
 1

Process Mining, Discovery, and Integration using Distance Measures

Joonsoo Bae James Caverlee Ling Liu William B. Rouse
Dept. of Industrial & Sys. Eng.

Chonbuk National Univ.South Korea
jsbae@chonbuk.ac.kr

College of Computing
 Georgia Institute of Technology

caverlee@cc.gatech.edu

College of Computing
Georgia Institute of Technology

lingliu@cc.gatech.edu

Tennenbaum Institute
Georgia Institute of Technology

bill.rouse@isye.gatech.edu

ABSTRACT Business processes continue to play an important
role in today’s service-oriented enterprise computing systems.
Mining, discovering, and integrating process-oriented services
has attracted growing attention in the recent year. In this paper
we present a quantitative approach to modeling and capturing the
similarity and dissimilarity between different workflow designs.
Concretely, we introduce a graph-based distance measure and a
framework for utilizing this distance measure to mine the process
repository and discover workflow designs that are similar to a
given design pattern or to produce one integrated workflow
design by merging two or more business workflows of similar
designs. We derive the similarity measures by analyzing the
workflow dependency graphs of the participating workflow
processes. Such an analysis is conducted in two phases. We first
convert each workflow dependency graph into a normalized
process network matrix. Then we calculate the metric space
distance between the normalized matrices. This distance measure
can be used as a quantitative and qualitative tool in process
mining, process merging, and process clustering, and ultimately it
can reduce or minimize the costs involved in design, analysis, and
evolution of workflow systems.

1. Introduction
With the increasing interest and wide deployment of web
services, we see a growing demand for service-oriented
architectures and technologies that support enterprise
transformation. Effective enterprise transformation refers to
strategic business agility in terms of how efficiently an
enterprise can respond to its competitors and how timely an
enterprise can anticipate new opportunities that may arise in
the future. In the increasingly globalized economy,
enterprises face complex challenges that can require rapid
and possibly continual transformations. As a result, more
and more enterprises are focused on the strategic
management of fundamental changes with respect to
markets, products, and services [16]. Such transformation
typically has a direct impact on the business processes of an
enterprise. Enterprise transformation may range from
traditional business process improvement to wholesale
changes to the processes supported by the enterprise – from
performing current work in a new fashion (e.g., by adopting
a web services framework for supporting customer service)
to performing different work altogether (e.g., by
outsourcing all non-essential functions and focusing on an
enterprise’s core strengths). Each of these challenges may
lead to a differing degree of enterprise transformation.

Fundamental to enabling the transformation of an
enterprise is the development of novel tools and techniques
for transforming the business processes of an enterprise. In
this paper, we present a critical component to the problem
of process transformation from a web services point-of-

view. In particular, we present a novel process difference
analysis method using distance measures between process
definitions of two transactional web services. The process
difference analysis focuses on process structure and process
activity dependencies to identify distance measures between
processes.

The proposed difference analysis method achieves three
distinct goals. First, by analyzing the attributes of process
models, we present a quantitative process similarity metric
to determine the relative distance between process models.
This facilitates not only the comparison of existing process
models with each other, but also provides the flexibility to
adapt to changes in existing business workflow processes.
Second, the proposed method is quick and flexible, which
reduces the cost of both the analysis and design phases of
web service processes. Third, the proposed method enables
the flexible deployment of process mining, discovery, and
integration – all key features that are necessary for effective
transformation of an enterprise.

2. Web Service Process Reference Model

The web service process reference model (process model
for short in the rest of the paper) consists of business
process definitions and the specification of workflows
among the processes with respect to data flow, control flow,
and operational views [17, 18]. We define a business
process in terms of business activity patterns. An activity
pattern consists of objects, messages, message exchange
constraints, preconditions and postconditions [12, 19], and
is designed to specify the service actions and execution
dependencies of the business process. An activity pattern
can be viewed as a web service process when it is
executable as a web service. We consider two types of
activity patterns – elementary activity patterns and
composite activity patterns [1, 7, 15]. An elementary
activity pattern is an atomic unit. A composite activity
pattern consists of a one or more elementary activity
patterns or other composite activity patterns. Activity
patterns are constrained by a set of activity dependencies,
which can be seen as cooperation contracts among activities
that collaborate in accomplishing a complex service. The
dependencies could capture complex interactions between
activities.

We define a business workflow as a collection of
business activities connected by data flow and control flow,
where each represents a business process. A process
definition can be seen as a web service (or a collection of
web services). We use data flow among processes to define
the data dependencies among processes within a given

 2

business workflow. We use control flow to capture the
operational structure of the business workflow service,
including the process execution ordering, the transactional
semantics and dependencies of the workflow. A number of
workflow specifications have garnered attention, including
BPEL4WS (BEA, IBM, Microsoft), WSFL (IBM),
XLANG (Microsoft), and XPDL (WfMC) [19, 20]. In our
prototype development, we choose to use a variant of
BPEL4WS.

Formally, each workflow service is specified in terms of
process definitions. We can model each process definition
using a directed graph, in which the nodes of the graph are
activities. Depending on whether the edges indicate
execution dependencies or data flow dependencies, we have
a process aggregation hierarchy or a process dependency
graph. The process aggregation hierarchy captures the
hierarchical execution ordering of activities. The process
dependency graph captures information about how
activities share information and how data flows from one
activity to another. Due to the space constraint, in this paper
we focus our discussion only on the dependency graph.
Concretely we present the process similarity measures
based on the dependency graphs of the processes of interest,
and refer readers to our technical report for aggregation
hierarchy based process similarity measures.

Definition 1 (Dependency Graph, DG)
A dependency graph DG is defined by a binary tuple <DN,
DE>, where
•

1 2
{ , , ..., }

n
DN nd nd nd= is a finite set of activity nodes

where 1n ≥ . Each node ind (i=1, ..., n) is described by

a quadruple (, , ,)NT NN TC NS , where NT is the node
type, NN denotes the node name, TC is the trigger
condition of the node, NS is one of the two states of the
node: fired or not fired

•
1 2

{ , , ..., }
m

DE e e e= is a set of edges, 0m ≥ . Each edge

is of the form
i j

nd nd→ . An edge
ij i j

e nd nd= → is

described by a quadruple (, , ,)
nd nd

EN DP AV ES , where

EN is the edge name, DPnd is the departure node, AVnd is
the arrival node, ES is one of the two states of the edge:
signaled and not signaled. �

Note that in the dependency graph formulation, self-edges
are disallowed since edges are intended to denote data flow
dependencies between different activities (nodes).
Additionally, a dependency graph must be a connected
graph. Unconnected nodes and isolated groups of nodes are
disallowed in the graph, as isolated nodes or groups of
nodes are considered a separate service process in our
reference model.

3. Motivating Scenarios
Given the process reference model, we consider two
motivating scenarios that benefit from the difference
analysis methodology introduced in this paper.

3.1. Process Mining
Consider a scenario where a company has maintained a
warehouse of existing processes used in various business
locations. Process mining of the process warehouse can
help the enterprise to discover interesting associations or
classifications among business processes running at
different locations or branches of the company.

T1 T2

T3

T4

T11

T8 T10

T7

T6

T5

T9
T1 T2

T3

T4

T11

T8 T10

T7

T6

T5

T9

T1 T2

T3

T4

T11

T8 T10

T7

T6

T5

T9
T1 T2

T3

T4

T11

T8 T10

T7

T6

T5

T9

T1 T2

T3

T4

T11

T8 T10

T7

T6

T5

T9

��� ���

��� ���
���

	�
 �������������
 ���������	�
 �������������
 ���������	�
 �������������
 ���������	�
 �������������
 ���������

T1 T2

T3

T4

T11

T8 T10

T7

T6

T5

T9

δ ������� ���

 "!�#%$ &('�$)�*�#%+,+

T1 T2

T3

T4

T11

T8 T10

T7

T6

T5

T9

-�#%. #%*%/ #�0�'�$)�*�#%+,+

� �
T1 T2

T3

T4

T11

T8 T10

T7

T6

T5

T9
T1 T2

T3

T4

T11

T8 T10

T7

T6

T5

T9

T1 T2

T3

T4

T11

T8 T10

T7

T6

T5

T9
T1 T2

T3

T4

T11

T8 T10

T7

T6

T5

T9

T1 T2

T3

T4

T11

T8 T10

T7

T6

T5

T9

��� ���

��� ���
���

	�
 �������������
 ���������	�
 �������������
 ���������	�
 �������������
 ���������	�
 �������������
 ���������

T1 T2

T3

T4

T11

T8 T10

T7

T6

T5

T9
T1 T2

T3

T4

T11

T8 T10

T7

T6

T5

T9
T1 T2

T3

T4

T11

T8 T10

T7

T6

T5

T9
T1 T2

T3

T4

T11

T8 T10

T7

T6

T5

T9

T1 T2

T3

T4

T11

T8 T10

T7

T6

T5

T9
T1 T2

T3

T4

T11

T8 T10

T7

T6

T5

T9
T1 T2

T3

T4

T11

T8 T10

T7

T6

T5

T9
T1 T2

T3

T4

T11

T8 T10

T7

T6

T5

T9

T1 T2

T3

T4

T11

T8 T10

T7

T6

T5

T9
T1 T2

T3

T4

T11

T8 T10

T7

T6

T5

T9

��� ���

��� ���
���

	�
 �������������
 ���������	�
 �������������
 ���������	�
 �������������
 ���������	�
 �������������
 ���������

T1 T2

T3

T4

T11

T8 T10

T7

T6

T5

T9
T1 T2

T3

T4

T11

T8 T10

T7

T6

T5

T9

δ ������� ���

 "!�#%$ &('�$)�*�#%+,+

T1 T2

T3

T4

T11

T8 T10

T7

T6

T5

T9

-�#%. #%*%/ #�0�'�$)�*�#%+,+

� �T1 T2

T3

T4

T11

T8 T10

T7

T6

T5

T9
T1 T2

T3

T4

T11

T8 T10

T7

T6

T5

T9

-�#%. #%*%/ #�0�'�$)�*�#%+,+

� �

Fig. 1 Process mining example

In Fig. 1, we show a process warehouse that contains many
types of processes (for example, g1, g2, g3, g4, g5). A typical
process mining scenario is the identification of the
processes most similar to a baseline process template in the
process warehouse. Given a query process and a
comparability threshold δ-value, the process mining will
identify (g3) the process that is most similar based on the
comparability criterion. It is obvious that the concept of
process similarity (or distance) is critical to the
effectiveness of process mining.

3.2. Process Discovery & Integration
To illustrate the second scenario, we consider an enterprise
transformation due to the merger of two companies.
Process discovery and integration using process similarity
can help the merged enterprise to identify the commonality
between the existing business workflows of the two
companies being merged and generate the new business
workflow by eliminating unnecessary redundancies. Fig. 2
illustrates a situation when two companies have merged and
attempt to implement a standardized process between the
two. Since both companies have their own process
warehouses before merging, there is a possibility that two
different processes, gA and gB respectively, exist for the
same purpose. One possible process transformation is to
identify and integrate the two processes into a standard
process (gC). In this case, process similarity plays an
important role in identifying similar processes and guiding
the integration.

4. Process Difference Analysis
In this section, we present the process difference analysis
method for evaluating the distance between two processes.
We first describe the comparison matrices used for
similarity analysis, including the concept of identical
dependency graphs and δ-comparability. Both concepts are
important for defining the distance measure between two
dependency graphs. Then we define the concept of a
process network matrix and introduce the concept of a
normalized matrix. Finally, we define the dependency
distance measure by measuring the difference between the
normalized matrices.

 3

T1 T2

T3

T4

T11

T8 T10

T7

T6

T5

T9

132

465,798;:(<"<>=@?A5,:CB�7EDE<":F7EGIH465,798;:(<"<>=@?A5,:CB�7EDE<":F7EGIH465,798;:(<"<>=@?A5,:CB�7EDE<":F7EGIH465,798;:(<"<>=@?A5,:CB�7EDE<":F7EGIH

T1 T2

T3

T4

T11

T8 T10

T7

T6

T5

T9

J3K�L9M�N�L9O�NQPRO�S�TVUVW9W

1YX

T1 T2

T3

T4

T11

T8 T10

T7

T6

T5

T9

1[Z

4I5,7�8;:(<C<>=@?C5,:CB�7�DE<\:F7EG^]4I5,7�8;:(<C<>=@?C5,:CB�7�DE<\:F7EG^]4I5,7�8;:(<C<>=@?C5,:CB�7�DE<\:F7EG^]4I5,7�8;:(<C<>=@?C5,:CB�7�DE<\:F7EG^]

T1 T2

T3

T4

T11

T8 T10

T7

T6

T5

T9

132

465,798;:(<"<>=@?A5,:CB�7EDE<":F7EGIH465,798;:(<"<>=@?A5,:CB�7EDE<":F7EGIH465,798;:(<"<>=@?A5,:CB�7EDE<":F7EGIH465,798;:(<"<>=@?A5,:CB�7EDE<":F7EGIH

T1 T2

T3

T4

T11

T8 T10

T7

T6

T5

T9
T1 T2

T3

T4

T11

T8 T10

T7

T6

T5

T9

132

465,798;:(<"<>=@?A5,:CB�7EDE<":F7EGIH465,798;:(<"<>=@?A5,:CB�7EDE<":F7EGIH465,798;:(<"<>=@?A5,:CB�7EDE<":F7EGIH465,798;:(<"<>=@?A5,:CB�7EDE<":F7EGIH

T1 T2

T3

T4

T11

T8 T10

T7

T6

T5

T9

J3K�L9M�N�L9O�NQPRO�S�TVUVW9W

1YX
T1 T2

T3

T4

T11

T8 T10

T7

T6

T5

T9
T1 T2

T3

T4

T11

T8 T10

T7

T6

T5

T9

J3K�L9M�N�L9O�NQPRO�S�TVUVW9W

1YX

T1 T2

T3

T4

T11

T8 T10

T7

T6

T5

T9

1[Z

4I5,7�8;:(<C<>=@?C5,:CB�7�DE<\:F7EG^]4I5,7�8;:(<C<>=@?C5,:CB�7�DE<\:F7EG^]4I5,7�8;:(<C<>=@?C5,:CB�7�DE<\:F7EG^]4I5,7�8;:(<C<>=@?C5,:CB�7�DE<\:F7EG^]

T1 T2

T3

T4

T11

T8 T10

T7

T6

T5

T9
T1 T2

T3

T4

T11

T8 T10

T7

T6

T5

T9

1[Z

4I5,7�8;:(<C<>=@?C5,:CB�7�DE<\:F7EG^]4I5,7�8;:(<C<>=@?C5,:CB�7�DE<\:F7EG^]4I5,7�8;:(<C<>=@?C5,:CB�7�DE<\:F7EG^]4I5,7�8;:(<C<>=@?C5,:CB�7�DE<\:F7EG^]

Fig. 2 Extracting a standard process from two similar ones

4.1. Comparison Matrices
Two dependency graphs are said identical if the two graphs
have the same set of nodes and the same set of edges.
Formally we define identical dependency graphs as follows:

Definition 2 (Identical dependency graphs)

Let
1 1 1

(,)DG DN DE= and
2 2 2

(,)DG DN DE= be two

dependency graphs. We say that DG1 and DG2 are identical
if the two graphs have the same set of nodes and the same
set of edges.

i)
1 2Set

DN DN=

ii)
1 2Set

DE DE= �

Given two workflow processes and their respective
dependency graphs, there are numerous ways these two
graphs may differ. Typically, it makes more sense to
compare only those graphs that have sufficient similarity in
terms of their dependency graphs. Consider two extreme
cases: one is when the two dependency graphs have the
same set of nodes and the other is when there is no common
node between two graphs. By assigning 1 for the first case
and 0 for the latter case, we define a comparability measure
that indicates the ratio of common nodes in two graphs. One
way to measure the extent of comparability between two
graphs is to use a user-controlled threshold, called δ-
Comparability, which is set to be between 0 and 1. Because
this value represents the ratio of common nodes over the
union of all nodes in two graphs, the larger the value is, the
greater degree of comparability between the two graphs.
Note that δ value can not be 0 since δ = 0 means that there
is no common node between two graphs, i.e.,

1 2
DN DN∩ ≠ ∅ .

Definition 3 (δδδδ-Comparability of DG)
Let

1 1 1
(,)DG DN DE= and

2 2 2
(,)DG DN DE= be two

dependency graphs, and δ be a user-defined control

threshold. We say that DG1 and DG2 are δ-comparable if

the condition 1 2

1 2

DN DN

DN DN
δ

∩
≥

∪
holds, where 0 1δ< ≤ �

If we apply the δ-Comparability to the example graphs
shown in Fig. 3 with δ=0.5, g0 and f1 are not comparable
because there is no common node in the two graphs, and
also g0 and f2 are not comparable because the number of
common nodes is only one but the number of total nodes is

7, that is 1 2

1 2

1
0.5

7

DN DN

DN DN

∩
= <

∪
. On the other hand, g0

and g1 are δ- comparable because all of the nodes in both
graphs are common nodes. g0 and g2 are δ-comparable
because there are 3 common nodes and the total number of
nodes is 5, thus the two graphs satisfy the δ-comparability

condition 1 2

1 2

3
0.5

5

DN DN

DN DN

∩
= ≥

∪
 and δ = 0.5.

A C B D A B C E A
B

D

A B C D

g0

A B C D

g0

g1 g2 g3

C

F G H I

f1

F G H I

f1

A G H I

f2

A G H I

f2

Fig. 3 Examples of δδδδ-Comparability

From the examples in Fig. 3, it would be useful to know not
only g0 and g1 and g0 and g2 are δ-comparable with δ = 0.5,
but also which dependency graph is most similar to g0. One
way to compare and rank a set of similar process definitions
is to transform each dependency graph into a numerical
representation. This allows us to compare the dependency
graphs using similarity distance in Euclidian distance metric
space. This leads us to introduce the concept of a process
network matrix. A process network matrix M is established
in order to describe the precedence dependencies between
two activities (tasks). The size of M is determined by the
number of nodes in the dependency graph and each cell in
the matrix denotes an element of M. The value of cell M(i,j)
is set either to 1 or 0 depending on whether or not there is a
precedence dependency between the two nodes i and j.

Definition 4 (Process Network Matrix, M)
Let (,)g DN DE= be a dependency graph with DN n=

nodes. A process network matrix M of g is n-by-n matrix
with n rows and n columns, and each row is named after the
node name. Let Mg(i,j) denote the value of the ith row and
the jth column in M, 1 ,i j n≤ ≤ . We define Mg(i,j) as
follows:

1 , (,)
(,)

0
i j i j

g

if nd nd DN such that nd nd DE
M i j

else

∃ ∈ ∈
=
�
�
�

 �

Fig. 4 depicts the transformation of a process dependency
graph of 5 activities shown in (a) into its process network
matrix M, a 5×5 matrix. Each element of M is determined
according to whether or not the corresponding two activities

 4

(tasks) have precedence dependency. An edge between
nodes A and B shows that activity A precedes activity B.
Thus, Mg(A,B) is set to a value of 1. There is no direct edge
between nodes A and C. Thus Mg(A,C) is set to a value of 0.

A B

C

D

C

D

E

(a)

M TO

 A B C D E

A 0 1 0 0 0

B 0 0 1 1 0

C 0 0 0 0 1

D 0 0 0 0 1

F
R
O
M

E 0 0 0 0 0
(b)

Fig. 4 An example of process network matrix

Recall that when two workflow dependency graphs are δ-
comparable, they may not have the same set of nodes.
Recall Fig. 3, g0 and g2 are 0.5-comparable but node D in g0
does not exist in g2 and node E in g2 does not exist in g0. In
order to compare the two workflow dependency graphs g0

and g2, we need to further normalize each process network
matrix that participates in the similarity computation such
that each normalized process network matrix includes the
union of all sets of nodes, each from one participating
process dependency graph. We formally introduce the
concept of normalized process network matrix in Definition
4 by extending the definition of a process network matrix to
include the entire union of nodes in the two graphs. The
size of the normalized matrix is increased to the size of the
union of the sets of nodes in both graphs. For those nodes
that exist in a process network matrix before normalization,
the corresponding elements in the normalized matrix are the
same as those in the process network matrix. For those
nodes added through the normalization, the corresponding
elements in the normalized matrix are set to a value of 0.
After normalization, both matrices have the same number of
rows and columns, and share the same row and column
names and sequences. The normalized matrices can then be
used as an input to calculate distance.

Definition 5 (Normalized Matrix, NM)
Let

1 1 1
(,)DG DN DE= and

2 2 2
(,)DG DN DE= be two

dependency graphs. Let NM1 and NM2 denote the
normalized matrices for DG1 and DG2 respectively. We
generate NM1 and NM2 from DG1 and DG2 as follows.
i) The number of rows and columns are computed by

1 2
m DN DN= ∪

ii) Let
1 2 1 2

{ , , ..., }
m

DN DN A A A=� . Note that the row and

column names of NM1 and NM2 are now normalized into the
same node names

1 2
, , ...,

m
A A A in the union of DN1 and DN2.

iii) Let
1
(,)NM i j denote the value of the ith row and the

jth column in NM1, and
2
(,)NM i j denote the value of the

ith row and the jth column in NM2

1

1

1 if (,)
(,)

0 otherwise
i j

A A DE
NM i j

∈
=
�
�
�

,

2

2

1 if (,)
(,)

0 otherwise
i j

A A DE
NM i j

∈
=
�
�
�

�

Consider processes in Fig. 3 as an example. By constructing
normalized process network matrices for g0 and g2, denoted
by NM1 and NM2 respectively, the size of NM1 of g0 is
increased to 5 because NM1 should include node E, which
was not originally included in g0. All the elements of the
newly added column for node E are set to a value of 0
because there is no dependency between any node of g0 and
node E. Similarly, node D is added in NM2. Now NM1 and
NM2 have the same row names and column names: A, B, C,
D, and E. We can use NM1 and NM2 to compare g0 and g2.

A B C D

g0

(a)

NM1 TO

 A B C D E

A 0 1 0 0 0

B 0 0 1 0 0

C 0 0 0 1 0

D 0 0 0 0 0

F
R
O
M

E 0 0 0 0 0

(b)

A B C E

g2

(c)

NM2 TO

 A B C D E

A 0 1 0 0 0

B 0 0 1 0 0

C 0 0 0 0 1

D 0 0 0 0 0

F
R
O
M

E 0 0 0 0 0

(d)
 Fig. 5 An example of comparison matrices

The algorithm for construction of normalized process
network matrices consists of three steps. First, we must
determine whether or not DG1 and DG2 are δ-comparable
for the given δ value. Second, we compute the size of the
normalized NM by

1 2
m DN DN= ∪ and label nodes in

{ }1 2
DN DN∪ as { }1 2

, , ...
m

A A A using a uniform naming

scheme. Third, we create the matrix data structures for DG1
and DG2: 1

(,)NM i j and
2
(,)NM i j , where i, j = 1, 2, ..., m,

 5

and assign a value of 1 or 0 to each element in the two
normalized matrices. The pseudo code of this algorithm is
given in Algorithm 1.

Algorithm 1 (Normalization of Comparable Matrices)

Input:
1 1 1

(,)DG DN DE= ;
2 2 2

(,)DG DN DE= ;

Output:
1
(,)

m m
NM i j × ;

2
(,)

m m
NM i j ×

Description:
 Compute m, Construct NM1, NM2 for each DG1, DG2
Begin
 if δ-comparable (DG1, DG2) = false then exit;
 Compute union of sets DG1 and DG2 ;

 Set
1 2

m DN DN= ∪ ;

 Label nodes in { }1 2
DN DN∪ as { }1 2

, , ...
m

A A A ;

 /* Construct NM1, NM2 for each DG1, DG2 */

 Initialize
1
(,) 0

m m
NM i j × = ;

Initialize
2
(,) 0

m m
NM i j × = ;

 for i = 1 step 1 until m
 for j = 1 step 1 until m {

 if
1

(,)
i j

A A NE∈ then set
1
(,) 1NM i j = ;

 if
2

(,)
i j

A A NE∈ then set
2
(,) 1NM i j = ;

 }

 return
1
(,)

m m
NM i j × ;

2
(,)

m m
NM i j × ;

End �

4.2 Distance-based Process Similarity Measures
With the concept of a normalized process network matrix,
we now transform the problem of comparing two processes
into the problem of computing the distance-based similarity
of the two normalized process network matrices. One
obvious idea is to compute the distance of two normalized
matrices using matrix subtraction.
 Consider the example processes g0 and g2 in Fig. 5. One
way of computing the distance between g0 and g2 by matrix
subtraction is to simply perform subtraction element by
element. By subtracting NM2 from NM1, only the element
(C, D) and (C, E) have values 1 and -1 respectively and the
rest of the elements are 0. This means that (C, D) and (C, E)
are the two dependencies unmatched between the two
dependency graphs g0 and g2.

1 2

0 0 0 0 0

0 0 0 0 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 0

A B C D E

A

B
NM NM

C

D

E

− =
−

� �
� �
� �
� �
� �
� �
� �
� �
� 	

A drawback of this approach is that both 1 and -1 values in
the resulting matrix represent the fact that there are some
discrepancies between two graphs g0 and g2 in nodes C, D,
E. But it does not tell the degree of such discrepancies in

terms of concrete distance measure. Thus we need an
efficient way to represent the total number of non-zero
values in the resulting matrix.

One obvious way to capture the degree of the difference
between NM1 and NM2 is to use the sum of the squares of
elements in NM1− NM2 as shown below, which is

() ()2 2
1 1 2+ − = because element (C, D) and (C, E) have

non-zero values 1 and -1.

1 2 1 2

()()TNM NM NM NM− −

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0 0

A B C D E A B C D E

A A

B B

C C

D D

E E

= ×
−

−

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� 	 � 	

2 2

0 0 0 0 0
0 0 0 0 0

0 0 1 (1) 0 0
0 0 0 0 0
0 0 0 0 0

A B C D E

A

B

C

D

E

� �
� �
� �
� �

= � �+ −� �
� �
� �
� 	

Interestingly, we can calculate the sum of the squares of
elements in a matrix by the notion of trace in linear algebra.
The best way to calculate the sum of the squares of
elements in a matrix is using the concept of inner products.

Before we introduce the concept of trace and inner
products in our context, we first give a general description
of the matrix multiplication. A multiplication of a general
matrix A and its transpose matrix AT is defined as follows. It
indicates that the sum of diagonal elements equals the exact
sum of the squares of each element in matrix A.

11 12 13 1 11 21 31 1

21 22 23 2 12 22 32 2

31 32 33 3 13 23 33 3

1 2 3 1 2 3

... ...

... ...

... ...

...

... ...

n n

n n

T

n n

n n n nn n n n nn

a a a a a a a a

a a a a a a a a

A A a a a a a a a a

a a a a a a a a

× = ×

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �� 	 � 	

2

1

1

2

2
1

2

3
1

2

1

...

...

...

... ...

...

n

j

j

n

j
j

n

j
j

n

nj

j

a

a

a

a

=

=

=

=

=

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� 	

 6

According to [6], the sum of diagonal elements in a matrix
is defined as the trace of the matrix.

Definition 6 (Trace of Matrix, tr)
The trace of an m-by-m square matrix A is defined as the
sum of the elements on the main diagonal (the diagonal
from the upper left to the lower right) of A, i.e.,

1,1 2,2 ,
() ...

m m
tr A A A A= + + +

where
ij

A represents the (i, j)th element of A �

Now we can define the inner product of a matrix using the
definition of trace.

Definition 7 (Inner Product of Matrix)
For an m-by-n matrix A with complex (or real) entries, we
have

2

1 1

, () 0
n n

T T

ij

i j

A A tr A A a
= =

< >= × = ≥

 ,

with the trace of A equals to 0 only if A=0. �
This inner product yields a real number (a scalar) that is the
product of two vectors on the space of all complex (or real)
m-by-n matrices.

Definition 8 (Dependency Difference Metric, d)
Let

1 1 1
(,)DG DN DE= and

2 2 2
(,)DG DN DE= be two

dependency graphs. Let NM1 and NM2 be the normalized
matrix of DG1 and DG2 respectively. We define the
symmetric difference metric on graphs DG1 and DG2 by the
trace of the difference matrix of NM1 and NM2 as follows:

1 2 1 2 1 2
(,) [() ()]Td DG DG tr NM NM NM NM= − × −

where tr[⋅] denotes the trace of a matrix, i.e., the sum of the
diagonal elements. �

This distance function counts the number of edge
discrepancies between DG1 and DG2. In fact, the metric d is
the Hamming metric used in information theory [8]. Now,
we want to show that the dependency difference metric d
satisfies the distance measure properties. First, we want to
show that the inner product of a matrix and its transpose
matrix satisfies the distance measure properties. Let G(n)
represent the set of all graphs on n distinct vertices which
have undistinguished (unweighted) edges and no loops.
(Loops are edges that connect a vertex to itself). Even
though our discussion excludes the loop situation for
simplicity, the method we describe can be extended
generally. Let R denote the real numbers. Recall that a
function d: G(n)×G(n)�R metrizes G(n) if and only if for
all networks g1, g2, g3 ∈ G(n) the following conditions hold:

i) d(g1, g2) = 0 iff g1 and g2 are identical
ii) d(g1, g2) = d(g2, g1)
iii) d(g1, g2) ≤ d(g1, g3) + d(g3, g2).

The function d is called a metric, and (G(n), d) is called a
metric space. One can define many possible metrics on the

set of graphs with m vertices. In a particular application, the
metric should reflect a sense of distance that honors the
context of the data.

Lemma 1 (Inequality of Absolute Values)
For two real numbers x and y, x y x y+ ≥ + . �

Theorem 1
 1 2

(,)d DG DG satisfies the Distance Properties.
Proof:
Concretely, we want to prove that if

1 2
A NM NM= − and

2

1 2

1 1

(,) , ()
n n

T T

ij

i j

d DG DG A A tr A A a
= =

=< >= × =

 , then

this distance 1 2
(,)d DG DG satisfies the three distance

measure properties:
i)

1 2
(,) 0d DG DG = iff DG1 and DG2 are identical,

because the matrix A becomes 0.
ii)

1 2 2 1
(,) (,)d DG DG d DG DG=

iii)
1 2 1 3 3 2

(,) (,) (,)d DG DG d DG DG d DG DG≤ +

For any two nodes i, j, let

11 if (,)
(,)

0 otherwise
i j

k

A A DE
NM i j

∈
=
�
�
�

 for k=1, 2, 3

Then we can show the property ii) holds.

{ }

1 2 1 2 1 2

2

, 1 2

(,) [() ()]

 (,) (,)

T

i j

d DG DG tr NM NM NM NM

NM i j NM i j

= − × −

= −

.

 = d(DG2, DG1).
Now we show that the property iii) holds as well, because

1 2
(,) (,)NM i j NM i j− is either 0 or ±1, thus we have

1 2 , 1 2
(,) (,) (,)

i j
d DG DG NM i j NM i j= −
 . Similarly,

{ }

1 3 3 2

, 1 3 , 3 2

, 1 3 3 2

, 1 3 3 2

, 1 2

1 2

(,) (,)

 (,) (,) (,) (,)

 (,) (,) (,) (,)

 (,) (,) (,) (,)

 (,) (,)

 (,)

i j i j

i j

i j

i j

d DG DG d DG DG

NM i j NM i j NM i j NM i j

NM i j NM i j NM i j NM i j

NM i j NM i j NM i j NM i j

NM i j NM i j

d DG DG

+

= − + −

= − + −

≥ − + −

= −

=

So the new process distance measure is, in fact, a distance
metric. �

Since the dependency distance metric d(g1, g2) counts
the number of asymmetric arcs, it can reflect the difference
of some characteristics between two processes, such as task
(activity) precedence, task commonality, flow structure, etc.
Task precedence describes how the activities are linked and
sequenced in terms of execution ordering. The dependency
distance metric denotes the disparity of sequence between
two tasks and can be extended to represent the sequence
disparities between all tasks. In Fig. 6, the distance of two
processes g0 and g1, denoted by d(g0, g1), illustrates the
difference of task precedence. Task commonality means

 7

how many activities are shared between two process
models. This counts the different activities or new activities
of two processes, as illustrated by processes g0 and g2 in
Figure 6. In addition, flow structure denotes the difference
between serial and parallel flows. Two processes g0 and g3
show the difference measurement of flow structures, serial
and parallel flows.

A B C D

A C B D A B C E A
B

D

d(g0, g1) = _"` d(g0, g2) = a\` d(g0, g3) = b
g0

g1 g2 g3

C
 Fig. 6 Examples of dependency distance measurements

In Fig. 6, if we follow the previous procedure to calculate
the dependency distance, all of the graphs are transformed
to process network matrices and normalized process
matrices. Then the distance of dependency between g0 and
g1 is 6, the distance of g0 and g2 is 2, and the distance of g0
and g3 is 3. This means that g0 and g2 are the most similar,
which is intuitively correct because the first three activities
are in the same sequence but only the last activity is
different. g0 and g1 are mostly different because the
sequence of the activities in g1 is quite different from g0. In
this dependency distance measure, the parallel execution in
g3 is not considered important and only the precedence
relationships and common activities are considered
important. Due to the space restriction, we will provide a
discussion on the dependency distance measure for
processes that are executed in parallel in our technical
report.

5. Related Work
Although business process management systems have been
deployed in many industrial engineering fields, research on
analysis, mining and integration of business processes are
still in its infancy. One of the representative existing studies
on process improvement is workflow mining, which
investigates the traces and results of workflow execution,
and determines significant information in order to improve
the existing workflow processes [2, 3, 4, 5, 10, 18].
However, most of the existing workflow mining research
does not provide a quantitative measure to compare and
capture the similarity of different workflow designs. The
objective of this research is to develop a distance based
similarity measure to discover, mine and integration of
existing workflow definitions by analysis of workflow
dependency graphs. Process discovery and process mining
are useful for new enterprises or businesses to create their
own workflow processes based on successful experience of
others. Process integration is critical for supporting a
successful merger of two business units or enterprises.

In addition, the wide spread use of process-centric
systems has made it possible to accumulate process
definitions and to accelerate the analysis and
comprehension of process definitions.

The graph theory in a traditional algorithm textbook is a
useful means to analyze the process definitions. Graphs, or

representative data structures, are used as an accepted
effective tool to represent the problem in various fields,
which include pattern matching and machine recognition,
such as pattern recognition, web and XML document
analysis, and schema integration [9, 11, 21, 22]. For
example, research on similarities in graph structures can be
divided into three categories. The first category of
traditional similarity is based on graph and sub-graph
isomorphism, which has several weaknesses and distortions
in the input data and the models. In order to overcome these
weaknesses, other graph similarity analysis techniques, such
as the graph edit distance (GED) metric and maximal
common sub-graph (MCS) have been introduced [9, 22].
The GED implemented a set of editing operations, for
example, the deletion, insertion, and substitution of nodes
and edges, and defined the similarity of two graphs in terms
of the shortest (or least cost) sequence of editing operations
that transforms one graph into the other. The MCS
measures the distance between graphs by measuring the
missing structural information expressed as the difference
between the minimal common super-graph and maximal
common sub-graph. Such an approach can naturally deal
with several types of noises and distortions, such as the
addition or deletion of nodes in both graphs, and has the
advantage of not requiring the use of any cost function,
thereby avoiding the major drawback of edit-distance-based
approaches. It is also worth mentioning that Bunke [9] has
shown that with generic graphs, under certain assumptions
concerning the edit-costs, determining the maximum
common sub-graph is equivalent to computing the graph
edit-distance. This MCS is a basic concept of workflow
similarity that measures the common activities and
transitions of workflow processes. In this paper we utilize
the graph theory results to derive the metric space distance
metric for measuring process similarity and difference.

Our research on workflow similarity measure is mainly
inspired by the research results on document similarity
analysis and graph similarity measures. A large number of
document similarity measures are presented in existing
literature for building document management systems,
knowledge management systems, as well as search engines
[9, 11, 14].

Finally, web services are standard means to provide
remote access to many Web applications. One of the
important problems in Web services research is developing
efficient methods for automatically discovering and
invoking remote Web services. Furthermore, composing
multiple Web services, rather than accessing a single
service, is essential for many mission critical applications
and provides more benefits to users. In order to support web
service composition, an infrastructure for searching and
matchmaking of business processes is needed. One example
is using annotated deterministic finite state automata
(aDFA) to model the business processes [21]. If a business
process is specified as aDFA, the match between two
aDFAs is determined by the intersection of their languages.
When there is non-empty intersection, the two business
processes are matched. However, this approach may not
work for complex web services where each service is a

 8

multi-step workflow with an overlapping set of task
(activity) nodes. In this paper we present a quantitative
approach to modeling and capturing the similarity and
dissimilarity between different workflow designs. We
derive the similarity measures by analyzing the workflow
dependency graphs of the participating workflow processes
in two phases. First, we convert each workflow dependency
graph into a normalized process network matrix. Then we
calculate the metric space distance between the normalized
matrices. We show how this distance measure can be used
as a quantitative and qualitative tool in process mining,
process merging and process clustering. We believe that our
approach can ultimately reduce or minimize the costs
involved in design, analysis, and evolution of workflow
systems.

6. Conclusion and Future work
We have presented a difference analysis methodology using
distance measures between process definitions of web
services. The proposed difference analysis method achieves
three distinct goals. First, by analyzing the attributes of
process models, we can present a quantitative process
similarity metric to determine the relative distance between
process models. This facilitates not only the comparison of
existing process models with each other, but also provides
the flexibility to adapt to changes in processes. Second, the
proposed method is fast and flexible, which reduces the cost
of both the analysis and design phases of complex web
service processes. Third, the proposed method enables the
flexible deployment of process mining, discovery, and
integration – all desirable functionality that are critical for
fully supporting the effective transformation of an
enterprise.

Our research on process mining, discovering and
integration through similarity analysis continues along
several directions. First, we are interested in distance
measures that can compare workflow designs with complex
block structure and various execution constraints. Second,
we are interested in developing a prototype system that
provides efficient implementation of various similarity
analysis methods, including the dependency distance metric
presented in this paper. Furthermore we are interested in
applying the method developed to concrete case studies of
existing enterprise transformations and to evaluate and
improve the similarity measures proposed in this paper.

Acknowledgements: The first author was supported by
the Korea Research Foundation Grant (KRF-2004-003-D00477).

7. References
1. W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski,

and A.P. Barros, “Workflow Patterns,” Distributed and
Parallel Databases, 14(3), pages 5-51, July 2003.

2. van der Aalst, W.M.P., van Dongen, B.F., Herbst, J., Maruster,
L., Schimm, G. & Weijters. A.J.M.M. (2003). Workflow
Mining: A Survey of Issues and Approaches, Data and
Knowledge Engineering. 47(2), 237-267, 2003

3. van der Aalst, W.M.P., Weijters, A.J.M.M., & Maruster, L.
(2004). Workflow Mining: Discovering Process Models from

Event Logs. IEEE Transactions on Knowledge and Data
Engineering. 16(9), pp. 1128-1142, 2004

4. van der Aalst, W.M.P. and Weijters, A.J.M.M. (2004),
“Process Mining: A Research Agenda,” Computers in
Industry, 53(3), pp. 231-244, 2004

5. R. Agrawal, D. Gunopulos, and F. Leymann, “Mining Process
Models from Work-flow Logs”, 6th International Conference
on Extending Database Technology, pp. 469-483, 1998.

6. Howard Anton and Chris Rorres, Elementary Linear Algebra:
Applications, John Wiley&Sons, 1994.

7. Bae, J., Bae, H., Kang, S., Kim, Y.: Automatic control of
workflow process using ECA rules. IEEE Trans. on
Knowledge and Data Engineering, vol.16, no.8 (2004) 1010-
1023.

8. Banks, D., Carley, K.: Metric inference for social networks.
Journal of classification. vol.11 (1994) 121-149.

9. Bunke, H., Shearer, K.: A Graph Distance Metric based on the
Maximal Common Subgraph. Pattern Recognition Letters,
vol.19, issues 3-4, (1998) 255-259.

10. J.E. Cook and A.L. Wolf, “Software Process Validation:
Quantitatively Measuring the Correspondence of a Process to
a Model,” ACM Transactions on Software Engineering and
Methodology, 8(2), pp. 147-176, 1999.

11. Hammouda, K.M., Kamel, M.S.: Efficient Phrase-Based
Document Indexing for Web Document Clustering. IEEE
Transactions on Knowledge and Data Engineering, vol.16,
no.10 (2004) 1279-1296.

12. Hollingsworth, D., “Workflow management coalition
specification,” The workflow reference model, WfMC, 1995.

13. Leymann, F., Roller, D.: Production workflow: concepts and
techniques. Prentice Hall PRT, New Jersey (2000).

14. Lian, W., Cheung, W.W., Mamoulis, N., Yiu, S.: An Efficient
and Scalable Algorithm for Clustering XML Documents by
Structure. IEEE Transactions on Knowledge and Data
Engineering, vol.16, no.1 (2004) 82-96.

15. Ling Liu and Calton Pu. "ActivityFlow: Towards Incremental
Specification and Flexible Coordination of Workflow
Activities", In: The 16th International Conference on
Conceptual Modeling (ER'97), Los Angeles, California, USA
(3 - 6 November 1997).

16. Rouse, W. B., “A Theory of Enterprise Transformation.
Systems Engineering,” vol. 8, no. 4, 2005.

17. Rush, R., Wallace, W.A., “Elicitation of knowledge from
multiple experts using network inference,” IEEE Transactions
on Knowledge and Data Engineering, vol. 9, no. 5 (1997)
688-698.

18. Guido Schimm, “Mining exact models of concurrent
workflows,” Computers in Industry, 53, pp 265-281, 2004.

19. WfMC, Workflow Management Coalition Terminology and
Glossary 3.0 (WFMC-TC-1011). Technical report, Workflow
Management Coalition, Brussels, 1999.

20. WfMC, Workflow Management Coalition Workflow Standard
Process Definition Interface -- XML Process Definition
Language, Document Number WFMC-TC-1025 Version 1.13,
September 7, 2005

21. Andreas Wombacher, Peter Fankhauser, Bendick Mahleko, an
Erich Neuhold, “Matchmaking for Business Processes Based
on Choreographies,” in International Journal of Web Services,
Vol. 1, No. 4, ISSN: 1545-7362 Idea Group Publishing, pp.
14-32, 2004

22. Zhang, K., Shasha, D.: Simple Fast Algorithms for the
Editing Distance between Trees and Related Problems.
SIAM Journal of Computing, vol.18, no.6 (1989) 1245-
1262.

