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SUMMARY

Input shaping and Proportional-Integral-Derivative (PID) feedback control are

simple, easy-to-implement and generally low cost control strategies. Considering this,

it is remarkable that they are also very effective control techniques. In fact, a majority

of the world’s feedback controllers utilize PID (or the subset PD) control. In addition,

input shaping has seen significant use on real-world machines such as cranes, micro-

mills, coordinate measuring machines, computer disc drive manufacturing machines,

spacecraft, etc.

However, despite similarities in effectiveness and ease of implementation, input

shaping and PID feedback control are fundamentally different strategies. Input shap-

ing is an anticipatory control scheme capable of enabling quick, low-vibration motions.

PID feedback control is reactive in nature, and it is primarily required to deal with

problems such as modeling errors, disturbances and nonlinearities.

Given their effectiveness and practicality, as well as the fact that they address

important and complimentary control issues, it would be advantageous to combine

these two control strategies. The result would still be practical and effective, yet would

now address a range of system phenomenon beyond that which is capable by either

of the individual control techniques. However, there is a definite gap in the state-of-

the-art technology for combining these techniques. For example, little research has

addressed the intelligent combination of traditional, outside-the-loop input shaping

and PID feedback control. In addition, only a few researchers have attempted to

place input shaping filters within feedback loops.

This research studies the intelligent combination of input shaping and PID feed-

back control by developing a concurrent design procedure for outside-the-loop input

shaping/PID feedback combinations and by analyzing the effect of placing input shap-

ing filters within feedback loops.
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CHAPTER I

INTRODUCTION

1.1 Problem Statement

The control of flexible systems is an immense field of research. There are a variety of

reasons why mechanical systems are designed and built to be flexible. For example,

many mechanical systems need to be lightweight. Lightweight systems can be moved

faster and/or with less energy than heavier mechanical systems. Unfortunately, mak-

ing a mechanical system lightweight usually means that it will also be flexible. And,

if speed is a primary goal, then vibration control will be a necessity. Flexible systems

moving at high accelerations and velocities will, generally vibrate. This vibration can

cause a variety of problems including positioning errors, slow overall move times (if

vibration must naturally damp out), and system damage.

The three primary methods for limiting vibrations on flexible, mechanical systems

are to intelligently choose motion commands, to utilize some form of feedback control

or to move so slowly that the flexible dynamics are not excited. Given that moving

slowly is undesirable for many reasons, this research seeks to study the combination

of command generation and feedback control. Particularly, this research will focus

on intelligently combining input shaping and Proportional-Integral-Derivative (PID)

control. However, the lessons learned here are applicable to the more general areas

of command generation (or command shaping) and feedback control.

The combination of input shaping and PID feedback control has been studied

and implemented in many controls applications. However, there is a deficiency in

the state-of-the-art technology. First, while outside-the-loop input shaping and PID

feedback controllers have been extensively combined, little research has addressed the

1



intelligent combination of these two control techniques. That is, the PID gains and

the input shaper parameters are usually derived separately, and the two techniques

are then combined without accounting for the combined dynamic effects. Figure 1.1

depicts this sequential design process. Figure 1.2 depicts the design process that

this research will focus on, where the command generator and feedback system are

designed together according to the given plant and desired system behavior.

Secondly, the vast majority of input shaping/PID feedback combinations have

utilized the input shaper outside of any feedback loop. Only a few researchers have
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attempted to place input shaping filters within feedback loops. This thesis will provide

a framework for placing input shapers within feedback loops. Stability issues will be

studied first, followed by an investigation into the useful applications for this type of

controller.

1.2 Command Generation and Command Shap-

ing for Vibration Reduction

Command generation is a technique that specifically designs unique reference com-

mands for a given system. The unique reference command is chosen based on its

ability to drive the system according to a set of performance constraints. One exam-

ple of command generation is the use of S-curves to drive flexible systems.

Command shaping is a similar process by which a desired reference command

is modified so as to improve the performance of a given system. For instance, the

reference command might be altered so as to reduce the residual vibration which typi-

cally would result from an unmodified reference command. One example of command

shaping is the use of low-pass filters.

Depending on the application, some of these command shaping techniques will be

more useful than others. Many command shaping techniques have little robustness

to modeling errors. In addition, many are not applicable in real time, requiring

pre-computation of command functions.

1.3 Input Shaping

One very useful form of command shaping is input shaping. Input shaping is applica-

ble in real time, and input shapers can be designed to have any desirable robustness

level. Input shaping is designed to reduce, or eliminate, command-induced system

vibration. A desired reference command given to a flexible system will, in general,

result in residual vibration. However, if the system’s natural frequency and damping

3
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ratio are known, then any reference command can be altered so as to produce little

or no residual vibration in the system response.

Input shaping’s ability to cancel vibration can be viewed as destructive interference

of sinusoidal waves. If two sinusoids of the same magnitude, same frequency and

correct phase shift between them are added together, the resulting combination will

have no oscillations. This effect can be seen in Figure 1.3. This concept can be

extended to the vibration reduction of flexible systems. If a flexible system with a

constant natural frequency is given two equal inputs correctly spaced in time, then

the vibration resulting from each input will add destructively to yield zero residual

vibration. Note that the earliest time at which the second input, or sinusoid, can be

added is at one half the natural period of the system. This time is labeled T/2 in

Figure 1.3.

Input shaping operates by creating a sequence of delayed impulses that, if given

4
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to a flexible system, will cause the destructive interference shown in Figure 1.3. The

sequence of impulses, known as the input shaper, is then convolved with a desired

reference command to produce a new, modified command that can be used to drive

the system. As shown in Figure 1.4, this modified command will cause the system to

move with no residual vibration. The sequence of impulses (in particular the impulse

times and amplitudes) is chosen such that, when the modified command is applied to

the system, certain performance constraints are met. These performance constraints

can include the system’s desired residual vibration amplitude, robustness to modeling

errors, and command rise time, among others.

1.3.1 Alternative Perspectives

There are several other ways to describe input shaping. One is to say that the impulse

sequence filters out the system’s natural frequency from the reference command. This

is done so that the natural frequency is not excited in the system when the new,

modified command is applied to it. Another perspective on input shaping comes

from analyzing the poles and zeros of a system. For example, Figure 1.4 shows a

two-impulse shaper called a “Zero Vibration” (ZV) shaper [65, 85]. The ZV shaper

can be expressed in the Laplace domain by the following equation:

ZV (s) = A1 + A2e
−s T

2 (1.1)
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This equation constitutes an impulse of magnitude A1 occurring at time t = 0 and a

second impulse of magnitude A2 delayed by T
2

seconds. If T is the damped natural

period of the system, then shaping a reference command with this ZV shaper will

eliminate the vibratory mode associated with the period T . Note that the reference

command must eventually reach a constant, steady-state value. In addition, the

vibration is only guaranteed to be eliminated by some time after this steady state

has been reached. Input shaping cannot eliminate vibration caused by continuously

changing reference commands like sinusoids. Solving for the poles and zeros of this

ZV shaper yields:

zeros → s = −
2

T
ln
(

A2

A1

)

± jωd(2k + 1) where k = 0, 1, 2, ... (1.2)

poles → s = −∞± jω (1.3)

In these two equations, ωd is the natural frequency associated with the damped period,

T . The ω left undefined in the “poles” equation is intended to indicate that any value

would still yield an open-loop pole.

As can be seen from (1.2), an input shaper creates an infinite column of zeros. If

an input shaper is correctly designed, then one pair of these shaper zeros will cancel

the oscillatory poles of a flexible system. Figure 1.5 shows the poles of a second-order

system being canceled by a two-impulse shaper similar to the one shown in Figure 1.4.

The open-loop poles, while not relevant here, will become important when shapers

are included within feedback loops.

As can be seen from Figure 1.4, input shaping does come with one obvious cost.

Convolving a reference command with an input shaper adds a delay to the rise time

of the system. However, in many practical situations, the delay added to the system

move is more than made up for by the drastic reduction in settling time.
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1.3.2 Brief History of Input Shaping

Originally named “Posicast Control”, the initial development of input shaping is

largely credited to O.J.M. Smith [85] during the late 1950’s. However, there seems

to have been one notable precursor to “Posicast Control”. In the early 1950’s, John

Calvert developed a time-delay based vibration filter named “Signal Component Con-

trol” [4,15]. However, his solution did not contain the convenient closed-form descrip-

tion offered by Smith.

Since this initial work, there have been many developments in the area of input

shaping control. For example, input shapers have been developed that are robust to

natural frequency modeling errors, the first of which was called the Zero Vibration

and Derivative (ZVD) shaper [65]. Input shapers for multi-mode systems have also

been designed [23, 58, 65, 78, 93, 98]. In addition, some work has addressed the use of
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input shaping on nonlinear systems [17,34,81]. Other examples include systems with

Coulomb friction [40, 41], backlash [38], and on-off thrusters [44, 62, 66, 68, 77]. Input

shaping has also been applied to systems with varying parameters [45, 46, 57].

Because the simple forms of input shaping are easy to implement, they have been

applied to many real-world systems with great success. Some of the notable real-world

applications include cranes [43, 64, 70, 71, 87–89], disk drive manufacturing machines

[75], coordinate measurement machines [24, 63, 73, 74], micro-milling machines [13],

flexible spacecraft [17, 76, 79, 97], telecommunications [22], long-reach manipulators

[36], and tele-robotic arms [20].

Traditionally, input shaping is an open-loop control strategy developed for linear

(or near-linear) systems. Input shaping can be considered as a predictive control

scheme. That is, it uses knowledge of the system to re-shape reference commands such

that undesired system behavior does not occur. Therefore, input shaping allows for

quick, low-vibration motions. Unfortunately, if the unexpected occurs (i.e. modeling

errors, disturbances, nonlinearities, etc.), the effectiveness of traditional input shaping

can be degraded. Fortunately, for the areas of modeling errors and nonlinearities, a

significant amount of research has been done that allows input shaping to work well

under these conditions. However, as with any open-loop controller, traditional input

shaping can do nothing to address disturbances.

1.3.3 Important Input Shapers

This section will review some of the most well known input shapers. Each of these

input shapers is used within the research described by this thesis. The equations

that detail the impulse times and impulse amplitudes will be written in matrix form.

The first row will indicate the time by which each impulse is delayed. The second

row indicates the amplitude of the impulse. Each impulse is completely defined by

one column: a time delay and amplitude value. A generic input shaper depicted in
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matrix form is shown in the following equation. Note that the first impulse (A1) will

occur at time t1 = 0 for all input shapers described in this section.









0 t2 t3 ...

A1 A2 A3 ...









(1.4)

1.3.3.1 Zero Vibration Shaper (ZV)

The Zero Vibration (ZV) shaper is one of the oldest and simplest input shapers [65,85].

This input shaper is designed for one main purpose – to filter an incoming signal such

that a system driven by the new, shaped signal will have no vibration arising from

the frequency filtered out by the ZV shaper. A ZV shaper has two impulses. The

equations describing the ZV shaper are:









0 t2

A1 A2









=









0 π
ωd

γ
1+γ

1
1+γ









(1.5)

where:

γ = e
ζπ√
1−ζ2 (1.6)

In these equations, ζ and ωd are the damping ratio and damped natural frequency

(respectively) of the oscillatory mode addressed by the ZV shaper.

1.3.3.2 Zero Vibration and Derivative Shaper (ZVD)

The Zero Vibration and Derivative shaper (ZVD) is similar to the ZV shaper in that

it is designed to yield zero vibration at some modeled frequency [65]. However, the

ZVD shaper has an added constraint not seen in the ZV shaper derivation. The ZVD

shaper has added robustness to modeling errors. This is achieved by not only forcing

the vibration to be zero at the modeled frequency, but by also forcing the derivative

of the vibration amplitude with respect to frequency to be zero. The cost for the
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added robustness of the ZV shaper is that the ZVD shaper requires twice the amount

of time. The equations for the ZVD shaper are:









0 t2 t3

A1 A2 A3









=









0 π
ωd

2π
ωd

γ2

γ2+2γ+1
2γ

γ2+2γ+1
1

γ2+2γ+1









(1.7)

where:

γ = e
ζπ√
1−ζ2 (1.8)

1.3.3.3 Unity Magnitude Zero Vibration Shaper (UMZV)

Unlike the ZVD shaper, the Unity Magnitude Zero Vibration shaper (UMZV) prior-

itizes speed and gives up robustness to modeling errors [75]. The UMZV shaper is

quicker than the ZV shaper, but has less robustness. The equations for the UMZV

shaper can only be shown in an analytical form when the shaper is designed for an

undamped, oscillatory mode. If ζ = 0, then the impulse times and amplitudes are:









0 t2 t3

A1 A2 A3









=









0 π
3ωn

2π
3ωn

1 −1 1









(1.9)

1.3.3.4 Extra-Insensitive Shaper (EI)

The Extra-Insensitive shaper (EI) increases the robustness of the ZVD shaper by

keeping the derivative constraint at the modeled frequency but relaxing the zero-

vibration constraint at the modeled frequency [72]. That is, the EI shaper actually

requires some non-zero level of vibration when the oscillatory system being aided by

the input shaper is perfectly modeled. This non-zero level of vibration is variable, and

is labeled as V in the following equations. Again, the equations for the EI shaper can

only be shown in an analytical form when the shaper is designed for an undamped,

oscillatory mode. If ζ = 0, then the impulse times and amplitudes are:
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0 t2 t3

A1 A2 A3









=









0 π
ωn

2π
ωn

1+V
4

1−V
2

1+V
4









(1.10)

1.3.3.5 Sensitivity Plots

The robustness of each of the input shapers just described can be pictorially viewed

on a sensitivity plot. An input shaper sensitivity plot shows the amount of residual

vibration an underdamped, single-mode system will have if given a command filtered

by the input shaper in question. The amplitude of the residual vibration caused by

the input shaped signal is plotted as a percentage of the amplitude of the residual

vibration that would be caused by the original, unshaped signal. This percent residual

vibration is plotted as a function of the ratio between the actual damped, natural

frequency of the single-mode system (ωa) and the frequency used to design the input

shaper (ωm).

Figure 1.6 shows the sensitivity plots of each of the input shapers described so

far in this section. Note that ZV, ZVD and UMZV shapers have zero vibration when
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Figure 1.6: Sensitivity Plot Comparison.
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ωm = ωa. However, the EI shaper intentionally has a non-zero residual vibration when

ωm = ωa. This is done so that the EI shaper will be more insensitive to modeling

errors. A shaper’s insensitivity is measured by the width of the continuous spectrum

of normalized frequency resulting in less than a specified percent residual vibration.

For example, Figure 1.6 shows the 5% insensitivity of an EI shaper designed to have

that amount of vibration when ωm = ωa. Note from this figure, that the EI shaper

has the highest 5% insensitivity, followed by the ZVD, the ZV, and then the UMZV

shaper.

1.3.3.6 Specified-Negative-Amplitude Shaper (SNA)

One final input shaper worth noting here is the Specified-Negative-Amplitude shaper

(SNA) [69]. The ZV, ZVD and EI shapers all have positive amplitude impulses. Of

the shapers previously described, only the UMZV allows for some impulses to have

negative amplitude. The advantage gained by this allowance is speed, as the UMZV

is the fastest of the previously described input shapers. The disadvantage is a lack

of robustness and the fact that input shapers with negative amplitudes can actually

magnify high frequency vibrations. This is indicated in Figure 1.6 where the slope of

the sensitivity curve for the UMZV shaper is non-zero at ωa

ωm
= 1.5. Note that the

sensitivity curves for the other three input shapers flatten out near ωa

ωm
= 2, peaking

at a percent residual vibration of one.

SNA shapers were designed to create a continuous spectrum of input shapers that

easily balance the tradeoff between speed and robustness/high mode excitation. All

SNA shapers are of the same form: positive impulse, negative impulse, positive im-

pulse. They are designed by specifying the negativity of the second impulse (denoted

by “b” in the following equations), which then also determines the amplitudes of both

positive impulses and the impulse times t2 and t3. It can be shown that the bound-

aries of the SNA spectrum are the UMZV shaper (when the negativity is b = −1)
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Figure 1.7: SNA Shaper Sensitivity Plots.

and the ZV shaper (when the negativity is b = 0).

The equations for the SNA shaper can only be shown in an analytical form when

the shaper is designed for an undamped, oscillatory mode. If ζ = 0, then the impulse

times and amplitudes are:









0 t2 t3

A1 A2 A3









=









0 t2 t3

1−b
2

b 1−b
2









(1.11)

where:

t2 =
1

ωn

cos−1

(

−b

1 − b

)

t3 =
1

ωn

cos−1

(

2b2

(1 − b)2
− 1

)

(1.12)

Figure 1.7 shows the spectrum of SNA shapers via a sensitivity plot. Note that

the UMZV and ZV shapers from Figure 1.6 are shown here as the boundary shapers

for the SNA spectrum.
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1.4 PID Feedback Control

Feedback control is one of the oldest, most successful, and thoroughly researched con-

trol strategies. Even though an extraordinary number of feedback controllers have

been developed, by far the most common form of feedback control is Proportional-

Integral-Derivative (PID) control [14,55,92]. For example, a vast number of industrial

machines utilize some form of PID control, often times with the integral term being

set very low or removed altogether. This leads to the important subset of PD control.

Some of the main applications of feedback control include rejecting disturbances, elim-

inating steady-state error and handling non-zero initial conditions. Unfortunately,

outside-the-loop input shaping cannot specifically address any of these issues.

Figure 1.8 shows the basic form of PID feedback control. Here, the reference signal

(labeled “In”) is compared to the output signal (labeled “Out”) to create an error

signal (labeled “E”). The actuator signal sent to the plant (“G”) is a combination of

three possible signals generated by the PID controller block. The first is an actuator

effort proportional to the error signal. The second is an actuator effort proportional

to the derivative of the error signal. The third is an actuator effort proportional

to the integral of the error signal. Reactive in nature, PID control responds to a

measured error so as to eliminate it. By doing this, problems such as modeling errors

and disturbances are readily dealt with – although, only after they cause some error.

In addition, simple PD control is capable of stabilizing some nonlinear systems.

However, because PID feedback control is inherently reactive, there is often a speed

(as measured by rise time and settling time) and/or vibration reduction limitation
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Figure 1.10: PID Feedback Controller.

when the system responds to reference commands. For instance, most systems have

actuator limits which prevent large PID gains from being used in realistic scenarios.

Therefore, the speed and vibration characteristics of realistic PID systems cannot be

arbitrarily chosen. Usually, the system can either be made fast or non-vibratory. PID

control can rarely achieve both simultaneously if there are realistic actuator limits.

In addition to actuator limitations, stability requirements can also restrict the

gains of a PID controller. Often, the PID controller cannot use high gains (that

might enable a quick response), because these high gains lead to instability.

1.5 Comparison of Input Shaping and PID Feed-

back Control

A few simple simulations can be used to depict the typical tradeoffs in the choice

between input shaping and PID feedback control. Figure 1.9 shows a typical input

shaping control scheme with a step input and an unexpected disturbance. Figure 1.10

shows a typical PID feedback control scheme with the same input and disturbance.

In both control schemes, G is simply a mass plant. The PID gains were chosen so

as to have a fast rise time and minimal vibration. The input shaper was designed to
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Figure 1.12: Required Actuator Effort Comparison.

change the reference command from a step to a bang-bang type command known to

quickly move masses.

Figure 1.11 shows a unit step response (with Df = 0) for each control scheme.

The rise time of the PID control scheme is clearly shorter than that of the input

shaped control scheme, although the overall settling time of the feedback control

scheme is much longer. Figure 1.12 shows the actuator efforts (labeled “u” in Figures

1.9 and 1.10) required to generate the responses shown in Figure 1.11. For many
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Figure 1.14: Bounded Actuator Effort Comparison.

practical situations, the actuator effort required by the PID controller is unrealistic,

requiring a significant spike due to the differentiator combined with such an aggressive

command. If the PID controller is forced within the same actuator bounds kept by the

input shaping scheme, the PID scheme’s response slows to that shown in Figure 1.13.

Figure 1.14 shows the corresponding actuator requirements. It is quite clear from

Figure 1.13 that the PID controller scheme is slower (in rise time and settling time)

than the input shaping scheme. In fact, for the mass plant studied here, the best
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Figure 1.15: Disturbance Rejection Comparison.

the PID controller can do is to match the input shaping scheme’s response. This is

accomplished by setting the PID gains to infinity and limiting the actuator input to

the 0-1 unit bounds used in these simulations. This would create the same bang-

bang input generated by the input shaper. And, it is well known that a bang-bang

command is the time optimal command for a mass.

While the previous figures seem to indicate input shaping’s superiority, there are

definitely applications where PID control is the better choice. Figure 1.15 shows a

disturbance response for each of the two control schemes. Here, the disturbance force

was a quick pulse signal intended to mimic an impulse. The PID controller quickly

eliminates the disturbance’s effect. The input shaping controller is helpless to solve

this problem, due to its open-loop architecture.

These simulations clearly depict the strengths and weaknesses that were discussed

earlier. Predictive in nature, traditional input shaping can yield quick, low-vibration

motion. However, it cannot address certain issues such as disturbance rejection.

On the other hand, PID control is reactive in nature, continuously monitoring the

system’s response. Therefore, it can address problems such as disturbance rejection.

However, under realistic actuator limitations, it is most often slower in response to
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a reference input than is input shaping. In addition, because it is feedback control,

it has the potential to cause instability. And finally, PID control requires integrators

and differentiators, each of which can cause implementation problems in real systems.

1.6 Primary Research Question

In what ways can input shaping and PID feedback control be intelligently combined

so as to produce a control system superior to current combinations or the individual

implementations?

1.6.1 Definitions

This section will define some terminology that will be important throughout this dis-

sertation. Figure 1.16 depicts each of the terms to be defined here. The abbreviation

“OLIS” will stand for “Outside-the-Loop Input Shaping” and will refer to the con-

troller shown in Figure 1.16 when the input shaping filter is placed outside of the

feedback loop (position #1). Note that OLIS (using input shapers to pre-filter input

signals to open or closed-loop systems) is the traditional form of input shaping, where

the majority of research and applications occur. The abbreviation “CLSS” will stand

for “Closed-Loop Signal Shaping” and will refer to the controller shown in Figure

1.16 when the input shaping filter is placed somewhere inside the feedback loop - for

example in position #2. However, any control scheme with an input shaping filter

somewhere within a feedback loop will be referred to as a CLSS controller. Note that

although the filter within the feedback loop can be designed in the same manner as
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Figure 1.16: Description of Terminology.
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a standard input shaper, its use within the feedback loop is outside of the traditional

definition of “input shaping”. Therefore, from now on, controllers that contain input

shaping filters within the feedback loop will be referred to as CLSS controllers.

There are also two disturbance signals which must be defined. “Force Distur-

bances” are disturbance forces which enter the block diagram just before the plant.

That is, disturbance forces act directly on the plant. This signal is labeled Df in

Figure 1.16. “Sensor Disturbances” are disturbance signals which affect the feedback

sensor. They are labeled Ds in Figure 1.16.

1.7 Literature Review

1.7.1 Outside-the-Loop Input Shaping and PID Feedback Control

Many researchers have, in some way, combined OLIS and feedback control. For exam-

ple, Seth, et al., used OLIS and feedback control to limit vibrations on a coordinate

measuring machine [63]. Agostini, et al., looked at the effects of combining OLIS

and feedback control for use on a ship crane [1]. Magee, et al., combined a time-

delay pre-filter (OAT filter) with a feedback controller for use on robotic arms [49].

Dharne and Jayasuriya used an adaptive closed-loop controller to force the closed-

loop dynamics to be well suited for OLIS even in the presence of modeling errors or

unmodelled higher modes [9]. Finally, Chang and Park designed a robust feedback

controller intended to make the closed-loop system exhibit dynamics well suited for

use with OLIS [6].

Some researchers have even begun to look at the concurrent design of OLIS

and feedback control parameters. Specific to PID feedback control, Kenison and

Singhose developed an optimization routine to concurrently design OLIS and PD

control parameters [30, 31]. Gopalakrishnan, Reddy and Singh studied the concur-

rent design of OLIS and PD control for several second-order systems [16]. Banerjee,

Pedreiro and Gonzalez developed a nonlinear optimization routine to concurrently
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design an outside-the-loop input shaping and PID feedback controller for a flexible

spacecraft [3]. Going beyond PID control, Chang and Park advanced their earlier re-

search [6] to create a concurrently designed input shaping and feedback combination

for the same application [7]. Muenchhof and Singh used an optimization routine to

concurrently design an input shaper and a state feedback controller [52].

The work completed by Kenison and Singhose was an excellent beginning to the

concurrent design of outside-the-loop input shapers and PID feedback control [30,31].

They focused on the block diagram shown in Figure 1.17. Here, “IS” represents the

input shaper and “PD” represents the proportional and derivative controller. They

first optimized the PD gains for use without an input shaper and then concurrently

optimized both the PD gains and the shaper parameters. As can be seen in Figure

1.18, for a unit step reference input and impulse disturbance, the input shaper/PD

combination (labeled “CEF” for “Command-Enhanced Feedback”) outperformed the

PD control (labeled “Unshaped”) alone in terms of overshoot, settling time, and

disturbance rejection. Note that these responses are the same as those originally

presented by Kenison and Singhose [30, 31].

1.7.1.1 Research Gap

While input shaping and PID feedback control are often combined, and even while

some researchers have begun the study of concurrently designing outside-the-loop

input shaping and PID feedback controllers, this area of research is still lacking a full,

in-depth investigation as well as a general design method.

While they constitute excellent examples of combining OLIS with some form of
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feedback control, Dharne and Jayasuriya [9], Chang and Park [6], Agostini, et al.

[1], Magee, Cannon and Book [49], and Seth, Rattan and Brandstetter [63] did not

investigate the concurrent design of OLIS and feedback control. The closed-loop

system was designed first, and then the input shaper was designed for the already

determined closed-loop dynamics. This dissertation seeks a concurrent design scheme

with the intent of producing superior controller combinations than is likely with

sequential design. It seeks to fundamentally advance the ideas previously advocated

by first revealing the underlying reasons why concurrently designing outside-the-loop

input shaping and PID control is superior to sequential design. This understanding

will then lead to a general framework for concurrently designing input shaping and

PID control.

There are, of course, a few cases where concurrent design of input shaping and

feedback controllers has been investigated. However, various aspects of these inves-

tigations have motivated the research described in this dissertation. For example,

several concurrent design schemes do not use PID feedback control, opting instead

for more complicated control schemes such as full state-feedback control or Time De-

lay Control. Time Delay Control is a control strategy that intentionally places time

delays within the feedback loop. While these control schemes are widely known, this
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dissertation seeks to utilize a PID control law because it is simple and practical for

a wide variety of applications, and it is the most widely used controller. Some of

the current research is also explicitly focused on one particular system or plant type.

While this research will start with an in-depth investigation of simple plant types, it

will then progress to the concurrent design of OLIS and PID feedback control for a

variety of more complicated plant types including multi-mode systems and systems

with numerator dynamics.

Many of the current design schemes also utilize a complicated nonlinear opti-

mization technique. Some of these optimization techniques leave the input shaper

parameters completely open; that is, nothing is known or assumed about the impulse

times or amplitudes. Often, only the number of impulses is chosen before optimiza-

tion. Other optimization schemes do not specifically ensure that any performance

measures (overshoot, actuator limits, etc.) are met. Instead, a cost function routine

is used to choose controller parameters. And finally, very few of the concurrent design

schemes reviewed here investigate why and how the concurrent design of OLIS and

PID feedback control yields different and superior control schemes. Two exceptions

to this are [41] and [34] who briefly mention that concurrently designing OLIS/PID

controllers would allow for higher PID gains and, consequently, faster responses.

This thesis develops an advancement in the methodology for concurrently design-

ing input shaper and PID parameters. First, the underlying principles that make

concurrent design better than the traditional sequential design will be revealed. This

knowledge is expected to enable more intelligent design of future solution methods.

For example, this thesis will use this knowledge to develop a new input shaper that

would not have been an otherwise intuitive choice. Furthermore, this research will

mainly rely on standard input shaper forms (like the ZV, ZVD, UMZV, EI and SNA

shapers mentioned before and often found in the literature). This will simplify solu-

tion routines by eliminating variables while maintaining the primary purpose of input
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shapers - to reduce vibration. However, it should be noted that narrowing the shaper

parameter choices will limit the solution space and possibly result in non-optimal

solutions. However, it is believed that these input shapers will result in near-optimal

solutions while also greatly simplifying the design routines. Finally, this research will

focus on solution routines that specifically set and meet performance constraints so

as to yield more practical solutions that are applicable to many real-world scenarios.

1.7.1.2 Research Hypothesis

In the area of concurrently designing OLIS and PID controllers, a general framework

useful for a wide range of linear, finite order, causal systems can be developed such

that concurrently designed combinations are uniquely different from, and superior to,

sequentially designed combinations.

1.7.2 Inserting Input Shapers within Feedback Loops

Most of the research addressing the use of input shaping filters within feedback loops

can be grouped into four distinct categories.

Classical Method

Model Reference Controller

Plant Inversion Method

Quasi-CLSS Controllers

The first type of CLSS controller is called the “Classical Method” and refers to the

block diagram shown in Figure 1.19. In this figure, C is some feedback controller, IS

is the input shaping filter, and G is the plant. This form of CLSS is the most intu-

itive approach (simply place the filter in the feedforward loop) and is the form most

often found in the literature. The second form of CLSS is called “Model Reference

Controller” and is shown in Figure 1.20. Here, Ga is the actual plant and Gm is the
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modeled plant. This method relies upon comparing a modeled system output with

the actual error signal. This difference is then filtered by the input shaper. The third

form of CLSS is called the “Plant Inversion Method” and is shown in Figure 1.21.

This method uses an inverted plant/controller model
(

1
CG

)

to determine disturbance

inputs so that they can then be filtered by an input shaper (I ′
2). Finally, the fourth

category is called “Quasi-CLSS Controllers”. These controllers use command genera-

tion filters within feedback loops but differ fundamentally with CLSS in some respect.

For instance, many of these controllers do not send real time feedback signals through

input shaping filters, but they do use sensor information to periodically change the

shaper parameters. Others do filter real time feedback signals, but the filter is not an

input shaper. It is some other type of command shaping filter.
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1.7.2.1 Classical Method

Several researchers have studied CLSS controllers which fall into the “Classical Method”

category [5, 10, 28, 29, 47, 48, 94, 99, 105, 106]. For instance, Kapila, et al. designed a

CLSS controller to perform well despite modelling errors and errors in the timing of

the shaper impulses [28, 29]. Zuo, et al. and Drapeau, et al. also designed a CLSS

controller [10, 105, 106]. They experimentally compared it to PID control combined

with OLIS, as well as experimentally demonstrated their CLSS controller’s ability to

reject sensor disturbances. Tzes combined a robust LMI (Linear Matrix Inequality)

controller with an input shaping filter in the feedforward loop [99]. Finally, Magee

and Book implemented a Classical CLSS controller on a robotic manipulator and

demonstrated its vibration reduction capabilities, as well as its potential closed-loop

stability problems [47, 48].

1.7.2.2 Model Reference Controller

This form of CLSS has received only scant attention [91]. It is nonetheless an in-

teresting idea, because, as mentioned by the authors, the controller is specifically

designed to reject force disturbances. However, the authors only briefly mention this

application and focus on the stability of the proposed controller in the presence of

natural frequency modeling errors.

1.7.2.3 Plant Inversion Method

O.J.M. Smith envisioned a unique CLSS controller that utilizes plant inversion to

identify disturbance signals so that they can then be filtered by an input shaper

[82–84]. However, upon further investigation, there were several obstacles that needed

to be addressed before this control scheme could be practically implemented. The

main issue concerned the causality of the inverted plant model. This issue is often

dealt with via time delays in the digital domain. However, since the inverted plant

model is inside a feedback loop, adding time delays presents a serious stability concern.
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1.7.2.4 Quasi-CLSS Controllers

Somewhat bridging the gap between OLIS control and CLSS, Quasi-CLSS Controllers

offer a compromise between the two. For example, Chang, et al., devised a logic con-

troller that monitors the system output for disturbances [8,59]. When a disturbance

is detected, a reaction force is given by the actuator to cancel the vibratory effects

of the original disturbance. Park and Chang also developed an adaptive input shap-

ing controller for non-LTI systems [60,61]. This controller repetitively sends reference

commands, measures the output vibration, and then adjusts the shaper parameters so

that the next reference signal will result in less vibration. Pao and La-orpacharapan

developed a logic controller that uses feedback information to determine switch times

for an input shaped signal [56]. Finally, Tzes and Yurkovich used a frequency domain

identification scheme to calculate the input shaper time locations [100].

The second type of Quasi-CLSS Controller does continuously filter a feedback

signal, but the filter is not an input shaper. Zhong and Hang developed such a

controller in the digital domain for a first order plant with a time delay [104].

1.7.2.5 Closed-Loop Stability

The literature presents a few basic guidelines for achieving stability in CLSS con-

trollers. For instance, when analyzing a special class of manipulators, Zuo et al. es-

tablished, via a Nyquist analysis, a desired relationship between the system’s crossover

frequency (ωc) and frequency of vibration (ωn) to ensure closed-loop stability [105,

106]. Calvert and Sze [5,94] and Smith [84] also developed a Nyquist criterion based

approach to determine stability. Kapila, et al., used Lyapunov stability criterion

to show that their particular CLSS strategy will be asymptotically stable [28, 29].

Finally, Staehlin and Singh, who analyzed an undamped, second-order system, dis-

cussed closed-loop stability in terms of the relationship between the modeled and

actual system frequencies [91].
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1.7.2.6 Applications of CLSS

Many authors speculate that CLSS controllers will enhance disturbance rejection,

effects of modeling errors and nonlinearities. However, only a few have numerically

or experimentally verified these assumptions. For example, Kapila, et al., compared

outside-the-loop input shaping and closed-loop signal shaping when errors in the

timing of shaper impulses was considered [28, 29]. In addition, Zuo, et al., showed

that CLSS can reject sensor disturbances and provide improved trajectory tracking

when compared to traditional PID control [105].

1.7.2.7 Research Gap

Considering input shaping’s success in working outside the feedback loop, it is natural

to think that it has potential to improve a system’s response to disturbances, non-

zero initial conditions, etc. by including it within a feedback loop. However, input

shapers partially delay the signals that pass through them. Considering the basic

knowledge of how full time delays affect closed-loop stability, the use of partial delays

certainly presents a stability question. Unfortunately, the literature lacks an in-depth

presentation and understanding of the stability of feedback systems utilizing input

shapers inside the loop. For instance, many current stability investigations are specific

to one type of plant model. What is needed is a basic and intuitive understanding of

the stability characteristics inherent to CLSS controllers.

The literature also lacks a detailed investigation into the potential uses of CLSS

controllers. While some researchers have revealed several advantages of CLSS, there is

still much work to be done in this area. One major area of investigation is force distur-

bance rejection. Both Staehlin [91] and Smith [84] proposed unique CLSS controllers

for force disturbance rejection. However, these controllers are somewhat impracti-

cal or ineffective in their current forms. There are also other areas that need to be

investigated: such as non-zero initial conditions, nonlinearities and modeling errors.
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1.7.2.8 Research Hypothesis

1) Because input shaping only partially delays an incoming signal, a feedback

controller containing an input shaping filter can be designed to be stable within a

range of parameter uncertainty.

2) Utilizing an input shaper within the feedback loop will be useful and advanta-

geous so long as it fully filters any signal which it is intended to act upon.

1.7.3 Literature Review - Similar Strategies

The area of controls has been extensively studied for many years. Therefore, new

control theories need to be discussed within the context of, and differentiated from,

similar, established methodologies. In particular, the area of CLSS is being presented

as a recently new control strategy. In this section, CLSS will be compared to, and

contrasted from, “Loop Shaping”, “Zero Phase Error Tracking Control” and “Time

Delay Control”.

1.7.3.1 Loop Shaping

The basic premise of loop shaping is to take some plant and combine it with a con-

troller such that the open-loop frequency response fits within specified boundaries set

by the closed-loop system’s desired performance characteristics and limitations. In

some sense, any kind of feedback control can be viewed in this light. Even the area

of closed-loop signal shaping can be viewed as the desire to reduced an oscillatory

system’s frequency spike via the addition of a corresponding frequency trough.

Loop shaping is a well known feedback controller design strategy that has re-

ceived a significant amount of attention. Del Vescovo and D’Ambrogio used a double

feedback loop and shaped both loops [102]. They used a rational transfer func-

tion but claimed that the controller can be of any form. Eberhardt and Saridereli

developed their own loop shaping technique that has the advantage of utilizing a

simple computation algorithm [11]. Sparks, Banda, and Yeh compared several loop
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shaping techniques which include the use of LQR, H∞, and H2 optimization rou-

tines [90]. Grassi and Tsakalis used an H∞ optimization technique to choose PID

gains for a SISO system [18]. They also discussed the use and optimization of ratio-

nal pre-filtering transfer functions similar to the optimal combination of OLIS and

PID feedback control. Grassi, et al., then extended their technique to make it adap-

tive and self-tuning [19]. Finally, Smith and Messner used modified frequency plot

techniques called “fsbode” and “ftbode” to optimize controller gains for a digital FIR

notch filter [86].

There are several major differences between Loop Shaping and CLSS. First, Loop

Shaping generally seeks to alter a large portion of an open-loop system’s frequency

response - sometimes in both magnitude and phase. CLSS only seeks to alter part one,

small part of an open-loop system’s magnitude plot. It seeks to diminish (or eliminate)

the peaks associated with oscillatory dynamics. CLSS is generally unconcerned about

specifically altering the phase of the open-loop system or any of the remaining portions

of the magnitude response. Second, Loop Shaping is primarily accomplish through

complicated optimization routines. A CLSS filter, on the other hand, will, in general,

be easier to design because (similar to standard input shaping) it is primarily based

upon the original open-loop system’s flexible modes. Any secondary controllers can

be designed via standard root locus or Bode design tools. Thirdly, CLSS filters are

inherently irrational transfer functions, consisting primarily of time delays. Most

Loop Shaping controllers are designed from rational transfer functions (often PID

controllers). Lastly, because of its complexity, Loop Shaping is often reserved for

complicated applications like MIMO systems. CLSS is designed for SISO systems,

although it would be easily applicable to uncoupled, MIMO systems.
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1.7.3.2 Plant Inversion, Zero Phase Error Tracking Control (ZPETC)

The idea of plant inversion is a very attractive concept within the controls field. It

promises the ability to calculate the forces needed to exactly achieve any desired

motion. However, this method has several issues which make its use on real-world

systems problematic. One, it requires an exceedingly accurate model of the system

being controlled. Second, aggressive motions can result in actuator demands that

exceed the capabilities of most real-world systems. Third, in its most basic form,

it is incapable of successfully controlling non-minimum phase systems – which occur

quite often in the real-world. Fourth, it often requires some advanced knowledge of

the desired trajectory, which is not always possible (or, at least, is undesirable) in

practical applications.

There has been some work on advancing the idea of plant inversion to address

some of these shortcomings. Kao, Sinha, and Mahalanabis use a nonlinear feedback

controller on a nonlinear plant to force the closed-loop poles to some desired loca-

tion [26]. An inversion of the closed-loop system is utilized as a pre-filter. To address

the problem of non-minimum phase plants, Tomizuka developed Zero Phase Error

Tracking Control (ZPETC) [95]. While this control scheme works for non-minimum

phase plants, it does require some future input knowledge and is sensitive to model-

ing errors. To address the issue of modeling errors and time-varying systems, Tsao

and Tomizuka developed an adaptive ZPET controller [96]. While effective, there are

always some implementation difficulties associated with adaptive feedback control.

Finally, Smith and Lee experimentally compared non-adaptive and adaptive ZPET

controllers [80]. The adaptive version outperformed the non-adaptive controller in the

experimental results. However, the inputs were again complete trajectories known be-

fore the start of any motion. In addition, both control schemes required repetitive

tuning. The adaptive controller even had some computation problems with the pa-

rameter estimation. Finally, Wen and Potsaid compared ZPETC to other feedforward
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controllers for use in an adaptive control scheme [103].

Zero Phase Error Tracking Control is uniquely different from Closed-Loop Signal

Shaping. ZPETC is an outside-the-loop controller which seeks to improve a system’s

ability to follow a desired reference command. Sometimes, in the adaptive versions,

feedback is used to adjust the ZPETC gains in real time. On the other hand, CLSS

specifically seeks to place input shapers within feedback loops in order to address

a wider variety of controls problems. These problems include disturbance rejection,

system nonlinearities and non-collocated control.

ZPETC is similar to outside-the-loop input shaping, in that both of these control

techniques seeks to improve a system’s response to a reference command. ZPETC is

a more complicated control technique, often requiring an adaptive version in practical

applications. However, it is well-suited for applications where complex trajectories

must be accurately followed. OLIS is a much simpler control technique that is easy

to implement. However, it has not been extensively used to aid a system in following

a complex trajectory. Its typical usage is with simple reference commands, like step

inputs. Because this dissertation will focus on simple commands (like step inputs),

input shaping (both inside and outside the loop) will be studied.

1.7.3.3 Time Delay Control (TDC)

The research addressing closed-loop systems with time delays seems to fit into two

main categories. The first category looks at closed-loop systems with inherent time

delays, often in the feedback loop. The goal here is to add some additional controller

to these systems so that various stability and performance constraints are met. The

second category seeks to intentionally add time delays within a closed-loop architec-

ture (often when no time delays were originally present) so as to again guarantee some

level of stability and performance measures. Most of the reported research focuses on

ensuring stability.
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The majority of controller design schemes found in the literature are highly mathe-

matical and complicated, relying on Ricatti equation and Lyapunov stability based de-

sign. Lee, et al., implemented a hybrid impedance/time-delay controller on a robotic

manipulator [42]. Niculescu, Fu, and Li developed a Lyapunov-Razumikhin and a

frequency-filtering state-space controller for systems with time delays [53]. Haddad,

et al., Mahmoud and Al-Muthairi, and Kapila, et al. developed Lyapunov and/or

Ricatti based controllers [21, 27, 50]. Mahmoud and Bingulac developed a robust

stabilizing scheme for interconnected, uncertain systems [51].

Some other research takes Time Delay Control a step further, intentionally adding

delays to achieve closed-loop stability [2,25,35,101,104]. The most interesting of these

are the works done by Kumar, Alli, Kang and Udwadia who investigated the use of

time delays to stabilize non-collocated systems [2, 25, 35,101].

Finally, a few researchers have gone beyond stability to include performance spec-

ifications in their controllers: including Haddad, et al., and Alli and Singh [2, 21].

There are three main differences between Time Delay Control and Closed-Loop

Signal Shaping. First, TDC generally uses full time delays when intentionally adding

delays as part of a control law. CLSS generally uses partial time delays, allowing some

portion of the error signal to pass through the controller un-delayed. One exception

to this is a modified version of the Model Reference CLSS that will be presented in

Chapter 8. The second main difference is that Closed-Loop Signal Shaping specifi-

cally uses partial time delays to form a filter for the sole purpose of eliminating an

oscillatory vibration mode. Time Delay Control controllers are primarily concerned

with achieving closed-loop stability. Thirdly, the methods used in TDC to guarantee

stability are generally quite complex (usually full Lyapunov stability proofs). This

research into the field of CLSS has intentionally utilized simple and intuitive stability

analysis tools like the root locus and Bode diagram.
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CHAPTER II

CONCURRENT DESIGN OF

OUTSIDE-THE-LOOP INPUT SHAPING AND

PD FEEDBACK CONTROLLERS - MASS

PLANTS

As mentioned in Chapter 1, the concurrent design of outside-the-loop input shaping

and Proportional-Integral-Derivative feedback control in this thesis will concentrate

on the control structure depicted in Figure 2.1. The concurrent design strategy will

calculate the PID controller gains and the input shaper (“IS”) parameters simultane-

ously. This strategy will be compared to the state-of-the-art sequential design scheme,

which first determines the PID controller gains independent of the effects that the

input shaper will produce. Only then is an input shaper added to the sequentially

designed closed-loop system to further decrease settling time and vibration.

This chapter will focus on the control of a mass. Also, the feedback controller used

will be restricted to a PD type controller. The integral action is avoided here for two

reasons. One, a mass under PD control naturally results in zero steady-state error

when given a step reference command. Also, the addition of the integral action will

InIn Y
+

-
+

-
+

- PID GIS

Figure 2.1: Basic Block Diagram for Concurrent Design.
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add a first-order component to the closed-loop transfer function. The simple design

strategy taken in this chapter is based upon having a pure second-order closed-loop

transfer function. Integral control will be added to the feedback controller and design

strategy in a later chapter.

2.1 Basic Assumptions

The following four chapters will discuss the concurrent design of outside-the-loop

input shaping (OLIS) and PID feedback control. For the research presented here, the

following basic assumptions are made:

1. The plant (G) is stabilizable via PID feedback

2. G is linear, time-invariant

3. G is minimum phase

4. The closed-loop system is a single-input, single-output (SISO) system

Each particular study within the following four chapters will add additional assump-

tions that are detailed within their respective section. While assumption #1 will

always be required, future work could extend this research beyond the constraints set

by assumptions #2 - #4.

2.2 Design Methodology

There are many basic methods by which a control system can be designed and con-

troller parameters chosen. For relatively simple systems, analytical design tools can

be used to find a solution. For more complicated systems, various optimization tech-

niques or search routines can be used. Each of these solution methods has its own

advantages and disadvantages.

The research discussed in this dissertation is primarily concerned with proving the

superiority of concurrent design of OLIS and PID feedback control over a sequential
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design methodology. Therefore, the particular design strategy used (analytical, non-

linear optimization, search routine, etc.) is somewhat irrelevant. The methodology

chosen for this research uses a basic knowledge of input shaping, feedback control,

and linear system behavior to create relatively simple concurrent design methodolo-

gies that yield practical solutions for real-world applications. The remainder of this

section will use several design schemes from the literature to describe the details of

the design methodology chosen for this thesis, as well as to highlight the motivation

for such a choice.

2.2.1 Rigid vs. Soft Constraints

In 2005, Gopalakrishnan, Reddy, and Singh published a paper describing their method-

ology for concurrently designing OLIS and PD feedback control for second-order sys-

tems [16]. Their procedure centered on choosing P and D gains which minimized the

cost function

J =
∫ T

0
(1 + αu2)dt (2.1)

when a step reference input was given to the system. Here, T is the time of the final

input shaper impulse, α is a weighting constant and u is the actuator effort.

The idea of designing control schemes based on cost function minimization is well

established and has been used extensively and successfully. However, as with any

design procedure, it does have some weaknesses. Primarily, the fact that J itself

has no real, physical meaning can present some problems. For example, it can be

shown from (2.1) that one purpose of minimizing J is to minimize the settling time

of the controller, whereas another goal is to minimize the actuator effort required.

Note that because modeling errors were not investigated in [16], the time of the last

shaper impulse, T , is a conservative measure of settling time. However, this procedure

is incapable of meeting any strict, numerical limitations on settling time and u(t).
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Three examples will be presented here to demonstrate this deficiency. Each example

will adopt a different method for finding the shaper and controller parameters and

will note the effect on the cost function, J .

The following examples all involve the use of Specified-Negativity-Amplitude (SNA)

shapers [69]. As described in Chapter 1, SNA shapers are similar in form to UMZV

shapers. Both shapers have three impulses in the following pattern: positive impulse

- negative impulse - positive impulse. However, for SNA shapers, the amplitudes of

each impulse can vary. Normally, one impulse amplitude is chosen and the remaining

two are solved for by using vibration constraint equations. The equations shown in

Chapter 1 first specified the amplitude of the negative impulse. Here, however, the

amplitude of the first, positive, impulse is varied between 1 and 0.5. This actually

creates a spectrum of input shapers ranging from the UMZV (when the first impulse

amplitude is unity) to the ZV (when the first impulse amplitude is 0.5). The three

examples presented here seek to investigate the usage of these SNA shapers within

the cost function minimization design scheme presented by Gopalakrishnan, et al.

Note that only PD control of a unit mass is investigated.

The first example seeks to minimize the cost function shown in (2.1). Following

the intuitive results presented by Gopalakrishnan, et al., the derivative gain is held at

zero. Their paper did not analyze the effect of disturbances, so the results discount

the need for damping when external disturbances occur. Then, the proportional gain,

Kp, and the amplitude of the first shaper impulse, A1, are varied to see their effect

on J . Figure 2.2 shows the natural log of J as a function of both Kp and A1. Figure

2.3 shows the minimum J value for each A1 value, and Figure 2.4 shows the settling

time of each system response when the optimal A1 and Kp combinations are used.

Figure 2.5 shows the corresponding maximum actuator effort (max[u(t)] = Umax).

The main result here is that even though the value of J increases along with A1,

as shown in Figure 2.3, the actual Umax reached during the step response generally
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Figure 2.2: J as a Function of Kp and A1.
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Figure 2.3: Minimum J Value as a Function of A1.

decreases with an increase in A1. Also, the increasing J does not necessarily mean a

decrease in the speed of the system, as shown in Figure 2.4.

As a second example demonstrating the major problem with cost function mini-

mization, the PD gains and input shaper parameters were not chosen so as to minimize
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Figure 2.4: Settling Time of Kp & A1 Optimal Combinations.

0.5 0.6 0.7 0.8 0.9 1
2

2.1

2.2

2.3

2.4

2.5

A
1

U
m

ax

Example #1

Figure 2.5: Maximum Actuator Requirement for Kp & A1 Optimal Combinations.

J . Instead, one fixed set of Kd (zero) and Kp values established in [16] is used on the

same range of SNA shapers bridging the gap between the ZV and UMZV shapers.

Again, the effects on J , settling time, and actuator effort are noted. As shown in Fig-

ure 2.6, as A1 increases, J also increases. This is the same trend found in Example #1.
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Figure 2.6: J as a Function of A1 for the Original Kp Value.
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Figure 2.7: SNA Shaper Settling Times Under the Original Kp Value.

However, the effects on settling time and Umax are quite different. As shown in Figure

2.7, as the SNA shaper approaches the UMZV shaper (i.e. A1 increases from 0.5

to 1), settling time uniformly decreases. The actuator effort required for this speed

increase is shown in Figure 2.8. Here, it is clear that the more aggressive shapers
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Figure 2.8: SNA Shaper Maximum Actuator Efforts with Original Kp Value.

require a higher Umax. To summarize the results of this example; J increased, rise

time decreased and Umax increased with an increase in the amplitude of the shaper’s

first impulse, A1.

Finally, a third example is presented. Again, a range of SNA shapers is investi-

gated which spans the gap between ZV and UMZV shapers. However, unlike the

second example, Kp is not held constant. And, unlike the first example, Kp is not cho-

sen so as to minimize J . Instead, for each A1 value chosen, Kp is uniquely determined

such that Umax remains constant.

The main result here is that despite the increase in the cost function J , as seen

in Figure 2.9, increasing A1 actually decreases the system rise time, as seen in Figure

2.10, while maintaining a constant Umax. This means that the system responds faster

despite no increase in the maximum required actuator effort. In terms of these real,

physical characteristics, this is a definite improvement with little cost.

Of course, the seemingly conflicting results of the three previously described in-

vestigations can be explained by noting again that the cost function J has no direct,

physical meaning. Because it has no physical meaning and is actually a mathematical
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Figure 2.9: J as a Function of A1 for the New Kp Values.
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Figure 2.10: SNA Shaper Settling Times Under New Kp Values.

combination of the settling time and actuator effort, simply noting a numeric trend

in J is not sufficient to say anything definitive about the effect on settling time or

actuator effort. This is verified by the summary of findings in Table 2.1. For this

reason, relying upon this type of cost function design procedure can be problematic

when the actual, numeric values of a system’s physical characteristics are important.
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Table 2.1: Summary of Results for the Three Cost Function Examples
A1 J ts Umax

Increased Increased Generally Increased Generally Decreased
Increased Increased Decreased Increased
Increased Increased Decreased Equal

It is important to note that the cost function optimization presented by Gopalakr-

ishnan, et. al, does have many practical uses. For example, the cost function they

introduce does have a direct measure of the energy utilized throughout the system’s

motion, even if it cannot specifically limit the maximum actuator effort reached dur-

ing the move. This is clearly an important issue in many situations. However, this

dissertation will focus on applications where the primary objective is to move as fast

as possible while maintaining meaningful performance constraints on such things as

overshoot and maximum actuator effort. Therefore, this research will avoid the use

of cost function minimization where the cost function itself lacks physical meaning.

2.2.2 Derivative Control vs. Velocity Feedback

Figure 2.11 shows a typical form of PD control where both the proportional and

derivative control elements lie in the forward loop. However, this form of PD control

presents two major challenges. One, most of the research (including this research) on

concurrently designing OLIS and PID controllers has focused on simple, step com-

mands. When step commands, or any other highly aggressive commands, are given

to a control scheme like the one depicted in Figure 2.11, the derivative portion of the

controller will contain large spikes due to differentiating such aggressive commands.

This can lead to unrealistic actuator effort requirements. Secondly, the use of deriva-

tive control in the forward loop results in a closed-loop zero deriving purely from the

controller, as is seen in the following closed-loop transfer function:

tf1 =
(Kp + Kds)G

1 + (Kp + Kds)G
(2.2)
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Figure 2.12: Proportional + Velocity Feedback Block Diagram.

For simple systems, like masses and second-order oscillators, the concurrent design

procedure can largely be done analytically. However, the presence of closed-loop nu-

merators can complicate this process or even make an analytical solution unachiev-

able, because the well known equations that describe the motion of simple, second-

order systems begin to break down when numerator dynamics are present.

The concurrent design scheme proposed in this dissertation will utilize velocity

feedback as its manifestation of derivative control. Shown in Figure 2.12, velocity

feedback puts the derivative control action in the feedback loop and never attempts

to differentiate the reference signal R. This avoids both of the problems listed above.

Aggressive reference signals do not result in large actuator effort spikes, and this form

of the PD controller does not add any closed-loop zeros. This is seen in the following

closed-loop transfer function:

Y

R
=

KpG

1 + (Kp + Kds)G
(2.3)

Note that Gopalakrishnan, et. al, successfully utilize this type of PD controller to

simplify their concurrent design scheme [16].
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2.2.3 Input Shaper Limitations

Another important issue concerns the choice of input shapers used in this research.

Kenison and Singhose utilized a three-impulse shaper that was virtually unconstrained

[30, 31]. While the time of the first impulse was held at zero, the amplitudes of all

three impulses and the timing of the final two impulses were variable. Unfortunately,

with the addition of the closed-loop controller’s proportional and derivative gains,

this meant that their optimization routine had to determine seven variables. This

resulted in an optimization routine with many local minima.

On the other hand, Gopalakrishnan, et. al, looked at input shapers that can

all be expressed as multiple convolutions of the basic ZV shaper [16]. That is, they

investigated the ZV shaper, the ZVD (two ZV shapers convolved together), the ZVDD

(three ZV shapers convolved together), etc. The advantage to doing this is that the

input shaper parameters have less freedom, thereby simplifying the solution routine.

However, by restricting the choice of input shaper parameters, the solution space is

also restricted, meaning that there is the potential for optimal solutions to be missed.

The research described here seeks to form a compromise between these two ex-

tremes. Input shapers are restricted to fit within certain, basic formats to allow for

near-analytical solutions and quick search routines. For example, the ZV and ZVD

shapers are often used. However, this dissertation will also often use input shapers

that have one independently varying parameter. This means that there are multiple

shaper parameters possible for any given closed-loop system, thereby allowing for a

larger solution space to be spanned in search for the optimal, or near-optimal, solu-

tion. These input shapers will be described in more detail throughout the following

chapters.
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2.2.4 Limitations of Concurrent Design

Before describing the design procedures and results arising from this research, it is

important to note the three primary reasons why the concurrent design of OLIS and

PID controllers will fail to be superior to sequential design of OLIS and PID con-

trollers. These reasons are general to the concurrent vs. sequential design argument

and are not unique to the particular design procedures presented in this dissertation.

First, PID control cannot be used on every linear, causal plant. For example, PID

control cannot stabilize the plant G = 1
s6 . In the cases where PID feedback cannot

stabilize the plant, both sequential and concurrent design of OLIS and PID feedback

control are equally useless.

The second area in which both concurrent and sequential design are equally in-

ept is the case when the design specifications are unachievable. For example, if the

constraints state that a system must move extremely fast with little actuator effort,

this simply may not be possible. This type of situation will often leave the con-

current and sequential design equally incapable. However, one interesting result in

this dissertation will show that there are situations where sequential design will not

find a solution, but concurrent design will. This result suggests the superiority of a

concurrent design scheme, even if it cannot always find a solution.

Finally, the third situation occurs when sequential and concurrent design yield

the same solution. One example of this occurs when the design constraints force

the closed-loop system to be non-oscillatory. Here, there is no need for an input

shaper. Therefore, the concurrent design scheme becomes equal to the sequential

design scheme.

2.3 Design of OLIS and PD Feedback Controllers

To begin the study of concurrently designing outside-the-loop input shaping and

PD feedback control, the problem of moving a mass is revisited. This problem was
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addressed by Kenison and Singhose with a full nonlinear optimization routine [30,31],

as well as by Gopalakrishnan, et. al, with their cost function minimization routine

[16]. Here, a less complicated optimization routine is implemented. Because the plant

is a mass, the closed-loop system under PD control is a second-order oscillator. The

characteristics of this system’s response (overshoot, time constant, settling time, etc.)

can be well-defined analytically. This enables a quick, analytically based controller

design routine.

The equations governing the system under investigation are:

G =
1

ms2
(2.4)

Y

R
=

ω2
n

s2 + 2ζωns + ω2
n

(2.5)

ωn =

√

Kp

m
ζ =

Kd

2
√

mKp

(2.6)

where G is the transfer function of the plant, m is the mass to be controlled, Y
R

is

the closed-loop transfer function, ωn is the closed-loop natural frequency, ζ is the

closed-loop damping ratio and Kp and Kd are the proportional and derivative gains.

2.3.1 Sequential Design

In the sequential design process, the closed-loop system is designed without knowledge

of the input shaper which will filter the incoming reference command. The response

characteristics taken into account in this example include maximum actuator effort,

Umax, percent overshoot, Mp, settling time with respect to a reference input, ts, and

time constant, tc. The time constant constraint is used to control the response to

an impulse-like disturbance. The equations for these characteristics, considering only

the effect of the PD controller, are as follows:

Umax = mLω2
n = KpL (2.7)

Mp = e
−ζπ√
1−ζ2 (2.8)
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ts =
4

ζωn

(2.9)

tc =
1

ζωn

=
2m

Kd

(2.10)

Here, L is the size of the step reference command. It should also be noted that these

equations are only true so long as the closed-loop system remains oscillatory.

For this system, and for a given step move, L, the maximum actuator effort

depends only on Kp. Therefore, to maximize the performance of the sequentially de-

signed controller, Kp was set to its maximum possible value. The remaining variable,

Kd, was then chosen to achieve the Mp, ts and tc constraints.

For the simulation results presented here (sequential and concurrent design), the

2% settling time was prioritized. That is, while the overshoot and time constant

constraints were always met, settling time was always minimized within the bound-

aries formed by the other constraints. Therefore, it can be shown that the optimal

sequential design results in a highly damped system (ζ = 0.7− 0.8). This ζ range for

a second-order, closed-loop system is known to result in the quickest settling time in

response to a step input. With ωn set by the pre-chosen Kp value, the chosen ζ value

now sets the derivative gain, Kd. According to the above equations, this results in

very little overshoot, a relatively high time constant and the lowest possible settling

time.

The second step in the sequential design process is to choose the appropriate

input shaper to pre-filter the closed-loop system’s reference commands. However,

according to the first step described above, the closed-loop system has a damping

ratio high enough that input shaping provides little to no benefit. So, the second

step in the design process would often be to choose no input shaper. However, if Kd

was limited in the design constraints, or if rise time tr was given some priority, the

closed-loop system resulting from the sequential design’s first step could be oscillatory,

with ζ < 0.7. For example, Ogata’s “System Dynamics” textbook states that under
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normal circumstances “it is preferable that the transient response be sufficiently fast

as well as reasonably damped. So, in order to get a desirable transient response for a

second-order system, the damping ratio ζ may be chosen between 0.4 and 0.8” [55].

For cases when ζ < 0.7, it would then make sense to apply an input shaper in the

second design step. Many of the sequential design schemes studied in this dissertation

will compromise between rise time and settling time. This will create sequentially

designed OLIS/PID control schemes that are more difficult for a concurrent design

scheme to outperform.

2.3.2 Concurrent Design

When the use of the input shaper is taken into account, the constraint equations

change. As an example, a standard ZV shaper will be used here. The equation for

Umax is now:

Umax = mA1Lω2
n = A1LKp (2.11)

where A1 is the size of the first input shaper impulse whose equation is:

A1 =
e

ζπ√
1−ζ2

1 + e
ζπ√
1−ζ2

(2.12)

The overshoot equation also changes, being set to zero for all cases because zero

modeling error is assumed and because no closed-loop zero is introduced by the

proportional-plus-velocity-feedback controller.

Mp = 0 (2.13)

Modeling errors can easily be addressed by using robust input shapers and by es-

timating the actual Mp by the worst case amount within the expected error range.

This will be investigated in the following chapter.

The final equation to change is the settling time. Because the input shaper will

eliminate the residual vibration, the system will be “settled” when the input shaper
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is complete. Therefore, the settling time is set equal to the time of the final input

shaper impulse. For a ZV shaper, this results in:

ts =
π

ωd

(2.14)

Note that this is actually a conservative estimate of settling time. If the input shaper

causes the system to come to rest at L by the time of the final impulse, then the

system actually crosses the settling time boundary earlier than the final impulse time.

For now, the conservative estimate of the final impulse time will be used. In future

chapters, this estimate will be slightly revised, and settling time for the concurrent

design procedure will be estimated as 90% of the final impulse time.

The one equation which does not change is the time constant. This performance

measure is solely concerned with the closed-loop system and is therefore not affected

by outside-the-loop filters. Its equation remains:

tc =
1

ζωn

=
2m

Kd

(2.15)

The optimization scheme for the concurrent design strategy is fairly simple, but

very different from the sequential design strategy. Settling time is no longer reduced

by moving the closed-loop poles away from the imaginary axis, but by moving them

away from the real axis (increasing ωd). Now, the settling time and time constant

constraints no longer drive the solution in the same direction. Decreasing one does

not necessarily decrease the other, as was the case in the sequential design scheme.

As a result of the competing ts and tc constraints and the priority put on ts, tc

will be set to its minimum value. This will meet, but not exceed, the time constant

constraint. As shown in (2.15), setting tc will also set Kd for a given value of m.

With Kd chosen, Umax is now a nonlinear function of Kp (assuming m is a known

constant). The highest Kp value allowed by the Umax constraint will result in the

highest possible ωn and the lowest possible ζ . This, of course, yields the largest
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Figure 2.13: Concurrent vs. Sequential Design Step Responses.

possible ωd and therefore the quickest settling time. Note that because A1 is always

less than unity, the concurrent design scheme will yield higher Kp and ωn values than

the sequential design scheme.

2.3.3 Simulation Results

To verify the superiority of concurrent design, both design schemes were used to

create a combination OLIS and PD controller for a mass. The plant was assumed

to have unity mass and was required to perform a unit step motion. The actuator

effort was required to remain below 200N for all time. The maximum overshoot was

required to be less than 20%. The minimum time constant, tc, was 0.116 seconds.

Within these boundaries, the settling time, ts, was minimized.

The step response results of both the sequential and concurrent design strategies

can be seen in Figure 2.13. The response labeled “Sequential Design #1” only prior-

itized settling time. Therefore, the damping ratio produced by the sequential design

procedure was ζ ≈ 0.7. The system designed according to Section 2.3.2 is labeled as

“Concurrent Design #1”. As can be seen from this figure, the concurrently designed
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control scheme is faster than the sequentially designed controller labeled “Sequential

Design #1”. In fact, the concurrently designed controller has a 2% settling time that

is 13% smaller than the first sequentially designed controller.

As was mentioned in Section 2.3.1, another sequential design was performed, and

the resulting step response was compared to that of the system created by the concur-

rent design strategy. The step response to this new, sequentially designed controller

is labeled “Sequential Design #2” in each of the figures in this section. This time,

the sequential design scheme was required to balance rise time and settling time.

This was accomplished by forcing the sequential design to just meet its tc and Mp

constraints, but then remain oscillatory. This kept the closed-loop ωd relatively high,

reducing the system rise time. However, this would technically increase the system’s

settling time according to the equations in Section 2.3.1. But, since the input shaper

will cancel any vibration from this oscillatory system, this new sequentially designed

controller actually has a quicker rise time and a quicker settling time than the scheme

designed in Section 2.3.1. It should be noted that this presents a somewhat unfair

comparison with concurrent design, because this new, sequential design scheme is

actually a simplified version of the concurrent design scheme. That is, it took into

account the presence of the input shaper and its effect on the overall performance.

However, it is used here to reinforce the superiority of fully concurrent design strate-

gies. The step response of the concurrently designed controller is faster than either

of the sequentially designed controllers. This modified, sequential design technique

will be used several times throughout the following chapters so as to provide a more

challenging benchmark by which to measure the performance of a concurrent design

technique.

Figure 2.14 shows the disturbance rejection capabilities of the control schemes

whose step responses are seen in Figure 2.13. While the first sequentially designed

controller does seem to have slightly better disturbance rejection, this is somewhat
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Figure 2.14: Concurrent vs. Sequential Design Disturbance Responses.

irrelevant due to the priority put on minimizing settling time. Each control scheme at

least meets the minimum disturbance rejection constraint, tc. In addition to outper-

forming the sequentially designed controllers, Figure 2.15 shows that the concurrent

scheme was equally able to stay within the actuator saturation limits.

In summary, the two best control schemes (“Concurrent Design #1” and “Sequen-

tial Design #2”) perform almost identically in response to an impulse-like disturbance.

However, the concurrent design strategy still yields a slightly faster response to the

step reference input. While both strategies stay within the 200N boundary, the con-

current design scheme actually starts closer to 200N than the second sequential design

does. This occurs because the concurrent design scheme takes into account that the

reference input is initially scaled down by the first impulse of the input shaper. This

knowledge, combined with the concurrent strategy’s full knowledge of input shaping’s

effect on vibration, allows for higher proportional gains. This results in the faster step

response obtained by the concurrently designed controller.
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Figure 2.15: Concurrent vs. Sequential Design - Actuator Requirements.
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Figure 2.16: GUI Design Tool.

2.3.4 Graphical User Interface

The design schemes presented in this section can be visualized and conducted on

a graphical user interface. This is mainly useful for the simplistic mass system,

where both design schemes are analytical in nature. Figure 2.16 shows a graphical

representation that depicts all of the important system properties and constraints.
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The two dashed lines represent the real and imaginary axes. The dotted lines represent

the system constraints. The vertical line represents the smallest acceptable time

constant. The diagonal line represents the maximum allowable overshoot or minimum

damping ratio. The circular lines represent the maximum actuator effort allowed, or

the maximum natural frequency. Note that there are two circular lines to depict

one of the major differences between concurrent and sequential design. One quarter

arc (concurrent design) is larger than the other arc (sequential design) because the

concurrent design scheme knows that the initial step is always scaled by the size of the

first input shaper impulse, A1. This means that a concurrent design scheme allows for

a larger closed-loop natural frequency than is allowed by a sequential design strategy.

The user interacts with this GUI via the directional keypad buttons and places

the closed-loop poles to any desired location. The numerical information on the right

then informs the user of important closed-loop system characteristics.

Not only is the GUI useful for replicating the concurrent and sequential design

schemes described earlier, it is also useful for adding additional tradeoffs. For example,

it is useful for visualizing the sequential design scheme tradeoff between rise time and

settling time. In a concurrent design scheme, it can be used to easily study the

tradeoff between tc and ts.

2.3.5 New Input Shaper with One Independent Variable

While the concurrent design scheme previously described outperformed both of the

sequential design schemes, it can be further improved. This is done by abandoning

the strict limitation that the shaper adhere to the traditional ZV form. Here, a new

input shaper will be derived which is very similar to the ZV shaper, but has one

independent variable which is used to increase the solution space and achieve better

solutions.

The key to this new input shaper comes from (2.11). The maximum actuator effort
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Figure 2.17: Vector Diagram Describing New Input Shaper.

(which normally occurs at time t = 0) depends upon the size of the step given to the

closed-loop system. This step size depends upon the input shaper being used, as the

original step size is scaled by the size of the first impulse. Therefore, it is desirable

that the input shaper being used have a relatively small first step. Consequently,

the new input shaper has variable initial impulse amplitude. This new input shaper

can be seen in Figure 2.17. The original input shaper, whose impulses are denoted

by A#orig, represents a standard ZV shaper. The new input shaper is created via

a numerical routine to obtain zero residual vibration, an impulse summation of one

and a specified size of the first impulse. Here, the first impulse is roughly 60% the

size of a standard ZV shaper’s first impulse. Also, as can be seen from Figure 2.17,

this new input shaper requires a third impulse (labeled A3new) to ensure complete

vibration cancelation. Once the new input shaper is obtained, the size of the first

impulse is re-entered into the concurrent design equations listed above to allow for

further increase of the PD gains. The response result is shown in Figure 2.18 as

“Concurrent Design #2”.

The concurrently designed controller now provides arguably better disturbance

rejection and a clearly superior step response than either of the sequentially designed
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Figure 2.18: Redesigned Input Shaper in Concurrent Design.
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Figure 2.19: Actuator Requirements for System with Redesigned Input Shaper.

controllers. However, even though it does not violate the maximum actuator limit,

this response clearly requires a more aggressive actuator effort, as shown in Figure

2.19.

All four designs are compared in Figures 2.20 and 2.21. Concurrent design one
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Figure 2.20: Full Comparison.
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Figure 2.21: Full Comparison - Actuator Requirements.

utilizes standard ZV shapers, while concurrent design two utilizes the new, variable

impulse shaper with reduced first impulse. Both concurrent designs outperform the

sequential designs, while the two concurrent designs present a typical tradeoff be-

tween performance and actuator requirements. While each controller stayed within
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its maximum actuator limits, the controller developed by “Concurrent Design #2”

clearly requires a more aggressive and demanding actuator response.

One final note that can be made in regards to Figure 2.20 is that these four

control schemes indicate the presence of a spectrum that spans the gap between

sequential design and concurrent design. The “Sequential Design #1” response was

obtained by completely ignoring all effects of input shaping and utilizing only the

feedback controller to minimize settling time. “Sequential Design #2” was actually

a simple and incomplete version of a concurrent design in that it gave rise time some

priority knowing that input shaping would eventually cancel vibration. “Concurrent

Design #1” fully understood and used the knowledge of standard input shaping to

design a superior control scheme. Finally, “Concurrent Design #2” utilized a deeper

understanding of how input shapers and feedback controllers interact to develop new

input shapers that yield faster responses.

2.4 Look-up Tables for Varying Parameters

The concurrent design scheme presented thus far yields results that are specific to

the plant’s mass and the desired step size. However, many real systems are required

to move varying masses over varying distances. For example, a pick-and-place robot

may need to move three different masses over three different distances during its

normal operation. For optimal performance, this requires multiple PD and shaper

parameters. While simple design schemes could be performed in real time, this section

demonstrates the use of a look-up table.

To demonstrate the solution’s dependence on the mass and step size, several ex-

amples will be discussed. Figure 2.22 shows the step response to the concurrently

designed control scheme when both the design step size, Ldes, and the actual step

size, Lact, are equal to unity. When the same controller parameters (Ldes = 1) are
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Figure 2.22: Varying Step Size (L) Responses.
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Figure 2.23: Actuator Efforts Required for Varying Step Size (L) Responses.

used to move the system one-tenth (Lact = 0.1) the designed move distance, the re-

sult is much slower than if both the designed and actual move distances were 0.1

(“Ldes = Lact = 0.1”). The reason for this dependance on L is seen by the actua-

tor efforts shown in Figure 2.23. When the actual step size, Lact, is lower than the
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Figure 2.24: Varying Plant Mass Responses.

designed step size, Ldes, the system under utilizes its actuator, resulting in slower

movements.

If the step sizes are kept the same, but the designed and actual plant masses

are varied, then a modeling error situation arises. Remember from Section 2.3 that

the plant mass affects the closed-loop natural frequency. Therefore, if the designed

and actual plant masses are equal, a fast, vibration free motion will occur. This can

be seen in Figure 2.24 where mdes = 1 and mact = 1. However, if mdes is left at

unity while the actual plant mass, mact, is raised to 2, the actual closed-loop natural

frequency is different from the natural frequency estimate used to design the input

shaper. This results in non-zero residual vibration. Also note from Figure 2.25 that

a higher mact results in actuator limit violations (Umax = 200 here). If mdes is now

adjusted to meet the actual mass of 2 units, the system is again vibration free (Figure

2.24) and within the actuator limits (Figure 2.25).

Figures 2.26 - 2.32 show each control parameter’s dependance on mass and L.

This information can be used to establish look-up tables for a real-world system.
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Figure 2.25: Actuator Efforts Required for Varying Plant Mass Responses.
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CHAPTER III

EXPERIMENTAL RESULTS USING A MASS

PLANT

In order to verify the theoretical developments presented in the previous chapter, the

superiority of concurrently designing outside-the-loop input shaping and PD feedback

controllers was experimentally tested. As in the previous chapter, the plant under

control was a mass, although the experimental setups did have some nonlinear effects

such as friction which are not modeled in the controller design procedures. There

were four main experiments completed, two on a rotational inertia and two on a

translating mass.

3.1 Rotational Mass Experiments

The rotating inertia experiments were completed on a setup similar to the one de-

picted in Figure 3.1. The setup consisted of a rotational motor and a rotational

inertia (mass added to the motor shaft). The inertia was determined by forcing the

M
ot

or

Inertia

Figure 3.1: Experimental Setup.

66



motor to output various constant torque values and then measuring the resultant

angular acceleration. The inertia value calculated in this manner was then checked

by estimating the inertia of the added mass via its density and physical dimensions

and finding the inertia of the motor from the motor’s documentation.

3.1.1 Rotational System Verification

Because the experimental setup is a real system, it will not behave in a completely

linear manner. For example, this motor has some kinetic friction that affects the ro-

tational motion. In order to verify that the system would behave in an approximately

linear manner, several system verification trials were completed.

These system verification trials looked at the motor’s step response to various

proportional (Kp) and derivative (Kd) gains. Note that the derivative action was im-

plemented as velocity feedback. A nonlinear, least-squares algorithm was then used

in MATLAB to fit linear mass-under-PD-control responses to the previously obtained

experimental responses. Since the rotational inertia had already been determined, the

least-squares algorithm chose the appropriate proportional and derivative gains which

minimized the error between the linear, simulated step response and the experimen-

tally obtained step response. The relationship between the Kp and Kd gains used

in the experiments to those found from the MATLAB least-squares algorithm was

used to verify that the motor-mass system was acting in a near-linear manner. The

experimentally-used and simulation-determined proportional and derivative gains are

summarized in Table 3.1. Here, “Exp” refers to the values entered into the PLC

controlling the motor and “Sim” refers to the values determined by the least-squares

algorithm in MATLAB. Note that both the proportional (Kp) and derivative (Kd)

gains are consistent between experiment and linear simulation.

Figures 3.2 through 3.11 show the experimentally measured step responses, the

simulation based responses and the gains determined by the least-squares algorithm.
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Table 3.1: Linearity Verification Results - Rotational Experiments
Exp Kp Sim Kp Exp Kd Sim Kd

0.35 0.37 0.006 0.004
0.35 0.37 0.008 0.006
0.35 0.37 0.010 0.008
0.35 0.37 0.012 0.011
0.35 0.38 0.014 0.013
0.127 0.13 0.002 0.002
0.127 0.129 0.004 0.004
0.127 0.129 0.006 0.006
0.127 0.129 0.008 0.009
0.127 0.13 0.010 0.010
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Figure 3.2: Mass Calibration Experiment 1.

The first half of the experiments, Figures 3.2 through 3.6, have the same experimental,

proportional gain (Exp Kp = 0.35). Figure 3.2 begins with an experimental, derivative

gain of 0.006. The next four experiments have the same experimental, proportional

gain and an incrementally (increment is 0.002 units) higher derivative gain. The same

is true for Figures 3.7 through 3.11. Here, the experimental, proportional gain is held

fixed at (Exp Kp = 0.127) and the experimental, derivative gain rises incrementally

from 0.002 to 0.010.
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Figure 3.3: Mass Calibration Experiment 2.
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Figure 3.4: Mass Calibration Experiment 3.
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Figure 3.5: Mass Calibration Experiment 4.
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Figure 3.6: Mass Calibration Experiment 5.
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Figure 3.7: Mass Calibration Experiment 6.
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Figure 3.8: Mass Calibration Experiment 7.
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Figure 3.9: Mass Calibration Experiment 8.
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Figure 3.10: Mass Calibration Experiment 9.
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Figure 3.11: Mass Calibration Experiment 10.

3.1.2 Rotational Mass: Experiment Set #1

The system was commanded to move π radians with a maximum actuator effort of

0.4Nm. The design parameters sought to achieve the fastest 2% settling time while

maintaining less than 5% overshoot and a time constant ( 1
ζωn

) less than, or equal to,

0.15sec.

Once the experimental setup’s behavior was understood, sequential and concur-

rent design procedures similar those described in Section 2.3 were performed with the

design specifications that were detailed in the previous paragraph. This design proce-

dure chose the appropriate PD gains and shaper parameters for both the sequentially

and concurrently designed controllers. And, like the simulation results in Section 2.3,

this experiment sought to give the sequential design method the greatest chance for

success. For example, simply looking at a mass under PD control, and desiring the

smallest settling time, one would naturally choose a damping ratio between 0.7 and

0.8. However, the sequential design procedure used here gave some importance to

rise time (although it was not technically a design parameter). This was done so
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Table 3.2: Rotational Mass Design #1
SequentialDesign ConcurrentDesign

Kp = 0.127 Kp = 0.33
Kd = 0.0177 Kd = 0.017

A1 = 1 A1 = 0.38
A2 = N/A A2 = 0.48
A3 = N/A A3 = 0.14
t2 = N/A t2 = 0.12
t3 = N/A t3 = 0.312
ωn = 9.9 ωn = 16.51
ζ = 0.69 ζ = 0.4

that the sequentially designed control scheme would be faster (when an input shaper

or natural friction was added) than it would have been had rise time been ignored.

The fact that the concurrently designed scheme still outperformed the sequentially

designed scheme under these circumstances shows all the more that it is a generally

superior design strategy.

Using the design specifications noted at the beginning of this section, the gains

and shaper parameters shown in Table 3.2 were found using the sequential and con-

current design procedures. There are several things worth noting from Table 3.2.

First, as would be expected, the concurrent design yields a significantly higher Kp

value. However, somewhat unexpected is the virtual equality between the sequen-

tially and concurrently determined Kd values. This did not occur in the simulations

described in Section 2.3. This phenomenon occurred here because the disturbance

rejection constraint (time constant, tc) was equally as “stringent” as the overshoot

constraint. The sequential design technique required the indicated Kd value to meet

both its overshoot and time constant constraints. The concurrent design uses input

shaping to meet its overshoot constraint, but must still rely on Kd to meet its time

constant constraint. This was intentionally done to show one of the intricacies of

the concurrent design process. Some constraints, like disturbance rejection, are not

directly affected by the presence of an outside-the-loop input shaper. They are only
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affected by the closed-loop system characteristics. Therefore, if a system’s set of

performance constraints heavily restrict the closed-loop system’s form or characteris-

tics, then the sequential and concurrent design techniques will begin to yield similar

results. However, it is clear from Table 3.2, that enough freedom was given to the

concurrent design technique that a much higher Kp was chosen, resulting in an overall

higher closed-loop frequency (ωn) and lower damping (ζ).

It should also be noted that the sequentially designed control system was subse-

quently given no input shaper. This occurred because the closed-loop system had

such a high damping ratio. Even though a damping ratio of 0.69 will yield non-zero

overshoot, the system friction eliminated this undesired aspect and actually helped

the unshaped, sequentially designed system to settle faster than it would have with-

out friction. Note that by not using an input shaper and allowing friction to help

the sequentially designed system’s response, a very favorable sequentially designed

response will be used to determine if concurrent design procedures yield any improve-

ment. Figure 3.12 shows the simulated and experimental responses of the closed-loop

system that was sequentially designed.
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Figure 3.12: Sequentially Designed System Response.
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Figure 3.13: Concurrent Design Calibration.

Figure 3.13 shows an unshaped step response of the closed-loop (PD+Mass) sys-

tem designed via the concurrent design scheme. This was done so that minor ad-

justments to the P and D gains could be made in the PLC so that the closed-loop

experimental response closely matched the simulated closed-loop response (the sim-

ulated and actual P and D gains are slightly different due to modeling errors and

nonlinearities). Remember that the concurrently designed control system is rela-

tively non-oscillatory due to the stringent disturbance rejection constraint used in

this particular example.

With the concurrently designed P and D gains found, the input shaped response

(using the input shaper specifically designed along with the P and D gains) is shown

in Figure 3.14. Here, the “Simulated” response is that predicted by the concurrent

design algorithm. Using the experimentally adjusted PD gains (Figure 3.13) and

the concurrently designed input shaper, the response labeled “Original Design” is

obtained. This is obviously more oscillatory than expected. A zoomed in view of

Figure 3.14 (shown in Figure 3.15) indicates that the “Original Design” peaks before

the final impulse time of 0.31 seconds. A manual adjustment is made here on the
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Figure 3.14: Concurrently Designed System Response.
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Figure 3.15: Concurrently Designed System Response - Zoomed-in View.

final shaper time (its dropped from 3.1 sec to 2.9 sec) to produce the well behaved

“Experimentally Altered” response. This shaper error is most likely due to modeling

errors and nonlinearities. This manual adjustment of the input shaper is a reasonable

procedure to expect on many real-world systems.
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Figure 3.16: Design Response Comparison.

Figure 3.16 compares the sequentially designed and concurrently designed system

responses. The dotted black line indicates the desired final position, whereas the

dashed black lines indicate the 2% settling time boundaries. Clearly, the concurrently

designed control system has a faster rise time and 2% settling time (∼ 40% faster in

terms of ts), as well as less steady state error (due to the higher P gain). However,

it should be noted that the undershoot present in the concurrent design scheme is

sometimes larger than indicated here (it varied between trials), sometimes dipping

temporarily below the 2% settling time line. Regardless, the concurrent design scheme

is still faster and has less steady-state error. Remember also that this comparison

somewhat favored the sequential design scheme - so any improvement over it is all

the more notable.

Figure 3.17 shows the actuator efforts required for the responses shown in Figure

3.16. The lines without data markers indicate the simulated actuator requirements,

whereas the lines with data markers indicate the experimentally measured actuator

requirements. The blue, dashed lines are for the sequentially designed system (“Seq.
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Figure 3.17: Required Actuator Efforts.
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Figure 3.18: Disturbance Rejection Capabilities.

Des.”), and the red, solid lines are for the concurrently designed system (“Con. Des.”).

Figure 3.18 shows the predicted and actual disturbance responses for both the se-

quentially designed (“Seq. Des.”) and concurrently designed (“Con. Des.”) systems.
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Table 3.3: Rotational Mass Design #2
SequentialDesign ConcurrentDesign

Kp = 0.127 Kp = 0.375
Kd = 0.0117 Kd = 0.0086
A1 = 0.83 A1 = 0.34
A2 = 0.17 A2 = 0.41
t2 = 0.356 A3 = 0.25

t2 = 0.111
t3 = 0.265

ωn = 9.9 ωn = 17.51
ζ = 0.46 ζ = 0.19

The error between the predicted and actual responses is believed to result from un-

modeled friction helping to reject the disturbance. However, note that each response

closely matches the predicted form and timing.

3.1.3 Rotational Mass: Experiment Set #2

A second set of experiments was performed using the rotational mass. The mass was

again commanded to rotate π radians with a maximum actuator effort of 0.4Nm.

However, the overshoot allowance was increased to 20% and the time constant con-

straint was increased to 0.3sec. These performance specifications and constraints led

to the sequential and concurrent design parameters shown in Table 3.3.

To ensure that the actual mass would respond as expected, a few calibration ex-

periments were performed. These calibrations were performed by finding the unit

step response (experimentally and in simulation) under the PD gains shown in Ta-

ble 3.3. The PD gains used in the PLC were adjusted so that the actual system

would respond as predicted in simulation. Using the sequentially designed PD gains,

the step response of the rotational inertia is shown in Figure 3.19. Note that the

unmodeled friction caused the experimental response to appear more damped than

was predicted. This actually aids the sequentially designed controller to improve its

settling time without violating any constraints, so the sequentially designed feedback

controller used in the actual experiments was the same as was designed in MATLAB

80



0 0.2 0.4 0.6 0.8 1 1.2
0

0.5

1

1.5

2

2.5

3

3.5

Time (sec)

R
es

po
ns

e 
(r

ad
)

Experiment
Simulation

Figure 3.19: Sequential Design Calibration.

and presented in Table 3.3. However, since the closed-loop system peaks earlier than

predicted, the time of the final shaper impulse was lowered from t2 = 0.356sec to

t2 = 0.32sec.

The same calibration procedure was performed for the concurrently designed con-

troller. In this case, it was found that using the concurrently designed PD gains in

the PLC resulted in a step response that was much more oscillatory than predicted.

Therefore, the PD gains shown in Table 3.3 were adjusted from Kp = 0.375 and

Kd = 0.0086 to Kp = 0.3 and Kd = 0.011. This adjustment made the actual feedback

controller behave like the concurrently designed and simulated feedback controller, as

is shown in Figure 3.20.

Once the two feedback systems (sequentially and concurrently designed) were

behaving as designed, the respective input shapers were applied to test the overall

control systems. Figure 3.21 compares the step responses of the sequentially and

concurrently designed controllers. Here, the concurrently designed control scheme

has a settling time that is 37.4% faster than the sequentially designed controller. In

addition to improving upon the settling time, the concurrently designed controller has
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Figure 3.20: Concurrent Design Calibration.
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Figure 3.21: Step Response Comparison #1.

an 87.6% improvement in steady-state error. Note that this figure denotes the desired

position of π rad by a dotted line and the settling time boundaries by dash-dot lines.

Figure 3.22 shows the actuator effort requirements for the step responses shown in

Figure 3.21. Neither control scheme violates the actuator limits, but the concurrently

designed controller does require a more aggressive actuator response.
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Figure 3.22: Actuator Comparison.

A second response comparison was performed after the input shapers were slightly

adjusted to improve settling time. Because the sequentially designed controller peaked

below the settling time window, its input shaper was adjusted to have a slightly higher

first impulse (A1). Then, because the concurrently designed controller also peaked

outside the settling time window, its impulse amplitudes were also adjusted. The

new controllers had step responses as shown in Figure 3.23. Note that each controller

shown here had a faster settling time than the respective control scheme shown in

Figure 3.21. Also, the concurrently designed control scheme had a 10% improvement

in settling time and a steady-state error improvement of 12.5%.

Finally, Figure 3.24 compares the disturbance rejection capabilities of the se-

quentially and concurrently designed feedback controllers. Clearly, the sequentially

designed controller is more capable of quickly rejecting disturbances. However, this is

a result of the sequential design scheme over-meeting its time constant constraint in

order to meet its overshoot constraint. The concurrent design scheme does not have

this problem, and is able to just meet the time constant constraint and prioritize

settling time.

83



0 0.2 0.4 0.6 0.8
2.5

3

3.5

Time (sec)

R
es

po
ns

e 
(r

ad
)

Sequential Design
Concurrent Design

Figure 3.23: Step Response Comparison #2.
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Figure 3.24: Disturbance Response Comparison.

3.2 Translational Mass Experiments

The concurrent design scheme for a mass plant was also tested experimentally on

a portable crane setup located at the Georgia Institute of Technology and seen in

Figure 3.25. Only one degree of freedom (the trolley motion) was utilized for these
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Figure 3.25: Portable Bridge Crane Located at Georgia Tech.

experiments. A rotational motor powered a belt system which connects to the trolley

device. By way of this connection to the belt, the trolley translates back and forth as

shown in Figure 3.25. As for the rotational mass experiments, the main nonlinearity

for this system was coulomb friction, which here arose from the trolley’s sliding con-

tact with some of the crane’s rigid, structural components. There was also a small,

additional, oscillatory mode arising from the belt flexibility. Although the motor to

trolley unit technically formed a two-mode, nonlinear system, it was approximated

here as a translational mass.

3.2.1 Translational Mass: Experiment Set #1

Similar to Section 3.1.1, the mass of the trolley was estimated by fitting simulated

responses to experimentally obtained responses. The response fitting program chose

the proportional (Kp) gain, the derivative (Kd) gain and the mass which resulted in

the best numeric fit. The results are presented in Table 3.4. The actual gain values
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Table 3.4: Translational Mass System Verification
Actual Kp Calculated Kp Actual Kd Calculated Kd Calculated Mass (kg)

800 782 0 10.87 3.91
800 786 4 14.75 3.85
800 786 8 18.79 3.73
800 788 12 22.7 3.67
300 293 -6 6.2 3.82
300 294 -4 9.1 3.72
300 292 -2 11.4 3.94
300 292 0 13.23 3.79

are those which were used by the PLC to maneuver the trolley experimentally. The

calculated values are those determined by the numeric fit program. As can be seen in

the table, the proportional gain did not deviate significantly from the value used in

the PLC. However, there was always a significantly higher calculated Kd value, due to

the unmodeled friction. This discrepancy was taken into account when programming

the PLC. That is, if a design scheme required a certain derivative gain, the PLC was

given a smaller Kd value so that the total derivative gain (from the PD controller in

the PLC and from friction) yielded the correct derivative action. Finally, it should

be noted that the calculated mass values were fairly consistent, and the average mass

value of 3.8kg was used for the sequential and concurrent design procedures.

Using the system verification results presented in Table 3.4, both a sequential and a

concurrent design procedure were performed. The design constraints were an actuator

limit of 30N (from the Siemens motors and drives used for these experiments), a

maximum overshoot of 30% and a time constant upper limit of 0.25sec. Within

these constraints, the trolley was expected to move 0.1m with the fastest possible 2%

settling time. Following these performance specifications and design constraints, the

sequential and concurrent design solutions are presented in Table 3.5. Note that to

account for the effects of friction, the Kd value was entered into the PLC as Kd = 14.44

for the sequentially designed controller and Kd = 19.75 for the concurrently designed

controller. This was done via a process similar to the one whose results are shown in
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Table 3.5: Translational Mass Design #1
Concurrent Design Sequential Design

Kp 830 300
Kd 30.4 30.4
ωcl 15.3 8.88
ζcl 0.26 0.45
A1 0.36 0.83
A2 0.43 0.17
t2 0.128 0.4
A3 0.21
t3 0.313
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Figure 3.26: Step Response Comparison.

Figure 3.13, where the actual and simulated step responses were compared and the

gains used in the PLC were adjusted so that the closed-loop system behaved as was

designed by the sequential or concurrent design procedure. Also, as in Chapter 2,

the sequential design scheme had an added tr constraint to give the sequential design

scheme the best possible performance.

These two controllers (sequential and concurrent) produce the step responses

shown in Figure 3.26. Notice that while the concurrently designed controller is still

somewhat oscillatory, the sequentially designed controller never settles within the 2%
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Figure 3.27: Actuator Effort Comparison.

settling time boundary, therefore yielding an infinite settling time. By using such a

high proportional gain, the concurrently designed controller settles close to the desired

location in a reasonable amount of time.

As described before, the cost required for such an improved response by the con-

currently designed controller is a more aggressive actuator effort profile. The actuator

efforts required for the previously shown step responses are shown in Figure 3.27. Nei-

ther controller violates the actuator limits, but the concurrently designed controller’s

actuator demands are more aggressive.

Lastly, Figure 3.28 shows that both control schemes are well equipped to reject

disturbances in a short amount of time.

3.2.2 Translational Mass: Experiment Set #2

The second set of translating-mass experiments was performed using a slightly differ-

ent trolley mechanism. Similar to the previously described experiments, this trolley’s

mass was estimated to be 3.46kg. For this experiment, the system parameters and

design constraints were:
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Figure 3.28: Disturbance Response Comparison.

System Parameters and Design Constraints

Step Size (L) = 0.1 m

Plant Mass (m) = 3.46 kg

Maximum Actuator Effort (Umax) = 30.25 N

Maximum Percent Overshoot (Mp) = 5%

Disturbance Rejection Constraint ( 1
ωclζcl

) < 0.25

Note that the actuator limit was set by the motor drives used for these experiments.

The design results for this particular system are shown in Table 3.6. Again, the

sequentially designed controller had a damping ratio too high to really benefit from

input shaping.

Similar to the first translating-mass experiment, the derivative gain used in the

PLC controlling the crane is not the effective Kd acting on the mass (due to fric-

tion). Therefore, before these controllers were tested, several more calibrations were
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Table 3.6: Approximate Mass Experiments
Concurrent Design Sequential Design

Kp 843 302.4
Kd 27.7 44.65
ωcl 15.6 9.35
ζcl 0.26 0.7
A1 0.36 1
A2 0.43 NA
A3 0.21 NA
t2 0.12 NA
t3 0.3 NA
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Figure 3.29: Sequential Design Experimental Results - Response.

completed to find the Kd value needed by the crane’s PLC so that the trolley’s mo-

tion would act like the closed-loop systems described in Table 3.6. The actual Kd

values used in the crane’s feedback control system were 35 (instead of 44.65) for the

sequentially designed controller and 15 (instead of 27.7) for the concurrently designed

controller.

Figure 3.29 shows the experimental response of the trolley under the sequentially

designed controller. The actual response closely matches the desired response until

stiction effects force it to stop and suffer from a significant steady-state error. This
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Figure 3.30: Concurrent Design Experimental Results - Response.

steady-state error problem could be improved by using friction compensating input

shapers [40,41]. However, this requires knowledge of the system’s friction properties.

This information is not always easy to determine. Fortunately, the concurrent design

of OLIS and PID naturally mitigates the steady-state error problem by allowing for

higher proportional gains.

Figure 3.30 shows the experimental response of the trolley under the concurrently

designed controller. While this system moves fast and eliminates nearly all steady

state error, there is some high-mode excitation. This results in a small overshoot and

a longer settling time than expected.

Figures 3.31 and 3.32 show the intended and actual actuator efforts required for

both the sequentially and concurrently designed controllers. Both figures show that

the actual system behaves in a manner consistent with the theoretical predictions.

The main difference for the sequential design is the non-zero, steady-state effort arising

from friction. The main difference for the concurrent design is the high frequency

component at the end of the move.
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Figure 3.31: Sequential Design Experimental Results - Actuator Effort.
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Figure 3.32: Concurrent Design Experimental Results - Actuator Effort.

Figure 3.33 directly compares the sequentially and concurrently designed responses.

Clearly, the concurrently designed control scheme is faster than the sequentially de-

signed scheme (in terms of rise time). Also, because of the higher Kp value typical of
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Figure 3.33: Step Response Comparison.

the concurrent design scheme, this controller is able to eliminate virtually all steady-

state error. This was an unplanned benefit of using a concurrent design architecture

that has occurred in each of the experiments presented in this chapter. As in the

previous translational mass experiment, this steady-state error reduction allows the

concurrent design scheme to have a finite 2% settling time of 0.53sec, whereas the

sequential design scheme never settles.

However, the concurrent design scheme’s high Kp also causes some problems,

including a small overshoot and settling time increase. Another cost associated with

(and expected from) this particular concurrent design scheme is shown in Figure

3.34. The concurrently designed controller requires more actuator effort than the

sequentially designed controller. However, neither controller saturates the actuator.

Figure 3.35 shows the disturbance rejection capabilities of the two control schemes.

Clearly, both control schemes behave similar to the simulated predictions, with the

sequentially designed controller yielding better results due to the fact that it exceeds

its disturbance rejection constraint.
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Figure 3.34: Actuator Effort Comparison.
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Figure 3.35: Disturbance Response Comparison.

There are several ways in which the un-modeled dynamics problem seen in the

concurrently design controller may be addressed. One is to develop a more sophis-

ticated plant model and concurrent design routine. This will be addressed in future
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Figure 3.36: Multimode Shaper Experimental Results - Response.

chapters. Here, however, two simple approaches will be examined. The first ap-

proach simply analyzes the experimental response in Figure 3.30 and determines the

frequency of the high-mode vibration. Then, a second, single-mode input shaper is

added to the concurrently designed shaper for the purpose of eliminating this high

mode. The response of this multi-mode concurrent design scheme is compared to the

original concurrently and sequentially designed controllers in Figure 3.36. The second

method simply re-ran the concurrent design routine and limited the Kp value. The

idea was to compromise and create a system with a Kp value higher than the sequen-

tially designed proportional gain (for a faster response) but lower than the original,

concurrently designed proportional gain (to lesson the high-mode excitation). The

resulting “Kp Limited” concurrent design scheme is compared to the sequentially

designed controller and the original, concurrently designed controller in Figure 3.37.

Both of these new responses eliminate the overshoot problem associated with the orig-

inal concurrent design scheme and still improve upon the sequential design scheme’s

steady-state error problem. However, both new concurrent schemes still have settling

times that are larger than expected.

95



0 0.5 1 1.5 2
0

0.05

0.1

Time (sec)

R
es

po
ns

e 
(m

)

Concurrent Design
Concurrent Design − K

p
 Limited

Sequential Design

Figure 3.37: Kp Limited Experimental Response Comparison.

Even though some of the concurrent design results in this experiment deviated

from theory, the results presented for this experiment are actually quite promising. It

should be noted that a fairly complex, dynamic system, the crane trolley, was modeled

with a very simple approximation (it was treated as a mass). Even with the gross

simplification, the concurrent design procedure produced controllers that performed

very well. The steady-state error was virtually eliminated and the overshoot was very

small (or zero). And, these results were obtained while observing actuator limitations.
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CHAPTER IV

CONCURRENT DESIGN - PURE AND

APPROXIMATE SECOND-ORDER PLANTS

This chapter will continue the investigation of concurrently designing outside-the-loop

input shaping and PD feedback controllers by looking at more complicated plants.

As in the previous two chapters, the basic control architecture is as shown in Figure

4.1. Integral control is ignored again here so as not to add a first order term to

the single-mode systems being studied. The only change in the block diagram is the

“ 1
DCGain

” term. This is done because some of the closed-loop systems studied in this

chapter will not have unity DC gain when under PD control. Remember that the two

previous chapters only studied mass plants, where the resulting closed-loop system

under PD control always has a unity DC gain.

Section 4.1 will begin this chapter with a short extension of the concurrent design

process to handle plants that are second-order oscillators. Section 4.2 will continue

the extension of the concurrent design process to multi-mode systems with numer-

ator dynamics that have the unique property of being reasonably approximated as

single-mode plants without numerator dynamics. This section will also highlight

+- ++IS P

Df

R YG+-

D s

1
DC Gain

Figure 4.1: Proportional + Velocity Feedback Controller with Gain Compensator.
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several scenarios described in Section 2.2.4; i.e. when concurrent and/or sequential

design fails. Section 4.3 will then show how and when the single-mode approxima-

tion becomes invalid, motivating the work in the following chapter on non-reducible

multi-mode systems.

4.1 Pure Second-Order Plants

This section will focus on plant types of the form:

G =
A

s2 + 2ζωns + ω2
n

(4.1)

where ωn is the plant natural frequency, ζ is the plant’s damping ratio, and A is a

scalar.

The mass studied in the previous chapter is very similar to the second-order plant

studied here. In fact, a mass is just a non-oscillatory second-order system. When

a mass is included within a PD feedback loop, the closed-loop system is second-

order and oscillatory, just like the plant given in (4.1) (assuming the closed-loop

system remains under-damped). Therefore, it makes sense that the equations of

motion for the closed-loop system with G as a second-order oscillator are similar

to the equations for the closed-loop system when G is a mass. However, there is

one important difference. The equation describing the actuator effort becomes more

complicated when the plant is a second-order oscillator. The maximum actuator effort

is no longer guaranteed to occur at time t = 0. This complicates the equations and

design procedure, which must check for actuator saturation. While there are many

ways to address this problem, a full search routine is utilized here.

This full search routine was chosen here so as to highlight the differences between

an analytically based solution routine and a comprehensive, numerical search routine.

The analytical solution (as discussed while studying the mass plant in the previous

two chapters) is very fast. The numerical search routine utilized here is much slower,
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but is better able to handle more complicated systems not easily described analyti-

cally. Studying these advantages and disadvantages will lead to a future, compromise

solution that relies heavily on equations to describe a closed-loop system’s response

(its overshoot, maximum actuator effort, etc.). This compromise solution will then

periodically check the analytically based solution via a full, numeric simulation of the

system.

The search routine utilized in this section establishes Kp and Kd ranges and then

performs an exhaustive search throughout this parameter space for the optimal Kp

and Kd values. The minimum Kp is chosen from a Routh stability formulation. The

minimum Kd is chosen from both a Routh stability formulation and the minimum

time-constant constraint (for disturbance rejection). Note that the Kp minimum is

sometimes negative. The maximum Kp is chosen to be the maximum proportional

gain which does not cause actuator saturation at time t = 0. While this time is

no longer the time at which Umax necessarily occurs, it still yields an obvious upper

limit on Kp. Finally, the maximum Kd value is the derivative gain that yields a

critically damped system when Kp is held at its maximum possible value. The closed-

loop transfer function is forced to remain oscillatory because this is the region where

concurrent design is superior to sequential design. It has already been discussed in

Section 2.2.4 that if the design constraints force the closed-loop system to be over-

damped, concurrent and sequential designs would yield equal solutions.

Once the Kp and Kd boundaries have been established, the search routine tests

every Kp/Kd combination via a numeric simulation. Obviously, the sequential design

technique only simulates the step response of the PD controlled plant, because the

input shaper (a standard ZV shaper in this section) is not determined until after the

PD gains are chosen. The concurrent design, however, utilizes the newly developed

shaper presented in Section 2.3.5 and simulates the response of the full OLIS/PD

controller. The simulations numerically (not analytically via equations) determine
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overshoot, maximum actuator effort and settling time. Again, this design routine

attempts to meet disturbance rejection, overshoot, and maximum actuator effort

constraints while minimizing settling time.

As an example, an OLIS/PD controller design was performed with the system

parameters and constraints are set to:

Step Size (L) = 1

Plant Frequency (ωn) = 3 rad
s

Plant Damping (ζ) = 0.1

Plant Numerator (A) = 2

Maximum Actuator Effort (Umax) = 100

Maximum Percent Overshoot (Mp) = 10%

Disturbance Rejection Constraint ( 1
ωclζcl

) < 0.2

Note that ωcl and ζcl refer to the system’s closed-loop damping and natural frequency.

The resulting controller parameters are shown in Table 4.1. Note that two sequential

designs were performed here. The first gives no importance to rise time and uses the

feedback controller to minimize the 2% settling time. The second sequential design

Table 4.1: Design Results: Second-Order Oscillator
Concurrent Design Sequential Design #1 Sequential Design #2

Kp 132.4 90.5 90.5
Kd 4.7 10.55 8.3
ωcl 16.54 13.78 13.78
ζcl 0.3 0.79 0.62
A1 0.73 1 0.92
A2 0.14 NA 0.08
A3 0.13 NA NA
t2 0.1988 NA 0.29
t3 0.1996 NA NA
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Figure 4.2: Design Comparison for a Second-Order Plant - Step Response.

minimizes settling time but enforces a minimum rise time constraint. As in previous

sections, this is done to produce a more competitive sequential design scheme for

comparison to the newly proposed concurrent design strategy. One obvious difference

between concurrent and sequential designs can be seen in Table 4.1. The concurrent

design scheme typically yields higher Kp and lower Kd values than the sequential

design schemes. This results in a concurrently designed closed-loop system with

higher natural frequency and lower damping. Note that the first sequential design

scheme produced a closed-loop system whose damping was high enough to negate the

need for an input shaper - the resulting system is simply not oscillatory enough.

The performance of all three controllers is depicted in Figures 4.2 and 4.3. Figure

4.2 shows the step response and disturbance rejection capabilities of each controller.

Note that the disturbance force was a quick pulse acting on the plant, as described

by the Df signal in Figure 4.1. Figure 4.2 shows that the concurrent design is 33%

faster, in terms of settling time, than “Sequential Design #1” and 28% faster than

“Sequential Design #2”. However, the sequential designs have a better disturbance
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Figure 4.3: Design Comparison for a Second-Order Plant - Actuator Effort.

rejection capability. As in the design for a mass plant, this is a result of the sequen-

tial designs exceeding their disturbance rejection requirements in an attempt to meet

their overshoot requirements by utilizing only the PD, feedback controller. The con-

current design scheme uses both the feedback controller and the input shaper to lessen

overshoot. Therefore, it does not need to exceed its disturbance rejection constraint.

This allows the concurrent design scheme to focus on minimizing settling time. The

required actuator efforts for these responses can be seen in Figure 4.3. Again, the

cost of moving faster is an increase in actuator effort.

4.2 Fourth-Order Plant with Numerator Dynam-

ics

Many real world systems (nonlinear and multi-mode) are reasonably approximated

by their dominant, oscillatory mode. This section will discuss a concurrent design

strategy specifically for these kinds of systems. The design routine will determine

the dominant mode and use an analytic approach to satisfy design constraints. Once

a solution has been found, a numerical simulation will check the full (multi-mode)
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system response to verify that the design constraints have been met. If the un-

modeled dynamics have caused the system to violate any constraints, the analytical

solution routine will be re-run under increasingly stringent design constraints until a

satisfactory solution has been obtained.

This type of design routine is a comprise between the two architectures discussed

in this, and previous, chapters. The concurrent design routine for the mass was

purely analytical. As such, it quickly produced a solution. The design scheme for

the second-order plant was purely numerical, simulating every Kp/Kd combination

and verifying constraints. While this routine was very thorough, it takes significantly

longer than the analytical approach. The routine presented here is a compromise, in

that it uses purely analytical criteria to produce PD and input shaper parameters.

Then, it tests this design numerically, and re-runs the analytical routine under more

stringent design constraints if the numeric check fails.

It should also be noted that this section utilizes robust input shapers: the ZVD

and the EI shapers. Because the system is actually multi-mode and has numerator

dynamics, it is desirable to use robust shapers that can handle some of the effects of

unmodeled dynamics.

4.2.1 Description of Fourth-Order Plant with Numerator Dynamics

The plant studied in this section has a transfer function of the form:

ω2
1(s + a)

(s2 + 2ζ1ω1s + ω2
1)(s

2 + 2ζ2ω2s + ω2
2)

(4.2)

This is a fourth-order system with two oscillatory modes and one numerator zero.

This plant is chosen because it is clearly not a simple, single-mode system like the

ones studied thus far. However, when placed inside a PD feedback loop, the closed-

loop system will be approximated as a single oscillatory mode with no numerator

dynamics. This is justified for several reasons. First, the derivative control is again

implemented via velocity feedback. Therefore, the PD controller does not introduce
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its own closed-loop numerator. Secondly, the plant zero and mode represented by ω2

and ζ2 are located much farther from the real-imaginary plane origin than the single

mode represented by ω1 and ζ1. Thirdly, “a” is large, meaning the closed-loop zero

at s = −a will not significantly affect the closed-loop system’s response. Note that

the zero is also assumed to be in the left-half plane, creating a minimum-phase plant.

Because the resulting closed-loop system is approximated as a second-order system,

the PD gains and input shaper parameters are chosen analytically via the well-known

equations for time domain characteristics of second-order systems.

Comparing concurrent to sequential design with this plant type, it is easy to

demonstrate three important levels of concurrent design success/superiority. Case

1 will demonstrate an example when concurrent design yields a controller that is

different from, and superior to, a sequentially designed controller. Case 2 will show an

example of a constraint set that causes the concurrent design to yield a solution equal

to a sequential design solution. Finally, Case 3 will show an example when sequential

design is unable to obtain a viable solution, but concurrent design is successful in

meeting all constraints.

It is important to note that because the single-mode concurrent design scheme

utilized here is based upon an approximation and simplification of the actual system,

it will not always yield the optimal solution. A much slower, fully numeric routine

(full-search concurrent design) is also utilized here to find the optimal, concurrent

solution and compare that answer with the near-optimal, single-mode concurrent

solution based upon the simple approximation. These two concurrent design schemes

present a typical tradeoff between solution accuracy and difficulty.

4.2.2 Case 1 - Concurrent Design Superior to Sequential Design

The system parameters and design constraints for this test are:

Step Size (L) = 1
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ω1 = 2π rad
s

ζ1 = 0.01

ω2 = 30π rad
s

ζ2 = 0.07

a = 100

Maximum Actuator Effort (Umax) = 300

Maximum Percent Overshoot (Mp) = 20%

Disturbance Rejection Constraint ( 4
ωclζcl

) < 50 sec

The concurrent and sequential design results are shown in Table 4.2. As expected,

both concurrent design routines yield closed-loop systems that are much more oscilla-

tory than the sequentially designed controller. In fact, because the sequential design

scheme yielded such a high damping ratio, the second step in the design process uti-

lized no input shaper. Also as expected, the full-search concurrent design scheme

yielded a result similar to, although slightly different from, the single-mode concur-

rent design scheme. This occurs because of the full-search’s recognition of the second

Table 4.2: Case 1 Design Results
Full-Search Single-Mode

Concurrent Design Concurrent Design Sequential Design
Kp 591 591 51
Kd 0 10 30
ωcl 17.7 17.29 7.4
ζcl 0.07 0.2 0.82
A1 0.31 0.43 1
A2 0.49 0.45 NA
A3 0.20 0.12 NA
t2 0.18 0.19 NA
t3 0.36 0.37 NA
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Figure 4.4: Case 1 Step Response Comparison.

mode and numerator dynamics. Fully simulating the complete system will often pro-

vide a more-optimal solution than the approximation based, single-mode concurrent

design scheme.

Figure 4.4 compares the step responses for the concurrently and sequentially de-

signed controllers. In terms of the 2% settling time criteria, the concurrent design

schemes are approximately 40% faster than the sequential design scheme. The full-

search concurrent design scheme is marginally faster than the single-mode concurrent

design scheme and has less overshoot.

The cost for these faster responses is shown in Figure 4.5. While both concurrent

design schemes stay within the actuator effort boundaries, the actuator demands are

certainly higher for the concurrently designed controllers.

Interestingly, Figure 4.6 shows that the single-mode concurrent design technique

has better disturbance rejection than the full-search concurrent design technique.

However, all three designs are well within the 50sec disturbance rejection constraint.

106



0 0.2 0.4 0.6 0.8 1

−100

0

100

200

300

Time (sec)

A
ct

ua
to

r 
E

ffo
rt

 (
N

)

Single−Mode Concurrent Design
Full−Search Concurrent Design
Sequential Design

Figure 4.5: Case 1 Actuator Effort Comparison.
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Figure 4.6: Case 1 Disturbance Response Comparison.

This particular concurrent design scheme also utilizes robust input shapers (ZVD

shapers in Case 1) that can handle reasonable errors in the estimation of system

natural frequencies. Figure 4.7 shows the concurrently designed step response when
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Figure 4.7: Case 1 Modeling Error Response Comparison.

the input shaper is designed with a 10% error in its estimation of the closed-loop

system’s dominant natural frequency. Because of the robustness properties of the

input shaper, even a ± 10% error results in a step response well within the 20%

overshoot constraint.

4.2.3 Case 2 - Concurrent Design Equals Sequential Design

In Case 2, the design constraints force the closed-loop system to be heavily damped by

greatly decreasing the allowable time for a disturbance to be rejected. Remember that

disturbance rejection is solely a property of the closed-loop system, and is unaffected

by the presence or absence of an input shaper outside of the loop. Therefore, in

order to meet this new disturbance rejection constraint, each of the three design

schemes were forced to have a heavily damped closed-loop system. This meant that

input shaping was unwarranted, resulting in equal solutions by both of the concurrent

design schemes and the sequential design technique.

The system parameters and design constraints for this test are:

Step Size (L) = 1
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Table 4.3: Case 2 Design Results
Kp 171
Kd 60
ωcl 8.5
ζcl 0.8

ω1 = 2π rad
s

ζ1 = 0.01

ω2 = 40π rad
s

ζ2 = 0.1

a = 100

Maximum Actuator Effort (Umax) = 400

Maximum Percent Overshoot (Mp) = 6%

Disturbance Rejection Constraint ( 4
ωclζcl

) < 1 sec

The concurrent and sequential design results are shown in Table 4.3.

4.2.4 Case 3 - Concurrent Design Works, Sequential Design Fails

It is easy to imagine scenarios when PID control is incapable of meeting design con-

straints. For example, a PID controller could easily fail to produce a fast system

under rigid actuator constraints. One of the interesting results from this research is

that concurrent design expands PID control’s realm of useful applications, because

this design scheme combines the PID feedback controller with an input shaper. This

should make sense considering that sequential design (in its first step) relies solely

on the PID controller’s abilities to meet performance constraints (it only then adds

an input shaper in the next phase of the design procedure). On the other hand,

concurrent design allows input shaping to help the PID controller and vice-versa. By
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using more “tools”, more can be accomplished. The following example illustrates this

principle.

The system parameters and design constraints for this case are:

Step Size (L) = 1

ω1 = 2π rad
s

ζ1 = 0.01

ω2 = 14π rad
s

ζ2 = 0.005

a = 100

Maximum Actuator Effort (Umax) = 400

Maximum Percent Overshoot (Mp) = 6%

Disturbance Rejection Constraint ( 4
ωclζcl

) < 50 sec

The single-mode concurrent design results are shown in Table 4.4.

Note that the sequential design solution is not shown because the sequential design

scheme was unable to determine a solution. The plant parameters and performance

Table 4.4: Case 2 Design Results – Single-Mode Concurrent Design
Kp 11
Kd 0
ωcl 7.9
ζcl 0.02
Mp 0.048
A1 0.28
A2 0.47
t2 0.4
A3 0.25
t3 0.8

110



constraints created a scenario where PD control was insufficient to create an accept-

able solution. The reason was that the feedback controller was not able to produce

gains high enough to meet the overshoot constraint while maintaining stability. Since

input shaping can significantly lower overshoot, both concurrent design schemes were

not forced to meet this overshoot constraint via the feedback controller alone. Subse-

quently, they found an acceptable solution. Also note that the full-search concurrent

design scheme yielded the same solution as the single-mode concurrent design scheme.

Recall from Section 2.2.3 that this research sought to use input shapers with

one independent variable. This scenario is an excellent example of the use of such

an input shaper. The input shaper used in this analysis was an EI shaper. As

mentioned in Chapter 1, EI shapers can be designed to have any insensitivity value -

which can either be directly specified or indirectly specified by setting the EI shaper’s

maximum percent residual vibration. This concurrent design scheme adjusted the

EI shaper’s maximum percent residual vibration to ensure that the overall system’s

overshoot constraint was met while maintaining the highest possible insensitivity.

While the closed-loop system was allowed up to 6% overshoot, the concurrent design

scheme yielded an EI shaper that allowed only 4.8% vibration. This resulted from

the concurrent design scheme’s numeric check which included the small amount of

additional overshoot added by the second mode. Because the second mode is not

completely negligible, the concurrent design scheme scaled down the overshoot limit,

iterating the design with smaller and smaller amounts of vibration allowed by the EI

shaper until the numeric check of the full system confirmed an overshoot less than

6%.

Figure 4.8 shows the step response for the concurrently designed controller in Case

3. Note that because an EI shaper is used, some vibration will be present even when

the dominant mode’s frequency is perfectly known - not to mention there will always

be some amount of vibration due to the unmodeled second mode. The advantage
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Figure 4.8: Case 3 Step Response.
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Figure 4.9: Case 3 Modeling Error Response Comparison.

gained from this is a large insensitivity to modeling errors. Figure 4.9 shows step

responses under the same modeling error conditions that were investigated in Case 1.

The difference is that the modeling errors in Case 1 resulted in more vibration than

when the frequency was perfectly known. Here, by using an EI shaper, modeling
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Figure 4.10: Case 3 Actuator Effort Comparison.

errors result in equal or lesser amounts of vibration than when the model is perfectly

known. Of course, for extremely large errors, the vibration would actually be larger

than when the dominant mode is perfectly known. By allowing an acceptable level

of vibration at the modeled frequency, EI shapers have more insensitivity than ZVD

shapers (like the one used in Case 1) and can often result in less than predicted

vibration when implemented on a real machine due to moderate modeling errors.

Figure 4.10 shows that the concurrently designed controller stayed well within the

actuator limits. Note that the actuator is vastly under-utilized because the particular

closed-loop system used in this case required small gains to maintain stability. Fi-

nally, Figure 4.11 shows that the concurrently designed controllers are able to reject

disturbances in the allowed amount of time.

4.3 When the Second-Order Approximation Fails

Unfortunately, the single-mode approximation used throughout this chapter is not

always a reasonable assumption. Many systems have multiple, non-negligible modes

113



0 10 20 30 40
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

Time (sec)

R
es

po
ns

e 
(m

)

Figure 4.11: Case 3 Disturbance Response Comparison.

or non-negligible numerator dynamics. In these cases, the single-mode concurrent

design scheme which assumes one mode and zero numerator dynamics is insufficient.

This section will demonstrate when a secondary mode becomes significant and cannot

be neglected in the concurrent design.

Revisiting the plant used in Section 4.2,

G =
ω2

1(s + a)

(s2 + 2ζ1ω1s + ω2
1)(s

2 + 2ζ2ω2s + ω2
2)

(4.3)

the mode resulting from ω2 and the closed-loop zero resulting from the s+a term were

negligible compared to the dominant, low mode in the three previously considered

cases. Here, the value of ω2 will be slowly decreased until this second, flexible mode is

no longer negligible. The plant parameters and design constraints will be as follows:

Step Size (L) = 1

ω1 = 2π rad
s

ζ1 = 0.01
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ω2 = Rπ rad
s

ζ2 = 0.07

a = 100

Maximum Actuator Effort (Umax) = 300

Maximum Percent Overshoot (Mp) = 8%

Disturbance Rejection Constraint ( 4
ωclζcl

) < 10 sec

Here, R is varied from 40 down to 20, eventually resulting in a non-negligible second

mode.

There are three main OLIS/PID design techniques that will be tested here. Just

as in the previous section, which analyzed the same plant type under a second-order

approximation, ZVD and EI shapers will be used. The first design technique is the

single-mode concurrent design technique that was described in Section 4.2. This

design technique concurrently solves for the PD controller gains and input shaper

parameters in light of the assumption that only one mode is significant. This routine

uses the well known equations describing the motion of second-order systems as well

as the known effects of input shaping. The second design technique is a single-mode

sequential design procedure also described in Section 4.2. This procedure also uses

the equations describing second-order systems, but does not include the effect of

input shaping. However, the full, numeric checks that complimented the single-mode

concurrent and sequential design techniques in Section 4.2 are eliminated here. This

is done to force the design schemes to rely solely upon the single-mode approximations

(no numeric simulation of the full, two-mode system is allowed).

The third design technique is the full-search concurrent design procedure that

was also discussed in Section 4.2. This version of a concurrent design scheme requires
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significantly more time to execute, but is not limited by the single-mode assump-

tion. This full-search concurrent design scheme simulates the full 4th-order system

via Simulink for each controller/shaper parameter that is free to vary. The simulated

response is then analyzed for its performance characteristics. By discretizing the so-

lution space and searching over all possible parameter combinations, the full-search

concurrent design scheme yields the optimal solution over the solution space used.

The two concurrent design schemes will be compared throughout this section to see

how close the single-mode concurrent design scheme can come to the slower, but more

robust, full-search scheme. They will also be compared to see when the single-mode

concurrent design scheme fails (as the neglected mode becomes non-negligible). Fi-

nally, the computation time of each solution routine will be calculated. This will

demonstrate the tradeoff between using a single-mode, approximation based routine

and a complicated, but more accurate, routine. As one would expect, the cost of

accuracy and confidence in the solution is computation time.

Figure 4.12 shows the settling times achieved by each of the two concurrent design
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Figure 4.12: Settling Time Comparison.
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schemes. Remember that for these designs, settling time was minimized within the

boundaries established by other performance constraints (Mp, disturbance rejection

and Umax). Also, for the sake of comparison, the settling times achieved by the

sequential design technique are shown. Notice that when R is high (the second

mode is almost negligible), the single-mode concurrent design technique (labeled as

“Concurrent Design”) yields results that are equal to the full-search concurrent design

(labeled as “Full, Concurrent Search”) and superior to the sequential design technique.

Obviously, the single-mode approximation is valid for these high R values.

When the value of R becomes low (below 30 in this example), the single-mode

approximation becomes inaccurate. At first, the single-mode concurrent design tech-

nique still yields reasonable settling times. However, these settling times are often

inferior to those achieved by the full-search concurrent design technique. Eventu-

ally, as R approaches 20, the single-mode concurrent design technique yields control

schemes with extremely high settling times. This is caused by the now significant

second mode resulting in a significant amount of vibration. Obviously, the full-search

concurrent design technique is able to avoid this problem because it always simulates

the full, fourth-order system and takes the second mode into account. Interestingly,

the sequential design technique, while never assuming a second mode exists, also does

not suffer from the extremely high settling time problem associated with the single-

mode concurrent design technique. This is caused by the conservative nature of the

sequential design technique, which normally creates relatively high-damped closed-

loop systems (because it must meet constraints and performance specifications solely

with the feedback controller).

In addition to its failure to yield competitive settling time values when R is low,

the single-mode concurrent design scheme under low R values begins to violate its

constraints. Figure 4.13 shows the overshoot of each of the three design schemes.

Note that both the sequential design technique and the single-mode concurrent design
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Figure 4.13: Percent Overshoot Comparison.

technique violate their overshoot constraint when R is low. This suggests that the

error is mainly due to the single-mode assumption, and only partially due to inherent

differences in the sequential and concurrent design strategies.

Figure 4.14 compares the disturbance rejection capabilities of each of the design

strategies discussed here. Note that both concurrent design schemes are able to

reject disturbances within the specified time. Only the sequential design technique

occasionally fails to meet this specification.

Figure 4.15 shows that each of the design schemes is capable of maintaining its

maximum actuator constraint. However, since speed was prioritized here, it was

expected that each controller would have a maximum actuator effort close (if not

equal to) the limit. One reason this does not occur is that the maximum actuator

effort is a complicated function of the proportional gain, the DC gain term which

amplifies the reference command (this DC gain is a function of Kp and approaches

unity as Kp → ∞), and the input shaper’s impulse amplitudes. Another reason is

that the concurrently designed controllers were limited to a maximum Kp of 600.

If Kp = 600, then the DC gain is close to unity. And, if the input shaper’s first
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Figure 4.14: Disturbance Rejection Comparison.
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Figure 4.15: Maximum Actuator Effort Comparison.

impulse is less than 0.5, then the actuator effort at time t = 0 (this is often when

Umax occurs) could be below 300. Remember that with ZVD and EI shapers, the first

impulse amplitude is usually less than 0.5. The main reason that the sequential design

technique seldom utilizes its maximum actuator effort is that this design technique

naturally chooses smaller Kp values. This can be seen in Figure 4.16.
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Figure 4.16: Kp Solution Comparison.
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Figure 4.17: Kd Solution Comparison.

Figures 4.16 and 4.17 compare the proportional (Kp) and derivative (Kd) gains

found by each of the design schemes. Notice that (as expected) both concurrent design

techniques chose higher Kp and lower Kd gains than the sequential design technique.

This is exactly how a concurrent design strategy works. Because input shaping is
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Figure 4.18: Computation Time Comparison.

able to eliminate a large amount of vibration, feedback controllers can create more

oscillatory systems. This allows for faster settling times than are generally achievable

solely by tuning the feedback controller (a sequential design technique).

Finally, Figure 4.18 shows the calculation times for each of the three design strate-

gies. It is clear from this figure that choosing the full-search concurrent design tech-

nique requires a significant computation penalty. At its worst, the full-search concur-

rent design routine requires 229 times as long to execute as the single-mode concurrent

design routine. At its best, the full-search concurrent design routine is only 16.5 times

as long. Figure 4.19 shows a zoomed in view of Figure 4.18. This figure shows that

even the single-mode concurrent design routine takes longer to execute than the se-

quential design routine. This difference is due to fact that the single-mode concurrent

design routine has a larger solution space to search through than the sequential de-

sign routine has. The search space is increased for this routine because the use of

input shaping allows for higher Kp values than are possible with a sequential design

technique. However, both routines consistently execute fast, with the single-mode

concurrent design routine requiring 2 − 3.5 times as long to execute.
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Figure 4.19: Computation Time Comparison - Zoomed in View.

4.3.1 Discussion of Single-Mode Approximation

This section illustrated that a single-mode approximation for a multi-mode system is

often valid. This ability to approximate a complicated system as a simple one allows

the use of quick and thorough concurrent design routines that will still be able to pro-

duce good controllers. In these studies, when the second mode was 12 times larger

than the dominant mode (R = 24), the single-mode concurrent design routine yielded

well-behaved controllers that outperformed a sequential design technique. Further-

more, when the second mode was greater than 15 times larger than the dominant

mode R = 30, the single-mode concurrent design technique yielded excellent results

that were equal to those of the full-search concurrent design routine. And, as shown

in Figure 4.18, these high R values are when the computation time difference between

concurrent design routines is at its highest. While this section only studied one, par-

ticular plant, this thesis will advocate the usage of a single-mode concurrent design

routine when all higher modes are more than 15 times greater than the dominant

mode.
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It is important to note that the plant studied in this section was a particular,

fourth-order system with one, left-half plane zero. The effects of additional oscilla-

tory modes, first-order dynamics, and non-minimum phase plants were not addressed

here. Each of these effects could change the frequency at which additional modes

become non-negligible. Also, this study only showed the effect of the second mode

becoming significant. The effect of the numerator becoming non-negligible was not

addressed here. However, the study of these effects would have results similar to

the study presented in this dissertation. When the extra dynamics are negligible,

approximating the closed-loop system as a second-order oscillatory will allow for fast

and reliable concurrent design procedures. However, as these extra dynamics become

non-negligible, the single-mode approximation begins to break down. At this point,

a more complicated concurrent design procedure will be necessary.

This section also illustrated a scenario where a multi-mode system could not ap-

propriately be approximated as a single-mode system (when R was low). Unfortu-

nately, many multi-mode systems fall into this category. This fact necessitates the

advancement of concurrently designing OLIS and PID control to address plant types

with multiple, non-negligible modes and numerator dynamics. The following chapter

will address this issue, along with adding integral action to the feedback controller.
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CHAPTER V

CONCURRENT DESIGN OF OLIS AND PID

FEEDBACK CONTROL FOR GENERAL

SYSTEMS

The three previous chapters have focussed on plants that are reasonably approximated

as second-order systems with negligible numerator dynamics. For many real-world

systems, this approximation works well. The experimental results on the portable

bridge crane verify the usefulness of this simple modeling and control approach.

However, there are also many scenarios where plants cannot be reasonably mod-

eled as simple, second-order systems. For these applications, a new concurrent design

methodology is needed. The block diagram studied in this chapter is shown in Figure

5.1. Here, the reference signal R is filtered by an outside-the-loop input shaper before

entering a PID feedback controller (where the derivative action is implemented via

velocity feedback).

There is currently no universally accepted design strategy for tuning PID con-

trollers when the plant is more complicated than a simple, second-order system. This

is because no current strategy is both feasible to implement and guaranteed to find

+-ISR YG+-

Kd s

Kp+
K i
s

Figure 5.1: OLIS and PID Feedback Controller.
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the optimal solution. Therefore, many PID controller design techniques exist, each

with their own advantages and disadvantages.

This thesis will advance the state-of-the-art in concurrent design of outside-the-

loop input shaping and PID feedback control in two ways. First, standard rules of

thumb for designing PID controllers will be reformulated to work well with input

shaping. Control engineers often use imprecise rules of thumb to design controllers.

While certainly not guaranteeing an optimal solution, these rules of thumb produce

good results with a minimal requirement in human and/or computer effort. This the-

sis will improve these rules by altering them to incorporate the effects and advantages

of input shaping.

As a counterpoint to imprecise rules of thumb, controls engineers must sometimes

use complicated and time consuming design techniques (often nonlinear, numerical

optimizations) in order to push the performance limits and obtain near-optimal solu-

tions. The second part of this chapter will develop a unique optimization technique

for concurrently designing OLIS and PID control. This optimization technique will

split a typically nonlinear minimization into a linear minimization combined with a

simplified nonlinear minimization. Compared to a well-known nonlinear optimization

package, this new technique yields superior and more-consistent results.

5.1 Tuning Rules for Combined OLIS/PID Feed-

back Control Schemes

5.1.1 Ziegler-Nichols Tuning Rules

The Ziegler-Nichols (Z-N) tuning rules are a well-known and accepted procedure by

which to design PID feedback controllers [14, 55]. However, they were established

before the development of input shaping. Therefore, they only address the design of

the feedback system (they only choose the P , I and D gains). By adjusting these rules

to incorporate the effect and design of outside-the-loop input shapers, superior control
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systems can be created. This will first be demonstrated by comparing the results of a

Z-N based design process to those of a design process based upon the newly proposed

OLIS/PID tuning rules. Note that the difference between these two design processes

(Z-N and OLIS/PID tuning rules) is parallel to the difference between the sequential

and concurrent design of OLIS and PID controllers as discussed in the previous three

chapters. The Z-N tuning rules first choose the PID gains without regard to any input

shaping effects. Only then is an input shaper added to further cancel any remaining,

oscillatory dynamics. The OLIS/PID tuning rules proposed here specifically choose

the PID gains based upon the knowledge that an input shaper will be added to the

control system for the purpose of vibration reduction.

Two textbook Z-N tuning rules examples will be reviewed here to demonstrate

the superiority of the newly proposed OLIS/PID tuning rules. In both of these

examples, the textbooks follow the prescribed Z-N tuning rules to initially develop

a PID controller. However, the overshoot resulting from the accepted tuning rules

proved too high. So, undetailed “tweaking” was performed by the authors (Ogata

and Franklin) to adjust the gains so that acceptable overshoot was obtained. The

OLIS/PID tuning rules developed here will intentionally create a closed-loop system

with more vibration than is desired in the step response. The resulting system will

have acceptable reference responses due to the use of the input shaper. And, because

the closed-loop system is left more oscillatory than when using the Z-N tuning rules,

the overall control system developed by the new OLIS/PID tuning rules will be faster

than control systems developed by strictly following the Z-N design process.

5.1.1.1 Ziegler-Nichols Design Process: Example 1

The first example was taken from Ogata’s textbook, “System Dynamics” [55]. The

plant and PID controller are:
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Plant:

G =
1

s(s + 1)(s + 5)
(5.1)

PID form:

C = Kp
(

1 +
1

Tis
+ Tds

)

(5.2)

The open-loop step response can be seen in Figure 5.2.

Z-N Design - Step 1: Find Kp that results in marginal stability and period of

resulting oscillations (Pcr). These values are given as Kp,cr = 30 and Pcr = 2.81.

According to Z-N tuning rules, the desired PID gains are Kp = 18, Ti = 1.405 and

Td = 0.35124. This control scheme results in the step response shown in Figure 5.3.

Because the desired overshoot limit was 25%, adjustments had to be made.

Z-N Design - Step 2: Fine tune PID gains to achieve desired overshoot. The

new gains were given as Kp = 18, Ti = 3.077 and Td = 0.7692. Note that the

Ogata textbook does not describe the fine-tuning rules used to adjust the gains. The

resulting step response is shown Figure 5.4. The overshoot is now at an acceptable

level.
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Figure 5.2: Z-N Example #1: Open-Loop Step Response of G.
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Figure 5.3: Z-N Example #1: Step 1 Result.
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Figure 5.4: Z-N Example #1: Step 2 Result.

Z-N Design - Step 3: Addition of outside-the-loop input shaping. Because the Z-N

method with auxiliary tweaking by Ogata produced such high damping (ζ = 0.67),

input shaping is of little help in terms of further reducing the overshoot (the vibration

resulting from such highly damped dynamics is very small). However, the appropriate

ZV shaper is A1 = 0.95, A2 = 0.05 and t2 = 1.21. The resulting OLIS/PID step
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Figure 5.5: Z-N Example #1: Step 3 Result.

response is shown in Figure 5.5. Note that the overshoot is only slightly improved

over Step 2. The overshoot is mainly a result of the closed-loop system’s numerator

dynamics.

5.1.1.2 Ziegler-Nichols Design Process: Example 2

The second example comes from Franklin, Powell and Emami-Naeini’s book “Feed-

back Control of Dynamic Systems” and utilizes Ziegler-Nichols first design method

[14]. The plant is intended to model a heat exchanger, but the actual plant parame-

ters are not well defined by the book. From the basic structure and plots shown, G

was estimated to be:

Plant:

G =
e−10s

70s + 1
(5.3)

PI form: This example only uses PI control.

C = Kp

(

1 +
1

Tis

)

(5.4)

The open-loop step response can be seen in Figure 5.6.
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Figure 5.6: Z-N Example #2: Open-Loop Step Response of G.
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Figure 5.7: Z-N Example #2: Step 1 Result.

Z-N Design - Step 1: Find maximum slope (R) of open-loop response (R = 1
90

)

and the system lag, L (L = 13sec). According to Z-N tuning rules, Kp = 6.22

and Ti = 43.3. This control scheme results in the step response shown in Figure

5.7. Because the overshoot is too high (the desired overshoot was less than 25%),

adjustments were made.

130



0 100 200 300 400
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (sec)

R
es

po
ns

e 
(m

)

Figure 5.8: Z-N Example #2: Step 2 Result.

Z-N Design - Step 2: Fine tune PID gains to achieve better overshoot. As in the

first Z-N example, the “tweaking” process was not well defined by Franklin, Powell

and Emami-Naeini. The new gains were chosen to be Kp = 3.11 and Ti = 43.3. The

resulting step response is shown Figure 5.8. The overshoot is now at an acceptable

level.

Z-N Design - Step 3: Addition of input shaping. Because the plant is not a

rational transfer function, a numerical root-locus technique was employed to find the

dominant poles. Again, the Z-N method with additional “tweaking” resulted in high

damping (ζ = 0.76), and input shaping is of little help. However, the appropriate ZV

shaper is A1 = 0.98, A2 = 0.02 and t2 = 52.4. The resulting step response is shown

in Figure 5.9. Note that the overshoot is only slightly improved over Step 2. The

overshoot is again primarily a result of the closed-loop system’s numerator dynamics.
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Figure 5.9: Z-N Example #2: Step 3 Result.

5.1.2 New Tuning Rules for OLIS/PID Feedback Controller Combina-
tions

Based on the known effects of input shaping and feedback control, a new set of tuning

rules is developed for use on controllers that combine outside-the-loop input shaping

and PID feedback control. Similar to the Z-N tuning rules, the new OLIS/PID

tuning rules seek to achieve an overall controller that yields less than 25% overshoot.

However, the new approach has one major difference. The OLIS/PID tuning rules

create a closed-loop system with more than 25% overshoot in response to a step

input. However, because the OLIS/PID tuning rules consider the addition of an input

shaper, a more oscillatory system can confidently be designed. The input shaper will

cancel most of the natural oscillations, resulting in an overall controller that yields

approximately 25% overshoot (or less) and little residual oscillation.

The new tuning rules are similar to a concurrent design of OLIS and PID feedback

controllers because the choice of PID gains is dependant upon the known effects of

input shaping. The new OLIS/PID tuning rules will generally produce controllers
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Table 5.1: New OLIS/PID Tuning Rules - First Method

Kp
Kp

Ki

Kd

Kp

P 1.1
RL

∞ 0

PI 1
RL

L
0.4

0

PID 1.3
RL

1.9L 0.4L

Table 5.2: New OLIS/PID Tuning Rules - Second Method

Kp
Kp

Ki

Kd

Kp

P 0.6Kcr ∞ 0

PI 0.5Kcr
Pcr

1.5
0

PID 0.7Kcr 0.4Pcr 0.1Pcr

superior to those that rely on the Z-N tuning rules (which choose the PID gains

without regard to the effects of input shaping) followed by an input shaper.

Similar to the Z-N tuning rules, the newly proposed tuning rules are split into two

“methods” depending upon the form of the plant. “Method #1” is for plants without

integrators or dominant complex-conjugate poles. “Method #2” is for plants that

will exhibit sustained oscillations under proportional control for some proportional

gain (Kp). The tuning rules for “Method #1” are given in Table 5.1. Here, R is the

slope of the plant’s step response and L is the lag inherent to the step response of

the plant. The tuning rules for “Method #2” are given in Table 5.2. Here, Kcr is the

proportional gain that would cause instability if the plant was controlled solely with

proportional control. Pcr is the period of that marginally stable system. Note that

for both methods, the newly proposed gains are more aggressive versions of those

proposed by Ziegler and Nichols. The Kp and Ki gains are slightly larger and the Kd

gains are slightly smaller.

The newly proposed OLIS/PID tuning rules share an important advantage with
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Figure 5.10: Example #1 - OLIS/PID Tuning Rules - Unshaped Step Response.

the Ziegler-Nichols tuning rules. Because they are based upon the system response,

the design process can be carried out experimentally. That is, no specific plant model

is required.

The following two sections will revisit the controller design processes detailed in

Sections 5.1.1.1 and 5.1.1.2. However, the new OLIS/PID tuning rules will be used,

as opposed to the Z-N tuning rules.

5.1.2.1 OLIS/PID Design Process: Example 1

OLIS/PID Design - Step 1: This first step after identifying the plant parameters is

to use the newly-proposed OLIS/PID tuning rules. Because this plant requires the use

of “Method #2”, the OLIS/PID tuning rules are given in Table 5.2. Remember from

Section 5.1.1.1 that Kp,cr = 30 and Pcr = 2.81. According to the newly proposed

OLIS/PID tuning rules, Kp = 21, Kd = 5.9, and Ki = 18.7. These PID gains

translate into Kp = 21, Td = 0.28, and Ti = 1.12. The unshaped step response of the

closed-loop system under these gains is shown in Figure 5.10. Note that this a more

oscillatory closed-loop system than was designed by the Z-N tuning rules (Figure 5.3).
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Figure 5.11: Example #1 Step Response Comparison.

OLIS/PID Design - Step 2: The next step is to apply the input shaper. As in each

of the above examples, a ZV shaper was chosen. When the input shaper is added to

the PID feedback controller, the overall system has the step response that is shown

in Figure 5.11. This figure shows that the system designed via the OLIS/PID tuning

rules has less overshoot and is twice as fast (in terms of settling time) as the system

design via the Z-N tuning rules.

5.1.2.2 OLIS/PID Design Process: Example 2

OLIS/PID Design - Step 1: The plant used in Example #2 requires the use of

“Method #1”. The OLIS/PID tuning rules for “Method #1” are given in Table 5.1.

Remember from Section 5.1.1.2 that R = 1
90

and L = 13sec. Therefore, the PI gains

used in the feedback controller were Kp = 6.92 and Ki = 0.213 (or Ti = 32.5). The

unshaped step response of the closed-loop system under these gains is shown in Figure

5.12. Again, this a more oscillatory closed-loop system than was designed by the Z-N

tuning rules (Figure 5.7).
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Figure 5.12: Example #2 - OLIS/PID Tuning Rules - Unshaped Step Response.
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Figure 5.13: Example #2 Step Response Comparison.

OLIS/PID Design - Step 2: The next step is to apply the input shaper. When the

input shaper is added to the PID feedback controller, the overall system has the step

response that is shown in Figure 5.13. This figure shows that the system designed

via the OLIS/PID tuning rules is, again, approximately twice as fast as the system
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design via the Z-N tuning rules. However, in this case, the system designed via the

OLIS/PID tuning rules has a slightly higher overshoot (even though both controllers

are well under the 25% overshoot goal).

5.1.2.3 Fine Tuning Process

As with any set of tuning rules that are used on a wide variety of plants, the exact

performance characteristics (overshoot, damping, speed, etc.) cannot be specified or

known during the design process. The tuning rules are used and accepted because they

give reasonably good performance for a large number of plants. However, there will

always be scenarios when the tuning rules fail to yield an acceptable control system.

This was seen in Step #1 of both Ziegler-Nichols design examples, where the overshoot

resulting from using the Z-N tuning rules was above the desired 25%. Therefore, there

will always need to be a procedure for adjusting the controller gains until an acceptable

response is obtained. Unfortunately, the textbooks used to highlight the Z-N design

process used undocumented “tweaking” to adjust the PID gains and achieve less

than 25% overshoot. This dissertation will present a precise method for adjusting

the PID gains in the case that the OLIS/PID design procedure does not yield an

acceptable step response.

Because the OLIS/PID tuning rules produce more aggressive systems, the most

likely problem will be that the overall controller has too much overshoot, or that

the closed-loop system has too little damping (important for disturbance rejection -

which is not aided by the outside-the-loop input shaper), or that the controller has

unacceptably small stability margins. Fortunately, each of these problems can usually

be solved in the same manner: make the closed-loop system less aggressive.

The fine tuning process for the design procedure based upon the newly proposed

OLIS/PID tuning rules is as follows:

1. P Controller: Reduce Kp by 10%.

137



2. PI Controller: Reduce Kp and Ki by 5%.

3. PID Controller: Reduce Kp and Ki by 3% and Increase Kd by 3%.

These steps can be performed multiple times, until an acceptable OLIS/PID response

is obtained. Note, however, that adjusting the PID gains changes the closed-loop

poles. Therefore, each time the PID gains are adjusted, the input shaper will need

to be redesigned.

5.1.3 Frequency Domain Design - Bode Diagram

Another common feedback controller design method analyzes the system via the Bode

diagram. This section will give an example of such a design, again comparing sequen-

tial and concurrent design of OLIS and feedback control. Here, the bandwidth (ωb)

will be used as an approximate measure of the closed-loop system’s speed (rise time

or peak time). The open-loop system’s phase margin (PM) will be used as an ap-

proximate measure of the closed-loop system’s damping (ζ) and overshoot. These

performance approximations are taken from [14,55].

5.1.3.1 Example - PI control of a third-order plant

Plant:

G =
s + 1

(s + 3)(s2 + 0.1s + 2)
(5.5)

PI form:

C = Kp +
Ki

s
(5.6)

The goal of the design procedures described here will be to create the fastest pos-

sible step response while limiting overshoot to less than 50%. Remember that the

sequential design procedure only uses the PID feedback controller to limit overshoot.

The concurrent design procedure will choose the PID gains with the vibration reduc-

ing capabilities of input shaping in mind. Consequently, the concurrently designed
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Figure 5.14: Sequential Design Bode Diagram.

PID feedback controller will have a smaller phase margin. Fortunately, this will al-

low for a larger bandwidth. The result will be on overall faster control system with

acceptable vibration suppression.

Sequential Design: Using MATLAB’s “sisotool”, the gains were chosen to be

Kp = 10.95 and Ki = 7.3. The resulting Bode diagram is shown in Figure 5.14. The

step response of the resulting closed-loop system is shown in Figure 5.15. This figure

shows that the overshoot constraint has been met by the PID feedback controller,

while maintaining a fast rise time.

The resulting closed-loop system has a damping ratio of 0.13. Therefore, the

complimentary ZV shaper is defined by A1 = 0.6, A2 = 0.4 and t2 = 0.97. The

resulting step response is shown in Figure 5.16.

Concurrent Design: Again using MATLAB’s “sisotool”, the gains were chosen to

be Kp = 55.8 and Ki = 37.2. The resulting Bode diagram is shown in Figure 5.17.

Note that this system has a higher bandwidth. The step response of the resulting

closed-loop system is shown in Figure 5.18. Note that this response is faster, but has

139



0 2 4 6 8 10
0

0.5

1

1.5

Time (sec)

R
es

po
ns

e 
(m

)

Figure 5.15: Sequential Design Step Response - Without Input Shaper.
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Figure 5.16: Sequential Design Step Response - With Input Shaper.

an unacceptable amount of overshoot. Fortunately, this overshoot problem will be

negated by the input shaper.

The resulting closed-loop system had a damping ratio of 0.09. Therefore, the

complimentary ZV shaper is defined by A1 = 0.57, A2 = 0.43 and t2 = 0.43. The

resulting step response is shown in Figure 5.19.
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Figure 5.17: Concurrent Design Bode Diagram.
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Figure 5.18: Concurrent Design Step Response - Without Input Shaper.

Figure 5.20 compares the step responses of the sequentially and concurrently de-

signed control systems. Clearly, the concurrently designed control scheme has a much

faster response in terms of both rise time and settling time. However, as indicated

by Figure 5.21, the cost is a more than three-fold increase in the maximum actuator
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Figure 5.19: Concurrent Design Step Response - With Input Shaper.
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Figure 5.20: Step Response Comparison.

effort. This increase in maximum actuator effort could be too demanding for a prac-

tical control scheme. Therefore, actuator effort should be taken into account when

designing these controllers. Because bandwidth is the measure of speed, it should

also be an approximate measure of actuator effort - the faster a system moves, the

more effort will be required to move it.
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Figure 5.21: Actuator Effort Comparison.
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Figure 5.22: Bode Diagram of Modified Concurrent Design.

The concurrent design scheme can be redone with a compromise on bandwidth.

Figure 5.22 shows a Bode diagram of a new open-loop system. Notice that it has a

bandwidth higher than the sequentially designed control scheme and lower than the

original, concurrently designed system. Likewise, the phase margin of the modified,

143



0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Time (sec)

R
es

po
ns

e 
(m

)

Figure 5.23: Step Response of Modified Concurrent Design.

concurrently designed controller is between the values of the sequentially designed

controller and the original, concurrently designed controller. The step response of

this modified, concurrently designed control scheme is shown in Figure 5.23 and is

labeled “Concurrent Design (lower Umax)”.

Comparison of all three control schemes in Figure 5.24 shows that the concur-

rent design procedure can compromise between speed and actuator effort while still

meeting constraints and outperforming a sequentially designed controller (in terms

of speed). Figure 5.25 shows the actuator requirements of all three control schemes.

Notice that the second concurrently designed controller requires just over one half the

maximum actuator effort as the first concurrently designed controller. However, the

second concurrently designed controller still has a significantly faster step response,

as compared to the sequentially designed control scheme.

5.1.3.2 Loop Shaping

The more rigorous extension of the previously described frequency domain design

procedure is loop shaping. As described in Chapter 1, loop shaping is a well-known
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Figure 5.24: Step Response Comparison of all Three Designs.
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Figure 5.25: Actuator Effort Comparison of all Three Designs.

frequency domain design technique. Loop shaping begins by establishing a desired

Bode plot (or at least a desired frequency response for some finite range of frequen-

cies). Then, various optimization techniques can be used to create a controller that,

combined with the plant, yields an open-loop transfer function whose actual Bode
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plot is close to the desired Bode plot. Of course, the desired Bode plot is chosen by

the engineer for its ability to achieve certain performance criteria, while not violating

various constraints (such as actuator effort limitations).

Any of the accepted, state-of-the-art loop shaping techniques can be modified

for use within a concurrent OLIS/PID design scheme. Similar to the frequency do-

main example given above, the rules for what constitutes an “acceptable” Bode plot

would change in a concurrent design scheme. The closed-loop system can have more

overshoot (less phase margin) and higher actuator efforts.

5.2 Rigorous Optimization Technique for use on

Generic Plants

The previous section described a concurrent design technique based on general guide-

lines and principles. However, there are many circumstances when more precise de-

sign techniques are required. While usually requiring more knowledge, effort and

computation time, these rigorous design techniques will generally produce superior

solutions. This section will present a numeric optimization technique for concurrently

designing OLIS/PID controllers for use on any plant that can be stabilized via PID

control. The optimization technique will minimize the system’s settling time to a

desired, step-reference command. Settling time will be minimized subject to the fol-

lowing constraints: the closed-loop system must be stable, the slowest time constant

must be above a minimum value (for disturbance rejection), the system’s overshoot

must remain below a certain level, the maximum actuator effort must remain below

a certain level.

5.2.1 Solution Routine Description

A typical nonlinear optimization routine for concurrently designing OLIS/PID con-

trollers is depicted in Figure 5.26. This solution routine utilizes MATLAB’s nonlin-

ear optimization technique named “fmincon”. This standard optimization package
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Figure 5.27: Partially-Linear Optimization Routine.

chooses a set of input shaper and feedback parameters. Then, the control system’s

response is obtained via simulation. The response and actuator effort are then numer-

ically checked to ensure that various constraints (overshoot, maximum actuator effort,

disturbance rejection, etc.) have been met. If these constraints are met, the settling

time is then calculated and used as the metric for choosing and evaluating future pa-

rameter set guesses. Eventually, this optimization routine will find a set of OLIS and

PID parameters which minimize the controlled system’s settling time. Unfortunately,

because this nonlinear optimization routine attempts to solve for so many variables

(usually six or more in the case of OLIS/PID controllers), the minimum found can

often be a local minimum, instead of the desired global minimum.

Because of the local minima problem often associated with complicated nonlinear

optimizations, the solution routine proposed in this thesis is divided into two distinct

parts: a smaller, nonlinear optimization routine and a linear optimization routine.

The overall solution routine is depicted in Figure 5.27. The first part uses MAT-

LAB’s “fmincon” to choose the PID gains and to check for stability and disturbance
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rejection constraints. For a given set of PID gains, the second step of the new solution

routine will use a Quadratic Programming linear optimization algorithm. This linear

optimization will determine the reference input signal that minimizes the settling time

measure while ensuring that the overall system meets it overshoot and actuator effort

constraints. By solving for as many parameters as possible via a linear optimization

technique, the overall solution routine yields better and more consistent results. That

is, it is less susceptible to finding local minima.

Another difference between the two solution routines depicted in Figures 5.26 and

5.27 is the form of the reference command given to the OLIS/PID controller. The

fully-nonlinear routine (Figure 5.26) solves for the parameters of an input shaper (a

small set of impulse times and amplitudes). This input shaper is then used to filter

the step reference command used to drive the overall system. On the other hand,

the partially-linear optimization routine solves for the reference command (R(t)) that

will best drive the overall system to follow a step. The reference command solved

for by the Quadratic Programming routine is a discrete signal, where the number of

discrete points creating the reference signal is determined by the user. The number

of discrete points is much higher than the number of input shaper impulses used in

the fully-nonlinear optimization routine. Usually, the number of discrete points used

for R(t) is over one hundred.

5.2.1.1 Justification for Use of Quadratic Programming

Quadratic Programming is a linear optimization routine that finds the vector ~x which

minimizes the function:

g(~x) =
1

2
~xT Q~x + fT~x (5.7)

If Q is a positive definite matrix, then the minimization problem will always have a

unique solution, ~xmin.

The first step in the partially-linear optimization routine uses “fmincon” to choose
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the closed-loop system’s PID gains. With these gains established, “fmincon” can

then easily check the closed-loop system’s stability and disturbance rejection con-

straint (assuming this constraint is written as a lower limit on any closed-loop pole’s

time constant). In addition, the closed-loop system can now be written as a lin-

ear, state-space system with input r (reference command) and output y. Solving for

the reference command that forces the linear, state-space system to follow a desired

trajectory can be formulated as a Quadratic Programming problem. The following

derivation will show this.

The state-space equations for the closed-loop system are:

ẋ = Ax + Br (5.8)

y = Cx (5.9)

The solution to these equations at any discrete time step is:

xi+1 = Φxi + Γri (5.10)

where,

Φ = eAT Γ = B
∫ T

0
eAτdτ (5.11)

and T is the discrete time step. Next, we define:

βi =
[

Φi−1Γ Φi−2Γ ... ΦΓ Γ
]

(5.12)

and:

β(n) =
[

βn 0(δ,k−n)
]

(5.13)

where 0(δ,k−n) is a matrix of zeros with the row-column dimensions indicated within

the parentheses. Here, δ is the number of states (length of the vector x), k is the pre-

chosen number of discrete points over which the reference input and system output

will be solved, and n is any time step (0 < n ≤ k).
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If the entire reference signal r is written as a column vector,

~R = [r0 r1 ... rk−2 rk−1]
T (5.14)

then any state or output value can be written as:

xi = β(i)R yi = Cβ(i)R (5.15)

Likewise, the entire output vector can be written as:

~Y =
[

Cβ(1) ... Cβ(k)
]T ~R or ~Y = Fy

~R (5.16)

where Fy =
[

Cβ(1) ... Cβ(k)
]T

.

A similar process can be completed that will give the actuator input u (which

directly acts upon the plant G within the feedback loop) as a function of r:

~U = Fu
~R (5.17)

However, the D matrix is usually not zero, as was the case in (5.9). This makes the

solution slightly more complicated.

In order to use a Quadratic Programming technique, the entity being minimized

has to be expressible via the form shown in (5.7). Therefore, the settling time was

minimized by minimizing the sum of the square of the error between the actual system

output, y, and the original, desired reference signal (which is a step command in this

section). If the original, desired reference is a unit step, then the error signal can be

written as:

E =
k
∑

i=1

(yi − 1)2 =
k
∑

i=1

y2
i −

k
∑

i=1

2yi +
k
∑

i=1

1 (5.18)

Minimizing this error yields:

min(E) = min

(

k
∑

i=1

y2
i −

k
∑

i=1

2yi

)

= min
(

~Y T ∗ ~Y − 21,k ∗ ~Y
)

(5.19)
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Fortunately, the terms within the parentheses of the right-most term can be written

as a function of the reference input vector:

g(R) =
1

2
~RT Q~R + fT ~R (5.20)

where Q can be shown to be positive definite and of the form:

Q = 2
[

Cβ1 ... Cβk
]

∗
[

Cβ1 ... Cβk
]T

(5.21)

The second term, f , can be written as:

f = −2
[

Cβ1 ... Cβk
]

(5.22)

Now, any standard Quadratic Programming algorithm can be used to minimize

g(R) subject to the any number of linear constraints on R. In other words:

min(g(R)) s.t. A∗ ≤ b∗ (5.23)

For the partially-linear optimization routine proposed in this chapter, A∗ and b∗ are

used to enforce the overshoot and actuator limits. For these constraints, A∗ and b∗

would be of the form:

A∗ = [Fy Fu − Fu]
T (5.24)

b∗ =
[

MpLimit(k,1) U (k,1)
max U (k,1)

max

]T
(5.25)

Note that A∗ and b∗ can be modified to include any number of linear constraints on

R.

5.2.2 Comparing Partially-Linear Optimization to a Standard Nonlinear
Optimization Package

One of the big questions with any nonlinear optimization routine is local minima.

Because this partially-linear design process uses MATLAB’s “fmincon” to find Kp,

Kd and Ki, this issue of local minima needs to be addressed. However, this partially-

linear optimization routine uses a quadratic programming process to compliment the

151



nonlinear “fmincon” and reduce the number of variables for which it must solve. This

is the key difference that allows for more-reliable and superior solutions. To verify

this statement, the results obtained from the partially-linear optimization routine are

compared to the solutions obtained by a fully-nonlinear optimization procedure that

solely utilized MATLAB’s “fmincon” to solve for every variable (the PID gains and

the input shaper parameters). These two solution methods are depicted in Figures

5.26 and 5.27.

The following sections will highlight the differences between these two optimization

routines by comparing their ability to solve for controller parameters and produce fast

step responses. Both design routines were fully executed and solved for PID gains and

parameters by which to alter the step-reference command (input shaping parameters

or r(t)). However, the resulting PID gains are the only solution parameters that

will be compared. The comparison of the PID gains is sufficient to establish the

parameter consistency of each design routine. The actual controller responses will

also be compared to see which one more closely executes the desired step command.

Each example will use a different plant type.

5.2.2.1 Mass Plant

For this example, the plant was a simple mass (m = 1) and the feedback controller

was restricted to the PD form:

G =
1

s2
(5.26)

C = Kp + Kds (5.27)

Figures 5.28 and 5.29 show the PD gain solutions for ten randomly initiated iter-

ations of each optimization routine. Remember that optimization routines generally

need some starting guess from which to begin searching for the optimal solution. The

initial gain guesses are shown on the abscissa of each figure and are denoted by the
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Figure 5.28: Kp Gains Chosen for Mass Plant.
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Figure 5.29: Kd Gains Chosen for Mass Plant.

subscript “initial”. The gains eventually chosen as “optimal” by the respective opti-

mization techniques are shown on the ordinate of each figure. These final values are

denoted by the “final” subscript.

If the outliers in Figure 5.28 (those Kp,final values above 14) are neglected, then
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Figure 5.30: Comparing Fully-Nonlinear Optimization Solutions for a Mass Plant.

the partially-linear optimization routine returns a more consistent set of Kp gains

than did the fully-nonlinear optimization routine. This is also true for the Kd gains,

without having to disregard any outliers.

Another way to compare these two optimization routines is to graphically compare

the responses of the controlled systems designed by each routine. Figure 5.30 shows

the ten responses to each of the ten controlled systems designed by the fully-nonlinear

optimization procedure. Figure 5.31 shows the ten responses for each of the ten

controlled systems solved for by the partially-linear optimization routine. For this

mass plant, the partially-linear optimization routine produced a more consistent set

of controllers than did the fully-nonlinear routine. In addition, the ten responses

produced by each of the ten controllers designed by the partially-linear optimization

routine were superior (in terms of settling time) than the responses from the fully-

nonlinear optimization routine. Remember that settling time was the parameter being

minimized.
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Figure 5.31: Comparing Partially-Linear Optimization Solutions for a Mass.

5.2.2.2 Damped, Second-Order Plant

For this example, the plant was a damped, second-order system and the feedback

controller was of the PID form:

G =
9

s2 + 0.6s + 9
(5.28)

C = Kp + Kds +
Ki

s
(5.29)

The results are depicted in a manner similar to the previous section. Figures 5.32

- 5.34 show the PID gains chosen by each optimization routine as a function of the

starting guesses. Again, the Kp and Kd gains are very consistent when chosen by

the partially-linear optimization. However, the Ki gain solutions have a consistency

roughly equal to those obtained by the fully-nonlinear solution.

Despite the uncertainty in the integral gain solution, the partially-linear optimiza-

tion scheme still yielded consistent and fast overall control schemes. Figure 5.35 shows

the slight inconsistency of the responses to the controlled systems obtained from the
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Figure 5.32: Kp Gains Chosen for Second-Order Plant.
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Figure 5.33: Kd Gains Chosen for Second-Order Plant.
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Figure 5.34: Ki Gains Chosen for Second-Order Plant.
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Figure 5.35: Fully-Nonlinear Optimization Solutions for a Second-Order Plant.
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Figure 5.36: Partially-Linear Optimization Solutions for a Second-Order Plant.

fully-nonlinear optimization routine. Figure 5.36 shows the ten step responses to the

controlled systems solved for by the partially-linear routine. Again, this optimiza-

tion routine was able to achieve controlled systems with faster step responses, less

overshoot and more consistency.

5.2.2.3 Third-Order Plant with Numerator Dynamics

For this example, the plant was a third-order system with one zero and the feedback

controller was of the PID form:

G =
s + a

s3 + bs2 + cs + d
(5.30)

C = Kp + Kds +
Ki

s
(5.31)

Here, a = 1.5, b = 2, c = 3.2 and d = 1.5.

Figures 5.37 - 5.39 show the results obtained by both optimization routines. Notice

that for this plant, the resulting PID gains have approximately the same degree of

consistency. However, the actual responses to each controlled system show the same

pattern as the two previous examples. The responses for the fully-nonlinear routine

158



5 10 15 20 25 30 35 40
25

30

35

40

45

K
p,initial

K
p,

fin
al

Partially−Linear Optimization
Fully−Nonlinear Optimization

Figure 5.37: Kp Gains Chosen for Third-Order Plant.
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Figure 5.38: Kd Gains Chosen for Third-Order Plant.

are inconsistent, as shown in Figure 5.40. The responses for the partially-linear

optimization routine shown in Figure 5.41 are again more consistent, faster, and have

less overshoot.
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Figure 5.39: Ki Gains Chosen for Third-Order Plant.
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Figure 5.40: Fully-Nonlinear Optimization Solutions for a Third-Order Plant.
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Figure 5.41: Partially-Linear Optimization Solutions for a Third-Order Plant.

5.2.2.4 Fourth-Order Plant with Numerator Dynamics

The final plant type studied here is a fourth-order plant (mass-spring-mass-spring-

ground where the input, sensor and output are all located at the first mass) again

under PID control:

G =
αs2 + β

s4 + δs2 + γ
(5.32)

C = Kp + Kds +
Ki

s
(5.33)

The plant coefficients depend on the masses and spring constants. Here, α = 0.333,

β = 0.4267 , δ = 1.68, γ = 0.32.

Testing ten different PID gain initial guesses, the results of both optimization

schemes are shown in Figures 5.42 - 5.44. The first thing to note is that both solution

routines occasionally failed to find a reasonable solution (less than ten final values are

shown in Figures 5.42 - 5.44). In these cases, “fmincon” hit its internal iteration limit.

This limit can certainly be adjusted, but it was found that increasing this limit too

much resulted in the partially-linear optimization sometimes requiring an extremely
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Figure 5.42: Kp Gains Chosen for Fourth-Order Plant.
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Figure 5.43: Kd Gains Chosen for Fourth-Order Plant.

long amount of time to find a solution (often an order of magnitude longer in time

than before this “fmincon” limit was raised).

However, for the cases when the partially-linear optimization does find a solution,

the optimal PID gains are very consistent. In fact, they are much more consistent
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Figure 5.44: Ki Gains Chosen for Fourth-Order Plant.

than the fully-nonlinear optimization solutions. The standard deviations for each

of the PID gain solution sets found by the partially-linear optimization routine were

between 0.0002 and 0.0003. For the fully-nonlinear optimization routine, the standard

deviations for each of the PID gain solution sets were between 0.1152 and 0.286.

The responses to each of the controlled systems successfully designed by both

optimization routines are shown in Figures 5.45 and 5.46. The partially-linear opti-

mization routine again yields more consistent and superior system responses.

5.2.2.5 Comparing Concurrent and Sequential Design

Finally, it can be shown that the partially-linear, concurrent design optimization tech-

nique proposed in this thesis can outperform a similar-structured sequential design

technique. Here, the sequential design technique first runs the outer nonlinear min-

imization routine (“fmincon”) that chooses the PID gains by minimizing the error

(from desired position) assuming the reference input is always a unit step. Then,

with the chosen PID gains, the quadratic programming routine is called to design a

non-step reference input to further minimize the error (from desired position), as well
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Figure 5.45: Fully-Nonlinear Optimization Solutions for a Fourth-Order Plant.
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Figure 5.46: Partially-Linear Optimization Solutions for a Fourth-Order Plant.

as to meet constraints (overshoot, maximum actuator effort and disturbance rejection

limits). Figure 5.47 compares the two step responses, showing that the concurrent

design is faster than the sequential design.
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Figure 5.47: Concurrent vs. Sequential Design on a Fourth-Order Plant.

5.2.2.6 Current Deficiencies in the Partially-Linear Optimization Scheme

There are a few problems associated with the newly proposed partially-linear opti-

mization scheme. First, Section 5.2.2.4 demonstrated how the partially-linear op-

timization routine can sometimes fail to find a solution. Two of the ten solution

iterations failed to find a viable solution. This problem can be exasperated by forc-

ing strict design constraints that reduce the solution space. For example, the same

optimization that was carried out in Section 5.2.2.4 was repeated with a stricter dis-

turbance rejection constraint. By adjusting this constraint, fewer combinations of

PID gains yielded acceptable design solutions. In fact, only four iterations found a

viable solution. By restricting the solution space, the partially-linear optimization

routine was more likely to fail than before. However, it should be noted from the

results in Section 5.2.2.4 that the fully-nonlinear optimization also fails on occasion.

It is unknown if one of the optimization routines is inherently superior to the other

in this regard.

This solution-finding dependance upon performance constraints can also be viewed
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as a method to improve an optimization routine’s ability to find solutions. If certain

constraints can be relaxed, then this will allow more PID combinations to result in

viable solutions. This will generally make it easier for an optimization routine to

search through the solution space and find a minimum.

Obviously, one solution to this solution-finding problem is to adjust the MAT-

LAB parameters that set internal, iteration limits. However, as briefly noted before,

this often led to the partially-linear optimization running for extremely long times

(sometimes well over one hour). Normal solution times typically ranged from 5 to

20 minutes. Note that raising the iteration limit can also cause the fully-nonlinear

optimization routine to take a significant amount of time.

The two previously described limitations indicate that there is a functional limit

as to the systems, or scenarios, that this newly proposed optimization technique can

reasonably address. If the system has a very constrained solution space, then this

new optimization routine will have a higher failure rate. Also, if the plant being

studied combines slow and fast dynamics, then any response simulation will need to

be carried out in small time steps (to accurately simulate the fast dynamics) and for

a long period of time (to accurately simulate the slow dynamics). This will force

the quadratic programming function to require significant computation time, further

increasing the overall optimization’s run time.

The last major problem with the newly proposed partially-linear optimization

scheme is the form of some of the reference inputs returned as solutions. Figure 5.48

shows one of the reference inputs required for the response solutions shown in Figure

5.46. The reference input never settles, periodically deviating from unity to suppress

a very lightly-damped mode of the closed-loop system. One solution to this problem

is to force the closed-loop system to have more damping (for example, by increasing

the disturbance rejection constraint). The low-vibration, second mode could then be

allowed to damp out naturally.
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Figure 5.48: Reference Input from the Partially-Linear Optimization.

However, in the case that the closed-loop system will have a lightly-damped,

secondary-mode, another solution is possible. The first step is to force the quadratic

programming routine to find a reference input that stays at unity past a certain time.

The second step is to only require the optimization routine to minimize the system

error after a certain time. This step is added in recognition that no system can

perfectly track a step command. Some error will always exists as the system moves

from its current position to its desired position.

Figure 5.49 shows ten partially-linear optimization routine runs (using the same

fourth-order plant) with the new constraints presented in the previous paragraph.

In addition, the reference input obtained by the quadratic programming routine was

forced to find an input that was monotonically increasing. This was added to avoid

reference commands with such sharp transitions like the one shown in Figure 5.48.

These quickly-changing reference commands are often desired, as they cause systems

to move quickly. However, they can also be too demanding for some actuators, and

they can excite higher modes of vibrations.
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Figure 5.49: PID Gains Chosen Under Redesigned Error Minimization.

As shown in Figure 5.49, the solutions are definitely not consistent. This is to be

expected in this case, because the system error was only minimized after a certain

time. Before that time, the system is allowed to have any response. Therefore, it

makes sense that multiple solutions would be obtained. The responses to these solu-

tions can be seen in Figure 5.50. The reference inputs used to create these responses

are shown in Figure 5.51. Because multiple solutions are bound to occur in this form

of the partially-linear optimization routine, it would be preferable to run the routine

multiple times and pick the visually-best response. For example, the reference input

and response shown in Figure 5.52 constitutes one of the fastest responses with zero

overshoot shown in Figure 5.50.

5.3 Discussion: Concurrent Design of OLIS/PID

Controllers for Generic Plants

The first half of this chapter developed new rules of thumb for combining outside-

the-loop input shaping and PID feedback control. First, a time domain perspective

was taken. This resulted in new tuning rules specifically designed for OLIS/PID
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Figure 5.50: Step Responses Under Redesigned Error Minimization.
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Figure 5.51: Reference Inputs for Redesigned Error Minimization.

controllers. Secondly, a frequency domain perspective was utilized to choose PID

gains via the Bode diagram. In both cases, the knowledge of the input shaper allowed

for the design of more aggressive close-loop systems. The final result was a faster step

response that still met various design constraints.
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Figure 5.52: Best Solution Under Redesigned Error Minimization.

The second half of this chapter looked at precise, numerical optimization routines

for choosing PID gains and input shaper parameters (or the entire reference input).

The newly proposed optimization routine relied (as much as possible) on a Quadratic

Programming routine. Only those parameters which could not be solved by the linear

optimization routine were solved via a nonlinear method. The controlled systems

generated by this partially-linear optimization routine were compared to systems

generated by a fully-nonlinear optimization routine. This fully-nonlinear optimization

routine solved for all system parameters and checked all constraints via a standard

nonlinear optimization package know as “fmincon”. The comparison indicated that

the partially-linear optimization routine generally chose a more consistent set of PID

gains. Although, this was not always the case. However, the actual step responses to

the overall systems designed by the partially-linear optimization routine were always

more consistent and superior to those obtained from the systems designed by the

fully-nonlinear optimization routine. By utilizing linear optimization, the partially-

linear optimization routine was better at avoiding local minima and finding superior

solutions.
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It was also shown in the previous section that the partially-linear optimization

routine has several drawbacks. As can happen in any optimization, the routine can

sometimes fail to find a solution or require a significantly long solution time.

The use of complex, optimization routines is often necessary. Effects such as

secondary modes and numerator dynamics (including non-minimum phase systems)

will often make the equations governing pure second-order systems impractical to use.

Fortunately, numerical optimization techniques based upon simulating the system’s

response can handle these issues and address the vast majority of plant types.
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CHAPTER VI

STABILITY ANALYSIS OF CLOSED-LOOP

SIGNAL SHAPING CONTROLLERS

Having extensively studied the intelligent combination of outside-the-loop input shap-

ing and PID feedback control, this dissertation will now focus on feedback controllers

that contain an input shaping filter somewhere within the feedback loop. These

controllers are called closed-loop signal shaping (CLSS) controllers. The basic as-

sumptions associated with this dissertations study of CLSS are:

1. G is linear, time-invariant

2. G is minimum phase

3. The closed-loop system is a single-input, single-output (SISO) system

Each particular study within the following four chapters will add additional assump-

tions that are detailed within their respective section. Future work could extend this

research beyond the constraints set by assumptions #1 - #3.

Arguably the most important issue when designing control systems is stability.

A controller is useless unless it can produce a stable, closed-loop system. Therefore,

this chapter will begin the study of closed-loop signal shaping (CLSS) controllers by

investigating whether or not they can yield stable behavior. This investigation will

use continuous domain root loci and Bode plots, in addition to discrete domain root

loci, to understand what drives CLSS controllers unstable and what increases stability

margins.
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6.1 Introduction to Stability of CLSS Controllers

The Closed-Loop Signal Shaping control scheme considered here is the Classical

Method shown in Figure 6.1. Here, “I” is an input shaper and “C” is some other

controller. This control scheme is probably the most obvious form of Closed-Loop

Signal Shaping, and it is the form most often found in literature. However, as with

any form of CLSS, this control scheme presents an obvious question of stability. Input

shapers utilize time delays. Within feedback loops, time delays are known to cause

stability problems. Therefore, in order for the Classical Method to be a reasonable

approach, it must be established that closed-loop stability is possible.

As discussed in Chapter 1, a few noteworthy stability studies have previously

been presented. However, what is missing from the literature is a detailed stability

investigation of the Classical Method that analyzes the control scheme with basic,

classical stability tools. Therefore, this chapter analyzes the Classical Method via a

root locus and Bode perspective. Within this study, the effects of the most important

system parameters (damping, frequency, etc.) are analyzed. The result is a more

general and intuitive understanding of the stability issues surrounding the Classical

Method. In addition, the analysis facilitates the design of stable CLSS controllers,

even in the midst of parameter uncertainties.

Section 6.2 will describe the stability of a second-order system within the contin-

uous domain. In Section 6.3, the stability of a second-order system will be analyzed

in the digital domain. Section 6.4 will extend the continuous domain discussion by

I PlantPlant+
-

InIn OutO t
+

-
+

- C

Figure 6.1: Block Diagram of the Classical Controller Method.
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Figure 6.2: Root Locus of the Simplified, CLSS Controller.

analyzing a fourth-order plant with numerator dynamics. Finally, Section 6.5 will

present some experimental results on the stability of CLSS controllers.

6.2 Stability Analysis of a Second-Order Plant

6.2.1 Initial Insights

To begin the stability study, the controller, “C”, in Figure 6.1 was restricted to be a

proportional gain, K. If the plant is assumed to be unity, then the closed-loop system

is only a function of the input shaper and the proportional gain (K). The root locus of

the system, when C = K and P lant = 1, is shown in Figure 6.2. Chapter 1 discussed

how input shapers have an infinite column of open-loop zeros and an infinite number

of open-loop poles located at s = −∞± jω. The root locus plot in Figure 6.2 shows

that the infinite number of open-loop poles create an infinite number of root locus

branches and closed-loop poles when a shaper is included within the feedback loop.

Note that the closed-loop poles arising from the input shaper tend to form a column

that extends infinitely away from the real axis. This occurs because of the infinite
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Figure 6.3: Open-Loop Bode Diagram of a ZV Shaper.

column of open-loop zeros, to which the closed-loop poles approach. However, in the

general case, the the input shaper’s open-loop zeros do not lie on the imaginary axis.

They can lie anywhere in the left-half plane, depending upon the oscillatory poles

they are designed to cancel.

Figure 6.3 shows the Bode diagram of the system considered above. Note that this

Bode diagram is simply the frequency response of the input shaper. The discontinuity

in the phase plot of the input shaper is a consequence of the Nyquist plot passing

through the origin. This also explains why the magnitude plot goes to −∞dB at

these phase discontinuities. These phenomenon occur because the input shaper used

here has zeros that are located exactly on the imaginary axis, as shown in Figure 6.2.

The Nyquist path, as it moves along the imaginary axis, passes through these zeros.

A vector of magnitude zero has an undefined angle, hence the phase discontinuities.

If the input shaper zeros lie in the left half plane, then the phase discontinuities in

the Bode plot become continuous, but sharp, transitions from ∼ −90◦ to ∼ +90◦.

The root locus and Bode plots previously shown constitute the first insight into
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CLSS controllers. Using input shapers within feedback loops will add an infinite

number of root locus branches. The input shaper will also severely attenuate certain

frequencies and will both add and subtract phase throughout the entire frequency

spectrum.

The second insight concerns the basic effect that modeling errors will have on

closed-loop stability. The plant, “G”, is now chosen to be an undamped second-order

system with a natural frequency of ωa. The modeling error studied here comes from

an error in the estimation of the plant’s natural frequency. That is, the frequency

used to design the input shaper (ωm) does not equal the actual natural frequency of

the undamped second-order system (ωa). Under such modeling errors, closed-loop

stability depends heavily on the relationship between ωa and ωm. The main reason

for this can be seen in Figure 6.4, where several root locus plots are shown for various

values of ωa. Note that the imaginary portion of the roots has been normalized by

ωm, which is 2π rad
s

in this analysis. The input shaper will add an infinite number of
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Figure 6.4: CLSS Root Locus Sketches.
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zeros along the imaginary axis located at odd multiples of ωm. These zeros remain

stationary in this analysis, but the poles from the plant (located along the imaginary

axis at ±ωa) move as the plant’s natural frequency changes. Root locus theory states

that a branch of the root locus will go from each plant pole to some open-loop zero;

usually the zero closest to that pole (the branch may extend to ∞ if there are more

open-loop poles than open-loop zeros). However, in this analysis, whether the plant

pole is above, or below, the zero to which the plant pole is closest, determines whether

or not the root locus branch will bend into the right-half plane (RHP) or the left-half

plane (LHP). Figure 6.4 shows this trend by depicting 4 different root locus drawings

for four different plants (Each color and line style corresponds to a different value

of the plant’s natural frequency). Depending upon the location of the plant poles

relative to the shaper zeros, the root locus from each plant pole goes to different

shaper zeros and extends into different halves of the real/imaginary plane.

Usually, if the plant pole is below the shaper zero to which it is closest, the root

locus branch extending from that plant pole bends to the right, making the system

unstable. On the other hand, if the pole is above the zero to which it is closest, the

root locus branch bends left, creating a stable system. When the pole lies close to

the middle point between two zeros, its root locus branch can enter both the RHP

and the LHP. This case is shown in Figure 6.4 for the plant natural frequency of

ωa = 3.9. Notice how this plant pole is almost equidistant from the two closest input

shaper zeros. However, since the plant pole is actually closer to the lower shaper

zero, the root locus branch starts begins in the LHP. Finally, it should be noted

that the data shown in Figure 6.4 are not actual root loci that were mathematically

determined. The plots were simply sketched to explain the phenomena observed in

simulation studies. Future sections will show actual root locus plots which corroborate

the sketches shown here.
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6.2.1.1 Closed-Loop Signal Shaping: Root Loci Proof

Constructing continuous domain root loci of CLSS controllers presents a few inter-

esting challenges. First, the closed-loop characteristic equation is not a polynomial

in “s”. This means that numerical methods must be employed to construct the root

locus. In fact, this dissertation will use a numeric root locus drawing technique cre-

ated by Nishioka [54]. In addition, the input shaper contains an infinite column of

open-loop zeros, resulting in an infinite number of closed-loop poles. These poles are

not necessarily in a straight column, although they do extend vertically away from

the real axis as described in Section 6.2.1 and Figure 6.2. This ambiguity as to the

location of an infinite number of closed-loop poles can make the use of the continuous

domain root locus tool difficult, as it is not obvious what axes range should be drawn

to include all significant closed-loop poles. However, it can be shown that beyond a

sufficiently large radial distance from the origin, the closed-loop poles arising from

the input shaper move left as they get farther from the real axis. This means that

the most significant closed-loop poles arising from an input shaper are those closest

to the real axis and that a controls engineer can reasonably ignore all but a finite

number of these closed-loop poles.

To show this, a simple proof is presented. The characteristic equation of the

Classical Method depicted in Figure 6.1 can be shown to be of the form:

1 + K ∗ I ∗ F = 0 (6.1)

where K∗I∗F is the open-loop transfer function of the closed-loop system in question.

Furthermore, K is a proportional gain, I is the input shaper, and F is the portion of

the open-loop transfer function that can be written as a rational transfer function (a

fraction of s polynomials). One further assumption is that the denominator of F is

of higher order than the numerator.

For some K value, there is an infinite number of s values that will satisfy the
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characteristic equation. In addition, the closed-loop poles arising from the input

shaper dynamics tend to form a vertical column as they approach the column of

open-loop zeros established by the input shaper. By moving away from the real axis,

the magnitude of these s values tends towards infinity. That is,

|s| → ∞ (6.2)

As |s| → ∞, it follows from the assumption on F that |F (s)| → 0. However,

since K ∗ I ∗F (with K being a finite constant) must always equal −1, it follows that

|I| → ∞ as |s| → ∞. The input shaper, I, will have the form:

I = A1 +
n
∑

i=2

Aie
−sti (6.3)

where Ai and ti are the magnitude and time, respectively, of the ith impulse. Note

that every input shaper can be written in this form, as they are all a summation of

time-delayed impulses (t1 is set to zero, following standard practice). Knowing that

s = σ + jω, this equation can be rewritten as:

I = A1 +
n
∑

i=2

Aie
−σtie−jωti (6.4)

In order for this expression to approach infinity as |s| tends towards infinity, some

term in this equation must approach infinity along with |s|. The Ai terms are constant

and usually less than or equal to one. The e−jωti term has a constant unity magnitude.

Therefore, the e−σti term must be the term whose magnitude approaches infinity as

|s| does. Because ti is fixed and finite, σ must approach −∞ as |s| → ∞. This

means that as the closed-loop poles for a single K value lie farther from the real axis,

they also lie farther to the left of the imaginary axis. Therefore, at some point, they

become insignificant and only a finite portion of the real-imaginary plane is needed

for sufficient system identification and control. It should be noted here that the exact
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relationship defining how the poles for a single K value tend towards the left as they

lie farther from the real axis is currently unknown.

One point of caution is the fact that the trend established above is only valid as

|s| approaches infinity. There is currently no established method for determining the

exact s value for which the trend begins. For small s values, where the closed-loop

poles from the input shaper are close to the dynamics arising from F , no specific

trend exists. The controls engineer must establish the suitable real-imaginary plane

area outside of which the above mentioned trend holds and where the closed-loop

poles are insignificant.

6.2.2 Full Stability Analysis of a Damped 2nd-Order System

Given the insights gained by the previous examples, we can now consider a more

complicated system. Here, a damped second-order plant of the following form is

studied:

G =
ω2

a

s2 + 2ζωas + ω2
a

(6.5)

To begin, the undamped version is analyzed with root locus and Bode plot tools, then

other features like damping and lead compensators are added.

6.2.2.1 Root Locus Analysis

Beginning with the control system depicted in Figure 6.1, the controller, C, is first

defined as a proportional controller (C = K). If the shaper is exactly tuned to the

plant frequency, then the root locus will be similar to that shown in Figure 6.5. Here,

the plant parameters are ωa = 2π and ζ = 0.

As shown in Figure 6.2 and reiterated in Figure 6.5, placing an input shaper

within the loop will result in an infinite number of closed-loop poles. Their presence

indicates another important result. Using an input shaper within a feedback loop,

as done within the control scheme depicted in Figure 6.1, will result in additional

oscillatory dynamics arising solely from the input shaper.
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Figure 6.5: Root Locus with exact pole/zero cancelation.

−5 −4 −3 −2 −1 0 1
0

5

10

15

20

Real

Im
ag

Figure 6.6: Root Locus where ωa < ωm.

If a modeling error occurs, then the pattern depicted in Figure 6.4 emerges. If

ωa < ωm, then the root locus is as shown in Figure 6.6. Clearly, the root locus branch

extending from the plant poles goes instantly unstable. However, if ωa > ωm, this

branch remains stable. This can be seen in the Figure 6.7. This pattern matches the
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Figure 6.7: Root Locus where ωa > ωm.

prediction made in Figure 6.4. Note that Staehlin and Singh had similar stability

results for their CLSS controller which will be discussed in Chapter 8 [91].

6.2.2.2 Bode Analysis of Classical Method

The basic control system (again, C is just a proportional controller K) is now ana-

lyzed via the Bode diagram. The Bode diagram of the second-order system used in

(6.5) is shown in Figure 6.8. Again, the plant parameters are ωa = 2π and ζ = 0.

Furthermore, the Bode diagram of an input shaper tuned to this plant’s frequency

and damping ratio can be seen in the Figure 6.3. The Bode diagram of the entire

open-loop system depicted in Figure 6.1 (setting C = K = 1) is shown in Figure 6.9.

Here, the plant peak is exactly canceled by the shaper trough.

Next, the same two cases of modeling error investigated via the root locus plot

(ωa < ωm and ωa > ωm) are analyzed with Bode diagrams. If ωa < ωm, the Bode

plot looks like that shown in Figure 6.10. This system has negative phase and gain

margins. However, if ωa > ωm, then the frequency plot has positive phase and gain
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Figure 6.8: Bode Diagram of an Undamped, 2nd-Order Plant.
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Figure 6.9: Bode Diagram of Complete, Open-Loop System.

margins as shown in Figure 6.11. The same stability trend previously shown via root

locus plots is reiterated here using Bode plots.
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Figure 6.10: Open Loop Bode when ωa < ωm.

−100

0

100

M
ag

ni
tu

de
 (

dB
)

10
1

−300

−200

−100

0

100

Frequency (rad/sec)

P
ha

se
 (

de
g)

Figure 6.11: Open Loop Bode when ωa > ωm.

6.2.2.3 Parameter Influence on Closed-Loop Stability

The previous sections established the basic form of the root locus and Bode plots

for the Classical Method form of CLSS. Also, the previous sections revealed that

modeling errors are a primary source of instability for CLSS controllers. Here, the
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Figure 6.12: Root Locus with high K value.

influence of other parameters (namely K and ζ) that are present in the control system

(Figure 6.1) will be analyzed. Also, the addition of a lead compensator to the open-

loop system is investigated. The lead compensator is studied here because it is known

to increase a system’s stability margins. Because small modeling errors can result in

unstable, CLSS controllers, it was important to show that a control block (C) could

be added to the block diagram shown in Figure 6.1 so as to increase stability margins

even when modeling errors occur.

Influence of Gain, K

By increasing the gain, K, the system shown in Figure 6.1 will eventually be driven

unstable. Figure 6.12 shows how an initially stable system can be driven unstable

by making K too high. This figure indicates that the dynamics arising from the

inclusion of input shaping filters inside of feedback loops can, themselves, be the

cause of instability.

This same phenomenon is reiterated via a Bode plot in Figure 6.13. In this figure,
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Figure 6.13: Influence of K on Bode Diagram of a CLSS Controller.

the rising magnitude plot is caused by the increasing K value. Eventually, this causes

both stability margins to change from positive to negative.

Influence of damping ratio, ζ

However, when the second-order plant has damping, this increases the regions of

stability. Figure 6.14 shows this effect on a root locus plot. By increasing ζ , the

root locus branches are shifted to the left. This effect enables higher proportional

gain (K) values to result in stable closed-loop poles. Figure 6.15 shows the effect of

increasing ζ on a Bode plot. By flattening both the magnitude and phase plots, the

phase margin and gain margin are increased.

Influence of Lead Compensator

Because of the stability issues associated with closed-loop signal shaping, it was de-

sirable to study the effect of stability enhancing controllers. One of the most effective

and practical controllers used to increase stability margins is the lead compensator.
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Figure 6.14: Influence of ζ as shown on root locus plot.
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Figure 6.15: Influence of ζ as shown on Bode plot.

The lead compensator is implemented here by setting the controller, C, to C = K s+z
s+p

.

Figure 6.16 shows how the root locus branches are pulled to the left and Figure 6.17

shows how phase and gain margins are increased.
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Figure 6.16: Effect of Lead Compensator on Root Locus.
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Figure 6.17: Effect of Lead Compensator on Bode Diagram.

While there are many other types of controllers (PID, lag compensator, etc.) that

could have been used as the C block in Figure 6.1, the main goal of this section

was to show that reasonable stability margins can be achieved in CLSS systems.

The lead compensator sufficiently proved this point. However, because the basics of
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the root locus and Bode diagrams for CLSS controllers have now been established

and reviewed, the effect of any control block (C) on the Classical Method of CLSS

controllers can be studied.

6.3 Closed-Loop Signal Shaping: Digital Root Loci

Another way to view the closed-loop poles of a feedback control system is with the

digital root locus. The main advantage for using the digital root locus in CLSS design

is that an input shaper in the digital domain is a finite-order polynomial in z. This

eliminates the need for numerical root locus drawing techniques and eliminates the

presence of an infinite number of open-loop zeros and closed-loop poles. This section

will show several CLSS digital root loci and highlight some of the same trends found

in the continuous domain root loci that are fundamental to CLSS design.

6.3.1 Basic Effect of Input Shapers on Digital Root Loci

This section will analyze the digital root loci of the block diagram depicted in Figure

6.1 when C = K, P lant = 1 and “I” is a ZV shaper. This analysis will yield a

basic understanding of the effect that an input shaper has when included within the

feedback loop, similar to the results shown in Figures 6.2 and 6.3.

The control scheme whose digital root locus is shown in Figure 6.18 has a sampling

time (T ) equal to one half the ZV shaper’s duration (T = π
2ωd

). As shown in Figure

1.4, the duration of an input shaper (∆) is equal to the time of the last impulse.

Figure 6.19 shows the digital root locus of the same system when T = π
3ωd

, while

Figure 6.20 shows the digital root locus of the same system when T = π
8ωd

. As T

becomes smaller, the digital domain input shaper has an increasing number of open-

loop zeros and poles. As can be seen from these figures, as T approaches zero, the

input shaper’s zeros and poles approach an infinite number. This is consistent with

earlier results because as a digital control system’s T approaches zero, the system

approaches a continuous domain system.

189



−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

Real

Im
ag

Figure 6.18: ZV Shaper for ζ = 0, Shaper Duration = 2*T.
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Figure 6.19: ZV Shaper for ζ = 0, Shaper Duration = 3*T.

Also notice that the open-loop zeros of this input shaper always lie on the unit

circle. This is consistent with the continuous domain root loci, where the open-loop

zeros of an input shaper designed for undamped dynamics lie on the imaginary axis.

Figure 6.21 shows the effect of non-zero damping. In this case, the open-loop zeros
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Figure 6.20: ZV Shaper for ζ = 0, Shaper Duration = 8*T.
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Figure 6.21: ZV Shaper for 0 < ζ < 1, Shaper Duration = 3*T.

of the input shaper lie inside the unit circle. This is consistent with the fact that the

open-loop zeros of continuous domain input shapers, designed to cancel damped poles,

lie to the left of the imaginary axis. Figure 6.22 shows the digital root locus when

the shaper duration is not an exact multiple of the sampling time. In this case, two
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Figure 6.22: ZV Shaper for 0 < ζ < 1, Shaper Duration 6= 3*T.
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Figure 6.23: ZVD Shaper for ζ = 0, Shaper Duration = 4*T.

of the open-loop zeros lie at different locations (as compared to Figure 6.21, where

the shaper duration was an exact multiple of the sampling time) and the normally

straight lines from pole to zero are slightly curved.

Figure 6.23 shows the digital root locus when a ZVD shaper is utilized within the
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Figure 6.24: ZVD Shaper for 0 < ζ < 1, Shaper Duration 6= 4*T.

feedback loop. This input shaper has two open-loop zeros/poles at each place where

a ZV shaper would have only one. Again, the effect of damping is similar to that on

a ZV shaper, as shown by Figure 6.24.

6.3.2 CLSS Digital Root Loci with Non-Unity Plants

The combination of an input shaping controller within the feedback loop and a non-

unity plant will now be investigated. Here, the plant is assumed to be a second-order

oscillator. A ZV shaper exactly tuned to cancel the undamped poles of a second-order

system will yield the digital root locus shown in Figure 6.25. Just as in the continuous

domain root locus, even when perfect pole/zero cancelation occurs, the system will

go unstable for some gain value. The point of instability is shown as a small “x” or

“+” on the root locus.

This instability problem is exasperated by modeling errors and imperfect pole/zero

cancelation. When the modeled plant frequency (used to design the input shaper) is

less than the actual plant frequency, the root locus is as shown in Figure 6.26. This

system goes unstable quicker than with perfect modeling, but still has a reasonable
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Figure 6.25: Digital Root Locus, ωm=ωa.
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Figure 6.26: Digital Root Locus, ωm < ωa.

range of system gain in which stability holds. However, when the modeled frequency

is higher than the actual frequency, the root locus shown in Figure 6.27 results.

Here, instability is virtually immediate, with relatively small system gains driving
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Figure 6.27: Digital Root Locus, ωm > ωa.

the system unstable. Note that this relationship between modeled and actual natural

frequency was predicted by the continuous time root loci as well.

One way to enhance stability margins is to decrease the system’s sampling time.

Figure 6.28 shows a digital root locus of the same system depicted in Figure 6.25 with

the sampling time cut in half. Here, the system gain which results in instability is

slightly higher than in the system shown in Figure 6.25.

Finally, Figure 6.29 shows the combined affect of system damping and system

sampling time on the system gain resulting in instability (Kcrit). Here, the open-

loop system consisted of a ZV shaper that was exactly tuned to cancel the poles of

an undamped, second-order plant. As can be seen from Figure 6.29, increasing the

plant’s damping ratio increases stability margins. Note that this effect was predicted

in the continuous domain root loci. Also, decreasing the sampling period generally

increases the stability margins.

Note from Figure 6.29 that very low damping (ζ = 0.01 and ζ = 0.001) combined

with relatively high sampling periods tended to create jumps in the Kcrit curves. The
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Figure 6.28: Digital Root Locus, ωm = ωa, Smaller T.
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Figure 6.29: Effect of T and ζ on Kcrit: ωm = ωa = 2π.

jumps toward Kcrit ≈ 0 are caused by the input shaper zero not fully canceling the

plant pole. For example, the digital root locus of the system shown in Figure 6.1 with

ζ = 0.001 and T = 0.15sec is shown in Figure 6.30. Figure 6.31 shows a zoomed in

view of Figure 6.30 using the boundaries approximated by the “Zoom” box labeled on
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Figure 6.30: Digital Root Locus: ζ = 0.001 and T = 0.15sec.
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Figure 6.31: Zoomed in Digital Root Locus: ζ = 0.001 and T = 0.15sec.

Figure 6.30. Because the sampling period is large relative to the shaper duration (the

shaper duration is 0.5sec in all of the digital root locus figures shown in this section),

the pole/zero cancelation is not completely accomplished. This causes a short root
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Figure 6.33: Block Diagram of Collocated Control System.

locus branch to exist. And, because the plant damping is low, this branch exists close

to (and in this case crosses) the unit circle. Either decreasing T or increasing ζ will

generally solve this problem.

6.4 Mass-Spring-Mass System

In order to investigate more complicated systems, a mass-spring-mass system was

studied. In particular, this mass-spring-mass system could represent a satellite, or

spacecraft, which has a rigid body connected to a lightweight, flexible appendage. A

schematic of the mass-spring-mass system is shown in Figure 6.32. A block diagram

of the collocated control system is shown in Figure 6.33. Analyzing the system shown

in Figure 6.32, X
F

and Y
X

can be shown to be:

X

F
=

M2s
2 + bs + k

s2 (M1M2s2 + b[M1 + M2]s + K[M1 + M2])
(6.6)

Y

X
=

bs + k

M2s2 + bs + k
(6.7)
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These equations can be rewritten as:

X

F
=

1

M1

s2 + 2ζ2ω2s + ω2
2

s2(s2 + 2ζ1ω1s + ω2
1)

(6.8)

Y

X
=

2ζ2ω2s + ω2
2

s2 + 2ζ2ω2s + ω2
2

(6.9)

where:

ω1 =

√

K
M1 + M2

M1M2

(6.10)

ω2 =

√

K

M2
(6.11)

2ζ1ω1 = b
M1 + M2

M1M2
(6.12)

2ζ2ω2 =
b

M2

(6.13)

For this analysis, the following values were chosen: M1 = 10, M2 = 1, k = 20 and

b = 0.2. These values lead to: ω1 = 4.69 rad
s

, ω2 = 4.47 rad
s

, ζ1 = 0.024 rad
s

, ζ2 = 0.02 rad
s

.

6.4.1 Bode Diagram Analysis

In order to study the stability of the system shown in Figure 6.33, the open-loop Bode

diagram and the root locus are analyzed. If it is assumed that the controller, C, is just

a proportional controller, then the open-loop Bode diagram of KI X
F

(where K = 1

and I is a ZV shaper) would look like that shown in Figure 6.34. Unfortunately, it

can be easily seen that the phase margin is negative.

One possible solution would be to greatly increase K so that the phase is above

−180◦ when the gain crosses the 0dB line. However, Figure 6.35 (which shows the

same open-loop Bode, but with K = 2500) shows that the system is still unstable.
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Figure 6.34: Open-Loop Bode Diagram.
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Figure 6.35: Open-Loop Bode Diagram with K = 2500.

This Bode plot has 3 gain crossover frequencies, and the first of these still has a

negative phase margin. Even if K is increased further (so that the first dip in the

magnitude curve did not create any crossovers), the next crossover would also have a

negative phase margin.
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Figure 6.36: Root Locus of Control System without Input Shaper.

6.4.2 Root Locus Analysis

The root locus of the closed-loop system shown in Figure 6.33, without the input

shaper, is shown in Figure 6.36. This system is stable for any K value. However, if

the input shaper is added to the closed-loop system, then the root locus becomes as

shown in Figure 6.37. This system starts out (with small K values) as unstable. And,

even when large K values bring the closed-loop poles from the first root locus branch

back to stable values, other branches have already gone unstable. This confirms the

original findings in the Bode diagram analysis: the CLSS control of a mass-spring-

mass system is always unstable. That is, the system is always unstable when the

controller, C, is just proportional control.

One solution is to use a lead compensator, in addition to proportional control (i.e.

C = K s+z
s+p

). If the lead compensator’s pole is chosen to be at -20 while the zero is

chosen to be located at -1, then the system root locus will look like the one shown in

Figure 6.38. Clearly, this system is much more stable. Even with the gain, K, taken as

high as 3000, the system remains stable. In conclusion, by adding a lead compensator,
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Figure 6.37: Root Locus of Complete Control System.
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Figure 6.38: Root Locus of Complete Control System with a Lead Compensator.

the closed-loop signal shaping of a fourth-order system is relatively stable. This is

further verified by the Bode diagram of the system with a lead compensator, shown

in Figure 6.39. Here, the gain margin is large, around 70dB.
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Figure 6.39: Open-Loop Bode Diagram with Lead Compensator.

6.4.3 Modeling Errors

To verify the general stability of closed-loop signal shaping of a fourth-order system

with a lead compensator, the affect of modeling errors will be investigated via the root

locus. Remember that the plant transfer function for this mass-spring-mass system

is:

X

F
=

1

M1

s2 + 2ζ2ω2s + ω2
2

s2(s2 + 2ζ1ω1s + ω2
1)

(6.14)

If the complex poles of X
F

are perfectly modeled, then the ZV shaper could theoreti-

cally be tuned such that full pole/zero cancelation occurs. This was shown in Figures

6.37 and 6.38. However, this exact modeling is never possible. If the shaper frequency

is smaller than the plant frequency, then the root locus shown in Figure 6.40 results.

As expected from the earlier study of second-order systems, this scenario results in a

root locus branch from the plant pole to the shaper zero that bends to the left. This

scenario usually does not greatly decrease stability. However, if the shaper frequency

is larger than the plant frequency, then the new root locus branch bends to the right,

as shown in Figure 6.41. With second-order systems, this scenario usually causes
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Figure 6.40: Root Locus of Complete Control System with ωm < ω1.
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Figure 6.41: Root Locus of Complete Control System with ωm > ω1.

significant stability problems. However, in this fourth-order system, the plant pole is

now located between two zeros - one from the input shaper and one from the plant’s

numerator dynamics. Because it lies between two zeros, the plant pole does not ad-

versely affect stability as much as in the second-order case. According to Figure 6.41,
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Figure 6.42: Crane Used for Stability Experiments.

even with a K value of 3000, the root locus branch extending from the plant pole

remains stable.

6.5 Experimental Verification

In order to verify the stability findings regarding CLSS controllers, experiments were

conducted on an industrial crane located at the Georgia Institute of Technology. The

crane is a 10-ton bridge crane, sketched in Figure 6.42. This bridge crane has at least

4 notable nonlinearities: a velocity limit, an acceleration limit, a built-in velocity

smoothing algorithm that prevents sudden sign changes in velocity, and a velocity

dead zone. Obviously, the linear based root locus analysis tool presented in this

thesis cannot account for the nonlinear behavior of this real world system. However,

it will be shown here that a good linear model is sufficient to explain the dynamic

behavior and approximately predict the gain value that induces instability.

The motion of the crane trolley is controlled by a CLSS controller of the form

shown in Figure 6.1. Here,

C = Ko(Kp + Kds) I = A1 + A2e
−st2 (6.15)
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Figure 6.43: Root Locus of Crane Control System.

G =
ω2

n

s(s2 + 2ζωns + ω2
n)

. (6.16)

This closed-loop system consists of a PD feedback controller, a two impulse (ZV)

shaper, and a third-order plant (second-order oscillator plus an integrator). For these

experiments, all values within the closed-loop system were held constant, except Ko.

Ko was varied to show its effect on stability. The root locus of this closed-loop system

is shown in Figure 6.43. As can be seen from the zoomed-in root locus plot shown in

Figure 6.44, this closed-loop system will go unstable for some finite value of gain Ko.

In fact, the root locus predicts that a Ko value of 10.5 will create a marginally stable

system.

In order to verify these predictions, the crane trolley was commanded to move 1

meter under the closed-loop signal shaping controller described in this section. As

an initial test, the experiments were conducted without an input shaper in the loop.

That is, I was set to 1 and C and G were left as shown in (6.15) and (6.16). This was

done to ensure that the system would not go unstable purely due to its nonlinearities
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Figure 6.44: Closed-Loop System Goes Unstable.
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Figure 6.45: Crane Response without CLSS.

and PD controller. As seen in the experimental results shown in Figure 6.45, no value

of Ko resulted in instability. However, when the input shaper was included within the

feedback loop, increasing Ko from 0.5 to 10 causes a limit cycle, as shown in Figure
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Figure 6.46: Crane Response with CLSS.

6.46. Although the response is not exponentially growing, this limit cycle response

is unstable for practical purposes. Because the linear dynamics of the bridge crane

dominate its response, the experimentally determined critical gain of Ko = 10 is very

close to the theoretical value of Ko = 10.5 predicted by the root locus.

A second set of experiments were conducted using different Kp and Kd gains in

the controller block “C” defined by (6.15). The root locus of this system is shown in

Figure 6.47. In this case, the root locus predicts that Ko = 12 will result in instability.

The 1 meter step responses shown in Figure 6.48 again demonstrate that K0 = 10

results in a limit cycle response. However, this response is different from that shown

in Figure 6.46, exhibiting a significantly higher amplitude.

These experimental results match fairly well with the theoretically predicted af-

fects of utilizing input shapers within feedback loops. The difference between the

predicted and actual critical value of Ko is mostly due to the real system’s nonlinear-

ities which are not accounted for in the linear model. However, it should be noted

that the range of K0 values experimentally tested on the HighBay crane was rather
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Figure 6.48: CLSS Crane Response with New PD Gains.

course. In fact, the only K0 value tested between K0 = 5 and K0 = 10 was K0 = 7.

This value did not result in sustained oscillations for either set of Kp and Kd gains.
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Therefore, the actual critical, K0 value which results in instability (for both experi-

ments) lies somewhere between seven and ten. However, the precise critical, K0 value

is not of critical importance, as the root locus prediction will always be wrong due

to the nonlinear nature of the crane. The important point is that the root locus

technique shown here gives a quick, reasonable estimate of the K0 value which will

result in instability. This will always need to be verified experimentally if the precise

value is needed. Also, the root locus technique shown here gives the engineer a good

understanding of the closed-loop system’s secondary dynamics.

6.6 Stability Analysis Discussion

This chapter has shown how simple, standard stability analysis tools (the root locus

and Bode plot) can be used to study the stability properties of CLSS controllers.

Despite the fact that CLSS controllers add partial time delays to the feedback loop,

these controllers can be stabilized even when some amount of modeling error occurs.

However, it is clear from this chapter that CLSS controllers are more susceptible to

instability than standard PID feedback control. The next chapter will demonstrate

useful applications for CLSS controllers, where they give some advantage over PID

control.

It is also important to note that this chapter only looked at two, basic plant types:

a second-order plant and a fourth-order plant based upon a mass-spring-mass system.

Using the techniques presented here, future work could address the stability of CLSS

controllers that utilize more complicated plant types, including non-minimum phase

systems.
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CHAPTER VII

APPLICATIONS OF CLOSED-LOOP SIGNAL

SHAPING CONTROLLERS

7.1 Introduction to CLSS Applications

The previous chapter established guidelines and boundaries for insuring BIBO sta-

bility of CLSS controllers. However, just because a control scheme is stable does not

mean that it is useful. This chapter will investigate the usefulness of CLSS controllers

for some typical control problems. CLSS will be compared to basic OLIS/PID combi-

nations. This chapter will primarily use a second-order plant, but broader conclusions

will be drawn from these results. The control issues studied here are:

1) Actuator/Force Disturbances

2) Sensor Disturbances

3) Modeling Errors

4) Trajectory Tracking

5) Non-collocated Control

6) Discontinuous (Hard) Nonlinearities

7) Improving the Performance of Human Operated Systems

Figure 7.1 shows the basic block diagrams that will be studied in this chapter.

The top block diagram (Figure 7.1a) is an OLIS based controller. The bottom block

diagram (Figure 7.1b) is a CLSS controller. These block diagrams also depict some of
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Figure 7.1: OLIS and CLSS Block Diagrams.

I G+-
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Figure 7.2: Block Diagram of Feedback System with Actuator Disturbances.

the control problems to be studied here: force disturbances (Df), sensor disturbances

(Ds) and system nonlinearities (NL).

7.2 Actuator Disturbance Rejection

7.2.1 Theoretical Perspective

Figure 7.2 shows a Classical Method CLSS control system that experiences actuator

disturbances. Here, the P controller is set to unity and I represents the input shaper.

The transfer function from R to Y is:

Y

R
=

IG

1 + IG
(7.1)
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Under perfect modeling conditions, the oscillatory, open-loop poles of G are canceled

by the open-loop zeros of I. Because the IG term appears in both the numerator

and the denominator, evaluating the Y
R

transfer function at the open-loop poles of

G would result in a finite value. This means that the open-loop poles of G are not

closed-loop poles of the Y
R

transfer function.

However, this cancelation does not fully occur in the transfer function between

Df and Y :

Y

Df

=
G

1 + IG
(7.2)

Because I appears in the denominator but not the numerator, the open-loop poles of

G are also closed-loop poles of Y
Df

(in addition to the closed-loop poles obtained from

the characteristic equation 1 + IG = 0). If the Y
Df

transfer function is evaluated at

the open-loop poles of G, the denominator would be finite, but the numerator would

be infinite. Hence, just as in the case without feedback control, the system responds

to an actuator disturbance according to the dynamics inherent to the plant, G. From

these observations, it is not expected that this form of closed-loop signal shaping will

provide any benefits over outside-the-loop input shaping combined with PID feedback

control in terms of actuator disturbance rejection.

7.2.2 Second-Order Plant Simulation Results

Figure 7.3 shows the response to an actuator disturbance pulse (the reference input,

R, was set to zero) for an OLIS/PD controller and a CLSS controller of the forms

depicted in Figure 7.1. For this analysis, the plant was a damped, second-order system

of the form:

G =
1

s2 + 0.1s + 1
(7.3)

Both input shapers were Zero-Vibration (ZV) shapers. The ZV shaper used in the

OLIS/PD controller was tuned for the closed-loop poles created by the PD controller

with Kp = 1 and Kd = 0.4. The ZV shaper used in the CLSS controller was tuned for
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Figure 7.3: Actuator Disturbance Response of Second-Order Plant.

the poles of G. The simulation results shown in Figure 7.3 support the previous the-

oretical developments. It is clear from this figure that the closed-loop signal shaping

scheme is significantly worse than the OLIS/PD controller. By utilizing derivative

control, the OLIS/PD controller is able to create a closed-loop system with a high

damping ratio. Since the CLSS controller responds to a force disturbance at the low-

damped poles of G, the OLIS/PD controller has superior disturbance rejection. CLSS,

in the form depicted in Figure 7.2, yields no advantage in terms of force disturbance

rejection.

7.3 Sensor Disturbance Rejection

7.3.1 Theoretical Perspective

Figure 7.4 shows a CLSS controller that experiences sensor disturbances. As was done

in the previous section, analyzing the output/disturbance transfer function will give

some insight into the controller’s ability to reject sensor disturbances. Fortunately,

the transfer function between Ds and Y will not have closed-loop poles arising from
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Figure 7.4: Basic Block Diagram of Feedback System with Sensor Disturbances.

the plant dynamics. The Y
Ds

transfer function is:

Y

Ds

=
−IG

1 + IG
(7.4)

From the Y
Ds

transfer function, it can be seen that the open-loop poles of G are com-

pletely canceled by the open-loop zeros of I in both the numerator and denominator.

Remember that this also occurs in the Y
R

transfer function. Just as in the Y
R

trans-

fer function, the presence of I in the numerator and denominator means that the

Y
Ds

transfer function will not have poles corresponding to the open-loop poles of G.

The only poles associated with the Y
Ds

transfer function will come from the zeros of

the characteristic equation (1 + IG). However, these poles can be made much more

damped than those of the lightly-damped plant being canceled by the input shaper.

This ability to take a lightly-damped plant and create and significantly higher-damped

closed-loop system without the need for derivative control shows that CLSS does have

benefits over OLIS/PD control in regards to sensor disturbance rejection.

7.3.2 Second-Order Plant Simulation Results

The simulation results shown in Figure 7.5 support the theoretical developments of

Section 7.3.1. Note that these simulations used the exact same plant, ZV shapers, and

PD gains used in the actuator disturbance study. Figure 7.5 shows that both control

schemes (CLSS and OLIS/PD control) are capable of achieving quick disturbance

rejection. However, the OLIS/PD controller is only able to accomplish this because

it uses derivative control. These simulations show that a CLSS controller can equal, or
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Figure 7.5: Sensor Disturbance Response of Second-Order Plant.

surpass, the performance of a standard PID controller in the area of sensor disturbance

rejection without the need for differentiators.

It should be noted that the results shown in Figure 7.5 are for one specific plant

and one set of PD gains. These results do not mean that OLIS/PD controllers cannot

outperform (in terms of sensor disturbance rejection) CLSS controllers. The major

result of this section is to show that CLSS controllers can adequately filter the response

to sensor disturbances (creating a relatively high-damped response) without using

derivative control. This ability to eliminate differentiators will make CLSS control a

useful alternative to standard PD feedback controllers in practical situations where

differentiators are difficult to implement.

7.4 Modeling Errors

7.4.1 Theoretical Perspective

Whether an input shaping filter is placed outside of the feedback loop, or inside it, the

input shaper seeks to cancel some set of oscillatory poles. Modeling errors prevent the

exact cancelation of oscillatory poles by an input shaper, resulting in some non-zero
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Figure 7.6: Block Diagrams Used to Study Frequency Modeling Errors.

level of vibration. This section will investigate natural frequency modeling errors on

second-order plants. This section will study the effects that these modeling errors

have on the performance of OLIS/PD controllers and CLSS controllers.

Figure 7.6 shows the two controllers that are analyzed in this section. The con-

troller shown in Figure 7.6a is a OLIS/P controller, whereas the controller shown in

Figure 7.6b is a CLSS controller with proportional control. These block diagrams

are limited to the configurations shown so that the only difference is the placement

of the input shaping filter. Of course, this will also change how the input shaper is

designed. When placed outside of the feedback loop, the shaper is tuned to the poles

of the closed-loop system. When placed inside the loop, the shaper is tuned to the

poles of the plant (G).

Figure 7.7 shows an open-loop zero of a ZV shaper (note that a ZV shaper places

one zero at the location of the modeled dynamics) and the closed-loop pole of a

feedback controller when there is no modeling error (left-hand side) and when some

error in the prediction of the plant natural frequency does occur (middle and right).
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Figure 7.7: Pole/Zero Plot of Outside-The-Loop Input Shaping.

Closed-Loop Pole

Open-Loop Pole

Open-Loop Zero

Figure 7.8: Root Locus of Closed-Loop Signal Shaping.

Note that this figure shows two plant poles for the modeling error case; one for

actual frequency being lower than modeled (middle plot) and one for it being higher

than modeled (right-hand plot). In outside-the-loop input shaping, even when some

modeling error occurs, the poles remain relatively close to the shaper zero. The

response of the poles is still somewhat attenuated by the proximity of the input

shaper zero.

On the other hand, Figure 7.8 shows the root locus of a CLSS control scheme

without modeling error (left) and with modeling error (middle and right). With the

same modeling error as depicted in the open-loop case, closed-loop signal shaping

creates two distinct possibilities. If ωact < ωmod (middle plot), it is possible for the

closed-loop pole to lie farther from the shaper zero and to the right of the original

open-loop pole. Since the closed-loop pole is farther to the right than its open-loop
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counterpart, it has less damping and a longer settling time. This suggests that the

closed-loop signal shaping response would be worse than the outside-the-loop input

shaping response. However, if ωact > ωmod (right plot), then the closed-loop pole can

lie to the left of its outside-the-loop counterpart. Therefore, it has more damping

and a quicker settling time. This suggests a superior response for closed-loop signal

shaping. Unfortunately, modeling errors are usually not known (i.e. it is not usually

known whether ωact < ωmod or ωact > ωmod).

7.4.2 Second-Order Plant Simulation Results

A simple set of simulations performed using a second-order plant support the theoret-

ical predictions given in the discussion above. The second-order plant in this section

was again:

G =
1

s2 + 0.1s + 1
(7.5)

The shapers used in both controllers were ZV shapers. For this first set of simulations,

the proportional gain was set to unity. The modeling error used here was 20%. That

is, ωact

ωmod
= 0.8 or 1.2.

Figure 7.9 shows that when ωact < ωmod, closed-loop signal shaping control fails

to outperform OLIS/P control. However, when ωact > ωmod, Figure 7.10 shows that

closed-loop signal shaping yields quicker settling times but also greater overshoot.

A more thorough comparison of these two control schemes compared the resulting

overshoot and 2% settling time over a range of Kp values and modeling errors. The

modeling error was accomplished by tuning the shapers to frequencies not equal to

the actual plant or closed-loop frequencies. The modeled frequency used to tune the

input shapers is labeled as ωmod, whereas the actual frequency of the plant or closed-

loop system is ωact. The modeling error used in the following figures is represented as

the ratio between modeled and actual frequency ( ωact

ωmod
). The overshoot and settling

times are also displayed as ratios. The overshoot ratio is the maximum output reached
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Figure 7.9: Modeling Error Response, ωact < ωmod.
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Figure 7.10: Modeling Error Response, ωact > ωmod.

by the OLIS/P controller divided by the maximum output reached by the CLSS

controller. The settling time ratio is similar: settling time of the OLIS/P controller

divided by the settling time of the CLSS controller. Since it is desirable for each

performance measure (overshoot and settling time) to be small, a ratio less than unity

220



0.5
1

1.5

0

1

2

0

0.5

1

K

ω
act

/ω
mod

M
p R

at
io

Figure 7.11: Overshoot Comparison when Modeling Errors Occur.

means that the OLIS/P controller performed better. A ratio above unity means that

the CLSS controller performed better.

Figure 7.11 shows that the OLIS/P controller consistently outperformed the CLSS

controller in terms of overshoot. The overshoot ratio is always less than, or equal

to, unity. However, in terms of settling time, the CLSS controller was occasionally

superior. This is depicted in Figure 7.12, where the settling time ratio is sometimes

greater than unity. Note that for a significant set of modeling error/K combinations,

the settling time ratio is equal to zero. This occurs when the modeling errors and/or

the high proportional gains cause the CLSS controller to go unstable. This was

discussed in detail in Chapter 6.

This section showed that CLSS controllers can have less settling time than OLIS/P

controllers when modeling errors occur. However, this improvement in settling time

is highly dependant upon the actual modeling error. For many modeling error values,

the OLIS/P controller has a smaller settling time. In addition, Chapter 6 showed that

CLSS controllers are more easily (as compared to a PD feedback controllers) driven

unstable by modeling errors. Also, for the setup studied in this section, OLIS/P
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Figure 7.12: Settling Time Comparison when Modeling Errors Occur.

control consistently had less overshoot than CLSS control. Given that modeling

errors are often unpredictable, this dissertation will advocate that CLSS controllers

should not be used as a replacement for standard PID feedback controllers when plant

modeling errors are of major concern.

7.5 Trajectory Tracking

One important area of controls research is the ability to track complicated trajecto-

ries. This section will compare the trajectory tracking ability of CLSS and OLIS/PD

controllers. The trajectory used in this section is a circle.

The system studied here is the fourth-order system shown in Figure 7.13. This

system is a damped mass-spring-mass system. For simplicity, the directions of motion

and directional dynamics are assumed to be uncoupled. Also, the system is assumed

to move only via translation in the X and Y directions. No rotation is allowed. The

driven mass is M1, and the mass required to follow the circle trajectory is M2. Each

direction has the same spring constant (k) and dashpot constant (b).

This system will first be controlled under the collocated scheme depicted in Figure

222



M1

X

Y

Fx

Fy

M2

k

k

b

b

Figure 7.13: Fourth-Order, Mass-Spring-Mass System.

X(M1),Y(M1)+-
Circle X(M2),Y(M2)

F C FX,FY

X(M2),Y(M2)
X(M1),Y(M1)

Figure 7.14: Block Diagram of Collocated, MSM System.

X(M2),Y(M2)+-
Circle X(M2),Y(M2)

F C FX,FY

Figure 7.15: Block Diagram of Non-Collocated, MSM System.

7.14. Here, the actuators and sensors are located on M1. Then, the non-collocated

control scheme shown in Figure 7.15 will be analyzed. For the non-collocated case, the

actuators remain at M1, while the sensors are attached to M2. These block diagrams

depict the plant and both of the control schemes being compared. Here, the F block

represents a feedforward filter which is an input shaper for the OLIS/PD controller

and unity for the CLSS controller. The C block represents the feedback control block,

which is a PD block for the OLIS/PD controller and an input shaper for the CLSS

controller.
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Figure 7.16: Collocated Trajectory Tracking - OLIS/P Controller.

7.5.1 Trajectory Following Under Collocated Control

Under collocated control, the position of the first mass is well controlled, while the

second mass must remain under open-loop control. This is why PID control alone

(no outside-the-loop input shaper) would be unsatisfactory. The motion of the second

mass is not directly controllable via feedback, so the reference input must be filtered

so that the second mass (M2) does not vibrate.

For this collocated control study, OLIS/PD control is very capable of following

the circle trajectory. This can be seen in in Figure 7.16, where the desired and actual

responses of M2 are shown. For these collocated simulations, M1 = 10, M2 = 1,

k = 1 and b = 0.1. These gains were chosen to represent the motion of a main mass

(M1) that is attached to some smaller mass (M2) via a connection with little stiffness

and damping. This setup is a common problem in the field of motion control. One

real-world example of such a system is spacecraft with light appendages.

Note that for this collocated setup, the OLIS/PD controller was actually capable

of generating good trajectory tracking without any derivative action. For the response

shown in Figure 7.16, the control scheme was actually a OLIS/P controller.
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Figure 7.17: Collocated Trajectory Tracking - CLSS Controller.

Figure 7.17 shows that a CLSS controller can also be designed to have good tra-

jectory tracking. Both the OLIS/P controller and the CLSS controller provide good

tracking for the desired, circular motion. In addition, both controllers required reason-

able and similar actuator effort profiles. Therefore, in the case of collocated control,

CLSS has no obvious advantage over OLIS/P. One typical advantage previously as-

signed to CLSS was the ability to match the performance of an OLIS/PID controller

without integrators or differentiators. However, for these collocated responses, the

OLIS/P controller yielded good responses without integral or derivative action.

However, this collocated trajectory following example does provide a reasonable

alternative to OLIS/P control. For example, Section 7.3 showed that CLSS con-

trollers can reject sensor disturbances without the need for differentiators. Also,

future sections will discuss the unique applicability of CLSS controllers to systems

with actuator saturation. For certain situations, like the ones just mentioned, it will

often be preferable to use a CLSS controller over an OLIS/PID type controller.

225



7.5.2 Trajectory Following Under Non-Collocated Control

If the performance requirements necessitate the use of non-collocated control, then

closed-loop stability can quickly become a problem. The following section will high-

light this issue.

7.5.2.1 Stability Comparison of Collocated and Noncollocated PD Controllers

This section will analyze the stability of the control schemes shown in Figures 7.14

and 7.15. For this section, the controller (C) is assumed to be a PD controller. The

closed-loop stability will be determined as a function of the PD gains. The influence

of the spring constant (k) and dashpot constant (b) will also be analyzed. In the

following figures, stable gain sets are indicated by a z-axis value of one, whereas

unstable gain sets are indicated by a value of zero.

The first stability range comparison assumes the following system parameters:

M1 = 10 M2 = 1 k = 1 b = 0.1 (7.6)

Figure 7.18(a) shows the set of Kp and Kd gains that result in a stable closed-loop

system for the collocated control scheme. Compared to Figure 7.18(b), which shows

the stable gain sets for the non-collocated controller shown in Figure 7.15, collocated

control enables a much larger set of gains. Note that if the dashpot constant (b) is

reduced to zero, no set of PD gains will stabilize the non-collocated controller.

These gain sets can be enlarged by increasing the stiffness and dashpot constants.

Figure 7.19(a) shows the increased gain set for the collocated case when the k value is

increased from k = 1 to k = 10. Figure 7.19(b) shows the effect on the non-collocated

controller’s stable gain set with the higher k value. Figure 7.20(a) shows the stable

gain set for the collocated controller when the k value is returned to unity but the b

value is increased from b = 0.1 to b = 0.3. The stable gain set for the non-collocated

controller with the higher b value is shown in Figure 7.20(b).
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Figure 7.18: Stable Gain Sets for Low k and b Values.
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Figure 7.19: Stable Gain Sets with a Higher k Value.
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Figure 7.20: Stable Gain Sets with a Higher b Value.
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There are two major conclusions from Figures 7.18(a) through 7.20(b). First, the

non-collocated controller always has a significantly smaller set of gains (as compared

to the collocated controller) that will yield a stable, closed-loop system. Secondly,

as the stiffness and dashpot constants approach zero, the non-collocated controller

becomes unstabilizable via PD control.

Because of the stability problems associated with non-collocated control, some

recent research has begun to intentionally add time delays to non-collocated feedback

systems as a means of ensuring stability [2,25,35,101]. As noted above, with the use

of PD control alone, it can be quite difficult to achieve stability for non-collocated

systems. In fact, Kumar reiterates the point that certain undamped systems under

non-collocated control cannot be stabilized via standard PID control [35].

7.5.2.2 Effect of Stability Problems on Trajectory Following

The previous section illustrated that non-collocated control of a damped mass-spring-

mass system is difficult to accomplish with PD control alone. Only a small set of

PD gains will stabilize the system. The impact of this small gain set on trajectory

following will now be examined.

One important aspect of using input shaping to aid trajectory tracking is that the

trajectory has to be followed at a pace sufficiently slow in comparison to the duration

of the longest input shaper being used in the controller [12, 67]. Unfortunately, in

order to achieve stability, the non-collocated, OLIS/PD controller is forced to have

relatively small gains. This means that the oscillatory poles arising from the mass-

spring-mass’ rigid body mode have a relatively low frequency. The result is that the

input shapers used for this lower mode are relatively long.

Assuming the system parameters (M1 = 10, M2 = 1, k = 1 and b = 0.1), the

stabilizing set of PD gains is shown in Figure 7.18(b). This is a very small set of

gains. A particular set of these stabilizing gains was chosen such that the closed-loop
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poles of the system had the highest possible natural frequency values. For the system

analyzed here, a proportional gain of Kp = 2.9 and a derivative gain of Kd = 0.3

were chosen. The resulting two-mode closed-loop system had natural frequencies of

ω1 = 0.81 rad
sec

and ω1 = 0.66 rad
sec

. The two-mode ZV shaper used to filter the reference

command to this OLIS/PD control system was tuned to cancel these frequencies.

The input shaper used in the non-collocated, CLSS controller is tuned to the

plant frequency ω1 = 1.05 rad
sec

. This frequency is significantly higher than either of the

frequencies shaped by the OLIS/PD controller.

The effect of the shaper lengths can be seen by requiring the two non-collocated

controllers (CLSS and OLIS/PD) to follow a circular trajectory. If the circle is tra-

versed slowly, the shaper lengths are short enough (compared to the speed at which

the circle is traversed) that both control schemes enable good trajectory following.

This can be seen in Figure 7.21.

The difference between the OLIS/PD controller and the CLSS controller becomes

important if the damped, mass-spring-mass system is required to follow the circular

trajectory at a higher speed. This is seen in Figure 7.22. Here, the CLSS controller
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Figure 7.21: Trajectory Tracking Results Under Non-Collocated Control.
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Figure 7.22: Fast Trajectory Tracking Results Under Non-Collocated Control.

provides significantly better tracking. Note that the time allowed for the circular

trajectory was dropped from 200 seconds to 15 seconds.

The results presented in this non-collocated control comparison show that CLSS

has another useful application. When PID based controllers have a restricted set

of gains from which to choose, the overall performance of the control scheme can

suffer. As shown in these examples, CLSS controllers have the ability not only to

stabilize these non-collocated systems, but they can also yield better performance

than OLIS/PD controllers. As mentioned before, the stability problems associated

with non-collocated control have led researchers to intentionally place time delays

inside of feedback loops. However, CLSS controllers have the added benefit that their

specific combination of time delays is designed to cancel oscillatory dynamics.

7.6 System Nonlinearities

7.6.1 Actuator Saturation

One common nonlinearity seen in every real world application is actuator saturation.

Controls engineers must use caution when pushing actuators beyond their rated limits,
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Figure 7.23: OLIS Control System with Saturation.

as this can cause complicated, unexpected and/or undesirable system behavior. In

reality, many applications seek to avoid saturation completely so as to simplify the

controller design and implementation. Input shapers are uniquely suited for systems

with saturation issues. If the signal given to the shaper does not saturate the actuator,

then the signal created by the shaper will also not result in saturation 1.

Input shaping is traditionally used outside of any feedback loops to filter a refer-

ence command. However, for many applications, the reference command has different

units than the actuator input. For instance, a position reference command and force

actuator input are of different units. In this case, if the input shaper acts upon the po-

sition reference command, it can be difficult to ensure that saturation will not occur.

One would need to first design an unshaped reference input guaranteed not to result

in actuator saturation. Then, the input shaper could be applied with confidence.

This first step would often be a non-trivial task. A control scheme of this nature

is depicted in Figure 7.23 with the unknown reference input labeled with question

marks.

However, if the input shaper is used within the feedback loop and acts directly

upon the force input to the actuator, the problem can be simplified. If a model of

the saturation conditions the input to the input shaper, then the shaper will always

produce a force signal attainable by the actuator. This input shaped force signal will

also be completely filtered, so that unwanted frequencies are not excited. This kind of

1The only possible exceptions are input shapers containing negative impulses
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control system is shown in Figure 7.24. This very common issue of actuator saturation

is one reason why a controls engineer might choose to place an input shaper inside

the loop. In fact, as discussed next, this is one of the reasons why the Georgia Tech

HighBay crane utilizes a CLSS controller.

7.6.2 HighBay Crane at Georgia Tech

The HighBay crane (located in the MaRC building) is a 10-ton bridge crane with

at least four notable nonlinearities: a velocity limit, an acceleration limit, a built-in

velocity smoothing algorithm that prevents sudden sign changes in velocity, and a

velocity dead zone.

Khalid Sorensen has done an extensive amount of work on the Highbay crane

[87–89]. To address the issue of actuator saturation, he chose the CLSS scheme

shown in Figure 7.25. Here, “PD Control” is a Proportional-Derivative controller,

the saturation block shown is a self-imposed actuator limit (like the saturation model

depicted in Figure 7.24), “Drives & Motors” represents the nonlinear function which

converts the commanded velocity of the overhead trolley to the actual velocity of

the overhead trolley. This block contains all four nonlinearities mentioned in the
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Figure 7.25: CLSS Control Scheme on Hibay Crane.
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previous paragraph (which includes the actual velocity limit of the system). A final

block, “payload” converts the overhead trolley’s velocity into the resultant position of

the crane’s payload. The feedback control tracks the position of the overhead trolley,

which is obtained via a laser range sensor.

For the same reasons mentioned in the previous subsection, Sorensen chose to

handle the velocity limit (actuator saturation) by placing an input shaper inside the

loop and filtering the shaper’s incoming signal with a model of the crane’s velocity

limits. Note that the alternative would have been to place the input shaper outside

the loop, filtering the position reference command. However, because of the velocity

limit, this would require several extra steps to ensure that the position reference signal

was of an acceptable form. This requirement is eliminated when the input shaper is

placed inside the loop; any position reference command is acceptable.

The controller shown in Figure 7.25 was able to produce accurate and low-vibration

motions of the HighBay crane. In fact, Sorensen conducted 25 randomly chosen point-

to-point motion trials using the crane controller depicted in Figure 7.25 [87]. Figure

7.26 shows the final positioning error of the crane’s trolley after each of these 25

point-to-point motions was completed. Figure 7.27 shows the vibration of the crane’s
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Figure 7.26: Trolley Final Positioning Error.
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Figure 7.27: Residual Payload Oscillation.

payload upon completion of these point-to-point motions. Note that the oscillation

amplitude is normalized by the amount of oscillation that normally occurs when the

crane is driven without input shaping and under open-loop control (no PD control on

the trolley). Both of these figures show that the CLSS controller depicted in Figure

7.25 was able to maneuver the HighBay crane accurately and without significant,

residual oscillations.

In addition to the saturation issue, there were two additional reasons to implement

CLSS on the HighBay crane. First, some initial simulations indicated that placing the

input shaper within the feedback loop resulted in a better handling of the remaining

nonlinearities grouped into the “Drives & Motors” block. When the input shaper

was simulated outside the loop (even when velocity saturation was not an issue), this

still resulted in poorer performance as compared to the CLSS controller. Secondly,

Sorensen added a secondary PD feedback loop for the purpose of disturbance rejec-

tion. The full controller can be seen in Figure 7.28. The secondary PD feedback

loop easily rejected disturbances. However, it would also move the crane from its

desired position. By including the input shaper inside the “Input Shaping & Posi-

tioning Loop” feedback loop, the controller was able to use PD control to eliminate

disturbances and PD control plus input shaping to maintain desired position.
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Figure 7.28: Full CLSS Control Scheme on Hibay Crane.

The HighBay crane is a real-world system that successfully uses a CLSS controller.

The use of input shaping within the crane controller’s feedback loop addresses several

important issues inherent to this mechanism. Its successful usage on a real system is

an important verification that CLSS has a reasonable realm of applicability.

7.7 Improving the Performance of Human Oper-

ated Systems

The last CLSS application studied in this dissertation is the field of human operated

systems. Despite the ubiquitous presence of computer controlled systems, there are

still many applications where human beings control the motion of complicated ma-

chinery; the need for human operated systems is not likely to disappear in the near

future.

One system almost always controlled by a human in some manner is the crane.

Cranes are an indispensable part of many industries, including oil drilling and ex-

ploration, mining, manufacturing, shipping and construction of all kinds. For these

reasons, the study of human operated cranes is an important research task.

Some recent research in this area has focused on human operator performance on

cranes equipped with input shaping [32, 33, 37]. The goal of this section is to further
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Figure 7.29: Human-Operator/Closed-Loop-Signal-Shaping Control Scheme.

those previous studies by evaluating whether or not the presence of input shaping

technology enables human operators to maneuver cranes in a safer and faster manner.

Typically, the control scheme being studied is similar to the one shown in Figure

7.29. Here, the human operator is attempting to complete some pre-determined task,

such as to maneuver the crane’s payload through an obstacle course as quickly as

possible while attempting to avoid collisions with obstacles. The human operator

commands the crane motion via an interface while also using his/her eyes to sense

the actual motion of the crane and its payload. Based upon this sensory information,

the operator adjusts the commands to the interface in real time. This is the type of

controller that will be used throughout the experiments detailed in the section.

However, because the crane is an oscillatory system, an input shaper is often

included within the controller to modify the human operator’s commands. This

typically eliminates the majority of the crane’s oscillations. This placement of the

input-shaping filter within the human-operator-feedback loop constitutes a form of

closed-loop signal shaping.

Having justified the need to use human-centered CLSS controllers, the rest of this

section will detail some research studying the performance of human operators ma-

neuvering flexible cranes. The control schemes studied in this research are the CLSS

controller shown in Figure 7.29 and an unshaped version of this control scheme. In

this unshaped version, the input shaper is removed (made unity), forcing the human

operator to perform all tasks associated with trajectory generation and error elimina-

tion. The main goal of this section is to compare the human operator’s performance
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within these two controllers. The human operators were tested on a bridge crane and

a tower crane. They were also tested under local control and remote control over the

internet.

This human-operator study can be split into two sections. The first stage com-

pared local and remote operation. The second stage observed the effect of task dif-

ficulty and complexity on the performance of a crane operator. Volunteer opera-

tors drove both a bridge crane and a tower crane through remote and local obstacle

courses [37, 39]. The operator’s performance was analyzed using several different ob-

stacle courses. Performance was measured by run time (i.e. how long it took the

operator to maneuver the crane through an obstacle field from a starting location

to a finish point) and the number of collisions the crane’s end-effector had with the

obstacle field. For each stage of the this study, the effect of input shaping within

the loop was analyzed. The experimental results indicate that remote manipulation

of a crane via the internet is very challenging. However, the difficulty of the task is

greatly reduced when closed-loop signal shaping is utilized.

7.7.1 Local vs. Remote Operation

7.7.1.1 Procedure - Bridge Crane in Atlanta, GA

An overhead view of the bridge crane obstacle courses at Georgia Tech can be seen

in Figure 7.30. For the “Local vs. Remote” study, only Course #3 was used. The

other courses were used to study task difficulty. Three volunteers operated the crane

remotely and locally. In each case, the crane was operated with and without input

shaping enabled. All tests were done twice, yielding a total of 24 runs. The operators

were told that fast times and collision avoidance were equally important. The input

shaper used was a single mode zero vibration (ZV) shaper [65,85].

For local operation, the crane was controlled using a graphical user interface (GUI)

on a computer directly connected to the crane. The GUI, similar to the one shown

in Figures 7.31 and 7.32, allows the crane to be moved at full speed in four different
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Figure 7.30: Bridge Crane Courses in Atlanta, GA.

directions (forward, reverse, left and right). It also provides a plot showing the layout

of the course, the position of the crane trolley, and the position of the payload. To

reduce the difference between remote and local operation, the operators looked at this

GUI plot while locally controlling the crane instead of looking at the actual obstacle

course.

For remote operation, the same GUI was displayed on a computer in another room

of the same building using a protocol called VNC. However, under remote control,

the crane’s trolley and payload position had to be sent to the operator’s GUI over the

internet. This introduced an approximately one second delay in the feedback line.
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Figure 7.31: “Tokyo 1” Course. Figure 7.32: “Tokyo 2” Course.

7.7.1.2 Procedure - Tower Crane in Tokyo, Japan

Experiments conducted on a tower crane at Tokyo Tech utilized a setup similar to

that described for the bridge crane at Georgia Tech. The GUI shown in Figures 7.31

and 7.32 was used for both local and remote operation. Figures 7.31 and 7.32 also

depict the two obstacle courses used for testing on this tower crane. Note that the

right-hand course is more difficult than the left-hand course. It has extra obstacles

forcing the payload to move through narrow passages. The comparison between local

and remote operation was done only for the most difficult course. Several people

with varying levels of expertise operated the crane both locally and/or remotely. The

remote runs were performed both within Japan and from other countries such as the

USA. The operators experienced various levels of delay depending on their remote

location.

7.7.1.3 Results - Bridge Crane in Atlanta, GA

Figure 7.33 shows the effect of remote operation and input shaping on run time and

obstacle collisions. Remote operation obviously leads to increased run times, with an

average increase of 24 seconds (75%) without input shaping and 13 seconds (60%)

239



Figure 7.33: Bridge Crane Study - Run Times.

with input shaping. The use of input shaping leads to substantial time savings in

both remote and local operation. Figure 30(a) depicts the advantage gained with

input shaping by plotting an unshaped and a shaped run. Clearly, the presence of

input shaping allows for faster and safer maneuvering by eliminating vibrations.

One of the problems that led to longer run times for remote operation was failure to

compensate for the communication delay. This is a problem that could be somewhat

corrected by improved operator training. A second, more difficult problem was the

uncertainty created by the variable time delay. Because there was a variable delay in

the transmission of commands and reception of visual feedback, it was difficult for the

operators to execute precise commands. When attempting to make fine adjustments,

the same length button press would sometimes result in too large of a movement and

other times in no movement at all. Thus, instead of being to able to use intuitive

knowledge of the crane dynamics, the operators had to give a command and then

wait to make sure it was executed as expected. In some cases, the operator needed to

make five or six adjustments before getting the crane to the correct position. When

operating locally, such adjustments could usually be made with a single command.

Input shaping is not particularly effective at solving this problem, so it is expected

that run time would degrade when moving from local to remote operation, even with

input shaping enabled.
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Figure 7.34: Bridge Crane Study - Collisions.

Figure 7.34 shows the average number of collisions that occurred. The most

important result is that input shaping nearly eliminated collisions with obstacles.

Without input shaping, remote operation increases the average number of collisions

by 2.1 (40%), while it only increases the average by 0.1 (10%) with input shaping

enabled.

The decrease in collision count when moving from remote to local operation with-

out input shaping is explained by the ability of the operator to quickly take corrective

actions. Most of the collisions were caused by payload oscillation. With local opera-

tion, the operator had enough feedback to move the crane in such a way as to perform

some form of manual swing cancelation. Because of the long and varying time delay,

remote operation made such maneuvers nearly impossible.

The relatively small improvement in collision count when moving from remote to

local operation with input shaping enabled has a similar explanation. Because the

primary cause of collisions was payload oscillation, the ability of input shaping to

nearly eliminate oscillation solved the collision problem in both the remote and local

runs.
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Figure 7.35: Tower Crane Study - Run Times.

Figure 7.36: Tower Crane Study - Collisions.

7.7.1.4 Results - Tower Crane in Tokyo, Japan

Figure 7.35 shows the run time values for the tower crane at Tokyo Tech. Remote

operation increased the run time by approximately 15%. The use of input shaping

(the CLSS controller) reduced run times for both local and remote operation. Figure

7.36 shows the average number of collisions. As seen in these results, the average

number of collisions without input shaping slightly increases when the crane is run

remotely, but the same does not occur with input shaping. This confirms the results

obtained from the experiments conducted in Atlanta, indicating that when input

shaping is applied to remote operation the number of collisions is not significantly

increased compared to local operation. Note that there is some uncertainty in the

number of collisions. When the payload barely touches an obstacle, it is difficult to
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state definitively that a collision occurred. The number of collisions was determined

by analyzing the recorded trajectory of the crane payload, as well as the X and Y

velocity components, to detect the irregularities in the trajectory when the payload

collided with physical obstacles. Only collisions that induced a noticeable change in

velocity were counted.

7.7.2 Effect of Course Difficulty on Crane Operation

7.7.2.1 Procedure - Bridge Crane in Atlanta, GA

The second part of this study sought to determine the effect of course difficulty on

the operation of cranes. Using the three different obstacle courses shown in Figure

7.30, each operator performed two runs with input shaping disabled and two runs

with it enabled. All of the runs were performed using the same remote setup used in

the “Local vs. Remote” tests described in the previous section.

The courses shown in Figure 7.30 are named after the number of turns (direction

changes) required to complete the course. The arrows shown in Figures 7.30(b) and

7.30(c) (and the input shaped path shown in Figure 7.30(a)) indicate the general

routes the operators were expected to follow. Each course was designed to have a

different level of difficulty. Course difficulty was defined here as the number of turns

an obstacle course had.

Generally, areas of direction change are when the most damaging oscillation can

occur. If the crane trolley is stopped in one direction and ready to begin driving

in a perpendicular direction, any payload vibration remaining in the initial trolley

direction will endanger any attempted passes through narrow openings in the new

trolley direction. Therefore, courses with more turns are likely to be more difficult;

there are more chances for residual vibration to cause collisions (or to at least require

a significant wait time for vibration to subside).
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7.7.2.2 Procedure - Tower Crane in Tokyo, Japan

The tower crane studies also compared operator performance as a function of course

difficulty. However, these trials focused on local operation, whereas the bridge crane

tests in Atlanta focused on remote operation. For the tower crane operation study,

course difficulty was precisely defined. The difficulty level D was defined to be the

ratio of the payload suspension length, h, and the width of the path between the

obstacles, w. This gives a quantitative level of difficulty, based on how much a

payload can swing without colliding with an obstacle:

D =
h

w
(7.7)

A larger value of D indicates a more difficult course. The easiest level would be

when the path width is equal to, or larger than, twice the payload suspension length.

In this case, the payload could swing freely, since the path is wide enough for any

swinging amplitude.

As the level D becomes larger, the course difficulty increases, since the payload’s

swinging amplitude must be contained so as not to collide with obstacles. The level

of difficulty can be increased until the width of path is equal to the payload diameter,

wpayload. Therefore, the maximum difficulty level (for a given length, h) can be defined

as Dmax = h
wpayload

.

After defining difficulty, two rigid obstacle courses were constructed with the same

length and the same number of turns. Only the width of the path was changed. These

two courses were shown in Figures 7.31 and 7.32 and are named “Tokyo 1” (left-hand

figure) and “Tokyo 2” (right-hand figure). Simple examination of Figure 7.31 shows

that the “Tokyo 1” course is easier than the “Tokyo 2” course. This conclusion

is confirmed by the difficulty level values given here: D = 3.7 for “Tokyo 1” and

D = 8.7 for “Tokyo 2”. These courses were designed to be run with a payload height

of h = 1300mm, and a payload diameter wpayload = 90mm. The course “Tokyo 1”
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Table 7.1: Tokyo Obstacle Course Parameters
Course Difficulty Level Maximum Difficulty
Tokyo 1 3.714 14.444
Tokyo 2 8.667 14.444

has a path width of w = 350mm and “Tokyo 2” has w = 150mm. These parameters

are shown in Table 7.1.

7.7.2.3 Results - Bridge Crane in Atlanta, Ga

The results showed exactly what one would expect; the more turns a course had, the

longer it took to navigate. However, this result is somewhat unfairly skewed towards

the expected results.

As can be seen from Figure 7.30, the nominal path from start to finish increases

with course difficulty. This means that it should take longer to complete Course

5 than Course 1. Therefore, in an attempt to fairly compare run times for each

course, the completion time was normalized by subtracting the optimal time inherent

to each individual course. The optimal time was calculated by first establishing a

nominal path through each course, similar to the paths shown in Figures 7.30(b) and

7.30(c). The nominal paths were characterized by simple straight line motions roughly

centered within the spacing between obstacles. The optimal time for each course was

then calculated by adding the time required to traverse each of the independent

straight lines at maximum velocity. The time wasted on a course was then obtained

by subtracting the optimal time from the actual run time.

The average time wasted for each course is shown in Figure 7.37. With or without

shaping, it is clear that increasing the number of turns increases the average time

wasted. These results are expected, because before each turn the operator must

ensure that they are properly positioned and try to minimize vibration. Additionally,

it can be seen that input shaping greatly improves performance.

Figure 7.38 shows the average number of collisions that occurred. As one would
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Figure 7.37: Bridge Crane Study - Time Wasted.

Figure 7.38: Bridge Crane Study - Collisions.

expect, the easiest course had the fewest number of collisions, and input shaping

substantially reduces collisions.

However, the results for Course 5 seem counter-intuitive. For both operation

modes, Course 3 resulted in more collisions than Course 5. The most likely expla-

nation for this phenomenon is that Course 5 is a different kind of course. Most of

the turns in Course 3 were tight, with many obstacles completely surrounding them

and allowing little room for error. This can be seen in Figure 7.30(b). On the other

hand, many of the turns in Course 5 were delimited by obstacles on one side, and

a workspace limit on the other side. As a result, the payload was significantly less

likely to collide with anything, as exceeding the workspace limits was not considered

246



Figure 7.39: Tower Crane Study - Run Times.

a collision. This is the dominating effect that caused Course 5 to have fewer collisions

than Course 3.

Another possible contributing factor for this is learning. Each of the three opera-

tors ran the courses in the same order: Course 3, Course 1, Course 5. Since Course

3 was run first, it was run with the most inexperienced operators. However, by the

time Course 5 was run, each of the operators had already maneuvered the crane at

least eight times.

7.7.2.4 Results - Tower Crane in Tokyo, Japan

Figure 7.39 shows the run time results for the tower crane. The results indicate that

the unshaped run time of the difficult course is shorter than for the easy course.

This is somewhat counterintuitive, and can be explained by learning, similar to the

Atlanta results on collisions (Figure 7.38). Each operator began on the easy course,

acquiring skills before proceeding to the more difficult course. However, regardless

of learning, the presence of input shaping (using the CLSS controller) again enabled

quicker obstacle course completion.

Figure 7.40 shows that the average number of collisions increases when the dif-

ficulty level is increased. However, when input shaping is used, the collisions are

significantly reduced, once again confirming the benefit of input shaping.
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Figure 7.40: Tower Crane Study - Collisions.

7.7.3 Data Acquisition for Human Operator Studies

The operator performance data reported throughout Section 7.7 was acquired in two

different ways. Some of the “Average Time” and “Collision Average” data were

determined manually by timing the study participants and counting the number of

collisions. This was the data collection process primarily used on the Atlanta based

bridge crane. For the Tokyo based Tower Crane, run time and collision data were

obtained from the recorded path of the crane’s payload. Although not used to calcu-

late run time and collision data, the payload paths were also recorded on the Atlanta

based bridge crane. An example of recorded paths is shown in Figure 7.30(a).

Recording the actual paths taken by the human operators was important for

several reasons. One, it enabled test subjects to operate the cranes without direct

supervision. This meant that important performance measurements (run time and

collisions) could be obtained after a test run was complete. This was especially

important for the remote tests, where time zone differences made it difficult to have

someone physically watching the crane’s motion while it was being operated from a

different continent. Second, the path information was critical to showing example

motions, like the one shown in Figure 7.30(a). For the purpose of publishing this

research, it was very important to have several example motions to highlight the

various aspects of the human-operator study, like the differences between input shaped

and unshaped motion.
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In order to obtain this path information, a Siemens camera (Simatic VS 723-

2) was used. This camera was able to distinguish the crane’s payload from the

background because the payload was fitted with retro-reflective tape. This made

the light reflecting off the payload and entering the camera to be of a much higher

intensity than light entering the camera from the background. A picture of the camera

software program is shown in Figure 7.41. The white circle is the fiducial marker on

the payload that is covered with retro-reflective tape. In the bottom left corner is a

histogram showing the statistical information of light intensities entering the camera.

The pixels with an intensity below a selected threshold are displayed as the color

black. All of the high intensity information is the light from the payload. The pixels

Figure 7.41: Data Acquisition Program.
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corresponding to this high-intensity light are turned white. The result is a clear

contrast between the payload (the white circle) and the background (black).

The research conducted for this thesis made two major advances within the pro-

gram used to record the motion of the payload. The first was to create a small,

moving digitization window. The camera can digitize an area up to 1024 pixels by

768 pixels. However, this requires a significant amount of processing time, increasing

the sample time of the camera. Since the program in this study only needs to follow a

small, circular object, the program was designed to only digitize a small box around

the circle. This is shown by the blue square in Figure 7.41. By digitizing only this

small number of pixels, the camera’s sampling time was greatly reduced. Secondly,

the camera initially had problems when the payload swing took the fiducial marker

outside of the camera’s field of view. This event would often cause the camera to fault

and shut down. Because these cameras were being used to record a crane’s motion

while the crane was being remotely operated, this sort of camera failure would shut

down all experiments until a person with personal access to the crane could restart the

camera. This was an unacceptable characteristic that would make the remote studies

very difficult to execute. Therefore, the camera program was specifically designed so

that a loss of the fiducial marker did not result in a camera shut down. Instead, the

camera increased the digitization window, waited for the fiducial marker to re-enter

its field of view, and then re-focused the digitization window and continued following

the payload. These camera program improvements made the remote operator studies

much more feasible to execute and allowed for relatively high sampling frequency.

7.7.4 Conclusions on Human Operator Studies

The study of human-operator performance on cranes, as detailed in this section,

shows that including an input shaping filter within the human-centered feedback

loop improved speed and safety. Because human-operated, flexible systems form an
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important subset of controls research, the improvement made by utilizing a CLSS

controller demonstrates its usefulness on real-world systems.

7.8 Discussion of CLSS Applications

This chapter studied the usefulness of Classical Method CLSS controllers applied

to some of the most typical controller design issues: actuator disturbances, sensor

disturbances, modeling errors, trajectory tracking, non-collocated control, some dis-

continuous, or “hard”, nonlinearities, and human-operated flexible systems. Given

that OLIS and PID feedback control form a powerful and often-used control strategy,

the capabilities of CLSS were compared to those of OLIS combined with some form

of PID control.

The Classical Method form of CLSS studied in this chapter was incapable of

outperforming OLIS/PID control in the realm of actuator disturbances and basic

trajectory tracking. In the area of plant modeling errors, CLSS was sometimes (when

the modeled frequency was lower than the actual frequency) superior to OLIS/PID

control in terms of settling time. However, in terms of overshoot, the OLIS/PID

controller was always superior to CLSS for the cases studied. In addition, the previous

chapter showed that CLSS controllers often have stability problems when significant

modeling errors occur. Therefore, the results of this dissertation do not support the

specific use of CLSS controllers for the purpose of providing good responses when

unpredictable and significant modeling errors are expected.

Fortunately, the Classical Method form of CLSS did prove to be a good alternative

to OLIS/PID control in the remaining areas studied:

1. Sensor Disturbance Rejection

2. Actuator Saturation

3. Non-Collocated Control

4. Improving Human-Operated Flexible Systems
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In the case of sensor disturbance rejection, CLSS control was able to quickly eliminate

disturbances without the need for differentiators. In the area of saturation, CLSS

controllers provided an easy way to implement input shaping on closed-loop systems

with actuator limits. In addition, this section reviewed the use of CLSS on a real, 10-

ton bridge crane, including experimental results. These experiments highlighted the

CLSS controller’s ability to maneuver the crane accurately and without significant

oscillations. Its successful use on a real-world system is evidence that it can, and

should, be used under certain circumstances. When studying trajectory tracking,

it was found that CLSS controllers, by the very act of adding time delays to the

feedback loop, created a stable, non-collocated system not easily achievable through

standard PD control. When the trajectory was traversed quickly, the CLSS controller

was able to provide better trajectory following than the OLIS/PD controller. Finally,

the use of CLSS was discussed on human-operated cranes. It was shown that when

the input shaper is included within the human-centered feedback loop, the operator

was generally able to perform faster and safer maneuvers. This was true even if the

operator was remotely controlling the crane over long distances that caused additional,

visual-feedback delays.
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CHAPTER VIII

ADVANCED CLOSED-LOOP SIGNAL

SHAPING CONTROLLERS FOR FORCE

DISTURBANCE REJECTION

Section 7.2 showed that the Classical Method form of closed-loop signal shaping con-

troller, as depicted in Figure 7.2, fails to reject force disturbances. Fortunately, some

interesting research has begun to address this problem by developing advanced forms

of closed-loop signal shaping (CLSS) controllers [82, 84, 85, 91]. These new CLSS

controllers: the Plant Inversion Method (PIM) and the Model Reference Controller

(MRC), are specifically designed to reject force disturbances. This chapter will dis-

cuss both methods and show that each is left somewhat incomplete by the previous

literature. These limitations will be rectified so as to produce useful and effective

CLSS controllers for force disturbance rejection.

8.1 Plant Inversion Method Derivation

The first closed-loop signal shaping control scheme specifically designed for force

disturbance rejection is based on a design originally presented by O.J.M. Smith [82,84,

85]. Smith began his work by stating that one would ideally like to create the control

scheme shown in Figure 8.1. In this figure, C is some controller, G is the system

plant, I1 is the input shaper filtering the reference command R, and I2 is the input

shaper designed to filter the disturbance signal D. If possible, this control scheme

would modify disturbances so that they do not excite the system’s oscillatory modes.

However, this control scheme is impossible to create under normal circumstances.
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Figure 8.2: O.J.M. Smith’s Original Concept.

The very nature of disturbance forces is that they usually act directly on the plant

and are not alterable by the controller.

For these reasons, Smith designed the control shown in Figure 8.2 to mimic the

behavior of the ideal control scheme shown in Figure 8.1. For this control scheme, I2

is restricted to the class of input shapers whose first impulse is unity. That is:

I2(s) = 1 +
n
∑

i=2

Ai ∗ e−sti (8.1)

I ′
2 is simply the delayed portion of I2:

I ′
2(s) =

n
∑

i=2

Ai ∗ e−sti (8.2)

This control scheme operates by using an inverted model of C and G to re-create

the disturbance signal. The I ′
2 portion of the controller then adds additional force

inputs to the plant so that the original disturbance signal is destructively interfered
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with and the system oscillations arising from the disturbance are canceled. In other

words, the actual disturbance is treated as the first part of an input shaped signal.

The inverted plant/controller model and partial input shaper (I ′
2) then create the

remaining portions of the input shaped signal started by the actual disturbance.

Unfortunately, as shown in Figure 8.2, this scheme requires plant and controller

inversion. One problem with this plant/controller inversion is causality. However,

this problem has now been fixed by an alteration to the controller shown in Figure

8.2 that was developed in this dissertation.

To describe this alteration, the control system will be analyzed in the digital

domain. The 1
CG

block in Figure 8.2 is non-causal because the numerator has a higher-

order z polynomial. This will always occur if the original plant (G) and controller

(C) combination is strictly proper. However, remember that the I ′
2 block is solely

comprised of time delays (z−m terms, where m > 1). Therefore, this I ′
2 term can

be rewritten as z−n ∗ zn ∗ I ′
2. The z−n term can then be removed from the inner I ′

2

feedback loop shown in Figure 8.2 and added to the 1
CG

block. This will make the

1
CG

block causal without making the zn ∗ I ′
2 non-causal. The only condition is that

n must be less than the smallest multiple of z−1 found in I ′
2 and greater than the

polynomial-order difference making the inverted controller-plant block non-causal.

This modified, PIM control scheme is shown in Figure 8.3. Note that several other

z−n terms are present to preserve the overall, functional equality between the PIM

controllers depicted in Figures 8.2 and 8.3.

Often, causality is addressed by simply adding time delays to the control system.

However, simply adding time delays to make the CG inversion causal, without adding

the remaining delays and advances, results in unstable behavior for this system. How-

ever, because of the I ′
2 term, this control scheme is uniquely suited to fix this causality

problem. The control has internal time delays that can be rearranged to ensure the

causality of every block without the need for additional delays.
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8.2 Performance of Plant Inversion Method

This section will investigate potential applications for the Plant Inversion Method.

The issues addressed here include:

1. Step response performance - comparison to OLIS combined with PD control.

2. Effect of natural frequency modeling errors on step response.

3. Effect of sensor noise.

4. Ability of PIM to reduce disturbance-induced vibration in unobservable modes.

8.2.1 Step Response Performance

Figure 8.4 compares the unit-step and pulse-disturbance responses of a PIM controller

and an OLIS/PD controller. The derivative action on the OLIS/PD controller was

implemented via velocity feedback. The plant used here was a lightly damped second-

order system. For the PIM controller, the block C was just a proportional controller

(C = Kp). For the responses shown in Figure 8.4, Kp = 1 for both control schemes and

Kd was varied from Kd = 0.25 to Kd = 1 in the OLIS/PD controller. The proportional

gain has a similar effect on the PIM controller as it does on an OLIS/PID controller.

Raising Kp increases the DC gain of the closed-loop system, as well as generally
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Figure 8.4: PIM vs. OLIS/PD Reference and Disturbance Response Comparison.

making the system more oscillatory. This translates into faster step responses when

input shaping is used.

Figure 8.4 shows that the PIM controller has a faster step response and a faster

disturbance rejection. However, the initial deviation caused by the disturbance is

worse for the PIM controller. As the derivative gain is reduced, the OLIS/PD con-

troller approaches the quick step response of the PIM controller, but also becomes

more susceptible to disturbances. Figure 8.5 shows the actuator effort requirements

for each controller. The main point in this figure is that neither control scheme re-

quires a significantly more demanding actuator effort profile than is required by the

other controller.

Figures 8.6 and 8.7 show the same comparisons under higher controller gains.

The Kp gain in both the PIM and OLIS/PD controllers was increased to Kp = 5.

Then, the derivative gain in the OLIS/PD controller was varied from Kd = 0.5 to

Kd = 3.75. Again, Figure 8.6 shows that lowering the derivative gain causes the

OLIS/PD controller to approach the performance of the PIM controller. However,
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Figure 8.6: PIM vs. OLIS/PD Response Comparison - Higher Kp.

the PIM controller consistently has a faster step response and disturbance rejection.

Finally, as shown in the previous example, Figure 8.7 verifies that both controllers

require approximately the same actuator performance.
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Figure 8.7: PIM vs. OLIS/PD Actuator Effort Comparison - Higher Kp.

These two control methods were also compared to lead compensator control.

However, an OLIS/lead compensator control scheme could not be found that re-

sulted in performance comparable to either the PIM or the OLIS/PD controller. The

OLIS/lead compensator control schemes studied were significantly slower than either

the PIM or OLIS/PD controllers. In addition, because of the closed-loop zero intro-

duced by the lead compensator, the step reference response always experienced some

amount of overshoot.

The major result derived from this section is that the PIM controller has a faster

response than the OLIS/PD controller to reference inputs and disturbances. For

cases where the speed of response and disturbance rejection are of primary concern,

the Plant Inversion Method is a CLSS controller that provides a better response

than standard OLIS/PD controllers. However, if maximum deviation caused by the

disturbance must be limited, then the controller of choice would most likely be one

that uses some form of PID feedback control.
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Figure 8.8: OLIS and Velocity Feedback, ωa > ωm.

8.2.2 Natural Frequency Modeling Errors

This section will compare the sensitivity of the PIM and OLIS/PD controllers to fre-

quency modeling errors. Figure 8.8 shows the same OLIS/PD control scheme studied

above with the actual plant natural frequency (ωa) being larger than the modeled

natural frequency (ωm). It is clear from this figure that the system performance is

slightly degraded. However, the controller remains stable and quickly responds to

both the reference command and the disturbance. However, Figure 8.9 shows the

PIM controller described above under the same modeling error conditions. Clearly,

this controller is much more susceptible to modeling errors. While there is a region

of stability and acceptable performance, instability is a real possibility and must be

addressed in the design of this type of CLSS controller.

When the actual natural frequency is less than the modeled natural frequency,

the OLIS/PD controller again performs well, as shown in Figure 8.10. As shown in

Figure 8.11, the PIM also performs well under these conditions, remaining stable with

good responses. The stability margin is larger when the modeled natural frequency

(ωm) is larger than the actual plant natural frequency (ωa).
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Figure 8.9: CLSS - Plant Inversion Method, ωa > ωm.
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Figure 8.10: OLIS and Velocity Feedback, ωa < ωm.

This is actually opposite to the trend found in Chapter 6, which studied the

stability of the Classical Method form of CLSS. For the Classical Method, when

ωa < ωm, the system had small regions of stability. When ωa > ωm, stability margins

of the Classical Method were significantly larger.
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Figure 8.11: CLSS - Plant Inversion Method, ωa < ωm.

8.2.3 Noise Effects

While PID control has long been a useful and practical control strategy, the use of dif-

ferentiators can often pose an implementation problem when real-world issues such as

noise become significant. Because the PIM controller does not use any differentiators,

it potentially has an implementation advantage over standard PID controllers. For

example, when a small-amplitude, 60 Hz sinusoidal signal is added to the feedback

signal of the OLIS/PD controller described above, the system response is virtually

unchanged as shown in Figure 8.12. However, the actuator effort response shown in

Figure 8.13 shows that this response is highly demanding and perhaps impossible to

implement. The time scale is greatly reduced here to accurately see the oscillations.

When this same feedback noise is applied to the PIM controller (using the same pro-

portional gain used by the OLIS/PD controller), the response is as shown in Figure

8.14. Again, the response looks fairly good. However, the actuator effort required

for this response is shown in Figure 8.15. The actuator demands are much higher

than in the OLIS/PD case in both amplitude and frequency. Unfortunately, the PIM

controller seems to be more sensitive to noise than a PD controller.
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Figure 8.13: OLIS/PD Actuator Response to Noise.

Note that the actuator profile shown in Figure 8.15 is somewhat counter-intuitive,

due to the near-zero output until just before t = 0.12 seconds. This occurs because

the severe actuator response seen after t = 0.12 seconds is due to the portion of the

PIM controller which attempts to reject disturbances via an inverted model of CG.
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Figure 8.15: CLSS - PIM, Actuator Response to Noise.

Because the noise signal was added to the feedback line, the PIM controller treats it

as a disturbance. But, the disturbance rejection portion of the PIM controller has an

overall time delay, due to the I ′
2 term. This is why the violent reaction to the sensor

noise is delayed.
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Figure 8.16: Mass-Spring-Mass System.

8.2.4 Unobservable Modes

Fortunately, there is one clear advantage to be had from using PIM over OLIS/PD

controllers. That is the area of unobservable modes. In this section, the physical mass-

spring-mass system shown at the top of Figure 8.16 will be studied. The actuator

acts on the first mass only (M1), and the only sensor data comes from the first mass,

X. The second mass, M2, is assumed to be small relative to the first mass. Even

though they are attached via a spring, the effect of the second mass on the first is

considered negligible. Therefore, the feedback controller around the first mass has

a plant that is simply a scaled double integrator. The secondary transfer function

which governs the motion of the second mass is a position input (position of M1)

- position output (position of M2) transfer function. This is depicted in the lower

portion of Figure 8.16, where the only force acting on M1 is the input force F and

the only action affecting the motion of the M2 is the position of M1.

Because there is no feedback from the second mass, its position cannot be actively
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controlled. However, since both control schemes (PIM and OLIS/PD) filter reference

commands via input shapers, the second mass can respond to reference commands

without vibration. This can be seen in Figure 8.17, which shows the step reference

response of the second mass (M2) under both control strategies. This figure verifies

that before any disturbances occur (before t = 15 seconds), both controllers (PIM and

OLIS/PD control) are equally capable of providing fast, vibration free step responses.

Unfortunately, if a force disturbance acts on the first mass, this will directly affect

the position of the second mass without any input shaping filter. In the absence of

feedback control on the second mass, force disturbances on M1 will usually result

in uncontrolled vibration of the second mass. This can be seen in the OLIS/PD

response in Figure 8.17. When a pulse disturbance acts on M1 at time t = 15

seconds, the OLIS/PD controller can only eliminate one of the two system modes,

the mode corresponding to the closed-loop around the first mass. The second mass

vibrates continuously because the feedback controller cannot sense its motion.
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However, the basic premise of PIM controllers is that responses to force distur-

bances are designed to eliminate vibration just as input shaping does - via destructive

interference. Therefore, with knowledge of the second mode’s dynamics, the force dis-

turbance response of the PIM controller can be designed to eliminate vibration of both

modes. This is evident from Figure 8.17, where the response of the second mass is

vibration free even after the force disturbance.

It should be noted here that this disturbance rejection advantage only holds when

Df acts on M1. If a disturbance acts on M2 directly, both control schemes will be

equally incapable of settling the motion of M2. Also, by using an inverted model of

the plant and controller, the use of the Plant Inversion Method with non-minimum

phase plants is questionable. Even plants with zeros near the imaginary axis (in the

continuous domain) or the unit circle (in the digital domain) would pose practical

problems because inverting them would result in highly oscillatory poles that would

cause problems in the event of modeling errors. Future work could address this

problem, perhaps with an approximate plant inversion procedure similar to Zero

Phase Error Tracking Control [95].

8.3 Model Reference Controller

The second, advanced CLSS controller designed for force disturbance rejection was

originally developed by Ulrich Staehlin and Tarunraj Singh [91] and can be seen in

Figure 8.18. This control scheme is called the Model Reference Controller (MRC)

because it uses a simulated plant response (from a model of the plant, Gm) for com-

parison with the actual plant response to determine if a disturbance has occurred.

Note that this control scheme does not require the inversion of the plant model.

One interesting thing to observe from Figure 8.18 is that the overall transfer

function from the reference input to the output (assuming a perfect plant model

→ Ga = Gm = G) is:
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Y

R
= IG (8.3)

Under perfect modeling conditions, this closed-loop system replicates standard

outside-the-loop input shaping. In addition, the authors mention that one of the goals

of investigating this closed-loop signal shaping controller is to obtain shaped distur-

bance and initial condition response. Unfortunately, their paper does not actually

address this system’s capabilities in these areas from either a theoretical, simulation,

or experimental perspective.

8.3.1 Disturbance Rejection Capabilities - Theoretical Perspective

The ability of the MRC to reject disturbances can be established by examining the

transfer function relating the Model Reference Controller’s system response to a dis-

turbance input (assuming zero modeling errors). This transfer function is:

Y

D
= G(1 − IG) (8.4)

When this equation is evaluated at the plant’s poles, the transfer function becomes:

Y

D
= G|−ζωn±ωdj

(

1 −
0

0

)

=
Gnum|−ζωn±ωdj

0

(

1 −
0

0

)

(8.5)

The value of the expression within the parenthesis is undefined. There is no guarantee

that this expression will equal zero, which is needed to cancel the zero from the

denominator of the plant term outside the parenthesis. Unless this zero is canceled,
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the Y
D

transfer function will contain uncanceled poles equal to the poles of the plant,

G.

The value of the 0
0

term within the parenthesis can be determined by taking the

limit as s → −ζωn ± ωdj. If this expression goes to one, then the entire term within

the parenthesis will go to zero, resulting in full plant-pole cancelation. Standard

input shaping theory has never addressed this issue. Typically, as long as the IG

combination evaluated at the oscillatory poles of G does not result in infinity, the

actual value of IG|−ζωn±ωdj is irrelevant. All that normally matters in outside-the-

loop input shaping is that the poles of the oscillatory system, G, are canceled. For

disturbance rejection with the Model Reference Controller, this value is now central

to ensuring good performance. The following example will demonstrate that for

standard input shapers, the MRC will not effectively cancel disturbances. Then, this

example will show how new input shapers can be designed to not only cancel the poles

of G but also ensure that IG|−ζωn±ωdj → 1. This will make the MRC an effective

disturbance rejecting controller.

8.3.1.1 Model Reference Control Example

Assumption:

Gm = Ga = G (8.6)

Define:

G =
ω2

n

s2 + ω2
n

(8.7)

I = 0.5 + 0.5e−s π
ωn (8.8)

The input shaper shown in (8.8) is a standard ZV shaper. This shaper will cancel

the poles of G; i.e. I|jωn
= 0. To find the value of IG|jωn

, L’Hospital’s rule is used.

It can be shown from this procedure that:

lim
s→jωn

IG = −
π

4
j (8.9)
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This means that:

Y

D
|jωn

= G|jωn

(

1 −
π

4
j
)

=
ω2

n

(

1 − π
4
j
)

0
= ∞ (8.10)

Equation 8.10 implies that a force disturbance entering a MRC controller that utilizes

a standard ZV shaper will cause the closed-loop system to oscillate at the poles of

the plant, G.

However, I can be re-designed to be of the form:

I ′ = Ae−θsI = Ae−θs
(

0.5 + 0.5e−s π
ωn

)

(8.11)

Now:

I ′G =
Ae−θs

(

0.5 + 0.5e−s π
ωn

)

ω2
n

s2 + ω2
n

(8.12)

L’Hospital’s rule must now be used to evaluate the limit of I ′G as s → jωn. This

yields:

−Aθe−θs
(

0.5 + 0.5e−s π
ωn

)

ω2
n − Ae−θs

(

0.5 π
ωn

e−s π
ωn

)

ω2
n

2s
(8.13)

Evaluated at s = jωn, this fraction becomes:

−0.5πA
(

e−θωnj−πj
)

2j
(8.14)

If A = −4
π

and θ = π
2ωn

, then this fraction will become unity. This means that the Y
D

transfer function (as s → jωn) becomes:

Y

D
|jωn

= G|jωn
(1 − 1) =

0

0
6= ∞ (8.15)

This 0
0

term is not equal to infinity because G is only one mode, and therefore it does

not have multiple poles at any given s = σ + jω location on the real-imaginary plane.

This example showed how MRC controllers utilizing standard input shapers will

generally fail to reject force disturbances. However, this example also showed how

new input shapers can be designed to allow a MRC controller to effectively reject dis-

turbances. The example shown here developed the new input shaper shown in (8.11).
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This new input shaper was a ZV shaper scaled by A and delayed by θ seconds. While

this new input shaper did ensure that the Y
D

transfer function would not oscillate at

the poles of the plant (G), it also eliminated one of the key characteristics of input

shapers: the amplitudes no longer add to unity. In fact, in the example shown, the

amplitudes add to A. It is important that the impulses comprising an input shaper

add to unity, so that the system will reach the same output that was originally desired

by the unshaped command.

To resolve this dilemma, the derivation of input shapers can easily be modified.

The derivation of input shapers normally includes a constraint that the impulse am-

plitudes sum to unity; along with other constraints concerning vibration suppression,

robustness, etc. For input shapers used in a MRC controller, the shaper design

procedure simply needs to be augmented to include the additional constraint that

IG|−ζωn±ωdj → 1. This will, most likely, require additional impulses and a larger

shaper duration. The examples given in the subsequent sections use newly designed

input shapers within MRC controllers whose impulses sum to unity.

8.3.2 Model Reference Controller Performance - Simulations

When this new input shaper, I ′, is used in place of the standard input shaper, I, the

control scheme shown in Figure 8.18 will eliminate residual vibration even when the

system experiences reference inputs, force disturbances, sensor disturbances, and/or

non-zero initial conditions. Outside-the-loop input shaping only eliminates residual

vibration caused by reference inputs.

In order to demonstrate the effectiveness of this control scheme, a set of simula-

tions was conducted. These simulations compared the original MRC controller using

standard input shapers, the modified MRC controller using the new input shapers

designed in this dissertation, and a current, standard controller. The standard con-

troller chosen for comparison, which can be seen in Figure 8.19, utilizes an input
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shaper outside of the feedback loop and a PID controller inside the loop. While some

time was spent tuning the PID controller, the PID gains were not rigorously opti-

mized relative to a set of performance specifications. Therefore, it may be possible

to create an OLIS/PID controller that outperforms the one shown here.

In these simulations, four basic responses are studied: a step reference input, non-

zero position and velocity initial conditions, a pulse force disturbance, and a pulse

sensor disturbance. Recall that a force disturbance enters the block diagram just

before the actual plant, while a sensor disturbance enters the block diagram at the

feedback signal. In addition, the effect of modeling errors in natural frequency was

studied. Finally, it should be noted that only undamped, second-order systems were

analyzed here.

The first set of responses, shown in Figure 8.20, show step responses with zero

initial conditions, a force disturbance at t = 5sec, and a sensor disturbance at t =

10sec. The fastest step response is realized by the original Model Reference Controller

which utilizes standard input shapers. However, this method fails to reject either type

of disturbance. On the other hand, the tuned PID controller quickly rejects both

disturbances. Unfortunately, it has a significantly longer settling time to reference

inputs as compared to either of the Model Reference Controllers. The modified Model

Reference Controller (which utilizes the newly designed input shapers) produces the

best overall performance. It has a reference input settling time less than half that

of the outside-the-loop input shaping/PID controller and much better disturbance

rejection than the original Model Reference Controller.

272



0 2 4 6 8 10 12 14
8

9

10

11

12

Time (sec)

R
es

po
ns

e

Step Response 

Force Disturbance Sensor Disturbance 

PID and OLIS
Original MRC
Modified MRC

Figure 8.20: Step Response with Zero Initial Conditions.
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Figure 8.21: Step Response with Non-Zero Initial Conditions.

Adding non-zero position and velocity initial conditions reinforces these findings.

Figure 8.21 shows the same controllers and inputs as in the previous figure. However,

the actual plant, Ga, was given an initial position of 1 unit and an initial velocity of 1

unit per second. The original Model Reference Controller utilizing a standard input
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Figure 8.22: Step Response with ωa

ωm
= 1.2.

shaper fails to mitigate the oscillations induced by the initial conditions. In addition,

the step response of the outside-the-loop input shaping/PID controller continues to

require a relatively long settling time. On the other hand, when the new input shaper

design is utilized within the Model Reference Controller, an excellent step response

is achieved despite the non-zero initial conditions.

The last set of simulations was intended to observe the effect of natural frequency

modeling errors. When the actual, natural frequency is 20% higher than the modeled

natural frequency ( ωa

ωm
= 1.2), the outside-the-loop input shaping/PID controller

performs best. This can be seen in Figure 8.22. This result was anticipated, due to

the fact that a PID feedback controller relies much less on a system model than either

of the MRC controllers.

As can be seen in Figure 8.23, when the actual, natural frequency is 20% lower than

the modeled, natural frequency ( ωa

ωm
= 0.8), the original Model Reference Controller

utilizing a standard input shaper goes unstable. This was predicted by Staehlin and

Singh [91]. But, as shown in Figure 8.24, utilizing the newly designed input shaper
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Figure 8.23: Step Response with ωa

ωm
= 0.8.
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with the Original MRC Data Removed.

within the Model Reference Controller makes the controller stable. Secondly, under

this modeling error condition, the outside-the-loop input shaping/PID controller does
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not clearly outperform the modified Model Reference Method. While the outside-the-

loop input shaping/PID response reaches the desired set point without overshoot, its

settling time is comparable to the modified Model Reference Controller. In addi-

tion, the modified Model Reference Controller rejects disturbances quicker than the

outside-the-loop input shaping/PID control scheme. Although, the overshoot due to

the disturbance is higher for the MRC controller. In summary, neither the OLIS/PID

controller nor the MRC controller utilizing the newly designed input shaper has a

clear performance advantage when there are natural frequency modeling errors.

Finally, a note should be made here concerning some practical advantages of using

MRC control. The examples given in this section show that the MRC controller is

capable of quick step responses (even when non-zero initial conditions are present)

and disturbance rejection. And, all of this is accomplished without the need for differ-

entiators or integrators. The actual implementation of differentiators and integrators

can be challenging, especially when sensor noise and integrator windup are consid-

ered. The MRC controller, therefore, presents a useful alternative to PID feedback

control. However, the MRC controller is more dependant upon an accurate system

model. Therefore, when accurate system models are not available, a standard PID

controller will, most likely, be the best choice.

8.4 Model Reference Controller Applied to a Space-

craft Model

This section will describe the application of the Model Reference Controller scheme

to a spacecraft model provided by an aerospace industry research partner. The space-

craft is modeled in MATLAB as a 25-mode system with 12 inputs and 42 outputs.

The twelve inputs are realized by two actuators located at distinct points on the

spacecraft. Each actuator is able to produce a linear force and a moment in the three
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cartesian directions. The 42 outputs are actually the six position measurements (lin-

ear distance and rotation) of seven distinct points on the spacecraft.

Initial investigation into the dynamics of this spacecraft revealed that one of its

25 modes was dominate. Six of these modes were rigid-body modes and that the

dominate mode discussed here was the dominate oscillatory mode.

As a demonstration of the Model Reference Controller and its ability to reject

disturbances, a simple maneuver was studied. This maneuver used the z-direction,

linear force of the actuator located close to the spacecraft’s geometric center. The

force was used to maneuver the tip of one of the spacecraft’s flexible appendages

from the 0 meter position to the 1 meter position. Each of this section’s remaining,

simulated responses shows the z-direction motion of this appendage’s tip.

8.4.1 Outside-the-Loop Input Shaping

The block diagram shown in Figure 8.25 was used to demonstrate outside-the-loop

input shaping. The block labeled “Signal Generator” created a step reference input of

1 meter. The block labeled “Input Vector” created a 12 X 1 force input vector. The

“Rigid Body” block created a bang-coast-bang input profile to create a point-to-point

motion. Finally, the “Input Shaper” block filtered the input command to eliminate

the dominant vibratory mode of 0.25Hz. The disturbance force is the signal denoted

by Df .

Without the disturbance force disrupting the motion of the spacecraft, the z

motion of the appendage’s tip makes an excellent response. This can be seen in

Input
Vector

Signal
Generator

Rigid
Body

Input
Shaper

Plant++

Df

Output

Figure 8.25: Outside-The-Loop Input Shaping Block Diagram.
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Figure 8.26: Outside-The-Loop Input Shaping Without Disturbance.
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Figure 8.27: Outside-The-Loop Input Shaping With Disturbance.

Figure 8.26. However, when a quick (0.2 seconds duration) pulse disturbance force is

added to the block diagram at time t = 15sec, this controller is unable to maintain

a constant, non-vibratory position. The response, as seen in Figure 8.27, contains a

non-zero velocity and oscillates at the dominant frequency.
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Figure 8.28: Model Reference Control Block Diagram.

8.4.2 Closed-Loop Signal Shaping Control - Model Reference Controller

The control scheme utilized to achieve disturbance rejection is the MRC controller

shown in Figure 8.28. Within this block diagram, the “Signal Generator”, “Input

Vector”, “Rigid Body”, and “Input Shaper” blocks serve the same purposes as in

Figure 8.25. The new addition is the block labeled “MRC Input Shaper”, which is

necessary to achieve a vibration free response to a disturbance. In Section 8.3.1.1,

the blocks corresponding to “MRC Input Shaper” and “Input Shaper” were designed

together, as one block. They are shown separately in these figures only to emphasize

that the block “MRC Input Shaper” is the advancement made beyond Staehlin and

Singh’s original design.

Using the same reference input and the same disturbance force (this time, the dis-

turbance was applied at time t = 12sec), the response of the control system sketched

in Figure 8.28 is shown in Figure 8.29. There are a few important things to notice

from this response. First, the disturbance does not result in significant vibration or

steady drift away from the desired location. However, the position of the node does

settle to a position slightly offset from the desired 1 meter location. And, unfortu-

nately, there is also a large cost in overshoot. In fact, the overshoot for this example

is approximately 150%.

Fortunately, this overshoot problem can be addressed. In addition to rejecting

disturbances, this control scheme was also shown to be capable of eliminating the
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Figure 8.29: Model Reference Controller Response.
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Figure 8.30: MRC Block Diagram with Switching Mechanism.

effects of non-zero initial conditions. This was shown in Section 8.3.2. This knowl-

edge enables a slight modification of the MRC controller, producing the new MRC

controller shown in Figure 8.30. This control scheme assumes that the time required

to complete the 1 meter move is approximately known. Given a model of the space-

craft and actuator properties, this should not be an unrealistic assumption. During

the intended motion, the “MRC Input Shaper” control block is disconnected. It is

then reconnected after the intended motion is complete. If there are no disturbances

during the intended motion, then the system will respond exactly as it did in the

open-loop response shown in Figure 8.26. If a disturbance enters the system after
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Figure 8.31: Response of Control Scheme with Switching Device.

the intended motion is complete and after the “MRC Input Shaper” block has been

switched on, then the system will have already reached its desired position without

overshoot and will then simply reject the disturbance. An example of this can be seen

in Figure 8.31. Again, the disturbance is applied at time t = 12sec. Even though this

control scheme has an excellent step response and successfully rejects the disturbance

in terms of residual vibration, there is still a steady-state error problem.

However, should the disturbance occur before the intended motion is complete

and/or before the “MRC Input Shaper” block is switched on, then the controller

will simply view the system’s non-stationary, vibratory response as non-zero initial

conditions. Once the “MRC Input Shaper” block is eventually turned on, the system

will be brought to rest. This can be seen from Figure 8.32. Here, the disturbance

occurs at time t = 2sec, well before the intended motion could have been completed.

The two previous responses show how the MRC controller can reject disturbances.

However, the system eventually settles at a position not equal to the reference po-

sition. Unfortunately, this is a characteristic inherent to MRC controllers that have
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Figure 8.32: Second Response of Control Scheme with Switching Device.

plants with rigid body modes. Fortunately, the MRC controller is able to greatly

diminish the drift that would normally occur due to a force disturbance (as shown in

Figure 8.27).

This position offset caused by the disturbance can be dealt with by altering the

reference input once the offset is detected. For example, Figure 8.33 shows the same

response given in Figure 8.32, except that the reference input is altered at time

t = 30sec to reset the spacecraft to its desired position.

As was noted in Section 8.3.2 and in [91], MRC controllers can be sensitive to

modeling errors. The spacecraft model used in this section is a 12 input, 42 output

system given in state-space form. The plant model used to develop the MRC controller

approximated the spacecraft as a mass-spring-mass type system: a plant with a rigid

body mode and one vibratory mode. This was justified from simulation responses that

showed a clear, dominant mode of vibration. In addition, the design procedure for

MRC controllers (which was developed in Section 8.3.1.1, depended upon an accurate

transfer function of the plant. The state-space system describing the spacecraft was
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Figure 8.33: Altering Reference Input to Eliminate Offset.
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Figure 8.34: Beating Frequency Vibrations due to Modeling Errors.

too large and complex to convert to the laplace domain. Therefore, some of the plant

parameters were estimated from the full, spacecraft model’s responses.

Using a simplified model and estimating parameters created modeling error, which

resulted in incomplete vibration cancelation. For example, Figure 8.34 shows the

283



response given in 8.32 carried out to 2000sec. This figure shows incomplete vibration

suppression and a slight non-zero drift. The vibration shown here actually forms a

beating response, not exponentially growing oscillations.

There are several ways in which this vibration and drift problem can be addressed.

The first method is to develop a more accurate model of the plant. The second is

to extend the development of MRC controllers to include robust input shapers. The

third approach is to create an algorithm that intelligently turns the MRC controller on

and off at appropriate times. This approach will be chosen because it is simpler than

theoretically advancing the MRC derivation to include robust shapers. In addition,

this approach accepts the presence of modeling errors, instead of trying to eliminate

them with increasingly accurate models which are not always practical to obtain.

This algorithm is similar to the switching mechanism that was depicted in Figure

8.30, but also includes the ability alter the reference command, as was shown in the

response depicted in Figure 8.33.

Figure 8.34 shows that after the disturbance is rejected, the vibrations caused by

the modeling errors are small. They then grow over time, before shrinking again.

If the intelligent algorithm controlling the MRC controller turns the actuator inputs

off once a disturbance has been successfully rejected, these vibrations will remain

small. The result can be seen in Figure 8.35, where a disturbance was first rejected

and the actuator effort was then turned off. This figure shows that the vibration is

much smaller than shown in Figure 8.34. However, a small drift is still present. The

drift created by modeling errors, as well as offsets created by the natural disturbance

rejection, can be eliminated by turning the actuator effort back on and intelligently

altering the reference input. This was shown in Figure 8.33.
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Figure 8.35: Switching Off the Actuator Inputs On the MRC Controller.

8.4.3 Discussion of Advanced CLSS Controllers

This chapter advanced the use of CLSS controllers beyond the simple, Classical

Method form. The purpose of this advancement was to find CLSS controllers that

are capable of rejecting force disturbances. The first approach discussed was the

Plant Inversion Method (PIM). This controller was shown to be theoretically capa-

ble of rejecting force disturbances, even when an unobservable, second mode existed.

This is a clear advantage over PID control. However, the use of PIM controllers is

questionable, due to the plant inversion requirement. This leads to noise and model

sensitivity.

The study of Model Reference Controllers (MRC) also showed that placing input

shapers inside of feedback loops can be used to reject force disturbances and the

effects of non-zero initial conditions. However, as was discussed in Section 8.3.2 and

Section 8.4, MRC controllers also rely upon accurate system models. It should be

noted that some of the modeling error problems associated with MRC control were

addressed via an intelligent switching algorithm.
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The advantages and disadvantages of Model Reference Controllers and Plant In-

version Method controllers establish a trade-off between these and PID controllers.

PID controllers do not rely heavily on accurate system models. However, they do

require the implementation of differentiators and integrators. In certain applications,

this can be a significant challenge. However, applications where significant modeling

errors are expected will probably necessitate the use of PID control. The practical

use of PIM and MRC controllers should be reserved to special situations where ac-

curate models are obtainable and PID control is not practical to implement or does

not produce adequate performance.
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CHAPTER IX

CONCLUSIONS AND FUTURE WORK

9.1 Conclusions and Thesis Contributions

9.1.1 Concurrent Design of OLIS and PID Feedback Controllers

The first part of this dissertation concentrated on the concurrent design of outside-

the-loop input shapers and PID feedback controllers. The major contribution offered

by this research was to definitively show that concurrently designing OLIS/PID con-

trollers yields unique and superior controllers when the design constraints do not

severely restrict the controller (as when the design constraints force an over-damped

system). And, this superiority is not restricted to any particular controller design

strategy. This thesis examined analytical based solutions, numerical search routines,

general rule-of-thumb techniques, and numerical optimizations.

This contribution can be divided into several smaller contributions. The first re-

sult offered by this research is a detailed understanding of how and why concurrently

designed OLIS/PID feedback controllers are superior to sequentially designed combi-

nations. The major reason is that input shaping reduces vibrations that are induced

by the reference command. Because the input shaping filter outside of the loop can

reduce reference-induced vibration, the feedback controller is relieved of this respon-

sibility, and is allowed to prioritize other performance indices (like rise time). The

result is that the feedback controller can be more aggressive than would be allowable

if only feedback control were used, resulting in an overall controller (OLIS and PID

feedback control) with a faster response.

The second result in this area was the development of fast and simple search

algorithms for concurrently designing OLIS/PID controllers for simple plant types.
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These results were verified via simulation and experiment. Finally, these algorithms

were shown to be effective on multi-mode plants that can be approximated as single-

mode systems.

The third result offered by this thesis in the area of concurrent design of OLIS/PID

controllers was a two-pronged approach to concurrent design when the plant is a

complicated system that cannot be approximated by a simple model. The first design

approach used newly designed PID tuning rules that yield aggressive closed-loop

systems. When combined with input shaping, the overall controllers are superior

to those designed by the Ziegler-Nichols tuning rules. For more precise concurrent

designs, a numeric optimization routine was developed. This optimization routine

solved for as many parameters (and verified as many constraints) as possible via a

linear optimization routine. The remaining parameters and constraints were designed

and met via a nonlinear optimization routine. The overall optimization yielded more-

consistent and superior controllers than did a standard nonlinear optimization package

that attempted to solve for all parameters (input shaper and PID) and meet all

constraints.

9.1.2 Closed-Loop Signal Shaping Controllers

The second half of this dissertation investigated feedback controllers that contained

an input shaping filter somewhere within a feedback loop. The major contribution

was to show that CLSS controllers do have some useful applications, but that their

need for accurate system models limits their practical usage. The majority of the

previous literature focused on applications where CLSS controllers are useful. This

dissertation specifically details several applications and scenarios when CLSS is not

a desirable control strategy. And, this dissertation expands the discussion of good,

practical uses of CLSS controllers.

This major contribution is divided into the following areas. The first contribution
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this dissertation provided in the area of CLSS controllers was a detailed stability

analysis based upon classical control theory. As mentioned in Chapter 1, the literature

contains several CLSS stability studies. However, they are primarily reliant upon

more complicated stability theorems, like the Lyapunov stability criterion. While

these studies are certainly useful, this dissertation investigated the stability of CLSS

controllers via the root locus and Bode plots. These classical control tools are fairly

easy to understand and often give more insight, or intuitive feel, to the system being

studied than is given by some of the more complicated stability testing methods.

In addition to showing basic root loci and Bode plots for CLSS controllers, this

dissertation studied the effect of modeling errors, system damping, and the addi-

tion of lead compensators. Finally, the stability study verified some of its findings

experimentally.

The major result from the stability analysis is that Classical Method CLSS con-

trollers can be stabilized via simple proportional or lead compensator control. How-

ever, the sensitivity to modeling errors and the extra dynamics added by the input

shaper make the practical choice of CLSS controllers over standard PID control some-

what limited. Two important exceptions to this are the successful use of a CLSS

controller on the Georgia Tech HighBay crane and the use of human-centered, CLSS

controllers on cranes.

The second contribution in the area of CLSS was to establish a variety of useful

applications for these types of controllers. This thesis showed how Classical Method

CLSS controllers can be used to reject sensor disturbances, to stabilize and improve

the performance of non-collocated controllers, to handle actuator saturation, and to

improve the performance of human-operated machinery. This thesis also verified the

improved performance of human-operated machinery via an experimental study.

The third contribution was the development of advanced CLSS controllers. This

thesis investigated two advanced CLSS controllers from the previous literature: the
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Plant Inversion Method (PIM) and the Model Reference Controller (MRC). The PIM

was first improved by solving the inherent causality problem. Secondly, this form of

CLSS was shown to be effective at eliminating the effect of disturbances on systems

with an unobserved mode. The MRC was first improved by designing new input

shapers that actually make it possible for the MRC to reject force disturbances. This

new CLSS controller was then tested on a high-fidelity simulation of a spacecraft

system.

Both of these advanced, CLSS controllers show potential advantage over OLIS/PID

control. Neither CLSS controller requires the implementation of differentiators, and

the PIM controller can eliminate the effect of force disturbances on unobservable

modes. However, their sensitivity to noise and modeling errors makes their practical

implementation questionable. Future research will need to be done to determine if

these problems can be successfully mitigated.

9.2 Future Work

In the field of concurrently designing outside-the-loop input shaping and PID feed-

back control, the application to generally complex plants is one, major area where

improvements can be made. Section 5.2.2.6 highlighted most of the current deficien-

cies in the solution provided by this dissertation. Included among these issues was

computation time and failure to find a solution. While the procedure developed in

this dissertation is a good tool, the problems reviewed here provide ample research

questions for future work. Finally, while this dissertation showed how the provided

solution can be superior to a generic, nonlinear optimization package, a rigorous proof

of this superiority would be an excellent contribution.

A second opening for future work in this field is the study of approximate, second-

order systems. Future work could study other plant types (including those with

three or four oscillatory modes, first-order dynamics, and non-minimum phase plants).
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Also, future work could specifically address the effects of a numerator zero becoming

non-negligible. These studies would add to the general understanding of when the

second-order approximation is useful.

The most promising area of future research on closed-loop signal-shaping (CLSS)

controllers lies in the field of force disturbance rejection. Chapter 8 showed how the

PIM and MRC forms of CLSS will reject force disturbances. However, PIM’s use of

plant inversion makes its practical use questionable. For example, this dissertation

showed that this control scheme is sensitive to noise and modeling errors, as well as

being currently impractical for use with non-minimum phase plants. The MRC form

of CLSS did not require plant inversion. However, when rejecting a force disturbance,

this controller had a natural steady-state error problem. This issue was partially

addressed within this dissertation. However, a focused study of this issue could yield

an improved MRC control scheme that does not suffer from this steady-state error

problem.

A second promising area for future research on CLSS controllers is in the area of

stability analysis. It will be advantageous to continue the stability study with more

complicated plants: including non-minimum phase plants.

Apart from improving the CLSS controllers studied in this dissertation, there is

the need to develop and study new forms of CLSS. To date, only four significantly

different CLSS controllers have been seriously addressed either in the literature or in

this dissertation. While these previously studied CLSS controllers have been shown

to be useful in various applications, there will always be a need to develop new forms

of CLSS controllers that have their own unique advantages.
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