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ABSTRACT Business processes continue to play an important 
role in today’s service-oriented enterprise computing systems. 
Mining, discovering, and integrating process-oriented services 
has attracted growing attention in the recent year. In this paper 
we present a quantitative approach to modeling and capturing the 
similarity and dissimilarity between different workflow designs. 
Concretely, we introduce a graph-based distance measure and a 
framework for utilizing this distance measure to mine the process 
repository and discover workflow designs that are similar to a 
given design pattern or to produce one integrated workflow 
design by merging two or more business workflows of similar 
designs. We derive the similarity measures by analyzing the 
workflow dependency graphs of the participating workflow 
processes. Such an analysis is conducted in two phases. We first 
convert each workflow dependency graph into a normalized 
process network matrix. Then we calculate the metric space 
distance between the normalized matrices. This distance measure 
can be used as a quantitative and qualitative tool in process 
mining, process merging, and process clustering, and ultimately it 
can reduce or minimize the costs involved in design, analysis, and 
evolution of workflow systems. 
 
1. Introduction 
With the increasing interest and wide deployment of web 
services, we see a growing demand for service-oriented 
architectures and technologies that support enterprise 
transformation. Effective enterprise transformation refers to 
strategic business agility in terms of how efficiently an 
enterprise can respond to its competitors and how timely an 
enterprise can anticipate new opportunities that may arise in 
the future. In the increasingly globalized economy, 
enterprises face complex challenges that can require rapid 
and possibly continual transformations. As a result, more 
and more enterprises are focused on the strategic 
management of fundamental changes with respect to 
markets, products, and services [16]. Such transformation 
typically has a direct impact on the business processes of an 
enterprise. Enterprise transformation may range from 
traditional business process improvement to wholesale 
changes to the processes supported by the enterprise – from 
performing current work in a new fashion (e.g., by adopting 
a web services framework for supporting customer service) 
to performing different work altogether (e.g., by 
outsourcing all non-essential functions and focusing on an 
enterprise’s core strengths). Each of these challenges may 
lead to a differing degree of enterprise transformation. 

Fundamental to enabling the transformation of an 
enterprise is the development of novel tools and techniques 
for transforming the business processes of an enterprise. In 
this paper, we present a critical component to the problem 
of process transformation from a web services point-of-

view. In particular, we present a novel process difference 
analysis method using distance measures between process 
definitions of two transactional web services. The process 
difference analysis focuses on process structure and process 
activity dependencies to identify distance measures between 
processes.  

The proposed difference analysis method achieves three 
distinct goals. First, by analyzing the attributes of process 
models, we present a quantitative process similarity metric 
to determine the relative distance between process models. 
This facilitates not only the comparison of existing process 
models with each other, but also provides the flexibility to 
adapt to changes in existing business workflow processes. 
Second, the proposed method is quick and flexible, which 
reduces the cost of both the analysis and design phases of 
web service processes. Third, the proposed method enables 
the flexible deployment of process mining, discovery, and 
integration – all key features that are necessary for effective 
transformation of an enterprise.  
 
2. Web Service Process Reference Model 

The web service process reference model (process model 
for short in the rest of the paper) consists of business 
process definitions and the specification of workflows 
among the processes with respect to data flow, control flow, 
and operational views [17, 18]. We define a business 
process in terms of business activity patterns. An activity 
pattern consists of objects, messages, message exchange 
constraints, preconditions and postconditions [12, 19], and 
is designed to specify the service actions and execution 
dependencies of the business process. An activity pattern 
can be viewed as a web service process when it is 
executable as a web service. We consider two types of 
activity patterns – elementary activity patterns and 
composite activity patterns [1, 7, 15]. An elementary 
activity pattern is an atomic unit.  A composite activity 
pattern consists of a one or more elementary activity 
patterns or other composite activity patterns. Activity 
patterns are constrained by a set of activity dependencies, 
which can be seen as cooperation contracts among activities 
that collaborate in accomplishing a complex service. The 
dependencies could capture complex interactions between 
activities.  

We define a business workflow as a collection of 
business activities connected by data flow and control flow, 
where each represents a business process. A process 
definition can be seen as a web service (or a collection of 
web services). We use data flow among processes to define 
the data dependencies among processes within a given 
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business workflow. We use control flow to capture the 
operational structure of the business workflow service, 
including the process execution ordering, the transactional 
semantics and dependencies of the workflow. A number of 
workflow specifications have garnered attention, including 
BPEL4WS (BEA, IBM, Microsoft), WSFL (IBM), 
XLANG (Microsoft), and XPDL (WfMC) [19, 20]. In our 
prototype development, we choose to use a variant of 
BPEL4WS.  

Formally, each workflow service is specified in terms of 
process definitions. We can model each process definition 
using a directed graph, in which the nodes of the graph are 
activities. Depending on whether the edges indicate 
execution dependencies or data flow dependencies, we have 
a process aggregation hierarchy or a process dependency 
graph. The process aggregation hierarchy captures the 
hierarchical execution ordering of activities. The process 
dependency graph captures information about how 
activities share information and how data flows from one 
activity to another. Due to the space constraint, in this paper 
we focus our discussion only on the dependency graph. 
Concretely we present the process similarity measures 
based on the dependency graphs of the processes of interest, 
and refer readers to our technical report for aggregation 
hierarchy based process similarity measures.  

 
Definition 1 (Dependency Graph, DG) 
A dependency graph DG is defined by a binary tuple <DN, 
DE>, where 
• 

1 2
{ , , ..., }

n
DN nd nd nd=  is a finite set of activity nodes 

where 1n ≥ . Each node ind  (i=1, ..., n) is described by 

a quadruple ( , , , )NT NN TC NS , where NT is the node 
type, NN denotes the node name, TC is the trigger 
condition of the node, NS is one of the two states of the 
node: fired or not fired 

• 
1 2

{ , , ..., }
m

DE e e e=  is a set of edges, 0m ≥ . Each edge 

is of the form 
i j

nd nd→ . An edge 
ij i j

e nd nd= →  is 

described by a quadruple ( , , , )
nd nd

EN DP AV ES , where 

EN is the edge name, DPnd is the departure node, AVnd is 
the arrival node, ES is one of the two states of the edge: 
signaled and not signaled. � 

Note that in the dependency graph formulation, self-edges 
are disallowed since edges are intended to denote data flow 
dependencies between different activities (nodes). 
Additionally, a dependency graph must be a connected 
graph. Unconnected nodes and isolated groups of nodes are 
disallowed in the graph, as isolated nodes or groups of 
nodes are considered a separate service process in our 
reference model.  
 
3. Motivating Scenarios 
Given the process reference model, we consider two 
motivating scenarios that benefit from the difference 
analysis methodology introduced in this paper.  
 

3.1. Process Mining 
Consider a scenario where a company has maintained a 
warehouse of existing processes used in various business 
locations. Process mining of the process warehouse can 
help the enterprise to discover interesting associations or 
classifications among business processes running at 
different locations or branches of the company.  
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Fig. 1  Process mining example 

In Fig. 1, we show a process warehouse that contains many 
types of processes (for example, g1, g2, g3, g4, g5).  A typical 
process mining scenario is the identification of the 
processes most similar to a baseline process template in the 
process warehouse. Given a query process and a 
comparability threshold δ-value, the process mining will 
identify (g3) the process that is most similar based on the 
comparability criterion. It is obvious that the concept of 
process similarity (or distance) is critical to the 
effectiveness of process mining. 
 
3.2. Process Discovery & Integration 
To illustrate the second scenario, we consider an enterprise 
transformation due to the merger of two companies. 
Process discovery and integration using process similarity 
can help the merged enterprise to identify the commonality 
between the existing business workflows of the two 
companies being merged and generate the new business 
workflow by eliminating unnecessary redundancies. Fig. 2 
illustrates a situation when two companies have merged and 
attempt to implement a standardized process between the 
two. Since both companies have their own process 
warehouses before merging, there is a possibility that two 
different processes, gA and gB respectively, exist for the 
same purpose. One possible process transformation is to 
identify and integrate the two processes into a standard 
process (gC). In this case, process similarity plays an 
important role in identifying similar processes and guiding 
the integration. 
 
4. Process Difference Analysis 
In this section, we present the process difference analysis 
method for evaluating the distance between two processes. 
We first describe the comparison matrices used for 
similarity analysis, including the concept of identical 
dependency graphs and δ-comparability. Both concepts are 
important for defining the distance measure between two 
dependency graphs. Then we define the concept of a 
process network matrix and introduce the concept of a 
normalized matrix. Finally, we define the dependency 
distance measure by measuring the difference between the 
normalized matrices. 
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Fig. 2 Extracting a standard process from two similar ones 

 
4.1. Comparison Matrices 
Two dependency graphs are said identical if the two graphs 
have the same set of nodes and the same set of edges. 
Formally we define identical dependency graphs as follows: 

 
Definition 2 (Identical dependency graphs) 

Let 
1 1 1

( , )DG DN DE=  and 
2 2 2

( , )DG DN DE=  be two 

dependency graphs. We say that DG1 and DG2 are identical 
if the two graphs have the same set of nodes and the same 
set of edges. 

i) 
1 2Set

DN DN=  

ii) 
1 2Set

DE DE=   � 

 
Given two workflow processes and their respective 
dependency graphs, there are numerous ways these two 
graphs may differ. Typically, it makes more sense to 
compare only those graphs that have sufficient similarity in 
terms of their dependency graphs. Consider two extreme 
cases: one is when the two dependency graphs have the 
same set of nodes and the other is when there is no common 
node between two graphs. By assigning 1 for the first case 
and 0 for the latter case, we define a comparability measure 
that indicates the ratio of common nodes in two graphs. One 
way to measure the extent of comparability between two 
graphs is to use a user-controlled threshold, called δ-
Comparability, which is set to be between 0 and 1. Because 
this value represents the ratio of common nodes over the 
union of all nodes in two graphs, the larger the value is, the 
greater degree of comparability between the two graphs. 
Note that δ value can not be 0 since δ = 0 means that there 
is no common node between two graphs, i.e., 

1 2
DN DN∩ ≠ ∅ .  
 
Definition 3 (δδδδ-Comparability of DG) 
Let 

1 1 1
( , )DG DN DE=  and 

2 2 2
( , )DG DN DE=  be two 

dependency graphs, and δ be a user-defined control 

threshold. We say that DG1 and DG2 are δ-comparable if 

the condition 1 2

1 2

DN DN

DN DN
δ

∩
≥

∪
holds, where 0 1δ< ≤   � 

 
If we apply the δ-Comparability to the example graphs 
shown in Fig. 3 with δ=0.5, g0 and f1 are not comparable 
because there is no common node in the two graphs, and 
also g0 and f2 are not comparable because the number of 
common nodes is only one but the number of total nodes is 

7, that is 1 2

1 2

1
0.5

7

DN DN

DN DN

∩
= <

∪
. On the other hand, g0 

and g1 are δ- comparable because all of the nodes in both 
graphs are common nodes. g0 and g2 are δ-comparable 
because there are 3 common nodes and the total number of 
nodes is 5, thus the two graphs satisfy the δ-comparability 

condition 1 2

1 2

3
0.5

5

DN DN

DN DN

∩
= ≥

∪
 and δ = 0.5. 

A C B D A B C E A
B

D

A B C D

g0

A B C D

g0

g1 g2 g3

C

F G H I

f1

F G H I

f1

A G H I

f2

A G H I

f2

 
Fig. 3  Examples of δδδδ-Comparability 

From the examples in Fig. 3, it would be useful to know not 
only g0 and g1 and g0 and g2 are δ-comparable with δ = 0.5, 
but also which dependency graph is most similar to g0. One 
way to compare and rank a set of similar process definitions 
is to transform each dependency graph into a numerical 
representation. This allows us to compare the dependency 
graphs using similarity distance in Euclidian distance metric 
space. This leads us to introduce the concept of a process 
network matrix. A process network matrix M is established 
in order to describe the precedence dependencies between 
two activities (tasks). The size of M is determined by the 
number of nodes in the dependency graph and each cell in 
the matrix denotes an element of M. The value of cell M(i,j) 
is set either to 1 or 0 depending on whether or not there is a 
precedence dependency between the two nodes i and j. 

 
Definition 4 (Process Network Matrix, M) 
Let ( , )g DN DE=  be a dependency graph with DN n=  

nodes. A process network matrix M of g is n-by-n matrix 
with n rows and n columns, and each row is named after the 
node name. Let Mg(i,j) denote the value of the ith row and 
the jth column in M, 1 ,i j n≤ ≤ . We define Mg(i,j) as 
follows: 

1          ,    ( , )
( , )

0                                                                           
i j i j

g

if nd nd DN such that nd nd DE
M i j

else

∃ ∈ ∈
=
�
�
�

 � 

Fig. 4 depicts the transformation of a process dependency 
graph of 5 activities shown in (a) into its process network 
matrix M, a 5×5 matrix. Each element of M is determined 
according to whether or not the corresponding two activities 
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(tasks) have precedence dependency. An edge between 
nodes A and B shows that activity A precedes activity B. 
Thus, Mg(A,B) is set to a value of 1. There is no direct edge 
between nodes A and C. Thus Mg(A,C) is set to a value of 0. 

A B

C

D

C

D

E

 
(a) 

M TO 

 A B C D E 

A 0 1 0 0 0 

B 0 0 1 1 0 

C 0 0 0 0 1 

D 0 0 0 0 1 

F 
R 
O 
M 

E 0 0 0 0 0 
(b) 

Fig. 4  An example of process network matrix 

Recall that when two workflow dependency graphs are δ-
comparable, they may not have the same set of nodes. 
Recall Fig. 3, g0 and g2 are 0.5-comparable but node D in g0 
does not exist in g2 and node E in g2 does not exist in g0. In 
order to compare the two workflow dependency graphs g0 

and g2, we need to further normalize each process network 
matrix that participates in the similarity computation such 
that each normalized process network matrix includes the 
union of all sets of nodes, each from one participating 
process dependency graph. We formally introduce the 
concept of normalized process network matrix in Definition 
4 by extending the definition of a process network matrix to 
include the entire union of nodes in the two graphs. The 
size of the normalized matrix is increased to the size of the 
union of the sets of nodes in both graphs. For those nodes 
that exist in a process network matrix before normalization, 
the corresponding elements in the normalized matrix are the 
same as those in the process network matrix. For those 
nodes added through the normalization, the corresponding 
elements in the normalized matrix are set to a value of 0. 
After normalization, both matrices have the same number of 
rows and columns, and share the same row and column 
names and sequences. The normalized matrices can then be 
used as an input to calculate distance. 
 
Definition 5 (Normalized Matrix, NM) 
Let 

1 1 1
( , )DG DN DE=  and 

2 2 2
( , )DG DN DE=  be two 

dependency graphs. Let NM1 and NM2 denote the 
normalized matrices for DG1 and DG2 respectively. We 
generate NM1 and NM2 from DG1 and DG2 as follows. 
i) The number of rows and columns are computed by 

1 2
m DN DN= ∪  

ii) Let 
1 2 1 2

{ , , ..., }
m

DN DN A A A=� . Note that the row and 

column names of NM1 and NM2 are now normalized into the 
same node names

1 2
, , ...,

m
A A A  in the union of DN1 and DN2. 

iii) Let 
1
( , )NM i j  denote the value of the ith row and the 

jth column in NM1, and 
2
( , )NM i j  denote the value of the 

ith row and the jth column in NM2 

1

1

1        if ( , )  
( , )

0        otherwise            
i j

A A DE
NM i j

∈
=
�
�
�

, 

2

2

1        if ( , )  
( , )

0        otherwise            
i j

A A DE
NM i j

∈
=
�
�
�

� 

Consider processes in Fig. 3 as an example. By constructing 
normalized process network matrices for g0 and g2, denoted 
by NM1 and NM2 respectively, the size of NM1 of g0 is 
increased to 5 because NM1 should include node E, which 
was not originally included in g0. All the elements of the 
newly added column for node E are set to a value of 0 
because there is no dependency between any node of g0 and 
node E. Similarly, node D is added in NM2. Now NM1 and 
NM2 have the same row names and column names: A, B, C, 
D, and E. We can use NM1 and NM2 to compare g0 and g2. 

A B C D

g0

 
(a) 

NM1 TO 

 A B C D E 

A 0 1 0 0 0 

B 0 0 1 0 0 

C 0 0 0 1 0 

D 0 0 0 0 0 

F 
R 
O 
M 

E 0 0 0 0 0 

(b) 
 

A B C E

g2

 
(c)     

NM2 TO 

 A B C D E 

A 0 1 0 0 0 

B 0 0 1 0 0 

C 0 0 0 0 1 

D 0 0 0 0 0 

F 
R 
O 
M 

E 0 0 0 0 0 

(d) 
 Fig. 5  An example of comparison matrices 

The algorithm for construction of normalized process 
network matrices consists of three steps. First, we must 
determine whether or not DG1 and DG2 are δ-comparable 
for the given δ value. Second, we compute the size of the 
normalized NM by 

1 2
m DN DN= ∪ and label nodes in 

{ }1 2
DN DN∪  as { }1 2

, , ...
m

A A A  using a uniform naming 

scheme. Third, we create the matrix data structures for DG1 
and DG2: 1

( , )NM i j  and 
2
( , )NM i j , where i, j = 1, 2, ..., m, 
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and assign a value of 1 or 0 to each element in the two 
normalized matrices. The pseudo code of this algorithm is 
given in Algorithm 1. 

 
Algorithm 1 (Normalization of Comparable Matrices) 

Input: 
1 1 1

( , )DG DN DE= ; 
2 2 2

( , )DG DN DE= ; 

Output: 
1
( , )

m m
NM i j × ; 

2
( , )

m m
NM i j ×  

Description:  
     Compute m, Construct NM1, NM2 for each DG1, DG2 
Begin 
 if δ-comparable (DG1, DG2) = false then exit; 
 Compute union of sets DG1 and DG2 ; 

 Set 
1 2

m DN DN= ∪ ; 

 Label nodes in { }1 2
DN DN∪  as { }1 2

, , ...
m

A A A ; 

 /* Construct NM1, NM2 for each DG1, DG2 */ 

 Initialize 
1
( , ) 0

m m
NM i j × = ; 

Initialize 
2
( , ) 0

m m
NM i j × = ; 

 for i = 1 step 1 until m 
    for j = 1 step 1 until m { 

       if 
1

( , )
i j

A A NE∈  then set 
1
( , ) 1NM i j = ; 

       if 
2

( , )
i j

A A NE∈  then set 
2
( , ) 1NM i j = ; 

    } 

 return 
1
( , )

m m
NM i j × ; 

2
( , )

m m
NM i j × ; 

End  � 
 

4.2 Distance-based Process Similarity Measures 
With the concept of a normalized process network matrix, 
we now transform the problem of comparing two processes 
into the problem of computing the distance-based similarity 
of the two normalized process network matrices. One 
obvious idea is to compute the distance of two normalized 
matrices using matrix subtraction.  
 Consider the example processes g0 and g2 in Fig. 5. One 
way of computing the distance between g0 and g2 by matrix 
subtraction is to simply perform subtraction element by 
element. By subtracting NM2 from NM1, only the element 
(C, D) and (C, E) have values 1 and -1 respectively and the 
rest of the elements are 0. This means that (C, D) and (C, E) 
are the two dependencies unmatched between the two 
dependency graphs g0 and g2.  
 

1 2

0 0 0 0 0

0 0 0 0 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 0

A B C D E

A

B
NM NM

C

D

E

− =
−

� �
� �
� �
� �
� �
� �
� �
� �
� 	

 

 
A drawback of this approach is that both 1 and -1 values in 
the resulting matrix represent the fact that there are some 
discrepancies between two graphs g0 and g2 in nodes C, D, 
E. But it does not tell the degree of such discrepancies in 

terms of concrete distance measure. Thus we need an 
efficient way to represent the total number of non-zero 
values in the resulting matrix.  

One obvious way to capture the degree of the difference 
between NM1 and NM2 is to use the sum of the squares of 
elements in NM1− NM2 as shown below, which is 

( ) ( )2 2
1 1 2+ − =  because element (C, D) and (C, E) have 

non-zero values 1 and -1.  
 

            
1 2 1 2

( )( )TNM NM NM NM− −  

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0 0

A B C D E A B C D E

A A

B B

C C

D D

E E

= ×
−

−

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� 	 � 	

 

          
2 2

0 0 0 0 0
0 0 0 0 0

0 0 1 ( 1) 0 0
0 0 0 0 0
0 0 0 0 0

A B C D E

A

B

C

D

E

� �
� �
� �
� �

= � �+ −� �
� �
� �
� 	

 

 
Interestingly, we can calculate the sum of the squares of 
elements in a matrix by the notion of trace in linear algebra. 
The best way to calculate the sum of the squares of 
elements in a matrix is using the concept of inner products.  

Before we introduce the concept of trace and inner 
products in our context, we first give a general description 
of the matrix multiplication. A multiplication of a general 
matrix A and its transpose matrix AT is defined as follows. It 
indicates that the sum of diagonal elements equals the exact 
sum of the squares of each element in matrix A. 

 

11 12 13 1 11 21 31 1

21 22 23 2 12 22 32 2

31 32 33 3 13 23 33 3

1 2 3 1 2 3

... ...

... ...

... ...

... ... ... ...

... ...

n n

n n

T

n n

n n n nn n n n nn

a a a a a a a a

a a a a a a a a

A A a a a a a a a a

a a a a a a a a

× = ×

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �� 	 � 	

          

2

1

1

2

2
1

2

3
1

2

1

... ... ... ...

... ... ... ...

... ... ... ...

... ...

... ... ... ...

n

j

j

n

j
j

n

j
j

n

nj

j

a

a

a

a

=

=

=

=

=

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� 	
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According to [6], the sum of diagonal elements in a matrix 
is defined as the trace of the matrix. 

 
Definition 6 (Trace of Matrix, tr) 
The trace of an m-by-m square matrix A is defined as the 
sum of the elements on the main diagonal (the diagonal 
from the upper left to the lower right) of A, i.e., 

1,1 2,2 ,
( ) ...

m m
tr A A A A= + + +   

where 
ij

A  represents the (i, j)th element of A   � 

 
Now we can define the inner product of a matrix using the 
definition of trace. 

 
Definition 7 (Inner Product of Matrix) 
For an m-by-n matrix A with complex (or real) entries, we 
have 

2

1 1

, ( ) 0
n n

T T

ij

i j

A A tr A A a
= =

< >= × = ≥

 ,  

with the trace of A equals to 0 only if A=0. � 
This inner product yields a real number (a scalar) that is the 
product of two vectors on the space of all complex (or real) 
m-by-n matrices.  

 
Definition 8 (Dependency Difference Metric, d) 
Let 

1 1 1
( , )DG DN DE=  and 

2 2 2
( , )DG DN DE=  be two 

dependency graphs. Let NM1 and NM2 be the normalized 
matrix of DG1 and DG2 respectively. We define the 
symmetric difference metric on graphs DG1 and DG2 by the 
trace of the difference matrix of NM1 and NM2 as follows: 

1 2 1 2 1 2
( , ) [( ) ( ) ]Td DG DG tr NM NM NM NM= − × −  

where tr[⋅] denotes the trace of a matrix, i.e., the sum of the 
diagonal elements. � 

 
This distance function counts the number of edge 
discrepancies between DG1 and DG2. In fact, the metric d is 
the Hamming metric used in information theory [8]. Now, 
we want to show that the dependency difference metric d 
satisfies the distance measure properties. First, we want to 
show that the inner product of a matrix and its transpose 
matrix satisfies the distance measure properties. Let G(n) 
represent the set of all graphs on n distinct vertices which 
have undistinguished (unweighted) edges and no loops. 
(Loops are edges that connect a vertex to itself). Even 
though our discussion excludes the loop situation for 
simplicity, the method we describe can be extended 
generally. Let R denote the real numbers. Recall that a 
function d: G(n)×G(n)�R metrizes G(n) if and only if for 
all networks g1, g2, g3 ∈ G(n) the following conditions hold: 

 
i) d(g1, g2) = 0 iff g1 and g2 are identical 
ii) d(g1, g2) = d(g2, g1) 
iii) d(g1, g2) ≤ d(g1, g3) + d(g3, g2). 
 

The function d is called a metric, and (G(n), d) is called a 
metric space. One can define many possible metrics on the 

set of graphs with m vertices. In a particular application, the 
metric should reflect a sense of distance that honors the 
context of the data. 

 
Lemma 1 (Inequality of Absolute Values) 
For two real numbers x and y, x y x y+ ≥ + . � 

 
Theorem 1  
  1 2

( , )d DG DG  satisfies the Distance Properties.  
Proof:  
Concretely, we want to prove that if

1 2
A NM NM= −  and 

2

1 2

1 1

( , ) , ( )
n n

T T

ij

i j

d DG DG A A tr A A a
= =

=< >= × =

 , then 

this distance 1 2
( , )d DG DG satisfies the three distance 

measure properties: 
i) 

1 2
( , ) 0d DG DG =  iff DG1 and DG2 are identical, 

because the matrix A becomes 0.  
ii) 

1 2 2 1
( , ) ( , )d DG DG d DG DG=  

iii) 
1 2 1 3 3 2

( , ) ( , ) ( , )d DG DG d DG DG d DG DG≤ +  

For any two nodes i, j, let 

11        if ( , )  
( , )

0        otherwise            
i j

k

A A DE
NM i j

∈
=
�
�
�

 for k=1, 2, 3 

Then we can show the property ii) holds. 

 
{ }

1 2 1 2 1 2

2

, 1 2

( , ) [( ) ( ) ]

                    ( , ) ( , )

T

i j

d DG DG tr NM NM NM NM

NM i j NM i j

= − × −

= −

.  

        =  d(DG2, DG1). 
Now we show that the property iii) holds as well, because 

1 2
( , ) ( , )NM i j NM i j−  is either 0 or ±1, thus we have 

1 2 , 1 2
( , ) ( , ) ( , )

i j
d DG DG NM i j NM i j= −
 . Similarly,  

{ }

1 3 3 2

, 1 3 , 3 2

, 1 3 3 2

, 1 3 3 2

, 1 2

1 2

( , ) ( , )

   ( , ) ( , ) ( , ) ( , )

   ( , ) ( , ) ( , ) ( , )

   ( , ) ( , ) ( , ) ( , )

   ( , ) ( , )

   ( , )

i j i j

i j

i j

i j

d DG DG d DG DG

NM i j NM i j NM i j NM i j

NM i j NM i j NM i j NM i j

NM i j NM i j NM i j NM i j

NM i j NM i j

d DG DG

+

= − + −

= − + −

≥ − + −

= −

=


 








 

So the new process distance measure is, in fact, a distance 
metric. � 

Since the dependency distance metric d(g1, g2) counts 
the number of asymmetric arcs, it can reflect the difference 
of some characteristics between two processes, such as task 
(activity) precedence, task commonality, flow structure, etc. 
Task precedence describes how the activities are linked and 
sequenced in terms of execution ordering. The dependency 
distance metric denotes the disparity of sequence between 
two tasks and can be extended to represent the sequence 
disparities between all tasks. In   Fig. 6, the distance of two 
processes g0 and g1, denoted by d(g0, g1), illustrates the 
difference of task precedence. Task commonality means 
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how many activities are shared between two process 
models. This counts the different activities or new activities 
of two processes, as illustrated by processes g0 and g2 in 
Figure 6. In addition, flow structure denotes the difference 
between serial and parallel flows. Two processes g0 and g3 
show the difference measurement of flow structures, serial 
and parallel flows. 

A B C D

A C B D A B C E A
B

D

d(g0, g1) = _"` d(g0, g2) = a\` d(g0, g3) = b
g0

g1 g2 g3

C  
  Fig. 6 Examples of dependency distance measurements 

In   Fig. 6, if we follow the previous procedure to calculate 
the dependency distance, all of the graphs are transformed 
to process network matrices and normalized process 
matrices. Then the distance of dependency between g0 and 
g1 is 6, the distance of g0 and g2 is 2, and the distance of g0 
and g3 is 3. This means that g0 and g2 are the most similar, 
which is intuitively correct because the first three activities 
are in the same sequence but only the last activity is 
different. g0 and g1 are mostly different because the 
sequence of the activities in g1 is quite different from g0. In 
this dependency distance measure, the parallel execution in 
g3 is not considered important and only the precedence 
relationships and common activities are considered 
important. Due to the space restriction, we will provide a 
discussion on the dependency distance measure for 
processes that are executed in parallel in our technical 
report. 
 
5. Related Work 
Although business process management systems have been 
deployed in many industrial engineering fields, research on 
analysis, mining and integration of business processes are 
still in its infancy. One of the representative existing studies 
on process improvement is workflow mining, which 
investigates the traces and results of workflow execution, 
and determines significant information in order to improve 
the existing workflow processes [2, 3, 4, 5, 10, 18]. 
However, most of the existing workflow mining research 
does not provide a quantitative measure to compare and 
capture the similarity of different workflow designs. The 
objective of this research is to develop a distance based 
similarity measure to discover, mine and integration of 
existing workflow definitions by analysis of workflow 
dependency graphs. Process discovery and process mining 
are useful for new enterprises or businesses to create their 
own workflow processes based on successful experience of 
others. Process integration is critical for supporting a 
successful merger of two business units or enterprises.  

In addition, the wide spread use of process-centric 
systems has made it possible to accumulate process 
definitions and to accelerate the analysis and 
comprehension of process definitions.  

The graph theory in a traditional algorithm textbook is a 
useful means to analyze the process definitions. Graphs, or 

representative data structures, are used as an accepted 
effective tool to represent the problem in various fields, 
which include pattern matching and machine recognition, 
such as pattern recognition, web and XML document 
analysis, and schema integration [9, 11, 21, 22]. For 
example, research on similarities in graph structures can be 
divided into three categories. The first category of 
traditional similarity is based on graph and sub-graph 
isomorphism, which has several weaknesses and distortions 
in the input data and the models. In order to overcome these 
weaknesses, other graph similarity analysis techniques, such 
as the graph edit distance (GED) metric and maximal 
common sub-graph (MCS) have been introduced [9, 22]. 
The GED implemented a set of editing operations, for 
example, the deletion, insertion, and substitution of nodes 
and edges, and defined the similarity of two graphs in terms 
of the shortest (or least cost) sequence of editing operations 
that transforms one graph into the other. The MCS 
measures the distance between graphs by measuring the 
missing structural information expressed as the difference 
between the minimal common super-graph and maximal 
common sub-graph. Such an approach can naturally deal 
with several types of noises and distortions, such as the 
addition or deletion of nodes in both graphs, and has the 
advantage of not requiring the use of any cost function, 
thereby avoiding the major drawback of edit-distance-based 
approaches. It is also worth mentioning that Bunke [9] has 
shown that with generic graphs, under certain assumptions 
concerning the edit-costs, determining the maximum 
common sub-graph is equivalent to computing the graph 
edit-distance. This MCS is a basic concept of workflow 
similarity that measures the common activities and 
transitions of workflow processes. In this paper we utilize 
the graph theory results to derive the metric space distance 
metric for measuring process similarity and difference.  

Our research on workflow similarity measure is mainly 
inspired by the research results on document similarity 
analysis and graph similarity measures. A large number of 
document similarity measures are presented in existing 
literature for building document management systems, 
knowledge management systems, as well as search engines 
[9, 11, 14].  

Finally, web services are standard means to provide 
remote access to many Web applications. One of the 
important problems in Web services research is developing 
efficient methods for automatically discovering and 
invoking remote Web services. Furthermore, composing 
multiple Web services, rather than accessing a single 
service, is essential for many mission critical applications 
and provides more benefits to users. In order to support web 
service composition, an infrastructure for searching and 
matchmaking of business processes is needed. One example 
is using annotated deterministic finite state automata 
(aDFA) to model the business processes [21]. If a business 
process is specified as aDFA, the match between two 
aDFAs is determined by the intersection of their languages. 
When there is non-empty intersection, the two business 
processes are matched. However, this approach may not 
work for complex web services where each service is a 
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multi-step workflow with an overlapping set of task 
(activity) nodes. In this paper we present a quantitative 
approach to modeling and capturing the similarity and 
dissimilarity between different workflow designs. We 
derive the similarity measures by analyzing the workflow 
dependency graphs of the participating workflow processes 
in two phases. First, we convert each workflow dependency 
graph into a normalized process network matrix. Then we 
calculate the metric space distance between the normalized 
matrices. We show how this distance measure can be used 
as a quantitative and qualitative tool in process mining, 
process merging and process clustering. We believe that our 
approach can ultimately reduce or minimize the costs 
involved in design, analysis, and evolution of workflow 
systems. 

 
6. Conclusion and Future work 
We have presented a difference analysis methodology using 
distance measures between process definitions of web 
services. The proposed difference analysis method achieves 
three distinct goals. First, by analyzing the attributes of 
process models, we can present a quantitative process 
similarity metric to determine the relative distance between 
process models. This facilitates not only the comparison of 
existing process models with each other, but also provides 
the flexibility to adapt to changes in processes. Second, the 
proposed method is fast and flexible, which reduces the cost 
of both the analysis and design phases of complex web 
service processes. Third, the proposed method enables the 
flexible deployment of process mining, discovery, and 
integration – all desirable functionality that are critical for 
fully supporting the effective transformation of an 
enterprise.  

Our research on process mining, discovering and 
integration through similarity analysis continues along 
several directions. First, we are interested in distance 
measures that can compare workflow designs with complex 
block structure and various execution constraints. Second, 
we are interested in developing a prototype system that 
provides efficient implementation of various similarity 
analysis methods, including the dependency distance metric 
presented in this paper. Furthermore we are interested in 
applying the method developed to concrete case studies of 
existing enterprise transformations and to evaluate and 
improve the similarity measures proposed in this paper. 
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