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SUMMARY 

A model is developed to describe the mean output of a group of 

machines or work stations which are arranged in series and subject to 

breakdowns or interruptions, and the effects on this output of varying 

the amount and location of storage space between the work stations» 

The model assumes no runouts in the initial supply, exponentially 

distributed service and repair times, Poisson distributed breakdown ar­

rival times, and immediate removal of material from the system on com­

pletion of service at the last station. The system is considered as 

a steady state queueing process, and material moves through the series 

of stations in order. No unit may leave the system until it has com­

pleted service at all stations. 

General expressions are derived for determining the mean output 

of a two machine series with any amount of in-process storage capacity. 

In this case it is found that P , the steady state probebility that 

there are n units of material in the storage space between the two 

machines, is equal to P , the steady state probability that there are 

no units in this space, multiplied by a ratio which has been raised to 

t h * 
the n power. This ratio is the ratio of the product of the mean pro­
duction rate of the first machine when it is producing and the propor­
tion of the time it is not broken down (unity minus the ratio of its 
mean breakdown rate to its mean repair rate) to the same product for 
the second machine. This ratio must be less than unity because of the 
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assumption of a steady state. This relation holds for any value of 

n and for any capacity of the storage space. 

No general expressions were derived when there are three or 

more machines, but a procedure is developed for writing the specific 

expressions for any specified number of machines and capacity and 

arrangement of storage space. Specific expressions are derived for 

the case of three machines in series and all possible combinations 

of five or fewer units of storage space,, 

The rapidly increasing complexity of the expressions as the size 

of the system increases suggests that economical application of the re­

sults may be limited to fairly simple systems. 

It is suggested that the procedure developed may be of use in 

the development of future decision rules for optimum in-process storage 

capacities and arrangements. 



CHAPTER I 

INTRODUCTION 

Background.—With the advent of production line and assembly line manu­

facturing methods in the past century, problems have arisen in arranging 

systems of facilities and furnishing equipment to accommodate a complex 

manufacturing process which is subject to interdependence among the 

elements of the system and to varying conditions imposed upon it, some 

by design and some by chance. Many graphical and analytical techniques 

have been devised to assist in designing and evaluating such systems; 

perhaps the most familiar are the Gantt chart and its modifications, the 

use of scale models and templates in layout work, and the conventional 

methods of machine shop and production estimating. These methods have 

proved highly successful in industry, as is witnessed by their contin­

ued widespread use more than half a century after their introduction. 

They do, nowever, have some fundamental limitations. One of the most 

important of these is that, while the methods describe the situations 

under normal conditions and can accommodate most of those changes that 

are intentionally imposed, they do not consider random or chance fluc­

tuations within the system. In actuality, of course, such systems are 

dynamic in nature and involve continuous small changes» The traditional 

manner of handling these small changes is to allow a straight percentage 

or "safety factor" to provide for them. 
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More recently, particularly since World War II, efforts have 

been made to evaluate the effects of these chance fluctuations. This 

work has largely fallen into two categories. The first is that of 

system simulation; this approach is often used where the problems are 

too complex or cumbersome to be handled in a mathematical model at a 

reasonable cost in time or money and when full-scale manipulations of 

the system are not feasible. The simulation may be physical, numerical, 

or by some other means such as by an analogue computer,, 

The second approach, and that used in this study, is that of 

the mathematical analysis of congestion. The early work in this area 

was done by Erlang (l) in the 1920's on the problems related to the 

switching of calls in a large telephone exchange. More recently this 

approach has been applied to many other problems, and the general area 

of knowledge has come to be known as "queuing" theory.* 

The Specific Problem.--When a group of machines or work stations is ar­

ranged in series as in a normal production line, the entire line becomes 

interdependent in the serlse that a malfunction, breakdown, or other dis­

ruption at any station can disrupt the entire system,, This can happen 

in two ways: the stations following the stopped station can run out of 

work while those before it can be "blocked," that is, they have no place 

in which to dispose of their finished material and cannot undertake more 

work until the path is cleared. In either case the consequence is lost 

production time. 

*Other approaches (which were not used in this study) have also 
shown considerable success* Among these the most widely known are vari­
ous modifications of the "critical path" technique. 
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Part of the cost of this lost production time is unavoidable. 

At the present state of technology, machinery, even with the best of 

maintenance, is subject to breakdowns. Even if machinery could be 

built that would never break down, no one has yet proposed a workable 

way to eliminate all the disruptions and irregularities inherent in 

any activity where the human element is present, although much progress 

has been made, particularly in the area of automated production facili­

ties. It may be, however, that some of the effects of these occurrences 

can be minimized. The effects are, again, the blocking of stations be­

fore the station which is stopped and the run out of work of those fol­

lowing it. It is the specific objective of this study to develop a 

mathematical model which, in certain cases and within specified limi­

tations, will describe the output of a series of machines subject to 

breakdowns and interruptions, and will show how varying the amount and 

location of in-process storage space will affect this output. The model 

may be useful in further studies for developing decision rules for 

economically optimum arrangements of facilities. 

In the remainder of this thesis, in order to provide more.con­

cise terminology, the word "machine" will be used to describe "work 

station" regardless of the physical arrangement of the station, and 

the word "breakdown" will be used to indicate "stoppage or interrup­

tion." This should present no difficulty if the assumptions regard­

ing the nature of the distributions of "breakdown,11 repair times, and 

operation service times are carefully noted. 
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General Considerations.--This study is not an engineering study to 

determine the output of actual manufacturing plants, but is instead 

intended as an analytical attempt to develop a mathematical model which 

will approximate certain characteristics of such p l a n t s o As suchP it 

is subject to many limitations, and many real features of such plants 

must be neglected in order to provide expressions which may be solved 

with any reasonable amount of effort. Certain of these limitations are 

concerned with the distributions assumed for service times5 arrival of 

breakdowns, and repair times» These are explained in Chapter III„ 

Others will be mentioned in the following paragraphs.. 

A characteristic of machines in series is that each machine must 

have an average output rate less than or equal to that of the machine 

immediately following it. If this were not so and the system were run 

for a long time, there would eventually be a large quantity of material 

which had been finished by one machine waiting for service by the nexto 

If material were not regularly removed from the system, this amount 

would continually increase, and, in theory at least, would eventually 

reach infinity. The normal procedure (2) is to combine the operations 

so that, the time needed at each station is as close as possible to the 

longest operation time so that faster operations will not be blocked 

by slower ones. In most cases it is impossible to "balance" the line 

exactly in this manner and the stations capable of faster operation 

must reduce their average output to that of the slowest station0 This 

utilization of less than full capacity leads to real and significant 

costs ("balance loss"), but these costs are not considered in this 

thesis. 
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Another limitation of the model is that it deals only with the 

steady state behavior.'of the machine system. In effect this requires 

that the system has been running for a considerable period of time and 

has settled into steady behavior. This precludes consideration of lead 

times in setting up machines in order or of any other feature of the 

process which is dependent on the length of time since the process was 

started. 

In practice there are, of course, many causes of interrupted pro­

duction, including such things as actual breakdown of machinery, tool 

changes, temporary absence of the operator, and many others. The model 

here assumes that all of these causes of "breakdowns" produce a net 

result which can be characterized by a single Poisson distribution, and 

that the times required for restoration of service can be described by 

a single exponential distribution. 

In effect, the model describes an idealized process where all the 

assumptions mentioned are satisfied, in which no machine produces faster 

than the machine following it, and which has been operating continuously 

for a long enough period of time to have settled into a steady behavior 

independent of conditions which existed when the process was started. 



CHAPTER II 

LITERATURE SURVEY 

A search of the literature indicates that considerable work has 

been done in areas related to the topic of this research. One of the 

areas most thoroughly studied is that of the problem of machine inter­

ference. This problem has been studied by Jones (3), Palm ( 4 ) , Benson 

and Cox ( 5 ) , Naor ( 6 ) , and others. The problem is similar in that groups 

of machines are subject to random breakdown or stoppage, but the machines 

work independently or in parallel rather than in series. Loss beyond 

that time required to repair a machine arises because there may be more 

machines stopped at one time than there are repairmen.available to serv­

ice them. The stoppage of one machine can affect the production of 

another only by reducing its probability of immediate service if it 

should break down. Solutions are given in terms of overall production 

from the groups of machines and of average number of repairmen occupied 

or per cent utilization of repairmen's time for different assignments of 

repairmen to machines. 

A problem more closely related to that considered in this thesis 

is that considered by Jackson ( 7 ) . He assumes a system of k service 

stations in series and allows there to be r. different identical serv-
1 

t h 
ers (machines) at the i station, each of which can service incoming 
units. Service times are exponentially distributed with mean JJ,̂  at 

t h 
the i station, and queues of any length are allowed before each 
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station. Units arrive at the first station at random with mean arrival 

rate X and proceed through the system where they must be served by one 

of the servers at each station in order. The solution is limited to the 

steady state where 
1^1 

< 1 for all i . He studies the behavior of 

the queues before each station and derives the steady-state solution 

P ( n i , n a, n j = P(0) TT b(n.) 

where 

b(n ) = 
n.! for n . < r. 

J J 

— ( — ) n j " r j > for n. > r. , 

n is the number of units at the station, and P(o) = P(0, 0, .. .,o) 

is found from the normalizing equation 

r - i 

/• P( nl> n2> nk^ ~ 1 

in the following manner. 
oo 

The b(rij) are all positive and h(n.) is a convergent 
n . = o 
J 

series (j = 1, 2, k); hence; 

oo oo oo k 

I I ' " I [TTbCnj)] = TT [ I b(n.)] , 
n =0 ng=o nk=o J=i 1 = 1 n ^ 

whence writing 
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it follows that 
k 

p(o) - TT A - 1 . 

The main differences between Jackson's problem and that considered in 

this thesis are that Jackson is concerned with the behavior of the queues 

in the system, the in-process inventory and not the output, which in his 

steady-state solution is bound to have the same average rate as the input0 

He is not concerned with the effects of breakdowns and does not consider 

them, instead dealing with the system in normal operation. 

He also makes some assumptions different from those which will 

be made here. He allows unbounded queues in front of every station, 

thus eliminating blocking, and more than one service channel at each 

station. He also assumes Poisson input to the system, while here it 

will be assumed that no runouts are allowed in the initial supply. This 

is often the case in industrial situations. 

Hunt (8) considers three situations of interest., He treats 

service stations in series and allows blocking, but does not consider 

breakdowns. As measures of effectiveness he uses the average number 

of units in the system (again the in-process inventory) and maximum 

possible utilization in the steady state, which is defined as the ratio 

of mean arrival rate to mean service rate. Poisson arrivals to the 

system and exponential service times are assumed. Since in the steady 

state of such a system the average output rate will be the same as the 

mean input rate and since the denominator of the utilization ratio is 

known, the output can be readily determined,, 
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HUNT1 S FIRST CASE I S THE SAME AS THAT TREATED BY JACKSON, WHERE 

UNBOUNDED QUEUES ARE ALLOWED BEFORE EACH STATION. AS BEFORE, NO BLOCK­

ING CAN OCCUR, AND IN THE STEADY STATE WHICH EXISTS IF THE MEAN INPUT 

RATE I S LESS THAN OR EQUAL TO THE MEAN SERVICE RATE THE OUTPUT EQUALS 

THE INPUT. IN HUNT'S TERMINOLOGY THIS IS EXPRESSED BY SAYING THE MAXI­

MUM POSSIBLE UTILIZATION IS UNITY. 

THE SECOND CASE I S THAT IN WHICH AN UNBOUNDED QUEUE I S ALLOWED 

BEFORE THE FIRST STATION, BUT NO QUEUES ARE ALLOWED BEFORE ANY OTHERS» 

HUNT FINDS EXPRESSIONS FOR THE MAXIMUM POSSIBLE UTILIZATION FOR TWO AND 

THREE STATIONS IN SERIES WITH UNEQUAL SERVICE RATES AFTD ACTUAL VALUES 

OF THE MAXIMUM POSSIBLE UTILIZATION FOR TWO, THREE, AND 'FOUR STATIONS 

WHEN ALL SERVICE RATES ARE EQUAL. THE EXPRESSIONS FOR UNEQUAL SERVICE 

RATES ARE: 

FOR TWO STATIONS, 

P 
MAX 

FOR THREE STATIONS, 

P 
MAX D ' 

WHERE 

= LL LL (il + [i ) ( l i 4 + 2|j,3LL + 3lJL 3LL + l l 2 ! ! 2 + 4p,2LL U, 
R 2 R 3 R 2 3 r l r l R 2 r l R 3 r l R 2 r l R 2 R 3 

^Ya + ^ 3 + < W S + * K + »YS

 + ^ ' a n d 

D = + ̂  + + ,̂4(2̂ 3 + 5 ^ + 5 ^ 2 + 3^8) + 
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+ U ? ( L L 4 + 5LL3LL + 8LL 2U, 2 + 7LL LL 3 + 3LL 4) RLRO 2 3 P a r p . q .q' 2 3 2" 3 

+ Li2(ii4Li + 5ii3Li2 + 8ii2Li3 + 5ii p.4 + p.5) 
1 2 3 2 3 2 3 2 3 3 

+ Li (LL 4LL 2 + 5li3Li3 + 5Li2Li4 + Li Li5) 
1 2 3 2 3 2 3 2 3 

+ (Li4Li3 + 2Li3Li4 + Li2li5) , 
R 2 R 3 * 2 R 3 R 2 R 3 ' 

where p,̂  is the mean service rate at the i ^station. For the special 

cases where all service rates are equal, the values of p are: 

For two stations, 

For three stations, 

For four stations, 

max 

max 

2 
3 * 

22 
39 * 

p = 0.5115 . rmax 

Hunt's third case allows an unbounded queue before the first 

station and finite queues before each of the remaining stations. This 

system does not guarantee the absence of runouts in the initial supply, 

and it allows unlimited storage space before the first machine. Except 

for the assumption^ of Poisson input and the lack of consideration of 

breakdowns, this is the problem considered in this thesis. For two 

stations, Hunt finds the maximum possible utilization 

q+l q+l 

max q+2 q+2 



11 

where q - 1 i s the length of t he queue allowed before the second 

s t a t i o n . For t h r e e s t a t i o n s only the case where queues of length one 

are allowed to form before t h e second and t h i r d s t a t i o n s and where a l l 

s e r v i c e r a t e s a re equal i s cons idered . The maximum u t i l i z a t i o n i s 

given as approximately 0 .6705 . 

I t might be noted t h a t Hunt has not der ived a genera l express ion 

for N s t a t i o n s in s e r i e s except in the f i r s t case , where no blocking 

can occur . I n s t e a d , he has proceeded in a s t e p - b y - s t e p approach, adding 

one machine a t a t ime, and i t may be t h a t t h i s i s the only p o s s i b l e 

approach. I t i s a l so worthwhile to n o t e ^ t h a t he s t a t e s 

In the genera l N-stage problem, blocking occurs more f requen t ly 
in t h e f i r s t s t age than in any succeeding s t a g e , and the maxi­
mum p o s s i b l e u t i l i z a t i o n for the f i r s t s t age i s the maximum pos­
s i b l e u t i l i z a t i o n for t he e n t i r e system. In the remainder of 
t h i s work we s h a l l r e f e r to t h i s q u a n t i t y as p , the maximum 
p o s s i b l e u t i l i z a t i o n , but i t should be remembere§ X that p 
r e a l l y r e f e r s only to t he f i r s t s t a g e . 

While t h i s s ta tement i s not supported by a n a l y s i s i t seems i n t u i t i v e l y 

cor rec t , and can l o g i c a l l y be extended to cases where breakdowns are 

cons idered and where an i n f i n i t e supply to t he f i r s t s t age i s assumed. 

This i s so because blocking can occur at a l l s t a t i o n s except t h e l a s t 

and blocking at any s t a t i o n w i l l a f f ec t a l l preceding s t a t i o n s . Since 

a s teady s t a t e i s assumed and no m a t e r i a l i s allowed to leave the s y s ­

tem u n t i l i t has passed through a l l s t a t i o n s , the average output of 

any machine w i l l be the same as t h a t of any o t h e r . I t i s t h e r e f o r e 

c l ea r t h a t t he o v e r a l l output of t he system w i l l be the same as the 

average output of the f i r s t s t a t i o n during t h e t ime i t i s n e i t h e r 

blocked or broken down. 
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White and Christie (8) consider the case where there is a single 

service station and more than one priority class of units arriving for 

service, each class having its own Poisson arrival rate and exponential 

service rate. When a unit of higher priority class than the unit in 

service arrives it preempts the service facility and the unit in serv­

ice is returned to the head of the queue for items of its class, where 

it must wait until service is completed on the preempting unit,.or 

even longer if any other units of higher priority arrive in the mean­

time. A unit may therefore be repeatedly displaced by units of higher 

priority classes. The authors point out that a regular service faci­

lity servicing only one type of customer, but subject to breakdown, 

can be considered as a system of two priority classes with the break­

downs treated as a higher priority class with preemptive privileges. 

They make the assumption that the arrival process of breakdowns is 

cut off for the duration of repair periods so that "no latent break­

downs can build up at the facility when it is under repair." The sys­

tem can then be treated as one of two priority classes with a maximum 

of one higher priority unit present at a time. They derive steady 

state equations for the queue length and average time in the system. 

In this steady state the output would again have the same average rate 

as the input. The case of several such stations in series with only 

finite queues allowed is not considered. 

A valuable feature of this work is the author*s discussion of 

the effects of preemption on service time distributions Since some 

units are preempted they have to enter service repeatedly, and there 

is a possibility that the exponential service rates for each class in 
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i s o l a t i o n might not c h a r a c t e r i z e the s i t u a t i o n when seve ra l c l a s se s 

a re considered t o g e t h e r . The c r i t i c a l assumption i s , of course , t ha t 

t he p r o b a b i l i t y of a un i t in s e r v i c e completing s e r v i c e in the next 

i n t e r v a l At i s a constant r e g a r d l e s s of the t ime t h e item has been 

in s e r v i c e and the queue l e n g t h . One might i n t u i t i v e l y expect u n i t s 

r e q u i r i n g long s e r v i c e t imes to be over represen ted s ince they have a 

g r e a t e r p r o b a b i l i t y of being preempted, and the mean of the d i s t r i b u ­

t i o n could be expected to depend on queue l eng th , s ince a long queue 

could imply t h a t the u n i t at the head of the queue i s l i k e l y to be one 

r e q u i r i n g long s e r v i c e which has been d i sp laced r epea t ed ly (and needs 

as much t ime to complete s e r v i c e as i t did on i t s f i r s t e n t r y ) . 

The au thors consider the extreme p o s s i b i l i t i e s . At one extreme 

a l l u n i t s a r e a l i k e and the exponent ia l s e r v i c e d i s t r i b u t i o n r e s u l t s 

from t h e u n p r e d i c t a b i l i t y of the s e r v e r , as in the case of wai t ing for 

a p a r t i c l e from a constant r a d i o a c t i v e source to s t r i k e or for an i n ­

d i f f e r e n t c le rk to stamp a form. In t h i s case , obviously a l l u n i t s 

have i d e n t i c a l s e r v i c e time c h a r a c t e r i s t i c s whether en t e r ing for the 

f i r s t t ime or a f t e r preemption. The o the r extreme i s t h a t t he s e rve r 

ope ra t e s a t a constant r a t e on u n i t s whose i n t r i n s i c s e r v i c e r e q u i r e ­

ments a r e exponen t i a l l y d i s t r i b u t e d . This extreme has two a l t e r n a t i v e s , 

depending on whether s e r v i c e i s s t a r t e d a t t h e beginning of a u n i t each 

t ime i t r e e n t e r s or whether i t i s resumed a t t he point where i t was 

i n t e r r u p t e d . The au thors show t h a t in t h e l a t t e r case the s e r v i c e 

time c h a r a c t e r i s t i c s a re unchanged, but in t h e former case the mean of 

t h e s e r v i c e time d i s t r i b u t i o n does in fac t depend on queue l e n g t h . 
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To meet t h e requirements of t he c r i t i c a l assumption, i t i s necessary 

t h a t a l l t he e n t r i e s from each queue length have exponen t i a l ly d i s ­

t r i b u t e d remaining s e r v i c e times independent of queue l e n g t h . They 

show, however, t h a t t he s e r v i c e time d i s t r i b u t i o n averaged over a l l 

queue lengths i s exponen t i a l , and they use the inve r se of t h i s d i s ­

t r i b u t i o n , the s e r v i c e r a t e of t he lower c l a s s in i s o l a t i o n minus the 

a r r i v a l r a t e of the h igher c l a s s , as the e f f e c t i v e s e r v i c e r a t e of t he 

lower c l a s s when the two a re considered t o g e t h e r . For the purposes of 

t h i s s tudy t h i s should not be a c r i t i c a l p o i n t , s ince in most indus ­

t r i a l s i t u a t i o n s one would expect s e r v i c e to be resumed a t t he poin t 

where i t was i n t e r r u p t e d . 

Bedworth (lO) has a t t acked a problem s i m i l a r to t h e one con­

s i d e r e d h e r e , a l though h i s approach i s one of s imula t ion r a t h e r than 

a n a l y s i s . He has designed and b u i l t a s imula to r to s imula te a s y s ­

tem of four machines in s e r i e s with t h r e e i n t e r connec t i ng conveyors, 

a l l sub jec t t o breakdown, and an i n f i n i t e supply to t he f i r s t machine. 

D i s t r i b u t i o n s of breakdowns and of s e r v i c e times a re taken as de s i r ed 

and t h i s information i s fed i n t o the s imula to r on punched paper t a p e . 

Counters keep t r a c k of t h e number of u n i t s in each queue and con­

t inuous record ings of t h e output and t h e queue s t a t e s can be made on 

an o s c i l l o g r a p h . A t e s t program i s provided to a s su re proper opera­

t i o n of t he s imula to r before ac tua l programs are run . The s imula to r 

e f f e c t i v e l y employs a Monte Carlo t echn ique , giving a continuous r e ­

cording of a queuing problem having been fed punched t apes prepared 

with the p r o b a b i l i t y d i s t r i b u t i o n s de s i r ed by computers. The 
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information sought i s of t he same type as t h a t sought h e r e . The dif­

ferences a r e t h a t the approach i s one of s imu la t i on , t h a t no l i m i t s 

a re s e t on the s i z e of t h e queues, t h a t no more than four machines in 

s e r i e s can be cons idered , and t h a t Bedworth*s s imula tor can use any 

d i s t r i b u t i o n s d e s i r e d , even empir ica l d i s t r i b u t i o n s , while t he a n a l y t i c a l 

s o l u t i o n at tempted here w i l l be l i m i t e d to Poisson a r r i v a l s of f a i l u r e s 

and exponent ia l r e p a i r t imes and s e r v i c e t imes . 



CHAPTER I I I 

THE MODEL 

Desc r ip t i on of t he P rocess . - -A group of machines i s arranged in s e r i e s 

and raw m a t e r i a l i s fed to t h e f i r s t machine. No runouts a r e allowed 

in t h i s i n i t i a l supply, so t h e f i r s t machine w i l l always have m a t e r i a l 

when i t i s o therwise able t o under take work. Once a u n i t e n t e r s t he 

system i t must proceed through the e n t i r e s e r i e s in o r d e r . F i n i t e s t o r ­

age space i s provided between each two machines. When a u n i t f i n i s h e s 

s e r v i c e in a machine i t proceeds immediately to t he next machine where 

i t commences s e r v i c e a t once i f t h e machine i s in opera t ing condi t ion 

and t h e r e a r e no u n i t s ahead of i t ; o therwise i t must wait in a queue 

in the s t o r a g e space provided . When a queue reaches the capac i ty of 

i t s s t o r a g e space t h e machine feeding i n t o i t i s shut off so t h a t no 

machine may complete a u n i t when t h e r e i s no room in which to d ispose 

of i t . The capac i ty of each s t o r a g e space inc ludes the space r e p r e ­

sented by t h e u n i t which may be in s e r v i c e in t he machine following 

t h a t s t o r a g e space . The l a s t machine in t he s e r i e s can always d i spose 

of i t s p roduc t ion , so i t i s never b locked. The s e r v i c e times in each 

machine a re exponen t i a l ly d i s t r i b u t e d . 

Each machine i s sub jec t t o random breadkdown, and the a r r i v a l 

t imes of breakdowns are Poisson d i s t r i b u t e d for each machine and thus 

a re independent of t he number of u n i t s wa i t i ng , number of o ther ma­

chines broken down, or any o ther c o n s i d e r a t i o n s . A machine may break 
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down while working or while i d l e but ope rab le , but t he Poisson a r r i v a l 

process of breakdowns i s cut off while t he machine i s broken down, so 

t h a t no l a t e n t breakdowns bu i ld up while t he machine i s under r e p a i r . 

The r e p a i r t imes for each machine a re exponen t i a l ly d i s t r i b u t e d . 

In order for a s teady s t a t e to e x i s t i t i s a l so necessa ry t ha t 

t he average product ion r a t e of each machine m u l t i p l i e d by t h e mean p r o ­

po r t ion of t ime t h a t i t i s not broken down be l e s s than or equal to 

t h e average product ion r a t e of t h e following machine, m u l t i p l i e d by the 

mean propor t ion of the time i t i s o p e r a b l e . Otherwise t h e r e would be 

no t ime- independent s o l u t i o n , but i n s t ead the queue between the two 

machines would cont inuously inc rease i f unbounded. I f i t were bounded 

i t would tend to remain a t i t s capac i ty whenever the f i r s t machine was 

not broken down, and the f i r s t machine would complete a u n i t each t ime 

the second machine d i d . This assumption i s a l so made. This i s s i m i l a r 

to t h e requi rement , mentioned in t h e i n t r o d u c t i o n , t h a t a l l machines 

must reduce t h e i r output t o t ha t of t h e s lowest machine. Here, though, 

we al low f a s t e r opera t ion as long as the e f f e c t s of breakdown reduce 

the o v e r a l l output of t he f a s t e r machines to t h a t of t he s lowest one. 

The maximum product ion p o s s i b l e from the system i s the lowest va lue 

of, product ion r a t e t imes the p ropor t ion of t ime operable when a l l ma­

chines a re cons idered . 

Method of A t t a c k . - - S i n c e each machine i s e i t h e r broken down or operab le , 

t h e r e a re 2 n p o s s i b l e arrangements of broken down and operab le ma­

chines when n machines a re arranged in s e r i e s ; t h e p r o b a b i l i t y t h a t 

any p a r t i c u l a r combination e x i s t s a t any given time i s independent of 
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t h e number of u n i t s wai t ing before any of t he machines and i s in fac t 

dependent only on t h e breakdown and r e p a i r r a t e s . The s t a t e s of the 

i n d i v i d u a l machines may be f u r t h e r c l a s s i f i e d to i n d i c a t e whether 

they a re blocked or run out of m a t e r i a l . 

The o v e r a l l product ion r a t e of t h e system may be determined by 

analyzing the behavior of t h e queues between t h e machines to determine 

t h e p ropor t ion of t ime t h a t runout and blocking w i l l occur . The proba­

b i l i t i e s of i nc reases or decreases in queue l eng ths from any given 

l e n g t h s , given the cond i t ions of a l l t h e machines, may be c a l c u l a t e d , 

and s ince t h e p r o b a b i l i t i e s of t h e machine cond i t ions a re known and 

independent of queue s t a t e s , the t o t a l p r o b a b i l i t y of any t r a n s i t i o n 

in queue s t a t e may be expressed as a sum of cond i t i ona l p r o b a b i l i t i e s . 

The d e r i v a t i v e s with r e spec t t o time of t he queue s t a t e p r o b a b i l i t i e s 

may then be se t equal to zero for t h e s teady s t a t e , and the r e s u l t i n g 

express ions solved for a l l queue s t a t e p r o b a b i l i t i e s in terms of any 

one of them. The f i n a l abso lu t e p r o b a b i l i t i e s a re then determined 

by use of t h e normal iz ing equat ion which r e q u i r e s the sum of a l l p rob­

a b i l i t i e s to be u n i t y . This genera l procedure w i l l be followed and 

expla ined in d e t a i l in t he work which fo l lows . 

No ta t i on . - -The fol lowing n o t a t i o n w i l l be used: 

= the mean s e r v i c e r a t e of t h e i th machine 

A. = the mean breakdown r a t e of t he i th machine 1 

M. 
1 

= the mean r e p a i r r a t e ( r e c i p r o c a l of mean r e p a i r time) 

of t he i t h machine 
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A i th = — = the mean propor t ion of t ime the i machine i s 
i 

broken down 

n^ = the number of u n i t s wai t ing in t h e queue between t h e i ^ 
st­and i + 1 machines 

I\L = the maximum capac i ty of t he queue between the i ^ and 

i + 1 S ^ machines 

E - the queue s t a t e where t h e r e a re n„ u n i t s n 1 , n 2 , n z _ 1 i 
wa i t ing in t h e f i r s t queue, n u n i t s wai t ing in t he second queue, .<,., 

s t 

and l u n i t s wai t ing in t he z - 1 queue; n^ = 1,2, I\L and 

i = 1,2, z - 1 when t h e r e a re z machines in the s e r i e s . 

ch 

In a d d i t i o n , t he condi t ion of a l l machines i s shown by the ma-

ine condi t ion symbol C(m m m . . . m ) ; m. e 1, 0 , b , x, m. 

de sc r i be s the condi t ion of t h e i ^ machine, and 

1 = normal opera t ion 

0 = run out but not broken down 

b = blocked but not broken down 

x = broken down . 

The following c h a r a c t e r i s t i c s of t h e machine cond i t ions may 

be seen: 

(a) m = 0 i s imposs ib le , s i nce the f i r s t machine i s never 
run o u t . 

(b) nu = 0 ( i > l ) only i f t h e queue i s in s t a t e 

E with n . = 0 . n , n. , n . , . . . . n 1 - 1 V 9
 1 - 1 * i* * z - i 
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(c) m̂  = b is impossible since the last machine is never 

blocked. 

(d) nu = b ( i < z) only if the queue is in state 

E with n. = N.. n , . . . , n . . . . . . n 1 1 V ' I' ' z-i 

(e) nu = b when - 0 is impossible because a machine 

cannot be flocked and the next machine run out simultaneously. 

( f ) nu = 1 ( l < i < z) only if the queue is in state 

E with n. d o and n. ^ N.. n , . . . . n. , n., . . . . n l - i ' l ' I l* i - i i z-i 

(g) m̂  = 1 only i f the queue is in state 

E with n„ £ N„ . n , . . n l ' l l z-i 

(h) m = 1 only if the queue is in state 

F with n, 4 / 0 . 

( i ) nu = x is possible for a l l values of i and in any 

queue state. 

Figure 1 is a schematic diagram of the model. 
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CHAPTER IV 

THE TWO MACHINE CASE 

T r a n s i t i o n s . — I t w i l l be assumed for the p resen t t h a t the capac i ty of 

the queue between the two machines i s g r e a t e r than two u n i t s . This r e ­

s t r i c t i o n w i l l l a t e r be r e l a x e d . I t may immediately be seen t h a t only 

machine cond i t ions C ( l l ) , C( lO) , C ( l x ) , C ( x l ) , C ( b l ) , C(bx) , 

C(xO), and C(xx) can e x i s t , s ince the f i r s t machine never runs ou t , 

t he second i s never blocked, and C(bO) i s imposs ib le . Furthermore, 

given any queue s t a t e E n i * only four of t he se e ight machine condi­

t i o n s can e x i s t ; one corresponds to the f i r s t machine being broken down, 

another t o the second, a t h i r d t o bpth , and t h e four th to n e i t h e r broken 

down. Since the p r o b a b i l i t y of a machine being broken down i s independ­

ent of t h e queue s t a t e we can l i s t the p r o b a b i l i t i e s of t h e va r ious ma­

chine condi t ions given the queue s t a t e . These a re t a b u l a t e d in Table 1. 

Table 1. P o s s i b l e Machine Condi t ions Given Queue S t a t e s 
with Their P r o b a b i l i t i e s 

E 

0 

Queue S t a t e 

E n / 1 < n i < N i " 1 ) 
P r o b a b i l i t y of 
Machine Condit ion 

c(io) C ( l l ) C(bl) 1 - R - R + R R 

1 2 12 C(lx) C(lx) C(bx) R - R R 2 12 
C(xO) C(xl) C(xl) R - R R 1 12 
C(xx) C(xx) C(xx) R 1 R

E 
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Given the queue s t a t e and machine cond i t ion , only c e r t a i n t r a n ­

s i t i o n s in machine condi t ion are p o s s i b l e , and the p r o b a b i l i t i e s of 

t he se t r a n s i t i o n s can be c a l c u l a t e d . I t i s f i r s t noted t h a t during a 

time i n t e r v a l At, the p r o b a b i l i t y t h a t the machine w i l l complete 

a u n i t i s LI^At i f i t i s working on a un i t a t the s t a r t of the i n t e r v a l , 

the p r o b a b i l i t y t h a t i t w i l l break down i s A^At i f i t i s not broken 

down, and the p r o b a b i l i t y t h a t i t w i l l complete r e p a i r s i f i t i s broken 

down i s A/LAt. In c a l c u l a t i n g the t r a n s i t i o n p r o b a b i l i t i e s , i t i s a s ­

sumed t h a t the p r o b a b i l i t y of two or more breakdowns, completions of 

r e p a i r s , or completions of s e r v i c e during time At i s n e g l i g i b l e , and 

t h e s e p r o b a b i l i t i e s a re ignored . This assumption i s i m p l i c i t in the 

assumption of Poisson and exponent ia l d i s t r i b u t i o n s , and i s here j u s t i ­

f ied by a quo ta t ion from Saaty ( l l ) , r e f e r r i n g to a Poisson process with 

parameter X: 

. . . we no te t h a t , during a time i n t e r v a l t , t he p r o b a b i l i t y 
of no a r r i v a l s i s a n c l t h a t °f a s i n g l e a r r i v a l i s \ t e " * 
hence the p r o b a b i l i t y of more than one a r r i v a l i s 

1 - ( e " X t + X t e " U ) = 1 - [ [1 - Xt - . - • ] 
2! 

+ X T [ I - X T + — - • • • ] ] 
2! J 

= i M l f + . . . = 0 ( T 2 ) F 
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a function which behaves a t t 2 . 

Thus i f t i s smal l , terms with t 2 a re n e g l i g i b l e compared 
with terms without t or with the f i r s t power of t . Hence for 
small t the p r o b a b i l i t y of more than one a r r i v a l i s n e g l i g i b l e . 

. . . , l e t us assume these p r o p e r t i e s , i . e . , t h a t the p r o b a b i l ­
i t y of a s i n g l e a r r i v a l during a small i n t e r v a l At i s XAt and 
t h a t of more than a s i n g l e a r r i v a l during At i s n e g l i g i b l e ; then 
we can de r ive the Poisson d i s t r i b u t i o n , which of course has these 
p r o p e r t i e s . 
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To i l l u s t r a t e t he c a l c u l a t i o n s , consider t he case where the 

queue i s in s t a t e E with n± g r e a t e r than 1 and l e s s than N 1 ~ l . 

I t i s f i r s t noted t h a t of the e ight p o s s i b l e machine c o n d i t i o n s , i t 

i s impossible to reach C(lO), C ( b l ) , C(bx) , or C(xO) with only one 

completion of s e r v i c e , and the p r o b a b i l i t y of two or more comple­

t i o n s in time At i s considered n e g l i g i b l e . Consider ing the remain­

ing four machine condi t ions and s t a r t i n g in C ( l l ) , in order to remain 

in C ( l l ) n e i t h e r machine may break down and the p r o b a b i l i t y of t h i s 

i s ( l - A At)(l - A

2 A t ) = 1 - A 1 At - A g At. To accomplish a t r a n s i t i o n 

to C ( l x ) , the f i r s t machine may not break down but t he second must, 

and t h i s p r o b a b i l i t y is ( l - A ^ t ) (A At) = A At. The p r o b a b i l i t y of 

a t r a n s i t i o n to C(xl) i s (A^At) ( l - A^At) = A At, and to C(xx) i t 

i s (A At)(A At) = 0 . The sum of t hese p r o b a b i l i t i e s i s u n i t y , which 

provides a check. Addi t iona l sample c a l c u l a t i o n s for s t a r t i n g queue 

s t a t e E n with 1 < n 1 < N J L-1 and s t a r t i n g machine cond i t ions C ( l x ) , 

C ( x l ) , and C(xx) and for s t a r t i n g queue s t a t e E with s t a r t i n g 

machine cond i t ions C ( l l ) and C(lx) a re given in Appendix A. By 

s i m i l a r c a l c u l a t i o n s the machine condi t ion t r a n s i t i o n p r o b a b i l i t i e s 

in Tables 2 through 6 were de r ived . 

Table 2 . T rans i t i on P r o b a b i l i t i e s from 
S t a r t i n g Queue S t a t e E^ 

S t a r t i n g F ina l Machine Condit ion 
Machine C ( l l ) C(lO) C(lx) C(xl) C(xO) C(xx) 
Condit ion 

C(10) a- At 1 - A ^ t - A g A t A 2 At 0 A ^ t 0 

-u 1At 

C(lx) 0 M2At 1-A ^ t - M g A t 0 0 A±At 

C(xO) 0 M±At 0 0 l - M 1 A t-A 2 A t A 2 At 

C(xx) 0 0 M„At 0 M„At 1 - M«At - M,At 



Table 3. T rans i t i on P r o b a b i l i t i e s from 
S t a r t i n g Queue S t a t e E 

S t a r t i n g 
Machine 
Condit ion C ( l l ) €(10) 

F ina l Machine 
C(lx) 

Condition 
C(xl) C(xO) C(xx) 

C ( l l ) 1 - A At - A At - | i At 2 2 ^ A t A At 2 A At 
1 0 0 

C(lx) MgAt 0 1 - A^At - M2At 0 0 AjAt 

C(xl) M1At 0 0 1 - M1At - A 2 At - | i 2 At | i 2 At A 2 At 

C(xx) 0 0 MlAt M At 2 0 1 - M1At - M At 2 

Table 4. Trans i t ion P r o b a b i l i t i e s from S t a r t i n g 
Queue S t a t e E n i . ( l < n < N - l ) 

S t a r t i n g 
Machine 
Condit ion 

C ( l l ) 
F ina l Machine 

C(lx) 
' Condit ion 

C(xl) C(xx) 

C ( l l ) 1 - A At - A 1 2 At A 2 At A ^ t 0 

C(lx) M2At 1 - Aĵ At - M2At 0 Aĵ At 

C(xl) M^At 0 1 - M At - A At A2At 

C(xx) 0 M^At M2At 1 - M^At - M At 2 



Table 5 e T rans i t i on P r o b a b i l i t i e s from 
S t a r t i n g Queue S t a t e E j^ - 1 

S t a r t i n g 
Machine 
Condit ion C ( l l ) 

F ina l Machine Condition 
C(lx) C(bl) C(bx) C(xl) C(xx) 

C ( l l ) 1 - A At 
- A 2 A T 

" P^At A g At LL^At 0 A At 0 

C(lx) M2At 1 - A At - M At - LL At 0 LL At 
2 R 1 R 1 

0 A i At 

C(xl) M1At 0 0 0 1 - M At - A g At A 2 At 

C(xx) 0 M At 0 0 M2At 1 - M At - M2At 

Table 6. T rans i t i on P r o b a b i l i t i e s 
S t a r t i n g Queue S t a t e E j^ 

from 

S t a r t i n g 
Machine 
Condit ion C ( l l ) C(lx) C(bl) 

F ina l Machine Condition 
C(bx) C(xl) C(xx) 

C(bl) ^ 2 At 0 1 - A 1 At - A 2 At - H 2At A 2 At A ± At 0 

C(bx) 0 0 M2At 1 - A 1 At - M2At 0 A x At 

C(xl) 0 0 M i A t 0 1 - M.At - A At 
1 2 

A At 
2 

C(xx) 0 0 0 M^At M At 
2 

1 - Mj[At - M2At 
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The cond i t i ona l p r o b a b i l i t i e s for a l l p o s s i b l e t r a n s i t i o n s , 

given the i n i t i a l queue s t a t e and machine cond i t ion , have now been 

de r ived . The machine cond i t ions must now be e l imina ted so t h a t t h e 

t r a n s i t i o n p r o b a b i l i t i e s between queue s t a t e s may be determined. In 

t r a n s i t i o n s to machine cond i t ions where the f i r s t machine i s blocked 

or t h e second i s run ou t , t he r e s u l t a n t queue s t a t e i s f ixed . In some 

o ther t r a n s i t i o n s t h e r e s u l t a n t queue s t a t e i s a l so f ixed , as for ex­

ample in the t r a n s i t i o n from and C(xl) t o C ( x l ) . Here the 

queue s t a t e must remain E 1 s ince the f i r s t machine did not complete 

r e p a i r s and could not have completed a un i t and the second machine has 

not run out and so must s t i l l be working on the un i t t h a t was in the 

queue before the t r a n s i t i o n . In s t i l l o ther t r a n s i t i o n s t h e r e a re two 

or more p o s s i b l e r e s u l t a n t queue s t a t e s , but t h e i r p r o b a b i l i t i e s can 

be c a l c u l a t e d . I t may be noted t h a t changes of more than one u n i t in 

queue s t a t e involve terms of order ( A t ) 2 and h igher , so t h e i r prob­

a b i l i t i e s are n e g l i g i b l e . 

To i l l u s t r a t e the method of c a l c u l a t i n g queue s t a t e t r a n s i t i o n 

p r o b a b i l i t i e s , consider t he case where the i n i t i a l queue s t a t e i s E I 

and the i n i t i a l machine condi t ion i s C ( l l ) . The p r o b a b i l i t y of t h i s 

machine cond i t ion , given E , i s , from Table 1, 1 - R - R + R R . 
i 1 2 12 

From Table 3, the p o s s i b l e machine cond i t ions a f t e r t r a n s i t i o n a re 

determined, along with t h e i r p r o b a b i l i t i e s . The t r a n s i t i o n s t o C ( l l ) 

and C(xl) can r e s u l t in queue s t a t e s of E ^ or E G , the t r a n s i t i o n 

to C(lx) can r e s u l t in E Q , E,^, or E G , and the t r a n s i t i o n t o 

C(lO) must r e s u l t in E . Given t h a t a t r a n s i t i o n to C ( l l ) or C(xl) 
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has occur red , t he p r o b a b i l i t y t h a t s t a t e Ê ^ r e s u l t e d i s ( l - L i j A t ) , 

the p r o b a b i l i t y t h a t t he f i r s t machine did not complete a u n i t , while 

t he p r o b a b i l i t y t h a t s t a t e E ^ r e s u l t e d i s l ^At . Given t h a t a t r a n ­

s i t i o n to C(lx) occurred, t h e p r o b a b i l i t y of s t a t e Ê ^ r e s u l t i n g i s 

(HjAt) (iA 2At) + ( l - ^ 1 A t ) ( l - Lt2At) = 1 - Li1At - i i 2 At, the p r o b a b i l i t y 

of E i s (LX At) ( l - ii .At) = ii-At, and the p r o b a b i l i t y of E i s 
0 <2 J - 2 2 

(p> 1At)(l - P-gAt) = Li j LAt. Therefore , t h e p r o b a b i l i t y of remaining in 

s t a t e E given t h a t t he i n i t i a l cond i t ions were Ê ^ and C ( l l ) i s 

the sum of the p r o b a b i l i t i e s of t h e t r a n s i t i o n s to each machine condi­

t i o n , each m u l t i p l i e d by the r e s p e c t i v e p r o b a b i l i t y t h a t s t a t e E 

r e s u l t e d given t ha t the t r a n s i t i o n to t h a t machine condi t ion occur red . 

In t h i s example, t h e p r o b a b i l i t y of a t r a n s i t i o n to s t a t e E q i s 

Li 2 At, the p r o b a b i l i t y of remaining in Ê ^ i s 

(1 - H-jAtMl - A±At - A2At - i i 2 Pt ) + ( l - M.±At - ii gAt) (A gAt) 

+ (1 - ^ A t M A j A t ) 

= 1 - Li^At - LlgAt , 

and the p r o b a b i l i t y of a t r a n s i t i o n to E P i s 

(it A t ) ( l - A At A At - it At) + (it At) (A At) + (it At) (A At) = ii At . 
X X * G * G X O X X X 

This process i s then extended over t he remaining p o s s i b l e machine condi­

t i o n s in s t a t e E^, and the p r o b a b i l i t i e s of t he t r a n s i t i o n s from E ^ 

to o ther s t a t e s a r e der ived using the p r i n c i p l e s of c o n d i t i o n a l proba­

b i l i t y . 
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By d e f i n i t i o n the cond i t i ona l p r o b a b i l i t y t h a t an event, A, 

w i l l occur , under the assumption t h a t a second event , B, has occurred , 

denoted P ( A | B ) , i s equal to t he p r o b a b i l i t y t h a t A and B occur 

t o g e t h e r , denoted P ( A , B ) , d iv ided by the uncond i t iona l p r o b a b i l i t y of 

B, provided t h a t t he p r o b a b i l i t y of B i s not z e r o . I f i t i s ze ro , 

P ( A | B ) i s undefined. This d e f i n i t i o n can t h e r e f o r e be wr i t t en 

P(A ,B) = P(A |B) P (B) , S O ^ P ( A , B . ) = £ P ( A | B . ) P(B.) . 

i i 

The uncond i t iona l p r o b a b i l i t y of A, P ( A ) , can be w r i t t e n 

P(A) = YJ p ( A > B i ) 
i 

i f t he events B^ are exhaus t ive and mutual ly exc lu s ive , t ha t i s , i f 

t he sum of t h e i r uncondi t iona l p r o b a b i l i t i e s i s un i t y and the occurrence 

of any one of them prec ludes the occurrence of any of t he remaining 

events at the same t ime . I f t he se cond i t ions a re met, then 

P ( A ) = £ P ( A | B . ) P (B.) . 

i 

Since t h e r e a r e four p o s s i b l e machine cond i t ions in each queue 

s t a t e and these machine cond i t ions a re mutually exc lus ive and exhaus­

t i v e , the abso lu t e p r o b a b i l i t y of a t r a n s i t i o n from any queue s t a t e to 

any o ther can be expressed as the sum of t he cond i t i ona l p r o b a b i l i t i e s 

for a l l four machine cond i t ions t h a t t he t r a n s i t i o n in ques t ion w i l l 

occur under t he assumption t h a t a p a r t i c u l a r machine condi t ion i s in 

e f fec t a t t h e s t a r t of the per iod At, each m u l t i p l i e d by the 
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uncond i t iona l p r o b a b i l i t y t h a t t h a t p a r t i c u l a r machine condi t ion i s in 

fac t in e f f e c t . For example, the t r a n s i t i o n p r o b a b i l i t y from E to 

E 2 , denoted P 1 2> 1 S expressed 

p '= ) (p<„ I i n i t i a l machine condi-1̂2 L ri2 1 

i = C ( l l ) , C ( l x ) , C ( x l ) , C ( x x ) 

t i o n i) P ( i n i t i a l machine condi t ion i ) . 

p and p a re c a l c u l a t e d below. r o o 01 
P o o = ( l -Rj, - R 2 + R 1 R 2 ) [ ( l - Aj.At - A 2At -jijLAt) + A 2 At( l - j i ^ t ) + Aj_At] 

+ (R2 - Rĵ Rg) [MgAt + ( l - A 1At - MgAt) ( l - | i 1 At) + ( A ^ t ) (1 - LIjAt) ] 

+ (R - R R )[M At + 1 - M At - A 5At + A 9 At] 1 1 2 1 1 y 'r 

+ (R R )[(M At) (1 -u, At) + M At + 1 - M At - M At] 1 2 1 " l 2 1 2 
P 0 0 = 1 " JA / t + R ^ A t = 1 - j ^ A t d - R ^ 

P Q l = (1 - R 1 - Rg + ^ V ^ l ^ + ( A

2

A t ) ( P ' 1
A T ) 3 + ( V R 1Rg)(p > 1At) 

+ (R 1 - R ^ G K O ) + ( R ^ X ^ A T K L ^ A t ) 

Pol = ^iAt " V l M = ^ i A t ( l " R i } * 
As a check on the c a l c u l a t i o n s , i t may be seen t h a t p + p „ = i , 

' 1 'OO K01 x 

S i m i l a r l y , p ^ = p.gAt(l - R g ) , p u = 1 - L L g A t ( l - R g ) - p^At ( l - R ^ ) , 

p = u At ( l - R ) , and p . + p + p = 1. *12 r l l ' F1o K n
 K i 2 
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Upon extending t h i s procedure to a l l o the r i n i t i a l queue s t a t e s 

and machine c o n d i t i o n s , the t r a n s i t i o n p r o b a b i l i t i e s a re determined to 

be 

Poo = 1 ' ^ l A t ( l " R l } 

P q 1 = u ^ t a -

P n i , n , = 1 " ^ i M ( l " R i } " ^ 2 A t ( l - R

2 ) 

p = u At ( l -R ) 
n l > n l ~ ' l 2 2 

p ^ = LL A t ( l - R ) n 1 , n 1 + l l 1 

' 1 < n < N - 1 - i - l 

p.. ,M = 1 - u At ( l - R ) N 1 , N 1

 r 2 2 

P ^ V 1 = ^ 2 M ( 1 " R 2 } . 

The t r a n s i t i o n p r o b a b i l i t i e s between a l l queue s t a t e s have now been 

de r ived . They were, however, der ived under the assumption t h a t N 

i s g r e a t e r than two u n i t s . This r e s t r i c t i o n w i l l now be r e l axed , and 

i t w i l l be shown tha t t h i s r e l a x a t i o n does not a f fec t the p r o b a b i l i t i e s 

F i r s t consider t h e case where N = 2. Here t r a n s i t i o n s s t a r t i n g in 

E and E (E = E M ) a re not a f f ec t ed and t h e i r p r o b a b i l i t i e s a re 
O 2 * 1 

the same as those where N i s g r e a t e r than 2„ T r a n s i t i o n s s t a r t i n g 

in Ej_ a re a f f ec t ed , however, s i nce E^ i s now a l so E M ^ _ 1 P and a l l 

the machine condi t ions which could p rev ious ly be reached from e i t h e r 

E (Table3) or E N _± (Table 5) can now be reached from E 1. Using 

t h e same procedure as be fo re , the machine condi t ion p r o b a b i l i t i e s 

s t a r t i n g from E a re der ived and shown in Table 7 0 



Table 7. T rans i t ion P r o b a b i l i t i e s from S t a r t i n g 
Queue S t a t e E when N i = 2 

S t a r t i n g F ina l Machine Condit ion 

Condit ion C ( l l ) C ( l 0 ) C ( l x ) C ( b l ) C ( b x ) C ( x l ) C ( x 0 ) C ( x x ) 

C ( l l ) 

C(lx) 

1 - AjAt - A2At u 2 At 

- U 2At - u 2 At 

M2At 

A2At UjAt 0 AjAt 

0 1 - AxAt - M2At 0 LijAt 
" L̂ At 

0 

0 

0 

0 

A 1At 

C(xl) M^At 0 0 0 0 1 - M At - A At u At 

X <, Q 
' ^ 2 A t 

A 2At 

C(xx) 0 0 M At 0 0 M2At 0 1 - MjAt - M2At 
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By a comparison of Table 7 and Table 3 it can be seen that with 

N greater than two units, only machine conditions C(ll), C(lO), 

C(lx), and C(xl) could be reached from E and C(ll), but with 

N = 2, C(bl) can also be reached. The probability of remaining in 

C(ll) is reduced by u^At, which is also the probability of a tran­

sition to C(bl). The probabilities of transitions to all other machine 

conditions remain unchanged. The resultant queue state probabilities 

for transitions to C(lO) and C(xl) are unchanged, but a transition 

to C(ll) now fixes the queue state at E^, and E^ and E^ are 

now the only possible resultant queue states for transitions to C(lx), 

since E 2 would lead to C(bx). The probability of E q resulting 

from a transition to C(ll) is now p 2At, and of E^9 (l - u 2At). 

The sum of the probabilities of all transitions to E^ is now 

P-gAt + (p, At) (A At) = P-gAt, as it was with N ± greater than 2, and 

similarly the probability of remaining in remains 1 - LI At - P gAt 

and that of a transition to E g remains LI At. By extending this pro­

cess to all the other possible initial machine conditions in E 1 , it 

is found that similar changes occur, but that the total probabilities 

of remaining in El9 making a transition to E , or making a transi­

tion to Eg remain the same. 

When = 1 there are only two possible queue states, E^ 

and E , and machine condition C(ll) does not exist. Possible 

initial machine conditions in E q are C(lO), C(lx), C(xO), and 

C(xx). In E they are C(bl), C(bx), C(xl), and C(xx). Again 

using the same procedure, machine condition transition probabilities 

starting from E and E, were derived and tabulated in Table 8 and o 1 
Table 9. 



Table 8 C Trans i t ion P r o b a b i l i t i e s from S t a r t i n g 
Queue S t a t e E when N, = 1 

0 1 
S t a r t i n g 
Machine 
Condit ion C(10) C(lx) 

F i n a l Machine Condit ion 
C(bl) C(bx) C(xl) C(xO) C(xx) 

C(10) 1 - A At - A At 1 2 A At 2 Li^At 0 0 A i At 0 

C(lx) M2At 1 - A 1 At -

- L^At 

MgAt 0 Liĵ At 0 0 A 1 At 

C(xO) MiAt 0 0 0 0 1 - MiAt - A At 2 A At 2 

C(xx) 0 MxAt 0 0 0 M At 
2 

1 - M At - M At 1 2 

Table 9. T rans i t i on P r o b a b i l i t i e s from S t a r t i n g 
Queue S t a t e Ê ^ when 1^ = 1 

S t a r t i n g 
Machine 
Condit ion C(lO) C(lx) C(bl) 

F ina l Machine Condit ion 
C(bx) C(xl) C(xO) C(xx) 

C(bl) Li2At 0 1 - A1At - A 2 At A 2 At A 1 At 

" H 2

A t 

0 0 

C(bx) 0 0 M2At 1 - AjAt - MgAt 0 0 A 1 At 

C(xl) 0 0 MlAt 0 1 - MJ_At - AgAt 

" ^ 2 A t 

JigAt A 2 At 

C(xx) 0 0 0 M At M At 1 2 0 1 - M At - M At 1 2 
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Upon examining t h e case where the i n i t i a l cond i t ions a re E Q 

and C(lO) , one may see t h a t the r e s u l t a n t queue s t a t e w i l l be E Q when 

t r a n s i t i o n s a re made to machine s t a t e s C(io), C ( l x ) , and C(xO), and 

E ± when t r a n s i t i o n s to C(bl) a re made. The p r o b a b i l i t y of remaining 

in E given i n i t i a l condi t ions of E and C(lO) i s t h e r e f o r e 
0 o 

1 - A At - A At - p At + A At + A At = 1 - p At, and when m u l t i p l i e d 

1 2 r i 2 l r l ' K 

by 1 - R - R g + R R , the p r o b a b i l i t y of C(lO) given E , i t be­

comes ( l - Lt 1 At)( l - R 1 - R g + R ^ g ) • T n e p r o b a b i l i t y of a t r a n s i t i o n 

t o E i s (|J.lAt)(l - R 1 Rg + RjL^g) » With i n i t i a l machine condi t ion 

C(xO) or C(xx) a l l p o s s i b l e f i n a l machine condi t ions r e s u l t in queue 

s t a t e E , so the p r o b a b i l i t y of remaining in E q in t h i s way i s 

simply t h e sum of t h e i r o r i g i n a l p r o b a b i l i t i e s , R 1 - R^Rg + R±Rg = ^ l " 

With i n i t i a l machine condi t ion C ( l x ) , t r a n s i t i o n s to C(lO) and C(lx) 

lead to r e s u l t a n t queue s t a t e E q , those to C(bx) r e s u l t in E , and 

those to C(xx) to E Q with p r o b a b i l i t y ( l - p, At) and to E ± with 

p r o b a b i l i t y p^At. Upon mul t ip ly ing t he se by R g - RjRg* the proba­

b i l i t y of C(lx) given E , and combining a l l t e rms , p o Q i s seen to 

be p 1 A t ( l - RJL ) , the same as i t was when was 2 or g r e a t e r . 

S imi la r c a l c u l a t i o n s show t h a t p remains the same and p l Q and 

p11 a re t he same as p^ ^ _^ and p^ M when N,̂  i s 2 or g r e a t e r . 

The queue s t a t e t r a n s i t i o n p r o b a b i l i t i e s which were der ived under the 

assumption t h a t N 1 was g r e a t e r than 2 a re thus v a l i d for a l l va lues 

of N 1 . 

The Equat ions and Their S o l u t i o n . - - L e t t i n a p

n ( " t ) denote the p r o b a b i l ­

i t y t h a t the queue i s in s t a t e E^ a t t ime t , we w r i t e t h e equat ions 

for t h e p r o b a b i l i t i e s of each queue s t a t e : 
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P ( t + At) = P ( t ) p + P ( t ) p 
0 0 00 1 10 

P ( t + At) = P ( t ) p + P ( t ) p + P , ( t ) p , n n nn n - i n - i , n n+i *n+i,n 

( l < n < N - l ) 
l 

P ( t + At) = P 
1 N i ( t ) P N I ' N I + V l ( t ) 

These equat ions a re solved r e c u r s i v e l y for a l l s t a t e p r o b a b i l i t i e s in 

terms of P Q in the following manner. 

P ( t + At) = P ( t ) [ l - (LL A t ) ( l - R ) ] + P ( t ) ( p A t ) ( l - R ) 

0 0
 r l 1 1 r 2 2 

Upon r ea r r ang ing terms and tak ing t h e l i m i t as At approaches ze ro , the 

r e s u l t i s 

P ( t + At) - P ( t ) 
A i i m — 77 2 = - P ( t ) LL (1 - R ) + P ( t ) LL (1 - R ) 

At"» 0 At 0
 r l 1 1 r 2 2 

d p 0 ( t ) 

dt 

The d e r i v a t i v e with respec t to t ime i s s e t equal to ze ro , e l imina t ing 

dependence on t ime , and the t ime-independent or s teady s t a t e p r o b a b i l ­

i t i e s , denoted P , a r e then determined. 
n' 

" P 0 M 1 " Ri> + Pl M 1 " R

2> = ° 

p = p 
1 - R 2) ° 
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" R L > " 

Fur the r r e c u r s i v e s o l u t i o n s w i l l i n d i c a t e t h a t P = -—" P 
N M I - V 0 

for a l l va lues of n . However, s t a r t i n g with the r e s u l t t h a t 

M I - R J 1 

P . = P , an induc t ive proof i s given to e s t a b l i s h the 
Had " R

2 ) ° 

genera l case for a l l va lues of n inc lud ing N „ 

For any value of n g r e a t e r than one, t he d e r i v a t i v e with r e ­

spect to t ime of n - 1, when se t equal to ze ro , i s 

P ' = P p + P [p - l ] + P p = 0 . n - i n-2 H n - 2 , n - i n - i L H n - i , n - i J n H n , n - i 

Then 

I N ( I - R I ) N " 2 H I D - R I ) N ' 2 

and 

M 1 " 1 * . ) N 2 T I 1 ( l - R 1 ) - R ^ n 1 M , 1 ( l - R 1 ) + | i 2 ( l - ^ ) 
P n " " H 2 ( l - R 2 ) P o ^ 2 ( 1 - R 2 ) + J I 2 ( l - R 2 ) P o ix 2 ( l - R 2 ) 

n - i „ n - i 
M L - R ±) [L±{1 - R ±) n_ IA ± ( 1 - R ± ) p — _ p _|. p _________ p 

N M L -
 R2^ 0 M X ~

 R 2) 0 P-2(l - R 2) 0 

M I - Ri) n 

p = - p . 
N M L - R J 0 
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The p r o b a b i l i t i e s for a l l va lues of P in terms of P for K n o 

any va lue of N may now be c a l c u l a t e d , and t h e abso lu t e va lues of a l l 

s t a t e p r o b a b i l i t i e s may be found by use of t h e normal iz ing equat ion , 

Ni 

I P n = 1 • 
n=o 

I t may be noted t h a t and JVL do not appear in t h e express ion for 

queue s t a t e p r o b a b i l i t i e s , but only t h e i r r a t i o , . I t i s not neces ­

sa ry to know t h e exact va lues of A^ and NL as long as FL i s known, 

but i t should be poin ted out t h a t t he model assumes t ha t they a re P o i s ­

son and exponen t i a l l y d i s t r i b u t e d , r e s p e c t i v e l y . When the queue s t a t e 

p r o b a b i l i t i e s a re known the output of t he system may be computed by the 

procedure used in t h e example in t he next s e c t i o n . 

An Example.--Two machines a r e to be arranged in s e r i e s . The f i r s t has 

a capac i ty of 150 u n i t s per hour when o p e r a t i n g , breaks down on the 

average once every two and a ha l f hours , and r e q u i r e s an average of 

15 minutes r e p a i r t i m e . The second has a capac i ty of 200 u n i t s per 

hour, averages a breakdown every hour and a q u a r t e r , and r e q u i r e s an 

average of 15 minutes r e p a i r t ime . I t i s de s i r ed to determine the op­

timum s to r age capac i ty between t h e two machines. I t has been es tab l i shed 

t h a t the cost of providing an a d d i t i o n a l u n i t of capac i ty w i l l be j u s ­

t i f i e d i f t h a t u n i t i nc reases the output of t h e system by at l e a s t t h r e e 

u n i t s per hour . 

I t i s seen t h a t Â^ = 0.4 breakdowns per hour and M = 4 

r e p a i r s per hour, so Rj. = 0 . 1 0 . S i m i l a r l y , R 2 = 0 . 2 0 . | i i ( l = 135 



39 

units per hour and P 2(l - R g) = 160 units per hour, so the maximum 
Hi(l - Ri) 

capacity of the system is 135 units per hour. = 0.844, 
H 8 ( l - R 8) 

and the powers of 0.844 are listed below: 

(0.844) 2 = 0.712 (0.844) 5 = 0.428 

(0.844) 3 = 0.601 (0.844) 6 = 0.361 

(0.844) 4 = 0.507 (0.844) 7 = 0.304 

The queue state probabilities are now computed when N takes on 

values of 1 through 7. 

N l = 1 N i = 2 N l = 3 

1.844 P 
0 

1.0 1.844 
0.712 

2.556 
0.601 

2.566 P 
0 

1.0 3. 157 P = 
0 

P = 
0 

0.542 P = 
0 

0.391 P 
0 

— 0.317 

P i = 0.457 P i = 0.330 P i 0.264 
P

2 = 0.278 p
2 

P 
3 

= 

0.226 

0.191 

N i = 4 N l = 5 = 6 

3.157 3.664 4.092 
0.507 0.428 0.361 
3.664 P = 

0 
1.0 4.092 P = 

0 
1.0 4.453 P = 

0 P 
0 

0.273 P 
0 

0.244 P 
0 

= 0.225 
p i = 0.230 p i = 0.206 p i — 0.190 

P 2 = 0.194 
P2 = 0.174 P

2 
0.160 

P 3 = 0.164 P 3 = 0.147 
P 3 

0.135 
P 4 = 0.138 P 4 = 0.124 

P 4 0.114 
P = 

5 
0.104 P 

5 
P 

0.096 
0.081 
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4.453 
0 .064 
4.758 P = 1.0 

o 
P = 0.210 

o 
P 1 = 0.177 
P 2 = 0.150 
P 3 = 0 .126 
P 4 = 0 .106 
P = 0,090 5 
Pa = 0.076 

6 

P = 0.064 
? 

I t may a l r eady be seen t h a t each a d d i t i o n a l un i t of capac i ty decreases 

the p r o b a b i l i t y of machine 1 being blocked (P^ ) and of machine 2 
L 

running out (P ) , but t h a t each a d d i t i o n a l Unit reduces these p robab i l ­

i t i e s l e s s than the un i t before i t . To determine the optimum poin t t h e 

a c t u a l output of the system must be c a l c u l a t e d . 

Since in t h e s teady s t a t e t h e product ion t h a t goes through 

e i t h e r machine must a l so go through the o t h e r , the output of e i t h e r 

machine can be c a l c u l a t e d to determine the output of t h e system. In 

t h i s example, however, the product ion of both machines w i l l be ca lcu­

l a t e d to i l l u s t r a t e t h e method and a l so to provide a check. 

The output of t h e f i r s t machine i s \i t imes the p ropor t ion of 

t ime i t i s not broken down or b locked. The p r o b a b i l i t y t h a t i t i s 

broken down i s R , and the p r o b a b i l i t y t h a t i t i s blocked i s P N . 

These cond i t ions a r e not mutual ly e x c l u s i v e ; the machine can be 

blocked and broken down at t he same t ime . Therefore , t h e t o t a l 



Page missing from thesis 
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The c a l c u l a t i o n s for machine 2 confirm those for machine 1. 

In t h i s example the optimum plan i s to provide s ix u n i t s of s t o r age 

capac i ty ( inc lud ing the space for the un i t in machine 2) between the 

two machines, s ince the seventh un i t f a i l s to i nc rease the product ion 

by t h e des i r ed t h r e e u n i t s per hour . 



CHAPTER V 

THE THREE MACHINE CASE 

Transitions.—With three machines there are eight general classes of ma­

chine conditions, each class corresponding to a different arrangement 

of broken down and operable machines. These classes, together with their 

absolute probabilities and the possible machine conditions in each, are 

listed in Table 10. 

Table 10. Machine Condition Classes, Their Probabilities, 
and Their Possible Machine Conditions: 
Three Machine Case 

Class Probability Possible Machine Conditions 

1. RlR3 " RlR2R3 C(xlx) f C(xOx), C(xbx) 

2. R R - R R R 12 12 3 C(xxl) f C(xxO) 

3. R1R2R3 C(xxx) 

4. R - R R - R R 1 12 13 + R.RR 
12 3 

C(xl l ) f C(xlO), C(xOl) , C(xOO), C(xbl) 

5. R - R R - R R 3 13 2 3 + R R R 
12 3 

C(l lx ) > C(lOx), C( lbx ) , C(b lx ) , C(bbx) 

6. R - R R - R R 2 12 2 3 + R R R 12 3 C(lx l ) 9 C(lxO), C(bx l ) , C(bxO) 

7. R2R3 " R1R2R3 C(lxx) f C(bxx) 

8. 1'." R l " R2 " R3 C ( l l l ) f C ( l l O ) , C ( l O l ) , C(lOO), 

+ R R + R R - R R R 1 3 2 3 1 2 3 C( lb l ) f C ( b l l ) , C(blO), C(bbl) 

The queue states here are denoted by ^n_>n2> a n < ^ with one ex­

ception there is one and only one machine condition from each class which 
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may e x i s t with any given queue s t a t e . The exception i s in queue s t a t e 

E KT . Here condi t ions C(xOx) and C(xbx), C(xOl) and C(xb l ) , o ,N 2 

C(lOx) and C ( l b x ) , and C(lOl) and C( lb l ) e x i s t s imul taneous ly 

in p a i r s s i nce in E M t he second machine i s both blocked and run 
o,N 2 

o u t . This p r e s e n t s no r e a l problem, but i t does n e c e s s i t a t e t he i n t r o ­

duct ion of some a d d i t i o n a l terminology for t h i s p a r t i c u l a r s t a t e . The 

new i n i t i a l machine s t a t e s C ( x | ° | x ) , C(x | °J l ) , C( l | °Jx) , and 

C ( l | ° J l ) , p o s s i b l e only in E Q M a re here de f ined . The same proce­

dure t h a t was used in the two machine case may then be used to ca lcu­

l a t e t h e machine condi t ion t r a n s i t i o n p r o b a b i l i t i e s . Cons idera t ion 

must be given here to t he fac t t h a t from these "ambiguous" c o n d i t i o n s , 

t r a n s i t i o n s may be made to t he same or o ther ambiguous condi t ions or 

t o an "unambiguous" condi t ion which may have been r ep re sen t ed in t he 

i n i t i a l ambiguous c o n d i t i o n . For example, t r a n s i t i o n s p o s s i b l e from 

C ( x | £ | l ) inc lude the ones to C(x |°Jx), to C ( x | ° | l ) , and a l so to 

C(xOl) with machine 2 no longer blocked. I f a l l such p o s s i b i l i t i e s 

a re recognized the o r i g i n a l procedure may be used in a s t r a i g h t f o r ­

ward manner to determine a l l machine condi t ion t r a n s i t i o n p r o b a b i l i ­

t i e s . In the same manner as be fore , t h e machine cond i t ions a re then 

e l imina ted by c a l c u l a t i n g the cond i t i ona l p r o b a b i l i t i e s of r e s u l t a n t 

queue s t a t e s given i n i t i a l queue s t a t e s and machine cond i t ions and 

tak ing the queue s t a t e t r a n s i t i o n p r o b a b i l i t i e s as sums of cond i t i ona l 

p r o b a b i l i t i e s . 

The d e r i v a t i o n proceeds by f i r s t assuming N 1 and N 2 both 

g r e a t e r than two u n i t s and determining the queue s t a t e t r a n s i t i o n 

p r o b a b i l i t i e s , then r e l ax ing the r e s t r i c t i o n s on N1 and N and 
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showing that the probabilities are not affected. Sample calculations 

are given in Appendix B for machine condition transition probabilities 

starting in E with 1 < n < N - 1 and 1 '< n < N - 1. 
^ n l > n 2 1 1 2 2 

Appendix C gives sample calculations for resultant queue state proba­

bilities with initial conditions E (l < n < N - l), (l - n < N -

and C(xxl). The queue state transition probabilities are found to be 

as follows: 

p , = u,At(l - R„) for n„ < N„ and zero otherwise, Fn 1,n 2;n 1+i,n 2
 r i i' i i 

P . 1 = »ipAt(l - R P) for 1 < n. < N,, n„ < N , n^n-jr^-ijng+i r 2 2 1 - 1 9 2 2 9 

and zero otherwise, 

p = u, At(l - R Q) for n 0 > 0 and zero otherwise, 
n i , r V r V 2" 1 

p n , n ; n , n - 1 (p + p l' 2 1 2 n .n ;n +i,n *n ,n :n -i,n + 
1' 2' 1 ' 2 19 2' 1 ' 2 

+ P \ . rn ,n ;n ,n -1 ) 
l' 2 1' 2 ' 

The relations between transition probabilities may be more 

readily seen with the aid of a diagram. Figure 2 shows the possible 

transitions between queue states when N i = 3 and N g = 3. For more 

concise terminology, let a = ji^l - R^* b = l J L
2d ~ R

2)> and 

c = |i (l - R ) . The probabilities of the various transitions are 

shown on the arrows indicating the transition. The probability of 

remaining in any state is unity minus the sum of the probabilities 
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of the t r a n s i t i o n s which may be made from i t . For example, the proba­

b i l i t y of remaining in E 2 3 i s 1 - aAt - cAt, the p r o b a b i l i t y of 

remaining in E 3 q i s 1 - bAt, and the p r o b a b i l i t y of remaining in 

E 0 0 i s 1 - aAt - bAt - cAt. 

F igure 2 . P o s s i b l e Queue S t a t e T r a n s i t i o n s 
when N 1 = 3 and N 2 = 3. 

Although F igure 1 shows the case where and N g a re both 

t h r e e , i t a l so desc r ibes the genera l N 1 , N 2 c a se . I t may be seen 

t h a t the t r a n s i t i o n from n , n g to n +1 , n 2 may be made from any 

s t a t e where n H ^ N, , the t r a n s i t i o n from n , n t o n - 1 , n + 1 
L L ' V 2 L 2 

may be made from any s t a t e where £ 0 and n g ^ N , and the 

t r a n s i t i o n from n , n t o n ,n - 1 may be made from any s t a t e 
L ' 2 L 2 1 1 

where n £ 0 . 
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The Equations and Their So lu t ion .—Unfor tuna te ly , t he t h r e e machine 

case i s cons iderably more complex than the two machine case . In t he 

l a t t e r i t was p o s s i b l e t o de r ive a genera l express ion for in terms 

of P Q r e g a r d l e s s of t h e value of N^. In the t h r e e machine case , 

though, t h e add i t ion of a u n i t of capac i ty in e i t h e r queue changes the 

r e l a t i o n s h i p s between t h e p rev ious ly e x i s t i n g p r o b a b i l i t i e s , so no 

genera l express ion can be w r i t t e n . I t i s p o s s i b l e , however, t o de r ive 

a p a r t i c u l a r express ion for any s p e c i f i c arrangement of c a p a c i t i e s , 

and the method w i l l be i n d i c a t e d . P a r t i c u l a r express ions for c e r t a i n 

s e l e c t e d arrangements w i l l be de r ived . 

The method of s o l u t i o n is to express the s teady s t a t e proba­

b i l i t i e s in terms of t he p r o b a b i l i t i e s of o ther queue s t a t e s , then by 

a s e r i e s of e l i m i n a t i o n s and s u b s t i t u t i o n s to express a l l p r o b a b i l i ­

t i e s in terms of one of them, and f i n a l l y to apply t h e normal iz ing 

equa t ion . Once the bas ic r e l a t i o n s h i p s between the s t a t e s a re under­

stood t h e i n i t i a l express ions may be w r i t t e n by i n s p e c t i o n . This may 

be seen by no t ing t h a t the p r o b a b i l i t y of being in any s t a t e a t t ime 

t + At i s the p r o b a b i l i t y of being in t h a t s t a t e at t ime t t imes 

the p r o b a b i l i t y of remaining in t h a t s t a t e enuring At , p lus t he sum 

of t he p r o b a b i l i t i e s of being, at t ime t , in each of t he s t a t e s from 

which the s t a t e in ques t ion can be reached in a s i n g l e t r a n s i t i o n , 

each m u l t i p l i e d by the p r o b a b i l i t y of such a t r a n s i t i o n . Since the 

p r o b a b i l i t y of remaining in any s t a t e i s always of t he form 1 - Z, 

where Z i s the sum of one, two, or t h r e e of t he terms aAt, bAt, 

and cAt, t he d e r i v a t i v e with r e spec t to time of the p r o b a b i l i t y of 
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any queue s t a t e can always be expressed as -Z/At p lus the sum of 

p r o b a b i l i t i e s of s t a t e s from which the s t a t e in ques t ion may be reached, 

each m u l t i p l i e d by t h e p r o b a b i l i t y of t r a n s i t i o n to t h a t s t a t e and d i ­

vided by At . Upon s e t t i n g the d e r i v a t i v e equal to ze ro , Z/At times 

the p r o b a b i l i t y of t h e s t a t e in ques t ion i s seen to equal the sum j u s t 

mentioned. To i l l u s t r a t e , consider t he s t a t e E in F igure 1. Here, 

Z = (aAt + cAt) , and Z/At = a + c; E can be reached from E 

with p r o b a b i l i t y aAt and from E with p r o b a b i l i t y bAt. By i n -

spec t ion t h i s i n d i c a t e s t h a t 

(a + c)P = aP + bP 
' 2 3 1 3 3 2 

S i m i l a r l y , for s t a t e E , Z = (aAt + bAt + cAt) , and 

(a + b + c)P = aP + bP + cP 
1 1 0 1 2 0 1 2 

To a r r i v e a t t h e s e values a n a l y t i c a l l y , t h e following s t eps would be 

n e c e s s a r y : 

P ( t + At) = P ( t ) p + P ( t ) p + P ( t ) p 
2 3 2 3 * 2 3 , * 2 3 3 2 * 3 2 , * 2 3 I 3 K 1 3 J 2 3 

P 2 3 ( T + A T ) = P 2 3 ( T ) ( L ' a A t ' ^ t f + P i s ^ ) a A t
 + P

3 2 D ) bAt 

P ( t + A t ) - P ( t ) 
1 — — = — P = 0 = - ( a+ c) P + aP + bP 

A t ^ O A t dt ^ 2 3 U U + C ; ^ 2 3 3 ^ 1 3 + W S 2 

(a + c) P 2 3 = a P 1 3 + b P 3 2 
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P^Ct + M ) =P__(t) P ^ . ^ + P ^ t ) P 0 1 ; 1 1 + P a o(t) P a o . 1 1 + P l a ( t ) P i a.__ 

P (t + At) = P 1 1(t)(l- aAt -bAt- cAt)+P Q 1(t) aAt + P 2 Q bAt + P±2 cAt 

P (t + At) -P__(t) . 
lim s dt pii = ° = " (a + b + c ) P 1 1 + a P 0 1 + bP 2 0+ cP 1 2 

At^o At 

(a + b + c) P = a P 0 1 + bP + cP 1 2 . 

Using this method, expressions for all state probabilities will 

be derived for the cases N = 1 and N = 1, N = 1 and N = 2, 
L 2 1 2 

N = 2 and N = 1, N = 2 and N = 2, N. = 1 and N = 3, N = 3 

and N = 1, N = 1 and N = 4, N = 4 and N = 1, N = 2 and 
2 ' L 2 ' L 2 ' 1 

N = 3 , and N = 3 and N = 2. The expressions for any other speci-

fic case may be drived in the same manner. Although the desired end is 

to express all queue state probabilities in terms of one of them, the 

expressions in this form become extremely complicated. It is more 

practical, both in deriving the expressions and in the numerical compu­

tation, to express each queue state probability in terms of other pre­

viously derived probabilities, Which in turn have been expressed in 

terms of the one desired. This allows step-by-step computation of the 

probabilities with simpler equations, fewer substitutions, smaller 

numbers, and fewer opportunities for error. The expressions will accord­

ingly be given in such a form. 

Figure 3 represents the case N = 1 , N = 1. By inspection 
X io 

and substitution, 



Figure 3. Transition Probabilities 
when N = 1 and N = 1 

Figure 4. Transition Probabilities 
when N = 1 , N g = 2 

Figure 4 represents the case = 1 , N g = 2. Here it may be 

seen immediately that 

P = — P r0i c *oo • 

It is then necessary to eliminate P from the equations 
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(a + c) P 0 £ - b P l x = 0 

- c P + b P - a P = 0 11 10 oo 

by mul t ip ly ing the f i r s t by c and the second by -b and adding them, 

This y i e l d s P 0 J g in terms of P and P Q 0 . Upon s u b s t i t u t i n g t h i s 

va lue of P Q 2 in the equat ion 

(a + c) P - bP - cP = 0 x ' 01 10 02 

P i s found in terms of P and P : lo o i oo 

(a + c ) 2

 p + a_ P 10 b(a + b + c) oi a + b + c oo 

Then, from the equat ion 

bP = aP + cP , 10 oo i l ' 

P i i ^ s s e e n t o ^ e : 

P = — P - - p l l c io c

 0 0 " 

From (a + c) P = bP , P i s found: 02 l l 02 

b p . . . 
02 a + c i i 

By i n s p e c t i o n , cP = aP , and 
12 02 

P = - P . 
12 C 02 
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aAt 

aAt 

aAt 

aAt 

F igure 5 . T rans i t i on P r o b a b i l i t i e s 
when N 1 = 2, N 2 = 2 

F igure 5 r e p r e s e n t s the case N = 2, N g 

immediately seen t h a t 

P 

= 2 . " Here i t i s 

o i 
= ^ P 

C 00 

By suing t h e two equat ions 

(a + c) P 0 1 - b P 1 n - c P n 5 =-• 0 
10 02 

and 
(a + b) P 1 0 - a P o n - c P n = 0 , 

oo i i 

mu l t i p ly ing the f i r s t by (a + b) and the second by b, adding them, 

a + c 
and s u b s t i t u t i n g —•-— - P Q 2 for P ^ in the r e s u l t , t h e express ion 

for P„ i s ob ta ined : 02 

_ (a + b) (a + c) _ b 
02 c (2a + b + c) o i " c ( 2 a + b + c) P 

00 

The express ions for P ^ and P^ are obta ined immediately a s : 
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P = — - — P + — - — p 
10 a + b oo a + b L L 

I t i s then necessary to e l im ina t e P from 
2 1 

(a + c ) P - a P - b P = 0 
1 2 0 2 2 1 

and 

(b + c) P 8 T - a P X 1 - c P 2 2 = 0 

and to s u b s t i t u t e - P for P in the r e s u l t t o obtain 
a 2 2 1 2 

p = a 2 ( b + c) p + afb : p 

2 2 c(a + c ) (b + c) - abc 0 2

 c ( a + c ) (b + c) - abc 1 1 

The remaining express ions then follow immediately as 

P = - P 12 a 22 

> - — § — p + — £ — p 
2 1 b + c L L b + c 2 2 

p = - p + - p 20 b lo ^ b 21 * 

The express ions for t h e queue s t a t e p r o b a b i l i t i e s in t he remain­

ing cases solved are der ived by a s i m i l a r p rocedure . They a r e : 

For N = 1 and N = 3 : 
1 2 

P = " P 
1 3 C 0 3 



0 2 

b + c 
a 12 

£ P a 1 3 

ll 
a + c p 

b 02 
£ P b o 3 

oi 
b + c 

a ll a 1 2 

oo * p 
a oi 

1 0 
U P + U P b oo b ll 

For Ni = 3 and N 2 = 1: 

0 1 

lo 

* P 
C 0 0 

a + c 
b Poi 

ll 
a + b p 

C 1 0 a p 
C 0 0 

2 0 

a + c p 

b ii b oi 

2 1 

a + b 
C 2 0 

* P c 1 0 

3 1 

£ P 

C 2 1 

3 0 

a p + c p 

b 2 0 b 3 1 

For N = 1 and N = 4 : l 2 

1 4 

1 3 

0 3 

a-P 
C 0 4 

a + c p 

b 0 4 

b + c 
a 1 3 a 1 4 



1 2 

a + c 
b F Q 3 

£ P 
b 0 4 

0 2 

b + c 
a 1 2 

£ p 
a 1 3 

i i 
a + c p 

b 0 2 b 0 3 

0 1 

1 0 

b + ,c p 

a i i 

a + c 
b o i 

£ P a 1 2 

£ P b 0 2 

0 0 
* P 
a o i 

For N = 4 and N 2 = 1: 

° L 

* P 
c oo 

1 0 

a + c 
b o i 

i i 
a + b p 

C 1 0 

£ p 
C 0 0 

2 0 

a + c p 

b * i i 
a p 

b oi 

2 1 

a + b p 

C 2 0 
* p 
C 1 0 

3 0 

a + c p 

b 2 1 b i i 

3 1 

a + b p 

C 3 0 

a P 
C 2 0 

4 1 

^ P 
C 3 1 

4 0 B 3 0 B 4 1 
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For N = 2 and N 2 = 3 : 

1 2 

1 3 

2 2 

a + ,c p 

b 0 3 

a(b + c) ab 
(a + c)(b + c) - ab 03 (a + c)(b + c) - ab 1 2 

a + c p _ a p 

b 1 3 b 0 3 

2 3 

2 1 

1 1 

£ p 
C 1 3 

(a + c) (a + b + c) P + c -
b(a + b + 2c) 1 2 (a + b + 2c) 2 2 

c(a + c) a c 
" b(a + b + 2c) 1 3 b(a + b + 2c) 0 3 

b + c P - - P 
a 2 1 a 2 2 

0 2 

0 1 

p + a + c ii: a + c o3 

b(a + b + c) be i p + p ) 
ab + a(a + c) r n ab + a(a + c) v 21 12' 

10 

+ a + b + c 02 

a + c p _ c p 

b oi b 02 

00 
^ P 

a 01 

P = - P + - p r2o b 10 T b 21 

For N = 3 and N =2: 1 2 

01 
= a-P 

c 00 

P 0 2 = 

(a + b)(a + c) ab p 

c(2a + b + c) 01 c(2a + b + c) 00 
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p = a_±_c 
11 b 02 

P = — - — p + — 2 — p 

10 a + b oo a + b i i 

P _ (a + b) (a + b + c) a p ab p 

12 c(2a + b + c) i i 2a + b + c 02 c(2a + b+ c) 10 

a(a + b) 
c (2a + b + c) 01 

p _ a + c p _ a p 

21 b 12 b 02 

p _ — £ — p + .—£— p 

2o a + b i o a + b 2 1 

p = a (b + c) ^ Mb p 
22 (a + c ) ( b + c) - ab & (a + c ) ( b +c) - ab 21 

P. = ^ p 
32 c 22 

P 3 ! " b~f~c" ? 2 1 + b + C P 3 2 

p - a p c p 

30 b ?0 T b r 3 1 * 

An Example.--A t h i r d machine i s to be added in s e r i e s following t h e 

two machines of t he example of Chapter IV. The t h i r d machine has a 

capac i ty of 200 u n i t s per hour when o p e r a t i n g , breaks down on t h e 

average once an hour, and r e q u i r e s an average of s i x minutes to r e ­

p a i r . This g ives A and 1.0, M as 10 .0 , and R as 0 . 1 0 . 
3 d 3 

c = LL ( l - R ) = 180 u n i t s per hour, and from Chapter IV, a = 
3 3 

LL ( l - R ) = 135 u n i t s per hour and b = u ( l - R ) = 160 u n i t s r i 1 K r 2 2 

per hour . The average product ion r a t e of the system for a l l p o s s i b l e 

combinations of f i ve or l e s s t o t a l u n i t s of s t o r age capac i ty w i l l be 

c a l c u l a t e d . 
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Here again the lowest value of LJ, (1 - FL) is 135 units per hour, 

and this is the maximum possible output of the system. As before, the 

output of any machine is the same as the output of the system, but the 

outputs of al l three machines wil l be separately calculated as a check 

and to i l lustrate the method. The average output of the f irst machine is 

again the probability that it is neither blocked nor broken down, multi­

plied by its production rate when operating. This may be expressed as 
N2 

1 - - (1 - R^) ^ n • The average output of the second 
n2=o 

machine is the probability that it is neither broken down, blocked, nor 

run out, multiplied by its production rate when operating, or 

N ! N2 
, 2 [ l - R 2 - (1 - R 2 ) ft P V N 2 + I P o . a , ) ] ' T h * ^ ° f t h e 

n 1 = l n 2-o N l 

third machine is, similarly, LL_ . [ 1 -R 0 - ( 1 -R 0) ) P ] . The calculations 
o o o Z_i n,, o 

n-i =o 1 

are shown below, the results in Table 11. 1 For 1 = 1 and N^= 1 

3.790 P Q 0 = 1.0 

P00 = P00 = ° ' 2 6 A 

= 0.750 = 0.198 
P ^ = L477 P ^ = 0.390 
p[l = 0.563 P ° ° = 0 .U9 

3.790 

Output, machine! = 150 [1 - 0.10 - 0.90(0.390 + 0 . U 9 ) ] = 62.3 units 
per hr. 

Output, machine 2 = 200 [ l - 0.20 - 0.80(0.264 + 0.198 + 0.390) = 62.3 

Output, machine 3 = 200 [ l - 0.10 - 0.90(0.264 + 0.390)] = 62.3 
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For 1^ = 1 and N = 2 : 

3 . 7 1 7 7 P Q 0 = 1 . 0 

P = 1 . 0 0 0 P = 0 . 2 6 9 0 prr = 0.7500 pri = 0.2018 
P ^ = 1 . 2 6 3 4 Pnn = ° - 3 3 9 8 
Pt£ = 0 . 1 8 9 5 PZZ = 0 . 0 5 1 0 

= 0 . 3 7 3 0 P ^ = 0 . 1 0 0 3 
P^2 = 0 . 1 4 2 1 PQQ = 0 . 0 3 8 2 

3 . 7 1 7 7 

Output, machine 1 = 1 5 0 [ 1 - 0 . 1 0 - 0 . 9 0 ( 0 . 3 3 9 8 + 0 . 1 0 0 3 + 0 . 0 3 8 2 ) ] = 7 0 . 4 3 ' 

Output, machine 2 = 2 0 0 [ 1 - 0 . 2 0 - 0 . 8 0 ( 0 . 2 6 9 0 + 0 . 2 0 1 8 + 0 . 0 5 1 0 
+ 0 . 0 3 8 2 ) ] = 7 0 . 4 3 

Output, machine 3 = 2 0 0 [ 1 - 0 . 1 0 - 0 . 9 0 ( 0 . 2 6 9 0 + 0 . 3 3 9 8 ) ] = 7 0 . 4 3 

For N 1 = 2 and N 2 = 1 : 

8 . 8 0 8 P Q 0 = 1 . 0 

P n n = 1 . 0 0 0 P n n = 0.114 n . . , . , _ n . ac 
P°° = 0 . 7 5 0 P 0 0 = 0 . 0 8 6 Output, machine 1 - 7 4 . 8 5 

pii = i'-™ p i = 0 u t p u t f m a c h i n e 2 = 7 4 , 8 0 

LF0 = 2.111 L°0°0 = o ! 3 0 3 0 U T P U T ' M A C H I N E 3 = U ' 8 0 

8 . 8 0 8 

For N = 2 and N 2 - 2 : 

6 . 7 6 6 3 P Q 0 = 1 . 0 

P_n = 1 . 0 0 0 0 P_n = 0 . 1 4 7 8 _ . . , . -j r r\ 

P™ = 0 . 7 5 0 0 P°° = 0 . 1 1 0 9 ° U T P U T ' M A C H I N E 1 " 8 9 ' 5 2 

P ° 2 = o ] 8 6 2 3 PP°0°Q = ° u t p u t > m a c h l n e 2 = 8 9 ' 5 2 

> = ^ 3 3 9 7 P°° = 0 ^ 5 0 2 Output, machine 3 = 8 9 . 5 2 

FT* = 0 . 4 5 2 9 P~" - 0 . 0 6 6 9 

pL\ = 0.5222 pjrj: = 0.0772 
P 2 Q = 1 . 4 1 7 5 PQQ = 0 . 2 0 9 5 

6 . 7 6 6 3 



For M = 1 and NL = 3: 

72.4231 P 0 3 = 1 ' ° 

,03 = 

>13 -,12 
02 

]ll 
,01 
,00 
10 

1.0000 
0.7500 
1.9688 
3.9584 
6.7213 
14.3026 
19.0701 
23.6519 

74.4231 

,03 . = 

= 

,°3 = 

>°3 = 

,03 = 

,03 = 

>°3 = 

03 

0.0140 
0.0105 
0.0276 
0.0554 
0.0941 
0.2002 
0.2670 
0.3311 

For ft - 3 and N 2 = 1 
18.2056 P, 

,00 = 

3 ! = 

,20 = 

> 2 1 = 
>31 = 30 

00 

1.0000 
0.7500 
1.4766 
1.6700 
2.6551 
3.2439 
2.4330 
4.9771 

18.2056 

1.0 

,00 
,00 

,00 

,00 
fl° 00 

0.0549 
0.0412 
0.0811 
0.0917 
0.1458 
0.1781 
0.1336 
0.2732 

For N 1 = 1 and N 2 = 4s 
251.7588 P, 

,04 = 

,14 = 

,13 = 

,03 = 

,12 
,02 
,11 
,01 
,10 
00 

04 
1.0000 
0.7500 
1.9688 
3.9585 
6.6683 

= 14.1691 
= 23.4421 
= 50.1483 
= 82,7893 
= 66.8644 
251.7588 

= 1.0 

,04 = 

,04 = 

,04 = 

,04 = 

,04 = 

= 
,04 = 

,04 = 

04 

0.00397 
0.00298 
0.00782 
0.01572 
0.02647 
0.05625 
0.09307 
0.19909 
0.32867 
0.26545 

Output , machine 1 

Output, machine 2 

Output , machine 3 

Output , machine 1 

Output , machine 2 

Output , machine 3 

72.45 

72.46 

72.40 

80.09 

80.08 

80.10 

Output , machine 1 

Output , machine 2 

Output , machine 3 

73.034 

73.046 

73.058 
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For N = 4 , 

35.9639 P Q 0 = 1.0 

,0° = 
,01 = 
,1° = 

, H = 

,20 = 

,21 = 
,30 = 

,31 = A1 = 
4 0 

1.0000 
0.7500 
1 .4766 
1 .6700 
2.6550 
3.2438 
4 .9771 
6.1656 
4.6242 
9.4016 

35.9639 

,00 
,oo 

,00 
,00 
,00 
,00 
,00 
,00 
00 

= 1 

0.02780 
0.02085 
0.04105 
0.04643 
0.07381 
0.09018 
0.13836 
0.17140 
0.12855 
0.26136 

Output , machine 1 = 82.362 

Output , machine 2 = 82.368 

Output , machine 3 = 82.372 

For N x = 2 , 

37.54225 P 03 
= 1.0 

,03 = 

,12 _ 
,13 _ 
,22 
,23 = 

,21 
,11 
,02 
,01 
,10 
,00 
20 

1.00000 
1.96875 
1.03420 
1.19233 
0.77565 
2.34708 
4.32139 
2.76641 
4.23163 
5.21881 
5.64217 
7.04383 

37.54225 

10.49751 P 00 

,°° = 
,°1 = 
,°2 = 

,10 = 
,12 = 

,21 = 
,20 = 

,22 
,32 = 

,31 = 

3 0 

1.00000 
0.75000 
0.43801 
0.86233 
0.98372 
0.73189 
1.07133 
1.10386 
0.66355 
0.49766 
0.68884 
1.70632 

10.49751 

,°3 = 

,°3 = 

,°3 = 

,°3 = 

,°3 = 

,°3 = 

,°3 = 

,°3 = 

,°3 = 

,°3 = 

,03 = 

0 3 

For N 1 = 3 , 

= 1.0 

,00 = 

,0° = 
,00 
,00 
,00 
,00 
,00 
,00 _ 
,00 = 

,00 
,00 
00 

3 : 

0.02663 
0.05243 
0.02754 
0.03175 
0.02066 
0.06250 
0.11508 
0.07367 
0.11269 
0.13898 
0.15025 
0.18758 

= 2 : 

0.09526 
0.07145 
0.04172 
0.08215 
0.09371 
0.06972 
0.10205 
0.10515 
0.06321 
0.04741 
0.06542 
0.16254 

Output , machine 1 = 94.1&4 

Output , machine 2 = 94.170 

Output , machine 3 = 94.174 

Output , machine 1 = 97.799 

Output , machine 2 = 97.796 

Output , machine 3 = 97.802 



Table 11 shows the performance of the system for the va r ious 

arrangements of s t o r age c a p a c i t i e s , and Table 12 i n d i c a t e s the be s t 

arrangement for any given value of t o t a l s t o r a g e capac i ty up to f ive 

u n i t s , and the gain by adding an a d d i t i o n a l u n i t . 

Table 11. Output of Three Machine System 

for Various Values of and 

N N Q Output Tota l Units Capaci ty 

1 1 62.3 2 

1 2 70.4- 3 

2 1 74.8 3 

2 2 89.5 4 

1 3 72.4 4 

3 1 80.1 4 

1 4 73.0 5 

4 1 82.4 5 

2 3 94.2 5 

3 2 97.8 5 

Table 12. Best Values of Output for Ind iv idua l 

Values of Tota l S torage Capaci ty 

Total Capaci ty N, N 9 Output Gain 

2 1 1 62.3 
3 2 1 74.8 12.5 
4 2 2 89.5 14.7 
5 3 2 97.8 8.3 
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Here the add i t i on of a u n i t of capac i ty does not n e c e s s a r i l y inc rease the 

o u t p u t , un less t he u n i t i s placed in the c o r r e c t l o c a t i o n ; a change from 

a t o t a l of t h r e e u n i t s c a p a c i t y , two in the f i r s t queue and one in t he 

second, to four u n i t s , one in the f i r s t queue and t h r e e in the second, 

a c t u a l l y reduces the average output of the system. In eva lua t ing the 

e f f e c t s of a proposed add i t i on of c a p a c i t y , a l l p o s s i b l e combinations must 

be eva lua ted to determine the optimum p o s i t i o n for i t t o be p l aced . 



CHAPTER VI 

THE GENERAL CASE 

It has been shown that in the two machine case it is possible 

to derive a general expression for P^ in terms of P Q for all values of 

n, but that this is not possible in the three machine case. It may be 

deduced that it would also be impossible when four or more machines 

are involved, again because the addition of a unit of capacity in any 

queue will change the relationships between the other queue state proba­

bilities. Expressions similar to those derived in Chapters IV and V for 

queue state transition probabilities could be derived by the same proce­

dure for a series of any number of machines, and queue state probabilities 

for any given values of queue capacities could be calculated using the 

algebraic methods of Chapter V. This procedure is extremely laborious, 

however. A pattern has occurred in the two and three machine cases which 

may considerably reduce the labor of obtaining the transition probabili­

ties. This will eliminate much, though by no means all, of the work of 

solving for the queue state probabilities for any specific arrangement. 

The findings of the first two cases will be summarized to illustrate the 

nature of these cases and to extend certain features to the general case. 

Other features which may be reasonably expected to be generalized will be 

indicated. It may be helpful to the reader to refer to Fig. 1 at this 

point. 

Aside from "transitions" involving no change, there are three 

types of transitions which may occur in the first two cases. These are: 
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Type I : An inc r ea se of one u n i t in t he f i r s t queue with no 

changes in any o the r queue. The v e r t i c a l arrows in 

F ig . 1 r e p r e s e n t Type I t r a n s i t i o n s . 

Type I I : A decrease of one u n i t in any queue except t he l a s t , 

a s imultaneous i nc rease of one u n i t in the next queue, 

and no changes in any o the r queue. The diagonal arrows 

in F ig . 1 r e p r e s e n t Type I I t r a n s i t i o n s . 

Type I I I : A decrease of one u n i t in t he l a s t queue, with no 

changes in any o the r queue. The h o r i z o n t a l arrows in 

F ig . 1 r e p r e s e n t Type I I I t r a n s i t i o n s . 

Only Type I and Type I I I t r a n s i t i o n s occur in the two machine ca se , 

s i nce the f i r s t queue i s a l so the l a s t queue. 

The genera l case w i l l a l so be l im i t ed to these t h r e e types of 

t r a n s i t i o n s , s ince any o the r type of t r a n s i t i o n would involve e i t h e r 

the completion of more than one u n i t by a s i n g l e machine or completions 

of u n i t s by more than one machine during time At . The p r o b a b i l i t i e s of 
2 

t hese occurrences are of order (At) or h igher and are taken as n e g l i ­

g i b l e . 

Type I t r a n s i t i o n s can occur from any queue s t a t e where the f i r s t 

machine i s not blocked; they can occur from any s t a t e where n^ ^ N^. 

Type I I t r a n s i t i o n s can occur from any queue s t a t e except those 

where the queue which i s to i nc r ea se i s not a l ready a t i t s c a p a c i t y , o r 

where the queue which i s to decrease i s a l ready a t z e r o . 

Type I I I t r a n s i t i o n s can occur from any queue s t a t e where the 

l a s t machine i s not run o u t . 

I t i s apparent from the phys ica l na tu re of such systems t h a t t he se 
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l i m i t a t i o n s on queue s t a t e s from which the var ious types of t r a n s i t i o n s 

can o r i g i n a t e must apply to the genera l case as wel l as to the two p a r ­

t i c u l a r cases so lved . 

Given t h a t the i n i t i a l queue s t a t e s are ones from which the t r a n s i ­

t i o n s in ques t ion can o r i g i n a t e , the p r o b a b i l i t y of a Type I t r a n s i t i o n 

i s LijAt(l - R^), the p r o b a b i l i t y of a Type I I t r a n s i t i o n involving the 

queues before and a f t e r the i t h machine is Lt-jAt(l - R^), and the proba­

b i l i t y of a Type I I I t r a n s i t i o n i s Li z At(l - R^) when t h e r e are z machines 

in the s e r i e s . 

There i s apparen t ly no way t o prove t h a t these p r o b a b i l i t i e s 

extend to the genera l c a s e . However, they might reasonably be expected 

to be v a l i d in the genera l case because any t r a n s i t i o n must be caused by 

a completion of s e r v i c e . Since the p r o b a b i l i t i e s der ived in the two 

cases solved are simply the p r o b a b i l i t y t h a t a machine w i l l complete 

s e r v i c e in the next i n t e r v a l At , given t h a t i t i s o p e r a t i n g , m u l t i p l i e d 

by the p r o b a b i l i t y t h a t i t i s in fac t o p e r a t i n g , i t seems l o g i c a l t h a t 

t he se p r o b a b i l i t i e s would a l so hold in the genera l c a s e . 

If the r eader i s not w i l l i n g to assume t h a t these p r o b a b i l i t i e s 

extend to the genera l case on the b a s i s of t h i s j u s t i f i c a t i o n , the t r a n s ­

i t i o n p r o b a b i l i t i e s for any s p e c i f i c case may be der ived by an ex tens ion 

of t he procedure of Chapters IV and V and the r e l a t i o n s between queue 

s t a t e s then ob ta ined by the i n spec t i on procedure in t roduced in Chapter 

V. If he i s w i l l i n g to make the assumption, the r e l a t i o n s may be w r i t t e n 

immediately using the i n s p e c t i o n procedure . The genera l r u l e may be 

expressed: 
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The s teady s t a t e p r o b a b i l i t y of any queue s t a t e , m u l t i p l i e d 
by un i ty minus the p r o b a b i l i t y of remaining in t h a t s t a t e 
and then divided by At , i s equal to the sum of the s teady 
s t a t e p r o b a b i l i t i e s of a l l s t a t e s from which the s t a t e in 
ques t ion may be reached in a s i n g l e t r a n s i t i o n , each mul­
t i p l i e d by the product of the mean product ion r a t e and the 
mean p ropor t ion of time t h a t the machine i s operable which 
must complete an ope ra t ion to e f f e c t the t r a n s i t i o n to the 
s t a t e in q u e s t i o n . 

The p r o b a b i l i t y of remaining in any s t a t e i s un i t y minus the sum of the 

p r o b a b i l i t i e s of a l l t r a n s i t i o n s which can be made from i t . Assuming z 

machines in s e r i e s and a s t a t e E which can be reached by 
V n 2 ' " ' - n z - l 

a l l t h r e e types of t r a n s i t i o n s and from which a l l t h r ee types can o r i g i ­

n a t e , t h e express ion for the genera l form may be w r i t t e n symbol i ca l ly : 

[ ^ ( 1 - V + ^ 2 ( 1 - R 2 5 + + H Z U - R Z ) ] p

n i , n 2 , . . . V l

 = 

P ' l ( 1 " R l ) P n l - l , n 2 , n 3 , . . . n z _ 1
 + M 1 " ^ ^ + 1 , ^ - 1 ^ , n , . . .^ -1 

+ ^ 3 ( 1 " R 3 ) P n 1 , n 2 + l , n 3 - l , n ^ , . . . n z - l + + 

+ LL , ( l - R ,)P + l , n .. -1 + LL (1-RjP I i 
r z - l z -1' n ^ , n 2 , . O . *n

z_2 z ~ l z * n ^ n ^ n ^ , . . . , n

z_-j+ 1 

For s t a t e s from which Type I t r a n s i t i o n s cannot occur , the f i r s t term in 

the c o e f f i c i e n t of the l e f t s ide becomes z e r o ; i f Type I I I t r a n s i t i o n s 

cannot occur the l a s t term becomes z e r o . If i t i s imposs ible to leave 

the s t a t e in ques t ion by some or a l l of t he Type I I t r a n s i t i o n s , remaining 

terms corresponding to the impossible t r a n s i t i o n s ; become z e r o . S i m i l a r l y , 

t he f i r s t , l a s t , and some or a l l of the i n t e rmed ia t e terms of the r i g h t 

s i d e become zero i f i t i s imposs ible to reach the s t a t e in ques t ion by 

Type I , Type I I I , or some or a l l of the type I I t r a n s i t i o n s , r e s p e c t i v e l y . 

Regardless of which procedure i s used to ob ta in the r e l a t i o n s 
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between the queue s t a t e p r o b a b i l i t i e s , a s e r i e s of e l i m i n a t i o n s and sub­

s t i t u t i o n s i s then necessary to p lace the express ions in a s u i t a b l e form 

for so lv ing them one a t a t ime in terms of any s e l e c t e d queue s t a t e p r o ­

b a b i l i t y . The normalizing equat ion i s then app l i ed . 



CHAPTER VII 

CONCLUSIONS AND RECOMMENDATIONS 

Findings.—It was the original purpose of this study to develop a deci­

sion process for determining the optimum amount and location of in-process 

storage capacity for the general case when any number of machines or 

work stations are arranged in series. When the amount of work involved 

in such an undertaking became apparent, this was revised and it was 

decided instead to attempt to develop a procedure for describing the out­

put of such a series. The procedure could then be used in the development 

of future decision processes. A general expression was derived to des­

cribe the state probabilities, and eventually the steady state average 

output, when the series is limited to two machines. No general expres­

sion could be derived when there are three or more machines in the series, 

but a method was developed by which the particular expressions for any 

specific case can be derived and the steady state average output deter­

mined. Specific expressions were derived in terms of one selected queue 

state probability for a three machine series with all possible combina­

tions of five or fewer units of storage capacity. 

Limitations and Areas of Applicability.—The findings are net limited to 

systems of machines in the strict sense; they may be applied to systems 

of assembly stations or to any other activity where operations are con­

ducted in series. Care must be taken, of course, to insure that the serv­

ice times and repair times are exponentially distributed and that the 
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a r r i v a l t imes of breakdowns or i n t e r r u p t i o n s are Poisson d i s t r i b u t e d . 

The breakdowns may be any type of i n t e r r u p t i o n , and the r e p a i r times 

simply the times taken to r e s t o r e o p e r a t i o n . The requirement for Poisson 

and exponent ia l d i s t r i b u t i o n s i s a d e f i n i t e l i m i t a t i o n , but t he se d i s t r i ­

bu t ions a re not r a r e in p r a c t i c e , and the model should find usefu l a p p l i ­

c a t i o n s . The l i m i t a t i o n s d iscussed in Chapter I should a lso be kept in 

mind. In p a r t i c u l a r , t h i s model, l i k e any o the r mathematical model of 

an ac tua l system, must ignore many r e a l f ea tu re s of the system modeled, 

and the r e s u l t s must be used with c a u t i o n . I t should be remembered t h a t 

only s teady s t a t e cond i t ions are desc r ibed , and a system t h a t e x h i b i t s 

t r a n s i e n t or t ime-dependent behavior i s not desc r ibed by t h i s model. 

Two o ther f ea tu re s which l i m i t the use fu lness of t he model are 

the r e l a t i v e magnitudes of the numbers involved in ac tua l computation 

and the labor involved in de r iv ing the express ions for the queue s t a t e 

p r o b a b i l i t i e s . To i l l u s t r a t e the f i r s t of these l i m i t a t i o n s , cons ider the 

example in Chapter V where = 1 and N 2

 = Here the r e s u l t s included 

251.7588 p = 1.0 and Pn . = 0.00298. Three p laces l e f t of the decimal U4 14 

po in t were used and f ive to the r i g h t , and even then t h e r e was a v a r i a ­

t i o n of almost t h r e e f igures in the second column r i g h t of the decimal 

p o i n t in the output r e s u l t s because of roundoff e r r o r . This l i m i t a t i o n 

becomes more pronounced in more complex systems because t h e r e are more 

p o s s i b l e queue s t a t e s . The second l i m i t a t i o n , the l abor in d e r i v i n g the 

e x p r e s s i o n s , becomes even more c r i t i c a l as t he complexity of the system 

i n c r e a s e s , a l though once the express ions have been der ived they may be 

used for any product ion r a t e s and p ropor t ions of time o p e r a b l e . For 

example, in a s i x machine s e r i e s with a capac i ty of f ive u n i t s in each 
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queue t h e r e a re (5) or 3125 pos s ib l e queue s t a t e s . The add i t i on of 

another u n i t of capac i ty anywhere in the system would inc rease t h i s by 

6/5 or 1.20, and t h e r e are f ive p o s s i b l e p laces where the a d d i t i o n a l 

u n i t could be placed! 

Another l i m i t a t i o n i s t h a t i t i s necessary t h a t each machine 's 

p roduct ion r a t e m u l t i p l i e d by i t s mean p ropor t ion of time operable be 

equal to or g r e a t e r than the corresponding product for the machine before 

i t in o rde r t h a t a s teady s t a t e s o l u t i o n may e x i s t . 

Because of these l i m i t a t i o n s the model as i t now s tands w i l l 

probably be l i m i t e d in a p p l i c a t i o n to f a i r l y simple sys tems. With 

improvements in the model and improved computat ional t echniques in the 

f u t u r e , t h i s ba s i c approach might find more ex tens ive a p p l i c a t i o n . At 

p r e s e n t , even with f a i r l y simple systems the amount of l abor involved 

may of ten make i t s use uneconomical where i n -p roces s s t o r age f a c i l i t i e s 

a re r e l a t i v e l y inexpensive to provide in r e l a t i o n to the va lue of i n ­

creased p roduc t ion , as in cases where the u n i t s produced are small and 

the volume i s h igh . I t could find a p p l i c a t i o n in systems where a few 

l a r g e and r e l a t i v e l y expensive assemblies are brought t o g e t h e r or s i m i ­

l a r ope ra t i ons are performed, where product ion i s r e l a t i v e l y low, and 

where i n - p r o c e s s s t o r age f a c i l i t i e s are expens ive . I t might a l so be 

app l i ed to more complex systems which can be broken down i n t o a s e r i e s 

of subsystems, i f the s e r v i c e r a t e s , i n t e r r u p t i o n s , and ope ra t i on r e s t o r ­

a t i o n times for the subsystems follow the assumed d i s t r i b u t i o n s . Examples 

might be found in the m i l i t a r y f a c i l i t i e s which overhaul r o u t i n e l y a 

p a r t i c u l a r a i r c r a f t model in product ion l i n e f a sh ion . A p o s s i b l e l i m i ­

t a t i o n here i s t h a t the model assumes a l l blocked or r u n o u t ^ m e i s l o s t > 
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while in p r a c t i c e the personnel and f a c i l i t i e s might be put to some a u x i l ­

i a r y or d e f e r r a b l e work. 

Recommendations for Fur ther Study.—Since the express ions for queue s t a t e 

p r o b a b i l i t i e s in terms of one of them, once de r ived , may be used for any 

values of product ion r a t e s and p ropor t ion of time i d l e , i t would be 

use fu l to have these der ived and t abu l a t ed for more arrangements than 

were given h e r e . General computer programs could then be developed to 

determine the average output of each arrangement . I t appears l i k e l y t h a t 

t h i s approach could only be appl ied to f a i r l y simple sys tems. Because of 

the labor of d e r i v a t i o n and computat ion, s imula t ion may be a b e t t e r 

approach for more complicated arrangements , and an ex tens ion of Bedwo'rth's 

(10) work would be u s e f u l . 

For the s impler sys tems, models s i m i l a r to t h i s one but assuming 

Poisson, Er l ang ian , or o ther inpu ts r a t h e r than the i n f i n i t e input might 

be u s e f u l , s ince these d i s t r i b u t i o n s a l so occur f r equen t ly in p r a c t i c e . 

Other modi f ica t ions of t h i s model which would be usefu l would be 

to allow for d e f e r r a b l e work which might be performed by the o p e r a t o r s 

or even the machines when the normal path i s blocked or when normal work 

i s not a v a i l a b l e , and to al low for sc rap l o s s e s or r e j e c t i o n s a t each 

s t a t i o n ins t ead of assuming t h a t a l l m a t e r i a l goes completely through the 

system. 

The model developed in t h i s s tudy or any of the suggested modi f i ­

ca t i ons may prove usefu l in fu tu re s t u d i e s aimed a t the development of 

economic dec i s ion r u l e s or p rocesses for determining optimum amounts and 

l o c a t i o n s of i n -p roces s s to rage space . 
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APPENDIX A 

SAMPLE CALCULATIONS OF MACHINE CONDITION TRANSITION 

PROBABILITIES, TWO MACHINE CASE 

S t a r t i n g in queue s t a t e E^ with ( l < n 1 < N 1 - l ) : 

The p r o b a b i l i t y of a t r a n s i t i o n from C(lx) to C ( l l ) i s ( l - A^At)(MgAt) -

M 2At. 

From C(lx) to C ( l x ) : (1 - A 1 A t ) ( l - M2At) = 1 - A / t - MgAt 

From C(lx) to C ( x l ) : (A 1At)(M 2At) = 0 

From C(lx) to C(xx): (A 1 At) ( l - MgAt) = A / t 

From C(xl) to C ( l l ) : (M ± At)( l - A 2At) = M At 1 
From C(xl) to C ( l x ) : (M ±At)(A 2At) = 0 

From C(xl) to C ( x l ) : ' (1 - M x At)( l - A 2At) = 1 - MjAt " A 2 A t 

From C(xl) to C(xx) : (1 - MxAt)(AgAt) = AgAt 

From C(xx) to C ( l l ) : (M 1At)(M 2At) = 0 

From C(xx) to C ( l x ) : (M ± At)( l - MgAt) = M ^ t 

From C(xx) to C ( x l ) : (1 - M^t ) (M 2 At) = MgAt 

From C(xx) to C(xx): ( l - M 1 At)( l - MgAt) = 1 - MjAt - MgAt 

S t a r t i n g in queue s t a t e E^: 

From C ( l l ) to C ( l l ) : ( l - A 1 At) ( l - A 2 A t ) [ L I 1 A t + ( l - Li 1At)(l - LigAt)] 

= (1 - Aj_At - AgAt)(LL1At + 1 - L T ^ t - jigAt) = 1 - A£At - AgAt - LigAt 

From C ( l l ) to C(lO): ( l - A .At ) ( l - A gAt) ( ^ A t ) ( l - Ji^t) = L I , A t 

From C ( l l ) to C(lx) : ( l - A.At) (A gAt) = AgAt 
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From C ( l l ) to C ( x l ) : (A A t ) ( l - A At) [LL At + ( l - LL A t ) ] = A At 
X *G X <C 1 

From C ( l l ) to C(xO) : (A 1 At) ( l - AgAt)(l - LL^At) (jigAt) = 0 

From C ( l l ) t o C(xx) : (A At) (A At) = 0 
X <t 

From C(lx) to C ( l l ) : ( l - A .At) (MAt) [VAt + ( l - LL A t ) ] 
1 X <C 

= (MgAt) (p^At + 1 - LLgAt) = M2At 

From C(lx) to C(lO) : ( l - A ± At) (MgAt) ( ^ A t ) = 0 

From C(lx) to C ( l x ) : ( l - A A t ) ( l - M At) = 1 - A At - M At 
X <O X Kt 

From C(lx) to C(xl) : ( A M ) ( M At)(l - LI At) = 0 

From C(lx) to C(xO) : U x A t ) (MgAt) (1 - LLgAt + 1 - p^At) = 0 

From C(lx) to C(xx) : (A 1 At) ( l - M At) = A,At 
X <C X 
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APPENDIX B 

SAMPLE CALCULATIONS OF MACHINE CONDITION TRANSITION 

PROBABILITIES, THREE MACHINE CASE 

Starting in queue state E with 1 - n„ - N, - 1 and 1 < n 0< N - 1: 
nj_,n2 l l 2 2 

The probability of a transition from C(xlx) to C(xlx) is (l - M^At) 

(l - A At)(l - M At) = 1 - M At - A At - M At 2 3 1 2 3 
From C (xlx) to C(xxl) : (l - M 1At)(A 2At)(M 3At) = 0 

From C (xlx) to C(xxx): (l - M^t) (AgAt) (l - MgAt) = AgAt 

From C (xlx) to C(xll): (l - M1At)(l - A2At)(MgAt) = M 3At 

From C (xlx) to C(llx): (M At)(l - A At)(l - M At) 1 2 3 = M At 1 
From C (xlx) to C(lxl): (M/t) (A2At) (MgAt) = 0 

From C .xlx) to C(lxx): (M±At)(AgAt)(l - MgAt) = 0 

From C (xlx) to C(lll): (M1At)(l - AgAt)(MgAt) = 0 

From C (xxl) to C(xlx): (l - M±At)(MgAt)(A3At) = 0 

From C( (xxl) to C(xxl): (l - M^t)(l - MgAt)(l - A 3At) = 1 

- MgAt - AgAt 

From c( xxl) to C(xxx): (1 - M^t)(l - MgAt) (AgAt) = AgAt 

From c( xxl) to C(xll): (l - M^t)(MgAt)(l - AgAt) M At 2 
From c( xxl) to C(llx): (M^t) (MgAt) (AgAt) = 0 

From c( xxl) to C(lxl): (MiAt)(l - MgAt)(l - A sAt) = M At 

From C( xxl) to C(lxx): (M^t) (l - MgAt) (AgAt) = 0 

From C( xxl) to C(lll): (MiAt)(MgAt)(l - A 3At) = 0 
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APPENDIX C 

SAMPLE CALCULATIONS FOR RESULTANT QUEUE STATE PROBABILITIES WITH 

INITIAL CONDITIONS E„ ( l< n, < N . - l ) , ( l < n„ < N„-l) AND C(xxl) 
1*̂ 2 

F i n a l machine condi t ion C ( x x l ) : 

The p r o b a b i l i t y of t h i s t r a n s i t i o n is 1 - M±At - M2At - AgAt, 

and the p o s s i b l e r e s u l t a n t queue s t a t e s a re E with p r o b a b i l i t y 
n l > n 2 

1 - LigAt and E^ ^ ^ with p r o b a b i l i t y jigAt. 

F ina l Machine Condit ion C(xxx): 

The p r o b a b i l i t y of t h i s t r a n s i t i o n is A At, and the p o s s i b l e 

r e s u l t a n t queue s t a t e s a re E ^ ^ with p r o b a b i l i t y 1 - LigAt, and 

E n n - l w i t h p r o b a b i l i t y LigAt. 

F i n a l machine condi t ion C ( x l l ) : 

The p r o b a b i l i t y of t h i s t r a n s i t i o n i s MgAt, and the p o s s i b l e 

r e s u l t a n t queue s t a t e s a re E with p r o b a b i l i t y 1 - LI At - u, At, 
n l f n 2 2 3 

E with p r o b a b i l i t y LL At , and E , with p r o b a b i l i t y 
n l > n 2 ~ 1 3 n i " 1 , n 2 

U A t . p 2 

F i n a l machine condi t ion C ( l x l ) : 

The p r o b a b i l i t y of t h i s t r a n s i t i o n i s M^At, and the p o s s i b l e 

r e s u l t a n t queue s t a t e s a re E with p r o b a b i l i t y 1 -LL At - LL At , 
ni> n 2 1 3 

E with p r o b a b i l i t y u^At, and E , . with p r o b a b i l i t y n ,n - l r 1 r 3 ' n«+i ,n„ r 

r 2 i 9 2 
p ^ t . 
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The o r i g i n a l p r o b a b i l i t y of C ( x x l ) , given E , i s R R - R R R , 
^ 1 ' ^ 2 1 2 1 2 3 

so the p r o b a b i l i t y of t he r e s u l t a n t queue s t a t e E , given i n i t i a l 
N I > N 2 

cond i t ions E and C ( x x l ) , i s 
V N 2 

(R R - R R R ) [ ( l - u, At) ( l - M At - M At - A At .+ A 0At 
1 2 1 2 a 3

 1 2 3 3 

+ (1 - n 2 At - H s At)(M a At) + (1 - | i ± At - L L 3 A t ) ( M ^ t ) ] , 

or 

(1 - H 3 At) (R 1 R 2 - R . R / P . 

The p r o b a b i l i t y of t he r e s u l t a n t queue s t a t e E i s 
N I > N 2 - 1 

( R 1 R 2 " R l R 2 R 3 ^ ^ 3 A T )
 ( l " M l A t " M 2 A T " A 3 A T + A 3 A T + M 2 A T + > 

or 

^ 3 A t ( R l R 2 " R 1 R 2 R

3 ) ' 

I S The p r o b a b i l i t y r e s u l t a n t queue s t a t e E , 
n ^ — l , 1 

( R l V R 1 R 2 R 3 ) ( ^ 2 A T ) ( M 2 M ) = ° ' 

and the p r o b a b i l i t y of r e s u l t a n t queue s t a t e E i s 
N I 1 , N 2 

( R 1 R 2 " R

1

R

2

R 3 ) ^ l A t ^ M l A t ) = ° • 

This process i s continued for a l l p o s s i b l e i n i t i a l machine 

cond i t ions in the i n i t i a l queue s t a t e . The r e s u l t a n t queue s t a t e 

p r o b a b i l i t i e s , given the i n i t i a l queue s t a t e and machine condi t ion 

a re m u l t i p l i e d by the p r o b a b i l i t y of t he i n i t i a l machine condi t ion 
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given the i n i t i a l queue s t a t e , and added to g ive the p r o b a b i l i t y of 

each r e s u l t a n t queue s t a t e given the i n i t i a l queue s t a t e . These a re 

the t r a n s i t i o n p r o b a b i l i t i e s sought . In t h i s example, i t i s found 

t h a t , for i n i t i a l queue s t a t e E ( l < n < N - l ) and 
n .n„ v l l l 7 2 

( l < n < N - l ) , the p r o b a b i l i t y of a t r a n s i t i o n t o E i s 2 2 " y y n i - i , n g + i 

LI At(1 - R ) , the p r o b a b i l i t y of a t r a n s i t i o n to E i s 2 2 n^,n,g-i 

LigAt(l - Rg), the p r o b a b i l i t y of a t r a n s i t i o n to E^ + 1 ^ i s 

LI A t ( l - R ) , and the p r o b a b i l i t y of remaining in E i s 
l l n l * n 2 

1 - Li^tU - R ± ) - Li 2 At(l - R g) - Li 3 At(l - R 3 ) . 
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