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SUMMARY

Adaptive control designs using neural networks (NNs) based on dynamic inversion are

investigated for aerospace vehicles which are operated at highly nonlinear dynamic regimes.

NNs play a key role as the principal element of adaptation to approximately cancel the effect

of inversion error, which subsequently improves robustness to parametric uncertainty and

unmodeled dynamics in nonlinear regimes.

An adaptive control scheme previously named ’composite model reference adaptive con-

trol’ is further developed so that it can be applied to multi-input multi-output output feed-

back dynamic inversion. It can have adaptive elements in both the dynamic compensator

(linear controller) part and/or in the conventional adaptive controller part, also utilizing

state estimation information for NN adaptation. This methodology has more flexibility and

thus hopefully greater potential than conventional adaptive designs for adaptive flight con-

trol in highly nonlinear flight regimes. The stability of the control system is proved through

Lyapunov theorems, and validated with simulations.

The control designs in this thesis also include the use of ’pseudo-control hedging’ tech-

niques which are introduced to prevent the NNs from attempting to adapt to various ac-

tuation nonlinearities such as actuator position and rate saturations. Control allocation is

introduced for the case of redundant control effectors including thrust vectoring nozzles. A

thorough comparison study of conventional and NN-based adaptive designs for a system un-

der a limit cycle, wing-rock, is included in this research, and the NN-based adaptive control

designs demonstrate their performances for two highly maneuverable aerial vehicles, NASA

F-15 ACTIVE and FQM-117B unmanned aerial vehicle (UAV), operated under various non-

linearities and uncertainties.

xiv



CHAPTER I

INTRODUCTION

1.1 Neural Network-based Adaptive Control

Artificial neural networks (NNs) are any computing architecture that consists of massively

parallel interconnections of simple computing elements. NNs have been implemented in

various fields such as system identification and control, image processing, speech recognition,

etc. The fundamental and core property of NNs for their superiority over other approximation

methods is based on the fact that NNs are able to universally approximate smooth but

otherwise arbitrary nonlinear functions on a wide range of complex nonlinear functions on

a compact set, using fewer parameters and requiring less computation time. This property

was proved and demonstrated in the late 80’s and early 90’s [20, 24, 28, 95, 96, 98].

In the 80’s important results that guarantee the closed-loop stability of adaptive control

were presented [74,79,80]. Since that time a great deal of progress has been made in the area

of adaptive control. Stability analysis of adaptive control design involves the use of Lyapunov

stability theory [41, 43, 107, 123], along with LaSalle’s theorem which allows less restrictive

conditions [52, 53]. Among the suggested adaptation laws, two methods will be discussed in

this thesis: σ-modification, introduced by Ioannou and Kokotovic [33] to prevent instability

and to improve robustness, and e-modification, suggested by Narendra and Annaswamy

[77,78] to eliminate the need for the persistent excitation (PE) condition in stability analysis

of adaptive systems. There has also been a great deal of literature treating advanced topics

related to stability analysis and other aspects of adaptive control [3, 34, 43, 77, 100, 115].

Usually adaptive control methodologies are categorized into two classes: direct and indi-

rect. In direct adaptive control, the parameters defining the controller rather than describing
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the system itself are updated directly, while indirect adaptive control relies on on-line iden-

tification of plant parameters with an assumption that a suitable controller is implemented.

Robustness to disturbances and unmodeled dynamics is one of main goals of adaptive control

system design, leading to the introduction of several methods, some of which are: parame-

ter projection techniques [76] and backstepping to improve robustness of adaptive nonlinear

controllers [124].

For nonlinear control design, several novel approaches have been introduced. One ap-

proach is known as feedback linearization which depends on nonlinear transformation tech-

niques and differential geometry [36,37,42,43,99,100]. In this approach, the nonlinear dynam-

ics are first transformed into a linear, time-invariant form through the definition of the state

and control of the nonlinear system. The transformed linear system can then be treated us-

ing well known methods for linear control design. Another approach is backstepping [47–49].

This approach employs Lyapunov function to recursively determine nonlinear controls for

nonlinear systems. For NN-based adaptive control of nonlinear systems, we employ the first

approach in this thesis.

In recent decades, there have been research efforts to implement neural nets as adaptive

elements in nonlinear adaptive control designs to achieve desired system performance using

NN’s guaranteed universal approximation ability which offers outstanding advantages over

most other conventional linear parameter adaptive controllers [27,62,84,97,119]. In the early

90’s, Narendra studied identification and control of linear and nonlinear Dynamical Systems

using NNs [81–83]. Lewis et al. studied a state feedback linearly parameterized NN adaptive

controller [60] and later studied multi-layer NN structures with improved update laws [61,62].

Recently, Hovakimian and Calise et al. developed Single-Hidden-Layer (SHL) NN-based

adaptive output feedback control of uncertain nonlinear systems through Lyapunov’s direct

method by building an observer for the output tracking error, assuming both the dynamics

and the dimension of the regulated system may be unknown, while the relative degree of

the regulated output is assumed to be known [29]. In addition, they developed an adaptive
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output feedback control methodology for multi-input multi-output nonlinear systems using

linearly parameterized NNs [30]. All the applications using neural networks have shown

remarkable results in areas such as robotics, process control and flight control. Therefore

NNs are becoming the leading method of adaptive control design in various fields.

Composite adaptive control design was introduced by Slotine and Li [107], in which the

adaptation law is a combination of the classical adaptation law and a prediction/estimation-

error-based adaptation law. They showed that for a simple system, composite design improves

the performance of an adaptive controller and results in a faster parameter convergence and

smaller tracking errors. A class of conventional adaptive control design based on the form

of the linear controller, assuming what is referred to as matching conditions, is introduced

and developed in [34,77,114] for known- or unknown-parameter systems. In this thesis both

the composite and linear controller-based adaptive designs are synthesized and analyzed for

multi-input multi-output (MIMO) output feedback control of uncertain systems with external

disturbance, and applied to the problem of flight control in nonlinear dynamic regimes.

1.2 Nonlinear Dynamic Inversion

Flight control law design methods have evolved immensely due to advances in both hard-

ware and theoretical development over the past decades. They have progressed from very

simple fixed-feedback structures for providing stability augmentation to complicated multi-

variable feedback laws with the help of modern well-organized design tools that optimally

tune command responses, robustness characteristics, and disturbance responses of the final

closed-loop airframe/controller integration. Recently control researchers have developed an

advanced flight control design called nonlinear dynamic inversion (NDI) based on feedback

linearization [10, 14, 23, 44, 51, 105, 109].

Conventional flight control designs assume the aircraft dynamics are linear and time

invariant about some nominal flight condition, and they feature stability and command

augmentation systems to meet required flying/handling qualities, with gains scheduled as
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functions of nominal flight conditions. In extreme flight conditions the performance of these

systems begins to deteriorate due to the unmodelled effects of strong nonlinearities inherent

in the flight dynamics, which become significant at high angle of attack or high angular rates.

The chief advantage of the NDI methodology is that it avoids the gain-scheduling process

of other methods, which is time consuming, costly, iterative, and labor intensive. The NDI

technique offers greater reusability across different airframes, greater flexibility for handling

changed models as an airframe evolves during its design cycle, and greater power to address

non-standard flight regimes such as supermaneuver. Control laws based on NDI offer the po-

tential for providing improved levels of performance over conventional flight control designs

in these extreme flight conditions. This is due to the NDI controllers’ more accurate represen-

tation of forces and moments that arise in response to large state and control perturbations.

These control laws also allow specific state variables to be commanded directly [23, 51]. Be-

cause of the superior performance of NDI methodology, many designs of modern, advanced

aerospace vehicles are based on this technique.

Successful flight control designs using nonlinear dynamic inversions were developed in

[21,44,51,72,91,116,122]. A two-time scale, or two-stage dynamic inversion approach has been

widely applied for highly maneuverable fighter aircraft [1,6,9,10,73,92,105,109], missiles [102],

and UAVs [104]. These studies demonstrated that nonlinear dynamic inversions is an effective

method for highly maneuverable air vehicles. However, as noted by Brinker and Wise [6],

dynamic inversion can be vulnerable to modeling and inversion errors. So NN-based adaptive

control design can be introduced to compensate for the inversion errors, unmodeled dynamics

and parametric uncertainty which are quite common in highly nonlinear regimes [14,104,105].

1.3 Adaptive Flight Control Design Using Neural Net-

works

Today newly emerging advanced aerial vehicles are extending their flight envelopes greatly

over traditional flight regimes, leading to a need for substantially higher performance adaptive
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controls. Among these vehicles are the advanced supermaneuverable tactical fighters which

are operated at extremely nonlinear dynamic regimes or at high angle of attack. At these

flight conditions both unmodeled parameter variations and unmodeled vehicle dynamics such

as nonlinear, unsteady aerodynamic effects, saturation of aerodynamic effectors and highly

coupled vehicle dynamics occur. Two examples among such maneuvers are presented in

Figure 1. Unconventionally configured aerial vehicles such as stealth fighters or bombers need

more active controls to compensate for the unmodeled dynamic phenomena which possibly

come from their unusual configurations themselves. These can potentially benefit from having

adaptive elements in the control system. Other potential beneficiaries of these advanced

control designs are unmanned aerial vehicles which are now rapidly extending their missions

beyond target drone and air reconnaissance toward air combat and air-to-ground combat

roles. These vehicles usually contain simpler and cheaper systems with substantially smaller

mass compared to manned vehicles, and in addition minimal or no aerodynamic data are

available for control design. Hence adaptive flight control systems should be designed to

achieve required performance by dealing with uncertainties in the systems and environment.

Newly emerging guided munitions may be classified in this category. There will therefore be

a greater need for adaptive control design methods in the future, and NN-based designs are

best suited for this purpose.

Stengel summarized and proposed intelligent flight control architectures including expert

systems and procedural algorithms as well as neural networks [113]. Flight control design

and improvement using NNs are described in [4, 93, 110–112, 117, 118]. Since the early 90’s,

lots of research has been performed for improving air vehicles’ performance by designing

control systems using neural networks. This research has included high performance fighters

[26,44,56,63,64,105], tailless aircraft [14,122], missiles [67–71], tilt-rotor aircraft [94], UAVs

[7, 13, 104], guided munitions [103], and helicopters [12, 15, 19, 57–59,89].

Pseudo-control hedging (PCH) is a methodology to protect an NN’s adaptive process

when control nonlinearities such as actuator saturation and rate limits are present [38, 40].
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(a) Su-27 Cobra Maneuver

(b) X-31 Herbst Maneuver

Figure 1: Modern nonlinear maneuvers at highly nonlinear flight regimes
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NASA has performed a series of adaptive flight control studies since the 70’s, and recently,

NASA studied the verification and validation of neural networks for aerospace systems [66],

and it has performed several research projects on intelligent adaptive flight control imple-

mentations which incorporate innovative real-time NN technologies to demonstrate NN’s

capability to enhance aircraft performance under nominal conditions and to stabilize the

aircraft under various critical flight conditions [120]. Today NASA is still seeking further

development of NNs for the purposes addressed above.

1.4 Contributions of Thesis

The research in this thesis is focused on NN-based adaptive control designs for systems at

highly nonlinear dynamic regimes which have severe parametric uncertainties and distur-

bances. The contributions of the research can be summarized as:

• A new model reference adaptive control design methodology that combines the com-

posite adaptive design and dynamic compensator-based adaptive design in addition to

NN-based adaptive elements is developed for output feedback MIMO nonlinear systems,

and its stability is proved through Lyapunov theorems. The performance is validated

through simulations.

• NN-based model reference adaptive control design for nonlinear systems is introduced

and stability is proved. The design was successfully implemented and demonstrated

for an accurate nonlinear model of NASA F-15 ACTIVE (Advanced Control Technol-

ogy for Integrated Vehicles), equipped with thrust vectored nozzles [16, 105], which is

operated at extremely nonlinear dynamic regimes where there exist unmodeled param-

eter variations and unmodeled vehicle dynamics such as highly nonlinear, unsteady

aerodynamic effects, saturation of aerodynamic effectors, and highly coupled vehicle

dynamics [17, 105].
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The pseudo-control hedging (PCH) technique was implemented to protect NN adapta-

tion from various actuation nonlinearities such as actuator position and rate saturation,

while not hindering the NN’s adaptation to other sources of inversion error. Thrust

vector and differential stabilator were added to the vehicle model to increase control

authority at high angles of attack, and its static stability was relaxed in order to achieve

greater pitch maneuverability. A control allocation methodology was introduced and

implemented for effective operation of the redundant control effectors of F-15 ACTIVE.

• A thorough comparison study is performed on the performance of a classical adaptive

control design and two different classes of neural networks: linearly parameterized

Radial Basis Functional (RBF) NN and nonlinearly parameterized Single Hidden Layer

(SHL) NN for stabilizing the unsteady lateral dynamics, or wing rock, of a delta wing

[17, 18].

• A command augmentation-based adaptive control design using NNs is developed and

implemented for a vehicle, FQM-117B UAV which is built with simple and inexpensive

subsystems, having little aerodynamic data for control design. Its control system is

designed to achieve high maneuverability without requiring accurate modeling of the

vehicle, and the UAV’s adaptive flight control design provides a way to deal with the

uncertainties in the system and environment [104].

1.5 Thesis Outline

The thesis is organized as follows.

Chapter 2 presents structure and synthesis of linearly and nonlinearly parameterized

neural networks which are used in the remaining chapters.

Chapter 3 illustrates adaptive nonlinear dynamic inversion control design for MIMO out-

put feedback systems. Feedback linearization and inversion control of aircraft are discussed,

and the stability of the closed-loop system is proved using Lyapunov theorems.
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Chapter 4 presents a NN-based adaptive control design, based on the theoretical approach

in Chapter 3, and application to a highly maneuverable aircraft, NASA F-15 ACTIVE, which

has redundant control effectors including thrust vector nozzles. PCH technique is imple-

mented in order to protect NN’s adaptation from control nonlinearities of the actuators. To

manage control redundancy, a control allocation scheme is applied along with a thrust vector

scheduling algorithm. Simulation results validate the NN-based adaptive control design.

Chapter 5 describes a thorough comparison study of classical adaptive control design and

two different NN-based adaptive control designs for an aircraft wing rock model at high angle

of attack.

Chapter 6 presents an application of NN-based control design for a UAV, NASA FQM-

117B, which is operated under several kinds of nonlinearities and uncertainties. A command

augmentation based adaptive control design is developed for the vehicle, and simulation

results show the effectiveness of the design.

Chapter 7 introduces the composite model reference adaptive control design and analysis

for output feedback MIMO nonlinear systems, in which input-output feedback linearization

and nonlinear dynamic inversion, and additional adaptive elements in both the dynamic com-

pensator and the NN-based adaptive element are synthesized. The stability of the composite

adaptive design is proved through Lyapunov theorems. The performances of the design are

validated through simulations using F-15 ACTIVE.

Chapter 8 summarizes the results of all research efforts, and concludes the thesis along

with some future research direction.
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CHAPTER II

ARTIFICIAL NEURAL NETWORKS

Neural networks (NNs) have a well-proved property that they are able to approximate smooth

nonlinear functions on a compact set to any desired degree of accuracy using a sufficiently

large number of NN elements. Hence they are called universal approximators. This property

has been proved and demonstrated since the late 80’s [24, 27, 96, 98, 101]. For the purpose

of adaptive control design, we can use the property of neural networks to approximate any

continuous, unknown nonlinear functions, which we will call f (x).

The mathematical description of the approximation of f(x) by NNs can be written as:

f (x) = fNN(x) + ε(x) (2.0.1)

where fNN(x) is the approximation of f(x) by any NN using its ideal weights and ε(x) is

called the function approximation, or reconstruction error.

In this chapter, we introduce and discuss the mechanisms and structures of two represen-

tative classes of Neural networks which are used throughout this thesis. One is the Radial

Basis Function (RBF) NNs which are also referred to as linearly parameterized NNs and

the other is the Single Hidden Layer (SHL) NNs which is also referred to as nonlinearly

parameterized NN. Both are feed-forward networks.

2.1 Radial Basis Function (RBF) Neural Networks

As noted earlier it is assumed that a nonlinear function is completely unknown to the control

designer, and that there exists a set of NN weights such that the output νad(x) of an RBF

NN approximates the function f (x). The following theorem describes the approximation for

the RBF-class NNs.
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Theorem 2.1.1 (Universal Approximation Theorem for RBF NN). Let Ψ(x) : ℜn → ℜ be

an bounded integrable, continuous function; then for any continuous function f(x) and any

ε there is an RBF NN with N neurons, a set of centers {ci}N
i=1 and a width σ > 0, and

fNN(x) =

N∑

i=1

wiψ ((x − ci)/σ) = W T Ψ(x) (2.1.1)

such that

‖f(x) − fNN (x)‖2
L2

,

∫

‖x‖≤r

[f(x) − fNN (x)]2 dx ≤ ε (2.1.2)

Proof. See [87]

A nonlinear function f (x) : ℜn → ℜm is assumed to be linearly parameterized by RBF

NN over a sufficiently large compact region of interest Dx ⊂ ℜn in the state space such that

f(x) = νad(x) + ε(x) (2.1.3)

where

νadi
(x) = w0,i +

N∑

j=1

wi,jψj(x) i = 1, ..., m (2.1.4)

for all x ∈ Dx and ε(x) is the function approximation error which is bounded as

‖ε(x)‖ ≤ εm (2.1.5)

where εm is a positive number. The radial basis functions of NNs are defined by

ψj(x) = exp
(
−‖x− cj‖2/σ2

j

)
, j = 1, ..., N (2.1.6)

where ‖ · ‖ denotes the Euclidian norm and ck and σk are the center and width of the kth

kernel unit, respectively. The functions in (2.1.6) are known as Gaussian basis functions.

The output of the RBF NNs is calculated according to

νad = Ŵ TΨ(x) (2.1.7)
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where

Ŵ =




w0,1 · · · w0,m

w1,1 · · · w1,m

...
. . .

...

wN,1 · · · wN,m




∈ ℜ(N+1)×m (2.1.8)

Ψ(x) = [ 1 ψ1(x) ψ2(x) · · · ψN (x) ]T ∈ ℜN+1 (2.1.9)

The NN weight matrix Ŵ is an approximation of the ideal weight W which is unknown but

bounded as

‖W‖F ≤ wm (2.1.10)

where ‖·‖F is the Frobenius norm and wm is a positive number. Figure 2 depicts an RBF NN

generating the control input given by (2.1.7). A proof that RBF NNs satisfy the universal

approximation property described above is given in [87, 96,98].

The adaptation law is chosen as:

˙̂
W = −Γ

[
ETPBΨ(x) + κ ·

(
Ŵ −W0

)]
(2.1.11)

or

˙̂
W = −Γ

[
ETPBΨ(x) + κ · ‖E‖ ·

(
Ŵ −W0

)]
(2.1.12)

where Γ, κ > 0 are adaptation gains, W0 is an initial guess (or guess) of W , and P is a

solution of the Lyapunov equation

ATP + PA = −Q, Q > 0 (2.1.13)

The first form in (2.1.11) employs a so-called ’σ-modification’ term, while the second form

in (2.1.12) uses an ’e-modification’ term [62, 78]. It is also noted that there are always NN

approximation errors described as:

f(x) − νad = W T Ψ(x) − Ŵ T Ψ(x) + ε(x)

= W̃ T Ψ(x) + ε(x)

(2.1.14)

where W̃ = W − Ŵ is NN estimation error.
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2.2 Single Hidden Layer (SHL) Neural Networks

Single Hidden Layer (SHL) Perceptron NNs are also universal approximators [27] in that

they can approximate any smooth nonlinear function to within arbitrary accuracy, given a

sufficient number of hidden layer neurons and sufficient input information. Figure 3 shows

the structure of a generic SHL NN. Below is a theorem that describes the approximation of

the SHL-class neural networks.

Theorem 2.2.1 (Universal Approximation Theorem for SHL NN). Any continuous function

f (x) : ℜn → ℜ can be uniformly approximated by a single hidden layer NN with a bounded

monotonically increasing continuous activation function and on a compact domain Dx ∈ ℜn;

that is, for all ε > 0 and x ∈ Dx, there exist N, W, V, b, and θ such that

‖f(x) − fNN(x)‖∞ , ‖f(x) −
{
W T σ̄

(
V T x + θ

)
+ b
}
‖∞ ≤ ε (2.2.1)

Proof. See [20]

Similar to the RBF NN, the input-output map of SHL NN can be expressed as [61]

νadk
= bwθw,k +

n2∑

j=1

wj,kσj (2.2.2)

where k = 1, . . . , n3 and

σj = σ

(
bwθv,j +

n1∑

i=1

vi,j xi

)
(2.2.3)

Here n1, n2, and n3 are the number of input nodes, hidden layer nodes, and outputs respec-

tively. The scalar function σ(·) is a sigmoidal activation function that represents the ’firing’

characteristics of the neuron. Typically, these basis functions are selected as squashing func-

tions. A typical form employed is

σ(z) =
1

1 + e−az
(2.2.4)

15



The factor a is known as the activation potential, and can be a distinct value for each neuron.

The input-output map of the SHL NN in the controller architecture can be conveniently

written in matrix form as

νad = Ŵ Tσ
(
V̂ T µ

)
(2.2.5)

where the two NN weight matrices V̂ , Ŵ are estimates of ideal weights V , W and they are

defined as follows.

The inner-layer synaptic weight matrix V is written as

V̂ =




θv,1 · · · θv,n2

v1,1 · · · v1,n2

...
. . .

...

vn1,1 · · · vn1,n2




∈ ℜ(n1+1)×n2 (2.2.6)

with a sigmoid vector defined as

σ(z) = [ bw σ(z1) σ(z2) · · · σ(zn2
) ]T ∈ ℜn2+1 (2.2.7)

where bw is a bias term. The outer-layer weight matrix W is defined as

Ŵ =




θw,1 · · · θw,n3

w1,1 · · · w1,n3

...
. . .

...

wn2,1 · · · wn2,n3




∈ ℜ(n2+1)×n3 (2.2.8)

Note that θv,j in V acts as a threshold for each neuron, and that θw,j in W allows the bias

term, bw, to be weighted in each output channel.

Define the input vector

µ =

[
bv x1 x2 · · · xn1

]T

∈ ℜn1+1 (2.2.9)
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where bv ≥ 0 is an input bias. The weight matrices V , W are updated according to the

following adaptation laws:

˙̂
V = −Γv ·

[
µETPBŴ T σ̂′ + κv ·

(
V̂ − V0

)]

˙̂
W = −Γw ·

[(
σ̂ − σ̂′V̂ T µ

)
ETPB + κw ·

(
Ŵ −W0

)] (2.2.10)

or

˙̂
V = −Γv ·

[
µETPBŴ T σ̂′ + κv · ‖E‖ ·

(
V̂ − V0

)]

˙̂
W = −Γw ·

[(
σ̂ − σ̂′V̂ T µ

)
ETPB + κw · ‖E‖ ·

(
Ŵ −W0

)] (2.2.11)

where σ̂ = σ
(
V̂ T µ

)
and σ′ = diag (dσi/dzi) denotes the Jacobian matrix. W0 and V0 are

initial guesses (or guesses), Γv, Γw, κv, and κw > 0 are adaptation gains, and P is a solution

of the Lyapunov equation

ATP + PA = −Q, Q > 0 (2.2.12)

It is noted that the first form in (2.2.10) employs a ’σ-modification’ term, while the second

form in (2.2.11) uses ’e-modification’. It has been proven that both forms of the weight

adaptation laws for the SHL NN guarantee that all error signals are uniformly bounded

[11, 29, 61, 62].

Similar to the RBF NNs, there are always NN approximation errors described as [29]:

f (x) − νad = W T σ
(
V T µ

)
− Ŵ T σ

(
V̂ T µ

)
+ ε(x)

= W̃ T
(
σ̂ − σ̂′V̂ T µ

)
+ Ŵ T σ̂′Ṽ T µ + ε(x) − w

(2.2.13)

where W̃ , W − Ŵ , Ṽ , V − V̂ are NN estimation errors.
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CHAPTER III

ADAPTIVE NONLINEAR DYNAMIC INVERSION

CONTROL USING NEURAL NETWORKS

As noted in Chapter 1, nonlinear dynamic inversion (NDI) control is one of the most advanced

control design methodologies. It offers the potential for high performance in extreme flight

conditions such as high angle of attack and/or high rotational rates, in which uncertainties

are common.

This section reviews the adaptive NDI control of aircraft, emphasizing characteristics

particular to aircraft control rather than general description of arbitrary nonlinear systems,

and describes how adaptive elements can be introduced to augment the NDI design to achieve

the desired high performance.

3.1 Input-Output Feedback Linearization and Nonlin-

ear Dynamic Inversion

Rigid body dynamics of aircraft are described globally over the full flight envelope by a set

of n nonlinear differential equations as

ẋ(t) = f(x,u)

y(t) = g(x)

(3.1.1)

where x ∈ Dx ⊂ ℜn is the state vector, u ∈ Du ⊂ ℜm is the system control vector,

and y ∈ Dy ⊂ ℜm is the system output vector. It is assumed that the system (3.1.1) is

stabilizable and observable, and that f (·, ·) and g(·) are sufficiently smooth functions known

to us reasonably precisely as a mix of analytical expressions and tabular data.
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Assumption 3.1.1. The nonlinear dynamical system in (3.1.1) satisfies the conditions for

output feedback linearization with well-defined vector relative degree r.

By selecting the appropriate controlled variables for input-output feedback linearization,

it is possible to rewrite (3.1.1) in the following general normal form :

χ̇ = f o(χ, ξ)

ξ̇1
i = ξ2

i+1

...

ξ̇ri−1
i = ξri

i

ξ̇ri

i = hi(ξ,χ, ui)

yi = ξ1
i , i = 1, . . . , m

(3.1.2)

where ξ , [ξ1
1 ξ2

1 · · · ξr1

1 · · · ξ1
m ξ2

m · · · ξrm
m ]T ∈ ℜr, hi(ξ,χ, ui) , L

(ri)
f g|ui

, i = 1, . . . , m being

the Lie derivatives, χ ∈ Dχ ⊂ ℜn−r are the state vector associated with the internal, or zero

dynamics

χ̇ = f o(χ, ξ) (3.1.3)

The overall relative degree r is defined as r , r1 +r2 + · · ·+rm ≤ n, in which ri is the relative

degree of the ith output, or controlled variable. The function f o(ξ,χ) and hi(ξ,χ, ui) are

partially known continuous functions. In other words, in order to obtain this normal form

(3.1.2), we differentiate the individual elements of y(x) a sufficient number of times until the

control variables u appear explicitly.

Assumption 3.1.2. ∂hi(x, ui)/∂ui is continuous and non-zero for every (x, ui) ∈ Dx × ℜ.

Aircraft Equations of Motion

For aerospace vehicles, the equations of motion are typically described using the state vector

x which consists of following components:

1. (p, q, r) : 3 rotational rate about body axes
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Figure 4: Aircraft axis system and definitions

2. (α, β, µ) : 3 attitudes, measured with respect to the airstream

3. (V , γ, ψ) : 3 velocity components, described by total velocity, flight path angle, and

heading angle

4. (X, Y , H) : 3 inertial position coordinates

The control vector u , [u1 u2 · · ·um]T denotes the positions of all control effectors.

This includes the conventional aerodynamic control surfaces such as stabilator (elevator),

aileron, and rudder. For nonconventional aircraft configurations, it may also include any

other additional control effectors such as canards, leading edge devices, and thrust vectoring

nozzles. The output y , [y1 y2 · · · ym]T denotes selected variables to be controlled. These

variables are chosen according to the purpose of control. Figure 4 presents the aircraft axis

system and several fundamental definitions.

In the field of aerospace dynamics and control problems, the equations of motion (3.1.1)
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can be written in the matrix form as [51]:

ẋ(t) = F (x) +G(x)u

y(t) = C(x)

(3.1.4)

Recalling that dim(y) = dim(u) and the Lie derivative as

Lk
F (x) =

[
∂

∂x
Lk−1

F (x)

]
F (x)

L0
F (x) = x

(3.1.5)

we can write the differentiation of the ith component of y as:

ẏi = Ciẋ = CiF (x) + CiG(x)u = CiL
1
F (x)

ÿi = Ciẍ = Ci

[
L1

F (x)
]
F (x) + Ci

[
L1

F (x)
]
G(x)u = CiL

2
F (x)

...

yri

i = Cix
ri = Ci

[
Lri−1

F (x)
]
F (x) + Ci

[
Lri−1

F (x)
]
G(x)u

(3.1.6)

where ri is the order of the derivative of yi necessary to ensure that

Ci

[
Lri−1

F (x)
]
G(x) 6= 0 (3.1.7)

After differentiating the m elements of y the appropriate number of times such that each

will satisfy (3.1.7), the output dynamics can be written as:

y(r) =




y
(r1)
1

y
(r2)
2

...

y
(rm)
m




=




C1L
r1

F (x)

C2L
r2

F (x)

...

CmL
rm

F (x)




+




C1
∂

∂x
Lr1−1

F (x)

C2
∂

∂x
Lr2−1

F (x)

...

Cm
∂

∂x
Lrm−1

F (x)




G(x)u

(3.1.8)
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By defining the notations as:

F i = Ci [L
ri

F (x)] , i = 1, . . . , r

Gi = Ci

[
∂

∂x
Lri−1

F (x)

]
G(x) ∈ ℜr×m

(3.1.9)

the equation (3.1.8) can then be written in a compact form as

y(r) = F (x) +G(x)u (3.1.10)

It can be easily seen that the sufficient condition for the existence of an inverse model to

the system (3.1.4) is that the control effective matrix G(x) in (3.1.10) be nonsingular. This

condition is fully satisfied in the normal flight envelope of the aircraft [51].

Now assign the pseudo-control ν such that ν = y(r), then the inverse system model takes

the form:

ẋ(t) = [F (x) −G(x)Q(x)] +G(x)R(x)ν

u = −Q(x) +R(x)ν

(3.1.11)

where ν is the input to the inverse system, and u is the output, and

Q(x) =
[
G(x)

]−1
F (x)

R(x) =
[
G(x)

]−1
(3.1.12)

Applying the NDI control law

u = −Q(x) +R(x)ν (3.1.13)

to the original system (3.1.4) yields the so-called integrator-decoupled form

y(r) = ν (3.1.14)

Usually we set

ν = −
r−1∑

j=0

Kjy
(j) +K0yc (3.1.15)
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with y(j) is the jth derivatives of the output vector y, the matrixK is chosen as (r×r) constant

diagonal matrix, yc is the external input, and νdc is usually called the dynamic compensator.

The pseudo-control (3.1.15) yields the decoupled linear, time-invariant dynamics as

y(r) +Kr−1y
(r−1) + · · · +K0y = K0yc

(3.1.16)

Figure 5 presents the process described above to develop the nonlinear dynamic inversion

control law, along with NN adaptive element and pseudo-control hedging.

Remark 3.1.1 (Zero dynamics). Theoretically the maximum number of poles that can be

placed with the NDI control law is dependent on the selection of the controlled variables

shown in the output vector y. For the case r = n all the considered system poles can

be placed by choosing K, and the closed-loop stability can be guaranteed if closed-loop

observability is assumed, while for the case r ≤ n, closed-loop stability can be guaranteed

only locally by showing that the modes, namely the zero dynamics in (3.1.3), which are

unobservable by the NDI control law, have stable dynamics over the region of interest in the

state space. These dynamics are implicitly defined by the selection of controlled variables.

Usually an unstable zero shows up in the aircraft pitch axis mode, for example in the phugoid

mode which has a slightly unstable zero (for example [23], time to double ∼= 150sec). These

kinds of conditions can be overcome by adding an appropriate term to the controlled variable,

or adding a control term to handle them in the outer loop of the control system. ♦

Like most other nonlinear systems, in real flights there are unmodelled dynamics and

uncertainties, which can cause significant inversion errors in the NDI control design approach

discussed so far. This situation is highly common and severe at the extremely nonlinear flight

regimes such as high angle of attack and/or high rate rotational maneuvers which is the main

interest of this research. This condition can be described by adding uncertainty terms in the

nominal aircraft model (3.1.10) as

y(r) =
[
F (x) + ∆f (x)

]
+
[
G(x) + ∆g(x)

]
u (3.1.17)
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where ∆f (x,u), ∆g(x,u) are unknown, unmodelled dynamics, or uncertainty, which are

possibly nonlinear functions, and by placing an uncertainty upon the ideal NDI control law

u in (3.1.18) in the form as [23]

u = −(I + ∆u)Q(x) + (I + ∆u)R(x)ν (3.1.18)

where ∆u(x,u) is assumed to have an arbitrary stable dynamics. Applying this control u

into (3.1.17) yields a dynamic model such as

y(r) = F̃ (x) + G̃ (ν + ∆(x,u)) (3.1.19)

The uncertainty ∆(x,u) will show up in (3.1.16) as an inversion error such that

y(r) +Kr−1y
(r−1) + · · · +K0y = K0yc + ∆(x,u) − νad (3.1.20)

Hence in order to achieve the required performance at the flight regimes that result in sig-

nificant uncertainties, we definitely need to introduce an adaptive element νad, which is

the output of properly-trained neural networks for canceling out the nonlinear uncertainties

∆(x,u). Therefore the neural networks play a key role in the adaptive control design.

3.2 Reformulation of Dynamic Inversion Error

A linearizing feedback control law is approximated by introducing the following signal:

ui = ĥi

−1
(y, νi), i = 1, . . . , m (3.2.1)

where νi, commonly referred to as pseudo-control, is defined as

νi = ĥ(y, ui), i = 1, . . . , m (3.2.2)

The function ĥ(y,u) = [ĥ1(x, u1) · · · ĥm(x, um)]T can be determined by using a possibly

simplified model of the system dynamics. It is assumed that ĥi(x, ui), an approximation

of hi(ξ,χ, ui), is invertible with respect to its second argument and satisfies the following

assumption:
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Assumption 3.2.1. ∂hi(y, ui)/∂ui is continuous and non-zero for every (y, ui) ∈ Dy × ℜ,

and

∂ĥi(y, ui)

∂ui

∂hi(x, ui)

∂ui
> 0, i = 1, . . . , m (3.2.3)

for every (x,y, ui) ∈ Dx ×Dy × ℜ.

Defining ν = [ν1 · · · νm]T , we rewrite (3.2.2) in a compact form as

ν = ĥ(y,u) (3.2.4)

With this definition of pseudo-control (3.2.4), the output dynamics can be expressed as

y(r) = ν + ∆ (3.2.5)

where y(r) = [y
(r1)
1 · · · y(rm)

m ]T and

∆(x,u) = ∆(ξ,χ,u)

= h(ξ,χ, ĥ
−1

(y,ν)) − ĥ(y, ĥ
−1

(y,ν))

(3.2.6)

which is the difference between the function h(x,u) and its approximation ĥ(y,u), and it

is usually referred to as modeling error.

The pseudo-control ν is usually chosen to have the form

ν = νdc + νrm − νad (3.2.7)

where νdc is the output of a linear dynamic compensator, νrm = y
(r)
c = [y

(r1)
c · · · y

(rm)
c ]T is

a vector of the rth
i derivative of the command signal yci

(t), and νad is the adaptive control

signal designed to cancel ∆(x,u). Figure 5 illustrates the overall architecture of the adaptive

control design.

Using (3.2.7), the output dynamics in (3.2.5) becomes

y(r) = νdc + νrm − νad + ∆ (3.2.8)
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It can be seen from (3.2.6) that ∆ depends on νad through ν, whereas νad has to be designed

to cancel ∆. Define the following signals,

νli , y(ri)
ci

+ νdci

ν∗i , ĥi(y, h
−1
i (y, νli))

(3.2.9)

where νdci
is the ith component of νdc. Invertibility of hi(·, ·) with respect to its second

argument is guaranteed by Assumption 3.1.2. From (3.2.9), it follows that νli can be written

as

νli = hi(x, ĥ
−1
i (y, ν∗i )) (3.2.10)

and thus νad −∆ can be expressed componentwise as

νadi
− ∆i(x, ui) = νadi

− hi(x, ui) + ĥi(y, ui)

= νadi
− hi(x, ĥ

−1
i (y, νi)) + νli − νadi

= hi(x, ĥ
−1
i (y, ν∗i )) − hi(x, ĥ

−1
i (y, νi))

(3.2.11)

Applying the mean value theorem to hi(x, ĥ
−1
i (y, νi))

hi(x, ĥ
−1
i (y, νi)) = hi(x, ĥ

−1
i (y, ν∗i )) + hν̄i

(ν∗ − ν)

= νli + hν̄i
(ν∗ − ν)

(3.2.12)

where

hν̄i
,
∂hi

∂ui

∂ui

∂νi

∣∣∣∣
νi=ν̄i

> 0, ν̄i = ηiνi + (1 − ηi)ν
∗
i , and 0 ≤ ηi ≤ 1 (3.2.13)

Applying (3.2.9) and (3.2.12) into (3.2.11) yields

νadi
− ∆i(x, ui) = hν̄i

(ν∗i − νi)

= hν̄i

[
ĥi(y, h

−1
i (x, νli)) − νli + νadi

]

= hν̄i

[
νadi

− ∆̄i(x, νli)
]

(3.2.14)

where the redefined modeling error ∆̄i(x, νii) = νli−ĥi(y, h
−1
i (x, νli)) is rendered independent

of the control u. This can be written in the matrix form

νad − ∆(x,u) = H
[
νad − ∆̄(x,ν l)

]
(3.2.15)
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where

H =




hν̄1
0 · · · 0 0

0 hν̄2
· · · 0 0

...
...

. . .
...

...

0 0 · · · hν̄m−1
0

0 0 · · · 0 hν̄m




∈ ℜm×m (3.2.16)

The positive sign of hν̄i
is guaranteed by Assumption 3.1.2 and 3.2.1, so is this matrix H

having them as its diagonal components. Now using (3.2.15) the dynamics in (3.1.10) can

be rewritten as

ỹ(r) = −νdc +H
[
νad − ∆̄(x,ν l)

]
(3.2.17)

The main difference between the dynamics in (3.1.10) and (3.2.17) lies in the functional

structure of the modeling error. In (3.2.17) the modeling error is independent of the actual

control variable.

3.3 Parametrization using Neural Networks

3.3.1 RBF Neural Networks

It is assumed that the nonlinear function ∆ in (3.2.15) is linearly parameterized by the RBF

NN which is discussed in Chapter 2 such that

∆(x,u) = W TΨ(x) + ε(x), ‖ε(x)‖ ≤ εm (3.3.1)

Using this fact and the results obtained in the previous section, we consider parametrization

of the modeling error on a compact set (x,ν l) ∈ Dl ⊂ Dx ×ℜm [30]

∆̄(x,ν l) = W T Ψ(x,ν l) + ε(x,ν l) (3.3.2)

The adaptive controller is designed to approximate the nonlinear function ∆̄(x,ν l). Since

our control design is based on output feedback, we cannot use states x as inputs to the NN.
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Instead of Ŵ TΨ(x) in (2.1.7) we build our adaptive controller using a tapped-delay line of

memory units as

νad , Ŵ T Ψ(µ) (3.3.3)

where µ is a vector of tapped delay line of memory unit [30, 55]

µ(t) =
[
1 νT

l ν̄T
d (t) ȳT

d (t)
]T (3.3.4)

Here ȳT
d (t) and, similarly, ν̄T

d (t), are vectors of difference quotients of the measurement and

control variables, respectively:

ȳT
d (t) = [ ∆

(0)
d y1(t) ∆

(1)
d y1(t) · · ·∆(n−1)

d y1(t) · · · ∆
(0)
d ym(t) ∆

(1)
d ym(t) · · · ∆

(n−1)
d ym(t) ]T

∆
(0)
d yi(t) , yi(t)

∆
(k)
d yi(t) ,

∆
(k−1)
d yi(t) − ∆

(k−1)
d yi(t− d)

d
, k = 1, . . . , n− 1

(3.3.5)

The difference νad − ∆̄(x,ν l) in (3.2.17) can be expressed as

νad − ∆̄(x,ν l) = Ŵ T Ψ(µ) −W T Ψ(x,ν l) − ε

= Ŵ T Ψ(µ) −W T Ψ(µ) +W T Ψ(µ) −W T Ψ(x,ν l) − ε

= −W̃ T Ψ(µ) +W T (Ψ(µ) − Ψ(x,ν l)) − ε

(3.3.6)

where W T (Ψ(µ) − Ψ(x,ν l)) can be upper bounded

‖W T (Ψ(µ) − Ψ(x,ν l)) ‖ ≤ 2wmpm (3.3.7)

In [55], it has been shown that if the system dynamics evolve on a bounded set, then ‖Ψ(µ)−

Ψ(x,ν l)‖ ≈ O(d), where d is introduced in (3.3.5), and hence, tends to zero, as d→ 0.

3.3.2 SHL Neural Networks

It is now assumed that the nonlinear function ∆ in (3.2.15) is nonlinearly parameterized by

the SHL NN which is also described in Chapter 2 such that

∆(x,u) = Ŵ T σ(V̂ T µ) + ε(x) (3.3.8)
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The following theorem re-defines Theorem 2.2.1 in Section 2.2 for the output feedback case

when the system is observable from input-output history

Theorem 3.3.1. Given ε∗ > 0 and the compact set D ⊂ Dx × ℜ, there exists a set of

bounded weights V, W and n2 sufficiently large such that a continuous function ∆̄(x, νl) can

be approximated by a nonlinearly parameterized SHL NN

∆̄(x,ν l) = W Tσ(V T µ) + ε(µ,d),

‖W‖F < W ∗, ‖V ‖F < V ∗, ‖ε(µ,d)‖ < ε∗
(3.3.9)

where the input vector is

µ(t) =

[
1 νT

l νT
d (t) yT

d (t)

]T

∈ ℜ2N1−r+2, ‖µ‖ ≤ µ∗ (3.3.10)

and

νd(t) =

[
ν(t) ν(t− d) · · · ν(t− (N1 − r − 1)d)

]T

yd(t) =

[
y(t) y(t− d) · · · y(t− (N1 − 1)d)

]T
(3.3.11)

with N1 ≥ n and d > 0.

Proof. see [55]

According to [55], for this output feedback control design an important concept in order

to find the bound of approximation error is to model ∆̄(x,u) with NN in terms of delayed

values of y and u. To this end, let r denote the relative degree of the system output. If

r = n, then the first through (n − 1) derivatives of the system y do not explicitly depend

upon the input. If r < n, then the (n− 1) derivatives of the system y will contain no more

than n − r − 1 derivatives of the system input u. By following the processes in [55], with

(3.2.15), the SHL NN approximation upper bound can be written as

‖νad − ∆(x,ν l)‖ = ‖H
(
Ŵ T σ̂(V̂ T µ) − ∆̄(x,ν l)

)
‖

≤ k1

√
2n− r

min1≤k≤nNk

+ k2
d

2
M

(3.3.12)
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where k1, k2 are constants, and

M =
(
2n− r − 1

)3/2

max
t≥0

{
max

1≤k≤n−1
|y(k+1)(t)|, max

1≤k≤(n−r−1)
|ν(k+1)(t)|

}
(3.3.13)

As shown in Chapter 2, ∆− νad with SHL NNs can be written by:

∆− νad = W̃ T
(
σ̂ − σ̂′V̂ T µ

)
+ Ŵ T σ̂′Ṽ T µ + ε(x) − w (3.3.14)

where W̃ , W −Ŵ , Ṽ , V − V̂ are NN estimation errors, and the error ε(x)−w is bounded

such that [29]

‖ε(x) − w‖ ≤ γ1‖Z̃‖F + γ2 (3.3.15)

and γ1, γ2 are positive computable constants, and matrix Z̃ is defined as

Z̃ ,



W̃ 0

0 Ṽ


 (3.3.16)

Further the modeling error ∆ − νad is known to be bounded by [29]:

‖∆− νad‖ = ‖W Tσ
(
V T µ

)
− Ŵ T σ

(
V̂ T µ

)
+ ε(x) − w‖

≤ α1‖Z̃‖F + α2

(3.3.17)

where α1 =
√
n2 + 1, and α2 = 2

√
n2 + 1 W + εm.

3.4 Nonlinear System and its Reference Model

We rewrite the output equation (3.1.19) or (3.2.5) in a matrix form, considering the external

disturbance d(t) as well as the modeling error ∆(x,u):

ẏ(t) = Ay(t) +B[ν(t) + ∆(x,u) + d(t)] (3.4.1)

where

y , [yT
1 yT

2 · · · yT
m]T ∈ ℜr

yi , [yi ẏi · · · y(ri−1)
i ]T ∈ ℜri, i = 1, . . . , m

A , block − diag(A1 A2 · · · Am) ∈ ℜr×r

B , block − diag(B1 B2 · · · Bm) ∈ ℜr×m

(3.4.2)
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and

Ai =




0 1 0 · · · 0 0

0 0 1 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · 0 1

0 0 0 · · · 0 0




∈ ℜri×ri , Bi =




0

0

...

0

1




∈ ℜri×1 (3.4.3)

where d(t) ∈ ℜm×1 is the bounded external disturbance such that

‖d(t)‖ ≤ dm (3.4.4)

A reference model is described by an equation which is composed ofm-ordinary differential

equations having rth
i , i = 1, . . . , m order, respectively. The equation can be written in a

compact state-space form as:

ẏM(t) = AMyM(t) +BM · yc(t) (3.4.5)

where

yM , [yT
M1

yT
M2

· · · yT
Mm

]T ∈ ℜr

yMi
, [yMi

ẏMi
· · · y(ri−1)

Mi
]T ∈ ℜri , i = 1, . . . , m

yc , [yc1 yc2 · · · ycm
]T ∈ ℜm

AM , block − diag(AM1
AM2

· · · AMm
) ∈ ℜr×r

BM , block − diag(BM1
BM2

· · · BMm
) ∈ ℜr×m

(3.4.6)

and

AMi
=




0 1 0 · · · 0 0

0 0 1 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · 0 1

−ai1 −ai2 −ai3 · · · −ai(ri−1) −airi




∈ ℜri×ri, BMi
=




0

0

...

0

ai1




∈ ℜri×1

(3.4.7)
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and yM ∈ ℜr is the reference model state vector, yc(t) ∈ ℜm is a bounded piecewise contin-

uous reference command, and AM is Hurwitz.

The rth-order reference model (RM) can usually be factored into a combination of the

first order and the second order reference models such that

rth − order RM =

m1∑

i=1

(
1st order RM

)
i
+

m2∑

j=1

(
2nd order RM

)
j
, r = m1 +m2 (3.4.8)

where the parameters in each reference model contain the requirements of the closed-loop

system. In aerospace control problems, these parameters are chosen to ensure that flying

quality specifications are met. For a first-order reference model one chooses the time constant

of the system, while for a second-order reference model the parameters are chosen to yield

the desired natural frequency and damping ratio.

A first-order reference model can be written as

yM =
1

τs+ 1
yc (3.4.9)

where τ is the time constant, and the second order reference model is written as

yM =
ω2

n

s2 + 2ζωns+ ω2
n

yc (3.4.10)

where ωn is the natural frequency and ζ is the damping ratio.

Now it is desired to design a control law such that the output tracking error

E(t) = yM(t) − y(t) (3.4.11)

tends to zero and all the signals in the system remain bounded as t→ ∞.

3.5 Adaptive NDI Control Architecture

In this section we design an adaptive control based on the Lyapunov theorems. Based on

(3.2.7), the pseudo-control ν is chosen to have feedback and feedforward elements such that

ν(t) , Ke · Ě(t)︸ ︷︷ ︸+Kr · yc(t) −Ke · yM(t)︸ ︷︷ ︸−νad

νdc νrm

(3.5.1)
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where Ě(t) , E(t) − Ẽ(t) is the output of linear observer for the tracking error E(t), and

the feedback gain Ke ∈ ℜm×r and the feedforward gain Kr ∈ ℜm×m are fixed and bounded

such that

‖Ke‖ < kem

‖Kr‖ < krm

(3.5.2)

with positive numbers kem and krm, respectively. Substituting (3.5.1) into the system dy-

namics (3.4.1) results in the closed-loop system

ẏ(t) = (A−BKe) y(t) +BKryc(t) +B
(
∆− νad + d −KeẼ

)
(3.5.3)

Therefore if νad cancels out ∆(x,u), and there are no external disturbance d and observation

error Ẽ, then by choosing Ke such that (A− BKe) is Hurwitz, we get a stable closed-loop

system response.

It is noted that in [30] the dynamic compensator νdci
is an output of a dynamic equation

with the ith error as an input, while in (3.5.1), Ke of νdc is updated through an adaptation

law introduced later and the estimation error Ẽ is introduced in (3.5.3). A stability analysis

will be provided for this new architecture.

Here for a convenience we set the gains Ke and Kr such that

A− BKe = AM

BKr = BM

(3.5.4)

Applying (3.5.4) into (3.5.3) yields

ẏ(t) = AMy(t) +BMyc(t) +B
(
∆− νad + d −KeẼ

)
(3.5.5)

According to the definition of tracking error (3.4.11), the closed-loop dynamics of the tracking

error signal E(t) can be obtained by subtracting (3.5.5) from (3.4.5)

Ė(t) = AME(t) −B
(
∆− νad + d −KeẼ

)

z = CE(t)

(3.5.6)
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where z = [z1 z2 · · · zm] ∈ ℜm, zi = [1 0 · · · 0] ∈ ℜ1×ri, is the vector of available

measurements. Since AM is Hurwitz, there exists a unique and positive definite matrix

P = P T > 0 for an arbitrary matrix Q = QT > 0 satisfying the Lyapunov equation

AT
MP + PAM = −Q (3.5.7)

3.6 Linear Observer for the Error Dynamics

We consider the case of a full-order observer of dimension r. To this end, consider the

following linear observer for the tracking error dynamics in (3.5.6)

˙̌E(t) = AMĚ(t) + F (z − ž)

ž = CĚ

(3.6.1)

where F is a gain matrix, and should be chosen such that AM −FC is asymptotically stable,

and z is defined in (3.5.6). Let

Ã , AM − FC

Ẽ , E − Ě

(3.6.2)

Then the error observer dynamics can be written as

˙̃
E(t) = ÃẼ(t) − B

(
∆ − νad + d −KeẼ

)
(3.6.3)

Since Ã is Hurwitz, there exists a unique and positive definite matrix P̃ = P̃ T > 0 for an

arbitrary matrix Q̃ = Q̃T > 0 satisfying the Lyapunov equation

ÃT P̃ + P̃ Ã = −Q̃ (3.6.4)

3.7 Stability Analysis using Lyapunov Theorems

Using Lyapunov’s direct method we show that all the errors are ultimately bounded. They

are the tracking error E, the observation error Ẽ, and the NN weight errors. To this end we

consider one of following vectors:
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a) RBF NN:

ζ =
[
ET Ẽ

T
W̃ T

]T
(3.7.1)

b) SHL NN:

ζ =
[
ET Ẽ

T
W̃ T Ṽ T

]T
(3.7.2)

and one of following positive definite Lyapunov function candidates:

a) RBF NN:

V (ζ) = ETPE + Ẽ
T
P̃ Ẽ + tr

(
H · W̃ T Γ−1

w W̃
)

(3.7.3)

b) SHL NN:

L (ζ) = ETPE + Ẽ
T
P̃ Ẽ + tr

(
W̃ T Γ−1

w W̃ + Ṽ T Γ−1
v Ṽ

)
(3.7.4)

In the expanded space of the compound error variable, consider the largest level set of

V (ζ) or L(ζ) in Dζ such that its projection on the subspace of the NN input variables

completely lies in Dl. As shown in Figure 6, define the largest ball that lies inside that level

set as

BR , {ζ | ‖ζ‖ ≤ R} (3.7.5)

and let α be the minimum value of V (ζ) on the boundary of BR

α , min
‖ζ‖=R

V (ζ) for RBF NN

or α , min
‖ζ‖=R

L(ζ) for SHL NN

(3.7.6)

Introduce the set

Ωα , {ζ ∈ BR | V (ζ) ≤ α} for RBF NN

or Ωα , {ζ ∈ BR | L(ζ) ≤ α} for SHL NN

(3.7.7)

36



R
βΩ

αΩ
RB

Dζ

Bθ
B λ(       )

Figure 6: Geometric representation of sets in the error space

3.7.1 RBF NN Adaptation

Through Lyapunov theorems we show that E, Ẽ, and W̃ are all uniformly bounded using

RBF NN with σ-modification.

Since hv̄i
, i = 1, . . . , m in (3.2.13) are positive continuous functions over the compact set

Dl, we can define the minimum/maximum values of the functions as

h , min

[
min

(x,νl)∈Dl

hν̄1
, min
(x,νl)∈Dl

hν̄2
, · · · , min

(x,νl)∈Dl

hν̄m

]

h̄ , max

[
max

(x,νl)∈Dl

hν̄1
, max
(x,νl)∈Dl

hν̄2
, · · · , max

(x,νl)∈Dl

hν̄m

] (3.7.8)

Assumption 3.7.1. It is assumed that the time derivative of the control effectiveness matrix

H in (3.2.16) is bounded such that [25,30,45]:

‖Ḣ‖ ≤ hm (3.7.9)

From the definition of the candidate Lyapunov function in (3.7.3), there exist class K
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functions η1 and η2 such that

η1(ζ) ≤ V (‖ζ‖) ≤ η2(ζ) (3.7.10)

where

η1(‖ζ‖) = λmin(P )‖E‖2 + λmin(P̃ )‖Ẽ‖2 + λmin(Γ−1
w )h‖W̃‖2

F

η2(‖ζ‖) = λmax(P )‖E‖2 + λmax(P̃ )‖Ẽ‖2 + λmax(Γ
−1
w )h̄‖W̃‖2

F

(3.7.11)

Assumption 3.7.2. Assume that

R > η−1
1 (η2(θ)) (3.7.12)

where θ is defined as

θ ,

√(
‖PB‖2 + ‖P̃B‖2

) (
2wmpmh+ εmh + dm

)2
+ κh‖W −W0‖2

F

min (Θ1, Θ2, Θ3)

(3.7.13)

and

Θ1 =
√
λmin(Q) − 1 − k2

em‖PB‖2

Θ2 =

√
λmin(Q̃) − 3 − 2kem‖P̃B‖

Θ3 =

√
κh− h

2
p2

m(‖PB‖ + ‖P̃B‖)2 − hm

λmin(Γw)

(3.7.14)

Remark 3.7.1 (Boundedness of RBF NN with Backpropagation alone). It is noted that the

update law of adaptive control element with back-propagation alone, shown below, results in

the proof of the boundedness of E, Ẽ only,

˙̂
W = −ΓΨ(µ)Ě

T
PB (3.7.15)

where the matrix Γ = ΓT > 0 is the rate of adaptation, or adaptation gain. Therefore in order

to prove the boundedness of all parameters including W̃ , we need to introduce a modification

such as σ-modification or e-modification to the adaptation law (3.7.15). A similar remark is

applicable to SHL NNs in Section 3.7.2. ♦
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Theorem 3.7.1. Let assumptions 3.1.1 - 3.7.2 hold. Then, if the initial error ζ(0) ∈ Ωα,

the control law given by (3.5.1), along with RBF NN shown below, guarantees that the signals

E, Ẽ, and W̃ in the closed loop system are all ultimately bounded.

˙̂
W = −Γ

[
Ψ(µ)Ě

T
PB + κ

(
Ŵ −W0

) ]
(3.7.16)

where the matrix Γ = ΓT > 0, the constant κ > 0 are the adaptation gains, and W0 is a

initial guess (or a guess).

Proof. See Appendix A

From the result of Theorem 3.7.1, we can see that the overall control architecture of

adaptive NDI scheme using RBF NNs developed in this chapter results in stable closed-loop

systems for output feedback, NDI-based MIMO nonlinear systems.

3.7.2 SHL NN Adaptation

In this section, through Lyapunov theorems, we show that E, Ẽ, Ṽ , and W̃ are all uniformly

bounded using SHL NN with σ-modification.

From the definition of the candidate Lyapunov function L in (3.7.4), there exist class K

functions ϕ1 and ϕ2 such that

ϕ1(ζ) ≤ L(‖ζ‖) ≤ ϕ2(ζ) (3.7.17)

where

ϕ1(‖ζ‖) = λmin(P )‖E‖2 + λmin(P̃ )‖Ẽ‖2 + λmin(Γ−1
w )‖W̃‖2

F + λmin(Γ−1
v )‖Ṽ ‖2

F

ϕ2(‖ζ‖) = λmax(P )‖E‖2 + λmax(P̃ )‖Ẽ‖2 + λmax(Γ
−1
w )‖W̃‖2

F + λmax(Γ
−1
v )‖Ṽ ‖2

F

(3.7.18)

Assumption 3.7.3. Assume that

R > ϕ−1
1 (ϕ2(λ)) (3.7.19)
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where λ is defined as

λ ,

√
2α1pa + 2γ1(γ2 + dm)‖PB‖ + κw‖W −W0‖2

F + κv‖V − V0‖2
F

min (Λ1, Λ2, Λ3)
(3.7.20)

and

Λ1 =
√
λmin(Q) − γ1‖PB‖(1 + γ2 + dm) − 2pakem

Λ2 =

√
λmin(Q̃) − 2pa(α1 + α2) − γ1‖PB‖(1 + γ2 + dm) − 6pakem

Λ3 =
√
κa − 2α1pa − 2γ1‖PB‖

(3.7.21)

Theorem 3.7.2. Let assumptions 3.1.1 - 3.7.3 hold. Then, if the initial error ζ(0) ∈ Ωα,

the control law given by (3.5.1), along with SHL NN shown below, guarantees that the signals

E, Ẽ, Ṽ , and W̃ in the closed loop system are all ultimately bounded.

˙̂
V = −Γv ·

[
µĚ

T
PBŴ T σ̂′ + κv ·

(
V̂ − V0

)]

˙̂
W = −Γw ·

[(
σ̂ − σ̂′V̂ T µ

)
Ě

T
PB + κw ·

(
Ŵ −W0

)] (3.7.22)

where σ̂ = σ
(
V̂ T µ

)
and σ′ = diag (dσi/dzi) denotes the Jacobian matrix. Γv, Γw, κv, and

κw > 0 are adaptation gains. W0 and V0 are initial guesses (or guesses).

Proof. See Appendix B

From the result of Theorem 3.7.2, we can also conclude that the overall control archi-

tecture of adaptive NDI scheme using SHL NNs developed in this chapter results in stable

closed-loop systems for output feedback, NDI-based MIMO nonlinear systems.
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3.8 Conclusion

A systematic approach of adaptive output feedback control design for MIMO nonlinear sys-

tems is formulated by introducing feedback input-output linearization of nonlinear MIMO

systems, nonlinear dynamic inversion, reference model, NNs and their parametrization, and

linear observer.

Stability analysis with RBF NNs or SHL NNs using Lyapunov theorems is performed to show

the boundedness of all errors of the closed-loop system.

Applications of this adaptive NDI control design follow in Chapters 4 – 6, where various

aerial vehicles operated in nonlinear dynamic regimes are controlled.
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CHAPTER IV

NEURAL NETWORK-BASED ADAPTIVE

CONTROL OF F-15 ACTIVE AT NONLINEAR

FLIGHT REGIMES

When advanced fighter aircraft fly at high angles of attack, unsteady aerodynamic effects,wing

rock, and saturation of aerodynamic effectors can lead to difficulty in control and maneu-

verability. This chapter will illustrate the use of a neural network-based adaptive feedback

control design applied to an advanced variant of the F-15 aircraft, the F-15 ACTIVE model

with thrust vectoring capability and relaxed static stability. The effects of control saturation

are directly accounted for in the design of the adaptive controller. The main objective of the

control design is to demonstrate adaptation to aerodynamic uncertainty in the form of both

unmodeled parameter variations and unmodeled dynamics not present in the nominal invert-

ing control design. Hypothetical aerodynamic models are implemented to test the design

approach at high angles of attack.

4.1 Introduction

Future aircraft are expected to have enhanced performance and maneuverability, which will

require them to routinely operate in nonlinear aerodynamic flight regimes. Operation in

near- and post-stall high angle of attack (high-alpha) regimes is important for air superiority

of next-generation fighter aircraft as well as uninhabited combat aerial vehicles. Novel ad-

vanced control design methodologies are required to address the complex nonlinear dynamic

characteristics of such vehicles. Uncertainty associated with modeling, and the complexity

of the nonlinear and unsteady phenomena associated with high-alpha flight present the main
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challenges in designing flight control systems for these regimes.

Conventional flight control design methods make use of linearized models and gain schedul-

ing. Models at high alpha conditions are usually obtained using computational fluid dynamics

(CFD) techniques or high-alpha wind tunnel test techniques, leading to complex representa-

tions of the aerodynamic characteristics of the aircraft. Linearized aerodynamic models do

not reliably predict many of the well-known nonlinear, unsteady characteristics at these an-

gles of attack, such as wing rock, roll reversal, and yaw departure, among others. Moreover,

such aggressive flight maneuvers are likely to occur under highly dynamic flight conditions,

implying that aeroelastic effects will also be significant. In addition, it should also be recog-

nized that novel actuation devices with highly nonlinear characteristics are currently under

development (for example, synthetic jet devices for active flow control and virtual shape

control devices) that could prove to be effective for control at high alpha conditions. These

devices may be either continuous or discrete in their characteristics. This combination of

factors suggests that a new flight control design paradigm is needed to address the following

challenges:

• The vehicle may encounter a high degree of both parametric and dynamic uncertainty

at high angle of attack.

• Both the aircraft dynamics and its actuation devices may be highly nonlinear.

• Some or all of the actuation devices may become saturated.

• There may be a combination of both discrete (on-off or bang-bang) and continuous

actuation.

This chapter suggests a design paradigm building on past results in the area of NN-

based adaptive flight control which have been successfully utilized for a variety of aerospace

applications [14, 105], while incorporating recent advances in the areas of output feedback

and adaptation under saturated control conditions. The paradigm is based on approximate
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feedback linearization and synthesis of a fixed-gain dynamic compensator, while incorporating

a NN to compensate for model inversion error. The adaptive nonlinear dynamic inversion

output feedback formulation developed in Chapter 3 is applied to compensate for the full

dynamic characteristics of the plant. Treatment of control saturation is described in [38,39].

The F-15 ACTIVE and its control effectors are described in Section 4.2. Mathematical

modeling of high angle of attack aerodynamics is discussed in Section 4.3. Section 4.4 illus-

trates the adaptive control structure along with its elements: two-stage dynamic inversion,

control allocation, thrust vector scheduling. Pseudo-control hedging (PCH) to handle control

input nonlinearities is described in Section 4.4.6, and NNs are briefly discussed in Section

4.4.7. Simulation results are presented in Section 4.5. Conclusions are given in Section 4.6.

4.2 Aircraft Model and Control Effectors

The basic F-15 aircraft dynamic model used for this research is obtained from [8]. The 6-DOF

F-15 model has a complete set of look-up tables of aerodynamic coefficients as functions of

Mach, α, β, altitude and aerodynamic control deflections, which is useful up to 60o angle of

attack.

Maneuvering an aircraft in highly nonlinear dynamic regimes or at high angles of attack

requires an abundance of control authority. In order to enhance the maneuverability of the

vehicle, we incorporate models for advanced aerodynamic actuators, differential stabilator,

and thrust vector control (TVC) nozzles [17] of the F-15 ACTIVE aircraft as shown in Figure

77, as well as application of relaxed static stability (RSS).

TVC nozzles are to increase the control power of the F-15 aircraft in all axes at high angles

of attack, where aerodynamic controls have little contribution. The nozzles are modeled by

the Pitch/Yaw Balance Beam Nozzles (P/YBBN) of the F-15 ACTIVE aircraft, which allow

at most 20 degrees of nozzle deflection in any direction. TVC nozzle angle limiters are

implemented in the model to keep their movements within their own physical constraints.

Each nozzle model is also rate limited. Rolling moment can be produced by differential pitch
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(a) F-15 ACTIVE and its aerodynamic controls

(b) Thrust Vector Nozzle: P/YBBN

Figure 7: NASA F-15 ACTIVE and its control effectors
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thrust vectoring of the left and right nozzles. Thus, vectoring the thrust lines can generate

pitching, yawing and rolling moments by deflecting the nozzles synchronously or differentially

as required. Because full deflection of TVC in one direction is only achievable when the other

direction has zero deflection, a need to set a priority strategy among these movements along

3 axes arises. As depicted in Figure 8, priority is given to the pitch/roll angle direction,

i.e. it first follows the pitch/roll command to the extent possible and then follows the yaw

command to the extent possible. Control activation scheduling of TV nozzles is described in

Section 4.4.

To maximize the rolling moment achievable by aerodynamic controls, differential deflec-

tion of two horizontal stabilators, defined by δDT =
(
δeright

− δeleft

)
/2, is introduced. The

mathematical modeling of force and moment coefficients including differential stabilator δDT

are described in [86].

To achieve higher angle of attack responses, the aircraft model is destabilized in pitch

to become a RSS aircraft. This destabilization was carried out by moving the CG point of

the model backward. Coupling the effects of this RSS modification along with thrust vector

nozzles and differential stabilators, a much more agile aircraft model is developed, enabling

maneuvers at high angles of attack.

4.3 High Alpha Aerodynamics

It is well known that aerodynamic derivatives at high angle of attack are highly nonlinear,

complex and even unstable. Thus in addition to the basic aerodynamic data from wind tunnel

tests, we need to investigate additional nonlinear aerodynamic effects by including or altering

the damping derivatives of the vehicle at high alpha flight conditions. In this research, an

unsteady aerodynamic model is implemented in pitch axis, while nonlinear, unstable effects

of significant damping derivatives are added in lateral/directional axes.
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Figure 8: Thrust vectoring angle limit and priority

4.3.1 Unsteady Aerodynamics

High angle-of-attack flight with large amplitude maneuvers is affected by unsteady aerody-

namic effects such as aerodynamic lag on the wings especially in the post-stall region. Thus

we incorporated an unsteady aerodynamic model in the pitch axis to test the robustness

of the adaptive controller to these effects. To this end, a modified version of an unsteady

aerodynamic model based on indicial functions was adopted [46]. The unsteady aerodynamic

model in longitudinal axis can be expressed as:




α̇

q̇

ẋα




=




Zα Zq 0

C Mq B

1 0 −b1







α

q

xα




+




Zδ

Mδ

0



· δ (4.3.1)

where

B =
ρV 2Sc̄

2Iyy
ab1 , C =

ρV 2Sc̄

2Iyy
c (4.3.2)

and a = 0.25, c = -0.23, b1 = 1.0.
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4.3.2 Lateral/Directional Aerodynamics at High-Alpha

The three significant lateral/directional aerodynamic damping coefficients used in the air-

craft model are presented in Figure 9, where positiveness of Clp and Cnr
at high α implies

instability.
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Figure 9: Three dominant lateral/directional aerodynamic damping coefficients

4.4 Adaptive Control Structure

In this design approach based on the formulation in Chapter 3, angle of attack (α), sideslip

angle (β) and stability axis roll rate (ps) are commanded. As shown in Figure 10, the pilot’s

command is input to the command filters to generate reference signals, while employing PCH

to protect the adaptive process from control saturation nonlinearities. Next, proportional

and derivative (PD) controllers are used to follow the reference commands. The control

commands are obtained by a two-stage dynamic inversion. Since there are not α and β

sensors, the required feedbacks are assumed to be computed by integration of IMU sensor
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Figure 10: Adaptive feedback control architecture

outputs. The PCH and the NN signals shown in Figure 10 are discussed later.

4.4.1 Two-stage Dynamic Inversion

A two-stage approach for dynamic inversion has been developed for designing a flight control

system that regulates [ ps α β ]. It assumes that the state dynamics can be decomposed in

stages as follows [2, 6, 105]:

• Stage 1 dynamics, x1 = [ α α̇ β β̇ φ θ V ]T

• Stage 2 dynamics, x2 = [ ps q rs ]T

It should be noted that the references use the terminology slow and fast, which is not strictly

appropriate as the dynamics are not separable according to the definitions given above. How-

ever, the inverting solution does not rely on a separation in dynamics to be valid. Therefore

it is more appropriate to say that the inversion is done in two stages, which is the terminology

we will use.

The structure of the inverting law and its implementation is displayed in Figure 11. In

both stages of the inversion, the equations of motion are expressed in the form

ẋ = a(x) + b(x)u

y = Cx

(4.4.1)
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Figure 11: Two-stage dynamic inversion control law structure
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where y defines the regulated variables and u defines the control variables, which are the

output variables of the inverting blocks in the figure.

The control variables for the stage 1 dynamics are the angular accelerations in the roll,

pitch and yaw stability axis frame

u1 = [ ṗsc q̇sc ṙsc ]T (4.4.2)

and the control variables for the stage 2 dynamics are the effective control displacement

commands in each axis

u2 = [ δac δec δrc ]T (4.4.3)

Assuming Cb(x) is invertible, then the inverting design in each stage is based on

ẏ = Ca(x) + Cb(x)u

= ν

(4.4.4)

where ν is the pseudo-control. The pseudo-control is a linear control law designed to regulate

y, and corresponds to the inputs to each inverting block in Figure 11.

The regulated variables in each stage are:

y1 =
[
ps α̇ β̇

]T

y2 = [ ps q rs ]T
(4.4.5)

Note that the regulated variables of the stage 1 dynamics are related to regulated variables

[ ps α β ] according to the relative degree of each regulated variable. The variable ps has

relative degree one, while α and β each have relative degree two (it is necessary to differentiate

these variables twice before a control term appears). Therefore y1 is defined so that the

control appears in the first derivative of each of it elements. The same is true for stage 2.

Complete equations of motion of the aircraft are simplified through reasonable assumptions

for implementation. Refer to Appendix E for details.

51



4.4.1.1 Stage 1 Dynamics

Subject to a set of approximations [17] the stage 1 dynamics can be expressed in the following

form:




α̇

α̈

β̇

β̈

φ̇

θ̇

V̇

V̈




=




f1(x)

f2(x, δ)

f3(x)

f4(x, δ)

f5(x, δ)

f6(x, δ)

f7(x, δ)

f8(x, δ, δ̇)




+




0 0 0

− tan(β) 1 0

0 0 0

0 0 −1

0 0 0

0 0 0

0 0 0

0 0 0







ṗs

q̇

ṙs




(4.4.6)

where ps and rs denote the stability axis roll and yaw rates. For purposes of inverting design,

we can eliminate the states associated with zero dynamics, and reduce (4.4.6) to the following:




ṗs

α̈

β̈




=




0

f2(x, δ)

f4(x, δ)




+




1 0 0

− tan(β) 1 0

0 0 −1







ṗs

q̇

ṙs




= F (x, δ) +G(x) · u1

(4.4.7)

4.4.1.2 Stage 2 Dynamics

Similarly, the stage 2 dynamics can be expressed as:




ṗs

q̇

ṙs




=




f9(x)

f10(x)

f11(x)




+




Lδa
0 0

0 Mδe
0

0 0 N δr







δac

δec

δrc




(4.4.8)
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where Lδa
,Mδe

, N δr
are control effectiveness functions which are described in detail in Ap-

pendix E.

4.4.2 Control Allocation with TV and DT

As we saw in the previous section, the aircraft has redundant control effectors in each axis.

Therefore we need a policy to manage this redundancy effectively. In this section, we consider

how to allocate the controls including thrust vector nozzles and differential stabilators.

Consider the stage 2 dynamic equation (4.4.8) expressed as

ẋ2 = A(x) +B(x)u2

y2 = x2

(4.4.9)

where

A(x) =

[
f9(x) f10(x) f11(x)

]T

(4.4.10)

B(x) =




L̄δa 0 LDT 0 L̄TV 0 L̄TV 0

0 Mδe 0 0 M̄DT 0 M̄TV 0

0 0 NDT N̄δr 0 N̄TV 0 N̄TV




(4.4.11)

x2 =

[
ps q rs

]T

(4.4.12)

u2 =

[
δa δe δDT δr δp1 δy1 δp2 δy2

]T

(4.4.13)

δa is aileron deflection, δe is elevator deflection, δDT is differential stabilator, δr is rudder

deflection, δp1, δy1 are the pitch and yaw vectoring angles of the left engine, and δp2, δy2 are

the pitch and yaw vectoring angles of the right engine.

A control allocation matrix is introduced in order to relate the effective control demand

associated with each axis to the actual controls. Letting ue =

[
δa δe δr

]T

denote the

effective control demand, then

u2 = Ta · ue (4.4.14)
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where

Ta =




1 0 0

0 1 0

0.5 0 0

0 0 1

Sp Sα 0

0 0 Sβ

−Sp Sα 0

0 0 Sβ




(4.4.15)

From (4.4.15) and (4.4.14), it can be seen that the roll component of ue is allocated to aileron,

differential tail (DT), and differential pitch thrust vector deflections, the pitch component of

ue is allocated to symmetric tail (elevator) and symmetric pitch thrust vector deflections, and

the yaw component of ue is allocated to rudder and symmetric yaw thrust vector deflections.

Therefore control redundancy exists in all three channels.

4.4.3 Thrust Vector Scheduling

Thrust vector scheduling variables Sp, Sα and Sβ in (4.4.15) depend on the ratio of the peak

moments available from aerodynamic and thrust vector control according to:

Sp =






0 , LTV < 1
2
Laero

2 − Laero

LTV
, 1

2
Laero ≤ LTV ≤ Laero

1 , LTV > Laero

(4.4.16)

Sα =





0 , MTV < 1
2
Maero

2 − Maero

MTV
, 1

2
Maero ≤MTV ≤Maero

1 , MTV > Maero

(4.4.17)

54



0 1 2 3 4 5
−0.2

0

0.2

0.4

0.6

0.8

1

L
aero

/L
TV

   or   M
aero

/M
TV

   or   N
aero

/N
TV

S
p, S

α, S
β

S
p
,Sα

Sβ

Figure 12: Shape of thrust vector scheduling variables

Sβ =





0 , NTV < 1
4
Naero

2 − Naero

NTV
, 1

4
Naero ≤ NTV ≤ Naero

1 , NTV > Naero

(4.4.18)

where Laero, Maero and Naero are the rolling, pitching and yawing moment margins avail-

able from aerodynamic controls, and LTV , MTV and NTV are the marginal rolling, pitching

and yawing moment available from thrust vector controls [50]. Thrust vector scheduling is

depicted in Figure 12.
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4.4.4 Computation of the Effective Control (ue)

From (4.4.9) it follows that

ẏ2 = ẋ2

= A(x) +B(x)u2

= A(x) +B(x) · Taue

= u1

(4.4.19)

The stage 1 dynamic equation is given as

ẏ1 = F (x) +G(x)u1

= ν

(4.4.20)

where ν is the pseudo-control. Combining (4.4.19) and (4.4.20), we have

ue = (Ĝ(x)B̂(x)Ta)
−1
[
ν −

(
F̂ (x) + Ĝ(x)Â(x)

)]
(4.4.21)

where Ĝ(x), B̂(x), F̂ (x) and Â(x) denote estimates of G(x), B(x), F (x) and A(x). Sub-

stitution of (4.4.21) into (4.4.14) provides the commanded control that is applied to the

aircraft.

4.4.5 Adaptive Control

The pseudo-control for feedback control design, depicted in Figure 10, has the form

ν = νdc + νrm − νad (4.4.22)

where νrm = x
(r)
c is output of an rth-order reference model that is used to define the desired

closed loop response, νdc is the output of a dynamic compensator, and νad is the adaptive

signal. The error dynamics for the state feedback can be expressed as

x̃(r)
c = x(r)

c + x(r)

= −νdc + νad − ∆

(4.4.23)

It is apparent that the dynamic compensator should be designed to stabilize (4.4.23), and

that the role of νad is to cancel ∆.
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4.4.6 Pseudo-Control Hedging (PCH)

PCH is used to address NN adaptation difficulties arising from various actuation nonlin-

earities, including actuator position and/or rate saturation, discrete (magnitude quantized)

control, time delays and actuator dynamics [39]. NN training difficulties occur when unmod-

eled actuator characteristics are encountered. For example, the NN adaptive element will

attempt to adapt to these nonlinearities, even when it is impossible to do so. The goal of

PCH is to prevent the adaptive element from attempting to adapt to these characteristics,

while not affecting NN adaptation to other sources of inversion error. Conceptually, PCH

”moves the reference model backwards” by an estimate of the amount the controlled system

did not move due to selected actuator characteristics (such a position and rate limits, time

delays, etc). The reference model is hedged according to an estimate of the difference between

the commanded and achieved pseudo-control.

The hedge signal is defined as

νh = ν − ν̂ (4.4.24)

where ν is the commanded pseudo-control as defined in (4.4.20), and ν̂ is an estimate for

the achieved pseudo-control. The estimate is obtained by combining (4.4.14), (4.4.19) and

(4.4.20) and replacing the elements of u2 by estimates obtained from actuator models of the

form in Figure 13. Thus,

νh = ν −
[
F̂ (x) + Ĝ(x)Â(x) + Ĝ(x)B̂(x) · û2

]
(4.4.25)

The elements of the hedge signal are then subtracted in the reference models for each respec-

tive axis (roll, pitch and yaw). The manner in which this is done for a second order reference

model is depicted in Figure 14.

4.4.7 Neural Network Adaptation

The properties of NNs described in Chapter 2 are used for adaptive control design. According

to (4.4.23) and (4.4.25), ∆ depends on the states and the pseudo-control. As described in
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Figure 14: Reference model with hedging in pitch channel

Chapter 2, it has been shown that this error can be approximated, in a bounded region,

to any desired degree of accuracy using a neural network (NN) with a sufficient number of

hidden layer neurons, having the following input vector [11, 29]:

µ(t) =
[
1 νT

d (t) yT
d (t)

]
(4.4.26)

where

νd(t) = [ ν(t) ν(t− d) · · · ν (t− (n1 − r − 1)d) ]T

yd(t) = [ y(t) y(t− d) · · · y (t− (n1 − r − 1)d) ]T
(4.4.27)
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with n1 ≥ n and d > 0 denotes time delay.

In the case of SHL NNs shown in Figure 3, we have

νad(t) = Ŵ T σ
(
V̂ T µ

)
(4.4.28)

where σ is a vector whose elements, σi(zi), are the basis functions of the NN. Typically,

these basis functions are selected as so-called squashing functions. The form we employed is

σi(zi) = 1/ (e−aizi), where ai is the activation potential. The network weights are updated

according to the following adaptation laws:

˙̂
V = −Γv

[
2µETPBŴ T σ̂′ + κv

(
V̂ − V0

)]

˙̂
W = −Γw

[
2
(
σ̂ − σ̂′V̂ T µ

)
ETPB + κw

(
Ŵ −W0

)] (4.4.29)

where σ̂ = σ
(
V̂ T µ

)
and σ′ = diag (dσi/dzi). P is the positive definite solution to the

Lyapunov equation ATP +PAT = −Q with Q = QT > 0, Γv, Γw, κv, and κw are adaptation

gains, E is the tracking error, and W0 and V0 are initial guesses (or guesses). It has been

shown in Appendix B that the adaptive laws given in (4.4.29) guarantee that all error signals

and network weights are uniformly bounded.

4.5 Simulations

4.5.1 Control Design Parameters

The control design was carried out assuming that the pilot commands α, β, and ps. The roll

channel is relative degree one (r = 1) with respect to the control, while both the α and β

channels are relative degree two as shown in Figure 15. The design for the α-channel control

architecture is described here.

A dynamic compensator or linear controller is designed for each degree of freedom as-

suming perfect inversion. The linear controller is designed so that the error dynamics are

stabilized. In the case of state feedback, this can be achieved using a standard proportional

and derivative (PD) controller, although additional integral action can be incorporated to
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Figure 15: Structure of a second order relative degree pitch channel linear controller

improve steady state performance. In general, the linear controller can be designed using

any technique as long as the linearized closed-loop system is stable.

With reference to (4.4.22), we have a dynamic compensator as

νdc = Ke · E

= [ KP KD ] · E
(4.5.1)

where the tracking error vector is defined by

E =



yrm − y

ẏrm − ẏ


 (4.5.2)

The tracking error dynamics are given by

Ė = AeE +Be (ν − ∆)

Ae =




0 1

−KP −KD


 , Be =




0

1


 ,

(4.5.3)

The gains are related to the natural frequency and damping ratio by:

KP = ω2
n, KD = 2ζωn (4.5.4)

Note that, as shown in Chapter 3, dynamic compensators νdc and νrm of the adaptive NDI

design have fixed gains, using (3.5.4) we set them to make the tracking error dynamics in
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(3.5.6), or (4.5.3) for this case, have the same stable pole locations as those of the reference

model.

Since r = 1 in the roll channel, a first order reference model is employed for that channel,

with a time constant of 0.3. Likewise, second order reference models are employed in the

pitch and directional channels, with ωn = 3 rad/sec and ζ = 1.5. The values selected for

the NN gains, defined in (4.4.29), the number of hidden layer neurons(n2), and the number

of inputs(n1), including input/output delays, to NN update laws are given in Table 1.

Table 1: F-15 ACTIVE neural network parameters

Channel ΓV ΓW κv, κw n1 n2 d

ps 3.0 3.0 0.5 23 10 0.01
α 5.0 4.0 0.1 23 10 0.01
β 3.0 3.0 0.1 23 10 0.01

Following the approach suggested in Appendix B of [38], we choose

Q =



ζω5

n 0

0 ζω3


 =




364.3 0

0 40.5


 (4.5.5)

The activation potentials (ai) were uniformly distributed between 0.1 and 0.5. In addition,

the first NN basis function was used to provide a bias term (a0 = 0).

All control effectors have their own dynamic constraints or nonlinearities such as mag-

nitude limit and rate limit, as shown in Table 2. When any of these nonlinearities occurs,

PCH works to protect the adaptive process from it.

The unsteady aerodynamic effect described earlier was also implemented in the pitch axis.

Consequently, this effect has little impact on the lateral modes such as sideslip angle and

roll rate, which is to be expected. The unstable lateral/directional aerodynamic damping

coefficients were used and they have significant impact on the responses of the aircraft during

high-α maneuvers.
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Table 2: F-15 ACTIVE control effectors and their dynamic constraints

Name Symbol Magnitude limits Rate limits Remark
(deg.) (deg/sec)

Aileron δa −20 to +20 ±100
Stabilator δe −25 to +25 ±46
(Elevator)
Differential δDT −25 to +25 ±46 δDT = (δeright

− δeleft
)/2

Stabilator
Rudder δr −30 to +30 ±105

TV Nozzle δp, δy 20 in any direction ±80

with
(
δ2
p + δ2

y

)1/2 ≤ 20

4.5.2 Simulations and Evaluations

The simulation model was constructed using Matlab/Simulink using the vehicle’s configu-

ration data, mass properties, wind tunnel data, and control effectors’ dynamics [90]. All

simulations begin from the trim condition: a Mach number of 0.32 at 5000 m altitude, and

it is assumed that the magnitude of the thrust is constant.

Figure 16 illustrates the simulation model in Matlab/Simulink. As shown in the figure,

the commands and the aircraft’s response are discretized using zero-order-hold (ZOH). Thus

the controller is implemented in digital form. The term D/A in the figure indicates a digital

to analog converter. This discretization provides a good environment to fully synthesize

the NN parametrization theory introduced in Section 3.3, in which inputs to NNs consist

of tapped-delay line of memory units, or delayed signals, which are realizable only through

discretization. This also models almost the same control system environment as that of real-

world advanced aircraft which are equipped with digital fly-by-wire (FBW) or fly-by-light

(FBL) flight control systems. Note that all control simulations in this thesis are performed

in this environment and the sampling time of ZOH is set to 0.01 sec.

4.5.2.1 High-α Maneuver

Simulation results are presented in Figures 17 – 21 for a 40o angle of attack command with

a small amplitude (5o/sec) doublet in ps. Figure 17 presents the α responses for various
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Figure 16: Discretized control simulation environment in Matlab/Simulink

conditions: with or without RSS, thrust vectors as well as adaptation (NN/PCH). Figure 18

depicts ps and β responses with/without adaptation. At time 0, α begins from its trim value

11.5o and initially follows the reference signal to the commanded value of 0o. Subsequently

at 5 seconds, a command of 40o is applied. The large α-command results in position and rate

saturation of the actuators, which lead to a response with about 5o overshoot in α-response.

For the system with adaptation, excellent tracking is achieved by about 7 – 8 seconds,

even though the actuators have periods of rate saturation for several more seconds. The

hedged reference signal cannot be distinguished from the response at this scale. With no

adaptation, the aircraft exhibits slightly oscillatory error at high alpha, and has difficulty

returning to α = 0. The response without RSS shows the motivation for relaxing the static

stability, namely that the aircraft doesn’t have enough control authority to reach high angles

of attack without this relaxation. It is also interesting to note that, without TV, the aircraft

has great difficulty returning from 40o to 0o due to lack of control power.

The ps response in Figure 18(a) exhibits an oscillatory divergence without adaptation,

while with adaptation the response is stable and accurately follows the hedged reference

command in both ps and β responses. Figure 18(b) shows that there are large errors in β
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when no adaptation is present. The oscillation and hedging that appears in the roll channel

around 6 – 10 seconds is due to the rate and position limiting that is occurring in the TV

pitch control. This can be seen from Figure 20 which shows that the differential TV control

is zero. It can be seen from Figures 19 and 20 that the small oscillations in sideslip are due

to rate and position limiting in rudder and TV yaw control. In general, all of the oscillations

that appear in Figure 17 and 18 are due to actuator limiting in one form or another. The

role that hedging plays in maintaining a stable response is very apparent from these figures.

Time histories of aerodynamic and thrust vector controls for cases with and without adap-

tation are depicted in Figures 19 and 20. Note that lateral deflections are not commanded

in the without adaptation case, whereas they play a significant role in the with adaptation

case. The NN adaptation signal νad(t) and inversion error ∆(t) for all channels are compared

in Figure 21. This represents a measure of the degree that adaptation is able to compensate

for inversion error, even during periods of control saturation.

4.5.2.2 Simultaneous α and ps Maneuver

Simulation results for simultaneous commands of α = 30o and ps = 25o/sec are depicted

in Figures 22–26. Figure 22 shows the aircraft angle of attack responses for cases with and

without adaptation, and 23 depicts ps and β responses. It can be seen that with adaptation

good tracking is maintained, except for the oscillation in roll response. Like the previous

simulation, the significant effects of unstable lateral/directional aerodynamic coefficients at

high angle of attack regime induce the overshoot of ps channel. Actuator limiting is most

apparent in the time period between 6 and 8 seconds. However the combination of TV

pitch and yaw control, seen in Figure 25, is causing saturation at several points. Without

adaptation, there are large tracking errors, with nearly 10o steady state error in α, a large

error in β response, and there is a total lack of command following in the ps channel.

From the time histories of aerodynamic and thrust vector controls in Figures 24 and 25 it

can be seen that the nonadaptive controller saturates the control effectors for long portions
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of the maneuver. Figure 26 compares νad(t) and ∆(t) for all three channels. In all cases, the

NN shows correct adaptation.

4.6 Conclusion

An adaptive nonlinear dynamic inversion approach for control of high-performance aircraft

in unsteady and high-alpha flight conditions is presented. The adaptive approach is robust

to both parametric uncertainty and unmodeled dynamics. Control allocation for redundant

control effectors, including thrust vector nozzles and differential stabilators, was also imple-

mented.

Pseudo-control hedging is used to protect the adaptive process during periods of control

saturation. Simulation results obtained using a modified F-15 ACTIVE model in the pres-

ence of unsteady aerodynamics at high angle of attack show reasonable responses using NN

adaptation.
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Figure 19: Aerodynamic control deflections for a high α command with/without NN adap-
tation
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Figure 20: Thrust vector controls with/without NN adaptation
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Figure 21: NN adaptation signal νad(t) and ∆(t) in pitch, roll, and yaw channels
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Figure 23: Aircraft Ps and β responses for α/ps command with/without NN adaptation
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Figure 24: Aerodynamic control deflections for α/ps command with/without NN adaptation
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Figure 25: Thrust vector controls for α/ps command with/without NN adaptation
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CHAPTER V

A COMPARISON STUDY OF CLASSICAL AND

NEURAL NETWORK-BASED ADAPTIVE

CONTROL OF AIRCRAFT WING ROCK

At moderate to high angles of attack, aircraft dynamics can display an oscillatory lateral

behavior that manifests itself as a limit cycle known as wing rock. In this chapter, several

methods of adaptively stabilizing this oscillatory motion are compared. The main objective

is to compare classical and neural NN-based methods of adaptive control. All methods are

compared using a model for an 80o swept delta wing.

5.1 Introduction

Wing rock is a lateral-directional instability that occurs in aircraft of varying configurations

and aspect ratios. Hsu and Lan [31] describe wing rock as ”a phenomenon triggered by flow

asymmetries, developed by negative roll damping, and sustained by nonlinear aerodynamic

roll damping.” Both Hsu and Lan [31] and Nayfeh et al. [22, 85] have developed models for

wing rock behavior of a slender delta wing. These models exhibit limit cycle behavior for

moderate to high angles of attack. Luo and Lan [65] explored controlling this behavior with

a controller based on a Hamiltonian formulation. Singh [106] et al. investigated two adaptive

methods of controlling the phenomenon. The first is a classical method in which the uncer-

tainty is linearly parameterized. In this approach, modeling information is employed to arrive

at a linear parametrization. In the second approach the universal approximating property

of Radial Basis Function (RBF) Neural Networks (NNs) is used to model the uncertainty,

with no a priori knowledge of the model error. The performance of the classical adaptive
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approach was superior. It was felt by the authors that this was primarily a consequence of the

fact that it was designed with knowledge of the form of the system dynamics. The RBF NN

was able to stabilize the system, but exhibited very poor transient performance. Adaptation

was slow, and the response was highly oscillatory. Only responses to initial conditions were

considered.

In this chapter the work of Singh et al. is repeated, and compared with a nonlinearly

parameterized adaptive controller that employs a Single Hidden Layer (SHL) NN. The ob-

jective is to determine if the poor performance of the NN-based controller employed in [106]

can be improved by a nonlinear parametrization, and to determine how it compares to the

classical adaptive approach. We also consider designs in which all the adaptive controllers

augment an inversion-based design [14]. This approach introduces an additional linear con-

troller. Results for all five cases are compared for both responses to initial conditions and in

terms of command tracking.

5.2 Aircraft Wing Rock Dynamics

For a flat, thin wing constrained such that it is free only to roll about its x-axis, the differential

equation describing the wing rock motion can be modeled as [22, 31]

φ̈ =

(
ρU2

∞Sb

2Ixx

)
Cl + d0u (5.2.1)

where φ is the roll angle and d0 is the control effectiveness relating the control,u, to angular

acceleration. A modified version of the Hsu and Lan model [22] of the rolling moment

coefficient is

Cl = a0 + a1φ+ a2φ̇+ a3|φ|φ̇+ a4|φ̇|φ̇+ a5φ
3 (5.2.2)

where

a0 = Cl0, a1 = sin(αs) · Clβ, a2 =
b

2U∞

· Clp0

a3 = sin(αs) ·
b

2U∞
· Clpβ, a4 =

(
b

2U∞

)2

· Clpp

(5.2.3)
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αs is the steady state angle of attack. While the sin(αs) terms define an explicit dependence

on αs, there is also an implicit dependence that is folded into the values of all the coefficients

a0, ..., a5.

Defining x1 = φ and x2 = φ̇, (5.2.1) becomes

ẋ1 = x2

ẋ2 = g(x) + d0u

(5.2.4)

where

g(x) = b0 + b1φ+ b2φ̇+ b3|φ|φ̇+ b4|φ̇|φ̇+ b5φ
3 (5.2.5)

and

bi =

(
ρU2

∞Sb

2Ixx

)
ai i = 1, ..., 5. (5.2.6)

A reference model for the desired response is specified by the linear time invariant differ-

ential equation

ẋm = Amxm (5.2.7)

where xm = (xm1, xm2)
T , ζ > 0, ωn > 0 and

Am =




0 1

−ω2
n −2ζωn


 (5.2.8)

We are interested in the following two wing-rock motion control problems under different

assumptions on the function g(x) [106]:

Problem 1 for classical adaptive control : Suppose that in (5.2.4) the parameters

bi, i = 0, 1, ..., 5, and d0 are unknown, but the sign of d0 is known. Derive a control law such

that

lim
t→∞

[ xm(t) − x(t) ] → 0
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Figure 27: Three Adaptive Control Methods

Problem 2 for NN-based control : Suppose that in (5.2.4) the nonlinear function g(x)

is unknown, and d0 is an unknown constant but its sign is known. Derive a neural control

law such that

lim
t→∞

[ xm(t) − x(t) ] → 0

The delta wing and three adaptive control methods are schematically shown in Figure 27.

Now classical adaptive control scheme is introduced.

5.3 Classical Adaptive Control

Define the trajectory tracking error

E =



E1

E2


 =



xm1 − x1

xm2 − x2


 (5.3.1)

then from equations (5.2.4) and (5.2.7), the error dynamics are given by

Ė = AmE +Bm [ d0u+ ∆(x) ] (5.3.2)
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where Bm = [ 0 1 ]T and

∆(x) = b0 + (b1 + ω2
n)x1 + (b2 + 2ζωn)x2 + b3|x1|x2 + b4|x2|x2 + b5x

3
1 (5.3.3)

The adaptive control law is chosen to match the form of the uncertainty in (5.3.3)

u = −
(
θ0(t) + θ1(t)x1 + θ2(t)x2 + θ3(t)|x1|x2 + θ4(t)|x2|x2 + θ5(t)x

3
1

)
(5.3.4)

and the adaptation law governing the behavior of the parameter vector θ = ( θ0, θ1, ..., θ5 )T

is

θ̇ = −sgn(d0)ΓETPBmh(x) (5.3.5)

where Γ > 0, P is the unique and positive definite solution of the Lyapunov equation

AT
mP + PAm = −Q, Q > 0 (5.3.6)

and h(x) = [ 1, x1, x2, |x1|x2, |x2|x2, x
3
1 ]T . The proof of stability is given in [106]. It is

apparent from (10) that the ideal goal of the adaptive law is for u to cancel ∆(x)/d0.

RBF and SHL NNs and their properties are described in Chapter 2 and we use the same

formulations described in the chapter.

5.4 Adaptive Augmentation of a Linear Control Law

In this section, we introduce a nominal controller based on the method of feedback inversion.

The design approach is taken from [14], and is developed in the setting of command tracking.

Hence the reference model in (7) is redefined so that a roll command, φc, is included.

ẋm = Amxm +Bmφc (5.4.1)

where Bm = [ 0 ω2
n ]T . Let the dynamics in (5.2.1) be represented by

ẍ = f (x, ẋ, u)

= ν

(5.4.2)
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The function f (x, ẋ, u) is not known exactly, and an approximation, ν = f̂ (x, ẋ, u), is used

for inversion, which results in

ẍ = ν + ∆ (x, ẋ, u) (5.4.3)

where

∆ (x, ẋ, u) = f (x, ẋ, u) − f̂ (x, ẋ, u) (5.4.4)

The approximation, f̂ (x, ẋ, u), must be chosen such that an inverse with respect to u exists.

If we adopt the viewpoint that the dynamics in (5.4.2) are completely unknown to the NN,

except for sign(d0), then an appropriate choice is f̂ (x, ẋ, u) = sign(d0). In this case, the

feedback inverting design reduces to the introduction of a dynamic compensator, or linear

controller.

The architecture of the augmented inverting control design is shown in Figure 28, where

the subscript m denotes a signal coming from the reference model defined in (5.4.1). The

pseudo-control signal is made up of three components.

ν = ẋm2 + νdc − νad (5.4.5)
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where νdc is the output of the dynamic compensator (linear controller), and νad is the output

generated by the adaptive element. It follows from (5.4.1) that

ẋm2 = −ω2
nxm1 − 2ζωnxm2 + ω2

nφc (5.4.6)

Letting

νdc = [ KP KD ] · E (5.4.7)

and combining (5.2.4), (5.4.1), (5.4.3) and (5.4.5), the error dynamics take the form

Ė = ALC · E +Bm (νad− ∆) (5.4.8)

where

ALC =




0 1

−KP −KD


 (5.4.9)

∆(x, u) = b0 + b1x1 + b2x2 + b3|x1|x2 + b4|x2|x2 + b5x
3
1 + (d0 − 1)u (5.4.10)

The gains are related to natural frequency and damping ratio by

KP = ω2
nLC

, KD = 2ζ
LC
ωnLC

(5.4.11)

The form of the error dynamics in (5.4.8) is similar to (5.3.2). Consequently, in this design

approach, the matrix P that appears in the adaptive laws (5.3.5), (2.1.11) or (2.1.12), and

(2.2.10) or (2.2.11) is the solution of (5.3.6) with Am replaced by ALC . In contrast to (5.3.3),

it can be seen from (5.4.10) that ∆ depends explicitly on both x and u. Since u = f̂(x, ν),

it follows that ∆ is an implicit function of ν, which from (5.4.5) depends explicitly on νad.

Denoting this functional dependence as ∆∗(x, νad), and since the role of νad is to cancel ∆,

it follows that the success of this approach requires that a fixed point solution exists to the

equation νad = ∆∗(x, νad). It has been shown in [11] that the following two conditions are

sufficient for existence of a fixed point solution:

sgn

(
∂f

∂u

)
= sgn

(
∂f̂

∂u

)

0 <
1

2

∣∣∣∣
∂f

∂u

∣∣∣∣ <
∣∣∣∣
∂f

∂u

∣∣∣∣ <∞
(5.4.12)
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Note that this issue is independent of the adaptive approach employed, but it does require

that ν be included as an input to the NNs.

To avoid the implied algebraic loop, the implementation is normally done using a one step

delayed value of ν. We have verified that this results in nearly an identical solution to that

obtained by solving the algebraic loop using the current value of ν as an input to the NN.

This further requires that the NN itself also have a fixed point solution with respect to νad

for all values of the NN weights, which is guaranteed by the fact that the NN basis functions

are bounded functions of all its input variables. There is also an alternative approach that

avoids the fixed point issue by employing the mean value theorem [45], but that relies on a

bound on dν/dt.

5.5 Simulation Results

Aerodynamic parameters of the delta wing are selected corresponding to αs = 25o and

U∞ = 15 m/sec. [106] Nondimensional time t∗ is (4U∞/b)t and b = 0.429 m. The parameters

bi and d0 for the model shown in equation (5.2.4) with t∗ as an independent variable are:

b0 = 0, b1 = −01859521, b2 = 0.015162375, b3 = −0.06245153,

b4 = 0.00954708, b5 = 0.02145291, d0 = 1

For these simulations, two initial conditions are used:

1. Small initial condition: φ(0) = 6 deg., φ̇(0) = 419.4 deg/sec.

2. Large initial condition: φ(0) = 30 deg., φ̇(0) = 1398 deg/sec.

Open loop responses are shown in Figure 29. Note that for the small initial condition a limit

cycle results, whereas for the large initial condition the response is unstable.

The reference model parameters in (5.2.8) were selected as ζ = 0.707, ωn = 0.5 rad/sec.

The linear controller gains in (5.4.7) were chosen to match the dynamics of the reference

model. The adaptation gains and other parameters in the adaptive laws were tuned so as to
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Figure 29: Open loop system dynamics for the two initial conditions

achieve the best possible performance, without any evidence of oscillatory behavior due to

adaptation. Q = I was used in solving the Lyapunov equations.

Responses to the two initial conditions, both with and without commands were investi-

gated. Both forms of the three adaptive approaches (without and with the linear controller)

were evaluated. A square wave command was used to evaluate tracking performance.

5.5.1 Adaptive Controller Designs

For the classical design, the complete adaptive closed loop system consists of (5.2.4), (5.3.4),

(5.3.5), (5.4.6) and (5.4.7). Since b0 = 0, for simplicity, θ0(t) was set to zero in the control

law (5.3.4). The adaptation gain was set to Γ = 15 which is the same value used in [106].

For the RBF NN-based design we first used the same parameter settings as those in [106].

The complete closed loop system consists of (5.2.4), (2.1.7), (2.1.11), (5.4.6) and (5.4.7). This

consisted of 441 RBF elements that are uniformly spaced in the φ− φ̇ plane such that

84



ci =



j1 ∆1

j2 ∆2


 (5.5.1)

where ∆1 = 0.2 rad, ∆2 = 0.1 rad/sec, and j1, j2 ∈ {−10,−9, ..., 9, 10}. The widths σi of

the kernel units were set to 1 and the adaptation gains were taken as Γ = 0.05I, κ = 0 to

repeat the results in [106].

For the SHL NN-based design, the complete closed loop system consists of (5.2.4), (2.2.5),

(2.2.10), (5.4.6) and (5.4.7). Adaptation gains ΓV = 7 and ΓW = 10, and σ-modification

gains κv = κw = 5 were used, with 10 neurons employed in the hidden layer. The values of

the activation potentials were evenly distributed between 0.1 and 1.

Note that since d0 = 1, the expression for ∆ in (5.4.10) is independent of u, and it was

not necessary to use ν as an input to the networks in this case. Also, since the natural

frequencies and damping ratios for the reference model and the linear controller design are

the same, the solution for P is the same in all designs (with or without the linear controller).

5.5.2 Comparisons

A comparison of the responses for zero command to small and large initial conditions is shown

in Figures 30 - 32. The classical and RBF NN-based responses without the linear controller

(without LC) are essentially identical to the results obtained in [106], where the conclusion is

reached that the response of the classical adaptive controller is superior due to the fact that

it employed knowledge of the functional form of the nonlinearity. However, for the results

in Figure 30, no modification terms such as those in (20) and (21) were used in the RBF

NN-based design. Figures 31 and 32 show that when the σ-modification is employed, the

responses are not only improved, but also are superior to the responses obtained using the

classical adaptive controller. Similar improvements were obtained using e- modification (not

shown). In addition, responses in which a linear controller is augmented with the adaptive

designs showed modest improvements in all cases. It should be noted that the responses with

LC and without adaptation are all stable, but there is nothing to guarantee that this will be
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the case in general.

When employing an RBF NN, the use of kernel units of width 1.0 is not generally the best

choice. The widths should be adjusted to achieve an appropriate overlap between neighboring

kernels. As an alternative, we employed the following rule

σ =
pmax − pmin

2(
√
N − 1)

(5.5.2)

where pmax and pmin are the maximum and minimum of input domain φ, and N is the number

of neurons. An example of the distribution obtained in one axis for pmax = −pmin = 2 and

N = 25 is illustrated in Figure 33. The effect of N with centers uniformly distributed, and

widths defined by (5.5.2) is shown in Figure 34. Figure 35 shows the effect of N in the case

of the SHL NNs.

To evaluate the tracking performance of the adaptive control designs, a square wave

command with period 4 seconds and amplitude φc = ±10 deg was applied. The responses

shown in Figure 36 are for a reference model with ωn increased to 4.0 rad/sec. It can be seen

that the SHL NN-based design provides much faster adaptation, and thus better tracking

than other two designs. Classical adaptive control has difficulty tracking the command even

after a long time period. Figure 37 shows a comparison of the adaptation error, ∆(t∗)−νad(t
∗)

that corresponds to Figure 36. In the classical case, the error increases in the time period

examined. For these results, the adaptation gains were: Γ = 10.0 for the classical adaptive

control, Γ = 10.0I, κ = 1.0 with 441 neurons for RBF NN and ΓV = 7, ΓW = 10.0,

κv = κw = 0.3 with 40 neurons for SHL NN-based design.

Figure 38 shows a 3-dimensional view of νad of SHL NN tracking the ∆ trajectory on

the delta surface for a sinusoidal command. It can be observed from the figure that ∆(t∗) is

moving on the ∆-surface which is determined by (5.4.10) over the φ− φ̇ domain, while SHL

NN output νad is tracking and cancelling it out to show good adaptation.
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5.5.3 Remarks on Stability

In the case of NN-based adaptive control, since the parameterization is not exact, one can

only show that the error response is ultimately bounded. Consequently, with NN-based

adaptation it is possible that an equilibrium point that is asymptotically stable without

adaptation (or with LC but without adaptation) becomes unstable. However, since the

response is ultimately bounded, an unstable response will likely be in the form of a limit

cycle. However, if the equilibrium point is asymptotically stable without control, then it is

a reasonable expectation that it should remain asymptotically stable with control. As noted

earlier, the use of σ-modification provides asymptotic stability in this case because the weights

approach zero in equilibrium, whereas this is not necessarily the case with e-modification.

The phase plane plot in Figure 39 depicts the final stages of these two adaptive laws on a

long time scale. The adaptive law with σ-modification is asymptotically stable, whereas, the

adaptive law with e-modification results in a trajectory that first approaches very close to

the origin, but later emerges from the origin and approaches a limit cycle. Figures 40 and 41

illustrate the same effect with the states plotted versus time. Both φ and φ̇ exhibit bounded

oscillations with e-modification. A persistent oscillation emerges even when a square wave

command is applied.

As an alternative to both σ- and e-modification, we also implemented the method of

projection [88], for both the RBF and SHL NNs. This approach imposes a bound on the

norm of the network weights. The bound is adjusted as a network parameter, similar to what

was done with the σ- and e-modification gains. After tuning the network adaptation gains

and the bound, the best attainable performance for the same case as that depicted in Figure

40, is shown in Figure 42. This figure depicts the response that employs a SHL NN. The

response with a RBF NN exhibits a similar behavior. Initially, projection has no effect on the

system response, because it does nothing until the weights approach their imposed bound.

Thus, the initial part of the response is similar to that shown in Figure 30. Consequently,

this approach to avoiding the bursting phenomenon in adaptive control was found to be less
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desirable for this example.

5.6 Conclusion

The response of a model for wing rock dynamics of an aircraft at moderate to high angles

of attack is examined when regulated by a variety of adaptive controllers. Classical adaptive

control is compared to several methods of neural network-based adaptive control, both with

and without the introduction of a linear controller. All control systems demonstrate adap-

tation to the effects of modeling error.

The results show that the single hidden-layer neural network adapts much more rapidly than

the radial basis function neural network in command tracking, despite having far fewer neu-

rons, and both neural network based designs significantly out perform the classical adaptive

controller in both regulation and tracking, even though the classical adaptive approach em-

ploys knowledge of the functional form of the modeling error, while the neural network-based

approaches do not. In addition, the inclusion of a linear controller in the architecture im-

proves the response for all the control systems, most noticeably for the classical adaptive

design.

Issues related to asymptotic stability versus bounded error response on neural network-based

designs have also been addressed. In particular, it has been noted that it is mandatory to

implement some means to bound the network weights, otherwise none of the neural network

based approaches will provide satisfactory performance.
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Figure 33: Gaussian basis functions for N=25
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Figure 34: The effect that the number of RBF units has on the response for a small initial
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Figure 35: The effect that the number of SHL neurons has on the response for a small initial
condition
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Figure 38: 3-dimensional view of νad of SHL NN tracking ∆ for a sinusoidal command
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Figure 41: e-modification response of RBF NN for a step command of φc = -10 degrees
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CHAPTER VI

ADAPTIVE AUTOPILOT DESIGNS FOR AN

UNMANNED AERIAL VEHICLE, FQM-117B

This chapter summarizes the application of two adaptive approaches to autopilot design, and

presents an evaluation and comparison of the two approaches in simulation for an unmanned

aerial vehicle. One approach employs two-stage dynamic inversion and the other employs

feedback dynamic inversions based on a command augmentation system. Both are augmented

with neural network-based adaptive elements. The approaches permit adaptation to both

parametric uncertainty and unmodeled dynamics, and incorporate a method that permits

adaptation during periods of control saturation. Simulation results for an FQM-117B radio

controlled miniature aerial vehicle are presented to illustrate the performance of the neural

network based adaptation. These designs are currently being implemented at NASA LaRC

for purposes of future flight testing [104].

6.1 Introduction

Recent technology developments allow unmanned aerial vehicles (UAVs) to displace manned

aircraft in many commercial and military roles. As these roles are expanded from simple

reconnaissance missions to more complex missions, there is an increasing need for control

systems that are robust to model uncertainty due to incomplete modeling, malfunction, or

damage during operation. A challenge to designers of flight control systems is to achieve

highly maneuverable UAVs without requiring accurate modeling of these vehicles. Adap-

tive flight control designs provide a way to deal with the uncertainties in the system and

environment, without sacrificing performance.

Most UAV developments are based on simple and inexpensive systems with minimal
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mass, having minimal or no aerodynamic data for control design. Therefore, control design

for UAVs should take these uncertainties into account. UAV dynamics are also significantly

affected by their payloads, which can vary depending upon their mission. Therefore, it is

highly desirable to employ an approach to flight control design that is low cost and does not

require extensive tuning of gain tables. Adaptive approaches to control system design are

ideally suited for this application.

This chapter will illustrate the use of neural network-based adaptive control designs for

a UAV. The main objective is to demonstrate adaptation to model uncertainties such as

unknown or inaccurate mass properties and unknown aerodynamic derivatives, as well as

external aerodynamic disturbances such as wind gusts that can significantly impact UAV

flight performance, particularly at the low speeds UAVs typically fly. This chapter presents

two NN-based adaptive flight control algorithms that have been successfully utilized for a

variety of aerospace applications [14, 18, 105], incorporating recent advances in the area of

state/output feedback and adaptation under saturated control conditions. One approach is

based on a two-stage dynamic inversion with approximate feedback linearization and syn-

thesis of a fixed-gain linear compensator, and the other approach is a command augmenta-

tion system-based dynamic inversion control. Both incorporate NNs as adaptive elements

to compensate for the modeling errors such as unmodeled dynamic characteristics of the

plant [11, 29]. The effects of control saturation are also directly accounted for in the design

of the adaptive controller through pseudo-control hedging (PCH) [39].

The UAV (FQM-117B) used for this study is described in Section 6.2. A two-stage

dynamic inversion-based adaptive control design follows in Section 6.3. A command aug-

mentation system-based adaptive control design is presented in Section 6.4. PCH to handle

control input nonlinearities is described in Section 6.5, and NNs are briefly discussed in Sec-

tion 6.6. Simulation results are presented in Section 6.7. Conclusions are given in Section

6.8.
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6.2 The UAV, FQM-117B

The UAV used for this research is the FQM-117B radio controlled miniature aerial vehicle

shown in Figure 43 [32, 75], which is roughly a 1/9 scale version of Russian fighter aircraft

MIG-27. This UAV is composed entirely of injection-molded Styrofoam, and has a 1.70

m wingspan, 1.88 m length, and a total vehicle weight of approximately 6.72 kg. It is

powered by a 0.60 cubic inch, 1.9 HP glow fuel engine and has elevator, rudder and full-span

ailerons. Its moments of inertia are approximately Ixx = 0.2622, Iyy = 1.2628, Izz = 1.5361,

Ixz = −0.0708 , and Ixy = Iyz = 0 kg ·m2.

For the control design of the UAV, only simple static wind tunnel test data and mass

properties were available. The vehicle employs inexpensive instrumentation, which is noisy

and possesses significant amounts of bias, drift and scale factor error. In addition, it is

clear that its mass properties change significantly as fuel is consumed, and its flight envelope

includes low altitude and low speeds where air disturbances such as gusts are common.

6.3 Control Design 1: Two-Stage Dynamic Inversion

Based Adaptive Control Design

As in the control design in Chapter 4, angle of attack (α), sideslip angle (β) and stability axis

roll rate (ps) are commanded. As shown in Figure 44, the pilot’s command is input to the

command filters to generate reference signals, while employing pseudo-control hedging (PCH)

to protect the adaptive process from effects due to control saturation. Next, proportional

and derivative (PD) controllers are used to follow the reference commands. The control

commands are obtained by a two-stage dynamic inversion. Since there are no α and β

sensors, the required feedbacks are assumed to be computed by integration of IMU sensor

outputs.
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Figure 43: FQM-117B UAV
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6.3.1 Two-stage Dynamic Inversion

A two-stage approach for dynamic inversion has been developed for designing a flight control

system that regulates [ps α β]T [2, 6, 17, 105]. The structure of the inverting law and its

implementation is displayed in Figure 45, where the states for the stage 1 dynamics are

x1 = [ α α̇ β β̇ φ θ V ]T and those for stage 2 dynamics are x2 = [ ps q rs ]T .
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Figure 45: Two-stage dynamic inversion control law structure

The control variables for the stage 1 dynamics are the angular accelerations in the roll,

pitch and yaw stability axis frame, u1 = [ psc qc rsc ]T and the control variables for the stage 2
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dynamics are the effective control displacement commands in each axis, u2 = [ δac δec δrc ]T .

The regulated variables in each stage are, y1 = [ ps α̇ β̇ ]T and y2 = [ ps q rs ]T . Note that

the regulated variables of the stage 1 dynamics are related to regulated variables [ ps α β ]T

according to the relative degree of each regulated variable.

Subject to a set of approximations [16] the stage 1 dynamics can be expressed in the

following form:



ṗs

α̈

β̈




=




0

f2(x, δ)

f4(x, δ)




+




1 0 0

− tan(β) 1 0

0 0 −1







ṗs

q̇

ṙs




= F (x, δ) +G(x) · u1

(6.3.1)

where ps and rs denote the stability axis roll and yaw rates. Similarly, the stage 2 dynamics

can be expressed as:



ṗs

q̇

ṙs




=




f9(x)

f10(x)

f11(x)




+




Lδa
0 0

0 Mδe
0

0 0 N δr







δac

δec

δrc




(6.3.2)

6.3.2 Computation of the Control

Consider the stage 2 dynamic equation expressed as

ẋ2 = A(x) +B(x)u2

y2 = x2

(6.3.3)

Then it follows that

ẏ2 = ẋ2 = A(x) +B(x)u2

= A(x) +B(x) · ue

= u1

(6.3.4)

The stage 1 dynamic equation is given as

ẏ1 = F (x) +G(x) · u1

= ν

(6.3.5)
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where ν is the pseudo-control. Combining (6.3.4) and (6.3.5), we have the commanded

control that is applied to the aircraft.

u = (Ĝ(x)B̂(x)Ta)
−1
[

ν − {F̂ (x) + Ĝ(x)Â(x)}
]

(6.3.6)

where Ĝ(x), B̂(x), F̂ (x) and Â(x) denote estimates of G(x), B(x), F (x) and A(x).

6.3.3 Control Architecture

The pseudo-control for this state feedback control design has the form:

ν = x(r)
c + νdc − νad (6.3.7)

where x
(r)
c is output of an rth-order reference model that is used to define the desired closed

loop response, νdc is the output of a dynamic compensator, and νad is the adaptive signal.

The error dynamics for the state feedback can be expressed as

x̃(r)
c = x(r)

c + x(r)

= −νdc + νad − ∆

(6.3.8)

It is apparent that the dynamic compensator should be designed to stabilize (6.3.8), and that

the role of νad is to cancel ∆.

6.4 Control Design 2: Command Augmentation Based

Adaptive Control Design

As shown in Figure 46, the acceleration commands to the UAV are first converted to p, q and r

commands (pc, qc, rc) through an outer-loop controller, while ensuring the vehicle’s stability

and maintaining trimmed sideslip angle during maneuvers [72]. Then first-order reference

models are inserted in each channel to generate reference signals, while employing PCH

to protect the adaptive process from effects due to control saturation. Next, proportional

controllers are used to follow the reference commands prm, qrm and rrm. The output of the

controller is a part of the total pseudo-control ν, which is the desired angular acceleration.
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The equations for angular acceleration are inverted to obtain the effective control in each

axis. Figure 46 also shows the PCH and the NN signals, which are further discussed in

Sections 6.5 and 6.6.

6.4.1 Outer-Loop Controller

The outer-loop controller produces a pitch rate command qc and a yaw rate command rc

such that the lateral acceleration remains close to zero, which provides turn coordination.

The dynamic compensator has a proportional plus integral (PI) form:

qc = K1 · (anc − an) +K2 ·
∫ t

0

(anc − an) dτ

rc = −K3 · ay −K4 ·
∫ t

0

aydτ

(6.4.1)

where the feedback gains K1, K2, K3, and K4 can be selected based on speed of response.

6.4.2 Command Filter (Reference Model)

A first order reference model is introduced to generate reference signals in each channel. For

instance, for roll channel it is:

prm

pc

=
1

τs + 1
(6.4.2)

where τ is the desired roll mode time constant. In this process, pseudo-control hedging is

incorporated to handle control nonlinearities.

6.4.3 Dynamic Compensator and Control

The derivatives of the body angular angles can be described as, designating the approximate

mathematical models ˆ̇p, ˆ̇q, ˆ̇r with the pseudo-controls, νp, νq, νr:




ˆ̇p

ˆ̇q

ˆ̇r




=




νp

νq

νr




=




F1(x)

F2(x)

F3(x)




+




G1 0 0

0 G2 0

0 0 G3



·




δa

δe

δr




(6.4.3)
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Inverting (6.4.3) resulting in the control laws:



δa

δe

δr




=




G1 0 0

0 G2 0

0 0 G3




−1

·




νp − F1(x)

νq − F2(x)

νr − F3(x)




=




G−1
1 · (νp − F1(x))

G−1
2 · (νq − F2(x))

G−1
3 · (νr − F3(x))




(6.4.4)

The controls in (6.4.4) are based on the simplified functions Fi(x), i = 1, 2, 3, which retain

only a few dominate terms:

F1(x) =
Sq̄b

Ixx
Clp ·

(
pb

2U

)
+
Sq̄b

Ixx
Clβ · β

F2(x) =
Sq̄c̄

Iyy
Cmq ·

( qc̄
2U

)
+
Sq̄c̄

Iyy
Cmα · α

F3(x) =
Sq̄b

Izz
Cnr ·

(
rb

2U

)
+
Sq̄b

Izz
Cnβ · β

(6.4.5)

and

G1 =
Sq̄b

Ixx
Clδa

, G2 =
Sq̄c̄

Iyy
Cmδe

, G3 =
Sq̄b

Izz
Cnδr (6.4.6)

Here the aerodynamic coefficients (Clp, Cmα, etc) and control effectiveness (Clδa
, Cmδe

, Cnδr
)

are set to constant values. These approximations introduce modeling error.

The exact expression for p can be, for instance, written by:

ṗ = Cl
Sq̄b

Ixx

(6.4.7)

where

Cl = Cl0 + Clβ · β + Clp ·
pb

2V
+ Clr ·

rb

2V
+ Clφ · δφ+ Clδa

· δa + Clδr
· δr · · · (6.4.8)

Because only a few dominant terms among those in (6.4.8) are retained in (6.4.3) and ((6.4.5)),

there always exists a modeling error ∆p defined by

∆p = ṗ− ˆ̇p = ṗ− νp (6.4.9)
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Modeling errors ∆q and ∆r in pitch and yaw channels, respectively, can also be defined by

the same way. Using these definitions, the time derivatives of angular rates can be described

by:

ṗ = ˆ̇p+ ∆p = νp + ∆p

q̇ = ˆ̇q + ∆q = νq + ∆q

ṙ = ˆ̇r + ∆r = νr + ∆r

(6.4.10)

The equations in (6.4.3) can be transformed to a linear, time invariant form by designating

the pseudo-controls including only proportional control laws:

νp = A1 · (pc − p) − νadp

νq = A2 · (qc − q) − νadq

νr = A3 · (rc − r) − νadr

(6.4.11)

where (νadp, νadq, νadr) are adaptive signals which are the output of neural networks as

shown in Figure 46. Substitution (6.4.11) into (6.4.10) gives

ṗ = A1 · (pc − p) − νadp + ∆p

q̇ = A2 · (qc − q) − νadq + ∆q

ṙ = A3 · (rc − r) − νadr + ∆r

(6.4.12)

Hence, if the NN adaptive signals (νadp, νadq, νadr) cancel out the modeling errors (∆p, ∆q, ∆r),

then asymptotic tracking in body angular rates can be expected. Consequently, the neural

networks play the key role of generating the adaptive signals to compensate for the modeling

errors due to the use of approximate models, uncertainties in each channel. Feedback gains

A1, A1, A3 are chosen to satisfy the desired handling qualities.

6.4.4 Output Feedback Design

Most UAVs feature simple, fundamental, avionics sensors, so only a limited set of parameters

is available for feedback. Thus, an output feedback design of the control system should be

considered for such cases.
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As a further simplification, angle of attack (α) and sideslip angle (β) dependencies are

ignored, and the terms including these values are discarded. In addition, the x-axis speed

component, U , may be replaced by the total speed V as shown below:

F1(x) =
Sq̄b

Ixx
Clp ·

(
pb

2V

)
, F2(x) =

Sq̄c̄

Iyy
Cmq ·

( qc̄
2V

)
, F3(x) =

Sq̄b

Izz
Cnr ·

(
rb

2V

)
(6.4.13)

According to the theoretical background on the adaptive output feedback design presented

in [29], the delayed signals in each channel are input to the NN adaptive elements

6.5 Pseudo-Control Hedging (PCH)

PCH is used to address NN adaptation difficulties arising from various actuation nonlin-

earities, including actuator position and/or rate saturation, discrete (magnitude quantized)

control, time delays and actuator dynamics [40]. NN training difficulties occur when unmod-

eled actuator characteristics are encountered. For example, the NN adaptive element will

attempt to adapt to these nonlinearities, even when it is impossible to do so. The goal of

PCH is to prevent the adaptive element from attempting to adapt to these characteristics,

while not affecting NN adaptation to other sources of inversion error. Conceptually, PCH

”moves the reference model backwards” by an estimate of the amount the controlled system

did not move due to selected actuator characteristics (such a position and rate limits, time

delays, etc). The reference model is hedged according to an estimate of the difference between

the commanded and actually achieved pseudo-control.

The hedge signal is defined as

νh = ν − ν̂ (6.5.1)

where ν is the commanded pseudo-control and ν̂ is an estimate for the achieved pseudo-

control. For the design approach in Section 6.3, for example, ν is defined in (6.3.5) and the

estimate is obtained by combining (6.3.3), and (6.3.4) and replacing the elements of u2 in

(6.3.4) by estimates obtained from actuator models of the form in Figure 47. Thus,

νh = ν −
[
F̂ (x) + Ĝ(x)Â(x) + Ĝ(x)B̂(x) · û2

]
(6.5.2)
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The elements of the hedge signal are then subtracted in the reference models for each respec-

tive axis (roll, pitch and yaw). The manner in which this is done for a first order reference

model is depicted in Figure 48.
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Figure 48: Reference model with hedging in pitch channel

6.6 Neural Network Adaptation

According to (6.4.12) and (6.5.2), ∆ depends on the states and the pseudo-control. As

described in Chapter 2, this error can be approximated, in a bounded region, to any desired

degree of accuracy using a neural network (NN) with a sufficient number of hidden layer
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neurons, having the following input vector [11, 20, 29, 87]:

µ(t) =
[
1 νT

d (t) yT
d (t)

]
(6.6.1)

where

νd(t) = [ν(t) ν(t− d) · · · ν (t− (n1 − r − 1)d)]T

yd(t) = [y(t) y(t− d) · · · y (t− (n1 − r − 1)d)]T
(6.6.2)

with n1 ≥ n and d > 0 denotes time delay.

In the case of a single hidden-layer (SHL), multi-perceptron NN shown in Figure 3, we

have

νad(t) = Ŵ T σ
(
V̂ T µ

)
(6.6.3)

where σ is a vector whose elements, σi(zi), are the basis functions of the NN. Adaptation

laws are used in the form of (2.2.10). See Chapter 2 for more details.

6.7 Simulations

The simulation model was constructed using Matlab/Simulink [90] implementing the UAV’s

preliminary configuration data, mass properties and static wind tunnel data which covers

angles of attack from 6 to 20 degrees and sideslip angles from 16 to 16 degrees, along with

the assumed dynamic damping derivatives: Cmq = 1.0, Clp = 0.25, Cnr = 0.1, Cmα̇ = 0. The

aircraft trim conditions are: VT = 31.0 m/s, hT = 122.0 m, αT = 2.816o, and βT = 0.541o.

The trimmed throttle setting is 0.44 and is held constant. All aerodynamic control deflections

range between 25 to 25 degrees with rate limits of ±120 deg/sec. All simulations begin from

the trim condition.

6.7.1 Model of Atmospheric Turbulence

The flight envelope of the UAV involves mostly low altitude where gusts or turbulence are

common, hence a model of the turbulence was implemented in control simulations. Turbu-

lence was modeled as a filtered white noise process using the Dryden model.
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6.7.2 Control Design 1: Two-Stage Dynamic Inversion Based Adaptive Control
Design

The control design was carried out assuming that the pilot commands α, β and ps. The roll

channel is relative degree one (r = 1) with respect to the control, while both the α and β

channels are relative degree two. The details of this design are described in [17, 105]. Since

r = 1 in the roll channel, a first order reference model is employed for that channel, with

a time constant of 0.3. Likewise, second order reference models are employed in the pitch

and directional channels, with ωn = 5 rad/sec and ζ = 1.0. The values selected for the NN

gains, defined in (2.2.10), and the number of hidden layer neurons, n2, are given in Table 3.

The activation potentials (ai) were uniformly distributed between 0.1 and 0.5. In addition,

the first NN basis function was used to provide a bias term (a0 = 0).

Table 3: FQM-117B neural network parameters for Design 1

Channel ΓV ΓW κv, κw n2 n1 d

p 0.5 0.3 0.1 10 23 0.01
q 1.0 1.5 0.1 10 23 0.01
r 0.5 0.5 0.1 10 23 0.01

6.7.2.1 Angle of Attack Maneuver

Simulation results are presented in Figure 49–51 for a 12o angle of attack with β and ps

set to zero. Figure 49 presents the α, β and p − s responses with and without adaptation.

Figure 52(a) shows that with NN/PCH, the α-response follows its reference model response

without any overshoot, while β and ps responses in Figure 52(b) exhibit moderate oscillations.

Without adaptation, the α-response goes immediately unstable. It can be clearly seen that

good tracking is achieved for the vehicle with adaptation.

Time histories of aerodynamic controls for cases with and without adaptation are depicted

in Figure 50. The NN adaptation signal νad(t) and inversion error ∆(t) for all channels are

compared in Figure 51. This represents a measure of the degree that adaptation is able to

compensate for the inversion error.
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6.7.2.2 Stability Axis Roll Rate (ps) Maneuver

Simulation results for command of ps = 150o/sec while maintaining the trim angle of attack

are depicted in Figures 52–54. Figure 52 shows the responses with and without adaptation.

It can be seen that good tracking is also maintained in this case with adaptation, except for

the transient oscillations in roll response at about 8 and 11 seconds. Without adaptation,

α-response diverges at the initial phase. Figure 53 depicts time histories of aerodynamic

controls for cases with and without adaptation. Figure 54 compares νad(t) and ∆(t) for all

three channels. It can be seen that the NN precisely compensates for the inversion error.

The simulation results indicate that the UAV has very agile roll maneuverability, and that

it can be greatly enhanced with adaptation.

6.7.3 Control Design 2: Command Augmentation Based Adaptive Control De-
sign

6.7.3.1 State Feedback

The feedback gains K1, K2, K3, and K4 in (6.4.1) are chosen in accordance with the following

equations:

K2 = K4 =
ωn

2ζ
, K1 = τnK2, K3 = τnK4 (6.7.1)

where

τn =
2m

ρSVTCLα
, τy =

2m

ρSVT |Cyβ|
(6.7.2)

The time constant τ , in (6.4.2), for pitch and roll channels, is set to τ = 1/2ζωn, and for the

yaw channel it is set to τ = 2/ζωn. The natural frequency (ωn) and damping ratio (ζ) are

set to 5 rad/sec and 2.0, respectively. The gains A1, A2, A3 in (6.4.11) are chosen as:

A1 = 25, A2 = 20, A3 = 10 (6.7.3)

The values selected for the NN gains and the number of hidden layer neurons, nn, are

given in Table 4. The activation potentials (ai) were uniformly distributed between 0.1 and
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0.5. In addition, the first NN basis function was used to provide a bias term (a0 = 0).

Normal Acceleration (an) Maneuver

Simulation results using state feedback are presented in Figures 55 – 59 for anc = 1±0.8g with

ayc = pc = 0. Figure 55 presents an, ay and p responses with and without adaptation. As

shown in Figure 55, with adaptation an closely follows the command with minimal overshoot,

while p and ay are maintained close to zero, except for short transient periods. This is not

the case without adaptation. Moreover, Figure 56 shows that the yaw rate response diverges

without adaptation. Figure 57 shows that the controller without adaptation has difficulty in

restoring α and β to their trim values. Time histories of control deflections are presented in

Figure 58, and it is noted that PCH is active in the right elevator channel at right after 4 and

7 seconds due to the actuator rate limits. The NN adaptation signal νad(t) and inversion

error ∆(t) for all channels are compared in Figure 59. It can be seen that NN output, νad(t),

satisfactorily cancels out the error ∆(t) over the entire simulation period.

Roll Rate (p) Maneuver

Simulation results using state feedback for pc = ±150o/sec, while maintaining an = 1.0

and ay = 0, are depicted in Figures 60–64. Figure 60(a) shows the roll rate response for

cases with and without adaptation. It can be seen that good tracking is maintained with

adaptation, while larger errors occur without adaptation. Normal and lateral accelerations

are depicted in Figure 60(b) and they closely follow their commanded values. Figure 61

shows the q and r responses. It can be seen that they also follow the reference command,

even without adaptation. Figure 62 shows the α and β responses. Note that β exhibits a

slightly larger transient behavior with adaptation. Figure 63 shows time histories of control

Table 4: FQM-117B neural network parameters for Design 2

Channel ΓV ΓW λ nn nl d

p 3.0 3.0 0.01 10 23 0.01
q 3.0 5.0 0.01 10 23 0.01
r 3.0 1.0 0.01 10 23 0.01
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deflections. Figure 64 compares the NN adaptation signal νad(t) and inversion error ∆(t)

for all channels, again demonstrating that νad(t) cancels ∆(t).

6.7.3.2 Output Feedback

The same parameter settings and NN gains used for state feedback are used for the output

feedback case, and (6.4.13) was used instead of (6.4.5) since α and β are treated as not

available for feedback.

Normal Acceleration (an) Maneuver

Simulation results using output feedback are presented in Figures 65 – 69 for anc = 1 ± 0.8g

with ayc = pc = 0. Figure 65 presents an, ay and p responses with and without adaptation.

Pitch and roll rates are depicted in Figure 66 and they closely follow their commanded values

with adaptation. Figure 67 shows α and β responses. Overall responses for this command

are similar to the state feedback case. Figure 68 shows time histories of control deflections.

The NN adaptation signal νad(t) and inversion error ∆(t) for all channels are compared in

Figure 69. It can also be seen that NN output, νad(t) shows good adaptation by canceling

the error ∆(t) over the entire simulation period.

Roll Rate (p) Maneuver

Simulation results using output feedback for pc = ±150o/sec, while anc = 1.0 and ayc = 0,

are depicted in Figures 70–74. Figure 70(a) shows p rate response for cases with and without

adaptation. Normal and lateral accelerations are depicted in Figure 70(b), and q and r are

presented in Figure 71. Figure 72 shows α and β responses. Figure 73 shows time histories of

control deflections. Figure 74 compares the NN adaptation signal νad(t) and inversion error

∆(t) for all channels, again demonstrating that νad(t) cancels ∆(t).
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6.8 Conclusion

Two NN-based adaptive control designs for the FQM-117B UAV are presented: One with

two-stage dynamic inversion and state feedback, and the other with a feedback dynamic

inversion based on a command augmentation system with state and output feedback. The

tracking performances of both approaches are greatly improved by the NN-based adaptive

control design, thereby implying successful adaptation to modeling error and uncertainties.

Pseudo-control hedging is implemented to protect the adaptive process during periods of

control nonlinearities such as position limits and rate limits. Future efforts will be directed

towards flight testing of these algorithms.
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Figure 60: Aircraft responses for a roll rate (p) command using state feedback with/without
NN adaptation

122



0 5 10 15

−10

0

10

20

30

40

q,
 d

eg
/s

ec
.

0 5 10 15

−20

−10

0

10

20

r,
 d

eg
/s

ec
.

time, sec

command
reference with NN/PCH
response with NN/PCH
response without NN/PCH
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Figure 65: Aircraft responses for a normal acceleration (an) command using output feedback
with/without NN adaptation
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Figure 68: Aerodynamic control deflections
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Figure 70: Aircraft responses for a roll rate (p) command using output feedback
with/without NN adaptation

128



0 5 10 15
−20

0

20

40

q,
 d

eg
/s

ec
.

0 5 10 15
−30

−20

−10

0

10

20

30

r,
 d

eg
/s

ec
.

time, sec

command

reference with NN/PCH

response with NN/PCH

response without NN/PCH
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CHAPTER VII

COMPOSITE MODEL REFERENCE ADAPTIVE

OUTPUT FEEDBACK CONTROL OF

MULTI-INPUT MULTI-OUTPUT NONLINEAR

SYSTEMS USING NEURAL NETWORKS

7.1 Introduction

Composite model reference adaptive control (MRAC) was introduced by Slotine and Li [107],

and they claim that the advantages of the composite MRAC are:

• The combined use of the tracking error E and the estimation (or prediction) error Ê

can improve the performance of an adaptive controller, by employing them as training

signals in the adaptation laws.

• When multiple unknown parameters are involved, the composite MRAC scheme is more

effective than the standard tracking error-based adaptation. In such cases, the former

allows high adaptation gain to be used without incurring significant oscillation in the

estimated parameters, which is possibly observed for the latter.

• When unmodeled dynamics are present, composite adaptive controllers perform bet-

ter than standard adaptive controllers. This permits using higher adaptation gain

to achieve smaller tracking errors and faster parameter convergence without exciting

high-frequency unmodeled dynamics.

• One of the essential benefits of the composite MRAC comes from the smoothness of the

results, which has significant implications on the adaptive performance. This comes
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from the structure of the adaptation laws, which has a time-varying low-pass filter-like

property.

• For parameter oscillation or parameter drift problems mainly associated with non-

parametric uncertainties (noise and disturbance), the composite MRAC can be quite

helpful.

These claims on the expected properties of the composite MRAC design motivate this

research as an extension of the adaptive NDI control design, presented and thoroughly dis-

cussed in Chapter 3. In addition, a conventional adaptive control design that augments a

dynamic compensator [34, 114] is introduced as an alternative in adaptive control design.

Section 7.2 formulates the control problems of nonlinear control systems, and Section

7.3 introduces feedback linearization of nonlinear MIMO system and nonlinear dynamic in-

version. Control system architecture, design processes and stability proofs using Lyapunov

theorems are described in Section 7.7. Section 7.8 presents simulation results using F-15

ACTIVE model to demonstrate the performance of the composite MRAC design.

7.2 Control Problem Formulation

We consider nth order nonlinear MIMO dynamic systems that are modeled by:

ẋ = f (x, u)

y = g(x)

(7.2.1)

where x ∈ Dx ⊂ ℜn is the state vector, u ∈ Du ⊂ ℜm is the system control vector, and

y ∈ Dy ⊂ ℜm is the system output vector. It is assumed that the system (7.2.1) is stabilizable

and observable, and that f (·, ·) and g(·) are sufficiently smooth, possibly partially known

functions.

Assumption 7.2.1. The dynamical system in (7.2.1) satisfies the conditions for output

feedback linearization for the following class of nonlinear uncertain systems with well-defined

vector relative degree r.
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This assumption implies that the functions f : Dx×ℜ → ℜn and g : Dx → ℜm are input-

output feedback linearizable, and the output y has relative degree r for all (x,u) ∈ Dx ×Du

such that [30, 35, 43]:

χ̇ = f o(χ, ξ)

ξ̇1
i = ξ2

i+1

...

ξ̇ri−1
i = ξri

i

ξ̇ri

i = hi(ξ,χ, ui)

yi = ξ1
i , i = 1, . . . , m

(7.2.2)

where ξ , [ξ1
1 ξ2

1 · · · ξr1

1 · · · ξ1
m ξ2

m · · · ξrm
m ]T ∈ Dξ ⊂ ℜr, hi(ξ,χ, ui) , L

(ri)
f g|ui

, i = 1, . . . , m

being the Lie derivatives, χ ∈ Dχ ⊂ ℜn−r are the state vector associated with the internal

dynamics χ̇ = f o(χ, ξ), Dχ,Dξ are open sets containing their respective origins, ri is the

relative degree of the ith output, and the overall relative degree r , r1+r2+· · ·+rm ≤ n. The

function f o(ξ,χ) and hi(ξ,χ, ui) are partially known continuous functions. It is noted that

control u , [u1 u2 · · ·um]T , and output, or controlled variables y , [y1 y2 · · · ym]T ∈ Dy,

where an open set Dy is defined by continuous mapping h(x,u) , [h1(x, u1) · · ·hm(x, um)]T

with an assumption described below.

Assumption 7.2.2. ∂hi(x, ui)/∂ui is continuous and non-zero for every (x, ui) ∈ Dx × ℜ.

Introducing yc , [yc1 yc2 · · · ycm]T and ξc , [yc1 ẏc1 · · · y
(ri−1)
c1 · · · ycm

ẏcm
· · · y(rm−1)

cm ]T ,

where the derivatives are generated via asymptotically stable reference model dynamics, we

let ỹ(t) , yc(t) − y(t), ξ̃(t) , ξc(t) − ξ(t). In order to address the stability of the internal

dynamics, we introduce the following assumption [30, 43].

Assumption 7.2.3. The system χ̇ = f o(χ, ξ) has a unique steady-state solution χs(t).
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Moreover, with χ̃(t) , χs(t) − χ(t), the system

˙̃χ = f o(χs, ξc) − f o(χ, ξ)

= f o(χs, ξc) − f o(χs − χ̃, ξc − ξ̃)

= f̃ o(χs, χ̃, ξc, ξ̃)

(7.2.3)

has a continuously differentiable function Vχ(χ̃, t) satisfying the following conditions

c1‖χ̃‖2 ≤ Vχ(χ̃, t) ≤ c2‖χ̃‖2

V̇χ ≤ −c3‖χ̃‖2 + c4‖χ̃‖‖ξ̃‖
(7.2.4)

It can be seen from Assumption 7.2.3 that the dynamics (7.2.3) with ξ̃ as input are

input-to-state stable. The inequalities (7.2.4) imply that the convergence to the steady state

solution χs is exponential. Consequently the zero dynamics in (7.2.2) are exponentially stable

with the following upper bound

V̇χ ≤ −c3‖χ̃‖2 + c4‖χ̃‖‖ξ̃‖ ≤ −c3
2
‖χ̃‖2 +

c24
2c3

‖ξ̃‖ (7.2.5)

The objective is to synthesize an output feedback control law that utilizes the available

measurements y(t), so that yi(t) track bounded smooth reference trajectories yci
(t), i =

1, . . . , m with bounded errors.

7.3 Input-Output Feedback Linearization and Nonlin-

ear Dynamic Inversion

A linearizing feedback control law is approximated by introducing the following signal:

ui = ĥi

−1
(y, νi), i = 1, . . . , m (7.3.1)

where νi, commonly referred to as pseudo-control, is defined as

νi = ĥ(y, ui), i = 1, . . . , m (7.3.2)

The function ĥ(y,u) = [ĥ1(x, u1) · · · ĥm(x, um)]T can be determined by using a possibly

simplified model of the system dynamics. It is assumed that ĥi(x, ui), an approximation
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of hi(ξ,χ, ui), is invertible with respect to its second argument and satisfies the following

assumption:

Assumption 7.3.1. ∂hi(y, ui)/∂ui is continuous and non-zero for every (y, ui) ∈ Dy × ℜ,

and

∂ĥi(y, ui)

∂ui

∂hi(x, ui)

∂ui
> 0, i = 1, . . . , m (7.3.3)

for every (x,y, ui) ∈ Dx ×Dy × ℜ.

Defining ν = [ν1 · · · νm]T , we rewrite (7.3.2) in a compact form as

ν = ĥ(y,u) (7.3.4)

With this definition of pseudo-control (7.3.4), the output dynamics can be expressed as

y(r) = ν + ∆ (7.3.5)

where y(r) = [y
(r1)
1 · · · y(rm)

m ]T and

∆(x,u) = ∆(ξ,χ,u)

= h(ξ,χ, ĥ
−1

(y,ν)) − ĥ(y, ĥ
−1

(y,ν))

(7.3.6)

which is the difference between the function h(x,u) and its approximation ĥ(y,u), and it

is usually referred to as modeling error.

The pseudo-control is chosen to have the form

ν = νdc + νrm − νad (7.3.7)

where νdc is the output of a linear dynamic compensator, νrm = y
(r)
c = [y

(r1)
c · · · y

(rm)
c ]T is

a vector of the rth
i derivative of the command signal yci

(t), and νad is the adaptive control

signal designed to cancel ∆(x,u).

Using (7.3.7), the output dynamics in (7.3.5) become

y(r) = νdc + νrm − νad + ∆ (7.3.8)
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It can be seen from (7.3.6) that ∆ depends on νad through ν, whereas νad has to be designed

to cancel ∆. Throughout the process in Section 3.2, ν−∆(x,u) can be written in the matrix

form as

νad − ∆(x,u) = H
[
νad − ∆̄(x,ν l)

]
(7.3.9)

where

H =




hν̄1
0 · · · 0 0

0 hν̄2
· · · 0 0

...
...

. . .
...

...

0 0 · · · hν̄m−1
0

0 0 · · · 0 hν̄m




∈ ℜm×m (7.3.10)

It is noted that this matrix H is positive because its diagonal components are all positive by

Assumption 7.2.2 and 7.3.1. Now using (7.3.9) the dynamics in (7.3.8) can be rewritten as

ỹ(r) = −νdc +H
[
νad − ∆̄(x,ν l)

]
(7.3.11)

The main difference between the dynamics in (7.3.8) and (7.3.11) lies in the functional struc-

ture of the modeling error. In (7.3.11) the modeling error is independent of the actual control

variable.

It is noted that either of the cases when νad ideally cancels out non-zero ∆̄ in (7.3.11), or

when ∆̄ = 0 (thus the adaptive term νad is not required), results in the integrator-decoupled

form of the error dynamics of (7.3.11) as

ỹ(r) = −νdc (7.3.12)

This means that in such a case the resultant control problem becomes a control design for

a system having r-poles at the origin. Usually the dynamic controller for νdc is designed to

achieve an asymptotically stable closed-loop system of (7.3.12) and its own dynamics are also

asymptotically stable.
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7.4 Nonlinear System and its Reference Model

In order to design an adaptive control architecture for a nonlinear dynamic system, we also

consider the external disturbance as well as modeling error. Considering (7.2.2), (7.3.1) and

(7.3.2), we write the system dynamics (7.3.5) in the matrix form:

ẏ(t) = Ay(t) +B[ν(t) + ∆(x,u) + d(t)] (7.4.1)

where

y , [yT
1 yT

2 · · · yT
m]T ∈ ℜr

yi , [yi ẏi · · · y(ri−1)
i ]T ∈ ℜri, i = 1, . . . , m

A , block − diag(A1 A2 · · · Am) ∈ ℜr×r

B , block − diag(B1 B2 · · · Bm) ∈ ℜr×m

(7.4.2)

and

Ai =




0 1 0 · · · 0 0

0 0 1 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · 0 1

0 0 0 · · · 0 0




∈ ℜri×ri, Bi =




0

0

...

0

bi




∈ ℜri×1 (7.4.3)

where bi, i = 1, . . . , m are control effectiveness terms, and d(t) ∈ ℜm×1 is the bounded

external disturbance such that

‖d(t)‖ ≤ dm (7.4.4)

Assumption 7.4.1. For a clear derivation of the composite output feedback NDI-based model

reference adaptive control design containing complicated elements, we assume that the output

is available for control design. If this case is not exactly applicable for a specific nonlin-

ear system, then we further assume that we get closely approximated output values using a

nominal nonlinear observer.
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A reference model is described by an equation which is composed ofm-ordinary differential

equations having rth
i , i = 1, . . . , m order, respectively. The equation can be written in a

compact state space form as:

ẏM(t) = AMyM(t) +BM · yc(t) (7.4.5)

where

yM , [yT
M1

yT
M2

· · · yT
Mm

]T ∈ ℜr

yMi
, [yMi

ẏMi
· · · y(ri−1)

Mi
]T ∈ ℜri , i = 1, . . . , m

yc , [yc1 yc2 · · · ycm
]T ∈ ℜm

AM , block − diag(AM1
AM2

· · · AMm
) ∈ ℜr×r

BM , block − diag(BM1
BM2

· · · BMm
) ∈ ℜr×m

(7.4.6)

and

AMi
=




0 1 0 · · · 0 0

0 0 1 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · 0 1

−ai1 −ai2 −ai3 · · · −ai(ri−1) −airi




∈ ℜri×ri, BMi
=




0

0

...

0

ai1




∈ ℜri×1

(7.4.7)

and yM ∈ ℜr is the reference model state vector, yc(t) ∈ ℜm is bounded piecewise continuous

reference command, and AM is Hurwitz.

Now it is desired to design a control law such that the output tracking error

E(t) = yM(t) − y(t) (7.4.8)

tends to zero and all the signals in the system remain bounded as t→ ∞.

7.5 Composite Adaptive Control Architecture

In this section we design an adaptive control based on the Lyapunov theorems for the nonlin-

ear system described in previous sections. First we define an ideal control solution, as if all
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the unknown parameters were known. The ideal pseudo-control is chosen to have feedback

and feedforward elements, considering (7.3.7), such that

νideal(t) , ( νdc + νrm − νad )ideal

, Ke · E(t)︸ ︷︷ ︸+Kr · yc(t) −Ke · yM(t)︸ ︷︷ ︸−νad

νdc νrm

(7.5.1)

where Ke ∈ ℜm×r and Kr ∈ ℜm×m, which is adopted for command tracking, are assumed to

be bounded:

‖Ke‖ < kem

‖Kr‖ < krm

(7.5.2)

with positive numbers kem and krm, respectively. Substituting (7.5.1) into (7.4.1), ignoring

the disturbance term, the ideal closed-loop dynamics become:

ẏ(t) = (A− BKe) y(t) +BKryc(t) (7.5.3)

Assumption 7.5.1. There exist ideal gains Ke and Kr satisfying the model matching con-

ditions defined by [34,55,114]:

A− BKe = AM

BKr = BM

(7.5.4)

Comparing (7.5.3) with the desired reference model dynamics in (7.4.5), it can be im-

mediately seen that the ideal gains Ke and Kr must satisfy the model matching conditions

in (7.5.4). It is noted that the existence of ideal gains Ke and Kr is assumed without any

knowledge of them. In this case with appropriate forms of each element of the equation

(7.5.4) and (7.4.5), it is clear that the ideal constant gains always exist.

Based on the structure of (7.5.1), the actual tracking pseudo-control is formed as:

ν(t) = K̂e · E(t) + K̂r · yc(t) − K̂e · yM(t) − νad (7.5.5)
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where the feedback gain K̂e, the feedforward gain K̂r, and the estimated vector of parameters

Ŵ will be found to achieve the desired tracking performance. The overall architecture of this

composite model reference control design is presented in Figure 75.

Substituting (7.5.5) into the system dynamics (7.4.1) results in the closed-loop system

ẏ(t) , Ay(t) +B
(
K̂eE(t) + K̂ryc(t) − K̂eyM(t) + ∆− νad + d

)
(7.5.6)

which yields, by adding and subtracting corresponding terms,

ẏ(t) = (A− BKe)y(t) +BKryc(t) +B
(
Ke − K̂e

)
y(t) − B

(
Kr − K̂r

)
yc(t)

+B (∆ − νad + d)

(7.5.7)

Using matching conditions (7.5.4), equation (7.5.7) is written in a compact form,

ẏ(t) = AMy(t) +BMyc(t) +B
(
K̃ey(t) − K̃ryc(t) + ∆− νad + d

)
(7.5.8)

where K̃e, K̃r are the parameter estimation errors defined by:

K̃e = Ke − K̂e

K̃r = Kr − K̂r

(7.5.9)

Then the closed-loop dynamics of the tracking error signal E(t) in (7.4.8) can be obtained

by subtracting (7.5.8) from (7.4.5)

Ė(t) = AME(t) − B
(
K̃ey(t) − K̃ryc(t) + ∆− νad + d

)
(7.5.10)

Since AM is Hurwitz, there exists a unique and positive definite matrix P = P T > 0 for an

arbitrary matrix Q = QT > 0 satisfying the Lyapunov equation

AT
MP + PAM = −Q (7.5.11)
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Figure 75: Composite model reference adaptive control architecture

141



7.6 The System State Estimator

Next, consider the system state estimator dynamics [54, 107]:

˙̂y(t) = AP (ŷ(t) − y(t)) + AMy(t) +BMyc(t) (7.6.1)

where ŷ is the estimator state vector, and the constant matrix AP is Hurwitz.

Let

Ê(t) = ŷ(t) − y(t) (7.6.2)

denote the state estimation error. Subtracting (7.4.1) from (7.6.1), the state estimation error

dynamics can be written as:

˙̂
E(t) = AP Ê(t) − B

(
K̃ey(t) − K̃ryc(t) + ∆− νad + d

)
(7.6.3)

Since AP is Hurwitz, there exists a unique and positive definite matrix P̂ = P̂ T > 0 for an

arbitrary matrix Q̂ = Q̂T > 0 satisfying the Lyapunov equation

AT
P P̂ + P̂AP = −Q̂ (7.6.4)

7.7 Stability Analysis using Lyapunov Theorems

In this section using Lyapunov’s direct method we show that all the errors are ultimately

bounded. They are the tracking error E, the state estimation error Ê, the control estimation

errors K̃e and K̃r, and the NN weight errors. To this end we consider one of following vectors:

a) RBF NN:

ζ =
[
ET Ê

T
K̃T

e K̃T
r W̃ T

]T
(7.7.1)

b) SHL NN:

ζ =
[
ET Ê

T
K̃T

e K̃T
r W̃ T Ṽ T

]T
(7.7.2)
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and one of following positive definite Lyapunov function candidates:

a) RBF NN:

V (ζ) = ETPE + Ê
T
P̂ Ê + tr

(
K̃T

e Γ−1
e K̃e + K̃T

r Γ−1
r K̃r +H · W̃ T Γ−1

w W̃
)

(7.7.3)

b) SHL NN:

L (ζ) = ETPE + Ê
T
P̂ Ê + tr

(
K̃T

e Γ−1
e K̃e + K̃T

r Γ−1
r K̃r + W̃ T Γ−1

w W̃ + Ṽ T Γ−1
v Ṽ

)

(7.7.4)

In the expanded space of the compound error variable, consider the largest level set of

V (ζ) or L(ζ) in Dζ such that its projection on the subspace of the NN input variables

completely lies in Dl. As shown in figure 76, define the largest ball that lies inside that level

set as

BR , {ζ | ‖ζ‖ ≤ R} (7.7.5)

and let α be the minimum value of V (ζ) or L(ζ) on the boundary of BR

α , min
‖ζ‖=R

V (ζ) for RBF NN

or α , min
‖ζ‖=R

L(ζ) for SHL NN

(7.7.6)

Introduce the set

Ωα , {ζ ∈ BR | V (ζ) ≤ α} for RBF NN

or Ωα , {ζ ∈ BR | L(ζ) ≤ α} for SHL NN

(7.7.7)

7.7.1 Composite RBF NN Adaptation

In this section we show that E, Ê, K̃e, K̃r, and W̃ are all uniformly bounded using RBF

NNs with σ-modification.
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Figure 76: Geometric representation of sets in the error space

Since hv̄i
, i = 1, . . . , m in (3.2.13) are positive continuous functions over the compact set

Dl, we can define the minimum/maximum values of the functions as

h , min

[
min

(x,νl)∈Dl

hν̄1
, min
(x,νl)∈Dl

hν̄2
, · · · , min

(x,νl)∈Dl

hν̄m

]

h̄ , max

[
max

(x,νl)∈Dl

hν̄1
, max
(x,νl)∈Dl

hν̄2
, · · · , max

(x,νl)∈Dl

hν̄m

] (7.7.8)

Assumption 7.7.1. It is assumed that the time derivative of the control effectiveness matrix

H in (7.3.10) is bounded such that [25,30,45]:

‖Ḣ‖ ≤ hm (7.7.9)

From the definition of the candidate Lyapunov function in (7.7.3), there exist class K

functions η1 and η2 such that

η1(ζ) ≤ V (‖ζ‖) ≤ η2(ζ) (7.7.10)
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where

η1(‖ζ‖) = λmin(P )‖E‖2 + λmin(P̂ )‖Ê‖2 + λmin(Γ−1
e )‖K̃e‖2

+ λmin(Γ−1
r )‖K̃r‖2 + λmin(Γ−1

w )h‖W̃‖2

η2(‖ζ‖) = λmax(P )‖E‖2 + λmax(P̂ )‖Ê‖2 + λmax(Γ
−1
e )‖K̃e‖2

+ λmax(Γ
−1
r )‖K̃r‖2 + λmax(Γ

−1
w )h̄‖W̃‖2

(7.7.11)

Assumption 7.7.2. Assume that

R > η−1
1 (η2(θ)) (7.7.12)

where θ is defined as

θ ,

√
Π1 + Π2

min

(√
λmin(Q) − 1,

√
λmin(Q̂) − 1,

√
ρe,

√
ρr,

√
κh

)
(7.7.13)

where

Π1 , ρe‖Ke −Keo‖2
F + ρr‖Kr −Kro‖2

F + κh‖W −W0‖2
F

Π2 ,
(
‖PB‖2 + ‖P̃B‖2 + ‖P̂B‖2

) (
2wmpmh+ εmh + dm

)2 (7.7.14)

Remark 7.7.1 (Boundedness of RBF NN with Backpropagation alone). It is noted that the

update laws of adaptive control elements with back-propagation alone, shown below, result

in the proof of the boundedness of E, Ê only.

˙̂
Ke = −Γe

(
ETPB + Ê

T
P̂B
)T

· yT

˙̂
Kr = Γr

(
ETPB + Ê

T
P̂B
)T

· yT
c

˙̂
W = −ΓwΨ(µ)

(
ETPB + Ê

T
P̂B
)

(7.7.15)

where Γe = ΓT
e > 0, Γr = ΓT

r > 0, Γw = ΓT
w > 0 are the rates of adaptation, or adaptation

gains. Hence, in order to prove the boundedness of all parameters including K̃e, K̃r, and

W̃ , we need to introduce a modification such as σ-modification or e-modification to the

adaptation laws (7.7.15). A similar remark is applicable to SHL NNs in Section 7.7.2. ♦
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Theorem 7.7.1. Let assumptions 7.2.1 - 7.7.2 hold. Then, if the initial error ζ(0) ∈ Ωα,

the control law given by (7.5.5), along with σ-modifications shown below, guarantees that the

signals E, Ê, K̃e, K̃r, and W̃ in the closed loop system are all ultimately bounded.

˙̂
Ke = −Γe

[(
ETPB + Ê

T
P̂B
)T

· yT + ρe ·
(
K̂e −Keo

) ]

˙̂
Kr = Γr

[(
ETPB + Ê

T
P̂B
)T

· yT
c − ρr ·

(
K̂r −Kro

) ]

˙̂
W = −Γw

[
Ψ(µ)

(
ETPB + Ê

T
P̂B
)

+ κ ·
(
Ŵ −W0

) ]
(7.7.16)

where the matrices Γe = ΓT
e > 0, Γr = ΓT

r > 0 and Γw = ΓT
w > 0, the constants ρe > 0,

ρr > 0 and κ > 0 are the adaptation gains, and Keo, Kro, and W0 are initial guesses (or

guesses).

Proof. See Appendix C

From the result of Theorem 7.7.1, we can see that the overall control architecture of the

composite adaptive NDI scheme using RBF NNs developed in this chapter results in stable

closed-loop systems for output feedback, NDI-based MIMO nonlinear systems.

7.7.2 Composite SHL NN Adaptation

In this section, through Lyapunov theorems, we show that E, Ê, K̃e, K̃r, Ṽ , and W̃ are

all uniformly bounded using SHL NNs with σ-modification.

From the definition of the candidate Lyapunov function L in (7.7.4), there exist class K

functions ϕ1 and ϕ2 such that

ϕ1(ζ) ≤ L(‖ζ‖) ≤ ϕ2(ζ) (7.7.17)

where

ϕ1(‖ζ‖) = λmin(P )‖E‖2 + λmin(P̂ )‖Ê‖2 + λmin(Γ−1
e )‖K̃e‖2

+ λmin(Γ−1
r )‖K̃r‖2 + λmin(Γ−1

w )‖W̃‖2

ϕ2(‖ζ‖) = λmax(P )‖E‖2 + λmax(P̂ )‖Ê‖2 + λmax(Γ
−1
e )‖K̃e‖2

+ λmax(Γ
−1
r )‖K̃r‖2 + λmax(Γ

−1
w )‖W̃‖2

(7.7.18)
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Assumption 7.7.3. Assume that

R > ϕ−1
1 (ϕ2(λ)) (7.7.19)

where λ is defined as

λ ,

√
Ω1 + Ω2

min
(
C1, C2,

√
ρe,

√
ρr,

√
κb − 2γ1pb

) (7.7.20)

where

Ω1 , κb − 2γ1pb

Ω2 , ρe‖Ke −Keo‖2
F + ρr‖Kr −Kro‖2

F + κv‖V − V0‖2
F + κw‖W −W0‖2

F

C1 ,
√
λmin(Q) − pb(γ1 + γ2 + dm)

C2 ,

√
λmin(Q̂) − pb(γ1 + γ2 + dm)

(7.7.21)

Theorem 7.7.2. Let assumptions 7.2.1 - 7.7.3 hold. Then, if the initial error ζ(0) ∈ Ωα,

the control law given by (7.5.5), along with SHL NN shown below, guarantees that the signals

E, Ê, K̃e, K̃r, Ṽ , and W̃ in the closed loop system are all ultimately bounded.

˙̂
Ke = −Γe

[(
ETPB + Ê

T
P̂B
)T

· yT + ρe ·
(
K̂e −Keo

) ]

˙̂
Kr = Γr

[(
ETPB + Ê

T
P̂B
)T

· yT
c − ρr ·

(
K̂r −Kro

) ]

˙̂
V = −Γv ·

[
µ
(
ETPB + Ê

T
P̂B
)
Ŵ T σ̂′ + κv ·

(
V̂ − V0

)]

˙̂
W = −Γw ·

[(
σ̂ − σ̂′V̂ T µ

)(
ETPB + Ê

T
P̂B
)

+ κw ·
(
Ŵ −W0

)]

(7.7.22)

where σ̂ = σ
(
V̂ T µ

)
and σ′ = diag (dσi/dzi) denotes the Jacobian matrix. Γv, Γw, κv, and

κw > 0 are adaptation gains. Keo, Kro, W0 and V0 are initial guesses (or guesses),

Proof. See Appendix D

From the result of Theorem 7.7.1, we can conclude that the overall control architecture

of the composite adaptive NDI scheme using SHL NNs developed in this chapter results in

stable closed-loop systems for output feedback, NDI-based MIMO nonlinear systems.
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7.8 Simulations and Evaluations

As we see in Chapter 4, the adaptive NDI control design in Chapter 3 is shown to provide

good adaptation using the vehicle NASA F-15 ACTIVE performing nonlinear maneuvers

in highly nonlinear regimes. The vehicle is shown in Figure 77. Theoretically the newly-

suggested composite adaptive NDI MRAC design of this chapter is expected to exhibit better

performance over a wider operational range by providing quicker and/or better adaptation

utilizing more adaptive elements.

This section contains composite adaptive control design processes for the setup of the

adaptive dynamic compensator part and the NN-based adaptation part, and simulation re-

sults using the same vehicle, F-15 ACTIVE, used for adaptive NDI simulation in Chapter

4.

7.8.1 Control Design Parameters

As shown in Chapters 3 and 4, dynamic compensators νdc and νrm of the adaptive NDI

design have fixed gains, and then in (3.5.4) we set them to force the tracking error dynamics in

(3.5.6) to have the same pole locations as those of the reference model, while in the composite

adaptive design we have non-constant adapted dynamic compensator gains Ke, Kr updated

by adaptation laws in (7.7.16) or (7.7.22). In addition, output estimator/predictor values are

involved for NN update laws.

In Chapters 4 – 6, we saw that the pole locations of error dynamics are defined by fixed

gains Ke and Kr, while in the composite adaptive design only their existence satisfying the

matching condition (7.5.4) is assumed in Assumption 7.5.1. However if we set those param-

eters free during the control process, the closed-loop performance could be unsatisfactory

especially in transient response phases. That comes from the fact that there is no element or

device in the design process to enforce the matching condition. Ideally we want the estimates

K̂e, K̂r to play closely around the ideal values Ke, Kr, if known, satisfying the matching

condition, and thus we want the pole locations of error dynamics to be close to those of the
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Figure 77: NASA F-15 ACTIVE in flight

reference model during simulation period.

To this end we use a property of σ-modification laws in (7.7.22) such as: when tracking

and estimation errors become small, K̂e, K̂r in σ-modifications are driven toward Keo, Kro.

Hence if we set Keo, Kro such that, for the second order sub-system,

Keo(1, 1) = ω2
n

Keo(1, 2) = 2ζωn

Kro = ω2
n

(7.8.1)

where ω, ζ are assumed values as design parameters, then K̂e, K̂r are forced to stay around

where we set in (7.8.1). This approach is also applied for the first order sub-system by setting

its parameters such that

Keo = 1/τ

Kro = 1/τ

(7.8.2)
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where τ is an assumed value. It is noted that this process can be accelerated by choosing a

bigger value of ρe, ρr in (7.7.22).

7.8.2 Simulation Results

7.8.2.1 High-α Maneuver

As the first simulation, we command a high angle of attack maneuver similar to that of

Chapter 4. For simulations in this section, SHL NNs in (7.7.22) are implemented, and the

same NN adaptation gains for adaptive NDI design are used for composite adaptive design

as shown in Table 5. Gains for adaptive compensators Γe, Γr, ρe, ρr in (7.7.22) are shown

in Table 6.

Table 5: Neural network parameters for F-15 ACTIVE simulation

Channel ΓV ΓW κv, κw n1 n2 d

ps 3.0 3.0 0.5 24 10 0.01
α 5.0 4.0 0.1 24 10 0.01
β 3.0 3.0 0.5 24 10 0.01

Table 6: Adaptation gains for adaptive dynamic compensators

Channel Γe Γr ρe ρr

ps 3.0 3.0 10.0 10.0
α 3.0 3.0 10.0 10.0
β 3.0 3.0 10.0 10.0

Simulation results are presented in Figures 78–82 for a 45o angle of attack command with

a small amplitude (5o/sec) doublet in ps. Figure 78 presents the α, ps and β responses for

various conditions: adaptive NDI, composite adaptive control with addition only Ê, or with

addition only K̂e, K̂r, or both. As shown in the figure, α-responses are almost identical,

while ps and β responses are a little different. It is not easy to determine whether composite

adaptive design yields a significant improvement..

Aerodynamic and TV control deflections are shown in Figures 79 and 80, respectively.

It can be seen that composite adaptive design exhibits frequent control movement with less
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control saturation.

The NN adaptation signal νad(t) and inversion error ∆(t) for both adaptive NDI and

composite design are compared in Figure 81. The figures show that both algorithms result

in satisfactory adaptation.

Time histories of K̂e, K̂r in each channel are presented in Figure 82. As we intended the

parameters remain near the values we desire. It is noted that even though not clearly visible,

they change slightly whenever command are changed.

7.8.2.2 Simultaneous High-α and ps Maneuver

In order to make obvious the performance differences between the two designs, we command

a much more difficult, nonlinear maneuver featuring high angle of attack and higher stability

axis roll rate.

Simulation results for simultaneous commands of α = 40o and ps = 30o/sec are depicted

in Figures 83–87. Figure 83 shows the vehicles’s angle of attack, ps and β responses. It can be

seen that the composite adaptive design yields better responses than adaptive NDI design.

Angle of attack responses are not much different, while ps and β responses differ greatly,

especially in a time period from 12 sec to 21 sec. As shown in Figure 83(b), composite

adaptive design exhibits smaller overshoots with fewer oscillations in ps responses. A similar

difference is observed in the β response of Figure 83(c). The adaptive NDI results feature

larger overshoots and large-amplitude oscillations. The composite adaptive design features

results with smoother transient responses as a result of its architecture, as noted in Section

7.1.

Aerodynamic and TV control deflections are shown in Figures 84 and 85, respectively.

Similar to the previous simulation, it can be seen that composite adaptive design exhibits

frequent control movement with less control saturation.

Both designs depict good adaptation as shown in Figure 86, and the time histories of K̂e,

K̂r are depicted in Figure 87.
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7.9 Conclusions

Through a systematic approach we set up the NN-based composite model reference adaptive

control design architecture for output feedback control of MIMO nonlinear systems. The

new design has more adaptive elements than the adaptive NDI design of Chapter 3. Both

employ NNs, while the composite adaptive controller also features an adaptive dynamic com-

pensator.

Using Lyapunov’s theorem we investigate the stability analysis of the overall composite adap-

tive control system, and prove the boundedness of all the error signals.

Simulation results using an advanced vehicle, NASA F-15 ACTIVE, show better responses

than the adaptive NDI of Chapter 3 during highly nonlinear maneuvers at nonlinear dynamic

regimes. As a result we can observe that this composite MRAC design using NNs has the

potential for improving the performance of the adaptive control systems.
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Figure 79: Aerodynamic control deflections for a high α command with Adaptive NDI and
Composite adaptive control
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Figure 80: Thrust vector controls with Adaptive NDI and Composite adaptive control
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Figure 81: NN adaptation signal νad(t) and ∆(t) in each channel with Adaptive NDI and
Composite adaptive control
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Figure 82: Time history of adaptive DC gains K̂e, K̂r in each channel of Composite adaptive
control
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Figure 84: Aerodynamic control deflections for a high α command with Adaptive NDI and
Composite adaptive control
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Figure 85: Thrust vector controls with Adaptive NDI and Composite adaptive control
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Figure 86: NN adaptation signal νad(t) and ∆(t) in each channel with Adaptive NDI and
Composite adaptive control
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Figure 87: Time history of adaptive DC gains K̂e, K̂r in each channel of Composite adaptive
control
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CHAPTER VIII

CONCLUSIONS

The research in this thesis is focused on NN-based adaptive control designs for aircraft oper-

ating in highly nonlinear dynamic regimes. This thesis contains nonlinear dynamic inversion-

based output feedback adaptive control design methodologies using neural networks as adap-

tive elements. Three aerial vehicles operating in highly nonlinear, uncertain regimes are

simulated in order to validate the performance of adaptive designs which are systematically

introduced and developed for MIMO nonlinear systems. Simulation results verify that the

NN-based adaptive nonlinear dynamic inversion control design methodologies are highly ef-

fective and powerful for adaptive control of aerial vehicles.

The design was successfully implemented and demonstrated for an accurate nonlinear

model of NASA F-15 ACTIVE (Advanced Control Technology for Integrated Vehicles),

equipped with thrust vectored nozzles [16, 105], which is operated at extremely nonlinear

dynamic regimes where there exist unmodeled parameter variations and unmodeled vehicle

dynamics such as highly nonlinear, unsteady aerodynamic effects, saturation of aerodynamic

effectors, and highly coupled vehicle dynamics [17, 105].

A PCH technique was implemented to protect NN adaptation from various actuation

nonlinearities such as actuator position and rate saturation, while not interfering with NN

adaptation to other sources of inversion error. Thrust vector and differential stabilator are

successfully implemented to increase control authority at high angles of attack, and the

vehicle’s static stability was relaxed in order to achieve more pitch maneuverability. A

control allocation methodology was introduced and implemented for effective operation of

the redundant control effectors of F-15 ACTIVE.

A thorough comparison study was completed on the performance of a classical adaptive
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control design and two different classes of NNs: linearly parameterized RBF NN and nonlin-

early parameterized SHL NN for stabilizing an unsteady lateral dynamics, or wing rock, of

a delta wing [17, 18].

A command augmentation based adaptive control design using NNs was developed and

implemented for a vehicle, FQM-117B UAV which was built with simple and inexpensive

subsystems, with access to little aerodynamic data for control design. Its control system was

designed to achieve high maneuverability without requiring accurate modeling of the vehicle,

and the UAV’s adaptive flight control design provided a way to deal with the uncertainties

in the system and environment [104].

Further, the composite model reference adaptive design methodology was developed for

output feedback MIMO nonlinear systems by introducing additional adaptive elements into

the traditional dynamic compensators and additional terms into both the NN adaptation

laws and the adaptive dynamic compensators. The new adaptive control design scheme was

systematically developed and its stability was proved. Its performance was demonstrated by

using an advanced fighter aircraft model to show improved capability.

8.1 Future Research

8.1.1 Relaxation of Assumption 7.2.3

During feedback linearization and nonlinear dynamic inversion, the internal dynamics or zero

dynamics are assumed to be stable, which means that the process is restricted to minimum

phase systems. Even though widely used in aerospace control designs, this assumption is not

quite applicable for the control of aircraft pitch axis. Any theoretical development to extend

the methods to non-minimum phase systems is desirable.

8.1.2 Relaxation of Assumption 7.4.1

The introduction of Assumption 7.4.1 in the composite MRAC design of Chapter 7 comes

from the fact that utilization of observer error instead tracking error causes triple or higher

order terms, coupled with estimation errors of adaptive dynamic compensator gains Ke, Kr,

164



in the Lyapunov function for the stability analysis. This condition becomes worse with e-

modification of adaptive elements. Actually such condition is common in output feedback

control design problems because of availability of the output signal itself. Mathematical or

theoretical development to overcome this complexity could be a good topic for a future work.
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APPENDIX A

PROOF OF THEOREM 3.7.1

Adaptive Nonlinear Dynamic Inversion Control

Using RBF Neural Networks

Proof. Consider the following Lyapunov function candidate:

V
(
E, Ẽ, W̃

)
= ETPE + Ẽ

T
P̃ Ẽ + tr

(
H · W̃ T Γ−1

w W̃
)

(A.0.1)

The time derivative of V along the trajectories of (3.5.6) and (3.6.3) implies

V̇ = 2ETP Ė + 2Ẽ
T
P̃ ˙̃

E − 2tr
(
H · W̃ T Γ−1

w
˙̂
W
)

+ tr
(
Ḣ · W̃ T Γ−1

w W̃
)

= 2ETPAME − 2ETPB
(
∆ − νad + d −KeẼ

)

+ 2Ẽ
T
P̃ ÃẼ − 2Ẽ

T
P̃B

(
∆− νad + d −KeẼ

)

− 2tr
(
H · W̃ T Γ−1

w
˙̂
W
)

+ tr
(
Ḣ · W̃ T Γ−1

w W̃
)

(A.0.2)

Substituting the σ-modification laws in (3.7.16) with recalling Ẽ = E − Ě, the relation

(3.2.15), (3.3.6), and the fact that, if M1,M2,M3 are matrices such that M1M2M3 is a square

matrix, then tr(M1M2M3) = tr(MT
3 M

T
2 M

T
1 ) = tr(MT

1 M
T
3 M

T
2 ), the equation V̇ in (A.0.2)

becomes

V̇ = 2ETPAME + 2Ẽ
T
P̃ ÃẼ − 2Ẽ(PB + P̃B)HW̃ T Ψ(x) + tr

(
Ḣ · W̃ TΓ−1

w W̃
)

− 2(ETPB + ẼP̃B)
(
HW T (Ψ(µ) − Φ(x,ν l)) +Hε −KeẼ + d

)

+ 2κ · tr
(
HW̃ T (Ŵ −W0)

)
(A.0.3)
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Considering (3.3.7), (3.5.7), (3.6.4), and (3.7.9), this results in

V̇ ≤ −λmin(Q)‖E‖2 − λmin(Q̃)‖Ẽ‖2 + 2pmh‖Ẽ‖(‖PB‖ + ‖P̃B‖)‖W̃‖F +
hm

λmin(Γw)
‖W̃‖2

F

+ 2(‖E‖‖PB‖ + ‖Ẽ‖‖P̃B‖)(2wmpmh + εmh+ dm)

+ 2(‖E‖‖PB‖ + ‖Ẽ‖‖P̃B‖)(kem‖Ẽ‖) + 2κ · tr
(
HW̃ T (Ŵ −W0)

)

(A.0.4)

Using completion of squares yields

V̇ ≤ −
(
λmin(Q) − 1 − k2

em‖PB‖2
)
‖E‖2

−
(
λmin(Q̃) − 3 − 2kem‖P̃B‖

)
‖Ẽ‖2

−
(
κh− p2

mh
2
(‖PB‖ + ‖P̃B‖)2 − hm

λmin(Γw)

)
‖W̃‖2

F

+ (‖PB‖2 + ‖P̃B‖2)(2wmpmh+ εmh+ dm)2 + κh‖W −W0‖2
F

(A.0.5)

where the following trace inequality of matrices was used.

tr
(
W̃ T (Ŵ −W0)

)
≤ ‖W̃‖F‖W −W0‖F − ‖W̃‖2

F

≤ −1

2
‖W̃‖2

F +
1

2
‖W −W0‖2

F

(A.0.6)

Consequently the time derivative of the Lyapunov function V in (A.0.1) becomes negative

outside of the sets, SE, SẼ, and SW defined by:

SE ,



 E : ‖E‖ ≤

√
(‖PB‖2 + ‖P̃B‖2)(2wmpmh + εmh+ dm)2 + κh‖W −W0‖2

F

λmin(Q) − 1 − k2
em‖PB‖2





SẼ ,

{
Ẽ : ‖Ẽ‖ ≤

√
(‖PB‖2 + ‖P̃B‖2)(2wmpmh+ εmh+ dm)2 + κh‖W −W0‖2

F

λmin(Q̃) − 3 − 2kem‖P̃B‖

}

SW ,



 W̃ : ‖W̃‖F ≤

√√√√(‖PB‖2 + ‖P̃B‖2)(2wmpmh+ εmh+ dm)2 + κh‖W −W0‖2
F

κh− p2
mh

2
(‖PB‖ + ‖P̃B‖)2 − hm

λmin(Γw)





(A.0.7)

Therefore it can be concluded that V̇ (ζ) is negative outside a compact set.

Bθ , { ζ ∈ BR | ‖ζ‖ ≤ θ} (A.0.8)
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where ζ =
[
ET Ẽ

T
W̃ T

]T
. It can be seen from (3.7.12) that Bθ ⊂ BR. Let β be the

maximum value of the Lyapunov function V (ζ) on the boundary of Bθ as

β , max
‖ζ‖=θ

V (ζ) (A.0.9)

Defining the set

Ωβ , { ζ | V (ζ) ≤ β} (A.0.10)

the conditions (3.7.6), (3.7.7) and (3.7.12) ensures Ωβ ⊂ Ωα and thus ultimate boundedness

of ζ with ultimate boundedness equal to η−1
1 (η2(θ)). Consequently, according to Lyapunov’s

direct theorem, this proof demonstrates the ultimate uniform boundedness of
(
E, Ẽ, W̃

)

with RBF NNs.
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APPENDIX B

PROOF OF THEOREM 3.7.2

Adaptive Nonlinear Dynamic Inversion Control

Using SHL Neural Networks

Proof. Consider the following Lyapunov function candidate:

L
(
E, Ẽ, Ṽ , W̃

)
= ETPE + Ẽ

T
P̃ Ẽ + tr

(
W̃ T Γ−1

w W̃
)

+ tr
(
Ṽ T Γ−1

v Ṽ
)

(B.0.1)

The time derivative of V along the trajectories of (3.5.6) and (3.6.3) implies

L̇ = 2ETP Ė + 2Ẽ
T
P̃ ˙̃

E − 2tr
(
W̃ TΓ−1

w
˙̂
W
)
− 2tr

(
Ṽ T Γ−1

v
˙̂
V
)

= 2ETPAME − 2ETPB
(
∆− νad + d −KeẼ

)

+ 2Ẽ
T
P̃ ÃẼ − 2Ẽ

T
P̃B

(
∆ − νad + d −KeẼ

)

− 2tr
(
W̃ TΓ−1

w
˙̂
W
)
− 2tr

(
Ṽ T Γ−1

v
˙̂
V
)

(B.0.2)

Substituting the σ-modification laws in (3.7.22) with recalling Ẽ = E − Ě, the relation

(3.3.14), and the fact that, if M1,M2,M3 are matrices such that M1M2M3 is a square matrix,

then tr(M1M2M3) = tr(MT
3 M

T
2 M

T
1 ) = tr(MT

1 M
T
3 M

T
2 ), the equation L̇ in (B.0.2) becomes

L̇ = 2ETPAME + 2Ẽ
T
P̃ ÃẼ − 2Ẽ(PB + P̃B)

(
W̃ T

(
σ̂ − σ̂′V̂ T µ

)
+ Ŵ T σ̂′Ṽ T µ

)

− 2(EPB + ẼP̃B)(ε − w + d) + 2(EPB + ẼP̃B)KeẼ

+ 2κw · tr
(
W̃ T (Ŵ −W0)

)
+ 2κv · tr

(
Ṽ T (V̂ − V0)

)
(B.0.3)
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Considering (3.5.7) and (3.6.4) yields

L̇ ≤ −λmin(Q)‖E‖2 − λmin(Q̂)‖Ê‖2 − 2Ẽ(PB + P̃B) (∆ − νad)

+ 2(Ẽ − E)PB(ε − w + d) + 2(EPB + ẼP̃B)KeẼ

− κw‖W̃‖2
F + κw‖W −W0‖2

F − κv‖Ṽ ‖2
F + κv‖V − V0‖2

F

(B.0.4)

where the following trace inequality of matrices was used.

tr
(
W̃ T (Ŵ −W0)

)
≤ ‖W̃‖F‖W −W0‖F − ‖W̃‖2

F

≤ −1

2
‖W̃‖2

F +
1

2
‖W −W0‖2

F

(B.0.5)

Considering (3.3.15) and (3.3.17) results in

L̇ ≤ −λmin(Q)‖E‖2 − λmin(Q̂)‖Ê‖2 + 2‖Ẽ‖
(
‖PB‖ + ‖P̃B‖

)(
α1‖Z̃‖F + α2

)

+ 2
(
‖Ẽ‖ + ‖E‖

)
‖PB‖

(
γ1‖Z̃‖F + γ2 + dm

)
+ 2kem

(
‖E‖‖PB‖ + ‖Ẽ‖‖P̃B‖

)
‖Ẽ‖

− κw‖W̃‖2
F + κw‖W −W0‖2

F − κv‖Ṽ ‖2
F + κv‖V − V0‖2

F

(B.0.6)

Assigning pa = max{‖PB‖, ‖P̃B‖}, κa = min{κv, κw}, and using completion of squares

yield

L̇ ≤ − (λmin(Q) − γ1‖PB‖(1 + γ2 + dm) − 2pakem) ‖E‖2

−
(
λmin(Q̃) − 2pa(α1 + α2) − γ1‖PB‖(1 + γ2 + dm) − 6pakem

)
‖Ẽ‖2

− (κa − 2α1pa − 2γ1‖PB‖) ‖Z̃‖2
F

+ 2α1pa + 2γ1(γ2 + dm)‖PB‖ + κw‖W −W0‖2
F + κv‖V − V0‖2

F

(B.0.7)

Consequently, recalling

‖Z̃‖F = ‖



W̃ 0

0 Ṽ


 ‖F = ‖W̃‖F + ‖Ṽ ‖F

the time derivative of the Lyapunov function L in (B.0.1) becomes negative outside of the

sets, SE, SẼ , SZ defined by:
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SE ,

{
E : ‖E‖ ≤

√
2α1pa + 2γ1(γ2 + dm)‖PB‖ + κw‖W −W0‖2

F + κv‖V − V0‖2
F

λmin(Q) − γ1‖PB‖(1 + γ2 + dm) − 2pakem

}

SẼ ,

{
Ẽ : ‖Ẽ‖ ≤

√
2α1pa + 2γ1(γ2 + dm)‖PB‖ + κw‖W −W0‖2

F + κv‖V − V0‖2
F

λmin(Q̃) − 2pa(α1 + α2) − γ1‖PB‖(1 + γ2 + dm) − 6pakem

}

SZ̃ ,

{
Z̃ : ‖Z̃‖F ≤

√
2α1pa + 2γ1(γ2 + dm)‖PB‖ + κw‖W −W0‖2

F + κv‖V − V0‖2
F

κa − 2α1pa − 2γ1‖PB‖

}

(B.0.8)

Therefore it can be concluded that L̇(ζ) is negative outside a compact set.

Bλ , { ζ ∈ BR | ‖ζ‖ ≤ λ} (B.0.9)

where ζ =
[
ET Ẽ

T
W̃ T Ṽ T

]T
. It can be seen from (3.7.19) that Bλ ⊂ BR. Let β be the

maximum value of the Lyapunov function L(ζ) on the boundary of Bλ as

β , max
‖ζ‖=λ

L(ζ) (B.0.10)

Defining the set

Ωβ , { ζ | L(ζ) ≤ β} (B.0.11)

the conditions (3.7.6), (3.7.7) and (3.7.19) ensures Ωβ ⊂ Ωα and thus ultimate boundedness

of ζ with ultimate boundedness equal to ϕ−1
1 (ϕ2(λ)). Consequently, according to Lyapunov’s

direct theorem, this proof demonstrates the ultimate uniform boundedness of
(
E, Ẽ, Z̃

)
, or

(
E, Ẽ, Ṽ , W̃

)
with SHL NNs.
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APPENDIX C

PROOF OF THEOREM 7.7.1

Composite Model Reference Adaptive NDI Control

Using RBF Neural Networks

Proof. Consider the following Lyapunov function candidate:

V
(
E, Ê, K̃e, K̃r, W̃

)
= ETPE + Ê

T
P̂ Ê + tr

(
K̃T

e Γ−1
e K̃e + K̃T

r Γ−1
r K̃r +H · W̃ T Γ−1

w W̃
)

(C.0.1)

The time derivative of V along the trajectories of (7.5.10) and (7.6.3) implies

V̇ = 2ETP Ė + 2Ê
T
P̂

˙̂
E − 2tr

(
K̃T

e Γ−1
e

˙̂
Ke + K̃T

r Γ−1
r

˙̂
Kr +H · W̃ T Γ−1

w
˙̂
W
)

+ 2tr
(
Ḣ · W̃ T Γ−1

w W̃
)

= 2ETPAME − 2ETPB
(
K̃ey − K̃ryc + ∆ − νad + d

)

+ 2Ê
T
P̂AP Ê − 2Ê

T
P̂B

(
K̃ey − K̃ryc + ∆ − νad + d

)

− 2tr
(
K̃T

e Γ−1
e

˙̂
Ke + K̃T

r Γ−1
r

˙̂
Kr +H · W̃ T Γ−1

w
˙̂
W
)

+ 2tr
(
Ḣ · W̃ TΓ−1

w W̃
)

(C.0.2)

Substituting the σ-modification laws in (7.7.16) with recalling the relations (3.3.6) and (7.3.9),

and the fact that, if M1,M2,M3 are matrices such that M1M2M3 is a square matrix, then

tr(M1M2M3) = tr(MT
3 M

T
2 M

T
1 ) = tr(MT

1 M
T
3 M

T
2 ), the equation V̇ in (C.0.2) becomes

V̇ = 2ETPAME + 2Ê
T
P̂AP Ê + 2ρe · tr

(
K̃T

e (K̂e −Keo)
)

+ 2ρr · tr
(
K̃T

r (K̂e −Keo)
)

+ 2ρwκ · tr
(
HW̃ T (Ŵ −Wo)

)
+ 2tr

(
Ḣ · W̃ TΓ−1

w W̃
)

+ 2
(
ETPB + Ê

T
P̂B
)
·
{
HW T (Ψ(µ) − Ψ(x,ν l)) −Hε − d

}

(C.0.3)
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Considering (3.3.7), (7.5.11), (7.6.4), and (7.7.9), this results in

V̇ ≤ −λmin(Q)‖E‖2 − λmin(Q̂)‖Ê‖2 +
hm

λmin(Γw)
‖W̃‖2

F

+ ρe

(
‖Ke −Keo‖2

F − ‖K̃e‖2
F

)
+ ρr

(
‖Kr −Kro‖2

F − ‖K̃r‖2
F

)
+ κh

(
‖W −W0‖2

F − ‖W̃‖2
F

)

+ 2
(
‖E‖‖PB‖ + ‖Ẽ‖‖P̃B‖ + ‖Ê‖‖P̂B‖

) (
2wmpmh+ εmh+ dm

)

(C.0.4)

where the following trace inequality of matrices was used.

tr
(
W̃ T (Ŵ −W0)

)
≤ ‖W̃‖F‖W −W0‖F − ‖W̃‖2

F

≤ −1

2
‖W̃‖2

F +
1

2
‖W −W0‖2

F

(C.0.5)

Using completion of squares yields

V̇ ≤ − (λmin(Q) − 1) ‖E‖2 −
(
λmin(Q̂) − 1

)
‖Ê‖2 − ρe‖K̃e‖2

F − ρr‖K̃r‖2
F − κh‖W̃‖2

F

+ ρe‖Ke −Keo‖2
F + ρr‖Kr −Kro‖2

F + κh‖W −W0‖2
F

+
(
‖PB‖2 + ‖P̃B‖2 + ‖P̂B‖2

) (
2wmpmh + εmh+ dm

)2

(C.0.6)

Consequently the time derivative of the Lyapunov function V in (C.0.1) becomes negative

outside of the sets, SE, SÊ, SKe, SKr, and SW defined by:

SE ,

{
E : ‖E‖ ≤

√
Π1 + Π2

λmin(Q) − 1

}

SÊ ,

{
Ê : ‖Ê‖ ≤

√
Π1 + Π2

λmin(Q̂) − 1

}

SKe ,

{
K̃e : ‖K̃e‖F ≤

√
Π1 + Π2

ρe

}

SKr ,

{
K̃r : ‖K̃r‖F ≤

√
Π1 + Π2

ρr

}

SW ,

{
W̃ : ‖W̃‖F ≤

√
Π1 + Π2

κh

}

(C.0.7)
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where

Π1 , ρe‖Ke −Keo‖2
F + ρr‖Kr −Kro‖2

F + κh‖W −W0‖2
F

Π2 ,
(
‖PB‖2 + ‖P̃B‖2 + ‖P̂B‖2

) (
2wmpmh+ εmh + dm

)2 (C.0.8)

Therefore it can be concluded that V̇ (ζ) is negative outside a compact set.

Bθ , { ζ ∈ BR | ‖ζ‖ ≤ θ} (C.0.9)

where ζ =
[
ET Ê

T
K̃T

e K̃T
r W̃ T

]T
. It can be seen from (7.7.12) that Bθ ⊂ BR. Let β be

the maximum value of the Lyapunov function V (ζ) on the boundary of Bθ as

β , max
‖ζ‖=θ

V (ζ) (C.0.10)

Defining the set

Ωβ , { ζ | V (ζ) ≤ β} (C.0.11)

the conditions (7.7.6), (7.7.7) and (7.7.12) ensures Ωβ ⊂ Ωα and thus ultimate bound-

edness of ζ with ultimate boundedness equal to η−1
1 (η2(θ)). Consequently, according to

Lyapunov’s direct theorem, this proof demonstrates the ultimate uniform boundedness of
(
E, Ê, K̃e, K̃r, W̃

)
with RBF NNs.
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APPENDIX D

PROOF OF THEOREM 7.7.2

Composite Model Reference Adaptive NDI Control

Using SHL Neural Networks

Proof. Consider the following Lyapunov function candidate:

L
(
E, Ê, K̃e, K̃r, Ṽ , W̃

)
= ETPE + Ê

T
P̂ Ê

+ tr
(
K̃T

e Γ−1
e K̃e + K̃T

r Γ−1
r K̃r + Ṽ T Γ−1

v Ṽ + W̃ T Γ−1
w W̃

) (D.0.1)

The time derivative of V along the trajectories of (7.5.10) and (7.6.3) implies

L̇ = 2ETP Ė + 2Ê
T
P̂

˙̂
E − 2tr

(
K̃T

e Γ−1
e

˙̂
Ke + K̃T

r Γ−1
r

˙̂
Kr + Ṽ T Γ−1

v
˙̂
V + W̃ T Γ−1

w
˙̂
W
)

= 2ETPAME − 2ETPB
(
K̃ey − K̃ryc + ∆ − νad + d

)

+ 2Ê
T
P̂AP Ê − 2Ê

T
P̂B

(
K̃ey − K̃ryc + ∆ − νad + d

)

− 2tr
(
K̃T

e Γ−1
e

˙̂
Ke + K̃T

r Γ−1
r

˙̂
Kr + Ṽ T Γ−1

v
˙̂
V + W̃ T Γ−1

w
˙̂
W
)

(D.0.2)

Substituting the σ-modification laws in (7.7.22) with recalling the relation (2.2.13), and

the fact that, if M1,M2,M3 are matrices such that M1M2M3 is a square matrix, then

tr(M1M2M3) = tr(MT
3 M

T
2 M

T
1 ) = tr(MT

1 M
T
3 M

T
2 ), the equation V̇ in (D.0.2) becomes

L̇ = 2ETPAME + 2Ê
T
P̂AP Ê + 2ρe · tr

(
K̃T

e (K̂e −Keo)
)

+ 2ρr · tr
(
K̃T

r (K̂e −Keo)
)

+ 2κv · tr
(
Ṽ T (V̂ − Vo)

)
+ 2κw · tr

(
W̃ T (Ŵ −Wo)

)

− 2
(
ETPB + Ê

T
P̂B
)

(∆ − νad + d) − 2
(
ETPB + Ê

T
P̂B
)

(ε − w)

+ 2
(
ETPB + Ê

T
P̂B
)(

W̃ T
(
σ̂ − σ̂′V̂ T µ

)
+ Ŵ T σ̂′Ṽ T µ + ε − w

)

(D.0.3)
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Considering (3.3.15), (7.5.11), and (7.6.4), this yields

L̇ ≤ −λmin(Q)‖E‖2 − λmin(Q̂)‖Ê‖2 +
(
‖E‖‖PB‖ + ‖Ê‖‖P̂B‖

)
dm

+
(
‖E‖‖PB‖ + ‖Ê‖‖P̂B‖

)(
γ1‖Z̃‖F + γ2

)

− ρe‖K̃e‖2
F + ρe‖Ke −Keo‖2

F − ρr‖K̃r‖2
F + ρr‖Kr −Kro‖2

F

− κv‖Ṽ ‖2
F + κv‖V − V0‖2

F − κw‖W̃‖2
F + κw‖W −W0‖2

F

(D.0.4)

where the following trace inequality of matrices was used.

tr
(
K̃T

e (K̂e −Keo)
)
≤ ‖K̃e‖F‖Ke −Keo‖F − ‖K̃e‖2

F

≤ −1

2
‖K̃e‖2

F +
1

2
‖Ke −Keo‖2

F

(D.0.5)

Assigning pb = max{‖PB‖, ‖P̂B‖}, κb = min{κv, κw}, and using completion of squares

result in

L̇ ≤ − (λmin(Q) − pb(γ1 + γ2 + dm)) ‖E‖2 −
(
λmin(Q̂) − pb(γ1 + γ2 + dm)

)
‖Ê‖2

− (κb − 2γ1pb)‖Z̃‖2
F − ρe‖K̃e‖2

F − ρr‖K̃r‖2
F

+ 2pb(γ2 + dm) + ρe‖Ke −Keo‖2
F + ρr‖Kr −Kro‖2

F + κv‖V − V0‖2
F + κw‖W −W0‖2

F

(D.0.6)

Consequently, recalling

‖Z̃‖F = ‖



W̃ 0

0 Ṽ


 ‖F = ‖W̃‖F + ‖Ṽ ‖F

the time derivative of the Lyapunov function L in (D.0.1) becomes negative outside of the

sets, SE, SÊ , SKe, SKr, and SZ̃ defined by:
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SE ,

{
E : ‖E‖ ≤

√
Ω1 + Ω2

λmin(Q) − pb(γ1 + γ2 + dm)

}

SÊ ,

{
Ê : ‖Ê‖ ≤

√
Ω1 + Ω2

λmin(Q̂) − pb(γ1 + γ2 + dm)

}

SKe ,

{
K̃e : ‖K̃e‖F ≤

√
Ω1 + Ω2

ρe

}

SKr ,

{
K̃r : ‖K̃r‖F ≤

√
Ω1 + Ω2

ρr

}

SZ̃ ,

{
Z̃ : ‖Z̃‖F ≤

√
Ω1 + Ω2

κb − 2γ1pb

}

(D.0.7)

where

Ω1 , κb − 2γ1pb

Ω2 , ρe‖Ke −Keo‖2
F + ρr‖Kr −Kro‖2

F + κv‖V − V0‖2
F + κw‖W −W0‖2

F

(D.0.8)

Therefore it can be concluded that L̇(ζ) is negative outside a compact set.

Bλ , { ζ ∈ BR | ‖ζ‖ ≤ λ} (D.0.9)

where ζ =
[
ET Ê

T
K̃T

e K̃T
r W̃ T Ṽ T

]T
. It can be seen from (7.7.19) that Bλ ⊂ BR. Let β

be the maximum value of the Lyapunov function L(ζ) on the boundary of Bλ as

β , max
‖ζ‖=λ

L(ζ) (D.0.10)

Defining the set

Ωβ , { ζ | L(ζ) ≤ β} (D.0.11)

the conditions (7.7.6), (7.7.7) and (7.7.19) ensures Ωβ ⊂ Ωα and thus ultimate bound-

edness of ζ with ultimate boundedness equal to ϕ−1
1 (ϕ2(λ)). Consequently, according to

Lyapunov’s direct theorem, this proof demonstrates the ultimate uniform boundedness of
(
E, Ê, K̃e, K̃r, Z̃

)
, or

(
E, Ê, K̃e, K̃r, Ṽ , W̃

)
with SHL NNs.
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APPENDIX E

AIRCRAFT EQUATIONS OF MOTION

The aircraft dynamic equations used in this thesis for nonlinear dynamic inversion are given

in this Appendix. The aircraft dynamics are divided into slow and fast dynamics. First

accurate expressions are presented for the slow and fast dynamics [5, 108, 121]. Then a set

of assumptions are introduced to simplify these expressions needed for the inversion process

outlined in Chapters 4 and 6.

E.1 The Slow Dynamics

The slow dynamics can be written in the following form



α̇

α̈

β̇

β̈

φ̇

θ̇

V̇

V̈




=




f1(x)

f2(x, δ)

f3(x)

f4(x, δ)

f5(x, δ)

f6(x, δ)

f7(x, δ)

f8(x, δ, δ̇)




+




0 0 0

− tan(β) 1 0

0 0 0

0 0 −1

0 0 0

0 0 0

0 0 0

0 0 0







ṗs

q̇

ṙs




(E.1.1)

where

α̇ = q − [p cos(α) + r sin(α)] tan(β) +
1

V cos(β)
[− sin(α)(AX +Gx + AT x) + cos(α)(AZ +Gz + AT z)]

= q − ps tan(β) +
1

V cos(β)
[−ax sin(α) + az cos(α)]

= f1(x)

(E.1.2)
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α̈ = q̇ − ṗs tan(β) − sin(α)

V cos(β)
· ȧx +

cos(α)

V cos(β)
· ȧz −

1

V 2 cos(β)
[−ax sin(α) + az cos(α)] · V̇

− 1

V cos(β)
[ax cos(α) + az sin(α)] · α̇ + [− ps

cos2(β)
+

tan(β)

V cos(β)
(−ax sin(α) + az cos(α))] · β̇

= f2(x) − ṗs tan(β) + q̇

(E.1.3)

β̇ = −rs +
1

V
[− cos(α) sin(β)(AX +Gx + AT x) + cos(β)(AY +Gy + AT y)

− sin(α) sin(β)(AZ +Gz + AT z)]

= −rs +
1

V
[−ax cos(α) sin(β) + ay cos(β) − az sin(α) sin(β)]

= f3(x)

(E.1.4)

β̈ = −ṙs −
1

V
cos(α) sin(β) · ȧx +

1

V
cos(β) · ȧy −

1

V
sin(α) sin(β) · ȧz

− 1

V 2
[−ax cos(α) sin(β) + ay cos(β) − az sin(α) sin(β)] · V̇

+
1

V
[ax sin(α) sin(β) − az cos(α) sin(β)] · α̇

− 1

V
[ax cos(α) cos(β) + ay sin(β) + az sin(α) cos(β)] · β̇

= f4(x) − ṙs

(E.1.5)

φ̇ = p+ q · tan(θ) sin(φ) + r · tan(θ) cos(φ)

= f5(x)

(E.1.6)

θ̇ = q · cos(φ) − r · sin(φ)

= f6(x)

(E.1.7)

V̇ = cos(α) cos(β)(AX +Gx + AT x) + sin(β)(AY +Gy + AT y) + sin(α) cos(β)(AZ +Gz + AT z)

= ax cos(α) cos(β) + ay sin(β) + az sin(α) cos(β)

= f7(x)

(E.1.8)
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V̈ = ȧx · cos(α) cos(β) + ȧy · sin(β) + ȧz · sin(α) cos(β)

+ [−ax sin(α) cos(β) + az cos(α) cos(β)] · α̇

+ [−ax cos(α) sin(β) + ay cos(β) − az sin(α) sin(β)] · β̇

= f8(x)

(E.1.9)

In the above equations, ax, ay, az are the total accelerations along the body x,y,z axes due

to aerodynamic forces, gravity and thrust:

ax = AX +Gx + AT x

ay = AY +Gy + AT y

az = AZ +Gz + AT z

(E.1.10)

where, AX , AY , AZ are the accelerations due to aerodynamic forces along the body x,y,z

axes. These can be written using wind axis forces, drag(D), sideforce(Y) and lift(L). It is

noted that this is necessary because F-15 database consists of these wind axis components [8]:




AX

AY

AZ




=
1

m
·




cos(α) cos(β) − cos(α) sin(β) − sin(α)

sin(β) cos(β) 0

sin(α) cos(β) − sin(α) sin(β) cos(α)







−D

Y

−L




WIND

=
1

m
·




−D cos(α) cos(β) − Y cos(α) sin(β) + L sin(α)

−D sin(β) + Y cos(β)

−D sin(α) cos(β) − Y sin(α) sin(β) − L cos(α)




(E.1.11)

where

D = D0 +Dα · α +Dδe · δe

Y = Yβ · β + Yδa · δa+ Yδr · δr

L = L0 + Lα · α + Lδe · δe

(E.1.12)
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Gx, Gy, Gz are the components of gravity along the body x,y,z axes:

Gx = −g · sin(θ)

Gy = g · cos(θ) sin(φ)

Gz = g · cos(θ) cos(φ)

(E.1.13)

Including the thrust vectoring nozzles, the control vector has a total of seven elements

δ = [ δe δa δr δp1 δy1 δp2 δy2 ]T (E.1.14)

where δp1 and δy1 are the pitch and yaw vectoring of left engine, and δp2 and δy2 are the

pitch and yaw vectoring of left engine.

The forces produced by thrust vectored engines along three axes are described as follows.

FTx = Tp · {cos(δp1) cos(δy1) + cos(δp2) cos(δy2)}

FTy = Tp · {sin(δy1) + sin(δy2)}

FTz = −Tp · {sin(δp1) cos(δy1) + sin(δp2) cos(δy2)}

(E.1.15)

where Tp denotes the thrust of a single engine, i.e. T = 2Tp.

If small TVC angles are assumed, these equations for the forces can be simplified to:

FTx
∼= T = 2 · Tp

FTy
∼= Tp · {δy1 + δy2}

FTz
∼= −Tp · {δp1 + δp2}

(E.1.16)

The accelerations due to thrust and TVC along the body x,y,z axes, AT x, AT y and AT z in

(E.1.10) can thus be approximated by:

AT x =
FTx

m
∼= T

m

AT y =
FTy

m
∼= Tp

m
· {δy1 + δy2}

AT z =
FTz

m
∼= −Tp

m
· {δp1 + δp2}

(E.1.17)
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The jerk terms in (E.1.9) can be expressed in the following form:




ȧx

ȧy

ȧz




=




Ġx + ȦT x

Ġy + ȦT y

Ġz + ȦT z




+




AXδe AXδa AXδr

AY δe AY δa AY δr

AZδe AZδa AZδr







δ̇e

δ̇a

δ̇r




+
1

V




2AX AXα AXβ

2AY AY α AY β

2AZ AZα AZβ



· C(α, β) ·







ax

ay

az




+ V ·




r sin(β) − q sin(α) cos(β)

p sin(α) cos(β) − r cos(α) cos(β)

q cos(α) cos(β) − p sin(β)







(E.1.18)

where

C(α, β) =




cos(α) cos(β) sin(β) sin(α) cos(β)

− sin(α)/ cos(β) 0 cos(α)/ cos(β)

− cos(α) sin(β) cos(β) − sin(α) sin(β)




(E.1.19)

and

Ġx = −g · cos(θ) · θ̇

Ġy = −g · sin(θ) sin(φ) · θ̇ + g · cos(θ) cos(φ) · φ̇

Ġz = −g · sin(θ) cos(φ) · θ̇ − g · cos(θ) sin(φ) · φ̇

(E.1.20)

E.2 The Fast Dynamics

The fast dynamics can be written as:




ṗs

q̇

ṙs




=




f9(x)

f10(x)

f11(x)




+




Lδa
0 Lδr

0 Mδe
0

N δa
0 N δr







δa

δe

δr




(E.2.1)
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where

f9(x) = [Epq cos(α) +Hpq sin(α)] pq + [Eqr cos(α) +Hqr sin(α)] qr + Lβ · β + Lp · ps + Lr · rs

+ LT cos(α) +NT sin(α)

f10(x) = Fprpr + Frr(r
2 − p2) +Mα · α +Mq · q +MT

= Fprpr + Frr(r
2 − p2) +WM · Cmα · α +WM · ( c

2V
) · Cmq · q +MT

f11(x) = [Hpq cos(α) − Epq sin(α)] pq + [Hqr cos(α) − Eqr sin(α)] qr +Nβ · β +N p · ps +N r · rs

− LT sin(α) +NT cos(α)

(E.2.2)

and

Lδa
= (JLClδa + JNCnδa) cos(α) + (KNCnδa +KLClδa) sin(α)

Lδr
= (JLClδr + JNCnδr) cos(α) + (KNCnδr +KLClδr) sin(α)

Lβ = (JLClβ + JNCnβ) cos(α) + (KNCnβ +KLClβ) sin(α)

Mδe
= WMCmδe

N δa
= (KNCnδa +KLClδa) cos(α) − (JLClδa + JNCnδa) sin(α)

N δr
= (KNCnδr +KLClδr) cos(α) − (JLClδr + JNCnδr) sin(α)

Nβ = (KNCnβ +KLClβ) cos(α) − (JLClβ + JNCnβ) sin(α)

(E.2.3)

and


Lp Lr

N p N r


 =




cos(α) sin(α)

− sin(α) cos(α)






Lp Lr

Np Nr







cos(α) − sin(α)

sin(α) cos(α)




=




cos(α) sin(α)

− sin(α) cos(α)



(
qSb2

2V

)


Ixx −Ixz

−Ixz Izz




−1 

Clp Clr

Cnp Cnr







cos(α) − sin(α)

sin(α) cos(α)




(E.2.4)
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and

JL =
qSbIzz

IxxIzz − I2
xz

, JN =
qSbIxz

IxxIzz − I2
xz

WM =
qSc

Iyy

,

KN =
qSbIxx

IxxIzz − I2
xz

, KL =
qSbIxz

IxxIzz − I2
xz

(E.2.5)

and

Epq =
Ixz(Ixx − Iyy + Izz)

IxxIzz − I2
xz

, Eqr =
Izz(Iyy − Izz) − I2

xz

IxxIzz − I2
xz

Fpr =
Izz − Ixx

Iyy

, Frr =
Ixz

Iyy

Hpq =
Ixx(Ixx − Iyy) + I2

xz

IxxIzz − I2
xz

, Hqr =
−Ixz(Ixx − Iyy + Izz)

IxxIzz − I2
xz

(E.2.6)

All the aerodynamic derivatives in the fast dynamic equations are described in body axis.

The moments produced by thrust vectored engines along three axes, LT ,MT , NT are

described as follows:

LT = Tp · ly · {sin(δp1) cos(δy1) − sin(δp2) cos(δy2)}

MT = −Tp · lx · {sin(δp1) cos(δy1) + sin(δp2) cos(δy2)}

NT = −Tp · lx · {sin(δy1) + sin(δy2)} + Tp · ly{cos(δp1) cos(δy1) − cos(δp2) cos(δy2)}

(E.2.7)

where lx is the distance from the aircraft’s center of gravity to the nozzle, and ly is the

distance from the center line of the aircraft to one engine.

If small TVC angles are assumed, these equations for moments can be written by:

LT
∼= Tp · ly · (δp1 − δp2)

MT
∼= −Tp · lx · (δp1 + δp2)

NT
∼= −Tp · lx · (δy1 + δy2)

(E.2.8)
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Thus LT ,MT and NT in equation (E.2.2) are:

LT =
LT · Izz

IxxIzz − I2
xz

=
Tp · ly · Izz · (δp1 − δp2)

IxxIzz − I2
xz

MT =
MT

Iyy
=

−Tp · lx · (δp1 + δp2)

Iyy

NT =
NT · Ixx

IxxIzz − I2
xz

=
−Tp · lx · Ixx · (δy1 + δy2)

IxxIzz − I2
xz

(E.2.9)

E.3 Simplified Dynamic Equations

It is possible to simplify the equations using the following assumptions:

Assumption E.3.1. In order to simplify the full scale nonlinear equations of motion of the

aircraft, we introduce reasonable assumptions such as:

1. In the fast dynamics the time derivatives of the slow states are ignored because they

are regarded as slow variables. Also, in the slow dynamics, the time derivatives of the

actual controls are ignored, and the time derivatives of the fast states are treated as

control variables.

2. Sideslip angle, β, is small, hence

sin(β) ∼= 0, cos(β) ∼= 1, tan(β) ∼= 0 (E.3.1)

3. Ixz is negligible.

4. Directional acceleration change due to thrust vectoring is negligible.

AT x
∼= constant. AT y = AT z

∼= 0. ȦT x = ȦT y = ȦT z
∼= 0. (E.3.2)

5. AX0, AXδa, AXδr, AY δe, AY δa, AZδa, AZδr, AXβ, AY α, AZβ are negligible.

6. The rate of change of velocity is negligible.

7. Cnδa, Clδr, Lδr, Lr, N δa, Np are negligible.
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E.3.1 Simplified Slow Dynamics

With the above assumptions, the accelerations in (E.1.10) can be simplified to:

ax = AX +Gx + T/m

ay = AY +Gy

az = AZ +Gz

(E.3.3)

where the simplified AX , AY , AZ of (E.1.11) and Gx, Gy, Gz in (E.1.13) are:

AX = − 1

m
· [D cos(α) − L sin(α)]

= −qS
m

· (CD0 + CDα · α + CDδe · δe) cos(α) +
qS

m
· (CL0 + CLα · α + CLδe · δe) sin(α)

AY =
qS

m
· (CY β · β + CY δr · δr)

AZ = − 1

m
· [D sin(α) + L cos(α)]

= −qS
m

· (CD0 + CDα · α + CDδe · δe) sin(α) − qS

m
· (CL0 + CLα · α + CLδe · δe) cos(α)

(E.3.4)

and

Ġx = −g · cos(θ) · θ̇

∼= −g · cos(θ) · q

Ġy = −g · sin(θ) sin(φ) · θ̇ + g · cos(θ) cos(φ) · φ̇

∼= g · cos(θ) cos(φ) · p

Ġz = −g · sin(θ) cos(φ) · θ̇ − g · cos(θ) sin(φ) · φ̇

∼= −g · cos(θ) sin(φ) · p

(E.3.5)
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The equations for ȧx, ȧy, ȧz in (E.1.18) are expressed by:



ȧx

ȧy

ȧz



∼=




Ġx

Ġy

Ġz




+




AXδe 0 0

0 0 AY δr

AZδe 0 0







δ̇e

δ̇a

δ̇r




=




Ġx + AXδe · δ̇e

Ġy + AY δr · δ̇r

Ġz + AZδe · δ̇e




∼=




−g · cos(θ) · q + 1
m
qS · [−CDδe cos(α) + CLδe sin(α)] · δ̇e

g · cos(θ) cos(φ) · p+ 1
m
qS · CY δr · δ̇r

−g · cos(θ) sin(φ) · p− 1
m
qS · [CDδe sin(α) + CLδe cos(α)] · δ̇e




∼=




−g · cos(θ) · q + 1
m
qS · CLδe sin(α) · δ̇e

g · cos(θ) cos(φ) · p + 1
m
qS · CY δr · δ̇r

−g · cos(θ) sin(φ) · p− 1
m
qS · CLδe cos(α) · δ̇e




(E.3.6)

The functions from f1(x) to f8(x) given in (E.1.2) ∼ (E.1.9) are expressed in much simpler

forms:

α̇ = q +
1

V
[−ax sin(α) + az cos(α)]

= q +
g

V
· cos(θ) cos(φ) cos(α) − T

mV
sin(α) − qS

mV
CLα · α

= f1(x)

(E.3.7)

α̈ = q̇ − ṗs tan(β) − ps · β̇ − sin(α)

V
· ȧx +

cos(α)

V
· ȧz

= q̇ − ṗs tan(β) − ps · β̇ +
g

V
· {q cos(θ) sin(α) − p cos(α) cos(θ) sin(φ)}

∼= q̇ − ṗs tan(β) − ps · β̇ − g

V
· ps · cos(θ) sin(φ)

= q̇ + f2(x)

(E.3.8)

β̇ = −rs +
ay

V

∼= −rs +
g

V
cos(θ) sin(φ) +

qS

mV
CY δr · δr +

qS

mV
CY β · β

= f3(x)

(E.3.9)
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β̈ = −ṙs +
1

V
· ȧy

∼= −ṙs +
g

V
· p · cos(θ) cos(φ) +

qS

mV
CY β · β̇

= −ṙs + f4(x)

(E.3.10)

φ̇ = p+ q · tan(θ) sin(φ) + r · tan(θ) cos(φ)

= f5(x)

(E.3.11)

θ̇ = q · cos(φ) − r · sin(φ)

= f6(x)

(E.3.12)

V̇ = ax cos(α) + az sin(α)

∼= g · {cos(θ) cos(φ) sin(α) − sin(θ) cos(α)} +
T

m
cos(α) − qS

mV
CDα · α

= f7(x)

(E.3.13)

V̈ = ȧx · cos(α) + ȧz · sin(α)

∼= −g · {q cos(θ) cos(α) + p cos(θ) sin(φ) sin(α)}

∼= −g · q cos(θ) cos(α)

= f8(x)

(E.3.14)

E.3.2 Simplified Fast Dynamics

Using Assumptions 1 ∼ 6 reduces (E.2.1) to




ṗs

q̇

ṙs




=




f9(x)

f10(x)

f11(x)




+




Lδa
0 0

0 Mδe
0

0 0 N δr







δa

δe

δr




(E.3.15)

where

f9(x) = Eqr cos(α) · qr +Hpq sin(α) · pq + Lβ · β + Lp · ps

f10(x) = Fpr · pr +WM · Cmα · α +WM · ( c

2V
)Cmq · q

f11(x) = −Eqr sin(α) · qr +Hpq cos(α) · pq +Nβ · β +N r · rs

(E.3.16)

188



Also, (E.2.3) reduces to:

Lδa
= JLClδa cos(α)

Lβ = JLClβ cos(α) +KNCnβ sin(α)

Mδe
= WMCmδe

N δr
= KNCnδr cos(α)

Nβ = KNCnβ cos(α) − JLClβ sin(α)

(E.3.17)

and (E.2.4) simplifies to:

Lp = JL(
b

2V
)Clp cos2(α)

N r = KN(
b

2V
)Cnr cos2(α)

(E.3.18)

and (E.2.5) and (E.2.6) become:

JL =
qSb

Ixx
, WM =

qSc

Iyy
, KN =

qSb

Izz
, JN = KL = 0 (E.3.19)

Eqr =
Iyy − Izz

Ixx
, Fpr =

Izz − Ixx

Iyy
, Hpq =

Ixx − Iyy

Izz
, Epq = Frr = Hqr = 0 (E.3.20)
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