is found

that, for initial queue state E (1< n, <N-- 1) and

1’72
(1 <n_< N_-1), the probability of a transition to E is
&2 2 N, =150, +1
A _ A ‘s .
Ky t{l Rz)’ the probability of a transition to En1’n2'l is
pAt(l - Ry}, the probability of a transition to En1+1,n2 is
p,At(l - R), and the probability of remeining in E is

l - p,lAt(l - Rl) - p,gAt(l - Rz) - p,sﬂt(l - RB).
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