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Abstract

We focus on creating realistic, adaptable movement for hu-
manoid robots and virtual characters. Here we present mo-
tion synthesis of dance movements for a humanoid robot,
and interactive behavior for catching. Our approach to mo-
tion generation includes collection of example human move-
ments, handling of marker occlusion, extraction of motion
parameters, and trajectory generation, all of which must be
handled in such a way as to be faithful to the style of the
original movements. In our interactive behavior, we generate
ball-glove impact predictions and intercept motion trajecto-
ries for a real time catching task. In this paper we present our
results and discuss ideas for future improvements.

Introduction
Generating human-like motion for virtual characters and hu-
manoid robots facilitates our goal of building more engaging
machine behaviors and human-machine interactions. Ev-
idence and experience show that agents with human-like
traits provide an effective way to interact with a person
(Nass, Steuer & Tauber 1994; Sloman & Croucher 1981).
Generation of motion for humanoid robots is different from
that of standard robots because of the complexity of the hu-
manoid robots' kinematics and dynamics. Additionally, we
encounter challenges not found when generating motion for
a virtual human because we must obey thephysics of the
real world. Here we present work on generating dance and
catching behaviors on a humanoid robot. We first discuss
motion synthesis of the dance movements, and then discuss
the implementation of the interactive catching task.

Dancing
Our first task was to enable the 30-degree-of-freedom hu-
manoid robot1 in our lab to perform an Okinawan folk dance
learned from human examples. Our approach consisted of
selecting the type of motion capture used to collect the dance
movements, processing this input for noise and occluded
data, building a kinematic representation of the dancer, ex-
tracting motion parameters from the human motion, adjust-
ing the parameters for the robot's capabilities, and synthe-
sizing combinations of motion sequences on the robot. We
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assessed the effect of our motion data processing by com-
paring it with the original data in 3D graphics visualizations
and by comparing the human and robot motion.

In the followingsections we present the details of the task.
Following this, we identify the key issues which arose dur-
ing this work, including handling kinematic and dynamic
mismatch between the human performer and the robot, and
discuss different approaches such as alternate formulations
of the occluded data and motion parameter extraction prob-
lems which may improve the results.

Motion Capture
We considered three types of motion capture techniques for
the Okinawan dance sequences: a marker-based system, the
Optotrak2, a system of goniometers strapped to the per-
former, the Sensuit3, and computer vision.

In the Optotrak system the data is collected from infrared-
emitting identifiable active markers attached to the human
and connected by wires to a central controller. Special cam-
eras track the 3D positions of each marker over the duration
of the movement. This system reliably captures complex full
body motions, although the markers are subject to noise and
occlusion. Some marker systems rely on magnetic rather
than visual information, and therefore eliminate the occlu-
sion problem. Goniometer-based systems also do not suffer
from occlusion. However, these systems are subject to larger
noise than optical tracking devices. In addition, magnetic
markers are sensitive to metal objects in the environment,
which further restricts their usefulness.

Measuring complex movements such as dance requires
the use of many markers. As the number of markers in-
crease, they become more cumbersome to wear. Care must
be taken to keep their trailing wires out of the way dur-
ing movements. In part because of these encumbrances,
computer vision may seem preferable. Vision, being non-
invasive, provides a freedom of movement not present with
other methods. However, even with the advances in com-
puter vision with work such as (Ude 1999) and others, the
field has not yet overcome the difficult problems posed by
complex human motions. Many cameras may be needed to
minimize occlusions, and analysis of vision data is compu-
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tationally expensive. For these reasons we elected to use the
Optotrak system.

Treatment of Motion Capture Data
As noted above, even with good marker data, problems with
missing data sometimes still occur. Self-occlusion by a limb,
or wrist rotation into the torso, for example, may make total
marker visibility very difficult.

We used an Optotrak system with three stereo cameras to
collect 40 10-second dance trials from 22 markers attached
to the dancer and sampled at 60 Hz. We found two types of
missing data: systematic, where the cameras could not see
the marker during most of the trials, and intermittent, where
a marker was occluded for a short time during a movement,
and then returned into view.

We discovered the systematic missing data during the mo-
tion capture session, where both the right and left heel mark-
ers were missing. However, this did not pose a significant
problem, as we used redundant markers in problematic areas
such as the feet. This strategy provided us with alternative
means to get foot information. We also experimented with
approximating the heel marker positions by reconstruction
using rigid body constraints. We had measured and recorded
all marker positions on the body after marker placement, so
relative approximate positions were easy to calculate since
we knew the position and orientation of the body parts from
the visible markers.

The intermittent marker data was especially interesting
for us. We needed to recover good approximations in order
to extract continuous motions closely resembling the orig-
inal movements. We used a cubic spline interpolation be-
tween visible data points to account for the missing data.
This straightforward technique works well for short dura-
tions of missing data and provided us with enough sample
movements for our task, but is unsatisfactory over large re-
gions of missing data. Also, the method does not exploit
other available information about the movement, such as
kinematics or dynamics, to aid in the data recovery. In the
dance results section we suggest different approaches to this
problem.

The Kinematic Model and Trajectory Extraction

Once enough missing marker data wasaccounted for, we
extracted the motion parameters using a kinematic body rep-
resentation. Our humanoid robot consists of 15 rigid parts
divided into 6 interconnected kinematic chains: the head,
the upper arms, lower arms, and hands; the lower and upper
torso; the upper legs, lower legs and feet (Fig. 1).

The trajectories of joints connecting these body parts de-
fine the complete motion of the robot, as the robot pelvis is
fixed in space. The robot has 26 degrees of freedom (DOFs),
plus four degrees of freedom for eye movements, which are
not considered here. (See Fig. 2). The dependencies be-
tween trajectories of different body parts are defined by the
robot's geometric structure. It is thus appropriate to repre-
sent full-body motion trajectories in terms of independent
variables, e.g. joint angles, because joint space trajectories
automatically conform to the robot geometric constraints.

Figure 1: The humanoid robot in our laboratory

We model the performer's kinematics using a kinematic
model similar to the robot's, but scaled to the performer.
All corresponding degrees of freedom are available, but only
those relevant for the desired movement need to be used.

The placement of a humanbody in a Cartesian space is
fully described by the position and orientation of a global
body coordinate system rigidly attached to one of the body
parts and by the values of the joint angles. We use twist
coordinates to model the kinematics (Murray, Li & Sastry
1994). For a revolute joint, the twist has the form

�i =

�
�ni � qi

ni

�
; (1)

whereni is the unit vector in the direction of the joint axis
andqi is any point on the axis, both given in a global body
coordinate system. The 4 by 4 homogeneous transformation
specifying the rotation about such a joint for an angle�i is
given by the exponential map

exp(�i�i): (2)

See (Murray, Li & Sastry 1994) for mathematical details.
If the coordinates of a marker in a local coordinate

system of a rigid body part to which it is attached are
given by yj , then its 3-D position at body configuration
(R;d; �1; : : : ; �n) can be calculated as follows

~yj = g(R;d) � exp(�i1�i1) � : : : � exp(�inj �inj ) �Gj � yj

= hj(R;d; �1; : : : ; �n): (3)

Hereexp is the function mapping twists�i representing the
body kinematics into rigid body transformations,Gj is the
homogeneous matrix combining the position and orientation
of the local body part coordinate system to which the marker
is attached with respect to the global body coordinate system



at zero configuration,R andd are the orientation and posi-
tion of a global body coordinate system with respect to the
world coordinate system, andg(R;d) denotes the homoge-
neous matrix corresponding toR andd. Note that the set of
twists affecting the motion of a marker varies according to
the identity of the body part to which the marker is attached.

Since our goal was to match the motion of the original
performer as closely as possible, we required a close match
between the performer's actual joint angles and the calcu-
lated joint angles. To attain this, we should minimize the
difference between the measured marker positions and the
marker positions generated by the recovered joint angles for
each frame of motion over the set ofbody configurations
(R(tk);d(tk); �i(tk)):

1

2

PN

j=1 khj(R(tk);d(tk); �1(tk); : : : ; �n(tk))� yj(tk)k
2

= 1

2
kh(R(tk);d(tk); �1(tk); : : : ; �n(tk))� y(tk)k2;

(4)
where yj(tk) denotes the j-th measured marker
at time tk, h = [hT1 ; : : : ;hTN ]T and y(tk) =
[y1(tk)

T ; : : : ;yN (tk)
T ]T . To be able to apply a standard

method like Gauss-Newton to this nonlinear optimization
problem, we had to rewrite criterion (4) to account for
the fact that the coefficients of the rotation matrix are not
independent. The modified iteration exploits the properties
of the exponential mapexp4 which maps a 3-D real vector
space onto the space of all rotation matrices and can be
used to parameterize the neighborhood ofeach rotation
matrix. Instead of directly minimizing (4), we looked for a
minimum of

1

2
kh[exp(�r)R(tk);d(tk) + �d; �1(tk) + ��1; : : : ;

��n + �n(tk)]� y(tk)k2 =

1

2
k~h(�r;�d;��1; : : : ;��n)� y(tk)k2:

(5)
Here(R(tk);d(tk); �i(tk)) denotes the current estimate for
the body configuration. This resulted in the following over-
constrained system of linear equations that had to be solved
at each iteration step

J � [�rT ;�dT ;��1; : : : ;��n]
T =

y(tk)� h(R(tk);d(tk); �1(tk); : : : ; �n(tk));
(6)

whereJ is the Jacobian of~h at 0. It can be calculated us-
ing standard techniques from robotics (Murray, Li & Sastry
1994). The next estimate for the body configuration was cal-
culated by

~R(tk) = exp(�r)R(tk);

~d(tk) = d(tk) + �d;

~�i(tk) = �i(tk) + ��i; i = 1; : : :n:

This modification enabled us to represent the global orienta-
tion by rotation matrices and thus avoid the pitfalls of mini-
mal representations such as Euler angles.

4Note that this exponential map is different than the one in Eq.
(2).

Figure 2: The robot's degrees of freedom.

We implemented our approach on a Dec Alpha work-
station as a combination of Matlab5 and C routines. The
processed motion sequences were typically 5 seconds long,
since we rejected regions of sparse data, and so included
about 300 frames. Using Gauss-Newton to iteratively solve
the nonlinear optimization problem required a good initial
guess for the first frame, which was found either manually
or by search. The method converged in an average of 25 iter-
ations per frame at a precision of10�8. However, we found
that we were unable to estimate all 26 degrees of freedom,
and had to lock the torso DOFs and some of the wrist DOFs
in order to successfully estimate the other DOFs. Thus, we
estimated 19 of the desired 26 DOFs by this method.

Model Change

Synthesizing motion for models of different kinematic and
dynamic structures has been an interesting topic for many re-
searchers (Hodgins & Pollard 1997; Gleicher 1998). Motion
generalization realized automatically or semi-automatically

5The MathWorks, Inc., http://www.mathworks.com



Figure 3: A frame from a graphics visualization of the re-
constructed motion. The robot is visualized on the reader's
right. Note the constraints on the shoulder and elbow de-
grees of freedom as compared to the human visualization on
the left.

is valuable for computer animation and the gaming indus-
try, where reuse of motion on multiple characters is advan-
tageous. In our case, the target and source models were more
similar in joint space (considering kinematic configurations
and discounting joint limit differences) than in Cartesian
space, so we exploited this joint space similarity to sidestep
motion scaling. Because limb-length dependent movements
did not play an important role in the dancing motion, this
worked well. However, in other tasks such as clapping this
kinematic mismatch would become an important issue in
joint space, requiring a scaling approach to fit the motion
to a new model.

Another consideration in changing models was the differ-
ence between the physical constraints of the person and the
robot. Since the robot has joint angle limits which constrain
some of its movements to a portion of what a human can
do, the recovered trajectories were adjusted to fit its limits.
Where possible, the entire movement was translated into the
robot's range of motion. Where necessary, the trajectory was
scaled to fit this range (Fig. 3).

Our kinematic solution gave us joint angle trajectories,
but we still needed dynamic information to tell the robot how
to move along the trajectory and to ensure target joint angles
were met for each frame. Desired velocities andaccelera-
tions were calculated between sequential joint angle targets
and smoothed to avoid jerky movements. An inverse dynam-
ics algorithm6 was used to compute the forces necessary to
attain these desired trajectories. Whether dynamic mismatch
between the source and the target causes a problem for mo-
tion synthesis is somewhat task-specific. We discuss this in
the following section.

Dance Results and Discussion
Comparing the measured marker motion with the recon-
structed motion in 3D graphics visualizations revealed that
the largest visual difference resulted from trajectory changes
made in adjusting to the robot's joint limits. However, the

6Provided by Stefan Schaal, Kawato Dynamic Brain Project,
http://www-slab.usc.edu/.

Figure 4: A frame of motion from the robot's dance perfor-
mance.

style and similarity of the motion was preserved, albeit at a
new position.

For the dance motion, the desired velocities andaccel-
erations were attainable, and slight differences between the
desired and realized trajectories did not play a big role in the
task. In other movements, however, this is not the case. Jug-
gling, for example, requires precisely generating velocities
and accelerations to attain the desired ball trajectories. If the
forces computed to attain these trajectories do not result in
a very close match between the desired and realized targets,
the juggling will not be successful. Since human and robot
dynamics differ, the new dynamics must be learned or some-
how given to the robot to ensure successful motion. Catch-
ing is another example of a dynamics-sensitive task where
path planning with good velocity andacceleration profiles
becomes important for the robot'saccuracy, smoothness and
speed.

Besides kinematic and dynamic mismatch, key issues in-
clude the relationship of the optimization task and the re-
construction of occluded markers. The straightforward ap-
proach of sequentially minimizing the criterion function at
consecutive time steps has the advantage of simplicity of
formulation and fast convergence. However, the optimiza-
tion process will fail when markers are occluded, which ne-
cessitates a preprocessing step addressing the problem of
occluded marker data. Although we were able to recover
only part of the trajectories by interpolating the marker posi-
tions from the visible frames through the intervals of occlu-
sion, the information obtained was sufficient to describe the
dance, since there is no clear discrete movement sequence
or ending to the dance. If necessary, we could use different
methods to recover the complete trajectories, such as recon-
struction of marker position using rigid body constraints.

We must also consider the degrees of freedom which we
could not estimate (2 wrist DOFs for each hand and the 3



torso DOFs). Our difficulties in estimating the wrist DOFs
did not reflect the method, but rather our choice of how many
markers were used to collect the data. Thus, recovery of the
wrist DOFs can be corrected by adding additional markers
to the wrist during the capture session. However, the torso
degrees of freedom proved problematic. To estimate them,
we would need to add additional criteria to our method to
regularize the objective function. Other approaches to this
problem include estimating the complete trajectory in one
large optimization process instead of separately estimating
single configurations. In (Ude, Atkeson & Riley 1999) we
test this approach. Although this approach is promising, it
requires much more processing time to recover the motion
than the current sequential approach. We are continuing to
develop both approaches, and compare them to determine
which method results in motion more similar to the original
motion.

Catching
We now discuss the implementation of interactive tasks for
a humanoid robot, using catching as an example. Interac-
tive tasks are especially interesting because they engage a
person in a behavior with a robot, and require real time so-
lutions from the robot to participate in that behavior. A hu-
manoid robot with its increased complexity (30 degrees of
freedom compared with 6 degrees of freedom of a typical
robot arm), challenges us to find satisfactory real time solu-
tions for interaction. Additionally, because it is humanoid,
the robot lends itself to solutions inspired by theories of hu-
man movement. There is a wealth of literature from the
computational neuroscience community about human mo-
tor control and trajectory planning which can be applied to
the robot's behaviors. We exploit this knowledge of human
movement in our catching task solution.

To successfully complete the task the robot must detect
the ball, determine when it is in flight, track and predict the
ball's trajectory, and plan and execute a movement to in-
tercept the ball. We prefer an iterative prediction algorithm
which adjusts the prediction according to new sensory input.
Additionally, we want an online motion trajectory generator,
which changes the intercept trajectory according to the re-
vised impact prediction information. Below we discuss our
strategy to attain these goals.

Implementation
The QuickMag7 color vision system is used to detect the
ball and track its flight. It supplies position data 60 times
a second. To detect when the ball is in flight, the thrower's
hand is also tracked, so that the ball position relative to the
human's hand position can be determined. To the robot, the
ball is in flight when the distance between the ball and hand
surpasses a pre-defined threshold distance.

Once the ball is in flight, the robot starts collecting ball
positions(xi; yi; zi) to use in predicting the time and place
of ball-glove impact. (The robot is wearing a child's base-
ball glove on its left hand to make the catch.) Enough data
should be available at the first prediction to provide a good

7OKK Inc., Japan

solution. Here, a good solution is one in which subsequent
predictions will result in relatively small changes to the orig-
inal solution in order to avoid large changes in direction for
the robot movement.

The current prediction algorithm assumes that the z-
component of the ball trajectory is a parabola. Thus we can
solve the following system of equations to calculate the pa-
rameters of the parabola

zi = at2i + bti + c; i = 1; : : : ; n; (7)

wheren � 5 is the number of measurements. The resulting
normal system of equations is given by2
666666664
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where the additional parameters in the system (� and -�1

2
g)

account for gravity.
For a desired pre-determined impact height, the impact

time is estimated using the calculated parabola. Then the
correspondingx andy impact coordinates for this impact
time are estimated assuming that thex andy components
of the trajectory are linear. With each new frame of vision
data, this prediction is recalculated incorporating all current
available frames of vision data. Predictions are currently
begun after 5 ball position frames are collected. The process
continues until the catch is made, or another end condition is
triggered, such as the ball being lower than the impact height
(a miss), or the task exceeding a maximum time limit.

We prefer a trajectory which is efficient and natural. Thus,
we have drawn from studies of human movement and cho-
sen a planner which results in bell-shaped velocity curves for
point-to-point movements, where the desired velocity and
acceleration at the movement beginning and end are zero.
In catching, this point-to-point movement is from the ini-
tial hand position to the predicted ball-hand impact position.
The motion primitives used to generate this movement are
programmable pattern generators or PPGs, and are based
on non-linear attractor dynamics. Details are described in
(Schaal & Sternad 1998) and (Schaal, Kotosaka & Sternad
1999).

Since the ball position and impact estimate, and thus the
desired end effector position, are given in Cartesian space,
we must solve the inverse kinematics problem to arrive at a
desired body configuration described by joint angles which
will place the end effector in the target Cartesian location.
To accomplish this we use the solution described in (Tevatia
& Schaal 2000). This allows us to convert quickly and easily
from Cartesian to joint space.

Using the inverse kinematics solver and Cartesian trajec-
tory planner, we can attain the desired final position incre-
mentally as follows. For our current impact prediction, the
PPG specifies a partial movement toward the goal, specify-



Figure 5: A frame of motion showing the end of a catching
sequence.

ing both desired position and velocity. The inverse kinemat-
ics solver is then used to follow in joint space the Cartesian
path specified by the PPG. The inverse kinematics solution
is calculated 480 times a second (the robot's task servo rate).
As new ball position data becomes available, it can be used
to modify the Cartesian target used by the PPG to plan the
movement. In this way, we are always moving toward the
current goal in small steps, and alter the motion trajectory as
the impact prediction coordinates change.

Catching Results and Discussion
Typical hand velocities needed by the robot to catch the
throws may vary between 0.160 meters/second to 1.2 me-
ters/second. Distances from the initial hand position to the
final position may range between approximately 0.07 me-
ters (almost thrown into the glove), and over 1 meter. The
catching motion is completed in about 350 to 850 msec. The
baseball glove used for catching is accounted for by chang-
ing the local coordinate system of the end effector to which
it is attached, accounting for the extension of the hand.

Missed catches are caused by different conditions. The
most common misses are due to the ball being thrown out-
side the robot's workspace, and the discrepancies which ex-
ist between the robot and vision coordinate systems, despite
reasonable calibration. Additionally, as discussed below, the
position data provided by the vision system can be noisy.
We discuss one possible improvement to noise below. De-
spite these problems, the robot catches balls reliably. It fits
a parabolic trajectory accurately at heights varying from .32
meters to .4 meters. (The usual starting height for the robot's
left hand was .27 meters, with the origin of the coordinate
system located near the pelvis of the robot.)

Figure 6 shows an estimation of the ball position provided
by the vision system. Noise is evident, especially in they
coordinate, which is the depth coordinate with respect to the
vision system, and thus the most difficult to accurately es-
timate. To improve the estimation and minimize the noise,
we are currently testing adding Kalman filtering (Maybeck
1979) to the prediction algorithm. The disadvantage is that
a Kalman filter has trouble handling the start up transient.
If the gain for observations is low, it takes a long time for
the filter to match what the ball is actually doing. If the

Figure 6: A measured ball trajectory.

gain is high, the start up transient is short, but the tracking is
noisy. Therefore, a blend of the current prediction method
with Kalman filtering may be a better solution if predictions
with Kalman filtering prove to be more accurate. Since the
current algorithm allows us to get accurate predictions after
only a small number of vision frames, it could be used for
early predictions, and a Kalman filter added for later predic-
tions.

Our formulation for Kalman filtering is derived from the
following physical equations of motion:

xt = x0 + _x0t;

yt = y0 + _y0t;

zt = z0 + _z0t+ 1=2gt2;

wherex, y, and z describe the current ball position,x0,
y0, andz0 describe the initial ball position,_x0, _y0, and _z0
are respectively thex, y, andz initial velocities, t is the
time change from the initial to current state, andg is the
gravitational acceleration. Thus our state vector is given
byX = [x; y; z; _x; _y; _z]T and we measure the 3-D position
M = [x; y; z]. Our state and measurement equations are

Xk+1 =

�
I3 �tkI3
03 I3

�
Xk + uk +wk; (9)

Mk = [ I3 0 ]Xk + ek; (10)

where the control input uk is equal to�
0; 0; 1=2g�t2k; 0; 0; g�tk

�T
, wk is the process noise

andek is the measurement noise.
Besides exploring Kalman filtering for possible improve-

ments in ball trajectory predictions, we wish to improve the



naturalness of the catching movement. We will implement
simple head movements corresponding to the ball movement
to give the feeling that the robot is watching the ball's trajec-
tory with the head-mounted cameras that serve as its eyes.
(Currently, the robot is using the external QuickMag color
vision system, with the cameras located in front of it.) In
the future, we will also implement the catching task using
vision data from these head-mounted cameras. We are also
comparing human catching data from a motion capture ses-
sion with the robot's catching. From this, we will look for
further ways to improve the perceived naturalness of the mo-
tion.

Currently, the task allows the user to set the following pa-
rameters: the desired hand distance threshold to signal flight
of the ball, the ball impact height for the prediction algo-
rithm, and the minimum number of vision frames necessary
to begin predicting the ball-glove impact time and place for
the given height. These parameters can instead be specified
by decision rules or learning. For example, if the robot de-
sires more time to catch the ball, he may decide to lower the
target impact height.

We have observed two broad types of catches: inside
catches, where the robot reaches toward itsbody, and out-
side, where it extends its arm away from its body to catch
the ball. The inside catch often requires pulling the arm back
while rotating around the elbow, while the outside catch re-
quires extension of the arm from the shoulder and elbow.
At present, one default position is used to resolve redundan-
cies in the inverse kinematics solver. To ensure good inverse
kinematic solutions for a given type of catch, a preferred
posture corresponding to the desired posture for the catch
can be given to the inverse kinematics solver, thus biasing
the solution toward the advantageous posture.

Finally, sometimes a catch may fail because the desired
trajectories were not reached. This could result from an in-
correct desired or attained force. To improve this, more pre-
cise trajectory following based on machine learning could
be used.

Conclusion
Being able to faithfully reproduce human-like movements
for virtual characters and humanoid robots from human data
helps create engaging human-machine interactions. Hu-
manoid robots especially provide a rich and challenging
platform for implementing such behaviors. In this work,
we have discussed our methods for generating dance move-
ments for a humanoid robot, and for catching. In the case
of dancing, we started from human examples, and compared
the generated dance motion to the human dance motion at
several steps in the process. Our goal was to extract the
parameters of the dance motion and give them to the robot
while staying true to the dance's original style. In our inter-
active catching behavior, we generate point-to-point move-
ments derived from studies of human motion with an iter-
ative impact prediction algorithm and an adjustable motion
trajectory generator. We suggest various strategies to im-
prove the robustness of these methods, some of which are
now in progress.

Videos showing our humanoid robot performing
dance and catching movements can be viewed at
http://www.hip.co.jp/�mriley.
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