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ABSTRACT We have developed an ab initio protein structure prediction method called chunk-TASSER that uses ab initio folded 
supersecondary structure chunks of a given target as well as threading templates for obtaining contact potentials and distance 
restraints. The predicted chunks, selected on the basis of a new fragment comparison method, are folded by a fragment insertion 
method. Full-length models are built and refined by the TASSER methodology, which searches conformational space via parallel 
hyperbolic Monte Carlo. We employ an optimized reduced force field that includes knowledge-based statistical potentials and 
restraints derived from the chunks as well as threading templates. The method is tested on a dataset of 425 hard target proteins 
0;250 amino acids in length. The average TM-scores of the best of top five models per target are 0.266, 0.336, and 0.362 by the 
threading algorithm SP3, original TASSER and chunk-TASSER, respectively. For a subset of 80 proteins with predicted a-helix 
content "'50%, these averages are 0.284, 0.356, and 0.403, respectively. The percentages of proteins with the best of top five 
models having TM-score "'0.4 (a statistically significant threshold for structural similarity) are 3.76, 20.94, and 28.94% by SP3, 
TASSER, and chunk-TASSER, respectively, overall, while for the subset of 80 predominantly helical proteins, these percentages 
are 2.50, 23.75, and 41.25%. Thus, chunk-TASSER shows a significant improvement over TASSER for modeling hard targets 
where no good template can be identified. We also tested chunk-TASSER on 21 mediumlhard targets <200 amino-acids-Iongfrom 
CASP7. Chunk-TASSER is -11% (10%) better than TASSER for the total TM-score of the first (best of top five) models. Chunk­
TASSER is fully automated and can be used in proteome scale protein structure prediction. 

INTRODUCTION 

Protein structure is important for understanding protein func­
tion as well as being useful in drug design (1,2). To keep pace 
with current genome sequencing projects as well as to nar­
row the gap between structure determination and sequence 
data, computational structure prediction methods are indis­
pensable (3). Protein structure prediction methods can be clas­
sified into three categories (4): comparative modeling, fold 
recognition, and ab initio methods. Comparative modeling and 
fold recognition methods predict protein structures based on 
already solved structures (5--13). These template-based methods 
depend strongly on the recognition of homologous/analogous 
templates in the Protein Data Bank (14). On the other hand, 
ab initio methods being template-free can, in principle, pre­
dict protein structures without the necessity of identifying a 
structurally related, solved protein structure. 

Ab initio protein structure prediction is not only useful for 
providing low -resolution structures that help the armotation 
of protein function (13,15,16), but is also fundamentally im­
portant for understanding the mechanism of protein folding 
(17). While there have been many efforts dedicated to ab in­
itio protein structure prediction, no consistently reliable al­
gorithm is currently available (18--30). In practice, ab initio 
methods fall into two groups: physics-based and know ledge­
based. Methods in the first group fold proteins using only 
physical principles (30--32). The main obstacles that physics­
based ab initio protein structure prediction methods face are 
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the lack of accurate energy functions and the requirement of 
extensive computational power to find the global minimum 
of the energy function. Despite their conceptual appeal, this 
method is currently not as successful as knowledge-based 
approaches that make use of information from solved protein 
structures-in particular, knowledge-based potentials (18). 

Over the past several years, we have developed the Thread­
ing ASSEmbly Refinement (T ASSER) methodology (13,33) 
for automated tertiary structure prediction that generates full­
length models by rearranging the continuous fragments iden­
tified by tbreading. It is a kind of hybrid method that has the 
capacity to do template-free as well as template-based modeling. 
TASSER can significantly refine the initial template align­
ment structures provided by threading methods (33). Further­
more, TASSER has some success in modeling template-free 
targets of small sizes when decoupled from threading tem­
plates (34). In this work, we develop a variant of the TASSER 
methodology called chunk-TASSER that utilizes consensus 
contacts and distance restraints from ab initio folded protein 
chunks of supersecondary structure in addition to informa­
tion extracted from threading templates. Modeling of protein 
chunks is much more efficient than full-length modeling in 
that the sampling space is much smaller, and thus large pro­
teins can be handled. However, it does tend to favor global 
topologies of lower contact order. The method is assessed on 
a large set of 425 effectively hard targets :5250 residues in 
length where the structure of the closest identified template 
is at best weakly related to that of the target. The results are 
compared to the SP' threading method (35,36) and the orig­
inal TASSER approach (13,33). Significant improvement of 
chunk-TASSER over both sF' and TASSER is observed for 
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these hard targets. We also tested chunk-TASSER on 21 
CASP7 targets <200 residues in length that our threading 
algorithm classified as medium/hard targets. 

METHODS 

Fig. 1 shows the flow chart of chunk-TASSER. It consists of threading and 
fragment library generation by the SpJ method (35,36), ab initio folding of 

chunks and chunk model selection, TASSER (33) full-model assembly us­
ing contact potentials and distance restraints extracted from selected chunks, 

threading templates that also provide the initial starting structure, and final 

model selection. 

SP3 method for threading and fragment 
library generation 

The details of SP3 were published elsewhere (35). It took part in CASP7 

as well as CASP6 and is among the best single servers (36). Here we reop­
timized the parameters with a full grid search on the five-dimensional pa­

rameter space. The new optimal solution (wo, Wit W2ndary, W.truc , Ssh;fI) is (3.5, 

0.1, -1.50,0.5,0.7). This resulted in the 1:1 match alignment accuracy of 

66.1 % against the ProSup structure alignment benchmark (37) compared to 
the original accuracy of 65.3%. 

Another change made to SpJ that increases its sensitivity is the inclusion 
of profiles generated by PSIBLAST with a looser e-value cutoff of 1.0. To 

the target sequence, the sequence profile is replaced by the average of two 
profiles with e-value cutoffs 0.001 and 1.0, and to the templates. the struc­
turally derived profile is replaced by the average of original and the PSIBLAST 

profile with an e-value cutoff of 1.0. 
We extend the SP3 threading method to compute local sequence similar­

ity by computing and recording the aJignment score at each query sequence 
position aligned to each template during threading. The position-<iependent 

score is then smoothed by averaging over a nine-residue sliding window. For 

each position, nme-residue-Iong fragments of the top 25 scored templates are 
selected to fonn the fragment library for the ab initio folding of chunks (J8). 

Ab initio folding of chunks and chunk 
model selection 

Chunks are defined as three consecutive regular secondary structure (helix or 

strand) segments including their enclosed two loops. The total number of 
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Template Native Final Model 

FIGURE 1 Flowchart of chunk-TASSER. 

For the T ASSER hydrogen-bond term, only main-chain hydrogen bonds 
are considered, and they are dependent on the C .. coordinates by (29) 

EHB = - LA(u,· Uj) [V,· Vj [ 0(i,j), (1) 
j>i 

where ui and Vi are unit vectors defined by the Ca coordinates: Ii = rU+l1 
Iri.i-t-t!, u, = (1;-1 -li)!i};.l - ld, Vi = Ui X IJI u\ X Ii!, where r;,i+i is the 
C .. -C .. bond vector from residue i to i+ 1. The terms u, . Uj and !Vi . Vj! 

impose a bias to a specific C .. -e.. bond vector orientation of regular H-bonds. 
The expression E>i,j defines the conditions when residue i is hydrogen-bonded 
to residue j: 

o = {I if [ru l < 5.8 A, u, . Uj > 0, Iv; . vjl > 0.43, Irij . v;l/lrul > 0.9, Iru . vjl/lrul > 0.9, 
o otherwise. 

(2) 

chunks for a given target is Nsegmen, - 2, where Nsegrnem is the number of 
regular secondary structure segments. Chunk structures are predicted inde­

pendently by a fragment insertion method as in Simons et al. (18) but with 
our own implementation and force field. Each residue is described by its 

main chain atoms (N, Ca , C, 0), Cfj atom, and side-chain center of mass. The 

force field contains the following terms' 

1. The DFIRE-all atom distance-dependent pairwise statistical potential for 

main chain and C/3 atoms (38). 
2. The distance-dependent pairwise statistical potential DFIRE-SCM for 

tbe side-chain cenfer of mass (39) 

3. The TASSER hydrogen-bond term based on Ca coordinates (29). 
4. An excluded volume term for the main chain and CfJ atoms. 

The description of DFIRE-based terms 1 and 2 are published elsewhere 

(38,39). The relative weight of terms 1 and 2 is set to one, since they are 
based on the same principle and procedure. 

H-bond formation also depends on the predicted secondary structure: 

H-bonds between residues in strand and helix are prohibited. Here, A is a 

stiffness modulation factor that is used to enhance the H-bond in the better­
assigned secondary structure regions. It is set to 1.5 if a regular helix or 

strand structure is predicted; otherwise, it is set to 1.0. We shall optimize the 

relative weight WHB of this hydrogen-bond term relative to the other three 
tenns. 

The excluded volume term 4 is defined as 

E () { 0 r> = ro, (3) 
rep r = (ro-r)'/r r<ro, , 

where r is the distance between two atoms and ro is an atom-type-dependent 

minimaJ-aJlowed distance of two atoms taken from Ramachandran and 
Sasisekharan (40). Irs relative weight to DFIRE tenns is set fO one, since irs 
weight is not as important as whether it is included or not in the force field. 

Biophysical Journal 93(5) 151()-1518 
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Monte Carlo (Me) simulated annealing is used to sample chunk structure 
conformations with a fragment insertion method (18) for ab initio chunk 
model prediction. Initially. a structure with random main-chain torsional an­
gles is built. At each step in the Me procedure, a residue is randomly se­
lected and then a nine- or three-residue-long fragment corresponding to the 
picked residue is randomly selected from the 25 fragments in the library 
obtained by the above-described chunk fragment generation procedure and 
inserted into the position by substituting the backbone torsional angles with 
those from the fragment. A new conformation is accepted or rejected accord­
ing to the canonical Metropolis protocol. 

The llSUal way of selecting models that are closer to native from a set of 
decoys generated by ab initio approaches is to cluster the models and select 
the most populated clusters. The success of a clustering method depends on 
the fact that lower free energy conformations are closer to native than higher 
ones. Since chunk: models are not full protein models, this free energy con­
dition may not be satisfied. Therefore, we developed and tested an alternative 
way of selecting chunk: models that uses the information from the fragment 
library used for conformational sampling. The score EChunk for ranking chunk 
models is 

(4) 

where Efrg is calculated by the following fragment comparison method: For 
each residue position in the chunk: model, a nine residue fragment with the 
given residue in the middle (less in the N- or C-terminus. for example: the 
fragment for the first residue will be residues 1- 5, the fragment associated with 
the second residue considers residues 1-6, ...• the fifth residues 1- 9 •. ", and 
the last residue, residues (Nf4) - Nt with Nr being the last residue) is com­
pared with the 25 corresponding fragments in the fragment library by their 
root mean-square deviation (RMSD). Efrg is the average RMSD over the 25 
fragments and over all chunk-residue positions. The value Wd is the relative 
weight of the two terms and will be optimized. Edfire is the DFIRE energy 
(38). Nr is the residue length of the chunk model. Models are ranked by their 
Eehunk score. and those with lower scores are selected. 

Full-length model assembly by TASSER and final 
model selection 

TASSER (13) represents a protein by a C", and side-chain center of mass 
representation in both off- and on-lattice space. The initial full-length model is 
built by connecting the continuous template-provided fragments (off-lattice 
building blocks) by a random walk confined to lattice bond vectors. If the 
specified nwnber of unaligned residues cannot span the gap. a long C",-C", bond 
remains, and a springlike force draws sequential fragments together until a 
physically reasonable bond length is achieved. Parallel hyperbolic Monte 
Carlo (MC) sampling (41) with replica exchange explores conformational 
space by rearranging the continuous fragments excised from the template. 
During assembly, the template fragments are kept rigid and off-lattice to retain 
their geometric accuracy; unaligned regions are modeled on a cubic lattice by 
an ab initio procedure and selVe as linkage points for rigid body fragment 
rotations. Conformations are selected using an optimized force field which 
includes knowledge-based statistical potentials describing short-range back­
bone correlations. pairwise interactions, hydrogen bonding, secondary StIUc­
ture propensities. consensus C", and side-chain center of mass contacts, and 
short and long distance restraints for C'" atoms. TASSER obtains these se­
quence-specmccontact potentials and distance restraints from threading tem­
plates and/or fragments. The complete details of the TASSER force field are 
given in the literature (13.29) and references therein. Here, we give the contact 
potential and distance restraint terms that are relevant to this study. The con­
tact potential between the C", atoms or side-chain centers of mass is calcu­
latedas 

Eoo",,,, =w,,6,(p,; - r'12:6,(r,; - 6A.) 
j>i 

+ w,.6,(6,(P,; - p~ L: 6,(r,; - 6A.) - N"f!)' (5) 
j>i 
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where 8 s(x) and ®6(X) are step functions defined as 

6 (x) = {I ~ X2:0, 
5 0 If x< 0; 

0,(x) = {xO if x2:0, (6) 
If x<O; 

and where Pij is the probability of the ith residue C", or side-chain center of 
mass in contact with that of the J-fh residue obtained from threading 
templates/fragments, and rij is the distance between residues i and j. The 
value pfJ defines the minimal probability that two residues are predicted to be 

in contact and 6 A is the distance cutoff for contacting residues. The first 
tenn in F4. 5 favors pairs predicted as being in contact that are within 6 A, 
whereas the secondary term penalizes predicted contact pairs that are farther 
apart than 6 A when the total violation exceeds a threshold value of Ner;. 

Local distance restraints for C", atoms with a less-than-six-residue 
sequence separation are collected from the threading templates/fragments. 
They are incorporated into the force field by 

Em. = w,\ L: 6,(h; - <1;;1- 8,;) 
j>i 

where [j-il<6. d ij is the predicted average distance between the loth residue 
and J.f.h residues. and 8ij is the root mean-square deviation of the predictions. 
The second term in Eq. 7 is a penalty when the cumulative normalized de­
viations to the predicted distance map exceeds the number of predictions Ndp' 

Long-distance restraints for C", atoms are calculated in the force field as 

Nij 

Em,," = - w" L: L: I/Ir,; - d,;(k) I, (8) 
j>ik=l 

where [j-il > 6, Nij is the number of distance predictions between the ,-th and 
l' residues extracted from the templates/fragments, and dij(k) is the !(h dis­
tance prediction of the l-fh and J-fh residues. 

The weights Wr,. Wr2. WrJ. Wr4. and WrS as well as those of other terms in 
TASSER not described above were optimized against a set of nonredundant 
decoys (29). 

Chunk-TASSER uses ab initio folded chunks as well as threading templates/ 
fragments for consensus contact potentials and distance restraint predictions. 
In this study. the top 10 (ranked by SpJ Z-scores) threading templates and 
the top five chunk models for each chunk are included in the prediction 
of contact probability and distance restraints. Contacts and distance pairs 
from selected threading templates and chunk models are counted with equal 
weights in the prediction. For example. if there are n, distance pairs from 
templates and n2 pairs from chunk: models between residue i and j. the total 
distance pairs for residue i and j is (n, + n2); and if there are nJ pairs within 
6 A (in contact). then the contact probability Pij in Eq. 5 will be nJi(n, + n2). 
When Pij > pO = 0.3, we consider residues i and j to be involved in a real 
contact in the native structure. and the contact potential is effective in Eq. 5. 
The threading templates/fragments also selVe as starting structures in the 
chunk-TASSER simulation as they do in TASSER. Therefore. the only 
difference between chunk.-TASSER and TASSER is that chunk-TASSER 
has contact and distance infonnation from the selected ab initio folded chunks 
whereas T ASSER does not. The final full-length models are selected by 
clustering the low energy trajectories (containing \6.000 energies) using 
SPIeKER (42). 

Benchmark sets and parameter optimization 

Benchmarking structures were randomly picked from the Protein DataBank 
released between May 28, 2004 and September. 2005. The threading library 
used structures deposited before May 28, 2004. All stIUctures share <35% 
sequence identity with each other. No resolution and domain number re­
quirements are imposed on these sets other than they are single-cham struc­

tures and that the predicted number of chunks ~ I. In optimizing the parameter 
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WHB (the relative weight of the TASSER hydrogen-bond term in folding 

chunks) and Wd (the relative weight of the DFIRE energy term used in ranking 

the chunk models), we used 60 structures (optimization set) that share <35% 
sequence identity with rhe 425 testing structures 5250 amino-acid (AA)-long 
(testing set). Lists of these two sets can be found at http://cssb.biology.gatech 

edu/chunk-TASSER. 
To make the optimization set and testing set effectively hard targets, all 

structures with a TM-score (43) ~0.4 to each target are removed from the 

threading library (44). We optimized the parameters to maximize the total 
TM-score of the top five selected chunk models on the 60-protein set. The 

optimization procedure is done iteratively by fixing one and changing the 

other. For example, we set an initial value for WHB. then let Wd change within 
a range of ()....{).1; next, we set Wd to its optimal value and let WHB change 
within 0--5. etc. The procedure is iterated until the optimal values ofwHB and 

Wd do not change. The resulting parameters are (WHB' Wd) = (0.5, 0.01). For 

a realistic small-scale test, we used 21 medium/hard targets <200 AA long 
from CASP7 with threading library structures and sequence database released 

before the CASP7 season. 

RESULTS 

Chunk model selection procedure 

For each target, a total of 5000 chunk models were generated 
regardless of the number of chunks (N ohurud the target has, i.e., 
the number of models per chunk is 5000/Nohunk. This makes 
the time needed to generate chunk models about the sarne for 
all targets. For a typical l50-AA-long target, it takes ~75 
CPU hours on a dual core 2.0 ORz Opteron CPU to generate 
5000 chunk models (~I model/min). This can be easily dis­
tributed to several independent computers. To test how accu­
rate the models are when chunks are included into TASSER, 
we select the top five best chunk models according to their 
RMSD to native in combination with the top 10 threading 
templates (selected according to threading Z-score) to con­
struct contact potentials and distance restraints for chunk­
TASSER to build full length models. The cumulative TM-score 
of chunk-TASSER on the 425 testing set proteins in this ideal 
scenario is shown in Table I. The average TM-score of the 
best of top five SPICKER (42) cluster full-length models is 
0.407. Approximately half of the targets have models with 
TM-scores ~O.4 to native structure. 

We next analyze the scoring function Echunk used for 
ranking the chunk models. There are 2785 chunks for the 425 
structure set, i.e., on average, each structure has 6.6 chunks 
and each chunk has ~ 760 models. The average linear corre-

TABLE 1 Cumulative and average TM-scores of first and best 
of five fuJi-length models by chunk-TASSER and TASSER for 
the 425 set using different chunk selection criteria 

Best top five chunk models 
Top five cluster chunk models 

Top five chunk models by Echunk 

Top 10 chunk models by Echunk 
TASSER 

First model 

157.4 (140) 0.370 
136.4 (77) 0.321 

140.1 (85) 0.330 
138.1 (79) 0.325 
128.9 (54) 0.303 

Best of top five 

172.9 (202) 0.407 

150.9 (110) 0.355 
153.7 (123) 0.362 
152.2 (117) 0.358 

143.0 (89) 0.336 

Numbers in parentheses are the number of targets having models with a 
TM-score to native 2:0.4. 
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lation coefficient between Echunk and chunk Ca RMSD to 
native is 0.266. Although this number is small, the p-value 
(45) associated with it together with the degrees of freedom 
758 (= 760-762) is < 10- 13

, which means a very significant 
correlation exists. Fig. 2, a and b, show two examples of the 
correlation between the rank score Echunk and the chunk: 
RMSD. For some chunks like the first chunk of I wiia shown 
in Fig. 2 a, the linear correlation coefficients are as high as 
0.9. To test if use of the Eohunk score works better than a sim­
ple clustering method, we compare chunk-TASSER results 
with the following scenarios for constructing contact poten­
tials and distance restraints: 

I. Top five best chunk models. 
2. Top five chunk clusters selected by SPICKER (42). 
3. Top five chunk models selected by Echunk' 
4. Top 10 chunk models selected by Eohunk' 

Table I shows the cumulative TM-scores of these scenarios. 
Scenario 3 is ~ 3% better than scenario 2 and 1.5% better 
than 4 by TM-score, whereas the ideal scenario I is ~ 12% 
better than scenario 3. The gap between the realistic scenario 3 
and the ideal upper limit (scenario I) is even larger in terms 
of the number of models having a TM-score ;0:0.4 to native 

1wiia chunk 1 Correlation Coefficient = 0.94 

10 
RMSD to native 

1sumb chunk 2 Correlation Coefficient = 0.55 

1.5 

0.5 

. : . ..... , .. :.';.; .. 

~ 
.. \.~ •.. : ..... -.. 

~. • ,.: •• r. b ••• iIi· . 
. -;.. :.~ .. 

... , . 
10 15 20 

RMSO to native 

FIGURE 2 Examples of chunk. ranking score E chllnk versus chunk RMSD 
to native. (0) lwiia chunk I, covering residues 34--59. (b) lsumb chunk 2, 

covering residues 38-137. 
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(123 vs. 202). The cumulative 1M-score by original TASSER 
is also shown in Table 1. Chunk-TASSER scenario 3 is -8% 
better than TASSER. In what follows, we shall analyze chunk­
TASSER in scenario 3 in more detail. 

Overall results 

Table 2 shows the same data of chunk-TASSER as in Table 
1 on different subsets of the 425 set in comparison to s1" and 
TASSER. The average 1M-score of chunk-TASSER for the 
115 proteins :5100 AA is 0.395, and for the 80 proteins with 
predicted a-helix content ~0.5 is 0.403, whereas those of 
TASSER are 0.360 and 0.356, respectively. For larger pro­
teins or less a-helix content proteins, chnnk-TASSER's per­
formance is slightly worse, but it is still better than TASSER. 
The percentages of proteins with models having TM-score 
~0.4 are 3.76, 20.94, and 28.94% by S1", TASSER, and 
chunk-TASSER, respectively. These percentages are 2.50, 
23.75, and 41.25% by SP3, TASSER, and chnnk-TASSER, 
respectively, for the 80 a-proteins. Fig. 3 shows the compar­
ison of the prediction results by TASSER and chnnk-TASSER 
on the 425 protein set with the number of proteins having 
models with a 1M-score greater than a given threshold. Chunk­
TASSER has an improvement over T ASSER for all thresholds 
of 1M-score >0.30 (the average value of the best structural 
alignment between a pair of randomly related struerures). We 
compare chunk-TASSER and TASSER using the 1M-score 
on the 80 a-protein set in Fig. 4. In 60 cases, chunk-TASSER 
is better than TASSER, whereas in 20 cases TASSER is bet­
ter than chunk -TASSER. 

We analyzed the dependence of model TM-scores on some 
target properties with the results compiled in Table 3. It is 
clear that chunk-TASSER, similar to TASSER, still has a strong 
dependence on sF' model quality although it is slightly weaker 
than TASSER. That is because chunk-TASSER also uses 
templates from threading. The correlation coefficients of both 
TASSER and chunk-TASSER with predicted a-helix content 
are small but very significant according to the corresponding 
p-values. This is due to the fact that, on average, an a-protein 
has fewer regular secondary structure segments for a given 
length and lower contact order than f3 or a/f3 proteins and 
therefore the conformational space of an a-protein is rela­
tively smaller and easier to access. This explains why T ASSER 
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>{1.30 >0.35 >0.40 >0.45 >0.50 >0.55 >0.60 >0.65 

TM-score 

FIGURE 3 Comparison of the prediction results by TASSER and chunk­
T ASSER on the 425-protein set. Shown in the plot is the number of proteins 
having models with TM-score greater than the given threshold versus the 
TM-score threshold. 

and chunk-TASSER perform better for a-proteins than for 
other types of proteins. The correlation between TASSER's 
performance and target size (as defined by the number of 
chunks) is marginally significant, whereas for chunk-TASSER, 
it is insignificant. As expected, both T ASSER and chunk­
TASSER have a small but significant dependence on contact 
order. 

True blind predictions were made on a 21 target set from 
CASP7 that are <200 residues and were classified by our in­
house three-<limensional jury (46) threading method as medium! 
hard targets (unpublished). We used library structures and a 
nooredundant sequence database that were released before 
CASP7. For this small set, we are able to compare chunk­
TASSER with the ROSETTA automated approach (15,18), 
i.e., the ROSETTA methodology without human intervention 
and full atom refinement. The results are shown in Table 4. 
The average TM-score of the first (best) models increases 
from 0.272 (0.319) by the threading approach sF' to 0.349 
(0.401) by cbunk-TASSER. The averageTM-scores byTASSER 
and ROSETTA are 0.315 (0.363) and 0.325 (0.355), respec­
tively, for the first (best) models. TASSER and ROSETTA 
perform similarly on this set, whereas chunk-TASSER is 7% 
better than ROSETTA and 11% better than TASSER. We 
noted that the total 1M-score 6.82 of tbe first models by 
ROSETTA in our run is very close to that of ROBETTA in 

TABLE 2 Cumulative and average TM-scores of the best of top five models are shown for chunk-TASSER, SP', and TASSER on 
different subsets of the 425-proteln benchmark set 

Subset criteria (# of structures) 

,;250 AA (425) 
,;200 AA (361) 
,; 150 AA (273) 
';100 AA (115) 
Predicted a-content 2:0.5 (80) 
Predicted a-content <0.5 (345) 

sl" 
113.0 (16) 0.266 
97.0 (14) 0.269 
75.5 (13) 0.277 
34.5 (9) 0.300 
22.7 (2) 0.284 
90.3 (14) 0.262 

TASSER 

143.0 (89) 0.336 
121.5 (74) 0.336 
93.4 (61) 0.342 
41.5 (32) 0.360 
28.5 (19) 0.356 

114.5 (70) 0.332 

Numbers in parentheses are the number of targets having models with a TM-score to native 2:0.4. 
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chunk-TASSER 

153.7 (123) 0.362 
131.0 (106) 0.363 
100.6 (83) 0.369 
45.4 (46) 0.395 
32.3 (33) 0.403 

121.4 (90) 0.352 
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FIGURE 4 Comparison of the TM-scores obtained from chunk-TASSER 
and TASSER on the 80 a-proteins. 

CASP7, which is 6.75. We performed a paired-samples 
student's t-test on the difference between chunk-TASSER 
and TASSER or ROSETTA predictions to see whether the 
difference is significant (48). The corresponding p-value of 
the prediction difference between chunk-TASSER and 
TASSER for the first (best) models is 0.025 (0.013). For 
both the first model and best model, the differences are 
significant at the 95% confidence level (p-values < 0.05). The 
difference between chunk-TASSER and ROSETTA for the 
first model on this small set is insignificant (p-value = 0.24), 
whereas chunk-TASSER is significantly better than RO­
SETT A for the best of top five models (p-value = 0.025). The 
reason for the insignificant difference might be due to the fact 
that the dataset is too small. 

Representative examples 

In Fig. 5, we show some examples of chunk-TASSER pre­
dictions for the best of the top five models: lu91a is a small 
a-protein of 68 amino acids. The best template found by SP3 
for this protein is 11.0 A to native. TASSER was able to re­
fine it to 7.9 A. Chunk-TASSER predicted the best model 
(the fourth model) to be 3.3 A to native. I uOsa is an 86-residue 
A a-/J3-protein with three helices packed against a four-J3 
strand sheet. The best TASSER model has an RMSD of 7.7 
A away from native, whereas the best chunk-TASSER model 
(third model) is 3.7 A to native. Is31a is medium sized pro­
tein with 165 AA. It is a mixed a- and J3-protein. The best 
template has a RMSD of 11.2 A to native and the best model 
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TABLE 4 TM-scores of first (best of top five) models by SP', 
TASSER, ROSETTA (15,18), and chunk-TASSER for the 21 
CASP7 targets 

Target SpJ TASSER ROSETTA'" chunk-TASSER 

T0283 0.324 (0.365) 0.451 (0.451) 0.577 (0.577) 0.703 (0.703) 
T0299 0.167 (0.208) 0.255 (0.324) 0.232 (0.281) 0 .248 (0.255) 
T0300 0.230 (0.372) 0.266 (0.405) 0.328 (0.356) 0.413 (0.420) 
T0304 0.228 (0.230) 0.341 (0.343) 0.449 (0.449) 0.375 (0.387) 
T0306 0.241 (0.241) 0.205 (0.267) 0.197 (0.197) 0.200 (0.342) 
T0307 0.223 (0.230) 0.219 (0.318) 0.285 (0.295) 0.273 (0.317) 
T0309 0.208 (0.231) 0.196 (0.248) 0.176 (0.206) 0.193 (0.293) 
T0312 0.160 (0.224) 0.249 (0.249) 0.188 (0.293) 0.237 (0.353) 
T0314 0.149 (0.181) 0.174 (0.281) 0.258 (0.258) 0.190 (0.275) 
T0319 0.184 (0.193) 0.199 (0.231) 0.212 (0.236) 0.261 (0.276) 
T0335 0.421 (0.502) 0.418 (0.436) 0.519 (0.519) 0.414 (0.454) 
T0348 0.506 (0.506) 0.458 (0.508) 0.403 (0.403) 0.472 (0.499) 
T0350 0.211 (0.261) 0.256 (0.350) 0.438 (0.438) 0.323 (0.365) 
T0351 0.360 (0.360) 0.229 (0.277) 0.275 (0.275) 0.255 (0.385) 
T0353 0.364 (0.364) 0.259 (0.266) 0.329 (0.398) 0.286 (0.293) 
T0354 0.290 (0.376) 0.470 (0.482) 0.335 (0.335) 0.489 (0.495) 
T0358 0.275 (0.319) 0.286 (0.358) 0.248 (0.332) 0.327 (0.368) 
T0361 0.204 (0.212) 0.308 (0.308) 0.396 (0.396) 0.339 (0.363) 
T0363 0.532 (0.532) 0.626 (0.628) 0.374 (0.496) 0.658 (0.678) 
T0382 0.254 (0.267) 0.400 (0.400) 0.352 (0.434) 0.400 (0.436) 
T0383 0.186 (0.534) 0.349 (0.502) 0.250 (0.278) 0.279 (0.473) 
Total 5.717 (6.708) 6.614 (7.632) 6.820 (7.453) 7.334 (8.428) 
Average 0.272 (0.319) 0.315 (0.363) 0.325 (0.355) 0.349 (0.401) 

*ROSE1T A was downloaded from the Baker website http://depts.washington. 
edu/bakerpgl and run locally. For each target, 15,000 models were generated 
and the clustering procedure provided by ROSE'ITA with default settings was 
used for fina1 model selection. 

given by TASSER has a RMSD of 7.6 A and a TM-score of 
0.41. With the inclusion of ab initio folded chunks, chunk­
TASSER refines it to a RMSD of 6.6 A and a TM-score of 
0.51. The success of chunk-TASSER for this protein is mainly 
due to the ability of T ASSER methodology to make use of 
the weak signal from the threading templates, although all 
templates have a RMSD > 11 A to native. I wixa and Isumb 
are all a-proteins that contain 164 and 225 residues, respec­
tively. The best models by TASSER have RMSDs of 13.5 A 
and 9.5 A for I wixa and I sumb, respectively. Chunk -TASSER 
significantly improves the models to 7.4 A and 6.6 A, re­
spectively. Itvca is another example that shows the ability of 
chunk -T ASSER to utilize information from templates through 
the TASSER methodology. I tvca is a two-domain protein. 
The templates found by SP3 all have a TM-score <0.4 to na­
tive because they cover only one of the domains. TASSER's 
best (ranked first) prediction for this protein is 6.1 A and has 
a TM-score of 0.68. The best model (ranked first) by chunk­
TASSER is almost the same in that it is 5.9 A and has a 
TM-score of 0.64 to native. The relative orientation of the 

TABLE 3 Correlation coefficients of model TM-scores to native with target properties 

TASSER 
Chunk-TASSER 

spJ model TM-score 

0.57 (5.5 X 10-") 
0.67 (0.0) 

a-content 

0.36 (1.9 x 10 14) 

0.26 (5.4 x 10-') 

No. of chunks Contact order 

-0.15 (0.002) -0.18 (0.0002) 
-0.09 (0.06) - 0.17 (0.0004) 

Results are based on best of top five models. Numbers in parentheses are two sided p-values (45). A p-value of <0.05 is considered significant. 

Biophysical Journal 93(5) 1510-1518 
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FIGURE 5 Representative predictions by chunk-TASSER. Models are superimposed onto the native structure with thick lines representing models and 
thin Jines natives. Numbers in parentheses are TM-scores of the models to native. 

two domains is correctly modeled by both chunk-TASSER 
and TASSER. The reason for this successful modeling is due 
to the 3-7 overlapping residues between templates covering 
different domains that provide contact and distance restraints 
that define the domain orientation. 

DISCUSSION 

We have developed a new ab initio protein structure pre­
diction method chunk-TASSER that integrates the advan­
tages of two of the most successful protein structure prediction 
methods to date: ROSEITA (18) and TASSER (33). The 
fonner utilizes the similarity of target fragments with known 
structures, while the latter mainly depends on the identified 
templates that have weak similarity with the target. The in­
tegration is realized by folding protein chunks through a 
fragment insertion methodology as in ROSEITA (18) and 
combining these chunk models with threading templates for 
full length modeling with the TASSER methodology (33). 
Chunk-TASSER is shown to perfonn better than the original 
TASSER on the 425 dataset. Fttrthennore, a small-scale blind 
test on the 21 CASP7 target set indicates that chunk -T ASSER 
is also better than ROSETTA. We carried an informal large-scale 
comparison between chunk-TASSER and ROSETTA on the 
425 dataset (because we do not have control over ROSETTA's 
database, it may contain homologous structures to the test 
targets for fragment generation). For a subset of 380 targets 
in the 425 dataset, for which ROSETTA successfully predicted 
structureS, chunk-TASSER is -6% (4%) better than ROSETTA 
as assessed by total TM-score of the first (best) models. There 
are several examples in the 21 CASP7 set which show that 
chunk-TASSER combines the advantages of both ROSETTA 
and TASSER. For example, chunk-TASSER performs similarly 
with ROSEITA for target T0283, whereas chunk-TASSER 
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is similar to TASSER for target T0348, T0354, T0363, and 
T0383 for which the sl" template structures are also good. 

Although chunk-TASSER shows significant improvement 
over original TASSER for hard targets, there is still much 
room for further improvement as indicated by the big gap 
between the realistic scenario 3 and the ideal scenario 1 (see 
Table I). The current chunk model selection procedure is far 
from satisfactory. Further improvement can be achieved by 
more accurate selection of chunk models and generation of 
more near-native chunk models. As in TASSER, improve­
ment can also be gained through more sensitive template iden­
tification from the structure library or from other modeling 
approaches. For example, using an approach like iterative 
TASSER (49,50), one can use the models from a first round 
of chunk-TASSER modeling in a second round of chunk­
TASSER. This possibility of improvement is currently under 
investigation. Since chunk-TASSER, like TASSER, models 
a protein only in terms of its Ca atoms and side-chain 
centers of mass, its accuracy is limited by the force-field 
resolution (-1.5 A). Therefore, development of methods to 

refine chunk-TASSER models and to rebuild the finer struc­
tural details using full atomic potentials is also needed. 

Recently, our laboratory has developed the TASSER-Lite 
algorithm (51) that implements a limited time TASSER sim­
ulation. The algorithm was used in MetaTASSER (unpub­
lished) that parricipated in CASP7 and was among one of the 
top perfonning servers. We are currently investigating a sim­
ilar strategy for chunk-TASSER that will facilitate its public 
use. 

We thank Dr. Adrian Arakaki for help in preparation of the figures. 
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